

The Structural
Representation of
Proximity Matrices
with MATLAB

ASA-SIAM Series on
Statistics and Applied Probability ABA
The ASA-SIAM Series on Statistics and Applied Probability is published SIAM
jointly by the American Statistical Association and the Society for Industrial and Applied Mathematics.
The series consists of a broad spectrum of books on topics in statistics and applied probability. The
purpose of the series is to provide inexpensive, quality publications of interest to the intersecting
membership of the two societies.

Editorial Board

Martin T. Wells
Cornell University, Editor-in-Chief

H. T. Banks
North Carolina State University

Joseph Gardiner
Michigan State University

Douglas M. Hawkins
University of Minnesota

Susan Holmes
Stanford University

Lisa LaVange
University of North Carolina

David Madigan
Rutgers University

Francoise Seillier-Moiseiwitsch
Georgetown University

Mark van der Laan
University of California, Berkeley

Hubert, L, Arabie, P., and Meulman, }., The Structural Representation of Proximity Matrices with MATLAB
Nelson, P. R., Wludyka, P. S., and Copeland, K. A. R, The Analysis of Means: A Graphical Method for

Comparing Means, Rates, and Proportions
Burdick, R. K., Borror, C. M., and Montgomery, D. C, Design and Analysis of Gauge R&R Studies: Making

Decisions with Confidence Intervals in Random and Mixed ANOVA Models
Albert,)., Bennett,]., and Cochran, J.]., eds., Anthology of Statistics in Sports
Smith, W. R, Experimental Design for Formulation
Baglivo, J. A., Mathematica Laboratories for Mathematical Statistics: Emphasizing Simulation and

Computer Intensive Methods
Lee, H. K. H., Bayesian Nonparametrics via Neural Networks
O'Gorman, T. W., Applied Adaptive Statistical Methods: Tests of Significance and Confidence Intervals
Ross, T. j., Booker, J. M., and Parkinson, W. j., eds., Fuzzy Logic and Probability Applications: Bridging the Cap
Nelson, W. B., Recurrent Events Data Analysis for Product Repairs, Disease Recurrences, and Other

Applications
Mason, R. L. and Young, J. C, Multivariate Statistical Process Control with Industrial Applications
Smith, P. L., A Primer for Sampling Solids, Liquids, and Cases: Based on the Seven Sampling Errors of

Pierre Gy
Meyer, M. A. and Booker, J. M., Eliciting and Analyzing Expert judgment: A Practical Guide
Latouche, G. and Ramaswami, V., Introduction to Matrix Analytic Methods in Stochastic Modeling
Peck, R., Haugh, L., and Goodman, A., Statistical Case Studies: A Collaboration Between Academe and

Industry, Student Edition
Peck, R., Haugh, L., and Goodman, A., Statistical Case Studies: A Collaboration Between Academe and

Industry
Barlow, R., Engineering Reliability
Czitrom, V. and Spagon, P. D., Statistical Case Studies for Industrial Process Improvement

SIAM

The Structural
Representation of
Proximity Matrices
with MATLAB

Lawrence Hubert
University of Illinois
Champaign, Illinois

Phipps Arable
Rutgers Business School of Newark and New Brunswick

Newark, New Jersey

Jacqueline Meulman
Leiden University

Leiden, The Netherlands

slam.
Society tor Industrial and Applied Mathematics American Statistical Association
Philadelphia, Pennsylvania Alexandria, Virginia

The correct bibliographic citation for this book is as follows: Hubert, Lawrence, Phipps Arabie, and Jacque-

line Meulman, The Structural Representation of Proximity Matrices with MATLAB, ASA-SIAM Series on

Statistics and Applied Probability, SIAM, Philadelphia, ASA, Alexandria, VA, 2006.

Copyright © 2006 by the American Statistical Association and the Society for Industrial and Applied

Mathematics.

1 0 9 8 7 6 5 4 3 2 1

All rights reserved. Printed in the United States of America. No part of this book may be reproduced,
stored, or transmitted in any manner without the written permission of the publisher. For information, write

to the Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia,

PA 19104-2688.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These names

are intended in an editorial context only; no infringement of trademark is intended.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not

warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB®
software or related products does not constitute endorsement or sponsorship by The MathWorks of a
particular pedagogical approach or particular use of the MATLAB® software. For MATLAB® product

information, please contact: The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA,
508-647-7000, Fax: 508-647-7101, info@mathworks.com, www.mathworks.com/

NAG is a registered trademark of the Numerical Algorithms Group.

SPSS Categories is a trademark of SPSS, Inc.

SYSTAT is a registered trademark of Systat Software, Inc.

The research reported in this monograph has been partially supported by the National Science Foundation
through grant SES-981407 (to Lawrence Hubert) and by the Netherlands Organization for Scientific
Research (NWO) through grant 575-67-053 for the "PIONEER" project "Subject Oriented Multivariate
Analysis" (to Jacqueline Meulman).

Library of Congress Cataloging-!n-Publication Data

Hubert, Lawrence J., 1944-

The structural representation of proximity matrices with MATLAB / Lawrence Hubert,
Phipps Arabie, Jacqueline Meulman.

p. cm. — (ASA-SIAM series on statistics and applied probability)

Includes bibliographical references and index.
ISBN 0-89871-607-1 (pbk.)

1. Proximity matrices. 2. Functions. 3. Representation of graphs. 4. MATLAB. I.

Arabie, Phipps. II. Meulman, Jacqueline. III. Title. IV. Series.

QA195.H83 2006

512.9'434-dc22
2006042210

•

SIAamM. is a registered trademark.is a

www.mathworks.com/

Dedicated to

Frank B. Baker (by Lawrence Hubert)

Richard C Atkinson (by Phipps Arable)

John P. Van de Ceer (by Jacqueline Meulman)

This page intentionally left blank

Contents

List of Figures xi

List of Tables xiii

Preface xv

I (Multi- and Unidimensional) City-Block Scaling 1

1 Linear Unidimensional Scaling 3
1.1 LUS hither-Norm 4

1.1.1 A Data Set for Illustrative Purposes 5
1.2 L2 Optimization Methods 5

1.2.1 Iterative Quadratic Assignment 6
1.3 Confirmatory and Nonmetric LUS 11

1.3.1 The Confirmatory Fitting of a Given Order Using linfit.m . . 12
1.3.2 The Monotonic Transformation of a Proximity Matrix

Using proxmon.m 13
1.4 The Dykstra-Kaczmarz Method 17

2 Linear Multidimensional Scaling 19
2.1 The Incorporation of Additive Constants in LUS 20

2.1.1 The L2 Fitting of a Single Unidimensional Scale (with an
Additive Constant) 21

2.2 Finding and Fitting Multiple Unidimensional Scales 24
2.3 Incorporating Monotonic Transformations of a Proximity Matrix ... 27
2.4 Confirmatory Extensions to City-Block Individual Differences

Scaling 29

3 Circular Scaling 31
3.1 The Mechanics of CUS 32

3.1.1 The Estimation of c and {|xj —xi|,xo, JCQ — \Xj — x,;\} for a Fixed
Permutation and Set of Inflection Points 33

3.1.2 Obtaining Object Orderings and Inflection Points around a
Closed Continuum 34

vii

viii Contents

3.1.3 The CUS Utilities, cirfit.m and cirfitac.m 35
3.2 Circular Multidimensional Scaling 43

4 LUS for Two-Mode Proximity Data 47
4.1 Reordering Two-Mode Proximity Matrices 48
4.2 Fitting a Two-Mode Unidimensional Scale 49
4.3 Multiple LUS Reorderings and Fittings 54
4.4 Some Useful Two-Mode Utilities 58
4.5 Two-Mode Nonmetric Bidimensional Scaling 59

II The Representation of Proximity Matrices by Tree Structures 63

5 Ultrametrics for Symmetric Proximity Data 67
5.1 Fitting a Given Ultrametric in the L2-Norm 69
5.2 Finding an Ultrametric in the L2-Norm 70
5.3 Graphically Representing an Ultrametric 72

5.3.1 LATE Code for the Dendrogram of Figure 5.1 76
5.3.2 Plotting the Dendrogram with ultraplot.m 78

6 Additive Trees for Symmetric Proximity Data 81
6.1 Fitting a Given Additive Tree in the L2-Norm 82
6.2 Finding an Additive Tree in the L2-Norm 83
6.3 Decomposing an Additive Tree 85
6.4 Graphically Representing an Additive Tree 87
6.5 An Alternative for Finding an Additive Tree in the L2-Norm (Based

on Combining a Centroid Metric and an Ultrametric) 88

7 Fitting Multiple Tree Structures to a Symmetric Proximity Matrix 93
7.1 Multiple Ultrametrics 93
7.2 Multiple Additive Trees 95

8 Ultrametrics and Additive Trees for Two-Mode (Rectangular) Proximity
Data 99
8.1 Fitting and Finding Two-Mode Ultrametrics 100
8.2 Finding Two-Mode Additive Trees 102
8.3 Completing a Two-Mode Ultrametric to One Defined on SA U SB . . . 105

8.3.1 The goldfish_receptor Data 109

III The Representation of Proximity Matrices by Structures
Dependent on Order (Only) 111

9 Anti-Robinson Matrices for Symmetric Proximity Data 115
9.0.1 Incorporating Transformations 116
9.0.2 Interpreting the Structure of an AR Matrix 117

9.1 Fitting a Given AR Matrix in the L2-Norm 119

Contents ix

9.1.1 Fitting the (In)equality Constraints Implied by a Given
Matrix in the L2-Norm 120

9.2 Finding an AR Matrix in the L2-Norm 121
9.3 Fitting and Finding an SAR Matrix in the L2-Norm 124
9.4 The Use of Optimal Transformations and the M-Function

proxmon.m 126
9.5 Graphically Representing SAR Structures 131
9.6 Representation Through Multiple (Strongly) AR Matrices 136

10 Circular Anti-Robinson Matrices for Symmetric Proximity Data 143
10.1 Fitting a Given CAR Matrix in the L2-Norm 145
10.2 Finding a CAR Matrix in the L2-Norm 146
10.3 Finding a CSAR Matrix in the L2-Norm 148
10.4 Graphically Representing CSAR Structures 151
10.5 Representation Through Multiple (Strongly) CAR Matrices 151

11 Anti-Robinson Matrices for Two-Mode Proximity Data 159
11.1 Fitting and Finding Two-Mode AR Matrices 159
11.2 Multiple Two-Mode AR Reorderings and Fittings 162

A Header Comments for the M-Files Mentioned in the Text and Given in
Alphabetical Order 167

Bibliography 205

Indices 210
Author Index 210
Subject Index 212

This page intentionally left blank

List of Figures

3.1 Two-dimensional circular plot for the morse_digits data obtained using
circularplot.m 42

4.1 Two-dimensional joint biplot for the goldfish_receptor data obtained us-
ing biplottm.m 59

4.2 Two-dimensional joint biplot for the goldfish_receptor data obtained us-
ing bimonscaltmac.m and biplottm.m 60

5.1 A dendrogram (tree) representation for the ultrametric described in the
text having VAF of .4941 75

5.2 Dendrogram plot for the number data obtained using ultraplot.m 79

6.1 A dendrogram (tree) representation for the ultrametric component of the
additive tree described in the text having VAF of .6359 89

6.2 A graph-theoretic representation for the additive tree described in the text
having VAF of .6359 90

9.1 Two 4x4 submatrices and the object subsets they induce, taken from the
AR matrix in the upper-triangular portion of Table 9.1. For (a), a graphical
representation of the fitted values is possible; for (b), the anomaly indi-
cated by the dashed lines prevents a consistent graphical representation
from being constructed 134

9.2 A graphical representation for the fitted values given by the SAR matrix
in the lower-triangular portion of Table 9.1 136

10.1 A graphical representation for the fitted values given by the CS AR matrix
in the lower-triangular portion of Table 10.2 (VAF = 72.96%). Note that
digit 3 is placed both in the first and the last positions in the ordering of
the objects with the implication that the sequence continues in a circular
manner. This circularity is indicated by the curved dashed line 153

xi

This page intentionally left blank

List of Tables

1.1 The number.dat data file extracted from Shepard, Kilpatric, and Cunning-
ham (1975) 6

3.1 A proximity matrix, morse_digits.dat, for the ten Morse code symbols
representing the first ten digits (data from Rothkopf, 1957) 33

4.1 The goldfish_receptor.dat data file constructed from Schiffman and Falken-
berg (1968) 48

4.2 The two unidimensional scalings of the goldfish_receptor data 55

9.1 Order-constrained least-squares approximations to the digit proximity
data of Shepard, Kilpatric, and Cunningham (1975); the upper-triangular
portion is AR and the lower-triangular portion is SAR 132

9.2 The 45 subsets listed according to increasing diameter values that are
contiguous in the object ordering used to display the upper-triangular
portion of Table 9.1. The 22 subsets given in italics are redundant in the
sense that they are proper subsets of another listed subset with the same
diameter. 133

9.3 The fourteen (nonredundant) subsets listed according to increasing diam-
eter values are contiguous in the linear object ordering used to display
the lower-triangular SAR portion of Table 9.1 135

10.1 The fifteen (nonredundant) subsets listed according to increasing diameter
values are contiguous in the circular object ordering used to display the
CSAR entries in Table 10.2 152

10.2 A CSAR order-constrained least-squares approximation to the digit prox-
imity data of Shepard, Kilpatric, and Cunningham (1975) 152

xiii

This page intentionally left blank

Preface

As the title of this monograph implies, our main goal is to provide and illustrate the use
of functions (by way of M-files) within a MATLAB® computational environment to effect
a variety of structural representations for proximity information assumed available on a set
of objects. The structural representations that will be of interest have been discussed and
developed primarily in the applied (behavioral science) statistical literature (e.g., in psycho-
metrics and classification), although interest in these topics has now extended much more
widely (for example, to bioinformatics and chemometrics). We subdivide the monograph
into three main sections depending on the general class of representations being discussed.
Part I develops linear and circular uni- and multidimensional scaling using the city-block
metric as the major representational device; Part II is concerned with characterizations based
on various graph-theoretic tree structures, specifically with those usually referred to as ul-
trametrics and additive trees; Part III uses representations defined solely by order properties,
particularly to what are called (strongly) anti-Robinson forms. Irrespective of the part of
the monograph being discussed, there will generally be two kinds of proximity information
analyzed: one-mode and two-mode. One-mode proximity data are defined between the n
objects from a single set, usually given in the form of a square (n x n) symmetric matrix
with a zero main diagonal; two-mode proximity data are defined between the objects from
two distinct sets containing, say, na and nb objects, respectively, and given in the form of
a rectangular (na x nb,) matrix. Also, there will generally be the flexibility to allow the
fitting (additively) of multiple structures to either the given one- or two-mode proximity
information.

It is not the intent of the monograph to present formal demonstrations of the various
assertions we might make along the way, such as for the convergence of a particular algorithm
or approach. All of this is generally available in the literature (and much of it by the
authors of the current monograph), and the references to this source material are given
when appropriate. The primary interest here is to present and demonstrate how to actually
find and fit these structures computationally with the help of some sixty-five functions
(though M-files) we provide that are usable within a MATLAB computational environment.
The usage header information for each of these functions is given in Appendix A (listed
alphabetically). The M-files themselves can be downloaded individually from

http://cda.psych.uiuc.edu/srpm_mflies

Here, the acronym "srpm" stands (obviously) for "structural representation (of) proximity
matrices." Also, there is a "zipped" file called srpm_mf i les . z ip at this site that includes
all of the files, as well as the few small data sets used throughout the monograph to illustrate

xv

http://cda.psych.uiuc.edu/srpm_mfiles

xvi Preface

the results of invoking the various M-files (or, equivalently for us, M-functions); thus, the
reader should be able to reproduce all of the examples given in the monograph (assuming,
obviously, access to a MATLAB environment). If additional examples are desired, the
reader is directed to Michael Lee's web site and the some fifty or so proximity matrices he
has collected and made available in the MATLAB MAT-file format (in a "zipped" file called
all. zip):

www.psychology.adelaide.edu.au/
personalpages/staff/michaellee/homepage

The computational approach implemented in the provided M-files for obtaining the
sundry representations is, by choice, invariably least-squares and based on what is called
the Dykstra-Kaczmarz (DK) method for solving linear inequality constrained least-squares
tasks. The latter iterative strategy is reviewed in Chapter 1 (Section 1.4, in particular). All
of the representations of concern (over all three monograph parts) can be characterized by
explicit linear inequalities; thus, once the latter constraints are known (by, for example,
the identification of certain object permutations through secondary optimization problems
such as quadratic assignment), the actual representing structure can be obtained by using
the iterative DK strategy. Also, as we will see particularly in Part II dealing with graph-
theoretic tree structures (ultrametrics and additive trees), the DK approach can even be
adopted heuristically to first identify the inequality constraints that we might wish to impose
in the first place. And once identified in this exploratory fashion, a second application of DK
could then do a confirmatory fitting of the now fixed and identified inequality constraints.

As noted above, our purpose in writing this monograph is to provide an applied docu-
mentation source for a collection of M-files that would be of interest to applied statisticians
and data analysts but also accessible to a notationally sophisticated but otherwise substan-
tively focused user. Such a person would typically be most interested in analyzing a specific
data set by adopting one (or some) of the structural representations we discuss. The back-
ground we have tried to assume is at the same level required to follow the documentation for
good, commercially available optimization subroutines, such as the Numerical Algorithms
Group (NAG) Fortran subroutine library, or at the level of one of the standard texts in applied
multivariate analysis usually used for a graduate second-year methodology course in the
behavioral and social sciences. An excellent example of the latter would be the widely used
text now in its fifth edition by Johnson and Wichern (2002). Draft versions of the current
monograph have been used as supplementary material for a course relying on the latter text
as the primary reference.

The research reported in this monograph has been partially supported by the National
Science Foundation through grant SES-981407 (to Lawrence Hubert) and by the Netherlands
Organization for Scientific Research (NWO) through grant 575-67-053 for the "PIONEER"
project "Subject Oriented Multivariate Analysis" (to Jacqueline Meulman).

Lawrence Hubert
Phipps Arabic

Jacqueline Meulman

www.psychology.adelaide.edu.au/personalpages/staff/michaellee/homepage

Parti

(Multi- and Unidimensional)
City-Block Scaling

This page intentionally left blank

Chapter 1

Linear Unidimensional
Scaling

The task of linear unidimensional scaling (LUS) can be characterized as a specific data
analysis problem: given a set of n objects, S = (O 1 , . . . , On], and an n x n symmetric
proximity matrix, P = {pij}, arrange the objects along a single dimension such that the
induced n (n — 1)/2 interpoint distances between the objects reflect the proximities in P. The
term "proximity" refers to any symmetric numerical measure of relationship between each
object pair (pij = pji for 1 < i, j < n) and for which all self-proximities are considered
irrelevant and set equal to zero (/?,, — 0 for 1 < i < n). As a technical convenience,
proximities are assumed nonnegative and are given a dissimilarity interpretation, so that
large proximities refer to dissimilar objects.

As a starting point to be developed exclusively in this first chapter, we consider the
most common formalization of measuring how close the interpoint distances are to the
given proximities by the sum of squared discrepancies. Specifically, we wish to find the n
coordinates, jci, X 2 , . . . , xn, such that the least-squares (or L-i) criterion

is minimized. Although there is some arbitrariness in the selection of this measure of
goodness-of-fit for metric scaling, the choice is traditional and has been discussed in some
detail in the literature by Guttman (1968), Defays (1978), de Leeuw and Heiser (1977),
and Hubert and Arabic (1986), among others. In the various sections that follow, we will
develop a particular heuristic strategy for the minimization of (1.1) based on the iterative use
of a quadratic assignment improvement technique. Other methods are possible but will not
be explicitly discussed here; the reader is referred to Hubert, Arabic, and Meulman (2002)
for a comparison among several optimization alternatives for the basic LUS task.

In addition to developing the combinatorial optimization task of actually identifying
a best unidimensional scaling, Section 1.3 introduces two additional problems within the
LUS context: (a) the confirmatory fitting of a unidimensional scale (through coordinate
estimation) based on a fixed (and given) object ordering; (b) the extension to nonmetric
unidimensional scaling incorporating an additional optimal monotonic transformation of
the proximities. Both these optimization tasks are formulated through the L2-norm and

3

Chapter 1. Linear Unidimensional Scaling

implemented using applications of what is called the Dykstra-Kaczmarz method of solving
linear (in)equality constrained least-squares tasks (Kaczmarz, 1937; Dykstra, 1983). The
latter strategy is reviewed briefly in a short addendum (Section 1 .4) to this chapter.

1.1 LUS in the /.2-Norm
As a reformulation of the L^ unidimensional scaling task that will prove crucial as a point
of departure in our development of a computational routine, the optimization suggested by
(1.1) can be subdivided into two separate problems to be solved simultaneously: find a set
of n numbers, x\ < x^ < • • • < xn, and a permutation on the first n integers, p (-) = p, for
which

is minimized. Thus, a set of locations (coordinates) is defined along a continuum as repre-
sented in ascending order by the sequence jci , J C 2 , . . . , xn; the n objects are allocated to these
locations by the permutation p, so that object Op(,) is placed at location i. Without loss of
generality we will impose the one additional constraint that]T\ jc, = 0; i.e., any set of val-
ues, J C j , JC2, ... ,*„, can be replaced by *i — x, KI — x,..., xn — x, wherex = (\/n) £ .̂ jc,,
without altering the value of (1.1) or (1.2). Formally, if p* and Jt* < x% < • • • < x* define
a global minimum of (1.2), and Q denotes the set of all permutations of the first n integers,
then

— min

The measure of loss in (1.2) can be reduced algebraically:

subject to the constraints that x\ and letting

where

and

1.2. L2 Optimization Methods

Verbally, uf is the sum of the entries within row p(i) of {ppa)p(j)} from the extreme left

up to the main diagonal; v(
f
p) is the sum from the main diagonal to the extreme right. Or,

we might rewrite (1.3) as

In (1.4), the two terms £,•(*; — f/p))2 and X!/(Y)2 control the size of the discrepancy
index since ^i<y P2j is constant for any given data matrix. Thus, to minimize the original

index in (1.2), we should simultaneously minimize £!,•(*; ~~ f/)2 and maximize]C,-(v)2-
If the equivalent form of (1.3) is considered, our concern would be in minimizing j](xf

and maximizing £]/ xtf- .
As noted first by Defays (1978), the minimization of (1.4) can be carried out directly

by the maximization of the single term, 5Z;(*i)2 (under the mild regularity condition that
all off-diagonal proximities in P are positive and not merely nonnegative). Explicitly, if p*

is a permutation that maximizes £],-(*,-)2, men we can 'et •*' — *1P » which eliminates the
term £],-(*,- ~ ^p))2 from (1.4). In short, because the order induced by t \ , . . . , tnP } is
consistent with the constraint x\ < X2 < • • • < xn, the minimization of (1.4) reduces to the
maximization of the single term £}«•(*/)2» w^m me coordinate estimation completed as an
automatic by-product.

1 .1 .1 A Data Set for Illustrative Purposes

It is convenient to have a small numerical example available as we discuss optimization
strategies in the unidimensional scaling context. Toward this end we list a data file in
Table 1.1, called number.dat, that contains a dissimilarity matrix taken from Shep-
ard, Kilpatric, and Cunningham (1975). The stimulus domain is the first ten single-digits
{0, 1, 2, . . . , 9} considered as abstract concepts; the 10 x 10 proximity matrix (with an ith
row or column corresponding to the / — 1 digit) was constructed by averaging dissimilarity
ratings for distinct pairs of those integers over a number of subjects and conditions. Given
the various analyses of this proximity matrix that have appeared in the literature (e.g., see
Hubert, Arabic, and Meulman, 2001), the data reflect two types of very regular patterning
based on absolute digit magnitude and the structural characteristics of the digits (e.g., the
powers or multiples of 2 or 3, the salience of the two additive/multiplicative identities [0/1],
oddness/evenness). These data will be relied on to provide concrete numerical illustrations
of the various MATLAB functions we introduce and will be loaded as a proximity matrix
(and, importantly, as one that is symmetric and has zero values along the main diagonal)
in the MATLAB environment by the command load number.dat. As we will see,
the dominant single unidimensional scale found for these data is most consistent with digit
magnitude.

1 .2 L2 Optimization Methods
This section shows how a well-known combinatorial optimization task, called quadratic
assignment, can be used iteratively for LUS in the L2-norm. Based on the reformulation in

5

Chapter 1. Linear Unidimensional Scaling

Table 1.1. The number.dat data file extracted from Shepard, Kilpatric, and Cun-
ningham (1975).

.000 .421 .584 .709 .684 .804 .788 .909 .821 .850

.421 .000 .284 .346 .646 .588 .758 .630 .791 .625

.584 .284 .000 .354 .059 .671 .421 .796 .367 .808

.709 .346 .354 .000 .413 .429 .300 .592 .804 .263

.684 .646 .059 .413 .000 .409 .388 .742 .246 .683

.804 .588 .671 .429 .409 .000 .396 .400 .671 .592

.788 .758 .421 .300 .388 .396 .000 .417 .350 .296

.909 .630 .796 .592 .742 .400 .417 .000 .400 .459

.821 .791 .367 .804 .246 .671 .350 .400 .000 .392

.850 .625 .808 .263 .683 .592 .296 .459 .392 .000

(1 .3), we concentrate on maximizing £(- x-lti , with iterative reestimation of the coordinates
x\, ... ,xn. Various function implementations within MATLAB are given for both the basic
quadratic assignment task and how it is used for LUS.

1 .2.1 Iterative Quadratic Assignment

Because of the manner in which the discrepancy index for the unidimensional scaling task
can be rephrased as in (1.3) and (1 .4), the two optimization subproblems to be solved simul-
taneously of identifying an optimal permutation and a set of coordinates can be separated:

(a) Assuming that an ordering of the objects is known (and denoted, say, as pQ for the

moment), find those values x® < • - • < x® to minimize X!/(-*f ~ ̂ >)2- If the permutation

p° produces a monotonic form for the matrix {/VdVO')} in the sense that t\p } < t(
2

p) <

• • • < tnP \ the coordinate estimation is immediate by letting xf — t;p \ in which c

(b) Assuming that the locations x® < • • • < x® are known, find the permutation

p° to maximize]T\ X(t\p \ We note from the work of Hubert and Arabic (1986, p. 189)

that any such permutation which even only locally maximizes]T(xtf^ \ in the sense th
no adjacently placed pair of objects in p° could be interchanged to increase the index,
will produce a monotonic form for the nonnegative matrix {/VoVO'))- Also, the task of

finding the permutation p° to maximize £(. Xjt^p } is actually a quadratic assignment (QA)
task which has been discussed extensively in the literature of operations research; e.g., see
Francis and White (1974), Lawler (1975), and Hubert and Schultz (1976), among others.
As usually defined, a QA problem involves two n x n matrices A = {a,y} and B = {£/_/},
and we seek a permutation p to maximize

6

is zero.

1.2. L2 Optimization Methods

If we define b/; = |jc, — Xj \ and let «,-_/ = /?,-, , then

and thus the permutation that maximizes F(p) also maximizes X! *i'V •
The QA optimization task as formulated through (1.5) has an enormous literature

attached to it, and the reader is referred to Pardalos and Wolkowicz (1 994) for an up-to-date
and comprehensive review. For current purposes and as provided in three general M-
functions of the next section (pairwiseqa . m, rotateqa . m, and insertqa . m), on
might consider the optimization of (1.5) through simple object interchange/rearrangement
heuristics. Based on given matrices A and B, and beginning with some permutation (possibly
chosen at random), local interchanges/rearrangements of a particular type are implemented
until no improvement in the index can be made. By repeatedly initializing such a process
randomly, a distribution over a set of local optima can be achieved. At least within the
context of some common data analysis applications, such a distribution may be highly
relevant diagnostically for explaining whatever structure might be inherent in the matrix A.
We give an example of how random starts might be studied for the context of unidimensional
scaling toward the end of the current section. This should serve as a general template for
other applications (M-files) as well.

In a subsequent subsection below, we introduce the main M-function for unidimen-
sional scaling (uniscalqa.m) based on these earlier QA optimization strategies. In
effect, we begin with an equally spaced set of fixed coordinates with their interpoint dis-
tances defining the B matrix of the general QA index in (1.5) and a random object per-
mutation; a locally optimal permutation is then identified through a collection of local
interchanges/rearrangements; the coordinates are reestimated based on this identified per-
mutation; and the whole process is repeated until no change can be made in either the
identified permutation or coordinate collection.

The QA interchange/rearrangement heuristics

The three M-functions that carry out general QA interchange/rearrangement heuristics all
have the same general usage syntax (note the use of three dots to indicate a statement
continuation in MATLAB):

[outperm, rawindex, allperms, index] = ...
pairwiseqa (prox, targ, inperm)

[outperm, rawindex, allperms, index] = ...
rotateqa (prox, targ, inperm, kblock)

[outperm, rawindex, allperms, index] = ...
insertqa (prox, targ, inperm, kblock)

pairwiseqa .m carries out a QA maximization task using the pairwise interchanges of
objects in the current permutation defining the row and column order of the data matrix. All

7

Chapter 1. Linear Unidimensional Scaling

possible such interchanges are generated and considered in turn, and whenever an increase in
the cross-product index would result from a particular interchange, it is made immediately.
The process continues until the current permutation cannot be improved upon by any such
pairwise object interchange; this final locally optimal permutation is OUTPERM. The input
beginning permutation is INPERM (a permutation of the first n integers); PROX is the n x n
input proximity matrix and TARG is the n x n input target matrix (which are respective
analogues of the matrices A and B of (1.5)); the final OUTPERM row and column permutation
of PROX has the cross-product index RAWINDEX with respect to TARG; RAWINDEX is
F(/o) in (1.5), where p is now given as OUTPERM. The cell array ALLPERMS contains
INDEX entries corresponding to all the permutations identified in the optimization, from
ALLPERMS{l} = INPERM to ALLPERMS {INDEX} = OUTPERM. (Note that within
a MATLAB environment, entries of a cell array must be accessed through the curly braces,
{ }.) rotateqa.m carries out a similar iterative QA maximization task but now uses
the rotation (or inversion) of from 2 to KBLOCK (which is less than or equal to n — 1)
consecutive objects in the current permutation defining the row and column order of the
data matrix, insertqa.m relies on the reinsertion of from 1 to KBLOCK consecutive
objects somewhere in the permutation defining the current row and column order of the data
matrix.

The function uniscalqa.m

The function M-file uniscalqa.m carries out a unidimensional scaling of a symmet-
ric dissimilarity matrix (with a zero main diagonal) using an iterative QA strategy. We
begin with an equally spaced target, a (random) starting permutation, and use a sequen-
tial combination of the pairwise interchange/rotation/insertion heuristics; the target matrix
is reestimated based on the identified (locally optimal) permutation. The whole process
is repeated until no changes can be made in the target or the identified (locally optimal)
permutation. The explicit usage syntax is

[outperm,rawindex,allperms,index,coord,diff] = ...
uniscalqa(prox,targ,inperm,kblock)

where all terms are (mostly) present in the three QA heuristic M-functions of the previ-
ous subsection. Here, COORD gives the final coordinates achieved, and DIFF provides
the attained value for the least-squares loss function. A recording of a MATLAB ses-
sion using number. dat follows; note the application of the built-in MATLAB function
randperm (10) to obtain a random input permutation of the first 10 digits, and the use
of the utility M-function, targlin. m (and the command targlin (10)), to generate a
target matrix, targlinear, based on an equally (and unit) spaced set of coordinates. In
the output given below, semicolons are placed after the invocation of the M-functions to
initially suppress the output; transposes (') are then used on the output vectors to conserve
space by using only row (as opposed to column) vectors in the listing.

load number.dat
targlinear = targlin(10);
inperm = randperm(10);
kblock = 2;

8

1.2. L2 Optimization Methods

[outperm,rawindex,allperms,index,coord,diff] = ...
uniscalqa(number,targlinear,inperm,kblock);

outperm

outperm =

1 2 3 5 4 6 7 9 1 0 8

coord'

ans =

Columns 1 through 6

-0.6570 -0.4247 -0.2608 -0.1492 -0.0566 0.0842

Columns 7 through 10

0.1988 0.3258 0.4050 0.5345

diff

diff =

1.9599

Random restarts for uniscalqa.m

One of our comments indicated that by allowing random starts for some of the routines
we would be developing, a possibly diagnostic set of local optima might be generated. To
illustrate this in more detail and to provide a template that could be emulated more generally
throughout the monograph, we will show how this might be done for the just-introduced uni-
dimensional scaling routine uniscalqa. m. The M-file uniscalqa_montecarlo. m
is listed below and takes as input three matrices: PROX, the original input proximity matrix;
KBLOCK to control the QA optimization routines; and NSTART to denote the number of
random permutations for which uniscalqa . m is to be invoked. As output, there are two
cell arrays containing the final permutations and coordinates observed during the random
starts (OUTPERMS and COORDS) and three vectors containing the output cross-products,
RAWINDICES, the number of permutations visited to obtain the latter, INDICES, and the
least-squares loss criterion values, DIFFS.

function [outperms,rawindices,indices,coords,diffs] = ...
uniscalqa_montecarlo(prox,kblock,nstart)

rand ('state', sum(100*clock))

9

10 Chapter 1. Linear Unidimensional Scaling

n = size (prox,1)
targ = targlin(n);

for i = 1:nstart
inperm = randperm(n);
[outperm,rawindex,allperms,index,coord,diff] = ...

uniscalqa(prox,targ,inperm,kblock);
outperms{i} = outperm;
rawindices(i) = rawindex;
indices(i) = index;
coords{i} = coord;
diffs(i) = diff;

end

Note that the state of the random number generator is reset "randomly" at the start
of the session (using rand (' state' , sum(lOOclock))) so the same sequence of
random permutations is not obtained; also, the equally spaced target matrix generated from
targlin.mis automatic input to the call to uniscalqa. m.

In the small examples that follow, ten random starts were given for our number
data, with only one local optima observed (at an index value of 26.1594); an additional
ten random starts for a random proximity matrix (with uniform distribution on [0,1] for the
entries constructed with the utility function randprox. m) shows two local optima at index
values of 24.9350 and 25.1622. Obviously, these types of examples could be extended.

load number.dat
kblock = 2;
nstart = 10;
[outperms,rawindices,indices,coords,diffs] = ...

uniscalqa_montecarlo(number,kblock,nstart);

rawindices

rawindices =

Columns 1 through 6

26.1594 26.1594 26.1594 26.1594 26.1594 26.1594

Columns 7 through 10

26.1594 26.1594 26.1594 26.1594

data = randprox(10);
data

data =

1.3. Confirmatory and Nonmetric LUS 11

Columns 1

0
0.8649
0.2503
0 .4106
0.8525
0.3221
0.2710
0.8550
0.6985
0.4754

Columns 7

0 .2710
0.7454
0.3279
0 .2878
0.3647
0.5435

0
0.9291
0.0794
0.8903

through 6

0

0
0
0
0
0
0
0
0

.8649
0

.4737

.5080

.4470

.9500

.7454

.3273

.2331

.3112

0
0

0
0
0
0
0
0
0

.2503

.4737
0

.5019

.5958

.8028

.3279

.1561

.2319

.4829

0
0
0

0
0
0
0
0
0

.4106

.5080

.5019
0

.1841

.4619

.2878

.4915

.9252

.3670

0
0
0
0

0
0
0
0
0

.8525

.4470

.5958

.1841
0

.8704

.3647

.6460

.8957

.5238

0.3221
0.9500
0.8028
0.4619
0.8704

0
0.5435
0.9158
0.2553
0.8076

through 10

0
0
0
0
0
0
0

0
0

.8550

.3273

.1561

.4915

.6460

.9158

.9291
0

.4160

.0510

0
0
0
0
0
0
0
0

0

.6985

.2331

.2319

.9252

.8957

.2553

.0794

.4160
0

.2751

0
0
0
0
0
0
0
0
0

.4754

.3112

.4829

.3670

.5238

.8076

.8903

.0510

.2751
0

[outperms,rawindices,indices,coords,diffs]
uniscalqa_montecarlo(data,kblock,nstart);
rawindices

rawindices =

Columns 1 through 6

24.9350 25.1622 24.9350

Columns 7 through 10

25.1622 24.9350 25.1622

25.1622 25.1622

25.1622

25.1622

1.3 Confirmatory and Nonmetric LUS
In developing LUS (as well as other types of) representations for a proximity matrix, it
is convenient to have a general mechanism available for solving linear (in)equality con-

12 Chapter 1. Linear Unidimensional Scaling

strained least-squares tasks. The two such instances discussed in this section involve (a)
the confirmatory fitting of a given object order to a proximity matrix (through an M-file
called linf it .m) and (b) the construction of an optimal monotonic transformation of a
proximity matrix in relation to a given unidimensional ordering (through an M-file called
proxmon. m). In both these cases, we rely on what can be called the Dykstra-Kaczmarz
method. An equality constrained least-squares task may be rephrased as a linear system
of equations, with the latter solvable through a strategy of iterative projection as attributed
to Kaczmarz (1937; see Bodewig, 1956, pp. 163-164); a more general inequality con-
strained least-squares task can also be approached through iterative projection as developed
by Dykstra (1983). The Kaczmarz and Dykstra strategies are reviewed very briefly in the
chapter addendum (Section 1.4) and implemented within the two M-files, linf it. m an
proxmon. m, discussed below.

1.3.1 The Confirmatory Fitting of a Given Order Using linfit.m

The M-function linf it .m fits a set of coordinates to a given proximity matrix based on
some given input permutation, say, p(0). Specifically, we seek ji] < X2 < • • • < xn such
that Xl/<y(/7p0(i)/f)°(y) ~~ \xj ~ ^'D2 ^s minimized (and where the permutation /o(0) may not
even put the matrix {/VJ(/)/>°0')} mto a monotonic form). Using the syntax

[fit,diff,coord] = linfit(prox,inperm)

the matrix {|jcv — Jc,|} is referred to as the fitted matrix (FIT); COORD gives the ordered
coordinates; and DIFF is the value of the least-squares criterion. The fitted matrix is
found through the Dykstra-Kaczmarz method, where the equality constraints defined by
distances along a continuum are imposed to find the fitted matrix; i.e., if i < j < k, then
|jc, — Xj\ + \Xj — xid — \Xj — JCjt | . Once found, the actual ordered coordinates are retrieved

/ (K

by the usual t\ formula used in (1.3) but computed on FIT.
The example below of the use of linf it .m fits two separate orders: the identity

permutation, inperm_identity, and the one that we know is least-squares optimal,
inperm_optimal (see Hubert, Arabic, and Meulman, 2002, for an explicit justification
of optimality using a dynamic programming routine). We note that, as it should, diff is
smaller (at a value of 1.9599) using inperm_optimal compared to inperm_identity
(at a value of 2.1046).

load number.dat
inperm_identity = [1 2 3 4 5 6 7 8 9 10] ;
[fit,diff,coord] = linfit(number,inperm_identity);
coord'

ans =

Columns 1 through 6

-0.6570 -0.4247 -0.2608 -0.1392 -0.0666 0.0842

Columns 7 through 10

1.3. Confirmatory and Nonmetric LUS 13

0.1988 0.3627 0.4058 0.4968

diff

diff =

2.1046

inperm_optimal = [1 2 3 5 4 6 7 9 10 8];
[fit,diff,coord] = linfit(number,inperm_optimal);
coord'

ans =

Columns 1 through 6

-0.6570 -0.4247 -0.2608 -0.1492 -0.0566 0.0842

Columns 7 through 10

0.1988 0.3258 0.4050 0.5345

diff

diff =

1.9599

1.3.2 The Monotonic Transformation of a Proximity Matrix Using
proxmon.m

The function proxmon. m provides a monotonically transformed proximity matrix that is
closest in a least-squares sense to a given input matrix. The syntax is

[monproxpermut,vaf,diff] = proxmon(proxpermut,fitted)

Here, PROXPERMUT is the input proximity matrix (which may have been subjected to an
initial row/column permutation, hence the suffix PERMUT) and FITTED is a given target
matrix; the output matrix MONPROXPERMUT is closest to FITTED in a least-squares sense
and obeys the order constraints obtained from each pair of entries in (the upper-triangular
portion of) PROXPERMUT (and where the inequality constrained optimization is carrie
out using the Dykstra-Kaczmarz iterative projection strategy); VAF denotes "variance-ac-
counted-for" and indicates how much variance in MONPROXPERMUT can be accounted for
by FITTED; finally, DIFF is the value of the least-squares loss function and is the sum
of squared differences between the entries in FITTED and MONPROXPERMUT (actually,
DIFF is one-half of such a sum because the loss function in (1.1) is over i < j).

14 Chapter 1. Linear Unidimensional Scaling

In the notation of the previous section when fitting a given order, FITTED would
correspond to the matrix {\Xj — xt•]}, where JCi < x2 < • • • < - * ; „ ; the input PROXPERMUT
would be {Pp0(i)p<>(j)}', MONPROXPERMUT would be {/(/y>(0p°(/))}' where the function /(•)
satisfies the monotonicity constraints; i.e., if /V'CO/^O') < /V'O'VO'') for 1 < / < y < n and

n, then /(/V'oVO')) < /(/V((W))- The transformed proximity matrix
minimizes the least-squares criterion (DIFF) of

over all functions /(•) that satisfy the monotonicity constraints. The VAF is a normalization
of this loss value by the sum of squared deviations of the transformed proximities from their
mean:

VAF = 1 -

where / denotes the mean of the off-diagonal entries in

An application incorporating proxmon.m

The script M-file listed below gives an application of proxmon. m using the (globally op-
timal) permutation found previously for our number.dat matrix. First, Unfit .m is
invoked to obtain a fitted matrix (fit); proxmon.m then generates the monotonically
transformed proximity matrix (monproxpermut) with VAF = .5821 and dif f = 1.0623.
The strategy is then repeated cyclically (i.e., finding a fitted matrix based on the mono-
tonically transformed proximity matrix, finding a new monotonically transformed matrix,
and so on). To avoid degeneracy (where all matrices would converge to zeros), the sum
of squares of the fitted matrix is normalized; convergence is based on observing a minimal
change (less than 1 .Oe-006) in the VAF. As indicated in the output below, the final VAF i
.6672 with a dif f of .9718. (Although the permutation found earlier for number. dat
remains the same throughout the construction of the optimal monotonic transformation, in
this particular example it would also remain optimal with the same VAF if the unidimen-
sional scaling were repeated with monproxpermut now considered the input proximity
matrix. Even though probably rare, other data sets might not have such an invariance, and
it may be desirable to initiate an iterative routine that finds a unidimensional scaling (i.e.,
an object ordering) in addition to monotonically transforming the proximity matrix.)

load number.dat
inperm = [8 10 9 7 6 4 5 3 2 1] ;
[fit diff coord] = linfit(number,inperm);
[monproxpermut vaf diff] = ...

proxmon(number(inperm,inperm),fit);
sumfitsq = sum(sum(fit.~2));
prevvaf = 2;
while (abs(prevvaf-vaf) >= 1.Oe-006)

prevvaf = vaf;
[fit diff coord] = linfit(monproxpermut,1:10);

1.3. Confirmatory and Nonmetric LUS 15

sumnewfitsq = sum(sum(fit.~2));
fit = sqrt(sumfitsq)*(fit/sqrt(sumnewfitsq));
[monproxpermut vaf diff] = ...

proxmon(number(inperm,inperm), fit);
end

fit
diff
coord'
monproxpermut
vaf

fit =

Columns 1 through 6

0
0
0
0
0
0
0
0
1

0
.0824
.1451
.3257
.4123
.5582
.5834
.7244
.8696
.2231

Columns 7

0
0
0
0
0
0

0
0
0

.5834

.5010

.4383

.2578

.1711

.0252
0

.1410

.2862

.6397

0

0
0
0
0
0
0
0
1

.0824
0

.0627

.2432

.3298

.4758

.5010

.6419

.7872

.1406

0
0

0
0
0
0
0
0
1

.1451

.0627
0

.1806

.2672

.4131

.4383

.5793

.7245

.0780

0
0
0

0
0
0
0
0
0

.3257

.2432

.1806
0

.0866

.2325

.2578

.3987

.5440

.8974

0
0
0
0

0
0
0
0
0

.4123

.3298

.2672

.0866
0

.1459

.1711

.3121

.4573

.8108

0
0
0
0
0

0
0
0
0

.5582

.4758

.4131

.2325

.1459
0

.0252

.1662

.3114

.6649

through 10

0
0
0
0
0
0
0

0
0

.7244

.6419

.5793

.3987

.3121

.1662

.1410
0

.1452

.4987

0
0
0
0

0
0
0
0

0

.8696

.7872

.7245

.5440

.4573

.3114

.2862

.1452
0

.3535

1
1
1
0
0
0
0
0
0

.2231

.1406

.0780

.8974

.8108

.6649

.6397

.4987

.3535
0

diff =

0.9718

16 Chapter 1. Linear Unidimensional Scaling

ans =

Columns 1 through 6

-0.4558 -0.3795 -0.3215

Columns 7 through 10

0.0842 0.2147 0.3492

-0.1544

0.6764

-0.0742 0.0609

monproxpermut =

Columns 1

0
0
0
0
0
0
0
0
1

0
.2612
.2458
.2612
.2458
.5116
.6080
.6899
.5116
.2231

Columns 7

0
0
0
0
0
0

0
0
0

.6080

.5116

.2458

.2458

.2458

.2458
0

.1410

.5116

.6080

through 6

0

0
0
0
0
0
0
0
1

.2612
0

.2458

.2458

.4286

.2458

.5116

.7264

.5116

.1406

0
0

0
0
0
0
0
0
1

.2458

.2458
0

.2458

.5116

.6899

.2458

.2458

.6899

.0780

0
0
0

0
0
0
0
0
0

.2612

.2458

.2458
0

.2458

.2458

.2458

.2612

.6080

.6899

0.2458 0.
0.4286 0.
0.5116 0.
0.2458 0.

0 0.
0.2612
0.2458 0.
0.5116 0.
0.4286 0.
0.7264 0.

5116
2458
6899
2458
2612

0
2458
2458
2458
6080

through 10

0
0
0
0
0
0
0

0
0

.6899

.7264

.2458

.2612

.5116

.2458

.1410
0

.2458

.4286

0
0
0
0
0
0
0
0

0

.5116

.5116

.6899

.6080

.4286

.2458

.5116

.2458
0

.2612

1
1
1
0
0
0
0
0
0

.2231

.1406

.0780

.6899

.7264

.6080

.6080

.4286

.2612
0

vaf =

0.6672

1.4. The Dykstra-Kaczmarz Method 17

1.4 The Dykstra-Kaczmarz Method
Kaczmarz's method can be characterized as follows:

Given A = {a,-;-} of order m x n, x' = {x\,..., xn}, b' = {b\, ..., bm}, and assuming
the linear system Ax = b is consistent, define the set C, = {x | 5Z/=i aijxj = bi,l < j <
n}, for 1 < i < m. The projection of any n x 1 vector y onto C, is simply y — (ajy —
fejOa^aJa/)"1, where a- = [an,... ,#,„}. Beginning with a vector XQ, and successively
projecting XQ onto Ci, and that result onto €2, and so on, and cyclically and repeatedly
reconsidering projections onto the sets C\,..., Cm, leads at convergence to a vector XQ
that is closest to x0 (in vector 2-norm, so that X!;=i (X0j ~ xQj)2 ls minimized) and Axg =
b. In short, Kaczmarz's method iteratively solves least-squares tasks subject to equality
restrictions.

Dykstra's method can be characterized as follows:
Given A — {a/y-} of order m x n, XQ — {jt0i, • • • , * () « } » b' — {b\, • •• ,bm}, and

w' = { w j , . . . , wn}, where Wj > 0 for all j, find XQ* such that a-x^ < b[for 1 < / < m
and Y^j=i Wj(x0j ~ xQj)2 is minimized. Again, (re)define the (closed convex) sets C, =
{x | Y^"J=I auxj — bi, 1 < j < n}, and when a vector y ^ C,, its projection onto C, (in
the metric defined by the weight vector w) is y — (ajy — bi)&i\V~l(a'i\V~lsii)~l, where
W"1 = diagjiyf1 , . . . , if"1}. We again initialize the process with the vector x0 and each
set C\,..., Cm is considered in turn. If the vector being carried forward to this point when
C, is (re)considered does not satisfy the constraint defining C,, a projection onto C, occurs.
The sets C\, ..., Cm are cyclically and repeatedly considered but with one difference from
the operation of Kaczmarz's method—each time a constraint set C, is revisited, any changes
from the previous time C, was reached are first "added back." This last process ensures
convergence to a (globally) optimal solution x^ (see Dykstra, 1983). Thus, Dykstra's method
generalizes the equality restrictions that can be handled by Kaczmarz's strategy to the use
of inequality constraints.

This page intentionally left blank

Chapter 2

Linear Multidimensional
Scaling

Chapter 1 gave an optimization strategy based on iterative quadratic assignment (QA) for
the linear unidimensional scaling (LUS) task in the L2-norm, with all implementations
carried out within a MATLAB computational environment. The central LUS task involves
arranging the n objects in a set S = {O\, #2, • • • , On] along a single dimension, defined
by coordinates x\, x-i,..., xn, based on an n x n symmetric proximity matrix P = {pij},
whose (exclusively nondiagonal) nonnegative entries are given a dissimilarity interpretation
(Pij — pjf for 1 <i,j <n; pa = 0 for 1 < i < n). The LI criterion

is minimized by the choice of the coordinates. The present chapter will give extensions to
multidimensional scaling in the city-block metric (see Arabic, 1991, for a review of uses of
this metric) for the L2-norm. The computational routines to be discussed and illustrated are
again freely available as MATLAB M-files. We also note that most of the references given
in Chapter 1 would also be relevant here as background material on the basic LUS task, but
that review will not be repeated. Also, we will not discuss (in this chapter) comparisons
to other methods (or strategies) for multidimensional scaling in the city-block metric—for
the development of some of these alternatives, see Brusco (2001), Brusco and Stahl (2005),
Groenen, Heiser, and Meulman (1999), Hubert, Arabie, and Meulman (1997), and Hubert,
Arabic, and Hesson-Mclnnis (1992).

In the extensions to city-block multidimensional scaling being pursued, a slight gen-
eralization to the basic unidimensional task that incorporates an additional additive constant
will prove extremely convenient. So, in Section 2.1 we emphasize the more general least-
squares loss function of the form

where c is some constant to be estimated along with the coordinates jcj, . . . , xn. Section
2.2 removes the restriction to fitting only a single unidimensional structure to a symmetric

19

20 Chapter 2. Linear Multidimensional Scaling

proximity matrix and relies on the type of computational approaches developed in Section
2.1 that include the augmentation by estimated additive constants. Based on these latter
strategies, extensions are given to the use of multiple unidimensional structures through a
procedure of successive residualization of the original proximity matrix (even though in this
process, negative residuals are encountered and have to be fitted). For example, the fitting
of two LUS structures to a proximity matrix {/?//} could be rephrased as the minimization
of an LI loss function generalizing (2.2) to the form

The attempt to minimize (2.3) could proceed with the fitting of a single LUS structure to
(Pij}> [\xj\ — x n \ — c i] , and, once obtained, fitting a second LUS structure, [|jcy-2 — */2l ~ ̂ 2],
to the residual matrix, {pij — [\Xj\ — Xu \ — c\]}. The process would then cycle by repetitively
fitting the residuals from the second linear structure by the first, and the residuals from the
first linear structure by the second, until the sequence converges. In any case, obvious
extensions would also exist to (2.3) for the inclusion of more than two LUS structures.

The explicit inclusion of two constants, c\ and 02, in (2.3), rather than adding these two
together and including a single additive constant c, deserves some additional introductory
explanation. As would be the case in fitting a single LUS structure using the loss functions
in (2.2), two interpretations exist for the role of the additive constant c. We could consider
{\Xj — jc, |} to be fitted to the translated proximities {/?,; + c], or alternatively {\Xj — jc, | — c}
to be fitted to the original proximities {/?,;}, where the constant c becomes part of the actual
model. Although these two interpretations do not lead to any algorithmic differences in how
we would proceed with minimizing the loss function in (2.2), a consistent use of the second
interpretation suggests that we frame extensions to the use of multiple LUS structures as
we did in (2.3), where it is explicit that the constants c\ and ci are part of the actual models
to be fitted to the (untransformed) proximities {pij}. Once c\ and C2 are obtained, they
could be summed as c — c\ + c^ and an interpretation made that we have attempted to fit a
transformed set of proximities {/?// +c] by the sum [\Xj\ —Jt / i | +1*/2 —xi2\} (and in this latter
case, a more usual terminology would be one of a two-dimensional scaling (MDS) base
on the city-block distance function). However, such a further interpretation is unnecessary
and could lead to at least some small terminological confusion in further extensions that
we might wish to pursue. For instance, if some type of (optimal nonlinear) transformation,
say /(•), of the proximities is also sought (e.g., a monotonic function of some form, as is
done in Section 2.3), in addition to fitting multiple LUS structures, and where /?/_/ in (2.3)
is replaced by f(pij), and /(•) is to be constructed, the first interpretation would require
the use of a "doubly transformed" set of proximities {/(/?//) + c} to be fitted by the sum
{\Xj\ — jc/i | + \Xj2 — Xj2\}. In general, it seems best to avoid the need to incorporate the
notion of a double transformation in this context and instead merely consider the constants
c\ and C2 to be part of the models being fitted to a transformed set of proximities /(/?/_/).

2.1 The Incorporation of Additive Constants in LUS

In Section 2.1.1, we present and illustrate an M-function, linf itac .m, that fits in LI
a given single unidimensional scale (by providing the coordinates x\,..., xn) and the ad-

2.1. The Incorporation of Additive Constants in LUS 21

ditive constant (c) for some fixed input object ordering along the continuum defined by
a permutation p(0). This approach directly parallels the M-function given in the previous
chapter, called Unfit .m, but now with an included additive constant estimation. The
computational mechanisms implemented in linf itac. m are reviewed in Section 2.1.1.

2.1.1 The L2 Fitting of a Single Unidimensional Scale (with an
Additive Constant)

Given a fixed object permutation, p(0), we denote the set of all n x n matrices that are
additive translations of the off-diagonal entries in the reordered symmetric proximity matrix
{pp(Q)(i)pW(j)} by Ap(o>, and let E be the set of all n x n matrices that represent the interpoint
distances between all pairs of n coordinate locations along a line. Explicitly,

Alternatively, we could define 3 through a set of linear inequality (for nonnegativity restric-
tions) and equality constraints (to represent the additive nature of distances along a line, as
we did in linf it .m in the previous chapter). In either case, both Ap(o> and S are closed
convex sets (in a Hilbert space), and thus, given any n x n symmetric matrix with a zero
main diagonal, its projection onto either AP<O) or E exists; i.e., there is a (unique) member
of Apto) or S at a closest (Euclidean) distance to the given matrix (e.g., see Cheney and
Goldstein, 1959). Moreover, if a procedure of alternating projections onto Ap(c» and E is
carried out (where a given matrix is first projected onto one of the sets, and that result is then
projected onto the second, the result of which is in turn projected back onto the first, and
so on), the process is convergent and generates members of Ap(oi and E that are closest to
each other (again, this last statement is justified in Cheney and Goldstein, 1959, Theorems
2 and 4).

Given any n x n symmetric matrix with a main diagonal of all zeros, which we denote
arbitrarily as U = {M,;}, its projection onto Ap(o) may be obtained by a simple formula for
the sought constant c. Explicitly, the minimum over c of

is obtained for

and thus this last value defines a constant translation of the proximities necessary to generate
that member of Ap(o> closest to U = {M,; }. For the second necessary projection and given any
nxn symmetric matrix (again with a main diagonal of all zeros), that we denote arbitrarily as
V = { V i j } (but which in our applications will generally have the form u,; = /V0)(0p(0)(./) + c

22 Chapter 2. Linear Multidimensional Scaling

for i ^ j and some constant c), its projection onto E is somewhat more involved and requires
minimizing

over r/y, where {r,7} is subject to the linear inequality nonnegativity constraints and the
linear equality constraints of representing distances along a line (of the set 3). Although
this is a (classic) quadratic programming problem for which a wide variety of optimization
techniques has been published, we adopt (as we did in fitting a LUS without an additive
constant in Unfit .m) the Dykstra-Kaczmarz iterative projection strategy reviewed in
the addendum (Section 1 .4) to Chapter 1 .

The function linfitac.m

As discussed above, the M-function l infitac.m fits a set of coordinates to a given
proximity matrix based on some given input permutation, say, p(0), plus an additive constant,
c. The usage syntax of

[fit, vaf , coord, addcon] = linf itac (prox, inperm)

is similar to that of linf it .m, except for the inclusion (as output) of the additive con
stant ADDCON and the replacement of the least-squares criterion of DIFF by the variance-
accounted-for (VAF) given by the general formula

where p is the mean of the proximity values under consideration.
To illustrate the invariance of VAF to the use of linear transformations of the proximity

matrix (although COORD and ADDCON obviously will change depending on the transforma-
tion used), we fitted the permutation found optimal to two different matrices: the original
proximity matrix for number. dat and one standardized to mean zero and variance one
The latter matrix is obtained with the utility proxs td. m, with usage explained in its M-file
header comments given in Appendix A.

In the recording below (as well as earlier in Chapter 1), semicolons are placed after the
invocation of the M-functions to suppress the output initially; transposes (') are then used
on the output vectors to conserve space by using only row (as opposed to column) vectors
in the listing. Note that for the two proximity matrices employed, the VAF values are the
same (.5612), but the coordinates and additive constants differ; a listing of the standardized
proximity matrix is given in the output to show explicitly how negative proximities pose
no problem for the fitting process that allows the incorporation of additive constants within
the fitted model.

load number.dat
inperm = [1 2 3 5 4 6 7 9 10 8] ;
[fit,vaf,coord,addcon] = linfitac(number,inperm);
vaf

2.1. The Incorporation of Additive Constants in LUS 23

vaf =

0.5612

coord'
ans =

Columns 1 through 6

-0.3790 -0.2085 -0.1064 -0.0565

Columns 7 through 10

0.1061 0.1714 0.1888 0.2565

addcon

addcon =

-0.3089

numberstan = proxstd(number,0.0)

numberstan =

Columns 1 through 6

-0 .0257 0.0533

-0
0
0
0
1
1
1
1
1

0
.5919
.2105
.8258
.7027
.2934
.2147
.8103
.3771
.5199

Columns 7

1
1

-0
-1
-0
-0

.2147

.0670

.5919

.1876

.7544

.7150

-0

-1
-0
0
0
1
0
1
0

.5919
0

.2663

.9611

.5157

.2302

.0670

.4369

.2294

.4123

0
-1

-0
-2
0

-0
1

-0
1

.2105

.2663
0

.9217

.3739

.6387

.5919

.2541

.8577

.3131

0
-0
-0

-0
-0
-1
0
1

-1

.8258

.9611

.9217
0

.6313

.5525

.1876

.2498

.2934

.3697

0
0

-2
-0

-0
-0
0

-1
0

.7027

.5157

.3739

.6313
0

.6510

.7544

.9882

.4534

.6978

1
0
0

-0
-0

-0
-0
0
0

.2934

.2302

.6387

.5525

.6510
0

.7150

.6953

.6387

.2498

through 10

1
0
1
0
0

-0

.8103

.4369

.2541

.2498

.9882

.6953

1
1

-0
1

-1
0

.3771

.2294

.8577

.2934

.4534

.6387

1
0
1
-1
0
0

.5199

.4123

.3131

.3697

.6978

.2498

24 Chapter 2. Linear Multidimensional Scaling

0 -0.6116 -0.9414 -1.2072

-0.6116 0 -0.6953 -0.4049

-0.9414 -0.6953 0 -0.7347

-1.2072 -0.4049 -0.7347 0

[fit,vaf,coord,addcon] = linfitac(numberstan,inperm);
vaf

vaf =

0.5612

coord'

ans =

Columns 1 through 6

-1.8656 -1.0262 -0.5235 -0.2783 -0.1266 0.2624

Columns 7 through 10

0.5224 0.8435 0,9292 1.2626

addcon

addcon =

1.1437

2.2 Finding and Fitting Multiple Unidimensional Scales
As reviewed in this chapter's introduction, the fitting of multiple unidimensional struc-
tures will be done by (repetitive) successive residualization, along with a reliance on the
M-function linf i tac . m to fit each separate unidimensional structure, including its asso
ciated additive constant. The M-function for this two-dimensional scaling, biscalqa. m
is a bidimensional strategy for the L2 loss function of (2.3). It has the syntax

[outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo, ...
addconone,addcontwo,vaf] = biscalqa(prox,...
targone,targtwo,inpermone,inpermtwo,kblock,nopt)

where the variables are similar to 1 inf i tac . m but with a suffix of ONE or TWO to indicat
which one of the two unidimensional structures is being referenced. The new variable NOPT
controls the confirmatory or exploratory fitting of the two unidimensional scales; a value

2.2. Finding and Fitting Multiple Unidimensional Scales 25

of NOPT = 0 will fit the two scales indicated by INPERMONE and INPERMTWO in a
confirmatory manner; if NOPT = 1, iterative QA is used to locate the better permutations
to fit.

In the example given below, the input PROX is the standardized (to a mean of zero
and a standard deviation of one) 10 x 10 proximity matrix based on number. dat (re-
ferred to as STANNUMBER); TARGONE and TARGTWO are identical 10 x 10 equally spaced
target matrices; INPERMONE and INPERMTWO are different random permutations of the
first 10 integers; KBLOCK is set at 2 (for the iterative QA subfunctions). In the output,
OUTPERMONE and OUTPERMTWO refer to the object orders; COORDONE and COORDTWO
give the coordinates; FI TONE and FITTWO are based on the absolute coordinate differ-
ences for the two unidimensional structures; ADDCONONE and ADDCONTWO are the two
associated additive constraints; and finally, VAF is the variance-accounted-for in PROX
by the two-dimensional structure. (Generally, the VAF in fitting multiple additive struc-
tures should be no less than in fitting a single structure. Moreover, one expects an in-
crease in VAF until convergence; this is true throughout the various sections of the mono-
graph.)

load number.dat
stannumber = proxstd(number,0.0);
inpermone = randperm(lO);
inpermtwo = randperm(lO);
kblock = 2;
nopt = 1;
targone = targlin(10);
targtwo = targone;
[outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,...

addconone,addcontwo,vaf] = biscalqa(stannumber,targone,...
targtwo,inpermone,inpermtwo,kblock,nopt);

outpermone

outpermone =

10 8 9 7 6 5 4 3 2 1

outpermtwo

outpermtwo =

6 *3 2 10 4 7 1 3 5 9

coordone'

ans =

Columns 1 through 6

26 Chapter 2. Linear Multidimensional Scaling

-1.4191 -1.0310 -1.0310 -0.6805 -0.0858 -0.0009

Columns 7 through 10

0.2915 0.5418 1.2363 2.1786

coordtwo'

ans =

Columns 1 through 6

-1.1688 -0.9885 -0.3639 -0.2472 -0.2472 0.1151

Columns 7 through 10

0.2629 0.8791 0.8791 0.8791

addconone

addconone =

1.3137

addcontwo

addcontwo =

0.8803

vaf

vaf =

0.8243

Although we have used the proximity matrix in number. dat primarily as a conve-
nient numerical example to illustrate our various M-functions, the substantive interpretation
for this particular two-dimensional structure is rather remarkable and worth noting. The
first dimension reflects number magnitude perfectly (in its coordinate order) with two ob-
jects (the actual digits 7 8) at the same (tied) coordinate value. The second axis reflects the
structural characteristics perfectly, with the coordinates split into the odd and even numbers
(the digits 6 0 2 4 8 in the second five positions; 5 7 1 9 3 in the first five); there is a
grouping of 2 4 8 at the same coordinates (reflecting powers of 2); there is a grouping of 9
3 6 (reflecting multiples of three) and of 9 3 at the same coordinates (reflecting the powers

2.3. Incorporating Monotonic Transformations of a Proximity Matrix 27

of 3); the odd numbers 7 5 that are not powers of 3 are at the extreme two coordinates of
this second dimension.

We will not explicitly illustrate its use here, but a tridimensional M-function that
we call triscalqa.misan obvious generalization of biscalqa.m. Also, the pattern
of programming shown could be used directly as a pattern for extensions beyond three
unidimensional structures.

2.3 Incorporating Monotonic Transformations of a
Proximity Matrix

As a direct extension of the M-function biscalqa. m discussed in the last section, the file
bimonscalqa.m provides an optimal monotonic transformation (by incorporating the
use of proxmon .m discussed in Chapter 1) of the original proximity matrix given as input
in addition to the latter's bidimensional scaling. To prevent degeneracy, the sum-of-squares
value for the initial input proximity matrix is maintained in the optimally transformed
proximities; the overall strategy is iterative with termination dependent on a change in the
VAF being less than l.Oe-005. The usage syntax is almost identical to that of biscalqa. m
except for the inclusion of the monotonically transformed proximity matrix MONPROX as
an output matrix:

[. . . monprox] = b i m o n s c a l q a (. . .)

The ellipses directly above indicate that the same items should be used as in bi scalqa. m
If bimonscalqa.m had been used in the numerical example of the previous section,
the same results given would have been output initially plus the results for the optimally
transformed proximity matrix. We give this additional output below, which shows that the
incorporation of an optimal monotonic transformation provides an increase in the VAF from
.8243 to .9362; the orderings on the two dimensions remain the same, as well as the nice
substantive explanation of the previous section.

outpermone

outpermone =

1 2 3 4 5 6 7 9 8 10

outpermtwo

outpermtwo =

9 5 3 1 7 4 10 2 8 6

coordone'

ans =

28 Chapter 2. Linear Multidimensional Scaling

Columns 1 through 6

-2.3514 -1.3290 -0.6409 -0.3565 0.0775 0.1216

Columns 7 through 10

0.5857 1.1342 1.1342 1.6247

coordtwo'

ans =

Columns 1 through 6

-0.7793 -0.7793 -0.7793 -0.3891 -0.1196 0.3242

Columns 7 through 10

0.3242 0.3480 0.8467 1.0035

addconone

addconone =

1.4394

addcontwo

addcontwo =

0.7922

vaf

vaf =

0.9362

monprox

monprox =

Columns 1 through 6

0 -0.7387 -0.1667 0.5067 0.5067 1.4791

2.4. Confirmatory Extensions to City-Block Individual Differences Scaling 29

0
0
0
0
1
1
2
1
2

.7387

.1667

.5067

.5067

.4791

.0321

.6590

.7609

.6231

-0
-0
0

-0
0
0
1
0

0
.8218
.8218
.5067
.1667
.5067
.5067
.0321
.5067

-0

-0
-1
0

-0
1

-0
1

.8218
0

.8218

.6174

.5067

.7387

.0321

.8218

.4791

-0
-0

-0
-0
-0
-0
1

-0

.8218

.8218
0

.7387

.7387

.8218

.1667

.0321

.8218

0
-1
-0

-0
-0
0

-1
0

.5067

.6174

.7387
0

.7387

.8218

.5067

.2541

.5067

-0
0

-0
-0

-0
-0
0

-0

.1667

.5067

.7387

.7387
0

.8218

.8218

.5067

.0534

Columns 7 through 10

1
0
0
0
0
0

0
0
0

.0321

.5067

.7387

.8218

.8218

.8218
0

.7387

.8218

.8218

2
0
1

-0
0

-0
-0

-0
-0

.6590

.5067

.0321

.1667

.5067

.8218

.7387
0

.7387

.7387

1
1

-0
1

-1
0

-0
-0

-0

.7609

.0321

.8218

.0321

.2541

.5067

.8218

.7387
0

.8218

2
0
1

-0
0

-0
-0
-0
-0

.6231

.5067

.4791

.8218

.5067

.0534

.8218

.7387

.8218
0

Although we will not provide an example of its use here, trimonscalqa. m extends
triscalqa .m to include an optimal monotonic transformation of whatever is given as
the original input proximity matrix.

2.4 Confirmatory Extensions to City-Block Individual
Differences Scaling

An obvious conclusion to this chapter is that if one is interested in (nonmetric) city-block
scaling in two or three dimensions within L^ the routines referred to in two dimensions
as biscalqa .m and bimonscalqa .m, or in three dimensions as triscalqa .m and
trimonscalqa. m, would be natural alternatives to consider. One aspect of all of these
given M-files that we have not emphasized but will in this chapter's concluding comments is
their possible usage in the confirmatory context (by setting the NOPT switch to 0) and fitting
various fixed object orderings in multiple dimensions. One possible application of this type
of confirmatory fitting would be in an individual differences scaling context. Explicitly, we
begin with a collection of, say, K proximity matrices, PI , . . . , P^, obtained from K separate
sources, and through some weighting and averaging process construct a single aggregate
proximity matrix, P^. On the basis of P^, suppose a two-dimensional city-block scaling is
constructed (using, say, biscalqa. m); we label the latter the "common space" consistent
with what is usually done in the weighted Euclidean model (e.g., see the INDSCAL model
of Carroll and Chang, 1970; Arabic, Carroll, and DeSarbo, 1987; Carroll and Arabie, 1998;
or the PROXSCAL program in the Categories Module of SPSS—Busing, Commandeur,

30 Chapter 2. Linear Multidimensional Scaling

and Heiser, 1997). Each of the K proximity matrices can then be used in a confirmatory
fitting of the object orders along the two axes. Thus, a very general "subject/private space"
is generated for each source and where the actual coordinates along both axes are unique
to that source, subject only to the object order constraints of the group space. This strategy
provides an individual differences model generalization over the usual weighted Euclidean
model, where the latter allows only differential axes scaling (stretching or shrinking) in
generating the private spaces. These kinds of individual difference generalizations exist
both for multiple unidimensional scalings in L^ as well as for other types of proximity
matrix representations such as ultrametrics and additive trees (given in Parts II and III).

Chapter 3

Circular Scaling

This chapter will discuss circular unidimensional scaling (CUS), where the objective is to
place the n objects around a closed continuum such that the reconstructed distance between
each pair of objects, defined by the minimum length over the two possible paths that join
the objects, reflects the given proximities as well as possible. Explicitly, and in analogy
with the loss function for linear unidimensional scaling (LUS) in (2.2), we wish to find a
set of coordinates, x\,..., xn, and an (n + l)st value, XQ > \Xj — jc,1 for all 1 < i ^ j < n,
minimizing

where c is again some constant to be estimated. The value JCQ represents the total length of
the closed continuum, and the expression min{|;cy — XI\,XQ — \Xj — jc/1} gives the minimum
length over the two possible paths joining objects 0, and #/. In theory, the CUS task
could again be solved by complete enumeration of the loss function in (3.1) over a finite
but also typically enormous set for even moderate n. Here, we have all possible distinct
object orderings around a closed continuum, (n — l)!/2, and, for each such ordering, all the
possible inflection patterns for where the directionality of the minimum distance calculation
changes for the object pairs. These latter inflection points are a necessary condition of using
CUS and are one obvious point of departure from LUS. Obviously, for general use and
analogous to LUS, some type of search strategy is called for to generate the better orderings
and inflection patterns around a closed continuum but with feasible computational effort.

The current chapter is organized around the optimization problems posed by CUS
and the two main subtasks of obtaining an appropriate object ordering around a closed
continuum and the additional relative placement of the objects according to the directionality
of minimum distance calculations. Once these orderings and relative placements have been
identified, the estimation of the additive constant in both loss functions (3.1) and (3.2), as

31

or, equivalently,

32 Chapters. Circular Scaling

well as the identification of the actual coordinates, proceeds through a process of alternating
projections onto two closed convex sets. One is defined by the set of all translations of the
original proximity values by a constant; the second closed convex set is characterized by
the collection of all coordinate structures consistent with the given object ordering and the
relative object placement that provides the directionality of minimum distance calculations
around the closed continuum. In the specific contexts we consider, the process of alternating
projections is convergent (see Cheney and Goldstein, 1959) and generates a final solution
defined by two points within the two convex sets that are closest to each other. Although
the emphasis in the present chapter is on a single symmetric proximity matrix defined for
one set of objects to be fitted by a CUS model, Section 3.2 will also develop a fairly direct
extension to the use of sums of such circular structures that can be fitted to a single proximity
matrix through successive residualizations of the given matrix (this strategy is analogous to
what was done in Chapter 2 for multiple LUS representations).

As a final preliminary note on the data that will be used in this chapter for numer-
ical illustrations, a rather well-known proximity matrix is given in Table 3.1 (and called
morse_digits . dat). The latter is a 10 x 10 proximity matrix for the ten Morse code
symbols that represent the first ten digits: (0: ; 1: • ; 2: • • ;
3: ••• ; 4: ••••-; 5: ;6: - •••• ; 7: • • • ; 8: ••;
9: •). The entries in Table 3.1 have a dissimilarity interpretation and are defined
for each object pair by 2.0 minus the sum of the two proportions for a group of subjects
used by Rothkopf (1957) representing "same" judgments to the two symbols when given
in the two possible presentation orders of the signals. Based on previous multidimensional
scalings of the complete data set involving all of the Morse code symbols and in which
the data of Table 3.1 are embedded (e.g., see Shepard, 1963; Kruskal and Wish, 1978), it
might be expected that the symbols for the digits would form a clear linear unidimensional
structure that would be interpretable according to a regular progression in the number of
dots to dashes. It turns out, as discussed in greater detail below, that a circular model (or
actually, a sum of circular structures) is probably more consistent with the patterning of
the proximities in Table 3.1 than are representations based on LUSs. (For completeness,
we might note that the possible usefulness of a circular model for these specific proximities
(but not to the consideration of multiple circular structures) has been pointed out before in
the literature, most notably in the two-dimensional metric scaling given as an illustrative
example by Mardia, Kent, and Bibby (1979, p. 404), or in the combinatorial optimization
approach of quadratic assignment (QA) discussed by Hubert and Schultz (1976), which is
based on permuting the rows and columns of a proximity matrix to achieve a best fit against
a fixed target matrix.)

3.1 The Mechanics of CUS

The CUS task as characterized by the loss function in (3.1) can be considered in two stages
as with the presentation of LUS. One subtask is the identification of an ordering of the n
objects around a closed continuum that again will be denoted by a permutation of the first
n integers, <p(-), such that <p(i) = j if object Oj is placed at position i; here, position 1 is
arbitrarily specified at some point along the closed continuum, and the order of the positions
from 1 to n is, for convenience, taken clockwise. In addition to (/?(•), a set of inflection points
must be identified for the n positions to indicate where the minimum distance calculation

3.1. The Mechanics of CDS 33

Table 3.1. A proximity matrix, morse_digits.dat, for the ten Morse code symbols
representing the first ten digits (data from Rothkopf, 1957).

0.

1.
1.
1.
1.
1.
1.

00
75
69
87
76
77
59
26
86
95

0

1
1
1
1
1
1
1

.75

.00

.82

.54

.85

.72

.51

.50

.45

.63

1

0
1
1
1
1
1
1
1

.69

.82

.00

.25

.47

.33

.66

.57

.83

.81

1
1
1
0

1
1
1
1
1

.87

.54

.25

.00

.89

.32

.53

.74

.85

.86

1
1
1

0
1
1
1
1
1

.76

.85

.47

.89

.00

.41

.64

.81

.90

.90

1
1
1
1
1
0

1
1
1

.77

.72

.33

.32

.41

.00

.70

.56

.84

.64

1
1
1
1
1

0

1
1

.59

.51

.66

.53

.64

.70

.00

.70

.38

.70

1
1
1
1
1
1

0

1

.26

.50

.57

.74

.81

.56

.70

.00

.83

.22

1
1
1
1
1
1

0

.86

.45

.83

.85

.90

.84

.38

.83

.00

.41

1
1
1
1
1
1
1

0

.95

.63

.81

.86

.90

.64

.70

.22

.41

.00

must change direction around the closed continuum. Explicitly, a set of n — 1 integers,
1 < k\ < • • • < fc«-i < n, is sought, where fc/ is associated with position i, 1 < i < n — 1.
For positions i < j, the minimum distance is in the clockwise direction when j < fc, and
in the counterclockwise direction when j > kt (we note that an integer kn for position n is
unnecessary, and any £, equal to n merely indicates that for all positions j, for i < j, the
minimum distance is always in the clockwise direction). The second subtask, once given
<p(-) and k\ , . . . , kn_\ , is the estimation of the set of coordinates and the additive constant c
to fit the proximities. We again discuss these two subtasks in the reverse order.

3.1 .1 The Estimation of c and min{|jty — jc, |, jc0 - |jc/ - Jc,|) for a
Fixed Permutation and Set of Inflection Points

For notational convenience, the set of all n x n matrices that are additive translations of the
off-diagonal entries in the reordered proximity matrix, {/fy('Xy')}> wiU again be denoted by
AV (see Section 2.1.1); the set of all n x n matrices that represent the distances around the
closed continuum based on the inflection points k\, ...,kn-\ will be more fully denoted by
E(k\, .. . ,kn-i) and explicitly defined as follows:

where

for some collection of coordinates, x\ , . . . , xn, and an (n + l)st value, JCQ, where

34 Chapter3. Circular Scaling

As noted in this definition, the first position, JCi, is specified without loss of generality
to be 0.0; the value XQ can be interpreted either as the length of the closed continuum
or as a second coordinate value attached to the first position but taken in the clockwise
direction. Given Av and E(k\, . . . , kn-\) (where the latter can be defined through a set of
linear inequality/equality constraints), the process of alternating projections onto A^ and
S (& i , . . . , kn-\) would proceed exactly as in LUS.

3.1.2 Obtaining Object Orderings and Inflection Points around a
Closed Continuum

Identifying an object ordering around a closed continuum to be used in the minimization o
the loss function in (3.1) follows the same pattern as for LUS. The cross-product statistic in
(1.5) is again maximized but with a differentnxn (target) matrix, T = {?//}, initially defined
by n positions equally spaced around a closed continuum, i.e., fy = min{ |/ —j\,n — \ i — j \]
for 1 < /', j < n (as in LUS, this target could eventually be replaced, now by tij =
min{|jty — jc / l , XQ — \Xj — jc,|} based on the outcome of the minimization of (3.1)). Given
some best permutation, (pK(-)> obtained through the initial target and set of local operations
on some randomly given initial permutation, a collection of inflection points, k\,..., £«_i,
still must be generated before the optimization of (3.1) can continue. This latter task will
be approached through a heuristic application of an iterative projection strategy of the same
general type developed by Hubert and Arabic (1995b) for the fitting of various graph-
theoretic structures to a symmetric proximity matrix.

To attempt an identification ot'k\,..., &r t_i given the permutation $&(•), we begin with
the reordered proximity matrix {plpK(n<fK(j)} and initialize a process of iterative projection
onto the class of constraints given by the structure E(k\, . . . , kn-\) but with one exception
necessitated by the fact that an appropriate set of values for &] , . . . , kn-\ is not yet known.
Explicitly, when considering a pair of positions, / < j (2 < j — /), and the two possible
constraints that could be imposed, i.e., either r,-(,-+i) + • • • + f(j-i)j = ra or r — (r/(,-+i) +
• • • + r(j-\)j) = TIJ for r = r\z + • • • + r („_!)„ + r\n, we select according to which left
side is smaller, based on the current entries in the matrix being carried forward to this point,
and impose that specific constraint. Otherwise, the process continues cyclically through the
whole set of constraints, and for each time a constraint is reconsidered, any changes that
were made the previous time the constraint was encountered are first "undone."

Because of the procedure of redressing the (immediately) previous changes each time
a constraint is reconsidered, the process just described may not converge and could even-
tually oscillate through a finite collection of distinct matrices. If such nonconvergence is
observed, and previous changes from that point on are not redressed, the process will then
converge to a matrix in 3(£], . . . , kn_\) for some specific values of k\,..., kn-\. A jus-
tification for this last assertion of convergence is given by the general results presented in
Hubert and Arabic (1995b); also, that source provides empirical evidence that as a heuristic
optimization strategy, it is generally better to begin with the procedure of redressing previous
changes until an oscillation is observed, rather than immediately starting without the process

3.1. The Mechanics of CUS 3jj

of redressing previous changes (which would also produce a matrix in S (& i , . . . , kn-\) for
some specific k\,..., /cn_i). It should also be noted that although convergence to some ma-
trix in S (f c j , . . . , /:n-i) is guaranteed by the strategy just described, and thus to an identified
fixed collection of inflection points, k\,..., kn-\, the latter matrix may now not be optimal
for this collection of inflection points in the minimization of (3.1). Specifically, even though
the identification of the collection k\,..., kn-\ can proceed by a process of iterative projec-
tion and an updating of a matrix (r,;} to produce a member of E (k\,..., kn-\), because of
the possible nonconvergence noted above and the subsequent lack of redressing previous
changes from that point on, the matrix identified in E(k\,..., kn-\) may not be the best
achievable even for this particular collection of inflection points (although in our computa-
tional experience it is typically very close to being optimal). Thus, as a "polishing" step to
ensure that an optimal member of 3 (k \ , . . . , kn-\) is identified, the collection k\,..., kn-\
and the permutation <PK(-} should be used anew in the optimization of (3.1) to obtain the
optimal target matrix, {min{|jc/ — XI\,XQ — \Xj — Jc, |}}.

3.1.3 The CUS Utilities, cirfit.m and cirfitac.m

The two CUS utilities, that implement the mechanics of fitting the CUS model (includ-
ing the identification of inflection points), parallel the LUS utilities of Unfit .m and
linf itac .m. The M-file cirf it .m does a confirmatory fitting of a given order (as-
sumed to be an object ordering around a closed unidimensional structure) using the Dykstra-
Kaczmarz iterative projection least-squares method. The usage syntax for cirf it. m and
cirf itac .mis

[fit, diff] = cirfit(prox,inperm)

[fit,vaf,addcon] = cirfitac(prox,inperm)

where INPERM is the given order and FIT is an n x n matrix fitted to PROX (INPERM,
INPERM) with a least-squares value DIFF. The syntax for the routine cirf itac .m is
the same, except for the inclusion of an additive constant, ADDCON, and the use of VAF
rather than DIFF.

In brief, then, the type of matrix being fitted to the proximity matrix has the form

where c is an estimated additive constant (assumed equal to zero in cirf it .m), xp(\) <
xp(2) < • • • < xp(n) < XQ, and the last coordinate, XQ, is the circumference of the circular
structure. We can obtain these latter coordinates from the adjacent spacings in the output
matrix FIT.

As an example, we applied c ir f i t. m to the mor se_digi t s proximity matrix with
an assumed identity input permutation; the spacings around the circular structure between
the placements are as follows: for objects 1 and 2: .5337; 2 and 3: .7534; 3 and 4: .6174;
4 and 5: .1840; 5 and 6: .5747; 6 and 7: .5167; 7 and 8: .3920; 8 and 9: .5467; 9 and 10:
.1090; and back around between 10 and 1: .5594 (the sum of all these adjacent spacings
is 4.787 and is the circumference (XQ) of the circular structure). For cirf itac .m the
additive constant was estimated as —.8031 with a VAF of .7051; here, the spacings around

36 Chapters. Circular Scaling

the circular structure between the placements are as follows: for objects 1 and 2: .2928;
2 and 3: .4322; 3 and 4: .2962; 4 and 5: .0234; 5 and 6: .3338; 6 and 7: .2758; 7 and 8:
.2314; 8 and 9: .2800; 9 and 10: .0000; and back around between 10 and 1: .2124 (here, XQ

has a value of 2.378).

load morse_digits.dat
[f i t , d i f f] = cirfit(morse_digits,1:10)

fit =

Columns 1 through 5

0
1
1
2
2
1
1
0
0

0
.5337
.2871
.9044
.0884
.1237
.6071
.2151
.6684
.5594

Columns 6

2
2
1
0
0

0
0
1
1

.1237

.1294

.3761

.7587

.5747
0

.5167

.9087

.4554

.5644

0

0
1
1
2
2
1
1
1

.5337
0

.7534

.3707

.5547

.1294

.1407

.7487

.2021

.0931

1
0

0
0
1
1
2
1
1

.2871

.7534
0

.6174

.8014

.3761

.8927

.2847

.9554

.8464

1
1
0

0
0
1
1
2
2

.9044

.3707

.6174
0

.1840

.7587

.2754

.6674

.2141

.3231

2
1
0
0

0
1
1
2
2

.0884

.5547

.8014

.1840
0

.5747

.0914

.4834

.0301

.1391

through 10

1
2
1
1
1
0

0
0
1

.6071

.1407

.8927

.2754

.0914

.5167
0

.3920

.9387

.0477

1
1
2
1
1
0
0

0
0

.2151

.7487

.2847

.6674

.4834

.9087

.3920
0

.5467

.6557

0
1
1
2
2
1
0
0

0

.6684

.2021

.9554

.2141

.0301

.4554

.9387

.5467
0

.1090

0
1
1
2
2
1
1
0
0

.5594

.0931

. 8464

.3231

.1391

.5644

.0477

.6557

.1090
0

diff =

7.3898

[fit,vaf,addcon] = cirfitac(morse_digits,1:10)

fit =

Columns 1 through 5

3.1. The Mechanics of CUS 37

0
0.2928
0.7250
1.0212
1.0446
0.9996
0.7238
0.4924
0.2124
0.2124

0

0
0
0
1
1
0
0
0

.2928
0

.4322

.7284

.7518

.0856

.0166

.7852

.5052

.5052

0
0

0
0
0
0
1
0
0

.7250

.4322
0

.2962

.3196

.6534

.9292

.1606

.9374

.9374

1
0
0

0
0
0
0
1
1

.0212

.7284

.2962
0

.0234

.3572

.6330

.8644

.1444

.1444

1
0
0
0

0
0
0
1
1

.0446

.7518

.3196

.0234
0

.3338

.6096

.8410

.1210

.1210

Columns 6 through 10

0.
1.
0.
0.
0.

0.
0.
0.
0.

9996
0856
6534
3572
3338

0
2758
5072
7872
7872

0
1
0
0
0
0

0
0
0

.7238

.0166

.9292

.6330

.6096

.2758
0

.2314

.5114

.5114

0
0
1
0
0
0
0

0
0

.4924

.7852

.1606

.8644

.8410

.5072

.2314
0

.2800

.2800

0
0
0
1
1
0
0
0

0

.2124

.5052

.9374

.1444

.1210

.7872

.5114

.2800
0

.0000

0
0
0
1
1
0
0
0
0

.2124

.5052

.9374

.1444

.1210

.7872

.5114

.2800

.0000
0

vaf =

0.7051

addcon =

-0.8031

As a variation on cirf itac .m, the M-filecirf itac_ftarg. muses an additional
fixed target matrix TARG to obtain the inflection points (and therefore TARG should provide
a circular ordering). The syntax is otherwise the same as for cirf itac .m:

[fit,vaf,addcon] = cirfitac_ftarg(prox,inperm,targ)

In the example below, an equally (unit-)spaced circular ordering is used for TARG that
is obtained from the utility function targeir .m; this strategy leads to a (slightly lower
compared to cirf itac . m) VAF of .6670; here, the spacings around the circular structure
between the placements are as follows: for objects 1 and 2: .3294; 2 and 3: .3204; 3 and
4: .2544; 4 and 5: .0344; 5 and 6: .2837; 6 and 7: .2084; 7 and 8: .3124; 8 and 9: .2701; 9
and 10: .0000; and back around between 10 and 1: .2109 (the circumference Jto is 2.2241).

38 Chapters. Circular Scaling

load morse digits.dat
targcircular = targcir(lO)

targcircular =

0
1
2
3
4
5
4
3
2
1

1
0
1
2
3
4
5
4
3
2

2
1
0
1
2
3
4
5
4
3

3
2
1
0
1
2
3
4
5
4

4
3
2
1
0
1
2
3
4
5

5
4
3
2
1
0
1
2
3
4

4
5
4
3
2
1
0
1
2
3

3
4
5
4
3
2
1
0
1
2

2
3
4
5
4
3
2
1
0
1

1
2
3
4
5
4
3
2
1
0

[fit ,vaf,addcon]
targcircular)

fit =

= cirfitac_ftarg(morse_digits,1:10,

Columns 1 through 6

0
0
0
0
1
0
0
0
0

0
.3294
.6498
.9043
.9387
.2224
.7934
.4810
.2109
.2109

Columns 7

0
1
0
0
0
0

0
0
0

.7934

.1014

.7809

.5265

.4921

.2084
0

.3124

.5826

.5826

0

0
0
0
0
1
0
0
0

.3294
0

.3204

.5748

.6093

.8929

.1014

.8104

.5403

.5403

0
0

0
0
0
0
1
0
0

.6498

.3204
0

.2544

.2888

.5725

.7809

.0934

.8607

.8607

0
0
0

0
0
0
0
1
1

.9043

.5748

.2544
0

.0344

.3181

.5265

.8389

.1091

.1151

0
0
0
0

0
0
0
1
1

.9387

.6093

.2888

.0344
0

.2837

.4921

.8045

.0747

.0747

1
0
0
0
0

0
0
0
0

.2224

.8929

.5725

.3181

.2837
0

.2084

.5208

.7910

.7910

through 10

0
0
1
0
0
0
0

0
0

.4810

.8104

.0934

.8389

.8045

.5208

.3124
0

.2701

.2701

0
0
0
1
1
0
0
0

-0

.2109

.5403

.8607

.1091

.0747

.7910

.5826

.2701
0

.0000

0
0
0
1
1
0
0
0

-0

.2109

.5403

.8607

.1151

.0747

.7910

.5826

.2701

.0000
0

3.1. The Mechanics of CUS 39

vaf =

0.6670

addcon =

-0.8317

The use of a fixed circular target matrix in cirfitac_ftarg.m (as opposed to find-
ing one internally as is done in cirf it. m and cirf itac . m) could lead to small anoma-
lies in the results, and thus the user should be prepared when using cirf itac_f targ. m.
In the example just given, for instance, the (4,10) value (of 1.1151) should probably be
1.1091 to match the (4,9) entry and the fact that 9 and 10 are at tied locations—however, the
equally-spaced-circular-target distance from 10 to 4 is shorter clockwise (at a value of 4)
than counterclockwise (at a value of 6), and so the (4,10) value of 1.1151 is taken clockwise
(as opposed to 1.1091 if taken counterclockwise).

The function unicirac.m

The function M-file unicirac .m carries out a CUS of a symmetric dissimilarity matrix
(with the estimation of an additive constant) using an iterative QA strategy (and thus is an
analogue of uniscalqa. m for the LUS task). We begin with an equally spaced circular
target constructed using the M-file targeir. m (that could be invoked with the command
targcir (10)), a (random) starting permutation, and then use a sequential combination
of the pairwise interchange/rotation/insertion heuristics; the target matrix is reestimated
based on the identified (locally optimal) permutation. The whole process is repeated until
no changes can be made in the target or the identified (locally optimal) permutation. The
explicit usage syntax is

[find,vaf,outperm,addcon] = unicirac(prox,inperm,kblock)

where the various terms should now be familiar. INPERM is a given starting permutation
(assumed to be around the circle) of the first n integers; FIND is the least-squares optimal
matrix (with variance-accounted-for of VAF) to PROX having the appropriate circular form
for the row and column object ordering given by the final permutation OUTPERM. The
spacings between the objects are given by the diagonal entries in FIND (and the extreme
(1, n) entry in FIND). KBLOCK defines the block size in the use the iterative QA routine.
The additive constant for the model is given by ADDCON.

The problem of local optima is much more severe in CUS than in LUS. The heuristic
identification of inflection points and the relevant spacings can vary slightly depending
on the "equivalent" orderings identified around a circular structure. The example given
below was identified as the best achievable (and for some multiple number of times) over
100 random starting permutations for INPERM; with its VAF of 71.90%, it is apparently
the best "attainable." Given the (equivalent to the) identity permutation identified for

40 Chapter3. Circular Scaling

outperm, the substantive interpretation for this representation is fairly clear—we have a
nicely interpretable ordering of the Morse code symbols around a circular structure involving
a regular replacement of dashes by dots moving clockwise until the symbol containing all
dots is reached and then a subsequent replacement of the dots by dashes until the initial
symbol containing all dashes is reached.

[find,vaf,outperm,addcon] = ...
unicirac(morse_digits,randperm(lO),2)

find =

Columns 1 through 6

0
0
0
0
1
1
1
0
0

0
.0247
.3620
.6413
.9605
.1581
.1581
.0358
.7396
.3883

0

0
0
0
1
1
1
0
0

.0247
0

.3373

.6165

.9358

.1334

.1334

.0606

.7643

.4131

0
0

0
0
0
0
1
1
0

.3620

.3373
0

.2793

.5985

.7961

.7961

.0148

.1016

.7503

0
0
0

0,
0,
0,
0,
1
1

.6413

.6165

.2793
0

.3193

.5169

.5169

.7355

.0318

.0296

0
0
0
0

0
0
0
0
1

.9605

.9358

.5985

.3193
0

.1976

.1976

.4163

.7125

.0638

1
1
0
0
0

0
0
0
0

.1581

.1334

.7961

.5169

.1976
0

.0000

.2187

.5149

.8662

Columns 7 through 10

1
1
0
0
0
0

0
0
0

.1581

.1334

.7961

.5169

.1976

.0000
0

.2187

.5149

.8662

1
1
1
0
0
0
0

0
0

.0358

.0606

.0148

.7355

.4163

.2187

.2187
0

.2963

.6475

0
0
1
1
0
0
0
0

0

.7396

.7643

.1016

.0318

.7125

.5149

.5149

.2963
0

.3513

0
0
0
1
1
0
0
0
0

.3883

.4131

.7503

.0296

.0638

.8662

.8662

.6475

.3513
0

vaf =

0.7190

outperm =

4 5 6 7 8 9 10 1 2 3

3.1. The Mechanics of CUS 41

addcon =

-0 .7964

The plotting function circularplot.m

To assist in the visualization of the results from a CUS, the M-function circularplot. m
provides the coordinates of a scaling around a circular structure plus a plot of the (labeled)
objects around the circle. The usage syntax is

[circum,radius,coord,degrees,cumdegrees] = ...
circularplot(circ,inperm)

The coordinates are derived from the n x n interpoint distance matrix (around a circle) given
by CIRC; the positions are labeled by the order of objects given in INPERM. Output consists
of a plot, the circumference of the circle (CIRCUM) and radius (RADIUS), the coordinates
of the plot positions (COORD), and the degrees and cumulative degrees induced between
the plotted positions (in DEGREES and CUMDEGREES). The positions around the circle
are numbered from 1 (at the "noon" position) to n, moving clockwise around the circular
structure.

As an example, Figure 3.1 provides an application of circularplot. m to the just
given example of unicirac .m. The text output also appears below:

[circum,radius,coord,degrees,cumdegrees] = ...
circularplot(find,outperm);

circum

circum =

2.4126

radius

radius =

0.3840

coord'

ans =

Columns 1 through 6

0 0.0247 0.3107 0.3821 0.2293 0.0481

42 Chapters. Circular Scaling

Figure 3.1. Two-dimensional circular plot for the morse_digits data obtained
using circularplot.m.

0.3840 0.3832 0.2256

Columns 7 through 10

0.0481 -0.1649 -0.3600
-0.3810 -0.3468 -0.1336

degrees'

ans =

Columns 1 through 6

0.0644 0.8783 0.7273

Columns 7 through 10

-0.0380 -0.3080 -0.3810

0.3254
0.2038

0.8315 0.5146 0.0000

3.2. Circular Multidimensional Scaling 43

0.5695 0.7716 0.9148 1.0113

cumdegrees'

ans =

Columns 1 through 6

0.0644 0.9428 1.6700 2.5015

Columns 7 through 10

3.5856 4.3571 5.2719 6.2832

3 .0161 3 .0161

3.2 Circular Multidimensional Scaling
The discussion in previous sections has been restricted to the fitting of a single circular
unidimensional structure to a symmetric proximity matrix. Given the type of computational
approach developed for carrying out this task (and, in particular, because of its lack of
dependence on the presence of nonnegative proximities), extensions are very direct to the
use of multiple unidimensional structures through a process of successive residualization
of the original proximity matrix. The fitting of two CUS structures to a proximity matrix
generalizes (3.1) to the form

The attempt to minimize (3.3) could proceed with the fitting of a single CUS structure to
[pij •}, [min{ \Xji —XH \ , JCQI — \Xj -,\ — jc/i } —c\], using the computational strategy of Section 3. 1 ,
and, once obtained, fitting a second CUS structure, [min{ |jcy2 — */2 1 , *02 — 1*/2 — */2 1 } — ̂ 2],
to the residual matrix, {/?/_,- — [min{|jcyi — J tn l»*oi — \Xj\ — Jc/i|}] —c\}. The process would
then cycle by repetitively fitting the residuals from the second circular structure by the
first, and the residuals from the first circular structure by the second, until the sequence
converges. In any event, obvious extensions exist for (3.3) to the inclusion of more than
two CUS structures or to some mixture of, say, LUS and CUS forms in the spirit of the
hybrid models of Carroll and Pruzansky (1975, 1980).

The M-function bicirac .m is a two- (or bi-)dimensional scaling strategy for the
L2 loss function of (3.3) and relies heavily on the M-function unicirac .m to fit each
separate circular structure, including its associated additive constant. The syntax is

[f ind, vaf , targone, targtwo, outpermone, outpermtwo, . . .
addconone, addcontwo] = bicirac (prox, inperm, kblock)

where most of the terms should be familiar from previous usage in, say, biscalqa .m.
Again, PROX is the input proximity matrix (n x n with a zero main diagonal and a dissimi-
larity interpretation); INPERM is a given starting permutation of the first n integers; FIND

44 Chapters. Circular Scaling

is the least-squares optimal matrix (with variance-accounted-for of VAF) to PROX and is
the sum of the two circular (anti-Robinson) matrices TARGONE and TARGTWO based on
the two row and column object orderings given by the final permutations OUTPERMONE
and OUTPERMTWO. KBLOCK defines the block size in the use of the iterative QA rou-
tine, and ADDCONONE and ADDCONTWO are the two additive constants for the two model
components.

As an illustration of the results obtainable from the process just described, using the
Morse code data, the MATLAB output below gives the best (according to a VAF of 92.18%)
two-CUS representation obtained from 100 random starting permutations for each of the
circular components. The two CUS structures have rather clear substantive interpretations:
as with our example using unicirac . m, the first shows the regular replacement of dots by
dashes moving around the closed continuum; the second provides a perfect ordering around
the closed continuum according to ratios of dots to dashes or of dashes to dots and where
adjacent pairs of stimuli have dashes and dots exchanged one-for-one; i.e., for the adjacent
stimuli pairs moving clockwise, we have

The two additive constants c\ and c2 in (3.3) have values of —.7002 and .3521, respectively.
(As mentioned, the output given below represents the best two-CUS structures obtained for
100 random starting permutations, but as might be expected given the earlier computational
results, the same type of local optima were observed here as found in the fitting of a single
CUS structure; i.e., several local optima were generated from small differences in the
estimation of inflection points and the adjacent object spacings but with the identical object
orderings around the closed continua).

[find,vaf,targone,targtwo,outpermone,outpermtwo, ...
addconone,addcontwo] = bicirac(morse_digits,randperm(lO),2)

find =

Columns 1 through 6

0
1
1
1
1
I
I
0
0

0
.9765
.4869
.9626
.7586
.7461
.5637
.4012
.9767
.8569

0

0
1
1
1
1
1
1
1

.9765
0

.8585

.5836

.7815

.7340

.5408

.3783

.4861

.4853

1.
0,

1.
1 ,
1

1
1
1.
1.

.4869

.8585
0

.0732

.4824

.4414

.6238

.6709

.7787

.8352

1
1
1

0
1
1
1
1
1

.9626

.5836

.0732
0

.7573

.3885

.5709

.7334

.8316

.8882

1
1
1
0

1
1
1
1
1

.7586

.7815

.4824

.7573
0

.2468

.6832

.9374

.8296

.7731

1
1
1
1
1

0
1
1
1

.7461

.7340

.4414

.3885

.2468
0

.7846

.3120

.8771

.8206

3.2. Circular Multidimensional Scaling 45

Columns 7

vaf

1
1
1
1
1
0

0
1
1

=

0

.5637

.5408

.6238

.5709

.6832

.7846
0

.8755

.4561

.5759

.9218

through 10

1
1
1
1
1
1
0

0
1

.4012

.3783

.6709

.7334

.9374

.3120

.8755
0

.9287

.0485

0
1
1
1
1
1
1
0

0

.9767

.4861

.7787

.8316

.8296

.8771

.4561

.9287
0

.4679

0
1
1
1
1
1
1
1
0

.8569

.4853

.8352

.8882

.7731

.8206

.5759

.0485

.4679
0

targone =

Columns 1

0
0
0
0
1
1
1
0
0

0
.2364
.2680
.4852
.7880
.1894
.1826
.0800
.6544
.3450

Columns 7

1
1
1
1
0
0

0
0
0

.1826

.3420

.3104

.0933

.7905

.3890
0

.1026

.5282

.8376

through 6

0

0
0
0
0
1
1
0
0

.2364
0

.0316

.2488

.5516

.9530

.3420

.3164

.8908

.5814

0
0

0
0
0
1
1
0
0

.2680

.0316
0

.2172

.5199

.9214

.3104

.3480

.9224

.6130

0
0
0

0
0
1
1
1
0

.4852 0.7880

.2488 0.5516

.2172 0.5199
0 0.3028

.3028 0

.7042 0.4015

.0933 0.7905

.1958 0.8931

.1396 1.3187

.8302 1.1329

1.1894
0.9530
0.9214
0.7042
0.4015

0
0.3890
0.4916
0.9172
1.2266

through 10

1
1
1
1
0
0
0

0
0

.0800

.3164

.3480

.1958

.8931

.4916

.1026
0

.4256

.7350

0
0
0
1
1
0
0
0

0

.6544

.8908

.9224

.1396

.3187

.9172

.5282

.4256
0

.3094

0
0
0
0
1
1
0
0
0

.3450

.5814

.6130

.8302

.1329

.2266

.8376

.7350

.3094
0

targtwo =

46 Chapter 3. Circular Scaling

Columns 1

0
0.0491
0.1825
0.3852
0.5267
0.6148
0.6001
0.3855
0.1270
0.0598

Columns 7

0.6001
0.6427
0.5094
0.3066
0.1652
0.0770

0
0.2146
0.4731
0.5403

through 6

0

0
0
0
0
0
0
0
0

.0491
0

.1334

.3361

.4776

.5657

.6427

.4346

.1761

.1089

0
0

0
0
0
0
0
0
0

.1825

.1334
0

.2027

.3442

.4324

.5094

.5679

.3095

.2423

0
0
0

0
0
0
0
0
0

.3852 0.5267

.3361 0.4776

.2027 0.3442
0 0.1415

.1415 0

.2296 0.0882

.3066 0.1652

.5212 0.3798

.5122 0.6382

.4450 0.5865

0.6148
0.5657
0.4324
0.2296
0.0882

0
0.0770
0.2916
0.5500
0.6173

through 10

0
0
0
0
0
0
0

0
0

.3855

.4346

.5679

.5212

.3798

.2916

.2146
0

.2585

.3257

0
0
0
0
0
0
0
0

0

.1270

.1761

.3095

.5122

.6382

.5500

.4731

.2585
0

.0672

0
0
0
0
0
0
0
0
0

.0598

.1089

.2423

.4450

.5865

.6173

.5403

.3257

.0672
0

outpermone =

8 9

outpermtwo =

addconone =

-0.7002

addcontwo =

0.3521

 1 2 3 4 5 6 7

7 3 8 4 9 10 5 1 6 2

1 0

Chapter 4

LUS for Two-Mode
Proximity Data

The proximity data considered thus far for obtaining some type of structural representation
have been assumed to be on one intact set of objects, S = [O\,..., On], and complete
in the sense that proximity values are present between all object pairs. Suppose now that
the available proximity data are two-mode, that is, between two distinct object sets, SA =
{O\A, • • • , OnaA\ and SB = {#IB, . . . , OnbB}, containing na and «/, objects, respectively,
and defined through an na x n^ proximity matrix Q = {qrs}> where again, for convenience,
we assume that the entries in Q are keyed as dissimilarities. We may wish to seek a joint
structural representation of the set SA U SB (considered as a single object set S containing
na + rn, = n objects) but one that is based only on the available proximities between the
sets SA and SB-

A two-mode (dissimilarity matrix) data set for illustrative purposes

To provide a specific example that will be used throughout this chapter as an illustration,
Table 4.1 presents an 11 x 9 two-mode proximity matrix Q on the absorption of light at
9 different wavelengths by 11 different cones (receptors) in goldfish retina (but in a row
and column reordered form that will reflect the discussion to follow). These data are from
Schiffman and Falkenberg (1968) (and reanalyzed by Schiffman, Reynolds, and Young,
1981, pp. 328-329) and were originally based on an unpublished doctoral dissertation by
Marks (1965). The proximities in the table are (200 minus) the heights of ordinates for
particular spectral frequencies as labeled by the columns, and thus can be considered dis-
similarities reflecting the closeness of a particular receptor to a particular wavelength. Using
the original labeling of the rows as given in Schiffman and Falkenberg, the row permuta-
tion in Table 4.1 is (3,8,9,2,6,4,1,7,5,11,10); the column permutation is (4,9,6,5,1,7,2,8,3).
The latter column permutation in its given order corresponds to wavelengths of (458):blue-
indigo, (430):violet, (485):blue, (498):blue-green, (530):green, (540):green, (585):yellow,
(610):orange, (660):red.

47

48 Chapter 4. LUS for Two-Mode Proximity Data

Table 4.1. The goldfish_receptor.dat data file constructed from Schiffman and
Falkenberg (1968).

47 53 111 143 188 196 200 200 200
48 55 75 100 186 200 200 200 200
46 47 90 125 168 176 177 183 200
99 101 78 60 46 67 107 156 200
122
115
198
135
141
173
200

127
154
186
156
113
140
200

115
97
154
123
142
177
160

79
73
148
127
148
176
161

49
48
103
116
114
144
145

46
52
94
98
121
128
138

91
84
63
49
61
64
80

143
125
108
46
47
56
53

200
174
155
80
54
89
68

4.1 Reordering Two-Mode Proximity Matrices
Given an nu x n^ two-mode proximity matrix, Q, defined between the two distinct sets, SA

and SB, it may be desirable to reorder separately the rows and columns of Q to display some
type of pattern that may be present in its entries or to obtain some joint permutation of the
n (= na -f «/,) row and column objects to effect some further type of simplified representa-
tion. These kinds of reordering tasks will be approached with a variant of the quadratic
assignment (QA) heuristics of the LUS discussion in Chapter 1 applied to a square (na +«/,) x
(na+Hb) proximity matrix, P(tm), in which a two-mode matrix Q^) and its transpose (where
Q(dev) is constructed from Q by deviating its entries from the mean proximity) form the
upper-right- and lower-left-hand portions, respectively, with zeros placed elsewhere. (This
use of zero in the presence of deviated proximities appears a reasonable choice generally
in identifying good reorderings of P(rm). Without this type of deviation strategy, there
would typically be no "mixing" of the row and column objects in the permutations that we
would identify for the combined (row and column) object set.) Thus, for 0 denoting (an
appropriately dimensioned) matrix of all zeros,

is the (square) n x n proximity matrix subjected to a simultaneous row and column reorder-
ing, which in turn will induce separate row and column reorderings for the original two-mode
proximity matrix Q.

The M-file ordertm. m implements a QA reordering heuristic on the derived matrix
P(/w), with usage

[outperm,rawindex,allperms,index,squareprox] = ...
ordertm(proxtm,targ,inperm,kblock)

where the two-mode proximity matrix PROXTM (with its entries deviated from the mean
proximity within the use of the M-file) forms the upper-right- and lower-left-hand portions of

4.2. Fitting a Two-Mode Unidimensional Scale 49

adefined square (n x n) proximity matrix (SQUAREPROX) with a dissimilarity interpretation,
and with zeros placed elsewhere (n = number of rows + number of columns of PROXTM =
na + nb); three separate local operations are used to permute the rows and columns of the
square proximity matrix to maximize the cross-product index with respect to a square target
matrix TARG: (a) pairwise interchanges of objects in the permutation defining the row and
column order of the square proximity matrix; (b) the insertion of from 1 to KBLOCK (which
is less than or equal to n — 1) consecutive objects in the permutation defining the row and
column order of the data matrix; (c) the rotation of from 2 to KBLOCK (which is less than or
equal to n — 1) consecutive objects in the permutation defining the row and column order
of the data matrix. INPERM is the beginning input permutation (a permutation of the first
n integers); PROXTM is the two-mode na x nb input proximity matrix; TARG is the n x n
input target matrix. OUTPERM is the final permutation of SQUAREPROX with the cross-
product index RAWINDEX with respect to TARG. ALLPERMS is a cell array containing
INDEX entries corresponding to all the permutations identified in the optimization from
ALLPERMS{l} = INPERMtoALLPERMS{INDEX} = OUTPERM.

In the example to follow, ordertm. m is used on the dissimilarity matrix of Table 4.1.
The square equally spaced target matrix is obtained from the LUS utility targlin.m. A
listing of the (reordered) matrix, squareprox (outperm, outperm), if given, would
show clearly the unidimensional pattern for a two-mode data matrix that will be explicitly
fitted in the next section of this chapter.

load goldfish_receptor.dat
[outperm,rawindex,allperms,index,squareprox] = ...

ordertm(goldfish_receptor,targlin(20),randperm(20),2);
outperm

outperm =

Columns 1 through 10

20 11 10 19 9 18 8 7 17 16

Columns 11 through 20

6 5 4 15 14 13 3 12 2 1

4.2 Fitting a Two-Mode Unidimensional Scale

It is possible to fit, through iterative projection, best-fitting (in the L2-norm) unidimensional
scales to two-mode proximity data based on a given permutation of the combined row and
column object set. Specifically, if p(-) denotes some given permutation of the first n integers
(where the first na integers denote row objects, labeled 1, 2 , . . . , na, and the remaining nb

integers denote column objects, labeled na + 1, na + 2 , . . . , na + «j,(= n)), we seek a set
of coordinates, jci < *2 < • • • < xn, such that using the reordered square proximity matrix,

is minimized, where u>A>(')A>0') — 0 if A)(0 and A)0) are both row or both column objects,
and = 1 otherwise. The entries in the matrix fitted to P('m) are based on the absolute coordi-

AA)

nate differences (which correspond to nonzero values of the weight function W^DP^J)}, and
thus satisfy certain linear inequality constraints generated from how the row and column
objects are intermixed by the given permutation po(0- To give a schematic representation
of how these constraints are generated, suppose r\ and r2 (c\ and c2) denote two arbitrary
row (column) objects, and suppose the following 2 x 2 matrix represents what is to be fitted
to the four proximity values present between r\,r^ and c\, c^'.

r\
ri

c\
a
c

c-i
b
d

Depending on how these four objects are ordered (and intermixed) by the permutation
Po(-), certain constraints must be satisfied by the entries a,b,c, and d. The representative
constraints are given schematically below according to the types of intermixing that might
be present:

(a) r\ •< r2 -< c\ -< GI implies a + d = b + c;
(b) r\ -< c\ •< r2 -< ci implies a + c + d — b;
(c) r\ -< ci -< ci -< r2 implies a + c — b + d;
(d) r\ -< TI -< c\ implies c <a\
(e) r\ •< c\ -< c-i implies a < b.
The confirmatory unidimensional scaling of a two-mode proximity matrix (based on

iterative projection using a given permutation of the row and column objects) is carried out
with the M-file linf ittm, with usage

[fit,diff,rowperm,colperm,coord] = linfittm(proxtm,inperm)

Here, PROXTM is the two-mode proximity matrix, and INPERM is the given ordering of the
row and column objects pooled together; FIT is an na x n^ matrix of absolute coordinate dif-
ferences fitted to PROXTM (ROWPERM, COLPERM), with DIFF being the (least-squares cri-
terion) sum of squared discrepancies between FIT and PROXTM (ROWPERM, COLMEAN);
ROWPERM and COLPERM are the row and column object orderings derived from INPERM.
The (na + nh) = n coordinates (ordered with the smallest such coordinate set at a value of
zero) are given in COORD.

The example given below uses a permutation obtained from ordertm. m on the data
matrixgoldfish_receptor.dat.

[fit ,diff,rowperm,colperm,coord] = ...
linfittm(goldfish_receptor,outperm);
fit

50 Chapter 4. LUS for Two-Mode Proximity Data

the least-squares criterion

4.2. Fitting a Two-Mode Unidimensional Scale 51

fit =

Columns 1

27
38
64
82
84
151
156
172
259
286
295

.7467

.8578

.4133

.0890

.6355

.4133

.0800

.9689

.6356

.9689

.1911

Columns 7

189
178
152
135
132
65
61
44
42
69
77

.5261

.4150

.8594

.1837

.6372

.8594

.1927

.3039

.3629

.6961

.9184

through 6

19
8
17
34
37
104
108
125
212
239
247

.6170

.5059

.0497

.7253

.2719

.0497

.7163

.6052
,2720
,6052
.8275

49.
38.
13.
4.
7.
73.
78.
95.
182.
209.
217.

8824 105.1624 113.7988
7712 94.0513 102.6877
2157 68.4958 77.1321
4600 50.8201 59.4565
0065 48.2735 56.9099
7843 18.5042 9.8679
4510 23.1709 14.5345
3399 40.0598 31.4234
0066 126.7265 118.0901
3399 154.0598 145.4234
5621 162.2820 153.6456

174.4352
163.3241
137.7685
120.0928
117.5463
50.7685
46.1018
29.2129
57.4538
84.7871
93 .0093

through 9

212
201
175
158
155
88
84
67
19
46
55

.4352

.3241

.7685

.0928

.5463

.7685

.1018

.2129

.4538

.7871

.0093

231.
220.
195.
177.
175.
108.
103.
86.
0.

27.
35.

8897
7786
2230
5473
0008
2230
5563
6674
0007
3326
5548

diff

diff =

1.43726+005

rowperm'

ans =

Columns 1 through 10

11 10 9 8

Column 11

7 6 5 4 3 2

52 Chapter 4. LUS for Two-Mode Proximity Data

1

colperm'

ans =

9 8 7 6 5 4 3 2 1

coord'

ans =

Columns 1 through 6

0 27.7467 38.8578 47.3636 64.4133 77.6290

Columns 7 through 12

82.0890 84.6355 132.9091 141.5455 151.4133 156.0800

Columns 13 through 18

172.9689 202.1818 217.2727 240.1818 259.6356 259.6363

Columns 19 through 20

286.9689 295.1911

In complete analogy with the LUS discussion (where the M-file 1 inf itac . m gen-
eralizes Unfit .m by fitting an additive constant along with the absolute coordinate dif-
ferences), the more general unidimensional scaling model can be fitted with an additive
constant using the M-file 1 inf ittmac . m. Specifically, we now seek a set of coordinates,
•*i < *2 5: • • • < xn, and an additive constant c, such that using the reordered square
proximity matrix, P"!) = { p ' ^ ' l^e 'east"scluares criterion

is minimized, where again w^(i)p(}(j) — 0 if A)(0 and A)0) are both row or both column
objects, and = 1 otherwise. The M-file usage is

[fit ,vaf, rowperm, colperm, addcon, coord] = ...
linf ittmac (proxtm, inperm)

and does a confirmatory two-mode fitting of a given unidimensional ordering of the row and
column objects of a two-mode proximity matrix PROXTM using the Dykstra-Kaczmarz iter-
ative projection least-squares method. In comparison, the M-file linf ittmac .m differs

4.2. Fitting a Two-Mode Unidimensional Scale 53

from linf ittm.m by including the estimation of an additive constant, and thus allow-
ing VAF to be legitimately given as the goodness-of-fit index (as opposed to just DIFF
as we did in linf ittm.m). Again, INPERM is the given ordering of the row and col-
umn objects together; FIT is an na (number of rows) x rib (number of columns) matrix
of absolute coordinate differences fitted to PROXTM (ROWPERM, COLPERM); ROWPERM
and COLPERM are the row and column object orderings derived from INPERM. The esti-
mated additive constant ADDCON can be interpreted as being added to PROXTM (or, alter-
natively, subtracted from the fitted matrix FIT).

The same exemplar permutation is used below (as was used for linf ittm.m);
following the MATLAB output that now includes the additive constant of —55.0512 and
the VAF of .8072, the two unidimensional scalings (in their coordinate forms) are provided
in Table 4.2 with an explicit indication of what is a row object (R) and what is a column
object (C).

[fit,vaf,rowperm,colperm,addcon,coord] = ...
linfittmac(goldfish_receptor,outperm);
vaf

vaf =

0.8072

rowperm'

ans =

Columns 1 through 10

1 1 1 0 9 8 7 6 5 4 3 2

Column 11

1

colperm'

ans =

9 8 7 6 5 4 3 2 1

addcon

addcon =

-55.0512

54 Chapter 4. LUS for Two-Mode Proximity Data

coord'

ans =

Columns 1 through 6

0 16.7584 27.1305 27.9496 41.1914 46.4762

Columns 7 through 12

47.9363 49.2521 82.8626 91.1532 91.9133 96.1573

Columns 13 through 18

113.0462 122.1074 137.1983 160.1074 166.6057 166.6124

Columns 19 through 20

178.1118 186.3341

4.3 Multiple LUS Reorderings and Fittings
Two M-files are provided that put together the (QA) reordering of a two-mode rectangular
proximity matrix with the fitting of the unidimensional scale(s). The first, uni seal tmac . m,
combines the use of ordertm.m and linf ittmac .m along with (re)estimations of the
(originally equally spaced) target matrix using the coordinates obtained until the identified
permutation stabilizes. The usage includes the same terms as for the encompassing M-files:

[find, vaf, outperm, rowperm, colperm, addcon, coord] = ...
uniscaltmac(proxtm, inperm, kblock)

The second M-file, biscal tmac . m, finds and fits, through successive residualization, the
sum of two linear unidimensional scales using iterative projection to a two-mode proximity
matrix in the L2-norm based on permutations identified through the use of iterative QA.
The usage has the form

[f ind,vaf,targone,targtwo,outpermone,outpermtwo, ...
rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
addcontwo,coordone,coordtwo,axes] = ...

biscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)

Most of the terms should be obvious from earlier usage statements; the n x 2 matrix, AXES,
gives the two-dimensional plotting coordinates for the combined row and column object
set. As was allowed in the bidimensional scaling routine biscalqa. m, the variable NOPT
controls the confirmatory or exploratory fitting of the unidimensional scales; a value of

4.3. Multiple LUS Reorderings and Fittings 55

Table 4.2. The two unidimensional scalings of the goldfish_receptor data.

Color
red (660)

orange (610)

yellow (585)

green (540)
green (530)

blue-green (490)
blue (485)

violet (430)

blue-indigo (458)

Number
20
11
10
19
9
18
8
7
17
16
6
5
4
15
14
13
3
12
2
1

RorC
C
R
R
C
R
C
R
R
C
C
R
R
R
C
C
C
R
C
R
R

No constant
0.0

27.7467
38.8578
47.3636
64.4133
77.6290
82.0890
84.6355
132.9091
141.5455
151.4133
156.0800
172.9689
202.1818
217.2727
240.1818
259.6356
259.6363
286.9689
295.1911

With constant
0.0

16.7584
27.1305
27.9496
41.1914
46.4762
47.9363
49.2521
82.8626
91.1532
91.9133
96.1573
113.0462
122.1074
137.1983
160.1074
166.6057
166.6124
178.1118
186.3341

NOPT = 0 will fit in a confirmatory mode the two scales indicated by INPERMONE and
INPERMTWO; a value of NOPT = 1 uses iterative QA to locate the better permutations to
fit.

An example of using biscal tmac . m follows, leading to a two-dimensional scaling
of the goldf ish_receptor data with a VAF of .9620. A two-dimensional graphical
representation of the coordinates will be given in the next section after the necessary plotting
utility, biplottm. m, is introduced.

load goldfish_receptor.dat
[find,vaf,targone,targtwo,outpermone,outpermtwo,...

rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
addcontwo,coordone,coordtwo,axes] = ...
biscaltmac(goldfish_receptor,randperm(20),randperm(20),2,1);
vaf

vaf =

0.9620

outpermone

56 Chapter 4. LUS for Two-Mode Proximity Data

outpermone =

Columns 1 through 10

20 11 10 19 9 18 8 7 17 16

Columns 11 through 20

6 5 4 15 14 13 3 12 2 1

coordone'

ans =

Columns 1 through 6

0 5.3813 29.6923 29.6923 47.3362 47.3362

Columns 7 through 12

47.3362 47.3362 80.1506 88.7578 91.1164 100.5008

Columns 13 through 18

115.5844 131.4868 141.7676 149.8850 160.3825 160.3825

Columns 19 through 20

173.7454 181.0428

outpermtwo

outpermtwo =

Columns 1 through 10

3 20 1 2 13 10 9 19 12 8

Columns 11 through 20

14 11 18 6 15 4 5 16 17 7

coordtwo'

ans =

4.3. Multiple LUS Reorderings and Fittings 57

Columns 1 through 6

0 6.7276 6.7277

Columns 7 through 12

14.0891 27.5247 27.5247

Columns 13 through 18

49.4002 58.0796 58.0796

Columns 19 through 20

72.8142 90.6794

axes

axes =

7.8975

30.1025

66.8364

14.0132

40.4679

72.2495

14.0891

40.4710

72.7100

181
173
160
115
100
91
47
47
47
29
5

160
149
141
131
88
80
47
29

.0428

.7454

.3825

.5844

.5008

.1164

.3362

.3362

.3362

.6923

.3813

.3825

.8850

.7676

.4868

.7578

.1506

.3362

.6923
0

6
7

66
72
58
90
30
14
14
40
27
14
40
58
72
72
49
27
6

.7277

.8975
0

.8364

.2495

.0796

.6794

.1025

.0891

.0891

.4710

.5247

.0132

.4679

.0796

.7100

.8142

.4002

.5247

.7276

58 Chapter 4. LUS for Two-Mode Proximity Data

4.4 Some Useful Two-Mode Utilities

This section gives several miscellaneous M-functions that carry out various operations on a
two-mode proximity matrix and for which no other section of this monograph seemed appro-
priate. The first two, proxstdtm.m and proxrandtm.m, are very simple and provide
standardized and randomly (entry-)permuted two-mode proximity matrices, respectively,
that might be useful, for example, in testing the various M-functions we give. The syntax

[stanproxtm,stanproxmulttm] = proxstdtm(proxtm,mean)

is intended to suggest that STANPROXTM provides a linear transformation of the entries
in PROXTM to a standard deviation of one and a mean of MEAN; STANPROXMULTTM is a
multiplicative transformation so that the entries in this na x nh matrix have a sum-of-squares
of narib. For the second utility M-function

[randproxtm] = proxrandtm (proxtm)

implies that the two-mode matrix RANDPROXTM has its entries as a random permutation of
the entries in PROXTM.

A third utility function, proxmontm. m, provides a monotonically transformed two-
mode proximity matrix that is close in a least-squares sense to a given input two-mode
matrix. The syntax is

[monproxpermuttm, vaf, diff] = ...
proxmontm(proxpermuttm,fittedtm)

Here, PROXPERMUTTM is the original input two-mode proximity matrix (which may have
been subjected to initial row and column permutations, hence the suffix PERMUTTM), and
F ITTEDTM is a given two-mode target matrix; the output matrix MONPROXPERMUTTM is
closest to FITTEDTM in a least-squares sense and obeys the order constraints obtained from
each pair of entries in PROXPERMUTTM (and where the inequality constrained optimization
is carried out using the Dykstra-Kaczmarz iterative projection strategy); as usual, VAF
indicates how much variance in MONPROXPERMUTTM can be accounted for by FITTEDTM;
finally, DIFF is the value of the least-squares loss function and is the sum of squared
differences between the entries in MONPROXPERMUTTM and FITTEDTM. We will give an
application of an M-file incorporating proxmontm. m when we suggest in Section 4.5 a
way of implementing two-dimensional, two-mode nonmetric multidimensional scaling.

A final utility function, biplottm. m, plots the combined row and column object set
using the coordinates given in, for example, the n x 2 output matrix AXES as output from
the M-file of the last section, biscaltmac .m. The usage syntax is

biplottm(axes,nrow,ncol)

Here, the number of rows (columns) is NROW (NCOL), and n is the sum of NROW and NCOL.
The first NROW rows of the n x 2 matrix AXES give the row object coordinates; the last
NCOL rows of AXES give the column object coordinates. The plotting symbol for rows is a
circle (o); for columns it is an asterisk (*). The labels for rows are from 1 to NROW; those for
columns are from 1 to NCOL. (It should be noted that Release 14 for MATLAB and of the
Statistics Toolbox (5.0) includes a somewhat similar M-function called biplot .m. Our

4.5. Two-Mode Nonmetric Bidimensional Scaling 59

Figure 4.1. Two-dimensional joint biplotfor the goldfishjreceptor data obtained
using biplottm.m.

biplottm.m routine is tailored to the two-mode context we have been discussing, and
therefore may be the preferred plotting strategy within this chapter.)

Figure 4.1 give an application of biplottm.m for the AXES matrix of the last
example given in Section 4.3 (for the goldf i sh_recept or data). Again, the appropriate
colors appear close to the relevant cones.

4.5 Two-Mode Nonmetric Bidimensional Scaling
By uniting the utility function proxmon.m with biscaltmac .m, we can construct
an M-file, bimonscaltmac .m, that carries out a nonmetric bidimensional scaling of
a two-mode proximity matrix in the city-block metric. The usage is the same as that of
biscaltmac . m in Section 4.3, except for the additional output matrix MONPROXTM that
is a monotonic transformation of the original two-mode proximity matrix PROXTM:

[. . . , monproxtm] = bimonscaltmac (. . .)

We give an example below using the same goldf ish_receptor. dat matrix; the VAF
has increased (slightly) to .9772. The joint plot of the row and column object set is given

60 Chapter 4. LUS for Two-Mode Proximity Data

Figure 4.2. Two-dimensional joint biplotfor the goldfishjreceptor data obtained
using bimonscaltmac.m and biplottm.m.

in Figure 4.2 and closely resembles Figure 4.1 obtained without the use of a monotonic
transformation.

[find,vaf,targone,targtwo,outpermone,outpermtwo,...
rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
addcontwo,coordone,coordtwo,axes,monproxtm] = ...
bimonscaltmac(goldfish_receptor,1:20,1:20,1,1);

vaf

vaf =

0.9772

outpermone

outpermone =

4.5. Two-Mode Nonmetric Bidimensional Scaling 61

14 15 4 5 6

9 19 10 11 20

10 9 19 8 12

4 5 16 17 7

Columns 1 through 10

1 2 12 3 13

Columns 11 through 20

16 17 7 8 18

outpermtwo

outpermtwo =

Columns 1 through 10

3 20 1 2 13

Columns 11 through 20

14 11 18 6 15

coordone'

ans =

Columns 1 through 6

0 9.3971 24.9145 25.6090 33.0810 41.8175

Columns 7 through 12

52.5796 64.9000 81.8939 86.7370 91.3614 95.4814

Columns 13 through 18

128.0062 129.3501 129.3501 129.3501 144.3894 144.6789

Columns 19 through 20

166.2783 172.0484

coordtwo'

ans =

Columns 1 through 6

62 Chapter 4. LUS for Two-Mode Proximity Data

0 9.0068 10.0288 11.4579

Columns 7 through 12

14.3479 25.9193 25.9193 25.9193

Columns 13 through 18

48.2031 53.3228 53.3228 62.5256

Columns 19 through 20

67.7899 83.2680

13.7505 13.7515

35.1740 37.0213

66.5361 67.7899

monproxtm

monproxtm =

Columns 1

58
58
58
108
124
120
189
138
141
167
189

.7038

.7038

.7038

.3069

.9383

.4397

.0671

.5167

.6262

.7111

.1641

Columns 7

203
192
181
108
91
82
70
58
67
72
82

.9042

.8095

.2299

.3069

.1332

.1362

.2554

.7038

.2074

.2093

.1262

through 6

63
63
58
108
136
141
189
154
120
141
193

.2885

.2885

.7038

.3069

.7608

.6262

.0671

.9866

.4397

.6262

.2795

108
82
85
82
120
97
154
124
141
167
162

.3069

.1362

.7059

.1362

.4397

.3034

.9866

.9383

.6262

.7111

.2199

141.6262 189.0671 189.0671
108.3069 181.2299 189.0671
124.9383 167.7111 167.7111
63.2885 58.7038 72.2093
82.1362 58.7038 48.4205
72.2093 58.7038 58.7038
141.6262 108.3069 91.1332
138.5167 120.4397 108.3069
141.6262 120.4397 121.7048
167.7111 141.6262 138.5167
166.2670 141.6262 138.5167

through 9

196
189
181
154
141
124
108
48
58
63
63

.9665

.0671

.2299

.9866

.6262

.9383

.3069

.4214

.7038

.2885

.2885

208
200
191
197
189
167
154
82
63
82
72

.6756

.9956

.5023

.4823

.0671

.7111

.9866

.1362

.2885

.1362

.2093

Part II

The Representation of Proximity
Matrices by Tree Structures

This page intentionally left blank

Introduction to Graph-Theoretic
Representational Structures

Various methods of data representation based on graph-theoretic structures have been de-
veloped over the last several decades for explaining the pattern of information potentially
present in a single (or possibly in a collection of) numerically given proximity matri(ces),
each defined between pairs of objects from a single set or, in some cases, between the
objects from several distinct sets (for example, see Carroll, 1976; Carroll, Clark, and De-
Sarbo, 1984; Carroll and Pruzansky, 1980; De Soete, 1983, 1984a,b,c; De Soete, Carroll,
and DeSarbo, 1987; De Soete et al., 1984; Hutchinson, 1989; Klauer and Carroll, 1989,
1991; Hubert and Arabie, 1995b). Typically, a specific class of graph-theoretic structures
is assumed capable of representing the proximity information, and the proposed method
seeks a member from the class producing a reconstructed set of proximities that are as close
as possible to the original. The most prominent graph-theoretic structures used are those
usually referred to as ultrametrics and additive trees, and these will be the primary emphasis
here as well.

Although a variety of strategies have been proposed for locating good exemplars from
whatever class of graph-theoretic structures is being considered, one approach has been to
adopt a least-squares criterion in which the class exemplar is identified by attempting to
minimize the sum of squared discrepancies between the original proximities and their re-
constructions obtained through the use of the particular structure selected by the data analyst.
One common implementation of the least-squares optimization strategy has been defined
by the usual least-squares criterion but augmented by some collection of penalty functions
that seek to impose whatever constraints are mandated by the structural representation being
sought. Then, through the use of some unconstrained optimization scheme (e.g., steepest
descent, conjugate gradients), an attempt is made to find both (a) the particular constraints
that should be imposed to define the specific structure from the class and (b) the recon-
structed proximities based on the structure finally identified. The resulting optimization
strategy is heuristic in the sense that there is no guarantee of global optimality for the final
structural representation identified even within the chosen graph-theoretic class, because the
particular constraints defining the selected structure were located by a possibly reasonable
but not verifiably optimal search strategy that was (implicitly) implemented in the course
of the process of optimization. A second implementation of the least-squares optimiza-
tion approach, and the one that we will concentrate on exclusively, is based on the type of
iterative projection strategy already illustrated in conjunction with linear unidimensional

65

66 Introduction to Graph-Theoretic Representational Structures

scaling (LUS) (see the addendum (Section 1.4) on solving linear inequality constrained
least-squares tasks) and developed in detail for the graph-theoretic context by Hubert and
Arabie (1995b). In its nonheuristic form, iterative projection allows the reconstruction of
a set of proximities based on a fixed collection of constraints implied by whatever specific
graph-theoretic structure has been selected for their representation. As in LUS, successive
(or iterative) projections onto closed convex sets are carried out that are defined by the
collection of given constraints implied by the structural representation chosen. Thus, the
need for penalty terms is avoided and there is no explicit use of gradients in the attendant
optimization strategy; also, it is fairly straightforward to incorporate a variety of differ-
ent types of constraints that may be auxiliary to those generated from the given structural
representation but nonetheless of interest to impose on the reconstruction.

As a least-squares optimization strategy (in a nonheuristic form), iterative projection
assumes that whatever constraint set is to be applied is completely known prior to its appli-
cation. However, just as the various penalty-function and gradient-optimization techniques
have been turned into heuristic search strategies for the particular structures of interest by
allowing the collection of constraints to vary over the course of the optimization process,
we attempt the same in using iterative projection to find the better-fitting ultrametrics and
additive trees for a given proximity matrix. Thus, in addition to carrying out a least-squares
task subject to given structural constraints, iterative projection will be considered as one
possible heuristic search strategy (and an alternative to those heuristic methods that have
been suggested in the literature and based exclusively on the use of some type of penalty
function) for locating the actual constraints to impose, and therefore to identify the specific
form of the structural representation sought.

The various least-squares optimization tasks entailing both the identification of the
specific form of the structural representation to adopt and the subsequent least-squares fitting
itself generally fall into the class of NP-hard problems (e.g., for ultrametric and additive
trees, see Day, 1987, 1996; Kfivanek, 1986; Kfivanek and Moravek, 1986); thus, the best
we can hope for is a heuristic extension of the iterative projection strategy leading to good
but not necessarily optimal final structural representations within the general class of rep-
resentations desired. As is standard with a reliance on such heuristic optimization methods,
the use of multiple starting points will hopefully determine a set of local optima character-
izing the better solutions attainable for a given data set. The presence of local optima in the
use of any heuristic and combinatorially based optimization strategy is unavoidable, given
the NP-hardness of the basic optimization tasks of interest and the general inability of (par-
tial) enumeration methods (when available) to be computationally feasible for use on even
moderate-sized data sets. The number of and variation in the local optima observable for
any specific situation will obviously depend on the given data, the structural representation
sought, and the heuristic search strategy used. But whenever present, local optima may
actually be diagnostic for the structure(s) potentially appropriate for characterizing a par-
ticular data set. Thus, their identification may even be valuable in explaining the patterning
of the data and/or in noting the difficulties with adopting a specific representational form to
help discern underlying structure.

Chapter 5

Ultrametrics for Symmetric
Proximity Data

The task of hierarchical clustering can be characterized as a specific data analysis problem:
given a set of n objects, S — [O\, . . . , On}, and an n x n symmetric proximity matrix
P = {p^ } (nonnegative and with a dissimilarity interpretation), find a sequence of partitions
of S, denoted as P\ , "Pi, . . . , Pn, satisfying the following:

(a) P\ is the (trivial) partition where all n objects from S are placed into n separate
classes;

(b) Pn is the (also trivial) partition where a single subset contains all n objects;
(c) Pk is obtained from Pk-i by uniting some pair of classes present in Pk-\\
(d) the minimum levels at which object pairs first appear together within the same

class should reflect the proximities in P. Or more formally, if we define U° = {w?-} =
min{fc — 1 | objects Ot and Oj appear within the same class in P^}, then if the partition
hierarchy is representing the given proximities well, the entries in U° and P should be, for
example, similarly ordered. We discuss the properties of matrices such as U° in more detail
below.

To give an example, we performed a complete-link hierarchical clustering (using
SYSTAT) on the number . dat proximity matrix used extensively in Part I and obtained
the following partitions of the object indices from 1 to 1 0 (remembering that these correspond
to the digits 0 to 9):

PH {{1},{2},{3},{4},{5},{6},{7},{8},{9},{10}}
P2: {{3,5},{1},{2},{4},{6},{7},{8},{9},{10}}
P3: {{3,5},{4,10},{!},{2},{6},{7},{8},{9}}
P4: {{3,5},{4,7,10},{1},{2},{6},{8},{9}}
P5: {{3,5,9},{4,7,10},{1},{2},{6},{8}}
P6: {{3,5,9},{4,7,10},{6,8},{1},{2}}
Pr. {{3,5,9},{4,7,10},{6,8},{1,2}}
Ps: {{3,5,9},{4,6,7,8,10},{ 1,2}}
P9: {{3,4,5,6,7,8,9,10},{1,2}}
P10: {{1,2,3,4,5,6,7,8,9,10}}

The matrix U° was constructed and saved as a 10 x 10 matrix in the file numcltarg. dat,
which will be used later in an example:

67

68 Chapter 5. Ultrametrics for Symmetric Proximity Data

0 6 9 9 9 9 9 9 9 9
6 0 9 9 9 9 9 9 9 9
9 9 0 8 1 8 8 8 4 8
9
9
9
9
9
9
9

9
9
9
9
9
9
9

8
1
8
8
8
4
8

0
8
7
3
7
8
2

8
0
8
8
8
4
8

7
8
0
7
5
8
7

3
8
7
0
7
8
3

7
8
5
7
0
8
7

8
4
8
8
8
0
8

2
8
7
3
7
8
0

We note that this same hierarchical clustering could have been obtained alternatively with
the cluster .m routine from the Statistics Toolbox for MATLAB, allowing the user to
remain completely within a MATLAB environment (assuming, obviously, that the Statistics
Toolbox is available).

A concept routinely encountered in discussions of hierarchical clustering is that of an
ultrametric, which can be characterized here as any nonnegative symmetric dissimilarity
matrix for the objects in S, denoted generically by U = {«/_/}, where w/7 = 0 if and only
i f / = j, and u-,j < max[«(^, u j k] for all 1 < i, j,k < n (this last inequality, called the
three-point or three-object condition, is equivalent to the statement that for any distinct
triple of subscripts, i, j, and k, the largest two proximities among w/y , uik, and Ujk are equal
and (therefore) not less than the third). Any ultrametric can be associated with the specific
partition hierarchy it induces, having the form P\,P2, • • • ,Pr> where P\ and Pj are now
the two trivial partitions that, respectively, contain all objects in separate classes and all
objects in the same class, and Pk is formed from Pk-i (2 < k < T) by (agglomeratively)
uniting certain (and possibly more than two) subsets in Pk-\. For those subsets merged
in Pk-\ to form Pk, all between-subset ultrametric values must be equal and no less than
any other ultrametric value associated with an object pair within a class in Pk-\. Thus,
individual partitions in the hierarchy can be identified by merely increasing a threshold
variable starting at zero and observing that Pk for 1 < k < T is defined by a set of
subsets in which all within-subset ultrametric values are less than or equal to some specific
threshold value, and all ultrametric values between subsets are strictly greater. Conversely,
any partition hierarchy of the form P\ , . . . , PT can be identified with the equivalence class
of all ultrametric matrices that induce it. We note that if only a single pair of subsets can
be united in Pk-\ to form Pk for 2 < k < T, then T = n, and we could then revert to the
characterization of a full partition hierarchy P\ , . . . , Pn used earlier.

Given some fixed partition hierarchy P\, . . . ,PT, there are an infinite number of
ultrametric matrices that induce it, but all can be generated by (restricted) monotonic func-
tions of what might be called the basic ultrametric matrix U° defined earlier. Explicitly,
any ultrametric in the equivalence class whose members induce the same fixed hierarchy,
Pi , . . . , PT, can be obtained by a strictly increasing monotonic function of the entries in U°,
where the function maps zero to zero. Moreover, because «?. for / / j can be only one of
the integer values from 1 to T — 1 , each ultrametric in the equivalence class that generates
the fixed hierarchy may be defined by one of T — 1 distinct values. When these T — 1
values are ordered from the smallest to the largest, the (k — l)st smallest value corresponds
to the partition Pk in the partition hierarchy P\ , . . . , PT and implicitly to all object pairs
that appear together for the first time within a subset in Pk.

5.1. Fitting a Given Ultrametric in the /.2-Norm 69

To provide an alternative interpretation, the basic ultrametric matrix can also be char-
acterized as defining a collection of linear equality and inequality constraints that any ultra-
metric in a specific equivalence class must satisfy. Specifically, for each object triple there
is (a) a specification of which ultrametric values among the three must be equal plus two
additional inequality constraints so that the third is not greater; (b) an inequality or equality
constraint for every pair of ultrametric values based on their order relationship in the basic
ultrametric matrix; and (c) an equality constraint of zero for the main diagonal entries in U.
In any case, given these fixed equality and inequality constraints, standard Lp regression
methods (such as those given in Spath, 1991) could be adapted to generate a best-fitting
ultrametric, say U* = {«*,}, to the given proximity matrix P = {/?,;}. Concretely, we might
find U* by minimizing

(As a convenience here and later, it is assumed that ptj > 0 for all i ^ j, to avoid the
technicality of possibly locating best-fitting "ultrametrics" that could violate the condition
that Ufj — 0 if and only if / = j.)

5.1 Fitting a Given Ultrametric in the /.2-Norm
The function ultraf it .m with usage

[f i t ,vaf] = ultrafit(prox,targ)

generates (using iterative projection based on the linear (in)equality constraints obtained
from the fixed ultrametric—see Section 1.4) the best-fitting ultrametric in the L2-norm
(FIT) within the same equivalence class as that of a given ultrametric matrix TARG. The
matrix PROX contains the symmetric input proximities and VAF is the variance-accounted-
for (defined, as usual, by normalizing the obtained L2-norm loss value):

where p is the mean off-diagonal proximity in P, and U* = {u*j } is the best-fitting ultra-
metric.

In the example below, the target matrix is numcltarg obtained from the complete-
link hierarchical clustering of number; the VAF generated by these ultrametric constraints
is .4781. Comparing the target matrix numcltarg and fit, the particular monotonic
function, say /(•), of the entries in the basic ultrametric matrix that generates the fitted
matrix are /(I) = .0590, /(2) = .2630, /(3) = .2980, /(4) = .3065, /(5) = .4000,
/(6) = .4210, /(7) = .4808, /(8) = .5535, /(9) = .6761.

load number.dat
load numcltarg.dat
[fit,vaf] = ultrafit(number,numcltarg)

fit =

70 Chapter 5. Ultrametrics for Symmetric Proximity Data

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4210
.6761
.6761
.6761
.6761
.6761
.6761
.6761
.6761

0

0
0
0
0
0
0
0
0

.4210
0

.6761

.6761

.6761

.6761

.6761

.6761

.6761

.6761

0
0

0
0
0
0
0
0
0

.6761

.6761
0

.5535

.0590

.5535

.5535

.5535

.3065

.5535

0,
0,
0.

0
0.
0
0,
0,
0,

.6761

.6761

.5535
0

.5535

.4808

.2980

.4808

.5535

.2630

0,
0,
0.
0.

0,
0,
0,
0,
0,

.6761

.6761

.0590

.5535
0

.5535

.5535

.5535

.3065

.5535

0
0
0
0
0

0
0
0
0

.6761

.6761

.5535

.4808

.5535
0

.4808

.4000

.5535

.4808

0
0
0
0
0
0

0
0
0

.6761

.6761

.5535

.2980

.5535

.4808
0

.4808

.5535

.2980

0
0
0
0
0
0
0

0
0

.6761

.6761

.5535

.4808

.5535

.4000

.4808
0

.5535

.4808

0
0
0
0
0
0
0
0

0

.6761

.6761

.3065

.5535

.3065

.5535

.5535

.5535
0

.5535

0
0
0
0
0
0
0
0
0

.6761

.6761

.5535

.2630

.5535

.4808

.2980

.4808

.5535
0

vaf =

0.4781

5.2 Finding an Ultrametric in the I2-Norm

The M-file ultrafnd .m implements a heuristic search strategy using iterative projection
to locate a best-fitting ultrametric in the L2-norm. The method used is from Hubert and
Arabie (1995b), which should be consulted for the explicit algorithmic details implemented
in ultrafnd.m (as well as for many of the other M-files to be presented). The M-file
usage has the form

[find,vaf] = ultrafnd(prox,inperm)

where FIND is the ultrametric identified having variance-accounted-for VAF. The matrix
PROX contains the symmetric input proximities; INPERM is a permutation that defines
an order in which the constraints are considered over all object triples. In the example
below, for instance, INPERM is simply set as the MATLAB built-in random permutation

Columns 7 through 10

5.2. Finding an Ultrametric in the /.2-Norm 71

function randperm (n) (using the size n — 10 explicitly for the number illustration).
Thus, the search can be rerun with the same specification but now using many different
random starting sequences. Two such searches are shown below leading to VAFs of .4941
and .4781 (the latter is the same as obtained from fitting the best ultrametric in Section 5.1
using numcltarg for a fixed set of constraints; the former provides a slightly different
and better-fitting ultrametric).

[find,vaf] = ultrafnd(number,randperm(10))

find =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.7300
.7300
.7300
.7300
.7300
.7300
.7300
.7300
.7300

Columns 7

vaf

0
0
0
0
0
0

0
0
0

=

0

[find

find

.7300

.5835

.5535

.2980

.5535

.4808
0

.4808

.5535

.2980

.4941

,vaf]

_

0

0
0
0
0
0
0
0
0

.7300
0

.5835

.5835

.5835

.5835

.5835

.5835

.5835

.5835

0
0

0
0
0
0
0
0
0

.7300

.5835
0

.5535

.0590

.5535

.5535

.5535

.3065

.5535

0
0
0

0
0
0
0
0
0

.7300

.5835

.5535
0

.5535

.4808

.2980

.4808

.5535

.2630

through 10

0
0
0
0
0
0
0

0
0

.7300

.5835

.5535

.4808

.5535

.4000

.4808
0

.5535

.4808

= ultrafnd

0
0
0
0
0
0
0
0

0

.7300

.5835

.3065

.5535

.3065

.5535

.5535

.5535
0

.5535

0
0
0
0
0
0
0
0
0

.7300

.5835

.5535

.2630

.5535

.4808

.2980

.4808

.5535
0

(number, randperm(10))

0.7300
0.5835
0.0590
0.5535

0
0.5535
0.5535
0.5535
0.3065
0.5535

0.7300
0.5835
0.5535
0.4808
0.5535

0
0.4808
0.4000
0.5535
0.4808

72 Chapter 5. Ultrametrics for Symmetric Proximity Data

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4210
.6761
.6761
.6761
.6761
.6761
.6761
.6761
.6761

0

0
0
0
0
0
0
0
0

.4210
0

.6761

.6761

.6761

.6761

.6761

.6761

.6761

.6761

0
0

0
0
0
0
0
0
0

.6761

.6761
0

.5535

.0590

.5535

.5535

.5535

.3065

.5535

0
0
0

0
0
0
0
0
0

.6761

.6761

.5535
0

.5535

.4808

.2980

.4808

.5535

.2630

0,
0,
0,
0,

0,
0,
0,
0,
0,

.6761

.6761

.0590

.5535
0

.5535

.5535

.5535

.3065

.5535

0
0
0
0
0

0
0
0
0

.6761

.6761

.5535

.4808

.5535
0

.4808

.4000

.5535

.4808

Columns 7 through 10

0
0
0
0
0
0

0
0
0

.6761

.6761

.5535

.2980

.5535

.4808
0

.4808

.5535

.2980

0
0
0
0
0
0
0

0
0

.6761

.6761

.5535

.4808

.5535

.4000

.4808
0

.5535

.4808

0
0
0
0
0
0
0
0

0

.6761

.6761

.3065

.5535

.3065

.5535

.5535

.5535
0

.5535

0
0
0
0
0
0
0
0
0

.6761

.6761

.5535

.2630

.5535

.4808

.2980

.4808

.5535
0

vaf =

0.4781

5.3 Graphically Representing an Ultrametric

Once an ultrametric matrix has been identified, there are two common ways in which the
information within the matrix might be displayed. The first is to perform a simple reordering
of the rows and columns of the given matrix to make apparent the sequence of partitions
being induced by the ultrametric. The form desired is typically called anti-Robinson (see, for
example, Hubert and Arabic, 1994 (or Part III of this text), for a very complete discussion of
using and fitting such matrix orderings). When a matrix is in anti-Robinson form, the entries
within each row (and column) are nondecreasing moving away from the main diagonal in
either direction. As the example given below will show, any ultrametric matrix can be
put into such a form easily (but nonuniquely). The second strategy for representing an
ultrametric relies on the graphical form of an inverted tree (or as it is typically called in the
classification literature, a dendrogram), where one can read the values of the ultrametric
directly from the displayed structure. We give an example of such a tree below (and provide

5.3. Graphically Representing an Ultrametric 73

at the end of this Chapter the KTr-X code (within the picture environment) to generate
this particular graphical structure).

To give the illustration of reordering an ultrametric matrix to display its anti-Robinson
form, the example found in Section 5.2 with a VAF of .4941 will be used, along with a short
M-file, ul traorder. m. This function implements a simple mechanism of first generating
a unidimensional equally spaced target matrix from the utility M-file targl in. m and then
reorders heuristically the given ultrametric matrix against this given target with the quadratic
assignment functions pairwiseqa.m and insertqa.m (the latter uses the maximum
block size of n — 1 for kblock). The explicit usage is

[orderprox,orderperm] = ultraorder(prox)

where PROX is assumed to be an ultrametric matrix; ORDERPERM is a permutation used to
display the anti-Robinson form in ORDERPROX, where

orderprox = prox(orderperm,orderperm).

load number.dat
[find,vaf] = ultrafnd(number,randperm(10));

[orderprox,orderperm] = ultraorder(find)

orderprox =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.7300
.7300
.7300
.7300
.7300
.7300
.7300
.7300
.7300

0

0
0
0
0
0
0
0
0

.7300
0

.3065

.3065

.5535

.5535

.5535

.5535

.5535

.5835

0
0

0
0
0
0
0
0
0

.7300

.3065
0

.0590

.5535

.5535

.5535

.5535

.5535

.5835

0
0
0

0
0
0
0
0
0

.7300

.3065

.0590
0

.5535

.5535

.5535

.5535

.5535

.5835

0
0
0
0

0
0
0
0
0

.7300

.5535

.5535

.5535
0

.2630

.2980

.4808

.4808

.5835

0
0
0
0
0

0
0
0
0

.7300

.5535

.5535

.5535

.2630
0

.2980

.4808

.4808

.5835

Columns 7 through 10

0
0
0
0
0
0

0

.7300

.5535

.5535

.5535

.2980

.2980
0

.4808

0
0
0
0
0
0
0

.7300

.5535

.5535

.5535

.4808

.4808

.4808
0

0
0
0
0
0
0
0
0

.7300

.5535

.5535

.5535

.4808

.4808

.4808

.4000

0
0
0
0
0
0
0
0

.7300

.5835

.5835

.5835

.5835

.5835

.5835

.5835

74 Chapter 5. Ultrametrics for Symmetric Proximity Data

0.4808
0.5835

0 .4000
0.5835

0
0.5835

0.5835
0

orderperm =

The reordered matrix using the row and column order of O x 8 x 2 x 4 x 9 x 3 x 6 x
7 x 5 x 1 is given below; here the blocks of equal-valued entries are highlighted, indicating
the partition hierarchy (also given below) induced by the ultrametric.

0 8 3 7 1
0
8
2
4
9
3
6
7
5
1

x
.73
.73
.73
.73
.73
.73
.73
.73
.73

.73
x

.31

.31

.55

.55

.55

.55

.55

.58

73
.31
x

.06

.55

.55

.55

.55

.55

.58

73
.31
.06
x

.55

.55

.55

.55

.55

.58

73
.55
.55
.55
x

.26

.30

.48

.48

.58

73
.55
.55
.55
.26
x

.30

.48

.48

.58

73
.55
.55
.55
.30
.30
x

.48

.48

.58

.73

.55

.55

.55

.48

.48

.48
x

.40

.58

.73

.55

.55

.55

.48

.48

.48

.40
x

.58

.73

.58

.58

.58

.58

.58

.58

.58

.58
x

Partition

{{0,8,2,4,9,3,6,7,5,1}}
{{0},{ 8,2,4,9,3,6,7,5,1}}

{{0},{8,2,4,9,3,6,7,5},{!}}
{{0},{8,2,4},{9,3,6,7,5},{1}}

{{0},{8,2,4},{9,3,6},{7,5},{1}}
{{0},{8,2,4},{9,3,6},{7},{5},{1}}

{{0},{8},{2,4},{9,3,6},{7},{5},{1}}
{{0},{8},{2,4},{9,3},{6},{7},{5},{1}}

{{0},{8},{2,4},{9},{3},{6},{7},{5},{1}}
{{0},{8},{2},{4},{9},{3},{6},{7},{5},{1}}

Level Formed

.73

.58

.55

.48

.40

.31

.30

.26

.06

For the partition hierarchy just given, the alternative structure of a dendrogram (or
tree) for its representation is given in Figure 5.1. The terminal "nodes" of this structure,
indicated by open circles, correspond to the ten digits; the filled circles are internal "nodes"
reflecting the level at which certain new classes in a partition hierarchy are constructed.
For instance, using the calibration given on the long vertical line at the left, a new class
consisting of the digits {9,3,6,7,5} is formed at level .48 by uniting the two classes {9,3,6}
and {7,5}. Thus, in the ultrametric matrix given earlier, the values between the entries in
these two classes are all a constant .48.

1 9 3 5 10 4 7 8 6 2

2 4 9 6 5

5.3. Graphically Representing an Ultrametric 75

Figure 5.1. /4 dendrogram (tree) representation for the ultrametric described in
the text having VAF 0/.4941.

76 Chapter 5. Ultrametrics for Symmetric Proximity Data

The dendrogram just given can be modified (at least in how it should be interpreted)
to motivate the representational form of an additive tree to be introduced in Chapter 6: (a)
the values in the calibration along the long vertical axis need to be halved; (b) all horizontal
lines are now to be understood as having no interpretable length and are present only for
graphical convenience; (c) a spot on the dendrogram is indicated (here by a large open
circle), called the "root." A crucial characterization feature of an ultrametric is that the root
is equidistant from all terminal nodes. Given these interpretive changes, the ultrametric
values for each object pair can now be reconstructed by the length of the path in the tree
connecting the two relevant objects. Thus, an ultrametric is reconstructed from the lengths
of paths between objects in a tree; the special form of a tree for an ultrametric is one in
which there exists a root that is equidistant from all terminal nodes. In the generalization
to an additive tree of Chapter 6, the condition of requiring the existence of an equidistant
root is removed, thus allowing the branches attached to the terminal nodes to be stretched
or shrunk at will.

5.3.1 I5T (̂ Code for the Dendrogram of Figure 5.1

\begin{figure}

\caption{A dendrogram (tree) representation for the
ultrametric described in the text having VAF of .4941}

\setlength{\unitlength}{.5pt}

\begin{picture}(500,1000)

\put(50,0){\makebox(0,0){0}}
\put(100,0){\makebox(0,0){&}}
\put(150,0){\makebox(0,0){2}}
\put(200,0){\makebox(0,0){4}}
\put(250,0){\makebox(0,0){9}}
\put(300,0){\makebox(0,0)J3J}
\put(350,0){\makebox(0,0)J6}}
\put(400,0){\makebox(0,0){7}}
\put(450,0){\makebox(0,0){5}}
\put(500,0){\makebox(0,0){l}}

\put(50,50){\circle{20}}
\put(100,50){\circle{20}}
\put(150,50){\circle{20}}
\put(200,50){\circle{20}}
\put(250,50){\circle{20}}
\put(300,50){\circle{20}}
\put(350,50){\circle{20}}

5.3. Graphically Representing an Ultrametric 77

\put(400,50){\circle{20}}
\put(450,50){\circle{20}}
\put(500,50){\circleJ20}}

\put(175,110){\circle*{20}}
\put(275,310){\circle*{20}}
\put(312.5,350){\circle*{20}}
\put(137.5,360){\circle*{20}}
\put(425,450){\circle*{20}}
\put(368.75,530){\circle*{20}}
\put(253.125,600){\circle*{20}}
\put(376.5625,630){\circle*{20}}
\put(213.28125,780){\circle{30}}

\put(0,50){\line(0,1){800}}
\put(50,60){\line(0,l){720}}
\put (100,60) {Mine (0,1) {300}}
\put(150, 60) {Mine (0,1) J50}}
\put(200,60){Mine(0,1)J50}}
\put(250,60){\line(0,1)J250}}
\put(300,60){\line(0,1){250}}
\put (350,60) {Mine (0,1) {290}}
\put(400,60){Mine (0,1){390}}
\put(450,60){\line(0,1){390}}
\put(500,60){\line(0,1){570}}
\put(175,110){\line(0,1){250}}
\put (275,310) {Mine (0,1) {40}}
\put(312.5,350){\line(0,1){180}}
\put(425,450){\line(0,1) {80}}
\put(368.75,530){\line(0,1){70}}
\put(137.5,360){\line(0,1){240}}
\put (253 .125, 600) {Mine (0,1) {30}}
\put(376.5625,630){\line(0,1){150}}

\put(150,110){\line(1,0) {50}}
\put(250,310){\line(1,0){50}}
\put(275,350){\line(1,0){75}}
\put(100,360){\line(1,0){75}}
\put(400,450){\line(1,0)J50}}
\put(312.5,530){\line(1,0){112.5}}
\put(137.5,600){\line(1,0){231.25}}
\put(253.125,630){\line(1,0){246.875}}
\put (50,780) {Mine (1,0) {326.5625}}

\put(-50,110){\vector(1,0){50}}
\put(-50,115){\makebox(0,0)[b]{.06}}

78 Chapter 5. Ultrametrics for Symmetric Proximity Data

\put
\put
\put
\put
\put
\put
\put
\put
\put
\put
\put
\put
\put
\put
\put
\put
\put
\put

(-50,
(-50,
(-50,
(-70,

(-50,

(-70,

(-50,

(-50,

(-50,

(-50,

(-50,

(-50,

(-50,

(-50,

(-50,

(-50,

(-50,

(-50,

310)
315)

350)

345)

360)

365)

450)

455)

530)

535)

600)

605)

630)

635)

780)

785)

110)

115)

{\vector (1,
{ \makebox (0
{\vector (1,
{ \makebox (0
{\vector (1,
{ \makebox (0
{\vector (1,
{ \makebox (0
{\vector (1,
{ \makebox (0
{\vector (1,
{\makebox (0
{\vector (1,
{\makebox (0
(\vector (1,
{\makebox (0
{\vector (1,
{ \makebox (0

0){50}}
,0) [b] {

0){50}}
,0) [b] {

0){50}}
,0) [b] {

0){50}}
,0) [b] {

0){50}}
,0) [b] {
0){50}}
,0) [b] {
0){50}}
,0) [b] {

0){50}}
,0) [b]{

0){50}}
,0) [b]{

.26}}

.30}}

.31}}

.40}}

.48}}

.55}}

.58}}

.73}}

.06}}

\end{picture}
\end{figure}

5.3.2 Plotting the Dendrogram with ultraplot.m

TheM-file ultraplot .m uses two of the routines (dendrogram. m and linkage, m)
from the Statistics Toolbox for MATLAB to plot the dendrogram associated with an ultra-
metric matrix. Because the input matrix is assumed perfectly ultrametric in form, without
loss of generality, linkage .mis invoked within ultraplot. m with the complete(-link)
option; the resulting output matrix is then used immediately to obtain the final plot by a call
to dendrogram. m.

So, if the user has the Statistics Toolbox available, a graphical representation of the
ultrametric can be generated directly with the syntax

ultraplot(ultra)

where ULTRA is the ultrametric matrix. A figure window opens in MATLAB displaying the
appropriate tree, which can then be saved in one of the common graphics file formats and
included in a printed document (we have typically used the encapsulated postscript form
(*.eps)). Figure 5.2 shows the tree obtained from number. dat and ultrafnd .m.

load number.dat
[f ind,vaf] = ultrafnd(number,randperm(10));

vaf =

5.3. Graphically Representing an Ultrametric 79

Figure 5.2. Dendrogram plot for the number data obtained using ultraplot.m.

0 .4941

ultraplot(find)

additive_constant =

0

If there are any negative values in the input matrix ultra (as obtained, for example, when
fitting multiple ultrametrics to a single proximity matrix), an additive constant equal to the
negative of the minimum value in ultra is added to the off-diagonal entries in ultra
before the plot is carried out.

This page intentionally left blank

Chapter 6

Additive Trees for
Symmetric Proximity Data

A currently popular alternative to the use of a simple ultrametric in classification, and one
which might be considered a natural extension of the notion of an ultrametric, is that of
an additive tree; comprehensive discussions can be found in Mirkin (1996, Chapter 7) or
throughout Barthelemy and Guenoche (1991). Generalizing the earlier characterization of
an ultrametric, an n x n matrix A = {a,7} can be called an additive tree (metric or matrix) if
the three-object (or three-point) ultrametric condition is replaced by a four-object (or four-
point) condition: a\j +a/t/ < max{a(fc-(-fl;;, an +«;*} for 1 < i, j, k,l <n; equivalently, for
any object quadruple O,-, Oj, Ok, and #/, the largest two values among the sums a,; + a*/,
oik + Oji, and an + ajt must be equal.

Any additive tree matrix A can be represented (in many ways) as a sum of two matrices,
say U = {utj} and C = {c,7}, where U is an ultrametric matrix, and c(y — g, + gj for
1 < i'• ^ J; < n and cu = 0 for 1 < i < «, based on some set of values g\,..., gn (Carroll,
Clark, and DeSarbo, 1984, pp. 71-72). The multiplicity of such possible decompositions
results from the choice of where essentially to place the root in the type of graphical tree
representation we will use. Generally, for us, the root will be placed halfway along the
longest path in the tree, generating a decomposition of the matrix A using a procedure from
Barthelemy and Guenoche (1991, Section 3.3.3):

(a) Given A, let 0/#, Oj* e S denote the two objects between which the longest path
is defined in the tree; i.e., the pair of objects #/* and 0,* is associated with the largest entry
in A, say tf/*y*.

(b) Define U by letting

u-ij - dij - (gi + gj), where g, = max{a//*, a//*} - M,

with M chosen so that w iy > 0 for i ^ j. The matrix C = {ctj} is then constructed by
letting CH = 0 for 1 < i < n, and c,7 = g, + gj for 1 < i ^ j < n. (If M is set equal
to the largest entry a/*;*, the values in U would have to be positive, and two values among
g i , . . . , gn would be zero with the remainder less than or equal to zero. Thus, a value for
M less than a,*;* is usually found by trial and error that will give positive entries within U
and as many positive values as possible for g\,..., gn.)

81

82 Chapter 6. Additive Trees for Symmetric Proximity Data

To construct the type of graphical additive tree representation we will give below, the
process followed is first to graph the dendrogram induced by U, where (as for any ultrametric)
the chosen root is equidistant from all terminal nodes. The branches connecting the terminal
nodes are then lengthened or shortened depending on the signs and absolute magnitudes of
g\,..., gn. If one were willing to consider the (arbitrary) inclusion of a sufficiently large
additive constant to the entries of A, the values of g\,..., gn could be assumed nonnegative.
In this case, the matrix C would represent what is now commonly called a centroid metric
(see, for example, the usage in Barthelemy and Guenoche, 1991, Chapter 3); although
having some advantages (particularly for some of the graphical representations we give in
avoiding the issue of presenting negative branch lengths), such a restriction is not absolutely
necessary for what we do in the remaining sections and chapters of Part II. In fact, even
though some of the entries among gi, ..., gn may be negative, for convenience we will still
routinely refer to a centroid metric (component) even though some of the defined "distances"
may actually be negative.

6.1 Fitting a Given Additive Tree in the /.2-Norm
The function at reef it. m with usage

[f i t ,vaf] = atreefit(prox,targ)

parallels that of ultraf it. mof Section 5.1 and generates (again using iterative projection
based on the linear (in)equality constraints obtained from a fixed additive tree—see Section
1.4) the best-fitting additive tree in the L2-norm (FIT) within the same equivalence class as
that of a given additive tree matrix TARG. Thus, both FIT and TARG satisfy the exact same
set of four-point conditions. The matrix PROX contains the symmetric input proximities
and VAF is the variance-accounted-for.

In the example below, the target matrix is again numcltarg obtained from the
complete-link hierarchical clustering of number. dat; the VAF generated by these (now
considered as additive tree) constraints is .6249 (and, as to be expected, is a value larger
than for the corresponding best-fitting ultrametric value of .4781).

[f i t ,vaf] = atreefit(number,numcltarg)

fit =

Columns 1 through 6

0
0
0
0
0
0
0

0
.4210
.7185
.7371
.7092
.8188
.7116
.8670

0

0.
0,
0,
0
0
0,

.4210
0

.5334

.5520

.5241

.6337

.5265

.6818

0
0

0
0
0
0
0

.7185

.5334
0

.4882

.0590

.5700

.4627

.6181

0
0
0

0
0
0
0

.7371

.5520

.4882
0

.4790

.4337

.2506

.4818

0
0
0
0

0
0
0

.7092

.5241

.0590

.4790
0

.5607

.4535

.6089

0
0
0
0
0

0
0

.8188

.6337

.5700

.4337

.5607
0

.4082

.4000

6.2. Finding an Additive Tree in the /.2-Norm 83

0.7549
0.8318

0.5698
0.6467

0.3111
0.5830

0.5247
0.2630

0.3019
0.5737

0.6064
0.5284

Columns 7 through 10

0
0
0
0
0
0

0
0
0

.7116

.5265

.4627

.2506

.4535

.4082
0

.4563

.4992

.3454

0
0
0
0
0
0
0

0
0

.8670

.6818

.6181

.4818

.6089

.4000

.4563
0

.6546

.5766

0
0
0
0
0
0
0
0

0

.7549

.5698

.3111

.5247

.3019

.6064

.4992

.6546
0

.6194

0
0
0
0
0
0
0
0
0

.8318

.6467

.5830

.2630

.5737

.5284

.3454

.5766

.6194
0

vaf =

0.6249

6.2 Finding an Additive Tree in the /.2-Norm
Analogous to the M-file ultrafnd.m from Section 5.2 for identifying best-fitting ul-
trametrics, atreefnd .m implements the heuristic search strategy of Hubert and Arabic
(1995b) using iterative projection but now for constructing the best-fitting additive trees in
the L2-norm. The usage has the form

[find,vaf] = atreefnd(prox,inperm)

where FIND is the identified additive tree having variance-accounted-for, VAF. Again, the
matrix PROX contains the symmetric input proximities, and INPERM is a permutation that
defines an order in which the constraints are considered over all object quadruples. In the
example below, two such searches are shown starting with random permutations (through
the use of randperm (10)) that give VAFs of .6359 and .6249.

[find,vaf] = atreefnd(number,randperm(10))

find =

Columns 1 through 6

0
0.4210
0.6467
0.6448
0.6374

0.4210
0

0.4616
0.4596
0 .4523

0.6467
0.4616

0
0.3634
0.0590

0.6448
0.4596
0.3634

0
0.3542

0.6374
0.4523
0.0590
0.3542

0

0.8049
0.6198
0.5235
0.4385
0.5143

84 Chapter 6. Additive Trees for Symmetric Proximity Data

0
0
0
0
0

.8049

.7523

.9263

.8634

.8733

Columns 7

0
0
0
0
0
0

0
0
0

.7523

.5671

.4709

.3858

.4617

.4132
0

.3930

.3301

.3400

0
0
0
0
0

.6198

.5671

.7412

.6783

.6881

0
0
0
0
0

.5235

.4709

.6449

.5820

.5919

0
0
0
0
0

.4385

.3858

.5599

.4970

.5068

0.5143 0
0.4617 0.4132
0.6357 0.5872
0.5728 0.5244
0.5827 0.5342

through 10

0
0
0
0
0
0
0

0
0

.9263

.7412

.6449

.5599

.6357

.5872

.3930
0

.4000

.4569

0
0
0
0
0
0
0
0

0

.8634

.6783

.5820

.4970

.5728

.5244

.3301

.4000
0

.3941

0
0
0
0
0
0
0
0
0

.8733

.6881

.5919

.5068

.5827

.5342

.3400

.4569

.3941
0

vaf =

0.6359

[find,vaf] = atreefnd(number,randperm(10))

find =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4210
.7185
.7371
.7092
.8188
.7116
.8670
.7549
.8318

Columns 7

0
0
0
0

.7116

.5265

.4627

.2506

0

0
0
0
0
0
0
0
0

.4210
0

.5334

.5520

.5241

.6337

.5265

.6818

.5698

.6467

0
0

0
0
0
0
0
0
0

.7185

.5334
0

.4882

.0590

.5700

.4627

.6181

.3111

.5830

0
0
0

0
0
0
0
0
0

.7371

.5520

.4882
0

.4790

.4337

.2506

.4818

.5247

.2630

0
0
0
0

0
0
0
0
0

.7092

.5241

.0590

.4790
0

.5607

.4535

.6089

.3019

.5737

0
0
0
0
0

0
0
0
0

.8188

.6337

.5700

.4337

.5607
0

.4082

.4000

.6064

.5284

through 10

0
0
0
0

.8670

.6818

.6181

.4818

0
0
0
0

.7549

.5698

.3111

.5247

0
0
0
0

.8318

.6467

.5830

.2630

6.3. Decomposing an Additive Tree 85

0
0

0
0
0

.4535

.4082
0

.4563

.4992

.3454

0
0
0

0
0

.6089

.4000

.4563
0

.6546

.5766

0.
0.
0.
0,

0,

.3019

.6064

.4992

.6546
0

.6194

0
0
0
0
0

.5737

.5284

.3454

.5766

.6194
0

vaf =

0 .6249

6.3 Decomposing an Additive Tree
The M-file atreedec . m decomposes a given additive tree matrix into an ultrametric and
a centroid metric matrix (where the root is halfway along the longest path). The form of the
usage is

[ulmetric,ctmetric] = atreedec(prox,constant)

where PROX is the input (additive tree) proximity matrix (with a zero main diagonal and
a dissimilarity interpretation); CONSTANT is a nonnegative number (less than or equal to
the maximum proximity value) that controls the positivity of the constructed ultrametric
values; ULMETRIC is the ultrametric component of the decomposition; CTMETRIC is the
centroid metric component (given by values g\,..., gn assigned to each of the objects,
some of which may actually be negative depending on the input proximity matrix used).
In the example below, the additive tree matrix identified earlier with a VAF of .6359 is
decomposed using a value of .70 for the constant to control the positivity of the ultrametric
values.

[find,vaf] = atreefnd(number,randperm(10));
[ulmetric,ctmetric] = atreedec(find,.70);
ulmetric

ulmetric =

Columns 1

0
0
0
0
0
0
0

0
.1536
.4737
.4737
.4737
.4737
.4737
.4737

through 6

0

0
0
0
0
0
0

.1536
0

.4737

.4737

.4737

.4737

.4737

.4737

0.4737
0.4737

0
0.4720
0.1749
0.4720
0.4720
0.4720

0.4737
0.4737
0.4720

0
0.4720
0.3888
0.3888
0.3888

0.4737
0.4737
0.1749
0.4720

0
0.4720
0.4720
0.4720

0.4737
0.4737
0:4720
0.3888
0.4720

0
0.2560
0.2560

86 Chapter 6. Additive Trees for Symmetric Proximity Data

0
0
.4737
.4737

Columns 7

0
0
0
0
0
0

0
0
0

.4737

.4737

.4720

.3888

.4720

.2560
0

.1144

.1144

.1144

0
0
.4737
.4737

0
0
.4720
.4720

0
0
.3888
.3888

0.4720 0.2560
0.4720 0.2560

through 10

0
0
0
0
0
0
0

0
0

.4737

.4737

.4720

.3888

.4720

.2560

.1144
0

.0103

.0574

0
0
0
0
0
0
0
0

0

.4737

.4737

.4720

.3888

.4720

.2560

.1144

.0103
0

.0574

0
0
0
0
0
0
0
0
0

.4737

.4737

.4720

.3888

.4720

.2560

.1144

.0574

.0574
0

ctmetric'

ans =

Columns 1 through 6

0.2263 0.0412 -0.0533 -0.0552 -0.0626

Columns 7 through 10

0.0523 0.2263 0.1634 0.1733

[orderprox,orderperm] = ultraorder(ulmetric)

orderprox =

Columns 1 through 6

0.1049

0
0
0
0
0
0
0
0
0

0
.1536
.4737
.4737
.4737
.4737
.4737
.4737
.4737
.4737

0

0
0
0
0
0
0
0
0

.1536
0

.4737

.4737

.4737

.4737

.4737

.4737

.4737

.4737

0
0

0
0
0
0
0
0
0

.4737

.4737
0

.1749

.4720

.4720

.4720

.4720

.4720

.4720

0
0
0

0
0
0
0
0
0

.4737

.4737

.1749
0

.4720

.4720

.4720

.4720

.4720

.4720

0.
0,
0,
0,

0,
0.
0,
0
0,

.4737

.4737

.4720

.4720
0

.2560

.2560

.2560

.2560

.3888

0
0
0
0
0

0
0
0
0

.4737

.4737

.4720

.4720

.2560
0

.1144

.1144

.1144

.3888

6.4. Graphically Representing an Additive Tree 87

Columns 7 through 10

0
0
0
0
0
0

0
0
0

.4737

.4737

.4720

.4720

.2560

.1144
0

.0574

.0574

.3888

0
0
0
0
0
0
0

0
0

.4737

.4737

.4720

.4720

.2560

.1144

.0574
0

.0103

.3888

0
0
0
0
0
0
0
0

0

.4737

.4737

.4720

.4720

.2560

.1144

.0574

.0103
0

.3888

0
0
0
0
0
0
0
0
0

.4737

.4737

.4720

.4720

.3888

.3888

.3888

.3888

.3888
0

6.4 Graphically Representing an Additive Tree
The information present in an additive tree can be provided in several ways. First, given
the decomposition into an ultrametric and a centroid metric, the partition hierarchy induced
by the ultrametric could be given explicitly, along with the levels at which the various new
subsets in the partitions are formed. The fitted additive tree values could then be identified
as a sum of (a) the level at which an object pair, say 0, and 0y, first appear together
within a common subset of the hierarchy and (b) the sum of gt and gj for the pair from the
centroid metric component. As an illustration using the example just given in Section 6.3,
the partition hierarchy has the following form:

Partition

{{1,0,2,4,5,6,9,8,7,3}}
{{1,0},{2,4},{5,6,9,8,7,3}}

{{1,0},{2,4},{5,6,9,8,7},{3}}

{{1,0},{2,4},{5},{6,9,8,7},{3}}

{{1,0},{2},{4},{5},{6,9,8,7},{3}}

{{1},{0},{2},{4},{5},{6,9,8,7},{3}}

{{1},{0},{2},{4},{5},{6},{9,8,7},{3}}

{{1},{0},{2},{4},{5},{6},{9},{8,7},{3}}

{{1},{0},{2},{4},{5},{6},{9},{8},{7},{3}}

Level Formed

.47

.39

.26

.17

.15

.11

.06

.01

.00

orderperm

2 1 3 5 6 7 10 9 8 4

88 Chapter 6. Additive Trees for Symmetric Proximity Data

with centroid metric values of

digit gi

0
1
2
3
4
5
6
7
8
9

.23

.04
-.05
-.06
-.06

.10

.05

.23

.16

.17

Thus, the additive tree value for the digit pair (3,6) of .39 [.3858] is formed from the level
.39 [.3888] at which 3 and 6 first appear together in the hierarchy plus the sum of the g/'s
for the two digits of —.06 [—.0552] and .05 [.0523]. A dendrogram representation for the
partition hierarchy is given in Figure 6.1.

A graphical representation for the additive tree is given in Figure 6.2, which was ob-
tained from the dendrogram of Figure 6.1 by stretching and shrinking the branches attached
to the terminal nodes by the g, values (and cutting the vertical scale given in the dendrogram
by half). Thus, the length of a path in the tree from one terminal node to another (ignoring
all horizontal lines as having uninterpretable lengths) would generate the values given in
the additive tree matrix.

6.5 An Alternative for Finding an Additive Tree in the
l2-Norm (Based on Combining a Centroid Metric and
an Ultrametric)

If the four-point condition characterizing an additive tree is strengthened so that all the sums
in the defining conditions for all object quadruples are equal (and not only for the largest
two such sums), the additive tree matrix so obtained has entries representable as g/ + gj for
a collection of values g\,..., gn. This specially constrained additive tree is usually referred
to as a centroid metric and, as noted by Carroll and Pruzansky (1980) and De Soete et al.
(1984), can be fitted to a proximity matrix in the L2-norm through closed-form expressions.
Specifically, if P denotes the proximity matrix, then g/ can be given as the ith row sum of
P excluding the diagonal entry, divided by n — 2, minus the total off-diagonal sum divided
by2(n- l)(n-2).

The M-file centf it. m for obtaining the best-fitting centroid metric in the L2-norm,
has usage

[fit ,vaf,lengths] = centfit(prox)

where PROX is the usual input proximity matrix (with a zero main diagonal and a dissim-
ilarity interpretation); the n values that define the approximating sums, g,- 4- gy, present in

6.5. An Alternative for Finding an Additive Tree in the /.2-Norm 89

Figure 6.1. A dendrogram (tree) representation for the ultrametric component of
the additive tree described in the text having VAF of .6359.

the fitted matrix FIT, are given in the vector LENGTHS of size n x 1. The example below
uses cent fit . m with the number. dat data set, leading to an additive tree with VAF o
.3248; this tree could be represented graphically as a "star" tree with one internal node and
spokes having the lengths given in the output vector LENGTHS.

load number.dat
[fit,vaf,lengths]

fit =

= centfit(number)

Columns 1 through 6

0
0.7808
0.6877
0.6709
0.6784

0.7808
0

0.5026
0.4858
0.4933

0.6877
0.5026

0
0.3927
0.4002

0.6709
0.4858
0.3927

0
0.3834

0.6784
0.4933
0.4002
0.3834

0

0.7647
0.5796
0.4864
0.4697
0.4772

90 Chapter 6. Additive Trees for Symmetric Proximity Data

Figure 6.2. A graph-theoretic representation for the additive tree described in the
text having VAF of .6359.

6.5. An Alternative for Finding an Additive Tree in the /.2-Norm 91

0
0
0
0
0

.7647

.6589

.8128

.7499

.7657

0.
0
0
0,
0,

.5796

.4738

.6277

.5648

.5806

0
0
0
0
0

.4864

.3807

.5346

.4717

.4874

0
0
0
0
0

.4697

.3639

.5178

.4549

.4707

0
0
0
0
0

.4772

.3714

.5253

.4624

.4782

0
0
0
0

0
.4577
.6116
.5487
.5644

Columns 7 through 10

0
0
0
0
0
0

0
0
0

.6589

.4738

.3807

.3639

.3714

.4577
0

.5058

.4429

.4587

0
0
0
0
0
0
0

0
0

.8128

.6277

.5346

.5178

.5253

.6116

.5058
0

.5968

.6126

0
0
0
0
0
0
0
0

0

.7499

.5648

.4717

.4549

.4624

.5487

.4429

.5968
0

.5497

0
0
0
0
0
0
0
0
0

.7657

.5806

.4874

.4707

.4782

.5644

.4587

.6126

.5497
0

vaf =

0.3248

lengths =

Columns 1 through 6

0.4830 0.2978 0.2047

Columns 7 through 10

0.1760 0.3298 0.2670

0.1880

0.2827

0.1955 0.2817

An alternative strategy for identifying good-fitting additive trees (and one that will
be used in a slightly different form on two-mode proximity data in Section 8.2) relies on
the possible decomposition of an additive tree into an ultrametric and centroid metric. The
M-file atreectul .m first fits a centroid metric in closed form; an ultrametric is then
identified on the residual matrix. The sum of these two matrices is an additive tree. The
usage would follow that of atreef nd. m:

[find,vaf] = atreectul(prox,inperm)

where FIND is the identified additive tree with variance-accounted-for, VAF. Again, the
matrix PROX contains the symmetric input proximities, and INPERM is a permutation
that defines an order in which the constraints are considered over all object triples in the
identification of the ultrametric component. In the example below, one search is shown

92 Chapter 6. Additive Trees for Symmetric Proximity Data

starting with a random permutation (through the use of randperm (10)) that gives the
same additive tree identified earlier with a VAF of .6249.

[find,vaf] = atreectul(number,randperm(10));
vaf

vaf =

0.6249

Chapter 7

Fitting Multiple Tree
Structures to a Symmetric
Proximity Matrix

The use of multiple structures, whether they be ultrametrics or additive trees, to represent
additively a given proximity matrix proceeds directly through successive residualization and
iteration. We restrict ourselves to the fitting of two such structures, but the same process
would apply for any such number. Initially, a first matrix is fitted to a given proximity
matrix and a first residual matrix obtained; a second structure is then fitted to these first
residuals, producing a second residual matrix. Iterating, the second fitted matrix is now
subtracted from the original proximity matrix and a first (re)fitted matrix obtained; this first
(re)fitted matrix in turn is subtracted from the original proximity matrix and a new second
matrix (re)fitted. This process continues until the VAF by the sum of both fitted matrices
no longer changes by a set amount (the value of 1 .Oe-006 is used in the M-files of the next
two sections).

7.1 Multiple Ultrametrics
The M-file biultraf nd. m fits (additively) two ultrametric matrices in the L2-norm. The
explicit usage is

[find,vaf,targone,targtwo] = biultrafnd(prox,inperm)

where PROX is the given input proximity matrix (with a zero main diagonal and a dis-
similarity interpretation); INPERM is a permutation that determines the order in which the
inequality constraints are considered (and thus can be made random to search for different
locally optimal representations); FIND is the obtained least-squares matrix (with variance-
accounted-for of VAF) to PROX and is the sum of the two ultrametric matrices TARGONE
and TARGTWO.

In the example to follow, a VAF of .8001 was achieved for the two identified ultramet-
rics (and where one needs to add an (arbitrary) constant (e.g., a value of .40 would suffice
in this case, but other examples might require different additive constants) to the entries in
TARGTWO to satisfy the technical requirement here that ultrametric values should be non-
negative). It might be noted substantively that the first ultrametric matrix (in TARGONE)
reflects the structural properties of the digits; the second ultrametric matrix (in TARGTWO) is

93

94 Chapter 7. Fitting Multiple Tree Structures to a Symmetric Proximity Matrix

completely consistent with digit magnitude. This result is a very nice mixture of ultrametric
structures with a convenient substantive interpretation for both components.

[find,vaf,targone,targtwo] = ...
biultrafnd(number,randperm(10));

vaf

vaf =

0.8001

[orderproxone,orderpermone] = ultraorder(targone)

orderproxone =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.7796
.7796
.7796
.7796
.7796
.7796
.7796
.7796
.7796

Columns 7

0
0
0
0
0
0

0
0
0

.7796

.5512

.5512

.5512

.2772

.2772
0

.4622

.4622

.5945

0

0
0
0
0
0
0
0
0

.7796
0

.2168

.2168

.5512

.5512

.5512

.5512

.5512

.5945

0
0

0
0
0
0
0
0
0

.7796

.2168
0

.0701

.5512

.5512

.5512

.5512

.5512

.5945

0
0
0

0
0
0
0
0
0

.7796

.2168

.0701
0

.5512

.5512

.5512

.5512

.5512

.5945

0
0
0
0

0
0
0
0
0

.7796

.5512

.5512

.5512
0

.1733

.2772

.4622

.4622

.5945

0
0
0
0
0

0
0
0
0

.7796

.5512

.5512

.5512

.1733
0

.2772

.4622

.4622

.5945

through 10

0
0
0
0
0
0
0

0
0

.7796

.5512

.5512

.5512

.4622

.4622

.4622
0

.3103

.5945

0
0
0
0
0
0
0
0

0

.7796

.5512

.5512

.5512

.4622

.4622

.4622

.3103
0

.5945

0
0
0
0
0
0
0
0
0

.7796

.5945

.5945

.5945

.5945

.5945

.5945

.5945

.5945
0

orderpermone =

1 9 3 5 10 4 7 8 6 2

7.2. Multiple Additive Trees 95

[orderproxtwo,orderpermtwo] = ultraorder(targtwo)

orderproxtwo =

Columns 1 through 6

-0.
-0.
-0.
-0.
-0.
0.
0.
0.
0.

0
3586
2531
1721
0111
0111
0897
0897
0897
0897

Columns 7

0.
0.
0.
0.
0.
0.

-0.
-0.
-0.

0897
0897
0897
0897
0897
0897

0
0982
0982
0479

-0

-0
-0
-0
-0
0
0
0
0

.3586
0

.2531

.1721

.0111

.0111

.0897

.0897

.0897

.0897

-0
-0

-0
-0
-0
0
0
0
0

.2531

.2531
0

.1721

.0111

.0111

.0897

.0897

.0897

.0897

-0.
-0.
-0.

-0.
-0.
0.
0.
0.
0.

1721
1721
1721

0
0111
0111
0897
0897
0897
0897

-0
-0
-0
-0

-0
0
0
0
0

.0111

.0111

.0111

.0111
0

.1422

.0897

.0897

.0897

.0897

-0
-0
-0
-0
-0

0
0
0
0

.0111

.0111

.0111

.0111

.1422
0

.0897

.0897

.0897

.0897

through 10

0
0
0
0
0
0

-0

-0
-0

.0897

.0897

.0897

.0897

.0897

.0897

.0982
0

.2012

.0479

0
0
0
0
0
0

-0
-0

-0

.0897

.0897

.0897

.0897

.0897

.0897

.0982

.2012
0

.0479

0.
0.
0.
0.
0.
0.

-0.
-0.
-0.

0897
0897
0897
0897
0897
0897
0479
0479
0479

0

orderpermtwo =

1 2 3 4 5 6 8 7 9 1 0

7.2 Multiple Additive Trees

The M-file biatreefnd.m fits (additively) two additive tree matrices in the L2-norm.
The explicit usage is

[find,vaf,targone,targtwo] = biatreefnd(prox,inperm)

where PROX is the given input proximity matrix (with a zero main diagonal and a dis-
similarity interpretation); INPERM is a permutation that determines the order in which the
inequality constraints are considered (and thus can be made random to search for different

96 Chapter 7. Fitting Multiple Tree Structures to a Symmetric Proximity Matrix

locally optimal representations); FIND is the found least-squares matrix (with variance-
accounted-for of VAF) to PROX and is the sum of the two additive tree matrices TARGONE
and TARGTWO.

In the example to follow, a VAF of .9003 was achieved for the two identified additive
trees. Here one needs, as in the multiple ultrametric case, to add an (arbitrary) constant to
the entries in TARGTWO to satisfy the technical requirement here that additive tree values
should be nonnegative; also, sufficiently large additive constants would need to be imposed
on the two ultrametric components to ensure nonnegativity of the resulting values. These
additive constants do not affect the achieved VAF or the resulting representations in any
material way.) Similarly, as in the interpretation of the example in the last section, it
might be noted substantively that the second additive tree matrix (in TARGTWO) reflects the
structural properties of the digits; the first matrix (in TARGONE) is completely consistent
with digit magnitude. Thus, again we have a very nice mixture of structures with convenient
substantive interpretations for both components.

[find,vaf,targone,targtwo] = ...
biatreefnd(number,randperm(10));

vaf

vaf =

0.9003

[ulmetricone,ctmetricone] = atreedec(targone,0.0);
[ulmetrictwo,ctmetrictwo] = atreedec(targtwo,0.0);
ctmetricone'

ans =

Columns 1 through 6

0.9652 0.7801 0.6716 0.6164 0.7114 0.7976

Columns 7 through 10

0.7699 0.9652 0.9023 0.9051

ctmetrictwo'

ans =

Columns 1 through 6

0.0373 0.0994 0.1256 0.1256 0.1256 0.1129

7.2. Multiple Additive Trees 97

Columns 7 through 10

0.0267 0.1129 0.1105 0.1256

[orderproxone,orderpertnone] = ultraorder(ulmetricone)

orderproxone =

Columns 1 through 6

-1
-1
-0
-0
-0
-0
-0
-0
-0

0
.1786
.1786
.9652
.9652
.9652
.9652
.9652
.9652
.9652

Columns 7

-0
-0
-0
-1
-1
-1

-1
-1
-0

.9652

.9652

.9652

.1030

.1030

.4617
0

.5653

.3477

.9850

-1

-1
-0
-0
-0
-0
-0
-0
-0

.1786
0

.3014

.9652

.9652

.9652

.9652

.9652

.9652

.9652

-1
-1

-0
-0
-0
-0
-0
-0
-0

.1786

.3014
0

.9652

.9652

.9652

.9652

.9652

.9652

.9652

-0
-0
-0

-1
-1
-1
-1
-1
-0

.9652

.9652

.9652
0

.2128

.1030

.1030

.1030

.1030

.9850

-0
-0
-0
-1

-1
-1
-1
-1
-0

.9652

.9652

.9652

.2128
0

.1030

.1030

.1030

.1030

.9850

-0
-0
-0
-1
-1

-1
-1
-1
-0

.9652

.9652

.9652

.1030

.1030
0

.4617

.4617

.3477

.9850

through 10

-0
-0
-0
-1
-1
-1
-1

-1
-0

.9652

.9652

.9652

.1030

.1030

.4617

.5653
0

.3477

.9850

-0
-0
-0
-1
-1
-1
-1
-1

-0

.9652

.9652

.9652

.1030

.1030

.3477

.3477

.3477
0

.9850

-0
-0
-0
-0
-0
-0
-0
-0
-0

.9652

.9652

.9652

.9850

.9850

.9850

.9850

.9850

.9850
0

orderpermone =

3 2 1 5 6 1 0 9 8 7 4

[orderproxtwo,orderpermtwo] = ultraorder(ulmetrictwo)

orderproxtwo =

Columns 1 through 6

0 -0.1539 -0.1539 -0.1539 -0.1256 -0.1256

98 Chapter 7. Fitting Multiple Tree Structures to a Symmetric Proximity Matrix

-
-
-
-
-
-
-
-
-

0
0
0
0
0
0
0
0
0

.1539

.1539

.1539

.1256

.1256

.1256

.1256

.1256

.1256

Columns 7

-
-
-
-
-
-

-
-
-

0
0
0
0
0
0

0
0
0

.1256

.1256

.1256

.1256

.2524

.2524
0

.5246

.3151

.1596

-0
-0
-0
-0
-0
-0
-0
-0

0
.4893
.4893
.1256
.1256
.1256
.1256
.1256
.1256

-0

-0
-0
-0
-0
-0
-0
-0

.4893
0

.6099

.1256

.1256

.1256

.1256

.1256

.1256

-0
-0

-0
-0
-0
-0
-0
-0

.4893

.6099
0

.1256

.1256

.1256

.1256

.1256

.1256

-0
-0
-0

-0
-0
-0
-0
-0

.1256

.1256

.1256
0

.4855

.2524

.2524

.2524

.1596

-0.1256
-0.1256
-0.1256
-0.4855

0
-0.2524
-0.2524
-0.2524
-0.1596

through 10

-0
-0
-0
-0
-0
-0
-0

-0
-0

.1256

.1256

.1256

.1256

.2524

.2524

.5246
0

.3151

.1596

-0
-0
-0
-0
-0
-0
-0
-0

-0

.1256

.1256

.1256

.1256

.2524

.2524

.3151

.3151
0

.1596

-0
-0
-0
-0
-0
-0
-0
-0
-0

.1256

.1256

.1256

.1256

.1596

.1596

.1596

.1596

.1596
0

orderpermtwo =

7 9 5 3 8 6 10 4 2 I

Chapter 8

Ultrametrics and Additive
Trees for Two-Mode
(Rectangular) Proximity
Data

Thus far in Part II, the proximity data considered for obtaining some type of structure, such
as an ultrametric or an additive tree, have been assumed to be on one intact set of objects,
S — [Oi,..., On], and complete in the sense that proximity values are present between
all object pairs. Just as linear unidimensional scaling (LUS) was generalized for two-mode
proximity data in Chapter 4, suppose now that the available proximity data are two-mode
and between two distinct object sets, SA = { O] A , • • • , OnaA\ and SB = {O\B,..., OnbB},
containing na and rib objects, respectively, given by an na x n^ proximity matrix Q = {qrs}-
Again, we assume that the entries in Q are keyed as dissimilarities, and a joint structural
representation is desired for the set SA U SB.

Conditions have been proposed in the literature for when the entries in a matrix fitted
to Q characterize an ultrametric or an additive tree representation. In particular, suppose an
na x rib matrix F = {frs} is fitted to Q through least-squares subject to the constraints that
follow:

Ultrametric (Furnas, 1980):

for all distinct object quadruples, OrA, OsA, Or&, OsB, where OrA, OSA € SA and OrB, OSB
€ SB, and considering the entries in F corresponding to the pairs (OrA, OrB), (OrA, OsB),
(OsA OrB), and (OsA, OsB\ say /r/trfl, frASB, fSAra, fSASB, respectively, the largest two must
be equal.

Additive trees (Brassier, 1987):

for all distinct object sextuples, OrA, OsA, OtA, OrB, OsB, OtB, where OrA, OsA, OtA

€ SA and OrB, OsB, OtB € SB, and considering the entries in F corresponding to the pairs
(OrA, OrB), (OrA, OsB), (OrA, OtB), (OsA, OrB\ (OsA, OsB), (OsA, OtB), (OtA, OrB),
(O f A , OsB}, ar)d (OtA, OtB), Say frArB, frAsB> frAtB> fsArn-> fsAsB-> fsAtB-> ftAri>> /^A^fl' /fA^fl'
respectively, the largest two of the following sums must be equal:

99

100 Chapter 8. Ultrametrics and Additive Trees for Two-Mode Data

In both cases of ultrametric and additive trees for two-mode proximity data, the
necessary constraints characterizing a solution are linear and define closed convex sets in
which a solution must lie. Thus, the application of iterative projection as a heuristic search
strategy for the best-fitting solutions is fairly direct, and an example of an ultrametric found
and fitted to a two-mode matrix will be given in Section 8.1. We will not, however, give
a comparable example of fitting the additive tree constraints to such a proximity matrix;
the (scratch) storage requirements necessitated by iterative projection in directly using the
additive tree constraints given above and keeping track of the various augmentations made
can become rather onerous for moderate-sized data matrices in the course of the heuristic
search. For general use, an alternative approach to the fitting of additive trees is preferable,
one that again uses iterative projection but with the ultrametric conditions in conjunction with
a secondary centroid metric; this strategy avoids any major (scratch) storage difficulties and
will be reviewed and illustrated in Section 8.2. We might note that the process of fitting two-
mode proximity data by additive trees or ultrametrics using iterative projection heuristics
may generate a rather large number of distinct locally optimal solutions with differing VAF
values, particularly in contrast to the situation usually observed for symmetric proximity
data. Although this abundance is not inevitably the case and obviously depends on the
particular data set being considered, it is not unusual and should be expected by a user.

8.1 Fitting and Finding Two-Mode Ultrametrics

To illustrate the fitting of a given two-mode ultrametric, a two-mode target is generated by
the upper-right 6 x 4 portion of the 10 x 10 ultrametric target matrix, numcltarg, used
in Section 5.1. This file will be called numcltarg6x4 . dat and has contents as follows:

9 9 9 9
9 9 9 9
8 8 4 8
3 7 8 2
8 8 4 8
7 5 8 7

The six rows correspond to the digits 0, 1,2, 3, 4, and 5; the four columns to 6, 7, 8,
and 9. As the two-mode 6 x 4 proximity matrix, the appropriate upper-right portion of the
number proximity matrix will be used in the fitting process; the corresponding file is called
number6x4 . dat, with the following contents:

.788 .909 .821 .850

.758 .630 .791 .625

.421 .796 .367 .808

.300 .592 .804 .263

.388 .742 .246 .683

.396 .400 .671 .592

8.1. Fitting and Finding Two-Mode Ultrametrics 101

The M-file ultraf it tm. m fits a given ultrametric to a two-mode proximity matrix (using
iterative projection in the L2-norm) and has usage

[f i t ,vaf] = ultrafittm(proxtm,targ)

where PROXTM is the two-mode (rectangular) input proximity matrix (with a dissimilarity
interpretation); TARG is an ultrametric matrix of the same size as PROXTM; FIT is the least-
squares optimal matrix (with variance-accounted-for of VAF) to PROXTM satisfying the two-
mode ultrametric constraints implicit in TARG. An example follows using numcl t arg6x4
for TARG and number6x4 as PROXTM:

load number6x4.dat
load numcltarg6x4.dat
[fit,vaf] = ultrafittm(number6x4,numcltarg6x4)

fit =

0.7715
0.7715
0.6641
0.3000
0.6641
0.5267

0.7715
0.7715
0.6641
0.5267
0.6641
0.4000

0.7715
0.7715
0.3065
0.6641
0.3065
0.6641

0.7715
0.7715
0.6641
0.2630
0.6641
0.5267

vaf =

0.6978

A VAF of .6978 was obtained for the fitted ultrametric; we give the hierarchy below with
indications of when the partitions were formed in the L2-norm fitted ultrametric (in FIT)
and in the original target (in numcltarg6x4):

Partition Level
Formed

(L2)

.7715

.6641

.5267

.4000

.3065

.3000

.2630

Level
Formed
(Target)

9
8
7
5
4
3
2

{{0,1,2,4,8,3,9,6,5,7}}
{{0},{1},{2,4,8,3,9,6,5,7}}
{{0},{1},{2,4,8},{3,9,6,5,7}}
{{0},{1},{2,4,8},{3,9,6},{5,7}}
{{0},{1},{2,4,8},{3,9,6},{5},{7}}
{{0},{1},{2},{4},{8},{3,9,6},{5},{7}}
{{0},{1},{2},{4},{8},{3,9},{6},{5},{7}}
{{0},{1},{2},{4},{8},{3},{9},{6},{5},{7}}

102 Chapter 8. Ultrametrics and Additive Trees for Two-Mode Data

The M-file ultrafndtm.m relies on iterative projection heuristically to lócate a
best-fitting two-mode ultrametric. The usage is

[f ind,vaf] = ultrafndtm(proxtm,inpermrow,inpermcol)

where PROXTM is the two-mode input proximity matrix (with a dissimilarity interpreta-
tion); INPERMROW and INPERMCOL are permutations for the row and column objects that
determine the order in which the inequality constraints are considered; FIND is the found
least-squares matrix (with variance-accounted-for of VAF) to PROXTM satisfying the ultra-
metric constraints. The example below for the number6x4 two-mode data (using random
permutations for INPERMROW and INPERMCOL) finds an ultrametric with VAF of .7448.

[find,vaf] = ultrafndtm(number6x4,randperm(6),randperm(4))

find =

0.8420 0.8420 0.8420 0.8420
0.7010 0.7010 0.7010 0.7010
0.6641 0.6641 0.3670 0.6641
0.3000 0.5267 0.6641 0.2630
0.6641 0.6641 0.2460 0.6641
0.5267 0.4000 0.6641 0.5267

vaf =
0.7448

The partition hierarchy identifica is similar to that found for the target numcl t arg6x4
although there is some minor variation in how the digits O and 1 are treated:

Partition Level Formed (L^)

{{0,1,2,4,8,3,9,6,5,7}} .8420
{{0},{ 1,2,4,8,3,9,6,5,7}} .7010

{{0},{1},{2,4,8,3,9,6,5,7}} .6641
{{0},{1},{2,4,8},{3,9,6,5,7}} .5267

{{0},{1},{2,4,8},{3,9,6},{5,7}} .4000
{{0},{1},{2,4,8},{3,9,6},{5},{7}} .3670

{{0},{1},{2},{4,8},{3,9,6},{5},{7}} .3000
{{0},{1},{2},{4,8},{3,9},{6},{5},{7}} .2630

{{0},{1},{2},{4,8},{3},{9},{6},{5},{7}} .2460
{{0},{1},{2},{4},{8},{3},{9},{6},{5},{7}} -

8.2 Finding Two-Mode Additive Trees
As noted in the introductory material in this chapter, the identification of a best-fitting two-
mode additive tree will be done somewhat differently (because of storage considerations)

8.2. Find ing Two-Mode Additive Trees 103

than for a two-mode ultrametric representation. Specifically, a (two-mode) centroid metric
and a (two-mode) ultrametric matrix will be identified so that their sum is a good-fitting
two-mode additive tree. Because a centroid metric can be obtained in closed form, we first
illustrate the fitting of just a centroid metric to a two-mode proximity matrix with the M-file
centf ittm. m. Its usage is of the form

[fit ,vaf,lengths] = centfittm(proxtm)

which gives the least-squares fitted two-mode centroid metric (FIT) to PROXTM, the two-
mode rectangular input proximity matrix (with a dissimilarity interpretation). The n values
(where n = number of rows(na) + number of columns^)) serve to define the approximating
sums, ur + vs, where the ur are for the na rows and the vs for the n/, columns; these ur and
vs values are given in the vector LENGTHS of size n x 1, with row values first followed by
the column values. The closed-form formula used for ur (or vs) can be given simply as the
rth row (or sth column) mean of PROXTM minus one-half the grand mean (see Carroll and
Pruzansky, 1980, and De Soete et al., 1984, for a further discussion). In the example given
below using the two-mode matrix number6x4, a two-mode centroid metric by itself has
aVAFof.4737.

[fit,vaf,lengths]
fit

= centfittm(number6x4)

fit =

0.7405
0.5995
0.4965
0.3882
0.4132
0.4132

0.9101
0.7691
0.6661
0.5579
0.5829
0.5829

0.8486
0.7076
0.6046
0.4964
0.5214
0.5214

0.8688
0.7278
0.6248
0.5165
0.5415
0.5415

vaf

vaf =

0.4737

lengths'

ans =

Columns 1 through 6

0.5370 0.3960 0.2930

Columns 7 through 10

0.2035 0.3731 0.3116

0.1847

0.3318

0.2097 0.2097

104 Chapter 8. Ultrametrics and Additive Trees for Two-Mode Data

The finding of a two-mode additive tree with the M-file atreefndtm.m proceeds
iteratively. A two-mode centroid metric is first found and the original two-mode proximity
matrix residualized; a two-mode ultrametric is then identified for the residual matrix. The
process repeats with the centroid and ultrametric components alternatingly being refit until
a small change in the overall VAF occurs (a value less than 1 .Oe-006 is used). The M-file
has the explicit usage

[find,vaf,ultra,lengths] = ...
atreefndtm(proxtm,inpermrow,inpermcol)

and, as noted above, relies on iterative projection heuristically to find a two-mode ultramet-
ric component that is added to a two-mode centroid metric to produce a two-mode additive
tree. Here, PROXTM is the rectangular input proximity matrix (with a dissimilarity interpre-
tation); INPERMROW and INPERMCOL are permutations for the row and column objects
that determine the order in which the inequality constraints are considered; FIND is the
found least-squares matrix (with variance-accounted-for of VAF) to PROXTM satisfying the
two-mode additive tree constraints. The vector LENGTHS contains the row followed by
column values for the two-mode centroid metric component; ULTRA is the ultrametric com-
ponent. In the example given below, the identified two-mode additive tree for number 6x4
has a VAF of .9053, with a nice structural interpretation of the digits along with some indi-
cation now of odd and even digit groupings. The partition hierarchy is reported below the
MATLAB output along with an indication of when the various partitions are formed.

[find,vaf,ultra,lengths] = ...
atreefndtm(number6x4, randperm(6),randperm(4))

find

find =

0.6992
0 .6298
0.4398
0.4549
0.3692
0.4582

0.9029
0.6300
0.8160
0.5748
0.7453
0.4000

0.9104
0.8411
0.3670
0.6661
0.2460
0.6694

0 .8561
0.7029
0 .7692
0.2630
0.6985
0.5313

vaf

vaf =

0.9053

ultra

ultra =

0.1083 0.0520 0.1083 0.0520

8.3. Completing a Two-Mode Ultrametric to One Defined on SA U SB 105

0
-0
0

-0
0

.1083

.0078

.1083

.0078

.1083

-0
0

-0
0

-0

.1516

.1083

.0318

.1083

.2099

0
-0
0

-0
0

.1083

.2919

.1083

.3422

.1083

-0
0

-0
0

-0

.0318

.1083

.2968

.1083

.0318

lengths'

ans _

Columns 1 through 6

0.4570 0.3876 0.3138 0.2127

Columns 7 through 10

0.1339 0.3939 0.3451 0.3471

0.2431 0.2160

8.3 Completing a Two-Mode Ultrametric to One Defined
on SA U SB

Instead of relying only on our general intuition (and problem-solving skills) to transform
a fitted two-mode ultrametric to one we could interpret directly as a sequence of partitions
for the joint set SA U SB, the M-file ul tracomptm. m provides the explicit completion of
a given two-mode ultrametric matrix to a symmetric proximity matrix (defined on SA U SB
and satisfying the usual ultrametric constraints). Thus, this completion, in effect, estimates
the (missing) ultrametric values that must be present between objects from the same cluster
but from the different modes. The general syntax has the form

[ultracomp] = ultracomptm(ultraproxtm)

where ULTRAPROXTM is the na x nb fitted two-mode ultrametric matrix; ULTRACOMPTM
is the completed n x n proximity matrix having the usual ultrametric pattern for the complete

Partition

{{6,4,8,2,9,3,5,7,1,0}}
{{6,4,8,2}, {9,3,5,7,1,0}}

{{6,4,8,2},{9,3,5,7,1},{0}}
{{6},{4,8,2},{9,3,5,7,1},{0}}

{{6},{4,8,2},{9,3},{5,7,1},{0}}
{{6},{4,8,2},{9,3},{5,7},{1},{0}}

{{6},{4,8,2},{9,3},{5},{7},{1},{0}}
{{6},{4,8},{2},{9,3},{5},{7},{1},{0}}

{{6},{4,8},{2},{9},{3},{5},{7},{1},{0}}
{{6},{4},{8},{2},{9},{3},{5},{7},{1},{0}}

Level Formed

.1083

.0520
-.0078
-.0318
-.1516
-.2099
-.2919
-.2968
-.3422

106 Chapter 8. Ultrametrics and Additive Trees for Two-Mode Data

object set of size n — na + «/>. As seen in the examples below, the use of ul traf ndtm. m
plus ultracomptm.m on the number6x4 data and the subsequent application of the
ultraorder. m routine leads directly to the partition hierarchy we identified earlier:

load number6x4.dat
[find,vaf] = ultrafndtm(number6x4,randperm(6),randperm(4));
vaf

vaf =

0.7448

[ultracomp] = ultracomptm(find)

ultracomp =

Columns 1 through 6

0,
0,
0
0
0
0
0,
0,
0.

0
.8420
.8420
.8420
.8420
.8420
.8420
.8420
.8420
.8420

Columns 7

0,
0,
0.
0,
0,
0,

0,
0.
0.

.8420

.7010

.6641

.3000

.6641

.5267
0

.5267

.6641

.3000

0

0
0
0
0
0
0
0
0

.8420
0

.7010

.7010

.7010

.7010

.7010

.7010

.7010

.7010

0
0

0
0
0
0
0
0
0

.8420

.7010
0

.6641

.3670

.6641

.6641

.6641

.3670

.6641

0
0
0

0
0
0
0
0
0

.8420

.7010

.6641
0

.6641

.5267

.3000

.5267

.6641

.2630

0,
0,
0,
0

0.
0,
0,
0.
0,

.8420

.7010

.3670

.6641
0

.6641

.6641

.6641

.2460

.6641

0
0
0
0
0

0
0
0
0

.8420

.7010

.6641

.5267

.6641
0

.5267

.4000

.6641

.5267

through 10

0
0
0
0
0
0
0

0
0

.8420

.7010

.6641

.5267

.6641

.4000

.5267
0

.6641

.5267

0
0
0
0
0
0
0
0

0

.8420

.7010

.3670

.6641

.2460

.6641

.6641

.6641
0

.6641

0
0
0
0
0
0
0
0
0

.8420

.7010

.6641

.2630

.6641

.5267

.3000

.5267

.6641
0

[orderprox,orderperm] = ultraorder(ultracomp)

orderprox =

8.3. Completing a Two-Mode Ultrametric to One Defined on 5/\ U SB 107

0
0
0
0
0
0
0
0
0

0
.8420
.8420
.8420
.8420
.8420
.8420
.8420
.8420
.8420

0

0
0
0
0
0
0
0
0

.8420
0

.2460

.3670

.6641

.6641

.6641

.6641

.6641

.7010

0
0

0
0
0
0
0
0
0

.8420

.2460
0

.3670

.6641

.6641

.6641

.6641

.6641

.7010

0.
0.
0.

0.
0.
0.
0.
0.
0.

8420
3670
3670

0
6641
6641
6641
6641
6641
7010

0
0
0
0

0
0
0
0
0

.8420

.6641

.6641

.6641
0

.3000

.3000

.5267

.5267

.7010

0
0
0
0
0

0
0
0
0

.8420

.6641

.6641

.6641

.3000
0

.2630

.5267

.5267

.7010

Columns 7 through 10

0
0
0
0
0
0

0
0
0

.8420

.6641

.6641

.6641

.3000

.2630
0

.5267

.5267

.7010

0
0
0
0
0
0
0

0
0

.8420

.6641

.6641

.6641

.5267

.5267

.5267
0

.4000

.7010

0
0
0
0
0
0
0
0

0

.8420

.6641

.6641

.6641

.5267

.5267

.5267

.4000
0

.7010

0.
0.
0.
0.
0.
0.
0.
0.
0.

8420
7010
7010
7010
7010
7010
7010
7010
7010

0

orderperm =

1 9 5 3 7 1 0 4 8 6 2

Similarly, for the two-mode additive tree example, we have the partition hierarchy we
gave initially and what was retrieved immediately from the use of ul tracomptm. m and
ultraorder .m on the output ultrametric matrix, ultra:

[find,vaf,ultra,lengths] = ...
atreefndtm(number6x4,randperm{6),randperm(4));

vaf

vaf =

0.9053

[ultracomp] = ultracomptm(ultra)

Columns 1 through 6

108 Chapter 8. U Itrametrics and Additive Trees for Two-Mode Data

ultracomp =

Columns 1

0
0
0
0
0
0
0
0
0

0
.0520
.1083
.0520
.1083
.0520
.1083
.0520
.1083
.0520

Columns 7

0
0

-0
0

-0
0

0
-0
0

.1083

.1083

.0078

.1083

.0078

.1083
0

.1083

.0078

.1083

[orderprox

through 6

0

0
-0
0

-0
0

-0
0

-0

.0520
0

.1083

.0318

.1083

.1516

.1083

.1516

.1083

.0318

0
0

0
-0
0

-0
0

-0
0

.1083

.1083
0

.1083

.2919

.1083

.0078

.1083

.2919

.1083

0.
-0.
0.

0.
-0.
0.

-0.
0.

-0.

0520
0318
1083

0
1083
0318
1083
0318
1083
2968

0
0

-0
0

0
-0
0

-0
0

.1083

.1083

.2919

.1083
0

.1083

.0078

.1083

.3422

.1083

0
-0
0

-0
0

0
-0
0

-0

.0520

.1516

.1083

.0318

.1083
0

.1083

.2099

.1083

.0318

through 10

0
-0
0

-0
0

-0
0

0
-0

.0520

.1516

.1083

.0318

.1083

.2099

.1083
0

.1083

.0318

0
0

-0
0

-0
0

-0
0

0

, orderperm] =

.1083

.1083

.2919

.1083

.3422

.1083

.0078

.1083
0

.1083

0.
-0.
0.

-0.
0.

-0.
0.

-0.
0.

ultraorder

0520
0318
1083
2968
1083
0318
1083
0318
1083

0

(ultracomp)

orderprox =

Columns 1

-0
-0
-0
0
0
0
0
0
0

0
.0078
.0078
.0078
.1083
.1083
.1083
.1083
.1083
.1083

through 6

-0

-0
-0
0
0
0
0
0
0

.0078
0

.3422

.2919

.1083

.1083

.1083

.1083

.1083

.1083

-0
-0

-0
0
0
0
0
0
0

.0078

.3422
0

.2919

.1083

.1083

.1083

.1083

.1083

.1083

-0.
-0.
-0.

0.
0.
0.
0.
0.
0.

0078
2919
2919

0
1083
1083
1083
1083
1083
1083

0
0
0
0

-0
-0
-0
-0
0

.1083

.1083

.1083

.1083
0

.2968

. 0318

.0318

.0318

.0520

0
0
0
0

-0

-0
-0
-0
0

.1083

.1083

.1083

.1083

.2968
0

.0318

.0318

.0318

.0520

8.3. Completing a Two-Mode Ultrametric to One Defined on SA U SB 109

Columns 7 through 10

0
0
0
0
0
0

0
0
0

.1083

.1083

.1083

.1083

.0318

.0318
0

.1516

.1516

.0520

0
0
0
0

-0
-0
-0

-0
0

.1083

.1083

.1083

.1083

.0318

.0318

.1516
0

.2099

.0520

0
0
0
0

-0
-0
-0
-0

0

.1083

.1083

.1083

.1083

.0318

.0318

.1516

.2099
0

.0520

0
0
0
0
0
0
0
0
0

.1083

.1083

.1083

.1083

.0520

.0520

.0520

.0520

.0520
0

orderperm =

7 9 5 3 1 4 2 6 8 1

8.3.1 The goldfish_receptor Data

We could also illustrate the results of using our various M-files from this chapter on the
two-mode goldf ish_receptor data, but given the extensiveness of the output, we
provide just the commands we would use and leave the reader to provide the output. The
VAF value for the best ultrametric found was .6209; the best additive tree had VAF .8663.
As to be expected, the various colors are associated with the appropriate cones.

load goldfish_receptor.dat
[find,vaf] = ultrafndtm(goldfish_receptor,...

randperm(11),randperm(9));

vaf =

0.6209

[ultracomp] = ultracomptm(find);
[orderprox,orderperm] = ultraorder(ultracomp);

[find,vaf,ultra,lengths] = ...
atreefndtm(goldfish_receptor,randperm(11),randperm(9));

vaf =

0.8663

[ultracomp] = ultracomptm(ultra);

This page intentionally left blank

Part III

The Representation of Proximity
Matrices by Structures

Dependent on Order (Only)

This page intentionally left blank

An Introduction to
Order-Theoretic

Representational Structures

Nonmetric multidimensional scaling (NMDS) as developed by Shepard (1962a,b) and
Kruskal (1964a,b) has become a very familiar method in the psychological research lit-
erature for representing structure that may be inherent among a set of objects. Judging by
the number of published substantive applications, whenever data are given in the form of a
symmetric proximity matrix containing numerical relationship information between distinct
object pairs, NMDS may have now become the default method of analysis. This routine use
of NMDS, however, when faced with elucidating whatever pattern of relationships may un-
derly a given set of proximities, does have interpretive implications and consequences. For
one, there is an implicit choice made that whatever major generality will be allowed should
reside in the particular proximities being fitted by the explicitly parameterized (Euclidean)
spatial structure. Thus, an optimal (usually monotonic) transformation of the proximities is
sought in conjunction with the construction of a spatial representation. Second, the param-
eterized spatial structure implicitly involves fitting the (transformed) proximities by some
function of the differences in object placement along a set of coordinate axes that may be
best suited for representing object variation that could, at least in theory, be allowed to
vary continuously. For instance, in the common Euclidean model we use the square root of
the sum of squared coordinate differences along a set of axes (although the particular axis
system selected is open to some arbitrariness). The tacit implication is that if the structure
underlying the proximities is more classificatory (and discrete) in nature, we may not do
well in representing it by a spatial model that should do much better in the presence of more
continuous variation (cf. Pruzansky, Tversky, and Carroll, 1982). In fact, in the limiting case
where there exists a partition of the object set in which all proximities for object pairs within
an object class are smaller than for object pairs between classes (and where proximities are
keyed as dissimilarities so that larger values represent more dissimilar objects), NMDS will
typically give a degenerate representation in which all objects within each class are located
at the same spatial location and the optimally transformed proximities consist of just two
values, one for the within-class proximities and one for the between-class proximities (cf.
Shepard, 1974).

113

114 An Introduction to Order-Theoretic Representational Structures

This part of the book concentrates on an alternative approach to understanding what
a given proximity matrix may be depicting about the objects on which it was constructed,
and one that does not require a prior commitment to the sole use of either some form of
dimensional model (as in NMDS), or one that is strictly classificatory (as in the use of a
partition hierarchy and the implicit fitting of an ultrametric that serves as the representational
mechanism for the hierarchical clustering). The method of analysis is based on approxi-
mating a given proximity matrix additively by a sum of matrices, where each component in
the sum is subject to specific patterning restrictions on its entries. The restrictions imposed
on each component of the decomposition (to be referred to as matrices with anti-Robinson
forms) are very general and encompass interpretations that might be dimensional, or clas-
sificatory, or some combination of both (e.g., through object classes that are themselves
placed dimensionally in some space). Thus, as one special case, and particularly when an
(optimal) transformation of the proximities is also permitted (as we will generally allow),
proximity matrices that are well interpretable through NMDS should also be interpretable
through an additive decomposition of the (transformed) proximity matrix. Alternatively,
when classificatory structures of various kinds might underlie a set of proximities (and the
direct use of NMDS could possibly lead to a degeneracy), additive decompositions may
still provide an analysis strategy for elucidating the structure.

The algorithmic details of fitting to a given proximity matrix a sum of matrices each
having the desired general patterning to its entries (or even more explicitly parameterized
forms that may be of help in providing a detailed interpretation, such as those given by
partition hierarchies or unidimensional scales) are available in a series of papers (i.e., Hubert
and Arabie, 1994,1995a,b; Hubert, Arabic, andMeulman, 1997, 1998). Thus, in this sequel
we can merely refer to these sources for the actual mechanics of carrying out the various
decompositions. More unique aspects that will be incorporated in the documentation to
follow are (a) the possible integration of (optimal) transformations for use with the originally
given proximities to be fitted by an additive matrix decomposition and (b) the fitting of
more restrictive parameterized forms (such as in Parts I and II) to the various components
of a decomposition in attempting to give a detailed substantive interpretation of what each
separate matrix in the decomposition may be depicting. In this latter instance, one of our
concerns might be directed toward the issue of whether a particular matrix as part of a
decomposition is indicating primarily dimensional or classificatory aspects of the original
proximities (or possibly, and what may be more typical, some combination of the two). In
these latter cases, the M-files discussed as part of the documentation given in the earlier parts
of this monograph for LUS and for the fitting of tree structures are particularly relevant.

Chapter 9

Anti-Robinson Matrices for
Symmetric Proximity Data

Denoting an arbitrary symmetric n x n matrix by A = {atj}, where the main diagonal entries
are considered irrelevant and assumed to be zero (i.e., au = 0 for 1 < i < n), A is said
to have an anti-Robinson (AR) form if after some reordering of the rows and columns of
A the entries within each row and column have a distinctive pattern: moving away from
the zero main diagonal entry within any row or any column, the entries never decrease.
Generally, matrices having AR forms can appear both in spatial representations for a set of
proximities as functions of the absolute differences in coordinate values along some axis or
for classificatory structures that are characterized through an ultrametric.

To illustrate, we first let P = {/?//} be a given n x n proximity (dissimilarity) matrix
among the distinct pairs of n objects in a set S = {O\, 02, • • • , On] (where pa — 0 for
1 < i < n). Then, suppose, for example, a two-dimensional Euclidean representation is
possible for P and its entries are very well representable by the distances in this space, and
thus

where x^ and xy are the coordinates on the k\h axis (for k = 1 and 2) for objects 0,
and Oj (and the symbol ^ is used to indicate approximation). Here, a simple monotonic
transformation (squaring) of the proximities should then be fitted well by the sum of two
matrices both having AR forms, i.e.,

In a classificatory framework, if {p{j} were well representable, say, as a sum of two
matrices, AI = {a^} and A2 = [ajf], each satisfying the ultrametric inequality, i.e.,

afj* < maxfajf, a$] for k = 1 and 2, then

and each of the constituent matrices can be reordered to display an AR form. As can be seen
in Part II of this monograph, any matrix whose entries satisfy the ultrametric inequality can
be represented by a sequence of partitions that are hierarchically related.

115

116 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

Given some proximity matrix P, the task of approximating it as a sum of matrices
each having an AR form is implemented through an iterative optimization strategy based on
a least-squares loss criterion that is discussed in detail by Hubert and Arabic (1994). Given
the manner in which the optimization process is carried out sequentially, each successive
AR matrix in any decomposition generally accounts for less and less of the patterning of
the original proximity information (which is very analogous to what is typically observed
in a principal component decomposition of a covariance matrix). In fact, it has been found
empirically that for the many data sets we have analyzed, only a very small number of
such AR matrices are ever necessary to represent almost all of the patterning in the given
proximities. A succinct summary that we could give to this empirical experience is that no
more than three AR matrices are ever necessary, two are usually sufficient, and sometimes
one will suffice.

The substantive challenge that remains, once a well-fitting decomposition is found for
a given proximity matrix, is to interpret substantively what each term in the decomposition
might be depicting. The strategy that could be followed would approximate each separate
AR matrix by ones having a more restrictive form, usually those representing some type
of unidimensional scale (a dimensional interpretation from Part I) or partition hierarchy (a
classificatory interpretation from Part II).

9.0.1 Incorporating Transformations

One generalization that we will now allow to what has already been discussed in the literature
for fitting sums of AR matrices to a proximity matrix P is the possible inclusion of an
(optimal) transformation of the proximities. Thus, instead of just representing P as a sum
of K matrices (and, generally, for K very small) that we might denote as AI + • • • + A#,
where each A*, 1 < k < K, has an AR form, an (optimally) transformed matrix P = {/5,7-}
will be fitted by such a sum, say, AI + • • • + A^, where the entries in P are monotonic with
respect to those in P, i.e., for all 0,, Oj, O^, O\ E S, p-tj < p^ => ptj < />/./. In what
follows we will rely on the M-file proxmon. m, documented in Part I, which constructs
optimal monotonic transformations by the same method of isotonic regression commonly
used in NMDS (although using a different type of algorithm based on the Dykstra-Kaczmarz
iterative projection strategy). The method is the primary approach of Kruskal (1964a,b) to
tied proximities in P that are allowed to be untied after transformation. Such transformations,
for example, form the default option in the implementation of NMDS in the program KYST-
2A (Kruskal, Young, and Seery, 1977) and in SYSTAT (Wilkinson, 1988).

The process of finding P and Aj + \- \K proceeds iteratively, with the original
proximity matrix P first fit by AI + h A/^; a subsequent optimal (monotonic) transfor-
mation of P (through a least-squares approximation to A) + • • • 4- A#) is identified, which
is then refitted by the matrix sum. In many cases, this whole process can now be cycled
through iteratively until convergence, i.e., a sequential fitting and refitting of the optimally
transformed proximities and their representation as a sum of matrices each having an AR
form.

In some contexts, however (particularly when fitting a single AR matrix (i.e., when
K = 1)), it is probably best not to proceed to a complete convergence but instead to ter-
minate the process after only a single optimal monotonic transformation of P is identified

9.0.2 Interpreting the Structure of an AR Matrix 117

and then to refit by a matrix sum. This usage will be referred to as a single iteration optimal
transformation (SIOT). If carried through to convergence, a perfect representation may be
obtained but only at the expense of losing almost all the patterning contained within the
original proximity matrix. For example, in fitting a single AR matrix, the optimal transfor-
mation identified after convergence might consist of just two values, with one corresponding
to the smallest proximity in the original matrix and all others equal. Although technically
permissible since this situation does reflect a perfect AR form, most of the detail present
in the original proximity matrix is also lost. Difficulties with such so-called degeneracies
have been pointed out by Carroll (1992), particularly when faced with fitting classificatory
structures to a given proximity matrix.

9.0.2 Interpreting the Structure of an AR Matrix

In representing a proximity matrix P as a sum, AH \- A.K (or an optimal transformation
P as A! H h A*-), the interpretive task remains to explain substantively what each term of
the decomposition might be depicting. We suggest four possible strategies below, with the
first two attempting to understand the structure of an AR matrix directly and without much
loss of detail; the last two require the imposition of strictly parameterized approximations
in the form of either an ultrametric or a unidimensional scale. In the discussion below,
A = (a-ij} will be assumed to have an AR form that is displayed by the given row and
column order.

(A) Complete representation and reconstruction through a collection of subsets and
associated subset diameters:

The entries in any AR matrix A can be reconstructed exactly through a collection of
M subsets of the original object set S = {O\,..., #„}, denoted by S\,..., SM, and where
M is determined by the particular pattern of tied entries, if any, in A. These M subsets have
the following characteristics:

(i) Each Sm, 1 < m < M, consists of a sequence of (two or more) consecutive integers
so that M < n(n — l)/2. (This bound holds because the number of different subsets having
consecutive integers for any given fixed ordering is n(n — l)/2, and will be achieved if all
the entries in the AR matrix A are distinct.)

(ii) Each 5m, 1 < m < M, has a diameter, denoted by d(Sm), so that for all object
pairs within Sm, the corresponding entries in A are less than or equal to the diameter. The
subsets, Si, . . . , SM, can be assumed ordered as d(S\) < d(S2) < • • • < d(SM), and if
Sm c Sm,, d(Sm) < d(Sm,).

(iii) Each entry in A can be reconstructed from d(S\),..., d(SM), i.e., for 1 < i, j <
n,

so that the minimum diameter for subsets containing an object pair 0,, Oj e 5 is equal to
dij. Given A, the collection of subsets S\,...,SM and their diameters can be identified by
inspection through the use of an increasing threshold that starts from the smallest entry in
A and by observing which subsets containing contiguous objects emerge from this process.
The substantive interpretation of what A is depicting reduces to explaining why those subsets

118 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

with the smallest diameters are so homogeneous. For convenience of reference, the subsets
S\,..., SM will be referred to as the set of AR reconstructive subsets.

(B) Representation by a strongly anti-Robinson matrix:

If the matrix A has a somewhat more restrictive form than just being AR, and is also
strongly anti-Robinson (SAR), a convenient graphical representation can be given to the
collection of AR reconstructive subsets S],..., SM and their diameters and how they can
serve to retrieve A. Specifically, A is said to be SAR if (considering the above-diagonal
entries of A) whenever two entries in adjacent columns are equal (a,y = ai(j+\)}, those in
the same two adjacent columns in the previous row are also equal («(,-i)y = a (/_ i) (/+ i)
for 1 < / — 1 < j < n — 1); also, whenever two entries in adjacent rows are equal
(ciij — a(i+\)j), those in the same two adjacent rows in the succeeding column are also equal
(fl/(y+i) = fl(,-+i)(/+i) for 2 < j + 1 < j < n - 1).

When A is SAR, the collection of subsets, S\,..., SM, and their diameters and how
these serve to reconstruct A can be modeled graphically as we will see in Section 9.5. The
internal nodes (represented by solid circles) in each of these figures are at a height equal
to the diameter of the respective subset; the consecutive objects forming that subset are
identifiable by downward paths from the internal nodes to the terminal nodes corresponding
to the objects in S = {O\,..., On] (represented by labeled open circles). An entry a-tj
in A can be reconstructed as the minimum node height of a subset for which a path can
be constructed from 0, up to that internal node and then back down to Oj. (To prevent
undue graphical "clutter," only the most homogeneous subsets from S\, ..., SM having
the smallest diameters should actually be included in the graphical representation of an
SAR matrix; each figure would explicitly show only how the smallest entries in A can be
reconstructed, although each could be easily extended to include all of A. The calibrated
vertical axis in such figures could routinely include the heights at which the additional
internal nodes would have to be placed to effect such a complete reconstruction.)

Given an arbitrary AR matrix A, a least-squares SAR approximating matrix to A
can be found using the heuristic optimization search strategy illustrated in Section 9.3 and
developed in Hubert, Arabie, and Meulman (1998). This latter source also discusses in detail
(through counterexample) why SAR conditions need to be imposed to obtain a consistent
graphical representation.

(C) Representation by a unidimensional scale:

To obtain greater graphical simplicity for an eventual substantive interpretation than
offered by an SAR matrix, one possibility is to use approximating unidimensional scales. To
be explicit, one very simple form that an AR matrix A may assume is interpretable by a single
dimension and through a unidimensional scale in which the entries have the parameterized
form A = {«/;} = {| Xj—Xf \ +c}, where the coordinates are ordered as JCi < X2 < • • • < xn,
and c is an estimated constant. Given any proximity matrix, a least-squares approximating
unidimensional scale can be obtained through the optimization strategies of Part I and
would be one (dimensional) method that could be followed in attempting to interpret what
a particular AR component of a decomposition might be revealing.

(D) Representation by an ultrametric:

A second simple form that an AR matrix A could have is strictly classificatory in which
the entries in A satisfy the ultrametric condition afj < maxfa,*, a/*} for all 0,, 0/, Ok e S.

9.1. Fitting a Given AR Matrix in the/.2-Norm 119

As a threshold is increased from the smallest entry in A, a sequence of partitions of 5 is
identified in which each partition is constructed from the previous one by uniting pairs of
subsets from the latter. A partition identified at a given threshold level has equal values in
A between each given pair of subsets, and all the within-subset values are not greater than
the between-subset values. The reconstructive subsets S\,..., SM that would represent
the AR matrix A are now the new subsets that are formed in the sequence of partitions
and have the property that if d(Sm) < d(Sm>), then Sm c Sm> or Sm fl Sm> — 0. Given
any proximity matrix, a least-squares approximating ultrametric can be constructed by the
heuristic optimization routines developed in Part II and would be another (classificatory)
strategy for interpreting what a particular AR component of a decomposition might be
depicting. As might be noted, there are generally n — 1 subsets (each of size greater than
one) in the collection of reconstructive subsets for any ultrametric, and thus n — 1 values
need to be estimated in finding the least-squares approximation (which is the same number
needed for a least-squares approximating unidimensional scale, based on obtaining the n — I
nonnegative separation values between jc/ and jc,+i for 1 < / < n — 1).

9.1 Fitting a Given AR Matrix in the I2-Norm

The function M-file arobf i t. m fits an AR matrix using iterative projection to a symmetric
proximity matrix in the L2-norm. The usage syntax is of the form

[fit,vaf] = arobfit(prox,inperm)

where PROX is the input proximity matrix (n x n with a zero main diagonal and a dissimil-
arity interpretation); INPERM is a given permutation of the first n integers; FIT is the least-
squares optimal matrix (with variance-accounted-for of VAF) to PROX having an AR form for
the row and column object ordering given by INPERM. A recording of a MATLAB session
using the number. dat data file and object ordering given by the identity permutation
follows:

load number.dat
inperm = 1:10

inperm =

1 2 3 4 5 6 7 8 9 1 0

[f i t ,vaf] = arobfit(number,inperm)

fit =

Columns 1 through 6

0
0.4210
0.5840
0.6965
0.6965

0.4210
0

0.2840
0.3460
0.6170

0.5840
0.2840

0
0.2753
0.2753

0.6965
0.3460
0.2753

0
0.2753

0.6965
0.6170
0.2753
0.2753

0

0.7960
0.6170
0.5460
0.3844
0.3844

120 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

0
0
0
0
0

.7960

.7960

.8600

.8600

.8600

0
0
0
0
0

.6170

.6940

.6940

.7413

.7413

0
0
0
0
0

.5460

.5460

.5853

.5853

.7413

0
0
0
0
0

.3844

.3844

.5853

.5853

.5853

0
0
0
0
0

.3844

.3844

.5530

.5530

.5853

0.
0,
0,
0,

0
.3844
.4000
.5530
.5853

Columns 7 through 10

0
0
0
0
0
0

0
0
0

.7960

.6940

.5460

.3844

.3844

.3844
0

.3857

.3857

.3857

0
0
0
0
0
0
0

0
0

.8600

.6940

.5853

.5853

.5530

.4000

.3857
0

.3857

.3857

0
0
0
0
0
0
0
0

0

.8600

.7413

.5853

.5853

.5530

.5530

.3857

.3857
0

.3857

0
0
0
0
0
0
0
0
0

.8600

.7413

.7413

.5853

.5853

.5853

.3857

.3857

.3857
0

vaf =

0.6979

9.1.1 Fitting the (In)equality Constraints Implied by a Given Matrix
in the /.2-Norm

At times it may be useful to fit through iterative projection a given set of equality and
inequality constraints (as represented by the equalities and inequalities present among the
entries in a given target matrix) to a symmetric proximity matrix in the L2-norm. Whenever
the target matrix is AR in form already, the resulting fitted matrix would also be AR in form;
more generally, however, the M-function targf i t. m could be used with any chosen target
matrix. The usage follows the form

[fit,vaf] = targfit(prox,targ)

where, as usual, PROX is the input proximity matrix (with a zero main diagonal and a
dissimilarity interpretation); TARG is a matrix of the same size as PROX; FIT is the least-
squares optimal matrix (with variance-accounted-for of VAF) to PROX satisfying the equality
and inequality constraints implicit among all the entries in TARG. An example follows in
which the given target matrix is a distance matrix (having an AR form) between equally
spaced object placements along a line; the resulting fitted matrix obviously has an AR form
as well:

load number.dat
[fit,vaf] = targfit(number,targlin(10))

9.2. Finding an AR Matrix in the /.2-Norm 121

fit =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.3714
.3714
.5363
.5363
.6548
.6548
.7908
.7908
.8500

0

0
0
0
0
0
0
0
0

.3714
0

.3714

.3714

.5363

.5363

.6548

.6548

.7908

.7908

0
0

0
0
0
0
0
0
0

.3714

.3714
0

.3714

.3714

.5363

.5363

.6548

.6548

.7908

0.
0.
0.

0.
0.
0.
0.
0.
0.

5363
3714
3714

0
3714
3714
5363
5363
6548
6548

0
0
0
0

0
0
0
0
0

.5363

.5363

.3714

.3714
0

.3714

.3714

.5363

.5363

.6548

0
0
0
0
0

0
0
0
0

.6548

.5363

.5363

.3714

.3714
0

.3714

.3714

.5363

.5363

Columns 7 through 10

0
0
0
0
0
0

0
0
0

.6548

.6548

.5363

.5363

.3714

.3714
0

.3714

.3714

.5363

0
0
0
0
0
0
0

0
0

.7908

.6548

.6548

.5363

.5363

.3714

.3714
0

.3714

.3714

0
0
0
0
0
0
0
0

0

.7908

.7908

.6548

.6548

.5363

.5363

.3714

.3714
0

.3714

0
0
0
0
0
0
0
0
0

.8500

.7908

.7908

.6548

.6548

.5363

.5363

.3714

.3714
0

vaf =

0.5105

9.2 Finding an AR Matrix in the /.2-Norm
The fitting of a given AR matrix by the M-function of Section 9.1, arobf it. m, requires
the presence of an initial permutation to direct the optimization process. Thus, the, finding of
a best-fitting AR matrix reduces to the identification of an appropriate object permutation to
use ab initio. We suggest the adoption of order. m, which carries out an iterative quadratic
assignment (QA) maximization task using a given square n x n proximity matrix PROX
(with a zero main diagonal and a dissimilarity interpretation) (see Section 1.2.1 and the
references given there to the literature on QA). Three separate local operations are used to
permute the rows and columns of the proximity matrix to maximize the cross-product index
with respect to a given square target matrix TARG: (a) pairwise interchanges of objects in

122 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

the permutation defining the row and column order of the square proximity matrix; (b) the
insertion of from 1 to KBLOCK (which is less than or equal to n — I) consecutive objects in
the permutation defining the row and column order of the data matrix; and (c) the rotation
of from 2 to KBLOCK (which is less than or equal to n — 1) consecutive objects in the
permutation defining the row and column order of the data matrix. The usage syntax has
the form

[outperm,rawindex,allperms,index] = ...
order(prox,targ,inperm,kblock)

where INPERM is the input beginning permutation (a permutation of the first n integers);
OUTPERM is the final permutation of PROX with the cross-product index RAWINDEX with
respect to TARG. The cell array ALLPERMS contains INDEX entries corresponding to
all the permutations identified in the optimization from ALLPERMSJl} = INPERM to
ALLPERMS { INDEX} = OUTPERM.

A recording of a MATLAB session using order. m is listed below with the beginning
INPERM given as the identity permutation, TARG is given by an equally spaced object
placement along a line, and KBLOCK = 3. Using the generated OUTPERM, arobf it. m is
then invoked to fit an AR form having final VAF of .7782.

load number.dat
targlinear = targlin(lO);
[outperm,rawindex,allperms,index] = ...

order(number,targlinear,1:10,3) ;

outperm

outperm =

1 2 3 5 4 6 7 9 1 0 8

rawindex

rawindex =

206 .4920

index

index =

4

[fi t , vaf] = arobfit(number, outperm)

fit =

3

9.2. Finding an AR Matrix in the /.2-Norm 123

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4210
.5840
.6840
.7090
.7960
.7960
.8210
.8500
.9090

0

0
0
0
0
0
0
0
0

.4210
0

.2840

.4960

.4960

.5880

.7357

.7357

.7357

.7357

0
0

0
0
0
0
0
0
0

.5840

.2840
0

.0590

.3835

.4928

.4928

.4928

.7357

.7357

0
0
0

0
0
0
0
0
0

.6840

.4960

.0590
0

.3835

.3985

.3985

.4928

.6830

.7357

0
0
0
0

0
0
0
0
0

.7090

.4960

.3835

.3835
0

.3750

.3750

.4928

.4928

.5920

0
0
0
0
0

0
0
0
0

.7960

.5880

.4928

.3985

.3750
0

.3750

.4928

.4928

.4928

Columns 7 through 10

0
0
0
0
0
0

0
0
0

.7960

.7357

.4928

.3985

.3750

.3750
0

.3460

.3460

.4253

0
0
0
0
0
0
0

0
0

.8210

.7357

.4928

.4928

.4928

.4928

.3460
0

.3460

.4253

0
0
0
0
0
0
0
0

0

.8500

.7357

.7357

.6830

.4928

.4928

.3460

.3460
0

.4253

0
0
0
0
0
0
0
0
0

.9090

.7357

.7357

.7357

.5920

.4928

.4253

.4253

.4253
0

vaf =

0.7782

The M-file arobfnd.m is our preferred method for actually identifying a single AR
form and incorporates an initial equally spaced target and uses the iterative QA routine
of order. m to generate better permutations; the obtained AR forms are then used as new
targets against which possibly even better permutations might be identified, until conver-
gence (i.e., the identified permutations remain the same). The syntax is as follows:

[find, vaf, outperm] = arobfnd(prox, inperm, kblock)

where PROX is the input proximity matrix (n x n with a zero main diagonal and a dissimilar-
ity interpretation); INPERM is a given starting permutation of the first n integers; FIND is the
least-squares optimal matrix (with variance-accounted-for of VAF) to PROX having an AR
form for the row and column object ordering given by the ending permutation OUTPERM;
KBLOCK defines the block size in the use of the iterative QA routine.

As seen from the example below, and starting from a random initial permutation, the
same AR form is found as with just one application of order. m reported above.

124 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

[find, vaf, outperm] = arobfnd(number, randperm(lO), 1);

vaf =

0.7782

outperm =

8 1 0 9 7 6 4 5 3 2 1

9.3 Fitting and Finding an SAR Matrix in the I2-Norm

The M-functions sarobf it .mand sarobfnd.mare direct analogues of arobf it .m
and arobf nd. m, respectively, but are concerned with fitting and finding SAR forms. The
syntax for sarobf it. m, which fits an SAR matrix using iterative projection to a symmetric
proximity matrix in the L2-norm, is

[fit, vaf] = sarobfit(prox, inperm)

where, again, PROX is the input proximity matrix (n x n with a zero main diagonal and a
dissimilarity interpretation); INPERM is a given permutation of the first n integers; FIT is
the least-squares optimal matrix (with variance-accounted-for of VAF) to PROX having an
SAR form for the row and column object ordering given by INPERM.

An example follows using the same identity permutation as was implemented in fitting
an AR form with arobf it. m; as might be expected from using the more restrictive SAR
form, the VAF drops to .6128 from .6979.

load number.dat
[fit,vaf] = sarobfit(number,1:10)

fit =

Columns 1 through 6

0
0
0
0
0
0,
0,
0,
0,

0
.4210
.5840
.6965
.6965
.7960
.7960
.8600
.8600
.8600

0

0
0
0
0
0
0
0
0

.4210
0

.2840

.4815

.4815

.6555

.6555

.7256

.7256

.7256

0
0

0
0
0
0
0
0
0

.5840

.2840
0

.2753

.2753

.4652

.4652

.6113

.6113

.6113

0
0
0

0
0
0
0
0
0

.6965

.4815

.2753
0

.2753

.4652

.4652

.6113

.6113

.6113

0
0
0
0

0
0
0
0
0

.6965

.4815

.2753

.2753
0

.3844

.3844

.5383

.5383

.5383

0
0
0
0
0

0
0
0
0

.7960

.6555

.4652

.4652

.3844
0

.3844

.5383

.5383

.5383

Columns 7 through 10

9.3. Fitting and Finding an SAR Matrix in the /.2-Norm 125

0.7960
0.6555
0.4652
0.4652
0.3844
0.3844

0
0.3857
0.3857
0.3857

0
0
0
0
0
0
0

0
0

.8600

.7256

.6113

.6113

.5383

.5383

.3857
0

.3857

.3857

0.
0.
0.
0.
0.
0.
0.
0.

0.

8600
7256
6113
6113
5383
5383
3857
3857

0
3857

0
0
0
0
0
0
0
0
0

.8600

.7256

.6113

.6113

.5383

.5383

.3857

.3857

.3857
0

vaf =

0 .6076

The M-function sarobf nd. m finds and fits an SAR matrix using iterative projection to a
symmetric proximity matrix in the L2-norm based on a permutation identified through the
use of iterative QA. The function has the expected syntax of

[find, vaf, outperm] = sarobfnd(prox, inperm, kblock)

where, again, PROX is the input proximity matrix (n x n with a zero main diagonal and a
dissimilarity interpretation); INPERM is a given starting permutation of the first n integers;
FIND is the least-squares optimal matrix (with variance-accounted-for of VAF) to PROX
having an SAR form for the row and column object ordering given by the ending permutation
OUTPERM. As usual, KBLOCK defines the block size in the use of the iterative QA routine.

In the MATLAB recording below, and starting from a random permutation, an SAR
form is found with a VAF of .7210 (an expected drop from the value of .7782 for the AR
form found using arobf nd. m).

[find,vaf,outperm] = sarobfnd(number,randperm(10),1)

find =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4210
.5840
.6965
.6965
.7960
.7960
.8600
.8600
.8600

0

0
0
0
0
0
0
0
0

.4210
0

.2840

.4960

.4960

.6619

.6619

.7357

.7357

.7357

0
0

0
0
0
0
0
0
0

.5840

.2840
0

.0590

.3835

.4456

.4456

.5740

.5740

.6998

0
0
0

0
0
0
0
0
0

.6965

.4960

.0590
0

.3835

.4456

.4456

.5740

.5740

.6998

0
0
0
0

0
0
0
0
0

.6965

.4960

.3835

.3835
0

.3750

.3750

.5199

.5199

.5783

0
0
0
0
0

0
0
0
0

.7960

.6619

.4456

.4456

.3750
0

.3750

.5199

.5199

.5783

126 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

Columns 7 through 10

0
0
0
0
0
0

0
0
0

.7960

.6619

.4456

.4456

.3750

.3750
0

.3460

.3460

.4253

0
0
0
0
0
0
0

0
0

.8600

.7357

.5740

.5740

.5199

.5199

.3460
0

.3460

.4253

0
0
0
0
0
0
0
0

0

.8600

.7357

.5740

.5740

.5199

.5199

.3460

.3460
0

.4253

0
0
0
0
0
0
0
0
0

.8600

.7357

.6998

.6998

.5783

.5783

.4253

.4253

.4253
0

vaf =

0.6776

outperm =

1 2 3 5 4 6 7 9 1 0 8

9.4 The Use of Optimal Transformations and the
M-Function proxmon.m

As previously discussed in Part I, the function proxmon.m provides a monotonically
transformed proximity matrix that is close in a least-squares sense to a given input matrix.
The syntax is

[monproxpermut, vaf, diff] = proxmon(proxpermut,fitted)

where PROXPERMUT is the input proximity matrix (which may have been subjected to an
initial row/column permutation, hence the suffix PERMUT) and FITTED is a given target
matrix; the output matrix MONPROXPERMUT is closest to FITTED in a least-squares sense
and obeys the order constraints obtained from each pair of entries in (the upper-triangular
portion of) PROXPERMUT (and where the inequality constrained optimization is carried
out using the Dykstra-Kaczmarz iterative projection strategy); VAF indicates how much
variance in MONPROXPERMUT can be accounted for by FITTED; finally, DIFF is the value
of the least-squares loss function and is (one-half) the sum of squared differences between
the entries in MONPROXPERMUT and FITTED.

In the notation of the chapter introduction when fitting a given order, FITTED would
correspond to the AR matrix A = {#/_,-}; the input PROXPERMUT would be {/VoV(y)};
MONPROXPERMUT would be {/(/y>(/v>0))}, where the function /(•) satisfies the mono-
tonicity constraints; i.e., if /V(0pl)0') < /V'OV'O') for I < i < j <n and 1 < /' < j' < n,

9.4 The Use of Optimal Transformations and the M-Function proxmon.m 127

then /(/y>(0p°0)) ^ /(/Va')P°(/'))- The transformed proximity matrix {/(/V>OV(/))}
minimizes the least-squares criterion (DIFF) of

over all functions /(•) that satisfy the monotonicity constraints. The VAF is a normalization
of this loss value by the sum of squared deviations of the transformed proximities from their
mean:

where / denotes the mean of the off-diagonal entries in {/(/v>(/)po(7))}.
The script M-file listed below gives an application of proxmon. m along with finding

a best-fitting AR form for our number. dat matrix. First, arobf nd. mis invoked to obtain
a best-fitting AR matrix (f ind); this is the same as found earlier based on the outperm of
[1 2 3 5 4 6 7 9 10 8] and generating a VAF of .7782. The M-file proxmon. m is then used to
generate the monotonically transformed proximity matrix (monproxpermut) with VAF
of .8323. Given the SIOT discussed in the introduction to this chapter, it might now be best
to fit once more an AR matrix to this now monotonically transformed proximity matrix but
then stop. Otherwise, as seen in the output below, if the strategy is repeated cyclically (i.e.,
finding a fitted matrix based on the monotonically transformed proximity matrix, finding a
new monotonically transformed matrix, and so on), a perfect VAF of 1.0 can be achieved
at the expense of losing most of the detail in the transformed proximities; i.e., only five
distinct values remain that correspond to the three largest and single smallest of the original
proximities with all the remaining now tied at a value of .5467. (To avoid another type of
degeneracy (where all matrices would converge to zeros), the sum of squares of the fitted
matrix was maintained stationary; convergence is based on observing a minimal change
(less than l.Oe-010) in the VAF.)

load number.dat
[find, vaf, outperm] = arobfnd(number,randperm(10),2)
[monproxpermut vaf diff] = ...

proxmon(number(outperm,outperm),find)
sumfitsq = sum(sum(fit.~2));
prevvaf = 2;
while (abs(prevvaf-vaf) >= l.Oe-010)

prevvaf = vaf;
[fit vaf] = arobfit(monproxpermut,1:10);
sumnewfitsq = sum(sum(fit."2));
find = sqrt(sumfitsq)*(fit/sqrt(sumnewfitsq));
[monproxpermut, vaf, diff] = ...
proxmon(number(outperm,outperm), find);

end

outperm
find

128 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

monproxpermut
vaf
diff

find =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4210
.5840
.6840
.7090
.7960
.7960
.8210
.8500
.9090

Columns 7

0
0
0
0
0
0

0
0
0

.7960

.7357

.4928

.3985

.3750

.3750
0

.3460

.3460

.4253

0

0
0
0
0
0
0
0
0

.4210
0

.2840

.4960

.4960

.5880

.7357

.7357

.7357

.7357

0
0

0
0
0
0
0
0
0

.5840

.2840
0

.0590

.3835

.4928

.4928

.4928

.7357

.7357

0
0
0

0
0
0
0
0
0

.6840

.4960

.0590
0

.3835

.3985

.3985

.4928

.6830

.7357

0
0
0
0

0
0
0
0
0

.7090

.4960

.3835

.3835
0

.3750

.3750

.4928

.4928

.5920

0
0
0
0
0

0
0
0
0

.7960

.5880

.4928

.3985

.3750
0

.3750

.4928

.4928

.4928

through 10

0
0
0
0
0
0
0

0
0

.8210

.7357

.4928

.4928

.4928

.4928

.3460
0

.3460

.4253

0
0
0
0
0
0
0
0

0

.8500

.7357

.7357

.6830

.4928

.4928

.3460

.3460
0

.4253

0
0
0
0
0
0
0
0
0

.9090

.7357

.7357

.7357

.5920

.4928

.4253

.4253

.4253
0

vaf =

0.7782

outperm =

1 2 3 5 4 6 7 9 1 0 8

monproxpermut =

9.4 The Use of Optimal Transformations and the M-Function proxmon.m 129

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4244
.5549
.6840
.7058
.7659
.7058
.8210
.8500
.9090

Columns 7

0
0
0
0
0
0

0
0
0

.7058

.7058

.4310

.4054

.3981

.4054
0

.4054

.3981

.4244

0

0
0
0
0
0
0
0
0

.4244
0

.3981

.5908

.4054

.5549

.7058

.7058

.5908

.5908

0
0

0
0
0
0
0
0
0

.5549

.3981
0

.0590

.4054

.5908

.4310

.4054

.7659

.7058

0
0
0

0
0
0
0
0
0

.6840

.5908

.0590
0

.4244

.4244

.4054

.3981

.6830

.7058

0
0
0
0

0
0
0
0
0

.7058

.4054

.4054

.4244
0

.4310

.3981

.7058

.3981

.5908

0
0
0
0
0

0
0
0
0

.7659

.5549

.5908

.4244

.4310
0

.4054

.5908

.5549

.4244

through 10

0
0
0
0
0
0
0

0
0

.8210

.7058

.4054

.3981

.7058

.5908

.4054
0

.4054

.4244

0
0
0
0
0
0
0
0

0

.8500

.5908

.7659

.6830

.3981

.5549

.3981

.4054
0

.4310

0
0
0
0
0
0
0
0
0

.9090

.5908

.7058

.7058

.5908

.4244

.4244

.4244

.4310
0

vaf =

0.8323

diff =

0.2075

outperm =

1 2 3 5 4 6 7 9 10 8

find =

Columns 1 through 6

130 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

0
0
0
0
0
0
0
0
0

0
.5467
.5467
.5467
.5467
.5467
.5467
.8474
.8774
.9383

Columns 7

0
0
0
0
0
0

0
0
0

.5467

.5467

.5467

.5467

.5467

.5467
0

.5467

.5467

.5467

0.

0.
0.
0.
0.
0.
0.
0.
0.

5467
0

5467
5467
5467
5467
5467
5467
5467
5467

0
0

0
0
0
0
0
0
0

.5467

.5467
0

.0609

.5467

.5467

.5467

.5467

.5467

.5467

0
0
0

0
0
0
0
0
0

.5467

.5467

.0609
0

.5467

.5467

.5467

.5467

.5467

.5467

0
0
0
0

0
0
0
0
0

.5467

.5467

.5467

.5467
0

.5467

.5467

.5467

.5467

.5467

0
0
0
0
0

0
0
0
0

.5467

.5467

.5467

.5467

.5467
0

.5467

.5467

.5467

.5467

through 10

0.
0.
0.
0.
0.
0.
0.

0.
0.

8474
5467
5467
5467
5467
5467
5467

0
5467
5467

0
0
0
0
0
0
0
0

0

.8774

.5467

.5467

.5467

.5467

.5467

.5467

.5467
0

.5467

0
0
0
0
0
0
0
0
0

.9383

.5467

.5467

.5467

.5467

.5467

.5467

.5467

.5467
0

monproxpermut =

Columns 1

0
0
0
0
0
0
0
0
0

0
.5467
.5467
.5467
.5467
.5467
.5467
.8474
.8774
.9383

Columns 7

0
0
0

.5467

.5467

.5467

through 6

0.

0.
0 .
0.
0.
0.
0.
0.
0.

5467
0

5467
5467
5467
5467
5467
5467
5467
5467

0
0

0
0
0
0
0
0
0

.5467

.5467
0

.0609

.5467

.5467

.5467

.5467

.5467

.5467

0
0
0

0
0
0
0
0
0

.5467

.5467

.0609
0

.5467

.5467

.5467

.5467

.5467

.5467

0
0
0
0

0
0
0
0
0

.5467

.5467

.5467

.5467
0

.5467

.5467

.5467

.5467

.5467

0
0
0
0
0

0
0
0
0

.5467

.5467

.5467

.5467

.5467
0

.5467

.5467

.5467

.5467

through 10

0.
0.
0.

8474
5467
5467

0
0
0

.8774

.5467

.5467

0
0
0

.9383

.5467

.5467

9.5. Graphically Representing SAR Structures 131

0.5467
0.5467
0.5467

0
0.5467
0.5467
0.5467

0.
0,
0,
0,

0.
0.

.5467

.5467

.5467

.5467
0

.5467

.5467

0
0
0
0
0

0

.5467

.5467

.5467

.5467

.5467
0

.5467

0
0
0
0
0
0

.5467

.5467

.5467

.5467

.5467

.5467
0

vaf =

1.0000

diff =

8.3999e-011

9.5 Graphically Representing SAR Structures

The use of the very general form of representation offered by an AR matrix without the
imposition of any further restrictions has one annoying interpretive difficulty. Specifically,
it is usually necessary to interpret the fitted structures directly (and enumeratively) through
a set of subsets or clusters that are all defined by objects contiguous in a specific object
ordering; each such subset has an attached diameter that reflects its maximum within-class
fitted value. More pointedly, it is generally not possible to use a more convenient graph-
theoretic structure and the lengths of paths between objects in such a graph to represent
visually a fitted AR matrix; this situation contrasts with opportunities resulting when the
approximation matrix is more restricted and defined, say, by an ultrametric or an additive
tree, or by a (linear or circular) unidimensional scaling (see Hubert, Arabic, and Meulman,
1997, or Parts I and II of this monograph).

As noted in the chapter introduction, the imposition of SAR conditions allows a
representation of the fitted values in a (least-squares) SAR approximating matrix as lengths
of paths in a graph, although this graph will not generally have the simplified form of a
tree. A discussion of these latter SAR constraints is not new here, and several (theoretical)
presentations of their usefulness exist in the literature (for example, see Critchley and
Fichet, 1994; Critchley, 1994; Durand and Fichet, 1988; Mirkin, 1996, Chapter 7). Here,
we give the example based on the number data from Hubert, Arabic, and Meulman (1998) for
interpretative convenience. The latter data were transformed (in that reference) to a standard
deviation of 1.0 and a mean of 4.0; thus, the numbers within the fitted matrices will differ
from the examples given earlier. Approximating AR and SAR forms for the transformed
number proximity data are given in the upper- and lower-triangular portions, respectively,
of the matrix in Table 9.1. For convenience, below we will denote the upper-triangular AR
matrix by AM/ and the lower-triangular SAR matrix by A/,.

132 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

Table 9.1. Order-constrained least-squares approximations to the digit proximity
data of Shepard, Kilpatric, and Cunningham (1975); the upper-triangular portion is AR
and the lower-triangular portion is SAR.

Digit
0
1
2
4
3
5
6
8
9
7

0
X

3.41
4.21
4.76
4.76
5.25
5.25
5.57
5.57
5.57

1
3.41

X

2.73
3.78
3.78
4.59
4.59
4.96
4.96
4.96

2
4.21
2.73

X

1.63
3.22
3.53
3.53
4.18
4.18
4.18

4
4.70
3.78
1.63

X

3.22
3.53
3.53
4.18
4.18
4.18

3
4.83
3.78
3.22
3.22

X

3.18
3.18
4.18
4.18
4.18

5
5.25
4.23
3.76
3.30
3.18

X

3.18
4.18
4.18
4.18

6
5.25
4.96
3.76
3.30
3.18
3.18

X

3.04
3.04
3.43

8
5.38
4.96
3.76
3.76
3.76
3.76
3.04

X

3.04
3.43

9
5.52
4.96
4.96
4.70
3.76
3.76
3.04
3.04

X

3.43

7
5.81
4.96
4.96
4.96
4.25
3.76
3.43
3.43
3.43

X

The 10(10 — l)/2 = 45 subsets defined by objects contiguous in the object ordering
used to display the upper-triangular portion of Table 9.1 are listed in Table 9.2 according
to increasing diameter values. For purposes of our later discussion, 22 of the subsets are
given in italics to indicate that they are proper subsets of another listed subset having the
same diameter. Substantively, the dominant patterning of the entries in AM, appears to
reflect (primarily) digit magnitude, except for the placement of digit 4 next to 2 and digit 7
being located in the last position. Both these latter deviations from an interpretation strictly
according to digit magnitude show some of the salient structural properties of the digits.
For example, the digit pair (2,4) has the absolute smallest dissimilarity in the data; besides
being relatively close in magnitude, there are the possible (although redundant) similarity
bases that 2 + 2 = 4, 2x2 = 4,4 is a power of 2, and both 2 and 4 are even numbers.
Similarly, the placement of the digit 7 in the last position results from the salience of the
triple {6, 8, 9}, which is the third to emerge according to its diameter. In addition to these
three digits all being relatively close in magnitude, 6 and 8 are both even numbers, 6 and 9
are multiples of 3, and 8 is directly adjacent in size to 9. The three original dissimilarities
within the set {6, 8, 9} are all smaller than the dissimilarities digit 7 has to any other digit.

Given just the collection of subsets S\,..., SM listed in Table 9.2 and their associated
diameters, it is possible (trivially) to reconstruct the original approximating matrix AM/ by
identifying for each object pair the smallest diameter for a subset that contains that pair.
(Explicitly, the smallest diameter for a subset that contains an object pair is equal to the
value in A.ut associated with that pair, and the subset itself includes that object pair and all
objects in between in the ordering that is used to display the AR form for Awf .) This type
of reconstruction is generally possible for any matrix that can be row/column reordered to
an AR form through the collection of subsets S\,..., SM and their diameters identified by
increasing a threshold variable from the smallest fitted value. In fact, even if all the italicized
subsets were removed (that are proper subsets of another having the same diameter), exactly
the same reconstruction could be carried out because the italicized subsets are redundant

9.5. Graphically Representing SAR Structures 133

Table 9.2. The 45 subsets listed according to increasing diameter values that are
contiguous in the object ordering used to display the upper-triangular portion of Table 9.1.
The 22 subsets given in italics are redundant in the sense that they are proper subsets of
another listed subset with the same diameter.

Subset Diameter
L63

{1,2} 2.73
{6,8},{8,9},{6,S,9} 3.04
{3,5j,{5,6j,{3,5,6} 3.18
{4,3},{2,43} 3.22
/4,3,5y,{ 4,3,5,6} 3.30
{0,1} 3.41
{9,7},{8,9,7},{ 6,8,9,7} 3.43
{5,6,8},{5,6,8,9J,{ 5,6,8,9,7} 3.76
^,5,6,Sy,{3,5,6,8,9} 3.76
{4,3,5,6,8},{2,4,3,5],{2,4,3,5,6},{2,4,3,5,6,%} 3.76
{1,2,4J,{ 1,2,4,3} 3.78
{0,1,2} 4.21
{1,2,4,3,5} 4.23
{3,5,6,8,9,7} 4.25
{0,1,2,4},{4,3,5,6,8,9} 4.70
{0,1,2,4,3} 4.83
{1,2,4,3,5,6], {1,2,4,3,5,6,8} 4.96
{1,2,4,3,5,6,8,9}, {2,4,3,5,6,8,9} 4.96
f2,4>3,5,6,8,9,7J,{4,3,5,6,8,9,7} 4.96
{1,2,4,3,5,6,8,9,7} 4.96
/0,7,2,4,3,5y,{0,l,2,4,3,5,6} 5.25
{0,1,2,4,3,5,6,8} 5.38
{0,1,2,4,3,5,6,8,9} 5.52
{0,1,2,4,3,5,6,8,9,7} 5.81

with respect to identifying for each object pair the smallest diameter for a subset that contains
the pair.

Without imposing further restrictions on the approximating matrix other than just
being AR, a more convenient representation using a graph and path lengths in such a graph
is generally not possible. We will select two small (AR) submatrices from the upper-
triangular portion of Table 9.1 to make this point more convincingly and in the process
indicate by example how a graphical representation is to be constructed and why further
restrictions on the approximating matrix may be necessary to carry out the task.

First, consider the fitted values for the first four placed digits, 0, 1, 2, and 4 in
Figure 9.1 (a), for which the desired type of graphical representation is possible without
imposing any further constraints. This AR submatrix is given in Figure 9.1 (a) along with

{2,4}

134 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

Figure 9.1. Tvvo 4 x 4 submatrices and the object subsets they induce, taken
from the AR matrix in the upper-triangular portion of Table 9.1. For (a), a graphical
representation of the fitted values is possible; for (b), the anomaly indicated by the dashed
lines prevents a consistent graphical representation from being constructed.

the six corresponding subsets of contiguous objects and their diameters and a graphical
representation for the structure. The latter consists of four nodes corresponding to the
original four objects that we represent by open circles (referred to as "terminal" nodes) plus
six nodes represented by solid circles that denote the six subsets in the given listing (referred
to as "internal" nodes). Based on this graph and the internal node heights provided by the
calibrated scale on the left, a fitted value in the submatrix between any two terminal nodes
can be obtained as one-half the length of the minimum path from one of the terminal nodes

9.5. Graphically Representing SAR Structures 135

up to an internal node and back down to the other terminal node. All horizontal line segments
are used here for display convenience only and are not actually assumed to contribute to the
length of any path. Thus, if we changed the vertical scaling by a multiplier of 1/2, each of
the fitted values in the submatrix would be exactly the length of the minimum path between
two terminal nodes, which proceeded upward from one such node to an internal node and
then back down to the other. We might also note that from the topmost internal node, all
paths down to the terminal nodes have exactly the same length; i.e., there is an internal node
equidistant from all terminal nodes.

Now, consider the fitted values for the four objects placed, respectively, at the third
through sixth positions: 2,4, 3, and 5, given in Figure 9.1(b) along with the corresponding
subsets of contiguous objects and their diameters (excluding the redundant subset {4,3}
which is a proper subset of {2,4,3} having the same diameter), and the beginnings of a
graphical representation for its structure. There is a difficulty encountered, however, in
defining a graph that would be completely consistent with all the fitted values in the 4 x 4
submatrix; we indicate this anomaly by the dashed vertical and horizontal lines. If an internal
node were to be placed at the level of 3.30 to represent the cluster {4, 3, 5}, by implication
the fitted value for the digit pair (2,5) should also be 3.30 (and not its current value of 3.76).
Because digit 3 was "joined" to both 2 and 4 at the threshold level 3.22, and thus there
are two fitted values tied at 3.22, a consistent graphical representation would be possible
only if the fitted values for the pairs (2,5) and (4,5) were equal. This last observation, that
when some fitted values are tied in an approximating matrix \ut others must also be tied to
allow for the construction of a consistent graphical representation, is the motivating basis
for considering an additional set of SAR constraints.

When a graphical representation that permits their reconstruction through path lengths
is desired for the collection of fitted values in an approximating matrix A, the small illustra-
tion just provided serves as justification for imposing a stricter collection of constraints on
the approximating matrix than just being row/column reorderable to an AR form. In particu-
lar, the additional restriction will be imposed that the approximating matrix A is row/column
reorderable to one that is SAR, which will eliminate the type of graphical anomaly present
in Figure 9.1(b).

For the SAR approximation given in the lower-triangular portion of Table 9.1, there are
now only fourteen (nonredundant) subsets identifiable by increasing a threshold variable
from the smallest fitted value; these are listed in Table 9.3 along with their diameters.

Table 9.3. The fourteen (nonredundant) subsets listed according to increasing
diameter values are contiguous in the linear object ordering used to display the lower-
triangular SAR portion of Table 9.1.

Subset
{2,4}
{1,2}
{6,8,9}
{3,5,6}
{2,4,3}
{0,1}
{6,8,9,7}

Diameter
1.63
2.73
3.04
3.18
3.22
3.41
3.43

Subset
{2,4,3,5,6}
{1,2,4,3}
{2,4,3,5,6,8,9,7}
{0,1,2}
{0,1,2,4,3}
{0,1,2,4,3,5,6}
{0,1,2,4,3,5,6,8,9,7}

Diameter
3.53
3.78
4.18
4.21
4.76
5.25
5.57

136 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

Figure 9.2. A graphical representation/or the fitted values given by the SAR matrix
in the lower-triangular portion of Table 9.1.

The imposition of the more restrictive SAR constraints allows the graphical representation
given in Figure 9.2. Although we might not change our substantive comments about the
approximating matrix (i.e., mostly digit magnitude with some structural characteristics for
the subsets {2, 4} and {6, 8, 9}), a graphical representation makes these same observations
visually clearer.

9.6 Representation Through Multiple (Strongly) AR
Matrices

The representation of a proximity matrix by a single AR structure extends easily to the
additive use of multiple matrices. The M-function biarobf nd. m fits the sum of two AR
matrices using iterative projection to a symmetric proximity matrix in the L2-norm based
on permutations identified through the use of iterative QA. The usage syntax is

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
biarobfnd(prox,inperm,kblock)

where, as before, PROX is the input proximity matrix (n x n with a zero main diagonal
and a dissimilarity interpretation); INPERM is a given starting permutation of the first n
integers; FIND is the least-squares optimal matrix (with variance-accounted-for of VAF)
to PROX and is the sum of the two AR matrices TARGONE and TARGTWO based on the
two row and column object orderings given by the ending permutations OUTPERMONE and
OUTPERMTWO. As before, KBLOCK defines the block size in the use of the iterative QA
routine.

9.6. Representation Through Multiple (Strongly) AR Matrices 137

In the example below, the two resulting AR forms are very clearly interpretable as
number magnitude and digit structural properties; the VAF is, in effect, 100%.

load number.dat
[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
biarobfnd(number,1:10,1)

find =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4209
.5840
.7090
.6840
.8040
.7865
.9107
.8210
.8500

Columns 7

0
0
0
0
0
0

0
0
0

.7865

.7568

.4225

.3000

.3880

.3960
0

.4169

.3499

.2960

0

0
0
0
0
0
0
0
0

.4209
0

.2840

.3460

.6460

.5880

.7568

.6300

.7975

.6250

0
0

0
0
0
0
0
0
0

.5840

.2840
0

.3540

.0588

.6702

.4225

.7960

.3672

.8080

0
0
0

0
0
0
0
0
0

.7090

.3460

.3540
0

.4130

.4290

.3000

.5920

.7975

.2630

0
0
0
0

0
0
0
0
0

.6840

.6460

.0588

.4130
0

.4094

.3880

.7420

.2460

.6829

0
0
0
0
0

0
0
0
0

.8040

.5880

.6702

.4290

.4094
0

.3960

.4000

.6714

.5920

through 10

0
0
0
0
0
0
0

0
0

.9107

.6300

.7960

.5920

.7420

.4000

.4169
0

.4000

.4587

0
0
0
0
0
0
0
0

0

.8210

.7975

.3672

.7975

.2460

.6714

.3499

.4000
0

.3922

0
0
0
0
0
0
0
0
0

.8500

.6250

.8080

.2630

.6829

.5920

.2960

.4587

.3922
0

vaf =

0.9999

targone =

Columns 1 through 6

138 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

0
0
0
0
0
0
0
0
0

0
.3406
.6710
.6926
.6956
.6956
.8303
.8303
.8303
.8611

Columns 7

0
0
0
0
0
0

0
0
0

.8303

.6764

.4662

.3779

.3779

.2876
0

.3360

.3366

.3849

0

0
0
0
0
0
0
0
0

.3406
0

.2018

.5421

.5423

.5880

.6764

.6764

.7511

.7943

0
0

0
0
0
0
0
0
0

.6710

.2018
0

.3333

.3680

.4662

.4662

.6764

.7138

.7943

0
0
0

0
0
0
0
0
0

.6926

.5421

.3333
0

.3093

.3206

.3779

.6764

.6764

.6764

0
0
0
0

0
0
0
0
0

.6956

.5423

.3680

.3093
0

.2055

.3779

.6383

.6383

.6690

0
0
0
0
0

0
0
0
0

.6956

.5880

.4662

.3206

.2055
0

.2876

.4675

.4745

.4836

through 10

0
0
0
0
0
0
0

0
0

.8303

.6764

.6764

.6764

.6383

.4675

.3360
0

.2243

.3783

0
0
0
0
0
0
0
0

0

.8303

.7511

.7138

.6764

.6383

.4745

.3366

.2243
0

.3783

0
0
0
0
0
0
0
0
0

.8611

.7943

.7943

.6764

.6690

.4836

.3849

.3783

.3783
0

targtwo =

Columns 1

-0
-0
-0
0
0
0
0
0
0

0
.3923
.3092
.0093
.0139
.0139
.1211
.1211
.1757
.2039

Columns 7

0
0
0
0

.1211

.1037

.0207

.0164

through 6

-0

-0
-0
0
0
0
0
0
0

.3923
0

.3092

.0116

.0101

.0139

.1037

.1037

.1037

.2039

-0
-0

-0
-0
0
0
0
0
0

.3092

.3092
0

.0870

.0438

.0137

.0207

.0822

.0822

.2039

-0
-0
-0

-0
-0
0
0
0
0

.0093

.0116

.0870
0

.0438

.0111

.0164

.0804

.0804

.1084

0
0

-0
-0

-0
-0
0
0
0

.0139

.0101

.0438

.0438
0

.0889

. 0779

.0804

.0804

.1084

0
0
0

-0
-0

-0
-0
0
0

.0139

.0139

.0137

.0111

.0889
0

.4134

.1693

.0804

.1084

through 10

0
0
0
0

.1211

.1037

.0822

.0804

0
0
0
0

.1757

.1037

.0822

.0804

0
0
0
0

.2039

.2039

.2039

.1084

9.6. Representation Through Multiple (Strongly) AR Matrices 139

-0
-0

-0
-0
0

.0779

.4134
0

.1961

.0844

.1084

0
-0
-0

-0

.0804

.1693

.1961
0

.1211
0

0.
0.

-0.
-0.

-0.

0804
0804
0844
1211

0
0745

0
0
0

-0

.1084

.1084

.1084
0

.0745
0

outpermone =

1 2 10

outpermtwo =

9 5 3 1 7 1 0 4 2 8 6

For finding multiple SAR forms, bisarobf nd. m has usage syntax

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
bisarobfnd(prox,inperm,kblock)

with all the various terms the same as for biarobf nd. m but now for SAR structures. The
example below finds essentially the same representation as above (involving digit magnitude
and structure) with a slight drop in the VAF to 99.06%.

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
bisarobfnd(number,randperm(lO),1)

find =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0

.4210

.5840

.7095

.6838

.8519

.7260

.8998

.8208

.8736

0.

0,
0.
0.
0.
0 ,
0,
0.
0.

.4210
0

.2840

.3460

.6461

.5892

.7565

.6153

.8246

.6250

0,
0,

0,
0,
0.
0,
0
0,
0,

.5840

.2840
0

.3541

.0590

.6090

.4830

.8059

.3670

.7797

0
0
0

0
0
0
0
0
0

.7095

.3460

.3541
0

.4131

.4278

.3005

.6067

.7893

.2630

0
0
0
0

0
0
0
0
0

.6838

.6461

.0590

.4131
0

.4090

.3882

.7286

.2460

.6965

0
0
0
0
0

0
0
0
0

.8519

.5892

.6090

.4278

.4090
0

.3960

.4000

.6711

.5920

Columns 7 through 10

0.7260
0.7565

0.8998
0.6153

0.8208
0.8246

0.8736
0.6250

3 4 5 6 7 9 8 10

140 Chapter 9. Anti-Robinson Matrices for Symmetric Proximity Data

0
0
0
0

0
0
0

.4830

.3005

.3882

.3960
0

.4168

.3502

.2955

0
0
0
0
0

0
0

.8059

.6067

.7286

.4000

.4168
0

.4000

.4590

0
0
0
0
0
0

0

.3670

.7893

.2460

.6711

.3502

.4000
0

.3921

0
0
0
0
0
0
0

.7797

.2630

.6965

.5920

.2955

.4590

.3921
0

vaf =

0 .9906

targone =

Columns 1

0
0
0
0
0
0
0
0
0

0
.3148
.6038
.6296
.6296
.7457
.7457
.7936
.7936
.7936

Columns 7

0
0
0
0
0
0

0
0
0

.7457

.6626

.5028

.5012

.3340

.3021
0

.3229

.3229

.4963

through 6

0

0
0
0
0
0
0
0
0

.3148
0

.1778

.5201

.5201

.6626

.6626

.7061

.7061

.7061

0
0

0
0
0
0
0
0
0

.6038

.1778
0

.2742

.3230

.5028

.5028

.6997

.6997

.6997

0
0
0

0
0
0
0
0
0

.6296 0.6296

.5201 0.5201

.2742 0.3230
0 0.3192

.3192 0

.5012 0.2831

.5012 0.3340

.6974 0.6027

.6974 0.6027

.6974 0.6027

0.7457
0.6626
0.5028
0.5012
0.2831

0
0.3021
0.5526
0 .5526
0.5527

through 10

0
0
0
0
0
0
0

0
0

.7936

.7061

.6997

.6974

.6027

.5526

.3229
0

.2815

.4197

0
0
0
0
0
0
0
0

0

.7936

.7061

.6997

.6974

.6027

.5526

.3229

.2815
0

.3001

0
0
0
0
0
0
0
0
0

.7936

.7061

.6997

.6974

.6027

.5527

.4963

.4197

.3001
0

targtwo =

9.6. Representation Through Multiple (Strongly) AR Matrices 141

Columns 1

-0
-0
0
0
0
0
0
0
0

0
.3567
.2640
.0542
.0542
.0938
.0938
.1260
.1260
.1260

Columns 7

0
0
0
0

-0
-0

-0
-0
-0

.0938

.0919

.0799

.0799

.2008

.4344
0

.1741

.0907

.0734

through 6

-0

-0
0
0
0
0
0
0
0

.3567
0

.3327

.0272

.0272

.0919

.0919

.1185

.1185

.1185

-0
-0

-0
-0
0
0
0
0
0

.2640

.3327
0

.0198

.0198

.0799

.0799

.1062

.1062

.1062

0
0

-0

-0
0
0
0
0
0

.0542

.0272

.0198
0

.0198

.0799

.0799

.1062

.1062

.1062

0
0

-0
-0

-0
-0
0
0
0

.0542

.0272

.0198

.0198
0

.2008

.2008

.0939

.0939

.0939

0
0
0
0

-0

-0
-0
0
0

.0938

.0919

.0799

.0799

.2008
0

.4344

.0811

.0393

.0393

through 10

0
0
0
0
0
-0
-0

-0
-0

.1260

.1185

.1062

.1062

.0939

.0811

.1741
0

.0907

.0734

0
0
0
0
0
0

-0
-0

-0

.1260

.1185

.1062

.1062

.0939

.0393

.0907

.0907
0

.1526

0
0
0
0
0
0

-0
-0
-0

.1260

.1185

.1062

.1062

.0939

.0393

.0734

.0734

.1526
0

outpermone =

1 2 3

outpermtwo =

5 9 3

4 5 6 7 8 9 10

1 7 10 4 2 8 6

This page intentionally left blank

Chapter 10

Circular Anti-Robinson
Matrices for Symmetric
Proximity Data

In the approximation of a proximity matrix P by one that is row/column reorderable to an AR
form, the interpretation of the fitted matrix in general had to be carried out by identifying a
set of subsets through an increasing threshold variable; each of the subsets contained objects
that were contiguous with respect to a given linear ordering along a continuum and had
a diameter defined by the maximum fitted value within the subset. To provide a further
representation depicting the fitted values as lengths of paths in a graph, an approximation
was sought that satisfied the additional constraints of an SAR matrix; still, the subsets
thus identified had to contain objects contiguous with respect to a linear ordering. As one
possible generalization of both the AR and SAR constraints, we can define what will be called
circular anti-Robinson (CAR) and circular strongly anti-Robinson (CSAR) forms that allow
the subsets identified from increasing a threshold variable to be contiguous with respect to a
circular ordering of the objects around a closed continuum. Approximation matrices that are
row/column reorderable to display an AR or SAR form, respectively, will also be (trivially)
row/column reorderable to display what is formally characterized below as a CAR or a
CSAR form but not conversely. (Historically, there is a large literature on the possibility of
circular structures emerging from and being identifiable in a given proximity matrix. For
a variety of references, the reader is referred to the American Psychological Association
sponsored volume edited by Plutchik and Conte (1997), the discussion of metric circular
unidimensional scaling (CUS) in Part I, Chapter 3, and in Hubert, Arabic, and Meulman
(1997). The extension of CAR forms to those that are also CSAR, however, has apparently
not been a topic discussed in the literature before the appearance of Hubert, Arabie, and
Meulman (1998); this latter source forms the basis for much of the present chapter.)

To be explicit, an arbitrary symmetric matrix Q = {qij}, where <?,-/ = 0 for 1 <i,j <
n, is said to be row/column reorderable to a CAR form (or, for short, Q is a CAR matrix)
if there exists a permutation, p (-) , on the first n integers such that the reordered matrix
Q = {qP(i)p(j)} satisfies the conditions given in (II):

143

144 Chapter 10. Circular Anti-Robinson Matrices for Symmetric Proximity Data

Interpretatively, within each row of Q ,̂ moving to the right from the main diagonal and
then wrapping back around to reenter the same row from the left, the entries never decrease
until a maximum is reached and then never increase moving away from the maximum until
the main diagonal is again reached. Given the symmetry of P, a similar pattern of entries
would be present within each column as well. As noted above, any AR matrix is CAR but
not conversely.

In analogy to the SAR conditions that permit graphical representation, a symmetric
matrix Q is said to be row/column reorderable to a CSAR form (or, for short, Q is a CSAR
matrix) if there exists a permutation, p(-), on the first n integers such that the reordered
matrix Qp = {qp(i)p(j)} satisfies the conditions given by (II), and

Again, the imposition of the stronger CSAR conditions avoids the type of graphical anomaly
present in Figure 9.1 (b) but now in the context of a CAR matrix—when two fitted values that
are adjacent within a row are equal, the fitted values in the same two adjacent columns must
also be equal for a row that is either its immediate predecessor (if q p (i + \) p (j) < qPa)p(j+\))
or successor (if qPa+\)P(j) > tf/ooxy+i)); a similar condition is imposed when two fitted
values that are adjacent within a column are equal. As noted, any SAR matrix is CSAR but
not conversely.

The computational strategy we suggest for identifying a best-fitting CAR or CSAR
approximation matrix is based on an initial CUS obtained through the optimization strategy
developed by Hubert, Arabic, and Meulman (1997) that is reviewed in Part I, Chapter 3.
Specifically, we first institute a combination of combinatorial search for good matrix re-
orderings and heuristic iterative projection to locate the points of inflection when minimum
distance calculations change directionality around a closed circular structure. Approxi-
mation matrices to P are found through a least-squares loss criterion, and they have the

10.1. Fitting a Given CAR Matrix in the /.2-Norm 145

parameterized form

where c is an estimated additive constant, xp(\) < xp(2) < • • • < xp(n) < XQ, and the
last coordinate, XQ, is the circumference of the circular structure. Based on the inequality
constraints implied by such a collection of coordinates, a CAR approximation matrix can be
fitted to P directly; then, beginning with this latter CAR approximation, the identification and
imposition of CSAR constraints proceeds through the heuristic use of iterative projection,
directly analogous to the way SAR constraints in the linear ordering context were identified
and fitted, beginning with a best approximation matrix satisfying just the AR restrictions.

10.1 Fitting a Given CAR Matrix in the Z.2-Norm

The function M-file cirarobf it.m fits a CAR matrix using iterative projection to a
symmetric proximity matrix in the L2-norm. Usage syntax is

[fit, vaf] = cirarobfit(prox,inperm,targ)

where PROX is the input proximity matrix (nxn with a zero main diagonal and a dissimilarity
interpretation); INPERM is a given permutation of the first n integers (around a circle); TARG
is a given nxn matrix having the CAR form that guides the direction in which distances
are taken around the circle. The matrix FIT is the least-squares optimal approximation
(with variance-accounted-for of VAF) to PROX having a CAR form for the row and column
object ordering given by INPERM.

A recording of a MATLAB session follows that uses the number. dat data file, an
equally spaced CAR matrix targcircular obtained from the utility M-file targe ir. m
first introduced in Part I, and the identity permutation for the objects around the circular
structure. The fitted CAR matrix thus identified in this way has a VAF of 64.37%.

load number.dat
targcircular = targcir(10);
[fit vaf] = cirarobfit(number,1:10,targcircular)

fit =

Columns 1 through 6

0
0
0
0
0
0
0
0

0
.4210
.5840
.6510
.6835
.8040
.7730
.7695
.6597

0,

0
0,
0,
0
0
0,
0,

.4210
0

.2840

.3460

.6170

.6170

.7730

.7695

.6597

0
0

0
0
0
0
0
0

.5840

.2840
0

.2753

.2753

.5460

.5460

.7960

.6597

0
0
0

0
0
0
0
0

.6510

.3460

.2753
0

.2753

.3844

.3844

.5920

.8040

0
0
0
0

0
0
0
0

.6835

.6170

.2753

.2753
0

.3844

.3844

.5530

.5530

0
0
0
0
0

0
0
0

.8040

.6170

.5460

.3844

.3844
0

.3844

.4000

.5530

146 Chapter 10. Circular Anti-Robinson Matrices for Symmetric Proximity Data

0.6510 0.6510 0.6510 0.6510 0.6835 0.5920

Columns 7 through 10

0
0
0
0
0
0

0
0
0

.7730

.7730

.5460

.3844

.3844

.3844
0

.3857

.3857

.3857

0,
0,
0,
0,
0
0.
0,

0,
0,

.7695

.7695

.7960

.5920

.5530

.4000

.3857
0

.3857

.3857

0
0
0
0
0
0
0
0

0

.6597

.6597

.6597

.8040

.5530

.5530

.3857

.3857
0

.3857

0
0
0
0
0
0
0
0
0

.6510

.6510

.6510

.6510

.6835

.5920

.3857

.3857

.3857
0

vaf =

0.6437

10.2 Finding a CAR Matrix in the /.2-Norm

The M-file cirarobfnd.m is our suggested strategy for identifying a best-fitting CAR
matrix for a symmetric proximity matrix in the L2-norm based on a permutation that is
initially identified through the use of iterative quadratic assignment (QA). Based on an
equally spaced circular target matrix, order. m is first invoked to obtain a good (circular)
permutation, which in turn is then used to construct a new circular target matrix with
cirf it. m. (We will mention here but not illustrate with an example an alternative to the
use of c i rarobf nd. m called c i rarobf nd_ac . m; the latter M-file has the same syntax
as cirarobf nd.m but uses cirf itac .m rather than cirf it .m internally to obtain
the new circular target matrices.) The final output is generated from cirarobf it. m that
no better permutation can be identified using the newer circular target matrix. The usage
syntax for cirarobf nd .m is as follows:

[find, vaf, outperm] = cirarobfnd(prox, inperm, kblock)

where PROX is the input proximity matrix (nxn with a zero main diagonal and a dissimilar-
ity interpretation); INPERM is a given starting permutation (assumed to be around the circle)
of the first n integers; FIND is the least-squares optimal matrix (with variance-accounted-
for of VAF) to PROX having a CAR form for the row and column object ordering given by
the concluding permutation OUTPERM. Again, KBLOCK defines the block size in the use of
the iterative QA routine.

An example of the use of cirarobf nd.m is given below that seems to lead to a
circular ordering best interpreted according to the structural properties of the digits. This
solution is only one of several local optima identifiable by repeated application of the
routine using other random starting permutations. In general, the different local optima

10.2. Finding a CAR Matrix in the /.2-Norm 147

observed differ in the way the odd digits, {3, 5, 7, 9}, and the even digits, {2,4, 6, 8}, are
ordered within these sets when moving clockwise around a circular structure. Explicitly,
all local optima had a general structure of -> 0 -> 1 —> {3,5, 7, 9} -> {2,4, 6, 8} —>•
but with some variation in order within the odd and even digits. For example, the CAR
matrix given below uses the odd digits a s — > 3 — > - 5 - > 9 - > 7 - > and the even digits as
^ 6 - + 8 - > 4 ^ 2 - > .

[find, vaf, outperm] = cirarobfnd (number, randperm (10) ,.

find =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.3460
.5315
.5315
.6069
.8040
.4460
.4460
.4160
.4160

Columns 7

0
0
0
0
0
0

0
0
0

.4460

.7895

.7895

.4210

.3880

.3500
0

.3907

.3907

.4160

0

0
0
0
0
0
0
0
0

.3460
0

.4210

.4340

.6069

.7895

.7895

.6300

.6250

.5880

0
0

0
0
0
0
0
0
0

.5315

.4210
0

.4340

.6069

.7895

.7895

.9090

.8500

.7698

0
0
0

0
0
0
0
0
0

.5315

.4340

.4340
0

.0590

.3670

.4210

.7697

.7698

.7698

through 10

0
0
0
0
0
0
0

0
0

.4460

.6300

.9090

.7697

.6069

.3960

.3907
0

.3907

.4160

0
0
0
0
0
0
0
0

0

.4160

.6250

.8500

.7698

.6069

.3960

.3907

.3907
0

.4160

0
0
0
0
0
0
0
0
0

.4160

.5880

.7698

.7698

.6069

.6069

.4160

.4160

.4160
0

0.6069
0.6069
0.6069
0.0590

0
0.2460
0.3880
0.6069
0.6069
0.6069

0.8040
0.7895
0.7895
0.3670
0.2460

0
0.3500
0.3960
0.3960
0.6069

vaf =

0.8128

outperm =

4 2 1 3 5 9 7 8 10 6

148 Chapter 10. Circular Anti-Robinson Matrices for Symmetric Proximity Data

10.3 Finding a CSAR Matrix in the l2-Norm

The two M-functions cirsarobf it .m and cirsarobfnd.m are direct analogues
of cirarobfit.m and cirarobfnd.m, respectively but are concerned with fitting
and finding strongly CAR forms (also, we mention but do not illustrate the M-file
cirsarobfnd_ac .m, which uses cirarobfnd_ac .m to obtain the initial CAR ma-
trix that is then strengthened into one that is CSAR). The syntax for cirsarobf it .m,
which fits a CSAR matrix using iterative projection to a symmetric proximity matrix in the
L2-norm, is

[fi t , vaf] = cirsarobfit(prox, inperm, targ)

where, again, PROX is the input proximity matrix (n x n with a zero main diagonal and a
dissimilarity interpretation); INPERM is a given permutation of the first n integers; TARG is
a given n x n matrix having the CAR form that guides the direction in which distances are
taken around the circle. FIT is the least-squares optimal matrix (with variance-accounted-
for of VAF) to PROX having a strongly CAR form for the row and column object ordering
given by INPERM.

An example follows using the same identity permutation as in fitting a CAR form
with cirarobf it. m; as might be expected from using the more restrictive CSAR form,
the variance-accounted-for drops to .4501 from .6437.

[fit, vaf] = cirsarobfit(number,1:10,targcircular)

fit =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4210
.5840
.6505
.6505
.6505
.6505
.6505
.6505
.6505

0

0
0
0
0
0
0
0
0

.4210
0

.2840

.6505

.6505

.6505

.6505

.6505

.6505

.6505

0
0

0
0
0
0
0
0
0

.5840

.2840
0

.2753

.2753

.4306

.4306

.6505

.6505

.6505

0
0
0

0
0
0
0
0
0

.6505

.6505

.2753
0

.2753

.4306

.4306

.6505

.6505

.6505

0.
0,
0,
0,

0,
0,
0,
0,
0,

.6505

.6505

.2753

.2753
0

.4306

.4306

.6505

.6505

.6505

0
0
0
0
0

0
0
0
0

.6505

.6505

.4306

.4306

.4306
0

.4306

.6505

.6505

.6505

Columns 7 through 10

0.6505
0.6505
0.4306
0.4306
0.4306
0.4306

0.6505
0.6505
0.6505
0.6505
0.6505
0.6505

0.6505
0.6505
0.6505
0.6505
0.6505
0.6505

0.6505
0.6505
0.6505
0.6505
0.6505
0.6505

10.3. Finding a CSAR Matrix in the /.2-Norm 149

0
0.3857
0.3857
0.3857

0.3857
0

0.3857
0.3857

0.3857
0.3857

0
0.3857

0.3857
0.3857
0.3857

0

vaf =

0.4501

The M-function cirsarobf nd. m finds and fits a CSAR matrix using iterative projection
to a symmetric proximity matrix in the L2-norm based on a permutation identified through
the use of iterative QA. It has the expected syntax

[find, vaf, outperm] = cirsarobfnd(prox, inperm, kbloc

where, again, PROX is the input proximity matrix (n x n with a zero main diagonal and a
dissimilarity interpretation); INPERM is a given starting permutation of the first n integers;
FIND is the least-squares optimal matrix (with variance-accounted-for of VAF) to PROX
having a CSAR form for the row and column object ordering given by the ending permutation
OUTPERM. As usual, KBLOCK defines the block size in the use of the iterative QA routine.
(Analogous to the last section, and as noted above, an alternative to cirsarobfnd.m
is available, called cirsarobf nd_ac . m, that uses cirf itac . m to obtain the circular
target matrices.)

In the MATLAB recording below, and starting from a random permutation, a CSAR
form was found with a VAF of .7296 (again, this represents an expected drop from the value
of .8119 for the CAR form—this result is also listed below).

[find, vaf, outperm] = cirsarobfnd(number,randperm(10),.

target =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4160
.4160
.4160
.6262
.6262
.7858
.7858
.5880
.4160

0

0
0
0
0
0
0
0
0

.4160
0

.3907

.3907

.3960

.6263

.7858

.7858

.6250

.4160

0,
0,

0.
0,
0
0,
0,
0,
0,

.4160

.3907
0

.3907

.3960

.6263

.7858

.9090

.6300

.4460

0
0
0

0
0
0
0
0
0

.4160

.3907

.3907
0

.3500

.3880

.4210

.7895

.7895

.4460

0
0
0
0

0
0
0
0
0

.6262

.3960

.3960

.3500
0

.2460

.3670

.7895

.7895

.8040

0
0
0
0
0

0
0
0
0

.6262

.6263

.6263

.3880

.2460
0

.0590

.5810

.5810

.5810

Columns 7 through 10

0.7858 0.7858 0.5880 0.4160

150 Chapter 10. Circular Anti-Robinson Matrices for Symmetric Proximity Data

0
0
0
0
0

0
0
0

.7858

.7858

.4210

.3670

.0590
0

.4340

.4340

.5315

0
0
0
0
0
0

0
0

.7858

.9090

.7895

.7895

.5810

.4340
0

.4210

.5315

0
0
0
0
0
0
0

0

.6250

.6300

.7895

.7895

.5810

.4340

.4210
0

.3460

0
0
0
0
0
0
0
0

.4160

.4460

.4460

.8040

.5810

.5315

.5315

.3460
0

vaf =

0.8119

outperm =

6 1 0 8 7 9 5 3 1 2 4

find =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4246
.4246
.4246
.7304
.7304
.7304
.7304
.7304
.4246

Columns 7

0
0
0
0
0
0

0

.7304

.7304

.7304

.4210

.3670

.0590
0

.4340

0

0
0
0
0
0
0
0
0

.4246
0

.3907

.3907

.3960

.7304

.7304

.7304

.7304

.4246

0
0

0
0
0
0
0
0
0

.4246

.3907
0

.3907

.3960

.7304

.7304

.7304

.7304

.4246

0
0
0

0
0
0
0
0
0

.4246

.3907

.3907
0

.3500

.3880

.4210

.7304

.7304

.4246

0
0
0
0

0
0
0
0
0

.7304

.3960

.3960

.3500
0

.2460

.3670

.7304

.7304

.7304

0
0
0
0
0

0
0
0
0

.7304

.7304

.7304

.3880

.2460
0

.0590

.5810

.5810

.5810

through 10

0
0
0
0
0
0
0

.7304

.7304

.7304

.7304

.7304

.5810

.4340
0

0
0
0
0
0
0
0
0

.7304

.7304

.7304

.7304

.7304

.5810

.4340

.4210

0
0
0
0
0
0
0
0

.4246

.4246

.4246

.4246

.7304

.5810

.5315

.5315

10.4. Graphically Representing CSAR Structures 151

0.4340 0.4210 0 0.3460
0.5315 0.5315 0.3460 0

vaf =

0.7296

outperm =

6 1 0 8 7 9 5 3 1 2 4

10.4 Graphically Representing CSAR Structures

As in the case of an AR or SAR matrix, the interpretation of the structure that may be
represented by a CAR or CSAR matrix could proceed by first identifying those subsets
and their diameters that emerge by increasing a threshold variable from the smallest fitted
value. And in the case of a more restrictive CSAR matrix, this collection of subsets and
their diameters can then be displayed by a graph where minimum length paths reconstruct
the fitted values. To illustrate this graphical possibility on the transformed number. dat to
mean 4.0 and variance 1.0 given in Hubert, Arabic, and Meulman (1998)—and used earlier
to show the graphical representation of an SAR matrix—the fifteen (nonredundant) subsets
identified from the CSAR matrix present in Table 10.2 are listed in Table 10.1 according to
increasing diameter. Here, the structural properties of the digits are apparent (e.g., various
subsets of the odd or even digits or those that are multiples or powers of 2 or 3), but some
magnitude adjacencies can also be noted (e.g., {6, 7, 8,9} or subsets of {0,1, 2, 3}). The
graph adhering to the CSAR restrictions is given in Figure 10.1, and again minimum path
lengths (that proceed up from a terminal node to an internal node and then back down to
the other terminal node) can be used to reconstruct the fitted values in Q.

In addition to searching for a best-fitting CSAR matrix directly, we might comment
that the type of indirect approach mentioned in the chapter introduction for the case of SAR
approximations could also be considered, although we will not go into the details here.
For example, based on a best-fitting CAR matrix, the additional constraints of a circular
unidimensional scale could be identified and then imposed (in fact, this is our starting place
in first obtaining the CAR approximation); or those of an ultrametric (which would lead
to an SAR matrix that is trivially CSAR as well); or possibly a collection of additive tree
restrictions could be identified. In all cases, CSAR approximations would be automatically
obtained.

10.5 Representation Through Multiple (Strongly) CAR
Matrices

Just as we discussed in Section 9.6 on representing of proximity matrices through mul-
tiple (strongly) AR matrices, the analysis of a proximity matrix by a single (strongly)

152 Chapter 10. Circular Anti-Robinson Matrices for Symmetric Proximity Data

Table 10.1. The fifteen (nonredundant) subsets listed according to increasing
diameter values are contiguous in the circular object ordering used to display the CSAR
entries in Table 10.2.

Subset
{4,2}
{8,4}
{13}
{6,8}
{8,4,2}
{6,8,4}
{9,7,6}
{9,7,6,8}

Diameter
1.63
2.55
3.04
3.06
3.14
3.25
3.26
3.29

Subset
{6,8,4,2}
{0,1}
{3,5,9,7,6}
{2,0,1}
{2,0,1,3}
{4,2,0,1,3}
{0,1,3,5,9,7,6,8,4,2}

Diameter
3.41
3.41
3.43
3.47
3.95
4.20
4.93

Table 10.2. A CSAR order-constrained least-squares approximation to the digit
proximity data ofShepard, Kilpatric, and Cunningham (1975).

Digit
0
1
3
5
9
7
6
8
4
2

0
x

3.41
3.95
4.93
4.93
4.93
4.93
4.93
4.20
3.47

1
3.41

x
3.04
4.93
4.93
4.93
4.93
4.93
4.20
3.47

3
3.95
3.04

x
3.43
3.43
3.43
3.43
4.93
4.20
3.95

5
4.93
4.93
3.43

x
3.43
3.43
3.43
4.93
4.93
4.93

9
4.93
4.93
3.43
3.43

x
3.26
3.26
3.29
4.93
4.93

7
4.93
4.93
3.43
3.43
3.26

x
3.26
3.29
4.93
4.93

6
4.93
4.93
3.43
3.43
3.26
3.26

x
3.06
3.25
3.41

8
4.93
4.93
4.93
4.93
3.29
3.29
3.06

x
2.55
3.14

4
4.20
4.20
4.20
4.93
4.93
4.93
3.25
2.55

x
1.63

2
3.47
3.47
3.95
4.93
4.93
4.93
3.41
3.14
1.63

x

CAR structure extends easily to the additive use of multiple matrices. The M-function
bicirarobf nd. m fits the sum of two CAR matrices using iterative projection to a sym-
metric proximity matrix in the L2-norm based on permutations identified through the use
of iterative QA. The syntax usage is

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
bicirarobfnd(prox,inperm,kblock)

where, as before, PROX is the input proximity matrix (n x n with a zero main diagonal and
a dissimilarity interpretation); INPERM is a given initial permutation of the first n integers;
FIND is the least-squares optimal matrix (with variance-accounted-for of VAF) to PROX
and is the sum of the two CAR matrices TARGONE and TARGTWO based on the two row and
column object orderings given by the final permutations OUTPERMONE and OUTPERMTWO.

10.5. Representation Through Multiple (Strongly) CAR Matrices 153

Figure 10.1. A graphical representation for the fitted values given by the CSAR
matrix in the lower-triangular portion of Table 10.2 (VAF = 72.96%). Note that digit
3 is placed both in the first and the last positions in the ordering of the objects with the
implication that the sequence continues in a circular manner. This circularity is indicated
by the curved dashed line.

As before, KBLOCK defines the block size in the use of the iterative QA routine.

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
bicirarobfnd(number,randperm(lO),1)

find =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4210
.5632
.7297
.6840
.8040
.7871
.9090
.8210
.8521

0

0
0
0
0
0
0
0
0

.4210
0

.3048

.3252

.6460

.5880

.7580

.6380

.7926

.6380

0
0

0
0
0
0
0
0
0

.5632

.3048
0

.3540

.0380

.6535

.4208

.8131

.3881

.7841

0
0
0

0
0
0
0
0
0

.7297

.3252

.3540
0

.4340

.4154

.3317

.5750

.7841

.2631

0
0
0
0

0
0
0
0
0

.6840

.6460

.0380

.4340
0

.4401

.3565

.7418

.2460

.6830

0
0
0
0
0

0
0
0
0

.8040

.5880

.6535

.4154

.4401
0

.3963

.4000

.6710

.5899

Columns 7 through 10

154 Chapter 10. Circular Anti-Robinson Matrices for Symmetric Proximity Data

0,
0,
0,
0,
0,
0,

0,
0,
0,

.7871

.7580

.4208

.3317

.3565

.3963
0

.4176

.3500

.2960

0
0
0
0
0
0
0

0
0

.9090

.6380

.8131

.5750

.7418

.4000

.4176
0

.4000

.4590

0
0
0
0
0
0
0
0

0

.8210

.7926

.3881

.7841

.2460

.6710

.3500

.4000
0

.3920

0,
0.
0,
0,
0,
0,
0,
0,
0,

.8521

.6380

.7841

.2631

.6830

.5899

.2960

.4590

.3920
0

vaf =

0.9955

targone =

Columns 1

0
0
0
0
0
0
0
0
0

0
.0858
.0858
.3086
.4576
.4576
.4818
.4818
.3153
.3153

Columns 7

0
0
0
0
0
0

-0
0
0

.4818

.4818

.3631

.2195

.2195

.2195
0

.0393

.3356

.4818

through 6

0

0
0
0
0
0
0
0
0

.0858
0

.0096

.2443

.2443

.3863

.4818

.4818

.4902

.4361

0
0

0
0
0
0
0
0
0

.0858

.0096
0

.2133

.2391

.2391

.3631

.4818

.4902

.4628

0
0
0

0
0
0
0
0
0

.3086

.2443

.2133
0

.0994

.1207

.2195

.2195

.4902

.4902

0.4576 0.4576
0.2443 0.3863
0.2391 0.2391
0.0994 0.1207

0 0.1207
0.1207 0
0.2195 0.2195
0.2195 0.2195
0.4711 0.3356
0.7370 0.7185

through 10

0
0
0
0
0
0
-0

0
0

.4818

.4818

.4818

.2195

.2195

.2195

.0393
0

.3356

.4818

0
0
0
0
0
0
0
0

0

.3153

.4902

.4902

.4902

.4711

.3356

.3356

.3356
0

.2371

0
0
0
0
0
0
0
0
0

.3153

.4361

.4628

.4902

.7370

.7185

.4818

.4818

.2371
0

10.5. Representation Through Multiple (Strongly) CAR Matrices 155

targtwo =

Columns 1

0
0
0
0
0
0
0
0
0

0
.0765
.1367
.2969
.2969
.2969
.2678
.1122
.1122
.1122

Columns 7

0
0
0
0
0
0

-0
-0
0

.2678

.3024

.3024

.3024

.1839

.1169
0

.0105

.0105

.1558

through 6

0

0
0
0
0
0
0
0
0

.0765
0

.0289

.2395

.3704

.3704

.3024

.3024

.3024

.2012

0
0

0
0
0
0
0
0
0

.1367

.0289
0

.1609

.3582

.4319

.3024

.3024

.3024

.2364

0
0
0

0
0
0
0
0
0

.2969

.2395

.1609
0

.1905

.2793

.3024

.3555

.3555

.3555

0.2969 0.2969
0.3704 0.3704
0.3582 0.4319
0.1905 0.2793

0 0.0670
0.0670 0
0.1839 0.1169
0.2480 0.1959
0.2480 0.1959
0.2480 0.1959

through 10

0
0
0
0
0
0

-0

-0
-0

.1122

.3024

.3024

.3555

.2480

.1959

.0105
0

.1278

.0478

0
0
0
0
0
0

-0
-0

-0

.1122

.3024

.3024

.3555

.2480

.1959

.0105

.1278
0

.0478

0
0
0
0
0
0
0

-0
-0

.1122

.2012

.2364

.3555

.2480

.1959

.1558

.0478

.0478
0

outpermone =

3 5 9

outpermtwo =

7

For finding multiple CSAR forms, bicirsarobf nd. m has usage syntax

[find,vaf,targone,targtwo,outpermone,outpermtwo] = . . .
bicirsarobfnd(prox,inperm,kblock)

with all the various terms the same as for bicirarobf nd. m but now for strongly CAR
(CSAR) structures. The example below finds essentially the same representation as above
(involving digit magnitude and structure) with a slight drop in the VAF from 99.55% for
CAR to 91.06% for CSAR.

7 6 8 10 4 2 1

10 9 8 1 6 2 3 4 5

156 Chapter 10. Circular Anti-Robinson Matrices for Symmetric Proximity Data

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
bicirsarobfnd(number,randperm(10),1)

find =

Columns 1 through 6

0
0
0
0
0
0
0
0
0

0
.4212
.6464
.6464
.6840
.8040
.8420
.8420
.8420
.8420

Columns 7

0
0
0
0
0
0

0
0
0

.8420

.7215

.4802

.4027

.4493

.3718
0

.4055

.2292

.3339

0

0
0
0
0
0
0
0
0

.4212
0

.3284

.3284

.5122

.6693

.7215

.7215

.7215

.7215

0
0

0
0
0
0
0
0
0

.6464

.3284
0

.3273

.0947

.6682

.4802

.7215

.3041

.7204

0
0
0

0
0
0
0
0
0

.6464

.3284

.3273
0

.5111

.3505

.4027

.6565

.7204

.2630

0,
0,
0.
0.

0,
0,
0,
0,
0,

.6840

.5122

.0947

.5111
0

.4090

.4493

.6906

.2732

.6895

0
0
0
0
0

0
0
0
0

.8040

.6693

.6682

.3505

.4090
0

.3718

.4000

.6895

.5540

through 10

0
0
0
0
0
0
0

0
0

.8420

.7215

.7215

.6565

.6906

.4000

.4055
0

.4705

.4055

0
0
0
0
0
0
0
0

0

.8420

.7215

.3041

.7204

.2732

.6895

.2292

.4705
0

.4694

0
0
0
0
0
0
0
0
0

.8420

.7215

.7204

.2630

.6895

.5540

.3339

.4055

.4694
0

vaf =

0.9106

targone =

Columns 1

0
0
0
0

0
.3924
.6326
.6326
.6326

through 6

0

0
0
0

.3924
0

.3149

.3149

.4970

0,
0,

0,
0,

.6326

.3149
0

.3149

.4970

0
0
0

0

.6326

.3149

.3149
0

.1752

0
0
0
0

.6326

.4970

.4970

.1752
0

0
0
0
0
0

.6337

.5686

.5686

.5686

.5686

10.5. Representation Through Multiple (Strongly) CAR Matrices 157

0
0
0
0
0

.6337

.6337

.6337

.2162

.2162

Columns 7

0
0
0
0
0
0

0
0
0

.6337

.6337

.6337

.6337

.6337

.6337
0

.4085

.6337

.6337

0
0
0
0
0

.5686

.6337

.6337

.3924

.3924

0
0
0
0
0

.5686

.6337

.6337

.6326

.6326

0
0
0
0
0

.5686 0.5686

.6337 0.6337

.6337 0.6337

.6326 0.6326

.6326 0.6326

0
0.6337
0.6337
0.6337
0.6337

through 10

0
0
0
0
0
0
0

0
0

.6337

.6337

.6337

.6337

.6337

.6337

.4085
0

.6337

.6337

0
0
0
0
0
0
0
0

0

.2162

.3924

.6326

.6326

.6326

.6337

.6337

.6337
0

.2162

0
0
0
0
0
0
0
0
0

.2162

.3924

.6326

.6326

.6326

.6337

.6337

.6337

.2162
0

targtwo =

Columns 1

-0
0
0
0
0
0

-0
-0
-0

0
.2236
.0570
.0570
.0570
.0570
.0503
.1215
.1215
.1215

Columns 7

0
0
0
0
0
0

0
0

.0503

.1703

.2083

.2083

.2083

.2083
0

.0127

.0127

through 6

-0

-0
0
0
0
0
0
0
0

.2236
0

.1686

.0570

.0570

.0570

.1703

.0356

.0356

.0356

0
-0

-0
-0
-0
0
0
0
0

.0570

.1686
0

.1632

.1632

.1632

.2083

.0878

.0878

.0878

0
0

-0

-0
-0
0
0
0
0

.0570 0.0570

.0570 0.0570

.1632 -0.1632
0 -0.1632

.1632 0

.1632 -0.1632

.2083 0.2083

.0878 0.0878

.0878 0.0878

.0878 0.0878

0.0570
0.0570
-0.1632
-0.1632
-0.1632

0
0.2083
0.0878
0.0878
0.0878

through 10

-0
0
0
0
0
0
0

-0

.1215

.0356

.0878

.0878

.0878

.0878

.0127
0

.3053

-0
0
0
0
0
0
0

-0

.1215

.0356

.0878

.0878

.0878

.0878

.0127

.3053
0

-0
0
0
0
0
0
0

-0
-0

.1215

.0356

.0878

.0878

.0878

.0878

.0127

.3053

.3053

158 Chapter 10. Circular Anti-Robinson Matrices for Symmetric Proximity Data

0.0127 -0 .3053 -0 .3053 0

outpermone =

5

outpermtwo =

7 6 4 10 8 2 1 9 3

5 6 8 9 10 7 1 4 3 2

Chapter 11

Anti-Robinson Matrices for
Two-Mode Proximity Data

In direct analogy to the extensions of linear unidimensional scaling (LUS) in Chapter 4, it
is possible to find and fit (more general) anti-Robinson (AR) forms to two-mode proximity
matrices. The same type of reordering strategy implemented in Section 4.1 by ordertm. m
would be used, but the more general AR form would be fitted to the reordered square
proximity matrix, P^m) = i/^,™)#,(_/)}; the least-squares criterion

is minimized, where u;A)(/)A)(J) = 0 if po(0 and poO) are both row or both column objects,
and = 1 otherwise. The entries in the matrix {/>,•/} fitted to P^)

WJ) are AR in form (and
correspond to nonzero values of the weight function w;po(,)A)(;)), and thus satisfy certain
linear inequality constraints generated from how the row and column objects are intermixed
by the given permutation PQ(-). We note here and discuss more completely in the section to
follow that the patterning of entries in (pij} fitted to the original two-mode proximity matrix,
with appropriate row and column permutations extracted from p0, is called an anti-Q-form.

11.1 Fitting and Finding Two-Mode AR Matrices
The M-file arobf i t tm. m does a confirmatory two-mode AR fitting of a given ordering of
the row and column objects of a two-mode proximity matrix using the Dykstra-Kaczmarz
iterative projection least-squares method. The usage syntax has the form

[fit,vaf,rowperm,colperm] = arobfittm(proxtm,inperm)

where PROXTM is the input two-mode proximity matrix; INPERM is the given ordering of
the row and column objects together; FIT is an na x n^ (number of rows by number of
columns) matrix fitted to PROXTM (ROWPERM, COLPERM) with VAF being the variance-
accounted-for based on the (least-squares criterion) sum of squared discrepancies between
PROXTM (ROWPERM, COLMEAN) and FIT; ROWPERM and COLPERM are the row and
column object orderings derived from INPERM.

159

160 Chapter 11. Anti-Robinson Matrices for Two-Mode Proximity Data

The matrix given by FIT that is intended to approximate the row and column per-
muted two-mode proximity matrix, PROXTM (ROWPERM, COLPERM), displays a particu-
larly important patterning of its entries called an anti-Q-form in the literature (see Hubert
and Arabic, 1995a, for an extended discussion of this type of patterning for a two-mode
matrix). Specifically, a matrix is said to have the anti-Q-form (for rows and columns) if
within each row and column the entries are nonincreasing to a minimum and thereafter non-
decreasing. Matrices satisfying the anti-Q-form have a convenient interpretation presuming
an underlying unidimensional scale that jointly represents both the row and column objects.
Explicitly, suppose a matrix has been appropriately row-ordered to display the anti-Q-form
for columns. Any dichotomization of the entries within a column at some threshold value
(using 0 for entries below the threshold and 1 for at or above) produces a matrix that has
the consecutive zeros property within each column, that is, all zeros within a column occur
consecutively, uninterrupted by intervening ones. In turn, any matrix with the consecutive
zeros property for columns suggests the existence of a perfect scale (error-free), where row
objects can be ordered along a continuum (using the same row order for the matrix that
actually reflects the anti-Q-form for columns), and each column object is representable as
an interval along the continuum (encompassing those consecutive row objects correspond-
ing to zeros). Historically, the type of pattern represented by the anti-Q-form has played
a major role in the literature of (unidimensional) unfolding and, for example, is the basis
of the parallelogram structure from Coombs (1964, Chapter 4) for a two-mode proximity
matrix. The reader is referred to Hubert (1974) for a review of some of these connections.

To provide an example of what an anti-Q-form looks like for our two-mode data
matrix, goldf ish_receptor, we will use arobfndtm.m both to find and fit an AR
form using iterative projection to a two-mode proximity matrix in the L2-norm based on a
permutation identified through the use of iterative QA. The usage syntax is

[find, vaf, outperm, rowperm, colperm] = ...
arobfndtm(proxtm, inperm, kblock)

where, again, INPERM is a given starting permutation of the first n = na + nb integers;
FIND is the least-squares optimal matrix (with variance-accounted-for of VAF) displaying
an anti-Q-form (because of the AR form constructed for the combined row and column
object ordering given by the ending permutation OUTPERM). KBLOCK defines the block
size in the use of the iterative QA routine. ROWPERM and COLPERM are the resulting row
and column permutations for the objects. In the listing below, the VAF for the given fitted
matrix is very high: .9667 (which can be compared to the alternative representations given
earlier with values of .8072 (LUS), .6209 (ultrametric), and .8663 (additive tree)).

load goldfish_receptor.dat
[find,vaf,outperm,rowperm,colperm] = ...

arobfndtm(goldfish__receptor,randperm(20),2);
find

find =

Columns 1 through 6

11.1. Fitting and Find ing Two-Mode AR Matrices 161

68
71
71
80
155
174
200
200
200
200
200

.0000

.5000

.5000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

Columns 7

162
162
145
138
138
106
106
78
82
82
111

.8000

.8000

.0000

.5000

.5000

.0000

.0000

.0000

.5000

.5000

.0000

54
54
47
47
108
125
143
156
183
200
200

.5000

.5000

.0000

.5000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

80
64
61
47
63
84
91
107
177
200
200

.0000

.0000

.0000

.5000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

138
128
117
98
94
49
49
67
176
198
198

.0000

.0000

.5000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

145
144
117
116
103
47
47
47
168
186
188

.0000

.0000

.5000

.0000

.0000

.6667

.6667

.6667

.0000

.0000

.0000

162
162
145
137
137
76
76
60
112
112
143

.8000

.8000

.0000

.5000

.5000

.0000

.0000

.0000

.5000

.5000

.0000

through 9

200
162
151
151
151
134
124
100
47
54
54

.0000

.8000

.6667

.6667

.6667

.5000

.5000

.0000

.0000

.0000

.0000

200
173
158
158
158
134
124
100
46
47
47

.0000

.0000

.0000

.0000

.0000

.5000

.5000

.0000

.0000

.5000

.5000

vaf

vaf =

0.9667

outperm

outperm =

Columns 1 through 10

20 11 10 19 9 18 8 7 17 16

Columns 11 through 20

6 5 4 15 14 13 3 12 2 1

rowperm'

162 Chapter 11. Anti-Robinson Matrices for Two-Mode Proximity Data

ans =

Columns 1 through 10

1 1 1 0 9 8 7 6 5 4 3 2

Column 11

1

colperm'

ans =

11.2 Multiple Two-Mode AR Reorderings and Fittings

The M-file biarobfndtm.m finds and fits the sum of two anti-Q-forms (extracted from
fitting two AR matrices) using iterative projection to a two-mode proximity matrix in the
L2-norm based on permutations identified through the use of iterative QA. In the usage

[find,vaf,targone,targtwo,outpermone,outpermtwo, . . .
rowpermone,colpermone,rowpermtwo,colpermtwo] = . . .

biarobfndtm(proxtm,inpermone,inpermtwo,kblock)

PROXTM is the usual input two-mode proximity matrix (na x HI,) with a dissimilarity in-
terpretation, and FIND is the least-squares optimal matrix (with variance-accounted-for of
VAF) to PROXTM. The latter matrix PROXTM is the sum of the two matrices TARGONE and
TARGTWO based on the two row and column object orderings given by the ending permu-
tations OUTPERMONE and OUTPERMTWO. The two ending permutations of OUTPERMONE
and OUTPERMTWO contain the ending row and column object orderings of ROWPERMONE
and ROWPERMTWO and COLPERMONE and COLPERMTWO. KBLOCK defines the block
size in the use of the iterative QA routine; the input permutations are INPERMONE and
INPERMTWO.

As can be seen in the example below, the sum of two anti-Q-forms fitted to the
goldf ish_receptor data provides an almost perfect reconstruction (with a VAF of
.9995).

[find,vaf,targone,targtwo,outpermone,outpermtwo, ...
rowpermone,colpermone,rowpermtwo,colpermtwo] = ...
biarobfndtm(goldfish_receptor,randperm(20),randperm(20),2);

find

find =

9 8 7 6 5 4 3 2 1

11.2. Multiple Two-Mode AR Reorderings and Fittings 163

Columns 1

47
47
46
99
122
116
198
133
141
173
200

.3504

.3504

.0072

.0098

.0098

.6197

.0000

.8750

.0000

.0000

.2992

Columns 7

199
200
176
106
89
84
63
49
60
66
80

.9608

.0000

.9981

.9608

.1327

.0000

.0000

.0000

.0425

.5870

.0000

through 6

54
54
47
101
127
152
186
156
113
140
200

.6226

.6226

.1738

.1738

.1738

.0595

.0000

.0000

.0000

.0000

.1738

111
75
90
78
115
96
154
123
142
176
160

.0000

.0000

.0072

.0098

.0098

.5053

.0000

.0000

.0000

.5991

.7486

143.0000 188.0000 196.1177
100.0000 186.0000 199.8954
124.9856 167.9981 175.9981
59.9508 46.0000 66.9608
79.0098 48.9981 47.8673
72.7463 48.0000 52.0523
148.0000 103.0000 94.0000
126.7482 115.0000 98.0523
145.4795 115.0000 121.9575
176.4009 144.6719 128.6719
160.7486 145.0000 138.0000

through 9

200
199
182
156
142
124
108
46
47
56
53

.0000

.9924

.9981

.0000

.9981

.9924

.0000

.0153

.0000

.6719

.0000

201
197
200
200
199
173
155
79
60
84
65

.9327

.3046

.0135

.0000

.9981

.3897

.0000

.3897

.9419

.3973

.5700

vaf

vaf =

0.9995

targone

targone =

Columns 1 through 6

46.
46,
39.
96

.1875

.1875

.3017

.3403

46
46
38
92

.1875

.1875

.7387

.7387

111
83
83
75

.0900

.7500

.3017

.3403

143
118
118
57

.0900

.2801

.2801

.2813

189
187
168
57

.1858

.1858

.0431

.2813

197
197
176
67

.1531

.1531

.0431

.9962
119.3403 118.7387 112.3403 76.3403 49.0431 49.7778

164 Chapter 11. Anti-Robinson Matrices for Two-Mode Proximity Data

143 .6244
159.4691
160.8797
160.8797
173 .0000
199.1362

Columns 7

200.9962
200.0000
177.0431
107.9962
91.0431
84.0000
63 .0000
48.2140
51.3841
51.3841
80.0000

targtwo

targtwo =

Columns 1

-26 .2124
-40.7319
4.1190
8.4351
8.4351
8.4351
8.4351
8.4351
8.4351
8.4351

38.5309

Columns 7

15.2029
-1.1858
-1.1858
-1.1858
-1.1858

143 .6244
147.4691
151.8810
153 .7319
166.2124
191.7387

through 9

203 .4720
202 .1911
183 .0431
156.7769
143 .0431
127.1911
107.8519
48.2140
48 .2140
41.4690
55.2081

through 6

0
-19.8797
-27.0047
-27.0047
1 .1630
1.1630
1 .1630
2.6696
2.6696
6.7055

38.5309

through 9

15.2029
8.6584
0.7860

0
0

123
138
138
153
164
164

205
205
200
200
200
181
154
87
69
69
69

12
-11
-15
-27
-8
-3
-0
2
2
6

15

15
8
2
2
2

.5100

.5000

.5000

.7319

.3730

.3730

.5571

.5571

.0585

.0585

.0431

.6422

.8519

.6422

.1944

.1944

.1944

.2261

.7319

.5000

.0047

.7500

.6244

.0900

.6696

.6696

.7055

.5000

.2029

.6584

.7423

.7423

.7423

80.9988 49.1858 49.3100
135.0006 102.8519 94.0000
135.0006 116.1858 95.3100
153.7319 116.1858 113.2992
164.1748 129.4690 113.4690
164.3730 146.1858 138.0000

12.2261 15.2029 15.2029
-8.2525 -8.2525 -1.2140
-8.2525 -8.2525 -2.1988
-8.2525 -8.2525 -2.1988
-18.2801 -8.2525 -2.1988
-3.6244 -3.6244 -2.2081
-0.0900 -3.6244 -3.4720
2.6696 -0.0585 -0.7769
2.6696 -0.0450 -0.0450
6.7055 -0.0450 -0.0450
12.9994 0.1481 0.1481

11.2. Multiple Two-Mode AR Reorderings and Fittings 165

-1.
-1.

-11.
-0.
-0.
0.

.1858

.1858

.2813

.0450

.0450

.1481

-1
-1
-1
-0

0
.0354
.0354
.9104
.0450

0

-1.
-1.
-1.
-0.

0
.0354
,0354
.9104
,0450

0

outpermone

outpermone =

Columns 1 through 10

1 2 12 13 3 14 4 15 5 16

Columns 11 through 20

6 17 7 8 18 9 10 19 11 20

outpermtwo

outpermtwo =

Columns 1 through 10

10 13 9 12 8 14 6 15 2 20

Columns 11 through 20

11 1 19 16 4 5 18 17 3 7

rowpermone'

ans =

Columns 1 through 10

1 2 3 4 5 6 7 8

Column 11

11

colpermone'

ans =

9 10

166 Chapter 11. Anti-Robinson Matrices for Two-Mode Proximity Data

1 2 3 4 5 6 7 8 9

rowpermtwo'

ans =

Columns 1 through 10

1 0 9 8 6 2

Column 11

7

colpermtwo'

ans =

2 1 3 4 9 8 5 7 6

11 1 4 5 3

Appendix A

Header Comments for the
M-Files Mentioned in the
Text and Given in
Alphabetical Order

arobfit.m
function [fit, vaf] = arobfit(prox, inperm)

% AROBFIT fits an anti-Robinson matrix using iterative
% projection to a symmetric proximity matrix in the
% L_{2}-norm.
%
% syntax: [fit, vaf] = arobfit(prox, inperm)
%
% PROX is the input proximity matrix ($n \times n$ with
% a zero main diagonal and a dissimilarity
% interpretation); INPERM is a given permutation of the
% first n integers;
% FIT is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX having an anti-Robinson
% form for the row and column object ordering given
% by INPERM.

arobfittm.m
function [fit,vaf,rowperm,colperm] = ...

arobfittm(proxtm,inperm)

% AROBFITTM does a confirmatory two-mode anti-Robinson
% fitting of a given ordering of the row and column
% objects of a two-mode proximity matrix PROXTM using
% Dykstra's (Kaczmarz's) iterative projection
% least-squares method.

167

%

168 Appendix A. Header Comments for the Mentioned M-Files

% syntax: [fit,vaf,rowperm,colperm] = . . .
% arobfittm(proxtm,inperm)
%
% INPERM is the given ordering of the row and column
% objects together; FIT is an nrow (number of rows)
% by ncol (number of columns) matrix fitted to
% PROXTM(ROWPERM,COLPERM) with VAF being the variance-
% accounted-for and based on the (least-squares
% criterion) sum of squared discrepancies between FIT
% and PROXTM(ROWPERM,COLMEAN); ROWPERM and COLPERM are
% the row and column object orderings
% derived from INPERM.

arobfnd.m
function [find,vaf,outperm] = arobfnd(prox,inperm,kblock)

% AROBFND finds and fits an anti-Robinson matrix using
% iterative projection to a symmetric proximity matrix
% in the L_{2}-norm based on a permutation identified
% through the use of iterative quadratic assignment.
%
% syntax: [find,vaf,outperm] = arobfnd(prox,inperm,kblock)
%
% PROX is the input proximity matrix ($n \times n$ with
% a zero main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n
% integers; FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX having an
% anti-Robinson form for the row and column object
% ordering given by the ending permutation OUTPERM.
% KBLOCK defines the block size in the use of the
% iterative quadratic assignment routine.

arobf ndtm.m
function [find, vaf, outperm, rowperm, colperm] = ...

arobfndtm(proxtm, inperm, kblock)

% AROBFNDTM finds and fits an anti-Robinson form using
% iterative projection to a two-mode proximity matrix
% in the L_{2}-norm based on a permutation identified
% through the use of iterative quadratic assignment.
%
% syntax: [find, vaf, outperm, rowperm, colperm] = ...

Appendix A. Header Comments for the Mentioned M-Files 169

% arobfndtm(proxtm, inperm, kblock)
%
% PROXTM is the input two-mode proximity matrix
% ($n_{a} \times n_{b}$ with a dissimilarity
% interpretation);
% INPERM is a given starting permutation
% of the first $n = n_{a} + n_{b}$ integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROXTM having the
% anti-Robinson form for the row and column
% object ordering given by the ending permutation
% OUTPERM. KBLOCK defines the block size in the use of
% the iterative quadratic assignment routine.
% ROWPERM and COLPERM are the resulting
% row and column permutations for the objects.

atreectul.m
function [find,vaf] = atreectul(prox,inperm)

% ATREECTUL finds and fits an additive tree by first
% fitting a centroid metric (using centfit.m) and
% secondly an ultrametric to the residual
% matrix (using ultrafnd.m).
%
% syntax: [find,vaf] = atreectul(prox,inperm)
%
% PROX is the input proximity matrix (with a zero main
% diagonal and a dissimilarity interpretation);
% INPERM is a permutation that determines the order
% in which the inequality constraints are considered;
% FIND is the found least-squares matrix (with
% variance-accounted-for of VAF) to PROX satisfying
% the additive tree constraints.

atreedec.m
function [ulmetric,ctmetric] = atreedec(prox,constant)

% ATREEDEC decomposes a given additive tree matrix into
% an ultrametric and a centroid metric matrix (where the
% root is halfway along the longest path).
%
% syntax: [ulmetric,ctmetric] = atreedec(prox,constant)
%

170 Appendix A. Header Comments for the Mentioned M-File

% PROX is the input proximity matrix (with a zero main
% diagonal and a dissimilarity interpretation);
% CONSTANT is a nonnegative number (less than or equal
% to the maximum proximity value) that controls the
% positivity of the constructed ultrametric values;
% ULMETRIC is the ultrametric component of the
% decomposition; CTMETRIC is the centroid metric
% component of the decomposition (given by values
% $g_{l}/•••/g_{n}$ for each of the objects,
% some of which may actually be negative depending on
% the input proximity matrix used).

atreefit.m
function [fit,vaf] = atreefit(prox,targ)

% ATREEFIT fits a given additive tree using iterative
% projection to a symmetric proximity matrix in the
% L_{2}-norm.
%
% syntax: [fit,vaf] = atreefit(prox,targ)
%
% PROX is the input proximity matrix (with a zero main
% diagonal and a dissimilarity interpretation);
% TARG is a matrix of the same size as PROX with
% entries satisfying the four-point additive tree
% constraints;
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX satisfying the
% additive tree constraints implicit in TARG.

atreefnd.m
function [find,vaf] = atreefnd(prox,inperm)

% ATREEFND finds and fits an additive tree using iterative
% projection heuristically on a symmetric proximity matrix
% in the L_{2}-norm.
%
% syntax: [find,vaf] = atreefnd(prox,inperm)
%
% PROX is the input proximity matrix (with a zero main
% diagonal and a dissimilarity interpretation);
% INPERM is a permutation that determines the order in
% which the inequality constraints are considered;

Appendix A. Header Comments for the Mentioned M-Files 171

% FIND is the found least-squares matrix (with
% variance-accounted-for of VAF) to PROX satisfying the
% additive tree constraints.

atreefndtm.m

function [find,vaf,ultra,lengths] = ...
atreefndtm(proxtm,inpermrow,inpermcol)

% ATREEFNDTM finds and fits a two-mode additive tree;
% iterative projection is used
% heuristically to find a two-mode ultrametric component
% that is added to a two-mode centroid metric to
% produce the two-mode additive tree.
%
% syntax: [find,vaf,ultra,lengths] = ...
% atreefndtm(proxtm,inpermrow,inpermcol)
%
% PROXTM is the input proximity matrix
% (with a dissimilarity interpretation);
% INPERMROW and INPERMCOL are permutations for the row
% and column objects that determine the order in which
% the inequality constraints are considered;
% FIND is the found least-squares matrix (with
% variance-accounted-for of VAF) to PROXTM satisfying
% the additive tree constraints;
% the vector LENGTHS contains the row followed by column
% values for the two-mode centroid metric component;
% ULTRA is the ultrametric component.

biarobfnd.m

function [find,vaf,targone,targtwo,outpermone,...
outpermtwo] = biarobfnd(prox,inperm,kblock)

% BIAROBFND finds and fits the sum of two
% anti-Robinson matrices using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm
% based on permutations identified through
% the use of iterative quadratic assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone, ...
% outpermtwo] = biarobfnd(prox,inperm,kblock)
%
% PROX is the input proximity matrix ($n \times n$ with

172 Appendix A. Header Comments for the Mentioned M-File

% a zero main diagonal and a dissimilarity
% interpretation); INPERM is a given starting
% permutation of the first n integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF)
% to PROX and is the sum of the two anti-Robinson
% matrices TARGONE and TARGTWO based on the two row and
% column object orderings given by the ending
% permutations OUTPERMONE and OUTPERMTWO. KBLOCK defines
% the block size in the use of the iterative quadratic
% assignment routine.

biarobfndtm.m

function [find,vaf,targone,targtwo,outpermone,...
outpermtwo,rowpermone,colpermone,rowpermtwo,...
colpermtwo] = biarobfndtm(proxtm,inpermone,...
inpermtwo,kblock)

% BIAROBFNDTM finds and fits the sum of
% two anti-Robinson matrices using iterative projection to
% a two-mode proximity matrix in the L_{2}-norm based on
% permutations identified through the use of
% iterative quadratic assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,...
% outpermtwo,rowpermone,colpermone,rowpermtwo,...
% colpermtwo] = biarobfndtm(proxtm,inpermone,
% inpermtwo,kblock)

% PROXTM is the input two-mode proximity matrix ($nrow
% \times ncol$) with a dissimilarity interpretation);
% FIND is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROXTM and is the sum of the
% two matrices TARGONE and TARGTWO based on the two row
% and column object orderings given by the ending
% permutations OUTPERMONE and OUTPERMTWO,
% and in turn ROWPERMONE and ROWPERMTWO and
% COLPERMONE and COLPERMTWO. KBLOCK defines the block size
% in the use of the iterative quadratic assignment routine;
% the input permutations are INPERMONE and INPERMTWO.

%

Appendix A. Header Comments for the Mentioned M-Files 173

biatreefnd.m

function [find,vaf,targone,targtwo] = ...
biatreefnd(prox,inperm)

% BIATREEFND finds and fits the sum
% of two additive trees using iterative projection
% heuristically on a symmetric proximity matrix in the
% L_{2}-norm.
%
% syntax: [find,vaf,targone,targtwo] = ...
% biatreefnd(prox,inperm)
%
% PROX is the input proximity matrix (with a zero main
% diagonal and a dissimilarity interpretation);
% INPERM is a permutation that determines the order
% in which the inequality constraints are considered;
% FIND is the found least-squares matrix (with
% variance-accounted-for of VAF) to PROX and is the sum
% of the two additive tree matrices TARGONE and TARGTWO.

bicirac.m
function [find,vaf,targone,targtwo,outpermone,...

outpermtwo,addconone,addcontwo] = ...
bicirac(prox,inperm,kblock)

% BICIRAC finds and fits the sum of two circular
% unidimensional scales using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on
% permutations identified through the use
% of iterative quadratic assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,...
% outpermtwo,addconone,addcontwo] = ...
% bicirac(prox,inperm,kblock)
%
% PROX is the input proximity matrix ($n \times n$ with
% a zero main diagonal and a dissimilarity
% interpretation); INPERM is a given starting permutation
% of the first n integers;
% FIND is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX and is the sum of the two
% circular anti-Robinson matrices;
% TARGONE and TARGTWO are based on the two row and column

174 Appendix A. Header Comments for the Mentioned M-File

% object orderings given by the ending permutations
% OUTPERMONE and OUTPERMTWO.
% KBLOCK defines the block size in the use of the
% iterative quadratic assignment routine and ADDCONONE
% and ADDCONTWO are the two additive constants for the
% two model components.

bicirarobfnd.m

function [find,vaf,targone,targtwo,outpermone,...
outpermtwo] = bicirarobfnd(prox,inperm,kblock)

% BICIRAROBFND finds and fits the sum of two circular
% anti-Robinson matrices using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm
% based on permutations identified through the use of
% iterative quadratic assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,...
% outpermtwo] = bicirarobfnd(prox,inperm,kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a
% zero main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n
% integers; FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX and is the sum of
% the two circular anti-Robinson matrices;
% TARGONE and TARGTWO are based on the two row and column
% object orderings given by the ending permutations
% OUTPERMONE and OUTPERMTWO.

bicirsarobfnd.m

function [find,vaf,targone,targtwo,outpermone,...
outpermtwo] = bicirsarobfnd(prox,inperm,kblock)

% BICIRSAROBFND fits the sum of two strongly
% circular anti-Robinson matrices using iterative
% projection to a symmetric proximity
% matrix in the L_{2}-norm based on permutations
% identified through the use of iterative quadratic
% assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,...
% outpermtwo] = bicirsarobfnd(prox,inperm,kblock.

Appendix A. Header Comments for the Mentioned M-Files 175

% PROX is the input proximity matrix ($n \times n$ with
% a zero main diagonal and a dissimilarity
% interpretation);
% INPERM is a given starting permutation of the first
% n integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX and is the
% sum of the two strongly circular anti-Robinson matrices;
% TARGONE and TARGTWO are based on the two row and column
% object orderings given by the ending permutations
% OUTPERMONE and OUTPERMTWO. KBLOCK defines the block size
% in the use of the iterative quadratic assignment routine

bimonscalqa.m
function [outpermone,outpermtwo,coordone,coordtwo,...

fitone,fittwo,addconone,addcontwo,vaf,monprox] = ...
bimonscalqa(prox,targone,targtwo,inpermone,...
inpermtwo,kblock,nopt)

% BIMONSCALQA carries out a bidimensional scaling of a
% symmetric proximity matrix using iterative quadratic
% assignment, plus it provides an optimal monotonic
% transformation (MONPROX) of the original input
% proximity matrix.
%
% syntax: [outpermone,outpermtwo,coordone,coordtwo,...
% fitone,fittwo,addconone,addcontwo,vaf,monprox] = ,
% bimonscalqa(prox,targone,targtwo,inpermone,...
% inpermtwo,kblock,nopt)
%
% PROX is the input proximity matrix (with a zero main
% diagonal and a dissimilarity interpretation);
% TARGONE is the input target matrix for the
% first dimension (usually with
% a zero main diagonal and with a
% dissimilarity interpretation representing
% equally spaced locations along a continuum);
% TARGTWO is the input target
% matrix for the second dimension;
% INPERMONE is the input beginning permutation for the
% first dimension (a permutation of the first n
% integers); INPERMTWO is the input beginning
% permutation for the second dimension;

%

176 Appendix A. Header Comments for the Mentioned M-File

% the insertion and rotation routines use from 1 to
% KBLOCK (which is less than or equal to $n-l$)
% consecutive objects in the permutation defining the
% row and column orders of the data
% matrix; NOPT controls the confirmatory or exploratory
% fitting of
% the unidimensional scales; a value of NOPT = 0 will
% fit in a
% confirmatory manner the two scales indicated by
% INPERMONE and INPERMTWO;
% a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit;
% OUTPERMONE is the final object permutation for the
% first
% dimension; OUTPERMTWO is the final object
% permutation for the second dimension;
% COORDONE is the set of first dimension coordinates
% in ascending order; COORDTWO is the set of second
% dimension coordinates in ascending order;
% ADDCONONE is the additive constant for the first
% dimensional model; ADDCONTWO is the additive constant
% for the second dimensional model; VAF is the
% variance-accounted-for in MONPROX by the
% bidimensional scaling.

bimonscaltmac.m
function [find,vaf,targone,targtwo,outpermone,outpermtwo,...

rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
addcontwo,coordone,coordtwo,axes,monproxtm] = ...

bimonscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)

% BIMONSCALTMAC finds and fits the sum of two linear
% unidimensional scales using iterative projection to
% a two-mode proximity matrix in the L_{2}-norm based on
% permutations identified through the use of iterative
% quadratic assignment. It also provides an optimal
% monotonic transformation (MONPROX) of the original
% input proximity matrix.
%
% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo,...
% rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
% addcontwo,coordone,coordtwo,axes,monproxtm] = ...
% bimonscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)
%

Appendix A. Header Comments for the Mentioned M-Files 177

% PROXTM is the input two-mode proximity matrix ($nrow
% \times ncol$ with a dissimilarity interpretation);
% FIND is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to the monotonic transformation
% MONPROXTM of the input proximity matrix and is the sum
% of the two matrices TARGONE and TARGTWO based on the two
% row and column object orderings given by the ending
% permutations OUTPERMONE and OUTPERMTWO,
% and in turn ROWPERMONE and ROWPERMTWO and
% COLPERMONE and COLPERMTWO. KBLOCK defines the block
% size in the use of the iterative quadratic assignment
% routine and ADDCONONE and ADDCONTWO are the two additive
% constants for the two model components;
% The n coordinates are in COORDONE and COORDTWO.
% The input permutations are INPERMONE and INPERMTWO. The
% $n \times 2$ matrix AXES gives the plotting coordinates
% for the combined row and column object set.
% NOPT controls the confirmatory or exploratory fitting of
% the unidimensional scales; a value of NOPT = 0 will fit
% in a confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO;
% a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit.

biplottm.m
function [] = biplottm(axes,nrow,ncol)

% BIPLOTTM plots the combined row and column object set
% using coordinates given in the $n \times 2$ matrix
% AXES; here the number of rows is NROW and the number
% of columns is NCOL, and n is the sum of NROW and NCOL.
%
% syntax: [] = biplottm(axes,nrow,ncol)
%
% The first NROW rows of AXES give the row object
% coordinates;
% the last NCOL rows of AXES give the column
% object coordinates.
% The plotting symbol for rows is a circle (o);
% for columns it is an asterisk (*).
% The labels for rows are from 1 to NROW;
% those for columns are from 1 to NCOL.

178 Appendix A. Header Comments for the Mentioned M-Files

bisarobfnd.m

function [find,vaf,targone,targtwo,outpermone,...
outpermtwo] = bisarobfnd(prox,inperm,kblock)

% BISAROBFND finds and fits the sum of two
% strongly anti-Robinson matrices using iterative
% projection to a symmetric proximity matrix in
% the L_{2}-norm based on permutations
% identified through the use of iterative quadratic
% assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,...
% outpermtwo] = bisarobfnd(prox,inperm,kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a
% zero main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n
% integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX and is the sum
% of the two strongly anti-Robinson matrices;
% TARGONE and TARGTWO are based on the two row and column
% object orderings given by the ending permutations
% OUTPERMONE and OUTPERMTWO.
% KBLOCK defines the block size in the use of the
% iterative quadratic assignment routine.

biscalqa.m
function [outpermone,outpermtwo,coordone,coordtwo,...

fitone,fittwo,addconone,addcontwo,vaf] = ...
biscalqa(prox,targone,targtwo,inpermone,inpermtwo,...

kblock,nopt)

% BISCALQA carries out a bidimensional scaling of a
% symmetric proximity matrix using iterative
% quadratic assignment.
%
% syntax: [outpermone,outpermtwo,coordone,coordtwo,...
% fitone,fittwo,addconone,addcontwo,vaf] = ...
% biscalqa(prox,targone,targtwo,inpermone,inpermtwo,
% kblock,nopt)
%
% PROX is the input proximity matrix (with a zero main

Appendix A. Header Comments for the Mentioned M-Files 179

% diagonal and a dissimilarity interpretation);
% TARGONE is the input target matrix for the first
% dimension (usually with a zero main diagonal and a
% dissimilarity interpretation representing
% equally spaced locations along
% a continuum); TARGTWO is the input target
% matrix for the second dimension;
% INPERMONE is the input beginning permutation for the
% first dimension (a permutation of the first n
% integers);
% INPERMTWO is the input beginning
% permutation for the second dimension;
% the insertion and rotation routines use from 1 to
% KBLOCK (which is less than or equal to $n-l$)
% consecutive objects in the permutation defining the
% row and column orders of the data matrix.
% NOPT controls the confirmatory or exploratory fitting
% of the unidimensional scales; a value of NOPT = 0
% will fit in a confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO;
% a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit;
% OUTPERMONE is the final object permutation for the
% first dimension; OUTPERMTWO is the final object
% permutation for the second dimension;
% COORDONE is the set of first dimension coordinates
% in ascending order; COORDTWO is the set of second
% dimension coordinates in ascending order;
% ADDCONONE is the additive constant for the first
% dimensional model; ADDCONTWO is the additive constant
% for the second dimensional model;
% VAF is the variance-accounted-for in PROX by
% the bidimensional scaling.

biscaltmac.m
function [find,vaf,targone,targtwo,outpermone,outpermtwo,

rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,
addcontwo,coordone,coordtwo,axes] = ...
biscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)

% BISCALTMAC finds and fits the sum of two linear
% unidimensional scales using iterative projection to
% a two-mode proximity matrix in the L_{2}-norm based on
% permutations identified through the use of iterative

180 Appendix A. Header Comments for the Mentioned M-Files

% quadratic assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo,...
% rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
% addcontwo,coordone,coordtwo,axes] = ...
% biscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)
%
% PROXTM is the input two-mode proximity matrix ($nrow
% \times ncol$ with a dissimilarity interpretation);
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROXTM and is
% the sum of the two matrices TARGONE and TARGTWO based
% on the two row and column object orderings given by the
% ending permutations OUTPERMONE and OUTPERMTWO,
% and in turn ROWPERMONE and ROWPERMTWO and
% COLPERMONE and COLPERMTWO. KBLOCK defines the block size
% in the use of the iterative quadratic assignment routine
% and ADDCONONE and ADDCONTWO are
% the two additive constants for the two model components;
% The n coordinates are in COORDONE and COORDTWO.
% The input permutations are INPERMONE and INPERMTWO.
% The $n \times 2$ matrix AXES gives the
% plotting coordinates for the
% combined row and column object set.
% NOPT controls the confirmatory or
% exploratory fitting of the unidimensional
% scales; a value of NOPT = 0 will
% fit in a confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO;
% a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit.

biultrafnd.m

function [find,vaf,targone,targtwo] = ...
biultrafnd(prox,inperm)

% BIULTRAFND finds and fits the sum
% of two ultrametrics using iterative projection
% heuristically on a symmetric proximity matrix in the
% L_{2}-norm.
%
% syntax: [find,vaf,targone,targtwo] = ...
% biultrafnd(prox,inperm)
%
% PROX is the input proximity matrix (with a zero main

Appendix A. Header Comments for the Mentioned M-Files 181

% diagonal and a dissimilarity interpretation);
% INPERM is a permutation that determines the order in
% which the inequality constraints are considered;
% FIND is the found least-squares matrix (with
% variance-accounted-for of VAF) to PROX and is the sum
% of the two ultrametric matrices TARGONE and TARGTWO.

centfit.m
function [fit,vaf,lengths] = centfit(prox)

% CENTFIT finds the least-squares fitted centroid metric
% (FIT) to PROX, the input proximity matrix (with a zero
% main diagonal and a dissimilarity interpretation).
%
% syntax: [fit,vaf,lengths] = centfit(prox)
%
% The n values that serve to define the approximating
% sums, $g_{i} + 9_{j}$> are given in the vector LENGTHS
% of size $n \times 1$.

centfittm.m
function [fit,vaf,lengths] = centfittm(proxtm)

% CENTFITTM finds the least-squares fitted two-mode
% centroid metric (FIT) to PROXTM, the two-mode
% rectangular input proximity matrix (with a
% dissimilarity interpretation).
%
% syntax: [fit,vaf,lengths] = centfittm(proxtm)
%
% The n values (where n = number of rows + number
% of columns)% serve to define the approximating sums,
% $u_{i} + v_{j}$, where the u_{i} are for the rows
% and the v_{j} are for the columns;
% these are given in the vector LENGTHS of size
% $n \times 1$, with row values first followed by the
% column values.

cirarobfit.m
function [fit, vaf] = cirarobfit(prox,inperm,targ)

% CIRAROBFIT fits a circular anti-Robinson matrix using

182 Appendix A. Header Comments for the Mentioned M-Files

% iterative projection to a symmetric proximity matrix
% in the L_{2}-norm.
%
% syntax: [fit, vafj = cirarobfit(prox,inperm,targ)
%
% PROX is the input proximity matrix ($n \times n$ with
% a zero
% main diagonal and a dissimilarity interpretation);
% INPERM is a given permutation of the first n
% integers (around a circle); TARG is a given
% $n \times n$ matrix having the circular anti-Robinson
% form that guides the direction in which
% distances are taken around the circle.
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX having
% a circular anti-Robinson form for the row and
% column object ordering given by INPERM.

cirarobfnd.m

function [find, vaf, outperm] = ...
cirarobfnd(prox, inperm, kblock)

% CIRAROBFND finds and fits a circular
% anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based
% on a permutation identified through the use of
% iterative quadratic assignment.
%
% syntax: [find, vaf, outperm] = ...
% cirarobfnd(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$
% with a zero main diagonal and a dissimilarity
% interpretation); INPERM is a given starting permutation
% (assumed to be around the circle) of the first
% n integers; FIT is the least-squares optimal
% matrix (with variance-accounted-for of VAF) to PROX
% having a circular anti-Robinson form for the
% row and column object ordering given by the
% ending permutation OUTPERM.
% KBLOCK defines the block size in the use of the iterative
% quadratic assignment routine.

Appendix A. Header Comments for the Mentioned M-Files 183

cirarobfnd_ac.m
function [find, vaf, outperm] = ...

cirarobfnd_ac(prox, inperm, kblock)

% CIRAROBFND_AC fits a circular anti-Robinson matrix using
% iterative projection to a symmetric proximity matrix
% in the L_{2}-norm based on a permutation identified
% through the use of iterative quadratic assignment.
%
% syntax: [find, vaf, outperm] = ...
% cirarobfnd_ac(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$
% with a zero main diagonal and a dissimilarity
% interpretation);
% INPERM is a given starting permutation (assumed
% to be around the circle) of the first n integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX having a
% circular anti-Robinson form for the row and column
% object ordering given by the ending permutation
% OUTPERM. KBLOCK defines the block size in the use of
% the iterative quadratic assignment routine.
% In contrast to cirarobfnd.m, the circular target
% is constructed using cirfitac.m (as
% opposed to cirfit.m)

circularplot.m
function [circum,radius,coord,degrees,cumdegrees]

circularplot(circ,inperm)

% CIRCULARPLOT plots the object set using the
% coordinates around a circular structure derived
% from the $n \times n$ interpoint distance matrix
% around a circle given by CIRC.
% The positions are labeled by the order of objects
% given in INPERM.
%
% syntax: [circum,radius,coord,degrees,cumdegrees]
% circularplot(circ,inperm)
%
% The output consists of a plot, the circumference
% of the circle (CIRCUM) and radius (RADIUS),

184 Appendix A. Header Comments for the Mentioned M-File

% the coordinates of the plot positions (COORD),
% and the degrees and cumulative
% degrees induced between the plot positions
% (in DEGREES and CUMDEGREES).
% The positions around the circle are numbered from 1
% (at the x'noon'' position) to n, moving
% clockwise around the circular structure.

cirfit.m
function [fit, diff] = cirfit(prox,inperm)

% CIRFIT does a confirmatory fitting of a given order
% (assumed to reflect a circular ordering around a
% closed unidimensional structure) using Dykstra's
% (Kaczmarz's) iterative projection least-squares
% method.
%
% syntax: [fit, diff] = cirfit(prox,inperm)
%
% INPERM is the given order; FIT is an $n \times n$
% matrix that is fitted to PROX(INPERM,INPERM)
% with least-squares value DIFF.

cirfitac.m
function [fit, vaf, addcon] = cirfitac(prox,inperm)

% CIRFITAC does a confirmatory fitting (including
% the estimation of an additive constant) for a given
% order(assumed to reflect a circular ordering around
% a closed unidimensional structure) using the Dykstra-
% Kaczmarz iterative projection least-squares method.
%
% syntax: [fit, vaf, addcon] = cirfitac(prox,inperm)
%
% INPERM is the given order; FIT is an $n \times n$
% matrix that is fitted to PROX(INPERM,INPERM) with
% variance-accounted-for of VAF; ADDCON is the
% estimated additive constant.

cirfitac_ftarg.m

function [fit, vaf, addcon] = ...
cirfitac_ftarg(prox,inperm,targ)

Appendix A. Header Comments for the Mentioned M-Files 185

% CIRFITAC_FTARG does a confirmatory fitting (including
% the estimation of an additive constant) for a given
% order (assumed to reflect a circular ordering
% around a closed unidimensional structure) using the
% Dykstra--Kaczmarz iterative projection least-squares
% method.
%
% syntax: [fit, vaf, addcon] = ...
% cirfitac_ftarg(prox,inperm,targ)
%
% The inflection points are implicitly given by TARG,
% which is assumed to reflect a circular ordering of
% the same size as PROX. INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with variance-accounted-for of VAF,
% ADDCON is the estimated additive constant.

cirsarobfit.m
function [fit, vaf] = cirsarobfit(prox,inperm,target)

% CIRSAROBFIT fits a strongly circular anti-Robinson
% matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm.
%
% syntax: [fit, vaf] = cirsarobfit(prox,inperm,target)
%
% PROX is the input proximity matrix ($n \times n$ with
% a zero main diagonal and a dissimilarity
% interpretation);
% INPERM is a given permutation of the first n integers
% (around a circle);
% TARGET is a given $n \times n$ matrix having the
% circular anti-Robinson form that guides the direction
% in which distances are taken around the circle.
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX having
% a strongly circular anti-Robinson form for the
% row and column object ordering given by INPERM.

cirsarobfnd.m

function [find, vaf, outperm] = ...
cirsarobfnd(prox, inperm, kblock)

186 Appendix A. Header Comments for the Mentioned M-Files

% CIRSAROBFND finds and fits a strongly circular
% anti-Robinson matrix using iterativa projection to
% a symmetric proximity matrix in the L_{2}-norm based
% on a permutation identified through the use of
% iterative quadratic assignment.
%
% syntax: [find, vaf, outperm] = ...
% cirsarobfnd(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a
% zero main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation (assumed to be
% around the circle) of the first n integers;
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX having a strongly
% circular anti-Robinson form for the row and column
% object ordering given by the ending permutation OUTPERM.
% KBLOCK defines the block size in the use of the
% iterative quadratic assignment routine.

c¡rsarobfnd_ac.m

function [find, vaf, outperm] = ...
cirsarobfnd_ac(prox, inperm, kblock)

% CIRSAROBFND_AC fits a strongly circular
% anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based
% on a permutation identified through the use of
% iterative quadratic assignment.
%
% syntax: [find, vaf, outperm] = ...
% cirsarobfnd_ac(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$
% with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given starting permutation (assumed to be
% around the circle) of the first n integers;
% FIND is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX having a strongly
% circular anti-Robinson form for the row and column
% object ordering given by the ending permutation
% OUTPERM. KBLOCK defines the block size in the use

Appendix A. Header Comments for the Mentioned M-Files 187

% of the iterative quadratic assignment routine.
% In comparison to cirsarobfnd.m
% (which uses cirarobfnd.m internally), cirsarobfnd_ac
% uses cirarobfnd_ac to identify a circular target.

insertqa.m
function [outperm, rawindex, allperms, index] = ...

insertqa(prox, targ, inperm, kblock)

% INSERTQA carries out an iterative
% quadratic assignment maximization task using the
% insertion of from 1 to KBLOCK
% (which is less than or equal to $n-l$) consecutive
% objects in the permutation defining the row and column
% order of the data matrix.
%
% syntax: [outperm, rawindex, allperms, index] = ...
% insertqa(prox, targ, inperm, kblock)
%
% INPERM is the input beginning permutation
% (a permutation of the first n integers).
% PROX is the $n \times n$ input proximity matrix.
% TARG is the $n \times n$ input target matrix.
% OUTPERM is the final permutation of PROX with the
% cross-product index RAWINDEX with respect to TARG.
% ALLPERMS is a cell array containing INDEX entries
% corresponding to all the permutations identified
% in the optimization from ALLPERMS{l} = INPERM to
% ALLPERMS{INDEX} = OUTPERM.

linfit.m
function [fit, diff, coord] = linfit(prox,inperm)

% LINFIT does a confirmatory fitting of a given
% unidimensional order using Dykstra's
% (Kaczmarz's) iterative projection least-squares
% method.
%
% syntax: [fit, diff, coord] = linfit(prox,inperm)
%
% INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with least-squares value DIFF;

188 Appendix A. Header Comments for the Mentioned M-Files

% COORD gives the ordered coordinates whose absoluta
% differences could be used to reconstruct FIT.

linfitac.m
function [fit,vaf,coord,addcon] = linfitac(prox,inperm)

% LINFITAC does a confirmatory fitting of a given
% unidimensional order using the Dykstra--Kaczmarz
% iterative projection least-squares method
% but differing from linfit.m in
% including the estimation of an additive constant.
%
% syntax: [fit,vaf,coord,addcon] = linfitac(prox,inperm)
%
% INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with variance-accounted-for VAF;
% COORD gives the ordered coordinates whose absolute
% differences could be used to reconstruct FIT;
% ADDCON is the estimated additive constant that
% can be interpreted as being added to PROX.

linfittm.m
function [fit,diff,rowperm,colperm,coord] = ...

linfittm(proxtm,inperm)

% LINFITTM does a confirmatory two-mode fitting of a
% given unidimensional ordering of the row and column
% objects of a two-mode proximity matrix PROXTM
% using Dykstra's (Kaczmarz's) iterative projection
% least-squares method.
%
% syntax: [fit,diff,rowperm,colperm,coord] = ...
% linfittm(proxtm,inperm)
%
% INPERM is the given ordering of the row and column
% objects together;
% FIT is an nrow (number of rows) by ncol (number
% of columns) matrix of absolute coordínate differences
% that is fitted to PROXTM(ROWPERM,COLPERM)
% with DIFF being the (least-squares criterion) sum
% of squared discrepancies between
% FIT and PROXTM(ROWPERM,COLMEAN);

Appendix A. Header Comments for the Mentioned M-Files 189

% ROWPERM and COLPERM are the row and column object
% orderings derived from INPERM. The nrow + ncol
% coordinates (ordered with the smallest
% set at a valué of zero) are given in COORD.

linfittmac.m
function [fit,vaf,rowperm,colperm,addcon,coord] = ...
linfittmac(proxtm,inperm)

% LINFITTMAC does a confirmatory two-mode fitting of a
% given unidimensional ordering of the row and column
% objects of a two-mode proximity matrix PROXTM using
% Dykstra's (Kaczmarz's) iterative projection
% least-squares method; it differs from linfittm.m
% by including the estimation of an
% additive constant.
%
% syntax: [fit,vaf,rowperm,colperm,addcon,coord] = ...
% linfittmac(proxtm,inperm)
%
% INPERM is the given ordering of the row and column
% objects together;
% FIT is an nrow (number of rows) by ncol (number
% of columns) matrix of absolute coordínate differences
% that is fitted to PROXTM(ROWPERM,COLPERM) with VAF
% being the variance-accounted-for.
% ROWPERM and COLPERM are the row and
% column object orderings derived from INPERM.
% ADDCON is the estimated additive constant that
% can be interpreted as being
% added to PROXTM (or, alternatively, subtracted
% from the fitted matrix FIT).
% The nrow + ncol coordinates (ordered with the smallest
% set at a valué of zero) are given in COORD.

order.m
function [outperm,rawindex,allperms,Índex] = ...
order(prox,targ,inperm,kblock)

% ORDER carries out an iterative quadratic assignment
% maximization task using a given square ($n x n$)
% proximity matrix PROX (with a zero main diagonal
% and a dissimilarity interpretation).

1 90 Appendix A. Header Comments for the Mentioned M-File

% syntax: [outperm, rawindex, allperms, index] = ...
% order (prox, targ, inperm, kblock)
%
% Three separate local operations are used to permute
% the rows and columns of the proximity matrix to
% maximize the cross-product index with respect to a
% given square target matrix TARG:
% pairwise interchanges of objects in the permutation
% defining the row and column order of the square
% proximity matrix;
% the insertion of from 1 to KBLOCK
% (which is less than or equal to $n-l$) consecutive
% objects in the permutation defining the row and column
% order of the data matrix;
% the rotation of from 2 to KBLOCK
% (which is less than or equal to $n-l$) consecutive
% objects in the permutation defining the row and
% column order of the data matrix.
% INPERM is the input beginning permutation (a
% permutation of the first n integers) .
% OUTPERM is the final permutation of PROX with the
% cross-product index RAWINDEX
% with respect to TARG. ALLPERMS is a cell array
% containing INDEX entries corresponding to all the
% permutations identified in the optimization from
% ALLPERMSJl} = INPERM to ALLPERMS { INDEX} = OUTPERM.

ordertm.m
function [outperm,rawindex,allperms,index, ...

squareprox] = ordertm(proxtm,targ,inperm,kblock)

% ORDERTM carries out an iterative
% quadratic assignment maximization task using the
% two-mode proximity matrix PROXTM
% (with entries deviated from the mean proximity)
% in the upper-right- and lower-left-hand portions of
% a defined square ($n x n$) proximity matrix
% (called SQUAREPROX with a dissimilarity interpretation)
% with zeros placed elsewhere (n = number of rows +
% number of columns of PROXTM = nrow + ncol).
%
% syntax: [outperm,rawindex,allperms,index,...
% squareprox] = ordertm(proxtm, targ, inperm, kblock)

%

Appendix A. Header Comments for the Mentioned M-Files 191

% Three sepárate local operations are used to permute
% the rows and columns of the square
% proximity matrix to maximize the cross-product
% índex with respect to a square target matrix TARG:
% pairwise interchanges of objects in the
% permutation defining the row and column
% order of the square proximity matrix; the insertion of
% from 1 to KBLOCK (which is less than or equal to $n-l$)
% consecutive objects in the permutation defining the
% row and column order of the data matrix;
% the rotation of from 2 to KBLOCK (which is less than
% or equal to $n-l$) consecutive objects in
% the permutation defining the row and column order of
% the data matrix.
% INPERM is the input beginning permutation
% (a permutation of the first n integers).
% PROXTM is the two-mode $nrow x ncol$ input
% proximity matrix.
% TARG is the $n x n$ input target matrix.
% OUTPERM is the final permutation of SQUAREPROX with the
% cross-product Índex RAWINDEX
% with respect to TARG. ALLPERMS is a cell array
% containing INDEX entries corresponding to all the
% permutations identified in the optimization from
% ALLPERMS{l} = INPERM to ALLPERMS{INDEX} = OUTPERM.

pairwiseqa.m

function [outperm, rawindex, allperms, Índex] = ..
pairwiseqa(prox, targ, inperm)

% PAIRWISEQA carries out an iterative
% quadratic assignment maximization task using the
% pairwise interchanges of objects in the
% permutation defining the row and column
% order of the data matrix.
%
% syntax: [outperm, rawindex, allperms, Índex] = .
% pairwiseqa(prox, targ, inperm)
%
% INPERM is the input beginning permutation
% (a permutation of the first n integers).
% PROX is the $n \times n$ input proximity matrix.
% TARG is the $n \times n$ input target matrix.

%

192 Appendix A. Header Comments for the Mentioned M-File

% OUTPERM is the final permutation of
% PROX with the cross-product index RAWINDEX
% with respect to TARG.
% ALLPERMS is a cell array containing INDEX entries
% corresponding to all the permutations identified
% in the optimization from ALLPERMS{1} = INPERM to
% ALLPERMS{INDEX} = OUTPERM.

proxmon.m

function [monproxpermut, vaf, diff] = ...
proxmon(proxpermut, fitted)

% PROXMON produces a monotonically transformed
% proximity matrix (MONPROXPERMUT) from the order
% constraints obtained from each pair of entries
% in the input proximity matrix PROXPERMUT
% (symmetric with a zero main diagonal and a
% dissimilarity interpretation).
%
% syntax: [monproxpermut, vaf, diff] = ...
% proxmon(proxpermut, fitted)
%
% MONPROXPERMUT is close to the
% $n \times n$ matrix FITTED in the least-squares
% sense;
% the variance-accounted-for (VAF) is how
% much variance in MONPROXPERMUT can be accounted
% for by FITTED;
% DIFF is the value of the least-squares criterion.

proxmontm.m

function [monproxpermuttm, vaf, diff] = ...
proxmontm(proxpermuttm, fittedtm)

% PROXMONTM produces a monotonically transformed
% two-mode proximity matrix (MONPROXPERMUTTM)
% from the order constraints obtained
% from each pair of entries in the input two-mode
% proximity matrix PROXPERMUTTM (with a dissimilarity
% interpretation).
%
% syntax: [monproxpermuttm, vaf, diff] = ...
% proxmontm(proxpermuttm, fittedtm)

Appendix A. Header Comments for the Mentioned M-Files 193

% MONPROXPERMUTTM is close to the $nrow \times ncol$
% matrix FITTEDTM in the least-squares sense;
% the variance-accounted-for (VAF) is how much variance
% in MONPROXPERMUTTM can be accounted for by FITTEDTM;
% DIFF is the value of the least-squares criterion.

proxrand.m
function [randprox] = proxrand(prox)

% PROXRAND produces a symmetric proximity matrix
% RANDPROX with a zero main diagonal having
% entries that are a random permutation of those
% in the symmetric input proximity
% matrix PROX.
%
% syntax: [randprox] = proxrand(prox)

proxrandtm.m

function [randproxtm] = proxrandtm(proxtm)

% PROXRANDTM produces a two-mode proximity matrix
% (RANDPROXTM) having entries that are a random
% permutation of those in the two-mode input
% proximity matrix PROXTM.
%
% syntax: [randproxtm] = proxrandtm(proxtm)

proxstd.m
function [stanprox, stanproxmult] = proxstd(prox,mean)

% PROXSTD produces a standardized proximity matrix
% (STANPROX) from the input $n \times n$ proximity
% matrix (PROX) with zero main diagonal and a
% dissimilarity interpretation.
%
% syntax: [stanprox, stanproxmult] = proxstd(prox,mean]
%
% STANPROX entries have unit variance (standard
% deviation of one) with a mean of MEAN given as an

%

194 Appendix A. Header Comments for the Mentioned M-Files

% input number;
% STANPROXMULT (upper-triangular) entries have a sum of
% squares equal to $n(n-l)/2$.

proxstdtm.m

function [stanproxtm, stanproxmulttm] = ...
proxstdtm(proxtm,mean)

% PROXSTDTM produces a standardized two-mode
% proximity matrix (STANPROXTM) from the input
% $nrow \times ncol$ two-mode proximity matrix (PROXTM)
% with a dissimilarity interpretation.
%
% syntax: [stanproxtm, stanproxmulttm] = . . .
% proxstdtm(proxtm,mean)
%
% STANPROXTM entries have unit variance (standard
% deviation of one) with a mean of MEAN given as an
% input number;
% STANPROXMULTTM entries have a sum of squares equal to
% $nrow*rcol$.

randprox.m

function [prox] = randprox(n)

% RANDPROX produces a random symmetric proximity matrix
% (PROX) of size $n \times n$,
% with a zero main diagonal and entries uniform
% between 0 and 1.
%
% syntax: [prox] = randprox(n)

rotateqa.m
function [outperm, rawindex, allperms, index] = ...

rotateqa (prox, targ, inperm, kblock)

% ROTATEQA carries out an iterative
% quadratic assignment maximization task using the
% rotation of from 2 to KBLOCK (which is less than or
% equal to $n-l$) consecutive objects in
% the permutation defining the row and column order of

Appendix A. Header Comments for the Mentioned M-Files 195

% the data matrix.
%
% syntax: [outperm, rawindex, allperms, index] = ...
% rotateqa (prox, targ, inperm, kblock)
%
% INPERM is the input beginning permutation
% (a permutation of the first n integers).
% PROX is the $n \times n$ input proximity matrix.
% TARG is the $n \times n$ input target matrix.
% OUTPERM is the final permutation of PROX with the
% cross-product index RAWINDEX with respect to TARG.
% ALLPERMS is a cell array containing INDEX entries
% corresponding to all the permutations identified
% in the optimization from
% ALLPERMSJl} = INPERM to ALLPERMS{INDEX} = OUTPERM.

sarobfit.m
function [fit, vaf] = sarobfit(prox, inperm)

% SAROBFIT fits a strongly anti-Robinson matrix using
% iterative projection to a symmetric proximity matrix
% in the L_{2}-norm.
% PROX is the input proximity matrix ($n \times n$ with a
% zero main diagonal and a dissimilarity interpretation).
%
% syntax: [fit, vaf] = sarobfit(prox, inperm)
%
% INPERM is a given permutation of the first n
% integers;
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX having
% a strongly anti-Robinson form for the row and column
% object ordering given by INPERM.

sarobfnd.m
function [find,vaf,outperm] = ...

sarobfnd(prox,inperm,kblock)

% SAROBFND finds and fits a strongly
% anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based
% on a permutation identified through the use of
% iterative quadratic assignment.

1 96 Appendix A. Header Comments for the Mentioned M-Files

% syntax: [f ind, vaf , outperm] = ...
% sarobfnd (prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a
% zero main diagonal and a dissimilarity interpretation) ;
% INPERM is a given starting permutation of the first n
% integers; FIND is the least-squares optimal matrix
% (with variance -accounted- for of VAF) to PROX having a
% strongly ant i- Robinson form for the row and column
% object ordering given by the ending permutation OUTPERM.
% KBLOCK defines the block size in the use of the iterative
% quadratic assignment routine.

targcir.m
function [targcircular] = targcir(n)

% TARGCIR produces a symmetric proximity matrix of size
% $n \times n$, containing distances
% between equally and unit-spaced positions
% around a circle: targcircular(i,j) =
% min(abs(i-j),n-abs(i-j)).
%
% syntax: [targcircular] = targcir(n)

targfit.m
function [fit, vaf] = targfit(prox,targ)

% TARGFIT fits through iterative projection a given set
% of equality and inequality constraints (as represented
% by the equalities and inequalities present among the
% entries in a target matrix TARG) to a symmetric
% proximity matrix in the L_{2}-norm.
%
% syntax: [f i t , vaf] = targfit(prox,targ)
%
% PROX is the input proximity matrix (with a zero
% main diagonal and a dissimilarity interpretation);
% TARG is a matrix of the same size as PROX;
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX satisfying the
% equality and inequality constraints implicit in TARG.

Appendix A. Header Comments for the Mentioned M-Files 197

targlin.m
function [targlinear] = targlin(n)

% TARGLIN produces a symmetric proximity matrix of size
% $n \times n$, containing distances
% between equally and unit-spaced positions
% along a line: targlinear(i,j) = abs(i-j).
%
% syntax: [targlinear] = targlin(n)

trimonscalqa.m

function [outpermone,outpermtwo,outpermthree,coordone, ...
coordtwo,coordthree,fitone,fittwo,fitthree, ...

addconone,addcontwo,addconthree,vaf,monprox] = ...
trimonscalqa(prox,targone,targtwo,targthree,inpermone,...

inpermtwo,inpermthree,kblock,nopt)

% TRIMONSCALQA carries out a tridimensional scaling of a
% symmetric proximity matrix using iterative
% quadratic assignment, plus it provides an optimal
% monotonic transformation (MONPROX) of the
% original input proximity matrix.
%
% syntax:[outpermone,outpermtwo,outpermthree,coordone, ...
% coordtwo,coordthree,fitone,fittwo,fitthree, ...
% addconone,addcontwo,addconthree,vaf,monprox] = ...
% trimonscalqa(prox,targone,targtwo,targthree,inpermone,...
% inpermtwo,inpermthree,kblock,nopt)
%
% PROX is the input proximity matrix (with a zero main
% diagonal and a dissimilarity interpretation);
% TARGONE is the input target matrix for the first
% dimension (usually with a zero main diagonal
% and with a dissimilarity interpretation representing
% equally spaced locations along a continuum);
% TARGTWO is the input target matrix for
% the second dimension; TARGTHREE is the input target
% matrix for the third dimension;
% INPERMONE is the input beginning permutation for the
% first dimension (a permutation of the first n
% integers);
% INPERMTWO is the input beginning
% permutation for the second dimension; INPERMTHREE

198 Appendix A. Header Comments for the Mentioned M-Files

% is the input beginning permutation for the third
% dimension;
% the insertion and rotation routines use from 1
% to KBLOCK (which is less than or equal to $n-l$)
% consecutive objects in the permutation defining the
% row and column orders of the data matrix;
% NOPT controls the confirmatory or exploratory fitting
% of the unidimensional scales; a value of NOPT = 0 will
% fit in a confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO; a value of
% NOPT = 1 uses iterative QA to locate the better
% permutations to fit;
% OUTPERMONE is the final object permutation for the
% first dimension;
% OUTPERMTWO is the final object permutation
% for the second dimension; OUTPERMTHREE is the final
% object permutation for the third dimension;
% COORDONE is the set of first dimension coordinates
% in ascending order; COORDTWO is the set of second
% dimension coordinates in ascending order;
% COORDTHREE is the set of
% second dimension coordinates in ascending order;
% ADDCONONE is the additive constant for the first
% dimensional model; ADDCONTWO is the additive constant
% for the second dimensional model; ADDCONTHREE is the
% additive constant for the third dimensional model;
% VAF is the variance-accounted-for in MONPROX by
% the tridimensional scaling.

triscalqa.m

function [outpermone,outpermtwo,outpermthree,coordone,..
coordtwo,coordthree,fitone,fittwo,fitthree,addconone,..
addcontwo,addconthree,vaf] =...
triscalqa(prox,targone,targtwo,targthree,inpermone,...
inpermtwo,inpermthree,kblock,nopt)

% TRISCALQA carries out a tridimensional scaling
% of a symmetric proximity matrix using iterative
% quadratic assignment.
%
% syntax: [outpermone,outpermtwo,outpermthree,coordone,
% coordtwo,coordthree,fitone,fittwo,fitthree,addconone,
% addcontwo,addconthree,vaf] =...
% triscalqa(prox,targone,targtwo,targthree,inpermone,

Appendix A. Header Comments for the Mentioned M-Files 199

% inpermtwo,inpermthree,kblock,nopt)
%
% PROX is the input proximity matrix (with a zero main
% diagonal and a dissimilarity interpretation);
% TARGONE is the input target matrix for the first
% dimension (usually with a zero main diagonal and
% with a dissimilarity interpretation representing
% equally spaced locations along
% a continuum); TARGTWO is the input target
% matrix for the second dimension; TARGTHREE is the input
% target matrix for the third dimension;
% INPERMONE is the input beginning permutation for the
% first dimension (a permutation of the first
% n integers);
% INPERMTWO is the input beginning permutation for the
% second dimension; INPERMTHREE is the input beginning
% permutation for the third dimension;
% the insertion and rotation routines use from 1 to
% KBLOCK (which is less than or equal to $n-l$)
% consecutive objects in the permutation defining the
% row and column orders of the data
% matrix; NOPT controls the confirmatory or exploratory
% fitting of the unidimensional scales;
% a value of NOPT = 0 will fit in
% a confirmatory manner the three scales
% indicated by INPERMONE and INPERMTWO;
% a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit.
% OUTPERMONE is the final object permutation for
% the first dimension; OUTPERMTWO is the final object
% permutation for the second dimension;
% OUTPERMTHREE is the final object
% permutation for the third dimension;
% COORDONE is the set of
% first dimension coordinates in ascending order;
% COORDTWO is the set of second dimension coordinates
% in ascending order;
% COORDTHREE is the set of third dimension coordinates
% in ascending order; ADDCONONE is the additive constant
% for the first dimensional model;
% ADDCONTWO is the additive constant
% for the second dimensional model;
% ADDCONTHREE is the additive
% constant for the third dimensional model;
% VAF is the variance-accounted-for in PROX by the
% bidimensional scaling.

200 Appendix A. Header Comments for the Mentioned M-Files

ultracomptm.m

function [ultracomp] = ultracotnptm(ultraproxtm)

% ULTRACOMPTM provides a completion of a given two-mode
% ultrametric matrix to a symmetric proximity matrix
% satisfying the usual ultrametric constraints.
%
% syntax: [ultracomp] = ultracomptm(ultraproxtm)
%
% ULTRAPROXTM is the $nrow \times ncol$ two-mode
% ultrametric matrix;
% ULTRACOMP is the completed symmetric
% $n \times n$ proximity matrix having the usual
% ultrametric pattern for $n = nrow + ncol$.

ultrafit.m
function [fit,vaf] = ultrafit(prox,targ)

% ULTRAFIT fits a given ultrametric using iterative
% projection to a symmetric proximity matrix in the
% L_{2}-norm.
%
% syntax: [fit,vaf] = ultrafit(prox,targ)
%
% PROX is the input proximity matrix (with a zero main
% diagonal and a dissimilarity interpretation);
% TARG is an ultrametric matrix of the same size as PROX;
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX satisfying the
% ultrametric constraints implicit in TARG.

ultrafittm.m

function [fit,vaf] = ultrafittm(proxtm,targ)

% ULTRAFITTM fits a given (two-mode) ultrametric using
% iterative projection to a two-mode (rectangular)
% proximity matrix in the L_{2}-norm.
%
% syntax: [f i t ,vaf] = ultrafittm(proxtm,targ)
%
% PROXTM is the input proximity matrix (with a
% dissimilarity interpretation);

Appendix A. Header Comments for the Mentioned M-Files 201

% TARG is an ultrametric matrix of the same size
% as PROXTM; FIT is the least-squares optimal matrix
% (with variance-accounted-for of VAF) to PROXTM
% satisfying the ultrametric constraints implicit in TARG.

ultrafnd.m
function [find,vaf] = ultrafnd(prox,inperm)

% ULTRAFND finds and fits an ultrametric using iterative
% projection heuristically on a symmetric proximity
% matrix in the L_{2}-norm.
%
% syntax: [find,vaf] = ultrafnd(prox,inperm)
%
% PROX is the input proximity matrix (with a zero main
% diagonal and a dissimilarity interpretation);
% INPERM is a permutation that determines the order
% in which the inequality constraints are considered;
% FIND is the found least-squares matrix
% (with variance-accounted-for of VAF) to PROX
% satisfying the ultrametric constraints.

ultrafndtm.m

function [find,vaf] = ...
ultrafndtm(proxtm,inpermrow,inpermcol)

% ULTRAFNDTM finds and fits a two-mode ultrametric using
% iterative projection heuristically on a rectangular
% proximity matrix in the L_{2}-norm.
%
% syntax: [find,vaf] =
% ultrafndtm(proxtm,inpermrow,inpermcol)
%
% PROXTM is the input proximity matrix (with a
% dissimilarity interpretation);
% INPERMROW and INPERMCOL are permutations for the row
% and column objects that determine the order in which
% the inequality constraints are considered;
% FIND is the found least-squares matrix (with
% variance-accounted-for of VAF) to PROXTM satisfying
% the ultrametric constraints.

202 Appendix A. Header Comments for the Mentioned M-Files

ultraorder.m
function [orderprox,orderperm] = ultraorder(prox)

% ULTRAORDER finds for the input proximity matrix PROX
% (assumed to be ultrametric with a zero main diagonal)
% a permutation ORDERPERM that displays the anti-
% Robinson form in the reordered proximity matrix
% ORDERPROX; thus, prox(orderperm,orderperm) = orderprox.
%
% syntax: [orderprox,orderperm] = ultraorder(prox)

ultraplot.m

function [] = ultraplot(ultra)

% ULTRAPLOT gives a dendrogram plot for the input
% ultrametric dissimilarity matrix ULTRA.
%
% syntax: [] = ultraplot(ultra)

umcirac.m
function [find, vaf, outperm, addcon] = ...

unicirac(prox, inperm, kblock)

% UNICIRAC finds and fits a circular
% unidimensional scale using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based
% on a permutation identified through the use of
% iterative quadratic assignment.
%
% syntax: [find, vaf, outperm, addcon] = ...
% unicirac(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a
% zero main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation (assumed to be
% around the circle) of the first n integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX having a circular
% anti-Robinson form for the row and column
% object ordering given by the ending permutation OUTPERM.
% The spacings among the objects are given by the diagonal
% entries in FIND (and the extreme (l,n) entry in FIND).

Appendix A. Header Comments for the Mentioned M-Files 203

% KBLOCK defines the block size in the use of
% the iterative quadratic assignment routine.
% The additive constant for the model is
% given by ADDCON.

uniscalqa.m

function [outperm,rawindex,allperms,index,coord,...
diff] = uniscalqa(prox, targ, inperm, kblock)

% UNISCALQA carries out a unidimensional scaling of a
% symmetric proximity matrix using iterative
% quadratic assignment.
%
% syntax: [outperm,rawindex,allperms,index,coord,...
% diff] = uniscalqa(prox, targ, inperm, kblock)
%
% PROX is the input proximity matrix (with a zero main
% diagonal and a dissimilarity interpretation);
% TARG is the input target matrix (usually with a zero
% main diagonal and a dissimilarity interpretation
% representing equally spaced locations along a
% continuum);
% INPERM is the input beginning permutation
% (a permutation of the first n integers).
% OUTPERM is the final permutation of PROX
% with the cross-product index RAWINDEX
% with respect to TARG redefined as
% $ = \{abs(coord(i) - coord(j))\}$;
% ALLPERMS is a cell array containing INDEX entries
% corresponding to all the permutations identified
% in the optimization from
% ALLPERMS{l) = INPERM to ALLPERMS{INDEX} = OUTPERM.
% The insertion and rotation routines use from 1 to
% KBLOCK (which is less than or equal to $n-l$)
% consecutive objects in the permutation defining
% the row and column order of the data
% matrix. COORD is the set of coordinates of
% the unidimensional scaling in ascending order;
% DIFF is the value of the least-squares loss
% function for the coordinates and object permutation.

uniscaltmac.m

function [find,vaf,outperm,rowperm,colperm,addcon, ...
coord] = uniscaltmac(proxtm,inperm,kblock)

204 AppendixA. Header Comments for the Mentioned M-Files

% UNISCALTMAC finds and fits a linear
% unidimensional scale using iterative projection to
% a two-mode proximity matrix in the L_{2}-norm based
% on a permutation identified through the use of iterative
% quadratic assigntnent.
%
% syntax: [find,vaf,outperm,rowperm,colperm,addcon,...
% coord] = uniscaltmac(proxtm,inperm,kblock)
%
% PROXTM is the input two-mode proximity matrix
% ($n_{a} \times n_{b}$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given starting permutation of the
% first $n = n_{a} + n_{b}$ integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROXTM having a
% linear unidimensional form for the row and column
% object ordering given by the ending permutation OUTPERM.
% The spacings among the objects are given by the entries
% in FIND.
% KBLOCK defines the block size in the use of the
% iterative quadratic assignment routine.
% The additive constant for the model is given by ADDCON.
% ROWPERM and COLPERM are the resulting row and column
% permutations for the objects. The nrow + ncol
% coordinates (ordered with the smallest set at a
% valué of zero) are given in COORD.

Bibliography

Arable, P. (1991). Was Euclid an unnecessarily sophisticated psychologist? Psychometrika,
56, 567-587.

Arabic, P., Carroll, J. D., & DeSarbo, W. S. (1987). Three-way scaling and clustering.
Newbury Park, CA: Sage. (Translated into Japanese by A. Okada & T. Imaizumi, 1990.
Tokyo: Kyoritsu Shuppan.)

Barthelemy, J.-P, & Guenoche, A. (1991). Trees and proximity representations. Chichester:
Wiley.

Bodewig, E. (1956). Matrix calculus. Amsterdam: North-Holland.

Brossier, G. (1987). Etude des matrices de proximite rectangulaires en vue de la classification
[A study of rectangular proximity matrices from the point of view of classification]. Revue
de Statistiques Appliquees, 35(4), 43-68.

Brusco, M. J. (2001). A simulated annealing heuristic for unidimensional and multidimen-
sional (city-block) scaling of symmetric proximity matrices. Journal of Classification, 18,
3-33.

Brusco, M. J., & Stahl, S. (2005). Optimal least-squares unidimensional scaling: Improved
branch-and-bound procedures and comparison to dynamic programming. Psychometrika,
70, 253-270.

Busing, F. M. T. A., Commandeur, J. J. F., & Heiser, W. J. (1997). PROXSCAL: A mul-
tidimensional scaling program for individual differences scaling with constraints. In W.
Bandilla & F. Faulbaum (Eds.), Softstat '97: Advances in statistical software, Vol. 6 (pp.
67-74). Stuttgart: Lucius & Lucius.

Carroll, J. D. (1976). Spatial, non-spatial and hybrid models for scaling. Psychometrika, 41,
439-463.

Carroll, J. D. (1992). Metric, nonmetric, and quasi-nonmetric analysis of psychological
data. Division 5 Presidential Address, American Psychological Association, Washington,
DC, August, 1992 (published in Score, Newsletter of Division 5, October, 1992, pp. 4-5).

Carroll, J. D., & Arabie, P. (1998). Multidimensional scaling. In M. H. Birnbaum (Ed.),
Handbook of perception and cognition, Vol. 3 (pp. 179-250). San Diego: Academic Press.

205

206 Bibliography

Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional
scaling vía an N-way generalization of "Eckhart-Young" decomposition. Psychometrika,
35,283-319.

Carroll, J. D., Clark, L. A., «fe DeSarbo, W. S. (1984). The representation of three-way
proximity data by single and múltiple tree structure models. Journal of Classification, 1,
25-75.

Carroll, J. D., & Pruzansky, S. (1975). Fitting of hierarchical tree structure (HTS) models,
mixtures of HTS models, and hybrid models, via mathematical programming and alternating
least squares. Proceedings ofthe U.S.-Japan Seminar on Multidimensional Scaling, 9-19.

Carroll, J. D., & Pruzansky, S. (1980). Discrete and hybrid scaling models. In E. D. Lanter-
mann & H. Feger (Eds.), Similarity and cholee (pp. 108-139). Bern: Hans Huber.

Cheney, W., & Goldstein, A. (1959). Proximity maps for convex sets. Proceedings ofthe
American Mathematical Society, 10, 448^50.

Coombs, C. H. (1964). A theory ofdata. New York: Wiley.

Critchley, F. (1994). On exchangeability-based equivalence relations induced by strongly
Robinson and, in particular, by quadripolar Robinson dissimilarity matrices. In B. van
Cutsem (Ed.), Classification and dissimilarity analysis, Lecture Notes in Statistics (pp.
173-199). New York: Springer-Verlag.

Critchley, F., & Fichet, B. (1994). The partial order by inclusión of the principal classes
of dissimilarity on a finite set, and some of their basic properties. In B. van Cutsem (Ed.),
Classification and dissimilarity analysis, Lecture Notes in Statistics (pp. 5-65). New York:
Springer-Verlag.

Day, W. H. E. (1987). Computational complexity of inferring phylogenies from dissimilarity
matrices. Bulletin of Mathematical Biology, 49, 461-467.

Day, W. H. E. (1996). Complexity theory: An introduction for practitioners of Classification.
In P. Arabie, L. J. Hubert, & G. De Soete (Eds.), Clustering and Classification (pp. 199-233).
River Edge, NJ: World Scientific.

Defays, D. (1978). A short note on a method of seriation. British Journal of Mathematical
and Statistical Psychology, 3, 49-53.

de Leeuw, J., & Heiser, W. J. (1977). Convergence of correction-matrix algorithms for
multidimensional scaling. In J. C. Lingoes, E. E. Roskam, & I. Borg (Eds.), Geometric
representations of relational data (pp. 735-752). Ann Arbor, MI: Mathesis Press.

De Soete, G. (1983). A least squares algorithm for fitting additive trees to proximity data.
Psychometrika, 48, 621-626.

De Soete, G. (1984a). A least squares algorithm for fitting an ultrametric tree to a dissimilarity
matrix. Pattern Recognition Letters, 2, 133-137.

Bibliography 207

De Soete, G. (1984b). Ultrametric tree representations of incomplete dissimilarity data.
Journal of Classification, 1, 235-242.

De Soete, G (1984c). Additive tree representations of incomplete dissimilarity data. Quality
and Quantity, 18, 387-393.

De Soete, G, Carroll, J. D., & DeSarbo, W. S. (1987). Least squares algorithms for con-
structing constrained ultrametric and additive tree representations of symmetric proximity
data. Journal of Classification, 4, 155-173.

De Soete, G, DeSarbo, W. S., Furnas, G. W., & Carroll, J. D. (1984). The estimation of
ultrametric and path length trees from rectangular proximity data. Psychometrika, 49, 289-
310.

Durand, C, & Fichet, B. (1988). One-to-one correspondences in pyramidal representations:
A unified approach. In H. H. Bock (Ed.), Classification and related methods of data analysis
(pp. 85-90). Amsterdam: North-Holland.

Dykstra, R. L. (1983). An algorithm for restricted least squares regression. Journal of the
American Statistical Association, 78, 837-842.

Francis, R. L., & White, J. A. (1974). Facility layout and location: An analytical approach.
Englewood Cliffs, NJ: Prentice-Hall.

Furnas, G. W. (1980). Objects and their features: The metric representation of two class
data. Unpublished doctoral dissertation. Stanford, CA: Stanford University.

Groenen, P. J. E, Heiser, W. J., & Meulman, J. J. (1999). Global optimization in least-squares
multidimensional scaling by distance smoothing. Journal of Classification, 16, 225-254.

Guttman, L. (1968). A general nonmetric technique for finding the smallest coordinate space
for a configuration of points. Psychometrika, 33, 469-506.

Hubert, L. J. (1974). Problems of seriation using a subject by item response matrix. Psy-
chological Bulletin, 81, 976-983.

Hubert, L. J., & Arabic, P. (1986). Unidimensional scaling and combinatorial optimization.
In J. de Leeuw, W. J. Heiser, J. J. Meulman, & F. Critchley (Eds.), Multidimensional data
analysis (pp. 181-196). Leiden, The Netherlands: DSWO Press.

Hubert, L. J., & Arabic, P. (1994). The analysis of proximity matrices through sums of
matrices having (anti-)Robinson forms. British Journal of Mathematical and Statistical
Psychology, 47, 1̂ 10.

Hubert, L. J., & Arabie, P. (1995a). The approximation of two-mode proximity matrices by
sums of order-constrained matrices. Psychometrika, 60, 573-605.

Hubert, L. J., & Arabie, P. (1995b). Iterative projection strategies for the least-squares
fitting of tree structures to proximity data. British Journal of Mathematical and Statistical
Psychology, 48, 281-317.

208 Bibliography

Hubert, L. J., Arable, P., & Hesson-Mclnnis, M. (1992). Multidimensional scaling in the
city-block metric: A combinatorial approach. Journal of Classification, 9, 211-236.

Hubert, L. J., Arabic, P., & Meulman, J. J. (1997). Linear and circular unidimensiona
scaling for symmetric proximity matrices. British Journal of Mathematical and Statistical
Psychology, 50, 253-284.

Hubert, L. J., Arabie, P., & Meulman, J. J. (1998) Graph-theoretic representations for prox-
imity matrices through strongly-anti-Robinson or circular strongly-anti-Robinson matrices.
Psychometrika, 63, 341-358.

Hubert, L. J., Arabie, P., & Meulman, J. J. (2001). Combinatorial data analysis: Optimiza-
tion by dynamic programming. Philadelphia: SIAM.

Hubert, L. J., Arabie, P., & Meulman, J. J. (2002). Linear unidimensional scaling in the
L2-norm: Basic optimization methods using MATLAB. Journal of Classification, 19, 303-
328.

Hubert, L. J., & Schultz, J. W. (1976). Quadratic assignment as a general data analysis
strategy. British Journal of Mathematical and Statistical Psychology, 29, 190-241.

Hutchinson, J. W. (1989). NETSCAL: A network scaling algorithm for nonsymmetric prox-
imity data. Psychometrika, 54, 25-51.

Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis. Fifth
Edition. Upper Saddle River, NJ: Prentice-Hall.

Kaczmarz, S. (1937). Angenaherte Auflosung von Systemen linearer Gleichungen. Bulletin
of the Polish Academy of Sciences, A35, 355-357.

Klauer, K. C., & Carroll, J. D. (1989). A mathematical programming approach to fitting
general graphs. Journal of Classification, 6, 247-270.

Klauer, K. C., & Carroll, J. D. (1991). A comparison of two approaches to fitting directed
graphs to nonsymmetric proximity measures. Journal of Classification, 8, 251-268.

Kfivanek, M. (1986). On the computational complexity of clustering. In E. Diday, Y. Es-
coufier, L. Lebart, J. P. Pages, Y. Schektman, & R. Tomassone (Eds.), Data analysis and
informatics, IV(pp. 89-96). Amsterdam: North-Holland.

Kfivanek, M., & Moravek, J. (1986). NP-hard problems in hierarchical-tree clustering. Acta
Informatica, 23, 311-323.

Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29, 1-27.

Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method. Psy-
chometrika, 29, 115-129.

Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling. Newbury Park, CA: Sage.

Bibliography 209

Kruskal, J. B., Young, E W., & Seery, J. B. (1977). How to use KYST2, a veryflexible program
to do multidimensional scaling and unfolding. Murray Hill, NJ: AT&T Bell Laboratories.

Lawler, E. L. (1975). The quadratic assignment problem: A brief review. In B. Roy (Ed.),
Combinatorial programming: Methods and applications (pp. 351-360). Dordrecht, The
Netherlands: Reidel.

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariateanalysis. New York: Academic
Press.

Marks, W. B. (1965). Difference spectra ofthe visual pigments in single goldfish cones.
Unpublished doctoral dissertation. Baltimore, MD: The Johns Hopkins University.

Mirkin, B. (1996). Mathematical classification and clustering. Dordrecht, The Netherlands:
Kluwer.

Fárdalos, P. M., & Wolkowicz, H. (Eds.). (1994). Quadratic assignment and relatedprob-
lems. DIMACS Series on Discrete Mathematics and Theoretical Computer Science. Provi-
dence, RI: American Mathematical Society.

Plutchik, R. & Conté, H. R. (Eds.). (1997). Circumplex models of personality and emotions.
Washington, DC: American Psychological Association.

Pruzansky, S., Tversky, A., & Carroll, J. D. (1982). Spatial versus tree representations of
proximity data. Psychometrika, 47, 3-24.

Rothkopf, E. Z. (1957). A measure of stimulus similarity and errors in some paired-associate
learning tasks. Journal of Experimental Psychology, 53, 94-101.

Schiffman, H., & Falkenberg, P. (1968). The organization of stimuli and sensory neurons.
Physiology andBehavior, 3, 197-201.

Schiffman, S. S., Reynolds, M. L., & Young, F. W. (1981). Introduction to multidimensional
scaling. New York: Academic Press.

Shepard, R. N. (1962a). Analysis of proximities: Multidimensional scaling withan unknown
distance function I. Psychometrika, 27, 125-140.

Shepard, R. N. (1962b). Analy sis of proximities: Multidimensional scaling withan unknown
distance function II. Psychometrika, 27, 219-246.

Shepard, R. N. (1963). Analysis of proximities as a technique for the study of information
processing in man. Human Factors, 5, 33-48.

Shepard, R. N. (1974). Representation of structure in similarity data: Problems and
prospects. Psychometrika, 39, 313-421.

Shepard, R. N., Kilpatric, D. W., & Cunningham, J. P. (1975). The internal representation
of numbers. Cognitive Psychology, 7, 82-138.

Spath, H. (1991). Mathematical algorithms for linear regression. San Diego: Academic
Press.

Wilkinson, L. (1988). SYSTAT: The systemfor statistics. Evanston, IL: SYSTAT, Inc.

210 Author Index

Author Index

Arabie, R, 3, 5, 6, 12, 19, 29, 34, 35, 65,
72,83,114,116,118,131,143,
144, 151,159,205-208

Bandilla, W., 205
Barthélemy, J.-R, 81,205
Bibby, J. M, 32, 209
Birnbaum, M. H., 205
Bock, H. H., 207
Bodewig, E., 12, 205
Borg, L, 206
Brossier, G, 99, 205
Brusco, M.J., 19,205
Busing, F. M. T. A., 29, 205

Carroll, J. D., 29,43,65,81,88,103,113,
117,205-209

Chang, J. J., 29, 206
Cheney,W., 21,32, 206
Clark, L. A., 65, 81,206
Commandeur, J. J. E, 29, 205
Conté, H. R., 143, 209
Coombs, C. H., 160, 206
Critchley, R, 131,206,207
Cunningham, J. R, 5, 131, 209

Day, W. H. E., 66, 206
de Leeuw, J., 3, 206, 207
De Soete, G, 65, 88, 103, 206, 207
Defays, D., 3, 5, 206
DeSarbo, W. S., 29,65, 81, 88,103,205-

207
Diday, E., 208
Durand,C, 131,207
Dykstra, R. L., 4, 12, 17, 207

Escoufier, Y., 208

Falkenberg, R, 47, 209
Faulbaum, F., 205
Feger, H., 206
Fichet, B., 131,206,207
Francis, R. L., 6, 207

Fumas, G. W., 65, 88, 99, 103, 207

Goldstein, A., 21,32, 206
Groenen, R J. F., 19,207
Guénoche, A., 81,205
Guttman, L., 3, 207

Heiser, W. J., 3, 19, 30, 205-207
Hesson-Mclnnis, M., 19, 208
Hubert, L. J., 3, 5, 6, 12, 19, 32, 34, 35,

65,72,83, 114, 116, 118, 131,
143, 144, 151, 159, 160,206-
208

Hutchinson, J. W., 65, 208

Imaizumi, T., 205

Johnson, R. A., xvi, 208

Kaczmarz, S., 4, 12,208
Kent, J. T., 32, 209
Kilpatric, D. W., 5, 131,209
Klauer, K. C., 65, 208
KHvánek, M., 66, 208
Kruskal, J. B., 32, 113, 116, 208, 209

Lantermann, E. D., 206
Lawler, E. L., 6, 209
Lebart, L., 208
Lingoes, J. C., 206

Mardia, K. V., 32, 209
Marks, W. B., 47, 209
Meulman, J. J., 3, 5, 12, 19, 114, 118,

131, 143, 144,151,207,208
Mirkin,B., 81, 131,209
Morávek, J., 66, 208

Okada, A., 205

Pagés, J. R, 208
Pardales, R M., 7, 209
Plutchik, R., 143, 209

Author Index 211

Pruzansky, S., 43, 65, 88, 103, 113, 206,
209

Reynolds, M. L., 47, 209
Roskam, E. E., 206
Rothkopf, E. Z., 32, 209
Roy, B., 209

Schektman, Y., 208
Schiffman, H., 47, 209
Schiffman, S. S., 47, 209
Schultz, J. W., 6, 32, 208
Seery,J. B., 116,209
Shepard, R. N., 5, 32, 113, 131, 209
Spath, H., 69, 209
Stahl, S., 19, 205

Tomassone, R., 208
Tversky, A., 113,209

van Cutsem, B., 206

White, J. A., 6, 207
Wichern, D. W., xvi, 208
Wilkinson, L., 116,209
Wish, M., 32, 208
Wolkowicz, H., 7, 209

Young, F. W, 47, 116,209

212 Subject Index

Subject Index

additive constant
multidimensional scaling, 20
ultrametric plotting, 79
unidimensional scaling, 19, 33

additive tree, xv, 30, 65, 81
centroid metric, 82
decomposition, 85, 92

atreedec .m, 85
finding, 83

atreefnd.m, 83
fitting, 82

atreectul.m, 92
atreefit.m, 82

four-point condition, 81
graphical representation, 87
multiple, 95

biatreef nd. m, 95
path length, 76
root, 76, 81
two-mode, 102

two-set conditions, 99
two-mode finding, 104

atreefndtm.m, 104
alternating projection methods, 21,32,34
anti-Robinson forms, xv, 114, 115, 118

finding, 123
arobfnd.m, 123

fitting, 119
arobfit.m, 119

multiple, 136
biarobfnd.m, 136
bisarobfnd.m, 136

strongly, xv
finding with sarobfnd.m, 125
fitting with sarobf it .m, 124
graphical representation, 131

two-mode
finding with arobf ndtm. m, 159
fitting with arobf ittm.m, 159

two-mode multiple
biarobfndtm.m, 162

ultrametric, 73

bidimensional scaling
bicirac.m, 43
biscalqa.m, 24
two-mode

biscaltmac.m, 54
biplot, 59

biplot .m, 59
biplot tm.m, 59

centroid metric, 82, 85, 92
fitting, 88

centfit .m, 88
two-mode, 100
two-mode fitting, 102

centfittm.m, 102
circular anti-Robinson forms, 143

fitting with cirarobf it .m, 14
146

fitting with cirarobfnd_ac .m,
146

multiple
bicirarobfnd.m, 152
bicirsarobfnd.m, 155

strongly, 143
finding with cirsarobfnd.m

149
finding with cir sarobf nd_ac .

149
fitting with cirsarobf it .m, 1
graphical representation, 151

city-block metric, xv
combinatorial optimization, 3
common space, 30
conjugate gradient, 65
convex sets, 17, 21, 32, 66, 100

dendrogram
plotting

ultraplot.m, 78
root, 76

Dykstra-Kaczmarz method, xvi, 4, 12,
13, 17,22,35

dynamic programming, 12

Subject Index 213

equality constrained least-squares, 17

gradient optimization, 66
graph theory

tree structures, xv, 65
group space, 30

individual differences scaling
city-block metric, 29

INDSCAL model, 29
inequality constrained least-squares, xvi,

4, 12, 17,50,66,69,82,100
fitting

targfit.m, 120
iterative projection methods, 17, 22, 34,

35,50,66,69,82, 100,119
heuristic optimization, 66, 104

least-squares criterion, xvi, 3, 65
iterative projection, 17

MATLAB, xv
cell array, 8
M-file, xv
Statistics Toolbox, 78

monotonic matrix form, 6
monotonic transformation, 12, 27, 114,

116, 126
proxmon.m, 13, 126
single iteration, 116
two-mode

proxmontm.m, 58
multidimensional scaling, 24

circular, xv, 43
city-block metric, 19
confirmatory fitting, 25, 29

two-mode, 55
least-squares criterion, 19
linear, xv
nonmetric, 113
nonmetric bidimensional

bimonscalqa. m, 27
nonmetric tridimensional

trimonscalqa.m, 29
nonmetric two-mode bidimensional,

59

bimonscaltmac .m, 59
two-mode

biscaltmac.m, 54
bidimensional, 54

multiple unidimensional scaling, 24

NP-hard, 66
Numerical Algorithms Group (NAG), xvi

one-mode proximity data, xv
one-mode utility M-files

circularplot.m, 41
proxstd.m, 22

parallelogram, 160
partition hierarchy, 67, 68
penalty function, 65
private space, 30
projection methods, 17
PROXSCAL, 29

Q-form, 160
anti-Q-form, 160

quadratic assignment, xvi, 3, 6, 25, 39,
48, 122

heuristic optimization, 7
insertqa.m, 7
order, m, 122
pairwiseqa.m, 7
rotateqa.m, 7

iterative, 6, 39
two-mode proximity data

ordertm.m, 48

regression-Lp, 69

SPSS Categories, 29
steepest descent, 65
SYSTAT, 67

target matrix
targcir.m, 37
targlin.m, 8
equally spaced, 8

tree structures, 65
tridimensional scaling

triscalqa.m, 27

214 Subject Index

two-mode proximity data, xv, 47 two-mode, 52
additive tree, 99 linear, xv, 3,4
anti-Robinson forms, 159 nonmetric, 3, 12
biplot, 59 proxmon.m, 12, 13
ultrametric, 99 two-mode, 49

two-mode utility M-files linf ittm.m, 50
biplottm.m, 58 linfittmac.m, 52
proxmontm.m, 58 uniscaltmac.m, 54
proxrandtm. m, 58 two-mode proximity data, 47
proxstdtm. m, 58

weighted Euclidean model, 30
ultrametric, xv, 30,65,67,68, 85,92, 116

basic, 68
dendrogram, 73
finding, 70

ultrafnd.m, 70
fitting, 69

ultrafit ,m, 69
inequality, 68
multiple, 93

biultrafnd.m, 93
reordering, 73

ultraorder,m, 73
three-point condition, 68
two-mode

two-set conditions, 99
two-mode completion, 105

ultracomptm.m, 105
two-mode finding, 102

ultrafndtm.m, 102
two-mode fitting, 101

ultraf ittm.m, 101
unidimensional scaling, 116

uniscalqa.m, 8
additive constant included, 21

linfitac.m, 22
two-mode, 52

circular, xv, 31
cirf it .m, 35
cirfitac.m, 35
cirfitac_ftarg, 37
unicirac.m, 39
inflection patterns, 31, 32

confirmatory fitting, 3, 12
linf it .m, 12
additive constant included, 21

	The Structural Representation of Proximity Matrices with MATLAB
	Contents
	List of Figures
	List of Tables
	Preface
	Part I (Multi- and Unidimensional) City-Block Scaling
	Chapter 1 Linear Unidimensional Scaling
	Chapter 2 Linear Multidimensional Scaling
	Chapter 3 Circular Scaling
	Chapter 4 LUS for Two-Mode Proximity Data

	Part II The Representation of Proximity Matrices by Tree Structures
	Introduction to Graph-Theoretic Representational Structures
	Chapter 5 Ultrametrics for Symmetric Proximity Data
	Chapter 6 Additive Trees for Symmetric Proximity Data
	Chapter 7 Fitting Multiple Tree Structures to a Symmetric Proximity Matrix
	Chapter 8 Ultrametrics and Additive Trees for Two-Mode (Rectangular) Proximity Data

	Part III The Representation of Proximity Matrices by Structures Dependent on Order (Only)
	An Introduction to Order-Theoretic Representational Structures
	Chapter 9 Anti-Robinson Matrices for Symmetric Proximity Data
	Chapter 10 Circular Anti-Robinson Matrices for Symmetric Proximity Data
	Chapter 11 Anti-Robinson Matrices for Two-Mode Proximity Data

	Appendix A Header Comments for the M-Files Mentioned in the Text and Given in Alphabetical Order
	Bibliography
	Author Index
	Subject Index

