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Foreword

In clinical medicine appropriate statistics has become indispensable to evaluate
treatment effects. Randomized controlled trials are currently the only trials that
truly provide evidence-based medicine. Evidence based medicine has become
crucial to optimal treatment of patients. We can define randomized controlled trials
by using Christopher J. Bulpitt’s definition “a carefully and ethically designed
experiment which includes the provision of adequate and appropriate controls by a
process of randomization, so that precisely framed questions can be answered”. The
answers given by randomized controlled trials constitute at present the way how
patients should be clinically managed. In the setup of such randomized trial one of
the most important issues is the statistical basis. The randomized trial will never
work when the statistical grounds and analyses have not been clearly defined before-
hand. All endpoints should be clearly defined in order to perform appropriate power
calculations. Based on these power calculations the exact number of available
patients can be calculated in order to have a sufficient quantity of individuals to have
the predefined questions answered. Therefore, every clinical physician should
be capable to understand the statistical basis of well performed clinical trials. It is
therefore a great pleasure that Drs. T. J. Cleophas, A. H. Zwinderman, and T. F. Cleophas
have published a book on statistical analysis of clinical trials. The book entitled
“Statistics Applied to Clinical Trials” is clearly written and makes complex issues
in statistical analysis transparent. Apart from providing the classical issues in statistical
analysis, the authors also address novel issues such as interim analyses, sequential
analyses, and meta-analyses. The book is composed of 18 chapters, which are nicely
structured. The authors have deepened our insight in the applications of statistical
analysis of clinical trials. We would like to congratulate the editors on this achievement
and hope that many readers will enjoy reading this intriguing book.

Professor of Cardiology, President Netherlands E.E. van der Wall, M.D., Ph.D.
Association of Cardiology, Leiden, Netherlands






Preface to First Edition

The European Interuniversity Diploma of Pharmaceutical Medicine is a postacademic
course of 2-3 years sponsored by the Socrates program of the European Community.
The office of this interuniversity project is in Lyon and the lectures are given there. The
European Community has provided a building and will remunerate lecturers.
The institute which provides the teaching is called the European College of
Pharmaceutical Medicine, and is affiliated with 15 universities throughout Europe,
whose representatives constitute the academic committee. This committee supervises
educational objectives. Start lectures February 2000.

There are about 20 modules for the first 2 years of training, most of which are
concerned with typically pharmacological and clinical pharmacological matters
including pharmacokinetics, pharmacodynamics, phase III clinical trials, reporting,
communication, ethics and, any other aspects of drug development. Subsequent
training consists of practice training within clinical research organisations, universities,
regulatory bodies etc., and finally of a dissertation. The diploma, and degree are
delivered by the Claude Bernard University in Lyon as well as the other participating
universities.

The module “Statistics applied to clinical trials” will be taught in the form of a
3-6 day yearly course given in Lyon and starting February 2000. Lecturers have to
submit a document of the course (this material will be made available to students).
Three or four lecturers are requested to prepare detailed written material for students
as well as to prepare examination of the students. The module is thus an important
part of a postgraduate course for physicians and pharmacists for the purpose of
obtaining the European diploma of pharmaceutical medicine. The diploma should
make for leading positions in pharmaceutical industry, academic drug research, as
well as regulatory bodies within the EC. This module is mainly involved in the
statistics of randomized clinical trials.

The Chaps. 1-9, 11, 17, and 18 of this book are based on the module “Medical
statistics applied to clinical trials” and contain material that should be mastered by
the students before their exams. The remaining chapters are capita selecta intended
for excellent students and are not included in the exams.
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viii Preface to First Edition

The authors believe that this book is innovative in the statistical literature because,
unlike most introductory books in medical statistics, it provides an explanatory
rather than mathematical approach to statistics, and, in addition, emphasizes non-
classical but increasingly frequently used methods for the statistical analyses of
clinical trials, e.g., equivalence testing, sequential analyses, multiple linear regression
analyses for confounding, interaction, and synergism. The authors are not aware
of any other work published so far that is comparable with the current work, and,
therefore, believe that it does fill a need.

August 1999
Dordrecht, Leiden
Delft



Preface to Second Edition

In this second edition the authors have removed textual errors from the first edition.
Also seven new chapters (Chaps. 8, 10, 13, 15-18) have been added. The principles
of regression analysis and its resemblance to analysis of variance was missing in the
first edition, and have been described in Chap. 8. Chapter 10 assesses curvilinear
regression. Chapter 13 describes the statistical analyses of crossover data with
binary response. The latest developments including statistical analyses of genetic
data and quality-of-life data have been described in Chaps. 15 and 16. Emphasis is
given in Chaps. 17 and 18 to the limitations of statistics to assess non-normal data,
and to the similarities between commonly-used statistical tests. Finally, additional
tables including the Mann-Whitney and Wilcoxon rank sum tables have been added
in the Appendix.

December 2001

Dordrecht, Amsterdam
Delft
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Preface to the Third Edition

The previous two editions of this book, rather than having been comprehensive,
concentrated on the most relevant aspects of statistical analysis. Although well-
received by students, clinicians, and researchers, these editions did not answer all of
their questions. This called for a third, more comprehensive, rewrite. In this third
edition the 18 chapters from the previous edition have been revised, updated, and
provided with a conclusions section summarizing the main points. The formulas
have been re-edited using the Formula-Editor from Windows XP 2004 for enhanced
clarity. Thirteen new chapters (Chaps. 8-10, 14, 15, 17, 21, 25-29, 31) have been
added. The Chaps. 8—10 give methods to assess the problems of multiple testing and
data testing closer to expectation than compatible with random. The Chaps. 14 and
15 review regression models using an exponential rather than linear relationship
including logistic, Cox, and Markow models. Chapter 17 reviews important interaction
effects in clinical trials and provides methods for their analysis. In Chap. 21 study
designs appropriate for medicines from one class are discussed. The Chaps. 25-29
review respectively (1) methods to evaluate the presence of randomness in the data,
(2) methods to assess variabilities in the data, (3) methods to test reproducibility in
the data, (4) methods to assess accuracy of diagnostic tests, and (5) methods to
assess random rather than fixed treatment effects. Finally, Chap. 31 reviews methods
to minimize the dilemma between sponsored research and scientific independence.
This updated and extended edition has been written to serve as a more complete
guide and reference-text to students, physicians, and investigators, and, at the
same time, preserves the common sense approach to statistical problem-solving of
the previous editions.

August 2005

Dordrecht, Amsterdam
Delft

xi






Preface to Fourth Edition

In the past few years many important novel methods have been applied in published
clinical research. This has made the book again rather incomplete after its previous
edition. The current edition consists of 16 new chapters, and updates of the 31 chapters
from the previous edition. Important methods like Laplace transformations, log
likelihood ratio statistics, Monte Carlo methods, and trend testing have been included.
Also novel methods like superiority testing, pseudo-R2 statistics, optimism corrected
c-statistic, I-statistics, and diagnostic meta-analyses have been addressed.

The authors have given special efforts for all chapters to have their own introduc-
tion, discussion, and references section. They can, therefore, be studied separately
and without need to read the previous chapters first.

September 2008
Dordrecht, Amsterdam, Gorinchem, and Delft
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Preface to Fifth Edition

Thanks to the omnipresent computer, current statistics can include data files of
many thousands of values, and can perform any exploratory analysis in less than
seconds. This development, however fascinating, generally does not lead to simple
results. We should not forget that clinical studies are, mostly, for confirming prior
hypotheses based on sound arguments, and the simplest tests provide the best power
and are adequate for such purposes. In the past few years the authors of this 5th edition,
as teachers and research supervisors in academic and top-clinical facilities, have
been able to closely observe the latest developments in the field of clinical data
analysis, and they have been able to assess their performance. In this 5th edition the
47 chapters of the previous edition have been maintained and upgraded according to
the current state of the art, and 20 novel chapters have been added after strict selection
of the most valuable and promising novel methods. The novel methods are explained
using practical examples and step-by-step analyses readily accessible not only to
statisticians but also to non-mathematicians.

In order to keep up with the forefront of statistical analysis it was unavoidable to also
include more complex data modeling and computationally intensive statistical methods.
These methods include, e.g., multistage regression, neural networks, fuzzy modeling,
mixed linear and non linear models, item response modeling, non linear regression
methods, propensity score matching, Bhattacharya modeling and various regression
models with multiple outcome variables. However, the authors have given every effort
to review these methods in an explanatory rather than mathematical manner.

We should add that the authors are well-qualified in their field. Professor Zwinderman
is president-elect of the International Society of Biostatistics, and Professor Cleophas
is past-president of the American College of Angiology. From their expertise they
should be able to make adequate selections of modern methods for clinical data ana-
lysis for the benefit of physicians, students, and investigators. The authors have been
working and publishing together for over 10 years, and their research of statistical
methodology can be characterized as a continued effort to demonstrate that statistics is
not mathematics but rather a discipline at the interface of biology and mathematics.

September 2011
Dordrecht, Amsterdam, Lyon
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Chapter 1
Hypotheses, Data, Stratification

1 General Considerations

Over the past decades the randomized clinical trial has entered an era of continuous
improvement and has gradually become accepted as the most effective way of deter-
mining the relative efficacy and toxicity of new drug therapies. This book is mainly
involved in the methods of prospective randomized clinical trials of new drugs.
Other methods for assessment including open-evaluation-studies, cohort- and case-
control studies, although sometimes used, e.g., for pilot studies and for the evalua-
tion of long term drug-effects, are, however, not excluded in this course. Traditionally,
clinical drug trials are divided into IV phases (from phase I for initial testing to
phase IV after release for general use), but scientific rules governing different phases
are very much the same, and can thus be discussed simultaneously.

A. Clearly Defined Hypotheses
Hypotheses must be tested prospectively with hard data, and against placebo or
known forms of therapies that are in place and considered to be effective.
Uncontrolled studies won’t succeed to give a definitive answer if they are ever so
clever. Uncontrolled studies while of value in the absence of scientific controlled
studies, their conclusions represent merely suggestions and hypotheses. The sci-
entific method requires to look at some controls to characterize the defined
population.

B. Valid Designs
Any research but certainly industrially sponsored drug research where sponsors
benefit from favorable results, benefits from valid designs. A valid study means
a study unlikely to be biased, or unlikely to include systematic errors. The most
dangerous errors in clinical trials are systematic errors otherwise called biases.
Validity is the most important thing for doers of clinical trials to check. Trials
should be made independent, objective, balanced, blinded, controlled, with
objective measurements, with adequate sample sizes to test the expected treat-
ment effects, with random assignment of patients.

T.J. Cleophas and A.H. Zwinderman, Statistics Applied to Clinical Studies, 1
DOI 10.1007/978-94-007-2863-9_1, © Springer Science+Business Media B.V. 2012
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C. Explicit Description of Methods
Explicit description of the methods should include description of the recruitment
procedures, method of randomization of the patients, prior statements about the
methods of assessments of generating and analysis of the data and the statistical
methods used, accurate ethics including written informed consent.
D. Uniform Data Analysis

Uniform and appropriate data analysis generally starts with plots or tables of
actual data. Statistics then comes in to test primary hypotheses primarily. Data
that do not answer prior hypotheses may be tested for robustness or sensitivity,
otherwise called precision of point estimates e.g., dependent upon numbers of
outliers. The results of studies with many outliers and thus little precision should
be interpreted with caution. It is common practice for studies to test multiple
measurements for the purpose of answering one single question. In clinical trials
the benefit to health is estimated by variables, which can be defined as measur-
able factors or characteristics used to estimate morbidity/mortality/time to events
etc. Variables are named exposure, indicator, or independent variables, if they
predict morbidity/mortality, and outcome or dependent variables, if they esti-
mate morbidity/mortality. Sometimes both mortality and morbidity variables are
used in a single trial, and there is nothing wrong with that practice. We should
not make any formal correction for multiple comparisons of this kind of data.
Instead, we should informally integrate all the data before reaching conclusions,
and look for the trends without judging one or two low P-values among other-
wise high P-values as proof.

However, subgroup analyses involving post-hoc comparisons by dividing the
data into groups with different ages, prior conditions, gender etc can easily generate
hundreds of P-values. If investigators test many different hypotheses, they are apt to
find significant differences at least 5% of the time. To make sense of these kinds of
results, we need to consider the Bonferroni inequality, which will be emphasized in
the Chaps. 7 and 8. It states that, if k statistical tests are performed with the cut-off
level for a test statistic, for example t or F, at the o level, the likelihood for observ-
ing a value of the test statistic exceeding the cut-off level is no greater than k times
a . For example, if we wish to do three comparisons with t-tests while keeping the
probability of making a mistake less than 5%, we have to use instead of & =5% in
this case o =5/3%=1.6%. With many more tests, analyses soon lose any sensitiv-
ity and do hardly prove anything anymore. Nonetheless, a limited number of post-
hoc analyses, particularly if a plausible theory is underlying, can be useful in
generating hypotheses for future studies.

2 Two Main Hypotheses in Drug Trials: Efficacy and Safety

Drug trials are mainly for addressing the efficacy as well as the safety of the treat-
ments to be tested in them. For analyzing efficacy data formal statistical techniques
are normally used. Basically, the null hypothesis of no treatment effect is tested,
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and is rejected when difference from zero is significant. For such purpose a great
variety of statistical significance tests has been developed, all of whom report
P values, and compute confidence intervals to estimate the magnitude of the treat-
ment effect. The appropriate test depends upon the type of data and will be dis-
cussed in the next chapter. Of safety data, such as adverse events, data are mostly
collected with the hope of demonstrating that the test treatment is not different
from control. This concept is based upon a different hypothesis from that proposed
for efficacy data, where the very objective is generally to show that there actually
is a difference between test and control. Because the objective of collecting safety
data is thus different, the approach to analysis must be likewise different. In
particular, it may be less appropriate to use statistical significance tests to analyze
the latter data. A significance test is a tool that can help to establish whether a dif-
ference between treatments is likely to be real. It cannot be used to demonstrate
that two treatments are similar in their effects. In addition, safety data, more fre-
quently than efficacy data, consist of proportions and percentages rather than con-
tinuous data as will be discussed in the next section. Usually, the best approach to
analysis of these kinds of data is to present suitable summary statistics, together
with confidence intervals. In the case of adverse event data, the rate of occurrence
of each distinct adverse event on each treatment group should be reported, together
with confidence intervals for the difference between the rates of occurrence on the
different treatments. An alternative would be to present risk ratios or relative risks
of occurrence, with confidence intervals for the relative risk. Chapter 3 mainly
addresses the analyses of these kinds of data.

Other aspects of assessing similarity rather than difference between treatments
will be discussed separately in Chap. 6 where the theory, equations, and assess-
ments are given for demonstrating statistical equivalence.

3 Different Types of Data: Continuous Data

The first step, before any analysis or plotting of data can be performed, is to decide
what kind of data we have. Usually data are continuous, e.g., blood pressures, heart
rates etc. But, regularly, proportions or percentages are used for the assessment of
part of the data. The next few lines will address how we can summarize and charac-
terize these two different approaches to the data.

Samples of continuous data are characterized by:

X _
Mean=—=1%,
n

where X is the summation, x are the individual data, n is the total number of data.

Variance = Z (x=X)*

D (x=%)’

n—1

Mean variance =
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Fig. 1.1 Histogram and Gaussian curve representation of data

Mean variance is often briefly named variance. And, so, don’t forget the term
variance is commonly used to name mean variance. The famous term standard
deviation is often abbreviated as, simply, s, and is equal to the square root of this
mean variance.

Standard deviation (SD)=V(mean variance)

Continuous data can be plotted in the form of a histogram (Fig. 1.1 upper graph).
On the x-axis, frequently called z-axis in statistics, it has individual data. On the
y-axis it has “how often”. For example, the mean value is observed most frequently,
while the bars on either side gradually grow shorter. This graph adequately repre-
sents the data. It is, however, not adequate for statistical analyses. Figure 1.1 lower
graph pictures a Gaussian curve, otherwise called normal (distribution) curve. On
the x-axis we have, again, the individual data, expressed either in absolute data or in
SDs distant from the mean. On the y-axis the bars have been replaced with a con-
tinuous line. It is now impossible to determine from the graph how many patients
had a particular outcome. Instead, important inferences can be made. For example,
the total area under the curve (AUC) represents 100% of the data, AUC left from
mean represents 50% of the data, left from —1 SDs it has 15.87% of the data, left
from -2SDs it has 2.5% of the data. This graph is better for statistical purposes but
not yet good enough.

Figure 1.2 gives two Gaussian curves, a narrow and a wide one. Both are based
on the same data, but with different meaning. The wide one summarizes the data of
our trial. The narrow one summarizes the mean of many trials similar to our trial.
We will not try to make you understand why this is so. Still, it is easy to conceive
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Fig. 1.2 Two examples of 95 % of all data
normal distributions

A

95 % of all means

Probability Density

S |

-2 SEMs mean +2 SDs

that the distribution of all means of many similar trials is narrower and has fewer
outliers than the distribution of the actual data from our trial, and that it will center
around the mean of our trial, because our trial is assumed to be representative for
the entire population. You may find it hard to believe, but the narrow curve with
standard errors of the mean (SEMs) or simply SEs on the x-axis can be effectively
used for testing important statistical hypotheses, like (1) no difference between
new and standard treatment, (2) a real difference, (3) the new treatment is better
than the standard treatment, (4) the two treatments are equivalent. Thus, mean+2
SDs (or more precisely 1.96 SDs) represents 95% of the AUC of the wide distribu-
tion, otherwise called the 95% confidence interval of the data, which means that
95% of the data of the sample are within. The SEM-curve (narrow one) is narrower
than the SD-curve (wide one) because SEM=SD/ \/; with n=sample size.
Mean+2 SEMs (or more precisely 1.96 SEMs) represents 95% of the means of
many trials similar to our trial.

SEM = SD //n

As the size of SEM in the graph is about 1/3 times SD, the size of each sample is
here about n=10. The area under the narrow curve represents 100% of the sample
means we would obtain, while the area under the curve of the wide graph represents
100% of all of the data of the samples.

Why is this SEM approach so important in statistics. Statistics makes use of
mean values and their standard error to test the null hypotheses of finding no differ-
ence from zero in your sample. When we reject a null hypothesis at P<0.05, it liter-
ally means that there is <5% chance that the mean value of our sample crosses the
area of the null hypothesis where we say there is no difference. It does not mean that
many individual data may not go beyond that boundary. Actually, it is just a matter
of agreement. But it works well.
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So remember:

Mean+2 SDs covers an area under the curve including 95% of the data of
the given sample.

Mean+2 SEMs covers an area under curve including 95% of the means of
many samples, and is sometimes called the 95% confidence interval (CI).

In statistical analysis we often compare different samples by taking their sums or
differences. Again, this text is not intended to explain the procedures entirely. One
more thing to accept unexplainedly is the following. The distributions of the sums
as well as those of the difference of samples are again normal distributions and can

be characterized by:
Sum: mean, + mean, £ /(SD; + SD})

Difference: mean, —mean, £/(SD; + SD3)

SEM,,, =+/(SD? /n, + SD? /n,)

SEM = “

difference

Note: If the standard deviations are very different in size, then a more adequate
calculation of the pooled SEM is given in the next chapter.

Sometimes we have paired data where two experiments are performed in one
subject or in two members of one family. The variances with paired data are usually
smaller than with unpaired because of the positive correlation between two observa-
tions in one subject (those who respond well the first time are more likely to do so
the second). This phenomenon translates in a slightly modified calculation of
variance parameters.

SD = J(SD? + SD? +2rSD,-SD,)

paired sum

SD = |/(SD? + SD? -21SD,-SD,)

paired differrence

Where r=correlation coefficient, a term that will be explained soon.
Likewise:

SEM, g um = \/SDf /n,+ SD2/n,+(2rSD,-SD,)(1/2n, +1/2n,)

SEM = /SD?/n, + SD? /n, —(2 1 SD,-SD,)(1/2n, +1/2n,)

paired differrence

Note that SEM does not directly quantify variability in a population. A small
SEM can be mainly due to a large sample size rather than tight data.

With small samples the distribution of the means does not exactly follow a
Gaussian distribution. But rather a t-distribution, 95% confidence intervals cannot
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Fig. 1.3 Family of
t-distributions: with n=5 the
distribution is wide, with
n=10 and n=1,000 this is
increasingly less so

Probability Density

be characterized as the area under the curve between mean+2 SEMs but instead the
area under curve is substantially wider and is characterized as mean+t.SEMs where
t is close to 2 with large samples but 2.5-3 with samples as small as 5-10. The
appropriate t for any sample size is given in the t-table (Appendix).

Figure 1.3 shows that the t-distribution is wider than the Gaussian distribution
with small samples. Mean+t.SEMs presents the 95% confidence intervals of the
means that many similar samples would produce.

Statistics is frequently used to compare more than two samples of data. To esti-
mate whether differences between samples are true or just chance we first assess
variances in the data between groups and within groups.

Group n patients Mean SD
Group 1 n mean, SD,
Group 2 n mean, SD,
Group 3 n mean, SD,

This procedure may seem somewhat awkward in the beginning but in the next
two chapters we will observe that variances, which are no less than estimates of
noise in the data, are effectively used to test the probabilities of true differences
between, e.g., different pharmaceutical compounds. The above data are summarized
underneath.

Between-group variance:
Sum of squares, =SS =n (mean, — overall mean)’+n (mean,—overall
etween between 1 2

mean)’+n (mean, — overall mean)

Within-group variance:

Sum of squares SS 1, =(@0-1) SD *+(n-1) SD,*+(n—1) SD,?

within > within
The ratio of the sum of squares between-group/sum of squares within group
(after proper adjustment for the sample sizes or degrees of freedom, a term which

will be explained later on) is called the big F and determines whether variances
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between the sample means is larger than expected from the variability within the
samples. If so, we reject the null hypothesis of no difference between the samples.
With two samples the square root of big F, which actually is the test statistic of
analysis of variance (ANOVA), is equal to the t of the famous t-test, which will
further be explained in Chap. 2. These ten or so lines already brought us very
close to what is currently considered the heart of statistics, namely ANOVA
(analysis of variance).

4 Different Types of Data: Proportions, Percentages
and Contingency Tables

Instead of continuous data, data may also be of a discrete character where two or
more alternatives are possible, and, generally, the frequencies of occurrence of each
of these possibilities are calculated. The simplest and commonest type of such data
are the binary data (yes/no etc). Such data are frequently assessed as proportions or
percentages, and follow a so-called binomial distribution. If 0.1 < proportion (p) <0.9
the binomial distribution becomes very close to the normal distribution. If p<0.1,
the data will follow a skewed distribution, otherwise called Poisson distribution.
Proportional data can be conveniently laid-out as contingency tables. The simplest
contingency table looks like this:

Numbers of subjects Numbers of subjects

with side effect without side effect
Test treatment (group,) a b
Control treatment (group,) c d

The proportion of subjects who had a side effect in group, (or the risk (R) or
probability of having an effect):

p=a/(a+b), in group, p=c/(c+d),
The ratios a/(a+b) and c¢/(c+d) are called risk ratios (RRs)

Note that the terms proportion, risk and probability are frequently used in
statistical procedures but that they basically mean the same.

Another approach is the odds approach where a/b and c¢/d are odds and their
ratio is the odds ratio (OR).

In clinical trials we use ORs as surrogate RRs, because here a/(a+b) is simply
nonsense. For example:

Treatment-group Control-group Entire-population

Sleepiness 32 a 4 b 4,000
No sleepiness 24 c 52 d 52,000
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We assume that the control group is just a sample from the entire population but
that the ratio b/d is that of the entire population. So, suppose 4=4,000 and

+
52=52,000, then we can approximate M_ﬂ=RR of the entire

population. c/(c+d) c/d

With observational cohort studies things are different. The entire population is
used as control group. Therefore, RRs are better adequate. ORs and RRs are largely
similar as long as they are close to 1.000. More information on ORs is given in the
Chaps. 3, 17, 18, and 19.

Proportions can also be expressed as percentages:
p.100% =a/(a+b). (100%) etc

Just as with continuous data we can calculate SDs and SEMs and 95% confidence
intervals of rates (or numbers, or scores) and of proportions or percentages.

SD of number n=vn

SD of difference between two numbers n, and n,= (n, —n,)//(n, +n,)

SD proportion= /p(1—p)

SEM proportion= /p(1-p)/n

We assume that the distribution of proportions of many samples follows a normal

distribution (in this case called the z-distribution) with 95% confidence intervals
between:

px2{p(l-p)/n

a formula looking very similar to the 95% CI intervals formula for continuous data

mean +2+/SD? / n

Differences and sums of the SDs and SEMs of proportions can be calculated
similarly to those of continuous data:

p](l_pl)+p2(1_p2)

S EMof differences =
n n

1 2

with 95% Cl intervals: p,—p,+2. SEMs

More often than with continuous data, proportions of different samples are
assessed for their ratios rather than difference or sum. Calculating the 95% CI inter-
vals of it is not simple. The problem is that the ratios of many samples do not follow
a normal distribution, and are extremely skewed. It can never be less than 0 but can
get very high. However, the logarithm of the relative risk is approximately sym-
metrical. Katz’s method takes advantage of this symmetry:

b/a . d/c
a+b c+d

95% CI of log RR = log RR £2


http://10.1007/978-94-007-2863-9_3
http://10.1007/978-94-007-2863-9_3
http://10.1007/978-94-007-2863-9_3
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Fig. 1.4 Ratios of Probability distribution
proportions unlike continuous
data usually do not follow a
normal but a skewed
distribution (values vary from
0 to o). Transformation into
the logarithms provides
approximately symmetric
distributions (thin curve)

This equation calculates the CIs of the logarithm of the RR. Take the
antilogarithm (shift and 10* buttons of the pocket calculator) to determine the
95% CIs of the RR.

Figure 1.4 shows the distribution of RRs and the distribution of the logarithms of
the RRs, and illustrates that the transformation from skewed data into their loga-
rithms is a useful method to obtain an approximately symmetrical distribution, that
can be analyzed according to the usual approach of SDs, SEMs and Cls.

5 Different Types of Data: Correlation Coefficient

The SD and SEM of paired data includes a term called r as described above. For the
calculation of r, otherwise called R, we have to take into account that paired com-
parisons, e.g., those of two drugs tested in one subject generally have a different
variance from those of comparison of two drugs in two different subjects. This is so,
because between subjects variability of symptoms is eliminated and because the
chance of a subject responding beneficially the first time is more likely to respond
beneficially the second time as well. We say there is generally a positive correlation
between the responses of one subject to two treatments.

Figure 1.5 gives an example of this phenomenon. X-variables, e.g., blood pres-
sures after the administration of compound 1 or placebo, y-variables blood pressures
after the administration of compound 2 or test-treatment.

The SDs and SEMs of the paired sums or differences of the x- and y-variables
are relevant to estimate variances in the data and are just as those of continuous
data needed before any statistical test can be performed. They can be calculated
according to:

SD = J(SD? + SD? +21SD,-SD,)

paired sum
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Fig. 1.5 A positive Drug
correlation between the

response of one subject to

two treatments

Placebo

SD = J(SD? + SD? -2 SD,SD,)

paired differrence

where r=correlation coefficient, a term that will be explained soon.
Likewise:

SEM = J(SD? + SD2 +2rSD,-SD,) /n

paired sum

SEM = |(SD} + SD2 ~2rSD,-SD,) /n

paired differrence

where n=n =n,
and that:

L 2X=X)(Y-Y)
Y2 X=Xy (Y-

ris between —1 and +1, and with unpaired data r=0 and the SD and SEM formulas
reduce accordingly (as described above). The figure also shows a line, called the
regression line, which presents the best-fit summary of the data, and is the calcu-
lated method that minimizes the squares of the distances from the line.

The 95% CIs of a regression line can be calculated and is drawn as area between
the dotted lines in Fig. 1.6. It is remarkable that the borders of the straight regression
line are curved although we do not allow for a non linear relationship between the
x-axis and y-axis variables. More details on regression analysis will be given in
Chaps. 2 and 3.

In the above few lines we described continuous normally distributed or t-distrib-
uted data, and rates and their proportions or percentages. We did not yet address
data ordered as ranks. This is a special method to transform skewed data into an
approximately normal distribution, and is in that sense comparable with logarithmic
transformation of relative risks (RRs). In Chap. 3 the tests involving this method
will be explained.
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Fig. 1.6 Example of a linear regression line of two paired variables (x- and y-values), the regres-
sion line provides the best fit line. The dotted curves are 95% Cls that are curved, although we do
not allow for a non linear relationship between x and y variables

6 Stratification Issues

When published, a randomized parallel-group drug trial essentially includes a table
listing all of the factors, otherwise called baseline characteristics, known possibly to
influence outcome. E.g., in case of heart disease these will probably include apart
from age and gender, the prevalence in each group of diabetes, hypertension, choles-
terol levels, smoking history. If such factors are similar in the two groups, then we
can go on to attribute any difference in outcome to the effect of test-treatment over
reference-treatment. If not, we have a problem. Attempts are made to retrieve the
situation by multiple variables analysis allocating part of the differences in outcome
to the differences in the groups, but there is always an air of uncertainty about the
validity of the overall conclusions in such a trial. This issue is discussed and methods
are explained in Chap. 8. Here we discuss ways to avoid this problem. Ways to do so,
are stratification of the analysis and minimization of imbalance between treatment
groups, which are both techniques not well-known. Stratification of the analysis
means that relatively homogeneous subgroups are analyzed separately. The limita-
tion of this approach is that it can not account for more than two, maybe three, vari-
ables, and that, thus, major covariates may be missed. Minimization can manage
more factors. The investigators first classify patients according to the factors they
would like to see equally presented in the two groups, then randomly assign treat-
ment so that predetermined approximately fixed proportions of patients from each
stratum receive each treatment. With this method the group assignment does not rely
solely on chance but is designed to reduce any difference in the distribution of unsus-
pected contributing determinants of outcome so that any treatment difference can
now be attributed to the treatment comparison itself. A good example of this method
can be found in a study by Kallis et al. (1994). The authors stratified in a study of
aspirin versus placebo before coronary artery surgery the groups according to age,
gender, left ventricular function, and number of coronary arteries affected. Any other
prognostic factors other than treatment can be chosen. If the treatments are given in
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a double-blind fashion, minimization influences the composition of the two groups
but does not influence the chance of one group entering in a particular treatment arm
rather than the other.

There is an additional argument in favor of stratification/minimization that counts
even if the risk of significant asymmetries in the treatment groups is small. Some
prognostic factors have a particularly large effect on the outcome of a trial. Even
small and statistically insignificant imbalances in the treatment groups may then
bias the results. E.g., in a study of two treatment modalities for pneumonia (Graham
and Bradley 1978) including 54 patients, 10 patients took prior antibiotic in the
treatment group and 5 did in the control group. Even though the difference between
5/27 and 10/27 is not statistically significant, the validity of this trial was being chal-
lenged, and the results were eventually not accepted.

7 Randomized Versus Historical Controls

A randomized clinical trial is frequently used in drug research. However, there is
considerable opposition to the use of this design. One major concern is the ethical
problem of allowing a random event to determine a patient’s treatment. Freirich
(1983) argued that a comparative trial, which shows major differences between two
treatments, is a bad trial because half of the patients have received an inferior treat-
ment. On the other hand, in a prospective trial randomly assigning treatments avoids
many potential biases. Of more concern is the trial in which a new treatment is com-
pared to an old treatment when there is information about the efficacy of the old
treatment through historical data. In this situation the use of historical data for com-
parison with data from the new treatment will shorten the length of the study because
all patients can be assigned to the new treatment. The current availability of multi-
variable statistical procedures which can adjust the comparison of two treatments
for differing presence of other prognostic factors in the two treatment arms, has
made the use of historical controls more appealing. This has made randomization
less necessary as a mechanism for ensuring comparability of the treatment arms.
The weak point in this approach is the absolute faith one has to place in the multi-
variable model. In addition, some confounding variables e.g., time effects, simply
can not be adjusted, and remain unknown. Despite the ethical argument in favor of
historical controls we must therefore emphasize the potentially misleading aspects
of trials using historical controls.

8 Factorial Designs

The majority of drug trials are designed to answer a single question. However, in
practice many diseases require a combination of more than one treatment modali-
ties. E.g., beta-blockers are effective for stable angina pectoris but beta-blockers
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Table 1.1 The factorial design for angina pectoris patients treated with calcium
channel blockers with or without beta-blockers

Calcium channel blocker No calcium channel blocker
Beta-blocker Regimen I Regimen II
No beta-blocker Regimen 111 Regimen I

plus calcium channel blockers or beta-blockers plus calcium channel blockers plus
nitrates are better (Table 1.1). Not addressing more than one treatment modality in
a trial is an unnecessary restriction on the design of the trial because the assessment
of two or more modalities in on a trial pose no major mathematical problems.

We will not describe the analytical details of such a design but researchers should
not be reluctant to consider designs of such types. This is particularly so, when the
recruitment of large samples causes difficulties.

9 Conclusions

What you should know after reading this chapter:

1. Scientific rules governing controlled clinical trials include prior hypotheses,
valid designs, strict description of the methods, uniform data analysis.

2. Efficacy data and safety data often involve respectively continuous and propor-

tional data.

. How to calculate standard deviations and standard errors of the data.

4. You should have a notion of negative/positive correlation in paired comparisons,
and of the meaning of the so-called correlation coefficient.

5. Mean=standard deviation summarizes the data, mean +standard error summa-
rizes the means of many trials similar to our trial.

6. You should know the meaning of historical controls and factorial designs.

(O8]
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Chapter 2
The Analysis of Efficacy Data

1 Overview

Typical efficacy endpoints have their associated statistical techniques. For example,
values of continuous measurements (e.g., blood pressures) require the following
statistical techniques:

(a) if measurements are normally distributed: t-tests and associated confidence
intervals to compare two mean values; analysis of variance (ANOVA) to com-
pare three or more,

(b) if measurements have a non-normal distribution: Wilcoxon or Mann-Whitney
tests with confidence intervals for medians.

Comparing proportions of responders or proportions of survivors or patients
with no events involves binomial rather than normal distributions and requires a
completely different approach. It requires a chi-square test, or a more complex
technique otherwise closely related to the simple chi-square test, e.g., Mantel
Haenszl summary chi-square test, logrank test, Cox proportional hazard test etc.
Although in clinical trials, particularly phase III-1V trials, proportions of respond-
ers and proportion of survivors is increasingly an efficacy endpoint, in many other
trials proportions are used mainly for the purpose of assessing safety endpoints,
while continuous measurements are used for assessing the main endpoints, mostly
efficacy endpoints. We will, therefore, focus on statistically testing continuous
measurements in this chapter and will deal with different aspects of statistically
testing proportions in the next chapter.

T.J. Cleophas and A.H. Zwinderman, Statistics Applied to Clinical Studies, 15
DOI 10.1007/978-94-007-2863-9_2, © Springer Science+Business Media B.V. 2012
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Statistical tests all have in common that they try to estimate the probability that
a difference in the data is true rather than due to chance. Usually statistical tests
make use of a so-called test statistic:

Chi-square For the chi-square test

t For the t-test

Q For nonparametric comparisons

Q! For nonparametric comparisons

q For Newman-Keuls test

q' For Dunnett test

F For analysis of variance

Rs For Spearman rank correlation test.

These test statistics can adopt different sizes. In the Appendix of this book we
present tables for t-, chi-square- and F-, Mann-Whitney-, and Wilcoxon-rank-
sum-tests, but additional tables are published in most textbooks of statistics (see
References). Such tables show us the larger the size of the test statistic, the
more likely it is that the null-hypothesis of no difference from zero or no differ-
ence between two samples is untrue, and that there is thus a true difference or true
effect in the data. Most tests also have in common that they are better sensitive or
powerful to demonstrate such a true difference as the samples tested are large. So,
the test statistic in most tables is adjusted for sample sizes. We say that the sample
size determines the degrees of freedom, a term closely related to the sample size.

2 The Principle of Testing Statistical Significance

The human brain excels in making hypotheses but hypotheses may be untrue. When
you were a child you thought that only girls could become a doctor because your fam-
ily doctor was a female. Later on, this hypothesis proved to be untrue. Hypotheses must
be assessed with hard data. Statistical analyses of hard data starts with assumptions:

1. our study is representative for the entire population (if we repeat the trial, differ-
ence will be negligible).

2. All similar trials will have the same standard deviation (SD) or standard error of
the mean (SEM).

Because biological processes are full of variations, statistics will give no certain-
ties only chances. What chances? Chances that hypotheses are true/untrue. What
hypotheses?: e.g.:

1. our mean effect is not different from a 0 effect,
2. itis really different from a O effect,
3. it is worse than a O effect.

Statistics is about estimating such chances/testing such hypotheses. Please note
that trials often calculate differences between a test treatment and a control treatment
and, subsequently, test whether this difference is larger than 0. A simple way to
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Fig. 2.1 Null-hypothesis (H,) and alternative hypothesis H, of an example of experimental data
with sample size (n) =20 and mean=2.9 SEMs, and a t-distributed frequency distribution

reduce a study of two groups of data and, thus, two means to a single mean and single
distribution of data, is to take the difference between the two and compare it with 0.

In the past chapter we explained that the data of a trial can be described in the
form of a normal distribution graph with SEMs on the x-axis, and that this method
is adequate to test various statistical hypotheses. We will now focus on a very impor-
tant hypothesis, the null-hypothesis. What it literally means is: no difference from a
0 effect: the mean value of our sample is not different from the value 0. We will try
and make a graph of this null-hypothesis.

What does it look like in graph? H1 in Fig. 2.1 is a graph based on the data of our
trial with SEMs distant from mean on the x-axis (z-axis). HO is the same graph with
a mean value of 0 (mean+SEM=0=1). Now, we will make a giant leap from our
data to the entire population, and we can do so, because our data are representative
for the entire population. H1 is also the summary of the means of many trials similar
to ours (if we repeat, differences will be small, and summary will look alike). HO is
also the summary of the means of many trials similar to ours but with an overall
effect of 0. Now our mean effect is not 0 but 2.9. Yet it could be an outlier of many
studies with an overall effect of 0. So, we should think from now on of HO as the
distribution of the means of many trials with overall effect of 0. If HO is true, then
the mean of our study is part of HO. We can not prove anything, but we can calculate
the chance/probability of this possibility.

A mean value of 2.9 is far distant from 0. Suppose it belongs to HO. Only 5% of
the HO trials have their means >2.1 SEMs distant from 0, because the area under the
curve (AUC) >2.1 distant from 0 is only 5% of total AUC. Thus, the chance that our
mean belongs to HO is <5%. This is a small chance, and we reject this chance and
conclude there is <5% chance to find this result. We, thus, reject the HO of no
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difference from 0 at P<0.05. The AUC right from 2.101 (and left from —2.101 as will
be soon explained) is called alpha=area of rejection of HO. Our result of 2.9 is far
from 2.101. The probability of finding such a result may be a lot smaller than 5%.
Table 2.1 shows the t-table that can tell us exactly how small this chance truly is.

The four right-hand columns are trial results expressed in SEM-units distant
from O (=also t-values). The upper row gives the AUC-values right from trial
results. The left-hand column presents adjustment for numbers of patients (degrees
of freedom (dfs), in our example two samples of 10 gives (20—-2)=18 dfs).

AUC right from 2.9 means — right from 2.878 means — this AUC<0.01. And so
we conclude that our probability not<0.05 but even<0.01. Note: the t-distribution
is just an adjustment of the normal distribution, but a bit wider for small samples.
With large samples it is identical to the normal distribution. For proportional data
always the normal distribution is applied.

Note: Unlike the t-table in the Appendix, the above t-table gives two-tailed =two-
sided AUC-values. This means that the left and right end of the frequency distribution
are tested simultaneously. A result >2.101 here means both >2.101 and < -2.101. If
aresult of +2.101 was tested one sided, the p-value would be 0.025 instead of 0.05
(see t-table “Appendix”).

3 The t-Value=Standardized Mean Result of Study

The t-table expresses the mean result of a study in SEM-units. Why does it make
sense to express mean results in SEM-units? Consider a cholesterol reducing com-
pound, which reduces plasma cholesterol by 1.7 mmol/l +£ 0.4 mmol/l (mean = SEM).
Is this reduction statistically significant? Unfortunately, there are no statistical tables
for plasma cholesterol values. Neither are there tables for blood pressures, body
weights, hemoglobin levels etc. The trick is to standardize your result.

Mean + SEM

Mean £ SEM = +
SEM SEM

=t — value =

This gives us our test result in SEM-units with an SEM of 1. Suddenly, it becomes
possible to analyze every study by using one and the same table, the famous t-table.
How do we know that our data follow a normal or t frequency distribution? We have
goodness of fit tests (Chap. 42).

How was the t-table made? It was made in an era without pocket calculators, and
it was hard work. Try and calculate in three digits the square root of the number 5.
The result is between 2 and 3. The final digits are found by a technique called “tight-
ening the data”. The result is larger than 2.1, smaller than 2.9. Also larger than 2.2,
smaller than 2.8, etc. It will take more than a few minutes to find out the closest
estimate of /5 in three digits. This example highlights the hard work done by the
U.S. Government’s Work Project Administration by hundreds of women during the
economic depression in the 1930s.
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Table 2.1 t-table Two-tailed P-value (df =degree of freedom)

df 0.1 0.05 0.01 0.002

1 6.314 12.706 63.657 318.31
2 2.920 4.303 9.925 22.326
3 2.353 3.182 5.841 10.213
4 2.132 2.776 4.604 7.173
5 2.015 2.571 4.032 5.893
6 1.943 2.447 3.707 5.208
7 1.895 2.365 3.499 4.785
8 1.860 2.306 3.355 4.501
9 1.833 2.262 3.250 4.297
10 1.812 2.228 3.169 4.144
11 1.796 2.201 3.106 4.025
12 1.782 2.179 3.055 3.930
13 1.771 2.160 3.012 3.852
14 1.761 2.145 2.977 3.787
15 1.753 2.131 2.947 3.733
16 1.746 2.120 2.921 3.686
17 1.740 2.110 2.898 3.646
18 1.734 2.101 2.878 3.610
19 1.729 2.093 2.861 3.579
20 1.725 2.086 2.845 3.552
21 1.721 2.080 2.831 3.527
22 1.717 2.074 2.819 3.505
23 1.714 2.069 2.807 3.485
24 1.711 2.064 2.797 3.467
25 1.708 2.060 2.787 3.450
26 1.706 2.056 2.779 3.435
27 1.701 2.052 2.771 3.421
28 1.701 2.048 2.763 3.408
29 1.699 2.045 2.756 3.396
30 1.697 2.042 2.750 3.385
40 1.684 2.021 2.704 3.307
60 1.671 2.000 2.660 3.232
120 1.658 1.950 2.617 3.160
e 1.645 1.960 2.576 3.090

4 Unpaired t-Test

So far, we assessed a single mean versus 0, now we will assess two means versus
each other. For example, a parallel-group study of two groups tests the effect of two
beta-blockers on cardiac output.

Mean+SD SEM?=SD?%n

Group 1 (n =10) 5.9+2.4 L/min 5.76/10
Group 2 (n =10) 4.5+1.7 L/min 2.89/10
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Calculate: mean, — mean,=mean difference =1.4

Then calculate pooled SEM = /SEM,” + SEM,” = 0.930

Note: for SEM of difference: take the square root of the sums of squares of separate
SEMs and so reduce analysis of two means and two SEMS to one mean and one
SEM. The significance of difference between two unpaired samples of continuous
data is assessed by the formula:

mean, — mean, + /SEM; +SEM; = mean difference * pooled SEM

This formula presents again a t-distribution with a new mean and a new SEM,
i.e., the mean difference and the pooled SEM. The wider this new mean is distant
from zero and the smaller its SEM is, the more likely we are able to demonstrate a
true effect or true difference from no effect. The size of the test statistic is calculated
as follows.

The size of ¢ = mendifference 0930 =1.505
pooled SEM

With n=20, and two groups we have 20—-2=18 degrees of freedom. The t-table
shows that a t-value of 1.505 provides a chance of >5% that the null hypothesis of
no effect can be rejected. The null-hypothesis cannot be rejected.

Note: If the standard deviations are very different in size, e.g., if one is twice the
other, then a more adequate calculation of the pooled standard error is as follows.

(n, —1)SD; +(n, —1)SD; y (L + L)
n,+n, -2 n, n,

Pooled SEM = \/

The lower graph of Fig. 2.2 is the probability distribution of this t-distribution.
HO (the upper graph) is an identical distribution with mean=0 instead of
mean=mean, -mean, and with SEM identical to the SEM of H1, and is taken as the
null- hypothesis in this particular approach. With n=20 (18 dfs) we can accept that
95% of all t-distributions with no significant treatment difference from zero must
have their means between —2.101 and +2.101 SEMs distant from zero. The chance
of finding a mean value of 2.101 SEMs or more distant from 0 is 5% or less (we say
a=0.05, where « is the chance of erroneously rejecting the null hypothesis of no
effect). This means that we can reject the null-hypothesis of no difference at a prob-
ability (P)=0.05. We have 5% chance of coming to this result, if there were no
difference between the two samples. We, therefore, conclude that there is a true dif-
ference between the effects on cardiac output of the two compounds.

Also the F- and chi-square test reject, similarly to the t-test, reject the null-
hypothesis of no treatment effect if the value of the test statistic is larger than
would occur in 95% of the cases if the treatment had no effect. At this point we
should emphasize that when the test statistic is not big enough to reject the null-
hypothesis of no treatment effect, investigators often report no statistically
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Fig. 2.2 Two t- distributions with n=20: lower curve H/ or actual SEM-distribution of the data,
upper curve HO or null hypothesis of the study

significant difference and discuss their results in terms of documented proof that
the treatment had no effect. All they really did, was, fail to demonstrate that it did
have an effect. The distinction between positively demonstrating that a treatment
had no effect and failing to demonstrate that it does have an effect, is subtle but
very important, especially with respect to the small numbers of subjects usually
enrolled in a trial. A study of treatments that involves only a few subjects and then
fails to reject the null-hypothesis of no treatment effect, may arrive at that conclu-
sion because the statistical procedure lacked power to detect the effect because of
a too small sample size, even though the treatment did have an effect. We will
address this problem in more detail in Chap. 6.

5 Null-Hypothesis Testing of Three or More
Unpaired Samples

If more than two samples are compared, things soon get really complicated, and the
unpaired t-test can no longer be applied. Usually, statistical software, e.g., SAS
or SPSS Statistical Software, will be used to produce F- or P-values, but the
Table 2.2 gives a brief summary of the principles of multiple groups analysis of
variance (ANOVA) applied for this purpose. With ANOVA the outcome variable
(Hb, hemoglobin-level in the example) is often called the dependent variable, while
the groups-variable is called the independent factor (SPSS: Compare means; one-
way ANOVA). If additional groups-variables are in the data (gender, age classes,
comorbidities), then SPSS requires using the General Linear Model (univariate).
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Table 2.2 Multiple groups ANOVA
Unpaired ANOVA 3 groups

Total variation

| |
Between group variation within group variation
In ANOVA:

Variations are expressed as sums of squares (SS) and can be added up to obtain total variation.
Assess whether between-group variation is large compared to within-group variation

Group n patients Mean SD
1 _ — _
2 _ — _
3

Grand mean = (mean 1+2+ 3)/ 3

S, iween groups = n( mean, — grand mean )2 + n( mean, — grand mea.n)2 +...
SS ibingroups = (M—1)SD* +(n—1)SD,* +.......
SS bet /df
= ikt i = between / Mswithin

SS within groups / dfs -

F-table gives P-value

Effect of three compounds on Hb

Group n patients Mean SD

1 16 8.7125 0.8445
2 16 10.6300 1.2841
3 16 12.3000 0.9419

Grand mean = (mean 1+2+3)/3 =10.4926

SS =16(8.7125-10.4926)" +16(10.6300—10.4926)" +....

between groups

SS =15x0.8445" +15x1.2841° +......

within groups

F=49.9 and so P<0.001

Note: In case two groups: ANOVA= unpaired T-test (F=T?). dfs means degrees of freedom, and
equals 3n—-3 for SS . ., and (3—1)=2 for SS

within between

6 Three Methods to Test Statistically a Paired Sample

Table 2.3 gives an example of a placebo-controlled clinical trial to test efficacy of a
sleeping drug.

6.1 First Method

First method is simply calculating the SD of the mean difference d by looking at
the column of differences (d-values) and using the standard formula for variance
between data
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Table 2.3 Example of a placebo-controlled clinical trial to test efficacy of a

sleeping drug
Hours of sleep
Patient Drug Placebo Difference Mean SS
1 6.1 5.2 0.9 5.7 0.41
2 7.0 7.9 -0.9 7.5
3 8.2 39 4.3
4 7.6 4.7 2.9
5 6.5 5.3 1.2
6 7.8 5.4 3.0
7 6.9 4.2 2.7
8 6.7 6.1 0.6
9 7.4 3.8 3.6
10 5.8 6.3 -0.5
Mean 7.06 5.28 1.78
SD 0.76 1.26 1.77
Grand mean 6.17
(d—d)
SDpaired differences = ZT = 179

Next we find SEM of the mean difference by taking SD/ Jn =056

Mean difference + SEM =1.78 +0.56

Similarly to the above unpaired t-test we now can test the null hypothesis of no
difference by calculating

(= Mean difference

SEM =1.78/0.56 = 3.18 with a sample of 10 (degrees of freedom =10-1)

The t-table shows that P<0.02. We have <2% chance to find this result if there were
no difference, and accept that this is sufficient to assume that there is a true difference.

6.2 Second Method

Instead of taking the column of differences we can take the other two columns
and use the formula as described in Chap. 1 for calculating the SD of the paired
differences =SD

paired differrence

= /(SD? +SD? - 2r:SD,-SD,)

= /(076> +1.26 - 21-0.76,-1.26)

As r can be calculated to be +0.26, we can now conclude that
SD =1.79

paired differrence

The remainder of the calculations is as above.
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Table 2.4 ANOVA table of these data

2 The Analysis of Efficacy Data of Drug Trials

Sum of Degrees of Mean square _ MS treatment
Source of variation squares (SS) freedom (dfs)  (MS=SS/dfs) MS residual
Between subjects 2 (m) F=10.11, p<0.02
Within subjects 10 (nx(m-1))
Treatments 1 (m-1)
Residual 9(n-1)
Total 22
Fig. 2.3 Paired data laid out Drug

in the form of linear
regression

Placebo

6.3 Third Method

The third method is the F test using analysis of variance (ANOVA). We have to
calculate SS (sum of squares) e.g., for subject 1:

SS i subject 1= (6.1-5.7)>+(5.2-5.7)>=0.41 (Table 2.3)
grand mean (7.06+5.28)/2=6.17 (Table 2.3)

stithin subject = SSWithin subject 1 within subject 2 within subject 3 T
SS =(7.06-6.17)2+(5.28-6.17)* (Table 2.3)

treatment
=SS, in subject

The ANOVA table (Table 2.4) shows the procedure. Note m is number of treat-
ments, n is number of patients. The ANOVA is valid not only for two repeated
measures but also for multiple repeated measures. For two repeated measures it is
actually equal to the paired t-test (= first method). The results of the analysis of the
two tests are similar, with F being equal to 2.

Similarly, for unpaired samples, with two samples the one way ANOVA already
briefly mentioned in Chap. 1 is equal to the unpaired t-test, but one-way ANOVA
can also be used for multiple unpaired samples.

The above data can also be presented in the form of a linear regression graph.

Paired data can also be laid out in the form of linear regression (Fig. 2.3)

residual treatment

y =a+bx (effect drug)=a+ b (effect placebo)



6 Three Methods to Test Statistically a Paired Sample 25

Table 2.5 ANOVA table for the linear regression between paired samples

Source of Sum of Degrees of Mean square F= regression

variation squares (SS) freedom (dfs) (MS =SS/dfs) MS residual

Regression between 1.017 1 1.017 0.61, P>0.05
samples

Residual 14.027 8 1.753

Total 15.044 9 1.672

which can be assessed in the form of ANOVA:

Fop = regression sum of squares (Z(X -X) (y=-y))° _ SP’x-y — values

total sum of squares B Z(X _ X)ZZ(}, — y)z ~ SS x — values -SS y — values

SS regression=SP? x-y -values/SS x -values
SS total=SS y

SS regression/SS total =12

SP indicates sum of products.

The ANOVA table (Table 2.5) gives an alternative interpretation of the correla-
tion coefficient; the square of the correlation coefficient, r, equals the regression
sum of squares divided by the total sum of squares (0.26°=0.0676=1.017/15.044)
and, thus, is the proportion of the total variation that has been explained by the
regression. We can say that the variances in the drug data are only for 6.76%
determined by the variances in the placebo data, and that they are for 93.24%
independent of the placebo data. With strong positive correlations, e.g., close to
+1 the formula for SD and thus SEM reduces to a very small size (because
[SD*+SD,~2r SD,. SD,] will be close to zero), and the paired t-test produces
huge sizes of t and thus huge sensitivity of testing. The above approach cannot be
used for estimating significance of differences between two paired samples. And
the method in the presented form is not very relevant. It starts, however, to be
relevant, if we are interested in the dependency of a particular outcome variable
upon several factors. For example, the effect of a drug is better than placebo but
this effect still gets better with increased age. This concept can be represented by
a multiple regression equation

y=a+bx +b,x,
which in this example is

drug response = a +b, - (placebo response )+b, - (age)

Although it is no longer easy to visualize the regression, the principles involved
are the same as with linear regression. In the Chaps. 14 and 15 this subject will be
dealt with more explicitly.
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7 Null-Hypothesis Testing of Three or More
Paired Samples

If more than two paired samples are compared, things soon get really complicated,
and the paired #-test can no longer be applied. Usually, statistical software (SAS,
SPSS) will be used to produce F- and P-values, but the Table 2.6 gives a brief sum-
mary of the principles of ANOVA for multiple paired observations, used for this
purpose. A more in-depth treatment of repeated measures methods will be given in
the Chaps. 54 and 55.

Table 2.6 Repeated measurements ANOVA

Paired ANOVA 3 treatments in single group
Total variation

Between subject variation Within-subject variation

Between treatment variation Residual variation
Variations expressed as sums of squares (SS) and can be added up
Assess whether between treatment variation is large compared to residual variation

Subject Treatment 1 Treatment 2 Treatment 3 SD?
1 _ _ _ _

2 _ _ _ _

3 _ _ — _

4 - — — _
Treatment mean - - -

Grand mean = (treatment mean 1 + 2 + 3)/ 3 =.....

2 2 2
SS.ihin subject — SD,"+SD,” +SD," +...
SS,cumen = (treatment mean 1 - grand mean)2 + (treatment mean 2 — grand mean)2 +..
Ssresidual = stnhin subject Sstreatmem
F = SSlrealmenl /de
SS / dfs

residual

F table gives P-value.

Effect of three treatments on vascular resistance (blood pressure/cardiac output)

Person Treatment 1 Treatment 2 Treatment 3 SD?

1 222 54 10.6 147.95
2 17.0 6.3 6.2 77.05
3 14.1 8.5 9.3 18.35
4 17.0 10.7 12.3 21.4
Treatment mean 17.58 7.73 9.60

Grand mean=11.63 (continued)
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Table 2.6 (continued)

SS iy = 147.95+77.05+....
SS e = (17.58=11.63)" +(7.73-11.63)" +....
Ssresidual = stuhin subject - SSlrealmenl

F=18.2and so P <0.025

Note: in case of two treatments: repeated measurements-ANOVA produces the same result as the
paired t-test (F=t?), dfs=degrees of freedom equals (3—1)=2 for SS and (4-1)=3 for
SS

residual

treatment”

Table 2.7 ANOVA compares multiple cells with means, and can be classified in several ways

(1) One-way Two-way
Mean blood pressure Mean results of treatments 1-3
Group! (SD...) 1 2 3
Group2 L. Males
Group3 Females
(2) Unpaired data Unpaired data/paired data
(3) With replication With replication/without replication
(4) Balanced/unbalanced Balanced/unbalanced

8 Null-Hypothesis Testing with Complex Data

ANOVA is briefly addressed in the above Sects. 6 and 7. It is a powerful method
for the analysis of complex data, and will be addressed again in many of the
following chapters of this book. ANOVA compares mean values of multiple
cells, and can be classified in several manners: (1) one-way or two-way
(Table 2.7, left example gives one-way ANOVA with three cells, right example
two-way ANOVA with six cells), (2) unpaired or paired data, if the cells contain
either non-repeated or repeated data (otherwise called repeated measures
ANOVA), (3) data with or without replication, if the cells contain either multi-
ple data or a single datum, (4) balanced or unbalanced, if the cells contains
equal or differing numbers of data.

Sometimes samples consist of data that are partly repeated and partly non-
repeated. For example, ten patients measured ten times produces a sample of n=100.
It is not appropriate to include this sample in an ANOVA-model as either entirely
repeated or non-repeated. It may be practical, then, to use the means per patient as
a summary measure without accounting its standard deviation, and perform simple
tests using the summary measures per patient only. Generally, the simpler the statis-
tical test the more statistical power.
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9 Paired Data with a Negative Correlation

Not only crossover but also parallel-group studies often include an element of
self-controlling. For example, observations before, during, and after treatment are
frequently used as the main control on experimental variation. Such repeated
measures will generally have a positive correlation: those who respond well during
the first observation are more likely to do so in the second. This is, however, not
necessarily so. When drugs of completely different classes are compared, patients
may fall apart into different populations: those who respond better to one and
those who respond better to the other drug. For example, patients with angina
pectoris, hypertension, arrhythmias, chronic obstructive pulmonary disease, unre-
sponsive to one class of drugs, may respond very well to a different class of drugs.
This situation gives rise to a negative correlation in a paired comparison. Other
examples of negative correlations between paired observations include the
following. A negative correlation between subsequent observations in one subject may
occur, because fast-responders are more likely to stop responding earlier. A negative
correlation may exist in the patient characteristics of a trial, e.g., between age and
vital lung capacity, and in outcome variables of a trial, e.g., between severity of
heart attack and ejection fraction. Negative correlations in a paired comparison
reduce the sensitivity not only of studies testing differences but also of studies
testing equivalences (Chap. 4).

9.1 Studies Testing Significance of Differences

Figure 2.4 gives a hypothesized example of three studies: the left graph shows a
parallel-group study of ten patients, the middle and right graph show self-controlled
studies of five patients each tested twice. T-statistics is employed according to the
formula

d
SE

t=

Where d is the mean difference between the two sets of data (6—3=3) and the
standard error (SE) of this difference is calculated for the left graph data accord-
ing to

SD;

n

SD;

n

+ =0.99

1 2
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9 Paired Data with a Negative Correlation
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< p<0,001 > < p<0,001 5 < p<0,001> <« n.s.

(t-statistic)  (t-statistic) (tstatistic) (t-statistic)
p<0,001
(repeated measures ANOVA) <-p<0,001— <—NS.——>

9 - <—p<0,001— <—p<0,001— (Bonferroni adjustment
8 (Bonferroni adjustment for ANOVA)
7] for ANOVA) /‘
6 '\/
5
4
3
2
14
0 T T T T T T 1

0 1 2 3 treatment 1 2 3 4

Fig. 2.5 Hypothesized example of two studies where five patients are tested three times. Due to
negative correlation between treatment 2 and 3 in the right study, the statistical significance test is
negative unlike the left graph study, despite the identical mean results

SD,and SD, are standard deviations and n, and n, are numbers of observations
in each of the groups. We assume that n =n, =n.

t=3/0.99=3.0

With ten observations we can reject the null-hypothesis at p=0.04.
With a positively paired comparison (middle graph) we have even more sensitivity.
SE is calculated slightly different

SE:\/Z(d—d)zl(n—l) 0
Jn

where d is the observed change in each individual and d is its mean.
t=d/SE=3/0=c0

with n=5 we can reject the null-hypothesis at p<0.001.
The right graph gives the negative correlation situation. SE calculated similarly
to the middle graph data is 1.58, which means that

t=3/1.58=1.89

The null-hypothesis of no difference cannot be rejected. Differences are not sig-
nificant (n.s.).

When more than two treatments are given to one sample of patients t-statistics is
not appropriate and should be replaced by analysis of variance.

Figure 2.5 gives a hypothesized example of two studies where five patients are
tested three times. In the left graph the correlation between treatment responses is
positive, whereas in the right graph the correlation between treatment no.3 and no.2
is strong negative rather than positive. For the left graph data repeated measures
ANOVA is performed.
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Table 2.8 ANOVA table Source of variation N dfs MS
of the data Within subjects 2335 10
Treatments 23.35 2 11.68
Residual 0 8 0
F = M _ o, p<0.001
MS

residual

The sum of squares (SS) of the different treatments is calculated according to

Patient Treatment 1 Treatment 2 Treatment 3 Mean SD?
1 6 5 8 6.3 4.67
2 5 4 7 5.3 4.67
3 4 3 6 4.3 4.67
4 3 2 5 33 4.67
5 2 1 4 2.3 4.67
Treatment mean 4 3 6

Grand mean 4.3

SS within subjects = 4 67 + 4 67 +...= 23 3
SS treatments [(4 4 3) 2+ (3_4 3) 2+ (6 4 3)2] 23 35
SS residual SS within subjects SS lrealmenls:O

This analysis permits concluding that at least one of the treatments produces a
change. To isolate which one, we need to use a multiple-comparisons procedure,
eg, the modified Bonferroni t test for ANOVA where

=X(d- d) /(n— 1) is replaced with “MS
compare, e.g., treatment no. 2 with treatment no. 3

” (Table 2.8). So, to

residual

t=—6‘3 —e  p<0.001

( resndual )/ n

Of the right graph from Fig. 2.5 a similar analysis is performed.

Patients Treatment 1 Treatment 2 Treatment 3 Mean SD?

1 6 5 4 5.0 1.0
2 5 4 5 4.7 0.67
3 4 3 6 4.3 4.67
4 3 2 7 4.0 14.0
5 2 1 8 3.7 28.49
Treatment mean 4 3 6

Grand mean 4.3

SS within subjects_ 1.0+0. 67 +4 67 +. =48 83
e =5 [(4-4.3) 4 (3-4.3) 2+ (64.3)*] =23.35
ss =SS . . —SS =48.83-23.35=24.48

residual within subjects treatments
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Table 2.9 ANOVA table of Source of variation SS DF MS
the data Within subjects 43.83 10
Treatments 23.35 2 11.7
Residual 24.48 8 3.1
MS
F = treatments = 3.77 p = 0.20

residual

This analysis does not permit concluding that one of the treatments produces a
change (Table 2.9). The Bonferroni adjustment of treatments no. 2 and no. 3 of
course, does not either (p=0.24 and p=0.34).

In conclusion, with negative correlations between treatment responses statistical
methods including paired t-statistics, repeated measures ANOVA, and Bonferroni
adjustments for ANOVA lack sensitivity to demonstrate significant treatment effects.
The question why this is so, is not difficult to recognize. With t-statistics and a nega-
tive correlation between-patient-variation is almost doubled by taking paired differ-
ences. With ANOVA things are similar.

SS are twice the size of the positive correlation situation while

within subjects

SS are not different. It follows that the positive correlation situation provides

treatments

a lot more sensitivity to test than the negative correlation situation.

9.2 Studies Testing Equivalence

In an equivalence trial the conventional significance test has little relevance: failure
to detect a difference does not imply equivalence, and a difference, which is detected
may not have any clinical relevance and, thus, may not correspond to clinically
relevant equivalence. In such trials the range of equivalence is usually predefined as
an interval from —D to+D distant from a difference of 0. D is often set equal to a
difference of undisputed clinical importance, and hence may be above the minimum
of clinical interest by a factor two or three. The bioequivalence study design essen-
tially tests both equivalence and superiority/inferiority. Let us assume that in an
equivalence trial of vasodilators for Raynaud’s phenomenon ten patients are treated
with vasodilator 1 for one week and for a separate period of one week with vasodila-
tor 2. The data below show the numbers of Raynaud attacks per week (Table 2.10).

Although samples have identical means and SEMs (25+3.16 x-axis, 30+3.16
y-axis) their correlation coefficients range from —1 to +1. The null hypothesis of no
equivalence is rejected when the 95% Cls are entirely within the prespecified range
of equivalence, in our case defined as between —10 and +10.

In the left trial 95% CIs are between —9.5 and +19.5, and thus the null hypothesis
of no equivalence cannot be rejected. In the middle trial 95% CI are between —1.3
and 11.3, while in the right trial 95% CI are between —3.3 and 6.7. This means that
the last trial has a positive outcome: equivalence is demonstrated, the null hypothesis
of no equivalence can be rejected. The negative correlation trial and the zero
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Table 2.10 Correlation levels and their influence on sensitivity of statistical tests

p=-1 p=0 p=+1
Vasodilator Vasodilator vasodilator
Paired Paired Paired
One Two differences One Two differences One Two differences
45 10 35 45 40 5 10 10 0
40 15 25 40 35 5 20 15 5
40 15 25 40 35 5 25 15 10
35 20 15 35 30 5 25 20 5
30 25 5 30 25 5 30 25 5
30 25 5 30 10 20 30 25 5
25 30 -5 25 15 10 35 30 5
25 35 -10 25 15 10 40 35 5
20 35 -15 20 20 0 40 35 5
10 40 -30 10 25 -15 40 40 5
Means
30 25 5 30 25 5 30 25 5
SEMs
3.16 3.16 6.46 3.16 3.16 2.78 3.16 3.16 0.76
t-values
0.8 1.8 6.3
95% Cls
+14.5 +6.3 +1.7

SEM =standard error of the mean;

t means level of t according to t-test for paired differences;

CI means confidence interval calculated according to critical t value of t-distribution for 10-1
pairs=9 degrees of freedom (critical t=2.26, 95% CI=2.26 x SEM);

p=correlation coefficient (the Greek letter is often used instead of r if we mean total population
instead of our sample)

correlation trial despite a small mean difference between the two treatments, are not
sensitive to reject the null-hypothesis, and this is obviously so because of the wide
confidence intervals associated with negative and zero correlations.

10 Rank Testing

Non-parametric tests are an alternative for ANOVA or t-tests when the data do not
have a normal distribution. In that case the former tests are more sensitive than the
latter. They are quick and easy, and are based on ranking of data in their order of
magnitude. With heavily skewed data this means that we make the distribution of
the ranks look a little bit like a normal distribution. We have paired and unpaired
non-parametric tests and with the paired test the same problem of loss of sensitivity
with negative correlations is encountered as the one we observed with the paired
normality tests as discussed in the preceding paragraph. Non-parametric tests are
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Table 2.11 Paired comparison using Wilcoxon signed rank test: placebo-controlled clinical trial
to test efficacy of sleeping drug

Hours of sleep Rank
Patient Drug Placebo Difference (Ignoring sign)
1 6.1 5.2 0.9 3.5¢
2 7.0 7.9 -0.9 3.5
3 8.2 3.9 4.3 10

4 7.6 4.7 2.9 7

5 6.5 5.3 1.2 5

6 8.4 5.4 3.0 8

7 6.9 4.2 2.7 6

8 6.7 6.1 0.6 2

9 7.4 3.8 3.6 9

10 5.8 6.3 -0.5 1

“number 3 and 4 in the rank are duplicate outcome values, otherwise called ties, so we use 3.5 for
both of them

also used to test normal distributions, and provide hardly different results from
their parametric counterparts when distributions are approximately normal. Most
frequently used tests:

For paired comparisons:

Wilcoxon signed rank test = paired Wilcoxon test
For unpaired comparisons:

Mann — Whitney test = Wilcoxon rank sum test

10.1 Paired Test: Wilcoxon Signed Rank Test

The Wilcoxon signed rank test uses the signs and the relative magnitudes of the data
instead of the actual data (Table 2.11). For example, the above table shows the num-
ber of hours sleep in ten patients tested twice: with sleeping pill and with placebo.
We have three steps:

1. exclude the differences that are zero, put the remaining differences in ascending
order of magnitude and ignore their sign and give them a rank number 1, 2, 3 etc
(if differences are equal, average their rank numbers: 3 and 4 become 3.5 and
3.5);

2. add up the positive differences as well as the negative differences;

+ ranknumbers=3.5+10+7+5+8+6+2+9=50.5
— ranknumbers=3.5+1=4.5

3. The null hypothesis is that there is no difference between + and —ranknumbers. We
assess the smaller of the two ranknumbers. The test is significant if the value is
smaller than could be expected by chance. We consult the Wilcoxon signed rank
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Table 2.12 Two-samples of Globulin concentration (g/1) Rank number
patients are treated with two % ]
iff AID

different NS S 7 2
28 3
29 4
30 5
31 6
32 7
33 8
34 9
35 10
36 11
38 12.5
38 12.5
39 14.5
39 14.5
40 16
41 17
42 18
45 19.5
45 19.5

Outcome variable is plasma globulin concentration
(g/1). Sample one is printed in standard and sample
two is printed in fat print

table showing us the upper values for 5%, and 1% significance, for the number of
differences constituting our rank. In this example we have ten ranks: 5% and 1%
points are respectively 8 and 3 (Wilcoxon table). The result is significant at P<0.05,
indicating that the sleeping drug is more effective than the placebo.

10.2  Unpaired Test: Mann-Whitney Test

Table 2.12 shows two-samples of patients are treated with two different NSAID
agents. Outcome variable is plasma globulin concentration (g/l). Sample one is
printed in standard and sample two is printed in fat print.

We have two steps (Table 2.12):

1. The data from both samples are ranked together in ascending order of magni-
tude. Equal values are averaged.

2. Add up the rank numbers of each of the two samples. In sample-one we have
81.5, in sample-two we have 128.5. We now can consult the Table for
Mann-Whitney tests and find with n=10 and n=10 (differences in sample sizes
are no problem) that the smaller of the two sums of ranks should be smaller than
71 in order to conclude P<0.05 (Mann-Whitney table). We can therefore not
reject the null hypothesis of no difference, and have to conclude that the two
samples are not significantly different from each other.
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11 Rank Testing for Three or More Samples

11.1 The Friedman Test for Paired Observations

The Friedman test is used for comparing three or more repeated measures that are
not normally distributed, and is an extension of the Wilcoxon signed rank test. An
example is given in Table 2.13. The data are ranked for each patient in ascending
order of hours of sleep. If the hours are equal, then an average ranknumber is given.
Then, for each treatment the squared ranksum is calculated: for dose 1 it equals
Q2+1.5+2+24+2+3+2+2+2+1.5)*=400, for dose 2 it is 676, for placebo it is
196. The following equation is used:

2
dosel

+ ranksum?

2
foser FranksUM’ ) =3n(k+1)

chi - square = (ranksum

nk (k+1)

where n=the number of patients and k=the number of treatments.

The chi-square value is calculated to be 7.2. The chi-square statistic will be
addressed in Chap. 3. Briefly, it works very similar to the t-statistics. Chi-square
values larger than the ones given in the chi-square table in the Appendix indicate
that the null-hypothesis of no difference in the data can be rejected. In this example
the calculated chi-square value is larger than the rejection chi-square for (3—1)
degrees of freedom at p=0.05, and, therefore, we conclude that there is a significant
difference between the three treatments at p<0.05. Post-hoc subgroups analyses
(using Wilcoxon’s tests) are required to find out exactly where the difference is situ-
ated, between group 1 and 2, between group 1 and 3, or between group 2 and 3 or
between two or more groups. The subject of post-hoc testing will be further
discussed in the Chaps. 8 and 19.

Table 2.13 Paired comparison to test efficacy of two dosages of a sleeping drug versus placebo on
hours of sleep

Hours of sleep

Dose 1 Dose 2 Placebo Dose 1 Dose 2 Placebo

Patient (hours) (ranks)

1 6.1 6.8 5.2 2 3 1
2 7.0 7.0 7.9 1.5 1.5 3
3 8.2 9.0 39 2 3 1
4 7.6 7.8 4.7 2 3 1
5 6.5 6.6 53 2 3 1
6 8.4 8.0 54 3 2 1
7 6.9 7.3 4.2 2 3 1
8 6.7 7.0 6.1 2 3 1
9 7.4 7.5 3.8 2 3 1
10 5.8 5.8 6.3 1.5 1.5 3
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Table 2.14 Three-samples Globulin concentration (g/1) Rank number
of patients are treated with —77 7
placebo or two different _16 2
NSAIDs
-5 3
-3 4
-2 5
16 6
18 7
26 8
27 9
28 10.5
28 10.5
29 12
30 14
30 14
30 14
31 16
32 17
33 18
34 19
35 20
36 21
38 22.5
38 22.5
39 24.5
39 24.5
40 26
41 27
42 28
45 29.5
45 29.5

The outcome variable is the fall in plasma globulin
concentration (g/l). Group 1 patients are printed
in italics, group 2 in normal standard and group 3
in fat standard print

11.2 The Kruskall-Wallis Test for Unpaired Observations

The Kruskall-Wallis test compares multiple groups that are unpaired and not
normally distributed, and is an extension of the Mann-Whitney test. Three groups of
patients with rheumatoid arthritis are treated with a placebo or one of two different
NSAIDS (Table 2.14). The fall in plasma globulin (g/) is used to estimate the effect
of treatments. First, we give a ranknumber to every patient dependent on his/her
magnitude of fall. If two or three patients have the dame fall, they are given an
average ranknumber. Then, we calculate the sum of the ranks for the three groups.
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For group 1 this amounts to 1+2+3+4+5+6+7+10.5+14+14=66.5, for group
2-175.5, group 3—488.5. Then we use the equation:

" 12 (ranksumzmpl ranksum’ ranksum’
chi - square =

group2 group3 | 3 30 -1
30(30-1) 10 ’ 10 ’ 10 ]( )

where the number 30 equals all values, 10 the patient number per group.

The chi-square equals 7744.3. The chi-square statistic will be further addressed
in Chap. 3. It works very similar to the t-statistics. Briefly, chi-square values larger
than the ones given in the chi-square table in the Appendix indicate that the null-
hypothesis of no difference in the data can be rejected. In this example the calcu-
lated chi-square value is much larger than the rejection chi-square for (3—1) degrees
of freedom and, therefore, we conclude that there is a significant difference between
the three treatments at p<0.001. Post-hoc subgroups analyses (using Man-Whitney
tests) are required to find out exactly where the difference is situated, between group
1 and 2, between group 1 and 3, or between group 2 and 3 or between two or more
groups. The subject post-hoc testing will be further discussed in Chap. 8.

12 Conclusions

For the analysis of efficacy data we test null-hypotheses. The t-test is appropriate for
two parallel-groups or two paired samples. Analysis of variance (ANOVA) is appro-
priate for analyzing more than two groups/treatments. For data that do not follow a
normal frequency distribution non-parametric tests are available: for paired data the
Wilcoxon signed rank or Friedman tests, for unpaired data the Mann-Whitney test
or Kruskall-Wallis tests are adequate.

Note: In the references (1-20) an overview of relevant textbooks on the above
subjects is given.
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Chapter 3
The Analysis of Safety Data

1 Introduction, Summary Display

As discussed in Chap. 1 the primary object of clinical trials of new drugs is generally
to demonstrate efficacy rather than safety. However, a trial in human beings not at
the same time adequately addressing safety is unethical, and the assessment of
safety variables is an important element of the trial.

An effective approach to the analysis of adverse effects is to present summaries
of prevalences. We give an example (Table 3.1). Calculations of the 95% confidence
intervals (Cls) of a proportion are demonstrated in Chap. 1. If 0.1 <proportion
(p)<0.9, then the binomial distribution is very close to the normal distribution, but
if p<0.1, the data follow a skewed, otherwise called Poisson distribution. 95% CIs
are, then, more adequately calculated according to+1.96 NP/ n

rather than=1.96 \/p(1—p)/n
(confer page 9). Alternatively, tables (e.g., Wissenschaftliche Tabelle, Documenta
Geigy, Basel, 1995) and numerous statistical software packages can readily provide
you with the ClIs.

Table 3.1 gives an example. The numbers in the table relate to the numbers of
patients showing a particular side effect. Some questions were not answered by all
patients. Particularly, sleepiness occurred differently in the two groups: 33% in the
left, 60% in the right group. This difference may be true or due to chance. In order
to estimate the size of probability that this difference occurred merely by chance we
can perform a statistical test which in case of proportions such as here has to be a
chi-square or given the small data a Fisher exact test. We should add at this point
that although mortality/morbidity may be an adverse event in many trials, there are
also trials that use them as primary variables. This is particularly so with mortality
trials in oncology and cardiology research. For the analysis of these kinds of trials
the underneath methods of assessments are also adequate.

T.J. Cleophas and A.H. Zwinderman, Statistics Applied to Clinical Studies, 41
DOI 10.1007/978-94-007-2863-9_3, © Springer Science+Business Media B.V. 2012
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Table 3.1 The prevalence of side-effects after 8 week treatment

Alpha blocker Beta blocker

n=16 n=15
Side effect Yes No 95% Cls (%) Yes No 95% Cls (%)
Nasal congestion 10 6 35-85 10 5 38-88
Alcohol intolerance 2 12 2-43 2 13 4-71
Urine incontinence 5 11 11-59 5 10 12-62
Disturbed ejaculation 4 2 22-96 2 2 7-93
Disturbed potence 4 2 22-96 2 2 7-93
Dry mouth 8 8 25-75 11 4 45-92
Tiredness 9 7 30-80 11 4 45-92
Palpitations 5 11 11-59 2 13 2-40
Dizziness at rest 4 12 7-52 5 10 12-62
Dizziness with exercise 8 8 25-75 12 3 52-96
Orthostatic dizziness 8 8 25-75 10 5 38-88
Sleepiness 5 10 12-62 9 6 32-84

2  Four Methods to Analyze Two Unpaired Proportions

Many methods exists to analyze two unpaired proportions, like odds ratios analysis
(this chapter) and logistic regression (Chap. 14), but here we will start by presenting
the four most common methods for that purpose. Using the sleepiness data from
above we construct a 2x?2 contingency table:

Sleepiness ~ No sleepiness

Left treatment (left group) 5(a) 10 (b)
Right treatment 9 (c) 6 (d)
(right group)

2.1 Method 1

We can test significance of difference similarly to the method used for testing con-
tinuous data (Chap. 2). In order to do so we first have to find the standard deviation
(SD) of a proportion. The SD of a proportion is given by the formula «/p(1—p) .
Unlike the SD for continuous data (see formula Chap. 1), it is strictly independent
of the sample size. It is not easy to prove why this formula is correct. However, it
may be close to the truth considering an example (Fig. 3.1). Many samples of
15 patients are assessed for sleepiness. The proportion of sleepy people in the popula-
tion is 10 out of every 15. Thus, in a representative sample from this population ten
sleepy patients will be the number most frequently encountered. It also is the mean
proportion, and left and right from this mean proportion proportions grow gradually
smaller, according to a binomial distribution (which becomes normal distribution
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5 10 15 X

Fig. 3.1 Frequency distribution of numbers of sleepy people observed in multiple samples of
15 patients from the same population

with large samples). Figure 3.1 shows that the chance of eight or fewer sleepy
patients is 15% (area under the curve, AUC, left from 8.3=15%). The chance of six
or less sleepy patients is 2.5% (AUC left from 6.6=2.5%). The chance of five or less
sleepy patients =1%. This is a so-called binomial frequency distribution with mean
10 and a standard deviation of p (1 -p)=10/15 (1-5/15)=1.7. -1SD means AUC of
approximately 15%, -2SDs means AUC of approximately 2.5%. And, so, according
to the curve below SD=p (1 -p) is close to the truth.

Note:For null-hypothesis-testing standard error (SE) rather than SD is required, and
SE=SD/n.

For testing we use the normal test (= z-test for binomial or binary data) which
looks very much like the T-test for continuous data. T=d/SE, z=d/SE, where d =mean
difference between two groups or difference of proportions and SE is the pooled SE
of this difference. What we test is, whether this ratio is larger than approximately 2
(1.96 for proportions, a little bit more, e.g., 2.1 or so, for continuous data).

Example of continuous data (testing two means).

Mean + SD SEM?=SD?%n
Group 1 (n=10) 5.9+2.4 1/min 5.76/10
Group 2 (n=10) 4.5+1.7 /min 2.89/10

Calculate: mean, —mean,=1.4.
Then calculate pooled SEM = \/(SEM; +SEM;) = 0.930.

Note:For SEM of difference: take square root of sums of squares of separate SEMs
and, so, reduce the analysis of two means to one of a single mean.

T = D~ MO 4 4/0.930 =1.505 , with degrees of freedom (dfs)
Pooled SEM
18, “p>0.05.

Example of proportional data (testing two proportions).

*We have two groups of n=10 which means 2x10-2=18 dfs.
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2x2 table Sleepiness No sleepiness
Left treatment (left group) 5 10
Right treatment 9 6

(right group)

, = difference between proportions of sleepers per group (d)

pooled standard error difference

. d _(9/15-5/15)
pooled SE \/(SEIZ +SE2)

SE, (or SEM,) =y R1ZR)

n

where p, = 5/15 etc........ ,

z=1.45, not statistically significant from zero, because for a p<0.05 a
z-value of at least 1.96 is required.

Note: The z-test uses the bottom row of the t-table (see Appendix), because, unlike
continuous data that follow a t-distribution, proportional data follow a normal
distribution. The z-test is improved by inclusion of a continuity correction. For that
purpose the term — (1/2n +1/2n,) is added to the denominator where n, and n, are
the sample sizes. The reason is that a continuous distribution is used to approximate
a proportional distribution which is discrete, in this case binomial.

2.2 Method 2

According to some a more easy way to analyze proportional data is the chi-square
test. The chi-square test assumes that the data follow a chi-square frequency distri-
bution which can be considered the square of a normal distribution (see also Chap.
41). First some philosophical considerations.

Repeated observations have both (1) a central tendency, and (2) a tendency to
depart from an expected overall value, often the mean. In order to make predictions
an index is needed to estimate the departures from the mean. Why not simply
add up departures? However, this doesn’t work, because, with normal frequency
distributions, the add-up sum is equal to 0. A pragmatic solution chosen is taking
the add-up sum of (departures)®=the variance of a data sample. Means/proportions
follow normal frequency distributions, variances follow (normal-distribution)?.
The normal distribution is a biological rule used for making predictions from
random samples.

With a normal frequency distribution in your data (Fig. 3.2 upper graph) you can
test whether the mean of your study is significantly different from O.
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Fig. 3.2 Normal and Normal distribution
chi-square frequency
distributions
5% 1%
v
o 1.96 2.58 z-values

(SEMs)

Chi-square distribution

2
z° -values

0 1.96° 2.5.82 (SEMs?)

If the mean result of your study >approximately 2 SEMs distant from 0, then we
have <5% chance of no difference from 0, and we are entitled to reject the 0-hypothesis
of no difference.

With (normal frequency distributions)? (Fig. 3.2 lower graph) we can test whether
the variance of our study is significantly different from 0. If the variance of our
study is >1.967 distant from 0, then we have <5% chance of no difference from 0,
and we are entitled to reject the O-hypothesis of no difference.

The chi-square test, otherwise called y? test can be used for the analysis of two
unpaired proportions (2 x 2 table), but first we give a simpler example, a 1 x2 table

Sleepy Not-sleepy Sleepy Not-sleepy
Observed (O) Expected from population (E)
a(n=5) b ((n=10) a (n=10) B (n=5)

We wish to assess whether the observed proportion is significantly different from
the established population data from this population, called the expected proportion?
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O-E=
a—0 =5-10=-5
b—B =10-5="+

0 doesn’t work

The above method to assess a possible difference between the observed and
expected data does not work. Instead, we take square values.

(a—o)* =25 divide by o to standardize = 2.5

(b—PB)* =25 dNMebmesmmMMﬁe=§%

x? Value =the add-up variance in data=7.5

. is the standard error (SE) of (a—a.,)? and is used to standardize the data, simi-
larly to the standardization of mean results using the t-statistic (replacing the mean
results with t-values, see Chap. 2).

This 1x2 table has 1 degree of freedom. The chi-square table (see Appendix)
shows four columns of chi-square values (standardized variances of various studies),
an upper row of areas under the curve (AUCs), and a left end column with the degrees
of freedom. For finding the appropriate area under the curve (= p-value) of a 1 x2
table we need the second row, because it has 1 degree of freedom. A chi-square value
of 7.5 means an AUC=p-value of <0.01. The O-hypothesis can be rejected. Our
observed proportion is significantly different from the expected proportion.

Slightly more complex is the chi-square test for the underneath table of observed
numbers of patients in a random sample:

Sleepiness(n) No sleepiness(n)
Left treatment (left group) 5(a) 10 (b)
Right treatment (right group) 9 (c) 6 (d)

n=numbers of patients in each cell

Commonly, no information is given about the numbers of patients to be expected,
and, so, we have to use the best estimate based of the data given. The following
procedure is applied:
cella:(O—E)* /E=(5-14/30 x 15) /14/30 x 15=..
cellb:(O—E)*/E
cellc:(O-E)*/E

celld: (O-E)’/E +
chi - square =2.106

(O = observed number; E = expected number = (proportion sleepers /total number)

X number__ ).
group
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We can reject the O-hypothesis if the squared distances from expectation
> (1.96)*=3.841 distant from 0, which is our critical chi-square value required to
reject the O-hypothesis. A chi-square value of only 2.106 means that the O-hypothesis
can not be rejected.

Note: A chi-square distribution=a squared normal distribution. When using the
chi-square table, both the 1x2 and the 2 x?2 contingency tables have only 1 degree
of freedom.

2.3 Method 3

Instead of the above calculations to find the chi-square value for a 2 x 2 contingency
table, a simpler pocket calculator method producing exactly the same results is
described underneath

Sleepiness No sleepiness Total
Left treatment (left group) 5(a) 10 (b) a+b
Right treatment (right group) 9(c) 6 (d) c+d
a+c b+d

Calculating the chi-square (y ?) — value is calculated according to:

(ad—bc)*(a+b+c+d)
(@+b)c+d)(b+d)atc)

In our case the size of the chi-square is again 2.106 at 1 degree of freedom which
means that the 0-hypothesis of no difference not be rejected. There is no significant
difference between the two groups.

2.4 Method 4

Fisher-exact test is used as contrast test for the chi-square or normal test, and also
for small samples, e.g., samples of n<100. It, essentially, makes use of faculties
expressed as the sign “!”’: e.g., 5! indicates 5x4x3x2x1.

Sleepiness No sleepiness

Left treatment (left group) 5(a) 10 (b)
Right treatment (right group) 9(c) 6 (d)
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! ! ! !
p-atblcrdiatoibrdt_,, (much larger than 0.05)
(a+b+c+d)! alblc!d!

Again, we can not reject the null-hypothesis of no difference between the two
groups. This test is laborious but a computer can calculate wide faculties in
seconds.

3 Chi-square to Analyze More Than Two
Unpaired Proportions

As will be explained in Chap. 41, with chi-square statistics we enter the real world
of statistics, because it is used for multiple tables, and it is also the basis of analysis
of variance. Large tables of proportional data are more frequently used in business
statistics than they are in biomedical research. After all, clinical investigators are,
generally, more interested in the comparison between two treatment modalities than
they are in multiple comparisons. Yet, e.g., in phase 1 trials multiple compounds are
often tested simultaneously. The analysis of large tables is similar to that of the
above method-2. For example:

Sleepiness No sleepiness
Group I 5(a) 10 (b)
Group II 9(c) 6 (d)
Group III ...(e) .0
Group IV
Group V

cella: (O-E)’/E =
b: (O-E)*/E
c:(O-E)*/E
d: (O-E)’/E

(S

f:.. +

chi - square value = ..

Forcella O=5

_ 5+9+..)
5+10+9+6+...)

x(5+10) etc

Large tables have many degrees of freedom (dfs). For 2x2 cells, we have
2-1)x2-1)=1df, 5% p-value at chi-square=3.841. For 3x2 cells, we have
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Fig. 3.3 Each degree of freedom has its own frequency distribution curve

(B-1Dx2-1)=2dfs, 5% p-value at chi-square=5.991. For 5x2 cells, we have
(5-1) (2-1)=4 dfs, 5% p-value at chi-square=9.488. Each degree of freedom has
its own frequency distribution curve (Fig. 3.3):

dfs2=>p=0.05aty’> 5.99

dfs4 p=0.05aty> 9.49

dfs6 p=0.05aty’ 12.59

dfs8 p=005aty’ 1551

dfs 10 p=0.05aty”> 18.31.

As an example we give a x” test for 3 x 2 table

Hypertension Yes No

Group 1 a n=60 d n=40

Group 2 b n=100 e n=120
Group 3 c n=80 f n=60
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Give the best estimate of the expected numbers in the cell according to the
method described for the 2x2 contingency table above. Per cell: divide hyperten-
sives in study by observations in study, multiply by observations in group. It gives
you the best estimate. For cell a this is a=[(a+b+c)/(a+b+c+d+e+f)]x(a+d).

Do the same for each cell and add-up:

a=[@+b+c)/(a+b+c+d+e+f)]x (a+d)

B...

Y ...

d=[(d+e+f))/(a+b+c+d+e+f)] x (a+d)

€...

€ ..
a—a)’ /o=1.175
(b- =1.903
(c— =0.663
(d- =1.282
(e— =68.305
(f- =0.723+
xvalue =72.769

52.17
114.78
73.04
47.83
57.39
66.96

The p-value for (3—1)x(2-1)=3 degrees of freedom is <0.001 according to the

chi-square table (see Appendix).
Another example is given, a 2x 3 table:

Hypertension Hypertens-yes Hypertens-no Don’t know
Group 1 (a) n=60 (c)n=40 (e) n=60
Group 2 (b) n=50 (d) n=60 () n=50

Give best estimate population. Per cell: divide hypertensives in population by all
patients, multiply by hypertensives in group. For cell a this is:

a=[@+b)/(a+b+c+d+e+f)]x (a+c+e)

Calculate every cell, add-up results.

a=[(a+b)/(a+b+c+d+e+f)] X (a+c+e)=55.000

B...

=55.000

Y=[(c+d)/(a+b+c+d+e+f)] X (a+c+e) =51.613

S5=...
€...
£

=51.613
=55
=55
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(O-E) /E=

a-o)’ /o =045
(b- =0.45
(c— =0.847
d- =1.363
(e =045
(f- =045 +
x =4.01

For (2—-1)x(3—1)=2 degrees of freedom our p-value is <0.001 according to the
chi-square table (see Appendix).

4 McNemar’s Test for Paired Proportions

Paired proportions have to be assessed when e.g. different diagnostic tests are per-
formed in one subject. For example, 315 subjects are tested for hypertension using
both an automated device (test-1) and a sphygmomanometer (test-2), (Table 3.2).

184 subjects scored positive with both tests and 63 scored negative with both
tests. These 247 subjects therefore give us no information about which of the tests
is more likely to score positive. The information we require is entirely contained in
the 68 subjects for whom the tests did not agree (the discordant pairs). Table 3.2
shows how the chi-square value is calculated. Here we have again 1 degree of free-
dom, and so, a chi-square value of 23.5 indicates that the two devised produce sig-
nificantly different results at p<0.001.

To analyze samples of more than two pairs of data, e.g., 3, 4 pairs, etc., McNemar’s
test can not be applied. For that purpose Cochran’s test or logistic regression analysis
is adequate (next section).

Table 3.2 Finding discordant Test 1
pairs + — Total
Test 2 + 184 54 238
= 14 63 77
Total 198 117 315
(54 —14) _

Chi - square McNemar = 23.5

54+14
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5 Multiple Paired Binary Data (Cochran’s Q Test)

The scientific question of the underneath data is: is there a significant difference
between the numbers of responders who have been treated differently three times
(Table 3.3).

The above table shows three paired observations in one patient. The paired prop-
erty of these observations has to be taken into account because of the, generally,
positive correlation between paired observations. Cochran’s Q test is appropriate for
that purpose.

The following commands have to be given in SPSS (www.spss.com).

Command: Analyze — nonparametric tests — k related samples — mark: Cochran’s
Q — test variables: treatment 1, treatment 2, treatment 3 — ok

Test statistics

N 139
Cochran’s Q 10,133*
df 2
Asymp. Sig. ,006

0 is treated as a success

The test is highly significant with a p-value of 0.006. This means that there is a
significant difference between the treatment responses. However, we do not know
where: between treatments 1 and 2, 2 and 3, or between 1 and 3. For that purpose
three separate McNemar’s tests have to be carried out.

Test statistics®

Treat 1 and Treat 2

N 139
Chi-square® 4,379
Asymp. Sig. ,036

Test statistics®

Treat 1 and Treat 3

N 139
Chi-square® 8,681
Asymp. Sig. ,003

Test statistics®

Treat 2 and Treat 3

N 139
Chi-square® ,681
Asymp. Sig. ,409

“McNemar test
®Continuity corrected
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Table 3.3 Responders (1) and non-responders (0) after treatment differently three times (variables
1,2, and 3)

Variables

el eleoNeoBNeoNeoRoBoNoloBoNeoheolo oo BRololoBoNoBRoNeololoNoBoBoNeoloRoNeoR o Reo ol S
O OO = = = 0000~ 0O 0000 R OFR O, OFMFMP)OOOOOO o oI
O —= P OO ==+ ==+ 0000+ =) OQOoOrFkr=FEFEFPROORPF =~~~ O+~ O |Ww
el eoleoNoBeoNeoRoloNolhoBoNeolholoNoloBRoRoloBoNRoBRoNeololoNoBoBo oo RoNeol o Rol ol S
—_—_—_ 0 O = 000, O, O, P OO, PP OO, P, OFR,O~O O~
—_—_—_, 00O, ~, ~— 000~ 00—~ 0O~ 0RO~ — 000, —~—000—r— O |w
el e e el el eleoBeolBeohoBo oo e oo o oo Bo el ool =
——_ O, O = 00~ 0O ~P O~ OO0 ~,rF,F~,OOO—~OF~,OOo—|IN
—_—_ 0 O = = OO0 == = =000 ~RLO0O~R)OFR O, O, OO =rmmMFERMEOOO|Ww
o e e e e e e e e e e e e b e e e e e e e e e e
SO R P OO =R, OO~ O0O0O R, OO~ FOFR O, OOOO R mMm=RMROOOOI|IN
SO = PO = O R OO0 P OFRPRO—R,OR,ORFR =)0, O, O=O0O~FH=OOo|w

Var 1 =responder to treatment 1 (yes or no, 1 or 0) (Var=variable)
Var 2=responder to treatment 2
Var 3 =responder to treatment 3

The above three separate McNemar’s tests show that there is no difference between
the treatments 2 and 3, but there are significant differences between 1 and 2, and 1 and 3.
If we adjust the data for multiple testing, for example, by using p=0.01 instead of p=0.05
for rejecting the null-hypothesis, then the difference between 1 and 2 loses its signifi-
cance, but the difference between treatment 1 and 3 remains statistically significant.
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6 Survival Analysis

6.1 Survival Analysis

A survival curve plots percentage survival as a function of time. Figure 3.4 is an
example. Fifteen patients are followed for 36 months. At time zero everybody is
alive. At the end 40% (6/15) patients are still alive. Percentage decreased whenever
a patient died. A problem with survival analysis generally is that of lost data: some
patients may be still alive at the end of the study but were lost for follow-up for
several reasons. We at least know that they lived at the time they were lost, and so
they contribute useful information. The data from subjects leaving the study are
called censored data and should be included in the analysis.

With the Kaplan-Meier method, survival is recalculated every time a patient
dies (approaches to survival different from the Kaplan-Meier approach are (1) the
actuarial method, where the x-axis is divided into regular intervals and (2) life-table
analysis using tables instead of graphs). To calculate the fraction of patients who
survive a particular day, simply divide the numbers still alive after the day by the
number alive before the day. Also exclude those who are lost (= censored) on
the very day and remove from both the numerator and denominator. To calculate the
fraction of patients who survive from day O until a particular day, multiply the frac-
tion who survive day-1, times the fraction of those who survive day-2, etc. This
product of many survival fractions is called the product-limit. In order to calculate
the 95% Cls, we can use the formula:

1—
95% CI of the product of survival fractions (p) at time k = p£+2-p %

The interpretation: we have measured survival in one sample, and the 95%CI
shows we can be 95% sure that the true population survival is within the boundaries
(see figure upper and lower boundaries). Instead of days, as time variable, weeks,
months etc may be used.
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Fig. 3.4 Example of a survival curve plotting survival as a function of time
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Fig. 3.5 Two Kaplan-Meier survival curves

6.2 Testing Significance of Difference
Between Two Kaplan-Meier Curves
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Survival is essentially expressed in the form of either proportions or odds, and
statistical testing whether one treatment modality scores better than the other in
terms of providing better survival can be effectively done by using tests similar to
the above chi-square tests or chi-square-like tests in order to test whether any pro-
portion of responders is different from another proportion, e.g., the proportion of
responders in a control group. RRs or ORs are calculated for that purpose (review
Chap. 1). For example, in the example in the i-th 2-month period we have left the

following numbers: a and bi in curve 1, c, and di in curve 2,

Contingency table Numbers of deaths Numbers alive
Curve 1 a, b,
Curve 2 c, d,
i=1,2,3,...
Odds ratio = & /b, = ad;
c./d.  b.c.

i i i

Significance of difference between the curves (Fig. 3.5) is calculated according
to the added products “ad” divided by “bc”. This can be readily carried out by the

Mantel-Haenszl summary chi-square test:

, (> a, = Y[(a, +b))(a, +¢,)/ (a, +b, +¢c, +d)])’

XM-H

- Z[(ai +b,)(c, +d,)(a, +¢,)(b,+d)/(a, +b, +c,+d,)’]

where we thus have multiple 2 x2 contingency tables e.g. one for every last day of
a subsequent month of the study. With 18 months follow-up the procedure would
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yield eighteen 2 x2-contingency-tables. This Mantel Haenszl summary chi square
test is, when used for comparing survival curves, more routinely called log rank
test (this name is rather confusing because there is no logarithm involved).

Note: An alternative more sophisticated approach to compare survival curves is the
Cox’s proportional hazards model, a method analogous to multiple regression
analysis for multiple means of continuous data and to logistic regression for
proportions (Chap. 17).

7 Odds Ratio Method for Analyzing

Two Unpaired Proportions

Odds ratios increasingly replace chi/square tests for analyzing 2x2 contingency
tables.

Illness No illness

Groupl a b
Group2 ¢ d

The odds ratio (OR)=a/b/ c/d
=odds of illness group1/odds illness group 2
=chance illness........ [

We want to test whether the OR is significantly different from an OR of 1.0.

For that purpose we have to use the logarithmic transformation, and so we will
start by recapitulating the principles of logarithmetic calculations.

Log=log to the base 10; Ln=natural log=1og to the base e (e¢=2.71...)

log 10=""log 10=1

log 100="Tog 100=2

log 1="1og 1="og 10°=0
antilog 1=10

antilog 2=100

antilog 0=1

Ine=°loge=1

In e?=°log e?=2

In 1=°log 1=°<log e’=0
antiln 1=¢

antiln 2=¢2

antiln 0=1

The frequency distributions of samples of continuous numbers or proportions are
normal. Those of many odds ratios are not. The underneath example is an argument that
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odds ratios may follow an exponential pattern, while the normal distribution has been
approximated by mathematicians by means of the underneath exponential formula

ab_1/10 _  ab_1/10_ ab _1/10 _

cd 1/100  od 1/10  od 1/10

1 e
y=( )e?
27

x individual data, y how often, e=2.718.

It was astonishing but not unexpected that mathematicians discovered that
frequency distributions of log OR followed a normal distribution, and that results
were even better if In instead of log was used.

Event No event

Group 1 a b
Group 2 c d
IfOR = % =1, this means that no difference exists between group 1 and 2.

c
If OR=1, then InOR=0. With a normal distribution if the result >2 standard
errors (SEs) distant from 0, then the result is significantly different from 0 at p<0.05.
This would also mean that, if In OR >2 SEs distant from O, then this result would be
significantly different from 0O at p<0.05. There are three possible situations:

Study 1 <> InOR>2 SEs dist 0 p<0.05
Study 2 <H---> InOR <2 SEs dist 0 ns
Study 3 <> InOR>2 SEs dist 0 p<0.05
In OR=0
(OR=1.0)

Using this method we can test the OR. However, we need to know how to find

the SE of our OR. SE of InOR is given by the formula , f(l +%+l+é) .
a c

This relatively simple formula is not a big surprise, considering that the SE of a

number g:\/g, and the SE of 1/g= l We can now assess our data by the OR

8
method as follows:
Hypertension yes Hypertension no
Group 1 a n=>5 b n=10
Group 2 c n=10 d n=5
al/b
OR=——-=0.25

c/d
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InOR =-1.3863

SEM InOR = /(l+l+l+l) =0.7746
a b ¢ d

In OR+2 SEMs =-1.3863+1.5182
= between —2.905 and 0.132,

Now turn the In numbers into real numbers by the antiln button of your pocket

calculator.

= between 0.055 en 1.14.

The result “crosses” 1.0, and, so, it is not significantly different from 1.0.
A second example answers the question: is the difference between the under-

neath group 1 and 2 significant?

Orthostatic hypotension

Yes No
Group 1 77 62
Group 2 103 46
_ 103/46 _ 2.239 ~1.803
77/62  1.242
InOR =0.589

SEM InOR = L+i+i+L =0.245
103 46 77 62
InOR +2 SEMs =0.589+2 (0.245)
=0.589+0.482
= between 0.107 and 1.071.

Turn the In numbers into real numbers by use of antiln button of your pocket
calculator.
= between 1.11 and 2.92, and, so, significantly different from 1.0.

What p-value do we have: t=InOR/SEM =0.589/0.245=2.4082. The bottom row
of the t-table is used for proportional data (z-test), and give us a p-value <0.02.

Note: A major problem with odds ratios is the ceiling problem. If the control group
n=0, then it is convenient to replace 0 with 0.5 in order to prevent this problem.
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8 0dds Ratios for One Group, Two Treatments

So far we assessed two groups, one treatment. Now we will assess one group, two
treatments and use for that purpose the McNemar’s OR.

Normotension with drug 1

Yes No
Normotension with drug 2 Yes (a) 65 (b) 28

(c) 12 (d) 34

No
. I 1. 11 I 1
Here the OR=b/c, and the SE is not  [(—+—+—+—) ,butrather [(—+-).
a b c d b ¢

OR =28/12=2.33

InOR =1n2.33 =0.847

SE = (l+lJ=0.345
b ¢

InOR £2 SE = 0.847 £0.690
= between 0.157 and 1.537,

Turn the In numbers into real numbers by the anti-In button of your pocket
calculator.

= between 1.16 and 4.65
= sig diff from 1.0.

Calculation p-value: t=1nOR/SEM =0.847: 0.345=2.455. The bottom row of the
t-table produces a p-value of<0.02, and the two drugs produce, thus, significantly
different results at p<0.02.

9 Conclusions

1. For the analysis of efficacy data we test null-hypotheses, safety data consist of
proportions, and require for statistical assessment different methods.

. 2x2 tables are convenient to test differences between 2 proportions.

. Use chi-square or t-test for normal distributions (z-test) for that purpose.

. For paired proportions the McNemar’s test is appropriate.

. Kaplan Meier survival curves are also proportional data: include lost patients.

. Two Kaplan-Meier Curves can be compared using the Mantel-Haenszl=Log
rank test

7. Odds ratios with logarithmic transformation provide an alternative method for

analyzing 2 x 2 tables.

AN AW
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In the past two chapters we discussed different statistical methods to test
statistically experimental data from clinical trials. We did not emphasize correlation
and regression analysis. The point is that correlation and regression analysis test
correlations, rather than causal relationships. Two samples may be strongly corre-
lated e.g., two different diagnostic tests for assessment of the same phenomenon.
This does, however, not mean that one diagnostic test causes the other. In testing the
data from clinical trials we are mainly interested in causal relationships. When such
assessments were statistically analyzed through correlation analyses mainly, we
would probably be less convinced of a causal relationship than we are while using
prospective hypothesis testing. So, this is the main reason we so far did not address
correlation testing extensively. With epidemiological observational research things
are essentially different: data are obtained from the observation of populations or
the retrospective observation of patients selected because of a particular condition
or illness. Conclusions are limited to the establishment of relationships, causal or
not. We, currently, believe that relationships in medical research between a factor
and an outcome can only be proven to be causal when between the factor is intro-
duced and subsequently gives rise to the outcome. We are more convinced when
such is tested in the form of a controlled clinical trial. A problem with multiple
regression and logistic regression analysis as method for analyzing of multiple sam-
ples in clinical trials is closely related to this point. There is always an air of uncer-
tainty about such regression data. Many trials use null-hypothesis testing of two
variables, and use multiple regression data only to support and enhance the impact
of the report, and to make readership more willing to read the report, rather than to
prove the endpoints. It is very unsettling to realize that clinicians and clinical inves-
tigators often make bold statements about causalities from multivariable analyses.
We believe that this point deserves full emphasis, and will, therefore, address it
again in the Chaps. 14, 15, 16, 17, 18, and 19.



Chapter 4
Log Likelihood Ratio Tests
for Safety Data Analysis

1 Introduction

For Gandhi non-violence was a primary invariance principle, while for his political
successor Nehru justice was so. Invariance principles signify that while everything
changes in life, some laws of life do not. Consequently, these laws of life do not
include a measure of error. For example, Einstein’s invariance principle is expressed
in the famous equation E=mc?. Most statistical tests, including t- (and z-) tests,
F-tests, chi-square tests, odds ratio tests, do not meet the invariance principle,
because they apply estimated likelihoods like averages and proportions that have
their standard errors as a measure of uncertainty. However, a few statistical tests use
likelihoods without standard error. These tests, called exact tests, should, by their
very nature, provide the best precision and sensitivity of testing. They include,
among others, the Fisher exact test and the log likelihood ratio test. Particularly, the
log likelihood ratio test, avoiding some of the numerical problems of the other exact
likelihood tests, is straightforward, and is available through most major software
programs (BUGS y WinBUGS 2011; S plus 2011; Stata 2011; StatsDirect 2011;
StatXact 2011; True Epistat 2011; SAS 2011; SPSS 2011), although infrequently
used so far. This chapter reviews the advantages and problems of the log likelihood
ratio test, and gives real and hypothesized data examples supporting its better
sensitivity. We do hope that the chapter will stimulate researchers to more often
apply this test.

2 Numerical Problems with Calculating Exact Likelihoods

Proportions of patients with events are an important endpoint in cardiovascular
research. They are traditionally analyzed in the form of a contingency table of
four cells, otherwise called 2 x 2 contingency table, using chi-square tests or odds
ratio tests.

T.J. Cleophas and A.H. Zwinderman, Statistics Applied to Clinical Studies, 61
DOI 10.1007/978-94-007-2863-9_4, © Springer Science+Business Media B.V. 2012
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Number patients Number patients

with events without
Group 1 a b
Group 2 c d

The problem with the traditional tests is that sensitivity is limited. As an alternative,
the log likelihood ratio test, based on exact rather than estimated likelihoods, can be
used. The general problem with exact likelihoods is, that they can be very complicated
and may run into numerical problems that even modern computers can not handle. Let
us assume that on average the proportion of patients with an event in a target population
equals p. The likelihood of getting exactly y events in a sample of n individuals in this
population can be calculated according to the underneath binomial equation:

!

n! e
m py (l—p)( y)

n!=nfaculty =n(n—-1)(n-2)(n-3).........

Likelihood p =

For example, a group of citizens was taking a pharmaceutical company to court
for misrepresenting the danger of fatal rhabdomyolysis due to a statin treatment:

Patients with

rhabdomyolysis Patients without
Company 1(a) 309,999 (b)
Citizens 4(c) 300,289 (d)

p.,=proportion given by the pharmaceutical company=a/(a+b)=1/310,000
p,=proportion given by the citizens=c/(c+d)=4/300,293

10000! )
likelihood p,, = > 0D -+(1/310000)'- (1-1/310000)""""

11(310000—1)

Likelihood p can be calculated similarly.

The numerical problem of calculating likelihoods in the above way can be largely
circumvented by taking the (log) ratios of two equations as will be demonstrated
underneath. Log means natural logarithm, otherwise called naperian logarithm, oth-
erwise called logarithm to the base e.

3 The Normal Approximation and the Analysis
of Clinical Events

If we take many samples from a target population, the mean results of those samples
usually follow a normal frequency distribution, meaning that the value in the middle
will be observed most frequently and the more distant from the middle the less
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Frequency distribution
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Fig. 4.1 HI1=graph based on the data of a sample with standard errors distant from zero (SEs) as
unit on the x-axis, often called z-axis in statistics. HO=same graph with a mean value of 0. We
make a giant leap from the sample to the entire population, and we can do so because the sample
is assumed to be representative for the entire population. Hl =also the summary of the means of
many samples similar to our sample. HO=also the summary of the means of many samples similar
to our sample, but with an overall effect of 0. Our mean not O but 2.9. Still it could be an outlier of
many samples with an overall effect of 0. If HO is true, then our sample is an outlier. We can’t
prove, but calculate the chance/probability of this possibility. A mean result of 2.9 SEs is far distant
from O: suppose it belongs to HO. Only 5% of HO trials>2.0 SEs distant 0. The chance that it
belongs to HO is thus <5%. We conclude that we have <5% chance to find this result, and, therefore,
reject this small chance

frequently a value will be observed. For example, we will have only 5% chance to
find a result more than 2 standard errors (SEs) (or more precisely 1.96 SEs) distant
from the middle. The same is true with proportional data like events. Many statistical
tests make use of the normal distribution to make predictions. Figure 4.1 shows,
e.g., how the normal distribution theorem is used to reject the null-hypothesis of no
difference from zero.

Assume on average that 10 of 15 patients in a population will have some kind of
cardiovascular event within a certain period of time. Then, 10/15 will be the propor-
tion most frequently encountered when randomly sampling from this population.
The chance of finding <10 or >10 gets gradually smaller. Figure 4.2 gives on the
x-axis (often called z-axis in statistics) the results from many samples, the y-axis
shows “how often”. The chance of 8 or less is only 15%, of 7 or less only 2.5%, and
of 5 or less only 1%. With many samples the graph follows a normal frequency
distribution with 95% of the sample results between +2 SEs distant from the mean
value, a proportion of 10/15. Most of the approaches to test the significance of dif-
ference between the events in a treatment and control group make use of this normal
approximation. This includes the z-test, the chi-square test, and the odds ratio test.
Also, the log likelihood ratio test does so.
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Frequency distribution

5 10 15

Fig. 4.2 Assume that, on average, 10 of 15 patients in a population will have some kind of
cardiovascular event within a certain period of time. Then, 10/15 will be the proportion most fre-
quently encountered when taking many random samples of 15 patients from this population. The
chance of finding<10 or>10 gets gradually smaller. On the x-axis the numbers of events from
many samples is given, the y-axis shows “how often”. The chance of 8 or less is only 15%, of 7 or
less only 2.5%, and of 5 or less only 1%. With many samples the graph follows a normal frequency
distribution with 95% of the sample results between +2standard errors distant from the mean
value

4 Log Likelihood Ratio Tests and the Quadratic
Approximation

Assume, like in the above example, that 10/15 has the maximum likelihood, while
all other proportions have less than that. The likelihood ratio is defined as the mea-
sured proportion/maximum likelihood. The likelihood ratio for 10/15 thus equals 1.
Instead of frequency distribution of many samples, Fig. 4.2 can also be interpreted
as a likelihood ratio curve of many samples. If p=10/15 is given place O on the
z-axis, with standard error-units on the z-axis and the top of the curve=1, then the
underneath normal distribution equation and the corresponding curve (Fig. 4.3) are
adequate.

Likelihood ratio = e

If we transform the likelihood ratio values of the y-axis from Fig. 4.3 to log like-
lihood ratio values, leaving the z-axis unchanged, then the next equations and their
corresponding curve (Fig. 4.4) are adequate.

log likelihood ratio = —1/2 z*
-2 log likelihood ratio = z*

With normal distributions, if z >2 or <—2, we conclude a significant difference
from zero in the data at p<0.05. Here if -2 log likelihood ratio >2 or <-2, then the
difference between the proportions of events in a two-group comparison is signifi-
cant at p<0.05.

We now calculate the exact likelihoods for either of the two proportions using the
underneath binomial equation.

S n! (n-y)
Likelihoodp=———<p’ (1 -
ikelihood p y!(n—y!)p (1-p)
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Fig. 4.3 Assume like in Fig. 4.2 that 10/15 has the maximum likelihood, while all other propor-
tions have less likelihood. The likelihood ratio is defined as the measured proportion/maximum
likelihood. The likelihood ratio for 10/15 thus equals 1. If p=10/15 is given place 0 on the z-axis
with standard errors as unit, and the top of the curve=1, then Fig. 4.2 can also be interpreted as a
likelihood ratio curve

Fig. 4.4 If we transform the
likelihood ratio values of the
y-axis from Fig. 4.3 to log
likelihood ratio values,
leaving the z-axis unchanged,
then the above curve is
observed

-2

Log likelihood ratio

n!
log likelihood p = log——— = +y.log p+(n—y)log(1-p
I (1) lox(1-7)

If the data produce two proportions, we can deduce from the above formula the
exact (log) likelihood ratio of the two, where log is the natural logarithm. We take
the previously used example.

Patients with Patients

rhabdomyolysis without
Company 1 (a) 309,999 (b)
Citizens 4 (c) 300,289 (d)

p.,=proportion given by the pharmaceutical company =a/(a+b)=1/310000
p;=proportion given by the citizens=c/(c +d)=4/300293

likelihood p_,
likelihood p
= loglikelihood p_, —loglikelihood p

=ylogp,, /p;+(n-y)log(l-p, )/ (1-p,)

log likelihood ratio = log
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As-2 log likelihood ratio equals z2, we can now test the significance of difference
between the two proportions.

Log likelihood ratio = 4 logM +300289 log 1217310000
4/300293 1-4/300293
=-2.641199

We should note that both the odds ratio test and chi-square test produced a non-
significant result here (p>0.05).

S More Examples

Example 1

Two group of 15 patients at risk for arrhythmias were assessed for the development
of torsade de points after calcium channel blockers treatment

Patients with
torsade de points Patients without

Calcium channel blocker 1 5 10
Calcium channel blocker 2 9 6

The proportion of patients with event from calcium channel blocker 1 is 5/15,
from blocker 2 it is 9/15.

5/15 1-5/15
+6 log
9/15 1-9/15

Log likelihood ratio = 9 log
=-2.25
-2 log likelihood ratio=4.50 (p<0.05, because z>2).
Both odds ratio test and chi-square test were again non-significant (p>0.05).
Example 2

Two groups of patients with stage IV New York Heart Association heart failure
were assessed for hospitalizations after two beta-blockers.

Patients with

hospitalization ~ Patients without
Beta blocker 1 77 62
Beta blocker 2 103 46

The proportion of patients with event from beta blocker 1 is 77/139, from beta
blocker 2 it is 103/149.

77/139 461 1-77/139

Log likelihood ratio = 103 log +46 log————
103/149 1-103/149

=-5.882
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-2 log likelihood ratio=11.766 (p<0.002, because z>3.090).

Both the odds ratio test and chi-square test were also significant. However, at
lower levels of significance, both p-values 0.01 <p<0.05.

6 Discussion

The chi-square test for events uses the observed cells in a contingency table to
approximate the expected cells, a rather imprecise method. The odds ratio test uses
the log transformation of a skewed frequency distribution as a rather imprecise
approximation of the normal distribution. Sensitivity of these tests is, obviously,
limited, and tests with potentially better sensitivity like exact tests are welcome.

At first sight, we might doubt about the precision of the log likelihood ratio test
for events, because it is based on no less than three approximations: (1) the binomial
formula as an estimate for likelihood, (2) the binomial distribution as an estimate for
the normal distribution, (3) the quadratic approximation as an estimate for the nor-
mal distribution. However, the approximations (1) and (3) provide exact rather than
estimated likelihoods, and it turns out from the above examples that de log likeli-
hood ratio test is, indeed, more sensitive than the standard tests. In addition, the log
transformation of the exponential binomial data is convenient, because exponents
become simple multiplification factors. Also, the quadratic approximation is conve-
nient, because an exponential equation is turned into a simpler quadratic equation
(parabola).

Likelihood ratio statistics has a relatively short history. It was begun indepen-
dently by Barnard (1947) and Fisher (1956) in the past World War II era. In this
paper the log likelihood ratio test was used for the analysis of events only. The test
can be generalized to other types of data including continuous data and the data in
regression models, whereby the advantage of better sensitivity remains equally true.
The test is, therefore, increasingly important in modern statistics.

We conclude that the log likelihood ratio test is more sensitive than traditional
statistical tests including the t-(and z)-test, chi-square test and odds ratio test. Other
advantages are the following: exponents can be conveniently handled by the log
transformation and an exponential equation is turned into a simpler quadratic equa-
tion. A potential disadvantage of numerical problems is avoided by taking ratios of
likelihoods instead of separate likelihoods in the final analysis.

7 Conclusions

Traditional statistical tests for the analysis of clinical events have limited sensitiv-
ity, particularly with smaller samples. Exact tests, although infrequently used so
far, should have better sensitivity, because they do not include standard errors as a
measure of uncertainty. The log likelihood ratio test is one of them. The objective
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of the current chapter was to assess the above question using real and hypothesized
data examples. In three studies of clinical events the log likelihood ratio test was
consistently more sensitive than traditional tests, including the chi-square and the
odds ratio test, producing p-values respectively between<0.05 and<0.002 and
between not-significant and <0.05. This was true both with larger and smaller sam-
ples. Other advantages of the log likelihood ratio were: exponents can be conve-
niently handled by the log transformation and an exponential equation is turned
into a simpler quadratic equation. A potential disadvantage of numerical problems
is avoided by taking in the final analysis the ratios of likelihoods instead of sepa-
rate likelihoods. Log likelihood ratio tests are consistently more sensitive than tra-
ditional statistical tests. We hope that this chapter will stimulate clinical researchers
to more often apply them.
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Chapter 5
Equivalence Testing

1 Introduction

A study unable to find a difference is not the same as an equivalent study. For
example, a study of three subjects does not find a significant difference simply
because the sample size is too small. Equivalence testing is particularly important
for studying the treatment of diseases for which a placebo control would unethical.
In the situation a new treatment must be compared with standard treatment. The
latter comparison is at risk of finding little differences.

Figure 5.1 gives an example of a study where the mean result is little different
from 0. Is the result equivalent then? H1 represent the distribution of our data and
HO is the null-hypothesis (this approach is more fully explained in Chap. 2). What
we observe is that the mean of our trial is only 0.9 standard errors of the mean
(SEMs) distant from 0, which is far too little to reject the null-hypothesis. Our result
is not significantly different from 0. Whether our result is equivalent to 0, depends
on our prior defined criterium of equivalence. In the figure D sets the defined inter-
val of equivalence. If 95% CIs of our trial is completely within this interval, we
conclude that equivalence is demonstrated. This mean that with D, boundaries we
have no equivalence, with D, boundaries we do have equivalence. The striped area
under curve (=the socalled 95% Cls) is the interval approximately between —2
SEMs and+2 SEMs (i.e., 1.96) SEMs with normal distributions, a little bit more
than 2 SEMs with t-distributions. It is often hard to prior define the D boundaries,
but they should be based not on mathematical but rather on clinical arguments, i.e.,
the boundaries where differences are undisputedly clinically irrelevant.

Figure 5.2 gives another example. The mean result of our trial is larger now: mean
value is 2.9 SEMs distant from 0, and, so, we conclude that the difference from 0
is>approximately 2 SEMs and, that we can reject the null-hypothesis of no differ-
ence. Does this mean that our study is not equivalent? This again depends on our prior
defined criterium of equivalence. With D the trial is not completely within the bound-
aries and equivalence is thus not demonstrated. With D, the striped area of the trial is
completely within the boundaries and we conclude that equivalence has been demon-
strated. Note that with D, we have both significant difference and equivalence.

T.J. Cleophas and A.H. Zwinderman, Statistics Applied to Clinical Studies, 69
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Fig. 5.1 Null-hypothesis testing and equivalence testing of a sample of t-distributed data
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Fig. 5.2 Null-hypothesis testing and equivalence testing of a sample of t-distributed data

2 Overview of Possibilities with Equivalence Testing

Table 5.1 shows that any confidence interval (95% CIs intervals between the
brackets in each of the examples) that does not overlap zero is statistically different
from zero. Only intervals between the prespecified range of equivalence —D to +D
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Table 5.1 Any confidence interval (95% Cls intervals between the brackets in each of
the examples) that does not overlap zero is statistically different from zero. Only inter-
vals between the prespecified range of equivalence —D to +D present equivalence

Study  Statistical equivalence
(1-8) significance demonstrated
demonstrated
1. Yes <not equivalent >
2. Ye uncertain = >-------------
3. Yes equivalent >-------memmmmmmmmeeeeee
4. No < equivalent >
5. Ye < equivalent >
6. Yes------m-mm < uncertain >
7. Yes-<not equivalent >
8. No------- < uncertain S
! !
-D O +D

true difference

present equivalence. Thus, situations 3, 4 and 5 demonstrate equivalence, while 1
and 2, just like 6 and 7 do not. Situations 3 and 5 present equivalence and at the
same time significant difference. Situation 8 presents nor significant difference, nor
equivalence.

Testing equivalence of two treatments is different from testing their difference.
We will in this chapter use the term comparative studies to name the latter kind of
studies. In a comparative study we use statistical significance tests to determine
whether the null hypothesis of no treatment difference can be rejected, frequently
together with 95% Cls to better visualize the size of the difference. In an equiva-
lence study this significance test has little relevance: failure to detect a difference
does not imply equivalence; the study may have been too small with corresponding
wide standard errors to allow for such a conclusion. Also, not only difference but
also equivalence are terms that should be interpreted within the context of clinical
relevance. For that purpose we have to predefine a range of equivalence as an inter-
val from —D to +D. We can then simply check whether our 95% Cls as centered on
the observed difference lies entirely between —D and +D. If it does equivalence is
demonstrated if not, there is room for uncertainty. The above table shows the dis-
crepancies between significance and equivalence testing. The procedure of check-
ing whether the 95% ClIs are within a range of equivalence does look somewhat
similar to a significance testing procedure, but one in which the role of the usual null
and alternative hypothesis are reversed. In equivalence testing the relevant null
hypothesis is that a difference of at least D exists, and the analysis is targeted at
rejecting this “null-hypothesis”. The choice of D is difficult, is often chosen on
clinical arguments: the new agent should be sufficiently similar to the standard
agent to be clinically indistinguishable.
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3 Calculations

95% Cls intervals are calculated according to the standard formulas

Continuous data paired or unpaired and normal distributions (with t-distribution
2, which is actually 1.96, should be replaced by the appropriate t-value dependent
upon sample size).

Mean, — mean, =2 SEMs where

SEM =/SD? /n, +SD? /n,

unpaired differences

(SD? +SD? —2r-SD, -SD,)
n

SEMpaircd differences \/ lf nl = n2 =n

Binary data

pl(]_p1)+p2(1_p2)
n n

SEMO( differences = \/

1 2

With 95% Cls : p, —p, 2. SEM

More details about the calculation of SEMS of samples are given in Chap. 1.

The calculation of required samples size of the trial based on expected treatment
effects in order to test our hypothesis reliably, will be explained in the next chapter
together with sample size calculations for comparative studies.

It is helpful to present the results of an equivalence study in the form of a graph
(Table 5.1). The result may be:

1. The confidence interval for the difference between the two treatments lies entirely
between the equivalence range so that we conclude that equivalence is
demonstrated.

2. The confidence interval covers at least several points outside the equivalence
range so that we conclude that a clinically important difference remains a
possibility, and equivalence cannot be safely concluded.

3. The confidence interval is entirely outside the equivalence range.

4 Equivalence Testing, a New Gold Standard?

The classic gold standard in drug research is the randomized placebo controlled
clinical trial. This design is favored for confirmatory trials as part of the phase III
development of new medicines. Because of the large numbers and classes of medicines



6 Special Point: Level of Correlation in Paired Equivalence Studies 73

already available, however, new medicines are increasingly being developed for
indications for which a placebo control group would be unethical. In such situations
an obvious solution is to use as comparator an existing drug already licensed and
regularly used for the indications in question. When an active comparator is used,
the expectation may sometimes be that the new treatment will be better than the
standard, the objective of the study may be to demonstrate this. This situation would
be similar to a placebo control and requires no special methodology. More probably,
however, the new treatment is expected to simply largely match the efficacy of the
standard treatment but to have some advantages in terms of safety, adverse effects,
costs, pharmacokinetic properties. Under these circumstances the objective of the
trial is to show equivalent efficacy.

5 Validity of Equivalence Trials

A comparative trial is valid when it is blinded, randomized, explicit, accurate statis-
tically and ethically. The same is true for equivalence trial. However, a problem
arises with the intention to treat analysis. Intention to treat patients are analyzed
according to their randomized treatment irrespective of whether they actually
received the treatment. The argument is that it mirrors what will happen when a
treatment is used in practice. In a comparative parallel group study the inclusion of
protocol violators in the analysis tend to make the results of the two treatments more
similar. In an equivalence study this effect may bias the study towards a positive
result, being the demonstration of equivalence. A possibility is to carry out both
intention-to-treat-analysis and completed-protocol-analysis. If no difference is
demonstrated, we conclude that the study’s data are robust (otherwise called sensi-
tive, otherwise called precise), and that the protocol-analysis did not introduce
major sloppiness into the data. Sometimes, efficacy and safety endpoints are ana-
lyzed differently: the former according to the protocol analysis simply because
important endpoint variables are missing in the population that leaves the study
early, and intention to treat analysis for the latter, because safety variables frequently
include items such as side effects, drop-offs, morbidity and mortality during trial.
Either endpoint can of course be assessed in an equivalence assessment trial, but we
must consider that an intention to treat analysis may bias the equivalence principle
towards overestimation of the chance of equivalence.

Note: Statistical power of equivalence testing is explained in the next chapter.

6 Special Point: Level of Correlation in Paired
Equivalence Studies

Figure 5.3 shows the results of three crossover trials with two drugs in patients with
Raynaud’s phenomenon. In the left trial a negative correlation exists between the
treatments, in the middle trial the correlation level is zero, while in the right trial a
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Fig. 5.3 Example of three crossover studies of two treatments in patients with Raynaud’s phe-
nomenon. The Pearson’s correlation coefficient p varies from —1 to 1
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Fig. 5.4 The mean difference between the two treatments of each of the treatment comparison of
Fig. 5.3 is 5 Raynaud attacks/week. However, standard errors, and, thus, 95% confidence intervals
are largely different. With a D-boundary of +10 Raynaud attacks/week only the positive correlation
study (p=+1) can demonstrate equivalence

strong postive correlation is observed. It is calculated that the mean difference
between the treatments in each trial equals 5 Raynaud attacks/week but that the
standard errors of the differences are different, left trial 6.46, middle trial 2.78, right
trial 0.76 Raynaud attacks/week. Figure 5.4 shows that with a D-boundary of +10
Raynaud attacks/week only the positive correlation study is able to demonstrate
equivalence. Fortunately, most crossover studies have a positive correlation between
the treatments, and, so, the crossover design is generally quite sensitive to assess
equivalence.

7 Conclusions

1. The use of placebos is unethical if an effective active comparator is available.
2. With an active comparator the new treatment may simply match the standard
treatment.
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. Predefined areas of equivalence have to be based on clinical arguments.
. Equivalence testing is indispensable in drug development (for comparison versus

an active comparator).

. Equivalence trials have to be larger than comparative trials. You will understand

this after reviewing the next chapter.



Chapter 6
Statistical Power and Sample Size

1 What Is Statistical Power

Figure 6.1 shows two graphs of t-distributions. The lower graph (H1) could be a
probability distribution of a sample of data or of a sample of paired differences
between two observations. N=20 and so 95% of the observations is within
2.901+2.101 standard errors of the mean (SEMs) on the x-axis (usually called
z-axis in statistics). The upper graph is identical, but centers around O instead of
2.901. It is called the null-hypothesis HO, and represents the data of our sample if
the mean results were not different from zero. However, our mean result is 2.901
SEMs distant from zero. If we had many samples obtained by similar trials under
the same null-hypothesis, the chance of finding a mean value of more than 2.101 is
<5%, because the area under the curve (AUC) of HO right from 2.101 <5% of total
AUC. We, therefore, reject the assumption that our results indicate a difference just
by chance and decide that we have demonstrated a true difference. What is the
power of this test. The power has as prior assumption that there is a difference from
zero in our data. What is the chance of demonstrating a difference if there is one. If
our experiment would be performed many times, the distribution of obtained mean
values of those many experiments would center around 2.901, and about 70% of the
AUC of HI would be larger than 2.101. When smaller than 2.101, our statistical
analysis would not be able to reject the null-hypothesis of no difference, when
larger, it would rightly be able to reject the null-hypothesis of no difference. So, in
fact 100% —70% =30% of the many trials would erroneously be unable to reject the
null-hypothesis of no difference, even when a true difference is in the data. We say
the power of this experiment=1-0.3=0.7 (70%), otherwise called the chance of
finding a difference when there is one (area under curve (1 —-)x 100%). f is also
called the chance of making a type II error=chance of finding no difference when
there is one. Another chance is the chance of finding a difference where there is
none, otherwise called the type I error (area under the curve (2x a/2) x 100%). This
type of error is usually set to be 0.05 (5%).

T.J. Cleophas and A.H. Zwinderman, Statistics Applied to Clinical Studies, 77
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Fig. 6.1 H1 is the given distribution of our data with mean value of 2.901 (= t=mean/SEM).
B=area under curve (AUC) of H1 left from the dotted vertical line=+0.3 (£30% of the total AUC).
1-B=+0.7=+ 70% of total AUC of H1. Statistical power==+ 0.7 =chance of finding a difference
when there is one

2 Emphasis on Statistical Power Rather
Than Null-Hypothesis Testing

Generally, statistical tests reach their conclusions by seeing how compatible the
observations were with the null-hypothesis of no treatment effect or treatment dif-
ference between test-treatment and reference-treatment. In any test we reject the
null-hypothesis of no treatment effect if the value of the test statistic (F, t, q, or chi-
square) was bigger than 95% of the values that would occur if the treatment had no
effect. When this is so, it is common for medical investigators to report a statisti-
cally significant effect at P (probability) <0.05 which means that the chance of
finding no difference if there is one, is less than 5%. On the other hand, when the
test statistic is not big enough to reject this null-hypothesis of no treatment effect,
the investigators often report no statistically significant difference and discuss their
results in terms of documented proof that the treatment had no effect. All they
really did, was fail to demonstrate that it did have an effect. The distinction between
positively demonstrating that a treatment had no effect and failing to demonstrate
that it does have an effect, is subtle but very important, especially with respect to
the small numbers of subjects usually enrolled in a trial. A study of treatments that
involves only a few subjects and then fails to reject the null hypothesis of no
treatment effect, may arrive at this result because the statistical procedure lacked
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Fig. 6.2 Example of t-distribution with n=20 and its null- hypothesis of no effect. Lower curve
HI or actual SEM distribution of the data, upper curve HO or null-hypothesis of the study

power to detect the effect because of a too small sample size, even though the
treatment did have an effect.

Figure 6.2 gives an example of a t-distribution with n=20 (H1) and its null-
hypothesis of no effect (HO). 95% of all similar trials with no significant treatment
difference from zero must have their means between —2.101 and +2.101 SEMs from
zero. The chance of finding a mean value of 2.101 SEMs or more is 5% or less
(0=0.05 or a.. 100% =5%, where a. is the chance of finding a difference when there
is none=erroneously rejecting the null-hypothesis of no effect, also called type I
error). The figure shows that in this particular situation the chance of B is 0.5 or
times 100% =50% (B is the chance of finding no difference where there is one =the
chance of erroneously accepting the null-hypothesis of no treatment difference, also
called type II error).

Statistical power, defined as 1 -3, can be best described as the chance of finding
a difference where there is one=the chance of rightly rejecting the null-hypothesis
of no effect. The figure shows that this chance of detecting a true-positive effect, i.e.,
reporting a statistically significant difference when the treatment really produces an
effect is only 50%, and likewise that the chance of no statistically significant differ-
ence is no less than 50% either (=0.5). It means that if we reject the null-hypothesis
of no effect at P=0.05, we still have a chance of 50% that a real effect in our data is
not detected. As a real effect in the data rather than no effect is the main underlying
hypothesis of comparative drug trials, a 50% chance to detect it, is hardly acceptable
for reliable testing. A more adequate cut-off level of rejecting would be, e.g., a
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90-95% power level, with corresponding a level of 0.005-0.001. Many physicians
and even some investigators never confront these problems because they never
heard of power. An additional advantage of power analysis is the possibility to use
power computations on hypothesized results a priori in order to decide in advance
on sample size for a study.

3 Power Computations

Calculating power can be best left over to a computer, because other approaches
are rather imprecise. For example, with normal distributions or t-distribu-
tions power =1 —f3 can be readily visualized from a graph as estimated percent-
age of the (1-PB)x100% area under the curve. However, errors as large as
10-20% are unavoidable with this approach. We may alternatively use tables for
t- and z-distributions, but as tables give discrete values this procedure is rather
inaccurate either.
A computer will make use of the following equations.

3.1 For t-Distributions of Continuous Data

Power = 1— = 1 — probability [ZpowCr <(t-— t')] = probability [Zpowcr > (t—t' )]

where Z e TEPIESENLS A position on the x-axis of the z-distribution (or in this par-
ticular situation more correctly t-distribution), and t' represents the level of t that for
the given degrees of freedom (=sample size) yields an o of 0.05. Finally, t in the
equation is the actual t as calculated from the data.

Let’s assume we have a parallel-group data comparison with test statistic of
t=3.99 and n=20 (P<0.001). What is the power of this test? Zpuwer= (t'-t)=3.99-
2.101=1.89. This is so, because t'=the t that with 18 degrees of freedom (dfs)
(n=20, 20-2) yields an a of 0.05. To convert Z oer into power we look up in the
t-table with dfs=18 the closest level of probability and find approximately 0.9 for
1.729. The power of this test thus is approximately 90%.

3.2 For Proportions

Z e = 2. (arcsine \/pT —arcsine \/172 ) \/g -7
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where Z oer is a position on the x-axis of the z-distribution and z' is 2 if a=0.05
(actually 1.96). It is surprising that arcsine (= 1/sine) expressed in radians shows up
but it turns out that power is a function of the square roots of the proportions, which
has a 1/sine like function.

A computer turns Z oer into power. Actually, power graphs as presented in many
current texts on statistics can give acceptable estimates for proportions as well.

3.3 For Equivalence Testing of Samples with t-Distributions
and Continuous Data

Power = 1—B =1 - probability [z<(D/SEM-z __)]

where z is again a position on the x-axis of the z- or t-distribution, D is half the
interval of equivalence (see previous chapter), and z, _ is 2 (actually 1.96) if a. is
set at 5%.

4 Examples of Power Computation Using the t-Table

4.1 First Example

Although a table gives discrete values, and is somewhat inaccurate to precisely
calculate the power size, it is useful to master the method, because it is helpful to
understand what statistical power really is. The example of Fig. 6.3 is given. Our
trial mean is 2.878 SEMs distant from O (= the t-value of our trial). We will try to
find beta by subtracting t—t' where is the t-value that yields an area under the curve
(AUC) of 5%=2.101. t—t'=2.878—-2.101=0.668. Now we can use the t-table to
find 1-beta=power.

The t-