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PREFACE 

This book is a collection of the main results of the research project on Nonlinear 

Mechanical Systems under Uncertainty, which was funded by the Italian Ministry of the 

University and of the Scientific and Technological Research (MURST) over a period of 

three years (from 1991 to 1993). 

The partners which were coordinated by the Editor are academic research teams 

working in six different Italian universities: University of Florence, University of Messina, 

University of Naples, University of Pavia, University of Palermo and Technical 

University of Milan. The single researchers involved in the project provided the single 

chapters, but, in a joint effort, the original material has been re-arranged and re-ordered in 

order to avoid overlapping and to give a systematic overview of the topic. 

Dynamic systems are commonly encountered in several fields of Science and 

Technology. Nonlinear dynamic systems are generally regarded as a topic which still 

requires phenomenological understanding and tools of analysis. Chaotic behaviour can 

occur when dealing with these nonlinear systems, i.e. the behaviour can become 

unpredictable even under a deterministic environment. The presence of a stochastic 

excitation (noise) and/or of a stochastic distribution in space of the mechanical propenies of 

the system are other sources of unpredictability. 

The chapters of this book were written by structural engineers. The approach, 

therefore, is not aiming toward a scientific modelling of the response but to the definition 

of engineering procedures for detecting and avoiding undesired phenomena. In this sense 

chaotic and stochastic behaviour can be tackled in a similar manner. This aspect is 

illustrated in Chapter 1 which covers the first lectures of the course "Dynamic Motion: 

Chaotic and Stochastic Behaviour", held in Udine in September 1993, under the DESEG 



program ofCISM. The kernel of the course is illustrated in the remaining six chapters. In 
particular, Chapters 2 and 3 are entirely devoted to Stochastic Dynamics and cover single­
degree-of freedom systems and impact problems, respectively. Chapter 4 provides details 
on the numerical tools necessary for evaluating the main indexes useful for the 
classification of the motion and for estimating the response probability density function. 
The randomness of the material characteristics and the relevant stochastic models are 
considered in Chapter 5. Chapter 6 gives an overview of random vibration methods for 
linear and nonlinear multi-degree-of-freedom systems. Chapter 7, eventually, deals with 
large engineering systems under stochastic excitation and allows for the stochastic nature 
of the mechanical and geometrical properties. 

Thankings are due to several persons: professor G. Sacchi Landriani, who 
sponsored the course as responsible of the CISM-DESEG program, professor C. Tasso, 
who made possible this editorial format in the Springer-Verlag!CISM series, the 
researchers and the PhD students who assisted the authors in their research activities. But 
a special thank is due to MURST, without the funding policy of which this book would 
not have been possible. 

F. Casciati 
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Chapter 1 

STOCHASTIC AND CHAOTIC MOTION 

IN ENGINEERING SYSTEMS 

F. Casciati 

University of Pavia, Pavia, Italy 

1.1 INTRODUCTION. 

This Chapter deals with the definition of a nonlinear dynamical system, the characterizations 
of its properties, the qualitative and quantitative tools for detecting them, the governing 
mathematical equations (independently of their solvability) and the consequent engineering 
pitfall. It is conceived as a bird's eye introduction of Nonlinear Dynamics topics. 

Physical phenomena will be studied by their equivalent, in some sense, mathematical models, 
i.e. by solving mathematical problems. A mathematical problem is made by the equation 
which governs the evolution of the phenomenon and its initial and boundary conditions: 

Q(x,y,t) = 0, 

y(x,t = 0) = b(x,t = 0), 

y(x, t) = a(x, t), 

xEfl 

xEfUfl 

x E r, t > o 

(1) 

(2) 

(3) 

Eq. (1) states a relation between the response y(t), the space coordinates x and the timet 
(generally y is a vector with n components Yi and n finite or infinite, vectors and matrices 
being printed in bold-face). The region in the space where y(x, t) is defined is nand r is its 
boundary. 
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In particular a dynamical system is governed by the evolutionary problem 

y = Q(y,t) {4) 

with the initial conditions 

y(t = 0) = b {5) 

The number of degrees of freedom of the system is n, i.e. it is equal to the number of the 
components of the vector y. When the timet does not explicitly appear in Eq.(4) the system 
is called autonomous; otherwise it will be non-autonomous. 

Mathematical problems can also be classified according to their linear and nonlinear be­
haviour. The difference is based on the applicability or not of the principle of superposi­
tion . A mathematical problem is well-posed when 

1. the solution of the problem is unique; 

2. the solution depends continuously on the initial and boundary conditions. 

It follows that linear problems are well-posed as well as many problems treated within clas­
sical analysis; only recently, one has focused attention on ill-posed problems. 

Special care will be devoted to the second order nonlinear differential equation 

m · y(t) + c · y(t) + f{y(t)) = F(t) {6) 

with mass m, damping c, nonlinear restoring force f(y) and external excitation F(t). Eq. 
( 6) is a system of~ equations and is a special form of Eq. ( 4) with n equations. The number 
of physical degrees of freedom is therefore one half of the mathematical degrees of freedom. 
(Some illustrative figures of this Chapter consider a special form of Eq.( 4 ): f( t) is a cubic 
polynomial (Duffing oscillator) of the scalar displacement y). 

The presence of known parameters in the governing equation makes it a deterministic equa­
tion. The presence of some random terms (additive or multiplicative) defines a stochastic 
equation (a stochastic process is a temporal sequence of correlated or uncorrelated random 
variables). Furthermore, the mathematical problem can be either sensitive or insensitive to 
the initial and boundary conditions. 

The combinations of these cases gives the following classification of the equivalent mathe­
matical problems [1, 2, 3] {see Table I): 

• deterministic problems , governed by a deterministic equation and insensitive to 
initial and boundary conditions, 

• chaotic problems , governed by a deterministic or stochastic equation but manifesting 
sensitivity to initial and boundary conditions, 

• stochastic problems , governed by a stochastic equation. 
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Table I - Classification of dynamical systems. 

presence sensitivity 
of random to initial 

aspects conditions 
deterministic problems no no 

chaotic deterministic problems no yes 
chaotic stochastic problems yes yes 

stocastic problems yes no 

From an engineer point of view a source of noise (i.e. a random term) is always present in 
any real system, and then the corresponding mathematical problem should take into account 
random terms in the governing equation. In this sense this book only studies chaotic and 
stochastic motion of nonlinear structural systems. 

1.2 QUALITATIVE INVESTIGATION 

1.2.1 ANALYSIS IN TIME DOMAIN. 

A natural way of studying a dynamical system is through the observation of its time histories, 
i.e. the plot of each component of the vector y as a function of the time t. Reference is made, 
throughout this paper, to the Duffing oscillator with unit mass: 

ii + du + (u3 - u) =a cost+ uow(t) (7) 

with w(t) a white noise of unit strength. This equation is numerically integrated in time with 
time step l:it = jl, with M ranging between 20 and 400. Since it consists of a second order 
differential equation, the length of the associated vector y is 2. 
The time history of Figure I leads to a static equilibrium. To distinguish between a transient 
and a stationary motion does not offer difficulties. This also occurs in Figures 2 and 3 where 
the stationary behaviour is of a periodic and a chaotic nature, respectively. 

The characteristics of the system can be different due to different values of some system 
parameters, i.e. a system can show different behaviour according to different values of some 
internal parameters [4]. The passage from one kind of motion to the other, is characterized by 
a bifurcation or in general by a catastrophe . The classification of the system behaviour 
only by inspection of its time history is not simple. In particular a sys~em with many degrees 
of freedom, even under a harmonic excitation, shows almost chaotic features just due to the 
superposition of the different components. 
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2• displacement u 

time t 

-2. +---+---+---+---r---r---~--~~~~~~ 
0.0 12.57 

Figure 1 - Duffi.ng oscillator with damping parameter d=O.l85, no 
periodic excitation and no noise input: time histoty of the response 
leading to a static equilibrium. 

2. displacement u 

time t 
0. 

~ 
-2. 

0.0 12. 7 

Figure 2 - Duffing oscillator with damping parameter d=O.l85, intensity 
of the periodic excitation a=0.176 and no noiSe input: time history of the 
response leading to a periodic motion. 
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Fi~ 3 - Duffing oscillator with damping parameter ~0.185, intensity 
of the periodic excitation a=0.3 and no noise input: time history of the 
chaotic motion. 

2. displacement u 

-2·+-----+-----+-----+-----r-----r-----~~----~----~----~ 
0.0 5. 3 

figure 4 - Duffing oscillator of figure 3: sensitivity to the initial conditions 
for initially close time histories. 
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By drawing in the same plot time histories of systems initially close one to each other (Figure 
4) [5, 6] one can appreciate their divergence. One can alternatively think to the same system 
that makes different realizations from initially near positions and with close boundary con­
ditions. 

The time evolution of the dynamical system of equation (4) is represented by y(t) that can 
be regarded as a time series Yh, when the motion of the system is sampled at regular instants 
of time th [7]. 

1.2.2 ANALYSIS IN FREQUENCY DOMAIN. 

If the single component y(t) is periodic with period T, we can represent it through the 
Fourier series, i.e. as a superposition of periodic components 

y(t) = L Ak. eikwot 
k 

(8) 

where wo = (21r )/Tis the basic frequency and i is the imaginary unit. The spectral analysis 
of y(t) is the determination of the amplitude of each component Ak: 

Wo 1"/wo 'k t Ak = - · y(t) · e-' wo · dt 
211" -1r/WO 

(9) 

If y(t) is not periodic {that is in the limit case forT -+ oo ), the spectrum must be expressed 
in terms of oscillations with continuous frequencies. This spectral representation (that is an 
extension of the one of equation (7)) is called the Fourier transform of y(t) 

1 j+oo . y(w) =- · y(t) · e-awt · dt 
211" -oo 

(10) 

In general it is a complex function. A real function that can be extracted from the Fourier 
series or from the Fourier transform is its modulus (Figure 5). For a chaotic/stochastic 
motion, this function is continuous, i.e the time history y(t) has components with a continuous 
spectrum of frequencies. 

1.2.3 REPRESENTATION IN THE PHASE SPACE. 

An endochronic approach to the description ofthe dynamical system (4) makes use of a rep­
resentative point in a space with dimension equal to the number n of variables necessary to 
define in an univocal way the dynamical status of the system (Figure 6). This is the phase 
space where equation (4) can then be regarded as the motion of a fluid. This interpretation 
is the key for concepts as the Lyapunov exponent, the equations of Liouville and Fokker­
Planck, and the idea of Gibbs set. 
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1. 

Y(t) 

0 . 0 time t 12 . 57 

1/ 2n 5/n 

Figure 5- Chaotic time histocy of the Duftlng oscillator, without noise: a) 
squared response over its squared maximum, Y(t); b) the same ratio for 
the modulus of its Fourier transform, Y p(ro). 

2 • ve 1 oc i ty u 
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di sp 1 acemen t u 
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- 2. 0. 2. 

Figure 6 - Duffing oscillator with damping parameter d.-0.185, intensity 
of the periodic excitation ~0.3 and no noise input representation in the 
phase space. 
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In order to detect the kind of behaviour of the system between static equilibrium, periodicity 
and chaoticity /stochasticity, one must study the asymptotic location of the system. The 
set of points, where the system remains after a transient, is called attractor of the system 
[5]. When the system is nonlinear, the actractor is not necessarily unique. Figure 7 shows 
the presence of two at tractors (the bottom of the two basins) and the sensitivity to initial 
conditions for the Duffing oscillator. 

In the presence of sensitivity to the initial conditions or in the presence of noise in the 
equation of motion of the system, the asymptotic status of the system can be found only 
with statistical methods [1, 8, 9]. 

1.2.4 POINCARE' SECTIONS. 

The observation of the system by its time histories and by its behaviour in the phase space is 
continuous. Alternatively, the status of the system can be detected only at discrete instants 
of time. In this way one obtains the Poincare' section (Figure 8) of the behaviour of the 
system, which depends on the selection of the instants of observation. 
When the transient is disregarded, the aspect of the Poincare' section (in particular the 
number of points that appear) is representative of the behaviour of the system. 

1.2.5. BIFURCATION DIAGRAMS. 

Consider the dynamics of a system over the range of one internal parameter. In this 
range, the behaviour of the system can be very different. For example, the dynamics for the 
oscillator with trilinear restoring force can be different for different amplitudes of the harmonic 
excitation [10]. The transition between one kind of motion tq the other occurs through a 
bifurcation . Figure 9 a) presents a diagram of bifurcation for the Duffing oscillator under 
a harmonic excitation. 
Such a diagram, is costructed by: 

• integrating the motion of the system for any given value of the parameter the influence 
of which must be studied (in this case the amplitude of the harmonic excitation); 

• representing at some istant t after some transient, (in particular at each period of the 
exciting force, when it is periodic) the point y(t) in a diagram where the abscissa is the 
internal parameter under investigation; 

• repeating the previous two steps for another value of the internal parameter. 

In particular, different kinds of behaviour with periodic or chaotic/stochastic cases can be 
immediately distinguished. Bifurcations occur where the behaviour of the system changes. 
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2. velocity tl 

0. 

displacement u 
-2. +-----+-----~----~----~----~~----~-----+-----+----~ 

-2 . 0. 2. 

Figure 7 - Duftlng oscillator with dampt.ng ~eter c.b-0.185, no 
periodic excitation and no noise input example of multiple attractor and 
sensitivity to the initial conditions. 

2. velocity 0 

0. 

displacement u 
-2. +---~--~--~--~---+--~--~--~~--~~ 

-2. 0. 2. 

Figure 8 - Duftlng oscillator with damping parameter ~0.185~ intensity 
of the periodic excitation a=0.3 and no noise input Poincare' secUon. 
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2. 
u 

a 
-2. 

0. 4. 

1. 

b) 

a 

o. 4. 

Figure 9 - D~ oscUJator with damping parameter d=0.185 and no 
noise input a) blfurca.Uon diagram for the intensity of the periodic 
exdta.Uon a : b) maximum Lyapunov exponent 11 versus the intensity of 
the periodic excitation a. 
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1.2.6. ROUTES TO CHAOS. 

Three main models of prechaotic behaviour have been observed [11]. These three scenarios 
are characterized by the name of the scientists who detected them: 

1. Period doubling (Feigenbaum): one starts with a. system with a. fundamental peri­
odic motion. As some system parameter varies, the system starts an infinite sequence of 
bifurcations to periodic motions with twice the period of the previous oscillation. This 
route to chaos occurs, for instance, in the analysis of a. piece-wise linear oscillator [12]; 

2. Quasi-periodic route (Ruelle-Takens): one starts with a. quasi-periodic motion the 
a.ctra.ctor of which is a torus. Tori with three or more dimensions are not robust in view 
of structural stability: they disappear for a. small perturbation and give rise to strange 
attractors. This path has been encountered in [12) when studying a. truss structure with 
bi-linear constitutive law. 

3. Intermittancy (Pomeau-Mannesville): long periods of periodic motion are inter­
rupted by bursts of chaos. A multi-body model can show this route to chaos [12], with 
frequency of the burst of chaos higher as the number of mutual interactions increases. 

1.2.7. CAUGHEY'S REMARK. 

In reference [13) the integration of the Duffing oscillator 

(11) 

with c = O,w = l,a = 1, is pursued by: 

• the Euler numerical integration scheme with integration step At = 0.5 ; 

• the Euler numerical integration scheme with integration step At = 0.1 ; 

• the Euler numerical integration scheme with integration step At= 0.01 ; 

• writing the exact solution through the adoption of elliptic functions. 

The numerical results achieved by the three numerical schemes shows forms of chaotic/stochastic 
behaviour which do no affect the exact solution. The chaotic aspects are therefore the result 
of the numerical discretization of the problem. 

This does not mean that any chaotic situation results from the discretization: numerical 
errors spread around the representative points, but these do not show a. structure as chaotic 
situations do. Nevertheless, the check of the intrinsic physical meaning of chaos remains an 
aspect of primary importance. 
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3. QUANTITATIVE INVESTIGATIONS 

1.3.1. PROBABILITY DENSITY FUNCTION AND DISCRETIZATION OF THE PHASE 
SPACE. 

Connected with the attractor and the shape of the potential energy of the system there is 
the possibility of introducing the probability density function p(y, t) that the system is in 
some part of the phase space at a given instant of time when starting with initial conditions 
specified by a given function p(y, 0) [8, 10, 14, 15]. Let dV the infinitesimal hypervolume 
in the phase space, then p(y, t)dV expresses the probability that the system belongs to dV 
when centered at y. 

Analytical models (the Fokker-Planck differential equation) govern its behaviour and will be 
discussed in Section 1.4. It is to stress that for chaotic or stochastic systems one has proba­
bility density functions that are regular functions. In the stochastic case, in particular, they 
are smoothed due to the diffusion process introduced by the noise (parabolic contribution to 
the Fokker-Planck equation). In the case of regular deterministic systems one has singular 
distributions (like Dirac a-function) which move with inalterate shape as the motion proceeds 
(hyperbolic contribution to the Fokker-Planck equation). The presence of extreme gradients 
in the p(y, t) is responsible of the numerical difficulties that are met in solving the analytical 
governing equation as the intensity of the noise tends to zero. 

However a frequentist interpretation of the concept of probability permits one to achieve an 
estimation of p(y, t) by assessing the frequencies of finding the system, during a numerical 
simulation, in a subset of the phase space. Quantitative estimates of the behaviour of a 
dynamical system are in particular obtained by discretization of the phase space through a 
grid of boxes of characteristic size c, which is indicative of our capacity to measure the status 
of the system in equation ( 4) (the union of these boxes is the original phase space and all their 
intersections are void). The frequencies extracted through the partition of the phase space 
are only approximated, and this approximation is increased with a higher number of boxes 
(and then with smaller c). The number of boxes used is clearly related to the computational 
effort. Also the region of the phase space considered for the partitioning is related with the 
same computational considerations. In particular, it is necessary to extend the partition well 
beyond the points of the phase space visited from the system during its motion. 
The first elementary measure is the number of boxes Nboo:(t, c) which are visited. A more 
significant information is the relative frequency of points belonging to the i-th box which is 
an estimate ofthe probability mass function p;(t,c) of finding the status of the system in the 
i-th box. By definition one has: 

p;(t,c) = f p(y,t)·dl/i 1-v; (12) 

The situation of Figure 10 was found for the Duffi.ng oscillator (see also equation {10)). In 
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this way one emphasizes the presence of many attractors, the effect of noise sources or the 
sensitivity to initial conditions. As for p(y,t), also for the mass probability p;(t,t) singular 
functions characterize regular motions, while chaotic and stochastic ones are characterized by 
regular functions. It follows that the class of chaotic systems, even if perfectly deterministic, 
can be managed as stochastic from a computational point of view. 

1.3.2. METRIC ENTROPY 

Related to the form of the probability mass function p;(t, t) there is a quantity that measures 
the disorder connected with the motion of the system: the metric entropy of the system 
I(t, t) (1, 14]. This quantity is a function of the time since the probability mass function 
p;( t, £) is continuously varying in time. 
The entropy can be computed as 

(13) 

where the summation covers all the visited boxes. I(t) is zero when the motion of the system 
is perfectly ordered (i.e. p;(t, £) is 1 in one box and zero in any other box) and reaches a 
positive upper-bound for a uniform occupation of all the cells. 

Note that the entropy defined in (11) is dependent on the discretization of the phase space. 
The need for an invariant definition of entropy, more satisfactory from a theoretical point of 
view, leads one to the definition of the Kolmogorov entropy [1, 16), the price being a high 
mathematical sophistication. 

1.3.3. KOLMOGOROV ENTROPY. 

The computed function I(t, £) is not smooth (Figure 11), due to the discretization of the 
phase space. Then, numerically, it is impossible to evaluate the numerical derivative of the 
metric entropy. With reference to Figure 11, one sees a first interval of time during which 
the entropy is linearly increasing and a subsequent stationary status. 

A simplified definition of the Kolmogorov entropy can be reached by introducing a linear 
interpolation I'( t, £) for l(t, £)in the range between the origin and the stationary status [17): 

(14) 

'T}(t, £) being a zero mean fluctuation from the interpolating straight line. The velocity of 
variation of the entropy I'(t, £), i.e. its time derivative, for £ sufficiently small is known as 
the Kolmogorov entropy(2, 4], 

K = ai'(t, t) 
at 

f small (15) 
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Figure 10 - Duftlng oscillator with damping parameter d=0.185, intensity 
of the periodic excitation a =0.3 and no noise input: probability density 
function in the partitioned phase space. The spikes denote the initial 
condition. 

1.0 entropy I 

time t 
0.0 +---+---r---~~--~---+---+--~--~--~ 

0.0 251.32 = 
40 forcing periods 

Figure 11 - Duftlng oscillator with damping parameter d=0.185, intensity 
of the periodic excitation a •0.3 and no noise input: entropy versus time. 
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In words, the Kolmogorov entropy is the constant value of the slope of the interpolating 
straight line. Since, for f sufficiently small, it turns out that K is not sensitive to the 
partition grid, such an operative definition can be adopted instead of the rigorous, but useless 
expression: 

(16) 

where T8 is the period necessary to I'( t, E) for reaching the stationary status. (The presence of 
I~ in Eq. (13) accounts for initial conditions of nonzero metric entropy, but Eq. (15) does not). 

Of course, the numerical use of Eq. (14) fails when the stationary status is reached just after 
a single step D.t of time integration. A second analysis making use of a shorter D.t should be 
conducted in this case. However, when this event occurs for a map (f.i. the random number 
generator map (12]), it means an infinite value of K. 
A classification of the behaviour of the system can then be based on the value of the Kol­
mogorov entropy: 

• K = 0 : the motion is regular, 

• ]( > 0 : the motion is chaotic or stochastic, 

• K = oo : the motion is entirelly random. 

The third case appears when the representation of the system takes place at intervals of 
time which give the system the chance to cover any point of the phase space in two subse­
quent observed situations. This is the case toward which the random number generators tend. 

While physically the entropy is the information needed to locate the system in time, the 
Kolmogorov entropy is the velocity with which one loses the information about the status of 
the system. Other quantities that measure the same effect are the Lyapunov exponents, and 
it will be shown that the Kolmogorov entropy is related with them. 

1.3.4 LYAPUNOV EXPONENTS. 

Classical Lyapunov stability approach makes use of the eigenvalues of the matrix A in the 
linearized equation: 

y=Ay (17) 

which can be derived from Eq. ( 4) (18]. An extensions to stochastic stability was provided by 
Khasminskii [19] and a significant generalization to initial condition dependency was reached 
with the ergodicity theorem given by Osdelec [20]. Both these developments introduced, as 
a substitute of the eigenvalues, the Lyapunov exponents. They are defined as the limit as t 
tends to oo of a norm of the vector, in the phase space, representative for the system under 
investigation. 
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Given a continuous dynamical system in a n-dimensional space, consider the points of the 
phase space included in a sphere of radius Eo. This sphere is deformed in time to become an 
ellipsoid of principal axes 

f; = fo · 2.X;t, i = 1, .. n (18) 

from which it turns out the definition of the i-th Lyapunov exponent 

(19) 

In Eq. (18) 2 is used as basis for the logarithm: this choice is convenient but not necessary. 

These Lyapunov exponents are the average exponential rates of divergence or convergence 
of nearby orbits, which correspond to nearly identical states. Therefore, exponential orbital 
divergence means that close systems will soon behave quite differently and any predictive 
ability is lost. 

It often occurs in physics, in the presence of necessary and sufficient conditions, that part 
of the literature misses some logical links. For chaotic motion, in particular, the previously 
stated link between chaos and Lyapunov exponents it often replaced by a definition such as: 
any system containing at least one positive Lyapunov exponent is defined to be chaotic with 
the magnitude of the exponent reflecting the time scale on which system dynamics becomes 
unpredictable [21] (see Figure 9 b)). 

Since these exponents are strictly related to the principal components of the strain tensor in 
continuum mechanics, it is easily understood that the sum of the Lyapunov exponents (i.e. 
the Lyapunov exponent of order n) governs the evolution of the volume of the sphere. For a 
dissipative system one expects some contraction and then 

(20) 

Consider a dynamical point without a fixed point. Since there is a slow change along to the 
axis tangent to the flow, in the phase space, one Lyapunov exponent must be zero. Eq. (18) 
then requires a minimal dimension n = 3 for having chaotic phenomena. In the last case one 
has: 

• {>.1 > 0, A2 = 0, A3 < 0}: chaotic motion with strange attractor; 

• {A1 = 0, A2 = 0, A3 < 0}: quasi-periodic motion with torus of dimension 2; 

• {>.1 = 0, A2 < 0, A3 < 0}: periodic motion with limit cycle; 

• {>.1 < 0, A2 < 0, >.3 < 0}: equilibrium with fixed point. 

Numerically, the Lyapunov exponents can be obtained with standard techniques [21]. They 
will be discussed in Chapter 4 of this book. 
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1.3.5. DIMENSION OF THE ATTRACTOR. 

An attractor can be characterized by a number that is a measure of the variables needed 
to specify the position of the system over the actractor itself. No supplementary variable is 
required in order to locate a system in its equilibrium point in the phase space. An arbitrary 
abscissa locates a system over its limit cycle. To locate a system over the corresponding torus 
in a three dimensional phase space, one needs two coordinates. So, the equilibrium point is 
an attractor of dimension 0, the limit cycle is an attractor of dimension 1 and the torus is 
an attractor of dimension 2. From a matematical point of view one can expect attractors 
of noninteger dimension. These are strange attractors and are related to stochastic and 
chaotic motion. Geometrically the strange a.ttra.ctor are fractal objects[5, 6]. 
One can compute several dimensions, that a.re summarized in the following equation [4], 
which assumes a preliminary partitioning of the phase space 

(21) 

where q is a positive integer and £ denotes the size of the boxes in the partitioning. For 
q == 0 one produces the capacity dimension, q == 1 the information dimension and q == 2 the 
correlation dimension, with: 

It is worth noting that the presence of noise produces an a.ttractor more smeared. An increase 
of dimension for the attractor can be detected as the noise intensity is increased. 

1.3.6. LYAPUNOV EXPONENTS VS. ACTRACTOR DIMENSION AND KOLMOGOROV 
ENTROPY 

The following relation holds [2] 

(22) 

where the summation is extended over the ordered Lya.punov exponents of positive sum. 

Moreover the Lyapunov exponents are related with a. special form of the fractal dimension of 
the strange attractor: 

(23) 

where j is the index of the last positive exponent among the ordered (in a decreasing way) 
Lyapunov exponent. 
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1.3.7 STUDY OF MANY TRAJECTORIES: THE GIBBS SET. 

In the presence of stochasticity or chaoticity the evolution of certain average quantities must 
be determined, rather than the trajectory corresponding to a given set of initial conditions. 
Such formulation in terms of average quantities is also the basis of the well codified Statistical 
Mechanics [22). 

Consider a collection of N dynamical systems identical to the one represented by equation 
(4) 

• (k) - Q( (k) t) k - 1 N y - y ' ' - , .. (24) 

with slightly different initial conditions (5). This collection is called a Gibbs set . One will 
observe the evolution in time of this collection of systems, that start nearly at time t0 , each 
of them exhibiting a motion that is not affected by the presence of the other systems. In 
Figure 12, one sees the initial disposition of the Gibbs set and how this configuration has 
changed at a generic instant of time t. 
With this set one simulates his uncertainty about the effective initial status of the system, i.e. 
the uncertainty about the initial conditions. These systems reproduce then the small phase 
space volume considered inside the ball introduced for computing the Lyapunov exponents. 
For a problem of classical kind, the size of the Gibbs set remains substantially the same 
(the uncertainty about the location of the system remains constant). In cases of chaotic 
or stochastic dynamics, the size of the collection grows in time (information about the true 
status of the system is lost). The idea is then to use the Gibbs set and its motion to compute 
statistics of the system behaviour. 

1.4 THE LIOUVILLE AND THE FOKKER-PLANCK EQUATIONS. 

This section deals with an alternative approach by which the evolution of the dynamical 
system of equation ( 4) can be followed. However, while the simulation of the system requires 
the solution of ordinary differential equations, this approach requires the solution of partial 
differential equations: as a consequence it is more synthetic but its numerical solution is much 
more complicated. 

1.4.1. LIOUVILLE EQUATION 

Equation (24) can be regarded as governing the components of the vector of the velocity of 
a fluid, with mass density p(y,t) (normalized to have integral equal to 1), which moves in 
the phase space of the dynamical system (4) [16). For the generic portion ofthis fluid in the 
subset D of the phase space, we can establish an integral equation of continuity as 
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! kp(y,t)·dD = 0 (25) 

Equation (24) is equivalent to the differential continuity equation (Liouville equation ) 

{)p + L _!!__ [YkP] = 0 
{)t k 8yk 

(26) 

where the terms under the sum allow the convection equation (25) to belong to the class of 
hyperbolic partial differential equation in the unknown quantity p(y, t). With the appropri­
ate initial conditions, Eq. (25) solves the dynamical problem in this special case .. 

1.4.2. FOKKER-PLANK EQUATION 

In the presence of noise, the continuity equation is altered due to the different meaning of 
the flow drift and the presence of diffusive. In particular, one assumes the following limits 
exist [23]: 

. E[!~,(t + r)- Yk(t)] 
bk(Yk, t) = lim --==-----,. .... o T (27) 

E[(y.(t + r)- y;(t))(y.(t + r)- Y;(t))] 
c;;(y;,y;,t)= lim = -J 

T-+0 T 
(28) 

where E[ ] denotes the ensemble average and underlined letters distinguish the stochastic 
process from its realization. Terms of order higher than the one in equation {27) may be 
nonzero. They vanish for a Gaussian noise. Then, the governing equation becomes (Fokker­
Planck equation ) 

(29) 

which is of the parabolic-hyperbolic kind: bk is responsible of the hyperbolic character and 
Cii of the parabolic one. 

The Fokker-Planck equation, with the appropriate initial condition, solves fully the problem 
of determining the aspects of the motion of a real system with noise: from the solution p(y, t) 
of the equation (28), one knows all the properties of the system. For its rigorous derivation, 
the reader is referred to Chapter 2 of this book. 
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1.4.3. EFFECTS OF RANDOM PERTURBATIONS ON DYNAMICAL SYSTEMS 

The fluctuations due to the presence of noise allow a dynamical system to visit in an almost­
continuous way the phase-space. In particular, when several actractors exist, the response of 
the system can be shifted from the neighbourhood of the first actractor to the second and 
vice versa. 

It follows the concept of stochastic bifurcation illustrated in Figure 13. A unimodal proba­
bility density function of the response, which characterizes the dynamical behaviour, around 
a single actractor is drawn in the top of Figure 13. In the presence of two actractors the 
system visits both the regions and a bi-modal probability density function is found (bottom). 
The passage from the first situation to the second one defines the critical value of stochastic 
bifurcation for the parameter under investigation. It corresponds to a flat central part of the 
probability density function. 

If one considers a simple elasto-plastic oscillator under a cyclic stochastic excitation, a phe­
nomenon of stochastic bifurcation can be emphasized by just increasing the intensity of the 
excitation. At the beginning, the elastic response locates around the zero, but for large in­
tensities a bimodal probability density function shows that the more likely states are now the 
positive and negative plastic branch. 

When several actractors exist, multimodal probability density functions may occur, but other 
forms of information may also be collected: the temporal sequence of the changes of actrac­
tors, the time spent around each actractor and so on. 

1.4.4. EFFECTS OF RANDOM PERTURBATIONS ON CHAOTIC SYSTEMS 

If a chaotic state is considered, something of similar to stochastic bifurcation may occur for 
the probability density function. The main difference results in the patterns of transfer from 
one attractor to the other, which are very narrow, and in the inter-transfer times which are 
governed by the interaction between system and excitation properties. Adding noise to such 
phenomena means to increase the scatter of the transfer paths and to modify the rate of 
changes. 

1.5 SAFETY AND PREDICTABILITY. 

The evolution of the concept of safety which characterized the last two decades is the main 
responsible of the increased interest in dealing with extreme events .. The old approach to 
this problem was just requiring to locate the design in a region of stable equilibrium with 
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a sufficiently redundant carrying capacity. This was not always possible in aerospace tech­
nology (due to the required weight limitations) but was appropriate in civil and mechanical 
engineering. 

1.5.1. SAFETY 

The modern understanding of structural safety [7, 15, 23, 24] requires the study of extreme 
situations with the goal of assessing the probability of any undesired behaviour. The last 
concept is often translate in a zero-one (Boolean) logic by introducing in the space of the 
design .variables the safe region and the unsafe one. The boundary which separates these two 
regions is the geometrical representation of the limit state. 

Figures 9 b) gives an idea of this situation when the limit state of chaotic motion is intro­
duced. It is defined operatively by the positiveness of the larger Lyapunov exponent. The 
Kolmogorov entropy could also be adopted. 

When the interaction of 2 (or more) parameters is significant in view of the chaotic behaviour, 
one obtains Figure 14 for the maximum Lyapunov exponent. Two remarks tum out from 
this picture: 

1. one cannot rely on a continuous unsafe region. This means that the space of the possible 
design situations must be tested by a sufficiently dense grid; 

2. the location of the optimal design is not necessarily very far from a chaotic region, since 
too far may involve sensitivity to another chaotic region. 

Given the probabilistic description of the design variables of interest and the whole set of 
surfaces denoting the transition to chaos, the integral of the joint probability density function 
over the unsafe region will provide the probability of failure, which is the complement to 1 of 
the structural reliability. 

1.5.2. PREDICTABILITY 

Safety is a first-level measure of the structural pedormance. A second-level investigates the 
damages arising as consequence of the fact that an unsafe region has been reached. For the 
limit state of the previous subsection this second level means to study what occurs when the 
system becomes chaotic. 

The main step required by such a task are: 

• to select an appropriate (i.e. significant) subset of the phase space; 

• to associate to each point of this subset a stress/strain description of the dynamic 
system; 
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• to identify the limit states arising from limitation on stress and/or strain functions; 

• to evaluate the relevant probability density function of the response; 

As a result of the whole analysis one has the probability that the system will be in a given 
chaotic state (safety analysis) and for each point of the chaotic state regions the associate 
probability of reaching a given limit state. Of course, out of the chaotic regions, in the 
absence of noise, the system would be fully predictable and the design could be classified as 
safe or unsafe. Both chaoticity and stochasticity, alone or together, makes the adoption of a 
probabilistic approach unquestionable. 

1.6 CONCLUSIONS. 

In this chapter the tools by which a dynamical system can be investigated have been intro­
duced and discussed. Emphasis has been put on the possibility of using the same tools for 
studying chaoticity and stochasticity. 

The basic steps of the study of an engineering dynamical system turn out to be: 

1. identification of the chaocity region: this can be conveniently performed, even for multi­
degree-of-freedom systems, by computing the Kolmogorov entropy (see Chapter 5); 

2. probabilistic description of the response associated with each point of this chaotic region. 
This could be performed by solving the Fokker-Plank equation (see Chapter 2) which is 
the governing equation of stochastic dynamics. Unfortunately for complex engineering 
systems a s.olution of that equation is not available and approximate algorithms should 
be adopted (Chapter 3 to 4). 
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Chapter 2 

STOCHASTIC DIFFERENTIAL CALCULUS 

M. DiPaola 

University of Palermo, Palermo, Italy 

1 INTRODUCTION. 

In many cases of engineering interest it has become quite common to use stochastic processes to 

model loadings resulting from earthquake, turbulent winds or ocean waves. In these circumstances 

the structural response needs to be adequately described in a probabilistic sense, by evaluating the 

cumulants or the moments of any order of the response (see e.g. [1, 2]). In particular, for linear 

systems excited by normal input, the response process is normal too and the moments or the 

cumulants up to the second order fully characterize the probability density function of both input 

and output processes. Many practical problems involve processes which are approximately nonnal 

and the effect of the non-normality can often be regarded as negligible. This explains the popularity 

of second order analyses. 
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'or linear or non-linear systems driven by normal delta-correlated processes the Ito stochastic 
ifferential calculus [3, 5] represents the main tool for evaluating the response in terms of statistical 
1oments. A paper by Srinvasan [6] reviews the evolution of the researches on the stochastic 
1tegrals and on the problems connected to their applications. By using the Ito stochastic integral 
nd the corresponding Ito differential calculus, the analysis of the probabilistic response of non­
near systems under external and/or parametric normal excitations becomes simple and immediate. 
~olthough, for the Ito integral, the usual rules of integration of the ordinary differential calculus fail, 
1 the applications it is preferred respect to another stochastic integral, called Stratonovich integral 
7], which remains the fundamental tools of the ordinary integral calculus. This preference is due to 
b.e computational benefits related to the statistical independence between the increments of the 
'Viener process and the response process, evaluated at the same time; this independence can be 
:vocated only if the Ito integral is applied, while, if the Stratonovich integral is used, the analysis 
,ecomes more and more complicated. The common strategy for evaluating the Stratonovich 
ntegral, which, as said before, satisfies the fundamental tools of the ordinary differential calculus, 
:onsists of modifying the drift coefficients, in the differential equations, by adding some corrective 
erms ([8] or Stratonovich correction terms), and then, of applying the Ito integration procedure. 
rhese corrective terms are such that the Ito integral of the modified differential equation coincides 
~ith the Stratonovich integral of the original differential equation. The presence of the Wong-Zakai 
>r Stratonovich correction terms is usually related to the local irregularities of the white noise 
>rocess, that is, to the fact that a normal white noise process exhibit unbounded variations in 
.nfinitesimal time intervals. In the last decade, a common justification of their presence has been 
:onnected to the passage from an ideal white noise to a physical white noise, in order to treat real 
>roblems [2]. But, as pointed out in a recent work [9], this explanation is not satisfactory. 
1\.lthough the assumption of Gaussianity is adequate in many cases, there may be excitation 
?rocesses for which this assumption is not justified by the experimental data. Relevant examples of 
10n Gaussian excitation are event-type represented as train of pulses occurring at random times 
mch as highway traffic load on bridges [10], buffeting on airplan tail [11] ground motion 
!l.cceleration due to strong earthquakes or shock waves [12, 13]. For these input processes the 
linear case was treated [14, 15, 2, 6] by obtaining moments and cumulants of higher order in order 
to evidence the departure from the normality of the response. Non linear case excited by external 
~xcitation has also been treated by Feller [17], Roberts [18]. Iwankievicz et al. [19, 20]. Only 
recently the case of parametric-type delta-correlated process has been treated by Di Paola and 
Falsone (DiPaola and Falsone [21]) obtaining an extension of the stochastic differential calculus 
for such types of excitation. 
£n this chapter the main results of the classical stochastic calculus will first be treated. An extension 
of the Fokker-Plank equation and a moment equation approach for parametric type delta-correlated 
input process will be also presented together with numerical examples and simulation procedures. 
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2 PRELIMINARY CONCEPTS AND DEFINITIONS. 

In this section some well known concepts on the probabilistic characterization of stochastic 
processes are outlined, the scalar case is treated but extension to multidimensional processes is 

straightforw~: 

Let X(t) be a stochastic process; its probabilistic description at a fixed timet can be obtained by 
means of the knowledge of the probability density function Px(x; t) or by its Fourier transform that 
is the so-called characteristic function, defmed as 

where 1'} is a real parameter, i is the imaginary unit, and E[·] means stochastic average. 

A Taylor expansion of the characteristic function gives 

~ (-ij [ J j Mx(l'}; t) = £.J -.-1 mj X -6 
j =0 J. 

where In_j [X] is the so-called moment of order j of X(t), that is 

[ ·) 100 

• [cf M (1'}· t)] mj [X) = E X1 = Px(x; t) xl dx = ~ X j ' 

-00 <-~r d-a: ,= 0 

(1) 

(2) 

(3) 

A different representation of the characteristic function can be made by introducing the so-called 

cumulants kj [X], see e.g. Lin [2] in the form 

Mx(l'}; t) = exp {I <-.:i kj [X] l'}j) 
~=1 J. 

where k. [X] is the j-th coefficient of the Taylor expansion of the log-characteristic function 
] 

(4) 

(5) 
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moments and cumulants are related to each other by means of non-linear algebraic recurrence 

relationship (with argument omitted), 

ml = kl 

~ =Is +kl ml 

~ = Is + 2 Is ml + kl ~ 
m4 = k4 + 3 Is m1 + 3 k2 ~ + k1 ~ (6) 

where the coefficients in equation (6) are those of the Tartaglia triangle. From equations (1), (2) 

and (4), it is evident that the complete probabilistic description of the stochastic process X(t) at a 
fixed time t can be obtained indifferently by means of the knowledge of its probability density 
function or of its characteristic function or of its moments and/or cumulants of every order. 
Many physical problems have small values of higher order cumulants and, for normal (Gaussian) 

processes they are exactly zero for order greater than two, thus in these cases the first cumulant 
(mean value) and the second cumulant also called variance fully define the stochastic process X(t) 

from a probabilistic point of view at a fixed time t 
A complete probabilistic description of a stochastic process X(t) can be obtained by means of the 
knowledge of the infmite hierarchy of the joint probability density functions 

(7) 

where 

(8) 

In equation (8) the apex T means transpose and Xk is the random variable obtained by X(t) at the 

time instants tk, that is Xk = X(tk). 
The stochastic process X(t) can be equivalently characterized by means of the multidimen-sional 
characteristic function M (-6; t) which is related to the probability density function by means of . -~ s s 
the Fourier transform operator, that is 

where -6 s is an s-vector of real parameters 

T 
'6s = [-61 '62 ... -6sJ 

(9) 

(10) 
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A Taylor expansion of the characteristic function gives 

where mr [xi Xi ... x1] with p + q + ... + I = r is the moment of order r of X(t1), X(~) •.... 
X(t5), that is 5 

A more compact representation of equation (11) can be obtained by means of the Kronecker algebra 
whose fundamentals are reported in Appendix A. 

M (~ · t) = ~ <- i)j m![x J ~ [jJ 
X s' s ~ ·r J s s 

s . 0 J. 
J= 

(13) 

in equation (13) m. [X5] is the vector of order si collecting all possible moments of order J of the 
random variables X1, X2, ..• , X5 in the form 

mj [XsJ = E [ X5 ® X 5 ® •.. ® X8] = E [X~]] 
j- times 

(14) 

in equations (13) and (14) the exponent into square brackets means Kronocker power and the 
symbol ®means Kronecker product. 
The vector of moments of order r of the vector X8 can be obtained by the characteristic function as 
follows 

1 [ [r] ] m X = - V M (~; t) 
r [ sJ ( _ i)r ~. x. s s ~. = 0 (15) 

where V ~ is the derivative vector defined as 
s 

(16) 



34 M. DiPaola 

~ different r~p~sentation of t~e characteristic f~ction can be made by introducing the so-called 

.umulants krlX 1 Xi ... xj wtth p + q + ... + 1- r 

(17) 

vhere the various cumulants in equation (17) can be obtained by the following relationship 

(18) 

~uation (17) can be rewritten in the form 

(19) 

['be entire set of cumulants of order r can be obtained in compact form as follows 

k [X ] = __1_ [v ~rJ ln Mx (x ; t)l 
r s (-i/ 1 1 s s~"'.=O (20) 

~elationships between moments and cumulants can be found in literature [22, 23, 24]. 

tis to be emphasized that if the stochastic average E [X1 X2 .•• X 5] (a scalar quantity) is known 

'or every set of instants t1, ~· ••• , t5, then all possible moments of order s, m5 = [Xi Xi ... xj 
'lith (p + q + I= s), can be constructed, that is the entire vector m5 [X5] can be easily computed by 

neans of an appropriate choice of the time instants t1, ~· ... , t5• For this reason it seems to be 

tppropriate to introduce a new nomenclature for this moment and it will be called "average at 
nultiple times" and denoted as~) (t5). The counterpart of~) (t5) in terms of cumulants is, 

'allowing the nomenclature introduced by Stratonovich (1963), the "correlation" R~) (t5). If the 

:orrelation is known as a function of the various time instants t1, ~· ... , t5 then by means of an 

tppropriate choice of the instants t1, ~· ••• , t5 the entire vector k5 [X] can be easily constructed. 
f X(t) is a strong stationary process of order s, then the average at multiple times and the 

:orrelations up to the s-th order depend on the time differences t1 - ~· t1 -1:3, ... , t1 - t5 instead of 

he time instants t1, ~ •••• , t8 separately taken. 
:he scalar functions ~) (t5) and R~) (t5 ) can be obtained in the form 
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(21) 

(22) 

The infinite set of average at multiple times and correlations fully describe the stochastic process 

from, a probabilistic point of view. 

An important class of stochastic processes encountered in practical application are the normal ones 

that are defined by having all the correlations of order greater than two zero. It follows that a 

complete characterization of a normal process is obtained by the knowledge of 

(23) 

(24) 

For stationary processes the second correlation, in the following simply called correlation function 

and denoted as Rx(tp ~)depends only from the difference t = t1 - ~·It follows that the complete 

characterization of a stationary normal process is made by means of the mean value J.lx = E [X] 

which takes a constant value and by the correlation of second order in the follows simply denoted 

as Rx(t). The Fourier transform of the correlation function of a stationary process is the so-called 

Power spectral density (PSD) function that is 

(25) 

The inverse relationship writes 

(26) 

The equations (25) and (26) are the Wiener-Kintchine relationships. From equation (26) we 

recognize that for a normal stationary processes the PSD fully characterize the stochastic process 

X(t) from a probabilistic point of view. 
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3 DELTA-CORRELATED PROCESSES. 

In this section we will deal with a very important class of stochastic processes that are charecterized 
by correlation functions given as 

R~> (tl) = q(l) (tl) 

R~) {t1, t2, ... , t5 ) = q(s) {t1) 0 (t1 - t2) 0 (t1 - ~) ••. 0 {t1 - t5); S = 2, 3, ... , oo 

(27) 

in this case the process W(t) will be called delta correlated (see e.g. [1, 14, 15]. 
In equation (27) o(") is the Dirac's delta and q<s>(t1) is an intensity coefficient. If q<s>(t8), s = 1, 
2, ... , oo take a constant value, then the process W(t) is a stationary one. 
A relevant example of delta-correlated process is the Poisson white noise process, defined as 

N(t) 

W(t) = L yk O(t- tk) (28) 
k=l 

This function is a train of Dirac delta impulses o(t- t1 ) occurring at Poisson-distributed random 
times tk. N(t) is a counting process giving the number of impulses in the time interval [0, t] with 
initial condition N(O) = 0, with probability one [25]. Y k are assumed to be mutually independent 
and independent of the random instants tk. The Poisson process is completely characterized by the 
expected rate A.(t) of events (impulse occurrences), that is the mean of the random impulses in the 
infmitesimal interval t + t + dt, that will be denoted by N(dt), is given as 

E [N(dt)] = A.(t) dt + O(dt) (29) 

The entire probabilistic structures of the process W(t) defined in equation (28) can be evaluated in 
the form 

(30) 

If A.(t) keeps a constant value the Poisson white noise process is a stationary one. The Poisson 
white noise processes have been discussed by several authors and have been used in order to model 
some excitations, such as earthquakes [26] and the random trains of loadings on bridges due to the 
vehicles traffic [10]. The Poisson process W(t) can be considered as the formal derivative of the so­
called homogeneous compound Poisson process C(t) defined as 

N(t) 

C(t) = L yk U(t- tk) 
k=l 

(31) 
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U(t) being the unit step function. It is easy to show that the correlation functions of C(t) can be 
expressed as 

(32) 

(33) 

Differentiating equation (33) with respect to tl' ~· ... , ts, we obtain 

(34) 

This equation shows that the correlation function of a Poisson white noise coincide with the 
derivative of the correlation function of the corresponding homogeneous compound Poisson 
process. 

It can be easily seen that the correlation functions of the increments dC(9 = C(tj + dt)- C(t) of a 
homogeneous compound Poisson process are given as 

(35) 

taking into account the relationships between average at multiple time and correlations, we obtain 

E [dC (ti)] = A. E [Y] dt 

E [dC (ti) dC (tz)J = A. E [ Y2] o (t1 - tz) dt1 dtz + t..? E [Y]2 dt1 dtz 
(36) 

E [dC (ti) dC (tz) dC (t3)) = A. E [ Y3] o (ti - tz) o (ti- t3) dtt dtz dt3 + 

+ t..? E [Y] E [ yz][o (tz- t1) + o (t3- t1) + o (t3- tz)] dt1 dtz dt3 + 

Taking into account that, when ti approaches tj, the Dirac's deltas o(ti- tj) gets an infinite value of 
the same order of 1/dt, putting t1 = ~ = ... = ts in equation (36) and neglecting higher order 
infinitesimal than dt, we obtain the very remarkable relationship 

(37) 
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Equation (37) shows that cumulants and moments of the same order of an increment of the 

compound Poisson process coincide. 

In Fig. 1 a sample function of a compound Poisson process and the corresponding white noise 

Poisson process are reported. 

1a 

t 
1b 

t 

Fig. 1 - a) Sample function of a homogeneous compound Poisson process; b) Sample function 
of a white noise Poisson process. 

The normal delta correlated process or simply white noise wf1 is a particular type of delta correlated 

process characterized by having q<s>(t) = 0 for s > 2. It follows that the white noise is fully 

defined, from a probabilistic point of view, by means of the second correlation 

(38) 

(39) 

if q<1>(t) is zero and q<2>(t) is independent oft, the process wf1 is a zero mean stationary white 

noise. In this case the correlation function writes 

(40) 

The Power spectral density function Swo (ro) in this case becomes 
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(2) 100 . (2) s o (co) = L e- 1 rot a(t) dt = L 
w 21t 21t 

-oo 

(41) 

Equation (41) shows that the PSD is a constant at overall frequency range and this justifies the 
nomenclature of white noise; in the optic the white colour is one having constant frequency power. 
Like the formal derivative of an homogeneous Poisson process is the white Poisson process, the 
normal white noise can be obtained as the formal derivative of an other fundamental process, that is 
the so-called Wiener process, B(t). In Fig. 2 some sample functions of a Wiener process are 
depicted showing that all sample functions are continuous though, in accordance with a theorem of 
N. Wiener, nowhere differentiable functions. 
Moreover, although the mean value ofB(t) is zero, the mean square becomes infmite as t--+ oo. The 
extreme irregularity of the individual sample function (unbounded variation in infinitesimal 
intervals) account for the non differentiability of such processes. 
It is to be emphasized that the white noise is totally uncorrelated, and can be obtained as the limit 
from a white Poisson proce·ss. As in fact the mean number of arrivals approaches to infinity and E 
[P] = 0, A. E [y2] keeps a constant value, the Poisson white noise approaches to the normal one [1, 

2]. Moreover in this case the homogeneous compound Poisson process becomes a Wiener one. 
The departure from the normality of a Poisson white noise increases when A. decreases, for fixed E 
[Y2]. 

r- dt ---l 

Fig. 2- Three sample functions of a Wiener process 
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An increment of a Wiener process dB(t) is such that 

E [ dB(t1 ) dB(~)] = q<2> B (t1 - ~) dt1 d~ (42) 

(s) [ J EdB t1, ~· ... , t = 0 ; 'Vs >0 (43) 

letting t1 = ~ in equation ( 42) we obtain 

(44) 

moreover using equation (43) and the relationships between moments and cumulants we obtain 

(45) 

From equation (44) we recognize that of dB(t) is an infmitesimal of order vat . 

4 OPERATION ON STOCHASTIC PROCESSES. 

Many random phenomena in nature which directly interest us are expressed in terms of 
limiting series, derivatives, integrals. Since a stochastic process is defined in a probabilistic sense, 
the calculus of the random process must also be developed in the probabilistic framework. The 
concept of convergence is fundamental in the development of the differential calculus of stochastic 
processes. We shall confine ourselves to the notion of mean square convergence and state the 
conditions of continuity, differentiability, and integrability without proofs. For a derivation of these 
conditions rearchers are referred to Parzen [27], Loeve [28], (see also [29, 30]). 

4.1 Limit. 

A sequence of random variables Xl' X2, •.. , Xm, . . . converges in mean square to a random 
variables X as n ~ oo if 

(46) 

we shall abbreviate this to 
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m.s. 
l.i .m. Xn = X or Xn ---+ X (47) 
n~oo 

where l.i.m. denotes limit in the mean. Other commonly used names are convergence in quadratic 
mran and second order convergence. For equation (46) to hold the necessary condition is that 
ElX~ < oo, 

A fundamental theorem of the convergence in mean square is that for every convergent sequence 
~ l.i.m. and mean commute that is if 

l.i.m. X =X 
n (48) 

then 

lim E(XJ = E[X] (49) 

4.2 Mean square continuity. 

The concept of mean square convergence of a sequence of random variables can be extended to a 
stochastic process X(t) where tis a continuous parameter. We shall say that the stochastic process 
X(t) is continuous in mean square sense if 

(50) 

whathever t ~ t6. 
It can be shown that the necessary and sufficient condition for the continuity of the process 

X(t), t e Tis that the correlation function Rx (t1, ~)exists and is finite in TxT. 

4.3 Mean square differentiation. 

The concept of mean square differentiation follows naturally from the mean square continuity, and 
is defmedas 

X(t + t)- X(t) 
X(t) = l.i.m. 

t (51) 
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The mean square derivative of the stochastic process X(t), t e T exists at t if 

<oo (52) 

and is continuous in t1 = ~-
From this condition we recognize that the Wiener and the homogeneous compound Poisson 
processes are not differentiable and this explain the adjective "formal" used in Sects. 3 and 4. In the 
next section this concept will be extensively investigated. 
It can be shown that if eq. (52) holds, then 

it-E[X(t)] = E[~] = E[X(t)] (53) 

that is the operation of expectation and differentiation commute. It follows that the derivative of the 
cross correlation between two stochastic processes X1 (t) and X2(t) can be obtained in the form 

(54) 

Generalization of the result given in equation (54) are straightforward. 
Let the derivative dn X.(t)/dtn denoted as X~n>. The cross correlation R (n> x~> can be written in the 

1 1 ~..,.1 ·-z 
form 

(55) 

IfXi(t) are jointly stationary processes, equation (55) reduces to 

(56) 
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4.4 Mean square integration. 

In order to define the mean square Riemann integral we first consider, as customary a collection of 
all finite partitions {pn} of an interval [a, b]. The partition Pn is defined by the subdivision points 
tk, k = 0, 1, ... , n such that 

.1 = max (t - t 1 ) n s s- (57) 
s 

and lett be an arbitrary point in the interval [t 1, t5]. Let X(t) be a stochastic process and g(t, 't) a 
s s-

deterministic function. We define Riemann integral Y(t), if exists and is finite and independent of 
the choice of the intermediate points t , the limit of the partial sums 

s 

Y(t) = f X(t) g(t, t) dt = l.i.m. 
n~oo 

.1 ~ 0 
n 

t g (t, t5) X (t5)(t5 - t5 _ d 
s=l 

The stochastic process Y(t) exists if, and only if, the ordinary double Riemann integral 

f f g(t, t) g(s, t) E [X(t) X(s)] dt cb 

(58) 

(59) 

exists and is finite. In this case the usual rules of common integrals such as integration by parts, 
Leibniz Rule are available. 
An extension of the mean square Riemann integral is the mean square Riemann-Stieltjes integral of 
the type 

U = f f(t) dX(t) ; Y = f X(t) df(t) (60) 

where f(t) is a deterministic function. IfX(t) is mean square differentiable or f(t) is differentiable in 
all t belonging to (a, b), then the Riemann-Stieltjes integral reduces to a Riemann integral. In this 
sense we can affirm that the mean square Riemann-Stieltjes integrals are more general than the 

Riemann ones. If the limits of partial sums 
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u = f f(t) dX(t) = 
n 

l.i.m. L, f (tJ [X ( tJ -X ( ~ - ~ _ 1 )] 
n~ oo 

ll ~ 0 k=1 
(61) 

n 

V = f X(t) df(t) = 
n 

l.i.m. L X (~}[f(~)- f(~- ~ _1 )] 
n~ oo 

ll ~ 0 k=1 
(62) 

n 

~xist, are finite and are independent on the choice of the intermediate points~· then the Riemann­

)tieltjies integrals exist. 

[he necessary and sufficient condition for the existence of the mean square integrals (61) and (62) 

s that the Riemann-Stieltjes integrals 

f f f(t) f(s) d'E[X(t) X(s)); f E[X(t) X(s)] df(t) df(s) (63) 

:xist and are fmite. 

t can be shown that ifU and V in equations (61) and (62) exist, then both U and V exist and are 

elated to each other by means of the following relationship 

f X(t) df(t) = [f(t) X(t)] ~ -f f(t) dX(t) (64) 

vithout going into details, we mention that the other properties of ordinary Riemann-Stieltjes 

ntegrals are also valid in this setting. 

\s an example the integral involving increments of homogeneous compound process or increments 

1f Wiener process 

[ f(t) dC(t); [ f(<) dB(<) (65) 

:xists where the function f(t) is a deterministic smooth function, since every approximation of the 

1artial sums given in equation (61) leads to this value. 

f, however, f(t) in equation (65) is irregular like dB(t) or dC(t), itself the mean square integrals 

lepend on the choice of the intermediate point selected As an example 
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( B(t) dB(t) = 
n 

~·~";,· L B (tJ[B (~)- B (~-1 )] 
k=l 

Lln-+ 0 

from equation (33) we have that 

it follows that 

45 

(67) 

(68) 

that is the limit of partial sum depends on the choice of the intermediate points. If, for example, we 
choose for all k 

~ = a ~ + (1 - a) ~. 1 (0 <a< 1) (69) 

then equation (68) write 

(70) 

So that the mean value of the integral can be anything between zero and q<2>(t - to ) depending on 
the choice of intermediate point 
In order to reach uniqueness of the solution the Ito and Stratonovich integrals will be discussed in 
the next section. 
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5 STOCHASTIC CALCULUS. 

5.1 Ito integral. 

In this section some fundamentals of the classical Ito stochastic differential calculus will be brievly 
summarized. 
The analysis of stochastic dynamic systems often leads to differential equation of the form 

Z = a (Z(t), t) + b (Z(t), t) W0(t) ; Z(ta) = Z0 (71) 

where a(·) and b{·) are deterministic non-linear functions of the response process Z(t), Z0 is the 
deterministic or random initial condition, while W0(t) is a stationary normal white noise process. 
As recalled in the previous section, W0(t) is not Riemann integrable in mean square, but it can be 
considered as the formal derivative of a Wiener process. It follows that Eq. (71) has not a strict 
mathematical meaning, and can be considered equivalent to the following stochastic differential 
equation: 

dZ = a(Z(t), t) dt + b(Z(t), t) dB(t); Z (fo ) = Z0 (72) 

in which d.B(t) is an increment of the Wiener process B(t). An integration of equation (72), yields 

Z(t)- Z. = ( a(Z(t), t) dt + ( b(Z(t), t) dB(t) (73) 

The frrst integral at the rigth hand side of equation (73) is a mean square Riemann integral, while 
the second one can not be considered in the same way because B(t) is not differentiable in mean 
square value. Moreover, in accordance with section 3, almost all sample functions of B are of 
unbounded variation, it follows that the second integral cannot be interpreted as a mean square 
Riemann-Stialtjes integral. Let the temporal interval [to, t] divided into n subintervals by means of 
such partitioning point tj as that given in equation (57), the limit of partial sum 

(74) 

takes a different value depending on the choice of the intermediate point selected (see e.g. Arnold 
[31], Gardiner [4], Jazwinski [5]). 
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If, for every interval, we choose~=\ _1 we obtain the so-called/to Integral (Ito [3]), that is 

(75) 

where the <n before the integral stands for Ito integral. 

If in equation (72) the integrals are performed by this rule then the differential equation is the so­

called Ito stochastic differential equation. Because of the importance played by this type of integral 

we give in the follows some fundamental properties. The proof of these properties can be found in 

literature [4, 30, 31]. 

5.1.1 Ito integral of the type J B(t) dB(t). 

It can be shown (see Gardiner 1990) that for q<2> = 1 (see Eq. (27)) we have 

(0 { B(t) dB(t) = t[ B\t)- B\'o)- (t- 'o)] (76) 

it follows that the Ito integrals do not follow the usual rules of integration by parts. From this 

simple example it is thus evident that the classical integration rules fail. Then making stochastic 

average of equation (76) we obtain 

5.1.2 Ito integrals for non-anticipating functions. 

An important concept, that is the key of the Ito calculus, is that of a non-anticipating function. P 

deterministic or random function cj>(t) is said to be non-anticipating, if for every tj + 1 > tj, cj>(tj) i: 

independent of the increment of the Wiener process B(tj + 1 ) - B(tj ). 

Example of non-anticipating functions are the solution Z(t) of equation (72), or every functio1 

cj>(Z(t), t) of the solution. Moreover, every deterministic function posseses this property. It can b 

shown that if cj>(t) is a non-anticipating function then 
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(I) f •<•> (dB(t))2 = q().) f •<•> dt (78) 

(I) f .(t) (dB(t))N = 0; N > 2 (79) 

From equation (78) we recognize at once that the Ito integral does not follow the integration rules 
because in the classical rule the integral (78) is an infinitesimal. This can be euristically explained 
by considering that dB(t) is an infinitesimal of order (dt)112 and consequently (dB)2 is an 
infmitesimal of first order. 

It can be also shown that the following relationships hold 

(80) 

E [(I) ( cp (t) dB(t) ·(I) ( \jf(t) dB(t)l = ( E [ cp (t) \jf(t)] q<2> dt k h hn~ (81) 

where cp(t) and \jf(t) are two arbitrary non-anticipating functions or random processes and T 1 nT 2 is 
the intersection of the intervals T 1 and T 2. 

It is to be emphasized that the simple relationships (78-81) are correct only using the Ito integral, 
and this is the motivation for the preference of this type of integral, on the contrary the usual rules 
of the classical integration fail. 

5.2 Stratonovich integral. 

The applicability of the rules of classical Riemann-Stieltjes calculus was also the motivation for the 
defmition of a stochastic integral given by Stratonovich [7] given as 

(S) £ b [Z(t), t] dB(t) = . n [Z(t ) + Z(t ) ] l.z.m. ~ b s s -1 , t (B(t ) - B(t )) 
n-.+oo LJ 2 s-1 s s-1 
..:1 -+oj=1 . 

(82) 

n 
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where (S) before the integral stands for Stratonovich. It can be shown that 

(S) { B(t) dB(t) = H B2(t)- B2(t, l] (83) 

from this equation we recognize that the Stratonovich integral obeys to the classical rules of 
integration. However for this integral the very useful relationships (78-81) are not valid. 
In general no relationship between the Ito integral and the Stratonovich integral exists. However if 
the stochastic process Z(t) is the solution of equation (71) there is a connection between these two 
integrals given as 

(S) { ~ (Z(<), t)dB(t) = (I) f $(Z(<), t)dB(t) 

(84) 

The second integral in equation (84) is the so-called W ong-Zakai or Stratonovich (WZ or S) 
correction term. 
Equation (84) can be rewritten in differential form as follows 

(S) <j>(Z(t), t) dB(t) = (D <j>(Z(t), t) dB(t) + t <j>(Z(t), t) a<j>(~~), t} q<2> dt (85) 

in which the symbols (S) or (I) means Stratonovich and Ito differential respectively in the sense that 
the corresponding integrals are performed as in equation (82) or (75) respectively. 
Letting <j>(Z(t), t) = b(Z(t), t) in equation (88) we obtain 

(S) b(Z(t), t) dB(t) = (I) b(Z(t), t) dB(t) + t b(Z(t), t) db(~~· t) q<2> dt (86) 

The consequence is that interpreting equation (72) as a Stratonovich differential equation we can 

write 
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(S) dZ = a {Z(t), t)) dt + (S) b {Z(t), t)) dB = a {Z(t), t)) dt + <n b {Z(t), t)) dB(t) 

+ t b{Z(t), t} ab{~~· t) q<2> dt (87) 

Since the last term in the summation (87) is a classical differential (infinitesimal of order dt) like as 
the first one, we can write 

(S) dZ = f(Z(t), t) dt + (I) b(Z(t), t) dB(t) (88) 

where f(Z(t), t) is the so-called drift coefficient which takes into account the WZ or S correction 
term that is 

f (Z(t), t) = a (Z(t), t) + t b (Z(t), t) db(~~· t) q<2> (89) 

In the case of external noise, that is b(Z(t), t) is independent on Z(t), the WZ or S correction term is 
zero and the Ito and the Stratonovich integrals lead to the same result. While in the case of 
parametric type excitation from equation (88) we recognize that an increment of Z in the 
Stratonovich sense is a summation of the drift coefficient and another increment that will be 
evaluated in Ito sense. This means that the Stratonovich differential equation can be evaluated by 
inserting the WZ or S correction term in the drift coefficient and, then, performing the Ito integral 
of the stochastic differential equation so modified. 
In this way we can use the fundamental property of the Ito integral, according to which any non­
anticipating function, such as the response itself, and an increment of the Wiener process are 
uncorrelated. 

5.3 Ito differential rule. 

Let ~(Z, t) any scalar real valued function of the stochastic process Z(t) continuously differentiable 
on t and twice differentiable on Z, then an increment of ~(Z(t), t), with arguments omitted, writes 

(90) 

that is the Taylor expansion truncated at the second term. 
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The last term on the rigth hand side of equation (90) accounts for the fact that (dZ)2 is an 
infinitesimal of first (order of dB = Vdt ). 

5.3 .1 Moment equation approach. 

A suitable choice of the function cp(Z(t), t) allows to obtain the probabilistic characterization of the 
response. Let cp(Z(t), t) = zk then 

inserting dZ given in equation (88) we obtain 

dZk = k Z:.- 1 (f (Z, t) dt + b (Z, t) dB(t)) + k (k2- 1) Z:.- 2 b2(Z, t) (dB)2 

making the stochastic average and dividing by dt we obtain 

E [zk) = k E [Z:.- 1 f(Z, t)) + k (k- 1) E [Z:.- 2 b2(Z, t)) q<2> 
2 

(91) 

(92) 

(93) 

In equation (93) use has been made of the independence of the increment of Wiener process and 
any function g(Z, t) of the response Z, that is 

E [g(Z, t) dB] = E [g(Z, t)] E [dB] = 0 (94) 

E [g(Z, t) (dB)2 ] = E [g(Z, t)] E [(dB)2 ] = E [g(Z, t)] q<2> dt (95) 

Equation (93) gives the evolution of the moments of every order of the response thus their 
evaluation completely characterizes the response from a probabilistic point of view. The numerical 
evaluation of equation (93) will be discussed later. 
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5.3.2 Fokker-Planck equation. 

Letting cp(4 t) = exp (- i '6 Z), where '6 is a real parameter. Inserting this function in equation 
(90), making the stochastic average and dividing by dt we obtain the differential equation of the 
characteristic function M2('6; t) in the form 

"'z{ll: t) = - i 1) 1~ exp (- i 1) z) Pz(z; t) f(z, t) dz 

-} 1)2 q(l> 1~ e-' ~' Pz(z: t) b2(z; t) dz 
(96) 

An inverse Fourier transform gives 

. a qmi 
p2(z, t) = -:\(p2(z; t) f(z, t)) + - 2 -(p2(z; t) b(z, t)) 

uz ai (97) 

This equation, which gives directly the evolution of the probability density function is known as 
Fokker-Planck (forward) equation. 

5.4 Examples. 

In order to familiarize readers to the stochastic differential calculus some simple examples are 
discussed. 

5.4.1 Multiplicative noise. 

Let the differential equation of motion be given in the form 

Z = exp (- Z) W0(t) (98) 

where ~(t) is a normal white noise process. According to equation (88) we transform the equation 
(98) into an Ito type stochastic differential equation 

(2) 
dZ = -Le-2Z dt+e-z dB 

2 (99) 
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equation (93) gives 

(100) 

The Fokker-Planck equation becomes 

(101) 

5.4.2 Linear system. 

Let the linear differential equation of motion be given in the form 

. 0 
Z = a Z + b Z W (t) (102) 

where a and b take constant values and W0(t) is a normal white noise process. The Ito stochastic 

differential equation writes 

( 
(2) 2 ) 

dZ = a Z + \ b Z dt + b Z dB (103) 

equation (93) gives 

(104) 

The Fokker-Planck equation becomes 

(2) a ( (2) 2) (2)b a2 
Pz(z, t) = - q2 -a (Pz(z; t) z) a+ q2 b + y-2 (Pz(z; t) z) 

z az 
(105) 

5.4.3 Non linear system, additive noise. 

Let the equation of motion be given in the form 

• A 3 0 Z = a.Z+pZ +y W (106) 
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in this case the system is non-linear einforced by external white noise process. Since the noise is 
additive the Stratonovich differential equation coincides with the Ito equation, it follows that the 

Stratonovich increment simply writes 

(107) 

equation (93) write 

(108) 

that is the differential equation of the moments of order k involves higher and lower order moments 
thank, that is the moment equations constitute an infinite hierarchy. 
In order to solve this problem closure schemes have to be adopted [31, 32]. 
The Fokker-Planck equation writes 

(109) 

H P = 0 then equation (107) becomes a linear one and equation (108) becomes a linear system of 
ordinary differential equation. By appropriately imposing the initial conditions the moment 
equations can be solved obtaining the entire probability density function. If these initial conditions 
are deterministic or normal distributed the response is also normal and the first two equations 
(108), particularized for P = 0, give the complete characterization of the process Z(t). 

,... 
6 NON CLASSICAL ITO DIFFERENTIAL RULE. 

In order to extend the stochastic differential calculus already discussed for normal white noise 
input, in this section a different interpretation of the WZ or S correction term will be discussed 
[21]. 

Let the equation of motion be given in the form (71). Let ~(Z, t) a scalar real valued function 

continuously differentiable on t and twice differentiable on Z, then an increment of ~(Z, t), denoted 
as &~. can be expanded into a Taylor series 

(110) 
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where only the first two terms of the series are retained because the remaining terms are 
infinitesimal of higher order. On applying the usual rules of differentiation of composite functions, 
neglecting infinitesimals .of higher order than dt, we obtain 

~ (Z(t), t) = ~ (~~t), t) dt + ~ (~~), t) dZ(t) 

2 
d2cj)(Z(t), t) = a cj)(Z(t), t) (dZ(t)}2 + acj)(Z(t), t) d2Z(t) 

az2 az 

Taking into account that the dZ(t) is given by equation (72), d2Z(t) is given as 

d2Z(t) = a~ (dZ) dZ = a~ (a(Z, t) dt + b(Z, t) dB} dZ = 

= (aa~i t) dt + ab~ t) dB)(a(Z, t) dt + b(Z, t) dB} 

By neglecting nfmitesimals of higher order than dt we obtain 

Moreover 

Then the increment ~ci>(Z(t), t) can be rewritten, with arguments omitted, in the form 

~cl> = ac~> dt+ ~[adt+ bdB +12 b ab (dB)2] +} ic~> b2 (dB)2 
at az az az2 

Letting cj)(Z(t), t) = Z(t) in equation (116) gives 

~Z(t) = a (Z(t), t) dt + b(Z, t) dB + t b (Z(t), t) ab (~), t) (dB)2 

(111) 

(112) 

(113) 

(114) 

(115) 

(116) 

(117) 
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By comparing equation (117) with equation (88) we recognize that the increment evalu~ted b~ 
means of the rule (110) coincides with the Stratonovich (S)dZ. The extra-term } b ~(dB) 
compensate the difference between the Iro increments and the Stratonovich increments. 
It is interesting to note that expansion (110), neglecting higher order infinitesimal, can be also 
written in the form 

2 
a<j) (Z(t), t) = a<~' (Z(t), t) dt +a<~' (Z(t), t) az + 1 a <~' (Z(t), t) (L1Z)2 

at az 2 az2 (118) 

in which az is given in equation (117). Relationship (118) has been called "non classical IttJ 
differential rule" [21]. Equation (118) in which az is given in equation (117) leads to identical 
results to equation (90) in which dZ is evaluated in Stratonovich sense, however expansion (118) 
will be used for the extension to the case of non-normal delta-correlated input how it will be 
discussed in the following. 

6.1 lt6 and Stratonovich integrals for non-normal white noise 
inputs. 

Let us consider the SDOF system governed by the same differential equation as in (71), where, 
now, W(t) is a stationary non-normal delta-correlated process. Also in this case the solution can be 
given as in equation (73) and the second integral can be evaluated following the (I) rule or the (S) 
rule. If W(t) is a Poisson white noise process, then the I integral can be expressed as follows: 

(119) 

where C(t) is the homogeneous Poisson compound process connected to W(t). While, generalizing 
what said for the normal white noise inputs, the S integral can be expressed as follows: 

(120) 

It can be shown that, applying the (I) integration rule, some properties hold 
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(121) 

and: 

R~J (If ., (t) dC(t), If •2(t) dC(t), ... , If • ,(<) dC(t)) = 

(122) 

where <l>l) G = 1, 2, ... , r) are deterministic functions. From these equations, we can note that, 
applying the (I) integral, the infinitesimals (dC(t))r can be considered to be of the same order of the 
infinitesimal dt, for all r. Then, also when the inputs are non-normal, the (I) integration rule does 
not follow some fundamental properties of the ordinary differential calculus. If we want to preserve 
these properties, the (S) integration rule must be applied. 

6.2 Extension of Ito rule. 

Even in this case, if Z(t) is the stochastic response of a differential equation given in equation (72), 
it is possible to find an useful relationship between the (I) and the (S) integral. Considering the 
expression of the increment of any composite function <j>(Z(t), t) a generalization of equation (110), 
is given as 

L\<j> (Z(t), t) = L + J <l> (Z(t), t) 
j = 1 J. 

(123) 

where all terms of the series are retained because, as said before, when the (I) integration rule is 
used, the differentials of every order can give first order increments. Using the rules of 
differentiation of composite functions, the first two differentials are given in equations (111) and 
(112), while the other few terms are given in the form (with omitted argument): 

(124) 
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Inserting the differentials ~q>(Z(t), t) into equation (123), and taking into account that the differen­

tials (dC(t)l can give first order increments, it can be shown that equation (37) can be rewritten as 

follows [21] 

(126) 

where 

00 

.1Z(t) = L, +~ z = a(Z(t))dt+ b(Z(t))dC(t) + L, tam(Z(t))(dC(t)~ (127) 
. 1 J. . 2 J. 
J= J= 

In this equation the functions a<r>(Z(t)) are given by: 

a (r- 1) 
o<r> (Z(t)) = G G (Z(t)) · dl) (Z(t)) = b (Z(t)) 

az(t) • (128) 

Equation (126) is a very remarkable result, that is an increment of any scalar real valued function in 

the Stratonovich sense is given as the classical Taylor expansion in which the increments .1Z of the 

stochastic processes have to be evaluated in the Stratonovich sense. 

Setting q>(Z(t), t) = Z(t) in equation (126), where equation (127) has been considered, and applying 

the (I) integration rule, we obtain the following expression: 

i t it 00 (j)it 
Z(t)- Z(to) = a (Z(-c)) d-e+ (I) b (Z(-c)) dC(-c) + _L ~ a<i> (Z(-c)) d-e 

to to J= 2 J to 
(129) 

In this equation the summation L~= 2 (q<D I j!) G(j) represents the extension of the WZ or S 

correction terms for non-normal delta-correlated inputs. It is easy to verify that the first term in the 

summation is the classical WZ or S correction term. 

Instead, if the (S) integration rule is applied, taking into account that it satisfies the fundamental 

properties of the ordinary differential calculus, the following expression is obtained: 
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Z(t) - Z(t, ) = { a (Z(t)) dt+ (S) { b (Z(t)) dC(t) (130) 

A comparison between equations (129) and (130) evidences the necessity of the new correction 
terms. 
Taking into account the way how the presence of these new correction terms (of which the WZ or S 
ones are the particularization for normal inputs) has been evidenced, we recognize that they are not 
related to the irregularities of the input process (unbounded variations in infinitesimal intervals), but 
only to the different choice of performing integrals. In fact, for example, in Fig. 1 b, is reported a 
sample of a Poisson white noise which, as said before, is a particular non-normal delta-correlated 
process; from this figure we recognize that this sample is obviously irregular, but the irregularities 
are present only in a few instants and the sample does not show unbounded variations in 
infinitesimal intervals; nevertheless, if we consider a system subjected to a Poisson white noise 
input and we want to apply the (I) integration rule, the new correction terms are required. 

6.2.1 Moment equation. 

By using equation (126) is now possible to find the probabilistic characterization of the response 
process Z(t) of the non linear system driven by parametric type delta-correlated process. Setting 
<I>(Z. t) = zk we obtain 

A(zk) = t +k(k-l) ... (k-j+l)~-j (AZ)j 
j = 1 J. 

(131) 

where (AZ) is given in equation (127) and, by neglecting infinitesimal of higher order than dt, we 
can write 

co co (l) (r) (ta/ = L L G G (dC)Z+r 
l = 1 r= 1 I! r! 

co co co (l) (r) (p) (tal = L L ... L G I~' ... ? (dC)(Z+r+ ... +p) 
Z=1r=1 s=1 .r .... p. (132) 

k- times 



60 M. DiPaola 

Hence equation (131) becomes, with arguments omitted, 

00 

:E[zk] = kE[zk- 1 a]+k I, lE[zk- 1 G(l)]q<l)+ 
1 = 1 I! 

00 00 

-tk(k -1) L L _l_E[zk-2 a<f) dr)J q(1-r) + ... + 
2· 1 = 1 r = 1 l! r! 

i i ... i E[G(I) dr) ... dp)] q(1+r+ ... +p) 
1=1r=1 p=1l!r! ... p! 

k times 

(133) 

In this equation use has been made of the fact that, according to the Ito's stochastic calculus, the 

following relationship holds 

E [g(Z) (dC/) = E [g(Z)] E [(dC)r) = E [g(Z)] q(r) dt (134) 

6.2.2 Moment equation approach for external delta-correlated input. 

In the case of external delta-correlated input, that is when b(Z, t) is independent of Z, from equation 

(127) we recognize that !:iZ coincides with dZ because all GU) (Z, t) = 0, j = 2, 3, .... It follows 

that 

(!:iZ)j = (dZ)j = b(t)j (dC)j j = 2, 3, ... 

Then equation (126) writes 

Equation (136) represents the Ito rule extended for external delta-correlated input. 

Letting <J>(Z) = zk we obtain the differential moment equation of the moments in the form 

(135) 

(136) 
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(137) 

This equation can be proved to be equivalent to that obtained by Iwankievicz et al [20]. 

6.2.3 Fokker-Planck equation for delta-correlated input process. 

Let the equation of motion be given in the form 

Z = a(Z(t), t) + b(Z(t), t) W (138) 

where W(t) is a delta-correlated process. Let <)>(Z(t), t) = exp (- i t} Z(t)), where t} is a real 

parameter, then by using equation (126) and taking the stochastic average we obtain 

00 k 

AMz(t>) = k~t (-ik~) E[exp(-it}Z(t))(AZ)k] (139) 

where AZ is the Stratonovich increment given in equation (127). Making the inverse Fourier 

transform we obtain 

(140) 

where Az is easily obtained letting z instead Z in equation (132). 

In the case of external delta-correlated input, inserting equation (135) in equation (140) we obtain 

c. 00 k k 
op (z. t) a ~ (- 1) k a (k) 

z = --(p (z) a(z)) + .t:.J - b -[p (z)] q at dZ z k! :1 k Z 
k= 1 oz 

(141) 

This equation is equivalent to that obtained by Roberts [18]. 

If C(t) = B(t), that is when A~ oo and A E [Y2] keeps a constant value. The summation in equation 

(140) contains only the first two terms and coincides with the classical Fokker-Planck equation. 
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7. SIMULATION OF DELTA-CORRELATED PROCESSES 
AND RESPONSE. 

In order to evidence the differences between the Stratonovich integral and the Ito integral, we 
consider the following quasi-linear stochastic differential equation with deterministic initial 
condition Z(O) 

Z(t) = a +a Z(t) W(t) ; Z(O) = 0 (142) 

where a and a are constant and W(t) is a Poisson delta-correlated input. Equation (45) can be 

rewritten in the form 

dZ(t) = a dt +a Z(t) dC(t) ; Z(O) = 0 (143) 

where C(t) is the Poisson compound process connected to W(t). If now we consider the single 
sample, it is easy to verify that the response is linear between two consecutive pulses; while, at the 
time instant tk, in which the pulse of intensity Y k occour, the response shows a jump which is 
proportional to a, to Y k and to the value of Z in tk. In fact, the integration of the single sample of 
equation (143) gives: 

(144) 

As in tk the response has a jump, the value Z(tk) is not univocally determined. If we indicate with 
z{tj and with z{~) the values of Z(t) immediately after and before the instant tk, Z(tk) can 
assume any value between Z (~)and Z ( ~). Following the (I) interpretation of the integral, we set 
Z(tk ) = Z l ~)and the jump Jk(I) is given by: 

(145) 

Instead, following the (S) interpretation, Z(tk ) is considered as the mean value between Z {~)and 
z(~~ and the jump Jk(S) is given by: 

Jk(S) = z(~)-z(~) = aYk z(t;);z(~) (146) 
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In Fig. 4, the single response sample, for the input sample given in Fig. 3, for a = - 1, c = 1., is 

reported, evaluating the jumps in the (I) sense (dashed line) and in the (S) sense (solid line). The 
difference between the two responses is evident. 
Now we want to use the (I) integration rule, taking into account the new correction terms that, in 
this case, have the following expression: 

~ j_ GG> qG> • a<i> = Z aj ..t.J ., ' 
. 2 J. 
]= 

equation (127), for the case in examination, writes: 

00 

~(t) = a dt + Z L .~ aj (dC(t)Y +a Z dC(t) 
. 2 J. J= 

(147) 

(148) 

If the (I) integration rule for the single response sample is applied on it, we obtain the response in 
dotted line of Fig. 4. It· is evident that the three response samples are completely different. 
However, quite from the single sample response we can note that the (S) and the (I) integrations of 
equation (143) give certainly different results even if we work in mean with a lot of samples 
(simulation); this is due to the fact the response evaluated by means of the (I) integration is always 
below that evaluated by means of the (S) integration. By contrast, the response evaluated by means 
of the integration of equation (148), that is introducing the corrective terms, fluctuates around the 

response in full line. Evaluating the mean response overal several realizations, the (S) integration of 
equation (143) and the (I) integration of equation (148) give exactly the same results, as it will be 
pointed out better in the following. 
In order to show what stated before, the response moments are evaluated. At this purpose, it is 
important to note that, as the useful relationships (121) and (122) are valid only if the (I) integral is 
applied, working in mean square value, it is convenient to use this kind of integral. Obviously, the 
differential equations governing the first two moments of the response Z(t) of the considered 
system are different whethever the new correction terms are retained or they are neglected In fact, 
in the former case, the first two moment equations write: 
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Instead, if the new correction terms are neglected, the same equations write: 

E [Z] = a+ E [Z] a q<t> 

1.2 

w 
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Fig. 3 - Sample of a Poisson white noise 
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Fig. 4- Response sample; solid line: Stratonovich integration; dashed line: Ito 
integration; dotted line: Ito integration with corrective coefficients 

(151) 

(152) 
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In Fig. 5 the solutions of the equations (149) and 151) are compared with the results of a sample of 
size -10000 obtained by using the integration of equation (143) in which the jumps are evaluated in 
(I) sense (simulation a) and in (S) sense (simulation b) and the integration of equation (148) in 
which the jumps are evaluated in (I) sense (simulation c). It is evident that the results obtained by 
means of the simulation a agree with the solution of equation (151), while the results obtained by 
means of the simulation b and c coincide and they agree with the solution of equation (149). In Fig. 
6 the same comparison is reported for the second order moment of the response. It is important to 
note that, while simulations a and b are performed evaluating the mean of the square of the samples 
obtained by integrations in (I) and in (S) sense of equation (143), the simulation c must be 
performed by means of the following steps: 1) writing the expression for the case in examination; 
2) particularizing it for <j>(Z(t)) = Z2(t); 3) evaluating the samples of Z2(t) by means of an (I) 

integration; 4) evaluating the mean of all the samples. From the analysis of Fig. 6 it is evident that 
simulation a agrees with the solution of equation (152), while simulations band c coincide and they 
agree with the solution of equation (150). 
As a conclusion, we can affirm that the presence of the new correction terms allow to obtain, using 
the convenient (I) integration rule, the same results obtained using the (S) integration rule. 
This simple example allows to evidence the fundamental differences in the applications of the two 
integrals and the true significance of the corrective terms; moreover, it is important to note that it is 
much more difficult to do similar considerations in the case of normal white noise inputs, whose 
particular irregularities hide these characteristics. 

3.0 ...--------------------, 

E(Z) 

2.0 

1.0 

0.0 +-------.----,.-----1 
0.0 5.0 10.0 t 15.0 

Fig. 5 - Mean response; solid ~ine: s~lution of. equat~on ( 149 );. dashe~ line solution 
of equation ( 151); L1: szmulatzon a;eszmulatzon b; o szmulatzon c. 
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12.0 .,.-----------------, 

E(Z) 2 

8.0 

4.0 

0.0 -f~C~:....----,.....-------.----~ 
0.0 5.0 10.0 t 15.0 

Fig. 6- Second order moment of the response; solid line: solution of equation (150); 
dashed line: solution of equation ( 152 ); ..1: simulation a; •: simulation b; 
o:simulation c. 

8. MULTIDIMENSIONAL CASE. 

The extension of the previous concepts to the multidimensional case is straigthforward using 
Kronecker algebra whose fundamentals are reported in appendix A. Let the differential equation of 

an n-degree of freedom model be given in the form 

Z(t) = a(Z(t), t) + b(Z(t), t) W(t) (153) 

where a(Z(t), t) and b(Z(t), t) are n x n and n x m deterministic function vector and matrix 

respectively, while W(t) is a zero mean vector of delta-correlated processes, that is the 
dW(t) = C(t) dt, were the increments of C(t) are given by 

(154) 

where q<k) is an mk vector containing the strength of the white noise W(t). If all q<k) (k > 2) are 

zero then the process W(t) is a normal white noise. 
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Let the vector function (j>(Z(t), t), whose components are continuously differentiable on t and 

differentiable with respect to the components of Z(t), the generalization of equation (126) write [33, 
34, 35] 

where V is then-vector containing the derivatives with respect to Z, that is 
z 

T v z = [a;az1 a;az2 . . . a;azJ 

In equation (155) /1Z is given as 

11 [Z(t)] = L + dj z 
. 1 J. 
J= 

By neglecting infinitesimal of higher order than dt 

where 

G0 \Z(t), t) = b(Z(t), t) 

c<r>(Z(t), t) = [ V! ® dr- 1) (Z(t), t)] d 1>(Z(t), t) 

it follows that an increment of Z(t) is given as 

- u> uJ 
11 [Z(t)] = a(Z(t), t) dt + b(Z(t), t) dC(t) + L -~ G (Z(t), t) (dC(t)) 

. 2 J. 
J= 

(155) 

(156) 

(157) 

(158) 

(159) 

(160) 

If W(t) is a normal stochastic vector of white noise processes then the last summation in equation 

(159) contains only one term and we can write 

.l (2) [2] 
11 [Z(t)) = a(Z(t), t) dt + b(Z(t), t) dB(t) + 2 G (Z(t), t) (dB(t)) (161) 



68 M. DiPaola 

where the last term on the right hand side of equation (161) is the WZ or S correction term in the 
multidimensional case, that can to be rewritten in the explicit form [33, 34] 

(162) 

8.1 Moment equation. 

A suitable choice of the vector function <j>(Z(t), t) allows to obtain the probabilistic charac-terization 
of the vector Z(t) from a probabilistic point of view. Setting in fact <j>(Z(t), t) = zlkJ(t), equation 

(155) becomes 

On the other hand, it can be shown that 

where Qk is the matrix (order nk x nk) given as 

k- 1 

Qk = L Enk-j ni 
j = 0 

(163) 

(165) 

In equation (165) Eq,p denote a permutation matrix of order (qp) x (pq) consisting of q x p arrays of 
p x q dimensional elementary submatrices 

(166) 

where the p x q dimensional elementary submatrix Eij takes the value one the (i,j)th position and 
zero in all other positions. 
The other derivatives write 
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(167) 

On the other hand, (~Z)[jl, by neglecting infinitesimals of higher order than dt, is given in the form 

co co { (1) (r)) 
(~Z)[2] = L L G ® G (dCp+r] 

1 = 1 r = 1 L! r! (168) 

(~zPJ = L L ... i: G(l) ® dr)® ... ® dp) (dCp+r+ ... +p] 

1 = 1 r = 1 p = 1 1! r! + · · · + p! 
(169) 

j- times 

Hence equation (163) becomes 

Making the stochastic average and dividing by dt we obtain 

(171) 

where qU> is the vector of order tJ collecting the strengths of the delta-correlated vector process 

C(t). If the system is driven only by external loads, then ~Z = dZ and then equation (171) writes 

E [ik~ = Qk E [z[k- 1 J ®a (Z(t), t)] + 

~ _l_ ( ) { _I i - 1 ]) [ [ [k - j Jl [j] ] U) 
+j~ j! Qk Qk-1 ®In··· Qk-j+l ®~ E z -J®b (t) q (172) 

Moreover, neglecting higher order infmitesimal than dt, we can write 
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j j [j] [j] . 
(L\Z) = (dZ) = b (t) (dC) ; J = 2, 3, ... , oo 

and the non-classical ItO differential rule is given in the form 

A+ (Z(t), t) = d4> ~t), t) dt + j ~ fr[ V~T 8 • (Z(t), t)] (dZ(t))[j] 

Letting cj>(Z, t) = z[kJ, making the stochastic average and dividing by dt, we obtain 

M. DiPaola 

(173) 

(174) 

~ l. ( \ ( [j - 1] ) [ [ [k- Jl [j] ] (j) +i~ j! Qk Qk-1 ®lnl ... Qk-j+1 ®In E z ®b (t) q (175) 

In the case of linear system the differential equation is given in the form 

L\Z = A(t) Zdt + G(t) dC (176) 

The non-classical ItO differential rule writes 

(177) 

By setting cj>(Z, t) = zk, making the stochastic average and dividing by dt we obtain 

(178) 

where Ak(t) and Gjk(t) are defined as follows 

~k-1] ~k-2] ~k-1] 
A (t) = A(t) ® r +I ® A(t) ® r + ... + r ® A(t) = •"k n n n n 

(179) 
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(180) 

It is worth noting that equation ( 178) does not constitute an infmite hyerarchy and the moments of 
order k involved the strength of the delta-correlated process up to the k-th order. 

8.2 Fokker-Planck equation, multidimensional case. 

An extension of the Fokker-Planck equation for the multidimensional system of the differential 
equation can be easily obtained by setting ~(Z(t), t) = exp (- i -t}T Z(t)), where '6 is a vector of real 
parameters, inserting this expression in equation (155), taking the stochastic average and dividing 
by dt we obtain 

Mz ('6, t) = i', <-.~~ '6u{ E[exp (-i '6T Z(t)(l1Z)m] 
. 1 J. j= 

taking an inverse Fourier transform we obtain 

In the case of purely external loads, equation (182) reduces to 

()pz(z, t) = ~ ( -.1)j {vu{ [P (z, t) (dz)m]} = 
at .k.Jl J! z z 

j= 

(181) 

(183) 
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In the case of normal white noise input the Fokk:er-Planck equation can be simply obtained by 

neglecting all terms containing q<f) with l > 2. 

9 EXAMPLES. 

In this section the results obtained in the previous sections are applied for a probabilistic 
descriptions of the response of linear and non linear systems subjected to delta-correlated input 

9.1 Linear SDOF. 

Let~ be a scalar real valued process satisfying the differential equation 

dZ2 = -B Z2 dt + a dC ; ZiO) = 0 w.p. 1 (184) 

where A and a are constant and dC/dt = W(t) is a stationary delta-correlated input composed of 
train of Dirac's delta impulses B(t - 9 occurring at random times tj" The random variable Y is 
assumed to be zero mean and having a symmetric distribution; the arrival rate A.(t) = A. is kept 
constant. 

Since the initial condition is assumed to be zero, the mean value and the odd moments of 
the response are always zero. The equations of moments up to fourth order, according to equation 
(175), are then given as: 

E[~ = -2 B E[z~ + a2 q<2> (185a) 

E[z~ = -4 BE [z~ + 6 E [z;] a 2 q<2> + a 4 q<4> (185b) 

where 

(186) 

The second moment coincides with the second cumulant because E[~] = 0, and the fourth 
cumulant equation is simply given in the form: 

(187) 
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from this equation we can observe that the fourth order cumulant is only related to the fourth order 
moment of the excitation. It can be easily seen that analogous results can be obtained for higher 
order cumulants. It follows that the equation for the 2p-th order cumulant is given in the form: 

(188) 

The transient response for these cumulants is given as: 

k2 (ZJ o;2p 
P = --(1-exp(-2pBt)) 

q(2p) 2 p B (189) 

As an example the transient excess coefficient y e (ZJ = k4 (ZJ I k2 [zi is given in the form: 

(4) 
[z 1 = ~ B 1 - exp (- 4 B t) 

'Ye 2.l 2 2 
q(2) (1- exp (- 2 B t)) 

(190) 

9.2 Linear MDOF. 

Let~ be the response of the stochastic differential equation (184), representing the input on 
another differential equation. The complessive system will be given in the form: 

dZ1 = -A z1 dt + z2 dt 

dZ2 = - B Z2 dt + a dC 
(191) 

where dC/dt = W(t) is the compound-Poisson process described in the Example 1. The analysis has 
been carried out up to the fourth order. The equation of second order (obtained by equation (175) 
particularized fork= 2) is: 

E [ z~] = - 2 A E [ z~] + 2 E (Z1 ZJ 

E [Z1 ZJ = - (A + B) E [Z1 ZJ + E [ Z~ 

E [ ~ = - 2 BE [ Z~ + a 2 q<2l 

The equation of fourth order moment (obtained by equation (175) particularized fork= 4) is: 

(192a) 

(192b) 

(192c) 
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E [ z~] = -4 A E [ z~] + 4 E [ ~ zJ 

E[~ zJ = -(3A+B)E[~ zJ+3E[~ z;] 

E[~ z;] = -2 (A +B) E[~ z;] +2E[z1 ~ +E[~] a2 q<2> 

E [ Z1 ~ = - (3 B +A) E [ Z1 ~ + E [ ~ + 3 E (Z1 Z~ a2 q<2> 

E[z~ = -4B E[z~ + 6E[z;] a2 q<2> + a4 q<4> 
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(193a) 

(193b) 

(193c) 

(193d) 

(193e) 

The stationary solution, obtained by setting E [Zj ~] = 0, V'j,k = 1, 2 and E [Zj ~ Zr Z5] = 0, 
V'j,k,r,s = 1, 2 gives for z1 and~ 

[....2] _ a2 q<2> • [....21 _ a2 q(2) 
E :t.1 - 2 A B (A+ B) ' E L.:zj -~ (194) 

[:t1- [~1 2 a4 q<4> • [:t.] _ [Z:] 2 3.. a4 q<4) 
E :z.~- 3E L1J +41f'"", E 1 - 3E 1 + 4AB(A+B)(A+3B)(3A+B) (195) 

it follows that the fourth cumulant of Z1 and~ are given in the form: 

(196) 

from these results one can observe that, even in the case of filtered processes, the fourth cumulant 
only depends of the fourth moment of the excitation, moreover the moments of a fixed order do not 
depend of the higher order terms. 

9.3 Duffing oscillator. 

Let the equation of motion be given in the form: 

(197) 
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where v is a damping factor, £ is a parameter representing the level of non-linearity and W(t) is a 
delta-correlated process; in particular W(t) is assumed to be the formal derivative of a compound 
Poisson process, in which the stochastic variables Y are uniformly distributed between -a and a. In 
this way, the intensities of the delta-correlated input are given by: 

(198) 

If we set a = Y 3().. , we are sure that the input process tends to a unit white noise when A. 
increases. 
Introducing the state variables vector Z T = [Z1 ~] = [X X], equation (197) writes 

dZ1 = AZ1 = ~dt 
(199) 

dZ2 = AZ2 = (- v Z2 - Z1 - e ~)dt +flV dC(t) 

It is important to note that, since the input intensities of odd order are zeros and because of the 
anti symmetric characteristics of the non-linearity, the stationary odd moments of the response are 
zeros. So, if a six-th order cumulant neglect closure is applied, it is necessary to write the 
differential equations of the second, fourth and sixth order response moments only. These 
equations are obtained particularizing in a suitable way the vector function '(Z, t) in eq. (171) and 
applying the stochastic average to both the members of equation (172). The second order moments 
obtained in this way are: 

:E[~] = 2E(Z1 Z~ (200a) 

E (Z1 Z~ = E [ z;] -v E (Z1 Z~ - E [ z~] -e E [ ~] (200b) 

E [ z;] = -2v E [ z;] -2E [Z1 Z~ - 2£ E [ ~ ~ + 2v q<2> (200c) 

The fourth order moments are: 

:E[~] = 4E[~ zJ (201a) 

E [ ~ zJ = 3E [ ~ ~ - v E [ ~ zJ -E [ ~] - £ E [ ~] (201b) 
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E[~ ~ = 2E[z1 z'J- 2v E[~ z~- 2E[~ zJ- 2e E[~ zJ + 2v q<2> E[z~] (201c) 

E [ Z1 z;] = E [ z~ - 3v E [ Z1 z;] -3E [ ~ z~ - 3e E [ z~ ~ + 6v q<2> E (Z1 z~ (20Id) 

E[z~ =- 4v E[z~- 4E[z1 z;]- 4E E[~ z;J + 12v q<2>E[~ + 4v2 q<4> (201e) 

At last the sixth order moments are 

E[z~] = E[~ zJ (202a) 

E [ ~ zJ = 5E [ ~ Z~ - v E [ Z~ zJ - E [ z~] - E E [ ~] (202b) 

E[z~ z;] = 4E[~ ~- 2v E[z~ z;]- 2E[z~ zJ- 2e E[z~ zJ + 2v q<2>E[z~] (202c) 

E [ ~ z;] = 3E [ ~ z~ - 3v E [ z~ ~ - 3e E [ z~ z~ + 6v q<2> E [ ~ zJ (202d) 

E [ ~ ~ = 2E [ Z1 rJ - 4v E [ Z~ Z~ - 4E [ Z~ z;] -4E E [ ~ z'J + 

+ 12v q<2> E [ zi ~ + 4v2 q<4> E [ ~] (202e) 

E [ Z1 z;] = E [ ~ - 5v E [ Z1 z;] -5E [ z; ~ - 5E E [ ~ ~ + 20v q<2> E [ Z1 z;] + 

+ 20v2 q<4> E (Z1 Z~ 

E [ z~ =- 6v E [ z~ - 6E [ Z1 ~ - 6E E [ ~ z~ + 30v q<2> E [ ~ + 

(202t) 

(202g) 

It is worth noting that, in the case of normal inputs, that is when q<4> = q<6> = 0, equations (200) 
and (201) coincide with those reported in [3]. 
For the stationary response, the first members of these equations are zeros and they reduce to 
algebraic equations in which the moments of greater order than six are replaced by the closure non­
linear relationships (Ibrahim et al. [31]). In Fig. 7 the stationary mean square value of 
displacement is reported for increasing A., compared with the exact solution in the case of normal 

white noise and with the results of Monte-Carlo simulations whose fundamentals are reported in 
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Appendix B. The parameters values choosen for the analysis are v = 0.10, E = 1.00. It is clear that 
when ').. is small, the two responses are quite different showing that the non-normality of the input 
strongly characterizes the response. This fact is confirmed in Fig. 8 where the kurtosis coefficients 
in the case of normal white noise and in the case of delta-correlated input are reported, varying /... 
At last in Fig. 9 the velocity kurtosis coefficient is reported in the case of non-normal input (for 
normal input is zero). It is important to note that for the special case choosen the value of the 
stationary velocity mean square is always unitary. 

0.45~----------------. 

E(X2) 

0.44 

0.43 

0.42 

0.41 

0.40 -l-, ---.......------.-----,--------1 
0 0.5 1.0 1.5 2.0 

Fig. 7- Duffing oscillator: stationary displacement mean square value; solid line 
Poisson pulses input; dashed line: normal white noise input; •: Monte-Carlo 
simulation for Poisson pulses. 
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Fig. 8- Duffing oscillator: stationary displacement kunosis: solid line: Poisson pulses 

input; dashed line: normal white noise input; •: Monte-Carlo simulation for 

Poisson pulses. 

3.,------------------, 

K· X 

2 

• 
).1-= 

01-----,---~----~----r---~ 
0 2 3 4 ). 5 

Fig. 9- Dujfing oscillator; stationary velocity kurtosis; solid line: Poisson pulses 
input; dashed line: normal white noise input •: Monte-Carlo simulation for Poisson 

pulses input. 
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9.4 A non-linear oscillator under two parametric and one 
external excitations. 

79 

The last oscillator, choosen in this work, has been also studied in (Wu- Lin [32]) for normal input 
and it is governed by the following differential equation: 

(203) 

Here Wi(t), i = 1, 2, 3 are independent non-normal delta-correlated processes, whose characte­
ristics are the same of those ones of the previous examples. It is easy to verify that the two 
parametric excitations W 1 (t) and W 2(t) are such that the frrst one determines correction terms while 
the second one determines no correction term. So, in this case, differentials and increments of 
displacement Z1 = X and velocity Z2 = X are different and the increments are given by: 

~z1 = z2 dt 

~z2 = (- 2a z 2 -ll zi z 2 -ll/02 i;- o2 z 1) dt- 2a z 2 v 1 dC1(t) 

(204) 

where Y 1 = (1/dt) ~-z (-2av 1)i [dC1 (t)iljl and ~y1 represents the correction term: it is worth 
noting that the average of the first term of this summation coincide with the Wong-Zakai correction 
term. Even in this case the stationary odd moments are zeros, while the second moments are 
governed by the following equations: 

E[zi] = 2E[Z1 Z~ 

E [Z1 Z~ = E [ ~ + (E [ y 1] - 2a) E [Z1 Z~ - jl E [ ~ zJ - jl!!l E [ Z1 rJ 

-02E[zi] 

E[~ = (2E[y 1]- 4a)E[~- 2jlE[zi ~- 2jl/02 E[z~- 202 E[Z1 Z~ + 

+ E[y:J E[~ + 0 4 v; qi2>E[z~] +vi q~> 

(205a) 

(205b) 

(205c) 

where y i = y{ and q~i), j = 1, 2, ~ is the strength of the j-th delta-correlated process Wj of order i. 
The fourth order moments are gtven by 
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E[z~] = 4E[~ zJ (206a) 

E [ ~ zJ = 3E [ z~ z~ + (E [ y 1] - 2a) E [ ~ zJ - 13 E [ ~ zJ- 131n2 E [ ~ ~ 

-n 2 E[z~] (206b) 

E[~ z;] = 2E [z1 iJ + (2E[y 1)- 4a)E[~ Z~- 213 E[z~ z;]- 213/02 E[~ Z~ 

-2n2 E[~ zJ + E[y2] E[~ z~ + n 4 v; q~2> E[z~] +vi q~2>E[zn (206c) 

E [ Z1 iJ = E [ Z~ + (3E [ y 1) - 6a} E [ Z1 iJ - 313 E [ ~ Z~ - 313/Q 2 E [ Z1 rJ 
-3Q2 E[~ Z~ + 3E([y2] + E [y3J)E[Z1 iJ + 304 v; q~2) E[z~ zJ 

E [ z~ = ( 4E [ y 1] - Ba) E [ z~ - 413 E [ z~ z~ - 413/n 2 E [ z~ -4n 2 E [ z1 iJ 

+ ( 6E [ Y :J + 4E [ y 3) + E [ y 4)) E [ Z~ + 6Q 4 v ~ q~2> E [ ~ z~ 

A.t last the sixth order moments are 

E[z~] = 4E[~ zJ 

E [ ~ zJ = 5E [ z~ z;J + (E [ y 1] - 2a} E [ ~ zJ - 13 E [ z~ zJ - 13/n 2 E [ ~ ~ 

(206d) 

(206e) 

(207a) 

-n 2 E [ z~] (207b) 

E [ z~ z;J = 4E [ ~ iJ + (2E [ y 1] - 4a) E [ ~ z~ - 213 E [ z~ z;J -2131n 2 E [ z~ z~ 

-202 E[~ zJ + E[y:J E[z': z;J + n 4 v; qi2> E[z~] +v~ q~2> E[z~] (207c) 
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E[~ rJ = 3E[~ Z~ + (3E[y 1]- 6a)E[z~ Z~- 3P E[~ rJ- 3P!!l E[~ ~ 

- 3Q2 E[z~ Z~ + 3E [Y2] + E [y3])E[z~ :tJ + 3Q4 v; q~2) E[~ zJ 

+ 3 v; q~2> E [ ~ zJ 

E[~ Z~ = 2E[Z1 rJ +(4E[y 1]- 8a)E[~ Z~- 4P E[~ Z~- p;n2 E[~ Z~ 

- 4Q 2 E [ ~ Z~ + ( 6E ( y 2] + 4E ( y 3] + E [ y 4]) E [ ~ Z~ 

+ 6Q2 v; q~) E[z~ ~ + 6v; q~2) E[~ rJ + Q8 v~ q~4) E[z~] 

E [ Z1 rJ = E [ Z~ + ( 5E [ y 1] - 1 Oa) E [ Z1 rJ - 5 p E [ ~ Z~ - 5 p;n 2 E [ Z1 Z~ 

- 5Q 2 E [ Z~ Z~ + ( lOE ( y 2] + 1 OE [ y 3] + 5E [ y 4] + E [ y 5]) E [ Z1 rJ 
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(207d) 

(207e) 

+ 10Q2 v; q~2) E [ Z~ z;] + 10v; q~2) E [z1 rJ + 5Q8 v~ q~4) E [~ zJ 

E [z~ = (6E (1' 1)- 12a) E [ Z~- 613 E [ ~ Z~- 613/!2 2 E [ Z~- 6!22 E [ Z1 rJ 
+ ( 15E [ y 2] + 20E [ y 3] + 15E [ y 4] + 6E [ y 5] + E [ y 6]) E [ Z~ 

+ 15!22 v; q~2>E[z~ z~ + 15v; qj2>E[z~ + 15Q8 v~ q~4>E[z~ ~ 

+ 15v~ q~4 > E[~ + Q 16 v~ q~6) E[z~) + v~ q~6) 

(207f) 

(207g) 

Even in this case, if the input is a normal white noise, equations (206) and (207) coincide with 
those ones given in (Wu and Lin [32]). The parameters choosen for the analysis are a= 0.50, 

2 p = 0.10, Q = 2.00, v1 = v2 = v3 = 0.10. 
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Fig. 10- Stationary displacement kurtosis for normal W2: solid line: W1, W3 Poisson 
pulses; dashed line W1, W2: normal white noises; e: Monte-Carlo simulations/or 
Poisson pulses (A-1 = 0.5, A-1 = 5). 

3,---------------------------~ 

Kx 

2 A-1-= 

A-=0.50 

-----------------------
0,_----r---~----~----~--~ 

0 2 3 4 A. 
3 

5 

Fig. 11 - Stationary displacement kurtosis for normal W1: solid line: W1, W3 Poisson 
pulses; dashed line W1, W2: normal white noises; •: Monte-Carlo simulations/or 
Poisson pulses (A-1 = 0.5). 
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In Fig. 10 the kurtosis coefficient of stationary displacement is reported for normal W 2(t) and 

varying the non-normality degrees of W 1 (t) and W 2(t), compared with that one obtained with 

normal input and with the results of some Monte-Carlo simulations. In Fig. 11 the same coefficient 

is reported for normal W 1 (t) and varying the non-normality degrees of the other two excitations. 

From these figures it is evident the great influence of the non-normality of the external excitation 

and of the parametric excitation W 1 (t) on the non-normality of the response. Moreover we can see 

the small influence of the parametric excitation W 2(t), which does not determine corrective 

coefficients in the differential equations of motion. 
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APPENDIX A. 

In this section we shall deal with methods of Kronecker algebra in order to point out some 

properties which are useful in the formulation of the paper. Some of these properties are also 

reported in (Brewer [36]). 

Let A and B be two given matrices of order (p x q) and (s x t) respectively. The Kronecker product 

of these two matrices, denoted by A ® B, is a matrix, of order (ps x qt), obtained by multiplying 

each element aij of A by the whole matrix B, i.e. 

A®B = (A.l) 

It is to be noted that the matrices A and B need not to be conformable to posses a Kronecker 

product so the above definition can be considered a generalization of matrix multiplication. The 

Kronecker product has the following properties: 

A ® (B ® C) = (A ® B) ® C 

(A + B) ® (C + D) = A ® C + A ® D + B ® C + B ® D 

(A ® B) (C ® D) = (A C) ® (B D) 

-1 -1 -1 
(A® B) =A ®B 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

where C and D are two other given matrices. Equations (A.4) and (A.6) are valid, provided, the 

various quantities exist. 

Moreover, it can be shown that if the matrix Dis given by 

D =ABC (A.7) 

then the following relationship holds 
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Vee (D) = (CT ® A) Vee (B) (A.8) 

where the symbol Vee(-) means vectorialized form of(-), i.e. it is a column vector formed by all 
columns of matrix 0 written the one below the other. 
The Kronecker powers of a matrix A are defined recursively as 

Altl = A 

They have the following properties 

(A.9) 

(A.lO) 

(A.ll) 

Let Ek,j denote the permutation matrix of order (kj x kj), consisting of j x k arrays of elementary 
submatrices Ernn of order (k xj) 

l Ell E21 .....• Ekt l 
E . = E21 E22 Ek2 k, J ...... 

Etj E2j .....• Ekj 

(A.12) 

where the matrix Ernn has the value one in the (m, n)th position and zero in all other positions. 
Then it can be shown that, for the matrices A and B previously considered, the following 
fundamental relationship hold: 

(A.13) 

The permutation matrices have the following properties 

(A.14) 

(A.15) 

Ik being the identity matrix of order k. 
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If~ and bv are vectors of length u and v, respectively, particularizing equation (A.13) and taking 

into account equation (A.l4) it can easily be shown that 

B ®a = E (a ®B) 
u u, s u 

(A.16) 

(A.l7) 

b ®a = E (a ®b) 
V U U, V U V 

(A.l8) 

(A.l9) 

Kronecker algebra can be advantageously applied in the differential calculus of matrices. The 

derivative of a matrix A of order (p x q), with respect to a matrix X, of order G x k), is a matrix, of 

order (pj x qk), given by 

_a_A 
ax11 

_a_A 
axt2 

_a_ A 
axtk 

_a_ A 
ax21 

_a_A 
ax22 

_a_ A 
ax2k 

v ®A = X 

(A.20) 

_a_ A 
axj1 

_a_ A 
axj2 

_a_ A 
axjk 

~being a general term of the matrix X while V x is the differential operator containing the partial 

derivatives with respect to Xmn. If the operator V x is applied to X T and to X, we obtain 

V ® XT = Ek. 
X ,j 

(A.21) 

(A.22) 

where Ek . is a matrix of order (k2 x l) built in the following manner: 
'J 
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l Ell 

12 E1j E ...... 

Ek. = E21 22 E2j 
'J 

E ...... (A.23) 
Ek1 k2 Ekj E ...... 

Emn being the elementary submatrices of order (k x j) previously defined. It can be noted that Ek . 
,J 

can be built from Ek, j transponing elementary submatrix Emn of Ek. j• but it is not the transpose of 

Ek, j" This matrix has the following properties 

-T 
Ek . = E. k 

'J J, 

(I ® aT} E (I ® b ) = b T ® a 
U U U, V V V V U 

where au and bv are the vectors previously defined. 

If A, Band Care three given matrices such that the products A Band ABC exist, then 

Vx® (AB) = {Vx®A}(Ik®B)+(Ij®A}(Vx®B) 

Vx®(ABC) = (Vx®A)(lk®BC)+(lj®A}(Vx®B)(lk®C) 

+ (Ij ® A B) (v x ® c) 

while if A is a matrix of order (p x q) and B is a matrix of order (s x t), then 

Lastly, for the vector au and bv, it is 

v ® (a ® b ) = (v ® a ) ® b + (lk ® E ) [(v ® b ) ® aJ 
X U V X U V V, U X V 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

If Z is a vector of lenght n, it is of particular interest to evaluate the derivatives of the Kronecker 

powers of Z with respect to Z itself; particularizing equation (A.29) for this case and using the 

properties of the Kronecker products previously mentioned, we obtain 

V T ® (ik]) = Q (ik. 1] ® I } = Z[k- 1] ®I + Z[k- 2] ®I + ... +I ® Z[k- 1] (A.30) 
z k n n n n 
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where Qk is a matrix of order (nk x nk) given by 

k- 1 

Q = L E k·i i 
k n , n (A.31) 

i= 0 

It is important to note that the sum of the elements of Qk in each row is always equal to k and that 

Qk has the following property 

(A.32) 

for any vector c. Lastly, if the second order derivativ~ ff the Kronecker powers of Z are required, 

then it is possible to apply the differential operator V ~ 2 to the vector z[kl, thus obtaining: 

(A.33) 

e 
It is worth noting that the vector E [Z[kl] contains all possible moments of k-th order. Such an 

example if Z T = [Z1 ~] 

E[z~] 

E[Z1 Z~ 

E[Z2 Z1) 

E[z~ 

APPENDIX B. 

(A.34) 

In this appendix the fundamentals of the arranged Runge-Khutta method in order to perform the 

integral in (S) sense of the single sample, are reported. At this purpose, it is important to note that, 

among the Runge-Khutta methods of various orders, when parametric Dirac's delta are present, the 

simplest one which better agrees with the (S) interpretation, is the second order one. Given a 

differential equation z(t) = f(t, z(t)), the second order Runge-Khutta method gives the solution z(t) 

at the instant ~ as: 

(B.l) 
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where the slopes s1 and s2 are given by: 

(B.2) 

in which ~ti is the temporal step choosen for the integration and the coefficients a1, ~· a and p are 
such that the following relationships must hold: 

a +a-= 1· a...a=l.· a...R=l. 
1 --z •--z 2'--z~-' 2 (B.3) 

Following the (S) interpretation, it is obvious that the coefficents a1 and ~ must average the two 
contributions in the same way; so that the coefficients must have the following values: 

a =a-=1.· a=R=1 1 --z 2' .., (B.4) 

As it can be seen froom equations (B.1) and (B.2), the second order Runge-Khutta method gives 
the response value z(ti), adding two quantities to the response z(ti _1); the first one (s1) depends on 
the value off(·) in~_ 1 and it is weighted by the coefficient a1; the second one(~), if we set 
a = p = 1, depends on the value off(·) in ~ and it is weighted by the coefficients ~· 
Considering the integration of the single sample, if in ~ there is the presence of a parametric Dirac's 
delta of intensity Yk, it is modelled as in Fig. 12, and in the time steps [tk_ 1, tk] and [tk' ~+ 1] 

the second order Runge-Khutta method is used; in all the other time steps in which no Dirac's delta 
is present, an higher order Runge-Khutta method can be used. It is worth noting that the 
relationships (B.2) with the coefficients given in (B.4) are axacdy conform with the (S) integral 
only in the quasi-linear case; while, in the case of non-linear parametric excitation, it gives an 
approximate result which tends to the correct one when the time step for the two intervals[~ _1, ~] 

and [tk, tk + t1 goes to zero. In the numerical example here reported a time step of 104 sec has been 
used. 
Moreover, it is important to note that, if one want to perform the integration in (I) sense, when 
parametric Dirac's delta are present, the simplest way is using, (in the steps [~_ 1 , tk] and[~, 
tk + 1]) the first order Runge-Khutta method (i.e. the Euler method), for which: 

(B.5) 

That is, the response z(ti) is obtained adding the slope evaluated in ~ _ 1 to the response z(~ _ 1). 
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t~-1 t~r•·' 

Fig. 12- Idealization of Dirac's delta impulse for a numerical integration scheme. 



Chapter 3 

APPROXIMATE SOLUTION 

OF THE FOKKER-PLANCK-KOLMOGOROV EQUATION 
FOR DYNAMICAL SYSTEMS 

A. Baratta 
University of Naples, Naples, Italy 

3.1) INTRODUCTION 

In this chapter, the application of the Fokker-Planck-Kolmogorov 
(simply denoted by FPK in the sequel), to the solution of the equation 
of the motion of a Single-Degree-Of-Freedom (SDOF) system in the linear 
or non-linear range is approached. The introduction of the FPK equation 
as the relation governing the evolution of the instantaneous Joint­
Probability-Density-Function (JPDF), identified with the transition 
probability function of a uni-dimensional Markov process. has been 
given in Chapter 2, in a very general context. 
Here, the problem of the stochastic dynamics of a SDOF system will be 
specifically treated. Therefore. systematic reference will be made to 
a differential system of the type 

0 + g(u,Ci;t) 

with initial 

u(O) = uo 

G(O) = Go 

= f(t) 

conditions 

m F{t)"'ll\f {t) 

~ 

(1) 

(2) 

u 
+--+ 

m 

Figure 1: The model structure for a SDOF system 

where u(t) denotes the displacement of the structure, superimposed dots 
denote time-derivative, g(u,Ci;t) is the law -possibly non linear both 

Professor of Structural Mechanics 
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in u and Q- governing the restoring force, and f(t) is the forcing 
function (Fig.l) 

As already outlined in the previous chapters. many problems encountered 
in engineering practice can be efficiently treated by modeling the 
active force f(t) by a stochastic ~rocess. 
A rather comprehensive model for f(t), able to represent. at least as a 
first approximation, a large number of situations in which engineers 
have practical interest, is a class of &-correlated processes (see 
Chap.2, Sec.3) that in the simplest case are identified with zero-mean 
shot-noisesi i.e. processes with mean value and autocorrelation 
function expressed by 

E[f(t)] = 0 

E[f(t)f(t+~)] = l(t) 6(~) 

(3) 

(4) 

where 6(•) denotes the impulsive Dirac•s distribution and I(t) is the 
intensity function. in general allowed to vary with time. 
The above relation (4) means that the process• structure is made in way 
that the ordinates at any two different times are uncorrelatedi anyway. 
in general may be they remain statistically dependent. By adding the 
assumption that the process is Normal (i.e. the JPDF of the function 
values at any n times is expressed in the Gaussian form) full 
statistical independence is also implied by eq. (4). This means that no 
information can be expected on the value of the function at any point t 
from the knowledge of the function itself in any neighborhood of the 
same instant t. 

A sample realization of such a process is plotted for illustration in 
Fig.2. with I(t) in the form 

I(t) 10 t exp(-at2) 
f(t) 

SHOntO lSI 
INtDISir¥ nJ«:IIOft: ICt) :: lo ·~p(-(Vr.ll") 
DUAAtiOtt: ro:: s aeca 
INUIISir¥: lo ::363.6 c:.'laec"3 
DECA¥ COIIS!Aitl: r•= 2 nc 

t 

Figure 2: Sample realization of a shot noise 

(5) 

The shot-noise process is, in general, not stationary. unless the 
intensity function l(t) is independent of time and coincides with a 
constant value 10 • In this case, the process is named white-noise. in 

. that it possesses a constant power spectral density, and all 
frequencies yield the same contribution to the total power of the 
process. 
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Under the above conditions, it is possible to understand that the 
conditional state of the system z(t) = [u(t) Q(t)] at time t, given 
the state z(8) = [u(8) Q(8)] at any time 8<t is phySically (and 
therefore also statistically) independent of the state at any time 
prior to 8. This statement can be easily proved for a linear system 
(i.e. with a restoring force linearly depending on u and Q). In fact, 
in this case, the motion of the system in (8,t) is composed by the free 
oscillations z0 (t), dependent only on the initial condition z(8)=z0 (e) 
and on the forced motion Zf(t), that is not influenced by the state at 
times tse, in that Zf(8)=0, and the active force f(t) in (e,t) has not 
any continuity link with the realization of the force for t<8. If the 
system is not linear, the response at time t>8 is obtained by solving 
eq.(1) starting from the initial state z(8). Since f(t) in (e,t) is 
independent of the values previously attained in (0,8), it is clear 
that z(t) in (8,t) has no connection with z(t) in (0,8) other than the 
starting point z(8). 
After the Markovian character of the state vector z(t) has been 
recognized, one concludes that the main tool for its stochastic 
description is the transition probability function pz(z;tlz8;8), i.e. 
the function yielding the probability that the state of the system at 
time t is z given that its state at time 8 has been observed to be z9. 
If the initial state z0 of the system is deterministically known at 
time t=O, then pz(z,t) = pz(z;tlz0 ;0) is the JPDF of the components of 
the state of the system (i.e. the displacement u and the velocity Q) at 
time t, and this function should obey the FPK equation given by eq. 
(185) of Chap.2 in its general expression. In order to specify the FPK 
equation for the second-order dynamical system treated in this chapter, 
let write equation (1) under the form of the state variables. Since 

z = [:] = [ ::] (6) 

the equation of the motion can be written in the form of eq. (155) of 
chap. 2 

t (t) = a[z(t);t] + b(t) W(t) (7) 

where. for the case at hand, a[z;t] and b(t) are two-component vectors. 
and the load vector W(t) is a one-component vector (or, more simply. a 
scalar valued function). All these three entities are given by 

(8) 

(9) 
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W(t) = [ W1(t) J (10) 

where W1(t) is a zero-mean Gaussian white noise, that after modulation 
by the matrix b(t) is transformed in a non-stationary 5-correlated 
process of the shot-noise t¥pe. 
From equations (38) and (39) of Chap.2, one can write 

q[k] = [0] for any k I 2 

q[2] = [1] 

Moreover the gradient operator in eq (185) can be written 

5 

6z1 
Vz = 

5 
5z2 

(11) 

(12) 

By applying the rule for the Kronecker•s power of matrices (see 
Appendix A to Chap.2), one gets the K-squares of Vz and b(t) in the 
transposed form (the exponent index 111" denotes transposition) 

T 

[ Vz[l] J = [ 52 52 52 52 J ( ) 
5zf 5z15z2 5z25z1 5z~ 13 

(14) 

After the above specifications, the first term on the right-hand side 
of eq.(185) in Chap.2 can be explicited 

T 5 5pz 
-Vz[Pz(z;t) a(z;t)] = 5z2[pz(z;t)g(z1,Z2;t)] - z2 5z1 (15) 

while the second term on the r.h. side, remembering eqs. (10)-(11), is 
reduced to 

(16) 
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whence 
T 

1 [ V [2] J b[2](t) q(2) = 1 l(t) 62pz 
2 z 2 ozr 

0 

0 

0 

l(t) 

(17) 

and the FPK equation takes the final form for a second-order dynamical 
system acted on by a shot-noise Gaussian force 

6p(u.u;t) 
6t = 

6 6p 1 62p 
~ [p(u,Q;t) g(u,Q;t)] - Q 6u + 2 I(t) ~ (18) 
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where the components of the state vector z(t) have been substituted by 
the symbols used for the displacement and velocity u(t) and Q(t). and 
p(u,Q;t) has been written in place of pz(z;t). 

3.2) THE STATIONARY SOLUTION OF THE FPK EQUATION FOR DYNAMICAL SYSTEMS 

Unfortunately. no closed-form solutions for the FPK equation in the 
general case can be found. A technique for approximate solutions will 
be discussed in this and in other chapters of the present book. 
Numerical and finite-element type procedures will be discussed in 
Chap.4. showing very interesting features of the stochastic response of 
non-linear systems to shot-noise disturbances. 

Anywa~. when the excitation is stationary (i.e. it is a Gaussian white 
noise) and the restoring force is time-independent. in some instances 
~east the stationary component of the solution can be expressed in 
closed form. If the transient response is judged to be not significant 
for the scope of the analysis. the result may be considered exhaustive. 

In this case. I(t)=const. = 10 • and p(u,Q) -the JPDF of (u.Q) in the 
stationary motion- and g(u,Q;t) = g(u,Q) do not depend explicitly on 
time t. so. eq. (18) can be written for f(u.Q) in the form 

6p 6 1 62p 
Q OiJ- 6CI [p(u,Q) g(u,Q)] - 2 10 wz = 0 (19) 
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Let consider the simplest case, and assume that the system is linear, 
i.e. that 

g(u,Q) = 2a0o0 + oau (20) 

Let try a Gaussian expression for p(u,Q), with ~u. ~u the expected 
values of displacement and velocity, ou2 and oij2 the respective 
variances and Puu the coefficient of linear correlation. Because of 
stationarity all these five quantities are assumed to be constant in 
time. 

If p(u,Q) is a Gaussian distribution, its derivatives with respect to 
u,Q are given by 

6p 6p -ou- = B(u,Q) p(u,Q); oa- = A(u,Q) p(u,Q) 

62p 
~ = C(u,Q) p(u,Q) 

where 

A(u,Q) = A0 + A1u + A2Q 

B(u,Q) = B0 + B1u + B20 

C(u,Q) = C0 + A2(u,Q) 

and 

1 
Co = - 2 

oij2(1-Puu> 

with 

Puu 

1 
B1 = - 2 

0u2(1-Puu> 

(21) 

(22) 

1 
A2 = - 2 

ou2Cl-Puu> 

Puu 
A2 = ---...--­

ouou(l-puu) 

(23) 

(24) 
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By substituting into the stationary FPK [eq.(19)]. 

(B0+B1u+B2Q)Q - (A0+A1u+A2Q)(2a00Q + Q~u) -2a00 + 
2 2 2 2 2 - ~ 10 [C0+A0+A1u +A2Q +2A0A1u+2AoA2Q+2A1A2uQ]=O 

one gets 

(25) 

Since the above equation mustneaual zero for any values of u and Q, the 
coefficients of any product u Q must be equated to 0. So one can write 
the following system 

A10~ + ~1 0A~ = 0 

82 - 2a00A2 - ~1 0A~ = 0 

B1 - O~A2 - 2a00A1 - I0A1A2 = 0 

A0Q~ + I0A0A1 = 0 
(26) 

80 - 2a00A0 -10A0A2 = 0 

2a00 + ~1 0C0 + ~I 0A~ = 0 

After solution of the above system, remembering eqs. (23)-(24), one 
gets the following result for the parameters of the Gaussian p(u,Q) 

~u = ~u = Puu = o 
(27) 

Io 
ou2 = -:--,.....-

4a00 

yielding the final solution for the stationary response of a linear 
system to a white-noise disturbance. 

Cases other than the simple linear one referenced in above are known~ 
where the stationary solution can be found. In his well known book [1J 
Y.K. Lin yields an approach to the inverse problem. i.e. to find what 
class of restoring force functions are amenable to yield closed 
solutions. ' 
After integration of the eq. (19) with respect to Q, one finds that 

1 [ J 6p 1 6p ] g(u,Q) = -p- ~ QdQ - ~ 10 -oa- + P(u) (28) 

where P(u) is any function of u. 
It can be seen that eq.(28) holds for a stationary JPDF of in the 
Caughey•s form (see [1]. p.266) 

p{u,4) • K exp [- ~0 J:v!•J~] (29) 
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where E is the total energy of the system. i.e. the sum of the 
instantaneous kinetic and strain energy and v(•) is a positive 
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monotonically increasing function. 
restoring force expressed by 

This solution corresponds to a 

g(u,Q) = ~ ~ Qv(E) + gl(u) 

E = ~ 02 + r:gl(r)dr 

(30) 

3.3) DIRECT DERIVATION OF THE FPK EQUATION FOR SECOND-ORDER DYNAMICAL 
SYSTEMS 

In this section, the FPK equation governing the instantaneous joint 
probability density function (JPDF) of the phase components u(t), Q(t) 
of the motion of a single-degree-of-freedom (SDOF) structure is 
directly derived from the equation of the motion. The rationale is 
purely heuristic, but it allows autonomous consideration of the 
resulting equation in the context of structural dynamics. 

3.3.1) Step-by-step integration of the equation of motion 

Let the response of the system be described by a regular function u(t), 
derivable and continuous with the first derivative. For random response 
functions one means that every sample function verifies the above 
properties. 
Let the restoring force function g(u,Q) be continuous and derivable 
with respect to u and G. Finally let the forcing function f(t) be a 
Gaussian shot-noise stochastic process. with mean-value function and 
correlation function given by 

E[f(t)] = 0 

E[f(t)f(t+1)]= I(t) 6(1) 

where 6(•) is the Dirac distribution. 

The equation of the motion is written as follows 

u + g(u,G} = f(t) 

(31) 

(32) 

From the above equation one infers that u(t) is not continuous, in that 
every sample function of the forcing function f(~is, in general, not 
continuous. Every sample function of the stochastic process f(t) is a 
distribution, and can be integrated in the sense of distributions. 
Consider two time instants t1 and t2 > t1, and put 

U! = U(tt) ; Gt = G(tt) ; U2 = u(t2) ; 02 = G(t2) (33) 

and let t2-t1 = e be so small that, according to usual schemes for 
numerical integration of the equation of the motion, one can write 

(34') 

Since u(t) is not a continuous function, one shall write for o2, no 
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matter how small is a 

02 = 01 + J:u(t,+x)dx 

Substituting from the equation of the motion 

u(t1+x) = f(t1+X) - g[u(t1+X),Q(t1+X)) 

one gets from eq. (34 11 ) 

(35) 

02 = 01 - J:g[u(tl+x},Q(tl+x}] dx + J:f(t!+x) dx (36) 

and remembering that u and Q are supposed to be continuous 

* * Je 02 = Q1 - g[u(t ),Q(t )] a+ 
0
f(t1+x) dx (37) 
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where t* e (t1.t1+8). By the assumed continuity of g[u,Q] and of u, Q 
with respect to their respective arguments 

g[u(t*),Q(t*)] = g(u2,Q2) + 01(8) = g(ul,Q1) + 01(8) 

where, here and in the sequel, Oi(e) denotes an infinitesimal of order 
~ i in the variable e. 

The integral in eq. (37) is the stochastic process F(tl8), obtained by 
integrating f(t) on the interval (t,t+8) 

F(tiB) = J:f(t+x) dx (38) 

The stochastic characteristics of F(tl8) are given by the usual 
formulas for the (mean square) integration of a stochastic process 

E[F(tiB)] = J:E[f(t)] dt 

(39) 

Cf(t,t+TIB) = E[F(tiBl F(t+TIB)] = J~x J![f(t+x)f(t+T+y}]dy 

Remembering eqs. (31) 

E[F(tl8)] = 0 
(40} 

Cf(t,t+TIB) = J~x J!(t+x) 6(T-x+y) dy 
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After executing the integral in the expression of Cf(t,t+11a) 

Cf(t,t+-rla) = (41) 
for 1>8 

and the variance function of F(tla) is given by 

Ja * 
o2F(tla) = CF (t,tla) = 

0
I(t+x)dx = I(t ) a (42) 

with t* e (tl,tl+a) 

3.3.2) JPDF of u,Q at time t+a given the JPDF at time t 

After the developments in the previous section, the phase variables at 
the time t2=t1+a are related to displacement and velocity u,Q at time 
t=t1 by the following equations 

u2 = U} + Ql a 
02 = 01 - g[u(t*},O(t*}] a+ F(tlle} 

or, equivalently, in the inverse form 

U} = u2 - 02a- g[u(t*),O(t*)] a2 + F(tlla) a 

01 = 02 + g[u(t*),O(t*)] a- F(ttla) 

(43) 

(44) 

with t* e (tt,tt+8) and g[u(t*),Q(t*)]=g(u2,Q2)+0t(a). 
Assuming that PlF(u,Q,F) is the JPDF of the random variables u(t), 
Q(t), F(tla) at t1me t=t1. and that P2F(u,Q,F) is the JPDF of the same 
variables at time t=t2, the two densities are related through the usual 
formulas allowing for the transformation of variables 
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whence 
6g 

IJI = 1 + e ~ 
2 
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(46) 

Re-considering eq. (45) with the aim to calculate the JPDF of the phase 
variables only, taking into account that IJI does not depend on F 

pz(uz,Oz) • IJI J~Ir<•I·QI,Fl dF (47) 

with 

(48) 

i.e. Pl and P2 are the instantaneous JPDF of the state variables at 
times t and t+9 respectively. 

Remembering that f(t) is Gaussian, F(tt[9) is also Gaussian, and is 
uncorrelated with f(t) for t<t1. Th1s means that it is also 
statistically independent of the behaviour of f(t) prior to t1, so that 
it cannot depend on u(tt) and a(tt). It 'is possible to conclude that 

pz{uz,Oz)· IJI J~I<•I•dilPr!Fl dF= IJI Er[PII•I•oill (49) 

where Ef[Ptl means the expectation of Pl on the random variable F and 
u1 and 01 are intended to be expressed 1n function of u2, 02 through 
the inverse relationships (44), like in eq. (45). 

Consider now that 

(50) 

and that the expected value of a function s of a random variable z with 
expected value mz and variance o2z can be approximated up to second 
order by 

(51) 

By applying this formula to calculate the expected value in eq.(SO), 
and remembering that E[F(tl9)]=0, one gets 

Ef[Pl(ul,al)l = Pl[ul(u2,a2,o),al(u2,a2,o)] + 

(52) 



104 A. Baratta 

The 2nd order derivative in the above expression can be soon 
calculated: 

6p1 6p1 6u 6p1 &u &p1 6p1 
6F=~ 6'F+~6'F=~e-~ 

62p1 62p1 62p1 62p1 
6f2 = 6u2 82 - 2 6u 6u e + ~ = 

(53) 
62p1 
602 + o1 (e) 

Hence, coming back to eq. (49) and by combining with eq. (42), 
(46), (52) and (53) one gets 

P2(U2,1l2) = 

6g 
= [1 + ~ e ] {p1[u1(u2,1l2,o),ll1(u2,1l2,o)] + 

1 [ 62p1 l * + 2 ~ + o1(e) I(t ) e} 
F=O 

(54) 

whence, by grouping all the infinitesimals of order~ 2, after some 
algebra one can write 

P2(U2,1l2) = 

= o2(e) + [1 + ~~ e] p1[u1(u2,G2,o),G1(u2,G2,o)] + 

1 62p1[U1(U2,CJ2,0),CJ1(U2,CJ2,0)] 
+ 2 61l I(t*) e (55) 

3.3.3) Derivation of the FPK equation 

Let now express the JPDF Pl in eq. (52) by the expansion in Taylor's 
series with initial point (u2,1l2) and for F=O 

P1[U1(U2,02,0),01(U2,02,0)] = 

= P1 {u2-ll2e -82 g[u(t*),ll(t*)], ll2+8g[u(t*),ll(t*)]} 

6p1 6p1 
= Pl(u2,02) + ~ (ul-u2) + ~ (01-02) + ••• 

whence, by considering that both (u1-u2) and (ll1-ll2) are 
. in e = t2-t1 

(56) 

infinitesimal 
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p1[u1Cu2,o2,o).a1cu2,o2.o)] = (57} 

6pl * * 6pt 
= P1(u2.o2} - a 02 ~ + a g[u(t },o(t }] ~ + o2(a} 

Similarly 

62p1fu2-u2a -a2g[u(t*},u(t*>J. u2+ag[u(t*},u(t*>J 
a-----------------r.~---------------------= 6022 

= a 
62p1(u2,u2} 

6Q2 (58} 

By substitution of eqs. (57) and (58) in the eq. (55), one gets 

6p1Cu2,u2> 
P2Cu2,02} = P1Cu2,02) - aa2 6u + 

2 

6p1(u2,u2} 
+ ag[u(t*),O(t*}] + 

602 

6g[u( t*> ,u( t*}] 
+ apl(U2,02) -----.6.-:-Q-~---- + 

(59} 
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Remembering that Pl and P2 have been identified as the instantaneous 
JPDF of u and 0 at time t and at time t+a respectively (see eqs. 
(48}}, by considering a generic instant time t as the starting time 
t1, eq.(59) can be re-written 

p(u,ult+a) - p(u,u}lt) * * 6ptCu2,u2> 
----.......---- = g[u(t },O(t }] 6o + 

2 

+ 

(60} 

As a approaches 0, the first member yields the first partial derivative 
of the instantaneous JPDF p(u,Oit} with respect to time. 
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As 9 --> o. in the right-hand side tw --> t1=t. and. by the a~sumea 
continuity. u2--> u1=u{t) and 02--> 01=0(t); simultaneously I(t ) --> 
I(t) and 01(9J --> 0. After this, it easy to see that eq.(60J yields 

. 
6p(u,ult) 

6t = 

. . 
6 6p(u.ult) 1 ( ) 62p(u.ult) 
00 [p(u,Oit) g(u.o)]- Q 6u + ~ I t 6Q2 (61) 

that is coincident with the Fokker-Planck-Kolmogorov equation for the 
analysis of dynamical second-order systems acted on by a stochastic 
shot-noise loading. 

3.4) APPROXIMATE SOLUTION PROCEDURE FOR SMOOTH NON-LINEARITIES IN THE 
RESTORING FORCE 

3.4.1) Basic ideas for the solution of the FPK eqn. 

The basic statement assumed in the procedure is to force the solution 
of the FPK equation to have a given shape. In the following. the 
treatment will be developped assuming that the solution is forced in 
the form of a Gaussian joint density function (JPDF) of the state 
variables u. o. but any other basic model (say. a Gamma. or a log­
normal or else. if it is judged to be more convenient) can be chosen. 
The motion of the system is governed by eq.{32). where f{t) is 
assumed to be a Gaussian shot noise obeying eqs. (31). 

Considering that u(t) and Q(t) are the components of a time-dependent 
Markov vector and that p(u.o;t) is the relevant instantaneous 
probability density at time t. the classical Fokker-Planck-Kolmogorov 
equation (61) holds, as well known from the theory of Markov 
processes. and as directly proved in the previous section with specific 
reference to the dynamics of a sdof system. The initial condition for 
p(u,Q;t) is assumed in the form 

p(u,Q;O) = p0 (u,Q) 

let force the solution to have the form 

p(u,O;t) = N(u,Q;t) 

and 

Po(u,Q) = N(u,Q;O) 

(62) 

(63) 

(64) 

where N(u.Q;t) denotes the Gaussian JPDF in the random variables u,Q at 
time t. The dependence of N(u,Q;t) on time is expressed by updating the 
parameters ~u(t). ~u(t), ou(t). ou(t). Puu(t). which are the·mean value 
functions of the displacement and of the velocity, the standard 
deviations of the same quantities. and the coefficient of correlation 
respectively. 
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Hence 

N(u,a;t)= N[u,al~u(t).~u(t),ou(t),ou(t),puuCt)] 

Considering that 
6p 

p(u,a;t+dt) = p(u,a;t) + ~ dt 

(65) 

with the time partial derivative given by eq. (61), the final 
resolving equation can be written in the form 

N(u,a;t+dt) = N(u,a;t) + D(u,a;t)dt (66) 

where 

D(u,a;t) = (67) 
. . . . 
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Consider that 

6N -gu- = B(u,a;t) N(u,Q;t) 

6N -oo- = A(u,a;t) N(u,Q;t) 

62N 
6d2 = C(u,Q;t) N(u,Q;t) 

(68) 

(69) 

(70) 

where N is the bivariate Gaussian distribution and A,B,C are given by 
eqs (22). With these positions, Eq.(67) can be written explicitly: 

. 
6g(u,u) 

D(u,Q;t) = N(u,a;t) { g(u,Q)•[a0 (t)+a1(t)u+a2(t)Q] + sa + 

- u•[b0 (t)+b1(t)u+b2(t)a] + %•I(t)•[c0 (t)+a0z(t)+a12(t)u2+a22(t)az+ 

+ 2a0 (t)a1(t)u + 2a0 (t)a2(t)a + 2a1(t)a2(t)ua] } (71) 

By multiplying both members of eq. (66) by ur•Qs and by integrating, 
one obtains 

I~ J:!r·05 N(u,O;t+dt)du = J~ J:!r·o5 [N(u,Q;t)+D(u,Q;t)dt]du 

(72) 
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whence 

E[ur.asjt+dt] = E[ur.asjt] + Ers(t)dt 

with 

Ers(t) = J~ J~r·Q5 D(u.Q;t) du 

A. Baratta 

(73) 

(74) 

Thus the problem is to calculate integrals in the phase-space to obtain 
the transient state at the instant (t+dt) of the expected displacement 
and velocity. and the relevant standard deviations. 
By (numerical) integration of eq. (73) with respect to time. one gets 
the values of moments of any order at time t. 

E[ur•Q5 ;t] = E[ur•05;0] + J:Er5(t) dt (75) 

By applying eq.(72) with respect to expectations of u and a. one gets 

~u(t+dt) = ~u(t) + Elo(t)dt 

~uCt+dt) = ~u<t> + Eo1Ct)dt 

(76) 

(77) 

By applying again eq.(72) with respect to second-order moments. it is 
possible to calculate updated variances and covariance respectively. as 
follows 

o2u(t+dt) = o2u(t) + [E2o(t)+~2uEoo(t)-2~uElo(t)] dt (78) 

o2u(t+dt) = o2u(t) + [E2o(t)+~2uEoo(t)-2~uElo(t)] dt (79) 

KuuCt+dt)=KuuCt)+[E1 1(t)-~uElo(t)-~uEol(t)+~u~uEoo(t)]dt (80) 

where ~u and ~u denote ~u(t+dt) and ~ij(t+dt) and K(u.a) denotes the 
covariance function of u.a. 

3.4.2) An example: general polynomial restoring force 

let pay attention to a restoring force g(u.a) expressed by the general 
polynomial form 

(81) 

The derivative with respect to a is 

(82) 

where the 9ij 1 S are some suitable coefficients. Eq. (74) becomes 
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n m . r+i s+j-1 
+i~O j~l J•gij•E[u •Q It] -

- b0 (t) E[ur.as+llt] - b1(t) E[ur+l.as+llt] + 

- b2(t) E[ur•Qs+21t] + ~ I(t)•{[c0 (t) + a0 2 (t)] E[ur•Oslt] + 

+ at 2 (t) E[ur+2•0slt] + a2 2 (t) E[ur•Qs+21t] + 

+ 2a0 (t)at(t) E[ur+l.Oslt] + 2a0 (t)a2(t) E[ur•Qs+llt] + 

(83) 

and E[uk•Ohlt] coincides with the moments mkh of the Gaussian bivariate 
PDF. 
Since the basic distribution is forced to be Gaussian, only moments up 
to second order are needed to fully define the instantaneous PDF. 

3.4.3) Applications and numerical results 

The purpose of the applications is to show how practical results can be 
obtained through the approximate solution described above, for problems 
related to the dynamic response of a sdof non-linear and visco-elastic 
system under the action of a random Gaussian shot-noise type forcing 
function f(t). 
Any kind of nonlinearity can be investigated in the transient phase 
giving as input only the coefficients gij of the restoring force. Of 
course, as the order of the nonlinearities in g(u,O) becomes larger, so 
increases the maximum order of the Ers to be calculated. Grossly, it 
can be verified that if N=max(n,m) is the maximum order in g(u,O), the 
second member of eq.(83) contains products u•Q up to (N+l)th order, and 
the calculation of moments up to 2nd order requires the evaluation of 
moments of the basic Gaussian distribution up to (N+3)th order. For 
explicit formulae up to 6th order see the Appendix to Ref.[lO]. 

In order to test the performance of the procedure, one considers first 
the behaviour in the transient phase of a linear oscillator, and 
thereafter the behaviour of two classical smooth non-linear 
oscillators, namely the Duffing and the Vander Pol, under the actio~ 
ot2 a 3white-noise Gaussian force with constant intensity 10 = 10 
em /sec . 

The basic parameters of the instantaneous JPDF N(u,O;t), i.e. the 
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expected values ~u(t), ~v(t), the central second-order moments oijz(t), 
ou2(t), and the correlat1on coefficient Puu = Kuu(t)/[ou(t)•ou(t)J, are 
evaluated by the present procedure, and are compared with the output of 
simulation made by 2,500 sample time histories of duration T=4 sees. 

3.4.3.1) The linear oscillator 

In this case, it is assumed n=m=1 in eq. (81) with 

goo=o 

0 = 10 sec-1 

g10 = oz 

ex = 0.05 

g01 = 2cx0 (84) 

(85) 

where ex is the damping coefficient and 0 is the free undamped natural 
frequency. 
The mean value functions are practically null on the whole duration, 
both for simulation and for Gaussian approximation. The results for 
variances of u,Q and the coefficient of correlation are plotted by a 
continuous line in Fig.3 and are compared with the results of 
simulation that are quoted by small squares. The results show a quite 
good agreement between the analytical procedure and numerical sampling. 

Figure 3: 

tAl 

T· 

R( U 1 U) 

s. 
u 

tCI 

Linear oscillator- Simulated vs. calculated statistics 
A) Standard deviation of displacement; 

t a 1 

T 

B) Standard deviation of velocity; 
C) Coefficient of correlation of displacement and velocity 
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3.4.3.2) The Duffing oscillator 

The restoring force in the case of the Duffing oscillator is given by 
an expression of the type 

g(u,O) = 02u + 2afl0 + ~0203 (86) 

The nonlinearity of the 3rd order is limited to the dissipative term, 
and the factors of the polynomial form of g(u,O), eq.(81), are all 
zero except 

g10 = 02 

0 = 10 sec-1 

go1 = 2afl 

(X = 0.05 

go3 = ~02 

~ = 0.1 

(87) 

(88) 

The quadratic values of displacement, of relevant velocity andf the 
coefficient of correlation are plotted in Fig.4, showing good 
agreement, despite the fact that, as pointed in [9], the instantaneous 
JPDF may be well different from the assumed Gaussian. 

a) 

T 

ou 

b) 

T 

Puu 

c.) 

T 

Figure 4: Duffing oscillator- Simulated vs. calculated statistics 
A) Standard deviation of displacement; 
B) Standard deviation of velocity; 
C) Coefficient of correlation of displacement and velocity 
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3.4.3.3) The Van Der Pol oscillator 

The restoring force in the case of Van der Pol is 

g(u,Q) = Q2u + 2aOQ + a~u2Q (89) 

The coefficient~ of the restoring force are all zero, except 

g10 = 02 

0 = 10 sec-1 

go1 = 2a0 ; g21 = a~ 

a = -0.05; ~ = -1 

(90) 

(91) 

A. Baratta 

The comparison with simulation is plotted in Fig.5, also showing both a 
good agreement and the convergence in the short period to a stationary 
phase. 

T 

au 

r:_ 

/ b) 

T 

Puu 

c._) 

T 

Figure 5: Van der Pol oscillator - Simulated vs. calculated statistics 
A) Standard deviation of displacement; 
B) Standard deviation of velocity; 
C) Coefficient of correlation of displacement and velocity 
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4.3.4) Trajectories in the phase plane 

For a more complete evaluation of the behaviour of the two nonlinear 
systems considered above, and for a comparison with the corresponding 
linear system, trajectories of the variances of u and Q for the linear 
oscillator, for the Duffing and for the Van der Pol ones, are plotted 
in Fig.6 (a,b,c, respectively), and again superposed to small squares 
representing points resulting from simulation. Similar diagrams are 
quoted in Fig.7, where the instantaneous covariance is plotted versus 
the product of variances, thus giving an idea of the time-dependent 
correlation for each of the three cases considered. 

o;, 

. ~ 

Figure 6: Trajectories of the variances of u, Q. 
Simulated vs. calculated results. 
A) Linear; B) Duffing; C) Van der Pol. 
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d) 

b) 

c) 

Figure 7: Instantaneous covariance vs. product of variances. 
Simulated vs. calculated results. 
A) Linear; B) Duffing; C) Van der Pol. 
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5) NONSMOOTH NONLINEARITIES: APPLICATION TO IMPACT PROBLEMS 

In the previous section. the procedure has been implemented to solve 
problems where a smooth nonlinear restoring force is involved. Results 
prove to approximate to some extent the behaviour of the system. as 
investigated by numerical MonteCarlo simulation. and the procedure 
turns out to be satisfactory. at least from a qualitative point of 
view. 
In this section an application involving a highly non-regular forcing 
function is attempted. 

I 
I 

,-' -··--; ~~~ 

I 

Figure 8: The oscillator under consideration 

Consider the system in Fig. a. i.e. a ~DOF oscillator with a barrier on 
the left. located at the abscissa u • The active force is still a 
random shot-noise obeying eqs (31). and the equation of the motion is 
written in the form (32) with 

g(u.Q) = 00 2u + 2a00Q + R(u.Q) (92) 

whete R(u.Q) is the reaction of the obstacle. with R(u.Q)>O only if 
u=u and Q<O and R(u.Q)=O otherwise. If 11 r 11 is the coefficient of 
restitution of the obstacle (say. r=l if the impact is purely elastic. 
r<l if some dissipation of energy takes place at the impact). R(u.Q) 
can be expressed by 

R(u.Q)= (l+r)(Q-)6(u-u*) (93) 

This is a reactive term that introduces a strong non-linearity into the 
equation. It can be easily seen that. provided 

u(O) > u* (94) 

the solution u(t) obeys the conditions 

u(t) ~ u* 

Q+ = -r Q-

0 ~t < C10 

at the impact 

(95) 

(96) 
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Superscripts "+" and "-" denote values of the function on the right and 
on the left of the impact time, respectively. 

The solutions of eq. (32) with g(u,O) specified by eq. (92) are 
discontinuous in the time derivative; this discontinuity causes much of 
the difficulty in handling the equation from an analytical point of 
view. The introduction of special transformations of the state 
variables may help in some cases to regularize the solution, as will be 
briefly summarized in the following section. 

3.5.1)A particular case: Analytical solution 

Under the set assumptions, the displacement u(t) and the relevant 
velocity O(t) are the components of a Markov vector, and the 
instantaneous joint transition probability density p(u,O;t) obeys the 
FPK equation 

op o op 1 62p 
- =- [p(u,O;t) g(u,O)] - 0 --+- I(t) -. (97) 

ot 00 6u 2 6u2 

with initial condition 

p(u,O;O) = p0 (u,O) (98) 

In the case that the initial condition of the system is 
deterministically known, say u(O)=u0 ; 0(0)=00 , one gets 

p0 (u,Q) = 6(u-u0 , 0-00 ) (99) 

If I(t) = I0 = const. (i.e. f(t) is a stationara white noise), the 
response is asymptotically stationary. If, in a clition, the forcing 
noise is a zero-mean w.n., and the impact is purely elastic (i.e. r=l), 
it can be proved that the stationary limit response of the system with 
a barrier coincides with the stationary response of the same system 
without barrier, after truncation and normalization to unit area of the 
instantaneous JPDF of u,O in the admissible range of displacements (see 
e.g. [3]). 
In the event that the forcing process is not a zero-mean stationary 
w.n. and/or the impact is not elastic, or also that one is interested 
in the transient response p(u,O;t), or simply that the stationary JPDF 
for the system without barrier is unavailable, one is forced to look 
for approximate solutions. To this aim, it proves very useful the 
transformation 

u = lxl + u* (100) 

first introduced by Zhuravlev (1976, see e.g. [3,6]). 

If one writes the equation of the motion with reference to the 
transformed motion x(t), one finds that the impulsive terms is fully 
eliminated if the impact is purely elastic, and largel¥ attenuated if r 
is not much smaller than unity (quasi-elastic impact) in comparison 
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with the corresponding term in the original equation. It turns out that 
x(t) may have much less significant discontinuities in its time­
derivative. This allows normal approximation techniques for the 
treatment of non-linear stochastic differential equations (averaging, 
equivalent linearization, •.. ) to be applied. 

If none of the previous assumptions, allowing for an approximate 
analytical solution, holds, one is therefore urged to seek for other 
methods, involving a numerical solution of the differential equations. 

3.5.2) Preliminary regularization of the mechanical model 

The basic idea adopted here is to force the solution of the FPK 
equation to have the*form of a Gaussian joint density function in u and 
G, truncated for u<u • 
Let N(u,Q;t) denote a time-dependent Gaussian JPDF, and write the 
solution of the problem p(u,G;t) in the form 

p(u,G;t) = h(t) N(u,G;t) (101) 

where h(t) denotes a time-dependent normalizing factor, and the JPDF 
N(u,G;t) will be referred to in the following as the fundamental 
Gaussian. As in the smooth case, dependence on time of N(u,O,;t) is 
assumed to be lumped into the parameters ~u(t), ~u(t), ou(t), ou(t), 
Puij(t), which are respectively the expected values of the displacement 
and the velocity, the standard deviations of the same quantities, and 
the coefficient of correlation. In other words, it is understood that 

N(u,Q;t) = N [u,GI ~u(t), ~u(t), ou(t), ou(t), Puu(t)] (102) 

Let write again the FPK equation in the form 

p(u,G;t+dt) = p(u,Q;t) + 

5 lip 1 l)2p 
+ { ---- [p(u,Q;t) g(u,G)] - Q ---- + --- I(t) --.--} dt (103) 

5u 5u 2 5u2 

and approximate the restoring force (92) by the more amenable 
expression 

g(u,G) = 2a00G + 020u + [1-H(u-u*)] [K0 (u - u*)+C0G] (104) 

where H(.) is the Heaviside step function, and K0 , C0 are parameters to 
be given appropriate values. It is worth noting that in expression 
(104) the presence of the obstacle producing the impulsive term, and 
the loss of kinetic energy at the impact, is simulated by the parallel 
coupling of a spring and a linear damper. The stiffness of th~ spring 
and the damping of the dashpot, are assumed to be zero for u>u and to 
jump to values K0 , C0 , as contact with the obstacle takes place. It is 
clear that for C0 = 0 one reproduces the case of purely elastic impact, 
while for K0 ---> oo the case of the rigid obstacle is approached. 
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Substitution of the expression (104) in place of (92)-(93) produces a 
kind of softening of the impact. but the physical behaviour is not 
significantly changed. as shown by the numerical experiments in the 
next section. Moreover. this approach is freguently encountered in the 
analysis of unilateral dynamics (see e.g. [7J). 

The derivatives of the restoring force function. defined by eq. (104). 
are 

~ * * -- = 020 + [1-H(u-u )] K0 - 6(u-u ) C0 Q (105) 
6u 

6g 
2a00 + [1 - H(u - u*)] C0 (106) --= 

6Q 

Note that in the FPK equation only the derivative (106) enters as a 
factor of the unknown p(u.Q;t). The softenin~ of the obstacle 
therefore. has the effect of eliminating impuls1ve terms from the 
equation. producing a kind of regularization of the problem. 

Remembering eqs. (68)-(70). and introducing the fundamental Gaussian 
in the FPK equation one finds that 

h(t+dt)N(u.Q;t+dtl = h(t)N(u.Q;t)[l+D(u.Q;t)dt] (107) 

with 
6g l(t) 

D(u.Q;t) = A(u.Q;t) g(u.u) + --- B(u.Q;t)Q + C(u.Qt) 
6Q 2 

(108) 

By integrating both members of eq. (107) on R2 with respect to (u.a). 
one obtains 

h(t + dt) = h(t) [1 + E00(t) dt] 

where. according to eq.(74) with r=s=O 

Eo0(t)• J~Q J~(u,Q;t) N(u,Q;t) du 

(109) 

(110) 

By taking expectations of both members of eq. (107) with respect to u 
and a. one obtains 

~u(t) + E1oCt)dt 
~u(t + dt) = -------­

h(t) [1+ E00(t)dt] 
(111) 
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~ij{t) + E01{t)dt 
~ij(t + dt) = -------­

h(t) [1+ E00(t)dt] 
(112) 

with EQ1 and E1o given by eq. (74) for r=O and s=1. and r=1 and s=O 
respect1vely. 
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Finally. by taking secon~-order mo~nts of both members of eq. {107) 
with respect to (u - ~u) • (u -~ij) • (u -~u)(u-~ij). it is possible to 
obtain updated variances and covariance respectively. as follows: 

o2u(t)+[E2o(t)+~2uEoo(t)-2~uE1o(t)]dt 
o2u(t + dt) = (113) 

h(t) [1 + Eoo(t)dt] 

02u(t)+[Eo2(t)+~2uEoo(t)-2~uEo1(t)]dt 
o2u(t + dt) = {114) 

h(t) [1 + Eoo(t)dt] 

Kuu<t + dt) = 
Kuu(t)+[E11(t)+~u~uEoo(t)-~uEo1(t)-~uE1o{t)]dt 

h(t) [1 + Eoo(t)dt] 

(115) 

where the meaning of the symbols Ers is still referred to eq. {74). 

It is clear that eqs. (110) to (115) are amenable to simple numerical 
integration. after the coefficients Eij (i=0.1.2- j=0.1,2) have been 
calculated from eq. (74). The results quoted in the present paper are 
obtained by direct numerical evaluations of the appropriate integrals. 
It can be seen. however. that the same integrals can be calculated in 
closed form. thanks to the particular expression. following from the 
introduction of the fundamental Gaussian. taken by the integrand 
functions. Although quite elementary in principle. the integration 
requires cumbersome algebraic developments. and this is the reason why. 
in testing the procedure. numerical quadratures have been preferred. 

3.5.3) Application and numerical results 

An oscillator with the following numerical characteristics is 
considered: 

-1 * 00= 10 sec ; a = 0.01 ; u = -5 em. 

In testing the procedure. first the accuracy of expression (104). as an 
approximation for impact. was accurately verified. In Fig. 9.a. the 
free oscillations for a given set of initial conditions. and purely 
elastic impact are shown on the time interval from 0 to 5 sees (the 
displacement in the plot above. the velocity below). In Fig. 9.b, the 
same oscillations are shown. calculated according_2to the softened 
model; this shows good agreement for K0= 10.000 sec • C0= 0. In Fig. 
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10.a the free oscillations, on the same time interval, are shown for 
the case where the impact is not elastic, the restitution factor being 
r=0.7. In Fig. 10.b the response with the softened obstacle is plotted, 
showing good agreement for C0 = 25. 

Fig. 9: Free oscillations : u0 = 10 em; 00 = 0; r =1. 
a) Rigid barrier; 
b) Softened barrier: K0 = 10,000 sec-2 ; C0 = 0. 

u 

Fig.10: Free oscillations : u0 = 10 em; 00 = O· r =0.7 
a) Rigid barrier; ' 
b) Softened barrier: K0 = 10,000 sec-2 ; C0 = 0. 
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After these preliminary investigations, the analysis was concerned with 
the response of the oscillator with homogeneous initial conditions, 
acted on by a n.s.w.n. random forcing function with a zero mean-value 
and an intensity function given by 

l(t) = 10 exp [ -2*(t/T)2 ] (116) 

where 10 = F0 •6t is the initial intensity of the input n.s.w.n. 
acceleration. F0 (10,000 cmfsec2) is the assumed initial mean square 
value of the forcing function and 6t is the time-lag used to simulate 
the n.s.w.n., while T is the strong-phase duration of the excitation (1 
sec.). 
A sample response is plotted in Fig. 11 for 0 s t s 5 sees. 

u 

Fig. 11: Forced oscillations: I(t) = 108 exp [-2t2] 

In the following, the time interval (0,1) is considered. 
As a first step, an extended numerical simulation of the oscillator 
response, over the chosen time interval, was performed, by simulating 
2,500 sample responses. Pairs of values (u,O) were stored at given 
times (say t=0.1, 0.2, ••• , 1.0), and the instantaneous joint density 
functions are shown in Fig.s 12a, 12b, 12c for t= 0.1,0.3, 1.0 sec. 
respectively, by plotting points in the phase plane (u,O) corresponding 
to the instantaneous joint values of displacement and velocity that 
were recorded in the simulation. The correlation between the 
displacement and the velocity can be distinctly observed in the first 
instants, while it is clearly seen that the two quantities tend to 
become uncorrelated with elapsing the time. 
Next, the procedure previously outlined is implemented. A problem was 
soon encountered, relating to the numerical integration of the 
equations (109),(111),(112),(113),(114) in that it is expected that the 
second member in eq. (107), being a probability density function, 
should be a positive definite function. Since it derives from a time 
derivative, this is not necessarily so here, and positiveness can in 
fact only be guaranteed if 6t, the time lag in numerical integration of 
the differential equations, is sufficiently small (see [8]). 
As it can be seen, for the larger values of 6t, the updated JPDF does 
not remain positive. It is a lucky circumstance that for the time-lag 
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Fig.12: Instantaneous JPDF of (u,Q) in the phase space as 
recorded by digital simulation. 
a): t=O.lsec; b): t=0.3sec; c): t=l.Osec. 

6t = 0.001 - that is of the same order of the step that has proved 
efficient for the deterministic integration of the equation of the 
motion - this problem is definitely overcome. However, in performing 
the numerical integrations, positiveness must be kept under control, 
and the time-lag reduced as the problem is encountered. It is 
worthwhile to note, however, that there was only a little loss in the 
efficiency of the ·procedure, in the sample studies ·reported here. 

u 
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Finally, the evolution of the moments of the response {not to be 
confused with the parameters of the fundamental Gaussian ~u· ~u· ou. 
ou. Puu>. as calculated through the fundamental Gaussian after its 
parameters have been calculated through integration of eqs. {111} to 
(115}, is shown by the heavy lines in Fig.s 13a,13b,13c,13d,13e for the 
case of elastic impact (r=l}. A comparison is made with the evolution 
of the same quantities supplied by the simulation referred to in above, 
and plotted in the same diagrams as squares joined by dashed lines 

CAl 

T 

!Cl . S U 

T 

R(u,u) !El 

T 

Fig.13: Montecarlo versus calculated statistics: r=l. 
a): Expected displacement; 
b): Expected velocity; 
c): Standard deviation of displacement; 
d): Standard deviation of velocity; 
e): Coefficient of correlation of velocity 

and displacement. 

T 
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mu(t) = h(t) J~a J+mu N(u,a;t) du 
-co U* 

.U(tl • h(tl j:!do J+;(u,a;t) du 
U* 

s2u(t) = h(t) J~a J+ru - mu(t)]2 N(u,a;t) du 
-co U* 

s2.j(t) = h(t) 

Cuu<t> = h(t) 

j:Io- mU(t)] 2 dO 

j:Io- •U(t)] do 

J+;(u,a;t) du 
U* 

J+ru - mu(t)] N(u,a;t) du 
U* 

A. Baratta 

(117) 

It should be observed that only a few points are obtained from 
MonteCarlo simulation; so that the oscillatory character of the curves 
is partially lost in the plots derived from simulation; however, it is 
quite evident in the results relating to the approximate solution of 
the FPK. 
It can be seen that a reasonable agreement exists between simulation 

and theory. Thus, the numerical tests can be considered to be rather 
satisfactory, especially when one bears in mind that the procedure does 
not require sophisticated mathematics, and that calculations can be 
speedily performed, especially if analytical integrations are carried 
out, rather than numerical quadratures at every step of the solution 
procedure of the differential equations for the parameters of the 
fundamental Gaussian (for details, see [5]). 

5) CONCLUSIONS 

In this chapter, a technical approach to the FPK equation has been 
attempted, and an approx1mate procedure, nearly following the closure 
approach has been proposed and implemented for a number of possible non 
linearities in the restoring force. 
The approach seems to be rather efficient and possibly open to be 
generalized according to the following lines: 
i) Following the lines set in Sec. 3, it seems possible to set up a 
FPK-wise equation for a more general class of stochastic forcing 
functions, other than Gaussian shot-noise; 
ii) The extension to multi-degree of freedom systems seems quite 
straightforward; · 
111) Non-Gaussian closures seem possible, like partially attempted in 
sec. 5, thus opening the way to Galerkin-type procedures; a research 
effort shall be done to this aim; 
iv) Implementation to higher-order nonlinearities can be pursued by th~ 
introduction of the moment generatrix function. 
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Chapter 4 

COMPUTATIONAL ASPECTS IN 
CHAOTIC AND STOCHASTIC DYNAMICS 

F. Bontempi 
Polytechnic of Milan, Milan, Italy 

4.1 SOME INTRODUCTORY ASPECTS. 

The computational aspects of the study of chaotic and stochastic motion can be framed in that is 

presently know as numerical dynamics. With these two words, one defines the modelling, the 
simulation and the understanding of an evolutionary physical system by means of the computer. It 
is to stress that, by means of the simulation of the physical system through a computer experiment, 
one hopes to achieve a better understanding of the unknown and forbidden structures of the system 
(1, 2, 3, 4, 5, 6]. In this way the study of a dynamical system through the computer is sometimes 
similar to the classical experimental work. 
One reason of the increasing use of numerical dynamics is the complexity of the systems considered 
in engineering applications (7]. It results from 

• the nonlinearities intrinsic to the system; 

• the sensitivity to witial conditions; 

• the high number of dynamical degrees of freedom that the system shows. 

As a conseguence of the first item, the superposition principle is no longer valid and the use of a 
perturbation technique is quite inaccurate (8]. The second ground is characteristic of the chaotic 
systems, which are ill-posed in the Hadamard sense. The third ground is related to the formidable 
quantity of computations to be performed: it would be prohibitive to conduct them analytically. 

An important contribute to the development of numerical dynamics comes from the computer 
graphics [2, 9, 11]. It permits one: 

• to synthesize the large quantity of numerical data; 

• to recognize the spatial and temporal structures of the system behaviour and to observe its 
evolution. 
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4.1.1. INTRODUCING NUMERICAL DYNAMICS. 

One considers the evolutionary problem (see Equations (4) and (5) of Chapter 1) 

y = Q(y,t) (1) 

with the initial condition 

y(t=O)=b (2) 

For the mathematical definition of the problem one refers to (11, 12, 13, 14]: here one points out 
that Equation (1) with initial condition (2) define a dynamical system with n degrees offreedom 
, n being the number of components of the vector y (5, 15, 16]. 

In this work, one considers as example the Doffing oscillator, which is governed by the equation 

x + d · :i: + (x- x3 ) =A cos(t) + w(t) (3) 

in which t denotes the time and x is the posit.ion, :i: the velocity, and i: the acceleration of the 
oscillato.r of mass 1 and damping d (d = 0.185). The term (x- x3 ) represents the elastic non linear 
restoring force, while the forcing term consists in two parts, one (A cos(t)) harmonic with period 
TF = 2 · 11' and the other (w(t)) random, i.e. a Gaussian white noise with intensity u0 • With the 
positions x1 = x and x2 = :i:, one can rewrite the second order differential Equation (3) as the 
following non autonomous system of first order differential equations 

{ Xt = X2 

i2 = -d · x2- (xt - xf) +A cos(t) + w(t) (4) 

that has exactly the form of Equation (1), with 

(5) 

A natural way to represent the dynamical system of Equation (1) is to do it in the phase space 
S", that is an Euclidean space with number of dimension equals to the number n of the components 
of the vector y(t). In this manner, the point having as coordinates the components of the vector y 
is representative of the status of the system at instant t; the trajectory of the system is visualized 
by a line (t being a parameter). 

One can further imagine a collection of identically systems, each of them characterized by an index 
kas 

(6) 

with the collection of initial conditions 

(7) 
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One defines these systems a Gibbs set [17, 18, 19] related to the system of Equation (1). 
The Gibbs set can be interpreted in this way. Equation (1) defines, for different initial conditions 
(2), different trajectories in sn: they can be regarded as the trajectories of the particles of a fluid 
during its motion in a space that coincides with sn. In this way, Equation (6) represents the flux 
in sn: the top of Figure 1 shows the single trajectory for the Duffing oscillator with A = 0.3, 
whereas the bottom of the same figure shows several (100) trajectories all togheter. 

The set of the phase space sn to which the trajectory of the flux tends for t -+ +oo, are called 
attractors [10, 15, 16, 20, 21]. From a classical point of view, the attractors can be classified as: 

• fixed point, which corresponds to an equilibrium point; 

• limit cycle, which corresponds to a periodic motion; 

• torus, which corresponds to a quasi periodic motion. 

A furt.her class of attractors, can be recognized within chaotic dynamics [10, 22, 23]; it is the 

• strange at tractor. 

The at tractors of a system are strictly related to the stability of the system of Equation (1 ), because 
they define regions of the phase space in which the system tends to remain indefinitely, after an 
initial transient period. 
When the system is nonlinear, it can have a multiplicity of attract.ors: the attract.ors of a dynamical 
system are related with the potential energy of the system. Connected with the position of the 
at tractor and, hence of the shape of the potential energy function of the system, there is the shape 
of the probability density function p(y, t) (24, 25, 26]: this link prevents from assuming a uniform 
distribution even in the presence of a high intensity noise. 
It is to note that the classical attract.ors are classical geometrical objects (like points, lines and 
smooth surfaces). By contrast, for the strange attractor, one has unusual geometrical objects, the 
fractals [22]: their lack of smoothness can be regarded as a requirement for numerical methods of 
solution, some sort of smoothness always begin implicitely requested from analytical schemes. 

The starting point of numerical dynamics is the discretization in time of the problem of Equation 
(1). A disrretized version of the dynamical system, has the form: 

(8) 

in which the system is defined through a vector Yk at. each instant. tk, k = 1, .. /\. Equation (8) is a 
relationship (expressed by the approximate operator Q) between t.he vector Yk and the vector Yk+l 

at the subsequent instant tk+l· In the sense of numerical dynamics, one will no longer describe 
a physical system by mean of differential equations, as classically does, but by using just sets of 
computer instructions (or simply a computatwnal code). 

It is worth not.ing that 

• a source of noise is always present in the real world, and hence one always has random terms 
in Equation (1) and in Equation (8); 
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Figure 1: A single trajectory of the system in Equation (1) (top) and the corresponding flux defined 
by Equat.ion (6) (bott.om) (Duffing oscillat.or wit.h A = 0.3). 
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• the status of a real system can be measured only with finite precision: this imply a coarse­
graining in the space-time in which one locates the dynamical system. 

For any dynamical system, one can list the following steps of analysis 

qualitative analysis of the behaviour 

quantitat.ive analysis of the behaviour 

construction of the probability density of the behaviour 

This means: 

• to bound the region of the parameters of the system in which one can have irregular motion 
and to known the way by which ont- has the transition from regular to irregular motion and 
vice versa; 

• to give a probabilistic description of t.he motion of the system in the region of irrt-gular 
behaviour. 

4.2 BASIC TOOLS OF NUMERICAL DYNAMICS. 

4.2.1 NUMERICAL INTEGRATION OF ORDINARY DIFFERENTIAL EQUA­
TIONS. 
All the numerical techniqut'S for solving Equation ( 1) involve starting at the initial condition (2) 
and stepping along the t.ime axis [27, 28, 29, 30, 31, 32]. Therefore one needs the incremental form 
of the Equation ( 1), that. is 

dy = y. dt = Q(y. f). dt (9) 

from which, considering a time step At= tH1- t~.:, one obtains 

1'•+1 it•+• it•+• Yk+I - Yl- = dy = y · dt = Q(y, t) · dt 
I> I> '• 

(10) 

Rearranging Equation ( 10), ont- obtains 

1'•+• 
Yk+I = Yl- + Q(y, t) · dt 

'• 
(11) 

in which one sees that the nt-w value YHI of the status of the dynamical system of Equation (1) 
at time tk+i is obtained from t.he old vah1t- Yk at instant. t1.: adding a quantity resulting from a 
numerical integration proct'SS. This scheme is said with one-step, because it uses information from 
only one preceding point. (t~.:, Yl-) to estimate the next point (tk+i> YHl)· 
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Furthermore, comparing Equation ( 11) and the truncated Taylor series expansion of the solution 
around time tk 

(12) 

one can define the order of a method of integration as the highest power of the time increment dt 
included in this expansion. 

The Runge-Kutta methods. 

The general form of all Runge-Kutta methods [31, 33, 34] for advancing from time tk to time t~;+ 1 
is the follows: 

l:j:~ W; · K; 
Yk+l = Yk + '\'r 1 W· 

~j=O J 

{13) 

where Wj are constant weighting coefficients and r is the order of the method. The fourth order 
is used in this work : one has 

Yk+l = Yk + ~ · [ Ko + 2 · K1 + 2 · K2 + K3] (14) 

where Ko = Q(Yk, tk), K1 = Q(yk + t · Ko, tk + t ·At), K2 = Q(yk + t · K1, tk + t ·At), and 
K3 = Q(y~; + K2, tk +At). 
This kind of integration method is tipycal of physical-ma.t.hematical applications, while in engi­
neering applications one makes a prevalent use of other methods, as the Newmark method or the 
Finite Difference method [28, 29, 30, 32]. 

4.2.2 SIMULATION OF THE RANDOMNESS. 

The simulation of the real world needs a source of randomness, that is a series of random events 
(i.e. random numbers). 
The construction of a series of this kind can he made in principle, through the observation of 
natural random phenomena as the decay of some isotopes. In practice, one resorts some numerical 
subroutines, called random numbers generators [6, 7, 33, 34, 35, 36], capable to supply series 
of pseudorandom numbers (i.e. numbers that are not truly random, due to the determinism of 
the computer, which is a finite machine). The series are sequences of numbers, in which the 
subsequent one depends on the previous numher by a perfectly deterministic rule. All the numbers 
are therefore depending on the first one from which the generation starts: it is called the seed. 
Given the same seed, one realizes the same series of numbers. Furthermore, the series repeats itself 
after a period No related to the word length (i.e. the capacity to represent large integer numbers) 
of the computer. 
Among several alternatives [7], this section illustrates the linear congruence method, which 
has been adopted in all the reference examples. 
Numerically it consists of the following steps [33, 37, 38]: 

• one chooses two constants a and b (for example a= 9821 and b = 0.211322); 

• one chooses two seeds uo and vo (for example tto = 0.4 and v0 = 0.6); 
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• one computes two new numbers uk+l and V!·+l for k = 0, .. h using 

[a· 11k + b]mod[1] 

[a· vk + b]mod[1] 

In this way one has a series of real number 11k (or Vk) uniformly distributed in [0, 1]. 
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(15) 

To be sure that a series of pseudorandom numbers generated by some algorithm is sufficiently 
accurate, one must conduct some test of randomness. The dominant one has the following features: 

• subdivide the interval [0, 1] into Nbin intervals Bj, j = 1, .. Nbin, for which Uj=l,N••n Bj = [0, 1] 
and B; n Bj = 0, i i= j; 

• find the frequencies fs, that a number of the series is in the generic j-th interval; 

• compute the quantity 

(16) 

which is an indicator of the divergeJH'<' of the distribution of the frequencies from the uniform 
idealization (see Figure 2). 

The random number generator of Equation (15), can he regarded as a map (i.e. a transformation 
between points, i.e. vectors, of an Euclidean space) [9. 23, 39, 40] 

(17) 

the vector n,. being 

(18) 

1.e. a special form of dynamical system. 

The Wiener process defined in Chapter 2 has, among others, the property that for t > 0, 
E[(6. W/ 6.t)2] = (1'6/ 6-t, 6. Wf 6-t being a r-ero-mean normally distributed random variable. A 
Gaussian signal with a constant. power density spectrum, the White Noise w(t), is obtained as the 
forma.! derivative in time of t.h(' Wiener process (whose realizations however are not differentiable 
[7, 36]): 

w(t.) · dt = dW(t) (19) 

Numerically, an algorithm that simulates this process can therefore consist of the following steps 

• consider an increment of time 6-t for the evolution of the process; 
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Figure 2: Test of randomness by computing the class frequencies: the frequencies !B, of 5000, 
10000 and 50000 generated numbers grouped in 100 intervals over the range [0, 1] are given from 
the top to the bottom. 



Computational Aspects in Chaotic and Stochastic Dynamics 135 

• compute two new values of the random series tlk+l and tlk+l for k = 0, .. n. using the linear 
congruence generator; 

• compute the random number Rk+l for k = 0, .. h with 

(20) 

that supply a series of normally distributed numbers; 

• divide each Rk+t by -./Ki; the result is a sequence of independent Gaussian variables that 
can be regarded as Wiener process increments ..1.W/..1.t, u0 being 1; Equation {19) shows that 
this sequence can also be regarded as the realization of a white noise. 

In Figure 3, one sees the test for normality by grouping in 100 classes the number Rn. In Figure 4, a 
single realization of the Wiener process, the correspondent white noise, and the normal distribution 
of 1000 realization of the Wiener process are given from the top to the bottom. 

4.2.3 STUDY OF MANY TRAJECTORIES: THE GIBBS SET. 

Reconsider the collection of N dynamical systems of Equation (6) with the initial conditions of 
Equation (7). The size L of the Gibbs set in the phase space (which is EuClidean) can be defined 
either 

Lma.r(t) = .. max. .IIY(il - y<illl 
I,J=l,. N,•'I-J 

(21) 

or 

" (') ( ') L (t) - 6i,j:l, .. N;i'#j IIY I - y 1 II 
med - N. (N- 1) (22) 

where N is the number of system of the Gihhs se't and y(il is the representative vector of the i-th 
system in the phase space. 
It is to observe that through the collection of init.ial conditions of Equation (7), one can simulate 
the uncertainty about the true initial conditions of the system of Equation (1). Then, one can 
expect the following kinds of behaviour of t.he Gibbs set in time as illustrated in Figure 5. For a 
problem of classical kind, the size of the Gibbs set remains substantially the same. That means 
that the uncertainty about the location of the system remains constant. In the other cases of 
chaot.ic or stochastic dynamics, the size of t.he collection grows in time. That means that one loses 
information about the true st.at.us of the syst.em, when the init.ial status is uncertain. The idea is 
then to use the Gibbs set. and its motion to discover strangeness in the dynamics of the system 
and to compute the statistics of the response of the system. 

4.2.4 BIFURCATION DIAGRAMS. 

Consider Equation ( 1) rewritten as 

y = Q(y,t,p) (23) 

in which one has put in evidence the intcl'nal pal'ametel' J.l· The type of motion of the system 
can be altered as the numerical value of the parameter is changed: the passagge from one kind of 
motion to the other, is characterized by a singularity of the behaviour, that can be a bifurcation 
or, in general, a catastrophe (16, 21, 37, 38, 41, 42]. 
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Figure 3: Test of normality for the number Rn: from the top to the bottom, 5000,10000 and 50000 
numbers are generated. 
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Figure 4: A single realizzation of the ·wiener process and the correspondent white noise, together 
with the normal distribution coming from 1000 realizations. 
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Figure 5: Different behaviours of the Gibbs set in time for the Duffing oscillator: left, regular case 

(A= 0.3); right, irregular case (A= 0.18). 
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Figure 6: Bifurcation diagram of the Duffing oscillat.or: top, A in the range (0.0, 0.4), bottom, 
zoom for A in the range (0.26, 0.30). 
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In Figure 6 one studies the behaviour of the Duffing oscillator of Equation (3), the amplitude A 
of the harmonic force having been selected as parameter J-1· 
A bifurcation diagram, can be constructed in the following manner: 

• choose the parameter J-1, the influence of which must be studied, and a range IIJ = J-lmaz -Jlmin 

of this parameter; 

• locate NIJ + 1 values of the parameter J-1 in this range, for example J-lk = J-lmin + k · IIJ/NIJ, k = 
o, .. NIJ; 

• integrate for each value J-lk the equation of motion, i.e. Equation (23); 

• after an initial transient period, say Ttr, one put N, + 1 marks in a plane (J-1, Yi ), being 
Yi the j-th component of the vector y that defines the status of the system at time tn = 
Ttr + n · Tmap, n = 0, .. N,. The choice of the time interval Tmap is critical, because it 
determines the appearence of the diagram. In particular, in the presence of a periodic force 
of period Tp, a natural choice would be Tmap = Tp; the choice of N,, i.e. the choice of the 
length of the integrat.ion period, is related to the computational effort: it is always necessary 
to have N, 2:: 20 to be capable of recognizing an irregular behaviour; 

• repeat the previous two steps, for all the values J-lk. 

With this technique, one recognizes: 

• the kind of motion of the system, for a fixed value of the parameter J-1, namely: 

a stationary or a periodic motion is revealed by a single point; 

a quasiperiodic motion is revealed by many points, uniformly arranged; 

a chaotic or stochastic motion (i.e. an irregular behaviour) is revealed by many points, 
arranged in a disordered way. 

• the value of J-1 for which the system goes from one kind of motion to the other; this critical 
value of the parameter denotes the presence of a bifurcation or a catastrophe. 

One can point out some particularities of the chaotic behaviour through the analysis of Figure 6. 
The top of this figure, shows the bifurcation diagram of the Duffing oscillator for 11 = A in the 
range (0.0, 0.4). One recognizes in particular 

• a large region of irregular behaviour between A = 2.5 + 3.0, with some periodic windows 
(for example around A= 2.8); this mixing of aperiodic and periodic motion is typical of the 
chaotic behaviour; 

• a second region of irregularity, around A = 1.4; in fact also this region is chaotic, as one will 
see in the following by the evaluation of the Lyapunov exponents. 

The bottom of the Figure 6, zooms over the range (0.26, 0.30). 
In Figure 7, one sees the effects of the presence of white noise (with u0 = 0.1) on the diagram. 
It reveals a more diffuse distribution of points, and, in particular, it does not reveal the fractal 
structure of the previous figure. This is a general law: the noise breaks down the fractal structure of 
the pure chaotic motion. The presence of two large branches, for A < 1.2, is due to the presence of 
the two minima of the potential energy of the oscillator, which determines the associated at tractor. 
The bottom of Figure 7, shows how the periodic window disappears, due to the presence of noise. 
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Figure 7: Bifur\a t.ion diagram of the Duffing oscillator with white noise of intensity u0 = 0.1: top, 
A in t.he range (0.0, 0.1) , bottom, zoom for A in t.he range (0.26, 0.30). 
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4.2.5 THE POINCARE' SECTIONS. 

The observation of the behaviour of the system in Equation (1) is made on a continuous basis 
through its representation in the phase space S". One can also observe the system in a discontin­
uous way at the end of time intervals of duration Tmap· One obtains the status of the system at 
discrete instants of time t1c = Ttr + T.nap · k, k = 0, .. N., and the Poincare' section of the system 
in the phase space sn, as show in Figure 8. 
The aspect of a Poincare' section crucially depends on the choice of the instants of observation: as 
in the construction of the bifurcation diagram, when a periodic force is present, a convenient choice 
is Tmap = Tp, where Tp is the period of the force. When such a periodic term does not exist, the 
choice of the interval of sampling is not univocal, and the consequent look of the Poincare' section, 
can vary in a tremendous manner, as one can see in Figure (9). 

When one has discarded the transient, the distribution of the points representative of the motion 
of the dynamical system in Equation (1) is indicative of the kind of dynamics. 
With reference to Figure 10, one can in fact recognize that 

• a finite number of point~> in the Poincare' section means equilibrium, or periodic (or subhar­
monic) oscillations (a, b); 

• points arranged in a closed curve, denotes a quasiperiodic motion (c); 

• points arranged along a opened line, are characteristic of a chaotic motion that can be 
modelled with a unidimensional map [15, 10])(d); 

• points arranged in a fractal set, means a chaotic motion (e); 

• points arranged in a random distribution are typical of either a chaotic motion with small 
dissipation (at the limit hamilt.onian) or a stochastic motion (f). 

4.2.6 BASINS OF ATTRACTIONS. 

Another technique for the characterization of the hehaviour of the dynamical system of Equation 
(1) is obtained by the following procedure: 

• choose a subregion of the phase space in which the dynamic of the system occurs (for example, 
for the Duffing oscillator one choose a. rectangular zone in its phase plane); 

• superimpose a rectangular grid of Ngrid points on this region: each of the points ((i, j) given 
by a pair of values x;, Xj for the Duffing oscillator) can be thought as the initial condition 
for a single realization; 

• integrate the equation of motion of the system for each choice of the initial conditions, until 
a convenient instant of time 7in1; 

• mark the point of initial conditions in some way according to its status (for the Duffing 
oscillator, in black when x(T;.,t) > 0); 

• repeat the previous two steps, for all the points of the grid. 
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Figure 8: Observation of the dynamical system at fixed instant of time and construction of the 
Poincare' section (Duffing oscillator with A = 0.3). 
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Figure 11 : Basin of attraction for the unforced Duffing oscillator. 

In Figure 11, one sees the basin of attraction for the square of the phase plane with both x1 and 
x2 in the range (-2, 2) and Ngrid = 201 x 201 for the unforced Duffing oscillator . In this case, one 
has marked with a black pixel the point representative of the initial conditions of the oscillator 
when it leads to a positive displacement XI after a period of 16 · Tp; otherwise, one has a blank. 
This portrait appears regular, and it is clearly related to the shape of the energy of the oscillator 
and, hence, with the position of the two at.tractors. 
Introduce now the presence of a periodic excitation [16, 10, 23]. For the pure chaotic case with 
A = 0.3, one has the portrait of Figure 12: it appears very intricate, and the mixture of points 
that leads to a positive displacement and points that leads to a negative displacement is indicat.ive 
of the sensitivity to the initial conditions. Figure 13 shows the basin of attraction in the case of 
a pure stochastic motion, with uo = 0.1: this case reveals both the presence of the energy for the 
system and the sensitivity to the initial conditions. 

4.2.7 RECONSTRUCTION OF TilE PHASE SPACE. 

Assume that a single variable is measured for the dynamical system of Equation ( 1) at. inst.ant. of 
time tk =to+ k · !1T,, T, being the sampling period (for example, the time step of the numerical 
integration) 

{.:k},k = 1, .. /( (24) 

Let n be the number of degrees of freedom of the system. One can imagine to replace the true rep­
resentative vector of the stat. us of the system y, with anot.her vector z, always with n components, 
but obtained collecting the measured variable Zk at. different instant tk. each instant separated 
from the other by a time delay Tdelay = !1k · T,. The vector Zk is then 
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-2.00 X 2.00 

Figure 12: Basin of at.t.raction for t.he forced Duffing oscillator, with A= 0.3. 

-2.00 X 2.00 

Figure 13: Basin of attraction for t.he forced Duffing oscillator, with A= 0 and noise with uo = 0.1. 
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Zk 

Zk+Ak 

Zk = [ ,,.,..) (25) 
Zk+3·Ak 

Zk+(n-1) Ak 

where the measured variable Zk appear with the delay index 6-k. 
The apperance of the phase plane representation for the Duffing oscillator as the delay 6-k varies 
is represented in Figure 14. The choice of the time delay can be driven by the need of a hi univocal 
topological correspondence between the reconstructed phase space and the true representation 
[9, 23, 40]. 
In the reconstructed representation, one can find the tangent vector to the trajectory of the system 
by a finite difference scheme 

(26) 

4.3. QUANTITATIVE ASPECTS. 

4.3.1 THE LYAPUNOV EXPONENTS. 

The Lyapunov exponents are a measure of the sensitivity to initial conditions for a dynamical 
system [9, 15, 10, 23, 39, 43] (see Chapter 1). 
The numerical evaluation of the Lyapunov exponents differs, accordingly to the need of computing 
either all the exponents AJ ;:::: A2 ;:::: ... ;:::: An-I ;:::: An, or just their maximum (i.e. AI). For the 
evaluation of all the exponents, one needs the analytical knowledge of the equation of motion of 
the system and the relat.ed linearized equations, while the evaluation of the maximun exponent 
can be conducted on the basis of the knowledge of a unique time series extracted from the motion 
of the system (i.e. a single quantity that can he experimentally measured at a given time for a 
system however complex) [9, 44]. 

Numerical evaluation of all the Lyapunov exponents. 

Considers [44] a fiduciary trajectory in a pha.<;e space. 
The fiduciary traject.ory obeys to the equation of motion, that for the Duffing oscillat.or one rewrites 
here in the autonomous form as 

(27) 
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Figure 14: The appearence of the phase plane reconstruction for the Duffing oscillator, as the delay 
l'lk varies. 
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in which one has made the obvious position t = za, i.e. the time is explicitly considered as a 
further degree of freedom. 
Nearby points y +{ to the fiduciary trajectory y, obey the linearized equations of motions obtained 
through the Jacobian of the function Q(y): 

e=[~~]·e (28) 

Of course, the Jacobian matrix [~] depends on the values of y along the fiduciary trajectory. 
For the case of the Duffing oscillator (27), the Jacobian matrix has the form: 

( 
0 1 0 ) 

A= -(1- 3 · x?) -d -A· sin(xa) + w(xa) 
0 0 0 

(29) 

The evolution in time of a set of i = 1, n vectors{;, initially orthonormal, describes the deformations 
of the flux in the phase space of dimension n. One must then integrate: 

• the fiduciary trajectory (Eq. (27)); 

• the n trajectories related to the n axis of the linearized equations of motion (Eq. (28)). 

The vectors{;, tend as the time proceeds to collapse toward the one that grows faster, which is 
associated to the maximum Lyapunov exponent, as show in the top of Figure 15. 
To avoid this effect, and to avoid numerical overflow, one performs at each period Tr the Gram­
Schmidt renormalization [34, 44]: by this technique one pass from a set of n linearly independent 
vectors to a set of n orthonormally vectors. In this way, one computes the values of all the Lyapunov 
exponents as 

(30) 

The renormalization is showed in the bottom of the Figure 15, where Tr = Tr. 
The link between the Lyapunov exponent.s and the bifurcation diagram can be recognized com­
paring Figure 6 with Figure 16. In the latter one the Lyapunov exponent ~1 is a function of the 
amplitude A of the harmonic force on the Duffing oscillator. One recognizes that for a periodic 
motion, ~1 is negative, while for a chaotic situation, ~~ is positive. 

Numerical evaluation of the maximum positive Lyapunov exponent. 

To compute directly the maximum Lyapunov exponent ~~, some elementary considerations can be 
useful [23, 15, 44, 40]: 

• one considers the time series of Equation (24) of a single variable of the dynamical system 
of Equation (1). This series should be sufficiently long to be representative of the stationary 
motion over the attractor; 

• from this series, one reconstructs the phase space: so one has a vector series Zi: and a tangent 
vector series v~; at each time t~; (see Equation (26)); 



Computational Aspects in Chaotic and Stochastic Dynamics 

2.00DT------------------------------------------------------~ 

X 

... ·:\ . ·· ·· ··· ·· ··· · · ··· ··· .L ........... .... ......... ·· ··· ····· ·· ·· · 'L::oo ,,, ••.. , 

... ... ·· -. 
·: .. 

_t 
·· ··· ·~··· .. ... ········· 

......... .-: :.,., ...... ~ ·-·."· ·:::::: :· .. ...................... .. ..... . 
_.,:· 

.... ····· ··::·:: .... 
········· ... 

-2 .00+---~----~--~~--~----~---+----+----+----~--~ 
-2.00 X 2.00 

2. 00" 

.··.::?"" " ... " .. .... ""·~ ............................. " ...... .. ..... ·c:.:: :::,,, __ ·,.,_ 

...... 

X 

··.:·· .. 
. . .. . · ·: . .-: ... , ... ....... -:.·::.:::::· ·· .... ············ ···· · 

" 

··· ·:::::·:-' ... ··'' 
····· ·· ·· ·· ·· 

-2.00·+---~----~--~----~----~--~----~---+----+---~ 
-2.00 X 2.00 

151 

Figure 15: Evolution of tlw vt•d.ors {; for t.hr Ouffing oscillator: top, without renormalization, 
bot.t.om wit.h renormalizat.ion. 
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Figure 16: Lyapunov exponents At of the Duffing oscillat.or: top, A in the range (0.0, 0.4}; hot.tom, 
zoom for A in the range (0.26, 0.30). 
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• for any index i, i.e. for any time instant ti, one can find another index j so that 

(31) 

and that the tangent vectors v; and Vj to the trajectory in the phase space satisfy the relation 

(32) 

that means that the points of index i and j are sufficiently near and with almost the same 
tangent vector, i.e. the two situation of motion are similar; 

• after an interval of timeT, i.e. an increment of the index .6.i = r/Tdelay (Tdelay being, as 
previously defined, the delay time for the reconstructed phase space ) one obtains a pair 
(zi+.3.i, Zj+.3.;) from the initial points (z;, Zj ); assume that 

(33) 

then the following approximation of the exponent A1 is reached 

(34) 

• one repeats the previous steps N>. times, so that A1 can be approximed by the average 

(35) 

The technique appears straightforward, but it is necessary to underline some points. With reference 
to the top of Figure 17, one sees the fiduciary trajectory z(t) and the nearby trajectory, z(t), 
at distance d(t). After a period T, this distance becomes d(t + r), from which one obtains an 
approximation for A1 : 

AJ = ~·log, [d(t + r)J 
T " d(t) 

(36} 

This evaluation is correct. By contrast Equation (36) for the two points in the bottom of Figure 
17, does not lead to the right result .. In this case, in fact, the points belong to two acts of motion 
that. are not initially similar. This example shows the importance to use the limit value €y. 

A second remark regards the values of €m, fAf, and T. It is necessary to remember that an 
approximation of the maximum positive Lyapunov exponent will be obtained from the knowledge 
of a single time series (see Equation (24)). In particular, this series can be affected by noise, and 
it is necessary to choose the two points not. excessively close (i.e closer than €m), to avoid that 
random fluctuations affect the value of A1. On the other hand, one will measure the departure of 
two close points: then it is necessary to put an upper bound fM to the initial distance d : since 
the motion is always limited on the attractor, one cannot measure the local rate of divergence of 
the trajectories when they diverge to the size of the attractor. 
Generally, when one chooses the initial distance d too small, one overstimates the value of ..\1, while 
when d is choosen too large A1 is underest.imat.ed. 
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Figure 17: Choice of two nearby points to compute A1 . 
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The choice of r has a similar effect: when it is too small, one has the influence of small numerical 
errors (or noise) and then overstimates the value of the maximum Lyapunov exponent; when Tis 
too large, one understimates A1, since the motion is always constrained over the at tractor. 
One can indicate approximately the limit values of fm ~ 0.01 · L and fM ~ 0.10 · L, where L is 
the size of the attractor, measured for example by the Gibbs set approach (see Equation (21)). 
Furt.hermore, when d become greater than 0.2 · L, the approximation of A1 can become unreliable. 

4.3.2 PROBABILITY DENSITY, ENTROPY AND KOLMOGOROV ENTROPY. 

Some quantitative evaluation of the behaviour of a dynamical system can be obtained partitioning 
the phase space: this operation is conducted through a grid of boxes V;, i = 1, .. Nbo~~: of character­
istic size f, which is indicative of our capacity to measure the status of the system in the phase 
space [4, 21, 45). 
The numerical quantities extracted through the partition of the phase space are only approximated, 
and this approximation increases as the number of boxes increases. Of course the number Nbo:r of 
boxes used is clearly related to the computational effort. The region of the phase space which is 
actually partitioned is relat.ed with such computational considerations. Naturally, it is necessary to 
extend the partition at least beyond the point.s of the phase space visited from the system during 
its motion. 

The first elementary measure that. one can make is the number of boxes Nbo.r: which are visited or 
not. A more significant information that one can obtain is the probability 

p;(f) = f p(y, f). dV; (37) lv, 
/r finding the status of the system in the i-th box of volume V;. In this way one can consider 
systems with many attractors, with noise and with or without sensitivity to the initial conditions. 
Generally one has [37, 38]: 

• a reg11lar motion is charad.erizl'd hy a 6-Dirac like functions, i.e. singular funct.ions, 

• a chaotic/stochastic system is charactNized by a smooth probability function. 

The analysis of chaotic and stochastic systems, can therefore be conducted in the same way. It is 
worth noting that just the presence of high gradients (in theory oo) in the function p(y, t) leads to 
serious numerical difficulties in dealing with it. 

Related to the form of the probability density function there is a quantity that measures the 
disorder connected with the motion of the system. This quantity is the entropy of the system 
[10, 43). Mathematically, it. is defined as 

(38) 

where the sunun~tion covers all the visited boxes (i.e where p; f. 0) [15, 10, 23, 39]. It is clear 
that numerically this expression is rlependent on the discretization of the phase space. Again, this 
quantity is a function of t.he time, }>~cause the quantities p;(t) are continuously varying. in time. 
The average velocity of variation of·the entropy, is the Kolmogorov entropy [15, 10, 23] (see 
also Chapter 1) 
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I< = K(t) = {)J(t) 
{)t 
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(39) 

4.3.3 THE COMPUTATION OF THE KOLMOGOROV ENTROPY WITH THE 
RENORMALIZATION OF THE GIBBS SET. 

The technique for estimating the Kolmogorov entropy is conceptually the same for both systems 
with few degrees of freedom and systems with many degrees, but the programming aspects are 
different (17, 19, 20, 46, 47]. 

Few degrees of freedom. 

The algorithm to compute the Kolmogorov entropy consists of the following steps: 

• dispose the initial conditions of Equation (7) of the systems belonging to a Gibbs set in a 
restricted number of boxes within the phase space, around the representative point of the 
first of these systems (choose as fiduciary system); 

• evaluate the entropy Io in this initial configuration by Equation (38); 

• integrate the motion equations (Equation (6)); 

• after a period Tr, the Gibbs set is distributed over the partitioned phase space: compute the 
corresponding entropy It; 

• in the interval of time Tr, one has an increment of entropy AI = It - Io, and then the 
Kolmogorov entropy is estimated as f{ = AI/Tr; 

• realize the renormalizat.ion of the Gibbs set, disposing the systems of the Gibbs set in a small 
region around the position of the first fiduciary system; 

• repeat the previous five steps, for a number of times sufficiently to have an average value of 
the Kolmogorov entropy. 

Figure 18 shows the effects of the renormalization of the Gibbs set of the Duffing oscillator, with 
Tr = TF, i.e. at each period of the harmonic force. The choice of Tr depends on considerations 
similar to the ones made for the evaluation of the Lyapunov exponents: a too long Tr tends 
to understimates the Kolmogorov entropy, because, being the motion certainly limited over the 
at tractor, one exceeds the stationary value of the entropy and cannot measure the diffusion of the 
Gibbs set. 

Many degree of freedom 

In cases with a high number of degrees of freedom, one has the effort to partitioning a high 
dimensional phase space: when one has a space of n dimension and one has to partitioning a cube 
of side L, with boxes of side t, the number of boxes becomes 

(40) 

that, with the minimum choice of L/ t = 10, leads to Nbox ex: 10n. 
In this subsection a technique that is based on the renormalization of the Gibbs set, whose evolution 
is const.ructed from the knowledge of a single variable of the dynamical system, i.e. from Equation 
(24), is presented. One assigns a characteristic size t, and proceeds as follows: 
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Figure 18: Renormalizat.ions of the evolution of the Gibbs set: a set. of Duffing oscillators, renor­
malized after a period TF. 

• considers a reference point. with index i; 

• at instant t 1 , one considers a.ll the points j # i of the series in Equat.ion (24) that. are within 
the box of side c centered around the point i; these points j should be sufficiently far in time 
from the point i, i.e. should be i ~ j or i « j, because otherwise one considers points that 
are assumed during time by the reference point. The ensemble of these points forms a Gibbs 
set initially disposed in a unique box of side f, and with zero entropy. 

• one follows the evolution of the Gihhs set. until an instant t2, i.e. for a period of time 
ll.T = t 2 - t 1 , that is for an increment. of the index lli = ll.T/Tdelay sufficient to expand the 
Gibbs set. (but. t.he size of the Gihhs set. must remain lower than ~ 0.1 · L, being L the size 
of the att.ract.or); 

• at this point., one considers a local partitioning of the phase space: the number of boxes 
results 

[01-L]" 
Nbo.r ex -·-f__ =ex 2" (41) 

(and hence, if 11 = 5 one passes from 100000 to just 32 boxes). Then, one computes p;(t2) 
and I(t 2 ) with Equation (38). Tlw K-entropy during the interval of time t2 - t1 = ll.T is 

[\.OJ = I(t2) 
- t2- tl 

(42) 

• repeating the previous steps, along the evolution of the reference point, one obtains an 
approximation of](, averaging the values l\21· 

This algorithm is illustrated in Figure 19. 
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Figure 19: Renorrnalizations of the evolution of the Gibbs set from a single series. Tr = 0.1. Tp. 
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4.3.4 MEASURES OF THE DIMENSION OF THE ATTRACTOR. 
The previous measures of chaoticity and of stochasticity are dynamics, in the sense that they must 
be conducted during the integration of the Equation (1) for a single system or of the Equation (6) for 
the Gibbs set. Other kinds of quantitative measures of the degree of irregularity of the motion are 
the measure of the dimension of the attractor that. is underlying the motion [15, 21, 10, 22, 23, 45] 
(see also the Chapter 1). They are in some sense static, i.e they can be obtained separately from 
the integration of the motion. 
Considering a partitioned phase space with boxes of size f, one considers [10, 23, 45, 48]: 

the capacity dimension de: 

d I. log2 N(f) 
e = tm ,_o log2(1/f) (43) 

where N(f) is the number of non empty boxes; 

the dimension of information: 

(44) 

where I( f) is again the entropy connected with the distribution of the representative points of the 
dynamical system; 

the dimension of correlation: 

(45) 

where C(R) is the number of points of the trajectory of the system with distance a sampling point 
of the traject.ory itself lower than R. 

the dimension of Lyapunov (see Chapter 1 ): 

(46) 

where .X 1 2: .X 2: ... 2: .X, are the Lyapunov exponents, and j the index of the last Lyapunov 
exponents Aj for which :Li=l,j A; :::; 0. 
For the Duffing oscillator with harmonic force (A = 0.3) and with white noise (uo = 0.01), the 
Poincare' section of which is represented in Figure 20, one obtains de = 1.25, d1 = 1.52, da = 1.53, 
and d>. = 1.50. 
An important observation is related to the dimension of the phase space in which the motion devel­
ops itself. With a dissipative system of n degrees of freedom, after a transient, the motion occurs 
in a subspace of the n-dimensional phase space, ne being the dimension of this subspace. This 
subspace form the embedding phase space for the motion of the dynamical system. Knowing 
the dimension d of the attractor for the dynamical system, one has ne = int(d) + 1. 
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Figure 20: At.tract.or for A = 0.3 and O'o = 0.01 

4.4 NUMERICAL SOLUTION OF THE FOKKER-PLANCK 
EQUATION. 

For a system with two degrees of freedom, as the Duffing oscillator, the related Fokker-Planck 
equation can be written (see Chapter 1) (7, 24, 36, 43, 49] 

fJ 2 fJ 2 2 fJ2 

0~ = ~ t; fJy; [b;(t, y)p] + 1/2 t; t; fJy;fJyi [c;i(t, y)p] = 0 (47) 

The boundary conditions require that p(y1 , y2 I t) goes to zero as (yr + yn --+ +oo. Moreover the 
normalization condition 

(48) 

gives a sort of conservation equation for the prohability. 
The solution of the Fokker-Pianck equation is difficult for the following reasons [36, 50, 51, 52, 53, 
54, 55, 49): 

• when one consider a dynamical system governed by a vector y(t) with n components, one 
must solve a partial differential equation in a n dimensional space with dependence on time 
t. This is practically impossible for a system that. has more than few degrees of freedom ; 

• Equation (47) has a mixed hyperbolic-parabolic character: on the r.h.s. the terms with a first 
order derivative are connected with the hyperbolic character (i.e. convective character), while 
the terms with a second order derivative are related with the parabolic one (i.e. diffusive 
character). 
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Figure 21: Hyperbolic and parabolic character of the Fokker-Planck Equation. 

Figure 21 shows a probability density function and the effects on itself of the hyperbolic and 
parabolic character of the Fokker-Planck equation: in the first case the distribution moves 
with inalterated shape, while in the second, the shape is smoothed in time. 

4.4.1 SOLUTION WITH LOCAL DISCRETIZATIONS. 

For a bidimensional phase space, the Fokker-Pianck equation can be regarded as a particular case 
of the general form 

ap a a a2 a2 
- = --(Ap)- -(Bp) + -(Cp) + -(Dp) 
at ay1 ay2 ayr ay~ 

(49) 

with the known functions A(y1, Y2, t), B(y1, Y2, t), C(y1, Y2, t) e D(y1, Y2, t). The unknown function 
p(y1, Y2. t) must be estimatf'd in the domain rl of the phase plane (y1, Y2) shown in Figure 22. 
One superimposes over the domain n a rectangular grid of points (y1 ,i, Y2,j) and the time axis t is 
discretized through t!· = t 0 + k · Llt. In this way the spatial partial derivatives of Equation (49) in 
the point (y1,;, y2,j) at time t k can be approximed by the finite difference scheme 

4!· k Ak k 
·k _ • i+1,j · Pi+l,j- i-1,j · Pi-1,j 
Jl,,j-- 2h 

Bf.i+1 · P~.i+l- Bf,;-1 · P~,;-1 
2h 

Ck k 2 Ck k Ck k + i+1,j · Pi+!,i - · i,j · Pi,J + i-1,j · Pi-1,j 

h2 
Dk '+1 . pk '+I - 2. D~ . . p~. + D~. I . p~. 1 + !,] !,] '·1 •,J •,]- J,]-

h2 (50) 
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Figure 22: Domain n of integration in the phase plane of the Fokker-Planck Equation. 

where the indexes ( i, j) denote the points of the spatial grid and the apex k the time t~o. After 
some algebras, one writes 

(51) 

that is a system of ordinary differential equations, in terms of the unknown functions P~,j and of 
the timet. The problem of Equation (51) can be discretized along the time with a finite difference 
scheme, or by the Runge-Kutta method of the second order. This assures good stability properties 
and the same levels of accuracy of the solution in time as in space. At the end, one obtains an 
explicit scheme, which gives the values P~.JI given the P~.j. 
The boundary conditions are 

P~. = 0 •.J (52) 

for the grid points ( i, j) belonging to the boundary of the integration domain n in the phase space. 
To have the probability conservation, i.e. Equat.ion (48), one also imposes Equation (52) along a 
line of grid points inner the previous, as indicated in Figure 23, in order to have zero flux of density 
through the domain boundary. 
Figure 24 show the evolution in time of the probability density from an initial distribution. 

4.4.2 SOLUTION WITH INTEGRAL DISCRETIZATIONS. 

In this case, one thinks to expand the unknown function p(y!, Y2. t) through a truncated series 
of trial functions Pk(YI. Y2), functions only of the spatial coordinates (y1, y2), mult.iplicated by 
coefficients Pk(t), depending only on timet, as 

m 

P(Yl' Y2. t) = L P~c(t). Pk(Yl' Y2) (53) 
k=l 
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Figure 23: Points in which P?,j is set equal to zero, as boundary conditions of the discretized 
Fokker-Planck Equation. 

where m is the number of terms of the truncated series. In this manner, one has realized a 
separation of the space variables from the temporal variable. One convenient choice for the trial 
functions, are the B-spline functions illustrated in Figure 25. 
Substituting the expansion of Equation (53) in the Equation (49) one obtains 

(54) 

that is not in general identically satysfied. Introducing the notation 

< f,g >= L f·g ·dO (55) 

where 0 is the domain of integration of the Fokker-Planck Equation, one can at least imposes that 
the m equations 

. {) {) {)2 {)2 E P,.(t)· <Ph PI>= E P"(tJ· < - 8 (Apk)- a-<BPk) + 7f2(cpk) + 7f2(Dpk),p, > 
k=l,m ~'=l,m Y1 Y2 Y1 Y2 

(56) 
are satisfied, i.e. the integral residuals are zero. Having collected the m unknown function P~:(t) in 
the vector p = [P1(t), P2(t), ... Pm(t)jT, one can recognize a mass matrix M, the terms of which 
are 

Mk,l = L Pk(Yl, Y2). PI(Yl! Y2). dO (57) 

and results symmetric and time independent, and a stiffness matrix K, the terms of which 
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Figure 24: Evolution of the probability density function for the Duffing oscillator, with A = 0.3, 
O"o = 0.01. 
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Figure 25: Generic B-spline function for thr solution of the Fokker-Planck in the sense of weighted 
residuals. 

(58) 

are non symmetric and time dependent. Such a discretized Fokker-Planck equation, can be re­
garded as the evolutive problem 

M · p(t) = K(t) · p(t) (59) 

In this case, one obtains a solution of thP- same characteristics, by considering a lower number of 
unknowns, but one has to integrate numerically the matrix M and K, operation which can result 
very expensive . 
Figure 26 shows the solution of the Fokker-Planck Equation for the Duffing oscillator with A = 0.3, 
uo = 0.01 obtained with an expansion of 25 B-splines. 
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Chapter 5 

STOCHASTIC BEHAVIOUR OF SPECIAL MATERIALS: 

THE COMPOSITE MATERIAL 

A. Borri 

University of Florence, Florence, Italy 

5.1 - INTRODUCTION 

A composite material can be defined as a macroscopic combination of two or more 
distinct materials, having a recognizable interface between them. However, because they 
are usually used for their structure properties, composites are actually the materials that 
contain a reinforcement (such as fiber) supported by a binder material (matrix). Thus, 
composites typically have a discontinuous fiber that is stiffer and stronger than the 
continuos matrix phase. 

Fiber-reinforced composites contain reinforcements having lengths much greater than 
their cross-sectional dimensions. 

Laminar composites are fiber-reinforced materials composed of two (or more) layers 
with two of their dimensions being much larger than the third. 

Due to their characteristics, the laminated composite materials are affected by errors in 
material lay-up, ply orientation and degree of matrix curing; these uncertainties can 
produce great variations in the mechanical material properties [1]. So, the production 
processes in this type of material require a remarkable technological effort to avoid 
defects. 

These requirements become indeed more complex considering the high stresses that the 
fibre-reinforced composite materials need to withstand often only using very thin laminae. 
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Furthermore, the fibre ply of the material characterizes the behaviour of the lamina and of 
the structure; this can represent an additional complication in the production process in 
tacking care of the correct fibre alignment in parallel and in direction. Consequently, it is 
necessary to consider the random features of the mechanical behaviour of these materials 
by introducing randomness, arising from technical-productive uncertainties on some 
design parameters. 

The random variables introduced here will take into account the dual prerogative of 
appointing design parameters for achieving the decided properties of the material and an 
indirect measure of the presence of defects. 

Examples of these types of parameters are the fibre direction a and the volume percentage 
of the fibres V fin the lamina . 

The basic principles of the mechanical behaviour of the laminae are first investigated so 
that the most important destgn aspects (i.e. the parameters to which the design solutions 
seem to be more sensitive), will be pointed out. 

The defects which the technological process tries to avoid will be briefly dealt with. 
Afterwards, a first approach to a probability analysis will be suggested in order to 
characterize the mechanical behaviour of the lamina with regard to random design 
parameters. 

5.2- MACROMECHANICAL BEHAVIOUR OF LAMINAE 

A lamina of composite material is the flat or curve assemblage of fibres (carbon fibres, 
boron fibres, glass fibres, etc.) which have been dipped in a matrix (epoxy resin, polyimide 
resin, etc.): it is the basic element which makes up laminated fibre-reinforced composites. 

The knowledge of the mechanical behaviour of laminae is essential to analyze laminated 
fibre-reinforced composite structures. A linear elastic stress-strain relation is assumed as a 
basis to study this behaviour. 

To keep this chapter self-contained, Hooke's laws (both for anisothropic materials and 
for orthotropic ones) will be briefly recalled. Some constants (called 'engineering 
constants'), which are of common usage in technical practice, will be introduced in the 
relations which describe the behaviour of the composite since they be estimated by simple 
tests. 

These relations will refer in detail to the case of an orthotropic material under plane stress 
conditions: this is a typical situation for composite laminae. 



Stochastic Behaviour of Special Materials 173 

The previous relations will be firstly written in the principal orthotropic axes, then the 
transformation in an arbitrary axes will be examined. 

This transformation is useful for describing the lamina behaviour as the fibre disposition 
varies obtaining a general formulation for the stress-strain relation and determining the 
relation between the elastic constants and the fibre direction 0. 

The final aim of the procedure is to show the relations of the mechanical properties 
(described by the engineering constants), with the disposition of the lamina itself. Once 
these relations are known, it will be possible (e.g. by Monte Carlo simulation) to obtain 
probability density functions of the elastic characteristics. 

5.3 - CONSTITUTIVE RELATIONS 

The generalized Hooke's law which correlates stresses and strains in the case of an 
elastic three-dimensional continuum, can be written as: 

[a]= [c][e] (1) 

or: 

0"1 Cu C12 C13 C14 CIS C16 &I 

02 C21 C22 C23 C24 C2S C26 £2 

0"3 C3i C32 Cn C34 C3s C36 £3 
= 

't23 C41 C42 C43 C44 C4s C46 y23 (2) 
't31 Cs1 Cs2 Cs3 Cs4 Css Cs6 Y31 

't12 C61 C62 C63 C64 C6s C66 y12 

where a 1,a2,a3, .• are the stress components 

Cij are the components of the stiffness matrix 
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Given the symmetry of the [C] matrix (elasticity assumption) the total number of the 
independent elastic constants is reduced to 21. 

Since the stiffiless matrix is invertible, it is possible to write the strain components as: 

81 Sn S12 S13 S14 SIS S16 0"1 

82 S21 S22 S23 S24 S2s S26 0"2 

83 S31 S32 S33 S34 S3s S36 0"3 
= (3) 

'Y23 S41 S42 S43 S44 S4s S46 't23 

'Y31 Ss1 Ss2 Ss3 Ss4 Sss Ss6 't31 

'Yl2 S6J S62 S63 s~4 S6s S66 'tl2 

where [S] is the compliance matrix which has 21 independent constants. 

If two orthogonal planes of material characteristic symmetry exist, this symmetry will 
exist for a third plane which will be orthogonal to the previous two planes: the stress­
strain relation referred to axes normal to the symmetry planes can be thus written as 
follows [2]: 

0"1 Cu C12 C13 0 0 0 81 

0"2 C21 C22 C23 0 0 0 82 

0"3 C31 C32 C33 0 0 0 83 
= 

't23 0 0 0 C44 0 0 'Y23 (4) 

't31 0 0 0 0 Css 0 'Y 31 

't12 0 0 0 0 0 C66 'YI2 

which represents the constitutive relation for a linear elastic orthotropic material. 

It should be noted that there are 9 independent constants and that shear strains do not 
cause normal stresses just as shear stresses do not cause normal strains. 
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In the case of a bi-dimensional lamina on an x1-x2 plane (Fig. 1) loaded onto this plane, 
the plane stress state is as known obtained: 

(5) 

A plane state does not in general correspond to it since 

(6) 

is generally different from zero. 

Fig. 1 -Bi-dimensional lamina on an x1-x2 plane. 

For the lamina in linear elastic orthotropic material the strain-stress relation can be 
represented in this case as follows: 

£1 Sn S12 0 0"1 

£2 (7) 

with four independent Sjj. 

Both the stiffness matrix and the compliance matrix depend on the elastic characteristics 
of the material which can be expressed by several constants: Young moduli, Poisson 
coefficient, shear modulus and other 'engineering constants' which will be introduced in 
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the following. These constants can be evaluated by relatively simple tests, by applying 
known loading conditions and by measuring the resulting displacements and strains. 

The previous constants describe the mechanical behaviour of the lamina: in the next 
section one considers the effects of uncertainties which result from the presence of 
technological random defects in the production process. 

By introducing these constants, the compliance matrix for a linear elastic orthotropic 
lamina [2] can be written as: 

1 \)12 
0 

&1 E1 E1 0'1 
\)21 1 

0 (8) &2 0'2 
E2 E2 

'Y12 't12 
0 0 

Gl2 

where: 

E 1 and E2 are the Young moduli in the parallel and orthogonal direction to the 
fibres; 

Vij are Poisson coefficients for the transversal deformation in the j-th direction 
when it is stressed in the i-th direction, i.e. : 

Vij = - &j 1 &i when Ui = a and all other stresses are equal to zero. 

Gu is the shear modulus in the x1-x2 plane. 

It should be pointed out that there are 5 constants of which only 4 are independent 
since the following relation must be verified: 

(9) 

because ofthe symmetry of the compliance matrix. 
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Concerning the inverted (stress-strain) relation: 

<J1 Qn 

<J2 = Q21 

't12 0 

Q12 

Q22 

0 

£1 

£2 

y12 

it is possible to obtain the Qij coefficients: 

Q11 _ E1 

- 1- \)12 \)21 

Q22- E2 
- 1- \)12 \)21 

Q 12 = Q 21 = U12E2 = U21E1 
1- \)12 \)21 1- \)12 \)21 

Q66= G12 

177 

(10} 

(11) 

In order to generalize the problem with respect to the coordinate axes, it is useful to write 
the previous constitutive relations with regard to generic axes x and y. 

/ 

fibre direction // / 

~ y/ 

//x~Vx1/ 
/ \\ 

_, X / 

/ / 
/ / 

Fig. 2 - Generic reference (x-y) and principal orthotropic reference (xt-X2). 

The transformation laws for the stress components and the strain components, for a 

change of reference system, is linked to a "transformation " matrix: 
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-2 sinO cosO 

I L I= sin20 cos20 2 sinO cosO 
sinO cosO -sinO cosO cos20- sin20 

by means of which the following can be written: 

O's 0'1 

O';y = I L I 0'2 

'ts;y 'til 

By introducing the matrix [R]: 

1 0 0 

IRI= 0 1 0 
0 0 2 

one can write: 

& 

6r = IRIILI 
y~ 

El 

El 
y12 
2 

Substituting in eq. (13), one obtains: 

O's & 

O';y =IQI 6r 

'ts;y y~ 

where 

I Q I = I L II Q II RIILI"I IRI"I 

A. Borri 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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is the stifihess matrix for linear elastic orthotropic lamina. It is referred to arbitrary axes, 
with components which in general will be non zero. Only four elements are mutually 
independent, but in general non null relations exist between normal stresses and shear 
strains just like between shear stresses and normal strains. 

For this reason, the lamina seems to behave like an anisothropic material in the x andy 
directions. These laminae are defined 11generally orthotropic11 ; the constitutive relation is 
similar to that of a linear elastic anisothropic lamina: 

a a Qn Q12 Q16 £a 

a,. = Q12 Q22 Q26 £,. 

'tay Q16 Q26 Q66 'YKY 

where, in this case, from eqs. (17) one finds: 

Q 11 = Qu cos49 + 2 ( Q12 + 2 Q66) sin 29 cos29 + Qn sin 49 

Q12 = ( Qu +Qn - 4 Q66) sin29 co~O+Q12 (sin 49+ cos49) 

Qn = Qu sin 49 + 2 ( Q12 + 2 Q66) sin 29 cos29 + Q22 cos49 

Q16 = ( Qu - Q12 - 2 Q66 ) sin 9 co~O + ( Q12 - Qn - 2 Q66 ) sin 3 9 cos 9 
Q26 = ( Qu -Q12 - 2 Q66) sin3 9 cosO+ ( Q12 -Q22 - 2 Q66) sin 9 cos3 9 

Q66 = ( Qu +Qn - 2 Q12 - 2 Q66) sin29 cos29+Q66 (sin49+ cos49) 

By inverting the eqs. (18), it turns out: 

& Sn S12 S16 a a 

£,. = S12 S22 S26 a,. 

'YKY S16 S26 S66 't&)' 

where 

(18) 

(19) 

(20) 
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Sn = Su cos4 0 + ( 2 S12 + S66) sin2 0 cos2 0 + Sn sin4 0 

S12= ( Su +S22- S66) sin20 cos20 + S12 (sin4 0 + cos4 0) 

S22 = Su sin4 0 + ( 2 S12 + S66) sin20 cos20 + S22 cos4 0 

S16 = ( 2 Sn- 2 S12- S66) sin 0 cos30- ( 2 S22- 2 S12- S66) sin3 0 cosO 

S26 = (2 Su- 2 S12- S66) sin3 0 cosO- (2 S22- 2 S12- S66) sin 0 cos3 0 

S66 = 2 ( 2 Sn+ 2 Sn- 4 S12- S66) sin20 cos20 + S66 (sin4 0 + cos4 0) 

A. Borri 

(21) 

Introduce now the engineering constants TJiji and TJij,i (i=x,y; j=x,y) known as 
"Lekhinski's mutually influenced coefficients". They are defined as follows: 

TJi,ij is the coefficient of mutual influence which describes the stretching in i-th direction 
caused by the shear in the i-j plane, evaluated as: 

TJi,ij = £i I 'Yij when 'tij= 't and the other stresses are zero; 

TJij,i is the coefficient of mutual influence, which characterizes the shearing in the i-j plane 
caused by a normal stress in the i-th direction, evaluated as: 

TJij,i = 'Yij 1 £i when Oj = cr and all other stresses are zero. 

It is possible to write: 

Su=-1 
Ex 

SI2 =- \)xy =- \)yx 
E. Ey 

S22 =-1 
Er 

S16 = TJ>y,x = T'Jxx,y 
E. Gxy 

S26 = T'Jxy.y = TJy.xy 
Ey Gxy 

- 1 
S66=­

Gxy 

(22) 
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Considering the eqs. (21), (22) and (8))t results: 

- 1-=_Lcos4 8+ [ - 1-- 2u 12 ] siniecos28+-1 sin48 
Ex E1 G12 EI E2 

\hy =Ex [.!ill. (sin 48 + cos4 8)- ( _L +-1 - - 1-) sin28cos2 e] EI EI E2 G12 

11IY.• =E.[( _1._ + 2u12 --1-) sin 8 cos3 8- ( l + 2u12 --1-) sin3 8 case] EJ EI G12 E2 El Gl2 (23) 

- 1-=_Lsin4 8+ (-1-- 2u 12 ) sin28cos28+-1 cos4 8 
Ey El G!2 EI E2 

'lliY·Y = Ey[ ( _1._ + 2Ull --1-) sin3 Sease- ( l + 2Ul2 --1-) sin 8cos3 e] 
EI El GI2 E2 El G12 

_1_ = 2 ( _1._ +_f_+ 4Uil __ 1_) sin2 8COS2 8+-1-( Sin4 8+COS4 8) 
Gxy E1 E2 E1 G12 G12 

where x1 and x2 are the principal orthotropic directions afthe lamina and x andy are the 
arbitrary reference system (for which the lamina seems to be anisothropic). 

As shown, the elastic parameters in the x and y reference depend on the orthotropic 
elastic parameters in the XI and x2 directions, and on the 8 angle along which the fibres 
are plied. For this reason, the possible uncertainties in the fibre direction (therefore in the 
design parameter 8) involves uncertainties in the elastic characteristics of the material in 
the reference system x and y. 

Figures 3a and 3b show the relations for two different types of composite laminae 
(graphite-epoxy and E-glass-epoxy): the maximum and minimum values of the Ex/E2 
ratio is obtained of course for 8=0° and 8=90° respectively; Gxy/G12 reaches the 
maximum value for 8=45° whereas vxy takes on the maximum value for 8 in the 20°-30° 
interval. 

Indeed in eqs. (23), not only the variable 8 presents a random nature but also its elastic 
characteristics along the principal orthotropic directions have uncertainties due to the 
technological defects. The elastic characteristics E1, E2, G12 and v12 come directly from 
the characteristics of the lamina components (fibre and matrix), and from the volume 
percentage of these components. 

To analyze these aspects, the problem has to be faced from a micromechanical point of 
v1ew. 

The elastic characteristics will generally depend on the material, on its components and 
the volume percentages in which they are present. 
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Figs. 3 - Relations between elastic characteristics and 9 for two different types of 
composite laminae: a) graphite-epoxy; b) E-glass-epoxy. 
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Therefore, in general, it is possible to write: 

Ei = Ei (Er,ur,Vr,Em,Um,Vm) 

El = El (Er,ur,Vr,Em,um, Vm) 

Gil= Gil (Er,ur,Vr,Em,Um,Vm) 

Uil = Ull (Er,ur,Vr,Em,Um,Vm) 

where: 

Ef is the Young modulus of the fibre (considered as an isothropic material); 

vf is Poisson coefficient of the fibre (considered as an isothropic material); 

V f is the volume percentage of the fibre in the lamina; 

Em, Vm, V m have similar meaning regarding the matrix. 

As regards these relations, the following ones are semi-empiric relations [2]: 

E1 = Vr Er+ VmEm 

El= ErEm 
VmEr+VrEm 

G= Gm 
Vm+VrGm 

Gr 
U!l = Um Vm+urVr 

Other relations deriving from an analytical approach are in [3]. 
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(24) 

(25) 

The basic assumptions are as follows: 1) the laminae under study are macroscopically 
homogenous, isothropic, linearly elastic, and free from initial stresses; 2) parallelism and 
uniform fibre distribution are assumed. 

Relations (25) supplies the elastic characteristics of the lamina related to the fibre and the 
matrix characteristics and their volume percentage. 

The volume percentage of the fibre V r, influential on the elastic characteristics of the 
lamina, can be assumed as an indirect size of defectiveness, thus characterizing, as will be 
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shown in the next section, "undesired" aspects in the distribution of the fibre in the 
material. 

Such a design parameter is therefore affected with uncertainties since it is linked to the 
inherent defectiveness in the production process; it is therefore appropriate to examine the 
consequences on the mechanical behaviour of the lamina. 

5.4- RANDOM CHARACTERIZATION OF LAMINATED 
COMPOSITE MATERIAL 

The peculiar nature of the laminated composite material presents remarkable operative 
difficulties in the realization so that the behaviour of the laminated can be highly 
influenced by the technological process defects. 

Current knowledge indicates that many of the defects that occur are caused by errors in 
manufacturing, design errors and anomalous service conditions [1]. 

Typically, the occurrence of defective or anomalous conditions is controlled and 
prevented by manufacturing controls and material inspection testing imposed during the 
fabrication process; however, because absolute control and inspection is generally 
economically infeasible and because human errors do occur, these control and inspection 
methods sometimes allow occasional errors. 

Other errors can happen in the operation of fabrication. Fiber reinforced composites are 
usually fabricated by laminated together and curing multiple plies impregnated with 
matrix resin. Because each of the individual plies involved in a laminated composite has 
highly anisotropic properties, its placement and orientation can be critical in achieving 
the desired engineering properties. This is particularly true for composites in which each 
individual ply constitutes a significant percentage of the total laminate, that is, thin gage 
structures. 

For thermosetting matrices, either improper amounts of the two resin components or the 
inadequate application of heat during curing . can produce condition of undercure. 
Sometimes, these conditions can significantly degrade the properties of the matrix. 
Similarly, inadequate compaction during the lamination process can result in extensive 
porosity and reduction in material strength and durability. 

Composite materials are somewhat in that both the fundamental properties of the 
material and the configuration of the component to be fabricated are subject to design. 
Correspondingly, design errors can be made at both the materials and structural levels of 
design. Engineering errors related to the material may include a variety of problems. The 
more common of these include errors in analyzing the effect of individual ply 
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anisotropies or the inadequate assessment of material damage and environmental 
sensitivities. 

In fact, failures can be caused by inadequate understanding of environmental sensitivities, 
the effects of damage, or the fatigue sensitivity of the material used. Because the 
properties of composites depend upon their ply or fiber orientation and stacking 
sequences, the sensitivity of each design may vary significantly, posing a potential 
problem for design. 

The engineering properties of composites can be significantly reduced by variations in 
temperature, foreign object impact damage, and, with some resin system, chemical 
attack. 

Many statistical aspects and random characterization of the laminated composite 
strength are present in the literature. Some references are indicated in the following. 

Single fiber strengths are often modeled by a two-parameter Weibull distribution [4]. An 
example of a Weibull distribution that accurately models the strength data for aramid 
filaments tested at a single gage length is presented in [5]. S. L. Phoenix and coworkers 
have discussed much of the work relating the probability distribution of the strength of 
multifiber assemblies or composites to the distribution of fiber strengths [4-9]. 

In the following, will be analyzed the random characterization of the elastic parameters 
(and of the engineering constants), previously considered, with particular regard to the 
single lamina. 

S.S- RANDOM CHARACTERIZATION OF THE ELASTIC 
PROPERTIES OF THE LAMINA 

The defects related to the technological processes, for the aim of this work, can be 
summarized as follows: 

a) interlamina voids, due to the presence of air or foreign material~ 
b) excess of resin~ 
c) porosity of the matrix~ 
d) incorrect orientation of the fibres~ 
e) damaged fibres; 
f) variation in thickness. 

These defects cause variations in the behaviour of the lamina and in particular how they 
affect the elastic and geometrical properties of the lamina itself. 
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Eqs. (23) show, as it has been observed, how the elastic characteristics of the lamina in 
x,y direction depend on the elastic characteristics in the principal orthotropic axes of the 
lamina and on the fibre orientation; assuming the variable 9 no longer as a deterministic 
parameter but as a random variable, one can investigate what the consequences would be 
on the Ex, Ey. Gxy, Vxy, 1lxy,x, TJxy,y characteristics. 

In order to examine this problem, it is assumed that the defectiveness regarding the fibre 
direction be represented by a Gaussian distribution of the variable 9 centered at an 
expected value a and with dispersion defined by a standard deviation oe. 

f(9) 

a 9 
Fig.4 - Gaussian distribution (a ,oe) assumed for 9. 

Thus known this distribution (a ,09), it is possible to obtain the probability density 
functions of the elastic characteristics by means of Monte Carlo simulation. 

The resulting type of probability density functions will depend very much on the assumed 
value of the expected value a since as previously seen the elastic characteristics vary 
greatly in a interval around 9=0° rather than for 9=45°. 

Figures 5a and 5b show the numerical results of the simulations, with the "experimental" 
probability density functions ofExiE2 for a=oo and for a=45° (with oe =2°) in the 
case ofE-glass-epoxy composite material. Can be noted that more dispersion of ExiE2 is 
obviously obtained in the case of higher variability (a =0\ 

Furthermore, since ExiE2 has an absolute maximum: (Ex/E2)max for 9=0°. the probability 
density function in the a =0° case results in having non nu11 value only for ExiE2 < 
Ex/E2)max. 



Stochastic Behaviour of Special Materials 187 

0.35 

0.3 

a) 
0.25 

0.2 

0.15 

0.1 

0.05 

I I 

I I ! 
I 

I 
I I 

l I I 1 I 
l 1 I I I 

I I 
I I i I I I I 

i 
I 

I I 
I 

I 

I 
I I I 

i i I I I l 

I I 
I I I I 

I 
I 

! 
i 

I I ___ , I I I ---tt-I I 

I 
I ; I 

I 
i I I ,/ 

I I I /-·· 
I 

___.. I I 

I I I I ,,-/ 1 
I ,.../ I 

i .-----+____....-I I 
~ . -

2. 3 24 25 26 27 2.8 2.9 f 3 

b) 
5 

I , . 
/ I \ 

----'·--.--l-

1 I ! \ 
I I I \ 

./ ; \ i -- ;......___. --. ___ . ..\.:.. 

4 

3 
1 I I 

Figs. 5- Probability density functions ofEx/Ez: a) 0=0°, ae =2°; b) 0=45° ,ae =2°. 



188 A. Borri 

Consequently the probability density function of Ex/E2 has a mean value which is less 
than (ExiE2)max, value of ExiE2 corresponding to 9=0° in the deterministic case: then 
lower performances are expected due to the uncertainties regarding technological defects. 

This observation is not obvious a priori since randomness of the design variables does not 
necessarily imply a lower quality of the desired structural performances; it derives from 
the choice of the design parameter 9 corresponding to a maximum value solution. 

This aspect should not be neglected since laminae in fibre-reinforced composite often 
represent optimized structures that are generally designed according to preferential 
directions aimed at improving structural performances: the structural field is often by 9 
values, to which stress or strain maxima (or minima) correspond. 

In other words, good use of these laminae often requires placing them in an 'optimal' 
orientation, with 9 values to which correspond the maximization of structural 
performances. 

Similar considerations hold true for the other elastic parameters; for example, Figs. 6a and 
6b show probability density functions for Gxy/G12-

In fact, in eqs. (23) even the elastic characteristics of the lamina, as seen in eqs. (24), are 
random variables due to construction defects; the elastic characteristics in the principal 
orthotropic direction depend directly on the elastic characteristics of the comprising 
materials (fibre and matrix), but also on their volume percentage. 

The design parameter V£ fibre percentage in volume, is the volume ratio among the 
lamina components and, as clearly seen, is influenced by some of the above mentioned 
uncertainties (as in cases a,b,c and f). 

By assuming a Gaussian distribution of V f centered on V r with dispersion Of and for 9 
the previously used distribution, by means eqs. (25) and Monte Carlo simulation, it is 
possible to obtain the distributions (Figs. 7 a and 7b) of the. elastic characteristics in the 
principal orthotropic directions and also of the elastic characteristics according to the 
arbitrary x,y axes. 

It is interesting to note (comparing Figs. 7 with the previous Figs. 5) that introducing the 
randomness of the parameter V f increases what the randomness of 9 had already 
produced. 

Furthermore can be observed that this dispersion depends also on the ratio between the 
elastic parameters of fibre and matrix: by increasing the Ef/Em ratio, a higher value is 
consequently obtained for E1/E2 (see eqs. (25)) and therefore a higher sensitivity of the 
Ex/E2 ratio. 
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The following examples quantify the influence of the uncertainties so far considered on 
some parameters of structural response. 

5.6- FIRST NUMERICAL EXAMPLE: A SIMPLE LAMINA 

In the analysis described in the previous sections the response of an orthotropic lamina in 
fibre-reinforced material has been characterized with respect to the randomness of some 
design parameters such as the volume percentage of the fibre, Vf , and the fibre 
disposition a, evidencing that such randomness result negatively in the design solution 
(that is, it becomes a real "defect") if the design choice was centered upon an optimum. 

The principle of the analysis was to consider the elastic characteristics of the lamina to 
which the structural responses in terms of displacement are closely linked. 

In the following example a rectangular lamina in fibre-reinforced material will be 
examined (Fig. 8); by introducing for Vr and a parameters a random type of 
characterization the effects on the displacement state will be determined. 

The analysed material is E-glass for the fibres and epoxy-resin for the matrix. 

p 

Fig.8 - Lamina loaded by uniformly pressure (E-glass-epoxy composite material). 
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The analyzed model is loading by an uniformly distributed pressure along one side, while 
the other is perfectly bound. 

Fig. 9 shows the deterministic type of response in terms of the maximum displacement 
ux of the free edges of the structure under study. This function, obtained by means of a 
series of structural analysis, shows a non increasing monotonous trend with respect to 
the volume percentage V f and takes on a local minimum for 9=00 for: whatever value of 
v f. It is obvious that the function trend Ux is a direct result of the Ex variation (Young 
modulus in x direction) as the considered parameters vary. 

e 

Fig. 9- "Deterministic" relation between ux and the design parameters 9 and Yr. 

As previously, assuming a random distribution for 9 with expected value at 0 =0°, and 
standard deviation oe =2°, and for the volume percentage Vf a distribution with 
expected value Vr=0.4 and standard deviation CJVF.01, the probability density function 
ofux (Fig. 10} is obtained by numerical simulation using a Monte Carlo technique. 

The structural response is therefore again "worsened" due to the randomness that 
characterize the design variables since the expected value of the ux function is greater 
than the deterministic value for a=oo and Vf=0.4 (ux = 15.96 mm). 
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Fig. 10- Probability density function ofux (0=0°, ae =2°; Vr=0.4, avt=.Ol). 

It is interesting to note the effects the randomness have on the ux response with respect 
to the two different parameters Vr and 9 . 

If only the fibre orientation 9 is considered as a random variable, it can be seen that once 

the value 0 =0° is chosen (optimal value for Ux in the deterministic case which 
corresponds ux = ux min= 15.96 mrn ), the probability density function ofux is the one 
shown in Fig. lla where ux min is the lower limited value. Therefore the expected value 
ux will be always greater than ux min. 
Hy considering only V f as random, a distribution of the kind reported in Fig.llb 
(because of the monotonic nature of the relation ux=ux(V r) ) is obtained that is the more 
scattered as greater the Vfdispersion will be. 

The previous distributions are two limits of behaviour: the ux distribution locates 
between them when both 9 and V f are random. It is possible to note that such 
distribution will tend to one or the other depending on the design variable dispersion: 
Fig. 12a shows that if there is a "small" dispersion ofVr the probability density function 
of ux will tend to a distribution closer to the one in fig.ll a, and vice-versa (Fig. 12b ), if 
the dispersion of9 is "small", a probability density function will be closer to the one in 
fig. llb. 
Note also that the lower limit and the expected value ofux in Fig. 12a decrease for avr 
increasing: a "better" response is expected because of the greater uncertainties of V f. In 
fact higher dispersion ofVfmeans higher probability values ofVf>0.4 which correspond 
lower values ofux. 
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5. 7- SECOND NUMERICAL EXAMPLE: A REINFORCED-HOLE 
LAMINATED STRUCTURE 

In order to complete this topic, it is interesting to examine how the previous 
considerations hold up with respect to the response of a structure in laminated fib~: 
reinforced composite material. 

The structure under study (Fig. 13), is characterized by the presence of a reinforced hole 
and subjected to a uniformly distributed pressure in the x direction. 

The structure consists of five stacked fibre-reinforced laminae having equal thickness 
and characteristics, and assembled with cross-ply sequence oo/900fOOf900fOO. 

The package disposition is assumed to be different for the three area indicated in Fig. 13: 
area 1 is adjacent to the end with the load, area 2 is around the hole and area 3 is the 
reinforced part. 

The material considered here is E-glass for the fibres and epoxy-resin for the matrix. For 
the symmetry, a fourth of the structure has been considered for the analysis. 

The maximum displacement in x direction ,ux of the loaded edge was taken as the 
parameter of the response that characterizes the structural behaviour. 

As in the previous section, the link between the function Ux and 0 and Vf can be 
obtained by means of a series of structural analyses (fig.14). This relation is of the non­
increasing monotonous type with respect to V f and has a local minimum corresponding 
to 0=0° for the reinforced part and 0=22.5° for the first and second area. 

These values result to be the design choices for the production phase of the panel, in an 
optimal deterministic type of design. 

Following the procedure used above, it is possible to introduce the uncertainties in 9 and 
Vr, and examining their effects on ux by Monte Carlo simulation. The resulting 
probability density function ux are reported in fig. 15. 
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3.8 

Also in this case it is interesting to note the effects the randomness have on the Ux 
response with respect to the two different parameters Vr and a. 

If only the fibre orientation a is considered as a random variable, it can be seen that once 
the value 0=22.5° is chosen (optimal value for Ux in the deterministic case which 
corresponds ux = ux min ), the probability density function for Ux is the one shown in 
Fig. 16a where ux min is the lower limited value. Therefore the expected value Ux will be 
always greater than ux min. 

The Fig.16b shows the distribution of ux when only V f as random. This kind of 
distribution is due to the monotonic nature of the relation ux=ux(V r); it is the more 
scattered as greater the dispersion of V f will be. 

The previous distributions are the extreme limits of the ux distribution when both a and 
V f are random. Such distribution will tend to one or the other depending on the design 
variable dispersion: Fig. 17a shows that when the standard deviation ofVftends to zero, 
the probability density function of ux will tend to a distribution similar to the one in 
fig.l6a, and vice-versa (Fig. 17b ), when the standard deviation of a tends to zero, a 
probability density function will be similar to the one in fig. 16b. 

3.9 
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From Fig. 17b it is possible to note that the effect of ae dispersion is qualitatively similar 
to the previous case (simple lamina) but quantitatively less significant: this is due to the 
fact that the lamina packaging with the 00/90°/00/900/0° sequence decreases the ratio 
between the Young modulus in the fibre direction and the Young modulus in the 
transversal direction. 

5.8 - CONCLUSIONS 

For structures in composite material characterized by fibre-reinforced laminae assembled 
in flat or curve shells, the structural response under deterministic design parameters 
often presents non monotonous relations, with local minima for certain fibre dispositions. 

The optimal design of these structures can be influenced negatively by the randomness of 
the design variables like 0 (fibre orientation) or Vf (volume percentage of fibre); the 
expected value of the structural response can be found in fact in a worse position from 
the optimal condition in the deterministic sense. 

The lamina characterization regarding the V f presents a more dispersed probability 
density function for the design response the greater sensitivity of the lamina to this 
design aspect; in general, this sensitivity increases as the volume percentage of the fibre 
increases. 
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Chapter 6 

RESPONSE OF LINEAR AND NON-LINEAR STRUCTURAL SYSTEMS 
UNDER GAUSSIAN OR NON-GAUSSIAN FILTERED INPUT 

G. Muscolino 
University of Messina, Messina, Italy 

1 INTRODUCTION. 

Many types of loadings acting on engineering structures possess random and dynamic charac­
teristics. Even though the study of random vibration, using the concepts of stochastic process 

theory, is a relatively new engineering discipline, interest in this field has grown rapidly in the last 
few decades. The result is a very extensive literature. However, while in the random vibration of 
linear structures there are now several papers which cover both theoretical and practical aspects and 
a number of text-books which give a good overview of the subject [ 1-4] is available, the study of 
structures which present non-linearities is more recent and exact solutions are available for few 
special cases only. Furthermore, while a comprehensive linear theory exists, no correspondent 
general theoretical framework for non-linear problems has been formulated due to the complexity of 
these problems. 
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The most commonly method used to calculate the response of weakly non-linear systems is the 
statistical or equivalent linearization method [5]. The main idea of this method, which actually 
requires relatively little numerical efforts, is to evaluate the Gaussian response properties of an 
equivalent linear system. However, it becomes immediately apparent that this methods gives 
accurate results especially for weakly non-linear systems. 
An other method used for sufficiently small non-linearities is the perturbation method [6], the basic 
idea of this method is to expand the solution of the non-linear set of equations in terms of a small 
scaling parameter which characterizes the magnitude of the non-linear terms. This method is not 
very extensively used for the poor convergence properties and excessive computational 

requirements in several cases. 
More general methods which give more accurate results are the methods based on the non-Gaussian 
closures. The basic idea of these methods is to assume the non-Gaussian probability density 

function of the response of non-linear systems as a series expansion with adjustable parameters of a 
Gaussian probability density function. The adjustable parameters depend on the statistical moments 
of the response which are generally governed by an infinite hierarchy of coupled differential 
equations. The closure approximation truncates the infmite terms series expansion in order to obtain 
a soluble set of equations. The simplest level of closure is the Gaussian one in which higher order 
statistical moments are expanded in terms of the first and second moments, as if the random 
processes involved were Gaussian distributed. The Gaussian closure for purely external excitations 
gives results identical to statistical linearization. Improvements in accuracy can be obtained by using 

higher order level of closure. 
By no means it can be stated that the non-linear stochastic differential equations are much harder to 
solve than their linear counterparts and the same difficulty holds for deterministic vibration theory. 
Neverthless, it has been shown recently that the adoption of Kronecker algebra makes linear and 
non-linear differential equations governing the evolution of the statistical moments formally similar 
to the differential equations governing the evolution of the deterministic response [7, 8]. Moreover, 
the eigenproperties useful to solve both the deterministic and the moment differential equations are 
strictly related and a unified numerical procedure can be adopted. 
In this chapter numerical procedures able to evaluate the response of linear and non-linear structures 
for deterministic and stochastic input are presented. The procedures described here can be applied 

to both classically and non-classically damped systems. 
Aim of this Chapter is to show the perfect similarity of the numerical procedure to solve both linear 
and non-linear differential equations governing the evolution of the response for both deterministic 
and stochastic input. In order to do this, the response of linear systems to deterministic input and to 
white noise and filtered white noise input processes is evaluated first. Furthermore the linear 
systems subjected to delta-correlated and filtered delta-correlated input are treated. 
Since readers which are not familiar with Kronecker algebra could find this algebra difficult to 
follow, the one-dimensional non-linear systems subjected to purely external stochastic input are 
treated in the first section in order to introduce concepts and solution procedures which can be 
easily extended to the analysis of multi-dimensionallinear and non-linear structural systems. 
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In the stochastic analysis of non-linear systems the stochastic linearization, the cumulant and the 

quasi-moment neglect closures and another procedure here described and here called Hermite 
moment neglect closure are presented. 

It will be emphasized that while the cumulant neglect closure leads always to a set of non-linear 
equations the quasi-moment and the Hermite moment neglect closures leads to a set of non-linear 
equations in the first and second statistical moments and to a set of linear equations in the central 
moments of order higher than two when the standardized (or the modified standardized) variable is 
introduced. These considerations which are not pointed out in the literature represent a fundamental 
step in the effective solution of non-linear systems to stochastic input. 

2 ONE-DIMENSIONAL NON-LINEAR SYSTEMS 

2.1 Preliminary considerations 

It is well know that for linear structural systems if the input process is Gaussian, then the 
probability density function or the characteristic function of the response process are fully 
characterized by the moments or the cumulants up to second order; that is the mean, the mean 
square or the variance. The differential equation governing the evolution of these statistics can be 
easily solved for both classically or non-classically damped structures. 
If the input process is not Gaussian, and the system is linear, then the response is probability 
characterized by the moments or the cumulants of greater order, than two. In this case the 
differential equations for the moments of order r will involve moments of order equal to or less 
than r, while the differential equations for cumulants will involve cumulants of both input and 
output of the same order (see e.g. Chapter two). 
If the system is non-linear and the input process is or not Gaussian the response process is non 
Gaussian and all the moments and cumulants of the response process have to be evaluated. In this 
case the differential equations of order r involve also moments or alternatively cumulants or order 
greater than r. 
If follows that an infinite hierarchy of differential equations have to be solved to fully characterize 

the response. This drawback is overcame by adopting the so-called closure techniques. 
In this section closure techniques are presented for the study of non-linear one-dimensional systems 
subjected to purely external delta-correlated up to the s-th order excitations. Although this case of 

non-linearity is not the most general one for non-linear system, it is the most common in the 
structural theory. However the closure techniques here described can be also applied to non-linear 
systems excited by parametric excitations whose differential equations are presented in the Chapter 

two. 
The equation of motion of a one-dimensional system with purely external delta-correlated up to s-th 

order excitation can be written as follows 
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dZ = tlZ = a(Z, t) dt + V(t) d.L(t) (1) 

wl;lere d.L(t) is the s-th order zero mean Levy white noise process which has the following 
properties 

IDr [d.L(t)] = E [(d.L(t))l] = <Jr(t) dt, 2 :s; r :S; s 

kr [d.L(t)] = <Jr(t) dt, 2 :S; r :S; s ; ks+ p[d.L(t)] = 0 , (p = 1, 2, ... ) 

(2) 

E [(Z(t))k (d.L(t))f] = mk [Z(t)] mr [d.L(t)] 

(dZ)l = vr(t)(d.L(t))r 2:S;r:S;s; (dZ)s+p = 0, (p=1,2,3, ... ) 

where E [·] means stochastic average, mj[·] means j-th statistical moments and kj[d.L] means j-th 
cumulant of d.L. In writing these equations we took into account the relationships between moments 
and cumulants (see Appendix) and we neglected infinitesimals of higher order than dt. 
From Eqs. (2) it is evident that (d.L(t))r and consequently (dZ)r are infinitesimals of order dt, it 
follows that in the series expansion of the increment tar we have to take into account until the s-th 
term if r;;:: s and until the r-th term if r :s; s. 
Hence, for purely external excitation we can write 

min (r, s) min (r, s) 

AZr = dZ + "" ...L dk (Zr) = "" j3 Zr- k (dZ)k 
~ kl ~ r, k 

k=2 . k=l 
(3) 

where 

l3r, k = ~! r (r- 1) ... (r- k + 1); ~(t) dt = mk[d.L(t)] (4) 

Making the stochastic average of both sides of Eqs. (3), taking into account Eq. (1 ), the properties 
of process d.L(t), given in Eqs. (2), and dividing by dt we obtain 

min (r, s) 

rilr [Z] = r E [a(Z, t) Zr- 1] + L 13r, k mr _ k[Z] Vk(t) qk(t) 
k=2 

(5) 

We recall that the Gaussian (or normal) delta-correlated process, also called white noise process, is 
a particular type of delta-correlated process characterized by having qk(t) = 0 fork > 2. 
Moreover we recall that a Gaussian as well as a non-Gaussian random variable Z can be described 
uniquely, in a statistical sense, by its probability density function pz(Z, t), its cumulative 
distribution function or its characteristic function Mz(l'}; t). 
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The characteristic and the probability density function of Gaussian or non-Gaussian random 
variable can be written respectively as an asymptotic expansion of cumulant (also called semi­
invariant) and quasi-moment functions as follows (see Appendix) 

(6a) 

(6b) 

where Hl) are one-dimensional Hermite polynomials (see Appendix); kj[Z] and bj[Z] are 
respectively the cumulant and the quasi-moments of order j of the random process Z; lllz and ai are 
respectively the mean value and the variance of random process Z; and p~z; t) is a Gaussian 
density probability having lllz = m1[Z] and ai as mean and variance respectively, that is 

[ 2] o (z- ) 
Pz(z; t) = 1 exp - IDz 

Y21t Gz 2 a 2 z 
(7) 

It is well known that the characteristic function is the Fourier transform of the probability density 
function. 
Eqs. (6) fully characterize the random variable Z for Gaussian and non-Gaussian processes. 
As an example for Gaussian process we have k1 [Z] = Illz ':1: 0 and ~[Z] = ai ':1: 0 and kJZl = 0 
'v'j > 2 and b}Zl = 0 'v'j; for non-Gaussian processes, solution of linear differential equations 
forced by delta-correlated processes up the s-th order we have kJZ] -:~: 0 j ~ s, kj[Z] = 0 'v'j > s. 
The corresponding quasi-moments are obtained by the following relationship (see Eq. A.22) 

_ j- 3 G - 1)! . 
b. - k. + L I G 1)1 k. b ' J > 2 

J J r = 3 r. - r- . J -r r (8) 

For non-linear systems, even if the actual input process is idealized by a Gaussian process, the 
response process is not Gaussian. The most common method used to calculate the response of 
weakly non-linear systems is the method of equivalent or statistical linearization [5]. However, it is 
immediately evident that the response of actual non-linear systems to random loadings may show 
considerable non-Gaussian characteristics. Alternatively, some methods which allow to take into 
account of non-Gaussian properties of the response have been proposed. Since infinite statistics of 
the response cannot be evaluated the latter methods require an approximate evaluation of the 
characteristic function or alternatively of the probability density function. By using these methods 
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particular special attention has to be given to the proper choice of the probability density function of 
the response, because of it affects significantly the accuracy of the results. 

2.2 Quasi-moment neglect closure method 

The Edgeworth series (see Appendix) is a useful expansion for the non-Gaussian probability 
density function in terms of a Gaussian probability density function having the quasi-moments as 
coefficients. In this expansion setting all quasi-moments above a certain level N equal to zero we 
have the so-called quasi-moment neglect closure method. It follows that Eq. (6b) becomes a 
truncated form of the asymptotic expansion. 
In order to clarify this let us consider first the case of non-linear function a(Z, t) appearing in Eq. 
(1) is given in the polynomial form in Z as follows 

M . 
a(Z, t) = . L . ai(t) Z1 

(9) 
i=l 

In this case Eq. (5) becomes 

M min (r. s) 

mr [Z] = r al (t) mr [Z] + L ai(t) mr + i. 1 [Z] + L Pr, k mr. k [Z] Vk(t) qk(t) (10) 
i=2 k=2 

It follows that the differential equations for the statistics of order r will now include statistics of 
higher order than r. A closed set of N differential equations may be obtained by setting equal to 
zero the quasi-moments of order greater than N. Obviously for delta-correlated input process up the 
s-th order it is more convenient to choice N ~ s. Notice that for dynamic system with quadratic 
nonlinearity the differential equation of the response moments of order r will contain moments of 
order (r + 1). If cubic nonlinearity is included the r-th order moment equation will contain 
moments of order (r + 2), and so on. Thus the first-order non-Gaussian closure can be established 
by setting fourth-order quasi-moments equal to zero for the case of quadratic nonlinearity, or 
setting fourth and fifth-order quasi-moments equal to zero for the case of cubic nonlinearity, and so 
on. Second order non-Gaussian approximation can be obtained by generating differential equations 
of the response moments up to fourth-order and setting fifth-order quasi-moments and fifth and 
sixth-order quasi-moments to zero for quadratic and cubic nonlinearities respectively and so on. By 
means of this procedure the moments of higher order than N can be related to the moments of lower 
order by using the relationships given in Eq. (A.85) by setting bj = 0, j > N obtaining 
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j- 1 

mj[Z] = - (- 1)i L Bj, k dz-k mk[Z] 
k = 0, 2 (j = even) 
k = 3, 5 (j = odd) 

- (- 1)i ± Bj, k aiz-k[± (-1)r r! (:: r)! Illic -r[ZJ nfi[Z]] ; j > N 
k = 0, 2 (j = even) r = 1 
k = 3, 5 (j = odd) 

209 

(11) 

Hence, operating the quasi-moment neglect closure of order N, the moments of order greater than 
N can be related to the moments uptoN, we have that the infinite hierarchy of differential equation 
(10) becomes a non-linear fmite one. 
The simplest closure is the Gaussian one in which N = 2 and all quasi-moments are zero and higher 
moments can be expressed in terms of the first and second moments as if the random processes 
involved were Gaussian distributed. Results from Gaussian closure are also known as quasi-linear 

approximation and coincide with that obtained from the stochastic linearization [9-10] which will be 
discussed later. Although the Gaussian closure is very simple to apply, unfortunately it is found to 
be inadeguate or unsuitable in some cases [11] and higher order-closure have to be adopted. 
Moreover, since the truncated Edgeworth series can be seen as an orthogonal expansion 

approximation of the ratio Pz(z; t)/p~z; t), if few terms are retained the ratio Pz(z; t)!p~z; t) is 
approximated by a lower-order polynomial and the resulting behaviour of Pz(z; t) is not markedly 
different than that of the Gaussian model. It follows that in order to reproduce significantly a 

bimodal or a multimodal probability density function a big number of terms has to be retained. 
It has to be noted that sometimes, since the probability density becomes very small in the region 
which is far from the mean value, the error caused by truncation and calculation might make an 
approximate density with negative values. Although it is a shortcoming of this method, it does not 
result in much trouble in most applications. 
It is to be emphasized that the method here described can be also applied to non-linear function 
a(Z, t) expanded by series expansion representations as follows 

M M ( k ) 
a(Z, t) = L ~(t) Zk = L tt- a ~~· t) zk 

k=l k=l Z=O 
(12) 

To define in alternative form the quasi-moment neglect closure let us introduce the standardized 

response process 

"' _ Z(t)- Inz(t) 
z (t) - () crz t 

(13) 
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where mz(t) = m1[Z] and oi(t) = ~[Z]- mi[Z] are the mean and the variance of actual response 
process Z(t) respectively. The moments m1[Z] and m2[Z] can be obtained as solution of the 
following differential equations evaluated setting r = 1 and r = 2 into Eq. (5) where for a(Z, t) it is 
assumed its polynomial expansion given in Eq. (12), that is 

M 

rill [Z] = L ~(t) 11\[Z] (14a) 
k=l 

M 
ril2[Z] = 2 L ak(t) mk + 1[Z] + t V2(t) q2(t) 

k=l 
(14b) 

Since the standardized response possesses zero mean and unitary variance we have that its 
statistical moments coincides with its central moments, that is: 

[ *] [ *] [(Z(t)- It1z(t))r] Jlr Z = mr Z = E az<£ ; r > 2 (15) 

In order to obtain the differential equation governing the evolution of the central moments we use 
· Eq. (13) to write in alternative form Eq. (1) as follows 

dZ* = Gj(t) a (az(t) Z* + mz(t), t) dt- c,:zl(t) [irz(t) Z* + rilz(t)] dt + c,::}(t) V(t) dL (16) 

Since mz(t) and az(t) are independent of Z* we can write for purely external excitation 

min (r, s) 

L1(z*)r = L Pr,k(z*)r-kG[(t)(dZ*)k (17) 
k=l 

and consequently by using Eq. (9) where zi = (Oz Z* + mz)i and adopting the procedure 
previously described, where dZ* is given in Eq. (16), we can write 

- r azl(t) (crz(t) J.lr[Z*] + rilz(t) J.lr-l£Z*l) 

min (r, s) 

+ L Pr, k llr- k [Z*] a:(t) Vk(t) qk(t) ' r > 2 (18) 
k=2 
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It follows that the differential equations for the central moments of order r will now include central 
moments of higher order than r. A closed set of N differential equations may be obtained by setting 
equal to zero the quasi-moments of order greater than N. By means of this procedure the central 
moments of higher order than N can related to the central moments of lesser order by using the 
relationships given in Eq. (A.59) by setting bj = 0, j > N obtaining the following linear 
relationships 

Ill [Z*] = - (-1 )' 
l- 1 

L 
k = 0, 2 (l = even) 
k = 3, 5 (l = odd) 

where the coefficients B l. k are defined in Eq. (A.46). 

l=r+i-j-1>N (19) 

So operating, the central moments of order greater than N can be related to the moments up toN by 
means of linear relationships and we have that the infinite hierarchy of differential Eqs. (18) 
becomes a set of linear differential equations in the central moments where <1z(t) and mz(t) appear 
in non-linear form. It follows that the numerical solution of the problem can be obtained by means 
of a two step iterative procedure: 

(i) evaluate m1 [Z] and~ [Z] by solving Eqs. (14) assuming a Gaussian neglect closure 
technique, that is assuming 

mk[Zl = (k- 1) {m2[Z]- mj[Z]) mk _ 2[Z] + mt[Z] mk -t[Z] , k > 2 (20) 

(ii) evaluate the central moments llr[Z*] solving the set of linear differential Eqs. (18) 
assuming for mz(t), rhz(t), Oz(t) and oz(t) the functions evaluated by means of the Gaussian 
closure; 

(iii) recalculate m1 [Z] and~ [Z] by solving Eqs. (14) where 

k 

mk[Z] = L .1 (t ')I a~- j (t) rn!z<t) Ilk_ j [Z*] 
. 0 J. J • 
j= 

(21) 

with IJ.o[Z*] = 1, llt[Z*] = 0, ll2[Z*] = 1; 

(iv) solve the linear set of differential Eqs. (18). 
It is to be emphasized that introducing the standardized variable we have to solve the non-linear 
differential Eqs. (14) and the set of linear differential Eqs. (18) instead of a set of N non-linear 

differential equations. 
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2.3 Cumulant neglect closure method 

In the cumulant neglect closure method (practically similar to the quasi-moments neglect closure 
method) the closure is based on cumulants. Thus, for N-th order closure, one can simply set all 
cumulants, kj for which j > N, equal to zero. Although the basis for this method appears to be 
rather more arbitrary than closure based on quasi-moments, in many cases we can have very 
accurate results [12-14]. By using this closure technique, taking into account Eq. (A.17), we have 
to set in Eq. (10) 

j- 1 G- 1)! 
mj[Z] = - 2, .1 (j _ 1 _")I (kj _ i[Z] mi[Z]) j > N 

i = 1 1. 1 . 
(22) 

where the cumulants kj _ i[Z] have to be expressed in terms of moments of order equal to a lesser 
than j - i. It follows that, in order to evaluate the moments, we have to solve a set of non-linear 
differential equations. Once the non-linear moment differential equations are solved we have to 
calculate in the Edgeworth expansion the quasi-moments as a function of cumulants by means of 
Eq. (8) where kj[Z] = 0 for j > N. One can easily prove that the Edgeworth expansion consequence 
of the N-th cumulant neglect closure is a summation of more terms than the Edgeworth expansion 
·consequence of the N-th quasi-moments neglect closure. This fact could give difference in the 
approximate probability density function obtained by means of the quasi-moment and cumulant 
neglect closure approaches. 

2.4 Hermite moment neglect closure method 

If the non-linear function is of discontinuous type, or cannot be expressed as polynomials of z both 
the quasi-moment and the cumulant neglect closure methods seem to be not appropriate and an 
alternative method have to be used. Here a method called Hermite moment neglect closure is 
presented. 

The Hermite moments have been defmed by Winterstein [15] as follows 

h· [Z] = :iE[H·(Z-mz)~ 
J Jl J crz ~ (23) 

It follows that by using the Hermite moments the probability density function can be expanded in 
the Gram-Charlier expansion as follows 

Pz(z; t) = [i: h. [Z] H.(~}~ p~(z, t) 
·=o 1 1 0 z ~ (24) 
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where p~(z; t) is the Gaussian probability density given in Eq. (7). In order to solve the differential 

Eq. (5) we have to evaluate the average E [a(Z, t) 'Z!- 1] which by using the Gram-Charlier 

expansion (24) can be evaluate as follows 

00 

E [a(Z, t) 'Z! - 1] = E0 [a(Z, t) 'Z! -1] + j~ E0 [ a(Z, t) 'Z! - 1 Hj (Z ~;z)] hj[Z] (25) 

where 

E0 [a(Z, t) Z' -1] = f~ a(z, t) z' -I p£(z, t) dz 

(26) 

E0 [ a(Z, t) Z' - 1 H; (Z ~:z )] = r a(z, t) z' -I H; (z ~;z) p£{z, t) dZ 

The symbol E0[·] denotes stochastic averages with normal probability density function. 

Adopting an N order Hermite moments neglect closure we have to limit the summation of Eq. (25) 

to the first N terms. Substituting Eq. (25) into Eq. (3) and using the relationships between Hermite 

moments (strictly related to the quasi-moments) and statistical moments we obtain a set of N non­

linear differential equations. 

In a more useful form the solution of non-linear one-dimensional systems can be performed by 

introducing the standardized response process Z*(t) = [Z(t)- m2(t)] I a2 (t). 

By using the procedure previously described we have the central moment differential equations in 

the form 

~r [z*] = r E [a(Z, t) ot(t) (z*)r -1]- r ~zl(t) (crz(t) Jlr[Z*] + rhz(t) J..1r -1[Z*l) 

min (r, s) 

+ L Pr,kllr-k[z*]a/(t)Vk(t)qk(t) r>2 (27) 
k=2 

Notice that to obtain the complete statistical solution it needs to associate to Eq. (27) the following 

differential equations 

m1 [Z] = E [a(Z, t)] 
(28) 

rh2[Z] = 2E [a(Z, t)] + t V2(t) q2(t) 
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* The probability density function of the standardized response Z can be expanded in the Gram-
Charlier expansion, as follows: 

(29) 

where H(z *) are the Hermite polynomials and p~.(z *; t) is the standard normal probability density 
function 

p~.(z*; t) = ~ exp (- (z*)2/2} (30) 

The Hermite moments of the standardized response hj [Z*] are strictly related to the quasi-moments 
bj [Z*] of the standardized response, that is 

h. [z*] =+b. [z*] = tE[H. (z*}], j > 2 
J J. J J. J 

(31) 

By using Eq. (A.45) it can be easily show that the Hermite moments are related to the central 
moments by means of the following relationships 

hj [z*] = t J.lj [z*] + (-1~ L Bj, k ~ [z*] [ 
j-1 ] 

J. k=0,2(j=even) 
k = 3, 5 (j = odd) 

where the coefficients Bj, k are defmed in Eq. (A.46). 

j>2 (32) 

In order to express the right-hand side of the Eq. (27) explicitly in terms of the central moments and 
to form a closed set of differential equation we have to evaluate 

E [a(Z, I) Gj(t) (z')'- 1] = <Ji1(1) 1~ JlZ•(z*; I) a ( crz z* + 111z, 1) (z*)'- 1 dz' (33) 

which by using Eq. (29) becomes 

00 

E[a(Z,t)Gj(t)(z•)r-.1] = Tlo,r-1(mz,Oz,t)+ L hj[z*]Tlj,r-1(mz,Oz,t) (34) 
j=3 
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where Tto, r _1 (·)and Ttj,r _1(·) are non-linear explicit functions of mz. crz. given as 

11o.,- !(<>z, mz, t) = o;1(t) 1~ p~(z"; t) a(z* <>z + mz, t)(z")' - 1 dz' 

(35) 

11;, , - 1 ( <>z, mz. t) = o;1(t) 1~ ~.(z'; t) a(z' <>z + mz. t)(z')'- 1 l!;(z*) dz' ; j > 2 

The integrals (35) can be seen as the stochastic average with normal standardized probability 
density function of non-linear functions and could be denoted as E0 [a(Z* 0z + 
+ mz, t) (Z*)r- 1 Hj(Z*)]. 
Substituting Eq. (35) into Eq. (27), taking into account of Eq. (31) and operating a Hermite 
moments neglect closure of order N we have 

~ [z*] = r[rto, r -1<mz, Oz, t) + 

L -.,- L Bj, k Jlk [z] Tlj, r -1 (mz, oz. t) N (-1~ ( j *) ] 
j = 3 J. k = 0, 2 (j = even) 

k = 3, 5 (j = odd) 

- r <fi(t) (crz(t) J.lr[Z*l + mz(t) J.lr -1[Z*l) 

min (r, s) 

+ L ~r. k llr- k [z*] a;{(t) Vk(t) ~(t) r > 2 
k=2 

In more suitable form Eq. (36) can be written as follows 

~[z*] = r[rto.r-l(mz, Oz, t) + .f 'Yj.r-l(mz, az. t) Jl.j [z*]] 
J=O 

- r G=i(t) {crz(t) J.lr[Z*l + mz(t) J.lr _ 1[Z*l) 

min (r, s) 

+ L ~r. k llr- k [z*] cr;l(t) Vk(t) ~(t) ; r > 2 
k=2 

(36) 

(37) 
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where Jlo[Z*] = 1, J.11[Z*] = 0, J.12[Z*] = 1 and 

N 
'ri. r- 1 (mz, Gz, t) = ( -1)i ~ ft Bk, j Tlk. r- 1 (mz, Gz, t) 

k=4,6(j=even) 
(38) 

k = 3, 5 (j = odd) 

It follows that the Hermite neglect closure, in terms of standardized variable, gives a set of N-2 
differential equations which is linear in Jlr [Z*] and non-linear in mz(t) and az(t). Since the latter 
quantities are unknown, their evaluation depends on the solution of Eqs. (28) which depend on the 
probability density function pz(z, t) strictly related to Pz•(z*, t) given in Eq. (29), that is 

(39) 

where ~z; t) is defined in Eq. (7). 
The numerical solution of the problem can be obtained of a two step iterative procedure just 
described in the previous section that is: 

(i) evaluate m1 [Z] and m2 [Z] by solving Eqs. (28) assuming a Gaussian neglect closure 
technique; 

(ii) solve the set of linear differential Eqs. (36) or (37) assuming for lllz(t), rilz(t), Gz(t) and 
crz(t) the functions evaluated by means of the Gaussian closure; 

(iii) recalculate m1 [Z] and ~ [Z] by solving Eqs. (28) where E [a(Z,t)] and E [Z a(Z,t)] 
are given by the following relationships; 

E (a(Z, I)] = 1~ Pz(z; 1) a(z, 1) dz 

(40) 

E(Z a(Z, I)] = [ Z Pz(z; I) a(z, I) dz 

using for Pz(z; t) the following expression whose coefficients are the central moments of 
standardized variable 

pz(z; t) = ...L[1 + f (<-.~)i ± Bj, k Jlk [Z*]) Hj(z*)] P~•(z*, t) (41) <Jz j = 3 J. k = 0, 2 (j =even) 
k = 3, 5 (j = odd) 
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where p~.(z*, t) is defined in Eq. (30). This equation is derived from Eq. (6) by using the 
relationship between Hermite moments and central moments given in Eq. (32). 

(iv) solve the linear set of differential Eqs. (36) or (37); 
(v) come back to (iii) and iterate until the accuracy required is obtained 

In the framework of the Hermite moment neglect closure methods one can also classify the method 
proposed by Liu and Davis [16-17]. In this method assuming a truncated Gram-Charlier series as 
approximate solution of the Fokker-Planck equation a set of Hermite moment differential equations 
which are non-linear in the mean value and in the variance and linear in the Hermite moments are 
obtained. It follows that the Hermite moment differential equations can be solved by means of the 
same two step approach described before. 
Notice that for polynomials form non-linearities the Hermite moment neglect closure method leads 
to the same results of the quasi-moment neglect closure method 

It has to be emphasized that for stationary input all the statistical quantities are not time dependent 
It follows that the differential equations become a set of algebraic equation which is a non-linear 
one by using the cumulant neglect closure. However by introducing the standardized variable and 
by adopting the quasi-moment or the Hermite moment neglect closure we have a set of non-linear 
algebraic equations into the two first moments and a set of linear equations in the central moments 
of the standardized variable. It follows that to obtain the solution it needs to solve the two sets of 
equations by using the two step procedure described for non-stationary input. 

2.5 Stochastic linearization 

The stochastic or statistical linearization can be considered as an extension of the equivalent 
linearization method proposed by Krylov and Bogoliubov [18] for the treatment of non-linear 
systems under deterministic excitations. Caughey [19] was one of the frrst researchers to extend 
this method to solve the problems of randomly excited non-linear systems. The basic idea of the 
stochastic linearization is to replace the original non-linear system by a linear one in such a way that 
the difference between the two system is minimized in some statistical sense. In this way, the 
parameters which appear in this linearized system involve unknown statistics of the response which 
are evaluated approximating the response to a Gaussian process, in accordance with the equivalent 
linearized system with unknown coefficients and subjected to a Gaussian excitations. It follows that 
the stochastic response is obtained after some iterations. 
The stochastic linearization is perhaps one of the most common methods to solve non-linear 
systems under stochastic excitations and various versions of the method have been developed (see 
e.g. [5, 9, 20]). It is well known that for purely external excitations the stochastic linearization and 
the Gaussian closure lead to the same results, while for parametric excitations we have the same 
results, which give the best approximation, only if the coefficients of the Ito differential rule are 
linearized and not the differential equation of motion [10]. 
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For the phylosophy of the method the stochastic linearization gives a good solution only if the real 
response is close to a Gaussian process. It follows that this method is very efficient for weak non 
linearity and for Gaussian excitations. Indeed, for delta-correlated excitations or generally for non­
Gaussian excitations this method leads to different results with respect to those obtained by closure 
schemes which seem much more accurate comparing the results ~btained with Monte-Carlo 
simulation [21]. 
For these reasons, in the following the stochastic linearization of non-linear systems for purely 
external Gaussian white noise excitation will be briefly illustrated. In this case the non-linear 
equation of motion is replaced by the following linearized one 

dZ = [A(t) Z + v(t)] dt + v(t) dB(t) (42) 

The error made in linearizing the equation of motion is expressed by 

e = A(t) Z + v(t) - a(Z, t) (43) 

The unknown coefficients A(t) and v(t) can be evaluated by minimizing the mean square error with 
respect to them, that is solving the following equations 

1...E[e2] = 0 · i_E[e2] = 0 oA ' ov 
obtaining 

v(t) = E [a(Z, t)] - A(t) m1 [Z] 

A(t) = E [a(Z, t) Z] - E [a(Z, t)] m1 [Z] 

~ [Z] -mi [Z] 

(44) 

(45) 

where m1 [Z] and ~ [Z] can be obtained by applying the procedure previously described as the 
solution of the following differential equation: 

rh1 [Z] = A(t) m1 [Z] + v(t) 
(46) 

~ [Z] = 2A(t) ~ [Z] + 2v(t) m1 [Z] + v2(t) qlt) 

Notice that in order to evaluate m1 [Z] and~ [Z] we have to know A(t) and v(t) which depends on 
m1 [Z] and ~ [Z]. It follows that it needs an iterative procedure, assuming for the first iteration a 
given Gaussian probability density function p~1>(z, t); to evaluate E<1> [a(Z, t)], m~1> [Z], A(l>(t), 
v<1>(t); to solve the differential equation (46); to evaluate the new 'probability density function and 
so on until a good accuracy is achieved. Generally the described procedure converge very fastly. 
It is to be emphasized that for stationary input Eqs. (46) become a set of algebraic equations. 
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2.6 Applications 

Two one-dimensional problems are solved to illustrate the described closure methods. The first one 
with cubic non-linearity the second one with quadratic non-linearity. 

Example 1. Consider a one-dimensional diffusion process satisfying the following stochastic 
differential equation 

(E.1) 

where a1 and 3.:3 are negative constants, V a positive constant and dB = W(t) dt is the increment of 
white noise process. It can be shown that all the odd moments of the process Z(t) are zero and the 
even moments up to sixth order can be evaluated as the solution of the following differential 
equations (with argument omitted) 

~ = 2 al ~ + 2 11:3 m4 + y2 q2 
. . 2 

m4 = 4 a1 m4 + 4 11:3 m6 + 6 V q2 ~ (E.2) 

th6 = 6 a1 m6 + 611:3 m8 + 15 V2 q2 m4 

a) Stochastic linearization 

The stochastic linearization gives the same results than the Gaussian closure. In the latter case we 
can write (see Eq. A.7) 

m. = G - 1) m.... m. 2 ; j > 2 J ~~~"J. j- (E.3) 

and the first ofEq. (E.2) becomes 

(E.4) 

which represents a non-linear differential equation. 

b) Cumulant neglect closure 

The second order cumulant neglect closure coincides with the stochastic linearization. Adopting a 
fourth order cumualnt neglect closure the cumulant of order greater than four are assumed to be 

zero. It follows that from Eq. (A.6) we can write 

(E.5) 
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and the Eqs. (E.2) becomes 

~ = 2 al ~ + 2 8:3 m4 + y2 q2 
(E.6) 

ri4 = 4 a1 II14 + 4 a3 (15 m2 II14- 30m~+ 6 V2 ~ m2 

If a sixth order cumulant neglect closure is adopted by using Eqs. (A.6) we can write Eqs. (E.2) in 
the form 

~ = 2 al ~ + 2 8:3 m4 + y2 q2 

Ih4 = 4 al m4 + 4 8:3 m6 + 6 v2 q2 ~ (E.7) 

c) Quasi-moment neglect closure 

The second and the fourth order cumulant neglect closure coincides with the stochastic linearization 
and the fourth order quasi-moments neglect closure respectively since the cumulants and the quasi­
moments until fifth order are the same. 
In order to performe a sixth-order quasi-moments neglect closure we must use relationships (11) 

for j = 8 obtaining 

(E.8) 

It follows that a sixth-order quasi-moments neglect closure leads to the following differential 
equations 

~ = 2 al ~ + 2 8:3 m4 + y2 q2 

Ih4 = 4 a1 m4 + 4 3:3 m6 + 6 v2 q2 ~ (E.9) 

Notice that while the first two of these equations are the same of the cumulant neglect closure the 
latter is a different one. 



Response of Linear and Non-Linear Structural Systems 221 

d) Hermite moment neglect closure 

Because of the non-linearity is in polynomial form the Hermite moment closure leads to the same 

differential equations than the quasi-moment closures if the standardized variable introduced. Since 

in this case mz(t) = 0, introducing the standardized variable Z* = 'Z/crz with cri = m2[Z] we have 
' 

+ t r(r- 1) 1Jr _ 2[Z*] q(t) V2(t) q2(t) ; r > 2 (E.lO) 

and Eq. (18) becomes 

+ t r(r- 1) 1Jr _ 2[Z*] q V2(t) q2(t) ; r > 2 (E.ll) 

Associating the first of Eqs. (E.9) to Eqs. (E.11) for r = 4 and 6, and observing that J.12[Z*] = 1, 

we can write the following equations 

~[Z] = 2 a1 m2[Z] + 211:3 m4[Z] + V2 q2 (E.12a) 

ll4[Z*] = [ 4 a1 - q(t) crz(t)] J.14[Z*] + 4 a3 ll6[Z*] ~ + 6 q V2 q2 (E.12b) 

ll6[Z*] = [ 6 a1 - q(t) crz(t)] IJ.6[Z*] + 6 a3 q IJ.s[Z*] + 15 (5z2 J.4[Z*] V2 q2 (E.12c) 

Adopting the sixth order Hermite moment closure (wich coincides with the quasi-moment neglect 

closure on the standardized variable Z*) we have 

J.18[Z*] = 315- 210 lliZ*] + 28 1J.6[Z*] (E.13) 

Substituting this relationships into Eq. (E.12c) we have that this equation for a sixth order Hermite 

moment or quasi-moment neglect closure becomes 

ll6[Z*] = [ 6 a1 - ot(t) crz(t)] ll6[Z*] + 6 a3 ~ (315 - 210 JJ4[Z*] + 28 ll6[Z*]) 

+ 15 q J.14[Z*] V2 q2 (E.14) 
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~6[Z*] = [6 a1- q(t) Crz(t)] J.1.6[Z*] + 6 a3 oi(315- 420 J..14[Z*] + 35 ~[Z*] 

+ 28 Jl6[Z*]) + 15 Gj J.14[Z*] V2 <12 (E.15) 

Associating Eq. (E.14) to Eqs. (E.12b) we have a set of linear differential equations into the central 
moments where cri = ~[Z] must be obtained independently by solving the non-linear Eq. (E.12a). 
It follows that we have to adopt a two step iterative procedure. In the first iteration we can assume 
~as the solution ofEq. (E.4) obtained by Eq. (E.12a) adopting a stochastic linearization and the 
successive iterations we can assume m4[Z] = Jl4[Z*] cr~ until the whished convergence is obtained. 
Instead by using a cumulant neglect closure we have 

Jls[Z*] = 630 - 420 J..14[Z*] + 35 ~[Z*] + 28 Jl6[Z*] (E.16) 

and Eq. (E.12c) for a siXth order comulant neglect closure becomes 

~6[Z*] = [6al- ~(t) Crz(t)] J.1.6[Z*] + 6a3 oi(315- 420 J..14[Z*] + 35 ~[Z*] 

+ 28 Jl6[Z*]) + 15 q 14[Z*] V2 CJ2(t) (E.17) 

It follows that we have always a set of non-linear differential equations and the advantage in using 
the standardized variable is not so evident as in the quasi-moment closure. 
Furthermore comparing the results of the two described neglect closures with the Monte-Carlo 
simulation we have, for this system, a higher accuracy using the Hermite closure rather than the 
cumulant closure of the same order. 

Example 2.· For quadratic non-linearities the stochastic differential equation can be written as 
follows 

2 
dZ = a1 Z + ~ Z + V dB(t) (E.18) 

where a1 and~ are negative constant and Vis a positive one. For this non-linearity the odd 
moments of Z are different from zero. In this case it seems more convenient, from a practical point 
of view, to adopt a Hermite moment closure writing the differential equations by using the 
standardized variable Z* = (Z- rrtz)/crz where mz = m1[Z] and cr~ =~-~·In this case we can 
write Eqs. (14) in the form 

(E.19) 
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andEq. (18) becomes 

+ r ozl(t) (al mz(t) + a2 m2{t)) ~ _ 1[Z*] - r dZ1(t) (crz(t) J.lr[Z*] + rilz(t) 1Jr _ l[Z*l) 

+ r(r; 1) ~-2[Z*] q y2 <n(t); r > 2 (E.20) 

If a sixth order Hermite moment neglect closure is adopted we have to relate J.l?[Z*] which appears 

in Eq. (E.20) for r = 6, with less order central moments by means of Eq. (32), for 

h7[Z*] = 0, that is 

(E.21) 

obtaining 

Jl6[Z*] = 6 (a1 + 2 a2 mz(t)) Jl?[Z*] + 6 a2 Oz(t) (21 Jls[Z*]- 105 Jl3[Z*]) 

(E.22) 

which represents a linear equation into the central moments of standardized variable. Associating to 

this equation to Eqs. (E.20) for r = 3, 4, 5 we have a set of four linear differential equations, which 

together to non-linear Eqs. (E.l?), gives the solution in terms of statistical moments of the 

response. Eqs. (E.19) and (E.20) can be solved by a two step iterative procedure assuming in the 

first step 

m3[Z] = 3 mz m2[Z] - 2 m~ (E.23) 

as a consequence of the Gaussian closure and in the successive steps 

m3[Z] = oi Jl3[Z*] + 3 ~mz + mf (E.24) 



224 G. Muscolino 

3 MULTIDIMENSIONAL LINEAR SYSTEMS. 

3.1 Deterministic analysis 

For sake of clarity, in this section some preliminary concepts of deterministic analysis, which are 

also useful for stochastic analysis, are summarized. 

By using the finite element method, the equation of motion of ann-degree-of-freedom model of an 

elastic structural system with viscous damping subjected to a nodal forcing function vector F(t) is 

written as follows 

MX+CX+KX = F(t) 

X(t0) = X0 ; X(t0) = X0 

(48) 

where M, C and K are the inertia, damping and stiffness matrices respectively, X, X and X are the 

nodal acceleration, velocity and displacement vectors respectively, X0 and X0 are the vectors of 

initial conditions; the upper dot means time differentiation. In order to reduce the number of 

equations, the dynamic response is evaluated in a reduced space by means of the following 

coordinate transformation 

X=«l>Y (49) 

where cl» is the modal matrix of the undamped system, containing the first few eigenvectors of 

the matrix K-1 M normalized with respect toM; in this way the matrix cl» is of order n x m, m 
being the number of modes selected for the analysis (m << n). The matrix cl» possesses the 

following properties 

(50) 

where Im is the identity matrix of order m and 0 2 is the diagonal matrix listing the square of the 

natural radial frequencies co~ (i = 1, 2, ... , m ). Letting cl» T C cl» = B, B being an m x m 
symmetric matrix, Eq. (48) can be written in the reduced space of modal coordinates as follows 

u · 2 T 
I + :s Y + n Y = c~» F(t) 

(51) 
T · T · 

Yo = «!> MXo; Yo = «!> MXo 
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If S: is a diagonal matrix, then the system possesses classical normal modes and Eq. (51) are given 
in decoupled form; in the most general case, when S: is a full matrix, a 2m dimension vector 
approach is commonly used. For this purpose Eq. (51) can be rewritten in the standard form 

Z = AZ + VF(t) ; Z(t0) = Z0 (52) 

where Z is the 2m-vector of modal state variables defined as 

(53) 

and the matrices A and V are given by 

(54) 

The vector solution Z(t) ofEq. (52) can be written as follows 

Z(t) = 8(t- to> Z(to> + 1t 8(t- 't) VF('t) d't 
to 

(55) 

where Z(to) is the vector of initial conditions and 8(t) is the so-called transition (or fundamental) 
matrix [22-23] of the system which, if all of the eigenvalues of A are distinct, can be evaluated as 
follows 

(56) 

where 'If and A are complex quantities that must be evaluated by solving the following 
eigenproblem 

For classically damped systems the closed form of the matrix 9(t) can be easily obtained as 

S(t) = ( -G(t) n: 
-H(t) n 

~(t) l 
H(t) 

(57) 

(58) 
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where H(t) is a diagonal matrix, having the i-th diagonal element equal to the impulse response 
function of the i-th oscillator in modal coordinates given by 

h.(t) = 1 exp (-;.co. t) sin (co. t); t ~ 0 
I CO. I I I 

1 

(59) 
hi(t) = 0; t < 0 

and G(t) is a diagonal matrix such that G(t) = H(t). In Eq. (59) ;i and coi = coi ~can be 
I evaluated taking into account of the fact that 2;icoi is the i-th element of the diagonal matrix 8 . 

In many cases of practical interest, the closed form solution of Eq. (52) cannot be computed and a 
numerical solution method must be applied. To this purpose, let the time space be divided into 
small intervals of equal length, .1t, and let t0 = 0, t1, ... , tk _ 1, tk, ... , tn be the division times. By 
imposing that the governing equation, Eq. (52), must be satisfied at discrete times, Eq. (55) can be 
written as follows 

(60) 

. Furthermore, by adopting a piecewise constant forcing function in each interval, after very simple 
algebra Eq. (60) becomes 

(61) 

where 

(62) 

is the so-called loading matrix [24]. 
Eq. (61) provides an unconditionally stable step-by-step procedure, where the only source of 
numerical errors is in the modelling of the forcing function F(t) as a stepwise function. A different 
choice is possible by modelling differently the forcing function in the interval [25]. 
The main computational drawbacks in evaluating the response of Eq. (52), using the proposed 
numerical procedure, is in the evaluation of the complex eigenproperties of matrix A, required for 
the evaluation of the transition and loading matrices. Hence the solution of eigenproblem (57) 
represents the main computational aspect in the analysis of non-classically damped systems. 
For non-classically damped systems, computation of complex eigeproperties of the matrix A can be 
avoided by directly evaluating the fundamental matrix by means of a Taylor expansion. Here a 
finite number N of terms in the expansion for 8(t), as well as for the load operator, are retained, 
that is 
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9 (At) = f -~ (A At)j; L (At) = At' Ni (j \)1 (A At)j] 
j=O J. L=o + · 

(63) 

Notice that, by replacing in Eq. (61) the approximated operators given in Eq. (63), the 
unconditionally stable step-by-step procedure becomes conditionally stable [26, 27]. However, this 
is not a limitation on the effectiveness of the numerical procedure. Indeed the effects connected with 
the damping matrix S: only produce small changes in the frequencies of the damped structure with 
respect to the undamped one. Because the modal analysis of the undamped system has been 

performed and A has been written in a reduced space, the approximate value of the smallest period 
T m = 21t I rom is already known, and this is essential for the choice of the time step length to ensure 
stability of the step-by-step integration method. In order to show this, let us introduce the spectral ..... 
radius of 8 (At) 1n the form 

(64) 

where A.,_ is the maximum among the eigenvalues A.; of A (and is very close to the largest radial 
frequency rom of the undamped system). Eq. (64) shows that the spectral radii and therefore the 
stability of the integration method depend only on the step size selected and on the number of terms 
included in the Taylor expansion. In Figs. 1 the spectral radii p(S) of a single degree-of-freedom 
(SDOF) system with natural period T0 and damping ratios~= 0, ~ = 0.1 versus the ratio At/f0 

with variations in the number of terms N are depicted. From these figures it is evident that the 
numerical procedure is stable using a time step At < T c/4 if N = 7 and for any value of the damping 
ratios. The numerical results can be extended to non-classically damped systems using a natural 

period T 0 = 21t I I A. max I = 21t I rom. 

oA 0 o.r 0.2 o.3 o . .c o.s o.e "f. 0.1 0.4 0 o.r o.z o.3 0.4 o.s o.e "t 0.1 

Fig. I - Solid line: spectral radii of approximate fundamental matrix; dashed line: spectral radii of 
exact fundamental matrix. 
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Other numerical integration methods are obtained in the Chapter four. 

In order to compare the numerical integratioQ.method described here with the well-known other 

ones we evaluate the algorithmic counteparts ~ and ~ [28] of the damping ratio ~ and the radial 

frequency oo0 of a SDOF as a function of the approximate transition matrix. These quantities are 

given as follows 

(65) 

where I1 = {1/2) trace [9(~t)] and l2 = det [9(~t)]. 

It follows that_as measures of the numerical dissipation and dispersion, we take the algorithmic 

damping ratio~ and the relative period error (To- To)ffo. These quantities are depicted in Figures 

2(a) and 2(b), versus ~tffo, for N = 3-8, and are compared with the same quantities evaluated by 

well-known numerical integration methods. These figures show the great accuracy of the described 

method. 
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Fig. 2- Accuracy tests: a) algorithmic damping ratio; b) relative period e"or. 
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3.2 White noise input 

If F(t) is a stochastic vector process, then X(t) is a stochastic vector process too and it has to be 

characterized in probabilistic sense. If F(t) is a normal vector process, then also X(t), Y(t), Z(t) 

and X(t), Y (t), Z(t) are normal vector processes and the complete probabilistic characterization of 

both input and output processes can be obtained by the knowledge of the first two correlation 

functions that is 

m 1 [F(t)] = E [F(t)] ; m 1 [Z(t)] = E [Z(t)] 

C2 [F(t1), F(t2)] = E [ F(t1) F(t2) T] - m 1 [F(t1) J mi [F(t2)] 

C 2 [Z(t1), Z(9] = E [ Z(t1) Z(t2l]- m 1 [Z(t1)] mi[Z(t2)] 

where E [·]means stochastic average. 

(66) 

(67) 

The goal of random vibration analysis of linear systems subjected to Gaussian input is finding 

m 1 [Z(t)] and C2 [Z(t1), Z(~)], once that the analogous quantities of the input F(t) are known. 

In this section the analysis is limited to the simpler case of a zero mean Gaussain white noise input 

F(t) = W(t), characterized by having the first two correlation functions of the form 

(68) 

where Q(t) is the matrix of the strength of the white noise and 8(·) is the Dirac delta function. 

Such kind of input radically simplifies the mathematical problems of analysis of the response which 

can be framed in the theory of diffusive Markov processes; this teory provides very effective tools, 

such as the Fokker-Planck-Kolmogorov equation, Ito's differential rule, etc. 

Different approaches have been proposed to solve this problem, the simpler method for white 

noise excitation is the state space moment analysis. It consists in solving the differential equations 

for the covariances. By using this approach Bryson and Ho [29] gave the differential equation for 

the covariance function matrix of the response for zero mean white noise input in the Lyapunov 

form 

(69) 

where l:z(t) is the covariance function matrix defined as follows 

(70) 
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Further the correlation matrix C 2 [Z(t1), Z(t2)] can be obtained in the form 

C2 (Z(t1), Z(t2) J = 9(t1 -lz) :Ez(t1), 

c2 [Z(t1), Z<lz)] = 9(t2 - t1) :Ez(t2), 

G. Muscolino 

(71) 

Closed form solution of Eq. (52) for MDOF linear system having classical normal modes and for 
certain shape of the strength Q(t) [30,31] and a step-by-step method for evaluating the non­
stationary response of a MODF system for a general shape of the intensity Q(t) [26] have been 
proposed. 
An alternative approach in evaluating the second moments of the response can be obtained by using 
the Ito stochastic calculus. This approach has the advantage that can be directly extended to non­
white input processes. 
Since W(t) is a vector with rapidly fluctuating random term having infmite variance, it follows that 
[32] the element of process W(t) are not mean square Riemann integrable and, consequently Eq . 

. (52) does not have mathematical meaning. However, we can write formally 

dB(t) = W(t) dt (72) 

where B(t) is a 2n-vector of Wiener process such that the first two moments of dB(t) are 

E[dB) = 0; E[dB ®dB] = q2(t) dt (73) 

while higher order moments are infinitesimal of order greater than dt. In equation (73) the symbol ® 
means Kronecker product [33, 34] (see also Chapter two Appendix A ), so that the vector 
E[dB®dB], of order (2n)2, contains all possible moments of second order of the vector dB and 

q2(t) = Vee {Q(t)} (74) 

where Vee(·) is a column vector obtained by putting each column of the matrix in parenthesis 
below each other. It follows, that Eq. (52) can be converted into an Ito type stochastic differential 
equation 

dZ = A Z dt + V dB(t) (75) 

Notice that dB is a vector listing infinitesimals of order (dt)112 and consequently in Eq. (75) 
infmitesimal of different order appear. To evaluate the differential equation governing the evaluation 
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of the second order moments of Z(t) we observe that these quantities are listed in the following 

vector 

(76) 

Furthermore remembering that all the elements of dB are of order (dt)112 we can evaluate the 

increment of vector 

Z[2](t) = Z(t) ® Z(t) 

where the exponent in square brackets means Kronecker power, as follows 

Introducing the row differential vector 

we can write [35] 

d (z[2J) = {v~ ® z[2J) dZ = z ® dZ + dZ ® z = Q2, 2m (z ®12m) dZ 

d [d (z[2J)] = (v~r2J ® z[2J) (dzPJ + [ v~ ® zr2~ d2Z = (dZPJ 

where Q k (k =2m) is the square matrix of order (k)r given in the form r, 

r- 1 

Q =L:Eir-j r, k k, k 
j=O 

(77) 

(78) 

(79) 

(80) 

(81) 

E being permutant boolean matrices of order pq x pq consisting of q x p arrays of p x q 
p,q -

dimensional elementary submatrices E15 [36] which have one in the (i, s)th position and zero in all 

other positions. 
By using the two relationships (80), taking into account ofEq. (75) and neglecting infmitesimals of 

order greater than dt we can write Eq. (78) in the form 
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~ (z[2J) = Qr, 2m (z ® I2j{AZ dt + V dB)+ (AZ dt + V dBf2J 

= Qr, 2m ( Z ® 12m) (AZ dt + V dB) + V[2] dB[2] 

Since the following relationship holds 

Q (' ® A) Z[2] = f1 ® A + A ® I ) Z[2] = A Z[2] 
r, 2m ~m lJ 2m 2m 2 

G. Muscolino 

(82) 

(83) 

making the stochastic average of both sides of Eq. (82) and dividing by dt we obtain the differential 
equation governing the evolution of the second order moment which, for zero mean processes, 

fully characterized the response 

(84) 

In obtaining this equation from Eq. (82) use has been made of the properties of process dB(t) given 
in Eq. (73) and of the fact that, according to Ito's stochastic caluclus, the following relationship 

holds 

(85) 

It is worth noting that Eq. (84) is the vectorialized form of equation (69). 

3.3 Filtered zero mean Gaussian input 

3.3.1 Second order moments differential equations 

The stochastic analysis of linear systems excited by stationary and non-stationary non-white 
Gaussian processes is usually performed by means of two different approaches. In the first one the 
input process is characterized by its autocorrelation function; in the second one the input process is 

the solution of a set of linear first order differential equations subjected to a white noise input 
processes. The second method is simpler from a numerical point of view than the first one. 
However, it requires the knowledge of the filter differential equations, which are not always 
known. By contrast, the first method requires only the knowledge of the autocorrelation function or 
alternatively of the power spectral density function of the input. 
In this section in order to give a general overview of the approaches able to evaluate the response 
for filtered zero mean Gaussian input both methods are presented. 
In the following these two approaches are indicated as Method 1 and Method 2 respectively. 
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a) Method 1 

If F(t) is a non-white Gaussian vector process Eq. (52) has its own full mathematical sense and the 
differential of this equation can be written as follows 

dZ = AZ dt + VF(t) dt (86) 

and it is a summation of infinitesimal of the same order. It follows that 

(87) 

and consequently 

(88) 

where 

v2 = Qr, 2m (12m® v) (89) 

In Eq. (87) E [ Z ® F] is a vector of order (2mn), listing all the cross-covariances between forcing 
function and response. The evaluation of these quantities will be discussed in the next section. 

b) Method2 

The evaluation of the second order moments with Eq. (88) requires the evaluation of the cross­
correlations between the input and the response. This computational problem can be avoided if the 
filtered input can be obtained as the solution of the following system of first order differential 
equation 

T 
F(t) = N Zit) 

(90) 

Zf = AfZf+ Vf W(t) 

where Zr and V f are vectors of order mf' N is a matrix of order mr x n, Ar is a matrix of order fir x 
mrand W(t) is a zero mean Gaussian white noise vector process. 
By associating Eqs. (90) to Eq. (52) we can write 

(91) 

where 
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(92) 

Eq. (91) is a first order differential equation with a modulated white noise input. As discussed in 
the previous section and by taking into account the main properties of the white noise, we can write 
the differential equation governing the evolution of the second order moments as follows 

(93) 

Eq. (93) is a set of p2 (p = 2m + mr) first order differential equations, in which 

(94) 

By using the properties of Kronecker product we can write Eq. (93) in explicit form as follows 
[37] 

where 

m2 [Z] = A2 rn2 [Z]+V2.rE[Z®ZJ 

:E[z ® zJ = (A® Itnr +12m® Ar)E[Z ® zc] + [vNT ® 1tnr] m2 [zcJ 

m2 (ZJ = (Ar ® Imr + Iffir ® Ar) rn2 (ZJ + v;z] qz(t) 

(95a) 

(95b) 

(95c) 

(96) 

Eqs. (95) show that for filtered white noise input the response can be evaluated by solving a set of 
differential equations having for input the strenght of white noise, the second moments of the filter 
and the input-output cross-moments respectively. Although Eq. (93) is formally more compact than 
Eqs. (95), the solution ofEqs. (95) is more convenient from a numerical point of view. Indeed by 
using Eqs. (93) we have to solve a set of differential equations of order (2m+m/ while by using 
Eqs. (95) we have to solve three sets of differential equations of order (2m)2, (2m me) and 
(mi respectively. Generally we have (2m+ m/ >> (2m)2 + (2m mr) +(mi. 
It has to be emphasized that Eqs. (95) can also be obtained by considering that: Eq. (95a) gives the 
second order moments for a non-white Gaussian input and consequently it is similar to Eq. (88); 
Eq. (95c) gives the second order moments for a white noise input and consequently formally 
coincides with Eq. (84). Eq. (95b) can be, then, obtained as follows 
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(97) 

where 

(98) 

where dZ is given from Eq. (86) in which we assume F =NT Zr and dZr is a summation of 
infmitesimal of different order given in a similar form to Eq. (75). It follows that 

d(Z®Zr) = (AZ+VNTzr)dt®Zr+Z®(ArZrdt+VrdB} = 

= (A® Illlr +12m® Ar){Z ® Zr) dt + 

+ (VNT ® 1111r) z~2J dt + (~m ® vr)(z ®dB) (99) 

Taking the stochastic average of both sides of Eq. (99), using the mode properties of process dB(t) 
and dividing by dt we obtain Eq. (95b). 

3.3.2 Solution of second order moment differential equations 

a) Method 1 

As shown in the previous section, using Kronecker algebra the differential Eqs. (88) governing the 

evolution of the second order moments is a set of ftrst order differential equations with 
deterministic forcing function; the cross-correlation vector between input and output. It follows that 
is formally identical to the differential equation of the deterministic case (given by Eq. (52)). 
Hence, in view ofEq. (55) the solution ofEq. (88) is 

m2 [ Z(t)] = 8 2(t) m, [ Z(O)] + f 8 2(t - <) V 2 F 2( <) dt (100) 

where F2(t) = E [Z(t) ® F(t)] and 8 2(t) is the fundamental matrix ofEq. (88), which is related, in 
view of the particular form of the matrix A2, to the matrix 8(t) by means of the following 

relationship 

(101) 
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Remembering that Z(t) is given by Eq. (55) and that F(t) is assumed to be a zero mean Gaussian 
process we can write 

= f 9 (t - p) (V UJ R2 (F(p ), F(t)] dp (102) 

where, for zero mean input processes, 

R 2 [F(p), F(-c)] = Vee {C2 [F(p), F(-c)]} = E [F(p) ® F(-c)] (103) 

Notice that for stationary case we have 

R 2 [F(p), F(-c)] = R 2 (-c- p) (104) 

it follows that Eq. (1 02) becomes 

That is the vector F2 can be evaluated by using a simple integral. Numerically F2 can be evaluated 
by using the trapezoidal rule 

00 

F 2 = tli L ~ -1 (llp) {(v ®In) R2 ((j- 1) llp) + e (llp) (v ®In) R2(j llt)} (106) 
j = 1 

Once the vector F 2 is evaluated, Eq. (88) the stationary solution is simply obtained by setting 

ri1-2[Z] = 0 in Eq. (88) and we have 

(107) 

For the non-stationary case it is not convenient to use the described procedure for the evaluation of 
the vector F 2(-c). A more suitable approach consists in approximating the elements of the input 
correlation vector R2[·] by an approximate function expressed in terms of two-dimensional 
orthogonal Chebyshev polynomials [38]. Thus 
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No Nl 

R2[F(p), F(t)] = R2[F(p), F(t)] = L ~ c .. T.(p') T.(t') kJ IJ I J 
(108) 

i=Oj=O 

where the normalized values t' and p' of 't and pare respectively defined by 

't 1 = __lL_ 1. 
't ' max 

p' = ~-1 
Pmax 

(109) 

and Tk(-) (k = i, j) are the Chebyshev polynomials which are given by following recurrence 

relationship 

Tn+l(x)-2xTn(x)+Tn-I(X) = 0 (110) 

with To(x) = 1, T1(x) = x. 

In Eq. (109) 'tmax = Pmax denotes the time in which the input correlation function attains significant 

values. 
The least-squares Chebyshev polynomial approximation R2[· ] of R2[·] results in the coefficients 

vector cij ofEq. (108) which are given by 

with 

~1 = cos e , ~2 = cos <i> 

a.. = (2/rc/ for i and j :;t 0 ; a.. = (2/rc2) fori or j = 0 
g g 

2 
aij = (1/rc ) for i = j = 0 

Substituting Eq. (108) into Eq. (102) we can write 

No Nl 

F 2('t) = L L Ji('t) {v ®In) cij T}t) 
i=O j=O 

(111) 

(112) 

(113) 

where the matrix Ji('t) can be evaluated in closed form solution by solving the following matricial 

integral 
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(114) 

Substituting Eq. (113) into Eq. (100) the second order moments of the response can be evaluated 
as simple convolution integrals. 

b)Method2 

This method requires the solution of Eq. (93). Since it is a first order differential equation, its 
solution can be written as follows 

- - [2] 1t 

m2 [z (t)] = 8 2 (t) ~ [z (0)] + 
0 

8 2 (t- t) v q2(t) dt (115) 

where 

- -[2] 
82(t) = 8 (t) (116) 

8 (t) being the fundamental matrix of differential Eq. (91) which can be evaluate by means ofEq. - -
(56) once the eigenproperties A and 'If of matrix A are known. These eigenproperties can be 
evaluated in closed form as follows [37] 

'I' 
0 

in which Ar and Vr are the eigenproperties of matrix Af' and 

(117) 

(118) 

Hence the presence of the filter equations modifies only the eigenvectors while the eigenvalues of 
the system and fllter do not change. This is due to the fact that the filter and the combined system 
can be considered as a cascaded composite system. 
For the numerical solution of Eq. (93) it is possible to proceed in two ways (see e.g. [37]). The 
flrst is to solve numerically the three differential Eqs. (95), which are the explicit form ofEqs. (91); 
the second is connected to the very similar form of the mathematical structure governing the 
evaluatj.on of the response of the state variables Z (t) and the second order moments m2 [z (t)]. It 
follows that it is possible to perform the numerical solution of Eq. (91) as follows 
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(119) 

where 82(~t) is the fundamental matrix given in Eq. (116) whose matrix 8 (~t) is given as 
follows 

(120) 

where 9r<~t) is the fundamental matrix of differential Eq. (95c) and 

9,,(&t) = No 9!(&t)- 9(&t) N,r = f' 9(&t- t) V NT 9,(t) dt : L(&t) V NT (121) 

The approximation of 8sr<~t) is evaluated assuming that 8lt) is a constant matrix in the step ~t. 

In Eq. (119) L2(~t) is a matrix of order [(2m+ Inr x 2m+ mc)]2, given as 

(122) 

The numerical evaluation of the operators which appear in Eq. ( 119) can be alternatively performed 

by the approximate Taylor's expansion too, that is 

(123) 

where N2 is an integer number that must be chosen according to stability and accuracy tests [27]. 

From Eq. (118) it is easy to see that the eigenvalues of A are the eigenvalues of the system and of 

the filter separately taken. It follows that in order to evaluate the critical time step, it is necessary to 
know the eigenvalues of the composite system, which we expect to deviate slightly from those of 

the two subsystems separately taken, and of the filter. 

3.4 Delta-correlated input 

In many problems of structural dynamics the load consists of a series of impulses occurring at 

random time and with random strength. Examples are loads due to vehicular traffic flow on 
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highway bridges [39, 40], or excitation due to earthquake [41-44]. These stochastic input 
processes can be described by delta-correlated processes. As showed in the Chapter two the most 
common delta-correlated process is the Poisson white noise process. 
Here the evaluation of the response moments of the following differential equation is treated 

Z = AZ + VW(t) (124) 

where W(t) is a vector of delta-correlated processes here assumed up to s-th order, that is 

In this equation qr(t) is an (2n)r order vector containing the strenght of order r of the process W(t) 
and Cr[·] is the vector of the correlations of order r of W(t) which for r = 1, 2, 3, ... can be 
evaluated as follows 

(126a) 

C2 [W(t1), W(t2)] = E (WCt1) ® W(S)]- E [W(t1)] ® E [W(t2)] = q2(t1) o(t1 - t2) (126b) 

C3 (W(t1), W(t2), W(~)] = E (W(t1) ® W(9 ® W(t3)]- q 1(t1) E (W(t2) ® W(~)) 

- E [W(t1) ® q 1(t2) ® W(~)]- E [W(t1) ® W(t2)) ® q 1 (~)- q 1(t1) ® q 1 (t2) ® q 1 (~) = 

(126c) 

If W (t) is a zero mean delta-correlated process up to s-th order, Eq. (52) does not have 
mathematical meaning and it has to be substituted by the following equation: 

dZ = A Zdt + V dL (127) 

where dL(t) is the so-called Levy white noise vector process. The process, dL(t) is not mean 
square differentiable everywhere; however, we can write formally 

dL(t) = W(t) dt (128) 

Extending the relationships of the one-dimensional case, it can be easily shown that the Levy vector 
process dL(t) has the following cumulants 
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ki[dL(t)] = 0; kr [dL(t)] = qr(t) dt (r = 2, 3, ... , s) ; 

k [dL(t)] = 0 (p = 1, 2, ... ) s+p 

(129) 

By taking into account of the relationships between moments and cumulants, it can be easily seen 
that, by neglecting infinitesimal of higher order than dt, the moments of dL coincide with the 
cumulants, that is 

mr[dL(t)] = E[(dL(t)YJ = kr[dL(t)] = ~(t)dt, (r=2,3, ... ) (130) 

Moreover, neglecting infinitesimals of higher order than dt, we can write 

[r) [r] [r) [s + p) 
(dZ) = V (dL) ; (r = 2, 3, ... , s); (dZ) = 0, (p = 1, 2, ... ) ; (131) 

It follows that in the series expansion of the increment of ll {z[rJ) we have to take into account of 
terms up to the s-th order, that is 

(132) 

Since, by neglecting infinitesimal of order greater of dt, the following relationships hold 

dZlrJ = (v~ ® zlrl) dZ = Qr, 2m (zlr - 1J ® ~J dZ 

k [r] ( ) ( .,. 12[km- 1]) {zlr- k] .,. 1[km]) V[k] (dLlkl) ,· 
d Z = Qr, 2m Qr - 1, 2m ® 12m • • · Qr- k + 1, 2m "" "" ""'2 

(1 < k ~ r, k ~ s) 
(133) 

s ( [rl) d Z = 0; (s > r) 

s +p ( [rl) d Z = 0; (p = 1, 2, ... ; (s + p) ~ r) 

Taking into account ofEq. (127) we can write Eq. (132) in the form 

min (r, s) 

ll (z[rl) = Ar z[r) dt + vr {zlr- 1] ® dL) + L vrk (z[r-k] ® .;~) (dL)[k] (134) 
k=2 

where 
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[r- 1] { [r- 1] ) A = A ® r- + 12m ® A 1 ; V = Q 2 12 ® V r ""2m r - r r, m m (135a) 

1 ( ) ( 1rk - 11 ) (l[r- kl V[kl) 
V rk = k! Qr, 2m Qr - 1, 2m ® 12m • · · Qr -k + 1, 2m ® 2m 2m ® (135b) 

Making the stochastic average of both sides of Eq. (134), taking into account the properties of 
vector dL and that 

(136) 

and dividing by dt we obtain the differential equations governing the evolution of the moments of 
every order in the form: 

(137) 

By using the multidimensional relationship between moments and cumulants given in the Appendix 
we can write the differential Eq. (137), in terms of cumulants as follows 

kr [Z] = Ar kr [Z] + vrrJ qr(t) ; 2 ~ r ~ s 

k [Z] = A k [Z] ; r > s r r r 

(138) 

where Ar is given in equation (135). This equation shows that the r-th cumulant only depends on 
the r-th vector containing the strenght of order r of the process W(t). Furtherome, since we have 
that 

k 1 [Z(O)] = 0 ; kr [Z(O)] = 0 , 'r;/r > s (139) 

only the first s-th cumulant are sufficient to characterize the response of a linear system subjected to 
a s-th delta-correlated input process. It follows that, since the r-th moment vector can be evaluated 
once the cumulant vectors until the r-th order are evaluated, in order to characterize the stochastic 
response of linear system subjected to s-th delta-correlated input, the first s-th differential equation 
(137) have to be solved. Indeed, the moment vectors of order greater than scan be evaluated by 
means of Eqs. (A.14) setting k5 + P [Z] = 0 with (p = 1, 2, ... ). 
In order to perform the numerical solution of Eqs. (137) and (138) the eigenproperties of Ar has to 
be evaluated. These quantities can be easily computed from the eigenvalues and eigenvectors of A 
as follows 
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(140) 

where 'I' is the matrix of eigenvectors of A and A is the diagonal matrix listing the eigenvalues of 
A. It follows that if m modes are taken into account in the deterministi)l.a,na1ysis, mr modes are 
taken into account in the stochastic analysis for the evaluation of the moments of order r. These 
modes are the combination of the first m modes of the deterministic analysis. The fundamental 
matrices 9r(~t) of Ar are related to the fundamental matrix of A by means of the following 
relationship 

8 (~t) = e[r] (~t) 
r 

(141) 

Eqs. (140) and (141) show that, by means of the knowledge of the eigenproperties of A, the 

corresponding eigenproperties of the matrix Ar can easily be evaluated without much effort. The 
numerical solution ofEq. (137) follows the step-by-step scheme given in Eq. (119) in the form 

min (r, s) 

IDr [Z(ti+ 1)] = e[r](~t) IDr [Z(ti)] + Lr(~t) L Vrk (mr- k [Z(ti)] ® ~~} Qr (ti) (142) 
k=2 

where 

The inversion of Ar can be avoided by using the following relationship 

Notice that for classically damped systems A and 'I' are simply given as 

= (-t:S+iO 0 ) 
A 1 -

0 --:S-iO 
2 

~- ( 1 ---8+i0 
2 

where i is the imaginary unit and Q is a diagonal matrix listing the damped radial frequencies. 

(143) 

(144) 

(145) 
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For a non-classically damped system a further complex eigenproblem should be solved; but it is 
more convenient to avoid the complex eigensolution and to evaluate the fundamental matrix and the 
load operator by means of the described truncated Taylor expansion as follows 

(146) 

(147) 

where Nr is an integer number that must be chosen according to stability and accuracy tests [26]. 
We want to emphasize again that for both classically and non-classically damped systems, using 
Eq. (142), the step-by-step procedure for evaluating moments of every order of the stochastic 
vector process Z is unconditionally stable, if the Tatrix Sr<~t) is evaluated in an exact form. 
Instead, using the approximate fundamental matrix 8r(~t) the step-by-step procedure becomes a 
s_onditionally stable one, and after simple algebra the stability criterion based on the spectral radii of 

· 8 (~t) can be written as 
r 

(148) 

where A.max, r is the maximum eigenvalue of Ar and, because ofEq. (140), is equal tor times the 
maximum eigenvalue of A. It follows that, in order to ensure stability, the time step has to be 
selected as 

~t = .-21L for N = 7 
4rro r (149) 

m 

Hence, in the stochastic analysis of non-classically damped systems, if the fundamental and loading 
operators are evaluated in approximate form, the time step must be selected equal to the r-th part of 
the time step for the deterministic case. This is not a real limitation; indeed, the forcing vector in the 
stochastic analysis is qr(t), that is a very smooth function varies much slowly than F(t), so that its 
frequency content is at very low frequency; on the other hand the natural frequencies of Ar are of 
order r-times the order of the natural frequencies of A. It follows that, with the same order of 
accuracy, the number of modes selected for the stochastic analysis has to be less than the number of 
modes for the deterministic analysis. 
Since the white noise processes can be considered as a delta-correlated process up to second order 
(or equivalently a normal delta-correlated process) we have that Eq. (137) is the natural extension 
ofEq. (84) to the case of non normal delta-correlated input processes. 
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Once the cumulants or the moments of order r have been evaluated, the correlations of Z can be 
obtained in the form [ 45] 

In this way the complete probabilistic characterization of the vector Z can be obtained. 

3.5 Filtered delta-correlated input 

The stochastic analysis of linear systems excited by non-Gaussian processes can be performed, 
similarly to Gaussian input, by means two different approaches. The first one requires all the 
correlation of the input, the second one the differential equation (excited by a delta-correlated 
process) governing the filtered input process. Similarly to the white noise input the two approaches 
are indicated as Method 1 and Method 2 in the following. 

a) Method 1 

IfF(t) is a non-Gaussian process, Eq. (124) has its own full mathematical sense and the differential 
of Z is a summation of infinitesimals of the same order. It follow that 

and consequently 

ri1 [Z] =Am [Z]+V E[z[r- 1J ®F(t)] r r r r 

where" and vr has been defmed in Eqs. (135) and 

E(ZI'-l](t) e F(t)] = f ... f 9 (t- T,.t) •.• 9 (t- <t) Vl'·ll 

E (F(tr _ 1 ) •.• F(t1) F(t)] dtr _ 1 ••• dt1 

(152) 

(153) 
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It follows that in order to evaluate E [z[r- 11 ® F(t)] we have to evaluate the averages at multiple 
times of order r of the input process vector F(t) or equivalently the correlation of the same order of 
F(t). Since the expressions of the correlations of the input become more complicated by increasing 
their order, this approach is not useful from a numerical point of view. This approach has been 
recently developped in [46]. 

b)Method2 

According to this method we can write F(t) as the solution of a set of differential equation namely: 

T 
F(t) = N Z/.t) (154a) 

(154b) 

It follows that in order to evaluate, the response moments we have solve the following set of 
differential equations derived from Eqs. (152) and (137) respectively 

where 

min (r, s) 

rilr[zJ = Ar,f mr[zJ + L vrk,f(mr-k [zJ ® ~) qk(t) 
k=2 

(155a) 

(155b) 

(156) 

The vector E [ Z[r- 11 ® zJ can be evaluated as the solution of a differential equation obtained as 
follows 

(157) 

By using for dZ and dZr their expression given in Eqs. (86) and (154b) and using the main 
properties of Levy process we have 
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d[z£r- 1J ®Zf] = {Qr- 1.2m (z[r- 21 ®12J[AZdt+VFdt]}® Zf 

+ Z[r- 1J ®(A Z dt + V dL} = A Z[r- 1] dt + V (z£r- 2l ® Z£21)dt (158) f f f r - 1, sf r- 1, sf f 

Taking the stochastic average and dividing by dt we obtain 

where 

E[z[r- 11 ® Z] = A E[z£r- 1J ® Z] + V E[z£r- 2J ® Z£21] 
f r- 1, sf f r - 1, sf f 

Ar- 1, sf = Ar -1 ® IIIIr + ~~ 11 ® Af 

Vr-1,sf = [Qr-1,2m (1;~2] ®VNT)]®Iffit 

(159) 

(160) 

Equation (159) involves the. evaluation of the stochastic average E [Z[r- 21 ® Z~21] it follow~ that to 
solve the differential Eq. (159) we have to evaluate the stochastic average of the kindE [Z[j] ® F[lJ] 
which by using the procedure before described leads to 

E[Z[j]®Z£1]] =A. E[Z[j]®Z(lJ]+V. E[zli-lJ ®Z[l+lJ] 
f Jl,sf f Jl,sf f (161) 

where 

A. -A· 1£lJ 1UJ A jl, sf - J ® mf + 2m ® l, f 
(162) 

and 

(163) 

A.l f = A. f ; V.l f = V. f J ' s j, s J ' s j, s 

Eqs. (161) represent a set of decoupled equations whose solution can be easily evaluated starting 
fromj = 1. Indeed in this case we have 

(164) 
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and for j = 2, j = 3, ... we have 

. [ [2] [l]] [ [2] [l]] [ [l]] 
E Z ® Zc = A21, sf E Z ® Zc + V 21, sf E Z ® Zc 

(165) 

It follows that in order to solve Eq. (159) we have to solve the sequence of differential Eq. (161) 

starting fromj = 1 and I= r- 1 untilj = r- 1 and I= 1. 

Equations (155a), (155b) and (161) are sets of first order differential equations whose numerical 

solution can be performed by means of the technique before described once the following transition 

and loading matrices can be evaluated as follows, respectively 

(166) 

[j] [l] [ ["] ] 
9j/, 5c(~t) = 9 (~t) ® 8r (~t) ; Lj/, sf(.M) = 8j/, sf(~t) - Ifm ® ~~ Ajl, sf 

3.6 Stationary input 

For stationary input the statistical moments are not time dependent quantities. It follows that the 

differential equations governing the evolution of these moments become a set of algebraic equation 

and the moments for both normal or non-normal delta-correlated input process from Eq. (137) can 

be obtained as follows 

(167) 

For filtered delta-correlated input process, according to the Method 1, we have from Eq. (152) 

(168) 

where E [Z[r- 11 ® F] must be calculate by solving a multiple integral; while, according to the 

Method 2, if the differential equations of the filter are known, we have, from Eqs. (155) and (159) 
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E[z[r- 1] ® Z] = - A-1 V E[z[r- 2] ® z[21] 
f r- 1, sf r- 1, sf f (169) 

Since the input process is a zero mean process (that is m 1[Zf] = 0) and consequently m 1[Z] = 0, 

the set of Eqs. (169) can be solved for r = 1, 2, ... , s starting from r = 2 . Indeed for r = 2 we 

have 

(170) 

and for r = 3 we have 

[ [2] ] -1 [ [2]] 
E z ® zf = -A2, sf V 2, sf E z ® zf (171) 

where E [Z ® Z(2l] can be obtained from Eq. (164) 

(172) 

Following the same procedure and by using Eqs. (164) and (165) it is possible to evaluate the 

statistical moments until the s-th order. Notice that the inverse matrices which appear in these 

equations can be easily evaluated by using the eigenproperties of the structural system and of the 

filter [37]. 
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3. 7 Application 

As an application in this Section the stochastic response of a simply supported beam excited by 

moving loads is considered. This model is correctly used for the evaluation of structural response 

of highway bridges subjected to traffic flow. 

The force arrivals at the beam are assumed to constitute a Poisson process of events and the force 

amplitudes are random variables. 
For clarity's sake, a simply supported beam of finite length L, that is loaded by a train of forces 

moving in the same direction, all with equal, constant velocity v is considered. The forces arrive at 

the beam at random times tk, which constitute a stationary Poisson process, with constant 

parameter A. > 0. 

jEI.m.c 
I 
I 

v(r-rKJ-1 

- ~*'..«4-'; 
,·1-
~:.~ 

Fig. E.l- Sketch of the bridge and its loadings. 

The vibrations of the beam due to this stream of forces are described by the following equation [47] 

N(t) 

E I wiY(x, t) + c w(x, t) + p A w(x, t) = L yk a::x- (t- tk) v] W(t- tk, tL) (E.23) 
k=l 

where w(x, t) denotes the transversal displacements of the beam, EI denotes the flexural rigidity of 

the beam, c denotes the damping coefficient, pA denotes the mass density of unit length, o(·) is the 

Dirac delta function, roman numerals denote differentiation with respect to spatial coordinate x, 

while dots denote differentiation with respect to time t. The amplitudes Y k are a family of identically 

distributed random variables, which are mutually independent and independent of the time instants 

tk. Finally, N(t) is a counting Poisson process. To account for the finite length of the beam, on the 

right-hand-side of (E.23), the window function W(t, tL) = U(t) [1 - U(t- tL)] appears, U(·) being 

the unit step function and tL = L/v the loading time. This loading formulation indicates that the k-th 

point load of magnitude Yk at location x = (t- tk)v is effective to the beam only when the time 

satisfies tJC: ~ t ~ tk + tL. 

Using the normal mode approach, the deflection w(x, t) can be expanded in the following form 

(truncated at n-th term): 
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n 

w(x, t) = L 'Pj(x) C)j(t) 
j = 1 
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(E.24) 

where 'Pj(X) are the normal modes of free vibration, depending on the boundary conditions, and 
C)j(t) are the modal responses or generalized coordinates. For a simply supported beam 
'Pj(x) = sin G 7t xI L). 

Performing the usual coordinate transformation, we obtain the following differential equation 
governing the j-th modal response: 

Ci.i(t) + 2<Xj ~ cj_j(t) + of C)j(t) = ~ Sj(t) (E.25) 

where m.; = G 1t I L)2 vEl I pA is the j-th radial natural frequency of the undamped structure, 
<Xj = c/2pA~ is the modal damping coefficient and M = pAL is the mass of the beam. 
The random forcing function Sj(t) in (E.25) is given as: 

N(t) 

Sj(t) = L Yt ~(t- tt)' '9(t) = sin (Oj t) W(t, tL) (E.26) 
k=1 

where nj = j7tv/L = j7t I tL. The process Sj(t) is a filtered Poisson process [48] and the deterministic 
function cpj (t- tt) describes the shape of k-th impulse which is a truncated sine function with 
period Tj = 2tL I j that starts at a random time tJt and with duration tL = j Tj 12. 
The specific relationship between tL and Tj suggests to express the loading function in a particular 
form [ 49]. Let us consider the following single undamped linear oscillator: 

(E.27) 

The response due to the first forcing term on the right-hand-side of (E.27) is a sine function with 
frequency nj which starts at time t = 0, that is: sin (Oj t) U(t). The response due to the second 
term is a sine function which starts at timet= tL, that is: (-l)i + 1 sin [(Oj (t-tL)] U(t- tL). A 
super-position of these two responses gives as solution the truncated sine function sin (Oj 't) 
W(t, tL), as shown in Figg. E.2 for the flfSt two modes. 
It follows that the process Sj(t) can be considered as the response of the following differential 
equation 

N(t) 

sj(t)+nfsj(t) = Oj[l;(t)+(-1~+ 1 l;(t-tu]; l;<t> = L, Yt~t-t0 
k=1 

(E.28) 

~(t) being a Poisson white noise process, that is a delta correlated process, characterized by the r-th 
correlation function as product of Dirac's delta functions, that is: 
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·1:1-r) a) 
!J, dl-r) 

Fig. E2- Solution of differential equation (5) as truncated sine function: 
a) first mode; b) second mode 

(E.29) 

By using the state vector approach, Eqs. (E.25) and (E.28), written for j = 1 to n (where n is the 
number of modes included in the analysis), can be expressed in the following matrix form: 

Z = AZ + v ~(t) + v(t) ~(t- tr) (E.30) 

where Z is the response vector in modal coordinates (of order m = 4n), given as 
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(E.31) 

and A is the dynamic matrix of order m x m, given as: 

In l; 
-x 

(E.32) 

A = [ ~ In l ; Aqs = [ (2~) In 
-u On 

In Eq. (E.32), Op and Ip are the zero matrix and the identity matrix of order p, respectively; m2, X 
and Q2 are diagonal matrices whose diagonal elements are mf, 2ajmj and Of, respectively. 
Moreover, the forcing vectors v and v(t) are given as 

[ 03n] V - . - ' 
01 

V(t) = U(t-!J.)[ ~; l (E.33) 

where 03n is the zero column vector of order 3n, while l and I are two influence vectors of order n 
given as: [T = (1 1 .. . 1], p = [1 -1 ... ( -l)n+l]. 

Eq. (E.30) can be considered to be formally equivalent to the following Ito stochastic differential 
equation 

dZ = A Z dt + v d')(t) + v(t) d')(t- tL) (E.34) 

where ')'(t) is a compound Poisson process and the formal derivative of')'(t) is the process ~(t). 
Using the extension of Ito differential rule for non-normal input process [50], we can write the 
moment equations of the response. As an example, the differential equations of the ftrst two 
moments are given as 

rilt[z(t)] = A rnt[Z] + AE[Y] V(t) 
(E.35) 

ri12[Z] = A2 rn2[z(t)] + AE[Y] (rnt[Z] ® V(t) + V(t) ® rnt[Z]} 

+ A.E[Y2] {v£2] + v£21(t) + [9(tL) ® InJ [v ® v(t)] + [lm ® 9(tL)] [V(t) ® v]} 

where V(t) = v + v(t). 
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More compact form can be obtained in writing the differential equations in terms of cumulants, that 
is 

k1[Z] = Ar k1[Z] + f 1(t) , (r = 1, 2, ... ) (E.36) 

where 

(E.37) 

f 1(t) = AE [Yl] {[~- glrJ(tu] v£r1 + [ 8(tr) v + v(t)] £rJ) 

Eq. (E.36) provides the non-stationary stochastic response of a beam under moving loads in terms 
of cumulants of every order. Because of the particular form of the forcing vector f1(t), Eq. (E.36) 
can be solved in closed form. Then, the r-th cumulant of the response for zero initial conditions is 
given as 

k1[Z(t)] = AE [Y1] Ar1 {[ glrJ(tr)- ~] v£r1 + [ glrJ(t- tL)- ~] [ 8(tr) v + v(t)] £rJ) (E.38) 

By using this equation, the transient response of a bridge subjected to a random stream of 
moving forces arriving with expected rate A. (constant) has been determined. The geometry of 
the bridge studied and the structural properties are defined by the following data: L = lOOm, 
EI = 4 x 1011 Nm2, m = 12,000 kg/m. The first radial frequency is m1 = 5.698 s-1 and the modal 
damping ratio assumed is 0.1. The weight of vehicles has been considered as a random variable 
uniformly distributed in the range 40 kN - 240 kN. The constant traffic speed is v = 25 m/s. The 
vehicle arrival rate, related to the average passage speed, has been calculated by the following 
expression [51]: 

A = 4 Amax (__y_) ( 1 - __y_) 
Vmax Vmax 

(E.39) 

where A.max = 0.5 s-1 is the maximum vehicle arrival rate (which corresponds to the capacity of 
about 1800 vehicles/h) and Vmax = 120 km/h is the maximum speed. For v = 25 m/s, we have 
A.= 0.375 s-1. The expected value E[W], the standard deviation ow the coefficient of asymmetry 
'YaLwl = k3 [W] I k2 [W]312 and the coefficient of excess 'Yelwl = ~ [W] I k2 [W]2 of the midspan 
deflection w are plotted versus time in Figs. 3-6, for zero initial conditions and including six modes 
for the analysis. 
The digital simulation method based on a Monte Carlo procedure (50.000 samples) has been 
applied to verify the results obtained by means of the proposed approach. The time instants tk of 
impulse arrivals has been determined by means of Poisson number generator. 
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Fig. E.3- Evolutionary expected value of midspan deflection E[w] by means of the proposed 
method (solid line) and the digital simulation method (dashed line). 
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Fig. E.4 - Evolutionary standard deviation of midspan deflection OW by means of the proposed 
method (solid line) and the digital simulation method (dashed line). 
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Fig. E5 - Evolutionary coefficient of asymmetry of midspan deflection ya(W) by means of 

the proposed method (solid line) and the digital simulation method (dashed line). 
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Fig. E.6 - Evolutionary coefficient of excess of midspan deflection ye(w) by means of the 

proposed method (solid line) and the digital simulation method (dashed line). 
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4 MULTIDIMENSIONAL NON-LINEAR SYSTEMS 

4.1 Numerical solution of non-linear differential equation for 
deterministic input 

In this section a method for numerical treatment of deterministic non-linear equation of motion is 

presented in order to introduce a numerical procedure very useful in stochastic analysis. 
Let us consider a non-linear system whose state differential equation can be written in the form 

Z = a(Z(t), t) + V(Z(t), t) F(t), t;?:; t0 (173) 

where t0 is the initial time of the motion, Z(t) is the 2n x 1 state vector and F(t) is the input vector 

of order f x 1. Numerical methods to solve non-linear differential equations has been proposed in 
literature (see e.g. [52]). In the follows the pseudo-force method [53-54] is described. According 

to last methods we replace the right hand side of Eq. (173) by power series representations. 

Adopting the Kronecker product notation, we write 

a(Z, t) = A(l)(t) zUl + A<2>(t) z[2] + ... + A<N>(t) z[Nl + ... 

Nt 
= L A<k>(t) z[kl(t) (174a) 

k=l 

(174b) 

where we have explicity retained terms through degree N 1 in the expansion of a(Z, t), and terms 
through degree N2 in the expansion of V(Z, t). That higher-degree terms in these expressions will 

not contribute to the response is taken in due course. According to Taylor series expansion we 

have 

(k) 1 [ T [k] ] 
A (t) = k! V z ® a(Z, t) z = 0 

(175) 

(k) 1 [ T [k] ] v (t)=k! Vz ®V(Z,t)z=o 

By using E4s. (174) we can write Eq. (173) in the form: 

Z = A(t) Z(t) + V(t) F(t) + FNL(Z, t) (176) 
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where 

(177) 

The solution ofEq. (176) can be written as follows [7] 

(178) 

where ZL(t) and ZNL(t) are the linear and non-linear contributions to the response respectively. 
These two terms can be obtained according in integral form to classical rules as follows 

ZL(t) = 9 (t- t0) Z0 + t 9 (t- t) V(t) F(t) dt 
Jo 

(179) 

~(t) = t 8 (t- 't) FNL('t) dt 
Jt0 

where Z0 is the vector of the initial condition and 9(t) is the so-called transition fundamental 
matrix. In Eq. (179) ZL(t) can be interpreted as the purely elastic response obtained by dropping 
out the non-linear term into Eq. (176), while ZNL(t) is the response of the linear system subjected 
to the non-linear pseudo-forces FNL(Z, t) and having zero start conditions. For time-independent 
coefficients we can solve the convolution integrals of Eqs. (179) by using the numerical technique 
proposed in Sect. 3. In particular, discretizing the time axis into small intervals of equal length .1.t, 
and assuming that the forcing vectors are constant in each step, we can write 

ZL (tj + .1.t) = 9 (.1.t) ZL (t) + L (.1.t) F L (t) (180a) 

ZNL (tj + .1.t) = 8 (.1.t) ZNL (t) + L (.1.t) FNL (Z(t), tj) (180b) 

Notice that the elastic response system given in Eq. (180a) can be directly computed, while the 
non-linear part ~L(t), as the term FNL appears, depends on the unknown state vector Z at each 
time step. Unless Z is computed FNL cannot be determined. But the computation of Z requires that 
the value of F NL be known. Therefore an iterative process is required to solve this problem. A 
possible strategy is the following: (i) compute the linear response ZL(t) once the vector of initial 
coordinates Z0 is given; (ii) compute the pseudo-force vector assuming as first approximation 
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(1) 
Z (t. + ~t) = ZL (t. + ~t) + ZNL (t.) 

J J J (181) 

(iii) evaluate the vector ZNL(tj + ~t) by means ofEq. (180b) and consequently Z(tj + ~t) by using 
Eq. (178); (iv) evaluate at i-th iteration the pseudo-force vector assuming 

(i) (i - 1) 
Z (t. + ~t) = ZL (t. + ~t) + ZNL (t. + ~t) 

J J J (182) 

(v) iterate till the convergence, in tenns of pseudo-force, is satisfied. 

4.2 Normal and non-normal delta-correlated input process 

In this section we study non-linear multidimensional systems to nonnal and non-nonnal delta­
correlated up the s-th order purely external excitation governed by the following differential 
equation 

M X + g(X, X) = F(t) (183) 

where g(X, X) is the non-linear restoring force vector. However a general discussion of non­
linear systems for both external and parametric excitations is described in the Chapter two. 
For purely external delta-correlated up to s-th order excitation F(t), Eq. (183), by using the state 
variable vector approach, can be written as follows 

dZ = ~z = a(Z, t) dt + V(t) dL (184) 

where Z is a vector of order 2n and dL is the multidimensional s-th order zero mean Levy white 
noise vector process (defined in Sec. 3.4). It follows that, for purely external excitation, we can 
write 

(185) 

This equation neglecting infinitesimals of greater order than dt can be written as follow 

.1 (zlrJ) = Q.. 2n (zrr- 11 ® a(Z, t)) dt + Vr (z£r- 11 ® dL) 

min (r, s) 

+ L V rk {zlr- k] ® r:~} (dL) [k] (186) 
k=2 
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where the matrices V and V k has been defined in Eqs. (135). Making the stochastic average of r r 
both sides of Eq. (186), taking into account of the properties of vector dL (given in Eqs. (129-
131) and (136)) and dividing by dt we obtain the moment differential equation of non-linear 
system excited by purely external delta-correlated input up to s-th order 

min (r, s) 

rilr [Z] = Q.. 2n E [ z[r- 1] ® a(Z, t)] + L Vrk (mr- k[Z] ® Qk(t)) (187) 
k=2 

Notice that for s = 2 we obtain the differential equation governing the evaluation of the r-th 
moment for normal delta correlated (the white noise) input. 

4.3 Filtered normal and non-normal delta-correlated input 
process 

Let us consider a structural non-linear system excited by a non-white Gaussian or non-Gaussian 
input. In this case Eq. (173) which describe the motion of the structure for both external and 
parametric excitation has its own mathematical meaning, that is 

dZ = a(Z(t), t) dt + V(Z(t), t) F(t) dt (188) 

It follows that 

(189) 

Making the stochastic average of both sides of Eq. (189) and taking into account Eq. (188) and 
dividing the results by dt we can write 

rilr [Z] = Q., 2n E [z[r- 11 ® a(Z(t), t)] + Q., 2n E [z[r- 11 ® V(Z(t), t) F] (190) 

which represents the differential equation governing the evaluation of the r-th moment. 
The solution of Eq. (190) requires the stochastic average between the response and the input. 
These quantities are very difficult to evaluate for a general stochastic forcing function. It follows 
that the forcing function vector is assumed as the solution of a first order system of linear 
differential equations, which represent the filter differential equations, forced by a delta-correlated 
up to the s-th order input vector process. It follows that 

(191) 

Associating Eq. (191) to Eq. (188) we have a set of 2n+f non-linear differential equations with 
external forcing function. This property is more evident if it is possible to set 
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a(Z(t), t) = A(Z(t), t) Z (192) 

and consequently we have 

(193) 

where 

(194) 

It follows that operating in similar way to the case treated in the previous section we have the 

moment differential equations in terms of variable vector Zc which are similar to Eq. (187), that is 

min (r, s) 

+ L V c, rk (mr- k [Zc] ® qk(t)) (195) 
k=2 

Notice that for both purely external and parametric excitation the moment differential equation of 

structural system excited by a filtered delta-correlated input have the same mathematical form. 

4.4 Multidimensional quasi-moment and cumulant neglect 
closure techniques 

In some structural problems the vector a(Z, t) is expressed in a polynomial form, this happens, for 

example, in the case of geometrically non-linear system modelled by using the finite element 

method (see e.g. [7, 8]). In other structural problems the vector a(Z, t) can be expressed, with 

good accuracy, by the Taylor's series expansion given in Eq. (174). It follows that, in these cases, 

substituting Eq. (174a) into Eq. (187) the differential equations governing the evaluation of the 

moments can be written as follows 

N1 min (r, s) 

rilr[Z] = Armr[Z]+ L Ar,/mr-1+J[Z]+ L Vrdmr_k[Z]®~(t)) (196) 
1=2 k=2 

where 

I ..Jr- 1] A(l) 
Ar = Ar - 1 ® 2n + 12, ® 

(197) 

A = £\ 2 (I[r- 11 ® A <k>) r, k 'LI, n 2n . 
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Eq. (196) reveals a clear mathematical structure governing the moment equations of every order of 
the response of non-linear systems excited by external excitations. In particular this equation 
shows that the moment equation approach gives a linear infmite hierarchy of moment equations, in 
the sense that the equation of the r-th order moment involves moments of lesser and higher order. 
Notice that Eq. (196) becomes a very effective one, from a computational point of view, when the 
vector a(Z, t) is expressed in a polynomial form. 
Since for non-linear system the number of moments which we have to evaluate the exact 
probability density function is infinite and the numerical problems increase with tlie order r of the 
moment of the response, we have that, from a computational point of view, the solution of Eq. 
(196), which involves matrices of order (2n)r x (2n)r is very hard if r is big. In order to reduce the 
number of variables, neglect closure techniques are usually adopted. 
The phylosophy of these techniques requires: 

(i) express the probability density function (or alternatively the characteristic function) as a 
series expansion. If the Edgeworth series or the Gram-Charlier series is adopted we have 
respectively (see Appendix): 

[ ~ 1 T {-112)m {-1/2 )~o Pz(z; t) = 1 + ~ 7f b. [Z] ~ H. Iz (z- IDz) Pz(z; t) 
j = 3 J. J J 

(198) 

(199) 

where I.z and 111z are respectively the covariance matrix and the mean value vector of the stochastic 
variable vector Z; H}") are the multidimensional Hermite polynomials defined in Eq. (A.35) and 
p~(z; t) is the normal multidimensional probability density function 

0 [ l. T -1 ] Pz(z; t) = fl exp - 2 (z -lnz) ~ (z -lnz}J 
(21t)n!l Det {Iz) 1 (200) 

In Eq. (198) bj[Z] are the j-th quasi-moment vector, while in Eq. (199) h.[Z] are the multi-
dimensional Hermite moments J 

(201) 

ii) truncate the expression series given in Eqs. (198) and (199) taking into account of the 
first N terms; 

iii) relate the statistical moments mr' of order greater than N to statistical order of lesser 
order, by means of non-linear algebraic relationships between moments and quasi-moments and 
between moments and cumulants in the quasi-moments and cumulants neglect closure respectively; 
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iv) solve the non-linear set of differential moment equations by using the pseudo-force 

method described in Sec. 4.1. 

Adopting the quasi-moment neglect closure of order N we relate the moments of order greater than 

N, with the lesser ones by means of the following relationship obtained from the (A.85) 

r- 1 

mr = - (-l)r L Br, k[(m2- mf1)[a,k] ® mk] 
k = 0, 2 (r = even) 
k = 3, 5 (r = odd) 

r 
- (-1)I L Br, k {[(m2- m~J)[a,~ 

k = 0, 2 (r = even) 
k = 3, 5 (r = odd) 

...... 
where <Irk= (r- k)/2 and the matrices B k are defined in Eq. (A.70). r, 

(202) 

In the cumulant neglect closure we have to set kr = 0 \lr > N obtaining from Eqs. (A.14) and 

(A.17) 

Pr, 2n ~ (r- 1)! ( "' ) 1 
mr = --1-£.,. 'I( _ 1 _.)! kr-i®ki kr=O'v'r>N 

r. i = 1 1. r 1 . 
r>N (203) 

If the latter neglect closure is adopted we have to lay the quasi-moment and the cumulant by means 

of relationship (A.22) in order to obtain the Edgeworth series expression in terms of cumulants. 

Once the neglect closure technique is chosen and the relationships between moments of order 

lesser and greater than N is established we can perform the numerical solution of Eq. (196) by 

using the procedure described in the Sect. 4.1 for deterministic input writing 

(204) 

where 

min (r, s) N1 

~.L = L Vrk(t)(mr-k[Z] ®qk(t))+ L (Ar,k mr-1+k [Zl)lr-1+k ~N 
k=2 k=2 

(205) 

Nl 

~.NL = L (Ar,k mr-1+k [ZJ)Ir-1+k>N 
k=2 
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The numerical solution ofEq. (204) can be easily evaluated because of between the fundamental 
matrix ofEq. (204) and the fundamental matrix of detenninistic case by the following relationship 
holds 

[r] 
9r(t) = 81 (t) (206) 

Eq. (204) reveals a perfect similarity to Eq. (176); it follows that the numerical solution of both 
equations can be performed in a similar way. 

4.5 Hermite moment neglect closure technique by using the 
standardized variables 

The quasi-moment and the cumulant neglect closure techniques are suitable for polynomials non­
linearities or for non-linearities which can be expanded in Taylor's series. In the most general cP 
ofnon-linearities we have to evaluate the stochastic averages E [Z[r- 1] ® a(Z, t)] which appear .n 
the moment differential equations (187) and (190). In order to do these averages by using the 
truncated Gram-Charlier expansion (199) we can write 

E (zlr -11 ® a(Z, t)] = 'l'o, r- 1 (mz, :tz, t) + f vir- 1 (mz, :tz, t) hj [Z] (2 
j= 3 

where 

Vo. r - 1 ( mz, :tz, t) = E0 ( zlr- 11 ® a(Z, t)] = 

(208) 

r · · · r [zb- I] e a(z. t)] Hf (E7)12 (z -mz)) ~(z;t) dz1 ••• dz:z. 

where EO[·] means stochastic average with normal probability density function. 
By substituting Eq. (207) into Eq. (187) or (190) and by using the relationship between the 
statistical moments and the coefficients Cj, strictly related to the quasi-moments (see Eq. (A.68)) 
we have a set of 2n non-linear differential equations. 
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The main drawback of the quasi-moment, cumulant and Hermite moment neglect closure before 
decribed is due to the non-linearity of moment differential equations due to the neglect closure 
technique adopted. In Sees. 2.2 and 4 it has been shown that operating the quasi-moment or the 
Hermite moment neglect closure in terms of standardized variables we lead to a set of linear 
differential equations instead of a set of non-linear differential equations. Here we want to extend 
these techniques to multidimensional systems. 
In order to show this we introduce the multidimensional modified standardized response process 
defmed in Eq. (A.74), which is a vector of order 2n defmed as follows (with argument omitted) 

(209) 

"' where mz is the mean value vector of actual response process Z(t) and Iz is a diagonal matrix 
whose elements are the diagonal elements of the covariance matrix I.z. 
I_t follows that we can write the probability density function of the process Z(t) in the form 
·-

I "' -1/2 I ( 2n ) 
pz(z; t) = J :tz (Z - mz) Pz•(z*; t) = J] dz;. Pz•(z*; t) (210) 

where J I · I is the Jacobian of the translation and a~i are the elements of the principal diagonal of 
.11e matrix I.z. Furthermore according to the modified Gram-Charlier expansion (see Appendix) 
\t>B'can write the non-Gaussian probability density function Pz.(z*; t) by means of the following 
expansion 

(211) 

•;here H(·) is the multidimensional Hermite polynomials and ~.,..(z•; t) is the multidimensional 
standardized normal probability density function of vector process Z* (of order 2n) given as 

2n 
_(l (z'•·t) = _l_exp[-lz•Tz*] = _L_fi exp[-l(z*) 2] Vi• ' (27t)n 2 (27t)n i = 1 2 

(212) 

In Eq. (211) the coeffici~nts hj [Z*] are the multidimensional Hermite moments which are strictly 
related to the coefficient Cj of the modified standardized vector process by means of the following 
relationships 

(213) 

By using these relationships we can write (see Appendix) 
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ho [z*] = 1; h1 [z*] = o; hj [z*] = <-.~~ ( ± Bj. k JLk [z*]). j > 1 (214) 
J. k = 0, 2 (j =even) 

k = 3, 5 (j = odd) 

where Bj, k G > k) are matrices of order (2n~ x (2n)k defined in Eq. (A.36) and Ilk [Z*] are the 
central moment vector of the modified standardized response process given in Eq. (210). 
Substituting Eqs. (211) and (214) into Eq. (210) we obtain the probability density function in 
terms of standardized variable vector as follows 

pz(z; t) = (ft ~) pz•(z*, t) = 
i=l azl 

(IT ~)I 1 + f [<-.~~ HJ (Z*) ( ± Bj, k Ilk [Z*])~\ p~.(Z*; t) (215) 
i= 1 O'lJ \ j = 2 J. k=0,2 (j =even) I 

k = 3, 5 (j = odd) 

To evaluate pz(z; t) in the expansion given in Eq. (215) it needs to know mz ~z and the central 
moments JLk lZ*]. ' 

Since the following relationships hold 

mz<t) = m1 [Z] , Vee (Iz<t)} = IJ.2 [Z] = m2 [Z] - m~21 [Z] 

..... 
we can evaluate 1Dz(t) and Iz(t) once the following differential equations are solved 

m1 [Z] = E [a(Z, t)] 

ril2 [Z] = <lr. 2n E [z ® a(Z, t)] + t V£21 Q2(t) 

(216) 

(217a) 

(217b) 

For the standardized response process vector given in Eq. (209) the central moment vector are 
related to the moments as follows 

Jlo [z•J = 1 • IJ.1 [z*] = o . 

("-1/2) [2] 
1J.2 [z•] = ~ (m2 [Z] - m~21 [ZJ) t:- Vee (hn) , 

(218) 
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It has to be emphasized that since~ is not the real covariance Ill!trix we have J.L2[Z*] '!!/:Vee (12.n). 
It follows that , on the contrary of the one-dimensional case, h2[Z*] '!!/: 0 and the lower limit of the 
summation ofEq. (215) starts from two. 
In order to obtain the differential equations governing the evolution of the central moments we use 
Eq. (209) to write 

("'1/2)"' "'1/2 "'* 
dZ. = .d. Iz Z* + l:z dZ!. + ritz m m m (219) 

It follows that taking into account Eq. (184) we have 

"' "'-1/2 [ {"'1/2"' ) ("'1/2)"' ] "'-1/2 
dZ* = Iz a l:z Z* + mz, t -~ l:z Z*- ritz dt + l:z V(t) dL (220) 

and according to Eq. (185) we can write 

(221) 

By using the procedure described in Sec. 4.2 and neglecting infinitesimal of greater order than dt 
we obtain 

(222) 
[ "'- 1/2 ] 

+ <1. 2~ (Z*l- 11 ® l:z V(t) dL 

min(r, s) 
+ L Srk(t) [(Z*)[r-k] ® ylkl(t)] dL[k) 

k=2 

Making the stochastic average of both sides of Eq. (222) and dividing by m we have 

"' { "' [ 1] ["- 1/2 ("1/2"' J.~) . "' Jir [Z*] = <1. 2n E (Z*) r- ® l:z a l:z Z* + mz, t ~ - R,(t) J1r [Z*] 

min (r, s) 
- R;(t) (~Jr _ dZ*] ®ritz)+ L Srk(t) (J.Lr _ k [Z*] ® (ylkl qk}]; r > 2 (223) 

k=2 

where the matrices Srk(t), R1(t) anc;l R;(t) are defined as follows 
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{ ["'- 1/2 ("'1/2 )~} 
R~(t) = CJr. 2n ~~~ 11 ® :Ez (t) ft" :Ez (t) 'j (224) 

" [r- 1] [ "'- 1/2 ] 
Rr(t) = CJr, 2n 12n ® :Ez (t) 

Notice that to obtain the complete statistical solution it needs to associate Eqs. (217) to Eqs. (223). 

In order to express explicity the right-hand sides of Eq. (223) in terms of the central moments and 

to form a closed set of differential equation we have to evaluate 

("'1/2 )~ ........ "'* ...... 
® a :Ez z + mz, t dz1 ... dz2n (225) 

~hich by using Eq. (211) becomes 

{ "' [r 1) [~- lf2 ]} ( ~ } 
E (Z*) - ® :Ez (t) a(Z, t) = 1'\o, r _ 1 mz, :Ez, t 

+ i: 11I r _ 1 (mz, iz. t) hj [cz•)] (226) 
j=2 

"' where 1'\o, r- 1C ·) and 1'\j, r- 10 are non-linear explicity function of Iz and mz. given as: 

("'1/2 )~ ....... "* "* ®a :Ez z + mz, t dz1 ... dz2n 

(227) 

'! _ [r- 1] - !!_ "'•· * [r- 1] ( "' ) [ "' 1/2 ] 100 100 

1'\J,r-1 mz,:Ez,t- l2n ®:Ez (t) -00 ••• -oo Pz.(Z ,t)[(z) 

("'1/2 )'l T ,.. ,.. 
®a :Ez z* + mz, t ~ Hj (z*) dZt ... dz2n 
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The integrals which appear into Eq. (227) can be seen as the stochastic average of non-linear 

functions with normal standardized probability density function. Substituting Eq. (226) into Eq. 

(223), taking into account ofEq. (214) and operating a Hermite moment neglect closure of order 

N, we have 

iLr [z*] = <1. 2n (11o. r- 1 (mz, iz. t} + f <-.~~,I r -1 (mz, iz. t) 
j = 2 J. 

x[ ± Bj,kJ.I.k[Z*J]}-R~(t)llr[Z*] 
k = 0, 2 U = even) 
k = 3, 5 U = odd) 

(228) 

min (r, s) 

-R;(t)(J.Lr-1[z*]®mz(t))+ L Srk(t)[J.Lr-k[z*]®(V[klqk}], 2<rSN 
k=2 

This equation after some algebra can be written in a more suitable form as follows 

where 

it. [ Z'] = Q,, 2n [ 11o., 1 (mz, iz. I)+;~~':,_ 1 (mz, iz. t) 11; [Z'J] 

- R~(t) llr [ Z*] - R;(t) (J.Lr- 1 [ Z*] ® rilz(t)) 

min (r, s) 

+ L Srk(t) [J.Lr -k [z*] ® (y[k] qk}] , 2 < r s N 
k=2 

:r ( ..-. } . ~ _L T ( ..-. } .. "(j,r-1 mz,I.z,t = (-l)J L.J k' 'llk,r-1 mz,I.z,t Bk,J• 
k = 2, 4 U = even) · 
k = 3, 5 U =odd) 

j>2 

(229) 

(230) 

As stated in the one-dimensional case we have that the Hermite moment neglect closure here 

presented, gives a set of differential equations which is non-linear in mz(t) and I.z(t) but linear in 

J.l.r [Z*]. Since mz(t) and I.z(t) depend on m1[Z] and ~[Z] which are unknown quantities whose 

evaluation depends on the probability density function Pz (z; t) strictly related, by means of the 

relationship (215), to Pz• (z*, t), we have the two step procedure solution described in Sec. 2.4, 

that is 
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(i) evaluate m1[Z] and m2[Z] by solving Eqs. (217) assuming a Gaussian neglect closure 
technique; ...... 

(ii) solve the set of linear differential Eq. (229) assuming for mz(t) and Iz(t) the functions 
evaluated by means of the Gaussian closure; 

(iii) recalculate m1[Z] and m2[Z] by solving Eqs. (217) where 

E [a(z, t)] : [ .• .J~ a(z, t) pz(z; t) dz, ... dz:a.: 

E [Z ®a (z ;t) 1 : 1~ .. J~ z @ a(z ;t) pz(z;t) dz1 ... dz2n 

are evaluated by using for pz(z; t) the expression (215); 
(iv) solve the linear set of differential Eq. (229). 
(v) come back to (iii) and iterate until the accuracy required is obtained. 

(231) 

It has to be emphasized that introducing the modified standardized variable we have to solve the set 
of [2n + (2n)2] non-linear differential Eqs. (217) and the set of [l:I=3 (2n)i] linear differential Eqs. 
(229) instead of the set of [l:I=l (2n)i] non-linear differential equations. It is worth noting that 
because of it is very simple to evaluate the transition matrices of these differential equations it is 
possible to use the numerical procedure described in this Chapter. Alternatively, methods available 
in literature can be used (see e.g. Chapter four or Ref [52]). 
Notice that for polynomials non-linearities or for non-linearities which can be expanded in 
Taylor's series the Hermite moment neglect closure leads to same results than the quasi-moments 
closure with standardized variables. 
Furthermore for stationary input we have that fb.ratat?stical moments are not time-dependent 
quantities, it follows that E[·] = 0, rilz = 0 and d \.I:z (t)/ dt = 0 and the differential Eqs. (217) and 
(229) become of the algebraic ones. 

4.6 Stochastic linearization 

Due to the same reasons arised in the Sec. 2.5, here this method is applied only in the case of 
purely external white noise excitations. So the non-linear systems considered are characterized by 
differential conditions of motion of the following type 

dZ = a (Z, t) dt + v(t) dB(t) (232) 

Following the stochastic linearization method, Eq. (232) is replaced by the following linear one 

dZ = [A(t) Z + v(t)] dt + V(t) dB(t) 
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where the components of the matrix A(t) and of the vector v(t) are choosen in such a way that the 

differences which arise passing form Eq. (232) to Eq. (233) are minimized in mean square value. 

These differences can be expressed by the following vector 

e = A(t) Z + v(t) - a (Z, t) (234) 

and the minimization of their mean square values with respect to the components of A(t) and v(t) 

implies: 

(235) 

(236) 

where VA is a matricial differential operator whose (i, j)th element is the partial derivative with 

respect to the (i, j)th element of A(t) and V v is a vectorial differential operator whose i-th element 

is the partial derivative with respect to the i-th element of v(t). 

The solution of Eqs. (235) and (236) give the following expressions 

(237) 

v(t) = E [a (Z, t))- A(t) E [Z] (238) 

As it can be seen from these relationships, the linearized terms depend on some statistical moments 

of the response that, now, can be considered as a Gaussian process. So, only the first two order 

moments need for the characterization of the response. It is easy to verify that these moments can 

be evaluated by means of an iterative method. 

4. 7 Application 

As an application of non-linear system let us consider the following differential non-linear equation 

(E.39) 

which represents the equation of motion of a rigid structure with a Resilient-friction base isolator 

system (R-FBI) (Fig. E.7) [55, 56], subjected to a white noise excitation at its base. In Eq. (E.39) 

ro is the natural frequency of the rubber element of the base isolator,~ is the damping ratio, g is 

the acceleration of gravity, ll is the dynamic friction coefficient and sgn (·)is the signum function. 
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m 

Fig. E.7- Schematic diagram of R-FBJ; o; =kim, 2gro = elm. 

According to the procedure before described, we write Eq. (E.39) as follows 

dX = x 
dt 

dX = -ro2 x- 2~rox- Jlg sgn (X)+ W(t) 
dt 

or in compact form 

Z = AI Z + a2(Z(t), t) + V W(t) 

where 

z = rzl] = [~]; AI = [ 0 1 l; 
Z2 x -ro2 -2~ro 

a2(Z(t), t) = [ 0 ] ; V = [ 0 J 
- Jlg sgn (VT Z) 1 

G. Muscolino 

(E.40) 

(E.41) 

(E.42) 

Because of the non-linearity is odd and the input process is a zero mean one, all odd moments of 
the response are zeros and the modified standardized variable vector can be defined as follows 

.... [z~] [ x 1 ax ] "'-In "'-112 [ 11rw o ] Z* = = = :tz Z ; :tz = ~A z; X I ax o llcrx 
(E.43) 

where oi = E [X2] and al: = E [X2]. It follows that 
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(E.44) 

Substituting these relationships into Eqs. (E.40) where X= Z1 and X= Z2 we obtain after very 
simple algebra 

(E.45) 

In order to evaluate the moments of the response we can particularize Eq. (223) for this case. 
However, since the Kronecker algebra is very efficient for a formal point of view and for systems 
having a lot of degree-of-freedom, in this case it is more convenient to evaluate the moment 
differential equations by using the traditional Ito rule. That is to expand the increment of a real ......... ........ 
valued scalar function of stochastic processes <I>(ZI, Z2) into a Taylor series taking into account 
infinitesimal of order dt. It follow that we have 

(E.46) 

........ ........ 
Substituting into this equation dZ1 and dZ2 given by Eq. (E.45), applying the stochastic average 
and remembering that dL is an infinitesimal of order (dt)l/2 we can write the following differential 
equation where only infinitesimals of order dt appear 

(E.47) 
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Generally we can write 

(E.48) 

It follows that in Eq. (E.47) the following averages appear 

(E.49) 

( ) ....... ....... 
PZ~ z; z~. zi; t being the joint probability density function of the processes zl and Zz, that can be 

represented by the modified Gram-Charlier expression as follows (see Eq. (211)) 

where Cij = E {Hi [z~] Hj [z~} and Hk [i*] is the k-th Hermite polynomial (see Appendix). 

Substituting Eq. (E.50) into Eq. (E.49) we have 

~ 1 ...... 0 {""*" [""*]} o {"'*II [""*l (""*)} + .£.. -:;-:rCij E Z1 Hi Z1 E Zz Hj Zz.J sgn Zz 
. . l.J. 
l.j 

i+ j =2 

(E. 50) 

(E.51) 

where £0[·] means stochastic average with normal one-dimensional probability density function 

~.(z*; t). A method to evaluate these average has been recently proposed [57]. 

Notice that in order to apply the procedure described before we have to evaluate ax, ax and 

E[X X]. In order to do this by applying the Ito rule to the function <j>(Z1, Z2) =«X, X) we can 

write the following differential equation 

crx = 2E[X X] 

E [X X] = oi- co2 oi- 2 ~roE [X X]- jlg E [X sgn {X)] (E. 52) 

cri = - 2 o:Jl E [X X]- 4 ~rooi- 2 jlg E [X sgn (X)]+ qz(t) 
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According to the philosophy of the iterative procedure before obtained we can evaluate to the first 

iteration oi, E[X X] and ai by using a Gaussian closure. However to simplify the numerical 

procedure we can approximate the jointly Gaussian probability density function as follows 

P~x (x, x; t) = p~ (x; t) p* (x; t) (E.53) 

It follows that the quantities which appear in Eq. (E.52) become 

E [X sgn X] = 0 ; 

(E. 54) 

E [X sgn (X)] = crx E0 [X sgn (X)] 

= 1 100 

X sgn (X) exp [- L] dx = crx ,.a vzn crx ..., 2ai v n 

obtaining a set of non-linear differential equations. In the successive iteration we can evaluate 

E [X sgn (X)] by using the modified Gram-Charlier expansion 

( . ) 1 • • ("* ..... ) Pxx· x, x; t = --Pz" "z z~> z2; t 
CJX CJX I 2 

(E. 55) 

where PZ: z; (z~, z;; t) is given in Eq. (E.50) obtaining 

(E.56) 

........ ......... .......4 ....... 3 ....... ........2 ....... 2 "'* ......... 3 ....... 4 

As an example setting $(ZI, Z2) equal to Z1, Z1 Z2, Z1 Z2, Z1 Z2, Z2 we have all the fourth 

order moment differential equation. 

If Hermite moment closure of the fourth order is adopted we have to assume Cij = 0 for i+j > 4. 

According to general theory presented in the previous Section we can relate Cij for i+j = 2, 4 with 

the central moments of lower or equal order. It follows that Eq. (E.47) become a set of linear 

differential equation into the fourth order moments and non-linear CJx and CJ){, indeed by using the 

relationships (A.47) we can write 
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"' ["'* 2] c2 o = E z1 - 1 = o 

"' ["'* 2] Co 2 = E Z1 - 1 = o 

(E. 57) 

"' ["'* 4 ] ["'* 2] Co4 = E Z2 - 6E Z2 + 3 

where 

["'* 2 ] ["'* "'*] 1 ° [ ..... * 2] E Z1 = 1 ; E Z1 Z2 = --E [X X] ; E Z2 = 1 
O"x crx (E. 58) 

The some procedure can be applied if a sixth order Hermite moment neglect closure is adopted. 
In Fig. E.8, for a stationary white input process, the moments E [X2], E ['X2], E [X4], E [X2 :X2] 
and E [X4] evaluated by means of a Gaussian closure, a fourth and sixth neglect are compared 
with the Monte Carlo simulation [57]. These Figures show that increasing the order of Hermite 
moment neglect closure increases the accuracy of the response. 
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APPENDIX 

A.l Relationships between multidimensional moments and 
cumulants 

Let Z(t) be a stochastic process; its probabilistic description at a fixed timet can be obtained by 
means of the knowledge of the probability density function Pz(z; t) or by its Fourier transform that 
is the so-called characteristic function, defined as 

M,z(O; t) = E[exp (- i ~ Z)] = f~ Pz(z; t) e-i., dz 

where 1'} is a real parameter, i is the imaginary unit, and E [·]means stochastic average. 
A Taylor expansion of the characteristic function gives 

hlz(t}; t) = 1 + l <-.i/ mj [Z] ~ 
j = 1 J. 

(A.l) 

(A.2) 

where mj [Z] is the so-called moment (or statistical moment) of order j of the random variable Z(t), 
that is 

[ ·] 100 

• [d M (1'}· t)] mj [Z] = E Z1 = Pz(z; t) -z? dz = ~ z j ' 
-00 <-d dt'} ~=0 

(A.3) 

A different representation of the characteristic function can be made by introducing the so-called 
cumulants or semi-invariants kj [Z] in the form 

hlz(t}; t) = exp { l <-.~i kj [Z] t}j) 
~ = 1 J· 

where kj [Z] is the j-th coefficient of the Taylor expansion of the log-characteristic function 

k. [Z] = ~[J In Ml_(t}; t)] 
J (-ii d-(}1 

~=0 

(A.4) 

(A.5) 

moments and cumulants are related each other by means of non-linear algebraic recurrence 
relationship (with argument omitted), 
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ml = kl 
m2 = ~+kl ml 
m3 = ~ + 2 ~ m1 + k1 ~ 
m4 = k4 + 3 ~ m1 + 3 ~ ~ + k1 ~ 
m5 = k5 + 4 k4 m1 + 6 ~ ~ + 4 ~ ~ + k1 m4 (A.6) 

~6 = k6 + 5 k5 m1 + 10 k4 ~ + 10 ~ ~ + 5 ~ m4 + k1 m5 

where the coefficients in Eq. (A.6) are those of the Tartaglia triangle. From Eqs. (A.1), (A.2) and 
(A.4), it is evident that the complete probabilistic description of the stochastic process Z(t) at a 
fixed time t can be obtained indefferently by means of the knowledge of its probability density 
function or of its characteristic function or of its moments and/or cumulants of every order. 
Many physical problems have small values of higher order cumulants and, for normal (Gaussian) 
processes they are exactly zero for order greater than two, thus in these cases the first cumulant 
k1[Z] (mean value) and the second cumulant ~[Z] (variance) fully define the stochastic process 
Z(t) from a probabilistic point of view at a fixed time t. The moments of order greater than two can 
be evaluated by means of the following relationships 

(A.7) 

A stochastic vector process Z(t) can be characterized by means of the n-dimensional probability 
density function or by the n-dimensional characteristic function 

where '6 is an n-vector of real parameters (if n is the order of the vector Z). 
A Taylor expansion of the characteristic function gives 

Mz('6; t) = 1 + i <-.i~ mJ [Z] ,m = 1 + i <-.i~ ,u{ mj [Z] 
j=l J. j=l J. 

(A.8) 

(A.9) 

where m. [Z] is the vector of order ~ collecting all possible moments of order j of the random 
J 

process zi (i = 1, 2, ... , n). In Eq. (A.9) the exponent into square brackets means Kronecker 
power and the symbol ®means Kronecker product [33, 34] (see also Chapter two, Appendix A). 
The vector of moments of order r of the vector Z can be obtained by the characteristic function as 
follows 
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_ 1 [ [r] . ] m [Z] -- V ... Mz(-6, t) ... _ 0 r (-i)r v v- (A.lO) 

where V, is the derivative vector defined as 

(A.ll) 

A different representation of the characteristic function can be made by introducing the so-called 
cumulants or semi-invariants or order r, kr [Z]. It follows that Eq. (A.9) can be rewritten in the 

form 

( oo · ) (oo · T ) ·J T [j] ·J UJ 
Mz(-6; t) = exp L <-.1! kj [Z] '6 = exp L <-.1! '6 kj [Z] 

. 1 J· . 1 J. J= J= 
(A.12) 

The entire set of cumulants of order r can be obtained in compact form as folows 

(A.l3) 

Inserting Eq. (A.12) into Eq. (A.lO), after some very tedious algebra, we obtain the relationships 
between moments and cumulants in the following form [35] 

- 1 " m. [Z] - :-1 P. k. [Z] 
J J. J, n J (A.l4) 

where Pj, n are singular (for j > 1) matrices of order nix ni given as 

(A.15) 

satisfying the following properties 

PT = P . P zm = ., zm P . . . , . J. . k. = J! k.; P. D.= D.P. 
J, n J, n J, n J, n J J J, n J J J, n 

(A.l6) 

" 
In Eq. (A.l4) kj [Z] can be obtained by the following recursive relationships (with argument 
omitted) 

j-1 G 1 I k. = k. + ~ - ). (k. ® k} 
J J r~r!Q-1-r)! J-r r (A.17) 
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For example, the ftrst seven terms of k. can be written in explicit form as follows: 
J 

.... .... .... 
kl = kl ; k2 = k2 + kl ® kl 

.... .... .... 
k3 = k3 + 2 k2 ® kl + kl ® k2 

~ ~ ~ ~ 

k4 = k4 + 3 k3 ® kl + 3 k2 ® k2 + kl ® k3 
(A.l8) 

Notice that, since for the one-dimensional variable in which P. = P. 1 = j! we have .-.. J, n J, 
mj [Z] = kj [Z] and Eqs. (A.l8) coincides with Eqs. (A.6). .... 

For Gaussian input process we have kJ. = 0 'v'j > 2 and the vector k. can be evaluated in recursive 
• J 

form once k1 and k2 are known, that ts 

(A.19) 

A.2 Relationships between multidimensional cumulants and 
quasi-moments 

When the higher-order cumulants are different from zero, we have a non-Gaussian (or non­
normal) random process. In this case we must take account of terms for which j > 2 in Eqs. (A.4) 
and (A.12). Although the characteristic function of a non-Gaussian process can immediately be 
written as an expansion form in terms of moments or cumulants, the calculation of the 
corresponding probability densities is diffucult since, in general, for j > 2 the Fourier transform of 

Eqs. (A.4) and (A.12) cannot be calculated directly. 
In order to simplify the problem of ftnding the multidimensional distributions of a non-Gaussian 

process Kuznetsov et al. [58] introduced the quasi-moments functions. According to Stratonovich 

[59], these functions occupy an intermediate role between the cumulant and moment functions. 
In the one dimensional and multidimensional cases respectively, the quasi-moments bj[Z] are 

related to the cumulants through the characteristic function 

(A.20) 
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and 

exp( i (-.i/ '6[J1T kj [Z]) = 1 + i (-.i/ '6[j]T bj [Z] 
~=3 J. j=3 J. 

(A.21) 

Formula (A.21) allows us to fmd explicit formulas relating the cumulants and the quasi-moments. 
Indeed, comparing this equation with Eq. (A.9) we have that these two equations are the same if 
we set m 1[Z] = 0 and m 2[Z] = 0. It follows that we can use Eq. (A.14) where 
m1[Z] = k1[Z] = k1[Z] = 0 and m2[Z] = k2[Z] = k2[Z] = 0 in order to establish the relationship 
between cumulants and quasi-moments in the form: 

[
j- 3 (j 1)1 ~ 

b. = k. + .1, P. ~ I (j - .1)1 (k. ® k') ' j > 2 J J J J, n ~ r _ r _ J- r r 
' r=3 · • 

(A.22) 

......... ..... ..... 
where k'r is evaluated by Eqs. (A.17) for k1 = 0 and k2 = 0. 
Writing Eq. (A.22) in explicit form we observe that the difference between cumulants and quasi­
moments begins with b6, that is 

(A.23) 

Notice that these relationships are true for the one-dimensional variables in which p. = p. 1 = j! J, n J, 
and the Kronecker product becomes the algebraic product 
By using Eq. (A.21) we have that the complete expression of the characteristic function in terms of 
the quasi-moments can be written as follows: 

Mz ('6; t) = (1 + i. (-.~j ,mT bj[Z])~ ('6; t) 
j=3 J. (A.24) 
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where~ ('t}; t) is the characteristic function of a Gaussian process having k 1[Z] and k2[Z] as the 

first two cumulants vectors, that is 

0 ( . T 1 [2]T ) MZ ('i}; t) = exp -1 'i} k1 [Z] - 2 't} k2[Z] (A.25) 

To calculate the n-dimensional probability density function we have to take the inverse Fourier 
transform of the characteristic function (A.25) 

pz(z; t) = ~100 ···100 

exp (i 't}T Z) 
-00 -00 

(A.26) 

Observing that 

(2~)n 1oo ···100 

exp (i 'i}T Z) (i~ 'i}[j]T bj[Z] ~('i}; t) dl'}t ... dl'}n 
-oo -oo 

(A.27) 

where V z is the differential operator vector and p~ (z, t) is the probability density of a Gaussian 
process with the same function k 1[Z] and k 2[Z] as the original non-Gaussian process, that is 

p~ (z; t) = exp [- t(z- mz)T r.i (z- mz}] 
(27t)nfl Det (I.z} 112 

(A.28) 

where mz is the mean value vector and I.z is the covariance function matrix such that 

(A.29) 

Interchanging the operations of summation and integration in the Eq. (A.26) and using Eq. (A.27) 

we obtain: 

[ 
~ (-l)j T -li]] 0 

Pz(z; t) = 1 + ~ -.1- bj [Z] v; Pz (z; t) 
. 3 J. 
J= 

(A.30) 
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A.3 Edgeworth asymptotic expression of the probability 
density function 

In order to obtain a very suitable asymptotic expansion of the non-Gaussian probability density 
function we introduce the multidimensional Hermite polynomials. 
The multidimensional Hermite polynomials can be obtained by using extensively the Kronecker 
differentiation rule starting from the following relationship: 

(A.31) 

where z* is the standardized variable vector 

- 1/2 
z* = I.z (z- lllz) (A.32) 

By using Kronecker differentiation law we obtain the following recursive relationships 

H/z*) = z* ® Hj _ 1 (z*) - V z• ® Hj _ 1 (z*) j > 2 
(A.33) 

where 

j 

Ho(z*) = 1 ; H1(z*) = z*; Hz(z*) = z•[Zl- Vee {In) (A.34) 

By using extensively the Kronecker differentiation we can write the multidimensional Hermite 
polynomials given in Eq. (A.33) in an alternative form as follows [8] 

H. (z*) =· (-1~ 
J 

k = 0, 2 (j = even) 

j 

I B *[k] 
.kz J, 

(A.35) 
k = 1, 3 (j =odd) 

where Hj (z*) is a vector of order ni and Bj, k are matrices of order nj x nk which can be evaluated 
in recursive form as follows 

B 0 0 = (-1)j I[j] · B = (I ® B 0 ) R - {I ® B 0 } 

J,J n ' j, k n J - 1, k + 1 k + 1 n J- 1, k- 1 (A.36) 

In the latter equation (true for j > k) the matrix Rj is given as 

(A.37) 
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....... ( [k] [k- 2] [k - 3] ) 
Rk= I ®I +E ®I +E 2®l + ... +E t-1 

n n n,n n n,n n n,n (A.38) 

Once the multidimensional Hermite polynomials are introduced, observing that 

V[j] 0 1 ( - In) [j] ...fi] 0 * 
z Pz (z; t) = ( ) I:z Vi• Pz• (z ; t) 

"i'::..l/2 Det ... L. 

(A.39) 

where p~. (z*, t) is the Gaussian probability density function of the standardized variable process 
Z* given as 

p~. (z*, t) = 1 n/2 exp [- t z*T z*] 
(2n:) (A.40) 

and by using the relationship (A.31) between the Hermite polynomials and the probability density 
function of a Gaussian standardized variable, we can write 

[j] 0 1 . ( - 112) [j] 0 Vz Pz (z; t) = ( ) (-1)1 I:z Hj (z*) Pz• (z*; t) 
Det IZ112 

(A.41) 

Substituting this relationship into Eq. (A.30) we obtain the following multidimensional series 
expansion 

pz (z; t) = ( 1 _ ) [1 + r + bj [Z] {I:z 112) [j] Hj(z*)] P~• (z*; t) 
Det I:z 112 j = 3 l· 

(A.42) 

We want to emphasize that, as just seen, the quasi-moments function are the coefficients in an 
expansion of the non-Gaussian probability density in an infinite series of Hermite polynomials. 
Furthermore it can be shown that by using the series given in Eq. (A.42) we have 
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(A.43) 

E [ z!Zl] = f~ ... f~ z[Z] pz (z; t) dz, ... dz,. = kz [Z] + (k I [Z l) [Z] 

The series which appears in Eq. (A.42) can be seen as the extension to multidimensional case of 

the one-dimensional series [59]. Indeed in the one-dimensional case the expressions (A.42) 

become 

1 [ 
co 1_ b· [Z] ] 

pz (z; t) = - 1 + L .1 - 1-.- Hj(z*) p~. (z*; t) 
crz j = 3 J. crlz 

(A.44) 

where crz is the standard deviation and Hj (z*) is the well known Hermite polynomials which can 
be obtained by means of the following relationships derived from Eq. (A.35) 

where 

H. (z*) = (-1)j 
J 

j 

I 
k = 0, 2 (j =even) 
k = 1, 3 (j =odd) 

B. k (z*)k 
J, 

(A.45) 

(A.46) 

Writing in explicit form these quantities1 we have that the first five one-dimensional Hermite 

polynomials are given as follows 

2 
H0 (z*) = 1 ; H1 (z*) = z* ; H2 (z*) = (z*) - 1 

3 4 2 
H3 (z*) = (z*) - 3 z* ; H4 (z*) = (z*) - 6 (z*) + 3 

5 3 
H5 (z*) = (z*) - 10 (z*) + 15 

(A.47) 
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They satisfy the differentiation law 

_d_ H. (z*) = j H. (z*) 
dz* J J- 1 

(A.48) 

and the recurrence relation 

H. (z*) = z* H. (z*) - j H. (z*) 
j+1 J j-1 

(A.49) 

Cramer [60] stated that rearrangering in a different way the Edgeworth expression we have that the 

accuracy increases quicly with the natural order of the terms and be proposed the following 

rearranged Edgeworth expansion 

pz (z; t) = [1 + l + b~ Hj (z*)] p£ (z; t) 
'-3 J. _J J- o-z 

= /1 + [l_ k 3 H3 (z*)] + [1_ k4 l4 (z*) + _ill k~ H6 (z*)] 
\ 3! <fz 4! <fz 6! ~ 

+ [1_ k5 H5(z*) + li k3 k4 H7(z*) + 280 k~ H9(z*)] + l nlli'z· t) 
5! <fz 7! cri 9! ~ . . . Y.l' , 

(A. 50) 

where ki are the cumulants related to the quasi-moments by means of relationships (A.23) and the 

square brackets[·] denote terms of the some order of the expansion. 

(1) 

BO, 0 = 1; B1, 1 = -1; B2, 2 = 1; B2, 0 = -1; B3, 3 = -1; B3, 1 = 3 

B4. 4 = 1; B4• 2 = -6; B4• 0 = 3; B5• 5 = -1; B5, 3 = 10; B5, 1 = -15 

B = 1; B6 4 = -15; B6 2 = 45; B6 0 = -15; B7 7 = -1; B7 5 = 21; B7 3 = -105; B7 1 = 105; 
6, 6 ' ' ' ' ' ' ' 

B8. 8 = 1; Bs. 6 = -28; B8• 4 = 210; B8• 2 = -420; B8, 0 = 105; 

B9, 9 = -1; B9, 7 = 36; B9, 5 = -378; B9, 3 = 1260; B9. 1 = -945; 

B10, 10 = 1; B10, 8 = -45; B10, 6 = 630; B10, 4 = -3150; B10, 2 = 4275; B10, 0 =- 945 
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A.4 Gram-Charlier asymptotic expansion of the probability 
density function 

The one-dimensional non-Gaussian probability density function may be expresses by an 
orthogonal expansion, in terms of the derivatives of the normal density function, known as the 
Gram-Charlier expression [60]. 

00 a! . 
pz (z; t) = L -f Cj ~~(z; t) 

j=O J. dzJ 
(A.51) 

where p~ (z; t) is a normal distribution, that is 

(A.52) 

By using the relationship between the Hermite polynomials and the normal density we can 
represent the non-normal distribution as a truncated Gram-Charlier expansion [61]. 

[ ~ C. (z- Illz)~ o Pz (z; t) = 1 + ~ --f H. -- p2 (z; t) 
j = 3 J. 1 crz (A.53) 

where Hj (z*) = Hj ( (z - IDz) I cr2) is the Hermite polynomial of order j introduced in the previous 
section. Eq. (A.53) can be interpreted as an expansion of a non-Gaussian probability density 
function as a series of a normal probability density. Both probability densities have unit area, mean 
m2 and variance cr~ independently of the choice of the parameters c .. This is the result of the . J 
following ortogonality relationship between Hermite polynomials and the standard normal 
distribution 

.. ~ foo exp [- (z*)212] H. (Z*) Hk (z*) dz* = 81.k 
J! y ""1t - 00 J (A. 54) 

where ojk is the Kronecker delta and Z* is the standardized variable z* = (z - mz) I O"z· Because of 
the ortogonality relation (A.54), the coefficients Cj can be evaluated as expectations of Hermite 
polynomials [61] 

(A.55) 
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By using for H/Z*) the expression given in Eq. (A.45) we obtain the relationship between the 
central moments llj [Z] = E [ (Z - mz~] and the coefficients Cj 

Cj = (-1~ 
j 

I 
k = 0, 2 U = even) 
k = 1, 3 U =odd) 

where llk[Z*] = E[((Z- mz)/Oz)k]. 

j 

I 
k = 0, 2 U = even) 
k = 1, 3 U = odd) 

B j, k Ilk [Z*] (A. 56) 

Observing that llo[Z] = 1; llt[Z] = 0; ll2[Z] = q, we can write the first relationships (A.56) in 
explicit form as follows 

Co= 1 . Ct = C2 = 0. C3 = ll3[Z] . C4 = J.l4[Z] - 3 . Cs = lls[Z] - 10 ll3[Z] 
' ' _3 ' 4 ' _<; -"~ oz crz oz o-z 

(A.57) 

C9 = IJ.9[Z] - 36 117[Z] + 378 lls[Z] - 1260 ll3[Z] 
~ cr~ q ~ 

Notice that the last two coefficients are different from the same ones obtained by Crandall [61]. 
Comparing Eq. (A.53) and Eq. (A.44) we can establish the following relationship between the 
coefficients Cj and the quasi-moments bj 

C. = b. I azj , j > 2 
J J 

(A.58) 

It follows that by using Eq. (A.56), the quasi-moments are related to central moments by the 
following relationship 
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j - I 

bj[Z] = Jl.i [Z] + (-1)i L aiz- k Bj, k Jlk [Z] , j > 2 
k = 0, 2 (j = even) 
k = 3, 5 (j = odd) 

G. Muscolino 

(A.59) 

where the exponent G - k) is always an even number. Since flo = 1 and Jl2 = q we can write the 
first relationships between quasi-moments and central moments as follows (with argument 
omitted) 

(A.60) 

b9 = Jl9 - 36 Jl7 Jl2 + 375 Jl5 ~ - 1260 Jl3 ~ 

b10 = JliO- 45 Jls Jl2 + 630 IJ6 ~- 3150 J.4 ~ + 3330 ~ 

We want to emphasize that by means of Eqs. (A.59) the Edgeworth series (A.44) and the Gram­
Charlier series (A.53) are practically coincident although they result from two completely different 
ideas. The first one is obtained as Fourier transform of the non-normal characteristic function and 
the second one as the orthogonal expansion of the probability density function. In principle any 
form of distribution can be represented by the two truncated series. Indeed, increasing the number 
N of the terms retained into the series we have a better approximation to the exact non-normal 
density. Obviously these series are more successful for density with little non-normality. When the 
first N terms are retained in the series we operate a so-called N-th order closure. 
Notice that in principle any form of distribution with adjustable parameters could be employed to 
approximate the probability density function, indeed Charlier himself proposed the so-called 
Gram-Charlier series of type C (see e.g. [62]) 

(A.61) 

Cramer [61] stated that the Gram-Charlier series (A.53) cannot be considered as a satisfactory 
solution of the expansion problem for pz(z; t) and proposed the rearranged Edgeworth expansron 
(A.50). Assaf and Zirkle [12] stated that experiences with the rearranged Edgeworth expansions 
indicate that sufficiently accurate representations of the density functions it is possible if only the 
first four terms of the expansion are retained. 
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Indeed by using the rearranged Edgeworth expansion togheter with the fourth-order cumulant 

neglect closure, it appears three further terms with respect to fourth-order quasi-moments closure 

of the Grarn-Charlier expansion 

+ ¥,- k3 14 H7 (z*) + ~ .!§._ H9 (z*) + ... ] p~ (z; t) 
. 0~ . ~ 

(A.62) 

Notice that Eq. (A.62), on the contrary of Eq. (A.44), does not represent the exact Fourier 

transform, until the fourth cumulants, of the characteristic function. Indeed, further terms with 

cumulants of order three and four appears in the quasi-moments of order greater than eight 

For n-dimensional problems the Gram-Charlier expansion of the non-Gaussian multidi-mensional 

probability density function can be written as follows [8] 

Pz (z; t) = p~ (z; t) [1 + f + C~ H. (z*)] . J. J J 
j=3 

(A.63) 

where z* is the standardized variable defined in Eq. (A.32) and p~ (z, t) is the normal probability 

density given in Eq. (A.28). Because of the multidimensional polynomials are orthogonal with 

respect to the function exp (- 1/2 z* T z), that is 

1 n/2100 

•• ·1oo e"'p (- t z*T z*) Hj (z*) H! (z*) dz* 1 ••• dz* n = Bjk Pj, n 
(21t) - 00 - 00 

(A.64) 

where P. are the matrices defined in Eqs. (A.15) and such that 
J, n 

P· C· - J., C· J,n J - • J (A.65) 

Remembering that ~[Z] = 1, ~1 [Z] = 0; ~2[Z] =Vee [l:z] we can evaluate the multidimensional 

coefficient cj as follows [8] 

j 

Cj = E[Hj(:ti112 (Z-mz))] = (-1Y I, Bj,k(:ti12)1k1J.lk[Zl 
k = 0, 2 (j = even) 
k = 3, 5 (j =odd) 

(A.66a) 
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J 

Cj = E [Hj(Z*)] = (-1}i L Bj, k Jlk[Z*] 
k = 0, 2 (j = even) 
k = 3, 5 (j = odd) 

(A.66b) 

These equations are obtained by using Eq. (A.35), which defines the multidimensional Hermite 
polynomials Hj(z*), and by introducing the followings multidimensional central moments Jlj[Z] 
and the standardized variable vector 

Jlj [Z] = E [(Z - mz [Z]) Ul) ; Z* = Iz 112 (Z - mz[Z]) (A.67) 

Comparing Eq. (A.63) with Eq. (A.42) we can establish the following relationship between the 

coefficient vectors Cj and the quasi-moments bj[Z] 

{ - 112) Ul . Cj = I.z bj[Z]; J > 2 (A.68) 

By combining Eqs. (A.66a) and (A.68) we obtain the multidimensional relationships between 
quasi-moments and central moments as follows 

j - 1 

bj[Z] = Jl.i[Z] + (-1}i L Bj, k {~aik] [Z] ® J.lk[ZJ) 
k = 0, 2 (j =even) 
k = 3, 5 (j = odd) 

..... 

j>2 (A.69) 

where ex il< = G -k)/2 is always an integer number and B j, k G > k) are square matrices of order ni 

B .. = (-1) I[j] 
J,J n 

..... ( ..... ) ( [j - k -2] ..... ) ( ..... ) 
B.k= I ®B. 1 k 1 Ei-1 I ®Rk 1 -I ®B. 1 k 1 Ei-1 J, n J - , + n , n n + n J - , - n , n 

(A.70) 

..... 
Rk+ 1 being the matrix defined in Eq. (A.38). In the one-dimensional case Eq. (A.70) coincides 
with Eq. (A.58). 

A.5 Modified Gram-Charlier asymptotic expansion 

Significantly Eqs. (A.53) and (A.63) can be viewed as polynomial approximations to the ratio of 
probability density functions Pz(z; t) I p~(z; t). These approximations can be also interpreted as 
expansion of a non-Gaussian probability density function as a series of a normal distribution. 

Since this density, of unit area, has mean vector mz and covariance matrix Iz independent of the 
choice of the vectors Cj some authors [12, 17, 63] to simplify numerical problems assume into 
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expansion (A.63) instead of p~(z; t) (given in Eq. (A.28)) the following normal probability density 

function 

0 1 [ l T .... -1 l 
Pz(z; t) = .... 112 exp - 2 (z- mz) ~ (z- ~)J 

(21t)n/2 Det (~) 
(A.71) 

"' where ~ is a diagonal matrix obtained form the matrix :tz setting equal to zero the off-diagonal 

terms, it follows that we can write 

..._0 n 0 
Pz(z; t) = II pZ; (zi; t) 

i = 1 
(A.72) 

where 

(A.73) 

where cr~. is the i-th diagonal element of the matrices ~z and :tz· It follows that in this case we 

have defined the standardized vector process in modified form as follows 

"' "'-1/2 
Z* = :tz (Z- mz) (A.74) 

and its elements can be written as follows 

..._* Z.- m_ 
1 ---z. z. = l 

1 (A.75) 

It follows that the non-Gaussian probability density function is now expanded in a new series here 

called the modified Gram-Charlier expansion, which can be written as follows 

pz(z; t) = [ t hJrZ•J H; (z')] ~(z; t) 

= • I [ t/f[Z•J H; (z•)] ~.(z*; t) 
II crz 

(A.76) 

i = 1 
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where ~.(z*; t) is given in Eq. (A.40) and hj[Z*] are the so-called Hermite moments [15] given 

as follows 

h·[Z*l = .lc. = .lE[H· (Z*)] 
J "I J "I J J. J. 

(A.77) 

It is easily to show that ho[Z*] =Co= 1; h1[Z*] = c1 = 0; h2[Z*] = l_ c1 '# 0. 

By using the indica! notation rather than the Kronecker one and Eq_2(A.77), we can write Eqs. 

(A.76) in the form 

f "" cijk... [ ("*) ("*) ("*) ] \ lln o pz(z; t) = 1 + £..J Tiki Hi Zi Hj Zj Hk zk ... pt(zi; t) 

\ 
i,j,k, . . . l.J. . . . . f i = 1 
i+j+k+ ... = 2 

(A.78) 

where 

cijk ... = E [Hi (z~) Hj (z;) Hk (z;) ... ] = i! j! k! hijk ... LZ*l (A.79) 

In writing Eq. (A.78) we have taking into account amount that Cijk ... = 1 for i+j+k ... = 0 and 

Cijk ... = 0 for i+j+k ... = 1. 
For two variables Z1 and Zz Eqs. (A.78) becomes 

(A.80) 

The latter Eq. (A.80) can be written in explicit form as follows 

+ c13 H1 (zn HJ (z;) + C04 I4 (z;)] + } Po (z t) Po (z t) 
3! 4! · · · z, 1, z2 z, (A.81) 

This relationship can be furthely simplified observing that C2o = Co2 = 0 
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A.6 Relationships between multidimensional central moments 
and moments and cumulants 

In order to evaluate the relationship between the multidimensional central moment and moments 
we have to make the Kronecker power of (Z - mz)Ul and the stochastic average of the results, 
obtaining (with argument omitted) 

= m +.lp -1 r J. m ®m[r] [ 
j ., ~ 

~j j j! j, n r~ ( ) r! (j - r)! { j- r 1 ) 
(A.82) 

After some algebra by using the same procedure we can evaluate the inverse relationship to Eq. 
(A.82) in the form 

(A.83) 

Since the central moments can be interpreted as moments with zero mean relationship between 
central moments and cumulants can be obtained from Eq. (A.14) setting kl[Z] = k 1[Z] 
= m1 [Z] = 0 as follow 

L-2 (j 1)1 ~ = .l - . ® ....... . ~· k. + ., P. L I (j 1)1 (k.- k } ' J > 1 
J J J. J, n =2 r. - r- . J r r 

(A.84) 

..... ..... 
where k"r is obtained from Eqs. (A.17) where k 1 = 0. 

By means Eqs. (A.82) and (A.83) it is possible to obtain the corresponding relationship in the 

one-dimensional case setting Pj. n = Pj. 1 = j! 
At the end substituting Eq. (A.82) into Eq. (A.69) we obtain the relationship between quasi­
moments and statistical moments as follows 

j - 1 
· ~ "' [( [2J)[a~ J bj = mj + (-1)J LJ Bj, k m2- m1 ® mk 

k = 0, 2 (j = even) 
k = 3, 5 (k = odd) 

j 

+ (-1)i L Bj, k {(m2- m~21)[ai~ 
k = 0, 2 (j = even) 
k = 3, 5 (j = odd) 

®[Pk,n ~ (-1t( k! {m. ®m[rl})~) j>2 
k! r~ r! (k- r)! --~c-r 1 ~ (A.85) 
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DYNAMIC ANALYSIS OF 
COMPLEX STRUCTURAL SYSTEMS 

L. Faravelli 

University of Pavia, Pavia, Italy 

1 INTRODUCTION 

Attention is focused on the characterization of the stochastic response of nonlinear complex 
systems subjected to stochastic external excitations. Non-linearity arises from geometrical 
considerations and/or material properties. Since exar.t analytical solutions can be found only 
in the case of systems idealized by one or few degrees of freedom, approximate methods have 
been developed. For practical applications in structural engineering the techniques of the 
stochastic equivalent linearization and of the response surface appear as the most suitable. 
These methods are illustrated in this Chapter. 

2 STOCHASTIC EQUIVALENT LINEARIZATION 

The equivalent linearization technique has been very successful during the last decade in the 
stochastic dynamic analysis of nonlinear structural systems [1, 2]. Caughey [3, 4] was the 
first who applied equivalent linearization to the study of a nonlinear oscillator. An equivalent 
linear system is introduced, the coefficients of linearization having been found from a mean­
square criterion. Atalik and Utku [5] considered a multi-degree-of-freedom nonlinear system 
described by the relation 

L(ii, u, u) = f(t) (1) 

where u is the generalized displacement vector; Li() is the total internal force in the i­
th degree-of-freedom and f(t) is a stationary Gaussian random excitation vector with zero 

1 Professor of Structural Safety. 
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mean. 
The linearized system takes the form 

Mii + Cu + Ku = f(t) (2) 

where the mass, damping and stiffness matrices are determined by minimizing the mean-
square error 

E[eT e) --+ min 

withe= L- Mii- Cu- Ku; E[) denotes the expected value. 
The sufficient condition for minimization leads to 

8L; 
m;j = E[8 .. J, 

U.j 

8L; 
Cij = E[-{J. ], 

U.j 

The matrices of linearization depend on the response statistics. In case of higher order joint 
moments, Atalik and Utku proposed to express them by the following relation: 

E[ug(u)) = E[Vg(u)) 'Vg 

where V is the gradient operator. 
While the sufficient condition was given by Atalik and Utku , the necessary condition has 
been proved to require a jointly Gaussian random vector u [6). 
Note that the linearization coefficients are functions of the response characteristics and the 
response is not "a priori" known. An iterative procedure is required: one starts assuming the 
system to be linear, uses response statistics to guess new coefficients and repeats the scheme 
either step by step during the time integration of the nonstationary excitations or until the 
solution converges in the stationary case. 
Theoretical studies on equivalent linearization techniques are also in [7, 8). But its success has 
been due to its coupling with the flexible, analytical expression of the hysteretic constitutive 
law proposed by Bouc and Wen [9, 10] i.e. by the introduction of appropriate 'endochronic 
models' of the force-displacement relationship. They are nonlinear hysteretic items that can 
be replaced by linear hysteretic items (see figure 1 ), thus preserving the hysteretic nature of 
the constitutive law after linearization. 

The resulting technique is convenient for several applications: multistory frames in steel and 
reinforced concrete were analysed by considering the hysteretic constitutive law of each story 
described by a suitable endochronic model; masonry structures were analysed using a simi­
lar idealization; soil liquefaction problems were modelled [11). Equivalent linearization was 
also connected with a plane finite-element discretization of the structural system [12, 13) 
and extensions to three-dimensional idealizations of the structure were pursued [14). Both 
stationary and nonstationary cases were studied. The remaining sub-sections illustrate the 
method and its applications. 

Criticism on the method is focused on the inability to describe the nonlinearity of the response. 
Nevertheless, for complex structural systems, stochastic equivalent linearization is the only 
method capable of providing results, even if approximate. 
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1.1 

... 

... 
u 

. 
t .f. I 

f ..... 
.f. I 

..... 

..... 
-1.1 .f.l ..f.l Ll ... 

..-. 

Figure 1: Behaviour of the linear hysteretic item by which the original nonlinear one is 
replaced after linearization 

2.1 HYSTERETIC STRUCTURES 

Let 
Mii + g(il, u) = f(t) (3) 

be the equations of motion of a general multi-degree-of-freedom nonlinear system. 

a) The shear beam model 

Consider a complex structural system with masses concentrated at girder levels and columns 
replaced by hysteretic springs with restoring forces given by 

(4) 

where V; is the static quantity associated with the displacement interstorey "i· The auxiliary 
variable z; obeys the endochronic model 

z· = 0!3 u·- 0!4·z·lu·llz·l'"6;-l - O!s u·lz·l'"6 i I l I 1 I I I 1 I I (5) 

where a 1; to a 6, are system parameters controlling the hysteresis shape of the system. Equa­
tion (5) can be linearized by the Atalik and Utku procedure, in the form 

(6) 
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where the linearization coefficients Ci and Hi are given by 

(7) 

if a Gaussian excitation is assumed. 
Let the constitutive laws be written in absolute coordinate, say Xi (see figure 2a)). Moreover 
let 

be the state vector. The dynamic of the system is described by 

-~-. } (8) 

where M is the diagonal mass matrix, Ke is the elastic stiffness matrix, Kh is the hysteretic 
stiffness matrix, D is the damping matrix, C and H are the linearization coefficients matrices 
and r is the vector of ground motion influence coefficients. 

b) The hinged frame model 

Consider a structural system discretized in perfectly elastic finite elements. Let the inelastic 
deformations q be concentrated at critical regions with hysteretic constitutive laws given by 
equation {4) (see figure 2b)). They can be assembled for the whole structure in the form [11] 

V=Az+Bq (9) 

z being a vector of auxiliary variables related to q by means of a vector of equations which 
groups scalar equations of type (5). Let the linearized constitutive law be 

z = Cq +Hz (10) 

where C and H are matrices of linearization coefficients. 
The generalized restoring force vector gin equation (1) can be linearly related to the internal 
force V in the form: 

g=EaV+Du (11) 

After the elastic and inelastic parts are separated into the global generalized displacement, 
the internal forces V can be expressed as: 

V = E1u+E2q 

By introducing equation (12) in (11), g is given as: 

g( u, u) = EaEt u + EaE2q + Du 

where Et, E2, Ea are struct]lral matrices. Equation (3) becomes: 

Mii + Du + E 3 E 1 u + EaE2q = f(t) 

(12) 

(13) 

(14) 
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a) 

... , . 
b) 

.... J ... l I 

•• I 

Figure 2: a) Shear-beam idealization of a multistorey building; b) Hinged frame model of an 
irregular building 
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The dynamics of the system may then be described as 

;ty + [ M-1~3E1 ;1-1n M-1E3E~ l y = { M-~f{t) } 
D1 D2 Da 0 

{15) 

Equation (8) requires the knowledge of the interstorey force-displacement relationships, while 
equation (15) makes use of the section constitutive laws which can be obtained from labora­
tory tests as well as from numerical modelling. Moreover, equation (8) is unable to analyse 
irregular buildings, as the one in figure 2b), while equation {15) does it. 

c)Solution techniques 

Equations (8) and (15) represent a linear system of equations of the type 

y+Gy= b {16) 

which can be solved by classical methods oflinear analysis. In {16) G is the resulting matrix of 
the coefficients and b is the corresponding r.h.s. vector. The matrix G, however, contains the 
linearization coefficients Ci and Hi which are functions of response statistics. The covariance 
mat.rix :Eq,z can be easily obtained from the covariance matrix :Ey, as q and z are linearly 
related to y. Equation(15) can be written only when the covariance matrix :Ey has been 
calculated. From equation{16), classical results of random vibration theory lead to express 
the second moment description of y as the solution of the differential equation 

• T 
:Ey + G:Ey + :EyG = B (17) 

where 
B = E[hr] + E[ybT] 

Matrix B is easly written in the case that the external excitation can be modelled as a 
Gaussian white-noise or shot-noise. By adding further differential equations, filtered white­
and shot-noise can also be considered. For stationary excitations and non-deteriorating sys­
tem, the response becomes stationary and can be obtained by solving the Liapunov matrix 
equation: 

{18) 
The solution can be found by iteratively using the algorithm of reference [15]. An alternative 
frequency domain method can be applied in order to calculate the second order statistics. 
The possibibity of neglecting modes is one of the advantage to reduce the computational 
effort. A criterion to identify in the calculation process the meaningful terms, so that the 
others can be neglected is given in [16, 17]. 

3 A NEW STOCHASTIC LINEARIZATION 
NIQUE 

TECH-

For the case of a non-linear stochastic dynamic system where the non-linearity appears in the 
term expressing the restoring force, the classical approach has been to use as objective func­
tion the mean square of the difference between the actual restoring-force and the restoring 
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force of the linearized system. Recently, new objective functions were proposed. For example, 
Elishakoff and Zhang (18] have suggested equalizing the mean square values of the potential 
energies and of the dissipation energies for the non-linear system and its linear equivalent. 
Casciati, Faravelli and Hasofer (19) proposed to choose the stochastic equivalent lineariza­
tion coefficients by calculating the stationary upcrossing rates. This is an extension, to the 
time dependent situation, of what is known in static structural reliability as the "normal 
tail approximation" (20). The proposed approach will be illustrated for the Duffing oscilla­
tor (for which the exact stationary distribution of the response and its derivative at time t 
is known). For a hysteretic oscillator the technique is extended by applying the stochastic 
averaging method and focusing attention on the stationary upcrossing to the energy envelope. 

3.1 THE DUFFING OSCILLATOR 

Consider the Duffing oscillator characterized by the following differential equation 

!i + 2(:i: + x(1 + px2) = f(t) (19) 

where (is the usual non-dimensional damping factor. The natural frequency woof the oscil­
lation is taken equal to 1 and the restoring force is x(1 + px2 ). f(t) is a Gaussian white noise 
with the delta-type correlation function 

E(f(t)f(t + r)] = IO(r) 

and I is the intensity function given by I = 21r So, being So the constant spectral level of 
f(t). 
Let Y1 = x and Y2 = :i:. Equation (19) is equivalent to two first-order equations: 

Introduce the function R(Yt. Y2) = 2(Y2 + r(Yt) where r(Y1) = Y1(1 + pY12). The stationary 
probability density function p(Yt. Y2 ) of the system response is governed by the Fokker-Planck 
equation (21): 

op a a2p 
y2 8Yt - 8Y2 (pR(Yt. Y2))- 1rSo 8Y22 = 0 (20) 

Then it is well known that for a single degree system with nonlinear stiffness and linear 
damping subjected to Gaussian white-noise excitation the stationary displacement and ve­
locity are independent and their joint probability density is given by the exact solution of 
equation (20): 

For the Duffing oscillator, the stationary probability distribution of x and :i: is given by 

(21) 
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where Kv is a normalization constant. 
Let fc = u2 , K D is a function of u2 and p. K D cannot be calculated explicitly; in order to 
have some idea to its dependence we expand it in a power series in p: 

Kv ~ _1_(1- 15 u2p2) + o(p4) 
211"0"2 2 

To implement stochastic equivalent linearization we replace the term x(1 + px2) by Cx and 
the damping coefficient (by('. The linearized stationary probability distribution, wL(x,x) 
now becomes 

4(' x2 x2 
wL(x,x) = KLexp{-y[2 + c2 ]} 

Let ~ = u£. The normalization constant is given by 

.;c 
KL=--2 

21l"UL 

(22) 

Let now Uv be the upcrossing rate for the Duffing oscillator and UL the upcrossing rate for 
the linearized system. Then 

U -lao . (. )d. - .JC -Cu2 /2(uL)2 L- XW£ X,U X- -e 
0 211" 

(23) 

(24) 

There are two linearization parameters available namely C and ('; they can be evaluated 
equating the upcrossing rates at zero and at the critical level u: 

and 

v'c = (1 - 15 p2u2) 
2 

C ~ 1 - 15p2u2 

(' ~ (( !_ + pu2) c 2 

3.2 THE HYSTERETIC OSCILLATOR 

The hysteretic oscillator can be defined by the following equation 

x + 2(w0 X + o:w~x + (1- o:)w~z = f(t) (25) 
where f(t) is, as before, a white noise with covariance function IO(r), and the auxiliary 
variable z solves the equation 

(26) 

Linearization is effected by putting 

z = Cx+Dz (27) 
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where C and D are two arbitrary coefficients. 
The basic steps of the approach are as follows [22, 23] . 
The hysteretic variable z is split into two components: the "backbone" g(z) and the purely 
hysteretic component £( z ). The equation of motion (25) is rewritten as 

(28) 

where 
G(z) = w~[(l- o:)g(z) + o:z] 

When the energy dissipation is small, the total energy E is given by 

(29) 

where V(z) is the actual potential energy given approximately by 

V(z) = fo:e G(x)dx 

corresponding to the backbone potential energy. From equation (29) 

x = V2[E- V(z)] 

dt = dz 
J2[E- V(z)] 

and the average period of vibration, T(E), is given by 

T(E) = 4 fb dz 
lo J2[E- V(z) 

where V(b) =E. Mutiplying equation (28) by x, one obtains 

E = -x[2(WoX + Wo(l- o:)£] + xf(t) (30) 

Equation (30) is a power balance equation: it states that the rate of change of the total 
energy of the oscillator, with respect to time is equal to the power input due to the random 
excitation minus the power dissipation. 
The stochastic averaging method is used to consider a one-dimensional Markov model for E 
and hence to write a FPK equation for the transition density function of the process. For 
this purpose averaging over one side the rate of energy dissipation, one has 

H(E) = T/E) f x[2(w0 x + w~(l- o:)£]dt 

The total average of energy dissipation is made up of two components Ht(E) the energy 
dissipated in the damping and H2(E) the energy dissipated by the hysteretic loop: 

8(w fb 
Ht(E) = T(E) Jo J(2[E- V(z)])dz 
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and 
H (E)= (1- a)wJ S(b) 

2 T(E) 

where S(b) is the area of the hysteretic loop when x varies between-band +b. 
The mean and correlation functions of the energy input term are evaluated and then the 
average over one cycle T(E) is performed to obtain an equivalent process of the form: 

where Pin(t) = xf(t), <f>(t) being a white noise process of unit strength. The term C(E) is 
given by 

C(E) = [4/T(E)]lb yf(2[E- V(x)])dx 

Thus one can approximate the evolution of the energy envelope and its Ito equation is given 
by 

I 
dE= -[H(E)- 2Jdt + yfC(E)I dW (31) 

where dW = <f>(t)dt, W being the standard Brownian motion. 
Equation (31) shows that, when suitably averaged, the energy envelope is a one-dimensional 
Markov process. Then using standard methods, the FPK stationary equation is given by 

{} I I{}2 
oE[-[H(E)- 2]p] + 2oE2[C(E)p] = O 

The final result for the probability density of E, p(E) is 

p(E) = kT(E) exp{ -}foE ~~:j d{} 

where the constant k is obtained by using the normalizing conditions 

fooo p( E)dE = 1 

The relationship between p(E) and w(x, x) is given by a variety of physical arguments. In 
particular, a physical argument for the approximation density of x given E states that it is 
inversely proportional to the velocity of x(t) [24]. Normalizing one finds: 

So now 

2 
p(xiE) = T(E)x 

p(x, E)= p(E)p(xiE) 
2w(x,x)dxdx = p(x,E)dxdE 

Hence, the approximate joint density function w( x, x) is given by 

w(x,x) = kexp{-~ 1E ~~nd{} 
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From the last expression the up crossing rate at level u for the hysteretic oscillator, U H, is 
given by 

Let 

UH = lX> xw(:i:,x)d:i: 

Q(E) = {E H(~) d~ 
lo C(~) 

From equation (32) putting x; = K. andy= K. + V(u), E = V(u) 

100 2 
UH = k exp[-IQ(y)dy] 

V(u) 

From standard asymptotic results, for large u one has approximately [25] 

{"" 2 I 2 
UH = k Jv(u) exp[-IQ(y)dy] ~ 2Q'(V(u)) exp[-IQ(V(u))] 

where the apex denotes the function derivative. Hence 

kiC[V(u)] {V(u) 
UH = 2H[V(u)] exp[-(2/I) Jo H(~)/C(~)d~] 

(32) 

(33) 

(34) 

(35) 

(36) 

Given the parameters of the endochronic equation (2) it is comparatively easy to calculate 
numerically all the functions in equation (36). 

Consider now the endochronic form in equation (27). In that case the backbone turns out to 
be linear and the shape of the hysteretic loop elliptic. 
For a cycle of period 27r fwll the slope of the backbone is given by 

Cw2 
f3- 1 - w? + D 2 

and the area of the loop S(b) by 1r'lj;b2, where 

Letting now 

'1/J _ -CDw1 
- w? + D2 

Wt = /WO 

12 =a+(l-a)f3 

The joint density function w( x, :i:) for the linearized system is 

(37) 

(38) 

(39) 
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Letting now 
('=(+'¢1-a 

2-y 

The upcrossing rate at level u for the linearized system, U L is given by 

L. Faravelli 

(40) 

(41) 

In order to obtain the values of the two linearization parameters, C and D, one equates 
the envelope crossing rates at level u given by equations (36) and (41) and evaluates the 
parameter (' as: 

('-- 21 ln[ 211' UH] (42) 
- 4-y2w3·u2 ')'Wo 

Finally, from equations (37) and (38 ) the two linearization parameters are given by 

(43) 

(44) 

where w1 = -yw0 , with 'Y given by equation (39), is 211' times the zero upcrossing rate of the 
linearized model. From equation (40) and for('>(, .,Pis 

"' = 2-y( ('- () 
1-a 

with(' given by equation (42). For u larger than the yielding value of x, {3 is choosen to be 
either 

or 

{3 = Zm'"'' 
u 

{3 = Zmax 
u+a 

where Zmax is the maximum value of the auxiliary variable z given by 

Zmax = [A/({3 + 6)]1/r 

4 STOCHASTIC FINITE-ELEMENTS 

This section is mainly devoted to complex structural systems, i.e. to mechanical systems 
whose input-output relationship is governed by a numerical operator like a general-purpose 
finite-element computer code. Let the randomness of the system and of the excitation on it 
be appropriately defined. Attention is focused on the objectives the probabilistic structural 
analysis pursues. It can be a direct reliability assessment or just an uncertainty propagation. 
The result of the latter analysis provides, then, the input for a probabilistic model of lifetime 
prediction or damage accumulation. Both the studies are often denoted as "stochastic finite 
element analyses" [26]. 
The most direct approach to such problems is the Monte Carlo simulation that requires the 
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evaluation of the response for many sets of input values. These sets are obtained by random 
sampling from the probability distributions assumed for the input variables. The repeated 
response evaluation provides a valid description of the uncertainty in the output. 

There are three main objections to a direct Monte Carlo approach: 1) its cost, since many 
thousands of computer runs are required; 2) the fact that it gives no clue as to which vari­
ables are the principal causes of uncertainty; 3) the circumstance that changes in the input 
distributions lead to new further Monte Carlo simulations independent of previous analyses. 
Two main different alternatives to Monte Carlo simulation can be envisaged: i) the numer­
ical operator is disassembled and the effect of the uncertainty is incorporated at each single 
stage of the numerical solving process; ii) the numerical operator is regarded as a black box 
and the output uncertainty is estimated by means of planned (i.e. not random) repeated 
experiments. 
One assumes here that the numerical operator is too complex to be opened. It follows that 
there are not alternatives to regarding it as a black-box. Repeated experiments have, there­
fore, to be carried out. The basic problem is to optimize the plan of these experiments in 
order to study the uncertainty propagation. The approach is based on the response surface 
methodology (r.s.m.) whose applications to the analysis of mechanical systems are reviewed 
in next section. 

4.1 THE EXTENDED RESPONSE SURFACE METHOD 

Let Xj (j = 1, ... , J) be a random design variable of a mechanical system. They are assumed 
to be uncorrelated; if it is not so, a suitable transformation can be adopted in order to reach 
uncorrelation. Any response variable y is a random variable since it is a function of the input 
variables. Let this function be unknown from an analytical point of view. 

The probability distribution of the response variable y can be approximately estimated by 
the statistical procedure proposed in [27], [28]. The same procedure was extended in [29] to 
the evaluation of the joint probability distribution of several response variables. 

a) The r.s.m. scheme 

Let some of the design variables Xj be functions of the spatial coordinates (random fields). 
When the continuous system is discretized, these functions become random vectors. Any 
vector X.j, expressing the spatial variability of the design variable x;, can be written in one 
of the two forms: 

I 
X.j = XAjXj 

I 
Xj = XAj + Xj 

(45) 

In equation ( 45), XAj is the central value of Xj and xj denotes the deviations of Xj from the 
central value XAj· The scalar quantity XAj has the nature of a random variable. The second 
factor on the r.h.s., xj, is a random vector with a unit or zero central value. 
Analogously, when xi is a stochastic function of any parameter tin (0, T), equation (45) still 
holds provided that the l.h.s. represents the vector resulting from the discretization of the 
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range (0, T). 
The extended response surface model is based on the relationship: 

(46) 

between y and the set of spatial averages XA, () being model parameters. The effect of the 
vectors xj on y is accounted for in the random term f, which collects the lack of fit and the 
randomness of neglected terms as in classical experiment theory. The same framework can 
be reached by selecting, instead of XA, a suitable subset of the Xj by appropriate sensitivity 
analyses. 

Suitable transformations Y = Y(y) and XA = XA(XA) are introduced before equation ( 46) 
is written. This is useful in order: 

i) to make linear the nonlinear relationships (on condition that the considered model is 
inherently linear in the regression coefficients). Let y be expressed by an exponential function 
with argument a second order polynomial form; then ln(y) is a second order polynomial form, 
i.e. a linear combination of the polynomial coefficients; 

ii) to facilitate the selection of the experiments to be carried out. 

In particular, for any Gaussian x Aj, the standardized variable: 

(47) 

is introduced. In equation ( 4 7) E[ ) denotes the mean value and V ar[ ] the variance. The 
transformation Y(y) will be discussed where the validation of the procedure is investigated. 

Since the dependence of Y on XA is conveniently described by a second order polynomial 
relationship, in matrix notation one writes: 

Y = Oo + X~ (Jt + X~ E>XA + fA = 
= X~l () + fA = Y + fA (48) 

where Y denotes the estimate of the response variable achieved by the response surface model. 
The coefficients 80 , 01, e, which play the role of 8 in equation (46), can be computed by the 
regression analysis of the results obtained in numerical experiments appropriately planned 
[30] (see figure 3). In equation (48), the term fA takes into account the model error f, the 
effects of the vectors xj of the deviations from the spatial averages and their interactions. 

b) Validation 

Once the parameters of model ( 48) are evaluated, its validation can be pursued by the fol­
lowing scheme: 

• several experiments at the same coordinates XA are repeated with different simulated 
vectors xj. For each experiment, different response values are found, but the estimate 
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Figure 3: Central composite design for fitting a second order polynomial response surface 

Y, obtained by equation (48), is always the same. This error of the model is called the 
"pure error". It is measured by the corresponding standard deviations(. 

• experiments are now conducted by changing both the coordinates XA and the vectors 
xj. Again discrepancies between Y andY are found. This error of the model is called 
the "lack of fit" error. It is measured by the standard deviation St which includes "the 
pure error" and the "lack of fit" of the second-order polynomial model. 

• any transformation Y of y is better than another when the corresponding ratio: 

(49) 

is closer to 1 [31). This criterion states that the optimal response surface is characterized 
by a space-averaged error (sl) very close to the ensemble error (s()• 

Note that the global pure error has to be almost constant over the region under consideration. 
Otherwise the analyser can conceive a piece-wise polynomial relationship Y(XA) in different 
regions of the space of the variables x Aj. 

As a tool of further validation, simulation can also be employed for producing a cumulative 
frequency diagram to be compared graphically with the estimated cumulative distribution 
function of the response. 

c) Probabilistic framework 

An appropriate use oflevel-2 reliability methods (see next section) was shown to be conve­
nient in view of the estimation of the cumulative distribution function (CDF) Py(t/J) of the 
transfotmed response variable Y. 
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The basic idea introduced in [32] is to evaluate Py(,P) as ~[-,B(z)]. Here ~ denotes the 
Gaussian CDF. Let z be the vector of all the random quantities on the right-hand side of 
equation (48), assumed to have normal distribution N(p,z,Ez). Then .8 is given by: 

,B(z) = ±min[(z- JLzf Ez-1(z- JLz)]! 
z:Y(z)='I/J 

The procedure was tested by simulation. It can also be modified for non-normality [33]. 

d) Covariance analysis 

(50) 

(51) 

In this way the marginal CDF's of the single response variables of interest can be estimated. 
However, one may also be interested in their joint distribution. For this purpose let Yt and 
Y2 be the appropriate transformations of two response variables Yt and Y2· Model ( 48) can 
be updated for Y1 in the form: 

(52) 

where ~. ~, e' and C1 are the coefficients of the new regression problem. The previous 
procedure, then, provides the conditional probability distribution of Yt given any assigned 
value for Y2 . 

5 RESPONSE SURFACE IN RELIABILITY ASSESS­
MENT 

Nonlinear dynamics problems can generally be solved only in a numerical way. This prevents 
from a direct application of standard reliability methods. A technique which makes use of 
iterated response-surface analytical approximations of the system performance function in 
conjunction with asymptotic theory was therefore proposed in view of reliability assessment 
[34]. 
This response-surface iterative scheme can be used in the original space of the random vari­
ables, provided a maximum log-likelihood constrained optimization problem is solved. More­
over, asymptotic theory also provides a better estimate of the probability of failure of the 
dynamical system against any assigned limit state. 

5.1 RELIABILITY ASSESSMENT 

The problem of calculating failure probabilities involves in general the computation of mul­
tidimensional integrals with implicitly defined boundaries. Several approximation methods 
were developed to obtain more and more efficient solution methods for this problem. 
The usual formulation of the problem is the following. The given items are a random vector 
x which describes the random influences on a structure and a limit state function g(x) which 
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indicates the state of the structure, when the random vector x has the realization Zt, •.• , Zn· 

If g(x) > 0, the structure is safe, if g(x) 5 0, it is unsafe. If p(x) is the joint probability 
density function (JPDF) of the random vector x, the probability of failure P(F), with the 
failure F = {x;g(x) 50}, is then 

P(F) = { p(x)dx 
}g(X)$0 

In general, the dimension n is large and the function g(x) has no simple analytical form. 
The first approximation methods, which were used to calculate this probability P(F), are 
the so called FORM (First Order Reliability Methods) procedures. As shown in (33] every 
random vector x with independent components Zt. ••• , Zn and continuous PDF can be trans­
formed into a standard Gaussian vector u = { Ut, ••• , un}T with independent components. 
If a failure domain F is given in this standard normal space, an approximation for its proba­
bility content P(F) was derived by simple geometric arguments. First, the point x0 E F with 
minimal distance to the origin was determined, this point must lie on the limit state surface 
B = {x;g(x) = 0}. Second, at this point a first order Taylor expansion of g(x) was made 
and then g(x) is replaced by the linear function 9L(x) obtained by this expansion. Instead 
of P(F) then the probability content of the domain FL = {x;gL{x) 50} is calculated. The 
probability content of such a domain is just 41( -/3) with f3 the distance of FL to the origin, 
if FL does not contain the origin in its interior. It can be shown that in this case f3 = lx01. 
Other approximation methods are the so-called SORM (Second Order Reliability Methods) 
procedures.These methods are analogous to the FORM's, but a second order Taylor expan­
sion is made. 
In the general case of dependent random variables the Rosenblatt transformation for trans­
forming random vectors with dependent components into standard normal vectors is appli­
cable only in special cases. 
When an asymptotic procedure is used, it was proved in [35] that it is not necessary to trans­
form random vectors into standard normal random vectors to be able to calculate asymptotic 
approximations. The basic idea is to understand the meaning of the minimization of the 
distance to the origin in FORM and SORM. 
Consider the logarithm of the Gaussian PDF p(u): 

ln(p(u)) = -n/2ln(27r) -lul2/2 

The minimization of the distance lui corresponds to the maximization of the logarithm of 
the PDF. In mathematical statistics this function is called the log-likelihood. Therefore the 
probabilistic meaning of this is the maximization of the log-likelihood. 
Asymptotic approximations can be derived also for non-normal random vectors with a PDF 
p(x) and log-likelihood /(x) = ln(p(x)). The point x* is calculated for which: 

/(x*) = max /(x) 
xeF 

Then a suitable expansion of the log-likelihood is made and as approximation [35]: 

P(F) "" {27r)(n-1)/2 p(x*) 
IVl(x*)l v'ldetH*I 

(53) 
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Here the matrix H*(x*) has the form 

H* = PHPT- IIIIT 

with: 

1) 11 = jV'l(x*)j-1V'l(x*) the normal to the surface. 

2) P =In- 1111T (In being then-dimensional unity matrix). 

3) H = (l,;j(x*)- ~~:f;:j 1 9,ij(x*)), i,j = 1, ... , n the Hessian of l(x) in local coordinates. 

An important advantage of the method of log-likelihood approximation is the fact that it can 
be used also for dependent random variables, if only the joint PDF p(x) and its log-likelihood 
l(x) = ln(p(x)) are known. In this case we calculate the point of maximum likelihood, then the 
first and second derivatives of the likelihood function at this point are computed and inserted 
into the approximation equation. Here no conditional distribution function, as needed in the 
Rosenblatt transformation, must be COITlputed. Further we can calculate directly from the 
log-likelihood function in the original space importance and sensitivity factors [36]. 

5.2 RELIABILITY ASSESSMENT OF DYNAMICAL SYSTEMS 

a) The method 

The extended response surface model ( 46) is formulated as follows: 

g(xjx66 ) = FR(Xv 1 X8 v,8) +£(xu) (54) 

with Xv a vector of random variables, Xav a vector of random central values and X 83 vectors 
of deviations from the corresponding central values; £ takes into account the error. 
Consider equation (54) written in the central region of all the variables in order to iden­
tify the actual location of G() in the standardized z space. Here the standardization is still 
introduced in order to preserve some useful features of the experiment planning. A linear 
polynomial form is preliminarly selected for the response surface. An appropriate fractional 
replicate of a factorial design centered at the origin of the space z defines the experiment 
plan [37] (see figure 4a)). This first response surface application (where the contribution of 
the quantities x •• is neglected) leads to an estimation of the design point z(1) and of the 
maximum likelihood point z(t) for the linear model; 

The sensitivity factors of each variable Zj can be estimated from the gradient of the log­
likelihood function at the point z(1) due to the fact that the probability of failure satisfies in 
first approximation the relation: 

IJP(F)foz;"' (Ol(z*)/oz;)P(F) 

No substantial error is generally introduced by considering the random variables with low 
sensitivity factors as fixed and equal to their means in the further calculations. Alternatively, 
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• 
• • 

a) b) 

c) d) 

Figure 4: a) Factorial design for fitting a preliminary linear approximation of the response 
surface; b) and c) subsequent shifted composite central designs during the iterative procedure 
of reliability assessment; d) final composite central design in the estimated point of maximum 
likelihood. 
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one can account for their randomness in the error terms f. 

A better estimation is then pursued by a sequence of repeated response surface applications. 
Each of them consists of several deterministic structural analyses for different input data (see 
figure 4b) and c)). They form an experiment design conceived for both fitting second-order 
polynomial response surface and incorporating the terms X 83 (and the Xv and Xva with low 
sensitivity factors). 
At the i-th step, the resulting approximation for the response function is: 

where 
v(i) = z - z(i) (55) 

By equation (55), the origin is shifted along the vector from the past origin to the relevant 
design point z(i-I)' The convergence to the actual value is pursued by selecting a point on 
the line between this point and the origin: this defines z(i)' 
Practical reasons suggests that one should work, rather than in the space v, in a particular 
space u, obtained from it by rotation. The new first axis u1 coincides with the normal to the 
function G() = const. at the selected point. This iterative procedure stops when convergence 
on the distance of the design point from the origin is achieved. At each step one also com­
putes the current estimate of the maximum-likelihood z(i) by the algorithm of constrained 
nonlinear optimization. 

b) A dynamics application 

Consider the hysteretic oscillator governed by the equation [34]: 

u=y 
iJ = -J.LW5u- 2(woy- (1- 17)w5z + f(t) 

z = u- Ct'llizir- c2zluilzl(r-l) 

where wo is the circular frequency, ( is the damping ratio, 17 is the ratio between the post 
and the pre-yielding stiffness and c1 and c2 are parameters of the hysteretic equation. r is a 
further parameter that is assumed equal to 1 in the following. The excitation f(t) is a white 
noise of power spectral density Go. 
Let the parameters (, 17, Ct and c2 be of a random nature. The oscillator becomes a system 
with uncertain parameters. The properties of such parameters are given in Table 1. 

Let the performance function be assigned in the form 

K- (1/2)[(Var[u]/.2?12 + Cov[zu]/.5]2:: 0 

Cov[zu] being the covariance of z and u, i.e. a measure of the dissipated energy rate. 

The correlated extreme distribution was selected to describe the joint probability density 
function ( JPDF) of Ct and c2. The proposed procedure, in fact, just requires the analytical 
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or numerical knowledge of the first and second derivatives of the joint log-likelihood function. 
Therefore, there is not need for numerical transformations and/or for numerical calculations 
of conditional densities which may offer numerical difficulties. In a more general case the 
JPDF of non-normal dependent variables will be obtained by inversion of the characteristic 
function but the procedure will be still applicable. 

The standardized variables are, as usual, 

Xi - Jli 
Zi=---

O'i 

Within the response surface scheme, experiments are planned according to the experiment 
design theory . For each set of variable values the nonlinear dynamic analysis is repeated 
and the response surface is built to fit the results in terms of the performance function G(z). 
For the first linear interpolation a single white noise realization is considered. In the subse­
quent nonlinear approximations, some realizations are used according to the blocking theory. 
The governing equation becomes then a standard deterministic differential equation which is 
integrated numerically. The response variance V ar[ u] is estimated over a period of 100 s af­
ter a time interval of 10/(2(w) necessary to make negligible the effect ofthe initial conditions. 

The results of the reliability analysis procedure proposed in this paper are summarized in 
Table II. The error term i is due to the stochastic variability of the excitation. 

Table I - Probabilisitc definition of the random variables of the example concerning the 
dynamic application. The variables ( and 11 are described by their transformations ( = 
0.01(' + 0.05 and 17 = 0.015'1' + 0.05, respectively (Go in sq.in.frad. s3 . 

Symbol Distribution Mean Value Standard dev. Correl. 

(' Chi-square with 0. 1. 
5 d.o.f. 

11' Chi-square with 0. 1. 
5 d.o.f. 

Ct Joint 
extreme value 1.25 0.25 0.75 

C2 distribution 

K Gaussian .1 .05 

Go Gaussian 5.11 0.205 
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Table II - Maximum likelihood point estimates z(i) and probability approximations for the 
dynamic example. The first step consider a linear response surface. The experiment design 
for the 4-th step is centered at z0 = (-1.248,-.286,.476,-.090,-1.137,-1.860). The last 
step adopts an experiment design centered at z(4). 

Iteration I ott Zt Z2 Z3 Z4 zs Z6 f Pp.104 

1 
(linear) - 9.230 - .997 -1.026 1.302 1.262 -1.226 1.534 - -

2 -10.056 -1.169 - .745 .136 .075 -1.162 2.179 -1.394 6.254 
3 - 9.793 -1.035 - .782 -.011 -.148 -1.181 6.845 -1.842 6.314 
4 - 9.992 -1.031 - .779 -.001 -.167 -1.237 1.875 -1.880 5.473 

final -10.023 -1.070 - .837 -.204 -.323 -1.190 2.022 -1.808 5.171 

6 CONCLUSIONS 

This paper emphasizes the following aspects: 

1. stochastic equivalent linearization is presently the tool of analysis more compatible with 
the special features of deterministic complex structural systems under stochastic exci­
tation; 

2. several criticisms on stochastic equivalent linearization can be overcome by an appro­
priate selection of the objective function which the selected linearized system must 
minimize; 

3. systems with uncertain geometrical and mechanical properties can be conveniently stud­
ied by response surface schemes; 

4. the reliability assessment for any expected performance of a dynamical system can be 
pursued by a maximum likelihood algorithm coupled with an iterative use of the response 
surface method. 

All these approaches provide quantitative estimates satisfactory for the engineer decision 
making process. But the progress of higher accuracy techniques must be continuously fol­
lowed and incorporated in the previous tools, toward a more and more robust standard of 
stochastic analysis. 
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