

V. Damic- J. Montgomery

Mechatronics by Bond Graphs

http://www.springer.de/engine/

Springer

Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Engineering
ONLINE LIBRARY

Vjekoslav Damic • John Montgomery

Mechatronics by Bond Graphs
An Object-Oriented Approach
to Modelling and Simulation

With 406 figures and 39 tables

i Springer

Professor Dr. Vjekoslav Damic
The Polytechnic of Dubrovnik
Collegium Ragusinum
<':ira Carica 4
20000 Dubrovnik
Croatia
e-mail: vdamic@vdu.hr

Dr. John Montgomery
formerly The Nottingham Trent University, U.K.

now August-Bebel-Str. 21
50259 Pulheim-Brauweiler
Germany
e-mail: HaedickeMontgome@compuserve.de

ISBN3-540-42375-3 Springer-Verlag Berlin Heidelberg New York

Library of Congress Cataloging-in-Publication-Data

Darnic, Vjekoslav,1941-
Mechatronics by bond graphs: an object-oriented approach to modelling and simulation I
Vjekoslav Darnic, John Montgomery. p. em. -- (Engineering online library)
Includes bibliographical references and index.
ISBN 3540423753 (alk. paper)
1.Mechatronics. 2. Object-oriented programming (Computer science)
I. Montgomery, John, 1936- II. Title. III. Series.
TJ163.12.D362003
621.3--dc21

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Dupli­
cation of this publication or parts thereof is permitted only under the provisions of the German
copyright Law of September 9, 1965, in its current version, and permission for use must always be
obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH
http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

The use of general descriptive names, registered names trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: print-data delivered by authors
Cover design: medio Technologies AG, Berlin
Printed on acid free paper 62/3020/M - 543 2 1 0

"I will have my bond."
The Merchant a/Venice (Wm. Shakespeare)

To Mira, Renata, and Drazen

To Helga, Lorna, and Stuart

VD

JM

Preface

A short history ofthis book

This book had its origins in the authors' common interest in modelling and
simulating dynamic engineering systems, especially those related to mechatronics.
These interests date from the early 1970s.

We well remember--even somewhat nostalgically--our experiences with one
of the first digital computer simulation tools that became available: IBM's Con­
tinuous System Simulation Program (CMSP) for IBM 1130 computers. C. W.
Gear's famous DIFSUB code for solving stiff differential equations-the forerun­
ner of modem differential-algebraic equations solvers-also appeared around the
same time. Then, in 1975, Kamopp and Rosenberg's classic book, System Dynam­
ics: A Unified Approach, was published. It introduced a system analysis method­
ology based on bond graphs. We loved it from the start for it laid a solid founda­
tion for development of a systematic approach to modelling complex mechatronics
systems. We were also aware of developments in field of electronic circuit model­
ling that led to the famous Berkley's SPICE program.

The difficulties posed by solving real-world design problems motivated the first
author to begin development of a methodology for computer-aided modelling and
simulation of engineering-particularly mechatronics-systems. It was targeted to
developing a methodology that supports systematic model development by de­
composition. Bond graphs where taken as modelling formalism, because they are
well suited to modelling different physical processes taking place in a typical
mechatronic system. It was expanded, however, by developing the concept of
bond graph word models into complete component models. More attention was
given to component ports as interfaces of the components. The ports are treated as
objects in themselves that enable representation of the complex interconnections
inside the components. This way, a model of a system can be built as a complex
multilevel structure, in a form that mimics how a real system is built. The compo­
nent can be reused as well to build the models.

Another departure from classical bond graphs and the Continuous System
Simulation Language (CSSL) philosophy was made by putting aside the causality
issues. Strict input-output relationships in the models are not supported. Thus, in­
stead of mathematical models in state-space equation form, differential-algebraic
equation models are used. This enables separation of modelling and model solving
tasks. We believe that, taken together, this extends the applicability of methods to
solving real engineering problems.

The first implementation of this methodology was made in the beginning of the
1980s with the release of Simulex. This program was implemented using

viii Preface

FORTRAN and run on Digital VAX-750 computers. Simulex models were de­
scribed with SPICE-like scripts. The resulting equations were solved with a ver­
sion of Gear's DIFSUB. Simulex was applied successfully to a range of practical
problems in servo-systems and robotics.

The revolutionary appearance of PCs in the mid-1980s, followed by develop­
ment of operating systems that supported user-friendly visual interfaces in the
1990s, spurred the next phase of development. This was also influenced by the
paradigm shift in programming languages: The truly object-orient languages were
replacing the procedural languages-such as FORTRAN and C-that we had all
been using. Another important technological development became available
around the same time-symbolic computational algebra.

In the beginning of the 1990s, the shift to object-oriented modelling paradigm
was made. Class hierarchies were developed that enabled representing component
models as objects. Also, computational algebra methods were developed that, as
explained in the present book, simplified some important user-interface problems
and the solution of model equations. Methods for solving differential-algebraic
equations were further developed to support model solving during simulation.
These all were implemented in a visual modelling and simulation program, Bond­
Sim, the first version of which appeared in the mid-1990s. It fully automated many
important operations. Thus, there was no need for the developer to use any tradi­
tional programming; rather, models were developed and solved simply by mouse
clicks.

In 1995, the authors met at The Nottingham Trent University and started col­
laborative work on Dynamic System Simulations Using Bond Graphs, a project
funded partially through an ALIS (Academic Links and Interchange Scheme)
award (1995-1998), sponsored jointly by the Croatian Ministry of Science and
Technology and the British Council. This co-operation continued via e-mail and
reciprocal visits to Nottingham (England) and Dubrovnik (Croatia). One result of
this fruitful joint work is this book that we here offer to the reader.

What is this book about?

The title suggests that this book is about mechatronics; this is, indeed, one of its
central themes. It is not, however, another book on what mechatronics is; rather, it
is about how mechatronic problems can be solved by a systematic approach em­
ploying bond graphs. Why bond graphs? Because they offer an efficient means of
modelling interdisciplinary problems, such as those commonly found in mecha­
tronics. (The book, by the way, assumes no previous experience with bond graphs,
though it certainly would be useful.)

The book shows, in step-by-step fashion, how models are developed systemati­
cally, then simulated in a way that permits thorough analysis of the problem under
study. Every chapter that deals with an engineering application starts with the ex­
position and solution of a simple problem relevant to that chapter. Then, the solu­
tion of related-though much more difficult-problems is explained.

The book is divided into two parts: Fundamentals and Applications.

Preface IX

Part 1, Fundamentals, consists of five chapters on Bond Graph modelling. It
starts with an introduction to the subject, and then proceeds with describing a sys­
tematic object-oriented approach to modelling; implementation of object-oriented
modelling in a visual environment; and the numerical and symbolic solution of the
underlying model equations.

Part 2, Applications, consists of five chapters that apply bond graphs and com­
ponent model techniques to Mechanical systems, Electrical systems, Control sys­
tems, Multibody Dynamics, and Continuous Systems. Great attention is given to
modelling electrical components and systems, including semiconductors. The
same holds for multibody systems, both rigid and deformable, such as found in
various mechanisms and robots.

What readers can gain from the book?

There are several ways in which this book can be used, depending mainly upon
the background and interests of the reader.

Researchers in mechatronics and micro-mechanics design, for example, can use
it to find out how difficult problems in their disciplines can be solved using a
combination of bond graphs and component model techniques.

For the reader interested in simulation technology, the book provides an intro­
ductory description of the object-oriented visual approach to modelling and simu­
lation.

The reader whose background is in one of the applied disciplines covered
herein can gain valuable insight into how bond graphs may be used to solve prob­
lems particular to his area of interest.

We also think that the book can be useful as a textbook, or as a supplementary
text, in courses on physical modelling of engineering systems in general. We be­
lieve that it can help students learn the system way of solving a problem in electri­
cal and mechanical engineering, as well as coupled problems that span disciplines.

Finally, it is our sincere wish that the text and software will aid the reader in his
work. We invite, and will appreciate, all constructive feedback.

BondSim Research Pack

A special version of BondSim-BondSim Research Pack (beta version}-is
bundled with this book. It provides a visual development environment for the
modelling and simulation of engineering and mechatronics systems based on bond
graphs. The problems presented in the book are solved using the BondSim Re­
search Pack.

It runs on the Windows 2000 Professional operating system, but can be used on
other Windows platforms, too. The reader can use this version of BondSim to ana­
lyse all of the problems presented in the book. (These are found in BondSim's
program library.) The projects that a reader might develop on his or her own are
somewhat more restricted. The interested reader can order the complete version of
BondSim from the first author. (See Appendix for details.)

x Preface

Acknowledgements

A number of people have reviewed the initial outline (and the drafts) of this
book. Weare most grateful to them for their time and expertise.

Our special thanks go to the following people and institutions:
The Polytechnic of Dubrovnik (Veleuciliste u Dubrovniku - Collegium Ragus­

inurn) for facilities provided to both authors. Weare especially grateful to the Rec­
tor, Professor Dr. Mateo Milkovic, for his encouragement and support.

Vlado Jaram, Mr. Sc., for initiating the whole publishing project and his help
on getting the book published, as well as on his suggestions during writing the
book

Professor Barry Hull of the Department of Mechanical Engineering of the Not­
tingham Trent University for his support.

The Croatian Ministry of Science and Technology and the British Council for
the funds provided through the ALIS award.

Dr. Nick Staresinic, EcoMar Mariculture, for his careful reading of the manu­
script and his helpful editing suggestions.

We would also like to thank Dr. Dieter Merkel of Springer-Verlag, Heidelberg,
for his help, kindness, and patience during the preparation of the manuscript. We
are also grateful to Ms. Petra Jantzen and Ms. Gaby Mass for their help.

And last, but in no way least, we wish to express our deep appreciation and
love to our wives-Mira and Helga-for their love, support, patience, and sacri­
fice during the long period over which this book was produced.

Dubrovnik, June, 2002 Vjekoslav Damic
John Montgomery

Contents

Part 1 FUNDAMENTALS•.. 1

Chapter 1 Basic Forms of Model Representation 3
1.1 Objectives 3
1.2 The General Modelling Approach .4
1.3 Physical Modelling, Analogies, and Bond Graphs 6
1.4 Block Diagrams 10
1.5 Symbolic Model Solving 11
1.6 The Object-oriented Approach 12
1.7 Computer Aided Modelling 15
1.8 The Book Summary 18
References 21

Chapter 2 Bond Graph Modelling Overview 23
2.1 Introduction 23
2.2 Word Models 23
2.3 Ports, Bonds, and Power Variables 24
2.4 Component Model Development 26
2.5 Modelling Basic Physical Processes 28

2.5.1 Elementary Components 28
2.5.2 The Inertial Component.. 28
2.5.3 The Capacitive Component 30
2.5.4 The Resistive Component 31
2.5.5 Sources 31
2.5.6 The Transformer and The Gyrator.. 32
2.5.7 The Effort and Flow Junctions 33
2.5.8 Controlled Elementary Components 34

2.6 Block Diagram Components 36
2.6.1 The Input Component. 37
2.6.2 The Output Component.. 37
2.6.3 The Function Component... 37
2.6.4 The Integrator 37
2.6.5 The Differentiator 37
2.6.6 The Summator 38
2.6.7 The Node 38

Xli Contents

2.7 Modelling Simple Engineering Systems 38
2.7.1 Simple Body Spring Damper System 38
2.7.2 The Simple Electrical Circuit.. .43
2.7.3 A See-saw Problem 48

2.8 Causality ofBond Graphs 58
2.8.1 The Concept of Causality 58
2.8.2 Causalities of Elementary Components 58
2.8.3 The Procedure for Assigning Causality 61

2.9 The Formulation of the System Equations 63
2.10 Causality Conflicts and Their Resolution 66
References 69

Chapter 3 Object-oriented Approach to Modelling 71
3.1 Introduction 71
3.2 The Component model 71

3.2.1 The Component Class 72
3.2.2. The Document class 73

3.3 The Component Class Hierarchy 77
3.4 Port and Bond Classes 79
3.5 Description of the Element Constitutive Relations 82
3.6 Modelling Vector and Higher-dimensional Quantities 83
3.7 Port Connection Rules 85
3.8 The Component Set Classes 89
3.9 Systematic Top/down Model Development... 91
3.10 Component Libraries and Model Reuse 94
References 96

Chapter 4 Object Oriented Modelling in a Visual Environment 99
4.1 Introduction 99
4.2 The Visual Environment. 100
4.3 The Component Hierarchy 103
4.4 The Port and Bond Classes Hierarchy 105
4.5 The Document Architecture 106
4.6 Editing Bond Graphs 110

4.6.1 The Bond Graph Palette 110
4.6.2 Creating Components and Ports 112
4.6.3 Creating Bond Lines 113
4.6.4 Editing Bond Graph Models... 114
4.6.5 Editing Electrical and Mechanical Schemas 116

4.7 Important Operations at Document Level... 119
4.7.1 The Open, Close, and Save Commands 119
4.7.2 The Copy, Cut, Insert, and Delete Operations 120
4.7.3 Library Operations 122
4.7.4 The Page Layout and Print Commands 124

4.8 Editing The Component Constitutive Relations 125

Contents xiii

4.8.1 Component Port Dialogues 125
4.8.2 Defining the Parameters 127

4.9 Collaboration Support 129
References 133

Chapter 5 Generation of the Model Equations and Their Solution 135
5.1 Introduction 135
5.2 General Forms of the Model Equations 135

5.2.1 System Variables 136
5.2.2 Generation of the Equations 139
5.2.3 The Characteristics ofthe Model 142

5.3 Numerical Solution Using BDF Methods 148
5.3.1 The Implementation of the BDF Method 149
5.3.2 The Generation of the Partial Derivative Matrix 152
5.3.3 The Error Control Strategy 153

5.4 Decompiling of the Model Equations 155
5.5 The Problem of Starting Values 156
5.6 The Treatment of Discontinuities 159
5.7 Pros and Cons of the Combined Compiled/Interpretative Approach 160
References 161

Part 2 APPLICATIONS 163

Chapter 6 Mechanical Systems 165
6.1 Introduction 165
6.2 The Body Spring Damper Problem 165

6.2.1 The Problem 165
6.2.2 The Bond Graph Mode1... 166
6.2.3 Analysis of the System Behaviour by Simulation 178

6.3 Effect of Dry Friction 190
6.3.1 The Model of Dry Friction 191
6.3.2 Free Vibration of a Body with Dry Friction 197
6.3.3 Stick-Slip Motion 200
6.3.4 The Stick-Slip Oscillator 202

6.4 Bouncing Ball Problems 206
6.4.1 Simple Model ofImpact 206
6.4.2 A Ball Bouncing on a Table 210
6.4.3 Ball Bouncing on a Vibrating Table 213

6.5 The Pendulum Problem 215
References 221

Chapter 7 Electrical Systems 223
7.1 Introduction 223
7.2 Electrical Circuits 224
7.3 Models of Circuit Elements 236

XIV Contents

7.3.1 Resistors 236
7.3.2 Capacitors 238
7.3.3 Inductors 240
7.3.4 Independent Sources 243
7.3.5 Dependent Sources 249
7.3.6 Switches 250

7.4 Modelling Semiconductor Components 253
7.4.1 Diodes 254
7.4.2 Transistors 270
7.4.3 Operational Amplifiers 289

7.5 Electromagnetic Systems 296
7.5.1 Electromagnetic Actuator Problem 296
7.5.2 System Bond Graph Model 297
7.5.3 Electromagnetic Flux and Force Expressions 297
7.5.4 Magnetic Actuator Component Model.; 300
7.5.5 Simulation ofMagnetic Actuator Behaviour 301

References 303

Chapter 8 Control Systems 305
8.1 Introduction 305
8.2 A Simple Control System 305
8.3 Control Systems Modelling 313
8.4 Permanent Magnet DC Servo System 318
References 327

Chapter 9 Multibody Dynamics 329
9.1 Introduction 329
9.2 The Modelling of a Rigid Multibody System in a Plane 330

9.2.1 The Component Model of a Rigid Body in Planar Motion 330
9.2.2 Joints 335
9.2.3 Modelling and Simulation of a Planar Mechanism 340

9.3 Andrews' Squeezer Mechanism 344
9.4 Engine Torsional Vibrations 355
9.5 Motion of Constrained Rigid Bodies in Space 363

9.5.1 Basic Kinematics 363
9.5.2 Bond Graph Representation ofa Body Moving in Space 368
9.5.3 Rigid Body Dynamics 372
9.5.4 Modelling of Body Interconnections in Space 376

9.6 Motion of an Anthropomorphic Robot Arm Under Hybrid Control., 384
9.6.1 Problem Formulation 384
9.6.2 Model of the Robot System 386
9.6.3 Hybrid PositionIForce Control 392
9.6.4 The Simulation of the Robot Motion 395

References 399

Contents xv

Chapter 10 Continuous Systems 401
10.1 Introduction 401
10.2 Spatial Discretisation ofContinuous Systems 402
10.3 Model of Electric Transmission Line 404
lOA Bond Graph Model of a Beam .410
10.5 A Packaging System Analysis 416

10.5.1 Description of the Problem 416
10.5.2 Bond Graph Model Deve1opment... .417
10.5.3 Evaluation of Vibration Test Characteristics .425

10.6 Coriolis Mass Flowmeter 428
10.6.1 Principle of Operation 428
10.6.2 Bond Graph Model of the Meter 430
10.6.3 Evaluation of the Meter Sensitivity Factor 435

References 441

Appendix 443

Index 445

PART 1

FUNDAMENTALS

Chapter 1 Basic Forms of Model Representation

1.1 Objectives

The solution of complex, real-world problems is based on modelling. A model
simplifies the system of interest by abstracting some subset of its observable at­
tributes. This focuses attention on those features of the system relevant to the
problem of interest, and excludes others deemed not to be of direct relevance to
the problem. The level of detail included in a model thus depends on the problem
to be solved-as well as on the problem solver. Based on such an idealised pic­
ture, the system is described in a suitable form that is used as a basis for deriving a
solution (Fig. 1.1).

After obtaining a solution, results are interpreted with respect to the real-world
context of the original system. Thus, as well as being able to create a valid model
of the system, and to solve it, it is of great importance to represent the solution in a
form that can be understood readily and communicated.

The traditional modelling approach used in engineering is mathematical. That
is, real-world physical processes are described by mathematical relationships that
are solved using suitable analytical or numerical techniques. As real engineering
systems are very complex, it is not an easy task to create a valid model and solve
it. An added practical consideration is that problems must be solvable efficiently
in terms of resources and time. Advances in computer technology have dramati­
cally improved solvability; it is now possible to solve problems that formerly were
intractable.

Solving problems with a computer means that a problem posed in one physical
domain is solved in another physical domain, the computer domain. This naturally
leads to the topic of simulation modelling.

Simulation models mimic the behaviour of engineering processes in their envi­
ronment. By experimenting on models of equipment instead of on real equipment,
the system's behaviour can be studied even before the hardware is built. Simula­
tion models can be used at various stages of design, from the early stages of con­
ceptual design to final prototype testing. There are many fields in which this tech­
nique has been applied profitably.

The fundamental question that naturally arises is: How are such models best
constructed? A well-known adage suggests that modelling is more art than sci­
ence. It is, in fact, a bit of both. On the "scientific" side, there are a number of ap­
proaches, methods, and tools that can be mastered, and then applied, to develop
effective models; the "art", perhaps, is the insight that a modeller accumulates
through practice and familiarity with the system being studied.

4 1 Basic Forms of Model Representation

Abstraction

Fig. 1.1. Model approach to problem solution

This chapter reviews some of the more promising approaches and methods at
the foundation of modelling. The perspective adopted is motivated mainly by
problems in mechatronics. There are many definitions of mechatronics. lOne that
we choose to highlight states that mechatronics is a synergistic combination of
precision mechanics, electronic control, and system thinking.

Perhaps the best-known examples of mechatronic design are found in robotics.
There are also other, no-less-important applications of this design philosophy.

In today's highly competitive and demanding development environment, clas­
sical solutions without embedded microprocessors have little chance of success.
Modelling and simulation play an even greater role in product design. To promote
efficient solutions, the computer modelling and simulation environments should
relieve designers of many routine, low-level tasks [1], as well as support collabo­
rative work.

1.2 The General Modelling Approach

The concept of system plays a central role in model building. An efficient model
need not embrace the entire universe to design just a part of it. This is not only an
impossible task, but also an unnecessary one. We thus pay attention only to that
part of the problem in which we are interested. This is termed the system for the
given problem. Everything not included in the system constitutes its environment
(Fig. 1.2).

The system might consist of the engineering equipment that is the subject of the
problem, but it can include other parts, as well. In this system-centred approach it
is tacitly assumed that the environment determines the behaviour of the system.
Thus, the environment influences the system and can change its behaviour.

I In http://www.engr.colostste.edu/-dga/mechatronics/definitions.html definitions of
Mechatronics are collected from different resources.

1.2The General Modelling Approach 5

It is, of course, also of interest to study the influence of the system on its envi­
ronment, e.g. the current drawn by a system from an external source. In the case in
which the system can change its environment in a way that there is a 'backwards'
influence on its own behaviour, the system should, in most cases, be enlarged to
include this part of its environment.

Environment

Fig. 1.2. System andits environment

System

It is often useful to decompose a system into components. For example, the
simple actuator illustrated in Fig. 1.3 consists of an electric motor driven by a con­
troller. The motor shaft is connected to a nut. The shaft rotation is transformed by
the nut into a translation of an actuator shaft, which moves a load. The position in­
formation of the load is fed back via a sensor to the controller.

Every part of such a system, i.e. the electronic drive unit, motor, shaft, etc.,
may be modelled as a separate component. The complete model of the drive thus
may be depicted as a system of interconnected components.

Decomposition of the complete system into its components generally simplifies
the modelling task and gives a sharper insight into the system's structure. Such a
representation is a great help in interpreting model behaviour in terms of the real
engineering system.

System decomposition can proceed to ever-lower levels--essentially treating
each component as another system that, in tum, consists of even simpler compo­
nents. At some point a level of detail will be reached at which the components
may be considered as elementary, i.e. not admitting any further useful decomposi­
tion. Such elementary components are modelled as entities and define the limit of
detail of the model in question.

It should perhaps be pointed out again that a model is an abstraction of the real
world: It is not necessary---or even possible-that the structure of the model rep­
resent the original physical system in all of its complexity. Model development,
however, generally is an iterative process: Additional details may be added as the
model matures, or expands to address additional problems.

Decomposing an engineering system into components also suggests a natural
decomposition of tasks among members of a modelling team. Each group might
be assigned development of one component. The overall model can then be built
up by combining the separate sub-models.

6 I Basic Forms ofModel Representation

Position sensor

Load attachment point

Threaded shaft Nut with rollers Bearing Electrical motor

Fig. 1.3. A simple electro-mechanical actuator

Yet another advantage of this approach is that robust component models can be
reused, e.g. components developed for one particular application might serve as
building blocks for other, unrelated applications.

1.3 Physical Modelling, Analogies, and Bond Graphs

Both "top-down" decomposition and "bottom-up" composition are powerful mod­
elling techniques. To use their full power requires describing those components
treated as entities (elementary components), and modelling the interactions be­
tween them. In engineering, these considerations are based on physical reasoning
derived from the various branches of physics. Such an approach is sometimes
termed physical modelling [2].

Processes taking place in engineering systems thus may be classified generally
as belonging to, for example, rigid and solid body mechanics, fluid mechanics,
electricity and magnetism, semiconductor physics, thermodynamics, and so forth.
Each of these branches has its particular methodology for solving problems. Thus,
if the problem in question deals with a single physical domain, it is natural to ap­
ply the methodology of the field in question, including any specialised computa­
tional methods that may be available. This same approach can be applied even in
multi-domain problems if the interactions between domains are weak; but this is
rarely the case in engineering in general, and in the field of mechatronics in par­
ticular. We thus must cope with interacting, multi-domain physical processes.

One well-known approach designed to deal with multi-domain engineering
problems is the bond graph method elucidated by Henry Paynter." He presented

2 Interested readers can review www page http://www.hankpaynter.com for more infonna­
tion.

1.3Physical Modelling, Analogies, and Bond Graphs 7

this methodology for the first time in the lecture "Ports, Energy, and Thermody­
namic Systems" delivered on April 24, 1959, at the Massachusetts Institute of
Technology. This work later was published [3].

The application of Paynter's bond graph method began with the works of Kar­
nopp, Rosenberg, Thoma, and others [4-13]. Over the last 40 years there have
been numerous publications dealing with the theory and application of bond
graphs in different branches of engineering.3

The method uses the effort-flow analogy to describe physical processes [7, 10].
These processes are represented graphically in the form of elementary components
(bond graph elements) with one or more ports (Fig. 1.4). The ports represent
places where interactions with other processes take place.

The process "seen" at a port is described by a pair of variables, effort and flow.
These are termed power variables, and their product is power.

Through every port there is flow of power, either in or out of the component.
The direction of power flow is depicted by a half-arrow.

In addition to the power variables, there also are internal variables that repre­
sent the accumulations of effort and flow over time. These variables are called
generalized momenta and generalized displacements, respectively.

The typical association of variables in various domains is given in Table 1.1. It
should be noted that thermal effort and flow variables, as defined in the last row of
the table, are not power variables because their product is not power. Bond graphs
corresponding to variables having this property are usually termed pseudo-bond
graphs [10, 13].

Effort-flow pair

L ~Element
/

Power port

Fig. 1.4. Generic bondgraphelement

All physical processes are described using several elementary components, or
elements:

- Sources of effort and of flow (denoted as SE and SF respectively),
-Accumulation of effort and of flow (I and C respectively),
- Dissipation of power (R),
- Transformers of power (Transformers and Gyrators) (TF and GY), and
-Branches ofefforts and flows (denoted as e and f respectively)

3 More information on the Bond graph methodcan be found in The Bond Graph Compen­
diumheld at http://www.ece.arizona.edu/~cellier!bg.html.

8 I Basic Forms ofModel Representation

The processes that these components represent are described by constitutive rela­
tions expressed in terms ofport and internal variables (generalized variables).

Table 1.1. Bond graph variables

Domain Effort Flow Momentum Displacement

Mechanical Force Velocity Momentum Displacement
translation

Mechanical Torque Angular ve- Angular mo- Angle
rotation locity mentum

Electrical Voltage Current Flux linkage Charge

Hydraulic Pressure Volume flow Pressure mo- Volume
rate mentum

Thermal Temperature Heat flow - Heat energy

The ports of components are joined with a line. These lines are termed bond
lines, or bonds, for short. They imply that the power variables at connected ports
are equal. The graph that results is a bond graph model of the component.

A simple mechanical system consisting of a body, a spring, and a damper pro­
vides a useful illustration (Fig. 1.5a). The corresponding bond graph model is
shown in Fig. 1.5b.

I

~

1I

SE he --c

l
R

(a) (b)

Fig.l.S. A simple mechanical system. (a) Scheme, (b) Bond graph model

The source effort SE represents an applied external force, component I repre­
sents the inertia of the body, component C describes the elasticity of the spring,
and R represents friction in the damper. Branching element e denotes the summa­
tion of all forces acting on the body. This diagram, taken together with the corre­
sponding component constitutive relations, completely defines the mathematical
model of the system; it can thus be used as a basis for simulating the system. The
bond graph also shows the structure of the model in a way that resembles the

1.3 Physical Modelling, Analogies, and Bond Graphs 9

structure of the real system. This proves useful in efficiently communicating de­
tails of the model to interested parties outside of the modelling team.

There is also another analogy, introduced by Firestone [7,14] and based on
across- and through-variables, that can be used. A variable defined at a point in
space with respect to another point in space is termed an across variable. For ex­
ample, velocity, voltage, pressure, and temperature all may be interpreted as
across-variables. On the other hand, a variable defined at a single point without re­
spect to any other point is termed a through variable. Examples of through­
variables include force, current, and fluid flow. The across- and through-variable
analogy naturally leads to representation of a model in terms of linear graphs.

There is no general agreement on which analogy is preferable. The effort-flow
analogy corresponds to the force-voltage electromechanical analogy; and the
across-through analogy corresponds to the force-current electromechanical anal­
ogy. We use the effort-flow analogy, as it perhaps better explains efforts as inten­
sities and flows as extensities.

It should be stressed that system decomposition combined with the bond graph
modelling method readily leads to a lumped-parameter model. For the case in
which variables inside a component change continuously over some region of
space, it is necessary to apply discretization; that is, to represent the model by a fi­
nite number of components. This can be done in various ways, such as using the
well-known finite-element discretization method.

In spite of the attention this approach has attracted, the bond graph method has
not received the widespread acceptance expected by its proponents. In the opinion
of the authors, one of the drawbacks of the classical bond graph modelling tech­
nique is its "flat" structure. That is, the model is constrained to be represented as a
single-level structure. This leads to quite complicated diagrams even for relatively
simple systems, and these can be difficult to interpret. One remedy for this is to
pay more attention to the modelling of components in general, as well as to their
ports. This enables more systematic model development.

There is another important concept embedded in bond graph theory. This is the
concept of causality. This refers to cause (input) and effect (output) relationships
[10].

Thus, as part of the bond graph modelling process, a causality assignment is
implicitly introduced. This leads to the description of bond graphs in the form of
state-space equations. The problem that arises is that such a model is very restric­
tive. Furthermore, as pointed out in [15], there is no true notion of causality in
physical laws. For example, there are no purely physical reasons to interpret a
force on a body as the cause of its motion; nor to interpret a voltage on electrical
terminals of a component as the cause of the current flowing through it. Thus cau­
sality will not be part of our focus. The point of view taken is that modelling
can-and should-be treated as separate from the mathematical model developed
and the solution derived thereof. Used in this way, and together with the general
modelling technique mentioned in the immediately previous section, bond graphs

1
can be used as a powerful visual modelling language.

10 I BasicForms of Model Representation

1.4 Block Diagrams

Block diagrams are often used to denote input-output relations (Fig. 1.6). They
have been used traditionally in control engineering, but also have found popular
application in other fields, such as computer science, economics, and ecology.

Input
Operation

Output

Fig. 1.6.Blockdiagram notion

Block diagrams depict operations on signals (information). The symbol inside
the block represents a process applied to an input signal to generate an output. By
connecting the output of one block to the input of another block, we can illustrate
a procedure for the calculation of some quantity in which we are interested.

This approach can be used for modelling and simulating systems, too [2]. As an
illustration, Fig. 1.7 shows a block diagram model of the simple mechanical sys­
tem introduced earlier (Fig. l.5a). The block diagram shows how to evaluate
model variables given the time-history of the applied force and values of position
and velocity of the body at the start of the motion.

F x

Fig. 1.7.Blockdiagram model of simple mechanical system

Many simulation programs are based on a modelling approach of this type (e.g.
Matlab-SIMULINK). Unfortunately, many practical systems cannot be treated this
way, except at some simplified conceptual level. In addition, modelling the system
by block diagrams can be complicated and error prone, and also more difficult to
interpret. This technique, however, can be useful as a complement to a more gen­
eral modelling method, such as bond graphs, and is used at certain points of the
present work, too.

Signals can be used for monitoring processes, describing control actions, and
processing outputs. In the bond graph approach, signals are termed activated
bonds, and there is no power associated with the transfer of signals (information).
We allow bond graph components to have ports for the input or output of the sig­
nals. Such ports are depicted by a full-arrow and we call them control ports.

1.5 Symbolic Model Solving II

1.5 Symbolic Model Solving

Solution of a mathematical equation representing a system is usually accom­
plished by applying a suitable analytical procedure or, much more commonly,
through some numerical routine. Developments in software engineering, however,
have opened up the possibility of obtaining certain solutions symbolically. This
approach relies on the tools ofcomputational algebra.

Computational algebra software manipulates mathematical expressions sym­
bolically [16]. There is currently a number of general-purpose symbol­
manipulation applications available that can be applied to a wide range of practical
mathematical problems. Some of the better-known packages are REDUCE,
MAPLE, MATHEMATICA, and AXIOM. In the field of simulation, the best­
known systems are MATHCAD and MATLAB.4

Solving problems symbolically requires processing power and memory re­
sources usually well beyond the capability of most PCs and workstations. It thus
becomes preferable to combine symbolical and numerical approaches to the prac­
tical problems that arise in engineering systems [1,17,18]. Thus, symbolic manipu­
lation can be used to generate mathematical expressions that subsequently may be
solved with numerical or analytical techniques. In this way, modelling of the sys­
tem (the symbolic description) can be separated from its solution (the numeric re­
sult).

Once a model based solely on the physical considerations and requirements of
the problem has been developed, the equations can be generated automatically in
symbolic form. These equations can be simplified, either during the model's gen­
eration or after it. For example, constant expressions may be evaluated, trivial
equations eliminated, or other actions taken to simplify the solution.

As the next step, the equation is prepared for numerical solution. This can entail
a variety of operations, such as generation of functions that must be evaluated at
run time, generation of the symbolic Jacobian matrix, and generation of any sup­
plementary relationships necessary at start-up or for simulating across discontinui­
ties. Symbolic manipulation also can be used for post-processing and the control
of the complete problem-solving task.

This procedure can be accomplished without using the complete machinery of
computational algebra. Simple arithmetical and logical operations plus symbolic
differentiation is sufficient. What is really important is that the computational al­
gebra should be seamlessly integrated with the other parts of the modelling and
simulation environment.

It should also be pointed out that another technique for the evaluation of differ­
entials has attracted much attention: automatic differentiation [19]. Automatic dif­
ferentiation is a numerical technique for the evaluation of a differential based on
an algorithmic approach using the rules of differentiation. This technique is often
confused with symbol manipulation. It is usually argued that this technique is su­
perior in terms of efficiency and memory usage; but symbolic manipulation is

4 More information on symbol manipulations can be found on the Symbolic Mathematical
Computation Information Center page at http://www.symbolicnet.mcs.kent.edu.

12 1 Basic Forms of Model Representation

constantly being improved and can be applied to problems other than those that
require the evaluation of a differential.

The approach taken here is based partly on the symbolic manipulation tech­
nique described in [20]. The constitutive relations for modelling the elements de­
scribed in the last section are held in symbolic form, together with parameter ex­
pressions and model structure data. Before the start of a simulation, the model is
assembled in the form of byte codes that can be evaluated efficiently during simu­
lation. The implementation of the method is based on a combination of the inter­
pretative and compiled approaches, and thus it is not necessary to recompile the
model and link it. In this way, some efficiency in the solution is lost at the expense
of flexibility.

1.6 The Object-oriented Approach

The object-oriented paradigm represents a major achievement in software engi­
neering that facilitates modelling complex real-world problems [17, 21]. When
properly applied, it yields robust models consisting of reusable, easy-to-maintain
components. Only a very brief introduction is provided here. More information on
object-oriented programming (OOP) can be found in [22, 23].

The focus of this approach is an object. An object is an abstraction of reality
described by attributes and methods (Fig. 1.8).

Attributes define an object's state and can be represented as variables of fun­
damental types (such as integers, booleans, characters, or real numbers), other ob­
jects, or collections of various types.

Internals:
Attributes
Methods

Interfaces:
Exposed methods

I
Fig. 1.8. Object attributes and methods

Methods describe an object's behaviour. From a related perspective, methods
represent the services that an object provides.

Both attributes and methods are members of an object. Attributes sometimes
are referred to as data-members, and methods as member-functions. An object is
said to encapsulate its members.

1.6 The Object-oriented Approach 13

One of the key concepts of the 00 approach is information hiding. This means
that an object exposes only those of its members that are required for use by other
objects; all other attributes and methods are "hidden" within the object, inaccessi­
ble to the outside world.

To enable interaction with other objects in its environment, an object must pro­
vide an interface. An object interacts with its environment only via its interface.
The interface exposes access methods.

Most real-world objects cannot be modelled adequately with only a single fun­
damental data type. The 00 paradigm thus introduces the concept of a class. A
class is a generalised data type that defines the attributes and methods shared by
all objects of that class. The terms object and class are sometimes (improperly)
used interchangeably; strictly, an object is an instance of a class. In practice, an
object is created in the computer memory (constructed) at run time using the class
definition as a template; and removed from memory (destructed) when no longer
required.

Yet another fundamental principle of the object-oriented approach is inheri­
tance. The inheritance mechanism permits classes to be organised in a logical hi­
erarchy that describes their interrelationship. Thus, a class derived from an exist­
ing class inherits the members of its parent. The derived class may define
additional attributes and functionality, as well as modify those inherited from its
parent.

Relative to the derived (child) class, the parent class is a generalization, a super
class, or, in the terminology of C++, a base class.

Viewed from the complementary perspective, the derived class is a specializa­
tion of the parent class; it is a kind ofthe base class. At the head of the hierarchy
there is usually a class that does nothing more than define the interfaces of all
lower level classes in a consistent way. Such a class is an abstract base class. We
treat the elementary component of Fig. 1.4 as a kind of general component, which
likewise is a kind of more abstract object class (Fig. 1.9).

Object class

Element class

Fig. 1.9. Component class hierarchy

Another 00 principle is polymorphism. Polymorphism enables methods with
the same name to exhibit different functionalities. For example, methods in the
lineage of a class hierarchy can have the same function header-that is, the same
name, argument list, and return type-but different behaviour. Such methods are
declared virtual in the base class. The particular method invoked by a function call

14 I Basic Forms of Model Representation

depends on the object's class and is implemented through a mechanism termed
dynamic binding. The decision on which method to call thus is made at run time

Another consequence of polymorphism is that two methods may share the same
name, but have different argument (parameter) types and return types. The spe­
cific method executed depends on the type of the arguments passed by the calling
function. This is an example of the so-called function overloading. In contrast to
the previous example, these functions are not virtual: They have a unique signa­
ture (parameter list), so the decision on which version of an overloaded function to
call is decided at compile time.

The general modelling approach set out in Section 1.2 cannot be supported us­
ing class hierarchies alone, as components generally contain other components;
this is how real devices are built. To represent a model of a component we use two
objects: a component and its accompanying document.

A component is represented by a component object. Such an object is com­
pounded and contains port objects that serve as interfaces to other components
(Fig. 1.10, component Platform). If the component is simple and hence doesn't
contain other components, then it is just an elementary component. But, if it does
contain other components, we use another object to define its internal structure.
Such an object is not a kind of any other component, but a separate entity-a
document (Fig. 1.10, bottom-right box).

Frame

Document: Platform

/r----. Fx

Pivot-~------+'Fy

"t' 1 r:-~Ph_i_~ ~
Platform

Fig. 1.10. Component model

The document object has external ports that correspond exactly to the compo­
nent object ports and provide access to the component internals. In this way, the
component model representation is based on two associated classes - the compo-

1.7 Computer AidedModelling 15

nent class and the document class. These classes are designed in a way that sup­
ports access to the document through its accompanying component object, or by
its ports.

This is very close to the way in which we deal with real components. That is, to
see what is inside a component, we first have to find a component by its name or
manufacturer's designation, or maybe how it is connected to other components;
only then we can "open" it to look at what is inside. The component is usually
contained in another component, this again in yet another component, etc. The set
of all components constitutes the system. In this way a model of a system can be
represented as a tree of components.

Elementary components are treated somewhat differently, as they do not con­
tain other components. Ports of such components provide access to the component
constitutive relations that describe the mathematical model of the particular ele­
mentary component (Sect. 1.3). Thus, the elementary components can be looked at
as leaves of the model tree.

1.7 Computer Aided Modelling

One of the first computer programs developed for modelling and simulation of
practical engineering systems was SPICE [24], which was developed at the Uni­
versity of California, Berkeley at the beginning of the 1970s for integrated elec­
tronic circuits. The program was accepted quickly by leading semiconductor
manufacturers. Since that time, SPICE has undergone continuous development to
follow technological advances in semiconductors. Today it is the defacto standard
for electrical simulations. All of the main semiconductor manufacturers offer
SPICE models of their components.

The success of SPICE-and of similar products that emerged shortly after­
wards-was owed partly to the fact that, in electrical engineering, and particularly
in electronics, systems and devices normally are modelled using electrical
schemes. SPICE uses an input file that contains a description of electrical schemes
using a simple textual language.

Another very successful modelling and simulation system in electrical engi­
neering is SABER.5 It uses the MAST modelling language. Recently, under the
umbrella of the IEEE, a new modelling language has been developed: VHDL­
AMS [25]. This offers a more uniform approach to modelling mixed analogue­
digital systems. VHDL-AMS does not assume any causality, generates models in
differential-algebraic form, and permits discontinuities.

From the start, bond graphs were looked at as a unified approach to the model­
ling of general engineering systems, in some ways similar to electrical schematics
in electrical engineering. Many programs based on bond graphs have been devel­
oped over the last two decades. The first, ENPORT [26], uses a textual description
of the bond graph model topology (similar to SPICE) as input. It supports macro

5The SABER is product of Analogy, Inc.,Beaverton, USA,http://www.analogy.com.

16 1 Basic Forms of Model Representation

capabilities to simplify bond graph model creation. The program was developed
for workstations. There is also a PC version, but with somewhat reduced capabili­
ties.

Historically, the next program to appear was TUTSIM, developed at Twente
University, Netherlands. This application was originally developed for block dia­
gram models, but was modified to accept causality-augmented bond graphs. The
program translates models into state-space form and hence cannot treat models
with dependent storage (masses, capacitors etc.) and algebraic loops.

The same research group later developed the CAMAS program [27], which is
now known as 20-SIM [28,29]. This program uses bond graphs for model input
and icons for component representation. The icons serve as placeholders for the
component models. The models are expressed as equations using the SIDOPS lan­
guage and are organised as model fragments. For real reusability of the fragments
adequate caution must be exercised. Sub-model storage is not yet implemented as
a complete database facility. System model processing, from model equations to
assignment statements, is performed using computational causality analysis. The
program has its own simulator based on routines from NETLIB.6

The MS1 program is designed for the modelling and simulation of dynamic
systems with continuous elements." Models are developed in the form of causality
augmented bond graphs and solved using ACSL, Matlab-SIMULINK, and other
programs. Similarly CAMP-G [30] was developed as a pre-processor for ACSL,
Matlab-SIMULINK, and other programs, and is suitable for modelling systems
that can be represented in state-space form only. There are other bond graph based
programs that implement a similar philosophy.

Finally, the Dynamic Modelling Language (Dymola) [17] should be mentioned.
Dymola was developed using another philosophy: the through/across physical
analogy and the theory of graphs. It supports bond graphs, thus bond graph ele­
ments and structures can be coded directly. There is some incompatibility between
these two approaches, but this can be circumvented. Dymola helps the user edit
and compose programs, manipulate models from sub-models, and generate code
for continuous system simulation languages such as ACSL, SIMULINK, and
some others. It can also generate code in C or Fortran. This can be executed in a
module for the simulation of time-continuous systems, which supports both ordi­
nary differential equations (ODE) and differential-algebraic equations (DAE). Re­
cently, under the auspices of EUROSIM, a new modelling language MODELICA
has been developed [31].

This book describes an approach to the development of an integrated automated
computer environment for visual model development and experimentation by
simulation that is implemented in BondSim, a copy of which is provided with the
book. To help the designer during the tedious task of model development, the
modelling environment supports the fundamental modelling approach-systematic
problem decomposition and model creation at every level of decomposition. The

6 The NETLIB is web based public library repository that can be accessed att
http://netIib.org.

7 Lorenz Simulation SA, http://www.lorsim.be

1.7Computer AidedModelling 17

number of levels of decomposition depends on the complexity of the engineering
system being modelled and the depth of abstraction. For simple problems, a single
level suffices, i.e. a flat model. But real systems, such as are usually found in
mechatronics, consist of many components that are themselves constructed of
many other components. Thus, two or more levels of model decomposition may
be necessary.

The model can be created as a multi-level structure. This helps in understanding
the model and in providing for its maintenance. Thus, the model for a problem can
be treated as a tree with component models as its branches. The modelling envi­
ronment also supports building the model from the "pieces", i.e. the component
models. A combination of these two approaches is also possible. The environment
also has facilities for the creation of suitable libraries in which the system and/or
the component models are stored.

This new simulation tool, BondSim, supports the type of collaboration that has
become essential in the development of complex models. Model development
usually is teamwork, hence the distribution of modelling tasks and the integration
of results is welcome, if not an absolute necessity. Also, the exchange of models
with colleagues, or use of component models from manufacturers (similar to the
SPICE models), is very useful. This aspect of the modelling environment also is
implemented in BondSim.

BondSim's general concept of modelling and simulation is illustrated in Fig.
1.11. Development is done entirely visually-without coding-using the support
of the Windows system [1]. In this visual modelling approach, the modelling proc­
ess consists of creating objects in the computer memory that are depicted on the
screen as bond graphs or block diagrams. It is also possible to represent them by
common electrical and mechanical schemes. The model of a component discussed
in the previous section plays a central role in this process.

Fig. 1.11. Visualmodelling and simulation environment

This approach should not to be confused with Microsoft's Component Object
Model (COM) technology. Components used in BondSim are not placeholders for
component models, but real objects that serve as interfaces to the document that

18 1 Basic Forms of Model Representation

contains the model. Thus, we can open a component to inspect it in more detail,
edit it, and continue with multi-level model development. Such a component can
be stored in a component library, or may be sent bye-mail to somebody else.
Likewise, a component received bye-mail can be imported into the modelling en­
vironment.

The BondSim modelling environment automates many common utility opera­
tions, such as saving, loading, copying, deleting, inserting, importing, and export­
ing. The constitutive relations specifying the characteristics of the elementary
components or block diagram operations are described as simple linear or non­
linear algebraic expressions.

After a bond graph model has been developed, its mathematical representation
is built by examining the component tree. This results in a model in the form of
differential-algebraic equations (DAEs), which then are solved by appropriate
numerical routines. Symbolic processing of the model equations plays an impor­
tant role in the solution.

BondSim also generates reports: Practically all of the bond graph diagrams con­
tained in this book were created using BondSim's print-to-file support." The appli­
cation was also used to solve all of the mechatronics problems presented in this
book.

1.8 The Book Summary

This book consists of two parts. The first part-Fundamentals-4lescribes the ba­
sics of the design of the visual object oriented environment for the modelling and
simulation of general engineering systems, with emphasis on mechatronics sys­
tems. This part contains five chapters.

Chapter 1 gives a short overview of the approaches and methods used for
model representation. After a short discussion of the objectives, the general mod­
elling approach is described which lies at the root of the modelling philosophy ­
model development by systematic decomposition. The concepts of system, envi­
ronment and of component are discussed. Then physical modelling, analogies and
bond graphs are described as well as an alternative approach to modelling based
on the through/across variables approach. The block diagram approach is de­
scribed next as a model representation method on its own or in combination with
bond graphs. A short introduction to symbolic model solving is also given and it's
potential for use in combination with numerical methods. The next important
technique described is object-oriented programming with an emphasis on a com­
ponent-based approach to the modelling of engineering systems. Finally computer
aided modelling is described together with the concept of modelling and simula­
tion in a visual environment.

8 The BondSim supports, for documentation purposes, print of screen images into a file in
emf (Enhanced Windows Metafile) format, which is supported by main word or graphic
programs including MS Word, Corel Draw etc.

1.8The BookSummary 19

Chapter 2 gives an overview of the bond graph modelling technique. The per­
spective taken is an extension of conventional bond graphs to multilevel model­
ling. Starting from the concept of word models, ports, bonds, and power variables,
the component model development approach is described. The elementary bond
graph components used for modelling of the basic physical processes are defined.
Also the components corresponding to basic block diagram operations are intro­
duced. The systematic decomposition approach to bond graph model development
is illustrated on examples of mechanical and electrical systems. Finally the notion
ofcausality in bond graphs is discussed.

Chapter 3 deals with the systematic object-oriented approach to modelling. The
basic idea is to do the modelling visually, i.e. without any coding, but solely by in­
teracting with the modelling system in a suitably designed visual environment.
The concept of the component model is introduced as the basic mechanism for
systematic simulation models development. The special class hierarchies are de­
signed to support creation of models for given problems as trees of linked objects
in the computer memory. The models are represented visually as bond graphs and
are stored as a set of linked files. Underlying physical processes are represented in
terms of elementary bond graph components, which constitutive relations are de­
scribed symbolically using a simple specially designed language. The design of a
suitable modelling environment to support the modeller is outlined.

Chapter 4 describes an implementation of the object-oriented approach of
Chap. 3. A program BondSim is described that offers a visual environment for the
modelling and simulation of engineering and mechatronics systems. The program
implements several services that are accessible to a user through a window sys­
tem. The two basic services are Modelling and Simulation. The program also sup­
ports model database maintenance, library support, as well as collaborative sup­
port for model exchange using the e-mail service. The program supports Microsoft
Windows (Windows 2000, NT, Windows 9x). A copy of the BondSim program is
included with this book.

Chapter 5 closes the first part of the book and describes the methods used for
automatically generation of the mathematical model equations and their solution.
This is divided into two distinctive phases - the model building and the execution
of simulation runs. During the first the mathematical model equations are gener­
ated based on the model object tree. The methods for generating the mathematical
models implied by the component's structure are described. The model equations
are machine generated in the form of differential-algebraic equations (DAEs).
During the simulation phase such equations have to be solved. The well-known
backward differentiation formula (BDF) is used. A special implementation of the
method is described based on the variable coefficient formula. Also the problem
of starting values and of discontinuities in the model equations are also discussed.
The methods developed depend to a great extent on computational algebra support
implemented in the program. This also adds to flexibility in the modelling.

The second part of the book deals with Applications to mechatronics of the
bond graph modelling technique. It is divided into chapters 6 to 10.

Chapter 6 deals with simple mechanical problems. The intention is to familiar­
ize the reader with using the BondSim program on relatively simple problems.

20 1 Basic Forms of Model Representation

These problems are also of interest on their own right. Thus the well-known Body
Mass Damper problem is used as the introduction to the bond graph modelling and
simulation of mechanical systems. It is also shown that it is possible to visually
represent mechanical components by mechanical schemes. After that the effects of
dry friction are studied. Next another class of discontinuous problems is studied ­
impact. Using a simple model of impact the classical problem of a ball bouncing
on a vibrating table is studied. The problem is better known for its chaotic behav­
iour. The chapter ends with a description of a see-saw problem. It is a pendulum,
but it can be looked at as a multibody problem. It is shown that such problems - of
interest in Mechatronics - can be readily solved by bond graphs.

Chapter 7 is devoted to the modelling of electrical systems. It is shown that the
component models approach can be readily used for the modelling of electrical
and electromechanical components and systems. This is important for this enables
both the mechanical and electrical part of a system can be modelled and analysed
on the same basis, i.e. from the bond graph point of view. Models of the most im­
portant electrical components are developed in terms of bond graphs such as resis­
tors, inductors, capacitors etc., and also fundamental semiconductor components
such as the diodes and the transistors, using SPICE like models. An important fea­
ture of the approach is the visual representation of bond graph electrical compo­
nent models as electrical schemes. The chapter ends with analysing an electro­
magnetic system.

Chapter 8 describes modelling of control systems in terms of block diagrams.
The approach is very popular in other fields as well. It shown how block diagram
models can be developed and is illustrated on a simple control system problem.
Some details of modelling that are specific to block diagram components are
given. Then a short overview of the modelling approach to control systems is
given concentrated mostly on the modelling of PID controllers in servo loops. Fi­
nally the modelling and simulation of a DC motor servo is given.

Chapter 9 is devoted to multibody systems. The models of planar rigid bodies
and the basic joints are developed and applied to some practical multibody prob­
lems. The approach is then extended to multibody systems in space. The compo­
nents developed are used for solving a problem of a hybrid control of a robot. This
demonstrates that the component model approach developed in this book can be
used for solving complex problems in mechatronics.

Chapter lOis the last chapter of the book and deals with the modelling and
simulation of continuous systems. Continuous systems are important in many en­
gineering disciplines, mechatronics included. The approach used here is based on
the method oflines. The system is discretized and represented as an assemblage of
finite elements in the form of bond graph component models. The model equa­
tions are then generated and solved using the DAEs solver. The approach is ap­
plied first to a problem of the modelling of electric transmission lines. Then a
bond graph component model of a beam element based on the classical Euler­
Lagrange theory is developed and applied to the solution of two practical prob­
lems - a package vibration testing system and the analysis of a Coriolis mass flow
meter.

References 21

References

1. V Damic and J Montgomery (1998) Bond Graph Based Automated Modelling Ap­
proach to Functional Design of Engineering Systems. In: GR Gentle and JB Hull (eds)
Mechanics in Design International Conference, The Nottingham Trent University,
Nottingham, pp 377-386

2. Lennart Ljung and Torkel Glad (1994) Modelling of Dynamic Systems. PTR Prentice
Hall, Englewood Cliffs

3. Henry M Paynter (1961) Analysis and Design of Engineering Systems. MIT Press,
Boston

4. AJ Blundell (1982) Bond Graphs For Modelling Engineering Systems. Ellis Horwood
Limited, Chichester

5. Pieter C Breedveld (1984) Physical systems Theory in Terms of Bond Graphs, PhD
thesis, Technische Hochschool Twente, Entschede

6. Peter Gawthrop and Lorcan Smith (1996) Metamodelling: Bond graphs and dynamic
systems. Prentice Hall, Hemel

7. Peter MAL Hezemans and Leo CMM van Geffen (1991) Analogy Theory for a Sys­
tems Approach to Physical and Technical Systems. In: Paul A Fishwick, Paul A Luker
(eds) Qualitative simulation modeling and analysis. Springer-Verlag, New York,
pp170-216

8. Dean C Karnopp and Ronald C Rosenberg (1975) System Dynamics: A Unified Ap­
proach. John Wiley, New York

9. Dean C Karnopp, Donald L Margolis and Ronald C Rosenberg (1990) System Dynam­
ics: A Unified Approach, 2nd edn. John Wiley, New York

10. Dean C Karnopp, Donal L Margolis and Ronald C Rosenberg (2000) System Dynam­
ics: Modeling and Simulation of Mechatronic Systems, 3rd edn. John Wiley, New York

11. Jean U Thoma (1975) Introduction to Bond graphs and their Applications. Pergamon
Press, Oxford

12. Jean U Thoma (1990) Simulation by Bondgraphs. Springer-Verlag, Berlin Heidelberg
13. J Thoma and B 0 Bousmsma (2000) Modelling and Simulation in Thermal and

Chemical Engineering, A Bond Graph Approach. SpringerNerlag, Berlin Heidelberg
14. Firestone, FA (1933) A new analogy between mechanical and electrical systems. J.

Accoustical Soc. 4:249-267
15. FE Celier, H Elmqvist and MOtter (1995) Modelling from Physical Principles. In: WS

Levine (ed) the Control Handbook, CRC Press, Boca Raton, pp 99-108
16. Tan Kiat Shei and Willi-Hans Steeb (1998) SymbolicC++: An Introduction to Com­

puter Algebra Using Object-Oriented Programming. Springer-Verlag, Singapore
17. FE Cellier (1996) Object-Oriented Modeling: Means for Dealing with System Com­

plexity. In: Proc. 15th Benelux Meeting on Systems and Control, Mierlo, pp 53-64
18. EJ Kreuter (1994) Generation of Symbolic Equations of Motion of Multibody Sys­

tems. In: E. Kreuzer ed Computerized Symbolic Manipulation in Mechanics. Springer­
Verlag Wien - New York, pp 1-66

19. Masao Iri (1991) History ofAutomatic Differentiation and Rounding Error Estimation.
In: A Griewank, GF Corliss (eds) Automatic Differentiation of Algorithms: Theory,
Implementation and Applications, Proc. of First SIAM Workshop on Automatic Dif­
ferentiation, pp 3-16

22 1 Basic Forms of Model Representation

20. Alain Reverchon and Marc Ducamp (1993) Mathematical Software Tools in C++.
John Wiley, Chichester

21. W Schroeder, K Martin and B Lorensen (1998) The Visualization Toolkit 2nd edn.
Prentice-Hall PTR, Upper Saddle River

22. J Rumbaugh, M Blacha, W Premerlani, F Eddy, W Lorenson (1991) Object-Oriented
Modeling and Design. Prentice Hall

23. B Stroustrup (1998) C++ Programming Language, 3rd edn. Addison-Wesley, Reading
24. A Vladimirescu (1994) The Spice Book. John Wiley & Sons, New York
25. E Christen, K Bakalar, AM Dewey and E Moser (1999) Analog and Mixed Signal

Modeling Using VHDL-AMS Language (tutorial). The 36th Design Automation Con­
ference, New Orleans

26. RC Rosenberg (1974) A User's Guide to ENPORT-4. John Wiley & Sons, New York
27. JF Broenink (1990) Computer-Aided Physical Systems Modelling and Simulation: A

Bond Graph Approach. PhD thesis, University of Twente, Enschede, Netherlands
28. APJ Breunese and JF Broenink (1997) Modeling Mechatronic Systems Using the

SIDOPS+ Language. In FE Cellier and JJ Granda (eds) 1997 International Conference
on Bond Graph Modeling and Simulation, Phoenix, Arizona, pp 301-306

29. JF Broenink and C Kleijn (1999) Computer-Aided Design ofmechatronic Systems Us­
ing 20-SIM 3.0. In GN Roberts and CAJ Tubb (eds) Proceedings of 2nd Workshop on
European Scientific and Industrial Cooperation, Newport, UK, pp 27-34

30. JJ Granda (1982) Computer-Aided Modelling Program (CAMP): A Bond graph
Processor for Computer Aided Design and Simulation of Physical Systems Using
Digital Simulation Languages. Ph.D. Dissertation, Dept. of Mech. Engineering,
University of California, Davis

31. P Fritzon and V Engelson (1997) Modelica - A Unified Object-Oriented Language for
System Modeling and Simulation. In: Modelica Home Page
http://Dynasim.se/Modelica

Chapter 2 Bond Graph Modelling Overview

2.1 Introduction

The bond graph physical modelling analogy provides a powerful approach to
modelling engineering systems in which the power exchange mechanism is impor­
tant, as is the case in mechatronics. In this chapter we give an overview of the
bond graph modelling technique. The intention is not to cover bond graph theory
in detail, for there are many good references that do this well, e.g. [1,2]. The pur­
pose is to introduce the reader to the basic concepts and methods that will be used
to develop a general, systematic, object-oriented modelling approach in Chapter 3.

2.2 Word Models

Many engineering systems consist of components, e.g. electric motors, gears,
shafts, transistors etc. (Fig. 1.3). Simulation models of such components can be
represented as objects in the computer memory and depicted on the screen by their
name, i.e. any word description chosen to describe the component (Fig. 2.1).

- Component name

Fig. 2.1. Component word model

The component name is useful for reference to the model, but what is more im­
portant is to represent how the component is connected to other components.
When we look at a component, the internals of its design are usually hidden (e.g.
by its housing). What are seen instead are the locations at which it connects to
other components. These places-such as electrical terminals, output shafts, fixing
places, hydraulic ports, and boundary surfaces across which heat transfer takes
place-are termed ports. In Fig. 2.1 the ports are shown by short lines.

When the component is connected and the system is energized from a suitable
power source, there is a flow of power through these ports. Also, some ports serve
to monitor or control the component. Thus, the ports serve as places where power
or information exchange takes place. This is explained in Sect.2.3

24 2 Bond Graph Modelling Overview

A component represented by its word description (its "name") and its ports is
taken as the most fundamental representation of a component model and is termed
the word model. The word model is used as the starting point of component model
development.

2.3 Ports, Bonds, and Power Variables

Ports, as explained in Sect. 2.2, are places where interactions between components
take place. These interactions can be looked on as power or information transfer.
Thus, two types of ports are defined.

Ports characterised by power flow into or out of a component are termed power
ports. Such ports are depicted by a halfarrow (Fig. 2.2). The half arrow pointing
to the component describes power inflow. It is assumed that at such a port there is
positive power transfer into the component. Similarly, a half arrow pointing away
from the component depicts power outflow from the component and the
corresponding power transfer is then taken as negative.

Another type of port is characterised by negligible power transfer, but high in­
formation content. These are termed control ports and are depicted by a full ar­
row. The arrow pointing to the component denotes transfer of information into the
component (control input). Similarly the port arrow pointing away from the com­
ponent denotes information extracted from the component (control output).

Control ports __________

Power ports

Fig. 2.2. Component word model with the ports defined

The word model, i.e. the component represented by the name and the ports, is
taken as the lowest level of component abstraction (Fig. 2.2). Components interact
with other components through their ports. These interactions are looked on as
power or information transfer between components and are depicted by lines con­
necting corresponding component ports (Fig. 2.3a). The lines that connect power
ports are termed bond lines, or bonds for short. A bond line joins a power outflow
port of one component and a power inflow port of the other and clearly shows the
assumed direction of power transfer between components. Similarly, lines con­
necting control output ports and control input ports are termed active or control
bonds. These lines show the direction of information transfer between compo-

2.3 Ports, Bonds, and Power Variables 25

nents. When a bond line is drawn, ports and connecting lines appear as a single
line with a half or full arrow at one of its ends (Fig. 2.3b). In the bond graph litera­
ture emphasis is put on the bonds, with ports playing a minor role. In our approach
just the opposite point of view is taken: Ports, the places where inter-component
interactions take place, receive emphasis.

IN -i'--------i~A --'t':.."-- ---">.t':.. B

(a)

IN----_~ A ------.. B

(b)

Fig. 2.3. Connecting components. (a) Connecting ports by bond lines, (b) Line and con­
nectedportsrepresented by bondlineonly

Power or information exchange between component ports can be quite com­
plex. It generally depends on the processes taking place in the components. In the
simplest case the process in the component as seen at a power port can be de­
scribed by a pair ofpower variables, the effort and flow variables. Their product is
the power through the port (Sect. 1.3). Connecting such ports by a bond simply
implies that effort and flow variables of interconnected ports are equal. Similarly,
information at component control ports can be described by a single control vari­
able (signal). Connecting an output port of a component to an input port of the
other just means that these two control variables are equal.

In general, the situation is not this simple. Thus, the revolute joint illustrated
schematically in Fig. 2.4a may be used to connect robot links or, a door in a door­
frame. The joint can be represented by a word model (Fig. 2Ab), with ports repre­
senting the parts of the joint provided for the connection.

(a) (b)

Fig. 2.4. Revolute joint. (a) Scheme of joint, (b) Wordmodelrepresentation

The function of the joint is to enable rotation of the connected bodies about the
joint axis. To describe the interactions at the joint connection properly, pairs of ef­
fort and flow vectors are used. The effort vector can be represented by three rec­
tangular components of the forces and torques, and likewise the flow vector by the
rectangular components of linear and angular velocities. The meaning of these

26 2 Bond Graph Modelling Overview

variables can be explained by defining a detailed model of the joint and the bodies
in question. Hence the connection of a body to the joint can be represented by a
bond, which denotes again that the efforts and flows of connected parts are equal.
This time the power variables are not simple one-dimensional variables, but vector
quantities.

Complex interactions at the ports can also be represented using multidimen­
sional bond notation known as multibonds [3, 4]. We do not use this approach
here, but instead treat the component ports as compounded. This means that the
component ports are not simply objects, but define the structure of the mathemati­
cal quantities that describe the processes taking place inside the component. The
bond lines simply define which port is connected to which, and hence which
mathematical quantities should be equal. To define the structure of the ports the
component model is developed in more detail.

2.4 Component Model Development

The detailed model of a component represented by the word model (Fig. 2.5, top­
left) can be described in a document framed by a rectangle (Fig. 2.5, on the right).
We call it a document because it will be represented on the computer screen in a
document window and saved in a file (Chapt. 3). The document title uses the name
of the component that it models. The document contains ports represented by short
strips placed just outside of the frame rectangle. These document ports correspond
to the ports of the component: Every component port has a document port. The
component Camp A in Fig. 2.5 has three ports: a power-in port, a power-out port,
and a control-out port. Thus, there are exactly three document ports of the same
type. The document ports are depicted in the positions around frame rectangle that
corresponds to the position of the component ports around the component text
(name). This way it is easy to see which port corresponds to which.

t

\~)~

Document po

Component: Camp A

Ie
/;\. B

i j ~
D

\ ..:./

1rt

E

Fig. 2.5. Concept of component model

To develop the model, the component is analysed to identify the components of
which it consists. Each is represented by its word model. Thus, in Fig. 2.5 there

2.4 Component Model Development 27

are four such components, named B, C, D, and E. Next we determine how these
components are interconnected. Some are connected only internally, and this is
represented by bonds connecting their respective ports, e.g. component B to com­
ponent C. Some of the components are connected to the outside. In this case the
respective component ports should be connected by the bonds to the document
port strips, e.g. component B ports should be connected to the left and the right
document ports.

Thus, document ports serve for the internal connection of the contained com­
ponents. The document strip allows more than one bond to be connected to the
port. We also assume that these bond connections are ordered, e.g. from top to
bottom and from left to right. Hence, a component port (Fig. 2.5, left top) is repre­
sented by an array of internal component connections (Fig.2.5 on the right).

When all the word models of the contained components are connected, we ob­
tain a diagrammatical representation of the component model structure termed the
bond graph model. To complete the model it is necessary to continue developing
the models of all contained components, which are represented by their word
models, e.g. components B, C, etc. (Fig. 2.5).

The important question is how and when we end this process of systematic
model decomposition. Formally, this happens when we get to a component that is
fundamental, i.e. it doesn't contain simpler components. This is the problem of the
level ofabstraction we use when developing a model.

Normally we start model development from the system level (Sect. 1.2). At that
level we define the model as a bond graph of the components. This is the lowest
level of problem abstraction and component word models at this level usually cor­
respond to the real-world components. In the next step we describe a model of the
component by identifying the basic physical effects in the component, ignoring
other, less important effects. Thus, the electrical resistor or mechanical spring can
be described by an elementary model, such as Ohms law or the linear spring force­
extension relationship. But we can also include the inductivity effect of the resis­
tor, or inertial effects in the spring. Hence, even in such simple cases we can use
either simple or compounded component models. In other more complex devices
such as robot arms, we identify real components that constitute such an arm, e.g.
links, joints, base, etc. But even then we reach a stage at which we decide on the
level of detail to be included in the underlying model. Physical processes are usu­
ally distributed over the component space, not restricted to small regions only. In
such cases distributed models are usually discretized and can be represented by a
bond graph of components.

The bond graph modelling analogy enables the representation of models of ba­
sic physical processes taking place in engineering systems in the form of elemen­
tary components (Sect. 1.3). These components are described in more detail in the
next Sec. 2.5. In addition, signal processing can also be described by several ele­
mentary operations (Sect. 2.6). Thus, starting from the system level, it is possible
to develop the model gradually by applying the component decomposition tech­
nique. At every level of decomposition the components can be represented as ele­
mentary, or by a word model that is developed further. The resulting model thus

28 2 Bond Graph Modelling Overview

can have one or more levels of decomposition. This depends on the system under
study and the accepted level of abstraction of the problem being solved.

2.5 Modelling Basic Physical Processes

2.5.1 Elementary Components

The notion of elementary components has already been introduced in Sects. 1.2
and 1.3. These have a simple structure and serve as the building blocks of complex
component models. In the bond graph method such components represent basic
physical processes. Sometimes such components can be used as simplified repre­
sentations of real components, such as bodies, springs, resistors, coils, or trans­
formers.

There are, altogether, nine such components that represent underlying physical
processes in a unique way. These are

- Inertial (I), Capacitive (C) and Resistive (R) components
- Sources of efforts (SE) and of flows (SF)
- Transformers (TF) and Gyrators (GY)
- Effort (e) and flow (t) junctions

The standard symbols used for the components are given in the parentheses.
In this way multi-domain physical processes, typical of mechatronics and other

engineering systems, can be modelled in a unified and consistent way. A review of
all the elementary components is given in Fig. 2.6. Components are described by
their constitutive relations in terms of variables and physical properties.

The components can have one or more power ports. The processes seen at these
ports are described by pairs of power variables - effort e and flow f. In addition,
certain components have internal state variables. The next sub-sections give a de­
tailed description of each component (Sects. 2.5.2-2.5.7). In Sect. 2.5.8 the con­
trolled elementary components are described, i.e. common components with
added control ports. At the control ports a control variable c is defined that is used
for supplying information to, or for extracting informationfrom, the component.

2.5.2 The Inertial Component

The inertial component is identified by the symbol I and has at least one power
port (Fig. 2.6a). This component is used to describe the inertia of a body in trans­
lation or rotation, or the inductivity of an electrical coil.

The port variables are effort (e) and flow (f). In addition, there is an energy
variable, generalised momentum p, defined by the relationship

e=p (2.1)

2.5 Modelling Basic PhysicalProcesses 29

...J::..I ...J::..C ...J::..R
(a) (b) (c)

SE...J::.. SF...J::..
(d) (e)

...J::..TF...J::.. ...J::.. GY...J::..
(f) (g)

V ~

...J::..e...J::.. ...J::..f...J::..
(h) (i)

Fig. 2.6. Elementary components. (a) Inertial, (b) Capacitive, (c) Resistive,
(d) SourceEffort,(e) SourceFlow, (f) Transformer, (g) Gyrator,
(h) Effort Junction,(i) Flow Junction

The generalised momentum can be viewed as the accumulation of effort in the
component,

t

P = Po + Jed!
o

The constitutive relation of the process reads

P = l-f

(2.2)

(2.3)

where I is a parameter. The constitutive relation also can be non-linear, of the form

or, alternatively,

P =<I>(f,par) (2.4)

(2.5)

where <I> is a suitable non-linear function and par denotes parameters. If the com­
ponent has n ports, the constitutive relation at the i-th port generally has the form

(2.6)

or, alternatively,

(2.7)

where <1>; is a suitable multivariate function.
A process represented by an inertial component is characterised by the accumu­

lation of power flow into the component in form of energy

30 2 Bond GraphModelling Overview

t

E =Eo + fefdt
o

Using Eq. (2.1) we get
P

E(p) = E(po) + ffdP
Po

2.5.3 The Capacitive Component

(2.8)

The Capacitive component is identified by the symbol C and has at least one
power port (Fig. 2.6b). This component is used to model mechanical springs, elec­
trical capacitors, and similar processes.

The port variables are effort (e) and flow (f). In addition, there is an energy
variable, generalised displacement q, defined by relation

(2.9)

Thus, generalised displacement can be viewed as the accumulation of the flow in
the component,

t

q = qo + ffdt
o

The constitutive relation of the process reads

q=C·e

where C is a parameter. The constitutive relation also can be nonlinear, i.e.

q = <1>(e,par)

or, alternatively,

(2.10)

(2.11)

(2.12)

(2.13)

where <1> is a suitable non-linear function and par denotes parameters. If the com­
ponent has n ports, the constitutive relation at the i-th port generally is of the form

(2.14)

or, alternatively,

(2.15)

and <1>; is a suitable multivariate function.
A process represented by a capacitive component is characterised by the accu­

mulation ofpower flow into the component in the form ofenergy
t

E = Eo + fefdt
o

2.5 Modelling BasicPhysical Processes 31

or by Eq. (2.9)
q

E(q) = E(qo)+ Jfdq
qo

2.5.4 The Resistive Component

(2.16)

The resistive component is identified by the symbol R and, like the inertial and
capacitive components, has at least one port (Fig. 2.6c). This component models
friction in mechanical systems, or electrical resistors.

The port variables are effort e and flow t. The component constitutive relation
is given by

e =R·f

where R is a parameter. The constitutive relation can also be non-linear

e = <1>(f,par)

or, alternatively,

(2.17)

(2.18)

(2.19)

where <1> is a suitable non-linear function and par denotes parameters. If the com­
ponent has n ports, the constitutive relation at the i-th port generally has the form

or

(2.20)

tj = <1>i1(e
j , par), (i,j = 1'00" n)

and <1>j is a suitable multivariate function.

2.5.5 Sources

(2.21)

Sources are components that represent power generation (or power sinks) such as
voltage and current sources, certain types of force (e.g. gravity), volume flow
sources (such as pumps) etc. In these sources efforts or flows are almost inde­
pendent of the other power variable. It is possible to define two types of source
components: source efforts, designated by SE; and source flows, designated by SF
(Figs. 2.6d and 2.6e).

These are, basically, single port components. Denoting the port effort bye and
port flow by t, the corresponding constitutive relations are given by the following
relationships

32 2 BondGraph Modelling Overview

Source Effort (SE)

(2.22)

or, more generally,

e =<I>(t,par) (2.23)

Source Flow (SF)

(2.24)

or, more generally,

8 = <I>(t, par) (2.25)

In the relationships above, Eo, Fa, and par are suitable parameters, and <I> is a
function of time t.

2.5.6 The Transformer and The Gyrator

The transformer TF and the gyrator GY are two important components that repre­
sent transformations of the power variables between their ports (Figs. 2.6f and
2.6g). Both have two ports; power is directed into the component at one port, and
out of the component at the other. Thus, power is assumed to flow through the
component.

An important characteristic of these elements is the conservation of power
flow, i.e. power inflow is equal to power outflow. Ifwe denote the power ports by
labels 0 and 1, and the corresponding effort-flow variables by ei and fj (i =0,1),
this fact can be expressed by the relationship

(2.26)

The Transformer

The transformer models levers, gears, electrical transformers, and similar devices.
In robotics and multi-body mechanics, transformers are extensively used for the
transformation of power variables between body frames.

In the transformer there is a linear relationship between the same types of port
variables, i.e. efforts to efforts and flows to flows. Denoting the transformation ra­
tio by m, we have

(2.27)}8 1 =m'80

fo =m·f1
These relationships satisfy the power conservation relationship given by Eq.

(2.26). It is sufficient to define one of these relationships; the other follows, owing

2.5 Modelling Basic Physical Processes 33

to the power conservation requirement. There is some ambiguity in how to define
the transformation ratio because the power conservation relation is also satisfied
by the equations

(2.28)}eo = k· e1

f1 =k·fo
The transformation ratio k in the last pair of equations is just the reciprocal of

ratio m in the former equations, i.e. k =1/m. The form to use is left to the discre­
tion of the modeller.

The Gyrator

The gyrator is similar to the transformer, but relates to the other type of port vari­
able, i.e. effort to flow. Denoting the gyrator ratios by m and k, the corresponding
equations are

eo =m·f1
e1 =m·fo } (2.29)

(2.30)}fo = k· e1

f1 = k ·eo

Gyrators have their roots in the gyration effects well known from mechanics.
Their use is essential in rigid-body dynamics. The gyrator is a more fundamental
component than the transformer [I]. Two connected gyrators are equivalent to a
transformer. A gyrator and an inertial component are equivalent to a capacitive
element. Similarly, a source effort connected to a gyrator is equivalent to a source
flow. Using such combinations makes it possible to reduce the set of elementary
components necessary for physical modelling. We do not follow this approach
here; there is little to be gained by using a smaller number of elementary compo­
nents, as the resulting model would be more complicated and more abstract than
necessary.

and alternatively,

2.5.7 The Effort and Flow Junctions

Physical processes interact in such a way that there are restrictions on the possible
values that efforts and flows can attain. Many physical laws express such con­
straints. In mechanics, forces and moments-including inertial effects-are gov­
erned by the momentum and the moment-of-momentum laws. In electricity, there
is the Kirchhoff voltage law, and there are similar laws in other fields. Similar
constraints on flows in rigid body mechanics are governed by the kinematical rela­
tive velocity laws, by the law of continuity of fluid flow in fluid mechanics, the
Kirchhoff current law in electricity, etc. To satisfy such laws elementary compo­
nents defined previously are connected to the junctions that impose constraints on

34 2 Bond Graph Modelling Overview

efforts or flows. Such junctions are known as effort and flow junctions (Figs. 2.6h
and 2.6i).

The Effort Junction

The effort junction is a multi-port component into which power flows in or out.
We use the symbol e for this junction (instead of the more common 1 symbol).
This junction also is called a common flow junction because the flows at all junc­
tion ports are the same, i.e.

(2.31)

where n is the number of ports at the junction. There is no power accumulation
within the junction, thus the sum of the power inflows and power outflows equals
zero

(2.32)

In this equation the plus sign is used for the ports pointing towards the junction
(positive power) and the minus sign for ports pointing away from the junction
(negative power). Using Eq. (2.31) we get an equation of effort balance at the
junction

(2.33)

The Flow Junction

The flow junction is similar to the effort junction, with the roles of efforts and
flows exchanged. The flow junction is a multi-port component denoted by the
symbol f (instead of the more common 0 symbol). This junction is also known as a
common effort junction, as the efforts at all ports are the same, i.e.

(2.34)

There is also conservation of power flow through the junction (Eq. (2.32)).
Thus, by Eq. (2.34) we get an equation of balance of flows at the junction

(2.35)

2.5.8 Controlled Elementary Components

The component constitutive relations introduced so far depend on port and internal
variables only. In many instances it is also necessary to permit dependence on
some external variable. This is the case when modelling controlled hydraulic re­
strictions in valves, variable resistors; capacitors, sources and other controlled
components in electronics; and co-ordinate transformations in multi-body mechan­
ics. For this purpose bond graphs use so called modulated components - modu-

2.5 Modelling Basic Physical Processes 35

lated source efforts MSE and sources flows MSF, modulated transformers MTF
and gyrators MGY. Some authors introduce other modulated components. We do
not introduce such special components, but allow components to have control
ports in addition to power ports. Fig. 2.7 shows some of the components with
added control input or output ports.

...I>.. I- ...I>..C_ ...I>..R4- ---t>SE...I>.. ---t>SF...I>..

* *...I>..TF...I>.. ...I>..GY...I>..

(a)

...I>..SW4-

(b)

t t
...I>..e...l>.. ...I>..f"<T" ...I>..I---t> ...I>..C---t> ...I>..R---t>

b- b-
(c)

Fig. 2.7. Components with control ports. (a) Input, (b) Switch component, (c) Output

Components that have control input ports are called controlled (Fig. 2.7a). The
constitutive relations for such components (see Sects. 2.5.1-2.5.6) can depend on
the corresponding control variables. The transformers and gyrators must satisfy
the power conservation requirement. This is satisfied not only by constant trans­
former and gyrator ratios, but also by the ratios dependent on a control variable c.
Thus, the corresponding constitutive relations for controlled transformer and gyra­
tors can have the same forms as given by Eqs. (2.27) to (2.30), but with variable
transformation and gyration ratios, e.g.

e1=m(c)·eo

fo =m(c)·f1 } (2.36)

(2.37)}eo=m(s)·f1
e1 =m(s)·fo

respectively. The only components that cannot have control input ports are effort
and flow junctions.

In addition to the already defined components that can be controlled, we define
one specific component called the switch, denoted by Sw (Fig. 2.7b). This compo-

and

36 2 Bond Graph Modelling Overview

nent has one power port and one control input port. The constitutive relation for
the component is

e =0, C > 0

f = 0, C ~ 0 } (2.38)

where e and f are the effort and flow variables of the power port, respectively, and
C is the control variable. This component can be viewed as a controlled source that
imposes the zero effort or zero flow condition, depending on the sign of the con­
trol variable. This component models hard stops and clearances in machines,
switches and relays in electronics, and possibly of other discontinuous processes.
The component can be generalised to allow effort or flow expressions, such as in
sources (Eqs. (2.22) to (2.25)) and in systems with more complex switching logic
than in Eq. (2.38).

Control output ports are used to access component variables that cannot be ac­
cessed any other way (Fig. 2.7c). Control output ports are commonly used for ex­
traction of information on junction variables (efforts or flows). We also use such
ports for access to the internal variables of inertial and capacitive components
(momenta and displacements). They can be used for the extraction of information
from other components, too.

2.6 Block Diagram Components

Finally, to complete the arsenal of components for modelling mechatronic sys­
tems, we define components that implement the input-output operations. These
correspond to basic block diagram operations and can be used to define control
laws of mechatronic devices, as well as for processing the results of simulations.

These are similar to other components, but can have only control input and con­
trol output ports (Fig. 2.8). We next give a short description of the elementary
block diagram components.

IN~ ~ OUT
(a) (b)

~FUN~ ~f~ ~ D/Dt~

(e) (d) (e)

~s~ ~n~

(f) ~ (9) ~

Fig. 2.8. Elementary block diagram components. (a) Input, (b) Output,
(c) Function, (d) Integrator, (e) Differentiator, (f) Summator, (g) Node

2.6 Block Diagram Components 37

2.6.1 The Input Component

The input component (Fig. 2.8a) generates control input action. This component
can have only a single output port. Output from such a component could be of the
form

C = <1>(t,par) (2.39)

where <1> is a suitable function of time and other parameters. This component typi­
cally is used to generate step input, sinusoidal input, pulse trains, and other input
functions.

2.6.2 The Output Component

The output component (Fig. 2.8b) displays output signals. It can have only input
ports. Typically such components are used for generating and displaying x-t and x­
y plots, spectral diagrams, and the like.

2.6.3 The Function Component

Thefunction component (Fig. 2.8c) generates output as a linear or non-linear func­
tion of its inputs. Thus the output is, in general,

Cout = <1>(cin,par) (2.40)

The function can have one or more inputs but only a single output. Such a func­
tion can be used to represent linear gains, multiplications of inputs, or other non­
linear operations on inputs.

2.6.4 The Integrator

As its name implies, this component gives the time integral of its input (Fig. 2.8d),
i.e.

t

Cout = cout(O)+ ICin(t)dt
a

Obviously, this is a single input - single output component.

2.6.5 The Differentiator

(2.41)

The difJerentiator is similar to the integrator (Fig. 2.8e), but generates the time de­
rivative of its input, i.e.

Cout = dc, / dt (2.42)

38 2 Bond Graph Modelling Overview

2.6.6 The Summator

The summator (Fig. 2.8f) gives the sum of its inputs, with optional positive or
negative signs, i.e.

(2.43)

2.6.7 The Node

The node (Fig. 2.8g) serves for branching signals. This component has a single in­
put and one or more outputs.

2.7 Modelling Simple Engineering Systems

The approach outlined in the previous sections can be used for the systematic
computer-aided model development of engineering problems. We apply this ap­
proach to two simple, well-known problems, one from mechanical engineering
and the other from electrical engineering. The technique is compared with the
common bond graph modelling technique as given e.g. in [1]. We also consider a
more complicated practical example from mechanical engineering (the See-saw
problem).

2.7.1 Simple Body Spring Damper System

The first example models a single-degree-of- freedom mechanical vibration system
(Fig. 2.9a). This consists of a body of mass m that translates along a floor, is con­
nected to a wall by a spring of stiffness k, and has a damper with a linear friction
velocity constant b. An external force F acts on the body. We neglect the Coulomb
friction between the block and the floor for simplicity, as well as the weight of the
body. In Fig. 2.9b the system is decomposed into its basic components. This is the
free-body diagram well known from engineering mechanics. This decomposition
clarifies the power flow direction assignment of component ports.

The bond graph model of the system is shown at the top of Fig. 2.10. The sys­
tem consists of three components: spring, damper, and body. The spring and
damper are represented by word models. There are two power ports, correspond­
ing to the connection to the wall and to the body, respectively. The body is repre­
sented by a word model with three ports: one each for the spring and damper con­
nections, and another for the external force. The wall (and floor) constitutes a
component belonging to the system environment and is represented by a two-port
word model. The source effort SE represents the external force applied on the sys­
tem (body) by the environment. To complete the model, all the component ports
are joined by bonds. Monitoring body motion is achieved by displaying the body

2.7 Modelling Simple Engineering Systems 39

position over time. Thus we add to the Body component a control-out port and
connect it to a suitable Out(put) component used for displaying the body motion.

v

(a)

(b)

Fig. 2.9. Simple body springdampersystem. (a) Schematic representation, (b) Free
bodydiagram

The model at this level of abstraction has a structure that closely corresponds to
the scheme of the system in Fig. 2.9a. The direction of power flow in the model is
taken from the SE through the body, then through the spring and damper, and fi­
nally to the wall.

This corresponds to the physical situation in Fig. 2.9b. If the sense ofthe exter­
nal force and the body velocity are as shown, the power at the external force port
is positive; i.e., it is directed into the body. Assuming that the spring and damper
resist the movement of the body-i.e., the sense of their forces is opposite to that
of the body velocity-the powers at the corresponding ports are negative, and the
power port arrows are directed out of the body. At the spring and damper ports,
power again is positive, flowing into these components. Because of the direction
of the body's force, according to Newton's Third Law their forces act in the oppo­
site sense. A similar conclusion can be drawn regarding the wall side ports. Hence,
by joining mechanical ports Newton's Third law is satisfied. Thus, to construct the
bond graph model it is not necessary to draw a free-body diagram at all.

Next we develop the component models (Fig. 2.10). The force generated by the
spring depends on the relative displacement (extension) of the spring. Thus, the
model of the spring can be represented by a flow junction with three ports, two for
connecting internally to the spring end ports and the third for the connection of the
capacitive element that models the elasticity of the spring (Fig. 2.10 Spring). The
junction variable is the force Fs in the spring; and the extension of the spring Xs is
the generalized displacement of the capacitive element, with spring stiffness k
taken as the parameter of the element. Thus, the constitutive relations for the ca­
pacitive element are (see Eqs. (2.9) and (2.11))

(2.44)

and

40 2 Bond Graph Modelling Overview

Fs = k· Xs

where v« is the relative velocity ofthe spring ends.

(2.45)

1

~ ~spring~

~ Body~SE

~~Damper~

OUT

Spring Damper

C R

1v«
I

1Vd

f f,

Fs Fd

Wall Body

I

,---------1 ~-----..Fm1
e..-------1

rm

<--,

Ixm

l
SF----e Vw

1'-----11

T
Fig. 2.10. Bond graph model of problem of Fig. 2.9

The damper has a similar model, with the resistive element used to model me­
chanical dissipation in the damper (Fig. 2.10 Damper). The junction variable Fd

represents the force developed by the damper, Vd is the relative velocity of the
damper ends and the velocity constant b is a parameter of the element. Assuming a
linear constitutive relation for the resistive element we have (see Eq. (2.17))

(2.46)

2.7 Modelling Simple Engineering Systems 41

The third component of the system is the body of mass m (Fig. 2.10 Body).
This component is represented by an effort junction that describes the balance of
forces applied to the body including the inertial force of the block. This junction
has four power ports: three for internal connections to the body ports and fourth
for the connection of an inertial element. Denoting the body velocity taken as the
junction variable by Vm (corresponding to velocity v of body in Fig. 2.9a) and the
inertial force of the block with mass m taken as parameter by Fm, the constitutive
relations of the inertial element are (see Eqs. (2.1) and (2.3))

Fm= Pm (2.47)

and

Pm =m·vm (2.48)

To calculate the body position, a control output port is added to the junction,
and the junction variable is fed to an integrator that outputs the body position Xm•

The corresponding equation can be written as

(2.49)

The next component is simply the source effort element SE, which generates
the driving force on the system (body)

F = <I>(t) (2.50)

The spring and damper are connected to the fixed wall. The model of the wall
is given in Fig. 2.10 Wall. The component consists of an effort junction with three
ports. This describes the force balance at the wall. Two ports serve for the internal
connection to the wall ports, and the third is for connecting the source flow, which
imposes a zero wall velocity condition. The junction velocity is v.; Thus, the rela­
tion for the source flow is

(2.51)

To complete the mathematical model of the system the equations of the effort
and flow junctions are added. Corresponding variables can be found by following
the bonds connected to junction ports until some elementary component is found
that completes the bond. Thus, for the body effort junction the port effort variables
are the spring force Fs- damper force Fd, inertia force Fm and driving force F, re­
spectively. The equation of the effort balance at the junction thus reads

-Fs-Fd-Fm+F=O (2.52)

If we denote by Fw the total force at the wall, the equation of effort balance at the
wall junction reads

(2.53)

A similar equation can be written for the flow junctions. This time the summation
is on the flows. Thus we have

-v w - V 5 + V m = 0 (2.54)

42 2 BondGraph Modelling Overview

and
-v w - V d + V m = 0 (2.55)

(2.56)

We therefore describe the motion of the system by eight equations of elements
that describe the physical processes in the system, i.e. Eqs. (2.44) to (2.51), and
four equations which involve the junctions Eqs. (2.52) to (2.55). There are, alto­
gether, twelve differential and algebraic equations that have to be satisfied by
twelve variables: Fs, vs, xs , Fd, Vd, Fm, Vm, Pm, F, Fw, vwand Xm. Although we have
arrived at a relatively large number of equations of motion for this simple prob­
lem, the equations are very simple, having on average only 27/12 = 2.25 variables
per equation.

The structure of the matrix of these equations is very sparse; this simplifies the
solution process. We can simplify these equations further. Direct processing can
be used to eliminate some, or all, of the algebraic variables (i.e., variables that are
not differentiated). We can also simplify the bond graph first, then write the corre­
sponding equations. We consider the second approach in more detail, as it leads to
the sort of bond graphs usually found in the literature.

We can simplify the model by substituting every component at the top of Fig.
2.10 by its corresponding model, given at the bottom part of the same figure. The
resulting bond graph is shown in Fig. 2.11a. The source flow on the left imposes
zero wall velocity; thus, we can remove the effort junction and the source flow, as
well as the two bonds connecting the junction to the flow junctions. We also re­
move the corresponding ports at the flow junctions. This yields a bond graph rep­
resented by Fig. 2.11b. We should also eliminate these flow junctions, for they are
trivial, having only one power input port and one power output port. Thus, the C
and R element ports can be connected directly to the right-hand effort junction
ports. This results in the bond graph of Fig. 2.11c.

The model in Fig. 2.11c is much simpler than that in Fig. 2.10. The resulting
equations now consist of

V m = X s

Fs = k· Xs
Fd =b,v m
Fm =Pm
Pm = rnv.,
F = <I>(t)
-Fs-Fd-Fm+F=O
X m =v m

We have reduced the system to eight equations with eight variables Fs, xs, Fd,

Fm, Vm, Pm, F, and Xm. This was achieved, however, by eliminating some variables
that can be of interest, e.g. total force transmitted to the wall. This bond graph can
be developed directly from Fig. 2.9a by the application of classical methods of
bond graph modelling, as explained in [1].

Using this form of bond graph model, the equations of motion of the system
can be developed in an even simpler form than that given above. It should be
noted, however, that this is not true in general for engineering systems of practical

2.7 Modelling Simple Engineering Systems 43

interest. We address this matter in more detail in Sects. 2.9 and 2.10. The reduced
model is, on the other hand, much more abstract. This makes it more difficult to
understand and interpret: Unlike the component model of Fig. 2.10, there is no
topological similarity to the system represented in Fig. 2.9a. A change in any part
of the model affects the complete model. On the other hand, in the model of Fig.
2.10 we can change some of the components, leaving others unchanged. Such a
model can be refined much more easily, thereby retaining the overall topological
similarity to the physical model.

C I

1" 1.:>. FR Vme ..SF .. e VW SE

~J:/L
f~OUT

(a)

C I I

}, 1 c~lf~

R Vm e F
SE Vm e.. ..

J:/L
f~OUT

RJL
(b) (c)

F

f~OUT

Fig. 2.11. Simplification of the bond graph of Fig. 2.10

2.7.2 The Simple Electrical Circuit

The second example considers the electrical Resistor Inductor Capacitor circuit
(RLC circuit) shown in Fig. 2.12. The circuit consists of a series connection of a
voltage source generating an electromotive force (e.m.f.) E, a resistor R, an induc­
tor L, and a capacitor C. The polarities of the voltage drop across the electrical

44 2 Bond Graph Modelling Overview

components are also shown, as well as the assumed direction of current flow. We
can develop a bond graph model using an approach similar to the mechanical sys­
tem analysed previously.

E c

+

Vc

Fig. 2.12. Simple electrical circuit

We can represent the electrical components by suitable word models. But in­
stead of the component names, we use the common electrical symbols. Standard
component names-such as resistor, capacitor, and the like-are retained inter­
nally for compatibility with the usual word model representation. The resulting
bond graph is shown at the top of Fig. 2.13.

The source voltage supplies electrical power to other parts of the circuit. The
power port corresponding to the positive terminal is taken to be directed outward,
and the other port inward. Power from the source flows through the resistor, in­
ductor, and capacitor until the node component is reached where part of the power
flow branches to the ground component. (Later it is shown that there is no power
flow to the ground.) The other part returns back to the voltage source. The model
has a very similar appearance to the electrical scheme in Fig. 2.12. What is differ­
ent is the presence of power ports showing the assumed direction of power flow in
the circuit. Thus, the correspondence of the bond graph model and the electrical
scheme is really very close.

Component models for the voltage source, the resistor, the inductor, and the ca­
pacitor are shown in the lower part of the Fig. 2.13. Components have two ports
used for connecting to other components. These are represented by source effort
junctions with three ports. Two of these are used for internal connection to the
component's ports, and the third is used for the connection of elementary compo­
nents that describe the physical processes in the components. Power flow is cho­
sen to flow into these elementary components. Thus, the effort of the elementary
component port represents the voltage difference across the component. We model
the components by idealised linear elements.

In the case of the resistor, the junction variable is the current iR flowing through
the component, and the voltage drop is YR. Thus, the constitutive relation for the
resistor is given by (Eq. (2.17»

vR = R· iR (2.57)

2.7 Modelling Simple Engineering Systems 45

--_tOUT

u

Resistor

I----..e----...p.

Source voltage
--t

SE ...E......e_i

Inductor

t---..e----......

Capacitor

Fig. 2.13. Bond graph model of circuit of Fig. 2.12

with R the resistance parameter. Similarly for the inductor, the junction variable is
the current iL through the inductor and the voltage drop is VL. Ifwe denote the flux
linkage of the coil by PL, the constitutive relations read (see Eqs. (2.1) and (2.3))

(2.58)

and
(2.59)

46 2 Bond GraphModelling Overview

where L is the inductance parameter of the inductor.
For the voltage source the joint variable is the current i through the source ter­

minals (ports). The voltage E generated is described by the source effort element.
The constitutive relation reads

E = <I>(t) (2.60)

Finally, for the capacitor, the junction variable is the current ic through the
component and the voltage drop is vc- If we denote the capacitor charge by qe, the
constitutive relations can be written as (see Eqs. (2.9) and (2.11»

(2.61)

and

(2.62)

where C is the capacitance.
The node component is simply another representation of the flow junction, and

the ground is just the ground potential source effort. The node variable is the
ground potential VG. We take the ground potential as zero, hence the ground com­
ponent constitutive relation reads

(2.63)

If we start from any of the component effort junctions and follow the bonds
connected internally to the port, then out of the component to the next component
port, and again into the component, we find that all effort junctions are intercon­
nected. We thus can treat all these junctions as a single junction, the result being
that all junction variables are, in essence, the same variable, i.e.

(2.64)

Counting only ports connected to other components, the balance of efforts reads as
follows

VG +E-vR -vL -vc -vG =0

After cancellation of the ground potential VG, we get

E-vR -vL -vc =0

(2.65)

(2.66)

This is the Kirchhoff voltage law for the circuit.
Finally, if we denote the current drawn by the ground by iG, and taking account

of the identity represented in (2.64), the balance of flows at the node reads

-i - iG + i = 0 (2.67)

Again, owing to cancellation of current i, we obtain

or, after simplification

~OUT

2.7 Modelling Simple Engineering Systems 47

(2.68)

This lengthy explanation shows that we arrive at the circuit equation by using
the constitutive equations for elementary components and symbolically simplify­
ing the junction equations. Thus, the mathematical model of the circuit consists of
nine differential-algebraic equations (2.57) to (2.63), (2.66), and (2.68) with nine
variables E, VR, i, VL, PL, VC, qc, VG and io. Eqs. (2.63) and (2.68) are trivial and
could be eliminated from the system.

As in the previous example, we can simplify the bond graph instead of the
equations. We first substitute the bond graph model of the components from the
lower part of Fig. 2.13 into the system bond graph at the top (Fig. 2.l4a).

R I

1 1
R I

~)re~e~

e---C
SE----e "CSE~e_OUT I

f~OUTt.,
~ ~

SE SE
(a) (b)

R I

SE --_..... e ---...... C

(c)

Fig. 2.14. Simplification of model of Fig.2.13

We again see that the four effort junctions are interconnected and can be con­
densed into a single junction, retaining only the ports connected to other compo­
nents. In addition, we see that this junction is connected to the same flow junction
by two ports of opposite power-flow sense. Hence, such ports can be discon­
nected, and then removed. The corresponding ports of the flow junction must be
removed, too. This yields the bond graph shown in Fig. 2.14b. We now have a
flow junction connected only to a ground source effort. These can be removed,
too. This results in the final simplified system bond graph (Fig. 2.l4c). The last

48 2 BondGraph Modelling Overview

bond graph can be described by the same equations as before, but without Eqs.
(2.63) and (2.68).

The above procedure shows that, instead of the simplification of junction Eqs.
(2.65) and (2.67), we could directly arrive at Eqs. (2.66) and (2.68) by noting that
interconnected effort junctions are connected to the same flow junction. Corre­
sponding junction ports then could be treated as internal, and not taken into ac­
count when writing the junction equations.

Comparing bond graphs in Figs. 2.13 and 2.14c, we draw similar conclusions
as in the previous example: The model in Fig. 2.13 is much easier to interpret and
upgrade. Even people who are not too familiar with bond graphs could understand
such a model. On the other hand, it retains the advantages that bond graphs enjoy
over other modelling methods.

2.7.3 A See-saw Problem

As a third problem, we develop a model of a simple see-saw often found in chil­
dren's playgrounds (Fig. 2.15). On a much larger scale, this same problem is
known as the swing boat at the fair ground. The system consists of a platform that
can rotate around a horizontal pin 0, fixed in a frame, and having a body at each
end, e.g. a boy and a girl sitting on the see-saw seats. If one of the bodies is
pushed down, and then released, the system will begin to oscillate around its equi­
librium position.

y
Frame Pivot

Fig. 2.15. See-saw problem

This problem is more complicated than those presented previously, as it con­
sists of three interconnected bodies moving in the vertical plane. The model could
be developed more easily by treating the system as a physical pendulum. Instead,
we consider it as a multi-body system and demonstrate that the model can be de­
veloped systematically by decomposition.

We start by defining the overall model structure (Fig. 2.16). The word models
Body 1 and Body 2 represent the bodies on the platform. They each have a port
that corresponds to the location where the body acts on the platform. The compo­
nent Platform has four ports, two of which correspond to the places where the

2.7 Modelling Simple Engineering Systems 49

bodies act, a third for connecting to the Pivot component, and the last for the input
of information on the rotation angle. The Pivot permits only rotation of the plat­
form about a horizontal pin fixed in the Frame.

Frame

-------+.Fy

1 /~_.FX

Pivot _

1
r----n___+Phi

Bodyl

~
Body2

)
Platform

Fig. 2.16. Overall structure of the see-saw

We assume that the bodies are firmly placed on the platform and move with it.
Hence, we join the ports of the bodies to the corresponding platform ports by
bonds. We assume the power flow sense from Body 1 and Body 2 through the
Platform and through the Pivot to the Frame. Further, information on the force at
the pivot is of interest. Thus, we take the components of force at the Pivot and
feed them to the displays Fx and Fy. Similarly, we extract information on the rota­
tion angle and feed it to the node n. This information branches further to the Plat­
form and to the display component Phi.

We proceed by developing models of the components. This requires defining
more precisely the interactions taking place between them. Motion of the system
is described in a global co-ordinate frame Oxy. The origin 0 is placed at the point
of rotation of the platform in the vertical plane; the axis y is directed upward (Fig.
2.15).

Separate effort junctions are used for the summation of the x and y components
of forces on the bodies (Fig. 2.17 Body 1 and Body 2). The junction variables are
the x and y components of the velocities of the bodies. The junctions are con­
nected internally to their respective ports. The order of connection is the x compo­
nent first, then the y component, going from left to right. This order of connection
is also used for the other ports. Hence, Body1 and Body2 port variables are pairs
of effort flow vectors F1!V1 and F2!V2, respectively.

The inertial effects of the bodies in the x- and y-directions are represented by
the inertial elements I connected to the corresponding effort junctions, with power
flow directed into the inertial elements. The weights of the bodies, acting in the y
direction only, are represented by source efforts connected to the y component
junctions, with power flow directed into the junctions.

50 2 Bond Graph Modelling Overview

Body1

I I

Fm1xl l SE
Fm1y ~

G1y
V1x e V1y e

F1x I F1y I
~

Body2

I I

Fm2xl
l SE

Fm2y ~
G2y

V2x e V2y e

F2x I F2y I
~

Fig. 2.17. Dynamics of bodies attached to the see-saw

The equations of motion of the bodies can be obtained directly from the bond
graphs of Fig. 2.17. The relevant variables are also shown in the figure.

Body 1:

Body 2:

Pm1x = Fm1x
P m1y = Fm1y

P m1x = m 1v 1x
P m1y =m1v 1y

G1y = -m19

- F1x - Fm1x = 0

-F1y -Fm1y +G1y =0

(2.69)

(2.70)

P m2x = Fm2x

P m2Y = Fm2y

P m2x = m 2v2x
Pm2y = m 2v 2y

G2y = -m29
-F2x -Fm2x = 0

-F2y -Fm2y +G2y =0

The masses of the bodies are m, and m2, and 9 is the gravitational acceleration.
The Frame simply fixes the pivot, about which the platform rotates, against

translation and rotation (Fig. 2.18). The equations are:
Frame:

vpx =0

v py =0

F3x = FFx

F3y =FFy

cop = 0
Mp =MF

(2.71)

Frame

Pin
translation

Pin
rotation

1

2.7 Modelling Simple Engineering Systems 51

Pin translation
Pin rotation

SF SF

F,,1 F,y1
SF

MF1

vpx e e Vpy
e rup

F3X1 F3y1 Mp1

Fig. 2.18. Model of the see-saw frame

The Pivot similarly prevents translation of the platform with respect to the pin
(Fig. 2.19). Two flow junctions are inserted to extract information about the x and
y components of the force on the pin. Rotation is normally permitted, and it is as­
sumed that this is frictionless. It is an easy matter to add friction, if required. For
example, a resistive component R could be used instead of the source effort. The
signal taken from the effort junction is integrated to get the platform rotation an­
gle. The governing equations are again very simple:

Pivot:

Pivot

v3x -vpx = 0

V 3y - Vpy = 0

O)-O)s -O)p =0
Mp -MR =0

MR =0

~ = O)s

Translation Rotation

(2.72)

Rotation

..i ...

I MRF3x f Mp f~ e~SE

L: r.-J
...

F3y f f ljl

ro

V3x V3y

Fig. 2.19. Model ofthe see-saw pivot

The platform acts as a transformer of the velocities of the attached bodies. Si­
multaneously, transformation ofthe reaction forces of the bodies also takes place.
To develop the bond graph model describing these interrelations we analyse the

52 2 Bond Graph Modelling Overview

general plane motion of the platform in the global co-ordinate frame Oxy (Fig.
2.20).

Fig. 2.20. See-saw platform plane motion

The position and orientation of the platform is described with reference to a
body frame ex'y' with the origin at its mass centre. The position vector of the ori­
gin e is described by a column vector of its global co-ordinates, i.e.

(2.73)

(2.75)

Orientation of the body is defined by the rotation matrix (see e.g. [5])

R __ (co.scp -Sincpj (2.74)
smrp coscp

The vector of the relative position of a point P in the body with respect to the ori­
gin of the body frame can be expressed in the body frame by a vector of its coor­
dinates

f~p = [x~p]
YcP

The position of the same point P with respect to the global frame is defined by the
vector of its global co-ordinates

(2.76)

The relationship between these vectors is given by

fp = fC + fCp (2.77)

Note that vector rep is the relative vector expressed in the global frame, i.e.

(2.78)

2.7 Modelling Simple Engineering Systems 53

(
xcp)rcp =
YcP

The relationship between the vectors of Eqs. (2.75) and (2.78) is given by the
co-ordinate transformation

(2.79)

(2.80)

Substituting the rotation matrix of Eq. (2.74) and evaluating the resulting ex­
pression yields

(
xcp) = (X?P""- ~~p sin <1>]
YcP xcPSin <I> + YcP COS <I>

The velocity of a point P in the body can be found by taking the time derivative
ofEq. (2.77), i.e.

vp = vc + vcp (2.81)

(2.82)

which relates the velocity of the point P to the velocity of the origin C of the body
frame and to the relative velocity of the point P with respect to the point C. These
velocity vectors are expressed by their components in the global frame as

_ [v Px) _ [v Cx) _ [VCPx)vP - , vc - , vCP -
vpy VCy VCPy

and are defined by

drpv ­P- ett ' (2.83)

Taking the time derivative ofEq.(2.79), we arrive at the expression for the relative
velocity

dR '
vcp =-rcp

dt
(2.84)

Note that the vector r'Cp is constant with time. The time derivative of the rota­
tion matrix R yields

dR = (- sin <I> - cos <1». d<l> (2.85)
dt cos <I> - sin <I> dt

The time derivative of the body rotation angle is the body angular velocity

0) = d<l> (2.86)
dt

Thus, substitution ofEqs (2.85) and (2.86) into Eq. (2.84) yields

vCP = TO)

where T is the transformation matrix, given by

(2.87)

54 2 Bond Graph Modelling Overview

T = [- x,~p sin <I> - y~p cos <I>J (2.88)
xcP cos<l>-YcP sin <I>

Compared with Eq. (2.80), this matrix also can be expressed as

T =(- :~:) (2.89)

Eq. (2.81) and Eqs. (2.86H2.88) are the basic relations describing the kine­
matics of rigid body motion in a plane. They apply to points Ph P2, and P3, where
the bodies and the pin act on the platform. Next, we consider the kinetic relation­
ships of forces and moments applied to the platform.

A force F applied to the platform can be described by a vector of its rectangular
components in the global frame, i.e.

(2.90)

The power delivered at point P is given by vpTF, where the superscript T de­
notes matrix transposition. From Eq. (2.81) and (2.87) we get

vpTF=vCTF+TTFro (2.91)

Evaluating the leading part of the second term on the right ofEqs. (2.91) yields

TTF = -YcpFx + xcpFy (2.92)

We recognise this as the moment Mc of the force at P about point C, thus

Mc = TTF (2.93)

By substituting in Eq. (2.91), we finally arrive at the equations of power trans­
fer across the body

T Tvp F=vc F+Mcro (2.94)

This equation can also be read as a statement offorce equivalents, well known
from Engineering Mechanics (see e.g. [6]). That is, a force applied at a point P is
equivalent to the same force applied at a different point C plus the moment of
force about C. If at point P a torque also acts, its moment Mp should be added, too.
Eqs. (2.93) and (2.94), jointly with Eqs. (2.81) and (2.86) to (2.88), constitute the
fundamental equations of rigid-body motion in a plane. To complete the dynami­
cal equations we need only add the inertias of translation and rotation. These equa­
tions clearly indicate how to represent the dynamics of the platform (Fig. 2.21
Platform).

At every point of application of the force (platform ports) we introduce a com­
ponent f corresponding to the vector summation of the velocities, as given by Eq.
(2.81). These components contain two flow junctions. The corresponding junction
variables are the x and y components of the force at the port (Fig. 2.21 f). Next,
we introduce an effort junction e corresponding to the angular velocity of the
body; and the component CM, corresponding to the velocity of the mass centre

2.7 Modelling Simple Engineering Systems 55

(Fig. 2.21 Platform and CM). We connect the vector flow junctions f to the angu­
lar velocity effort junction e by the components labelled LinRot, and to the mass
centre velocity junction component CM.

LinRot

eM ..
F3x F3y

SE

F1x
Vex Gyl F2x

I e ... ,~F1y veY
e F2y

I
FCylFCx

I I

Platform

.i

:'-Vex
Vey

F1x
f

V1x F1y Ve1x ~
f

v1 y Ve1y

Fig. 2.21. Model of the platform

The LinRot components' represent the transformations given by Eqs. (2.87) and
(2.93). The components consist of two transformers and a single effort junction
that implements the transformation given by matrix (2.88) (Fig. 2.21 LinRot). The
necessary information on the angle of rotation of the see-saw is taken from the in­
put port. In addition to these force effects, any moment at a port is transmitted di­
rectly to the rotation effort junction e. An inertial element added to the junction
represents the rotational inertia of the platform. The translation inertia is repre­
sented in component CM which consists of two effort junctions that add inertial
elements corresponding to the x and y motion (Fig. 2.21 CM). The platform grav­
ity is also added here.

The mathematical model of the platform can be written directly from the Fig.
2.21. Respective variables are given in the figure, and parameters a, b, and care
dimensions shown in Fig. 2.20; m is the platform mass, and lc is its mass moment
of inertia about its mass centre. The equations read:

1 Because of space limitation, only one of the f and LinRot components is shown. The oth­
ers havea similarstructure.

56 2 Bond GraphModelling Overview

Platform -left side:

V1x - VC1x - VCx = 0
V1y - VC1y - VCy = 0
VC1x = (a-sine t c-cos ol:»
VC1y = (-a· cos <j> + C. sin <j» . (0

M1x = (a·sin<j>+c·cos<j»·F1x
M1y = (-a· coso + c· sin<j»·F1y
-MC1+M 1x +M 1y = 0

Platform - right side:

V2x - VC2x - VCx = 0
V2y - VC2y - VCy = 0
VC2x = (-a·sin<j>+c·cos<j»·(O
VC2y = (a·cos<j>+c·sin<j»·(O

M2x = (-a· sin+ c· coso ·F2x
M2y = (a- cos o+ c· sin<j»·F2y
- MC2 + M2x + M2y = 0

Platform - upper side:

- V3x + VC3x + VCx = 0
-V3y +VC3y +VCy =0

VC3x = -(b· cos <j» . (0

VC3y =-(b·sin<j»·(O

M3x = -(b· cos<j»· F3x
M3y = - (b· sin <j» .F3y
MC3 - M3x - M3y = 0

Platform - mass centre motion:

p, = FCx
Py = FCY
p, = m ·vcx
Py = m ·VCy
Gy =-mg
F1x +F2x -F3x -FCx =0
F1y + F2y - F3y - FCY+ G y = 0

Platform - rotation:

Kc =Mc }
Kc =lc·(O
MC1+M C2 -MC3 -Mp -Mc = 0

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

2.7 Modelling Simple Engineering Systems 57

The model consists of fifty-seven very simple equations. No substitutions or
other simplifications have been made, as we wished to develop the model strictly
by describing every elementary component in terms of its variables and parame­
ters.

This procedure, based on systematic decomposition, results in multi-level mod­
els. Such models can be developed and changed more easily, if necessary, than
conventional "flat' models. Some of the components can also be reused in other
models. For example, the Platform component can be used for problems dealing
with the plane motion of rigid bodies. For comparison, a flat model corresponding
to the model developed above is shown in Fig. 2.22. Such a model, however, is
not easy to follow, particularly for people unfamiliar with bond graphs: There are
many bonds, and it is not easy even to draw them correctly! It is thus more suscep­
tible to errors and more difficult to change.

SF SF SF

1
e

1 1
e e

Fx

Fy

f ----...e----... S E

I I 1
1 1 SE

'->..e eJ I I

n

1 1 SESE

f / e eJ
f

e ...--!-+!--+---+--+--+-++--II--..,

I

f

I

Fig. 2.22. Single level model ofthe see-saw

58 2 BondGraph Modelling Overview

2.8 Causality of Bond Graphs

2.8.1 The Concept of Causality

The concept of causality, or cause-effect relationships, was introduced in the bond
graph method to define the computational structure of the resulting mathematical
equations at bond-graph level. Thus, the physical and computational structure of
the model is defined in parallel during the modelling stage. It should be stressed
that physical laws do not imply any causal preference: There is no physical reason
to treat forces as the cause, and velocities of the body motions as effects; or volt­
ages as the cause, and currents in circuits as effects. The assignment of causality
can be looked on as a convenient-but not an essential-part of the modelling
task. Further, it is arguable if it is convenient at all, in particular when using the
object-oriented paradigm in simulation model building.

We nevertheless briefly describe causality and its consequences in bond graphs
because of their close connection with bond graph theory (see e.g. [1,2]).

Causality means that, at every port of an elementary component, one of the
power variables is the input (cause) and the other is the output (effect). Thus,
power variables are treated as a pair of signals. Because bond lines in bond graphs
connect ports, the same variable is the input variable at one port and the output
variable at the other connected port. Causal relationships between connected port
variables are depicted in the bond graph literature by causal strokes. These are
short lines drawn at one bond end (port) perpendicular to the bond (Fig 2.23). This
stroke denotes that the effort at the port is the input to the element and the flow
variable is the output (Figs. 2.23a and b). At the other port just the opposite rela­
tion is valid; that is, the flow variable is the input and the effort variable is the out­
put. Causal stroke assignment is independent of the power flow direction (Figs.
2.23c and d).

e
·1 Element2

e
Elementl Elementl • • Element2

(a) (b)

Elementll
e e

• Element2 Elementl • • Element2
(e) (d)

Fig. 2.23. Causality assignment denoted by strokes. (a) and (c) Possible stroke attachments,
(b) and (d)Meaning of the attachments

2.8.2 Causalities of Elementary Components

The causality assignment defines the input-output relationship of the elementary
component constitutive relations. Possible types of causalities of elementary
component ports are summarised in Fig. 2.24.

(2.100)

(2.101)

2.8 Causality of Bond Graphs 59

Source effort ports (Fig. 2.24a) can have only one possible type of causality,
i.e. the effort is always the output, because flow at the input port is not defined.
Similarly, at source flow ports the output is the flow, because the effort is not de­
fined (2.25b). Thus, sources haveflXed causalities.

SE~ SF~ 4I ~I
(a) (b) (c) (d)

~C 4 C ~R 4 R
(e) (f) (9) (h)

°4TF41 01-1>. TF~ 1 04GY~ 1 0~GY41
(i) OJ (k) (I)

2 2
T T

0-1>.le ~ 1 0~f~1
(m) (n)

Fig. 2.24. Causalities of elementary components

The inertial component can have one of two possible causalities. If the effort at
the port is the input and the flow is the output (Fig. 2.24c), then the constitutive re­
lations are given by Eqs. (2.2) and (2.5)

t }P=Po+ Jed!

f = <1>-1 (:'par)

Such causality is known as integrating causality because integration is used to
calculate the output flow.

The other possibility is that the flow is the input and effort is the output (Fig.
2.24d). In this case evaluation proceeds by Eqs. (2.4) and (2.1), i.e.

P= ~(f,par)}
e=p

This type of causality is known as differentiation causality because differentiation
is used to calculate the output.

Analogous causal forms exist for capacitive ports. If we take the flow variable
as input and the effort variable as output (Fig. 2.24e), by Eqs. (2.10) and (2.13) we
have

60 2 BondGraphModelling Overview

(2.102)t 1q = qo + ffdt

e = <1>-1(~,par)
In this case we have integrating causality. On the other hand, if effort is the input
and flow is the output (Fig. 2.24f), calculation proceeds by Eqs. (2.12) and (2.9),
i.e.

q = <1>(e,par)

f=q } (2.103)

This yields differentiation causality.
Of these two possible causalities, integrating causality is preferred because in­

tegration is more easily implemented than differentiation. This is because integra­
tion works on the past values, whereas differentiation involves prediction.

For the resistor there are also two possible causalities. If the flow is the input
and effort is the output (Fig. 2.24g), evaluation of the output is done using Eq.
(2.18), i.e.

e = <1>(f, par) (2.104)

On other hand, if the effort is input (Fig. 2.24h) and the flow is output, calculation
is implemented by Eq. (2.19), i.e.

f = <1>-\e,par) (2.105)

The first one is sometimes called resistive causality, and the other conductive
causality. Preference of one over the other depends on which form is better de­
fined, as some non-linear constitutive relationships are not invertible.

Transformers can also have two possible types of causality. If the effort at one
port is the input at other port, then the effort has to be the output; the same applies
to the flows. For causality as expressed in Fig. 2.24i, the constitutive relations are
given by Eq. (2.27), i.e.

(2.106)}e1 = m·eo
fo=m·f1

On other hand, if causality is as in Fig. 2.24j, the constitutive relations are given
by Eq. (2.28), i.e.

(2.107)

(2.108)

}

}

eo = k ·e 1

f1=k·fo
Two possible causalities for gyrators are shown in Figs. 2.24k and 2.241, re­

spectively. Inputs at the gyrator ports can represent either the efforts or the flows.
For the case in which inputs are efforts, output flows are given by Eq. (2.30), i.e.

fo = k e1

f1 = k eo

2.8 Causality of BondGraphs 61

(2.109)}
Similarly, if the inputs are flows, the output efforts are given by Eq. (2.29), i.e.

eo = mt,
e1 =m·fo

Effort junctions represent the balance of efforts at junction ports. Hence, an ef­
fort can only be the output at one port; all others must be inputs. For the effort
junction in Fig. 2.24m, the effort at port 2 is taken as the output and all others are
inputs. Thus, output effort e2 is given by

e2 = -eo +e1

A similar statement holds for the flow junctions: Flow can only be the output at
one port; all other flows must be inputs. For the flow junction in Fig. 2.24n, the
output flow f1 is given by

f1 = fo - f2

In the expression for output effort or flow, the sign of all input efforts or flows
should be positive if the sense of power flow is opposite to the sense of the output
power flow. Otherwise, the sign is negative.

2.8.3 The Procedure for Assigning Causality

The causalities ofjunction, transformer, and gyrator ports are interrelated and thus
imply constraints on the causalities of connected elements. The causalities of the
complete bond graph can be assigned in a systematic way. The usual procedure is
known generally as the sequential causal assignment procedure (SCAP) [1]. This
procedure is summarised as follows:

1. Choose a source effort or source flow and assign causality to it. Extend the cau­
sality assignment, if possible, to the connected effort and flow junctions, the
transformers, and the gyrators. Proceed in a like fashion until the causality of
all sources has been assigned.

2. Choose an inertial or a capacitive element and assign to it the preferred (inte­
grating) causality. Extend the causality assignment as in 1. Proceed until the
causality of all such elements has been assigned. Otherwise, if the causality as­
signment of the all bonds is not achieved, go to the next step.

3. Assign causality to an unassigned resistor using any acceptable causality. Ex­
tend the assignment to the connected effort and flow junctions, transformers,
and gyrators. Proceed until the causality of all resistors has been assigned.
Otherwise, if the causality of all bonds is not already assigned, go to the next

4. Assign causality to any remaining bond. Extend the causality assignment to ef­
fort and flow junctions, transformers, and gyrators. Proceed until the causality
of all bonds is assigned.

The bond graph to which causality has been assigned usually is termed a causal
bond graph. Otherwise, it is termed an acausal bond graph.

62 2 BondGraph Modelling Overview

The procedure can be illustrated on the simple body-spring-damper problem of
Sect. 2.7.1. Other more complex examples can be found in, for example, [1]. Here
we use the simplified bond graph of Fig. 2.11c, which is repeated as Fig. 2.25a.

I I

c~1 c~1
Vme~SE vm e~SE

RJLf~oUT RJLf~OUT
(a) (b)

I I

c~T -:
Vm e~SE Vrn 'Ae f.---E- SE

RJLf~OUT RJLf~OUT
(c) (d)

Fig. 2.25. Illustration of the causality assignment procedure

We start with the source effort SE (step 1 of SCAP) and assign its causality as
shown in Fig. 2.25b. We cannot extend the causality assignment immediately to
the effort junction, as the connected port is an effort input port. There are no more
sources, thus we proceed with step 2 of SCAP. We can choose to assign causality
to either the inertial or the capacitive element. Let us choose to assign integration
causality to the inertial element I (Fig. 2.25c). We now can extend the causality
assignment to the effort junction, because the port connected to the inertial port is
an effort output port, and all other junction ports must be effort input ports (Fig.
2.25d). This completes the causality assignment of the bond graph.

We have obtained integration causality of the capacitive element C, as well. If
we start at step 2 by choosing the capacitive element instead of the inertial ele­
ment, we would have to assign the causality of the inertial element before we
could proceed to the effort junction. The first procedure is somewhat shorter.

The causal assignment of Fig. 2.25 defines the order of evaluation of the equa­
tions. This is shown by the block diagram of Fig. 2.26. We start with the SE first.
Next, we calculate the output flow of the inertial element. This is the input to the
effort junction and the output of its all other ports. It is the input to the capacitor
and the resistor used to calculate their outputs. These, together with the source ef­
fort output, are used to calculate the output of the effort junction, hence of the in­
ertial element input. Independently, it is used as input to the integrator to calculate
body position.

2.9 The Formulation of the System Equations 63

OUT It xm

F

II
+ F p v

IN --..~ s~ I m ~ FUN ---..~ n m

-j~FUN 4 Xs I.-J
~ FUN ----------'

Fig. 2.26.Computational structure of the bondgraphof Fig. 2.25d

2.9 The Formulation of the System Equations

The bond graph of a system completely defines its mathematical model. In Sect.
2.7 it was shown that the model could be generated directly from the bond graph
by describing the elementary components, including junctions, in terms of their
constitutive relations. This way of representing mathematical models is known as
the descriptor form [7] and is widely used in electrical circuits. This is a non­
minimum form because the equations are not expressed using the minimal number
of variables. Some variables could be eliminated, e.g. by substituting into the
equations of flow and effort junctions. This approach is in effect used in modified
nodal analysis (MNA) of electrical circuits [8,9]. This also is the case with certain
approaches used in multi-body dynamics [5]. In Sect. 2.7 it was shown that the
matrix of the equations is typically very sparse, and this can be used to advantage
in their solution.

The descriptor form of equation formulation leads to the model in the form of
systems of differential-algebraic equations (DAEs). The success or failure of the
descriptor formalism depends to a large extent on the possibility of solving equa­
tions in DAE form efficiently and reliably. Solving such equations has a relatively
long history and started with the famous DIFSUB routine of CW Gear [10] for
stiff systems. The work reported in this book also has its roots in software that
solves DAEs in a way that is based on the DIFSUB routine. From that time sig­
nificant advances have been achieved in the theory of DAEs and their application
[11,12]. Today this is a viable approach to solving simulation models. We return
to this again in Chap. 5.

Another common approach is to formulate the system in state space form. This
technique uses a minimal set of independent variables to formulate the governing
equations. It has its roots in the generalised coordinate methods of Analytical Me­
chanics [13], but it also is used widely, and is perhaps better known, from Control
Theory. The theory of state-space equations has been a topic of research for a long
time and is well understood. This approach is followed not only in bond graph
theory, but is also used in many continuous system simulation languages (Sect.
1.7).

64 2 BondGraph Modelling Overview

The usual approach in continuous system simulation languages is to create a
system of sorted equations that is solved sequentially. Such systems can be solved
relatively easily. Unfortunately, in many engineering problems of practical interest
it is not easy to put the equations in such a form.

The sequential causal assignment procedure of Sect. 2.8.3 was really designed
as an aid to the generation of mathematical model equations in sorted form. From
that the equations can be reduced to the state space form. The bond graphs with
completed causality assignment can be put in such a form if inertial and capacitive
elements have integrating causality, and ifthere are no algebraic loops [1,14]. We
illustrate this with the body-spring-damper system represented by the causal bond
graph of Fig. 2.25d (or, equivalently, by the block diagram of Fig. 2.26). More
elaborate examples can be found elsewhere [1].

We start with the source effort Eq. (2.50), following the order of causal as­
signment of Sect. 2.8,

F = <I>(t) (2.110)

The output of the inertial element I is given by (see Eqs. (2.100) and (2.48))

vm=Pm/m (2.111)

The variable Vm (by the effort junction) is used as the input to the capacitor C, re­
sistor R, and the integrator. The order of evaluation of these elements is immate­
rial. From the first equation of Eq. (2.102), written in derivative form, or Eq.
(2.44), we get

(2.112)

(2.114)

Output of the capacitor is given by the equation (see Eqs. (2.102) and (2.45))
Fs = k . X s (2.113)

Output of the resistor (see Eq. (2.104) or (2.46)) is

Fd =b·vm

Hence, all the inputs to the summator are found and we can calculate its output
as

(2.115)

The output of the summator is the input to the inertial element. Thus, from the first
equation ofEq. (2.100), written in differential form, or Eq. (2.47), we get

Pm =Fm (2.116)

To these equations we add the output of the integrator written as (Eq. (2.49))

(2.117)

This completes the generation of the system of sorted equations.
The equations above consist of differential equations (2.112), (2.116) and

(2.117), and algebraic equations (2.110), (2.111), 2.113), (2.114), and (2.115).
Hence, it is a differential/algebraic system of equations (DAE), but of special

(2.119)

2.9 The Formulation of the System Equations 65

structure. We classify all variables in these equations as being either differentiated
or participating in algebraic operations only. The first are called differentiated
variables, i.e. xs, Xm and Pm. The others are algebraic variables; in the equations
above these are F, Vm, Fs, Fd, Fm• All algebraic variables above can be expressed as
functions of the differentiated variables and of time. Starting from the first Eq.
(2.110) we see that the variables F, Vm, and Fs are already in this form (see Eqs.
(2.110), (2.111) and (2.113)). From Eqs. (2.114) and (2.111) we get

b
Fd =-.p (2.118)m m

Finally, from Eqs. (2.115), (2.110), (2.113), and (2.118) we have
b

Fm =cI>(t)-k,xm - m 'Pm

We now substitute these expressions in the differential equations (2.112),
(2.116), and (2.117). We thus obtain

and

x, = Pm 1m

Pm =cI>(t)-k,xm - ~ 'Pm

(2.120)

(2.121)

Xm= Pm 1m (2.122)

Equations (2.120) - (2.122) represent the model in state-space form. Variables
xs, Pm and Xm constitute a minimal set of independent variables that completely de­
fines the state of the system. Solving these equations with suitable initial condi­
tions, all other variables can be found from equations (2.110), (2.111), (2.113)­
(2.115).

In general, if all capacitive and inertial ports have integrating causality, then the
corresponding differentiated variables, i.e. generalised moments and displace­
ments of Sects. 2.5.2 and 2.5.3 can be looked upon as independent variables where
accumulation of past histories of the efforts and flows take place. Such variables
completely determine the future state of the system and usually are called state
variables. All other variables can then be determined if the state of the system is
known. If, in addition, there are no algebraic loops-that is, there are no implicit
algebraic equations between variables-then all other variables can be eliminated
from the governing equations. Thus, if all state variables are represented by a vec­
tor p and all external inputs (represented by the sources) by a vector u, then a
change of system state can be described by a vector equation

p = <J)(p,u, t) (2.123)

where cI> is a suitable vector-function of the state, inputs, and eventually time. This
is an ordinary differential equation that can be solved given the initial state of the
system. Such an equation is termed the state-space equation of the system.

66 2 Bond Graph Modelling Overview

2.10 Causality Conflicts and Their Resolution

The sequential causal assignment procedure (SCAP) of Sect. 2.8.3, in many cases
of practical interest, leads to a causally augmented graph that cannot be described
by equations in state space form [1,15-17]. We illustrate this using the examples
of Sect. 2.7.

We first analyse the electrical circuit of Fig. 2.13, but with the resistor replaced
by a diode (Fig. 2.27a).

(a)

D

(c)

L R

u

(b)

R I

lJ
SE ------"'1..1e I .. C

~OUT

I

~OUT

Fig. 2.27. Causality conflict in the electric circuit with a diode

If we model the diode as a non-linear resistor, we get the equivalent causally
augmented bond graph shown in Figure 2.27b (see Figure 2.14c). The problem
here is that the diode is a non-linear element normally described in conductive
form, i.e. the diode current is a function of the voltage across the diode. It is thus
in conflict with the assigned causality that implies resistive causality. In order to
resolve conflicts caused by non-linear elements, the relaxed causal assignment
procedure was proposed in [18] and its modification in [19]. This procedure re­
quires that, at step 2 of the SCAP (Sect. 2.8.3), propagation of causalities over
junctions may not violate the fixed causality of non-linear elements. Thus apply­
ing the causal assignment procedure again results in the augmented bond graph of
Fig. 2.27c. The conflict caused by the fixed causality of the diode disappears, but a
causal conflict appears at the effort junction because there is more than one out­
put. Thus, the equation corresponding to the effort junction constitutes an alge­
braic constraint that the variables have to satisfy. The procedure permits casual
conflicts at effort or flow junctions as an indication that the mathematical model is

2.10 Causality Conflicts and Their Resolution 67

of the differential-algebraic equations (DAE) form, rather than of the state space
form.

In the see-saw problem (Sect. 2.7.3) there also is a causality problem. The see­
saw is a single-degree-of-freedom mechanical system. The motions of the bodies
depend on the motion (rotation) of the platform, which is represented in Fig. 2.21
by the LinRot transformers. To show this we apply the SCAP to the bond graph of
Fig. 2.22. The resulting causally augmented bond graph is shown in Fig. 2.28.
There is only one inertial element with integrating causality. All others have dif­
ferential causality.

Fx

Fy

fl
36

19...L
~
H H

_~'I'F ~i2 T 35
15 14 el""'"'"34

__~hITF~61~ TF1for..-- fl

17 1~ 39 40
I

11 10
ff-------"-e~SE

I I 1
231 1 SE

'->

31 elJ .. Ie SE I

1 n

3d
- 1SE20

4\J
f

e

21 3
e

24

Fig. 2.28. Causal bond graph ofFig. 2.22

This bond graph is relatively complicated, so numbers are used to indicate the
order of the causality assignments. Selection of the preferred (integrating) causal­
ity for one inertial element, e.g. the platform rotation, implies derivative causali­
ties for all other inertial elements. Hence, there is only one state variable and all
other generalized variables are non-state variables. The model again is a system of
differential-algebraic equations.

68 2 Bond Graph Modelling Overview

There have been attempts to resolve causality conflicts by, for example, adding
'parasitic' compliances or inertias [20,21]. This is not an acceptable approach,
however, because, in the first instance, it is not clear how to do this without ad­
versely changing the model behaviour. On the other hand, such modified models
are not much easier to solve numerically than the corresponding DAE models be­
cause they are very stiff.

The causality assignment defines the model's computational scheme based only
on the model's structure. In cases in which the model changes sufficiently, such a
priori schemes can lead easily to a loss of efficiency and even failure of the equa­
tion solving routines. This is the case with models that have discontinuities.

Discontinuities are present in engineering systems in various forms, e.g.
switches in electrical circuits, hard stops, clearances, and dry friction. For exam­
ple, the diode represented in the circuit of Fig. 2.29 is modelled as a switch in Fig.
2.29b.

D L 0
u 1

SE .. e---I

l
c

(a) (b)
SF

SE

T1
f f

1 T
SE hi e "I I SE "I e f------ I

T T
c c

(c) (d)

Fig. 2.29. Change of causality pattern in the circuit with a switch

If the diode is forward-biased (conducting), then the switch behaves as a source
effort implying a zero voltage drop across the diode (Fig. 2.29c). When, on the
other hand, the diode is reverse-biased, the switch behaves as a flow source of
small reverse saturated current (Fig. 2.29d). The model structure and causalities
are apparently different for these two states. In the conducting regime the system
has two state variables, while in the non-conducting regime it has only one.

There have been various attempts to solve causality problems with switches
[22-26]. Overall, these procedures are not completely satisfactory in the general

References 69

case. This is particularly true if the discontinuities are not confined to switch ele­
ments, but appear in the element constitutive relations, too.

The concept of causality is generally not suitable for use in an automated ob­
ject-oriented modelling environment. It is not only too restrictive with respect to
the forms of models that can be used, but also puts restrictions on the design and
usability of models libraries. A component that has one causality pattern in one
system can have a quite different one when inserted in another system. We disre­
gard causality issues when developing models of general engineering and mecha­
tronic systems. Modelling is treated as a separate task from model simulation. The
models will be generated in the form ofDAE systems and solved as such.

References

1. Dean C Kamopp, Donald L Margolis and Ronald C Rosenberg (2000) System Dynam­
ics: Modeling and Simulation of Mechatronic Systems, 3rd edn. John Wiley, New York

2. J Thoma and B 0 Bousmsma (2000) Modelling and Simulation in Thermal and
Chemical Engineering, A Bond Graph Approach. SpringerNerlag, Berlin Heidelberg

3. PC Breedveld (1982) Proposition for an unambiguous vector bond graph notation. J.
Dynamic Systems, Measurement, Control 104:267-270

4. EP Fahrenthold, JDWargo (1991) Vector and Tensor Based Bond Graphs for Physical
Systems Modeling. J. of Franklin Institute 328:833-853

5. EJ Haug (1989) Computer-Aided Kinematics and Dynamics of Mechanical Systems,
Vol. I: Basic Methods. Allyn and Bacon, Needham Heights, Massachusetts

6. FP Beer and ER Johnson (1990) Vector Mechanics for Engineers, 2nd SI Edn.
McGraw-Hill Book Co., Singapore

7. RW Newcomb (1981) Semistate description of nonlinear and time variable circuits,
IEEE Trans. Circuit Systems. CAS-26: 62-71

8. R Martz and K Tischendorf (1997) Recent results in solving index-2 differential­
algebraic equation in circuit simulation. SIAM 1. Sci. Comput. 18:135-159

9. A Vladimirescu (1994) The Spice Book. John Wiley & Sons, New York
10. CW Gear (1971) Numerical initial-value problems in ordinary differential equations.

Prentice Hall, Englewood Cliffs
11. KE Brenan, SL Cambell and LR Petzold (1996) Numerical Solution of Initial-Value

Problems in Differential-Algebraic equations, Classics in Applied Mathematics.
SIAM, Philadelphia

12. E Hairer and G Wanner (1996) Solving ordinary Differential Equations II, Stiff and
Differential-Algebraic Problems, 2nd Revisited edn. Springer-Verlag, Berlin Heidel­
berg

13. H Goldstein (1981) Classical mechanics, 2nd edn. Addison-Wesley Publishing Co.,
Reading

14. RC Rosenberg (1971) State-space formulation ofbond graph models of multiport sys­
tems. Trans. ASME 1. ofDyn. Syst., Meas., and Control. 93:35-40

15. J Van Dijk and PC Breedve1d (1991) Simulation of System Models Containing Zero­
order Causal Paths - 1. Classification of Zero-order Causal Paths, J. of The Franklin
Institute 328:959-979

70 2 Bond Graph Modelling Overview

16. J Van Dijk and PC Breedveld (1991) Simulation of System Models Containing Zero­
order Causal Paths - II. Numerical Implications of Class 1 Zero-order Causal Paths, J.
of The Franklin Institute 328:981-1004

17. Peter Gawthrop and Lorcan Smith (1996) Metamodelling: Bond graphs and dynamic
systems. Prentice Hall, Hemel

18. BJ Joseph and HR Martens (1974) The Method of Relaxed Causality in the Bond
Graph Analysis of Nonlinear Systems, Trans. ASME J. of Dynamical Systems, Meas­
urement and Control 96:95-99

19. J Van Dijk and PC Breedveld (1995) Relaxed Causality A Bond Graph Oriented Per­
spective on DAE-Modelling. In FE Cellier and JJ Granda (eds) 1995 International
Conference on Bond Graph Modeling and Simulation, Las Vegas, Nevada, pp 225-231

20. D Margolis and D Karnopp (1979) Analysis and Simulation of Planar Mechanisms
Using Bond Graphs. ASME J. Meehan. Des. 101:187-191

21. A Zeid and CH Chung (1992) Bond Graph Modelling of Multibody Systems: A Li­
brary of Three-Dimensional Joints. J. Franklin Inst. 329: 605-636

22. W Borutzky (1995) Representing Discontinuities by Sinks of Fixed Causality. In FE
Cellier and JJ Granda (eds) 1995 International Conference on Bond Graph Modeling
and Simulation, Las Vegas, Nevada, pp 65-72

23. FE Cellier, M Otter and H Elmqvist (1995) Bond Graph Modeling of Variable Struc­
ture Systems. In FE Cellier and JJ Granda (eds) 1995 International Conference on
Bond Graph Modeling and Simulation, Las Vegas, Nevada, pp 49-55

24. IF Lorentz and H Haffaf (1995) Combination of Discontinuities in Bond Graphs. In
FE Cellier and JJ Granda (eds) 1995 International Conference on Bond Graph Model­
ing and Simulation, Las Vegas, Nevada, pp 56-64

25. PJ Mosterman and G Biswas (1998) A Theory of Discontinuities in Physical Systems
Models. J. Franklin Inst. 335B: 401-439

26. U Soderman and JE Stromberg (1995) Switched Bond Graphs: Towards Systematic
Composition of Computational Models. In FE Cellier and JJ Granda (eds) 1995 Inter­
national Conference on Bond Graph Modeling and Simulation, Las Vegas, Nevada, pp
73-79

Chapter 3 Object-oriented Approach to Modelling

3.1 Introduction

This Section describes the principles of object-oriented design based on the bond
graph technique. The idea is to perform the modelling visually, without any cod­
ing; all interaction between the modeller and the model will be through a visual
development environment.

We not develop a new modelling language, but instead design classes that are
used to create a structured model as a tree of linked objects. This will be persisted
as a set of linked files. It is not necessary to have the complete model in memory,
as parts are loaded as required.

It is very important during the development phase to relieve the user of certain
implementation details, such as how to create components, where and how to store
data, etc. These operations are automated. The user communicate with the model
in familiar terms, e.g. by the names of a project and of its components, how they
are connected, and by defining component constitutive relations in terms of vari­
ables meaningful to the user. The developer thus concentrates on the problem. The
modelling environment (framework) provides as much support as possible to fulfil
this task.

3.2 The Component model

The concept of component model plays a central role in our approach to modelling
[I].' The model of a component is created in two steps (Sect. 2.2). First, a compo­
nent object is created as a word model. Next, by "opening" the component, the as­
sociated document object is created. The document describes the component
model in terms of a bond graph. It contains lists of the word model components
and interconnecting bonds that constitute a bond graph model of the component.
The component and its associated document are intimately related and are used as
the engine for systematic model development either by the top-down (decomposi­
tion) or down-up (composition) approach, or by a combination of both.

1 This is not to be confused with Microsoft's Component Object Model (COM) [2].

72 3 Object-oriented Approach to Modelling

3.2.1 The Component Class

CComponent is the base class used for the creation of the component word model
(Fig. 3.1). It holds textual information, including its name, ports that interconnect
to other components, as well as information that defines its position on the screen.
Visually, the component is designed as a rectangle with a strip surrounding its
name (Fig. 3.2). This strip is used to place the ports.

Attributes:
Type, position and extent
Component ID and filename
Textual data
List of the ports
etc.

Methods:
Constructors and destructor
Create copy
In place editing
Port operations
Drawing operations
Saving and loading
etc.

Fig. 3.1. The CComponent class

Creation of a word model component typically consists of

1. The selection of a position on the screen where the component is to appear.
2. The construction of the CComponent and initialising its position, type, and text

font.
3. The creation of a unique identifier (id) and associated document file name, and

storing them in the object.
4. Editing the name and storing it in the object.
5. Saving the bounding rectangle in the component object.
6. The creation of ports and adding them to the component object

Strip for the port placement Component name box

r··~--·····-r··r-··~
~ Eo~po~-e~"t------~~e----i ~

l··_":·~:::F.:=7C.:::::~.-\

Component ports Component boundary

Fig. 3.2. The component word model visual representation

3.2 The Component model 73

The component word model is created within a suitable document object that
manages the complete process of object creation (Sect. 3.2.2).

The component class supports simple text editing operations for the in-place
editing of the object name (title). Typical of such operations are inserting or delet­
ing of a character, new line creation, joining lines, jumping to the head or the end
of the text. The component name is only for the user's convenience; the frame­
work refers to a component solely by its id. Thus, two different components can
have the same name and appearance, but be different objects with different ids.
The component id and document filename are unique in the workspace in which
all model files are stored.

The Component class implements several methods for port creation and dele­
tion, and for moving the ports around the component periphery. All ports that are
created are stored in the component object as a list.

The component is responsible for its own visual appearance. This means that
the component class has methods for drawing itself on the screen and for printing
to a printer or to a file. The component is drawn as part of the drawing operations
of the document object, which contains the component (Sect. 3.2.2).

The component class supports creation of a copy of a word model component.
In addition to the usual copy constructor, a virtual method is provided for creating
a copy of component objects. Because this is a new component object, a unique
component id and a unique document file name are created and stored in the ob­
ject. All other necessary changes are also made, e.g. in ports (Sect. 3.4).

3.2.2. The Document class

The document class associated with CComponent is termed CBondSimDoc (Fig.
3.3). This is a container class used to create and store the bond graph model of a
component. The model is held as a list of document ports, components, and con­
necting bond objects.

Visually, a document is designed as an area framed by a rectangle that is used
for placement of the components and drawing interconnecting bond lines (Fig.
3.4). Document ports are created in the surrounding strip and correspond to the
ports of its word model. The ports serve as outside connectors of the components
contained in the document. Their positions correspond to the positions of the word
model component ports. In this way it is visually clear which port correspond to
which.

The document and its corresponding word model constitute the complete model
of a component. Such an object typically is accessed through the corresponding
word model. Hence, a word model serves as the interface to the document that
contains its model. Important parts of this interface are the ports (Sect. 3.4). A new
document object typically is created as follows:

I. Assuming that a document object (the current document) that contains a word
model has already been created, a component for which the accompanying

74 3 Object-oriented Approach to Modelling

document is created is selected and a message is sent to the document to create
a new document object.

2. The document method creates a new document object. This method uses a
pointer to the word model object, from which the necessary data are taken, such
as the name of the component, the filename where the new document object is
to be saved, and the component ports.

3. A new document is created and its corresponding attributes set. Document ports
also are created. These correspond to the word model object ports (Sect. 3.4)
and are added to the list of document ports. Otherwise, a new document is
empty, i.e. without any component or bonds. The new document also creates
links to the previous (lower level) document.

Attributes:

Component name and document file name
Links to previous document and the word model
component
List of document ports, components and bonds
List of model parameters, etc.

Methods:

Constructor and destructor
Create new document
Open saved document
Closing and saving document
Copy document
Remove document
Creation of document ports, components and bonds
Creation of model parameters and their linking
Support for mathematical model generation, etc.

Fig. 3.3. The CBondSimDoc class

A new document object is not created if the ports of the corresponding word
model component are not already defined. Such a document object would make no
sense.

Once a document object is created, new word model objects of the contained
components can be created inside the document working area. The creation proc­
ess is managed by the document as already described (Sect. 3.2.1). The compo­
nents created are added to the list of components that the document contains. In
the same vein, the document manages the creation of the bonds that are used to in­
terconnect components contained in the document, or to connect them to the
document ports (Sect. 3.4). Model development can continue by creating a new
document object for every word model in the document, thus developing higher
levels of abstraction of the component model.

The document class manages saving the document objects to the document file.
Before any a new document object is created, the current object is saved. All ob­
jects that the document contains are saved to the document file by calling the cor­
responding method. During this operation a copy of its word model object also is

3.2 The Component model 75

saved as a header, as well as the filename of the previous document and other per­
tinent data.

Frame
/~--_IFX

~Component: Platform

Platform

Document title

Document ports

PiVO~

rr
n

_

Ph i

Body2

)
Bodyl

~

Bond graph model
of the component

r-=f
eM

n

Drawing area

Fig. 3.4. The visual representation of a document object

This saves the model as a tree of interconnected document files. All the files
that make up the model are double-linked, i.e. forward through the components
contained in the document, and backward by the filenames of the previous docu­
ment. Access to the component root document is normally made by the compo­
nent word model contained in a document. We return to this problem again in
Sect. 3.9.

Document objects are persistent [3] because they exist even after they are
closed and deleted from memory. To remove a component completely from a
document it is not enough to remove it from the list of the components that the
document object maintains and to destruct it. The accompanying document file
has to be removed, too. Removing the root document only creates dangling docu­
ments, i.e. documents of which nobody is aware. This means that it is necessary to

76 3 Object-oriented Approach to Modelling

open documents until the leaf documents are reached; then move backward by re­
moving the document files until the component that is to be removed is reached.
Only then can the component be disconnected from the container document and
destructed.

The document class is complex and supports many operations of the automated
modelling framework. The drawing operations are executed in a visual environ­
ment in which the modelling system is implemented, e.g. the Windows system.
During its execution the objects contained in the document are called to draw
themselves, e.g. the document ports, the components and their ports and the
bonds. Similar actions are performed when printing a document to an external
printer or to a graphic file.

One important and much used operation that the document class supports is
copying. This creates a copy not only of the document, but also of all documents
in the tree. This operation starts from the document root and proceeds toward the
document tree leaves. In this process the ids and filenames of all contained com­
ponents are changed. This causes a new document tree to be created that does not
share any component or document with the original tree. Document copying is
implemented in the following way:

1. Open the document object from a file and set the new filename and path where
the copy is to be saved.

2. For components contained in the document:
o Get the original document filename
o Create a new component id and document filename
o Reset the component id and filename to the new values, saving the origi­

nal filename to a temporary location. In the process, component ids are
changed in the component ports, as well as in the bonds connected to
these ports.

3. Save the document under the new filename
4. For every component contained in the document:

o If there is an existing document file repeat step 1
5. Close the document

This operation is called when a copy of a component model is needed. In this
case a copy of the word model component is made first as explained in Sect. 3.2.1,
and then a copy of its accompanying document is performed as described above.
When this operation is called directly (Sect. 3.9), a copy of the word model com­
ponent stored in the document header is made first, then a copy of the document is
made, as explained above.

The document class also supports many other operations, such as creation of
the mathematical model parameters defined at the level of a document object.
These parameters are visible to all components contained in the document. Link­
age of these parameters is designed so that a parameter defined in a document
overrides (hides) a parameter of the same name that is defined in a lower-level
document. The document class also has methods for mathematical model genera­
tion. This is addressed in Chap. 5.

3.3 TheComponent ClassHierarchy 77

3.3 The Component Class Hierarchy

The Component class is the base class from which more specialised component
classes are derived. Fig. 3.5 illustrates the hierarchy of component classes.

One type of specialisation is visual appearance. The component can be de­
picted, for example, by graphical symbols, not only by its name. In electrical en­
gineering such praxis is widely used and has been standardised (e.g. by ANSI,
DIN). It is also used in mechanical engineering, but not to such an extent or with
such versatility. Hence, to simplify modelling with bond graphs, several derived
classes are defined that partly support such schemes.

In the first branch on the left of the hierarchy tree of Fig. 3.5 shows classes that
represent some of the more common electrical components. These, of course,
don't imply any specific model, for they are really word model classes represented
differently. The model should be defined in the accompanying document object
(see Fig. 2.13). Using these components and connecting them by bonds gives the
bond graph an appearance very close to the usual electrical schemes. An important
difference from the latter is the half-arrows used to indicate power flow directions
in the circuit.

Mechanical engineering uses various schematics to depict, for example, sys­
tems in vibrations, hydraulics, and pneumatics. Here there are defined classes to
represent simple mechanical components only, such as bodies in translation and
rotation, springs, dampers, etc. (the second branch of the tree of Fig. 3.5).

Classes of fundamental importance involve derived classes that represent the
elementary components discussed in Sect. 2.5. These are the classes in the third
branch of the hierarchy tree of Fig. 3.4. In accordance with bond graph praxis,
these components use predefined textual symbols that can readily be changed.

It should be noted that some simple electrical and mechanical components can
be defined as a specialisation of certain elementary components, such as ground
potential, and electrical or mechanical junctions.

Elementary components differ fundamentally from the base class component in
that they do not have an accompanying document; they are entities in themselves.
The question, then, is where to put the variables and constitutive relations of these
components. The natural answer is: in their ports. Derived elementary classes
support editing of the constitutive relations in the form given in Sect. 2.5. The
elementary component classes also support creation of locally defined model pa­
rameters; that is, those valid only in the component.

Elementary component classes define various class-specific methods that over­
ride the base class methods. They also have an important role during mathematical
model creation, and in simulations, too.

The last group of components deals with the block diagram operations of Sect.
2.6. Components in this group are shown as the last branch of the hierarchy in Fig.
3.5. They are similar to the elementary components discussed previously, but sup­
port only control ports. These components also use their ports to store the vari­
ables and input-output relations. An exception is the COutput class that serves for
collecting the simulation output and displaying it on the screen.

78 3 Object-oriented Approach to Modelling

CComponent

1------1 CCompSet

Fig. 3.5. The component class hierarchy

Finally, there is a derived class that differs from the classes discussed above.
This is the CCompSet class, a container class for a group of component objects. It
is desribed in Sect. 3.8.

The Document class, as previously described (Sect. 3.2.1), manages creation of
component objects. Because there are no virtual constructors, the technique of the
object factory is employed [4] to construct objects of the correct type. Similarly,

3.4 Port and Bond Classes 79

every derived class overrides the method for creating a copy of a component. Thus
insuring that a copy of the object of the correct type is created.

3.4 Port and Bond Classes

The component model introduced in the last two sections doesn't specify com­
pletely the interconnections between components. It is necessary to work out port
interconnections, too. One approach is based on the notion of multibonds [5,6], a
generalisation of the concept of bonds to the multidimensional case. We accept
that another approach, based on the concept of compound ports, better fits the ob­
ject-oriented philosophy. Thus, bonds are taken as simple objects that define only
which port is connected to which; everything else is the responsibility of the ports.
We define the necessary port classes, but first describe what we ask of them.

Looking at the component object and its accompanying document object (Fig.
3.6), we identify two types of ports: component ports and document ports.

The first type connects external components. Such a port "knows" that it be­
longs to a certain component and that it is, or it is not, connected by a bond. The
port doesn't need to know what is on other side of the bond. This is the responsi­
bility of the bond. The document port, on the other hand, belongs to the document
object and serves for the internal connection of the document's components. This
kind ofport knows what, and how many, bonds are connected to it.

Document object: Component

i/O+.(
\ B

(
...

1

j

) /
c

\ .
<;

.../..-

ment

r-------------------------,
I I
I :

I
I
!

:' ... I

!
\:~

L_ _ ~

Docu
port

Fig. 3.6. A component and the accompanying document port

Component
port

These two types of ports are used to describe connections looking from two
sides of the same component, from outside and from inside. Looking from the out­
side-that is, at the component port side-it would be helpful to know how many
bonds are connected inside. This we call the dimension of the port. On the other

80 3 Object-oriented Approach to Modelling

hand, looking from inside, it would be useful to know if the port is connected on
the outside by a bond or not.

To simplify interchange of information between these two types of ports, we
define the component port class CPort as the base class and the document port
class CDocPort as a derived class (Fig. 3.7).

Fig. 3.7. The port classes hierarchy

Creation of these objects is the responsibility of their containers, CComponent
and CBondSimDoc, respectively. A possible scenario is as described below:

1. When a user issues a command to the component object to insert a port, the
component method responsible for port creation is called. It, in turn, calls the
base class constructor, which supplies the port type requested, and its position
on the component boundary. The port constructor creates a port object and as­
signs to it the component and the port ids, as well as the port type. The object
initially is unconnected, both externally and internally (dimension 0). Depend­
ing on it's type and position on the component boundary, the necessary visual
data are created that are used for drawing. The object subsequently is added to
the list of the ports that the component maintains.

2. The document object is responsible for creation of document ports. These are
created during document object creation, based on the component object ports
(Sect. 3.2.2). The base class of the document port object is just a copy of the
accompanying component port object translated to a position on the outside of
the document drawing area (Fig. 3.6). The position is calculated such that it
corresponds to the position of the accompanying component port in the strip
surrounding the component name. Thus, they share the same information.

3. When a bond is connected to a component port, its id is sent to the port and
stored there. The accompanying document port is updated at the same time.
Similarly, when a bond is internally connected to the document port, the bond
id is inserted in the list of bonds that the document port maintains. The position
in the list corresponds to the position of the connected bond line in the connec­
tion rectangle. The dimension of the port is changed, as well as that of the cor-

3.4 Port and Bond Classes 81

responding component port. Thus, every change at one side of the interface af­
fects the other side.

The ports belonging to elementary components are different because they have
no document port counterparts. These ports serve mainly for storing data about the
component model constitutive relations as "seen" at those ports. The necessary in­
formation is different for the power and control ports. Thus, two port classes,
CPowerPort and CCtrlPort, are defined that are derived from the CPort base class
(Fig. 3.7).

The power port class defines the port effort and flow variables, as well as the
element constitutive relations. Similarly, the control port class defines the control
port variables (signal). The constitutive relations are defined only at the output
ports.

There are two other classes, CICPort and ClntegPort, derived from the
CPowerPort and CCtrlPort classes, respectively (Fig. 3.7). These define differen­
tiated (state) variables that the Inertial, Capacitor, and Integrator components need
(Sects. 2.5 and 2.6).

Port object creation is managed by the corresponding elementary component
objects in a similar way to the creation of ports of the base components, as de­
scribed above. The variables are defined with default names and default constitu­
tive relations. These depend on the type of the elementary component. Subsequent
to creation, the names of the variables and the specific form of the constitutive re­
lations can be changed. Details of the syntax used for description of the constitu­
tive relations are given in the next section.

Port classes, like component classes, define methods for operations on the port
objects, such as construction and deletion of the object, copying, saving, loading,
and drawing.

The final object required to close the bond graph is the bond itself. Bonds are
simple objects that indicate which port is connected to which. A CBond class is
defined with attributes that hold the bond identifying label (id), the starting and the
ending component, and the port ids, as well as data necessary for visual represen­
tation of the bonds. The bond class defines methods necessary for the creation and
destruction of bond objects, copying, saving, loading, and drawing. Bonds, as ob­
jects, are contained in documents. The procedure for the creation of bonds is as
follows (Fig. 3.8):

1. Select a component port or a document port. The starting position of the bond
line is obtained from the port and corresponds to the position on the port
boundary from which the bond will be drawn.

2. The document class is called to create a CBond object. The start-off position of
the bond is set.

3. Select the next point in the document drawing area. Check if the point is within
the other component port:

o Ifit is not, add a point to the bond object and continue with step 3.
o Otherwise, check if it is a port of another component and of the correct

type-i.e. both are either power or control ports-but of different power
or signal flow sense.

82 3 Object-oriented Approach to Modelling

D If the answer is no, reject the point and continue with Step 3.
D Otherwise, continue with next Step 4.

4. Add the point to the bond object. Get the ids of the component and the port and
set the ending component and port attributes of the bond object to these values.
Create the bond object id and set the corresponding attributes of the bond ob­
ject. Set also the bond attributes of the starting and ending ports to this value.
Add the bond object to the list of bonds in the document object.

''''"~''~ .

~ .

CampA ~::::"" ':.)

Start (end) port

Fig. 3.8. The creation of a bond line

End (start) port

3.5 Description of the Element Constitutive Relations

The constitutive relations of elementary components are defined at the component
ports in the form of symbolic expressions. These expressions are of the form

var iable = a19ebraic _ expression

The algebraic expression is formed from variables, numerical constants, parame­
ters, and operators.

Acceptable variables in the symbolic expression are the port variables and time
t, which is a reserved symbol, i.e, it cannot be used for a port variable or parameter
name. Other port variables of corresponding component also can be used. There
are also some restrictions on the implied form of the constitutive relations of spe­
cific components. These are described in Sects. 2.5 and 2.6.

The standard forms of integer and floating-point constants are acceptable, e.g,
12, -1020, 2.7612, -1.36e-5. Integer constants are internally converted to floating­
point constants. Constants can be defined symbolically in the form of parameter
expressions formed from constants and other symbolically defined constants using
the operators that are described later. Symbolically defined constants can be freely
used as parameters in algebraic expressions. These can be defined at the level of
the component or at some lower level, as has been described in Sect. 3.2.2.

3.6 Modelling Vectorand Higher-dimensional Quantities 83

The common arithmetic, relational and logical operators (Table 3.1) are per­
mitted in algebraic and parametric expressions. The exponentiation operator ("/\")
can also be used, as well as function calls. To describe discontinuous relations,
e.g. in Switch elements, the if-else type of control statement can be expressed by
C/C++ like operators "T" and ":". These can be nested. Table 3.1 lists all the sup­
ported operators. The operators follow the common priority rules, as implemented
in C/C++.

Table 3.1. Operators supported in an expressions

Operator
o
!
+-

* /%
+­
<><=>=
&1
?:

Meaning
Function call
Logical not
Unaryplus andminus
Exponentiation
Product, division and mod
Addition and subtraction
Relational operators
Logical ANDand OR
Arithmetic if (conditional)

All common elementary mathematical functions are supported, such as sin, cos,
tan, log (natural base). Functions sometimes are not known in analytical form, but
as tabular data. For example, tables might result from finite element analysis or
experiments. Such data can be interpolated by polynomials and used in the expres­
sions. The BondSim program supports an interface that accepts one- and two­
dimensional tabular functions. Functions are interpolated by B-splines [7] and are
referred to in an expression by a user-assigned name, e.g.jlux(i,x).

3.6 Modelling Vector and Higher-dimensional Quantities

The power ports of elementary components define a pair of effort-flow variables.
Similarly, a control port defines a single control variable. Using components-not
necessarily elementary ones-it is possible to represent more complex variable
structures. We describe these structures for the power ports, but the description
holds for the control ports, too.

Thus, if three elementary components contained in a component are connected
internally to a document port, the accompanying component port can be looked at
as representing a pair of effort-flow vectors (Fig. 3.9a). This relationship can be
seen more clearly if we substitute the component word model with its document,
i.e. transform it from a multi-level to a single-level representation (Fig. 3.9b). The
port of Component A (Fig. 3.9a) holds a list of bonds, each of which points to the
elementary ports where the component effort-flow pairs are defined. Hence, such
a port represents a pair of effort and flow vectors

84 3 Object-oriented Approach to Modelling

I
.J>. Component A Document object: Component A

e

e

e

(a)

e1/f1
e

elf e2/f2
e

63/f3
e

(b)

Fig. 3.9. The representation of a pair of effort/flow vectors. (a) Component representation,
(b) Single level representation

(3.1)

and

(3.2)

This approach can be used for 3D representation of a force applied at a body point
and the corresponding velocity (for 2D representation, see Fig. 2.17).

The dimension assigned to a port indicates the number of ports connected in­
ternally. In the case shown in Fig. 3.9, the port dimension is 3; but it could, of
course, be any number. The connected ports are the ports of contained compo­
nents. These also can be of higher dimension than 1. Quite complex structures of
port effort-flow variables can thus be constructed.

As an example, Fig. 3.lOa shows a component port to which two other ports are
connected internally. These are the ports of another component that contains six
elementary components. Two groups of three components out of these six elemen­
tary components are internally connected to the corresponding document ports.

The port of component A thus can be viewed as representing a pair of two 3D
vectors (Fig. 3.lOb), i.e.

and

e =(:~) (3.3)

3.7 Port Connection Rules 85

(a)

(b)

.... Component A

Document: Component A Document: Component A1

Component Al f.--.-----o. e

1 ~e

~e e e e

1 1 1

Fig. 3.10. The representation of complex effort/flow structures. (a) Component representa­
tion, (b) Single level representation

Here the components of the effort vectors are

e j = (ei1,ei2,ei3)T, (i = 1,2)

and similarly for the flows,

f j = (fi1,fj2 ,fi3) T , (i = 1,2)

(3.4)

(3.5)

(3.6)

In general, the dimension of the connected ports can be different. Hence, a
component port can be looked at more properly as a tree of connected component
ports, with elementary ports as its leaves. A port can be interpreted as representing
a pair of tree-like, higher dimensional effort-flow objects.

3.7 Port Connection Rules

An important question that must be answered is what component port connections
are allowed. We have already discussed this in Sect. 2.3.

86 3 Object-oriented Approach to Modelling

We impose additional restrictions to the permissible connection of elementary
ports. This is motivated by physical reasons already discussed in Sect. 2.5.7. The
ports of elementary components should be connected to junction ports only. For
example, ports of inertial and capacitive components should not be directly inter­
connected, except to an effort or a flow junction.

The rule permits direct interconnection of two junctions of the same type, i.e.
an effort junction to another effort junction, or of a flow junction to another flow
junction. Such junctions can be interpreted as a single junction. The ports used for
the interconnection of such components are treated as internal and are not counted
in junction balance equations (Sect. 2.5.7). The connection of junctions of the
same type is usually not permitted in the classical bond graph modelling approach.
Nevertheless, we find this quite useful in modelling based on the component
model approach. This can be easily seen from the example of Sect. 2.7.2.

We permit ports of word model components to be directly connected. It is nec­
essary, however, to take into account the fact that such ports are, in general, com­
pounded. That is, they correspond to a node of the tree of connected component
ports. We require that the structure of connected ports is the same, which means
that the port connection trees on each side of the bond line are symmetrical (Fig.
3.11a). In this case, it is easy to find out which port is connected to which. Ports
are interconnected if they have the same position in their trees. Thus, in Fig. 3.11a,
the port of component A1 is connected to the port of component B1; likewise, port
"a" of component I is connected to port "b" of component e.

We further require that document ports be not interconnected directly; instead,
we can simply bypass the component!

It is also possible to permit more flexibility in the structure of the ports con­
nected by a bond line. Thus, in Fig. 3.11b, component A1 (Fig. 3.12a) was substi­
tuted with its document object, and the document ports were integrated without
changing the bond connection order. This process does not change the intercon­
nection of the elementary component ports of components A and B. Now, how­
ever, it is much more difficult to find out which elementary ports are connected to
which, as there is no similarity in the structure of the connected component ports.
It thus is necessary to find out the equivalent linear lists of elementary components
ports using ordering of the bond connections in the corresponding document ports
(Sect. 3.4). By comparing indexes of the ports in such lists, it is possible to dis­
cover which port is connected to which.

We do not allow the connection of ports with different structures, as it is more
natural (not to mention also proper) to correlate ports of the same structure and,
hence, the variables of the same type of structure. We also think such connections
are more transparent and therefore easier to understand.

We next describe a procedure to find the port connected to a chosen component
port (Fig. 3.12). This procedure treats only those ports that are branch ports-that
is, ports where more than one bond is internally connected-and leaf ports. Ports
where there is no branching bonds are taken as simple connector ports and are
skipped. To describe this procedure, several variables are defined:

o nLevel current port level
o nDim current port dimension

o

o
o

nlndex
tions
Index
Dim

3.7 Port Connection Rules 87

index of the current bond in the list of document port connec-

array for storing bond line indexes during port tree traversal
array for storing port dimensions during the tree traversal

Starting at level 0, the procedure searches outward, then inward.

Component A Component B

(a)

SF------" >------"- e
Component A1 e Component B1

C
t--~e II------'

R------' >------"- e r-------- e
I ---------.

e ---------. SE e -----'" e

I a be

C ---------. f.---.--. e

Component A Component B

(b)

SF-----"'

C -----"' >------"- e

e Component B1
I ---------. .r------ e
R----

~e
I ---------. t------"" e

e-----'" SE e f--------"" e

I a
e

b
C--" ~e

Fig. 3.11. The proper connection of the component ports. (a) Symmetrical structure,
(b) Unsymmetrical structure

At every step of the outward search we first check if the port has a connection.
If it does not, the search is stopped and a suitable error message is displayed. Oth­
erwise, it continues along the bond line from the chosen port to the document port
to which it is connected. It then moves out of the component and on to the next
document port. The search continues in this way until a port is found that is either
unconnected or is not connected to a document port, but to a port of another com­
ponent. At every step of the search we find the dimension of the document port
and the index of the bond connection. The level is decremented and these values

88 3 Object-oriented Approach to Modelling

are stored in the corresponding index and dimension arrays. These actions are
skipped if the port is a simple connection port (of dimension 1).

The inward search proceeds step-by-step, from the outside into a component, to
find the connected port. At every step the dimension of the current port is found
first. It then is compared with the dimension of the array corresponding to the cur­
rent level. If it is OK, the index of the bond is taken from the index array corre­
sponding to the current level and the level is incremented. This action is skipped if
the port is a simple connector (dimension 1). If the dimensions don't match, the
search and the complete procedure are aborted. To enter the component the ac­
companying document must be opened first. Next, the corresponding document
port is obtained and then, using the index taken from the array, the corresponding
bond is found. Finally, the port at the other side of the bond is found and the proc­
ess is repeated. If the level reached at the end of the search is the same as that at
which the search started, the port that was found indeed is the one for which we
were searching, and the process ends.

Initialization:
Select a port
Set level: nLevel = 0
Get port dimension: nDim
Set index array: Index(nLevel) =0
Set dimension array: Dim(nlevel) =nDim

Fig. 3.12.Theprocedure for finding the portconnected to a givenport

The procedure can be used for checking the component's port connections.
This can be implemented in a way that visually shows component port connec­
tions over various levels of the document. It can also be used during generation of
the system's mathematical model.

3.8TheComponent Set Classes 89

3.8 The Component Set Classes

In addition to the component and document classes of Sect. 3.2, two other classes
are useful for operations on a group of components. During model development,
for example, it can be useful to copy, move, or delete not only single components,
but also a set of components and their interconnecting bonds (Fig. 3.13). The set
can even be unconnected. To support such operations we introduce a helper class
csss« (Fig. 3.14).

eSelSet defines a list of components that makes up the set and a list that con­
tains their internal bonds (i.e., the bonds that interconnect the components in the
set.) There also is a list of external bonds to components not contained in the set.
We use this class to create an object that contains a list of a document's compo­
nents and their bonds. This is done in the following way:

1. Create a rectangle encompassing a group of components
2. Find all the components enclosed in the rectangle and add them to the list.
3. Check the bonds connecting the ports of selected components

If the bond connects the components from the set, add it to the list of internal
bonds; otherwise, add it to the list of external bonds.

Fig. 3.13.A setof the components andthe bonds

We also can add a component to the set and check its bonds. If the component
already is in the set, it is then removed from the set. In this case, any bond of the
component already contained in the list of internal bonds will be removed and
stored in the list of external bonds.

The set of components is free if its list of external bonds is empty. Such a set
can be moved or deleted. Otherwise, it is fixed and can only be copied. Moving
the set means that every object in the set-i.e. the components and their bonds-is
displaced by the same amount.

90 3 Object-oriented Approach to Modelling

Delete and copy operations involve creation of an object of the other type that
contains all information on the components and bonds in the set. CSe/Set objects
are lightweight components that contain only pointers to the components and
bonds in a document. They are not persistent objects, but can be used to create
persistent objects. When an object is destructed, the lists only are destructed, not
the component and bond objects.

Attributes:

List of components
List of internal and
external bonds

Methods:
Create set
Add component
Delete set
Copy set

Fig. 3.14. The helper class CSelSet

We define a class that is used for creation of a persistent object using informa­
tion from CSe/Set. This is the CCompSet class we met when discussing the com­
ponent class hierarchy in Sect. 3.3 (Figs. 3.5 and 3.15).

Attributes:

List of components
List of bonds

Methods:
Constructors and destructor
Copy operations
Create from
Saving and loading

Fig. 3.15. The component group class CCompSet

CCompSet is a kind of CComponent, but it differs from the latter in that it does
not have a separate document to hold its model. It is a container for a set of com­
ponents and their interconnecting bonds. It doesn't have a separate visual repre­
sentation, as other components, because it is not used for model building.

CCompSet has one thing in common with CComponent: It can be saved and
loaded like other component objects. The main use of this class is to create objects
that contain a set of components and their bonds that are deleted or copied from a
document. Such objects can be held in buffers, from which they can be reused
(Sect. 3.9). In performing these operations, there is close co-operation between
CSe/Set and CCompSet.

The components contained in a CCompSet object can be inserted into a docu­
ment using Create from method (Fig. 3.15), which creates a copy of all compo-

3.9 Systematic Top/down Model Development 91

nents, bonds, and associated documents, attaches them to the document where
they should be inserted, and creates a corresponding CSelSet object.

3.9 Systematic Top/down Model Development

The previous Sections described the concept of the component model, the concept
that lies at the core of the systematic top/down modelling philosophy developed
for complex engineering and mechatronics systems. This Section describes an ob­
ject-oriented environment that implements this modelling philosophy.

Physical model development normally begins at the system level (Fig. 1.2), a
step that identifies the system and defines its interaction with its environment. The
model at this level represents a world-view of the problem under study and is rep­
resented by a document object without the ports. That is, this is the system model
root document.

We use the term project to mean the model development. We introduce a sepa­
rate project class CProject (Fig. 3.18) to serve as the starting point of model de­
velopment. Every project has a project object with a unique identification label
(id) and filename that indicates where the project's root document is to be saved.
This class is, in essence, a reduced version of the component class (Fig. 3.5).

Attributes:

Project ID
Document filename

Methods:
Constructors and destructor
Data access functions

Fig. 3.16. The project class CProject

Another class, CBondSimApp, manages the complete operation of the bond
graph based project model development and simulation. It works in close co­
operation with a suitable visual environment (Chapter 4). This is a quite complex
class. The part that deals with the most important operations of model develop­
ment is shown in Fig. 3.17.

The application class contains an index of the projects of interest. These gener­
ally are projects under development or currently being studied. Other projects are
held in a separate storage (Sect. 3.10). Project indexes can be stored as a map (dic­
tionary) to permit rapid access using the project name as the key.

At the start an application object is constructed and initialised. As a part of the
initialisation the index of current projects is loaded. A new project may be started
as follows:

1. Send a message to the application object to create a new object.
2. Enter the title of the new project. (The name should be unique.)

92 3 Object-oriented Approach to Modelling

3. After the name is supplied and checked in the index of projects, a unique pro­
ject identifier (id) is created, along with a file name under which the project's
document will be saved. A new project object is constructed using the id and
the file name as parameters; it then is added to the project index using the new
project's name as the key.

4. A new document object is created.

Attributes:
Index of projects
Collection of IDs created
Root document object
Current document object
List of document opened
Component buffer
Waste bin buffer
Component libraries
Project storage
Export/import storage
etc.

Methods:
Constructors and destructor
Initializing and closing application
Maintenance of IDs collection
Create new project and Open project
Copy, rename and delete project
Component buffer operations
Waste bin buffer operations
Library operations
Project storage operations
Export/import operations
Other operations

Fig. 3.17. CBondSimApp class - modelling support part

The document object that is so created takes as its name the project name. This
is the document from which model development starts; it thus represents the root
of the project's document tree. Further model development proceeds as described
in Sect. 3.2.2.

A project is opened (or reloaded) by selecting its name in the index of projects.
The project object to which the index refers is found and the corresponding docu­
ment is obtained. The project document then is loaded, as in step 4 above.

The application class supports other important operations on projects that paral­
lel those for components. Thus, to rename a project it is enough to change the key
entry. To make a copy of a project, the procedure is:

1. Get the project object that is to be copied from the index of projects. Get the
file name of the original document. Define the name ofthe project copy.

2. Create a new id and filename for the copy. Construct a new project object using
the new id and the new filename as parameters. Add the new object to the index
of projects using the name ofproject copy as the key.

3.9 Systematic Top/down Model Development 93

3. Make a copy of the project's document, as explained in Sect. 3.2.2. The new
document is saved under the new file name created in step 2.

To simplify model development the application object maintains a Component
buffer that serves a function similar to the Windows clipboard. It also supports op­
erations similar to the cut, copy, and paste operations of the Windows environ­
ment. Here, these operations are component based. This means that a component
contained in a document can be selected and copied, as explained in Sect. 3.2.2,
then added to the buffer. Similarly, a component can be cut---disconnected from
the document-and added to the buffer. Components from the buffer likewise can
be copied back and inserted in the same, or some other, document. These actions
can be performed on a selected set of the components, as explained in Sect. 3.8.

Another useful service of the application object is the Waste Bin buffer. This
buffer functions in a similar manner as the Windows Recycle bin. The project can
be deleted from the project index using methods from the application class. In­
stead of removing all of the underlying document files, however, only the project
entry is removed from the index; the corresponding project object is sent to the
waste bin buffer. Similarly, other objects---e.g., a component or group of compo­
nents and bonds-that are deleted from a document are disconnected, can be
added to the buffer.

Projects or components in the Waste Bin buffer can be either restored or re­
moved from the application. When restoring a project, the information object is
moved from the buffer and inserted back into the project index. Similarly, when
restoring a component, it again is moved from the Waste Bin buffer back to the
Component buffer. From there, the component can be inserted into any document.
On the other hand, removing a component or project from the buffer means re­
moving the object and all underlying documents. This can be achieved as dis­
cussed in Sect. 3.2.2.

When closing the application the computer frees computer memory by destroy­
ing all objects and saving these data to files. The index of projects, Component
and Waste bin buffers are saved too. When restarting the application, the buffers
are restored. Hence, the models in the Component - and Waste bin buffers are
available across modelling sessions. It is advisable, of course, to empty these buff­
ers from time to time to conserve memory.

Finally, we return to the mathematical model parameters already mentioned in
several places. These can be defined at the document level or at the component
level. In the former case, they are visible in all contained components of this level
and higher. Parameters defined in a component port, however, are visible only in
that component. In this way, common parameters-such as gravity, and some
other physical and mathematical constant-s-can be defined in a lower-level docu­
ment, or maybe at the project root document level. Parameters that are specific to
a process should be defined in the corresponding elementary component. Such
flexibility comes with some dangers. If, for example, we delete a parameter de­
fined in a certain document, this could create a problem if the parameter also is
used by some higher-level components. The corresponding mathematical relation­
ship then would be incompletely defined, thereby resulting in an undefined pa-

94 3 Object-oriented Approach to Modelling

rameter. It is quite difficult to monitor all such changes. One remedy is to post­
pone final checking until the phase in which the complete mathematical model is
built.

3.10 Component Libraries and Model Reuse

The idea of code reuse is very old and very appealing, but well known not to be an
easy problem to solve. Code reuse significantly improves the efficiency and qual­
ity of development and, hence, of problem solving. There are many approaches
and techniques developed and in wide use today that are based on code reuse, such
as COM and DCOM technology. OOP languages are developed with code reuse
as a goal. The following four fundamental reuse problems can be identified [8,9]:

1. Finding components
2. Understanding components
3. Modifying components
4. Composing components

As used in this sense, a component is any output of the solution process, e.g. code
components, on-line documentation, specifications, etc.

Here we are interested in reuse of component models and projects. The concept
of component oriented modelling, as discussed at the beginning (Sects. 1.2 and
1.6), is introduced not only to enable systematic model development, but aslo to
support reuse of components for building system models. Component reuse can
significantly improves the quality and efficiency of model building as well. Simi­
larly this applies to projects. Here we describe approaches and methods used to
that goal.

Component and project files are held in a library in a separate section of the
workspace. The library is divided into two segments

1. Project repository
2. Component libraries

The project repository serves as a convenient storage place of complete pro­
jects. Any project can be moved into the project repository and removed from the
main workspace section (models section). Such a project can be reused at any
time. To simplify the search for a particular project, the repository can be hierar­
chically organised according to application areas, or by some other criterion. This
is not considered further here, for it is a separate problem. Currently, only the ba­
sic mechanisms of project managment is provided.

Component libraries are divided into three sets:

1. Word model components
2. Electrical components
3. Mechanical components

3.10Component Libraries andModel Reuse 95

The first serves for components represented by a word model and are for gen­
eral use. The electrical library stores electrical components represented by electri­
cal circuit symbols. This library can store models of, for example, electrical resis­
tors, coils, semiconductors, and electrical motors. The third is a library of
mechanical components represented by suitable graphical symbols, e.g. springs,
bodies in translation or rotation, connectors, etc. These libraries can be further
specialised.

It is relatively easy to organise components into libraries. Project and compo­
nent files of interest are put from the model section into a library section of the
workspace simply by copying. The application object maintains an index of pro­
ject and component files put into libraries. In this way, storing important compo­
nents and project models separately from the model workspace is more secure;
there is less chance that they will be accidentally modified or removed.

Projects or components of interest can be found by searching library indexes.
To reuse a particular project it needs simply to be copied back into the model
workspace. After that it can be opened and used as any other project.

Components from the library are inserted into the model workspace. It can be
done as follows:

1. Find component in the library index
2. Open the document and extract a copy of the component object held in its

header
3. Select the position in target document working area where the component is to

be inserted. Change the component visualisation data to reflect this selection.
Create a new component id and document filename, then reset the correspond­
ing attributes in the component object.

4. Add the component to the document component list and save the document.
5. Copy the library document files the to the model workspace

The other three reuse problems stated in the beginning of section are solved by
the component modelling approach. Any component or project in the library can
be opened to analyse its structure, constitutive laws and parameters, and how it
may be used. As with other coding methods, understanding of a project or compo­
nent model depends also on how the model is constructed. If developed logically
and by strictly applying systematic decomposition, the models will be transparent
and more easily understood.

After their insertion into a document they can be modified easily. They can be
further connected to other components and the connection checked as discussed in
Sect. 3.7.

The component model concept presents another possibility for component re­
use: Component use is not confined to the application in which they are created;
different applications can exchange components (Fig. 3.18). To exchange models
they are put in a package. This consists of the index file that specifies projects and
components and the corresponding document files. To simplify its use, projects
and components can be organised in the package in the same way as in the library.
Further, the package can be sent as an e-mail attachment to another user. Projects
and components from the package can be imported into another application. In ef-

96 3 Object-oriented Approach to Modelling

feet, the component or project is copied into an application. This resolves any pos­
sible conflict in ids or filenames. Of course, there is a price to pay: Every applica­
tion must maintain its database. To make it as robust as possible, the information
class implements some recovery methods. These methods can recreate a complete
model database in the event of file corruption.

Component

Fig. 3.18. The exchange of components between applications

The exchange of models is a very useful means of supporting collaboration be­
tween people engaged in solving similar problems. A complex modelling project
can also be divided into separate development tasks. After components are devel­
oped, they can be integrated into an application. We do not wish to imply that this
is a simple task. For components to work properly, they must have ports designed
to comply with the requirements of Sect. 3.7. This is not much different from the
situation that arises when dealing with real components. Every such component
can function properly only in an environment specifically designed for it. The ap­
proach developed here can help in understanding this problem and aiding design
of real engineering components and systems.

References

1. V Damic and J Montgomery (1998) Bond Graph Based Automated Modelling Ap­
proach to Functional Design of Engineering Systems. In: GR Gentle and JB Hull (eds)
Mechanics in Design International Conference, The Nottingham Trent University,
Nottingham, pp 377-386

2. S Williams and C Kindel (1994), The Component Object Model: A Technical Over­
view. In: http://msdn.microsoft.com/library/techart/msdn_comppr.htm

3. Booch, G (1991) Object-Oriented Design with Applications, Benjamin Cummings, Ne
wYork

4. B Stroustrup (1998) C++ Programming Language, 3rd edn. Addison-Wesley, Reading
5. PC Breedveld (1982) Proposition for an unambiguous vector bond graph notation. 1.

Dynamic Systems, Measurement, Control 104:267-270
6. EP Fahrenthold, JDWargo (1991) Vector and Tensor Based Bond Graphs for Physical

Systems Modeling. J. of Franklin Institute 328:833-853
7. Carl de Boor (1998), A Practical Guide to Splines, Springer-Verlag, New York
8. T Biggerstaff and C Richter (1989), Reusability framework, assessment, and direc­

tions. In: TJ Biggerstaff and AJ Perlis (eds) Software Reusability: Concept and Mod­
els, Volume I, Addison-Wesley

References 97

9. RA Walpole and MM Burnett (1997), Supporting Reuse of Evolving Visual Code. In:
Proceedings of 1997 IEEE Symposium on Visual Languages, Capri, Italy, pp 68-75

Chapter 4 Object Oriented Modelling in a Visual
Environment

4.1 Introduction

This Section describes BondSim, a program which offers a visual environment for
the modelling and simulation of engineering and mechatronics systems, particu­
larly those based on bond graphs. The general concept of the program is shown in
Fig. 4.1.

BondSim implements several services that are accessible to a user through a
window system. The two basic services are Modelling and Simulation. The first
supports model development tasks and represents implementation of the ideas and
methods of Chapt. 3. The program also supports model database maintenance, li­
brary support, as well as collaborative support for model exchange using e-mail.

Fig. 4.1. The visual modelling and simulation environment

The simulation subsystem uses models developed by the application to study
system behaviour. This Chapter focuses mostly on the modelling part of the pro­
gram. The Simulation part is the topic ofChapt. 5.

100 4 Object Oriented Modelling in a Visual Environment

The operating system for which the application has been developed is Micro­
soft Windows (Windows Professional, Windows NT, Windows 9x). The program
has been developed using the Microsoft VisuaIC++ integrated development envi­
ronment using the Microsoft Foundation Class (MFC) Library [I]. Use was also
made of the ZLib library for data compression.' We greatly appreciate the permis­
sion of Zlib's authors for the free use of the library. BondSim is included with this
book (see Appendix). Readers are encouraged to use it in conjunction with the
text.

4.2 The Visual Environment

The main application class CBondSimApp was derived from the MFC class
CWinApp and is used to construct a Windows application object, which in tum is
used to implement modelling and simulation (Sect. 3.8). The application object is
declared as global and is constructed at the start of BondSim. During its initialisa­
tion the main application window is created and appears on the screen as shown in
Fig. 4.2.

Fig. 4.2. The BondSim main window

The main application window is based on the CMainFrame class. This class is
derived from the MFC Library's CMDIFrameWnd class, which provides the func­
tionality for a multi-document interface (Sect. 4.5). The class also defines some

1 ZLib is a free data-compression library developed by Jean-Loup Gailly and Mark Adler,
http://www.info-zip.org/pub/infozip/zlib/.

4.2 The Visual Environment 101

specific methods needed by the modelling and simulation environments. These be­
long to two groups. The first controls messages sent to the main window and gives
information on the current status of operations. Such messages are displayed in the
status bar at the bottom of the main window and include, e.g. Ready, Create a new
project, etc. Attributes and methods are also provided for the creation and opera­
tion of a progress control bar located to the right of the status bar. This provides
the developer with feedback on the percentage completion of some lengthy opera­
tions, such as are encountered during simulation runs. The other methods are used
for the distribution of messages sent to the window during various phases of mod­
elling and simulation, such as during the creation of bond graphs, operations on li­
braries, etc.

Methods accessible at the application level are organised in the Project, Li­
brary, and Function menus, in addition to the customary View and Help menus.
There is also a row of toolbar buttons for the most important commands. Some of
the most often used commands can also be accessed by keyboard shortcuts.

The Project menu contains commands for modelling operations implemented
along guidelines given in Sect. 3.8. The first two are New and Open

The New command is used to create a new project (Sec.3.8). When this com­
mand is chosen, a dialogue window appears with an edit box into which the user
inputs the name of the new project (Fig. 4.3).

Fig. 4.3. The New modelling project dialogue window

The dialogue window also contains a list box with the names of projects that al­
ready exist. This information is held in the project index maintained by the appli­
cation. The name of the new project is accepted, provided it is unique. The new
project document is then opened in a suitable window. This is the starting point of
the model development process (Sect. 4.6).

102 4 Object Oriented Modelling in a Visual Environment

The Open command is used in a similar way. This command opens a modelling
project already in the project files. It uses a similar dialogue window as the New
command (Fig. 4.4). The name of the project can be selected from the accompany­
ing list box. It is possible to open a project in the Edit or Read only mode by se­
lecting one or the other from the Mode box. The Edit mode is the normal mode for
opening projects, in which models are created or modified. The Read only mode,
on the other hand, can be used only for reviewing. In this mode, project docu­
ments cannot be changed, thus protecting a model's original form. The document
project is read from the project root document file and displayed in the window.

Fig. 4.4. The Open a new project dialogue

The next group of commands contains project manipulation routines, such as
Delete, Copy, and Rename, each of which uses a similar dialogue. The Delete
command removes the project from the project index and puts it into the Waste
Bin. It is also possible to remove the project completely by bypassing the Waste
Bin. The Copy command creates a copy of an existing project under a new name.
This command invokes the copy operations of all document files that make up the
project, as described in Sect. 3.8. The Rename command changes a project's
name.

Two other useful commands are Move To and Get From. The first moves a
copy ofa project to the projects library; the second inserts a copy of a project from
the projects library. Once copied to the library, the project can be removed from
the project workspace. Any project in the library can be inserted back to the pro­
ject workspace and subsequently opened and edited.

The Repair Projects command helps repair the model database in the case of
corruption. The Waste Bin command provides access to the buffer that stores in­
formation on previously deleted projects or components. These can be completely

4.3 The Component Hierarchy 103

removed from the application database, or recovered and inserted back into the
workspace, or in the library.

The last group of commands in the Project menu uses e-mail to export models
from, and to import models to, other BondSim applications. Their implementation
and use is addressed in Sect. 4.9.

The Library and Function menus contain commands used for operations on the
libraries and functions, respectively, that the application maintains (Sect. 3.9).

Thus, it is possible to Open a project or a component in the library, e.g. for re­
viewing. Similarly, we use the Delete command to remove a project or a compo­
nent from the library completely or to move it to the Waste Bin. There is also a
command to Repair the library database.

Commands in the Function menu support user-defined functions, which can be
used in formulating the constitutive relations of the components (Sec. 3.5). Thus,
it is possible to create a New function, Open an already defined function for edit­
ing, or Preview a function. It also is possible to create a Copy of a function, to Re­
name it, or to Delete it. Currently, only one- and two-dimensional functions de­
fined in tabular form are supported.

The View menu contains the standard Windows commands. The Help menu
contains Help Topics, BondSim on the Web as well as About BondSim. The first
gives access to the underlying modelling and simulation help documentation. The
next offers links to the BonSim related web pages, and the last gives some basic
information on BondSim.

4.3 The Component Hierarchy

The component classes discussed in Sects. 3.2 and 3.3 are derived ultimately from
CObject, MFC's base class. This provides basic support for dynamic creation and
object persistence (serialization), as well as other services [1]. Dynamic creation is
the MFC Library mechanism for the creation of an object of a given type at run­
time. Of great importance is serialization. Objects derived from the CObject class
are responsible for their saving to, and their reloading from, a persistent medium..

The hierarchy tree for the word model classes of Sect. 3.3 is given in Fig. 4.5.
In addition to the functionality already discussed in Sect. 3.2.1, the base class,
CComponent, also defines an internal state attribute and methods.

The component object supports four states that are distinguished visually in the
development environment. These states are:

1. Normal
2. Selected
3. Text
4. Opened

104 4 ObjectOriented Modelling in a VisualEnvironment

--------------------------------- ------------------------~~-~--~~~~~-~-------

1-------1 CCompSet

Fig. 4.5. The Component class hierarchy

The Normal state of a component is the default state. The component appears
on the screen as the text (name) and the ports, without any visual adornment. To

4.4 The Port and Bond Classes Hierarchy 105

perform most of operations-such as copying, deleting, and moving-the compo­
nent first must be selected. The Selected state is indicated by a bounding rectangle
drawn around the component in a specific colour, e.g. in the red. When the object
is deselected, it returns to the Normal state and the bounding rectangle disappears.

The component name can be edited in the Text mode. In this mode only the
component text appears and it is drawn in a specific colour, e.g. in red. The object
is responsible for redrawing any editing change. When redrawn, the component
returns to the Selected mode.

The last state is the Opened mode. This indicates that the component is opened.
When the component is closed, it returns to the Normal state.

4.4 The Port and Bond Classes Hierarchy

Similar to the component classes, the port and bond classes of Sec.3.4 are also de­
rived from the CObject class. These also use CObject's serialization support. The
complete class hierarchy is given in Fig. 4.6.

__~E_~_~i~!~!¥_.

Fig. 4.6. The port and the bond class hierarchy

The port base class, CPort, in addition to the functionality already discussed in
Sect. 3.4, defines an internal state attribute and methods used to change the state
of a port object to enable certain operations, such as deleting, moving, etc. This is
shown by changing the port visual appearance. The port states can be:

1. Normal
2. Selected
3. Transparent
4. Connected-out
5. Connected-in

106 4 Object Oriented Modelling in a Visual Environment

The Normal state means that the port object is not in a specific mode and ap­
pears on the screen in the normal colour (black). To apply an operation to the port,
such as moving it around the component object periphery, deleting it, or connect­
ing it by a bond, the port object first must be Selected. To indicate this selection
the port is drawn in red. When the object is deselected, it returns to the Normal
state.

The Transparent mode is similar to the Selected mode, but only the port outline
is coloured. The port is set to this mode when, for example, if it is moved. The
cursor is constrained to move in the component, around its boundary. When a new
position is chosen, the cursor returns to its normal appearance and the port reap­
pears in the new position with the state changed to the Selected.

The last two states show ports that are interconnected. Thus, if a port is selected
and we wish to find the other port to which it is connected, the operations de­
scribed in Sec. 3.7 are applied. During the outward search all the ports found are
changed to the Connected-out mode; similarly, the ports found during the inward
search are set to the Connect-in mode. In these two modes the ports are shown in
colours different from other modes. These colours are full blue and the blue out­
line, respectively. When deselected, the port returns to the Normal mode.

Similar to the port, the bond object can also be in one of the following modes:

1. Normal
2. Selected
3. Connected

In the Normal mode the bond appears as a line segment drawn in the normal
colour (black). The Selected mode indicates the bond state to which certain opera­
tions can be applied, e.g. deleting the bond, or changing its shape by dragging it
across the document drawing area. The bond object is set to this mode during
creation; that is, when drawing a line between ports. Again, when deselected, it re­
turns to its normal appearance.

The Connected mode is used to show the bond line segments that connect ports
found during the outward and the inward searches, as explained above for the
ports. In this mode, bond segments appear in a colour similar to that of the ports,
e.g. in blue. When deselected, the bond returns to the Normal mode.

4.5 The Document Architecture

MFC supports the creation of document windows based on three associated
classes: CDocument, CView, and CFrameWnd, or the classes derived from them
[I]. The process is coordinated by a class derived from the CDocTemplate. For
example, the CMultiDocTemplate supports multiple document interfaces.

The frame class, used to display documents, has a title bar and a border within
which the view class displays the contents of the document. The view class can
also handle events generated by keyboard input and mouse action. Typically, the
document template object is constructed in the global application object at initiali-

4.5 The Document Architecture 107

zation (Sect. 4.2). When a command to create a new document is issued, the
document template object dynamically creates document and frame objects. The
latter creates a view object that displays an empty document. When opening a
document that exists in a file, the procedure is similar, but this time the document
is read from the file and displayed inside a window frame. Reading, as well as
saving, a document is done by an archive object that supports serialization. Details
of this and ofrelated processes can be found in [1].

The document class described in Sect. 3.2.2 differs from the MFC's CDocu­
ment class in several aspects. The most important of which are:

1. Windows documents, as implemented in the MFC Library, are single-level
documents, i.e. they are created at the application level. On other hand, the vis­
ual modelling system needs only the project root document to be opened at the
application level. All others are opened within the previous document using
word model objects as interfaces. In addition, all documents are linked.

2. To create a new (empty) document, Windows needs nothing. To open an exist­
ing document, it asks only for a filename. It uses the filename to read the file,
but the title is also displayed in the frame title bar. In the modelling system de­
scribed here, even a new document is not completely empty. It contains docu­
ment ports! Thus, to create a document, the system needs data from its word
model component object, preferably in the form of the object pointer or by a
reference, not a copy. The component name can then be used for the title, and
the component ports for the creation of the corresponding document ports
(Sect.3.4). The file name is used for saving the document. A document already
existing in the storage medium can be recreated by loading it from the file.

3. Some operations do not need the complete document-view-frame architecture.
A document object contains a description of the model of a component. Thus,
for operations on models, the document object can be treated simply as a C++
object. This is also the case when objects at both sides of a component inter­
face-i.e., a word model object and its document object-must be updated.
Such operations typically run in the background, hence it is inefficient to use
windows resources and the corresponding processor time.

The approach adopted here is based on using the Windows document-view­
frame architecture, but with changes that support the component model philoso­
phy of Chapt. 3. Thus, common praxis when using the MFC Library is followed,
and separate document, view, and frame classes are derived from their corre­
sponding classes from the MFC Library (Fig. 4.7).

The document class CBondSimDoc, has already been discussed in some detail
(Sect. 3.2.2). It overrides practically all virtual methods of the CDocument, and
adds many other methods, too. The size of the document displayed on the screen is
limited so as to fit to a page (A4) when printed. The page can be displayed verti­
cally or horizontally. This really does not impose any restrictions on the size of
model that can be developed because, using the component model technique, a
large document can always be represented by smaller ones. We hope that such a
restriction on the document size encourages model development to be done com­
ponent-wise.

l08 4 Object Oriented Modelling in a Visual Environment

MFC Library

CDocument CScroliView CMDIChildWnd CMultiDocTemplate

CBondSimDoc CBondSimView CChildFrame CSimTemplate

Fig. 4.7. The document class and the associated classes

The view class CBondSim View is derived from the MFC class that supports
scrolling views. This class supports two modes: Normal and Scale to Fit. The
model can be edited in the Normal mode. Scroll bars appear if the document ex­
tends beyond the size of the frame window. A new document is opened in this
mode. This mode is also used when a project is opened from the file and the Edit
mode is chosen (Sect. 4.4). Otherwise, the Scale to Fit mode is used. This mode
displays no scroll bars and the document is fitted into the frame by scaling it up or
down. No operations that change the model appearance are permitted in the Scale
to Fit mode.

This class manages drawing the document in response to the paint commands
from the Windows system. The corresponding drawing method forces all objects
contained in the document to draw themselves. It also defines methods for han­
dling commands forwarded to the view in response to the mouse or keyboard. The
response depends on the mode chosen. Thus, the class implements an internal state
attribute used to determine which action to execute.

The most important states are:

1. Normal
2. Create component
3. Move component
4. Insertcomponent
5. Insert library component
6. Edit text
7. Create port
8. Drag port
9. Move port
10. Create bond
11. Connect ports
12. Change bond
13. Size document
14. Size port
15. Set selection

4.5 The Document Architecture 109

16. Move selection

Many of these states are not used alone, but in appropriate combinations. We
explain here some of the actions that deal mostly with selecting and moving model
objects. Those concerned with the creation and editing of model objects are ex­
plained in Sect. 4.6.

In the Normal mode the view is not set to any specific editing mode; it is ready
to accept commands. A component can be selected simply by clicking it. 2 The
component reacts by changing its visual appearance. The selected component can
be opened using the command from the menu (Sect. 4.7). The component can also
be opened simply by double-clicking it, or by the keyboard shortcut. Other com­
mands can be executed on the selected component, as well. The component is de­
selected by clicking anywhere outside of the component rectangle and returns to
the Normal mode.

We can drag a component around the document drawing area provided it is not
connected to other objects by bonds. This is accomplished by pressing the left
mouse button when the cursor is within the component name. This changes the ed­
iting state to Move Component. By dragging the mouse with the left button
pressed, we can move a component rectangle around the document. When the
mouse button is released, the component reappears in the new position and the
mode changes to the Normal mode.

A component port can be selected by clicking on the port. In a similar way as
with components, we can move a port around the component periphery, provided
it is not joined by a bond. Simply put the cursor over a port, then press and hold
the left mouse button. This changes the editing state to Move Port, and the cursor
changes to the shape of the port. As we drag the cursor around the component pe­
riphery, the cursor shape changes to reflect the correct port shape. For example, a
power-in port should point every time to the component. When the mouse button
is released, the editing mode returns to Normal and the port reappears in the new
position. Again, the port is deselected by clicking outside its boundary.

Similarly, we select a bond by clicking it, or deselect the bond by clicking out­
side of the bond. We can also move the bond by dragging it. This changes the
bond shape in a manner similar to stretching a thin rubber band, the ends of which
are fixed. If we press the left mouse button when the cursor is close to, or on, the
bond, the editing mode changes to Change Bond. This creates a new intermediate
point that is inserted into the array of bond points (Sect. 3.4). Thus, by dragging
the cursor with the mouse button pressed, the coordinates of the point under the
cursor change, as does this the shape of the bond line. By releasing the mouse but­
ton, the view again returns to the Normal state.

The operations described above are, in effect, single-object selection opera­
tions, i.e. we select or move or apply a menu command to a component, a port, or
a bond. It also is possible to select a set of objects. Thus, if we put the mouse cur­
sor outside of any object, then press and drag it, a rectangle appears. When we re-

2 We will use terms like clicking or pressing mouse to mean using the left mouse button.
Otherwise the button used will be stated.

110 4 Object Oriented Modelling in a Visual Environment

lease the mouse, all components inside this are selected, as well as all of the bonds
between these components (Fig. 3.6). This action creates a temporary CSelSet ob­
ject that contains a list of pointers to the components contained within the rectan­
gle, as well as of the bonds joining them (Sect. 3.8). The view object changes its
state to Set Selection, and all components and bonds in the set change their state to
selected.

We can also add a component to a selection by holding down the Ctrl key and
clicking on the component outside the selection. Similarly, we deselect a selected
component by clicking on it. If the components in the selected set are not con­
nected to other parts of the bond graph, they can be moved jointly within the
document area, as is the case for a single selected component. To do this, we put
the cursor somewhere within the rectangle enclosing all the selected components,
then press the left mouse button. This changes the view state to Move Selection.
By dragging the mouse while the button is pressed, all selected objects move as a
block. Other operations can be applied to a set of selected components (Sect. 4.7).
We can remove a selection simply by clicking outside of the rectangle encompass­
ing all selected components. This returns the states of the objects to Normal, the
temporary CSelSet object is destructed, and the view object state also returns to
Normal.

CChildFrame (Fig. 4.7) is derived from the MFC's CMDIChildWnd class,
which supports multi-document frame windows. Finally, we come to the docu­
ment template class, CmultiDocTemplate, from which we derived a document
template class, CSimTemplate. This class inherits all functionality of its parent
class. It is used for minor adjustments of menu items during normal document­
view-frame creation. For example, it adds the Last command in the Windows con­
trol menu, which opens the previous document. It also defines a method for creat­
ing a document-only object, i.e. a document object without the associated frame
and view objects. This is used when executing certain background tasks, as dis­
cussed at the beginning of this section.

4.6 Editing Bond Graphs

When a new project is created (Sect. 4.2), an empty document is created in a win­
dow with the name of the new project in the title bar (Fig. 4.8). The menu changes
to reflect commands accessible at document level. We discuss these commands in
Sect. 4.7. Here we explain how bond graphs are developed systematically.

4.6.1 The Bond Graph Palette

The bond graph model is created using an Editing Palette (Fig. 4.8). The palette is
invoked by the command Bond Graph Palette on the Tools menu, or by pressing
the corresponding toolbar button. The palette contains controls used to create bond

4.6 Editing Bond Graphs 111

graph diagram objects (Fig. 4.9). It is the top-level window that stays until closed
either by the user or by the modelling system.

Fig. 4.8. The palette for the editing of a bond graph

Port
buttons

Fig. 4.9. The Editing Palette

Controls for
creating

components

Size port
button

Size document
button

The first button is used to fix the palette window. Otherwise, the palette is
closed automatically and disappears from the screen when the first component is
created. The middle of the palette contains control buttons for creating compo­
nents. On the left are four buttons used to create component ports, i.e. power in,

112 4 Object Oriented Modelling in a Visual Environment

power out, control in, and control out ports. The sunken rectangle area on the right
contains controls for the creation of a component in the document working area.

The Component button is used to create a component of the type appearing in
the combo box immediately below it. A word model component or any elementary
and block diagram components of Sects. 2.5 and 2.6 can be chosen. It is also pos­
sible to choose between one of three font sizes for the component name. The com­
ponent text can be edited left-to-right or bottom-to-top.

Three buttons at the bottom are used to create a bond line connecting the ports,
sizing the document ports, and sizing the document working area.

When the document is created, the corresponding view object is created in the
Normal state. The Ready message appears in the status bar and bond graph editing
can start. We normally start by creating the components, and then connect them by
bonds.

4.6.2 Creating Components and Ports

To create a component, its type must be selected first. By default, this is the word
model component, but specific elementary or block diagram components can be
selected, too. Similarly, if the default font size and the text direction are not ap­
propriate, suitable values can be selected. Clicking the component button sends a
message to create the component object to the mainframe window. The message
contains information on the component type, font size, and orientation of the com­
ponent name. The message is distributed to the active view, which changes its
state to the Create Component mode. A message also appears in the status bar ad­
vising the user to choose a position in the document where the component will be
created. Thus, the mouse cursor must be moved in the document area framed by
the rectangle. When the cursor is in this area, it changes to a cross. This indicates
that a position can be picked where the user can start editing the component name.

When this position is chosen by clicking in the document working area, the
view object calls its document method to create a component, supplying it with its
type, position, font size, etc. (Sect. 3.2.1). The component is not created if the
point selected is too close to the document bounding rectangle. It is better to create
it somewhere well inside the document area, for it can easily be moved later. After
the component is created, its state is changed to Text mode, and the state of the
view object is changed to Edit Text. A text cursor (caret) appears and editing the
component name can begin. A message appears in the status bar asking the user to
edit the component name. The view object handles messages from the keyboard.
These are translated into corresponding component object text editing actions,
such as inserting a character, deleting character, opening a new line, joining the
line with the last one, etc. The input is echoed back to the screen and the edited
component name appears on the screen. Text editing is ended when the mouse is
clicked outside of the text area. The view state returns to Normal and the compo­
nent state to Selected. The Ready message appears at the status bar and the next
action can be undertaken.

4.6 Editing Bond Graphs 113

When creating an elementary or block diagram component, predefined names,
such as C, I, R, and Fun, appear. These can be accepted or changed. The edited
component name can also be changed. The component must be selected and suit­
able options in the palette changed, if necessary. We can then choose the Edit Text
command on the Edit menu, or click the corresponding toolbar button. This
changes the state to the text mode, and editing then may continue in the manner
explained above.

After a component is created, we can add ports to complete the component
(Sect. 3.4). This can be done using the port buttons. When the appropriate port
button is clicked, the Edit Palette object creates a message to create the port object
and send it to the mainframe window. This message, containing information on
the port type, is distributed to the active view, which changes its state to Create
Port mode. A message also appears in the main window status bar advising the
user to insert the port inside a component boundary. As soon as the cursor is
moved within the document rectangle, its shape changes to a cross. When the cur­
sor is moved across a component, the component becomes temporarily selected
and it is outlined with a rectangle. To insert the port, a position inside the bound­
ary is chosen and the mouse button clicked (Fig. 3.2). The position selected must
not be too close to existing ports. After the mouse button is released, the document
creates the component port, as explained in Sect. 3.4, and the port appears at the
component boundary in the selected state. Instead of picking and placing the port,
it is possible to drag it with the mouse button pressed. This procedure is similar,
but the cursor changes its shape to the half (power) or full (control) arrow, corre­
sponding to the type ofport chosen.

If the port has the wrong power direction, it can be changed easily to the oppo­
site direction. This is accomplished by first clicking the port to select it, then se­
lecting the Change Port command on the View menu. Alternatively, we can click
on the corresponding button in the tool bar. The port power direction can be
changed if the port is not connected by a bond line. If it is connected, the bonds
first must be removed, as explained in Sect. 4.8), and the procedure applied.

4.6.3 Creating Bond Lines

Once the components are created, it is a simple matter to join their ports by bond
lines. To create a bond, we click on the Connect ports button on the palette (Fig.
4.9), which sends a message to create a bond. The active view changes state to the
Create Bond mode. Simultaneously, the status bar displays a message advising the
developer to select a component port from which the bond line will be drawn. As
soon as a start port is clicked, a line appears that moves as the cursor is moved.
The view state changes to Connect Ports. It is possible to draw a line directly to
another component or document port, and then click; but it sometimes is more
convenient to click to some intermediate points first, e.g. to go around some other
components (Sect. 3.4). When the end port is clicked, editing the bond object is
completed and the view object returns to the Create Bond mode. The view object
stays in this mode until the palette button is reset.

114 4 Object Oriented Modelling in a Visual Environment

4.6.4 Editing Bond Graph Models

We proceed with editing the bond graph model by developing the models of word
model components contained in the current document. To create the model of a
component, we double-click the component (Sect. 4.7). A new empty document is
created, as shown in Fig. 4.10. The document is displayed in a frame window that
has as its title the name of the component and which shows the document ports
that correspond to the ports of the component. The document drawing area is
empty. We edit the bond graph model of the component as explained above.

Fig. 4.10. Opening a newcomponent document

During model development the drawing area can appear to be too small or too
large. We can enlarge the document frame size by dragging one of the window
borders, an operation familiar to Windows users. This does not change the docu­
ment-drawing area framed by the rectangle. To change this, we use the Size docu­
ment button at the bottom of the Editing Palette (Fig. 4.9).

When this button is clicked, the palette sends a message to the active view to
change its state to Size Document mode. An appropriate message appears in the
status bar. When the user moves the cursor over the right side or bottom side of
the document rectangle, the mouse pointer changes its shape to the double arrow
(different than when changing the size of the window). The mouse button now
may be pressed to drag the object. As it is dragged, a rectangle appears that shows
how the document area changes. When the mouse button is released, the view ob­
ject changes to the Normal mode and the document is redrawn to show the
changed working area. It is also possible to drag the right-bottom corner and, in

4.6 Editing Bond Graphs 115

that way, simultaneously change both the width and the depth of the document
area.

There is both a minimum and maximum drawing area between which the
document size can be set. The exact size depends on the orientation of the docu­
ment, i.e. whether it is horizontal or vertical (Sect. 4.7). The maximum size is lim­
ited to the size of the page (A4), and the minimum is such that it can be the host of
a single component. If the document cannot fit into the frame, scrollbars appear on
the right side and/or bottom.

When a document is created, or when it changes its size, the document ports are
created as well. The dimensions of the connecting strip depend on the size of the
document area and the number of ports. If a number of bonds must be connected
to the document ports, the size of the connecting strip can appear to be too small;
in such a case, it is necessary to enlarge its width or height. Similarly, when the
document strip size is too large, it would be nice to reduce it. We can use the Size
port button on the Editing palette (Fig. 4.9) for these purposes.

This procedure is very similar to that involved in changing the document size,
as described above. We first click the size document port button, which sends a
message to the active view to change its state to the Size Port mode. An appropri­
ate message also appears in the status bar. Next, the cursor is positioned over the
side of the document port strip that we would like to drag. When the cursor
changes to the double arrow, we press the mouse button and drag the selected strip
side along the document working area. When a suitable size is achieved, the
mouse button is released and the document port is redrawn to reflect the new size.
The view and port states are then reset to Normal.

Starting at the project root document and working up, the bond graph model
can be systematically edited as explained above. Great care should be taken when
drawing the bonds. The rules discussed in detail in Sect. 3.7 should be followed
closely; otherwise, the model can easily be incorrect. It is relatively easy to con­
nect the ports of elementary components properly when these are contained in the
same document. As a rule, however, systematic model development generally re­
sults in elementary components connected over several levels of documents. It is
then of paramount importance to insure the symmetry of port connections, as
shown in Sect. 3.7. The Show Joined command on the View menu aids in this im­
portant task by invoking the search out and search in procedures (Figs. 3.12).

Thus to find a port that is connected to some particular port, the port is selected,
then the Show Joined command is chosen. The search displays all ports and con­
necting bond lines, starting with the selected port and ending at the other port.
During the search the states of the ports and connecting bonds are set and coloured
as explained in Sect. 4.4.

We illustrate the procedure and its result with the example of the See-saw
model of Sect. 2.7.3. Thus, we open the Body 1 component of Fig. 2.16, then se­
lect the outgoing port of the left junction, i.e., the x-velocity junction (Fig. 2.17
Bodyl). We wish to find another port connected to this one. The results are shown
in Fig. 4.11. Starting from the selected port, we first see the bond line connecting
to the Body 1 document port, then out of it and into the Platform. The line pro­
ceeds further into component f, and finally ends at the x-component flow junction.

116 4 Object Oriented Modelling in a Visual Environment

Thus, the connection is valid, i.e. the force component applied at the Body1 x­
junction really is the x-component of the reaction force of the Platform. The port
connections are apparently symmetrical.

Fig. 4.11. Interconnection of ports found by the Find Joined command

4.6.5 Editing Electrical and Mechanical Schemas

When editing bond graph models of electrical devices, it is convenient to represent
word model components using the familiar electrical circuit symbols (Sect. 3.3).
This is achieved by using the Use icon command on the Tools menu, and then
Electrical. The command opens the Electrical Components palette (Fig. 4.12) that
contains a series of buttons for creating electrical word model components repre­
sented by their circuit symbols.

Creating a component uses the same mechanism as when using the Editing
Palette. Thus, to create a component we click the corresponding button on the pal­
ette. Then, we position the cursor over the document where we wish to create the
component and click the left mouse button. The component created in this way is
a word model expressed in the form of the appropriate electrical circuit symbol. A
difference, however, is that electrical components usually have a fixed number of
ports. Thus, the ports are created as a part of the component object creation. The
ports are just bond graph power or control ports. These cannot be moved around
the component boundary, as is case with common word models; nor they can be

4.6 Editing Bond Graphs 117

deleted. As an illustration, in the document of Fig. 4.12 a Bipolar Junction Tran­
sistor (BJT) word model is created using the palette.

Fig. 4.12. Editing electrical components

A predefined text is also added to the component, but this is restricted in size,
for it is used mainly for component designation. The component otherwise be­
haves just as any other word model component. It can, for example, be opened to
define its model in terms of bond graphs. To interconnect such components, the
Editing Palette again is used.

Only the most common electrical circuits symbols are currently implemented
(Table 4.1). Some of these components---e.g. resistors, capacitors, coils, and di­
odes-ean be placed either horizontally or vertically. It should be noted that the
node is the only variable-number port component. Thus, ports to such components
can be deleted or added using the Editing Palette.

Mechanical components are treated in a similar way. The Mechanical Compo­
nents palette is opened using the Use icons on the Tools menu, and then the Me­
chanical command (FigA.13). Currently some of the more common mechanical
component symbols are supported as given in Table 4.2.

Mechanical components are created in the same manner as described above for
electrical components, using this time the Mechanical Components palette. The
ports are created also during component creation and are fixed. Only node compo­
nent ports can be changed, e.g. by deleting, or adding, a port using Editing Palette.
Also there is a short text denoting the component. Fig. 4.13 shows a damper com­
ponent created by selecting the Damper horizontal button in the palette and plac­
ing it into the document.

118 4 Object Oriented Modelling in a Visual Environment

Table 4.1. List of electrical circuit symbols implemented

Com onent
Device
Voltage source
Current source
Resistor horizontal
Resistor vertical
Capacitor horizontal
Capacitor vertical
Inductor horizontal
Inductor vertical
Coupled inductors
Switch
Ammeter

Com onent
Voltmeter
Ground
Transmission line
Node
X-Y Plotter
Diode horizontal
Diode vertical
npn Bipolar Junction Transistor
n-channel JFET
n-channel MOSFET
Operational Amplifier

Table 4.2 List of mechanical components symbols implemented

Com onents
Spring horizontal
Spring vertical
Damper horizontal
Damper vertical
Body
D friction

Com onents
Node
X-Y Plotter
Ground vertical left
Ground vertical right
Ground horizontal down
Ground horizontal u

Fig. 4.13. Editing simple mechanical components

4.7 Important Operations at Document Level 119

4.7 Important Operations at Document Level

This section reviews some of the most important document-level operations.
These commands are collected under menus that appear when the first docu­
ment-the project root document-is opened. These are: Document, Edit, View,
Tools, Window, Simulation, and Help. Some of these commands can also be in­
voked by pressing the appropriate tool bar button, or using keyboard shortcuts.

We here deal only with commands intended for model development. These are
found in the first four menus: Document, Edit, View, and Tools. They implement
methods already discussed in Chapt. 3. The Windows menu contains standard
Windows commands, such as Cascade and Tile, used for arranging windows on
the screen. There is a list of all opened documents at the bottom. These are used to
activate the corresponding frame windows. This menu also has one specific com­
mand: Refresh. This is used to update (redraw) the active window, e.g. during
editing of the bond graph model. Commands in the Simulation menu deal with
simulation tasks. We postpone discussion of these commands until Chapt. 5. The
Help menu contains commands that link to online program documentation, as al­
ready described at the end of Sect. 4.2.

4.7.1 The Open, Close, and Save Commands

First on the Document menu is the Open Next command. It is used to open the
next document level. We usually speak of opening a component because the
component model document is what is opened. Elementary and block diagram
components are treated differently (Sect. 4.8.). Thus to open a component it is se­
lected first, and then the Open Next command is chosen. We can also open a
document by double clicking a component.

The action executed next depends on whether the component model in question
is new, or if it has already been persisted. In the first case, a dialogue window ap­
pears asking if the user wishes to create a new component functional description.
If the answer is yes, a new document object is created. On the other hand, if the
model document exists, it is loaded from disk using the file name stored in the
component object. After the document is successfully opened, the component state
is set to Opened (Sect. 4.3).

It should be pointed out that a new document frame is not created if the docu­
ment has been opened already. In this case, it is simply activated. Note that there
is no New Window command in the Window menu, as is customary in Windows
applications. Every document is shown in just one document frame.

The opened document contains a link (a pointer) to the previous opened docu­
ment. Hence, it is possible to return to the previous document, and to activate it by
using the Last command on the Document menu. The same command is also
found in the frame window Control menu (the Windows menu in the title bar, to
the left of the title).

An opened document can be closed in the usual way for Windows. There is
also a Close command on the Document menu. Because every opened document

120 4 Object Oriented Modelling in a Visual Environment

contains a link (pointer) to the previous document, it is necessary to close all up­
per-level documents first. Thus, a close command invokes a dialogue asking if the
user would like to close all upper-level documents. If the answer is no, closing is
aborted. Otherwise, all upper-level documents are closed before the current docu­
ment. When closing a document, the state of the corresponding component object
changes to the Normal.

There are two other close commands in the Document menu, The Close Com­
ponent command is used if, in the current window, there is an opened component.
To close it, it is necessary to select the component first, and invoke the Close
Component command. There is also a Close All command in the Document menu.
This command is used to close all currently opened documents and, thus, also the
modelling project.

When closing, an alert box appears to advise the user if the document about to
be closed has not been saved. The document then may be saved or not. If it is not
saved it stays open. It is currently implemented this way because changes in a
document often involve changes in other documents as well, e.g. its component
documents. This way to close the document it must be saved.

There is also a Save command on the Document menu. This saves the current
document. When saving, the corresponding document method is called to save the
document to a file. In the process, all objects contained in the documents, such as
components, ports, bonds, and others, are called to save themselves in a document
archive before the document is saved to the file.

We now return to the modes in which the document frames can be opened. As
already stated in Sect. 4.5, there are two such modes: Normal and Scale to Fit. The
first is set by default if the project root document is opened in the Edit mode (Sect.
4.2). When the document frame is open it can be switched between the Normal
and Scale to Fit modes using the appropriate commands from the View menu. The
check mark next to the command indicates the current mode. The other mode is
used by default when the project root document is opened in the Read Only mode.
The document window opened in this mode cannot be switched back to the Nor­
malmode.

4.7.2 The Copy, Cut, Insert, and Delete Operations

To simplify model editing, several commands are implement for deleting, copy­
ing, cutting, and inserting. Thus, a component port can be deleted and removed
from the model by selecting it first, then using the Delete command from the Edit
menu. The Delete key may also be used for this purpose. The port can be deleted
if it is not externally and/or internally connected (Sect. 3.4). Deleting a port does
not only remove the port in the component, but also in the corresponding docu­
ment. This means that the accompanying document is opened in the background,
the document port removed, and the document saved and again closed before the
component port is removed. In a similar way, it is possible to delete a bond. This
removes it from the document, and the bond data are removed from the ports that
it connects.

4.7 Important Operations at Document Level 121

Dealing with components is a little more involved. The component that is dis­
connected from the other can be deleted. To delete a component it first must be se­
lected, then the Delete command is chosen. A dialogue then appears asking if we
wish to move the component to the Waste Bin. If the Yes button is clicked the
component is removed from the document and moved into the Waste Bin buffer
(Sect. 4.2). This action does not really remove the component object, but its
pointer; that is, the pointer is removed from the list maintained in the document
and is inserted in the Waste Bin component list. The next time the screen is
painted the components disappear from the screen. The Waste Bin buffer can be
accessed from the document level, as well (see Sect. 4.2). On the other hand if we
select the No button in the dialogue the components and its document files are re­
moved as already explained in Sec. 4.2.

Three other commands-Copy, Cut, and Insert-work between the document
and an internal Component Buffer, which the application maintains (Sect. 3.8).
This buffer plays a similar role to that of the Clipboard in Windows. Thus, to cut a
component not interconnected to others, we first select it, then use the Cut com­
mand from the Edit menu. This removes the component from the document-in
the same way as the Delete command-and puts it into the Component Buffer.

We can also copy a component from the document to the Component Buffer.
The component may be connected, because we are not moving it, but its copy. To
copy a component to the buffer we first select it, and then apply the Copy com­
mand. Copying means, as has been already stated; creating a new component ob­
ject that is a replica of the one being copied. The copy has a new id and filename.
Thus, the document of the original component, as well as those of any contained
components, must be copied. The pointer of the newly created component is put
into the Component Buffer.

The components in the Component buffer can be inserted back into a document
with the Component Buffer command in the Tools menu. This command has three
subcommands: Insert, Open, and Delete.

The Insert command inserts a component into the current document. Choosing
Insert opens a dialogue with a list box containing the components in the buffer.
Selecting a component from the list sends a message to the active view, which
changes its state to the Insert Component mode. The status bar displays a message
informing the user to pick a place in the document area for the insertion. In the
same way as when creating a component (Sect. 2.6.2), as soon as the cursor is
moved into the document area it changes to a cross. Clicking with the left mouse
button inserts a copy of the component into the document.

The Open command can be used to review components placed in the buffer.
Selecting a component from a list opens a separate window that displays its
document. A copy of the component object is inserted into this document and
serves as the interface to the underlying documents. Editing is not permitted in this
mode.

The components in the buffer can also be removed when, for example, they are
no longer needed. The Delete subcommand is used to remove a component from
the buffer and place in the Waste Bin. In the same way as the Delete command de­
scribe previously.

122 4 Object Oriented Modelling in a Visual Environment

All the above commands can also be applied to a set of selected components
(Sect. 4.5). The CSelSet object enumerates the selected components. We create a
separate CCompSet object to move a selected set of objects from the document to
a buffer, and back (Sect 3.8).

The components in the set can be deleted or cut from the document if they are
not connected to other components not belonging to the selected set. In this case,
we simply proceed as explained in Sect. 3.8. Hence, we create a component set
object, remove the pointers of the selected objects from the document, and add
them to this object. The object can then be added to a buffer (the Waste Bin or the
Component). When adding the component set to the buffer, we must append a
suitable reference name. It is not necessary that this name be unique. Any name
conflict is resolved easily by adding a version indicator, e.g. Body, Body.l ,
Body.2. (Whether or not the names are the same, they represent different objects.)

We copy a selection in a similar way. In this case, the components in the set
need not be disconnected from the other components. We again create a compo­
nent set object and add to it copies of all selected components and bonds (Sect.
3.8). Copies of its documents and of all contained documents are made, as well.
The new component set object is then added to the buffer, as in the previous case.

Inserting a set of components from the buffer is made in the same way as when
inserting a component Sect. 3.8. Copies of all components and bonds in the set are
created and added to the document. Their positions are changed to correspond to
the position chosen on the screen. Copies of all documents are also made. Next, a
temporary selection set object is created, pointers to objects inserted in the docu­
ment are added to the selection object, and all of the objects in the set are selected.
The selected components can now be moved across the screen, if required.

As with components, a set of components placed in the buffer can be reviewed
by using the Open command. Selecting the component from a list, a document
window is opened that is used to review the component set. Copies of the objects
from the set are made and inserted into this document in a similar way as when in­
serting a component set described above. This time, however, these components
are just pure replicas of the components in the set and no documents are copied.
The components are used only as interfaces to documents of the component set.

The component sets can also be removed from the buffer, just like any other
component, by the Delete command. Removed components are placed in the
Waste Bin buffer, or deleted completely.

4.7.3 Library Operations

Library operations at the document level are implemented following the guidelines
given in Sect. 3.1O. To put a component into the library, it is first selected, then
the Put to Library command from the Tools menu is invoked. This copies the
component document and all associated component documents. A library object
with all of the relevant data-such as the component name and its root document
filename-thus is created and added to the library index.

4.7 Important Operations at Document Level 123

This operation depends On the type of word model object selected. Common
word models are stored in the Word Model Component Library. Components rep­
resented by electrical circuit symbols are moved into the Electrical Component,
section and those with a mechanical symbol into the Mechanical Component Li­
brary.

To insert a component into a document from a library, we chose between the
three aforementioned component libraries-Electrical, Mechanical, and Word
Models-by the appropriate commands in the Tools menu. We then select the In­
sert command. This presents a dialogue box, from which a component can be se­
lected (Figs. 4.14 and 4.15).

Fig. 4.14. The insert word model component library dialogue

Fig. 4.15. The insert electrical component dialogue

124 4 Object Oriented Modelling in a Visual Environment

This operation is similar to that employed when inserting a component from the
buffer (Sect. 4.7.2). This time, the message is sent to the active document view to
change its state to the Insert Library Component. When a place is chosen in the
document, a component object is created based on the data held in the component
library root document, then added to the document. The component root document
is copied, as well as the documents of all contained components.

There is also an Open command that can be used for reviewing components in
the library. This command presents a dialogue that is similar to that used when in­
serting a component (Figs. 4.14 and 4.15), but with an Open Component button
instead of the Insert Component button.

4.7.4 The Page Layout and Print Commands

Document orientation is important for printing, but it also influences the maxi­
mum size (Sect. 4.6.4). The default document is oriented horizontally, but this can
be changed to the vertical by the Page Layout command on the Document menu.
This command invokes the dialogue shown in Fig. 4.16.

Fig. 4.16. The page layout dialogue

The program also implements printing and print previewing of the documents
based on the MFC Library support. The first page of the printout contains the
bond graph diagram displayed in the current document. The next page contains all
parameters defined at the document level, as well as the constitutive relations and
parameters of the elementary and block diagram components. Fig. 4.17 shows a
printout of the model data of the LinRot component of Fig. 2.21. Values of pa­
rameters a and c are not shown, as they are defined in a lower-level document.

There also is a command for printing graphic data (bond graphs) in the En­
hanced Window Metafile format (emf). This command invokes methods very
similar to those used for drawing to the screen, but uses the MFC Library metafile
context for drawing to a file [1]. The emf file can be imported by most word proc­
essors and graphic programs, such as MS Word, CorelDraw, Adobe Illustrator.

4.8 Editing The Component Constitutive Relations 125

2

CQIII!IWJ ; L1.nRpt.

'ar_ters:
X=C
y-aC t :ft'

'ower-inIlllt-JICIrt coastitlItive relatio». ;
H2x=(-X"sia(pUI-""cosllollill*F2x
'ower-01ltJP1lt ...ort co_t1tllt1"., relatloa ;
vc2_(-x*aa(lI1Ii1 -:reos(pUII *OJ1legaL

C_a...t oft'
'ower-inIlllt-JICIrt coastitlItive relat1o». ;
H2y- (x*cos(pll1l-r*sia(pU)) "!'2r
'ower-01ltlOllt..."ort co_titllt1"., relat10a ;
VC2y-(X"C08(Pll.i) -psin(llIliII*_eL

Fig. 4.17. Printout of the component LinRot ofFig.2.21

4.8 Editing The Component Constitutive Relations

4.8.1 Component Port Dialogues

Port variables and the constitutive relations of elementary components are stored
in their port objects (Sect. 3.4) and, ultimately, in the container document. The
same holds for block diagram components, with the difference that the constitutive
relations are stored in their output ports; input ports only store input variables. In
addition, there are parameters that are defined at the document level, or locally in
the component. The constitutive relation can have different forms depending on
the type of component, as discussed in Sects. 2.5 and 2.6. The corresponding ex­
pressions should conform to the rules of Sect. 3.5.

Default variable names and constitutive relations are defined at the component
port creation. These correspond to simple linear relations. The necessary parame­
ters also are defined and stored in the component. Hence, it is necessary to imple­
ment methods that enable changing variable names, parameters, and the constitu­
tive relations. We address the problem of the editing of variables and constitutive
relations first. The matter of parameters is discussed later.

Suitable dialogues (Fig. 4.18) are used to support changing variables and the
constitutive relations of the element ports in a user-friendly way. These are in­
voked by double-clicking the ports of elementary or block diagram components.
In response, the component method is called to open the component port. The
method constructs a dialogue object and transfers data to it, which are then dis­
played on the screen. Variable names and constitutive relations are edited using
fields provided by the dialogue. When editing is finished and the data are accepted
(by clicking the OK button), the data are stored in the component ports and the
dialogue is closed.

126 4 Object Oriented Modelling in a Visual Environment

Component object

Port objects

Create dialogue
(Transfer data)

Dialogue object

Close dialogue
(Store data)

f.-·······--------·'": r··----- -_·······1 f·-··········------l
r : i : . '"- ---1, 1L -l L jrr

Open

Fig. 4.18. Operations when editing the constitutive relations

Edit

To enforce specific types of variables and constitutive relations, a separate dia­
logue is defined for every type of component port. Fig. 4.19 shows a dialogue cor­
responding to an inertial component power port. Similar dialogues are used for the
other types of ports. The top part has fields used for defining the constitutive rela­
tion, which is of the form discussed in Sect. 3.5. Next are fields that define port
variables. On the left are the current port variables, and on the right is a list of
variables of the component's other ports. There is also a button that can be used to
change the values of, or define new, parameters (constants).

Most fields can be changed simply by selection followed by editing using the
keyboard. The fields are instances of MFC's CEdit class, which implement com­
mon text editing operations. Fields that should not to be changed are disabled, e.g.,
the Effort field (Fig. 4.19).

Fig. 4.19. The inertial port dialogue

4.8 Editing The Component Constitutive Relations 127

When editing is finished, the changes are accepted by clicking OK, or rejected
by clicking Cancel. If the OK button is chosen, the data are validated before being
sent back into the component.

Validation is done by parsing and syntactical analysis of the expressions. A
valid variable starts with a letter, its length is not limited, and is case sensitive.
Symbols used in the constitutive relation can be any defined variable, the time
symbol t, or numerical and symbolic constants. The syntax of the constitutive ex­
pression should conform to the rules discussed in Sect. 3.5. If an error is found, a
message box appears with information about the error. In this case, the dialogue is
not closed. The error must be corrected before the data in the dialogue are ac­
cepted, or else the user must dismiss the dialogue by clicking the Cancel button.

Another check is made before the data are transferred back to the component
port: When port variable names are changed, these new names are checked against
the names used in the constitutive relations of the other ports contained in the
component. If a match is found, a dialogue is opened that prompts the user to use a
unique variable name. When all such corrections are made, the new data are ac­
cepted and the data stored back into the component ports

4.8.2 Defining the Parameters

Parameters used in the port constitutive relation can be defined in the component
that contains the port, in its container document, or in a lower-level document. Pa­
rameter definitions are stored in the document or components as lists.

A parameter is defined by its name and an expression (Fig. 4.20). The expres­
sion can contain literal constants, as well as other parameters already defined.

a=0.010
b=aI\2+k
c=b+5.0e-3

Fig. 4.20. An example of a parameters list

To define a parameter in a component, the Parameters button of the port dia­
logue is used (Fig. 4.19). This invokes a dialogue that displays parameters defined
in the component (Fig. 4.21). To define a new parameter, its name is typed in the
edit field and inserted by pressing the Insert button. The parameter definition can
be added at the tail of the list box, or before some parameter already in the list. A
parameter already defined in the list can be changed easily by selecting it in the
list first, then pressing the Edit button. Similarly, the parameter can be defined at
the document level. In this case, the Model Parameters command on the Edit
menu is used. In response to invoking this command, the same dialogue appears;
but this time it displays parameters defined in the document.

128 4 Object Oriented Modelling in a Visual Environment

Fig. 4.21.Theparameters dialogue

When inserting a new parameter definition or when editing an existing one, a
dialogue appears with the parameter name on the left side and a field on the right
in which the parameter can be defined as a value or expression (Fig. 4.22). When
the OK button is pressed, it is parsed to determine if it is syntactically correct.

Fig. 4.22.Editing a parameter expression

The parsing and syntactical analysis is similar to that implemented for the con­
stitutive relations. The parameter expression is accepted if all parameters are al­
ready defined, i.e. lies in the parameter list before the current parameter, or is de­
fined in some lower-level document.

These parameter lists are ordered in the same way as the components and
documents. Thus, the parameter definitions can be looked at as the "list of lists",
or as a tree of the parameters. Each node of the lists corresponds to a list contained
in a component, or in a lower level document (Fig. 4.20). Some of nodes may be
empty.

Lists are searched from the tail of the list towards its head. The search starts at
the component or document list and proceeds in the direction of the root document
list (Fig. 4.20). Thus, a parameter defined at some place in the list is taken into ac­
count, even if the same parameter has been defined previously. This usually is
termed parameter hiding, and is similar to hiding local variables in the C/C++ lan-

4.9 Collaboration Support 129

guage. It is implemented here in this way to circumvent multiple definition of the
same parameter used in components, e.g. gravity, masses etc. The parameters can
be defined in some lower-level document and used freely. In the same vein a pa­
rameter can be defined in some document by a default value. A specific value of
the parameter can defined in the component contained in the document. This is a
useful properties as is shown in the second part of the book.

Root document
node

Previous document
node

•
•
•

....._. .l

Container document _ -----+1f---p~·;~·~·~i~~~·ii~;..·l
oo~ i i

l .l

Component node

.........1

Fig. 4.23.Parameter listbranch

Finally, it is appropriate to add a few words about deletion of a parameter from
a list. This is accomplished by selecting a parameter in the list, then clicking the
Delete button (Fig. 4.21). This removes the node at which the parameter is stored,
and the parameter definition, as well. But this is potentially dangerous, as already
discussed in Sect. 3.9: The parameter can be used somewhere else. Thus, before
accepting such a deletion, a warning message dialogue box is displayed. It is the
developer's responsibility to decide whether or not to delete a parameter. In any
case, final parameter validation is postponed until the building phase, before the
start of simulation.

4.9 Collaboration Support

This section describes the application's support for collaborative work. The sup­
port is designed, as explained in Sect. 3.10, to enable the exchange of models be­
tween different applications. The basic exchange mechanism is the e-mail service
with the model files attached.

A typical model contains a number of files because, as explained earlier, it is
described by a tree of document files. Thus, it is not convenient to send a model's
documents file-by-file, and then re-assemble them. A more convenient approach is
to create a package file that contains the documents for the projects, components,
and user-defined function documents that are to be exchanged. This file is created

130 4 ObjectOriented Modelling in a VisualEnvironment

as a compound file, i.e. a physical file containing a number of document files.
Each individual document file in a package can be accessed as if it were a single
physical file. The compound package files are created as Microsoft compound
files that are implementations of the Active Structured Storage Model and are part
of the Object Linking and Embedding (OLE) technology [1]. These files are sup­
ported by MFC's COleDocument class. To create a compound document file, a
CBondSimPackage class is derived from the ColeDocument class (Fig. 4.24).

CDocument

COle Document

MFC Library

CBondSimPackage

Fig. 4.24. The package class document hierarchy tree

This implementation uses stream objects to store data-like files and storage ob­
jects that, like directories, contain other storage objects and stream objects. Con­
sistent methods exist that support serialization of the storage, stream, and file ob­
jects. Thus, compound files behave like a file system with directories and files
contained inside a physical file. The CBondSimPackage class is designed to sup­
port the creation of a package file with the structure given in Fig. 4.25.

The package file has a header, which gives information about the author of the
model and the date when the package was created. Then, for every one of the main
categories of models, a separate storage object is created, e.g. Projects, Word
model components, Electrical components, Mechanical components, and user­
defined Functions. Storage objects contain an index of the contents, which gives
information on the projects, the components, and the functions contained in the
package. Corresponding document files are stored in the package in the same way
as documents are saved in the files, but using streams. CBondSimPackage sup­
ports the component model architecture developed so far by working closely with
other BondSim classes, notably CBondSimDoc.

An export package is created using the application-level item Export on the
Projects menu (Sect. 4.2). This menu item contains three submenus: Project,
Component, and Function. Component has its own submenus: Word Model, Elec­
trical, and Mechanical, from which the kind of model to be exported can be cho­
sen. Once a submenu is chosen, a dialogue window appears with a list of models
or functions from which an item to be exported can be selected. This is used to de-

4.9 Collaboration Support 131

termine the name of the item (project, component, function) that will be exported,
as well as its root document file from which the exporting will start.

Root storage

f---- Package header:

r--~~;~'~~;-~~~~"~~-i-~~--l
i Company: ACME

l..~~_t~_ ,

f---- Projects storage

~ Content

l-- Documents

- Word Model Components Storage

~ Content

l-- Documents

- Mechanical Components Storage

~ Content

l-- Documents

- Electrical Components Storage

~ Content

l-- Documents

- Functions Storage

~ Content

l-- Documents

Fig. 4.25. The structure of the package file

If no package file has been created, a new package object is created and the
user is asked to supply data on the author name and company. The date is taken
directly from the machine. These data are stored in the newly created package and
saved during package file saving operations. On the other hand, if the package file
already exists, it is simply opened.

Exporting projects, components, or functions is very similar. The major differ­
ence is their storage locations (Fig. 4.25). The index of contents consists of maps
that contain their names and the names of their root document streams, in the same
way as was done with normal documents, but using streams instead of files.

132 4 Object Oriented Modelling in a Visual Environment

Stream names are based on document filenames (in fact they are just the filenames
stripped of the extensions). Thus, to export a project its name and root document
filename are used to create a root document stream name. These are stored in the
index of contents of the projects. Next, the root document file is opened and is
stored using the corresponding stream. Similarly, as in copy operations, the docu­
ment file of every component contained in the document is opened and stored by
its stream. This is continued until all documents are stored. Before the package is
closed, it is saved to disk. In a similar way, it is possible to export other objects,
such as word model components, electrical components, etc.

Before sending the package, it is useful to preview it. This is accomplished us­
ing the Preview Package command on the Project menu. This command displays
a dialogue (Fig. 4.26) in which is contained a list of the storages in the package,
i.e. Project, Word model, etc. By selecting a storage, a list of the corresponding
items is displayed showing the content of the storage. This dialogue can also be
used for removing a project, component, or function from the package.

Fig. 4.26. Thepackage preview dialogue

The package is sent bye-mail as an attachment via the user's mail host, if any,
using the Send by Mail command in the Project menu. This command uses sup­
port already implemented in MFC's CDocument and COleDocument classes [1].
The package file is not sent immediately, but is first zipped using the ZLib (see
SectA.l and footnote 1). After zipping, the base class method that attaches the
package file to the message is called. Then, an empty New message dialogue (Fig.
4.27) is displayed. Thus, as with any new message, the recipient's address must be
typed, along with the subject and text of the message, if any. The message can
then be sent.

References 133

Fig. 4.27. The new message window with the package file attached

The operations on the recipient side are similar. When the recipient receives the
message, she can save the attachment to any suitable directory. Next, from within
BondSim, the Get Mail command on the Project menu is selected. This command
uses the standard windows browser to get the zipped package file. The file is then
unzipped into a directory from which importing is done.

To import models from the package, the Import command from the Project
menu is used. This command displays a dialogue similar to the one associated
with the Preview Package command described above. This time, the dialogue is
used for the import. The type of model (storage) in the file is selected first, then
the name of the model. Clicking the Insert button begins the importing.

Importing from the package is very similar to inserting from libraries (Sect.
4.7.3). The basic difference is that reading is not from document files, but from
document streams. These operations are supported by the package class of Fig.
4.24. This is, in effect, a systematic copy operation. During the copy operation the
project, component, and function unique identifiers (ids) are created, as well as the
corresponding file names that identify where the document will be saved. The
models are moved to the project, component, and function libraries, from which
they can be reused. This way the possible conflict between imported models and
the application database is resolved.

References

1. Microsoft Corporation (1998), Microsoft Visual C++ 6.0 Reference Library, Microsoft
Press, Redmond

Chapter 5 Generation of the Model Equations and
Their Solution

5.1 Introduction

In the previous two chapters the systematic component-based approach was de­
veloped that enables development of mechatronic system models in a formal way.
An important part of this is the description of the element constitutive relation
symbolically using a relatively simple language. Thus, not only non-linear relation
ships, but also piecewise expressions can be used. This is important in modelling
discontinuous mechanical processes and in electronics. This makes simulation of
complex systems not only feasible, but also a challenging task. This chapter de­
scribes the generation of the system mathematical models and their solution.

We start by describing methods used to generate the mathematical models im­
plied by a component's structure. The equations are machine generated in the form
of differential-algebraic equations (DAEs). We have already discussed some of
the features of these equations. We continue here with the problem of their nu­
merical solution. We chose the well-known backward differentiation formula
(BDF) as the solution method. This is suitable for index-l problems, but can also
be extended to index-2 problems. For higher index problems the solution is much
more demanding; we have left this for further study. The problems of starting val­
ues and discontinuities are also discussed.

The methods we use depend to a great extent on computational algebra support.
This adds flexibility to the modelling. It also is used in the numerical solver e.g.
for evaluation of functions, generation of matrixes of partial derivatives, and their
subsequent solution. It also enables generation of feedback to the modeller supply­
ing information on the generated models. These capabilities can be extended.

This chapter closes the first part of the book, which deals with the fundamentals
of a component-based bond graph approach to modelling mechatronic systems.
This is implemented in the BondSim program provided with this book (see Ap­
pendix).

5.2 General Forms of the Model Equations

In Sects. 2.5 and 2.6 we gave a fairly general description of the constitutive rela­
tion of components used as the building blocks for developing models of systems.

136 5 Generation of the Model Equations and Their Solution

Using the techniques of Chapts. 3 and 4, such models are generated and stored as
a tree of component models. These models consist of relations defined in elemen­
tary components that are the leaves of the model tree and which are constrained by
relations describing the interconnections of components that are the branches of
the tree. The models are made more general and, unfortunately, more difficult to
solve by allowing the mixing of bond graph based models with operations on sig­
nals. Here we discus the general procedure for the generation of the mathematical
model and some of its characteristics.

5.2.1 System Variables

The first step in generating the mathematical model is defining a unique set of
system variables. As explained in Sect. 3.4, at every port of the elementary com­
ponents two variables are defined: effort and flow. The connection of ports by a
bond means that the respective efforts and flows of connected ports are the same.
In addition, there is an internal state variable (Sect. 2.5 and 2.6), i.e. the momenta
at inertial element ports, displacements at the capacitive ports, and the outputs of
integrator ports. Hence, we need to develop a technique for defining a unique set
of system-wide model variables and their correspondence to port variables. We do
this by means of a symbol table.

The symbol table consists ofa pair of port and system variables. To create it we
first need to define global names for the port variables. We create these relatively
simply. Remember that to every component a unique label is assigned, and every
port has a label that is unique to a particular component. Thus, the global effort
variable of the component of the label complabel belonging to the port of the label
portlabel is described by the unique string e_complabel_portlabel. This also
holds for flows and internal state variables, i.e. Ccomplabel_portlabe and
s_complabel_portlabe. System variables can be designed as y(1), y(2), etc. It is
enough to store the indexes, i.e. 1, 2, etc. The symbol table is simply a map (dic­
tionary) of port and system variable pairs (Fig. 5.1). We used the map structure
because of the short search times, which is very important during mathematical
model creation.

e 00100-0
e 00100-1
f 00012-5
s-00051-0

102
102
103
104

Fig. 5.1. The pairs of variables in the symbol table

The procedure for the creation of the symbol table consists of traversing the
components, starting from the lowest level and going up. During this procedure a
port variable is put into the table along with its corresponding system variable in-

5.2 GeneralForms of the Model Equations 137

dex. We start with the effort and flow junctions, and then continue with other ele­
mentary components.

The effort junctions are characterised by the fact that all of their port flows are
the same variable, which is the common junction variable (Sect. 2.5.7). A similar
situation holds for the flow junction, with the common junction variable being the
effort. The procedure is as follows:

1. Increment the index of the system variables by one. Insert in the symbol table
the junction flow (effort) variable symbol as the key, and the current index of
the system variable as the value.

2. For every junction power port, find the port of the elementary component to
which it is connected. If the component is of the same type, i.e. if the effort
junction port is connected to another effort junction, or if the flow junction port
is connected to another flow junction, treat the port as internal and the junction
as the same junction, and proceed further. If, on the other hand, it is a port of
the other component type, generate a unique port flow (effort) symbol and in­
sert it into the symbol table using the current index as the variable index.

3. If the port is a control-out port, the procedure is slightly different. If the symbol
of the connected port variable is already in the symbol table, break the search
and continue with the next effort (flow) junction port. If it is not, add it to the
table. The search is stopped if the connected port is an input port of an Integra­
tor, a Differentiator, or an Output component. Otherwise, if it is a Function or a
Summator component input port, continue the search with its output port. We
create a symbol corresponding to the output port variable and insert it into the
symbol table, together with the new value of the system variable index, if it is
not already created. In this case, the search is stopped. Then, find the other port
connected to it and continue the search. In the case where it is a Node input
port, find the port connected to each of its output ports and continue the search
as described at beginning of this step (3), because all node ports share the same
variable.

4. Continue with the search and assignment of variables until all power or control
ports of the junction and of other junctions of the same type that are connected
to it are traversed.

5. Continue with the next junction until all junctions are visited.

The procedure outlined above ensures spreading the junction variables to all
ports connected directly to it, or across other junction components of the same
type (Fig. 5.2). It also creates variables of input-output components connected to
it. It is important to do this during effort or flow junction variable assignment, for
it is one of the required connection points between bond graphs and control signal
paths. We stress that this procedure ensures that all directly connected junctions of
the same type behave as single junction.

After finishing with the effort and flow junctions, we proceed to the other com­
ponents. The procedure is similar to the one described above, but is slightly sim­
pler. For every unprocessed elementary component port variable-i.e. the effort,
flow, or control-we increment the system variable index by one and insert a
symbol-index pair into the symbol table. We then find the port to which it is con-

138 5 Generation ofthe ModelEquations and TheirSolution

nected and add its symbol variable of the same type and the current value of the
system variable index to the symbol table. In the case in which the port is an out­
put control port, we proceed as explained above (item 3). The elementary compo­
nent control input ports, e.g. resistive component inputs or transformer input ports,
are dealt with when assigning input-output (block-diagram) component port vari­
ables. Internal variables of inertial and capacitive components are also added to
the symbol table.

I

J1...... f:r::;__'::"'""'::"t> -+

.r~(/ ~ \\

+t'..-- ~~~~
j '<,
+R Single junction

Fig. 5.2. The assignment of thejunctionvariable

During the generation of the system variables and filling of the system table,
the correctness of the component model is checked. First, if some ports are not
connected the procedure is stopped and the reason is conveyed to the user by a
suitable message. Similarly, if the connection on each side of a component does
not fit---e.g. because of incorrect dimensions of the bonds (Sect. 3.7)--the proce­
dure is stopped and a message is posted. Finally, the elementary components are
checked to ensure that they have valid connections (Table 5.1). Elementary com­
ponents that are not junction components-i.e. effort or flow junctions, Trans­
formers, or Gyrators- can only be connected to junction components. Junction
components, on the other hand, can be connected to any component. We rule out
direct interconnections of Transformers and Gyrators, as these combinations are
not necessary, e.g. TF-TF is just TF, as is GY-GY, etc. Regarding input-output
components, there is no restriction other than an output port should be connected
to the input port of another component.

Table 5.1. Permitedinterconnection of elementary components

Components

I, C, R, SE, SF, Sw

e, f

TF, GY

Permitted connection to

e, f, TF. GY
All
all but TF and GY

5.2 General Forms ofthe Model Equations 139

5.2.2 Generation of the Equations

Once the system variables are defined and their correspondence to port vari­
ables established, the next step is to generate equations that describe the constitu­
tive relations of the elements. There are no built-in relations; every relation is ei­
ther the default created when the component port is created, or edited later by the
user. Such relations are described in a manner similar to that of the usual mathe­
matical expressions, as explained in Sect. 3.5. Relations are not translated to a
subroutine or function, but are, instead, translated to another string that enables
their efficient evaluation at simulation time. This form is called byte form. Thus,
the constitutive relations are retained in a symbolic form that can easily be trans­
lated back to the more familiar mathematical expression, if required (Sect. 5.4).
Without going into too much detail, we now explain how the mathematical model
equations are created.

To deal with model equations in symbolic form, a supporting computational al­
gebra program has been developed. During model building the strings, which are
held in the elementary component ports, are analysed, translated to byte form, and
stored in an array that is accessible for further processing.

The method used is an extension of the approach of [1]. The byte string form is
based on the affix operator form

Operator operand1 operand2 (5.1)

Thus, parameter constants in the expressions are represented by bytes consisting
of the operator symbol C and the real value of the parameter as the operand

Creal value (5.2)

Similarly, a system variable y(i) is represented by the operator symbol V and the
integer value of its index

Vint_ value (5.3)

The index values of variables run from 1 to N, where N is the number of variables
in the model. The index value of zero (0) is retained for the time variable. The
time derivative of a variable of an index int_value is coded as

Dint_ value (5.4)

Various operators are used to describe operations between variables and pa­
rameters in constitutive expressions. These include unary, binary, ternary, and
some special operators. Unary operators are designated by U, plus a symbol that
describes the operation in question. Thus, U+ and U- describe the usual unary plus
and minus operations, e.g. -F where F is the force (effort) variable is described as

U - Vindex value (5.5)

where index_value is the value of the system variable index that corresponds to
effort F.

140 5 Generation of the Model Equations and Their Solution

Elementary mathematical functions are also treated as unary operations with
the second byte used to designate the function, and the operand corresponding to
the function argument. We also introduce single- and two-variable operators that
currently are used only for coding functions defined by tables (see Sect. 7.5 for an
example).

Binary operators B are used to describe addition (+) and subtraction (-), multi­
plication (*), division (f) and the mod operation (%), as well as for relational op­
erators >, <, >=, <=, and logical operators AND and OR.

The ternary operator?: is coded as

T? conditional_ part Expression1 Expression2 (5.6)

The operator?: is borrowed from the C language and is used for if then else con­
structions. The constitutive relationship describing some physical process often
cannot be described by a single expression valid throughout the range of the vari­
ables, but, instead, by two or more expressions valid in different parts of the range.
This is the case, for example, with dry friction in mechanics, and in semiconductor
models in electronics. To describe such relationships we use ternary ?: operators.
The conditional part is described using relational or logical operators, and the ex­
pressional parts are constructed in the usual way. The expression is coded as given
in Eq. (5.6). Thus, for example, the relation

e > O? e : e + 1 (5.7)

reads as e ife > aand as e+1 otherwise. This will be coded as

T? B > V1COV1B + V1C1 (5.8)

where 1 is used as the index of the variable e. When evaluating such an expres­
sion, the first two bytes signify that it is a ternary ?: operator. The string following
this is the conditional expression. Reading and evaluating this expression, we find
if it is true or false. If true, we read and evaluate the expression that follows, i.e.
the if then part. If the conditional expression evaluates to false, we also read the
next expression, but do not evaluate it, and then read and evaluate the expression
that follows, i.e. the else part.

The element constitutive relations are described as

var = exp ression (5.9)

Here var stands for the port variable and the expression is the constitutive relation
of the element. Most processes are described by a single relationship of this form
(Sects. 2.6 and 2.7). This is the case for processes at Resistor or Transformer
ports. Such relations are treated as expressions of the form

exp ression - var = 0

and coded as

B - exp ression V var_ index

with the understanding that the last expression is equal to zero.

(5.10)

(5.11)

5.2 General Forms of the Model Equations 141

In the case of Capacitive and Inertial components, there also is a derivative part
of the form

dx
Cit=y (5.12)

where x is the internal state variable displacement or momentum of the process
and y is a port effort or flow. The Integrator input-output component is described
in a similar form. Such equations are also treated as

and coded by

dx
--y=O
dt

(5.13)

(5.14)

Further, it is understood that this expression should evaluate to zero.
Now that we have explained how the constitutive equations are coded, we can

describe the procedure for generating the mathematical model of the system based
on the information held in the component ports. For components that are not effort
junctions, flow junctions, nodes of signals, or summators, we systematically visit
every component in the model tree and, for every one of its power ports and con­
trol-out ports, generate equations that correspond to the constitutive equations.
This includes defining expressions of the form in Eq. (5.12). Every such expres­
sion is parsed and translated to byte form, as explained previously. Because the
original expressions are given in terms of symbols corresponding to the port vari­
ables, every occurrence of such variables is substituted with a system variable us­
ing the symbol table of variables (Sect. 5.2.1). Parameters defined by symbols are
evaluated and coded as constants. Parameter evaluation means that the complete
hierarchy of parameters is searched, starting with parameters in the particular
component, until the complete parameter expression is evaluated (Sect.4.8.2). If
the complete parameter definition is not found, the translation process is stopped
and a message explaining the cause is displayed. If a syntactical error is found
during translation, the process is stopped. This normally should not happen be­
cause, when constitutive expressions are edited, the syntactical analysis has al­
ready been executed and the expressions are accepted and stored only if the
checks have been passed.

Constitutive relations corresponding to effort or flow junctions are generated,
as explained in Sec. 2.5.7, based on the sense of power of the ports. These are
translated to the byte forms of Eq. (5.11). This also holds for summators, where
the sign of the input ports define the output relationships. The signal nodes need
no constitutive relation at all, as their roles are taken care of during the generation
of model variables (Sect. 5.2.1).

During generation of the model equations, every byte form expression corre­
sponding to the left side (the right side is zero) is stored in an array. This array is
used to evaluate expressions during simulation. Evaluation is done using a routine
for reading and evaluating byte form expressions. Hence, model equations are not
compiled and linked to the rest of the executable code, but instead are processed

(5.15)

142 5 Generation of the Model Equations and Their Solution

by interpreter routines. The byte form of the expression enables reading and
evaluating expressions in a single pass, without looping. We return to this point in
Sect. 5.7.

We now summarize the forms of the model equations generated for the simula­
tion of system behaviour. The model consists of three groups of equations. We in­
troduce notation that permits their description in a compact way. All variables ap­
pearing in a time-derived form, as in Eq. (5.12), are called differentiated variables
described by a vector x of dimension nd. These variables represent displacements
of Capacitive elements, momenta of Inertial elements, outputs of Integrators, and
inputs of Differentiators. All other variables are algebraic variables and are de­
noted by a vector y ofdimension n.

The first group of model equations has the form of a differential equation, as in
Eq. (5.12), and can be compactly described in vector form as

dx
-=B1ydt

Here B1 is ndxn dimensional incidence matrix having in each row a 1 in the col­
umn of the corresponding algebraic variable, and a 0 elsewhere.

The next group comes from equations describing the element constitutive rela­
tions ofEq. (5.10). These can be put in the form

f'(x, y, t) = 0 (5.16)

where f is vector function of the corresponding dimension.
The final group of equations describes the balancing of efforts and flows at ef­

fort and flow junctions, respectively. To this group we also add summator equa­
tions. This group constitutes a system of linear equations with coefficients +1 or­
1. It can be described in vector form as

(5.17)

Matrix 8 2 is a rectangular matrix of corresponding dimension and is of full row
rank.

Eqs. (5.15) - (5.17) constitute a system of differential-algebraic equations. Be­
cause of Eq. (5.15), such a form is usually called extended. Thus, direct applica­
tion of the element constitutive relation, as described in Sect. 2.5 and 2.6, leads to
a mathematical model of the system in the form a system of differential-algebraic
equations in extended form. In the next subsection we discuss the numerical solu­
tion ofthe model.

5.2.3 The Characteristics of the Model

Systems composed of both differential and algebraic equations generally differ
significantly from ordinary differential equations and are much harder to solve [2].
DAEs may be characterised by indices that measure the difficulties encountered
when solving them. Several types of indexes are defined. We do not give here
their precise definition; this is found in [3-6].

5.2 General Forms of the Model Equations 143

The differentiation index is defined as the number of times the DAEs should be
differentiated with respect to time in order to reduce them to a system of ordinary
differential equations [3, 4]. We illustrate this on an example of semi-explicit
equations

x = f(X,y~t)}
g(x,y,t)-O

Differentiating the second equation with respect to time yields

x=f(x,y,t) }
8g.8g. 8g
-x+-y=--ax ay at

(5.18)

(5.19)

Thus, if the partial derivative matrix 8g/ay is not singular, this is a system of ordi­
nary differential equations and, hence, the DAEs ofEq. (5.18) have a differential
index of 1.

If, on the other hand, the partial derivative matrix is singular, we proceed as de­
scribed in [4]. Supposing that 8g/ay is of constant rank, we can transform Eq.
(5.18) at least locally to the form

x = f1(x, y, t) } (5.20)
g1(X,t) = 0

This can be achieved by expressing the y-variables that appear in some of the al­
gebraic equations ofEq. (5.18) as functions of the x- and other y-variables, elimi­
nating them from the system. As a result, the new algebraic equation is independ­
ent of the y-variables.

As an illustration, we return to the see-saw problem of Sec. 2.7 and show that
Eq. (2.69) - (2.72) and (2.95) - (2. 99), which describe the system, can easily be
converted to the form of Eq. (5.20). Thus, forces Fm1x and Fm1y can be evaluated
from the last two equations in Eq. (2.69) of Body 1 motion and substituted into the
first two. We can also eliminate the gravity force G1y• In a similar way, we can
eliminate the corresponding variables in Eq. (2.70) of Body 2 motion. In the same
way we can eliminate components Fc.. Fcy and Gy from Eq. (2.98) of the platform
mass center motion, and the moment Mc in Eq. (2.99) of the platform rotation.
Next, we can eliminate moments in Eq. (2.99) by use of the relations in Eq. (2.95)
- (2.97), (2.71) and (2.72). The angular velocity in Eq. (2.72) is eliminated using
Eqs. (2.71) and (2.99). In this way, we get the first part of the system equations,
which involves derivatives of variables with respect to time, as shown in Eq.
(5.21). We can now eliminate the velocity components from the system. Thus, the
velocity components in Eq. (2.69) can be eliminated using Eqs. (2.95), (2.97),
(2.71), (2.72) and (2.99). We handle the velocity components in Eq. (2.70) and
(2.98) in a similar way. Finally, we obtain the system of algebraic equations in Eq.
(5.22), which contains only differentiated variables: momenta and the rotation an­
gle.

144 5 Generation of the Model Equations and Their Solution

Pm1x = -F1x
Pm1y = -F1y - m19
Pm2x = -F2x
Pm2y = -F2x - m29
p, =F1x +F2x -FFx
Py = F1y +F2y -FFy -m9

Ke = (asin<j>+ eeos<j»F1x + (-aeos<j> + esin<j»F1y +
(-a sin<j> + eeos<j>f2x + (acos o+ esin<j»F2y +
(beos<j»Fpx + (bsin<j»Fpy

~=Ke/le

Pm1x =(m1/Ie)(asin<j>+(b+e)eos<j»Ke
Pm1y = (m1/1e)(-aeos<j> + (b + e)sin<j»Ke
Pm2x = (m2Il e)(-asin <j> + (b + e)eos<j>)Ke
Pm2y = (m2 lie)(aeos<j> + (b + e)sin<j»Ke
Px = (mIle)(beos<j»Ke
p , = (m/le)(beos<j»Ke

(5.21)

(5.22)

(5.23)

(5.24)

In this way, the equations of the see-saw motion can be reduced to eight equa­
tions in differential form and six algebraic equations. These contain eight differen­
tiated and six algebraic variables. The differentiated variables are constrained by
the algebraic equations, hence only two of them are independent. This is to be ex­
pected, for the see-saw is a single-degree-of-freedom system and, as such, its dy­
namics can be described by only two variables, the angle of rotation and its angu­
lar momentum (or angular velocity).

We now return to Eq. (5.20) and differentiate the last equation with respect to t

891 X= _ 891
ax at

Substituting from the first Eq. (5.20), we obtain the expression

891 f (x Y t) = _ 891
ax 1

" at
This last equation constitutes a hidden constraint that the solution of the system
must satisfy, Thus, if the matrix

891 811

axay
is invertible, then the first Eq. (5.20) and Eq. (5.23) constitute an index 1 problem.
Differentiating with respect to time, Eq. (5.23) gives a differential equation with
respect to variable y. Hence, the system of Eq. (5.20) is of differential index 2. Al-

5.2 General Forms of the Model Equations 145

gebraic variables that need two differentiations in order to express them as differ­
ential equations often are called index-2 variables.

Returning to Eq. (5.21) and (5.22), we see that they constitute a system of
DAEs of index-2. The hidden constraints can be found by differentiating the mo­
mentum relations of Eq. (5.22) and by substituting from Eq. (5.21). We do not
give them here because of their length. It should be noted that reaction forces be­
tween bodies and the platform, as well as between the frame and the pivot (Fig.
2.15), are index-2 variables. These variables correspond to the Lagrangian multi­
pliers of constrained body mechanics. In the original formulation of the see-saw
problem all the variables are not of index-2 type. Thus, for example, the velocity
components V1x and V2x ofEq. (2.69) are of index-l because we only need one dif­
ferentiation to get the corresponding differential equations, e.g.

v1x = Pm1x Im 1 = F m1x Im1

Eqs. (5.15)- (5.17) are semi-explicit differential-algebraic equations. To sim­
plify the notation we define a variable

z =(;)
The equations can now be represented as

g(z,Z, t) = 0

We define the leading coefficient matrix by

A= 8g
8z

(5.25)

(5.26)

(5.27)

In our case this matrix is extremely simple, i.e.

A=(~ ~) (5.28)

where I is the identity matrix of dimension equal to the number of differentiated
variables.

Another type of index introduced for the detailed study of DAEs is the tracta­
bility index [5, 6]. It is not based on differentiation, but uses the underlying vector
space. The vector space of a column vectors is denoted as Rm

, where m is the
(constant) dimension. Important roles in the tractability approach to DAEs are
played by two subspaces. The image of a matrix A,denoted as im(A), is a space
consisting of vectors Z such that Z =Au for some u E Rm

• The null-space of A is
denoted as ker(A) and is a space of vectors u such that Au =O. Using projectors
onto the ker(A) it has been shown that DAEs of tractability index 1 can be trans­
formed to ordinary differential equations in state-space form. Such systems are
called transferable (to state-space form). The others-those of higher index-are
not transferable. Unfortunately, many DAEs of engineering interest are not trans­
ferable of index 2 2. Characterization of an important class of index-2 systems has
been developed. Particular attention has been paid to DAEs arising in the model­
ling of electrical systems [7,8].

146 5 Generation of the Model Equations and Their Solution

Another important DAEs index, the perturbation index [3], is based on the be­
haviour of the solution under the influence of perturbations. This index can be
used to explain why higher index DAEs are very sensitive to perturbations caused
by, for example, numerical inaccuracies, discontinuities, and even changes in step
size.

After this short introduction to some of the important concepts of DAEs, we
now return to our problem, the numerical solution of the system represented in Eq.
(5.15) - (5.17). A basic characteristic of such a system is that the equations are in
semi-explicit form. They could be converted to a fully implicit form by eliminat­
ing variables on the right hand side ofEq. (5.15). The index of the resulting sys­
tem will be one degree lower.

An important characteristic of the original equations is that the leading coeffi­
cient matrix of Eq. (5.26) has an extremely simple form. Thus, its null-space is
constant. On the other hand, the reduced system can, in general, contain non-linear
functions of the derivatives of variables with respect to time. As a result, the lead­
ing coefficient matrix depends generally on the system variables. The correspond­
ing null-space is not constant, but changes during the solution. It has been shown
that a system of tractability index 1, in which the leading coefficient matrix null­
space changes with the solution, behaves analytically and numerically as index 2
tractable DAEs with a perturbation index of 2 [12]. This confirms the assertion in
[2] that semi-explicit DAEs behave like fully implicit ones of one index lower.

To show the similarity of Eqs. (5.15) - (5.17) to some other formalisms, we
consider models from two fields important to mechatronics. These are the Lagran­
gian formulation of equations of constrained rigid bodies and the charge/flux for­
mulation of modified nodal equations (MNA) from electrical circuit analysis.

The classical approach based on the Lagrangian formulation leads to equations
of motion of constrained bodies in terms of the generalized coordinate vector q of
the form [9]

q=v }
M(q)v = Q(q,v)-GTA

g(q) = 0

(5.29)

where is M is the mass-inertia matrix, Q is a vector of generalized forces, and A. is
a vector of Lagrange multipliers. The last equations represent the position con­
straint that the coordinates must satisfy. Note that G = 8g/8q. (The superscript T
denotes matrix transposition.) The first equation is of form of Eq. (5.15) because
in the original formulation Eq. (5.29) it is of second order with respect to the gen­
eralized coordinates. This normally leads to equations in extended form with re­
spect to the position coordinates. Such equations are known to be of index 3. Dif­
ferent approaches have been used to lower the index of such equations [2,3,9]. In
Chap. 9 we solve a problem of this type using the bond graph modelling approach
that naturally leads to equations with velocity constraints, i.e. of the form

5.2 General Forms of the Model Equations

q=v }
M(q)v =Q(q,v)-GTA

G(q)v = 0

147

(5.30)

(5.32)

Such equations are of differential index 2. The general form of the equations thus
is similar with the velocity constraint replacing the positional constraints.

Analysis of electrical circuits is usually based on the classical modified nodal
analysis (MNA). There is only one type of junction in circuits, i.e. the node. The
governing equations are developed by applying the Kirchhoff current law to every
node in the circuit. The variables consist of nodal potentials and currents in the
voltage-controlled elements (inductors and sources). The constitutive relations of
voltage-controlled elements are appended to the system equations. The charge/flux
oriented MNA introduces charges and fluxes also as system variables. Equations
describing inductors are used in the same way as those defined by inertial ele­
ments of bond graphs, i.e. using the extended form of equations

~-U2+U1=0} (5.31)
<j>-L·i=O

Here U2-U1 is the voltage across the inductor, <j> is the flux, i is the current through
the inductor, and L is the inductance parameter (for linear inductors). The equa­
tions are added along with the constitutive relations for capacitors to the nodal
equations. The constitutive relations ofcurrent-controlled elements are set directly
into the nodal equations. As an illustration of equations formed using the
charge/flux based MNA approach, consider the simple of circuit in Fig. 5.3.

The equations read

-i1+(U1 -u2)/R = 0

-(U1-U2)/R+i2 =0

-i2 - q = 0

u, =v
~-(U2 -U3)=0

<j>=L·i2
q = C,u3

The first three are written by applying the Kirchhoff current law to the three
nodes. The fourth equation gives the constitutive relation of the voltage source, the
next two describe the inductor, and the last is the constitutive relation of the ca­
pacitor.

Charge/flux based MNA is used to describe charge and flux accumulations in
circuits in a better way. It has also been shown that circuit equations based on this
formalism are better suited to simulation [7, 8]. The explanation for this is found
in the leading coefficient matrix null-space that, for the charge/flux based formula­
tion, does not change during the solution.

148 5 Generation of the Model Equations andTheirSolution

1

v c

3

Fig. 5.3. A simple electrical circuit

There are few papers in the bond graph literature dealing with the analysis of
the DAEs formulation of bond graph models. Important papers in this respect are
[10, 11]. These show that the index of the system model can be larger than 2. A
similar analysis is made for electrical circuits in [12]. We believe that most models
of engineering systems have indices not greater than two. Higher index systems at
the current state of solver techniques are difficult to solve by a general-purpose
modelling and simulation system. Model reformulation and some specialized ap­
proaches are then necessary.

In [13] an approach based on tearing variables for dependent storage elements
has been proposed. It suggests changing the model by introducing Langrange mul­
tipliers. Structural type analysis, such as the causality analysis already discussed in
Sec. 2.10, is generally of limited value, as the structure of real problem models
generally change during solution. The problems can be treated more generally us­
ing the projectors of [5,6]. But, unfortunately, this is not an easy task.

The conclusion that can be drawn from these discussions is that the form of the
model generated by the program is suited to simulation because of the constant
leading coefficient matrix. We believe it serves as an acceptable frame for the suc­
cessful modelling and simulation of the mechatronic systems in Part 2.

5.3 Numerical Solution Using BDF Methods

This section describes the methods and strategy for the solution of the generated
differential-algebraic equations. Among the possible candidates for solving DAEs,
two methods have attracted most attention: those based on backward difference
formula methods, known as BDF methods; and various kinds of the Runge-Kutta
methods [3, 4]. Among the implementations of BDF methods, perhaps the best­
known software is DASSL, of which a detailed description can be found in [3]. It
is freely available from the NETLIB web repository. Similarly, among the imple­
mentations of the Runge-Kutta methods, possibly the most useful is Radau5 of [4],
which also is freely available from those authors.

We use an implementation of the BDF method for the solution of the generated
DAEs. One of the reasons for this choice is that we have had experience with BDF

5.3 Numerical Solution Using BDF Methods 149

methods from the time of the famous DIFSUB program [14]. BDF codes are
widely used in electronic circuit simulators and continue to attract attention as ca­
pable, general-purpose methods for solving DAEs. Part 2 shows that it also is a
method with which it is possible to solve mechatronics problems based on the
bond graph modelling approach.

5.3.1 The Implementation of the BDF Method

The solver used for solving DAEs of the model system is based on the variable
coefficient version of BDF [3, 15]. In comparison, DASSL uses a fixed coeffi­
cient implementation of BDF [3]. The variable coefficient form is perhaps the
most stable implementation of the BDF methods, though it is less efficient be­
cause it requires frequent re-evaluation of the partial-derivative matrix. The reason
for using it here is that the solution of DAEs is not an easy problem, and the
higher level of stability of this method is welcome. Unfortunately, the authors are
only aware of one study only that compares these two BDF implementations [15].
The frequent re-evaluation of the partial-derivative matrix is less expensive in our
approach, as we use it in an analytical form and not by a numerical approximation.
This improves the stability of the BDF code. In the following section we describe
in some detail the method we use. We use a similar notation as in [3].

The system we solve numerically is described by Eq. (5.26). The numerical
solver generates approximations z, to the true solution z(tj) (Fig.5A). The BDF
method is a variable step and variable order predictor-corrector method. Because
of the stability requirement, the order k of the method is limited to 5.

The method predicts values of the solution at the next instant of time tn+1 by
evaluating a polynomial that interpolates the last k+1 values, i.e.

Z~+1 = P(t n+1) (5.33)

where P are interpolating polynomials defined by

P(tn_i)=Zn_j, i=O,1,oo.,k (5.34)

The predicted value of the time derivative at time tn+1 is similarly found by
evaluating the time derivative of the interpolating polynomial, that is

. 0 .
zn+1 = P(t n+1) (5.35)

In the DIFSUB code of [14], the interpolating polynomials were originally rep­
resented by Taylor series. The past history is held in the form ofNordsieck vectors
of the current values of the variables and their scaled derivatives up to the order k.
It was found that it is much more efficient to use interpolating polynomials based
on the Newton interpolating polynomial with modified divided differences [16,
17]. DASSL follows this approach and it is also used in our code. A detailed de­
scription of the implementation details can be found in [3,17].

150 5 Generation of the Model Equations and Their Solution

zn-2 zn-1 Zn

tn-2 tn-1 tn

Fig. 5.4. The approximation of the solutionat discretetimes

The approximation to the solution value is determined using corrector polyno­
mials Q

(5.36)

such that

(5.37)

There are several ways correction polynomials can be defined [14]. The method
we use defines it as a polynomial that interpolates through the same last k points
as the predictor, i.e.

Q(t n+1- i) = zn+1-j, i=1, ...,k (5.38)

Continuing in the same way as in [3, 15], we arrive at expressions for approximat­
ing the derivative, known as the differentiation formula

. ·0 uO(n+1) °
zn+1 = zn+1 - (zn+1 - zn+1) (5.39)

hn+1

Here

is the attempted step size and
k

uO(n+1) = - LUi(n + 1)
i=1

where

(5.40)

(5.41)

Uj (n + 1) = hn+1 , (i ~ 1) (5.42)
t n+1 - t n+1- i

The coefficient UO in Eq. (5.41) depends on the ratio of the current and accumu­
lated previous step sizes and changes each time the step size or order changes.
Such a formula is known as a variable coefficient formula. In DASSL, a simpli­
fied form of this formula is used in which the coefficient is independent of the

5.3 Numerical Solution Using BDF Methods 151

step-size (denoted in [3] as as). The formula was developed using corrector poly­
nomials that interpolate at equi-distant time points.

After substituting in Eq. (5.37), we get

'0 aO(n+1) °
g(zn+1 - (zn+1 - zn+1),zn+1't n+1) = a (5.43)

hn+1

This is an implicit vector equation that can be solved iteratively using the pre­
dicted values as the starting point. The modified Newton method is used. If we
denote by d., the corrections at the m-th iteration step, the corrections can be
found by solving the linear equation

Jd~+1 =-g(z~+1,Z~+1,tn+1)

where J is the partial derivative (Jacobian) matrix

J=8g+ a8gaz az
with

(5.44)

(5.45)

aO(n+1)
a = (5.46)

hn+1

The values of the variables and the derivatives are updated for the next iteration by
using the formulas

m+1 m dm }zn+1 = zn+1 + n+1
. m+1 . m m
zn+1 = zn+1 + adn+1

(5.47)

The solution Eq. (5.44) is accomplished by the method of LU decomposition
and back substitution. Because of the sparse structure of the matrix, we use a
sparse package for the LU decomposition of the matrix and the solution of the cor­
responding systems of triangular equations. As a practical implementation of the
method, we use the Sparse Linear Equation Solver (version 1.3a) of the University
of California, Berkeley. I The solver was originally developed for circuit simula­
tors. We used its basic functionality only and, in particular, the possibility to de­
compose the matrix at a fixed pivotal order once the complete decomposition is
done. This way, if the matrix has not changed too much, then decomposition can
be performed quite efficiently. The strategy used for solving Eqs. (5.44) - (5.47),
including the stopping criterion, is the same as described in [3] for DASSL.

We use a similar strategy for accepting an integration step, the step size selec­
tion, and change oforder, as in [3]. This has its roots in [17]. The basic difference
is a slightly different expression for the estimated principal part of the truncation
error. Other differences are described later. The estimation used for the truncation
error is of the form

1 The code and documentation are freely available through the NETLIB repository. We ex­
press our thanks to the University of California, Berkeley, Department of Electrical En­
gineering, and to the authors of this really sophisticated software.

152 5 Generation of the Model Equations andTheirSolution

9n+1 = Uk+1 (n + 1)I/Zn+1 - Z~+111 (5.48)

where 11 ... 11 is a weighted mean square root norm. The expressions are slightly dif­
ferent from DASSL because of the variable coefficient form of the differentiation
formula in Eq. (5.39).

5.3.2 The Generation of the Partial Derivative Matrix

Solving Eq. (5.44) requires evaluating the partial derivative matrix of Eq. (5.45).
This matrix is often approximated numerically. We generate analytical expres­
sions for this matrix by symbolic differentiation of the model equations.

The matrix is of sparse structure, having a small number of nonzero elements
per row and column. We generate and store only the expressions of nonzero ele­
ments. One of the often-used methods for storing sparse matrices is based on the
coordinate scheme. It is used here because it is very easy to implement (Fig. 5.5).

Column number

Row number

I
X 1 X

Jj

X X

X

X

X X

Fig. 5.5.Coordinates of the nonzero partial derivative matrixentry

Thus, for every nonzero element of the partial derivative matrix we generate an
analytical expression and record its row and column number. The procedure is
straightforward and is as follows

1. Take the left side of the expression of the first system model equation
2. Find the list of variables and the derivatives of variables that appear in the

expression
3. For every variable evaluate, in tum, the partial derivative of the expression by

symbolic differentiation. Evaluated expressions are stored successively in the
corresponding string array. Store, in separate arrays, the index of the equation
(row index) and of the variable (column index).

4. Repeat step 2 with the next expression until all equations have been processed.

The values of the partial derivative matrix are evaluated during the simulation
using routines for reading and evaluating byte form expressions, as was done with
the mathematical model expressions.

(5.49)

5.3Numerical Solution UsingBDFMethods 153

5.3.3 The Error Control Strategy

We now describe the strategies used for error control. We do not apply any projec­
tions on the model equations, but try to solve them directly. The BDF code, as
used here, can handle DAEs of index 1 and 2, if some precautions are taken. Put­
ting aside the problem of initialisation that we consider in Sect. 5.5, one of the
most sensitive points is error control. This concerns the strategy for step accep­
tance and how the next step and/or the order of the method is chosen.

Error control in BDF codes is based on testing the truncation error estimates
against predefined error tolerances. The truncation error is estimated by Eq.
(5.48), which is similar to that in DASSL, with some difference in the leading co­
efficient. The error is thus proportional to the corrections made in the Newton it­
erative loop. If the error test is not satisfied a new, smaller step size is chosen until
the test is passed. This works well for index-l DAEs. In index-2 equations there is
a repeatable failure of the error tests and the procedure is finally stopped. The
problem is that errors in some algebraic variables do not approach zero as the step
size approaches zero. As a result, these cannot be made less than the tolerance (in
some norm) with decreasing step size. Thus, solving higher-index DAEs requires
changing the way the error is tested.

The simplest way to do this is suggested in [3]: All the algebraic variables are
removed from the error tests, the next-step-size test, and the order-selection tests,
and these tests are applied to the differentiated variables only. This has the draw­
back that the algebraic variables are partially out of control. They, however, sat­
isfy the corrector equation solving loop and are accepted if the differentiated vari­
ables pass the integration error test. The reasoning behind such a strategy is that
errors in the differentiated variables do not influence directly the future state of the
system. In this way, integration can be executed successfully, though with the
price of lower accuracy in the algebraic variables. In many cases this is accept­
able, as long as high accuracy in such variables is not required.

We also scale the algebraic equations by the factor 1/h, where h is the current
step-size. This scaling, as discussed in [3], improves the ill conditioning of the it­
eration matrix at very small step sizes. This, in tum, improves the accuracy of the
differentiated variables and, to a lesser extent, of the algebraic variables. In any
case, scaling is recommended. We have not applied scaling directly in the model
equations because these become quite difficult for the user to understand (Sect.
5.4). Instead, we simply modify the values of the left side of the equations and of
the partial matrix elements when they are evaluated during iteration.

We have also implemented another strategy based on local error control. This
has its roots in a study of the local error control ofDAEs of index-I and 2 in [18].
Using the notation of Sec. 5.3.1, the proposed estimation of the local error is given
by

S J -1A(I (a
O

) 2 J-1A \Q
n+1 = K - ° 2 JV n+1

a (n+1)·h

Matrix J is the last evaluated and decomposed partial derivative matrix defined in
Eq. (5.45), A is the leading coefficient matrix of Eq. (5.27), and 8n+1 is the trunca-

154 5 Generation of the Model Equations andTheirSolution

tion error estimate ofEq. (5.48). The UO is the value of the BDF parameter in Eq.
(5.41) used in the last evaluated partial derivative matrix, and h is the value of the
step size used at that time. Parameter K is a user-supplied factor used to weight the
inherent differentiation in index-2 DAEs. This factor can be set from 1 to a value
of the order of 1/h.

In the implementation of the formula the inverse of the Jacobian is not required
because the matrix is already evaluated and decomposed into LV factors. Corre­
sponding terms in Eq. (5.49) can be evaluated by back substitutions from the cor­
responding linear system. The cost of the formula is, in essence, these two back
substitutions. We also use this formula for step size and order selection, as sug­
gested in [18]. The basic strategy, as described in [3], is retained but, instead of
the estimates of the truncation errors, the corresponding local errors are evaluated
according Eq. (5.49) and used for the next step size and order selection. This in­
creases the computational costs, but the BDF solver works better.

In [18] it was shown that the error control based on the local error is satisfac­
tory for index-l and index-2 DAEs. It is expected that this control strategy is an
improvement over the error control of using the first strategy. We have found this
to be true at least for some of the problems treated in this book (Chapt.9). We also
found that the local error control strategy works much better if the algebraic equa­
tions are scaled by the step-size.

To summarize the integration control used for solving the model equations dur­
ing simulation, we describe the parameters and options at the user's disposal. First
of all, after the mathematical model is built and suitable data are created, the user
has to select the

I. Simulation interval
2. Output interval
3. Maximum step size

After the simulation is finished, it is possible to continue or to restart the simu­
lation. Output is generated at every output interval value. The maximum step size
that the integrator selects is limited. By default, both the output interval and
maximum step size are set to 1/100 of the simulation interval. For many problems,
however, quite a short maximum step size is often necessary in order to finish the
simulation successfully.

The BDF method "likes" relatively tight error tolerances. Thus, the default val­
ues of absolute and relative error tolerance are set to 10-6. These can be changed,
up or down. Lower values are, in general, not advised. On the other hand, some
problems are not easy to solve with too tight a tolerance, i.e. 10-12 or 10-15

.

Currently only one integration method is implemented, the variable coefficient
BDF method. It is possible, however, to scale the algebraic equations (this is the
default behaviour), or to disable scaling. Both error control strategies described
above are implemented:

1. Control of errors in differentiated variables only (default)
2. Local error control

5.4 Decompiling of the Model Equations 155

In the last option it is possible to input the differentiation weight parameter value,
too. It is set to 1 by default.

5.4 Decompiling of the Model Equations

The system model equations, including the partial derivative matrices, are gener­
ated automatically by the BondSim software. They are generated in byte form, as
explained in Sect.s 5.2 and 5.3, and hence are not easily readable. We think, how­
ever, that it is important for the user to have feedback on the model generated, so
we have implemented routines that decompile the equations to a readable form.
We here give the information currently available and how it can be interpreted.

In Sec. 5.2 a procedure for model equation generation is given. It is possible for
equations assembled in byte form to be converted back to a form that can be easily
read. However, the symbols used in the decompiled form are not the original sym­
bols used when defining the constitutive relations. Instead, system variables in the
form Y(1), Y(2), etc. are used, and t is used for time. Because the parameters have
already been evaluated, they are converted to numbers written in the usual float­
ing-point form. The typical form of the decompiled equations is shown in Fig. 5.6.

Equations of the model:
EQ(I) = «Y(2)-Y(l8))+Y(35)) = 0
EQ(2) = (Y(35)-((t<IE-009)?(2.5*(I-EXP (-t1IE-Oll))):(2.5*(1+SIN
(((2*3.1415927)*20000000)*(t-IE-009)))))) = 0
EQ(3) = (((((-Y(I)-Y(63))-Y(33))-Y(24))-Y(22))+Y(31)) = 0
EQ(4) = ((-Y(14)+Y(lI))-Y(7)) = 0
EQ(5) = ((Y(6)-Y(38))-Y(36)) = 0
EQ(6) = (Y(36)- Y'(37)) = 0
EQ(7) = (Y(37)-(((Y(7)/0. 75)<0.5)?(((5E-0 15*0.75)/(1-0.5))*(1-((1-(Y(7)/0.75)Y'(1­
0.5)))):((5E-015*0.75)*((0.585786437626905+(1.4142135623731*((Y(7)/0.75)­
0.5)))+(0.707106781186548*(((Y(7)/O.75)-0.5Y'2)))))) = 0
EQ(8) = (Y(38)-(((Y(7)/(I *0.0258))>50)?((IE-014*((EXP
(50)*((1 +(Y(7)/(I *0.0258)))-50))-1))+(Y(7)* IE-O12)):((IE-014*(EXP
(Y(7)/(I *0.0258))-I))+(Y(7)* lE-012)))) = 0

Fig. 5.6.Thedecompiled formof the model equations

In addition to the model equations, other information is also collected and dis­
played, such as

1. Conditional expressions (switch functions)
2. A list of the differentiated variables
3. A list of the algebraic equations.

The problem is how to interpret these equations and, in particular, the system
variables in terms of the original model variables, such as. efforts and flows. To
that end, the symbolic table generated during the system variables assignment
(Sec. 5.2.1) is used. The symbol table is not destroyed after the model equations
are built, but is retained in the memory.

156 5 Generation of the Model Equations and Their Solution

Using the symbol table every system model variable Y(I) can be correlated to a
port variable. It is clearer to the program what variable it is than it is to the user,
because the port variables are internally coded. Hence, to show the correspon­
dence between these two sets of variables a visual technique is used. In simple
terms, when the user puts the cursor over a port of an elementary component the
port variables are shown using the system variable symbols, i.e. effort Y(4), flow
Y(18), etc. How this works is shown in the Part 2.

In a similar way, data for the partial derivative matrix can be decompiled (Fig.
5.7). For every nonzero element of the matrix the expression, accompanied by row
and column index, is given. Data for the leading coefficient matrix of Eq. (5.27)
also is given.

Matrix of partial derivatives:
J(I) = 1
IRow(l) = 1 JCol(l) = 2
J(2)=-1
IRow(2) = 1 JCol(2) = 18
J(3) = 1
IRow(3) = 1 JCol(3) = 35
J(4) = (I-((t<IE-009)?0:0))

J(20) = -(((Y(7)/O.75)<0.5)?(7.5E-015*-(((1-(Y(7)*1.33333333333333)),,0.5)*(0.5*(­
1.33333333333333/(1-(Y(7)*1.33333333333333)))))):(3.75E-
o15*(1.88561808316413+(0.707106781 186548*(2.66666666666667*((Y(7)* 1.33333333
333333)-0.5))))))
IRow(20) = 7 JCol(20) = 7

Fig. 5.7. The decompiled form of the partial derivative matrix

5.5 The Problem of Starting Values

In this and the next section we describe the approaches used for solving two im­
portant issues of simulation: the generation of starting values and integrating
across discontinuities.

The problem of values from which the simulation starts is one of the difficult
problems of DAEs that has attracted much attention. In the equations in state­
space form, such as

x= f(x, t) }
(5.50)

Y = g(x,t)

this is not much of a problem. To start solving the equations it is enough to specify
the initial values of the state variables, e.g. by specifying the values at initial time t
=0

x(O) = Xo (5.51)

5.5 The Problem of Starting Values 157

In this way, the time derivatives of the variables needed by the integration routine
can be evaluated directly from the first equation

x(O) = f(xo,O) (5.52)

and the integration can start. The output values are generated using the second
equation. The problem thus is decoupled into solving the differential equation and
generating the outputs. This is well known and is why much attention in bond
graphs, and in other approaches, has been given to setting the model equations in
this form. In modelling real systems, however, models in state space form gener­
ally are too restrictive. This makes it necessary to deal with DAEs.

Because there is no decoupling of equations and variables in DAEs, we have to
cope with the complete system simultaneously. In DAEs of index 1, such as ofEq.
(5.18), some of the similarity with state-space form is retained. Because the Jaco­
bian matrix 8g/ay is not singular, it is possible to find values of the algebraic vari­
ables y, given values of the differentiated variables x. Hence, if values of the latter
are known at the initial time, values of the former can be found by solving the al­
gebraic equations

(5.53)

This can be accomplished using iterative methods, typically Newton type
methods, for which we need only an initial guess at their values to start the itera­
tion. Once values are found to the prescribed accuracy, the starting values of vari­
ables are known. Hence, in index-I DAEs, the differentiated variables play the
role of state variables, in the sense that they are independent and completely de­
fine the values of all other variables.

Index-l DAEs are typically solved using BDF methods. To start the solution
we need also the time derivatives of the variables. For the semi-explicit DAEs of
Eq. (5.18), derivatives of the differentiated variables with respect to time can be
found easily by evaluating the right-hand side of the first equation at initial time.
For algebraic variables, on other hand, we first need to find the time derivative of
the algebraic equations. We can do this by symbolic differentiation. The resulting
equations are linear in the time derivative of the algebraic variables, as can be seen
from the second equation in Eq. (5.19) and, hence, are solved readily for the time
derivative of the variables.

Values of the variables and their time derivatives constitute a set of consistent
starting values for the system. If we find such values with sufficient accuracy, in­
tegration continues smoothly. Otherwise, we can expect wide fluctuations, which
hopefully converge to the solution.

For higher index DAEs the problem is more complicated. Looking at Eq.
(5.20), which is often used as a prototype of semi-explicit index-2 DAEs, we see
that the differentiated variables are constrained by the algebraic equations. Hence,
all of their values cannot be set independently. The independent part plays the role
of system state variables. These can be set initially to appropriate values. The oth­
ers then are found by solving the second equation. Even for these we need starting
values that are used to initialise the iteration.

158 5 Generation of the Model Equations and Their Solution

An independent set of differentiated variables traditionally is found in bond
graphs by the causality assignment procedure (Sec. 2.10). More generally, they are
found using the subspace structure of the underlying equations [5, 6]. This way,
only part of the first equation in Eq. (5.20) is an ordinary equation that involves
integration. The other constitutes algebraic equations that involve differentiation
of the variables. But this is only part of the story and, perhaps, the easier part.
What about the algebraic equations? To find them we need to differentiate the
second equation in Eq. (5.20). After substituting from the first equation, we get the
hidden constraint of Eq. (5.23). If the corresponding Jacobian given in Eq. (5.24)
is not singular, we solve the hidden constraint for the algebraic equations. For this,
however, we again need starting values.

Determination of the initial values of the time derivatives of variables is ac­
complished in a similar way as that used for index-l DAEs. Initial values of the
time derivatives of the differentiated variables are found from the first equation in
Eq. (5.20). But for the algebraic variables we again need to differentiate the hid­
den constraint with respect to time and find the corresponding values of the vari­
ables from the resulting linear equations.

In DAEs of index higher than 2, the problems are even more difficult, as more
differentiation is necessary and the subsequent equations are more difficult to
solve. Different approaches have been reported for solving the problem of starting
values [19 - 23]. Many are concerned with index-l DAEs, but some also treat in­
dex-2 equations. In general, they resort in some way or other to differentiation. A
good survey of these is found in [3, 23]. One of the problems is how to determine
the index of the system. Approaches based only on structural information, as in
[20], are often not feasible, as the system structure can change because, for exam­
ple, some of the constitutive relations are defined conditionally, depending on val­
ues of variables. As a simple example, we return to the see-saw problem (Sec. 2.7
and Sect. 5.2.3). The model generated for this system is ofindex-2. Ifwe assume,
however, that there is dry friction-as there is!-between the see-saw seat and the
children, when the children stick to the seat this becomes an index-2 problem.
When they slip even for a short time, however, the model changes to index-I, be­
cause the differentiated variables become independent.

The problem of consistent starting values is not only important at the start of
the simulation, but also after every discontinuity. In addition, any approach to the
problem of starting values assumes that the user supplies the necessary data. Even
under the best conditions this is often too much to ask. The modelling approach in
this book has been developed to help the user design or analyse mechatronic
equipment. For this we need a simpler approach to the starting of the simulation.

The approach we use is close to that of [19,21]. It was prompted by how we
start real equipment. Typically, we switch the power on and, after some time, the
system settles down to the appropriate operating state and we start using it. We
thus assume that the system starts off un-energized, i.e. with efforts and flow equal
to zero. We also assume that the time derivatives of all variables are equal to zero.
By default, the starting values of all differentiated variables defined in the corre­
sponding elements (capacitive, inertial, and integrator elements) also are set to

5.6 The Treatment of Discontinuities 159

zero, but can be changed to some other value if required. These are taken as an es­
timation of consistent starting values.

To find a starting value for the simulation we use a version of the BDF solver
that employs a first-order method (implicit Euler) and a fairly small and constant
step size. To simulate the transients that can be quite intensive until the system
settles down, we simulate the system for several steps without error control. We
then advance the simulation time for one step more and check the error. If the er­
ror test is passed, we integrate back to the initial time and use the state reached as
the starting state for the simulation. If, on the other hand, the test is not passed, we
repeat the starting procedure with a smaller step. The starting procedure is stopped
and failure reported if either the step was reduced to the minimum without suc­
cess, or if too many initialisations have been attempted. During initialisation the
corrector equations are solved at every step to the prescribed accuracy. The partial
derivative matrix is updated and decomposed at every simulation or iteration step.
If, for any reason, it is not possible to solve these equations, initialisation is
stopped with the appropriate message. In Part 2, in which different mechatronic
problems are solved by bond graph modelling, all initialisations are done using
this approach quite successfully. The reader can test this for herself.

5.6 The Treatment of Discontinuities

Discontinuities give reality to models. There are numerous examples of engineer­
ing systems where such features are necessary. This is the case, for example, when
dealing with dry friction and impact in mechanical systems. In electronics, proc­
esses are often described by different expressions, depending on the range ofvari­
able values. This, of course, complicates the problem of equation solving.

We analysed several schemas for dealing with discontinuities. During model
generation sub-expressions contained in the constitutive equations are extracted
and stored in a separate array. These sub-expressions are decompiled and shown
below, along with the model equations discussed in Sec. 5.4. They can be used to
analyse model behaviour. Fig. 5.8 shows conditional expressions (switch func­
tions) used in the model of the CMOS inverter of Sec. 7.4.2 (Fig. 7.86).

We use these functions to generate state transition tables. The location time in­
stant of switching was found by a binary search using both interpolating polyno­
mials that the BDF solver maintains or by repeating the time step. After the dis­
continuity, the integration was reinitialised using a method similar to that used for
simulation initialisation (Sec.5.5). We found, however, that this approach did not
work as expected: Many times there was a conflict during the Newton step and the
corresponding step-advancing.
We thus do not change the way that the solver behaves at a discontinuity. In the
current implementation of BondSim, we do not use discontinuity location and
transition tables to go over the discontinuity; we simply let the solver handle the
discontinuities. As seen in Figs. 5.6 and 5.7, the conditional expressions are re­
tained in the model expressions and those of the partial derivative matrix ele-

160 5 Generation of the Model Equations and Their Solution

ments. When the discontinuity is encountered, the solver tries to go over it. If it
cannot--owing to the error control requirements-it shortens the step-size and re­
peats the step. This perhaps is neither the most efficient nor the best technique that
might be used, but it works. It works well in all the examples treated in this book,
as well as with both error control strategies discussed in Sec. 5.3.3.

The model switch functions:
Switch(l) = «t<IE-009)?0:1)
Switch(2) = «(Y(7)/O.75)<0.5)?0:1)
Switch(3) = «(Y(7)/(l *0.0258»>50)?0:1)
Switch(4) = «(Y(9)/0.75)<0.5)?0: I)
Switch(5) = «(Y(9)/(l *0.0258»>50)?0: I)
Switch(6) = «Y(l2)<=(l +(O*(SQRT (0.6-Y(I3»-SQRT
(0.6»»)?0:«Y(42»=0)?«Y(42)«(Y(12)-1)-(O*(SQRT (0.6-Y(l3»-SQRT
(0.6»»)? 1:2):«-Y(42)«(Y(12)-1)-(O*(SQRT (0.6-Y(I3»-SQRT (0.6)))))?3:4)))
Switch(7) = «(Y(23)/O.75)<0.5)?0:1)
Switch(8) = «(Y(23)/(l *0.0258»>50)?0:1)
Switch(9) = «(Y(25)/0.75)<0.5)?0:1)
Switch(lO) = «(Y(25)/(l *0.0258»>50)?0: I)
Switch(ll) = «Y(19)<=(l +(O*(SQRT (0.6-Y(3»-SQRT
(0.6»»)?0:«Y(55»=0)?«Y(55)«(Y(l9)-1)-(O*(SQRT (0.6-Y(3»-SQRT
(0.6»»)? 1:2):« -Y(55)«(Y(l9)-1)-(O*(SQRT (0.6-Y(3»-SQRT (0.6»»)?3:4»)

Fig. 5.8. Conditional expressions of the CMOS inverter model

To help the solver to deal with discontinuities it is advisable to ensure continu­
ity of sub-expressions at their boundaries, if at all possible. In many cases discon­
tinuities appear because of the simplification of the model. Thus, complicated
non-linearities present fewer problems than an on-off discontinuity. This is par­
ticularly true at the start of a simulation.

5.7 Pros and Cons of the Combined
Compiled/Interpretative Approach

We end this section with a discussion of the advantages and disadvantages of the
combined compiled and interpreting code approach used in the current implemen­
tation of BondSim.

The conventional approach in simulation software is based on the compiled
code approach. This is motivated mainly by its better efficiency, as measured in
terms of execution time. But it has its drawbacks, too. For example, every change
to the model requires that new functions or subroutines be generated, compiled,
and linked with the rest of the code. Hence, the program should be part of a suit­
able programming environment, such as Microsoft Developer Studio; or a suitable
compiler and linker should be shipped with the program. This is but one-and
perhaps a minor-problem. More importantly is the relatively long process in-

References 161

volved in developing the model to the point at which simulations can be run. This
was one of the main reasons why another approach was taken.

As described in several places in this chapter, instead of functions or subrou­
tines, the constitutive relations of the model are packed into byte codes that can be
read and evaluated in one pass by a suitable interpreter. Thus, when the model is
developed as a tree of components, or taken from a library, the tree is analysed
and the model built. This operation needs no external program, such as in the
compiled approach. After the model is built, the simulation can start. Later, if
some changes are made, i.e. if some local parameters are changed, it is not neces­
sary to rebuild the complete model, but only update part of it. Currently, this is
implemented for parameters defined locally in the sources. For parameters defined
in other components and at lower levels, e.g. in the documents, the complete
model is rebuilt. It is implemented in this way because such parameters can be
used by any upper level components. It is also possible to implement a more so­
phisticated approach, one that is analogous to the incremental linking technique.
This has been left for further research.

Another advantage of this approach is that it opens up the possibility of imple­
menting computational algebra support. Symbolic differentiation currently is im­
plemented only for the generation of Jacobian matrices in analytical form, which
the BDF solver needs. Much more, however, can be done, particularly in the field
ofDAEs solving and initialisation. There are other interesting topics, as well.

In our opinion, execution speed remains the only drawback to the combined
compiled/interpretative approach. This is not, however, a problem of such great
concern. A greater part of the time during simulation, we suppose, is used on ma­
trix decomposition, and this is performed using compiled subroutines. Function
evaluation and sparse matrix evaluation are responsible for a smaller part. Thus,
we expect that the difference between compiled and interpretative routines is not
too great. This assertion is based on comparing problems solved in Part 2 with
those reported in other sources. Such an approach is at least partly encouraged by
recent advances in scripting languages and, in particular, JAVA. Now even nu­
mericallibraries are implemented in interpretative languages, such as JAVA.

References

1. Alain Reverchon and Marc Ducamp (1993) Mathematical Software Tools in C++.
John Wiley, Chichester

2. L Petzold (1982), Differential/Algebraic equations are not ODEs, SIAM J. Sci. Statist.
Comup., 3:367-384

3. KE Brenan, SL Cambell and LR Petzold (1996) Numerical Solution of Initial-Value
Problems in Differential-Algebraic equations, Classics in Applied Mathematics.
SIAM, Philadelphia

4. E Hairer and G Wanner (1996) Solving ordinary Differential Equations II, Stiff and
Differential-Algebraic Problems, 2nd Revisited edn. Springer-Verlag, Berlin Heidel­
berg New York

162 5 Generation of the Model Equations and Their Solution

5. E Griepentrog and R Marz (1986) Differential-Algebraic Equations and Their Nu­
merical Treatment. BSB Teubner, Leipzig

6. R Marz (1992), Numerical Methods for Differential-Algebraic Equations, Acta Nu­
merica, 141-198

7. C Tischendorf (1995) Solution of Index-2 Differential Algebraic Equations and Its
Applications in Circuit Simulation, PhD thesis Humboldt Univ. Berlin. Logos Verlag,
Berlin

8. R Marz and C Tischendorf (1997), Recent Results in Solving Index-2 Differential­
Algebraic Equations in Circuit Simulations, SIM J. Sci. Comput., 18:139-159

9. EJ Haug (1989) Computer-Aided Kinematics and Dynamics of Mechanical Systems,
Vol. I: Basic Methods. Allyn and Bacon, Needham Heights, Massachusetts

10. J Van Dijk and PC Breedveld (1991) Simulation of System Models Containing Zero­
order Causal Paths - I. Classification of Zero-order Causal Paths, J. of The Franklin
Institute 328:959-979

11. J Van Dijk and PC Breedveld (1991) Simulation of System Models Containing Zero­
order Causal Paths - II. Numerical Implications of Class 1 Zero-order Causal Paths, J.
of The Franklin Institute 328:981-1004

12. DE Schwartz and C Tischendorf (2000) Structural Analysis of Electrical Circuits and
Consequences for MNA, Int. J. Circ. Theor. App. 28:131-162

13. W Borutzky F Cellier (1996), Tearing in Bond Graphs with Dependent Storage Ele
ments. Proc. Symp. on Modelling, Analysis and Simulation, CESA'96, IMACS Multi­
Conference on Computational Engineering in Systems Applications, Lille, France
2:1113-1119

14. CW Gear (1971) Numerical initial-value problems in ordinary differential equations,
Prenice Hall. Englewood Cliffs

15. KR Jackson and R Sacks-Davis (1980), An Alternative Implementation of Variable
Step-size MUltistepFormulas for Stiff ODEs. ACM Trans. Math. Software, 6:295-318

16. FT Krogh (1974) Changing Step Size in Integrations of Differential Equations Using
Modified Divided Differences. Proc. Conf. Num. Solution of ODEs, Lecture Notes in
Mathematics 362, Springer-Verlag, New York

17. LF Shampine and MK Gordon (1975) Computer Simulation of Ordinary Differential
Equations. FH Friedman and Co., San Francisco

18. J Sieber (1997), Local Error Control for General Index-l and Index-2 Differential­
Algebraic Equations. Humboldt University Berlin, Preprint

19. RF Sinovec, AM Erisman, EL Yip and MA Epton (1981) Analysis of Descriptor Sys­
tems Using Numerical Algorithms, IEEE Trans. Aut. Control. AC-26:139-147

20. CC Pantelides (1988) The Consistent Initialization of Differential-Algebraic Systems.
SIAM J. Sci. Comput.9:213-232

21. A Kroner, W Marquardt and ED Giles (1992) Computing Consistent Initial Condi­
tions for Differential- Algebraic Equations, Computers & Chemical Engineering, 16:
S131-S138

22. PN Brown, AC Hindmarsh and LR Petzold (1998) Consistent Initial Conditions Cal­
culations for Differential-Algebraic Systems. SIAM J. Sci. Comput. 19:1495-1512

23. DE Schwarz (2000) Consistent Initialization for Index-2 Differential Algebraic Equa­
tions and Its Applications to Circuit Simulation. PhD thesis Humboldt Univ. Berlin.

PART 2

APPLICATIONS

Chapter 6 Mechanical Systems

6.1 Introduction

In this chapter we start the study of problems from Mechatronics using the bond
graph modelling approach developed in Part 1. The general procedure consists of

1. Analysis of the problem under study
2. Development of the corresponding model in terms of bond graphs, and
3. Analysis of the behaviour by the simulation

Bond graph modelling and simulation will be effected by the BondSim research
package included as a supplement to this book. Readers are advised to use it when
reading material given in this and subsequent chapters (see also the Appendix).

In this chapter we study simple, mostly one-dimensional mechanical problems.
One reason for this is to familiarize the reader with using the BondSim software on
relatively simple problems, though these problems are of interest in their own
right.

We start with the well-known Body Mass Damper problem already discussed
in Sect. 2.6.1. After that we continue with the study of the influence of dry fric­
tion, which introduces discontinuities in the model equations. We then study the
Bouncing Ball problem. This also involves discontinuities, but is better known for
its chaotic behaviour. The section concludes with a discussion of higher index
problems. It is not the intention to show that it is possible to solve all such prob­
lems using the methodology developed; we simply will show that a class of such
problems of interest in Mechatronics can be solved in an acceptable way from an
engineering point of view. This is particularly true for some problems in multi­
body dynamics. In this chapter we will study only the simple pendulum problem.
Further discussion of solving problems in multibody dynamics is left to Chapt. 9.

6.2 The Body Spring Damper Problem

6.2.1 The Problem

We start by analysing a well-known problem from engineering mechanics, the
simple Body Spring Damper system (Fig. 6.1), which has already been discussed
in Sect. 2.7.1. The system consists of a body of mass m that can translate along the
ground, is connected to a wall by a spring of stiffness k and a damper having the

166 6 Mechanical Systems

linear friction velocity constant b. An external force F acts on the body parallel to
the floor. The effect of dry friction is not included in the model. The modelling of
dry friction is a topic of Sect. 6.3.

Fig. 6.1. The body spring damper problem

We will analyse the transient behaviour of this simple system, and also its be­
haviour under sinusoidal forcing. We first develop a bond graph model using the
BondSim program. After that we analyse the dynamical behaviour of the system
by simulation. The explanations of the procedures used are somewhat detailed and
serve as an introduction to using the BondSim program.

6.2.2 The Bond Graph Model

Model Development

Before we start with model development, we must launch BondSim. This can be
done in the usual way for a MS Window environment, e.g. by double clicking the
program button on the computer desktop; or using the Windows Start button at the
left comer of the computer screen, then choosing the Program command from the
menu that appears, and then BondSim. A welcome window appears on the screen
which, after a few second, disappears. The main program screen then appears (see
Fig. 4.2). There is a menu bar just bellow the program title showing the main
menu commands-Project, Library, Function, View and Help-from which pro­
gram commands are invoked (Sect. 4.2). There is also a row of toolbar buttons
used to invoke some of the more often-used commands. Some of these buttons are
familiar to Windows users, but other are specifically designed for BondSim. By
moving the mouse cursor over a button, a tool tip appears that contains a short de­
scription of the corresponding command. Some of these buttons are disabled.

To begin modelling the Body Spring Damper system, we need to define a new
project. This can be done using the New command in the Projects menu, or by us­
ing the New Project toolbar button. In the dialogue that appears (Fig. 4.3), we type
a suitable project name, e.g. "Body Spring Damper Problem", then click the OK
button. The command is accepted if there is no existing project with the same
name. The dialogue closes, and a new empty document appears having the title of
the new project as shown in Fig. 6.2. The menu also changes to show the com­
mands that can be used at the document level (Sects. 4.6 and 4.7).

6.2 The Body Spring Damper Problem 167

The document window is used to define the overall structure of the system
model. The basic tool for the bond graph model development is the Editing Palette
(Fig. 4.9). We can open the palette by clicking the Show Palette toolbar button, or
by the Bond Graph Palette command on the Tools menu. Once the palette is
opened, we move (dragging it by its title bar) it to some suitable place where it
does not cover the document window (Fig. 6.2). Similar to the toolbar buttons, a
short description of various buttons on the palette can be found by moving the
mouse cursor over them. Clicking the Keep visible ensures that the palette doesn't
close after the first component is created.

Fig. 6.2.Theproject document window withthe Editing Palette opened

Model development starts by decomposing the system into components. Look­
ing at the system schematics of Fig. 6.1, we identify the following components:

1. The wall used to connect the spring and damper, and the floor over which body
can move. We represent the wall and the floor by a single two-port component
called Wall, the ports being the places where the spring and the damper are
connected.

2. The spring of stiffness k, which can be represented by a two-port component
Spring, in which the ports represent the spring ends used for connection.

3. The damper, of linear viscosity coefficient b, represented by a two-port compo­
nent Damper. The ports again represent the ends used for connection.

4. The body itself, which is connected to the spring and the damper, and on which
there is an applied force. The body can be modelled by a three-port component
Body.

5. Finally, there is a force acting on the body in the direction parallel to the floor.
This effect can be represented by a source effort component.

As a first step in the model development we create these components in the
document working area, i.e. inside the rectangle (Sect. 4.6.2). We start with the
Body word component model. Looking at the Editing palette we see that the Word

168 6 Mechanical Systems

Model component type is already selected by default, as are the medium font size
and the horizontal orientation of the component text. We accept this and click on
Component button. Next, we move the mouse cursor inside the document working
area. When in this area it changes its shape to a cross. We can position the cross
anywhere inside the document working area, but not too close to its boundary, and
then click the mouse. A vertical textual cursor (caret) appears and we can start ed­
iting the component name simply by typing in "Body". To finish text editing of
the component name, we click anywhere outside of the text.

To complete the Body word model it is necessary to create the corresponding
ports. We will assume that power flows from the force through body to the spring
and the damper and then to the wall (Fig. 6.1). Hence, we create a power-in port
on the right side of the Body, where the force acts; and two power-out ports on the
left side, where the spring and the damper are connected (Fig. 6.3).

.... -e- -e- Spr1ng -e­.....! :,soc:lyv "IIII""l'ol:'~e

....Damper

Fig. 6.3. Creating the components for the Body Spring Damper problem

In a similar way, we create the Spring and the Damper components. To each
we add two power ports, a power-in port on the right and a power-out port on the
left side. The wall component we create a little differently, with the name running
vertically. Before clicking the component button in the palette, we select Vertical
in the Orientation combo box on the palette. We also add two power-in ports to
the Wall for the connection of the spring and the damper.

The final component that we create is a source effort, which describes the force
applied to the body by the environment. To create such a component we select the
Source Effort type from the list of component types on the palette, and change the
font size to small.

By default, the small sizes are pre-set for elementary components. Similarly,
the medium sizes are used for word models, i.e. the components consisting of
other components. In a similar vein, large fonts can be used for some of the main

6.2 The Body Spring Damper Problem 169

word model components. This is not, of course obligatory; the user can choose the
most appropriate size.

The elementary components are created with the standard bond graph names
(Fig. 2.6). We will change the name of the source effort to "Force" by selecting it
and then clicking the Text toolbar button. When the caret appears, we delete the
old name, type the new name, then click outside to end the text editing. By chang­
ing the name we don't change the component type, just its name.

To complete the Force component, we add a power-out port because it is a
power-generating component. This completes creating of the components. Before
we proceed with further model development, we rearrange the component posi­
tions to correspond to the scheme of Fig. 6.1 by moving them to the appropriate
positions. In this way, we arrive at the arrangement as shown in Fig. 6.3.

Next, we draw bond lines between component ports by connecting them in the
same way as the components are connected in Fig. 6.1. To do this, we click on the
Connect ports button on the palette. Now we can start to connect corresponding
ports by the bonds (Sect. 4.6.3). Thus, to connect the Spring to the Body, we click
the right spring port, then draw the mouse cursor to the corresponding Body port.
As the mouse is moved, a bond line is drawn, starting at the first port. When the
target port is reached and clicked, the ports disappear and only the bond line con­
necting the components remains. When all bonds are thus drawn we click again on
the Connect port button to deselect. Thus, we have created the bond graph repre­
senting the basic level model of the Body Spring Damper system (Fig. 6.4).

Note
A component can be created anywhere inside the document working area, but not

too close to its boundary. It is better to create it near the centre and then move it. Simi­
larly, a port cannot be created too close to another ports. It is better to create it away
from other ports, then drag it. When drawing a bond, it is also possible to create inter­
mediate points by clicking on to it and then continuing. A bond line can be dragged to
change its shape. Bond lines often have a zigzag appearance. There is no grid that can
be used as guide. To create a nice looking bond graph, it is usually necessary to move
components or their ports a bit before drawing the bonds. Drawing of a bond can be
cancelet by double-clicking!

r-l __Spring~

r-l
~ Body...--- Force
~ __ Damper""'----

Fig. 6.4. The basic level of the Body Spring Damper system model

... ...------
Sp r 1119:a-~ Body Forcea:-DlIDIper

rrililll--1IIIiIiii

170 6 Mechanical Systems

To complete the model it is necessary to develop models of all of the word
model components, and to modify the default models of the elementary compo­
nents created. To define the Body model, we double-click its component. Because
its model has not been defined previously, a dialogue appears asking if we would
like to create a new component model. We select Yes, and a new empty document
window appears where the component model will be created (Fig. 6.5).

We may drag the document window, if we wish, to uncover its word compo­
nent model in the previous document. The document has three document ports.
These correspond to the Body component ports. Comparing the Body document
and Body word model, it can be easily seen which document port corresponds to
which component port.

Fig. 6.5. Creating the Body component document

The dynamics of body translation is governed by the equation of balance of all
forces acting on the body, including the inertia. We define the body inertia first.
Thus, we select the Inertial in the list of component types on the Editing palette
and create an inertial component I in the Body document. We add a power-in port,
assuming that part of power transferred to Body is used to overcome its inertia. To
balance all forces on the body, a source effort junction e is created by selecting the
corresponding component type from the list on the palette. To this junction are
added a power-in and three power-out ports. These ports are joined to the docu­
ment ports and to the inertial component port, as shown in Fig. 6.6 on the left.

To complete the model of the body, its inertial properties are defined (Sect.
4.8.1). Double-clicking the inertial port opens Inertial Port dialogue (Fig. 6.6 on
the right). By default, there are predefined names of the port variables and the lin­
ear constitutive relation between the port momentum and flow. This relationship is

6.2 The Body Spring Damper Problem 171

valid for body inertia in this problem, hence we simply change the names of the
variables and the parameter. We use the p as the momentum variable, the body ve­
locity v as the flow variable, and mass m as the inertial parameter. The momentum
relationship thus reads p = m*v. We cannot simply click OK, because the equation
parser won't understand what m is. Hence, we define it using the Parameter but­
ton (Sect. 4.8.2), insert a parameter m and assign to it a value of 1.0 (kg).

Fig. 6.6. The Body component model

In a similar way we define the Spring model (Fig. 6.7 on the left). The defor­
mation of the spring depends on the relative velocities of its ends. Hence the
Spring component can be described by a flow junction f whose two ports are con­
nected to the document ports (spring ends); the third is connected to a capacitive
port C used to model the process in the spring. These components are created
similarly to the other components by first selecting the component type from the
list on the palette.

The properties of the spring can be defined by double-clicking the capacitive
component port and using the dialogue shown on the right side of Fig. 6.7. We
change the state variable qO to spring deformation xs and the effort to spring force
Fs. The default constitutive relation corresponds to that of the electrical capacitor
This will be changed to read Fs =k*xs. The spring stiffness k is inserted in the ca­
pacitive component parameters list and assigned a value of 1e4, i.e. 10 kN/m.

The Damper model is defined similarly (Fig. 6.8 on the left). The damper force
depends on the relative velocities of its ends. Thus, the Damper model can be de­
scribed by a flow junction f with two ports connected to the document ports
(damper ends) and a third connected to the port of a resistive component R.

The properties of the damper can be defined using the dialogue shown on the
right of Fig. 6.8. We change the effort variable to the damper force Fr and change
the flow variable to the damper extension velocity Yr. We accept the linear consti­
tutive relation, but the resistive parameter RO we change to read b. Because of this

172 6 Mechanical Systems

change, we have to define b as a new parameter. We accept the temporary default
value of 0, i.e. no friction. This can be easily changed later.

Fig. 6.7. The Spring component model

R

1

I

Fig. 6.8. The Damper component model

We create the Wall model in a similar way. The wall fixes one side of the
spring and one side of the damper. This implies zero velocity at the spring and the
damper ends. Thus, in the Wall document (Fig. 6.9), we create an effort junction e
connected to a zero-flow source SF. The other two junction's ports are connected
to the Wall document ports and, thus to the spring and the damper ports (Fig. 6.4).
The effort at the flow source port is equal to the sum of the forces at the other two
junction ports, i.e. it represents the force transmitted to the Wall.

The value generated by the Force component (a source effort) is at creation set
to zero, i.e. there is no force. We change only the name of the effort to F (Fig.

6.2 The Body Spring Damper Problem 173

6.10). The constitutive relation for the force will be changed later when analysing
the system behaviour.

SF----e

Fig. 6.9. The model of the Wall

Fig. 6.10. The applied force Source Effort Port dialogue

The model of the Body Spring Damper system is nearly finished. It is still nec­
essary to define the variables to monitor the system behaviour. These could be the
force acting on the body and the body position. We also might be interested in the
total force transmitted to the wall. We thus create three Output components with a
single input control port each, to generate of the x-t plots. I We rename these com­
ponents Position, Force and Wall force, respectively (Fig. 6.11).

We next define the signals fed to these display components by creating two
control-out ports at the periphery of the Body component. These are connected to
the Position and the Force output components (Fig. 6.11). We also create a con­
trol-out port at the Wall and connect it to the Wall Force component. To define the
labels used for the x axes of the plots, double-click the input ports of the output
components and in the dialogues that appear, change the default symbols to x, F

1 It is also possible to create a single Output component with several input ports.

174 6 Mechanical Systems

and Fw respectively. To define these signals, we have to open the Body and Wall
components again and make the necessary changes there.

~ ~Spring~
~

~ ~Damper""----- BOjdY

L
-- Force

L Force

Wall Force Position

Fig. 6.11. The output variables ofthe system

The new model of the Body is shown in Fig. 6.12 (compare to Fig. 6.6). Inte­
grating the velocity provides information on the body position. Hence, to get the
velocity we create a control-out port at the effort junction. Next, we create an In­
tegrator component, depicted by the usual integration symbol, and add input and
output control ports to it. We connect the control output port of the effort junction
to the integrator input, and the integrator output port to the document port, which
on the other side, is connected to the Position output component (Fig. 6.11).

The initial body position is defined by double-clicking the integrator output
port (Fig. 6.13). By default, the initial value is 0.0.

I

1
e..------- f

1

Fig. 6.12. Creating access to the Body output variables

Finally, to create access to the force applied to the body, we insert a flow junc­
tion between the Body document port, where the force is applied, and the effort
junction port. Next, we create a control-out port at the junction and connect it to
the other Body output document port (Fig. 6.12), which is connected on the other
side to the Force display component.

6.2 The Body Spring Damper Problem 175

Fig. 6.13. The Integrator Output port dialogue

In a similar way we create access to the signal of the total force transferred to
the wall (Fig. 6.14).

SF~ f...----- e

Fig. 6.14. Generating access to the force transmitted to the Wall.

In this way, the bond graph model of the system is developed as a two level
model, i.e. at system level and at the level of component models.

Before we finish with the modelling stage, we check the connections. To check
the connection of the Position output component, we select its port and click the
Joined Port toolbar button. The connection bond between the Position port (at the
system level) and the Integrator output port (at the Body component level) is
shown in blue. By clicking the end ports we can walk between these two compo­
nents.

The Use of Mechanical Symbols

The Body Spring Damper System can also be described by the familiar mechani­
cal symbols (Sect. 4.6.5). The procedure is quite similar to that of the previous
subsection. This time we create a new project entitled "Body Spring Damper ­
Mechanical Model". Next we open the Mechanical Component palette using the
command Use Icons/Mechanical on the Tools menu.

176 6 Mechanical Systems

This palette is used to create the components represented by the familiar sym­
bols for springs, dampers, bodies etc. in a way similar to using the Editing Palette
(Fig. 6.15 on the right). We simply click on the component icon in the palette and
then click at a position in the document. The components created already contain
the ports and also the appended text labels. These are word models but represented
by graphically!

Fig. 6.15. Use of the mechanical symbols for modelling of Body Spring Damper system

There are small differences from the usual word models. Firstly, the ports are
fixed in place. Also, the text is limited in the length, the font size and the orienta­
tion.

We now develop a bond graph model using this palette. Starting from the left
(see Fig. 6.1) we create the wall and ground component using the Ground vertical
left button in the palette. Next, we use the Node button to create a node that is used
for joining the left spring and damper ends,. Then we create spring and damper
objects using the corresponding Spring horizontal and Damper horizontal buttons.
An additional node for joining the right spring and damper ends is also created.
Finally we create the body component using the Body button. We also create a
display (output) component, represented by the x-y axes symbol, using the X-Y
Plotter button (Fig. 6.15). This component is used for displaying all the output
signals. The force generator will be created later.

In this case, the default sense of power flow is different from the anticipated
power flow through the system. We change it by changing the power ports from
power-in to power-out or vice versa. We do this in the usual way: using the tool­
bar Change Port button. We can also change all ports by a single command. Thus,
to change the ports of the spring component, we select it, and then chose the com­
mand Change Ports All on the Edit menu.

6.2TheBodySpring Damper Problem 177

It would be nice to move the right port at the left node to bottom, as well as the
left port of the right node. But the node ports are fixed and cannot be moved.
Thus, we remove them and create corresponding node ports using the Editing pal­
ette. When the palette opens, the Mechanical Components palette disappears, for it
no longer is needed.

We continue with model development using the palette in the usual way. We
also create a power-in port on the right side of the body and the Force component
(source effort) in the same way as we did it in the previous subsection (Fig. 6.16).

~ '<rForce

Fig. 6.16. Thecomponents thatmake the model of the system of Fig.6.1

We need to generate the outputs, too. The x-y display component has been cre­
ated already (Fig. 6.15), so we must create the ports that will be used to feed in the
signals. The body velocity is available at the right node. We thus create the con­
trol-out port at the bottom of the node. In addition, we create the integrator com­
ponent with input and output control ports (Fig. 6.16). The applied and the wall
forces are not directly available. A technique similar to that used in the last sub­
section is used.

Connecting all of the components we get the basic model (the first level) of the
Body Spring Damper system (Fig. 6.17). The models of the components that con­
stitute the system are developed in a way similar to the last section. There are
small differences between Figs. 6.17 and 6.11.

Because of the nodes in Fig. 6.17, the forces applied to the body and to the wall
are the sum of the damper and the spring forces. Thus, the wall component of Fig.
6.17 has only one power input port and there is no effort junction, as in Fig. 6.14.
Similarly, the body component has only one power-out port, in comparison with
Fig. 6.12 and the integrator is put outside of the body component. The spring and
the damper are represented by the same models in Figs. 6.7 and 6.8.

There is another difference. We use a single output (display) component with
several input ports. By default, all variables connected to output component are
plotted on the y-axis and time on the x-axis. We can change this easily by double
clicking the port. A dialogue (Fig. 6.19) appears, in which we can assign variables
to the x or y-axis. We can also choose None if we wish to remove it from the plot.

178 6 Mechanical Systems

There are also some restrictions. Only one of the variables can be plotted on the x­
axis and all others are y-axis variables.

Fig. 6.17. Alternative model of the Body Spring Damper system

Fig. 6.18. The Output Port dialogue

We suggest that the reader to compare this model with that of the previous sub­
section. The models are stored in the BondSim project library and can be taken
from the library by using the command Get From in the Project menu.

6.2.3 Analysis of the System Behaviour by Simulation

In previous sections the bond graph model of the Body Spring Damper system
was developed. The model closely resembles the real system. By running simula­
tions under different conditions, we can observe the time behaviour of different
variables in a way that is analogous to observing behaviour of the real system via
the outputs of instruments. To analyse the dynamical behaviour of the system, we
thus change the inputs and parameters, and study the effects.

Building the Model

We must build the mathematical model that will be solved during the simulation
runs. To build the model, the modelling project must be opened; the Build button

(6.1)

6.2TheBody Spring Damper Problem 179

on the toolbar then is clicked, or the Build Model command on the Simulation
menu selected. We analyse the Body Spring Damper system using the Body
Spring Damper Problem project developed in Sect. 6.2.2 We set the parameters
of the model to the following values:

1. The body mass m= 5 kg
2. The spring stiffness k = 112.5 kN/m
3. Linear damping value b=150 N s/m
4. The input force F=500 N

Denoting the natural frequency of the system as

wn =~
we get Wn= 150 rad/s = 23.87 Hz. Similarly, the damping ratio

~=_b_
2.Jmk

(6.2)

has a value of 0.1.
After the equations are built, we display them in the message window at the

right lower comer of the main window (Fig. 6.19) using the toolbar button Equa­
tions, or using the command Show Model/Model Equations on the Simulation
menu.

::: ~Spr1ng~
II Body-- ,"oroe

:a: ...--DAq)er""'-- 1L
L eeeee

Val.1 Poroe Po.1tion

Fig. 6.19. Thecreation of the model equations

The list of machine-generated equations of the system's mathematical model is
shown in Fig. 6.20. In the first part, the model equations are written in implicit

180 6 Mechanical Systems

form. Next is the list of variables that appear in the model as time derivatives. The
others are purely algebraic. The equations are not actually used in this form inter­
nally in the program, but rather in byte form that permits much more efficient
evaluation. To display them in a familiar mathematical form, the model equations
are first decompiled and simplified. The equations can also be printed to a file in
ASCII format by clicking on the window using the right mouse button, then se­
lecting the command Print from the menu that drops down.

Equations of the model :
EQ (1) ((-Y (3) + Y (5)) - Y (7)) = 0
EQ (2) (Y (7) -Y' (8)) = 0
EQ(3) (Y(1)-(112500*Y(8))) = 0
EQ(4) (Y(2)-(150*Y(9))) = 0
EQ(5) ((Y(5)-Y(3))-Y(9)) = 0
EQ (6) Y (10) = 0
EQ(7) ((-Y(4)+Y(l))+Y(2)) = 0
EQ (8) (Y (3) -Y (10)) = 0
EQ (9) (((-Y (1) - Y (2)) + Y (6)) - Y (11)) 0
EQ(10) (Y(l1)-Y' (12)) = 0
EQ(l1) (Y(12)-(5*Y(5))) = 0
EQ (12) (Y' (13) - Y (5)) = 0
EQ(13) (Y(14)-Y(5)) = 0
EQ(14) (Y(6)-500) = 0

List of differentiated variables

Y(8), Y(12), Y(13)

Fig. 6.20. Listing of machine generated model equation

The mathematical model is in the form of a system of differential-algebraic
equations that is solved during simulation by suitable methods (BDF method,
Chapt. 5). During model building the matrix of partial derivatives (Jacobian) of
the system equations is also symbolically generated and stored internally.

This matrix of partial derivatives is also available for reviewing by selecting the
Show Model/Matrix command on the Simulations menu, which decompiles the
matrix and display it in the message window. The matrix is represented in the co­
ordinate form, i.e. as the matrix element expressions and corresponding row and
column index values (Fig. 6.21). It can also be printed to a textual file similar to
the model equations, i.e. by clicking on the window using the right mouse button.

The model equations are expressed using the machine-generated variables. To
see which variables in the equations correspond to which variables in the bond
graph model, place the mouse cursor over an elementary component port. A small
window then appears giving information on the variables stored at the port (Fig.
6.22). When the cursor is moved away from the port, the window disappears. Such
a window appears only at elementary component ports, as other ports do not store
variables.

6.2 The Body Spring Damper Problem 181

Matrix of partial derivatives
J (1) = -1
IRow(l) = 1 JCol (1) 3
J(2) = 1
IRow(2) = 1 JCol(2) 5
J(3) = -1
IRow(3) = 1 JCol(3) 7
J(4) = 1
IRow(4) = 2 JCol(4) 7
J(5) = -cj
IRow(5) = 2 JCol(5) 8
J (6) = 1
IRow(6) = 3 JCol(6) 1
J(7) = -112500
IRow(7) = 3 JCol(7) 8

Fig. 6.21. Part of the system matrix ofpartial derivatives

::: __ spring"""'-
• BOdy~Poro..

s: __Duper--- 1L I'(

Lw~ Poro.. l'o8ition

Fig. 6.22. A window showing the variables stored in the port

Running Simulations

The model is created with zero initial conditions for all variables. We changed
only the value of the input force. Simulation of such a model corresponds to simu­
lating the system step response to the applied force. To start, we click the Run
toolbar button, or choose the Run command on the Simulation menu. The com­
mand display a dialogue used to define the necessary simulation parameters, such
as the duration of the simulation run, the increment at which output values will be
generated, error tolerances etc. (Fig. 6.23).

The natural frequency of the system is about 24 Hz, hence the period is about
0.04s. We can expect the transient to die out after about five periods, or 0.2 s. We
use a somewhat greater simulation period, e.g. 0.5 s, to be sure that the transient

182 6 Mechanical Systems

has settled down. By typing in the simulation period, the output interval and the
maximal step-size changes automatically to one hundredth of this value, i.e. to
0.005 s. We accept this value. The maximum step-size should be greater than the
output interval. It is usually set to the same value as the output interval. We can
choose a smaller value for the output interval if we wish to get better resolution
and smoother diagrams. This means, however, that there are more calculations and
the simulation run needs more computer time and memory resources.

Fig. 6.23. The simulation parameter dialogue

Default error tolerances are set to 10.6 for both the absolute and the relative er­
rors. The default integration method is the BDF method with a sparse matrix linear
equation solver (Sect. 5.3). Accepting the simulation data by pressing the OK but­
ton, the simulation starts.

When the simulation starts, a message at the right bottom part of the main
screen informs the user of the integration method used. Simultaneously, at the
right end of the status bar, a progress bar appears. This shows the progress of the
simulation. When the simulation finishes, the progress bar disappears and a mes­
sage informs the user of this fact. To see the results of the simulation we double­
click on the output components. This opens windows that present results as x-y or
x-t plots. Thus, opening the Position component of Fig. 6.19 we get the time his­
tory of the body position as shown in Fig. 6.24.

We can examine the values of the variables by clicking inside the plot. Hori­
zontal and vertical lines appear, which intersect on the curve. The corresponding
values of the variables appear below the plot, as seen in the Fig. 6.24.

It is also possible to get a list of output values by clicking on the plot with the
right mouse button. A drop-down menu appears from which we can choose the
Show data command. This command creates a list box containing values of the
variables. By scrolling through the list box we can examine values of variable

6.2TheBodySpring Damper Problem 183

pairs generated by the simulation. It should be noted that the number of value
pairs is limited. The values listed are symmetrically with respect to the current
value selected by the mouse. If there is a large number of output values, the values
throughout the complete range can be examined by a combination of mouse click­
ing and the use of the list box.

1.0

0.8

0.6

0.4

0.2

0.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Time: 0.02

x: 0.00764501

Fig. 6.24. Theresponse of the bodyposition to a step in the applied force

There is also another thing worth mentioning: The output windows can be
opened before we start the simulation run. In that case, an empty plot appears. Us­
ing the Set axes command on the menu Simulation, we can change the setting of
the plot axes used-i.e. quadrants used, the range and the names of the variables
plotted. Of these, the range is the least important, as the program automatically
calculates and resets the range during the simulation. The setting of axes also can
be changed when simulation ends. When the simulation starts the output values
are displayed as the simulation advances. This way, we can observe the behaviour
of the system during simulation. This makes the simulation somewhat longer, but
this usually doesn't matter, as much can be gained by viewing how the processes
develop.

In present example, we can compare the values obtained by simulation with the
exact solution of the problem under study. Recall that the equation of motion of
the Body Spring Damper system can be written as

d2x dx
m-+b-+kx=F (6.3)

dt2 dt

184 6 MechanicalSystems

Solving the equation the response to a step F of force can be written as (see e.g.
[1])

where

and

xo=F/k

(6.4)

(6.5)

(6.6)

Table 6.1 compare values obtained by simulation and by direct calculation ac­
cording to Eqs. (6.4}-(6.6). The values are rounded to ten figures. The absolute er­
rors are within the absolute error tolerance (10-6). Better agreement can obtain by
increasing the error tolerance.

Table 6.1. Responseof the body position to a step in the applied force

Time in s Simulation Eq.(6.2)

0.01 0.003761887676 0.003761880557
0.05 0.003448204502 0.003448187707
0.1 0.005076850687 0.005076930584
0.2 0.004465699802 0.004465689113
0.3 0.004406268287 0.004406235937
0.4 0.004455428887 0.004455470625
0.495 0.004444573861 0.004444576945

We also look at the simulation statistics using the Show statistics command on
the Simulation menu. The results are summarized in Table 6.2. The simulation
was relatively efficient using the maximal order of the method (5) at the end of the
simulation.

Table 6.2. The simulationstatistics

Name Value
The order of the method at the last step 5
The number of the steps taken 431
The number of the functionevaluations 901
The number of the partial derivativematrix evaluations 468
The relativeerror tolerance 10-6

The absoluteerrortolerance 10-6

The elapsed time s 0.290 (0.391)
Note: The simulationwas conductedon a laptop with a Pentium III 650 MHz processor.The

elapsed time is for the simulationruning in the backgound.In parenthesis is given the
time with the plot window opened.

6.2 The Body Spring Damper Problem 185

Response to Harmonic Excitation

The study of mechanical vibration pays great attention to the influence of forces
that vary harmonically (see e.g. [1]). We can study such influence by defining a
force at the power port of the Force component (Figs. 6.10 and 6.11) as

F = FO* sin(omega * t) (6.7)

The amplitude FO =500 N and frequency omega of the applied force are parame­
ters, which can be set to any appropriate value.

We study the effects of the harmonic force on the system by changing its fre­
quency. The simulation interval is chosen as 1.0 s and the output interval is 0.001
s for better resolution. Some typical results are given in Figs. (6.25}-(6.28).

5.0

2.5

-2.5 c +_----------- +---------- --'--'-+-I-lI-1HI

-5.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 6.25. Resonant response ofthe Body Spring Damper system (ron =150 rad/s, s=0)

In vibrations as well in other fields an important role in design is played by am­
plitude-frequency and phase-frequency diagrams. Determination of such diagrams
is not an easy task particularly for non-linear systems (see [2] for detailed discus­
sion). In the case of linear systems such as the Body Spring Damper system these
diagrams can be found from the Fourier transform of the impulse response of the
system [1,2]. We confine further attention to the evaluation of the amplitude­
frequency diagrams only.

The impulse response of the system can be approximated as the time response
to a very short force pulse of unit area (Fig. 6.29). Such a pulse can be described
as

(6.8)

186 6 Mechanical Systems

5.0

2.5

.. 10-2 0.0

-2.5

-5.0

0.0 0.2 OA

Time

0.6 0.8 1.0

Fig. 6.26. Resonant response of the Body Spring Damper System (ron = 150 rad/s, s= 0.1)

1.0

-1.0 _

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 6.27. Force at the wall at a frequency of212.1 rad/s ("l/2ron)

6.2 The Body Spring Damper Problem 187

5.0

-5.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 6.28. Force at the wall at a frequency of300 rad/s

Tp

Fig. 6.29. A short unit area pulse as an approximation of a unit impulse

Using the question operator of Sect. 3.5, the relationship for the pulse of force
can be expressed as

F = t < Tp ? Fp : 0 (6.9)

The pulse duration parameter Tp should be very short and the strength Fp should
be such that their product is equal to one

Let the response to such a pulse be denoted as h(t). Then the frequency re­
sponse of the system is given by the Fourier transform

188 6 Mechanical Systems

+00

X(jeo) = fh(t)ejro1dt
-00

(6.10)

We evaluate the Fourier transform using the Fast Fourier Transform (FFT) method
and find the amplitudes as functions of frequencies in Hz.

The FFT treats the function as periodic. To approximate an aperiodic function,
we can extend the function values by adding zeros [2]. As more zeros are added,
better resolution in the frequency response is obtained. To create the impulse re­
sponse of the system, we select a simulation interval of 1 and an output interval of
0.001 5. This is because we expect the impulse response to die out well before 0.5
5 (see Fig. 6. 24). The duration of the pulse we take as 0.00015, i.e. one tenth of
the output interval. The impulse response of the body position is given in Fig.
6.30.

2.0

1.0

>< 10-3 0.0

-1.0 __

-2.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 6.30. The impulse response of the body position

To create the corresponding frequency response, click the right mouse button
on the plot and select from the drop-down menu the Frequency response com­
mand. The response created covers frequencies up to 500 Hz. We expand a part of
it by clicking on the plot using the right mouse button again, selecting the Expand
command, then setting the range from 0 to 100 Hz. The resulting diagram is
shown in Fig. 6.31.

We again compare simulation values with the exact solution. Recall from Eq.
(6.3) that the amplitude of the frequency response to the unit impulse force is
given by (see e.g. [I])

6.2 The Body Spring Damper Problem 189

5.0

4.0

3.0
""D

10-5.e
"Eo
E« 2.0

1.0 !

0.0 IIWlllllllllllllllllllllllllllllllllll1tllUUuw....,..i
0.0 0.2 0.4

Frequency

0.6 0.8 1.0

Fig. 6.31. The frequency response of the body position

IX(joo)1 = 11m
~(oo~ _ 00

2)2 + 4t;;2oo2oo~

After normalization of the frequencies, we get

(6.11)

(6.12)

Using the last expression, we can calculate the amplitude at the same frequen­
cies as that obtained by simulation. The amplitudes obtained by simulation and by
Eq. (6.12), rounded to six figures, show good agreement (Table 6.3).

Table 6.3. Amplitude ofthe frequency response of the body position (m)

Frequency in Hz

0.0
10.01
24.02
50.05
99.10

Simulation

8.87694 10-6

1.07177 10-5

4.40747 10-5

2.61028 10-6

5.59191 10-7

Eq.(6.12)

8.88889 10-6

1.07296 10-5

4.40782 10-5

2.59828 10-6

5.46925 10-7

The impulse response and the frequency response are quite sensitive to the du­
ration of the input pulse. Thus, using the pulse width equal to the output interval,

190 6 Mechanical Systems

the amplitude obtained agrees with the exact values to one single significant fig­
ure. This is to be expected because the Fourier transform of a pulse is not equal to
one but is sine function [2].

The Fourier transform of the pulse can be obtained in the same way as the im­
pulse response the system. This time we use a simulation interval of 0.0005 sand
the output interval of 1.0.10-6 s and restart the simulation. Then, by opening the
Force plot and taking the frequency response command with right mouse button,
we get the transform we wish. We also expand only part of the frequency range
from 0 to 1.105 Hz. The results are shown in Fig. 6.33. The well-know sine func­
tion is clearly visible.

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4

Frequency

0.6 0.8 1.0

Fig. 6.32. The Fourier transform of the input force pulse

It should be noted that the responses obtained are not normalized to the de
value (zero frequency) and are close to the form obtained by direct measurements
on the physical system.

6.3 Effect of Dry Friction

We continue with the study of vibration systems by analysing the influence of dry
friction. This is usually treated by separately studying the motion in the positive
and negative directions, and the conditions under which the motion ceases [1]. We
will develop a model of dry friction that can be used for the prediction of such a
motion. The model can be used for the analysis of more general systems in which
this type of friction is important.

6.3Effectof Dry Friction 191

6.3.1 The Model of DryFriction

So-called dry friction occurs when one solid slides over another. The laws govern­
ing such friction date back to Leonardo da Vinci (1452-1519), but are better
known by the work of Coulomb in 1785 (Fig. 6.33). A modem exposition of the
theory is given in [3]. In the bond graph literature there were also attempts to
model dry friction. Thus in [4] the friction around zero velocity is modelled as a
force dependent on motion and, outside of this region, as a function of velocity
only. In [5] discontinuous laws offriction were modelled by sinks of fixed causali­
ties. The modelling of friction was analysed also in [6], motivated by the physical
theory of [3]. The model proposed consists of capacitors and resistors intercon­
nected by transformers, whose ratios change smoothly from one to zero, depend­
ing on the state of the body motion.

F

v

Fig. 6.33.The dry friction law

We also use the theory of [3], but friction will be modelled by a single element
that imposes restrictions on the body motion. A suitable element for this is the
switch element (Sect. 2.5.8), as it is capable of imposing the zero flow (sliding ve­
locity) condition before motion commences, and also when the motion ceases. It
also accounts for constant---or possibly variable--effort (friction force) during the
motion.

The contact area between bodies generally is not smooth, but is actually rough
Fig. 6.34. Thus, when a body is pressed onto another, the real contact starts at the
tips of the highest asperities. These deform until the area of contact is large
enough to support the load without yielding. Owing to high pressures and tem­
peratures at the contacts, solid junctions are created at the contact places known as
micro welds.

To slide one body over another body (ground), it is necessary to apply a force
in the direction of the sliding that is large enough to break the micro welds. Until
the motion commences, the body is in static equilibrium under the action of the
applied forces, including the other body's reaction force (Fig. 6.35).

The component of the reaction force Fn that is normal to the sliding direction is
the usual normal reaction, and the component in the direction of sliding is the fric­
tionforce. It is denoted simply as F.

192 6 Mechanical Systems

Fax

Micro welds

Fig. 6.34.Solidjoiningof the bodiesat the contactpoints

Thus, the conditions of equilibrium can be stated as

Fax+F=O}
Fay +Fn =0

and

(6.13)

V X =O} (6.14)
V y =0

where Vx and vy are the velocity components of the body relative to the other body
(ground).

Fay

Fax

F

Fig. 6.35.The forces actingon the body

The limiting force value at which the welds break and hence sliding com­
mences is termed the static friction Fs . Thus under conditions of Eq. (6.13) the
condition that the friction force satisfies is

(6.15)

6.3 Effect of Dry Friction 193

This limiting value, corresponding to the strength of the micro welds, depends
also on the time that the bodies are in the contact. When the bodies are in contact
there is migration of particles over the junction by diffusion, and this needs some
time. If there is enough time, intimate junctions are established and the two bodies
behave as single body. This way, the static force increases to a maximum value
that the micro junctions can sustain. When we speak of static friction, we mean
this full strength value. The Coulomb law relates this limiting force to the normal
reaction by

(6.16)

The ~s is the well-known static friction coefficient.
When motion starts, there is deformation of the asperities that are micro welded

until they break. Perhaps before complete break down other asperities come into
contact and new micro welds form. They, in tum, break and yet other micro welds
form and the process continues as the body slides. During the motion there is not
enough time for migration across junctions, hence the force of asperities breaking
during body motion is somewhat less than the static friction value. According to
experimental evidence, this force is more or less independent of the sliding veloc­
ity and has the sense opposite to the velocity. During sliding, friction satisfies the
relationship

F + ~kFn = 0, v > O}
(6.17)

F - ~kFn = 0, v <°
Here the ~k is the kinetic coefficient offriction, which is somewhat less then the
static coefficient, typically about 20 - 25%.

To complete the model of friction at this stage, we need to define the state at
the very moment when motion commences, which ideally occurs at zero velocity
(Fig. 6.33). This is not covered by Eq. (6.17) and hence we add this condition to
Eq. (6.15). The friction characteristics valid from no sliding until the sliding
commences read now as

(6.18)

This equation is compatible with Eq. (6.17) that is it is valid for the sliding. The
Eqs. (6.17) and (6.18) are constrains on the body motion imposed by the mecha­
nism of dry friction. We have not tried to find an explicit relationship for the fric­
tion force, as this is difficult to find in the general case. We don't know if the
force at the contact is known or not, and similarly for the velocity. Hence, the ef­
fect of friction is represented by a simple linear implicit equation, different for the
body sliding and not sliding.

We dwell a little more on Eq. (6.18). To find out whether it is applicable for a
given state of the body motion, we need to test the sliding velocity against the zero
value. In computer arithmetic it is, in general impossible to find out the exact mo­
ment when some variable attains a definite value. Thus, some tolerance on the ve-

(6.19)

194 6 Mechanical Systems

locity around zero is necessary. In parallel with, from the physical side there is no
such thing as "rest". The theory of [3] proves that the static friction behaviour
holds also when the sliding is very slow. Thus, we reformulate the above relations
to be valid if [vl-ctol. The tol represents a tolerance, which we take to be much
smaller than the error tolerance used for simulating motion and close to the ma­
chine epsilon? In the BondSim there is a predefined parameter BG_EPSILON, de­
fined as four times the machine epsilon. This can be used if such a low tolerance is
needed.

The relationships given by Eqs. (6.17) and (6.18) can be represented in the
form that is used when describing the element constitutive relations (Sect. 3.5).
The relations can be compactly expressed using the question ('?:') operator. The
relationship reads

abs(v) < tol?(abs(F) <= mus * Fn?v: (F >= O?F -muk * Fn:

F + muk * Fn) : (v >= tol? F + muk * Fn : F - muk * Fn) = 0

In the equation instead of the Greek symbol u, mu is used, and also the indices are
written on the same line. The program supports only Latin characters, without any
formatting.

The statement can be understood as:

if (the absolute value ofv is less than a tolerance) then
if (the absolute value of F is less than or equal to the static friction) then

v=O
else if (F is greater then or equal to zero) then

F- muk*Fn = 0
else

F+muk*Fn = 0
else if (v is greater than or equal to the tolerance) then

F+muk*Fn = 0
else

F-muk*Fn =0

The left side ofEq. (6.19) looks like a C language statement. It states in a com­
pact form the conditions imposed by dry friction on the rest of the system. The
mechanism of friction is not a trivial one. There are five possible states through
which the system goes during its motion. Unfortunately, this is not the end of the
story. We have to define also the conditions for motion stopping. Otherwise, such
a model is not of much use in simulations.

In books on vibrations such as [1,7], the motion stops when the amplitude of
the spring force acting on the body is less than the static friction. This is not a pre­
cise enough statement. According to [3,6], when the body stops, friction does not
achieve the static value again, but at most the kinetic value. To find a more precise

2 By definition the machine epsilon is the smallest positive number e such that 1+t;;t 1 in
machine arithmetic and for the given floating-point number representation. It is for dou­
ble precision numbers about 2.2 .10-16.

6.3 Effectof Dry Friction 195

statement of the stopping condition, we need to express it in terms of the variables
at the interfaces of the two bodies, i.e. the force and the velocity at contact.

We look more carefully at what happens when the body velocity changes its
sign. During the motion there is dynamic equilibrium of the forces acting on the
body, including the body inertia force. Suppose that the active force is acting in a
manner that reverses the body motion. When the velocity changes its sign, the
sense of the friction force changes too. Hence, the body acceleration changes
abruptly. If the active force on the body is outside the kinetic friction limit, the ac­
celeration will not change its sign and hence the body will continue to move in the
opposite direction (Fig. 6.36a).

I----_ ------_ + ----_ -

:a IFin -Ii !a I/in I
_! -F . FF F

I---_ -------_ + _-.------_ .

v ,
-'

v-

1---· a-----;------+. t

a ---~
a -- !

-----+-------. t
!-_- a
~

·· -- t ------ .

I
vi

~!-=::::= .t

)

~i-===-=-=-== . t

(a) (b)

Fig. 6.36.Effects whenthe velocity changes signand if the bodyactive force is:
(a) outside the friction limit, (b) inside the friction limit

If, on the other hand, the active force is within the kinetic friction limit, the
body acceleration will change its sign and the body will try to move back (Fig.
6.36b). This, in effect, means that the friction force tries to push the body back,
which is impossible because dry friction is not capable of delivering positive
power to the body. The dynamic equation of motion and the characteristics of dry
friction as given by Eq. (6.19) thus are incompatible. Looking from the viewpoint
of the asperities, there is no abrupt change in the friction force. However, owing to
the asperities stiffness and internal damping, the body first slows down and stops.
It continues to move in the opposite direction only if the absolute value of the total

196 6 Mechanical Systems

active force on the body is greater then the asperities breaking force, i.e. the ki­
netic friction.

Thus, to solve this problem we must apply additional requirements. In particu­
lar, if the power delivered by dry friction is positive, the velocity of sliding should
be equal to zero. This is stated as follows

F·v>O=>v=O (6.20)

(6.21)

Adding this requirement, the final form of the dry friction constitutive relation
reads (see Eq. (6.19))

abs(v) < tal? (abs(F) <= mus * Fn? v: (F >= O?F - muk * Fn:

F + muk * Fn)):

(F * v <= O? (v >= O?F + muk * Fn: F - muk * Fn): v) = 0

To model dry friction we use a Switch element with a constitutive relation
given by Eq. (6.21). The model of a ground body that acts on another body by the
mechanism of dry friction is shown in Fig. 6.37. There are two branches to the
model.

..i

I I
SF ------"0. f f~ SF

Fig. 6.37. The bond graph model of the ground with dry friction

The left branch corresponds to the interactions in the sliding direction, and the
other describes the interactions in the normal direction (Fig. 3.35). The flow junc­
tion on the left simply states that the body velocity (the upper port) is equal to the
sum of the ground body velocity---defined by the flow source SF on the left-and
the body sliding velocity. The flow junction variable is the friction force. Positive
power flow at the port corresponds to the force and velocity components taken in
the direction of the coordinate axis. This way, power transfer from the ground by
the mechanism of dry friction is positive if the friction is positive. Eq. (6.17)
clearly shows that it is negative, hence the real power transfer is negative. The
other flow junction asserts that the velocities of the bodies in the normal direction
are equal. The junction variable is the normal reaction, which is fed back to the
control port of the switch element supplying it with the necessary information.

6.3 Effectof DryFriction 197

Based on this model we can define a component representing the dry friction
interactions (Fig. 6.38). The component implements the model represented by the
central part of Fig. 6.37 (without the flow sources), as shown in Fig. 6.39.

Fig. 6.38.Thecomponent representing dry friction

SW--f

i
f.t..

f

Fig. 6.39.Model of dry friction

We will now test the model on various problems in which the friction is impor­
tant. We start with vibrations of the single degree of freedom system of Sec. 6.2,
replacing the linear friction by dry friction. We then analyse some problems in
which stick-slip appears.

6.3.2 Free Vibration of a Body with Dry Friction

We return to the problem of Sect. 6.2.1 and analyse the free motion of the body
under the influence of dry friction at the contact with the ground (Fig. 6.1). The
corresponding bond graph model is given in Fig. 6.40.

The model is similar to that of Fig. 6.11. The main difference lies in replacing
the linear mechanical damper with the model of the ground in Fig. 6.37. This in­
cludes the effect of dry friction, but the external force is removed. Weare no
longer interested in the wall force, hence the wall will be represented simply by a
zero flow source. The model of the body is somewhat more complicated than that
in Fig. 6.12 because we need a model of the body motion in two dimensions, i.e.
along the ground and normal to the ground (Fig. 6.41).

198 6 Mechanical Systems

.... . _Velocity

....--Spn.ng__Body~

~ 1 "'-+ PositioD

Ground

Fig. 6.40. Free motion of a body with dry friction

I

1
e

.....- \.- f-
I

1 SE

e~
•

Fig. 6.41. Model of the body motion in two dimensions

The left effort junction of Fig. 6.41 describes the translation of the body along
the ground surface. Similarly the other junction represents the summation of the
forces in the normal direction. The weight of the body is represented by the source
effort SE. The I elements represent the inertia of the body. To monitor the motion
of the body, the velocity is taken from the junction and fed out to the correspond­
ing display component Velocity (Fig. 6.40). The position is obtained by integrat­
ing the velocity and is fed out and connected to the Position output (display) com­
ponent.

To compare the behaviour of the two models, the basic parameters used are the
same. Thus, the parameters of the model are taken as

1. The body mass m =5 kg
2. The spring stiffness k = 112.5 kN/m
3. The coefficient of static friction Ils = 0.5
4. The coefficient of kinetic friction Ilk = 0.4

6.3 Effectof DryFriction 199

5. Gravitational acceleration g = 9.81 m/s"

The initial displacement of the body is 5.0.10-3 m and the initial velocity is 0 m/s2
.

The complete model can be found in the project library under the name Body Mo­
tion with Dry Friction.

The model is more complex than in Sect. 6.2; it consists of seventeen equations
and is of index 2 type (Chap. 5). During the simulation the structure of the model
frequently changes, which could pose a problem for the solver. The method de­
scribed in Chapt. 5, however, copes with this rather well. The simulation was run
for 0.5 s with an output interval of 0.001 s.

Results (Fig. 6.42) show that amplitudes of the body position decease linearly
until the body settles down after about 0.3 s. The period of vibrations is equal to
21t/(J)n, where (J)n is the natural frequency of vibration. The theoretical value of the
decrease in amplitude per cycle is equal to 4L1, where L1 = llmg/k, is based on the
same value for both friction coefficients [1].

5.0

2.5

>< 10-3 0.0

-2.5

-5.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 6.42. Thetransient of the bodyposition underthe action of dryfriction

Using the parameters given above the value of the amplitude drop we obtained
by this formula is 0.0006976 m/cycle. By simulation the amplitude drop per cycle
of 0.000699 m is obtained. The body settles down at a position of 0.000114159
m, which corresponds to a spring force of 12.84 N, or 65 % of the kinetic friction

The simulation statistics are given in Table 6.4 (for the output interval 0.005 s).
In comparison with Table 6.2 there are apparently many more integration steps,
and evaluations the function and the matrix. The simulation takes twice as long.
What is more important is that, despite of the mathematical model, the simulation
is conducted efficiently.

200 6 Mechanical Systems

Table 6.4. Simulation statistcs for bodywithdry friction

Name
The orderofthe method on the last step
Thenumber of the stepstaken
Thenumberofthe function evaluations
Thenumber of the partial derivative matrix evaluations
Therelative errortolerance
Theabsolute errortolerance
The elapsed times

6.3.3 Stick.Slip Motion

Value
I
915
2205
1305
10-6

10-6

0.631 (0.741)

In the previous problem static, friction is important only at the beginning of the
motion. Later, when oscillations begin and finally settle down, the kinetic friction
is the main influence. This and similar behaviour in engineering equipment often
leads to neglecting the difference between static and kinetic friction and thus sim­
plifying the model of dry friction (see e.g. [7]). This is not the case, however, in
processes in which intermittent (stick-slip) motion appears as a consequence of the
difference between these two friction coefficients. This is analysed experimentally
and theoretically in detail in the classical reference on friction [3].

The stick-slip motion occurs between the sliding surfaces of two bodies in con­
tact when one body is driven with constant, fairly low velocity, and the other has a
certain degree of elasticity. This is the case with the bodies in Fig. 6.40 if the
ground body is driven with constant and very low velocity and the other body is
initially at rest. At the beginning when the spring force is less than the static fric­
tion, the ground drags the body, therby increasing the tension in the spring. This is
the "stick" phase. It lasts until the tension in the spring reaches a value at which
the spring force overcomes the static friction. At that moment, friction between the
body and the ground drops to the kinetic friction value, which generally is lower.
Hence, the body under the action of the spring slips quickly back over the ground.
The "slip" phase lasts until the two velocities again are equal. A new "stick" phase
then begins.

Intermittent motion can be a problem in applications in which smooth motion is
important. As discussed in [3], if there is some damping in the system, intermittent
motion may not occur at all, even if there is a finite difference between static and
kinetic friction. Nevertheless, we will show the behaviour of the system of Fig.
6.40 under very slow ground motion conditions.

In the problem of Fig. 6.40, we assume the ground is driven at a constant veloc­
ity Va =0.001 rn/s and the body is initially at rest. Thus in the left flow source of
the Ground component (see Fig. 6.37) we change the value of the flow source ve­
locity to 0.001. Also, in the capacitive element of the Spring (see Fig. 6.8), we set
the initial displacement to zero. In the inertial elements of the Body model (Fig.
6.41), we retain zero initial conditions, but change the initial position in the inte­
grator to zero. We build the simulation model and run the simulation for 0.55 with

6.3 Effect of Dry Friction 201

an output interval of 0.001 s, accepting the default values for the other simulation
parameters. The results are given in Figs. 6.43 and 6.44.

Fig. 6.44 shows the position of the body and Fig. 6.45 its velocity with time.
The body sticks to the ground body until the spring tension is greater than the
static friction. This occurs 0.218 s after the start of the motion. The body then de­
taches from the ground and, at first, continues to move in the same direction.
Shortly after, at about 0.219 s, its velocity drops to zero and it then moves in the
opposite direction. Reattachment occurs at 0.241 s, when its velocity catches up
with the velocity of the ground.

2.0

1.6

1.2

0.8

0.4

0.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Time: 0.219

x: 0.000218394

Fig. 6.43. The simulation of the stick slip motion of the body

We can easily find the displacement of the body during slip. Let Yl be the posi­
tion of the body at the start, and Y2 at end, of slip. During slip the friction force is
equal to kinetic friction. Applying the law of kinetic energy change during the
slip, we easily find the relationship

(6.22)

or

(6.23)

202 6 Mechanical Systems

1.0

0.5

> 10.2 0.0

-0.5

·1.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

(6.24)

Time: 0.219

v: 6.38933e-005

Fig. 6.44. Change of body velocity during stick-slip motion

On the other hand, at the start of slip, we have Yl=Fs/k. Taking into account
that Fs=llsmg and Fk=llkmg we get

Y1 = Ilsmg/ k

Y2 = (21lk -Ils)mg/k

Hence, the slip is given by

(6.25)

This shows that slip is possible if there is a difference between the static and
kinetic coefficients of friction. The value shown in Fig. 6.44, as well as the differ­
ence between maximal and minimal positions, are somewhat greater then these
values. This is because detachment and reattachment of the body to the ground oc­
curs shortly before and after the zero velocity positions (Fig. 6.44).

6.3.4 The Stick·Slip Oscillator

As the next example, we simulate the behaviour of the stick-slip oscillator de­
scribed in [8]. The system that we analyse consists of a body which has one elastic
degree of freedom and which can slide over the ground under the action of an ex­
ternal force (Fig. 6.45). On the body there is placed another body, which can also
slide over the first under the action of a force.

6.3 Effect of Dry Friction 203

Slipping surface

Slipping surface
Fig. 6.45. The stick-slip oscillator

The forces change with time harmonically, i.e.

Fj = FiO cos(rot+ <pj) , (i =1,2) (6.26)

We assume that dry friction exists at both slipping surfaces.
A detailed analysis on the possible states of sticking or slipping, along with

phase portraits obtained by numerical integration, is described in [8]. We apply
here the more direct approach of bond graph modelling and simulation, as in the
previous problems.

The bond graph model of the system in Fig. 6.45 can be developed easily using
the model of dry friction developed in Sect. 6.3.1. We develop the model using the
mechanical schematics. Dry friction is modelled using the corresponding compo­
nent from the library (Figs. 6.38 and 6.39). The complete model is shown in Fig.
6.46. The main components are similar to the model of Fig. 6.40. Components F1
and F2 are source efforts described by Eq. (6.26). The component Body 1 differs
from Body2 because there are four ports, two for connecting to the spring and the
external force source and two for the interactions with the ground and the upper
Body2. There are also several signals used for monitoring. Thus, from the first
body signals monitoring the inertial force, velocity and position in the sliding di­
rection are taken and connected to the x-y displays shown on the right. Similarly,
signals of velocity and position of the upper body motions are taken from the
Body2 component and connected to the third display. Details of the model can be
found in the library under the project name Stick-Slip Oscillator.

The parameters of the model are as in [8]:

1. The body masses are m- = mz = 1 kg
2. The spring stiffness k = 150 N/m
3. The coefficients of friction Ils =Ilk =1 (the same for both surfaces)
4. The driver amplitudes F01 = 60 Nand Foz = 60 N
5. Driver frequencies 0)1 = O)z = 21t rad/s
6. The drive phase angles <!'1 =0 and <!'z =1t rad
7. The acceleration due to gravity g =10 m/sz

The simulation was run for 5 s, which corresponds to five cycles of vibration.
To more accurately simulate discontinuities in inertial forces (accelerations here),

204 6 Mechanical Systems

a fairly small output interval of 0.001 s is chosen as well as a tighter error toler­
ance of 10-8 . Even with these values, the simulation time is not too long (about 5.9
S on a Pentium III laptop). The results are shown in Figs. 6.47-6.49.

k

Fig. 6.46. The bond graph model ofthe stick-slip oscillator

The system establishes stable limit cycles after two or three cycles (Figs. 6.47
and 6.48). The oscillations of Body 1 are fairly symmetrical about the origin and
of Body2 are displaced a little to the right (about 0.04 m).

5.0

2.5

0.0

-5.0

-5.0 -2.5 0.0

x1

2.5 5.0

Fig. 6.47. The phase portrait of Body1

6.3 Effect of Dry Friction 205

5.0

2.5

0.0

-2.5

-5.0

-5.0 -2.5 0.0

x2

2.5 5.0

Fig. 6.48. The phase portrait of Body2

5.0

2.5

~ 101 00:: .

-2.5

-5.0

-5.0 -2.5 0.0

yx1

2.5 5.0

Fig. 6.49. The acceleration-velocity diagram of Body1

Fig. 6.49 gives a plot of inertial force-s-or acceleration, as the mass is 1kg­
against velocity for Body 1. The diagram is not smooth as in the previous case,
because there are jumps in the inertial forces when either body change motion

206 6 Mechanical Systems

from sticking to slipping, or vice versa. The bodies are coupled by friction, hence,
these changes are reflected in both bodies. By looking carefully, we can see the
limit cycle (the inner loop).

Discontinuities in accelerations occur at zero velocity and at a velocity of
±2.626 m/s. The limit cycles closely agree with the phase diagrams of [8]. In ad­
dition, Figs. 6.47-6.49 also show how the cycles gradually develop.

6.4 Bouncing Ball Problems

The next type of problem that we analyse is one of the simplest problems dealing
with impact. We analyse the impact of a ball dropping on a massive table
(ground). We analyse first the case where the table is at rest. But more interesting
is the problem when the table vibrates with constant frequency in which case cha­
otic vibrations can occur [9]. We first develop a simple model of impact, which is
then used in bouncing ball problems. This model can be used as bases for solving
much more complicated systems involving multibody motion with impact. It also
can be combined with the model of dry friction developed in the previous section
to model complex interactions at the contacts.

6.4.1 Simple Model of Impact

The dynamics of multibodies with contacts are studied in detail in [8]. This uses
an approach based on the classical Newton theory and the Poisson laws of impact.
It is applied to solution of a range of problems. We will not follow such an ap­
proach here, but use the relatively simple model of Fig. 6.51 in which the contact
between two bodies in the direction normal to the contacting surface is represented
by a spring-dashpot component. Such a model is also presented in [8], but we ana­
lyse it in more detail. The model is convenient because it enables us to treat proc­
esses at the impact of two bodies as a component that imposes certain conditions
on the rest of the system. This type of model offers the possibility of a more rigor­
ous treatment of the properties of the materials at the contact. It is usually argued
that such models lead to very stiff systems, which are not easy to solve. But other
approaches, such as in [8], also are not simple because the interactions at impact
are rather complicated. The BDF integration method used in the BondSim is capa­
ble to solving such stiff models relatively efficiently.

We formulate the equation of motion of the ball and the spring-dashpot compo­
nent as in [8]. First we define the kinematic relationships

and

dy
v=-

dt

(6.27)

6.4 Bouncing Ball Problems 207

Y Yr

Yg

(6.28)

Fig. 6.50. A simple model of impact

dYg
V =--

9 dt

The relative velocity of the ball with respect to another body (ground) is

Vr = V- V9 (6.29)

Hence, the relative distance of the ball to the point of contact is given by
t

Yr =Yro + J(V-Vg)d't (6.30)
o

IfYr>O there is free fall of the ball, hence we have the equations

dv
m-=-mg+F

dt
dY gb-+kYg =-F (Yr >0)
dt

F=O

(6.31)

(6.32)

The ball hits the other body when Yr=O. From that moment on, the ball and the
spring-dashpot move as single system. Thus we have

dv
m-=-mg+F

dt
dY gb-+kYg =-F (Yr :-:;;0)
dt

208 6 Mechanical Systems

At the moment of impact the ball has a velocity vo. The acceleration of the ball
changes abruptly at that moment to satisfy Eq. (6.32). Throughout the contact
phase, the motion the ball-spring-damper is governed by the equation

d2Y
g dYg

m--+b-+ky =-mg (6.33)
dt 2 dt 9

In the first phase of the motion there is compression of the spring until the ball
velocity drops to zero (Fig. 6.5Ia). This is followed by an expansion phase during
which the ball starts rebounding. The question is: At what moment the ball de­
taches from the other body? According to [8] this occurs when the force F drops
to zero. At that moment the velocity of the ball and of the spring and damper ends
are equal; they continue to move in the same direction gradually separating one
from the other (Fig. 6.5la).

Such detachment is difficult to detect numerically. What we need is an abrupt
change of the motion ball and of the other body at the point of contact. This occurs
at zero compression where the velocity is V1>O. At that moment by Eq. (6.31) the
velocity of the spring-damper end drops abruptly to zero and its motion ceases
(Fig. 6.52b). Simultaneously, the force on the ball abruptly changes from the value
-b·V1 by Eq. (6.32) to the value 0 by Eq. (6.31). Thus there is a positive impulse,
which changes the ball acceleration from value -g-b'V1/m to -g. In effect the
body rejects the ball.

We thus assume that the contact with the other body is established when the
ball's relative displacement is less or equal to zero, and that the detachment occurs
when it is positive again. It is possible that the spring extension never drops to
zero in a finite time. This is the case when there is high damping in the system,
which corresponds to an inelastic impact.

(a)

Contact Detachment

(b)

Contact Detachment

Fig. 6.51. Detachment of the ball at (a) zero force, (b) zero compression

To complete the description of this simple model of impact, we calculate the ra­
tio of the ball velocity after and before impact. Solving Eq. (6.33) we get

(6.34)

(6.35)

6.4 Bouncing Ball Problems 209

i;rr
v, _ -jU,2
---e
va

where Sis damping ratio of the ball-spring-damper system. In the classical theory
of impact, this ratio is known as the coefficient of restitution a. Hence,

i;rr

a=e-jU,2

This is just the decrement known from theory of vibrations. For near-elastic im­
pact, i.e. S«1, we have

a'" 1- s1t (6.36)

Table 6.5 gives values of the coefficient of restitution for various values of damp­
ing ratio.

Table 6.5. Restitution coefficient as a function ofthe damping coefficient

Damping ratio ;
o
0.02
0.04
0.06
0.08
0.1
0.2

Coefficient of restitution a
1
0.9391
0.8818
0.8279
0.7771
0.7292
0.5266

Now we can formulate a bond graph component that describes the interactions
between the two bodies during impact. This is basically a two-port component
(Fig. 6.52). The ports are used to connect the bodies experiencing impact.

4
Contact

4

Fig. 6.52. The component representing impact between two bodies

The model of impact is shown in Fig. 6.53. There are two effort junctions e,
which represent the velocities of bodies in the normal direction (see Eqs. (6.27)
and (6.28)). Summator s evaluates their difference according Eq. (6.29); and the
integrator evaluates the difference between the positions of the bodies, as in Eq.
(6.30).

The first equation in Eqs. (6.31) and (6.32) describe the motion of the body (the
ball); thus, these are not included in the model of contact. This is represented by
the capacitive element C and the resistive R elements, which in conjunction with
the third effort junction, describes the second equation in Eqs. (6.31) and (6.32).

210 6 Mechanical Systems

The switch element Sw changes the condition represented by the third equations
depending upon the body relative displacement evaluated by the integrator. The
constitutive relation of the switch is simply

yr > a? F: vr = a

Fig. 6.53. Model of impact

6.4.2 A Ball Bouncing on a Table

(6.37)

We now analyse the motion of a ball, which is dropped from a height h onto a ta­
ble that is at rest (Fig. 6.54). The ball drops under the action of gravity, hits the ta­
ble and bounces back. It continues to bounce until it eventually reaches rest.

h

Fig. 6.54. A ball bouncing on a table at rest

We treat the ball as a particle moving in a vertical direction under the action of
gravity. The model of the system consists of three components Ball, Ground and
Contact (Fig. 6.55). The Ball is represented in the usual way by an inertial element
representing the ball inertia in the vertical direction and a source effort describing

6.4 Bouncing Ball Problems 211

its weight connected to a common effort junction. The Ground is described by a
zero flow source. The last component models the impact of the ball with the table,
as described in the last section. We extract several signals such, as the position and
velocity of the ball and the position of the table (ground). In this problem this last
signal is, of course, zero since the table is at rest. Details of the model can be
found in the library under the project name Bouncing Ball Problem.

V-T' Ball

Y-T~ 1
Contact

1
Yg. Ground

Fig. 6.55. Bond graph model of the ball bouncing on the table

We assume that the table is relatively rigid and that the restitution coefficient is
about 0.9. Thus the parameters used for the simulation are:

1. The ball mass m=1 kg
2. Spring stiffness k=1·106 N/m
3. Damper velocity coefficient b= 60 N's/m
4. Initial ball height above the table h = 1 m

These values correspond to a natural frequency of 1000 rad/s and a damping
ratio of 0.03. From Eq. (6.35) we get a coefficient of restitution value u=0.9100.
The interval of simulation was chosen as 5 s and the output interval 0.01 s. The
complete simulation lasts 0.85 s of processor time. The results are shown in Figs.
6.56 and 6.57.

In Fig. 6.56 we see the characteristic, partially elastic pattern in which the
bouncing height gradually diminishes until the ball comes to rest (not shown). Fig.
6.57 shows sudden changes of the ball velocity when it hits the table.

We can estimate the coefficient of restitution by comparing the height of the
ball above the table following every rebound. Ifv is the rebound velocity, the cor­
responding height of the ball after rebound is v2/(2g). Thus, the ratio of two suc­
cessive rebound heights diminishes as u2

• From of the simulation result it is found
that the ratio of heights is about 0.828, thus the coefficient of restitution is 0.910
as expected

212 6 Mechanical Systems

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 6.56. Change ofthe ball height during the bouncing

>

5.0

2.5

0.0

-2.5

-5.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Time: OA6

V: 3.97745

Fig. 6.57. Change of velocity of the ball

6.4 Bouncing Ball Problems 213

6.4.3 Ball Bouncing on a Vibrating Table

We continue with analysing the motion of a ball bouncing on a table, which is not
at rest, but that vibrates with a constant frequency (Fig. 6.58). For low velocities
of vibrations, a stable ball motion appears similar to the case of the fixed table
analysed in Sect. 6.4.2. On the other hand, if the velocity increases an irregular,
chaotic motion occurs. The dynamics of such motions are analysed in [9]. We will
not repeat this here, but show by simulation some of characteristic motions that
can appear.

h

____________I- ~_g=-Agsincot

Fig. 6.58. A ball bouncing on a vibrating table

We use the model developed in the last section (Fig. 6.55). We also use the
same parameters, but change the velocity generated by the source flow of the
component Ground. We fix the amplitude of the table displacement to the value
Ag =0.1m and change its frequency of vibrations. The velocity of the table, as
generated by the source, is defined as

v 9 = -Agco· cos cot (6.38)

That is, it starts to move down. We show two characteristic bouncing motion pat­
terns.

The simulations are run using a simulation interval of 10 s and an output inter­
val of 0.01 s. Fig. 6.59 shows the simulation of the ball motion when the table is
vibrating slowly at frequency of 3 rad/s. It can be seen that the ball bouncing fol­
lows the table and finally comes to rest with respect to the table.

A quite different ball motion appears at higher frequencies. Fig. 6.60 shows the
ball motion during the first 10 5 when the table vibrates at 15 rad/s.

To see if the ball comes to rest with respect to the table, Fig. 6.61 illustrates
simulation of the ball motion during the first 100 s. It apparently doesn't stop
bouncing!

From the figures it can be seen that the interval between two bounces steadily
increases until chaotic motions develop. In [9] it was shown that the existence of
stable and unstable orbits of various periods can occur. Under certain conditions
the ball bouncing from the table at the uppermost position can double its period of
motion. As pointed out in [10], doubling the period leads to chaos. This is clearly

214 6 Mechanical Systems

seen in Fig. 6.60. The reader interested in this and other chaotic systems behaviour
can consult [9,10] for a detailed exposition.

1.0

0.8

0.6

>-

0.4

0.0

o 0.2

Time

1.0

Fig. 6.59. The ball bouncing at a table frequency of3 rad/s

1.0

0.8

0.6

>- 101

0.4

0.2

0.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 6.60. The ball bouncing at a table frequency of 15 rad/s

6.5 The Pendulum Problem 215

1.0

0.8

0.6

>- 101

0.4

0.2

0.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 6.61. The bouncing ball motion ofFig. 6.60 simulated for 100 s

6.5 The Pendulum Problem

As the last example of simple mechanical systems we return to the see-saw prob­
lem of Sect. 2.7.3 (Fig. 6.62). This problem was treated as a simple example of a
multibody system, which we will discuss in more detail in Chapt. 9. It was shown
that it is possible to develop a bond graph model by systematically decomposing
the system into its components.

y
Frame Pivot_____ x

Fig. 6.62. See-saw problem of Sect. 2.7.3

Following the approach described in Sect. 2.7.3 and using BondSim, we can
develop a corresponding model. In Fig. 6.63 the basic level of the model is shown

216 6 Mechanical Systems

in which the main components and the interactions between them are depicted.
The model consists of several levels and can be reviewed in the project library un­
der the title See-saw Problem.

Frame

1 /~-_'FX

1

r7
n ---+ Ph i.

Body2

)

Pivot------+· Fy

Bodyl

~
Platform

Fig. 6.63. Basic level ofthe see-saw model

The model developed is based on the direct application of the laws of Dynam­
ics. The corresponding mathematical model consists of a system of differential­
algebraic equations (DAEs). It corresponds to multibody models using Lagrange
multipliers with constraints on velocities [11,12]. It is well known that such mod­
els are of index 2 type [11,13]. This formulation lies between index 3 formulation
when using constraints on the positions of connected bodies and index 1 formula­
tion where all such constraints are eliminated e.g. by differentiation. It should be
pointed out that the index 2 formulation appears here quite naturally as a result of
the application of the bond graph modelling approach.

The see-saw can be looked at on as a pendulum, as has already been pointed
out in Sect. 2.7.3. In [11,13] various formulations of pendulum problem are exam­
ined in the context of higher index DAEs. Our formulation is a little different from
those in the references citied. Thus, we examine it in some detail.

We use two approaches. The first is simulating the system behaviour by the
BondSim program using the default method (Chapt. 5), i.e. the BDF variable coef­
ficient method and the analytical Jacobian matrix. Also we excluded all algebraic
variables from the error tests, as is the usual praxis when solving higher index sys­
tems by BDF methods. We also scale the algebraic equations, as suggested in [13].

Another approach, which we will use for comparison, consists of reducing the
multibody model to a pendulum. The pendulum will be represented in classical
state-space form and solved using the implicit Runge-Kutta code RADAU5 of
[11].

6.5 The Pendulum Problem 217

To simulate the see-saw problem using BondSim, we retrieve the problem from
program library (using Get From command on Project menu) and build the model.
We use the following model parameters:

1. Body 1 mass m, = 80 kg
2. Body 2 mass m2= 20 kg
3. Platform mass m, = 40 kg
4. Platform mass moment of inertia (centroidal) J3 = 90 kg·m2

5. Geometric parameters (Fig. 2.20) a =1.5 m, b = 1.125m, C = 0.375m
6. Initial angle of the platform = 1 rad

The simulation interval was taken equal to 55 and the output interval was 0.05
s, the error tolerances both absolute and relative are equal to 1.10-6 (default).
Some results of the simulation are shown in Figs. 6.64 and 6.65. From Fig. 6.64 it
can be seen that the see-saw oscillates about the equilibrium position that is at <p =
0.4324 rad (24.77°). The period of oscillation is 3.4 s. The amplitude of the force
on the frame in the horizontal direction is 349.2 N (Fig. 6.65). The force in the
vertical direction (not shown) doesn't change too much, i.e. it oscillates between
-1152 Nand -1613 N about a value corresponding to the weight of the platform
and the bodies on it. Some numerical values also are given in Table 6.6 (the sec­
ond and fourth columns) and the simulation statistics in Table 6.7 (the second col­
umn).

1.0

:c 0.0
lL

-0.5

-1.0 _

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 6.64. Oscillation of see-saw about its equilibrium position

218 6 Mechanical Systems

5.0

2.5

)(102 0.0
LL

-2.5

-5.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 6.65. Change of the horizontal force of the see-saw on the frame

Next we develop a simplified model of the see-saw as a pendulum (Fig. 6.66).
First we note that the see-saw's centre of mass in not on the body axis. Using the
parameters of Fig. 2.20 we can calculate its coordinates in the body fixed frame as

x~=-(m1-m2)a/m }

y~ =-[(m1+m2)(b+c)+m3b]/m

Here m is the total mass of the seew-saw and the bodies on it, i.e.

Fig. 6.66. The see-saw as a pendulum

(6.39)

6.5 The Pendulum Problem 219

m = m, + m2 + m3 (6.40)

The angle made by a line drawn from the origin through the mass centre eM to
the y'-axis is given by

(6.41)

This line is taken as the pendulum axis. Denoting by <pp its angle with the vertical
axis, we find the angle of the see-saw by

(6.42)

(6.44)

Finally, the length from the origin to the centre of mass is given by
I ' 2 , 2

Ie = 1Jxe + Ye (6.43)

Now we can formulate the equation of rotation of the see-saw about the origin
(the pin axis) as

<Pp = 0) }
. mgle·0) = ---. Sln<pp

Jo
Here the Jo is its mass moment of inertia about the axis of rotation and is given by
(Fig. 2.20)

(6.45)

(6.47)

We also need expressions for the components of the force of the see-saw that
acts on the frame. We calculate such a force because, in the bond graph model of
Fig. 6.63, the efforts associated with the bond connecting the platform and the pin
is the force acting on the pin, not its reaction.

Hence by applying the law of the mass centre motion we have

m. d
2

xe =-F }dt 2 x
(6.46)

rn- d
2Ye

= -F -mg
dt 2 y

Taking also into account that

Xc = Ie ·sin<pp }

Ye = -Ie .cos<pp
we can calculate the force components by

Fx = -m .Ic(ci:>cos<pp - 0)2 sin<pp) }
(6.48)

Fy =-m·(leci:>sin<pp +le0)2cos<pp +g)

Eq. (6.44) is a system of differential equations in state-space form, and Eq.
(6.48) are the output equations. These equations can be solved by practically any

220 6 Mechanical Systems

method. We use the RADAU5 method of [11]. This method is considered by
many as one of general-purpose method for solving higher index DAEs.

We use the same parameters as given at the beginning of the section. The other
necessary parameters are calculated by Eqs. (6.39)-(6.41), (6.43) and (6.45). The
angle of rotation is found from Eq. (6.42). We also use the same simulation pa­
rameters as before (the simulation period 5 S, output interval 0.05 s, error toler­
ances 1·10'6). Results for the angle of rotation and x-component of the force are
given in Table 6.6 (third and fifth column).

Table 6.6. Comparison of results obtained by the BondSim simulation and the RADAU5
routine

Time [s]
<I> lradl Fx[N]

BondSim RADAU5 BondSim RADAU5
0.5 0.7754008987 0.7754021054 293.3272391 293.3285587
1.0 0.2747649236 0.2747643009 -153.4644374 -153.4651285
1.5 -0.09805834991 -0.09805980961 -349.2356995 -349.2361947
2.0 -0.04963962617 -0.04963799260 -345.0137097 -345.0130167
2.5 0.3831236781 0.383123167lE - 49.42374072 -49.42407961
3.0 0.8559156737 0.855914560 I E 330.0201078 330.0194638

Comparing the results obtained by the BondSim simulation and by the
RADAU5 solution we see that there are minor differences that are of the order of
the error tolerances used. It is interesting to note, in particular, that the accuracy of
the force component simulation by the BondSim is in the same range of accuracy
as that obtained by direct calculation by Eq. (6.48). This is important because it is
an index-2 variable.

The simulation statistics are given in Table 6.7 (third column). The solution of
the reduced set of equations is of course much more efficient. But on other hand
the performance of BondSim is excellent. We should take into account the fact
that the semi-explicit index-2 equations are solved, that the system of equations is
relatively large, and that the functions and the partial derivative (Jacobian) matrix
are evaluated in the interpreter mode. There is more matrix evaluations and de­
compositions in the BondSim method, but this is partially a consequence of the
variable coefficient form of the BDF solver. On the other hand RADAU5 needs a
relatively large number of the function evaluations, which is to be expected from a
Runge-Kutta type of solver.

Table 6.7. Simulation statistics for the BondSim and RADAU5 solutions

Jacobian matrix elements
Steps
Function evaluations
Jacobian evaluations
Decompositions
Elapsed time s

BondSim
52
129
245
521
276
276
0.250

RADAU5
4
4
45
288
21
35
0.01

References 221

References

1. JH Ginsberg (2001) Mechanical and Structural Vibrations, Theory and Applications.
John Wiley, New York

2. SW Smith (1999) The Scientific and Engineer's Guide to Signal Processing, 2nd Ed.
California Technical Publishing, electronic form http://dspguide.com

3. FP Bowden and D Tabor (1986) The Friction and Lubrication of Solids. Clarendon
Press, Oxford

4. D Karnopp (1985) Computer simulation of stick-slip friction in mechanical dynamic
systems. Transactions of the ASME, 107:100-103

5. W Borutzky (1995) Represeting discontinuities by sinks of fixed causality. In FE Cel­
lier and JJ Granda (eds) 1995 International Conference on Bond Graph Modeling and
Simulation, Las Vegas, Nevada, pp 65-72

6. J m Mera, C Vera (1999) Dry Friction Modelling by Means of The Bond Graph Tech­
nique. In JJ Granda and FE Cellier (eds) 1999 International Conference on Bond
Graph Modeling and Simulation, San Francisco, California, pp 30-35

7. SS Rao (1995) Mechanical Vibrations, 3rd edn. Addison-Wesley, Reading
8. F Pfeiffer and C Glocker (1996) Multibody Dynamics with Unilateral Contacts. John

Wiley, New York
9. J Guckenheimer and P Holmes (1997) Nonlinear Oscillations, Dynamical Systems,

and Bifurcations of Vector Fields. Springer-Verlag, New York
10. D Acheson (1997) From Calculus to Chaos, An Introduction to Dynamics. Oxford

University Press, Oxford.
11. E Hairer and G Wanner (1996) Solving ordinary Differential Equations II, Stiff and

Differential-Algebraic Problems, 2nd Revised edn. Springer-Verlag, Berlin Heidelberg
New York

12. D Karnopp (1997) Understanding Multibody Dynamics Using Bond Graph Represen­
tations. Journal of The Franklin Institute, Engineering and Applied Mathematics,
334B: 631-642

13. KE Brenan, SL Cambell and LR Petzold (1996) Numerical Solution of Initial-Value
Problems in Differential-Algebraic equations, Classics in Applied Mathematics.
SIAM, Philadelphia

Chapter 7 Electrical Systems

7.1 Introduction

This section shows that the component model approach developed in Part I can be
used readily to model electrical and electromechanical components and systems.
This is important, as both the mechanical and electrical part of mechatronic and
the recently evolved micro-mechanical systems [I] can be modelled and analysed
on the same basis, i.e. from the bond graph point of view.

It is well known that electrical systems can be modelled in terms of bond
graphs [2,3]. But this approach may appear strange to engineers used to electrical
schematics. Models in terms of bonds are usually simplified, e.g. by removing
common ground nodes, resistor, capacitor, and other ports. Such models are quite
abstract, and often it is not easy to correlate them with the devices of which they
are models. In addition, the causality relations discussed in Sect. 2.10 restrict
models that could be used for modelling general electrical, as well as of other, en­
gineering systems.

The approach developed here is based on component models, the constitutive
relations of which can be freely defined. This enables a systematic approach to the
development of electrical components and system models. It is not necessary to
represent electrical components in terms of word models only but, as already dis­
cussed in Sec. 2.7.2, these can be depicted using graphical electrical symbols. In
this way, the bond graph point of view is retained, but on the surface they are rep­
resented as electrical schemes. At a deeper level, bond graph elements are em­
ployed to model processes in the components.

Models of electronic components are usually described in the form of SPICE
models [4]. These are developed for use in SPICE type programs specifically de­
veloped for electrical and electronics systems (Sect. 1.7).1 This type of model can
be used in bond graphs, as well. But here it is not necessary to use the SPICE lan­
guage, and there are no pre-built models of resistors, diodes, transistors, etc. Com­
ponent models are constructed from the ground up from simpler ones. The same
equivalent circuits, constitutive relations, parameter names, and values can be
used as in SPICE. Component models can deal easily with macro models that play
an important role in developing complex SPICE models. Once developed, compo­
nent models can be moved into a library and used as needed.

An added advantage of our approach is that component models are transparent,
i.e. they can be opened for overview, and modified if required, or maybe a differ-

1 There are various versions of SPICE such as SPICE 2 and 3, HSPICE, PSPICE etc.

224 7 Electrical systems

ent model of the same component can be developed and tested. The BondSim pro­
gram is not designed to be a replacement for specially designed programs, such as
SPICE, SABER or others, but more as an open environment for developing mod­
els and simulating the behaviour of mechatronic and micro-mechanics systems
(MMS). The analysis currently supported is essentially in the time-domain.

This section starts with a relatively detailed description of a typical approach to
developing bond graph models of electrical systems and their simulation using
electrical schematics. This is explained in an example of the simple RLC circuit
already described (Sec. 2.7.2). The approach is very similar to that used in Sec. 6.2
for mechanical systems. We then show how SPICE models of electrical circuit
elements, such as resistors and capacitors, are developed. We continue with mod­
elling some fundamental semiconductor components. The chapter ends with the
analysis of an electro-magnetic system.

7.2 Electrical Circuits

Electrical circuits can be modelled in a similar way to the mechanical systems in
Sect. 6.2. Normally, an electrical component palette is used that represents the ba­
sic circuit components by electrical circuit symbols. A typical approach to model­
ling electrical circuits is illustrated by the RLC circuit of Sect. 2.7.2, repeated here
in Fig. 7.1.

~ L
+

E Vc

Fig. 7.1. The scheme of the RCL circuit

To begin, we launch BondSim, as described in Sect. 6.2.2, then define a new
project, RCL Circuit, using the command New on the Project menu. When a new
empty project document appears, we open the Electrical component palette using
the command Use Icon/Electrical on the Tools menu (Fig. 7.2).

The Electrical component palette is used to create electrical component objects
represented by electrical symbols. The palette contains several buttons used to
create basic circuit components, such as Device, Voltage and Current Sources,
Ground, Node, Coupled Inductors, Resistor horizontal, or vertical, and others. The
particular component created by a button is identified by the tool tip displayed
when the cursor is moved over the button.

7.2 Electrical Circuits 225

Fig. 7.2.A newdocument window withtheElectrical Components palette opened

Model development of the circuit in Fig. 7.1 starts by creating a Voltage
source component. Hence, we click the corresponding button in the palete (the
second from the left in the first row). We then move the cursor to the place in the
document window where we wish to insert the component. As the cursor enters
the document it changes its shape to a cross. We create the component near the left
document border, but leaving some space. The component created appears in the
form of the circuit symbol for a voltage source (Fig. 7.3). Near the symbol a com­
ponent name VS (Voltage Source) appears; the caret shows that we are in text­
editing mode. We can edit the name if we wish, e.g. to E. To end editing, we click
outside of the component, as is usual with word component models. After the
component has been created, its two power-in and power-out ports are created as
well.

We create other circuit components in a similar way. For example, to create a
horizontal resistor, click on the Resistor Horizontal button. In this case, we retain
the default label R, as well as the power flow direction through the component. In
a similar way, we create the inductor by clicking on Inductor Horizontal. The ca­
pacitor is created using the Capacitor Vertical button. To complete the circuit, we
create the Ground component (Fig. 7.3). We also create a Node between each of
the components. All of these are not always necessary, but we add them anyway to
ease the connection of measuring instruments, which can be used for generating
display outputs. The left bottom node is used for the connection of the circuit to
the ground.

226 7 Electrical systems

Fig. 7.3. The circuit components corresponding to Fig. 7.1

Before we proceed further, we rearrange the components by dragging them to
make space for placing the instruments. We also create a single X-V Plotter com­
ponent that will be used to display all variables of interest during simulation. This
component is moved to the upper right comer of the document area (Fig. 7.3). We
see that the position of some of the node ports, as well as their power directions,
are not correct; these must be changed. To do this, and to interconnect the compo­
nents, we need the standard bond graph Editing Palette. We open the Editing Pal­
ette by clicking its toolbar button, or by using the Bond Graph Palette command
on the Tools menu. The components created so far, together with the Editing Pal­
ette, are shown in Fig. 7.3.

We assume that power flows from the source through the components to the
ground. Thus, we need to change the branch node ports to correspond to that sense
of power flow. Also, the positions of some ports are not correct. We generally
cannot move node ports because they are, by design,fixed. But we can delete them
and create a corresponding port at the appropriate place in the node. Thus, for bot­
tom left node, we click the left port to select it and then delete it by clicking the
toolbar button Delete (or by using the command Edit/Delete). Next, we create a
port lying opposite to the lower VS port. Because we need a power-out port, we
click the corresponding port button on the Editing Palette, move the cursor to top
part of the Node component, then click again. We also must change the power di­
rection of the right node port. To do this, we select it, then click the toolbar button

7.2Electrical Circuits 227

Change Port, or use the command Change Port on the Edit menu. We change all
other nodes in a similar way, as required.

Now that all the components are created and their ports have the proper power
sense, we interconnect the components by drawing bond lines between corre­
sponding ports. To do this, we click the Connect Ports button on the palette. If, for
example, we wish to connect the upper voltage source port to the corresponding
node port, we click the upper E port. As we move the cursor, a line is drawn. We
can move the cursor vertically up to an intermediate point at the level of the port
and click the mouse; then move the cursor horizontally to the right until we are
over the node port, and then click again to finish the bond line. With this action
the ports disappear and the bond line appears with a half-arrow pointing to the
node. We similarly connect the ports of all other components. The circuit created
in this way is shown in Fig. 7.4.

-L

R L

=~
u

Fig. 7.4.Thebondgraph model of the RCLcircuit

To complete the RCL circuit model, we next define the model of every circuit
component (see also Sec. 2.7.2). We start with the voltage source by double­
clicking it. This opens the component document, which is empty and contains only
the document ports. We create the model as shown in Fig. 7.5. It consists of an ef­
fort junction e describing the voltage difference at the voltage source ports, and
the source effort SE component that generates the source's electromotive force
(emf). The constitutive relation describing the voltage generated by the SE is
stored in its port. To edit it, we double-click the port. A dialogue appears that is
used to assign meaningful names for the port variables, define the model parame­
ters, and edit the constitutive relation that describes the emf at the port (Fig. 7.6).
We retain e as the name ofthe effort variable (voltage). The eValue is a parameter
defining the constant voltage generated at the port. At port creation it is set to

228 7 Electrical systems

zero; we now change it to 10 (V) by use of the Parameters button (see Sect.
4.8.2).

e __ SE

Fig. 7.5. The model ofthe Voltage Source

Fig. 7.6. A dialogue for editing the voltage source constitutive relation

Similarly, we create the model of the resistor (Fig. 7.7), which consists of an ef­
fort junction e and, this time, a resistive component R. We edit the constitutive re­
lation for the voltage across the resistor by double-clicking the port of the bond
graph resistor component R (Fig. 7.8). We retain the default name e for the effort
(voltage) and change the flow variable to i. The constitutive relation corresponds
to Ohm's Law, with the resistance parameter RO (Sect. 2.5.4). By default, this is
set to 1, but we change it to 200 (Ohms) by using the Parameters button.

The inductor component is defined similarly (Fig. 7.9). This component uses an
inertial component 1 that defines Henry's Law (Sect. 2.5.2). Double-clicking the
component I port displays a dialogue used to define the inductor constitutive rela­
tion (Fig. 7.10). We change the flow variable to the current i, and the state variable
to the coil flux linkage p. In the constitutive relation box we change the inertial
parameter 10 to the inductance parameter L. Likewise, we delete the parameter 10
from the parameter list and insert the parameter L with a value of 0.010 (H).

7.2 Electrical Circuits 229

R

1
1----.....e-----I~

Fig. 7.7. The model of the Resistor

Fig. 7.8. A dialogue for defining the resistor constitutive relation

I

1
1----.....e -----I....

Fig. 7.9. The inductor component model

Finally, we define the Capacitor model (Fig. 7.11). Again, the effort junction
describes the voltage across the capacitor. We use the capacitive component C to
describe the processes in the capacitor (Sect. 2.5.3).

230 7 Electrical systems

Fig. 7.10. A dialogue for defining the inductor constitutive relation

The default constitutive relation can be changed by double-clicking component
C port (Fig. 7.12). We change the effort variable (the voltage across the capacitor)
to e, and the state variable to the capacitor charge q. The parameter CO, the ca­
pacitance, is set it to 2.0.10-6 (F).

r
e--- c

"f
Fig. 7.11. The Capacitor model

To complete the model, it is necessary to define the variables that will be ob­
served during simulation. This is similar to what is encountered when measuring
or recording processes in real circuits with instruments. In this example we ob­
serve voltages across all components and currents throughout the circuit. This re­
quires the model equivalents of "voltmeters" and "ammeters", respectively.

A voltmeter component is created from the Electrical component palette (Fig.
7.2) by clicking the Voltmeter button, placing the cursor up to the resistor, then
clicking. The voltmeter component appears with two input ports and a single out­
put port (Fig. 7.13). We move the output port to point upward. Using the Editing
Palette, we create a control-out port at the two nodes from both sides of the resis-

7.2 Electrical Circuits 231

tor and connect them to the corresponding Voltmeter ports. The voltmeter, like
other components, is created as an empty component that has to be defined.

Fig. 7.12. A dialogue for defining the capacitor constitutive relation

We implement a Voltmeterby using the summator component (Fig. 7.14). The
summator is created like any other component by selecting it from the list box in
the Editing Palette. Next, we create two input ports, a single output to the summa­
tor, and connect them to the document ports.

-L

L

o

Fig. 7.13. The creation and connection of a Voltmeter

232 7 Electrical systems

Because we need the voltage difference between the left and right nodes, we dou­
ble-click the surnrnator left port to confirm that (by default) it has a n+n sign, i.e.
it is already in the addition mode. In the same way, we double-click the right port
and select the "-" sign from the list.

I-----+s-----I

Fig. 7.14. The voltmeter as summator

The current in the circuit can be picked from any of the effort junctions inside
the components-the resistor (Fig. 7.7), for example-by adding a control-out
port and then connecting it to the outside. But we prefer to do this in a manner
similar to that used in actual circuits. Thus, we insert an Ammeter in the return
line (Fig. 7.13). To do this, we first must break the line by selecting it, then click­
ing the Delete button. Next, we create an electrical node below the capacitor and
set its ports so that power flows from the capacitor to the ground node. We then
create an Ammeter component using the Electrical Components palette. The com­
ponent is placed between ground and this new node. We change the direction of
the power flow to point leftward. Finally, we connect the ports (Fig. 7.15).

I
®

L

Fig. 7.15. The bond graph model of the electrical circuit

7.2 Electrical Circuits 233

The Ammeter now must be defined. This is very simple: It is just an effort
junction, from which information on the current is taken and taken outside (Fig.
7.16).

I
I

r
Fig. 7.16. The ammeter as an effort junction

Similarly, we create Voltmeter components for measuring voltages across other
components. We do this by copying the Voltmeter component just developed by
selecting it, then clicking the Copy button on the toolbar. Next, the component is
inserted where desired using the Insert button (Fig. 7.15). The positions of the
ports of the voltmeters lying on the left and right can be easily changed.

We now connect the output ports of all voltmeters and ammeters to the X-V
Plotter component created earlier. Because it only has a single input port, we first
create a corresponding number of control-in ports at the plotter periphery. It is not
important to place them all on the left side of the plotter; they could be placed
anywhere around its periphery. At the creation of the plotter ports default names
of signals connected to the X-Y Plotter ports are assigned. These are used to label
the axes. After the ports are connected, we can change the names of the signals fed
to the plotter. All signals are, by default, plotted on the y-axis, the x-axis serving
as the time axis. This can be changed easily by double-clicking the plotter ports
(Fig. 7.17). The dialogue that opens can be used to define names and choose the
aXIS.

Fig. 7.17. The output variable dialogue

We select only one variable to be used as the x-axis variable. All others must be
y-axis variables. We can also choose the None option, in which case the variable is

234 7 Electrical systems

not displayed at all. Thus, by double-clicking the current port we define the vari­
able name I for the source current. We choose E for the source voltage, eR for
voltage across the resistor, eL for the voltage across the inductor, and eC for the
capacitor. Because the expected range of current values (mA) is quite different
from the range of voltage values (V), we check None for the axis, so that the value
of the current will not be displayed; only voltages will be displayed. (Later, we
can display the time history of the current in the circuit.)

We have thus defined the models of all the circuit components. The models of
the nodes are not defined, as they are just flow junctions. The ground is a source
effort component and, by default, the voltage at its port is set to 0 (V). It could be
changed, if required, as is the case with other source efforts, by double-clicking its
port.

To start the simulation we first build the mathematical model (see Sect. 6.2.3)
by clicking the Build button or selecting the Build Model command on the Simula­
tion menu. After the model is built, the mathematical model of the circuit can be
reviewed, as explained in Sect. 6.2.3.

Before running the simulation, we open the output window by double-clicking
X-V Plotter object to watch how the variables change. Using the Set Axes com­
mand on the Simulation menu, we can also change the default selection of axes,
i.e. positive only, or both positive and negative. We select Positive for time (the x­
axis) and Positive and Negative for the y-axis. It is not necessary to select ranges,
as the program will do this automatically. It is also possible to change the axis la­
bels. We presently leave these as they are. It should be noted that the computer
visual system influences the duration of the simulation markedly. Thus, it is some­
times useful to run the simulation in the background and, when it is finished, to
display the results by double-clicking the plotter component.

We start the simulation by clicking the Run button on the toolbar, or by choos­
ing the Run Simulation command in the Simulation menu. This opens a dialogue
in which we must enter the simulation interval (Fig. 6.23). The values of the cir­
cuit parameters set during model development are:

1. Source voltage E = 10.0 V
2. Resistance R = 200 ohms
3. Inductance L =0.010 H
4. Capacitance C = 2.0.10-6 F
5. The initial condition for both the inductor and the capacitor was set to zero

Hence, the natural frequency of the system is
1

O)n = r;-;::; = 10000 1I s = 1592 Hz
",L·C

and the time constant is 0.628 ms. The damping ratio IS

s=2Rv'C / L =1.414
2

which implies that the transients in the circuit are highly damped.
We start the simulation by setting the interval to 0.002 s, the output interval to

10 us, and accept the defaults for all other parameters. The results of the simula-

7.2 Electrical Circuits 235

tions are shown in Fig. 7.18. The diagram shows the transients across the resistor,
inductor, and capacitor to a 10 V step in the Source voltage.

1.0

0.5

w 101 0.0

.0.5

~.. Source \Ultage

Voltage across inductor

-1.0

0.0 0.4 0.8 1.2 1.6 2.0

10-3

Time

eR eC eL

Fig. 7.18. Transient voltages across the resistor, inductor, andcapacitor

The legend in Fig. 7.18 is added directly to the plot by right-clicking the mouse
and choosing Insert Legend. The cursor changes to a cross, and we can select the
position where we wish to type the text of a legend. When we are finished with
text editing we then click somewhere outside it. A similar technique is used as
when editing component object names in a document window. We can move a
text object across the output window, or delete it. We can also add arrows using
the right mouse button, selecting the Insert Pointing Arrow command from the
drop-down menu, and then drawing the arrow. The arrow can be moved or
stretched in the usual way. We can also remove the markers used to distinguish
between plotted curves, in the event that these obscure some important informa­
tion. This is done by clicking the right mouse button and choosing (reset) Set
Curve Marks.

We can display a plot of the current in the circuit by means of the X-Y Plotter
object. We double-click the input ports, set all voltages to None, and set the cur­
rent to the y-axis. The plot can be displayed by double-clicking the plotter object.
The resulting diagram, with the y-axis set to Positive, is given in Fig. 7.19.

At first, the complete source voltage appears across the inductor coil; then, as
the current starts flowing through the circuit and the capacitor accumulates charge,

236 7 Electrical systems

it drops steeply. After the transients die out, there is no current in the circuit and
the capacitor is fully charged to a value corresponding to the source voltage.

5.0

4.0

3.0

2.0

1.0

0.0

0.0 0.4 0.8

10-3

Time

1.2 1.6 2.0

Fig. 7.19. The transient of the current in the circuit

7.3 Models of Circuit Elements

In this section models of basic circuit components, such as Resistors, Capacitors,
and Inductors are developed. These can be stored in the library. Formulation of
these models follows a SPICE-type description [4-7]. We use the same basic
mathematical forms, including similar parameter names, but there are no "SPICE
scripts". We treat the electrical components as objects that can be connected to
other components by bonds, similar to how real electrical components are wired.

7.3.1 Resistors

The resistor is a two-terminal component usually represented schematically as in
Fig. 7.20a. It can be represented as a two-port component in Fig. 7.20b. Its model
is very simple and consists of an effort junction and a resistive elementary compo­
nent (Fig. 7.21). It thus is described by the following constitutive relations:

7.3 Modelsof Circuit Elements 237

e1- e2 - eR = O}
(7.1)

e=R·iR

Here, e1 and 82 are efforts (voltages) at the ports, 8R is the voltage across the resis­
tor, iR is the current through the resistor, and R its resistance.

R

~

(a) (b)

Fig. 7.20. The resistor. (a) The circuitsymbol, (b) The bondgraphrepresentation

The resistance is typically a constant expressed in Ohms. The SPICE software
has a built-in model of a resistor that can be exhibit temperature dependence. The
bond graph models used here are much more flexible in that respect.

It is a simple matter to describe the dependence of the resistance on temperature
as used in SPICE. We can define two temperatures, TNOM and TEMP, as pa­
rameters at the resistor document level using the Parameters button, or the Model
Parameters command on the Edit menu. The nominal temperature TNOM usually
is set to 300 K (27°C), and the value used for TEMP corresponds to the resistor's
working temperature. We define (similar to SPICE) two temperature coefficients,
TCI and TC2. SPICE-like temperature dependence can be formulated as

R = Ro * (1 + TC1* (TEMP - TNOM) + TC2 * (TEMP - TNOM)I'2) (7.2)

R

I
I

1
1----... e -----....

Fig. 7.21. The modelof the Resistor

Such an expression can be defined in the resistive component R, or at the resis­
tor document level. Weare not restricted to such a linear or quadratic relationship,

238 7 Electrical systems

but other forms can be used as well, e.g. an exponential dependence. We could go
a step further and introduce a separate thermal port at the resistor boundary (Sect.
7.4.1). In this way, dependence on temperature can be used instead of the constant
temperature parameter in the constitutive relation ofEq. (7.2).

At high frequencies the impedance of resistors drops owing to parasitic capaci­
tance effects [6]. This can be included in the resistor model by adding a parallel
capacitive element (Fig. 7.22), i.e. by the use of a flow junction.

R C

1J
1

I-----e------.-~

Fig. 7.22. The model of a resistor with a parasitic capacitance

7.3.2 Capacitors

The capacitor is a two-terminal component usually represented schematically as in
Fig. 7.23a. We can represent it by the two-port component shown in Fig. 7.23b. Its
model consists of an effort junction and a capacitive element (Fig. 7.24).

(a) (b)

Fig. 7.23. The capacitor. (a) The circuit symbol, (b) The bond graph representation

The constitutive relations for the capacitor can be found easily (Sect. 2.5.3).

e1-e2 -ec = O}
e c =q/C (7.3)
ic =dq/dt

Here, e1 and e2 are efforts (voltages) at the ports, ec is the voltage across the ca­
pacitor, q is the charge, iR is the current through the capacitor, and C is its capaci­
tance.

7.3 Models of Circuit Elements 239

c

1
.------...e-------L..

Fig. 7.24. The model of the Capacitor

The dependence of the capacitance on temperature can be described essentially
in the same way. A non-linear capacitor can be described using a second equation
in Eq. (7.3) that expresses voltage across the capacitor as a function of the charge.
In this way, polynomial, exponential, or other non-linear dependence can thus be
specified readily.

The capacitor model given above is a reasonably good approximation for fre­
quencies up to about 1kHz [6]. At higher frequencies a series resistor and induc­
tive element gives a better approximation to real capacitors. The model of Fig.
7.24 can be modified to include such effects (Fig.7.25). The parallel resistor mod­
els capacitor leakage, which can usually be neglected.

C R

lJ
LJ~I- ~e __II

Fig. 7.25. The capacitor model with parasitic effects

The capacitor model of Eq. (7.3) is charge-based; it differs from the SPICE
model, in which charge is eliminated. This simplifies the description of the accu­
mulation of charge in circuits and its conservation. There is also some evidence
that this type of model behaves better when simulating complex electrical circuits
[8].

240 7 Electrical systems

7.3.3 Inductors

Simple Inductor

The inductor is a two-terminal component usually represented schematically as in
Fig. 7.26a. We represent it by the two-port component shown in Fig. 7.26b. Its
model consists ofan effort junction and an inertial component (Fig. 7.27).

(a) (b)

L

~
•

(7.4)

Fig. 7.26. The inductor (a) The circuit symbol, (b) The bond graph representation

I

1
I-----e---------.....

Fig. 7.27. The model of the Inductor

The constitutive relations for the inductor read (Sect. 2.5.3):

8 1 -8~ -8L = 0)
P =L·IL

8L =dp/dt
where 81 and 82 are efforts (voltages) at the ports, eL is the voltage across the in­
ductor, p is the flux linkage of the coil, iL is the inductor current, and L is the in­
ductance parameter.

The inductor's temperature dependence can be described in the same way as for
resistors. The model above corresponds to the case in which the inductance is con­
stant. This can be modified to include non-linear dependence on the current. We
return to this problem in Sec. 7.5 when analysing electromagnetic systems.

The model of the inductor given above is a reasonably good approximation at
medium frequencies [6]. Its behaviour at low frequencies is determined by the re­
sistance of the inductor coils, a process that is not included in this model. At very

7.3 Models of Circuit Elements 241

high frequencies, the winding capacitance comes into effect. The model of Fig.
7.27 can be modified easily to include such effects (Fig.7.28)

I R

c IJ
Ll

1
e

Fig. 7.28. The model of the inductor with parasitic effects

The model of Eq. (7.4) is flux based and differs from the SPICE model in
which flux linkage is eliminated from the constitutive relations. It is used here
similarly as in the case of the capacitor because it describes the inductor as a dy­
namic component with explicitly defined internal state variables. There also is
evidence that such models are better suited to simulating electrical circuits [8].

Coupled Inductors

The coupled inductor is a four-terminal component usually used for modelling
ideal transformers. It is represented schematically in Fig. 7.29a. We represent it by
the four-port component of Fig. 7.29b.

The model of the coupled inductor, an extension of the simple inductor of Fig.
7.27, is given in Fig. 7.30. This model consists of two effort junctions at every pair
of external (document) ports. These are connected internally to a two-port inertial
element. To describe the mathematical model of the component, we use the fol­
lowing variables:

- e1 and e2 are efforts (voltages) at the left port, and e3 and e4 are those at the
right

- eL1 is the voltage difference at the left port and eL2 is that of the right port
- iL1 and iL2 are flows (currents) through the left and the right ports, respectively
- P1 and P2 are flux linkages of the left and the right inductor coils

242 7 Electrical systems

(a) (b)

jc

(7.5)

Fig. 7.29. Coupled inductors. (a) The circuit symbol, (b) The bond graph representation

The equations now read:

e 1-e2-eL1=O

P1 = L1 . iL1 +M. iL2

dP1
e L1 =--

dt
e3- e 4 - eL2=O

P2 = L2 . iL2 +M· iL1

dP21eL2 =--
dt

Here, L1 and L2 are coil inductances defined as parameters. Likewise, M is the mu­
tual inductance of the coils. It is usually expressed as

e--I e

Fig. 7.30.The model of the coupled inductor component

(7.6)

where k is the coupling coefficient. The relation Eq. (7.6) can be input as a pa­
rameter expression at the document level of the component, or inside the inertial
component.

7.3 Models of Circuit Elements 243

The model presented above is linear with constant values of the impedances. It
could be modified in a way that is similar to that of the simple inductive compo­
nent.

7.3.4 Independent Sources

Voltage and Current Sources

The independent voltage source is a two-terminal component that generates a
voltage across its port (electromotive force) independently of the current drawn
from the source. The circuit symbol used for such a component is shown in Fig.
7.31a. The bond graph component representing the independent voltage source is
given in Fig. 7.31b.

(a) (b)

Fig. 7.31. The independent voltage source. (a) The circuit symbol, (b) The bond graph rep­
resentation

It is a two-port component with a half-arrow showing the sense of power deliv­
ery. The model used for independent voltage source components is similar to other
bond graph models of circuit components and consists of an effort junction and a
source effort component (Fig. 7.32).

e...--SE

Fig. 7.32. The model ofthe independent voltage source component

Likewise, an independent current source is a two-terminal component that gen­
erates a current that is independent of the voltage across its terminals. The electri­
cal circuit symbol used for such a component is shown in Fig. 7.33a. The corre­
sponding bond graph representation is given in Fig. 7.33b. This is a two-port
component with a half-arrow pointing in the sense of power delivery.

244 7 Electrical systems

(a) (b)

Fig. 7.33. The independent current source. (a) The circuit symbol, (b) The bond graph rep­
resentation

The model of the current source is similar to that of the voltage source and con­
sists of an effort junction and a source flow component (Fig. 7.34).

e SF

Fig. 7.34. The model of the independent current source

These simple components can be modified to produce better models, real
sources, e.g. by adding a resistive element in series or in parallel.

Constitutive Relations

There are no built-in functions for voltages or currents generated by the sources.
Voltages or currents, instead, are defined by the constitutive relations of the corre­
sponding SE or SF components (Sec. 2.5.5). We now show how some important
relationships can be described for voltage sources, but the same is valid for current
sources, as well.

The sinusoidal emf can be described simply as (Fig. 3.35)

e = t < TD ? E1 : E1+ EA * sin(2 * PI * FREQ * (t - TD)) (7.7)

This function assumes that the voltage has a constant offset of E1 for times less
than TO, and then oscillates with a frequency of FREQ (Hz). The constants E1,
EA, TO, and FREQ are defined as default parameters at the source document level
of the component. The specific values that override them are input in the SE or SF
components by using the corresponding dialogues.

7.3 Models of Circuit Elements 245

E

TO 1/FREQ

Time

Fig. 7.35. The sine source function

An exponential function can be expressed as (Fig. 7.36)

e = t < TO?E1 : E1 + (E2 - E1) * (1- exp(-(t - TO)ITAU)) (7.8)

Here, TD is a time delay and E1 is an offset, as above. E2 is the voltage strength
and TAU is a time rise constant that defined by default values, e.g.

E2 =0
TAU =1

Specific values that override these default values can be defined in the respective
source effort or source flow component.

E

!
V

E2

-----+ TOI, TAl(IE1

Time

Fig. 7.36. The exponential source function

The law as given by Eq. (7.8) can be extended to include a dropping exponen­
tial

e = t < TO? E1:

(t < T02?(E1 + (E2 - E1) * (1- exp(-(t - TO)ITAU))): (7.9)

(E3 + (E1- E3) * (1- exp(-(t - T02) ITAU1)))

246 7 Electrical systems

The time parameter T02 > TD and E3 corresponds to the voltage at the beginning
of the fall, i.e.

E3 = E1 + (E2 - E1)* (1- exp(-(T02 - TO) ITAU)) (7.10)

The last parameter in Eq. (7.10) is the time constant, defined by a default value,
such as TAU = 1. The time constants must not be zero, nor should it be too small;
either situation will cause an arithmetic fault and the program will crash.

It is not much more difficult to define a pulse train of arbitrary waveform, such
as in Fig. 7.37. To define the pulse, we need the time 't measured from the start of
the pulse. This can be found as the mod of t - TO with respect to the pulse period
PER

E

E2

E1

TD

Fig. 7.37. The pulse function

PER

PW

r = (t - TO)%PER

Time

(7.11)

(7.12)

This expression can be used as the argument of a function defining the pulse shape
e = t < TO?E1: ((t - TO)%PER < TR? E1+ KR * ((t - TO)%PER):

((t - TO)%PER < TR + PW ? E2 :

((t - TO)%PER < TR + PW + TF ?

E2 - KF * ((t - TO)%PER - TR - PW): E1)))
E1 and E2 are the pulse offset and pulsed value, respectively, and

KR = TR > O?(E2 - E1)ITR: 0
KF = TF > O?(E2 -E1)ITF: 0

(7.13)

The effect of such pulses on the circuit of Fig. 7.38 is described next. This cir­
cuit model can be found in the library project Filtering of Noise Pulses. The resis­
tor R and capacitor C are used as a high frequency filter of noise transmitted to a
load resistor RL [6].

7.3Models of Circuit Elements 247

R

u

IN - S ---------------+. L

Fig. 7.38. Simulation of noisefiltering

Signal noise is simulated by a voltage source that generates a rectangular pulse
train with the following parameters: TD = 5 ns, TF = TR = 0, TW = 2 ns, PER =
10 ns, E1 = 5 V and E2 = 6 V. The pulse is defined by

e = t < TD?E1: ((t - TD)%PER < TF +PW + TR)?E2: E1) (7.14)

The resistors are as in Fig. 7.21, with the resistance of the filter resistor R =75
Ohm and that of the load RL = 10 kOhm. The capacitor includes parasitic induc­
tance and resistance, and neglects leakage (Fig.7.25). The capacitance C is 1.5
mF. It initially is charged to 7.44417 mF, which corresponds to 4.96278 V. Volt­
ages generated by the source and across the load resistor are measured by the
voltmeters and fed to the plotter. Because they are in the same range, the source
voltage is displaced by 2.5 V using a summator s and a signal generator IN.

Two simulations were run. In the first, the parasitic resistance and inductance
of the capacitor were set to zero. The simulation interval was set to 50 ns and the
output interval was a relatively short 10 ps, the better to display transients during
the short pulse (2 ns). Results (Fig. 7.39) show that this ideal capacitor efficiently
removes the noise.

In another simulation the parasitic parameters of the capacitor were set to
Lc=10 pH and Rc=0.001 Ohm. Simulation parameters were as in the previous
run. This simulation took 2.7 s of processor time using the default method and er­
ror tolerances. Results (Fig. 7.40) show sharp peaks at the rear and the front edges
of the pulses. This is to be expected, as the Fourier transform of a pulse contains
all frequencies (Fig. 6.32). Hence, they surely will excite higher frequency modes
of the capacitor.

248 7 Electrical systems

1.0

Source voltaqe displaced for 2.5 V

0.6

Voltilge across resistor

0.4

0.2

0.0 _

0.0 1.0 2.0

10-8

Time

3.0 4.0 5.0

Fig. 7.39. Filtering by the ideal capacitor

1.0

Source vo~ge displaced for 2.$ V

0.6

0.4

0.2

0.0

Vo~ge across resistor

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 7.40. Filtering by a real capacitor

7.3 Models of Circuit Elements 249

7.3.5 Dependent Sources

Dependent sources are often used to describe the dependence of voltages or cur­
rents supplied by sources on other voltages or currents in an electrical circuit.
Electric circuit design tools like SPICE define four types of such sources: voltage­
and current-controlled voltage sources, and voltage- and current-controlled current
sources. We don't need such special devices, because we can use the independent
sources of the previous section, to which we add control ports (Fig. 7.41). These
are a direct extension of the controlled components discussed in Sec.2.5.8.

(a) (b)

Fig. 7.41. The bond graph representation of controlled sources. (a) The voltage source
(b) The current source

These models are similar to those of ordinary sources (Fig. 7.42). We need only
add a control port to the corresponding source effort or source flow bond graph
component and connect it externally. Fig 7.42 shows a model of a controlled volt­
age source.

Sources can be voltage- or current-controlled, depending upon the type of con­
trol variable used. If this variable is a current-taken, for example, from an effort
junction-it is a current-controlled source; if the signal is a voltage, perhaps taken
from an electrical node, it is a voltage-controlled source. It could, of course, be
some other variable type, such as the position of a wheel of a manually controlled
source.

Ie...------- SE +_---1

Fig. 7.42. The model of a controlled voltage source

250 7 Electrical systems

The voltage generated by the source is defined in the SE or SF component.
This can be a linear or non-linear function of the control variable (Sect.2.5.8), e.g.

e =k*c (7.15)

The control c can be the difference of two voltages, or a current flowing some­
where in the circuit.

Using the controlled voltage or current source components has the advantage
that the signal serving as the control of the source is clear at first glance.

7.3.6 Switches

Switches are components often found in electrical circuits. A typical circuit sym­
bol used for switches is shown in Fig. 7.43a. We represent electrical switches by
the switch component given in Fig. 7.43b.

A switch toggles between an open position, in which there is no electrical con­
nection between its terminals; and a closed position, in which the terminals are
short-circuited. In SPICE, the switch is modelled as a controlled resistor that tog­
gles between a high resistance value ROFF and a low resistance RON, depending
on the value of the control input. Thus, a controlled resistor can be used to model a
switch (Fig. 7.44).

(a) (b)

*
!'> ~..._---10-""

Sw

Fig. 7.43. The switch. (a) The circuit symbol, (b) The bond graph representation

t-----...e-+------r

Fig. 7.44. The model of the switch as a variable resistor

The logic of the switch can be described as

(7.17)

7.3Models of CircuitElements 251

c < EON?e = ROFF * i: RON * i (7.16)

c is the control signal, e is the voltage across the switch, and i is the current flow­
ing through it. EON is the value of the voltage when switching occurs. The consti­
tutive relation can also be defined in such a way that there is a continuous transi­
tion from low to high resistance, e.g.

c < EON - EW ? e = ROFF * i :

(c < EON? (RON-(ROFF -RON)/EW *(c -EON))* i: RON * i)

The parameter EW is the width of the zone where the transition between open and
closed switching occurs.

Eq. (7.16) describes a switch that is initially open, i.e. when there is no signal.
It is easy to define a switch that is initially closed, e.g.

C <=EON?e = RON*j: ROFF*i (7.18)

Switches sometimes are used to model logical gates. Fig. 7.45 shows a circuit
for simulating an OR logical gate. The circuit model can be found in the library
projects under the name OR Gate Test Circuit.

As BondSim currently has no predefined symbol for logical gates, a device
symbol can be used. Inputs to the gate are generated by two voltage sources con­
nected to the ground through 1 kOhm resistors. The sources generate pulses of
voltages according to Eq. (7.12) (with TO = 0). The parameters of the pulse are as
given in Table 7.1. Input signals to the gate are taken from nodes between voltage
sources and the resistors. These are fed to the input ports of the gate. The gate is
supplied from a separate 5 V source. The IN input components displace the inputs
of the gate for better displaying.

Table 7.1. Parameters of the inputpulses of Fig.7.45

Parameters
PER
TF
TR
PW
E1
E2

Input 1
50 ns
10ns
10ns
10ns
O.OV
3.0V

Input2
100ns
10ns
IOns
20 ns
O.OV
3.0V

Fig 7.46 shows a model of the OR gate implemented using ideal switches. The
switches are connected to the ground port by a 1 kOhm resistor. The switching
logic of the OR gate switches are defined by Eq. (7.16), with EON =2.5 V, RON
= 1 Ohm and ROFF = 1 MOhm.

When the model is built, a warning appears informing the user that the model is
purely algebraic, i.e. without derivatives. It is, however, acceptable to the numeri­
cal solver, so we proceed with the simulation. The results of a simulation run for
200 ns with an output interval of 100 ps are shown in Fig. 7.47. (The CPU time
of simulation was 1.5 s.).

252 7 Electrical systems

IN-S
IN __ s

Fig. 7.45. The circuit with an OR gate

Models of logical gates based on switches offer an idealized picture of real de­
vices. They are sometimes useful for representing gates in a simple way; but often
they create problems for the simulators. The logical gates are usually built with
transistors. Because these introduce some delays, the switching behaviour of real
gates is often slightly different from that predicted by idealised models.

I
~~ •

0~
[IJ:

,
Fig. 7.46. The model of an OR gate using switches

7.4 Modelling Semiconductor Components 253

2.0

1.6 ,_ Input1 displaced for 12 V

1.2

0.4

0.0

Input2 displaced for 7V

---T---

0.0 0.4 0.8 1.2 1.6 2.0

Time
Fig. 7.47. The simulation of an OR gate

7.4 Modelling Semiconductor Components

In this section modelling of semiconductor devices from the point of view of bond
graphs and component models is described. Numerous books have been written on
the modelling of semiconductors and, in particular, on their SPICE models. Thus,
we do not discuss this matter more than necessary, but describe some of the basic
bond graph models. The interested reader can consult the literature for details, for
example [1, 7, 9, 10].

In the last section it was shown that it is relatively easy to describe SPICE
models by bond graphs. The same is true for semiconductors. But it is also possi­
ble to use the bond graph to develop models that can take care of effects that are
not easy to implement in programs like SPICE, such as thermal effects. The com­
ponent model approach of this book, supported by the language used for descrip­
tion of the underlying physical relations, offers a good basis for developing such
models.

We start by developing suitable models of diodes with their bond graph repre­
sentation. Then, three main types of transistors are considered: the Bipolar Junc­
tion Transistor (BJT), the Junction Field Effect Transistor (JFET), and the Metal
Oxide Field Effect Transistor (MOSFET). The models developed correspond to
SPICE large signal level 1 models. More complex models can be developed in a
similar way. The component model approach is shown to be a powerful method
for modelling semiconductors.

254 7 Electrical systems

7.4.1 Diodes

Static Model

We start with diodes, which are fundamental to the functioning of practically all
semiconductor components. The electrical circuit symbol used for the diode is
shown in Fig. 7.48a. The bond graph component model of a diode is quite similar
in appearance and is shown in Fig. 7.48a.

(a) (b)

Fig. 7.48. The diode. (a) The circuit symbol, (b) The bond graph representation

Diodes are resistive components described by a non-linear constitutive relation

id =ls.(eVd!VT -1) (7.19)

Is is the diode saturation current and VT is the thermal voltage, defined by

V T =k·T/q (7.20)

where k =1.3806.10-23 J·K-1 is Boltzmann's constant, T is the temperature in de­
grees Kelvin (K), and q = 1.6022.10-19 C is the electron charge. Under the nomi­
nal working temperature of 300 K (27 °C), the thermal voltage is 0.0258 V. A di­
ode can be represented by a non-linear resistor, as given in Fig.7.49.

Rd

1
I----....e-----....

Fig.7. 49. The diode as a non-linear resistor

Models of diodes are sometimes simplified by representing them as internally
modulated switches, instead of as non-linear resistive elements (Fig. 7.50). The
constitutive relation of such a switch ensures correct switching between the on
(forward biased) and off (reverse biased) states, e.g.

7.4 Modelling Semiconductor Components 255

vd <= 0 & id <= O? id: vd = 0 (7.21)

When the voltage across the diode is less than or equal to zero and the same is
true for the current through the diode, the ports are disconnected and there is no
current through the diode. Otherwise, its ports are short-circuited and the yoltage
across the diode is zero.

Sw

1
1--------...e--------1i-""

Fig. 7.50. The model of a diode as a switch

Simplified models of diodes as switches are of limited value, as they do not
show some of their important features, such as voltage drop. This could be in­
cluded in the model, of course, but at the cost of increased complexity. From the
numerical point of view, they are less convenient than ideal diode models. This is
because they model the diode by discontinuous algebraic constraints on the volt­
ages across diodes or currents through them.

Experience shows that there is a departure of the behaviour of real diodes from
the ideal law given by Eq. (7.19). This occurs over the greater part of forward and
reverse regions, as illustrated in Fig. 7.51 (see e.g. [7] for a detailed explanation).
To account for such departures, SPICE models diodes as current sources with non­
linear diode characteristics and a series resistor. The non-linear characteristic is
similar to Eq. (7.20), but introduces the emission constant n in the exponent

i
d

=Is. (e v~ l(nv T) -1) (7.22)

The default value of this parameter is 1, which corresponds to the ideal diode, but
can be in the range 0.7 to 3 for real diodes. This coefficient describes the depar­
ture of the diode at a low forward bias. The series resistor, on the other hand, de­
scribes the departure at high forward bias. The voltage appearing in Eq. (7.22) is
the effective voltage, equal to the voltage across the diode terminals less the volt­
age drop across the series resistor, i.e.

(7.23)

256 7 Electrical systems

Ideal

Real

Fig. 7.51. The ideal and real diode characteristics

We follow the same approach but, instead of the current source, a non-linear re­
sistive element Rd is used (Fig. 7.52). The series resistor effect is modelled by a
resistive element R added to the resistor effort junction. In this way, the non-linear
element effort variable is the effective diode voltage, as given by Eq. (7.23).

The constitutive relation of the non-linear resistive element is given by
Eq.(7.22)

R Rd

L1
t- ... e - - - - -

Fig. 7.52. The static model of a real diode

id = IS· (exp(ed/(N * VT)) -1) (7.24)

The saturation current IS, the thermal voltage VT and the emission constants N are
parameters of the model. These parameters can be defined at the diode document
level by default values similar to that of SPICE. These values can be overridden
inside the resistive element.

7.4 Modelling Semiconductor Components 257

In the reverse bias region the diode current is practically equal to the saturation
current. Some diodes show a stronger dependence on the reverse voltage. This can
be taken into account by modelling the diode characteristics separately for forward
voltages, as per Eq. (7.24); and using a similar expression, but with a different
emission parameter, for the reverse region.

One point that remains to be addressed is reverse diode breakdown. This occurs
when the reverse voltage reaches some specific value Vb (Fig. 7.51). The reverse
current then suddenly increases to very high values. The process is not necessarily
destructive but, owing to the high power dissipated in the diode, it is often critical
to determining its useful life. We describe diode breakdown using an approach
similar to that in SPICE [4,6,7]. Diode characteristics in the breakdown region can
be described by

(7.25)

(7.27)

(7.28)

When the voltage is less than -BVO, the current starts increasing without bound.
This critical value is found from the specification of the breakage voltage value
BV and the corresponding current -IBV, i.e.

-IBV =_IS·e-(BVO-BV)/vT (7.26)

Solving, we get
IBV

BVO = BV - VT .In(lS)

BVO is found once the breakdown point, defined by BV and IBV, is known. The
shape of the function in Eq. (7.26) ensures a smooth transition from characteristics
given by Eq. (7.22) at the breakdown.

Taken together, the constitutive relation of the resistive element of Fig. 7.55
can be described as

id = ed > -BVO? IS· (exp(ed/(N * VT))-1):

-IS· exp(-(BVO + ed)/ VT)

When applying such a relationship for the simulation of diode behaviour, a few
points of caution should be noted. One of these relates to the behaviour of the ex­
ponential term at high voltages. If the series resistance is zero, then all of the volt­
age drop occurs across the diode resistive element. Owing to the exponential char­
acter of diode behaviour, the current through the diode could be very high. Such a
diode would surely melt down. Thus, the series resistor is an essential guard
against this possibility.

Because of the finite precision of floating-point arithmetic, there may be over­
flow during the numerical calculation. The order of the maximum number that can
be represented in double-precision mode typically is 10308

. Thus, the maximum
value of the exponential term before overflow is about 709, or a voltage across the
diode of about 18 V. To prevent this from occurring, it is possible to approximate
the exponential function for high values of exponents by a linear function, e.g.

(7.30)

258 7 Electrical systems

ed/(N * VT) > MEXP?

IS * (exp(MEXP)* (1+ ed/(N * VT) - MEXP) -1): (7.29)

IS· (exp(ed /(N * VT)) -1)

The MEXP parameter is set at 50, but can be changed. It is possible, of course, to
limit high currents by using a series resistance [4].

Another important issue is the low conductance at reverse biases, as the expo
nential term in Eq. 7.23 very quickly becomes almost zero, and the constant leak­
age term remains only. This may cause a problem during simulation because the
partial derivative matrix of the system equations can become very badly condi­
tioned. To remedy this, it is advisable to use the approach employed in SPICE;
that is, to add to the constitutive Eq. (7.29) a constant conduction term of the form
GMIN*ed, where is GMIN is very low, e.g. 10-12

. This term will not change the
diode behaviour appreciably, but can help to solve this problem. With this addi­
tion, the constitutive relation ofEq. (7.28) now reads

id = ed > -BVO? IS· (exp(ed/(N * VT))-1) + GMIN * ed:

-IS· exp(-(BVO + ed)/ VT) + GMIN * ed

To illustrate the behaviour of a diode based on the model developed, we ana­
lyse the Rectifier Circuit project of Fig. 7.53. It consists ofa voltage source gener­
ating a sine voltage of amplitude 50 V at a frequency of 50 Hz, a diode and a 100
Ohm resistor. The parameters of the diode are given in table 7.2 and correspond to
the Motorola IN4002 general purpose rectifying diode at 25°C [6]. The break­
down voltage is taken at default BG_MAX value, i.e. there is no diode break­
down.

I
--(0----,

D

en
ljll;>

~

®....

-=- I ~L

Fig. 7.53. A simple rectifier circuit

7.4 Modelling Semiconductor Components 259

Table 7.2. Model parameters of the diode in Fig. 7.53

Parameter
IS
RS
N
VT
BVO

Value
46.5.10- 12 A
0.123 ohm
1.35
0.0255 V
BG MAX

In the first simulation the interval is set to 10 ms, i.e. to the half period of the
voltage generated by the source when the diode is forward biased. The intention is
to simulate the diode I-V characteristics. The output interval is chosen as 1 us. As
usual, the voltage across the diode was plotted along the x-axis and the current
along the y-axis. The characteristic obtained is shown in Fig. 7.54. It can be seen
that the current starts rising at a voltage of about 0.6 V. The reverse part is not
simulated because there is little to show.

In the second experiment the simulation interval is set to 0.100 s, i.e. five peri­
ods of the voltage. Fig. 7.55 shows the current in the circuit. During the first half­
period (0.010 s) the current flows through the resistor, reaching its maximum
value of 0.491 A. When the voltage changes its polarity, the diode becomes re­
verse biased and there is an extremely low current through the circuit.

5.0

4.0

3.0

:!!
10.1

2.0

1.0

0.0

0.0 0.2 0.4 0.6 0.8 1.0

vd

Fig. 7.54. The diode forward voltage vs. current

To analyse the behaviour of the circuit when diode breakdown occurs, the VBO
was set to 40 V and the simulation repeated. Fig. 7.56 shows a plot of the diode
current. During the breakdown there is appreciable reverse current through the di­
ode (-0.0944 A).

260 7 Electrical systems

5.0

2.5

-2.5

-5.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 7.55. The half-rectified current in the circuit

5.0

2.5

:l! 10-1 0.0

-2.5

-5.0

reversecurentat
diode breakdown

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 7.56. The current in the circuit when there is diode breakdown

It should be noted that the program failed when the diode breakdown
characteristics were described according Eq. (7.30). When the breakdown voltage
was reached, there was an error message indicating that the program failed to
evaluate the partial derivative matrix. To cure the problem, the exponential terms
was changed as given by Eq. (7.29).

7.4 Modelling Semiconductor Components 261

Dynamical Model

The model developed so far is quasi-static. Such a model, from the perspective of
dynamical applications, would be infinitely fast. This is not the case in real diodes,
as charge-storage effects limit the velocity of the response. To account for the dy­
namical effects, we take an approach similar to that used in circuit simulators such
as SPICE [4,7]. Our approach is charge-based, however.

There are two mechanisms of charge storage in diodes: charges stored in the
depletion layer and charges injected across the layer into neutral regions. Under no
bias voltage, the depletion region consists of fixed dopant ions. This layer behaves
as a plate capacitor of capacitance Cjo. Under negative bias (and under positive
bias that is less than the built-in potential), the width of this layer changes, as does
the capacitance. We use the charge formulation of such capacitor effects instead of
the more common capacitance formulation.

The charge of the depletion region can be expressed as a function of the applied
voltage using the formula

C jOv bi [()1-m]QJ" = 1_ m 1- 1- (v d / V bi) (7.31)

where Vbi is the built-potential and m is the grading coefficient. The last coefficient
can have a value between 0.5 for abrupt, and 0.33 for linearly graded, junctions.
The corresponding capacitance is given by

(7.32)

(7.33)

From Eq. (7.32) we get

C
_ Cd(O)V bi

d -
(1-(v d /Vbi)r

The junction charge and capacitance functions, as given by Eqs. (7.31) and
(7.33), are only approximate and agree with more exact values at voltages less
than about vb;l2 [7]. At a voltage equal to the built-in potential, the capacitance is
infinite. At that high bias, on the other hand, the charges generated by injection
dominate. Thus, it is usually assumed that some error in the charge and the capaci­
tance near the built-in voltage is acceptable. If more accuracy is required, the for­
mula of [11] can be used. We note that, in spite of the fact that we are only inter­
ested in charges, capacitances appear naturally when the program calculates the
partial derivatives of Eqs. (7.31) by symbolic differentiation. We thus must take
care of the behaviour of capacitances, as well.

We follow the approach in [7] that approximates junction charges by Eq. (7.31)
up to FC·Vbb and employs quadratic interpolation beyond. The corresponding for­
mula reads

(7.34)

and

262 7 Electrical systems

Q, =C'o(~[1-(1-FC)1-ml+ 1 .(vd-FC'Vb')+
J J 1- m (1- FC)m I

___m (v d -FC·vb,)2), (Vd;::': FC.vb,)2Vbi(1-FC)m+1 I I

(7.35)

The effect of these charges can be represented by a capacitive element Cj in
parallel with the diode's non-linear resistive element (Fig. 7.57). The constitutive
relation of the element is defined by Eqs. (7.34) and (7.35), i.e.

q = Vd / VJ < FC ? CJO * VJ * (1- (1- Vd / VJ)A(1- m))/(1- m) :
(7.36)

CJO * VJ * (F1+ F2 * (Vd /VJ - FC)+ F3 * (v d /VJ - FC)A2)

where VJ is the built-in potential, CJO the initial junction capacitance value, and

F1= (1- (1- FC)A(1- m))/(1- m)

F2=(1-FC)A(-m) (7.37)

F3 = 0.5 * m * (1-FC)A(-1-m)

FC typically has a value of 0.5.
Minority-carrier charges injected into the neutral sections also influence diode

dynamics. These are termed diffusion charges [7] and are given by

(7.38)

R

where TT is the transit time parameter of the diode. Accumulation of diffusion
charges can be represented by a capacitive element Cd in parallel with the junc­
tion charges capacitor Cj, as shown in Fig. 7.57.

Rei

1~Cj
f

L1~Cd ~
1\ e /

Fig. 7.57. The dynamical model of the diode

The constitutive relation for the charge is given by Eqs. (7.24) and (7.38)

q = TT * IS· (exp(ed/(N * VT)) -1) (7.39)

To find the time response of the diode we simulate transients in the circuit of
Fig. 7.53 when the voltage is pulsed from 0 to 50 V, and then to -50 V. The diode

7.4 Modelling Semiconductor Components 263

dynamical parameters are given in Table 7.3. Parameters of the generated pulse
are (Fig. 7.37): TD =0 s, TR =10 ns, PW =40 us, and TF =20 ns. BVO is set to
the maximum value (BG_MAX). Corresponding model can be found in the library
under the project name Diode Recovery. The simulation is run for 50 us with an
output interval of2ns. The results are shown in Fig. 7.58.

Table 7.3. The dynamical parameters of the diode
Parameter Value
CJO 51.5·1O-12C

M 0.333
VJ 0.381
TT 5.77.10- 6 s

When the pulse switches to a negative voltage, the charges injected cause a
large reverse current of practically the same value as the forward current (Fig.
7.58). Following the analysis given in [9], the storage delay time is approximately
equal to 3.91 us, Only when these charges are removed does the current return to
the saturated (or breakdown) value. The necessary transition time depends on the
depletion capacitance and circuit resistance. The corresponding time constant can
be approximated by CjO·R ~ 0.005 us. Thus, the total diode recovery time is
dominated by the storage delay time. The value estimated by simulation is 3.96
us, which agrees well with these figures. It can be checked (by opening the diode
voltage plot) that the diode voltage is ~ 0.8 V until the charges are removed.

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 7.58.Response ofthe diode current to a pulse in the supplyvoltage

264 7 Electrical systems

Diode Self-Heating

Diodes and other semiconductor devices are known to be notoriously dependent
on temperature. It thus is important to model the thermal processes as well as the
electrical processes.

Temperature is explicitly contained in the exponent of the diode I-V character­
istics through the thermal voltage kT/q. But this is not the only temperature effect
because other parameters, such as the saturation current, built-in voltage, and oth­
ers are strongly influenced by temperature. It is thus of interest to take account of
this temperature dependence when modelling the static and dynamic behaviour of
diodes.

In SPICE, all circuit parameters are defined at a nominal working temperature
of 300 K (27°C). This temperature can be changed to some other specified value
and all parameters re-evaluated, but the simulations are run at a fixed temperature.
Other languages, such as VHDL-AMS [12], are better equipped to deal with the
thermal side of device modelling. Bond graphs can also be used to model the
thermal effects of devices [2,13]. The approach taken in this book is particularly
appropriate for that purpose.

During the diode's operation part of the electrical power is transformed to heat.
This heat flows out of the diode to the surroundings; but part also accumulates in
the diode, thereby changing its temperature. Depending upon the net heat balance,
the diode can heat up or cool down. A change of temperature, on the other hand,
influences the electrical characteristics of the diode, both static and dynamic.

To account for such interactions, we add an additional port that serves for the
heat transfer with the environment (Fig. 7.59). We label such a diode as DTh (Di­
ode Thermal model).

Thermal port

~4
DTh

~

Fig. 7.59. The representation ofa diode with self-heating

We develop a thermal model of the diode based on the static model of Fig.
7.52. The proposed model is shown in Fig. 7.60. In addition to the components
that model electrical processes, the model also contains a component termed Self­
Heating, which models the thermal processes. These components interact through
their thermal ports.

Heat generation occurs in elements Rand Rd, where electrical power is trans­
formed into heat that flows out. To represent these heat flows, a thermal port is
added to every resistive element. The thermal processes are modelled using
pseudo-bond graphs (Sect. 1.3). In accordance with Table 1.1, the effort-flow pair
of variables at these ports are temperature temp and heat flow fQ at the port.

7.4 Modelling Semiconductor Components 265

Self-Heating

1
rf
R Rd

L1 /~
'--- e -----/

Fig. 7.60. The diode model with self heating

These pseudo bond graphs are convenient for modelling thermal processes. It
also is possible to use true bond graphs that are based on temperature and entropy
flow pairs. True bond graphs are more general and also much more complicated
than pseudo-bond graphs. They are not really needed here.

The constitutive relations at thermal ports are of the form

fQ=e·j (7040)

where e and i are the voltage and the current, respectively, at the electrical ports.
Heat flow is equal to input power. Temperature at the port is defined relative to
nominal temperature TNOM. Thus, the absolute (thermodynamic) temperature is

T = temp + TNOM (7AI)

The reason for this is that the program is designed to start from the state in which
the system is not yet activated; hence, all variables, with the possible exception of
certain state variables, are zero. Regarding temperature, we assume that the system
is not at absolute zero, but has some predefined value TNOM, which is taken to
equal 300 K.

The temperature at a thermal port affects the processes at electrical ports. In the
diode resistive element this is through the thermal voltage defined by Eq. (7.20).
Thus, we change the constitutive relation Eq. (7.24), replacing the thermal voltage
parameter VT by the expression BOLTZMANN·(temp+TNOM)/ECHARGE, where
the electron charge and Boltzmann's constants are globally defined.

ECHARGE =1.6022.10-19 (C)
BOLTZMANN = 1.3806.10-23 (JK1

)

(7.43)

(7.44)

266 7 Electrical systems

Practically all diode parameters depend on temperature [7]. Temperature de­
pendence of the saturation current is given by

T - q-Eg(Ta)(1-TlTa)
is(T)=is(To)·(_)XTlln. e nkT (7.42)

To

Where To is the nominal temperature and XTl is a parameter that has a value 3 (for
pn diodes). Eg(To), the energy gap at nominal temperature, is defined (for Si) by
the parameter EGNOM = 1.115 V.

We describe the right side of the above equation as

IS * (1+ temp/TNOM)I\(XTI/N) * exp(ECHARGE * EGNOM *

(temp/TNOM)/(N * BOLTZMANN * (temp + TNOM)))

and simply substitute it for the saturation current IS in Eq. (7.24).The resulting
expression is quite complicated, but this is not a problem for the program. We
need only to write it correctly.

We can do it another way, too. The total heat generated is equal to the sum of
the heat that flows out of thermal ports, which is represented by a flow junction in
Fig.7.60. The junction variable is the temperature temp of the diode junction (rela­
tive to TNOM). This can be used to define the saturation current using function
components and to return its value through a control input port to the resistive ele­
ment.

The thermal model of the diode is defined in the component Self-Heating. In
general, thermal models of diodes, as well as those of other semiconductor de­
vices, are represented using thermal circuits [14]. That is, continuous thermal pro­
cesses are discretisized and represented using electrical analogies. We do not need
such analogies, for we can deal with this directly by bond graphs or, in particular,
pseudo bond graphs [2,13].

Two basic elements are used to build thermal models. The first is the thermal
resistor, represented by a resistive bond graph element (Fig. 7.61a). The constitu­
tive relation of such a resistor is

T1 - T2 - T =0

fQ = fQ(T)

i.e. heat flow is a function of temperature. In the linear case, the constitutive rela­
tion of the element is simply

fQ = T/R

where R is the thermal resistance expressed in K/W (or °elW).
The other element represents heat storage (Fig. 7.61b) and is defined by

fQ 1 - fQ 2 - fQ = 0

fQ= dE
dt

where E is the thermal energy. The accumulated energy is

(7.45)

(7.46)

7.4 Modelling Semiconductor Components 267

E=C·T (7.47)

Parameter C is the thermal capacitance and has units of J/K. Strictly speaking, it
corresponds to the specific heat at constant volume. But in solids and liquids, in­
cluding semiconductor materials, work done by expansion of the material is very
small compared to the net heat inflow fQ, hence it is usually referred to simply as
the material's specific heat. Eq. (7.47) is the constitutive relation of the capacitive
element in Fig. 7.6Ib.

(a)

Fig. 7.61. Thethermal elements. (a) Resistor, (b) Storage

The Self heating component of the diode can be represented by the RC circuit
shown in Fig. 7.62. The resistive element represents heat that flows from the junc­
tion because of the temperature gradient between the junction and the diode's out­
side surface. Part of this heat is accumulated in the diode. This is represented by
the capacitive element.

f--C

1
e--R

1
Fig. 7.62. Thethermal model of the diode

The diode thermal port is normally connected to components that model the di­
ode environment. This is usually the heat sink that removes heat from the diode,
ensuring that its temperature is held within acceptable margins (Fig. 7.63). The
other side of the sink is usually at ambient temperature, here represented by a SE
component. Thermal models of such sinks can be represented in a similar way us­
ing a RC circuit.

Heat sinks are usually made of extruded aluminium and for which manufactur­
ers provide thermal data, such as thermal resistance, volume, and material. Com­
plete thermal models also should include the resistance of the heat path to the sink,
which depends on the design of the semiconductor components. A component

268 7 Electrical systems

usually is enclosed in a case, and between the case and the heat sink there is some
layer of isolation. Thus, the thermal model of the diode and heat sink, as shown in
Fig. 7.63, is a simplified one. For proper thermal modelling, details of the design
should be taken into account. Detailed models usually consist of several RC seg­
ments connected in series [14].

Heat Sink

SE

Fig. 7.63. The diode thermally connected to a heat sink

To illustrate the application of models of the diode, including self-heating, we
return to the rectifier circuit of Fig. 7.53. We replace the diode model with its
thermal model (Fig. 7.64). Information on diode temperature is taken from the
heat flow junction (Fig. 7.60) and sent to the display component. The correspond­
ing project can be accessed from the BondSim project library under the title Recti­
fier circuit with self-heating.

We simulate the temperature rise in the diode following a sudden voltage
change from 0 to 50 V. Parameters of the diode thermal model and of the heat sink
are given in Table7.4. The other side of the sink is held at nominal temperature.
These parameter values have been chose to illustrate the behaviour of the diode
under changing temperature conditions; real values could be derived from, for ex­
ample, cooling tests of real devices. Simulation results are presented in Fig. 7.65.

Table 7.4. Thermal parameter of the circuit

Parameter
Diode thermal resistance
Diode thermal capacitance
Heat-sink thermal resistance
Heat-sink thermal capacitance

Value
0.1 KIW
0.0001 JIK
lOKIW
0.01 JIK

DTh

7.4 Modelling Semiconductor Components 269

Heat Sink

SE

® --...l

1_--.1-

Fig. 7.64. The rectifier circuit with the thermal diode model

5.0

4.0

3.0

2.0

1.0

0.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 7.65. Transient of diode temperature with change in the source voltage

270 7 Electrical systems

7.4.2 Transistors

The bipolar junction transistor was invented by Bardeen, Brittain, and Schockley
in 1947 while working at Bell Laboratories in Murray Hill. Rightly considered to
be one of greatest inventions of our time, it earned them the Nobel Prize in physics
in 1956. For a long time after its invention the BJT remained one of most impor­
tant three-terminal devices. It is found in amplifiers and drivers and, even today,
serves as one of the most important devices in a wide array of applications.

The field effect transistor (FET) emerged shortly after appearance of the BJT.
In fact, many different types of FETs were developed, their difference depending
upon how isolation between the gate and channel was implemented. These include
the junction FET or JFET, metal semiconductor FET or MESFET, metal-oxide
FET or MOSFET, as well as others.

We will not go into the details of the design and functioning of BJTs or FETs,
for this is outside the scope of this book. The interested reader can consult special­
ised books on semiconductors, such as [7,9,10]. We will, however, show how
models of some basic types of transistors can be developed as components that
can be used to study complex mechatronic or micro-mechanic systems. We follow
the modelling approach of SPICE. The models we present are fundamental ones
that correspond roughly to Levell models. More advanced component models can
be developed in the same way.

We wish to stress that the intention here is not to develop special bond graph
models that are, perhaps, energetically correct, but often not so easy to compre­
hend by those who are not experts in bond graphs. Our models will be visually
close to the electrical schemas used to describe SPICE models, but they are com­
plete component models without anything hidden.

Bipolar Junction Transistor

The Bipolar Junction Transistor (BJT) is a three-terminal device. The terminals
commonly are denoted as the emitter E, the base B, and the collector C. There are
two main types of BJTs: the npn and the pnp. The electrical circuit symbol used
for npn transistors is shown in Fig. 7.66a.

Be;r:~~t. BJT J
\+iB~ ~
eB~!iE

E
(a) (b)

Fig. 7.66. npn BJT. (a) The circuit symbol, (b) the bond graph representation

The emitter arrow shows the direction of the current under normal operations.
The positive directions of currents at the other terminals are shown. These are

7.4 Modelling Semiconductor Components 271

slightly different from those in SPICE [4,7]. The corresponding bond graph com­
ponent representation is shown in Fig. 7.66b. It is assumed that power flows into
the component at the base and the collector ports, and flows out at the emitter port.
Such a component can be created in BondSim by choosing the Bipolar Junction
Transistor button from the Electrical Component palette (Fig. 7.2). The text BJT
is simply a label used for reference and can be changed at component construction
time or later.

In the pnp type of BJT, the positive direction of the currents is just the opposite
(Fig. 7.67a). Hence, the pnp bond graph assumes positive senses of power-flow at
all ports to be the opposite to that of the npn type (Fig. 7.67b). Thus, to create an
empty pnp BIT component, the npn component is created first, then the power di­
rection of each of the three ports is changed. This is accomplished by selecting the
component and using the Change Ports All command on the Edit menu.

c

~
Bt;c

B +

~ i iE
aBE -

E
(a) (b)

Fig. 7.67. pnp BIT. (a) The circuit symbol, (b) The bond graph representation

We develop a model of a BJT based on the Ebers-Moll model, specifically the
transport version [7]. The npn transistor model is given (Fig. 7.68) consists of two
diodes that model two back-to-back pnjunctions, and a current source that models
the transport of current from the collector to the emitter. Models used for the di­
odes are slightly modified models of Sect. 7.4.1. They consist of non-linear resis­
tive and capacitive elements, but without the series resistive element (Fig. 7.69).
Transistor ohmic resistances are accounted for by the parasitic base Rb, collector
Rc, and emitter Re resistors (Fig. 7.68). The constitutive relations for the diode's
non-linear resistive elements are

Base-collector diode:

(7.48)

Base-emitter diode:

(7.49)

Is is the transistor saturation current and J3R and J3F are reverse and forward current
gains, respectively. The current source represents the transport of charges and is
given by

(7.50)

272 7 Electrical systems

Rc

0
,Q
Q

Rb

*~o

co
,Q
Q

Re

,
Fig. 7.68. Ebers-Moll model ofnpn BJT

Voltages V'Be and V'BE are effective base-collector and base-emitter voltages,
respectively. This is exclusive of the voltage drops of the parasitic resistances.

Rei

1~Cj
e--f

-"""""""Cd

Fig. 7.69. Model of base-collector and base-emitter diode

To generate a current given by Eq. (7.50), it is necessary to supply the current
source in Fig. 7.68 with information on the base voltage. The base node is a flow
junction; its junction variable is effort, i.e. the base voltage. Thus, we can create a
control-out port at the base node and a control-input port at the current source
component, then join them by a bond line, as shown in Fig. 7.68. It now is an easy
matter to define the current source that implements the constitutive relation of Eq.
(7.50). This is shown in Fig. 7.70.

The base-collector and base-emitter voltages are created using two summators.
These signals are inputs to the two source flows that generate the current compo­
nents ofEq. (7.50). Finally, the flow junction is used to add these current compo­
nents.

7.4 Modelling Semiconductor Components 273

T
Fig. 7.70. Model of current source of Fig. 7.68

Charge storage is modelled by capacitors that are part of the collector and emit­
ter junction diode models (Fig. 7.69). Constitutive relations of these capacitors are
as described in Sect. 7.4.1. The transistor model is a dynamic, large-signal Ebers­
Moll model. This doesn't include secondary effects, which could be included by
following an approach similar to SPICE [7].

To simulate the transistor characteristics, we create the project npn Transistor
Characteristic. The system level model shown in Fig. 7.71 represents the model of
a set-up for measurement of npn bipolar junction transistor characteristics in the
common emitter configuration.

BJT

,Q
H

=

Fig. 7.71. Measurement set-up for a npn BJT

274 7 Electrical systems

The base terminal of the transistor is fed by a current source and the collector
terminal is supplied by a voltage source Vee that is sinusoidal with an amplitude
of 10 V and a frequency of 10Hz. The voltage of the collector terminal with re­
spect to the emitter terminal is measured with voltmeter V, and the current flowing
through the collector terminal is measured by ammeter A. Their outputs are con­
nected to a plotter. We wish to determine a plot of collector current Ie vs. the col­
lector to emitter voltages VeE for the base current in the range of 0 to 50 /lA. Pa­
rameters of the transistor are given in Tables 7.5 and 7.6.

Default values of parameters of Table 7.6 are defined at the transistor document
level; those of the diodes in Table 7.7 are defined at the document level ofthe re­
spective diodes. The values that override these defaults must be defined on a
higher level (counting the system level as 0). Thus, for example, parasitic resis­
tances are defined in the respective resistors. What is a default and what is a speci­
fied value is not predefined, as in SPICE; this decision is left to the modeller.

Table 7.5. Parameters of the transitor ofFig. 7.71

Parameter
IS
VT
BR
BF
RB
RC
RE

Value
10-16 A
0.0258 V
1
80
5 ohm
1 ohm
0.01 ohm

Table 7.6. Forward and reverse diode parameters of the transistor

Parameter
CJO
VJ
m
FC
TT

Value
0.0 F
0.75 V
0.333
0.5
0.0 s

During simulation the output normally is stored in, and plotted by, the plotter
object. To have a family of curves plotted on the same plot, we must perform sev­
eral simulation runs and store all resulting values in the same object, then plot
them. This can be done relatively simply. We start, for example, with a base cur­
rent of 0 llA, build the model, and run the simulation for 0.1 s. For better display,
we select the output and maximum interval to be O.OOOls. Next, we change the
current value to 10 /lA. We need not rebuild the model, as it is updated automati­
cally when we click the OK button after changing the current. We then rerun the
simulation, but in the Simulation Option dialogue (Fig. 7.72) we select Restart
button and uncheck the Reset plot check box. The first option forces the simula­
tion to restart from zero; the second prevents release ofdata from the previous run.

7.4 Modelling Semiconductor Components 275

Fig. 7.72. Simulation Options dialogue with Restart and Reset buttons

In the display object (Fig. 7.71) we assign the collector current to the y-axis and
label it as Ie, and the voltage to the x-axis and label it as VCA. If the plot window
is not already open, we simply double-click the plotter object. Simulations were
run with an output interval of 0.1 s (one period of the supply voltage) and a fairly
small output interval of 0.0001 s, the better to display the characteristics. In the
resulting graph (Fig. 7.73), the curves are labelled by the value of the base current,
which are added using the right mouse button as explained in Sect. 7.2.

The diagram shows the familiar emitter characteristics for different values of
base current. Because of different current gains for forward and reverse diodes (80
to 1), they are asymmetrical. The collector current changes from 800 J.lA to 4 rnA
when the base current changes from 10 to 50 J.1A. This is in accordance with the
forward current gain of 80.

The pnp BJT is similar to the npn type with holes replacing the roles of elec­
trons. Thus, the directions of currents and polarities of the voltages across the
emitter, the base, and the collector are opposite to that of the npn BJT. The corre­
sponding component representation already has been discussed (Fig. 7.67); its
model is developed in a similar way.

We also can create a model of the pnp BJT directly by using a copy of the cor­
responding npn model. Starting with the npn BJT (Fig. 7.67b), we select the com­
ponent and change the sense of all ports by the Change Ports All toolbar button
(or by the corresponding command in the Edit menu). This changes the external
ports of the component and also the ports of all components inside its document
that are connected to them, i.e. ports of resistors Rb, Rc, and Re (Fig. 7.68).

We also need to change the power-flow direction of the ports on the other side
of the resistors. Next, we successively select the diodes and the current source in
Fig. 7.68 and change all of their ports. Because we must change the direction of
the current flow through the current source, we also must change the sense of the
effort junction ports connected externally through the flow junctions, but not that
of the port connected to the transported current components flow junction (Fig.
7.70). Finally, we must change the summator signs. A model ofapnp BJT can be
found in BondSim's Component Library. The pnp Transistor Characteristics pro-

276 7 Electrical systems

ject that parallels the npn transistor project discussed above is found in the Bond­
Sim projects library.

5.0 _.. _-

50uA

40uA

2.5 30uA

20 uA

10uA !

10-3 0
!

.lI 0.0

-2.5

-s.e
-1.0 -o.s 0.0 0.5 1.0

Fig. 7.73. Characteristics ofnpn BJT

Junction Field Effects Transistor

The Junction Field Effect Transistor (JFET) is a three-terminal voltage-controlled
device. Its operation involves an electric field that controls the flow of charge
through it. JFET terminals commonly are denoted as source S, drain 0 and the
gate G and are analogous to the emitter, collector, and base terminals of the BIT.
The source and drain are ohmic contacts. There is a conductive channel between
the drain and the source, through which current flows. The third terminal, the gate,
forms a reverse-biased junction with the channel. The conductivity of the channel
is modulated by a potential applied to the gate. As the conduction process involves
predominantly one type of carrier, JFETs also are called unipolar transistors.

Depending on the type of material involved, a JFET may be referred to as a n­
channel or a p-channel JFET. The electrical circuit symbol used for n-channel
JFETs is shown in Fig. 7.74 a. The corresponding bond graph component repre­
sentation is shown in Fig. 7.74b. It is assumed that power flows into the compo­
nent at the gate and the drain ports, and flows out at the source port. The compo­
nent can be created using the n-channel JFET button of the Electrical Component
palette (Fig. 7.2). The text JFET is simply a label used for reference and can be
changed when the component constructed or later.

7.4 Modelling Semiconductor Components 277

aDS

JFET

S
(a) (b)

Fig. 7.74. n-channel JFET. (a) The circuit symbol, (b) The bond graph representation

The polarities are just the opposite in a p-channel JFET (Fig. 7.75). Thus, the
p-channel JFET component can be created from an n-channel component by re­
versing the power flow direction of all ports. This can be done by selecting the
component and using the command Change Ports All.

D

(a)

aDS

(b)

JFET

Fig. 7.75. p-channel JFET. (a) The circuit symbol, (b) The bond graph representation

It is also possible to change only the gate port. In this case, the drain and the
source of the p-channel JFET change places with respect to the n-channel JFET.
The n-channel and p-channel JFETs differ in the sense of the gate port power
flow. The drain of the n-channel component is a port where power flows in; for
the p-channel, power flows out. For the sources, the opposite is true.

The direction of power flow through JFETs is taken to correspond to the nor­
mal mode of operation in which the drain of the n-channel device is at higher po­
tential than that of the source; hence, current flows from the drain to the source.
Thus, electrical power flows in at the drain and flows out at the source. For the p­
channel device, the source is normally at a higher potential, so current flows from
the source to the drain. The power flow direction of the p-channel JFETs is just
the opposite.

We develop a model of the n-channel JFET (Fig. 7.76) that consists of two di­
odes, OS and DO, which model the reverse-biased junctions between the gate and
the channel, and a voltage-controlled resistor. Resistors RO and RS represent the
ohmic resistances of the drain and the source. This model corresponds to the large­
signal SPICE model with the controlled resistor R replacing the dependent current
source [4].

278 7 Electrical systems

- -
DO RD

~

r
l ll'.

OS RS

Fig. 7.76. Model ofn-channel JFETcomponent

The constitutive relation ofthe current-controlled resistor is given by [4]

0, Vgs::;; VTO

BETA· Vds (2(Vgs - VTO) - Vds)(1 + LAMBDA· Vds),

id = 0 < Vds < Vgs - VTO (7.51)

BETA· (Vgs - VTO)2(1 + LAMBDA· Vds),

Vds > Vgs - VTO

The VTO parameter is the threshold (pinch-off) voltage. This determines the gate
bias at which the channel is completely pinched-off and there is effectively no cur­
rent through the device [4,9]. If VTO < 0, then at Vgs = 0 the device is in the on
condition and, under a positive drain to source voltage, current will flow from
drain to source. To cut off the device it is necessary to apply a negative gate to the
source voltage. Such device operation is known as the depletion mode. In the en­
hanced mode VTO > 0, the device is pinched-off initially and it is necessary to ap­
ply a positive voltage larger than the threshold to enable the device to conduct the
current.

The diode models consist of a non-linear resistor and a capacitor (Fig. 7.77).
Because in JFETs the diodes normally are reverse-biased, there is no diffusion
charge. Hence, the charges consist of fixed ions in the depletion region and are
represented by a junction capacitor.

Eq. (7.51) shows that at a relatively small drain-to-source voltage Vds the cur­
rent increases with the voltage until the saturation voltage (equal to Vgs-VTO) is
reached. This region is called the linear region of operation. When the drain-to­
source voltage increases above the saturation voltage, the drain-source current is
practically independent of the voltage and the device is saturated. The parameter
BETA is a trans-conductance parameter, and LAMBDA is the output conductance
at saturation.

7.4 Modelling Semiconductor Components 279

Rei

1
f Cj

1
e

Fig. 7.77. Model ofjunction diodes

The controlled resistor defined by Eq. (7.51) can be described as shown in Fig.
7.78. Its model is similar to other resistors, i.e. it consists of a resistive element R
connected to an effort junction, the ports of which also are connected to the docu­
ment (external) ports of the resistor. In this way, the effort and flow variables of
the resistive element are the drain-to-source voltage Vds and the channel current
id. The element also has a control port to collect information on gate bias. Note
that the input signal at the document left port is the gate potential (Fig. 7.76).
Thus, to create the gate-to-source voltage Vgs a flow junction is inserted, the junc­
tion variable of which is the source potential. A summator is used to evaluate the
difference of these two potentials, and its output is connected to the resistive ele­
ment control-input port.

I r 1Ir-------- s e .. R

L1

Fig. 7.78. Model of controlled resistor

280 7 Electrical systems

The constitutive relation ofEq. (7.51) is valid for drain-to-source voltage Vds ~

O. This corresponds to the normal mode of operation. In the inverted mode (Vds <
0), the drain and source ports switch roles and the current flows in the opposite di­
rection. The corresponding constitutive relation is symmetric [4,7]. Thus, instead
of the Vgs voltage, the Vgd voltage is used in Eq. (7.51). This can be achieved by
using relationship Vgd = Vgs - Vds. Similarly, Vds is changed to -Vds and the
sign of the current is changed.

As was the case with the BIT, we can find the id- Vds characteristics of a JFET
by simulation. For this purpose we create a project n-Channel JFET Characteris­
tics, the system level model of which is given in Fig. 7.79. The drain of the JFET
is supplied from voltage source VD generating voltage ramp 0-5 V. The gate port
is connected to a separate voltage source. The source of the JFET is grounded. We
measure the voltage across the drain and source ports by voltmeter V and the cur­
rent through the component by ammeter A. Instruments outputs are fed to a plotter
for display. JFET parameters correspond to the 2N44 I6 JFET of reference [6] and
are given in tables 7.7 and 7.8.

Table 7.7. Basic 2N44I6 JFET parameters [6]

Parameter
RD
RS
IS
VTO
BETA
LAMBDA

Value
0.575 ohm
0.575 ohm
5·10,12 A

-3.32 V
0.05 AN2
0.00928 IN

Table 7.8. Junction diode parameters of2N4416 JFET [6]

Parameter
VJ
CJO
FC
M
N
VT

Value
0.76 V
3.37 pF
0.5
0.5
1
0.0258 V

To generate id-Vds characteristics of the JFET, several simulations are run with
constant gate voltage ranging from 0 to - 3.32V. The simulation interval was set
to 1s, which corresponds to increasing the drain-to-source voltage from 0 to 5 V.
The output interval was 0.001 s. Output of each simulation is stored in the display
component. Results are given in Fig. 7.80.

The transistor is in the depletion mode. As the gate bias becomes negative,
conduction of the transistor drops and, at voltage of -3.32 V, is completely
pinched-off. The curves also show a linear region in which the source voltage in­
creases with the drain-to-source voltage; and a saturation region in which the cur­
rent is independent of the drain-to-source voltage.

7.4 Modelling Semiconductor Components 281

/
0..---"'--'

Fig. 7.79. Measurement set-up for n-channel JFET

5.0

4.0

3.0

:!!
10.1

2.0

1.0

0.0

0.0 1.0 2.0

Vgs=-3.32 V

Vds

Fig. 7.80. Simulation of characteristics of 2N4416 JFET

The discussion so far has been for n-channel devices, but a similar discussion is
valid for p-channel devices. In p-channel devices all voltage and current polarities,
including the threshold voltage, and the directions of two gate junctions are re­
versed [7]. Likewise, greater-than and less-than relations must be reversed. We re­
tain, however, the same constitutive relation as that used for the n-channel device:

282 7 Electrical systems

Instead of terminal voltages Vgs and Vds, we use reverse voltages Vsg and Vsd.
Similarly, VTO now is the negative of the threshold voltage. Thus, a positive value
of VTO corresponds to a device that is off-in the enhanced mode-for both n­
channel and p-channel devices. Similarly, the negative value corresponds to a de­
pletion mode device, which is initially on, for both n-channel and p-channel de­
vices.

The change in polarity of the voltages across the terminals and of the direction
of current is taken care of by a change in the power flow direction through the p­
channel device (Figs. 7.74 and 7.75). The model of the p-channel JFET is similar
to the n-channel model of Figs. 7.76 to 7.78, but with direction of power flow be­
tween external ports reversed. The change of power flow direction should be ap­
plied only to the bonds through which power is transferred between external ports.
The others are not affected, e.g. the power flow direction to the non-linear resis­
tive element and of the capacitive element of the diode model in Fig. 7.77, as well
as that of the controlled resistive element of the resistor in Fig. 7.78. These are the
same for both n-channel and p-channel devices. In addition, we need to change the
signs of the summator inputs of Fig. 7.78, because these components are used to
evaluate Vgs, the voltage used in Eq. 7.51. This way, the p-channel JFET model
can be created from the n-channel model by changing the port power flow direc­
tions. This is done by using the Change Ports All command for all component
ports, or the Change Port command for a particular port, then changing the sum­
mator input signs.

Metal-Oxide Semiconductor Field Effect Transistors

Metal-oxide semiconductor field effect transistors (MOSFET) are so called be­
cause their gate is isolated from the channel by an oxide layer [9]. One of the ma­
jor advantages of MOSFET technology is low cost and the possibility of dense
packing. They also enables both p- and n-channel devices to be made on the same
substrate, leading to the so-called Complementary MOSFETs or CMOSs. Today
MOSFETS are one of the most important semiconductor technologies.

Many different models of MOSFET have been developed and are used to de­
scribe real devices-ranging from digital to analogue, and of different power ca­
pabilities and frequencies-more accurately. We limit our discussion to a basic
MOSFET model. More complex models can be developed using a similar ap­
proach. Much of the earlier discussion on JFETs applies to MOSFETs and will not
be repeated here.

MOSFETS, or MOS, for short, are basically four-terminal devices that, in addi­
tion to gate, drain, and source terminals, have a bulk terminal. Normally, this is
connected to a terminal with the most negative potential for n-channel MOSFETS,
and to the most positive terminal in case of p-channel MOSFETS. It also can be
used for additional control of MOSFETS [9].

The electrical circuit symbol used for n-channel MOS (NMOS) is shown in Fig.
7.81a. Voltage polarities and the current direction correspond to normal operation.
The corresponding bond graph component is shown in Fig. 7.8Ib. It is assumed

7.4 Modelling Semiconductor Components 283

that power flows into the component at the gate, bulk, and the drain ports; and
flows out at the source port.

o

MOS

eos ..."""-----

(a) (b)

Fig. 7.81. N-channel MOSFET. (a) The Circuit symbol, (b) The bond graph representation

Polarities of p-channel MOSFETs (PMOS) are just the opposite (Fig. 7.82a).
Similarly, the port power flow senses of the corresponding bond graph compo­
nents also are reversed (Fig. 7.82b).

o

(a)

eos

(b)

MOS

(7.52)

Fig. 7.82. P-channel MOSFET. (a) The circuit symbol, (b) The bond graph representation

The NMOS component can be created using the n-channel MOSFET button of
the Electrical Component palette (Fig. 7.2). The text MOS is just a label used for
reference to the component and can be changed at this stage or later. The p­
channel component can be created from an n-channel component by reversing the
power flow direction of all ports. It also is possible to change only the base and
bulk ports. In this case, the drain and source of the n-channel MOSFET effectively
change places.

The n-channel MOSFET model (Fig. 7.83) is dynamic and corresponds to the
Levell large-signal SPICE model. We use a controlled resistor to describe the
static characteristics ofNMOS, as we did in the JFET case.

Static characteristics ofNMOS are given by relation [4, 7]

0, Vgs::; VTH
(KP/2)· Vds .(2(Vgs- VTH)- Vds)(1 +LAMBDA . Vds),

id = 0 < Vds < Vgs - VTH
(KP / 2)· (Vgs - VTH)2 (1+LAMBDA· Vds),

Vds ;:: Vgs - VTH

284 7 Electrical systems

- -

RD
~
~ ...

CGO BO
II ...
II ...

I II':

ICGS
II

BS
II ...

RS
~

r
Fig. 7.83. Model of NMOS

where KP is effective transconductance. VTH is the threshold voltage that de­
pends on the difference of potential of the body with respect to the source (or
drain for PMOS) [7],

VTH = VTO+ GAMA .(~PHI- Vss - .JPHI) (7.53)

GAMA is a body-effect parameter and PHI is the surface potential. The controlled
resistor of Fig. 7.83 is represented by the same model as in the JFET model (Fig.
7.78), but using the constitutive relation of the resistive element based on Eq.
(7.52) and (7.53). Resistors RO and RS in Fig. 7.83 are parasitic resistances of
drain and source, respectively.

In MOSFET there is no direct resistive current path between the gate and either
the drain or source because of the oxide isolation layer. There is charge accumula­
tion, however, that is modelled by capacitors CGO and GCS, between the gate
and the drain and the gate and the source, respectively. In a first-order analysis
these can be described by constant capacitances. The capacitance between gate
and body is neglected.

There also are junctions between the body, the source, and the drain that are
represented by diodes (Fig. 7.83). These junctions are reverse-biased. We use the
same model of diodes as in JFET (Fig. 7.77). The capacitances Cj in that model
describe the accumulation ofjunction charges.

The discussion regarding direct and reverse operation of JFET applies here, as
well. Thus, Vgs in Eq. (7.52) is replaced by Vgd, Vbs is replaced by Vbd, Vds is
changed to -Vds, and the sign of the current is changed.

7.4 Modelling Semiconductor Components 285

The same applies to PMOSs. The direction of power transfer trough the com­
ponent is opposite to that of NMOS. Thus, the PMOS model can be created from
the NMOS model in the same way as discussed for JFETs. The body port of the
PMOS should, however, be connected to the port of higher potential in order that
the body junction be reverse-biased, i.e. to the drain for direct operation, and to the
source for the reverse.

As a first application of the MOS model, we create a project named NMOS
Characteristics that simulates the id-Vds characteristics of an n-channel
MOSFET. The corresponding system-level model is given in Fig. 7.84. The pro­
ject is similar to that for evaluation of JFET characteristics (Fig. 7.79). The drain
junction of the NMOS is set at 0-5 V by the voltage source VD. Its gate port is
connected to a separate voltage source. Because ports of the same component can­
not be directly interconnected, a separate branch node is inserted that is used to
connect the NMOS source and body ports. The node is grounded. There are also
instruments for measuring the gate and drain voltages and drain-source current.
Outputs of these instruments are fed to a plotter for display. The NMOS parame­
ters used for simulation are given in Tables 7.9 and 7.10.

Several simulations are run with different values of the gate voltage 4-8 V to
generate the id-Vds characteristics. The simulation interval was set to 1s,with the
output interval 0.001 s. Note that the transistor threshold voltage VTO = 3.5 V
(Table 7.9); hence, this is an enhanced mode NMOS and to conduct current the
gate bias must be greater than 3.5 V.

Table 7.9. Static NMOS parameters

Parameter
Rd
Rs
IS
VTO
KP
LAMBDA
GAMA
PHI

Value
10 ohm
10 ohm
1·10,14A

3.50V
0.001 AN2

0.0 IN
0.0
0.6V

Table 7.10. NMOS capacitances

Parameter
VJ
CJO
FC
M
N
Cgd
Cgs

BD
IV
5pF
0.5
0.5
1
1 pF
1 pF

BS
IV
5pF
0.5
0.5
1

286 7 Electrical systems

/~-_.-l-

@...----..---.

nMOS

Fig. 7.84. Set-up for measurement ofNMOS characteristics

Results (Fig. 7.85) show a linear region in which the source voltage increases
with drain-to-source voltage; and a saturation region in which the current is con­
stant.

1.0

0.8

0.8

.. 10.2
:!!

0.4

Vgs=8 V

Vgs=7 V ,
I

Vds

Fig. 7.85. Simulation ofNMOS characteristics

7.4 Modelling Semiconductor Components 287

The program library also contains a project PMOS Characteristics that the
reader is invited to analyse on his own.

We conclude this section with analysis of the basic CMOS inverter (Fig. 7.86).
It consists of a PMOS and a NMOS transistor, the drains of which are connected
through common node. The PMOS is supplied by a 5 V source; the source of the
NMOS is grounded. Input voltage is applied to both transistors and the voltage is
taken from the common node.

pMOS

nMOS

Fig. 7.86. Model of CMOS inverter

Parameters of the inverter are given in Tables 7.11 and 7.12. Note that the
threshold voltage ofboth transistors is 1 V; hence, they are in enhanced mode.

Table 7.11. CMOS static parameters

Parameter
Rd
Rs
IS
VTO
KP
LAMBDA
GAMA
PHI

PMOS
1 ohm
1 ohm
1·\0,14 A

IV
80.0 I.! AlV 2

0.0 IN
0.0
0.6V

NMOS
1 ohm
1 ohm
1·\0,14 A

IV
80.0 I.! AlV 2

0.0 IN
0.0
0.6V

288 7 Electrical systems

Table 7.12. CMOS capacitances (PMOS/NMOS)

Parameter
VJ
CJO
FC
M
N
VT
Cgd
Cgs

BD
0.75 V
5tF
0.5
0.5
1
0.0258 V
8tF/4tF
8tF/4tF

BS
0.75 V
5tF
0.5
0.5
1
0.0258 V

The inverter is driven by voltage

VG = Vo + V1 . sin(21tf) (7.54)

where Vo=V1 =2.5 V and f =20 MHz.
The simulation was run for 100 ns with an output interval of 100 ps for better

resolution. Results are shown in Fig. 7.87.

5.0

4.0

3.0

cs
2.0

1.0

0.0

Vout

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 7.87. The CMOS inverter simulation

When the input is low, e.g. equal to a v, the source-gate voltage of the PMOS
is 5 V and is on (conducting). The NMOS, however, is offbecause its gate-source
voltage is equal to aV, below the threshold. Current through both transistors thus
is zero. From the static characteristics of the PMOS it follows that the voltage be­
tween the source and drain must equal zero. Thus, the inverter output is equal to
the PMOS source port voltage, which is 5V. On the other hand, when the gate

(7.55)

7.4 Modelling Semiconductor Components 289

voltage is high, e.g. equal to 5 V, the PMOS is off and current through the transis­
tors is zero. But now the NMOS is on. This means that its drain-source voltage is
oV. Because the source port of the NMOS is grounded, the inverter output is also
oV. Thus, the inverter generates high voltage (5 V) when it's input is low (0 V),
and low voltage (0 V) when it's input is high (5 V).

7.4.3 Operational Amplifiers

Operational amplifiers are important integrated circuit components widely used in
analogue signal processing. We here consider how they can be represented as
components in bond graphs.

Basically, operational amplifiers---op-amps, for short-are represented in elec­
trical circuits by the symbol shown in Fig. 7.88a. It has three terminals, two inputs
and one output. The input terminal designated with a "_" is the inverting terminal;
the other, denoted by a "+", is the non-inverting terminal. Bond graph components
representing op-amps are shown in Fig. 7.88b. This assumes that power flows
outward at the inverting port and inward at the non-inverting port. The op-amp
generates power at its output, which is represented by the power-out port.

Opamp
V-

:~ t>--'-:
.....

V+

(a) (b)

Fig. 7.88. Operational amplifier. (a) The circuit symbol, (b) The bond graph representation

The simplest model of the operational amplifier describes it as an ideal voltage
amplifier:

Vdiff = V+ - V_}
Vo = A o .Vdiff

l, = i_ = 0

Parameter Ao is the so-called DC open-loop gain. It assumes that the currents
drawn at the input ports are negligible and that there is no limitation of voltage or
current at the output port. Thus, the input resistance of the amplifier is infinite and
its output resistance is zero. Such a simple model can be represented by the bond
graph of Fig. 7.89. It consists basically of a source flow component SF that de­
fines a zero input port current and a source effort SE that generates an output volt­
age, as given by Eq. (7.55). The last component receives information on the volt­
age difference (efforts) at the non-inverting and inverting ports. This comes from
the flow junction inserted between the effort junction and the source flow compo­
nent.

290 7 Electrical systems

_J

I
I
e--"'f--"'SF

~
SE--"""-

(7.56)

Fig. 7.89. Simple model of op-amp

The power delivered at the operational amplifier output port is much larger than
at the input. The excess power comes from voltage sources that supply power to
the op-amp through supply terminals. The voltage generated at the output port
cannot rise above the voltages at these terminals. The supply terminals are not
shown in the simple op-amp model of Figs. 7.88 and 7.89. However, we can take
care of the limitation on the output voltage by defining the relationship of the
source effort in Fig. 7.89 as

eo = GAIN * ediff <= -VLlMIT? - VLlMIT:

(GAIN * ediff < VLlMIT? GAIN * ediff : VLlMIT)

where GAIN is the static gain of the op-amp and VLlMIT is the maximum value of
the output voltage. This usually is 1-2 V less than the supply voltage.

We now simulate the characteristics of the operational amplifier defined by the
models in Fig. 7.88 and 7.89 and Eq. (7.56). As usual, we create a project named
Ideal Op-amp Characteristics and define the model of a set-up for simulating the
static characteristics, as shown in Fig. 7.90.

The gain of the op-amp is set to 1.105 and the output is limited to ± 4.5 V. The
op-amp is driven by the source voltage VS connected to the inverting port by a
node. The source generates a sinusoidal voltage. The non-inverting port is
grounded. The op-amp output port is connected to ground across a 1 kohm resis­
tor. The output voltage reaches the limiting value at input of± 4.5.10-5 V. To show
the characteristics more clearly, we drive the op-amp with a low input voltage
with amplitude of 5·10-4 V and frequency of 1 Hz. The frequency is not critical, as
the op-amp model is static. To display the transition from the region of linear be­
haviour to saturation correctly, we must use a fairly small output interval, e.g.
0.001 s or less.

Results of the simulation are shown in Fig. 7.91, which shows that input and
output voltages are of opposite sign. This follows from Eq. (7.55) because, for a
grounded non-inverting port, the voltage difference Vdiff = -V_ and, hence, the

7.4 Modelling Semiconductor Components 291

output voltage Va = -Ao' V_. The output voltage changes linearly over a short in­
terval around the origin, and is constant elsewhere.

;n~Opamp
h

I. (J
/ ~

~

Fig. 7.90. Set-upfor simulating op-ampcharacteristics

5.0

2.5

'$ 0.0
~

-2.5

-5.0

-5.0 -2.5 0.0

Vin

2.5 5.0

Fig. 7.91. Op-amp quasi-static characteristics

We can improve the model by incorporating finite input and nonzero output re­
sistances, as well as dynamics. The resulting model is given in Fig. 9.92. Com­
pared to Fig. 7.90, the source flow in the input section is replaced by a resistive
element that models the input resistance of the op-amp,

292 7 Electrical systems

R

1
c

1
R

1
e~f~R SE ---"0. e ---"0. f ----+ SE ---"0. e

(7.59)

(7.60)

__J

Fig. 7.92. Improved model of operational amplifier

Similarly, a resistive element is added in series between the source effort and
output port. This models the output resistance. Finally, an intermediate section is
added that models the dynamics of the operational amplifier. Real amplifiers are
built of many bipolar junction transistors, JFETs, or MOSFETs, so the dynamics
are quite complex. A capacitance usually is added to the op-amps high-gain node
to control its dynamics over the useful range of frequencies. In simplified models
amplifier dynamics often are approximated by first-order dynamics [1, 4, 5], as
represented in Fig. 7.92 by the Rand C elements.

Denoting by e c the effort (voltage) on the capacitive element, the current is
. d dec
1= dt(C.ec)=C(jt (7.57)

The same current flows through the resistor. Thus, the dynamics of the operational
amplifier of Fig. 7.92 is given by

dec
R.C.(jt+ec =Ao ·ediff (7.58)

The natural frequency of this simple first-order system is
1

ill =-
n RC

and the dynamics of the op-amp can be described by
dec
--+ ill ec = Ao . ill . ed'ffdt n n I

The resistance R and capacitance C are chosen to approximate to the dominant
low-order natural frequency of the op-amp. This is taken as the bandwidth of the
op-amp, i.e. the frequency at which the output amplitude drops to 1/;/2, or - 3dB
of the DC value. Thus, for an op-amp with a bandwidth of 10 Hz = 62.83 rad/s, if
we choose Rdin = 1 kOhm the capacitance is Cdin =15.92.10.6 F.

7.4 Modelling Semiconductor Components 293

The product Aaffin on the right of Eq. (7.60), the gain-bandwidth product, is an
important characteristic of the op-amp. It usually is expressed in Hz-as Aofn ,

where fn =2TCffin- and typically is of order of MHz. In the example above, with the
DC gain 1.105 and the bandwidth 10Hz, it is exactly 1 MHz.

In the model of Fig. 7.92 we limit the output voltage at the source effort in the
output section by Eq. (7.56) using unity gain. The amplifier DC gain is defined in
the source effort of the intermediate section. This is, in effect, similar to the diodes
used in the output stage of the op-amp models of [4].

Operational amplifiers often are used in circuits for analog operations on sig­
nals, such as amplifying, integrating, differentiating, and filtering. We analyse
here only one such common circuit, the Inverting amplifier (Fig. 7.93).

The project Inverting amplifier in Fig. 7.93 is a slight modification of the opera­
tional amplifier circuit of Fig. 7.90; it has an added input resistor R and also a
feedback resistor Rf. This connects the output port to the input node, which in tum
is connected to the inverting input port of the op-amp. Loading the operational
amplifier output port is not needed here.

We estimate the close loop gain of the amplifier by summing the currents at the
input node under the hypothesis of an ideal operational amplifier of very high DC
gain.

L
Rf

R

Fig. 7.93. Inverting amplifier set-up

Under this hypothesis the potential of the node is equal to the ground potential,
and the current drawn by the op-amp is zero. Hence we have

Vin + Va = 0 (7.61)
R Rf

or

(7.62)

294 7 Electrical systems

The voltage gain of the inverting amplifier is, for sufficiently high open-loop
gain, given by the ratio of the feedback and input resistors. If we set R =1 kOhm
and Rf =25 kOhm, the gain is 25. This can be verified by simulation. We use a
sufficiently low input amplitude of 0.002 V, such that the amplifier is not satu­
rated (set to VLlMIT =5 V). The frequency chosen for the input voltage, 1 Hz, is
much less than the bandwidth frequency of 10Hz. The parameters of the opera­
tional amplifier are given in Table 7.13. The simulation was run for 5 s corre­
sponding, to 5 periods of the input voltage, using an output interval of 0.01 s. The
results (Fig. 7.94) show that the output amplitude is 0.05 V, as expected (that is:
0.002 V·25 =0.05 V). Also, the output phase is opposite to that of the input.

Table 7.13. Parameters of op-amp model

Rin
Rout
GAIN
VLIMIT
Rdin
Cdin

5.0

2.5

:; 10.2 0.0
~

-2.5

-5.0

I Mohm
100 ohm
1.105

5V
1 kohm
15.92 f.lF

.C7"

\/In

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 7.94. The inverting amplifier response to 2mV at 1 Hz

We expect that the output amplitude will roll off when the frequency reaches
the amplifier bandwidth. Because of feedback around the operational amplifier,
this frequency generally will be much higher than that of the open-loop opera­
tional amplifier, which is set at 10Hz.

(7.63)

7.4 Modelling Semiconductor Components 295

It can be shown ([1]) that the close loop bandwidth of the inverting amplifier
can be approximated by

(f) Aofn
n close-loop = --R-

1+_f
R

This relationship is valid if the open loop gain Ao is much larger than 1+R,/R, a
criterion that normally is satisfied. In our example, the gain-bandwidth product
Anfn equals 1 MHz. Hence, for the close-loop gain RtlR = 25, we get, by Eq.
(7.63), the close-loop bandwidth of about 38 kHz. The expected amplitude is 0.05
1--./2 = 0.03536 V.

We repeat the simulation with an input voltage of the same amplitude, but with
a frequency of 38 kHz. The simulation interval was set to 0.0002 S and the output
interval to 2.10-7

S. Results (Fig. 7.94) show that the output amplitude has dropped
to 0.03547 V. There also is a time lag of the output of about 16.5 us that corre­
sponds to the phase lag of 3.94 rad (1.254 rt), where 1t radians is due to the signal
inversion and the other O.2541t ~ 1t/4 rad is true dynamic phase lag.

5.0

2.5

-2.5

-5.0

f\ II 1\ 1\ 1\ fI 1\
.. - - --

'" ,,,. 0.:/ '/ p. J '," J ""''"'

- -."

V V V V V v V V

\/In

0.0 0.4 0.8

Time

1.2 1.6 2.0

Fig. 7.95. Response of the amplifier to 38 kHz input

296 7 Electrical systems

7.5 Electromagnetic Systems

This section analyses application of the bond graph approach to modelling elec­
tromechanical systems. The example chosen is an electromagnetic actuator. Per­
manent magnet data for the actuator were calculated by a magnetic field analysis
program. These data are used as input to the BondSim program. More information
on modelling magnetic systems by bond graphs can be found in [2].

7.5.1 Electromagnetic Actuator Problem

The schematic of an electromagnetic actuator is shown in Fig. 7.96. The actuator
consists of a plunger, switching coils, and a permanent magnet for generating the
holding force. The electrical driver circuit is represented by a capacitor, a resistor,
and an ideal (lossless) switch. The plunger moves in the actuator assembly be­
tween hard stops from a value x = Xmin to a value x = Xmax, where the displacement
x is measured from the lower pole end. The electromagnet's behaviour is de­
scribed by tabulated values of flux in one tum (electrical side), and force on the
plunger (mechanical side), for a range of ampere-windings and plunger positions
between Xmin and xmax• These values were calculated using the magnetic field
analysis program.

1-0
c

Fig. 7.96. Scheme of electromagnetic actuator

System parameters are:

1. Capacitor C =68 mF, initially charged to 50 V (3.4 C)
2. Resistor R= 0.2 Ohms
3. The switch starts closing at 10J.!s, and closing takes 1us. The resistance

changes linearly from 1·109 (open) to 1·10.9 (closed) Ohms
4. The plunger has mass 5.575 kg, its weight is neglected
5. Hard stop positions are at Xmax =0.0199 m and Xmin =0.0001 m. The material

posses high stiffness coefficient (1.109 N/m) and a high damping factor (1.106

N·s/m), corresponding to impact without rebound.

7.5 Electromagnetic Systems 297

7.5.2 System Bond Graph Model

We start by defining the basic structure of the Electro-magnetic Actuator system,
as shown in Fig. 7.97. The model consists of an electrical part, resistor R, capaci­
tor C, the switch, and the Magnetic Actuator component. During simulation the
variables that are displayed are the current through electric circuit, the position
and velocity of the plunger, and the total force on the plunger.

Fig. 7.97. Bond graph model of the electromagnetic actuator

7.5.3 Electromagnetic Flux and Force Expressions

Before proceeding with decomposition of the Magnetic Actuator component, we
must define the Flux(x,l) and EMForce(x,l) functions. These interpolate data from
tables of flux and force, respectively. Each is a function of plunger position x and
ampere-winding i. In BondSim, one- and two-variate cubic B-spline interpolations
are used for functions defined by one- and two-dimensional tables, respectively
[15].

To define, for example, the Flux function, we select the Edit Tabular Function
command on the Edit menu, then New from the menu that drops down. In the dia­
logue that then opens, we chose between One or Two Dimensional functions. Flux,
as well as EMForce, has two arguments; thus, we check the Two Dimensional
functions box and click the OK button. This opens the Create New Tabular Func­
tion dialogue, in which we define the function name, Flux. This is the name that
will be used when referring to the function in an algebraic expression. We accept
this name by clicking the OK button. A dialogue again opens, this time for defin­
ing the names and the values of the variables corresponding to the rows and col­
umns of the function table. The row variable represents the first argument, and the
column variable the second argument ofthe function we are defining (Fig. 7.98).
Thus, in Flux(x,l) the row variable is Position (x) and column variable is Ampere­
Winding (i).

298 7 Electrical systems

Fig. 7.98. Dialogue for defining values of variables

When we have added all values for both variables, we edit the values of the
function by clicking the corresponding button. A grid appears that, in its leftmost
column and topmost row, contains the values we have just defined (Fig. 7.99). We
can type the values of the function in the cells of the grid, i.e. the flux value corre­
sponding to a Position and an Ampere-winding.

The function can be viewed using the Show Plot button. A Plot Options dia­
logue appears that offers several possibilities for the plotting. The Flux function
appears as in Fig. 7.100. Similarly, we can define the EMForce function (Fig.
7.101).

Fig. 7.99. Editing of the function values

1.0

0.5

~ 10-2 0.0
u:

.0.5

.1.0

7.5 Electromagnetic Systems 299

0.0 0.4 0.8

10-2

Position

1.2 1.6 2.0

Position
0.010594
Flux
0.00536834

Fig. 7.100. Plot of Flux function

Ampere.Windings
5000

1.0

0.5

.,
'" 10

4is 0.0u.
::!
LJ.I

.0.5

·1.0

0.0 0.4 0.8 1.2 1.6 2.0

Position

Fig. 7.101. Plot of EMForce function

300 7 Electrical systems

7.5.4 Magnetic Actuator Component Model

We now continue with modelling the magnetic actuator. This consists of an Elec­
tro-Mechanical Conversion component and the Plunger moving between the hard
stops (Fig. 7.102). The Electro-Mechanical Conversion component has two ports
on the left where current flows through the actuator coils. The port on the right
corresponds to the magnetic pole gaps where interaction with the plunger takes
place. The plunger is modelled in a similar way as in the Bouncing Ball problems
of Sect. 6.4. The plunger is represented simply as a particle (its weight is ne­
glected). It interacts with hard stops, at the top and the bottom, through a Contact
component taken from the library. This describes impact without rebounding
(Figs. 6.52 and 6.53). The mass, stiffness coefficients, and the damping coefficient
are given in Sect. 7.5.1.

T
Contact

Electro-Mechanical 1 r
Conversion -----lIo. f ----- Plinger~

~ -"I Contact

1
~

Fig. 7.102. Model of the magnetic actuator

Electro-mechanical conversion is of fundamental importance for the function­
ing of the complete system. Using bond graphs, it can be represented very com­
pactly. The electromechanical conversion is described by two fundamental com­
ponents: a capacitor and a gyrator (Fig. 7.103).

The capacitor has two ports, magnetic and mechanical, and describes the stor­
age of magnetic and mechanical energy in the actuator. The constitutive relations
for these two ports are:

Magnetic port:

phi = FIUX(X,M)}
dphi

e=--
dt

(7.64)

7.5 Electromagnetic Systems 301

e~ GY ----... C----..

'1
Fig. 7.103.Modelling of electromechanical conversion

Mechanical port:

F = EMFOrCe(X,M)}
dx

v=-
dt

(7.65)

The gyrator describes relations between voltage Vd across coil ports and e.m.f.
e, and between the magneto-motive force M and the current j through the coils:

Gyrator:

v; =N.e} (7.66)
M=N·j

where N is the number of coil turns. Eqs. (7.64H7.66) are familiar conversion re­
lations from electromagnetics.

7.5.5 Simulation of Magnetic Actuator Behaviour

The simulation of the electromagnetic actuator was done to determine how the
system variables change during switching on the actuator. Simulations were made
using a simulation interval of 0.050 s. The output interval of 0.00001 s was cho­
sen to determine characteristic switching points accurately. The processing time
was 5.2 s. Some of the results are shown in Figs. 7.104 to 7.106.

Figs. 7.104 and 7.105 show that the force on the plunger steadily increases until
it crosses the zero value at 0.02253 s. Because the plunger is depressed to the hard
stop, the real motion starts a little later, at 0.02358 s. The plunger hits the upper
hard stop after 0.03753 s. The final value of the force at 0.04999 S is 5575 N.

Changes of current through the coils are shown in Fig. 7.106. The current first
rises steeply, then reaches its maximum, 90.05 A, at 0.0258 s. It then drops down
and reaches its minimum, 0.7481 A, when the plunger hits the hard stop. After
that it rises somewhat to a final value of20.45 A. This is the current that holds the
plunger pressed to the upper hard stop.

302 7 Electrical systems

2.0

1.6

1.2

0.8

0.4

0.0

0.0 1.0 2.0

TIme

3.0 4.0 5.0

Fig. 7.104. The plunger position motion during switching on

1.0

0.5

-e.s

-1.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 7.105. Total force on the plunger during switch-on

This section, as well as the previous sections of this chapter, shows the effec­
tiveness of the bond graph approach in solving complex electronic and electro­
mechanic systems.

References 303

1.0

0.8

0.6

.- 102

0.4

0.2

0.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 7.106. Change of the current through the coils during the switch-on

References

1. SD Senturia (2001) Microsystems Design, Kluwer Academic Publishers, Boston
2. Dean C Karnopp, Donal L Margolis and Ronald C Rosenberg (2000) System Dynam­

ics: Modeling and Simulation ofMechatronic Systems, 3rd edn. John Wiley, New York
3. Peter Gawthrop and Lorcan Smith (1996) Metamodelling: Bond graphs and dynamic

systems. Prentice Hall, Hemel
4. A Vladimirescu (1994) The Spice Book (1994), John Wiley & Sons, New York
5. J Keown (2001) OrCad Pspice and Circuit Analysis. Prentice Hall, Upper Saddle River
6. R Kielkowski (1995) Spice Practical Device Modeling, 2nd edn. McGraw-Hill, New

York
7. G Massobrio and P Antognetti (1993) Semiconductor Device Modeling With Spice,

2nd edn. McGraw-Hill, New York
8. R Martz and C Tischendorf (1997) Recent Results in Solving Index-2 Differential­

Algebraic Equations in Circuit Simulation. Siam J. Sci. Comput. 18:139-159
9. J Singh (2001) Semiconductor Devices, Basic Principles. John Wiley & Sons, New

York
10. T Tieze and C Schenk (1999) Halbleiter-Schaltungstechnik, Springer-Verlag, Berlin­

Heidelberg
11. P Van Halen (1994) A Physical Charged-Based Model for Space Charge Region of

Abrupt and Linear Semiconductor Junction. In Proc. of the 1994 International Sympo­
sium on Circuits and Systems, London, pp. 1.403-1.406

304 7 Electrical systems

12. E Christen, K Bakalar, AM Dewey and E Moser (1999) Analog and Mixed Signal
Modeling Using VHDL-AMS Language (tutorial). The 36th Design Automation Con­
ference, New Orleans

13. J Thoma and B 0 Bousmsma (2000) Modelling and Simulation in Thermal and
Chemical Engineering, A Bond Graph Approach. SpringerNerlag, Berlin-Heidelberg

14. Allen R Hafner and David L Blackburn (1993) Simulating the Dynamic Electrothermal
Behavior of Power Electronic Circuits and Systems. IEEE Transactions on Power
Electronics 8: 376-385.

15. Carl de Boor (1978), A Practical Guide to Splines, Springer-Verlag, New York

Chapter 8 Control Systems

8.1 Introduction

Control system theory and praxis play important roles in mechatronics. Their fun­
damental role is in the control of mechanical motion. Control systems are com­
monly described in terms of block diagrams, where input-output relations are rep­
resented by transfer functions. This offers a simplified picture of system processes
from a control point of view. The theory of control systems is well documented in
numerous books, so we do not cover it here. What we wish to demonstrate is how
control actions taking place in mechatronic systems can be modelled using the
bond graph approach developed here.

The bond graph elements required to deal with the control of mechatronic sig­
nal interfaces are defined in Sect. 2.5.8. In Sec. 2.6 basic block diagram compo­
nents are defined that can be used to synthesize the signal processing of control
loops. Control actions in real components can thus be simplified and represented
by block diagram components. These component models control actions in the
time domain. Modelling is not restricted to linear relations, but is applicable to
non-linear systems and even those that feature discontinuities. Creation of such
components, or development of more complex components, follows the philoso­
phy of the component modelling approach discussed in previous chapters.

The next section explains the basic techniques of block diagram components as
applied to a simple control system. Some modelling details specific to block dia­
gram components are given. It will be seen that there is not much difference from
other power port components.

After that, a short overview of the modelling approach to control systems is
given. This focuses mainly on modelling PID controllers in servo loops. Finally,
modelling and simulation of a DC servomotor is presented.

8.2 A Simple Control System

We start by modelling a typical feedback control system (Fig. 8.1). This system
consists of a controller that regulates an object's motion. The motion in question is
defined by a reference input and output information collected by a sensor. There
are also disturbances acting on the object. This system can be implemented either
as a position- or velocity-control system. In mechatronics, the object typically is a
mechanical linkage actuated by a motor that executes the control action.

306 8 Control Systems

Disturbances

Reference input
+ Controller

Output

Fig. 8.1. A simple control system

We begin the modelling process by creating a new project named Simple con­
trol system. Starting from the left in the diagram (Fig. 8.1), we first create the in­
put component that generates the reference signal. This component is created by
selecting the Input elementary component from the component type list in the Ed­
iting Palette (Fig. 8.2), then creating it at the left in the project document window.

Input components are signal generators and can have only a single control-out
ports. Such a port is created in the usual way, by selecting it from the palette and
inserting it at the right border of the Input component inside its boundary. Double­
clicking the port and using the Parameter button confirms that, when created, the
Input generates constant signal preset to zero. This value can be changed later.

I

IIIx-.8Jlject~n OU1'

t •

Fig. 8.2. The creation of the control system components

We next create the component corresponding to the summation of the reference
and feedback signals: Select Summator in the component type list and create it to
the right of the IN component. By default, the newly created component has a pre­
defined name, s, which of course can be edited to something more descriptive.
(We accept the default name in this example.)

8.2 A Simple Control System 307

Next, insert two control-input ports and a single control-output port into the
summator component. By default, all input ports implement addition; that is the
summator output is defined as cout = cin1 + cin2

In the present case, the feedback signal is subtracted from the input reference
(Fig. 8.1); we must therefore change the default addition operation of the summa­
tor feedback port to implement this subtraction. First, double-click the port to open
the Summator Input dialogue (Fig. 8.3). Then select the subtraction symbol, "_", in
the Summator Sign combo box. We also can change the name of the feedback sig­
nal to, for example, cfb-short for "feedback control signal", as well as the names
of all other control port signals.

Fig. 8.3. Selecting the sign of the summator input

The controller in this example is implemented as a simple proportional (linear)
control law, given by

cout =K -cin (8.1)

where K is the controller gain. This is accomplished by first selecting Function
from the component type list box, then changing the name of the component to K.

Next, insert a single control-input port on the left of the component and a con­
trol-out port on its right. By default, the constitutive relation of the component is
linear, which corresponds to Eq. 8.1. We can confirm this by double-clicking the
output port. The value of the gain defaults to 1.

The next step is to insert a summator that adds the disturbances, and an IN
component above it to input disturbances. The object of the control (the object) is
created as a word model component named Object. This has a control input port
and a control out port. Its model is defined later.

Next, we create the node that picks up the feedback signal (Fig. 8.1): Choose
Node from the component type list and create it at the right of the Object. A node
component can have a single input and several output ports. The control-input port
must be created before the two control-out ports that regulate, respectively, the
system output and feedback connections (Fig. 8.2).

To close the servo loop, the sensor component must be created. This is repre­
sented by a simple linear function component denoted Kfb.

308 8 Control Systems

The final component, Out(put), displays the control system's output. Note that
every signal has to be fed to some destination; there can be no 'dangling' signals.
By connecting all ports with bond (signal) lines, as in Fig. 8.1, we finish the first
(system) level of the control model (Fig. 8.4).

IN~

IN--t--K--K~~ ob
ject--+l-+ oUT

Fig. 8.4. Basic level of the control system model

At this point we introduce a slight modification to the model to permit display
of the reference signal. To accomplish this we disconnect the left Input, insert a
node, and connect it to the output component. It is not necessary to redraw the
complete block diagram: Use the mouse to select the rectangular region around it,
then move the selected region to the right. Eventually, we need to enlarge the
document window by dragging its right edge (with help of the Size document but­
ton in Editing Palette). The final form of the block diagram is as illustrated in Fig.
8.5.

IN~

IN __ n __ s __ K__ s __ Object __ n __ OUT

I 1 Kfb.)

Fig. 8.5. The modified control system model

The object of control in mechatronic applications is a mechanical object, such
as a robot link or a headlight assembly in an automobile driven by an actuator. The
object's dynamics are commonly described by a transfer function relating input
and output, such as in the following formula:

Cout(s) = Gob(s)Cin(s) (8.2)

8.2A Simple Control System 309

Cout and Cin are Laplace transforms of the object input and output, respec­
tively, and s is the complex variable. We use the following transfer function as a
simple model of this object:

Gob(S)= 2 2 Kob (8.3)
(Tobs +2C;Tobs+1)s

Here Kob is the object's static gain, TOb is the time constant of the object, and Sob is
the damping ratio. We cannot, however, model this transfer function directly; we
must transfer it back to the time domain. The dynamics corresponding to Eqs.
(8.2) and (8.3) now read:

T 2 d3cout 2 T d2cout dcout K .
ob dt3 + C;ob ob dt 2 + ----en- = obCIn (8.4»

To describe this equation in block diagram form using only elementary compo­
nents-i.e. integrators, functions, summators, etc.-Eq. (8.4) can be written as

d
2cout

= [d
2cout)

+
dt 2 dt 2

o
t 2

f-1- (K cin - 2 T d cout _ dcout)dt (8.5)
T2 ob C;ob ob dt2 dt

o ob
with

and

t
dcout = (dcout) + fd

2cout
dt

dt dt 0 dt 2
o

(8.6)

(8.7)

t

f
dcout

cout = (cout), + --dt
dto

The first term on the right of each equation is the initial value of the expression.
Written in this fashion, these equations can be described directly by elementary
block diagram components.

The input and output variables are the variables transferred to and from the con­
trol ports of the Object (Fig. 8.4). To describe its model according to Eqs. (8.5)­
(8.7), we create a new model document by double-clicking it. In the document
window that opens, we create a model of the control system object in a way that is
similar to the way in which we developed the basic model. The resulting model is
shown in Fig. 8.6.

Note that the input port of the gain (function) component Kob and the output of
the last integrator are connected to the document ports that serve as the internal
connectors of the outside component ports.

The function component FUNl describes multiplication by 1/Tob
2 in Eq. (8.5),

and the first integrator describes the corresponding integration. The Fun2 compo­
nent of the inside feedback loop describes multiplication by 2s0bTob- The other two
integrators describe the integrations represented in Eqs. (8.6) and (8.7). Finally,

310 8 Control Systems

the summator describes the additions inside the parenthesis in the integrand of Eq.
(8.5).

Kob-s-FUN1_ f-n- f--+n--+ f

1~FUN2.---J I

Fig. 8.6. The dynamics of the Object

The initial conditions that appear in Eqs. (8.5) - (8.7) can be set by double­
clicking the integrator's output ports. In the dialogue that appears (Fig. 8.7), the
initial values of the output variables can be set in the Initial Value edit box, the de­
fault of which is zero.

Fig. 8.7. The integrator Output dialogue

The control system model is now complete, but before simulating the system
several parameters must be set and the form of the input function must be defined.

We use the following parameter values:

Controller gain
Object gain
Object time constant
Object damping ratio
Feedback gain

K= 30
Kob =2.77
Tob = 5.41.10-3 S

~ob = 1.35
Ktb=l

The default values are accepted for all other model parameters.

8.2A Simple Control System 311

We first analyse the system response to a unit step input with no disturbance.
We set the output of the left INput object to 1, that of the upper INput object to 0,
and then build the model. The simulation interval is set to 0.2 s, the output inter­
val and maximum step-size to 0.001 s, and defaults are accepted for all other set­
tings (error constants, method etc.).

The simulation results (Fig. 8.8) show that the settling time is about 0.12 s; and
that there is an overshoot ofabout 26%.

0.0

2.0

1.6

1.2

:;
0
u

i0.8

0.4

0.0 0.4 0.8 1.2 1.6 2.0

Time

cin

Fig. 8.8.Theresponse of the system to a unit step input

We next simulate the response to a unit disturbance with the input equal to O.
As can be seen in the next graph (Fig. 8.9), the output does not return to zero, but
settles at a value of 0.0333.

Better response behaviour can be achieved using a better controller, e.g. a con­
troller with proportional-integration and derivative action (PID) described in the
next section.

We end the discussion of this simple control system with the analysis of the re­
sponse to a sinusoidal input. The reference signal generated by the IN component
of Fig. 8.5 is now defined as a sine function of amplitude cValue and frequency
FREQ Hz. The formula is:

cin = cValue * sin(21t· FREQ· t) (8.8)

The natural period of oscillation estimated from the damped transient (Fig. 8.8)
is about 0.08 s, hence the natural frequency is about 12.5 Hz. At a much lower
frequency we can expect that output will follow the input closely. To check this,
we simulate the response of the system to a unit sinusoid forcing of 1.0 Hz. The

312 8 Control Systems

simulation interval is taken as 5 s and the output interval as 0.01 s. The result (Fig.
8.10) is that the input and the output signals are nearly indistinguishable.

5.0

4.0

3.0

'$ 10-2
0o

2.0

1.0

0.0

0.0 0.4 0.8

Time

1.2 1.6 2.0

Fig. 8.9. The response to a unit disturbance

1.0

0.5

::l 0.0
8

.0.5

-1.0

cin

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 8.10. The frequency response at 1.0 Hz

8.3 Control Systems Modelling 313

We repeat this simulation with an input frequency equal to the estimated natu­
ral frequency of 12.5 Hz. Because we are interested mostly in the phase shift be­
tween the output and input, we select a simulation interval of 0.5 s and a rather
short output interval of 0.0001 s.

Simulating this situation (Fig. 8.11) results in a time difference where the input
and output sinusoids cross the time axis is about 0.0198 s. Hence, the phase lag is
2·n·12.5·0.0198 =0.4952n, which is close to the phase lag at a resonance ofn/2.
Estimation of the resonance frequency thus is quite good. This demonstrates that
estimation of the natural frequency based on the damped period of oscillation is
quite close to the exact value (for a linear system).

2.0

1.0

~ 0.0

"

-1.0

-2.0

cin

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 8.11. The frequency response at 12.5 Hz (near resonance)

8.3 Control Systems Modelling

Control systems described by block diagrams can readily be modelled using the
techniques of block diagram components. As shown in the previous section, it first
is necessary to translate them to the time domain. Using a technique similar to
analog-computer modelling, time domain relations are described by block diagram
components, such as inputs, summators, function generators, integrators, and
nodes. The output variables are fed to components used to display simulation re­
sults as x VS. t plots or x vs. y plots. The same technique can be used to process

314 8 Control Systems

signals extracted from bond graph components. (We used this in most all of the
bond graphs discussed in the previous two chapters.)

There is an elementary component that has not been used thus far: the differ­
entiator (Sec. 2.6.5). The main reason for introducing this component is to repre­
sent often-used controllers based on laws such as the proportional-integration­
derivative (PID) law and their variants. The PID control law is commonly defined
by:

t d .
cout = K· cin +K j fCin. dt +K d Cin (8.9)

o dt
Here, K, K;, and I<.l are referred to as proportional, integrator, and derivative

constants (gains), respectively. There are other forms of PID controller laws [1].
The integrator and derivative constants are often expressed as:

K j =K/Tj } (8.10)
Kd =K· Td

The constants T, and Td are, then, referred to as integrator and derivative time,
constants respectively.

The PID model (Fig. 8.12) consists of several components: the input node for
branching signals; a summator for the summation of the proportional, integrator,
and differentiator actions in Eq. (8.19); function components denoted as K, K;, and
I<.l used for multiplication by the corresponding constants; an integrator; and, fi­
nally, a differentiator component denoted as DIDt.

1---+n----+ K • s ----11-+

LO/Ot--+KdJ

Fig. 8.12. The model of the PID controller

We do not use numerical methods to approximate differentiation with respect to
time, as is often the case with simulation tools; rather, we describe differentiation
as given in Eq. (2.42). The equation is then appended to the rest of model and
solved together as a system ofDAEs (Chap. 5).

(8.li)

8.3 Control Systems Modelling 315

One of the central problems in the application of PID control is tuning the pro­
portional, integrator, and derivative constants. The goal is to obtain a good quality
system response. The classical result is the well known and often cited Ziegler­
Nichols tuning [2,3]. According to that method, the constants are given by:

K =O.6·Ku }

Tj = 2.01Tu

r, =O.125·Tu

Ku is the so-called ultimate gain of the pure proportional controller when the
system starts oscillating, and Tu is the corresponding oscillation period.

Instead of forcing the system to oscillate, the proportional constant usually is
increased until the "amplitudes" of the resulting damped oscillations decrease at a
ratio of Y4, i.e. any amplitude is Y4 of the immediately preceding amplitude. Denot­
ing the corresponding proportional gain as K1/4, the ultimate gain is approximated
as Ku= 2·K 1/4 • The period of steady oscillations is approximated by the period of
damped oscillations.

Ziegler-Nichols tuning is referred to as sub-optimal and is used only as the
starting point for finer controller tuning. The usual approach is to change the pro­
portional and derivative constants, while holding the integrator constant equal to
zero, until a satisfactory transient response to the step input is achieved. This is
characterised by a good response time with little or no overshoot. The integrator
constant then is varied until satisfactory sensitivity of the output to external distur­
bances is achieved. Several iterations typically are required to get satisfactory per­
formance. It should be stressed that PID control tuning is not always easy to
achieve; this is particularly true when the system includes non-linearities, such as
the saturation behaviour often found in servo-drives.

Application of PID control and parameter tuning is illustrated with the control
system example of the last section.

We begin by copying the Simple control system project to a new project file
named PID Control system. We then disconnect and delete the proportional con­
troller K and insert the PID controller model described in Fig. 8.12. The resulting
system is shown in Fig. 8.13.

IN~

IN --+ n ---+ s --+ PIO --+ s --+ Object _ n --+ OUT

I 1 Ub.)

Fig. 8.13. The control system of Sect. 8.2 with PID controller

316 8 Control Systems

To tune the controller gains, the integrating and differentiating constants are set
to zero and the proportional constant is increased until the appearance of damped
oscillations with the ratio of the amplitudes ofadjacent waves equal to 0.25. In the
present example, this occurs at a proportional constant value of K = 60. The ulti­
mate gain, Ku, thus is 120.

According to Eq. (8.11), the proportionality constant K =0.6·120 =72. The es­
timated period of steady oscillation Tu is 0.058 s; and thus the derivative constant
Kd =0.52.

Using these values, the response exhibits an overshoot that is slightly too large;
we therefore increase Kd to 0.8. The new transient (Fig. 8.14) has a settling time
ofabout 0.025 s and the overshoot is only 5%.

1.0

0.8

0.6

"8
0.4

0.2

0.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 8.14. Step response of the system for K =72, Ki =0, and Kd =0.8

The integrator constant, according to Eq. (8.11), is perhaps too high (2480).
Thus, we check the system response to disturbance for various values of this con­
stant. At Ki = 0 there is a steady-state error of 0.0137. Increasing Ki causes the
output to settle to zero. The settling time increases with the value of this constant.
This, however, influences the response to the reference input as well. Fig. 8.15 and
8.16 show response plots for K =72, Ki =1400, and Kd =0.8.

The settling time now is much longer-about 0.1 s-with an overshoot of
11%. The response to disturbance also is near zero after about 0.1 s.

Tuning a PID controller is known to be a time-consuming task. In [1] a type of
PID controller was proposed that enables separate adjustment of the system re­
sponse and the disturbance rejection capability. In most cases the selection of con­
troller gains is a matter of compromise. The situation becomes much more diffi­
cult when.non-linearities are involved.

8.3 Control Systems Modelling 317

Simulated system response data obtained from the BondSim program are dis­
played in Table 8.1. The simulation interval was 0.2 s and the output interval was
0.001 s.

2.0

1.6 ------------

1.2

:i
0
u

0.8

0.4

0.0

0.0 OA 0.8 1.2 1.6 2.0

10.1

Time

Fig. 8.15. Step response of the system for K = 72, Ki = 1400, and Kd = 0.8

2.0

1.6

1.2

:i 10.2
0
u

0.8

0.4

0.0

0.0 0.4 0.8

Time

1.2 1.6 2.0

Fig. 8.16. The response to a disturbance with K = 72, Ki = 1400, and Kd = 0.8

(8.12)

318 8 Control Systems

These values are compared to those found by applying the inverse Laplace
transform to the output. The Laplace transform of the step response is found first.
According to Eqs. (8.9), the transfer function of the PID controller is given by

Gc(s) = ..!. (Kds2 +Ks+Kj)
s

Hence, the system output, to a unit step 1/s (Fig. 8.13), is:

Cout(s) = GcGOb 1 (8.13)
1+ kfbGcGob S

The transfer function of the object is given in Eq. (8.3). It was difficult to find
the inverse Laplace transform in analytical form because the denominator of the
system's close-loop transfer function is of the fourth order. Hence, a numerical
technique was used. A short FORTRAN program was written that calls a function
for the evaluation of the inverse Laplace transform of the function given by Eq.
(8.13), and then prints the result to a file. The DINLAP routine from the IMSL
Mathematical Library [4] was used to evaluate the inverse transforms. Calculation
was done with double-precision arithmetic with a relative error tolerance of 1·10-6•

Table 8.1. System response data

Time (s)
0.002
0.004
0.006
0.008
0.010
0.015
0.020
0.050
0.100

Output values
0.114764
0.345686
0.584282
0.781502
0.923752
1.084201
1.106306
1.066662
1.015413

It is interesting that these are exactly the same values, rounded to six decimal
places, as those obtained using BondSim (Table 8.1). Thus, the DAEs approach is
at least as useful, and is also readily applicable to a much wider class of problem.

8.4 Permanent Magnet DC Servo System

The last section of this chapter deals with position servo systems. This example
shows the power of the combined bond graph-block diagram approach to model­
ling mechatronics systems.

The scheme of the system, for the control of the angular position of a body is
given in Fig. 8.17. This is a simplified example of the control of robotic arms. The
servo loop consists of a servo driver and a permanent magnet DC motor that
drives the body (arm) through a gearbox. The angular position of the body is

8.4 Permanent Magnet DC Servo System 319

measured by a sensor, the output of which is fed back to the servo-driver input.
The servo driver consists of a PID controller input stage and an output stage that
converts the low-power controller output to the higher power needed to drive the
load.

Permanent magnet
DC motor

Jc, m
Fig. 8.17. Permanent magnet motor servo system

Model development proceeds by identifying the system components and con­
necting them as they are in the real system. The example project is named DC
Servo System. The system level model is given in Fig. 8.18.

IN

Ln - Servo -.a.
r--+Driver DC

Fig. 8.18. Model of the permanent magnet motor servo system

The Servo Driver component has two control-input ports, one for the input of
the reference and one for the feedback signal. It also has a power port in which the
transfer of electrical power to the motor takes place.

The permanent magnet motor is represented by the DC Motor component. It
has two power ports, one electrical and one mechanical. The gearbox is repre­
sented by the transformer (TF) component (renamed Gear). The arm shaft rotates

320 8 Control Systems

in a bearing fixed in the frame. The motor and gearbox body typically are fixed in
the frame, and the gearbox shaft is connected to the arm shaft by a clutch.

Following the approach to modelling mechanical systems presented in Section
2.7.3, we use the Frame object to model the connection of the arm shaft to the
frame, and the Arm object to model the dynamics of the body. Thus, the power
generated by the motor is transferred through the gear and the Frame to the Arm.

Information on the arm's angular velocity and position are measured at its shaft
and fed out of the Frame. The position sensor is represented by a simple constant
gain function component named Kfb. The reference signal of the position servo is
generated by the IN component.

The variables that are of interest for observing system behaviour, such as the
reference input, the arm angular velocity, and the position and current drawn by
the motor, are fed to an x-y display component.

We next develop models of the main servo components, starting with the mo­
tor. The model of the DC Motor (Fig. 8.19) corresponds to the model of a perma­
nent magnet DC motor usually found in the literature [5, 6]. To show this we have
added variables to the bond graph (normally stored in the ports).

I I

1 1
ea ... e eernf.. GY !rrL..... e _T=L__~....

~ la kt co ~

\
R R

1"
Fig. 8.19.Modelof the permanent magnetDC motor

Gyrator GY describes the basic electromechanical conversion in the motor re­
lating the back emf earn! and the armature current ia at the electrical side to the
torque acting on the rotor Trn and its angular velocity co

Tm=kt.ia} (8.14)
e amf = k, . co

The coupling coefficient k, is known as the torque constant. The coupling coeffi­
cient in the second equation, usually denoted k, and called the back emfconstant,
is, in fact, the same coefficient. This is a consequence of the cross-coupling be­
tween variables in the electromechanical conversion and the conservation of
power in the conversion.

(8.15)

(8.16)

8.4 Permanent MagnetDC ServoSystem 321

The electrical process in the armature winding is commonly described in terms
of the armature resistance Ra and the self-inductance La. In the bond graph model
of Fig. 8.19 it is represented on the electrical side by resistive and inertial ele­
ments, respectively, joined at a common effort (current) junction. Thus, the rela­
tion between the armature voltage e a across the electrical motor terminals and the
armature current ia through it reads:

L dia R'e a = a Cit + ala +eemf

Similarly, the process at the mechanical side is described by a resistive element
that represents linear friction with coefficient Bm, and an inertial element that de­
scribes the rotation of the rotor of mass moment of inertia Jm. They are joined at
the effort (angular velocity) junction. The corresponding relation reads

dro
Tm = Jm-+Bmro+ TLdt

Eqs. (8.14) - (8.16) are the familiar equations used to describe motor dynamics
[2, 5]. Taking Laplace transformations and eliminating the torque and back emf
using Eq. (8.14) yields

Ea = (LaS+ Ra ~a + ktn}
(8.17)

ktla = (Jms + Bm)n + TL

Ifwe then eliminate the armature current from these equations, we have

(8.18)

(8.19)

(8.20)

(8.21)

Neglecting the external (load) torque, we get the familiar motor transfer func­
tion

n(s) k t

Ea(s) (Las+Ra)(Jms+Bm)+kf
This is the transfer function used in Sec. 8.2. The time constant appearing in

Eq. (8.3), denoted here as Trn- is given by

T = LaJ m
m RaBm+kf

Similarly, the motor damping ratio ~m is given by

~ = LaBm + RaJ m

m 2~LaJm(RaBm +kf)

and the static gain by

(8.22)

(8.23)

322 8 Control Systems

We can also find an equation relating the load torque and the armature current
by eliminating the motor angular velocity from Eqs. (8.20). This equation is

Tl = l(LaS+Ra)(JmS+Bm)+k~ [r, -(JmS+Bm)EaJ/k t

Eq. (8.18) shows that the load torque reflects at the electrical side; its effect
should be taken care of by a servo driver. In the same vein, voltage across the mo­
tor terminals is reflected at the mechanical side and affects the torque delivered to
the mechanical object that the motor drives. These two effects open various possi­
bilities for motor control. Thus, it is possible to control the angular velocity by
controlling the armature voltage and treating the torque affect as a disturbance.
Another possibility is to control the torque by regulating the armature current.
Both approaches have advantages and disadvantages [6,7].

The servo driver component in Fig. (8.18) is modelled as in Fig. (8.20). It con­
sists of: a summator that outputs the difference of the signals transmitted at the
reference and feedback input ports; the PID controller already discussed in Sec.
8.3; and a controlled source effort that models the power output driver stage. Thus,
control of the DC motor is accomplished by controlling the armature voltage.

r f_Kil
s-n_K ~ S __ SE ____.....

LD/Dt_KdJ
Fig. 8.20.The servo driver

The ann can be modelled as in Sec. 2.7.3 and Fig.2.2l (Platform). The ann has
a single port only, the shaft. We thus disconnect and remove the other two ports
and all the components connected to them (Fig. 8.21). This model describes the
ann as a rigid body with its centre of mass CM translating and rotating about it.

The model of the FRAME (Fig. 8.18) is a simplified variant of the FRAME ob­
ject in Sec. 2.7.3; in the current model we are not interested in the reaction forces
at the ann shaft. In this model (Fig. 8.22) the component Shaft Translation de­
scribes the effect of the bearing that fixes the ann shaft axis with respect to the
frame. It consists of two source efforts that impose zero velocities of translation in
two orthogonal directions. Shaft Rotation is described as in Fig. 8.23. The effort
junction e, the angular velocity node, is connected to through the document port to

8.4 Permanent Magnet DC Servo System 323

the gearbox port (shaft). On the other side it is connected to the other external
port; this restricts the ann motion to rotation. The resistive element describes fric­
tion in the bearing.

l
CM

Fig. 8.21. The model of the arm

Shaft
translation

Shaft
_rotaiion.--

..
Fig. 8.22. The model of the frame

This completes the model of the servo system. The system parameters used are
as follows:

Permanent magnet DC motor:
Armature resistance
Armature inductance
Torque constant
Rotor mass moment of inertia
Rotor friction constant
Peak current
Continuous current

Gearbox:
Reduction ratio

Ra = 2 ohm
La=0.004 H
kt = 0.360 N·m/A
Jm =9.5·10-4 kg.m 2

Bm =1.0.10-5 Nrn-s
iamax = 50 A
ia =5 A

1:20

324 8 Control Systems

Arm:
Mass
Mass moment of inertia about mass centre
Distance of mass centre from the shaft

m =10 kg
J, =0.4 kg·m2

a =0.1 m

R

I 1
I--I--r----.. e

, n

~f- s.---J

Fig. 8.23.The shaftrotation model

Before beginning the simulation, several important facts that bear on the inter­
pretation of the results must be noted (Fig. 8.17). First, the arm is a non-linear ob­
ject because the moment of its weight about the axis of rotation is equal to
a·m·g·sin8, where e is the angle of the arm longitudinal axis to the vertical axis of
the co-ordinate system. Thus, changes in the moment of weight are adequately ap­
proximated by a linear relation only for small angle changes, e.g. 181 :0; 0.1. Be­
cause of this, the dynamic behaviour of the servo system can differ for small and
large arm angles.

On the other hand, at any position--except the vertical-there is a moment of
weight that the motor must supply. Hence, even at a steady-state position of the
arm, there is some current flowing through the armature winding of the motor.
This is a well-known problem that arises in robotics. It has motivated development
of various weight-compensation schemes designed to minimise this effect. We
will investigate how much this is a problem in the present example.

We first analyse the system response to a quarter-tum (n/2) step. The PID con­
stants are set to K =2160, K.:t =40, and K; =O. The system was simulated for 0.2 s
with an output interval ofO.001s. The response (Fig. 8.24) features a settling time
of about 0.06 s with an overshoot of 9.8%. During the transient phase, however,
the system draws enormous current. After the transient disappears, the output
reached 1.56954 rad, about -0.08 % of the input value. The current drawn at
steady state was 1.363 A, which can be checked to correspond to the moment of
weight that the motor supplies.

We also checked the response to a small input of 0.1 rad. This resulted in no
apparent change in behaviour (Fig. 8.25): The settling time and the overshoot were
approximately the same, but the system now draws much less current.

8.4 PermanentMagnetDC ServoSystem 325

2.0

1.6

1.2

J!

'"c..
0.8

0.4

0.0

0.0 0.4 0.8

Time

1.2 1.6 2.0

Fig. 8.24. Systemresponseto a quarter-tumstep (K=2160, Kd =40 and K; =0)

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.4 0.8

Time

1.2 1.6 2.0

Fig. 8.25. The small input step response(K =2160, Kd =40 and K; =0)

To limit the amount of current drawn from the source, the supply voltage was
limited in the controlled voltage source SE (Fig. 8.20). It was necessary to limit it
to ± 70 V so that the maximum current was reduced to a safe level for the motor

326 8 Control Systems

(50 A). The resulting system output did not overshoot, but the settling time was
about 0.25 s (Fig. 8.26). The current change during the transient phase is illus­
trated in Fig. 8.27. The response to a small input of 0.1 rad was monotonic, but
with a settling time less than 0.1 s.

2.0 _

1.6

1.2

J!..
c
co

0.8

0.4

0.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 8.26. The response with limiting the supply voltage to 70 V

5.0

2.5

.!! 101 0.0

-2.5

-5.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 8.27. The current transient when the supply is limited to 70 V

References 327

The effect of the integrator constant of the PID controller was also examined.
Fig. 8.28 shows the response for K; =2000 over a simulation time of 5 s. The in­
tegrator constant contributes to reducing the steady-state error at the expense of
larger reset times. Thus, for K; = 2000, the integrator time is of the order of 1 s.
This is seen clearly in Fig. 8.28: The settling time-to ±2% of the steady-state
value-is 2s!

2.0

1.6

1.2

J!

'"c..
0.8

0.4

0.0 _

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 8.28. Effect ofthe integrator constant (K = 2160, Kl = 40 and K; = 2000)

One conclusion drawn from this simulation is that the simplified model of the
controller and, in particular, its power stage can provide only a general impression
of how such a system behaves. A much more thorough evaluation requires appli­
cation of techniques presented in Chapter 7 to develop a physical model of the
servo driver based on its detailed electronic design (e.g. as MaS H-bridge).

References

1. RM De Santis (1994) A Novel PID Configuration for Speed and Position Control.
Trans. ASME J. of Dynamic Systems, Measurement and Control, 116:542-549

2. HV Vu and RS Esfandiary (1998) Dynamic Systems : Modeling and Analysis.
McGraw-Hill, New York

3. W Peesen (1994) A New Look at PID-Controller Tuning. Trans. ASME J. of Dynamic
Systems, Measurement and Control, 116:553-557

4. Visual Numerics (1997), IMSL MathlLibrary Vol. 1 and 2, Houston, USA
5. SE Lyshevski (1999) Electromechanical Systems, Electric Machines, and Applied

Mechatronics. CRS Press, Boca Raton

328 8 Control Systems

6. N Mohan, TE Undeland and WP Robbins (1995) Power Electronics: Converters, Ap­
plications, and Design, 2nd Ed. John Wiley &Sons, New York

7. L Sciavicco and B Siciliano (1996) Modelling and Control of Robot Manipulators.
McGraw Hill, New York

Chapter 9 Multibody Dynamics

9.1 Introduction

There is an extremely large body of literature dealing with the modelling and
simulation of multibody systems, e.g. [1-7]. The importance of multi-body sys­
tems is also recognized in robotics where different approaches have been devel­
oped taking into account the control aspect as well [8,9]. The modelling of multi­
body systems has attracted attention in bond graph theory, too. The models are
based on field multiport elements and multibonds [10--12].

In this section we describe the modelling and simulation of rigid multibody sys­
tems using the component model approach. In mechatronics, the problem is not
only the mechanical part, but the complete system including the controls and the
interaction with the environment as well. The general component model approach
developed in this book can be applied readily to such complex systems.

The bond graph approach normally leads to the representation of the multibody
system with system constraints described at the velocity level, not positional [13].
This is not specific to bond graphs, but is a characteristic property of the dynamics
of systems that are described by the classical Newton-Euler approach In this re­
spect it corresponds more closely to the elegant approach of [7]. We will show
that it is a viable approach not only from the modelling point of view, but also
from the simulation aspect, as well. The component modelling approach enables
the systematic development of the model, starting from the physical components
and modelling the structure of the system. In this way the resulting model is more
easily understood. Visual representation of the model helps this too.

We start with planar multibody systems first and develop a component model
of body dynamics. Then the basic joints-such as revolute and prismatic joints­
are analysed and the corresponding models developed. It is shown on an example
of a quick return mechanism how the simulation model of mechanisms can be de­
veloped systematically. The system behaviour is analysed by simulation.

To show the applicability of the approach to more complicated systems, the
well-known Andrews' squeezer mechanism [13] is analysed. The accuracy of the
simulation results is compared to the published results [13,14]. It is shown that the
simulation times and accuracy achieved are good, at least for engineering needs.
As the last example of planar multibody dynamical systems, an engine torsional
vibration problem is analysed.

The last two sections deal with modelling of space multibody systems. An ap­
proach to modelling of such systems is described and space component models of
bodies and basic joints are developed. In the last section of this chapter, the

330 9 Multibody Dynamics

method and components developed are applied to the modelling and simulation of
a complete robot system. A three-degree of freedom robotic manipulator is ana­
lysed. This has a wrist carrying a tool, which is pressed onto, and moved across, a
wall. A hybrid force-position control strategy is applied and the simulation of a
typical working cycle is shown.

9.2 The Modelling of a Rigid Multibody System in a Plane

9.2.1 The Component Model of a Rigid Body in Planar Motion

Recall from engineering mechanics that the term plane motion denotes motion of a
body in which all points move in parallel planes. Referring to Fig. 9.1, motion of
the complete body can be represented by the motion of a body section in its plane.
The plane that selected for representing the body motion is the one that contains
the body mass centre. In mechatronic applications the bodies in question are usu­
ally the members of a mechanism assembled by connecting the bodies by suitable
joints. The complete mechanism undertakes plane motion only if the joints allow
motions in which all the members move in the same plane. The term multibody
system in a plane refers to such a case. Otherwise the problem refers to motion in
space. Plane motion of a rigid body has already been discussed in some detail in
Sec. 2.7.3. For completeness we give here the essential points again.

y

x
Fig. 9.1. Representation of a body motion in a plane

According to the classical approach ofengineering mechanics a plane body mo­
tion consists of a translation determined by the motion of the body mass centre
and a rotation about an axis through the mass centre that is orthogonal to the plane
of motion. To describe the motion of the body, a base (inertial) frame Oxy is de-

9.2 The Modelling ofa Rigid Multibody System in a Plane 331

fined (Fig. 9.1). The translation part of the motion can be described by the position
vector rc of its mass centre C in the base frame. Similarly, to describe the rota­
tional part of the motion, a body frame OX'y' is defined, the origin of which is
taken at the mass centre, and which is moving with the body. The rotation of the
body can be described by the angle $, which the body frame makes with respect to
the base frame.

The bond graph method uses velocities as fundamental quantities for the kine­
matic description of body motion. This is consistent with Newton's 2nd Law, as
well as with other fundamental laws of body dynamics. Positional quantities are
found from velocities by integration. Thus we take as the fundamental kinematical
variables the vector of mass centre velocity

Vc =(vcx
) (9.1)

vCy

and the angular velocity eo of the body.
Velocities of any other point P, such as A or B in Fig. 9.1, can be written as

vp=vc+vcp (9.2)

i.e. as the sum of the velocity of the mass centre and the relative velocity compo­
nent of rotation of the body around the mass centre. We are interested mostly in
points where the body is joined to other bodies. These points are normally defined
in the body frame by the corresponding coordinates. The rotational part in Eq.
(9.2) (from Eqs. (2.87) and (2.88)) is given by

VCP = Teo (9.3)

Here T is a matrix describing the transformation of rotational velocities to linear
velocities and is defined by

T = (- X,~p sin$ - Y~P cos <1» (9.4)
xCP cos<l>-YcP sin<l>

Assuming that there are two points in a body that serve for the connection to
other bodies, a body can be represented by a component model (Fig. 9.2) having
two power ports.

Body

~
Fig. 9.2.Bondgraphrepresentation of a body

The force that one body exerts on another can be represented by a resultant
force vector at the connection point and a resultant moment about that point. To
represent the forces and velocities at such points, the power ports of the body
component model should be compounded. Power variables at the ports can be rep­
resented by 3D efforts

332 9 Multibody Dynamics

and 3D flows

e _(Fp)p - M
p

(9.5)

(9.6)

The first part of such a port serves for the transfer of force Fp and linear veloc­
ity Vp. The other part serves for the transfer of moment Mp and body angular ve­
locity 0). The flow vector components in Eq. (9.6) are given by Eq. (9.2) and (9.3).
Similar relations hold for the effort components of Eq. (9.5). They can be devel­
oped by applying the equivalent force and moment laws of engineering mechan­
ics. We develop these by evaluating the power that is transferred to the body as a
result of mechanical action as we did in Sec. 2.7.3. This alternative approach is
convenient, for it simplifies the bond graph representation.

Using vector notation, the power transferred at the ports is given by

f~ep = v~Fp + O)Mp (9.7)

By substituting from Eqs. (9.2), and (9.3) we get

v/Fp + MpO) = VcTFp + (TTFp + Mp)O) (9.8)

Hence the force at a port not only tends to push the body mass centre, but also af­
fects the rotation of the body. Term TTFp represents the moment of the force Fp at
the port P about the body mass centre. The matrix TT that describes this transfor­
mation is the transposed matrix of Eq. (9.4). This term taken together with Eq.
(9.3) describe the transformation between linear quantities at the port - the force
and the linear velocity components, and the angular quantities referred to the body
mass centre - moment about the mass centre and the body angular velocity.

Using the foregoing equations the model of the body moving in a plane can be
represented by the bond graph of Fig. 9.3. We can see clearly the compounded
structure of the document ports (corresponding to the component ports of Fig.
9.2).

The components denoted by f describe the summation of the velocity vectors in
Eq. (9.2). This component consists of two flow junctions that describe the summa­
tion of the x- and y-components. These also serve as junctions of the force com­
ponents at the ports. Similarly the e component represents the body mass centre
junctions and describes the summation of the forces at the mass centre. The effort
junction e in the middle of the model corresponds to the body angular velocity. It
also describes the summation of the moments about the body mass centre. The
components LinRot represent the transformations of the linear and angular quanti­
ties already discussed. The transformation matrix is given by Eq. (9.4). The matrix
depends on the body rotation angle which is, in planar body motion, related to the
body angular velocity by

d<l>
0)=-

dt
(9.9)

(9.11)

9.2 The Modelling of a Rigid Multibody System in a Plane 333

~SE

II rTf
~f~LinRot~·~LinRot~f

j..o.

LI_.
I
'T

Fig. 9.3. Model of plane body motion

Hence, the rotation angle is given by
t

<I> = <1>0 + fWdt (9.10)
o

where CPo is the initial value of the angle. The rotation angle is obtained in the
model of Fig. 9.3 by an integrator component that, as input, has a signal taken
from the angular velocity junction. The integrator output branches through nodes
to the LinRot components, and is also taken out of the body component as a signal
if required.

The transformation of the LinRot component is represented as shown in Fig.
9.4. According to Eq. (9.3) and (9.4), and to the TTFp term in Eq. (9.8), it consists
of two transformers and an effort junction. The transformation ratio is defined by
the rows of the transformation matrix ofEq. (9.4).

To complete the model, it is necessary to add the dynamics of body motion.
This consists of the translational dynamics governed by the body mass centre mo­
tion and the dynamics of body rotation about it. The first is given by the equations

d:tC =Fc }
Pc = mlvC

Feis the resultant force at the mass centre, v; its velocity, m is the body mass, and
I is the 2x2 identity matrix. The translational dynamics is represented in Fig. 9.3
by an I component connected to the body mass centre junction e. The component
consists of two inertial components that describe the momentum law ofEq. (9.11).
There is also a SE component connected to it. This is composed of the source ef­
forts representing the x- and y-components of body weight.

(9.12)

334 9 Multibody Dynamics

Fig. 9.4. Transformation between the linearand the rotational quantities

Rotational dynamics is simpler and is described by the moment of momentum
law

dHe M}ill= e

He = Jeco

In these equations Me is the resultant moment about the mass centre, co is the body
angular velocity and Je is the centroidal mass moment of inertia of the body. It is
represented in Fig. 9.3 by an inertial element connected to the angular velocity
junction. This junction is also connected to the lower part of the document ports
and, in this way, the moments at the body component ports are transferred directly
to the junction.

The model above is described in terms of the absolute angular coordinate, i.e.
the rotation angle with respect to the base (inertial) frame. It is possible to develop
a model based on the relative angular coordinates, i.e. of a body with respect to a
second body. This approach is used in Sect. 9.6 when dealing with robot motion in
space.

Another point we wish to stress is the selection of the body frame. We have as­
sumed it is at the origin at the body mass centre. Often it is selected with the origin
at one of the connection points, e.g. at point A (Fig. 9.5). This selection affects the
coordinates of the transformation matrix of Eq. (9.4) and, hence, the transformer
ratios in the LinRot components (Fig. 9.4). These coordinates can be found from
the vector relations

(9.13)

and

(9.14)

It is not necessary to change the transformer relations. The relations of Eq.
(9.13) and (9.14) can be defined by parameter statements at the level of the LinRot
component.

9.2 The Model1ingof a Rigid Multibody System in a Plane 335

Fig. 9.5. The body frame with the origin not at the mass centre

9.2.2 Joints

Bodies in multibody systems, such as machines and robot manipulators, are joined
in ways that restrict their motion. The bodies are connected by joints. We repre­
sent the joints by separate components that have ports to connect the bodies (Fig.
9.6).

-b.Joint-b.

Fig. 9.6. The joint as a component

Models of joints depend on their type, i.e. which motions are permitted and
how the joint is physically designed. We look on a joint as a mass-less component,
assuming that its mass has been included in the mass distribution of the bodies that
it connects. We develop here models of two basic joints: revolute and prismatic
(translational). Others can be developed in a similar way.

The Revolute Joint

This joint connects bodies by a pin or a shaft (Fig. 9.7). We neglect clearances be­
tween the pin (shaft) and the bearings. Their axes are represented in the plane of
motion by the joint's coincidental central points. In a rigid revolute joint, these
points move as single point. The only permitted motion is the relative rotation of
the bodies about this point.

A model of the joint is given in Fig. 9.8. The e component consists of effort
junctions that represent the x- and y- components of the joint centre velocity. The
force is simply transmitted by the joint.

The flow junction describes the relationship between the angular velocities O)A

and O)B of the bodies

336 9 Multibody Dynamics

Fig. 9.7. A revolute joint

(OA - (OB - (OAB = 0

where WAS is the relative velocity of body B with respect to body A.

e
..JIl,.

~ f

~
R

Fig. 9.8. Model of the revolute joint

(9.15)

This relative velocity is important if there is friction at the junction. This is rep­
resented in Fig. 9.8 by a resistive element R. It is important also if there is an ac­
tuator that drives the bodies about the junction axis, as is often the case in robot­
ics. Otherwise it can be simply removed from the model. 1 In which case the lower
bonds in the model of the joined bodies in Fig. 9.3 should be removed as well.

The Prismatic Joint

The prismatic joint connects two bodies - one containing a straight slot and other
that has a part that fits precisely into the slot and can slide in it without rotation
(Fig. 9.9). The rotation is usually prevented by the form of the slot and the body
sliding in it, e.g. both having rectangular cross sections, or by the use of a keyway.

1 This holds for planar motion of the bodies only, for in that case the rotation axis is or­
thogonal to the plane ofthe motion.

9.2 The Modelling of a Rigid Multibody System in a Plane 337

x'

y'

Fig. 9.9. Prismatic joint

The analysis of a prismatic joint is done in a similar way to the body motion in
Sect. 9.2.1. We define a joint Ax'y' coordinate frame that is fixed in one of the
bodies, e.g. the one with the slot (Fig. 9.9). As the origin A of the frame, a conven­
ient point on the centreline of the slot is chosen, for example, it can be the mid­
point. The x-axis is directed along the slot axis and the y-axis is orthogonal to it.
The other point, B, used for representing the joint also is chosen on the slot centre­
line, but belongs to the other body.

We assume that at these points the joint is connected to the bodies. They corre­
spond to the ports of the prismatic joint component. Like other body connections,
there is a force vector and a moment acting on the joint at one port, and the reac­
tions of other body at the other port. Likewise the ports flow consists of the veloc­
ity vectors of the corresponding junction points and the common angular velocity
of the joined bodies.

The position vectors of point B and A, with respect to the base frame (not
shown in Fig. 9.9), are related by

(9.16)

(9.17)

where r'AB is the relative position vector of B with respect to A, expressed in the
frame of the joint, i.e.

r~B =(XiB)
The rotation matrix R of the joint frame with respect to the base frame (Sect.
2.7.3) is given by

R = (C~S<I> - sin <1»

sJn<l> COS <I> (9.18)

(9.20)

(9.19)

338 9 MultibodyDynamics

Thus Eq. (9.16) reads

_ (X~B cOS4>JrB-rA + ..
XAB Sin4>

Here X'AS represents the joint displacement coordinate and 4> is the angle of the slot
axis to the base x-axis. Both of these can change with time. Differentiation of Eq.
(9.19) with respect to time gives

(- X~B Sin 4> J (COS4»'VB = VA+, 00 + . '" VABx
XABcoso Sin",

In the last equation

d4>
00=-

dt
(9.21)

(9.22)

(9.26)

(9.24)

is the angular velocity of the joint and

, dX~B
V ---ABx - dt

is the velocity of the relative displacement of one of the junction parts with respect
to the other along the joint axis. Note that the other velocity component

V~BY = 0 (9.23)

Eq. (9.20) is similar to Eq. (9.2) and (9.3) but has an additional term that comes
from the relative translation of the bodies that make up the joint. The matrix of the
angular velocity term in Eq. (9.20) can be also denoted as T, but is slightly simpler
and is given by

T =(-X~B sin4> J
XAB COS 4>

Thus Eq. (9.20) can be written as

VB =VA +TOO+(~~~:)V~BX (9.25)

The expression for the power transferred at point (port) B is found as follows.
From Eq. (9.25) we have

T T T ,(.)vBFB+ MBoo = VAFB+ (T FB+ MB)oo + VABx coso SIn4> FB

or

V~FB +MBoo=vlFB+ (TTFB+MB)oo+vlBFB (9.27)

Note that the power transferred at port A is (VA)TFA + MAO). From this we cannot
infer that the power transferred at point B is equal to the power input at point A
because that would imply that (VAS)TFs =O. This holds, however, only for fric­
tionless and unpowered prismatic joints. From the equilibrium equations of the
mass-less joint we have FA :::: Fs and

9.2 The Modelling of a Rigid Multibody System in a Plane 339

MA = MB + TTFB (9.28)

All these relations become clearer when we represent them by bond graphs!
We now formulate the bond graph model of the prismatic joint. It is given in

Fig. 9.10. Component f consists of flow junctions and describes the joint velocity
relation given by Eq. (9.25). The junction variables are the components of the
force FA at the joint's left port, which is equal to the force transferred at other port,
i.e. Fs. The effort junction at the top corresponds to the relative velocity of the
joint expressed in the joint frame. The corresponding position coordinate can be
evaluated from the integrator that takes as its input the relative velocity of the
joint. The component Rot describes the transformation of the x'-components of the
relative velocity and the force at the joint to the base frame. It uses the first col­
umn of the matrix in Eq. (9.18) only. The source effort defines the force acting
along the joint. It is simply zero if the friction is negligible, or can be replaced by
a resistive element otherwise. This component can also be used to simulate an ac­
tuator driving the junction.

The effort junction e on the right corresponds to the joint angular velocity. It
describes the balance of moments as implied by Eq. (9.28). The LinRot component
describes the transformation between the linear and angular quantities. The corre­
sponding transformation matrix, as given by Eq. (9.24), needs information on the
joint rotation angle and of the position coordinate of the joint. The angle of rota­
tion is found from the integrator, which integrates the angular velocity taken from
the corresponding junction.

~SE

e----. f-
~

Rot n __ f+--

l I
~f

~ ~

~LinRot..
~e-

Fig. 9.10. Model of the prismatic joint

340 9 Multibody Dynamics

9.2.3 Modelling and Simulation of a Planar Mechanism

We apply the modelling approach described to the quick-return mechanism of Fig.
9.11. The mechanism is relatively simple, but it contains all the elements that we
have discussed so far - the bodies and the rotational and prismatic joints. More
complex problems are analysed in the sections that follow.

The mechanism consists of a crank that rotates about a joint at 0 1 with angular
velocity woo The end of the crank is connected by a revolute joint at O2 to a block
that can slide along another member, which, in turn, can rotate about the joint at
O. This simple mechanism generates an oscillatory motion of the driven member
with different forward and return times. We develop a model of the system and
then simulate its motion.

b

x

Fig. 9.11. Quick return mechanism

We start, as usual, by creating a project Quick Return Mechanism. We then
create component models corresponding to every physical component of the
mechanism - Crank, another member Body, revolute joints 0, 01 and 02 and
prismatic JointT. The direction of power flow is taken from the driver at 01
through the Crank and then across JoinT and the Body to the revolute joint O.

The system level model of the mechanism is shown in Fig. 9.12. Components
Crank and Body are created using the body model of Figs. 9.2 and 9.3. To that
end the components are copied from the library and inserted into the document.
Some minor adjustments are necessary. Thus, the default name Body for crank
component is changed to Crank, but is retained in the other member component. 2

Weights of the bodies are not included in the model. Thus the SE components of
Fig. 9.3 are removed. The members are connected by joints at 0 and 01 in Fig.
9.11 to the ground represented here as Base. It is defined later.

There are three revolute joints. Hence we create corresponding component
models corresponding to Figs. 9.6 and 9.8 by copying from the library. The names

2 In order to change the name the component is disconnected from the bond lines both out­
side and inside. After the name has been changed, the bonds are redrawn.

9.2 The Modelling of a Rigid Multibody System in a Plane 341

are changed however to correspond to the symbols used in the scheme of the
mechanism in Fig. 9.11, i.e. 0, 01 and 02. Similarly the prismatic joint compo­
nent JointT is taken from the library and inserted into the system level document
(Fig. 9.12).

Fig. 9.12. System model of the mechanism of Fig. 9.11

All of the joints are frictionless. Thus, in joints 0 and 02 the resistive element
R of Fig. 9.8 is disconnected and deleted. Also, the flow junctions are discon­
nected and deleted too. Because there is no moment transferred to nearby bodies,
the corresponding bonds to the body angular velocity junctions are removed
(including the corresponding ports at the junctions), as in Fig. 9.3. This means that
the lower bond of the right document port of the Crank, as well as of the JointT
component (Fig.9.10), are removed. In the Body component we must remove the
left document port lower bond.

Joint 01 is driven at constant angular velocity. Thus the resistive element in the
model is replaced by a constant source flow element (Fig. 9.13). The flow source
constant is omega, defined by the parameter expression omega = 2*PI*RPS. The
PI is rt, which is defined at program level, and the crank speed (cycles/sec) is de­
fined as RPS = 1.

Now that all joints are defined, we develop the Base component (Fig. 9.14). It
is very simple. The Base fixes the centre of joint 0 I and also the angular velocity
at the left port (the bearing of the crankshaft). Thus, at the port used for connect­
ing 0 I there are zero flow sources. The upper one corresponds to the velocity of
the joint centre and is represented as a component consisting of two flow sources.
The other source flow fixes the crankshaft bearing. The component at the port that
is used for connecting 0 fixes the position of the centre of the joint. The power
flow is opposite to the upper because of the power sense chosen for the system
model.

We are interested in the rotation angles of the mechanism. Hence we need a
display component. We create such a component as an X-Y Plotter using the me­
chanical components palette (Fig. 9.12).

342 9 Multibody Dynamics

e

f
.....

1
SF

Fig. 9.13. Model of the driven joint 01

SF

SF

SF

Fig. 9.14. The model of the Base

The display component is created with one input port. Thus we add another
one. The upper one is connected to the Crank component output port and is la­
belled as Phi. The lower one, however, is not simply the body rotation angle, but
angle alpha, which the other member (Body) makes with the vertical direction
(Fig. 9.15). For this a function component is created that converts the body angle
of rotation to the angle required. The angle is calculated as a = rc/2 - 4> , where 4> is
the rotation angle.

To simulate the motion of the mechanism the following geometrical parameters
are used: a =0.8 m, b =0.4 m and r =0.2 m. The mass parameters are given in
table 9.1.

Table 9.1. Masses and mass moments of inertia with respect to the mass centre

Crank Driven member
Mass [kg] 1.5 4
Moment of inertia [kg-m"] 0.005 0.25
Note: The mass centres are located at the mid-points of the member's length

The inital configuration of the mechanism is shown in Fig 9.15. The values of
the angles can be calculated from the geometry and are given in Table 9.2. The
initial position of the slider is taken at the origin of the joint's frame. These values

9.2 The Modelling of a Rigid Multibody System in a Plane 343

are used as the initial values of the corresponding integrators. It is assumed that
the crank rotates at 1 revolution per second.

00----1+

Fig. 9.15. The initial configuration of the mechanism

Table 9.2. Initial values of the angles

Member
Crank
Body
JointT

Rotation angle [rad]
o
1.107148718
1.107148718

Now we can build the mathematical model and start the simulation. The
simulation time is set to 2 s, corresponding to two revolutions of the crank. The
output interval chosen is relatively short (0.001s) in order to obtain good
resolution of the plot. The results are given in Fig. 9.16.

The diagram shows the quick return behaviour of the mechanism. Some inter­
esting points are given in Table 9.3. The data obtained by simulation agree fairly
well with the exact data obtained from the geometry of the problem

Table 9.3. Some charactristic data ofthe quick return mechanism motion

Name
Forward time [s]
Return time [s]
Ratio of the times
Amlitude [rad]

Simulation
0.666
0.334
1.994
0.523598

Exact value
0.666667
0.333333
2.0
0.523599

344 9 Multibody Dynamics

5.0

2.5

-2.5

-5.0

0.0 0.4 0.8

Time

12 1.6 2.0

Fig. 9.16. Timehistory of the angle of the mechanism

9.3 Andrews' Squeezer Mechanism

We now apply the method developed in Sec. 9.2 to the well-known Andrews'
squeezer mechanism problem. This problem has been promoted as a test of nu­
merical codes [3,13,14]. We take the formulation of the problem as given in [3,
14] and compare the simulation results obtained by the BondSim program to the
solution given in [14].

The mechanism (Fig. 9.17) consists of seven bodies that can move in a plane.
The bodies are interconnected by revolute joints and also to the base. The arm K1
rotates about the fixed joint at 0 under the action of the driving torque Md and this
pushes, via body K2, the central revolute joint where three bodies-K3, K4 and
K6-are connected. Bodies K4 and K6 are further connected via bodies K5 and K7
to another revolute joint A that is fixed to the base. The third body, K3, can rotate
about the fixed revolute joint at B. The end 0 of body K3 is connected to a spring
that simulates the squeezer effect. The geometrical parameters of the mechanism
are given in Table 9.4. The mass and mass moment of inertia with respect to the
mass centre of each body are given in Table 9.5. The spring stiffness and the driv­
ing torque are also given. The data were taken from [13].

To develop a simulation model using BondSim, we create a project called An­
drews Squeezer Mechanism. All of the bodies-Kl to K7-will be represented
by the standard plane body motion component model of Sec. 9.2.1. To create
component models of the bodies, the component Body from the library is copied
into the document seven times. The components are then moved to positions that
approximately correspond to their positions in the mechanism (Fig. 9.18). The

9.3 Andrews'SqueezerMechanism 345

component names Body are then changed to the names used in Fig. 9.17, K1 to
K7. The weights of the bodies are not included in the component models.

Fig. 9.17. The Andrews'squeezermechanism(Schiehlen[3], used with permission)

Table 9.4. Geometrical parameters(Fig. 9.17)

Parameter Value [m]
ra 0.00092
rr 0.007
d 0.028
da 0.0115
zf 0.02
fa 0.01421
el 0.02
ea 0.01421
u 0.04
ua 0.01228
ub 0.00449
zt 0.04

Parameter
ta
tb
ss
sa
sb
sc
sd
xb
yb
xc
yc

Value [m]
0.02308
0.00916
0.035
0.01874
0.01043
0.018
0.02
-0.03635
0.03273
0.014
0.072

Parameterel corresponds to the length e of body K4in Fig. 9.17.

The revolute joints are created by copying the standard revolute component
model Joint from the library. The names of the joints that are fixed to the mecha­
nism base are changed to the names used in Fig. 9.17, i.e. A, Band O. For the oth­
ers the default names Joint are retained. To simplify the model, there is no sepa-

346 9 Multibody Dynamics

rate base component, as in the last example (Fig. 9.12). Its effect is included di­
rectly in the A, B and a components.

Table 9.5. Mechanical parameters

KI
K2
K3
K4
K5
K6
K7
Spring stiffness k
DrivertorqueMd

Mass [kg]
0.04325
0.00365
0.02373
0.00706
0.0705
0.00706
0.05498

Inertia [kg-mz]
2.194e-6
4.410e-7
5.255e-6
5.667e-7
1.16ge-5
5.667e-7
1.912e-5

Other

4530N/m
0.033 N·m

Fig. 9.18.The system levelmodelofthe Andrews' squeezer mechanism of fig. 9.17

It was assumed that there is no friction in the joints. Thus, there are no reaction
moments between the bodies. Hence, the joints restrict only the movement of the
points where the bodies are connected and their models consist of common veloc­
ity junctions only. In the same vein, in the body components (Fig. 9.3) there are no

9.3 Andrews' Squeezer Mechanism 347

bond lines connecting external ports to body angular velocity junctions. The
model of a typical body component is shown in Fig. 9.19. The only exception to
this rule is the joint 0 and component K1, because there is a driving torque that is
applied through the joint to the body. The driver is represented by a source effort
component connected to the revolute joint O.

[! rTf
...~ f __LinRot-- e __LinRot-- f...- -

If-n

I
I

1"
Fig. 9.19. The model of the body K2

All of the bodies except K3 have two ports that are used for connection to the
corresponding revolute joints. Note that bodies K2, K3, K4 and K6 are connected
to the common joint (Joint). Component K3 has an additional port for the attach­
ment of the spring. The spring is represented by a word component model and in­
teracts with the body through a power port. Its model is described later.

Interconnecting the power ports of the bodies to the corresponding joint ports
we get the model of the mechanism as given in Fig. 9.18. The power flow direc­
tion is taken from the driver SE through bodies K1 and K2 to the common joint.
The power then branches out on one side to two paths-one through bodies K4
and K5, and one through K6 and K7-to the joint A, and then to the base. On the
other side, it flows through the body K3 and then branches through joint B to the
base and to the spring. This clearly shows that the power generated by the source
is used to move the bodies and to squeeze the spring that is, after all, the purpose
of the mechanism. There are many signals between the components and we ex­
plain them next.

The body coordinate frames in the original Schiehlen scheme of Fig. 9.17 ex­
actly correspond to the coordinate frames used in the formulation of the body
bond graph model in Sec. 9.2.1. We use as a base frame, the co-ordinate frame
Oxy of Fig. 9.17. We can look at this as the frame of the base to which the mecha­
nism is jointed by the revolute joints A, 0 and B. The angles specified in the
scheme, however, are not the absolute, but are relative to the body frames of the
connected bodies. Thus angle 13 of body K1 is relative to the base frame, but the

348 9 Multibody Dynamics

angle 0 of the next body K2 is given with respect to the previous body K1 frame,
etc. These angles are used as generalized coordinates of the mechanism in [13,
14].

To compare the results we introduce a vector of generalized coordinates de­
fined as in [13]

Tq =(/3 0 y <l> 8 n E) (9.29)

By inspection of Fig. 9.17, it is easy to find the relationships between these coor­
dinates and the body rotation angles. The generalized coordinates of bodies K1,
K3, K5 and K7 correspond to body rotation angles. Hence

(9.30)

(9.31)

For the others, these are relative rotation angles

q2 =(1)2 -<1>1 }
q, =<1>4 -<1>5

q6 = <1>6 -<1>7
These last relationships are represented by summators inside the joint components.
This is the reason why the signals from some bodies in Fig. 9.18 are fed back to
their common revolute joints. A model typical of such a joint is shown in Fig.
9.20. The output from the summator is taken out of the joint and connected to the
display component (the bottom right component in Fig. 9.18). For the others, the
outputs from the bodies are fed directly to the display component.

~
e

s+---

Fig. 9.20. The model of the joint between K6 and K7

We now return to the problem of modelling the spring. The spring is attached
between point D of the body and point C of the base. We assume that the attach­
ments are such that the spring extends and contracts without bending. The coordi­
nates of the attachment point D in the base frame are given by (Fig. 9.17)

xd = xb + sc .sin <I> + sd .cos <I>}
(9.32)

yd = yb - sc .cos <I> + sd . sin <I>

Angle <I> in these equations is the rotation angle of body K3. In this way the coor­
dinates of point D can be evaluated inside component K3 as shown in Fig. 9.21.
This is achieved by component D, which consists of two functions that implement

9.3 Andrews' Squeezer Mechanism 349

Eq. (9.32). Information on the coordinates is available at the top-right control­
output port.

f

n+---.,

I

J-;f
~-"'e -+--I--I---+-----_+_~

l ~

~....
..:l

1
f~LinRot~e~LinRot

~~J

Fig. 9.21. The model of body K3 generating information on the position of point D

(9.33)

(9.34)

At point 0 there is a force acting on the spring, which is represented by two
components in the base coordinate frame (Fig. 9.22). The point moves with some
velocity represented by the respective components. The movement of the point is
opposed by the spring. To relate these quantities we introduce a coordinate frame
attached to the spring. The rotation matrix of the spring frame is given by

R=(COS<Ps -Sin<ps)
sine, cos o,

The rotation angle can be found from

xc-xd
coso, =---,=:========1

~(xc - Xd)2 + (yc - yd)2

',j,. _r===~yc=-==y~d===Sin,!, -
s - ~(xc _ Xd)2 + (yc _ yd)2

The coordinates of point 0 in these relations are available at the ports of the com­
ponent K3, and those of point C are constants given in Table 9.4.

Thus the force and velocity components at point 0 in the base and spring
frames are related by the rotation transformation

350 9 Multibody Dynamics

Fig. 9.22. The spring attached to body K3

Fo =R F~ }
, T

Vo =R Vo
(9.35)

The force at D has components in the spring axis direction only, and it is in
equilibrium with the spring force. Similarly its velocity has a component because
of the spring extension. Hence from Eq. (9.33) the first Eq. (9.35) reads

Fox = Fs co.S<Ps} (9.36)
Foy = Fs Sin<Ps

Similarly from the second equation we get

Vs=VdxCOS<Ps+vdysin<ps (9.37)

Now we develop the model of the Spring component (Fig. 9.23). Effort and
flow component transformations are represented by the Rot component and the
spring itself by the capacitive element C of stiffuess k (Table 9.5).

_n~

_n===n1l
FUN FUN

1/
~Rot--c

Fig. 9.23. The model of the spring

9.3 Andrews' Squeezer Mechanism 351

Inputs to the Rot component are the outputs from two function components giv­
ing the cosine and sine of the spring angle as given by Eq. (9.34). The transforma­
tions of the Rot component are defined by Eqs. (9.36) and (9.37) and can be repre­
sented by two transformers and a flow junction as shown in Fig. 9.24. The
transformer ratios are the cosines and sines of the spring angle that is available at
the control input port.

TF

f
......

TF~

Fig. 9.24.Thetransformations as a resultof the spring rotation

This concludes model development of the Andrews' squeezer mechanism. The
reader is advised to explore the project in the BondSim library for more details.
The model developed is based on the physical modelling philosophy used in this
book. The resulting model equations differ from those developed using other ap­
proaches. What the model shows is that, even for a relatively complicated multi­
body system, a simulation model can be developed systematically using the stan­
dard component models from the BondSim program library.

Using the bond graph method the constraints on a body's motion are described
at the velocity level. This generally leads to DAE models of index 2 (Chapt. 5). In
this case the model consists of 197 implicit equations. The equations are relatively
simple, leading to a very sparse matrix of partial derivatives (Jacobian). It has 533
nonzero elements only, i.e. there is on average 2.7 variables per equation. In com­
parison the mathematical model of the mechanism based on the Lagrange multi­
plier form of constrained multibody mechanics [13, 14] consists of 21 differential
and 6 rather complex algebraic equations. In spite of the great difference in the
number of equations, it will be see that the performance of the BondSim package
is good.

To complete the model of the mechanism, it is necessary to define its initial
configuration. This is defined by knowing the rotation angles of all the bodies and
the initial deformation of the spring. For the bodies we use the initial values of the
generalized coordinates, as given in [13], and evaluate the corresponding initial
rotational angles from Eq. (9.30) and (9.31). These are listed in Table 9.6 and cor-

352 9 Multibody Dynamics

respond to an initial angle of the crank K1 of zero rad. The initial spring compres­
sion is calculated as

(9.38)

where 10 is the unstretched length of the spring. Coordinates xd and yd are given
by Eq. (9.32). This is given in the last row of Table 9.6.

Table 9.6. The initial configuration of the mechanism

Parameter
KI angle[rad]
K2 angle [rad]
K3 angle[rad]
K4 angle[rad]
K5 angle[rad]
K6 angle[rad]
K7 angle [rad]
Spring displacement [m]

Value
-6.17138900142764e-002
-6. I7138900142764e-002
4.5527981916307e-00I
7.10033369709727e-001
0.487364979543842
1.00787905438393
1.23054744454982
2.51774838892633e-002

The simulations were run under similar conditions as in [14]:

- Simulation interval
- Output interval
- Maximum stepsize
- Absolute error tolerance
- Relative error tolerance

0.031 s
0.0001 s
0.0001 s
1e-7
1e-7

The reference solution in [14] was done on a CRAY computer using the PSIDE
parallel software for DAEs. Experiments were also conducted using some other
well-known codes including RADAUS [13]. These tests were run on a Silicon
Graphics Indy workstation with 100 MHz R4000SC processor. The simulations
with BondSim software on the other hand, were done on a laptop with a Pentium
III 650 MHz processor and 128 Mb RAM.

Figs. 9.25 - 9.27 give time histories of the angles of the Andrews' squeezer
mechanism as defined by Eq. (9.29). The diagrams closely correspond to those of
[13 and 14]. Table 9.7 gives the values at t = 0.03 s. The second column gives the
values obtained by BondSim using the default error control method, i.e. by con­
trolling the differentiated variables only. The third column lists the reference solu­
tion from [14]. To compare the values the number of significant correct digits are
calculated as in [14] by determining -lo91Olrelative error], The simulation values
agree with the reference solution to about 4 correct digits. Thus the simple error
control used in BondSim by default gives relatively good accuracy.

The simulations were also repeated using the local error control of Sect. 5.3.3
(using the default differentiation weight of I). The results are given in Table 9.8.
The values obtained have at least one additional correct digit, that is, they are cor­
rect to a minimum of five digits.

9.3 Andrews' Squeezer Mechanism 353

2.0

1.0

-2.0

q2

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 9.25. Behaviour of q1 and q2 with time

5.0

2.5

-2.5

-5.0

q3 q5

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 9.26. The behaviour of q3, q4 and q5 over time

354 9 Multibody Dynamics

2.0

'".,. 0.0:JV\J.

-1.0

-2.0

q7

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 9.27. The behaviour of q6 and q7 over time

Table 9.7. Values at t = 0.03 s (default error control)

ql
q2
q3
q4
q5
q6
q7

BondSim
15.81163467
-15.7574481
0.04082927438
-0.534717734
0.5244112271
0.5347175805
1.048077964

Referent solution [14]
15.810771
-15.756371
0.040822240
-0.53473012
0.52440997
0.53473012
1.0480807

-Iog(relerr)
4.3
4.2
3.8
4.6
5.6
4.6
5.6

Table 9.8. The values at t = 0.03 s (local error control)

ql
q2
q3
q4
q5
q6
q7

BondSim
15.81080905
-15.75641766
0.0408225647
-0.5347296137
0.5244102524
0.5347295636
1.048079848

Referent solution [14]
15.810771
-15.756371
0.040822240
-0.53473012
0.52440997
0.53473012
1.0480807

-Iog(relerr)
5.6
5.5
5.1
6.0
6.3
6.0
6.1

9.4 Engine Torsional Vibrations 355

Table 9.9 gives some of the simulation statistics. The second and third column
gives the statistics when simulations are run using the default and local error con­
trol, respectively. The last column lists the values from [14] when solved numeri­
cally with the RADAU5 code.

Table 9.9. The simulation statistics

Parameter Default error control Local error control RADAU5 [14]
Scd 3.8 5.1 4.46
Steps 397 484 117
#f 1112 1270 1321
#Jac 720 789 92
CPU [s] 1.24 1.492 0.83

Note: sed is the minimum number of significant correct digits in the solution
steps means the number of integration steps
#f is the number of function evaluations
#Jac is the number of Jacobian matrix evaluations

The local error control is slightly more expensive in terms of CPU time. Gener­
ally, the RADAU5 values are better, but the CPU time is not much less. Also its
accuracy lies between the BondSim default error control and the local error con­
trol. We should also take into account the fact that BondSim evaluates functions
and the Jacobian matrix symbolically (Chapt. 5). During the simulation there are
also other operations besides the numerical solution. The CPU times are obtained
with background plotting, i.e. with the output window closed, because of the very
slow graphics of the laptop used. This is generally not such a problem on desktop
PCs.

9.4 Engine Torsional Vibrations

The determination of the torsional vibration characteristics of internal combustion
engines plays an important role in the design of cars, ships and other vehicles.
Traditionally, linear lumped-mass models are used in which the shafts, bearings,
couplings and flywheels are modelled as concentrated disks, springs and dampers.
The complete engine mechanism assembly of single and multi-cylinder engines is
modelled as separate lumped inertias [15]. Such models are often supplied to
shipbuilders for the torsional design of ships' propulsion systems. It is well known,
however, that the reciprocating mechanisms of the engines are non-linear and,
hence, their concentrated mass moments of inertias are not constant, but change
during the course of each revolution of the engine crankshaft. How important
these variations are is difficult to comprehend a priori and requires detailed analy­
sis of the complete system [16, 17]. There are also some non-linear effects that
lumped parameter models cannot predict, e.g. the so-called secondary resonance
[17]. Hence, a more detailed model of the engine in the time domain is important.

356 9 Multibody Dynamics

In this section we develop a model of a complete single-cylinder engine based
on multibody models of the reciprocating mechanism. The analysis is based on the
plane body motion models of Sec. 9.2 [18, 19]. The scheme of the reciprocating
mechanism is given in Fig. 9.28.

y
~

x

Fig. 9.28. Scheme of the reciprocating mechanism

It consists of a crank that rotates about the bearing at 0 and which is connected
to the engine piston by the connecting rod AB. All connections of reciprocating
members are by bearings. We treat bearings as frictionless revolute joints. The pis­
ton slides in the cylinder bore and is acted upon by pressure forces developed by
the combustion processes in the cylinder chamber. The piston friction is neglected.
There is friction in the mechanism however, but this is quite difficult to predict.
Thus its overall effect is represented by a linear resistive element (see later). The
coordinate frames used are shown in the figure. The detailed geometry is generally
not known, but it is reasonable to assume that the crank and the connecting rod
mass centres are on their geometrical axes AO and AB, respectively, and the body­
fixed axis is taken, in each case, along this axis.

We develop a model to analyse the engine torsional vibrations using the Bond­
Sim. A project called EngineTorsional Vibrations is created. A model of the sys­
tem is developed systematically by creating component models of all the main en­
gine parts and then connecting them by bond lines (Fig. 9.29). The engine
parameters are based on [17].

The crank is fixed to the shaft. The shaft is connected on one side to the fly­
wheel and on the other side (the output part) to the load. It is assumed that the en­
gine is unloaded and, hence, the load is represented by a zero effort source SE.
The shaft rotates in the bearings fixed in the engine body, which is here repre­
sented by the Base component.

9.4 Engine Torsional Vibrations 357

Piston -------,

~
Bearing

~
Conrod ---,

~
Bearing

~
crankq~ r n

FIYWh••l_Shtt~~1--

I B.se ~

Fig. 9.29. Engine torsional vibration model

The model of the shaft is given in Fig. 9.30. In the centre, component e is con­
nected to both power document ports. This component describes the translation of
the shaft axis and is represented by an array of effort junctions corresponding to
the x- and y-axis motions. It is connected to the Base by the lower power port.
The shaft cannot translate in the engine body and hence the component Base is
represented by two zero flow sources. The other effort junction connected to the
shaft upper document port is the shaft angular velocity node.

CIeRI C Ie

1 1 1L1 1 1 1
..j - f~ e~ f...--- e1- e~ f~ e -f.>.. f --"-e-r

1 SE

e

I
T

Fig. 9.30. Model of the engine shaft

358 9 Multibody Dynamics

On each side of the shaft angular velocity junction there are capacitive, inertial
and resistive elements that model the shaft torsional dynamics. The model used
corresponds to the lumped mass model of [17]. Thus, the first inertial element on
the left is the angular inertia of the reduction gear and the camshaft. The resistive
element describes the overall friction effect in the engine reduced to the shaft.

A pair of capacitive elements on each side of the centre in Fig 9.30 represents
the stiffness of the shaft parts between the crank and the bearings. The bearings
are represented by the inertial elements. The last capacitive element on the left of
the centreline represents the stiffness of the shaft between the left bearing and the
flywheel; that on the right side represents the stiffness of the output portion of the
shaft. The controlled source effort models the effect of the combustion forces on
the piston, reduced to the shaft. The element is controlled by the angle of shaft ro­
tation. It simulates the load torque by [16, 17]

M = Mm(1 +B· sin(n<p)) (9.39)

where Mm is the average indicated torque and Band n are appropriate constants.
The Flywheel (Fig. 9.29) is modelled simply by an inertial element connected

to an effort junction, from which information on the flywheel angular velocity is
obtained. This is fed to the display component (at the right bottom in the docu­
ment).

The Crank and Conrod components are modelled as rigid bodies in plane mo­
tion using the general model for plane motion bodies of Sec. 9.2.1. The compo­
nents are created simply by copying the Body component from the library. The
main difference is the change of name. The ports are moved to the upper and
lower parts of the components in order to represent the connections as depicted in
Fig. 9.28. Thus, the model of the Crank is as depicted in Fig. 9.31.

/
r-- SE

II JTT l r-

c-
L....o.. f -----'0.. LinRot-----'o.. e -----'0.. LinRot--f

Ln__ f-n
I

,
Fig. 9.31. The modelof the Crank

9.4Engine Torsional Vibrations 359

Note that, because of the connection through the frictionless bearings, there is
no transfer of external moments to the crank. The SE connected to the mass centre
joint describes the weight of the component. It can be seen in the lower part of the
model that signals of the crank rotation angle and the angular velocity are ob­
tained. These are used to display the crank motion, as well as for simulating the
shaft load torque (Fig. 9.29). The model of the Conrad is almost the same, except
that only the component rotation angle is picked up. The bearings are modelled by
the revolute joint component of Sec. 9.2.2. The Bearing components imply the
common velocity condition of the bodies at the connection points (the bearing
axes).

The engine piston slides inside the cylinder. This is described by a translation
joint. The model is simplified by assuming that the engine body is fixed in the
base frame (Fig. 9.32). The left effort junction represents the x-axis piston veloc­
ity, which is zero. This condition is implied by a zero flow source. The piston can
move in the y-direction and is affected by its inertia and gravity. Note also that the
position of the piston is evaluated by integration and the signal is fed out for dis­
play.

The effect of the combustion pressure is not represented here but is taken into
account by the equivalent load torque reduced to the Shaft as has already been de­
scribed (see Eq. (9.39». This analysis of engine torsional vibrations is a common
one, for it is well known that the pressure forces can be described by a Fourier se­
ries [15]. In Eq. (9.39) the parameter n takes into account different harmonics con­
tained in the piston force and, thus, the effect on the torsional vibration character­
istic can be examined by varying it. Alternatively, a model of the combustion
process in the cylinder can be developed and included in the model.

SE I

SF~e

,
Fig. 9.32.Simplified model of the Piston

The model parameters are summarized in Table 9.10. These are based on the
measured data of a small four-stroke single cylinder engine [17]. The last two pa­
rameters were chosen in such a way as to achieve, on the one hand, the free run­
ning engine velocity of about 1800 rpm, as in the experiments of [17], and on the
other hand to achieve relatively good mechanical efficiency (light damping) of the
system. The parameter B ofEq. (9.39) was set to 1.

360 9 Multibody Dynamics

Table 9.10. The engine model parameters

Flywheel inertia
Engine friction constant
Average torque

Parameter
Crank

Conrod

Piston mass
Shaft stiffness

Shaft inertia

Length OA
Ratio OC/OA
Mass
Inertia
LengthAB
Ratio AC/AB
Mass
Inertia

The left part
The right part
The flywheel part
The output part
Gear and camshaft
Bearing left
Bearing right

Value
0.02491 m
0.143
0.557 kg
3.21.10-4 kg-nr'
0.09847 m
0.164
0.1040 kg
1.53.10-4 kg-m/
0.1649 kg
146000 N·m
146000N·m
11090N·m
7960N·m
7.99.10. 5 kg-rrr'
5.92.10-6 kg-rrr'
5.92.10-6 kg-m'
9.35.10-3 kg-rrr'
0.01 Nrn-s
1.86 N·m

After the model is completed, it is possible to analyse the dynamic behaviour of
the engine by simulation. Weare interested mainly in the behaviour of the system
around the first natural frequency. Thus the time-response of the system to the
load torque is found first, then the frequency spectrum of the engine angular ve­
locity is generated. Because the time constant of the system is about 1 S, we need
about 5 S to be sure that the velocity settles down to a steady state value. After
that, we run the system for an additional 5 s.

Thus the simulation interval is taken to be 10 s. The range of frequency we are
interested in is 0 - 1000 Hz. Thus the output interval should be at least 1/2000 s
or 5·10-4 s. We choose the default error tolerance of 10-6 and the default method.
The first resonance appears when parameter n of Eq. (9.39) is about 25. Fig. 9.33
shows transients in the angular velocity for the value n = 25. The output is very
noisy because it is on the border of instability. The first signs of instability appears
after t =0.2 s. It is interesting to look at the simulation statistics (Table 9.11). If
the simulation is repeated with an error tolerance of 10-5 all the numbers are scaled
down 10 times, but there are not significant differences in the plots generated.

Table 9.11. The simulation statistics for the Engine Torsional Vibrations problem

Parameter

Number of steps
Function evaluations
Jacobian matrix evaluations
CPU time s

Error tolerance 1·10-6

1 863385
3795519
1 933949
1490

Error tolerance 1.10-5

141 735
348034
206307
168

9.4 Engine Torsional Vibrations 361

5.0

4.0

3.0

"' 102Cl..
E
0

2.0

1.0

0.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 9.33. Response of the engine near the resonant frequency (n = 25)

We get the frequency spectrum by clicking with the right mouse on the time
plot and select Frequency spectrum from a drop-down menu. In the dialogue that
appears we select a time window of 5 - 10 s and, for better effect, click on the
Hamming window button. The resulting spectrum calculated by Fast Fourier
Transform is shown in Fig. 9.34. As can be seen, there is a large component at 0
frequency ofamplitude180.348 rad/s (1722 rpm).

2.0

1.6

1.2..
" 102::l..
Q.
E
c(0.8

0.4 _

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Frequency

Fig. 9.34. Frequency spectrum of engine angular velocity

362 9 Multibody Dynamics

We expand the low frequency region, Fig. 9.35, by clicking with the right
mouse button on the frequency plot, and then selecting the Expand command from
a drop-down menu. In a similar way the high frequency region can be expanded.
This is shown in Fig. 9.36.

5.0

4.0

3.0 __

".".e 10. 1
"ii
E
c(2.0

1.0

0.0

0.0 0.4 0.8

Frequency

1.2 1.6 2.0

Fig. 9.35. The lower part of the spectrum (1 - 200 Hz)

5.0

4.0

3.0
"."

101::l..
"ii
E
c(2.0

1.0

0.0

0.0 0.2 0.4

Frequency

0.6 0.8 1.0

Fig. 9.36. High frequency range of the spectrum (500 - 1000 Hz)

The low frequency region shows characteristic harmonics that appear at multi­
ples of the fundamental frequency of 28.7 Hz (1722 rpm) because of the inertial

9.5Motion of Constrained Rigid Bodies in Space 363

effects in the engine. It can be seen that the second order harmonic is largest, and
then the first, followed by the third order. The higher order harmonics are much
lower in amplitude and there is no response until frequencies in the range 600 ­
900 Hz. The first natural frequency is estimated at 717.7 Hz with an amplitude of
38.6 rad/s. There are also amplitude peaks on both sides of the resonant fre­
quency, which are displaced by twice the fundamental frequency, i.e. 57.4 Hz.
This is termed the secondary resonance and is the result of non-linear inter­
coupling in the engine's reciprocating mechanism [17]. The spectrum diagrams, as
well as the characteristic frequencies, agree well with the experimental results re­
ported in [17].

9.5 Motion of Constrained Rigid Bodies in Space

9.5.1 Basic Kinematics

To describe motion of a body in space we use two fundamental coordinate frames
(Fig. 9.37) - a base frame Oxyz and a body frame Cx'y'z moving with it, as we did
in Sec. 9.2. There can be a number of bodies and, hence, a number of body frames
that are used for their description. On the other hand, there is a single base (iner­
tial) frame. In robotics it is often convenient to introduce other frames, as well [9].
All of the frames are 3D Cartesian coordinate frames.

z

x

Fig. 9.37. Baseandbodyframes

We assume that the position of a body frame with respect to the base is defined
by a position vector rc of the origin C of the body frame. The point C is the refer­
ence point for describing the body position - a body centre (pole). As in the planar
case, it could be the body mass centre, but it could be also some other point. The
body orientation is defined by the rotation matrix R composed of the direction co-

(9.41)

364 9 Multibody Dynamics

sines of the body axes with respect to the base axes (see e.g. [2]). The position of
any point P fixed in the body with respect to the base is given by

fp = fC + Rf~p (9.40)

where rcp' is the vector of its material coordinates, i.e. the coordinates with respect
to the body frame.

During motion, the position of the body centre rc and its orientation­
represented by matrix R-change with time. The material coordinates of a point
fixed in the body do not change, but the coordinates change with respect to the
base frame. The velocity of the point P, as seen from the base frame, can be found
by differentiating Eq. (9.40) with respect to time, i.e.

dR '
v p = Vc + Citfcp

The relative velocity of the point P with respect to the origin of the body frame
Cis

V CP = vp -vc

and thus the velocity of point P is

V p = Vc +vcP

(9.42)

(9.43)

(9.44)

From Eq. (9.41) the relative velocity is owed to the body orientation changes

dR '
v CP =-fCp

dt

Velocity can be represented as a vector in any frame by its rectangular coordi­
nates. The relative velocity representations in the body frame vcp' and in the base
frame are related by a coordinate transformation

V CP = RV~p

The rotation matrix is orthogonal and thus we have for its inverse

R-1=RT

(9.45)

(9.46)

(9.48)

where the superscript T is the transposition operator. From Eqs. (9.45) and (9.46),
, T

vCP = R vCP (9.47)

Substituting from Eq. (9.44) we get

, T dR .
v CP =R -fCp

dt

But

(9.49)

Thus, we have

9.5 Motion of Constrained Rigid Bodies in Space 365

dR T
vCP = -R rcp (9.50)

dt

It is a simple matter to show that the factors of the position vector on the right
side of Eqs. (9.48) and (9.50) are skew-symmetric. From Eq. (9.46) it follows that

RTR=RRT=I (9.51)

where I is the identity matrix. Hence, by differentiating with respect to time we get

dR
T

R+RTdR=O (9.52)
dt dt

or

And, similarly

RT dR = _ dR
T

R = _(R T dR)T
dt dt dt

(9.53)

(9.54)

The vector product of two vectors a and ~ defined by their components in a
Cartesian frame

(9.55)

and

(9.56)

reads

(9.57)

From [7] we denote by ax a skew-symmetric tensor that is, through ordinary vec­
tor product operation, associated with vector a. Vector a is the axial vector asso­
ciated with a skew-symmetric tensor. Eq. (9.57) also can be written as

and, hence,

axp=-pxa

Thus, we have from Eq. (9.50)

wx = dR RT
dt

(9.58)

(9.59)

(9.60)

366 9 Multibody Dynamics

and

w = aXia{~~ R T)

Similarly, from Eq. (9.48), we have

, TdR
wx=R ­

dt

and

w' = aXia{R
T ~~)

From Eqs. (9.60) and (9.62),

dR
-=wxR
dt

and

dR '-=Rw x
dt

(9.61)

(9.62)

(9.63)

(9.64)

(9.65)

Vectors 0) and 0)' are the base frame and the body frame representations of the
body angular velocity. These representations are related by

w=Rw'

Thus, the relative velocity expressions ofEq. (9.48) and (9.50) read
, "

vCP = W xrc p

and

v CP = wxrc p

The velocity equations ofEq. (9.43) now can be written as

and
I I ••

V p = vc + W x rCP

(9.66)

(9.67)

(9.68)

(9.69)

(9.70)

We transform these equations a little more using Eq. (9.59). Thus, Eq. (9.69)
can be written as

v p = VC + (-rCP x w)

Similarly, from Eq. (9.70), we have

v ~ = v ~ + (-r~p x w·)

(9.71)

(9.72)

9.5 Motion of Constrained Rigid Bodies in Space 367

W can now represent the body velocity as a 6D generalized vector composed of
linear velocity vectors of the body centre and the body angular velocity. In the
base frame the vector is given by

(9.73)

and similarly in the body frame as

(9.74)

We denote such vectors by f because, as will be shown later, these are simply the
flows at the bond graph component ports.

In a similar way, the generalized velocity of any other point P fixed in the body
can be represented in the base frame by

(9.75)

and in the body frame as

From Eq. (9.71) we have

(
I -rcp x)fp = fco 1

Also, we have

(9.76)

(9.77)

(R 0),
fc = 0 R fc

From Eqs.(9.77) and (9.78) we have

f = (1 - rCP X)(R
POI 0

or

0) ,
R fCi

(9.78)

(9.79)

(R -rcp XR) ,
fp = 0 R fc

Matrix

(9.80)

c=(: -rc;XR) (9.81)

can be termed a representation of the body frame configuration tensor [7]. Thus,
we have

fp = Cf~ (9.82)

368 9 Multibody Dynamics

We can also express Eq. (9.72) as

, (I -r~p xJ 'fp = fco 1
From Eq. (9.78) we find

(9.83)

f~ = [ROT :T}C (9.84)

After substituting in Eq. (9.83) we find the body frame configuration representa­
tion in the same frame

(

T ' T Jc' = R -rcp xR
o RT

Thus we have the inverse transformation

(9.85)

(9.86)

In this section some of the basic kinematic quantities have been developed.
They are generalizations of the corresponding expressions for planar body motion
developed in Sec. 9.2.1.

9.5.2 Bond Graph Representation of a Body Moving in Space

Now we can proceed with the development of a bond graph model of a body mov­
ing in space. It is similar to the one used for bodies in plane motion in Sec. 9.2.1.
The main difference lies in the more complex relationship that governs motion of
bodies in space.

To develop a fundamental bond graph representation we consider a single body
interacting with its environment. The environment consists of bodies to which the
analysed body is connected. We model the body and its environment by two com­
ponent objects - Body and Base (Fig. 9.38).

We assume that the body is connected to other bodies at two points. We also
assume that one body in the environment acts on the body through a force and a
moment. Likewise the body acts on a third body in the environment. This way
there is transfer of power from the environment to the body and from the body
back to the environment. In order to represent these interactions we assume that
the Body component has three ports. Two of these, the bottom and the upper one
in Fig. 9.38, correspond to the power interactions just described. We have added
the third one (the side port) to correspond to the body mass centre. It is possible to
develop a model without the explicit use of mass centre ports, but its use simpli­
fies the description of the body dynamics.

As explained previously, velocities seen at a port can be represented by the 6D
flow vectors ofEq. (9.75) and (9.76). Similarly we can use 6D efforts to represent
the resultant force and moment at a port. Such efforts can be represented in the
base frame by

9.5 Motion of Constrained Rigid Bodies in Space 369

Coordinate
transformation

Bas e

Fig. 9.38. Representation of a bodymoving in space

(9.87)

(9.88)

And, similarly, in the body frame as

e~ =(~J
Here Fp and Fp ' are 3D representations of the resultant force at a connection point
P and Mp and Mp' the corresponding representation of the resultant moment.

To represent these 6D vector quantities, the ports of the Base and Body com­
ponents are assumed to be compounded (Sec. 2.4). The first sub-port corresponds
to the linear velocity and resultant force pair, and the other to the body angular ve­
locity and resultant moment. This way the ports can be used to access efforts and
flows at the port by two ordered 6D efforts and flows. At the mass centre ports
however, as will be seen later, a 3D representation is sufficient. The flow is the
mass centre velocity and the effort is the resultant of the forces acting on the body
at other ports (interconnection points) reduced to the mass centre. The gravity
force (the body weight) acting there is not accounted for and is taken into account
when dealing with the body dynamics. The reason for this is that body weight can
be easily described in the base frame. This is not so in the body frame, because it
is generally rotated with respect to the first.

We represent effort and flow vectors at body ports as seen in the body, i.e. with
respect to a body fixed frame. Similarly at the base ports the corresponding quanti­
ties are expressed with respect to the base frame. Transformations between these
two representations are given in Fig. 9.38 by the Co-ordinate transformation
component. This component transforms effort and flow at a body port to the corre­
sponding base representation and vice versa. The transformation between efforts is
given by

(R0)'ep = 0 R ep (9.89)

370 9 Multibody Dynamics

and similarly for the flows

(9.90)(R 0),
fp = ° R fp

where R is the rotation matrix of the body frame with respect to the base.
We use Cartesian 3D frames only. Thus the transformation matrix is orthogonal

as shown in the first part of this section. Thus from Eq. (9.90) we get the inverse
transformation

f~ =[:T ROT}P (9.91)

It follows, then, that the transformation does not change the power transfer be­
tween the Body and the Base

'T' Tfp ep = fp e p (9.92)

The transformation of port quantities can be represented by the 6D transforma­
tion component of Fig. 6.39a. This component transforms both 3D parts of the 6D
effort-flow pairs of corresponding ports, according to Eq. (9.89) and (9.91), as
shown in Fig. 6.39b. The transformations are represented by the Rot components
that describe the transformation of 3D effort-flow vectors using the rotation matrix
R. The transformation can be represented using transformer elements TF (see Sec.
9.6).

..J>.6D Rot ..J>.

F' Rot
Fi

Vi Vii ~

Mj
Rot

M,i

0); OJji

(a) (b)

Fig. 9.39. 6Dtransformation. (a)Thecomponent representation, (b) Thestructure

(9.94)

(9.93)

,T, ,T, (, T
v p Fp +w Mp = ve

Velocities at a port are related to the velocity of the body mass centre by Eq.
(9.82). To find the relation between forces and moments, we evaluate the power
transfer between the ports as in Sec.9.2.1. From Eq. (9.83) we get

,T, 'T(I 0),
f p ep = fe' ep

rep x I

After substituting from Eqs. (9.74), (9.76) and (9.88), then evaluating, we get

'T)[F~ J
w r~p xF~ +M~

9.5 Motion of Constrained Rigid Bodies in Space 371

or
• T, .T, • T. .T, , ,

Vp Fp +w Mp =Vc Fp +w (rcp xFp +M p) (9.95)

The last equation is the generalization of the planar case Eq. (9.8). It describes,
jointly with Eq. (9.82), the basic velocity and force relationships for rigid bodies.

The basic structure of the Body component, defined by Eqs. (9.83) and (9.95),
is given in Fig. 9.40. It is very similar to that of the planar body model in Fig. 9.3,
but involves three-dimensional quantities.

~

I I
f

LLinRot'1
ROTATION e

rLinRo.J
f

1 I
Fig. 9.40. The model of 3D body motion

Here the component e is also an array of effort junctions corresponding to the
centre of mass velocity. Instead of a simple effort junction for the body angular
velocity, the component Rotation is used. This is because the rotational dynamics
in 3D are much more involved then in the planar case. (We discuss this compo­
nent later.) Component f represents an array of flow junctions that describe the
port velocities relationship given by the first 3D row of Eq. (9.83). It gives the lin­
ear velocity at a port as the sum of the velocity of the body mass centre and the
relative velocity of the port owing to rotation of the body about the mass centre.
The joint variable is the force at the port. The body angular velocity, however, is a
property of the body; as such-according to the bottom row ofEq. (9.83)-it is di­
rectly connected to the corresponding Rotation component port.

The LinRot components represent transformations between linear and angular
quantities. That is, between the relative velocity at the port with respect to the cen­
tre of mass of the body and the body angular velocity on the one hand, and of the
force at the port and its moment about the mass centre, on the other. These trans­
formations are defined by the skew-symmetric tensor operations in Eq. (9.83) and
Eq. (9.95) and can be represented by transformers, as in Fig. 9.41.

Every transformer in Fig. 9.41 corresponds to a nonzero entry of tensor -rcp'x
or its transpose. Thus, the flow junctions on the left evaluate the relative velocities

(9.96)

372 9 Multibody Dynamics

at the left port as a result of the multiplication of the angular velocity at the right
port by matrix -rcp'x. Likewise, the effort junctions on the right give the moment
at the right port of the force at the left port by multiplying it by the rcp'x matrix.
The ratios of the transformers are the material coordinates of a body point corre­
sponding to the port with respect to the mass centre. Thus, they are parameters that
depend on the geometry of the rigid body and don't change with its motion.

1---f~TF

~TF

1-----"" f~ TF

~TF __--+~

1-----"" f ------..... TF

~TF..------/

Fig. 9.41. The representation of LinRot transformations

9.5.3 Rigid Body Dynamics

To complete the model, we need a dynamic equation governing rigid body motion.
The simplest form of such an equation is given with respect to axes translating
with the body mass centre (Fig. 9.42). We assume that the base frame is an inertial
frame.

The translational part of the motion can be described by

p =mlVcj
dp =F
dt

Here, m is the body mass and F is the resultant of the forces reduced to the mass
centre. We represent the dynamics of body translation in the Base (Fig. 9.43a) by
the eM component that describes the motion of the mass centre of the body. This
last component (Fig. 9.43b) consists of effort junctions corresponding to the x, y
and z components of the body mass centre velocity with respect to the base frame.
These junctions are connected to the Base port to which the resultant of the forces
acting on the body is transferred.

9.5 Motion of Constrained RigidBodies in Space 373

x

Fig. 9.42. Motion of the bodyin space

Note that the weight of the body is added here. This force is represented by
source efforts defining the weight components with respect to the base frame axes.
The momentum law in Eq. (9.95) is represented by the inertial elements I with the
body mass as a parameter. Because it is used both in the SE and I components, it
can be defined just once, at the level of the eM document (Fig 9.43b).

(a)

T
CM

~
SE -----... e

SE e

SE e

l
I I I

(b)

(9.97)

Fig. 9.43. Rigidbodytranslation. (a) Representation in the Base (b)TheeM component

The rotational part of the body motion is commonly described in a frame trans­
lating with the body mass centre and that is parallel to the base frame. The mo­
ment of momentum law with respect to such a frame reads

H=JW}
dH =M
dt

where J is the mass inertia matrix and M is the resultant moment about the body
mass centre. Because of the rotation of the body, the inertia matrix changes during

374 9 Multibody Dynamics

the motion. This is because the equations of rotational dynamics are as a rule (at
least for rigid bodies) represented with respect to a frame fixed to the body. It is
not difficult to transform Eq. (9.97) to this form.

In the body frame the body moment of momentum is given by

H=RH

Thus from the first Eq. (9.97) we have

H' =J"w'
where

(9.98)

(9.99)

(9.100)

is the body mass inertia matrix with respect to the centroidal body axes. Multiply­
ing the second Eq. (9.97) by RT and substituting from Eq. (9.98), we get

or

dH' +RT dRH'=M'
dt dt

Using Eq. (9.62), the last expression can be written as

dH' , , ,
--+w xH =M
dt

(9.101)

(9.102)

(9.103)

These are the famous Euler equations of body rotation in which the rate of
change of the moment of momentum is represented by its local change and a part
convected by the body rotation. This other part has a very elegant representation in
a bond graph setting. This is the celebrated Euler Junction Structure (EJS) [10,
11].

Now we can describe the ROTATION component of Fig. 9.40, which repre­
sents the body rotation about the mass centre with respect to the body frame (Fig.
9.44). The Torque balance component in the middle consists simply of an array
of three effort junctions that corresponds to the x, y and z components of the body
angular velocity with respect to the body frame. The left and right ports transfer
the moment of the forces and of the moments acting on the body. In the centre it is
connected to I and EJS components. The first of these consists of an array of iner­
tial elements that describes the local rate of change of the moment of momentum.
There is a control-out port that serves for the transfer of information on the mo­
ment of momentum vector H' that the EJS component needs. This can be seen in
Eq. (9.103). The EJS component is shown in Fig. 9.45.

It consists of three gyrators connected in a ring. Note that the power circulates
inside the structure, thus there is no net power generation or dissipation. The gyra­
tors are modulated by the body moment of momentum rectangular components.
The EJS can be slightly simplified if the body axes correspond to the inertia ten-

9.5 Motion of Constrained Rigid Bodies in Space 375

sor principal axes. We do not assume this, as selection of the body axes is usually
based on how the body is connected. Thus, we assume that the body inertia matrix
is fully populated. We do not recalculate the moment of momentum in the EJS
component, but rather take it from the inertial component.

r-l
I EJS

\ I
Torque balance

Fig. 9.44. Model structure of the ROTATION component of Fig. 9.40

e----Gy......-----

Fig. 9.45. The Euler Junction Structure (EJS)

This completes development of the component model of a body moving in
space. Now we tum our attention to modelling the interconnections between bod­
ies in space.

376 9 Multibody Dynamics

9.5.4 Modelling of Body Interconnections in Space

Typical mechatronics systems, such as robots, consist of manipulators regulated
by controllers. The manipulators are multibody systems consisting of several
members (links) interconnected by suitable joints. They are powered by servo­
actuators. In the previous sections we developed a fairly general component model
of bodies that can be used for the representation of manipulator links. Now we de­
velop models of the joints. Two types of joint are considered - revolute and pris­
matic. Based on these component models, a typical robotic manipulator can be
represented in a way similar to which real manipulators are assembled. In the next
section we apply the methods of this section to the modelling of a complete ro­
botic system, including its controller.

The approach is applicable to other multibody systems as well. Robot manipu­
lators are chosen for several reasons. These are fascinating systems that have in­
fluenced development in many fields such as multibody mechanics, conventional
and intelligent control, sensors and actuator technology, and have promoted
mechatronics as a design philosophy. The modelling and simulation of such com­
plex systems is not an easy task. The problem of modelling manipulators as multi­
body systems is only one part of it; there is also the problem of the control of such
complex space systems, particularly when there are interactions with the environ­
ment. The bond graph method is a good candidate for solving such multi­
disciplinary problems.

Revolute Joints

Revolute joints have already been discussed in Sec. 9.2.2. The basic difference
with those discussed earlier is that, because bodies connected by a revolute joint
can move in three-dimensional space, the axis of the joint is not confined to spe­
cific motions but can move freely. To describe this effect, we analyse the bodies A
and B connected by a revolute joint, as shown in Fig. 9.46. The bodies could, for
example, be two links of a robot manipulator joined by a revolute joint. We as­
sume that the z-axis of the coordinate frame OAXAYAZA of body A is directed along
the joint axis. We assume further that there is a body B frame OsxsYszs. The pre­
cise positions of the frames are not prescribed and in a specific multibody system
they can be defined as is most convenient, e.g. using the Denavit-Hartenberg con­
vention [9]. The frame Oxyz is the base frame.

Let P be the centre point of the revolute joint used as the reference connection
point. The joint is represented by word model components as in Sec. 9.2.2 (Fig.
9.6). The ports are assumed compounded such that the port variables are 6D flows
and efforts at the connection of the joint to body A and B These are expressed in
their respective frames. At A (power-in) these are

ft =[:~ J (9.104)

and

9.5 Motion of Constrained Rigid Bodies in Space 377

YA

Fig. 9.46. Revolute joint in space

eA =[Ft)
p M~

Similarly at B (power-out) we have

f~ =[:i)
and

(9.105)

(9.106)

e~ = [~) (9.107)

The linear velocities of bodies A and B at the connection point are common to
both of the bodies. Hence

A RA BV p = BVp (9.108)

where RsA is the rotation matrix of the body B frame with respect to the body A
frame.

A similar relation holds for the forces. Because the linear velocities at common
point are equal, the same is true for the power transferred across the joint during
its translation, i.e.

(9.109)

By substituting from Eq. (9.108) we have

F~ =R~Ft (9.110)

Eqs. (9.108) and (9.110) describe the relationships between the linear part of
the flow-effort 3D vectors at the joint ports. We develop next the relationships be­
tween the angular parts, i.e. angular velocities and moments.

Rotation matrices of the bodies A and B frames with respect to the base frame
are related by the composition of rotations

378 9 Multibody Dynamics

R B =RAR~

By differentiating with respect to time we get

dRB = dR A R A +R dR~
dt dt B A dt

From Eqs. (9.64) and (9.65) we have

wBxRB=RAW~xR:+RAW~xR~

where

(9.111)

(9.112)

(9.113)

(9.114)A . dR~ B
WAB =axlal(dtRA)

is the relative angular velocity of body B with respect to body A expressed in
body A frame. Simplifying Eq. (9.113) we get

(RA)T WB xRA =w~ X+W~B x (9.115)

Hence (see Eqs. (9.64) and (9.62))
A A A

WB x = WAx +W AB x

The last equations imply that

A A A
WB =WA +WAB

In addition we have

A RA BWB = BWB

Note also that
A ~ .)T

WAB = \0 0 <P

(9.116)

(9.117)

(9.118)

(9.119)

where is <p is the joint's angle of rotation.
We use the component in Fig. 9.47 to represent a revolute joint. The component

has an additional port that corresponds to the relative rotation of the joint. This
port can be used for actuation of the joint. There are also two signal ports for the
joint's relative velocity and the rotation angle output.

Actuator port 4
~...J:::.. J 0 i n t

4
Fig. 9.47. Revolute joint component model

Joint angle port

Velocity port

9.5 Motion of Constrained Rigid Bodies in Space 379

We can now represent the model of a revolute joint. It consists of two main
parts (Fig. 9.48). One, a component termed Revolute, represents the basic rela­
tions between the port variables in the frame of a body connected to the lower port
(body A). The other component, Joint Rotation, transforms the port variables from
the frame of the other body (body B) to the frame of the lower (body A).

..!

I
Joint Rotation

1
i
n

i
Revolute ...

Fig. 9.48. Structure of the revolute joint component model

The Revolute component itself consists of two components (Fig. 9.49). The Tr
component represents the translation part of the joint model. It consists solely of
separate effort junctions for the translation in the direction of the three axes. This
ensures that the joined ends of the bodies move with a common velocity and that
the corresponding forces are the same.

Tr

e Rot

f

Fig. 9.49. Structure of the Revolute component

380 9 Multibody Dynamics

The other component, Rot, represents the relationship between the angular ve­
locities as given by Eqs. (9.117) and (9.119). The model of the component (Fig.
9.50) is very simple and consists of two effort junctions in the x- and y- directions
in which the angular components are the same for both of the joined bodies. There
is also a flow junction that corresponds to the relative rotation about the z-axis.

I
e e

I .. f

1
Fig. 9.50. The representation of the joint rotation

The effort junction on the left of the component in Fig 9.49 corresponds to the
relative angular velocity of the joint. It is used to extract information about joint's
angular velocity and to evaluate joint's angle by integration. The joint's angle is
used for the rotation transformations as shown in Fig. 9.48 and is often for control.

An important function of the joint is the rotation transformation between the
two link frames (Fig. 9.48). This is depicted in Fig. 9.51. The transformations are
applied to the linear effort-flow parts, and separately to the angular. These are rep­
resented by components RotAB. The components represent transformations, as
given by Eqs. (9.108) and (9.110) for linear variables. The same transformations
hold for angular variables.

~

I
RotAB

RotAB_ n

1 I
Fig. 9.51. The rotational transformations by the joint

The transformations are usually expressed by transformers TF, which transform
flow and effort components. These are then summed as given in Eq. (9.108) and

9.5 Motion of Constrained Rigid Bodies in Space 381

(9.110). We do not give here the general structure of the component. Later in Sec.
9.6, we meet some specific examples of such transformations.

Revolute joints play an important role in the design of robotic manipulators.
They offer the simplest way to change the orientation of robot links. The compo­
nent model introduced here gives the main functionality of such joints. They are
used later for the building of manipulator models. This is illustrated in Sec. 9.6.

Prismatic Joints

Prismatic joints have already been described in Sec. 9.2.2. The basic difference
here is that the axis of the joint can be anywhere in space (Fig. 9.52). To describe
the effects of prismatic joints on bodies connected by such a joint, we define a
body frame AxAYAZA attached to one body at point A. The z-axis is directed along
the relative displacement of the joint (joint axis). There is also a second body B
and a frame attached to it.

Fig. 9.52. Prismatic joint in space

The precise positions of the frames are not specified and can be defined as is
the most convenient, e.g. by using Denavit-Hartenberg convention [9]. The frame
Oxyz is the base frame.

Let B be a point on the second body. This body can move along the joint slot.
The joint can be represented by a word model component as in Fig. 9.47, but of
course its model will be different. The ports are assumed compounded such that
the port variables are 6D flows and efforts at the connection of the joint to the
bodies (the upper and lower in Fig. 9.47). The side port is used for actuation of the
joint. We develop the governing equations first. They are generalizations of the
corresponding equations for the planar case in Sec. 3.2.2, but are expressed with
respect to the body frame, not the base frame, as we did for plane revolute joints.

The position vector of point B (Fig. 9.52), the reference point of the body that
can slide along the joint, is given by

382 9 Multibody Dynamics

rB =rA +RArtB (9.120)

where RAis the rotation matrix of frame A with respect to the base and rAl is its
relative position with respect to body frame A. By differentiation with respect to
time, we get for its velocity

(9.121)

(9.122)

where

A drtB
V AB =(jt

is the relative velocity of the junction. Substituting from Eq. (9.65) in Eq. (9.121)
we get

R A R A AVB =VA + AV AB + AWA xrAB

Multiplying from the left by the transposed rotation matrix R/, we find
A A A A A

VB =VA +VAB +WA xrAB

or

In addition, we have

(9.123)

(9.124)

(9.125)

(9.128)

A RA BVB = B VB (9.126)

Here, Rs
A is the rotation matrix of the frame of the second body with respect to the

body frame of A. Note that in prismatic joints this is a constant matrix.
In the body frame A, the relative position vector is very simple

rtB = (0 0 sy (9.127)

and hence the relative velocity ofthe joint is

V~B =(0 0 sy
We also introduce a matrix T as in Sec. 9.2.2 defined by

TA A
A = -rAB x

From Eqs. (9.57) and (9.127) we h(av~ s 0]

Tt = -s 0 0
000

Eq. (9.125) now reads

(9.129)

(9.130)

(9.131)

9.5 Motion of Constrained Rigid Bodies in Space 383

This is similar to Eq. (9.25) for the planar case. We can expect that the model
of the space prismatic joint is just a generalization of the model of Fig. 9.1O.

The representation of the model of the prismatic joint is similar to the revolute
joint of Fig. 9.48 and is shown in Fig. 9.53. The Joint Rotation component trans­
forms efforts and flows between the two body frames. This is similar to the revo­
lute joint (Fig. 9.51), but here the matrix is constant.

...L

Jlint Rotation

1 I
Prismatic

- -
Fig. 9.53. The structure of the prismatic joint component model

The model of the Prismatic component is given in Fig. 9.54. Component f de­
scribes the joint the velocity relationship given by Eq. (9.131). It consists of flow
junctions that describe the velocity relationship in the direction of the body axes.
Component e on the right corresponds to the joint's angular velocity vector. The
LinRot component describes the transformation between linear and angular quanti­
ties. The corresponding transformation matrix is given by Eq. (9.130). It depends
on the joint's relative position, found from the integrator that uses the joint relative
velocity from the corresponding junction.

.-------1- J- n

1
e-"'- f~ LinRot..--- e

Fig. 9.54. The representation of the model of the space prismatic joint

Note that because of the very simple form of the matrix in Eq. (9.130), there are
no z-components generated by the linear-to-rotational transformation. Summation

384 9 Multibody Dynamics

of the velocity components represented by the flow junction that corresponds to
Eq. (131) is simplified, too. Thus, we see that the space prismatic junction is not
much more complicated than the planar one.

9.6 Motion of an Anthropomorphic Robot Arm Under
Hybrid Control

9.6.1 Problem Formulation

In this section we apply the component-modelling technique to a problem of the
partially constrained motion of a robot system. The system consists of a robot that
presses a tool onto a vertical wall and moves it over the surface of the wall (Fig.
9.55). This type of problem is encountered in the robotic polishing of surfaces. In
such applications it is important not only to control the motion of the tool over the
surface, but also to maintain a certain value of the contact force.

Fig. 9.55. An industrial robot pressing a tool to a wall

The problem is not an easy one. The robot manipulator carrying the tool
changes its configuration when the tip of the tool approaches the wall from an
open to a closed kinematic chain. When contact is established, the tool tip has to
move over the surface. Hence control of the robot must drive the joints in such a
way as to force the tool tip over the surface and not into the surface, thereby dam­
aging it. Using only positional control is not possible, if the manipulator and/or the
wall are rigid. In this case, because of deviations from the ideal program trajec­
tory, there will be a component of the tool tip motion in the direction of the sur­
face normal. Because of the high stiffness of the complete structure, very high re­
action forces are developed. These forces are much higher than the capabilities of
robot drives, and the robot will be locked with the tool penetrating the wall sur­
face. The problem is well known in robotics and different strategies have been
used to attack it [9, 20-22].

9.6 Motionof an Anthropomorphic RobotArm UnderHybrid Control 385

To help to solve this problem we assume that the robot wrist is equipped with a
force sensor and that the overall mechanical system is somewhat compliant. We
assume that most of the stiffness comes from the force sensor, but part of it comes
from the wall, too. The robot is controlled by a hybrid law: the PD position con­
trollaw in the unconstrained sub-space, and by the I force control law in the con­
strained subspace. For simplicity, we assume that the control is applied to the first
three joints only. Thus, we model a three-link robot arm as a multibody system.
The wrist and tool together are modelled as a point body. Compliance is modelled
in the direction orthogonal to the wall by a Contact component of Sec 6.4.1.

A schematic diagram of the robot arm is given in Fig. 9.56. This is an anthro­
pomorphic arm with three revolute joints powered by servo-actuators. The co­
ordinate frames used for description of the motion are also given in the figure.

Yo

Fig. 9.56. Scheme of the robotarm with the coordinate frames

The geometrical and and inertial parameters are given in Fig. 9. 57 and Table
9.12 and are based on [23, 24]. The distance of the wrist centre to the wall is w =
0.1 m.

Table 9.12. Parameters of the robotarm

Link 1 Link2 Link3 Wristand tool
L [m] 0.5 0.4 0.3
Lc [m] 0.25 0.2 0.10
m [kg] 13 10 5 2
lexx [kg-m"] 0.7 0.15 0.15
leyy [kg·m21 0.35 0.3 0.15
lezz[kg·m2

] 0.7 0.3 0.15
Note:Massesand moments of inertiaare of the links,ic1uding actuators

n

386 9 Multibody Dynamics

~L 2 'I
c

3

Fig. 9.57. The robot geometry

9.6.2 Model of the Robot System

We next give a brief description of the model. The complete model is held in
the BondSim program library under the project name Robot Hybrid Control. The
system level representation is shown in Fig. 9.58. It consists of three main compo­
nents: Controller, Manipulator and Work Space.

rLLll·l~ManrrJ

'---1-----+--- L L

Fig. 9.58. Representation of the robot system

(9.132)

(9.133)

9.6 Motion of an Anthropomorphic Robot Ann Under Hybrid Control 387

The Controller and Manipulator are connected by a power bond line, which de­
scribes the action of the first on the last. This is a multidimensional line that repre­
sents the interaction between the manipulator joints and the actuators. The inner
signal line connecting the right manipulator port to the Controller is the joint posi­
tion and velocity feedback. The outer serves for the feedback of the wall force that
is taken from the Work space component at the contact of the tool tip and the
wall.

There are many signals that are picked up and fed to the display. Because the
signals fed out of the controller are packed as 3D bonds, they are first unpacked by
n components that simply contain three branching nodes. The left display compo­
nent is used for displaying the joint variables: angular position (the left ports) and
torque (the upper ones). The right component serves for displaying the operational
space variables: the coordinates of the position of the tip of the tool and the wall
contact force. This way we get a picture of the behaviour of the robot system dur­
ing simulation. Other variables could be added if necessary.

The model of the Manipulator component is shown in Fig. 9.59. The model re­
flects the structure of the real manipulator. The joints and links are created using
components developed in Sec. 9.5. Thus, all of the links are created as copies of
the 3D body component of Fig. 9.40. The names are changed appropriately. Thus
they differ only by the names and by values of the parameters. The only exception
is the Link 3 component, because there is no torque at the tool tip, only a force.
Hence the upper moment line is removed from the component, and all contained
components; e.g. the ROTATION component of Fig. 9.44.

The mass moments of inertia of the link components are set according to the
values in Table 9.12. The coordinates of the end points of the links with respect to
the mass centre of the link in the LinRot components (Fig. 9.40) are set in accor­
dance with the data of Fig. 9.57 and Table 9.12.

The joint components are created as copies of the 3D joint component of Sect.
9.5.4 (Figs. 9.48 - 9.51). But there are some differences from joint to joint. The
general structure is the same as given in Fig. 9.48, but the Joint rotation compo­
nents differ because the rotation matrices of the body (link) frames change from
joint to joint. For every joint a specific transformer component is used. We show
this for Joint 2, which rotates the frame of Link 2 with respect to the frame of
Link1. The rotation matrix of these two frames is given by (Fig. 9.56)

[

COS Q2 -sinQ2 OJ
R21 = sinq, cosq, 0

001

The corresponding transformations are given by (Fig. 9.51)

f1 = R21f
2

}

e2 = R~1e1

These transformations are represented by the components shown in Fig. 9.60.
There are four transformers corresponding to the four nonzero elements in the first
two rows of the rotation matrix in Eq. (9.132).

388 9 Multibody Dynamics

+~~
Joint3

- +2~l ,-

Joint2
~

+'~l
I

r+-

... J 0 i n t 1

i'"
Fig. 9.59. Manipulator component model

~

I I I

~Cll· ~"~
TF 1 ,,-1

f) f~ f
1 1 1

Fig. 9.60. Representation of a transformation between link frames

Every effort and flow vector component in Eq. (9.133) is represented by a sepa­
rate effort or flow junction, and the transformers are connected between them.
Connections to the flow junctions correspond to the matrix operation in the first
part of Eq. (9.133), and that of the effort junction to the second equation of Eq.

9.6 Motion of an Anthropomorphic Robot Ann UnderHybrid Control 389

(9.133). The transformation described by the other rotation matrices can be cre­
ated in a similar way.

Joints transform not only the 6D flows and efforts of connected ports of nearby
links, but other variables, as well. The links describe the rotational dynamics parts
only. The translational dynamics parts are represented in the base (the Work
space). Thus, the resultant of the link forces reduced to the link mass centre and
the velocity of the mass centre have all to be rotated by the joints to the base (or
vice versa). In a similar way the forces (and the moments) acting on the tool tip
and its velocity need to be transformed from the base (operational space) to the
last link frame. Thus, there are usually more transformers of the same type inside a
joint rotation component as we go from robot tip to the base, not just two as in
Fig. 9.51. The quantities transferred across the joints correspond in Fig. 9.51 to the
vertical bonds near the right end of the joint and the link components. The figure
clearly shows that these bonds are packed together into a higher dimensional vec­
tor structure. Thus the bond connected to the bottom-right port in Fig. 9.51 is
really 12-dimensional. It should be kept in mind that elements of this multidimen­
sional connection can be accessed in the reverse order to the order they were cre­
ated. For example, access could begin with the resultant of the 1st link forces and
the corresponding mass centre velocity first; then proceed to that of the 2nd link;
and so on, until the tool tip is reached. It is not necessary to pack the bonds this
way, but then there would be a forest of bond lines that would be difficult to draw
and even more difficult to understand. The component model and the compounded
port concepts developed in this book enable the visual representation of compli­
cated tensor quantities and operations in a clear way.

Returning to the manipulator model ofFig. 9.59, we see that the power bonds at
the left port are branching out to the joints. In a similar way the joint position and
velocity signals are collected at the right port. Thus on the outside (Fig. 9.58) they
appear as two bond lines only, a 3 D power line and a 6D feedback line.

The Work Space component of Fig. 9.58 describes the manipulator body and
the robot working environment as seen in the base (inertial) frame. As already dis­
cussed in Sec. 9.6 the Link component represents the link rotational dynamics. The
translation part of the link dynamics is represented in the base, as are all of the in­
teractions of the manipulator with its environment. The model of the Work Space
component is shown in Fig. 9.61.

The manipulator body motion is represented by the Body Motion component.
Because the manipulator body is fixed with respect to the base coordinate frame,
the component consists solely of zero source flow components. In mobile robots
these can be used to describe the moving of the body of the robot. The other two
components describe the translational dynamics of the manipulator as well as the
interaction of the manipulator arm with the environment. The structure of these
components reflects how the bonds connected to the right port in Fig. 9.61 are
"packed" (see Fig. 9.59). Thus, to unpack a bond we have to proceed in the reverse
order to how it was composed. Thus the left bond comes from the first link mass
centre. It is connected to the component CM1, which represents the translational
dynamics of the first link. It is represented as shown in Sect. 9.5.3 and Fig. 9.43.
The only difference is that its mass is defined as given in Table 9.12. We proceed

390 9 Multibody Dynamics

in a similar way. Thus the model of the component denoted as Rest in Fig. 9.61
has a similar structure (Fig. 9.62). Here the translational dynamics of the second
link is represented by CM2. The mass parameter of the second link as given in Ta­
ble 9.12 is specified in the CM2 component.

Body
Motion

CMl Rest

Fig. 9.61. Model of the robot work space

~ ~
CM2 Rest

Fig. 9.62. Next level of the decomposition of the component Rest

The last Rest component consists of the CM3 component that represents the
last link translational dynamics and a component denoted as Tool (Fig. 9.63). The
mass parameter of the CM3 component is defined in Table 9.12.

CM3 Tool

Fig. 9.63. Translational dynamics of the last link

9.6 Motion of an Anthropomorphic Robot Arm Under Hybrid Control 391

The Tool component, as described at the beginning of this section, incorporates
a wrist, a gripper equipped with a force sensor, a tool and a model of the interac­
tion with the wall. Its simplified model is shown in Fig. 9.64. The wrist and all it
carries is represented by a particle at the end of the third link (the wrist centre
point). Its inertia and weight are represented by an inertial component I and source
effort component SE, one per axis of the movement, respectively.

SE I

~~
e_f- SE I

~J SE I
e--+ f-

~J
e ------+ f -
~

Contact SE SE

~ I
SF

--.
Fig. 9.64. Model ofthe Tool component

The wall restricts movement of the tool only in the base x -direction. The inter­
action with the wall is represented by a Contact component (see Sec. 6.4.1 and
Figs. 6.53 and 6.54). The SF component defines the wall as being fixed, i.e. its ve­
locity is zero. There is no force on the robot arm when the tool is off the wall. The
wall is modelled as a spring-damper system of relatively high stiffness constant
and low damping as described in Sec. 6.4.1. The initial tool tip and wall positions
are defined in Fig. 9.57 and Table 9.12. The tool tip can move freely over the wall
y-z plane. The friction in that plane is represented by two SE components and is
assumed to be zero

The integrators shown in the figure are used for evaluating the position of the
tool tip and are used only for monitoring its motion. The robot control is based on
joints' variables, in addition to the signal of the interaction force taken from the
Contact component. Initial values of the integrators are set according to the initial
configuration of the manipulator arm in Fig. 9.57, i.e. x =0.4 m, y =0 and z =
-0.3 m. All four signals are packed into a 4D signal bond (see Figs. 9.63, 9.62,
9.61 and 9.58).

392 9 Multibody Dynamics

9.6.3 Hybrid Position/Force Control

Now we come to the controller that has to ensure proper regulation of the robot.
The model of the controller that we use is shown in Fig. 9.65. It uses hybrid
force/position control with velocity feedback of the robot in the base (operational
space) frame. The control law is based on the operational space control scheme of
[9]. This uses transposed Jacobian control. We do not use gravity compensation.

Starting from the port where the feedback is connected we need to separate first
the joint position signals from the velocity. This is achieved by two components n
composed of nodes only that are used to extract the signals and then pack them
again as 3D vectors of, respectively, joint angles

(9.134)

and velocities

(9.135)

1

(9.136)

n

I------+-n

l~n----+J

OK I!
RefF 1 4-.

RefP ~Hybrid • Sum --+ JT --+ Orive

Fig. 9.65. Model of the Controller

The positional part is converted to the vector of tool tip coordinates with re­
spect to the base frame using the relations of direct kinematics of the manipulator.
For the anthropomorphic configuration of Fig. 9.56, these are given by

[

L2 cos q, cos q; + L3cos q, sin(q2 + q3))
rlool = L2sinq, cos q, + L3slnq, sin(Q2 + Q3)

L2sinQ2 -L3cos(Q2 +Q3)

These relationships are represented by the component DK that is composed of
function elements and summators that express the coordinates of the tool tip in the
base frame as a function of the joint coordinates.

9.6 Motion of an Anthropomorphic Robot Arm Under Hybrid Control 393

We also need the transformation of the joint velocities to the velocity of the
tool tip with respect to the base frame. The relationship follows directly from
(6.136) by differentiation

where

J =arlool / aq

(9.137)

(9.138)

is the manipulator Jacobian matrix. The Jacobian matrix can be evaluated directly
from Eq. (6.136) as

where

and

-L2sinq1cosq2 -L3sinq1 sin(q2 +q3)]
L2cos q, cos q2 + L3 cos q, sin(q2 + q3)

o
- L2cosq, slnq, + L3 cosq, COS(q2 + q3)]
- L2 sinq, sinq; + L3 sinq, COS(Q2 + Q3)

L2cosQ2 +L3sin(Q2 +Q3)

(9.139)

(9.140)

(9.141)

(9.142)
[

L3 cosq, COS(Q2 + Q3)]
J 3 = L3 sin q, COS(Q2 + Q3)

L3 sin(Q2 + Q3)

Component J of Fig. 9.65 represents the matrix operation of Eq. (9.137) as
shown in Fig. 9.66. It is composed of components J1, J2 and J3, which represent
the operations in Eqs. (9.l40}-(9.142). These components need information on the
joint angles that are fed to the left port of the component J. Components denoted
by J*Qmultiply components of the Jacobian column matrices by the joint velocity
components. Finally, the outputs are summed and connected to the output. Com­
ponent D represents the proportional gain component of the velocity feedback
formed of function elements for every input component.

The central point of the controller is the Hybrid component, which represents
the hybrid/position control of the robot. The component gets the input from the
reference-input components - RefF for the force of the tool tip on the wall in the
x-direction, and RefP for its position along the wall (y- and z-coordinates). It also
accepts the force feedback and the tool position output from the direct kinematics
component. We return to the hybrid control component later. The difference be­
tween the hybrid controller output and the velocity feedback is amplified by the
component JT and is used to drive the joint servo-actuators. The component JT
represents multiplication by the transposed Jacobian and is represented in a similar
way to the multiplication by Jacobian operators in Fig. 9.66. The servo-actuators
used for the joints are torque-controlled [9] and are represented by the Drive com­
ponent consisting simply of controlled source efforts.

394 9 Multibody Dynamics

!
I

'J*q

1 rrJ~*q
__n--l s

J3

t

~

Fig. 9.66. The representation of the transformation of joint velocities

The hybrid controller structure is shown in Fig. 9.67. The top path corresponds
to the control of the force and uses I control action. The bottom three paths consti­
tute the position loops with P controller action. The last function element selects
position control for approaching the wall and moving away from it, and the force
control during motion of the tool tip over the wall surface. Switching from one
control law to the other is based on a time sequence. Thus it is assumed that the
tool approaches the wall first and after a sufficient length of time-such that the
tool is at the wall surface-the x-axis position control is switched off. The force
control is then applied during some period of time during which the tool slides
over the wall, e.g. polishing the wall. Finally, at a given time the force control is
switched off, the position control is switched on, and the tool is removed from the
wall.

-

I s f_KilI

f+
s FUN-FUN-

s FUN

s __ FUN

Fig. 9.67. Structure of the hybrid controller

9.6 Motion of an Anthropomorphic Robot Arm Under Hybrid Control 395

9.6.4 The Simulation of the Robot Motion

We now simulate some typical robot operations consisting of approaching the
wall, operation on the wall and returning back from the wall. However, it is neces­
sary to determine the workspace range on the wall, within which it is possible to
place the tool tip. In the case of the anthropomorphic robot arm of Figs. 9.56 and
9.57, the distance from the origin of the base frame to a point on the wall is given
by

(9.143)

This distance is not greater then L2+L3 and hence the reachable set on the wall is
given by

(9.144)

This is a circle on the wall if L3 > w (Fig. 9.68a). At a point in this range the robot
arm could be moved to one of two possible postures: elbow down or elbow up
(Fig.9.68b).

(a)

z

(b)

····· .. i x

" /
" I

'...J

(9.145)

Fig. 9.68. The robot workspace on the wall. (a) The reachable region (b) Possible postures

To illustrate the behaviour of the complete system we move the tool tip over
the wall along a straight segment as shown in Fig. 9.68a. This can be achieved by

~: ~2y :i:(21tt/PER)}

z = A z sin(21tt/PER)

Using the data in Table 9.12 with w =0.1 m, the radius of the bounding circle is
0.48990 m. Thus, the amplitudes in Eq. (9.145) are taken as Ay = 0.2 m and Az =
0.3 m. The period is PER =5 s.

The program trajectory is defined in the components RefP and RefF of Fig.
9.65 by Eq. (9.146). The parameters are defined as

TO =2 S, T1 =3 S, T2 =15 S, T3 =16 s, RET =0.5 S, and Fw =50 N.

The yend and zend are the values of the respective coordinates at t =T3.

396 9 Multibody Dynamics

x = t < TO?O.4 + 0.05 * t :

(t < T3?0.5 : 0.4 + 0.1 * exp(-(t - T3)/RET))

Y = t < T1?0 : (t < T3?Ay * sin(2 * PI * (t - T1)/PER):

yend * exp(-(t - T3)/RET))

z = t < TO?-0.3 +0.15 *t: (t < T1?0: (t < T3?

Az * sin(2 * PI * (t - T1)/PER) : zend * exp(-(t - T3)/RET)))

F = t < T1?0: (t < T2?Fw: 0)

(9.146)

Hence, starting from the initial configuration in Fig. 9.57, the manipulator
joints are rotated in such way that the tip moves with a linear velocity of 0.05 m/s
in the direction of the wall and with a velocity of 0.15 m/s in the z-direction. After
2 s, the tool tip reaches the centre of the wall; after 3 S the controller is switched
to the force control. The tool tip is then moved over the surface of the wall, press­
ing into it with a force of 50 N. After 15 s, the force reference value is lowered to
zero and, after 16 s the arm is removed from the wall by applying a simple expo­
nential time decaying trajectory with a decaying time constant of 0.5 s.

Gains of the controller are set to relatively high values, for it is also necessary
to compensate for the effects of the arm, the wrist and the tool weights. No direct
weight compensation is applied at the manipulator, e.g. by counter weights or
springs, or at the controller level by some kind of feed-forward action, such as in
[9]. Values of the controller settings are given in Table 9.13.

Table 9.13. Setting of controller gains

Gain
P
Ki
D

Value
100000 (all axes)

500
10000 (all axes)

Simulations were run for 20 s at the output interval of 0.01 s. Processing time
of a simulation run is 17.8 s, a large part of which occurs during the approach to
the wall. The results are shown in Figs. 9.69 - 9.72.

Fig. 9.69 shows time histories of the tool tip motion, and Fig. 9.70 the change
of the force at the wall. The tip of the tool follows the program trajectory well.
Regarding the force there are sharp peaks at the start, but it quickly drops to the
program value of 50 N, around which it oscillates with an amplitude of about
0.047 N.

Fig. 9.71 shows the changes of the joint angles, and Fig. 9.72 shows the torques
developed at the joints. Owing to discontinuities in the velocities, there are sharp
peaks in the torque curve at the switching points of the programmed trajectory.

9.6 Motion ofan Anthropomorphic Robot Arm Under Hybrid Control 397

5.0

/
2.5

i 10-1 0.0

-2.5

-5.0

wpy wpz

0.0 OA 0.8

Time

1.2 1.6 2.0

Fig. 9.69. Change ofposition of the tool tip during the working cycle

5.0

4.0

3.0

2.0

1.0

0.0

0.0 0.4 0.8

Time

1.2 1.6 2.0

Fig. 9.70. Change of the wall force

398 9 Multibody Dynamics

1.0

0.5

N 0.0
0"

~.5

-1.0

0.0 0.4 0.8

Time

1.2 1.6 2.0

q1 q3

Fig. 9.71. Time history ofjoint angles

1.0

0.5

102 00i .

~.5

-1.0

M2 M3

0.0 0.4 0.8

Time

1.2 1.6 2.0

Fig. 9.72. Time histories of the joint torques

References 399

References

1. J Wittenburg (1977) Dynamics of Systems of Rigid Bodies. BG Teubner, Stuttgart
2. EJ Haug (1989) Computer-Aided Kinematics and Dynamics of Mechanical Systems.

Allyn and Bacon, Boston
3. W Schiehlen (1990) Multibody Systems Handbook. Springer-Verlag, Berlin
4. R von Schwerin (1991) Multibody System Simulation: Numerical methods, Algo­

rithms, and Software. Springer-Verlag, Berlin
5. AA Shabana (1998) Dynamics of Multibody Systems, 2nd edn. Cambridge University

Press, Cambridge
6. PJ Rabier and WC Rheinboldt (2000) Nonholonomic Motion of Rigid mechanical Sys­

tems From a DAE Viewpoint. SIAM, Philadelphia
7. M Borri, L Trainelli and CL Bottasso (2000) On representation and Parameterizations

of Motions. Multibody Systems Dynamics 4: 129-193
8. JJ Craig (1986) Introduction to Robotics: Mechanics and Control.
9. L Sciavicco and B Siciliano (1996) Modeling and Control of Robot Manipulators.

McGraw-Hill, New York
10. Pieter C Breedveld (1984) Physical systems Theory in Terms of Bond Graphs, PhD

thesis, Technische Hochschool Twente, Entschede
11. Dean C Kamopp, Donal L Margolis and Ronald C Rosenberg (2000) System Dynam­

ics: Modeling and Simulation of Mechatronic Systems, 3rd edn. John Wiley, New York
12. Fahrenthold EP and Wargo JD (1994) Lagrangian Bond Graphs for Solid Continuum

Dynamics Modeling. ASME J. of Dynamic Systems, Measurement and Control 116:
178 - 192

13. E Hairer and G Wanner (1996) Solving ordinary Differential Equations II, Stiff and
Differential-Algebraic Problems, 2nd Revisited edn. Springer-Verlag, Berlin

14. WM Lioen and JJB Swart Test Set for Initial Value Problem Solvers, Amsterdam.
Available at http://www.cwi.nl/cwi/projectsIIVPteseset/.

15. JP Den Hartog (1956) Mechanical Vibrations, 4th edn. McGraw-Hill, New York
16. CH Pan and JJ Moskwa (1996) An Analysis of the Effects of Torque, Engine Geome­

try, and Speed on Choosing an Engine Inertia Model to Minimize Prediction Errors,
ASME J. of Dynamic Syst., Meas., and Control, 118:181-187

17. DC Hesterman and BJ Stone (1994) A Systematic Approach to the Torsional Vibration
of Multi-cylinder Reciprocating Engines and Pumps, Proc. Instn. Mech. Engers.
208:395-408

18. V Damic and P Kesic (1997) A System Approach to Modelling and Simulation of
Multibody Systems Using Acausal Bond Graphs. In P Marovic, J Soric and nN
Vrankovic (eds.) Proc. of the 2nd Congress of Croatian Society of Mechanics, Supetar,
Croatia, pp 415-422

19. V Damic, J Montgomery and N Koboevic (1998) Application of Automated Modelling
in Design. In P Marjanovic (ed.) Proc. 5th International Design Conf., Dubrovnik,
Croatia, pp. 111-116

20. G Ferretti, G Magnani and P Rocco (1995) On Stability ofIntegral Force Control in
Case of Contact with Stiff Surface, ASME J. of Dynamic Syst., Meas., and Control,
117:547-553

400 9 Multibody Dynamics

21. KP Junkowski, HA ElMaraghy (1996) Constraint Formulation for Invariant Hybrid
Position/Force Control of Robots, ASME J. of Dynamic Syst., Meas., and Control,
118:290-299

22. J De Schutter, D Torfs, H Bruyninckx and S Dutre (1997) Invariant Hybrid
ForcelPosition Control of a Velocity Controlled Robot with Compliant End Effector
Using Modal decoupling, The Int. J. of Robotic Research, 16:340-356

23. V Damic (1987) An Approach to Computer Aided Design ofIndustrial Robots Using
Simulation Package Simulex. In M. Vukobratovic (ed) Proc of 5th Yugoslav Sympo­
sium on Applied Robotics and Flexible Automatization, Bled, pp 28-39

24. F Harashima, J Hu, H Hashimoto and T Ichiyama (1986) Tracking Control of Robot
Manipulator Using Slide Mode. In Proceedings of 15th International Symposium On
Industrial Robotics, Tokyo, pp. 661-662

Chapter 10 Continuous Systems

10.1 Introduction

Continuous systems are important in many engineering disciplines, such as struc­
tural mechanics, fluid mechanics, thermal systems, electrical field etc. They are
important in mechatronics applications, too, i.e. control of robotic manipulators
taking in count flexibility of mechanical structure, sensor design, and micro­
mechanics systems design. Solving such problems requires some form of discreti­
sation. Two general methods are widely used: finite difference and finite element.
The first starts with partial differential equations that describe the problem and
uses suitable numerical approximation of the equation on a selected grid. Finite
element methods, on other hand, are based on disretization of the physical prob­
lem domain, dividing a continuous system or a continuous component into finite
elements. Motion of elements typically is based on an assumed displacement field
used to formulate the governing equations of element motion. The equations are
formulated using different methods, such as the Lagrange equations, the D'Alem­
bert-Lagrange principle, the Galerkin method, or others. Finite element methods
nowadays dominate the scene; many extremely powerful software packages based
on these methods are available to solve various engineering problems. There are
also related methods, such as finite-volume and boundary-element methods that
are popular in fluid mechanics and the electrical engineering and field theory. We
will not go into details of these methods here, but suggest that the interested reader
consult suitable references, such as [1-2]. It should be noted that the methods
available for mixed problems are not as powerful as for homogenous problems,
particularly if interconnection is strong.

The question we would like to ask is where is the place of bond graph methods
in this area. The strength of bond graphs lies in its multidisciplinary paradigm and
visual expressiveness. In many problems of mechatronics and micro-mechanics,
the physical domain is not uniform. There are strong interactions between proc­
esses taking place in physically different fields. This is, for example, the case in
computer-controlled drives of mechanical links that often are not too rigid, or in
sensors where there are strong interactions of solid mechanics, fluid mechanics,
electrical and thermal processes. Bond graphs are capable of helping to bridge the
gap between these different fields.

In this final chapter we describe an approach for solving the problems dealing
with continuous systems based on bond graphs. In the literature there are different
approaches for solving continuous systems by bond graphs [3-5]. The approach
described here is based on the component model philosophy developed in this

402 10Continuous Systems

book and implemented in BondSim. We start with description of the general ap­
proach to modelling continuous systems based on component models. This will be
applied first to the problem of modelling electric transmission lines. Next, a bond
graph component model of a beam element, based on classic Euler-Lagrange the­
ory, will be developed. It will be used in the solution of two practical problems:
package vibration testing and a Coriolis mass-flow meter.

10.2 Spatial Discretisation of Continuous Systems

Continuous systems possess infinitely many degrees of freedom and, as such, are
not directly amenable to numerical solution. Their solution requires some sort of
discretisation. Various approaches are possible. Here we consider an approach that
is compatible with the methods used in this book, i.e. representing the continuous
system as an assemblage of bond graph components, then developing the mathe­
matical model as a set of differential-algebraic equations that are solved directly.
This kind of approach belongs to a class of methods known as the Method of
Lines (MOL) [6]. To represent continuous systems-such as robotic links or
transmission lines-by a bond graph component model, it is necessary to discre­
tisize them spatially. One of most powerful ways to do this is by the finite-element
method. Other approaches also can be used, notably finite-difference approxima­
tions and even ad hoc lumping. Weare not speaking in favour of any of these, but
wish simply to explain how they can be implemented in a bond graph setting.

A continuous system can be discretized by dividing it into a number of finite
parts (elements). For example, a beam can be divided into number of small parts
(Fig. 10.1). The parts are called finite to distinguish them from the differential
elements used in mathematical analysis of the problem. The parts also can be of
different forms. Thus, in finite element analysis, triangular or quadrilateral ele­
ments often are used in plane problems; tetrahedral and hexahedral (solid) ele­
ments for space problems; plate elements for analysis of plates, etc. In finite dif­
ference approximations one-, two- or three-dimensional grids are used.

Fig. 10.1. Continuous beamas an assemblage of finite parts

The parts are assumed to be joined only at distinct nodes. Thus, discretisation is
based on physical variables defined only at distinct nodes. Values of variables in­
side the finite parts (elements) are described in terms of nodal variables. In the fi­
nite element method one group of variables, such as displacements in deformable
body mechanics, fluid velocities in fluid mechanics, or field potential in electric
fields, are represented inside the elements by polynomial interpolating functions.

10.2 Spatial Discretisation of Continuous Systems 403

The approximation is smooth over an element, but there can be discontinuities in
the derivatives of variables with respect to space coordinates at the transition from
one element to the other. The expression for associated variables---e.g., forces,
stresses, and currents-are found by applying a suitable method, such as Lagrange
equations, the Principle of Virtual Work, and like.

An element of the continuous domain can be represented by a bond graph com­
ponent (Fig. 10.2a). Depending on the number of external nodes of the element
that are used to join neighbouring elements, this component has a suitable number
of power ports. These generally are compounded and, hence, can represent efforts
and flows at the ports as vector or tensor quantities (Fig 1O.2b). Interconnection to
other components is made by components consisting of an effort or flow junction,
depending on the type of variables at the nodes. In solid continuum domains these
typically are displacements. Displacements are not directly supported as port vari­
ables in bond graphs; thus, velocities will be used that correspond to the common
flows at the effort junction nodes. Bond graph representation also shows assumed
power flow thought the domain. The component model of underlying processes
can be developed using different approaches, as already noted previously.

~ 7' ~ 7'
e e

7' -, / ~

FE

~ / -, 7'
e e

7' ~ 7' ~

(a) (b)

Fig. 10.2. Finite element as bond graph component. (a) Four-node finite element,
(b) Bondgraph component connection diagram

The finite-element method-as well as the finite-volume and boundary-element
methods-uses pre-processors and post-processors that are, to a large extent, re­
sponsible for their successful application in engineering design and research. They
are responsible for element mesh generation and displaying results in a user­
friendly way. Such special purpose devices are not used in BondSim; the hierar­
chical component model approach we have developed can be used to simplify dis­
cretisation of continuous components by bond graph finite-element components.

To that end, a component can be defined that is represented by some number of
bond graph finite-element components (Fig. 10.3). Such a component plays the
role of a "super element". In same way, a lower-level super-element component
can be defined that is composed of such higher-level super elements. This way, a
complex model consisting of a large number of finite elements can be constructed
easily by using the component copy and insertion operations supported by the
program. This technique is similar to finite-element sub-structuring [2].

In the next sections we apply this technique to solve some practical continuous
system problems.

404 10 Continuous Systems

~)'

SFE
)' ~

FE

/~
e e

r >. r >.
FE FE FE

<:> <:>
e e

-, /
FE

(a) (b)

Fig. 10.3. A super element consisting of several finite elements. (a) Component
representation, (b) Structure ofthe component

10.3 Model of Electric Transmission Line

Electrical transmission lines transmit electromagnetic energy between terminals.
They can be of different forms, such as coaxial cables, parallel wires, strip lines.
They find natural application in telecommunications and electric power engineer­
ing, and also as high-speed busses in modem digital computers. There are many
references that treat modelling and analysis of electrical transmission lines [7]. We
will not go into details here, but use some of those results to show how such lines
can be modelled and analysed by bond graphs with BondSim.

A transmission line is characterised by a series resistance R' in ohm/m and an
inductance L' in HIm of both conductors, and by a shunt capacitance C' in C/m and
conductance G' in S/m. A differential element of the transmission line oflength dx
is described by the equivalent circuit of Fig lOA. This is used as a starting point
for deriving the differential equations of the transmission line.

R'dxJ2 L'dxJ2 R'dxJ2 L'dxJ2

G'dx C'dx

I.. dx

Fig. 10.4. Equivalent model of a transmission line of a length dx

10.3 Model of Electric Transmission Line 405

To develop a discrete model of the line, we will approximate a differential line
element by a line section of finite length. Such a section is represented by the
component in Fig. lO.5a, which is created by the Transmission Line icon of the
Electrical Component palette (accessible from the Tools menu). The component
name is changed to TSect. Its model is shown in Fig. 10.5b.

R L R L
~

~
A

TSect
(fJ =~.. .. '-

q q p:; u

... V

(a) (b)

Fig. 10.5. Component model of a line section. (a) Representation, (b) Model

The parameters of the model are

1. Section resistances R =R'·Len/2
2. Section inductance L =L'·Len/2
3. Shunt capacitance C =C'Len
4. Shunt resistance Rs =1/(G'·Len) or, alternatively, G =G'·Len

where Len is the length of the section.
To simplify generation of a transmission line model consisting of a large num­

ber of the sections, we define a component of the same form as in Fig. 10.5a, but
denoted as Line, and which consists of five line sections (Fig. 10.6).

TSect TSect TSect TSect TSect ~

....

Fig. 10.6. A Line component composed of five line sections

406 10 Continuous Systems

We precede in the same manner by defining a new line component containing,
for example, five previously defined Line components. In this way, it is not diffi­
cult to create a line component that, in a hierarchical fashion, contains a large
number of sections. As the number of sections increases and, hence, their length
decreases, the model better approximates the line.

To apply this modelling approach to transmission lines, we analyse the tele­
phone line of [8] and compare the results given therein with those generated by
BondSim. The parameters of the line are

1. Length 322 km (200 mi)
2. R' =0.006304 ohm/m
3. L' =2.441-10.6 HIm
4. C' =4.950.10.12 F/m
5. G' =0.1801.10.9 81m

The line is divided into ten sections of length 32.2 km (20 mi) each. The pa­
rameters of the line segments are

1. R= 101.5 ohm
2. L = 0.0393 H
3. C = 0.159·10'6 F
4. Rs =0.172·106ohm

The line is driven by a sinusoidal voltage source of 1V amplitude, circular fre­
quency of (0 =5000 rad/s, and is loaded by characteristic impedance Zoo

The model of the Electric Line, including the source and load, is shown in Fig.
10.7. The line is represented by the TL component, consisting of two Line compo­
nents of Fig. 10.6. Each of the line segments of the 32.2-km length is represented
by T8ec components of Figs. 10.5 with parameters as given above. We thus have
2·5 =10 components. We next evaluate the characteristic impedance of the line,
which is represented by component ZOo

Fig. 10.7. Model of Electric line

10.3 Model of Electric Transmission Line 407

The characteristic impedance is given by

Z
_ R' + jmL

0-, ,
G + jmC

The modulus of the impedance is

Iz, 1= [R,: +m:L:)1/4 =744.991
G +m C

and its argument is

arg(Zo) = 0.5· (ataruoil, fR') - a tan(mC' f G')) = -0.234746 rad

Hence, the characteristic impedance is

Zo = 744.991· e-O.2347455 = 724.558 - j173.282

(10.1)

(10.2)

This way, the characteristic impedance can be represented by a resistor and a
capacitor (Fig. 10.8) with resistance and capacitance, respectively, of

RO = 724.558 ohm
CO =1/(173.282'5000) =1.15419.10-6 F

R

=~

u
....

Fig. 10.8. Representation of the characteristic impedance ZO

In the model of Fig. 10.7, an ammeter and a voltmeter are inserted at both the
sending and receiving ends of the line to provide output of the current and voltage,
respectively. Outputs are fed to an output (display) component at the right. Before
proceeding with the simulation, we evaluate another important characteristic of
the line, the propagation parameter.

The propagation parameter is given by
.-=---:...-_----

y =a + jJ3 = ~(R' + jmL)· (G' + jmC') (10.3)

408 10Continuous Systems

The modulus ofthe propagation factor is

IYI=((R'G' _ro2L'C')2 +ro2(R'C' +G'L')2)1/4 =1.8439·10-51/m

and its argument is

[
ro(R'C' + G'L'))

arg(y)=0.5·atan " 2" =1.32954
RG -ro CL

Hence,

Y= 1.8439 .10-5 ej1.32954 = 4.40544 .10-6 + j1. 7905.10-5 1I m

This way we get the attenuation factor of the line a = 4.40544·10-Q 11m and the
phase constant 13 =1.7905.10-5 11m.

In a transmission line loaded by the characteristic impedance, there are no re­
flected waves, so voltage amplitudes along the line are given by

V(x)=Vs·e-YX

The amplitude at the receiving end of line x =Len is

Vr = Vs .a-alen = 0.2421 V

The current at receiving end is

Ir = v, I 1z, 1= 3.249 ·10-4A

A similar relationship holds for the current amplitudes, i.e.

I -I ·a-alen
r - s

Hence,

(1004)

(10.5)

Is =I r ·aalen =1.342·10-3A

Finally, from Eq. (1004), we find the time delay for voltage and current waves
to reach the other end. This is given by

~t = /3. Len I co = 0.0011535

Values found above correspond to steady-state sinusoidal wave transmission
along the line. The transmission line problem in [8] is based on such steady-state
frequency analysis.

The simulation based on the model developed above, on other hand, predicts
the complete transient behaviour of the line and thus gives a more complete pic­
ture of the processes involved. This is, of course, approximate, as a finite number
of lumps are used; but accuracy can be increased by increasing the number of sec­
tions.

We simulate processes in the line using a simulation interval of 0.05 5. The pe­
riod of the supply voltage is 2rt/ro =0.00126 s. Thus, we use an output interval of
0.00001 s. Results are shown in Figs. 10.9 - 10.11.

There is an initial period of about 0.01 5 during which there are transients in
the currents and the voltages, before they settle to a steady state. Voltage and cur-

10.3 Model of Electric Transmission Line 409

rent amplitudes at the receiving end are 0.2312 V and 0.3104 rnA, respectively.
At the sending end, the amplitude of the current is 1.392 rnA, as in [8].

5.0

2.5

G>
2: 10.1G> 0.0
~
>

-2.5

-5.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 10.9. Voltage at receiving end of the line

5.0

2.5

G>

10""2: 0.0G>
U,g:

-2.5

-5.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 10.10. Current at receiving end ofthe line

410 10 Continuous Systems

2.0

1.0

~ 10-3 0.0
.!!

-1.0

-2.0

0.0 1.0 2.0

Time

3.0 4.0 5.0

Fig. 10.11. Current at the sending end of the line

Figs. 10.9 and 10.10 show a time delay before the waves reach the other end of
the line. It is difficult to determine accurately when current and voltage start to in­
crease from zero. Therefore, the delay is found by the difference in times when the
voltage crosses the time axis for the first time. Thus, the delay is 0.001190 s. The
values found by simulations are close to those found analytically. Better accuracy
can be achieved by increasing the number of sections in which the line is divided.
The complete simulation uses 6.11 S of CPU time.

10.4 Bond Graph Model of a Beam

In this section we analyse a simple two-dimensional beam. This is a simple exam­
ples of a more general deformable body and often is used to model elastic links in
manipulators and other multibody systems. Interested readers are advised to con­
sult any of the numerous references that deal with beams and flexible body dy­
namics. We point out here [9], which is more or less a standard reference on mul­
tibody system dynamics; and [10], because of its elegance and relevance to the
component modelling approach used in this book.

We develop a bond graph model of two-dimensional beams using finite­
element discretization. The beam will be described using Euler- Bernoulli the­
ory-also known as thin-beam theory-in which shear deformation and rotary in­
ertia are neglected. In spite of its simplicity, it is quite useful for solving various
practical problems in flexible body dynamics. We will use it to solve problems of
packaging systems vibration testing in Sect. 10.5; and of Coriolis mass-flow me-

10.4Bond GraphModelof a Beam 411

ters in Sect. 10.6. Another bond graph approach to Euler-Bernoulli beams is de­
scribed in [5].

We begin by analysing an element of a beam that moves in a plane with respect
to a body frame Oxz, which for this analysis is assumed to be fixed in a base
frame (Fig. 1O.12a). Fig. 10.12b shows an element of the beam oflength L with an
attached element frame Oex"ze. It will be assumed that the undeformed beam ele­
ment is straight, having a uniform cross section and parallel to the body frame.
Displacement of the element with respect to the body frame is described by two
vertical displacements of its ends-s-w, and w2-and two end slopes, 81 and 82.

z

o x Xe

(a) (b)

Fig. 10.12.A beam in planar motion. (a) An elementof the beam, (b) The co-ordinates

A beam element can be represented by a BFE component with two ports, corre­
sponding to the left and the right ends of the element (Fig. 10.13).

-l:::.. BFE .rs,

Fig. 10.13.Component modelofa beam element

The port flows are represented by vectors composed of linear and angular ve­
locities of element ends

(10.6)

and

(10.7)

The effort at the left port consists of force F1 in the transverse direction and mo­
ment M1 of action of the left part of the beam on the element

(10.8)

412 10Continuous Systems

Similarly, the effort at the right port is composed of a force F2 and a moment M2
of the action of the beam element on the beam part at the right of the element

(10.9)

This way, at the right element end there is a reaction force and moment, and
power flows through the element from the left to the right port (Fig. 10.13).

In similar way, we introduce generalised displacements ofbeam element ends

(10.10)

and

(10.11)

To simplify model development, we introduce end displacements

(10.12)

as generalised coordinates of the element. Comparing with Eqs. (10.6) and (10.7),
we have

Transverse displacement of a point on the beam axis is described by [2]

w=Sq

where S is the matrix of shape functions

S = (81 8 2 8 3 8 4)

with

8 1 = 1- 3~2 + 2~3

82 = L(~ _2~2 + ~3)

8 3 = 3~ _2~3

84=L(-~2+~3)

(10.13)

(10.14)

(10.15)

(10.16)

and ~ =x"IL. Differentiating Eq. (10.14) with respect to time, we get the velocity
of the beam transverse displacement

(10.17)

Next, we develop the dynamic equation of element motion. A convenient way
to do this is by using the Lagrange equations

(10.25)

10.4BondGraph Model of a Beam 413

:t(:~)-(:~)=Q (10.18)

where T is kinetic energy of element and Q is a vector of generalised forces. The
generalised forces include effects of element elastic forces, as well as those of
forces at the element boundary, i.e. at the ports.

The kinetic energy of a beam element is given by

1 L
T = 2" fPAv 2dX (10.19)

o
where p is the mass density of the beam, and A is the element's cross-sectional
area. Using Eq. (10.17), we get

v2= (f1T fJ)STS(::) (10.20)

By substituting in Eq. (10.19), the kinetic energy function can be written as

T = ~(f1T fJ)M(::) (10.21)

where Mis the consistent mass matrix of the beam element. It is given by
1

M= mfSTSd~ (10.22)
o

where m = pAL is the element mass. Using the shape functions ofEq. (10.16) and
evaluating integrals in Eq. (10.22), the mass matrix can be written as [2]

M_ m [~~~ ~~~ 1

53:

=~~;] (10.23)
420 54 13L 156 -22L

-13L - 3L2 -22L 4L2

We also can represent the mass matrix ofEq. (10.23) in block form

M= [M11 M12J (10.24)
M21 M22

where 2x2 blocks are found easily by inspection ofEq. (10.23)
Ifwe denote the momentum of the beam element by

p=8T/8q

we get, from Eqs. (10.13) and (10.21),

(10.26)

Thus,

(10.29)

414 10Continuous Systems

:t (:~) = p (10.27)

In addition, 8T/8q = 0, because the kinetic energy depends only on the velocities.
We now tum to the right side of Eq. (10.18). The part of the generalised forces

owed to elastic forces can be found from the strain energy V of the element. The
other part is given by efforts at the element ends (ports). Thus, we have

Q __ 8V+(e1) (10.28)
8q -e2

Using simple beam theory, the beam element strain energy is given by

V = ~LfE1[d
2W)2

dx
2 dx2

o

where E is the Young modulus of elasticity and I is the second moment of the
beam section. Substituting from Eq. (10.14), we find

(10.30)

where K is the stiffness matrix, given by

K = ~ 1fd2ST d
2
Sd

L3 0 dl;2 de I; (10.31)

Using shape function ofEq. (10.16) and evaluating integrals, we get [2]

K - Ell ~~ :L~ =~~ 26L~] (10.32)
L3 -12 -6L 12 -6L

6L 2L2 - 6L 4L2

This matrix also can be represented in 2x2 block form

K __ (K11 K12) (10.33)
K21 K22

Now, from Eq. (10.30)

8V =Kq
8q

After substituting in Eq. (10.28), we have

(10.34)

(10.35)

Finally, substituting from Eq. (10.25) and (10.35) into Eq.(10.l8), we get the gov­
erning equation of beam element dynamics

10.4 BondGraph Model of a Beam 415

dp + K(q1J-(e1J
dt q2 -e2

We further modify this equation by introducing beam damping

~~ +R(::J+K(::J-(-::J
The damping matrix R is defined by the relation

R= aM+~K

(10.36)

(10.37)

(10.38)

where a and ~ are suitable constants. This type of damping is known as Rayleigh
damping [2].

The equation of element motion, as given by Eqs. (10.26) and (10.37), can be
readily represented by a bond graph model of the BFE component shown in Fig.
10.14.

Fig. 10.14. Bondgraph beamelement BFE

Note that the first row of these equations corresponds to the left port variables,
and the second row to those of the right port. The variable at one effort junction at
the left component port is the linear velocity; at the other, it is the angular veloc­
ity. A similar situation holds for the right effort junctions. The inertia of the beam
element is represented by a four-port inertial element I, corresponding to Eq.
(10.26) and the first term in Eq. (10.37). Elasticity of the element is represented by
a four-port capacitive element C, corresponding to the third term of Eq. (10.37)
and Eq. (10.13). Finally, a four-port resistive element R describes Rayleigh type
damping in the beam, as given by the second terms of Eq. (10.37) and of Eq.
(10.38).

To complete the model, it is necessary to define model parameters and element
constitutive relations. Model parameters can be defined conveniently at level of
beam element document. We define the physical parameters first. These include
the element length, mass, modulus of elasticity. We then define expressions for
mass, stiffness, and damping matrix elements. The constitutive relations of I, C,

416 10 Continuous Systems

and R elements are defined at corresponding ports as given by Eqs. (10.26) and
(10.37), respectively.

The model of a beam is created using component models that correspond to the
elements into which the beam is divided. To simplify generating models that con­
sist of a large number of elements, a technique similar to that used in Sect. 10.3
can be applied. Thus, we define a component consisting of five element compo­
nent models; then another consisting of the five previously defined components;
and so forth. This way, using hierarchical decomposition of the beam, it is rela­
tively easy to generate a beam model consisting of a large number of finite ele­
ment component models by copying and inserting. We apply this technique in the
next sections.

10.5 A Packaging System Analysis

10.5.1 Description of the Problem

A product-package system typically consists of an outer container, the cushion,
the product, and a critical element. The critical element is the most fragile compo­
nent of the product (e.g. electric boards). It is the part that is most easily damaged
by a mechanical shock or by vibrations. The goal in distribution packaging (trans­
port of packaging) is to provide a correct design for packaging so that its contents
arrive safely at its destination. Vibration is associated with all transportation
modes, although each mode has its own characteristic frequencies and amplitudes.
The most troublesome frequencies are below 30 Hz because they are most preva­
lent in vehicles and it is difficult to isolate products from them [11].

In a recent thesis [11], a simple packaging system is designed consisting of
container body with a cantilever beam as the critical element carrying a device at
its end (Fig. 10.15). The package container plate was fixed on the table of a testing
machine used for vibration testing of the package. One of the thesis goals was to
predict the system's behaviour under vibration testing by simulation based on a
model of the package system. The model of the package was developed using the
bond graph methodology described in this book together with BondSim.

Cantilever beam

Device
Container body

Fig. 10.15. The packaging system subjected to vibration testing

10.5 A Packaging System Analysis 417

This section is partially based on this work. The goal is to show how the bond
graph model of typical vibration testing set-up can be developed in a systematic
way within the BondSim programming environment. Using basic data from [11], a
frequency response of the system will be generated to simulate a typical laboratory
vibration testing procedure.

10.5.2 Bond Graph Model Development

The package system model will be developed using an approach similar to the
floating frame approach of [9]. The coordinate frames used for description of sys­
tem motion are shown in Fig. 10.16. The critical part of the system is a beam
clamped to a container body that is parallel to the container base plate.

The motion of the complete system is described with respect to the reference
coordinate frame OrxrZr fixed to the ground (the testing machine body). Next, the
container body frame ObXbZb is defined with axes parallel to that of the base frame,
and that translates vertically with respect to the former.

, _._ _:-L·······..· --~k-'·--;r---............ . --

o x Cd
x'

Or 1>----- -'-- -+

Fig. 10.16. Co-ordinate systems of the package

The beam is modelled as an assemblage of the Euler-Bernoulli beam elements
of Sect. 10.4. Fig. 10.16 shows a typical beam element with the attached element
frame. In the initial (undeformed) position, the element frames are parallel to the
container body frame. There is also a device body frame Cdx'z' attached to the
body of the device at its mass centre and which moves with it.

The motion of the body frame is described by coordinate ZQ, given as a function
of time Zo =zo(t). This describes motion of the package during vibration testing.
We later will specialise it to two common forms, impulse and sinusoidal. Other
forms could be used, as well.

418 10Continuous Systems

Model of Beam Elements

Beam elements will be represented using the component model of Sec. 3.4. In
this problem the elements frames are not fixed with respect to a global reference
frame, but translate jointly with the container body frame. Thus, in addition to the
generalised displacements of the element with respect to the container frame, the
matrix of generalised displacements also will contain the Zo co-ordinate of the
container body frame. The generalised displacement matrix of a typical element
thus reads

(10.39)

where q1 and q2are defined by Eqs. (10.10) and (10.11), respectively.
Transverse displacement of the beam axis with respect to the base frame is

given by

z = Zo +s(~~) (10.40)

where S is the shaping function matrix of Eqs. (10.15) and (10.16). Corresponding
velocities are

v =va +Sf

where f is vector of flows (see Eq. (10.13)) and

dz ova =--
dt

(10.41)

(10.42)

(10.44)

To develop the equation for beam element motion, Lagrange's equation are
used, as in Sect. 10.4. These read

:t(:~J-(:~J=Q (10.43)

where T is the kinetic energy of the element and Q is vector ofgeneralised forces.
The generalised forces now read (see Eqs. (10.33) and (10.35))

Q = -[~ K~1 K:2][~~]+[:~]
o K 21 K 22 q2 -82

where K is the element stiffuess matrix and Fo is a force corresponding to the ef­
fect of container body translation on the element.

The kinetic energy of a beam element is given by

1 L 2
T ="2 SpAV dx (10.45)

a
where p is mass density of the beam element, and A is element's cross-sectional
area. Using Eq. (10.41) we get

10.5 A Packaging System Analysis 419

(10.46)

Where superscript T denotes the transposition operation. By substituting Eq.
(10.46) into Eq. (10.45), the kinetic energy expression can be written as

T=..!.mv~+voN(f1)+..!.(f1T fJ}M(f1) (10.47)
2 f2 2 f2

Where m is the element mass, M is element consistent mass matrix given by Eq.
(10.22), and

1

N=mfSdI;

°Using the shape functions ofEqs. (10.15) and (10.16), we get

N=~(6 L 6 -L)

This matrix can be written as 1x2 block matrix

N= (N1 N2)

Next, we define momentum of the beam element by

p=8T/8q

(10.48)

(10.49)

(10.50)

(10.51)

(10.52)

(10.53)

(10.54)

From Eq. (10.47) we get

[
m N

1
N21[vo]p = N~ M11 M12 f1

N2 M21 M22 f2
Thus, by substituting from Eqs. (10.51), and (10.44) into Eq. (10.43), the equation
of beam element motion can be written as

[
0 0 0][Zo] [F

O]~~ + 0 K11 K12 q1 = 81
o K21 K22 q2 -82

We modify this equation further by introducing beam damping

[
0 0 0][vo] [0 0 0][zo] [F

O]
: + 0 R11 R12 f1 + 0 K11 K12 q1 = 81

o R21 R22 f2 0 K21 K22 q2 - 82

where R is defined by Eq. (10.38)
Comparing Eqs. (10.54) and (10.52) to Eqs. (10.37) and (10.26), we conclude

that the same component model as in Fig. 10.14 can be used with the added port
corresponding to the body frame translation effect (Fig. 10.17). However, the con­
stitutive relation at the inertial elements ports should be changed to the form given
by Eq. (10.52). This additional port shows that there is transfer of power, because
of the motion of the container body frame.

...... t

...... Body

420 10 Continuous Systems

I

Fig. 10.17. Model of the package beam element

Motion of The Device

To model motion of the device, the rigid body model of Sect. 9.2 is used. There
is some difference, however. Motion of the device is referred to the container
body frame, not to the base (inertial) frame. Because the container body translates
with respect to the base, there is an additional (inertial) force acting at the device
mass centre, as was found above for the beam elements. Thus, in addition to the
port corresponding to joining the end of the cantilever beam, there is a port that
corresponds to the effects of translation of the container body frame (Fig. 10.18).
The effort and flow of the container port are inertial force--owing to the container
frame acceleration-and velocity of the container frame translation, respectively.
The efforts and flows at the beam ports are of the form given by Eqs. (10.9) and
(10.7), respectively. It was assumed that the beam axis undergoes z-axis transverse
displacement only, ignoring the beam x-axis strains. There is also an output port to
supply information on the relative transverse displacement of the device mass cen­
tre with respect to the container body frame.

Container interaction port

~

.i->
Beam interaction port

Fig. 10. 18. Representation of device body in a translating frame

The model of the device body created using the plane body model of Fig. 9.3 is
shown in Fig. 10.19. The effort junction at the top-left of the document window
corresponds to the transverse velocity component of the device mass centre with
respect to the base frame.

10.5 A Packaging SystemAnalysis 421

e-J-

~
I

~f~Li,"","~~'- jJ
l
I

Fig. 10.19. Component modelof the devicebody

This velocity can be expressed as

(10.55)

(10.57)

where the term with the superscript b denotes the velocity component with respect
to the container body frame, and v» is its translation velocity. Thus, the kinetic en­
ergy of the device translation is given by

TCd=md(vO+v~)2/2 (10.56)

Analogous to the approach used in the beam element model, we define the flow
vector corresponding to the mass centre motion as

fd =(~~)
The translation momentum of the device, defined by

now reads

(
md md)Pd = fdmd md

This way, the device translation dynamics is given by

Pd = ed

where effort edconsists of forces at the component ports

(10.58)

(10.59)

(10.60)

422 10Continuous Systems

(10.61)

Following Eqs. (10.59) and (10.60), the device translation dynamic is repre­
sented in Fig. 10.19 with a two-port inertial element, where one port corresponds
to interaction with the moving container body and the other to that with the beam
end to which it is connected. Because the device is clamped to the cantilever, its
angular velocity is equal to the angular velocity of beam cross section.

Model of the system

We now give a short description of the model of package system vibration test­
ing. The complete model can be accessed in the BondSim program library under
the project name Package Vibration Testing. The system level model is given in
Fig. 10.20.

"L.:
Package

1
Testing
machine

Fig. 10.20. System model of package vibration testing

It consists of two main components: Package and Testing machine. There is
also an output component used to display time and frequency plots of the package
container and device body positions. The Testing machine is represented simply
by a flow source generating vertical motion of the machine table. We will use two
types of test inputs. Similarly, as in Sect. 6.2.3, to generate a frequency response
plot of device motion, we apply to the package a velocity pulse of short duration.
The form of the pulse is shown in Fig. 10.21a. The corresponding package con­
tainer position is shown in Fig. 10.21b.

Another type input is a sinusoidal function of frequency f

Vo = v posin(21tft)

Amplitude vpois chosen such that the peak acceleration is constant, i.e.
amaxvpo=--2m

(10.62)

(10.63)

(a)

10.5 A Packaging System Analysis 423

(b)

Fig. 10.21. Form of pulses generated. (a) Velocity, (b) Position

The package consists of container wall and base plate represented by the Wall
component (Fig. 10.22), fixed to the vibration machine table and to which is con­
nected a Cantilever component that carries component Device.

Wall-...o..Cantilever-...o..Device

Fig. 10.22. The basic structure of the package system

Interconnection of the cantilever beam to the container is shown in Fig. 10.23.
The effort junction is the transverse displacement node of the container. The junc­
tion port, together with the Clamp port, is connected to the Wall output port. The
port-a compounded one-has efforts and flows at the container wall represented
by

(10.64)

(10.65)

and

tcon = (~o)

Here, Vo and Fo are, respectively, its velocity and the total force that the testing
machine supplies to the container. Effort component e- consists of the transverse
force and moment at the clamping of the cantilever beam to the container. The
component in the beam axis direction was neglected. Similarly, f 1 consists of the

424 10 Continuous Systems

linear velocity and the angular velocity of the beam end with respect to the con­
tainer.

.1.

e----j

f..
Clamp-

Fig. 10.23. Interactions at the container wall

The end of the cantilever is clamped to the container wall, which is represented
by Clamp component. This component consists of two zero-flow sources that
force the linear velocity and the angular velocity of the beam end to zero.

The cantilever beam is divided into four subsections (Fig. 10.24), each of which
is represented by a SectB component consisting of five BFE components (Fig.
10.25). The bond graph representation of this finite-element beam discretization is
depicted in Fig. 10.17. Overall, the cantilever is divided into 20 finite element
components.

pSectB----" SectB--->- SectB--->-SectB-~

Fig. 10.24. Cantilever beam represented by four beam sections

The effort junctions appearing above each BFE component are the finite­
element's translation velocity nodes. The effort variables at the ports connected to
the BFE components are forces corresponding to the distributed inertia of the ele­
ment translation. All such forces, including that of the device, give the total force
generated by the Test machine. This way, the mechanical effect of the machine
on the beam elements is clearly visible

Finally, returning to Fig. 10.22, there is a component Device that models the
device at the cantilever end. This consists of the Body component of Figs. 10.18
and 10.19. It was not possible to use this model directly, owing to the way in
which the ports were compounded.

10.5 A Packaging System Analysis 425

e ------Ill. e~ e -----lio. e .. e

l l
BFE -'"BFE ------"' BFE ------"' BFE -------. BFE

Fig. 10.25. Beam section as a super element of five BFEs

10.5.3 Evaluation of Vibration Test Characteristics

Now we can simulate the vibration characteristics of the package. The parameters
used for simulation are given in Table 10.1. The damping parameters a and 13 of
the beam model (see Eq. (10.38)) were selected such that they correspond ap­
proximately to 5% of the critical damping ratio in the range of natural frequencies
of interest 20-50 Hz, e.g. a =8 and 13 =4·10-4.

Table 10.1. Parameters of the package

Value
0.100 m
0.0258 m
0.0055 m
Acrylic (PMMA)
3.1 GPa
1200 kg/m3

Mass 0.0362 kg
Moment of inertia 5.168.10-6 kg-mz
x - 0.0128 m
z 0.0126 m

Length
Width
Height

Material
Modulus of elasticity
Density
Device block

Property
Cantilever

Note: The device body data include the part of the beam clamped to it. x and yare co­
ordinates of the mid-point ofthe cantilever beam end section with respect to the de­
vice centroidal body frame.

We first generate a frequency response diagram for the device body transverse
motion. Hence, the package is subjected to a velocity pulse generated by the Test
machine component according to Fig. 10.21. The strength of the pulse is 0.5 m/s
and its duration is Tp = 0.001 s. The system settle-time is about 0.5 s. As noted in
Sect. 6.2.3, we must append zeros to the response to create a frequency response.
Thus, a simulation interval of 1 s is taken along with a fairly small output interval
of O.OOOls. The rather tight error tolerances of 10-8 were selected. The transient of
the device body position (with respect to the container) is shown in Fig. 10.26. At

426 10Continuous Systems

the beginning, the device experiences a relatively large initial jump in the negative
direction, and then settles down to zero after about 0.3 s.

2.0

1.0

0.0

-1.0

-2.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 10.26.The response to the velocitypulse input

The data gathered during the simulation are used to generate a frequency re­
sponse plot by applying the Fast Fourier Transform (FFT). As explained in Sect.
6.2.3, this is done by right-clicking the time plot and selecting Frequency Re­
sponse from the drop-down menu. We enlarge the part of the plot in the range of 0
to 100 Hz by right-clicking on the frequency plot, selecting the Expand command,
and setting maximum frequency to 100 Hz. The resulting diagram is shown in
Fig. 10.27.

The diagram resembles the familiar response diagrams of single-degree-of­
freedom system vibrations induced by the motion of the base [12]. The maximum
amplitude occurs in vicinity of 39.0 Hz. In a similar way, we can find the FFT of
the input (Fig. 10.28). The amplitude of container displacement is practically con­
stant over the frequency range of interest at about 1.0·10'7 m and, hence, it ap­
proximates the ideal impulse fairly well. Comparing this with Fig. 10.27, it can be
seen that the maximum displacement transmissibility of the device to the container
ratio positions is a little above 10.

We next apply a sinusoidal vibration to the container according to Eqs. (10.62)
and (10.63) with a frequency of 39.0 Hz and a peak acceleration of amax =0.5 g.
This requires changing the source effort relation in the Testing machine (Fig.
10.20) component, then re-building the model. The response curve is shown in
Fig. 10.29. It was generated with same simulation parameters as in the previous
run. The amplitudes at beginning steadily grow until they reach a steady value of
0.0008375 m. The amplitude of the container vibration is 8.170·10'5 m; thus, we
have the transmissibility ratio of 10.25, as found previously.

0.6..
'0= 10-6'"Q.
E-c 0.4

10.5 A Packaging System Analysis 427

0.0 0.2 0.4 0.6 0.8 1.0

Frequency

Fig. 10.27. Frequency response of the device motion in the range 0 to 100 Hz

1.0

0.8

0.6..
'0

:E 10.7
Q.
E
c(OA

0.2

0.0

0.0 1.0 2.0

Frequency

3.0 4.0 5.0

Fig. 10.28. Amplitude-frequency diagram of impulsive displacement ofthe container

428 10 Continuous Systems

1.0

0.5

10-3 0.0

~.5

-1.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 10.29. Response of the device position to the container vibration at 39 Hz

10.6 Coriolis Mass Flowmeter

10.6.1Principle of Operation

The Coriolis mass flowmeter (CMF) is widely used for direct mass flowmetering
in the petrol, food, pharmaceutical, and chemical industries. The accuracy oftypi­
cal commercial CMFs is ±0.20% of the flow rate, practically over the range from
zero and up [13]. The range of fluid densities that can be measured varies widely,
running from about 100 kg/m3 or less to over 3000 kg/m3

; certain flowmeters
even can be used for gases. CMFs are highly insensitive to temperature and pres­
sure variations. They are very accurate and reliable instruments. The principle of
their operation is rather simple. We will explain it with an example of a straight
parallel tube CMF. There are other configurations as well, but the basic principles
are the same.

Fig. 10.30 shows a Coriolis mass flowmeter consisting of two parallel tubes
hydraulically connected in parallel. The incoming flow divides and flows into two
separate and practically identical tubes; the flows again combine at their exits. The
tubes' ends are clamped to the meter body. They are excited by a drive-located at
their middle-which vibrates in their first vibration mode. On the left and the right
of the driver are two sensors that detect displacements between the tubes. They are
used to measure the difference between times when the tubes cross their middle
positions (time delay). As a rule, CMFs use two tubes, the better to minimise the

10.6 Coriolis Mass Flowmeter 429

effects of vibration associated with the environment in which the meter is installed
for operation.

Sensors

Fig. 10.30. Coriolis mass flowmeter with two straight parallel tubes

To explain CMF operation, Fig. 10.31 shows the exaggerated displacement of
one of the tubes moving up with fluid flowing through it. Two small elements of
the tube are shown at symmetrical positions to the left and the right of the driver.

acar

acar

Fig. 10.31. Principle of flowmeter operation

During vibration, tube elements rotate with angular velocity co and, because of
the relative velocity v, of the fluid flowing through the tube, there is a Coriolis ac­
celeration given by aear =2vtOl. As a result, there is an apparent (inertial) force on
the tube element of the opposite sense. That is, Coriolis force Fear = dm·aeor, where
dm is the mass of the fluid contained in a tube element. If dL is the length of the
tube element, the fluid mass contained in the element is equal dm =pAsdL, where
p is fluid density and As is the area of the wetted section of the tube. Thus, the
Coriolis force on the element is Fear = 2pAsVfrodL. Hence, because the mass flow
rate through the tube is Om = pAsvt, the Coriolis force is Feor = 2 OmrodL. That is,
the Coriolis force is proportional to the mass flow rate. Becasuse it appears as a
load distributed along the tube, the tube elastically deforms as shown in Fig.
10.31. Note that because the Coriolis forces on the left and right parts of the tube
are of opposite directions, the left and the right tube parts deform differently.
Thus, tube sections in the planes of the sensors don't cross the zero positions at the
same instants of time; rather, there is a time delay. As the analysis of [14] shows,
the time delay is proportional to the mass flow rate. Hence, by evaluating the time
delay, accurate information on the mass flow rate can be generated. This is not a
technically easy problem: The time delays are of the order of microseconds, and

(10.66)

430 10 Continuous Systems

their accurate measurement is critical. CMF manufacturers are careful not to ex­
pose many ofthe details of how this is really done.

Mathematical modelling of Coriolis mass flowmeters has attracted the attention
of both academic and industry researchers. The common objective is to explain
more precisely the operation of the meters, the better to improve their design, test­
ing, and application. The main focus has been evaluation of CMF sensitivity fac­
tors and the effects of meter geometry and environment conditions on perform­
ance. Different approaches have been used. Thus, in [15], rather simple lumped­
parameter models were used. In [14], the tubes are modelled as Euler - Bernoulli
beams and problems were solved by perturbation theory. Timoshenko beam the­
ory was applied in [16], and the problem was analysed using a finite-element pro­
gram. CMF analysis based on curved beam theory was used in [17]. In this section
we show that problems can be readily solved using the bond graph component
method. It is based on the Euler-Bernoulli beam model of Sect. 10.4. The exposi­
tion is based on [18].

10.6.2 Bond Graph Model of the Meter

A crucial part of the CMF is the tube where the interaction with the fluid takes
place. We divide the tube into a number of finite tube elements. The elastic behav­
iour of the tube is described using Bernoulli-Euler beam theory. Following [14],
fluid flowing through the tube is treated as a string of fluid particles. Based on
such a modelling, we develop a bond graph model of a tube finite element. This
leads to a relatively simple model. It is also possible, however, to develop a more
detailed model of fluid motion and to include it in the overall model. The model
allows analysis of the effects of pulsations in the flow [19], too. On the other hand,
multiphase flow requires different models of fluid flow. Companies that produce
CMFs, however, usually limit the allowable content ofthe gas phase [13].

We start by analysing a tube element of Fig. 10.31. Following [18], the differ­
ential equation of transverse displacement ofa tube element with the flow reads

a2 w a2 w 2 a2 w
(m, +mf)-2-+2mfVf--+mfVf -2-+at atax ax

8v f aw a4 w
mf--+EI--=Oat ax ax 4

m, and mf are masses of the tube element and its contained fluid, respectively, per
unit length. E is the modulus of elasticity of the tube, I is the second moment of
the tube section, v, is mean fluid velocity, and x denotes the coordinate along the
tube axis. Fluid velocity is assumed to be constant along the tube, but can change
with time.

The boundary condition at the tube ends read

10.6 Coriolis Mass Flowmeter 431

(10.67)

and

(10.68)

Here, F1 and M1 are a force and moment acting at left element end, respectively.
Similarly, in accordance with the convention used in Sect. lOA, the reaction force
-F2 and the moment -M2 act at the right end.

To discretisize Eq. (10.66), we represent transverse displacement by Eq.
(10.14) using the shape functions ofEq. (10.15) and (10.16) and apply Galerkin's
method [2]. Applying standard techniques of integration by parts, we arrive at

d2q dq Ovf 2
M de +2RVf(jt+(K+R at+CV f)q=F (10.69)

where q is a vector of the element end section displacements and rotations given
by Eqs. (10.10)-{1O.12), and the vector of the boundary forces and moments F =
(F1 M1 - F2 - M2)T. M is the consistent mass matrix given by Eqs. (10.22) and
(10.23), with the mass per unit length of the element replaced by mt+mt. K is the
stiffness matrix of Eqs. (10.31) and (10.32). There are, however, additional matri­
ces in this equation. The matrix R takes into account the Coriolis forces and is
given by

1

R = m, JST ~I; (10.70)
o dl;

After evaluation using the shape functions ofEqs. (10.15) and (10.16), we find

[

-1 Ll5 1 -Ll5]
R=~ -Ll5 0 Ll5 -L

2/30
(10.71)

2 -1 -Ll5 1 Ll5
LI5 L2 130 - LI5 0

which also can be written as 2x2 block matrices

R = (R11 R12) (10.72)
R21 R22

It is interesting that the same matrix appears in the tangential inertial force, the
second term in parenthesis of Eq. (10.69). The other matrix, C, takes into account
the normal inertial forces given by the third term in parenthesis of Eq. (10. 69).
The matrix is defined by

(10.73)

432 10Continuous Systems

1 2

c=~fST~~
L 0 d~2

And, after evaluating, reads

C = ~l--~:150 ~~~;~~~ L6/1~ ~;:~~] (10.74)
L 6/5 Ll10 -6/5 11L110

-Ll10 L2/30 Ll10 -2L2/15

The matrix also can be written using 2x2 block matrices as

C = (~:: ~::) (10.75)

Matrix R is not strictly skew-symmetric. The nonzero elements -1 and 1 on the
main diagonal correspond to transverse displacements of two connected elements.
Thus, if the matrices corresponding to all connected elements are assembled, these
terms cancel out. The assembled matrix of all tube elements is strictly skew­
symmetric. Hence, the overall effect of the Coriolis forces is energetically neutral,
i.e. there is neither dissipation nor generation of mechanical power. Similar con­
clusions can be drawn regarding symmetry of matrix C. Thus, normal inertial
forces of fluid particles, in effect, reduce the overall stiffness of the tube-fluid sys­
tem and, hence, the natural frequency of tube vibrations. We thus expect that the
frequency of CMF vibrations decrease with fluid flow velocity. This effect is ana­
lysed also in [14, 17].

We transform Eq. (10.69) to a form that can be directly represented by bond
graph components in a similar way as we did in Sect. 9.4. We define flows and ef­
forts at component ports by Eq. (10.6) - (10.9). The momentum of the tube ele­
ment filled with the fluid is given by Eq. (10.26). This way, the governing equa­
tion oftransversa1 vibration of the tube with fluid flow now reads

dp +2VtR(f1)+(K+ROvt +CVtfq1)=(e1) (10.76)
dt f2 at Ilq2 -e2

We further modify this equation by adding Rayleigh damping (Sect. 10.4), i.e.

dp +(2VtR+UM+I3Kff1)+(K+ROvt + CVt)(Q1)=(e1) (10.77)
dt Ilf2 at Q2 -e2

where U and 13 are suitable constants.
Thus, we use the same component BFE of Sec. 9.4, but with an added control

port to transfer information on fluid velocity VI and its time rate of change iJvl/at..
The corresponding model is shown in Fig. 10.32.

The constitutive relations of the inertial element are the same as those used pre­
viously, but the mass of the element includes the fluid mass, as already stated. The
constitutive relations of the resistive element ports have to include the Coriolis
term 2vlRf, where the matrix R is given by Eqs. (10.71) and (10.72), and the
Rayleigh damping terms. Finally, the constitutive relations of the capacitive ele-

10.6 Coriolis Mass Flowmeter 433

ment ports are modified by addition of tangential and normal inertial force terms.
The coefficient matrix of the first is the same matrix as in the Coriolis term, and
matrix C of the other term is given by Eqs. (10.74) and (10.75).

Fig. 10.32. Model ofBFE component withfluid flow

After the tube element with fluid flow is developed, we start model develop­
ment by defining a project called Coriolis Mass Flowmeter. The system-level
model is shown in Fig. 10.33. It mimics the structure of the Coriolis flowmeter
with two straight tubes in Fig. 10.30. The model contains two Measuring Tube
components clamped to the Wall at both ends. This means that velocities (trans­
versal and angular) at the tube ends are zero, a condition that is enforced by suit­
able source-flow components in the Wall. In the middle of the tube components
are power ports to which the tubes driver is attached. The Driver is connected to
the tubes by an effort node f component consisting of two flow junctions. These
describe relative velocities at the tube-driver connections. The force developed by
the driver is applied to both tubes simultaneously. The Driver component model
consists of two source efforts. They generate a transversal force and zero torque,
respectively, applied to the tubes.

Fig. 10.33 shows many signals flowing through the system. Inflow defines the
velocity of the fluid flowing through the meter and its time rate of change. This
component consists of two input components, one for the fluid velocity and the
other for its time rate of change. They are connected to the same document port in­
ternally; thus, the output is a vector signal consisting of fluid velocity and its time
rate of change. There are two output ports for the flows that branch to the two
tubes. These ports are connected to the flow input ports of the Measuring Tube
components. Likewise, at other end of the tubes, there is an Outflow component
that calculates the total mass flow rate and the time rate of mass flow rate through
the meter. The information generated is fed as separate signals to the display com­
ponent at top right of the Coriolis Mass Flowmeter window.

Near the ends of the tubes are output ports that retrieve information on the
tubes' positions at the sensors. Because the tubes vibrate in opposition, the posi­
tion signals are subtracted by summator components denoted as diff. The outputs

434 10Continuous Systems

of diff components, hence, simulate the output of two sensors of the Coriolis
flowmeter. These signals are further on summed up and subtracted. As shown in
[18], summing these signals effectively eliminates the Coriolis effect on the tubes;
this gives twice the mean value of displacement between the tubes. Similarly, sub­
traction effectively extracts the relative displacement of the tubes owing to the
Coriolis forces. These signals are used to evaluate meter sensitivity, as described
later (Sect. 10.6.3).

L

flow

I
:

x:rf

1
ff diff

1
easurinq Tube

11
f ..---Driver Wall OUt

1 ~

1I I
easurinq Tube

I
sum

r
n

1
,-----+di

1
r---Ir----+rM

Inflow

Fig. 10.33. Model of Coriolis MassFlowmeter

The Measuring Tube components are modelled by four SectBC (section bond
graph) components that represent the tube parts between the left and right tube
ends and the sensors, respectively; and between the sensors and the driver. Fig.
10.34 shows the structure of the upper tube component. The lower component dif­
fers only by the position of the driver port and the direction of the power flow.

SectBC==:SectBC==:SectBC==:SectBC

Fig. 10.34. Structure of the Measuring Tubecomponent (upper)

10.6Coriolis MassFlowmeter 435

SectBC components consist of five BFE components (Fig. 10.35). Signals of
the fluid flow velocity and its time rate of change flows throughout the tube com­
ponent and branch to individual BFE components. There are, overall, 20 elements
per tube. Signals of the tube displacements are picked off the capacitive elements
of 5th and 16th elements. Similarly, bonds from the driver junction in Fig. 10.33 are
connected to the right effort junctions of the 10lh element of each tube.

~n-n--'n-----+n-n-",

I I I I I
~BFE~BFE --->.B~BFE--->.BFE_1.o-

Fig. 10.35. SectBC component consisting of five BFE components

10.6.3 Evaluation of the Meter Sensitivity Factor

In commercial Coriolis mass flowmeters there are quite elaborate techniques for
processing sensor signals to evaluate time delays, frequency of vibrations, the me­
ter sensitivity factor, and the current mass-flow rate. We will not attempt to de­
velop a model of signal processing, for the information needed to perform this task
generally is not available either from the manufacturer or in published papers. It is
possible, however, to extract the necessary information using frequency analysis
of the signals generated by the system. We will follow the approach of [18], but a
similar technique is also reported in [20].

Following [18], the time delay between sensor signals is given by the simple
formula

ilt = adiff (10.78)
na sumt

where a sum and adiff are amplitudes of the sum and difference sensors' signals at
frequency t, which corresponds to the first vibration mode. The sensitivity coeffi­
cient of the flowmeter is found by dividing the time delay and mass flow rate, and
is expressed in s/(kg/s). The sensitivity coefficient evaluated by simulation corre­
sponds to testing the meter with water.

Parameters used in the model are take from [18] and are based on a commercial
Coriolis flowmeter (Table 10.2). It should be noted that the length used is less than
the overall length of the tubes taken from the drawing of the meter. In the real de­
sign, there are two braces joining the tubes near their ends, because of which vi-

(10.79)

436 10Continuous Systems

bration nodes appear. The exact positions of these braces are not known in ad­
vance. They can be used for fine-tuning the first mode of the natural vibration fre­
quency. It is assumed that the tubes are clamped at both ends. Their length is cal­
culated according to an experimental first-mode vibration frequency of 118.7 Hz.
A similar approach is used in [17, 20]. Calculation of the vibration frequency is
based on the classical formula for a beam with both ends clamped [12], modified
by adding the mass of the fluid contained in the tube. The formula reads

f = KE EI
2nL~ PtAt + PtAt

where At and I are area and second moment of tube cross section, respectively, At
is the area of the internal section the tube, and KL =4.730041 is the coefficient of
the first vibration mode. For the tube length given in Table 10.2, the calculated
frequency of vibration is 118.483 Hz.

Table 10.2. Parameters of the model

Property
Tube outsidediameterDout
Tube insidediameterDin
Tube lengthLt
Modulus of elasticityE
Tube densityP,
Fluid density PI

Value
0.0395 m
0.0375
1.175 m
195 GPa
8000 kg/rrr'
1000kg/m,

We further assume that tube displacement sensors are at the middle of the left
and right parts of the tubes. The tube finite elements in all four components
SeeSe of Fig. 10.32 are set to the same length: 0.05875 m. Finally, the damping
parameters are set to a = 15 and 13 =2.69.10-5

• This corresponds to a damping
coefficient for the first mode of i;; r::; 0.02.

To evaluate the frequency of the first mode vibration by the model, a half-sine
pulse is applied to the tubes. This is defined as

Fdriver =t<Tp?Fpulsesin(n*tJTp):O (10.80)

Such a pulse excites the first mode of the beam [21]. We use the pulse strength
value Fpulse =450 N and a duration of Tp =1If =0.00844003 s. Hence, we must
modify the constitutive relation of the effort source that generates the driver force
in Driver (the other generates the torque, which is zero). Flow velocity was set ini­
tially to zero. Thus, there will be no time difference between the signals.

After the model is built, we start the simulation by choosing a simulation inter­
val of 0.1 s, an output interval of 5.10-5 s, and error tolerances (both) of 1.10-8 .

The results for the sum of sensor signals are shown in Fig. 10.36.
Data collected by the display window are used to generate a frequency spec­

trum of the signal. Owing to practical considerations, a relatively short simulation
interval of 0.1 s was used. We thus expect resolution of the spectrum of 10Hz
only. On other side, after the pulse finishes, the signal behaves as a lightly damped

10.6 Coriolis Mass Flowmeter 437

vibration. Hence, we use as a time-window a portion of the response between the
first and last zero crossings (corresponding to displacements going from positive
to negative values). An integral number of full periods is included in the window.
The resulting diagram, expanded to 0-500 Hz, is shown in Fig. 10.37.

5.0

2.5

§ 10-3 0.0
til

-2.5

-5.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 10.36. Sum of signals response to the driver half-sine pulse (no flow)

2.0

0.0 1.0 2.0

Frequency

3.0 4.0 5.0

Fig. 10.37. Frequency spectrum ofthe signals sum (no flow)

438 10Continuous Systems

From the diagram we find a of frequency f = 118.343 Hz and an amplitude as =
0.00130075 m. This is close to the analytical value obtained previously. Next we
replace the pulse and drive the meter at this frequency by sinusoidal force F =
Fosin(21tft), where the amplitude Fo=40 N was selected low enough to limit the
strains in the tube to within the elastic region. The resulting model consists of 906
equations, and its partial derivative matrix (Jacobian) consists of 4,058 nonzero
elements.

We run several simulations corresponding to mass flow rates of 0,5, 10, 15,
and 20 kg/so The simulation interval is selected to be 1 s to insure that the initial
transient dies out and the vibration amplitude settles to a steady value. The output
interval and error tolerances are selected as in the previous run. Figs. 10.38 and
10.39 show time histories of the sum and the difference of the sensor signals, re­
spectively, at a mass flow rate of 10 kg/so The complete simulation lasted 622 s.
During this time 21,325 steps were made, 45,271 functions were evaluated, and
23,950 Jacobian matrix were LV decomposed. From these figures we see that sig­
nal amplitudes settle down after about 0.3 s. To be sure, we use a part of the dia­
gram from 0.4 to 1 s to generate the frequency spectrums. We select minimum and
maximum values of the time-window based on zero crossing values, as in the for­
mer case.

The frequency spectrums of the sum and difference of the signals are given in
Figs. 10.40 and 10041, expanded again to the 0 - 500 Hz range. Time delays and,
hence, the sensitivity coefficient of the meter are calculated using Eq. (10.78).
Thus, for the mass flow rate Om =10 kg/s, we find the values of the frequency
and the amplitudes from frequency plots:

f= 118.3331925 Hz
asurn =0.004042818478 m
adiff =1.901149327.10-5

m

From Eq. (10.78) we find the delay ~t =12.6496 us and, hence, the sensitivity
coefficient Krneter =1.26496 Ils/(kg/s). The complete results are given in Table
10.3. We see that the sensitivity coefficient is fairly constant over the range of
mass flow rates 0 - 20 kg/s and has a value of 1.265 Ils/(kg/s). This value agrees
closely with the reported mean value of 1.20 Ils/(kg/s) coming from water tests
[18].

Table 10.3. Results of simulation of Coriolis Mass Flowmeter

Massflowrate kgls
o
5
10
15
20

Timedelay IlS
o
6.32431
12.6496
18.9767
25.3067

Sensitivity coefficient /ls/(kgls)

1.26486
1.26496
1.26511
1.26534

10.6 Coriolis Mass Flowmeter 439

5.0

2.5

5 10-3 0.0
III

-2.5

-5.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 10.38. Sum of the signals at mass flow rate of 10 kg/s

2.0

1.0

IE 10-5 0.0
Q

-1.0

-2.0

0.0 0.2 0.4

Time

0.6 0.8 1.0

Fig. 10.39. Difference of the signals at mass flow rate of 10 kg/s

440 10 Continuous Systems

5.0

4.0

3.0..
"C

~ 10.3
Q.

E
<I: 2.0

1.0 __

0.0

0.0 1.0 2.0

Frequency

3.0 4.0 5.0

Fig. 10.40. Spectrum ofthe sum at mass flow rate of 10 kg/s

2.0

..
"C

~ 10-5
Q.

E
<I:

1.6

1.2 '~

0.8

0.4

0.0

0.0 1.0 2.0 3.0 4.0 5.0

Frequency

Fig. 10.41. Spectrum of the difference at mass flow rate of 10 kg/s

References 441

References

1. AR Mitchell and DF Griffiths (1980) The Finite Difference Methods in Partial Differ­
ential equations. John Wiley and Sons, Chichester

2. RD Cook, DS Malkus and ME Plesha (1989) Concept and Applications of Finite Ele­
ment Analysis, 3rd edn. John Wiley and Sons, New York

3. Fahrenthold EP and Wargo JD (1994) Lagrangian Bond Graphs for Solid Continuum
Dynamics Modeling. ASME J. of Dynamic Systems, Measurement and Control 116:
178 -192

4. EP Fahrenthold and M Venkataraman (1996) Eulerian Bond Graphs for Fluid Contin­
uum Dynamics Modeling. ASME J. of Dynamic Systems, Measurement and Control
118: 48 - 57

5. Dean C Karnopp, Donal L Margolis and Ronald C Rosenberg (2000) System Dynam­
ics: Modeling and Simulation of Mechatronic Systems, 3rd edn. John Wiley, New York

6. WE Schiesser (1991) The Numerical Method of Lines. Academic Press, San Diego
7. J Johansson and U Lundgren (1997) EMC of Telecommunication Lines, A Master

Thesis from the Fieldbusters, http://jota.sm.luth.se/~d92-uln/master/Theory/4.html

8. J Keown (2001) OrCAD PSpice and Circuit Analysis, 4th edn. Prentice Hall, Upper
Saddle River

9. AA Shabana (1998) Dynamics of Multibody Systems, 2nd edn. Cambridge University
Press, Cambridge

10. M Borri, L Trainelli and CL Bottasso (2000) On representation and Parameterizations
of Motions. Multibody Systems Dynamics 4: 129-193

11. V Jaram (2001) Evaluation of Bond Graph Based Object Oriented Approach to Deter­
mination of Natural Frequencies of Packaging System Elements, MS Thesis, Depart­
ment of Packaging Science of Rochester Institute of Technology, Rochester, New
York

12. SS Rao (1995) Mechanical Vibrations, 3rd edn. Addison-Wesley, Reading
13. P Kesic, V Damic and AM Ljustina (2000) The Coriolis Flowmeter for Measurement

of Petroleum and its Products. Nafta, Zagreb, 51: 103-111
14. H Raszillier and F Durst (1991) Coriolis-Effect in Mass Flow metering. Archive of

Applied Mechanics, 61: 192-214
15. KO Plache (1979) Coriolis Gyroscopic Flow Meter. Mechanical Engineering, March

1979,36-41
16. CP Stack, RB Garnett and GE Pawlas (1993) A Finite Element for the Vibration

Analysis of a Fluid-Conveying Timoshenko Beam. American Institute of Aeronautics
and Astronautics, AIAA-93-1552-CP

17. G Sultan and J Hemp (1989) Modelling of a Coriolis Mass Flowmeter. Journal of
Sound and Vibration, 132: 473-489

18. P Kesic, V Damic and AM Ljustina (2000) Modelling of the Coriolis Mass Flowmeter
with Straight Parallel Tubes. Nafta, Zagreb, 51: 91-98

19. V Damic and P Kesic (2000) Bond Graph Modelling of Flow Pulsation in the Coriolis
Mass Flowmeter with Parallel Straight Tubes. In P Marovic ed. Proc. of the 3rd Inter­
national Congress of Croatian Society of Mechanics, Dubrovnik, Croatia, 483 - 490

20. NM Keita (2000) Ab Initio Simulation of Coriolis Mass Flowmeter. In AP Pereira ed.
Collection of Abstracts with Conference Programme & CD Rom of Proceedings of
FLOMEKO 2000, Salvador, Brasil

442 10 Continuous Systems

21. 1M Smith and DV Griffiths (1998) Programming the Finite Element Method, 3rd edn.
John Wiley and Sons, Chichester

Processor
Memory
Disc space
Operating systems

Appendix

Installing BondSim

The book contains the program BondSim Research Pack on a separate CD ROM.
The program can be run on PC computers with the following minimal require­
ments:

Pentium class
64MB
20MB
Windows 2000, Windows NT 4.0
Windows XP, Windows 98, Windows 95

Recommended the screen area setting is 1024 by 768 pixels or higher.

To install the program, put the CD ROM in corresponding drive and close the
door. The installation process starts automatically. You simply need to follow the
procedure by answering questions, or making suitable selections, in the dialogues.
On computers with Windows 2000, you will typically need administrator privi­
lege.

If you are using some other platform than Windows 200o-such as Windows
NT 4.0, Windows 95 or Windows 98-you may also need to install Window In­
staller. The setup program on the CD ROM (setup.exe) first checks if the Win­
dows Installer is already installed on your system. If it is not, or if a more recent
version is needed, the setup program will install the Window Installer. The system
then may need to be restarted before you can proceed with BondSim installation.

At anytime you may uninstall BondSim by double-clicking Add/Remove Pro­
grams icon in Control Panel, selecting BondSimRP, then clicking the Remove but­
ton. (The Control Panel is accessed from the Start button in the left-bottom cor­
ner, choosing Settings, and then Control Panel.)

Launching and Using BondSim

BondSim can be launched as any other Windows application, e.g. by double­
clicking the BondSimRP icon on the desktop, or by using Start, Programs, and
then choosing BondSimRP. A splash-screen appears first, which after few seconds
disappears, and the main BondSim program window appears.

The book explains how to use the program. Chapt. 4, for example, describes the
main program commands. Modelling and simulation of mechatronic systems using
BondSim is described in the application part of the book, starting with Chapt. 6.

444 Appendix

The first section of these chapters describes the procedure on relatively simple
problems in a step-by-step manner. The later sections treat more demanding prob­
lems.

BondSim RP bundled with the book is a restricted version of the full program. It
is designed for use with the book. All projects developed in the book are stored in
the project library, from which they can be copied to the program workspace by
using command Get From in the Project menu. The reader can develop his or her
own models, as well. These are, however, more restricted. In particular, they are
limited to two-level structures: The models can be developed as a system level
models that may consist of simple component only, i.e. those described exclu­
sively in terms of elementary bond graph components. We hope that these will al­
low the reader to follow explanations given in the book.

More advanced operations are not included with this version of the program,
such as multilevel modelling. There is no online Help; neither is the collaboration
support described in the book.

Interested readers can order a full version of the program from the first author,
at the address given bellow. We would also be very happy for any feedback, criti­
cism, advice or support for further work. Suggestions on other mechatronic or
other relevant problems are truly welcome.

Contact Addresses

The authors can be reached at

vdamic@vdu.hr
haedickemontgome@compuserve.de

The readers are welcome to visit our web page
http.z/www.vdu.hr/e-vdamic

Index

Andrews' squeezer mechanism, 344
model,344
simulation, 352

Application
class, 91
operations, 92
start, 91

Attribute, 12
Automatic differentiation, 11

BDF methods, 148
differentiation formula, 150
local error, 153
variable coefficient, 149

Beam, 410
Euler-Bernoulli theory, 410
model,415
package element, 419
with fluid flow, 432

Block diagram, 10
Block diagram component, 36

differentiator, 37
function, 37
input, 37
integrator, 37
node, 38
output, 37
summator, 38

Body. See Motion in ...
Body in space

transformation, 370
Bond, 8, 24

activated, 10
class, 81, 105
control,24
modes, 106
object creation, 81
permited interconnection, 138

Bond graph
method,7
model, 8, 27
variables, 7

Bond line. See bond
Building model, 178

Causal conflict, 66
Causality, 9, 58

assignment procedure, 61
differentiation, 59
fixed,59
integrating, 59

Class, 13
base, 13
derived, 13
hierarchy, 13

Collaborative work, 129
Component, 5

capacitive, 30
class, 72
class hierarchy, 77, 103
controlled,35
document, 14
effort junction, 34
elementary, 5, 7, 28
finite element, 403
flow junction, 34
gyrator, 33
inertial, 28
object, 14
resistive, 31
source effort, 32
source flow, 32
switch,35
transformer, 32
visual representation, 72

Component model, 14,26

446 Index

Component object, 71
creation, 72
methods, 73
states, 103
text editing, 73

Component set
class, 90
selection, 89

Computational algebra, II
Constitutive relations, 82

byte form, 139
dependent sources, 249
editing, 125
operators, 83
sources, 244
variables, 82

Coriolis mass flowmeter, 428
bond graph model, 430
bond graph model, 433
meter sensitivity, 435

Decompiling, ISS
Descriptor form, 63
Differential-algebraic equations, 135,

142
differentiation index, 143
discontinuities, 159
extended, 142
hidden constraint, 144
leading coefficient matrix, 145
perturbation index, 146
starting values, 156
tractability index, 145

Diodes, 254
dynamical model, 261
thermal model, 264

Document, 26
architecture, 107
class, 73, 107
commands, 119, 120
copying, 76
creation, 73
operations, 76
parameters, 76
persistent, 75
ports, 26
states, 108
visual representation, 73

Dry friction, 190
constitutive relation, 196
law, 191

micro welds, 191
model, 196
stick-slip motion, 200
stick-slip oscillator, 202

Editing Palette, 110
add ports, 113
create a bond, 113
create a component, 112
size document, 114
size port, 115

Electrical components
capacitor, 238
coupled inductor, 241
current source, 243
DC motor, 320
inductor, 240
line section, 405
palette, 116
resistor, 236
switches, 250
voltage source, 243

e-mail, 132
Environment, 5
Export package, 130
Exporting, 131

Fast Fourier Transform, 188
Function

defined by tables, 297
overloading, 14
virtual, 13

Get From, 102

Impact, 206
model, 209

Import models, 133
Impulse response, 185
Inheritance, 13

Joints. See Motion in ...

Library, 94
components, 94
operations, 122
project repository, 94

Library and function menus, 103

Main application window, 100

~athematicalmodel, 136
generating, 141
system variables, 136

Mechanical components
beam element, 411
body in plane, 331
body in space, 368
body in translating frame, 420
contact, 209, 385
dry friction, 197
impact, 209
joints, 335
mechanical symbols, 175
palette, 117
revolute joint, 378

Mechatronics, 4
Members, 12
Methods, 12
~odel

simulation, 3
~odelexchange,96

Modelling, 3
body in space, 368
body spring damper, 38, 166
complex structures, 83
control system, 305
electrical circuit, 43, 224
electromechanical systems, 296
generalapproach,4
package vibration testing, 417
permanent magnet DC servo, 318
physical,6
planar mechanism, 340
robot system. See Robot system
see-saw, 48, 215
transmission lines, 404, 406
visual, 17

Motion in plane, 330
model of body, 332
prismatic joint, 336

model, 339
revolute joint, 335

Motion in space, 363
Euler Junction Structure, 374
model ofbody, 371
prismatic joints, 381

model, 383
revolute joints, 376

model, 379
rotational part, 373
translational part, 372

Index 447

Move To, 102

Object, 12
Operational amplifiers, 289

improved model, 291
model,289

Package file, 129
header, 130

Parameters, 127
define, 127
deletion, 129
tree, 128

Partial derivative matrix, 152
PID controller, 314

model, 314
Polymorphism, 13
Port, 7

class, 80, 105
compound, 26, 79
connections, 85
control,24
object creation, 80
power, 24
state, 105

Print document, 124
Project, 91

Andrews' squeezer mechanism, 344
ball bouncing

on a table at rest, 211
on a vibrating table, 213

body motion with dry friction, 197
body spring damper problem, 166
C~OS inverter, 287
Coriolis mass flowmeter, 433
DC servo system, 319
diode recovery, 263
electric line, 406
engine torsional vibrations, 356
filtering ofnoise pulses, 246
inverting amplifier, 293
menu, 101
n-channel JFET characteristics, 280
NMOS characteristics, 285
npn transistor characteristics, 273
Op-amp characteristics, 290
package vibration testing, 422
quick return mechanism, 340
rectifier circuit, 258

with self-heating, 268

448 Index

RLC circuit, 224
robot hybrid control, 386
see-saw problem, 216
simple control system, 306
stick-slip oscilator, 203

Pseudo-bond graphs, 7, 264

Robot system, 384
hybrid control, 392
model, 386
simulation, 396
workspace, 395

Show Joined, 115
Signal, 10
Simulation, 181
Simulation parameters, 154
State space form, 63
Symbol table, 136

creation, 136
System, 4

decomposition, 5
level, 91

Torsional vibration, 355
model, 356
simulation, 360

Transistors, 270
bipolar junction, 270
junction field effect, 276
MOSFET,282

Variables
across-through, 9
algebraic, 142
differentiated, 142
effort-flow, 7
generalized, 7

Visual environment, 99

Word model, 23, 26

Printing: Druckhaus Berlin-Mitte
Binding: Buchbinderei Stein & Lehmann, Berlin

