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1
Introduction to Finite Element
Model Updating

1.1 Introduction

Finite element model updating methods are intended to correct and improve a numerical model
to match the dynamic behaviour of real structures (Marwala, 2010). Modern computers, with
their ability to process large matrices at high speed, have facilitated the formulation of many
large and complicated numerical models, including the boundary element method, the finite
difference method and the finite element models. This book deals with the finite element model
that was first applied in solving complex elasticity and structural analysis problems in aeronaut-
ical, mechanical and civil engineering. Finite element modelling was proposed by Hrennikoff
(1941) and Courant and Robbins (1941). Courant applied the Ritz technique and variational
calculus to solve vibration problems in structures (Hastings et al., 1985). Despite the fact that
the approaches used by these researchers were different from conventional formulations, some
important lessons are still relevant. These differences include mesh discretisation into elements
(Babuska et al., 2004).
The Cooley–Turkey algorithms, which are used to speedily obtain Fourier transformations,

have facilitated the development of complex techniques in vibration and experimental modal
analysis. Conversely, the finite element model ordinarily predicts results that are different from
the results obtained from experimental investigation. Among reasons for the discrepancy
between finite element model prediction and experimentally measured data are as the following
(Friswell and Mottershead, 1995; Marwala, 2010; Dhandole and Modak, 2011):

• model structure errors resulting from the difficulty in modelling damping and complex
shapes such as joints, welds and edges;

• model order errors resulting from the difficulty in modelling non-linearity and often assum-
ing linearity;

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and
Mechanical Engineering, First Edition. Tshilidzi Marwala, Ilyes Boulkaibet and Sondipon Adhikari.
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• model parameter errors resulting in difficulty in identifying the correct material properties;
• errors in measurements and signal processing.

In finite element model updating, it is assumed that the measurements are correct within cer-
tain limits of uncertainty and, for that reason, a finite element model under consideration will
need to be updated to better reflect the measured data. Additionally, finite element model updat-
ing assumes that the difficulty in modelling joints and other complicated boundary conditions
can be compensated for by adjusting the material properties of the relevant elements. In this
book, it is also assumed that a finite element model is linear and that damping is sufficiently
low not to warrant complex modelling (Mottershead and Friswell, 1993; Friswell and Motters-
head, 1995). Using data from experimental measurements, the initial finite element model is
updated by correcting uncertain parameters so that the model is close to the measured data.
Alternatively, finite element model updating is an inverse problem and the goal is to identify
the system that generated the measured data (Brincker et al., 2001; Dhandole andModak, 2010;
Zhang et al., 2011; Boulkaibet, 2014; Fuellekrug et al., 2008; Cheung and Beck, 2009; Mot-
tershead et al., 2000).
There are two main approaches to finite element model updating, namely, maximum like-

lihood and Bayesian methods (Marwala, 2010; Mottershead et al., 2011). In this book, we
apply a Bayesian approach to finite element model updating.

1.2 Finite Element Modelling

Finite element models have been applied to aerospace, electrical, civil and mechanical engin-
eering in designing and developing products such as aircraft wings and turbo-machinery. Some
of the applications of finite element modelling are (Marwala, 2010): thermal problems, elec-
tromagnetic problems, fluid problems and structural modelling. Finite element modelling
typically entails choosing elements and basis functions (Chandrupatla and Belegudu, 2002;
Marwala, 2010). Generally, there are two types of finite element analysis that are used:
two-dimensional and three-dimensional modelling (Solin et al., 2004; Marwala, 2010).
Two-dimensional modelling is simple and computationally efficient. Three-dimensional

modelling, on the other hand, is more accurate, though computationally expensive. Finite elem-
ent analysis can be formulated in a linear or non-linear fashion. Linear formulation is simple
and usually does not consider plastic deformation, which non-linear formulation does consider.
This book only deals with linear finite element modelling, in the form of a second-order ordin-
ary differential equation of relations between mass, damping and stiffness matrices. A finite
element model has nodes, with a grid called a mesh, as shown in Figure 1.1 (Marwala,
2001). The mesh has material and structural properties with particular loading and boundary
conditions. Figure 1.1 shows the dynamics of a cylinder, and the mode shape of the first natural
frequency occurring at 433 Hz.
These loaded nodes are assigned a specific density all over the material, in accordance with

the expected stress levels of that area (Baran, 1988). Sections which undergo more stress will
then have a higher node density than those which experience less or no stress. Points of stress
concentration may have fracture points of previously tested materials, joints, welds and high-
stress areas. The mesh may be imagined as a spider’s web so that, from each node, a mesh
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element extends to each of the neighbouring nodes. This web of vectors has the material prop-
erties of the object, resulting in a study of many elements.
On implementing finite element modelling, a choice of elements needs to be made and these

include beam, plate, shell elements or solid elements. A question that needs to be answered
when applying finite element analysis is whether the material is isotropic (identical throughout
the material), orthotropic (only identical at 90�) or anisotropic (different throughout the mater-
ial) (Irons and Shrive, 1983; Zienkiewicz, 1986; Marwala, 2010).
Finite element analysis has been applied to model the following problems (Zienkiewicz,

1986; Marwala, 2010):

• vibration analysis for testing a structure for random vibrations, impact and shock;
• fatigue analysis to approximate the life cycle of a material or a structure due to cyclical
loading;

• heat transfer analysis to model conductivity or thermal fluid dynamics of the material or
structure.

Hlilou et al. (2009) successfully applied finite element analysis in softening material behav-
iour, while Zhang and Teo (2008) successfully applied it in the treatment of a lumbar degen-
erative disc disease. White et al. (2008) successfully applied finite element analysis for
shallow-water modelling, while Pepper and Wang (2007) successfully applied it in wind
energy assessment of renewable energy in Nevada. Miao et al. (2009) successfully applied
a three-dimensional finite element analysis model in the simulation of shot peening. Bürg
and Nazarov (2015) successfully applied goal-oriented adaptive finite element methods in
elliptic problems, while Amini et al. (2015) successfully applied finite element modelling in
functionally graded piezoelectric harvesters. Haldar et al. (2015) successfully applied finite
element modelling in the study of the flexural behaviour of singly curved sandwich composite

Figure 1.1 A finite element model of a cylindrical shell
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structures, while Millar and Mora (2015) successfully applied finite element methods to study
the buckling in simply supported Kirchhoff plates. Jung et al. (2015) successfully used finite
element models and computed tomography to estimate cross-sectional constants of composite
blades, while Evans andMiller (2015) successfully applied a finite element model to predict the
failure of pressure vessels. Other successful applications of finite element analysis are in the
areas of metal powder compaction processing (Rahman et al., 2009), ferroelectric materials
(Schrade et al., 2007), rock mechanics (Chen et al., 2009), orthopaedics (Easley et al.,
2007), carbon nanotubes (Zuberi and Esat, 2015), nuclear reactors (Wadsworth et al., 2015)
and elastic wave propagation (Gao et al., 2015; Gravenkamp et al., 2015).

1.3 Vibration Analysis

An important aspect to consider when implementing finite element analysis is the kind of data
that the model is supposed to predict. It can predict data in many domains, such as the time,
modal, frequency and time–frequency domains (Marwala, 2001, 2010). This book is concerned
with constructing finite element models to predict measured data more accurately. Ideally, a
finite element model is supposed to predict measured data irrespective of the domain in which
the data are presented. However, this is not necessarily the case because models updated in the
time domain will not necessarily predict data in the modal domain as accurately as they will for
data in the time domain. To deal with this issue, Marwala and Heyns (1998) used data in the
modal and frequency domains simultaneously to update the finite element model in a multi-
criteria optimisation fashion. Again, whichever domain is used, the updated model performs
less well on data in a different domain than those used in the updating process. In this book,
we use data in the modal domain. Raw data are measured in the time domain and Fourier ana-
lysis techniques transform the data into the frequency domain. Modal analysis is applied to
transform the data from the frequency domain to the modal domain. All of these domains
include similar information, but each domain reveals different data representations.

1.3.1 Modal Domain Data

The modal domain expresses data as natural frequencies, damping ratios and mode shapes. The
technique used for extracting the modal properties is a process called modal analysis (Ewins,
1995). Natural frequencies are basic characteristics of a system and can be extracted by exciting
the structure and analysing the vibration response. Cawley and Adams (1979) used changes in
the natural frequencies to identify damage in composite materials. Farrar et al. (1994) success-
fully used the shifts in natural frequencies to identify damage on an I-40 bridge. Other success-
ful applications of natural frequencies include damage detection in tabular steel offshore
platforms (Messina et al., 1996, 1998), spot welding (Wang et al., 2008) and beam-like struc-
tures (Zhong and Oyadiji, 2008; Zhong et al., 2008).
A mode shape represents the curvature of a system vibrating at a given mode and a particular

natural frequency. West (1982) successfully applied the modal assurance criterion for damage
on a Space Shuttle orbiter body flap, while Kim et al. (1992) successfully used the coordinate
modal assurance criterion of Lieven and Ewins (1988) for damage detection in structures. Fur-
ther applications of mode shapes include composite laminated plates (Araújo dos Santos et al.,
2006; Qiao et al., 2007), linear structures (Fang and Perera, 2009), beam-type structures (Qiao
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and Cao, 2008; Sazonov and Klinkhachorn, 2005), optical sensor configuration (Chang and
Pakzad, 2015), multishell quantum dots (Vanmaekelbergh et al., 2015) and creep characterisa-
tion (Hao et al., 2015).

1.3.2 Frequency Domain Data

The measured excitation and response of the structure are converted into the frequency domain
using Fourier transforms (Ewins, 1995; Maia and Silva, 1997), and from these the frequency
response function is extracted. Frequency response functions have, in general, been used to
identify faults (Sestieri and D’Ambrogio, 1989; Faverjon and Sinou, 2009). D’Ambrogio
and Zobel (1994) used frequency response functions to identify the presence of faults in a truss
structure, while Imregun et al. (1995) used frequency response functions for damage detection.
Lyon (1995) and Schultz et al. (1996) used measured frequency response functions for struc-
tural diagnostics. Other direct applications of the frequency response functions include
the work of Shone et al. (2009), Ni et al. (2006), X. Liu et al. (2009), White et al. (2009)
and Todorovska and Trifunac (2008). Additional applications include missing-data estimation
(Ugryumova et al., 2015), identification of a non-commensurable fractional transfer (Valério
and Tejado, 2015), as well as damage detection (Link and Zimmerman, 2015).

1.4 Finite Element Model Updating

In real life, it turns out that the predictions of the finite element model are quite different from
the measurements. As an example, for a finite element model of a simply suspended beam, the
differences between the model-predicticted natural frequencies and the measured frequencies
are shown in Table 1.1 (Marwala and Sibisi, 2005; Marwala, 2010). These results are for a
fairly easy structure to model, and they demonstrate that the finite element model’s data are
different from the measured data. Finite element model updating has been studied quite exten-
sively (Friswell andMottershead, 1995;Mottershead and Friswell, 1993;Maia and Silva, 1997;
Marwala, 2010). There are three approaches used in finite element model updating: direct
methods, iterative deterministic and uncertainty quantification methods. Direct approaches
are computationally inexpensive, but reproduce modal properties that are physically
unrealistic.
Although the finite element model can predict measured quantities, the updated model is

limited in that it loses the connectivity of nodes, results in populated matrices and in loss of

Table 1.1 Comparison of finite element model and real measurements

Mode number
Finite element
frequencies (Hz)

Measured
frequencies (Hz)

1 42.30 41.50
2 117.0 114.5
3 227.3 224.5
4 376.9 371.6

5Introduction to Finite Element Model Updating



matrix symmetry. All these factors are physically unrealistic. Iterative techniques use changes
in physical parameters to update the finite element models and, thereby, generate models that
are physically realistic (Marwala, 2010). However, since they are based on optimisation tech-
niques, the problems of global versus local optimum solution and over-fitting the measured
data, these methods still produce unrealistic results. Esfandiari et al. (2009) used the sensitivity
approach, frequency response functions and natural frequencies for model updating in struc-
tures, while Wang et al. (2009) used the Zernike moment descriptor for finite element model
updating. Yuan and Dai (2009) updated a finite element model of damped gyroscopic systems,
while Kozak et al. (2009) used a miscorrelation index for model updating. Arora et al. (2009)
proposed a finite element model updating approach that used damping matrices, while Schlune
et al. (2009) implemented finite element model updating to improve bridge evaluation. Yang
et al. (2009) investigated several objective functions for finite element model updating in struc-
tures, while Bayraktar et al. (2009) applied modal properties for updating a finite element
model of a bridge. Li and Du (2009) used the most sensitive design variable for finite element
model updating of stay-cables, while Steenackers et al. (2007) successfully applied transmis-
sibility for finite element model updating. XuYuan and Ping Yu (2015) proposed finite element
model updating of damped structures, while Shabbir and Omenzetter (2015) applied particle
swarm optimisation for finite element model updating. The uncertainty quantification tech-
niques, however, include the uncertainties related to the modelled structure (or systems) during
the updating procedure. The uncertainty quantification approaches that treat uncertain
parameters as random parameters with joint distribution functions are called the probabilistic
techniques and these comprise Bayesian and perturbation methods, whereas the non-
probabilistic (possibilistic) approaches use the interval method or membership functions (fuzzy
technique) to define uncertain parameters. In this book, only the Bayesian approach is used to
update structures.
Other successful implementations of finite element model updating methods include appli-

cations in bridges (Huang and Zhu, 2008; Jaishi et al., 2007; Niu et al., 2015), composite struc-
tures (Pavic et al., 2007), helicopters (Shahverdi et al., 2006), atomic force microscopes (Chen,
2006), footbridges (Živanović et al., 2007), estimating constituent-level elastic parameters of
plates (Mishra and Chakraborty, 2015) and identifying temperature-dependent thermal-
structural properties (Sun et al., 2015). The process of finite element updating is illustrated
in Figure 1.2 (Boulkaibet, 2014).

1.5 Finite Element Model Updating and Bounded Rationality

As illustrated in Figure 1.2, optimisation involves minimising the distance between measure-
ments and the model output, whichever way the model is defined, whether deterministically or
probabilistically. The minimisation process gives either a local optimum solution or a global
one, and one is never sure whether the solution is global or local, particularly for complex prob-
lems. Furthermore, the data to be used should be universally represented, meaning that all the
domain representations must be used, and this is not possible. A definition of ‘rational solution’
implies that the solution is optimised, all information is used and an optimal objective function
for optimisation is used. In finite element model updating, this is not possible.
In rational theory, the limited availability of information required in making a rational deci-

sion, and the limitations of devices for making sense of incomplete decisions, are covered by
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the theory of bounded rationality, and it was proposed by Herbert Simon (Simon, 1957, 1990,
1991; Tisdell, 1996). The theory of bounded rationality has been used in modelling by
researchers such as Lee (2013), Gama (2013), Jiang et al. (2013), Stanciu-Viziteu (2012),
Aviad and Roy (2012) and Murata et al. (2012). Herbert Simon coined the term satisficing,
by combining the terms ‘satisfying’ and ‘sufficing’, which is the concept of making optimised
decisions under the limitations that the data used in making such decisions are imperfect and
incomplete, while the model used to make such decisions is inconsistent and imperfect. In the
same vein, the finite element model updating problem is a satisficing problem, not a process of
seeking the correct model.

1.6 Finite Element Model Updating Methods

This section reviews methods that have been used for finite element model updating. They are
grouped into classes, and more details on these may be found in Marwala (2010). There are three

Real dynamic system

Measured data from

the real system

Experimental natural

frequencies,

and mode shapes.

The finite element model

System matrices; K, M, and C,

natural frequencies,

mode shapes.

Adjusting uncertain

parameters

Compute the cost function

The error between

measured and numerical

data was minimized?

No

Yes

The updating

process is ended

Figure 1.2 Finite element model updating procedure
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categories of finite element model updating techniques: direct methods; iterative methods; and
uncertainty quantification methods.

1.6.1 Direct Methods

Direct methods (Friswell and Mottershead, 1995; Marwala, 2010) are one of the earliest strat-
egies used for finite element model updating. They possess the ability to reproduce the exact
experimental data and without using iterations, which makes these algorithms computationally
efficient. These methods are still used for finite element model updating, and modern instru-
ments and sensors that have lately been used in experiments allow these methods to overcome
some of their disadvantages, such as lack of node connectivity and the need for a large amount
of data to reproduce the exact experimental matrices. In this subsection, several direct methods –
the matrix update methods, the Lagrange multiplier method, the optimal matrix methods and
the eigenstructure assignment method – are briefly described.

1.6.1.1 Matrix Update Methods

Matrix update methods operate by modifying structural model matrices, that is, the mass, stiff-
ness and damping matrices (Baruch, 1978). These are obtained by minimising the distance
between analytical and measured matrices as follows (Friswell and Mottershead, 1995;
Marwala, 2010):

Ei = −ω2
iM+ jωiC+K

� �
ϕi; ð1:1Þ

whereM is the mass matrix, C is the damping matrix,K is the stiffness matrix of the structure,
Ei is the error vector (also known as the residual force), j =

ffiffiffiffiffiffiffi
−1

p
, ωi is the ith natural frequency

and ϕi is the ith mode shape. The residual force is the harmonic force with which the unupdated
model will have to be excited at a frequency of ωi so that the structure will respond with
the mode shape ϕi. The Euclidean norm of Ei is minimised by updating physical parameters
in the model (Ewins, 1995; Marwala, 2010) and choosing an optimisation routine. These tech-
niques are classified as iterative since they are employed by iteratively changing the relevant
parameters until the error is minimised. Ojalvo and Pilon (1988) minimised the Euclidean norm
of the residual force for the ith mode of the structure by using the modal properties. The residual
force in the equation of motion in the frequency domain may be minimised as (Friswell and
Mottershead, 1995):

E= −ω2M+ jωC +K
� �

Xm−Fm; ð1:2Þ

where Xm and Fm are the Fourier-transformed displacement and force matrices, respectively.
Each column of the matrix corresponds to a measured frequency point. The Euclidean norm of
the error matrix E is minimised by updating physical parameters in the model. The methods
described in this subsection are computationally expensive. In addition, it is challenging to
identify a global minimum because of multiple stationary points, which are caused by the
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non-unique nature of inverse problems (Janter and Sas, 1990; Mares and Surace, 1996; Friswell
et al., 1994; Dunn, 1998).

1.6.1.2 Lagrange Multiplier Method

The Lagrange multiplier method is an optimisation technique that deals with the objective func-
tion and constraints of an optimisation equation (Rad, 1997). It is implemented by minimising a
constrained objective function, where the constraints are imposed by Lagrange multipliers
(Marwala, 2010; Minas and Inman, 1988; Heylen and Sas, 1987).

1.6.1.3 Optimal Matrix Methods

Optimal matrix methods employ analytical rather than numerical solutions to obtain matrices
from the damaged systems. They are formulated using Lagrange multipliers and perturbation
matrices, and the optimisation problem is posed to minimise (Friswell and Mottershead, 1995)

E ΔM,ΔC,ΔKð Þ+ λR ΔM,ΔC,ΔKð Þ; ð1:3Þ

where E is the objective function, λ is the Lagrange multiplier, R is the constraint of the equation
and Δ denotes the perturbation of the system matrices. Different permutations of perturbations
are tried until the difference between the finite element model results and the measured results is
minimised. Baruch and Bar Itzhack (1978), Berman and Nagy (1983) and Kabe (1985) formu-
lated Equation 1.3by minimising the Frobenius norm of the error, while maintaining the sym-
metry of the matrices. McGowan et al. (1990) introduced an extra constraint that maintained the
connectivity of the structure and used measured mode shapes to update the stiffness matrix to
locate structural damage. Zimmerman et al. (1995) used a partitioning method for matrix per-
turbations as sums of element or substructural perturbation matrices to reduce the rank of
unknown perturbation matrices. Carvalho et al. (2007) successfully applied a direct method
for model updating with incomplete measured modal data. A limitation of these approaches
is that the updated model is physically unrealistic.

1.6.1.4 Eigenstructure Assignment Methods

Eigenstructure assignment approaches are based on control system theory, and the system
under consideration is made to respond in a predetermined configuration. An updated finite
element model is that with eigenstructure which is obtained from measured data. Zimmerman
and Kaouk (1992) applied this approach successfully to update a finite element model of a can-
tilevered beam based on modal properties, while Schultz et al. (1996) updated a finite element
model using the measured frequency response functions. The limitation of this technique that
the number of sensor locations is less than the degrees of freedom in the finite element model.
To deal with this limitation, either the mode shapes and frequency response functions are
expanded to the size of the finite element model or the mass and stiffness matrices of the finite
element model are reduced to the size of the measured data. The reduction/expansion
approaches that are applied are static reduction (Guyan, 1965; Gysin, 1990; Imregun and
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Ewins, 1993), dynamic reduction (Paz, 1984), improved reduced systems (O’Callahan, 1989)
and the system-equivalent reduction process (O’Callahan et al., 1989).

1.6.2 Iterative Methods

Iterative methods (Friswell and Mottershead, 1995; Marwala, 2010) were developed to over-
come the weakness of the direct methods and to update finite element models of complex sys-
tems. These methods use non-linear equations to deal with the non-convex optimisation
problem which arises when a complex system is updated. In these methods, a set of parameters
are iteratively adjusted to minimise an objective function (also called a penalty function), where
most of the objective functions used in model updating contain only modal and/or response
functions data. In this subsection, two popular iterative methods are briefly discussed.

1.6.2.1 Sensitivity Methods

Sensitivity approaches work on the premise that experimentally measured data are perturba-
tions of design data around a finite element model. Therefore, experimentally measured data
ought to be approximately equal to data predicted by the finite element model for this approach
to work. These approaches uses the derivatives of either the modal properties or the frequency
response functions as a basis for finite element model updating. Many procedures have been
developed to calculate the derivative of the modal properties and frequency response functions,
including Fox and Kapoor (1968), Norris and Meirovitch (1989), Haug and Choi (1984), Chen
and Garba (1980) and Adhikari and Friswell (2001). Ben-Haim and Prells (1993) used fre-
quency response function sensitivity to update a finite element model, while Lin et al.
(1995) used modal sensitivity for finite element model updating and Hemez (1993) used elem-
ent sensitivity for finite element updating. Alvin (1997) improved the convergence rate by
using statistical confidence measurements in finite element model updating.

1.6.2.2 Optimisation Methods

Huang and Zhu (2008) applied optimisation methods for the finite element model updating of
bridge structures. The optimisation method was augmented by a sensitivity analysis. Schwarz
et al. (2007) updated a finite element model which minimised the difference between the modes
of a finite element model and those from the experiment. Bakir et al. (2007) applied sensitivity
approaches for finite element model updating. They used a constrained optimisation method to
minimise the differences between the natural frequencies and mode shape.
Jaishi andRen (2007) applied amulti-objective optimisation approach for finite element model

updating. Their multi-objective cost function was based on the differences between eigenvalues
and strain energy. Liu et al. (2006) updated a finite element model of a 14-bay beam with semi-
rigid joints and a boundary using a hybrid optimisationmethod. Zhang andHuang (2008) applied
a gradient descent optimisationmethod for the finite element model updating of bridge structures.
The objective function was formulated as the summation of the frequency difference and modal
shapes. Parameter alteration was guided by engineering judgement.
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1.6.3 Artificial Intelligence Methods

Finite element modelling updating can be achieved through the use of artificial intelligence
techniques. Artificial intelligence techniques are computational tools that are inspired by the
way nature and biological systems work. Within the context of finite element model updating,
some of the techniques that have been applied are genetic algorithms, particle swarm optimisa-
tion, fuzzy logic, neural networks, and support vector machines. A genetic algorithm simulates
natural evolution, where the law of the survival of the fittest is applied to a population of indi-
viduals. This natural optimisation method is used for optimising a function (Mitchell, 1998).
Particle swarm optimisation is an evolutionary optimisation method that was developed by
Kennedy and Eberhart (1995), inspired by algorithms that model the flocking behaviour seen
in birds. The response surface method is a procedure that functions by generating a response for
a given input and then constructs an approximation to a complicated model such as a finite
element model (Kamrani et al., 2009).
Finite element models are computationally expensive methods. To manage the computa-

tional load, some form of emulator to approximate the finite element model can be imple-
mented. Y. Liu et al. (2009) used fuzzy theory, while Jung and Kim (2009) employed the
hybrid genetic algorithm for finite element model updating. Tan et al. (2009) used support vec-
tor machines and wavelet data for finite element model updating in structures, while Zapico
et al. (2008) applied neural networks. Further successful applications of artificial intelligence
methods to finite element model updating include Tu and Lu (2008) and Yan et al. (2007), as
well as Fei et al. (2006) who applied genetic algorithms. Feng et al. (2006) applied a hybrid of a
genetic algorithm and simulated annealing, and He et al. (2008) applied a hybrid of a genetic
algorithm and neural networks.
Marwala (2010) used the particle swarm optimisation technique for finite element model

updating, and the results were compared to those obtained from the genetic algorithm. Further-
more, simulated annealing was also introduced and applied to finite element model updating,
and the results were compared to those from particle swarm optimisation. To deal with the issue
of computational efficiency, a response surface method that combines the multi-layer percep-
tron and particle swarm optimisation was introduced and applied to finite element model
updating. The results were compared to those from the genetic algorithm, particle swarm
optimisation and simulated annealing.

1.6.4 Uncertainty Quantification Methods

Due to the numerical and experimental uncertainties associated with the updated models, for-
mulating the updating problems as iterative optimisation with constraints may not produce
stable and accurate results. Modelling uncertainties are caused by predictions used to model
the systems, especially when the physical components used to model the systems are complex
and not sufficiently well understood. On the other hand, experimental uncertainties are
caused by noise resulting from the measurements or by the variability of the system parameters
(Der Kiureghian and Ditlevsen, 2009; Soize, 2010; Walker et al., 2003). In this subsection,
the perturbation method, minimum variance method and Bayesian approach are briefly
described.
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1.6.4.1 Perturbation Method

The perturbation technique uses a Taylor series to extend the terms in model updating equations
around a predefined point and then to estimate the mean and variance of the updated parameters
(Khodaparast, 2010; Hua et al., 2008; Khodaparast et al., 2008). One type of perturbation tech-
nique uses the least-squares method for stochastic finite element model updating, by assuming
that the measured data and updating parameters are statistically independent. Another perturb-
ation technique was developed by Hua et al. (2008) and assumes that the measured vector ZX

can be obtained by adding a random component (ΔZX) to a deterministic component (mean
value) as follows (Khodaparast, 2010; Hua et al., 2008; Boulkaibet, 2014):

ZX = ẐX +ΔZX ; ð1:4Þ

where the perturbation vector (ΔZX) has zero mean and represents the uncertainty in the meas-
ured data. The structural parameters θ, the sensitivity matrix S and the predictions Z are defined
around the mean value of these vectors and/or matrices as follows (Friswell and Mottershead,
1995; Khodaparast, 2010; Boulkaibet, 2014):

θ = θ̂+
Xn
i= 1

∂θ
∂ΔZi

X

ΔZi
X ; ð1:5Þ

S= Ŝ+
Xn
i= 1

∂S
∂ΔZi

X

ΔZi
X ; ð1:6Þ

Z= Ẑ+
Xn
i= 1

∂Z
∂ΔZi

X

ΔZi
X : ð1:7Þ

With subscript j denoting iteration number, we obtain (Friswell and Mottershead, 1995;
Boulkaibet, 2014):

ẐX = Ẑj + Ŝj θ̂j+ 1− θ̂j
� �

ð1:8Þ

Ŝj
∂θj+ 1
∂ΔZi

X

= Ŝj
∂θj

∂ΔZi
X

+ e−
∂Zj

∂ΔZi
X

−
∂Sj

∂ΔZi
X

� �
θ̂j+ 1− θ̂j

� �
: ð1:9Þ

Here, the vector e= 0 � � � 01 0� � �0½ � has all components equal to zero except for a 1 in ith
position. Subtracted from it are (Friswell and Mottershead, 1995):

∂Zj

∂ΔZi
X

= Sj
∂θj

∂ΔZi
X

; ð1:10Þ

∂Sj
∂ΔZi

X

=
Xp
k = 1

∂Sj
∂θk

:
∂θk

∂ΔZi
X

: ð1:11Þ
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Equation 1.10 defines the approximated mean of the uncertain parameters, while Equation
1.11 defines the covariance matrix that is obtained through (Boulkaibet, 2014):

Vθj =Θj,ΔZXVZXΘT
j,ΔZX

; ð1:12Þ

where VZX denotes the covariance of the measured data and

Θj,ΔZX =

∂θ1j
∂ΔZ1

X

∂θ1j
∂ΔZ2

X

∂θ2j
∂ΔZ1

X

∂θ2j
∂ΔZ2

X

� � �

∂θ1j
∂ΔZn

X

∂θ2j
∂ΔZn

X

..

. . .
. ..

.

∂θpj
∂ΔZ1

X

∂θpj
∂ΔZ2

X

� � � ∂θpj
∂ΔZn

X

2
66666666666664

3
77777777777775

: ð1:13Þ

1.6.4.2 Minimum Variance Method

The minimum variance approach is an iterative procedure that takes into account the parameter
variability and the uncertainties related to constructing the finite element model (Friswell and
Mottershead, 1995; Boulkaibet, 2014). This technique minimises the variance of the uncertain
parameters, at each iteration, during the updating process. Suppose θi is the vector of uncertain
parameters at the ith iteration of the updating procedure. Then the variance matrix of the param-
eters at the ith iteration is E θiθTi

� �
=Vi. Subtracting the finite element predicted output Zi at

the ith iteration from the measurement data ZX yields (Friswell and Mottershead, 1995;
Boulkaibet, 2014)

δZ= ZX −Zi = S θ−θið Þ: ð1:14Þ

Then the approximated uncertain parameter vector at the (i + 1)th iteration, θi+ 1, is written as
follows (Friswell and Mottershead, 1995):

θi+ 1−θi =T ZX −Zið Þ; ð1:15Þ

where T represents an unknown transformation matrix. The new variance of the estimated
parameters, θi+ 1, for the (i + 1)th iteration is given by (Chen, 2001)

Vi+ 1 =E θi+ 1θTi+ 1
� �

=Vi + Di−ViST
i

� �T
TT +T DT

i −Vi:Si
� �

+TVziTT ; ð1:16Þ

where Di =E θiZT
X

� �
is the correlation between the parameter approximation and the measure-

ment noise. The output error variance is (Chen, 2001)
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Vzi = SiViS
T
i −SiDi−DT

i S
T
i +Ve; ð1:17Þ

where Ve =E ZXZT
X

� �
and the transformation matrix is achieved by minimising the variance at

the (i + 1)th iteration as follows (Chen, 2001):

T= ViST
i −Di

� �
V−1

zi : ð1:18Þ

The updated parameters θi+ 1, Vi+1 and Di+1 are obtained as (Chen, 2001):

θi+ 1 = θi + ViST
i −Di

� �
V−1

zi ZX −Zið Þ; ð1:19Þ

Vi+ 1 =Vi− ViST
i −Di

� �
V−1

zi ViST
i −Di

� �T
; ð1:20Þ

Di+ 1 =Di− ViST
i −Di

� �
V−1

zi SiDi−Veð Þ: ð1:21Þ

1.6.4.3 Bayesian Approaches

The Bayesian method is a technique based on Bayes’ theorem for making statistical inference
by using the evidence (observations) to update the probability that a hypothesis is true
(Marwala, 2009, 2010). Wong et al. (2006) used Bayesian methods to update a bridge model
using sensor data, while Marwala and Sibisi (2005) conducted finite element updating in beam
structures. Mares et al. (2006) used the Monte Carlo method for stochastic model updating,
while Lindholm and West (1995) applied a Bayesian parameter approximation for finite elem-
ent model updating and used this to model experimental dynamic response data. Hemez and
Doebling (1999) successfully used a Bayesian approach for finite element model updating and
applied this to linear dynamics, while Zheng et al. (2009) used a Bayesian approach for finite
element model updating of a sky-bridge.

1.7 Bayesian Approach versus Maximum Likelihood Method

Finite element model updating is essentially an optimisation problem, where the design vari-
ables are the parameters of a finite element model that needs updating. There are two ways to
approach this problem: the maximum likelihood technique (also known as the frequentist
approach) and the Bayesian approach. The maximum likelihood approach defines an objective
function, which is usually some distance between the model and the measured data. Then an
optimisation method is applied to identify the optimal design variables. The problem with this
approach is that it often overfits the data and it does not offer a probabilistic view of the finite
element model updating problem.
Another technique which offers a probabilistic view of the finite element model updating

problem is the Bayesian approach. The Bayesian framework is represented mathematically
as follows (Bishop, 1995):

P θjDð Þ = P Djθð ÞP θð Þ
P Dð Þ ; ð1:22Þ
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where P(θ) is the probability distribution function of the design space in the absence of any
data, also called the prior distribution function and D = (y1,…,yN) is a matrix containing the
data. The expression P(θ|D) is the posterior probability distribution function after the data have
been observed, P(D|θ) is the likelihood function, and P(D) is the normalisation function (also
known as the evidence). This book takes the probability view on finite element model updating.

1.8 Outline of the Book

As stated earlier, finite element models are widely used to model the dynamic behaviour of
many systems, including electrical, aerospace and mechanical engineering systems. This book
is about probabilistic finite element model updating, which is achieved using Bayesian statis-
tics. The aim of finite element model updating is to ensure that the finite element model better
reflects the measured data. The finite element model updating process is limited by the theory of
bounded rationality, as the data that could possibly be used for the updating problem are infinite
and the number of resulting models that could possibly be identified is infinite because of the
infinite starting points in the optimisation of the updating process, and the infinite ways of for-
mulating the updating problem. In this book, the Bayesian framework is employed to estimate
the probabilistic finite element models which take into account the uncertainties in the meas-
urements and the modelling procedure. The Bayesian formulation achieves this by setting up
the finite element model as a posterior distribution of the model, given the measured data. The
data are estimated from the likelihood distribution function, the prior distribution function and
the evidence. The finite element model updating posterior distribution function is complex and
therefore, even for a fairly simple problem, cannot be estimated analytically. This book
describes various sampling techniques based on the Markov chain Monte Carlo (MCMC)
method that estimate the posterior probability distribution function of the finite element model
updating problem. MCMC is a computational procedure based on the random walk and Mar-
kov process. The sampling methods described in this book are slice sampling, nested sampling,
the Metropolis–Hastings algorithm, hybrid Monte Carlo (HMC) and shadow hybrid Monte
Carlo (SHMC). These sampling methods are applied to estimate the posterior probability dis-
tribution function of the finite element model updating problem and are applied to mechanical
and aeronautical structures.
This book explains the use of computational statistic techniques in aeronautical and mech-

anical engineering, a subject that will be of interest and useful to researchers, graduates and
postgraduate students.
Chapter 2 discusses model selection in finite element model updating problems. It introduces

various methods that can be used to select the best finite element model. A good model satisfies
the principle of Occam’s razor, which states that the simplest model that describes the observed
data is the best one. Furthermore, the chapter studies criteria for model selection: the Akaike
information criterion, optimal design, statistical hypothesis testing, Occam’s razor, the Bayes
factor, structural risk minimisation, cross-validation and the Bayesian information criterion.
These techniques are described within the context of finite element model updating. Nested
sampling, cross-validation and regularisation techniques are applied for model selection in
structures.
Chapter 3 describes Bayesian statistics in structural mechanics. It introduces the concept of

Bayesian statistics within the context of structural mechanics. Bayesian statistics basically

15Introduction to Finite Element Model Updating



states that the probability of an event A happening, given that event B has happened (also called
the posterior probability), is equal to the product of the probability of event B happening given
that event A has happened (also called the likelihood function), and the probability of event A
happening (also called the prior), divided by the probability of event B happening (also called
the evidence). A mass and spring system with a single degree of freedom is used to estimate the
distribution of the stiffness given the distribution of the measured natural frequency and
the mass.
In Chapter 4, the MCMC, which is a statistical procedure for computationally sampling a

probability distribution function based on the Markov process, random walk and Monte Carlo
simulation, is used for finite element model updating. Two approaches are used to update a
finite element model of a mechanical structure: the Metropolis–Hastings approach and slice
sampling. Slice sampling is a simple method that offers an adaptive step size, which is auto-
matically adjusted to match the characteristics of the posterior distribution function.
In Chapter 5, Monte Carlo dynamically weighted importance sampling (MCDWIS) is

applied for finite element model updating. An aeronautical structure application is presented.
The motivation for applying MCDWIS is in the complexity of computing normalising con-
stants in higher-dimensional or multimodal systems. MCDWIS accounts for this intractability
by analytically computing importance sampling estimates at each time step of the algorithm,
thus removing the need for perfect sampling. In addition, a dynamic weighting step with an
adaptive pruned-enriched population control scheme allows for further control over weighted
samples and population size. The performance of the MCDWIS simulation is graphically illus-
trated for all algorithm dependent parameters and shows unbiased, stable sample estimates.
MCDWIS is then compared to the Metropolis–Hastings technique.
In Chapter 6, the adaptive Metropolis–Hastings (AMH) algorithm and Bayesian statistics are

used for finite element model updating. In the AMHmethod the Gaussian proposal distribution
is adapted using the full information gathered hitherto; because of the adaptive characteristics
of the method, this technique is non-Markovian but also possesses full ergodic properties. The
AMH method is implemented to update a finite element model of a cantilevered beam, an
H-shaped structure, as well as an aircraft structure and the results are compared to the results
from the MCDWIS method.
In Chapter 7, HMC and Bayesian finite element model updating is discussed. MCMC basic-

ally operates by moving from one state to another, through the random walk procedure, where
the transition between one state and another is determined using the Markov chain and the
acceptance or rejection of a state is decided using the Metropolis–Hastings method. HMC
improves the search by using the gradient information to move from one state to another. In
this way, the acceptance rate is greatly improved. Formally, HMC is implemented by calculat-
ing the Hamiltonian, which is the sum of the potential energy (position) and the kinetic energy
(velocity).
In Chapter 8, a shadow HMC is applied for finite element model updating. To deal with this

constraint, that the HMC acceptance rate is influenced by the system size and the time step used
to estimate the molecular dynamics trajectory, the SHMC algorithm is used. The SHMC algo-
rithm improves sampling for large system sizes and time steps by sampling from a modified
Hamiltonian function instead of the normal Hamiltonian function. The SHMC is implemented
to update a finite element model of an aircraft structure.
In Chapter 9, the separable shadow hybrid Monte Carlo (S2HMC) method is implemented

for finite element model updating. The HMC method is a powerful sampling method for

16 Probabilistic Finite Element Model Updating



solving higher-dimensional complex problems. It uses the molecular dynamics (MD) as a glo-
bal Monte Carlo move to reach areas of high probability. However, the HMC acceptance rate is
sensitive to the system size, as well as the time step used to evaluate the MD trajectory. To
overcome this, we propose the use of the S2HMCmethod. This method generates samples from
a separable shadow Hamiltonian. The accuracy and the efficiency of this sampling method are
tested on the updating of an aeronautical structure.
In Chapter 10, an evolutionary method for sampling a posterior probability density function

for updating finite element models is discussed. The evolutionary sampling algorithm hybri-
dises the concepts of genetic algorithms, simulated annealing and MCMC methods and,
accordingly, these techniques are described in this chapter. The evolutionary sampling method
uses concepts such as reproduction, mutation and crossover to construct the Markov chain to
obtain samples. This method is then tested on the updating of a truss structure.
In Chapter 11 the adaptive hybrid Monte Carlo method is used for finite element model

updating. The convergence rate of the HMC algorithm is high compared to the Metropolis–
Hastings method because its trajectory is augmented by the derivative of the posterior probabil-
ity distribution function. Nevertheless, the performance of the HMC method deteriorates when
sampling from the posterior probability functions of high dimension and exhibits strong cor-
relations between the uncertain parameters. The adaptive hybrid Monte Carlo approach facili-
tates efficient sampling from complex posterior distribution functions in high dimensions. The
performance of the adaptive hybrid Monte Carlo method is tested for finite element model
updating.
In Chapter 12, various issues associated with Bayesian sampling are discussed, including the

formulation of the posterior probability distribution function. Sampling methods, nested sam-
pling, Metropolis–Hastings, HMC, SHMC and adaptive hybrid Monte Carlo are discussed and
compared and conclusions are drawn. Outstanding issues with regard to the application of
Bayesian statistics for finite element model updating are extensively discussed. In particular,
reversible jump Monte Carlo, the Dirichlet distribution, the expectation–maximisation algo-
rithm and the distribution of optimal posterior probability models are described and proposed
for future studies of finite element model updating.
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2
Model Selection in Finite Element
Model Updating

2.1 Introduction

Finite element model updating is a computational technique intended to correct and improve
the numerical model to match the dynamic behaviour of real structures. As explained in the
Chapter 1, this process does not seek to identify the correct model – such a goal is often difficult
to achieve and may even by fruitless – but to seek a satisfying solution. The term satisficing,
which is a hybrid of the words ‘satisfactory’ and ‘sufficient’, was coined by Herbert Simon to
illustrate decision-making with limited data and limited data processing infrastructure (Simon,
1956, 1957, 1991). In this chapter, we seek to identify a satisficing finite element model which
better predicts the measured data.
What is this satisficing finite element model? Firstly, the model should accurately predict the

measured data. Secondly, it must be the simplest model, in line with the principle of Occam’s
razor which states that the preferred model is the simplest model which accurately reflects the
measured data (Hoffmann et al., 1997; Gernert, 2007). Occam’s razor was popularised by Sir
William Hamilton and originated from Wiliam of Ockham (Soklakov, 2002; Gauch, 2003;
Carey and Lewis, 2010). Of importance in Occam’s razor is how the complexity of the model
is managed in reproducing the observed data. For example, in regression problems where the
aim is to estimate free parameters it is generally assumed that a simple model is the one where
the free parameters are smooth, that is, have the same order of magnitude.
Many models have been proposed for dealing with model selection and these include using

criteria such as the Akaike information criterion (AIC), Bayes factor, Bayesian information cri-
terion (BIC), cross-validation, regularisation, nested sampling and the evidence information
criterion. These techniques are reviewed in this chapter. Furthermore, cross-validation, regu-
larisation and nested sampling are applied for finite element model updating model selection

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and
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(Aho et al., 2014; Ando, 2010; Burnham and Anderson, 2002; Chamberlin, 1890; Claeskens
and Hjort, 2008; Konishi and Kitagawa, 2008; Lahiri, 2001).

2.2 Model Selection in Finite Element Modelling

In this section, a number of model selection approaches that have been used in finite element
model updating are briefly described. These methods are: the AIC, BIC, Bayes factor, deviance
information criterion (DIC), cross-validation and regularisation. Moreover, the use of the par-
ticle swarm optimisation (PSO) and nested sampling methods in model selection are described.

2.2.1 Akaike Information Criterion

The AIC is a statistical procedure for assessing the quality of a model (Akaike, 1973). The AIC
was proposed by a Japanese statistician by the name of Hirotugu Akaike. Hashiyama et al.
(2014) successfully studied the jackknife bias correction of the AIC for choosing variables
in canonical correlation analysis under model misspecification, while Jordanger and Tjøstheim
(2014) compared the AIC and cross-validation for model selection of copulas and observed that
the two approaches gave similar results. Kawakubo and Kubokawa (2014) proposed the modi-
fied AIC to cover both the underspecified and overspecified cases, while Fujikoshi et al. (2014)
studied the consistency of high-dimensional AIC-type and Cp-type criteria in multivariate lin-
ear regression. Nishimura et al. (2015) proposed a multivariate control chart based on variable
selection and the AIC. The AIC is estimated as follows (Akaike, 1974):

AIC = 2k−2ln Lð Þ; ð2:1Þ

where k is the number of free parameters to be estimated, ln(.) is the logarithm and L is the
maximised value of the likelihood function, which is a measure of the goodness of fit. The
preferred model is the one with the smallest AIC.

2.2.2 Bayesian Information Criterion

The BIC is a model selection concept which is based on Bayesian statistics (Findley, 1991;
McQuarrie and Tsai, 1998). It penalises models which overfit the data. It is mathematically
expressed as follows (Kass and Wasserman, 1995; Bhat and Kumar, 2010):

BIC = k ln nð Þ−2ln Lð Þ; ð2:2Þ

where n is the number of observations, k is the number of free parameters to be estimated,
L=P Djθ, Mð Þ is the maximised value of the likelihood function (D is the data,M represents
the model and θ is vector of parameters to be estimated). Zhao et al. (2015) successfully
applied the BIC and hierarchical Bayesian information criterion (HBIC) for mixture model
selection; they found that the HBIC performs considerably better than the BIC and that BIC
is prone to underestimation. Luo and Chen (2013) successfully applied the BIC in linear regres-
sion models with a number of features. Zou and Chen (2012) successfully applied the BIC for
sparse model selection, while Penny (2012) applied the AIC, BIC and free energy to compare
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dynamic causal models and observed that free energy selects models the best. Shen and Ghosh
(2011) successfully applied the BIC to detect change-points, while Chakrabarti and Ghosh
(2011) applied the BIC and AIC and observed that the BIC identifies a correct model better
while the AIC better identifies the best model. Wei and Zhou (2010) applied the AIC and
BIC for model selection in the joint modelling of paired functional data and observed that
the AIC and BIC are computationally fast while giving similar results.

2.2.3 Bayes Factor

The Bayes factor is a Bayesian statistical hypothesis test that is used to compare models
M= M1,M2,…, Mkf g. Suppose that M1 and M2 are two different models with two dif-
ferent vectors θ1 and θ2, respectively. The Bayes factor compares modelsM1 andM2 by using
the likelihood function as a basis and is written as follows (Goodman, 1999; Kass and
Raftery, 1995):

K =
P DjM1ð Þ
P DjM2ð Þ

=

ð
P θ1jM1ð ÞP Djθ1,M1ð Þdθ1ð
P θ2jM2ð ÞP Djθ2,M2ð Þdθ2

=

ð
P θ1jM1ð ÞP Djθ1,M1ð Þdθ1ð
P θ2jM2ð ÞP Djθ2,M2ð Þdθ2

:

ð2:3Þ

Here K is the Bayes factor, D is the observed data and θ1 and θ2 are model parameters. Mulder
(2014) successfully used Bayes factors to test order-constrained hypotheses on correlations,
while Cabras et al. (2015) successfully applied a minimal training sample structure for Bayes
factors in censored data. The Bayes factor is a well-known likelihood-ratio test especially if the
maximum likelihood is used to calculate the ratio. Wang et al. (2011) applied Bayes factors
successfully to deal with hidden population stratification, while Morey et al. (2011) success-
fully applied the Markov chain Monte Carlo (MCMC) technique to estimate Bayes factors and
successfully applied this to one-sample and one-way designs. Other applications of the Bayes
factor are in assessing handwriting features (Taroni et al., 2014), to study genome-wide
association (Zheng et al., 2011) and for model selection based on objective probabilities
(Pericchi, 2005).

2.2.4 Deviance Information Criterion

The DIC is a generalisation of the AIC and BIC (Ando, 2010). The deviance can be estimated as
follows (van der Linde, 2005):

Dev θð Þ= −2ln P Djθð Þð Þ+C; ð2:4Þ
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where P Djθð Þ is the likelihood function,D is the observed data, θ is the vector of parameters to
be estimated and C is a constant. The expectation of the error, which is a measure of how well a
model fits the data, can be written as (van der Linde, 2005)

Dev =E Dev θð Þð Þ: ð2:5Þ

The posterior mean deviance parameter PD can thus be written as follows (van der
Linde, 2005):

PD =Dev−Dev �θ
� �

; ð2:6Þ

where �θ is the expectation value of θ. Thus the DIC can thus be written as follows (van der
Linde, 2005):

DIC =Dev �θ
� �

+ 2PD: ð2:7Þ

Shriner and Yi (2009) applied the DIC in Bayesian multiple quantitative trait locus mapping
and found that the DIC offers a computationally efficient approach to conducting sensitivity
analysis and is applicable in environmental effects, gene–gene interactions and gene–
environment interactions. Chang et al. (2015) applied the DIC and Bayesian model averaging
(BMA) for fish stock assessment and observed that the BMA gave a more accurate estimation
of uncertainty in the model than the DIC. Wheeler et al. (2010) applied the DIC to assess local
model adequacy in Bayesian hierarchical models. Other applications of the DIC include Nasir
and Pan (2015) for model discrimination in reliability studies, McGrory and Titterington (2007)
for variational approximations in Bayesian model selection for finite mixture distributions and
Worden and Hensman (2012) in a class of hysteretic systems.

2.2.5 Particle Swarm Optimisation for Model Selection

Another method which has been applied for model selection is the PSO technique (Mthembu
et al., 2011a). PSO is an optimisation practice that is based on the interchange between indi-
vidual and group intelligence to identify an optimal solution (Kennedy and Eberhart, 1995). It
is fundamentally a population-based stochastic search algorithm stimulated by the behaviour of
biological objects in nature when they are foraging for resources. Mthembu et al. (2011a) pro-
posed the application of PSO to the problem of finite element model selection. This problem
arises when a choice of the best model for a system has to be made from a set of competing
models, each developed in advance from engineering judgement. Each candidate model is char-
acterised as a particle that shows both individualistic and group behaviour. Each particle moves
within the model search space seeking the best solution by updating the parameter values that
define it. The most important step in the particle swarm algorithm is the method of representing
models which should take into account the number, location and variables of parameters to be
updated.
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2.2.6 Regularisation

Finite element model updating is essentially an optimisation method where minimising the dis-
tance between the model and the measurements is the objective, with the model being variable
and the measurements fixed. One method of identifying a suitable model is to use a procedure
called regularisation where the optimisation problem is framed such that the simplest model is
identified in line with the Occam’s razor principle which states that the simplest model should
be the one preferred (Tsuruoka et al., 2009; Bishop, 2007; Alpaydin, 2004). Regularisation was
introduced by Andrey Tikhonov and essentially uses the norm which makes the optimisation
process smooth by finding a balance between fitting the model and reducing the norm
(Tikhonov and Asenin, 1977). Regularisation was first introduced to finite element model
updating by Natke (1992).
There are many regularisation methods, and in this chapter we apply the sum of squares of

errors. In this chapter, as in Marwala (2010), the finite element model updating problem is for-
mulated by minimising the distance between measured natural frequencies and the calculated
finite element model natural frequencies and the differences between the measured and calcu-
lated mode shapes:

E = ΩMΦ +KΦk k; ð2:8Þ

whereM is the mass matrix,Ω is a diagonal matrix of squares of the natural frequencies of each
mode, Φ is the mode shape matrix, K is the stiffness matrix and k . k denotes the Euclidean
norm. In this chapter, the modal properties, that is, natural frequencies and mode shapes,
are used as a basis for finite element model updating using vibration data. In this chapter, it
is assumed that the reason why the finite element model is unable to predict the measured data
is that the moduli of elasticity are not correct. Therefore, the aim is to correctly identify the
moduli of elasticity that would give the updated finite element model. To regularise
Equation 2.8, we can rewrite it as

E = −ΩMΦ +KΦk k+ γkΛk ð2:9Þ

where γ is a hyperparameter which is chosen arbitrarily and the vectorΛ contains all the param-
eters in the finite element model that are deemed to be inaccurately modelled. Pereira et al.
(2015) applied Bayesian regularisation to an acoustic problem, while Yang (2015) applied
regularisation in stereo correspondence. Ding and Selesnick (2015) applied regularisation to
artefact-free wavelet denoising, while Shi and Qi (2015) applied regularisation in kernel-based
face hallucination. Afonso and Sanches (2015) applied regularisation to blind inpainting, while
Simoes et al. (2015) applied regularisation in hyperspectral image super-resolution. Filipovic
(2015) applied regularisation in recursive identification of multivariable autoregressive models
with exogenous input, whileWingen et al. (2015) applied regularisation on soft X-ray imaging.

2.2.7 Cross-Validation

Another method for model identification is cross-validation, which guards the process from
overfitting and thus produces a model that is less complex, an ideal that is in line with Occam’s
razor. There are many types of cross-validation techniques, and these include cross-validation,
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leave-k-out cross-validation and repeated random subsampling cross-validation (Stone, 1977;
Geisser, 1993; Yu and Clarke, 2015). In this subsection we study a multifold cross-validation
technique (Devijver and Kittler, 1982; Kohavi, 1995;Wang et al., 2015). The multifold method
implemented is shown in Figure 2.1 (Marwala, 2001). Each column in Figure 2.1 shows a par-
tition of the data to be used for finite element model updating and each row represents an updat-
ing case. The shaded box for a given updating case is the partition that is left out of the training
process for that particular updating stage, while the rest of the boxes in one row are used to
update a finite element model.
When the multifold cross-validation method is applied, the data set with N modes is seg-

mented into K partitions. Here it is assumed that N is divisible by K and that K > 1. In
Figure 2.1, N is equal to 5. For each model updating process, the model is identified with
the data from all partitions excluding one and the validation set is the subset that is left out.
The partition that is left out is shaded. For example, in updating stage 1 the model is identified
using partitions 2–5 and partition 1 is used as a validation set. The procedure is repeated for five
stages, by leaving the shaded partition for validation and using the remaining partitions for
model identification. It should be noted that the type of multifold cross-validation technique
applied in this chapter resets the model once in training case 1. The finite element model
attained after training case 1 provides the initial parameters for training case 2, and so on.
Rushing et al. (2015) applied a leave-one-out cross-validation for the identification of

markers associated with survival, while Gavett et al. (2015) applied cross-validation for mod-
elling latent dementia phenotype. Other applications of cross-validation include unsupervised
adaptive sign language recognition (Zhou et al., 2015), modelling automobile crash response
(Acar, 2015), heart stroke classification (Niranjana Murthy and Meenakshi, 2015) and in
metabolomics (Triba et al., 2015).

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Updating stage
2 

Updating stage
1 

Updating stage
3 

Updating stage
4 

Updating stage
5 

Figure 2.1 The multifold cross-validation technique applied where the model is updating K times, each
time leaving out the data indicated by the shaded area and not initialising the finite element model
parameter when moving to the next updating stage
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2.2.8 Nested Sampling for Model Selection

In this section we describe a finite element model selection procedure based on nested sampling
(Skilling, 2006; Feroz and Hobson, 2008). Nested sampling is a sampling technique used for
estimating probability distribution functions which was introduced by Skilling (2004) and first
introduced into finite element model updating by Mthembu et al. (2011b). One way of estimat-
ing a finite element model instead of using the maximum likelihood approach which is
achieved by minimising Equation 2.8 or 2.9 is to apply a Bayesian approach. Bayes’ theorem
can be written as follows (Bishop, 2007):

P MijDð Þ= P DjMið ÞP Mið Þ
P Dð Þ ; ð2:10Þ

where P MijDð Þ is the posterior probability distribution function of the modelMi given dataD,
P DjMið Þ is the likelihood function (or evidence), P(Mi) is the prior distribution function of the
hypothesis Mi and P Dð Þ is the probability of the data. This can be rewritten as follows
(Bishop, 2007):

P MijDð Þ/P DjMið ÞP Mið Þ: ð2:11Þ

The first term in Equation 2.11 is the evidence from Equation 2.10. Given that each model is
equally likely to fit the data, the evidence term is the determining factor as to which model is the
most believable for a particular observed data set. One typical technique for comparing models
in Bayesian analysis is the Bayes factor, which can thus be written as follows using the
expanded version of the evidence (Mthembu et al., 2011b):

K =
P DjMið Þ
P DjMj

� � =
ð
P Djθi,Mið ÞP θijMið Þdθið
P Djθj,Mj

� �
P θjjMi

� �
dθj

: ð2:12Þ

By estimating each model’s evidence we can compute their ratios and thus execute a model
selection process (Beck and Yuen, 2004; Ching and Chen, 2007; Muto and Beck, 2008). Beck
and Yuen (2004) assumed that the posterior distribution of the model was Gaussian, and this is
only valid for certain types of models (Bishop, 2007). An alternative method proposed by
Ching and Chen (2007) approximates the model evidence by sampling the posterior probability
distribution of the model by a sequence of non-normalised intermediate probability functions.
The shortcoming of this algorithm is that it uses many free parameters. The nested sampling
method is simpler and has fewer free parameters. The evidence may be written as follows
(Mthembu et al., 2011b):

P DjMið Þ =
ð
P Djθ,Mið ÞP θjMið Þdθi: ð2:13Þ

P θjMið Þ, which is also known as the marginal likelihood, is the predictive probability of the
data given the modelMi. This means that P θjMið Þ measures how well the model predicts the
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data. The likelihood function P Djθ, Mið Þ is a normalised exponential error between measured
and real data (the error given in Equation 2.8). The posterior probability will be highest at the
most probable parameter set which occupies a small region of the original parameter space. In
simple and smaller models, where only few parameters are unknown (with small variations of
these parameters), the prior parameter space would almost be fully utilised to fit the data as the
posterior probability would occupy a large portion of the prior parameter space, resulting in a
correspondingly large evidence value (Mthembu et al., 2011a). Complex models have larger
parameter spaces for the reason that they have many free parameters that permit them to fit
virtually any data, and this frequently results in overfitting. This bigger parameter space is
underutilised in explaining the narrow posterior density. The Bayesian approach automatically
penalises complex models without the need for a model regularisation term as used in max-
imum likelihood approaches. The evidence can be rewritten in the following form
(Mthembu et al., 2011a):

Z =
ð
L θð ÞP θð Þdθ =

ð1

0

LdX: ð2:14Þ

Calculating this integral analytically is close to impossible because the product of the prior
and likelihood is often complicated, particularly when the parameter space is high-dimensional,
requiring computing multidimensional likelihoods. The most common method for estimating
such integrals is to apply numerical methods such as importance sampling and thermodynamic
integration, but these require that the prior parameters are distributed in regions where the like-
lihood function is not highly concentrated (Murray, 2007). Skilling (2006) proposed a nested
sampling method to compute integrals efficiently, and this technique transforms the multidi-
mensional parameter space integral into a one-dimensional problem and then a numerical esti-
mation method approximates the area under the function. In the context of finite element
updating, the algorithm achieves the above approximation in the followingmanner as described
by Mthembu et al. (2011b):

1. Sample N finite element model updating parameters from the prior probability distribution
and calculate their likelihoods.

2. Using the N samples, choose the sample with the lowest likelihood Li.

3. Increase the evidence by Zi =
Li
2

Xi−1−Xi+ 1ð Þ.
4. Remove the sample with the lowest likelihood and substitute it with a new point from within

the residual prior volume [0, Xi], ensuring that the new sample satisfies the constraint
new Lnew > Li.

5. Repeat steps 2–4 until some stopping criterion such as the desired precision of the evidence
is satisfed.

In this chapter three model selection methods are considered: cross-validation, regularisation
and nested sampling. To implement cross-validation and regularisation the maximum likeli-
hood technique is used, and the optimisation technique that is used is simulated annealing
which is the subject of the next section.
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2.3 Simulated Annealing

Simulated annealing is a Monte Carlo method that is used to identify an optimal solution given
an objective function. It was inspired by the process of annealing where objects such as metals
recrystallise or liquids freeze (Kirkpatrick et al., 1983; Marwala, 2010). For example, a metal is
heated until it melts and then its temperature is gradually decreased such that at any given time it
is nearly in thermodynamic equilibrium. As the temperature of the object is reduced, the system
becomes more ordered and approaches a frozen state at T = 0. If the cooling process is done
ineffectively or the initial temperature of the object is not satisfactorily high, the system
may form defects thus freezing out in meta-stable states, and this shows that the system is stuck
in a local minimum energy state. Simulated annealing was first applied to optimisation prob-
lems by Kirkpatrick et al. (1983). Marwala (2010) successfully used simulated annealing for
finite element model updating to ensure that the finite element model calculated data do predict
the measured data better. Xiao et al. (2015) successfully applied a hybrid Lagrangian simulated
annealing-based heuristic for scheduling with sequence-dependent set-up times, while García-
Villoria et al. (2015) applied simulated annealing procedures to an assembly line problem.
Palubeckis (2015) applied simulated annealing to a single-row equidistant facility layout, while
Matai (2015) applied it in solving a multi-objective facility layout problem. Trivedi et al.
(2015) applied simulated annealing to improve the static and dynamic travel range of electro-
statically actuated microbeams, while Li et al. (2015) applied it in atmospheric compensation
for free space optical communication. Shokouhifar and Jalali (2015) applied simulated anneal-
ing for symbolic simplification of analogue circuits, while Moschakis and Karatza (2015)
applied it in scheduling for Internet of Things applications on clouds.
To simulate the annealing process, the procedure proposed byMetropolis et al. (1953) needs

to be followed. This involves selecting an initial state and temperature and, keeping the tem-
perature constant, disturbing the initial arrangement and calculating the error at the new state. If
the new error is lower than the old error then the new state is accepted, otherwise the new state is
accepted with a low probability. This is essentially a Monte Carlo technique.
In simulated annealing algorithm the current state is replaced with a random solution that

depends on the difference between the matching objective function values and the temperature.
The temperature is decreased during the course of the process, and when the temperature
approaches zero there are fewer random alterations to the solution. Similar to greedy algo-
rithms, simulated annealing generally moves in the direction of the best solution, except that
it has reversal in fitness (the algorithm allows moving to a solution with worse fitness than the
current solution). The main advantage of using reversal in fitness is to ensure that the solution is
not found at a local optimum, but rather a global optimum. Theoretically, simulated annealing
is able to find the global optimum if an infinite amount of time is allowed. The probability of
accepting the solution is given by Boltzmann’s equation (Bryan et al., 2006; Marwala, 2010),

P ΔEð Þ = 1
Z
exp −

ΔE
T

� �
; ð2:15Þ

where ΔE is the energy difference – in this chapter the error between measurements and the
results from the finite element model. The state indicates the possible updated finite element
model, T is the temperature of the system, and Z is a normalisation factor to ensure that the
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probability function integrates to 1 when the bounds approach infinity. The schedule chosen
determines the rate at which the temperature decays, and there are many different temperature
schedules. Simulated annealing is implemented by choosing certain parameters and within the
context of finite element model updating (Marwala, 2010):

• The state space, which is a set of variables, such as moduli of elasticity, that constitutes a
candidate updated finite element model.

• The objective function defining the difference between the measured data and the finite elem-
ent model results. There are many ways in which such an objective function can be chosen,
and in this chapter we use Equations 2.8 and 2.9.

• The candidate generator mechanism, which is a random number generator that generates a set
of design variables, such as moduli of elasticity.

• The acceptance probability scheme, which is a process through which a set of design vari-
ables, such as moduli of elasticity, may be accepted.

• The annealing temperature schedule.

The selection of these parameters is of the utmost importance for the efficacy of the simulated
annealing technique as far as identifying an optimal solution is concerned. However, there is no
way to select these parameters that is perfect for all problems and there is nomethodical practice
for optimally selecting these parameters for a given problem. Accordingly, the selection of
these parameters is subjective, and trial and error is generally used.
Simulated annealing is applied by a random walk process for a given temperature by moving

from one temperature to another. What is known as the transition probability is the probability
of transiting from one state to another where a state represents a given finite element model with
all the parameters specified. This probability depends on the present temperature, the order of
producing the candidate moves and the acceptance probability function. This chapter uses an
MCMC technique as a transition mechanism from one state to another. The technique produces
a chain of candidate finite element models and accepts or rejects them using the Metropolis
algorithm (Metropolis et al., 1953; Meer, 2007).
The MCMC method is a version of the Monte Carlo technique, a computational routine that

applies recurrent random sampling to compute results (Mathe and Novak, 2007; Akhmatskaya
et al., 2009; Ratick and Schwarz, 2009; Marwala, 2010). Monte Carlo approaches are useful in,
for example, solving matrix and integral problems (Lai, 2009), modelling time-dependent
radiative transfer with adaptive material coupling (McClarren and Urbatsch, 2009), particle
coagulation (Zhao and Zheng, 2009), diffusion problems (Liu et al., 2009), the design of radi-
ation detectors (Dunn and Shultis, 2009), modelling bacterial activities (Oliveira et al., 2009),
vehicle detection (Jia and Zhang, 2009), modelling the bystander effect (Xia et al., 2009) and
modelling nitrogen absorption (Rahmati and Modarress, 2009).
MCMC is a procedure for generating a chain of states through a random walk process using

two major techniques: the Markov process and a Monte Carlo simulation (Liesenfeld and
Richard, 2008). It has been widely used in problems such as the tracking of manoeuvering
objects (Jing and Vadakkepat, 2010), identifying optimal models (Gallagher et al., 2009),
DNA profiling (Curran, 2008), environmental modelling (Gaucherel et al., 2008), medical
imaging (Jun et al., 2008), lake water quality modelling (Malve et al., 2007), economics
(Jacquier et al., 2007) and statistics (Lombardi, 2007).
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To explain theMCMC procedure, a system is considered whose evolution is represented by a
stochastic process consisting of random variables {x1, x2,…, xi} where a variable xi inhabits a
state x at discrete time i. The set of all possible states orientation that all random variables can
occupy is called the state space. If the probability that the system occupies state xi + 1 at time i+ 1
depends entirely on the fact that system was in state xi at time i (the new state of the system
depends only on its previous state), then the random variables {x1, x2,…, xi} form a Markov
chain. The transition between states in the MCMC is attained by adding a random component
(ε) to the present state as follows (Marwala, 2010):

xi+ 1 = xi + ε: ð2:16Þ

When the present state has been realised, it is either accepted or rejected, and one mechanism
for achieving this is to use the Metropolis algorithm (Metropolis et al., 1953; Moskovkin and
Hou, 2007; Tiana et al., 2007; Bedard, 2008; Sacco et al., 2008; Meyer et al., 2008; Bazavov
et al., 2010).
On using the Metropolis algorithm to sample a stochastic process with random variables

{x1, x2,…, xi}, random changes to x are evaluated and either accepted or rejected according
to the following criterion (Metropolis et al., 1953):

IfFnew <Fold accept state xi+ 1ð Þ
Else

Accept state xi+ 1ð Þ with probability exp − Fnew−Foldð Þf g

8><
>: ð2:17Þ

Here Fnew and Fold are the fitness function (posterior distribution function) values correspond-
ing to xi + 1 and xi, respectively. A cooling schedule is the procedure by which the temperature
T is reduced during simulated annealing (De Vicente et al., 2003). The cooling rate should be
satisfactorily low for the probability distribution of the current state to be always approximately
equal to the thermodynamic equilibrium (Das and Chakrabarti, 2005). As described by
Marwala (2010), the time taken for the equilibrium to be restored, known as the relaxation time,
after an alteration in temperature is determined by the shape of the objective function, the cur-
rent temperature and by the random number generator. The perfect cooling rate is experimen-
tally attained for each problem. In this chapter we use the cooling model given by (Salazar and
Toral, 2006),

T ið Þ = T i−1ð Þ
1 + σ

; ð2:18Þ

where T(i) is the present temperature, T(i − 1) is the previous temperature and σ the cooling rate.
The temperature is decreased and the process is repeated until a frozen state is achieved where
T = 0. In this book, the present state is the current finite element model with all assumed vari-
ables, the energy equation is the objective function indicating the difference between the meas-
ured data and the finite element model predicted data, and the ground state is the global
optimum solution.
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2.4 Asymmetrical H-Shaped Structure

This chapter explores model selection using cross-validation, regularisation and the Bayes fac-
tor estimated using nested sampling. To test these three methods, we use the asymmetrical
H-shaped aluminium structure shown in Appendix A, which was constructed and measured
by Marwala (1997). The structure was used so that the initial finite element model gave data
that were far from the measured data and thus tested the proposed procedure with a difficult
finite element model updating problem. The structure was suspended using elastic bands. It
was excited using an electromagnetic shaker, and the response was measured using an accel-
erometer. The structure was divided into 12 elements. It was excited at a chosen position and
the acceleration was measured at 15 positions. The structure was tested freely suspended, and a
set of 15 frequency response functions were calculated. A roving accelerometer was used for
measuring the response.
The mass of the accelerometer was found to be negligible compared to the mass of the struc-

ture. The finite element model was constructed using the Structural Dynamics Toolbox SDT®

(Balmes, 1997), with Euler–Bernoulli beam elements (Zienkiewicz, 1971). The finite element
model of the structure contained 12 elements. The moduli of elasticity of these elements were
used as updating parameters, which were restricted to fall in the interval from 6:00 × 1010 to
8:00 × 1010 Nm−2. The cross-validation, regularisation and Bayes factor estimated using
nested sampling were implemented. The measured natural frequencies of this structure
occurred at 53.9, 117.3, 208.4, 254 and 445 Hz, which correspond to modes 7, 8, 10, 11
and 13, respectively.

2.4.1 Regularisation

We begin by applying regularisation and simulated annealing for finite element model updat-
ing. In particular, Equation 2.9, which is a regularised objective function, is applied. When
simulated annealing was applied, the scale of the cooling schedule was set to 4, and the number
of individual annealing runs was set to 3. The results obtained are shown in Table 2.1. These
results show that the error between the measured and the finite element model for the first nat-
ural frequency improved from 4.3% to 0.4%, for the second natural frequency from 8.4% to
1.7%, for the third natural frequency from 9.6% to 0.9%, for the fourth natural frequency from
3.4% to 0.7%, and for the fifth natural frequency from 1.6% to 1.7%. The overall average error
was 1.1%.

Table 2.1 Finite element model updating of asymmetrical H-shaped
structure using simulated annealing and regularised objective function

Measured
frequency (Hz)

Initial finite element
frequency (Hz)

Final finite element
frequency (Hz)

53.9 56.2 54.1
117.3 127.1 119.3
208.4 228.4 210.3
254.8 263.4 252.9
445.1 452.4 437.3
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2.4.2 Cross-Validation

We now apply cross-validation and simulated annealing for finite element model updating. In
particular, Equation 2.8, which is not regularised, is applied. Again, when simulated annealing
is applied, the scale of the cooling schedule was set to 4 and the number of individual annealing
runs was set to 3. In this example the first updating process naturally excluded the first fre-
quency, then without initialising the finite element model the optimisation process continues
by excluding only the second natural frequency, then without initialising the finite element
model excluding only the third natural frequency, then without initialising the finite element
model excluding only the fourth natural frequency, and then without initialising the finite elem-
ent model excluding only the fifth natural frequency. The results obtained are shown in
Table 2.2. These results show that the error between the measured and the finite element model
for first natural frequency improved from 4.3% to 2.8%, and for the second natural frequency
from 8.4% to 2.5%, for the third natural frequency from 9.6% to 0.4%, for the fourth natural
frequency from 3.4% to 0.5% and for the fifth natural frequency from 1.6% to 0.4%. The
overall average error was 1.3%.

2.4.3 Bayes Factor and Nested Sampling

In order to authenticate that model evidence estimation can expose the most probable finite
element model(s), four randomly designed models of one beam structure are established
and the evidence of each is estimated (Mthembu et al., 2011a). This process accepts that no
prior knowledge of which updating parameters should be selected is obtainable. The goal is
then to establish from evidence ratios the most probable model from this random set. The finite
element model updating parameters were randomly sampled from a Gaussian prior probability
distribution with a mean of 7:2 × 1010 Nm−2 and an exponential inverse variance of 4:0 × 10−20

for Young’s modulus values between 6:8 × 1010 and 8:0 × 1010 Nm−2 for aluminium. The
number of samples, N, was set to 100 (to sample the distribution well) and the sampling algo-
rithm stopping criterion is experimentally set to a maximum of 250 iterations. Several finite
element models were constructed, models 1A, 1B, 2A and 2B, the details of which are in
Mthembu et al. (2011a). It is observed that the models with the fewest updating parameters
produced the best evidence, and this is because of their relative simplicity (recall Occam’s
razor). As shown in Table 2.3, models 1A and 2B are shown to be relatively similar, while there
is strong evidence against model 2A from model 1B. So evidence calculation can provide a

Table 2.2 Finite element model updating of asymmetrical H-shaped
structure using simulated annealing and cross-validation

Measured
frequency (Hz)

Initial finite element
frequency (Hz)

Final finite element
frequency (Hz)

53.9 56.2 52.4
117.3 127.1 120.2
208.4 228.4 209.3
254.8 263.4 256.0
445.1 452.4 446.9
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mechanism for eliminating poor models from the outset. It also provides a platform to deter-
mine salient parameters to consider in the updating process.

2.5 Conclusion

In this chapter we have explored three model selection procedures: regularisation, cross-
validation and the Bayes factor. All these were sampled through the use of nested sampling
concepts for the problem of finite element model updating. The regularisation method per-
formed better than the cross-validation technique, while the Bayes factor is used for ensuring
that plausible model evidences be calculated before models can be updated.
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3
Bayesian Statistics in Structural
Dynamics

3.1 Introduction

Uncertainty in structural mechanics is an important subject for constructing models that are
essential for the design and control of complex structures. Uncertainty has been studied widely
by numerous researchers. DiazDelaO et al. (2013) applied Gaussian processes to study the sto-
chastic characteristics of structural dynamics. They formulated the frequency response function
and applied Bayesian statistics to quantify uncertainty of the frequency response of a non-
proportionally damped carbon fibre/epoxy composite plate. Pascual and Adhikari (2012a) used
randommatrix theory and polynomial chaos expansion to develop a parametric–non-parametric
uncertainty quantification method. The parametric technique was implemented through the
Karhunen–Loève expansion (Karhunen, 1947; Loève, 1955), while the non-parametric tech-
nique was implemented using the Wishart random matrix (Wishart, 1928). The authors were
able to derive analytical equations for the first two moments. Chowdhury and Adhikari
(2012) applied fuzzy logic for parametric quantification of uncertainty in linear systems. Fuzzy
logic is a technique for modelling uncertainty, particularly for situations where the availability of
data is limited (Zadeh, 1965; Pelletier, 2000). This technique was then applied for modal ana-
lysis of an aircraft wing, and the results compared favourably to the results from Monte Carlo
simulation using random variables to simulate the dynamics of the system (Del Moral, 2013).
Pascual and Adhikari (2012b) applied the hybrid perturbation–polynomial chaos method, which
used the Rayleigh quotient, the power method, the inverse power method and the eigenvalue
equation in random algebraic eigenvalue problems of an Euler–Bernoulli beam and a plate
(Horn and Johnson, 1985). Murugan et al. (2012) studied the effects of uncertain material prop-
erties on the aeroelastic response predictions of a helicopter rotor, while DiazDelaO and

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and
Mechanical Engineering, First Edition. Tshilidzi Marwala, Ilyes Boulkaibet and Sondipon Adhikari.
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Adhikari (2012) applied Bayesian statistics which was implemented using a Gaussian distribu-
tion for finite element modelling. Other works studying uncertainty modelling in structural
dynamics include a random matrix model (Adhikari et al., 2012), a reduced spectral approach
(Adhikari, 2011), correlation functions in reliability analysis (Chowdhury and Adhikari, 2011),
a joint diagonalisation method (Li et al., 2010), sensitivity analysis (Adhikari, 2010), as well as
matrix variate distributions (Adhikari, 2007).
There are several types of uncertainty problems, and some of these are shown in Table 3.1

and Figure 3.1 (Adhikari, 2015).
There are several sources of these uncertainties. These include parameter uncertainty,

modelling inadequacy, experimental error, computational uncertainty and model uncertainty
(Kennedy and O’Hagan, 2001; Matthies, 2007; Lee and Chen, 2009; Adhikari, 2015):

1. Parameter uncertainty: when finite element models are created, there is a need to specify
certain parameters such as density, modulus of elasticity, and Poisson’s ratios, and these
parameters are almost uncertain.

2. Parametric uncertainty: variability of input variables of a model such as the shape and size
of the model.

3. Modelling uncertainty: this is due to the fact that there are many approaches that can be used.
For example, the choice of elements in finite element modelling is not an exact science, but
an approximation.

4. Experimental error: for example, if one were to measure the natural frequency of a beam,
then one would realise that each measurement is not an exact replica of the previous meas-
urements because of variation in measurement conditions.

5. Algorithmic error: this is due to the fact that, on constructing the model, there are many
numerical considerations to be taken into account, such as matrix manipulations and opti-
misation computations.

6. Interpolation uncertainty: this is due to the fact that some of the data needed for modelling
may be missing.

There are two kinds of uncertainty quantification problem: the forward problem and the
inverse problem. The forward problem is where, given the input, the model and the output,
and given that the input is uncertain, one studies how this uncertainty is propagated to the out-
put. Theinverse uncertainty is where, given the input and the output, which are both uncertain,
one needs to identify an appropriate model and its uncertainty characteristics that map the input

Table 3.1 Types of uncertainty problems (Adhikari, 2015)

Input System Output Problem name

Deterministically
known

Incorrect deterministic
model

Deterministically
known

Model updating

Deterministically
known

Unknown Deterministically
known

System identification

Known Partially known Known Structural health monitoring
(SHM)

Random and known Incompletely known Random and known Probabilistic updating
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to the output. There are a number of models that have been proposed to quantify uncertainty in
the forward and inverse problems:

1. Forward problem: simulation methods such as Monte Carlo simulation (Rosenbluth and
Rosenbluth, 1955); expansion techniques such as the perturbation method and Taylor series
(Hazewinkel, 2001; Martínez-Carranza et al., 2012); the methods based on the most prob-
able point (or design point) such as reliability techniques; as well as numerical methods such
as model reduction techniques (Guyan, 1965; Roweis and Saul, 2000).

2. Inverse problems: maximum likelihood or frequentist method (Charnes et al., 1976) and the
Bayesian approach (Kennedy and O’Hagan, 2000).
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Figure 3.1 How to handle uncertainty (Adhikari, 2015)
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This chapter is concerned with the application of Bayesian statistics in applied mechanics
(Giagopoulos et al., 2009). In particular, it begins by introducing Bayes’ rule and the
practical methods that can be used to approximate Bayesian distributions. In particular, a
single-degree-of-freedom system is used to illustrate these approaches. Papadimitriou and
Papadioti (2013) proposed a fast computing method based Bayesian statistics for uncertainty
quantification in structural dynamics, while Giagopoulos et al. (2013) used Bayesian statistics
to quantify uncertainty and propagation in non-linear structural dynamics. Soize (2013) applied
Bayesian posteriors to quantify uncertainty in structural dynamics for low- and medium-
frequency ranges, while Yuen (2010) applied Bayesian statistics for structural dynamics and
Calanni et al. (2007) applied Bayesian neural networks for quantifying uncertainty in structural
dynamics. The next chapter studies the dynamics of a simple one-degree-of-freedom structure.
At the end of this chapter, a simple automobile suspension system is used to compare some
of the methods that have been discussed in this chapter.

3.2 Bayes’ Rule

Bayes’ theorem offers the ability to identify uncertain parameters (Bishop, 1995; Marwala,
2009) in the finite element model updating problem. Bayesian approaches are governed by
the following rule (Boulkaibet et al., 2012, 2015):

P θjD,Mð Þ = P Djθ,Mð ÞP θjMð Þ
P DjMð Þ , ð3:1Þ

where M is the model class for the target system, and each model class is defined by the
updated parameters of the model, θ2Θ�RD. Note that different vectors θ represent a different
model classes M. D represents the modal properties obtained from experiments (natural
frequencies f mi and mode shapes ϕm

i ). P θjMð Þ is the prior probability density function
(PDF) of the updating parameters when the model classM is known and the dataD are absent.
P θjD,Mð Þ is the posterior PDF of the updated parameters in the presence of the dataD and the
model class M. P Djθ, Mð Þ is the likelihood function of the data D in the presence of the
uncertain parameters θ and the model class M. P DjMð Þ is a normalising factor in the pres-
ence of the model class. Since only one model class is updated, the dependence on the model
class M is omitted to simplify the notation.
Equation 3.1 can be simplified further to be represented by the prior density and the likeli-

hood functions. This is always true when the measured data D are considered to be a constant,
where the marginal distribution of the data D does not depend on the model parameters θ.
Equation 3.1 is then written as

P θjDð Þ/P Djθð ÞP θð Þ: ð3:2Þ

The posterior expectation of a function f(θ) is given by

E f θð ÞjD½ �=

ð
f θð ÞP Djθð ÞP θð Þ

P Dð Þ : ð3:3Þ
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Equation 3.3 can be used to obtain several properties of the posterior inference such as
the mean value of the updated parameters (f θð Þ= θ). However, this integral depends on the
posterior PDF and the analytical solution of this integral might be unavailable for complex
systems with large sizes.
To solve the integral in Equation 3.3, several alternative approaches may be used:

• Numerical evaluations, which may not be accurate when the size of posterior distribution
function is large.

• Analytic approximations such as maximum likelihood (ML), maximum a posteriori (MAP)
and Laplace approximation. These approaches are sometimes appropriate; however, they
converge to a local minimum.

• Sampling techniques such as the Markov chain Monte Carlo (MCMC) methods are the most
popular methods that have been used to solve complex posterior distributions.

In the next sections, several analytic approximations that have been used to approximate
the posterior function are presented.

3.3 Maximum Likelihood Method

TheMLmethod is the most popular method used to approximate the distribution functions. The
approximation obtained by solving the maximum likelihoodmethod represents a local solution,
while the results obtained by approximating the posterior distribution function are a global
solution. However, when the likelihood function is well defined, the results obtained by
ML are very close to the results obtained by solving the posterior function. The ML method
can be summarised as

θ� = argmax
θ

log P Djθ,Mð Þð Þð Þ: ð3:4Þ

This ML method can be seen as an optimisation problem where the objective is to minimise
the difference between the measured frequency and the analytical natural frequency. The like-
lihood function is then defined as the error between measurements and analytical frequencies,
while the estimated solution is obtained by maximising log P Djθ,Mð Þð .

3.4 Maximum a Posteriori Parameter Estimates

TheMAP parameter estimate is the simplest approximation to the posterior density distribution
function. This method is similar to the maximum likelihood method, but contains information
from the prior density function. The idea is then to estimate the updated parameters as follows:

θ� = arg max
θ

log P Djθ,Mð ÞP θjMð Þð Þð Þ: ð3:5Þ

Solving both ML and MAP methods might be hard when the updated system is complex,
and iterative optimisation methods will be needed to obtain θ∗.
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3.5 Laplace’s Method

The Laplace approximation method (Kass and Raftery, 1995) creates a local Gaussian
approximation around the estimated θ∗ (obtained by the MAP estimation method). To create
a local Gaussian approximation, first we define the logarithm of the posterior distribution
function:

T θð Þ= log P Djθ,Mð ÞP θjMð Þð Þ: ð3:6Þ

Then Taylor series are used to expend the function T(θ) to second order:

T θð Þ≈ T θ�ð Þ+ 1
2
θ−θ�ð ÞH θ�ð Þ θ−θ�ð Þ, ð3:7Þ

where H(θ∗) is the Hessian of the log posterior function,

H θ�ð Þ= ∂
2 log P θjD,Mð Þð Þ

∂θ∂θT

����
θ= θ�

=
∂2T θð Þ
∂θ∂θT

����
θ= θ�

: ð3:8Þ

Then the approximation of the posterior density function is defined by the following Gaussian
distribution:

P θjD,Mð Þ≈ exp T θ�ð Þ + 1
2
θ−θ�ð ÞH θ�ð Þ θ−θ�ð Þ

� �

≈M θ�ð Þexp 1
2
θ−θ�ð ÞH θ�ð Þ θ−θ�ð Þ

� � , ð3:9Þ

where M θ�ð Þ−exp T θ�ð Þð Þ and the Hessian matrix can be seen as the inverse of the variance
matrix of the approximate distribution.
It is very important to choose prior, likelihood and posterior functions of the correct form,

where this can simplify the updating process. In the next section, a simple dynamic example
will be studied, and the prior, likelihood and posterior functions will be provided.

3.6 Prior, Likelihood and Posterior Function of a
Simple Dynamic Example

As indicated above, finite element models have been applied to aerospace, electrical, civil and
mechanical engineering in designing and developing products such as aircraft wings and turbo-
machinery. Finite element models represent a system using mass and stiffness matrices, with
some assumption about the damping characteristics of the system being modelled. This
section studies the system illustrated in Figure 3.2. A brick with mass M is attached to a wall
by a spring with modulus of elasticity K. The brick is excited with a force f and moves with a
distance x.
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Using Newton’s second law of motion, we can express the relationship between the forces
acting on the brick and relate these to the acceleration as

M€x =
X

f , ð3:10Þ

where €x is the acceleration and F is the force. Equation 3.10 can then be rewritten as

M€x = −Kx+ f )M€x +Kx= f : ð3:11Þ

Equation 3.11 is in the time domain because the acceleration €x and the displacement x are a
function of time. This equation can be transformed into the modal domain, that is, mode shape
and natural frequency, using a technique called modal analysis, and then Equation 3.11 is
rewritten as follows (Ewins, 2000; He and Fu, 2001):

−ω2Mϕ +Kϕ = 0, ð3:12Þ

where ω is the natural frequency and ϕ is the mode shape of the system. The natural frequency
can thus be rewritten as follows:

ω=

ffiffiffiffiffi
K

M

r
: ð3:13Þ

The aim of this chapter is study the inverse quantification of uncertainty modelling, and we
begin this by studying a technique called the frequentist or maximum likelihood approach to
system identification.
The problem of identifyingK in the example in Figure 3.2 may be posed as follows by setting

θ=K and D=ω (the measured frequencies in this case are are just scalars). The posterior dis-
tribution function of the generalization of the n-degrees-of-freedom undamped dynamic system
is given by

p Kjωð Þ = p ωjKð Þp Kð Þ
p ωð Þ : ð3:14Þ

X

M

f K

Figure 3.2 A single-degree-of-freedom system
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for n × n mass and stiffness matrices M and K. Here the eigenvectors have the follow-
ing orthogonality properties: ϕT

i Mϕj = 0 (i 6¼ j), ϕT
i Mϕi =Mi, ϕT

i Kϕj = 0 (i 6¼ j) and

ϕT
i Kϕi =Ki =ω2

i Mi.
In the next subsections, the likelihood, prior and posterior functions are proposed.

3.6.1 Likelihood Function

The likelihood function expresses the unknown vector K in terms of known and fixed data ω.
The likelihood can be written mathematically as follows (Bishop, 1995; Marwala, 2009):

p Kjωð Þ= 1
ZD

exp −βEDð Þ= 1
ZD

exp −β
Xn
i= 1

ωi−

ffiffiffiffiffiffi
Ki

Mi

r� �2
 !

, ð3:15Þ

where the parameters (K1,…,Km), which are obtained from the stifness matrix K as mentioned
above, are the unknown parameters (n ≥m). The values (M1,…,Mn) were obtained from the
mass matrix. In the next sections, we will consider K = (K1,…,Km) as a vector of the unknown
parameters. ω is the vector of the natural frequencies andED is the error function

ED =
Xn
i= 1

ωi−

ffiffiffiffiffiffi
Ki

Mi

r� �2

: ð3:16Þ

In Equation 3.15, β represents the hyperparameters and ZD = ZD βð Þ is a normalisation
constant which can be estimated as follows (Bishop, 1995; Marwala, 2009):

ZD βð Þ =
ð+ ∞

−∞

exp −βEDð ÞdD: ð3:17Þ

3.6.2 Prior Function

The prior probability distribution is the presumed probability of the design variables. A prior is
normally a subjective approximation by a knowledgeable expert. There are many types of
priors, including informative and non-informative priors. An informative prior indicates certain
information about a variable, while a non-informative prior shows general information about
a variable. A prior distribution that assumes that the model parameters are of the same order
of magnitude can be expressed as follows (Berger, 1985; Bishop, 1995):

p Kð Þ= 1
ZK

exp −αEKð Þ= 1
ZK

exp −α
Xm
j= 1

K2
j

 !
, ð3:18Þ

where m ≤ n. Here EK represents the sum of squares of the design variables Kj,

EK = α
Xm
j= 1

K2
j , ð3:19Þ
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α represents the hyperparameters. and ZK = ZK αð Þ is the normalisation constant, which can be
approximated as

ZK αð Þ=
ð∞

−∞

exp −βEKð ÞdK: ð3:20Þ

The prior term EK helps separate the noise from the data, which is similar to the concept of
regularisation that has been implemented in optimisation problems (Tikhonov and Arsenin,
1977; Tibshirani, 1996).
The prior distribution of a Bayesian method is then a regularisation parameter that brings

extra information to the objective function (in our case the posterior function), using a penalty
function, to solve an ill-posed problem or to prevent overfitting to smooth the objective func-
tion to balance complexity with accuracy.

3.6.3 Posterior Function

In this chapter, the posterior probability is the probability of themodel design variableK given the
observed data ω. Essentially, it is a conditional probability assigned after the relevant evidence,
that is, the probability distribution of the observed data is taken into account (Rubin et al., 2003).
It is estimated by multiplying the likelihood function with the prior function, and dividing it by a
normalisation function which is also called the evidence. By combining both Equations 3.15 and
3.18, the posterior distribution can be expressed as (Berger, 1985; Bishop, 1995)

p Kjωð Þ = 1
ZS

exp −β
Xn
i= 1

ωi−

ffiffiffiffiffiffi
Ki

Mi

r� �2

−α
Xm
j

K2
j

 !
, ð3:21Þ

where

ZS = ZS α, βð Þ= ZK αð Þ× ZD βð Þ= 2π
β

� �n=2 2π
α

� �m=2

: ð3:22Þ

The distribution in Equation 3.19 is a canonical distribution (Haykin, 1999). Using the
Bayesian method produces an identification of the probability distribution of the design vari-
ables. The Bayesian method, by design, penalises highly complex models and consequently
can identify an optimal model (Bishop, 1995).

3.6.4 Gaussian Approximation

Using the Taylor expansion (the same as described in Section 3.5), the – log p Kjωð Þð Þ function,
which can be seen as an objective function, can be expressed as follows (Bishop, 1995):

E Kð Þ= −β
Xn
i= 1

ωi−

ffiffiffiffiffiffi
Ki

Mi

r� �2

−α
Xm
j

K2
j

≈E KMPð Þ+ 1
2
K−KMPð ÞTA K−KMPð Þ

, ð3:23Þ
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where

A= β∇∇E Kð Þ + αI: ð3:24Þ

Here, the subscript MP denotes the most probable design variable, the superscript T indicates
transposition and A stands for the Hessian matrix. The evidence can be expressed as follows
(Bishop, 1995):

p K α,βjð Þ = 1
ZDZK

ð
exp −E Kð Þð ÞdK

=
ZE

ZDZK
=

2π=βð Þn=2 + 2π=αð Þm=2
2π=βð Þn=2 2π=αð Þm=2

: ð3:25Þ

Maximisation of the log evidence gives the following estimates for the hyperparameters
(Bishop, 1995):

βMP =
n−γ

2ED KMPð Þ ð3:26Þ

αMP =
γ

2EK KMPð Þ , ð3:27Þ

where 2EK =KTIK and

γ =
X
j

πj−α

ηj
VTIV
� �

jj

 !
, ð3:28Þ

in which ηj are the eigenvalues of the Hessian A, and V are the eigenvectors such that VTV= I.
This procedure can be summarised as follows (MacKay, 1991, 1992):

1. Randomly select the initial values for the hyperparameters.
2. Estimate the design variables using an optimisation method such as the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) or the scaled conjugate gradient algorithm to minimise the
objective function, to obtain the parameter KMP.

3. Apply the evidence framework to approximate the hyperparameters using Equations 3.28
and 3.29.

4. Repeat steps 2 and 3 until convergence.

The posterior distribution can also be approximated by the MAP parameter estimate, which
is related to the ML method, but includes the prior knowledge in its optimisation objective.
In this simple dynamic example, the numerical approximation methods are not needed since
the example is very simple and only one variable is updated. However, later a few numerical
optimisation approaches are discussed where these methods can be implemented in the inves-
tigation of a complex example.
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3.7 The Posterior Approximation

Suppose, for the example given in the previous section, that we take a measurement of the nat-
ural frequency and we know the mass, and we want to estimate the modulus of elasticity from
these measurements. One way is to use the ML approach to estimate the modulus of elasticity.
This can lead to an optimisation problem, where the objective is to minimise the difference
between the measured frequency and the model predicted natural frequency, with the modulus
of elasticity as the design variable.

3.7.1 Objective Function

The objective function obtained from the log-likelihood is given by Equation 3.16 where ED is
the error between the measured natural frequency ωi, the model predicted natural frequencyffiffiffiffiffiffiffiffiffiffiffiffi
Ki=Mi

p
and n represents the number of measurements or data points collected (in our example

n= 1). Unfortunately, merely minimising Equation 3.16 identifies not only the correct model,
but also the errors in measurements as part of the model. To separate the noise from the data, the
prior distribution terms will be needed. This also can be called as regularisation (Tikhonov and
Arsenin, 1977; Tibshirani, 1996). The regularisation terms obtained from the log-prior are
given in Equation 3.19, and the optimisation equation may thus be written as follows:

f Kð Þ=ED +EK =
Xn
i= 1

ωi−

ffiffiffiffiffiffi
Ki

Mi

r� �2

+ α
Xm
j= 1

K2
j : ð3:29Þ

3.7.2 Optimisation Approach

Equation 3.29 needs to be optimised in order to identify the design variable K, and this
section describes two techniques that could be used to achieve this goal. Optimisation is a math-
ematical technique for identifying aminimum or amaximum point (Fletcher, 2000). There are a
number of issues that require careful attention in optimisation, and chief among these is the
issue of the global versus the local optimum point. The general idea is that, on identifying
an optimal point, classical methods identify a stationary point where the gradient of the object-
ive function is zero. Many such stationary points are merely local optima. What complicates
matters is that often a global optimum is that point which overfits the data, including noise.
The identification of an optimal point normally involves calculating the derivative of the object-
ive function with respect to the design variable and, for Equation 3.29, this can be written as
follows (Fletcher, 2000; Marwala, 2010):

df Kð Þ
dK

= 0,

d
Xn

i= 1
ωi−

ffiffiffiffiffiffiffiffiffiffiffiffi
Ki=Mi

p� 	2
+ α
Xm
j= 1

K2
j

 !

dK
= 0,

Xn
i= 1

2 ωi−

ffiffiffiffiffiffi
Ki

Mi

r� �
−

1

2
ffiffiffiffiffiffiffiffiffiffi
KiMi

p
� �

+ α
Xm
j= 1

2Kj = 0,

Xn
i= 1

ffiffiffiffiffiffi
Ki

Mi

r
−ωi

� �
1ffiffiffiffiffiffiffiffiffiffi
KiMi

p
� �

+ α
Xm
j= 1

2Kj = 0:

ð3:30Þ
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Then Equation 3.30 is solved to identify K as other parameters are known. If the example is
large and complex, iterative optimisation will be required.

3.7.2.1 Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno Method

One popular numerical optimisation method is the quasi-Newton BFGS method. The quasi-
Newton optimisation technique is a robust and quadratically convergent optimisation routine
that uses a gradient of the objective function to identify the optimal solution. The method is a
variant of the Newton–Raphson technique, where the inverse of the second derivative is
updated using a one-dimensional or multi-dimensional Hessian estimation technique. Ghosal
and Chaki (2010) used the quasi-Newton method to optimise the laser welding process. For a
one-dimensional function, the Newton–Raphson algorithm can be expressed as (Ransome,
2006; Marwala, 2010):

xn+ 1 = xn−η
_f xnð Þ
€f xnð Þ ð3:31Þ

where f(xn) is the objective function (the log-likelihood), _f xnð Þ is the Jacobian (first derivative)
and €f xnð Þ is the Hessian (second derivative). For a one-dimensional function, €f xnð Þ can be
updated by using the following equation (Ransome, 2006; Marwala, 2010):

€f xn + 1ð Þ= sn
yn
, ð3:32Þ

where sn = xn + 1−xn and yn = _f xn+ 1ð Þ− _f xnð Þ. The method widely used for identifying the
Hessian is the BFGS method (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970). It has been applied widely in machining processes (Sun et al., 2009), fluid dynamics
(Tan et al., 2009), distribution process optimisation (Du et al., 2009), aerodynamics
(Papadimitriou and Giannakoglou, 2009) and non-convex problems (Xiao et al., 2009). For
multi-dimensional problems, the BFGS method approximates the inverse Hessian, Hn + 1,
which can be expressed as follows:

Hn+ 1 =Hn +
qnq

T
n

qT
n sn

−
HT

n s
T
n snHn

sTnHnsn
: ð3:33Þ

Starting with an initial estimation, K0 and inverse Hessian matrix, H0, repeat the following
steps (Nocedal and Wright, 2006):

1. Calculate sn = −H−1
n ∇f Knð Þ.

2. Perform a line search to identify an optimal step size λn in the direction of the initial step and
use this to estimate Kn + 1 =Kn + λnsn.

3. qn =∇f Kn+ 1ð Þ−∇f Knð Þ.
4. Compute Equation 3.33.
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3.7.2.2 Conjugate Gradient Method

The conjugate gradient technique (Hestenes and Stiefel, 1952) is a gradient-based optimisation
method. It is an improvement of the gradient descent method. In the gradient descent method,
the step size is expressed as −η∂f Kð Þ=∂K, where the parameter η is the step size and ∂f Kð Þ=∂K
is the gradient of the objective function. Thus, the gradient descent method can be written as
follows (Haykin, 1999):

Kn + 1 =Kn + 1−η∂f Kð Þ=∂K: ð3:34Þ

If the step size is sufficiently small, the value of the error decreases at each step until a min-
imum value is attained for the objective function. The disadvantage of this technique is that it is
computationally more expensive than other procedures. In the conjugate gradient method, a
quadratic function of the error is minimised at each iteration over a gradually expanding linear
vector space that includes the global minimum of the error by using this procedure (Luenberger,
1984; Fletcher, 2000; Bertsekas, 1995):

1. Select the initial weight vector K0.

2. Compute the gradient vector
∂f Kð Þ
∂K

����
K0

.

3. At each step n apply a line search to identify the η(n) that minimises f(η), which represents

the objective function, which is a function of η for fixed values of K and −
∂f Kð Þ
∂K

����
Kn

.

4. Establish whether the Euclidean norm of the vector −
∂f Kð Þ
∂K

����
Kn

is adequately less than that

of −
∂f Kð Þ
∂K

����
K0

.

5. Update K.

6. For Kn + 1, compute the updated gradient
∂f Kð Þ
∂K

����
Kn + 1

.

7. Apply the Polak–Ribière technique to estimate

β n + 1ð Þ= ∇f KT
n+ 1

� �
∇f Kn + 1ð Þ−∇f Knð Þð Þ

∇f KT
n

� �
∇f Knð Þ :

8. Update the direction vector:

∂f Kð Þ
∂K

����
Kn+ 2

=
∂f Kð Þ
∂K

����
Kn+ 1

−β n + 1ð Þ∂f Kð Þ
∂K

����
Kn

:

9. Set n = n + 1 and go to step 3.

10. Stop when the condition
∂f Kð Þ
∂K

����
Kn + 2

= ε
∂f Kð Þ
∂K

����
Kn + 1

is satisfied, where ε is a small number.
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3.7.3 Case Example

In the single-degree-of-freedom example presented in Section 3.6, suppose the mass of the
brick is 2 kg and the natural frequencies were measured several times, giving 5.3, 5.2, 5.5
and 5.4 Hz. So one can identify the K that will give the natural frequency of 5.3 Hz using
Equation 3.29 and assuming that α = 0 by minimising:

ED = 5:3−

ffiffiffiffi
K

2

r !2

:

This gives K = 56.2. If one uses two measurements, 5.3 and 5.2 Hz, then the objective
function becomes

ED = 5:3−

ffiffiffiffi
K

2

r !2

+ 5:2−

ffiffiffiffi
K

2

r !2

:

If three measurements are used, then the objective function becomes

ED = 5:3−

ffiffiffiffi
K

2

r !2

+ 5:2−

ffiffiffiffi
K

2

r !2

+ 5:5−

ffiffiffiffi
K

2

r !2

:

If all measurements are used, then the objective function becomes

ED = 5:3−

ffiffiffiffi
K

2

r !2

+ 5:2−

ffiffiffiffi
K

2

r !2

+ 5:5−

ffiffiffiffi
K

2

r !2

+ 5:4−

ffiffiffiffi
K

2

r !2

:

Whether one measurement or two or three or four are used to estimate K, the optimisation
process through the use of the conjugate gradient method or the BFGS returns a single estimate
ofK. If it is to be assumed that the reason for these four different measurements is uncertainty in
measurements, the ML method returns K without uncertainty. To correct this issue; a Bayesian
method, which is the subject of the next section, can be used.

3.8 Sampling Approaches for Estimating Posterior Distribution

If the updated system/structure is too large, the posterior probability may be estimated using the
Monte Carlo method, the MCMC method, genetic MCMC sampling, simulated annealing or
Gibbs sampling.

3.8.1 Monte Carlo Method

Monte Carlo approaches are numerical methods that are applied by repetitive random sampling
to estimate the probability distribution of any system. Because of their dependence on repeated
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computation of random or simulated random numbers, these methods are appropriate for
approximation using computers and are used when it is impractical to estimate a solution with
a deterministic approach (Kandela et al., 2010; Mathe and Novak, 2007; Akhmatskaya et al.,
2009; Ratick and Schwarz, 2009). Monte Carlo methods have been applied in solving integral
problems (Lai, 2009), radiative transfer problems (McClarren and Urbatsch, 2009), particle
coagulation (Zhao and Zheng, 2009), diffusion problems (Liu et al., 2009), the design of radi-
ation detectors (Dunn and Shultis, 2009), modelling bacterial activities (Oliveira et al., 2009),
vehicle detection (Jia and Zhang, 2009), modelling the bystander effect (Xia et al., 2009) and
modelling nitrogen absorption (Rahmati and Modarress, 2009). Monte Carlo techniques are
normally implemented as follows (Robert and Casella, 2004):

1. Describe the input space.
2. Randomly create input from the input space by applying a selected probability distribution.

In this chapter, this is the posterior distribution function.
3. The new impute will be accepted or rejected randomly.
4. Apply the produced input for the deterministic computation.
5. After obtaining the desired number of samples (or inputs), the mean value will be computed

to approximate the results.

3.8.2 Markov Chain Monte Carlo Method

The MCMC technique is a random walk Monte Carlo procedure that is implemented by
producing a Markov chain to identify a probability distribution function. The MCMC uses
the Markov process and a Monte Carlo simulation by simulating many random walk steps,
retaining some states and converging on a posterior distribution function (Liesenfeld and
Richard, 2008). The MCMC has been applied in many complex problems such as renal dis-
eases (Rodina et al., 2010), spectrum sensing (Wang et al., 2010), water distribution systems
(Wang and Harrison, 2010), tracking of manoeuvring objects (Jing and Vadakkepat, 2010),
DNA profiling (Curran, 2008), environmental modelling (Gauchere et al., 2008), medical
imaging (Jun et al., 2008), lake water quality modelling (Malve et al., 2007), economics
(Jacquier et al., 2007) and statistics (Lombardi, 2007).
In using the MCMC method, a system is handled whose evolution is characterised by a

stochastic process consisting of random variables {K1,K2,K3,…,Ki}, where a random variable
Ki = Ki

1,K
i
2,…,Ki

n


 �
, a vector of n variables that need to be updated, occupies state vector K at

discrete time i. All the possible states that all random variables occupy are referred to as the
state space. In the case of MCMC, the probability that the system is in state Ki + 1 at time
i+ 1 depends completely on the information that it occupied state Ki at time i, because the ran-
dom variables {K1,K2,K3,…,Ki} form a Markov chain. The transition between states in the
MCMC is attained by adding a random noise (ε) to the current state as follows (Marwala, 2010):

Ki+ 1 =Ki + ε: ð3:35Þ

The current state is either accepted or rejected by applying theMetropolis algorithm (Bedard,
2008; Meyer et al., 2008; Metropolis et al., 1953), a popular means of solving problems of
statistical mechanics. The Metropolis algorithm has been applied in protein simulation
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(Bazavov et al., 2010; Tiana et al., 2007) and to predict free Co-Pt nanoclusters (Moskovkin
and Hou, 2007). The Metropolis algorithm is mathematically represented as follows
(Marwala, 2009, 2010):

If
Xn
i= 1

ωi−

ffiffiffiffiffiffiffiffiffiffi
Knew
i

M

r !2

<
Xn
i= 1

ωi−

ffiffiffiffiffiffiffiffiffi
Kold
i

M

r !2

accept Knew

else

accept Knewwith probability

exp
Xn
i= 1

ωi−

ffiffiffiffiffiffiffiffiffi
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3.8.3 Simulated Annealing

Simulated annealing is a Monte Carlo method inspired by the procedure of annealing where
metals recrystallise or liquids freeze; it can be used to sample a probability distribution.
It has been applied in scheduling problems (Naderi et al., 2009; Torabzadeh and Zandieh,
2010), modelling asphalt (Ozgan and Saruhan, 2010), cellular manufacturing (Paydar et al.,
2010), protein structures (Kannan and Zacharias, 2009) and the design of acoustic structures
(Cretu and Pop, 2009).
In the annealing technique, a material is heated until it is molten, and then its temperature is

slowly decreased such that the metal is almost in thermodynamic equilibrium. As the tempera-
ture of the object falls, the system becomes more ordered and approaches a frozen state at T = 0.
If the cooling procedure is regulated inefficiently or the initial temperature of the object is insuf-
ficiently high, the system forms defects or freezes out in meta-stable states, representing that
the system is stuck in a local minimum energy state. The probability of accepting the reversal is
given by Boltzmann’s equation (Bryan et al., 2006; Marwala, 2010):
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Here, ΔE is the difference in the objective function between the old and the new states. The state
designates the possible updated finite element models. T is the temperature of the system, and Z
is a normalisation constant that guarantees that when the probability function is integrated to
infinity it equals to 1.
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3.8.4 Gibbs Sampling

Gibbs sampling is a technique used to generate a sequence of samples from the joint probability
distribution of at least two random variables in order to estimate a joint distribution, approxi-
mate the marginal distribution of one of the variables, and compute an integral that approxi-
mates the expected value of a variable (Casella and George, 1992; Natesan et al., 2010).
Gibbs sampling, which can be regarded as a kind of MCMC method, is an instrument for stat-
istical inference and it is a random technique. Gibbs sampling has been applied in genetics of
dairy cows and sheep (Hossein-Zadeh and Ardalan, 2010), mapping ambiguous short-sequence
tags (Wang et al., 2010), and the decentralised coordination of autonomous swarms (Tan
et al., 2010).
Gibbs sampling is applied when the joint distribution is not completely known or is difficult

to sample, yet the conditional distribution of each variable is known or can be easily sampled.
The Gibbs sampling technique generates a sample from the distribution of each variable, con-
ditional on the current values of the other variables and thus produces a Markov chain, and
the stationary distribution of theMarkov chain (Gelman et al., 1995). Gibbs sampling is applied
as follows, by obtaining k samples of K = K1,…,Knf g from a joint distribution p(K1,…,Kn)

and denoting the ith sample by K ið Þ = K ið Þ
1 ,…,K ið Þ

n

n o
(Gelman et al., 1995):

• Start with an initial value K(0) for each variable.

• For each sample i = 1,…,nf g, sample each variable K ið Þ
j from the conditional distribution

p K ið Þ
j K ið Þ

1 ,…,K ið Þ
j−1,K

i−1ð Þ
j+ 1 ,…,K i−1ð Þ

n

���� 	
by sampling each variable from the distribution of

that variable conditional on all other variables and applying the current values, and update
the variable with a new value once it has been sampled.

These samples then approximate the joint distribution of all the variables, and the marginal
distribution of any variable can be calculated from the samples of those variables and discard-
ing the others.

3.9 Comparison between Approaches

This chapter has studied three techniques that can be used to update a finite element model.
These three techniques are the ML method, Gaussian approximation of the posterior probabil-
ity, and by directly sampling the posterior probability function. These techniques are applied in
the context of system identification of a one-dimensional mass and spring system. From this
study, the remarks in Table 3.2 can be presented, and it is concluded that directly sampling the
posterior probability is the best approach to performing finite element model updating. The
remaining chapters will therefore pursue this approach.

3.9.1 Numerical Example

In this example, a simplified model of an automobile suspension system is updated (see
Figure 3.3). This system has two degrees of freedom, where the mass M is attached to the
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ground through two springs with modulus of elasticity k, x is the displacement and θ is the
angular rotation of the body from the horizontal position. The automobile weight is
M = 600 kg, moment of inertia I = 1100 kgm2, the spring stiffness k = 20 000 N=m, and L1
and L2 are 1.4 and 1.47 m, respectively. The system in Figure 3.3 can be represented by the
following differential equation:

m 0

0 I
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l2− l1ð Þk l2

2− l1
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Three different methods are used to update the system described in Equation 3.38: the
ML method, Gaussian approximation and simulated annealing, where the spring stiffness is

Table 3.2 Final remarks regarding the overall study

Method Techniques Advantages Disadvantages

Maximum-
likelihood method

BFGS, conjugate
gradient method,
steepest descent

• Simple to implement
• Easy to understand
• Computationally
efficient

• Does not quantify
uncertainty simply

• Does not offer a
probabilistic insight

Approximation of
the posterior
distribution

Gaussian
approximation, Laplace
approximation,
conjugate gradient
method

• Simple to implement
• Estimates the error
bars of the solution

• Quantifies
uncertainty

• Is an approximation of the
posterior distribution

• Too many approximations

Directly sampling
the posterior
distribution

Monte Carlo method,
Markov chain Monte
Carlo, Gibbs sampling,
simulated annealing,
hybrid Monte Carlo

• Offers probability
interpretation

• Quantifies
uncertainty

• Computationally
expensive

G

L2L1

k k

x

Figure 3.3 A two-degrees-of-freedom system
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adjusted so that the initial model matches the experimental results. The updated values of the
spring stiffness are given in Table 3.3, while Table 3.4 presents the natural frequencies obtained
by all three algorithms.
As shown in Table 3.3, all algorithms updated the spring stiffness and gave different results.

However, the ML method gave better results than both simulated annealing and Gaussian
approximation (see the total average error in Table 3.4). These results are obvious since only
one variable was updated,the representation of the system matrices is simple and the frequen-
cies can be analytically obtained. However, sampling methods give better results than others
when complex systems are updated. In the next chapters, more complex systemwill be updated.

3.10 Conclusions

This chapter has discussed the Bayesian theory and approaches used to approximate the pos-
terior probability density function such as the maximum-likelihood approach, maximum a pos-
teriori, Laplace approximation and sampling the posterior distribution function directly.
Bayesian statistics states that the probability of an event A happening given that event B has
happened, also called the posterior probability, is equal to the product of the probability of
B happening given that A has happened, also called the likelihood function, and the probability
of A happening, also called the prior, divided by the probability of B happening, also called the
evidence. These techniques were studied using a single-degree-of-freedom mass and spring
system, where the distribution of the measured natural frequency and the mass are assumed
to be known and Bayesian statistics is used to estimate the distribution of the stiffness. At
the end of this chapter, a simplified model of an automobile suspension system is updated using
maximum likelihood, Gaussian approximation of frequencies and simulated annealing. It is
concluded that the best approach is to sample the posterior probability function directly when
the updated system has a large size.

Table 3.4 Frequencies and errors when maximum likelihood, Gaussian approximation and
simulated annealing techniques used to update spring stiffness

Measured
frequency (Hz)

Initial
frequency

(Hz)

Frequencies
maximum

likelihood (Hz)

Frequencies
Gaussian

approximation (Hz)

Frequencies
simulated

annealing (Hz)

8.65 10.05 8.66 8.76 8.64
25.57 29.72 25.60 25.90 25.53
Total average error 16.21 0.12 1.28 0.14

Table 3.3 The updated value of the spring stiffness usingmaximum likelihood, Gaussian approximation
and simulated annealing techniques

Spring stiffness (N/m)

Initial Maximum likelihood Gaussian approximation Simulated annealing

k 2:7000 × 104 2:0034 × 104 2:0515 × 104 1:9934 × 104
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4
Metropolis–Hastings and Slice
Sampling for Finite Element
Updating

4.1 Introduction

This chapter uses Bayesian statistics, the Metropolis–Hastings (M-H) approach and slice sam-
pling (SS) for probabilistic finite element model updating. Bayesian statistics is used to formu-
late the probability of the uncertain finite element model parameters given the observed data,
which is called the posterior probability density function (PDF), and relate this to the likelihood
function, which measures the distance between the finite element prediction and the measured
data, the prior probability function and the evidence. Chapter 3 has described how the posterior
probability function is obtained, and several methods such as the Gaussian approximation,
maximum a posteriori parameter method and Monte Carlo sampling. The Gaussian approxi-
mation, which is based on the Laplace approximation method, is an estimation of the posterior
probability function, and is often difficult to solve analytically. Monte Carlo sampling is more
accurate than the Gaussian approximation, but is computationally more expensive.
In this chapter, we pursue two methods to approximate the posterior PDF: the M-H and the

SS methods. The M-H method is a technique for sampling a PDF (Renshaw, 2004; Strid, 2010;
Johnson and Flegal, 2014) which has been applied to sample the Bose–Einstein condensates
(Grišins and Mazets, 2014), to efficiently sample a proposal distribution (Shao et al., 2013), in
malaria diagnosis (Bauer et al., 2014) and in a jet-milling model (Kastner et al., 2013). SS is
also a method which has been used to sample a PDF, and one example of this method is the
parallel SS (Pietrabissa and Rusconi, 2014) and elliptical SS (Nishihara et al., 2014). It has been
applied to assess ventricular functions in magnetic resonance imaging (Mazonakis et al., 2011),
for parameter estimation (Hatjispyros et al., 2007), for modelling the gold price (Rostami et al.,
2013) and for rail inspection (Nieto et al., 2012).
This chapter is organised as follows. The posterior probability function within the finite

element model updating problem is formulated. Thereafter, the M-H and the SS algorithms

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and
Mechanical Engineering, First Edition. Tshilidzi Marwala, Ilyes Boulkaibet and Sondipon Adhikari.
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are described. Then the statistical measures used in this chapter are discussed, and the sampling
methods are used to update a cantilevered beam and an asymmetrical H-shaped structure.

4.2 Likelihood, Prior and the Posterior Functions

The likelihood function is the probability of measurements in the presence of uncertain param-
eters (Canary et al., 2014; Butler et al., 2014). Likelihood functions have been formulated in a
number of ways, including the use of fuzzy logic (Coletti et al., 2014), and have been applied in
environmental modelling (Joseph and Guillaume, 2013) and for model calibration in hydrology
models (Cheng et al., 2014). This function can be defined as the normalised exponent of the
error function that represents the differences between the measured and the analytical modal
properties (Marwala, 2010; Boulkaibet, 2014):

P Djθð Þ = 1

2π=βð ÞNm=2
YNm

i= 1
f mi

exp −
βc
2

XNm

i

f mi − fi
f mi

� �2
 !

; ð4:1Þ

where θ is the vector representing parameters to be updated, βc is a constant, f mi is the ith meas-
ured natural frequency (ωm

i = 2πf mi andωm
i is the ith measured circular natural frequency), Nm is

the number of measured modes and fi = fi θð Þ is the ith analytical frequency obtained from the
finite element model. The likelihood function can be modified by including the error function
that represents the differences between the analytical and measured eigenvectors. However, the
eigenvector sensitivities are less than the eigenvalue (natural frequencies) sensitivities in model
updating problems. In this book, only natural frequencies are involved in the model updating
process.
The prior PDF denotes the prior knowledge about the updating parameters (θ). For structural

systems, the prior knowledge could be the observation that parameters near joints should be
updated more intensely than for those corresponding to smooth surface areas far from joints.
The prior PDF for parameters θ= θi,…, θQð Þ in Equation 4.1 is assumed to be Gaussian (for
more information on this, see Appendix C) and is given by (Marwala, 2010; Boulkaibet, 2014)

P θð Þ = 1

2πð ÞQ=2
YQ

i= 1
1=

ffiffiffiffi
αi
p� � exp −

Xd
i

αi
2

θi−θ
0
i

�� ��2
 !

; ð4:2Þ

where d is the number of parameters to be updated, θ0 = θ01, …,θ0d
� �

represents the initial values
of the updated vector and αi is the coefficient of the prior PDF for the ith updated parameter.
The notation k ∗ k denotes the Euclidean norm. If αi is constant for all the updating parameters
in Equation 4.1 then the updated parameters will be of the same order of magnitude.
Equation 4.1 may be regarded as a regularisation parameter that controls the amount of change
of the updated parameters at each iteration (Marwala, 2010).
In Equation 4.1, Gaussian priors are conveniently chosen as various natural processes tend to

have a Gaussian distribution. The posterior distribution function of the parameters θ given the
observed data D is denoted by P θjDð Þ, and is obtained by applying Bayes’ theorem (Bishop,
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2006). The distribution P θjDð Þ is estimated by substituting Equations 4.1 and 4.2 into the
Bayesian equation (see Equation 3.2) to give (Marwala, 2010; Boulkaibet, 2014)

P θjDð Þ/ 1
Zs α,βð Þ exp −

βc
2

XNm

i

f mi − fi
f mi

� �2

−
Xd
i

αi
2

θi−θ
0
i

�� ��2
 !

; ð4:3Þ

where

Zs α,βð Þ = 2π
βc

� �Nm=2YNm

i= 1

f mi 2πð Þd=2
Yd
i= 1

1ffiffiffiffi
αi
p : ð4:4Þ

Equation 4.3 can be written in the following normal distribution form:

P θjDð Þ = 1

2πð Þ Nm + dð Þ=2 Σj j1=2
exp −

1
2
X−μð ÞTΣ−1 X−μð Þ

� �
; ð4:5Þ

where X = f1,…, fNm ,θ1, …,θd½ �, μ= f m1 , …, f mNm
,θ01,…,θ0d

h i
and

Σ−1 =

βc
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.
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..
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0
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3
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: ð4:6Þ

In most cases, the analytical form of the posterior PDF solution is not obtainable because of
the complexity of the problem, as well as because of the high dimensionality of the parameter
search space. If Y is the observation of certain parameters at different discrete time instances,
then the total probability theorem provides the probabilistic information for the prediction of
the future responses Y at different time instances, and this can be written as follows
(Bishop, 2006):

P Y jDð Þ=
ð
P Y jθð ÞP θjDð Þdθ: ð4:7Þ

Equation 4.7 depends on the posterior distribution function, and the dimension of the updat-
ing parameters and the complexity of the modelled system make it very difficult to obtain an
analytical solution.
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Different methods have been proposed to estimate the probability distribution, with the max-
imum likelihood being the most commonly used method. As described in the previous chapter,
the maximum likelihood method represents an asymptotic approximation to the full Bayesian
solution and can be applied in the casewhere the unknown parameters aremodelled asGaussian.
The most probable values are obtained by maximising the likelihood function, and the
covariance matrix is obtained by using the Hessian of the likelihood function. However,
in many cases, this approach may not give an accurate prediction due to the complexity
of the problem. Moreover, this approach does not involve the prior knowledge of the updat-
ing process. On the other hand, the sampling methods provide a practical solution to esti-
mating this function (posterior). Sampling techniques can simplify the Bayesian inference
by providing a set of random samples from the posterior distribution (Marwala, 2010;
Boulkaibet et al., 2014). Given a set of Ns random parameter vectors drawn from
P θjDð Þ, the expectation value of any observed function Y can be easily estimated
(Bishop, 2006).
These algorithms are used to generate a sequence of vectors θ1, θ2,…,θNsf g, where Ns is the

number of samples drawn from the posterior function. This generated vector is then used to
predict the form of the posterior distribution function P θjDð Þ. The integral in Equation 4.7
can be approximated as (Boulkaibet, 2014)

~Y ffi 1
Ns

XNs

i= 1

G θið Þ; ð4:8Þ

whereG is a function that depends on the updated parameters θi. As an example, ifG = θ then ~Y
becomes the expected value of θ. Generally, ~Y is the vector that contains the modal properties
while Ns is the number of retained states.
Several sampling techniques such as multivariate normal sampling (Khodaparast, 2010),

Latin hypercube sampling (LHS; Iman, 2008) and orthogonal array (OA) sampling (Zhang
et al., 2009) have been used in finite element model updating. Multivariate normal sampling
techniques can only be applied for uncertain parameters which belong to Gaussian posterior
distribution function. In the case where the parameters are uncorrelated, the covariance matrix
is then diagonal. But when the uncertain parameters are correlated the sampling process
becomes more difficult, and the accuracy of this method rapidly decreases when a complex
system is tested. The LHS method was introduced by McKay et al. (1979). Its objective is
to divide the parameter space into subspaces of equal probability. Samples are then taken from
each subspace, ensuring that every parameter is covered equally. This method is very effective
in the case where only one parameter is sampled. This method becomes more complex, imprac-
tical and computationally expensive when dealing with high-dimensional problems since all
possible combinations of the parameters need to be considered. The OA sampling method
has the same basics as the LHS method (Koehler and Owen, 1996). It produces uniform sam-
ples in multi-dimensional search space, while the LHS method produces a uniform sampling in
one dimension only (LHS is special case of OA sampling).
However, the results obtained from all three sampling algorithms are greatly affected by the

complexity of the system and the size of the search space. The most popular class of sampling
methods are the Markov chain Monte Carlo (MCMC) methods, which allow sampling from a
large class of distributions and are able to handle large search spaces. More information on the
MCMC is given in Appendix B. The MCMC has been applied in structure learning (Larjo and
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Lähdesmäki, 2015), in big data analytics (Mahani and Sharabiani, 2015), in genetics data
(Tasaki et al., 2015) and in astrophysics (Greig and Mesinger, 2015).

4.3 The Metropolis–Hastings Algorithm

The M-H algorithm is one of the simplest MCMC methods that can draw samples from multi-
variable densities (Metropolis et al., 1953; Hastings, 1970; Roberts and Smith, 1994; Chib and
Greenberg, 1995; Heckman and Leamer, 2001; Gilks, 2005; Calderhead, 2014; Vu et al., 2014;
Van Dyk and Jiao, 2015). This algorithm is related to rejection and importance sampling, and
the general idea is to propose a PDF and then use it to generate proposed values (Marwala,
2010; Boulkaibet et al., 2012). The proposed distribution is also used to obtain a move prob-
ability which is used to determine whether or not the drawn value should be accepted as the next
state of the Markov chain. The move probability is defined by the product of the ratio of the
target density and the ratio of the proposed density. This means that a normalising constant of
the target density distribution function is not required in this algorithm.
In theM-H algorithm, to sample from the posterior distribution function P θjDð Þ, which is the

target distribution function, where θ= θ1, θ2,…,θdf g is a d-dimensional parameter vector, the
proposal density distribution q θjθt−1ð Þ is introduced in order to generate a random vector θ
given the value at the previous iteration of the algorithm. The M-H algorithm consists of
two basic steps: the sample drawn from the proposed density step and the accept or reject step
of the proposed state. The M-H algorithm can be summarised as follows (Hastings, 1970;
Brooks et al., 2011; Joubert, 2015; Boulkaibet, 2014):

1. Initiate the algorithm with a value θ0.
2. At iteration t, θ∗ is drawn from the proposed probability distribution density q θjθt−1ð Þ,

where θt−1 is the parameter value of the previous step.
3. Update the finite element model to obtain the new analytical frequencies, then compute the

acceptance probability, given by

a θ∗, θt−1ð Þ=min 1,
P θ∗jDð Þq θt−1jθ∗ð Þ
P θt−1jDð Þq θ∗jθt−1ð Þ

� 	
:

4. Draw u from a uniform distribution U(0, 1).
5. If u ≤ a θ∗, θt−1ð Þ then accept state θ∗. Otherwise, reject state θ∗.
6. Return to Step 2.

Figures 4.1 and 4.2 show the results of running a single variable sampling using the M-H
algorithm (Boulkaibet, 2014). The proposal distribution is a normal distribution with mean
and variance equal to 1, q θð Þ =N 1,1ð Þ, and the single variable target distribution, which is

given by P θð Þ/ e− θ
2
2 + sin 5θð Þ+ sin 2θð Þð Þ, is plotted for 100 and 1000 iterations (samples),

respectively.
The samples for both cases are also plotted. As expected, the histogram of the samples

approximates the target distribution in both cases. However, 100 iterations (or samples) are
not enough to give a good representation of the target distribution because the acceptance rate
(AR) of the M-H algorithm is only 59%, which means only 59 samples were used to
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approximate the target distribution function. The AR of the M-H algorithm can be improved by
reducing the move step of the algorithm (decreasing the standard deviation of the proposal dis-
tribution). Increasing the number of iterations to 1000 leads to an almost perfect prediction of
the form of the target distribution.
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Figure 4.1 Target distribution and histogram of the M-H samples with 100 iterations
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Figure 4.2 Target distribution and histogram of the M-H samples with 1000 iterations
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4.4 The Slice Sampling Algorithm

The general idea of the SS algorithm was first introduced by Swendsen and Wang (1987). In
this algorithm auxiliary variables are implemented to improve the efficiency of the MCMC
sampling technique. The SS algorithm was advanced by a number of researchers. Besag
et al. (1993) proposed a similar algorithm and applied it in agriculture. Higdon (1996) intro-
duced an improved auxiliary variable technique for theMCMCmethod and applied it to Bayes-
ian image analysis. Additional information on the SS algorithm can be found in Edwards and
Sokal (1988), Fishman (1999), Roberts and Rosenthal (1999), Mira et al. (2001) and Lu (2008).
The SS technique is a type of MCMC algorithm that provides adaptive step size which auto-
matically adjusts to match the characteristics of the posterior PDF (Neal, 2003; Bishop, 2006;
Tibbits et al., 2011; Thompson, 2011). The SS technique does not involve any extra distribu-
tion to help in drawing samples, and the idea of the method is to uniformly sample from a region
under the target distribution curve. Supposing that the probability function f(x) of a variable x is
the target distribution, a set of samples can be drawn from a region that is under the plot of f(x).
This can be organised by introducing an auxiliary variable y to create an extended uniform

joint distribution P(x, y) as follows (Swendsen and Wang, 1987):

P x, yð Þ =
1
Z
, if 0 < y <P xð Þ,

0, otherwise;

8<
: ð4:9Þ

where Z =
ð
f xð Þdx and the density of x is given by P xð Þ= f xð Þ=Z. The new samples for x are

attained by drawing candidates from the joint distribution P(x, y) while the y values are ignored.
Figure 4.3 explains the drawing of a new sample in an example with a single variable. Ini-

tially, the xi is drawn from a uniform distribution between 0 and f(xi) and called yi+ 1. Then the
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Figure 4.3 Slice sampling approach
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interval w is created as presented in Figure 4.3 and a new sample xi+ 1 is uniformly drawn from
the interval.
On the whole, the objective of the SS technique is to sample uniformly from the area under

the posterior distribution P θjDð Þ where θ = θ1, θ2,…,θdf g. The multivariate SS with hyper-
rectangles algorithm can be explained as follows (Kyprianou et al., 2001; Cheung and Beck,
2010; Boulkaibet, 2014):

1. Sample Y from the uniform distribution U 0, P θ0jDð Þð Þ.
2. Initiate the interval around θ0 as by following these steps:

For i = 1 to d

Ui�U 0,1ð Þ
Li θ0, i−wiUi

Ri Li +wi

End
3. Draw sample from the interval I = R,Lð Þ and perform the following steps:

Repeat:
For i = 1 to d

Ui�U 0,1ð Þ
θj, i Li +Ui Ri−Lið Þ

End
If Y ≤ P θjjθ

� �
then exit loop

For i = 1 to N

If θj, i < θo, i then Li θj, i else Ri θj, i

End
4. Repeat Step 3 to obtain Ns samples.

The SS algorithm has excellent AR; normally a 100% AR is achieved at the end of the
algorithm run. Nevertheless, the efficiency of this algorithm depends on the selected move
step and is influenced by the interval wi used in the pseudo-code. Large moves may be com-
putationally expensive because it is difficult for the algorithm to identify the correct sampling
interval.
The efficiency of this algorithm for high-dimensional problems can be improved by reducing

the number of random moves. In the SS algorithm, the random walk suppression is conducted
by reflecting from the edges of the slice (Neal, 2003).

4.5 Statistical Measures

The advantages of using Bayesian methods in finite element model updating are that the uncer-
tainty of the attained parameters is represented and the correlations between the uncertain
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parameters are measured. In this section the mathematical tools used to calculate the estimated
mean value, variance, covariance and correlation matrices are explained. The approximated
mean value of the estimated parameters is expressed as follows (Boulkaibet, 2014):

θ̂ =E θð Þffi 1
Ns

XNs

i= 1

θi; ð4:10Þ

where E(θ) is the mean value of θ and Ns is the number of samples. The uncertainty of the
estimated mean parameters can be characterised by the variance, computed as follows
(Boulkaibet, 2014):

V θ̂

 �

=E θ− θ̂

 �2� �

ffi 1
Ns

XNs

i= 1

θi− θ̂

 �2

; ð4:11Þ

where the standard deviation is given by σθ =

ffiffiffiffiffiffiffiffiffiffiffiffi
V θ̂

 �r

. The covariance matrix Σθ is used to

identify the correlation between the estimated parameters and is written as follows
(Boulkaibet, 2014):

Σθ =

c11 c21

c12 c22

� � � cd1
� � � cd2

..

. ..
.

cd1 cd2

. .
. ..

.
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2
666664

3
777775
; ð4:12Þ

where cij = cov θi,θj
� �

=E θi− θ̂i
� �

: θj− θ̂j
� �� �ffi 1

Ns

XNs

i= 1

θi− θ̂i
� �

: θj− θ̂j
� �

.

A different way to explain the correlation between the predicted parameters is by computing
the statistical correlation matrix. and this is similar to the covariance matrix. However, the com-
puted parameters values are bounded between –1 and 1:

Γθ =

r11 r21

r12 r22

� � � rd1
� � � rd2

..

. ..
.

rd1 rd2

. .
. ..

.

� � � rdd

2
666664

3
777775
; ð4:13Þ

where rij =
cov θi,θj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E θi− θ̂i
� �2
 �

E θj− θ̂j
� �2
 �r .

In the following sections, we apply the M-H and SS algorithms to update a simple cantilever
beam and an asymmetrical H-shaped aluminium structure, the details of which are given in
Appendix A.
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4.6 Application 1: Cantilevered Beam

An experimental cantilever steel beam which was designed and measured by Kraaij (2006) was
modelled using finite element modelling, and this model was updated based on the measure-
ments made on the cantilevered beam. The beam had length 500 mm, width 60 mm and thick-
ness 10 mm, and the material properties were modelled using E = 2:1 × 1011N=m2, v = 0:3 and
ρ= 7850 kg=m3. Three accelerometers were used for measurements and were positioned
490 mm from the clamped end. This position was chosen because the response at this position
was large. Each accelerometer had a mass of 40 g; the middle accelerometer was of type 303A3,
the outer accelerometers were of type 303A2. To test the updating techniques, the beam was
modelled using Version 6.3 of the Structural Dynamics Toolbox SDT® for MATLAB
(Boulkaibet, 2014).
The beam was segmented into 50 Euler–Bernoulli beam elements and excited at a number of

positions. The measured natural frequencies of interest of this structure were: 31.9, 197.9, 553,
1082.2 and 1781.5 Hz (Kraaij, 2006; Boulkaibet, 2014). The Young’s modulus of the beam
elements was used as an updating parameter, where for every 10 elements a different Young’s
modulus was assigned. Therefore, the parameters to be updated were represented by a vector of
dimension d = 5, represented as θ = θ1,θ2,θ3,θ4,θ5f g.
This vector of five parameters θ= θ1,θ2,θ3,θ4,θ5f g was updated using the Bayesian

approach as described in this chapter. Ns samples of the vector θ were generated from the pos-
terior distribution function, P θjDð Þ, as given in Equation 4.3. The constant βcwas set equal to 1
and the coefficients αiwere set equal to 1=σ2i , where σ

2
i was the variance of the parameter θi, and

this means that parameter θ is uncertain with a standard deviation of σ. Because the updating
parameter vector comprises only the Young’s modulus, all σiwere set equal to 2 × 10

11. A large
value of σi was used to allow the algorithm more freedom and thus to focus more on the like-
lihood term during sampling. The updating parameters θiwere bounded with a maximum value
of 2:5 × 1011 and a minimum value of 1:7 × 1011.
The number of samples Ns was 1000 for all methods, and the initial value of θ was set at

θ0 = 2:4 × 1011,2:4 × 1011,2:4 × 1011,2:4 × 1011,2:4 × 1011
� 


. As an alternative to using the
mean steel value of θ as an initial value, a large value of the initial parameter vector was selected
to emphasise the updating process. Each algorithmwas implemented over 30 independent runs,
and the final results are shown in Tables 4.1 and 4.2 which are the average of these 30 runs.

Table 4.1 The updated vector of Young’s modulus using the M-H and SS techniques

Young’s modulus (N/m2)

Initial M-H method
σi
μi

(c.o.v., %)
Slice sampling method

σi
μi

(c.o.v., %)

E1 2:4 × 1011 2:111 × 1011 7.00 2:125 × 1011 7.34
E2 2:4 × 1011 2:110 × 1011 7.09 2:094 × 1011 8.10
E3 2:4 × 1011 2:100 × 1011 7.10 2:095 × 1011 8.07
E4 2:4 × 1011 2:098 × 1011 7.13 2:093 × 1011 8.27
E5 2:4 × 1011 2:101 × 1011 7.14 2:077 × 1011 7.69
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Figures 4.4–4.7 show the scatter plots with marginal histograms for four uncertain param-
eters using the M-H and SS algorithms. The plots show that all algorithms found the area of
high probability. It was observed that both the M-H and SS algorithms require very large sam-
ples (Ns >> 1000) to reach their equilibrium.
The updated parameters, also presented in Table 4.1, demonstrate that the M-H method gave

results that are close to the mean value for steel of 2:1 × 1011N=m2. The SS technique gave
updated parameters that were close to the mean value. The SS method applied in this chapter
updated individual vector entries as opposed to updating all entries simultaneously. The SS
algorithm took a larger number of samples to converge and required more samples when com-
pared to the M-H algorithm.
The coefficient of variation (c.o.v.) denotes the errors related to the updated parameters, and

it is computed by dividing the standard deviation vector by the approximated θ vector.
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Figure 4.4 Scatter plot of θ1 versus θ2with marginal histograms using the M-H method

Table 4.2 Frequencies and errors when the M-H and SS techniques used to update Young’s modulus

Measured
frequency (Hz)

Initial
frequency (Hz)

Frequencies (errors)
M-H method (Hz)

Frequencies (errors)
slice sampling
method (Hz)

31.90 32.70 30.70 (2.28%) 30.7 (2.45%)
197.90 209.40 196.10 (1.78%) 196.0 (2.08%)
553.00 594.80 556.90 (1.74%) 556.0 (2.43%)
1082.20 1177.80 1102.70 (1.52%) 1100.90 (2.02%)
1781.50 1961.70 1.836.90 (1.51%) 1833.70 (2.09%)
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Table 4.1 indicates that the c.o.v. values were small for all algorithms (less than 8% and 9% for
the M-H and SS algorithms, respectively), and that the two algorithms estimated the uncertain
parameters efficiently (Boulkaibet, 2014). Figures 4.8 and 4.9 demonstrate the correlation
between all updated parameters for the M-H and SS algorithms (Boulkaibet, 2014). Small
values indicate that both parameters are weakly correlated ( < 0:3), while large values
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Figure 4.5 Scatter plot of θ3 versus θ4 with marginal histograms using the M-H method
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Figure 4.6 Scatter plot of θ1 versus θ2 with marginal histograms using the SS method
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( > 0:7) indicate that the parameters are highly correlated, and a zero value indicates that the
parameters are uncorrelated. A positive correlation indicates that the variables are positively
related, while a negative correlation indicates the opposite. The results indicate that for all algo-
rithms, all parameters are weakly correlated.
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Figure 4.7 Scatter plot of θ3 versus θ4 with marginal histograms using the SS method
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Figure 4.8 The correlation between the updated parameters using the M-H algorithm
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The results for the updated modes given in Table 4.2 demonstrate that the two sampling
methods give results which are, on average, better than the initial finite element model and
use the posterior density function in different ways since each algorithm has a different way
of generating samples. In the SS technique, each variable is changed one at a time, which is
not the case with the M-H algorithm where all the parameters are varied at once.
The absolute mode errors ( f mi − fi

�� ��=f mi ) and the final model percentage error for both algo-
rithms demonstrate that the SS algorithm gives better results than those obtained using the M-H
method. Both the M-H and SS algorithms gave relatively high error percentages (3.90% for the
M-H algorithm and 3.84% for the SS algorithm). The error between the third measured natural
frequency and that of the initial model was 7.55%; when the M-H method was used this error
was reduced to 0.71%, whereas the SS method reduced it to 0.54%. The results obtained show
that the M-H method was faster than the SS method as the M-H algorithms required a few sam-
ples to converge.

4.7 Application 2: Asymmetrical H-Shaped Structure

The asymmetrical H-shaped aluminium structure was updated using the previous two algo-
rithms (Marwala, 1997) and the details are in Appendix A. The structure was divided into
12 elements, each modelled as an Euler–Bernoulli beam. The beams were modelled using
Version 6.3 of the Structural Dynamics Toolbox SDT® forMATLAB. The structurewas excited
at a specified position and the acceleration was measured at 15 different positions. The structure
was excited using an electromagnetic shaker, while a roving accelerometer was used to measure
the response. A set of 15 frequency-response functions were calculated. The measured natural
frequencies were 53.9, 117.3, 208.4, 254.0 and 445.0 Hz. In this example, the moments of
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Figure 4.9 The correlation between the updated parameters using the SS algorithm
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inertia and the cross-sectional areas of the left, middle and right subsections of the beam were
updated. The updating parameter vector was θ= Ix1, Ix2, Ix3,Ax1,Ax2,Ax3f g. The Young’s modu-
lus for the beam was fixed at 7:2 × 1010N=m2, and the density was set to 2785 kg/m3. The
updating parameters θi were bounded by maximum values equal to 3:73 × 10−8,

�
3:73 × 10−8, 3:73 × 10−8,4:16 × 10−4, 4:16 × 10−4, 4:16 × 10−4�, and the minimum values
were set at 1:73 × 10−8, 1:73 × 10−8, 1:73 × 10−8, 2 × 10−4, 2:16 × 10−4, 2:16 × 10−4

� �
. The

boundaries helped to keep the updated vector physically realistic. The constant βc of the pos-
terior distribution was fixed equal to 10. The coefficients αi were set equal to 1=σ2i , where σ

2
i

is the variance of the ith parameter, and the variance vector was defined as σ = 5 × 10−8,
�

5 × 10−8, 5 × 10−8, 5 × 10−4, 5 × 10−4, 5 × 10−4�. The constant βc and the variance σ were
chosen so that the weight of the likelihood terms was greater than the second term in the pos-
terior distribution function. The number of samples Ns was set to 1000.
The Bayesian simulation results are presented in terms of the mean values of the obtained

samples for each method. Each algorithm was implemented over 20 independent runs and the
results are shown in Tables 4.3 and 4.4.The initial and updated values of the updating vector
obtained by each method show that both algorithms successfully updated the θ vector where the
updated values are different than the initial θ0. The c.o.v. values obtained by M-H and SS algo-
rithms were large, and the reason for this is that large move steps were used for both M-H and
SS algorithms to ensure a fast convergence and to improve the total average errors. Figures 4.10
and 4.11 show the correlation between all updated parameters for both algorithms. The figures

Table 4.4 Natural frequencies and errors when the SS and M-H algorithms were
used to update the parameters

Measured
frequency (Hz)

Initial
frequency (Hz)

Frequencies (errors)
SS method (Hz)

Frequencies (errors)
M-H method (Hz)

53.90 51.40 53.87 (7.01%) 53.92 (3.96%)
117.30 116.61 121.71 (7.69%) 122.05 (4.28%)
208.40 201.27 206.80 (7.94%) 210.93 (4.95%)
254.00 247.42 258.56 (8.16%) 258.94 (4.81%)
445.00 390.33 407.19 (8.22%) 410.33 (4.74%)

Table 4.3 Initial and updated parameters using the SS and M-H algorithms

Initial θ0

θ vector
SS method

σi
μi

(c.o.v., %) θ vector
M-H method

σi
μi

(c.o.v., %)

Ix1 2:73 × 10−8 2:33 × 10−8 13.37 2:31 × 10−8 22.59
Ix2 2:73 × 10−8 2:43 × 10−8 19.71 2:68 × 10−8 15.25
Ix3 2:73 × 10−8 2:40 × 10−8 22.37 2:17 × 10−8 13.96
Ax1 3:16 × 10−4 2:82 × 10−4 20.40 2:85 × 10−4 14.36
Ax2 3:16 × 10−4 2:83 × 10−4 19.93 2:83 × 10−4 14.36
Ax3 3:16 × 10−4 2:84 × 10−4 18.09 2:77 × 10−4 13.08
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indicate that all parameters are correlated for both algorithms (all values are non-zero), where
most of the parameters are weakly correlated.
Table 4.4 shows the finite element updated frequencies, and the c.o.v. values in brackets. The

error between the first measured natural frequency and that of the initial model was 4.63%, and
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Figure 4.10 The correlation between the updated parameters using the SS algorithm
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Figure 4.11 The correlation between the updated parameters using the M-H algorithm

80 Probabilistic Finite Element Model Updating



when the M-H and SS algorithms were used it was reduced to 0.04 and 0.06%, respectively.
The overall updated finite element model natural frequencies for all three algorithms were bet-
ter than the initial ones. Both the M-H and SS algorithms had high convergence rate because
large move steps were used in these algorithms, but the move steps used in these two algorithms
affected the acceptance rate of the M-H algorithm, giving an AR of 46.9%, while the running
time of the SS algorithm was almost five times that of the M-H algorithm.

4.8 Conclusions

This chapter presented the M-H and SS algorithms for finite element model updating of two
structures. The M-H algorithm’s performance decreased with the complexity of the system and
the size of the uncertain vector. The SS algorithm exhibited poorer performance than the M-H
algorithm and was found to be computationally less efficient than the M-H algorithm. Both the
M-H and SS algorithms performed poorly with small move steps. A large move step was
needed in order to reduce the average errors for these algorithms. The SS algorithm with large
move step performed worse and with very long running time compared to the M-H method.
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5
Dynamically Weighted Importance
Sampling for Finite Element
Updating

5.1 Introduction

In the previous chapter, the Metropolis–Hastings (M-H) and slice sampling techniques were
used for finite element updating within the context of Bayesian statistics andMonte Carlo simu-
lation. In this chapter, we apply dynamically weighted importance sampling (DWIS) for finite
element model updating as was done by Joubert (2015) and Joubert andMarwala (2015). Finite
element model updating is a numerical procedure that is used to bring the finite element model
closer to the measured data. The use of Bayesian statistics essentially makes the distance
between the measured data and finite element models probabilistic, and this makes sense
because both the measured data and the finite element models are uncertain. In order to con-
struct the probability distribution of the distance between the finite element model and meas-
ured data, Bayesian statistics is used, because it estimates the probability of unknown
parameters, that is, the distance between the model and measurement. This distance is also
known as the posterior distribution function, and it is estimated on the basis of the information
on the parameters that describe such distance (the prior), the distance between the model and
the data (the likelihood) and the observed data (the evidence). The posterior distribution func-
tion is very difficult to estimate analytically, and the Monte Carlo simulation method can be
used. With unlimited computational capability, the Monte Carlo method is able to solve such
problems, but this is not practical. Monte Carlo approaches have been explored in the finite
element updating problem (Boulkaibet et al., 2015; Marwala, 2010; Friswell, 2001; Motters-
head and Friswell, 1995). Unfortunately, computational power is limited and some approxima-
tion of the Monte Carlo method should be explored. The techniques that were explored in the
previous chapter, M-H and slice sampling, are versions of the Monte Carlo method. This ver-
sion is known as the Markov chain Monte Carlo (MCMC) method and it is merely a short-cut
version of the Monte Carlo method, as it is intended to manage the reality that computational

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and
Mechanical Engineering, First Edition. Tshilidzi Marwala, Ilyes Boulkaibet and Sondipon Adhikari.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.



capability is expensive (Larjo and Lähdesmäki, 2015; Mahani and Sharabiani, 2015;
Papaioannou et al., 2015).
Another technique that can be used to estimate the posterior probability distribution function

is the importance sampling method. On sampling a probability distribution function one often
realises that it is important to know where to sample because there are many local distribution
functions which are not necessarily global and therefore correct. In optimisation we often learn
about the relationship between global and local optimum points (Wang et al., 2016; Morales-
Enciso and Branke, 2015). The same dilemma of the local versus the global optimum posterior
distribution is relevant here.
The Monte Carlo importance sampling algorithm is a Monte Carlo procedure which is used

in this chapter to update a finite element model and basically allows one to know where to sam-
ple, hopefully to increase the likelihood of identifying an optimal posterior probability distri-
bution function; it was first used in finite element model updating by Joubert and Marwala
(2015) and Joubert (2015). The justification for implementing importance weights in theMonte
Carlo procedure is to ensure smooth transitions between balanced states, which is not the case
in the Metropolis transition rules. DWIS substantially performs better than other Monte Carlo
method, for instance theM-H process and the dynamic weighting procedure (Liang et al., 2010;
Liang, 2002). In the DWIS method the Markov chain state is added to a population, and at each
step two mechanisms are used: dynamic weighting and population control. These steps guar-
antee that the DWIS technique moves through energy barriers using controlled weights as well
as finite expectation. An additional advantage of the DWIS technique when compared to the
M-H technique (Hastings, 1970) is that the DWIS method offers the possibility of varying the
parameters of the procedure in line with the problem being solved. The DWIS method has been
observed to give more stable approximation of the stationary distribution than the dynamic
weighting, as well as converging fast (Wong and Liang, 1997).

5.2 Bayesian Modelling Approach

The Bayesian approach is governed by Bayes’ rule, which is written as (Bishop, 2006)

P θjDð Þ /P Djθð ÞP θð Þ; ð5:1Þ

where θ represents the vector of updating parameters, P Djθð Þ is the likelihood probability dis-
tribution function and P(θ) denotes the prior probability distribution. The likelihood distribu-
tion can be expressed as the probability of the measured modal frequencies given the observed
data corresponding to the variable parameters as follows (Boulkaibet et al., 2015):

P Djθð Þ= 1

2π=βð ÞNm
YNm

i= 1
f mi

exp −β
XNm

i= 1

f mi − f ci
f mi

� �2
 !

; ð5:2Þ

where Nm denotes the variables in the updating vector, β is a constant, and f mi and f ci represent
the measured and computed frequencies, respectively. The prior probability distribution can be
assumed to be Gaussian and is expressed as follows (Bishop, 2006; Boulkaibet et al., 2015):
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P θð Þ= 1

2πð ÞQ=2
YQ

i= 1
1=

ffiffiffiffi
αi
p� �exp −

XQ
i

αi
2

θ− θ0j jj j2
 !

: ð5:3Þ

In Equation 5.3, the Euclidean norm of the updating vector is used to quantify the difference
between the results from the finite element model and the measured results. The coefficient on
the ith component of the updating parameters is denoted by αi and the number of parameters to
be updated is Q. The posterior probability distribution function obtained using Bayes’ rule can
then be expressed as follows (Joubert and Marwala, 2015):

P θjDð Þ= 1
Z α,βð Þexp −β

XNm

i= 1

f mi − f ci
f mi

� �2

−
XQ
i

αi
2

θ− θ0j jj j2
 !

; ð5:4Þ

where the normalising constant is

Z α,βð Þ = 2π
β

� �NmYNm

i= 1

f mi 2πð ÞQ=2
YQ
i= 1

1ffiffiffiffi
αi
p :

Equation 5.4 can be written as a normal distribution as follows (Boulkaibet, 2014; Joubert
and Marwala, 2015):

P θjDð Þ = 1

2πð Þ Nm + dð Þ=2 Σj j1=2
exp −

1
2
X−μð ÞTΣ −1 X−μð Þ

� �
; ð5:5Þ

where

X = f1,…, fNm ,θ1,…,θd½ �, μ = f m1 ,…, f mNm
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5.3 Metropolis–Hastings (M-H) Algorithm

The posterior probability distribution function can be sampled using the M-H algorithm
(Metropolis et al., 1953; Hastings, 1970). Neal (2001) proposed annealed importance sampling
where the transition between states were achieved using a Markov chain. Bassetti and Diaconis
(2006) compared importance sampling to the Metropolis algorithm and found that these
methods gave two different stationary distributions. Berg (2003) proposed Metropolis import-
ance sampling for rugged dynamical variables by introducing a mechanism for guiding the
simulation from higher to lower temperatures for constructing Metropolis weights, and this
technique was found to be useful in large problems. Takaishi (2013) compared the MCMC
method to importance sampling in an application to Bayesian inference of the generalised auto-
regressive conditional heteroscedasticity (GARCH) model. Takaishi observed that the statis-
tical errors of the GARCH parameters obtained from the implementation of importance
sampling were statistically similar to but smaller than those attained from the MCMC
technique.
The MCMC sampling approach uses the theory of Markov chains. A set of randomly created

variables, {θ1,…, θN}, is deemed to be a Markov chain if conditional independence between
the variables is sustained and, for n 2 1,…, N−1f g (Bishop, 2006; Boulkaibet, 2014),

P θn + 1jθ1,…, θnð Þ=P θn+ 1jθnð Þ: ð5:7Þ

As a result, the transition probability matrix which takes θn as input and gives θn + 1 as output
can be mathematically expressed as follows (Bishop, 2006):

Tn θn + 1jθnð Þ≡ P θn + 1jθnð Þ: ð5:8Þ

The transition matrix T is stochastic and, on condition that the state space is a periodic and
irreducible, the simulation will always converge to a desired stationary distribution function
and, in this chapter, the posterior distribution function. The transition matrix is a mechanism
for prescribing how the simulation moves from the current state to the next state. The Markov
process does not necessitate memory of states prior to the current state. As an irreducible chain
the states are always connected in that there is a transition probability between the states. The
state space is a connected graph of these states and the aperiodicity property is useful for cre-
ating a Markov chain so as to avoid oscillation effects in the simulation. Normally, if all the
elements of the transition matrix are greater than 0, then the chain is periodic and a procedure
to prompt convergence of the Markov chain is the detailed balance condition which is
expressed as follows (Bishop, 2006):

P θnð ÞP θn+ 1jθnð Þ = P θn+ 1ð ÞP θnjθn+ 1ð Þ: ð5:9Þ

By integrating Equation 5.9 with respect to θn we obtain the following property of the
Markov chain (Bishop, 2006):

ð
P θnð ÞP θn+ 1jθnð Þ = P θn + 1ð Þ: ð5:10Þ
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Equation 5.10 exhibits ergodic characteristics and gives sufficient conditions for construct-
ing P θn+ 1jθnð Þ to create samples from P(θn).
In the M-H algorithm, a proposal distribution function q θtjθt−1ð Þ is used to obtain samples,

where θ = θ1, θ2,…, θtf g is the finite element model updating parameter vector, and the M-H
algorithm was described earlier in Chapter 4 (Metropolis et al., 1953; Hastings, 1970; Brooks
et al., 2011; Joubert, 2015; Boulkaibet et al., 2015).

5.4 Importance Sampling

Before we discuss the DWIS method, it is important to describe the importance sampling (IS)
technique (Dempster, 2006; Zhang et al., 2009; Parpas, 2012; Elvira et al., 2015; Martino et al.,
2015). IS has been applied in the Monte Carlo technique to reduce the variance of the samples
generated. It is a generalised method applied to approximate properties of a specified probabil-
ity distribution function. It emphasises the intuitive foundation of obtaining samples from
important sections of the search space. This is accomplished by sampling from a simple dis-
tribution and then using the weights of the samples from important regions to estimate the prob-
ability distribution of a complicated distribution function. In so doing, IS reduces the variance
of the samples. Therefore, IS is applied instead of acceptance–rejection sampling, for sensitiv-
ity analysis and for calculating normalising constants of probability densities, and this is a
mechanism used by the Monte Carlo dynamically weighted importance sampling (MCDWIS)
technique to compute IS estimation.
In IS some random values in the Monte Carlo sampling process are deemed more important

than others. For this reason the sampling process is designed in such way that the important
samples are visited more frequently than those deemed less important. Li and Lin (2015) pro-
posed an adaptive importance method and successfully applied it to the problem of Bayesian
inversion with multimodal distributions, while Fan and Liang (2015) applied IS to efficiently
analyse the reliability of axially loaded piles. Yilmaz and Ozev (2015) successfully applied
adaptive IS in analogue circuit estimation, while Xu et al. (2015) applied the IS technique
in portfolio risk estimation. Blitzstein and Diaconis (2015) applied the sequential IS method
to produce random graphs, while Nadjafi et al. (2015) applied the IS method together with
fuzzy logic to improve uncertainty and applied this to clustering problems (Tokdar and Kass,
2009). If we assume that P(θ) is the probability distribution function of the finite element model
parameters θ, then the expectation μf of some integrand f(θ) can be calculated as follows
(Tokdar and Kass, 2009):

μf =
ð
f θð ÞP θð Þdθ: ð5:11Þ

If we assume that we have the proposed probability distribution function q(θ) which is such
that q θð Þ > 0 whenever q θð ÞP θð Þ 6¼ 0, then the following expression can be estimated (Tokdar
and Kass, 2009):

μf =Eq w θð Þf θð Þ½ �: ð5:12Þ
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In this expression, f is the integrand and w θð Þ=P θð Þ=q θð Þ is the likelihood ratio, in which q
is the importance distribution and P is the density distribution of interest. We can therefore
estimate the posterior probability in Equation 5.4 (now deemed to be P(θ)) with the normal
distribution in Equation 5.5 (now deemed to be q θð ÞÞ. It is therefore now possible to estimate
the probability distribution function P(θ) by merely sampling the simple probability distribu-
tion function q(θ), and then the expectation is estimated using the following equation (Tokdar
and Kass, 2009; Joubert, 2015):

μf =
1
m

Xm
j= 1

w θj
� �

f θj
� �

: ð5:13Þ

The IS technique for estimating the finite element model parameters θ is implemented as
follows (Tokdar and Kass, 2009; Joubert and Marwala, 2015):

1. Gather a small number of samples from f.
2. Create the importance distribution function q.
3. Sample from q.
4. Approximate the expected values of the finite element model parameters θ.

5.5 Dynamically Weighted Importance Sampling

Liang and Cheon (2009) applied Monte Carlo based dynamically weighted importance sam-
pling in models that contained intractable normalising constants. This method applied the
Monte Carlo method within the context of the MCMC technique while retaining the invariance
of the target distribution in DWIS. In so doing, this method eliminates the requirement for per-
fect sampling. The variable finite element updating parameter vector is characterised by θ,
which are inputs to the finite element model to calculate natural frequencies using a vibrational
modal analysis approach. In this section, we use different symbols than P to represent the dis-
tribution functions. The prior distribution is denoted by P(θ) and is the prior knowledge of the
problem at hand. The likelihood function is denoted by P Djθð Þ, while the posterior density
function is denoted by P θjDð Þ. The idea of the DWIS algorithm is to generate auxiliary vari-
ables (or data) to integrate out as many variables as possible in order to accelerate convergence.
In this case, an auxiliary data vector y will be generated, to complete the missing data, and the
likelihood function will be defined as P yjθð Þ.
This method is particularly applicable in problems with incomplete posterior distribution and

missing data. In the DWIS approach, given simulated data y, the likelihood function can be
expressed as follows (Liang et al., 2010; Joubert and Marwala, 2015):

P yjθð Þ = P θ,yð Þ
Z θð Þ ; ð5:14Þ

where θ indicates the model parameters under consideration which are inputs to the finite elem-
ent model to compute the natural frequencies, P(θ, y) is the joint density of both θ and y, and Z
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(θ) is the normalising constant dependent on the parameter θ. The posterior probability distri-
bution function of the variable θ is expressed as follows (Liang et al., 2010; Joubert and
Marwala, 2015):

P θjyð Þ= 1
Z θð ÞP θ,yð ÞP θð Þ; ð5:15Þ

where P(θ) represents the prior distribution function, and a state in a Markov chain of popu-
lation size N is expressed as a joint function θ,wð Þ= θ1,w1;…; θN ,wNf g. An iteration of the
technique entails the following (Liang et al., 2010):

1. Dynamic weighting. Each state is updated by a dynamic weighting transition step with the
purpose of calculating a new population.

2. Population control. A population control system where samples connected to small weights
with reference to successful finite element model updating are eliminated, whereas weighted
samples with stronger significance to the model objective function are reproduced in the
new population. This results in biased samples but is compensated by allocating new
weights to sample data in the new population.

5.5.1 Markov Chain

If we simulate the states θ = θ0:i−1; i= 1,…,Nf g via the MCMC technique, then we calculate
the importance sampling approximation and the normalisation constant ratio
Rt θ,θ

∗ð Þ =Z θð Þ=Z θ∗ð Þ as follows (Liang et al., 2010; Joubert and Marwala, 2015):

Rt θ,θ
∗ð Þ = wt

M

XM
i= 1

P yi,θð Þ
P yi,θ

�ð Þ: ð5:16Þ

Thus the Monte Carlo dynamic weighting ratio may be estimated as follows (Liang et al.,
2010; Joubert and Marwala, 2015):

rd = rd θ,θ�,wð Þ = Rt θ,θ
∗ð ÞP y,θ�ð Þ

P y,θð Þ
q θ�jθð Þ
q θjθ�ð Þ ; ð5:17Þ

where q θ�jθð Þ is the proposal distribution function.

5.5.2 Adaptive Pruned-Enriched Population Control Scheme

The adaptive pruned-enriched population control scheme (APEPCS) controls the steps of the
algorithm in the dynamic weighting and population. The weight of the population that is
located outside the weight boundsWup and Wlow is handled by applying the control parameter
ds in the enriching stage where wt,i is too large, and the probability density parameter q during
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the pruning stage (wt, i <Wlow), of the population control scheme.Weighting is controlled by the
ratio of the upper to the lower weight control bounds and is written as k =Wup=Wlow. This ratio
controls the movement of the system and is known as the freedom parameter (Liang et al.,
2010; Joubert and Marwala, 2015; Joubert, 2015).
To summarise the concept of the APEPCS, several parameters will be defined. First, the sam-

ples are drawn first using the M-H algorithm. The current population is (θt,wt), where the ith
state of the population is (θt,i,wt,i). Let nt and nt0 represent the current and new population sizes.
The minimum and maximum population sizes allowed by the user are nmin and nmax, respect-
ively. The APEPCS consists of the following steps (Liang, 2002; Joubert and Marwala, 2015;
Joubert, 2015):

1. Initialise weight control bounds. The upper and lower weight control bounds are written as
(Liang, 2002)

Wlow, t =
Xn
i= 1

wt, i=nup; ð5:18Þ

Wup, t =
Xn
i= 1

wt, i=nlow; ð5:19Þ

where nup and nlow are reference bounds on the population size.
2. Pruning. The state is accepted with probability q = 1−wt, i=Wlow, t when the ithindividual

weight of the population is less than the lower weight control bound and there-
fore n0t + 1 = n

0
t + d.

3. Enrich. If wt, i >Wup, t, the ith state weight is substituted by an enriched state w0t, i = wt, i=d,

where d = wt, i=Wup, t + 1
� �

and the new population is adapted.
4. Unchanged. If Wlow, t <wt, i <Wup, t, the state remains the same and the new population is

increased by 1 and therefore n0t + 1 = n
0
t + 1.

5. Check. If n0t > nmax, the upper and lower control bounds are then adapted and therefore
Wlow, t λWlow, t and Wup, t  λWup, t. Steps 2–4 are then reiterated for i= 1,2,…,n0t. If
n0t < nmin, Wlow, t Wlow, t=λ and Wup, t Wup, t=λ, then steps 2–4 are repeated.

There are two population control techniques: the W-scheme and the R-scheme. In this
chapter the R-scheme is used (Liang, 2002; Joubert and Marwala, 2015; Joubert, 2015).
The dynamic weighting and population control of the R-scheme are as follows:

1. Dynamic weighting (Liang, 2002; Joubert and Marwala, 2015; Joubert, 2015). The proced-
ure is applied to θt−1,wt−1ð Þ where Wc is the dynamic switching parameter that alters
the value of φt to either 0 or 1, depending on the value of Wup, t−1. If Wup, t−1 ≤ Wc, then
φt = 1, otherwise φt = 0 and the new population is then θ0t,w

0
t

� �
. The parameter φt is selected

as a function of (θt,wt), and it should be noted that if φt = 0 then the sampler is basically a
random walk process, and if φt = 1 then the sampler performs the R-type move. The intro-
duction of the φt parameter is to prevent the weighting technique from converging to zero
or infinity.
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2. Population control (Liang, 2002; Joubert and Marwala, 2015; Joubert, 2015). The APEPCS
is then applied to the new population and the new population then becomes (θt,wt).

The W-scheme consists of the following techniques:

1. Initial weight control (Liang, 2002; Joubert and Marwala, 2015; Joubert, 2015). If
nt−1 < nlow, then Wlow, t =Wlow, t−1=λ and Wup, t =Wup, t−1=λ. If nt−1 > nup, then
Wlow, t = λWup, t−1 and Wup, t = λWup, t−1. Or else Wlow, t =Wup, t−1 and Wup, t =Wup, t−1.

2. Dynamic weighting (Liang, 2002; Joubert and Marwala, 2015; Joubert, 2015). Use the pre-

vious population θt−1, wt−1ð Þ with δt = 1= α+ βW1 + ϵ
up, t

	 

for some positive integer ϵ > 0, and

then θ0t,w
0
t

� �
is regarded as the new population.

3. Population control (Liang, 2002; Joubert and Marwala, 2015; Joubert, 2015). APEPCS is
applied to the population θ0t,w

0
t

� �
, and the resulting new population is then denoted by

(θt,wt).

For finite element model updating Joubert and Marwala (2015) used the R-scheme and set
the M-H ratio as r θt−1, θtð Þ= R̂ θt−1, θtð Þα θt−1, θtð Þ, where R̂ θt−1, θtð Þ is the approximated nor-
malising constant. Then the expectation for wt can be estimated as follows (Liang et al., 2010;
Joubert and Marwala, 2015; Joubert, 2015):

E wtjθt−1,θt,wt−1½ � =wt−1 1 + r θt−1, θtð Þ½ �: ð5:20Þ

From Equation 5.20, it is evident that because the M-H ratio is always greater than zero the
weight process is characteristically monotonically increasing, and therefore it is important to
ensure that the weight does not drift to zero or infinity. This is achieved by analysing the weight
behaviour at every time step and constraining the upper limit of the weight. When φt = 0 the
weight is regulated by (Liang et al., 2010; Joubert and Marwala, 2015; Joubert, 2015)

wt = exp logw0 +
Xt
s= 1

logr θt−1, θtð Þ−
Xt
s= 1

logds

 !
; ð5:21Þ

where ds is the integer set at the pruning stage of the APEPCS.

5.5.3 Monte Carlo Dynamically Weighted Importance Sampling

First, a proposed sample θ∗ is drawn from the proposal distribution q θ∗jθtð Þ and sampled
state trajectories are generated from f yjθ∗ð Þ using the M-H technique y = y1,…, yMf g. Then
the importance sampling estimate is calculated from the normalisation constant ratio
R̂t θ,θ

�ð Þ =Z θð Þ=Z θ∗ð Þ (Liang et al., 2010; Joubert and Marwala, 2015; Joubert, 2015):

R̂t θt,θ
�ð Þ = 1

M

XM
j= 1

P yj,θ
� �

P yj,θ
∗� �: ð5:22Þ
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TheMonte Carlo dynamic weighting ratio is then estimated from Equation 5.22 and the con-
ditional probability distribution is written as P y, θtð Þ =P θtjyð ÞP yð Þ (Liang et al., 2010; Joubert
and Marwala, 2015; Joubert, 2015):

rd = rd θt,θ
∗,wð Þ= wR̂t θt,θ

�ð ÞP y,θ∗ð Þ
P y, θtð Þ

q θtjθ�ð Þ
q θ∗jθtð Þ : ð5:23Þ

The joint probability density function is updated via random numbers from the uniform
distribution U�U 0,1ð Þ as follows (Liang et al., 2010; Joubert and Marwala, 2015;
Joubert, 2015):

θ0, w0ð Þ=
θ�,

rd
a

	 

, if U ≤ a,

θ,
w

1−a

	 

, otherwise;

8><
>: ð5:24Þ

where a= rd= rd +φtð Þ.
Given the dynamic weights as well as the corresponding sampled parameters, (θ1,w1),

(θ2,w2),…, (θN,wN), the weighted average of the samples is written as follows (Liang et al.,
2010; Joubert and Marwala, 2015; Joubert, 2015):

μ̂=
XN
t = 1

Xn0
i = burn-in + 1

wt, iρ θt, ið Þ
wt, i

� �
; ð5:25Þ

where ρ(θt) denotes a state function over all the samples.

5.6 Application 1: Cantilevered Beam

The objective of finite element model updating is to minimise the distance between the final
element model results and the measured data. In this section we use the cantilevered beam data
studied and reported in Marwala (1997). The five natural frequencies obtained from the meas-
urements of this cantilevered beam are represented as a vector, fmodes = f1, f2, f3, f4, f5½ �. The
MCDWIS andM-H techniques are applied for finite element model updating of the cantilevered
beam (Marwala, 1997, 2010). On implementing the MCDWIS technique the parameters
stipulated in Table 5.1 are used. The auxiliary samples were then drawn using the M-H
sampling technique.
The approximation procedure involves computing an importance sampling estimate, as

described in Section 5.4, and then applying the dynamic weighting procedure and the APEPCS
procedures. The population is controlled in the population range [nmin , nmax]. Figure 5.1 shows

Table 5.1 MCDWIS algorithm parameters

Algorithm parameter N Burn-in Wc nmin nmax nlow nup λ k

Values 1000 250 e5 100 1000 200 500 2 log10Wc
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the distribution of the fifth variable parameter (Joubert and Marwala, 2015; Joubert, 2015). It is
shown that the dynamic weighting procedure and population control method give distributions
of Gaussian shape. Using the dynamic weighting, preference is assigned to the samples with the
highest weight distributions.
Figure 5.2 demonstrates that the adaptation of the population size in the simulation is influ-

enced by the APEPCS procedure. Figures 5.3 and 5.4 demonstrate the log weight distributions
at different states i in the simulation, and the Gaussian shapes of these distributions demonstrate
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the functionality of the population control and dynamic weighting techniques. Figure 5.5 dem-
onstrates the adaptation of the upper weight control bound, and in the simulation the weight
control bounds were initialised as follows: Wup,0 = k and Wlow,0 = 1.
The population control parameters were adjusted to facilitate adequate transitional ability

between states and in such a way that the upper and lower weight control bounds avoid drifting
exponentially away from the controlled range. These techniques prevent the sampling sequence
frommerely becoming a randomwalk, which weakens the ability of the dynamic weighting and
population control procedures.
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Tables 5.2 and 5.3 show the results for the parameter vector θ = E1,E2, E3, E4 ,E5f g and the
resulting vector of computed natural frequencies fmodes = f1, f2, f3, f4, f5f g. It is evident that the
MCDWIS method is more accurate than the M-H method and is reliable and computationally
efficient. Figure 5.6 demonstrates the correlation between new samples chosen at the
100th state.
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Table 5.2 Variable parameter vector results

D Initial θ0

θ vector
M-H method

θ vector
MCDWIS method

E1 2:4 × 1011 2:18 × 1011 2:1524 × 1011

E2 2:4 × 1011 2:19 × 1011 2:1091 × 1011

E3 2:4 × 1011 2:19 × 1011 2:0430 × 1011

E4 2:4 × 1011 2:20 × 1011 2:0342 × 1011

E5 2:4 × 1011 2:19 × 1011 2:0336 × 1011

Table 5.3 Cantilever frequency results

Measured frequency
(Hz)

Initial frequency
(Hz)

M-H frequency
(Hz)

MCDWIS frequency
(Hz)

31.9 32.7 30.7 30.8
197.9 209.4 196.1 194.8
553.0 559.8 556.9 553.2
1082.2 1177.8 1102.7 1094.4
1781.5 1961.7 1836.9 1824.0
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5.7 Application 2: H-Shaped Structure

The asymmetrical H-shaped beam aluminium structure studied and reported inMarwala (1997)
was modelled using the finite element model technique, and modal frequencies were extracted
using modal analysis. This structure was excited using an electromagnetic shaker and
modal hammer, and the response was measured using strategically placed accelerometers. Data
acquisition was conducted and data were recorded. The uncertainty parameters in the finite
element model were the corresponding areas and moments of inertia, expressed as the vector
θ = Ax1, Ax2,Ax3, Ix1,Ix2, Ix3½ �. The statistical input parameters (covariance) and population
control parameters were tuned to meet the model needs in the MCDWIS algorithm. The results
from the MCDWIS and M-H algorithms were compared. The measured frequencies for
the mode shapes were 53.9, 117, 208.4 and 445 Hz. Physical properties not updated in the finite
element model included the Young’s modulus, the material density and dimensions of the
structure. Young’s modulus was fixed at 7:2 × 1010 N=m2 and density at 2785 kg/m3. The
covariance started with a value of σ2 = 5 × 10−8 on the diagonals of a 6 × 6 matrix. The proposal
was truncated to fall between a lower limit of θmin = 1:7265 × 10−8,

�
1:7265 × 10−8,1:7265 ×

10−8,2:1556 × 10−4,2:1556 × 10−4,2:1556 × 10−4� and an upper limit of θmax = 3:7265 ×½
10−8, 3:7265 × 10−8, 3:7265 × 10−8, 4:1556 × 10−4, 4:1556 × 10−4, 4:1556 × 10−4�. These
methods were initialised at θ0 = 2:7265 × 10−8, 2:7265 × 10−8,2:7265 × 10−8, 3:1556 × 10−4,

�
3:1556 × 10−4,3:1556 × 10−4�.
The state of the Markov chain in the MCDWIS algorithm was improved to a population of

weighted samples (θt,i, wt,i), where t = 1,…, Nf g. The Monte Carlo dynamic weighting step
updates each individual state of the current population by a dynamically weight correlated
value. The second step is APEPCS which replicates states with large weights and rejects
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the individual states with small weights. The algorithm parameters were chosen as shown in
Table 5.4.
The samples were stored in a multidimensional array as: samples = zeros N, nmax,6ð Þ.

Figure 5.7 demonstrates how the tables were construed, with each page a matrix of samples
for each variable parameter (Joubert and Marwala, 2015; Joubert, 2015). The index nmax is
the maximum population size which differs in the simulation and is expressed by n0 as
described in the APEPCS, and this n0 variation is regulated within the range [nmin, nmax].
The upper weight control boundWup was started at k, and the starting value ofWlow was made
equal to 1. The subsequent samples were pseudo-random variables sampled from an abridged
Gaussian distribution. Figures 5.8 and 5.9 show the log-weight for the 10th and 100th states
respectively. Figure 5.10 shows the overall log weight results.
The population size at time t, given by n0, was enhanced by the pruning and enriching steps

and using the checking routine, andWlow, t + 1 and Wup, t + 1 were calculated. The dynamic move
switching parameter φt, was estimated using the R-scheme in the dynamic weighting step. The
initial population was created from the M-H algorithm to offer the main run of the MCDWIS a
good initial sample distribution. Three thousand M-H method iterations were carried out, of
which the first 1000 were eliminated as burn-in. Figures 5.8 and 5.9 show the log-weight
for the 6th and 10th states respectively and Figure 5.10 the overall log weight results, while
Figure 5.11 shows the population size. Figure 5.10 demonstrated the adaptation characteristics
of Wup,t. The results in Tables 5.5 and 5.6 show that the MCDWIS results are more accurate
than the M-H results. The MCDWIS method was found to be faster and more accurate than the

Table 5.4 MCDWIS algorithm parameters

Algorithm parameter N Burn-in Wc nmin nmax nlow nup λ k

Values 1200 250 e5 100 1000 200 500 2 log10Wc

(4,1,3)

Page

Row

(1,1,2) (1,2,2) (1,3,2) (1,4,2)

(2,1,2) (2,2,2) (2,3,2) (2,4,2)

(3,1,2) (3,2,2) (3,3,2) (3,4,2)

(4,1,2) (4,2,2) (4,3,2) (4,4,2)

(1,1,3) (1,2,3) (1,3,3) (1,4,3)

(2,1,3) (2,2,3) (2,3,3) (2,4,3)

(3,1,3) (3,2,3) (3,3,3) (3,4,3)

(4,2,3) (4,3,3) (4,4,3)

(1,1,1) (1,2,1) (1,3,1) (1,4,1)

(2,1,1) (2,2,1) (2,3,1) (2,4,1)

(3,1,1) (3,2,1) (3,3,1) (3,4,1)

(4,1,1) (4,2,1) (4,3,1) (4,4,1)

Column

Figure 5.7 Multidimensional array with each page a matrix of samples for each variable parameter
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Table 5.5 Updating vector

D Initial θ0

θ vector
M-H method

θ vector
MCDWIS method

Ax1 2:7 × 10−8 2:31 × 10−8 2:2366 × 10−8

Ax2 2:7 × 10−8 2:68 × 10−8 2:4680 × 10−8

Ax3 2:7 × 10−8 2:17 × 10−8 2:7389 × 10−8

Ix1 3:1 × 10−4 2:85 × 10−4 3:9876 × 10−4

Ix2 3:1 × 10−4 2:83 × 10−4 2:3254 × 10−4

Ix3 3:1 × 10−4 2:77 × 10−4 2:1756 × 10−4

Table 5.6 Natural frequencies

Mode
Measured
frequency

Initial
frequency

M-H
frequency

MCDWIS
frequency

1 53.9 51.0389 53.92 53.05
2 117.3 115.7929 122.05 118.68
3 208.4 199.8772 210.93 208.15
4 253.0 246.0752 258.94 256.08
5 445 389.1767 410.33 446.96
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M-H algorithm. Additionally, the MCDWIS method was observed to be stable and reliable for
higher-dimensional problems. The weight characteristics were applied to estimate the unbiased
normalisation constants using the IS estimate, R̂t θt,θ

∗ð Þ=Rt θt,θ
∗ð Þ. Figure 5.12 demonstrates

the correlation between samples of the 100th state, and the symmetry over the diagonals of the
correlation shows the correlation of the samples.

5.8 Conclusions

The MCDWIS algorithm was applied for finite element model updating to approximate
unbiased estimates controlled within a targeted reduced variance range from the originally
drawn samples. By applying population control procedure the system was made adaptive to
the needs of the environment and fixing the posterior distribution function. The MCDWIS
was compared to the M-H method and found to be computationally more efficient and accurate
than the M-H method. The MCDWIS approach provided a number of advantages compared to
the M-H algorithm: the DWIS allows for adjusting the mixing abilities of the system (allowing
for high or low correlated samples) by tuning freedom parameters according to the specific
problem, and it offered stable estimates and converged faster.
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6
Adaptive Metropolis–Hastings for
Finite Element Updating

6.1 Introduction

This book is concerned with model selection to identify the most appropriate finite element
model updating parameters given the measured data. A good model is one that satisfies the
principle of Occam’s razor, which states that the simplest model that describes the observed
data is the best one (Anderson, 2008; Ando, 2010). This book has also studied criteria for model
selection, such as the Akaike information criterion, optimal design, statistical hypothesis test-
ing, Occam’s razor, the Bayes factor, structural risk minimisation, cross-validation, and the
Bayesian information criterion (Breiman, 2001; Burnham and Anderson, 2002). Nested sam-
pling, cross-validation and regularisation techniques have been applied for finite element
model selection in structures.
This book implements Bayesian statistics as a mechanism for model selection and finite

element model updating to produce probabilistic finite element model updating. In this regard,
given the distribution of the measured natural frequencies and some known physical properties,
the Bayesian technique is used to estimate the distribution of the unknown parameters –

referred to as the stochastic system identification procedure (Gelman et al., 2013; Albert,
2009). The Bayesian formulation was solved using the Markov chain Monte Carlo method,
which is a statistical procedure for computationally sampling a probability distribution function
based on the Markov process, randomwalk andMonte Carlo simulation. Thus far, in this book,
the following methods have been used to sample the posterior probability distribution function:
the Metropolis–Hastings (M-H) algorithm, slice sampling and the Monte Carlo dynamically
weighted importance sampling (MCDWIS) algorithm (Berg, 2004; Asmussen and Glynn,
2007; Joubert, 2015).
In this chapter, the adaptive Metropolis–Hastings (AMH) method is described and applied to

update finite element models of a cantilevered beam, as well as an asymmetrical H-shaped

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and
Mechanical Engineering, First Edition. Tshilidzi Marwala, Ilyes Boulkaibet and Sondipon Adhikari.
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structure. The results of using the AMHmethod are compared to those obtained from using the
MCDWIS algorithm.

6.2 Adaptive Metropolis–Hastings Algorithm

Sejdinovic et al. (2014) proposed the kernel based AMH method for sampling from a target
distribution with significant non-linear characteristics. In this proposed method, the kernel Hil-
bert space is used in the trajectory of the Markov chain in such a way that the feature space
covariance of the samples informs the choice of the proposal (Berlinet and Thomas, 2004).
The proposed method was found to be computationally efficient and simple to design and
use because the kernel Hilbert space moves were calculated analytically. In this technique,
the proposal distribution was a Gaussian distribution with a mean and covariance influenced
by the current sample which was in support of the target distribution and updated the local
covariance. This method does not necessitate the gradients of the target distribution and per-
forms better than fixed and adaptive methods.
Luengo and Martino (2013) proposed an AMH algorithm to sample from general multi-

modal andmulti-dimensional target distributions. In the proposed technique, the proposal dens-
ity was a mixture of Gaussian densities with weights, mean vectors and covariance matrices
identified using recursive rules. Griffin and Walker (2013) proposed AMH methods which
used the product of a proposal density and K duplicates of the target density to describe a joint
density. The Gibbs technique was used with the Metropolis algorithm to sample the target dis-
tribution (Casella and George, 1992). Cui et al. (2011) applied the AMH method for Bayesian
approximation of the parameters of a numerical model of a geothermal reservoir. This proced-
ure was proposed for the sake of the sampling efficiency and was observed to offer significant
improvement, particularly in problems with large degrees of freedom.
Giordani and Kohn (2010) proposed an AMH method that used a mixture of normal distri-

butions as a proposal distribution and was applied to real situations and simulated data, while
Holden et al. (2009) proposed an AMH algorithm that learned from all previous states (not just
one previous state) in the chain, except the current state. Using previous sates in sampling helps
the proposed distribution to be a better approximation of the target distribution. This adaptive
algorithm is useful in problems of Bayesian estimation. Cai et al. (2008) proposed a general
type of AMH method based on M-H and Gibbs sampling, which was more efficient than other
adaptive methods such as the normal kernel coupler. Wolpert and Lee (2006) applied the AMH
method to sample and optimise a number of spin-glasses and found it to perform better than the
classical M-H method. Behmanesh and Moaveni (2013) applied the AMH algorithm in finite
element model updating of a footbridge structure on Tufts University campus, and used this to
simulate structural damage using the measured modal properties and generate a convergent
Markov chain for the proposal probability density function.
In order to understand the AMH method, it is important to locate it within the framework of

the M-H algorithm (Calderhead, 2014; Vu et al., 2014; Monroe and Cai, 2014; Eberle, 2014;
Van Dyk and Jiao, 2015). The M-H algorithm is a simple Markov chain Monte Carlo method,
which is utilised to accept or reject generated random samples. Usually, these samples are gen-
erated simply by adding some random noise from some proposal distribution to the previous
state in the Markov chain with this noise. The most frequently used proposal distribution is the
normal distribution with a prescribed variance, and this can be expressed mathematically as
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θ� = θt +N 0, σ2ð Þ The M-H algorithm then accepts the current state if the target probability of
the current state is higher than the target probability of the previous state. If the target probabil-
ity of the current state is lower than the target probability of the previous state, then the M-H
algorithm conducts a random guess to accept the current state with a lower probability. The
Markov chain is generated such that all accepted states converge to the target stationary prob-
ability distribution.
In the M-H algorithm, samples are drawn from the proposal distribution q θ�jθtð Þ where θ∗

indicates the proposed value. The M-H algorithm is summarised by the following steps
(Metropolis et al., 1953; Hastings, 1970; Roberts et al., 1997; Gelman et al., 1996; Teller,
2001; Robert and Casella, 2004; Gubernatis, 2005; Brooks et al., 2011; Joubert, 2015):

1. Initialise θ0.
For j= 0 :M−1 where M − 1 is the number of samples

2. Propose a new sample from the proposal distribution θ� � q θ∗jθj
� �

.
3. Generate uniform random variables, u�U 0,1ð Þ.
4. Transit to the next stage according to the following transition probability:

If u < α θj+ 1,θ
�� �

=min 1,
P θ∗jDð Þq θjjθ∗

� �
P θj−1jD
� �

q θ∗jθj
� �

)(

θj+ 1 = θ�

else

θj+ 1 = θj :

5. Return to step 2.

The AMH algorithm works by perturbing the proposal distribution through continuously
scaling the system covariance to attain convergence. The adaptation mechanism impacts both
the size and spatial orientation of the proposal probability density function, and a scaling factor
is augmented to the covariance matrix to identify the optimal covariance matrix that correlates
to the target probability distribution (Haario et al., 2001; Joubert, 2015). Therefore, the covari-
ance matrix is a function of the scaling factor.
In this chapter, we review the use of the AMH method in finite element model updating to

estimate the finite element model updating posterior probability distribution function
(Joubert, 2015):

P θjDð Þ/ 1
Zs α,βð Þexp −

βc
2

XNm

i

f mi − fi
f mi

� �2

−
Xd
i

αi
2

θi−θ
0
i

�� ��2
 !

; ð6:1Þ

where the normalisation constant is

Zs α,βð Þ= 2π
βc

� �Nm=2 YNm

i= 1

f mi 2πð Þd=2
Yd
i= 1

1ffiffiffiffi
αi

p ; ð6:2Þ
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f mi is the ith measured frequency, fi is the ith calculated frequency, and αi and βc are
hyperparameters.
In this regard, the AMH method was applied in the same way as by Haario et al. (2001)

where the covariance matrix Σθwas approximated from the output of the available Monte Carlo
output density functions, and this permits the covariance matrix Σθ to adapt as the simulation
progresses.
For the random walk Gaussian proposal distribution, q θ0jθð Þ=N θ0,θ,Σθð Þ which is the

probability density function of the multivariate Gaussian with mean θ and a covariance
matrix Σθ. Gelman et al. (1996) observed that the desired optimal covariance matrix can
be written as (2.382/d)Σθ under particular conditions where d is the dimension of the
stochastic variables: the mean μθ and the covariance matrix Σθ of the target probability dis-
tribution P(.).
The proposed distribution can be used to sample the states θ0,θ1,…,θm−1 at time m−1,

where θ0 is the initially estimated state, and then the covariance Σm =Cov θ0,θ1,…,θm−1ð Þ is
calculated from the mean of the current state θm−1 in the Gaussian proposal distribution. Note
that the target distribution is bounded in the subset S2Rd. In the adaptive algorithm, the covari-
ance matrix of the proposed distribution depends on the previous chain of states, and this can be
represented, after an initial period, by sdCov θ0,…, θh−1ð Þ+ sdεId where sd is the scaling factor,
ε is a constant greater than zero but smaller than the size of the search space and Id is the d-
dimensional identity matrix. To implement the adaptation of the covariance matrix, an initial
covariance matrix is chosen such that Σ0 > 0, and the length of the initial period is selected such
that t0 > 0; then the covariance can be written as (Gelman et al., 1996; Newman and Barkema,
1999; Joubert, 2015)

Σm =
Σ0 m ≤ t0,

sdCov θ0,…, θh−1ð Þ+ sdεId , m ≥ t0:

(
ð6:3Þ

The covariance matrix Σm is consequently a function ofm variables from the search spaceRd

and is a uniform positive definitive matrix (Horn and Johnson, 1990; Bhatia, 2007). If we con-
sider the definition of the empirical covariance matrix which is established by the observed
states in the search space and suppose that the elements are column vectors,
θ0,θ1,…,θm 2Rd, then (Gelman et al., 1996; Joubert, 2015)

Cov θ0,…, θmð Þ= 1
m

Xm
i= 1

θiθ
T
i − h−1ð Þ �θι �θιT

 !
; ð6:4Þ

where �θ= m+ 1ð Þ−1
Xi

j= 0
θj. The recursive formula to solve the consecutive covariance,

for m ≥ t0 + 1, can then be mathematically expressed as follows (Gelman et al., 1996; Joubert,
2015):

Σm + 1 =
m−1
m

Σm +
sd
m

m �θιm−1
�θι
T
m−1− m+ 1ð Þ�θm�θTm + θmθ

T
m + εId

� 	
: ð6:5Þ
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This can then be additionally abridged by presenting a gain factor sequence and expressing it
as {ym}. Accordingly the following conditions must then be satisfied as is needed by the stand-
ard stochastic estimation (Haario et al., 2001; Joubert, 2015):

X∞
m = 1

γm = ∞ ,
X∞
m= 1

γ1 + δm < ∞ for some δ2 0,1ð �: ð6:6Þ

The AMH algorithm can therefore be described mathematically as follows (Haario et al.,
2001; Joubert, 2015):

1. Given θ0 , μ0 and Σ0.
2. Begin the Markov chain process and for iteration h + 1 ensure the availability of θm, μm

and Σm.
a. Establish the M-H kernel to estimate the probability density distribution at

m+ 1, Pμm, Σm θm, �ð Þ.
b. Update the mean vector and covariance matrix

μm+ 1 = μm + γm + 1 θm + 1− μmð Þ
Σm + 1 = Σm + γm+ 1 θm + 1− μmð Þ θm + 1− μmð ÞT − Σm


 �
:

3. Go to step 2.

The AMHmethod is applied to a cantilevered beam and an asymmetrical H-shaped structure
and the results are compared to those obtained from the MCDWIS described in Chapter 5.

6.3 Application 1: Cantilevered Beam

In this chapter finite element model updating based on the AMH method is used to resolve the
differences between the results from a finite element model of a cantilevered beam with experi-
mental data measured by Marwala (1997). The results of the AMH method are compared to
those obtained from the MCDWIS method as was done in Chapter 5. The AMH algorithm
is applied by perturbing the covariance matrix of the system with the expectation that it will
converge to the unknown target distribution. The AMH algorithm begins by using cumulated
observations through pre-run and burn-in stages to update the covariance and scaling factor,
making the sampling is more effective at an early stage of the simulation thus diminishing
the number of evaluations needed.
The proposal distribution for the simulated states is a Gaussian distribution with mean at the

current state θt (μt as presented in the previous AHM algorithm) and covariance sdΣθ, where Σθ

is the covariance matrix determined by the spatial distribution of the states, θ0,θ1,…,θm 2Rd.
The scaling parameter sd depends only on the dimension d of the sample space, and this imple-
mentation guides the proposal distribution to approach an appropriately scaled Gaussian
approximation of the target distribution and thus improves the efficiency of the simulation.
The proposal distribution was set to fall between xmin = 1:8 × 1011, 1:8 × 1011, 1:8 × 1011,
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1:8 × 10111:8 × 1011� and xmax = 2:4 × 1011, 2:4 × 1011, 2:4 × 1011, 2:4 × 1011, 2:4 × 1011

 �

. The

initial vector was initialised as θ0 = 2:4 × 1011, 2:4 × 1011, 2:4 × 1011, 2:4 × 1011, 2:4 × 1011

 �

.

The initial covariance matrix, Σ0 was set to 1:2 × 1010 on the diagonals of a 5 × 5 matrix.
The adaptation on the scaling parameter sd and the covariance matrix Σθ implemented the
pre-run and burn-in stages of the algorithm. Figures 6.1 and 6.2 show the adaptation of the
scaling parameter sd and the covariance matrix Σθ. Figure 6.3 shows the correlation represen-
tation between the updating parameters and Figure 6.4 show the adaptation and the probability
density estimate of the first updating parameter.
Tables 6.1 and 6.2 show the results for the parameter vector θ = E1,E2, E3, E4 ,E5f g and the

resulting vector of computed natural frequencies f = f1, f2, f3, f4, f5f g.
The total mean error is the average between the calculated frequency and the measured

frequencies, and the results show that the MCDWIS algorithm is 0.38% more accurate than
the AMH algorithm. Therefore, the MCDWIS method is a more reliable technique for finite
element model updating as it is more accurate and computationally efficient than the AMH
technique, while the AMH algorithm is more computationally expensive due to the number
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of iterations needed to update the covariance matrix for convergence to the target distribution
and the fact that the scaling coefficient adapts during the pre-run and burn-in stages of the algo-
rithm whereas the covariance updating occurs in the burn-in stage. Furthermore, in the AMH
algorithm the runtime depends on the number of samples drawn; however, it was observed that
with fewer burn-in iterations the algorithm performs poorly. Accordingly, the total number of
iterations used in implementation of the AMH algorithm was 2100: 100 for the pre-run step,
1000 for burn-in step and 1000 in the final run step.
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6.4 Application 2: Asymmetrical H-Shaped Beam

An asymmetrical H-shaped aluminium structure was modelled using the finite element model
technique in the MATLAB environment and modal frequencies were obtained by using modal
analysis (Marwala, 1997). This structure was excited using an electromagnetic shaker and
modal hammer, and the response was measured using a roving accelerometer. Data acquisition
was carried out and data were recorded; the uncertainty parameters in the finite element model
were the corresponding areas and moments of inertia, θ= Ax1, Ax2,Ax3,Ix1, Ix2,Ix3½ �.
The AMH and the MCDWIS techniques were employed to update a finite element model of

the asymmetrical H-shaped beam. The statistical input parameters (i.e. covariance) and popu-
lation control parameters were selected to meet the model needs in the MCDWIS algorithm.
The results of the AMH method were compared to the results the MCDWIS algorithm. The
measured natural frequencies were: 53.9, 117, 208.4 and 445 Hz. Physical properties not
updated in the finite element model included Young’s modulus, the material density and
dimensions of the structure. Young’s modulus was fixed at 7:2 × 1010 N=m2 density at
2785 kg/m2.
The covariance matrix Σ was started with a value of 5 × 10−8 on the diagonals of a 6 × 6

matrix and the proposal was truncated between θmin = 1:7265 × 10−8, 1:7265 × 10−8,



1:7265 × 10−8, 2:1556 × 10−4, 2:1556 × 10−4, 2:1556 × 10−4� and θmax = 3:7265 × 10−8,



3:7265 × 10−8, 3:7265 × 10−8, 4:1556 × 10−4, 4:1556 × 10−4, 4:1556 × 10−4�. The methods
were initialised at θ0 = 2:7265 × 10−8, 2:7265 × 10−8, 2:7265 × 10−8, 3:1556 × 10−4,



3:1556 × 10−4, 3:1556 × 10−4�.

Table 6.2 Cantilevered beam frequency results

Mode
Measured

frequency (Hz)
Initial

frequency (Hz)
MCDWIS

frequency (Hz)
AMH

frequency (Hz)

1 31.9 32.7 30.77 30.59
2 197.9 209.4 194.81 195.91
3 553 594.8 553.24 556.34
4 1082.2 1177.8 1094.4 1101.7
5 1781.5 1961.7 1824.00 1834.9

Table 6.1 Cantilever frequency results

Parameters Initial θ0

θ vector
MCDWIS method

θ vector
AMH method

E1 2:4 × 1011 2:1524 × 1011 2:0993 × 1011

E2 2:4 × 1011 2:1091 × 1011 2:0997 × 1011

E3 2:4 × 1011 2:0430 × 1011 2:1006 × 1011

E4 2:4 × 1011 2:0342 × 1011 2:1001 × 1011

E5 2:4 × 1011 2:0336 × 1011 2:0994 × 1011
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Figures 6.5 and 6.6 demonstrate the adaptation of the scaling factor and covariance matrix,
respectively. Owing to the adaptation procedure of this algorithm it is vital to confirm that the
covariance matrix is positive definite. This is because the covariance matrix should be
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Figure 6.6 Adaption of covariance matrix

Adaptation process of the scaling factor s

100

10–1

10–2

10–3

200 300 400 500

Number of iterations

600 700 800 900 1000

Δ m
 =

 ‖s
m

–
s m

–1
‖

Figure 6.5 Adaption of scaling factor

112 Probabilistic Finite Element Model Updating



symmetric, Σij = Σji, which is derived from the general definition Σij =Ex�p xi− μið Þ xj− μj
� �
 �

where i and j range from 1 to d. An additional prerequisite is to use the MATLAB Cholesky
positive definite test. Figure 6.7 demonstrates the adaptation of a sample parameter of the first
uncertain parameter θ1 with its corresponding kernel density approximation which is funda-
mentally an approximation of the probability density. Figure 6.8 demonstrates the correlation
between the sampled parameters. The algorithm was once more specified with 100 pre-run
iterations, 1000 burn-in samples and in the final run 500 samples 20 times.
Tables 6.3 and 6.4 show the results for the parameter vector θ and the resulting vector of

computed natural frequencies, f = f1, f2, f3, f4, f5f g. From the results it can be determined that
MCDWIS computes the most accurate sample estimates and the MCDWIS is 0.86% more
accurate than AMH method.

6.5 Application 3: Aircraft GARTEUR Structure

The aircraft GARTEURmodel is a familiar apparatus in the structural dynamics research arena,
offering researchers shared infrastructure for testing different hypotheses in finite element
model updating. This chapter applies the AMH and the MCDWIS procedures with higher-
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Table 6.4 Beam frequency results

Mode
Measured

frequency (Hz)
Initial

frequency (Hz)
MCDWIS

frequency (Hz)
AMH

frequency (Hz)

1 53.9 51.0389 53.05 53.4294
2 117.3 115.7929 118.68 119.6341
3 208.4 199.8772 208.15 211.4322
4 254.0 246.0752 256.08 255.6062
5 445 389.1767 446.96 429.7475
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Figure 6.8 3D bar graph of the parameter correlation

Table 6.3 H-beam variable parameter vector results

Parameters Initial θ0

θ vector
MCDWIS method

θ vector
AMH method

Ax1 2:7 × 10−8 2:2366 × 10−8 2:7485 × 10−8

Ax2 2:7 × 10−8 2:4680 × 10−8 2:6251 × 10−8

Ax3 2:7 × 10−8 2:7389 × 10−8 3:0174 × 10−8

Ix1 3:1 × 10−4 3:9876 × 10−4 3:4330 × 10−4

Ix2 3:1 × 10−4 2:3254 × 10−4 2:5934 × 10−4

Ix3 3:1 × 10−4 2:1756 × 10−4 2:3990 × 10−4
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dimensional uncertainty in the model to evaluate the usefulness of the procedures as well as
their integrity in the finite model updating problem. The conventional M-H method was
observed to give poor results for the higher-dimensional model (Joubert, 2015). Consequently,
it is inferred that the ordinary M-H is devoid of computational efficiency and estimation pre-
cision for more complex finite element models such as the GARTEUR (Degener and Hermes,
1996; Friswell, 2003). The nominal length and width of the aircraft structure were 1.5 and 3 m
respectively, it was made of aluminium with a total mass of 44 kg and with a visco-elastic layer
bonded to the wings to stimulate increased damping effect. The Euler–Bernoulli beam elements
with standard isotropic properties were used to create a finite element model.
As reported by Friswell (2003), the natural frequencies were determined to be 6.38, 16.10,

33.13, 33.53, 35.65, 48.38, 49.43, 55.08, 63.04, 66.52 Hz. The updating vector involved the
right wing moments of inertia and torsional stiffness (RImin, RImax, RItors), the left wing
moments of inertia and torsional stiffness (LImin, LImax, LItors), the vertical tail moment of iner-
tia VTPIminð Þ and the overall density of the structure ρ, and this is written as follows:
θ = ρ, VTPImin , LImin, LImax,RImin, RImax, LItors, RItors½ � (Joubert, 2015). The vector used for

finite element model updating was initiated at θ0 = 2785, 8:34 × 10−9, 8:34 × 10−9,



8:34 × 10−9, 8:34 × 10−9, 8:34 × 10−7, 4 × 10−8, 4 × 10−8 � and confined between θmax =
3500, 12 × 10−9, 10:2 × 10−9, 12 × 10−9, 10:2 × 10−9, 12 × 10−7, 6 × 10−8, 6 × 10−8

 �

and

θmin = 2500, 6 × 10−9, 8 × 10−9, 6 × 10−9, 8 × 10−9, 6 × 10−7, 3 × 10−8, 3 × 10−8

 �

, and the

diagonals of the covariance matrix were initialised at σ = 5 × 102, 5 × 10−9, 5 × 10−9,



5 × 10−9, 5 × 10−9, 5 × 10−7, 5 × 10−8, 5 × 10−8 �.
On implementing the AMH, the first 1000 samples were deemed the pre-run stage of the

simulation and the covariance matrix was proactively adjusted. The following 1000 samples
were deemed the burn-in stage, and the scaling factor was modified and the covariance matrix
was scaled to further increase the accuracy of the approximation. Figures 6.9 and 6.10 show the
characteristics of the adaptation of the scaling factor and covariance, respectively. Figure 6.11
shows the second parameter adaptation and kernel density, while Figure 6.12 demonstrates the
correlation between samples. The results of the parameter values of the updating vector as well
as the natural frequencies are given in later in the chapter.
On implementing the MCDWIS a fast run of the M-H procedure was conducted which

offered the initial set of samples for the MCDWIS to begin with. Using the 1000 iterations,
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the first 200 samples were rejected as burn-in and 200 samples were uniformly chosen from the
remaining 800. The first samples were allotted a weight of 1 and the parameters for the algo-
rithm parameters were N = 1000, burn-in 250, Wc = e7, nmin = 100, nmax = 1000, nlow = 200,
nup = 500, λ= 2 and k = log10Wc. The adaptation of the population size is shown in Figures
6.13–6.15 and demonstrates an apparent Gaussian shape of the log weight at iterations
6 and 10, respectively. Because of the higher-dimensional vector, the procedure allocates
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unusually high weights in the first iteration and exponentially decreases and then varies. The
results of the updating procedure are shown in Tables 6.5 and 6.6.
Table 6.5 gives the values of the elements in the updated vector after the simulation.

Table 6.6 gives the resultant natural frequencies corresponding to each respective mode shape
θ= ρ, VTPImin , LImin, LImax,RImin, RImax, LItors, RItors½ �. The results demonstrate that the
MCDWIS method was substantially more accurate when compared to the AMH technique.
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6.6 Conclusion

This chapter has presented the AMH procedure and Bayesian statistics for finite element model
updating. In the AMH technique the Gaussian proposal distribution was adapted using the full
information assembled previously; because of the adaptive features of the system, the AMH
method is non-Markovian but also possesses full ergodic properties. The AMH technique
was found to be simple to implement. The AMH method was implemented to update a finite
element model of a cantilevered beam, an asymmetrical H-shaped structure and aircraft struc-
ture, and the results were compared to those from the MCDWIS method. The results obtained
showed that the MCDWIS performed better than the AMH.
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7
Hybrid Monte Carlo Technique for
Finite Element Model Updating

7.1 Introduction

The hybrid Monte Carlo (HMC) technique, also known as the Hamiltonian Monte Carlo
method, was first introduced in physics by Duane et al. (1987) to solve higher-dimensional
complex engineering problems (Gupta et al., 1988; Alfaki, 2008; Cheung and Beck, 2009;
Hanson, 2001; Beskos et al., 2013; Boulkaibet, 2014; Boulkaibet et al., 2012, 2014a). Duane
et al. (1987) applied the HMC method to lattice field theory simulations of quantum chromo-
dynamics for simulating molecular dynamics. The HMC algorithm was first used for statistical
learning in neural network models by Neal (1998). It has been observed that the HMC tech-
nique performs better than the traditional Markov chain Monte Carlo (MCMC) method in cor-
related spaces and/or problems with high-dimensional spaces (Chen et al., 2001; Neal, 2011).
Cheung and Beck (2009) applied the HMC method to update a linear structural dynamic

model with 31 uncertain parameters. This approach, formulated probabilistically using a
Bayesian approach, was able to model the uncertainties associated with the underlying struc-
tural system. Boulkaibet (2014) compared the performance of the HMC algorithm with two
other sampling techniques, the Metropolis–Hastings (M-H) method and slice sampling, by
updating a structural beam model, and the HMC algorithm gave more accurate results and a
faster convergence rate.
In the HMCmethod, the trajectory of the algorithm is governed by the derivative of the target

log-density probability which moves towards areas of high probability in a short space of time
during the search process (Beskos et al., 2013). Through this approach, the updated parameter
vector is handled as a system displacement and an auxiliary variable, called themomentum vec-
tor, introduced to construct a new molecular dynamic system. The total energy of the system,
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generally referred to as the Hamiltonian function, is evaluated using the Velocity
Verlet algorithm (also known as the leapfrog integrator). When using the HMC algorithm,
the move step depends on the time step used by the leapfrog integrator. This means that a rela-
tively large time step helps ensure fast convergence, in a reasonable number of iterations. In this
chapter, the HMC algorithm is presented in Sections 7.2 and 7.3. Sections 7.4 and 7.5 present
the results obtained when the HMC algorithm is employed to update structural beams: the can-
tilever and the asymmetrical H-shaped beams, respectively. Section 7.6 concludes the chapter.

7.2 Hybrid Monte Carlo Method

The HMC combines a molecular dynamic trajectory with a Monte Carlo (MC) rejection step
(Akhmatskaya et al., 2009; Boulkaibet et al., 2012; Heckman and Leamer, 2001; Marwala,
2012). This MC technique uses the gradient of the error, and this ensures that the simulation
does sample through the regions of higher probabilities and, therefore, increases the time it
takes to converge to a stationary probability density function (PDF). This technique is con-
sidered a type of Markov chain with transition between states achieved by changing between
the ‘stochastic’ and ‘dynamic’ moves. The ‘stochastic’ moves allow the method to sample
states with different total energy, while the ‘dynamic’ moves are achieved by applying the
Hamiltonian dynamics and allowing the technique to search for states with a total energy that
is nearly constant. Basically, the HMC method can be considered as a type of Monte Carlo
sampling, which is driven by the gradient of the PDF at each state.
Aleksandrov et al. (2010) used the HMC method to study the vapour–liquid equilibria of

copper, while Ghoufi and Maurin (2010) used the HMC method to estimate the structural tran-
sitions of a porous metal-organic framework material, and confirmed that combining the hybrid
osmotic Monte Carlo method with a ‘phase mixture’ model is an effective procedure to
approximate the adsorption behaviour. Zhang et al. (2010) successfully used the HMCmethod
to simulate stress-induced texture evolution, while Rei et al. (2010) used the HMCmethod suc-
cessfully in a single vehicle routeing problem. Wendt et al. (2011) used the HMC technique in
graphics, while Bogaerts (2009) used the HMC technique to study the effects of oxygen
addition to argon glow discharges. Qian et al. (2011) used the HMC technique to calculate
the animal population affected by an environmental catastrophe, while Kulak (2009) used
the HMC method to simulate fluorescence anisotropy decay. Other successful applications
of the HMC method are in fluoride ion–water clusters (Suzuki et al., 2010), modelling struc-
tural heterogeneity in polyprolines (Hoefling et al., 2011), spacecraft thermal models (Cheng
et al., 2011) and modelling the probability distributions in Riemannian space (Paquet and
Viktor, 2011).
Through the use of the HMC method, a dynamic system is analysed by introducing an aux-

iliary variable, known as the momentum p2Rd . The updating vector θ, representing the vari-
ables in the finite element model requiring updating, is treated as displacement within the
Hamiltonian dynamics context. Thus, the total energy (or Hamiltonian function) of the dynamic
system is defined by Duane et al. (1987), Boulkaibet (2014) and Boulkaibet et al. (2014a,
2014b) as

H θ,pð Þ =V θð Þ+W pð Þ; ð7:1Þ
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where V(θ) represents the potential energy which can be defined by V θð Þ= − ln P θjDð Þð Þ,
P θjDð Þ being the posterior PDF, and where W(p) is the kinetic energy and is given by
W pð Þ= pTM−1p=2 which depends only on p and a selected positive definite matrix
M2Rd × d . The partial derivative of Hamiltonian function, which determines the variation
of the pair (θ, p) over time, is given by Duane et al. (1987) and Boulkaibet (2014) as

dθ
dt

=
∂H

∂p
=M−1p tð Þ; ð7:2Þ

dp

dt
=
∂H

∂θ
= −∇V θ tð Þð Þ: ð7:3Þ

The HMC has several properties, described in the next section, that need to be satisfied in
order to construct the Markov chain, and these properties can be proved easily.

7.3 Properties of the HMC Method

The Hamiltonian dynamics has several properties that are important for constructing the
MCMC method: time reversibility, volume preservation and energy conservation (Duane
et al., 1987; Boulkaibet, 2014; Boulkaibet et al., 2014a).

7.3.1 Time Reversibility

The Hamiltonian dynamics is invariant under the following transformations: _θ= −θ, _p= p and
t_= − t.This demonstrates that the Hamiltonian dynamics is invariant to the direction of time,
that is, time reversibility. The propriety of time reversibility is used to demonstrate that
Equations 7.2 and 7.3 converge to a desired invariant distribution.

7.3.2 Volume Preservation

The Hamiltonian dynamics preserves volume in the space (θ, p), and this is known as
Liouville’s theorem (Rossberg, 1983; Goldstein, 1980). The mapping TS from the state at time
t, to the state at time t + s is defined by Equations 7.2 and 7.3. This is applied to points in a
certain region R of the space (θ, p) with a volume v. The image of this region, under the map-
ping TS, also has the same volume v (Neal, 2011). The volume preservation of the Hamiltonian
dynamics can be proved by showing that the divergence of the vector field defined by
Equations 7.2 and 7.3 is zero (Arnold, 1989):

Xd
i= 1

∂

∂θi

dθi
dt

+
∂

∂pi

dpi
dt

� �
=
Xd
i= 1

∂

∂θi

dH

dpi
−

∂

∂pi

dH

dθi

� �
=
Xd
i= 1

∂2H

∂θi∂pi
−

∂2H

∂pi∂θi

" #
= 0 ð7:4Þ
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7.3.3 Energy Conservation

An additional important property of the Hamiltonian dynamics is that the Hamiltonian function
(total energy) is invariant (conserved). This can be simply proven from Equations 7.2 and 7.3 as
follows (Neal, 2011):

dH

dt
=
Xd
i= 1

dθi
dt

∂H

∂θi
+
dpi
dt

∂H

∂pi

� �
=
Xd
i= 1

∂H

∂pi

∂H

∂θi
−
∂H

∂θi

∂H

∂pi

� �
= 0: ð7:5Þ

7.4 The Molecular Dynamics Algorithm

In this chapter, molecular dynamic simulations are accomplished under the conditions of the
canonical ensemble. The density function ρ(θ, p) of the canonical ensemble follows a
Boltzmann distribution (Boulkaibet, 2014; Boulkaibet et al., 2014a, 2015). This ensemble is
a good illustration of the distribution of the Hamiltonian system, where a positive feature of
this ensemble is that the position θ and momentum p are independent for separable Hamiltonian
functions (Skeel and Tupper, 2005).
The joint distribution function derived from the Hamiltonian function can be written as

(Boulkaibet, 2014)

ρ θ,pð Þ/ exp −βBH θ,pð Þð Þ; ð7:6Þ

where βB = 1=KBT , KB is the Boltzmann constant and T is a constant temperature. The expres-
sion ρ(θ, p) can be rewritten as follows (Boulkaibet, 2014)

ρ θ,pð Þ/ exp −βBV θð Þð Þexp −βBW pð Þð Þ ð7:7Þ

or

ρ θ,pð Þ/P θjDð Þexp −βBp
TM−1p=2

� �
: ð7:8Þ

Sampling θ from the posterior distribution can also be done by sampling the pair (θ, p) from
the joint distribution ρ(θ, p), where θ and p are independent, usingH(θ, p), which is a separable
Hamiltonian function.
The evolution of (θ, p) through time t can be achieved, numerically, by using the velocity

Verlet (leapfrog) scheme (Cheung and Beck, 2009; Boulkaibet, 2014; Boulkaibet
et al., 2014a):

p t +
δt

2

� �
= p tð Þ− δt

2
∇V θ tð Þð Þ; ð7:9Þ

θ t + δtð Þ = θ tð Þ+ δtM−1p t +
δt

2

� �
; ð7:10Þ
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p t + δtð Þ= p t +
δt

2

� �
−
δt

2
∇V θ t + δtð Þð Þ; ð7:11Þ

where δt is the time step and the gradient∇V is achieved numerically using the finite difference
approach as follows (Boulkaibet, 2014):

∂V

∂θi
ffiV θ +Δhð Þ−V θ−Δhð Þ

2hΔi
: ð7:12Þ

Here,Δ = Δ1,Δ2,…,ΔN½ � is the perturbation vector and h is a scalar which determines the size of
the perturbation of θ.
Practically, the leapfrog algorithm does not preserve the property of Equations 7.2 and 7.3,

where the PDF is proportional to exp −βBH θ,pð Þð Þ (Beskos et al., 2013). With the intention of
satisfying the property of Equations 7.2 and 7.3, the MC accept–reject step must be added. In
such a case, after each iteration of Equations 7.9–7.11, the resulting candidate state is accepted
or rejected according to the Metropolis criterion based on the value of the Hamiltonian H(θ, p)
(Metropolis et al., 1953).
Thus, if the pair (θ, p) is the initial state and (θ∗, p∗) is the state after Equations 7.9–7.11 have

been updated, then the new candidate (θ∗, p∗) is accepted with probability
min 1,exp −βBΔHf gð Þ where ΔH =H θ∗,p∗ð Þ−H θ,pð Þ. The vector θ∗ obtained is then used
for the next iteration. The criterion used to stop this algorithm is defined by the number of
θ samples (NS). The HMC algorithm can be summarised as follows (Boulkaibet, 2014):

1. Initialise the algorithm by specifying θ0.
2. Initialise p0 in such a way that p0 �N 0,Mð Þ.
3. Initialise the leapfrog algorithm with (θ, p) and run the algorithm for L time steps to obtain

(θ∗, p∗).
4. Update the finite element model to obtain the new analytical frequencies and then compute

H(θ∗, p∗).
5. Accept (θ∗, p∗) with probability min 1,exp −βBΔHf gð Þ.
6. Repeat steps 3–5 for NS samples.

To improve the HMC algorithm, the leapfrog algorithm is evaluated L steps at every iteration
where L is the trajectory length. This ensures that large moves of the algorithm during the
search process and the final time step used at each iteration are equal to δt ×L. Generally,
the value of L is uniformly selected from {1, Lmax}. This can assist in avoiding the non-
ergodicity problem and ensures good performance of the algorithm (Cheung and Beck,
2009). Also, the value of Lmax should not be large to reduce the computational cost of the algo-
rithm (Lmax≈30 for small systems and 15 for large systems).
In practice, the time step of the HMC technique is bounded (δtmin < δt < δtmax). The perform-

ance of the HMC method degrades when the time step used by the leapfrog algorithm and/or
the system size (number of updated parameters) is large (Boulkaibet, 2014; Izaguirre and
Hampton, 2004; Sweet et al., 2009); a large time step decreases the accuracy of the leapfrog
algorithm (relatively large errors will be expected in the in the Hamiltonian function value) and
thus the Hamiltonian function is not conserved. A significantly large time step increases the
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numerical errors caused by the integrator used to evaluate the Hamiltonian function. The error
caused by the velocity Verlet (leapfrog) integrator can cause the Hamiltonian function to fluc-
tuate and thus to increase the rejection rate of the algorithm, and therefore no samples are
accepted in the case where δt ≥ δtmax. To avoid a large rejection rate, the time step of this algo-
rithm is set to less than δtmax and in the case where δt is too small, a high acceptance rate of the
HMC algorithm is obtained. Nevertheless, a large number of samples and/or a large trajectory
length are needed to cover more space during the search, particularly when δt ≤ δtmin. Alterna-
tively, a relatively large δt facilitates a significant jump from the existing samples and therefore
ensures a better exploration of the phase space. This chapter uses certain modifications to the
HMC to improve its efficiency.

7.5 Improving the HMC

The HMC algorithm can be improved to efficiently sample from complex distributions. This
can be achieved as follows (Boulkaibet, 2014):

1. Choose a good time step to optimise the move step and the acceptance rate of the algorithm.
2. Suppress the random walk when the momentum is sampled.
3. Set a better HMC gradient precision to improve the accuracy of the algorithm.

Next, the improvements of the HMC algorithm based on the above-mentioned points as well
as the modification of the gradient when very large amounts of data are involved are discussed.

7.5.1 Choosing an Efficient Time Step

The acceptance rate of a candidate sample at the end of the (θ, p) trajectory for the Hamiltonian
dynamics of Equations 7.9–7.11 is affected by the discretisation errors introduced by the inte-
gration algorithm. The distance vector L(δt), which is also called the move step, moves in the
(θ, p) space after one evolution depends on the time step δt. Cheung and Beck (2009) maxi-
mised the distance vector L(δt) by using a small number of samples and empirically explored
different δt to achieve maximum L(δt). However, this method is not efficient, especially when
the algorithms reach the search space boundaries. Another way to deal with the time step prob-
lem is to use a variable step size or adaptive time step method.
Huang and Leimkuhler (1997) proposed an adaptive Verlet method which is based on time

reparameterisation. A variable, τ, was introduced into the leapfrog scheme and this variable is
related to a smooth, scalar-valued function ψ(θ, p). The adaptive leapfrog scheme obtained
is explicit if ψ depends only on θ, whereas it is a semi-explicit if ψ depends on p. The function

ψ is given by ψ θ,pð Þ= pTM−2p +∇pV
� �1=2

(Alfaki, 2008; Huang and Leimkuhler, 1997). The
scheme is semi-explicit, symmetric and time-reversible where ψ θ,pð Þ =ψ θ, −pð Þ. The adaptive
Verlet scheme is given by (Boulkaibet, 2014):

p t +
δt

2

� �
= p t−

δt

2

� �
−
δt

2
:

1
τ t + δt=2ð Þ +

1
τ t−δt=2ð Þ

� �
∇V θ tð Þð Þ; ð7:13Þ
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τ t +
δt

2

� �
= −τ t−

δt

2

� �
+ψ θ,p t +

δt

2

� �� �
+ψ θ,p t−

δt

2

� �� �
; ð7:14Þ

θ t + δtð Þ= θ tð Þ+ δt

τ t + δt=2ð ÞM
−1p t +

δt

2

� �
: ð7:15Þ

7.5.2 Suppressing the Random Walk in the Momentum

In a number of cases, the efficiency of MCMC method is limited by a strong dependency
between components of the state. This might force the MCMC algorithms to move around
the target distribution in small steps. This might also happen with the HMC algorithm when
the momentum is drawn, and an effective way to deal with the dependencies between compo-
nents, which are unavoidable, is by using an ordered over-relaxation approach to suppress the
random walk of the momentum sampling process (Neal, 1998).
The ordered over-relaxation method can be used to sample from any type of distribution. The

most common implementation used for the ordered over-relaxation is by employing the cumu-
lative distribution function. In this chapter, the ordered over-relaxation method is used to obtain
samples from the momentum distribution, which is built from the kinetic energy, given by
Π pð Þ=K −1 exp −βBW pð Þð Þ, where K −1 is the normalisation constant and p2Rd. Supposing

that F(pi) is the cumulative distribution for the conditional distribution Π pij pj
� 	

i6¼j


 �
, while

F−1 pið Þ represents the inverse of the F(pi), then the algorithm can be summarised as follows
(Neal, 1996, 1998, 2011; Alfaki, 2008; Boulkaibet, 2014):

1. Compute u=F pð Þ.
2. Draw r from a Binomial(k, u) distribution.
3. If r > k−r, randomly draw ϑ from Beta k−r + 1,2r−kð Þ, where the new u0 = uϑ.
4. If r < k−r, randomly draw ϑ from Beta r + 1 + 1,k−2rð Þ, where the new u0 = 1− 1−uð Þϑ.
5. If r = k−r, the new u0 = u.
6. The new momentum p=F−1 u0ð Þ.

7.5.3 Gradient Computation

In general and due to the complexity of the modelled systems, the gradient of V(θ) is not ana-
lytically available. In this case numerical methods must be employed to identify its value. The
most common technique uses the finite difference approximations which are based on forward
and backward Taylor series expansion of V(θ). In this chapter, the first central difference
approximation is used to compute the gradient, which in this work was more accurate than
the forward/backward difference approximation.
However, in the case where the dimension of the uncertain parameters is high, forward dif-

ference approximation could be more practical since it requires d evaluations of V to compute
the gradient (where d is the dimension of the uncertain parameters) while the central difference
approximation requires 2d iterations.
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Another problem could arise when huge or streaming data are involved, where computing
the gradient in the presence of huge data is computationally expensive. Instead, a subset of
the data can be used to compute a noisy gradient. This kind of gradient is called a stochastic
gradient (Chen et al., 2014; Welling and Teh, 2011).
The idea behind the stochastic gradient is that instead of computing the gradient ∇V θ tð Þð Þ

using the original dataD, a subset of the data ~D, which is sampled randomly from the total data
D, is used to compute a noisy estimation of the gradient ∇~V θ tð Þð Þ.The stochastic gradient is
given by (Welling and Teh, 1997; Boulkaibet, 2014)

∇~V θ tð Þð Þ= −
~D
�� ��
Dj j

X
x2~D

∇P xjDð Þ−∇log P θð Þð Þ: ð7:16Þ

It is assumed that the observations x are independent and, appealing to the central limit the-
orem, the noisy gradient is approximated as follows (Welling and Teh, 1997; Boulkai-
bet, 2014):

∇~V θ tð Þð Þffi∇V θ tð Þð Þ +N 0,V θ tð Þð Þð Þ; ð7:17Þ

where V(θ(t)) is the covariance matrix of the stochastic gradient noise and is modelled as multi-
variate Gaussian with zero mean and N represents a distribution. This covariance depends on
the model uncertain parameters and the increase in the size of the subset data ~D decreases the
noise and makes the gradient more accurate. In this chapter, the dataD used in all examples are
limited and therefore the stochastic gradient approach will not be used.
The benefits of using Bayesian methods in the finite element model updating are not only to

obtain accurate updated parameters, but also to represent the uncertainty of the obtained param-
eters and to measure the correlations between the uncertain parameters. In this chapter the mean

estimated value θ̂ and variance are used. In the next section, the HMC algorithm is applied for
finite element model updating.

7.6 Application 1: Cantilever Beam

An experimental cantilever steel beam is updated based on the measurements of Kraaij (2006).
The beam has the following dimensions: length 500 mm, width 60 mm, thickness 10 mm,
E = 2:1 × 1011N=m2, υ= 0:3 and ρ = 7850kg=m3.
Three accelerometers were used in the experiment, all positioned 490 mm from the clamped

end. This position was selected because the response at this point is large (Kraaij, 2006). Each
accelerometer has a mass of 40 g; the middle accelerometer is of type 303A3, the outer accel-
erometers are of type 303A2 (for more information on the experimental set-up, see Kraaij,
2006). To test the updating procedures, the beam was modelled using Version 6.3 of the Struc-
tural Dynamics Toolbox SDT® for MATLAB.
The beam was divided into 50 Euler–Bernoulli beam elements and excited at various posi-

tions (Boulkaibet, 2014; Kraaij, 2006). The measured natural frequencies of interest of this
structure are 31.9, 197.9, 553, 1082.2 and 1781.5 Hz. The Young’s modulus of the beam elem-
ents was used as an updating parameter, where for every 10 elements a different Young’s
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modulus is allocated. Thus, the parameters to be updated can be represented by a
vector θ = θ1,θ2,θ3,θ4,θ5f g.
In this section, θ is updated using the Bayesian approach trained using the HMC. The reason

for using a large number of updating parameters is to determine the performance and the
convergence speed of each sampling technique when a relatively large number of variables
is introduced into the updating process.
NS samples of θwere generated from the posterior distribution function P θ Dj Þð . The constant

βc was set equal to 1, and the coefficients αi were set equal to 1=σ2i where σ
2
i is the variance of

the parameter θi which means that the parameters θ are uncertain with a standard deviation σ.
Since the updating parameter vector contains only the Young’s modulus, all σiwere set equal to
2 × 1011 and a large value of σi is used to give the algorithm more freedom and also to allow the
algorithm to focus more on the likelihood term during the search. The updating parameters θi
were bounded with a maximum value of 2:5 × 1011 and a minimum value of 1:7 × 1011. The
number of samples NS was 1000 for all techniques and the initial θ vector was

θ0 = 2:4 × 1011,2:4 × 1011,2:4 × 1011,2:4 × 1011,2:4 × 1011
� 	

:

Instead of using the mean value of θ for steel as an initial value, a large value of the initial
parameter vector was selected to highlight the updating process. The initial time step used in
the HMC algorithm was 1:25 × 10−3 seconds, and L was uniformly distributed in the inter-
val {1,30}.
The HMC algorithm was implemented over 30 independent runs, and the results given in

Table 7.1 are the average of these 30 runs as the randomness which exists in these three algo-
rithms gives slightly different results. Figures 7.1 and 7.2 show the scatter plots with marginal
histograms for four uncertain parameters using the HMC algorithm. The plots show that the
HMC found the area of high probability.
The updated parameters are also presented in Table 7.2, and the results indicate that the HMC

techniques update all vector parameters simultaneously and give results which are close to the
mean value for steel of 2:5 × 1011N=m2. The coefficient of variation (c.o.v.) represents the
errors associated with the updated parameters and is estimated by dividing the standard devi-
ation vector by the estimated θ vector. Table 7.1 shows that the c.o.v. values are small and are
less than 7% for the HMC. The obtained c.o.v. values indicate that the HMC algorithm esti-
mated the uncertain parameters in an efficient way, and the time step used for the HMC was
small, where the acceptance rate of this algorithm was equal to 99.9%. The c.o.v. values of the

Table 7.1 The updated vector of Young’s modulus using
HMC technique

Initial HMC method
σi
μi

(%)

E1 2:4 × 1011 2:257 × 1011 4.43
E2 2:4 × 1011 2:123 × 1011 5.44
E3 2:4 × 1011 2:049 × 1011 5.27
E4 2:4 × 1011 1:985 × 1011 5.58
E5 2:4 × 1011 2:007 × 1011 6.88
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HMC algorithm could be improved even more if a relatively large time step were used to
increase the algorithm move step during the search process.
Figure 7.3 shows the correlation between all updated parameters for the HMC algorithms.

Small values indicate that both parameters are weakly correlated ( < 0:3), large values ( > 0:7)
indicate that the parameters are highly correlated, while a zero value indicates that the
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Figure 7.1 Scatter plots with marginal histograms using the HMC method. Scatter plot of θ1 versus θ2
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Figure 7.2 Scatter plots with marginal histograms using the HMC method. Scatter plot of θ3 versus θ4
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parameters are not correlated. A positive correlation indicates that the variables are positively
related, while a negative correlation indicates the opposite. Figure 7.3 indicates that for the
HMC algorithm, all parameters are weakly correlated.
The results for the updated modes are given in Table 7.2 and show that the HMC algorithm

gives results which are, on average, better than the initial finite element model. The HMC tech-
nique used additional parameters to evaluate the sampling and have the ability to suppress the
randomwalk. The absolute mode errors and the final model percentage error for the HMC algo-
rithm are also presented in Table 7.2 (Boulkaibet, 2014).

7.7 Application 2: Asymmetrical H-Shaped Structure

In this example, the asymmetrical H-shaped aluminium structure was updated using the HMC
algorithm (Marwala, 1997). The structure was divided into 12 elements, each element modelled
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Figure 7.3 The correlation between the updated parameters (HMC algorithm)

Table 7.2 Results when the HMC technique is used to update Young’s modulus

Modes
Measured

frequency (Hz)
Initial

frequency (Hz)
Error
(%)

Frequencies
HMC method

(Hz)
Error
(%)

1 31.9 32.7 2.51 31.2 2.15
2 197.9 209.4 5.83 195.7 1.14
3 553.0 594.8 7.55 553.4 0.07
4 1082.2 1177.8 8.84 1096.8 1.35
5 1781.50 1961.7 10.12 1828.0 2.61
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as an Euler–Bernoulli beam. The beams were modelled using Version 6.3 of the Structural
Dynamics Toolbox SDT® for MATLAB. The structure was excited and the acceleration
was measured at 15 different positions. The structure was excited using an electromagnetic
shaker while a roving accelerometer was used to measure the response (Marwala, 1997,
2010; Welling and Teh, 1997; Boulkaibet, 2014). A set of 15 frequency-response functions
were calculated.
The measured natural frequencies are 53.9, 117.3, 208.4, 254.0 and 445.0 Hz. In this

example, the moments of inertia and the cross sectional areas of the left, middle and right
subsections of the beam were updated. The updating parameter vector is thus
θ = Ix1, Ix2, Ix3,Ax1,Ax2,Ax3f g. The Young’s modulus for the beam is set at 7:2 × 1010N=m2,
and the density is set to 2785 kg/m3. The updating parameters θi are bounded by maximum
values equal to 3:73 × 10−8,3:73 × 10−8,3:73 × 10−8,4:16 × 10−4,4:16 × 10−4,4:16 × 10−4

� 	
,

and the minimum values are 1:73 × 10−8,1:73 × 10−8,1:73 × 10−8,2:16 × 10−4,2:16 × 10−4,
�

2:16 × 10−4g. The boundaries help to keep the updated vector physically realistic and the con-
stant βc of the posterior distribution was set equal 10, the coefficient αi was set equal to 1=σ2i ,
where σ2i is the variance of the ith parameter, and the variance vector is defined as
σ = 5 × 10−8,5 × 10−8,5 × 10−8,5 × 10−4,

�
5 × 10−4,5 × 10−4g. The constant βc and the vari-

ance σ were chosen so that the weight of the likelihood terms was greater than the second term
in the posterior PDF. The number of samples NSwas set to 1000, the initial time step was set to
0.0045 s for the HMC method, while L was uniformly distributed on the interval {1,30}.
The Bayesian simulation results are presented and evaluated in terms of the mean values of

the samples obtained for each method. Also, the updated natural frequencies and the prediction
percentage error are presented, where the percentage error is defined by the absolute differences
between the updated value of the natural frequency and its experimental value divided by the
experimental value (as in the previous section). Again, the HMC algorithm was implemented
over 20 independent runs, and the results are tabulated in Tables 7.3 and 7.4.
Figures 7.4 and 7.5 show scatter plots with marginal histograms for four uncertain param-

eters using HMC algorithms.
The rest of the updated parameters are presented in Table 7.3. The acceptance rate for the

HMC algorithm is 99.9%. Table 7.3 presents the initial and updated values of the updating
vector obtained by HMC method along with the c.o.v. The HMC algorithm successfully
updated the θ vector, and the updated values are different than the initial θ0. The updated vector
obtained by the HMC algorithm is physically realistic.

Table 7.3 Initial and updated parameters using the HMC algorithm

Parameter Initial θ0

θ vector
HMC method

σi
μi

(%)

Ix1 2:73 × 10−8 2:21 × 10−8 12.7
Ix2 2:73 × 10−8 2:21 × 10−8 1.37
Ix3 2:73 × 10−8 2:90 × 10−8 16.5
Ax1 3:16 × 10−4 4:00 × 10−4 1.39
Ax2 3:16 × 10−4 2:30 × 10−4 1.10
Ax3 3:16 × 10−4 2:40 × 10−4 1.95
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Table 7.4 Results when the HMC algorithm was used to update the parameters

Mode
Measured

frequency (Hz)
Initial

frequency (Hz)
Frequency

HMC method (Hz)

1 53.90 51.40 52.93
2 117.30 116.61 118.82
3 208.40 201.27 208.81
4 254.00 247.42 254.41
5 445.00 390.33 444.13
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Figure 7.4 Scatter plots with marginal histograms using the HMC method. Scatter plot of θ4 versus θ2
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Figure 7.5 Scatter plots with marginal histograms using the HMC method. Scatter plot of θ5 versus θ6
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Figure 7.6 shows the correlation between all updated parameters for the HMC algorithm. The
figure indicates that all parameters are correlated for all algorithms (all values are non-zero),
where most of the parameters are weakly correlated, except the pair (Ax1, Ax3) which is found
to be highly correlated by the HMC algorithm.
Table 7.4 shows that the error between the first measured natural frequency and that of the

initial model was 4.63% and when applying HMC method this error was reduced to 1.8%,
whereas overall the HMC method improved the error from 4.7% to below than 0.8%.

7.8 Conclusion

This chapter has presented and described the HMC method along with its pseudo-code, and
then certain improvements to the original algorithm were presented. The method was then
implemented in finite element model updating of two structures and found to be satisfactory.
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8
Shadow Hybrid Monte Carlo
Technique for Finite Element
Model Updating

8.1 Introduction

The application of the hybrid Monte Carlo (HMC) algorithm for finite element model updating
has demonstrated pleasing results in terms of convergence speed and precision (Mares et al.,
2000; Boulkaibet et al., 2012; Boulkaibet, 2014). The HMC technique is a sampling technique
which combines Markov chain Monte Carlo simulation with the gradient descent algorithm. It
has been widely used in engineering, political science and economics problems (Marwala,
2010, 2012, 2013, 2014, 2015; Marwala and Lagazio, 2011). The results on finite element
model updating obtained in Boulkaibet (2014) demonstrate that the HMC algorithm can offer
improved results when compared to both the Metropolis–Hastings and slice sampling algo-
rithms and without increasing the time step. Nevertheless, the results obtained from the imple-
mentation of the HMC technique can be improved even more by increasing the move step
which can be achieved by increasing the time step. Regrettably, a large time step has a negative
consequence for the sampling procedure because the resulting effect is that the acceptance rate
tends to decrease exponentially as the time step increases.
In this chapter, a modified version of the HMC technique called the shadow hybrid Monte

Carlo (SHMC) algorithm, which has a higher acceptance rate of samples and a better accuracy
on estimating the probability distribution function, is applied for finite element model updating
(Izaguirre and Hampton, 2004; Boulkaibet, 2014). This technique is basically a modified ver-
sion of the HMC technique and is built to efficiently draw samples with relatively large systems
and time steps.
This chapter covers the following aspects: Section 8.2 discusses the effect of the time step on

the HMC algorithm. Section 8.3 examines the SHMC algorithm and Section 8.4 the shadow
Hamiltonian function. Section 8.5 discusses the results obtained when an aircraft structure’s

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and
Mechanical Engineering, First Edition. Tshilidzi Marwala, Ilyes Boulkaibet and Sondipon Adhikari.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.



finite element model is updated using both the HMC and SHMC algorithms. Section 8.6
concludes the chapter.

8.2 Effect of Time Step in the Hybrid Monte Carlo Method

This section studies the effect of the choice of the time step on the performance of the HMC
algorithm where the leapfrog integrator was applied to evaluate a Hamiltonian function. It was
observed by Boulkaibet (2014) that a small time step conserves the Hamiltonian function,
whereas a large time step oscillates the Hamiltonian function and this decreases the acceptance
rate of the HMC algorithm. A straightforward technique to identify an appropriate time step that
can maintain the high acceptance rate and thereby ensure relatively large moves in the search
space is by running the HMC algorithm with varying time steps for a limited number of iter-
ations and then selecting a time step that offers a high acceptance rate with acceptable moves in
the search space. In this chapter, the Hamiltonian function is modified by ensuring that an
accurate approximation of the Hamiltonian function is applied instead of the original function
and this ensures a high acceptance rate when the time step is large because a large time step
ensures large moves in the search space.

8.3 The Shadow Hybrid Monte Carlo Method

The SHMC technique is a generalisation of the HMC where the central notion is to apply a

modified Hamiltonian estimate eH θ,pð Þ to sample from the extended phase space of the shadow
Hamiltonian rather than sampling from the configuration space alone (Boulkaibet, 2014;
Escribano et al., 2014).
Fernández-Pendás et al. (2014) successfully applied a generalised SHMC for simulation of

molecular dynamics (MD). Escribano et al. (2013) successfully applied a generalised SHMC
method to simulate complex biological processes. Clark et al. (2011) proposed an integrator
that not only approximately conserves Hamiltonian functions but also accurately conserves
the nearby shadow Hamiltonian, whereas Sweet et al. (2009) proposed a separable shadow
Hamiltonian HMC method that efficiently generates momenta. The SHMC method solves
the problem of the decrease in the acceptance rate of the HMC technique when the system size
d and/or time step δt is relatively large because the SHMC technique expands the HMC time
step. The formulation of the SHMC method requires the introduction of a constant parameter c
as well as the function eρ θ,pð Þ which is a target density function for the SHMC where
(Boulkaibet, 2014)

eρ θ,pð Þ/ exp −βBeH θ,pð Þ� �
: ð8:1Þ

Here,

eH θ,pð Þ=max H θ,pð Þ,H 2k½ � θ,pð Þ−c� �
: ð8:2Þ

eH θ,pð Þ is an accurate estimate of the shadow Hamiltonian defined in Section 8.4, and the
constant c permits H[2k](θ, p) to differ from H(θ, p) because H[2k](θ, p) can have a significant
separation from the original Hamiltonian H(θ, p).
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On implementing the SHMC algorithm, a new momentum vector p is generated from
a Gaussian N(0,M) probability distribution function. Nevertheless, this momentum vector
is accepted or rejected using the Metropolis algorithm which is a non-separable Hamiltonian
function. The complexity of drawing new momenta from the non-separable Hamiltonian
function is solved by using the von Neumann technique (von Neumann, 1951; Fishman, 2000).
This technique is implemented by allowing for a complicated target distribution f(z) from

which the samples are sampled. The Metropolis algorithm generates a random number with
a probability distribution function f(z) and then the probability distribution function is divided
as follows: f zð Þ =Cg zð Þh zð Þ where h(z) is a simple probability distribution function, C is a con-
stant and 0 ≤ g zð Þ ≤ 1. Thereafter a random variable Zwith a probability distribution function of
h(z) is generated and then a uniform random numberU from (0, 1) is generated. As a final point,
ifU ≤ g zð Þ, then Z has the probability distribution function of f(z) or else the process is repeated
and, in the case of f zð Þ=eρ θ,pð Þ, then (Boulkaibet, 2014)

eρ θ,pð Þ = exp −βBmax H θ,pð Þ,H 2k½ � θ,pð Þ−c� �� �
= exp −βBH θ,pð Þð Þmin 1,exp −βB H 2k½ � θ,pð Þ−c−H θ,pð Þ� �� �� �

:
ð8:3Þ

Then Equation 8.3 can be written as follows (Boulkaibet, 2014):

eρ θ,pð Þ= exp −βBV θð Þð Þexp −βBW pð Þð Þmin 1,exp −βB H 2k½ � θ,pð Þ−c−H θ,pð Þ� �� �� �
: ð8:4Þ

In the case where C = exp −βBV θð Þð Þ, h pð Þ = exp −βBW pð Þð Þ and g pð Þ = min 1,exp −βBfð
H 2k½ � θ,pð Þ−c−H θ,pð Þ� �gÞ, the vector p is generated from the Gaussian distribution h(p)
and then the sample is then accepted or rejected using the criterion

min 1,exp −βB H 2k½ � θ,pð Þ−c−H θ,pð Þ� �� �� �
: ð8:5Þ

The acceptance criterion is repeated until a new momentum vector is accepted. Selecting the
correct parameter c can improve the efficiency of this technique by decreasing the effort
required to produce the new momentum vector. The system is then assembled using an MD
procedure. The SHMC algorithm can be summarised as follows (Boulkaibet et al., 2014;
Izaguirre and Hampton, 2004).

1. Set initial value θ0.
2. Repeat for Ns samples.Monte Carlo (MC) step (Izaguirre and Hampton, 2004; Nakano,

2015; Zhang and You, 2015):

a. Produce p such that p�N 0,Mð Þ.
b. Accept with probability min 1,exp −βB H 2k½ � θ,pð Þ−c−H θ,pð Þ� �� �� �

.
c. Repeat until a new p is accepted

MD step (Izaguirre and Hampton, 2004; Xie et al., 2015; Abe and Tasaki, 2015):

a. Initialise the extended leapfrog algorithm with (θ, p) and run the algorithm for L time
steps to obtain (θ∗, p∗).
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b. Update the the finite element model to obtain the new analytical frequencies and then

compute eH θ∗,p∗ð Þ.
c. Accept (θ∗, p∗) with probability min 1,exp −βBΔeH� �� �

.

The MC and MD steps depend on the parameter c, and this parameter has a significant effect
on the simulation. When c is positive and large, the SHMC algorithm is equivalent to the HMC
algorithm with different momentum, and this decreases the MD step acceptance rate in the case
where δt and/or the system size are large; otherwise the MC step acceptance rate increases. In
contrast, a large negative c value increases the acceptance rate of the MD step and decreases the
acceptance rate of the MC step for the case where δt and/or the system size is large. In this
chapter, the algorithm is modified so that the value of c is chosen to be proportional to the aver-
age difference between the Hamiltonian and the shadow Hamiltonian, which can be done
off-line as follows (Boulkaibet, 2014):

1. Implement the SHMC between 50 and 100 iterations and saveΔH =H 2k½ � θ,pð Þ−H θ,pð Þ in a
vector for all iterations.

2. Calculate the expected value ΔH and standard deviation σΔH for the obtained vector.
3. Select c using the following formula: c =ΔH −1:2 × σ2ΔH .

As a final point, in order to compute the balanced values of the mean, the results are
reweighted using the formula ρ θ,pð Þ=eρ θ,pð Þ before estimating the averages. The average of
an observable B is given by (Izaguirre and Hampton, 2004; Boulkaibet, 2014):

Bh i =
XNs

i= 1
BaiXNs

i = 1
ai

, where ai =
exp −βBH θ,pð Þð Þ
exp −βBeH θ,pð Þ� � : ð8:6Þ

If the weighted vector parameter is given by eθ, the mean value of the estimated parameter is
given by (Izaguirre and Hampton, 2004; Boulkaibet, 2014):

êθ=E eθ� �
ffi 1
Ns

XNs

i= 1

eθi; ð8:7Þ

where eθ = θai=XNs

i= 1
ai and the mean value can be calculated as follows (Izaguirre and

Hampton, 2004; Boulkaibet, 2014):

êθffi 1
Ns

XNs

i= 1

aiXNs

j= 1
aj

eθi = 1XNs

j= 1
aj

1
Ns

XNs

i= 1

aiθ
i =

1XNs

j= 1
aj
E θaT
� �

: ð8:8Þ

By tracing the same thinking, the variance of the weighted estimated parameter is (Sweet
et al., 2006; Izaguirre and Hampton, 2004; Boulkaibet, 2014):
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V eθ� �
=E eθ−êθ� �2

� 	
ffiV θð Þ

XNs

i= 1
a2iXNs

j= 1
a2j
; ð8:9Þ

where V(θ) is the unweighted variance and the standard deviation (the error) is given

by σθ~ =

ffiffiffiffiffiffiffiffiffiffiffiffi
V eθ� �r

.

8.4 The Shadow Hamiltonian

On studying the Hamiltonian systems, the consequence of the discretisation error can be under-
stood by investigating the ‘modified equations’ of this system (Skeel and Hardy, 2001; Engle
et al., 2005). These equations are exactly reproducible by using the approximate discrete solu-
tion and can be represented by an asymptotic expansion in powers of the discretisation param-
eter (Creutz, 1988; Kennedy and Pendleton, 1991; Hairer et al., 2006). The modified integrator

is Hamiltonian if and only if ∂yφ yð ÞTJ∂yφ yð ÞJ, where y =φ yð Þ is a numerical integrator,

J =
0 I

−I 0

" #
and I is an identity matrix (Skeel and Hardy, 2001), and this property is known

as symplectic. The numerical solution of a symplectic integrator remains approximately equal
to the solution of a modified Hamiltonian Hδt(θ, p) for an extended amount of time (Skeel and
Hardy, 2001).
The leapfrog integrator is symplectic and therefore its modified differential equation is

Hamiltonian, and this modified Hamiltonian of this integrator is expressed as follows (Skeel
and Hardy, 2001; Sweet et al., 2006; Boulkaibet, 2014):

H δt =H + δt2
1
12

W , W ,Vf gf g− 1
24

V , V ,Wf gf g
� 	

+ δt4
�

7
5760

V , V , V , V ,Wf gf gf gf g− 1
720

W , W , W , W ,Vf gf gf gf g

+
1
360

V , W , W , W ,Vf gf gf gf g + 1
360

W , V , V , V ,Wf gf gf gf g

−
1
480

V , V , W , W ,Vf gf gf gf g+ 1
120

W , W , V , V ,Wf gf gf gf g
	
+…

ð8:10Þ

Here, the expression A,Bf g =∇θA∇pB−∇pA∇θB denotes the Poisson bracket of two func-
tions which depends on θ and p. This formula is derived from the symmetric Baker–Campbell–
Hausdorff formula and demonstrates how to calculate a modified Hamiltonian using a splitting
technique, and the objective is to calculate (Hausdorff, 1906; Hairer et al., 2006; Skeel and
Hardy, 2001; Sweet et al.; Boulkaibet, 2014)

H 2k½ � θ,pð Þ =H δt θ,pð Þ+O δt2k
� �

; ð8:11Þ
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where H[2k](θ, p) is a shadow Hamiltonian of order 2k, and this structure augments a new pos-
ition variable and a conjugate momentum variable β(t) to attain a modified Hamiltonian

�H yð Þ = 1
2
_yTJyT , with y = θT ,α,pT ,β

� �T
and α= 1. This modified Hamiltonian is homogeneous

of order 2, and y is created using a numerical solution of the modified Hamiltonian system, the
resulting solution satisfying Equation 8.11 (Skeel and Hardy, 2001). The expressions for the
fourth and eighth shadow Hamiltonians, k = 2 and k = 4, are respectively given by (Sweet et al.,
2006; Boulkaibet, 2014)

H 4½ � θ,pð Þ =A10−
1
6
A12; ð8:12Þ

H 8½ � θ,pð Þ =A10−
2
7
A12−

19
210

A14 +
5
42

A30 +
13
105

A32−
1
140

A34; ð8:13Þ

where the Aij are defined as (Sweet et al., 2006; Boulkaibet, 2014)

Aij =
μδiθδjp−δjθμδip−μδiβ, j= 0,

μδiθδjp−δjθμδip, j 6¼ 0;

(
ð8:14Þ

in which δθ denotes the central difference of vector θ, θ = θ1=2−θ−1=2, and the averaging oper-

ator μθ is likewise given by μθ =
1
2

θ1=2 + θ−1=2
� �

, and it should be noted that θ1=2 = θ t + δt=2ð Þ
and θ−1=2 = θ t−δt=2ð Þ. To assess the leapfrog algorithm, Equations 8.7, 8.9 and 8.10 are
implemented, and the term β t + 1ð Þ is computed from β(t) as follows (Sweet et al., 2006;
Boulkaibet, 2014):

β t + 1ð Þ= β tð Þ+ δtθ tð Þ∇V θ tð Þð Þ−2V θ tð Þð Þ: ð8:15Þ

In the next section the SHMC technique is implemented for updating the finite element
model of the GARTEUR SM-AG19 (or an aircraft) structure and the results are compared
to those obtained by using an HMC technique.

8.5 Application: GARTEUR SM-AG19 Structure

The GARTEUR SM-AG19 structure, described in Appendix A, was used to test the finite
element model updating procedure based on the SHMC method in a benchmark study by
12 members of the GARTEUR Structures and Materials Action Group 19 (Degener and
Hermes, 1996; Balmes, 1998; Datta, 2002; Guyon and Elisseeff, 2003; Link and Friswell,
2003). The aeroplane has length 1.5 m, width 3 m, fuselage depth 15 cm and thickness 5
cm. It is made from aluminium with an overall mass of 44 kg. In order to increase the damping,
a 1:1 × 76:2 × 1700 m3 visco-elastic constraining layer was bonded to the wings. Further details
on this structure can also be found in Degener and Hermes (1996), Datta (2002), Guyon and
Elisseeff (2003) and Link and Friswell (2003). In this study, all element materials are
considered to be standard isotropic. The beam elements of the model were modelled as
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Euler–Bernoulli elements. The experimental data used in this work was obtained from DLR
Göttingen, Germany (Link and Friswell, 2003). The measured natural frequency data are
6.38, 16.10, 33.13, 33.53, 35.65, 48.38, 49.43, 55.08, 63.04 and 66.52 Hz. The updated param-
eters were the right wing moments of inertia and torsional stiffness (RImin, RImax, RItors), the left
wing moments of inertia and torsional stiffness (LImin, LImax, LItors), the vertical tail moment of
inertia (VTPImin ) and the overall structure’s density ρ. The temperature was supposed to
be T = 300 K, and ρB = 1= 300KBð Þ where KB = 0:001 987 19 kcal mol−1 K −1 and the updated
vector is thus θ = ρ,VTPImin ,LImin,LImax,LImin,RImax,LItors,RItors½ �.
The Young’s modulus for the structure was set to 7:2 × 1010N=m2, the constant βc of the

posterior distribution was set to 100, all αi coefficients were set equal to 1=σ2i where σ2i
was the variance of the ith parameter, and σ = 5 × 102,5 × 10−9,5 × 10−9,5 × 10−75 × 10−9,

�
5 × 10−75 × 10−8,5 × 10−8�.
Themean values of the updated parameters and their bounds are shown in Tables 8.1 and 8.2,

respectively. The time step was set to δt = 3 ms and L was assumed to be uniformly distributed
on the interval (1, 2), and the number of samples was set toNs = 1000. The constant c = 0:01was
found to offer good results for the SHMC algorithms (c = 0:009 789 12 obtained from the off-
line procedure). Each algorithm was run over 10 independent simulations and the results for
the average of these 10 runs are shown in Tables 8.3 and 8.4 (Boulkaibet, 2014).
Several studies have been conducted to update the GARTEUR SM-AG19 structure. Mares

et al. (2000) updated a finite element model to give an error of 0.66% using the sensitivity tech-
nique. Link and Friswell (2003) described the results attained by seven participants where each
participant updated a different set of parameters using different updating approaches. The aver-
age errors ranged from 0.69% to 2.03% for all the results. An adjustment was made to the wing

Table 8.1 The initial values of the updating parameters for the GARTEUR example

Parameter P (kg/m3) VTPImin 10−9 m4
� �

LImin 10−9m4
� �

LImax 10−7m4
� �

2785.00 8.34 8.34 8.34
Parameter LItors 10−8 m4

� �
RImin 10−9 m4

� �
RImax 10−7 m4

� �
RItors 10−8 m4

� �
4.00 8.34 8.34 4.00

Table 8.2 The bounds of the updating parameters
for the GARTEUR example

Max Min

ρ 3500 2500
VTPImin 12 × 10−9 5 × 10−9

LImin 12 × 10−9 5 × 10−9

LImax 12 × 10−7 5 × 10−7

RImin 12 × 10−9 5 × 10−9

RImax 12 × 10−7 5 × 10−7

LItors 6 × 10−8 3 × 10−8

RItors 6 × 10−8 3 × 10−8
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of the original structure, and this time the average error between the participants ranged from
1.02% to 1.50%. In this chapter the HMC and SHMC techniques were used to update the finite
element models.
Table 8.3 shows the initial (mean material or geometric) values of the vector θ and the cor-

responding updated values achieved using the HMC and the SHMC4,8 approaches for the time
step of δt = 3 ms. Table 8.4 shows the coefficient of variation (c.o.v.) achieved using the HMC
and SHMC4,8 methods. There is a significant difference between the final updated values
obtained by the HMC and the two versions of the SHMC because of the manner in which
the SHMC algorithms apply the non-separable shadow Hamiltonian function for sampling.
Additionally, the SHMC algorithms apply two extra parameters when calculating the MC
and MD steps and there are the constants c and β(t).
It can be observed that the c.o.v. is small for all techniques – less than 6% for both HMC and

SHMC4 and less than 7% for SHMC8. The time step applied gives a good acceptance sampling
rate of 99.9% for all algorithms. The supplementary parameter c of the SHMCalgorithmwas used
to control the difference between the modified and the true Hamiltonian function. In this instance,
c is acquired from the offline algorithm where the offline technique gave c = 0:009 789 12. The
value of c obtained ensures that the modified Hamiltonian function can differ from the true
Hamiltonian function; however, different choices of c give different errors.

Table 8.3 Initial and updated parameter values for HMC and SHMC4,8 algorithms at δt = 3 ms

Initial
(mean vector)

HMC
method δt = 3 ms

SHMC4

method δt = 3 ms
SHMC8

method δt = 3 ms
θ0 θ θ θ

P 2785.00 2667.33 2666.85 2686.97
VTPImin 8:34 × 10−9 6:94 × 10−9 6:96 × 10−9 7:15 × 10−9

LImin 8:34 × 10−9 10:12 × 10−9 10:12 × 10−9 10:13 × 10−9

LImax 8:34 × 10−7 7:90 × 10−7 7:92 × 10−7 8:02 × 10−7

RImin 8:34 × 10−9 10:15 × 10−9 10:13 × 10−9 10:12 × 10−9

RImax 8:34 × 10−7 6:11 × 10−9 6:10 × 10−9 6:11 × 10−9

LItors 4:00 × 10−8 4:04 × 10−8 4:04 × 10−8 4:02 × 10−8

RItors 4:00 × 10−8 3:57 × 10−8 3:56 × 10−8 3:57 × 10−8

Table 8.4 Initial and updated parameter values for HMC and SHMC4,8 algorithms at the δt = 3 ms

Initial mean vector θ0 HMC c.o.v. (%) SHMC4 c.o.v. (%) SHMC8 c.o.v. (%)

P 2785.00 1.97 2.27 2.98
VTPImin 8:34 × 10−9 5.62 5.50 6.92
LImin 8:34 × 10−9 2.34 2.27 3.38
LImax 8:34 × 10−7 2.61 2.75 3.34
RImin 8:34 × 10−9 2.13 2.21 3.38
RImax 8:34 × 10−7 3.14 4.02 4.21
LItors 4:00 × 10−8 1.95 2.09 2.61
RItors 4:00 × 10−8 2.17 2.49 3.18
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Figures 8.1–8.3 present Gaussian probability plots for the first updated parameter θ1 = ρ
using the three algorithms (SHMC4, SHMC8 and HMC; Boulkaibet, 2014). These graphs
are an effective way to verify whether the updated parameters follow a Gaussian distribution,
which is difficult to establish from histogram plots. Similar plots for other updating parameters
can be created.

0.9999

0.9995
0.999

0.995
0.99

0.95
0.9

0.75

0.94 0.96 0.98 1 1.02

θ
1
/θ1

0

1.04 1.06 1.08

P
ro

b
a
b
ili

ty

0.5

0.25

0.1
0.05

0.01
0.005

Figure 8.1 Normal probability plot for ρ (HMC)
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The distributions of the density ρ obtained from both HMC and SHMC4 methods have a
form close to the Gaussian. However, the distribution of ρ exhibits some non-Gaussian behav-
iour in the tails. The distribution of ρ obtained from the SHMC8 method is relatively far from
having a Gaussian form since a strong non-Gaussian behaviour in the tails was obtained. The
same remarks can be made about the LImax distribution obtained by the SHMC4 algorithm. The
HMC algorithm produces distributions close to the Gaussian for both LItors and RItors. In gen-
eral, the distributions obtained by the three algorithms showed non-Gaussian behaviours.
Figures 8.4–8.6 provide the two-dimensional histogram plots of ρ versus LImax for the HMC

and SHMC4,8 algorithms. The graphs exhibit the region of most probable values of the updated
parameters where HMC and SHMC4,8 algorithms were able to identify the region of high prob-
ability (shown in red). Additionally, the HMC and SHMC4,8 give different histograms because
of the reweighting step and the degree of the shadow Hamiltonian function in the SHMC
method.
Figures 8.7 and 8.8 demonstrate the correlation between all updated parameters for both

HMC and SHMC8 algorithms; the correlation for the SHMC4 algorithm is not displayed
because it is almost identical to that for the SHMC4. For both HMC and SHMC8, all parameters
are correlated. Table 8.5 provides the modal results for the various sampling algorithms and the
results obtained suggest that the updated finite element model natural frequencies are improve-
ments on the initial finite element model in all cases. The error between the second measured
natural frequency and that of the initial model was 5.01%; using the HMC method for finite
element model updating, this error is reduced to 1.45%, and using the SHMC4 and SHMC8

method, it was reduced to 1.40% and 0.98%, respectively. A comparable observation was made
on the fourth, sixth, seventh, eighth and ninth natural frequencies. Both SHMC4 and SHMC8

algorithms give a smaller final total average error when compared to that from the HMC algo-
rithm for the same initial time step. The initial total average error was 4.6%; applying the HMC,
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SHMC4 and SHMC8 techniques for finite element model updating, the error is reduced to
1.22%, 1.20%, and 1.09%, respectively. The additional observation indicates that all algo-
rithms give robust estimation of the updated parameters which can be verified by the relatively
low values of c.o.v. for all modes (less than 3%). The time step, δt = 3 ms, provides a
good acceptance sampling rate for all methods, with the HMC and SHMC giving 99.9%.
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Figure 8.9 demonstrates the total average error versus number of iterations for the three algo-
rithms and convergence results for two time steps δt = 3 and 4:8 ms are plotted on the same
graph, where c = 0:01 for both cases. Figure 8.9 shows the efficiency of these algorithms where
150–200 iterations (samples) are sufficient in order to obtain a good average error when time
step δt = 3 ms. The three algorithms give almost the same convergence rate when the time
step δt = 3 ms.
Nonetheless, the error decreases faster for both SHMC4,8 algorithms when the time step is

δt = 4:8 ms, and this indicates that the SHMC algorithm is more efficient that the HMC

Table 8.5 Modal results for the HMC and SHMC4,8 algorithms at δt = 3ms

Mode

Measured
frequency

(Hz)

Initial FEM
frequencies

(Hz)

Initial
error
(%)

HMC
frequencies

(Hz)

SHMC4

frequencies
(Hz)

SHMC8

frequencies
(Hz)

1 6.380 5.71 10.47 6.313 6.312 6.301
2 16.100 15.29 5.01 15.866 15.875 15.930
3 33.130 32.53 1.82 32.236 32.238 32.330
4 33.530 34.95 4.23 33.900 33.880 33.930
5 35.650 35.65 0.012 35.643 35.620 35.589
6 48.380 45.14 6.69 48.840 48.800 48.783
7 49.430 54.69 10.65 49.871 49.860 49.702
8 55.080 55.60 0.94 54.364 54.418 54.591
9 63.040 60.15 4.59 63.888 63.896 63.828
10 66.520 67.56 1.57 67.446 67.447 67.449

FEM = finite element model.
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Figure 8.9 The total average error for HMC and SHMC4,8 for different time steps
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algorithm for large time steps (Table 8.6). When the time step is sufficiently large to permit
significant jumps of the algorithm during the search process, the HMC technique offers poor
updating parameters where no updating happened. This is because of the relatively large time
step δt = 4:8 ms which does not conserve the Hamiltonian function, leading to a high rejection
rate in the algorithm. The implementation of this time step caused significant numerical errors
of the integrator used to assess the pair (θ, p). The Hamiltonian function begins fluctuating with
time, resulting in a sudden decrease in the acceptance rate: that of the HMC algorithm falls to
less than 1% when the time step is δt = 4:8 ms. The acceptance rate for SHMC4 was 70.8% and
that of the SHMC8 algorithm was 78.6%, and these values are sensible and more acceptable
compared to those observed in the HMC method. The estimation error (c.o.v.) was relatively
small for the SHMC algorithms, where the errors were less than 11% for the SHMC4 and less
than 6% for the SHMC8.
For the case where the time step was increased (δt = 4:8 ms), the performance of the SHMC

method improves the most (see Table 8.6) and the total average error was reduced to 0.92% for
the SHMC4 and 0.87% for the SHMC8 . This is not the case for the HMC, where the acceptance
rate decreases to less than 1% and the updated vector obtained from the HMC did not improve
the finite element model results. Figure 8.10 with c = 0:01 shows the acceptance rate against the
time step; the acceptance rate for the three methods was 99.9% when the time step was 3 ms.
The acceptance rate started decreasing when the time step increased for the three methods, but
this decrease was faster and more significant in the case of the HMC method. When the time
step was δt = 3:4 ms, the acceptance rate for the HMC method decreased slightly to 98.7% but
stayed the same for the SHMC methods (99.9% for both). When the time step was 3.8 ms the
SHMC8 acceptance rate reduced slightly to 99.8% while that of the SHMC4 decreased to
88.2%; however, that of the HMC fell significantly to 53.2%. When the time step reached
4.8 ms, the acceptance rate decreased to 78.6% for the SHMC8 and to 70.8% for the SHMC4,
both acceptable compared to that obtained for the HMC method (less than 1%).
In spite of the detailed mathematical formulation of the SHMC, this algorithm was easier to

program, even though extra memory compared to the HMC algorithm was required for the
extra parameters as well as the reweighting step during the execution of the program.

Table 8.6 Modal results and errors for HMC and SHMC4,8 algorithms for a time step of 4.8 ms

Mode
Measured

frequency (Hz)
Initial

error (%)
HMC

error (%)
SHMC4

error (%)
SHMC8

error (%)

1 6.380 10.47 10.47 1.50 1.40
2 16.100 5.01 5.01 0.35 0.32
3 33.130 1.82 1.82 2.04 2.04
4 33.530 4.23 4.23 1.38 1.38
5 35.650 0.012 0.012 0.37 0.29
6 48.380 6.69 6.69 1.03 0.37
7 49.430 10.65 10.65 0.13 0.04
8 55.080 0.94 0.94 0.02 0.35
9 63.040 4.59 4.59 0.93 1.07
10 66.520 1.57 1.57 1.41 1.40
Total average
errors

— 4.60 4.60 0.92 0.87
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Nevertheless, with a proper selection of the constant c, the SHMC algorithms performed sat-
isfactorily. Sweet et al. (2006) proposed a technique to optimise the SHMC algorithm. This
technique was based on identifying the mean and variance of the difference between the
shadow Hamiltonian and the Hamiltonian, which can be useful to obtain the optimal values
for both constant c and the time step δt. Furthermore, the SHMC technique successfully
improved the time step upper bound which allowed large jumps during the search. Updating
large structures with several updated parameters using the SHMC algorithms should be inves-
tigated because the number of the parameters in this method has lower effect than that of the
HMC algorithm.
Different methods have been proposed to improve the efficiency of the HMC algorithm.

Neal (1994) considered a transition between windows of several states (instead of a single state)
at the beginning and end of the trajectory. The state within the selected window is selected
according to the Boltzmann probability. The acceptance procedure using windows helped
improve the acceptance rate of the HMC algorithm. Fischer et al. (1999) introduced an extra
parameter to generalise the HMC algorithm by enhancing sampling at low temperatures, which
is accomplished by sampling from a mixed canonical ensemble. Combining the SHMC
algorithm with some of these modifications should be considered for finite element model
updating. Additionally, the differences between the above techniques and other variations
of the Hamiltonian Monte Carlo method should be studied.

8.6 Conclusion

In this chapter, the HMC technique was used to approximate the posterior distribution function,
and the influence of the time step was studied. The results and limitations of the HMC in com-
plicated finite element model updating problems were highlighted when the time step was
increased. To overcome some of these limitations, a modified version based on a shadow
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Hamiltonian – called the shadow hybrid Monte Carlo – was implemented. The SHMC used a
modified Hamiltonian approximation to sample from the extended phase space of the shadow
Hamiltonian rather than from the configuration space alone. The GARTEUR SM-AG19 struc-
ture was used to test this method and the efficiency of the algorithms was studied. Both these
methods were observed to converge fast for a given time step, but the SHMCmethod was more
efficient than HMC as it provided good samples even at larger time steps, which was not the
case with the HMC technique. The sampling acceptance rate of the HMC algorithm decreased
at larger time steps. The SHMC8 gave more accurate results than the SHMC4 since its
shadow Hamiltonian consisted of more approximation terms. The technique of sampling the
momentum and the molecular dynamic procedure depended on the constant c, which might
be computationally expensive in cases where c was not optimised.
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9
Separable Shadow Hybrid Monte
Carlo in Finite Element Updating

9.1 Introduction

In the previous chapters, the hybrid Monte Carlo (HMC) and shadow hybrid Monte Carlo
(SHMC) algorithms were used to update the uncertain parameters of finite element models.
The SHMC algorithm was able to preserve the HMC algorithm’s ability to converge fast and
improved the performance of the basic HMC algorithm by drawing samples when the time step
was large. The SHMCalgorithmwas able to increase the upper bound of the time stepwhilemain-
taining the acceptance rate of the algorithm at sensible levels, which gives more accurate results
than the original HMC algorithm. However, the SHMC algorithm’s performance can be further
enhancedby implementingaseparable shadowHamiltonian functionsoas tostreamline theMonte
Carlo (MC) step and to decrease the time it takes to run the algorithm. In this chapter, an alternative
modified version of the HMC, the separable shadow hybrid Monte Carlo (S2HMC) algorithm,
is applied in finite element model updating (Sweet et al., 2009; Boulkaibet, 2014; Boulkaibet
et al., 2014, 2015). The procedure samples from a separable modified Hamiltonian function by
altering the search space and does not encompass any additional tuning parameter.
The chapter discusses and provides theoretical justification for the S2HMC algorithm. It then

presents the results gained when finite element models of the asymmetrical H-shaped structural
beam and aircraft GARTEUR SM-AG19 structure are updated by using the S2HMC algorithm.
The results obtained are compared to those obtained from using both the HMC and SHMC
algorithms.

9.2 Separable Shadow Hybrid Monte Carlo

The S2HMC algorithm is a modified form of the HMC and SHMC algorithms where a separ-
able shadow Hamiltonian function is used to create samples (Sweet et al., 2009; Boulkaibet,

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and
Mechanical Engineering, First Edition. Tshilidzi Marwala, Ilyes Boulkaibet and Sondipon Adhikari.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.



2014; Boulkaibet et al., 2014, 2015). A shadowHamiltonian function signifies an accurate esti-
mate of the Hamiltonian function (total energy), which can be more conserved (remaining
almost constant when the Verlet integrator is evaluated) than the original Hamiltonian function,
which starts to fluctuate, when relatively large time steps are used for evolving a Verlet inte-
grator. However, the use of the shadow Hamiltonian function might obfuscate the sampling
process of the momentum vector. The S2HMC algorithm improves the sampling efficiency
by sampling from a separable shadow Hamiltonian function by altering the configuration
space. These transformations make it unnecessary to use additional parameters such as the
constant c in the SHMC algorithm and circumvent the difficulty of using an augmented inte-
grator. Additionally, the process of sampling a new momentum vector is the same as in the
HMC algorithm, and these enhancements speed up the convergence of averages calculated
and the transformations used advance the acceptance rate with a relatively insignificant further
computational cost (Sweet et al., 2009; Boulkaibet, 2014; Boulkaibet et al., 2014, 2015).
The S2HMC algorithm uses the velocity Verlet (VV) integrator to increase the order of

accuracy of the sampling technique and this is achieved by altering the configuration space
by introducing the pre-processing and post-processing steps (Sweet et al., 2009; Boulkaibet,
2014; Boulkaibet et al., 2014, 2015). The modified Hamiltonian function applied in this pro-
cedure is conserved toO(δt4) by the treated technique, instead of merelyO(δt2) by the untreated
technique. Analogous to the SHMC procedure, the S2HMC procedure also necessitates a
reweighting step to deal with the alteration of the potential energy. The shadow Hamiltonian
function applied in the S2HMC is separable and is of fourth order (Sweet et al., 2009;
Boulkaibet et al., 2014, 2015; Boulkaibet, 2014):

~H θ,pð Þ = 1
2
pTM−1p+V θð Þ + δt2

24
Vθ

TM−1Vθ +O δt4
� �

; ð9:1Þ

where Vθ is the derivative of the potential energy V with respect to θ. The joint distribution
derived from the separable shadow Hamiltonian function can be expressed as
eρ θ,pð Þ/ exp −βB ~H θ,pð Þ� �

, while the separable shadow Hamiltonian function is a result of
applying backward error analysis to numerical integrators (Hairer et al., 2002; Leimkuhler
and Reich, 2004; Sweet and Izaguirre, 2006). The pre-processing step is expressed as follows
(Sweet et al., 2009; Boulkaibet, 2014; Boulkaibet et al., 2014, 2015):

p̂= p−
δt

24
Vθ θ + δtM−1p̂

� �
−Vθ θ−δtM−1p̂

� �� �
; ð9:2Þ

θ̂ = θ +
δt2

24
M−1 Vθ θ + δtM−1p̂

� �
+Vθ θ−δtM−1p̂

� �� �
: ð9:3Þ

Equations 9.2 and 9.3 necessitate an iterative solution for p̂ and a direct calculation for θ̂. The
post-processing step is written as follows (Sweet et al., 2009; Boulkaibet, 2014; Boulkaibet
et al., 2014, 2015):

θ= θ̂−
δt2

24
M−1 Vθ θ+ δtM−1p̂

� �
+Vθ θ−δtM−1p̂

� �� �
; ð9:4Þ

p= p̂+
δt

24
Vθ θ + δtM−1p̂

� �
−Vθ θ−δtM−1p̂

� �� �
: ð9:5Þ
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Equations 9.4 and 9.5 necessitate an iterative solution for θ and direct calculation forp. To com-
pute balanced values of the mean, the results need to be reweighted and the average of an observ-
able A is written as follows (Sweet et al., 2009; Boulkaibet, 2014; Boulkaibet et al., 2014, 2015):

Bh i=
XNs

i= 1
BaiXNs

i= 1
ai

, where ai =
exp −βBH θ,pð Þð Þ
exp −βB ~H θ,pð Þ� � : ð9:6Þ

The S2HMC procedure can be abridged as follows (Sweet et al., 2009; Boulkaibet, 2014;
Boulkaibet et al., 2014, 2015):

1. Initiate θ0.
2. Initiate p0 so that p0 �N 0,Mð Þ.
3. Calculate the initial shadow energy ~H θ,pð Þ using Equation 9.1.

4. Pre-processing step: beginning with (θ, p), iteratively calculate p̂ and directly estimate θ̂
using Equations 9.2 and 9.3.

5. Start the leapfrog algorithm with θ̂, p̂
� �

and run for L time steps to obtain θ̂
∗
, p̂∗

� �
.

6. Post-processing step: beginning with θ̂
∗
, p̂∗

� �
, iteratively calculate θ∗ and directly estimate

p∗ using Equations 9.4 and 9.5.
7. Update the finite element model to get the new analytical frequencies and then compute H

(θ∗, p∗).
8. Accept (θ∗, p∗) with probability min 1,exp −βBΔ~H

� �� �
.

9. Repeat steps 3–8 to obtain Ns samples.
10. Calculate the weight by using Equation 9.6 to calculate the averages of the quantity A(θ).

The idea of the constructed processed integrator is to alter the phase space, that is, the pre-
processing of the pair (θ, p), where the propagation is conducted in a different space and by
using another integrator which has a non-separable shadow Hamiltonian. The inverse of the
pre-processing step, which is also called the post-processing step, is evaluated when the output
is required and thus, compared to the SHMC method, the momentum sampling process is sim-
plified and an accurate and faster simulation is assured (Blanes et al., 2004; Sweet et al., 2009;
Boulkaibet, 2014; Boulkaibet et al., 2015).
Particular changes can be made to improve the S2HMC technique, including sampling the

momentum vector by avoiding the dependency between their components when the momen-
tum is drawn. The best approach for handle the dependencies between components, which are
unavoidable, is by applying an ordered over-relaxation technique to minimise the random walk
in the momentum sampling process (Neal, 1998). Finite difference estimation is employed to
calculate the gradient Vθ and this gradient is based on forward and backward Taylor series
expansion of the function. Nevertheless, in the situation where the dimension of the uncertain
parameters is high, the forward/backward difference estimation could be more practical since it
necessitates d, which is the dimension of the uncertain parameters evaluation of V(θ) to calcu-
late the gradient, while the central difference approximation necessitates 2d, and the forward
difference approximation gradient, which is given by

∂V

∂Ei
=
V θ +Δhð Þ−V θð Þ

hΔi
:
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In a situation where significant amounts or streaming data are involved when calculating the
gradient it is computationally taxing and as an alternative a subset of the data is used to compute
a noisy gradient. This type of gradient is called a stochastic gradient (Welling and Teh, 2011;
Boulkaibet, 2014). As a final point, in order to compute balanced values of the mean, the results
must be reweighted and this is achieved using ρ θ,pð Þ=eρ θ,pð Þ before evaluating the averages.
The average of an observable A is given by Equation 9.6. If the weighted vector parameter is

given by eθ, the mean value of the estimated parameters is given by (Boulkaibet, 2014)

êθ =E eθ� �
ffi 1
Ns

XNs

i= 1

eθi; ð9:7Þ

where eθ = θai
.XNs

i= 1
ai and θ is the unweighted uncertain vector. The mean value can be

written as (Boulkaibet, 2014)

êθffi 1
Ns

XNs

i= 1

aiXNs

j= 1
aj

eθi = 1XNs

j= 1
aj

1
Ns

XNs

i= 1

aieθi = 1XNs

j= 1
aj
E θaT
� �

: ð9:8Þ

By the same logic, the variance of the weighted estimated parameters can be written as
(Boulkaibet, 2014)

V eθ� �
=E eθ− êθ� �2

� 	
ffiV θð Þ

XNs

i = 1
ai2XNs

j = 1
aj2

; ð9:9Þ

where V(θ) is the unweighted variance, which is similar to the value estimated by the HMC
algorithm, or any version of the Markov chain Monte Carlo algorithm. The standard deviation

is then given by σθ~ =

ffiffiffiffiffiffiffiffiffiffiffiffi
V eθ� �r

.

9.3 Theoretical Justifications of the S2HMC Method

In the HMC algorithm, the molecular dynamic (MD) integrator ensures reversibility and
preservation of volume to satisfy the detailed balance (Duane et al., 1987; Gupta et al.,
1988; Hanson, 2001; Alfaki, 2008; Boulkaibet et al., 2012, 2014; Beskos et al., 2013; Boulk-
aibet, 2014). In this section, it is demonstrated that the processed leapfrog is symplectic and
reversible and that the shadow Hamiltonian function ~H of the S2HMC is conserved to fourth
order for the processed leapfrog. In the S2HMC algorithm, the objective is to apply a processed
leapfrog integrator where its fourth order shadowHamiltonian is separable (Sweet et al., 2009):

H
~ θ,pð Þ = 1

2
pTM−1p+ ~V θð Þ; ð9:10Þ
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with ~V(θ) signifying the modified potential energy. The fourth-order shadow Hamiltonian,
which is a result of applying backward error to the numerical integrator, is conserved to O
(δt4) (Skeel and Hardy, 2001; Engle et al., 2005). The processed integrator is created by
changing the search space variables (pre-processing step) for better propagation by another
processed integrator. The inverse mapping (post-processor step) can be then evaluated when
the output is needed. The processed integrator has more advantages in terms of sampling accur-
acy and less complexity of the MC step (Blanes et al., 2004). The mapping function used by the
S2HMC algorithm preserves the phase space volume and confirms the reversibility principle of
momentum, and these fulfil the detailed balance. The following generation function is used to
obtain a symplectic mapping function (Sweet et al., 2009):

S θ, p̂ð Þ= θT p̂+ δt

24
Vθ θ+ δtM−1p̂

� �
−Vθ θ−δtM−1p̂

� �� �
; ð9:11Þ

where the mapping function θ, p̂ð Þ= χ θ̂, p̂
� �

can be obtained as follows:

θ̂ =
∂S

∂p̂
, p̂=

∂S

∂θ
: ð9:12Þ

The mapping function in Equation 9.11, which is attained by pre-processing steps in
Equations 9.2 and 9.3, preserves the symplectic property of the processed integrator. The
inverse mapping χ −1 is given by the post-processing step (Equations 9.4 and 9.5). The revers-
ibility of the processed integrator can be proven by showing that χ θ, −pð Þ= diag I, −Ið Þχ θ,pð Þ,
which demonstrates that the processed integrator is both symplectic and reversible. Therefore,
the S2HMC algorithm satisfies the detailed balance relations.
It is vital to demonstrate the relationship between the unprocessed leapfrog integrator and the

processed leapfrog integrator. The fourth-order shadow Hamiltonian function for the processed
leapfrog integrator was shown in Equation 9.1. Nevertheless, the numerical solution of the
unprocessed leapfrog is known to be approximately equal to the analytical solution of the fol-
lowing fourth-order shadow Hamiltonian function (Skeel and Hardy, 2001; Engle et al., 2005):

H
~
0 θ̂, p̂
� �

=
1
2
p̂TM−1p̂+V θ̂

� �
+
δt

12
KT

pVθθKp−
δt2

24
Vθ

TM−1Vθ +O δt4
� �

; ð9:13Þ

where Vθθ is the derivative of the potential energy Vθ with respect to θ, andKp is the derivative
of kinetic energy scalar value K(p) with respect to p. The shadow Hamiltonian function of the

transformed variables θ̂ and p̂ is shown in Equation 9.13. The mapping function

θ̂, p̂
� �

= χ θ,pð Þ connects the original to the transformed variables and because the transform-

ation is symplectic, the shadow Hamiltonian function of the processed integrator can be

expressed as H
~

θ,pð Þ=H~0 χ θ,pð Þð Þ. The power expansions of the transformed variables θ̂
and p̂ are defined as (Skeel and Hardy, 2001; Engle et al., 2005):

p̂=p−
δt2

12
VθM−1p+O δt4

� �
; ð9:14Þ

θ̂ = θ +
δt2

12
M−1Vθ +O δt4

� �
: ð9:15Þ
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Then, the shadow Hamiltonian function of the processed integrator can be attained by
substituting Equations 9.14 and 9.15 into Equation 9.13 and identifying the power expansion.
Table 9.1 describes the S2HMC, HMC and SHMC algorithms (Boulkaibet, 2014). The differ-
ences between the procedures of sampling momentum, along with the MD step, are explained
for the three algorithms. The function H[2k](θ, p) characterises the accurate shadow Hamilton-
ian of order k.
In the next section the S2HMC algorithm is applied to update an asymmetrical H-shaped

aluminium structure.

9.4 Application 1: Asymmetrical H-Shaped Structure

The asymmetrical H-shaped aluminium structure is now investigated using the S2HMC tech-
nique to update its finite element model (Marwala, 1997, 2010). The structure is modelled using
finite element modelling software. The results obtained from finite element model updating
using the S2HMC algorithm are compared to those obtained using HMC and SHMC algo-
rithms. Because the S2HMC algorithm uses a fourth-order Hamiltonian function, the results
obtained by the SHMC4 algorithm are compared with those obtained by the S2HMC algorithm.
The measured natural frequencies of this structure are 53.9, 117.3, 2041.4, 254.0 and

445.0 Hz. The moments of inertia and the cross-sectional areas of the left, middle and
right subsections of the beam are updated. The updating parameter vector is
θ= Ix1, Ix2, Ix3,Ax1,Ax2,Ax3f g. The posterior constants, beam parameters and boundaries of these

Table 9.1 The momentum, MD and reweighting steps for HMC, SHMC and S2HMC algorithms

Methods
Sampling new momentums
(MC) step MD step Reweighting step

HMC Given θ, generate p such that
p�N 0,Mð Þ

Accept (θ∗, p∗) with
probability
min 1,exp −βBΔHf gð Þ

—

SHMC Given θ, generate p such that
p�N 0,Mð Þ
Accept with probability
1,exp −βB H 2k½ � θ,pð Þ−c−H θ,pð Þ� �� �� �

Accept (θ∗, p∗) with
probability
min 1,exp −βBΔ~H

� �� �
where
~H =H 2k½ � θ,pð Þ−c

The observable B is
given by:

Bh i=
XNs

i= 1
BaiXNs

i= 1
ai

,

where

ai =
exp −βBH θ,pð Þð Þ
exp −βB ~H θ,pð Þ� �

S2HMC Given θ, generate
p such that p�N 0,Mð Þ
Then solve p̂= p−

δt

24
Vθ θ+ δtM−1p̂

� ��
−Vθ θ−δtM−1p̂ÞÞ�

Accept (θ∗, p∗) with
probability
min 1,exp −βBΔ~H

� �� �
The observable B is
given by:

Bh i=
XNs

i= 1
BaiXNs

i= 1
ai

,

where

ai =
exp −βBH θ,pð Þð Þ
exp −βB ~H θ,pð Þ� �
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parameters are given inMarwala (1997). The number of samples isNs = 1000, and the time step
is set to 0.0045 s, and L is uniformly distributed on the interval {1, 30}. The constant is
c = 0:001 for the SHMC algorithm. Each algorithm was implemented over 20 independent runs
and the results are shown in Tables 9.2 and 9.3 (Boulkaibet, 2014).
Figure 9.1 shows the scatter plots with marginal histograms for four uncertain parameters

using S2HMC algorithm. These graphs show concentration in a specific area, which means
that the algorithm found the area of high probability (almost the same as HMC and SHMC
algorithms). The expectation values of the rest of the parameters along with their coefficient
of variation (c.o.v.) are given in Table 9.2.
Table 9.2 presents the initial, the updated values of the uncertain parameters, and the c.o.v. of

parameters for the S2HMC algorithm. The c.o.v. represents the percentage of estimated stand-
ard deviation divided by the estimated θ for each algorithm, 100σi/θi. The estimations of the
middle beam parameters are more accurate than the left and the right beam parameters, which
can be seen from the values of the c.o.v. in Table 9.2. The c.o.v. values of the middle beam
parameters are lower than those obtained for both the left and right beams. This could be attrib-
uted to the structure being excited at the position indicated by the double arrow (located in the
middle beam), and thus more information on the middle beamwas used in the updating process.
In general, the S2HMC algorithm updated the θ vector where the updated vector obtained by
the algorithm was physically realistic. The time step used provides a very good sampling
acceptance rate for all algorithms (99.9%). The updated values and the c.o.v. for the
HMC and SHMC algorithms are found to be close to those obtained by the S2HMC algorithm
(Figure 9.2).

Table 9.2 Initial and updated parameters using HMC, SHMC and S2HMC

Initial
HMC
method

σi
θi

(%) SHMC
method

σi
θi

(%)
S2HMC method

σi
θi

(%)

Ix1 2:73 × 10−8 2:21 × 10−8 12.67 2:18 × 10−8 12.60 2:19 × 10−8 13.44
Ix2 2:73 × 10−8 2:60 × 10−8 1.37 2:49 × 10−8 3.99 2:44 × 10−8 2.70
Ix3 2:73 × 10−8 2:90 × 10−8 16.50 2:96 × 10−8 14.93 2:95 × 10−8 13.31
Ax1 3:16 × 10−4 4:00 × 10−4 1.39 4:05 × 10−4 2.19 3:91 × 10−4 2.93
Ax2 3:16 × 10−4 2:30 × 10−4 1.10 4:05 × 10−4 2.10 2:34 × 10−4 2.51
Ax3 3:16 × 10−4 2:40 × 10−4 1.95 2:25 × 10−4 3.20 2:21 × 10−4 7.44

Table 9.3 Natural frequencies and errors when HMC, SHMC and S2HMC are used to update
the parameters

Measured
frequency (Hz)

Initial
frequency (Hz)

Frequencies
HMC method

(Hz)

Frequencies
SHMC method

(Hz)

Frequencies
S2HMC method

(Hz)

53.90 51.40 52.93 (0.17%) 52.94 (0.04%) 53.16 (0.83%)
117.30 116.61 118.82 (0.21%) 118.23 (0.15%) 118.78 (0.87%)
208.40 201.27 208.81 (0.24%) 207.91 (0.27%) 208.56 (0.99%)
254.00 247.42 254.41 (0.22%) 253.84 (0.17%) 254.04 (1.20%)
445.00 390.33 444.13 (0.41%) 443.00 (0.20%) 444.16 (1.56%)
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Table 9.3 shows the updated natural frequencies for each mode, and the coefficient of vari-
ation in brackets represents the estimated standard deviation of the frequency divided by the
estimated frequency.
The HMC algorithm reduced the error to 0.73%, while the fourth-order SHMC and S2HMC

algorithms gave errors of 0.66% and 0.58%, respectively. From Table 9.3, the error between the
first measured natural frequency and that of the initial model was 4.63%. When the S2HMC
algorithm was applied, the error decreased to 1.37%. The same comments can be made for the
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Figure 9.1 Scatter plot of Ax1 versus Ix2 with marginal histograms using S2HMC methods
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Figure 9.2 Scatter plot of Ax2 versus Ax3 with marginal histograms using S2HMC methods
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third, fourth, and fifth natural frequencies. Overall, the updated finite element model natural
frequencies for the S2HMC algorithm were better than the initial .
When the results obtained by the S2HMC algorithm were compared with those calculated by

both the HMC and SHMC algorithms, the S2HMC algorithm gave a slightly better total aver-
age error than both the HMC and SHMC algorithms. As can be seen in Table 9.3, finite element
model updating using the S2HMCmethod improved the error from 4.7% to 0.58%, which is an
acceptable percentage. The c.o.v. (in parentheses) for the S2HMC algorithms is very small,
suggesting that the updating process using the Bayesian approach while predicting the posterior
distribution function by the separable shadow Hamiltonian algorithms produced more accurate
results compared to the other algorithms. The c.o.v. values obtained by the S2HMC are slightly
higher than those obtained by HMC algorithm (but still less than 1.6%). This is to be expected
since the S2HMC algorithm uses an approximation of the Hamiltonian function for the sam-
pling procedure and the original Hamiltonian function is almost conserved for lower time steps.
However, the separable shadow Hamiltonian function has advantages when the time step is
relatively large. Figure 9.3 shows the correlation between all updated parameters. All param-
eters are weakly correlated, except for the pair (Ax1, Ax3) which is highly correlated (the cor-
relation is equal to 0.71).
The total average error is plotted on a logarithmic scale against the number of iterations in

Figure 9.4, and this figure can be used to determine the convergence of the S2HMC algorithm
in terms of iterations (samples) needed to converge. The results obtained by the S2HMC are
compared in the same plot with those from the HMC and SHMC algorithms. The results show
that the S2HMC algorithm converges faster and within the first 100 iterations along with the
other two algorithms when the time step is relatively small. This means that 200 iterations (or
200 samples) could be sufficient to obtain good updated parameters.
The time step used in Hamiltonian algorithms determines the accuracy and speed of these

algorithms. Figure 9.5 shows the sampling acceptance rate (AR) of the S2HMC algorithm
when the time step varies between 0.006 and 0.01 s. Moreover, Figure 9.5 shows both the
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HMC and SHMC acceptance rates. It shows that the S2HMC algorithm extended the upper
boundary of the HMC time step. The S2HMC method maintains a good AR when the time
step is increased. At a time step of 0.006 s, the S2HMC algorithm has an AR equal to
99.9%. It preserves the same AR value until δt = 0:0066 s, beyond which the AR of the algo-
rithm starts decreasing to reach an acceptance rate of 69.7% at time step δt = 0:01 s.
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Figure 9.4 The total average error using the HMC, SHMC and S2HMC methods
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The S2HMC algorithm gives an AR slightly higher than that of the SHMC (66% for the latter).
The AR of the HMC algorithm at time step δt = 0:01 s is less than 1% (no samples were
accepted).
Figures 9.4 and 9.5 show that the results of the S2HMC and SHMC algorithms are close in

terms of convergence or acceptance rates. However, Table 9.1 indicates that the SHMC has a
complicated procedure for obtaining new momentums, where an acceptance–rejection proced-
ure (which depends on the constant c) is needed to accept new momentum vectors. Comparing
the MC and MD procedures of the SHMC algorithm when the constant c varies between 0.001
and 1.0, it is observed that c plays a very important role since the AR of both MC andMD steps
can be balanced using this constant. The constant c should be small to ensure a good AR in the
MD step. At the same time, the value of c should be large in order to ensure a good ARwhen the
momentum is sampled (MC step). The MC acceptance rate started at a very low 28% when
c = 0:001, since the algorithm needs more time to produce new momentums. It reached 76%
when c= 1:0. In contrast, the MC acceptance rate started very high at 98.1% when c = 0:001
and decreased to 29.6% when c = 1:2.
To explore the S2HMC algorithm further, a complex structure is considered in the next

section.

9.5 Application 2: GARTEUR SM-AG19 Structure

In this second example, the S2HMC technique is used to update the finite element model of the
GARTEUR SM-AG19 structure (Degener and Hermes, 1996; Balmes, 1998; Datta, 2002;
Guyon and Elisseeff, 2003; Link and Friswell, 2003; Carvalho et al., 2007). The measured
frequencies are 6.38, 16.10, 33.13, 33.53, 35.65, 48.38, 49.43, 55.08, 63.04 and 66.52 Hz.
The parameters of the structure to be updated are the right wing moments of inertia and tor-
sional stiffness (RImin, RImax, RItors), the left wing moments of inertia and torsional stiffness
(LImin, LImax, LItors), the vertical tail moment of inertia VTPIminð Þ, and the overall structure dens-
ity ρ.
The mean values of the updated vector and their bounds are given in Tables 9.3 and 9.4

respectively. The time step is set to δt = 3 ms for the first scenario and δt = 4:8 ms for the second
scenario, L is uniformly distributed on the interval {1, 20}, and the number of samples is
Ns = 1000. Each algorithm was run for over 10 independent simulations. The final results pre-
sented in Tables 9.4 and 9.5 are the average of these 10 runs. The S2HMC algorithmwas imple-
mented to update the finite element model and the results obtained are compared with those
obtained by the SHMC and HMC methods. Table 9.4 presents the initial value of the updated
vector θ, the updated values and the corresponding c.o.v. obtained by S2HMC method for two
scenarios of time steps.
When the time step was δt = 3 ms, the S2HMC algorithm updated all parameters with rea-

sonable precision, as indicated by the small c.o.v. values for all parameters. The time step used
is relatively small, which might mean that the HMC algorithm has some advantages over the
SHMC and S2HMC algorithms. This can be seen in the c.o.v. values, which are smaller than for
both SHMC and S2HMC. However, the SHMC and S2HMC algorithms give better total aver-
age error than the HMC algorithm.
In general, the c.o.v. values are small for the updated parameters when the Hamiltonian algo-

rithms are implemented to update the structure (less than 6% for both the HMC and SHMC
algorithms, and lower than 6.5% for the S2HMC algorithm). In the second scenario, when
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a relatively large time step (δt = 4:8 ms) is used, the updated parameters obtained by the
S2HMC method are much closer to the mean value than those obtained earlier by using a
3 ms time step. In this setting, the HMC method gives poor updating parameters. The same
initial values were obtained since no new samples are accepted. The reason is that the Ham-
iltonian function fluctuated very rapidly with time, causing a sudden decrease in the AR (which
dropped to less than 1% when the time step was 4.8 ms). The AR for the S2HMC was 71.3%,
which is acceptable compared to that of the HMCmethod. However, the S2HMC algorithm has
an less implementation time than that of the SHMC algorithm. The constant c= 0:01 used earl-
ier reduces the SHMC acceptance rate of the MC step to 61.2%. (The SHMC algorithm uses an
acceptance–rejection procedure to sample new momentums.) This indicates that the SHMC
algorithm takes longer to sample momentums, and more time is needed to run the algorithm.
However, the S2HMC uses a similar method to the HMC to sample new momentum vectors
(sampling directly from a Gaussian probability distribution function. Then the pre-processing
step transfers the momentum to be evaluated to a different search space.
A 4.8 ms time step allows the S2HMC algorithm to give slightly more precise results than

those obtained by a 3 ms time step. This can be verified from Table 9.4, where the c.o.v. val-
ues obtained by the S2HMC algorithm when δt = 4:8 ms are smaller than those obtained by the
same algorithm when δt = 3 ms. Also, the c.o.v. values obtained by the S2HMC algorithm are
smaller than those obtained using the HMC and SHMC algorithms. This means that the
S2HMC algorithm produced more accurate results than those obtained by the other two
algorithms when the time step is relatively large (the c.o.v. values are less than 4.5% for
S2HMC algorithm, while exceeding 10% for some parameters using the SHMC algorithm).
Figures 9.6–9.9 present the histograms of two updating parameters using the S2HMC method.
Again, θi refers to the sequential numbering of the updating parameters in the updating vector,
that is, θ1 = ρ (density) and θ2 refers to VTPImin , while the normalisation constants θ0i are the
initial (mean) values of the updated parameters presented in Table 9.4. The obtained results
show that the S2HMC algorithm was successfully able to identify the high probability region
(the density of the parameters varies in a very small region, especially those of θ5 and θ6).
The parameters ρ, VTPImin , LImin, LImax (shown in Figures 9.6–9.9), LItors and RItors (not

shown) have forms similar (or close) to normal distribution function forms, while the densities
of the rest of the parameters have different forms.

Table 9.5 Modal results and errors for HMC, SHMC and S2HMC at two different time steps

Measured
frequency
(Hz)

Initial FEM
frequency

(Hz)

Frequency HMC
method (Hz) δt =

3ms

Frequency
SHMC method
(Hz) δt = 3ms

Frequency
S2HMC method
(Hz) δt = 3 ms

Frequency
S2HMC method
(Hz) δt = 4.8 ms

6.38 5.7 6.3 (0.95%) 6.31 (1.30%) 06.326 (1.34%) 06.334 (0.92%)
16.10 15.29 15.87 (0.81%) 15.87 (1.38%) 15.995 (0.84%) 16.037 (0.93%)
33.13 32.53 32.24 (0.75%) 32.24 (1.43%) 32.290 (0.72%) 32.307 (0.75%)
33.53 34.95 33.90 (0.76%) 33.88 (1.52%) 33.906 (0.63%) 33.929 (0.75%)
35.65 35.65 35.64 (0.31%) 35.62 (1.45%) 35.609 (0.42%) 35.606 (0.67%)
48.38 45.14 48.84 (0.61%) 48.80 (1.36%) 48.599 (0.71%) 48.434 (0.73%)
49.43 54.69 49.87 (1.45%) 49.86 (1.61%) 49.706 (1.47%) 49.630 (0.94%)
55.08 55.60 54.36 (0.83%) 54.42 (1.47%) 54.684 (0.76%) 54.728 (0.93%)
63.04 60.150 63.888 (0.68%) 63.896 (1.39%) 63.827 (0.77%) 63.773 (0.76%)
66.52 67.560 67.446 (0.03%) 67.447 (1.48%) 67.444 (0.26%) 67.441 (0.54%)
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Figure 9.10 shows the correlations between all updated parameters for the S2HMC algo-
rithm. All parameters are correlated: (LImin, RImin), (LImin, RImax) and (RImax, RImin) are
strongly so, (ρ, RImax), (ρ, RImin) and (ρ, LItors) weakly so. Table 9.5 contains the updated nat-
ural frequencies and output errors when the S2HMC algorithm is employed. The results show
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Figure 9.9 Histograms of updating model parameters LImax using the S2HMC method
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that the updated finite element model natural frequencies are better than the initial finite element
model for an S2HMC algorithm in both time steps. In the case of δt = 3 ms, the error between
the first measured natural frequency and that of the initial model is 10.47%; the S2HMC
reduced the error to 0.85%. A similar observation can be made for the fourth, fifth, sixth, eighth
and ninth natural frequencies. The initial total average error was 4.6%, but after using the
S2HMC method, it fell to 0.964%.
Figure 9.11 shows the total average error (plotted on a log scale) of the S2HMC, SHMC and

HMC algorithms for both scenarios and for 1000 iterations. The S2HMC algorithm converges
fast and has almost the same convergence rate for both scenarios (the algorithms start
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Figure 9.10 The correlation between the updated parameters (S2HMC algorithm)
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converging in the first 100–150 iterations). Also, the S2HMC algorithm has very similar con-
vergence rate to those of the SHMC and HMC algorithms. The time step, δt = 3 ms, provides a
good sampling AR for the S2HMC algorithm (99.9 %). A different time step for the Hamilton-
ian algorithms may reduce the sampling AR for these methods. However, when the time step
increases the results obtained are significantly affected, as well as the convergence rate, par-
ticularly for those algorithms that use the original Hamiltonian function. The time step changes
can also provide a good convergence rate for the S2HMC method, since the S2HMC provides
samples when the time step is relatively large. In the case where the time step δt = 4:8 ms (the
second scenario), the S2HMCmethod improves the results and reduces the c.o.v. values, which
indicates that the results are more accurate than the first scenario. This can be seen in Table 9.5
where the total average error is reduced to 0.86%with an AR of 71.3%. However, this is not the
case for HMC, where the acceptance rate was found to be less than 1 and the updated vector
obtained from the HMC does not improve the finite element modelling results.
Figure 9.12 shows the AR when the time step varies between 3 and 4.8 ms. The AR for the

S2HMC algorithm is 99.9% when the time step is 3 ms. It starts decreasing when the time step
increases, but this decrease is faster and more significant in the case of the HMCmethod.When
the time step is 3.4 ms, the AR for the S2HMC is 99.9%, reducing slightly to 97.8% when the
time step reaches 3.8 ms. Finally, when the time step is 4.8 ms, the AR for the S2HMC
reduces to 71.3%, while SHMC algorithm has an AR equal to 70.8%, which is acceptable com-
pared to that obtained by the HMC method (less than 1%).

9.6 Conclusions

This chapter has illustrated the use of the separable shadow hybrid Monte Carlo algorithm in
finite element model updating problems. The S2HMC technique has the basics of the SHMC
technique – both methods use a modified Hamiltonian function. However, the Hamiltonian
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function used by the S2HMC algorithm is a separable modified function which is easy to pro-
gram, and the sampling procedure of the momentum vector is similar to the basic HMC algo-
rithm. Two different real structures, with the same set of updating parameters introduced, are
used as test cases for this sampling technique. The structures used are the asymmetrical H-
shaped aluminium structure and the GARTEUR SM-AG19 structure. The S2HMC algorithm
is more efficient than both HMC and SHMC algorithm – the S2HMC has a simple procedure to
sample new momentums which the SHMC algorithm does not. Also, it can provide samples
with large time step. The S2HMC algorithm has the ability to produce samples with relatively
large time and without using extra parameters. In both implementations, the S2HMC method
gave better results than both the SHMC and HMC for the examples in different scenarios when
the time step is equal to 3 and 4.8 ms, respectively.
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10
Evolutionary Approach to Finite
Element Model Updating

10.1 Introduction

Finite element modelling is a computational estimation of a real system by breaking the system
into substructures called elements, and the process of connecting these elements (Marwala,
2010; Friswell and Mottershead, 1995). This chapter is essentially about constructing mathem-
atical models based on evolutionary Markov chain Monte Carlo (MCMC) to estimate the
parameters that are uncertain in a finite element model (Boulkaibet et al., 2015a). If it is appar-
ent which variables are uncertain, one tactic is to describe their probability distributions. This is
conceivable for finite element models of real systems for the reason that the uncertain variable
values have to be of realistic magnitudes. The sampling methods can be used to compute these
uncertain parameters. Nevertheless, the difficulty is that – occasionally – the distribution of
these uncertain variables is not known a priori, and then the updated finite element models
have multiple optimal solutions.
One of the sampling methods is the MCMC (Bishop, 2006; Marwala, 2010; Boulkaibet

et al., 2012). MCMC methods have the benefit that the sampling processes draw samples with
an element of randomness, even though being steered by their performance on the problem
objective function also known as the posterior function. Consequently, some samples are
rejected while others are accepted, and this essentially creates a chain of samples. The learning
part of the sampling technique uses the paradigm of evolution-based algorithms (Holland,
1975; Mitchell, 1996; Goldberg, 1989; Hukushima and Nemoto, 1996).
These procedures are based on the concept that, in evolution, new individuals are an

enhancement based on their parents’ performance in a precise problem. Accordingly, new indi-
viduals can be created if we can model the variables that gave advantage to their parents. The

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and
Mechanical Engineering, First Edition. Tshilidzi Marwala, Ilyes Boulkaibet and Sondipon Adhikari.
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similarity of individuals in evolution algorithms to the finite element model context is the par-
ticular combination of uncertain variable values that constitute a possibly correct solution to the
finite element model problem. Therefore, individuals in evolution procedures are all the prob-
able solutions to the finite element model. The individual’s performance on the problem is
assessed by the fitness function and, in this chapter, the fitness function is defined by the loga-
rithm of the posterior density distribution function.
There are two basic instruments for developing new individuals in evolution algorithms:

mutation and crossover. Mutation is when a variable, randomly chosen, alters its value. The
crossover is the procedure where two individuals interchange their variable values at certain
positions, also called crossover points, in the uncertain variable vector. The choice of the loca-
tions can either be conducted using methods such as roulette wheel selection or random selec-
tion (Davis, 1991; Liang and Wong, 2000). The algorithm described in this chapter, proposed
by Boulkaibet et al. (2015a), has an extra operator called the exchange which permits the mix-
ing of individuals within a population to eradicate early convergence. With the intention of
characterising the uncertainties of the uncertain variables, the problem can be formulated in
the Bayesian context. In this chapter, Bayesian statistics, the MCMC, evolutionary Markov
chain Monte Carlo (EMCMC) algorithms and the application of the EMCMC on an asymmet-
rical H-shaped structure are studied.

10.2 The Bayesian Formulation

The EMCMC described in this chapter is essentially used to solve the finite element updating
problem, which is formulated in the Bayesian framework (Marwala and Sibisi, 2005). The
Bayesian method of solving the finite element updating problem is based on Bayes’ rule, pro-
posed by Reverend Thomas Bayes. Bayes’ rule has been applied extensively in applied mech-
anics by Marwala and Sibisi (2005), Marwala (2010), Sundar and Manohar (2013), Yan (2012,
2014) and Yan et al. (2015). It is expressed as follows (Bishop, 1995; Cheung and Beck, 2009;
Yuen, 2010; Boulkaibet et al., 2015a, 2015b):

P θjD,Mð Þ/P Djθ,Mð ÞP θjMð Þ; ð10:1Þ

whereM denotes the model type for the target model, which is described by the parameters of
the updated model θ2Θ�Rd; D is the measured data, in this chapter the natural frequencies
f mi and mode shapes ϕm

i ; and the expression P θjMð Þ is the prior probability distribution func-
tion. The prior probability function indicates prior knowledge of the uncertain variables given a
model without the knowledge of the measured data D. The expression is the posterior density
distribution function of the variables given the observed data and the presumed model type is
the likelihood function (Marwala, 2010; Marwala and Sibisi, 2005; Cheung and Beck, 2009),
which measures the difference between the measured data and the finite element model results
for given variables and assumed model. The dependence onM is only relevant in cases where
more than onemodel type is studied. In this chapter, only one model is studied, and the termM
is ignored.
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In the finite element model setting, the likelihood density distribution function is given by
(Cheung and Beck, 2009; Boulkaibet et al., 2015a):

P Djθð Þ = 1

2π=βcð ÞNm=2
YNm

i= 1
f mi

exp −
βc
2

XNm

i

f mi − fi
f mi

� �2
 !

; ð10:2Þ

where βc is a constant, Nm is the number of measured modes, and f mi and fi are respectively the
ith analytical natural frequency and the ith measured natural frequency.
The prior density distribution function is the prior knowledge of the updating variables θ and

it is chosen to be a Gaussian distribution (Cheung and Beck, 2009):

P θð Þ= 1

2πð ÞQ=2
YQ

i= 1
1=

ffiffiffiffi
αi

p� �exp −
XQ
i= 1

αi
2

θi−θi0
�� ��2

 !

=
1

2πð ÞQ=2
YQ

i= 1
1=

ffiffiffiffi
αi

p� �exp −
1
2
θ−θ0ð ÞTΣ−1 θ−θ0ð Þ

� �
;

ð10:3Þ

where Q is the number of variables to be updated, θ0 represents the mean value of the updated
vector, αi is the coefficient of the prior density distribution function for the ith updating
variables and k.k denotes the Euclidean norm.
The posterior density distribution function of the variables θ given the observed data D is

written as P θjDð Þ and is obtained by applying Bayes’ theorem in Equation 10.1. The distribu-
tion P θjDð Þ is estimated by substituting Equations 10.2 and 10.3 into Equation 10.1 to give
(Cheung and Beck, 2009)

P θjDð Þ/ 1
Zs α,βcð Þexp −

βc
2

XNm

i

f mi − fi
f mi

� �2

−
XQ
i

αi
2

θi
�� −θi0

��2
 !

; ð10:4Þ

where

Zs α,βcð Þ = 2π
βc

� �Nm=2YNm

i = 1

f mi 2πð ÞQ=2
YQ
i= 1

1ffiffiffiffi
αi

p : ð10:5Þ

In systems with a large number of uncertain variables, calculating a posterior density distri-
bution function analytically is impossible. Sampling methods such as MCMC can give a
numerical estimation of this function (Cheung and Beck, 2009; Ching and Leu, 2009).
If Y is a sample of specific variables at different discrete time periods, then the estimation of

the future responses of this parameter Y at another time period can be obtained by using the total
probability theorem (Cheung and Beck, 2009):

P Y jDð Þ =
ð
θ
P Y jθð ÞP θjDð Þdθ: ð10:6Þ

Equation 10.6 depends on the posterior density distribution function and consequently, given
a set ofNs random variable vectors sampled from a probability distribution function P θjDð Þ, the
expected value of any observed function Y can be approximated easily.

176 Probabilistic Finite Element Model Updating



The integral in Equation 10.6 can be calculated using sampling techniques (Bishop, 2006;
Marwala, 2010; Boulkaibet et al., 2015a, 2015b). These methods are applied to estimate a ser-
ies of vectors θ1,θ2,…,θNsf g that can be applied to create a Markov chain. This approximated
vector is then applied to approximate the expression of the posterior distribution function
P θjDð Þ and the integral in Equation 10.6 can written as (Cheung and Beck, 2009)

~Y ffi 1
Ns

XNs

i= 1

G θið Þ; ð10:7Þ

where G is a function that depends on the updated variables θi. For instance, if G θð Þ= θ then ~Y
equals the expected value of θ. Normally, ~Y is the vector that has the measured data andNs is the
number of retained states. In this chapter, the EMCMC technique is used to sample from the
posterior density distribution function.

10.3 The Evolutionary MCMC Algorithm

The EMCMC method combines evolutionary programming techniques with the MCMC
method (Casanellas and Kedzierska, 2013; Liang and Wong, 2000, 2001; Geyer, 1991). Theo-
filatos et al. (2015) proposed an evolutionary based Markov clustering for predicting protein
complexes, while Ponce-de-Leon-Senti and Diaz-Diaz (2012) proposed an evolutionary
method based on Gibbs sampling and theMarkov model. Goh et al. (2012) successfully applied
an evolutionary hidden Markov model for medical image analysis, while Ruiz-Cárdenas et al.
(2012) successfully applied EMCMC algorithms to monitor network designs.
In order to understand the EMCMC technique, it is important to first understand the MCMC.

TheMCMCmethod produces a chain of states through a random walk process which obeys the
Markov process. Each sample depends only on the previous sample and nothing else. The
MCMC is a hybrid of two methods: the Markov process and Monte Carlo simulation
(Markov, 1971; Doob, 1953; Malve et al., 2007; Liesenfeld and Richard, 2008; Jing and
Vadakkepat, 2010).
In the MCMC technique a system is considered which is represented by a stochastic process

comprising random variables {x1, x2, x3,…, xi} where a variable xi inhabits a state x at discrete
time i. If the probability that the system occupies state xi + 1 at time i+ 1 depends entirely on the
state xi at time i, then the random variables {x1, x2, x3,…, xi} form a Markov chain. The tran-
sition between states in the MCMC is attained by adding a random component (ε) to the present
state as follows (Bishop, 2006; Marwala, 2010):

xi+ 1 = xi + ε: ð10:8Þ

The current state is either accepted or rejected, normally using the Metropolis algorithm
(Metropolis et al., 1953; Wang et al., 2015). There are several types of Metropolis algorithms,
including a generalised multiple-point Metropolis (Kobayashi and Kozumi, 2015), an adaptive
Metropolis algorithm (Mbalawata et al., 2015), a pseudo-marginal random walk Metropolis
algorithm (Sherlock et al., 2015), a parallel Metropolis–Hastings (M-H) algorithm
(Calderhead, 2014) and a differential evolution adaptive Metropolis algorithm (Zhou
et al., 2015).
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When applying theMetropolis algorithm for sampling a stochastic process with random vari-
ables {x1, x2, x3,…, xi}, random changes to x are evaluated and are either accepted or rejected
according to the following criterion (Metropolis et al., 1953):

IfFnew <Fold accept state xi+ 1ð Þ
Else

Accept state xi+ 1ð Þwith probability exp − Fnew−Foldð Þf g:

8>><
>>: ð10:9Þ

Here Fnew and Fold are the fitness function (posterior distribution function) values corres-
ponding to xi+ 1 and xi, respectively.
The other aspect of the EMCMC is genetic programming. The genetic algorithm is based on

the theory of evolution and consists of two operators: crossover and mutation (Chatterjee et al.,
1996). The genetic algorithm has been applied successfully to optimise a laser-mixing scheme
(Kou et al., 2015), for virtual topology design (Din, 2015), for moving object detection (Lee
et al., 2015), for capacitor allocation (Gholami et al., 2015), to evaluate discharge (Dunca et al.,
2015), for container packing (Feng et al., 2015), for finite element model updating (Boulkaibet
et al., 2015c) and in decision support (Bukharov and Bogolyubov, 2015).
The EMCMC algorithm combines the genetic algorithm operators with the dynamics of

MCMC algorithms for sampling and learning. In this section, the basics of the EMCMC
methods are described.
Let θ = θ1,θ2,…,θi,…,θN

� 	
denote a population of samples, where θi = θi1,θ

i
2,…,θid

� 	
is a

d-dimensional vector called an individual, or a chromosome in the genetic algorithm, and N is
the population size. In Bayesian statistics, θi is a vector of variables, while the fitness function F
(θi) is the negative of the log-posterior of θi. In EMCMC, a different temperature Ti is
attached to each individual θi, and the temperatures form a schedule with the ordering
T1 > T1 > T2 >…> TN = 1. The concept of temperature is derived from annealing, which is a
natural process in which objects are heated and then cooled in such a way that the system
achieves a stable orientation. This physical process has been used to design an optimisation
technique called simulated annealing, and this technique has been successfully applied to opti-
mise complex processes such as a window assembly line (García-Villoria et al., 2015), for
single-row equidistant facility layout (Palubeckis, 2015), solving a multi-objective facility lay-
out problem (Matai, 2015) and optimal placement of synchrophasor measurement units in
smart power grids (Gopakumar et al., 2015). A Boltzmann distribution for each individual
θi can be defined as (Li, 2015; Mo et al., 2015)

Zi Tið Þ =
X

θ if gexp −
F θi
� �
Ti

 !
g θi
� �

=
1

Zi Tið Þexp −
F θi
� �
Ti

 !
; ð10:10Þ

where Zi(Ti) is the normalising constant.

10.3.1 Mutation

A mutation operator selects a binary digit of a chromosome at random and changes it. This
introduces new information into the population, and thus prevents the genetic algorithm
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simulation from converging to a local optimum solution. Mutation happens with a particular
probability, and in numerous physical systems the probability of mutation is very low. An
example of mutation is binary mutation (Goldberg, 1989). When binary mutation is applied,
a number expressed in binary format is selected and one bit value is changed. For instance,
the chromosome 11001011 is mutated to the chromosome 11000011.
Another example of mutation is non-uniform mutation, which operates by increasing the

probability of mutation so that is the amount of mutation will be close to 0 as the generation
number increases. This inhibits the population from stagnating in the initial stages of the evo-
lution process, and then allows the algorithm to improve the solution in the terminal stages of
the evolution.
Ulivi et al. (2015) applied gene mutation analysis to patient selection, while Diaz-Uriarte

(2015) applied mutation analysis to study tumour progression. Ok et al. (2015) applied
TP53 mutation in therapy-related myelodysplastic syndromes and acute myeloid leukaemia.
In the mutation operator, an individual – say θk – is randomly chosen from the present

population θ = θ1,θ2,…,θk,…,θN
� 	

. It is then mutated to form a new individual eθk by altering
the values of some bits which are also selected randomly. A new population
eθ = θ1,θ2,…,eθk,…,θN
n o

is therefore formed, and it is accepted with probability min(1, rm)

using the Metropolis criterion, where rm is the M-H ratio (Metropolis et al., 1953; Hastings,
1970) given by (Liang and Wong, 2000)

rm =
g eθk
 �
g θk
� � �Tr θkjeθk
 �

Tr eθkjθk
 � = exp −
F eθk
 �

−F θk
� �
 �

Tk

0
@

1
A�

Tr θkjeθk
 �

Tr eθkjθk
 � ð10:11Þ

where Tr �j�ð Þ indicates the transition probability between populations. If the proposal is

accepted, the current population θ is replaced by eθ, otherwise the population θ is not
changed. This paper uses the two-point mutation operator which indicates

that Tr θkjeθk
 �
=Tr eθkjθk
 �

.

10.3.2 Crossover

In the genetic algorithm, the crossover operator fuses genetic information in the population by
cutting pairs of chromosomes at random points along their length and exchanging the cut sec-
tions over. This combines successful operators together. Crossover is essentially an algorithmic
operator used to change the programming of a potential solution. Crossover is executed with a
particular probability and, in many instances, the probability of crossover happening is higher
than the probability of mutation occurring (Goldberg, 1989). An example of crossover is the
simple crossover where one crossover point is chosen and a binary string from the beginning of
a chromosome to the crossover point is duplicated from one parent and the rest is duplicated
from the second parent. For example, if two chromosomes in binary space a= 11101011 and
b = 11111111 undergo a one-point crossover at the midpoint, then the resulting offspring is
c = 11101111. Another example is the arithmetic crossover, which is a mathematical operator
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which operates by combining two solutions a = 11001011 and b = 11011111 to form an off-
spring c = 11001011. There are many other types of crossover, including genetic crossover
(Sakae et al., 2015) and multi-parent crossover (Moin et al., 2015). Other studies on crossover
and its applications are by Šprogar (2015), Rowan et al. (2015), and Vannucci and
Colla (2015).
As described by Boulkaibet et al. (2015a), in the crossover operator, two individ-

uals – say θa and θb a 6¼ bð Þ – are chosen from the current population θ using some selection
process (Liang andWong, 2000). If we assume F θað Þ ≥F θb

� �
then from these two individuals,

known as parents, two new individuals are created in accordance with the crossover operator,
and this is done by randomly choosing a crossover point in the uncertain variable vector. For
example, if position p is chosen to be the crossover position in the size d element variable
vector, then the elements from position p + 1 in θa will be moved to individual θb and vice

versa. The offspring with smaller fitness value is denoted by eθb and the other by eθa. A new

population of individuals then becomes eθ = θ1,� � �,eθa,� � �,eθb,� � �,θNn o
. According to the

Metropolis algorithm, the new population is accepted with probability min (1, rc) (Liang
and Wong, 2000):

rc =
g eθa
 �

:g eθb
 �

g θað Þ:g eθb
 � �
Tr θjeθ
 �

Tr eθjθ
 � = exp −
F eθa
 �

−F θað Þ

 �

Ta
−

F eθa
 �
−F θb
� �
 �

Tb

0
@

1
A �

Tr θjeθ
 �

Tr eθjθ
 � ;
ð10:12Þ

where Tr θjeθ
 �
=P θa,θb

� �jθ� ��P eθa,eθb
 �
j θa,θb� �
 �

in which P θa,θb
� �jθ� �

denotes the

selection probability of individuals (θa, θb) from the population θ, and P eθa,eθb
 �
j θa,θb� �
 �

denotes the generating probability of individuals eθa,eθb
 �
from the parents (θa, θb).

Boulkaibet et al. (2015a) chose the parental individuals as follows. The first individual θa is
selected according to a roulette wheel technique with Boltzmann weights, meaning that θa is
selected with probability given by Equation 10.10. The second individual θb is selected ran-
domly from the rest of the population. The selection probability of θb is then (Liang andWong,
2000)

P θa,θb
� �jθ� �

=
1

N−1ð Þ�Z θð Þ � exp −
H θað Þ
Ta

� �
+ exp −

H θb
� �
Tb

 ! !
; ð10:13Þ

where

Z θð Þ =
X
θaf g

exp −
H θað Þ
Ta

� �
P eθa,eθb
 �

jeθ
 �
:

The crossover operator used is a two-point crossover.

180 Probabilistic Finite Element Model Updating



10.3.3 Exchange

This operation was first proposed in the parallel tempering sampling technique by Geyer (1991)
and in the exchange Monte Carlo sampling technique by Hukushima and Nemoto (1996).
Using the current population θ and the temperature schedule T, where θ,Tð Þ =
θ1,T1,θ

2,T2,…,θN ,TN
� 	

, an exchange between individuals θa and θb can be made
without changing their temperatures, meaning we attempt to change θ,Tð Þ=
θ1,T1,θ

a,Ta,…,θb,Tb,…,θN ,TN
� 	

to θ,T
� �

= θ1,T1,θ
b,Ta,…,θa,Tb,…,θN ,TN

� 	
. The new

population is accepted with probability min(1, re) using the Metropolis criterion, where
(Liang and Wong, 2000)

re =
g θ
� �
g θð Þ �

Tr θjθ� �
Tr θjθ� � = exp − H θað Þ−H θb

� �� � 1
Ta

−
1
Tb

� �� �
Tr θjθ� �
Tr θjθ� � ð10:14Þ

and Tr :j:ð Þ denotes the transition probability between populations. Normally, the exchange is
only performed on states with neighbouring temperature values, that is, a−bj j= 1 where
Tr θjθ� �

=Tr θjθ� �
(Liang and Wong, 2000). Thus the EMCMC algorithm is summarised as

follows (Boulkaibet et al., 2015a):

1. Initialisation. Create N individuals, initiate the temperature vector T, and calculate the pos-
terior (fitness) of each individual.

2. Selection. Choose particular individuals from the current population.
3. Crossover. Generate offspring by a recombination of the vector elements in the mating

individuals, where this operation is accepted by min(1, rc).
4. Mutation. Generate offspring by random changes in individuals in the population, where

these offspring are accepted by min(1, rm).
5. Exchange. Perform the exchange for each set of neighbouring individuals in the population

and accept using min(1, re).
6. Repeat steps 2–5 until Ns samples are obtained.

The finite element model updating of an asymmetrical H-shaped beam structure (Marwala,
1997) is carried out using the EMCMC and the M-H method in Section 10.5.

10.4 Metropolis–Hastings Method

In this chapter, we compare the EMCMC to the M-H algorithm. TheM-H algorithm is a type of
MCMC method in which samples are drawn from multivariable densities (Metropolis et al.,
1953; Hastings, 1970; Chib and Greenberg, 1995; Roberts and Smith, 1994; Gilks, 2005;
Boulkaibet, 2014; Heckman and Leamer, 2001; Hairer et al., 2014; Amin et al., 2014). Ken-
nedy et al. (2014) combined principal component analysis and line searches to enhance the
performance of Metropolis–Hastings MCMC, while Vu et al. (2014) applied the marginal
M-H for a multi-target tracker. Monroe and Cai (2014) applied the M-H algorithm to Ramsay
curve item response theory estimation, while Eberle (2014) applied the M-H algorithm to
perturbations of Gaussian measures. This algorithm is similar to rejection and importance
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sampling and is implemented by proposing a probability distribution function and using it to
create proposed values (Marwala, 2010; Boulkaibet, 2014). The proposed distribution is also
utilised to obtain the move probability, which is applied to establish whether the drawn value is
accepted as part of the Markov chain or not. The move probability is defined by the ratio of the
target density times the ratio of the proposed density. This means that a normalising constant of
the target density distribution function is not required in this algorithm.
In order to sample from the posterior distribution function p θjDð Þ, which is the ‘target’ dis-

tribution function, where θ = θ1,θ2,…,θdf g is a d-dimensional parameter vector, the proposal
density distribution q θjθt−1ð Þ is introduced in order to generate a random vector θ given the
value at the previous iteration of the algorithm. The M-H algorithm consists of two basic steps:
draw from the proposed density stage and accept or reject the sample. The M-H algorithm is
summarised as follows (Boulkaibet, 2014):

1. Initialise θ0.
2. At iteration t, θ∗ is drawn from the proposed density q θjθt−1ð Þ, where θt−1 is the parameter

value at the previous step.
3. Update the finite element model to obtain the new analytical frequencies, then calculate the

acceptance probability given by

a θ∗,θt−1ð Þ =min 1,
P θ∗jDð Þq θt−1jθ∗ð Þ
P θt−1jDð Þq θ∗jθt−1ð Þ

� 

:

4. Draw u from the uniform distribution U(0, 1).
5. If u ≤ a θ∗,θt−1ð Þ accept θ∗. Otherwise, reject θ∗.
6. Return to step 2 until Ns samples are obtained.

10.5 Application: Asymmetrical H-Shaped Structure

An asymmetrical H-shaped aluminium structure is updated using the EMCMC algorithm. The
structure was divided into 12 elements, each modelled as an Euler–Bernoulli beam. The struc-
ture was excited using an electromagnetic shaker, and the acceleration was measured at 15 dif-
ferent positions using a roving accelerometer. A set of 15 frequency-response functions were
calculated.
The measured frequencies were 53.9, 117.3, 208.4, 254.0 and 445.0 Hz. The moments of

inertia and the cross-section areas of the left, middle and right subsections of the beam were
selected to be updated. The updating parameter vector was θ = Ix1, Ix2, Ix3,Ax1,Ax2,Ax3f g.
The Young’s modulus for the structure was 7:2 × 1010N=m2, the density 2785 kg/m3, and
the structure dimensions are given in Marwala (1997). The updating parameters θi
were bounded by maximum values equal to 3:73 × 10−8,3:73 × 10−8,3:73 × 10−8,

�
4:16 × 10−4,4:16 × 10−4,4:16 × 10−4� and minimum values are equal to 1:73 × 10−8,

�
1:73 × 10−8,1:73 × 10−8,2 × 10−4,2:16 × 10−4,2:16 × 10−4� and these bounds keep the updated
vector physically realistic.
The constant βc of the posterior distribution function was equal to 1 for the EMCMC algo-

rithm and 10 for the M-H algorithm. In this book, the EMCMC results are compared with those
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obtained from the M-H algorithm (Cheung and Beck, 2009). The coefficient αi was equal to
1=σ2i , where σ2i is the variance of the ith parameter, and the variance vector was defined as
σ = 5 × 10−8,5 × 10−8,5 × 10−8,5 × 10−4,5 × 10−4,5 × 10−4
� �

. The number of samples Ns was
equal to 1000, the population size for the EMCMC algorithm was to be equal to 12, and
the mutation rate was equal to 0.2 while the selection rate was equal to 0.5. The temperatures
used in this implementation were T= 1557:8,1277:4,1054:8, 915:4,880:7,815:8, 651,308:2,½
212:2,189:4,138:5, 1� where T = 1 corresponds the initial posterior distribution.
The Bayesian simulation results were analysed in terms of the mean values of the samples

obtained for each method as shown Table 10.1. The updated natural frequencies and the pre-
diction error percentage are shown in Table 10.2. The acceptance rate (AR) for the EMCMC
algorithm is 61.9%, while theAR for theM-H algorithmwas 46.9%. TheM-H algorithm gave a
bad AR because the move step used for this algorithm was chosen to be relatively large in order
to have acceptable results with fast convergence as the variance of the proposal distribution was
relatively large. The EMCMC algorithm has an acceptable AR, the reason being that the
exchange probabilities used in this implementation were set to 0.8 when the selected chromo-
somes (or individuals) were the first and second chromosomes in the population list (θ1, θ2), or
the last two chromosomes in the population list (θN – 1,θN), otherwise the probability was set
to 0.5.
Table 10.1 shows the initial values of the parameters and the updated values for both

EMCMC andM-H algorithms. Both the algorithms updated the θ vector and the updated values
were different from the initial θ0. The updated vectors obtained by both algorithms were phys-
ically realistic. The coefficients of variance obtained by M-H algorithm were large when

Table 10.1 Initial and updated parameters using EMCMC and M-H algorithms

Initial θ0

θ vector
EMCMC method

σi
μi

(%) θ vector
M-H method

σi
μi

(%)

Ix1 2:73 × 10−8 2:578 × 10−8 0.75 2:31 × 10−8 22.59
Ix2 2:73 × 10−8 2:576 × 10−8 0.78 2:68 × 10−8 15.25
Ix3 2:73 × 10−8 2:533 × 10−8 3.84 2:17 × 10−8 13.96
Ax1 3:16 × 10−4 3:693 × 10−4 0.04 2:85 × 10−4 14.36
Ax2 3:16 × 10−4 2:157 × 10−4 0.001 2:83 × 10−4 14.36
Ax3 3:16 × 10−4 3:006 × 10−4 0.003 2:77 × 10−4 13.08

Table 10.2 Natural frequencies when using EMCMC and M-H algorithms

Mode
Measured

frequency (Hz)
Initial

frequency (Hz)
Frequencies

EMCMC method (Hz)
Frequencies

M-H method (Hz)

1 53.9 51.40 53.1 53.92
2 117.3 116.61 119.99 122.05
3 208.4 201.27 210.23 210.93
4 254.0 247.42 249.01 258.94
5 445 390.33 431.84 410.33
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compared with those obtained by from the implementation of the EMCMC algorithm. The
reason for this is that large move steps were used for the M-H algorithm to ensure a fast
convergence and to improve the total average errors, while the EMCMC algorithm used the
mutation and the crossover operators to move from one sample to the next.
Figures 10.1 and 10.2 show the correlation between all updated parameters for both algo-

rithms and these results indicate that all parameters were correlated for all algorithms (all values
are non-zero) and most of the parameters were weakly correlated except the pair (Ax1, Ax3)
which was found to have a correlation of 0.51 when using the EMCMC algorithm.
Table 10.2 shows the finite element model updated frequencies when both EMCMC and

M-H algorithms are implemented to update the structure. The error between the first measured
natural frequency and that of the initial model was 4.63%. When applying the EMCMC algo-
rithm this error was reduced to 1.49%; however, theM-H algorithm reduced the error to 0.04%.
The overall updated finite element model natural frequencies for both algorithms are better than
the initial finite element model. However, the EMCMC algorithms produced better total aver-
age error results than the M-H algorithm. The updating procedure using the EMCMC method
improved the error from 4.7 % to 1.92%. The coefficient of variance values obtained by the
EMCMC algorithm are very small compared to those obtained by the M-H algorithm, which
indicates that the EMCMC algorithm produces more accurate results than the M-H algorithm,
and these can be seen in Table 10.3.
The results obtained show that both algorithms converge fast using around 100 iterations for

the M-H algorithm, while the EMCMC algorithm requires less than 45 iterations to start to
converge. The reason why the M-H algorithm has a high convergence rate is that large move
steps are used. Mutation and the crossover procedures assists the EMCMC algorithm to con-
verge fast. The error obtained by the EMCMC algorithm is smaller than that obtained by the
M-H algorithm.
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Figure 10.1 The correlation between the updated parameters (EMCMC algorithm)
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10.6 Conclusion

This chapter presented the applicability and performance of the EMCMC algorithm on the
finite element model updating problem. The EMCMC algorithm was tested on a real beam
structure with a number of uncertain variables and was compared to the M-H method. The
results showed better results of the EMCMC approach as compared to the M-H algorithm.
The performance of the latter decreases with the complexity of the system and the size of
the uncertain vector and its error was large compared to that obtained from the EMCMC
algorithm.
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Figure 10.2 The correlation between the updated parameters (M-H algorithm)

Table 10.3 Errors when using EMCMC and M-H algorithms

Mode

Error between
initial and

measured natural
frequencies (%)

Coeffients of
variance for
EMCMC (%)

Error for
EMCMC (%)

Coeffients of
variance for
M-H (%)

Error for
M-H (%)

1 4.63 0.013 1.49 3.96 0.04
2 0.59 0.041 2.29 4.28 4.05
3 3.42 0.172 0.88 4.95 1.22
4 2.59 0.091 1.97 4.81 1.94
5 12.28 0.044 2.96 4.74 7.79
Total
average
error

4.70 — 1.92 — 3.01
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11
Adaptive Markov Chain Monte
Carlo Method for Finite Element
Model Updating

11.1 Introduction

Finite element modelling is one of the most widely implemented numerical techniques and has
been applied in many engineering problems from various domains, including mechanical, civil
and electrical engineering (Rao, 2004; Bhatti, 2005; Oñate, 2009; Li et al., 2016; Fabbri and
Cevoli, 2016). It produces numerical models for real systems (or structures) and these models
can be fairly accurate for simple structures or systems. However, the estimation worsens when
the modelled system is sufficiently complex, and the results achieved from the finite element
models are often different from those obtained from the experimental investigation. A number
of factors can cause the degradation of the accuracy of finite element models, including the
variability of model parameters implemented in the models and the errors resulting from
the general modelling assumptions such as non-linearity or modelling damping. To increase
the accuracy of finite element models, some of the uncertain model parameters can be adjusted
or updated to decrease the error between the measured data and the numerical model (Friswell
and Mottershead, 1995; Marwala, 2010; Shan et al., 2015; Sanayei et al., 2015; Seifi and
Abbasi, 2015). This procedure of adjusting or updating these uncertain parameters, to identify
the most probable parameters that accurately characterise the structure using the measured
responses of the system, is what we have referred to throughout this book as finite element
model updating (Friswell and Mottershead, 1995; Marwala, 2010).
There are three main approaches to conducting finite element model updating: direct, indir-

ect (also called iterative updating) and probabilistic approaches (Friswell and Mottershead,
1995; Marwala, 2010). Calling this approach the iterative approach is now outdated because
probabilistic models which are the subject of this book are not necessarily all iterative. To
implement the direct finite element model updating process, the model output is directly
equated to the measured data. However, in the iterative approach the differences between

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and
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the measured data and the finite element model output are minimised by adjusting some uncer-
tain variables (Friswell and Mottershead, 1995).
The most widely implemented iterative algorithms are the sensitivity-based procedures and

the metaheuristic algorithms (Friswell and Mottershead, 1995; Marwala, 2010; Boulkaibet
et al., 2012, 2013; Boulkaibet, 2014). These approaches are characteristically optimisation
problems and their objective functions are constructed by the error between the analytical
and experimental data. The objective functions of an iterative updating strategy are then mini-
mised by identifying the optimal solution of the updated parameters of the finite element model.
The strategy of minimising some fitness function is called the maximum likelihood or frequen-
tist approach (Neyman, 1937).
Additional methodologies implemented in finite element model updating are statistical

approaches (Marwala and Sibisi, 2005; Yuen, 2010; Khodaparast, 2010; Marwala, 2010;
Rathmanner and Hutter, 2011). Statistical approaches, also called uncertainty quantification
techniques, are beneficial mathematical approaches that can be implemented to update finite
element models and to offer additional information on the uncertainties of the updated
parameters.
The statistical approaches that have been implemented for finite element model updating are

of two types: non-probabilistic or possibilistic methods, such as rough sets and fuzzy logic, which
can be applied to approximate the uncertainty of the model parameters where the uncertain
parameters are characterised by membership functions (Pawlak, 1982; Moens and Vandepitte,
2006; Bazan et al., 2004; Biacino and Gerla, 2002; Arabacioglu, 2010); and probabilistic
methods which treat the uncertain parameter as a random distribution with joint probability
density function (Yuen, 2010; Khodaparast, 2010). The Bayesian technique, which is the most
common probabilistic procedure together with the perturbation methods, is widely used in
system identification and uncertainty quantification (Boulkaibet, 2014; Boulkaibet et al.,
2015a, 2015c; Green et al., 2015). Thismethod has been applied in finite elementmodel updating
problems, and good results have been obtained for uncertainty quantification (Marwala and
Sibisi, 2005; Marwala, 2010; Mthembu et al., 2011b; Boulkaibet, 2014; Jensen et al., 2014).
In the Bayesian technique the uncertain parameters are modelled as random parameters

with joint probability density functions, referred to as posterior probability density functions,
estimated by multiplying the likelihood function by the prior probability and dividing by the
evidence. In situations where the posterior probability density function is analytically incalcul-
able, sampling techniques can be implemented to obtain numerical solutions for it. The most
widely implemented sampling procedure is the Markov chain Monte Carlo (MCMC) method,
which is a randomwalk procedure that is based on theMarkov chain and theMetropolis accept-
ance procedure (Ginting et al., 2015). MCMC methods have been widely implemented for
finite element model updating (Lam et al., 2015; Lee and Sohn, 2015; Wu and Chu, 2015).
The most widely implemented MCMC algorithm is the Metropolis–Hastings (M-H) method

which has been implemented for finite element model updating problems and uncertainty quan-
tification (Mares et al., 2006; Boulkaibet, 2014). Additionally, a number of MCMC algorithms
have been implemented to solve Bayesian model updating problems. A Monte Carlo inverse
technique was implemented byMares et al. (2006) for Bayesian finite element model updating,
while Nichols et al. (2010) implemented the MCMC technique to sample from the posterior
probability distribution function of a non-linear system. The Gibbs sampling method was
implemented by Ching et al. (2006) for finite element model updating, while Ching and Chen
(2007) proposed a modified form of the M-H algorithm called the transitional Markov chain
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Monte Carlo (TMCMC) algorithm which was implemented by Muto and Beck (2008) to
update hysteretic structural models. Cheung and Beck (2009) applied the hybrid Monte Carlo
(HMC) technique to update a structural dynamic linear system with 31 uncertain parameters.
The updating procedure was able to depict uncertainties related to the underlying structural
system.
The HMC technique has demonstrated promising results in solving complex higher-

dimensional problems (Chen and Roux, 2015; Venditto et al., 2015; Ito et al., 2015). The tra-
jectory of the HMC method is directed by the derivative of the posterior log-density which
enables convergence to areas with high probability during the search process (Duane et al.,
1987; Kennedy and Pendleton, 1991; Beskos et al., 2011). In the HMC technique, a molecular
dynamic system is created and its total energy, which is called the Hamiltonian function, is
implemented for sampling. The Hamiltonian is calculated numerically by implementing the
leapfrog integrator. However, this integrator does not conserve the Hamiltonian function, par-
ticularly when a moderately large time step is required to accelerate the convergence process or
when the system size is comparatively large, and this is in conflict with the principle of con-
servation of energy. Boulkaibet (2014) attempted to solve this problem by implementing
two modified versions of the HMC algorithm – the shadow hybrid Monte Carlo (SHMC;
Boulkaibet et al., 2015a) and separable shadow hybrid Monte Carlo (S2HMC; Boulkaibet
et al., 2014) algorithms – and applied these for Bayesian finite element model updating. Both
of these algorithms produced samples with a relatively large time step and gave more accurate
results than the HMC algorithm.
In this chapter, additional modification of the HMC algorithm is discussed, and the idea is to

deal with the acceptance rate (AR) degradation and improve the accuracy of the results. Ini-
tially, the procedure adaptively selects the length of the trajectory to obtain a better AR without
wasting computation time. This can be done by adjusting the trajectory length at every iteration
(or several iterations) to control the AR, and with comparatively large length of the trajectory.
Furthermore, to handle region separation problems, two high-probability spaces are isolated by
regions of low probability. Many MCMC techniques, including HMC, have difficulties in
moving from one search space to another when these two regions are separated by other regions
with low probability. This can be a problem when the attained samples are only attained from
the regions with local minima. To overcome this dilemma, the trajectory of the adaptive hybrid
Monte Carlo (AHMC) algorithm is moderated where the samples are attained from a sequence
of distributions that are more diffused than the original posterior probability distribution func-
tion. In this chapter, the AHMC algorithm is studied to sample the posterior probability distri-
bution function. This technique is examined by updating the finite element models of two
structures: a linear system with three degrees of freedom and an asymmetrical H-shaped struc-
ture. The advantages and disadvantage of the AHMC technique will be discussed. The chapter
begins by examining the posterior distribution function of the uncertain parameters.

11.2 Bayesian Theory

The Bayesian theory is a mechanism for estimating the posterior distribution function from the
likelihood function, the prior distribution function and the evidence. The Bayesian method is
expressed in terms of Bayes’ rule, given by (Bishop, 2006; Hasegawa et al., 2016; Zhang
et al., 2016)
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P θjD,Mð Þ/P Djθ,Mð ÞP θjMð Þ: ð11:1Þ

Here, θ2Θ�Rd is the vector of uncertain parameters representing the variables in the finite
element model that need to be updated. The parameterM designates which model class of the
target system is to be updated. Typically, the model classes are disjointed by the model updated
vector θ. The parameter D denotes the experimental measurements, which are the frequencies
f mi and the mode shapes ϕm

i . The expression P θjMð Þ is the prior probability distribution func-
tion which represents the knowledge of the uncertain parameters when the model class is
known. The expression P Djθ,Mð Þ represents the likelihood function, which is obtained by
the difference between the measurements and the finite element model data when both θ
andM are given. The term P θjD,Mð Þ is the posterior probability distribution function which
characterises the probability of the update parameters when both D and M are given. Since
only a single model class is considered in this chapter, the expression M will henceforth be
suppressed.
The posterior probability distribution function P θjDð Þ implemented in this chapter is the

same as the one implemented by Boulkaibet (2014) and Boulkaibet et al. (2016) and is math-
ematically expressed as follows:

P θjDð Þ = 1
Zs α,βcð Þexp −
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where Zs(α, βc) is a normalising constant given by (Boulkaibet, 2014; Boulkaibet et al., 2016)

Zs α,βcð Þ = 2π
βc
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The parameter βc is a constant that can be implemented to give more weight to the likelihood
terms. f mi and fi are the ith analytical natural frequency and the ith measured natural frequency.
The parameter Nm is the number of measured modes implemented in the finite element model
updating procedure. The parameter Q is the size of the updated vector, and the parameter θ0 is
the initial value of the updated vector, which is typically the mean value. The parameter αi is the
ith coefficient of the ith updating variable, and these coefficients can be implemented to weight
the prior probability distribution function. The expression k.k denotes the Euclidean norm. In
complex structures, it is not possible to obtain an analytical solution from the posterior prob-
ability distribution function and one must turn to sampling for a numerical solution of the prob-
ability distribution function in Equation 11.1 (Boulkaibet, 2014; Boulkaibet et al., 2016). In
this chapter, the AHMC algorithm is implemented to sample from the posterior probability dis-
tribution function.

11.3 Adaptive Hybrid Monte Carlo

The central notion of the AHMC algorithm is to improve the HMC trajectory by providing an
adaptive trajectory length as well as a tempered trajectory (Boulkaibet et al., 2016). Many
methods that have been proposed to achieve this. Wang et al. (2013) proposed a method using
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adaptive Hamiltonian and Riemann manifold Monte Carlo samplers. In that work, a Bayesian
optimisation is used to adapt the HMC parameters (time step δt and number of steps L). Burda
and Maheu (2011) applied an AHMC method to Baba–Engle–Kraft–Kroner generalised auto-
regressive conditional heteroscedasticity (GARCH) models. Fischer et al. (1998) applied the
HMCwith adaptive temperature for conformational analysis of RNA, while Wang et al. (2014)
applied the AHMC method for motion tracking.
The AHMC algorithm is based on the original HMC algorithm (Duane et al., 1987; Neal,

2011; Andrieu and Thoms, 2008). The HMC algorithm has demonstrated good results in solv-
ing higher-dimensional complex engineering problems (Duane et al., 1987; Neal, 2011;
Andrieu and Thoms, 2008). It operates by combining the molecular dynamic (MD) trajectory
(Alder and Wainwright, 1959), the Monte Carlo algorithm (Kolokoltsov, 2010) as well as the
Metropolis algorithm (Metropolis et al., 1953) for accepting or rejecting the proposal state. The
same conceptions are implemented for the AHMC algorithm where a new dynamical system is
constructed by introducing a new auxiliary variable, called the momentum, p2Rd. The uncer-
tain vector θ is treated as the system displacement, while the total energy or the Hamiltonian
function of the new dynamical system can be defined as H θ,pð Þ=V θð Þ +W pð Þ (Resnick and
Eisberg, 1985). The potential energy is defined as V θð Þ= − ln P θjDð Þð Þ, while the kinetic
energy of the dynamic system is expressed as W pð Þ= pTM−1p=2 and depends on the matrix
M2Rd × d which is a positive definite matrix (Jain, 2009). The Hamiltonian dynamics is then
governed by (Bransden and Joachain, 1983; Neal, 2001)

dθ
dt

=M−1p tð Þ, dp
dt

= −∇V θ tð Þð Þ: ð11:4Þ

In this chapter, the joint density function ρ θ,pð Þ/ exp −βBH θ,pð Þð Þ follows a Boltzmann
distribution (Landau and Lifshitz, 1980), where βB = 1=T , T is a constant temperature, and here
the Boltzmann constant is neglected. It is evident that ρ(θ, p) can bemathematically rewritten as

ρ θ,pð Þ/ exp −
V θð Þ
T

� �
exp −

W pð Þ
T

� �

or (Neal, 2001; Boulkaibet et al., 2016)

ρ θ,pð Þ/P θjDð Þ�exp −
1
T
pTM−1p=2

� �
ð11:5Þ

It is obvious from Equation 11.5 that sampling the vector θ from the posterior probability
distribution function can also be done by sampling the pair (θ, p) from the joint probability
distribution function ρ(θ, p) and then discarding p at the end of the simulation. The pair
(θ, p) is assessed through time t by applying the following leapfrog integrator (Neal, 2001;
Boulkaibet et al., 2016):

p t +
δt

2

� �
= p tð Þ− δt

2
∇V θ tð Þð Þ; ð11:6Þ
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θ t + δtð Þ = θ tð Þ+ δtM−1p t +
δt

2

� �
; ð11:7Þ

p t + δtð Þ= p t +
δt

2

� �
−
δt

2
∇V θ t + δtð Þð Þ; ð11:8Þ

where δt is the time step and ∇V is the gradient which can be obtained numerically by using
the finite difference technique which can be expressed as follows (Cheung and Beck, 2009;
Boulkaibet et al., 2014, 2016):

∂V

∂θi
ffiV θ +Δhð Þ−V θ−Δhð Þ

2hΔi
: ð11:9Þ

Here, the parameter h is a scalar that prescribes the size of the perturbation of θ, while
Δ= Δ1,Δ2,…,ΔN½ � is the perturbation vector. After the evaluation of Equations 11.6–11.8,
a Monte Carlo accept–reject step is added to satisfy the property of the system in
Equation 11.4. Therefore, if the pair (θ, p) is the initial vector while the pair (θ∗, p∗) is the vector
after running Equations 11.6–11.8, then the candidate (θ∗, p∗) is accepted with probability
min 1,exp −ΔH=Tf gð Þ, where ΔH =H θ∗,p∗ð Þ−H θ,pð Þ.
Because the AHMC algorithm has the same fundamentals as the HMC algorithm, all the

previous equations and properties are implemented by the AHMC algorithm. However, the
AHMC algorithm has particular modifications that improve the sampling performance. To cir-
cumvent the non-ergodicity problem and to ensure good performance of the AHMC algorithm,
the calculation of the leapfrog algorithm is performed for L steps during each iteration. This
improves the algorithm trajectory and confirms large move steps. The value of L can be uni-
formly selected from the interval {1, Lmax}. Furthermore, because the time step implemented
by the leapfrog integrator is bounded (δtmin < δt < δtmax), the time step is adjusted after a number
of iterations. Adjusting the time step after a fixed number of iterations allows a large rejection
rate to be avoided when the time step is large enough (Boulkaibet et al., 2014, 2016). Also, the
adaptation of the time step circumvents the use of a small trajectory length and consequently
more iterations are required for convergence. To adapt the time step, an initial random value
of the parameter δt is selected from the interval [δtmin, δtmax] and then Equations 11.6–11.8 are
evaluated for Nb iterations. The Nb samples attained are implemented to calculate the
acceptance rate �αb and used to decide if the time step is to be increased or decreased using
the following equation (Boulkaibet et al., 2016):

δt i+ 1 =
δt i−γ iδt i, �αb < �α,

δt i + γ iδt i, �αb ≥ �α;

(
ð11:10Þ

where γi is a random variable chosen from the interval [0.01, 0.05] and �α is the target AR. The
value of the target AR can be chosen high to ensure that more different samples are involved in
computing the mean values of the uncertain parameters. Thereafter, after every Nb samples or
iterations the time step is adapted by increasing or decreasing the time step by a small value
(between 1% and 5%). This strategy ensures that the time step does not produce a small
trajectory move and that a relatively large or significant number of iterations are not wasted.
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The second modification proposed in this algorithm is to sample from distributions that are
more diffused than the original posterior probability distribution function (Neal, 2001; Boulk-
aibet et al., 2016). This strategy can facilitate the movement between high-probability areas
separated by regions of low probability. This can be achieved by increasing the temperate T
which will eventually offer more a diffused distribution (Neal, 2001; Boulkaibet et al.,
2016); note that the posterior probability distribution function is when T = 1. In this chapter,
the temperature is changed at each iteration by small value according to the expression
T i+ 1ð Þ = �αT T ið Þ, where �αT > 1. The AHMC algorithm is summarised as follows (Neal,
2001; Boulkaibet et al., 2016):

1. A value θ0 is used to start the algorithm.
2. Initiate p0 such that p0 �N 0,Mð Þ.
3. Perform the following steps for Nb:

a. Start the leapfrog integrator with the previously accepted pair (θ, p) and implement the
algorithm for L time steps to obtain (θ∗, p∗).

b. Update the finite element model and use the analytical frequencies obtained to compute
H(θ∗, p∗).

c. Accept (θ∗, p∗) with probability min 1,exp −ΔH=T ið Þð Þf g.
d. Change the temperature according to T i + 1ð Þ= �αTT ið Þ.

4. Use the Nb samples to obtain the acceptance rate �αb.
5. Adjust the time step according to Equation 11.10.
6. Repeat steps 3–5 for Ns samples.

In the next sections, the performance of the AHMC algorithm is discussed when two differ-
ent finite element models are updated.

11.4 Application 1: A Linear System with Three Degrees of Freedom

In this section a simulation of a mass-and-spring linear system with three degrees of freedom
is studied (Boulkaibet et al., 2016). The system is shown in Figure 11.1. The deterministic
parameters of this system are masses m1 = 2 kg, m2 = 1 kg and m3 = 3 kg. The nominal mean
values of the uncertain parameters are k1 = 10 N=m, k2 = k3 = 6 N=m and k4 = 10 N=m, and
these values are used to calculate the natural frequencies of interest of this structure:
f1 = 1:12Hz, f2 = 3:5Hz and f3 = 4:1Hz. However, the initial values of the uncertain parameters

k1

m1

m2

m3

k2

k4

k3

Figure 11.1 A mass-and-spring linear system with three degrees of freeedom
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are k1 = 12 N=m, k2 = k3 = 4 N=m and k4 = 7 N=m. Thus, the parameters to be updated are k1, k2
and k4, and can be represented by a vector of d = 3 variables θ= θ1,θ2,θ3f g.

11.4.1 Updating the Stiffness Parameters

In this subsection, the linear system is updated by adjusting a vector of three parameters
θ= θ1,θ2,θ3f g using the Bayesian method, and the AHMC algorithm is implemented to sample
from the posterior probability distribution function. The number of samples is set to Ns = 5000,
the coefficients αi in Equation 11.3 were set equal to 1=σ2i , where σ

2
i is the variance of θi, and

because only the stiffness parameters are updated, the σi i= 1,2,3ð Þ have equal value and are all
set to 500. The constant βc, the weight of the likelihood term, in Equation 11.3 was set equal
to 1. The updating parameters θi were bounded by a maximum of 14 N/m and a minimum of
2 N/m.
The initial value of θwas set to θ0 = 12,4,7f g. The initial time step implemented in the HMC

algorithm was δt0 = 1 × 10−3 s, while the time step was bounded by a minimum of
δt0 = 0:001 × 10−3 s and a maximum of δt0 = 15 × 10−3 s. The parameter L was uniformly dis-
tributed on the interval {1, 30}, the target acceptance rate was set to �α= 0:95 (95%), the initial
value of the temperature was set to T 1ð Þ = 1, the parameter �αT was set to 1.021 and the final
results are tabulated in Tables 11.1 and 11.2.
Figure 11.2 shows the scatter plots for the three uncertain parameters using the AHMC algo-

rithm. The uncertain parameters plotted in this figure are normalised by dividing their values by
the initial value θ0i . In addition, error ellipses (or confidence ellipses) for the samples obtained
are shown. The error ellipse represents a contour that allows one to visualise the confidence
interval. This confidence interval describes the region that contains 95% of the parameter

Table 11.1 The updated vector of stiffness parameters using the AHMC technique

Stiffness parameters (N/m)

Initial Nominal values Error (%) AHMC algorithm (μi)
σi
μi

(%)

θ1 12.00 10.00 20 9.89 1.77
θ2 4.00 6.00 50 5.99 2.82
θ3 7.00 10.00 30 10.05 5.79

Table 11.2 Frequencies and errors when the AHMC technique is implemented to update the stiffness
parameters

Modes
Nominal

frequency (Hz)
Initial

frequency (Hz)
Error
(%)

Frequency
AHMC method (Hz)

c.o.v.
values (%)

Error
(%)

1 1.120 1.122 0.16 1.119 0.43 0.05
2 3.500 2.932 16.23 3.498 0.48 0.07
3 4.100 3.649 11.01 4.100 0.45 0.01
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samples. The figure demonstrates that the AHMC algorithm found the high-probability areas
after a few iterations.
The updated values of the uncertain parameters are presented in Table 11.1 along with their

initial values, nominal values and coefficient of variation (c.o.v.) values. The c.o.v., which is
the obtained standard deviation divided by the mean (the updated values θi are the mean values
of the samples), can be used to describe the accuracy of the updated parameters. Table 11.1
shows that the c.o.v. values are small for the AHMC algorithm (less than 6%), which indicates
that the AHMC algorithm has efficiently estimated the uncertain parameters. This can be seen
from the updated vector which is nearly identical to the nominal values.
Table 11.2 contains the updated modes along with the initial modes, the absolute mode errors

f mi − fi
�� ��=f mi , the total average error (TAE) as a percentage,

TAE =
1
Nm

XNm

i = 1

f mi − fi
�� ��
f mi

Nm = 3ð Þ;

and the c.o.v. The results obtained by implementing the AHMC algorithm are, on average, bet-
ter than the initial modes. The initial error for the first frequency was 0.16%, and when the
AHMC algorithm was applied to update the finite element model, the error was reduced to
0.05%. The same can be said for the rest of the frequencies. In general, using the AHMC algo-
rithm to update the finite element model of this system reduced the TAE from 9.13% to 0.04%.
In addition, the c.o.v. obtained by the AHMC algorithm shows that the error for all modes was
very small.
Figure 11.3 plots the TAE against the iteration numbers within the first 5000 iterations.

Figure 11.3 was obtained by computing the mean value of samples, which was evaluated at

every iteration, according to θ̂ =E θð Þffi 1=Nsð Þ
Xi

j= 1
θi, and i represents the current iteration.
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Figure 11.2 Scatter plots with error ellipses using the AHMC method
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Then the obtained mean value was implemented to obtain the new modes from the finite

element model and the absolute TAE was computed as TAE ið Þ= 1=Nmð Þ
XNm

j= 1
f mj − fj
��� ���=f mj .

The result plotted in Figure 11.2 demonstrates that the AHMC algorithm converges faster
and within the first 300 iterations.

11.5 Application 2: Asymmetrical H-Shaped Structure

In this section, an asymmetrical H-shaped aluminium structure with a real measured data is
updated using the AHMC algorithm (Marwala, 1997, 2010; Marwala and Heyns, 1998;
Boulkaibet, 2014). The structure is described in Appendix A. The structure was modelled
by assembling 12 beam elements, each modelled as an Euler–Bernoulli beam. An electromag-
netic shaker was used to excite the structure, the response measured by an accelerometer, and a
set of 15 frequency-response functions were calculated (Marwala, 1997, 2010; Marwala and
Heyns, 1998; Boulkaibet, 2014). The measured modes are 53.9, 117.3, 208.4, 254.0 and
445.0 Hz. In this example, the uncertain parameters are the moments of inertia and the
section areas of the three beams. The AHMC algorithm was implemented to obtain the updated
vector θ = Ix1,Ix2, Ix3,Ax1,Ax2,Ax3f g.

11.5.1 H-Shaped Structure Simulation

The parameters of the structure are as follows: Young’s modulus is set at 7:2 × 1010 N=m2 and
the density is set to 2785 kg/m3. The same simulation sets and boundaries implemented
previously are implemented for the AHMC algorithm (Boulkaibet, 2014). To help to keep
the uncertain parameters physically realistic, the updated parameter vectors are bounded
by maximum and minimum values of 3:73 × 10−8, 3:73 × 10−8, 3:73 × 10−8, 4:16 × 10−4,
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Figure 11.3 The total average error using the AHMC algorithm

198 Probabilistic Finite Element Model Updating



4:16 × 10−4,4:16 × 10−4� and 1:73 × 10−8,1:73 × 10−8,1:73 × 10−8,2:16 × 10−4,2:16 × 10−4,
�

2:16 × 10−4�, respectively.
The likelihood weight βc in Equation 11.3 was set to 10. The coefficients αi were set equal

to 1=σ2i where σ = 5 × 10−8,5 × 10−8,5 × 10−8,5 × 10−4,5 × 10−4,5 × 10−4
� �

. The number of
samples Ns was set to 1000, the initial time step implemented in the AHMC algorithm
was δt0 = 4:5 × 10−3 s while the time step was bounded with a minimum value of
δt0 = 0:001 × 10−3 s and a maximum value of δt0 = 7 × 10−3 s. The parameter L was uniformly
distributed on the interval {1, 30}, the target AR was �α= 0:95 (95%), the initial value of the
temperature T 1ð Þ= 1, and the parameter �αT was set to 1.0081. The results obtained using the
AHMC algorithm, the updated parameters and the updated frequencies, are shown in
Tables 11.3 and 11.4, respectively. Figure 11.4 shows the kernel smoothing density estimation
of the updating parameters along with the updated values of the uncertain parameters.
The parameter θi denotes the sequential numbering of the updating parameters, while the

normalisation constants θ0i were the initial values of the updated parameters. The results
obtained demonstrate that the AHMC algorithm identified the high-probability region. Further-
more, the shapes of the plotted density functions are not Gaussian. The updated parameters
values, the initial values of these parameters and their c.o.v. values are shown in
Table 11.3. The total AR for the AHMC algorithm was 96.3% which is very good. The AHMC
algorithm successfully updated the uncertain parameters (the updated values are different than
the initial θ0). The coefficients of variation obtained by AHMC algorithm demonstrate that
the middle beam parameters were better approximated than those on the left and right. This

Table 11.3 Initial and updated parameters using the AHMC algorithm

θ0 vector
initial

θ vector
AHMC method

σi
θi

(%)

Ix1 2:73 × 10−8 3:51 × 10−8 15.56
Ix2 2:73 × 10−8 2:30 × 10−8 2.80
Ix3 2:73 × 10−8 3:12 × 10−8 14.50
Ax1 3:16 × 10−4 3:79 × 10−4 1.35
Ax2 3:16 × 10−4 2:45 × 10−4 2.83
Ax3 3:16 × 10−4 2:28 × 10−4 3.98

Table 11.4 Natural frequencies and errors when the AHMC algorithm is implemented to update
the structure

Mode
Measured

frequency (Hz)
Initial

frequency (Hz) Error (%)
Frequencies AHMC

method (Hz) Error (%)

1 53.90 51.40 4.63 53.44 (0.87%) 0.85
2 117.30 116.61 0.59 118.96 (0.96%) 1.42
3 208.40 201.27 3.42 208.38 (1.04%) 0.01
4 254.00 247.42 2.59 254.30 (1.40%) 0.12
5 445.00 390.33 12.28 445.08 (1.21%) 0.02
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is apparent because the structure was excited in the middle beam, and more information on the
middle beam was used in the updating process. The AHMC algorithm successfully updated the
uncertain parameters where the values obtained were different than the initial vector θ0.
The correlations between all updated parameters are shown in Figure 11.5. It suggests that

the uncertain parameters are weakly correlated except for the pair (Ix2, Ax2) which is strongly
correlated (the correlation is equal to 0.73). The asymmetrical H-shaped aluminium structure
has been updated many times by different (deterministic and statistic) methods (Marwala, 1997,
2010; Marwala and Heyns, 1998). One method that has been used for finite element model
updating is the Nelder–Mead optimisation technique (Marwala, 2010), which is a simplex opti-
misation technique; more details on this procedure can be obtain in Nelder and Mead (1965)
and Avriel (2003). Another method that has been used for finite element model updating is the
genetic algorithm which is a heuristic optimisation method inspired by the way genes operate
(Abdella, 2006; Crossingham and Marwala, 2008; Marwala, 2010). A third technique which
has been used together with neural networks for finite element model updating is the response
surface method (Marwala, 2004). This is an approximate optimisation method where the
objective function is replaced by a simpler one. A final optimisation method to mention which
has also been used for finite element model updating is the particle swarm optimisation method,
a heuristic method based on the way animals such as birds flock to identify food sources
(Kennedy and Eberhart, 1995; Mthembu et al., 2011a).
The Nelder–Mead simplex method gave a TAE equal to 2.14%, while the genetic algorithm

reduced the TAE to 1.1%. Between these two, the response surface method produced a TAE of
1.84%) (Marwala, 2010). The particle swarm optimisation algorithm gave a better result, redu-
cing the error to 0.4% (Marwala, 2010). Three MCMC algorithms were also applied to this
structure, the M-H, slice sampling and HMC algorithms (Boulkaibet, 2014). The results
obtained were 3.01%, 2.98% and 0.73%, respectively. Two further modified versions of the

1
2

3
4

5
6

1
2

3
4

5
6

–1

–0.5

0

0.5

1

θi

θi

C
o

rr
e

la
tio

n

Figure 11.5 The correlation between uncertain parameters
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HMC algorithm (SHMC and S2HMC algorithms) were also applied to update this structure,
and the results obtained were 0.66% and 0.58%, respectively.
Table 11.4 shows the updated frequencies obtained by the AHMC algorithm. The error

between the first measured mode and initial one was equal to 4.63%. When the AHMC algo-
rithm was implemented to update the FEM of the structure the error was reduced to 0.85%. On
the whole, the results obtained by using the AHMC algorithm were far better than the initial
finite element model. The AHMC algorithm reduced the total error to 0.48%, which is a very
good result compared to those obtained in previous work (better than all implemented algo-
rithms except the particle swarm optimisation algorithm). Figure 11.6 shows the variation
of the TAE with time (iterations). The strategy implemented in the first example to plot
Figure 11.3 was implemented to plot Figure 11.6. The results demonstrate that the AHMC algo-
rithm converges fast and within the first 100 iterations.

11.6 Conclusion

In this chapter, an adaptive MCMC algorithm, called the adaptive hybrid Monte Carlo algo-
rithm, was studied to solve the Bayesian finite element model formulation. In this technique,
the time step was adaptively designed to improve the trajectory length of the algorithm.
This technique was tested by updating the models of two structural systems: a simulated linear
system with three degrees of freedom and an asymmetrical H-shaped aluminium structure.
For linear system, the AHMC method offered good results and reduced the error to less
than 0.05%. For the asymmetrical H-shaped aluminium structure, the AHMC technique gave
good results and reduced the total error to 0.48%. The results obtained using the AHMC
algorithms were better than those obtained using the HMC, SHMC and S2HMC algorithms.
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Notwithstanding the fact that the SHMC and S2HMC approaches use relatively larger time
steps (i.e. large trajectory moves in the search space), the AHMC algorithm’s ability to adjust
its time step and temperature at each iteration gave the algorithm the advantage of escaping
from local solutions.
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12
Conclusions and Further Work

12.1 Introduction

This book has studied model selection in finite element model updating. It has introduced vari-
ous methods for selecting the finite element model that best reflects the measured data. The
principle of Occam’s razor principle states that the simplest model that explains the observed
data is the most appropriate one. Additionally, this book has studied the criteria for model selec-
tion, including the Akaike information criterion, optimal design, statistical hypothesis testing,
the Bayes factor, structural risk minimisation, cross-validation and the Bayesian information
criterion, within the context of finite element model updating. Furthermore, this book has
applied nested sampling, cross-validation and regularisation techniques for model selection
in mechanical structures.
The book introduced Bayesian statistics within the context of structural mechanics for finite

element model updating. In this regard, the distribution of the measured natural frequency and
the mass were assumed to be known, and Bayesian statistics was applied to approximate the
distribution of the stiffness. Furthermore, the book applied the Markov chain Monte Carlo
(MCMC) method and Bayesian statistics for finite element model updating. MCMC was used
for computationally sampling a probability distribution function based on the Markov process,
random walk and Monte Carlo simulation. Two methods were used to update a finite element
model of a mechanical structure: Metropolis–Hastings and slice sampling. The slice sampling
technique was found to give an adaptive step size, which was automatically adjusted to match
the characteristics of the posterior distribution function. The slice sampling method was oper-
ated by sampling uniformly from the area under the posterior distribution function.
This book also used a probabilistic technique to minimise the distance between the models

and measurements and consequently to model uncertainties. Finite element model updating
was conducted using the knowledge learnt using the observation of stochastic characteristics
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of finite element model parameters, and this was realised through the use of Bayesian statistics.
The Monte Carlo dynamically weighted importance sampling algorithm was used to estimate
unbiased estimates which were regulated within a targeted reduced variance range from the
drawn samples. By using population control techniques, the system was made adaptive to
the requirements of the environment and fixing the posterior distribution function. Monte Carlo
dynamically weighted importance sampling was compared to the Metropolis–Hastings method
and found to be more computationally efficient and accurate.
The adaptive Metropolis–Hastings procedure and Bayesian statistics were also applied for

finite element model updating. In the adaptive Metropolis–Hastings technique, the Gaussian
proposal distribution was adapted using the full information collected hitherto; because of
the adaptive features of the method, this technique is non-Markovian but possesses full ergodic
properties. The technique was found to be simple to use, and it was used to update a finite elem-
ent model of a cantilevered beam and H-shaped structure. The results obtained compared
favourably to the results from the Monte Carlo dynamically weighted importance sampling
method.
Furthermore, this book presented the hybrid Monte Carlo (HMC) technique for finite elem-

ent model updating of a truss. HMC is a MCMC method which operates by making the tran-
sition between two states using the Metropolis algorithm, the gradient of the energy function
and Monte Carlo simulation. This transition between two states, in the context of this book, is
the transition between a finite element model and the next, where the difference between the
models is the state of the parameters to be updated. In this book, it was observed that the HMC
method gave satisfactory results when tested on a cantilevered beam and an asymmetrical
H-shaped structure.
The MCMC is operated by moving from one state to another using the random walk tech-

nique, where the transition between one state and another uses the Markov chain, and the
acceptance of a state is determined using the Metropolis–Hastings technique. The HMC
method uses the gradient information to move from one state to another to increase the accept-
ance rate. The HMC is a hybrid of the Monte Carlo procedure and the gradient descent opti-
misation method, and it is implemented by approximating the Hamiltonian, which is the sum of
the potential energy (position) and the kinetic energy (velocity) of a system. The acceptance
rate of the HMC depends on the system size and the time step applied to sample the molecular
dynamics trajectory. To handle this constraint, the shadow hybrid Monte Carlo (SHMC) algo-
rithm was applied; this samples large system sizes and time steps by sampling from a modified
Hamiltonian function, as an alternative to the normal Hamiltonian function. The SHMC was
applied to update a finite element model of an aircraft structure and found to perform better than
the HMC.
Next to be applied was the separable shadow Hamiltonian Monte Carlo (S2HMC) algorithm

for finite element model updating problems. This is a simplified model in which the Hamilton-
ian function used is a separable modified function. Two examples were used to test the pro-
cedure on finite element model updating: the H-shaped beam and the aircraft structure. It
was found that the S2HMC algorithm converged faster and was more efficient than the
HMC and SHMC methods.
In finite element model updating and in the situations where the system has many degrees of

freedom this requires concurrent and efficient sampling of the uncertain free parameters from
multiple unknown probability distributions. The MCMCmethods are approaches for sampling
a complex probability distribution function. TheMCMC can be improved by producing several
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random models of a system and evolving them concurrently over time, rather than improving
one model in the form of a chain. By applying ideas from Darwin’s theory of evolution, finite
element model updating can be constructed to converge to a globally optimal model. A number
of evolution-based approaches for finite element model updating have been used and, in this
book, an evolutionary Markov chain Monte Carlo (EMCMC) algorithm was used to update
finite element models. This method combined concepts from genetic algorithms, simulated
annealing and MCMC methods. The EMCMC is a sampling technique in which genetic oper-
ators, mutation and crossover, are used to design the Markov chain, which gives samples that
approximate probability distributions. This method was used to update a beam structure, and
the results compared favourably to the results from the Metropolis–Hastings technique.

12.2 Further Work

Further work is required on a number of techniques in finite element model updating; these
include sequential Monte Carlo, reversible jump Monte Carlo, Markov chain quasi-Monte
Carlo, multiple-tryMetropolis–Hastings and dynamic programming. These methods are briefly
described in this concluding section.

12.2.1 Reversible Jump Monte Carlo

The reversible jump MCMC method (Green, 1995) has been successfully applied in a number
of complex problems (Fox et al., 2015; Lee and Sohn, 2015; Drovandi et al., 2014). As a sam-
pling procedure it is an extension of MCMC, where the number of parameters to be updated is
variable. In this way, reversible jumpMCMC is able to automatically identify the parameters of
the finite element model that need to be updated. The acceptance probability is (Green, 1995)

a q,q0ð Þ =min 1,
pq0qpq0 fq0 q0ð Þ
pqq0Nqq0pqfq qð Þ

� �
det

∂hqq0 q,uð Þ
∂ q,uð Þ

� �����
����: ð12:1Þ

Here, q0 is the proposal, hqq0 is the mapping of q0 and q, u is a random component of U drawn
from a distribution N , det is the determinant, |.| is the absolute value, pqfq is the joint posterior
probability pqfq = c−1p yjq,rq

� �
p rq
� �

and c is the normalisation constant.

12.2.2 Multiple-Try Metropolis–Hastings

In order to speed up the convergence of the updating process, a multiple-try Metropolis–
Hastings algorithm can be used. This technique was proposed by Liu et al. (2000), and is a
modified version of the Metropolis–Hastings technique, which accelerates the sampling trajec-
tory by increasing both the step size and the acceptance rate. The acceptance criterion for this
method can be written as (Liu et al., 2000)

r =min 1,
w y1,xð Þ+…+w yk,xð Þ
w x1,yð Þ+…+w xk,yð Þ

� �
; ð12:2Þ

where x is the state and y is the proposal.
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12.2.3 Dynamic Programming

Dynamic programming is an optimisation technique for identifying optimal solutions to prob-
lems with features of overlapping sub-problems and optimal sub-structures, for finite element
updating (Bellman, 1957). Dynamic programming has been successfully applied in energy
scheduling (Xu et al., 2015), wind farm power system stability (Guo et al., 2015), pattern rec-
ognition in a hybrid electric car (Zhang and Xiong, 2015) and missing data estimation
(Nelwamondo et al., 2013). Usually, problems that exhibit optimal sub-structures can be solved
by using a three-step method of dividing the finite element updating problem into
sub-problems, solving each sub-problem optimally by using the three-step procedure itera-
tively and using the optimal solutions from these sub-problems to identify an optimal solution
for the entire problem (Bertsekas, 2000). The sub-problems are solved by breaking them into
sub-sub-problems until a simple problem is found that can easily be solved. The necessary con-
dition for optimality of the global problem given the optimal solutions for sub-problems in
dynamic programming is ensured by the use of the Bellman equation (Bellman, 1957):

V xð Þ= max
y2ℑ xð Þ

F x,yð Þ+ βV yð Þ½ �, 8x2X; ð12:3Þ

where V is the value function, x is the finite element updating design variable and y(x) is the
objective function.

12.2.4 Sequential Monte Carlo

Another technique which can be applied for finite element model updating is the sequential
Monte Carlo method. This method is particularly applicable for situations where the system
being modelled is changing, and there is a need to update a finite element model sequentially
(Doucet et al., 2000). Sequential Monte Carlo techniques are Monte Carlo methods that are
very similar to genetic algorithms. They have been successfully applied to problems for track-
ing (Cherry et al., 2015), capital allocation (Targino et al., 2015) and automotive batteries
(Li et al., 2015).
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Appendix A
Experimental Examples

A.1 Cantilevered Beam

The experimental cantilevered steel beam was measured by Kraaij (2006) and was found to
have the following characteristics: length 500 mm, width 60 mm, and thickness 10 mm,
E = 2:1 × 1011N=m2, v= 0:3 and ρ = 7850 kg=m3. Three accelerometers were used, located
490 mm from the clamped location, to take the measurements and this position was selected
because of the large response (Kraaij, 2006; Boulkaibet et al., 2012; Boulkaibet, 2014). Each
accelerometer had a mass of 40 g; the middle accelerometer was of type 303A3 and the outer
accelerometers were of type 303A2 (Kraaij, 2006). The cantilevered beam was modelled using
the Structural Dynamics Toolbox SDT® for MATLAB, and the beam was segmented into
50 Euler–Bernoulli beam elements and excited at a number of positions (Boulkaibet et al.,
2012). The measured natural frequencies of interest were 31.9, 197.9, 553, 1082.2 and
1781.5 Hz. Figures A.1–A.5 show five modes of the modelled cantilevered beam.

A.2 H-Shaped Structure Simulation

In this example, the asymmetrical H-shaped aluminium structure shown in Figure A.6 was con-
sidered. The model of this structure was segmented into 12 elements, each modelled using the
Euler–Bernoulli beam using the Structural Dynamics Toolbox SDT® for MATLAB (Marwala,
1997). The structure was excited at the location specified by the double arrow, and the accel-
eration was measured at 15 different locations. The structure was excited using an electromag-
netic shaker, while a roving accelerometer was used to measure the response. A set of
15 frequency-response functions were computed, and the measured natural frequencies were
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31.9 Hz

Figure A.1 Cantilevered beam mode 1

197.9 Hz

Figure A.2 Cantilevered beam mode 2

553.0 Hz

Figure A.3 Cantilevered beam mode 3

1082.2 Hz

Figure A.4 Cantilevered beam mode 4

1781.5 Hz

Figure A.5 Cantilevered beam mode 5

600 mm

1 2 3

32.2 mm

9.8 mm

200 mm400 mm

Ix1, Ax1

Ix2, Ax2

Ix3, Ax3

Figure A.6 The H-shaped aluminium structure
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53.9, 117.3, 208.4, 254.0 and 445.0 Hz, with modes indicated in Figures A.7–A.11. In this
example, the moments of inertia and the cross-sectional areas of the left, middle and right
subsections of the beam were updated, and the updating parameter vector was
θ = Ix1, Ix2, Ix3,Ax1,Ax2,Ax3f g. The Young’s modulus for the beam was specified as
7:2 × 1010N=m2, and the density was specified as 2785 kg/m3.

53.9 Hz

Figure A.7 H-shaped aluminium structure mode 1

117.3 Hz

Figure A.8 H-shaped aluminium structure mode 2

208.4 Hz

Figure A.9 H-shaped aluminium structure mode 3
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A.3 GARTEUR SM-AG19 Structure

The GARTEUR SM-AG19 structure was used as a benchmark study by 12 members of the
GARTEUR Structures and Materials Action Group 19 (Degener and Hermes, 1996; Balmes,
1998; Datta, 2002; Guyon and Elisseeff, 2003; Link and Friswell, 2003; Carvalho et al., 2007).
The aeroplane was 1.5 m long, 3 mwide, with a fuselage 15 cm deep and 5 cm thick. Themater-
ial used was aluminium and the overall mass was 44 kg, and a 1:1 × 76:2 × 1700mm3

visco-elastic constraining layer was bonded to the wings to increase damping. Euler–Bernoulli
elements were used and all element materials were deemed to be standard isotropic. The meas-
ured natural frequencies were 6.38, 16.10, 33.13, 33.53, 35.65, 48.38, 49.43, 55.08, 63.04 and
66.52 Hz, and the mode shapes are shown in Figures A.12–A.21. The parameters of the
structure to be updated were the right wing moments of inertia and torsional stiffness
(RImin, RImax, RItors), the left wing moments of inertia and torsional stiffness (LImin, LImax,
LItors), the vertical tail moment of inertia VTPIminð Þ, and the overall structure density ρ. The tem-
perature was set at T = 300 K and βB = 1=300KB, where KB = 0:00198719 kcal mol−1 K−1.
The updated vector was θ = ρ,VTPImin ,LImin,LImax, RImin,RImax, LItors, RItors½ �. The Young’s
modulus for the structure was set at 7:2 × 1010 N=m2.

254 Hz

Figure A.10 H-shaped aluminium structure mode 4

445 Hz

Figure A.11 H-shaped aluminium structure mode 5
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16.10 Hz

Figure A.13 Aeroplane structure mode 2

33.13 Hz

Figure A.14 Aeroplane structure mode 3

6.38 Hz

Figure A.12 Aeroplane structure mode 1

215Experimental Examples



33.53 Hz

Figure A.15 Aeroplane structure mode 4

35.65 Hz

Figure A.16 Aeroplane structure mode 5

48.38 Hz

Figure A.17 Aeroplane structure mode 6

216 Experimental Examples



49.43 Hz

Figure A.18 Aeroplane structure mode 7

55.08 Hz

Figure A.19 Aeroplane structure mode 8

63.04 Hz

Figure A.20 Aeroplane structure mode 9
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66.52 Hz

Figure A.21 Aeroplane structure mode 10
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Appendix B
Markov Chain Monte Carlo

B.1 Introduction

Some types of sampling approaches are grounded in the notion ofMarkov chains, which tend to
converge to a particular specified invariant distribution (Boulkaibet, 2014). Therefore, this
approach can be applied to approximate expectations and correlations of this distribution. In
this book, sampling procedures are founded on the concept of a Markov chain. Section B.2
explains the Markov chain theory, and Section B.3 deliberates on the resulting invariant prob-
ability distribution. Section B.4 describes the fundamentals of reversibility and ergodicity of a
Markov chain.

B.2 Basic Definition of the Markov Chain

A series of random variables denoted by z(1),…, z(M) is deemed to be a Markov chain if the
following conditional independence characteristics are true for m2 1,…, M−1f g (Bishop,
2006; Boulkaibet, 2015):

p z m+ 1ð Þjz 1ð Þ,…, z mð Þ
� �

= p z m+ 1ð Þjz mð Þ
� �

: ðB:1Þ

Equation B.1 can also be considered to be a directed graph expressed as a chain. TheMarkov
chain can then be quantified by the probability distribution for the variable p(z(0)) at time 0 and
the conditional probabilities Tm z m + 1ð Þjz mð Þ� �

p z m+ 1ð Þjz mð Þ� �
, which are also called the transition

probabilities.
It should be borne in mind that if all transition probabilities do not change for all m then the

Markov chain is considered to be homogeneous (Bishop, 2006). The marginal probability for a
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specific variable can be characterised by all marginal probabilities for the preceding variables in
the chain, and the new expression for this is as follows (Bishop, 2006; Boulkaibet, 2015):

p z m+ 1ð Þ
� �

=
X
z mð Þ

p z m+ 1ð Þjz mð Þ
� �

�p z mð Þ
� �

: ðB:2Þ

This equation can define the chain characteristics for all stages in a situation where the initial
probabilities p(z(0)) are specified.

B.3 Invariant Distribution

A probability distribution is considered invariant or stationary, in relation to a Markov chain, if
it remains invariant at each iteration in the Markov chain. In the situation of a homogeneous
Markov chain which is prescribed by the transition probabilities Tðz0, zÞ, the distribution p∗(z)
is considered invariant if (Bishop, 2006; Boulkaibet, 2015):

p∗ zð Þ=
X
z0

T z0,zð Þ�p∗ z0ð Þ ðB:3Þ

To ensure that the distribution p∗(z) is invariant, the transition probabilities are chosen to
satisfy the property of detailed balance, which is defined for a particular distribution p∗(z)
as follows (Bishop, 2006; Boulkaibet, 2015):

p∗ zð Þ�T z, z0ð Þ = p∗ z0ð Þ�T z0,zð Þ: ðB:4Þ

It should be borne in mind that a transition probability that obeys a detailed balance in
relation to a specific distribution maintains an invariant distribution where (Bishop, 2006;
Boulkaibet, 2015):

X
z0

p∗ z0ð Þ�T z0,zð Þ =
X
z0

p∗ zð Þ�T z, z0ð Þ= p∗ zð Þ
X
z0

p z0 zj Þ = p∗ zð Þ:ð ðB:5Þ

B.4 Reversibility and Ergodicity

A Markov chain that fulfils the detailed balance is also considered to be reversible. From a
specified distribution, a Markov chain is intended to randomly select samples, and this is done
by creating aMarkov chain in such a way that the sought distribution is invariant. However, it is
essential that form!∞ , the sought distribution p(z(m)) converges to p∗(z), which is the desired
invariant distribution, notwithstanding the selection of the initial distribution p(z(0)). This char-
acteristic is known as the ergodicity and, therefore, the invariant distribution is an equilibrium
distribution (Bishop, 2006; Boulkaibet, 2015). An ergodic Markov chain only has one equilib-
rium distribution, and it can be demonstrated that a homogeneous Markov chain is ergodic as
long as there exist weak limitations on the invariant distribution and the transition probabilities
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(Neal, 2003). Actually, the transition probabilities are constructed from a class of ‘base’ tran-
sitions B1,…, BK using a mixture distribution that can be expressed as follows (Bishop, 2006;
Boulkaibet, 2015):

T z0,zð Þ=
XK
k = 1

αkBK z0,zð Þ: ðB:6Þ

Here, a particular class of mixing coefficients α1,…, αK satisfy αk ≥ 0 and
X

k
αk = 1; other-

wise the supporting transitions may be hybridised using consecutive applications where
(Bishop, 2006; Boulkaibet, 2015):

T z0,zð Þ =
X
z1

…
X
zn−1

B1 z0,z1ð Þ…BK−1 zK−2,zK−1ð ÞBK zK−1,zð Þ: ðB:7Þ

If it is true that a distribution is invariant in relation to each of the base transitions, then it is
likewise invariant with respect to either T(z0, z) as expressed by Equations B.6 and B.7. For the
situation of the mixture which is expressed in Equation B.7, the mixture transition T satisfies the
detailed balance if each of these base transitions satisfies the detailed balance.
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Appendix C
Gaussian Distribution

C.1 Introduction

For a dynamic system, the uncertain parameters are considered as a probabilistic vector θ, and
the uncertainty is expressed in terms of a joint density function f(θ) with d variables (Bishop,
2006; Boulkaibet, 2014). The basic parametric function class may be more useful for complex
systems, for example the Gaussian or normal distribution. In consequence, the uncertainty of
the parameters is characterised by the mean and the standard deviation values, while the
dependence of these parameters can be expressed using a correlation or covariance matrix.
Section C.2 briefly describes the Gaussian distribution, and Section C.3 describes particular
properties of the Gaussian probability distribution function.

C.2 Gaussian Distribution

The Gaussian density distribution is a probabilistic continuous function which has been com-
prehensively implemented to model uncertain parameters in system dynamics (Bishop, 2006;
Boulkaibet, 2015). The Gaussian distribution for a single variable θ can be written as

N θjμ,σ2� �
=

1

2πσ2ð Þ1=2
exp −

1
2σ2

θ−μð Þ2
� �

; ðC:1Þ

where μ is the mean value, σ2 denotes the variance and σ is the standard deviation. In the situ-
ation of a multi-dimensional vector θ (of dimension d), the multivariate Gaussian distribution
can be expressed as
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N θjμ,Σð Þ = 1

2πð ÞD=2
1

Σj j1=2
exp −

1
2
θ−μð ÞTΣ θ−μð Þ

� �
; ðC:2Þ

where now μ is a d-dimensional mean vector, Σ is a d × d covariance matrix and |Σ| is the deter-
minant of Σ. Figure C.1 shows a univariate function with μ= 4 and σ = 0:2, while Figure C.2

shows a bivariate normal distribution with μ= 0, 0½ � and standard deviation Σ=
0:25 0:3
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Figure C.1 Graph of a probability distribution function for a univariate Gaussian distribution function
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(Boulkaibet, 2015). As demonstrated in these figures, the mean of the Gaussian distribution lies
at the maximum of the probability, which is desirable for modelling uncertain parameters.

C.3 Properties of the Gaussian Distribution

The parameters μ and Σ are significant properties of the Gaussian distribution. The expectation
value or mean of the Gaussian distribution is mathematically expressed as follows (Neal, 2003;
Bishop, 2006; Boulkaibet, 2015):

E θð Þ = 1

2πð ÞD=2
1

Σj j1=2
ð
exp −

1
2
θ−μð ÞT �Σ� θ−μð Þ

� �
θdθ

=
1

2πð ÞD=2
1

Σj j1=2
ð
exp −

1
2
zT �Σ�z

� �
z + μð Þdz:

ðC:3Þ

Equation C.3 is obtained by change of variables using the expression z = θ−μ. From
Equation C.3, it is evident that the exponent is an even function of the components of z. How-
ever, the integral in Equation C.3 is calculated over the range −∞ ,∞ð Þ, which signifies that
the terms in z in the factor z+ μ cancel one another because of the symmetrical nature of the
expression. Consequently, the resulting quantity of the expectation value is expressed as
follows (Chib and Greenberg, 1995):

E θð Þ= μ; ðC:4Þ

where μ is the mean of the Gaussian distribution.
To derive the covariance matrix, the second-order moments of the Gaussian are used. If we

assume that the distribution is univariate, then the second-order moment is expressed by E(θ2).
However, in the multivariate Gaussian case, there are d2 second-order moments expressed as
(θi, θj), which can be combined to form the matrix E θ�θT� �

. This matrix is expressed as follows
(Bishop, 2006; Boulkaibet, 2015):

E θ�θT� �
=

1

2πð ÞD=2
1

Σj j1=2
ð
exp −

1
2
θ−μð ÞT �Σ� θ−μð Þ

� �
θ�θTdθ

=
1

2πð ÞD=2
1

Σj j1=2
ð
exp −

1
2
zT �Σ�z

� �
z+ μð Þ� z+ μð Þdz:

ðC:5Þ

Equation C.5 is similarly obtained by change of variables using the expression z= θ−μ. The
cross-terms relating to μzT and zμT cancel each other due to the property of symmetry. The
expression μμT is a constant and can be factored out of the integral, and its value is unity
because the Gaussian distribution is normalised. The expression with zzT is written as follows
(Bishop, 2006; Boulkaibet, 2015):

1

2πð ÞD=2
1

Σj j1=2
ð
exp −

1
2
zT �Σ�z

� �
z�zdz =Σ: ðC:6Þ
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The result of Equation C.5 is expressed as follows (Bishop, 2006; Boulkaibet, 2015):

E θ�θT� �
=Σ+ μμT : ðC:7Þ

In the class of single random variables, the mean can be subtracted before calculating the
second moments in order to simplify the process of obtaining the variance. Likewise, the mean
can be subtracted in the multivariate case, and the covariance of a random vector θ is then given
by (Bishop, 2006; Boulkaibet, 2015)

cov θð Þ=E θ−E θð Þð Þ θ−E θð Þð ÞT
h i

=Σ: ðC:8Þ

The parameter matrix Σ is the covariance matrix.
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