

The Grid

Core Technologies

Maozhen Li
Brunel University, UK

Mark Baker
University of Portsmouth, UK

The Grid

The Grid

Core Technologies

Maozhen Li
Brunel University, UK

Mark Baker
University of Portsmouth, UK

Copyright © 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,

West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or

transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or

otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of

a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,

UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed

to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,

West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to �+44� 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks.

All brand names and product names used in this book are trade names, service marks, trademarks or

registered trademarks of their respective owners. The Publisher is not associated with any product or

vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject

matter covered. It is sold on the understanding that the Publisher is not engaged in rendering

professional services. If professional advice or other expert assistance is required, the services of a

competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print

may not be available in electronic books.

Library of Congress Cataloging in Publication Data

Li, Maozhen.

Core technologies /Maozhen Li, Mark Baker.

p. cm.

ISBN-13 978-0-470-09417-4 (PB)

ISBN-10 0-470-09417-6 (PB)

1. Computational grids (Computer systems) 2. Electronic data processing—Distributed processing.

I. Baker, Mark. II. Title.

QA76.9.C58L5 2005

005.3′6—dc22

2005002378

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-09417-4 (PB)

ISBN-10 0-470-09417-6 (PB)

Typeset in 11/13pt Palatino by Integra Software Services Pvt. Ltd, Pondicherry, India

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which

at least two trees are planted for each one used for paper production.

http://www.wiley.com

Contents

About the Authors xiii

Preface xv

Acknowledgements xix

List of Abbreviations xxi

1 An Introduction to the Grid 1
1.1 Introduction 1

1.2 Characterization of the Grid 1

1.3 Grid-Related Standards Bodies 4

1.4 The Architecture of the Grid 5

1.5 References 6

Part One System Infrastructure 9

2 OGSA and WSRF 11
Learning Objectives 11

Chapter Outline 11

2.1 Introduction 12

2.2 Traditional Paradigms for Distributed Computing 13

2.2.1 Socket programming 14

2.2.2 RPC 15

2.2.3 Java RMI 16

2.2.4 DCOM 18

2.2.5 CORBA 19

2.2.6 A summary on Java RMI, DCOM and CORBA 20

2.3 Web Services 21

2.3.1 SOAP 23

2.3.2 WSDL 24

2.3.3 UDDI 26

2.3.4 WS-Inspection 27

2.3.5 WS-Inspection and UDDI 28

2.3.6 Web services implementations 29

2.3.7 How Web services benefit the Grid 33

vi CONTENTS

2.4 OGSA 34

2.4.1 Service instance semantics 35

2.4.2 Service data semantics 37

2.4.3 OGSA portTypes 38

2.4.4 A further discussion on OGSA 40

2.5 The Globus Toolkit 3 (GT3) 40

2.5.1 Host environment 41

2.5.2 Web services engine 42

2.5.3 Grid services container 42

2.5.4 GT3 core services 43

2.5.5 GT3 base services 44

2.5.6 The GT3 programming model 50

2.6 OGSA-DAI 53

2.6.1 OGSA-DAI portTypes 54

2.6.2 OGSA-DAI functionality 56

2.6.3 Services interaction in the OGSA-DAI 58

2.6.4 OGSA-DAI and DAIS 59

2.7 WSRF 60

2.7.1 An introduction to WSRF 60

2.7.2 WSRF and OGSI/GT3 66

2.7.3 WSRF and OGSA 69

2.7.4 A summary of WSRF 70

2.8 Chapter Summary 70

2.9 Further Reading and Testing 72

2.10 Key Points 72

2.11 References 73

3 The Semantic Grid and Autonomic Computing 77
Learning Outcomes 77

Chapter Outline 77

3.1 Introduction 78

3.2 Metadata and Ontology in the Semantic Web 79

3.2.1 RDF 81

3.2.2 Ontology languages 83

3.2.3 Ontology editors 87

3.2.4 A summary of Web ontology languages 88

3.3 Semantic Web Services 88

3.3.1 DAML-S 89

3.3.2 OWL-S 90

3.4 A Layered Structure of the Semantic Grid 91

3.5 Semantic Grid Activities 92

3.5.1 Ontology-based Grid resource matching 93

3.5.2 Semantic workflow registration and discovery in myGrid 94

3.5.3 Semantic workflow enactment in Geodise 95

3.5.4 Semantic service annotation and adaptation in ICENI 98

3.5.5 PortalLab – A Semantic Grid portal toolkit 99

3.5.6 Data provenance on the Grid 106

3.5.7 A summary on the Semantic Grid 107

CONTENTS vii

3.6 Autonomic Computing 108

3.6.1 What is autonomic computing? 108

3.6.2 Features of autonomic computing systems 109

3.6.3 Autonomic computing projects 110

3.6.4 A vision of autonomic Grid services 113

3.7 Chapter Summary 114

3.8 Further Reading and Testing 115

3.9 Key Points 116

3.10 References 116

Part Two Basic Services 121

4 Grid Security 123
4.1 Introduction 123

4.2 A Brief Security Primer 124

4.3 Cryptography 127

4.3.1 Introduction 127

4.3.2 Symmetric cryptosystems 128

4.3.3 Asymmetric cryptosystems 129

4.3.4 Digital signatures 130

4.3.5 Public-key certificate 130

4.3.6 Certification Authority (CA) 132

4.3.7 Firewalls 133

4.4 Grid Security 134

4.4.1 The Grid Security Infrastructure (GSI) 134

4.4.2 Authorization modes in GSI 136

4.5 Putting it all Together 140

4.5.1 Getting an e-Science certificate 140

4.5.2 Managing credentials in Globus 146

4.5.3 Generate a client proxy 148

4.5.4 Firewall traversal 148

4.6 Possible Vulnerabilities 149

4.6.1 Authentication 149

4.6.2 Proxies 149

4.6.3 Authorization 150

4.7 Summary 151

4.8 Acknowledgements 151

4.9 Further Reading 151

4.10 References 152

5 Grid Monitoring 153
5.1 Introduction 153

5.2 Grid Monitoring Architecture (GMA) 154

5.2.1 Consumer 155

5.2.2 The Directory Service 156

5.2.3 Producers 157

5.2.4 Monitoring data 159

viii CONTENTS

5.3 Review Criteria 161

5.3.1 Scalable wide-area monitoring 161

5.3.2 Resource monitoring 161

5.3.3 Cross-API monitoring 161

5.3.4 Homogeneous data presentation 162

5.3.5 Information searching 162

5.3.6 Run-time extensibility 162

5.3.7 Filtering/fusing of data 163

5.3.8 Open and standard protocols 163

5.3.9 Security 163

5.3.10 Software availability and dependencies 163

5.3.11 Projects that are active and supported;

plus licensing 163

5.4 An Overview of Grid Monitoring Systems 164

5.4.1 Autopilot 164

5.4.2 Control and Observation in Distributed

Environments (CODE) 168

5.4.3 GridICE 172

5.4.4 Grid Portals Information Repository (GPIR) 176

5.4.5 GridRM 180

5.4.6 Hawkeye 185

5.4.7 Java Agents for Monitoring and Management (JAMM) 189

5.4.8 MapCenter 192

5.4.9 Monitoring and Discovery Service (MDS3) 196

5.4.10 Mercury 201

5.4.11 Network Weather Service 205

5.4.12 The Relational Grid Monitoring

Architecture (R-GMA) 209

5.4.13 visPerf 214

5.5 Other Monitoring Systems 217

5.5.1 Ganglia 217

5.5.2 GridMon 219

5.5.3 GRM/PROVE 220

5.5.4 Nagios 221

5.5.5 NetLogger 222

5.5.6 SCALEA-G 223

5.6 Summary 225

5.6.1 Resource categories 225

5.6.2 Native agents 225

5.6.3 Architecture 226

5.6.4 Interoperability 226

5.6.5 Homogeneous data presentation 226

5.6.6 Intrusiveness of monitoring 227

5.6.7 Information searching and retrieval 231

5.7 Chapter Summary 233

5.8 Further Reading and Testing 236

5.9 Key Points 236

5.10 References 236

CONTENTS ix

Part Three Job Management and User Interaction 241

6 Grid Scheduling and Resource Management 243
Learning Objectives 243

Chapter Outline 243

6.1 Introduction 244

6.2 Scheduling Paradigms 245

6.2.1 Centralized scheduling 245

6.2.2 Distributed scheduling 246

6.2.3 Hierarchical scheduling 248

6.3 How Scheduling Works 248

6.3.1 Resource discovery 248

6.3.2 Resource selection 251

6.3.3 Schedule generation 251

6.3.4 Job execution 254

6.4 A Review of Condor, SGE, PBS and LSF 254

6.4.1 Condor 254

6.4.2 Sun Grid Engine 269

6.4.3 The Portable Batch System (PBS) 274

6.4.4 LSF 279

6.4.5 A comparison of Condor, SGE, PBS and LSF 288

6.5 Grid Scheduling with QoS 290

6.5.1 AppLeS 291

6.5.2 Scheduling in GrADS 293

6.5.3 Nimrod/G 293

6.5.4 Rescheduling 295

6.5.5 Scheduling with heuristics 296

6.6 Chapter Summary 297

6.7 Further Reading and Testing 298

6.8 Key Points 298

6.9 References 299

7 Workflow Management for the Grid 301
Learning Outcomes 301

Chapter Outline 301

7.1 Introduction 302

7.2 The Workflow Management Coalition 303

7.2.1 The workflow enactment service 305

7.2.2 The workflow engine 306

7.2.3 WfMC interfaces 308

7.2.4 Other components in the WfMC reference model 309

7.2.5 A summary of WfMC reference model 310

7.3 Web Services-Oriented Flow Languages 310

7.3.1 XLANG 311

7.3.2 Web services flow language 311

7.3.3 WSCI 313

7.3.4 BPEL4WS 315

7.3.5 BPML 317

7.3.6 A summary of Web services flow languages 318

x CONTENTS

7.4 Grid Services-Oriented Flow Languages 318

7.4.1 GSFL 318

7.4.2 SWFL 321

7.4.3 GWEL 321

7.4.4 GALE 322

7.4.5 A summary of Grid services flow languages 323

7.5 Workflow Management for the Grid 323

7.5.1 Grid workflow management projects 323

7.5.2 A summary of Grid workflow management 329

7.6 Chapter Summary 330

7.7 Further Reading and Testing 331

7.8 Key Points 332

7.9 References 332

8 Grid Portals 335
Learning Outcomes 335

Chapter Outline 335

8.1 Introduction 336

8.2 First-Generation Grid Portals 337

8.2.1 A three-tiered architecture 337

8.2.2 Grid portal services 338

8.2.3 First-generation Grid portal implementations 339

8.2.4 First-generation Grid portal toolkits 341

8.2.5 A summary of the four portal tools 348

8.2.6 A summary of first-generation Grid portals 349

8.3 Second-Generation Grid Portals 350

8.3.1 An introduction to portlets 350

8.3.2 Portlet specifications 355

8.3.3 Portal frameworks supporting portlets 357

8.3.4 A Comparison of Jetspeed, WebSphere Portal

and GridSphere 368

8.3.5 The development of Grid portals with portlets 369

8.3.6 A summary on second-generation Grid portals 371

8.4 Chapter Summary 372

8.5 Further Reading and Testing 373

8.6 Key Points 373

8.7 References 374

Part Four Applications 377

9 Grid Applications – Case Studies 379
Learning Objectives 379

Chapter Outline 379

9.1 Introduction 380

9.2 GT3 Use Cases 380

9.2.1 GT3 in broadcasting 381

9.2.2 GT3 in software reuse 382

9.2.3 A GT3 bioinformatics application 387

CONTENTS xi

9.3 OGSA-DAI Use Cases 387

9.3.1 eDiaMoND 387

9.3.2 ODD-Genes 388

9.4 Resource Management Case Studies 388

9.4.1 The UCL Condor pool 388

9.4.2 SGE use cases 389

9.5 Grid Portal Use Cases 390

9.5.1 Chiron 390

9.5.2 GENIUS 390

9.6 Workflow Management – Discovery Net Use Cases 391

9.6.1 Genome annotation 391

9.6.2 SARS virus evolution analysis 391

9.6.3 Urban air pollution monitoring 392

9.6.4 Geo-hazard modelling 394

9.7 Semantic Grid – myGrid Use Case 394

9.8 Autonomic Computing – AutoMate Use Case 395

9.9 Conclusions 397

9.10 References 398

Glossary 401

Index 419

About the Authors

Dr Maozhen Li is currently Lecturer in Electronics and Computer

Engineering, in the School of Engineering and Design at Brunel

University, UK. From January 1999 to January 2002, he was

Research Associate in the Department of Computer Science,

Cardiff University, UK. Dr Li received his PhD degree in 1997, from

the Institute of Software, Chinese Academy of Sciences, Beijing,

China. His research interests are in the areas of Grid computing,

problem-solving environments for large-scale simulations, soft-

ware agents for semantic information retrieval, multi-modal user

interface design and computer support for cooperative work. Since

1997, Dr Li has published 30 research papers in prestigious inter-

national journals and conferences.

Dr Mark Baker is a hardworking Reader in Distributed Systems

at the University of Portsmouth. He also currently holds visiting

chairs at the universities of Reading and Westminster. Mark has

resided in the relative safety of academia since leaving the British

Merchant, where he was a navigating officer, in the early 1980s.

Mark has held posts at various universities, including Cardiff,

Edinburgh and Syracuse. He has a number of geek-like inter-

ests, which his research group at Portsmouth help him pursue.

These include wide-area resource monitoring, messaging systems

for parallel and wide-area applications, middleware such as infor-

mation and security services, as well as performance evaluation

and modelling of computer systems.

Mark’s non-academic interests include squash (getting too old),

DIY (he may one day finish his house off), reading (far too many

science fiction books), keeping the garden ship-shape and a beer

or two to reduce the pain of the aforementioned activities.

Preface

Grid technologies and the associated applications are currently of
unprecedented interest and importance to a variety of commu-
nities. This book aims to outline and describe all of the compo-
nents that are currently needed to create a Grid infrastructure that
can support a range of wide-area distributed applications. In this
book we take a pragmatic approach to presenting the material;
we attempt not only to describe a particular component, but also
to give practical examples of how that software may be used in
context. We also intend to ensure that the companion Web site
has extensive material that can be used by not only novices, but
experienced practitioners too, to learn or gather technical material
that can help in the process of understanding and using various
Grid components and tools.

PURPOSE AND READERSHIP

The purpose of this book is not to convince the reader that one
framework, technology or specification is better than another;
rather its purpose is to expose the reader to a wide variety of what
we call core technologies so that they can determine which is best
for their own use.
This book is intended for postgraduate students and researchers

from various fields who are interested in learning about the core
technologies that make up the Grid today. The material being
developed for the companion Web site will supplement the book’s
content. We intend that the book, along with Web content, will
provide sufficient material to allow a complete self-study course
of all the components addressed.
The book takes a bottom-up approach, addressing lower-level

components first, thenmid-level frameworks and systems, and then
finally higher-level concepts, concluding by outlining a number of

xvi PREFACE

representative Grid applications that provide examples of how the

aforementioned frameworks and components are used in practice.

We cover the core technologies currently in Grid environments

to a sufficient depth that readers will be prepared to take on

research papers and other related literature. In fact, there is often

sufficient depth that a reader may use the book as a reference of

how to get started with a particular Grid component.

The subject material should be accessible to postgraduates and

researchers who have a limited knowledge about the Grid, but

technically have some knowledge about distributed systems, and

experience in programming with C or Java.

2. OGSA and WSRF
3. The Semantic Grid and Autonomic Computing

4. Grid Security
5. Grid Monitoring

6. Grid Scheduling and Resource Management
7. Workflow Management for the Grid
8. Grid Portals

9. Grid Applications – Case Studies

System
Infrastructure

Basic Services

Job Management and
User Interaction

Applications

Figure P.1 Organization of the book

PREFACE xvii

ORGANIZATION OF THE BOOK

The organization of the book is shown in Figure P.P.1. We have

organized the book into four general parts, which reflect the

bottom-up view that we use to address the topics covered. We

know that certain topics have been discussed under different parts,

but we feel that this should assist the reader label topics more

easily and hopefully help them get to grips with the content more

easily.

The first section, “system infrastructure”, contains the chap-

ters that discuss and outline the current architecture, services and

instantiations of the Grid. These chapters provide the underpin-

ning information that the proceeding chapters build on. The sec-

ond section, “basic services”, contains the chapters that describe

Grid security and monitoring. Both these chapters explain services

that do not actually need to exist to have a Grid environment, but

without security and monitoring services it is impossible to have a

secure, robust and reliable environment that can be used by higher-

level services and applications. The third section we have labelled

“Job management and User interaction”. At this level users have

potentially direct access to tools and utilities that can change their

working environment (in the case of a Portal), or manage and

schedule their jobs (in the case of workflow and scheduling sys-

tems). Finally, the last section of the book is called “Applications”;

here we discuss a number of representative Grid-based applica-

tions that highlight the technologies and components discussed in

the earlier chapters of the book.

Acknowledgements

This first edition of our textbook was prepared during mid–late

2004, when the Grid-based technologies were not only at an embry-

onic stage, but also in a great state of flux. With any effort, such as

writing a book, nothing would really be accomplished in a timely

fashion without the aid of a large number of willing helpers and

volunteers. The technology landscape that we have been writing

about is changing rapidly, so we sought and asked experts in var-

ious fields to read through and comment on all parts of the book.

We would like to thank the following people for reviewing parts

of the book:

• Chapter 2 – OGSA and WSRF: Stephen Pickles and Mark

McKeown (Manchester Computing, University of Manchester)

and Helen Xiang (DSG, University of Portsmouth).

• Chapter 3 – The Semantic Grid and Autonomic Computing:

Rich Boaks (DSG, University of Portsmouth) and Manish

Parashar (Rutgers, The State University of New Jersey, USA).

• Chapter 4 – Grid Security: Alistair Mills (Grid Deployment

Group, CERN).

• Chapter 5 – GridMonitoring: A special thank you to Garry Smith

(DSG, University of Portsmouth), who provided a lot of detailed

content for this chapter, and still managed to write and submit

his PhD.

• Chapter 6 – Grid Scheduling and Resource Management:

NG1 – Fritz Ferstl (Sun Microsystems), Condor – Todd Tannen-

baum (Condor project, University of Wisconsin, USA), LSF –

Songnian Zhou (Platform Computing Inc, Canada), PBS – Bob

Henderson (Altair Grid Technologies, USA).

• Chapter 7 – Workflow Management for the Grid: Omer Rana

(Cardiff University).

xx ACKNOWLEDGEMENTS

• Chapter 8 – Grid Portals: Rob Allan (Daresbury Laboratory).

• Chapter 9 – Grid Applications – Case Studies: Rob Allan (Dares-

bury Laboratory).

We like to make a special mention of and an acknowledge-

ment to Rob Allan (Daresbury Laboratory, UK), who meticulously

reviewed the book as a whole and fed back many useful comments

about its presentation and content.

We would like to say a special thanks to Birgit Gruber, our Wiley

editor, who worked closely with us through the production of the

book, and generally made the effort involved a pleasant one.

COMPANION WEB SITE

We have set up a Web site (coregridtechnologies.org) containing

companion material to the book that will assist readers and teach-

ers. The amount of content will grow with time and eventually

include:

• Tables and figures from the book in various formats

• Slides of the content

• Notes highlighting various aspects of the content

• Links and references to companion material

• Laboratory exercises and solutions

• Source code for examples

• Potential audio/visual material.

Obviously, from the inception of book to its publication and distri-

bution, the landscape that we describe will have undulated some

more, so the book is a snapshot of the technologies during mid–

late 2004. We believe that we can overcome some of the gaps

that may appear in the book’s coverage of material by adding the

appropriate content to the companion Web site.

List of Abbreviations

Abbreviation Expanded form Context

ACL Access Control List

AM Actuator Manager CODE

AMUSE Autonomic Management of

Ubiquitous Systems for

e-Health

AppLeS Application Level Scheduler

APST AppLeS Parameter Sweep

Template

AppLeS

ASA Autonomic Storage

Architecture

ASAP Asynchronous Service Access

Protocol

ASP Active Server Pages Microsoft .Net

BLAST Basic Local Alignment Search

Tool

BPEL4WS Business Process Execution

Language for Web Services

BPML Business Process Modelling

Language

CA Certification Authority

CCA Common Component

Architecture

CFD Computational Fluid Dynamics

CGI Common Gateway Interface

CIM Common Information Model

ClassAd Classified Advertisement Condor

CMS Compact Muon Solenoid

COD Computing On Demand Condor

CODE Control and Observation in

Distributed Environments

xxii LIST OF ABBREVIATIONS

CORBA Common Object Request Broker

Architecture

OMG

CPS Certificate Policy Statement

CSF Community Scheduler

Framework

CSR Certificate Signing Request

DA Data Analyser GridICE

DAG Directed Acyclic Graph Condor

DAGMan Directed Acyclic Graph Manager Condor

DAIS Database Access and Integration

Services

DAISGR DAI Service Group Registry OGSA-DAI

DAML DARPA Agent Markup Language

DAML-S DAML Services DAML

DCE Distributed Computing

Environment

DCOM Distributed Component Object

Model

Microsoft

DCS Data Collector Service GridICE

DES Data Encryption Standard

DL Description Logic

DMTF Distributed Management Task

Force

DNS Detection and Notification

Service

GridICE

DPML Discovery Process Markup

Language

Discovery

Net

DSP Distributed Systems Group GridRM

DTD Document Type Definition W3C

EC Event Consumer JAMM

ECS Element Construction Set

EDG European Data Grid

EDSO Engineering Design Search and

Optimization

Geodise

EG Event Gateway JAMM

EGEE Enabling Grids for E-science in

Europe

EJB Enterprise JavaBeans J2EE

FaCT Fast Classification of

Terminologies

FIFO First In First Out

LIST OF ABBREVIATIONS xxiii

GA Genetic Algorithm

GAC GPIR Admin Client GPIR

GALE Grid Access Language

for high-performance

computing Environments

GAR Grid Archive GT3

GARA GARA

GDS Grid Data Service OGSA-DAI

GDSF Grid Data Service Factory OGSA-DAI

GDS-Perform Grid Data Service Perform OGSA-DAI

GDS-Response Grid Data Service Response OGSA-DAI

GEMLCA Grid Execution Management

for Legacy Code

Architecture

Geodise Grid Enabled Optimization

and DesIgn Search for

Engineering

GGF Global Grid Forum

GIP GPIR Information Provider GPIR

GIS Grid Information Services

GMA Grid Monitoring Architecture GGF

GPDK Grid Portal Development Kit

GPIR Grid Portals Information

Repository

GRAAP-WG Grid Resource Allocation

Agreement Protocol

Working Group

GrADS Grid Application Development

Software

GRAM Globus Resource Allocation

Manager

Globus

GridFTP Grid File Transfer Protocol Globus

GRIM Grid Resource Identity Mapper GT3

GSA Grid System Agent PortalLab

GSFL Grid Services Flow Language

GSH Grid Service Handle OGSA

GSI Grid Security Infrastructure Globus

GSR Grid Service Reference OGSA

GSSAPI Generic Security Services

Application Programming

Interface

GSSAPI

xxiv LIST OF ABBREVIATIONS

GT2 Globus Toolkit 2 Globus

GT3 Globus Toolkit 3 Globus

GT4 Globus Toolkit 4 Globus

GUSTO Generic Ultraviolet Sensors

Technologies and

Observations

GWEL Grid Workflow Execution

Language

GWSDL Grid WSDL GT3

HAT Heterogeneous Application

Template

AppLeS

HM Hawkeye Manager Condor

HMA Hawkeye Monitoring Agent Condor

HPSS High-Performance Storage

System

ICENI Imperial College e-Science

Networked Infrastructure

ICENI

IDL Interface Definition Language

IPG Information Power Grid

IIOP Internet-Inter ORB Protocol CORBA

ISAPI Internet Server Application

Programming Interface

Microsoft .Net

J2EE Java 2 Enterprise Edition

J2SE Java 2 Standard Edition

JAMM Java Agents for Monitoring

and Management

JAR Java Archive Java

Java CoG Java Commodity Grid

JAXB Java Architecture for XML

Binding

J2EE

JAXM Java API for XML Messaging J2EE

JAXP Java API for XML Processing J2EE

JAXR Java API for XML Registries J2EE

JAX-RPC Java API for XML-Based RPC J2EE

JCE Java Cryptography Extension

JCP Java Community Process

JCR Java Certificate Request

JNDI Java Native Directory Interface

JISGA Jini-based Service-Oriented

Grid Architecture

JRE Java Run time Environment

LIST OF ABBREVIATIONS xxv

JRMP Java Remote Method Protocol RMI

JSP Java Server Page

JSR Java Specification Requests JCP

LCG LHC Computing Grid

LCID Legacy Code Interface

Description

GEMLCA

LDAP Lightweight Directory Access

Protocol

LMJFS Local Managed Job Factory

Service

GT3

LSF Load Sharing Facility

MAC Message Authentication Code

MCA Machine Check Architecture

MDS Monitoring and Discovery

Service

Globus

MJS Managed Job Service GT3

MMJFS Master Managed Job Factory

Service

GT3

MPI Message Passing Interface

MS Measurement Service GridICE

MSXML Microsoft XML Parser Microsoft .Net

MVC Model-View-Controller

N1GE N1 Grid Engine

NetLogger Networked Application Logger

NMI NSF Middleware Initiative

NS Naming Schema GridRM

NWS Network Weather Service

OASIS Organization for the

Advancement of Structured

Information Standards

OCS Open Content Syndication

OGCE Open Grid Computing

Environments

OGSA Open Grid Services

Architecture

GGF

OGSA-DAI OGSA Data Integration and

Access

GGF

OGSI Open Grid Services

Infrastructure

GGF

OGSI-WG OGSI Working Group GGF

OIL Ontology Inference Layer

xxvi LIST OF ABBREVIATIONS

OLE Object Linking and Embedding

OMG Object Management Group

ONC Open Network Computing

ORPC Object Remote Procedure Call DCOM

OSF Open Software Foundation

OWL Web Ontology Language W3C

OWL-S OWL Services OWL

P2P Peer-to-Peer

PASOA Provenance-Aware Service-

Oriented Architecture

PBS Portable Batch System

PDSR Portlet Domain Service

Repository

PortalLab

PGT3 Platform Globus Toolkit 3.0 LSF

PI Producer Interface CODE

PIF Process Interchange Format

PII Portlet Invocation Interface

PImR Portlet Implementation

Repository

PortalLab

PInR Portlet Interface Repository PortalLab

PKI Public Key Infrastructure

PMA Port Manager Agent JAMM

portType Port Type WSDL

PS Presentation Service GridICE

PUB Publisher Service GridICE

PSL Process Specification Language

PSML Portlet Structure Markup

Language

PVM Parallel Virtual Machine

PWG Portlet Wrapper Generator PortalLab

RBAC Role-Based Access Control

RDF Resource Description

Framework

W3C

RDFS RDF Schema W3C

RMI Remote Method Invocation Java

RPC Remote Procedure Call

RSA Rivest, Shamir and Adleman

RSL Resource Specification

Language

Globus

RSS Really Simple Syndication

RFT Reliable File Transfer GT3

LIST OF ABBREVIATIONS xxvii

RUS-WG Resource Usage Services Working

Group

SA Simulated Annealing

SARS Severe Acute Respiratory

Syndrome

SD Sensor Directory JAMM

SDDF Self-Defining Data Format Pablo

SDE Service Data Element OGSA

SGE Sun Grid Engine

SGP Semantic Grid Portlet PortalLab

SM Sensor Manager CODE

SNMP Simple Network Management

Protocol

SOA Service-Oriented Architecture

SPM Semantic Portlet Matcher PortalLab

SPR Semantic Portlet Register PortalLab

SRB Storage Resource Broker

SSL Secure Sockets Layer

SWAP Simple Workflow Access Protocol WfMC

SWFL Service Workflow Language JISGA

TLS Transport Layer Security

UA User Agent PortalLab

UDDI Universal Description, Discovery

and Integration

W3C

UHE User-Hosting Environment GT3

ULM Universal Logger Message

URI Uniform Resource Identifier

VO Virtual Organization GGF

VPCE The Visual Portal Composition

Environment

PortalLab

W3C World Wide Web Consortium

WAR Web Application Repository

WBEM Web-Based Enterprise

Management

WBS Williams–Beuren Syndrome

WfMC Workflow Management Coalition

WFMS Workflow Management System

WML Wireless Markup Language

WPDL Workflow Process Definition

Language

WfMC

WS Web Services W3C

xxviii LIST OF ABBREVIATIONS

WSCI Web Services Choreography

Interface

WSFL Web Services Flow Language

WSDD Web Services Deployment

Descriptor

WS

WSDL Web Services Description

Language

W3C

WSIF Web Services Invocation

Framework

WSIL WS-Inspection Language

WSML Web Services Meta Language Microsoft .Net

WSRF Web Services Resource

Framework

WSRP Web Services for Remote

Portlets

OASIS

XDR External Data Representation

XML eXtensible Markup Language W3C

XPDL XML Process Definition

Language

WfMC

XSD XML Schema Definition W3C

XSL eXtensible Stylesheet Language

XSLT XSL Transformation

YAWL Yet Another Workflow

Language

1
An Introduction
to the Grid

1.1 INTRODUCTION

TheGrid concepts and technologies are all very new, first expressed

by Foster and Kesselman in 1998 [1]. Before this, efforts to orches-

trate wide-area distributed resources were known as metacomput-

ing [2]. Even so, whichever date we use to identify when efforts in

this area started, compared to general distributed computing, the

Grid is a very new discipline and its exact focus and the core com-

ponents that make up its infrastructure are still being investigated

and have yet to be determined. Generally it can be said that the

Gridhasevolvedfromacarefullyconfigured infrastructure that sup-

ported a limited number of grand challenge applications executing

on high-performance hardware between a number of US national

centres [3], to what we are aiming at today, which can be seen as a

seamless and dynamic virtual environment. In this book we take a

step-by-step approach to describe themiddleware components that

make up this virtual environment which is now called the Grid.

1.2 CHARACTERIZATION OF THE GRID

Before we go any further we need to somehow define and char-

acterize what can be seen as a Grid infrastructure. To start with,

let us think about the execution of a distributed application. Here

The Grid: Core Technologies Maozhen Li and Mark Baker

© 2005 John Wiley & Sons, Ltd

2 AN INTRODUCTION TO THE GRID

we usually visualize running such an application “on top” of a

software layer called middleware that unifies the resources being

used by the application into a single coherent virtual machine.

To help understand this view of a distributed application and its

accompanying middleware, consider Figure 1.1, which shows the

hardware and software components that would be typically found

on a PC-based cluster. This view then raises the question, what is

the difference between a distributed system and the Grid? Obvi-

ously the Grid is a type of distributed system, but this does not

really answer the question. So, perhaps we should try and establish

“What is a Grid?”

In 1998, Ian Foster and Carl Kesselman provided an initial defi-

nition in their book The Grid: Blueprint for a New Computing Infras-
tructure [1]: “A computational grid is a hardware and software

infrastructure that provides dependable, consistent, pervasive, and

inexpensive access to high-end computational capabilities.” This

particular definition stems from the earlier roots of the Grid, that

of interconnecting high-performance facilities at various US labo-

ratories and universities.

Since this early definition there have been a number of other

attempts to define what a Grid is. For example, “A grid is a soft-

ware framework providing layers of services to access and manage

distributed hardware and software resources” [4] or a “widely

Sequential applications Parallel programming environment

Cluster middleware
(Single system image and availability infrastructure)

Cluster interconnection network/switch

Network interface
hardware

Communications
software

PC/ Workstation

Network interface
hardware

Communications
software

PC/ Workstation PC/ Workstation

Network interface
hardware

Communications
software

PC/ Workstation

Network interface
hardware

Communications
software

Sequential applications
Sequential applications

Parallel applications
Parallel applications

Figure 1.1 The hardware and software components of a typical cluster

1.2 CHARACTERIZATION OF THE GRID 3

distributed network of high-performance computers, stored data,

instruments, and collaboration environments shared across insti-

tutional boundaries” [5]. In 2001, Foster, Kesselman and Tuecke

refined their definition of a Grid to “coordinated resource shar-

ing and problem solving in dynamic, multi-institutional virtual

organizations” [6]. This latest definition is the one most commonly

used today to abstractly define a Grid.

Foster later produced a checklist [7] that could be used to help

understand exactlywhat can be identified as a Grid system.He sug-

gested that the checklist should have three parts to it. (The first part

to check off is that there is coordinated resource sharingwith no cen-

tralizedpoint of control that the users residewithin different admin-

istrative domains.) If this is not true, it is probably the case that this

is not a Grid system. The second part to check off is the use of stan-

dard, open, general-purpose protocols and interfaces. If this is not

the case it is unlikely that system components will be able to com-

municate or interoperate, and it is likely that we are dealing with

an application-specific system, and not the Grid. The final part to

check off is that of delivering non-trivial qualities of service. Here

we are considering how the components that make up a Grid can

be used in a coordinated way to deliver combined services, which

are appreciably greater than the sum of the individual components.

These services may be associated with throughput, response time,

meantime between failure, security or many other facets.

From a commercial viewpoint, IBMdefine a grid as “a standards-

based application/resource sharing architecture that makes it pos-

sible for heterogeneous systems and applications to share, compute

and storage resources transparently” [8].

So, overall, we can say that the Grid is about resource sharing;

this includes computers, storage, sensors and networks. Sharing

is obviously always conditional and based on factors like trust,

resource-based policies, negotiation and how payment should be

considered. The Grid also includes coordinated problem solv-

ing, which is beyond simple client–server paradigm, where we

may be interested in combinations of distributed data analysis,

computation and collaboration. The Grid also involves dynamic,

multi-institutional Virtual Organizations (VOs), where these new

communities overlay classical organization structures, and these

virtual organizations may be large or small, static or dynamic. The

LHC Computing Grid Project at CERN [9] is a classic example of

where VOs are being used in anger.

4 AN INTRODUCTION TO THE GRID

1.3 GRID-RELATED STANDARDS BODIES

For Grid-related technologies, tools and utilities to be taken up

widely by the community at large, it is vital that developers

design their software to conform to the relevant standards. For

the Grid community, the most important standards organizations

are the Global Grid Forum (GGF) [10], which is the primary stan-

dards setting organization for the Grid, and OASIS [11], a not-

for-profit consortium that drives the development, convergence

and adoption of e-business standards, which is having an increas-

ing influence on Grid standards. Other bodies that are involved

with related standards efforts are the Distributed Management

Task Force (DMTF) [12], here there are overlaps and on-going

collaborative efforts with the management standards, the Com-

mon Information Model (CIM) [13] and the Web-Based Enterprise

Management (WBEM) [14]. In addition, the World Wide Web Con-

sortium (W3C) [15] is also active in setting Web services standards,

particularly those that relate to XML.

The GGF produces four document types related to standards

that are defined as:

• Informational: These are used to inform the community about a

useful idea or set of ideas, for example GFD.7 (A Grid Mon-

itoring Architecture), GFD.8 (A Simple Case Study of a Grid

Performance System) and GFD.11 (Grid Scheduling Dictionary

of Terms and Keywords). There are currently eighteen Informa-

tional documents from a range of working groups.

• Experimental: These are used to inform the community about a

useful experiment, testbed or implementation of an idea or set of

ideas, for example GFD.5 (Advanced Reservation API), GFD.21

(GridFTP Protocol Improvements) and GFD.24 (GSS-API Exten-

sions). There are currently three Experimental documents.

• Community practice: These are to inform the community of com-

mon practice or process, with the objective to influence the

community, for example GFD.1 (GGF Document Series), GFD.3

(GGF Management) and GFD.16 (GGF Certificate Policy Model).

There are currently four Common Practice documents.

• Recommendations: These are used to document a specification,

analogous to an Internet Standards track document, for example

GFD.15 (Open Grid Services Infrastructure), GFD.20 (GridFTP:

1.4 THE ARCHITECTURE OF THE GRID 5

Protocol Extensions to FTP for the Grid) and GFD.23 (A Hierar-

chy of Network Performance Characteristics for Grid Applica-

tions and Services). There are currently four Recommendation

documents.

1.4 THE ARCHITECTURE OF THE GRID

Perhaps the most important standard that has emerged recently

is the Open Grid Services Architecture (OGSA), which was devel-

oped by the GGF. OGSA is an Informational specification that

aims to define a common, standard and open architecture for Grid-

based applications. The goal of OGSA is to standardize almost

all the services that a grid application may use, for example job

and resource management services, communications and security.

OGSA specifies a Service-Oriented Architecture (SOA) for the Grid

that realizes a model of a computing system as a set of distributed

computing patterns realized using Web services as the underlying

technology. Basically, the OGSA standard defines service interfaces

and identifies the protocols for invoking these services.

OGSA was first announced at GGF4 in February 2002. In March

2004, at GGF10, it was declared as the GGF’s flagship architecture.

The OGSA document, first released at GGF11 in June 2004, explains

the OGSA Working Group’s current thinking on the required

capabilities and was released in order to stimulate further discus-

sion. Instantiations of OGSA depend on emerging specifications

(e.g. WS-RF and WS-Notification). Currently the OGSA document

does not contain sufficient information to develop an actual imple-

mentation of an OSGA-based system. A comprehensive analysis

of OGSA was undertaken by Gannon et al., and is well worth

reading [16].

There are many standards involved in building a service-

oriented Grid architecture, which form the basic building blocks

that allow applications execute service requests. The Web services-

based standards and specifications include:

• Program-to-program interaction (SOAP, WSDL and UDDI);

• Data sharing (eXtensible Markup Language – XML);

• Messaging (SOAP and WS-Addressing);

• Reliable messaging (WS-ReliableMessaging);

6 AN INTRODUCTION TO THE GRID

• Managing workload (WS-Management);

• Transaction-handling (WS-Coordination and WS-AtomicTrans-
action);

• Managing resources (WS-RF or Web Services Resource Frame-
work);

• Establishing security (WS-Security, WS-SecureConversation,
WS-Trust and WS-Federation);

• Handling metadata (WSDL, UDDI and WS-Policy);

• Building and integrating Web Services architecture over a Grid
(see OGSA);

• Overlaying business process flow (Business Process Execution
Language for Web Services – BPEL4WS);

• Triggering process flow events (WS-Notification).

As the aforementioned list indicates, developing a solid and con-
crete instantiation of OGSA is currently difficult as there is a mov-
ing target – as the choice of which standard or specification will
emerge and/or become popular is unknown. This is causing the
Grid community a dilemma as to exactly what route to use to
develop their middleware. For example, WS-GAF [17] and WS-I
[18] are being mooted as possible alternative routes to WS-RF [19].
Later in this book (Chapters 2 and 3), we describe in depth what

is briefly outlined here in Sections 1.2–1.4.

1.5 REFERENCES

[1] Ian Foster and Carl Kesselman (eds), The Grid: Blueprint for a New Computing
Infrastructure, 1st edition, Morgan Kaufmann Publishers, San Francisco, USA

(1 November 1998), ISBN: 1558604758.

[2] Smarr, L. and Catlett, C., Metacomputing, Communication of the ACM, 35, 1992,

pp. 44–52, ISSN: 0001-0782.

[3] De Roure, D., Baker, M.A., Jennings, N. and Shadbolt, N., The Evolution of the

Grid, inGrid Computing: Making the Global Infrastructure a Reality, Fran Berman,

Anthony J.G. Hey and Geoffrey Fox (eds), pp. 65–100, John Wiley & Sons,

Chichester, England (8 April 2003), ISBN: 0470853190.

[4] CCA, http://www.extreme.indiana.edu/ccat/glossary.html.

[5] IPG, http://www.ipg.nasa.gov/ipgflat/aboutipg/glossary.html.

[6] Foster, I., Kesselman, C. and Tuecke, S., The Anatomy of the Grid: Enabling

Scalable Virtual Organizations, International Journal of Supercomputer Applica-
tions, 15(3), 2001.

[7] Grid Checklist, http://www.gridtoday.com/02/0722/100136.html.

1.5 REFERENCES 7

[8] IBM Grid Computing, http://www-1.ibm.com/grid/grid_literature.shtml.

[9] LCG, http://lcg.web.cern.ch/LCG/.

[10] GGF, http://www.ggf.org.

[11] OASIS, http://www.oasis-open.org.

[12] DMTF, http://www.dmtf.org.

[13] CIM, http://www.dmtf.org/standards/cim.

[14] WBEM, http://www.dmtf.org/standards/wbem.

[15] W3C, http://www.w3.org.

[16] Gannon, D., Chiu, K., Govindaraju, M. and Slominski, A., A Revised Analysis

of the Open Grid Services Infrastructure, Journal of Computing and Informat-
ics, 21, 2002, 321–332, http://www.extreme.indiana.edu/∼aslom/papers/

ogsa_analysis4.pdf.

[17] WS-GAF, http://www.neresc.ac.uk/ws-gaf.

[18] WS-I, http://www.ws-i.org.

[19] WS-RF, http://www.globus.org/wsrf.

Part One

System Infrastructure

2
OGSA and WSRF

LEARNING OBJECTIVES

In this chapter we will study the Open Grid Services Architecture

(OGSA) and the Web Services Resource Framework (WSRF). From

this chapter you will learn:

• What is OGSA, and what role it will play with the Grid?

• What is the Open Grid Services Infrastructure (OGSI)?

• What are Web services technologies?

• Traditional paradigms for constructing Client/Server applica-

tions.

• What is WSRF and what impact will WSRF have on OGSA and

OGSI?

CHAPTER OUTLINE

2.1 Introduction

2.2 Traditional Paradigms for Distributed Computing

2.3 Web Services

2.4 OGSA

2.5 The Globus Toolkit 3 (GT3)

The Grid: Core Technologies Maozhen Li and Mark Baker

© 2005 John Wiley & Sons, Ltd

12 OGSA AND WSRF

2.6 OGSA-DAI

2.7 WSRF

2.8 Chapter Summary

2.9 Further Reading and Testing

2.1 INTRODUCTION

The Grid couples disparate and distributed heterogeneous soft-
ware and hardware resources to provide a uniform comput-
ing environment for scientists and engineers to solve data and
computation-intensive problems. Because of the heterogeneity of
the Grid, the Global Grid Forum (GGF) [1] has been organized as
a working body for designing standards for the Grid.
Globus [2] Toolkit 2 (GT2) and earlier versions have been widely

used for building pre-OGSA oriented Grid systems. However, Grid
systems based on Globus at this stage are heterogeneous in nature
because these Grid systems are developed with heterogeneous
protocols, which make it hard for them to interoperate. With the
parallel development of GT2, Web services [3], as promoted by
IBM, Microsoft, Sun Microsystems and many other Information
Technology (IT) players, are emerging as a promising computing
platform for building distributed business related applications in
a heterogeneous environment.
At the GGF4 meeting in February 2002, the Globus team and

IBM proposed a first OGSA specification [4] to merge the efforts
of Globus and Web services. OGSA was proposed as the archi-
tecture for building the next generation of service-oriented Grid
systems in a standard way. A working group in GGF has also
been organized, called OGSA-WG [5], to work on the design of
the OGSA specification. This was an important step and repre-
sented a significant milestone in the evolution of the Grid. OGSA
is based on Web services, which use standard protocols such as
XML and HTTP for building service-oriented distributed systems.
OGSA introduces the concept of Grid services, which are Web ser-
vices with some extensions to meet the specific need of the Grid.
OGSA defines various aspects related to Grid services, e.g. what
kind of features a Grid service should have and the life cycle man-
agement of Grid services. However, OGSA merely defines what
interfaces are needed, but does not specify how these interfaces
should be implemented. Another working group in GGF has been

2.2 TRADITIONAL PARADIGMS FOR DISTRIBUTED COMPUTING 13

organized, called OGSI-WG [6], to work on OGSI, a technical spec-

ification for the implementation of Grid services as proposed in

the OGSA specification in the context of Web services. Based on

the OGSI technical specification, Globus Toolkit Version 3 (GT3)

has been implemented and released as a toolkit for building OGSA

compliant service-oriented Grid systems.

Standard Web services are persistent and stateless; OGSI com-

pliant Grid services, however, can be transient and are stateful.

The Web services community has recently criticized the work on

the extension of standard Web services in OGSI mainly because

the OGSI specification is too heavy with everything in one spec-

ification, and it does not work well with existing Web services

and XML tooling. In January 2004, the Globus Alliance and IBM

in conjunction with HP introduced the WSRF [7] to resolve this

issue. WSRF is emerging as a promising standard for modelling

stateful resources with Web services.

This chapter is organized as follows. In Section 2.2, we

give a review on traditional paradigms for building distributed

client/server applications. In Section 2.3, we present Web services

and describe their core technologies. In Section 2.4, we introduce

OGSA and describe the concepts of Grid services in the context

of Web services. In Section 2.5, we present GT3 which has been

widely deployed for building service-oriented Grid systems. In

Section 2.6, we present OGSA-DAI which defines Grid data ser-

vices for data access and integration on the Grid. In Section 2.7,

we present WSRF and its concepts. The impacts of WSRF on OGSI

and OGSA will also be discussed in this section. In Section 2.8 we

conclude this chapter, and in Section 2.9 we give further readings

and testing.

2.2 TRADITIONAL PARADIGMS FOR
DISTRIBUTED COMPUTING

In this section, we review traditional computing paradigms for

building distributed client/server applications. Figure 2.1 shows a

simplistic sketch of the possible traditional client/server architec-

ture using a variety of communication techniques such as sockets,

Remote Procedure Calls (RPC) [8], Java Remote Method Invocation

14 OGSA AND WSRF

Figure 2.1 Traditional paradigms for distributed computing

(RMI) [9], Distributed Component Object Model (DCOM) [10] and

Common Object Request Broker Architecture (CORBA) [11]. In the

following sections, we give a brief overview of each technique.

2.2.1 Socket programming

Sockets provide a low-level API for writing distributed client/

server applications. Before a client communicates with a server, a

socket endpoint needs to be created. The transport protocol cho-

sen for communications can be either TCP or UDP in the TCP/IP

protocol stack. The client also needs to specify the hostname and

port number that the server process is listening on. The stan-

dard socket API is well-defined, however the implementation is

language dependant. So, this means socket-based programs can

be written in any language, but the socket APIs will vary with

each language use. Typically, the socket client and server will

be implemented in the same language and use the same socket

package, but can run on different operating systems (i.e. in the

Java case).

As mentioned above, socket programming is a low-level com-

munication technique, but has the advantage of a low latency

and high-bandwidth mechanism for transferring large amount

of data compared with other paradigms. However, sockets are

designed for the client/server paradigm, and today many appli-

cations have multiple components interacting in complex ways,

which means that application development can be an onerous

and time-consuming task. This is due to the need for the devel-

oper to explicitly create, maintain, manipulate and close multiple

sockets.

TE
AM
 F
LY

2.2 TRADITIONAL PARADIGMS FOR DISTRIBUTED COMPUTING 15

2.2.2 RPC

RPC is another mechanism that can be used to construct distributed

client/server applications. RPC can use either TCP or UDP for its

transportprotocol.RPCreliesheavilyonan InterfaceDefinitionLan-

guage (IDL) interface to describe the remote procedures executing

on the server-side. From anRPC IDL interface, an RPC compiler can

automatically generate a client-side stub and a server-side skeleton.

With the help of the stub and skeleton, RPChides the low-level com-

municationandprovidesahigh-levelcommunicationabstractionfor

a client to directly call a remote procedure as if the procedure were

local. RPC itself is a specification and implementations such asOpen

Network Computing (ONC) RPC [12] from Sun Microsystems and

DistributedComputingEnvironment (DCE)RPC[13] fromtheOpen

Software Foundation (OSF) can be used directly for implementing

RPC-based client/server applications.

RPC is not restricted to any specific language, but most imple-

mentations are in C. An RPC client and server have to be imple-

mented in the same language and use the same RPC package.When

communicating with a server, a client needs to specify the host-

name or the IP address of the server. Figure 2.2 shows the data-flow

control in an RPC-based client/server application.

Compared with socket programming, RPC is arguably easier

to use for implementing distributed applications. However, RPC

Figure 2.2 Data-flow control in an RPC application

16 OGSA AND WSRF

only supports synchronous communication (call/wait) between the
client and server; here the client has to wait until it receives a
response fromtheserver. Inaddition,RPCisnotobject-oriented.The
steps to implement and runa client/server applicationwithRPCare:

• Write an RPC interface in RPC IDL;

• Use an RPC compiler to compile the interface to generate a
client-side stub and a server-side skeleton;

• Implement the server;

• Implement the client;

• Compile all the code with a RPC library;

• Start the server;

• Start the client with the IP address of the server.

2.2.3 Java RMI

The Java RMI is an object-oriented mechanism from Sun Microsys-
tems for building distributed client/server applications. Java RMI
is an RPC implementation in Java. Similar to RPC, Java RMI hides
the low-level communications between client and server by using
a client-side stub and a server-side skeleton (which is not needed
in Java 1.2 or later) that are automatically generated from a class
that extends java.rmi.UnicastRemoteObject and implements an RMI
Remote interface.
At run time there are three interacting entities involved in an

RMI application. These are:

• A client that invokes a method on a remote object.

• A server that runs the remote object which is an ordinary object
in the address space of the server process.

• The object registry (rmiregistry), which is a name server that
relates objects with names. Remote objects need to be registered
with the registry. Once an object has been registered, the registry
can be used to obtain access to a remote object using the name
of that object.

Java RMI itself is both a specification and an implementation.
Java RMI is restricted to the Java language in that an RMI client
and server have to be implemented in Java, but they can run on

2.2 TRADITIONAL PARADIGMS FOR DISTRIBUTED COMPUTING 17

Figure 2.3 Data-flow control in a Java RMI application

different operating systems in distributed locations. When com-

municating with a server, an RMI client has to specify the server’s

hostname (or IP address) and use the Java RemoteMethod Protocol

(JRMP) to invoke the remote object on the server. Figure 2.3 shows

the data-flow control in a Java RMI client/server application.

Java RMI uses an object-oriented approach, compared to the

procedural one that RPC uses. A client can pass an object as a

parameter to a remote object. Unlike RPC which needs an IDL

interface, a Java RMI interface is written in Java. RMI has good

support for marshalling, which is a process of passing parameters

from client to a remote object, i.e. a Serializable Java object can be

passed as a parameter. The main drawbacks of Java RMI are its

limitation to the Java language, its proprietary invocation protocol-

JRMP, and it only supports synchronous communications.

The steps to implement and run a Java RMI client/server

application are:

• Write an RMI interface;

• Write an RMI object to implement the interface;

• Use RMI compiler (rmic) to compile the RMI object to generate

a client-side stub and an server-side skeleton;

• Write an RMI server to register the RMI object;

18 OGSA AND WSRF

• Write an RMI client;

• Use Java compiler (javac) to compile all the Java source codes;

• Start the RMI name server (rmiregistry);
• Start the RMI server;

• Start the RMI client.

2.2.4 DCOM

The Component Object Model (COM) is a binary standard for
building Microsoft-based component applications, which is inde-
pendent of the implementation language. DCOM is an extension
to COM for distributed client/server applications. Similar to RPC,
DCOM hides the low-level communication by automatically gen-
erating a client-side stub (called proxy in DCOM) and a server-side
skeleton (called stub in DCOM) using Microsoft’s Interface Defini-
tion Language (MIDL) interface. DCOM uses a protocol called the
Object Remote Procedure Call (ORPC) to invoke remote COM com-
ponents. The ORPC is layered on top of the OSF DCE RPC spec-
ification. Figure 2.4 shows the data-flow control in a client/server
application with DCOM.
DCOM is language independent; clients and DCOM components

can be implemented in different languages. Although DCOM is
available on non-Microsoft platforms, it has only achieved broad
popularity on Windows. Another drawback of DCOM is that it

Figure 2.4 Data-flow control in a DCOM application

2.2 TRADITIONAL PARADIGMS FOR DISTRIBUTED COMPUTING 19

only supports synchronous communications. The steps to imple-

ment and run a DCOM client/server application are:

• Write an MIDL interface;

• Use an interface compiler (midl) to compile the interface to gen-

erate a client-side stub and a server-side skeleton;

• Write the COM component to implement the interface;

• Write a DCOM client;

• Compile all the codes;

• Register the COM component with a DCOM server;

• Start the DCOM server;

• Start the DCOM client.

2.2.5 CORBA

CORBA is an object-oriented middleware infrastructure from

Object Management Group (OMG) [14] for building distributed

client/server applications. Similar to Java RMI andDCOM, CORBA

hides the low-level communication between the client and server

by automatically generating a client-side stub and a server-side

skeleton through an Interface Definition Language (IDL) inter-

face. CORBA uses Internet-Inter ORB Protocol (IIOP) to invoke

remote CORBA objects. The Object Request Broker (ORB) is the

core of CORBA; it performs data marshaling and unmarshalling

between CORBA clients and objects. Figure 2.5 shows the data-

flow control in a client/server application using the CORBA.

Compared with Java RMI and DCOM, CORBA is independent of

location, a particular platform or programming language. CORBA

supports both synchronous and asynchronous communications.

CORBA has an advanced directory service called COSNaming,

which provides the mechanisms to allow the transparent location

of objects. However, CORBA itself is only an OMG specification.

There are many CORBA products available that can be used to

build CORBA applications. The steps to implement and run a

CORBA client/server application are:

• Write a CORBA IDL interface;

• Use an IDL compiler to compile the interface to generate a client-

side stub and a server-side skeleton;

20 OGSA AND WSRF

Figure 2.5 Data-flow control in a CORBA application

• Write a CORBA object to implement the interface;

• Write a CORBA server to register the CORBA object;

• Write a CORBA client;

• Compile all the source codes;

• Start a CORBA name server;

• Start the CORBA server;

• Start the CORBA client.

2.2.6 A summary on Java RMI, DCOM
and CORBA

Java RMI, DCOM and CORBA have all been around for some time

and represent the most popular distributed, object-oriented mid-

dleware which can be used to rapidly develop distributed client/

server applications. Although they differ in their specific implemen-

tations and features [15], they all share the following features:

• An interface is needed for invoking a remote object or a

component.

• The complexity of low-level communications is hidden from

the users by automatically generating a client-side stub and a

server-side skeleton via the interface definition.

2.3 WEB SERVICES 21

• They use proprietary communication protocols – e.g. Java RMI
uses JRMP, DCOM uses ORPC and CORBA uses IIOP – to
invoke remote objects or components.

• The interface definition is in binary format. It is difficult for
client applications to make a query on an interface, such as to
find out what kinds of methods are defined, inputs/outputs of
each method to make a better use of the methods.

• Clients and objects are tightly coupled with their interfaces. For
example, changing a part of the client means the other parts,
such as the server, also need modification.

In summary, middleware such as Java RMI, DCOM and CORBA
are not based on open standards, which makes it difficult for
them to be ubiquitously taken up in heterogeneous environments.
Ideally, what is needed is an open standards-based middleware
infrastructure for building and integrating applications in hetero-
geneous environments, and Web services are emerging as such an
infrastructure.

2.3 WEB SERVICES

Web services are emerging as a promising infrastructure for build-
ing distributed applications. Web services are based on a Service-
Oriented Architecture (SOA) in which clients are service requestors
and servers are service providers. Web services differ from other
approaches such as Java RMI, CORBA and DCOM in their focus
on simple open standards such as XML and HTTP, which have
wide industry support and a chance of becoming truly ubiquitous.
Web services provide a stratum on top of other mechanisms, as
shown in Figure 2.6. We define a Web service as given below.

Essentially, a Web service is a loosely coupled, encapsulated,
platform and programming language neutral, composable
server-side component that can be described, published, dis-
covered and invoked over an internal network or on the
Internet.

The explanation of the definition is given below:

• Loosely coupled: A Web service implementation is free to change
without unduly impacting the service client as long as the service
interface remains the same.

22 OGSA AND WSRF

Figure 2.6 Paradigms including Web services for building distributed
applications

• Encapsulated: The implementation of a Web service is completely
invisible to the client of a service.

• Platform and programming language neutral: A Web service can be

implemented in any language and deployed on any platform.

• Composable: A Web service can be composed from a number of

deployed services.

• Server-side component: A Web service can range in scope from a
complete application to a subroutine that runs on a server.

• Described: An XML-based interface is used to describe the func-

tionality and capabilities that a Web service can provide.

• Published: A Web service can be registered with a service registry

that can be accessed on an intranet or on the Internet.

• Discovered: A Web service client can discover a service by search-
ing a service registry and match their service requirements.

• Invoked: A Web service can be bound to by a service client via

standard transport protocols such as HTTP or FTP.

• Internal network or the Internet: A Web service can be made avail-

able strictly within an organization or it can be offered across the

firewall, available to any consumer connected to the Internet.

The core standards of Web services, as defined by W3C con-

sortium, are SOAP [16], Web Services Description Language

(WSDL) [17] and the Universal Description, Discovery and Inte-

gration (UDDI) [18]. Another standard for service discovery is the

Web Services Inspection (WS-Inspection) specification [19] defined

by IBM and Microsoft. The specification defines WS-Inspection

Language (WSIL) for service description and discovery.

2.3 WEB SERVICES 23

2.3.1 SOAP

SOAP is a simple and lightweight communication protocol for

clients and servers to exchange messages in an XML format over a

transport-level protocol, which is normally HTTP. From Figure 2.7

we can see that a SOAP message is encapsulated in an envelope

that consists of the following four parts:

• Various namespaces are used by the SOAP message, typically

these include xmlns:SOAP-ENV (SOAP Envelope), xmlns:xsi

(XML Schema for Instance) and xmlns:xsd (XML Schema

Definition).

• A set of encoding rules for expressing instances of application-

defined data types.

• An optional header for carrying auxiliary information for

authentication, transactions and payments.

• The Body is the main payload of the message. When an RPC call

is used in the SOAP message, the Body has a single element that

contains the method name, arguments and a Uniform Resource

Identifier (URI) of the service target address. In addition, the

fault entry can be used to explain a failure.

Figure 2.7 The structure of a SOAP message

24 OGSA AND WSRF

SOAP is independent of the underlying transport protocol, so

SOAP messages can be carried over many transport-level proto-

cols such as HTTP, FTP, SMTP or more sophisticated protocols

such as Java RMI JRMP or CORBA IIOP. HTTP is the most com-

monly used protocol because it can normally pass firewalls. Since

XML is a universal standard, clients and servers built on different

platforms can communicate with SOAP.

2.3.2 WSDL

WSDL is an XML-based specification that is used to completely

describe a Web service, e.g. what a service can do, where it resides

and how to invoke it. A WSDL interface is similar to a CORBA

IDL or a DCOM MIDL interface, but with richer semantics to

describe a service. WSDL defines services as a set of network

endpoints or ports using an RPC-based mechanism or a document-

oriented message exchange for the communication between a ser-

vice requestor and provider. An RPC-oriented operation is one in

which the SOAP messages contain parameters and return values,

and a document-oriented operation is one in which the SOAP mes-

sages contain XML documents. The communication in RPC-based

message exchanging is synchronous, but the communication in

Document-oriented message exchanging is often asynchronous.

The common elements in WSDL, as shown in Figure 2.8, are

explained below.

Data types
The data types part encloses data type definitions that are rele-

vant for message exchanging. For maximum interoperability and

platform neutrality, WSDL uses XML XSD as the default data

type. This part is extensible, meaning that it can contain arbitrary

subsidiary elements to allow general data types to be constructed.

The XSD namespace can be used to define the data types in

a message regardless of whether or not the resulting message

exchanging format is actually XML, or the resulting XSD schema

validates the particular wire format.

<message>
The <message> element defines the data elements of an operation

in a service. Each message can consist of one or more parts. The

2.3 WEB SERVICES 25

Figure 2.8 The structure of a WSDL document

parts are similar to the parameters of a function or method call in

a traditional programming language.

<portType>
<portType> is the core part of a WSDL document. Similar to a Java

interface or a C++ class, it defines a set of abstract operations

provided by a service. Each operation uses messages defined in

the <message> element to describe its inputs and outputs.

<binding>
<binding> identifies a concrete protocol and data format for the

operations and messages defined by a particular <portType>. There
may be an arbitrary number of bindings for a given portType,

i.e. a binding can be document-oriented or use RPC. SOAP over

HTTP is the most commonly used mechanism for transmitting

messages between a service client and a service itself.

<port>
A <port> defines an individual service endpoint by specifying a

single address for a binding.

<service>
A <service> is a set of related ports. Ports within a service have the

following relationship:

26 OGSA AND WSRF

• None of the ports communicate with each other.

• If a service has several ports that share a <portType>, but employ

different bindings or addresses, these are alternative ports where

the port provides semantically equivalent behaviour. This allows

a consumer of a WSDL document to choose particular port(s) to

communicate with, based on some criteria (such as a protocol

or distance).

2.3.3 UDDI

The UDDI is an industry standard for service registration (publi-

cation) and discovery. A service provider uses UDDI to advertise

the services that it is making available. A client uses UDDI to

find the appropriate service(s) for its purposes. A UDDI registry

is similar to a CORBA trader service, or it can be thought of as

a Domain Name Server (DNS) service for business applications.

A UDDI registry has two kinds of players: businesses that want

to publish a service, and clients who want to obtain services of a

certain kind, and then use them via some binding process. Data in

UDDI can be organized in the following ways:

• White pages: This includes general information about a ser-

vice provider, such as its name, contact information and other

identifiers.

• Yellow pages: This information describes a Web service using

different categorizations (taxonomies) and allows others to dis-

cover a Web service based on its categorization (such as car

manufacturing or car sales business).

• Green pages: Green pages have technical information about aWeb

service, usually with a reference to an external WSDL document

of the service, enabling the client to know how to interact with

the service.

UDDI is layered over SOAP, which means that a client uses SOAP

to access a UDDI registry. A UDDI registry exposes a set of

APIs in the form of SOAP-based Web services. The API contains

Inquiry and Publishing APIs for services discovery and service

publication.

2.3 WEB SERVICES 27

2.3.4 WS-Inspection

WS-Inspection is similar in scope to UDDI; it is a complementary
rather than a competitive technology. It allows service description
information to be distributed to any location using a simple exten-
sible XML document format. WS-Inspection does not concern itself
with business entity information (whereas UDDI does). It works
under the assumption that a service client is aware of the services
provided by the service provider.
The WS-Inspection specification mainly provides the following

two functions:

• It defines an XML format for listing references to existing service
descriptions.

• It defines a set of conventions so that it is easy to locate
WS-Inspection documents.

In WS-Inspection, Web services are described in WS-Inspection
documents. A WS-Inspection document provides a means for
aggregating references to pre-existing service description docu-
ments which have been authored in arbitrary number of formats
such as WSDL, UDDI or plain HTML. A WS-Inspection document
is generally made available at the point-of-offering for the services
that are referenced within the document. Within a WS-Inspection
document, a single service can have more than one reference to
a service description. A service description is usually a URL that
points to a WSDL document; occasionally, a service description
can be a reference to an entry within a UDDI registry. With WS-
Inspection, a service provider creates a WS-Inspection document
and makes the document network accessible. Service requestors
use standard Web-based access mechanisms (e.g. HTTP GET) to
retrieve this document and discover what services the provider
is advertising. Figure 2.9 shows an example of WS-Inspection
document.
This example contains a reference to two service descriptions

and a single reference to another WS-Inspection document. The
first <service> element contains one service description, which is
a reference to a WSDL document. The second <service> element
also contains one service description reference to a business service
entry in a UDDI registry. The UDDI service key identifies one
unique business service. The <link> element is used to reference

28 OGSA AND WSRF

<?xml version="1.0"?>
<inspection xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/">

<service>
<description

referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
location="http://example.com/exampleservice.wsdl"/>

</service>

<service>
<description

referencedNamespace="urn:uddi-org:api">
<wsiluddi:serviceDescription location=

"http://example.com/uddi/inquiryapi">
<wsiluddi:serviceKey>

2946BBO-BC28-11D5-A432-0004AC49CC1E
</wsiluddi:serviceKey>

</wsiluddi:serviceDescription>
</description>

</service>

<link referencedNamespace=
"http://schemas.xmlsoap.org/ws/2001/10/inspection/"

location="http://example.com/tools/toolservices.wsil"/>

</inspection>

Figure 2.9 An example WS-Inspection document

a collection of service descriptions. In this case, it is referencing

another WS-Inspection document.

WS-Inspection supports a completely distributed model for pro-

viding service-related information; the service descriptions may be

stored at any location, and requests to retrieve the information are

generally made directly to the entities that are offering the services.

2.3.5 WS-Inspection and UDDI

As mentioned in Nagy and Ballinger [20], the UDDI and WS-

Inspection specifications address different sets of issues with

service registration and discovery, which are characterized by dif-

ferent trade-offs. UDDI provides a high degree of functionality,

but it comes at the cost of increased complexity. TheWS-Inspection

specification provides less functionality in order to maintain a low

overhead. With this in mind, the two specifications should be

viewed as complementary technologies, to be used either together

or separately depending upon the situation. For example, a UDDI

2.3 WEB SERVICES 29

Figure 2.10 Service discovery with UDDI and WS-Inspection

registry could be populated by the results from robot crawl-

ing WS-Inspection documents on the Web. Likewise, a UDDI

registry may itself be discovered when a requestor retrieves a

WS-Inspection document, which refers to an entry in the UDDI

registry as shown in Figure 2.10. In environments where the addi-

tional functionality afforded by UDDI is not required and where

constraints do not allow for its deployment, the WS-Inspection

mechanism may provide all of the capabilities that are needed.

In situations where data needs to be centrally managed, a UDDI

solution alone may provide the best solution.

2.3.6 Web services implementations

Web services are based on a set of specifications. Currently there

are many Web services implementations that can be used to build

distributed applications. There are three aspects that need to be

considered when using Web services.

• A programming model specifies how to write client codes to access

Web services, how to write service implementations, how to

handle other parts of the SOAP specification, such as headers

and attachments.

• A deployment model is the framework used to deploy a service

and provide a Web service deployment descriptor (a wsdd file)

to map the implementation of the service to SOAP messages.

30 OGSA AND WSRF

• A SOAP Engine receives SOAP messages and invokes Web ser-
vice implementations.

In the following section, we describe three frameworks for imple-
menting Web services applications – J2EE, .Net and Apache Axis.

2.3.6.1 J2EE

J2EE [21] is standard for developing, building and deploying Java-
based applications. It can be used to build traditional Web sites,
software components, or packaged applications. J2EE has recently
been extended to include support for building XML-based Web
services as well. J2EE provides the following APIs forWeb services:

• The Java API for XML Processing (JAXP) – processes XML doc-
uments using various parsers.

• The Java Architecture for XML Binding (JAXB) – processes XML
documents using schema-derived JavaBeans component classes.

• The Java API for XML-based RPC (JAX-RPC) – a standard for
RPC. ItprovidesAPIs forXMLRPCinvocationandusesbase-level
protocol bindings with SOAP/HTTP, but is not limited to HTTP.

• The Java API for XML Messaging (JAXM) and SOAP with
Attachments API for Java (SAAJ) – send SOAP messages over
the Web in a standard way.

• The Java API for XML Registries (JAXR) – provides a standard
way to interact with business UDDI registries.

Figure 2.11 shows data-control flow for a client to invoke a Web
service with J2EE JAX-RPC.

2.3.6.2 Apache Axis

Apache Axis [22] is a SOAP engine that can be used to exchange
SOAP messages between clients and services. It also provides sup-
port for WSDL operations, e.g. Java2WSDL can be used to generate
a WSDL document from a Java interface, and WSDL2Java can be
used to generate a client-side stub and a server-side skeleton based
on the WSDL document. Axis does not provide support for service
discovery and publication. UDDI4Java [23] from IBM can be used

2.3 WEB SERVICES 31

Figure 2.11 Data-flow control in invoking a Web service with J2EE JAX-RPC

Figure 2.12 Data-flow control in invoking a Web service with Axis

together with Axis for this purpose. Figure 2.12 shows data-flow

control for a client to invoke a Web service with Axis.

A Web service application with Axis can be implemented and

started as follows:

• Write a Java interface;

• Use Java2WSDL to compile the interface to generate a WSDL

interface;

32 OGSA AND WSRF

• Use WSDL2Java to compile the WSDL interface to generate a

client-side stub and a server-side skeleton;

• Write a service to implement the WSDL interface;

• Write a client;

• Compile all the codes with javac compiler;

• Write a Web service deployment descriptor (a wsdd file) to

deploy the service in Jakarta Tomcat Web server [24];

• Start Tomcat;

• Start the client to invoke the service.

2.3.6.3 Microsoft .Net

.Net is a Microsoft Platform [25] for building Web services applica-

tions. Similar to a J2EE Web service, a .NET Web service supports

the WSDL specification and uses a WSDL document to describe

itself. However, an XML namespace has to be used within a WSDL

file to uniquely identify the Web service’s endpoint.

.Net provides a client-side component that lets a client invoke

a Web service described by WSDL. It also provides a server-side

component that maps Web service operations to a COM-object

method call as described by the WSDL interface and a Web Ser-

vices Meta Language (WSML) file, which is needed for Microsoft’s

implementation of SOAP. Web services can be published using

DISCO [26] files or via a UDDI registry. DISCO is a Microsoft

publishing/discovery technology built into .NET.

.Net provides a UDDI software development kit (SDK) for dis-

covery of Web services. With regard to the invocation of Web

services, .Net provides three choices:

• Use the built-in .Net SOAP message classes.

• Construct a Web service listener manually, using for example,

Microsoft XML Parser (MSXML), Active Server Pages (ASP) or

Internet Server Application Programming Interface (ISAPI).

• Use the Microsoft SOAP Toolkit 2.0 to build a Web service

listener that communicates with a service implemented with

COM. The toolkit can generate a client-side stub from a WSDL

interface that can be used by a client to communicate with the

service.

2.3 WEB SERVICES 33

2.3.7 How Web services benefit the Grid

Web services are emerging as an XML-based open standard for

building distributed applications in a heterogeneous computing

environment. Web services are independent of platforms, pro-

gramming languages and locations. Web services can be described,

published and dynamically discovered and bound to WSDL, a rich

interface description language. The technologies associated with

Web services provide a promising platform for integrating ser-

vices provided by heterogeneous systems. Figure 2.13 shows the

architecture of Web services and how it makes use of its core tech-

nologies. First, a service provider publishes its services into a UDDI

registry with SOAP. Then a service requestor (client) searches the

registry to find services of interest. Finally the client requests a

service by binding to the service.

The Grid can benefit from theWeb services framework by taking

advantage of the following factors:

• The Grid requires the support for the dynamic discovery and

composition ofGrid services in heterogeneous environments; this

necessitates mechanisms for registering and discovering inter-

face definitions and endpoint implementation descriptions; for

dynamically generating proxies based on (potentially multiple)

bindings of specific interfaces. WSDL supports this require-

ment by providing a standard mechanism for defining interface

Figure 2.13 Web services core technologies

34 OGSA AND WSRF

definitions separately from their embodiment within a particular
binding (transport protocol and data encoding format).

• Web services technologies are based on internationally rec-
ognized standards. The widespread adoption means that a
framework based on Web services will be able to exploit
numerous tools and extended services, such as WSDL proces-
sors that can generate bindings for a variety of environments,
e.g. Web Services Invocation Framework (WSIF) [27], workflow
systems that utilize WSDL, and hosting environments for Web
services (e.g. Microsoft .NET and Apache Axis).

2.4 OGSA

OGSA is a de facto standard for building the next generation of
service-oriented Grid systems. The GGF is currently coordinating
a worldwide effort to complete the OGSA specification. OGSA is
based on Web services technologies, but with some extensions.
OGSA extends Web services by introducing interfaces and con-
ventions in three main areas.

• First, there is a dynamic and potentially transient nature of
services in a Grid environment, in which particular service
instances may come and go as work is dispatched, as resources
are configured and provisioned, and as system state changes.
Therefore, Grid services need interfaces to manage their creation,
destruction and life cycle management.

• Second, there is state. Grid services can have attributes and data
associated with them. This is similar in concept to the traditional
structure of objects in object-oriented programming. Objects
have behaviour and data. Likewise, Web services needed to be
extended to support state data associated with Grid services.

• Third, clients can subscribe their interests in services. Once there
is any change in a service, the clients are notified. This is a
call-back operation from services to clients.

As shown in Figure 2.14, Grid applications can be built from OGSA
compliant services. Services in OGSA are composed of two parts,
OGSA platform and core services. The OGSA platform services
are Grid-based services related to user authentication and autho-
rization, fault tolerance, job submission, monitoring and data

2.4 OGSA 35

Figure 2.14 Building OGSA compliant Grid applications with OGSI

access. The core services in OGSA mainly include service creation,
destruction, life cycle management, service registration, discovery
and notification. OGSA introduces Grid service interfaces such as
GridService, Factory, Registration, HandleResolver and Notification to
support its core services. OGSA introduces the concepts of service
instance and service data associated with each Grid service to
support transient and stateful Grid services. In addition, the notifi-
cation model in OGSA allows services to notify subscribed clients
about the events they are interested in.
OGSA defines various aspects related to a Grid service, e.g. the

features of Grid services, and what interfaces are needed; but it
does not specify how these interfaces should be implemented. That
is the task of OGSI, which is a technical specification to specify
how to implement the core Grid services as defined in OGSA in
the context of Web services, specifically WSDL. The OGSI specifies
exactly what needs to be implemented to conform to OGSA. There-
fore, a Grid services can be defined as an OGSI compliant Web
service. An OGSA compliant service can be defined as any OGSI
compliant service whose interface has been defined by OGSA to
be a standard OGSA service interface.

2.4.1 Service instance semantics

While standard Web services are persistent, Grid services can be
transient. OGSA provides a soft-service management by introduc-
ing the concept of Grid service instances. A Grid service instance is

36 OGSA AND WSRF

an instantiation of a Grid service that can be dynamically created
and explicitly destroyed. A Grid service that can create a ser-
vice instance is called a service factory, a persistent service itself.
A client can request a factory to create many service instances and
multiple clients can access the same service instance.
As shown in Figure 2.15, a user job submission can involve

one or more Grid service instances, which are created from cor-
responding Grid service factories running on three nodes. The
implementations of the three services are independent of location,
platform and programming language.
A Grid Service Handle (GSH), a globally unique URI that distin-

guishes a specific Grid service instance from all other Grid service
instances, identifies each Grid service instance. However, Grid
services may be upgraded during their lifetime, for example to sup-
port a new protocol version or to add alternative protocols. Thus,
the GSH carries no protocol- or instance-specific information such
as a network address and supported protocol bindings. Instead,
this information is encapsulated, along with all other instance-
specific information required to interact with a specific service
instance, into a single abstraction called a Grid Service Reference
(GSR). Unlike a GSH, which is invariant, the GSR(s) for a Grid
service instance can change over that service’s lifetime. A GSR has
an explicit expiration time, or may become invalid at any time
during a service’s lifetime, and OGSA defines mapping mecha-
nisms for obtaining an updated GSR. The GSR format is specific

Figure 2.15 A user job submission involves multiple Grid service instances

2.4 OGSA 37

to the binding mechanism used by the client to communicate with
the Grid service instance. For example, if the client uses a SOAP
binding, the GSR assumes that an annotated WSDL document for-
mat will be used.

2.4.2 Service data semantics

In OGSA, apart from methods, each Grid service instance is also
associated with service data, which is a collection of XML elements
encapsulated as Service Data Elements (SDE). Service data are used
to describe information about a service instance and their run-time
states. Unlike standard Web services, which are stateless, Grid ser-
vices are stateful and can be introspected. A client can use the stan-
dard FindServiceData() method defined in theGridService portType
for querying and retrieving service data associated with a Grid ser-
vice registered in a registry, i.e. the service type; if it is a service
instance, the GSH of the service instance; the location of a service
factory; and the run-time states. Figure 2.16 shows a hierarchical
view in terms of service factory, service instances and service data.
A service factory can create many service instances, of which

each has a Service Data Set. A Service Data Set can contain zero
or multiple SDEs. Each SDE can be of a different type. As shown
in Figure 2.16, the first instance has two “type A” SDEs and one

Figure 2.16 A hierarchical view of service factory, service data and service
data elements

38 OGSA AND WSRF

“type B” SDE. The second instance has only one “type A” SDE.
The third instance has no SDEs at all (even so, it does have an
empty Service Data Set). Notice how SDEs of the same type always
contain the same information (“type A” has data X, Y, Z; “type B”
has data R and S). The SDEs are the ones that actually contain the
data (X, Y, Z, R, S).

2.4.3 OGSA portTypes

OGSA provides the following interfaces, which are extended
WSDL portTypes, to define Grid services. In OGSA, the GridService
interface must be implemented by all Grid services, while the other
interfaces are optional. OGSA supports the following interfaces.

GridService portType
A Grid service must implement the GridService portType as it
serves as the base interface in OGSA. This portType is analo-
gous to the base Object class within object-oriented programming
languages such as C++ or Java, in that it encapsulates the root
behaviour of the component model. The three methods encapsu-
lated by the GridService portType are FindServiceData(), SetTer-
minationTime() and Destroy() that are used for service discovery,
introspection and soft-state life cycle management.

Factory portType
A factory is a persistent Grid service that implements the Factory
portType. It can be used to create transient Grid service instances
with its createService() method.

HandleResolver portType
A Grid service that implements the HandleResolver portType can be
used to resolve a GSH to a GSR using its FindbyHandle() method.

Registration portType
A registry is a Grid service that implements the Registration port-
Type to support service discovery by maintaining collections of
GSHs and their associated policies. Clients can query a registry
to discover services’ availability, properties and policies. Two ele-
ments define a registry service – the registration interface, which
allows a service instance to register a GSHwith the registry service,
and a set of associated service data, that contains information about
the registered GSH and the run-time states of the service instance.

2.4 OGSA 39

RegisterService() and UnRegisterService() are the two methods

defined in the portType for service registration and unregistration.

NotificationSource/NotificationSink portType

The OGSA notification model allows interested parties to subscribe

to service data elements and receive notification events when their

values are modified. A Grid service that implements the Notifica-
tionSource portType is called a notification source. A Grid service

that implements the NotificationSink portType is called a notifica-

tion sink. To subscribe notification to a particular Grid service, a

notification sink invokes a notification source using the Subscri-

beToNotificationTopic() method in the NotificationSource interface,
giving it the service GSH of the notification sink and the topics

interested. A notification source will use the DeliverNotification()

method in theNotificationSink interface to send a stream of notifica-

tionmessages to the sink, while the sink sends periodic messages to

notify the source that it is still interested in receiving notifications.

To ensure reliable delivery, a user can implement this behaviour

by defining an appropriate protocol binding for the service.

As shown in Figure 2.17, a Grid service must implement the

GridService interface, and may implement other interfaces such

as Factory, Registration, HandleResolver and NotificationSource/

Figure 2.17 The structure of a Grid service in OGSA

40 OGSA AND WSRF

NotificationSink. OGSA defines standard mechanisms for service
creation, destruction, life cycle management, service registration,
discovery and service notification. A Grid service can be a persis-
tent service, or a transient service instance. Each Grid service has a
unique GSH and one or more GSRs to refer to its implementation,
which is independent of location, platform and programming lan-
guage. A Grid service can be deployed in environments hosted by
J2EE, .Net or Apache Axis.

2.4.4 A further discussion on OGSA

There is a long way for OGSA to go before there is complete archi-
tecture specification where all of the desired properties of the Grid
are addressed. OGSA will have to be refined and adjusted itera-
tively, but this is a natural and healthy process, and the first very
important step has been taken. It is felt that this step has been
taken in the right direction and we hope that OGSA will be suc-
cessful in its evolution into the open standards-based architecture
that it sets out to define.
Kunszt [28] points out some issues remain to be resolved in

the future development of OGSA with respect to aspects such as
availability, robustness, scalability, measurability, interoperability,
compatibility, service discovery, manageability and changeability.
Dialani et al. [29] propose a transparent fault tolerance mechanism
for Web services that may be used to support Grid services’ fault
tolerance. A service may become overloaded on a node at certain
times if large numbers of users concurrently request a service
instance to be created. Zhang et al. [30] propose the concept of a
Grid mobility service that we feel may be a solution to the service-
overloading problem. A service could be a mobile code that can
move from node to node in a Grid environment. When necessary,
a service can move to another more lightly loaded node to spawn
service instances. However, practical work needs to be done to
serve as proof-of-concept.

2.5 THE GLOBUS TOOLKIT 3 (GT3)

OGSI provides a technical specification for implementing Grid
services defined in the OGSA specification. Currently OGSI imple-
mentations such as GT3 [31], MS.NETGrid [32], OGSI.NET [33],

2.5 THE GLOBUS TOOLKIT 3 (GT3) 41

Figure 2.18 The GT3 structure

OGSI::Lite [34], PyOGSI [35] have been released. In this section,

we introduce GT3 and describe the services provided by the GT3

framework.

As shown in Figure 2.18, a Grid services container in GT3 runs

on top of a Web services engine such as the Apache Axis for

service management. The functionality of each part in the structure

is described below.

2.5.1 Host environment

A hosting environment is a specific execution environment that

defines not only the programming model and language, but

also the development and debugging tools that can be used to

implement Grid services. It also defines how the implementa-

tion of a Grid service meets its obligations with respect to Grid

service semantics. GT3 supports the following four Java hosting

environments:

• Embedded: A library allowing an OGSI-hosting environment to

be embedded in any existing J2SE applications.

• Standalone: A lightweight J2SE server that hosts Grid services.

42 OGSA AND WSRF

• J2EE Web container: An OGSI hosting environment inside a Web
server that can be hosted by any Java Servlet-compliant engine,
such as the Jakarta Tomcat.

• J2EE EJB container: A code generator to allow exposure of state-
ful J2EE Entity and Session JavaBeans as OGSI compliant Grid
services.

Depending on security, reliability, scalability and performance
requirements, any of these hosting environments can be chosen as
a target environment for implementing Grid services.

2.5.2 Web services engine

A Web services engine is responsible for SOAP message exchange
between clients and services. GT3 currently uses the Apache Axis
as its SOAP engine, which manages SOAP message exchange.

2.5.3 Grid services container

A Grid services container runs on top of a Web services engine,
and provides a run-time environment for hosting various services.
The idea of using a container in GT3 is borrowed from the Enter-
prise JavaBeans (EJB) model, which uses containers to host various
application or components with business logic. A GT3 container
can be deployed into a range of hosting environments in order
to overcome the heterogeneity of today’s Grid deployments. For
example, a Grid service could be implemented as an enterprise
B2B application serving a large number of concurrent users, as
well as a lightweight entry point into a Grid scheduling system
for batch submissions. If a service is developed to comply with
a container interface contract, it can be deployed in all environ-
ments supported by the container. Compared with Web services,
there are three major functional areas covered by a Grid service
container:

• Lightweight service introspection and discovery supporting
both pull and push information flows.

• Dynamic deployment and soft-state management of stateful ser-
vice instances that can be globally referenced using an extensible
resolution scheme.

2.5 THE GLOBUS TOOLKIT 3 (GT3) 43

• A transport independent Grid Security Infrastructure (GSI) [36]

supporting credential delegation; message signing and encryp-

tion; as well as authorization.

2.5.4 GT3 core services

The GT3 Core implements the interfaces and behaviour defined

by OGSI. GT3 core services are focused on the implementation of

the OGSI specification. Apart from that, security and system level

services are also part of the core services.

2.5.4.1 OGSI implementation

OGSI is a technical specification that can be used for implement-

ing Grid services as defined by OGSA. The OGSI implementation

in GT3 is a set of primitives implementing the standard OGSI

interfaces also called portTypes, such as: GridService, Factory,Notifi-
cation (source/sink/subscription), HandleResolver and ServiceGroup
(entry/registration). Grid services inherit these interfaces but often

implement or extend them. The implementation of the GridService
interface in GT3 is essentially the base container implementation,

and the Factory interface implements most of the state management

of Grid services in the GT3 container. These two implementations

are hence fundamental parts of GT3 and not likely to be replaced

by other implementations. The implementations of the other OGSI

interfaces in GT3 should, however, be seen more as a reference

implementation that could be replaced by more robust implemen-

tations provided by users.

2.5.4.2 Security infrastructure

Two levels of security are provided in GT3: transport-level security

uses the HTTPG protocol to enable GSI over HTTP; message-level

security offers both GSI Secure Conversation and GSI XML Signa-

ture by using the WS-Security [37], XML Encryption [38] and XML

Signature [39]. GT3 has made a number of improvements to GSI,

which can be found in Welch et al. [40].

44 OGSA AND WSRF

2.5.4.3 System level services

System level services are OGSI compliant Grid services that are

generic enough to be used by all other services. Currently GT3

contains three system level services:

• The Admin Service is used to “ping” a hosting environment and

to try and cleanly shutdown a container.

• The Logging Management Service allows the user to modify log

filters and to group existing log producers into more easily man-

ageable units at run time.

• The Management Service provides an interface for monitoring the

current status and loading a Grid service container. It also allows

users to activate and deactivate Grid service instances.

2.5.5 GT3 base services

Based on GT3 core services, base services in GT3 are mainly

focused on resource management, information services and reli-

able file transfer.

2.5.5.1 Resource management in GT3

The Globus Resource Allocation Manager (GRAM) [41] is the low-

est level of Globus resource management architecture. To invoke

a job via GRAM, a client uses the Resource Specification Lan-

guage (RSL) to describe the job to be run, specifying such details

as the name of the executable; the working directory, where input

and output should be stored; and the queue in which it should

run. While GT3 offers a number of other services (e.g. for file

movement and job monitoring), GRAM is the most complicated

service in GT3 from a security perspective because it provides a

secure, remote, dynamic instantiation of processes, involving both

secured interaction with a remote process and the local operating

system.

The GT3 GRAM model
In GT3, the RSL is marked up in XML. GT3 allows users to run

jobs remotely in a secure fashion, using a set of WSDL documents

2.5 THE GLOBUS TOOLKIT 3 (GT3) 45

and client interfaces for submitting, monitoring and terminating a

job. A job submission ultimately results in the creation of a Man-

aged Job Service (MJS). An MJS is a Grid service that acts as an

interface to its associated job, instantiating it and then allowing

it to be controlled and monitored with standard Grid and Web

services mechanisms. An MJS is created by invoking an operation

on an MJS factory service. While conceptually one MJS factory

service can be managed by each user account, this approach is

not ideal in practice because it involves resource consumption by

factories that sit idle when the user is not using the resource. Thus,

GT3 introduces the Master Managed Job Factory Service (MMJFS),

which is leveraged from GRAM in previous Globus toolkit ver-

sions. One MMJFS runs in a non-privileged account, and invokes a

Local Managed Job Factory Service (LMJFS) for users to create an

MJS in their accounts as needed. A service called a Proxy Router

routes incoming requests from a user to either that user’s LMJFS, if

present, or the MMJFS, if an LMJFS is not present for the user mak-

ing the request. Figure 2.19 shows the relation between MMJFS,

LMJFS, and MJS. Each LMJFS runs in a User-Hosting Environment

(UHE) and is valid for the lifetime of the UHE. An LMJFS can

create one or more MJSs as needed.

Each active user account has a hosting environment running for

its use, with an LMJFS and one or more MJS instances running in

that hosting environment. This approach allows for the creation of

Figure 2.19 MMJFS, LMJFS, and MJS in GT3

46 OGSA AND WSRF

Figure 2.20 The data flow of submitting jobs in GT3

multiple services in a lightweight manner. Figure 2.20 shows the

data flow of submitting user jobs in GT3, which are:

1. The user forms a job description in RSL and signs it with

their GSI credentials. This signed request is sent to the target

resource on which process initiation is desired.

2. The Proxy Router service accepts the request and either routes

it to an LMJFS, if present (skip to step 6), or to the MMJFS

otherwise.

3. The MMJFS verifies the signature of the request and estab-

lishes the identity of the user. Then it determines the local

account in which the job should be executed based on the

user’s identity and the grid-map-file, which is a local configura-

tion file containing the mappings from GSI identities to local

identities.

2.5 THE GLOBUS TOOLKIT 3 (GT3) 47

4. The MMJFS invokes the setuid Starter process to start an LMJFS

for the requestor.

5. The setuid Starter is a privileged program (typically setuid-root)

that has the sole function of starting a preconfigured LMJFS

for a user.

6. When an LMJFS starts, it needs to acquire credentials and

register itself with the Proxy Router. To register, the LMJFS

sends a message to the Proxy Router. This informs the Proxy

Router of the existence of the LMJFS so that it can route future

requests for job initiation to it.

7. The LMJFS invokes the Grid Resource Identity Mapper (GRIM)

to acquire a set of credentials. GRIM is a privileged program

(typically setuid-root) that accesses the local host creden-

tials and from them generates a set of GSI proxy credentials

for the LMJFS. This proxy credential has embedded in it

the user’s Grid identity, local account name and policy to

help the client verify that the LMJFS is appropriate for its

needs.

8. The LMJFS receives the signed job request. The LMJFS verifies

the signature on the request to make sure it has not been

tampered with and to verify the requestor is authorized to

access the local user account in which the LMJFS is running.

Once these verifications are complete, the LMJFS creates and

invokes an MJS with the job initiation request.

9. LMJFS returns the address (GSH) of the MJS to the user.

10. The user connects to the MJS to initiate a job submission. The

requestor and MJS perform mutual authentication using the

credentials acquired from GRIM. The MJS verifies whether the

requestor is authorized to initiate processes in the local account.

The requestor authorizes theMJSwith aGRIMcredential issued

from an appropriate host credential containing a Grid iden-

tity of the user. This approach allows the client to verify that

the MJS is communicating with it running not only on the

right host but also in an appropriate account. The user then

delegates GSI credentials to the MJS to dispatch the job for

running.

11. Jobs can be dispatched to a scheduling system such as Condor

[42], Sun Grid Engine [43], LSF [44] or PBS [45].

48 OGSA AND WSRF

Benefits of GT3 GRAM model
The GRAM model described in this section has the following ben-
efits from a privileged security perspective:

• Effective resource usage: In GT3, users with different user accounts
can share an MMJFS service or use an LMJFS invoked by the
MMJFS for job submission. LMJFS is only valid for the lifetime
of a user-hosting environment. It can be released once a user has
completed using it. This helps effective resource usage, which
results in performance improvement in services management.

• No privileged services: Network services, since they accept and
process external communications are likely to be compromised
by logic errors, buffer overflows, and similar. Removing privi-
leges from these services can reduce the impact of compromises
by minimizing the privileges gained.

• Minimal privileged code: Privileged code is confined to two pro-
grams,GRIMand the setuid Starter. Thedesign of these programs
allows them to be audited effectively and should reduce the
chances of using themmaliciously to gainprivilege authorization.

• Client-side authorization: GRIM allows the client to verify not only
the resource on which an MJS is running but also the account in
which it is executing. Thus, a client can act to prevent spoofing of
addresses or social engineering tricks that might mislead the user
into connecting to, and more importantly delegating credentials
to, an MJS other than the one they intended to.

2.5.5.2 The GT3 Index Service

The Index Service [46] uses an extensible framework for managing
static and dynamic data for GT3-based Grid systems. It provides
the following functions:

• Dynamic service data creation andmanagement via Service Data
Provider components.

• Aggregation of service data from multiple instances.

• Registration of Grid service instances.

Figure 2.21 shows the structure of the GT3 Index Service. The Index
Service combines Service Data Provider, Service Data Aggregation,
and Registry components. Service Data Provider components

2.5 THE GLOBUS TOOLKIT 3 (GT3) 49

Figure 2.21 The structure of the GT3 Index Service

provide a standard mechanism for the dynamic generation of

service data via external programs, which can be the GT3 core

service providers or be user-created custom providers. Service

Data Aggregation components provide a mechanism for handling

subscription, notification, and update of service data, which can be

aggregated from multiple service instances. Finally, Registry com-

ponents maintain a set of available GSHs of Grid service instances

whose service data can be queried with the FindServiceData()

method provided in the GridService interface.
The GT3 Index Service provides a GUI-based browser that

allows users to view the details of the services available in a reg-

istry. In addition, it also provides ogsi_find_service_data command,

a command-line interface for querying the service data available.

2.5.5.3 Reliable File Transfer in GT3

The GT3 Reliable File Transfer (RFT) [47] service is that provides

interfaces for controlling and monitoring third-party file transfers

using GridFTP [48]. The client controlling the transfer is hosted

inside of a Grid service. The GT3 RFT guarantees that file transfers

50 OGSA AND WSRF

will be reliable. For example, if a file transfer is interrupted (due
to a network failure, for example), it can restart the file transfer
from the moment it failed, instead of starting all over again.

2.5.6 The GT3 programming model

The programming model of GT3 core is just the same as Web
services computing model using loosely coupled client-side stubs
and server-side skeletons (also called stubs in GT3). However, GT3
programming has the following characteristics:

• GT3 uses GWSDL to define a Grid service interface. A GWSDL is
a WSDL with all the OGSI-specific types, messages, portTypes,
and namespaces. GWSDL uses the <gwsdl:portType> tag instead
of the <portType> tag in standard WSDL.

• TheWebServicesDeploymentDescriptor (WSDD)contains infor-
mation related to deploying a Grid service such as name of the
Grid service, name of a Grid service instance, and the base class
of the Grid service instance.

• GT3 packages all the compiled Java codes plus related files such
as the WSDD file of the Grid service as a GAR file for service
deployment. GAR is a special kind of JAR.

• A Grid service can be a transient service that can be dynamically
created and explicitly destroyed.

• A Grid service is a stateful service associated with service data.

• Grid services can notify subscribed clients for events of interest.

Figure 2.22 shows the data-flow control in implementing GT3
applications. The steps to implement a GT3 application with
Apache Axis are given below.

• Write a Grid service interface, which can be defined in Java,
WSDL or GWSDL.

• Write a service to implement the Grid service interface.

• Write aWSDD file for the deployment of the Grid service factory.

• Use a GT3 builder script to compile the Grid service interface file
and implementation file and package them plus other related
files such as the stubs generated from the interface and the
WSDD file into a GAR file.

2.5 THE GLOBUS TOOLKIT 3 (GT3) 51

Figure 2.22 Data-flow control in implementing GT3 applications

• Use Apache Ant [49] to deploy the GAR file in a Grid service

container to publish the service.

• Write a client to request the factory to create an instance of the

service. The client first gets the GSH of the factory and then the

GSR of the factory. Then it uses theGSR of the factory to create an

instance and obtains the GSR of the created instance. Finally the

client uses the GSR of the instance to access the service instance.

• Start a Grid service container.

• Start the client to request a service.

2.5.6.1 Server-side components in GT3

As shown in Figure 2.23, the major architectural components of

the server-side frameworks include the following:

• The Web service engine: This engine is used to deal with normal

Web service behaviour, SOAP message processing, JAX-RPC

handler processing, and Web service configuration.

• The Grid service container: GT3 provides a container for the cre-

ation, destruction, and life cycle management of stateful Grid

services.

52 OGSA AND WSRF

Figure 2.23 Service-side components in GT3

GT3 uses Apache Axis as the SOAP engine, which can be deployed

in a Tomcat Web server running as a Java Servlet container. The

SOAP engine is responsible for SOAP request/response serializa-

tion and de-serialization, JAX-RPC handler invocation, and Grid

service configuration. The GT3 container provides a pivot handler

to the Axis framework to pass the request messages to the Grid

service container. Once a Grid service factory creates a service

instance, the framework creates a unique GSH for that instance,

which will be registered with the container registry. This registry

holds all of the stateful service instances and is contacted by other

components and handlers to perform services:

• Identify services and invoke service methods;

• Get/set service properties (such as instance GSH and GSR);

• Activate/deactivate services;

• Resolve GSHs to GSRs.

2.5.6.2 Client-side components in GT3

As shown in Figure 2.24, GT3 uses the normal JAX-RPC client-

side programming model for Grid service clients. In addition, GT3

provides a number of helper classes at the client-side to hide the

details of the OGSI client-side programming model.

2.6 OGSA-DAI 53

Figure 2.24 Client-side components in GT3

2.5.6.3 A summary of GT3

GT3 includes an implementation of OGSI and has been employed
for building Grid applications in the context of OGSA. GT3 has core
and base services. The core services are concerned with creation,
destruction, and life cycle management of stateful Grid services.
The base services are concerned with secure job submission, infor-
mation services and reliable data transfer. To submit a job that
needs to run in parallel, there are two choices with GT3.

• Deploy a service factory on multiple nodes and run multiple
service instances in parallel.

• Use MMJFS and LMJFS to submit a user job to a backend
scheduling system such as Condor, Sun Grid Engine, PBS or LSF
to run jobs in parallel.

2.6 OGSA-DAI

While OGSI specifies the issues related to Grid services such as
creation and destruction, registration and discovery, notification,
however, the concept of Grid services is general. OGSI does not
specifically specify how to manage data services on the Grid.
As shown in Figure 2.25, sitting on top of OGSI, the Open Grid
Services Architecture Data Access and Integration (OGSA-DAI)
[50] is a middleware technology that can be used to easily access
and integrate data from different data sources such as relational
databases, XML databases, and file systems on the Grid. The
OGSA-DAI is both a specification and an implementation. As a
specification, it defines the services and interfaces that are needed

54 OGSA AND WSRF

Figure 2.25 The position of OGSA-DAI in OGSA

for data access and integration on the Grid. The interfaces are

extended WSDL portTypes based on the OGSI specification. The

OGSA-DAI implementation has been released which implements

the interfaces defined in the OGSA-DAI framework based on GT3.

The aim of the OGSA-DAI is to allow external data resources,

such as databases, to be incorporated within the OGSA frame-

work, and hence accessible via standard Grid services interfaces.

By using the OGSA-DAI, heterogeneous disparate data resources

can be accessed uniformly. It supports the registration/discovery

of databases and the interaction with those databases.

2.6.1 OGSA-DAI portTypes

The OGSA-DAI provides the following interfaces (portTypes) to

define Grid services for data access and integration. A Grid service

in the OGSA-DAI is called a Grid Data Service (GDS). A GDS must

implement the GDSPortType interface. The OGSA-DAI provides

the following interfaces.

GDSPortType portType
The GDSPortType portType supports data access, integration and

delivery and will be implemented by all GDSs. It extends three

portTypes. One is GridService portType specified in OGSI, the other

two are GridDataPerform (GDP) portType and GridDataTransport
portType defined by the OGSA-DAI.

2.6 OGSA-DAI 55

GridDataPerform portType
The GridDataPerform portType provides methods for clients to
access data sources and retrieve results. As shown in Figure 2.26,
it supports a document-oriented interface for database queries in
which a query request is submitted using Grid Data Service Per-
form (GDS-Perform) documents to specify the operations on the
data sources and a response is returned using Grid Data Service
Response (GDS-Response) documents containing the results oper-
ations. The nature of the query document submitted to the GDS
and the subsequent result document depends on the type of the
data resource that the Grid service is configured to represent. For
example, a relational database may accept SQL queries while an
XML database may accept XPath queries. Using a document to
describe a request allows the request to be analysed and optimized.

GridDataTransport portType
The GridDataTransport portType provides supports for data trans-
fer between OGSA-DAI services, and between OGSA-DAI clients
and the OGSA-DAI services. It allows data to be pushed or pulled.
The portType is derived from GridService portType in OGSI and
provides the following methods:

• PutFully() – transfer a complete set of data.

• GetFully() – receive a complete set of data.

• PutBlock() – transfer a block of datawhich is part of a larger batch
of data using the operation to specify the index of the block.

• GetBlock() – receive a block of data which is part of a larger
batch of data using the operation to specify the index of the
block.

Figure 2.26 Access data in the OGSA-DAI

56 OGSA AND WSRF

GridDataServiceFactory portType
The GridDataServiceFactory portType is used to implement a Grid
Data Service Factory (GDSF), which is a persistent Grid data ser-
vice used to create GDSs. The portType extends three OGSI port-
Types – GridService, Factory and NotificationSource.

DAIServiceGroupRegistry portType
The DAIServiceGroupRegistry portType is used to implement a
DAIServiceGroupRegistry (DAISGR). A DAISGR service can be
used to register any services that implement one or more OGSA-
DAI portTypes. The DAIServiceGroupRegistry portType extends
four OGSI portTypes – GridService, ServiceGroup, ServiceGroup
Registration and NotificationSource.

2.6.2 OGSA-DAI functionality

Based on the OGSA-DAI portTypes introduced, the OGSA-DAI
provides the following functionality for data access and integration
on the Grid.

2.6.2.1 The lifetime management of GDS instances

A GDS instance is a transient service. It is created by a GDSF
associated with a data source. A client can access a data source
through the interaction with the GDS. A GDS instance can be
dynamically created and explicitly destroyed.

2.6.2.2 Service registration/unregistration

A OGSA-DAI service can register itself with a DAISGR via the Ser-
viceGroupRegistration::Add() method. Apart from that, a DAISGR
can also be registered in another DAISGR. By querying a DAISGR,
clients can discover OGSA-DAI services that offer particular ser-
vices or capabilities or manage particular data sources. Registered
services in a DAISGR can also be unregistered via the Service-
GroupRegistration::Remove() method.

2.6.2.3 Service discovery

Aclient canqueryaDAISGRvia theGridService:: FindServiceData()
method to discover anOGSA-DAI servicemeeting its requirements.

2.6 OGSA-DAI 57

A client can then query the OGSA-DAI service directly, and also
query the OGSI ServiceGroupEntry service managing the OGSA-
DAI service’s registration. There are three purposes for a client to
query a DAISGR:

• To discover a GDSF to create GDS instances for specific appli-
cations.

• To query an OGSA-DAI service instance to retrieve its state
information.

• To query the OGSI ServiceGroupEntry associated with
an OGSA-DAI service to retrieve the OGSA-DAI service’s
registration.

2.6.2.4 Service notification

Clients can subscribe to a DAISGR for notifications of events which
happen in the DAISGR, i.e., changes in the state of the DAISGR,
the registration of a new service or the unregistration of an existing
service. Figure 2.27 shows the steps used for notification.

1. A client uses the NotificationSource::Subscribe() method to sub-
scribe to a DAISGR to specify the events of interest for notifica-
tions. In the subscription, it specifies the location of a notification
sink service which implements the NotificationSink interface.

2. The DAISGR creates a notification subscription service which
implements the NotificationSubscription interface to manage the
subscription.

Figure 2.27 Service notification in OGSA-DAI

58 OGSA AND WSRF

3. The DAISGR informs the client of the identity of this Notifica-

tionSubscription service.

4. The client queries the notification subscription service via Grid-

Service::FindServiceData() method to manage its subscription,

e.g. its lifetime management.

5. Once the DAISGR has some changes in its state, it will

notify the notification sink service via the Notification-

Sink::DeliverNotification() method.

6. The notification sink service will send the notification messages

to the client.

2.6.3 Services interaction in the OGSA-DAI

Nowwe give a whole view on the interactions between OGSA-DAI

services as shown in Figure 2.28.

1. Start a Grid service container, which reads a server-

config.wsdd file. The server-conf.wsdd file allows the Grid ser-

vice container to access information on services to be deployed

and to map between service names and the associated classes.

2. The Grid service container creates a persistent DAISGR based

on the GSH specified in the server-config.wsdd file.

3. The Grid service container creates a persistent GDSF based on

the GSH specified in the server-config.wsdd file.

4. The GDSF registers itself in the DAISGR with the Service-

GroupRegistration::Add() method.

5. The client queries the DAISGR using the GridService::Find-

ServiceData() method. The client selects a registered GDSF.

6. The DAISGR returns the GSH of a selected GDSF.

7. The client can query the service data elements of the GDSF to

retrieve its configuration information.

8. The client calls the GDSF Factory::createService() method to

create a GDS instance.

9. The GDSF creates the GDS instance.

10. The GDSF returns the GSH of the GDS instance to the client.

11. The client queries the service data elements of the newly cre-

ated GDS instance using the GridService::FindServiceData()

2.6 OGSA-DAI 59

Figure 2.28 Interactions between services in OGSA-DAI

method to establish its configuration and the schema that

describes the GDS-Perform documents that may be submitted

through the GridDataPerform::perform() method.

12. The client submits a GDS-Perform document to the GDS

instance.

13. The GDS instance accesses a database to get some data, and

generates a GDS-Response document.

14. The GDS instance returns the GDS-Response document to the

client.

15. The client destroys the GDS instance via GridService::Destroy()

method.

2.6.4 OGSA-DAI and DAIS

The Database Access and Integration Services (DAIS) working

group [51] within the GGF seeks to promote OGSA compliant stan-

dards for Grid database services, initially focusing on providing

60 OGSA AND WSRF

consistent access to existing, autonomously managed databases. It

does not seek to develop new data storage systems, but rather to

make such systems more readily usable individually or collectively

within a Grid framework.

OGSA-DAI is a collaborative programme of work involving the

Universities of Edinburgh, Manchester and Newcastle, with indus-

trial participation by IBM and Oracle. Its principal objective is to

produce open-source database access and integration middleware

that meets the needs of the UK e-Science community for develop-

ing Grid-related applications. Its scope includes the definition and

development of generic Grid data services providing access to,

and integration of data, held in relational database management

systems, as well as semi-structured data held in XML repositories.

OGSA-DAI also represents a significant contribution on behalf of

the UK e-Science Core Programme to extend the Grid model to

include database interoperability. OGSA-DAI works closely with

the DAIS working group and it is intended that the software will

serve as a reference implementation for DAIS standards.

2.7 WSRF

In this section, we present the Web Services Resource Framework

(WSRF). We first introduce WSRF and its key concepts. We then

describe the impact of WSRF on OGSA and OGSI.

2.7.1 An introduction to WSRF

The WSRF is a set of WS specifications. It introduces WS-Resource

to model and manage state information in the context of Web

services. A stateful resource associated with a Web service is

referred as a WS-Resource. WS specifications are briefly described

below.

WS-ResourceLifetime
The WS-ResourceLifetime specification is an initial draft [52] that

defines mechanisms for service requestors to request Web services

to destroy associated WS-Resources immediately or after certain

time. It also defines the means by which a WS-Resource may have

a self-destruct action after the expiration of a period of time.

2.7 WSRF 61

WS-ResourceProperties
The WS-ResourceProperties specification is an initial draft [53] that

defines the means by which the definition of the properties of a

WS-Resource may be declared as part of a Web service interface.

The declaration of the WS-Resource’s properties represents a pro-

jection of or a view on the WS-Resource’s state. This projection

represents a WS-Resource as an implicit stateful resource type that

defines a basis for access to the WS-Resource properties through

Web service interfaces. The term “implied” will be explained in

Section 2.7.1.2.

This specification also defines a standard set of message ex-

changes that allow a requestor to query or update the property

values of the impliedWS-Resource. The set of properties defined in

the WS-Resource projection, and associated with the Web service

interface, defines the constraints on the valid contents of these

message exchanges.

WS-Notification
TheWS-Notification specification is an initial draft [54] that defines

mechanisms for event subscription and notification using a topic-

based publish/subscribe pattern. It defines the following contents:

• Standard message exchanges to be implemented by service

providers that wish to participate in notifications.

• Standard message exchanges for a notification broker service

provider. The notification broker interface (NotificationBroker)
defines a standard set of message exchanges to describe a mes-

sage broker, providing an intermediary between Publishers and

Subscribers on a collection of Topics.

• Operational requirements expected of service providers and

requestors that participate in notifications, and an XML model

that describes topics.

The WS-Notification has been split into three specific specifi-

cations, WS-BaseNotification [55], WS-BrokeredNotification [56]

and WS-Topics [57]. The three specifications are also the initial

drafts at the time of writing. The WS-BaseNotification is the

base specification on which the other WS-Notification specifica-

tion documents depend on. It defines the Web services interfaces

for NotificationProducers and NotificationConsumers to exchange

messages. The WS-BrokeredNotification defines the Web services

62 OGSA AND WSRF

interfaces for NotificationBrokers, which play the roles of both

NotificationProducers and NotificationConsumers as defined in

the WS-BaseNotification. A NotificationBroker can deliver noti-

fication messages to NotificationConsumers and subscribe to

notifications distributed by NotificationProducers. In addition, a

NotificationBroker must support hierarchical topics, and the Con-

creteTopicPath topic expression dialects defined inWS-Topics. The

WS-Topics defines a mechanism to organize and categorize items

of interest for subscription known as “topics”. It provides a con-

venient means by which subscribers can reason about WS-Base

notifications of interest. WS-Topics defines three topic expression

dialects that can be used as subscription expressions. It further

specifies an XML model for describing metadata associated with

topics.

WS-BaseFaults
The WS-BaseFaults specification is an initial draft [58] that defines

an XML Schema for base faults, along with rules to specify how

these faults types are used and extended by Web services. The

goal of WS-BaseFaults is to standardize the terminology, concepts,

XML types, and WSDL usage of a base fault type for Web services

interfaces. Specifying Web services fault messages in a common

way enhances support for problem determination and fault man-

agement. It is easier for requestors to understand faults if the fault

information from various interfaces is consistent.

WS-ServiceGroup
To build higher-level services, we often need primitives for man-

aging collections of services. Archetypal examples are registries

and index services. The WS-ServiceGroup specification is an ini-

tial draft [59] that defines a means by which Web services and

WS-Resources can be aggregated or grouped together. A Ser-

viceGroup is a WS-Resource that represents a collection of Web

services. The individual services represented within the Ser-

viceGroup are the ServiceGroup’s members or its membership.

ServiceGroupmembership rules, membership constraints and clas-

sifications are expressed using the resource property model as

defined in the WS-ResourceProperties specification.

WS-RenewableReferences
No draft has been released yet at the time of writing. The spec-

ification will standardize mechanisms for Web services to renew

TE
AM
 F
LY

2.7 WSRF 63

endpoint references when the current reference becomes invalid. It

replaces the concepts of GSH and GSR in the OGSI 1.0 specification.

2.7.1.1 The WS-Resource concept

A Web service, which can be viewed as a stateless message pro-

cessor, can be associated with stateful resources (WS-Resource).

A WS-Resource has the following characteristics:

• It is a stateful resource that can be used as a data context for a

Web service to exchange messages.

• It can be created, identified, and destroyed. A WS-Resource can

have lots of identifiers within the same Web service or within

different Web services.

• A stateful WS-Resource type can be associated with a Web ser-

vice interface definition to allow well-formed queries against

the WS-Resource via its service interface, and the status of the

stateful WS-Resource can be queried and modified via service

message exchanges.

The WSRF does not attempt to define the message exchange

used to request the creation of new WS-Resources. Instead,

it simply notes that new WS-Resources may be created by

the use of a WS-Resource factory pattern as defined in the

WS-ResourceLifetime specification. A WS-Resource factory is any

Web service capable of bringing one or more WS-Resources into

existence. The response message of a factory operation typically

contains at least one endpoint reference that refers to the newly

created WS-Resource.

2.7.1.2 The implied WS-Resource pattern

The term implied WS-Resource pattern is used to describe a spe-

cific kind of relationship between a Web service and one or more

stateful WS-Resources.

• The term implied means that when a client accesses a Web ser-

vice, the Web service will return a WS-Addressing [60] endpoint

reference used to refer to the WS-Resources associated with the

64 OGSA AND WSRF

Web service. Each WS-Resource has an identifier (ID) for man-
aging its state. The IDs of the WS-Resources to be accessed by
the client will be automatically encapsulated in the endpoint
reference and returned to the client. A WS-Resource ID is only
used by a Web service as an implicit input to locate a specific
WS-Resource; it is opaque to the client.

• The term pattern is used to indicate that the relationship between
Web services and stateful WS-Resources is codified by a set of
conventions on existing Web services technologies, in particular
XML, WSDL and WS-Addressing.

WS-Addressing plays a key role in the WSRF. The concept of end-
point references is the core of the WS-Addressing specification.
A WS-Addressing endpoint reference is an XML serialization of a
network-wide pointer to aWeb service. AWS-Addressing endpoint
reference contains, among others, two important parts. One refers
to the network transport-specific address of the Web service, e.g.
a URL in the case of HTTP. This is the same address that would
appear within a port element in a WSDL description of the Web
service. The other part is reference properties that contain an ID to
uniquely identify a WS-Resource. Figure 2.29 gives an example to
explain how the concept of endpoint references uses the implied
WS-Resource pattern in accessing aWS-Resource via aWeb service.

Figure 2.29 Accessing a stateful WS-Resource via a Web service

2.7 WSRF 65

As shown in Figure 2.29, a service requestor sends a request

to a Web service called myservice that will cause the service to

create a WS-Resource whose ID is 123. The service generates a

response with a WS-Addressing endpoint reference and sends the

response to the requestor. The endpoint reference is similar to

the one as shown in Figure 2.30. It contains a URL of the service

(wsa:Address) and the resourceID (resourceID is one property of

the wsa:ReferenceProperties).

The service requestor binds to the service with the endpoint

reference using SOAP. The WS-Addressing specification requires

that each ReferenceProperties element in the endpoint reference must

appear as a header block in the SOAP message sent to the service

identified by the endpoint reference. The SOAPmessage combined

with the ReferenceProperties in Figure 2.30 is similar to the one

shown in Figure 2.31. wsa:To specifies where to locate the service,

and resourceID specifies which WS-Resource the service will use

for the request.

<wsa:EndpointReference>
<wsa:Address>

http://SomeURL/myservice
</wsa:Address>
<wsa:ReferenceProperties>

<resourceID>123</resourceID>
</wsaReferenceProperties>

</wsa:EndpointReference>

Figure 2.30 A WS-Addressing endpoint reference sample

<soap:Envelope>
<soap:Header>

· · ·
<wsa:To>http://SomeURL/myservice</wsa:To>
<resourceID>123</resourceID>

· · ·
</soapHeader>
<soap:Body>
� � � some message here � � �
</soap:Body>

</soap:Envelope>

Figure 2.31 A SOAP message for binding to a Web service associated with
a WS-Resource

66 OGSA AND WSRF

As shown in Figure 2.30, the ReferenceProperties in a WS-
Addressing endpoint reference of a Web service is opaque to the
service requestor, which does not need to do anything about it.
The ReferenceProperties such as the WS-Resource ID is only used by
a Web service as an implicit input to locate a specific WS-Resource
associated with the Web service.

2.7.2 WSRF and OGSI/GT3 [61, 62]

A huge effort from the Grid community went into the OGSI spec-
ification, implementations, and development and deployment of
OGSI-based services. WSRF effectively declared that OGSI was
obsolescent.
IBM realized that OGSI was too far from standard Web services

to be acceptable to the Web services community. This is what led
to WSRF. Some of the key differences are: WSRF does not break
WSDL; one can expect better tooling support for WSRF; WSRF is
less object-oriented; WSRF is more mix and match. In OGSI, one
talked to service instances about their service data. In WSRF, one
talks to the service about its resources and their properties. Many
of the OGSI ideas and patterns do go through in WSRF, once you
substitute “resource” for “service instance”. A good thing about
WSRF is that it permits multiple service interfaces to the same
stateful resource. The equivalent thing in OGSI would be multiple
service interfaces for the same service instance. However, asser-
tions that the differences between OGSI and WSRF are “syntactic
sugar”, and that it is a straightforward refactoring process to go
from OGSI implementations to WSRF implementations or OGSI
services to WSRF services, are unproven.

2.7.2.1 A comparison of WSRF and OGSI

Advantages of WSRF over OGSI
While the definition of WSRF has been motivated primarily by the
desire to integrate recent developments in Web services architec-
ture, in particular WS-Addressing, its design also addresses three
criticisms of OGSI v1.0 from the Web services community:

• OGSI is a heavyweight specification with too much definition in
one specification. WSRF partitions the OGSI functionality into a
set of specifications.

2.7 WSRF 67

• OGSI does not work well with existing Web services tooling.

OGSI uses XML Schema extensively, for example there is fre-

quent use of xsd:any, attributes. It also uses a lot of “document-

oriented” WSDL operations. These features cause problems

with, for example, JAX-RPC. WSRF somewhat reduces the use

of XML Schema.

• OGSI models a stateful resource as a Web service that encap-

sulates the state of the resource, with the identity and life cycle

of the service and resource state coupled. WSRF re-articulates

the underlying OGSI architecture to make an explicit distinction

between a stateless Web service and the stateful resources acted

upon by that service.

Advantages of OGSI over WSRF
There are some advantages of OGSI compared with WSRF.

• With the features of Object-Oriented Paradigm (OOP), OGSI

has strong notions of extensibility through inheritance, which

are absent in WSRF; one can imagine designing frameworks for

developing services that rely heavily on OGSI inheritance.

• Similarly, the criticism that OGSI is heavyweight also has its

flip side: in OGSI, we can count on an “OGSI compliant Grid

services” providing certain portTypes and behaviour; this is

not the case in WSRF where everything is optional. Indeed,

one runs into language difficulties: what does WSRF-compliance

mean?

2.7.2.2 Modelling stateful resources in WSRF and OGSI

Both WSRF and OGSI are concerned with the extension of stan-

dard Web services with stateful information, but with different

approaches. As shown in Figure 2.32, WSRF separates associated

resources from Web services. It uses a WS-Addressing endpoint

reference to associate Web services with stateful WS-Resources by

using ReferenceProperties in which resources IDs can be specified.

OGSImodels stateful resources with service data elements which

are tightly coupled with Grid services or services instances, as

shown in Figure 2.33.

68 OGSA AND WSRF

Figure 2.32 Associating Web services with stateful resources (WS-
Resources) in WSRF

Figure 2.33 Associating stateful Grid services with service data in OGSI

2.7.2.3 The impacts of WSRF on OGSI/GT3

As shown in Figure 2.34, WSRF retains essentially all of OGSI

concepts, and introduces some changes to OGSI messages and

their associated semantics. It is expected that the effort required to

modify an OGSI-based system or specification to use WSRF will

be small. Services implemented using OGSI-based middleware,

such as the GT3, are likely to require some changes to exploit

WSRF-based tools, but it is expected that the changes should be

modest due to the similarities between WSRF and OGSI. More

generally, the fact that WSRF is based on mainstreamWeb services

standards and has been embraced by major vendors means that

we can expect to see its integration into commercial Web services

products, enabling a much richer choice of products upon which

WSRF compliant services can be built.

2.7 WSRF 69

Figure 2.34 The functionality in OGSI and WSRF

OGSI is being replaced by WSRF as it is converging the efforts
put by the Web services and Grid communities. It is expected
that the Globus Toolkit 4 (GT4), which is based on WSRF, will
be released in early 2005. However, GT3 and GT4 will not
interoperate.

2.7.3 WSRF and OGSA

Based on standard Web services, OGSA attempts to define the core
standard services required to build service-oriented Grid appli-
cations, through the OGSA working group at GGF. But it does
not say anything about the implementation of Grid services in
the context of Web services. OGSA is an architecture, so all the
WSRF ideas should go through regardless of the plumbing into
OGSA. However, the OGSA-WG documents now name WSRF as
one of the enabling technologies and will use WSRF language
where convenient.
Since WSRF promotes a standard way to model Web services as

stateful resources, WSRF can be used as an infrastructure for devel-
oping Grid services in the context of OGSA. OGSA can be enriched
by WSRF as shown in Figure 2.35. OGSA platform services are
Grid base services that are used for job submission, user authen-
tication and authorization, information services, data replication
and transfer, as well as data access and integration. WSRF services

70 OGSA AND WSRF

Figure 2.35 A view of OGSA on top of WSRF

are Grid core services that are used for the creation, destruction,

and life cycle management of stateful Web services resources.

2.7.4 A summary of WSRF

WSRF promotes a standard way to model Web services with state-

ful resources. It is hoped that WSRF will provide a convergence

point for the Web services and Grid communities. While the work

of OGSI is undertaken primarily by the Grid community, the work

on WSRF is being undertaken by joint efforts both from Web ser-

vices vendors like IBM, HP, Fujitsu, SAP AG, Sonic Software and

Grid researchers from the Globus Alliance, Indiana University,

Lawrence Berkeley National Laboratory, University of Manchester,

University of Virginia; WSRF is emerging as a promising standard

for building the next generation of interoperable service-oriented

Grid applications.

2.8 CHAPTER SUMMARY

In this chapter, we have studied OGSA, its structure, functional-

ity, how it is used and why the Grid community needs it. We

started the chapter by providing an overview of traditional dis-

tributed middleware techniques such as socket programming, RPC

paradigm, Java RMI, DCOM and CORBA. Then we introduced

2.8 CHAPTER SUMMARY 71

Web services and the benefits that they can bring us. It is clear

that Web services are the path ahead as they provide a simple

and open standards-based middleware for distributed computing.

OGSA uses a range of Web services technologies to provide an

infrastructure that is appropriate for Grid applications. Since in

the distributed world of the Grid the same problems arise as on

the Internet, concerning the description and discovery of services,

OGSA certainly takes an approach to embrace these technologies.

OGSA is the de facto standard for building service-oriented Grid

services and applications. OGSA introduces a couple of new inter-

faces (portTypes) to meet the Grid needs in the context of WSDL.

While Web services are persistent and stateless, Grid services can

be transient and stateful. To meet this end, OGSA introduces the

concept of GSH/GSR and service data element associated with

each Grid service. While OGSA defines what kinds of services

should be a part in the architecture, it does not say anything about

the implementation of the services. It is the OGSI that technically

specifies how the core services in OGSA can be implemented in

terms of Web services. The core services include service creation

and destruction, service registration and discovery, and service

notification. GT3 is a reference implementation of OGSI and has

been widely deployed for building OGSA compliant Grid appli-

cations. Since the concept of services in OGSA is more general,

the OGSA-DAI is specifically designed to provide supports for

implementing OGSA compliant Grid services for data access and

integration on the Grid.

Many working groups within the GGF are working with the

OGSA-WG to define new services which may be integrated with

the architecture, i.e., the DAIS working group seeks to promote

OGSA compliant standards for Grid database services, the Grid

Economic Services Architecture Working Group (GESA-WG) [63]

seeks to define standards for charging Grid services, the Resource

Usage Services Working Group (RUS-WG) [64] working group

seeks to define resource usage as Grid services, the Grid Resource

Allocation Agreement Protocol Working Group (GRAAP-WG) [65]

seeks to address the protocol between a Super-Scheduler (Grid

Level Scheduler) and local schedulers necessary to reserve and

allocate resources in the Grid as a building block for this service.

Apart from OGSA, we have also studied WSRF, which is emerg-

ing as a promising standard for modelling stateful resources with

Web services. WSRF is replacing OGSI and is converging the efforts

72 OGSA AND WSRF

put from both the Web services and Grid communities. The future
Grid middleware toolkits such as GT4 will be based on WSRF to
provide the core Grid services as defined by OGSA.

2.9 FURTHER READING AND TESTING

In this chapter, we focused on the theoretical part of OGSA, i.e.
how it extends the Web services model, and what kind of services
should be a part of the architecture. In terms of the implemen-
tation of OGSA core services, we described the OGSI compliant
GT3 including its structure, services, and programming model.
We introduced OGSA-DAI and discussed how data from differ-
ent data sources such as relational and XML databases can be
accessed and integrated. However, we did not give details related
to programming, i.e., how to programWeb services, GT3 or OGSA-
DAI. Information related to writing Java RMI, DCOM and CORBA
applications can be found in McCarty and Dorion [66]. The Apache
Axis Web site provides detailed information on how to install Axis
and write Web services applications with the Axis framework.
Ferreira et al. [67] describe how to install GT3 and manage GT3 ser-
vices. The GT3 Tutorial [68] explains how to program GT3 services.
Information related to OGSA-DAI installation and programming
can be found in the OGSA-DAI Web site.

2.10 KEY POINTS

• Web services are emerging as a promising platform for building
distributed applications in heterogeneous computing environ-
ments.

• The core standards in Web services are WSDL for ser-
vice description, SOAP for message exchanging, UDDI/WS-
Inspection for service publication and discovery.

• Standard Web services are stateless and persistent services.

• OGSA is the de facto standard for building service-oriented Grid
systems.

• OGSA defines the features of Grid services in the context of
Web services. It introduces the concept of Grid service instance
to provide transient Grid services and uses service data to be
associated with Grid services to provide stateful Grid services.

2.11 REFERENCES 73

• OGSI is a technical implementation specification to define the

interfaces of the core Grid services in the context of OGSA. The

GT3 includes an implementation of OGSI.

• OGSA-DAI is an OGSA compliant middleware technology that

can be used specifically for data access and integration over the

Grid.

• WSRF is emerging as a promising standard for modelling state-

ful resources with Web services.

• The work on WSRF is a joint effort put by the Web services and

the Grid communities. WSRF will bring the two parties further

closer.

• WSRF is replacing OGSI and will have little impact on OGSA.

• WSRF can be used as an infrastructure for the construction of

the core Grid services in the context of OGSA.

• WSRF is being taken by the Grid community, e.g. it is expected

that WSRF-based GT4 will be released in early 2005.

2.11 REFERENCES

[1] GGF, http://www.ggf.org.

[2] Globus, http://www.globus.org.

[3] Web services, http://www.w3.org/2002/ws/.

[4] Foster, I., Kesselman, C., Nick, J. and Tuecke, S. (June 2002). The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems Integration,
http://www.globus.org/research/papers/ogsa.pdf.

[5] OGSA-WG, http://www.Gridforum.org/ogsa-wg.

[6] OGSI-WG, http://www.Gridforum.org/ogsi-wg/.

[7] Czajkowski, K., Ferguson, D.F., Foster, I., Frey, J., Graham, S., Sedukhin, I.,

Snelling, D., Tuecke, S. and Vambenepe, W. (March 2004). The WS-Resource
Framework, Version 1.0, http://www-106.ibm.com/developerworks/library/

ws-resource/ws-wsrf.pdf.

[8] Birrell, A.D. and Nelson, B.J. (1984). Implementing Remote Procedure Calls.

ACM Transactions on Computer Systems, 2(1): 39–59.
[9] Java RMI, http://java.sun.com/products/jdk/rmi/.

[10] DCOM, http://www.microsoft.com/com/tech/DCOM.asp.

[11] CORBA, http://www.corba.org.

[12] Sun Microsystems (June 1991). Open Network Computing: RPC Programming.
[13] OSF DCE 1.0 Application Development Reference, 2 December 1991.

[14] OMG, http://www.omg.org.

[15] Gopalan, S.R. (September 1998). A Detailed Comparison of CORBA, DCOM,

and Java/RMI, Object Management Group (OMG), White Paper.

[16] SOAP, http://www.w3.org/TR/soap/.

74 OGSA AND WSRF

[17] Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S. (2001).

Web Services Description Language (WSDL) 1.1, W3C Note 15, http://

www.w3.org/TR/wsdl.

[18] UDDI,Universal Description, Discovery and Integration, http://www.uddi.org.

[19] Brittenham, P. (2001). An Overview of the Web Services Inspection Language,
http://www.ibm.com/developerworks/webservices/library/ws-wsilover.

[20] Nagy, William A. and Ballinger, Keith. (November 2001). The WS-Inspection
and UDDI Relationship, http://www-106.ibm.com/developerworks/webser-

vices/library/ws-wsiluddi.html.

[21] J2EE, http://java.sun.com/j2ee.

[22] Apache Axis, http://ws.apache.org/axis/.

[23] UDDI4J, http://www-124.ibm.com/developerworks/oss/uddi4j/.

[24] Jakarta Tomcat, http://jakarta.apache.org/tomcat/.

[25] Microsoft .Net, http://www.microsoft.com/net/.

[26] Microsoft DISCO, http://msdn.microsoft.com/library/default.asp?url=/

library/en-us/cptools/html/cpgrfwebservicesdiscoverytooldiscoexe.asp.

[27] Mukhi, N. (2001). Web Service Invocation Sans SOAP, http://www.ibm.com/

developerworks/library/ws-wsif.html.

[28] Kunszt, Peter Z. (April 2002). The Open Grid Services Architecture –ASummary
and Evaluation, http://edms.cern.ch/file/350096/1/OGSAreview.pdf.

[29] Dialani, V., Miles, S., Moreau, L., Roure, D.D. and Luck, M. (August 2002).

Transparent Fault Tolerance for Web Services Based Architectures. Proceed-

ings of 8th International Europar Conference (EURO-PAR ’02), Paderborn,

Germany. Lecture Notes in Computer Science, Springer-Verlag.

[30] Zhang, W., Zhang, J., Ma, D., Wang, B. and Chen, Y. (2004). Key Tech-
nique Research on Grid Mobile Service. Proceedings of the 2nd International

Conference on Information Technology for Application (ICITA 2004), Harbin,

China.

[31] Sandholm, T. and Gawor, J. (July 2003). The Globus Toolkit 3 Core – A Grid Ser-
vice Container Framework, http://www-unix.globus.org/toolkit/3.0/ogsa/

docs/gt3_core.pdf.

[32] MS.NETGrid, http://www.epcc.ed.ac.uk/ogsanet/.

[33] Wasson, G., Beekwilder, N., Morgan, M., Humphrey, M. (2004). OGSI.NET:
OGSI-Compliance on the .NET Framework. Proceedings of the 4th IEEE/ ACM

International Symposium on Cluster Computing and the Grid (CCGrid

2004). Chicago, Illinois. CS Press.

[34] OGSI::Lite, http://www.sve.man.ac.uk/Research/AtoZ/ILCT.

[35] PyOGSI, http://dsd.lbl.gov/gtg/projects/pyOGSI/.

[36] Butler, R., Engert, D., Foster, I., Kesselman, C., Tuecke, S., Volmer, J. and

Welch, V. (2000). Design and Deployment of a National-Scale Authentication

Infrastructure. IEEE Computer, 33(12): 60–66.
[37] IBM, Microsoft and VeriSign. (2002). Web Services Security Language

(WS-Security).
[38] XML Encryption, http://www.w3.org/Encryption/2001/.

[39] XML Signature, http://www.w3.org/TR/xmldsig-core/.

[40] Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor, J.,

Kesselman, C., Meder, S., Pearlman, L. and Tuecke, S. (2003). Security for Grid
Services, http://www.globus.org/security/GSI3/GT3-Security-HPDC.pdf.

2.11 REFERENCES 75

[41] Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W.

and Tuecke, S. (1998). A Resource Management Architecture for Metacomputing
Systems. Proceedings of IPPS/SPDP ’98 Workshop on Job Scheduling Strate-

gies for Parallel Processing, pp. 62–82, Orlando, FL, USA. Lecture Notes in

Computer Science, Springer-Verlag.

[42] Condor, http://www.cs.wisc.edu/condor/.

[43] Sun Grid Engine, http://wwws.sun.com/software/Gridware/.

[44] LSF, http://www.platform.com/products/LSF/.

[45] PBS, http://www.openpbs.org/.

[46] GT3 Index Service, http://www.globus.org/ogsa/releases/final/docs/

infosvcs/indexsvc_overview.html.

[47] GT3 RFT, http://www-unix.globus.org/toolkit/docs/3.2/rft/key/index.html.

[48] GridFTP, http://www.globus.org/dataGrid/Gridftp.html.

[49] Apache Ant, http://ant.apache.org/.

[50] OGSA-DAI, http://www.ogsadai.org.uk/.

[51] DAIS, http://www.Gridforum.org/6_DATA/dais.htm.

[52] Frey, J., Graham, S., Czajkowski, K., Ferguson, D.F., Foster, I., Leymann, F.,

Maguire, T., Nagaratnam, N., Nally, M., Storey, T., Sedukhin, I.,

Snelling, D., Tuecke, S., Vambenepe, W. and Weerawarana, S. (March 2004).

Web Services Resource Lifetime, Version 1.1, http://www-106.ibm.com/

developerworks/library/ws-resource/ws-resourcelifetime.pdf.

[53] Graham, S., Czajkowski, K., Ferguson, D.F., Foster, I., Frey, J., Leymann, F.,

Maguire, T., Nagaratnam, N., Nally, M., Storey, T., Sedukhin, I., Snelling, D.,

Tuecke, S., Vambenepe, W. and Weerawarana, S. (March 2004). Web

Services Resource Properties, Version 1.1, http://www-106.ibm.com/

developerworks/library/ws-resource/ws-resourceproperties.pdf.

[54] Web Services Notification, http://www-106.ibm.com/developerworks/

library/specification/ws-notification/.

[55] Graham, S., Niblett, P., Chappell, D., Lewis, A., Nagaratnam, N.,

Parikh, J., Patil, S., Samdarshi, S., Sedukhin, I., Snelling, D., Tuecke, S.,

Vambenepe, W. and Weihl, B. (March 2004). Web Services Base Notification,

Version 1.0, ftp://www6.software.ibm.com/software/developer/library/

ws-notification/WS-BaseN.pdf.

[56] Graham, S., Niblett, P., Chappell, D., Lewis, A., Nagaratnam, N., Parikh, J.,

Patil, S., Samdarshi, S., Sedukhin, I., Snelling, D., Tuecke, S., Vambenepe, W.

and Weihl, B. (March 2004). Web Services Brokered Notification,

Version 1.0, ftp://www6.software.ibm.com/software/developer/library/

ws-notification/WS-BrokeredN.pdf.

[57] Graham, S., Niblett, P., Chappell, D., Lewis, A., Nagaratnam, N.,

Parikh, J., Patil, S., Samdarshi, S., Sedukhin, I., Snelling, D., Tuecke, S.,

Vambenepe,W. and Weihl, B. (2004) Web Services Topics, Version 1.0,

ftp://www6.software.ibm.com/software/developer/library/ws-notification/

WS-Topics.pdf.

[58] Tuecke, S., Czajkowski, K., Frey, J., Foster, I., Graham, S., Maguire, T.,

Sedukhin, I., Snelling, D. and Vambenepe, W. (March 2004). Web Ser-

vices Base Faults, Version 1.0, http://www-106.ibm.com/developerworks/

library/ws-resource/ws-basefaults.pdf.

[59] Graham, S., Maguire, T., Frey, J., Nagaratnam, N., Sedukhin, I.,

Snelling, D., Czajkowski, K., Tuecke, S. and Vambenepe, W. (March 2004).

76 OGSA AND WSRF

WS-ServiceGroup Specification, Version 1.0, http://www-106.ibm.com/

developerworks/library/ws-resource/.

[60] WS-Addressing, http://www.w3.org/Submission/2004/SUBM-ws-addressing-

20040810/.

[61] Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D.,

Leymann, F., Nally, M., Sedukhin, I., Snelling, D., Storey, T., Vambenepe, W.

andWeerawarana, S. (3 March 2004). Modelling Stateful Resources withWeb

Services, Version 1.1, http://www-106.ibm.com/developerworks/library/

ws-resource/ws-modelingresources.pdf.

[62] Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Maguire, T.,

Snelling, D. and Tuecke, S. (12 February 2004). From Open Grid Services

Infrastructure to WS-Resource Framework: Refactoring & Evolution,

Version 1.0, http://www-106.ibm.com/developerworks/library/ws-resource/

gr-ogsitowsrf.html.

[63] GESA-WG, http://forge.gridforum.org/projects/gesa-wg.

[64] RUS-WG, http://forge.gridforum.org/projects/rus-wg.

[65] GRAAP-WG, http://forge.gridforum.org/projects/graap-wg.

[66] McCarty, B. and Dorion, L.C. (1999). Java Distributed Objects. Sams,

Indianapolis, Indiana.

[67] Ferreira, L., Jacob, B., Slevin, S., Brown, M., Sundararajan, S., Lepesant, J.

and Bank, J. The Globus Toolkit 3.0 Quick Start, IBM Redbook, http://

www.redbooks.ibm.com/redpapers/pdfs/redp3697.pdf.

[68] The GT3 Tutorial, http://gdp.globus.org/gt3-tutorial/.

3
The Semantic Grid and
Autonomic Computing

LEARNING OUTCOMES

In this chapter, we will study the Semantic Grid and autonomic

computing. From this chapter, you will learn:

• What the Semantic Grid is about.

• The technologies involved in the development of the Semantic

Grid.

• The state-of-the-art development of the Semantic Grid.

• What autonomic computing is about.

• Features of autonomic computing.

• How to apply autonomic computing techniques to Grid services.

CHAPTER OUTLINE

3.1 Introduction

3.2 Metadata and Ontology in the Semantic Web

3.3 Semantic Web Services

3.4 A Layered Structure of the Semantic Grid

The Grid: Core Technologies Maozhen Li and Mark Baker

© 2005 John Wiley & Sons, Ltd

78 SEMANTIC GRID AND AUTONOMIC COMPUTING

3.5 Semantic Grid Activities

3.6 Autonomic Computing

3.7 Chapter Summary

3.8 Further Reading and Testing

3.1 INTRODUCTION

The concept of the Semantic Grid [1] is evolved through the concur-

rent development of the Semantic Web and the Grid. The Semantic

Web can be defined as “an extension of the current Web in which

information is given well-defined meaning, better enabling com-

puters and people to work in cooperation” [2]. The aim of the

Semantic Web is to augment unstructured Web content so that it

may bemachine-interpretable information to improve the potential

capabilities of Web applications. The aim of the Semantic Grid is

to explore the use of Semantic Web technologies to enrich the Grid

with semantics. The relationship between the Grid, the Semantic

Web and the Semantic Grid is shown in Figure 3.1. The Semantic

Grid is layered on top of the Semantic Web and the Grid. It is

the application of Semantic Web technologies to the Grid. Meta-

data and ontologies play a critical role in the development of the

Semantic Web. Metadata can be viewed as data that is used to

describe data. Data can be annotated with metadata to specify its

origin or its history. In the Semantic Grid, for example, Grid ser-

vices can be annotated with metadata associated with an ontology

for automatic service discovery. An ontology is a specification of

a conceptualization [3]. We will explain metadata and ontology in

Section 3.2.

Semantic Grid

Semantic
Web Grid

Semantic Web Technology

Grid Service

Applying Technology

Semantic Grid Service

Figure 3.1 The Semantic Web, Grid and Semantic Grid

3.2 METADATA AND ONTOLOGY IN THE SEMANTIC WEB 79

The Grid is complex in nature because it tries to couple dis-

tributed and heterogeneous resources such as data, computers,

operating systems, database systems, applications and special

devices, which may run across multiple virtual organizations to

provide a uniform platform for technical computing. The com-

plexity of managing a large computing system, such as the Grid,

has led researchers to consider management techniques that are

based on strategies that have evolved in biological systems to deal

with complexity, heterogeneity and uncertainty. The approach is

referred to autonomic computing [4]. An autonomic computing

system is one that has the capabilities of being self-healing, self-

configuring, self-optimizing and self-protecting.

This chapter is organized as follows. In Section 3.2, we intro-

duce the ontological languages involved in the development of the

Semantic Web. In Section 3.3, we describe how to enrich standard

Web services with semantics to provide Semantic Web services. In

Section 3.4, we present a layered structure of the Semantic Grid.

In Section 3.5, we review the state-of-the-art development of the

Semantic Grid. In Section 3.6, we introduce autonomic comput-

ing and explain what kinds of benefits it could bring to the Grid.

We conclude this chapter in Section 3.7. Finally, in Section 3.8, we

provide further readings.

3.2 METADATA AND ONTOLOGY
IN THE SEMANTIC WEB

The Semantic Web provides a common framework that allows

data to be shared and reused across applications, enterprises and

community boundaries. It is a collaborative effort led by W3C [5]

with participation from a large number of researchers and indus-

trial partners. The key point of the Semantic Web is to convert the

current structure of the Web as a distributed data storage, which

is interpretable only by human beings, into a structure of informa-

tion storage that can be understood by computer-based entities. In

order to convert data into information, metadata has to be added

into context. The metadata contains the semantics, the explanation

of the data to which it refers. Metadata and ontology are critical

to the development of the Semantic Web.

Now we give a simple example to show how to use meta-

data and ontologies to match a service with semantic meanings.

80 SEMANTIC GRID AND AUTONOMIC COMPUTING

Figure 3.2 Metadata and ontology in semantic service matching

As shown in Figure 3.2, a service consumer is buying a computer.

The service request information can be annotated with metadata

(perhaps encoded as XML) to describe the service request, e.g.

a preferable computer configuration and price. A quote service

provided by a vendor selling desktops and laptops can also be

annotated with metadata to describe the service. When the service-

matching engine receives the two metadata sets related to the

service request and quote service, the engine will access the ontol-

ogy which defines that desktops and laptops are computers. Then

the engine will make an inference whether the quote service can

satisfy the service request or not.

Metadata and ontologies play a critical role in the development

of the Semantic Web. An ontology is a specification of a conceptu-

alization. In this context, specification refers to an explicit represen-

tation by some syntactic means. In contrast to schema languages

such as XML Schema, ontologies try to capture the semantics of

a domain by using knowledge representation primitives, allow-

ing a computer to fully or partially understand the relationships

between concepts in a domain. Ontologies provide a common

vocabulary for a domain and define the meaning of the terms

and the relationships between them. Ontology is referred to as the

shared understanding of some domain of interest, which is often

conceived as a set of classes (concepts), relations, functions, axioms

3.2 METADATA AND ONTOLOGY IN THE SEMANTIC WEB 81

Figure 3.3 The layered structure of the Semantic Web

and instances. Concepts in the ontology are usually organized in

taxonomies [6].

In the following sections, we introduce Resource Description

Framework (RDF) [7] which is the foundation of the Semantic Web.

We also present, as shown in Figure 3.3, RDF-based Web ontology

languages such as RDF Schema (RDFS) [8], DAML+OIL [9, 10]

and Web Ontology Language (OWL) [11].

3.2.1 RDF

The goal of the Semantic Web is to augment unstructured con-

tent of the Web into structured machine-understandable content to

improve the efficiency in its access and information discovery. The

effective use of metadata among Web applications, however,

requires conventions about syntax, structure and semantics. Indi-

vidual resource description communities define the semantics or

meaning, of metadata that address their particular needs. Syntax,

which is the systematic arrangement of data elements for machine

processing, facilitates the exchange and use of metadata among

multiple applications. Structure can be thought of as a formal con-

straint on the syntax for the consistent representation of semantics.

The RDF, developed under the auspices of the W3C, is an

infrastructure that facilitates the encoding, exchange and reuse

of structured metadata. The RDF infrastructure enables metadata

interoperability through the design of mechanisms that support

common conventions of semantics, syntax and structure. RDF does

not stipulate semantics for each resource description community,

but rather provides the ability for these communities to define

metadata elements as needed. RDF uses XML as a common syntax

82 SEMANTIC GRID AND AUTONOMIC COMPUTING

for the exchange and processing of metadata. The XML syntax pro-

vides vendor independence, user extensibility, validation, human

readability and the ability to represent complex structures.

3.2.1.1 RDF development efforts

RDF is the result of a number of metadata communities bring-

ing together their needs to provide a robust and flexible architec-

ture for supporting metadata for the Web. While the development

of RDF as a general metadata framework, and as such, a sim-

ple knowledge representation mechanism for the Web, was heav-

ily inspired by the PICS specification [12], no one individual or

organization invented RDF. RDF is a collaborative design effort.

RDF drew upon the XML design as well as proposals related to

XML data submitted by Microsoft’s XML Data [13] and Netscape’s

Meta Content Framework [14]. Other metadata efforts, such as

the Dublin Core [15] and the Warwick Framework [16], have also

influenced the design of RDF.

3.2.1.2 The RDF data model

As shown in Figure 3.4, an RDF data model contains resources,

properties and the values of properties. In RDF, a resource is

uniquely identifiable by a Uniform Resource Identifier (URI). The

properties associated with resources are identified by property-

types which have corresponding values. In RDF, values may be

Figure 3.4 The RDF data model

3.2 METADATA AND ONTOLOGY IN THE SEMANTIC WEB 83

atomic in nature (text strings, numbers, etc.) or other resources,
which in turn may have their own properties. RDF is represented
as a directed graph in which resources are identified as nodes,
property types are defined as directed label arcs, and string values
are quoted.
Now let us see how to apply the RDF model for representing

RDF statements.

RDF Statement 1: The author of this paper (someURI/thispaper)
is John Smith.
Figure 3.5 shows the graph representation of the RDF statement 1.
In this example, the RDF resource is someURI/thispaperwhose prop-
erty is author. The value of the property is John Smith.

RDF Statement 2: The author of this paper (someURI/thispaper)
is another URI whose name is John Smith.
Figure 3.6 shows the graph representation of the RDF statement 2.
In this example, the RDF resource is someURI/thispaperwhose prop-
erty is author. The value of the property is another URI (resource)
whose property is name and the value of the property is John
Smith. The RDF statement 2 can be described in XML as shown in
Figure 3.7.

3.2.2 Ontology languages

In this section, we outline some representative ontology languages
which are based on RDF. These ontology languages can be used
to build ontologies on the Web.

Figure 3.5 The graph representation of the RDF statement 1

Figure 3.6 The graph representation of the RDF statement 2

84 SEMANTIC GRID AND AUTONOMIC COMPUTING

<rdf:RDF>
xmlns = “...”
xmlns:rdf = “...”
<rdf:Description about = “someURI/thispaper”>

<authored-by>
<rdf:Description Resource = “anotherURI”>

<name>John Smith</name>
</rdfDescription>

</authored-by>
</rdf:Description>

</rdf:RDF>

Figure 3.7 The XML description of the second RDF statement

3.2.2.1 RDFS

RDF itself is a composable and extensible standard for build-

ing RDF data models. However, the modelling primitives offered

by RDF are very limited in supporting the definition of a spe-

cific vocabulary for a data model. RDF does not provide a way

to specify resource and property types, i.e. it cannot express the

classes to which a resource and its associated properties belong.

The RDFS specification, which is built on top of RDF, defines

further modelling primitives such as class (rdfs:Class), subclass

relationship (subClassOf, subPropertyOf), domain and range restric-

tions for property, and sub-property (rdfs:ConstraintProperty and

rdfs:ContainerMembershipProperty). A resource (rdfs:Resource) is the

base class for modelling primitives defined in RDFS. RDFS define

the valid properties in a given RDF description, as well as any char-

acteristics or restrictions of the property-type values themselves.

3.2.2.2 DAML+OIL

RDFS is still a very limited ontology language, e.g. RDFS does

not support the definition of properties, the equivalence and dis-

joint characteristics of classes. DAML+OIL is intended to extend

the expressive power of RDFS, and to enable effective automated

reasoning.

DAML+OIL is an ontology language designed for the Web,

which is built upon XML and RDF, and adds the familiar ontolog-

ical primitives of object-oriented and frame-based systems [17], as

well as the formal rigour of an expressive Description Logic (DL)

3.2 METADATA AND ONTOLOGY IN THE SEMANTIC WEB 85

[18, 19]. The logical basis of DAML+OIL means that reasoning

services can be provided both to support ontology design and to

make Web data more accessible to automated processes.

DAML+OIL evolved from a merger of DARPA Agent Markup

Language’s (DAML) initial ontology language (DAML−ONT)

[20], an earlier DAML ontology language, and the Ontology Infer-

ence Layer (OIL) [21], an ontology language that couples modelling

primitives commonly used in frame-based ontologies, with a sim-

ple and well-defined semantics of an expressive DL. DAML+OIL

is modelled through an object-oriented approach, and the struc-

ture of the domain is described in terms of classes and proper-

ties. DAML+OIL classes can be names (URIs) or expressions and

a variety of constructors are provided for building class expres-

sions. The axioms supported by DAML+OIL make it possible

to assert subsumption or equivalence with respect to classes or

properties, the disjoint characteristics of classes, the equivalence

or non-equivalence of individuals and various properties of prop-

erties. Classes can be combined using conjunction, separation and

negation. Within properties both universal and existential quan-

tification are allowed, as well as more exact cardinality constraints.

Range and domain restrictions are allowed in the definition of

properties, which themselves can be arranged in hierarchies.

In summary, DAML+OIL has the following features:

• DAML+OIL has well-defined semantics and clear properties

via an underlying mapping to an expressive DL. The DL gives

DAML+OIL the ability and flexibility to compose classes and

slots to form new expressions. With the support of DL, an ontol-

ogy expressed in DAML+OIL can be automatically reasoned

by a DL reasoning system such as the FaCT system [22, 23].

• DAML+OIL supports the full range of XML Schema data types.

It is tightly integrated with RDFS, e.g. RDFS is used to express

DAML+OIL’s machine-readable specification, and provides a

serialization for DAML+OIL.

• A layered architecture for easy manipulation of the language.

• The DAML+OIL axioms are significantly more extensive than

the axioms for either RDF or RDFS.

While the dependence on RDFS has some advantages in terms

of the reuse of existing RDFS infrastructure and the portability

86 SEMANTIC GRID AND AUTONOMIC COMPUTING

of DAML+OIL ontologies, using RDFS to completely define the

structure of DAML+OIL has proved quite difficult as, unlike

XML, RDFS is not designed for the precise specification of syntactic

structure [24].

3.2.2.3 OWL

The OWL facilitates greater machine interpretation of Web content

than that supported by XML, RDF and RDFS, by providing addi-

tional vocabulary along with a formal semantics. OWL is derived

from DAML+OIL, which provided a starting point for the W3C

Web Ontology Working Group [25] in defining OWL, the lan-

guage that is aimed to be the standardized and broadly accepted

ontology language of the Semantic Web. The OWL Use Cases and

Requirements Document [26] provides more details on ontologies,

it provides the motivation for a Web Ontology Language in terms

of six use cases, and formulates design goals, requirements and

objectives for OWL.

OWL has three increasingly expressive sub-languages: OWL

Lite, OWL DL (Description Logic) and OWL Full.

• OWL Lite supports a classification hierarchy and simple con-

straints, e.g. while it supports cardinality constraints, it only

permits cardinality values of 0 or 1. OWL Lite is easy to use and

implement.

• OWL DL supports the maximum expressiveness while retaining

computational completeness (all conclusions are guaranteed to be

computable) and decidability (all computations will finish in finite

time). OWL DL includes all OWL language constructs, but they

can be used only under certain restrictions, e.g. while a class

may be a subclass of many classes, a class cannot be an instance

of another class.

• OWL Full uses all the OWL languages primitives and allows the

combination of these primitives in arbitrary ways with RDF and

RDFS. It supports maximum expressiveness and the syntactic

freedom of RDF with no computational guarantees, e.g. a class

in OWL Full can be treated simultaneously as a collection of

individuals and as an individual in its own right. OWL Full
allows an ontology to augment the meaning of the pre-defined

(RDF or OWL) vocabulary. It is unlikely that any reasoning

3.2 METADATA AND ONTOLOGY IN THE SEMANTIC WEB 87

software will be able to support complete reasoning for every
feature of OWL Full.

The advantage of OWL Full is that it is completely compatible with
RDF both syntactically and semantically: any legal RDF document
is also a legal OWL Full document; and any valid RDF/RDFS
conclusion is also a valid OWL Full conclusion.

Antoniou and Harmelen [27] provide a good review of OWL.
They suggest that when using OWL, developers should consider
which sub-language best suits their needs. The selection of OWL
Lite depends on the extent to which users require the more-
expressive constructs provided by OWL DL and OWL Full. The
choice between OWL DL and OWL Full mainly depends on the
extent to which users require the meta-modelling facilities of RDFS,
e.g. defining classes of classes or attaching properties to classes.
When using OWL Full instead of OWL DL, reasoning support is
less predictable since complete OWL Full implementations will be
unlikely. There are strict notions of upward compatibility between
these three sub-languages:

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.
• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

3.2.3 Ontology editors

In this section, we briefly introduce three representative ontology
editors that support RDFS, DAML+OIL or OWL. These editors
are software tools that can be used to build ontologies. A more
detailed survey on ontology editors can be found in Denny [28].

3.2.3.1 OntoEdit

OntoEdit [29, 30] provides a graphical environment for the devel-
opment and maintenance of ontologies. It supports F-Logic [31],
RDFS and DAML+OIL. Ontologies in OntoEdit can be exported to
object-relational database schema and Document Type Definitions
(DTDs).

88 SEMANTIC GRID AND AUTONOMIC COMPUTING

3.2.3.2 OilEd

OilEd [32] is an ontology editor allowing the user to build ontolo-
gies using DAML+OIL. Basic functionality in OilEd includes the
definition and description of classes, slots, individuals and axioms
within an ontology. OilEd provides a graphical user interface for
editing ontologies.

3.2.3.3 Protégé

Protégé [33, 34] is an extensible, platform-independent and graphi-
cal environment for creating and editing ontologies and knowledge
bases. Protégé supports DAML+OIL, and it provides beta-level
support for editing Semantic Web ontologies in OWL.

3.2.4 A summary of Web ontology languages

So far we have reviewed RDF, RDFS, DAML+OIL and OWL,
which are ontology languages to build ontologies for the Semantic
Web. The aim of the Semantic Web is to augment the unstruc-
tured Web content as structured information and to improve the
efficiency of Web information discovery and machine-readability.
RDF lays the foundation for the conversion, in that structured
information can be expressed with RDF-based metadata. Ontology
languages such as RDFS, DAML+OIL and OWL can be used to
construct metadata ontologies for a more expressive and structured
information on the Web. Both DAML+OIL and OWL try to over-
come the limitations of RDFS. However, they are based on RDFS
and attempt to be compatible with it, to reuse the effort already
invested into RDF and RDFS. Derived from DAML+OIL, OWL is
an emerging standard ontology language for the Semantic Web.

3.3 SEMANTIC WEB SERVICES

As we have studied in Chapter 2, Web services are emerging as
a promising computing platform for heterogeneous distributed
systems. The three core standards in Web services are WSDL
for service description, SOAP for message exchange and UDDI for
service registration and discovery. A feature of Web services is

3.3 SEMANTIC WEB SERVICES 89

their support for services composition. It is desirable and neces-

sary for a Web service to automatically find another service in the

composition process, which requires that Web services should be

enriched with semantics.

One overarching characteristic of the Web services infrastruc-

ture is its lack of semantic support. It relies exclusively on XML for

interoperation, but that guarantees only syntactic interoperability.

Expressing message content in XML lets Web services parse each

other’s messages, but it does not facilitate the understanding of

the messages’ content. In addition, in service registration and dis-

covery, UDDI itself does not provide any support for semantic

description of a Web service. Web services should have semantic

meanings so that services can be matched semantically instead of

syntactically. In this section, we introduce DAML-S and OWL-S

that can be used to reach this goal.

3.3.1 DAML-S

DAML-S [35] is both a language and an ontology for describing

Web services. It attempts to close the gap between the Semantic

Web andWeb services. As an ontology, it uses DAML+OIL-based

constructs to describe Web services; as a language, DAML-S sup-

ports the description of specific Web services that users or other

services can discover and invoke using standards such as WSDL

and SOAP. DAML-S uses semantic annotations and ontologies to

relate each Web service’s description to a description of its oper-

ational domain. The DAML-S ontology describes a set of classes

and properties, specific to the description of Web services.

As a DAML+OIL ontology, DAML-S has all the benefits of

being capable of utilizing any content described in DAML+OIL.

DAML-S has a well-defined semantics and allows the definition

of service content vocabulary in terms of objects and their com-

plex relationships, including class, subclass relations and cardinal-

ity restrictions. The DAML-S ontology consists of three parts, as

shown in Figure 3.8, and described as follows.

• ServiceProfile: This is like the Yellow Pages entry for a ser-

vice. It relates and builds upon the type of content found in

UDDI, describing properties of a service necessary for automatic

90 SEMANTIC GRID AND AUTONOMIC COMPUTING

Figure 3.8 DAML-S Web services

discovery, such as what the services offers, and its inputs, out-

puts and its side effects (preconditions and effects).

• ServiceModel: Describes a service’s process model, e.g. the control

flow and data flow involved in using the service. It is the process

model that provides a declarative description of the properties

of the Web-accessible programs we wish to reason about. The

ServiceModel is designed to allow the automated composition

and execution of services.

• ServiceGrounding: Connects the process model description to

communication-level protocols and message descriptions in

WSDL.

A DAML-S-matching engine has also been implemented that

allows services to advertise with DAML-S as well as with a UDDI

registry so that these services can be discovered by using a UDDI

keyword search.

3.3.2 OWL-S

OWL-S [36] is derived from DAML-S; it uses OWL as the ontology

language to semantically describe Web services. OWL-S describes

the properties, capabilities and process model of a Web service. It

allows Web services to be described and discovered, to interoper-

ate, and be composed in an unambiguous, computer-interpretable

form. OWL-S elements can be mapped to a WSDL specification,

in order to support automatic invocation and execution of a Web

service.

3.4 A LAYERED STRUCTURE OF THE SEMANTIC GRID 91

3.4 A LAYERED STRUCTURE
OF THE SEMANTIC GRID

As we have studied in Chapter 2, OGSA is the de facto standard for

building service-orientedGridapplications. Fromaservice-oriented

point of view, the Semantic Grid can be divided into four ser-

vice layers – base services, data services, information services and

knowledge services. The layered structure is shown in Figure 3.9.

Base services
This layer is primarily concerned with large-scale pooling of com-

putational resources. The base services provided by this layer

are related to resource discovery, allocation and monitoring,

user authentication, task scheduling or co-scheduling and fault

tolerance.

Data services
This layer mainly provides computationally intensive analysis of

large-scale-shared data sets or databases, which could range in size

from hundreds of terabytes to petabytes, across widely distributed

scientific communities. The services provided by this layer are

related to data storage, metadata management, data replication

and data transfer.

Information services
This layer allows uniform access to heterogeneous informa-

tion sources and provides commonly used services running on

distributed computational resources.Uniformaccess to information

Figure 3.9 A layered structure of the Semantic Grid

92 SEMANTIC GRID AND AUTONOMIC COMPUTING

sources relies on metadata to describe information and to help
with integration of heterogeneous resources. The granularity of
the offered services can vary from subroutine or method calls to
complete applications. Hence, in scientific computing, services can
include the availability of specialized numerical solvers, such as a
matrix or partial differential equation solver, to complete scientific
codes for applications such as weather forecasting and molecular
or fluid dynamics. In commercial computing, services can be sta-
tistical routines based on existing libraries or predictive services
that offer coarse-grained functionality, such as database profiling
or visualization. Services in this layer can, therefore, be offered
by individual providers or by corporations; they may be special-
ized for specific applications, such as genomic databases or general
purpose, such as numerical libraries.

Knowledge services
This layer focuses on knowledge representation and extraction. It
provides services that can be used to search for patterns in existing
data repositories, and the management of information services,
e.g. it can provide knowledge discovery from a huge amount of
data using a variety of data-mining mechanisms. It can provide
semantic meaning of information services aggregated from the
information services layer. This layer is domain-oriented such as
bioinformatics, and usually uses domain knowledge built with its
own ontology.

It is intended that each of these layers provide services to vari-
ous applications. A substantial part of the research effort dedicated
to the Grid has concentrated on the computational and data ser-
vices layers. However, growing interest in the recently established
“Semantic Grid” working group at the Global Grid Forum (GGF)
indicates the importance of services provided by the Semantic Grid.

3.5 SEMANTIC GRID ACTIVITIES

The Semantic Grid is a promising area of research. In the context
of the Semantic Grid, apart from computational services, the Grid
can also provide domain-specific problem-solving and knowledge-
based services. A Grid application can be automatically composed
from Grid services based on semantically matching the needs of
an application. However, the Semantic Grid is still in its infancy.

3.5 SEMANTIC GRID ACTIVITIES 93

In this section, we present some of the Semantic Grid research that
is currently being undertaken.

3.5.1 Ontology-based Grid resource matching

As we will discuss in Chapter 6, a Grid scheduling system per-
forms resource description and selection when scheduling jobs to
resources. However, as indicated in Tangmunarunkit et al. [37],
existing resource description and selection mechanisms in the Grid
are too restrictive. Traditional resourcematching, as exemplified by
the Condor Matchmaker or Portable Batch System (PBS) that will
be described in Chapter 6, is based on symmetric, attribute-based
matching. In these systems, the values of attributes advertised by
resources are compared with those required by jobs or tasks. For a
comparison to be meaningful and effective, the resource providers
and consumers have to agree upon attribute names and values.
The exact matching and coordination between providers and con-
sumers make such systems inflexible and difficult to extend to new
characteristics or concepts. Moreover, in a heterogeneous multi-
institutional environment such as the Grid, it is difficult to enforce
the syntax and semantics of resource descriptions.
Tangmunarunkit et al. [37] present a flexible and extensible

approach for performing Grid resource selection using an RDFS
ontology-based matchmaker which performs semantic matching
using terms defined in those ontologies instead of exact syntax
matching.The loose couplingbetweenresourceandrequestdescrip-
tions removes the tight coordination required between resource
providers and consumers.Unlike traditionalGrid resource selectors
that describe resource/request properties based on symmetric and
flat attributes (which might become unmanageable as the number
of attributes grows), separate ontologies are created to declaratively
describe resources and job requests using an expressive ontology
language. Figure 3.10 shows the layout of thematchmaker.
The ontology-based matchmaker consists of three components:

• Domain ontologies: Provides the domain model and vocabulary
for expressing resource advertisements and job requests.

• Domain background knowledge: Captures additional knowledge
about the domain.

• Matchmaking rules: Defines when a resource matches a job
description.

94 SEMANTIC GRID AND AUTONOMIC COMPUTING

Figure 3.10 The layout of the ontology-based resource matchmaker

A matchmaker prototype has been implemented based on
TRIPLE/XSB [38], a deductive database system that supports RDFS
and TRIPLErule language. Protégé, an ontology editor that sup-
ports the RDFS, is used to build ontologies. This work is at an
early stage of development, and the developers do intend to com-
pare their efforts with the existing resource matchmakers, such as
Condor Matchmaker.

3.5.2 Semantic workflow registration
and discovery in myGrid

As we will discuss in Chapter 7, workflow systems provide users
with the ability to build and manage composite applications.
A Grid workflow system supports the construction of applica-
tions from Grid services. Once a workflow is constructed, the
workflow system will generate a description using a flow lan-
guage. It is desirable and necessary that the creation of a new
workflow should reuse existing workflow descriptions instead of
starting from scratch, which leads to the need for further work-
flow registration and discovery. To quickly and precisely locate
a workflow, the workflow should be annotated with metadata to
semantically describe itself. myGrid [39] supports this feature, and
has a focus on semantic workflow registry and discovery for in
silico experiments.
In myGrid, a UDDI-based registry has been implemented as a

Web service combined with an information model for semantic
workflow registration. The metadata associated with a workflow
can be annotated with RDFS or OWL. The metadata could be a

3.5 SEMANTIC GRID ACTIVITIES 95

Figure 3.11 The semantic find service in myGrid

simple string recording, e.g. an estimate of the average time a

workflow takes to execute. Alternatively, it can be the URI of

a concept in the ontology.

The semantic find service provides discovery over specific

descriptions by reference to domain ontologies. The find ser-

vice makes use of several additional components as shown in

Figure 3.11. The description database holds semantic descriptions

gathered from resources published in registries and views, which

act as proxies displaying a subset of services registered in a reg-

istry. The ontology service provides access to the domain ontolo-

gies and manages interaction with FaCT (Fast Classification of

Terminologies), a description logic reasoner.

In summary, the find service is mainly responsible for:

• Gathering semantic descriptions from a view and maintaining

a reference back to the entry in the view so that details for

communicating with the services can later be retrieved.

• Using the ontology service and associated reasoner to index

items in the descriptions database to ensure efficient retrieval of

entries at the time of discovery.

3.5.3 Semantic workflow enactment in Geodise

In the Geodise project, efforts have been focused on the application

of Semantic Web technologies to assist users in solving complex

96 SEMANTIC GRID AND AUTONOMIC COMPUTING

problems in Engineering Design Search and Optimization (EDSO)
[40], in particular, allowing semantically enriched resource sharing
and reuse. Geodise provides the following semantic support for
the Grid.

3.5.3.1 EDSO ontologies

The acquisition of knowledge in the EDSO domain has been col-
lected and modelled as either ontologies or rules in knowledge
bases. DAML+OIL and OWL are used to build EDSO ontologies
and DAML-S is used to specify the properties and functionality of
EDSO services (tasks). An ontology service has been implemented
as a Web service, which is independent of any specific domain, to
facilitate the deployment of the EDSO ontology.
The ontology service consists of four components:

• An underlying data model that holds the ontology (the knowl-
edge model) and allows the application to interact with it
through a well-defined API;

• An ontology server that provides access to concepts in an under-
lying ontology data model and their relationships;

• The FaCT reasoner provides reasoning capabilities;

• A set of user APIs that interface user’s applications and the
ontology.

By using the service’s APIs and the FaCT reasoner, common onto-
logical operations – such as checking the relationship between
two concepts, retrieving information, navigating concept hierar-
chies and retrieving lexical information – can be performed when
required.

3.5.3.2 Semantic annotation of EDSO resources

The goal of semantic annotation is to add semantics to Web pages
and documents as well as computational resources. In Geodise,
OntoMat Annotizer [41] is used to perform semantic annotation.
In addition, EDSO resources, such as tasks, have been semanti-
cally described to support automatic semantic enrichment, e.g. a
workflow composed of semantic EDSO tasks can be automatically

3.5 SEMANTIC GRID ACTIVITIES 97

enriched with a semantic description. With semantic task descrip-

tions, a semantically enriched task archive can be created based on

previously performed tasks, which can be searched and reused.

3.5.3.3 Semantic workflow enactment

Geodise provides tools to support the graphical construction of

workflows, which are composed from semantic EDSO tasks. Tools,

such as the Ontology Concept Browser, the Workflow Editor, the

Workflow Advisor, the Component Editor, the Ontological Rea-

soner and the State Monitor, have been implemented to assist the

workflow construction process; as shown in Figure 3.12, the func-

tionality of each component is described below.

• The Ontology Concept Browser presents the conceptual models

of the EDSO tasks in a hierarchical structure. Every task is

described with properties which specify the relations among

conceptual task models.

• The Component Editor is used for task definition. It dynamically

generates an ontology-driven form in which each slot of the form

Figure 3.12 Workflow enactment in Geodise

98 SEMANTIC GRID AND AUTONOMIC COMPUTING

represents a property of a task with an explicitly specified onto-

logical concept type – the semantic link. A task can be defined

by specifying every property following the ontological links or

reused from an existing task.

• The Semantic Web Search Engine provides the ability to search

for similar tasks in terms of algorithm performance, run time or

accuracy of these tasks.

• The Workflow Editor provides editing functions such as modifi-

cation and removal of functions as well as the graphical repre-

sentation of tasks and workflow.

• The State Monitor holds state information about each task such

as its inputs and output parameters.

• The Ontological Reasoner performs ontological reasoning based

on a task’s ontology and its state information.

• The Workflow Advisor gives advice on which task(s) should be

undertaken next.

• The Workflow Enactment Engine resolves an abstract specification

of a task in a workflow into a concrete task instance and estab-

lishes dynamic binding for service invocation. Matlab has been

used as a computation environment; therefore, the workflow

enactment engine will convert an ontology-represented work-

flow to a Matlab script file.

• TheMatlab Computation Execution Environment provides the exact
environment for the execution of EDSO tasks.

3.5.4 Semantic service annotation
and adaptation in ICENI

ICENI provides the following support for semantic service anno-

tation and adaptation based on RDF and OWL [42].

• Metadata space: ICENI introduces the concept of metadata space
which is an environment with a standard metadata publication

and discovery protocol to facilitate the processing of metadata

and semantic interaction between Grid resources. The advantage

of the metadata space is that it decouples Grid resources that

have metadata from their implementations and hosting environ-

ments. Every participant in the metadata space is characterized

3.5 SEMANTIC GRID ACTIVITIES 99

as a metadata publisher. The publishedmetadata falls into one of
the three categories – requirement, implementation or domain.

• Service implementation publisher: The service implementation pub-
lisher behaves as a typical service provider within its hosting
environment and projects its semantic representation into the
metadata space by the publication of its semantic annotation.

• Service requirement publisher: A service requirement publisher is any
Grid service consumer with the capability of publishing require-
ments with semantic annotations into the metadata space.

• Ontology publisher: The ontology publisher writes and publishes
ontology information into the metadata space.

• Semantic service annotation: The annotation of services with
semantics in ICENI has to be manually undertaken by a user.
Different aspects of a service method’s signature need to be
described in RDF with a concentration on expressing the syn-
tactic meaning of the service by annotating the semantics of the
definition of the service method.

• Semantic matching: The requirements for a service interface
method from a user are expressed through the semantic anno-
tation of the interface, which will be semantically matched with
a service implementation’s annotation provided by a service
implementation publisher. The match is made based on class and
property inference in which class properties are represented by
method signatures.

• Service adaptation: Upon receiving a list of conceptually equiv-
alent implementations from the matching service, the service
adaptation dynamically generates the adaptor proxy on demand.

The work on semantic service annotation and adaptation is cur-
rently being integrated into ICENI.

3.5.5 PortalLab – A Semantic Grid
portal toolkit

As we will discuss in Chapter 8, in the development of portals,
the use of portlets is gaining increasing attention from the Grid
community for building portals. However, it is envisioned that
more and more portlets will be developed by this community and
it will be increasingly difficult for users to quickly find the right

100 SEMANTIC GRID AND AUTONOMIC COMPUTING

Figure 3.13 The software architecture of PortalLab

portlet they need. Portlets should be annotated with semantics to

improve the efficiency of portlet discovery. PortalLab [43] is an

ongoing project towards this goal. It is a GT3-based toolkit for

building Semantic Grid portals with portlets. Figure 3.13 shows the

software architecture of PortalLab. The components in PortalLab

are described below.

3.5.5.1 Portlets in PortalLab

There are three kinds of portlets in PortalLab: Web-page portlets,

Grid system portlets and Grid application portlets. Web-page

portlets are used to deal with user inputs and outputs through

Web pages. Grid system portlets provide Grid system level ser-

vices such as job submission and monitoring, user authentication

and authorization, and data transfer. Grid application portlets pro-

vide domain-specific services for problem-solving (solvers) and

knowledge-related activities, such as extracting knowledge from a

dataset using a data-mining algorithm. Portlets with semantics are

called Semantic Grid Portlets (SGP). An OGSA compliant SGP is

called OGSA-SGP, which is associated with an OGSA compliant

Grid service.

3.5 SEMANTIC GRID ACTIVITIES 101

Figure 3.14 The OGSA compliant SGP infrastructure

As shown in Figure 3.14, an OGSA-SGP is associated with a Grid

service managed by an OGSA framework such as the GT3. An

OGSA-SGP can directly access an OGSA service through an OGSA

service proxy. In addition, an OGSA-SGP has an interface defined

in extended WSDL, which is called GWSDL in GT3. Each SGP

in PortalLab can be annotated via OWL-S to specify its semantic

meanings. When a portal receives a Java Servlet request, it gen-

erates and dispatches events to the portlet using parameters in

the request and then invokes the portlet to be displayed through

the portlet invocation interface (PII). The portlet internal design

normally follows the MVC model [44], which separates the portlet

functionality into a controller receiving incoming requests from the

portlet PII, invoking commands operating on a model that encap-

sulates application data and logic to access backend resources.

A portlet ontology built with OWL-S can be used to semantically

match portlets.

3.5.5.2 The Visual Portal Composition
Environment (VPCE)

A portal can be visually composed by plugging and playing with

portlets by the toolkit’s integrated VPCE using a Portal Com-

poser (PC). The VPCE also incorporates a Portal Generator (PG)

102 SEMANTIC GRID AND AUTONOMIC COMPUTING

which will generate a portal once its composition is complete. The

VPCE also supports portlet workflow enactment in which portlets

can be visually connected and then published as a portlet. The PG

will check the compatibility of the portlets used in a portal and will

generate a task graph that can be described in a flow language.

The task graph describes the dependency relationships between

portlets. A portal template with some basic functionality can be

easily customized to meet user-specific requirements to speed up

overall portal composition.

3.5.5.3 Portlet repositories

There are three levels of portlet repositories in the toolkit, Portlet

Interface Repository (PInR), Portlet Implementation Repository

(PImR) and Portlet Domain Service Repository (PDSR).

• The PDSR is used to register a portlet with semantic capabilities.

A Web-page portlet entry in the PDSR describes how data can

be organized in a Web page. A Grid system portlet entry in the

PDSR describes the functionality and the system requirements

of the portlet. A Grid application portlet entry in the PDSR

describes portlet ontology, portlet constraint and semantic data

requirement. A service provider can also add quality of services

to each portlet in the PDSR. For an application portlet, such as

a domain problem solver, the quality of service describes the

extent to which a domain problem can be solved. For a system

portlet, such as a domain-related problem solver, the quality of

service describes the job type that the portlet is most suitable for

processing.

• The PInR is used to store interface-related information and an

OGSA Grid Service Handle (GSH) of the Grid service associ-

ated with it. An interface describes how to use each portlet’s

input/output parameters. For example, the interface of a Web-

page portlet describes that the input could be a plain data file

marked up in HTML or XML, and the output could be an image

or a table. Each portlet interface in the PInR has a unique entry

in the PDSR.

• The PImR is used to store the implementation of each portlet

through an OGSA Grid Service Reference (GSR) associated with

a Grid service.

3.5 SEMANTIC GRID ACTIVITIES 103

3.5.5.4 Semantic Portlet Matcher

The Semantic Portlet Matcher (SPM), a matching engine, is used
to semantically match the closest portlet candidate. The matching
engine will perform portlet matching of ontologies, constraints,
quality of service, and semantic data requirement on each portlet
registered with the PDSR.

3.5.5.5 Semantic Portlet Register

The Semantic Portlet Register (SPR) provides a GUI for portlet
annotation.Once theannotationofaportlet isfinished, theSPRregis-
ters the annotationwith the PDSR for semantic portlet matching.

3.5.5.6 Agents in PortalLab

When using a Grid service via a portal, a service consumer, such
as an end-user, needs to negotiate with a service provider about
the terms under which services can be provided. The underlying
complexity of the Semantic Grid infrastructure and the need for
speedy interaction make software agents the most likely candi-
date to handle these negotiations. Software agents are autonomous
components that have the following characteristics [45, 46]:

• Autonomous: Control over their internal states and behaviour;

• Reactive: Respond in a timely fashion to environmental changes;

• Proactive: Act in anticipation of future goals;

• Interactive: Communicate with other agents, perhaps including
people too;

• Deductive: Deduce the user’s interactive intention from their
previous actions.

Figure 3.15 shows the data flow for semantically matching a
portlet. When building a Grid portal, each user accesses portlets
through a User Agent (UA). Each UA acts on behalf of a user as a
service consumer and interacts with a Grid System Agent (GSA)
which acts as a service provider. A UA can assist a user in for-
mulating a portlet request, and submit the user request to a GSA.
Upon receiving a user portlet request, the GSA will first perform

104 SEMANTIC GRID AND AUTONOMIC COMPUTING

Figure 3.15 The data flow for semantically matching a SGP in PortalLab

a semantic match in the PDSR. If a portlet interface can be found,
a service instance will be created and associated with a portlet by
referring a GSH to its corresponding GSR.

3.5.5.7 A Portlet Wrapper Generator

Each Grid application portlet can be created from scratch or
wrapped from legacy codes using the Portlet Wrapper Generator
(PWG). Figure 3.16 shows the structure of the PWG. The PWG
provides a GUI for portlet creation, of which there are two stages.
First, the PWG will automatically wrap a legacy code as a Grid
service factory. At the same time, the PWG also generates a Grid
service client template which is used to request the service factory
to create an instance. The wrapped Grid service will be automati-
cally deployed in a Grid service container. In the second stage, the
PWG will expose the wrapped Grid service as a portlet. To do this,
it generates a JSP template for the presentation of the portlet, regis-
ters the portlet interface with the PInR and automatically generates
an implementation of the portlet which will then be registered
with the PImR. The portlet implementation will incorporate a call
to the Grid service client through which to call the Grid service
instance associated with it.

3.5.5.8 Peer-to-Peer (P2P) support in PortalLab

In PortalLab, each UA interacts with a GSA and multiple GSAs
work in a P2P model [47]. When building a Grid portal, a UA will
request that a GSA find the SGPs required. If a GSA does not have

3.5 SEMANTIC GRID ACTIVITIES 105

Figure 3.16 The structure of the Portlet Wrapper Generator

the required SGP, it may send a request to other GSAs to ask for

the requested SGP. In this way, a Grid portal built from PortalLab

may use SGPs provided by different Grid systems which form a

Grid-enabled P2P system. (Figure 3.17). The benefits of the P2P

Figure 3.17 A Grid-enabled P2P model in PortalLab

106 SEMANTIC GRID AND AUTONOMIC COMPUTING

paradigm are portlet interoperability and aggregation, as well as
the simpler management of a large Grid environment which may
involve several Virtual Organizations (VOs).

3.5.6 Data provenance on the Grid

Data provenance [48] is an annotation that explains how a particu-
lar result has been produced and what the result is about. This can
be generalized to the Grid where any user of data needs to know
the origin and history of data. Data provenance can be thought
of as an audit trail that traces each step in sourcing, moving and
processing data. It can apply to a single data item, a logical data
record, a subset of a database or an entire database. Although
clearly needed, the methods for recording provenance are not well
set out, and the Semantic Grid offers an important technology for
specifying such data lineage. Support for provenance is an essen-
tial requirement in an e-Science environment as data sharing is
central to the basic concept of a VO. Provenance is the key area
to help establish the quality, reliability and value of data in the
discovery process.
Grid data will be annotated with its history. One way to ensure

the integrity of a specific data set is to require that the generation of
derived data sets be a reproducible process. In order to ensure that
this is the case, all data products and transformations that go into
generating a data set have to remain accessible. Provenance can
include references to where data was first produced, in historical
terms how it has been stored, curated and transferred, as well as
the sequence of experimental processes applied and computations
involved. Provenance can be represented as semantic metadata
using RDF.
Data provenance is a research area that has not been thoroughly

addressed by the Grid community. Currently only a few projects
are working in the area of provenance, these are introduced
below.

3.5.6.1 Provenance generation and discovery in myGrid

In the myGrid project, workflows representing in silico experiments
describe the orchestration of bioinformatics data and analysis ser-
vices that are used to derive output. The output of one workflow

3.5 SEMANTIC GRID ACTIVITIES 107

may form the input to another so that a complete in silico exper-
iment includes a network of related workflow invocations. The
myGrid workflow enactment engine ensures that any output can
be associated with its corresponding workflow invocation record
and the associated provenance data. myGrid supports two forms
of provenance, derivation path and object annotations [49].

• A derivation path records the process by which results are gener-
ated from input data, e.g. a derivation path could be the logging
of services invoked by a workflow or could be a record regard-
ing alterations of the parameters of an activity while a workflow
is being enacted.

• Object annotations specify when an object was created, last
updated, who owns it and its format.

When a workflow is executed, the workflow enactment engine
extracts needed resources, such as input/output data and param-
eters. The provenance logs are generated at the same time in the
form of XML files by the workflow enactment engine, recording
the start time, end time and service instances operated in this
workflow. In addition, provenance logs can also be automatically
annotated with the ontologies provided in myGrid for provenance
document discovery.

3.5.6.2 PASOA

The Provenance-Aware Service-Oriented Architecture (PASOA)
project [50] is an ongoing project with an aim to investigate the
concept of provenance and its use for reasoning about the quality
and accuracy of data and services in the context of UK e-Science
programme.

3.5.7 A summary on the Semantic Grid

The development of the Semantic Grid is based on the applica-
tion of technologies from the Semantic Web to the Grid. Metadata
and ontologies play a crucial role in the evolution of the Seman-
tic Grid. The Semantic Grid is still in its infancy, however, the
results, as exemplified by current activities, have shown that it
is narrowing the gap between users and the Grid. Grid systems

108 SEMANTIC GRID AND AUTONOMIC COMPUTING

enriched with semantics can automate the process of service and

resource discovery. For example, autonomic Grid services can be

built with metadata annotations plus ontologies so that these ser-

vices can have the capability to self-configure, self-optimize, self-

heal and self-protect. This leads us onto research about autonomic

computing.

3.6 AUTONOMIC COMPUTING

In this section, we introduce autonomic computing, e.g. why we

need it, what kinds of features an autonomic system has, how to

apply autonomic computing to the Grid and what kinds of benefits

it can bring to the Grid. Finally, we review some current works on

autonomic computing.

3.6.1 What is autonomic computing?

Broadly speaking, autonomic computing refers to an infrastructure

that automatically adapts to meet the demands of the applications

that are running in it. Autonomic computing is a self-managing

computing model named after, and patterned on, a human body’s

autonomic nervous system. An autonomic computing system is

one that is resilient, and able to take both preemptive and post facto
measures to ensure a high quality of service with a minimum of

human intervention, in the same way that the autonomic nervous

system regulates body systems without conscious input from the

individual.

The goal of autonomic computing is to reduce the complexity

in the management of large computing systems such as the Grid.

The Grid needs autonomic computing for following reasons.

• Complexity: The Grid is complex in nature because it tries

to couple large-scale disparate, distributed and heterogeneous

resources – such as data, computers, operating systems, database

systems, applications and special devices – which may run

across multiple virtual organizations to provide a uniform com-

puting platform.

• Dynamic nature: The Grid is a dynamic computing environment

in that resources and services can join and leave at any time.

3.6 AUTONOMIC COMPUTING 109

3.6.2 Features of autonomic
computing systems

A system that is to be classified as an autonomic system should
have the following major features.

Self-protection
A self-protecting system can detect and identify hostile behaviour
and take autonomous actions to protect itself against intrusive
behaviour. Self-protecting systems, as envisioned, could safeguard
themselves against two types of behaviour: accidental human
errors and malicious intentional actions.
To protect themselves against accidental human errors, e.g.

self-protecting systems could provide a warning if the system
administrators were to initiate a process that might interrupt ser-
vices. To defend themselves against malicious intentional actions,
self-protecting systems would scan for suspicious activities and
react accordingly without users being aware that such protection
is in process. Besides simply responding to component failure or
running periodic checks for symptoms, an autonomic system will
always remain on alert, anticipating threats and preparing to take
necessary actions. Autonomic systems also aim to provide the right
information to the right users at the right time through actions that
grant access based on the users’ roles and pre-established policies.

Self-optimizing
Self-optimizing components in an autonomic system are able to
dynamically tune themselves to meet end-user or business needs
with minimal human intervention. The tuning actions involve the
reallocation of resources based on load balancing functions and
system run-time state information to improve overall resource
utilization and system performance.

Self-healing
Self-healing is the ability of a system to recover from faults that
might cause some parts of it to malfunction. For a system to be
self-healing, it must be able to recover from a failed component by
first detecting and isolating the failed component, taking it off line,
fixing and reintroducing the fixed or replacement component into
service without any apparent overall disruption. A self-healing sys-
tem will also need to predict problems and take actions to prevent
the failure from having an impact on applications. The self-healing

110 SEMANTIC GRID AND AUTONOMIC COMPUTING

objective must be to minimize all outages in order to keep the

system up and available at all times.

Self-configuring
Installing, configuring and integrating large, complex systems is

challenging, time consuming and error-prone even for experts.

A self-configuring system can adapt automatically to dynamically

changing environments in that system components including soft-

ware components and hardware components can be dynamically

added to the system with no disruption of system services and

with minimum human intervention.

Open standards
An autonomic system should be based on open standards and

provide a standard way to interoperate with other systems.

Self-learning
An autonomic system should be integrated with a machine-

learning component that can build knowledge rules based on a

certain time of the system running to improve system performance,

robustness and resilience and anticipating foreseeable failures.

3.6.3 Autonomic computing projects

Autonomic computing is in its infancy. In this section, we review

some projects that are being carried out in this area.

3.6.3.1 Industry efforts

IBM eLiza
eLiza [51] is IBM’s initiative to add autonomic capabilities into

existing products such as their servers. An autonomic server will

be enhanced with capabilities such as the detection and isolation of

badmemory chips, protection against hacker attacks, automatically

configuring itself when new features are added, and optimizing

CPU, storage and resources in order to handle different levels of

internal traffic.

IBM OptimalGrid
OptimalGrid [52] is middleware that aims to simplify the cre-

ation and management of large scale, connected, parallel Grid

TE
AM
 F
LY

3.6 AUTONOMIC COMPUTING 111

applications. It incorporates the core tenants of the features of

autonomic computing such as self-configuring, self-healing and

self-optimizing to create an environment in which it is possible for

application developers to exploit these features, without the need

either to build them or to code external APIs.

Intel Itanium 2
Intel built into its Itanium 2 [53] processor features of autonomic

computing called the Machine Check Architecture (MCA). The

MCA is an infrastructure that allows systems to continue executing

transactions as it recovers from error conditions. It has the ability

to detect and correct errors and to report these errors to the oper-

ating system. It also has the capability to analyse data and respond

in a way that provides higher overall system reliability and

availability.

Sun N1
The aim of the Sun N1 [54] is to manage N computers as 1 entity.

The autonomic capability in N1 has been focused on the automa-

tion of software and hardware installation and configuration for

new business service deployment.

3.6.3.2 Academic efforts

Autonomia [55], University of Arizona, USA
The objective of this project is to automate the deployment of

mobile agents that have self-manageable attributes. Autonomia

provides dynamically programmable control andmanagement ser-

vices to support the development and deployment of smart (intel-

ligent) applications. The Autonomia environment provides the

application developers with the tools required to specify the appro-

priate control and management schemes to maintain any quality

of service requirement or application attribute/functionality, such

as performance, fault or security. Autonomia also provides core

middleware services to maintain the autonomic requirements of a

wide range of network applications and services.

AutoMate [56], Rutgers University, USA
The overall objective of AutoMate is to investigate the technologies

needed for the development of context aware Grid applications

112 SEMANTIC GRID AND AUTONOMIC COMPUTING

with autonomic capabilities. Specifically, this project is investi-

gating the definition of autonomic components, the development

of autonomic applications as the dynamic composition of auto-

nomic components, and the design of enhancements to existing

Grid middleware and run-time services to support the execution

of these applications. Based on AutoMate, Accord [57] provides a

component-based programming framework for the development

of autonomic self-managed applications. The Accord program-

ming framework, which is currently based on CCA [58] and OGSA,

introduces the following four concepts:

• An application context that defines a common semantic basis for

components and the application.

• The definition of autonomic components as the basic building

blocks for autonomic application.

• The definition of rules and mechanisms for the management and

dynamic composition of autonomic components.

• Rule enforcement to enable autonomic application behaviours.

AMUSE [59], Imperial College, London
The Autonomic Management of Ubiquitous Systems for e-Health

(AMUSE) project is investigating techniques to be used for build-

ing future e-Science and e-Health applications that can be self-

managed.

Open Overlays [60], Oxford Brookes University and Lancaster
University, UK
The Open Overlays, Component-based Communication Support

for the Grid project is investigating the support for future Grid

applications that can be self-managed.

ASA [61], University of St Andrews, UK
The Secure Location-Independent Autonomic Storage Architec-

tures project is an autonomic system for a global storage

infrastructure that approximates a “Utopian” set of ideal char-

acteristics such as unbounded capacity, zero latency, zero cost,

complete reliability, location independence; a simple interface for

users; complete security; and provision of a complete historical

archive.

3.6 AUTONOMIC COMPUTING 113

3.6.4 A vision of autonomic Grid services

In this section, we present a vision of how to apply autonomic
computing to the Grid, and thus develop autonomic Grid sys-
tems. As we have outlined in Chapter 2, OGSA is the de facto
standard for building service-oriented Grid applications. Grid ser-
vices, in this context are Web services with some extensions to
copy dynamic behaviour and the need for state. In the context
of the Semantic Grid, Grid services are annotated with metadata
and have ontologies to specify their semantic functions and the
domain they apply to. The research on the Semantic Grid has been
focused on the automatic annotation, enactment, registration and
discovery of semantic workflows that are composed from Grid
services. At this stage, a Grid service can provide transient and
stateful services, and it also has some knowledge about itself, e.g.
what kind of input and output it semantically needs, and what
kind of domain it applies to. However, it does not have any auto-
nomic features. It is envisioned that a future Grid system will be
composed from autonomic Grid services, as shown in Figure 3.18.
An autonomic Grid service could have the following components:

• Core: This is the core component of the service to provide core
functionality such as performing a computation.

• Advertising: The advertising component registers the service
name, domain-related problems it could solve with a registry

Figure 3.18 The concept of autonomic Grid services

114 SEMANTIC GRID AND AUTONOMIC COMPUTING

server in a Grid system. Domain problems can be annotated
with metadata.

• Self-learning: Based on a certain time of running of the service,
this component can gain some knowledge on service component,
e.g. how to tune the component, what kinds of fault it could
have, how to fix faults.

• Self-configuring: This component automatically configures the
environment for the service to execute, based on the configura-
tion metadata. It may also install or remove additional software,
if necessary.

• Logging: This component records events during the execution of
the service for self-healing. The events will be annotated with
log metadata.

• Self-healing: Once an error occurred to a service, this component
uses the log metadata and healing strategy metadata to decide
how to heal the service.

• Monitoring: This component monitors the execution of the ser-
vice and periodically invokes the logging to record events. It
also detects the correct execution of the service. If something
incorrect happens, it will invoke the self-healing component to
heal the service.

• Self-protecting: Based on the service protection metadata, this
component can authenticate and authorize who can use the
service.

• Self-optimizing: This component periodically checks the state
information of the service. If necessary, it will optimize the ser-
vice with the optimization strategy metadata.

3.7 CHAPTER SUMMARY

In this chapter, we have studied the Semantic Grid and auto-
nomic computing. The development of the Semantic Grid is based
on the application of Semantic Web technologies to the Grid.
The goal of the Semantic Web is to convert unstructured informa-
tion to structured information to improve efficiency in information
discovery and use. Metadata and Ontologies play a crucial role
in annotating the structured information on the Web. Metadata
can help computers understand the meaning of a resource such
as a Web page, a hyperlink, a data set, a software service or a

3.8 FURTHER READING AND TESTING 115

service request. Ontologies specify the relationships between the
terms used in metadata specific to one domain. With metadata
and ontologies, computers can determine if a service can pro-
vide a service requested by a consumer based on semantic ser-
vice matching. The RDF is the foundation of the Semantic Web.
RDFS, DAML+OIL and OWL are ontology languages used to
build domain ontologies. Among them, OWL is becoming the most
widely use standard. Based on DAML+OIL, DAML-S can be used
to annotate standard Web services (services that use WSDL for
description, SOAP for message exchange and UDDI for service
registration and discovery) with semantic meaning to specify the
domain to which they apply. Evolved from DAML-S, OWL-S is
becoming a standard way to annotate Web services with semantic
capabilities. The Semantic Grid is still evolving; currently research
has been focused on semantic workflow annotation, enactment,
registration and discovery.
While the Semantic Grid pushes the Grid closer towards its goal

of providing users with a uniform platform for solving domain-
specific problems, autonomic computing can give help further by
providing higher levels of availability and reliability. The goal of
autonomic computing is to reduce the complexity of the man-
agement of large computing systems such as the Grid. The Grid
needs autonomic computing because it is complex and dynamic
in nature. We have provided a vision of autonomic Grid services
which will extend current concepts of Grid and Semantic Grid
services. Future Grid systems will be composed from autonomic
services to enrich the Grid with autonomic features to provide
self-configured, self-healing, self-optimizing, self-protecting, self-
learning and self-advertising services to its users.

3.8 FURTHER READING AND TESTING

The research on metadata and ontologies belongs to the area of
knowledge representation and artificial intelligence. Books such as
[62–67] can be used for a background study.
To test work on the Semantic Grid, we suggest you start with

RDF because it is the foundation of the Semantic Web and also
the Semantic Grid. To test work on autonomic computing, we rec-
ommend that you start with software agent programming because
agents are normally involved in the development of autonomic
systems.

116 SEMANTIC GRID AND AUTONOMIC COMPUTING

3.9 KEY POINTS

• The development of the Semantic Grid is based on the applica-
tion of Semantic Web technologies to the Grid.

• The goal of the Semantic Web is to augment unstructured Web
content to structured information to improve computer inter-
pretability and the efficiency in Web information discovery
and use.

• Metadata and ontologies play a critical role in the evolution of
the Semantic Web and the Semantic Grid.

• RDF is the foundation of the Semantic Web.

• RDFS, DAML+OIL and OWL are ontology languages.

• DAML-S and OWL-S can be used to annotate Web services
(WSDL, SOAP and UDDI) with semantics.

• Data provenance is an annotation that helps explain the origin
and history of a data.

• Semantic portlets will play an important role in the development
of the Semantic Grid portals.

• An autonomic system is a computer system that is capable
of self-configuring, self-healing, self-optimizing, self-protecting
and self-learning.

• Thegoalofautonomiccomputingis toreducethecomplexity inthe
management of large computer-based systems such as the Grid.

• A future autonomic Grid system can be composed from auto-
nomic Grid services.

3.10 REFERENCES

[1] The Semantic Grid, http://www.semanticgrid.org.

[2] Lee, T.B., Hendler, J. and Lassila, O. (2001). The Semantic Web. Scientific
American, 284(5): 34–43.

[3] Gruber, T.R. (1993). A Translation Approach to Portable Ontology Specifica-

tions. Knowledge Acquisition, 5(2): 199–220. Academic Press.

[4] Kephart, J.O. and Chess, D.M. (2003). The Vision of Autonomic Computing.

IEEE Computer, 36(1): 41–50.
[5] W3C, http://www.w3.org/.

[6] Cannataro, M. and Comito, C. (2003). A Data Mining Ontology for Grid Pro-
gramming. Proceedings of the 1st Workshop on Semantics in Peer-to-Peer and

Grid Computing, Budapest, Hungary. Lecture Notes in Computer Science,

Springer-Verlag.

3.10 REFERENCES 117

[7] Miller, E. (1998). An Introduction to the Resource Description Framework.

D-Lib Magazine, http://www.dlib.org/dlib/may98/miller/05miller.html.

[8] RDF Schema, http://www.w3.org/TR/rdf-schema/.

[9] DAML+OIL, http://www.daml.org/.

[10] Horrocks, I. (2002). DAML+OIL: A Reason-able Web Ontology Language. Pro-
ceedings of the VIII Conference on Extending Database Technology (EDBT

2002), Prague, Czech Republic. Lecture Notes in Computer Science, Springer-

Verlag.

[11] OWL, http://www.w3.org/TR/2004/REC-owl-features-2004 0210/.

[12] PICS Specification, http://www.w3.org/PICS/.

[13] Layman, A., Paoli, J., Rose, S. and Thompson, H. (June 1997). XML-Data,

http://www.microsoft.com/standards/xml/xmldata.htm.

[14] Guha, R. and Bray, T. (June 1997). Meta Content Framework Using XML,

http://www.w3.org/TR/NOTE-MCF-XML/.

[15] Dublin Core, http://dublincore.org/.

[16] Lagoze, C., Lynch, C. and Daniel, R.J. (1996). The Warwick Framework:

A Container Architecture for Aggregating Sets of Metadata. Cornell Computer
Science Technical Report TR96-1593.

[17] Lassila, O. and McGuinness, D.L. (2001). The Role of Frame-Based Rep-

resentation on the Semantic Web. KSL Tech Report Number KSL-01-02,
http://www.ida.liu.se/ext/epa/ej/etai/2001/018/01018-etaibody.pdf.

[18] Horrocks, I. (2003). Implementation and Optimization Techniques. Descrip-
tion Logic Handbook, pp. 306–346. Cambridge University Press.

[19] Tsarkov, D. and Horrocks, I. (2003). DL Reasoner vs. First-Order Prover.
Proceedings of the 2003 International Workshop on Description Logics

(DL 2003), Rome, Italy. CEUR Publication.

[20] DAML-ONT, http://www.daml.org/2000/10/daml-ont.html.

[21] Fensel, D., Harmelen, F., Horrocks, I., McGuinness, D.L. and Patel-Schneider,

P.F. (2001). OIL: An Ontology Infrastructure for the Semantic Web. IEEE
Intelligent Systems, 16(2): 38–45.

[22] Horrocks, I. (1999). FaCT and iFaCT. Proceedings of the 1999 International

Workshop on Description Logics (DL 1999), Linköping, Sweden. CEUR

Publication.

[23] Bechhofer, S. and Horrocks, I. (2000). Driving User Interfaces from FaCT. Pro-
ceedings of the 1999 International Workshop on Description Logics (DL

2000), Aachen, Germany. CEUR Publication.

[24] Horrocks, I., Patel-Schneider, P.F. and Harmelen, F. (2002). Reviewing the
Design of DAML+OIL: An Ontology Language for the Semantic Web. Pro-

ceedings of 18th National Conference on Artificial Intelligence, Edmonton,

Alberta, Canada. American Association for Artificial Intelligence (AAAI)

Publication.

[25] Web Ontology Working Group, http://www.w3.org/2001/sw/WebOnt/.

[26] OWL Use Case, http://www.w3.org/TR/webont-req/.

[27] Antoniou, G. andHarmelen, F. (2004). Web Ontology Language: OWL.Hand-
book on Ontologies, International Handbooks on Information Systems. Springer,
pp. 67–92.

[28] Denny, M. (2002). Ontology Building: A Survey of Editing Tools, http://

www.xml.com/pub/a/2002/11/06/ontologies.html.

[29] OntoEdit, http://www.ontoknowledge.org/tools/ontoedit.shtml.

118 SEMANTIC GRID AND AUTONOMIC COMPUTING

[30] Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R. and Wenke, D. (2002).

OntoEdit: Collaborative Ontology Engineering for the Semantic Web. Proceedings
of the International Semantic Web Conference 2002 (ISWC 2002), Sardinia,

Italia. CS Press.

[31] Kifer, M., Lausen, G. andWu, J. (1995). Logical foundations of object-oriented

and frame based languages. Journal of the ACM, 42: 741–843.

[32] OilEd, http://oiled.man.ac.uk/.

[33] Eriksson, H., Fergerson, R.W., Shahar, Y. and Musen, M.A. (1999). Automatic
Generation of Ontology Editors. Proceedings of the 12th Banff Knowledge

Acquisition for Knowledge-based Systems Workshop (KAW-99), Banff,

Alberta, Canada.

[34] Protégé, http://protege.stanford.edu/.

[35] Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L.,

McDermott, D., McIlraith, S.A., Narayanan, S., Paolucci, M., Payne, T.R. and

Sycara, K. (2002). DAML-S: Web Service Description for the Semantic Web. Pro-
ceedings of the 1st International Semantic Web Conference (ISWC), Sardinia,

Italy. Lecture Notes in Computer Science, Springer-Verlag.

[36] OWL-S, http://www.daml.org/services/owl-s/1.0/owl-s.html.

[37] Tangmunarunkit, H., Decker, S. and Kesselman, C. (2003). Ontology-Based
Resource Matching in the Grid – The Grid Meets the Semantic Web. Proceedings
of the 2nd International Semantic Web Conference 2003 (ISWC 2003), Sanibel

Island, Florida, USA. Lecture Notes in Computer Science, Springer-Verlag.

[38] Decker, S. and Sintek, M. (2002). Triple – A Query, Inference, and Transformation
Language for the Semantic Web. Proceedings of the 1st International Semantic

Web Conference (ISWC), Sardinia, Italy. Lecture Notes in Computer Science,

Springer-Verlag.

[39] Lord, P., Wroe, C., Stevens, R., Goble, C., Miles, S., Moreau, L., Decker, K.,

Payne, T. and Papay, J. (2003). Semantic and Personalised Service Discovery.
Proceedings of IEEE Workshop on Knowledge Grid and Grid Intelligence

(KGGI ’03), in Conjunction with 2003 IEEE/WIC International Conference on

Web Intelligence/Intelligent Agent Technology, Halifax, Canada. CS Press.

[40] Chen, L., Shadbolt, N.R., Tao, F., Puleston, C., Goble, C. and Cox, S.J.

(2003). Exploiting Semantics for e-Science on the Semantic Grid. Proceedings of

IEEE Workshop on Knowledge Grid and Grid Intelligence (KGGI ’03), in

conjunction with 2003 IEEE/WIC International Conference on Web Intelli-

gence/Intelligent Agent Technology, Halifax, Canada. CS Press.

[41] OntoMat Annotizer Annotation Tool, http://annotation.semanticweb.org/

tools/ontomat.

[42] Hau, J., Lee, W. and Newhouse, S. (2003). Autonomic Service Adaptation Using
Ontological Annotation. Proceedings of the 4th International Workshop on

Grid Computing, Grid 2003, Phoenix, USA. CS Press.

[43] Li, M., Santen, P., Walker, D.W., Rana, O.F. and Baker, M.A. (2003). PortalLab:
A Web Services Oriented Toolkit for Semantic Grid Portals. Proceedings of the

3rd IEEE/ACM International Symposium on Cluster Computing and the

Grid (CCGrid 2003), Tokyo, Japan. CS Press.

[44] Krasner, G.E. and Pope, S.T. (1998). A Cookbook for Using the Model-View-

Controller User Interface Paradigm in Smalltalk-80. Journal of Object Oriented
Programming, 1(3): 26–49. ADT.

3.10 REFERENCES 119

[45] Jennings, N. (1999). Agent-based Computing: Promises and Perils. Proceedings
of 16th International Joint Conference on Artificial Intelligence (IJCAI ’99),

Stockholm, Sweden.

[46] Moreau, L. (2002). Agents for the Grid: A Comparison with Web Services. Pro-
ceedings of the 2nd IEEE/ACM International Symposium on Cluster Com-

puting and the Grid (CCGrid 2002), Berlin, Germany. CS Press.

[47] Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard,

B., Rollins, S. and Xu, Z. (2002). Peer-to-Peer Computing. HPL-2002-57,
HP Labs Technical Reports, http://www.hpl.hp.com/techreports/2002/

HPL-2002-57.pdf.

[48] Szomszor, M. and Moreau, M. (2003). Recording and Reasoning Over Data
Provenance in Web and Grid Services. Proceedings of International Conference
on Ontologies, Databases and Applications of SEmantics (ODBASE ’03),

Catania, Sicily, Italy. Lecture Notes in Computer Science, Springer-Verlag.

[49] Zhao, J., Goble, C., Greenwood, M., Wroe, C. and Stevens, R. (2003). Anno-
tating, Linking and Browsing Provenance Logs for e-Science. Proceedings of the

1st Workshop on Semantic Web Technologies for Searching and Retrieving

Scientific Data, Sanibel Island, Florida, USA. CEUR Publication.

[50] PASOA, http://www.pasoa.org.

[51] IBM eLiza, http://www-1.ibm.com/servers/autonomic/.

[52] Deen, G., Lehman, T. and Kaufman, J. (2003). The Almaden OptimalGrid
Project. Proceedings of the 5th Annual International Workshop on Active

Middleware Services 2003 (AMS 2003), Seattle, USA. CS Press.

[53] Intel Itanium2,http://www.intel.com/products/server/processors/server/

itanium2/.

[54] Sun N1, http://www.sun.com/software/n1gridsystem/.

[55] Dong, X., Hariri, S., Xve, L., Chen, H., Zhang, M., Pavuluri, S. and Rao, S.

(2003). Autonomia: An Autonomic Computing Environment. Proceedings of the
23rd IEEE International Performance Computing and Communications Con-

ference (IPCCC-03). CS Press.

[56] AutoMate, http://automate.rutgers.edu/.

[57] Liu, H., Parashar M. and Hariri, S. (2004). A Component-based Programming
Framework for Autonomic Applications. Proceedings of the 1st IEEE Interna-

tional Conference on Autonomic Computing (ICAC-04). New York, USA.

May CS Press.

[58] CCA, http://www.cca-forum.org/.

[59] AMUSE, http://www.dcs.gla.ac.UK/amuse/.

[60] Coulson, G., Grace, P., Blair, G., Mathy, L., Duce, D., Cooper, C., Yeung, W.

and Cai, W. (2004). Towards a Component-based Middleware Framework for
Configurable and Reconfigurable Grid Computing. Proceedings of Workshop

on Emerging Technologies for Next Generation Grid (ETNGRID-2004).

CS Press.

[61] Dearle, A., Kirby, GNC., McCarthy, A., Diaz, Y. and Carballo, JC. (2004).

A Flexible and Secure Deployment Framework for Distributed Applications. Pro-
ceedings of the 2nd International Working Conference on Component

Deploymen. Lecture Notes in Computer Science, Springer-Verlag.

[62] Markman, A.B. (1998). Knowledge Representation. Mahwah, NJ. Erlbaum. ISBN

0805824413.

120 SEMANTIC GRID AND AUTONOMIC COMPUTING

[63] Sowa, J.F. (1999). Knowledge Representation: Logical, Philosophical, & Computa-
tional Foundations. Pacific Grove, CA. Brooks/Cole. ISBN 0534949657.

[64] Russell, S.J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach.
February 2003. 2nd edition. Upper Saddle River, NJ. Prentice Hall. ISBN

0137903952.

[65] Fayyad, U.M., Shapiro, G.P., Smyth, P. and Uthurusamy, R. (1996). Advances
in Knowledge Discovery & Data Mining. Menlo Park, CA. MIT Press. ISBN

0262560976.

[66] Staab, S. and Studer, R. (2004).Handbook on Ontologies (International Handbooks
on Information Systems). Springer-Verlag. ISBN 3540408347.

[67] Luger, G.F. (2002). Artificial Intelligence: Structures & Strategies for Complex
Problem Solving. Harlow. Addison-Wesley. ISBN 0201648660.

Part Two

Basic Services

4
Grid Security

4.1 INTRODUCTION

In general, IT security is concerned with ensuring that critical

information and the associated infrastructures are not compro-

mised or put at risk by external agents. Here, the external agent

might be anyone that is not authorized to access the aforemen-

tioned critical information or infrastructure. The critical infras-

tructure we are referring to is that which supports banking and

financial institutions, information and communication systems,

energy, transportation and other vital human services. The Grid

is increasingly being taken up and used by all sectors of busi-

ness, industry, academia and the government as the middle-

ware infrastructure of choice. This means that Grid security is

a vital aspect of its overall architecture if it is to be used for

critical infrastructures.

A number of observations have been made on critical infras-

tructures [1]. It is clear that in today’s world they are highly

interdependent, both physically and in their reliance on national

information infrastructure. Most critical infrastructures are largely

owned by the private sector, where there tends to be a reluctance

to invest in long-term and high-risk security-related technologies.

Ongoing changes to business patterns are reducing the level of

tolerance to errors in these infrastructures. However, there is insuf-

ficient awareness of critical infrastructure issues. The growth of

The Grid: Core Technologies Maozhen Li and Mark Baker

© 2005 John Wiley & Sons, Ltd

124 GRID SECURITY

IT and the Internet can therefore have major implications for the

economic and the military security of the world.

IT infrastructures are changing at a staggering rate. Their scale

and complexity are becoming ever greater in scope and func-

tional sophistication. Boundaries between computer systems are

becoming indistinct; increasingly every device is networked, so the

infrastructure is becoming a heterogeneous sea of components with

a blurred human/device boundary. There is continuous and incre-

mental development and deployment; systems evolve by adding

new features and greater functionality at an unremitting pace.

These systems are becoming capable of dynamic self-configuration

and adaptation, where systems respond to changing circumstances

and conditions of their environment [2]. Increasingly there are mul-

tiple innovative types of networked architectures and strategies

for sharing resources. This obviously leaves gaps for a multiplicity

of fault types and openings for malicious faults, as well as attacks

from internal and external parties.

The actors that may want to compromise critical information or

infrastructures are many and varied. They include those that pose

national security threats, such as information warriors or agents

involved in national intelligence. Alternatively the actors could be

terrorists involved in industrial espionage or organized crime and

who pose a shared threat to a country. Or the threats could just

be local and come from institutional or recreational hackers intent

on thrill, challenge or prestige.

4.2 A BRIEF SECURITY PRIMER

The goals of security are threefold [2]: first, prevention – prevent

attackers from violating security policy; secondly detection – detect

attackers’ violation of security policy; finally recovery – stop an

attack, assess and repair damage, and continue to function cor-

rectly even if the attack succeeds.

Obviously prevention is the ideal scenario. In this case there

would be no successful attacks. Detection occurs only after

someone violates the security policy. It is important when a vio-

lation has occurred or is underway that it is reported swiftly. The

system must then respond appropriately. Recovery means that the

system continues to function correctly, possibly after a period of

degraded operation. Such systems are said to be intrusion tolerant.

4.2 A BRIEF SECURITY PRIMER 125

This is very difficult to do correctly. Usually, recovery means that

the attack is stopped and the system fixed. This may involve shut-

ting down the system for some time, or making it unavailable

to all users except those fixing the problem, and then the system

resumes correct operation.

The three classic security concerns of information security deal

principally with data, and are:

• Confidentiality: Data is only available to those who are autho-

rized;

• Integrity: Data is not changed except by controlled processes;

• Availability: Data is available when required.

Confidentiality is aimed at different issues. The content of a packet

during a communication has to be secure to prevent malicious

users from stealing the data. In order to prevent unauthorized

users retrieving secret information, a common approach is to

encrypt data from the sender before sending to the receiver. On

the receiving end, the receiver can extract the original information

by decrypting the encrypted text. Hence, confidentiality of data

transmission is closely related to application of different encryp-

tion algorithms.

Integrity is the protection of data from modification by unau-

thorized users. This is not the same as data confidentiality. Data

integrity requires that no unauthorized users can change or modify

the data concerned. For example, you want to broadcast a message

to the public, which is definitely not confidential to anyone. You

have to ensure the data integrity of your message from modifi-

cation by unauthorized people. In this instance, you may have to

stamp or add your signature to certify the message.

The term “availability” addresses the degree to which a system,

sub-system or equipment is operable and in a usable state.

Additional concerns deal more with people and their actions:

• Authentication: Ensuring that users are who they say they are;

• Authorization: Making a decision about who may access data or

a service;

• Assurance: Being confident that the security system functions

correctly;

126 GRID SECURITY

• Non-repudiation: Ensuring that a user cannot deny an action;

• Auditability: Tracking what a user did to data or a service.

Authentication implies ensuring the right user executes the granted

services or the origin of the data was from the real sender. There

are a large number of techniques that may be used to authenticate a

user – passwords, biometric techniques, smart cards or certificates.

Before starting services between a server and client, there should

be a mechanism to identify the privilege of the user. You may

consider a user name and password for a logon scheme to be the

most common authentication scheme. For example, you have to

input your Visa Card password at an ATM terminal or enter a

password to gain access to a Web portal. Hence, authenticity is

mainly related to the identification of authorized users.

Authorization is often a first step towards providing the service

of authentication. Authorization enables the decision to allow a

particular operation when a request to perform the operation is

received. Authorization in existing systems is usually based on

information local to the server. This information may be present

in Access Control Lists (ACL) associated with files or directo-

ries. ACLs are files listing individuals authorized to login to an

account (e.g. the UNIX .rhosts file), configuration files nam-

ing authorized users of a node and sometimes files read over

the network. When applied to distributed systems, authorization

mechanisms are required to determine whether a particular task

should be run on the current node when requested by a particular

principal. Many applications, and in particular applications using

distributed systems, can benefit from an authorization mechanism

that supports delegation. Delegation is a means by which a user or

process authorized to perform an operation can grant the author-

ity to perform that operation to another process. Delegation can be

used to implement distributed authorization where, for example,

a resource manager might allocate a node to a job and delegate

authority to use that node to the job’s initiator.

Assurance is the counterpart to authorization. Authorization

mechanisms allow the provider of a service to decide whether

to perform an operation on behalf of the requester of the

service. Assurance mechanisms allow the requester of a ser-

vice to decide whether a candidate service provider meets the

requesters’ requirements for security, trustworthiness, reliability or

other characteristics. Assurance mechanisms can be implemented

4.3 CRYPTOGRAPHY 127

through certificates (see Section 4.3.5 for a discussion of certificates)

signed by a third party trusted to endorse, license or insure a

service provider; certificates are checked as a client selects the

providers to contact for particular operations.

Non-repudiation is the concept of ensuring that a contract, espe-

cially one agreed to via the Internet, cannot later be denied by

one of the parties involved. With regard to digital security, non-

repudiation means that it can be verified that the sender and the

recipient were, in fact, the parties who claimed to send or receive

the message, respectively.

Auditability is about keeping track of what is happening on

a system. The idea is that if there is an intrusion, then the sys-

tem operator can find out exactly what has been done and in

whose name.

Other security concerns relate to:

• Trust: People can justifiably rely on computer-based systems to

perform critical functions securely, and on systems to process,

store and communicate sensitive information securely;

• Reliability: The system does what you want, when you want it to;

• Privacy: Within certain limits, no one should know who you are

or what you do.

4.3 CRYPTOGRAPHY

4.3.1 Introduction

Cryptography is the most commonly used means of providing

security; it can be used to address four goals:

• Message confidentiality: Only an authorized recipient is able to

extract the contents of a message from its encrypted form;

• Message integrity: The recipient should be able to determine if

the message has been altered during transmission;

• Sender authentication: The recipient can identify the sender, and

verify that the purported sender did send the message;

• Sender non-repudiation: The sender cannot deny sending the

message.

128 GRID SECURITY

Obviously, not all cryptographic systems (or algorithms) realize,
nor intend to, achieve all of these goals.

4.3.2 Symmetric cryptosystems

Using symmetric (conventional) cryptosystems, data is trans-
formed (encrypted) using an encrypted key and scrambled in such
a way that it can only be unscrambled (decrypted) by a symmetric
transformation using the same encryption key. Besides protecting
the confidentiality of data, encryption also protects data integrity.
Knowledge of the encryption key is required to produce cipher
text that will yield a predictable value when decrypted. Therefore
modification of the data by someone who does not know the key
can be detected by attaching a checksum before encryption, and
verified after decryption. A sketch of symmetric key cryptography
is shown in Figure 4.1.

4.3.2.1 Example: Data Encryption Standard (DES)

DES consists of two components – an algorithm and a key. The
DES algorithm involves a number of iterations of a simple transfor-
mation which uses both transposition and substitution techniques
applied alternately. DES is a so-called private-key cipher; here data
is encrypted and decrypted with the same key. Both sender and
receiver must keep the key a secret from others. The DES algo-
rithm is publicly known, learning the encryption key would allow
an encrypted message to be read by anyone.

Encrypt with
secret key

Decrypt with
secret key

Plaintext

The Internet

Cipher text

Plaintext

Figure 4.1 Symmetric key cryptography

4.3 CRYPTOGRAPHY 129

4.3.3 Asymmetric cryptosystems

In asymmetric cryptography, encryption and decryption are per-
formed using a pair of keys such that knowledge of one key does
not provide knowledge of the other key in the pair. One key, called
the public key, is published, and the other key, called the private
key, is kept private. The main advantage of asymmetric cryptogra-
phy is that secrecy is not needed for the public key. The public key
can be published rather like a telephone number. However only
someone in possession of the private key can perform decryption.
A sketch of asymmetric key cryptography is shown in Figure 4.2.

4.3.3.1 Example: RSA

An example of a public-key cryptosystem is RSA, named after
its developers, Rivest, Shamir and Adleman (RSA), who invented
the algorithm at MIT in 1978. RSA provides authentication, as
well as encryption, and uses two keys: a private key and a public
key. With RSA, there is no distinction between the function of a
user’s public and private keys. A key can be used as either the
public or the private key. The keys for the RSA algorithm are
generated mathematically, in part, by combining prime numbers.
The security of the RSA algorithm, and others similar to it, depends
on the use of very large numbers (RSA uses 256 or 512 bit keys).
With both symmetric and asymmetric systems there is a need

to secure the private key. The private key must be kept private.
It should not be sent to others, and it should not be stored on a
system where others may be able to find and use it. The stored
keys should always be password protected. Another issue, with

Encrypt with
public key

Decrypt with
private key

Plaintext

The Internet

Cipher text

Plaintext

Figure 4.2 Asymmetric key cryptography

130 GRID SECURITY

key-based systems, is that the algorithms that are used are public.
This means that algorithms could be coded and used to decrypt a
message via a brute force method of trying all the possible keys.
Such a program would fortunately need a significant amount of
computational power to accomplish such a process. With keys of
sufficient length, the time to decode a message would be unrea-
sonable. Currently, keys are typically 1024–2048 bits in length.
However, the availability of cheap computational power, in the
form of clusters of PCs, and their doubling in speed every eighteen
months, means that the brute force approach may be viable in the
future.

4.3.4 Digital signatures

Integrity is guaranteed in public-key systems by using digital sig-
natures, which are a method of authenticating digital information,
in the same manner that an individual would sign a paper docu-
ment to authenticate it. A digital signature is itself a sequence of
bits conforming to one of a number of standards.
Most digital signatures rely on public-key cryptography to work.

Consider a scenario, where someone wants to send a message to
another and prove its originator, but does not care whether any-
body else reads it. In this case, they send an encrypted copy of the
message, along with a copy of the message encrypted with their
private (not public) key. A recipient can then check whether the
message really came from originator by unscrambling the scram-
bled message with the sender’s public key and comparing it with
the unscrambled version. If they match, the message was really
from the originator, because the private key was needed to create
the encrypted copy and no one but the originator has it. Often, a
cryptographically strong hash function [4] is applied to the mes-
sage, and the resulting message digest is encrypted instead of the
entire message, which makes the signature significantly shorter
than the message and saves considerable time since hashing is
generally much faster, byte for byte, than public-key encryption.

4.3.5 Public-key certificate

A public-key certificate is a file that contains a public key, together
with identity information, such as a person’s name, all of which is

4.3 CRYPTOGRAPHY 131

signed by a Certification Authority (CA). The CA is a guarantor

who verifies that the public key belongs to the named entity.

Certificates are required for the large-scale use of public-key

cryptography, since anybody can create a public–private-key pair.

So in principle, if the originator is sending private information

encrypted with the recipient’s public key, a malicious user can

fool the originator into using their public key, and so get access

to the information, since it knows its corresponding private key.

But if the originator only trusts public keys that have been signed

(“certified”) by an authority, then this type of attack can be pre-

vented. In large-scale deployments one user may not be familiar

with another’s certification authority (perhaps they each have a

different company CA), so a certificate may also include a CA’s

public key signed by a higher level CA, which is more widely

recognized. This process can lead to a hierarchy of certificates and

complex graphs representing trust relations.

Public Key Infrastructure (PKI) refers to the software that man-

ages certificates in a large-scale setting. In X.509 PKI systems, the

hierarchy of certificates is always a top-down tree, with a root

certificate at the top, representing a CA that is so well known it

does not need to be authenticated. A certificate may be revoked

if it is known that the related private key has been exposed. In

this circumstance, one needs to look up the Certificate Revoca-

tion List, which is often stored remotely, and updated frequently.

A certificate typically includes:

• The public key being signed;

• A name, which can refer to a person, a computer or an organi-

zation;

• A validity period;

• The location (URL) of a revocation list.

The most common certificate standard is the ITU-T X.509 [5]. An

X.509 certificate is generally a plaintext file that includes informa-

tion in a specific syntax:

• Subject: This is the name of the user;

• Subject’s public key: This includes the key itself, and other infor-

mation such as the algorithm used to generate the public key;

• Issuer’s subject: CA’s distinguished name (Table 4.1);

132 GRID SECURITY

Table 4.1

Distinguished Names (DN)
Names in X.509 certificates are not encoded simply as common names, such

as “Mark Baker” or “Certificate Authority XYZ” or “System Administrator”.

Names are encoded as distinguished names, which are name–value pairs. An

example of typical distinguished name attributes is shown below.

OU=Portsmouth, L=DSG, CN=Mark Baker

A DN can have several different attributes, and the most common are the

following:

OU: Organizational Unit

L: Location

CN: Common Name (usually the user’s name).

• Digital signature: The certificate includes a digital signature of

all the information in the certificate. This digital signature is

generated using the CA’s private key. To verify the digital sig-

nature, we need the CA’s public key, which is found in the CA’s

certificate.

4.3.6 Certification Authority (CA)

The CA exists to provide entities with a trustable digital identity

which they can use to access resources in a secure way. Its role

is to issue (create and sign) certificates, make the valid certificates

publicly accessible, revoke certificates when necessary and regu-

larly issue revocation lists. The CA must also keep records of all

its transactions.

A CA can issue personal certificates to users; the purpose of the

certificate is to allow users to identify themselves to remote entities.

A personal certificate can also be used for digital signatures. A CA

can also issue host (server) and service certificates. Each host and

service connected to a network must be able to identify itself.

Some CAs can issue certificates which validate the identity of

subordinate CAs. Some CAs are therefore subordinate CAs and

some simply appoint themselves. In either case the CA publishes a

document called the Certificate Policy Statement (CPS). This is

a document which details the conditions under which it issues

4.3 CRYPTOGRAPHY 133

certificates, and the level of assurance which a relying party can

place in certificates issued by the CA.

A CA issues public-key certificates that state that the CA trusts

the owner of the certificate, and that they are who they purport to

be. A CA should check an applicant’s identity to ensure it matches

the credentials on the certificate. A party relying on the certificate

trusts the CA to verify identity so that the relying party can trust

that the user of the certificate is not an imposter.

4.3.7 Firewalls

A firewall is a hardware or software component added to a net-

work to prevent communication forbidden by an organization’s

administrative policy. Two types of firewalls are generally found,

traditional and personal. A traditional firewall is typically a ded-

icated network device or computer positioned on the boundary

of two or more networks. This type of firewall filters all traffic

entering or leaving the connected networks. On the other hand,

a personal firewall is a software application that can filter traffic

entering or leaving a single computer.

Traditional firewalls come in several categories and sub-

categories. They all have the basic task of preventing intrusion in

a connected network, but accomplish this in different ways, by

working at the network and/or transport layer of the network.

A network layer firewall operates at the network level of

the TCP/IP protocol stack; it undertakes IP-packet filtering, not

allowing packets to pass the firewall unless they meet the rules

defined by the firewall administrator. A more liberal set up could

allow any packet to pass the filter as long as it does not match one

or more negative-rules or deny rules.

Application layer firewalls operate at the application level of the

TCP/IP protocol stack; intercepting, for example, all Web, telnet or

ftp traffic. They will intercept all packets travelling to or from an

application. These firewalls will block packets; usually dropping

them without acknowledgement to the sender.

These firewalls can, in principle, prevent all unwanted traffic

from reaching protected machines. The inspection of all packets for

improper content means that firewalls can even prevent the spread

of such things as viruses or Trojans. However, in practice, this

becomes complex and difficult to attempt, in the light of the variety

134 GRID SECURITY

of applications and the diversity of content, so an all-inclusive

firewall design will not attempt this approach.

Sometimes, a proxy device, which can again be implemented in

hardware or software, can act as a firewall by responding to input

packets (e.g. connection requests) in the manner of an application,

whilst blocking other packets. Proxies help make tampering with

the internal infrastructure from an external system more difficult,

and misuse of one of its internal systems would not necessarily

cause a security breach that would be exploitable from outside,

assuming that the proxy itself remains intact. The use of internal

address spaces enhances security; an intruder may still employ

methods such as IP spoofing to attempt to pass packets to the

target internal network.

Correctly configuring a firewall demands skill. It requires a good

understanding of network protocols and of computer security in

general. Errors or small mistakes in the configuration of a firewall

can render it valueless as a security tool.

4.4 GRID SECURITY

4.4.1 The Grid Security Infrastructure (GSI)

Grid security is based on what is known as the Grid Security

Infrastructure (GSI) (Figure 4.3), which is now a Global Grid Forum

(GGF) standard [6, 7]. GSI is a set of tools, libraries, and protocols

used in Globus (see Chapter 5), and other grid middleware, to

allow users and applications to access resources securely. GSI is

PKI
(CAs and

certificates)
SSL / TLS

Proxies and delegation

PKI for
credentials

Secure Sockets
Layer (SSL) for
authentication
and message
protection

Proxies and delegation (GSI
extensions) for secure single
sign-on

Figure 4.3 The Grid Security Infrastructure

4.4 GRID SECURITY 135

based on a Public Key Infrastructure, with certificate authorities

and X.509 certificates. GSI provides:

• A public-key system;

• Mutual authentication through digital certificates;

• Credential delegation and single sign-on.

4.4.1.1 Introduction

GSI is a collection of well-known and trusted technologies. It can

be configured to provide privacy, integrity and authentication;

in addition, strong authentication is provided with the help of

certificates. Not all of these features are always needed during

communication. Typically, a GSI-based secure conversation must

at least be authenticated. Integrity is desirable, but can be disabled

and encryption can also be activated, when needed, to ensure

privacy.

4.4.1.2 Mutual authentication through digital certificates

GSI uses X.509 certificates to guarantee strong authentication.

Mutual authentication means that both parties in a secure con-

versation authenticate the other. So, when an originator wants to

communicate with a remote party, the originator must establish

trust in the remote party and vice versa. Here trust means that

the each party must trust the certificate of the CA that signed

the other’s certificate. Otherwise, no trust can exist between the

parties.

4.4.1.3 Credential delegation and single sign- on

GSI lets a user create and delegate proxy credentials to pro-

cesses running on remote resources; this allows remote processes

and resources to act on a user’s behalf. This feature is impor-

tant for complex applications that need to use a variety of remote

resources. Proxy credentials are short-lived credentials created by

a user; in essence they are a short-term binding of the user’s iden-

tity to an alternate private key. It allows users to be authenticated

136 GRID SECURITY

once, and then perform multiple actions. The proxy credential is

stored unencrypted for ease of repeated access, and has a short

lifetime in case of theft. Single sign-on is an important feature as it

simplifies the coordination of multiple resources; a user authenti-

cates once, and can then perform multiple actions without further

authentication; in addition, the system allows processes to act on

the user’s behalf without further authentication.

4.4.2 Authorization modes in GSI

GSI supports three authorization modes on both the server and

client.

Server-side authorization
Depending on the authorization mode chosen, the server will

decide if it accepts or declines an incoming security request.

• None: This is the simplest type of authorization. No authorization

will be performed.

• Self: A client will be allowed to use a grid service if the client’s

identity is the same as the service’s identity.

• Gridmap: The gridmap file contains a list of authorized users; this

is similar to an ACL. Here only the users listed in the service’s

gridmap file may invoke it.

Client-side authorization
A client in GSI can chose to use a remote service or not based on

it having the appropriate security credentials.

• None: No authorization will be performed.

• Self: The client will authorize an invocation if the service’s iden-

tity is the same as the client. If both client- and server-side use

self-authorization, a service can be invoked if its identity matches

the client’s.

• Host: The client will authorize a security request if the host

returns an identity containing the hostname. This is done using

host certificates.

4.4 GRID SECURITY 137

4.4.2.1 Requesting a certificate

To request a certificate a user starts by generating a key pair.

The private key is stored in an encrypted form secured with a

pass phrase. The public key is put into a certificate request that is

sent to the CA. The CA usually includes a number of Registration

Authorities (RA). RAs verify the request by ensuring facts such as

the name is unique with respect to the CA, and it is the real name

of the user. If the RA is happy then the CA signs the certificate

request and issues a certificate for the user.

4.4.2.2 Mutual authentication

The GSI uses the Secure Sockets Layer (SSL) [8] for its mutual

authentication protocol. Before mutual authentication can occur,

the entities involved must first trust the CAs that signed each

other’s certificates. Each entity will have a copy of the other CA’s

certificate, which contains its public keys. The authentication pro-

cess is illustrated in Figure 4.4.

To mutually authenticate:

1. The first entity (A) establishes a connection with the second

entity (B). To start the authentication process, A gives B its

certificate. The certificate tells B who A is claiming to be (the

identity), A’s public key, and which CA is being used to certify

the certificate.

Certificate
B

User A User B

CertA CertB

(1) Connection established

(2) A sends B its certificate

(a) Check the validity of Cert
authority based on digital signature
of Cert authority

(b) Extract the public key of A

(5) B decrypts the encrypted
message if this matches with
the original message, B can trust
A now

(4) A encrypts B′s plaintext file with
 certA and sends it to B

Certificate
A

(3) B sends A a plaintext file

Figure 4.4 Mutual authentication

138 GRID SECURITY

2. First, B makes sure that the certificate is valid by checking the

CA’s digital signature to ensure that the CA actually signed the

certificate and that the certificate has not been tampered with.

This is the point where B must trust the CA that signed A’s

certificate.

3. Once B has checked out A’s certificate, B makes sure that A

really is the entity identified in the certificate. To do this, B

generates a random plaintext message and sends it to A, asking

A to encrypt it.

4. A encrypts the message using its private key, and sends it back

to B. B decrypts the message using A’s public key. If the result

is the same as the original random message, then B knows that

A is who they say they are and B trusts A’s identity.

5. The same operation now happens in reverse. B sends A its cer-

tificate. A validates the certificate and sends a challenge message

to be encrypted. B encrypts the message and sends it back to A.

A decrypts it and compares it with the original. If it matches,

then A knows that B is who they say they are.

6. At this point, A and B have established a connection to each

other and are certain that they know each others’ identities,

i.e. they trust each other.

4.4.2.3 Confidential communication

The default behaviour of GSI is not to establish encrypted commu-

nication between entities. In GSI, once mutual authentication has

occurred, communications occur without the overhead of encryp-

tion. Confidential communication can be established again when

it is needed. By default, GSI provides communication integrity.

4.4.2.4 Securing private keys

GSI software expects a user’s private key to be stored in a file,

which is encrypted via a password (also known as a pass phrase),

in a safe location on a computer’s file system. The user needs to

enter the required pass phrase to decrypt the file containing the

private key.

4.4 GRID SECURITY 139

4.4.2.5 Delegation and single sign-on

The GSI delegation capability is the means to reduce the number
of times a user must enter the pass phrase. If an activity requires
that several resources be used, or a broker or agent is acting upon
a user’s behalf – each requiring mutual authentication, a proxy can
be created (as shown in Figure 4.5) that avoids the need to enter
the pass phrase repeatedly.
A proxy consists of a new certificate (with a new public key)

and a new private key. The new certificate contains the owner’s
identity, modified slightly to indicate that it is a proxy. The owner,
rather than a CA, signs the new certificate. The certificate also
includes a time notation, after which others should no longer
accept the proxy. Proxies have limited lifetimes and cannot live
past the expiry of the original certificate.
The proxy’s private key must be kept secure. As the proxy’s

key is not valid for very long, it is typically kept on the local
storage system without being encrypted, but with file permissions
that prevent it being examined easily. Once a proxy is created and
stored, the user can use the proxy certificate and private key for
mutual authentication without entering a password.
Mutual authentication differs when proxies are used. The remote

party receives the proxy’s certificate (signed by the owner), and

A temporary credential created

The user proxy credential is created
Cup = Sign(u) {C′up, start-time, expiry-time}

A user proxy is created

The user gains access to the computer

User
proxy

Cuserp

Cuserp

Cuser

Cuserp
µ

Figure 4.5 User proxy creation

140 GRID SECURITY

also the owner’s certificate. During mutual authentication, the

owner’s public key (obtained from their certificate) is used to vali-

date the signature on the proxy certificate. The CA’s public key is

then used to validate the signature on the owner’s certificate. This

establishes a chain of trust from the CA to the proxy through the

owner, where the proxy process impersonates the owner for the

lifetime of the proxy certificate.

4.5 PUTTING IT ALL TOGETHER

4.5.1 Getting an e-Science certificate

One of the first steps that a Grid user needs to undertake is to get

the appropriate certificate so that they can interact and use Grid-

based resources. In the UK, the e-Science programme has set up a

CA to support Grid projects and users. The UK e-Science CA pro-

vides a comprehensive service that ensures that users have all the

help necessary to use certificates. To get a UK e-Science certificate,

the first action that a user must take is to go to the CA’s support

Web site (Figure 4.6) and read the associated documentation about

how to proceed. For the purpose of a demonstration we will run

through the Java-based Certificate Request process. It should be

noted there is also support for using a Web browser to create a

request for a certificate.

Step 0: Read the appropriate documents.

Step 1: Go to http://ca.grid-support.ac.uk/.

Step 2: Click on “Get the CA Root Certificate” – this loads the CA

Root Certificate.

Step 3: Go to http://ca.grid-support.ac.uk/jcr (Figure 4.7).

Step 4: Read the JCR documentation.

As the Web page states, the following components must be

installed and correctly configured on the client system (the down-

load locations are specified in the user documentation):

• Java Run Time Environment (JRE) 1.4.2;

• Sun’s unrestricted policy files for JCE – (see Table 4.2);

4.5 PUTTING IT ALL TOGETHER 141

Figure 4.6 The UK e-Science Certificate Authority Home Page

Figure 4.7 e-Science Java Certificate Request (JCR) Page

142 GRID SECURITY

Table 4.2

JCE
The Java Cryptography Extension (JCE) is a package that provides a frame-

work and implementations for encryption, key generation and agreement and

message authentication code (MAC) algorithms. The support for encryption

includes symmetric, asymmetric, block and stream ciphers. JCE has the ability

to enforce restrictions regarding the cryptographic algorithms and maximum

cryptographic strengths available to applets/applications in different (juris-

diction contexts) locations. Sun’s JCE provides support for the likes of DES,

Blowfish, PBEWithMD5AndDES, Diffie-Hellman key agreement among mul-

tiple parties, HmacMD5 and HmacSHA1. Unfortunately, RSA is not included.

Another third party, Bouncy Castle JCE, provides a larger collection of crypto-

graphic algorithms, including Blowfish, DES, IDEA, RC2-6, AES, RSA, MD2,

MD5, SHA-1 and DSA. Bouncy Castle JCE is an open-source Apache style

project that provides the most complete, freely available JCE.

• Bouncy Castle cryptographic provider – (see Table 4.2);

• The CA root certificate loaded into your browser in Step 2.

Step 5: Install and set up your system as specified.

Step 6: Launch the JCR applet (Figure 4.8).

Step 7: Click User Certificate Request (Figure 4.9), complete the

form and submit.

Note that the pass phrase is used to secure your private key. When

you receive your certificate, the same pass phrase will be used to

protect the certificate.

Step 8: If you are successful you will get the JCRmessage shown in

Figure 4.10. Check that your certificate request details are correct.

Step 9: You will be prompted to save a file to your hard disk

(Figure 4.11). JCR uses the filename to store a copy of the certificate

request. It has the extension .csr. It also saves a copy of the private

key, which is generated along with the request. The private-key

file is encrypted and has the extension .enc.

Step 10: If you are successful you will get the JCR message shown

in Figure 4.12.

Step 11: If you successfully get to Step 10, then you should take

your photo ID and the PIN returned in Figure 4.12 to your local RA.

4.5 PUTTING IT ALL TOGETHER 143

Figure 4.8 e-Science CA JCR applet

Figure 4.9 User Certificate Request

144 GRID SECURITY

Figure 4.10 JCR check message

Figure 4.11 Saving the Cert Request File

Figure 4.12 JCR successful request message

4.5 PUTTING IT ALL TOGETHER 145

The RA will check your ID and send a request to the CA on your

behalf for an e-Science certificate.

Step 12: At some stage soon (between 24 and 48 hours later) the

CA will email you. The email will contain the serial number of

your certificate.

Step 13: Start-up the JCR applet again and click on the “Download

Certificates” button (Figure 4.8). You will be presented with a

window shown in Figure 4.13.

You should do the following:

• Enter the certificate serial number;

• Use the “Browse” button to locate the .enc file that was saved

when you made your request;

• Enter the pass phrase you used to protect the private key;

• Click on “Go!”

The applet will then do the following:

• Retrieve your certificate and write it to a .cer file;
• Un-encrypt your private key;

• Write a .p12 file, which is protected with the pass phrase;

• Delete the .enc, .csr and .cer files.

Figure 4.13 JCR certificate download

146 GRID SECURITY

The .p12 file contains your certificate with its private key. You
should take care of this file. It is in a form which is suitable for
importing into other applications such as a Web browser. It is not
suitable in this form for Globus. It is necessary to use OpenSSL [9]
to convert the .p12 file to the format used by Globus [10].

4.5.2 Managing credentials in Globus

Once a user has been authenticated to a system and proven their
GSI identity, they must be authorized before they gain any access.
Globus comes with an authorization mechanism, which uses the
gridmap file. The gridmap file is the main point of control for the
local system administrator to control who can access their system
using Globus.
The gridmap file is a plaintext file containing a list of autho-

rized GSI identities and mappings from those identities to local
user identities (e.g. UNIX account names). Thus it is both an ACL
and a mapping mechanism. The local system administrator, when
requested by a user who presents their GSI identity to the admin-
istrator, adds entries to it. The administrator then determines what
the local account name is for the user and adds this mapping to
the gridmap file.
The gridmap file is used by GSI after authenticating a user.

A gridmap file at each site specifies grid-id to local-idmapping. GSI
first checks to see if the user’s grid identity is listed in the gridmap
file. If the user is not listed, they are denied access to the resource.
An example of a gridmap file entry is:

"/C=UK/O=eScience/OU=Portsmouth/L=DSG/ CN=Mark Baker" mab

The Globus command grid_mapfile_add_user can be used by
an administrator to add entries to the gridmap file. For example,
the following command would add a user to the gridmap file:

grid_mapfile_add_user -dn
"/C=UK/O=eScience/O=Portsmouth/L=DSG/CN=Mark Baker"

The distinguished name must be exactly as it appears in the user’s
certificate. Not doing so will result in an authentication failure.

4.5 PUTTING IT ALL TOGETHER 147

You can get this information directly from the user’s certificate by
using the following command:

grid-cert-info --subject --file <certificate file>

For example, the following command prints the certificate
subject for the X.509 certificate in the file $HOME/.globus/
usercert.pem. This is the default location for a user’s certificate
file (Table 4.3):

grid-cert-info --subject --file $HOME/.globus/usercert.pem

Table 4.3 Digital certificate file formats

Digital certificates

An X.509 digital certificate is based upon what is known as Abstract Syntax

Notation (ASN.1). The X.509 data can be encoded in either a binary or ASCII

form. These files are known as DER distinguished encoding rules – or

(Privacy Enhanced Mail) PEM-based files.

DER, a binary representation, is specified in the ISO Standard X.690. DER files

are usually characterized by a “.der” extension.

A Certificate Signing Request (CSR) consists of a distinguished name, a public

key and an optional set of attributes. The CSR is signed by the entity

requesting certification. The CSR is sent to a CA that transfers the request

into an X.509 public-key certificate. CSR files are usually characterized by a

“.csr” extension.

A PEM (RFC 1421 RFC 1424) encoded format is essentially the same X.509

digital certificate but in an ASCII form. PEM is a Base64 version of the DER

file wrapped with the “-- - -BEGIN CERTIFICATE-- - -” and “-- - -END

CERTIFICATE-- -” lines. This format is used for ease of transport and to

facilitate cutting and pasting of the data.

PKCS#12 is a standard for storing private keys and certificates in a portable

format. The specification is actually called Personal Information Exchange

Syntax. A PKCS#12 file contains a user’s private key and digital certificate,

along with other “secret” information about the user. PKCS#12 files are

usually characterized by a “.p12” extension.

Digital certificate files can have a “.cer” extension.

During the JCR process (see Step 9) the private key is encrypted and saved in a

file with the extension “.enc”.

148 GRID SECURITY

4.5.3 Generate a client proxy

Before running a client, it is necessary to generate a proxy for the
client. Proxies are intended for short-term use, when the user is
submitting many jobs and does not want to repeatedly enter their
password for every job. The subject of a proxy certificate is the
same as the subject of the certificate that signed it, with/CN=proxy
added to the distinguished name. A gatekeeper accepts any job
requests submitted by the user, as well as any proxies he has
created. Proxies may be a convenient alternative to constantly
entering passwords, but they are also less secure than the user’s
normal security credential. Therefore, they should always be user-
readable only, and should be deleted after they are no longer
needed (or after they expire). Globus uses MyProxy [11] as a cre-
dential repository.
The command to create a proxy in Globus is:

grid_proxy_init

Generating a proxy uses the $HOME/.globus/usercert.pem
and $HOME/.globus/userkey.pem files by default to generate
a proxy. You will have to enter the pass phrase you provided when
your public/private-key pair was initially generated.

Your identity: /C=UK/O=eScience/OU=Portsmouth/L=DSG/CN=Mark Baker
Enter GRID pass phrase for this identity:
Creating proxy
Done
Your proxy is valid until: Sat March 27 05:19:30 2004

This will create a proxy file in /tmp/x509up_u$UID. For example
with an UID of 1004 the proxy file will be /tmp/x509up_u1004.
This proxy has a default expiry time of 12 hours.

4.5.4 Firewall traversal

The Globus Toolkit (see Chapter 5) provides a way to restrict the
ports which client and server programs can use. This is done by
the use of the GLOBUS_TCP_PORT_RANGE environment variable.
Setting this variable to a range of ports will cause Globus tools to
only use ports in this range, see Table 4.4 for further details.

4.6 POSSIBLE VULNERABILITIES 149

Table 4.4 TCP ports

Ephemeral A non-deterministic port assigned by the system in

the untrusted port range (>1024)

Controllable ephemeral An ephemeral port selected by the Globus Toolkit

libraries that can be constrained by use of the

GLOBUS_TCP_PORT_RANGE environment

variable to a given port range

Grid service Static ports for well-known Grid services. These

ports are, for example:

• 22/TCP (GSI-enabled OpenSSH)

• 2119/TCP (Globus Gatekeeper)

• 2135/TCP (MDS)

• 2811/TCP (GridFTP server).

4.6 POSSIBLE VULNERABILITIES

Security mechanisms are not fool proof. There always tends to be

tension between security and usability. So, there will always be

vulnerabilities, which range from technical to physical ones. This

section deals with Grid security flaws.

4.6.1 Authentication

On the Grid, both sides achieve authentication by using certified

public keys. An authorized CA decides who should be certified. An

obvious concern here is the amount of checking done to confirm

the identity of someone before issuing the certificate. A CA should

publish a policy statement (CPS) about how they operate.

We recommend that you read Mike Surridge’s e-Science report,

A Rough Guide to Grid Security [12], especially note the social engi-

neering techniques that can be used to obtain user credentials.

4.6.2 Proxies

The proxy mechanism is useful as it provides local authorization

without the need to contact the user site for every remote action

150 GRID SECURITY

or service access. There are some drawbacks that compromise
security:

• The proxy’s private key resides on a remote system outside the
user’s direct control; however, this is used to sign messages that
the Grid infrastructure will trust as coming from the user.

• When creating a proxy certificate the user acts like a CA for the
proxy; however, the user does not have to publish a certification
policy or a revocation process.

If the remote system were compromised, the user’s proxy private
key would no longer be private, and even if the user were aware
of this there is no revocation process. Globus attempts to mini-
mize the risk by recommending that proxies are short-lived, so the
stolen credential can only be misused for a short time. Here active
detection of stolen credentials is very important.

4.6.3 Authorization

Authorization is the step of deciding what access rights a user has
to services. In the Grid, most systems assert that authorization to
a service should be granted by the service owner. Most Grid sys-
tems do this by mapping a remote Grid user’s identity onto a local
account. The local system administrator can then define the services
the local account is able to access. The greatest problem with this
methodology is that for every user, service or resource, there need to
be entries in the gridmapfile. The number of such entities to beman-
agedby thegridmapfile canbehuge, andsystemadministratorswill
be swamped and start giving all users default rather than particular
access rights, which may mean that vulnerabilities are introduced.
This model also means that it is likely that it takes time to add or
remove user access rights, which can cause problems also.
In general, it is clear that the greater the access rights that a

user is granted, the more likely that a service or resource will be
exposed to security compromise. If a user’s credentials are stolen
and if they are not revoked quickly, services and resources that the
user had access right to are at risk. This area has been addressed by
the GridPP project [13], who have created a patch which provides
a modification for Globus Toolkit v2+, which enables the dynamic
allocation of local UNIX usernames to Grid users. The system
administrator using the normal account creation method can create

4.9 FURTHER READING 151

a pool of local accounts, and these are leased to incoming Grid
users. This is similar to the way DHCP allocates temporary leases
on IP numbers from a pool. A UNIX cron job can be run at regular
intervals to revoke the leases after a specified time (e.g. hourly)
and make them available to other users.

4.7 SUMMARY

Security can be seen as both sociological and technical in nature,
and there are many challenges that need to be addressed to ensure
that users and resources are secure. Some of the technical chal-
lenges are being met; there are many, such as those relating to
trust, which are being considered; however, there are others which
have still to be addressed.
As theGrid is increasinglybeing takenupandusedbyall sectorsof

business, industry,academiaandthegovernmentas themiddleware
infrastructure of choice, it is crucial that Grid security is watertight.
In this chapter we first provided a security primer that described

potential risks, then we moved on to outline the basic principles of
cryptography, explaining briefly the typical terms and technologies
as will be seen when security is mentioned. The chapter then dis-
cussed the GSI, and the various authorization modes used in GSI.
We then put together all the security components previously men-
tioned and described how a user would get a certificate; manage
credentials and transverse a firewall. Finally we briefly highlighted
possible vulnerabilities that possibly still exist in Grid security.

4.8 ACKNOWLEDGEMENTS

/C=UK/O=eScience/OU=CLRC/L=RAL/CN=Alistair Mills
/C=UK/O=eScience/OU=Portsmouth/L=DSG/CN=Hong Ong

4.9 FURTHER READING

Azzedin, F. and Maheswaran, M., Towards Trust-Aware Resource Management

in Grid Computing Systems, Cluster Computing and the Grid 2nd IEEE/ACM
International Symposium CCGrid 2002, pp. 452–457.

Butler, R., Welch, V., Engert, D., Foster, I., Tuecke, S., Volmer, I. and Kesselman,

C., A National-Scale Authentication Infrastructure, Computer, 33 (12), December

2000, pp. 60–66.

152 GRID SECURITY

Butt, A., Adabala, S., Kapadia, N., Figueiredo, R. and Fortes, J., Fine-grain Access

Control for Securing Shared Resources in Computational Grids, Parallel and Dis-
tributed Processing Symposium, Proceedings International, IPDPS 2002, Abstracts

and CD-ROM, 2002, pp. 206–213.

Humphrey, M. and Thompson, M., Security Implications of Typical Grid Computing
Usage Scenarios, Security Working Group GRIP forum draft, October 2000.

Internet Security Glossary, ftp://ftp.isi.edu/in-notes/rfc2828.txt.

4.10 REFERENCES

[1] Critical Infrastructure Information Security Act, Bob, Bennett, http://

bennett.senate.gov/bennettinthesenate/speeches/2001Sep25_Crit_Infrast_

Inf_Sec.htm.

[2] eLiza Project, http://www.ibm.com/servers/autonomic/.

[3] Bosworth, S. and Kabay, M.E. (eds), Computer Security Handbook, Wiley, US,

4th edition (5 April 2002), ISBN: 0471412589.

[4] Hash Function, http://www.nist.gov/dads/HTML/hash.html.

[5] ITU-T, http://www.itu.int/rec/recommendation.asp?type= folders&lang=
e&parent=T-REC-X.509.

[6] GSI Working Group, http://forge.gridforum.org/projects/gsi-wg.

[7] Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S., A Security Architecture
for Computational Grids. Proceedings of 5th ACM Conference on Computer

and Communications Security Conference, 1998, pp. 83–92.

[8] SSL, http://docs.sun.com/source/816-6156-10/contents.htm.

[9] OpenSSL, http://www.openssl.org/.

[10] Key Conversion, http://www.grid-support.ac.uk/ca/user-documentation/

Globus.html.

[11] Novotny, J., Tuecke, S. and Welch, V., An Online Credential Repository for
the Grid: MyProxy, High Performance Distributed Computing, Proceedings of

10th IEEE International Symposium on, Los Alamitos, CA, USA, IEEE Com-

puter Society Press, 2001, pp. 104–111, http://csdl.computer.org/comp/

proceedings/hpdc/2001/1296/00/12960104abs.htm.

[12] Surridge,M.ARough Guide to Grid Security,http://www.nesc.ac.uk/technical

papers, e-Science Technical Report 2002.

[13] gridmapdir patch for Globus, http://www.gridpp.ac.uk/gridmapdir/.

5
Grid Monitoring

5.1 INTRODUCTION

A Grid environment is potentially a complex globally distributed

system that involves large sets of diverse, geographically dis-

tributed components used for a number of applications. The com-

ponents discussed here include all the software and hardware

services and resources needed by applications.

The diversity of these components and their large number of

users render them vulnerable to faults, failure and excessive loads.

Suitable mechanisms are needed to monitor the components, and

their use, hopefully detecting conditions that may lead to bot-

tlenecks, faults or failures. Grid monitoring is a critical facet for

providing a robust, reliable and efficient environment.

The goal of Grid monitoring is to measure and publish the state

of resources at a particular point in time. To be effective, moni-

toring must be “end-to-end”, meaning that all components in an

environment must bemonitored. This includes software (e.g. appli-

cations, services, processes and operating systems), host hardware

(e.g. CPUs, disks, memory and sensors) and networks (e.g. routers,

switches, bandwidth and latency). Monitoring data is needed to

understand performance, identify problems and to tune a system

for better overall performance. Fault detection and recovery mech-

anisms need the monitoring data to help determine if parts of an

environment are not functioning correctly, and whether to restart

The Grid: Core Technologies Maozhen Li and Mark Baker

© 2005 John Wiley & Sons, Ltd

154 GRID MONITORING

a component or redirect service requests elsewhere. A service that

can forecast performance might use monitoring data as input for

a prediction model, which could in turn be used by a scheduler to

determine which components to use.

In this chapter, we will study Grid monitoring related tech-

niques. In Section 5.2, we introduce the Grid Monitoring Archi-

tecture (GMA), an open architecture proposed by the GGF’s [1]

Grid Monitoring Architecture Working Group (GMA-WG). In

Section 5.3, we define the criteria we use to review the systems

discussed in this chapter. This is followed by an overview of rep-

resentative monitoring systems and we provide a comparison of

them in terms of openness, scalability, resources to be monitored,

performance forecasting, analysis and visualization in Section 5.4.

In Section 5.5, we outline six alternative systems that are not strictly

Grid resource monitoring systems. In Section 5.6, we discuss some

issues that need to be taken into account when using or imple-

menting a Grid monitoring system. Section 5.7 summarizes the

chapter.

5.2 GRID MONITORING ARCHITECTURE (GMA)

The GMA [2] consists of three types of components (see Figure 5.1):

• A Directory Service which supports the publication and discov-

ery of producers, consumers and monitoring data (events);

• Producers that are the sensors that produce performance data;

• Consumers that access and use performance data.

Figure 5.1 The Grid Monitoring Architecture

5.2 GRID MONITORING ARCHITECTURE (GMA) 155

5.2.1 Consumer

Any program that receives monitoring data (events) from a pro-
ducer can be a consumer. The steps supported by consumers are
listed in Table 5.1. An event-naming schema is normally used to
describe the meaning of an event type. All producers that handle
new event types should dynamically provide a naming schema
for event description. Consumers that initiate the flow of events
should support steps 2–5; consumers that allow a producer to
initiate the flow of events should support steps 6–8.
It is possible to have a number of different types of consumers:

• The archiving consumer aggregates and stores monitoring data
(events) for later retrieval and/or analysis. An archiving con-
sumer subscribes to producers, receives event data and places
it in long-term storage. A monitoring system should provide
this component, as it is important to archive event data in order
to provide the ability to undertake historical analysis of sys-
tem performance, and determine when/where changes occurred.

Table 5.1 Consumer steps

1. Locate events: Consumers search a schema repository for a new event type.

The schema repository can be a part of the GMA Directory Service.

2. Locate producers: Consumers search the Directory Service to find a suitable

producer.

3. Initiate a query: Consumers request event(s) from a producer, which are

delivered as part of the reply.

4. Initiate a subscription: Consumers can subscribe to a producer for certain kinds

of events they are interested in. Consumers request event(s) from a

producer.

5. Initiate an unsubscribe: Consumers terminate a subscription to a producer.

6. Register: Consumers can add/remove/update one or more entries in the

Directory Service that describe events that the consumer will accept from

producers.

7. Accept query: Consumers can also accept a query request from a producer.

The “query” will also contain the response.

8. Accept subscribe: Consumers accept a subscribe request from a producer. The

producer will be notified automatically once there are requests from the

consumers.

9. Accept unsubscribe: Consumers accept an unsubscribe request from a producer.

If this succeeds, no more events will be accepted for this subscription.

156 GRID MONITORING

While it may not be a good idea to archive all monitoring data, it

is desirable to archive a reasonable sample of both “normal” and

“abnormal” system operations, so that when problems arise it is

possible to compare the current system to a previously working

system. Archive consumers may also act as GMA producers to

make the data available to other consumers.

• As the name implies, real-time consumers collect monitoring

data in real time. A real-time consumer potentially subscribes to

multiple events of interest, and receives one or more streams of

event data. In this way, data from many sources can be aggre-

gated for real-time performance analysis.

• Overview consumers collect events from several sources, and

use the combined information to make some decision that could

not be made on the basis of data from only one producer.

• Job monitoring consumers can be used to trigger an action based

on an event from a job, e.g. to restart the job.

5.2.2 The Directory Service

The GMA Directory Service provides information about producers

or consumers that accept requests. When producers and consumers

publish their existence in a directory service they typically specify

the event types they produce or consume. In addition, they may

publish static values for some event data elements, further restrict-

ing the range of data that they will produce or consume. This

publication information allows other producers and consumers to

discover the types of events that are currently available, the char-

acteristics of that data, and the sources or sinks that will produce

or accept each type of data. The Directory Service is not respon-

sible for the storage of event data; only information about which

event instances can be provided. The event-naming schema may,

optionally, be made available by the Directory Service.

The functions supported by the Directory Service can be sum-

marized as:

• Authorise a search: Establish the identity (via authentication) of a

consumer that wants to undertake a search.

• Authorise a modification: Establish the identity of a consumer that

wishes to modify entries.

5.2 GRID MONITORING ARCHITECTURE (GMA) 157

• Add: Add a record to the directory.

• Update: Change the state of a record in the directory.

• Remove: Remove a record from the directory.

• Search: Perform a search for a producer or consumer of a par-

ticular type, possibly with fixed values for some of the event

elements. A consumer can indicate whether only one result, or

more if available, should be returned. An optional extension

would allow a consumer to get multiple results, one element at

a time using a “get next” query in subsequent searches.

In a Grid monitoring system, there can be one central Directory

Service or multiple services managed by a Directory Service Gate-

way. Figure 5.2 shows an extended Grid Monitoring Architecture

with multiple Directory Services.

5.2.3 Producers

A producer is a software component that sends monitoring data

(events) to a consumer. The steps supported by a producer are

listed in Table 5.2. Producers that wish to handle new event types

dynamically should support the first step. Producers that allow

Figure 5.2 Grid Monitoring Architecture

158 GRID MONITORING

Table 5.2 Producer steps

1. Locate event: Search the Event Directory Service for the description of an

event.

2. Locate consumer: Search the Event Directory Service for a consumer.

3. Register: Add/remove/update one or more entries in the Event Directory

Service describing events that the producer will accept from the consumer.

4. Accept query: Accept a query request from a consumer. One or more event(s)

are returned in the reply.

5. Accept subscribe: Accept a subscribe request from a consumer. Further details

about the event stream are returned in the reply.

6. Accept unsubscribe: Accept an unsubscribe request from the consumer. If this

succeeds, no more events will be sent for this subscription.

7. Initiate query: Send a single set of event(s) to a consumer as part of a query

“request”.

8. Initiate subscribe: Request to send events to consumers, which are delivered in

a stream. Further details about the event stream are returned in the reply.

9. Initiate unsubscribe: Terminate a subscription to a consumer. If this succeeds,

no more data will be sent for this subscription.

consumers to initiate the flow of events should support steps 2–6.

Producers that initiate the flow of events should support steps 7–9.

Producers can deliver events in a stream or as a single response

per request. In streaming mode, a virtual connection is established

between the producer and consumer and events can be delivered

along this connection until an explicit action is taken to terminate

it. In query mode, the event is delivered as part of the reply to a

consumer-initiated query, or as part of the request in a producer-

initiated query.

Producers are also used to provide access control to the event,

allowing dissimilar access to different classes of users. Since a

Grid can consist of multiple organizations that control the com-

ponents being monitored, there may be different access policies,

varying frequencies of measurement and ranges of performance

detail for consumers “inside” or “outside” the organization own-

ing a component. Some sites may allow internal access to real-time

event streams, while providing only summary data outside a site.

The producers would potentially enforce these policy decisions.

This mechanism is important for monitoring clusters or computer

farms, where there may be extensive internal monitoring, but only

limited monitoring data accessible to the Grid.

TE
AM
 F
LY

5.2 GRID MONITORING ARCHITECTURE (GMA) 159

5.2.3.1 Optional producer tasks

There are many other services that producers might provide,

such as event filtering and caching. For example, producers could

optionally perform any intermediate processing of the data the

consumer might require. A consumer might request that a pre-

diction algorithm be applied to historical data from a particular

sensor. On the other hand, a producer may filter the data for the

consumer and deliver it according to a predetermined consumer

schedule. Another example is where a consumer requests that an

event be sent only if its value crosses a certain threshold; such as

CPU utilization becomes greater than 50%, or changes by more

than 20%. The producer might also be configured to calculate sum-

mary data; such as 1, 10 and 60-minute averages of CPU use, and

make this information available to consumers. Information on the

services a producer provides would be published in the directory

service, along with associated event information.

5.2.4 Monitoring data

The data used for monitoring purposes needs to have timing, flow

and content information associated with it.

5.2.4.1 Time-related data

• Time-stamped dynamic data comes within a flow with several

regular messages and temporal information that may be pro-

vided by a counter related to the sampling rate (frequency). This

data includes performance events and status monitoring.

• Time-stamped asynchronous data used to indicate when an

event happens. This data is used for alerts and checkpoint

notifications.

• Non-time-related data includes static information such as OS

type and version, hardware characteristics or the update time

of monitoring information. The term “static” here refers to fact

that the data remains almost constant, and is generally operator-

updated. Whereas “dynamic” refers to information, like status

or performance, that change over time.

160 GRID MONITORING

5.2.4.2 Information flow data

• Direct producer–consumer flow does not need a central com-
ponent involved in data transfer. A monitor may be active or
passive depending on whether the communication is producer
or consumer initiated. Three interactions are described by the
GMA document:

– Publish/subscribe,

– Query/response,

– Notification.

• Indirect data distribution via a centralized repository. This may
be useful for static information, where there is a relatively small
amount of data that is seldom updated, and where the cost
of the publication/discovery process is comparable to that of
information gathering. In this case interaction is via the initial
notification of the producers to the directory service, and con-
sumers can pick up data from this source too.

• Following a workflow’s path, where monitoring information is
produced and stored locally. The data is tagged so that it can
be associated with a particular part of a workflow. At the end
of the job the monitoring information and tag, together with the
workflow output, may be returned to a consumer or discarded.
A consumer can gather tags and monitoring data by following
the job’s path, which may be combined to provide a summarized
view, or sent independently to the consumer.

5.2.4.3 Monitoring categories

• Static monitoring is where the cost of information gathering,
in terms of time and used bandwidth, is less or comparable to
the cost of resource discovery, for example like a query to a
central Directory Service to find the information provider. The
information changes rarely and a central repository can directly
provide the needed data. Information in this category could
include system configuration and descriptions.

• Dynamic monitoring is where the cost of information gathering
is generally greater and usually involves time series, like when
a continuous data flow is provided or a large amount of data
is needed. Classical examples of this category are network and
system performance monitoring.

5.3 REVIEW CRITERIA 161

• Workflow monitoring is where a variable amount of data is
produced as the processing of a job/task takes place and all or
part of it may be of some interest for a consumer. Examples
are job/task processing status information, error reporting and
job/task tracing.

5.3 REVIEW CRITERIA

The Grid monitoring systems reviewed here were categorized and
classified using the following criteria.

5.3.1 Scalable wide-area monitoring

To operate in a Grid context a system must be capable of sup-
porting concurrent interaction of potentially thousands of clients
and millions of resources. System architectures should support the
features desired of distributed systems, which include:

• Scalability: A system’s ability to maintain or increase levels of
performance or quality of service under an increased system
load, by adding resources.

• Fault tolerance: Systems that are capable of operating successfully
even when a number of their components are unavailable or
experiencing errors, by avoiding a single point of failure for
critical components.

5.3.2 Resource monitoring

The systems reviewed in this chapter primarily focus on moni-
toring computer-based resources and services. While network and
application monitoring are important, they are not considered our
main interest, which is the health and performance of the core grid
infrastructure.

5.3.3 Cross-API monitoring

An important aspect of a system is the integration of moni-
toring data collected by legacy and specialized software. Given

162 GRID MONITORING

the existing investment in time and money for administrating

resources across an organization, we feel it is important to uti-

lize the existing infrastructure as much as possible. This implies

that monitoring systems should not dictate that their own cus-

tom agents or sensors be installed across the resources to be

monitored.

5.3.4 Homogeneous data presentation

In order to efficiently use heterogeneous resources, it is important

that retrieved information is meaningful, clear and presented in a

standard way to clients, regardless of its source. For example, when

comparing resource memory capacities, heterogeneous resources

may report in bits, bytes or megabytes. Clients should not be

exposed to inconsistencies between the ways different resources

report their configuration or status.

5.3.5 Information searching

Clients must be capable of locating appropriate resources, in a

timely manner, in order to efficiently perform their work. This

implies it must be possible to locate resources based on the

functionality or services they provide. Standard definitions of

resource categories are required to achieve this and resources

should be capable of belonging to more than one category as

their functionality dictates. Furthermore, it should be possible to

select only those resources within a given category that meet

certain criteria; for example, a CPU load lower than a specified

threshold.

5.3.6 Run-time extensibility

Many resources within a Grid will reflect the transient nature of

virtual organizations; as project collaborations are created to meet

a short-term need and then torn down afterwards, so resources

will join and leave. Monitoring systems must expect and sup-

port rapid transitions in the number and types of available

resources.

5.3 REVIEW CRITERIA 163

5.3.7 Filtering/fusing of data

Mechanisms should be supported to reduce network traffic, as
well as host and client loads, by providing the ability to filter and
fuse data from potentially multiplexed data streams.

5.3.8 Open and standard protocols

Open and standard protocols are necessary to provide a robust
infrastructure that is capable of interoperating with existing and
emerging middleware tools and utilities. Open standards allow
developers to implement systems that can interoperate with stan-
dards compliant systems from different organizations. Therefore,
open and standard protocols will avoid organizations becoming
tied to a single platform and promote acceptance for a system
within the community.

5.3.9 Security

Standard security mechanisms are required to promote interoper-
ability with third-party middleware providers. Examples include
GSI [3] and SSL [4].

5.3.10 Software availability
and dependencies

State-of-the-art projects can be classified as those that have released
substantial software at the time of this review. Determining
whether monitoring software can be installed on demand, inde-
pendent of other components, is important to ascertain the utility
of the system and the potential overhead required for installation,
configuration and management. Ideally, a monitoring package will
not require the installation of third-party software components.

5.3.11 Projects that are active
and supported; plus licensing

It should established whether a project is actively supported or in
a dormant state. Also it is important to determine what type of

164 GRID MONITORING

license the software produced by a project will be released under,
as this will determine how the software can be used, developed
and released downstream.

5.4 AN OVERVIEW OF GRID
MONITORING SYSTEMS

In this section, we will review some of the most popular monitor-
ing systems that can be deployed in a Grid environment. Section 5.5
briefly mentions other monitoring systems that are being used or
developed.

5.4.1 Autopilot

5.4.1.1 Overview

Autopilot [5, 6] is an infrastructure for real-time adaptive con-
trol of parallel and distributed computing resources. The objec-
tive of Autopilot is to create an environment which provides
distributed applications with real-time adaptive control so that
they can automatically select and configure resource management
features based on request patterns and observed system perfor-
mance. To achieve this, Autopilot provides components to facil-
itate the collection and distribution of host, service and network
performance information. Autopilot was developed by the Pablo
Research Group, University of Illinois at Urbana Champaign, and
is used in a number of projects including the Grid Application
Development Software Project (GrADS) [7, 8].

5.4.1.2 Architecture: General

Autopilot’s infrastructure is based on theGMAand uses the Globus
Toolkit to perform wide-area communication between its compo-
nents. Figure 5.3 shown a general architecture of Autopilot. The
Pablo Self-Defining Data Format (SDDF) [9] is used for describing
resource information. Autopilot monitoring components include:

• The Sensor, which corresponds to a GMA producer; sensors are
installed on monitored hosts to capture application and system

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 165

Figure 5.3 The architecture of Autopilot

performance information. Sensors can be configured to perform

data buffering, local data reduction before transmission, and to

change the frequency at which information is communicated to

remote clients. Upon start-up, sensors register with the Autopilot

Manager (AM).

• Actuators, which correspond to GMA producers and provide

mechanisms for steering remote application behaviour and con-

trolling sensor operation. Upon start-up, actuators register with

the AM.

• The AM, which performs the duties of a GMA registry; it sup-

ports registration requests by remote sensors and actuators, and

provides a mechanism for clients to locate resource information.

An Autopilot client corresponds to a GMA consumer; it locates

sensors and actuators by searching the AM for registered key-

words. For each producer found, a Globus URI is returned so that

the consumer can connect to producers directly. Once connected,

the client can instruct sensors to extract performance information,

or actuators to modify the behaviour of remote applications.

The Autopilot Performance Daemon (APD) provides mecha-

nisms to retrieve and record system performance information from

remote hosts. The APD consists of collectors and recorders. Collec-

tors execute on the machines being monitored and retrieve local

resource information. Recorders receive resource information from

collectors for output or storage.

166 GRID MONITORING

5.4.1.3 Architecture: Scalability and fault tolerance

The AM binds together multiple concurrent clients and pro-
ducers, and provides a seamless mechanism for locating and
retrieving resource information from remote sensors. Therefore
the AM is a key component for ensuring fault tolerance and scal-
ability of the system. However, while multiple AMs can exist
within the monitored environment, there is currently no sup-
port for communication between multiple AMs, therefore if an
AM fails, the sensor registrations that it holds will be unavail-
able. Sensors can potentially register with multiple AMs, and
clients can query those AMs; however, mechanisms are not pro-
vided to locate available AMs. Due to the lack of communication
between managers, it is not possible to create hierarchies of man-
agers; each manager contains information from sensors that report
directly to it.

5.4.1.4 Monitoring and extensibility

The APD periodically captures network and operating system
information from the computers on which they execute. For
consistency in heterogeneous networks, only a common sub-
set of host monitoring information, from the range of operat-
ing systems supported, is available. Typical host information
includes processor utilization, disk activity, context switches, sys-
tem interrupts, memory utilization, paging activity and network
latencies.
Developers could extend the scope of monitoring information by

inserting sensors into existing source code that is used to perform
local monitoring functions. These sensors can be configured to
return specified resource information. Autopilot does not provide
a query interface for sensors; clients retrieve information that has
been previously configured for collection.

5.4.1.5 Data request and presentation

Sensors periodically gather information and cache it locally regard-
less of client interest. Client requests are fulfilled from the sen-
sor’s cache. Historical data is collected by the APM’s collectors
and made available to clients. Sensors are capable of filtering and

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 167

reducing the information returned to clients by using customized

functions in the sensors. Aggregated records can also be used to

combine information relating to a given host. Mechanisms to sup-

port a homogeneous view of data from heterogeneous resources

are not provided by Autopilot.

The Autodriver Java graphical user interface allows sensor infor-

mation to be viewed and actuators to be controlled. Virtue [10], an

immersive environment that accepts real-time performance data

from Autopilot, interacts with sensors and actuators using SDDF

and provides graphical features to view and control Autopilot

components.

5.4.1.6 Searching and standards

Clients locate sensors based on the attributes they register with

the AM. Given a match, clients connect to the sensors and retrieve

the available information. Clients need to be aware of the rela-

tionship between the attribute name registered by a sensor and

the information it produces. Autopilot uses the Globus Toolkit 2

[11] to perform wide-area communications and follows the GMA.

The data format used is SDDF, which although self-describing is

non-standard. Additional tools can be utilized to convert SDDF

into XML.

5.4.1.7 Security

Autopilot does not provide security support, but instead assumes

that applications will utilize Globus security mechanisms.

5.4.1.8 Software implementation

Autopilot is available for download; it is actively supported and

released under the Pablo Project Software License [12] Agreement.

Autopilot is freely available without fee for education, research

and non-profit purposes.

Software portability is limited to UNIX-based platforms. System

dependencies include the Globus Toolkit 2.2 and the Pablo SDDF

library.

168 GRID MONITORING

5.4.2 Control and Observation in Distributed
Environments (CODE)

5.4.2.1 Overview

CODE [13, 14] is a GMA-like system that attempts to provide an

extensible approach for monitoring and managing the Grid. CODE

allows administrators to monitor distributed resources, services

or applications and react to changes in their status by remotely

performing predefined system tasks to the remote hosts. CODE

was developed at the NASA Ames Research Center [15] and is

used in the NASA Information Power Grid (IPG) [16] to ensure

that resources are operating correctly.

5.4.2.2 Architecture: General

The CODE framework is designed to provide the functionality

for performing monitoring and management tasks (Figure 5.4).

Users extend this framework by adding customized monitoring

modules. Monitoring information is propagated through CODE as

Registry

Manager

Management logic

Consumer
interface

Search for
producers
and actors

Observer

Producer
interface

Sensor
Manager

Sensor Sensor Sensor

Controller

Actor
interface

Actuator Actuator Actuator

Advertise
actor

Action
request
and
reply

EventsSubscribe
for events

Advertise
producer

Actuator
Manager

Figure 5.4 The CODE architecture

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 169

events that contain a type followed by name–value pairs. The core

framework is made up of Observers, Controllers, Managers and

Registries:

• Sensors are installed on monitored hosts and gather monitor-

ing data. Each sensor generates one or more monitoring events

that contain monitoring information described in terms of the

sensor’s naming schema. Sensors can be queried to determine

the type of information they produce. Sensors gather resource

information only in response to a direct request from a Sensor

Manager (SM).

• The SM supervises a set of local sensors and determines which

should be executed in order to fulfil client requests. The SM

receives query requests and subscriptions from the Observer. In

response to a specific query, the SM sends a request to an appro-

priate sensor and returns the results through the Observer’s

producer interface to the requesting consumer.

• The Observer encapsulates the SM and sensor mechanisms on

a monitored host and provides a Producer Interface (PI) that

consumers query to receive monitoring information. The PI

supports both query-response and subscription-based requests.

Observers implement access control mechanisms based on user

identity, client location and information type.

• The Controller resides on a monitored host and provides mech-

anisms that allow consumers to execute actions on that host.

The controller consists of an AM that interacts with a number

of locally installed actuator components, which are used to per-

form a specific function, for example to start an operating system

daemon. Like sensors, actuators are passive components that

only perform an action when requested by their manager.

• The Manager (consumer) connects to an observer to query for

the monitoring data it provides, to subscribe for events and

to modify event subscriptions. The Manager connects to Con-

trollers to modify the execution of daemons or applications on

a remote host. Users can implement management logic within

the Manager in order to automatically respond to changes in the

monitored environment by controlling remote hosts. For exam-

ple, the Manager might detect that a remote job manager is

failing to respond and so automatically instruct a remote con-

troller to kill all associated job processes and start a new instance.

170 GRID MONITORING

Management logic can be implemented using Java code or

through an expert system using appropriate management rules.

• The Registry stores the locations of Observers and Controllers,

and describes the sensors and actuators they provide. The

Manager uses the Registry to locate these remote components.

5.4.2.3 Architecture: Scalability and fault tolerance

Multiple Managers can concurrently monitor data from multiple

remote hosts. The Registry provided as part of CODE version 1.0

beta is a Java application providing in-memory registration of pro-

ducers. This is a temporary measure to allow other developers

to download and experiment with CODE. The CODE developers

have previously reported the use of an LDAP server to provide reg-

istry functionality. The use of multiple LDAP-based registries that

potentially perform LDAP referrals (hierarchies of servers) and

provide LDAP replication mechanisms could be used to increase

scalability and guard against a single point of failure.

Event subscription mechanisms can potentially reduce the

amount of traffic generated by the system, as clients are not

required to continuously poll for resource information. Subscrip-

tion requests include details of how frequently the SM should

query the sensor and an event filter that the SM uses to deter-

mine which results should be streamed back to the consumer. The

SM queries sensors in accordance with a specified frequency. The

SM uses the event filter to determine if the current results match

consumer requirements and should therefore be transmitted. For

example, a consumer may require notification only if CPU load is

greater than 50%.

5.4.2.4 Monitoring and extensibility

Sensors are installed on all hosts that are to be monitored. New sen-

sors can be registered with a SM, which advertises an Observer’s

current monitoring capability with the Registry. Sensors are reg-

istered by a keyword that describes their function. Clients can

locate monitoring functionality based on a keyword search of the

Registry. A small set of sensors is provided, administrators are

expected to create their own or employ sensors created by third

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 171

parties, to meet their own requirements. Currently there are sen-
sors that report CPU and disk utilization, process status, network
interface statistics, file details, Portable Batch System (PBS) queue
status and the contents of a Globus GT2 grid_mapfile.

The intrusiveness of monitoring can potentially be controlled in
the SM by caching results from a sensor query. Cached results from
one request could then be used to fulfil requests from further clients
that arrive within a suitable time frame. Sensors execute only when
directed by the SM, therefore constant polling of resource status can
potentially be avoided. However, this is subject to the update fre-
quency rate requested in client subscription requests.

5.4.2.5 Data request and presentation

CODE provides near real-time access to resource data, using either
query-response or subscription-based requests. Event notification
can be based on a client’s needs, so that only a subset of available
events is transmitted from the SM to the consumer for a given
sensor.
A homogeneous view of heterogeneous data can be provided

by CODE. Event-naming schemas are used to describe the data
returned by sensors. Sensors are required to individually format
their output in order to meet the naming schema they support.

5.4.2.6 Searching and standards

Clients locate Observers in the Registry and then connect directly
to suitable Observers. To ascertain the sensors an Observer sup-
ports, the Registry can either be searched, or a given Observer can
be queried directly. If a consumer executes a subscription query
to an Observer, then it is possible for the SM to return only those
results that match a consumer-specified criteria, e.g. CPU load
greater than 50%.
CODE consumers and producers communicate using XML

encoded data over UDP, TCP or GSI SSL/TLS.

5.4.2.7 Security

CODE supports authentication and authorization based on host
name and X.509 certificates. CODE supports the Grid Security

172 GRID MONITORING

Infrastructure (GSI) so that clients can delegate their identity in
order for tasks to be performed on their behalf by a server.

5.4.2.8 Software implementation

Version 1.0 beta of CODE is free and available for download under
the NASA Open Source Agreement [17]. The project is active and
supported. CODE is implemented in Java and has been tested on
Linux, Solaris, Irix and MacOS X. CODE’s requirements include
Java 1.3 or greater, the Xerces Java XML Parser version 2.x and
Globus Java CoG kit version 1.1.a. The Controller, Actuator Man-
ager and Actuator components are not implemented in the current
software release; therefore control mechanisms are not available.

5.4.3 GridICE

5.4.3.1 Overview

GridICE [18–20] is targeted at monitoring Grid resources in order
to analyse their use, behaviour and performance. The project aims
to provide client reporting mechanisms for fault detection, service-
level agreement violations and user-defined events. GridICE is
intended for integration with Grid Information Services (GIS) and
currently uses the Globus MDS2 [21, 22] to discover new resources.
GridICE queries EDG Lemon [23] agents installed on resources for
GLUE [78] information, which is then published into the MDS2.
A Web-based interface provides resource views based on virtual
organization, grid site and user requirements. GridICE has been
developed from work within the INFN-Grid [24] and European
DataTAG [25] projects and is used by the LHC Computing Grid
(LCG) [26] and INFN Production Grid [27].

5.4.3.2 Architecture: General

GridICE, shown in Figure 5.5, consists of the following layers:

• The Measurement Service (MS) uses the EDG Lemon monitoring
infrastructure [23] to query resources and cache information in
an internal, centralized repository. Lemon requires agents to be

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 173

Measurement Service

Publisher Service

Data Collector Service

Detection and Notification Data

Presentation Service

Figure 5.5 The layers of GridICE

installed on each monitored resource to control the operation

of individual sensor components. Sensors execute local scripts

or applications in order to retrieve resource information, which

they are then required to output in an extended version of GLUE.

The extended version of GLUE uses roles to describe the services

a computer provides, for example job submission or brokering

services. Sensors must be configured individually to advertise,

gather and format the resource information generated by a host.

The Publisher Service (Pub) classifies resources for users based

on resource roles.

• The Publisher Service provides the captured resource informa-

tion to consumers by inserting the latest resource values into a

GIS. The GIS is additionally required to publish definitions of the

GLUE naming schema to clients. The use of a GIS is intended to

provide clients with a common interface to GridICE monitoring

information. Currently GridICE uses the Globus MDS2.

• The Data Collector Service (DCS) gathers and persistently stores

historical monitoring data. A resource detection component peri-

odically scans a local MDS2, in order to automatically detect new

resources suitable for monitoring. The contact information for

new resources is passed to a scheduler component that periodi-

cally queries resources to discover the information they provide.

Resource information is gathered and persistently stored by the

GridICE server.

• The Detection and Notification Service (DNS) provides a con-

figurable mechanism for event detection and notification using

the event mechanisms provided by the Nagios [28] service and

host-monitoring programme. The DNS is designed to allow

174 GRID MONITORING

a pre-defined set of events to be checked and for sending
notifications to clients.

• The Data Analyser (DA) is designed to provide performance
and usage analysis, and generate statistical output.

• The Presentation Service (PS) provides a Web interface for role-
based views of resources intended to meet the needs of different
classes of user. For example, for a virtual organization’s man-
ager, it presents a view of all the resources available and jobs
that are executing. For a Grid site manager the view may show
the status of local resources, and the user view may include
details such as accessible processor levels.

5.4.3.3 Architecture: Scalability and fault tolerance

Multiple users can concurrently use the GridICE Web interface
to view the status information of resources. Alternatively, clients
may interact directly with the MDS2. A seamless view of resources
is achieved through the MDS2 query interface and GLUE, which
allows resources to be uniformly described.
Architecturally, although GridICE only provides a centralized

point for gathering information, fault-tolerance and scalability can
be achieved through the introduction of multiple GridICE servers
monitoring different parts of a site and each reporting data into dif-
ferent MDS2s. Given that the MDS2 within a site can be federated
into a hierarchy, with possibly multiple root MDS2s, fault tolerance
can be achieved. The rootMDS2 from individual Grid sites can then
be incorporated into the virtual organizationMDS2 federation.
While MDS2 provides a distributed query engine and standard

interface, the authors report that a pull model is required that
involves the continual polling of resource data to populate the
MDS2 with current values. This introduces a scalability issue for
the GridICE server and resource layer. The DCS may be of use
to provide caching functionality in an attempt to reduce over-
head. However, this service is still required to periodically query
resources regardless of interest by users interacting via the MDS2.

5.4.3.4 Monitoring and extensibility

The DCS’s “resource detection component” periodically scans
the MDS2 for new resources. GridICE does not have an event

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 175

mechanism to provide notification of new resources arriving at
the MDS2, therefore, a balance must be achieved between the fre-
quency of probes, the rate at which resources are added to a Grid
and the timeliness with which new resources are visualized by
users.
The type of information (or role) provided by a known resource

may change over time. For example, a computer host may be
upgraded to provide new job submission features. The DCS peri-
odically queries resources to discover the new classes of informa-
tion on offer. While this approach provides updated information
on resource roles and capabilities, it is expected that an event-based
mechanism would be more scalable.
GridICE utilizes EDG Lemon as the local data collector within

the Publisher Service. Lemon sensors provide GLUE-formatted
resource information. To include new information, multiple EDG
sensors must be configured on monitored hosts.
The recommended approach to provide information from exist-

ing cluster monitoring systems, for example Ganglia [29], appears
to be as follows: A proxy must be created that periodically queries
a ganglia daemon, converts the output into GLUE and inserts the
results into the local MDS2. While this follows the standard MDS2-
provider approach, it implies that historical information will not
be incorporated within GridICE, as the MDS2 typically stores lat-
est state information only, and the GridICE internal repository is
not utilized.

5.4.3.5 Data request and presentation

The DCS provides access to historical information. Event subscrip-
tion and notification is under development; however, it is not clear
how this functionality will operate with an existing GIS, likeMDS2,
to provide real-time asynchronous events to users. The GridICE
data access model allows client pull queries from the MDS2 and
portal interfaces. Homogeneous views of information are achieved
at the resource level with sensors required to support GLUE.

5.4.3.6 Searching and standards

Data searching mechanisms are currently implemented using
MDS2; clients will be required to understand the LDAP syntax,
semantics and ordering of information within the server.

176 GRID MONITORING

GridICE acts as an information provider to MDS2, and due to
this relationship, monitored information can be utilized within
existing Globus testbeds. Interaction with later versions of the
MDS, for example MDS3 and MDS4, has not been reported.

5.4.3.7 Security

Currently there are no security mechanisms employed within
GridICE; all information is open to anonymous client requests from
the MDS2 and the GridICE Web interface. However, X.509-based
authentication for the Web interface is planned.

5.4.3.8 Software implementation

GridICE is an open-source software released under the INFN
license [30] and is free and available for download. The project is
active and provides mailing list support. The software is packaged
in Linux RPM format and access to the source code is provided
via anonymous CVS.
GridICE requires network access to an external information ser-

vice to operate. The reference implementation requires access to
MDS2. In addition, EDG Lemon and Nagios are required for mon-
itoring resources. Currently the Data Analyser is not available.

5.4.4 Grid Portals Information
Repository (GPIR)

5.4.4.1 Overview

The aim of GPIR [31] is to pre-fetch, aggregate and cache informa-
tion from Grid resources into a central location in order to support
the development of Grid portals. In particular, the work focuses on
reducing the frequency of queried to access resource information
and minimize complexity for portal developers by removing the
need to interact with different classes of resource. Information is
“ingested” into GPIR from a range of resources that use custom
information providers. GPIR is packaged as part of the GridPort
Grid portal toolkit [32] from the Texas Advanced Computing Cen-
ter and is used in the NPACI Hotpage project [33].

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 177

5.4.4.2 Architecture: General

The GPIR database is a centralized relational database used for

caching resource information from producers. The GPIR architec-

ture is shown in Figure 5.6. Web services interfaces are responsi-

ble for receiving information from resources and providing query

mechanisms for clients. GPIR provides a number of XML naming

schemas that describe how producers should present information

to the database for specific aspects of the monitored environment.

Currently GPIR defines nine naming schemas that describe:

• A GPIR Information Provider (GIP) executes on monitored

resources, gathers local information and outputs an XML doc-

ument that adheres to one of the naming schemas. The client

presents the XML to the GPIRIngester; if the XML document

adheres to a registered naming schema it is stored in the GPIR

database. Sample clients are supplied to automatically perform

these steps.

• The GPIRQuery service provides an interface for clients to

query the information cached in the databases. Resources can

Scheduler

Host 1

Execute
application
(SSH)

Insert

Application
1

Application
2

Database
mySQL

PostgresSQL

GPIR

GPIR Ingester GPIR Query

Client

Application
process..Application

n Host n

Application
1

XML
Schema

XML
document

GAC

Request

Manage

Query/
response

Scheduler

Validate
XML
document?

Figure 5.6 The GPIR architecture

178 GRID MONITORING

be queried by resource or by virtual organization name. Query

requests are formulated using the name of a predefined nam-

ing schema, for example “load” represents machine load and

“services” represents the availability of services executing on a

system. The GPIRQuery retrieves information from the database

and returns it to the client as an XML document.

• The GPIR Admin Client (GAC) is a Web-based administrative

client for defining virtual organizations and managing resource

information. The GAC can be used to manually provide addi-

tional information about resources, for example a resource’s

physical location, and system administrator contact details.

1. Static host details, including machine name, its architecture,

location and administrator contact details.

2. Host load details including CPU and memory averages.

3. Host status: up, down and unreachable.

4. The downtime for a resource.

5. Job information including queue, job status and constraints.

6. Host MOTD messages.

7. Node status information for a cluster’s compute node.

8. The status (pass, fail, timeout) for a number of predefined Grid

services: Globus Gatekeeper, GRAM, GIIS, GRIS, GridFTP, NWS

and Batch Job Submission.

9. Network Weather Service (NWS) bandwidth and latency

measurements.

5.4.4.3 Architecture: Scalability and fault tolerance

Information frommultiple resources is held in the database and can

be concurrently queried by multiple clients. GPIR providers reside

at each resourceand feed thedatabasewith information formatted to

one of the predefinedXMLnaming schemas. Client interactionwith

the GPIRQuery interface and the use of predefined XML naming

schemas provide a seamless view of available resources.

The centralized approach to the database is not fault-tolerant

and scalability concerns may become an issue as the number of

users and resources increases. These issues could be addressed

using distributed or replicated databases.

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 179

Monitoring intrusiveness is determined by the frequency with
which a producer is called to populate the database and the over-
head associated with starting the producer and obtaining, pars-
ing and outputting information in the required XML format. All
user requests for information are fulfilled by the database, thereby
shielding resources from direct user interaction.

5.4.4.4 Monitoring and extensibility

Providers must be installed on monitored resources. New
resources that need monitoring can be added at run time by
installing and executing a suitable provider on the given resource
and notifying the GPIRIngester of the resource’s host IP address.
The categories of resource information are described by XML

naming schemas. The GPIRIngester only accepts XML documents
that correspond to predefined and valid XML naming schemas;
thereby preventing “unauthorised” XML documents entering the
system. To extend the scope of monitored resources, new naming
schemas would need to be defined, the GPIR’s relational database
tables updated and the GPIRIngester configured to accept the new
document type. Finally, custom producer code would need to be
developed to execute on monitored resources and format output
in accordance with the new XML naming schema.

5.4.4.5 Data request and presentation

All client requests are fulfilled by the data cached in the GPIR
database. Depending on the frequency with which producers are
queried, the database can contain near real time as well as histor-
ical data.
Client access to resource information is coordinated by the GPIR

Query service, with results returned in GPIR XML format. Event
subscription and notification are not supported. Producers push
data into the database, while clients pull cached data from the
database. GPIR performs filtering and fusing of data by provid-
ing summary information for a VO and statistics for a range of
resources.
Normalization of complex resource data values to a standard

format is not enforced in XML schema; individual resource pro-
ducers are free to return data values in the format they wish.

180 GRID MONITORING

Therefore, any normalization would have to be implemented in
the producers on an individual basis, using agreed upon methods,
to which all should adhere.

5.4.4.6 Searching and standards

In GPIR a client can search for information by resource category,
class, functionality, capability and value. The use of Web services
provides an open approach for clients to access the GPIR database.
However, standards like GLUE are not used to describe resource
data, so clients may need to perform extra processing to transform
data into a format suitable for their needs.

5.4.4.7 Security

The GPIRQuery service has no security and provides open access
to clients. The GPIRIngester service is protected by a list of valid
producer IP addresses. The GPIR administrative client is secured
by JBoss security controls [34] that are implemented using stan-
dard username/password access control lists. More advanced Grid
security mechanisms are not provided.

5.4.4.8 Software implementation

The GPIR project is active and the software is available for free
download. The software is licensed using the UT TACC Public
License version 1. Linux is currently the only supported plat-
form and user support is via a mailing list. Software dependencies
include PostgresSQL [35], the PostgresSQL JDBC driver, Java 1.2
and the JBoss application server [34].

5.4.5 GridRM

5.4.5.1 Overview

GridRM [36, 37] is a generic open-source Grid resource-monitoring
framework designed to harvest resource data from a range of
networked devices and services and provide information to a vari-
ety of clients in a form that is useful for their needs. GridRM is

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 181

not intended to interact with instrumented wide-area applications;

rather it is designed to monitor the resources that an application

may use. The main objective of the project is to take a standards-

based approach, independent of any particular Grid middleware

to provide a homogeneous view of heterogeneous resources, using

a seamless and extensible architecture.

GridRM provides a consistent SQL-based query language for

clients to interact with legacy and emerging resource-monitoring

technologies through a number of drivers. GridRM drivers accept

SQL queries and remotely query the underlying resources using

appropriate native protocols. Native resource data is gathered and

transformed into a standard, normalized format according to a

user-selected naming schema. The GLUE naming schema is used

extensively and default drivers provide access to resources that

include Ganglia [29], the Simple Network Management Protocol

(SNMP), Network Weather Service (NWS) [38] and Linux/proc.

GridRM was developed by the Distributed Systems Group

(DSG) [39] at the University of Portsmouth and is being used

on a testbed to monitor resources at institutions that include the

Grid Computing and Distributed Systems (GRIDS) Lab, University

of Melbourne, Australia; University of Veszprem, Hungary; Insti-

tute of Information Technology, National University of Sciences

and Technology (NUST), Pakistan; High-Performance Computing

and Networking Center, Kasetsart University, Thailand; CCLRC

e-Science Centre, Rutherford Appleton Laboratory, UK.

5.4.5.2 Architecture: General

GridRM has a hierarchical architecture with a global, and poten-

tially multiple local layers, each of which has gateways that pro-

vide access to a site’s local resource information (Figure 5.7):

• A Naming Schema (NS) defines the semantics by which

resources are defined. By default GridRM uses GLUE to define

the attributes and values of computer-based resources. Drivers

use naming schemas to translate raw data from heterogeneous

resources into a standard form.

• A Driver is a modular plug-in that is used to retrieve selected

information from native monitoring agents.

182 GRID MONITORING

Figure 5.7 The architecture of GridRM

• The Local Layer provides access to real-time and historical infor-

mation gathered from local resources. Administrators interact

with the Local Layer to configure drivers, naming schema and

resource interaction.

• The Global Layer provides inter-grid site or VO interaction

between GridRM gateways, using a lightweight implementa-

tion of the GMA, known as jGMA [40, 41]. GridRM gate-

ways are GMA producers that register with the GMA directory,

and respond to consumer requests for resource information.

Requests are received in an SQL form and passed to the Local

Layer for processing. Results received from the Local Layer

are processed into XML and returned to the consumer. The

Global Layer provides consumer access control mechanisms and

is responsible for controlling the release of information. A large

Grid site or VO, may have multiple gateways, in which case a

hierarchy of gateways can be constructed to provide resource

information.

• Consumers interact with gateways at the Global Layer. Gate-

ways are located using the GMA registry and their resources

queried using SQL syntax. Consumers can use the registry to

discover the resources currently available at a Grid site and then

directly query those resources.

5.4.5.3 Architecture: Scalability and fault tolerance

Multiple clients can concurrently interact with each gateway to

retrieve resource information. A gateway can be configured to

monitor any number of resources. An SQL query syntax and

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 183

database abstraction is used to provide a seamless interface to
heterogeneous resources. The Local Layer performs caching and
provides consumers with the ability to determine cache policy.
For example, with each request consumers can indicate the age
of cached information they are willing to tolerate. If the cached
entries are too old, drivers are called to retrieve new information.
This approach allows the results from one request to be shared by
multiple consumers, and allows a consumer to dictate the maxi-
mum age of information that is useful to them.
Fault tolerance is achieved through the use of multiple GridRM

gateways and the replicated registry provided by jGMA. Scalabil-
ity is addressed through the partitioning of monitored resources
across multiple, potentially hierarchical gateways with caching
used at each. Consumers locate resources and their controlling
gateways using the registry and then directly interact with the
appropriate gateways.

5.4.5.4 Monitoring and extensibility

GridRM is designed to monitor computer-based resources by uti-
lizing existing native monitoring agents. GridRM drivers reside on
the gateway and interact with remote resources using appropri-
ate native protocols. Default drivers are provided for a range of
systems, including Ganglia, SNMP, NWS and Linux/proc.
By default, drivers use GLUE to normalize native data. However,

drivers can support multiple naming schemas, which clients select
dynamically when submitting a resource query.
Monitoring intrusiveness can be controlled though the use of

caching at the Local Layer. Resources are queried either in direct
response to a client request for specific information, or periodically
if the gateway is explicitly instructed to automatically gather spec-
ified resource data. In addition, driver developers have the choice
of implementing their own caching and data request strategies
within the drivers, as appropriate for a particular native agent.

5.4.5.5 Data request and presentation

GridRM provides access to real-time and historical information.
Consumers primarily interact with gateways using a request–
response protocol; however, gateways are designed to provide
event notification, which is currently being implemented.

184 GRID MONITORING

A homogeneous view of resource information is achieved
through the use of naming schemas, standard SQL syntax and
drivers that abstract resources, making them appear as relational
databases. The SQL syntax provides fine-grained access to informa-
tion, allowing the consumer to specify exactly what values should
be returned.
When processing queries, drivers filter the requested data at

the resource’s native protocol level and fuse different values in
order to generate information appropriate to the SQL request and
current naming schema. Further filtering and fusing of information
occurs at the Local Layer when multiple resources are queried and
at the consumer when multiple gateways are used to retrieve the
available resources within a VO.
GridRM has a Web interface that provides a graphical represen-

tation of gateways and resources. Users can either interact with
resources using custom forms, or through an SQL command-line
interface.

5.4.5.6 Searching and standards

Resources can be searched by the naming schemas their drivers
provide and by standard SQL queries. For example, the GridRM
Web interface allows users to search for computer hosts based on
operating system, CPU load and installed memory size.
GridRM uses open standards including Servlets, JSPs, JDBC,

SQL and relational databases.

5.4.5.7 Security

The GridRM gateways provide access control lists, which map
client’s identities to native resource-level usernames and pass-
words. jGMA provides encrypted wide-area communications. In
the future the GSI will be supported.

5.4.5.8 Software implementation

GridRM is actively being developed and supported, and the beta
version is free and available for download under the open-source
GNU Public License [42]. The software is written in Java and

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 185

portable across operating systems. Software dependencies include

Java 1.4, Apache Tomcat and mySQL.

5.4.6 Hawkeye

5.4.6.1 Overview

Hawkeye [43] is a monitoring tool, from the University of

Wisconsin, that provides mechanisms for monitoring distributed

collections of computers by gathering computer-based resource

information. Hawkeye’s design goals include retrieval of host

resource information in a consistent and extensible manner and

the ability to automatically execute tasks in response to observed

conditions on the monitored hosts. Although Hawkeye is based

on technology from the Condor project [44] and utilizes Classi-

fied Advertisements (ClassAds) [45] for collecting and publishing

resource information, it is packaged as a self-contained system.

Data collected by Hawkeye is made available for applications and

users to manage monitored resources. Hawkeye is deployed pri-

marily for monitoring of Condor workstation pools at the Univer-

sity of Wisconsin.

5.4.6.2 Architecture: General

Agents gather local resource information and report it to a central-

ized manager. Hawkeye requires that an agent be installed on each

monitored host. Figure 5.8 shows the architecture of Hawkeye.

• The Hawkeye Monitoring Agent (HMA) periodically exe-

cutes monitoring modules that independently collect resource

information and return it in the form of Condor ClassAd

attribute–value pairs. The monitoring agent is responsible for

consolidating information from multiple modules into a single

ClassAd that describes the combined status of a local resource.

Periodically, the HMA pushes this combined information to a

remote Hawkeye Manager (HM).

• The Hawkeye Manager (HM) caches information submitted to

it, in order to provide clients with potentially low latency access

to recent resource information. All client requests are submitted

186 GRID MONITORING

Figure 5.8 The architecture of Hawkeye

to the HM and fulfilled from the HM’s cache. The HM passively

receives updates from HMA. Updates also serve as a heartbeat

mechanism and are used to notify clients of HMA that are no

longer responding.

5.4.6.3 Architecture: Scalability and fault tolerance

Multiple users can connect to the HM and retrieve cached resource

information. The combination of resource data and use of ClassAds

can provide a seamless view of remote resource information to

clients. Although the HM performs caching to reduce the over-

heads of client requests, the use of a single centralized HM is a

potential bottleneck and a single point of failure.

HMAs push resource information to the HM using address

information from their local configuration file. Currently it is

not possible to specify multiple HMs to transmit information to.

Furthermore, the HM removes cached resource information after

15 minutes, requiring HMA to continually send updates, poten-

tially creating high levels of overhead even when clients do not

require information.

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 187

5.4.6.4 Monitoring and extensibility

Hawkeye agents must be installed on each monitored host. Moni-

toring functionality is provided through a set of default modules

that provide access to host resource information, typically via local

scripts. Example modules report the following:

• Free disk space, memory use, network interface status, CPU

load, process monitoring, open files, logged-in users;

• Individual Condor node and Condor pool status;

• Portable Batch System queue status.

Customized modules can be implemented to extend the range of

information retrieved. When executed, all modules are required to

produce ClassAd attribute–value pairs, which are then combined

into a host-wide ClassAd that describes the combined state of local

resources. Although ClassAds provide a standard framework for

presenting attribute–value pairs, a common naming schema is not

prescribed to define attribute names or to format data for a given

class of resource.

Each Hawkeye module can use a number of different local com-

mands to get the appropriate data to construct resource infor-

mation. For example, the core modules are tailored for Solaris

or Linux. In this instance the df command is used to report

free disk capacity, the process reporting uses top and system

load is reported by w. Scripts implemented in this manner will

have limited portability to other operating systems. Due to the

reliance on the local operating system commands, and the lack

of standard naming schemas, there is a risk that implement-

ing a given module across different operating system platforms

will result in inconsistent results when monitoring heterogeneous

environments.

5.4.6.5 Data request and presentation

Near real-time information is provided by agents that periodically

push resource information to the manager. Hawkeye does not

currently provide historical information; however, there are plans

to provide this in the future.

188 GRID MONITORING

Clients interact with the HM using simple pull requests for the

cached information. The manager provides filtering and fusing

mechanisms that allow clients to select a subset of information

from selected hosts. Furthermore the manager is capable of exe-

cuting tasks in response to the periodic updates it receives from

agents, for example, to notify a user by email if a host is running

low on disk space.

Given that no uniform naming schema is employed and that

modules are free to use native operating system tools to retrieve

resource information, support for a homogeneous view of hetero-

geneous resources is not provided. Examples of Web-based user

interfaces for monitoring the status of the Condor pool at the

University of Wisconsin are given in [43].

5.4.6.6 Searching and standards

The HM is designed to support client queries for subsets of

resource information. For example, clients are able to return a list

of all hosts that have a load average greater than some threshold.

Clients interact with the HM using HTTP. Agents publish infor-

mation to the manager in ClassAd format using XML. While the

XML provides self-describing data, the ClassAd format is non-

standard.

5.4.6.7 Security

Secured network connections using X.509 or Kerberos are provided

for sending resource information from a Hawkeye monitor to its

manager. Other security measures are not present.

5.4.6.8 Software implementation

Hawkeye is actively supported, available for free download, and

released under the Condor Public License. Portability is currently

limited to Solaris and Linux platforms. Hawkeye can be installed

on demand independently of any other middleware, including

Condor. Software dependencies are limited to the availability of

Perl on the supported operating systems.

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 189

5.4.7 Java Agents for Monitoring
and Management (JAMM)

5.4.7.1 Overview

JAMM [46, 47] is a wide-area GMA-like system that uses sensors
to collect and publish computer host monitoring data. Clients can
control the execution of remote sensors and receive monitoring
data in the form of time-stamped events. JAMM has been used to
provide distributed control and transport mechanisms for projects
using the NetLogger Toolkit [48] and has been used in the DARPA
MATISSE [49] project. JAMM was developed at the Lawrence
Berkeley National Laboratory by the Data Intensive Distributed
Computing Group [50]. The project is no longer active although
some JAMM components have been incorporated into the Net-
Logger Activation Service [51].

5.4.7.2 Architecture: General

JAMM consists of a set of distributed components that collect and
publish data about monitored resources (Figure 5.9):

• Sensors (producers) execute on host systems and collect monitor-
ing data from locally executing processes. Data may be collected

Figure 5.9 The JAMM architecture

190 GRID MONITORING

from processes that execute once and then exit, or from contin-
uously executing processes. On start-up, sensors register with
a Directory Service. A sensor is any application that generates
time-stamped monitoring events, which are used throughout the
system as the means of propagating data.

• The Sensor Manager (SM) controls the execution of sensors and
their registration with the sensor directory. The SM provides
a GUI where users can configure sensors’ execution. Sensors
can be instructed to execute continuously or dynamically, in
response to client requests from the SM GUI or Port Manager
Agent (PMA).

• The PMA determines which sensors are to be executed based
on the applications currently executing on a host. The PMA
assumes that applications are started remotely by an SM GUI
request on a well-known port. For example, the PMA can be
used to start CPU monitoring sensors when processor intensive
applications are started by remote client request.

• The Event Gateway (EG) provides mechanisms for clients to
control and subscribe to sensors. A single gateway can serve as a
point-of-contact for multiple hosts and provide request handling
and event filtering duties. An EG caches events from monitored
resources and provides consumers with the API that they can
query for specific monitoring data. EGs support query-response
and streaming requests from consumers. The consumer may
request all event data or only events of a certain type.

• The Sensor Directory (SD) is used to publish the location of sen-
sors and their associated gateways. Consumers use the directory
to determine which sensors are available and the EG they must
subscribe to in order to consume a sensor’s output.

• An Event Consumer (EC) locates sensors using the SD and sub-
scribes to receive events from an appropriate EG. Consumers
process event data and transform it into custom resource infor-
mation that can be visualized or further processed.

5.4.7.3 Architecture: Scalability and fault tolerance

Multiple clients can retrieve monitoring data concurrently from
EGs. Sensor location information is registered with the SD. JAMM
uses LDAP servers for the SD. The JAMM developers acknow-
ledge the importance of avoiding a single physical SD and employ

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 191

LDAP referral mechanisms (aggregation of LDAP servers into

a hierarchy) for scalability, and the replication of SDs for fault

tolerance.

5.4.7.4 Monitoring and extensibility

JAMM requires that sensors and SMs execute on monitored hosts.

Sensors can be updated and new types of sensor deployed into the

system at run time. Example sensors include host, network, process

and application sensors that can be used to monitor CPU, memory,

network usage and application error conditions. The monitoring

performed by sensors can be configured to execute continuously

or in response to specified conditions, for example when network

activity is detected on a given port.

EGs cache data received from their sensors and use the cache to

respond to client requests. EGs can perform filtering operations to

reduce the amount of data returned to a client. Multiple sensors

configured for continuous execution can potentially place high

loads on the EG’s host, which is independent of client interaction.

Therefore, to reduce the intrusiveness on monitored hosts, the

developers recommend that the EG be located on a remote, but

nearby, host.

5.4.7.5 Data request and presentation

Sensors gather monitoring data and submit it to an EG as the

data is generated at the monitored resource. Clients can request to

receive all data cached by an EG, or subscribe to receive data as

the EG receives it from sensors. The EG performs filtering func-

tions whereby clients can select particular types of data. The EG is

designed to return summary data to clients: for example, by taking

30-second CPU load readings from sensors and computing 1-, 10-

and 15-minute CPU load averages. Default JAMM consumers are

provided to perform data archiving services.

A homogeneous view of data from heterogeneous resources is

not provided by JAMM. However, mechanisms exist for a sensor

to execute a parsing module to extract and format the output from

an application into NetLogger format. In cases where a parsing

module is not used, JAMM assumes that the application’s output

192 GRID MONITORING

is already formatted and the data is passed directly to consumers

without modification.

Example consumers include an event collector used to collect

data for use by real-time analysis tools, an archiver for persistent

event storage, a process monitor that notifies system adminis-

trators by e-mail when a process terminates abnormally and an

overview monitor that constructs resource status information from

event data generated by multiple hosts.

5.4.7.6 Searching and standards

Consumers can request the EG to stream data to them only if a

value meets some threshold; for example, if CPU load for a given

sensor changes by more than 10%. Resource data is reported in

either XML or Universal Logger Message (ULM) [52] formats.

5.4.7.7 Security

An EG is designed to provide access control to sensors based

on X.509 certificates and SSL connections. It is not clear if these

security measures have been implemented.

5.4.7.8 Software implementation

JAMM is free, available for download and has an open-source

license. However, the project is no longer active or supported.

JAMM is written in Java and uses Remote Method Invocation

(RMI) for communications.

5.4.8 MapCenter

5.4.8.1 Overview

MapCenter [53–56] is used to monitor and display the availabil-

ity of services across a Grid using graphical maps, logical views

and trees of computing resources, in a client’s Web browser. Map-

Center uses an extensible model to visualize different levels of

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 193

resource based on department, organization and virtual organi-

zation views. Appropriate native protocols are used to determine

service availability and a presentation layer is provided for Globus

MDS2 LDAP servers.

MapCenter was developed by the Network Work Package of

the European DataGrid, and has been deployed in a number of

environments including DataGrid [57], DataTAG [58], CrossGrid

[59], PlanetLab [60], L-Bone [61] and AtlasGrid [62].

5.4.8.2 Architecture: General

The MapCenter architecture (Figure 5.10) is composed of a cen-

tralized monitoring server that consists of a data store, as well as

a monitoring and presentation layer:

• The Data Store (DS) provides configuration and status infor-

mation for MapCenter elements (objects, symbols, maps, link,

services and URLs). A system administrator can modify the

resources referenced in the DS, or automatically using data

obtained from remote information services (e.g. Globus MDS2).

The DS data model provides a hierarchical description of

Figure 5.10 The architecture of MapCenter

194 GRID MONITORING

resource status for generating logical or graphical resource
views. The data model is based on four entities:

– Object: The basic element that models a computer system, or
set of services on a host that are polled at a fixed frequency;

– Symbol: A visual representation of an object, symbols are
grouped into maps;

– Map: Contains symbols, links and sub-maps;

– Link: An abstraction of a logical interconnection between
maps.

• The Monitoring Layer (ML) uses sensors to poll resources. Sen-
sors implement the native protocol for the class of resource
they are designed to poll. For example, sensors provide: ping
requests, to check the availability of a machine; TCP connection
requests to test for services running on given ports; and HTTP
get requests. Sensors are invoked in a uniform manner and out-
put native data representing poll status. MapCenter objects are
used to define the number of ports or URLs, and poll rate for a
given resource in the DS. Status determination rules are used to
assign a standard “poll severity” value (such as “responding”
or “unavailable”) based on an object’s configuration and native
protocol response.

• The Presentation Layer (PL) generates and visualizes different
views of the monitored resources. Symbols are animated with
corresponding resource status. The “best” and “worst” resource
status are propagated through multi-level map views, so that a
snapshot of overall resource availability can be visualized at a
high level.

5.4.8.3 Architecture: Scalability and fault tolerance

Multiple resources at different sites can be polled at various
frequencies and the results cached within the server’s data store.
Multiple users can connect to the MapCenter Web server to view
HTML-based status pages. A homogeneous view of resource sta-
tus is obtained from hierarchical resource maps, which detail the
availability of services running on hosts. Computer hosts are dis-
played either logically or geographically, with the services they
support listed and colour coded to indicate their status.
In addition to automatic polling, MapCenter permits users to

probe services on demand. The native information is displayed

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 195

temporarily and MapCenter processes the response in order to

derive the standard “poll severity”. Furthermore, invoking aMDS2

URL results in the presentation of a LDAPWeb interface, where the

user must use native LDAP semantics and syntax. In both cases, the

user is presented with service- and protocol-specific native output

that may prove confusing when interacting with large numbers of

diverse resources.

The MapCenter architecture provides a centralized server. All

monitoring features are performed from this central point; it is

recommended [53] that servers should be replicated for fault tol-

erance. However, replication of servers will result in an increase

of requests to monitored resources as each MapCenter server

attempts to poll the same resources as its peers for status.

5.4.8.4 Monitoring and extensibility

MapCenter connects to monitored resources through sensors

installed on the MapCenter server. Resources can be located auto-

matically by querying an information service and incorporated

into the DS at run time.

The Web user interface displays the services exported by hosts,

for example MDS2, GSIFTP, mySQL, Apache Tomcat or a partic-

ular URL. Essentially any service or daemon that can be accessed

over the network can be probed and assigned a colour code to

indicate availability. Services are polled using sensors that plug

into the MapCenter architecture, implement an appropriate proto-

col to connect to a service and compute a poll severity by parsing

the returned response. Poll severities represent the logical state a

service can be in and provide a simple value that can be used to

compare the availability of diverse services. The querying of an

information service is achieved using customized interfaces that

expose underlying information. Example interfaces exist for LDAP,

SQL databases and R-GMA.

5.4.8.5 Data request and presentation

MapCenter provides real-time and historical data. The MapCenter

server initiates all polling in a server pull fashion. Event subscrip-

tion and notification is not supported. The returned results are

196 GRID MONITORING

fused and filtered to provide a number of map views for the user
to navigate.
A homogeneous view of heterogeneous data sources is achieved

for service polling only. The mechanism to poll a service and the
“poll severity” result presented to the DS are uniform across dif-
ferent resource types. However, when manually polling a service,
the user is presented with information detailing the native protocol
results from that poll.

5.4.8.6 Searching and standards

Information searching by resource category, functionality, capabil-
ity or load is not supported natively within MapCenter. Interfaces
to third-party information systems may provide this functionality
independently; for example, the LDAP interface provides search-
ing by job queue or CPU load.
MapCenter does not appear to support any open, standard pro-

tocols suitable for interoperating with other monitoring systems.
However, it is reported that support for the Open Grid Services
Architecture (OGSA) is planned [53].

5.4.8.7 Security

No security mechanisms are provided.

5.4.8.8 Software implementation

MapCenter software is open source, written in C, and is available in
a Linux RPM and tgz format. Mailing list support is not provided
on the project Web site, but contributor contact names are given.
Software dependencies are limited to the Apache Web server.

5.4.9 Monitoring and Discovery
Service (MDS3)

5.4.9.1 Overview

MDS3 [63] is the information service for the Globus Toolkit 3.x
(GT3) developed by the Globus Alliance [63]. MDS3 information

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 197

services are intended to provide scalable, uniform and efficient
access to distributed information sources in order to support
the discovery, selection and optimization of resources for users
and applications within a Globus environment. The approach is
intended to mask underlying resource heterogeneity through stan-
dardized reporting of static and dynamic resource information.
The GT3 is based on the OGSA [64], with components imple-

mented to the Open Grid Services Infrastructure (OGSI) speci-
fication [65]. This service-oriented approach moves away from
the LDAP-based architecture found in earlier MDS versions [66].
As a result, components of MDS3 are represented as Grid ser-
vices. Each Grid service instance has associated Service Data (SD)
[65] that reveals resource information. The SD is represented in
a standardized manner; various operations are provided for a
Grid service to register new information and for clients to retrieve
that information. By default, each Grid service exposes computer
host-based performance information. A pluggable information
provider framework permits new types of information to be made
available.

5.4.9.2 Architecture: General

The SD associated with each Grid service instance represents sta-
tus information for that service, for example host processor and
memory utilization. Figure 5.11 shows MDS3 architecture. The SD
mechanisms can also be used to expose additional information that
is gathered, queried or probed as a result of performing the ser-
vice’s task. Resource information is presented according to defined
SD descriptions and advertised using the service’s service type
WSDL definition. A generic interface for mapping queries and
subscriptions for resource information to service implementation
mechanisms is provided by OGSI. This approach ensures that a
client can utilize standard operations when retrieving information
from a service instance.
The MDS3 is a distributed information system consisting of a

resource and collective layer of Grid services:

• The Resource Layer, of MDS3 consists of one or more service
instances that produce SD. Typically these services will monitor
and provide access to resources, such as job submission mech-
anisms or replica catalogues. Grid services may be persistent or

198 GRID MONITORING

Figure 5.11 The MDS3 architecture

transient. A transient service may, for example, be a data-mining
operation, network bandwidth allocation or a reporting mecha-
nism for an experiment. A persistent service might be a queue
for a batch processing system.

• The Collective Layer, of MDS3 consists aggregates information
from multiple “Resource Layer” services. The Index Service
(IS) is an example of a Collective Layer service that supports
operations for accessing, aggregating, generating and querying
SD from remote services. Potentially, information can also be
obtained from applications running locally on the IS host. In
this case a provider mechanism is utilized to dynamically gen-
erate Service Data Elements (SDE) from the application so that
it becomes available via the SD interface. The IS’s indexing and
caching functionality is utilized to reduce client overhead when
locating appropriate information from a set of remote resources.
The indexing provides service lookup mechanisms and caching
provides clients with access to recent information from Resource
Layer services.

• Clients, e.g. user applications, interact with the IS or resource-
level services directly, using subscription and query requests.
MDS3 provides dynamic service registration via a registration

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 199

protocol. Client interactions with services are based on a
resource discovery and an information protocol.

5.4.9.3 Architecture: Scalability and fault tolerance

There may be more than one instance of a Grid service with
multiple clients querying those services concurrently. The OGSI
SD interface provides a common means of retrieving information,
regardless of the underlying platform.
Fault tolerance and scalability are achieved through the repli-

cation of resource and collective layer services. Furthermore, soft-
state registration allows resources to dynamically enter and leave
the IS, while stale references are identified and removed. ISs
aggregate information from any other service, including remote
ISs. Therefore hierarchies of ISs can be established to aggregate
and cache resource information. Cached resource information is
refreshed through OGSI subscription to registered services.

5.4.9.4 Monitoring and extensibility

SD providers and SDEs are used to extend the information services
provided by MDS3. An SD Provider collects data from a local
application and creates an XML document by marking up the
native data against a naming schema to create a description of
resource information. The resulting XML document is injected into
the Grid service’s SD interface and made available to clients as
an SDE.
As well as creating custom SD providers to extend monitoring

capability, a number of default providers can be utilized:

• SimpleSystemInformationProvider: A Java-based host
information provider of CPU count, memory statistics, OS type
and logical disk volumes.

• HostScriptProvider: Shell scripts for UNIX systems that
output various details about host resource information.

• AsyncDocumentProvider: A provider that periodically reads
an XML document from disk.

• ScriptExecutionProvider: Provides a wrapper to execute
applications that generate an XML document via their standard
output stream.

200 GRID MONITORING

Resources are queried periodically by SD managers; monitoring
is independent of a client’s interest. Polling frequency is defined
separately for each SDE. Administrators have the option to modify
the rate a resource is polled in order to reflect the frequency with
which underlying information is expected to change, or to meet
client demand for up-to-date information.

5.4.9.5 Cross-API monitoring

The source of resource information is generally expected to be
the host on which a Grid service is executed. However, SD
providers are not restricted in their operation and can connect
to remote resources, such as Ganglia. SD providers must interact
with remote resources using their native API and format result-
ing data according to naming schema requirements. This implies
that SD providers are capable of monitoring cross-API resources,
without the need to install MDS components on remote monitored
resources.

5.4.9.6 Data request and presentation

All client queries retrieve information from a cache. This data may
be near real time, based on the poll frequency of SD providers.
Historical data can be provided by services that perform archival
duties.
MDS3 supports client-initiated query/response and subscrip-

tion/notification protocols. Clients register their interest in ser-
vices, which in return send notification messages to the client,
when specified information is updated.
The host information provided by default GT3 SD providers is

represented in GLUE. Customized data providers can use GLUE
or any other naming schema that meets their needs. However, the
use of standard naming schemas is desirable to promote interop-
erability between Grid services.
GUIs are available for interacting with the IS. For example, the

Service Data Browser is a Java application that provides a frame-
work to plug in “visualisors” that are used to format XML resource
information for specific user requirements. Another GUI is the
Web Service Data browser, which uses XSLT style sheets to con-
vert SD XML into HTML in a manner that allows the addition of
new types of SD to be incorporated for display.

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 201

5.4.9.7 Searching and standards

MDS3 supports both simple and complex queries. Query-by-name
is performed by specifying a service and one or more SDE names.
Optionally clients may also provide an XPath expression to refine
the information returned from a query. The approaches used allow
information to be returned by resource type and by the comparison
of resource values. All responses are returned in XML. The use
of XML and GLUE ensures that information retrieved from the
system has wide utility for non-GT3 components.

5.4.9.8 Security

GT3 services, including MDS3, can use the GSI [3] to provide
certificate-based authentication and authorization. By default,
anonymous interaction to MDS3 is provided. MDS3 can be config-
ured to provide access control for both registrations and queries
based on a list of authorized users.

5.4.9.9 Software implementation

MDS3 is available within the Globus Toolkit release 3.x. The project
is active and supported. GT3 is released under an open-source
licence and is free to download and use. While the Grid services
components of the toolkit are written in Java, the underlying
core of the Globus code is currently targeted at UNIX platforms.
MDS3 is integrated with the Globus Toolkit, which must be
installed and configured before the MDS3 can be utilized. Software
dependencies include Java 1.3 and Jakarta Ant. Optional MDS3 IS
dependencies include the Apache Xindice, an XML database for
transparent SD persistence.

5.4.10 Mercury

5.4.10.1 Overview

Mercury [67–69] is a monitoring system that aims to support
application steering and self-tuning, performance analysis and pre-
diction. Mercury provides a general Gridmonitoring infrastructure
that extends the GMA, with actuators and actuator controllers in

202 GRID MONITORING

order to influence the operation of the monitoring system. These

extensions are intended to offer intelligent and adaptive control

mechanisms to react to changes in the monitored environment.

Mercury can perform application and resource monitoring as well

as adaptive management functions. Mercury is developed by the

EU GridLab [70] project and utilized in a number of Grid testbeds,

including the European DataGrid [57].

5.4.10.2 Architecture: General

Mercury is based on the GGF’s GMA and concepts from the

Autopilot [5] and OMIS [71] projects, for providing adaptive con-

trol within a distributed environment. Figure 5.12 showsMercury’s

distributed architecture. Mercury consists of local monitors, main

monitors, and the monitoring service. “P” refers to a process exe-

cuting on the same host as the Local Monitor (LM).

• The Local Monitor resides on each monitored host, gathers raw

host performance and application information from a locally

executing sensor process (P), which it transmits to aMM. The LM

Figure 5.12 The architecture of Mercury

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 203

is responsible for controlling a sensor’s execution in response to
client requests.

• The Main Monitor (MM) aggregates raw resource information
from multiple LMs and provides a central location on each
resource (host or cluster) for clients to access information. In
response to a client request, the MM instructs appropriate LMs
to take measurements and pass back their results. The LM and
MM constitute the Local Monitoring Architecture (LMA). As
well as providing information from LMs, the LMA can poten-
tially aggregate information from other monitoring systems.

• The Monitoring Service (MS) provides a gateway for remote
clients to access a Mercury resource’s monitoring information.
The MS gathers raw information recorded by the LMA and con-
verts local measurements into a standardized format for use by
clients. The MS provides client authentication and authorization,
and also coordinates the monitoring of resources in line with
client requirements. Information retrieved by the MS can poten-
tially be stored in persistent remote storage service instead of
being delivered directly to the requesting client.

• ActuatorsextendtheGMAbyprovidingmechanisms foradaptive
control ofmonitored resources.Actuators are similar toGMApro-
ducers, but instead of performingmonitoring duties they provide
a mechanism for clients to exert control over a part of the moni-
tored system. Actuators aremanaged by actuator controllers. The
LM contains both producer and actuator functionalities.

5.4.10.3 Architecture: Scalability and fault tolerance

Mercury’s architecture is based on the GMA. The MS equates to
GMA producers and clients to consumers. Mercury uses multi-
ple MMs on large clusters; cluster nodes can be logically grouped
to report to different MMs. Multiple clients can monitor multiple
resources concurrently. The MS coordinates client requests across
remote resources and provides a single point of contact for retriev-
ing information and controlling sensor behaviour.

5.4.10.4 Monitoring and extensibility

Mercury provides mechanisms to monitor host and application
information using sensors that must be installed on the monitored

204 GRID MONITORING

hosts. By default, Mercury defines a range of host information
that can potentially be collected from hosts, including processor,
memory, disk, network and operating system details. The host
sensors provided by Mercury are operating-system specific; and
are only capable of providing a subset of the defined range of host
information. For example, some sensors do not provide CPU load
average. In Mercury version 2.2, host sensors exist for versions of
Linux, Mac OS X, UNIX and Mach.
Other monitoring information is made available to Mercury

using loadable modules that link sensors into the LM. Sensors are
user-defined codes that can retrieve information using local sys-
tem commands and applications or remote services. Clients have
the ability to control the operation of LM and so potentially have
some influence over the monitoring intrusiveness of sensors.

5.4.10.5 Data request and presentation

Clients can request real-time information by request–response
queries or subscription. Simple consumers that capture informa-
tion persistently for off-line historical analysis have been pro-
vided. Furthermore, the MS can be instructed to redirect streams
of information to remote storage facilities for archiving, instead of
returning results directly to the requesting client.
Mercury supports the provision of a homogeneous view of

heterogeneous data by utilizing the MS to transform raw informa-
tion produced by sensors into normalized form. The normalized
information is resource independent and adheres to a predefined
format. Normalization is performed at the MS level in order to
allow resource administrators to work with detailed raw infor-
mation within a site, while external clients receive aggregated or
potentially less detailed information.
The protocol used between client (consumer) and MS (producer)

consists of commands, responses and information values. Channels
define a logical connection between a producer and consumer and
may be initiated in either direction in order to support simple
request–response queries and subscription.

5.4.10.6 Searching and standards

The MS allows the selection of information based on unique tem-
plate names. Clients need to provide a hostname when querying

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 205

a MS for resource information. It is assumed that the MS provides
mechanisms to find registered hosts with sensors. Searching can be
performed by value comparison, e.g. (cpuLoad > specifiedvalue).
Mercury uses the External Data Representation (XDR) [72] for-

mat, to encode information. XML is not utilized due to concerns
over parsing overhead and message size.

5.4.10.7 Security

Mercury uses Generic Security Services Application Programming
Interface (GSSAPI) [4] authentication and encryption, and basic
SSL [4] support is provided. Access Control Lists (ACL) are used to
determine which services clients are permitted to use. ACL policies
can allow or deny access to certain functions for specified users.

5.4.10.8 Software implementation

Mercury version 2.2.0 is available for download free of charge
under the GNU Lesser General Public License. The project is active
and provides support by a mailing list.
Mercury does not require the installation of Grid middleware.

A small number of external libraries are required, depending on
configuration and functionality required. Installation is limited to
UNIX platforms.

5.4.11 Network Weather Service

5.4.11.1 Overview

The goal of the Network Weather Service (NWS) [38, 73] is to
provide recent historical information and short-term forecasts of
computer and network performance within distributed systems.
NWSwas developed for use by dynamic schedulers and to provide
quality-of-service readings for distributed computational environ-
ments. NWS sensors provide periodic network measurements in
the form of end-to-end TCP/IP bandwidth and latency, and host
CPU usage and memory availability. The NWS has a distributed,
GMA-like architecture, and is used within a number of projects
including the NSF Middleware Initiative (NMI) Grid [74] and
NPACI Grid [75].

206 GRID MONITORING

5.4.11.2 Architecture: General

The NWS architecture (Figure 5.13) consists of a number of

distributed components, including a name server, memories,

forecasters and sensors.

• The Name Server (NS) is a centralized registry that contains

address bindings for NWS components. The NS is the only part

of the system that requires components to have prior knowledge

of its address. All other NWS components are located by and

periodically register with the NS.

• Sensors are installed on monitored hosts and periodically

transmit time-stamped information of local host and network

performance to memory components.

• Memories, also known as Persistent State, provide measurement

information storage and retrieval services for sensors and clients.

Memories store time-stamped resource observations from indi-

vidual sensors. The information is stored to local disk, using

circular buffer techniques so that only recent resource informa-

tion is retained. If a memory component fails, the history of

recent information is available to clients when the memory is

re-started. A simple request mechanism is provided for clients

to read information.

• Forecasters process resource observations from memories and

perform forecasts over a given time frame.

Persistent Storage
nws_memory

Forcaster
nws_forecaster

Resource n

Directory Service
nws_nameserver

nws_sensor

CPU Sensor

Network Sensor

Memory Sensor

Register

Register

Register Push
measurements

Client

Locate

Pull cached
measurementsPull forecasts

Figure 5.13 The architecture of NWS

TE
AM
 F
LY

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 207

5.4.11.3 Architecture: Scalability and fault tolerance

Numerous resources can be monitored concurrently, with multiple

clients accessing resource measurements. Network and host per-

formance measurements are accessed in a seamless manner using

the memory API that provides uniform access to information.

The developers acknowledge that the NS is a potentially weak

link in the system and provide replication mechanisms to synchro-

nize registration information across multiple NSs. Sensors include

a fail-over mechanism that allows them to switch over to a different

NSs in the event of their default NS failing. The use of multiple

NSs and sensor fail-over techniques provides fault tolerance. Scal-

ability can be addressed by adding additional NSs and memories

to the system as the number of sensors increases.

All other components in NWS can fail individually without

affecting the operation of the remainder of the system. Periodic

component rebinding with the NS ensures stale bindings are found

and removed.

All sensor information is cached in NWS memory components

in a circular buffer ordered by a timestamp. Clients query memory

components for resource information. It is expected that informa-

tion is periodically read from memory components and placed in

a permanent store as required by the client. Clients never query

sensor components directly. Providing that memories are located

on a remote host, the sensor host’s performance will not be affected

by client requests.

5.4.11.4 Monitoring and extensibility

An NWS sensor must be installed on each host and configured

to start a number of monitoring activities that periodically gather

local information. A client can start and stop monitoring activi-

ties using the sensor control API. The set of default information

available in NWS is:

• TCP bandwidth/latency/connect-time: The speed with which data

can be sent to a target sensor in MBs, the amount of time in

milliseconds required to transmit a message to a target sensor,

and the amount of time required to establish a connection to a

target sensor.

208 GRID MONITORING

• CPU: The fraction of CPU that is available to:
– a newly started process;

– an existing process.

• Storage/memory: The amount of space in megabytes of unused
disk/memory.

Further monitoring capabilities could be added by creating
additional sensor functionality, for example, to SNMP; however,
generally thisappears tohavenotbeenthecase.NWSdoes,however,
provideanalternativeapproach, thenws_insert command, canbe
used to store information from external programs into NWS mem-
ory. Once inserted, the new type of information can be extracted,
viewed and forecasts generated, usingNWS’ standardmechanisms.
NWS forms network sensors into cliques to reduce network-

monitoring intrusiveness. Members of a clique coordinate their
timing to avoid collecting network data at the same time.

5.4.11.5 Data request and presentation

Near real time and recent historical performance information is
provided to clients. Short-term forecasts can be generated to pro-
vide near future quality of service predictions. Client event notifi-
cation is not supported; clients have to initiate requests to retrieve
data from NWS memory and forecaster components. Sensors push
data into memory components.
NWS does not provide any mechanisms for normalizing data

from the heterogeneous resources it monitors. Thememory compo-
nent combines recent measurements from a single sensor activity
on a particular host. When clients query the memory component
for a host’s particular performance activity, a series of up to twenty,
time-stamped measurements are returned in delimited text format.
The request granularity is focused on retrieving specific infor-
mation from a named host. User interaction with components
(sensors, memories, name server) is via command-line applications
or the C API.

5.4.11.6 Searching and standards

The NS is utilized to locate performance data and a search can be
made on hostname, sensor, monitoring activity or clique. Queries

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 209

are to an activity on a given host. The NS does not contain details
of performance information so, for example, searching for a host
by CPU load is not possible at this level.
The NWS data format is non-standard, consisting of a combi-

nation of name–value pairs and space-delimited text. The query
language is based in part on an LDAP-like syntax. Standard Grid
protocols are not used in NWS. However, NWS has been inte-
grated with the Globus LDAP MDS through the NWSlapd portal.
The NWSSlapd portal allows NWS to act as a Globus information
provider, by allowing Globus users to query the NWS name server
and obtain performance data.

5.4.11.7 Security

No security mechanisms are provided by NWS.

5.4.11.8 Software implementation

NWS is open source, free and available for general download.
The project is active and supported. Portability is based around C
code for UNIX platforms. No further software dependencies are
required.

5.4.12 The Relational Grid Monitoring
Architecture (R-GMA)

5.4.12.1 Overview

R-GMA [76–79] was developed within the European DataGrid
project [57] as Grid information and monitoring system. R-GMA
provides an implementation of the GMA that utilizes a relational
model. R-GMA collects information about the state of the Grid and
makes it available to other components in a way that provides a
global view of information. R-GMA operates over the wide area
and provides an information transport layer for host, network,
service and application monitoring data. A key abstraction behind
R-GMA is to promote the perception that data is being stored or
streamed through one large data warehouse for each VO. R-GMA
is used in the DataGrid test platform.

210 GRID MONITORING

5.4.12.2 Architecture: General

R-GMA has a distributed architecture consisting of agents, pro-
ducers, consumers, producer–consumers, registry (mediator) and
naming schema (Figure 5.14):

• R-GMA clients (user code) are written by users to provide or
consume information within R-GMA. User code interacts with
agents through the agent APIs. In Figure 5.14 the boxes labelled
“Producer” and “Consumer” represent user code, while the
inner boxes represent the agent API. The agent API interacts with
generic R-GMA agents that abstract the user from the underlying
infrastructure.

• An Agent is the implementation of a producer or consumer com-
ponent that performs R-GMA operations on behalf of the user
code. An agent shields the user code from R-GMA implementa-
tion details and provides support for tasks such as registration,
remote agent and data location, and schema management. In
Figure 5.14, agents are represented by the producer and con-
sumer servlets.

• A Producer is a component that makes available resource infor-
mation for consumers to query. Producers register the type of

Figure 5.14 The R-GMA architecture

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 211

information they provide with the R-GMA registry, using SQL
CREATE TABLE statements. Producers publish instance informa-
tion using SQL INSERT statements.

• A Consumer provides the means by which user code accesses
information made available by various producers. A consumer
handles a single query, expressed as an SQL SELECT statement.
There are two approaches for the transfer of information from a
producer to a consumer:

– The pull model: The consumer can perform a one-time query
to a producer. This process may be repeated but if there is no
new information available, the same results will be returned
to the user code.

– The push model: The consumer can perform a streaming query,
so that whenever new data that matches the query is avail-
able, the data is transmitted back to the user code, via the
consumer. While this follows a push model, it is the con-
sumer that initiates the streaming of data from producer to
consumer.

• A Producer–consumer is a component that contains both pro-
ducer and consumer functionality. For example, Archivers are
used to combine, and possibly filter, information streams from
multiple producers and archive them in a database.

• The Mediator provides support to a consumer for searching the
registry for an appropriate producer to obtain information from,
in cases where there are potentially multiple producers capable
of fulfilling the consumer query.

• The Registry records all producers and consumers that currently
exist. The registry supports the abstraction of a single physical
database of information that is physically provided by remote
producers. The registry achieves this abstraction by mapping
producers to the logical database table they produce information
for. The registry uses a SQL WHERE predicate to define which
partition of the logical table a producer provides data for.

• The Schema contains details about the relational tables that
create the illusion of a single database spanning remote produ-
cers and consumers. That is, the Schema provides metadata that
describes the semantics and scope of the information that pro-
ducers will provide to consumers. In order to interact, producers
and consumers must share a common naming schema for their
information, which the Schema allows them to do. As well as

212 GRID MONITORING

providing a global set of core naming schemas, defined using
GLUE [78], producers are free to submit their own naming
schemas (relations) that describe the data they produce.

5.4.12.3 Architecture: Scalability and fault tolerance

Multiple clients can utilize the R-GMA infrastructure concurrently.
A virtual relational view of resources is achieved by publishing
information from producers that use standard and custom nam-
ing schemas. Providing a client understands the naming schema
utilized by a provider, information can be accessed in a seam-
less manner. The client’s view is of a single virtual database. This
abstraction hides the potentially complex underlying interactions
between distributed R-GMA components.
The virtual database R-GMA provides is partitioned across inde-

pendent and distributed producers, with the description of system
partitioning held in the registry. If a producer or consumer fails,
then the remainder of the system will continue functioning. Work
is underway to avoid a single point of failure in the registry and
schema, using dynamic replication techniques.
Soft state registration, using a heartbeat mechanism, of produc-

ers and consumers with the registry ensures that the system is
self-healing and promotes scalability. The automatic removal of
stale references to end points, when a heartbeat is not received,
reduces the load on the registry, network and agents interacting
with components that are not available.

5.4.12.4 Monitoring and extensibility

Five different types of producer exist in R-GMA. While all appear
to be the same from the client’s point of view, they have differing
characteristics:

• DataBaseProducer – supports historical queries, by writing
each record to an RDBMS.

• StreamProducer – supports continuous queries and stores
information in-memory for consumer retrieval.

• ResilientProducer – similar to the StreamProducer, but
information is also written to disk to avoid loss in the event of
a system failure.

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 213

• LatestProducer – supports queries for latest information

only, by overwriting earlier records in an RDBMS;

• CanonicalProducer – executes user code to retrieve informa-

tion in response to a client query.

Monitoring intrusiveness can be controlled using hierarchies of

Republishers that combine and cache information, thereby reduc-

ing the overhead on the original producer agent. In addition,

Republishers could be located in strategic positions within the

Grid, in an attempt to reduce client request latency by moving a

copy of the data closer to consumers.

5.4.12.5 Data request and presentation

The consumer API refines SQL queries by performing continuous,

latest state and historical queries on producers. Communication

patterns are client pull for latest state and historical queries, and

server push for continuous queries. R-GMA provides event notifi-

cation by utilizing “continuous” producers to stream information

as it is generated, back to consumers that previously indicated

their interest.

Producers utilize a naming schema to publish data. This implies

that if two producers wish to publish data using the same nam-

ing schema, but from different sources, they should implement

functionality into their code to format the native data to meet the

naming schema requirements, before submitting the data to their

producer agent. Producers of similar types of information can reg-

ister different naming schemas if they do not wish to manipulate

native data into a different form.

5.4.12.6 Searching and standards

Data in R-GMA can be searched for by resource class, such as func-

tionality or capability, or by resource values, such as cpuLoad >4.0.

R-GMA uses the GMA as its basis, and goes on to define a

data model, a query language and the functionality of the direc-

tory service. Currently R-GMA implements an XML protocol over

HTTP(s).

214 GRID MONITORING

5.4.12.7 Security

Security in R-GMA is optional; however, if selected, authentica-
tion using Grid certificates can be provided, while client-to-servlet
and inter-servlet communications are protected by Secure Sockets
Layer (SSL). Communication between the R-GMA components is
via HTTP(s). The ability for an R-GMA client to present a Grid
certificate signed by an accepted Certification Authority (CA), or
to generate a proxy certificate for use when interacting with the
R-GMA agent API follows the GSI approach.

5.4.12.8 Software implementation

R-GMA is available for free download and is being supported by
the EGEE [80].
The core of R-GMA is based on Java servlet technologies. The

current installation mechanism is based on Linux (Redhat) RPMs.
Configuration mechanisms also appear to be particular to Linux,
so providing a portable installation of R-GMA requires more than
simply extracting the contents of RPMs into a cross platform
package format.
R-GMA is released under an open-source licence. R-GMA is

dependent on a number of EDG-mandated RPMs which must
be installed (14 for standard and 30 for developer environments)
before the core set R-GMA RPMs can be installed. The agent APIs
for interacting with the R-GMA servlets are provided in Java, C++,
C, Python and Perl.

5.4.13 visPerf

5.4.13.1 Overview

visPerf [81] is a Grid monitoring and visualization system that uti-
lizes remote sensors to extract information from log files, as well
as interacting with existing Grid middleware in order to remotely
observe performance. visPerf interfaces with the NetSolve [82]
system and provides information on client users, host resource
performance and patterns of internal NetSolve function calls. vis-
Perf was developed by the Innovative Computing Laboratory at
the University of Tennessee, Knoxville, and is used within the
GridSolve project [83].

5.4 AN OVERVIEW OF GRID MONITORING SYSTEMS 215

Figure 5.15 The architecture of visPerf

5.4.13.2 Architecture: General

The visPerf NetSolve Monitor (architecture shown in Figure 5.15)

is a distributed application made up of a Java applet monitor and

remote sensors:

• The visPerf Sensor is a monitoring component that resides

locally on each host to be monitored and periodically gathers

local host performance information, which is cached within the

sensor. The monitoring of local Grid middleware is achieved

through the parsing of application log files, or directly from the

application if it provides an API for performance observations at

run time. A direct connection between the sensor and its clients

is used to return information. Sensors operate either in slave

mode, where preconfigured monitoring duties are performed,

or in a proxy mode, where the sensor aggregates information

from slave sensors and makes this available to clients.

• The visPerf Main component is used for browsing and con-

trolling the status of remote sensors. This component periodi-

cally transmits synchronization messages to registered sensors

in order to determine if any are unreachable or experiencing

operational problems. Sensors can be started, stopped and their

status viewed. visPerf Main also provides visual components for

216 GRID MONITORING

displaying graphical representations of a resource’s status. For
example, graphs display CPU load, while resource maps display
the pattern of function calls executed internally by monitored
middleware.

• A Directory Service is used to register sensors and provides
clients with a mechanism to locate sensors.

5.4.13.3 Architecture: Scalability and fault tolerance

visPerf provides a GMA-like architecture that supports multiple
concurrent clients and sensors. However, the directory service
implementation appears to be centralized, which raises scalability
and fault tolerance concerns. To reduce the amount of data trans-
mitted to the client across the system, proxy sensors can be used
to provide aggregation and reduction services for multiple remote
slave sensors.

5.4.13.4 Monitoring and extensibility

Sensors are installed on all resources that require monitoring
and provide access to local computer resource information, for
example CPU workload and disk I/O, by periodically executing
local operating system commands. Furthermore, the monitoring
of third-party applications and middleware can be provided by
using either log-based monitoring techniques or by connecting
to exposed profiling and monitoring APIs, on an application-
by-application basis.

5.4.13.5 Data request and presentation

Sensors support simple request/response (client pull) mechanisms
to respond on demand to client requests. Furthermore, sensors
can be configured to stream real-time information to a predefined
client. Mechanisms to support a homogeneous view of heteroge-
neous resources are not provided, although a pre-processing filter
is used to format raw application logs of a specific system into
a compact semantic format. This approach is intended to reduce
network overhead and provide clients with a single format for
retrieving information obtained from different applications.

5.5 OTHER MONITORING SYSTEMS 217

5.4.13.6 Searching and standards

Sensors can be located using the directory service and queried

directly to provide a list of the monitoring services they pro-

vide. Monitoring information is grouped according to a predefined

name by the sensor. The grouping and naming of available infor-

mation is performed statically when the sensor is configured for

operation.

5.4.13.7 Open standards

visPerf uses its own raw sensor monitor protocol, or an XML-RPC

protocol can be used to communicate between clients and sensors.

5.4.13.8 Security

Sensors provide MD5 authentication and connections between

clients and sensors are encrypted. Standard Grid security mecha-

nisms are not used.

5.4.13.9 Software implementation

visPerf is under active development and currently in beta release.

At the time of writing, the source code was only available by

contacting the developers directly. Software requirements include

Netsolve and Python 2.1. Sensors are supported on Linux, FreeBSD

and Solaris. sysstat [84] is required for providing iostat and

vmstat monitoring commands for Linux-based sensors.

5.5 OTHER MONITORING SYSTEMS

5.5.1 Ganglia

Ganglia [29] is a distributed monitoring system for high-

performance computing systems such as clusters and the Grid. It

is based on a hierarchical design targeted at federations of clusters.

Ganglia relies on a multicast-based listen/announce protocol to

218 GRID MONITORING

Figure 5.16 The architecture of Ganglia

monitor state within clusters and uses a tree of point-to-point con-

nections amongst representative cluster nodes to federate clusters

and aggregate their state. Ganglia uses XML for data representa-

tion, XDR [72] for data transport, and RRDtool [85] for data storage

and visualization. Ganglia attempts to minimize per-node system

overheads by using specialized data structures and algorithms.

Figure 5.16 shows the architecture of Ganglia.

The Ganglia Monitoring Daemon (gmond) is a multi-threaded

daemon, which runs on each cluster node to be monitored; it has

four main responsibilities:

• monitor changes in host state;

• multicast relevant changes;

• listen to the state of all other Ganglia nodes via a multicast

channel; and

• answer requests for an XML description of the cluster state.

Each daemon transmits information in two different ways: mul-

ticasting host state in XDR format or sending XML over a TCP

connection.

Ganglia Meta Daemons (gmetad) are used to provide a feder-

ated view. At each node in the tree, a gmetad periodically polls a

collection of child data sources, parses the collected XML, saves all

numeric, volatile metrics to round-robin databases, and exports the

aggregated XML over a TCP socket to clients. Data sources may

5.5 OTHER MONITORING SYSTEMS 219

be either gmond daemons, representing specific clusters or other

gmetad daemons, representing sets of clusters. Data sources use

source IP addresses for access control and can be specified using

multiple IP addresses for failure. The latter capability is natural for

aggregating data from clusters since each gmond daemon contains

the entire state of its cluster.

Ganglia PHPWeb User Interface provides a view of the gathered

information via real-time dynamic Web pages. Most importantly,

it displays Ganglia data in a meaningful way for system admin-

istrators and computer users. Although the Web UI to Ganglia

started as a simple HTML view of the XML tree, it has evolved

into a system that keeps a colourful history of all collected data.

The UI depends on the existence of the gmetad, which provides

it with data from several Ganglia sources. Specifically, the Web UI

will open the local port 8651 (by default) and expects to receive a

Ganglia XML tree. The Web pages themselves are dynamic; any

change to the Ganglia data appears immediately on the site. This

behaviour leads to a very responsive site, but requires that the full

XML tree be parsed on every page access. Therefore, the Ganglia

UI should run on a dedicated machine if it presents a large amount

of data.

The UI is written in the PHP scripting language, and uses graphs

generated by gmetad to display historical information.

5.5.2 GridMon

GridMon [86] is a network performance monitoring toolkit to iden-

tify faults and inefficiencies. The toolkit is composed of a set of

tools that are able to provide measures concerning different aspects

related to network performance: connectivity, inter-packet jitter,

packet loss, Round Trip Time (RTP) and TCP and UDP through-

put. The main components of GridMon are shown in Figure 5.17.

• PingER is a collection of Perl scripts, which use the ICMP ping

utility to send 10 ping requests to remote hosts. The results are

recorded for later analysis.

• IperfER is based on NCSA’s Iperf [87] utility, used for mea-

suring the network’s view of TCP or UDP throughput between

two hosts. Iperf consists of client and server executables, which

sit at either end of a TCP/UDP connection, streaming data

220 GRID MONITORING

Figure 5.17 The architecture of GridMon

between each other. UDPmon is essentially a UDP equivalent of
IperfER.

• bbcp and bbftp are basic tools for copying files between sites,
albeit using multiple TCP streams and large TCP window sizes.

5.5.3 GRM/PROVE

GRM [88] is an online monitoring tool for performance monitor-
ing of message passing parallel applications running on the Grid.
PROVE [89] is a performance visualization tool for GRM traces.
When requested, GRM collects trace data from all machines where
the application is running and transfers it to the machine where
the trace is visualized by PROVE. GRM uses the Mercury Grid
monitoring system to deliver trace data to the host undertaking the
visualization process. PROVE visualizes trace information online
during the execution of the Grid applications. Figure 5.18 shows
the architecture of GRM, which is based on Mercury.

• A LM is running on each host where application processes are
executed. It is responsible for handling trace events from pro-
cesses on the same host. It creates a shared memory buffer where
processes place event records directly. Thus even if the process
terminates abnormally, all trace events are available for the user

5.5 OTHER MONITORING SYSTEMS 221

Figure 5.18 The architecture of GRM

up to the point of failure. In statistics collection mode, the shared

memory buffer is used to store the counters and LM is responsi-

ble for generating the final statistics data in an appropriate form.

• The MM is coordinating the work of the Local Monitors. It col-

lects trace data from them when the user asks or a trace buffer

on a local host becomes full. The trace is written into a text file

in Tape/PVM format, which is a record-based format for trace

events in ASCII representation.

5.5.4 Nagios

Nagios [28] is a system and network monitoring application oper-

ating through external “plugins” which publish status information

to Nagios. Some of the Nagios features include:

• Monitoring of network services (SMTP, POP3, HTTP, NNTP and

ICMP).

• Monitoring of host resources (processor load, disk usage, etc.).

• Contact notifications when service or host problems occur and

get resolved (via email, pager or a user-defined method).

• Optional Web interface for viewing current network status, noti-

fication, problem history and log files.

222 GRID MONITORING

5.5.5 NetLogger

Networked Application Logger (NetLogger) [48] is a set of tools for
monitoring the behaviour of all the elements of the application-to-
application communication path, applications, operating systems,
hosts and networks. It includes tools for generating time-stamped
event logs to provide detailed end-to-end application- and system-
levelmonitoring; and tools for visualizing the log data and real-time
state of thedistributed system. Systemmonitoring is basedon stand-
ard UNIX and networking tools, which are first instrumented.
NetLogger consists of four components:

• An API and library of functions to simplify the generation of
application-level event logs;

• A set of tools for collecting and sorting log files;

• A set of host and network monitoring tools;

• A tool for visualization and analysis of the log files.

In order to instrument an application to produce event logs, the
application developer inserts calls to the NetLogger API at all the
critical points in the code, then links the application with the Net-
Logger library. Figure 5.19 shows the architecture of NetLogger.

netlogd

NetLogger
Library

visualization tool
(nlv)

vmstat
wrapper

netstat
wrapper

iostat
wrapper

snmpget
wrapper

Host and Network Monitoring

Instrumented
application

process

Instrumented
application

process

Instrumented
application

process

Application Monitoring

Trace File

Figure 5.19 The architecture of NetLogger

5.5 OTHER MONITORING SYSTEMS 223

Components in NetLogger are described below. NetLogger uses
IETF ULM (Universal Logger Message) format for logging and
exchanging messages.
To instrument an application to produce event logs, the applica-

tion developer inserts NetLogger calls at critical points in the code,
and then links the application with the NetLogger library. This
API is currently available in several languages, including Java, C,
C++, Python and Perl.
NetLogger facilitates the collection of event logs from distributed

applications by providing automatic logging to a single host and
port. A server daemon, called netlogd, receives the log entries and
writes them into a file on the local disk. Thus, applications can
transparently log events in real time to a single destination over
the wide-area network.
NetLogger includes wrappers for several standard UNIX sys-

tem and network monitoring tools. These wrappers take the out-
put from the tool and generate NetLogger-formatted monitoring
events. Current wrappers include vmstat (CPU and memory
monitoring), netstat (network interface monitoring), iostat
(disk monitoring) and snmpget (remote access to a variety of host
and network monitoring information).
The NetLogger visualization tool is used for interactive graphi-

cal representation of system-level and application-level events. The
visualization tool can display several types of events at once. It is
user configurableandcan, for example,play,pause, rewind,provide
slowmotion and zoom. It can run post-mortem or in real time.

5.5.6 SCALEA-G

SCALEA-G [90] is a monitoring and performance analysis system
for the Grid. SCALEA-G is based on GMA and is implemented as
a set of OGSA [19]-based services that conduct online monitoring
and performance analysis of a variety of computational and net-
work resources, as well as applications. Source code and dynamic
instrumentation are exploited to perform profiling and tracing of
applications. Figure 5.20 shows the architecture of SCALEA-G.
SCALEA-G consists of:

• A Directory Service is used for publishing and searching infor-
mation about producers and consumers as well as information
about the types and characteristics of that data they produce.

224 GRID MONITORING

Figure 5.20 The architecture of SCALEA-G

• An Archival Service is a data repository which is used to store
monitored data and performance results collected and analysed
by other components.

• Sensor Manager Service whose role is to control and manage
activities of sensors in the sensor repository, to register informa-
tion about sensors that send data to it with a directory service,
to receive and buffer data sensors produce, to support data sub-
scription and query and to forward instrumentation requests to
the Instrumentation Service.

• An Instrumentation Service is used to instrument applications,
either at the source code level by using the Source Code
Instrumentation Service or dynamically at run time through the
Mutator Service.

• The Client Service provides interfaces for administrating other
SCALEA-G services and accessing data in these services. In addi-
tion, it provides facilities for analysing performance data.

• System Sensors monitor computational services and network
services such as network links, hard disks, memory usage and
CPU availability.

• Application Sensors are used to measure execution behaviour
of code regions and to monitor events in applications. Sensor

5.6 SUMMARY 225

instances deliver data they collect to Sensor Manager Services.
All sensors are associated with some common properties such
as sensor identifier, data schema and parameters.

• The Consumer Service controls the activities of sensor manager
services, such as when sensors subscribe, unsubscribe or query
the directory service.

• The Instrumentation Mediator acts as an intermediary agent
in communicating between users/tools with the Source Code
Instrumentation Service (based on SCALEA Instrumentation
Service)

• The Performance Analyzer is used to analyse collected data pro-
vided by the Consumer Service and provide the result to the user.

• The Registry Service is used to register information about service
instances.

5.6 SUMMARY

Many systems are available in the field, each with their own partic-
ular focus. This review concentrated on a number of representative
systems for resource and service monitoring that had software
available at the time of writing, and met the high-level criteria pre-
sented in (Section 5.3 Review Criteria). This section summarizes
our findings and highlights the trends that have emerged.

5.6.1 Resource categories

The majority of the projects reviewed (CODE, GPIR, GridRM,
JAMM, MDS, Mercury, R-GMA and visPerf) provide access to
host, service and network resource information. Of the remain-
ing projects, GridICE and MapCenter provide computer and
service monitoring, Hawkeye and NWS provide computer and
network monitoring, while Autopilot is focused on computer host
monitoring.

5.6.2 Native agents

With the exception of GridRM, MapCenter, MDS3 and R-GMA, all
systems require their own agents to be installed, before monitoring

226 GRID MONITORING

can take place. GridRM and MapCenter interact with resources
using a range of native protocols. For example, GridRM drivers
are provided to interact with SNMP, Ganglia and NWS agents.
MapCenter uses sensors installed on its server to probe remote
MDS2, Tomcat and ICMP host availability. Generally MDS3 inter-
acts with Grid services installed on monitored resources; however,
the MDS3 Index Service contains mechanisms that allow locally
executing code to insert GLUE-formatted information which could
be used to interact with Ganglia, for example. R-GMA provides a
general-purpose transport mechanism for publishing, locating and
consuming monitoring information; developers are free to imple-
ment producers and therefore can potentially connect to native
agents on monitored resources to retrieve information. An exam-
ple might be the Canonical Producer retrieving Ganglia data from
a remote resource.

5.6.3 Architecture

The projects reviewed can be categorized by their architec-
ture into GMA-like and non-GMA-like systems. Nine of the
projects (Autopilot, CODE,GridRM, JAMM,MDS3,Mercury,NWS,
R-GMA and visPerf) provide a GMA-like architecture and there-
foreshouldbescalable, fault tolerantandideally, interoperable.Even
though this is the case, the overall implementation of these systems
may actually prevent themmeeting these goals. The non-GMA-like
systems include GPIR, GridICE, Hawkeye andMapCenter.

5.6.4 Interoperability

Although the majority of systems have GMA-like architectures,
interoperability is unlikely without considerable effort. GMA does
not provide standard wire protocols or sufficient details of the
registry APIs. Therefore while projects can follow the GMA in a
coarse-grained manner, they define their own particular protocol
formats and registry functionality.

5.6.5 Homogeneous data presentation

Systems may directly provide support to transform raw resource
data into a standard format, or they may simply require that all

5.6 SUMMARY 227

data to be used in the system must first be converted explicitly by

the resource producer. The reviewed projects are categorized into

systems that directly provide normalization to achieve standard

information, those that require the input of standard information,

and those that operate with raw data, regardless of the hetero-

geneity of resources.

CODE, GridRM, Mercury and R-GMA provide mechanisms for

normalization of heterogeneous data. The MapCenter server pro-

vides partial transformation via plugins. GPIR, GridICE andMDS3

require user-defined code or sensors to gather data and format

it according to a predefined schema before submitting resource

information into the system. GridICE and MDS3 use GLUE. While

GLUE is the MDS3 default, custom providers are free to use other

naming schemas. GPIR uses a restricted set of XML schemas to

determine the format and layout of information. Hawkeye, JAMM,

NWS and visPerf do not provide any mechanisms for normalizing

data from the heterogeneous resources they monitor.

5.6.6 Intrusiveness of monitoring

Systems are categorized by their ability to potentially reduce mon-

itoring intrusiveness. This is determined by the manner in which

resource information is polled, either on demand, or periodically

according to predefined intervals.

5.6.6.1 Periodic monitoring

• Autopilot sensors periodically gather information and cache it

locally regardless of client interest. Client requests are fulfilled

from the sensor’s cache.

• CODE sensor managers can be set to perform periodic polling

of resources in order to fulfil client subscription requests. The

sensor manager could potentially use caching to service multiple

client requests.

• GPIR Information Providers are executed remotely, and publish

their information into the GPIR database. Clients then query

the database for updated information. It is likely that a remote

scheduler, for example cron, is used to periodically gather

resource information from a range of monitored hosts.

228 GRID MONITORING

• GridICE performs periodic polling of resources and publishes

latest readings into the MDS2. Despite automated periodic

polling, monitoring intrusiveness can be reduced based on the

rate at which sensor information is expected to change, for

example dynamic information can be queried more frequently

than static.

• GridRM gateways are designed to provide the ability of period-

ically polling resources, based on client subscription.

• Hawkeye sensors are executed periodically on monitored

hosts by external scheduling mechanisms. For example, the

condor_startd daemon can be used on Condor hosts and

cron on UNIX hosts.

• JAMM sensors can be configured to execute continuously or

in response to specified conditions, for example when network

activity is detected on a given port. Event Gateways cache data

received from sensors and use the cache to respond to client

requests.

• MapCenter services are probed according to predefined fre-

quencies for specific service instances. The results of probes are

cached in the gateway and used to respond to client queries.

• MDS3 resources are queried periodically by Service Data Man-

agers; monitoring is independent of a client’s interest. Polling

frequency is defined separately for each Service Data Element.

Administrators have the option to modify the rate a resource is

polled in order to reflect the frequency with which underlying

information is expected to change, or to meet client demand for

up-to-date information.

• NWS sensors periodically transmit time-stamped local resource

information to memory components. Clients retrieve cached

information from memory components, which operate a circular

buffer and only hold most-recent information.

• R-GMA user codes are free to execute periodically or in response

to a local system event. Latest information produced by the user

code is cached in the producer agent for retrieval by clients.

• visPerf sensors periodically gather local host performance infor-

mation which is cached within the sensor. Sensors operate either

in slave mode, where preconfigured monitoring duties are per-

formed, or in a proxy mode, where the sensor aggregates

information fromslave sensors andmakes this available to clients.

5.6 SUMMARY 229

The use of caching at sensors can reduce overheads from client
requests, as can the aggregation of information using proxy
sensors.

• visPerf monitoring of Grid middleware is achieved through the
parsing of application log files, or directly from the application
if it provides an API for performance observations at run time.
A direct connection between the sensor and its clients is used to
return information.

5.6.6.2 Request-based monitoring

• CODE sensors gather resource information only in response to
a direct request from a Sensor Manager. Sensor Managers can
request a sensor to gather information in response to a direct
client request.

• GridRM drivers query resources directly in response to a client
request for specific subsets of information. Caching is pro-
vided at gateways and clients can control the cache policy on
a per-request basis specifying the maximum age of information
they are willing to tolerate. In addition, driver developers have
the choice of implementing their own caching policies within
drivers, as appropriate for a particular native agent.

• MapCenter probes service status in direct response to a particu-
lar client request.

• Mercuryqueries resources in response toa client request; theMain
Monitor instructs appropriate Local Monitors to take measure-
ments and pass back their results. As well as providing informa-
tion from Local Monitors, the Local Monitoring Architecture can
potentially aggregate information frommultiple resources.

• The R-GMA CanonicalProducer executes user code to retrieve
information in direct response to a client query.

5.6.6.3 Event-based monitoring

• GridRM is designed to respond to events issued by native
agents, by passing event information to subscribed clients.

• Hawkeye Managers are capable of executing tasks in response
to periodic updates received from agents, for example to notify
a user by email if a host is running low on disk space.

230 GRID MONITORING

• JAMM Process Sensors are used to generate events that describe
a process’ life cycle. For example, when the process starts, when
it terminates, if termination was normal or abnormal. Events are
transmitted to and cached by Event Gateways, which respond
to client requests.

• MDS3 supports a subscription/notification protocol, for notify-
ing clients of changes in Service Data Elements. Clients register
their interest in services, which in return send notification mes-
sages to the client, when specified information is updated.

• NWS can provide information in response to certain events
occurring on the monitored host. For example, the nws_insert
command can be used in conjunction with locally executing
processes to transmit an event in response to a specific local
condition.

• R-GMA user codes are free to execute periodically or in response
to a local system event. Clients cache any information produced
by theuser code in theproducer’s agent for later retrieval. R-GMA
also provides event notification by utilizing “continuous” pro-
ducers to stream information as it is generated, to subscribed
consumers.

• visPerf sensors can be configured to stream real-time informa-
tion to a predefined client.

5.6.6.4 Remote monitoring control

• Autopilot clients can interact with actuators to start, stop or
modify the polling frequency of associated sensors.

• GridRM uses SQL to interact with native agents executing on
resources. In addition to querying for resource values, SQL
can be used to transmit data to drivers. In response, suitably
equipped drivers can potentially control the behaviour of the
resources they are monitoring; for example, to remotely kill a
process or to restart a daemon.

• GPIR Information Providers (GIP) gather information only when
remotely executed. This implies that the frequency with which
GIPs publish information can be modified to meet expected
client requirements for up-to-date information.

• JAMM sensors can be stopped and started remotely, therefore it
may be possible to tailor monitoring overhead to client request

5.6 SUMMARY 231

patterns; for example, by stopping a continuously executing sen-

sor when interested clients are not present.

• NWS sensors can start and stop monitoring activities in response

to client commands to the sensor control API.

• The visPerf Main component is used for browsing and con-

trolling the status of remote sensors. This component periodi-

cally transmits synchronizationmessages to registered sensors in

order to determine if any are unreachable or experiencing opera-

tional problems. Sensors can be started, stopped and their status

viewed. Monitoring intrusiveness can potentially be controlled,

in a coarse-grained fashion, by remotely instructing sensors to

halt their monitoring activities when it is clear that clients are

not interested in certain information.

5.6.7 Information searching and retrieval

• In Autopilot clients locate sensors based on a register’s key-

word and knowledge of the information associated. Given a

match, clients connect to the sensors and retrieve the available

information.

• In CODE clients locate Observers using the registry and then

connect directly to a suitable one. To ascertain the sensors sup-

ported by an Observer, the registry can either be searched, or a

given Observer can be queried directly. If a consumer executes

a subscription query to an Observer, then it is possible for

the Sensor Manager to return only those results that match a

consumer-specified criteria, e.g. CPU load greater than 50%.

• GPIR can be queried by resource or by virtual organisation

name. Query requests are formulated using the name of one

of the GPIR XML naming schemas, for example “load” repre-

sents machine load and “services” represents the availability of

services executing on a system. GPIR performs filtering and fus-

ing of data by providing summary information for a VO and

statistics for a range of resources.

• GridICE publishes information into the Globus MDS2. Clients

query the MDS2 directly or use the GridICE Web portal. Clients

searching the MDS2 can locate information based on name, cat-

egory and value comparisons; for example, to return all Linux

hosts with load greater than a specified threshold.

232 GRID MONITORING

• GridRM gateways are registered in the jGMA directory and pub-

lish monitored resource and driver naming schemas; clients can

locate resources by GridRM gateway, by name or by category.

Clients submit SQL-like queries to appropriate gateways. For

example, a gateway can be queried for all GLUE hosts with

memory greater than a specified value. Information is filtered

and fused based on the client’s SQL query.

• In Hawkeye, clients query Hawkeye Managers for information

based on ClassAd attribute names. For example, clients are able

to return a list of all hosts that have a load average greater

than some threshold. The Hawkeye Manager provides filtering

and fusing operations, which allow clients to select a subset of

information from selected hosts.

• On start-up in JAMM, sensors register with a directory ser-

vice. Sensors gather monitoring data and submit it to an Event

Gateway (EG) as the data is generated at the monitored resource.

Clients can request to receive all data cached by an EG, or sub-

scribe to receive data as the EG receives it from sensors. The EG

performs filtering functions whereby clients can select particular

types of data. For example, by taking 1-, 10- and 15-minute CPU

load averages.

• MapCenter does not natively support information searching by

resource category, functionality, capability or load. Event sub-

scription and notification are also not supported. Probed service

status is fused and filtered to provide a number of map views

for the user to navigate. MapCenter could potentially populate

service data into an MDS2 and then clients can use the LDAP

query interface for advanced or custom queries.

• MDS3 clients can use the subscription mechanism in order

to be notified when specified information is updated. MDS3

supports both simple and complex client resource queries.

Query-by-name is performed by specifying a service and one

or more Service Data Element names. Optionally clients may

also provide an XPath expression to refine the information

returned from a query. The approaches used allow informa-

tion to be returned by resource type and by the comparison of

resource values, for example CPULoad greater than a specified

value. Filtering and fusing of data is provided by aggrega-

tion and indexing operations performed by the MDS3 Index

Service.

5.7 CHAPTER SUMMARY 233

• Mercury clients can request real-time information by request–
response or subscription mechanisms. Templates are used to
define the information produced by sensors and to assign a
unique name to individual items of information. Clients may be
required to provide query parameters, for example a resource
network address and perhaps a specific processor or network
interface to be queried.

• The NWS Name Server (NS) is used to locate categories of
resource information; searches can be by hostname, sensor, mon-
itoring activity or clique. The NS does not contain details of
performance information so, for example, searching for a host
by CPU load is not possible. Client event notification is not sup-
ported; clients have to initiate requests to retrieve data from
NWS memory and forecaster components.

• R-GMA provides SQL queries for locating resource information.
Queries can be refined by naming schema and by predicate, for
example the name of the resource’s controlling site. Data from
separate producers can be filtered and fused using producer-
consumer components, such as an Archiver. Customized user
code is needed to provide the filtering and fusing functionality
for a given set of producers.

• visPerf sensors can be located using the directory service and
queried directly to provide a list of the monitoring services they
provide. Sensors support simple request/response (client pull)
mechanisms to respond on demand to client requests.

5.7 CHAPTER SUMMARY

Monitoring is critical for providing a robust, high-performance
Grid environment. Without monitoring mechanisms it will be
impossible to determine the status or health of the environment,
and thus difficult to use it efficiently and effectively. Monitoring
data can be used for performance analysis, performance diagno-
sis, performance tuning, fault detection and scheduling. A basic
monitoring system has the following components:

• Producers (sensors) that generatemonitoringdata (called events);

• Consumers that sink events;

• One or more directory services for registration and discovery of
sensors/events/consumers.

234 GRID MONITORING

Wehave revieweda set of representativemonitoring systems.While
they differ in their implementations, all of them can provide basic
monitoring functionalities. Due to the complexity and dynamics of
the Grid, a monitoring system should have the following features:

• GMA compliance,

• Scalable,

• Resources monitored include network resources, host resources
and jobs,

• Resource performance forecasting,

• Resource performance analysis,

• Various presentation views for resource monitoring,

• Directory service for events subscription and notification.

Since OGSA is the de facto standard for developing service-
oriented Grid systems, therefore, a compliant monitoring system
should potentially expose monitoring information via as Service
Data Elements (SDEs). A monitoring tool can then be implemented
as a Grid monitoring service that provides interfaces to inter-
act with a variety of existing monitoring systems as shown in
Figure 5.21. Monitoring data can be queried from the service’s
SDEs for resource performance forecasting, analysis and presenta-
tion purposes. An overview of Grid monitoring systems features
is shown in Table 5.3.

Figure 5.21 An OGSA-compliant Grid monitoring system

5.7 CHAPTER SUMMARY 235

Ta
b
le

5.
3

O
ve

rv
ie
w

o
f
G
rid

m
o
n
ito

rin
g
sy
st
e
m
s
fe
a
tu
re
s

C
a
te
g
o
ry

A
u
to
p
il
o
t

C
O
D
E

G
P
IR

G
ri
d
IC

E
G
ri
d
R
M

H
a
w
k
e
y
e

JA
M
M

M
a
p
C
e
n
te
r

M
D
S
3

M
e
rc
u
ry

N
W

S
R
-G

M
A

v
is
P
e
rf

S
ca
la
b
le

+
w
id
e

a
re
a

1
1

1
1

Y
N
,
1

Y
U
n
cl
e
a
r

Y
Y

Y
Y

Y

M
o
n
it
o
r
(C

,
S
,
N
)

C
A
ll

A
ll

C
,
S

A
ll

C
,
N

A
ll

S
A
ll

A
ll

C
,
N

A
ll

A
ll

C
ro
ss
-A

P
I

m
o
n
it
o
ri
n
g

�
�

?
�

Y
�

�
Y

�
�

�
Y

�

H
o
m
o
g
e
n
e
o
u
s

d
a
ta

N
Y

�
�

Y
N

N
P
a
rt
ly

�
Y

N
Y

N

In
fo

se
a
rc
h
b
y

re
so
u
rc
e
cl
a
ss

Y
Y

Y
Y

Y
Y

Y
N

Y
Y

N
Y

N

R
u
n
-t
im

e

e
x
te
n
si
b
il
it
y

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

N

F
il
te
ri
n
g
/
fu
si
n
g

o
f
d
a
ta

Y
F
il
te
r

Y
N

Y
Y

Y
N

Y
Y

N
Y

Y

O
p
e
n
st
a
n
d
a
rd

s
N

Y
Y

N
Y

N
N

N
Y

N
N

N
N

S
e
cu

ri
ty

N
Y

N
N

Y
N

N
N

Y
Y

N
Y

N

S
o
ft
w
a
re

a
v
a
il
a
b
le

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

S
o
ft
w
a
re

d
e
p
e
n
d
e
n
cy

Y
Y

Y
Y

Y
N

Y
Y

Y
N

N
Y

Y

A
ct
iv
e
a
n
d

su
p
p
o
rt
e
d

Y
Y

Y
Y

Y
Y

N
Y

Y
Y

Y
Y

Y

O
p
e
n
-s
o
u
rc
e

li
ce
n
se

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

N
ot
es
:
C
,
S
,
N

–
C
o
m
p
u
te
r,

S
e
rv
ic
e
,
N
e
tw

o
rk
;
�
–
C
u
st
o
m

a
g
e
n
t
o
r
se
n
so
r
m
u
st

b
e
in
st
a
ll
e
d
o
n
m
o
n
it
o
re
d
re
so
u
rc
e
s;

�
–
C
u
st
o
m

se
n
so
rs

a
t
m
o
n
it
o
re
d
re
so
u
rc
e
a
re

re
q
u
ir
e
d
to

fo
rm

a
t
d
a
ta

in
to

G
L
U
E
b
e
fo
re

su
b
m
it
ti
n
g
to

th
e
m
o
n
it
o
ri
n
g
sy
st
e
m
.

236 GRID MONITORING

5.8 FURTHER READING AND TESTING

A wide variety of monitoring systems have been reviewed in the

chapter. Many can be freely downloaded from their Web sites

cited in the text. Readers can download one to experience how a

monitoring system works. Based on that, you can start with imple-

menting an OGSA compliant Grid monitoring system as proposed

in Figure 5.21.

5.9 KEY POINTS

• Monitoring is critical for a robust, effective and efficient Grid

environment.

• Monitoring data can be used to tune an environment’s perfor-

mance, detect faults and schedule jobs.

• The three fundamental components in a monitoring system

are sensors (producers), clients (consumers) and directory

services.

• A good monitoring system should potentially have a scalable

GMA-like architecture and support a variety of sensors, and for

analysis to provide a number of different views of the monitored

resources.

• With the introduction of OGSA, a monitoring system can be

implemented as a Grid Service in which monitoring data can be

exposed as SDEs that can be queried.

5.10 REFERENCES

[1] Global Grid Forum (GGF), Grid Monitoring Architecture (GMA) Working

Group, http://www-didc.lbl.gov/GGF-PERF/GMA-WG/.

[2] GMA White Paper, http://www-didc.lbl.gov/GGF-PERF/GMA-WG/.

[3] Grid Security Infrastructure (GSI) documentation, May 2004, http://

www-unix.globus.org/toolkit/docs/3.2/gsi/.

[4] Generic Security Services Application Programming Interface, June 2004,

http://www.faqs.org/rfcs/rfc1508.html.

[5] Autopilot, June 2003, http://vibes.cs.uiuc.edu/Software/Autopilot/

autopilot.htm.

[6] Vetter, J.S. and Reed, D.A., Real-time Performance Monitoring, Adaptive Control,
and Interactive Steering of Computational Grids, 14(4): 357–366, 2000.

5.10 REFERENCES 237

[7] Grid Application Development Software (GrADS), August 2003, http://

nhse2.cs.rice.edu/grads/.

[8] Vraalsen, F., Aydt, R.A., Mendes, C.L. and Reed, D.A., Performance Con-
tracts: Predicting and Monitoring Grid Application Behavior, GRID 2001 Pro-

ceedings of the Second International Workshop on Grid Computing, Denver,

CO. Lecture Notes in Computer Science, Springer-Verlag, November 2001,

pp. 154–165.

[9] SDDF, June 2004, http://www-pablo.cs.uiuc.edu/Project/SDDF/

SDDFOverview.htm.

[10] Shaffer, E., Reed, D.A., Whitmore, S. and Schaeffer, B., Virtue: Perfor-
mance Visualization of Parallel and Distributed Applications. Los Alamitos, CA,

USA, IEEE Computer Society Press, December 1999, ISSN 0018-9162, 32(12),

pp. 44–51.

[11] The Globus Alliance, March 2004, http://www.globus.org/.

[12] Pablo Project Software License Agreement, August 2002, http://

www.pablo.cs.uiuc.edu/Software/license.htm.

[13] Smith, W., A System for Monitoring and Management of Computational Grids,
International Conference on Parallel Processing (ICPP ’02), 18–21 August

2002, Vancouver, BC, Canada.

[14] Smith, W.W., Code: A Framework for Control and Observation in Dis-

tributed Environments, March 2004, http://www.nas.nasa.gov/Research/

Software/Open-Source/CODE/.

[15] NASA Ames Research Center, April 2004, http://www.arc.nasa.gov/.

[16] NASA Information Power Grid, April 2004, http://www.nas.nasa.gov/

About/IPG/ipg.html.

[17] NASA Open Source Agreement Version 1.0. May 2004, http://

opensource.arc.nasa.gov/agreement.jsp?id=9.

[18] Andreozzi, S., De Bortoli, N., Fantinel, S., Ghiselli, A., Tortone, G. and

Vistoli, C., GridICE: A Monitoring Service for the Grid, Proceedings of the 3rd

Cracow Grid Workshop, October 2003.

[19] Andreozzi, S., GridICE – The Eyes of the Grid. Technical Report, Instituto

Nazionale di Fisica Nucleare, 2004.

[20] GridICE: The Eyes of the Grid, February 2004, http://server11.infn.it/

gridice/.

[21] Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman, C., Grid Information
Services for Distributed Resource Sharing. 10th IEEE International Symposium

on High Performance Distributed Computing (HPDC-10 ’01), 7–9 August

2001, San Francisco, California.

[22] MDS2.4 Features in the Globus Toolkit v2.4. August 2003, http://

www.globus.org/mds/mds2/.

[23] Lemon: Fabric Monitoring Toolkit, February 2004, http://lemon.

web.cern.ch/ lemon/.

[24] INFN Grid, February 2004, http://server11.infn.it/grid/.

[25] DataTAG, February 2004, http://datatag.web.cern.ch/datatag/.

[26] LHC Computing Grid (LCG) project, February 2004, http://lcg.web.

cern.ch/LCG/.

[27] INFN Production Grid, February 2004, http://grid-it.cnaf.infn.it/.

[28] Nagios, June 2004, http://www.nagios.org.

238 GRID MONITORING

[29] Ganglia distributed monitoring and execution system, March 2004, http://

ganglia.sourceforge.net/.

[30] INFN Software License, July 2002, http://www.cnaf.infn.it/license.html.

[31] Grid Portals Information Repository (GPIR), February 2004, http://

www.tacc.utexas.edu/projects/gpir/.

[32] Gridport, February 2004, http://gridport.net/.

[33] NPACI Hotpage Grid Computing Portal, September 2003, http://

hotpage.npaci.edu/.

[34] JBoss, February 2004, http://www.jboss.org.

[35] PostgresSQL, February 2004, http://www.postgresql.org/.

[36] Baker, M.A. and Smith, G., GridRM: An Extensible Resource Management
System. Proceedings of IEEE International Conference on Cluster Comput-

ing (Cluster 2003) Hong Kong, IEEE Computer Society Press, 2003, ISBN

0-7695-2066-9, pp. 207, 215.

[37] GridRM, February 2004, http://gridrm.org.

[38] Wolski, R., Spring, N. and Hayes, J., The Network Weather Service: A Dis-

tributed Resource Performance Forecasting Service for Metacomputing.

Journal of Future Generation Computing Systems, 15(5–6): 757–768, October

1999, http://nws.cs.ucsb.edu/publications.html.

[39] DSG, June 2004, http://dsg.port.ac.uk.

[40] Baker, M.A. and Grove, M., jGMA: A Lightweight Implementation of the Grid
Monitoring Architecture. UKUUG LISA/Winter Conference, February 2004.

[41] jGMA: A Lightweight Implementation of the Grid Monitoring Architecture. May

2004, http://dsg.port.ac.uk/projects/jGMA/.

[42] The GNU General Public License (GPL), version 2, June 1991. February 2004,

http://www.opensource.org/licenses/gpl-license.php.

[43] Hawkeye: A Monitoring and Management Tool for Distributed Systems,

April 2004, http://www.cs.wisc.edu/condor/hawkeye/.

[44] Condor, April 2004, http://www.cs.wisc.edu/condor/.

[45] Classified Advertisements, November 2003, http://www.cs.wisc.edu/

condor/classad/.

[46] Tierney, B., Crowley, B., Gunter, D., Holding, M., Lee, J. and Thompson, M.

A Monitoring Sensor Management System for Grid Environments, High Perfor-

mance Distributed Computing (HPDC-9), Pittsburgh, Pennsylvania, August

2000, pp. 97–104.

[47] Java Agents for Monitoring and Management (JAMM), July 2000, http://

www-didc.lbl.gov/JAMM.

[48] The NetLogger Toolkit, April 2004, http://www-didc.lbl.gov/NetLogger/.

[49] The MATISSE Project, April 2000, http://www.cnri.net/matisse/.

[50] The Data Intensive Distributed Computing Research Group (DIDC),

February 2004, http://www-didc.lbl.gov/.

[51] Gunter, D., Tierney, B.L., Tull, C.E. and Virmani, V., On Demand Grid Appli-
cation Tuning and Debugging with the NetLogger Activation Service, 4th Interna-

tional Workshop on Grid Computing, 17 November 2003, Phoenix, Arizona.

[52] Universal Format for Logger Messages, June 2004, http://www.hsc.fr/

gulp/draft-abela-ulm-05.txt.

[53] Bonnassieux, F., Harakaly, R. and Primet, P., Automatic Services Discov-

ery, Monitoring and Visualization of Grid Environments: The Mapcenter

5.10 REFERENCES 239

Approach. Across Grid Conference, 13–14 February 2003, Santiago de

Compostela, Spain.

[54] Mapcenter, February 2004, http://mapcenter.in2p3.fr/.

[55] Bonnassieux, F., Harakaly, R. and Primet, P., Mapcenter: An Open Grid Status
Visualization Tool. Proceedings of ISCA 15th International Conference on

Parallel and Distributed Computing Systems, Louisville, Kentucky, USA,

19–21 September 2002.

[56] Bonnassieux, F., MapCenter v2.3.0 Administration Guide: Installation and

Configuration Instructions, Technical Report, European Data Grid, February

2004.

[57] The datagrid project. February 2004, http://eu-datagrid.web.cern.ch/

eudatagrid/.

[58] DataTAG, June 2004, http://datatag.web.cern.ch/datatag/.

[59] The CrossGrid project, February 2004, http://www.eu-crossgrid.org/.

[60] PlanetLab, February 2004, http://www.planet-lab.org/.

[61] L-Bone, February 2004, http://loci.cs.utk.edu/lbone/.

[62] Atlas, February 2004, http://atlas.web.cern.ch/Atlas/GROUPS/

SOFTWARE/OO/grid/.

[63] Information services in the Globus Toolkit 3.0 release, August 2003,

http://www.globus.org/mds/.

[64] Foster, I., Kesselman, C., Nick, J. and Tuecke, S., The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration,

2002.

[65] Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C.,

Maquire, T., Sandholm, T., Snelling, D. and Vanderbilt, P., Open Grid Ser-

vices Infrastructure (OGSI) version 1.0. Technical Report, Global Grid Forum,

June 2003.

[66] MDS2.4 features in the Globus Toolkit release 2.4. August 2003,

http://www.globus.org/mds/mds2/.

[67] Gridlabwork package 11:Mercury, February 2004, http://www.gridlab.org/

WorkPackages/wp-11/.

[68] Balaton, Z. and Gombas, G., Detailed Architecture Specification. Technical

Report, GridLab Project, Information Society Technologies, September 2002.

[69] Balaton, Z. and Gombas, G., Extended Architecture Specification. Technical

Report D11.4, GridLab WP11, Information Society Technologies, 2004.

[70] Gridlab: A Grid Application Toolkit and Testbed, February 2004,

http://www.gridlab.org/.

[71] Ludwig, T., On-line Monitoring Interface Specification 2.0. August 1998,

http://wwwbode.cs.tum.edu/omis/.

[72] RFC 1014 – XDR: External Data Representation Standard, June 1987, http://

www.faqs.org/rfcs/rfc1014.html.

[73] The Network Weather Service, July 2003, http://nws.cs.ucsb.edu/.

[74] NSF Middleware Initiative, February 2004, http://www.nsfmiddleware.org.

[75] NPACI Grid, August 2003, http://npacigrid.npaci.edu/.

[76] Cooke, A., Gray, A.J.G., Ma, L., Nutt, W., Magowan, J., Oevers, M., Taylor, P.,

Byrom, R., Field, L., Hicks, S., Leake, J., Soni, M., Wilson, A., Cordenonsi, R.,

Cornwall, L., Djaoui, A., Fisher, S., Podhorszki, N., Coghlan, B.A., Kenny, S.

240 GRID MONITORING

and O’Callaghan, D., R-GMA: An Information Integration System for Grid Mon-
itoring. Robert Meersman, Zahir Tari and Douglas C. Schmidt (eds), COOPIS

2003, Lecture Notes in Computer Science, Springer, 2003, 2888, pp. 462–481.

[77] R-GMA: Relational Grid Monitoring Architecture, December 2003, http://

rgma.org.

[78] GLUE, June 2004, http://www.cnaf.infn.it/∼sergio/datatag/glue/.

[79] DataGrid InformationandMonitoringServicesArchitecture:Design,Require-

ments, and Evaluation Criteria. Technical Report DataGrid-03-NOT-???-x-y,

Data Grid, January 2004, http://hepunx.rl.ac.uk/edg/wp3/documentation/

doc/arch.pdf.

[80] EGEE, June 2004, http://public.eu-egee.org/.

[81] visPerf monitor, February 2004, http://icl.cs.utk.edu/netsolvedev/monitor/.

[82] NetSolve, June 2004, http://icl.cs.utk.edu/netsolve/.

[83] Netsolve/gridsolve-2.0, March 2004, http://icl.cs.utk.edu/netsolve/.

[84] Godard, S., Sysstat: System performance tools for Linux OS, February 2004,

http://perso.wanadoo.fr/sebastien.godard/.

[85] RRDTool, June 2004, http://www.caida.org/tools/utilities/rrdtool/.

[86] GridMon, June 2004, http://gridmon.dl.ac.uk/.

[87] Iperf, June 2004, http://dast.nlanr.net/Projects/Iperf/.

[88] Balaton, Z., Kacsuk, P., Podhorszki, N. and Vajda, F., From Cluster Mon-
itoring to Grid Monitoring based on GRM, Proceedings of EuroPar 2001,

Manchester, UK.

[89] Kacsuk, P., de Kergommeaux, J.C., Maillet, É. and Vincent, J.M., The

Tape/PVMMonitor and the PROVE Visualisation Tool, In: Parallel Program

Development for Cluster Computing, Methodology, Tools and Integrated

Environments (eds: Cunha, C., Kacsuk, P. and Winter, S.C.), Nova Science

Publishers, Inc., pp. 291–303, 2001.

[90] Truong, H.-L. and Fahringer, T., SCALEA-G: A Unified Monitoring and

Performance Analysis System for the Grid, 2nd European Across Grids Con-

ference, Nicosia, Cyprus, January 2004.

Part Three

Job Management
and User Interaction

6
Grid Scheduling and
Resource Management

LEARNING OBJECTIVES

In this chapter, we will study Grid scheduling and resource man-

agement, which play a critical role in building an effective and

efficient Grid environment. From this chapter, you will learn:

• What a scheduling system is about and how it works.

• Scheduling paradigms.

• Condor, SGE, PBS and LSF.

• Grid scheduling with quality-of-services (QoS) support, e.g.

AppLeS, Nimrod/G, Grid rescheduling.

• Grid scheduling optimization with heuristics.

CHAPTER OUTLINE

6.1 Introduction

6.2 Scheduling Paradigms

6.3 How Scheduling Works

6.4 A Review of Condor, SGE, PBS and LSF

The Grid: Core Technologies Maozhen Li and Mark Baker

© 2005 John Wiley & Sons, Ltd

244 GRID SCHEDULING AND RESOURCE MANAGEMENT

6.5 Grid Scheduling with QoS

6.6 Chapter Summary

6.7 Further Reading and Testing

6.1 INTRODUCTION

The Grid is emerging as a new paradigm for solving problems in
science, engineering, industry and commerce. Increasing numbers
of applications are utilizing the Grid infrastructure to meet their
computational, storage and other needs. A single site can simply
no longer meet all the resource needs of today’s demanding appli-
cations, and using distributed resources can bring many benefits
to application users. The deployment of Grid systems involves the
efficient management of heterogeneous, geographically distributed
and dynamically available resources. However, the effectiveness of
a Grid environment is largely dependent on the effectiveness and
efficiency of its schedulers, which act as localized resource brokers.
Figure 6.1 shows that user tasks, for example, can be submitted via
Globus to a range of resource management and job scheduling sys-
tems, such asCondor [1], the SunGridEngine (SGE) [2], the Portable
Batch System (PBS) [3] and the Load Sharing Facility (LSF) [4].
Grid scheduling is defined as the process of mapping Grid jobs

to resources over multiple administrative domains. A Grid job can

Figure 6.1 Jobs, via Globus, can be submitted to systems managed by
Condor, SGE, PBS and LSF

6.2 SCHEDULING PARADIGMS 245

be split into many small tasks. The scheduler has the responsibility

of selecting resources and scheduling jobs in such a way that the

user and application requirements are met, in terms of overall

execution time (throughput) and cost of the resources utilized.

This chapter is organized as follows. In Section 6.2, we present

three scheduling paradigms – centralized, hierarchical and decen-

tralized. In Section 6.3, we describe the steps involved in the

scheduling process. In Section 6.4, we give a review of the current

widely used resource management and job scheduling such as

Condor and SGE. In Section 6.5, we discuss some issues related to

scheduling with QoS. In Section 6.6, we conclude the chapter and

in Section 6.7, provide references for further reading and testing.

6.2 SCHEDULING PARADIGMS

Hamscher et al. [5] present three scheduling paradigms – central-

ized, hierarchical and distributed. In this section, we give a brief

review of the scheduling paradigms. A performance evaluation of

the three scheduling paradigms can also be found in Hamscher

et al. [5].

6.2.1 Centralized scheduling

In a centralized scheduling environment, a central machine (node)

acts as a resource manager to schedule jobs to all the surrounding

nodes that are part of the environment. This scheduling paradigm

is often used in situations like a computing centre where resources

have similar characteristics and usage policies. Figure 6.2 shows

the architecture of centralized scheduling.

In this scenario, jobs are first submitted to the central scheduler,

which then dispatches the jobs to the appropriate nodes. Those

jobs that cannot be started on a node are normally stored in a

central job queue for a later start.

One advantage of a centralized scheduling system is that the

scheduler may produce better scheduling decisions because it

has all necessary, and up-to-date, information about the available

resources. However, centralized scheduling obviously does not

scale well with the increasing size of the environment that it man-

ages. The scheduler itself may well become a bottleneck, and if

246 GRID SCHEDULING AND RESOURCE MANAGEMENT

Figure 6.2 Centralized scheduling

there is a problem with the hardware or software of the sched-
uler’s server, i.e. a failure, it presents a single point of failure in
the environment.

6.2.2 Distributed scheduling

In this paradigm, there is no central scheduler responsible for man-
aging all the jobs. Instead, distributed scheduling involves multiple
localized schedulers, which interact with each other in order to dis-
patch jobs to the participating nodes. There are two mechanisms
for a scheduler to communicate with other schedulers – direct or
indirect communication.
Distributed scheduling overcomes scalability problems, which

are incurred in the centralized paradigm; in addition it can offer
better fault tolerance and reliability. However, the lack of a global
scheduler, which has all the necessary information on available
resource, usually leads to sub-optimal scheduling decisions.

6.2.2.1 Direct communication

In this scenario, each local scheduler can directly communicate
with other schedulers for job dispatching. Each scheduler has a
list of remote schedulers that they can interact with, or there may
exist a central directory that maintains all the information related
to each scheduler. Figure 6.3 shows the architecture of direct com-
munication in the distributed scheduling paradigm.
If a job cannot be dispatched to its local resources, its scheduler

will communicate with other remote schedulers to find resources

6.2 SCHEDULING PARADIGMS 247

Figure 6.3 Direct communications in distributed scheduling

appropriate and available for executing its job. Each scheduler may

maintain a local job queue(s) for job management.

6.2.2.2 Communication via a central job pool

In this scenario, jobs that cannot be executed immediately are sent

to a central job pool. Compared with direct communication, the

local schedulers can potentially choose suitable jobs to schedule

on their resources. Policies are required so that all the jobs in the

pool are executed at some time. Figure 6.4 shows the architecture

of using a job pool for distributed scheduling.

Figure 6.4 Distributed scheduling with a job pool

248 GRID SCHEDULING AND RESOURCE MANAGEMENT

Figure 6.5 Hierarchical scheduling

6.2.3 Hierarchical scheduling

In hierarchical scheduling, a centralized scheduler interacts with

local schedulers for job submission. The centralized scheduler is a

kind of a meta-scheduler that dispatches submitted jobs to local

schedulers. Figure 6.5 shows the architecture of this paradigm.

Similar to the centralized scheduling paradigm, hierarchical

scheduling can have scalability and communication bottlenecks.

However, compared with centralized scheduling, one advantage

of hierarchical scheduling is that the global scheduler and local

scheduler can have different policies in scheduling jobs.

6.3 HOW SCHEDULING WORKS

Grid scheduling involves four main stages: resource discovery,

resource selection, schedule generation and job execution.

6.3.1 Resource discovery

The goal of resource discovery is to identify a list of authenticated

resources that are available for job submission. In order to cope

with the dynamic nature of the Grid, a scheduler needs to have

6.3 HOW SCHEDULING WORKS 249

some way of incorporating dynamic state information about the
available resources into its decision-making process.
This decision-making process is somewhat analogous to an

ordinary compiler for a single processor machine. The compiler
needs to know how many registers and functional units exist and
whether or not they are available or “busy”. It should also be
aware of how much memory it has to work with, what kind of
cache configuration has been implemented and the various com-
munication latencies involved in accessing these resources. It is
through this information that a compiler can effectively schedule
instructions to minimize resource idle time. Similarly, a scheduler
should always know what resources it can access, how busy they
are, how long it takes to communicate with them and how long it
takes for them to communicate with each other. With this informa-
tion, the scheduler optimizes the scheduling of jobs to make more
efficient and effective use of the available resources.
A Grid environment typically uses a pull model, a push model

or a push–pull model for resource discovery. The outcome of the
resource discovery process is the identity of resources available
(Ravailable) in a Grid environment for job submission and execution.

6.3.1.1 The pull model

In this model, a single daemon associated with the scheduler
can query Grid resources and collect state information such as
CPU loads or the available memory. The pull model for gather-
ing resource information incurs relatively small communication
overhead, but unless it requests resource information frequently,
it tends to provide fairly stale information which is likely to be
constantly out-of-date, and potentially misleading. In centralized
scheduling, the resource discovery/query process could be rather
intrusive and begin to take significant amounts of time as the envi-
ronment being monitored gets larger and larger. Figure 6.6 shows
the architecture of the model.

6.3.1.2 The push model

In this model, each resource in the environment has a daemon for
gathering local state information, which will be sent to a central-
ized scheduler that maintains a database to record each resource’s

250 GRID SCHEDULING AND RESOURCE MANAGEMENT

Figure 6.6 The pull model for resource discovery

activity. If the updates are frequent, an accurate view of the system

state can be maintained over time; obviously, frequent updates

to the database are intrusive and consume network bandwidth.

Figure 6.7 shows the architecture of the push model.

6.3.1.3 The push–pull model

The push–pull model lies somewhere between the pull model and

the push model. Each resource in the environment runs a dae-

mon that collects state information. Instead of directly sending this

information to a central scheduler, there exist some intermediate

nodes running daemons that aggregate state information from dif-

ferent sub-resources that respond to queries from the scheduler.

Figure 6.7 The push model for resource discovery

6.3 HOW SCHEDULING WORKS 251

Figure 6.8 The push–pull model for resource discovery

A challenge of this model is to find out what information is most

useful, how often it should be collected and how long this infor-

mation should be kept around. Figure 6.8 shows the architecture

of the push–pull model.

6.3.2 Resource selection

Once the list of possible target resources is known, the second

phase of the scheduling process is to select those resources that best

suit the constraints and conditions imposed by the user, such as

CPU usage, RAM available or disk storage. The result of resource

selection is to identify a resource list �Rselected� in which all resources

can meet the minimum requirements for a submitted job or a job

list. The relationship between resources available �Ravailable� and

resources selected �Rselected� is:

Rselected ⊆ Ravailable

6.3.3 Schedule generation

The generation of schedules involves two steps, selecting jobs and

producing resource selection strategies.

252 GRID SCHEDULING AND RESOURCE MANAGEMENT

6.3.3.1 Job selection

The resource selection process is used to choose resource(s) from

the resource list �Rselected� for a given job. Since all resources in

the list Rselected could meet the minimum requirements imposed by

the job, an algorithm is needed to choose the best resource(s) to

execute the job. Although random selection is a choice, it is not an

ideal resource selection policy. The resource selection algorithm

should take into account the current state of resources and choose

the best one based on a quantitative evaluation. A resource selec-

tion algorithm that only takes CPU and RAM into account could

be designed as follows:

Evaluationresource =
EvaluationCPU+EvaluationRAM

WCPU+WRAM

(6.1)

EvaluationCPU = W ∗
CPU�1−CPUload�

∗CPUspeed

CPUmin

(6.2)

EvaluationRAM = W ∗
RAM�1−RAMusage�

∗RAMsize

RAMmin

(6.3)

where WCPU – the weight allocated to CPU speed; CPUload – the

current CPU load; CPUspeed – real CPU speed; CPUmin – minimum

CPU speed; WRAM – the weight allocated to RAM; RAMusage – the

current RAM usage; RAMsize – original RAM size; and RAMmin –

minimum RAM size.

Nowwe give an example to explain the algorithm used to choose

one resource from three possible candidates. The assumed param-

eters associated with each resource are given in Table 6.1.

Let us suppose that the total weighting used in the algorithm

is 10, where the CPU weight is 6 and the RAM weight is 4. The

minimum CPU speed is 1 GHz and minimum RAM size is 256 MB.

Table 6.1 The resource information matrix

CPU speed

(GHz)

CPU load

(%)

RAM size

(MB)

RAM usage

(%)

Resource1 1.8 50 256 50

Resource2 2.6 70 512 60

Resource3 1.2 40 512 30

6.3 HOW SCHEDULING WORKS 253

Then, evaluation values for resources can be calculated using the
three formulas:

Evaluationresource1
= 5�4+2

10
= 0�74

Evaluationresource2
= 4�68+3�2

10
= 0�788

Evaluationresource3
= 4�32+5�6

10
= 0�992

From the results we know Resource3 is the best choice for the
submitted job.

6.3.3.2 Resource selection

The goal of job selection is to select a job from a job queue for
execution. Four strategies that can be used to select a job are given
below.

• First come first serve: The scheduler selects jobs for execution in
the order of their submissions. If there is no resource available
for the selected job, the scheduler will wait until the job can
be started. The other jobs in the job queue have to wait. There
are two main drawbacks with this type of job selection. It may
waste resources when, for example, the job selected needs more
resources to be available before it can start, which results in
a long waiting time. And jobs with high priorities cannot get
dispatched immediately if a job with a low priority needs more
time to complete.

• Random selection: The next job to be scheduled is randomly
selected from the job queue. Apart from the two drawbacks with
the first-come-first-serve strategy, jobs selection is not fair and
job submitted earlier may not be scheduled until much later.

• Priority-based selection: Jobs submitted to the scheduler have dif-
ferent priorities. The next job to be scheduled is the job with the
highest priority in the job queue. A job priority can be set when
the job is submitted. One drawback of this strategy is that it is
hard to set an optimal criterion for a job priority. A job with the
highest priority may need more resources than available and
may also result in a long waiting time and inability to make
good use of the available resources.

254 GRID SCHEDULING AND RESOURCE MANAGEMENT

• Backfilling selection [6]: The backfilling strategy requires knowl-
edge of the expected execution time of a job to be scheduled.
If the next job in the job queue cannot be started due to a lack
of available resources, backfilling tries to find another job in the
queue that can use the idle resources.

6.3.4 Job execution

Once a job and a resource are selected, the next step is to submit
the job to the resource for execution. Job execution may be as easy
as running a single command or as complicated as running a series
of scripts that may, or may not, include set up or staging.

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF

In this section, we give a review on Condor/Condor-G, the SGE,
PBS and LSF. The four systems have been widely used for Grid-
based resource management and job scheduling.

6.4.1 Condor

Condor is a resource management and job scheduling system, a
research project from University of Wisconsin–Madison. In this
section we study Condor based on its latest version, Condor 6.6.3.

6.4.1.1 Condor platforms

Condor 6.6.3 supports a variety of systems as follows:

• HP systems running HPUX10.20

• Sun SPARC systems running Solaris 2.6/2.7/8/9

• SGI systems running IRIX 6.5 (not fully supported)

• Intel x86 systems running Redhat Linux 7.1/7.2/7.3/8.0/9.0, Win-
dows NT4.0, XP and 2003 Server (the Windows systems are not
fully supported)

• ALPHA systems running Digital UNIX 4.0, Redhat Linux
7.1/7.2/7.3 and Tru64 5.1 (not fully supported)

TE
AM
 F
LY

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 255

• PowerPC systems running Macintosh OS X and AIX 5.2L (not
fully supported)

• Itanium systems running Redhat 7.1/7.2/7.3 (not fully sup-
ported)

• Windows systems (not fully supported).

UNIX machines and Windows machines running Condor can
co-exist in the same Condor pool without any problems, e.g. a
job submitted from a Windows machine can run on a Windows
machine or a UNIXmachine, a job submitted from a UNIXmachine
can run on a UNIX or a Windows machine. There is absolutely
no need to run more than one Condor central manager, even if
you have both UNIX and Windows machines. The Condor central
manager itself can run on either UNIX or Windows machines.

6.4.1.2 The architecture of a Condor pool

Resources in Condor are normally organized in the form of Condor
pools. A pool is an administrated domain of hosts, not specifically
dedicated to a Condor environment. A Condor system can have
multiple pools of which each follows a flat machine organization.
As shown in Figure 6.9, a Condor pool normally has one Cen-

tral Manager (master host) and an arbitrary number of Execution
(worker) hosts. A Condor Execution host can be configured as a
job Execution host or a job Submission host or both. The Central
Manager host is used to manage resources and jobs in a Condor

Figure 6.9 The architecture of a Condor pool

256 GRID SCHEDULING AND RESOURCE MANAGEMENT

pool. Host machines in a Condor pool may not be dedicated to

Condor.

If the Central Manager host in a Condor pool crashes, jobs that

are already running will continue to run unaffected. Queued jobs

will remain in the queue unharmed, but they cannot begin running

until the Central Manager host is restarted.

6.4.1.3 Daemons in a Condor pool

A daemon is a program that runs in the background once started.

To configure a Condor pool, the following Condor daemons need

to be started. Figure 6.10 shows the interactions between Condor

daemons.

condor_master
The condor_master daemon runs on each host in a Condor pool to

keep all the other daemons running in the pool. It spawns daemons

such as condor_startd and condor_schedd, and periodically checks if

there are new binaries installed for any of these daemons. If so, the

condor_master will restart the affected daemons. In addition, if any

daemon crashes, the master will send an email to the administrator

Figure 6.10 Daemons in a Condor pool

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 257

of the Condor pool and restart the daemon. The condor_master
also supports various administrative commands, such as starting,

stopping or reconfiguring daemons remotely.

condor_startd
The condor_startd daemon runs on each host in a Condor pool. It

advertises information related to the node resources to the con-
dor_collector daemons running on the Master host for matching

pending resource requests. This daemon is also responsible for

enforcing the policies that resource owners require, which deter-

mine under what conditions remote jobs will be started, sus-

pended, resumed, vacated or killed. When the condor_startd is

ready to execute a Condor job on an Execution host, it spawns the

condor_starter.

condor_starter
The condor_starter daemon only runs on Execution hosts. It is the

condor_starter that actually spawns a remote Condor job on a given

host in a Condor pool. The condor_starter daemon sets up the

execution environment and monitors the job once it is running.

When a job completes, the condor_starter sends back job status

information to the job Submission node and exits.

condor_schedd
The condor_schedd daemon running on each host in a Condor pool

deals with resource requests. User jobs submitted to a node are

stored in a local job queue managed by the condor_schedd daemon.

Condor command-line tools such as condor_submit, condor_q or

condor_rm interact with the condor_schedd daemon to allow users

to submit a job into a job queue, and to view and manipulate the

job queue. If the condor_schedd is down on a given machine, none

of these commands will work.

The condor_schedd advertises the job requests with resource

requirements in its local job queue to the condor_collector daemon

running on the Master hosts. Once a job request from a con-
dor_schedd on a Submission host has been matched with a given

resource on an Execution host, the condor_schedd on the Submission

host will spawn a condor_shadow daemon to serve that particular

job request.

condor_shadow
The condor_shadow daemon only runs on Submission hosts in

a Condor pool and acts as the resource manager for user job

258 GRID SCHEDULING AND RESOURCE MANAGEMENT

submission requests. The condor_shadow daemon performs remote
system calls allowing jobs submitted to Condor to be checkpointed.
Any system call performed on a remote Execution host is sent over
the network, back to the condor_shadow daemon on the Submission
host, and the results are also sent back to the Submission host. In
addition, the condor_shadow daemon is responsible for making deci-
sions about a user job submission request, such as where check-
point files should be stored or how certain files should be accessed.

condor_collector
The condor_collector daemon only runs on the Central Manager
host. This daemon interacts with condor_startd and condor_schedd
daemons running on other hosts to collect all the information
about the status of a Condor pool such as job requests and
resources available. The condor_status command can be used to
query the condor_collector daemon for specific status information
about a Condor pool.

condor_negotiator
The condor_negotiator daemon only runs on the Central Manager
host and is responsible for matching a resource with a specific job
request within a Condor pool. Periodically, the condor_negotiator
daemon starts a negotiation cycle, where it queries the con-
dor_collector daemon for the current state of all the resources
available in the pool. It interacts with each condor_schedd daemon
running on a Submission host that has resource requests in a
priority order, and tries to match available resources with those
requests. If a user with a higher priority has jobs that are waiting
to run, and another user claims resources with a lower priority,
the condor_negotiator daemon can preempt a resource and match
it with the user job request with a higher priority.

condor_kbdd
The condor_kbdd daemon only runs on an Execution host installing
Digital Unix or IRIX. On these platforms, the condor_startd daemon
cannot determine console (keyboard or mouse) activity directly
from the operating system. The condor_kbdd daemon connects to
an X Server and periodically checks if there is any user activity. If
so, the condor_kbdd daemon sends a command to the condor_startd
daemon running on the same host. In this way, the condor_startd
daemon knows the machine owner is using the machine again
and it can perform whatever actions are necessary, given the
policy it has been configured to enforce. Therefore, Condor can

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 259

be used in a non-dedicated computing environment to scavenge

idle computing resources.

condor_ckpt_server
The condor_ckpt_server daemon runs on a checkpoint server, which

is an Execution host, to store and retrieve checkpointed files. If a

checkpoint server in a Condor pool is down, Condor will revert

to sending the checkpointed files for a given job back to the job

Submission host.

6.4.1.4 Job life cycle in Condor

A job submitted to a Condor pool will go through the following

steps as shown in Figure 6.11.

1. Job submission: A job is submitted by a Submission host with

condor_submit command (Step 1).

2. Job request advertising: Once it receives a job request, the con-
dor_schedd daemon on the Submission host advertises the

request to the condor_collector daemon running on the Central

Manager host (Step 2).

3. Resource advertising: Each condor_startd daemon running on an

Execution host advertises resources available on the host to the

Figure 6.11 Job life cycle in Condor

260 GRID SCHEDULING AND RESOURCE MANAGEMENT

condor_collector daemon running on the Central Manager host

(Step 3).

4. Resource matching: The condor_negotiator daemon running on the

Central Manager host periodically queries the condor_collector
daemon (Step 4) to match a resource for a user job request. It

then informs the condor_schedd daemon running on the Submis-

sion host of the matched Execution host (Step 5).

5. Job execution: The condor_schedd daemon running on the job Sub-

mission host interacts with the condor_startd daemon running

on the matched Execution host (Step 6), which will spawn a

condor_starter daemon (Step 7). The condor_schedd daemon on

the Submission host spawns a condor_shadow daemon (Step 8)

to interact with the condor_starter daemon for job execution

(Step 9). The condor_starter daemon running on the matched

Execution host receives a user job to execute (Step 10).

6. Return output: When a job is completed, the results will be sent

back to the Submission host by the interaction between the

condor_shadow daemon running on the Submission host and the

condor_starter daemon running on the matched Execution host

(Step 11).

6.4.1.5 Security management in Condor

Condor provides strong support for authentication, encryption,

integrity assurance, as well as authorization. A Condor system

administrator using configuration macros enables most of these

security features.

When Condor is installed, there is no authentication, encryption,

integrity checks or authorization checks in the default configura-

tion settings. This allows newer versions of Condor with secu-

rity features to work or interact with previous versions without

security support. An administrator must modify the configuration

settings to enable the security features.

Authorization
Authorization protects resource usage by granting or denying

access requests made to the resources. It defines who is allowed to

do what. Authorization is granted based on specified access levels,

e.g. if you want to view the status of a Condor pool, you need

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 261

READ permission; if you want to submit a job, you need WRITE
permission.

Authentication
Authentication provides an assurance of an identity. Through con-
figuration macros, both a client and a daemon can specify whether
authentication is required. For example, if the macro defined in
the configuration file for a daemon is

SEC_WRITE_AUTHENTICATION = REQUIRED

then the daemon must authenticate the client for any commu-
nication that requires the WRITE access level. If the daemon’s
configuration contains

SEC_DEFAULT_AUTHENTICATION = REQUIRED

and does not contain any other security configuration for
AUTHENTICATION, then this default configuration defines the
daemon’s needs for authentication over all access levels.
If no authentication methods are specified in the configuration,

Condor uses a default authentication such as Globus GSI authenti-
cation with x.509 certificates, Kerberos authentication or file system
authentication as we have discussed in Chapter 4.

Encryption
Encryption provides privacy support between two communicat-
ing parties. Through configuration macros, both a client and a
daemon can specify whether encryption is required for further
communication.

Integrity checks
An integrity check assures that the messages between communi-
cating parties have not been tampered with. Any change, such as
addition, modification or deletion, can be detected. Through con-
figuration macros, both a client and a daemon can specify whether
an integrity check is required of further communication.

6.4.1.6 Job management in Condor

Condor manages jobs in the following aspects.

Job
A Condor job is a work unit submitted to a Condor pool for
execution.

262 GRID SCHEDULING AND RESOURCE MANAGEMENT

Job types
Jobs that can be managed by Condor are executable sequential or

parallel codes, using, for example, PVM or MPI. A job submission

may involve a job that runs over a long period, a job that needs

to run many times or a job that needs many machines to run in

parallel.

Queue
Each Submission host has a job queue maintained by the con-
dor_schedd daemon running on the host. A job in a queue can be

removed and placed on hold.

Job status
A job can have one of the following status:

• Idle: There is no job activity.

• Busy: A job is busy running.

• Suspended: A job is currently suspended.

• Vacating: A job is currently checkpointing.

• Killing: A job is currently being killed.

• Benchmarking: The condor_startd is running benchmarks.

Job run-time environments
The Condor universe specifies a Condor execution environment.

There are seven universes in Condor 6.6.3 as described below.

• The default universe is the Standard Universe (except where

the configuration variable DEFAULT_UNIVERSE defines it

otherwise), and tells Condor that this job has been re-linked

via condor_compile with Condor libraries and therefore supports

checkpointing and remote system calls.

• The Vanilla Universe is an execution environment for jobs which

have not been linked with Condor libraries; and it is used to

submit shell scripts to Condor.

• The PVMUniverse is used for a parallel job written with PVM 3.4.

• The Globus Universe is intended to provide the standard Condor

interface to users who wish to start Globus jobs from Condor.

Each job queued in the job submission file is translated into

the Globus Resource Specification Language (RSL) and subse-

quently submitted to Globus via the Globus GRAM protocol.

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 263

• The MPI Universe is used for MPI jobs written with the MPICH

package.

• The Java Universe is used for programs written in Java.

• The Scheduler Universe allows a Condor job to be executed

on the host where the job is submitted. The job does not need

matchmaking for a host and it will never be preempted.

Job submission with a shared file system
If Vanilla, Java or MPI jobs are submitted without using the file

transfer mechanism, Condormust use a shared file system to access

input and output files. In this case, the job must be able to access

the data files from any machine on which it could potentially run.

Job submission without a shared file system
Condor also works well without a shared file system. A user

can use the file transfer mechanism in Condor when submitting

jobs. Condor will transfer any files needed by a job from the host

machine where the job is submitted into a temporary working

directory on the machine where the job is to be executed. Con-

dor executes the job and transfers output back to the Submission

machine.

The user specifies which files to transfer, and at what point the

output files should be copied back to the Submission host. This

specification is done within the job’s submission description file.

The default behavior of the file transfer mechanism varies across

the different Condor universes, which have been discussed above

and it differs between UNIX and Windows systems.

Job priority
Job priorities allow the assignment of a priority level to each sub-

mitted Condor job in order to control the order of execution. The

priority of a Condor job can be changed.

Chirp I/O
The Chirp I/O facility in Condor provides a sophisticated

I/O functionality. It has two advantages over simple whole-file

transfers.

• First, the use of input files is done at run time rather than sub-

mission time.

• Second, a part of a file can be transferred instead of transferring

the whole file.

264 GRID SCHEDULING AND RESOURCE MANAGEMENT

Job flow management
A Condor job can have many tasks of which each task is an exe-
cutable code. Condor uses a Directed Acyclic Graph (DAG) to rep-
resent a set of tasks in a job submission, where the input/output,
or execution of one or more tasks is dependent on one or more
other tasks. The tasks are nodes (vertices) in the graph, and the
edges (arcs) identify the dependencies of the tasks. Condor finds
the Execution hosts for the execution of the tasks involved, but it
does not schedule the tasks in terms of dependencies.
The Directed Acyclic Graph Manager (DAGMan) [7] is a meta-

scheduler for Condor jobs. DAGMan submits jobs to Condor in an
order represented by a DAG and processes the results. An input
file is used to describe the dependencies of the tasks involved in
the DAG, and each task in the DAG also has its own description
file.

Job monitoring
Once submitted, the status of a Condor job can be monitored using
condor_q command. In the case of DAG, the progress of the DAG
can also be monitored by looking at the log file(s), or by using
condor_q–dag.

Job recovery: The rescue DAG
DAGMan can help with the resubmission of uncompleted portions
of a DAG when one or more nodes fail. If any node in the DAG
fails, the remainder of the DAG is continued until no more forward
progress can be made based on the DAG’s dependencies. When
a node in the DAG fails, DAGMan automatically produces a file
called a Rescue DAG, which is a DAG input file whose function-
ality is the same as the original DAG file. The Rescue DAG file
additionally contains indication of successfully completed nodes
using the DONE option. If the DAG is re-submitted using this
Rescue DAG input file, the nodes marked as completed will not
be re-executed.

Job checkpointing mechanism
Checkpointing is normally used in a Condor job that needs a long
time to complete. It takes a snapshot of the current state of a job
in such a way that the job can be restarted from that checkpointed
state at a later time.
Checkpointing gives the Condor scheduler the freedom to recon-

sider scheduling decisions through preemptive-resume schedul-
ing. If the scheduler decides to no longer allocate a host to a

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 265

job, e.g. when the owner of that host starts using the host, it can

checkpoint the job and preempt it without losing the work the

job has already accomplished. The job can be resumed later when

the scheduler allocates it a new host. Additionally, periodic check-

pointing provides fault tolerance in Condor.

Computing On Demand
Computing On Demand (COD) extends Condor’s high throughput

computing abilities to include a method for running short-term

jobs on available resources immediately.

COD extends Condor’s job management to include interactive,

computation-intensive jobs, giving these jobs immediate access to

the computing power they need over a relatively short period

of time. COD provides computing power on demand, switching

predefined resources from working on Condor jobs to working on

the COD jobs. These COD jobs cannot use the batch scheduling

functionality of Condor since the COD jobs require interactive

response time.

Flocking
Flocking means that a Condor job submitted in a Condor pool

can be executed in another Condor pool. Via configuration, the

condor_schedd daemon running on Submission hosts can implement

job flocking.

6.4.1.7 Resource management in Condor

Condor manages resources in a Condor pool in the following

aspects.

Tracking resource usage
The condor_startd daemon on each host reports to the con-
dor_collector daemon on the Central Manager host about the

resources available on that host.

User priority
Condor hosts are allocated to users based upon a user’s priority.

A lower numerical value for user priority means higher priority,

so a user with priority 5 will get more resources than a user with

priority 50.

266 GRID SCHEDULING AND RESOURCE MANAGEMENT

6.4.1.8 Job scheduling policies in Condor

Job scheduling in a Condor pool is not strictly based on a first-

come-first-server selection policy. Rather, to keep large jobs from

draining the pool of resources, Condor uses a unique up-down

algorithm [8] that prioritizes jobs inversely to the number of cycles

required to run the job. Condor supports the following policies in

scheduling jobs.

• First come first serve: This is the default scheduling policy.

• Preemptive scheduling: Preemptive policy lets a pending high-

priority job take resources away from a running job of lower

priority.

• Dedicated scheduling: Dedicated scheduling means that jobs

scheduled to dedicated resources cannot be preempted.

6.4.1.9 Resource matching in Condor

Resource matching [9] is used to match an Execution host to run

a selected job or jobs. The condor_collector daemon running on the

Central Manager host receives job request advertisements from the

condor_schedd daemon running on a Submission host and resource

availability advertisements from the condor_startd daemon running

on an Execution host. A resource match is performed by the con-
dor_negotiator daemon on the Central Manager host by selecting

a resource based on job requirements. Both job request adver-

tisements and resource advertisements are described in Condor

Classified Advertisement (ClassAd) language, a mechanism for

representing the characteristics and constraints of hosts and jobs

in the Condor system.

A ClassAd is a set of uniquely named expressions. Each named

expression is called an attribute. ClassAds use a semi-structured

data model for resource descriptions. Thus, no specific schema is

required by the matchmaker, allowing it to work naturally in a

heterogeneous environment.

The ClassAd language includes a query language, allowing

advertising agents such as the condor_startd and condor_schedd dae-

mons to specify the constraints in matching resource offers and

user job requests. Figure 6.12 shows an example of a ClassAd

job request advertisement and a ClassAd resource advertisement.

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 267

Job ClassAd Host ClassAd

� �
MyType=“job” MyType = “Machine”
TargetType=“Machine” TargetType = “Job”
Requirements= Machine = “s140n209.brunel.ac.uk”
((other.Arch == “INTEL”&& Arch = “INTEL”
other OpSys == “LINUX”)&& OpSys = “LINUX”
Other.Disk>my.DiskUsage) Disk = 35882
Rank=(Memory*10000)+Kflops KeyboardIdle = 173
CMD=“/home/eestmml/bin/test-exe LoadAvg = 0.1000
Department=“ECE” Rank=other.Department == self.Department
Owner=“eestmml” Requirements = TARGET.Owner ==
DiskUsage=8000 “eestmml” �� LoadAvg<= 0�3 & &
� KeyboardIdle> 15∗60

�

Figure 6.12 Two ClassAd samples

These two ClassAds will be used by the condor_negotiator daemon
running on the Central Manager host to check whether the host
can be matched with the job requirements.

6.4.1.10 Condor support in Globus

Jobs can be submitted directly to a Condor pool from a Condor
host, or via Globus (GT2 or earlier versions of Globus), as shown
in Figure 6.13. The Globus host is configured with Condor jobman-
ager provided by Globus. When using a Condor jobmanager, jobs
are submitted to the Globus resource, e.g. using globus_job_run.
However, instead of forking the jobs on the local machine, jobs are
re-submitted by Globus to Condor using the condor_submit tool.

6.4.1.11 Condor-G

Condor-G is a version of Condor that has the ability to maintain
contact with a Globus gatekeeper, submitting and monitoring jobs
to Globus (GT2 or earlier versions of Globus). Condor-G allows
users to write familiar Condor job-submission scripts with a few
changes and run them on Grid resources managed by Globus, as
shown in Figure 6.14.
To use Condor-G, we do not need to install a Condor pool.

Condor-G is only the job management part of Condor. Condor-G
can be installed on just one machine within an organization and

268 GRID SCHEDULING AND RESOURCE MANAGEMENT

Figure 6.13 Submitting jobs to a Condor pool via Condor or Globus

Figure 6.14 Submitting jobs to Globus via Condor-G

the access to remote Grid resources using a Globus interface can

be done through it.

Submitting Globus jobs using Condor-G provides a much higher

level of service than simply using globus_job_run command pro-

vided by Globus.

• First, jobs submitted to Globus with Condor-G enter a local

Condor queue that can be effectively managed by Condor.

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 269

• Secondly, jobs remain in the Condor queue until they are com-
pleted. Therefore, should the job crash while running remotely,
Condor-G can re-submit it again without user intervention.

In a word, Condor-G provides a level of service guarantee that is
not available with globus_job_run and other Globus commands.

Note: Condor-G does not have a GUI (the “G” is for Grid). How-
ever, the following graphic tools can be used with both Condor
and Condor-G:

• CondorView: Shows a graphical history of the resources in a pool.

• Condor UserLogViewer: Shows a graphical history of a large set
of jobs submitted to Condor or Condor-G.

6.4.2 Sun Grid Engine

The SGE is a distributed resource management and scheduling
system from Sun Microsystems that can be used to optimize the
utilization of software and hardware resources in a UNIX-based
computing environment. The SGE can be used to find a pool of
idle resources and harnesses these resources; also it can be used
for normal activities, such as managing and scheduling jobs onto
the available resources. The latest version of SGE is Sun N1 Grid
Engine (N1GE) version 6 (see Table 6.2). In this section, we focus
on SGE 5.3 Standard Edition because it is freely downloadable.

6.4.2.1 The SGE architecture

Hosts (machines or nodes) in SGE are classified into four
categories – master, submission, execution, administration and
shadow. Figure 6.15 shows the SGE architecture.

• Master host: A single host is selected to be the SGE master host.
This host handles all requests from users, makes job-scheduling
decisions and dispatches jobs to execution hosts.

• Submit host: Submit hosts are machines configured to submit,
monitor and administer jobs, and to manage the entire cluster.

• Execution host: Execution hosts have the permission to run SGE
jobs.

270 GRID SCHEDULING AND RESOURCE MANAGEMENT

Table 6.2 A note of the differences between N1 Grid Engine and Sun Grid
Engine

N1GE 6 differs from the version 6 of Sun Grid Engine Open Source builds in

the following aspects:

• Sun support only available for N1GE (for allmajor UNIX platforms and Win-

dows soon).

• Accounting and Reporting Console (database for storing of accounting, meter-

ing and statistics data, plus a Web UI forqueries and generating reports).

• Binaries for MS Windows execution/submit functionality (to be delivered in

the second half of 2005).

• Grid Engine Management Model for 1-click deployment of execution hosts on

an arbitrary number of hosts (to be delivered in the second quarter of 2005).

The basic software components underneath N1GE and SGE are identical. In

fact, the open-source project is the development platform for those components.

Proprietary Sun code only exists for the differentiators listed above (where

applicable). Note that some of those differentiators use other Sun products or

technologies, which are not open source themselves.

Figure 6.15 The architecture of the SGE

• Administration host: SGE administrators use administration hosts

to make changes to the cluster’s configuration, such as changing

distributed resource management parameters, configuring new

nodes or adding or changing users.

• Shadow master host: While there is only one master host, other

machines in the cluster can be designated as shadow master

hosts to provide greater availability. A shadow master host

continually monitors the master host, and automatically and

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 271

transparently assumes control in the event that the master host

fails. Jobs already in the cluster are not affected by a master host

failure.

6.4.2.2 Daemons in an SGE cluster

As shown in Figure 6.16, to configure an SGE cluster, the following

daemons need to be started.

sge_qmaster – The Master daemon

The sge_qmaster daemon is the centre of the cluster’s management

and scheduling activities; it maintains tables about hosts, queues,

jobs, system load and user permissions. It receives scheduling deci-

sions from sge_schedd daemon and requests actions from sge_execd
daemon on the appropriate execution host(s). The sge_qmaster dae-
mon runs on the Master host.

sge_schedd – The Scheduler daemon

The sge_schedd is a scheduling daemon that maintains an up-

to-date view of the cluster’s status with the help of sge_qmaster
daemon. It makes the scheduling decision about which job(s) are

dispatched to which queue(s). It then forwards these decisions to

Figure 6.16 Daemons in SGE

272 GRID SCHEDULING AND RESOURCE MANAGEMENT

the sge_qmaster daemon, which initiates the requisite actions. The
sge_schedd daemon also runs on the Master host.

sge_execd – The Execution daemon
The sge_execd daemon is responsible for the queue(s) on its host and
for the execution of jobs in these queues by starting sge_shepherd
daemons. Periodically, it forwards information such as job status or
load on its host, to the sge_qmaster daemon. The sge_execd daemon
runs on an Execute host.

sge_commd – The Communication daemon
The sge_commd daemon communicates over a well-known TCP
port and is used for all communication among SGE components.
The sge_commd daemon runs on each Execute host and the Master
host in an SGE cluster.

sge_shepherd – The Job Control daemon
Started by the sge_execd daemon, the sge_shepherd daemon runs for
each job being actually executed on a host. The sge_shepherd dae-
mon controls the job’s process hierarchy and collects accounting
data after the job has completed.

6.4.2.3 Job management in SGE

SGE supports four job types – batch, interactive, parallel and array.
The first three have obvious meanings, the fourth type – array
job – is where a single job can be replicated a specified number of
times, each differing only by its input data set, which is useful for
parameter studies.
Submitted jobs are put into job queues. An SGE queue is a

container for a class of jobs allowed to execute on a particular
host concurrently. A queue determines certain job attributes; for
example, whether it may be migrated. Throughout their lifetimes,
running jobs are associated with their queues. Association with a
queue affects some of the actions that can happen to a job. For
example, if a queue is suspended, all the jobs associated with that
queue will also be suspended.
In SGE, there is no need to submit jobs directly to a queue. A

user only needs to specify the requirement profile of the job (such
as memory, operating system and available software) and SGE
will dispatch the job to a suitable queue on a lightly loaded host
automatically. If a job is submitted to a particular queue, the job

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 273

will be bound to this queue and to its host, and thus SGE daemons
will be unable to select a lightly loaded or better-suited resource.

6.4.2.4 Job run-time environments in SGE

SGE supports three execution modes – batch, interactive and par-
allel. Batch mode is used to run straightforward sequential pro-
grams. In interactive mode, users are given shell access (command
line) to some suitable host via, for example, X-windows. In a par-
allel mode, parallel programs using the likes of MPI and PVM are
supported.

6.4.2.5 Job selection and resource matching in SGE

Jobs submitted to the Master host in an SGE cluster are held in a
spooling area until the scheduler determines that the job is ready
to run. SGE matches the available resources to a job’s require-
ments; for example, matching the available memory, CPU speed
and available software licences, which are periodically collected by
Execution hosts. The requirements of the jobs may be very different
and only certain hosts may be able to provide the corresponding
services. Once a resource becomes available for execution of a new
job, SGE dispatches the job with the highest priority and matching
requirements.
Fundamentally, SGE uses two sets of criteria to schedule jobs –

job priorities and equal share.

Job priorities
This criterion concerns the order of the scheduling of different
jobs, a first-in-first-out (FIFO) rule is applied by default. All pending
(not yet scheduled) jobs are inserted in a list, with the first sub-
mitted job being at the head of the list, followed by the sec-
ond submitted job, and so on. SGE will attempt to schedule the
FIFO queue of jobs. If at least one suitable queue is available,
the job will be scheduled. SGE will try to schedule the second
job afterwards no matter whether the first has been dispatched
or not.
The cluster administrator via a priority value being assigned to

a job may overrule this order of precedence among the pending
jobs. The actual priority value can be displayed by using the qstat

274 GRID SCHEDULING AND RESOURCE MANAGEMENT

command (the priority value is contained in the last column of the
pending jobs display titled “P”). The default priority value that is
assigned to a job at submission time is 0. The priority values are
positive and negative integers and the pending job list is sorted
correspondingly in the order of descending priority values. By
assigning a relatively high-priority value to a job, it is moved
to the top of the pending list. A job will be given a negative
priority value after the job is just submitted. If there are several
jobs with the same priority value, the FIFO rule is applied to
these jobs.

Equal-share scheduling
The FIFO rule sometimes leads to problems, especially when users
tend to submit a series of jobs at almost the same time (e.g. via a
shell script issuing a series of job submissions). All the jobs that
are submitted in this case will be designated to the same group of
queues and will have to potentially wait a very long time before
executing. equal-share scheduling avoids this problem by sorting
the jobs of a user already owning an executing job to the end
of the precedence list. The sorting is performed only among jobs
within the same priority value category. Equal-share scheduling is
activated if the SGE scheduler configuration entry user_sort switch
is set to TRUE.
Jobs can be directly submitted to an SGE cluster on a Submit

host or via Globus, as shown in Figure 6.17. It should be noted
that the newer version of N1GE 6 has more sophisticated schedul-
ing criteria than those mentioned above. There is “old” Enterprise
Edition policy system [10], and in N1GE 6, there is an urgency
control scheme combined with resource reservation [11]. Also,
the Equal-share scheduling mentioned above has been replaced
in N1GE 6 by a combination of other more advanced scheduling
facilities.

6.4.3 The Portable Batch System (PBS)

ThePBS is a resourcemanagement and scheduling system. It accepts
batch jobs (shell scripts with control attributes), preserves and pro-
tects the job until it runs; it executes the job, and delivers the output
back to the submitter. A batch job is a program that executes on the
backend computing environment without further user interaction.

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 275

Figure 6.17 Submitting jobs to an N1GE cluster via N1GE or Globus

PBS may be installed and configured to support jobs executing on
a single computer or on a cluster-based computing environment.
PBS is capable of allowing its nodes to be grouped into many con-
figurations. OpenPBS is available for free source download; how-
ever, there is no support for OpenPBS, nor has it been improved in a
number of years. PBS Pro [12] is fully supported and is undergoing
continuous development and improvement.

6.4.3.1 The PBS architecture

As Figure 6.18 shows, PBS uses a Master host and an arbitrary
number of Execution and job Submission hosts. The Master host
is the central manager of a PBS cluster; a host can be configured
as a Master host and an Execution host.

6.4.3.2 Daemons in a PBS cluster

As shown in Figure 6.19, to configure a PBS cluster, the following
daemons need to be started.

• pbs_server: The pbs_server daemon only runs on the PBS Master
host (server). Its main function is to provide the basic batch

276 GRID SCHEDULING AND RESOURCE MANAGEMENT

Figure 6.18 The architecture of a PBS cluster

Figure 6.19 The daemons in a PBS cluster

services, such as receiving/creating a batch job, modifying a job,
protecting the job against system crashes and executing the job.

• pbs_mom: The pbs_mom daemon runs on each host and is used
to start, monitor and terminate jobs, under instruction from the
pbs_server daemon.

• pbs_sched: The pbs_sched daemon runs on the Master host and
determines when and where to run jobs. It requests job state
information from pbs_server daemon and resource state infor-
mation from pbs_mom daemon� and then makes decisions for
scheduling jobs.

6.4.3.3 Job selection in PBS

Jobs submitted to PBS are put in job queues. Jobs can be sequential
or parallel codes using MPI. A server can manage one or more

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 277

queues; a batch queue consists of a collection of zero or more jobs

and a set of queue attributes. Jobs reside in the queue or are mem-

bers of the queue. In spite of the name, jobs residing in a queue

need not be ordered with FIFO. Access to a queue is limited to

the server that owns the queue. All clients gain information about

a queue or jobs within a queue through batch requests to the

server. Two main queue types are defined: routing and execution

queues. When a job resides in an execution queue, it is a candi-

date for execution. A job being executed is still a member of the

execution queue from which it is selected. When a job resides in a

routing queue, it is a candidate for routing to a new destination.

Each routing queue has a list of destinations to which jobs may be

routed. The new destination may be a different queue within the

same server or a queue under a different server. A job submitted to

PBS can

• be batch or interactive

• define a list of required resources such as CPU, RAM, hostname,

number of nodes or any of site-defined resources

• define a priority

• define the time of execution

• send a mail to a user when execution starts, ends or aborts

• define dependencies (such as after, afterOk afterNotOk or before)
• be checkpointed (if the host OS has provision for it)

• be suspended and later resumed.

Jobs can be directly submitted to a PBS cluster or via Globus, as

shown in Figure 6.20.

6.4.3.4 Resource matching in PBS

In PBS, resources can be identified either explicitly through a job

control language, or implicitly by submitting the job to a particular

queue that is associated with a set of resources. Once a suitable

resource is identified, a job can be dispatched for execution. PBS

clients have to identify a specific queue to submit to in advance,

which then fixes the set of resources that may be used; this hinders

further dynamic and qualitative resource discovery. Furthermore,

278 GRID SCHEDULING AND RESOURCE MANAGEMENT

Figure 6.20 Jobs can be submitted to or from a PBS cluster to Globus

system administrators have to anticipate the services that will be

requested by clients and set up queues to provide these services.

Additional PBS Pro services include:

• Cycle harvesting: PBS Pro can run jobs on idle workstations

and suspend or re-queue the jobs when the workstation

becomes used, based on either load average or keyboard/mouse

input.

• Site-defined resources: A site can define one or more resources

which can be requested by jobs. If the resource is “consumable”,

it can be tracked at the server, queue and/or node level.

• “Peer to Peer” scheduling: A site can have multiple PBS Pro clus-

ters (each cluster has its server, scheduler and one or more

execution systems). A scheduler in any given cluster can be con-

figured to move jobs from other clusters to its cluster when the

resources required by the job are available locally.

• Advance reservations: Resources, such as nodes or CPUs, can be

reserved in advance with a specified start and end time/date.

Jobs can be submitted against the reservation and run in

the time period specified. This ensures the required computa-

tional resources are available when time-critical work must be

performed.

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 279

6.4.4 LSF

The LSF is a resource management and workload scheduling

system from Platform Computing Corporation. LSF utilizes com-

puting resources that include desktops, servers and mainframes

to ensure policy-driven, prioritized service levels for access to

resources. In this section we discuss LSF version 6 (v6).

6.4.4.1 LSF platforms

LSF v6 supports a variety of computer architectures and operating

systems, including HP, IBM, Intel, SGI, Sun and NEC.

6.4.4.2 The architecture of an LSF cluster

An LSF cluster has one Master host and an arbitrary number of

Execution hosts as shown in Figure 6.21. The Master host acts

as the overall coordinator of the cluster. It is responsible for job

scheduling and dispatching. If the Master host fails, another LSF

server in the cluster becomes the Master host. An Execution host is

used to run jobs. A Submission host is responsible for submitting

jobs to an LSF cluster. In addition, a Submission host can also be

an Execution host. A Server host is capable of job submission and

execution.

Figure 6.21 The architecture of an LSF cluster

280 GRID SCHEDULING AND RESOURCE MANAGEMENT

6.4.4.3 LSF daemons

Table 6.3 shows the daemons used in LSF.

6.4.4.4 Job life cycle in LSF

Figure 6.22 shows their interaction within an LSF cluster. As shown

in Figure 6.22, a job submitted to an LSF cluster will go through

the following steps.

Table 6.3 LSF daemons

Daemon Function

lim The load information manager (lim) daemon runs on the Master

host and each Execution host. It collects host state information

and forwards it to the master lim daemon on the Master host.

res The resource execution server (res) daemon runs on the Master

host and each Execution host to provide transparent and secure

remote execution of jobs.

mbatchd The master batch daemon runs on the Master host. It is

responsible for the overall state of jobs in an LSF cluster. Started

by sbatchd, the mbatchd daemon receives job submissions and

information query requests, and manages jobs held in queues. It

also dispatches jobs to hosts as determined by mbschd.

mbschd The master batch scheduler daemon runs on the Master host.

It starts and works with mbatchd. This daemon makes

scheduling decisions based on job requirements and policies.

sbatchd The slave batch daemon runs on the Master host and each

Execution host. It receives the request to run the job from

mbatchd daemon and manages the local execution of the job.

It is responsible for enforcing local policies and maintaining

the state of jobs on the host. The sbatchd daemon forks a

child sbatchd for every job. The child sbatchd runs an

instance of res to create the execution environment in which

the job runs. The child sbatchd exits when the job is

complete.

pim The process information manager (pim) daemon, started by lim,

running on the Master host and on each Execution host, is used

to collect statistics about job processes executing on a host. The

statistics may be, for example, how much CPU time or the

amount of memory being used; this is reported back to the

sbatchd daemon.

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 281

Figure 6.22 The interaction between LSF daemons

1. Job submission: A job is submitted from a Submission host with

bsub command to the Master host in an LSF cluster (Step 1).

2. Resource collection: The lim daemon on the Master host collects

resource information from other lim daemons at present time

intervals (Step 2). Then the master lim daemon communicates

with the mbatchd daemon, which in turn communicates with the

mbschd daemon to support scheduling decisions.

3. Job scheduling: The mbatchd daemon on the Master host looks at

jobs in the queue and sends the jobs to the mbschd daemon on

the Master host for scheduling at a set time interval (Step 3).

The mbschd daemon evaluates jobs and makes scheduling deci-

sions based on job priority, scheduling policies and available

resources. The mbschd daemon selects the most appropriate host

to execute a job and sends its decisions back to the mbatchd
daemon.

4. Job dispatching: Upon receiving scheduling decisions, thembatchd
daemon immediately dispatches the jobs to hosts.

5. Job execution: The sbatchd daemon on an Execution host han-

dles the job execution. It receives the request from the mbatchd
daemon (Step 4), creates a child sbatchd process for the job, cre-

ates the execution environment and starts the job using the res

282 GRID SCHEDULING AND RESOURCE MANAGEMENT

daemon (Step 5). The execution environment is copied from the
Submission host to the Execution host and includes the envi-
ronment variables needed by the job’s working directory where
the job begins running. The job runs under the user account that
submitted the job and has the status RUN.

6. Return output: When a job is completed, it is assigned the DONE
status if it has been completed without any problems. The job
is assigned the EXIT status if errors had prevented it from fin-
ishing. The sbatchd daemon on the Execution host sends job
information including errors and output to the mbatchd daemon
on the Master host (Step 6).

7. Send email to client: The mbatchd daemon on the Master host
returns the job output, job error and job information to the
Submission host through email (Step 7). A job report is sent by
email to the LSF client and includes job information such as
CPU use, memory use, name of the account that submitted the
job, job output and errors.

6.4.4.5 Security management in LSF

LSF provides secure access to local and remote data files. It uses
standard 56-bit (and optional 128-bit) encryption for authentica-
tion. LSF provides three levels of authentications – user level, host
level and daemon level.

• User level authentication: LSF recognizes UNIX and Windows
authentication environments, including different Windows
domains and individual workgroup hosts.

• Host authentication: Upon receiving a job request, LSF first deter-
mines the user’s identity. Once the user is identified, LSF decides
whether it can trust the host from which the request is submit-
ted. Users must have valid accounts on all hosts. This allows any
user to run a job with their own permissions on any host in the
cluster. Remote execution requests and batch job submissions
are rejected if they come from a host not in the LSF cluster. A site
can configure an external executable to perform additional user
or host authorization.

• Daemon authentication: LSF can use the eauth program to authen-
ticate the communications between daemons, e.g. mbatchd
requests to sbatchd, sbatchd updates to mbatchd.

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 283

6.4.4.6 Job management in LSF

LSF provides the following support for job management.

• Job and job slot: An LSF job is a unit of work submitted for
execution. A job slot is a sink into which a single unit of work
is assigned. Hosts are configured to have a number of job slots
available and queues dispatch jobs to fill job slots.

• Queue: A queue is a cluster-level container for Execution hosts.
Queues do not correspond to individual hosts; each queue can
use all nodes in the cluster or a configured subset of the nodes.
Queues implement different job scheduling and control policies.
LSF can have multiple queues. LSF can automatically choose a
suitable queue from a list of candidate default queues for a job
submitted without specifying a queue name.

• Preemptive and preemptable queues: Jobs in a preemptive queue
can preempt jobs in any queue of lower priority, even if the
low-priority queues are not specified as preemptable. Jobs in a
preemptable queue can be preempted by jobs from any queue
of a higher priority, even if the high-priority queues are not
specified as preemptive.

• Job types: LSF supports batch and interactive jobs, which can be
sequential or parallel, using MPI or PVM.

• Job deadline constraint: Deadline constraints will suspend or ter-
minate running jobs at a certain time. A deadline constraint can
be specified at the queue level to suspend a running job, or can
be specified at the job level to terminate a running job.

• Job re-queue: LSF provides a way to automatically recover from
temporary errors in executing jobs. Users can configure cer-
tain exit values, and in that case the job will be automatically
re-queued. It is also possible for users to configure the queue
such that a re-queued job will not be scheduled to hosts on
which the job had previously failed to run.

• Job checkpointing and restarting: Checkpointing a job involves cap-
turing the state of an executing job, and the data necessary to
restart the job. In LSF, checkpointing can be configured at kernel
level, user level and application level.

– Kernel-level checkpointing is provided by the operating system
and can be applied to arbitrary jobs running on the system.
This approach is transparent to the application; there are no

284 GRID SCHEDULING AND RESOURCE MANAGEMENT

source code changes and no need to re-link the application

with checkpoint libraries.

– User-level checkpointing requires that the application object file

(.o) be re-linked with a set of LSF libraries.

– Application-level checkpointing requires that checkpoint and

restart routines are embedded in the source code.

LSF can restart a checkpointed job on a host other than the origi-

nal execution host using the information saved in the checkpoint

file to recreate the execution environment.

• Job grouping and chunking: A collection of jobs can be organized

into a job group, which is a container for jobs, e.g. a payroll

application may have one group of jobs that calculates weekly

payments, another job group for calculating monthly salaries,

and a third job group that handles the salaries of part-time or

contract employees. Users can submit, view and control jobs

according to their groups rather than looking at individual jobs.

LSF supports job chunking, where jobs with similar resource

requirements submitted by the same user are grouped together

for dispatch.

• Job submission with no shared file system: When shared file space

is not available, the bsub -f command copies the needed files to

the Execution host before running the job, and copies result files

back to the Submission host after the job completes.

• LSF MultiCluster: LSF MultiCluster extends an organization’s

reach to share virtualized resources beyond a single LSF clus-

ter to span geographical locations. With LSF MultiCluster, local

ownership and control is maintained, ensuring priority access

to any local cluster while providing global access across an

enterprise Grid. Organizations using LSF MultiCluster complete

workload processing faster with increased computing power,

enhancing productivity and speed.

6.4.4.7 Resource management in LSF

LSF provides the following support for resource management.

• Tracking resource usage: LSF tracks resource availability and

usage; Jobs are scheduled according to the available resources.

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 285

Resources executing jobs are monitored by LSF; information,

such as total CPU time consumed by all processes in the job, total

resident memory usage in KB of all currently running processes

in a job and currently active processes in a job, is collected.

• Load indices and threshold: Load indices are used to measure the

availability of dynamic, non-shared resources on hosts in an

LSF cluster. LSF also supports load threshold. Two load thresh-

olds can be configured; each specifies a load index value as

follows:

– loadSched determines the load condition for dispatching pend-

ing jobs. If a host’s load is beyond any defined loadSched value,
a job will not be started on the host. This threshold is also

used as the condition for resuming suspended jobs.

– loadStop determines when the running jobs should be sus-

pended.

• Resource reservation: When submitting a job, resource reservation

requirements can be specified as part of the resource require-

ments, or they can be configured into the queue level resource

requirements.

• Memory reservation for pending jobs: In LSF, resources are not

reserved for pending jobs, therefore, some memory-intensive

jobs could be pending indefinitely because smaller jobs take the

resources immediately before the larger jobs can start running.

Memory reservation solves this problem by reserving memory

as it becomes available, until the total required memory specified

is accumulated and the job can start.

• Advanced resource reservation: Advance reservations ensure access

to specific hosts during specified times. Each reservation consists

of the number of processors to reserve, a list of hosts for the

reservation, a start time, an end time and an owner.

6.4.4.8 Job scheduling policies in LSF

Job scheduling is not strictly based on a first-come-first-serve

selection policy. Rather, each queue has a priority number; LSF

tries to start jobs in the highest priority queue first. The LSF admin-

istrator sets the queue priority when the queue is configured. LSF

has the job schedule policies shown in Table 6.4.

286 GRID SCHEDULING AND RESOURCE MANAGEMENT

Table 6.4 LSF scheduling polices

Policy Features

First come first serve The default scheduling policy.

Fair share scheduling The fair share policy divides the processing

resources of a cluster among users and groups

to provide fair access to resources. A fair share

policy can be configured at either the queue

level or the host level.

Preemptive scheduling A preemptive policy lets a pending high-priority

job take resources away from a executing job of

lower priority.

Deadline constraint

scheduling

Deadline constraints will suspend or terminate

running jobs at a certain time. There are two

kinds of deadline constraints.

Exclusive scheduling Exclusive policy gives a job exclusive use of the

host that it executes on. LSF dispatches the job

to a host that has no other jobs executing, and

does not place any more jobs on the host until

the exclusive job is finished.

Job dependency

scheduling

Specifies that the running of a job is dependent on

the completion of another job, which can be

specified in the job submission.

Goal-oriented SLA

scheduling

It helps users configure workload so that user jobs

are completed on time and reduce the risk of

missed deadlines. A Service-Level Agreement

(SLA) defines how a service is delivered and

the parameters for the delivery of a service.

6.4.4.9 Resource matching in LSF

Resource matching is used to match a host and its resources to exe-

cute a selected job or jobs. Each job has its resource requirements.

Each time LSF attempts to dispatch a job, it checks to see which

hosts are eligible to run the job. Hosts that match the resource

requirements are the candidate hosts. When LSF dispatches a job,

it uses the load index values of all the candidate hosts. The load

values of each host are compared with the scheduling conditions.

Jobs are only dispatched to a host if all the load values of the host

are within the scheduling thresholds. If a job is queued and there

is an eligible host for that job, the job is placed on that host. If more

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 287

than one host is eligible, the job is started on the best host based

on both the job and the queue resource requirements.

6.4.4.10 LSF support in Globus

Jobs can be submitted directly to a cluster from an LSF host, or via

Globus (GT2 or earlier versions of Globus), as shown in Figure 6.23.

The Globus host is configured with LSF jobmanager provided by

Globus. When using an LSF jobmanager, jobs are submitted to the

Globus resource, e.g. using globus_job_run. However, instead of

forking the jobs on the local machine, jobs are re-submitted by

Globus to LSF using the bsub tool.

6.4.4.11 Platform Globus Toolkit 3.0

Platform Globus Toolkit 3.0 (PGT3), as shown in Figure 6.24,

is a commercial distribution of the Globus Toolkit 3.0 (GT3). In

addition to the core services available in GT3, PGT3 includes exten-

sions based upon the Community Scheduler Framework (CSF), an

open-source implementation of a number of Grid services built

on the GT3. CSF provides components for implementing meta-

schedulers.

Figure 6.23 Submitting jobs to an LSF cluster via LSF or Globus

288 GRID SCHEDULING AND RESOURCE MANAGEMENT

Figure 6.24 The PGT3 architecture

PGT3 provides transparent interactivity and interoperability

among various resource management systems such as SGE, Con-

dor, LSF and PBS. It allows an LSF client to submit jobs to an

SGE-managed cluster. The core component of PGT3 is CSF Plus,

which provides a meta-scheduler infrastructure that allows end

users to interact with underlying resource management systems.

6.4.5 A comparison of Condor, SGE,
PBS and LSF

Condor, SGE, PBS and LSF are single administrative domain

resource management and scheduling systems. These systems

can be interconnected across administrative boundaries, using the

Globus toolkit, specifically GT2. While they differ in their imple-

mentation and functionality, they all share the following features.

• They are master–worker-based scheduling systems;

• There is one master host (central manager) per system;

• A system can have an arbitrary number of worker machines that

can be used for job submission, job execution or both;

• Scheduling is centralized;

• Priority-based job scheduling;

6.4 A REVIEW OF CONDOR, SGE, PBS AND LSF 289

• Support batch jobs;

• Support a variety of platforms;

• Authentication and authorization support.

However, the four systems differ in many ways. Table 6.5 gives

a comparison of the four systems in terms of availability, usabil-

ity, jobs supported, work-load management, fault tolerance and

accounting.

• Availability: Condor and SGE 5.3 can be freely downloaded.

However, PBS Pro and LSF are commercial products.

• Windows platform support: PBS Pro and LSF fully support Win-

dows platform. Condor partially supports Windows platform.

SGE currently does not support Windows.

• GUI support: The use of Condor is based on command-line inter-

faces. However, the following graphic tools can be used with

Condor:

– Condor view: Shows a graphical history of the resources in a

pool.

Table 6.5 A comparison of Condor, SGE, PBS and LSF

Condor 6.6.3 SGE 5.3 PBS Pro 5.4 LSF 6.0

Availability Freely Freely Commercial Commercial
downloadable downloadable

Windows platform Partial No Yes Yes
support

GUI support No Yes Yes Yes

Jobs supported
Batch jobs Yes Yes Yes Yes
Interactive jobs Yes Yes Yes Yes
Parallel jobs Yes Yes Yes Yes

Resource reservation No Yes Yes Yes

Job checkpointing Yes Yes Yes Yes

Job flocking Yes No Yes Yes

Job scheduling
Preemptive Yes Yes Yes Yes

scheduling
Deadline No Yes No Yes

scheduling

Resource matching Yes Yes Yes Yes

Job flow Yes Yes Yes Yes
management

290 GRID SCHEDULING AND RESOURCE MANAGEMENT

– Condor UserLogViewer: Shows a graphical history of a large set

of jobs submitted to Condor or Condor-G.

All the other systems have their own GUIs.

• Jobs supported: The four systems all support batch and paral-

lel jobs using MPI and PVM. Only Condor does not support

interactive jobs, the other three systems support interactive jobs.

• Resource reservation: Apart from Condor, all the other three sys-

tems support resource reservations.

• Job checkpointing: All the four systems support job checkpointing

and fault recovery.

• Job flocking: Condor, PBS and LSF currently support job flocking,

by which a job submitted to one cluster can be executed in

another cluster.

• Job scheduling: All the four systems support preemptive schedul-

ing. SGE and LSF support deadline constraint scheduling, but

Condor and PBS do not support this feature.

• Resource matching: Each of the four systems has its own mecha-

nism to match resources based on the resource requirements of

a job submission and resources available.

• Job flow management: The four systems support inter-job depen-

dency descriptions for complex applications.

6.5 GRID SCHEDULING WITH QOS

In Section 6.4, we have reviewed Condor, SGE, PBS and LSF. One

major problem with the four systems is their lack of QoS support

in scheduling jobs; such a system should take the following issues

into account when scheduling jobs:

• Job characteristics

• Market-based scheduling model

• Planning in scheduling

• Rescheduling

• Scheduling optimization

• Performance prediction.

6.5 GRID SCHEDULING WITH QOS 291

6.5.1 AppLeS

AppLeS [13] is an adaptive application-level scheduling system

that can be applied to the Grid. Each application submitted to

the Grid can have its own AppLeS. The design philosophy of

AppLeS is that all aspects of system performance and utilization

are experienced from the perspective of an application using the

system. To achieve application performance, AppLeS measures

the performance of the application on a specific site resource and

utilizes this information to make resource selection and scheduling

decisions. Figure 6.25 shows the architecture of AppLeS.

The AppLeS components are:

• Network Weather Service (NWS) [14]: Dynamic gathering of infor-

mation of system state and forecasting of resource loads.

• User specifications: This is the information about user criterion for

aspects such as performance, execution constraints and specific

request for implementation.

• Model: This is a repository of default models, populated by

similar classes of applications and specific applications that

can be used for performance estimation, planning and resource

selection.

Figure 6.25 The architecture of AppLeS

292 GRID SCHEDULING AND RESOURCE MANAGEMENT

• Resource selector: Choose and filter different resource combina-

tions.

• Planner: This component is used to generate a description of a

resource-dependent schedule from a given resource combina-

tion.

• Performance estimator: This component is used to generate an

estimate for candidate schedules according to the user’s perfor-

mance metric.

• Coordinator: This component chooses the “best” schedule.

• Actuator: This component implements the “best” schedule on the

target resource management system.

When AppLeS is used, the following steps are performed.

1. The user provides information to AppLeS via a Heteroge-

neous Application Template (HAT) and user specifications. The

HAT provides information for the structure, characteristics and

implementation of an application and its tasks.

2. The coordinator uses this information to filter out infeasi-

ble/possibly bad schedules.

3. The resource selector identifies promising sets of resources,

and prioritizes them based on the logical “distance” between

resources.

4. The planner computes a potential schedule for each viable

resource configuration.

5. The performance estimator evaluates each schedule in terms of

the user’s performance objective.

6. The coordinator chooses the best schedule and then implements

it with the actuator.

AppLeS differs from other scheduling systems in that the resource

selection and scheduling decisions are based on the specific needs

andexhibitedperformancecharacteristicsof anapplication.AppLeS

targets parallel master–slave applications. Condor, SGE, PBS and

LSF do not take the application-level attributes into account when

scheduling a job. Note that AppLeS is not a resource management

system, it is a Grid application-level scheduling system.

6.5 GRID SCHEDULING WITH QOS 293

6.5.2 Scheduling in GrADS

AppLeS focuses on per-job scheduling. Each application has its
own AppLeS. When scheduling a job, AppLeS assumes that there
is only one job to use the resources. One problem with AppLeS is
that it does not have resource managers that can negotiate with
applications to balance their interests. The absence of these nego-
tiating mechanisms in the Grid can lead to variety of problems in
which focus will be on the improvement of the performance of
individual AppLeS. However, there will be many AppLeS agents
in a system simultaneously, each working on behalf of its own
application. A worst-case scenario is that all of the AppLeS agents
may identify the same resources as “best” for their applications
and seek to use them simultaneously. Recognizing that the tar-
geted resources are no longer optimal or available, they all might
seek to reschedule their applications on another resource. In this
way, multiple unconstrained AppLeS might exhibit “thrashing”
behaviour and achieve good performance neither for their own
applications nor from the system’s perspective. This is called the
Bushel of AppLeS Problem.
The Grid Application Development Software (GrADS) project

[15] seeks to provide a comprehensive programming environment
that explicitly incorporates application characteristics and require-
ments in application design decisions. The goal of this project is
to provide an integrated Grid application development solution
that incorporates activities such as compilation, scheduling, stag-
ing of binaries and data, application launching, and monitoring
during execution. The meta-scheduler in GrADS receives candi-
date schedules of different application-level schedulers and imple-
ments scheduling policies for balancing the interests of different
applications as shown in Figure 6.26.

6.5.3 Nimrod/G

Nimrod/G [16] is a Grid-enabled resource management and
scheduling system that supports deadline and economy-based
computations for parameter sweep applications. It supports a
simple declarative parametric modelling language for expressing
parametric experiments. The domain experts (application experts
or users) can create a plan for parameter studies and use the Nim-
rod/G broker to handle all the issues related to management issues

294 GRID SCHEDULING AND RESOURCE MANAGEMENT

Figure 6.26 Job scheduling in GrADS

including resource discovery, mapping of jobs to the appropriate

resources, data and code staging and gathering results from multi-

ple nodes. Figure 6.27 shows the main components in Nimrod/G.

• Nimrod/G client: This component acts as a user-interface for con-

trolling and supervising the experiment under consideration.

The user can vary parameters related to time and cost that

influence the decisions the scheduler takes while selecting

resources. It also serves as a monitoring console and will list the

status of all jobs, which a user can view and control.

Figure 6.27 The architecture of Nimrod/G

6.5 GRID SCHEDULING WITH QOS 295

• Parametric engine: The parametric engine acts as a persistent job
control agent and is the central component fromwhich the whole
experiment is managed and maintained. It is responsible for the
parameterization of an experiment and the actual creation of
jobs, maintenance of job status, and interaction with clients, the
schedule advisor, and dispatcher. The parametric engine takes
the experiment’s plan as input described by using a declarative
parametric modelling language and manages the experiment
under the direction of the schedule advisor. It then informs the
dispatcher how to map an application’s tasks to the selected
resource.

• Scheduler: The scheduler is responsible for resource discovery,
resource selection and job assignment. The resource discovery
system interacts with Grid information services, such as the
MDS in Globus, and it identifies the list of authorized machines,
and keeps track of resource status information. The resource
selection algorithm is used to select those resources that meet
some criterion, such as a deadline or minimize the cost of a
computation.

• Dispatcher: The dispatcher primarily initiates the execution of
a task on the selected resource as instructed by the scheduler.
It periodically updates the status of the task’s execution to the
parametric-engine.

6.5.4 Rescheduling

On the Grid, long-running jobs must be able to adapt to nodes
leaving the Grid due to failure, scheduled downtime, or nodes
becoming overloaded. A Grid scheduler should have the ability to
reschedule a task [17], whether this means acknowledging failure
and re-sending lost work to a live node, or stopping and moving
a job away from a heavily loaded node.
Condor’s Master–Worker (MW) library [18] supports limited

rescheduling. The AppLeS Parameter Sweep Template (APST) is
capable of limited rescheduling in that it can adjust future sched-
ules, but cannot move current jobs. APST is able to assume the
existence of many independent tasks in each application because
it is designed for parameter sweep applications. It computes a
schedule for all its tasks and may adapt the schedule at preconfig-
ured and tunable intervals to compensate for resource variations.

296 GRID SCHEDULING AND RESOURCE MANAGEMENT

A promising project that incorporates rescheduling is the Cactus
[19], which dynamically checks the performance of an application
to determine if it has violated a contract, and moves the applica-
tion to a different set of processors to improve performance. The
contract is defined as not degrading a particular metric, such as
iterations per second, and detects aspects like a new load on a
processor.
Rescheduling is an important issue for Grid schedulers, and no

such system currently implements a complete set of rescheduling
features. A mature scheduler with rescheduling should be able to
adjust current schedules, move jobs from poorly performing nodes
and recover from failures.

6.5.5 Scheduling with heuristics

Scheduling optimization is the process to find an optimal or near-
optimal schedule in terms of a set of tasks and resources. The
mapping of tasks to resources is known as an NP-hard problem.
Heuristics such as genetic algorithms and simulated annealing can
be used for Grid scheduling optimization.

Genetic algorithms (GAs)
GAs are adaptive methods that can be used to solve optimization
problems. Spooner et al. [20] apply a GA to explore the solution
space to find optimal schedules. Their performance evaluation has
shown that GA-based schedules are optimal compared with other
scheduling strategies, such as first come first serve, deadline sort
and deadline sort with node limitations. The approach used in
this work first generates a set of initial schedules, then it evaluates
the schedules to obtain a measure of fitness, and finally it selects
the most appropriate and combines them together using opera-
tors (crossover and mutation) to formulate a new set of solutions.
This is repeated using the current schedule as a basis, rather than
restarting the process, allowing the system to capitalize on the
organization that has occurred previously.

Simulated annealing (SA)
SA is based on the analogy to the physical process of cooling and
re-crystallization of metals. It is a generalization of the Monte Carlo
method used for optimization of multi-variate problems. Possible
solutions are generated randomly and then accepted or discarded

6.6 CHAPTER SUMMARY 297

based on the differences in their benefits in comparison to a cur-
rently selected solution, consisting of either a maximum number of
new solutions being accepted, or a maximum number of solutions
being considered. Work on applying SA to Grid scheduling can be
found in Young et al. [21] and YarKhan and Dongarra [22].

6.6 CHAPTER SUMMARY

In this chapter, we have studied the core techniques involved in
scheduling, e.g. paradigms, the steps involved in implementing a
scheduling system, scheduling with QoS and scheduling optimiza-
tion with heuristics. We have reviewed four resource management
and job scheduling systems – Condor, SGE, PBS and LSF. The
reason we choose to review these four systems is because they
have been widely used on the Grid. The four systems usually
work locally within a single administrative domain, they man-
age a range of computer-based systems and they generally oper-
ate in a type of master–worker paradigm in which there is only
one master host and arbitrary number of execution hosts. Clus-
ters based on the four systems can be connected by the Globus
Toolkit, which thus provides a multi-domain Grid-enabled sys-
tem. The process of scheduling a job on the Grid involves resource
selection, resource filtering, schedule generation, optimal schedule
selection, and finally job dispatching. Scheduling systems can work
at the resource level, like Condor, SGE, PBS and LSF, or at the
application level, like AppLeS. A job-scheduling algorithm can be
implemented by using very simple strategies, such as first come
first serve or complex heuristics using GAs and SA to achieve
an optimal schedule. Apart from information related to jobs and
system resources, a Grid scheduler, such as Nimrod/G, also
takes the cost of using a resource into account when scheduling
jobs.
Scheduling has been playing a crucial role in the construction of

effective Grid environments. Grid scheduling will continue to be a
research focus as the Grid evolves. A good scheduling system on
the Grid should have the following features:

• Efficiency in generating schedules;

• Adaptability, where resources may join or leave dynamically;

• Scalability in managing resources and jobs;

298 GRID SCHEDULING AND RESOURCE MANAGEMENT

• Ability to predict and estimate performance;

• Ability to coordinate the competition and collaboration of dif-

ferent cluster-level schedulers;

• Ability to reserve resources for scheduling;

• Ability to take the cost of resources into accountwhen scheduling;

• Ability to take user preferences and site policies into account.

6.7 FURTHER READING AND TESTING

To help understand this chapter more completely, you can start

with the installation of a resource management system such as

Condor, SGE, PBS or LSF. Condor, SGE and PBS can be freely

downloaded from their Web sites and detailed information can be

found for installation and execution. However, LSF needs to be

purchased. To test a meta-scheduler, a Grid environment can

be instantiated by first installing Globus, Condor and SGE, then

connecting a Condor pool and an SGE cluster with Globus. Jobs

submitted to a meta-scheduler can be dispatched in the Condor

pool or the SGE cluster or both.

6.8 KEY POINTS

• Grid scheduling involves resource selection, resource filtering,

schedule generation, optimal schedule selection, job dispatching

and execution.

• A scheduler is a software component in a Grid system.

• Condor, SGE, PBS and LSF are cluster-level resource manage-

ment and job scheduling systems that can utilize the Grid. They

normally work within one administrative domain.

• AppLeS is an application-level scheduling system.

• Nimrod/G is a scheduling system that can take the cost of

resources into account.

• Grid scheduling can be optimized with more complex heuristics

such as generic algorithms and simulated annealing.

6.9 REFERENCES 299

6.9 REFERENCES

[1] Condor, http://www.cs.wisc.edu/condor/.

[2] Sun Grid Engine, http://wwws.sun.com/software/gridware/.

[3] PBS, http://www.openpbs.org/.

[4] LSF, http://www.platform.com/products/LSF/.

[5] Hamscher, V., Schwiegelshohn, U., Streit, A. and Yahyapour, R. Evaluation
of Job-Scheduling Strategies for Grid Computing. GRID 2000, 191–202, 17–20

December 2000, Bangalore, India. Lecture Notes in Computer Science,

Springer-Verlag.

[6] Srinivasan, S., Kettimuthu, R., Subramani, V. and Sadayappan, P.

Characterization of Backfilling Strategies for Parallel Job Scheduling. ICPP Work-

shops 2002, 514–522, August 2002, Vancouver, BC, Canada. CS Press.

[7] DAGManager, http://www.cs.wisc.edu/condor/dagman/.

[8] Ghare, G. and Leutenegger, S. Improving Small Job Response Time for
Opportunistic Scheduling. Proceedings of 8th International Workshop on

Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS 2000), San Francisco, CA, USA. CS Press.

[9] Raman, R., Livny, M. and Solomon, M. Matchmaking: Distributed Resource
Management for High Throughput Computing. Proceedings of the 7th IEEE

International Symposium on High Performance Distributed Computing, July

1998, Chicago, IL, USA. CS Press.

[10] Enterprise Edition policy, http://www.sun.com/blueprints/0703/817-3179.

pdf.

[11] N1GE 6 Scheduling, http://docs.sun.com/app/docs/doc/817-5678/

6ml4alis7?a=view.

[12] PBS Pro, http://www.pbspro.com/.

[13] Figueira, M., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S.,

Spring, N., Su, A. and Zagorodnov, D. Adaptive Computing on the Grid

Using AppLeS. IEEE Transactions on Parallel and Distributed Systems, 14(4):
369–382 (2003).

[14] NWS, http://nws.cs.ucsb.edu/.

[15] Dail, H., Berman, F. and Casanova, H. ADecoupled Scheduling Approach for

Grid Application Development Environments. Journal of Parallel Distributed
Computing, 63(5): 505–524 (2003).

[16] Abramson, D., Giddy, J. and Kotler, L. High Performance Parametric Modeling
with Nimrod/G: Killer Application for the Global Grid? Proceedings of the

International Parallel and Distributed Processing (IPDPS 2000), May 2000,

Cancun, Mexico. CS Press.

[17] Gerasoulis, A. and Jiao, J. Rescheduling Support for Mapping Dynamic Scientific
Computation onto Distributed Memory Multiprocessors. Proceedings of the

Euro-Pa ’97, August 1997, Passau, Germany. Lecture Notes in Computer

Science, Springer-Verlag.

[18] Goux, Jean-Pierre, Kulkarni, Sanjeev, Yoder, Michael and Linderoth, Jeff.

Master-Worker: An Enabling Framework for Applications on the

Computational Grid. Cluster Computing, 4(1): 63–70 (2001).

[19] Cactus, http://www.cactuscode.org/.

300 GRID SCHEDULING AND RESOURCE MANAGEMENT

[20] Spooner, D., Jarvis, S., Cao, J., Saini, S. and Nudd, G. Local Grid Scheduling

Techniques using Performance Prediction, IEE Proc. – Comp. Digit. Tech.,
150(2): 87–96 (2003).

[21] Young, L., McGough, S., Newhouse, S. and Darlington, J. Scheduling
Architecture and Algorithms within the ICENI Grid Middleware. Proceedings of
the UK e-Science All Hands Meeting, September 2003, Nottingham, UK.

[22] YarKhan, A. and Dongarra, J. Experiments with Scheduling Using Simulated
Annealing in a Grid Environment. Proceedings of the 3rd International Work-

shop on Grid Computing (GRID 2002), November 2002, Baltimore, MD,

USA. CS Press.

7
Workflow Management
for the Grid

LEARNING OUTCOMES

In this chapter, we will study Grid workflow management. From

this chapter, you will learn:

• What a workflow management system is and the roles it will

play in the Grid.

• The techniques involved in building workflow systems.

• The state-of-the-art development of workflow systems for the

Grid.

CHAPTER OUTLINE

7.1 Introduction

7.2 The Workflow Management Coalition

7.3 Web Services-Oriented Flow Languages

7.4 Grid Services-Oriented Flow Languages

7.5 Workflow Management for the Grid

The Grid: Core Technologies Maozhen Li and Mark Baker

© 2005 John Wiley & Sons, Ltd

302 WORKFLOWMANAGEMENT FOR THE GRID

7.6 Chapter summary

7.7 Further reading and testing

7.1 INTRODUCTION

As we have discussed in Chapter 2, OGSA is becoming the

de facto standard for building service-oriented Grid systems. OGSA

defines Grid services as Web services with additional features and

attributes. AWeb service itself is a software component with a spe-

cific WSDL interface that completely describes the service and how

to interact with it. Information about a particular Web service can

be published in a registry, such as UDDI. A client interacts with

the registry to search and discover the services available. SOAP is

a protocol for message exchanging between a client and a service.

Apart from that, an important feature of Web services is service

composition in which a compound service can be composed from

other services.

The main goal of OGSA is to make compliant Grid services

interoperable. Grid services can be used in the following two ways:

independent pre-OGSA Grid services and interdependent OGSA

compliant Grid services.

Independent pre-OGSA Grid services
As shown in Figure 7.1, a user makes use of independent pre-

OGSA Grid services to access the Grid. These services normally

interact with a pre-OGSA Grid middleware toolkit such as the GT2

to access Grid resources.

Figure 7.1 Accessing the Grid via independent Grid services

TE
AM
 F
LY

7.2 THE WORKFLOW MANAGEMENT COALITION 303

Figure 7.2 Accessing the Grid via interdependent OGSA services

Interdependent OGSA compliant Grid services
OGSA compliant Grid services are interoperable and can be com-
posed in aGrid application. The execution of aGrid applicationmay
involve the running of a number of interdependent Grid services.
These services then interact with an OGSA compliant Grid middle-
ware toolkit such as the GT3 to access Grid resources. As shown in
Figure 7.2, interdependent OGSA compliant Grid services are the
one where the output of one service can be an input of another ser-
vice. Services can also be composed into an amalgamated service
accessed directly by users. The interactions and executions of ser-
vices are managed by a workflowmanagement system, specifically
a workflow engine, whichwill be described in this chapter.

This chapter is organized as follows. In Section 7.2, we introduce
theWorkflowManagement Coalition (WfMC) [1], a workflow stan-
dard body to promote the interoperability of heterogeneous work-
flow systems. In Section 7.3, we describe workflow management in
the context of Web services. In Section 7.4, we review the state-of-
the-art of workflow development for the Grid. In Section 7.5, we
conclude the chapter and provide further readings in Section 7.6.

7.2 THE WORKFLOW MANAGEMENT COALITION

Founded in August 1993, now with more than 300 members from
both industry and academia, WfMC aims to identify the common
workflow management functional areas and develop appropriate

304 WORKFLOW MANAGEMENT FOR THE GRID

specifications for workflow systems. WfMC defines a workflow as

follows:

The automation of a business process, in whole or part, dur-

ing which documents, information or tasks are passed from

one participant to another for action, according to a set of

procedural rules [2].

Figure 7.3 shows the mapping from a business process in the real

world to a workflow process in the world of computer systems.

A workflow process is a coordinated (parallel and/or sequential)

set of process activities that are connected in order to achieve a

common business goal. A process activity is defined as a logical

step or description of a piece of work that contributes towards the

accomplishment of a process. A process activity may be a manual

process activity and/or an automated process activity. A workflow

process is first specified using a process definition language and

then executed by aWorkflowManagement System (WFMS), which

is defined by WfMC as follows:

A system that defines, creates and manages the execution of

workflows through the use of software, running on one or

more workflow engines, which is able to interpret the process

definition, interact with workflow participants and, where

required, invoke the use of information technology tools and

applications [2].

WfMC defines a reference model, as shown in Figure 7.4, to iden-

tify the interfaces within a generic WFMS. The reference model

specifies a framework for workflow systems, identifying their

Figure 7.3 Mapping a business process to a workflow process

7.2 THE WORKFLOW MANAGEMENT COALITION 305

Figure 7.4 The WfMC reference model

characteristics, functions and interfaces. A major focus of WfMC
has been on specifying the five interfaces that surround the work-
flow engine. These interfaces provide a standard means of com-
munication between workflow engines and clients, including other
workflow components such as process definition and monitoring
tools.

7.2.1 The workflow enactment service

A workflow enactment service provides the run-time environment
in which one or more workflow processes can be executed; which
may involve more than one actual workflow engine. A work-
flow enactment service can be a homogeneous or a heterogeneous
service. A homogeneous service consists of one or more com-
patible workflow engines which provide the run-time execution
environment for workflow processes with a defined set of process
definition attributes. On the other hand, a heterogeneous service
consists of two or more heterogeneous services which follow
common standards for interoperability at a defined conformance
level. When heterogeneous services are involved, a standardized
interchange format is necessary between workflow engines. Using
interface 4 (which will be described later in this section), the
enactment service may transfer activities or sub-processes to other
enactment services for execution.

306 WORKFLOW MANAGEMENT FOR THE GRID

7.2.2 The workflow engine

A workflow engine provides the run-time environment for acti-
vating, managing and executing workflow processes. The WfMC
focuses on a paradigm in which the workflow engine instantiates
a workflow specification defined by a flow language, decomposes
it into smaller activities and then allocates activities to process-
ing entities for execution. This approach distinguishes between
the process definition, which describes the processes to be exe-
cuted, and the process instantiation, which is the actual enactment
(execution) of the process. This paradigm is referred to as the
scheduler-based paradigm [3].

7.2.2.1 A scheduler-based paradigm

The implementation and deployment of the scheduler-based
approach to a workflow engine can be described in terms of a state
transition machine. Individual process or activity instances change
state in response to workflow engine decisions or external events,
such as the completion of an activity. A process instance may be
initiated once selected for enactment; it is active after at least one
of its activities has been started; suspended, when perhaps waiting
for some events or completed. Similarly, an activity may be inactive,
active, suspended or completed. It is the role of the workflow engine to
manage this state transition, selecting processes to be instantiated,
initiating activities by scheduling them to processing components,
and controlling and monitoring the resulting state transitions. The
workflow engine must also implement the rules that govern the
transitions between tasks, updating the processes as tasks complete
or fail, and taking appropriate actions in response.
The scheduler-based paradigm has been widely used. However,

there are two alternative paradigms, namely data-flow and informa-
tion pull:

• The data-flow paradigm views the workflow as a repository of
data that is passed between processing activities according to
sets of rules, the current state and history information related to
the workflow.

• The information pull paradigm originated with the network and
informationmanagement fields, where the requirement for infor-
mation drives the creation and enactment of workflow processes.

7.2 THE WORKFLOW MANAGEMENT COALITION 307

7.2.2.2 Workflow engine tasks

A workflow engine normally performs the following tasks.

Process selection
One key responsibility of the workflow engine is to manage the

selection and instantiation of process templates. The engine will

respond to some stimulus (i.e. a triggering event) by selecting a

suitable process from the library of templates. Examples of possible

triggering events include the arrival of a new user request, the

generation of a product by an already active process or even the

passage of time. The workflow engine manages the instantiation

of the relevant process. There may be alternative and applicable

processes that must be compared with the triggering conditions

and selected as appropriate. In many existing WFMSs this task is

trivial, as there is none or little choice among processes, given the

predefined stimulus for enactment. But there are domains where

there may be many, or even no, directly applicable and valid

processes for a given stimulus, thus requiring process selection,

adaptation or even dynamic process creation.

Task allocation
Once a process is selected and instantiated, the workflow engine

forwards activities to an activity list manager to allocate the activi-

ties to processing entities. An activity is assigned to a processing

entity according to its capability, availability and the temporal and

sequencing constraints of the activity. This allocation of tasks can

be treated as a scheduling problem. Thus, the workflow engine

takes a centralized role in coordinating the operation of processing

entities.

Scheduling techniques within workflow management systems

have employed straightforward enumerative or heuristic-based

algorithms to date. As the complexity of WFMS domains increases,

more sophisticated approaches that provide robust reactive

scheduling will be critical to accommodate processing entities.

Enactment control, execution monitoring and failure recovery
The workflow engine must maintain all the knowledge and

internal control data to identify the state of each of the indi-

vidually instantiated activities, transition conditions, connections

among processes (e.g. parent/child relationships) and performance

308 WORKFLOW MANAGEMENT FOR THE GRID

metrics. The WfMC defines two types of data relevant to the con-
trol and monitoring of workflow processes:

• Workflow control data encompass state information about pro-
cesses, activities, and possibly performance criteria. It is internal
information managed directly by a workflow engine.

• Workflow relevant data is used by the WFMS to determine when
to enact new processes and when the transition among states
within enacted processes should be performed.

7.2.3 WfMC interfaces

The WfMC has identified five functional interfaces (Figure 7.4) that
are described below.

Interface 1
This interface defines a common meta-model for describing work-
flow process definitions, a textual grammar in Workflow Process
Definition Language (WPDL) for the interchange of process defi-
nitions and a set of APIs for the manipulation of process definition
data. The WPDL has been replaced by XML Process Definition
Language (XPDL) [4] which allows the definition of processes in a
standardized format via XML.
XPDL is conceived as a graph-structured language with addi-

tional concepts to handle blocks of workflow processes. In XPDL,
process definitions cannot be nested and routing is handled by the
specification of transitions between activities. The activities in a
process can be thought of as the nodes of a directed graph, with
the transitions being the edges. Conditions associated with the
transitions determine at execution time which activity or activities
should be executed next.

Interface 2
Interface 2 defines how client applications interact with different
workflow systems. It was specified as a series of Workflow APIs to
allow the control of process, activity and worklist handling func-
tions. These APIs were originally defined in “C” and subsequently
re-expressed in CORBA IDL and Microsoft’s Object Linking and
Embedding (OLE).

Interface 3
Interface3definesasetofAPIs for invoking third-partyapplications.

7.2 THE WORKFLOW MANAGEMENT COALITION 309

Interface 4
Interface 4 defines the interoperability of workflow engines. It
comprises an interchange protocol covering five basic operations,
specified in abstract terms and with separate concrete bindings.
The initial version was defined as a MIME body part for use with
email; subsequent versions have been specified in XML (Wf-XML)
[5], which is an interoperability specification defined by WfMC.
It combines the elementary concept of Simple Workflow Access
Protocol (SWAP) [6] with the abstract commands defined by the
WfMC Interface 4. Wf-XML defines a set of request/response mes-
sages that are exchanged between an observer, which may or
may not be a WFMS, and a WFMS that controls the execution
of a remote workflow instance. Figure 7.5 shows the interaction
between two workflow engines (A and B) via Wf-XML. Ongoing
work has lead to version 2 of Wf-XML, layered over SOAP and
Asynchronous Service Access Protocol (ASAP) [7].

Interface 5
Interface 5 allows several workflow services to share a range of
common management and monitoring functions. The proposed
interface provides a complete view of the status of a workflow in
an organization.

7.2.4 Other components in the WfMC
reference model

• Process definition tools provide users with the ability to analyse
andmodel actual business processes and generate corresponding

Figure 7.5 The interoperation of workflow engines via Wf-XML

310 WORKFLOW MANAGEMENT FOR THE GRID

representations. The design of a process definition can be sepa-

rated from the run time of the process, which makes it possible

for a process definition to be executed by an arbitrary workflow

system implementing this interface at run time.

• Client applications interact with a workflow engine, requesting

facilities and services from the engine. Client applications may

perform some common functions such as work list handling,

process instance initiation and process state control functions.

• Invoked applications are applications that are invoked by a WFMS

to fully or partly perform an activity, or to support a workflow

participant in processing a work-item. Usually these invoked

applications are server based and do not have any user inter-

faces. The Interface 3 defines the semantics and syntax of the

APIs for standardized invocation, which includes session estab-

lishment, activity management and data handling functions.

• Administration and monitoring tools are used to manage and mon-

itor workflows. A management and monitoring tool may exist as

an independent application interacting with different workflow

engines. In addition, it may be implemented as an integral part of

a workflow enactment service with the additional functionality

to manage other workflow engines.

7.2.5 A summary of WfMC reference model

TheWfMC reference model is a general model that provides guide-

lines for developing interoperable WFMSs. However, at present,

most of the workflow management systems in the marketplace do

not implement all the interfaces defined by the reference model.

Usually, they implement a subset of interfaces and functionality

that is defined in the model.

7.3 WEB SERVICES-ORIENTED FLOW
LANGUAGES

Web services aim to exploit XML technology and the HTTP proto-

col by integrating applications that can be published, located and

invoked over the Web. To integrate processes across multiple busi-

ness enterprises, traditional interaction using standard messages

7.3 WEB SERVICES-ORIENTED FLOW LANGUAGES 311

and protocols is insufficient. Business interactions require long-

running exchanges that are driven by an explicit process model.

This raises the need for composition languages, which for Web

services are flow languages that are the means to manage the

orchestration of Web services, the instantiation and execution of

workflows. In this section, we give a brief overview of representa-

tive Web services flow languages that build on WSDL. These lan-

guages are either block structured, graph based or both. Whereas

a block-structured workflow language specifies a predefined order

in executing services, a graph-based workflow language uses

graphs to specify the data and control flows between services.

7.3.1 XLANG

XLANG [8], initially developed by Microsoft, is used to describe

how a process works as part of a business flow. It is a block-

structured language with basic control flow structures: <sequence>
and <switch> for conditional routing; <while> for looping; <all> for

parallel routing; and <pick> for race conditions based on timing

or external triggers. XLANG focuses on the creation of business

processes and the interactions between Web service providers. It

also includes a robust exception handling facility, with support for

long-running transactions through compensation.

An XLANG service is a WSDL service with a behaviour.

Instances of XLANG services are started either implicitly by spe-

cially marked operations or explicitly by some background func-

tionality. As shown in Figure 7.6, the XLANG sample specifies

the execution sequence of the two services: ServiceA and ServiceB.

The two services use WSDL to describe their interfaces.

7.3.2 Web services flow language

Web Services Flow Language (WSFL) [9], initially developed by

IBM, is a graph-based language that defines a specific order of

activities and data exchanges for a particular process. It defines

both the execution sequence and the mapping of each step in the

flow to specific operations, referred to as flow models and global

models.

312 WORKFLOW MANAGEMENT FOR THE GRID

<definition>

ServiceA WSDL description
ServiceB WSDL description

<xlang:behavior>
<xlang:body>

<xlang:sequence>
<xlang:action operation=“OpA” port=“ServiceA”activation=“true”/>
<xlang:action operation=“OpB” port=“ServiceB”/>

</xlang:sequence>
</xlang:body>

</xlang:behavior>

</definition>

Figure 7.6 An XLANG sample

Flow model
The flow model in WSFL specifies the execution sequence of the

composed Web services and defines the flow of control and data

exchange between Web services involved. Figure 7.7 shows a flow

model sample in WSFL to define how the two service providers

can collaborate. controlLink and dataLink are used to separate data

from control in service interactions.

<flowModel name=“myWorkflow” serviceProvierType=“”>
<serviceProvider name=“Provider A” type=“”>

<locator type=”static” service=”Provider A.com”/>
</serviceProvider>
<serviceProvider name=“Provider B” type=“”>

<locator type=“static” service=“Provider B.com”/>
</serviceProvider>
<activity name=“Activity A”>

<performedBy serviceProvider=“Provider A”/>
<implement><export><target portType=“” operation=” OpA”/>
</export></implement>

</activity>
<activity name=ActivityB>

<performedBy serviceProvider=“Provider A”/>
� � �

</activity>
<controlLink source=“Activity A” target=“ActivityB”>
<dataLink source=“Activity A “target=“Activity B”/>

<map sourceMessage=“” targetMessage=“”/>
</dataLink>

</flowModel>

Figure 7.7 A flow model sample in WSFL

7.3 WEB SERVICES-ORIENTED FLOW LANGUAGES 313

Global model
The global model in WSFL describes how the composed Web ser-

vices interact with each other. The interactions are modelled as

links between endpoints of the Web services’ interfaces in terms

of WSDL, with each link corresponding to the interaction of one

Web service with another’s interface.

A WSFL definition can also be exposed with a WSDL interface,

allowing for recursive decomposition.WSFL supports the handling

of exceptions but has no direct support for transactions. In contrast

to XLANG, WSFL is not limited to block structures and allows

for directed graphs. The graphs in WSFL can be nested but need

to be acyclic. Iteration in WSFL is only supported through exit

conditions, i.e. an activity or a sub-process is iterated until its exit

condition is met.

7.3.3 WSCI

Web Services Choreography Interface (WSCI) [10], initially

developed by Sun, SAP, BEA and Intalio, is a block-structured

language that describes the messages exchanged betweenWeb ser-

vices participating in a collaborative exchange. WSCI was recently

published as a W3C note. As shown in Figure 7.8, a WSCI chore-

ography would include a set of WSCI interfaces associated with

Web services, one for each partner involved in the collabora-

tion. In WSCI, there is no single controlling process managing the

interaction between collaborative parties.

Figure 7.8 A view of WSCI

314 WORKFLOW MANAGEMENT FOR THE GRID

Each action in WSCI represents a unit of work, which typically

would map to a specific WSDL operation. While WSDL describes

the entry points for each Web service, WSCI describes the inter-

actions among these WSDL operations. WSCI supports both basic

and structured activities. For example, <action> is used for defining

a basic request or response message; <call> for invoking external

services; <all> for indicating that the specific actions have to be

performed, but not in any particular order.

Each activity specifies the WSDL operation involved and the

role being played by this participant. WSCI supports the definition

of the following types of choreographies:

• Sequential execution: The activities must be executed in a sequen-

tial order.

• Parallel execution: All activities must be executed, but they may

be executed in any order.

• Looping: The activities are repeatedly executed based on the eval-

uation of a condition or an expression. WSCI supports for-each,
while and repeat-until style loops.

• Conditional execution: One out of several sets of activities is

executed based on the evaluation of conditions (<switch>) or

based on the occurrence of an event (<choice>).

Figure 7.9 shows a WSCI example. An ordering process is

created containing two sequential activities, “Receive Order” and

“Confirm Order”. Each activity maps to a WSDL portType, and a

correlation is established between the two steps.

A key aspect of WSCI is that it only describes the observable or

visible behaviour between Web services. WSCI does not address

<process name=”Order” instantiation=”message”>

<sequence>
<action name=”ReceiveOrder” role=” Agent”operation=”tns:Order” />
<action name=”ConfirmOrder” role=” Agent” operation=”tns:Confirm”/>
<correlate correlation=”tns:ordered”/>
<call process=”tns:Order”/>

</action>
</sequence>

</process>

Figure 7.9 A WSCI example

7.3 WEB SERVICES-ORIENTED FLOW LANGUAGES 315

the definition of executable business processes as defined by

(BPEL4WS) which will be described below. Furthermore, a single

WSCI definition can only describe one partner’s participation in

a message exchange. For example, the WSCI definition as shown

in Figure 7.9 is the WSCI document from the perspective of the

Agent. The buyer and the supplier involved in the process also

have their own WSCI definitions.

7.3.4 BPEL4WS

The Business Process Execution Language for Web Services

(BPEL4WS) [11], proposed by IBM, Microsoft and BEA, builds

on WSFL and XLANG and combines the features of the block-

structured XLANG and the graph-based WSFL. BPEL4WS is

replacing XLANG and WSFL. Unlike a traditional programming

language implementation of a Web service, each operation of each

WSDL portType in the service does not map to a separate piece of

logic in BPEL4WS. Instead, the set of WSDL portTypes of the Web

service is implemented by one single BPEL4WS process. BPEL4WS

is intended to support the modelling of two types of processes:

executable and abstract processes. An abstract process specifies

the message exchange behaviour between different parties without

revealing the internal behaviour for anyone of them. An executable

process specifies the execution order between a number of activi-

ties constituting the process, the partners involved in the process,

the messages exchanged between these partners and the fault and

exception handling specifying the behaviour in cases of errors and

exceptions. Figure 7.10 shows the components in BPEL4WS.

The BPEL4WS itself is like a flow chart in which each step

involved is called an activity. An activity is either primitive or

structured. There are a collection of primitive activities: <invoke>
for invoking an operation on a Web service; <receive> for wait-

ing for a message from an external source; <reply> for generating

the response of an input/output operation; <wait> for waiting for

some time; <assign> for copying data from one place to another;

<throw> for indicating exceptions in the execution; <terminate>
for terminating the entire service instance; and <empty> for doing

nothing. Structured activities prescribe the order in which a collec-

tion of activities take place: <sequence> for defining an execution

order; <switch> for conditional routing; <while> for looping; <pick>

316 WORKFLOW MANAGEMENT FOR THE GRID

Figure 7.10 The architecture of BPEL4WS

for race conditions based on timing or external triggers; <flow> for

parallel routing; and <scope> for grouping activities to be treated

by the same fault-handler.

While standard Web services are stateless, workflows in

BPEL4WS are stateful with persistent containers. A BPEL4WS con-

tainer is a typed data structure which stores messages associated

with a workflow instance. A partner could be any Web service

that a process invokes or any Web service that invokes the pro-

cess. Each partner is mapped to a specific role that it fills within

the business process. A specific partner might play one role in

one business process but a completely different role in another

process. Message correlation is used to link messages and specific

workflow instances. A general structure of BPEL4WS is shown in

Figure 7.11.

Within the BPEL4WS model, data is accessed and manipulated

using XML standards. Transformations within <assign> activities

are expressed with XSLT [12] and XPath [13]. The use of XML as the

data format and XML Schema [14] as the associated type system

follows from the use of these standards in the WSDL specification.

While BPEL4WS supports the notion of “abstract processes”,

most of its focus is aimed at BPEL4WS executable processes.

7.3 WEB SERVICES-ORIENTED FLOW LANGUAGES 317

<process ...>

<partners> ... </partners>
<!-Web services that the process interacts with -->

<containers> ... </containers>
<!- Stateful data used by the process -->

<correlationSets> ... </correlationSets>
<!- Used to support asynchronous interactions -->

<faultHandlers> ... </faultHandlers>
<!-Alternate execution path to deal with faulty conditions -->

<compensationHandlers> ... </compensationHandlers>
<!-Code to execute when “undoing” an action -->

(activities)*
<!- What the process actually does -->

</process>

Figure 7.11 The BPEL4WS structure

BPEL4WS describes an executable process from the perspective

of one of the partners. WSCI takes more of a collaborative and

choreographed approach, requiring each participant in the mes-

sage exchange to define a WSCI interface.

7.3.5 BPML

Business Process Modelling Language (BPML) [15] is a meta-

language for modelling business processes. The specification was

developed by Business Process Management Initiative (BPMI.org),

an independent organization chartered by Intalio, Sterling Com-

merce, Sun, CSC and others. BPML defines basic activities for

sending, receiving and invoking services available, along with

structured activities that handle conditional choices, sequential

and parallel activities, joins and looping. BPML also supports the

scheduling of tasks at specific times.

BPML is conceived as a block-structured flow language. Recur-

sive block structure plays a significant role in scoping issues that

are relevant for declarations, definitions and process execution.

Flow control (routing) is handled entirely by the block-structure

concepts, e.g. execute all the activities in the block sequentially.

BPML provides transactional support and exception handling

mechanisms. Both short and long running transactions are sup-

ported, with compensation techniques used for more complex

transactions. BPML uses a scoping technique similar to BPEL4WS

318 WORKFLOW MANAGEMENT FOR THE GRID

to manage the compensation rules. It also provides the ability to

nest processes and transactions, a feature that BPEL4WS currently

does not provide. BPML and BPEL4WS both have capabilities to

define a business process. WSCI is now considered a part of BPML,

with WSCI defining the interactions between the services and

BPML defining the business processes behind each service [16].

7.3.6 A summary of Web services flow
languages

XLANG, WSFL, BPEL4WS, WSCI and BPML are flow languages

for Web services orchestration in terms of WSDL. References

[17, 18] compare their features and functionality in more depth.

Commercial products have been available to support these flow

languages. For example, Microsoft BizTalk Server [19] supports

XLANG; Collaxa Orchestration Server [20] support BPEL4WS; IBM

BPWS4J [21] supports BPEL4WS.

7.4 GRID SERVICES-ORIENTED FLOW
LANGUAGES

Built on Web services, OGSA promotes service-oriented Grid sys-
tems.We define aworkflow in a service-oriented system as follows:

The automation of service composition, in whole or part, dur-
ing which documents, information or tasks are passed from
one service to another for action, according to a set of proce-
dural rules.

While there are a number of flow languages available for Web

services composition, they cannot be directly used for the composi-

tion of Grid services due to the complexity and dynamic nature of

the Grid. In the following sections, we review some representative

flow languages for the composition of Grid services.

7.4.1 GSFL

Built on WSFL, Grid Services Flow Language (GSFL) [22] is a flow

language for the composition of OGSA compliant Grid services.

7.4 GRID SERVICES-ORIENTED FLOW LANGUAGES 319

Figure 7.12 shows a general GSFL definition. The features of GSFL

includes:

Service provider (<serviceProvider>)
All the services that are part of the workflow have to be specified in

the <serviceProvider> list which includes a name to uniquely identify

a service provider and a type to specify the type of a service to

be provided. Service providers can be located using the <locator>
element. Services can be located statically, via a URL, which would

point to an already running service. Factories in GSFL can also be

used to start services.

Activity model (<activityModel>)
For each of the services provided by a service provider, their oper-

ations have to be defined in the <activityModel> list. It contains a

list of activities, each of which has a name to identify the service

and a source which is a reference to an operation in a Web service

defined by an <endPointType> element. The <endPointType> ele-

ment contains the names of the operation: portType, portName and
serviceName for a particular operation.

Composition model (<compositionModel>)
The <compositionModel> describes how a composite service can be

composed from different Grid services. It describes the control and

data flow between various operations of the services, and also the

direct communication between them in a peer-to-peer fashion. The

<compositionModel> consists of an export model (<exportModel>)
and a notification model (<notificationModel>).

• The <exportModel> contains the list of activities that have to be

exported as operations of the workflow process. Any client can

invoke these operations in the workflow instance using standard

mechanisms. Since the workflow instance can also be viewed as

a standard Grid service, it can be used recursively as part of

another workflow process. For each activity exported, the con-

trol and data flow are described by the <controlModel> and the

<dataModel> respectively in the <exportModel>.
• The <notificationModel> is used for the communication between a

service source and sink, which helps peer services directly trans-

mit large amounts of data without going through the workflow

engine, as done by normal Web services flow languages such as

WSFL.

320 WORKFLOW MANAGEMENT FOR THE GRID

<
d
e
f
i
n
i
t
i
o
n
s
.
.
.
>

<
!
–
L
i
s
t
o
f
S
e
r
v
i
c
e
P
r
o
v
i
d
e
r
s
-
-
>

<
s
e
r
v
i
c
e
P
r
o
v
i
d
e
r
n
a
m
e
=
“
”
t
y
p
e
=
“
”
>
<
l
o
c
a
t
o
r
t
y
p
e
=
“
”
h
a
n
d
l
e
=
“
”
/
>
<
/
s
e
r
v
i
c
e
P
r
o
v
i
d
e
r
>
*

<
!
–
L
i
s
t
o
f
a
c
t
i
v
i
t
i
e
s
-
-
>

<
a
c
t
i
v
i
t
y
M
o
d
e
l
>

<
a
c
t
i
v
i
t
y
n
a
m
e
=
“
”
>
<
s
o
u
r
c
e
s
e
r
v
i
c
e
N
a
m
e
=
“
”
p
o
r
t
T
y
p
e
=
“
”
p
o
r
t
N
a
m
e
=
“
”
o
p
e
r
a
t
i
o
n
=
“
”
/
>
<
/
a
c
t
i
v
i
t
y
>
*

<
/
a
c
t
i
v
i
t
y
M
o
d
e
l
>

<
!
–
T
h
e
C
o
m
p
o
s
i
t
i
o
n
M
o
d
e
l
-
-
>

<
c
o
m
p
o
s
i
t
i
o
n
M
o
d
e
l
>

<
e
x
p
o
r
t
M
o
d
e
l
>

<
e
x
p
o
r
t
e
d
A
c
t
i
v
i
t
y
>

<
e
x
p
o
r
t
e
d
A
c
t
i
v
i
t
y
I
n
f
o
n
a
m
e
=
“
”
p
o
r
t
T
y
p
e
=
“
”
/
>

<
c
o
n
t
r
o
l
M
o
d
e
l
c
o
n
t
r
o
l
I
n
=
“
”
>
<
c
o
n
t
r
o
l
L
i
n
k
l
a
b
e
l
=
“
”
s
o
u
r
c
e
=
“
”
t
a
r
g
e
t
=
“
”
/
>
<
/
c
o
n
t
r
o
l
M
o
d
e
l
>

<
d
a
t
a
M
o
d
e
l
d
a
t
a
I
n
T
o
=
“
”
d
a
t
a
O
u
t
F
r
o
m
=
“
”
>
<
d
a
t
a
L
i
n
k
l
a
b
e
l
=
“
”
s
o
u
r
c
e
=
“
”
s
i
n
k
=
“
”
/
>
<
/
d
a
t
a
M
o
d
e
l
>

<
/
e
x
p
o
r
t
e
d
A
c
t
i
v
i
t
y
>
*

<
/
e
x
p
o
r
t
M
o
d
e
l
>

<
n
o
t
i
f
i
c
a
t
i
o
n
M
o
d
e
l
>
<
n
o
t
i
f
i
c
a
t
i
o
n
L
i
n
k
l
a
b
e
l
=
“
”
s
o
u
r
c
e
=
“
”
s
i
n
k
=
“
”
t
o
p
i
c
=
“
”
/
>
<
/
n
o
t
i
f
i
c
a
t
i
o
n
M
o
d
e
l
>

<
/
c
o
m
p
o
s
i
t
i
o
n
M
o
d
e
l
>

<
!
-
-
L
i
f
e
c
y
c
l
e
f
o
r
t
h
e
S
e
r
v
i
c
e
s
-
-
>

<
l
i
f
e
c
y
c
l
e
M
o
d
e
l
>

<
s
e
r
v
i
c
e
L
i
f
e
c
y
c
l
e
M
o
d
e
l
>
<
p
r
e
c
e
d
e
n
c
e
L
i
n
k
l
a
b
e
l
=
“
”
>

<
p
a
r
e
n
t
>
<
e
l
e
m
e
n
t
s
e
r
v
i
c
e
N
a
m
e
=
“
”
/
>
<
e
l
e
m
e
n
t
s
e
r
v
i
c
e
N
a
m
e
=
“
”
/
>
<
/
p
a
r
e
n
t
>

<
c
h
i
l
d
>
<
e
l
e
m
e
n
t
s
e
r
v
i
c
e
N
a
m
e
=
“
”
/
>
<
/
c
h
i
l
d
>

<
/
p
r
e
c
e
d
e
n
c
e
L
i
n
k
>
<
/
s
e
r
v
i
c
e
L
i
f
e
c
y
c
l
e
M
o
d
e
l
>

<
/
l
i
f
e
c
y
c
l
e
M
o
d
e
l
>

<
/
d
e
f
i
n
i
t
i
o
n
s
>

Fi
g
ur
e
7.
12

A
g
e
n
e
ra
ls
tr
u
c
tu
re

o
f
G
SF
L

7.4 GRID SERVICES-ORIENTED FLOW LANGUAGES 321

Lifecycle model (<lifeModel>)
The <lifecycleModel> addresses the order in the services and the
activities to be executed. The <serviceLifecycleModel> contains a list
of precedence links describing the order in which the services
are meant to execute. Hence, all services need not be instantiated
at start-up, but only once the preceding services have stopped
executing.

7.4.2 SWFL

Built on WSFL, Service Workflow Language (SWFL) [23] is a flow
language for the composition of Grid services. It extends WSFL in
three ways:

• SWFL improves the representation of conditional and loop con-
trol constructs. Currently WSFL can handle if-then-else, switch
and do-while constructs and permits only one service within each
conditional clause or loop body. SWFL also handles while and
for loops, as well as permitting sequences of services within
conditional clauses and loop bodies.

• SWFL permits more general data mappings than WSFL. For
example, SWFL can describe data mappings for arrays and com-
pound objects, as well as permitting an activity to receive input
data from more than one preceding activity.

• SWFL provides an assignment activity which allows the assign-
ment of one variable to another.

7.4.3 GWEL

Grid Workflow Execution Language (GWEL) [24] is a flow
language based on BPEL4WS. Similar to the BPEL4WS’s process
model, GWEL’s process model represents a peer-to-peer interac-
tion between services described in WSDL. Both the Grid work-
flow and its partners are modelled as Grid services with WSDL
interfaces.
A GWEL workflow definition can be seen as a template for

creating Grid service instances, performing a set of operations on
the instances and finally destroying them. The creation of instances
is always implicit which means that an occurrence of an activity

322 WORKFLOW MANAGEMENT FOR THE GRID

can result in the creation of an instance. The elements of GWEL
include <factoryLinks> for specifying services, <dataLinks> for spec-
ifying data sources or storage locations, variables for mapping
WSDL<messageTypes>,<faultHandlers> fordealingwith faults, <life-
cycle> for lifetime management of instances and <onNotification>,
<destroyInstanc>,<onAlarm>,<controlflow> for controllingflowdata.

7.4.4 GALE

The Grid Access Language for High-Performance Computing
(HPC) Environments (GALE) [25] is a flow language that defines a
HPC workflow vocabulary to specify complex task sequences that
are Grid site independent. The features of GALE are discussed
below.

Resource Query (<ResourceQuery>)
<ResourceQuery> is used to query the availability of Grid resources.
All Grid resources advertised in a Grid Information Service (GIS)
can be queried.

Computation (<Computation>)
A <Computation> is usually a computationally intensive activity
(like a physics simulation). A computation has any number of
environment settings, any number of application arguments and
any number of computation attributes, which specify things like
working directory or the name of a submission queue. An attribute
named input is used to specify the target properties of a <Resource-
Query> activity. The workflow engine uses this input attribute to
resolve information like executable paths, host contacts, default
environments and any other information that is required by the
computation. Finally, the id attribute is the unique identifier of the
Grid activity within the GALE interface document.

Data transfer (<DataTransfer>)
The data transfer directive in a workflow script instructs the work-
flow engine to execute the appropriate data transfer program. The
minimal arguments required are source and destination. The data
transfer activity recognizes Grid output variables set by resolving
query activities.

New features are being added to GALE, these include, e.g.
<DataTransfer> for indicating high-bandwidth tools and interfaces

7.5 WORKFLOW MANAGEMENT FOR THE GRID 323

to mass storage systems like High-Performance Storage System

(HPSS).

7.4.5 A summary of Grid services flow
languages

GSFL, SWFL, GWEL and GALE are XML-based languages for the

composition of Grid services. While GALE is designed specifically

for HPC systems, GSFL, SWFL and GWEL are based on Web

services composition languages, e.g. GSFL and SWFL are based

on WSFL, and GWEL is based on BPEL4WS. Since GSFL, SWFL

and GWEL are Web services based flow languages, they can be

leveraged for the composition of OGSA compliant Grid services.

While WSFL provides a flexible and effective basis for represent-

ing a Grid application, BPEL4WS is replacing WSFL. A standard

Grid services composition language is needed for the Grid, which

may be defined as a subset of a Web services composition language

such as BPEL4WS.

7.5 WORKFLOW MANAGEMENT FOR THE GRID

In this section, we review some current activities being carried out

in the area of workflow management for the Grid.

7.5.1 Grid workflow management projects

7.5.1.1 BioPipe

BioPipe [26] is a cluster-level workflow framework that seeks to

address some of the complexity involved in carrying out large-

scale bioinformatics analyses. The main idea behind BioPipe is

to allow users to integrate data from disparate sources into a

common analysis framework. BioPipe is implemented as a col-

lection of Perl modules for constructing workflows from BioPerl

applications. BioPipe uses XML to define the pipeline including

a workflow definition, inputs/outputs. It provides a GUI for the

324 WORKFLOW MANAGEMENT FOR THE GRID

construction of workflows. With BioPipe, processes in a workflow
can be scheduled in a cluster environment using PBS or LSF.

7.5.1.2 myGrid

myGrid [27] is a project targeted at developing open source high-
level service-orientedmiddleware to support data intensive in silico
experiments in biology on a Grid [28]. The Taverna project [29], a
component in the myGrid project, provides a workflowworkbench
to visually build, edit and browse workflows. The workbench
includes easy import of external Web services and workflow defi-
nitions and can submit workflows directly to the workflow enactor
for execution. The enactor coordinates execution of the parallel
and sequential activities in the workflow and supports data itera-
tion and nested workflows. The enactor can invoke arbitrary Web
services as well as more specific bioinformatic services such as
Talisman [30] (an open source rapid application development plat-
form with a particular focus on the bioinformatics domain) and
SoapLab [31]. In Taverna, workflows are represented in the Scufl
language [32].

7.5.1.3 IT Innovation Workflow Enactment Engine

The IT Innovation Workflow Enactment Engine [33] is one com-
ponent within the myGrid project. It is a WSFL-based workflow
orchestration tool for Web services. It can search a standard UDDI
registry, given preferences from the workflow author, to obtain
actual service instances to invoke. It provides a GUI for the con-
struction of workflows.

7.5.1.4 Triana

Triana [34] is an open-source problem-solving environment writ-
ten in Java, which allows the user to compose workflows from
existing codes in a variety of problem domains. Triana uses XML
and contains a workflow engine for coordinating and invoking a
set of Grid services. Triana provides a GUI for the construction
of workflows. BPEL4WS readers and writers have been integrated
with Triana to handle BPEL4WS graphs.

7.5 WORKFLOW MANAGEMENT FOR THE GRID 325

7.5.1.5 JISGA

Jini-based Service-oriented Grid Architecture (JISGA) [35] is a

Jini-based service-oriented workflow management system for

the Grid. JISGA provides the following support for workflow

management:

• It defines the SWFL as described in Section 7.4.2 for Grid services

composition.

• It provides the Visual Service Composition Environment (VSCE)

which is a graphical user interface that aids services composition.

A composite service is described in SWFL.

• It includes a Workflow Engine that provides a run-time environ-

ment for executing composite services described in SWFL. The

SWFL2Java tool is used to automatically generate Java codes

from a SWFL definition.

7.5.1.6 ICENI

Imperial College e-Science Networked Infrastructure (ICENI) [36]

is middleware that provides a dynamic service management

framework to aid resource administrators, application develop-

ers and end users to manage and use Grid environments. ICENI

provides a GUI-based workflow tool for service composition; that

supports spatial and temporal composition. In spatial composition,

all the components that make up an application are represented

simultaneously, with information representing how they relate

and interact with each other. There is no ordering between the

components. In temporal composition, all components are ordered

with respect to their temporal dependence. Concurrency, where it

exists, is explicit.

Each component has attached workflow information, which con-

sists of a graph in which the directed arcs represent temporal

dependence, e.g. a node’s behaviour occurs after those which have

an arc directed to it. Each node represents some behaviour, and

the behaviour happens in an ordered fashion, beginning with the

Start nodes, and finishing with the Stop nodes.

Once the components and links of an application are deter-

mined using spatial composition, a textual “execution plan” will

be generated and defined in an XML-based language derived

326 WORKFLOW MANAGEMENT FOR THE GRID

from YAWL (Yet Another Workflow Language) [37]. The ICENI

workflow system supports conditionals, loops and parallel execu-

tion of workflow activities.

7.5.1.7 BioOpera

BioOpera [38] provides a programming environment for multi-

ple step computations over heterogeneous applications, including

program invocations, the management of control and data flow.

It also provides a run-time environment for processes navigation,

distribution, load balancing and failure recovery. It provides mon-

itoring tools at process and task levels. BioOpera provides a GUI

tool for the construction of workflows from Web services and Grid

components. BioOpera represents a workflow “process template”

as a Directed Acyclic Graph (DAG), and translates this set of activ-

ities into an executable Condor-G script.

7.5.1.8 GridFlow

GridFlow [39] is a Grid workflow management system based on

ARMS [40] (an agent-based resource management system), Titan

[41] (a resource scheduling system) and PACE [42] (a performance

prediction tool). Workflow management in GridFlow is performed

at multiple layers:

• Tasks: Tasks are the smallest elements in a workflow. In general,

workflow tasks are MPI and PVM jobs running on multiple

processors, data transfers to visualization servers or archiving of

large data sets to mass storage. Task scheduling is implemented

using Titan, which focuses on the sub-workflow and workflow

levels of management and scheduling.

• Sub-workflow: A sub-workflow is a flow of closely related tasks

that is to be executed in a predefined sequence on resources in

a local cluster environment.

• Workflow: A Grid application can be represented as a flow of

several different activities, with each activity represented by

a sub-workflow. These activities are loosely coupled and may

require multi-sited Grid resources.

7.5 WORKFLOW MANAGEMENT FOR THE GRID 327

The user portal in GridFlow provides a GUI to facilitate the compo-
sition of workflow elements and the access to additional services.
Grid workflows are described in XML, which will be parsed by a
global workflow management system in GridFlow for simulation,
execution and monitoring.

7.5.1.9 CCA

The CommonComponent Architecture (CCA) [43] project defines a
common architecture for building large-scale scientific applications
from well-tested software components that run on both parallel
and distributed systems. XCAT [44] is a Web services-based CCA
implementation. XCAT allows components to be connected to each
other dynamically using ports, making it possible to build complex
applications from simple components described in XML.

7.5.1.10 Geodise

The Geodise project [45] aims to assist engineers in the design
process by making available a suite of design search and optimiza-
tion tools, Computational Fluid Dynamics (CFD) analysis pack-
ages, resources, including computer, databases and knowledge
management technologies. The workflow construction environ-
ment (WCE) in Geodise provides a GUI for workflow construction
and validation, execution and visualization [46]. Process activities
in a Geodise workflow are Matlab scripts whose interactions are
defined in XML.

7.5.1.11 GridAnt

GridAnt [47] provides supports for mapping complex client-side
workflows, but also works as a simplistic client to test the function-
ality of different Grid services. GridAnt helps Grid applications
make a smooth transition from GT2 to GT3. GridAnt essentially
consists of four components: a workflow engine, a run-time envi-
ronment, a workflow vocabulary and a workflow monitor.

• Workflow engine: The workflow engine, which is based on Apache
Ant [48], is responsible for directing the flow of control and data

328 WORKFLOW MANAGEMENT FOR THE GRID

through multiple GridAnt activities. It is the central controller

that handles task dependencies, failure recovery, performance

analysis and process synchronization.

• Run-time environment: Apache Ant lacks the functionality to

support workflow compositions. In order to overcome the defi-

ciencies of Ant in the context of an advanced workflow system,

the GridAnt architecture introduces a run-time environment

that offers a globally accessible whiteboard-style communication

model. The run-time environment is capable of hosting arbi-

trary data structures that can be read and written by individual

GridAnt tasks. Additionally, the run-time environment supports

important constructs such as constants, arithmetic expressions,

global variables, array references and literals.

• Workflow vocabulary: The workflow vocabulary specifies a set of

predefined activities or tasks upon which complex workflows

can be developed.

• Workflow monitor: A workflow in GridAnt is specified in XML,

which can be edited with any text editor or loaded in a visu-

alization tool for monitoring the execution of elements in the

workflow.

7.5.1.12 Symphony

Symphony [49] is a Java-based composition and manipulation

framework for the Grid. The framework has two principal

elements: a composition and control environment in which a

meta-program is constructed and a backend execution environ-

ment in which the described computation is performed. Sym-

phony provides a GUI in which components are instantiated

and customized to describe specific programs and files. These

individual components can then be connected by links indi-

cating data-flow relationships. Individual components and com-

plete meta-programs can be saved, restored for later use and

shared with other users. During execution, the components initiate

and monitor the operations performed in the backend execution

environment. The operations are performed in terms of the

defined data-flow relationships. The backend execution environ-

ment uses Globus or proprietary mechanisms to access remote

resources.

7.5 WORKFLOW MANAGEMENT FOR THE GRID 329

7.5.1.13 Discovery Net

Discovery Net [50] provides knowledge discovery services that
allow users to conduct and manage complex data analysis and
knowledge discovery activities on the Grid. The workflow system
in the Discovery Net is based on data-flow dependencies. Each
element (node) of the workflow can describe some constraints
it has in terms of execution, e.g. the execution must occur on a
particular resource, the execution is done through a script or the
execution can be done on any resource available at run time. Data
analysis tasks in a workflow are defined with Discovery Process
Markup Language (DPML). In addition, Discovery Net workflows
can coordinate the execution of OGSA services through a Grid
service interface. Any of these workflows can then be published as
a new Grid service for programmatic access from other systems.

7.5.1.14 P-GRADE

P-GRADE [51] is graphical programming environment that pro-
vides an integrated workflow support to enable the construction,
execution and monitoring of complex applications on Grid envi-
ronments built with Condor-G/Globus or pure Condor. An appli-
cation workflow describes both the control flow and the data flow
of the jobs involved, which can be sequential, MPI, PVM or GRAP-
NEL jobs generated by the P-GRADE programming environment.
The execution of a workflow in P-GRADE is managed by Condor
DAGMan.

7.5.2 A summary of Grid workflow
management

Table 7.1 summarizes the Grid workflow management efforts as
described in Section 7.5.1 from the aspects of the support of GUI,
areas focused, languages for workflow definition, computing envi-
ronments. Apart from the efforts mentioned above, the Pegasus
[52] workflow manager in the GriPhyN [53] project can map and
execute complex workflows on the Grid. It introduces planning
for mapping abstract workflows to Grid resources. The notion of
an abstract workflow is to separate abstract entities such as the
actors, data and operations from their concrete instances.

330 WORKFLOW MANAGEMENT FOR THE GRID

Table 7.1 A comparison of Grid workflow management projects

Grid workflow

projects

GUI

support

Workflow

definition

language

Areas focused Computing

environments

BioPipe Yes XML Bioinformatics PBS, LSF

myGrid Yes XML/WSFL/

Sculf

Bioinformatics Web services

IT Innovation Yes XML/WSFL General Web services

Triana Yes XML/Part

BPEL4WS

General Web services/

JXTA

JISGA Yes XML/SWFL General Jini

ICENI Yes A subset of

YAWL

General Jini/OGSA

BioOpera Yes No Bioinformatics Condor, PBS,

Web services

GridFlow Yes XML General MPI/PVM

XCAT Yes XML General Web services

Geodise Yes XML Design search

optimization

Globus, Condor,

Web service,

Matlab

GridAnt Yes XML Grid services

deployment

GT2/GT3

Symphony Yes XML General JavaBeans

Discovery Yes XML/DPML Data analysis/

knowledge

discovery

Web services

P-GRADE Yes No General Globus/Condor

7.6 CHAPTER SUMMARY

In this chapter, we have studied workflow technologies. A work-

flow system provides users with the ability to efficiently build

service-oriented applications by simply plugging and playing ser-

vices together.

Workflow standard bodies, such as WfMC, are attempting to

define a standard specification for differentWFMSs to interoperate.

WfMC defines a reference model to specify the components that a

WFMS should follow and the functionality of these components.

However, workflow systems following the WfMC reference model

are currently focused on business processing.

Web services, upon which OGSA is based, are emerging as

a promising computing platform for heterogeneous distributed

7.7 FURTHER READING AND TESTING 331

systems. Services composition is an important feature of Web ser-
vices technology. Workflow languages such as WSFL, XLANG,
WSCI, BPEL4WS and BPML have been implemented for service
composition. Among them, BPEL4WS seems to have gained most
attention, from both Web services and Grid communities. How-
ever, flow languages used for Web services composition cannot be
used directly for Grid services composition because of the addi-
tional complexity of the Grid. Several flow languages, such as
GSFL, SWFL, GWEL and GALE, have been implemented for Grid
applications composition. Among them, GSFL and SWFL are based
on WSFL; GWEL is based on BPEL4WS; GALE is purely based on
XML. However, a standard flow language needs to be investigated,
which may be a subset of a Web services flow language such as
BPEL4WS to provide a standard way for services composition for
the Grid.
Currently many Grid projects, as reviewed in the chapter, can

provide some kinds of support for Grid workflow management.
We found that almost all of the projects use an XML-based vocab-
ulary for workflow description. However, each project has its own
workflow vocabulary for workflow definition; whereas a standard
vocabulary should be defined so that each workflow system would
use the same language, which would make workflows interoper-
able across workflow systems. In addition, the WfMC reference
model could be applied in designing interoperable workflow man-
agement systems for the Grid.
While workflow systems can efficiently improve the productiv-

ity in the construction of application, they are complex in nature,
especially for the Grid. Many standards need to be investigated
and specified by a Grid standard body such as GGF.

7.7 FURTHER READING AND TESTING

XML plays a critical role in defining workflows. All the flow lan-
guages reviewed in this chapter are XML-based. In this chapter,
we reviewed XML-based flow languages for Web services compo-
sition. However, non-XML-based languages, such as PSL [54] and
PIF [55] have been widely used for business process modelling,
mainly in Business Process Re-Engineering (BPR) systems.
For further testing, we’d suggest readers visit IBM’s Web site

to download BPWS4J for experiencing with Web services-oriented
workflow applications.

332 WORKFLOW MANAGEMENT FOR THE GRID

7.8 KEY POINTS

• A workflow management system provides users with the abil-

ity to quickly build Grid applications via the composition of

services.

• The main components in a service-oriented workflow system

include a GUI for discovering services available and visually

building service control/data flows, a language for represent-

ing workflows, a workflow engine for managing the run-time

behaviour and execution of services instances.

• WfMC provides a reference model for implementing interoper-

able workflow management systems.

• XML plays a critical role in defining workflows.

• WSFL, XLANG, WSCI, BPEL4WS and BPML are flow languages

that can be used for composing Web services with WSDL inter-

faces.

• GSFL, SWFL, GWEL are flow languages for composing Grid

applications. They are based on Web services flow languages,

e.g. GSFL and SWFL are based on WSFL; GWEL is based on

BPEL4WS.

• Many projects have been carried out to manage workflow on the

Grid. However, they have adopted or defined different work-

flow definition languages. A standard workflow vocabulary is

urgently needed to define a standard workflow definition lan-

guage for the Grid.

7.9 REFERENCES

[1] WfMC, http://www.wfmc.org/.

[2] Workflow Management Coalition: Terminology & Glossary. Document Num-

ber WfMC-TC-1011, February 1999.

[3] Cichocki, A., Helal, A.S., Rusinkiewicz, M. and Woelk, D. (1998).Workflow and
Process Automation: Concepts and Technology, Boston, MA, London. Kluwer.

[4] XPDL, www.wfmc.org/standards/docs/TC-1025_10_xpdl_ 102502.pdf.

[5] Wf-XML, www.wfmc.org/standards/docs/Wf-XML-1.0.pdf.

[6] Bolcer, G.A. and Kaiser, G.E. (1999). Collaborative Work: SWAP: Leveraging

the Web to Manage Workflow. IEEE Internet Computing, 3(1): 85–88.
[7] Keith, D.S. ASAP/Wf-XML 2.0 Cookbook. In Layna Fischer (ed.), TheWorkflow

Handbook 2004, Lighthouse Point, FL, USA. Future Strategies Inc.

[8] XLANG, http://www.ebpml.org/xlang.htm.

7.9 REFERENCES 333

[9] WSFL, http://www-3.ibm.com/software/solutions/webservices/pdf/

WSFL.pdf.

[10] WSCI, www.w3.org/TR/wsci/.

[11] BPEL4WS, http://www-106.ibm.com/developerworks/library/ws-bpel.

[12] XSLT, http://www.w3.org/TR/xslt.

[13] XPath, http://www.w3.org/TR/xpath.

[14] XML Schema, http://www.w3.org/XML/Schema.

[15] BPML, http://www.bpmi.org/.

[16] Peltz, C. (2003). Web Services Orchestration. HP Report.

[17] Aalst, W., Dumas, M. and Hofstede, A. (September 2003).Web Service Compo-
sition Languages: Old Wine in New Bottles? Proceedings of the EUROMICRO

2003, Belek near Antalya, Turkey. CS Press.

[18] Staab, S., Aalst, W., Benjamins, V.R., Sheth, A.P., Miller, J.A., Bussler,

Maedche, C.A., Fensel, D. and Gannon, D. (2003). Web Services: Been There,

Done That? IEEE Intelligent Systems, 18(1): 72–85.
[19] BizTalk, http://www.microsoft.com/biztalk/.

[20] Collaxa Orchestration Server, http://www.collaxa.com/home.index.jsp.

[21] IBM BPWS4J, http://alphaworks.ibm.com/tech/bpws4j.

[22] Krishnan, S., Wagstrom, P. and Laszewski, G. (2002). GSFL: A Work-

flow Framework for Grid Services. Preprint ANL/MCS-P980-0802, Argonne

National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA.

[23] Huang, H. and Walker, D. (June 2003). Extensions to Web Service Techniques
for Integrating Jini into a Service-Oriented Architecture for the Grid. Proceedings
of the International Conference on Computational Science 2003 (ICCS ’03),

Melbourne, Australia. Lecture Notes in Computer Science, Springer-Verlag.

[24] Cybok, D. (March 2004). A Grid Workflow Infrastructure, Presentation in

GGF-10, Berlin, Germany.

[25] Beiriger, J.I., Johnson, W.R., Bivens, H.P., Humphreys, S.L. and Rhea, R.

(2000). Constructing the ASCI Computational Grid. Proceedings of the Ninth

International Symposium on High Performance Distributed Computing

(HPDC 2000), Pittsburgh, Pennsylvania, USA. CS Press.

[26] BioPipe, http://www.biopipe.org/.

[27] myGrid, http://www.mygrid.org.uk/.

[28] Goble, C.A., Pettifer, S., Stevens, R. and Greenhalgh, C. (2003). Knowledge

Integration: In Silico Experiments in Bioinformatics, in The Grid 2: Blueprint
for a New Computing Infrastructure, Ian Foster and Carl Kesselman (eds), 2nd

edition, November, San Francisco, CA. Morgan Kaufmann.

[29] Taverna, http://taverna.sourceforge.net.

[30] Talisman, http://talisman.sourceforge.net/.

[31] SoapLab, http://industry.ebi.ac.uk/soaplab/.

[32] Scufl, http://taverna.sourceforge.net/scuflfeatures.html.

[33] Innovation Workflow, http://www.it-innovation.soton.ac.uk/mygrid/

workflow/.

[34] Taylor, I., Shields, M., Wang, I. and Rana, O. (2003). Triana Applications

within Grid Computing and Peer to Peer Environments. Journal of Grid Com-
puting, 1(2): 199–217. Kluwer Academic.

[35] Huang, Y. (2003). JISGA: A JINI-BASED Service-Oriented Grid Architec-

ture. International Journal of High Performance Computing Applications, 17(3):
317–327. SAGE Publication.

334 WORKFLOW MANAGEMENT FOR THE GRID

[36] ICENI, http://www.lesc.ic.ac.uk/iceni/.

[37] Aalst, W., Aldred, L., Dumas, M. and Hofstede, A. (2004). Design and Imple-
mentation of the YAWL system. Proceedings of the 16th International Con-

ference on Advanced Information Systems Engineering (CAiSE ’04), Riga,

Latvia. Lecture Notes in Computer Science, Springer-Verlag.

[38] Bausch, W., Pautasso, C., Schaeppi, R. and Alonso, G. (2002). BioOpera:
Cluster-Aware Computing. Proceedings of the IEEE International Conference

on Cluster Computing (Cluster 2002), Chicago, Illinois, USA. CS Press.

[39] Cao, J., Jarvis, S.A., Saini, S. and Nudd, G.R. (2003). GridFlow: Workflow
Management for Grid Computing. Proceedings of 3rd International Symposium

on Cluster Computing and the Grid (CCGRID ’03), Tokyo, Japan. CS Press.

[40] Cao, J., Jarvis, S.A., Saini, S., Kerbyson, D.J. andNudd, G.R. (2002). ARMS: An

Agent-based Resource Management System for Grid Computing. Scientific
Programming, Special Issue on Grid Computing, 10(2): 135–148. Wiley.

[41] Spooner, D.P., Cao, J., Turner, J.D., Keung, H.N., Jarvis, S.A. and Nudd G.R.

(2002). Localised Workload Management Using Performance Prediction and QoS
Contracts. Proceedings of 18th Annual UK Performance Engineering Work-

shop (UKPEW 2002), Glasgow, UK.

[42] Nudd, G.R., Kerbyson, D.J., Papaefstathiou, E., Perry, S.C., Harper, J.S. and

Wilcox, D.V. (2000). PACE – A Toolset for the Performance Prediction of

Parallel and Distributed Systems. International Journal of High Performance
Computing Applications, Special Issues on PerformanceModeling, Part I, 14(3):

228–251. SAGE Publication.

[43] CCA, http://www.cca-forum.org/.

[44] XCAT, http://www.extreme.indiana.edu/xcat/.

[45] Geodise, http://www.geodise.org.

[46] Xu, F. and Cox, S. (2003). Workflow Tool for Engineers in a Grid-Enabled Mat-
lab Environment. Proceedings of the UK e-Science All Hands Meeting 2003,

Nottingham, UK.

[47] GridAnt, http://www-unix.globus.org/cog/projects/gridant/.

[48] Apache Ant, http://ant.apache.org/.

[49] Lorch, M. and Kafura, D. (2002). Symphony – A Java-Based Composition
and Manipulation Framework for Computational Grids. Proceedings of 2nd

IEEE/ACM International Symposium on Cluster Computing and the Grid

(CCGRID ’02), Berlin, Germany. CS Press.

[50] Discovery Net, http://www.discovery-on-the.net.

[51] Kacsuk, P., Dózsa, G., Kovács, J., Lovas, R., Podhorszki, N., Balaton, Z. and

Gombás, G. (2003). P-GRADE: A Grid Programming Environment. Journal
of Grid Computing, 1(2): 171–197.

[52] Pegaus, http://pegasus.isi.edu/.

[53] GriPhyN, http://www.griphyn.org/.

[54] PSL, http://www.mel.nist.gov/psl/.

[55] PIF, http://ccs.mit.edu/pif/.

8
Grid Portals

LEARNING OUTCOMES

In this chapter, we will study Grid portals, which are Web-based

facilities that provide a personalized, single point of access to Grid

resources that support the end-user in one or more tasks. From

this chapter, you will learn:

• What is a Grid portal and what kind of roles will it play in the

Grid?

• First-generation Grid portals.

• Second-generation Grid portals.

• The features and limitations of first-generation Grid portals.

• The features and benefits of second-generation Grid portals.

CHAPTER OUTLINE

8.1 Introduction

8.2 First-Generation Grid Portals

8.3 Second-Generation Grid Portals

8.4 Chapter Summary

8.5 Further Reading and Testing

The Grid: Core Technologies Maozhen Li and Mark Baker

© 2005 John Wiley & Sons, Ltd

336 GRID PORTALS

8.1 INTRODUCTION

The Grid couples geographically dispersed and distributed het-

erogeneous resources to provide various services to users. We can

consider two main types of Grid users: system developers and end

users. System developers are those who build Grid systems using

middleware packages such as Globus [1], UNICORE [2] or Condor

[3]. The end users are the scientists and engineers who use the

Grid to solve their domain-specific problems perhaps via a portal.

A Grid portal is a Web-based gateway that provides seamless

access to a variety of backend resources. In general, a Grid portal

provides end users with a customized view of software and hard-

ware resources specific to their particular problem domain. It also

provides a single point of access to Grid-based resources that they

have been authorized to use. This will allow scientists or engineers

to focus on their problem area by making the Grid a transparent

extension of their desktop computing environment. Grid portals

currently in use include XCAT Science Portal [4], Mississippi Com-

putational Web Portal [5], NPACI Hotpage [6], JiPANG [7], The

DSG Portal [8], Gateway [9], Grappa [10] and ASC Grid Portal [11].

In this chapter, we will study Grid portals; the technologies they

employ and the mechanisms that they use. So far, Grid portal

development can be broadly classified into two generations. First-

generation Grid portals are tightly coupled with Grid middleware

such as Globus, mainly Globus toolkit version 2.x (GT2) written

in C. The second generation of Grid portals are those that are

starting to emerge and make use of technologies such as portlets

to provide more customizable solutions.

This chapter is organized as follows. In Section 8.2, we describe

technologies involved in the development of first-generation Grid

portals. We first present the three-tiered architecture adopted by

most portals of this generation. We then introduce some tools that

can provide assistance in the construction of these portals. Finally

we give a summary on the limitations of first-generation Grid

portals. In Section 8.3, we present the state-of-the-art development

of second-generation Grid portals. We first introduce the concept

of portlets and describe why they are so important for building

personalized portals. We then give three portal frameworks that

can be used to develop and deploy portlets. We conclude the

chapter in Section 8.4 and provide further reading material about

portals in Section 8.5.

8.2 FIRST-GENERATION GRID PORTALS 337

8.2 FIRST-GENERATION GRID PORTALS

In this section, we will study the first-generation Grid portals from

the points of view of architecture, services, implementation tech-

niques and integrated tools. Most Grid portals currently in use

belong to this category.

8.2.1 A three-tiered architecture

The first generation of Grid portals mainly used a three-tier archi-

tecture as shown in Figure 8.1. As stated in Gannon et al. [12], they
share the following characteristics:

• A three-tiered architecture, consisting of an interface tier of a

Web browser, a middle tier of Web servers and a third tier

of backend services and resources, such as databases, high-

performance computers, disk storage and specialized devices.

• A user makes a secure connection from their browser to a Web

server.

• The Web server then obtains a proxy credential from a proxy

credential server and uses that to authenticate the user.

Figure 8.1 The three-tiered architecture of first-generation Grid portals

338 GRID PORTALS

• When the user completes defining the parameters of the task

they want to execute, the portal Web server launches an appli-

cation manager, which is a process that controls and monitors

the actual execution of Grid task(s).

• The Web server delegates the user’s proxy credential to the

application manager so that it may act on the user’s behalf.

In some systems, the application manager publishes an event/

message stream to a persistent event channel archive, which

describes the state of an application’s execution and can be moni-

tored by the user through their browser.

8.2.2 Grid portal services

First-generation Grid portals generally provide the following Grid

services.

• Authentication: When users access the Grid via a portal, the portal

can authenticate users with their usernames and passwords.

Once authenticated, a user can request the portal to access Grid

resources on the user’s behalf.

• Job management: A portal provides users with the ability to

manage their job tasks (serial or parallel), i.e. launching their

applications via the Web browser in a reliable and secure way,

monitoring the status of tasks and pausing or cancelling tasks if

necessary.

• Data transfer: A portal allows users to upload input data sets

required by tasks that are to be executed on remote resources.

Similarly the portal allows results sets and other data to be

downloaded via a Web browser to a local desktop.

• Information services: A portal uses discovery mechanisms to find

the resources that are needed and available for a particular task.

Information that can be collected about resources includes static

and dynamic information such as OS or CPU type, current CPU

load, free memory or file space and network status. In addition,

other details such as job status and queue information can also

be retrieved.

8.2 FIRST-GENERATION GRID PORTALS 339

8.2.3 First-generation Grid portal
implementations

Most portals of this generation have been implemented with the

following technologies:

• A dynamic Graphical User Interface (GUI) based on HTML

pages, with JSP (Java Server Pages) or JavaScript. Common Gate-

way Interface (CGI) and Perl are also used by some portals.

CGI is an alternative to JSP for dynamically generating Web

contents.

• The secure connection from a browser to backend server is via

Transport Layer Security (TLS) and Secure HTTP (S-HTTP).

• Typically, a Java Servlet or JavaBean on the Web server handles

requests from a user and accesses backend resources.

• MyProxy [13] and GT2 GSI [14] are used for user authentication.

MyProxy provides credential delegation in a secure manner.

• GT2 GRAM [15] is used for job submission.

• GT2 MDS [16] is used for gathering information on various

resources.

• GT2 GSIFTP [17] or GT2 GridFTP [18] for data transfer.

• The Java CoG [19] provides the access to the corresponding

Globus services for Java programs.

The first-generation Grid portals mainly use the GT2 to provide

Grid services. One main reason for this is that Globus provides a

complete package and a standard way for building Grid-enabled

services.

8.2.3.1 MyProxy

MyProxy is an online credential management system for the Grid.

It is used to delegate a user’s proxy credential to Grid portals,

which can be authenticated to access Grid resources on the user’s

behalf. Storing your Grid credentials in a MyProxy repository

allows you to retrieve a proxy credential whenever and wherever

you need one. You can also allow trusted servers to renew your

proxy credentials using MyProxy, so, for example, long-running

340 GRID PORTALS

Figure 8.2 The use of MyProxy with a Grid portal

tasks do not fail due to an expired proxy credential. Figure 8.2

shows the steps to securely access the Grid via a Grid portal with

MyProxy.

1. Execute myproxy_init command on the computer where your

Grid credential is located to delegate a proxy credential on a

MyProxy server. The delegated proxy credential normally has

a lifetime of one week. The communication between the com-

puter and the MyProxy server is securely managed by TLS. You

need to supply a username and pass phrase for the identity of

your Grid credential. Then you need to supply another different

MyProxy pass phrase to secure the delegated proxy credential

on the MyProxy server.

2. Log into the Grid portal with the same username and MyProxy

pass phrase used for delegating the proxy credential.

3. The portal uses myproxy_get_delegation command to

retrieve a delegated proxy credential from the MyProxy server

using your username and MyProxy pass phrase.

4. The portal accesses Grid resources with the proxy credential on

your behalf.

5. The operation of logging out of the portal will delete your del-

egated proxy credential on the portal. If you forget to log off,

then the proxy credential will expire at the lifetime specified.

The detailed information about credentials and delegation can be

found in Chapter 4, Grid Security.

8.2 FIRST-GENERATION GRID PORTALS 341

8.2.3.2 The Java CoG

The Java Commodity Grid (CoG) Kit provides access to GT2 ser-
vices through Java APIs. The goal of the Java CoG Kit is to provide
Grid developers with the advantage to utilize much of the Globus
functionality, as well as, access to the numerous additional libraries
and frameworks developed by the Java community. Currently GT3
integrates part of Java CoG, e.g. many of the command-line tools
in GT3 are implemented with the Java CoG.
The Java CoG has been focused on client-side issues. Grid ser-

vices that can be accessed by the toolkit include:

• An information service compatible with the GT2 MDS imple-
mented with Java Native Directory Interface JNDI [20].

• A security infrastructure compatible with the GT2 GSI imple-
mented with the iaik security library [21].

• A data transfer mechanism compatible with a subset of the GT2
GridFTP and/or GSIFTP.

• Resource management and job submission with the GT2 GRAM
Gatekeeper.

• Advanced reservation compatible with GT2 GARA [22].

• A MyProxy server managing user credentials.

8.2.4 First-generation Grid portal toolkits

In this section, we introduce four representative Grid portal
toolkits: GridPort 2.0, GPDK, the Ninf Portal and GridSpeed. These
toolkits provide some sort of assistance in constructing the first-
generation Grid portals.

8.2.4.1 GridPort 2.0

The GridPort 2.0 (GP2) [23] is a Perl-based Grid portal toolkit. The
purpose of GP2 is to facilitate the easy development of application-
specific portals. GP2 is a collection of services, scripts and tools,
where the services allow developers to connect Web-based inter-
faces to backend Grid services. The scripts and tools provide
consistent interfaces between the underlying infrastructure, which
are based on Grid technologies, such as GT2, and standard Web

342 GRID PORTALS

Figure 8.3 The architecture of GP2

technologies, such as CGI. Figure 8.3 shows the architecture of
GP2. Its components are described below.

Client layer
The client layer represents the consumers of Grid portals, typically
Web browsers, PDAs or even applications capable of pulling data
from a Web server. Clients interact with a GP2 portal via HTML-
form elements and use secure HTTP to submit requests.

Portal layer
The portal layer consists of portal-specific codes. Application por-
tals run on standard Web servers and handle client requests and
provide responses to those requests. One instance of GP2 can sup-
port multiple concurrent application portals, but theymust exist on
the sameWeb server where they share the same instance of the GP2
libraries. This allows the application portals to share portal-related
user and account data and thereby makes possible a single-login
environment. GP2 portals can also share libraries, file space and
other services.

Portal services layer
GP2 and other portal toolkits or libraries reside at the portal ser-
vices layer. GP2 performs common services for application portals
including the management of session state, portal accounts and
Grid information services with GT2 MDS.

Grid services layer
The Grid services layer consists of those software components
and services that are needed to handle user requests to access
the Grid. GP2 employs simple, reusable middleware technologies

8.2 FIRST-GENERATION GRID PORTALS 343

e.g. GT2 GRAM for job submission to remote resources; GT2 GSI

and MyProxy for security and authentication; GT2 GridFTP and

the San Diego Supercomputer Center (SDSC) Storage Resource

Broker (SRB) for distributed file collection and management [24,

25]; and Grid Information Services based primarily on proprietary

GP2 information provider scripts and the GT2 MDS.

GP2 can be used in two ways. The first approach requires that

GT2 be installed because GP2 scripts wrap the GT2 command

line tools in the form of Perl scripts executed from cgi-bin. GT2

GRAM, GSIFTP, MyProxy are used to access backend Grid ser-

vices. The second approach does not require GT2, but relies on the

CGI scripts that have been configured to use a primary GP2 Portal

as a proxy for accessing GP2 services, such as user authentication,

job submission and file transfer. The second approach allows a

user to quickly deploy a Web server configured with a set of GP2

CGI scripts to perform generic portal operations.

8.2.4.2 Grid Portal Development Kit (GPDK)

GPDK [26] is another Grid portal toolkit that uses Java Server Pages

(JSPs) for portal presentation and JavaBeans to access backend

Grid resources via GT2. Beans in GPDK are mostly derived from

the Java CoG kit. Figure 8.4 shows the architecture of GPDK. Grid

service beans in GPDK can be classified as follows. These beans

can be used for the implementation of Grid portals.

Security
The security bean, MyproxyBean, is responsible for obtaining dele-

gated credentials from a MyProxy server. The MyproxyBean has a

method for setting the username, password and designated lifetime

of a delegated credential on the Web server. In addition, it allows

delegated credentials to be uploaded securely to theWeb server.

User profiles
User profiles are controlled by three beans: UserLoginBean, User-
AdminBean and the UserProfileBean.

• The UserLoginBean provides an optional service to authenticate

users to a portal. Currently, it only sets a username/password

344 GRID PORTALS

Figure 8.4 The GPDK architecture

and checks a password file on the Web server to validate user
access.

• The UserAdminBean provides methods for serializing a UserPro-
fileBean and validating a user’s profile.

• The UserProfileBean maintains user information including
preferences, credential information, submitted job history and
computational resources used. The UserProfileBean is generally
instantiated with session scope to persist for the duration of the
user’s transactions on the portal.

Job submission
The JobBean contains all the necessary functions used in submitting
a job including memory requirements, name of executable code,
arguments, number of processors, maximum wall clock or CPU
time and the submission queue. A JobBean is passed to a JobSub-
missionBean that is responsible for actually launching the job. Two
varieties of the JobSubmissionBean currently exist. The GramSub-
missionBean submits a job to a GT2 GRAM gatekeeper which can
either run the job interactively or submit it to a scheduling system
if one exists. The JobInfoBean can be used to retrieve a job-related
time-stamped information including the job ID, status and out-
puts. The JobHistoryBean uses multiple JobInfo beans to provide a
history of information about jobs that have been submitted. The
history information can be stored in the user’s profile.

8.2 FIRST-GENERATION GRID PORTALS 345

File transfer
The FileTransferBean provides methods for transferring files. Both
GSIFTPTranferBean and the GSISCPTransferBean can be used to
securely copy files from source to destination hosts using a user’s
delegated credential. The GSISCPTransferBean requires that GSI-
enabled SSH [27] be deployed on machines to which file transfer
via the GSI-enhanced “scp”. The GSIFTPTransferBean implements
a GSI-enhanced FTP for third-party file transfers.

Information services
The MDSQueryBean provides methods for querying a Lightweight
Directory Access Protocol (LDAP) server by setting and retrieving
object classes and attributes such as OS type, memory and CPU
load for various resources. LDAP is a standard for accessing infor-
mation directories on the Internet. Currently, the MDSQueryBean
makes use of the Mozilla Directory SDK [28] for interacting with
an LDAP server.

8.2.4.3 The Ninf Portal

The Ninf Portal [29] facilitates the development of Grid portals by
automatically generating a portal front-end that consists of JSP and
Java Servlets from a Grid application Interface Definition Language
(IDL) defined in XML. The Ninf Portal then utilizes a Grid RPC
system, such as Ninf-G [30] to interact with backend Grid services.
Figure 8.5 shows the architecture of Ninf Portal. The Ninf Portal
uses Java CoG to access a MyProxy server for the management of
user credentials.

JSP
The portal user interface, which consists of JSPs and Java Servlets,
can be automatically generated in the Ninf Portal. The JSP are used
to interact with users and display messages on the client-side. They
can also retrieve metadata from a data handling Servlet, which
is used to read uploaded data, execute a Grid application and
generate a result output page.

Ninf-G
Ninf-G is the Grid version of the Ninf system that runs on top
of the GT2, offering network-based numerical library functionality
via the use of RPC technology. Ninf-G supports asynchronous
communications between Ninf-G clients and Ninf-G servers.

346 GRID PORTALS

Figure 8.5 The Ninf Portal architecture

8.2.4.4 GridSpeed

GridSpeed [31], an extension of the Ninf Portal, is a toolkit for

building Grid portals. It provides a Grid application portal-hosting

server that automatically generates and publishes a customized

Web interface for accessing the backend Grid services. The main

aim of GridSpeed is to hide the complexity of the underlying

infrastructure from Grid users. It allows developers to define and

build their Grid application portals on the fly. GridSpeed focuses

on the generation of portals for specific applications that provide

services for manipulating complex tasks on the Grid. Figure 8.6

shows the architecture of GridSpeed. The main components are

briefly described below.

Access Controller
Based on GT2 GSI, the Access Controller is used for user authen-

tication and authorization. User credentials are managed by a

MyProxy server and accessed via the Java CoG kit.

Descriptors
There are three kinds of descriptors: user, application and resource.

A user descriptor contains information regarding a user’s account

information, a list of generated application portals and the location

of the MyProxy server that is used to retrieve the user’s credentials.

8.2 FIRST-GENERATION GRID PORTALS 347

Figure 8.6 The architecture of GridSpeed

A resource descriptor contains information related to how to access

a resource. An application descriptor contains information related

to application information, such as parameters, template files and

tasks. Each descriptor consists of an XML document defined by a

GridSpeed XML Schema.

Descriptor Repository
The Descriptor Repository is used for searching, storing and edit-

ing all registered descriptors.

Application Portal Generator
The Application Portal Generator is the core component of the

GridSpeed toolkit. It generates an application portal interface from

a set of required descriptors that are dynamically loaded from

the Descriptor Repository. The generator retrieves the necessary

XML documents, which are then marshalled into Java objects via

Castor [32], an open-source data binding framework for Java that

can generate Java objects from XML descriptions. The generator

produces a JSP file from the Java objects, which implement the

actual application portal page.

348 GRID PORTALS

8.2.5 A summary of the four portal tools

As shown in Table 8.1, the four toolkits provide various levels

of support for portal developers to build Grid portals. Apart

from GP2, which uses HTML pages for the portal–user interface,

the other three toolkits use JSP technology. Grid portals can be

grouped into two categories: user portals and application portals.

A user portal provides a set of fundamental services for portal

users, which includes single sign-on, job submission and tracking,

file management, resource selection and data management. An

application portal provides application-related services for users,

e.g. to construct a domain application for the Grid. In this context,

GP2 and GPDK are Grid user portal toolkits, and the Ninf Portal

and GridSpeed are Grid application portal toolkits.

From the portal support point of view, GP2 provides a por-

tal template and some CGI scripts in Perl for portal construc-

tion; GPDK provides a set of Java Beans for portal construction;

the Ninf Portal can automatically generate a portal–user inter-

face; GridSpeed can automatically generate a whole portal. When

designing a Grid portal, the Ninf Portal allows portal developers

to specify how to generate a portal via an application descrip-

tor; GridSpeed provides a comprehensive mechanism supporting

application, resource and user descriptors; GP2 and GPDK do not

support this feature. Apart fromGP2, the other three portal toolkits

use Java CoG to access Grid resources. To provide secure access, all

Table 8.1 A comparison of portal tool kits

GridPort 2.0 GPDK The Ninf Portal GridSpeed

Portal pages HTML JSP JSP JSP

Portal support User portal User portal Application

portal

Application

portal

Portal

construction

Perl/CGI JavaBeans Portal JSP

generation

Portal

generation

Portal descriptor Not

supported

Not

supported

Application

level

Application/

resource/

user level

Use of Java CoG No Yes Yes Yes

Use of MyProxy Yes Yes Yes Yes

Use of Globus Yes Yes Yes Yes

Portal

customization

No No No Being

supported

8.2 FIRST-GENERATION GRID PORTALS 349

the four portal toolkits use MyProxy for the management of user

credentials. All the four toolkits access backend Grid resources via

GT2 or earlier versions of Globus.

Whereas the four portal toolkits can provide some sort of assis-

tance in building Grid portals, they are mainly used by portal

developers instead of portal users, who cannot easily modify an

existing portal to meet their specific needs. Portals developed at

this stage are not customizable by the users. The GridSpeed devel-

opment team is currently working on the issue.

8.2.6 A summary of first-generation
Grid portals

First-generation Grid portals have been focused on providing basic

task-oriented services, such as user authentication, job submis-

sion, monitoring and data transfer. However, they are typically

tightly coupled with Grid middleware tools such as Globus. The

main limitations of first-generation portals can be summarized as

follows.

Lack of customization
Portal developers instead of portal users normally build portals

because the knowledge and expertise required to use the portal

toolkits, as described in this chapter, is beyond the capability of

most Grid end users. When end users access the Grid via a portal,

it is almost impossible for them to customize the portal to meet

their specific needs, e.g. to add or remove some portal services.

Restricted Grid services
First-generation Grid portals are tightly coupled with specific

Grid middleware technologies such as Globus, which results in

restricted portal services. It is hard to integrate Grid services pro-

vided by different Grid middleware technologies via a portal of

this generation.

Static Grid services
A Grid environment is dynamic in nature with more and more

Grid services are being developed. However, first-generation por-

tals can only provide static Grid services in that they lack a facility

to easily expose newly created Grid services to users.

350 GRID PORTALS

While there are limitations with first-generation Grid portals and

portal toolkits, the experiences and lessons learned in developing

Grid portals at this stage have paved the way for the development

of second-generation Grid portals.

8.3 SECOND-GENERATION GRID PORTALS

In this section, we discuss the development of second-generation

Grid portals. To overcome the limitations of first-generation

portals, portlets have been introduced and promoted for use in

building second-generation Grid portals. Currently, portlets are

receiving increasing attention from both the Grid community and

industry. In this section we review the current status of portlet-

oriented portal construction. First we introduce the concepts of

portlets and explain the benefits that they could provide.

8.3.1 An introduction to portlets

8.3.1.1 What is a portlet?

From a user’s perspective, a portlet [33] is a window (Figure 8.7)

in a portal that provides a specific service, e.g. a calendar or

news feed. From an application development perspective, a port-

let is a software component written in Java, managed by a portlet

container, which handles user requests and generates dynamic

contents. Portlets, as pluggable user interface components, can pass

information to a presentation layer of a portal system. The content

Figure 8.7 A portal with four portlets

TE
AM
 F
LY

8.3 SECOND-GENERATION GRID PORTALS 351

generated by a portlet is also called a fragment. A fragment is
a chunk of markup language (e.g. HTML, XHTML) adhering to
certain rules and can be aggregated with other fragments to form
a complete document. The content of a portlet is normally aggre-
gated with the content of other portlets to form the portal page.
A portlet container manages the life cycle of portlets in a portal.

8.3.1.2 Portlet container

A portlet container provides a run-time environment in which
portlets are instantiated, executed and finally destroyed. Portlets
rely on the overall portal infrastructure to access user profile infor-
mation, participate in window-and-action events and communi-
cate with other portlets, access remote content, lookup credentials
and store persistent data. A portlet container manages and pro-
vides persistent storage mechanisms for portlets.
A portlet container is not a standalone container like a Java

Servlet container; instead, it is implemented as a layer on top of
the Java Servlet container and reuses the functionality provided
by the Servlet container.
Figure 8.8 shows a Web page with two portlets. A portlet on a

portal has its own window, a portlet title, portlet content (body)
which can be rendered with portlet.getContent() method,
and some actions to close, maximize or minimize the portlet.

8.3.1.3 Portlets and Java Servlets

Portlets are a specialized and more advanced form of Java Servlets.
They run in a portlet container inside a servlet container which
is a layer that runs on top of an application server. Like Java
Servlets, portlets process HTTP requests and produce HTML
output, e.g. with JSP. But their HTML output is only a small part
of a Web page as shown in Figure 8.8. The portal server fills in the
rest of the page with headers, footers, menus and other portlets.
Compared with Java Servlets, portlets are administered in a

dynamic and flexible way. The following updates can be applied
without having to stop and restart the portal server.

• A portlet application, consisting of several portlets, can be
installed and removed using the portal’s administrative user
interface.

352 GRID PORTALS

Actions

Portlet Window

Portal Page

<Portlet Title>

Portlet Content (fragment)
Portlet getContent ():

Portlet Content (fragment)
Portlet getContent ():

<Portlet Title>

Figure 8.8 The layout of a portlet

• An administrator with the appropriate access rights can change

the settings of a portlet.

• Portlets can be created and deleted dynamically.

8.3.1.4 Advantages of portlets over Java Servlets

Portlets also have many standard features that are not available to

Java Servlets. One key feature is the built-in support to automati-

cally use different JSP interfaces with different user devices. This

allows users to write portlets that work on many devices, such

as desktop computers with modern Web browsers, palmtop com-

puters with limited Web browsers, alternatively Personal Digital

Assistants (PDAs) or Web-enabled wireless phones. Users do not

need to provide portability via the lowest common denominator.

By reusing the same underlying business logic, the portal server

will choose the most appropriate rendering for each client. Users

can even have multiple portlet controllers which allows different

page/action sequences to be used for each device type.

8.3 SECOND-GENERATION GRID PORTALS 353

8.3.1.5 Portlet presentation

A portlet window consists of:

• A Title bar with the title of the portlet.

• Decorations, including buttons to change the window state of
the portlet, such as maximize or minimize, the portlet or ones
to change the mode of a portlet, such as show help or edit
predefined portlet settings.

• Content produced by the portlet.

8.3.1.6 Portlet life cycle

The basic life cycle of a portlet includes the following three parts:

• Initialization: Using the init class to initialize a portlet and put it
into service.

• Request handling: Processing different kinds of actions and ren-
dering content for different clients.

• Termination: Using the destroy class to remove a portlet from a
portal page.

The portlet receives requests based on the user interaction with
the portlet or portal page. The request processing is divided into
two phases:

• Action processing: If a user clicks on a link in a portlet, an action
is triggered. The action processing must be finished before any
rendering of the portlets on the page is started. In the action
phase, the portlet can change the state of the portal.

• Rendering content: In the rendering phase, the portlet produces its
markup content to be sent back to the client. Rendering should
not change any state of the portlet. It refreshes a page without
modifying the portlet state. Rendering multiple portlets on a
page can be performed in parallel.

8.3.1.7 Access Web services via portlets

Figure 8.9 shows how to access Web services from aWeb portal via
a portlet. When a Web portal receives a servlet request, it generates

354 GRID PORTALS

Figure 8.9 Accessing Web services in a Web portal via a portlet

and dispatches events to the portlet using parameters in the request

and then invokes the portlet to be displayed through the Port-

let Invocation Interface (PII). The portlet’s internal design nor-

mally follows the Model-View-Controller (MVC) model [34] which

splits the portlet functionality into a controller receiving incom-

ing requests from the portlet PII, invoking commands operating

on a model that encapsulates application data and logic to access

backend Web content or applications and finally calling views for

presentation of the results.

8.3.1.8 Events to access a Web page with portlets

The typical sequence of events to access a Web page via portlets

is given below.

• A client (e.g. a Web browser) after being authenticated makes

an HTTP request to a portal;

• The portal receives the request;

• The portal determines if the request contains an action targeted

to any of the portlets associated with the portal page;

• If there is an action targeted to a portlet, the portal requests the

portlet container to invoke the portlet to process the action;

8.3 SECOND-GENERATION GRID PORTALS 355

• A portal invokes portlets, through the portlet container, to obtain
content fragments that can be included in the resulting portal
page;

• The portal aggregates the output of the portlets in the portal
page and sends the portal page back to the client.

8.3.2 Portlet specifications

It is important for portlets developed from independent vendors
to interoperate with each other. There is an urgent need to have a
standard Portlet API for developing portlets. Currently, there are
two groups that are working on the standardization of portlets.
One is OASIS (Organization for the Advancement of Structured
Information Standards) [35]. The other is JCP (Java Community
Process) [36].

8.3.2.1 OASIS WSRP

The OASIS is a worldwide consortium that drives the
development, convergence and adoption of a variety of e-business
standards. The consortium has more than 400 corporate and
individual members in over 100 countries. Web Services for
Remote Portlets (WSRP) is an OASIS specification that will provide
the “plug and play” of portlets, intermediary content aggrega-
tion applications and integration with applications from different
sources. WSRP will allow applications to consume and/or produce
Web services. These Web services will incorporate presentation
elements and information that allow portal administrators to select
and display portlets that originate from virtually anywhere on the
Web without the need for further integration code. The WSRP
producers and consumers may be implemented on different plat-
forms, such as a J2EE or .NET.
The current goals of WSRP are to:

• Allow interactive Web services to be plugged into standards-
compliant portals;

• Let anybody create and publish their contents and applications
as Web services;

• Let administrators browse directories of WSRP services to plug
into their portals with minimal programming effort;

356 GRID PORTALS

• Let portals publish portlets so that they can be consumed by

other portals without further programming;

• Make the Internet a marketplace of visual Web services, ready

to be integrated into portals.

8.3.2.2 JSR 168

The JCP is an open organization of international Java developers

and licensees whose charter is to develop and revise Java tech-

nology specifications, reference implementations and technology

toolkits. Java Specification Requests (JSRs) are the actual descrip-

tions of proposed and final specifications for the Java platform.

JSR 168 [37] is a JCP portlet specification that defines a set of Java

APIs that permits interoperability between portals and portlets. It

defines portlets as Java-basedWeb components,managed by a port-

let container that process requests and generate dynamic content.

Portals use portlets as pluggable user interface components that

provide a presentation layer to information systems. This speci-

fication defines a Portlet API for portal composition addressing

the areas of aggregation, personalization, presentation and security.

The current goals of JSR 168 are to:

• Define the run-time environment or the portlet container, for

portlets;

• Define the Portlet API between portlet containers and portlets;

• Provide mechanisms to store transient and persistent data for

portlets;

• Provide a mechanism that allows portlets to include servlets and

JSPs;

• Define the packaging of portlets to allow easy deployment;

• Allow binary portlet portability among JSR 168 portals;

• Run JSR 168 portlets as remote portlets using theWSRP protocol.

8.3.2.3 WSRP and JSR 168

Although they are being governed by different standards bodies

and review processes, WSRP and JSR 168 are complementary

specifications. While JSR 168 defines a standard Portlet API that is

8.3 SECOND-GENERATION GRID PORTALS 357

specific to Java-based portals, WSRP defines a universal API that

allows portals of any type to consume portlets of any type. They

can be used together in the following two ways:

• Portlets written with the Java Portlet API may be wrapped as

WSRP services and published in UDDI directories.

• WSRP services can be exposed as portlets with the Java Portlet

API to aggregate them in portals.

Whereas JSR 168 defines a set of Java APIs that allows portlets to

run on any compliant portals, WSRP allows Web services to be

exposed as portlets in a plug-and-play fashion.

8.3.3 Portal frameworks supporting portlets

In this section, we introduce three representative and popu-

lar portal frameworks, namely Jetspeed, WebSphere’s Portal and

GridSphere. They have been widely used for building Web portals

with portlets. We first describe the three frameworks and then

compare them in terms of JSR 168 support, easy to use, availability

and pre-built portlets.

8.3.3.1 Jetspeed

Jetspeed [38] is an open-source project from the Apache Software

Foundation for building portals with portlets in Java. It executes

with Tomcat Web server and uses the Cocoon [39], an XML pub-

lishing framework for processing XML information via XSLT. Jet-

speed is the original source of the JSR 168. Jetspeed supports the

RSS (Really Simple Syndication) [40] and OCS (Open Content Syn-

dication) [41] formats. RSS is an XML format used for syndicating

Web headlines. The OCS format describes multiple-content chan-

nels, including RSS headlines.

Whilst it comes with built-in portlets for OCS, RSS and for

embedding HTML sources, creating new portlets requires Java

programming. Modifying the look and feel of a portal from the

Jetspeed default also requires JSP or XSLT programming. Jetspeed

makes connections to external data and content feeds to retrieve

and display the data. Users can implement a portal and access

358 GRID PORTALS

it from a Web browser or a wireless device, such as a WAP [42]
phone or Palm device. Jetspeed supports built-in services for user
interface customization, caching, persistence and user authentica-
tion, eliminating the need to implement these services. Some of
the high-level features of Jetspeed include:

• A basis for standardizing the Java Portlet API specification
(JSR 168)

• Template-based layouts including those for JSP and Velocity [43]

• Supports remote XML content feeds via OCS

• Custom default home page configuration

• Database user authentication

• In-memory cache for fast page rendering

• RSS support for syndicated content

• Integration with Cocoon, WebMacro [44] and Velocity to allow
development with the latest XML/XSL technologies

• Wireless Markup Language (WML) support [45]

• XML-based configuration registry of portlets

• Web application development infrastructure

• Local caching of remote content

• Synchronization with Avantgo [46]

• Integrated with Turbine [47] modules and services

• A Profiler Service to access portal pages based on user, security
(groups, roles), media types and language

• Persistence services available to all portlets to provide store state
per user, page and portlet

• Interface skins so that users can choose colours and display
attributes

• Customizer for selecting portlets and defining layouts for indi-
vidual pages

• Portlet Structure Markup Language (PSML) can be stored in a
database

• User, group, role and permission administration via Jetspeed
security portlets

• Role-based security access to portlets.

Figure 8.10 shows the architecture of Jetspeed.

8.3 SECOND-GENERATION GRID PORTALS 359

Figure 8.10 The architecture of Jetspeed.

Jetspeed is built on top of Turbine, a servlet-based framework,

which is also part of the Jakarta Apache Project. Turbine han-

dles user authentication and page layout as well as scheduling.

Jetspeed can run on a number of servlet engines and databases. Jet-

speed is bundled with ThomasMueller’s Hypersonic SQL database

[48]. Tables are already created and populated with user data in

Hypersonic SQL. Hypersonic SQL runs in process to Jetspeed (and

Tomcat), so no additional configuration is necessary. To use a

different database, such as Oracle, DB2, Sybase, mySQL or Post-

gresSQL [49], it is necessary to set up the database using the SQL

scripts included with the Jetspeed source code. In addition, you

must configure the TurbineResources.properties file that

Jetspeed and Turbine use to point to the new database server.

Turbine
Turbine is a Java Servlet-based framework that allows Java devel-

opers to build secure Web applications. Turbine supports the

MVC pattern that separates presentation from backend applica-

tion/business logic. Turbine is made up of five different modules:

Page, Action, Layout, Screen and Navigation. The invocation

sequence in manipulating pages with the fives modules is shown

in Figure 8.11.

The Page module is the first module in the chain of execution

for the Page generation. It is considered to be the module that

contains the rest of the modules (Action, Layout, Screen and Navi-

gation). The Page module checks to see if there has been an Action

defined in the request. If so, it attempts to execute that Action.

After the Action has been executed, it asks the set Screen object for

360 GRID PORTALS

Figure 8.11 The sequences in the execution of Turbine components.

its Layout. The Page module then attempts to execute the Layout
object returned by the Screen module.
The Layout module is called from the Page module. This module

defines the physical Layout of a Web page. It generally defines the
location of the Navigation portion (i.e. the top and bottom part of
the Web page) as well as the location of where the body (or Screen)
of the page is. The Layout module executes the Screen module
to build the body of the Web page. It executes the Navigation
modules to build the portions of the Web page that defines the
navigation for the Web site.

PSML
Portlets are registered manually with Jetspeed using PSML. PSML
informs Jetspeed about what portlets are available and registered
with it. The configuration file for portlets is jetspeed-config.jcfg
in the WEB-INF/conf directory. These default configuration files
are called default.psml and defaultWML.psml and reside in WEB-
INF/psml. Once a user is created, each user has configuration files
associated with them: homeHTML.psml and homeWML.psml. These
files are stored in WEB-INF/psml/<username> for each user. PSML
is composed of two markups: registry and site markup.

Apache Cocoon
Apache Cocoon is a Web application development framework that
implements the notion of “component pipelines”, where each com-
ponent in a pipeline specializes in a particular operation. This

8.3 SECOND-GENERATION GRID PORTALS 361

makes it possible to use a building block approach for construct-

ing Web applications, by assembling components into pipelines

without any programming.

WebMacro
WebMacro is a pure Java open-source template language and a

viable alternative to JSP, PHP [50] and ASP [51].

Velocity
Velocity is a Java-based template engine. Velocity provides an

alternative scripting language to JSP for developing portal pages.

ECS
The Element Construction Set (ECS) [52] is a Java API for generat-

ing elements for various markup languages including HTML 4.0

and XML, but can be extended to create tags for any markup lan-

guage. ECS contains Java classes for the representation of HTML

or XML tags.

Implementation of portlets with Jetspeed
Figure 8.12 shows a canonical example of the “Hello World”

portlet using Jetspeed. In Jetspeed, all portlets inherit from

AbstractPortlet and must provide a getContent() method

to supply the portlet information. The “Hello World” example, as

shown in Figure 8.12, uses StringElement, an ECS class, which

can translate to WML or HTML, whichever is appropriate. The

RunData object that gets passed in to getContent() is a Turbine

object that stores various Servlet objects, e.g. ServletContext,
ServletRequest or HttpSession as well as other Turbine

objects including Users.

import org.ap ache.jetspeed.portal.portlets. Ab stractPortlet;
import org.ap ache.turbine.util.RunData;
import org.ap ache.ecs.ConcreteElement;
import org.ap ache.ecs.StringElement;

public class Hello WorldPortlet extends AbstractPortlet
{

public ConcreteElement getContent (RunData runData)
{

return (new StringElement (“Hello World!”));
}

}

Figure 8.12 A “Hello World” portlet implemented with Jetspeed

362 GRID PORTALS

The next step necessary for the deployment of a portlet is to add

it to the Jetspeed Portlet Registry. A registry fragment file must

be created that provides the portlet name, a description and the

classname. The “Hello World” example registry file is shown in

Figure 8.13.

8.3.3.2 IBM WebSphere Portal 5.0

The WebSphere Portal [53] is a J2EE application that runs on

WebSphere Application Server. Its main function is to serve the

WebSphere Portal framework to desktops and mobile devices of

portal users. The WebSphere Portal creates an environment that

provides the connectivity, administration and presentation ser-

vices required. It has a portal toolkit that provides the capability to

customize and manage an enterprise portal and create, test, debug

and deploy individual portlets and their content. Templates allow

developers to create their own portlets. Debugging and deploy-

ment tools are available to help shorten the development cycle.

Sample portlets that demonstrate best programming practices are

also provided.

WebSphere Portal 5.0 features
WebSphere Portal 5.0 has the following main features:

• A Portal framework that allows a user to integrate applications

and data sources, and also perform administrative tasks, such

as controlling portal membership.

<?xml version="1.0" encoding="UTF-8"?>
<registry>

<portlet-entry name="Hello World" hidden="false"
type="instance" application="false">

<meta-info>
<title>Hello World</title>
<description>Hello World</description>

</meta-info>
<classname>Hello WorldPortlet</classname>
<media-type ref="html"/>

</portlet-entry>
</registry>

Figure 8.13 The “HelloWorldPortlet” descriptor in Jetspeed

8.3 SECOND-GENERATION GRID PORTALS 363

• Presentation services are used to create portal–user interface

with a graphical user interface that can be customized to match

the user’s specific needs. A user can also configure a portal to

render content on different client device types, such as laptops

and mobile phones.

• Connectivity services allow a portal to access different data

sources.

• Customization controls allow users to select which applications

and content they view and how this information is organized

on their portal pages.

• Portlets are included for accessing applications such a email,

calendars, collaboration and syndicated news. Portlets are the

integration codes that connect applications and data to the

portal.

• A portlet API allows users to create new portlets and to add new

applications and data sources to a portal as required. A toolkit

is provided to simplify this task.

• Authenticated “single sign-on” allows authorized individuals

to logon to multiple portal applications all at once without the

need to remember multiple username and passwords and to

sign on to each application individually.

• Administration or the delegation of administration of portal

users, portlets and pages.

WebSphere Portal 5.0 is based on the IBM Portlet API, which is

fundamentally similar to the Portlet API from JSR 168 with some

differences. Stephan Hepper provides a comprehensive compar-

ison between IBM WebSphere Portlet API and JSR 168 Portlet

API in [54].

Implementation of portlets with WebSphere
Figure 8.14 shows a “HelloWorld” portlet implemented withWeb-

Sphere. Unlike the Jetspeed “Hello World” portlet example, there

are no references to Turbine objects in WebSphere. In addition,

the portlet extends the PortletAdaptor rather than AbstractPortlet,

and offers an API very similar to the servlet API. Resources are

initialized in the init method and the service method is used to

handle client requests. Figure 8.15 shows the portlet registry file

used to register the “Hello World” portlet in WebSphere.

364 GRID PORTALS

package com.ibm.wps.samplets.helloworld:

import org.apache.jetspeed.portlet.*;
import org.apache.jetspeed.portlets.*;
import java.io.*;
public class Hello World extends PortletAdaptor
{
public void init(PortletConfig portletConfig) throws UnavailableException
{
super.init(portletConfig);
}

public void service(PortletRequest portletRequest,
PortletResponse portletResponse)
throws PortletException, IOException

{
PrintWriter writer = portletResponse.getWriter();
writer.println("<p>Hello World!</p>");
}

}

Figure 8.14 A “Hello World” portlet implemented with WebSphere

8.3.3.3 GridSphere

GridSphere [55] is an open-source research project from the Grid-
Lab project [56]. It provides a portlet implementation framework
based upon the IBM Portlet API and an infrastructure for sup-
porting the development of re-usable portlet services. GridSphere
allows developers to create and package third-party portlet-based
Web applications that can be executed and administered within
the GridSphere portlet container.
GridSphere includes a set of core portlets and services, which

provide the basic infrastructure needed for developing and admin-
istering Web portals. A key feature of GridSphere is that it builds
upon the Web Application Repository (WAR) deployment model
to support third-party portlets. In this way, developers can dis-
tribute and share their work with other projects that use Grid-
Sphere to support their portal development.

GridSphere features
GridSphere has the following features:

• The Portlet API implementation in GridSphere is almost fully
compatible with IBM WebSphere Portal version 4.2 or higher.

• Support for the easy development and integration of “third-
party” portlets that can be plugged into the GridSphere portlet
container.

8.3 SECOND-GENERATION GRID PORTALS 365

<
?
x
m
l
v
e
r
s
i
o
n
=
"
1
.
0
"
e
n
c
o
d
i
n
g
=
"
U
T
F
-
8
"
?
>

<
!
D
O
C
T
Y
P
E
p
o
r
t
l
e
t
-
a
p
p
-
d
e
f
P
U
B
L
I
C
"
-
/
/
I
B
M
/
/
D
T
D
P
o
r
t
l
e
t
A
p
p
l
i
c
a
t
i
o
n
1
.
1
/
/
E
N
"
"
p
o
r
t
l
e
t
_
1
.
1
.
d
t
d
"
>

<
p
o
r
t
l
e
t
-
a
p
p
-
d
e
f
>

<
p
o
r
t
l
e
t
-
a
p
p
u
i
d
=
"
c
o
m
.
i
b
m
.
s
a
m
p
l
e
s
.
H
e
l
l
o
W
o
r
l
d
.
4
9
4
3
.
1
"
>
<
p
o
r
t
l
e
t
-
a
p
p
-
n
a
m
e
>
H
e
l
l
o
W
o
r
l
d
P
o
r
t
l
e
t

<
p
o
r
t
l
e
t
h
r
e
f
=
"
W
E
B
-
I
N
F
/
w
e
b
.
x
m
l
#
S
e
r
v
l
e
t
_
4
3
9
3
2
9
2
8
0
"
i
d
=
"
P
o
r
t
l
e
t
_
4
3
9
3
2
9
2
8
0
"
>

<
p
o
r
t
l
e
t
-
n
a
m
e
>
H
e
l
l
o
W
o
r
l
d
<
/
p
o
r
t
l
e
t
-
n
a
m
e
>

<
c
a
c
h
e
>
<
e
x
p
i
r
e
s
>
0
<
/
e
x
p
i
r
e
s
>
<
s
h
a
r
e
d
>
n
o
<
/
s
h
a
r
e
d
>
<
/
c
a
c
h
e
>

<
a
l
l
o
w
s
>
<
m
i
n
i
m
i
z
e
d
/
>
<
/
a
l
l
o
w
s
>

<
s
u
p
p
o
r
t
s
>
<
m
a
r
k
u
p
n
a
m
e
=
"
h
t
m
l
"
>
<
v
i
e
w
/
>
<
/
m
a
r
k
u
p
>
<
/
s
u
p
p
o
r
t
s
>

<
/
p
o
r
t
l
e
t
>

<
/
p
o
r
t
l
e
t
-
a
p
p
>

<
c
o
n
c
r
e
t
e
-
p
o
r
t
l
e
t
-
a
p
p
u
i
d
=
"
6
4
0
6
8
2
4
3
0
"
>

<
p
o
r
t
l
e
t
-
a
p
p
-
n
a
m
e
>
C
o
n
c
r
e
t
e
H
e
l
l
o
W
o
r
l
d
-
P
o
r
t
l
e
t
S
a
m
p
l
e
#
1
<
/
p
o
r
t
l
e
t
-
a
p
p
-
n
a
m
e
>

<
c
o
n
t
e
x
t
-
p
a
r
a
m
>

<
p
a
r
a
m
-
n
a
m
e
>
P
o
r
t
l
e
t
M
a
s
t
e
r
<
/
p
a
r
a
m
-
n
a
m
e
>

<
p
a
r
a
m
-
v
a
l
u
e
>
y
o
u
r
i
d
@
y
o
u
r
d
o
m
n
a
i
n
.
c
o
m
<
/
p
a
r
a
m
-
v
a
l
u
e
>

<
/
c
o
n
t
e
x
t
-
p
a
r
a
m
>

<
c
o
n
c
r
e
t
e
-
p
o
r
t
l
e
t
h
r
e
f
=
"
#
P
o
r
t
l
e
t
_
4
3
9
3
2
9
2
8
0
"
>

<
p
o
r
t
l
e
t
-
n
a
m
e
>
H
e
l
l
o
W
o
r
l
d
<
/
p
o
r
t
l
e
t
-
n
a
m
e
>

<
d
e
f
a
u
l
t
-
l
o
c
a
l
e
>
e
n
<
/
d
e
f
a
u
l
t
-
l
o
c
a
l
e
>

<
l
a
n
g
u
a
g
e
l
o
c
a
l
e
=
"
e
n
_
U
S
"
>

<
t
i
t
l
e
>
H
e
l
l
o
W
o
r
l
d
-
S
a
m
p
l
e
P
o
r
t
l
e
t
#
1
<
/
t
i
t
l
e
>
<
t
i
t
l
e
-
s
h
o
r
t
>
H
e
l
l
o
-
W
o
r
l
d
<
/
t
i
t
l
e
-
s
h
o
r
t
>

<
k
e
y
w
o
r
d
s
>
p
o
r
t
l
e
t
h
e
l
l
o
w
o
r
l
d
<
/
k
e
y
w
o
r
d
s
>

<
/
l
a
n
g
u
a
g
e
>

<
/
c
o
n
c
r
e
t
e
-
p
o
r
t
l
e
t
>

<
/
c
o
n
c
r
e
t
e
-
p
o
r
t
l
e
t
-
a
p
p
>

<
/
p
o
r
t
l
e
t
-
a
p
p
-
d
e
f
>

Fi
g
ur
e
8.
15

Th
e
“H

e
llo

W
o
rld

”
d
e
sc

rip
to
r
in

W
e
b
Sp

h
e
re

366 GRID PORTALS

• A high-level model for building complex portlets using visual

beans and the GridSphere User Interface (UI) tag library.

• A flexible XML-based portal presentation description that can

be modified to create customized portal layouts.

• A built-in support for Role-Based Access Control (RBAC) [57]

in which users can be guests, users, administrators and super

users.

• Aportlet servicemodel that allows for creation of “user services”,

where service methods can be limited according to user rights.

• Persistence of data provided using Hibernate for RDBMS

database [58] support.

• Integrated Junit [59] and Cactus [60] unit tests for complete

server-side testing of portlet services including the generation

of test reports.

• GridSphere core portlets offer base functionality including login,

logout, user and access control management.

• Localization support in the Portlet API implementation and

GridSphere core portlets that support English, French, German,

Czech, Polish, Hungarian and Italian.

The current GridSphere release provides a portal, a portlet con-

tainer and a core set of portlets including user and group manage-

ment, as well as layout customization and subscription.

Implementations of portlets with GridSphere
Figure 8.16 shows a “Hello World” portlet with GridSphere. All

portlets need to extend the AbstractPortlet class. Figure 8.17

shows the “Hello World” portlet descriptor.

package portlets.examples;
public class Hello World extends AbstractPortlet
{

public void do View(PortletRequest request, PortletResponse response)
throws PortletException, IO Exception

{
PrintWriter out = response.getWriter();
out.println("<h1>Hello World</h1>");
}

}

Figure 8.16 The “Hello World” portlet in GridSpeed

8.3 SECOND-GENERATION GRID PORTALS 367

<
p
o
r
t
l
e
t
-
a
p
p
-
c
o
l
l
e
c
t
i
o
n
>

<
p
o
r
t
l
e
t
-
a
p
p
-
d
e
f
>

<
p
o
r
t
l
e
t
-
a
p
p
i
d
=
"
p
o
r
t
l
e
t
s
.
e
x
a
m
p
l
e
s
.
H
e
l
l
o
W
o
r
l
d
"
>

<
p
o
r
t
l
e
t
-
n
a
m
e
>
H
e
l
l
o
W
o
r
l
d
P
o
r
t
l
e
t
A
p
p
l
i
c
a
t
i
o
n
<
/
p
o
r
t
l
e
t
-
n
a
m
e
>

<
s
e
r
v
l
e
t
-
n
a
m
e
>
H
e
l
l
o
W
o
r
l
d
<
/
s
e
r
v
l
e
t
-
n
a
m
e
>

<
p
o
r
t
l
e
t
-
c
o
n
f
i
g
>

<
p
a
r
a
m
-
n
a
m
e
>
P
o
r
t
l
e
t
M
a
s
t
e
r
<
/
p
a
r
a
m
-
n
a
m
e
>

<
p
a
r
a
m
-
v
a
l
u
e
>
y
o
u
r
i
d
@
y
o
u
r
d
o
m
a
i
n
.
c
o
m
<
/
p
a
r
a
m
-
v
a
l
u
e
>

<
/
p
o
r
t
l
e
t
-
c
o
n
f
i
g
>

<
a
l
l
o
w
s
>
<
m
a
x
i
m
i
z
e
d
/
>
<
m
i
n
i
m
i
z
e
d
/
>
<
r
e
s
i
z
i
n
g
/
>
<
/
a
l
l
o
w
s
>

<
s
u
p
p
o
r
t
s
>
<
v
i
e
w
/
>
<
e
d
i
t
/
>
<
h
e
l
p
/
>
<
c
o
n
f
i
g
u
r
e
/
>
<
/
s
u
p
p
o
r
t
s
>

<
/
p
o
r
t
l
e
t
-
a
p
p
>

<
c
o
n
c
r
e
t
e
-
p
o
r
t
l
e
t
-
a
p
p
i
d
=
"
p
o
r
t
l
e
t
s
.
e
x
a
m
p
l
e
s
.
H
e
l
l
o
W
o
r
l
d
.
1
"
>

<
c
o
n
t
e
x
t
-
p
a
r
a
m
>

<
p
a
r
a
m
-
n
a
m
e
>
f
o
o
b
a
r
<
/
p
a
r
a
m
-
n
a
m
e
>
<
p
a
r
a
m
-
v
a
l
u
e
>
a
v
a
l
u
e
<
/
p
a
r
a
m
-
v
a
l
u
e
>

<
/
c
o
n
t
e
x
t
-
p
a
r
a
m
>

<
c
o
n
c
r
e
t
e
-
p
o
r
t
l
e
t
>
<
p
o
r
t
l
e
t
-
n
a
m
e
>
H
e
l
l
o
W
o
r
l
d
<
/
p
o
r
t
l
e
t
-
n
a
m
e
>

<
d
e
f
a
u
l
t
-
l
o
c
a
l
e
>
e
n
<
/
d
e
f
a
u
l
t
-
l
o
c
a
l
e
>

<
l
a
n
g
u
a
g
e
l
o
c
a
l
e
=
"
e
n
_
U
S
"
>
<
t
i
t
l
e
>
H
e
l
l
o
W
o
r
l
d
<
/
t
i
t
l
e
>
<
t
i
t
l
e
-
s
h
o
r
t
>
H
e
l
l
o
W
o
r
l
d
<
/
t
i
t
l
e
-
s
h
o
r
t
>

<
d
e
s
c
r
i
p
t
i
o
n
>
H
e
l
l
o
W
o
r
l
d
-
S
a
m
p
l
e
P
o
r
t
l
e
t
#
1
<
/
d
e
s
c
r
i
p
t
i
o
n
>

<
k
e
y
w
o
r
d
s
>
p
o
r
t
l
e
t
h
e
l
l
o
w
o
r
l
d
<
/
k
e
y
w
o
r
d
s
>
<
/
l
a
n
g
u
a
g
e
>

<
c
o
n
f
i
g
-
p
a
r
a
m
> <
p
a
r
a
m
-
n
a
m
e
>
P
o
r
t
l
e
t
M
a
s
t
e
r
<
/
p
a
r
a
m
-
n
a
m
e
>

<
p
a
r
a
m
-
v
a
l
u
e
>
y
o
u
r
i
d
@
y
o
u
r
d
o
m
a
i
n
.
c
o
m
<
/
p
a
r
a
m
-
v
a
l
u
e
>

<
/
c
o
n
f
i
g
-
p
a
r
a
m
>
<
/
c
o
n
c
r
e
t
e
-
p
o
r
t
l
e
t
>
<
/
c
o
n
c
r
e
t
e
-
p
o
r
t
l
e
t
-
a
p
p
>

<
/
p
o
r
t
l
e
t
-
a
p
p
-
d
e
f
>

<
/
p
o
r
t
l
e
t
-
a
p
p
-
c
o
l
l
e
c
t
i
o
n
>

Fi
g
ur
e
8.
17

Th
e
“H

e
llo

W
o
rld

”
p
o
rt
le
t
d
e
sc

rip
to
r
in

G
rid

Sp
h
e
re

368 GRID PORTALS

8.3.4 A Comparison of Jetspeed, WebSphere
Portal and GridSphere

IBM WebSphere Portal, Jetspeed and GridSphere are portal frame-
works that can be used to build Web portals with portlets. While
they focus on portlets construction, they differ in their implemen-
tations and features. In this section, we give a comparison.

JSR 168 support
JSR 168 is becoming the standard Portlet API for building portable
portlets. The portlet API from Jetspeed is the original source of
JSR 168. The future Jetspeed 2 supports JSR 168. Jetspeed 2 uses
Apache Pluto [61] container, which is the reference implementation
of the JSR 168. Although the portlet API from IBM WebSphere
Portal and the API in JSR 168 differ in some aspects, they share
fundamental features in building portlets. The recently released
version WebSphere Portal V5.02 supports JSR 168. The portlet API
from GridSphere is JSR 168 compliant too.

Ease of use
Compared with Jetspeed and GridSphere, IBM WebSphere Por-
tal provides an Integrated Development Environment (IDE) for
building portlets.

Availability
Jetspeed and GridSphere are open source-based frameworks; IBM
WebSphere Portal is not open source.

Pre-built Portlets
Jetspeed includes:

• An RSS portlet for rendering RSS documents as HTML pages.

• A FileServer portlet for providing static HTML pages.

• The Cocoon Portlet for taking a style sheet and a URL as parame-
ters and transforming, and then returning the content to the user.

• A PortletViewer for providing additional information about a
portlet including its configuration options, URL and properties.

IBM WebSphere Portal includes:

• A FileServer portlet for providing static HTML pages.

• A ServletInvoker portlet for invoking a servlet as a portlet, a JSP
Portlet for generating JSP.

8.3 SECOND-GENERATION GRID PORTALS 369

• A CSVViewer portlet for displaying a file with data arranged in

comma-separated values format.

• An RSS Portlet for rendering RSS documents as HTML pages.

GridSphere includes:

• Login/Logout Portlets for users to log in or out of a portal.

• An AccountRequest portlet for creating a new portal user to

request an account.

• An AccountManagement portlet for managing users’ accounts.

• A PortletSubscription portlet for users to add and remove

portlets from their workspace.

8.3.5 The development of Grid portals
with portlets

Portlet technology is gaining attention from the Grid community

for building second-generation Grid portals to overcome problems

encountered in first-generation Grid portal development frame-

works and toolkits. A portlet in a Grid portal is not just a normal

portlet that can be plugged into a portal; it is also associated with

a backend Grid service. We define a portlet associated with a

Grid service to be called a Grid Portlet. Figure 8.18 shows how to

access a Grid service from a Grid portal via a Grid Portlet. The

model is that a Grid Portlet interacts with a Grid service provided

by Grid middleware such as Globus to access backend resources.

Since Grid services provided by difference service providers using

different Grid middleware technologies can be exposed as stan-

dard portlets, portals built from portlets are loosely coupled with

Grid middleware technologies. Portal frameworks such as Jet-

speed, WebSphere Portal and GridSphere have been widely used

for building Web portals with portlets. They are being integrated

with Grid services for constructing Grid portals with Grid Portlets.

Currently no such framework exists that can provide an IDE in

which a Grid portal can be visually built with Grid Portlets that

are associated with backend Grid services.

With funding from the National Science FoundationMiddleware

Initiative (NMI), from the USA, the Open Grid Computing Envi-

ronments (OGCE) project [62] was established in Fall 2003 to foster

370 GRID PORTALS

Figure 8.18 Access Grid resources via Grid Portlets

collaborations and sharable components with portal developers

worldwide. Tasks include the establishment of a Grid Portal Col-

laboratory, a repository of portlets and portal service components,

an online forum for developers of Grid Portals and the building

of reusable portal components that can be integrated in a common

portal container system.

The development of OGCE is based on the following projects:

• Java CoG Kit sponsored by SciDAC and NSF Alliance.

• The CHEF Project [63] of the University of Michigan.

• The Grid Portals Information Repository (GPIR) [64] and Grid-

Port of the Texas Advanced Computing Center.

• The Alliance Portal Expedition project [65], including NCSA,

Indiana University’s Extreme Labs and the Community Grids

Lab at Indiana University.

The Alliance Portal is an ongoing project that focuses on building

second-generation Grid portals. It is based on Jetspeed and tar-

geted at the construction of Grid portals using Grid Portlets. Cur-

rently the Alliance Portal can provide the following Grid Portlets

that are leveraged from existing Grid services.

8.3 SECOND-GENERATION GRID PORTALS 371

• A Proxy Manager: The Proxy Manager portlet is a utility that
allows users to load GSI proxy credentials into their account via
MyProxy.

• An LDAP Browser: The LDAP Browser portlet is an interface to
access the contents of the LDAP servers.

• A GridFTP Client: The GridFTP Client portlet provides the basic
client functions of Grid FTP with a user-friendly interface.

• Gram Job Launcher: The Gram Job Launcher portlet allows a
user to submit jobs to a Grid environment using the Globus
GRAM protocol. For this the user must have a valid GSI Proxy
Certificate which can be loaded through the Proxy Manager
portlet.

• Grid utilities: These include the “Grid Ping” utility and the “Grid
Job Submission” utility. The GridPing portlet can ping a resource
in a Grid environment and determine if a user has the access to
it or not. The Grid Job Submission portlet is similar to the Gram
Job Launcher portlet except that this portlet will not return till
the job has been completed. The output and the error of the job
is displayed by the portlet.

• OGSA Browser: The OGSA Browser portlet allows users to query
a Grid service for its Service Data Elements (SDE). Users can
query a SDE by using the name of the SDE as the query string.
Users can also obtain a list of SDEs by using “serviceDataName”
as the query string. Once users get a list of all the SDEs, they
can click on each SDE to query it.

8.3.6 A summary on second-generation
Grid portals

Second-generation Grid portals will be produced from pluggable
Grid Portlets. Running inside a portlet container, portlets can
be added into or removed from a portal, thus providing users
with the ability to customize Grid services at a portal level. Grid
Portlets are independent components that are based on existing
Grid services. A Grid portal built from Grid Portlets can provide
users with the ability to integrate services provided by different
Grid-enabling technologies. Second-generation Grid portals with
portlets have the following benefits compared with first-generation
Grid portals.

372 GRID PORTALS

• Portal customization: Users instead of a Grid system developer can
construct their personalized portals out of the available portlets
to meet their specific needs. Portlets can be easily added or
removed from a portal.

• Extensible Grid services: Portals built from portlets are loosely
coupled with Grid middleware technologies since Grid services
can be exposed as standard portlets. A portal constructed from
portlets provides users with the ability to integrate services from
different Grid service providers.

• Dynamic Grid services: New services and components are being
developed for the Grid. A Grid portal should be able to pro-
vide users with the ability to access dynamic Grid services in a
Grid environment. To this end, a mechanism can be provided to
expose Grid services as individual portlets that can be published
and accessed via a portal.

8.4 CHAPTER SUMMARY

In this chapter, we have studied Grid portal-related technologies.
Grid portals are Web-based interfaces that provide a single access
point to the Grid. To make the Grid a reality, portals will play
a critical role as they can provide user-friendly interfaces for the
majority of end users to access the Grid, who may know little
about the Grid infrastructure and services. The development of
Grid portals has evolved from first to second generation, which are
currently emerging. While first-generation portals provide services
such as job submission, resource monitoring and data transfer, they
mainly lack the ability to be customized. Portals of this generation
were mainly built by portal system developers who had expertise
in the Grid. Existing portal toolkits such as GPDK, GP2, the Ninf
Portal and GridSpeed can provide some levels of assistance in
building first-generation Grid portals. However, it is hard for end
users who know little about Grid technologies to use these toolkits
to build portals to meet their application-specific requirements.
Portlet technology is gaining increasing attention from the Grid

community for building second-generation portals. Portals of this
generation use portlets, which are pluggable software components
that run inside a portlet container within a portal server. The port-
let container manages the run-time behaviour of portlets. Grid end
users can build their own portals by choosing portlets available.

8.6 KEY POINTS 373

While existing portal toolkits such as GridPort will support portlets

in its future version GridPort 3.0, new portal frameworks such as

Jetspeed, IBM WebSphere Portal and GridSphere have been devel-

oped for portlet construction. While these portal frameworks were

originally focused on building Web portals with portlets, they are

being integrated with Grid services to produce Grid Portlets. JSR

168 is becoming a standard for defining a Portlet API to build

portable portlets. Currently IBMWebSphere V5.02 and GridSphere

are JSR 168 compliant. The future Jetspeed 2.0 will be JSR 168

compliant too.

OGSA, as promoted by the Globus group and the Global Grid

Forum, is the de facto standard in building service-oriented Grid

systems. To this end, the development of portlets should take

OGSA into account. Future portlets should be OGSA compliant,

which means that these portlets should be associated with Grid

services developed and deployed via OGSA compliant middle-

ware. The work is currently being integrated into GridPort 3.0 and

GridSphere.

8.5 FURTHER READING AND TESTING

JSP and Java Servlets have been widely used to generate dynamic

Web pages for portals. There are many books on JSP and Java

servlets. You also need knowledge on Globus, MyProxy and the

Java CoG before you start your portal work. Detailed information

can be found on their Web sites.

For testing purpose, you can start with your second-generation

Grid portal development using portlets. You can choose open

source-based Jetspeed or GridSphere as the portal framework. It

will be easier to build portals with portlets using IBM WebSphere

Portal because it provides a GUI-based integrated development

environment.

8.6 KEY POINTS

• A Grid portal provides a Web page-based user interface as a

single access point to the Grid.

• MyProxy has been widely used for the management of user

credentials.

374 GRID PORTALS

• JSP and Java Servlets are used for dynamically generating portal
pages.

• Grid portals can be broadly classified into first- and second-
generation portals.

• Grid portals mainly use JSP and JavaBeans to communicate with
the Java CoG to interact with backend Globus-based services,
specifically GT2.

• Existing Grid portal tools such as GPDK, GridPortal, the Ninf
Portal and GridSpeed can provide some kinds of assistance in
building first-generation Grid portals.

• First-generation portals are tightly coupled with Grid middle-
ware technologies and can only provide static and restricted
Grid services.

• First-generation Grid portals lack the ability to be customized in
that portals can only be built by Grid system developers instead
of users. It is difficult for end users to modify an existing portal
of this generation to meet their specific needs.

• Portlet technology is gaining attention from the Grid community
and being used to build second-generation Grid portals.

• Second-generation Grid portals are focused on portlets that sup-
port user customizability in that Grid users can build their
personalized portals. Portals of this generation can provide
extensible and dynamic Grid services.

• The Portlet API from JSR 168 is the portlet standard for writing
portable portlets.

8.7 REFERENCES

[1] Globus, http://www.globus.org.

[2] UNICORE, http://www.unicore.de.

[3] Condor, http://www.cs.wisc.edu/condor/.

[4] Krishnan, S., Bramley, R., Gannon, D., Govindaraju, M., Indurkar, R., Slomin-

ski, A., Temko, B., Alameda, E., Alkire, R., Drews, T. and Webb, E. 2001. The
XCAT Science Portal. Proceedings of Super Computing 2001 (SC ’01), Denvor,

Colorado, USA. CS Press.

[5] Haupt, T., Bangalore, P. and Henley, G. 2001. A Computational Web Portal
for the Distributed Marine Environment Forecast System. Proceedings of the 9th

International Conference on High-Performance Computing and Networking

(HPCN), June 2001, Amsterdam, Netherlands. Lecture Notes in Computer

Science, Springer-Verlag.

[6] The Hotpage Portal, http://hotpage.npaci.edu/.

8.7 REFERENCES 375

[7] Suzumura, T., Matsuoka, S. and Nakada, H. 2001. A Jini-based Computing Por-
tal System. Proceedings of Super Computing 2001 (SC ’01), Denvor, Colorado,

USA. CS Press.

[8] The DSG Portal, http://159.dsg.port.ac.uk/projects/dsgportal/.

[9] Haupt, T., Akarsu, E., Fox, G. and Youn, C. 2000. The Gateway System:

Uniform Web based Access to Remote Resources. Concurrency – Practice and
Experience, 12(8): 629–642.

[10] Grappa, http://grid.uchicago.edu/grappa/.

[11] Allen, G., Daues, G., Foster, I., Laszewski, G., Novotny, J., Russell, M., Seidel,

E. and Shalf, J. 2001. The Astrophysics Simulation Collaboratory Portal: A Science
Portal Enabling Community Software Development. Proceedings of the 10th IEEE

International Symposium on High Performance Distributed Computing 2001

(HPDC ’01), San Francisco, California, USA. CS Press.

[12] Gannon, D. et al. 2002. Programming the Grid: Distributed Software Com-

ponents, P2P and Grid Web Services for Scientific Applications. Cluster
Computing, 5(3): 325–336.

[13] Novotny, J., Tuecke, S. and Welch, V. 2001. An Online Credential Repository for
the Grid: MyProxy. Proceedings of the 10th IEEE International Symposium on

High Performance Distributed Computing 2001 (HPDC ’01), San Francisco,

California, USA. CS Press.

[14] Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S. 1998. A Security Archi-
tecture for Computational Grids. Proceedings of the 5th ACM Conference on

Computer and Communications Security 1998, San Francisco, California,

USA. ACM Press.

[15] Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W.

and Tuecke, S. 1998. A Resource Management Architecture for Metacomputing
Systems. Proceedings of the 12th International Parallel Processing Sympo-

sium & 9th Symposium on Parallel and Distributed Processing (IPPS/SPDP)

Workshop on Job Scheduling Strategies for Parallel Processing, Orlando,

Florida, USA. CS Press.

[16] Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman, C. August 2001. Grid
Information Services for Distributed Resource Sharing. Proceedings of the 10th

IEEE International Symposium on High-Performance Distributed Comput-

ing (HPDC-10), San Francisco, California, USA. CS Press.

[17] GSIFTP, http://www.globus.org/dataGrid/deliverables/gsiftp-tools.html.

[18] GridFTP, http://www.globus.org/dataGrid/Gridftp.html.

[19] Laszewski, G., Foster, I., Gawor, J. and Lane, P. 2001. A Java Commodity Grid

Kit. Concurrency and Computation: Practice and Experience, 13(8–9): 643–662.
[20] JNDI, http://java.sun.com/products/jndi/.

[21] iaiksecuritylibrary,http://jce.iaik.tugraz.at/download/evaluation/index.php.

[22] Foster, I., Roy, A. and Sander, V. 2000. A Quality of Service Architecture that
Combines Resource Reservation and Application Adaptation. Proceedings of the

8th International Workshop on Quality of Service, Westin William Penn,

Pittsburgh, USA.

[23] GridPort, http://Gridport.npaci.edu/.

[24] Baru, C.,Moore, R., Rajasekar,A. andWan,M. 1998.The SDSCStorage Resource
Broker. Proceedings of the CASCON’98 Conference, Toronto, Canada.

[25] SRB project, http://www.npaci.edu/SRB.

376 GRID PORTALS

[26] Novotny, J. 2002. The Grid Portal Development Kit. Concurrency and Compu-
tation: Practice and Experience, 14(13–15): 1129–1144.

[27] GSI SSH, http://grid.ncsa.uiuc.edu/ssh/.

[28] Mozilla Directory, http://www.mozilla.org/directory/.

[29] Suzumura, T. et al. November 2002. The Ninf Portal: An Automatic Generation
Tool for the Grid Portals. Proceedings of Java Grande 2002, Seattle, Washing-

ton, USA. ACM Press.

[30] Ninf-G, http://ninf.apGrid.org/.

[31] GridSpeed, http://grid.is.titech.ac.jp/gridspeed-www/.

[32] Castor, http://castor.exolab.org/.

[33] What is a Portlet? http://www.javaworld.com/javaworld/jw-08-2003/

jw-0801-portlet.html.

[34] Krasner, G. and Pope, S. 1998. A Cookbook for Using the Model-View-

Controller User Interface Paradigm in Smalltalk-80. Journal of Object-Oriented
Programming, 1(3): 27–49.

[35] OASIS, http://www.oasis-open.org.

[36] JCP, http://www.jcp.org.

[37] JSR 168, http://www.jcp.org/jsr/detail/168.jsp.

[38] Jetspeed, http://jakarta.apache.org/jetspeed.

[39] Cocoon, http://cocoon.apache.org/.

[40] RSS, http://www.webreference.com/authoring/languages/xml/rss/intro/.

[41] OCS, http://internetalchemy.org/ocs/.

[42] WAP Forum, http://www.wapforum.org/.

[43] Velocity, http://jakarta.apache.org/velocity/.

[44] WebMacro, http://www.webmacro.org/.

[45] WML, http://www.oasis-open.org/cover/wap-wml.html.

[46] Avantgo, http://www.avantgo.com/doc/pylon/desktop_guide/

AppFLookups6.html.

[47] Turbine, http://jakarta.apache.org/turbine/.

[48] Thomas Mueller’s Hypersonic SQL database, http://hsql.sourceforge.net/.

[49] PostgresSQL, http://www.postgresql.org/.

[50] PHP, http://www.php.net/.

[51] ASP, http://msdn.microsoft.com/asp.

[52] ECS, http://jakarta.apache.org/ecs/.

[53] IBM WebSphere Portal, http://www.ibm.com/websphere.

[54] WebSphere Portlet API and JSR 168 Portlet API, http://www-106.ibm.com/

developerworks/websphere/library/techarticles/0312_hepper/hepper.html.

[55] GridSphere, http://www.Gridsphere.org.

[56] GridLab, http://www.gridlab.org.

[57] RBAC, http://csrc.nist.gov/rbac/.

[58] Hibernate DBMS, http://tm4j.org/hibernate-backend.html.

[59] Junit, http://www.junit.org.

[60] Cactus, http://jakarta.apache.org/cactus/.

[61] Apache Pluto, http://jakarta.apache.org/pluto/.

[62] OGCE, http://www.ogce.org.

[63] CHEF, http://chefproject.org/portal.

[64] GPIR, http://www.tacc.utexas.edu/projects/gpir/.

[65] The Alliance Portal, http://www.extreme.indiana.edu/xportlets/project/

index.shtml.

Part Four

Applications

9
Grid Applications – Case
Studies

LEARNING OBJECTIVES

In this chapter, we will introduce Grid applications that have

applied the core technologies presented in the previous chapters.

This chapter will help show:

• Where and how to apply Grid technologies?

• The problem domains that the Grid can be applied to.

• The benefits the Grid can bring to distributed applications.

CHAPTER OUTLINE

9.1 Introduction

9.2 GT3 Use Cases

9.3 OGSA-DAI Use Cases

9.4 Resource Management Case Studies

9.5 Grid Portal Use Cases

9.6 Workflow Management – Discovery Net Use Cases

9.7 Semantic Grid – myGrid Use Case

9.8 Autonomic Computing – AutoMate Use Case

9.9 Conclusions

The Grid: Core Technologies Maozhen Li and Mark Baker

© 2005 John Wiley & Sons, Ltd

380 GRID APPLICATIONS – CASE STUDIES

9.1 INTRODUCTION

In the previous chapters, we have discussed and explored core

Grid technologies, such as security, OGSA/WSRF, portals, moni-

toring, resource management and scheduling and workflow. We

have also reviewed some projects related to each area of these

core technologies. Basically the projects reviewed in the previous

chapters are focused on the Grid infrastructure, not applications.

In this chapter, we present some representative Grid applications

that have applied or are applying the core technologies discussed

earlier and describe their make-up and how they are being used

to solve real-life problems.

The reminder of this chapter is organized as follows. In

Section 9.2, we present GT3 applications in the areas of broadcast-

ing, software reuse and bioinformatics. In Section 9.3, we present

two projects that have employed OGSA-DAI. In Section 9.4, we

present a Condor pool being used at University College London

(UCL) and introduce three use cases of Sun Grid Engine (SGE). In

Section 9.5, we give two use cases of Grid portals. In Section 9.6,

we present the use of workflow in Discovery Net project for solv-

ing domain-related problems. In Section 9.7, we present one use

case of myGrid project. In Section 9.8, we present AutoMate for

self-optimizing oil reservoir applications.

9.2 GT3 USE CASES

As highlighted in Chapter 2, OGSA has become the de facto
standard for building service-oriented Grids. Currently most

OGSA-based systems have been implemented with GT3.

The OGSA standard introduces the concepts of Grid services,

which are Web services with three major extensions as follows:

• Grid services can be transient services implemented as instances,

which are created by persistent service factories.

• Grid services are stateful and associated with service data

elements.

• Notification can be associated with a Grid service, which can be

used to notify clients of the events they are interested in.

9.2 GT3 USE CASES 381

Compared with systems implemented with distributed object tech-

nologies, such as Java RMI, CORBA and DCOM, services-oriented

Grid systems can bring the following benefits:

• Services can be published, discovered and used by a wide user

community by using WSDL and UDDI.

• Services can be created dynamically, used for a certain time and

then destroyed.

• A service-oriented system is potentially more resilient than an

object-oriented system because if a service being used fails, an

alternative service could be discovered and used automatically

by searching a UDDI registry.

In this section, we present GT3 applications from two areas, one

related to broadcasting large amount of data and the other involv-

ing software reuse.

9.2.1 GT3 in broadcasting

The multi-media broadcasting sector is a fast evolving and reac-

tive industry that presents many challenges to its infrastructure,

including:

• The storage, management and distribution of large media files.

As mentioned in Harmer et al. [1], a typical one-hour television

programme requires about 25GB of storage and this could be

100–200 GB in production. In the UK, the BBC needs to distribute

approximately 1PB of material per year to satisfy its broad-

casting needs. In addition, the volume of broadcast material is

increasing every year.

• The management of broadcast content and metadata.

• The secure access of valuable broadcast content.

• A resilient infrastructure for high levels of quality of service.

A Grid infrastructure can meet these broadcasting challenges in a

cost-effective manner. To this end, the BBC and Belfast e-Science

Centre (BeSC) have started the GridCast project [2] which involves

the storage, management and secure distribution of media files.

382 GRID APPLICATIONS – CASE STUDIES

GT3 has been applied in the project to define broadcast services
that can integrate existing BBC broadcast scheduling, automation
and planning tools in a Grid environment. A prototype has been
built with 1Gbps connections between the BBC North Ireland sta-
tion at Belfast, BBC R&D sector at London and BeSC. Various GT3
services have been implemented:

• For the transport of files between sites,

• The management of replicas of stored files,

• The discovery of sites and services on GridCast.

A services-oriented design with GT3 fits the project well because
the broadcast infrastructure is by its nature service oriented.

9.2.2 GT3 in software reuse

GT3 can be used to execute legacy codes that normally execute on
one computer as Grid services that can be published, discovered
and reused in a distributed environment. In addition, the mecha-
nisms provided in GT3 to dynamically create a service, use it for a
certain amount of time and then destroyed it are suitable for mak-
ing these programs as services for hire. In this section, we introduce
two projects that are wrapping legacy codes as GT3-based Grid
services.

9.2.2.1 GSLab

GSLab [3] is a toolkit for automatically wrapping legacy codes as
GT3-based Grid services. The development of GSLab was moti-
vated by the following aspects:

• Manually wrapping legacy codes as GT3-based Grid services is
a time-consuming and error-prone process.

• To wrap a legacy code as a Grid service, the legacy code devel-
oper also needs expertise in GT3, which may typically be beyond
their current area of expertise.

Two components have been implemented in GSLab: the GSFWrap-
per and the GSFAccessor. The GSFWrapper is used to automat-
ically wrap legacy codes as Grid services and then deploy them

9.2 GT3 USE CASES 383

in a container for service publication. The GSFAccessor is used

to discover Grid services and automatically generate clients to

access the discovered services wrapped from legacy codes via

GSFWrapper. To improve the high throughput of running a large

number of tasks generated from a wrapped Grid service, SGE ver-

sion 5.3 has been employed with GSLab to dispatch the generated

tasks to a SGE cluster. The architecture of GSLab is shown in

Figure 9.1.

The process of wrapping legacy codes as Grid services involves

three stages: service publication, discovery and access:

• Publication: GSFWrapper takes a legacy code as an input (step 1)

and generates all the code needed to wrap the legacy application

as a Grid Service Factory (GSF) and then deploy the wrapped

GSF into a Grid service container for publishing (step 2). Once

the Grid service container is started, the wrapped GSF will

be automatically published in an SGE cluster environment and

the jobs generated by the GSF will be scheduled in the SGE

cluster.

• Discovery: A user browses the GSFs registered in a Grid service

container via GSFAccessor (step 3) and discovers a GSF to use.

• Access: The user submits a job request to GSFAccessor via its

GUI (step 4). Once the GSFAccessor receives a user job sub-

mission request, it will automatically generate a Grid service

Figure 9.1 The architecture of GSLab

384 GRID APPLICATIONS – CASE STUDIES

client (step 5) to request a GSF (step 6) to create a Grid ser-

vice instance (step 7). Then the Grid service client will access

the created instance (step 8) to generate tasks in the form of

SGE scripts, which will then be used by an SGE server (step 9)

through which to dispatch the tasks to an SGE cluster. One SGE

script will be generated for each task in GSLab.

A case study, based on a legacy code called q3D [4], has been used

to test GSLab. q3D is a C code for rendering 3D-like frames using

either 2D geometric shapes or raster images as input primitives,

which are organized in layers called cels. q3D has basic 3D features

such as lighting, perspective projection and 3D movement. It can

handle hidden-surface elimination (cel intersection) when render-

ing cels. Figure 9.2 shows four frames taken from an animation

rendered by q3D. In the animation, the balloon moves gradually

approaching the camera and the background becomes darker. Each

frame in the animation has two cels: a balloon cel and a lake cel.
Each frame is rendered individually from an input file called stack
that contains the complete description of the frame such as the

3D locations of the cels involved. These stack files are generated

by makeStacks from a script that describes the animation such as

the camera path, cels path and lighting. makeStacks is a C code

developed for q3D.

To wrap a legacy code as a Grid service, a user needs to provide

the parameters to execute the legacy code in the GSFWrapper GUI,

as shown in Figure 9.3. Then the GSFWrapper will automatically

generate related codes and then deploy the service into a GT3 Grid

service container.

Figure 9.2 Four frames rendered by q3D using two cels

9.2 GT3 USE CASES 385

Figure 9.3 The GSFWrapper GUI

Once a service is published, the client uses the GSFAccessor GUI,

as shown in Figure 9.4, to specify the parameters needed to execute

the legacy code, e.g. the input data file name, number of jobs to run

and output data file name. Once invoked, the GSFAccessor will

generate the related code to call the Grid service that is deployed in

Figure 9.4 The GSFAccessor GUI

386 GRID APPLICATIONS – CASE STUDIES

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250

Number of tasks (frames)

T
im

e
to

 r
en

de
r

fr
am

es
 (

se
co

nd
s)

Running one Gq3D
instance with multiple
tasks on the SGE
cluster in GSLab

Sequentially running the
q3D legacy code on one
computer

Figure 9.5 The performance of GSLab

an SGE-managed cluster and request its services. Figure 9.5 shows

the performance of GSLab in wrapping the q3D legacy code as

a Grid service accessed in an SGE cluster with five nodes, each

of which has a Pentium IV 2.6-GHz processor and 512MB RAM,

running Redhat Linux.

9.2.2.2 GEMLCA

The Grid Execution Management for Legacy Code Architecture

(GEMLCA) [5] provides a solution for wrapping legacy codes as

GT3-based Grid services without re-engineering the original codes.

The wrapped GT3 services can then be deployed in a Condor-

managed pool of computers.

To use GEMLCA, a user needs to write a Legacy Code Interface

Description (LCID) file, which is an XML file that describes how

to execute the legacy code, e.g. the name of the legacy code and

its main binary files, and the job manager (e.g. UNIX fork or

Condor). Once deployed in GEMLCA, the legacy code becomes a

Grid service that can be discovered and reused. A job submission

is based on GT3 MMJFS as described in Chapter 2. A legacy code

called MadCity [6], a discrete time-based microscopic simulator

for traffic simulations, has been wrapped as a GT3 service and its

performance has been demonstrated as a GEMCLA application.

The GEMLCA client has been integrated within the P-GRADE

portal [7] to provide a GUI that supports workflow enactment.

9.3 OGSA-DAI USE CASES 387

Each legacy code deployed in GEMLCA [5, 8] can be discovered

in the GUI and multiple published legacy codes can be composed

to form another composite application.

9.2.3 A GT3 bioinformatics application

The Basic Local Alignment Search Tool (BLAST) [9] has been

widely used in bioinformatics to compare a query sequences to

a set of target sequences, with the intention of finding similar

sequences in the target set. However, BLAST searches are com-

putationally intensive. Bayer et al. [10] present a BLAST Grid ser-

vice based on GT3 to speed up the search process, in which the

BLAST service interacts with backend ScotGRID [11] computing

resources. ScotGRID is a three-site (LHC Tier-2) centre consisting

of an IBM 200 CPU Monte Carlo production facility run by the

Glasgow Particle Physics Experimental (PPE) group [12] and an

IBM 24 TByte data store and associated high-performance server

run by EPCC [13]. A 100-CPU farm is based at Durham Univer-

sity Institute for Particle Physics Phenomenology (IPPP) [14]. Once

deployed as a Grid service, the BLAST service can be accessed by

a broad range of users.

9.3 OGSA-DAI USE CASES

A number of projects have adopted OGSA-DAI [15], in this section,

we introduce eDiaMoND and ODD-Genes.

9.3.1 eDiaMoND

The eDiaMoND project [16] is a collaborated project between

Oxford University, IBM, Mirada Solutions Ltd and a group of

clinical partners. It aims to build a Grid-based system to support

the diagnosis of breast cancer by facilitating the process of breast

screening. Traditional mammograms (film) and paper records will

be replaced with digital data. Each mammogram image is a size

of 32MB and about 250 TB data will need to be stored every year.

OGSA-DAI has been used in the eDiaMoND project to access the

388 GRID APPLICATIONS – CASE STUDIES

large data sets, which are geographically distributed. The work

carried out so far has shown the flexibility of OGSA-DAI and the

granularity of the task that can be written.

9.3.2 ODD-Genes

ODD-Genes [17] is a genetics data analysis application built on

SunDCG [18] and OGSA-DAI running on Globus. ODD-Genes

allows researchers at the Scottish Centre for Genomic Technol-

ogy and Informatics (GTI) in Edinburgh, UK, to automate impor-

tant micro-array data analysis tasks securely and seamlessly using

remote high-performance computing resources at EPCC. ODD-

Genes performs queries on gene identifiers against remote, inde-

pendently managed databases, enriching the information available

on individual genes. Using OGSA-DAI, the ODD-Genes applica-

tion supports automated data discovery and uniform access to

arbitrary databases on the Grid.

9.4 RESOURCE MANAGEMENT CASE STUDIES

In Chapter 6, we have introduced resource management and

scheduling systems, namely, Condor, SGE, PBS and LSF. In this

section, we first introduce a Condor pool running at University

College London (UCL). Then we introduce three SGE use cases.

9.4.1 The UCL Condor pool

A production-level Condor pool has currently been running at

UCL since October 2003 [19]. In August 2004, the pool had 940

nodes on more than 30 clusters within the University. Roughly

1 500 000 hours of computational time have been obtained from

Windows Terminal Service (WTS) workstations since October with

virtually no perturbation to normal workstation usage. An average

of 20 000 jobs are submitted on a monthly basis. The implemen-

tation of the Globus 2.4 toolkit as a gatekeeper to UCL-Condor

allows users to access the pool via Globus certificates and the

e-minerals mini-grid [20].

9.4 RESOURCE MANAGEMENT CASE STUDIES 389

9.4.2 SGE use cases

9.4.2.1 SGE in Integrated Circuit (IC) design

Based in Mountain View, California, Synopsys [21] is a devel-

oper of Integrated Circuit (IC) design software. Electronic product

technology is evolving at a very fast pace. Millions of transistors

(billions in the near future) reside in ICs that once housed only

thousands. But this increasing silicon complexity can only be har-

nessed with sophisticated Electronic Design Automation (EDA)

tools that let design engineers produce products that otherwise

would be impossible to design. With an SGE-managed cluster of

180 CPUs, the regression testing that used to take 10–12 hours now

takes 2–3 hours.

9.4.2.2 SGE in financial analysis and risk assessment

Founded in 1817, BMO Financial Group [22] is one of the largest

financial service providers in North America. With assets of about

$268 billion as of July 2003, and more than 34 000 employees, BMO

provides a broad range of retail banking, wealth management and

investment banking products and solutions. Monte Carlo compu-

tationally intensive simulations have been used for risk assess-

ment. To speed up the simulation process, an SGE-managed cluster

has been built from a Sun Fire 4800 and V880 server, along with

StorEdge 3910 server for storing data. TheMonte Carlo simulations

and other relevant risk-management computations are executed

using this cluster. Results are fused and reports are prepared by

9:00 am the next business day, which used to take one-week time.

9.4.2.3 SGE in animation and rendering

Based in Toronto, Ontario in Canada, Axyz Animation [23] is a

small- to mid-sized company that produces digital special effects.

An SGE cluster has been built to speed up the animation and ren-

dering process. With the help of the SGE cluster, the company has

dramatically reduced time to do animations or render frames from

overnight to 1–2 hours, eliminating bottlenecks from animation

process and increasing server utilization rates to almost 95%.

390 GRID APPLICATIONS – CASE STUDIES

9.5 GRID PORTAL USE CASES

9.5.1 Chiron

Chiron [24] is a Grid portal that facilitates the description and

discovery of virtual data products, the integration of virtual data

systems with data-intensive applications and the configuration

and management of resources. Chiron is based on commod-

ity Web technologies such as JSP and the Chimera virtual data

system [25].

The Chiron portal was partly motivated by the Quarknet project

[26] that aims to educate high school students about physics.

Quarknet brings physicists, high school teachers and students to

the frontier of the 21st century research about the structure of

matter and the fundamental forces of nature. Students learn funda-

mental physics as they analyse live online data and participate in

inquiry-oriented investigations, and teachers join research teams

with physicists at local universities or laboratories. The project

involves about 6 large physics experiments, 60 research groups,

120 physicists, 720 high school teachers and thousands of high

school students. Chiron allows students to launch, configure and

control remote applications as though they are using a local desk-

top environment.

9.5.2 Genius

GENIUS [27] is a portal system developed within the context of

the EU DataGrid project [28]. GENIUS follows a three-tiered archi-

tecture as described in Chapter 8:

• A client running a Web browser;

• A server running ApacheWeb Server, the Java/XML framework

EnginFrame [29];

• Backend Grid resources.

GENIUS provides secure Grid services such as job submission,

data management and interactive services. All Web transactions

are executed under the Secure Sockets Layer (SSL) via HTTPs.

MyProxy is used to manage user credentials.

9.6 WORKFLOW MANAGEMENT – DISCOVERY NET USE CASES 391

GENIUS has been used to run ALICE [30] simulation on the

DataGrid testbed. In addition, GENIUS has also been used for

performing ATLAS [31] and CMS [32] experiments in the context

of the EU DataTAG [33] and US WorldGrid [34] projects.

9.6 WORKFLOW MANAGEMENT – DISCOVERY
NET USE CASES

Discovery Net [35] is a services-oriented framework to support the

high throughput analysis of scientific data based on a workflow

or pipeline methodology. It uses the Discovery Process Markup

Language (DPML) to represent and store workflows. Discovery

Net has been successfully applied in the domains of Life Sciences,

Environmental Monitoring and Geo-hazard Modelling. In partic-

ular, Discovery Net has been used to perform distributed genome

annotation [36], Severe Acute Respiratory Syndrome (SARS) virus

evolution analysis [37], urban air pollution monitoring [38] and

geo-hazard modelling [39].

9.6.1 Genome annotation

The genome annotation application is data and computationally

intensive and requires the integration of a large number of data sets

and tools that are distributed across the Internet. Furthermore, it is

a collaborative application where a large number of distributed sci-

entists need to share data sets and interactively interpret and share

the analysis of the results. A prototype of the genome annotation

was successfully demonstrated at the Super Computing confer-

ence in 2002 (SC2002) [40] in Baltimore. The annotation pipelines

were running on a variety of distributed resources including high

performance resources hosted at the London e-Science center [41],

servers at Baltimore and databases distributed around Europe and

the USA.

9.6.2 SARS virus evolution analysis

In 2003, SARS spread rapidly from its site of origin in Guang-

dong Province, in Southern China, to a large number of countries

392 GRID APPLICATIONS – CASE STUDIES

throughout the world. Discovery Net has been used for the anal-

ysis of the evolution of the SARS virus to establish the relation-

ship between observed genomic variations in strains taken from

different patients, and the biology of the SARS virus. Similar to

the genome application, discussed previously, the SARS analysis

application also requires the integration of a large number of data

sets and tools that are distributed across the Internet. It also needs

the collaboration of distributed scientists and requires interactivity

in the analysis of the data and in the interpretation of the generated

results.

The SARS analysis workflows built with Discovery Net have

been mostly automated and performed on the fly, taking on aver-

age 5 minutes per tool for adding the components to the servers

at run time, thus increasing the productivity of the scientists. The

main purpose of the workflows presented was to combine the

sequence variation information on both genomic and proteomic

levels; and to use the available public annotation information to

establish the impact of those variations on the SARS virus devel-

opment.

The data used consists of 31 human patient samples, 2 strains

sequenced from palm civet samples which were assumed to be

the source of infection and 30 sequences that were committed

to Genbank [42] at the time of the analysis, including the SARS

reference sequence (NC004718). The reference nucleotide sequence

is annotated with the variation information from the samples, and

overlaps between coding segments and variations are observed.

Furthermore, individual coding segments are translated into five

proteins that form the virus (Orf1A, Orf1B, S, M, E, N) and analysis

is performed comparing the variation in these proteins in different

strains.

All the samples were aligned in order to find the variation points,

insertions and deletions. This is a time-consuming process, and

with the help of the Grid, the calculation time went from three

days on a standard desktop computer up to several hours.

9.6.3 Urban air pollution monitoring

Discovery Net is currently being used as knowledge discovery

environment for the analysis of air pollution data. It is provid-

ing an infrastructure that can be used by scientists to study and

9.6 WORKFLOW MANAGEMENT – DISCOVERY NET USE CASES 393

understand the effects of pollutants such as Benzene, SO2, NOx or

Ozone on human health. Sensors have been deployed to collect

data. A sensor grid is being developed in Discovery Net to address

the following four issues.

• Distributed sensor data access and integration: On one hand, it is

essential to record the type of pollutants measured (e.g. Benzene,

SO2 or NOx) for each sensor. On the other hand, it is essential

to record the location of the sensor at each measurement time

as the sensors may be mobile.

• Large data set storage and management: Each GUSTO (Generic

Ultraviolet Sensors Technologies and Observations) sensor gen-

erates in excess of 8GB of data each day, which must be stored

for later analysis.

• Distributed reference data access and integration: Whereas the anal-

ysis of spatiotemporal variation of multiple pollutants in respect

to one another can be directly achieved over archived data, more

often it is their correlation with third-party data, such as weather,

health or traffic data that is more important. Such third-party

data sets (if available) typically reside on remote databases and

are stored in a variety of formats. Hence, the use of standardized

and dynamic data access and integration techniques to access

and integrate such data is essential.

• Intensive and open data analysis computation: The integrated analy-

sis of the collected data requires a multitude of analysis compo-

nents, such as statistical, clustering, visualization and data classi-

fication tools. Furthermore, the analysis needs high-performance

computing resources that utilize large data sets to allow rapid

computation.

A prototype has been built to analyse the air pollution in the area

around Tower Hamlets and Bromley areas in East London.

The simulated scenario is based on a distribution of 140 sen-

sors in the area collecting data over a typical day from 8:00 am

until 6:00 pm at two-second intervals; monitoring NOx and SO2.

The simulation of the required data has taken into account

known atmospheric trends and the likely traffic impact. Workflows

built on the simulation results can be used to identify pollution

trends.

394 GRID APPLICATIONS – CASE STUDIES

9.6.4 Geo-hazard modelling

The Discovery Net infrastructure is being used to analyse cos-

mic shifts of earthquakes using cross-event Landsat-7 ETM+
images [43]. This application is mainly characterized by the high

computational demands for the image mining algorithms used to

analyse the satellite images (execution time for simple analysis

of a pair of images takes up to 12 hours on 24 fast UNIX sys-

tems). In addition, the requirement to construct and experiment

with various algorithms and parameter settings has meant that the

provenance of the workflows and their parameter settings becomes

an important aspect to the end-user scientists.

Using the geo-hazard modelling system, the remote sensing sci-

entists have analysed data from anMs 8.1 earthquake that occurred

in 14 November 2001 in an uninhabitable area along the eastern

Kunlun Mountains in China. The scientific results of their study

provided the first ever 2D measurement of the regional movement

of this earthquake and revealed illuminating patterns that were

never studied before on the co-seismic left-lateral displacement

along the Kunlun fault in the range of 1.5–8.1m.

9.7 SEMANTIC GRID – MYGRID USE CASE

We have briefly introduced myGrid in Chapters 3 and 7. It is a

UK e-Science pilot project, which is developing middleware infras-

tructure specifically to support in silico experiments in biology.

myGrid provides semantic workflow registration and discovery.

In this section, we briefly describe the application of myGrid to

the study of Williams–Beuren Syndrome (WBS) [44].

WBS is a rare, sporadically occurring micro-deletion disorder

characterized by a unique set of physical and behavioural features

[45]. Due to the repetitive nature of sequence flanking in the WBS

critical region (WBSCR), sequencing of the region is incomplete

leaving documented gaps in the released sequence. myGrid has

been successfully applied in the study of WBS in a series of exper-

iments to find newly sequenced human genomic DNA clones that

extended into these “gap” regions in order to produce a complete

and accurate map of the WBSCR.

9.8 AUTONOMIC COMPUTING – AUTOMATE USE CASE 395

• Ononehand, sequencing of the region ismore complete. Six puta-
tive coding sequences (genes) were identified; five of which were
identified as corresponding to the five knowngenes in this region.

• On the other hand, the study process on WBS has been speeded
up. Manually, the processes undertaken could take at least
2 days, but the workflows developed in myGrid for WBS can
achieve the same output in approximately an hour. This has
a significant impact on the productivity of the scientist, espe-
cially when considering these experiments are often undertaken
weekly, enabling the experimenter to act on interesting informa-
tion quickly without being bogged down with the monitoring
of services and their many outputs as they are running. The
system also enables the scientists to view all the results at
once, selecting those, which appear to be most promising and
then looking back through the results to identify areas of support.

9.8 AUTONOMIC COMPUTING – AUTOMATE
USE CASE

We have briefly introduced AutoMate in Chapter 3 as a framework
for autonomic computing. Here, we briefly describe the application
of AutoMate in the support of autonomic aggregations, compo-
sitions and interactions of software components and enable an
autonomic self-optimizing oil reservoir application [46].
One of the fundamental problems in oil reservoir production is

the determination of the optimal locations of the oil production
and injection wells. As the costs involved in drilling a well and
extracting oil is rather large (in millions of dollars per well), this is
typically done in a simulated environment before the actual deploy-
ment in the field. Reservoir simulators are based on the numerical
solution of a complex set of coupled non-linear partial differential
equations over hundreds of thousands to millions of grid-blocks.
The reservoir model is defined by a number of model parameters
(such as permeability fields or porosity) and the simulation pro-
ceeds by modelling the state of the reservoir and the flow of the
liquids in the reservoir over time, while dynamically responding to
changes on the terrain. Such changes can, for example, be the pres-
ence of air pockets in the reservoir or responses to the deployment
of an injection, or production oil well. During this process, infor-
mation from sensors and actuators located on the oil wells in the

396 GRID APPLICATIONS – CASE STUDIES

field can be fed back into the simulation environment to further

control and tune themodel to improve the simulator’s accuracy.

The locations of wells in oil and environmental applications

significantly affect the productivity and environmental/economic

benefits of a subsurface reservoir. However, the determination of

optimal well locations is a challenging problem since it depends on

geological and fluid properties as well as on economic parameters.

This leads to a large number of potential scenarios that must be

evaluated using numerical reservoir simulations. The high costs

of reservoir simulation make an exhaustive evaluation of all these

scenarios infeasible. As a result, the well locations are tradition-

ally determined by analysing only a few scenarios. However, this

ad hoc approach may often lead to incorrect decisions with a high

economic impact.

Optimization algorithms offer the potential for a systematic

exploration of a broader set of scenarios to identify optimum

locations under given conditions. These algorithms together with

the experienced judgement of specialists allow a better assessment

of uncertainty and significantly reduce the risk in decision-making.

However, the selection of appropriate optimization algorithms,

the run-time configuration and invocation of these algorithms and

the dynamic optimization of the reservoir remain a challenging

problem.

The AutoMate oil reservoir application consists of:

1. Sophisticated reservoir simulation components that encapsulate

complex mathematical models of the physical interaction in the

subsurface, and execute on distributed computing systems on

the Grid;

2. Grid services that provide secure and coordinated access to the

resources required by the simulations;

3. Distributed data archives that store historical, experimental and

observed data;

4. Sensors embedded in the instrumented oilfield providing real-

time data about the current state of the oil field;

5. External services that provide data relevant to optimization of

oil production or of the economic profit such as current weather

information or current prices;

6. The actions of scientists, engineers and other experts, in the

field, the laboratory and in management offices.

9.9 CONCLUSIONS 397

The overall oil production process described above is autonomic in

that the peers involved automatically detect sub-optimal oil pro-

duction behaviour at run time and orchestrate interactions among

themselves to correct this behaviour. Further, the detection and

optimization process is achieved using policies and constraints that

minimize human intervention. The interactions between instances

of peer services are opportunistic, based on run-time discovery

and specified policies, and are not predefined.

9.9 CONCLUSIONS

In this chapter, we have introduced some representative Grid

applications and described their make-up and how they are being

used to solve real-life problems. These applications have applied

or are applying the core technologies discussed in the previous

chapters. We started this chapter by introducing GT3 applications

such as in the areas of broadcasting and bioinformatics. GT3 has

been used for building OGSI-based service-oriented Grid systems

in which GT3 services can be published, discovered, and accessed

by a broad user community. GSLab and GEMLCA projects have

applied GT3 to leverage legacy codes as GT3 services to promote

software reuse. OGSA-DAI is a middleware technology that can

be used to access data from different data sources. There are a

couple of projects that have employed OGSA-DAI. In this chapter,

we focused on eDiaMoND to support the diagnosis of breast can-

cer by facilitating the process of breast screening, and ODD-Genes

for genetics data analysis. For resource management, we intro-

duced the UCL Condor pool and three SGE use cases. A cluster

managed by Condor or SGE can be effectively used to solve com-

putation intensive problems, e.g. using an SGE-managed cluster of

180 CPUs, the regression testing in integrated circuit design that

used to take 10–12 hours now takes 2–3 hours. Grid portals are

Web-based user interfaces that provide seamless access to a variety

of backend resources. Many portal projects discussed in Chapter 8

have been focused on portal frameworks, i.e. how to build por-

tals. In this chapter, we introduced Chiron and GENIUS for portal

applications. Regarding workflow management, we described the

application of Discovery Net to the areas of distributed genome

annotation, SARS virus evolution analysis, urban air pollution

monitoring and geo-hazard modelling. As one of the leading

398 GRID APPLICATIONS – CASE STUDIES

projects in Semantic Grid, myGrid has recently been applied to

the study of WBS to speed up the process of the discovery of new

genes or sequences. Finally we introduced AutoMate in the sup-

port of autonomic aggregations, compositions and interactions of

software components and enable an autonomic self-optimizing oil

reservoir application.

The Grid is still evolving. Hopefully in a couple of years, we

will have a fully developed Grid environment which will be run-

ning across many virtual organizations located in different coun-

tries. In the near future, we should be able to easily access Grid

resources including computing resources, software resources, data

resources, storage resources, instrumentation resources without

knowing where the resources come from. That is the final goal of

the Grid and the right direction upon which the Grid community

is currently moving towards.

9.10 REFERENCES

[1] Harmer, T.J.,Donachy, P., Perrott, R.H.,Chambers,C.,Craig, S.,Mallon, B. and

Wright, C. GridCast – Using the Grid in Broadcast Infrastructures. Proceedings
of UK e-Science All HandsMeeting 2003 (AHM ’03), 2003, Nottingham, UK.

[2] GridCast, http://www.qub.ac.uk/escience/projects/gridcast/.

[3] Li, M., Yu, B. and Qi, M. GSLab: A Toolkit for Automatically Wrapping
Legacy Codes as GT3 Based Grid Services. Technical Report, June 2004, Brunel

University.

[4] Qi, M. and Willis, P. Quasi3D Cel based Animation. Proceedings of Vision,

Video and Graphics 2003 (VVG ’03), July 2003, Bath, UK.

[5] Delaitre, T., Goyeneche, A., Kacsuk, P., Kiss, T., Terstyanszky, G. and

Winter, S.C. GEMLCA: Grid Execution Management for Legacy Code Architecture
Design. Proceedings of the 30th EUROMICRO Conference, Special Session

on Advances in Web Computing, 2004, Rennes, France. CS Press.

[6] Gourgoulis, A., Terstyansky, G., Kacsuk, P. and Winter, S.C. Creating Scalable
Traffic Simulation on Clusters. Proceedings of the 12th Euromicro Conference

on Parallel, Distributed and Network based Processing, 2004, La Coruna,

Spain. CS Press.

[7] Kacsuk, P., Dózsa, G., Kovács, J., Lovas, R., Podhorszki, N., Balaton, Z. and

Gombás, G. P-GRADE: A Grid Programming Environment, Journal of Grid
Computing, 1(2): 171–197 (2003).

[8] GEMLCA, http://www.cpc.wmin.ac.uk/ogsitestbed/GEMLCA/.

[9] BLAST, http://www.ncbi.nlm.nih.gov/BLAST/.

[10] Bayer, M., Campbell, A. and Virdee, D. A GT3 based BLAST Grid Ser-
vice for Biomedical Research. Proceedings of UK All Hands Meeting, 2004,

Nottingham, UK.

[11] ScotGRID, http://www.scotgrid.ac.uk/.

TE
AM
 F
LY

9.10 REFERENCES 399

[12] PPE, http://ppewww.ph.gla.ac.uk/.

[13] EPCC, http://www.epcc.ed.ac.uk/.

[14] IPPP, http://www.ippp.dur.ac.uk/.

[15] OGSA-DAI Projects, http://www.ogsadai.org.uk/projects/.

[16] e-DiaMoND, http://www.ediamond.ox.ac.uk/.

[17] ODD-Genes, http://www.epcc.ed.ac.uk/∼oddgenes/.

[18] SunDCG, http://www.epcc.ed.ac.uk/sungrid/.

[19] UCL Condor Pool, http://grid.ucl.ac.uk/Condor.html.

[20] eMinerals, http://eminerals.org/.

[21] Synopsys, http://www.synopsys.com.

[22] BMO, http://www.bmo.com.

[23] AXYZ, http://www.axyzfx.com.

[24] Zhao, Y., Wilde, M., Foster, I., Voeckler, J., Jordan, T., Quigg, E. and

Dobson, J. Grid Middleware Services for Virtual Data Discovery, Composi-
tion, and Integration. Proceedings of ACM/IFIP/USENIX 5th International

Middleware Conference, October 2004, Toronto, Canada. ACM.

[25] Foster, I., Voeckler, J., Wilde, M. and Zhao, Y. Chimera: A Virtual Data Sys-
tem for Representing, Querying, and Automating Data Derivation. Proceedings
of the 14th Conference on Scientific and Statistical Database Management,

July 2002, Edinburgh, UK.

[26] The Quarknet Project, http://quarknet.fnal.gov.

[27] GENIUS, http://genius.ct.infn.it/.

[28] DataGrid, http://www.opensource.org/licenses/eudatagrid.php.

[29] EnginFrame, http://www.enginframe.com.

[30] ALICE, http://www.cern.ch/Alice.

[31] ATLAS, http://atlasexperiment.org/.

[32] CMS, http://cmsinfo.cern.ch/Welcome.html/.

[33] DataTAG, http://datatag.web.cern.ch/datatag/.

[34] WorldGrid, http://www.ivdgl.org/projinfo/.

[35] Discovery Net, http://www.discovery-on_the.net/.

[36] Rowe, A., Kalaitzopoulos, D., Osmond, M., Ghanem, M. and Guo, Y. The
Discovery Net System for High Throughput Bioinformatics. Proceedings of the

11th International Conference on Intelligent Systems for Molecular Biology,

July 2003, Brisbane, Australia.

[37] Curcin, V., Ghanem, M. and Guo, Y. SARS Analysis on the Grid. Proceedings
of UK e-Science All Hands Meeting, September 2004, Nottingham, UK.

[38] Ghanem, M., Guo, Y., Hassard, J., Osmond, M. and Richards, R. Sensor Grids
for Air Pollution Monitoring. Proceedings of UK e-Science All Hands Meeting,

September 2004, Nottingham, UK.

[39] Liu, J.G. and Ma, J. Imageodesy on MPI & GRID for Co-seismic Shift Study Using
Satellite Optical Imagery. Proceedings of UK e-Science All Hands Meeting,

September 2004, Nottingham, UK.

[40] SC2002, www.sc-conference.org/sc2002.

[41] LeSC, http://www.lesc.ic.ac.uk/.

[42] GenBank, http://www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html.

[43] Landsat, http://www.landsat.org/.

[44] Stevens, R.D., Tipney, H.J., Wroe1, C.J., Oinn, T.M., Senger, M., Lord, P.W.,

Goble, C.A., Brass, A. and Tassabehji, M. Exploring Williams–Beuren

Syndrome Using myGrid. Bioinformatics, 20(Suppl. 1): i303–i310 (2003).

400 GRID APPLICATIONS – CASE STUDIES

[45] Morris, C. The Natural History of Williams Syndrome: Physical Character-

istics. Journal of Paediatrics, 113: 318–326 (1988).

[46] Matossian, V., Bhat, V., Parashar, M., Peszynska, M., Sen, M., Stoffa, P.

and Wheeler, M.F. Autonomic Oil Reservoir Optimization on the Grid. Con-
currency and Computation: Practice and Experience, 17(1): 1–26, January 2005,

Wiley.

Glossary

Term Meaning Description

Apache Ant Ant is a Java-based software

tool for automating the software

build processes. It is similar to

make, which automates the

compilation of programs whose

files are dependent on each other.

URL: http://ant.apache.org/

Apache

Axis

Axis is a SOAP engine for Web

services to exchange messages

with SOAP. URL: http://

ws.apache.org/axis/

Apache

Cocoon

Cocoon is a Web application

development framework that

implements the notion of

“component pipelines”, where

each component in a pipeline

specializes in a particular

operation. URL: http://cocoon.

apache.org/

The Grid: Core Technologies Maozhen Li and Mark Baker

© 2005 John Wiley & Sons, Ltd

402 GLOSSARY

Apache

Jakarta

Tomcat

Tomcat is a Java Servlet

container for managing the

run-time environment of servlets

and Java Server Pages (JSPs).

URL: http://jakarta.apache.org/

tomcat/

Apache

Jakarta

Turbine

Turbine is a Java Servlet-based

framework that allows

developers to build secure Web

applications. URL: http://

jakarta.apache.org/turbine/

Apache

Jakarta

Velocity

Velocity provides an alternative

scripting language to JSP for

developing Web pages.

URL: http://jakarta.apache.org/

velocity/

Apache

Jetspeed

Jetspeed is a framework

for building Web portals

with portlets. URL: http://

portals.apache.org/jetspeed-1/

AppLeS Application

Level

Scheduler

AppLeS is an adaptive application

level scheduling system in which

schedules are generated based on

application-specific information.

ASAP Asynchronous

Service

Access

Protocol

ASAP is a protocol for

asynchronous communications

between clients and services.

Automatic

Computing

Autonomic computing refers

to an infrastructure that

automatically adapts to

meet the demands of the

applications that are running

in it. Such a system has the

features of self-optimization,

self-protection, self-healing and

self-configuration.

GLOSSARY 403

BPEL4WS Business

Process

Execution

Language

for Web

Services

Based on XLANG and

WSFL, BPEL4WS is both

a block-structured and a

graph-based workflow language

for Web services composition.

URL: http://www-128.ibm.com/

developerworks/library/

ws-bpel/

BPML Business

Process

Modelling

Language

BPML is a meta-language for

modelling business processes.

BSFL Block

Structured

Flow

Language

A BSFL specifies a predefined

order in executing Web services.

CA Certification

Authority

A CA is an authority that issues

andmanages security credentials

and public keys for secure

communications.

CCA Common

Component

Architecture

CCA is a component model for

high-performance computing

applications. URL: http://

www.cca-forum.org/

Check-

pointing

Checkpointing is the means of

saving an executing program’s

state so that in case of failure it

may be restarted at the last saved

checkpoint.

CIM Common

Information

Model

CIM provides a common

definition so that vendors

can exchange management

information between systems

throughout a network

environment.

http://www.dmtf.org/

standards/cim

404 GLOSSARY

ClassAd Classified

Adver-

tisement

A ClassAd is a descriptive

language used by Condor for

matching resources.

Condor Condor is a resource management

and job scheduling system.

URL: http://www.cs.wisc.edu/

condor/

Condor-G Condor-G is a system that can

submit Condor jobs to a Globus

environment.

CORBA Common

Object

Request

Broker

Architecture

CORBA is a middleware

technology for building

distributed client/server

applications in which clients and

CORBA objects are independent

of location, platform and

programming language.

CVS Concurrent

Versions

System

CVS is a version

control system.

URL: http://www.cvshome.org/

DAML DARPA

Agent

Markup

Language

Based on RDF, DAML is an

XML-based ontology language

developed for the Semantic Web.

URL: http://www.daml.org/

DAML+
OIL

DAML+OIL is an ontology

language combining the features

of DAML and OIL.

DAML-S DAML-S is both a language and

an ontology for annotating

Web services with semantic

capabilities.

DCE RPC Distributed

Computing

Environment

RPC

DCE RPC is an implementation

of RPC from the Open Software

Foundation (OSF).

GLOSSARY 405

DCOM Distributed

Component

Object

Model

DCOM is a middleware

technology for building

Windows-based distributed

client/server applications in

which clients and DCOM

components are independent of

location and programming

language.

Deadline

Constraint

Scheduling

Deadline constraint scheduling

suspends or terminates running

jobs at a certain time.

Dedicated

Scheduling

Dedicated scheduling means

that jobs scheduled to dedicated

resources cannot be preempted.

DER Distinguished

Encoding

Rules

DER is a binary representation

of an X.509 digital certificate.

DES Data

Encryption

Standard

DES is a symmetric key method

for data encryption.

DL Description

Logic

DL is a formal method for

knowledge representation.

DMTF Distributed

Management

Task

Force

DMTF is standards body

for enterprise and Internet

technologies.

ECS Element

Construction

Set

ECS is a Java API for generating

elements for various markup

languages including HTML 4.0

and XML.

EJB Enterprise

JavaBeans

EJB is the server-side technology

in the J2EE framework.

Exclusive

Scheduling

Exclusive scheduling gives a job

an exclusive use of the host that

it executes on.

406 GLOSSARY

FaCT Fast

Classifica-

tion of

Terminologies

FaCT is a reasoning system that

uses DL classifier.

Fair Share

Scheduling

The fair share scheduling divides

the processing resources among

users and groups to provide fair

access to resources. A fair share

policy can be configured at either

the queue or host level.

GARA Globus

Architecture

for

Reservation

andAllocation

GARA is part of the Globus

Toolkit for resource reservation

and allocation.

GBFL Graph-

Based

Flow

Language

GBFL is a graph-based workflow

language that uses graphs to

specify the data and control

flows between services.

GGF Global

Grid

Forum

GGF is a standards body for

Grid technologies. URL: http://

www.gridforum.org/

GIS Grid

Information

Service

GIS is part of the Globus Toolkit

used to manage resources

information.

Globus

Toolkit

The Globus Toolkit provides

middleware technologies for

building Grid systems.

URL: http://www.globus.org

GMA Grid

Monitoring

Architecture

The GMA is the GGF’s

informational recommendation

for monitoring the Grid.

Goal-

oriented

SLA

Scheduling

This helps users configure

workloads so that user jobs are

completed on time and reduces

the risk of missed deadlines. An

SLA defines how a service is

GLOSSARY 407

delivered and the parameters for

the delivery of a service.

GRAM Globus

Resource

Allocation

Manager

GRAM is part of the Globus

Toolkit used for job submission.

Grid Portal A Grid portal is a system inwhich

Grid resources can be accessed

via aWeb-based user interface.

GridSphere GridSphere is a framework

for building Web portals

with portlets. URL: http://

www.gridsphere.org

GSFL Grid

Services

Flow

Language

GSFL is a WSFL-based workflow

language for OGSA compliant

Grid service composition.

GSH Grid

Service

Handler

GSH is a globally unique URI

for a Grid service or a Grid

service instance.

GSI Grid

Security

Infrastructure

GSI provide an infrastructure for

secure communication in grid

environments. It is based on

public-key encryption, X.509

certificates and the SSL

communication protocol.

GSR Grid

Service

Reference

GSR is a reference associated

with an implementation of a Grid

service or a Grid service instance.

GT2 Globus

Toolkit

2.×

GT2 is implemented in C

language.

GT3 Globus

Toolkit

3.×

GT3 is built on OGSI and Web

services.

408 GLOSSARY

GT4 Globus

Toolkit

3.9�×

GT4 is built on WSRF.

GWSDL GWSDL is an extension ofWSDL

for describing Grid services.

IETF Internet

Engineering

Task Force

IETF is a standard body for

Internet technologies. URL:

http://www.ietf.org/

IIOP Internet-

Inter ORB

Protocol

IIOP is the protocol for CORBA

clients to communicate with

objects running in an Internet

environment.

J2EE Java 2

Platform

Enterprise

Edition

J2EE defines the standards for

building enterprise applications

in Java.

URL: http://java.sun.com/j2ee/

index.jsp

Java CoG

Kit

Java

Commodity

Grid Kit

The Java CoG Kit is a software

package for accessing Globus

resources from Java.

JCE Java

Cryptog-

raphy

Extension

JCE is a set of software packages

from Sun Microsystems that

provides a framework for

encryption, key generation and

key agreement and Message

Authentication Code (MAC)

algorithms.

URL: http://java.sun.com/

products/jce/index.jsp

JCP Java

Community

Process

JCP is a standard body for

Java-based technologies.

URL: http://www.jcp.org

JNDI Java

Native

Directory

Interface

JNDI is an interface for accessing

information directories built with

standard protocols such as LDAP.

GLOSSARY 409

Job

Dependency

Scheduling

Job dependency scheduling

specifies that the execution

of a job is dependent on the

completion of another job, which

can be specified in the job

submission.

JRMP Java

Remote

Method

Protocol

JRMP is the communicate

protocol used by RMI clients and

objects.

JSP Java

Server

Page

JSP is a server-side scripting

language that can be used

to dynamically generate

Web pages.

JSR 168 Java

Specification

Request

168

JSR 168 is a JCP portlets

specification for developing

interoperable portlets.

LDAP Lightweight

Directory

Access

Protocol

LDAP is a set of protocols for

accessing information directories

on the Internet.

LMJFS Local

Managed

Job

Factory

Service

LMJFS is part of the Globus

Toolkit version 3 that is used

for running a local user host

environment for job submission.

LSF Load

Sharing

Facility

LSF is a resource management

and job scheduling system.

URL: http://www.platform.com/

products/LSF/

MDS Monitoring

and Directory

Service

MDS is an information service

provided by the Globus Toolkit.

MDS2 MDS2 is an LDAP-based

information service provided by

GT2.

410 GLOSSARY

MDS3 MDS3 is an OGSI-based

information service provided

by GT3.

MMJFS Master

Managed Job

Factory

Service

MMJFS is part of the Globus

Toolkit version 3 for running a

master user host environment for

job submission.

MPI Message

Passing

Interface

MPI is a high-level messaging

API for peer-to-peer

communications in a parallel

environment.

MVC Model-View-

Controller

MVC is a model for user interface

management systems with an

aim to separate presentation logic

from application logic.

MyProxy MyProxy is an online credential

management system for the

Grid.

N1GE N1 Grid

Engine

N1GE is the commercially

supported version of SGE.

URL: http://wwws.sun.com/

software/gridware/

.Net .Net is a software

framework for building

Windows-based Web services

applications. URL: http://

www.microsoft.com/net/

NWS Network

Weather

Services

NWS is a system for system

performance prediction.

URL: http://nws.cs.ucsb.edu/

OASIS Organization

for the

Advancement

of Structured

Information

Standards

OASIS is a standards body for

e-Business technologies.

URL: http://www.oasis-open.org

GLOSSARY 411

OCS Open

Content

Syndication

OCS is an XML-based format for

describing multiple-content

channels, including RSS

headlines.

OGSA Open

Grid

Services

Architecture

OGSA, based on Web services, is

the de facto standard for building

service-oriented Grid systems.

URL: http://www.globus.org/

ogsa/

OGSA-DAI Open Grid

Services

Architecture-

Data Access

and

Integration

OGSA-DAI is a middleware

technology for accessing and

integrating data from different

data sources such as relational

and XML databases, as well

as file systems on the Grid. URL:

http://www.ogsadai.org.uk/

OGSI Open Grid

Services

Infrastructure

OGSI is a specification for

implementing interfaces defined

by OGSA. OGSI has been

replaced by WSRF.

OIL Ontology

Inference

Layer

OIL is an XML-based

representation and inference layer

for ontologies.

OMG Object

Management

Group

OMG is a standards body for

interoperable enterprise

applications.

URL: http://www.omg.org/

ONC RPC Open

Network

Computing

RPC

ONC RPC is an implementation

of RPC from Sun Microsystems.

Ontology An ontology provides a common

vocabulary for a domain and

defines the meaning of the terms

and the relationships between

them.

412 GLOSSARY

ORPC Object Remote

Procedure

Call

ORPC is the protocol for DCOM

clients to communicate with

DCOM components.

OWL Web

Ontology

Language

OWL is a revision of DAML+OIL.

URL: http://www.w3.org/2001/

sw/WebOnt/

OWL-S OWL-S is derived from DAML-S

and uses OWL as the ontology

language to enrich Web services

with semantic capabilities.

PBS Portable

Batch

System

PBS is a resource management

and job scheduling system.

URL: http://www.openpbs.org/

PEM Privacy

Enhanced

Mail

PEM is an ASCII form (Base64)

representation of an X.509 digital

certificate.

PIF Process

Interchange

Format

PIF is an interchange format for

different process representations.

PKI Public

Key

Infras-

tructure

PKI enables users to securely

and privately exchange data

through a public and a private

cryptographic key pairs, which

can be obtained from a trusted

authority.

Portlet A portlet is a Java Servlet,

conforming to JSR 168, for

interacting with users in a

specified part of a Web page.

Preemptive

Scheduling

Preemptive scheduling lets a

pending job with a high-priority

job take resources away from a

running job with a lower priority.

PSL Process

Specification

Language

PSL defines a neutral

representation for process

interchange.

GLOSSARY 413

PVM Parallel

Virtual

Machine

PVM is a software system for

developing parallel applications.

Using PVM, a heterogeneous

collection of UNIX and/or

Windows systems can work as a

single virtual machine.

URL: http://www.csm.ornl.gov/

pvm/pvm_home.html

RDF Resource

Description

Framework

RDF is an XML-based language

for describing structured

metadata.

RDFS RDF

Schema

RDFS is an extension of RDF

with more modelling primitives.

RFT Reliable

File

Transfer

RFT is part of the Globus Toolkit

used for reliable file transfer.

RMI Remote

Method

Invocation

RMI is a middleware technology

for building Java-based

distributed client/server

applications in which clients

and objects are independent of

location and platform.

RPC Remote

Procedure

Call

RPC is a middle technology for

building distributed client/server

applications in which a client calls

a remote procedure as if it were

local.

RSA Rivest,

Shamir and

Adleman

RSA is an asymmetric key

method for data encryption.

RSL Resource

Specification

Language

RSL the description language

used by the Globus Toolkit for job

submission.

RSS Really

Simple

Syndication

RSS is an XML-based format for

syndicating Web headlines.

414 GLOSSARY

Semantic

Grid

The Semantic Grid applies

technologies used in the Semantic

Web to the Grid to annotate

resources and services with

semantic meanings for an efficient

services/resources discovery.

SGE Sun Grid

Engine

SGE is a resource management

and job scheduling system.

URL: http://gridengine.

sunsource.net/

Semantic

Web

The Semantic Web is an initiative

to augment unstructured Web

content as structured information

and to improve the efficiency of

Web information discovery and

machine-readability.

SLA Service

Level

Agreement

An SLA is an agreement between

a service consumer and provider

that defines the guarantees

regarding the use of the services.

SNMP Simple

Network

Management

Protocol

SNMP is a standard protocol for

network management.

SOA Service

Oriented

Architecture

SOA is a model for developing

loosely coupled distributed

systems in which software

components are exposed as

services so that they can be

published in a network

environment and then discovered

by clients.

SOAP SOAP is an XML-basedmessaging

protocol for communications

between Web Services

applications. URL:http://

www.w3.org/ TR/soap/

GLOSSARY 415

SSL Secure

Sockets

Layer

SSL is a protocol for secure

information transmission over

Internet.

TLS Transport

Layer

Security

TLS, a successor to SSL,

is a protocol for secure

communications across a public

network through data encryption.

UDDI Universal

Description,

Discovery,

and

Integration

UDDI is an industry standard for

service registration and discovery

in Web services.

URL: http://www.uddi.org/

URI Uniform

Resource

Identifier

A URI is a standard way for

identifying a resource on the Web.

VO Virtual

Organisa-

tion

A VO is a dynamic environment

that couples geographically

distributed resources, which may

run across multiple institutions.

A VO may have rules as

specifying how its resources can

be securely accessed and shared

by its members.

W3C World

Wide

Web Con-

sortium

The W3C is standard body for

Web technologies.

URL:http://www.w3.org/

WAP Wireless

Application

Protocol

WAP is set of protocols for

accessing Internet resources

from mobile devices.

URL: http://www.wapforum.org/

WBEM Web-

Based

Enterprise

Management

WBEM provides a set of standard

Web-based technologies

for managing enterprise

environments.

http://www.dmtf.org/

standards/wbem/

416 GLOSSARY

Web Portal A Web Portal is a system in

which content can be accessed via

Web-based user interfaces

WebSphere WebSphere is a framework for

building Web portals with portlets.

URL: http://www-306.ibm.com/

software/websphere/

WfMC Workflow

Manage-

ment

Coalition

WfMC is a standards body for

workflow management systems.

URL: http://www.wfmc.org/

WFMS Workflow

Manage-

ment

System

A WFMS is a system that

manages the execution of

workflows.

Workflow

Engine

A workflow engine manages the

run time of workflow processes.

Workflow

Language

A workflow language is used to

describe the functional relations

of processes in a workflow.

WPDL Workflow

Process

Definition

Language

WPDL is a workflow language

defined by WfMC.

WS Web

Services

WS are XML-based middleware

for building service-oriented

distributed applications.

URL: http://www.w3.org/

2002/ws/

WSCI Web

Services

Choreog-

raphy

Interface

WSCI is a WSDL-based

block-structured workflow

language for Web services

composition.

URL: http://www.w3.org/

TR/wsci/

GLOSSARY 417

WSDD Web

Services

Deployment

Descriptor

WSDD is an XML-based

document describing how to

deploying Web services.

WSDL Web

Services

Description

Language

WSDL is an XML-based language

for describing Web services

interfaces. URL: http://

www.w3.org/TR/wsdl

WSFL Web

Services

Flow

Language

WSFL is a WSDL-based

graph-structured workflow

language for Web services

composition.

WSIF WS-

Inspection

Language

WSIF is an XML-based language

for describing WS-Inspection

documents.

URL: http://www-106.ibm.com/

developerworks/webservices/

library/ws-wsilspec.html

WS-

Inspection

WS-Inspection is an industry

standard for service registration

and discovery.

WSRF Web

Services

Resource

Framework

WSRF is a set of specifications

that models stateful resources

with Web services.

WSRP Web

Services

for Remote

Portlets

WSRP is an OASIS specification

for accessing Web services via

portlets.

WS-

Security

WS-Security is a specification for

secure message exchanging with

SOAP.

X.509 X.509 is a standard for defining

digital certificates, which are used

to authenticate messages sent

over a network.

418 GLOSSARY

XDR eXternal

Data

Representation

XDR is a data representation

approach for exchanging data

between heterogeneous

computing systems.

XLANG XLANG is a WSDL-based

block-structured workflow

language for Web services

composition.

XML-

Encryption

XML-Encryption is a specification

for encrypting messages in XML.

URL: http://www.w3.org/

Encryption/2001/

XML-

Signature

XML-Signature is a specification

for processing digital signatures

in XML messages.

URL: http://www.w3.org/

Signature/

XPDL XML

Process

Definition

Language

XPDL is an XML-based workflow

language defined by WfMC to

replace WPDL.

XSD XML

Schema

Definition

XSD is an XML-based language

for describing and verifying XML

documents.

Index

Access Control List 126

Apache Ant 51

Apache Axis 30

Java2WSDL 30, 31

WSDL2Java 30, 32

AppLes 291

Asynchronous

communication 19

AtlasGrid 193

Autonomic computing 108

self-configuring 110

self-healing 109

self-learning 110

self-optimizing 109

self-protection 109

Autonomic Grid services 113

Autopilot 164

BioOpera 326

BioPipe 323

BPEL4WS 315

BPML 317

Cactus 366

CCA 112, 327

Certificate Authority 132, 133

CHEF 370

CIM 4

ClassAd 266

CODE 168

Condor 254

Condor-G 267

CORBA 19

IDL 19

IIOP 19

Credential 146

delegation 139

CrossGrid 193

Cryptography 127

asymmetric cryptography 129

symmetric cryptosystems 128

DAGMan 264

DAIS 59

DAML 85

DAML+OIL 84

DAML-S 89

ServiceGrounding 90

ServiceModel 90

ServiceProfile 89–90

The Grid: Core Technologies Maozhen Li and Mark Baker

© 2005 John Wiley & Sons, Ltd

420 INDEX

Data provenance 106, 107

DataGrid 193

DataTAG 193

DCE RPC 15

DCOM 18

ORPC 18

Dedicated scheduling 266

DES 128

Description Logic 84

Digital signature 130

Discovery Net 329

DMTF 4

ECS 361

Equal-share scheduling 274

F-Logic 87

FaCT 85

Fault tolerance 161

Firewall 133

GALE 322

Ganglia 217

GARA 341

Genetic algorithms 296

Geodise 95, 327

GGF 4

GLUE 212

GMA 154

consumer 155

Directory Service 156

producer 156–7

GPDK 343

GPIR 176, 370

GrADS 164, 293

Grid definition 2, 3

Grid service container 42

Grid service data 37

Grid service instance 35

GridAnt 327

GridFlow 326

GridICE 172

GridLab 202

GridMon 219

GridPort 341

GridRM 180

jGMA 182

GridSpeed 346

GridSphere 364

GriPhyN 329

GRM/PROVE 220

GSFL 318

GSH 36

GSI 134

GSR 36

GSSAPI 205

GT3 40

GT3 GRAM 44

GT3 GWSDL 50

GT3 Index Service 48

GT3 LMJFS 45

GT3 MJS 45

GT3 MMJFS 45

GT3 programming model 50

GT3 RFT 49

GT4 69

GWEL 321

Hawkeye 185

ICENI 325

INFN-Grid 172

IT Innovation Workflow

Enactment Engine 324

J2EE 30

JAXB 30

JAXP 30

JAXR 30

JAX-RPC 30

JAMM 189

Java CoG 339, 341

Java RMI 16

JRMP 17

JCE 142

JCP 355

Jetspeed 357

PSML 360

JIGSA 325

INDEX 421

JNDI 341

Job checkpointing 264

Job flocking 265

Job scheduling architecture 245

centralised scheduling 245

distributed scheduling 246

hierarchical scheduling 248

Job selection paradigms 253

backfilling selection 254

first come first serve 253

priority-based selection 253

random selection 253

JSR 168 356

Junit 366

Key 129

private key 129

public key 129

L-Bone 193

LCG 172

LDAP 170, 175, 190, 191, 193,

195, 196, 197, 209, 232

LSF 279

MapCenter 192

MDS3 196

Mercury 201

Metadata 78, 79

Monitoring 153

cross-API Monitoring 161–2

dynamic monitoring 160–1

static monitoring 160

workflow monitoring 161

MS.NETGrid 40

MVC model 101

MyGrid 94, 324

MyProxy 339

N1GE 269

Nagios 221

Naming Schema 181

NASA IPG 168

.Net 32

ASP 32

DISCO 32

MSXML 32

NetLogger 222

NetSolve 215

Nimrod/G 293

Ninf Portal 345

NMI 205

NPACI Grid 205

NWS 205

OASIS 4

OCS 357

OGCE 369

OGSA 5, 34, 69

OGSA-based Grid services 34

OGSA-DAI 53

OGSA-DAI portTypes 54

DAIServiceGroupRegistry 56

GDSPortType 54

GridDataPerform 55

GridDataServiceFactory 56

GridDataTransport 55

OGSA portTypes 38

Factory 38

GridService 38

HandleResolver 38

NotificationSource/

NotificationSink 39

Registration 38–9

OGSA-WG 12

OGSI 35, 40, 43, 66

OGSI::Lite 41

OGSI.NET 40

OGSI-WG 13

OIL 84

OilEd 88

OMG 19

ONC RPC 15

OntoEdit 87

Ontology 78, 79, 80

Ontology-based Resource

Matching 93

Ontology languages 83

422 INDEX

OpenSSL 146

OWL 86

OWL DL 86

OWL Full 86

OWL Lite 86

OWL-S 90

PBS 274

P-GRADE 329

PIF 331

PlanetLab 193

Portal services 338

Portals 336

Portlet 350

Preemptive Scheduling 266

Protégé 88

PSL 331

Public-key certificate 130

Public Key Infrastructure 131

PyOGSI 41

RDF 81

data model 82

RDFS 84

Resource reservation 290

R-GMA 209

RPC 15

IDL 15

RRDtool 218

RSA 129

RSS 357

SAAJ 30

SCALEA-G 223

SDE 37

Security 123

Assurance 125

Auditability 126

Authentication 125

Mutual authentication 135

Authorization 125

Availability 125

Confidentiality 125

Integrity 125

Non-repudiation 126

Semantic Grid 77

Semantic Grid portal 99

Semantic service annotation and

adaptation 98

Semantic Web 78

Semantic workflow 94, 95

Service Data Element (SDE) 37

SGE 269

Simulated annealing 296

Single sign-on 139

SOA 21

SOAP 23

Body 23

Envelope 23

Socket programming 14

SSL 205

SWFL 321

Symphony 328

Synchronous communication 16,

17, 19

Time-stamped data 159

The Alliance Portal 370

Triana 324

Turbine 359

UDDI 26

Green page 26

White Page 26

Yellow Page 26

UDDI4J 30

Velocity 358

visPerf 214

VO 3

W3C 4

WBEM 4

Web services 21

deployment model 29

hosting environments 34

programming model 29

SOAP engine 30

INDEX 423

WebSphere 362

WfMC 303

WfMC reference model 305

WFMS 304

Workflow definition 304

Workflow engine 306

WPDL 308

WS-Addressing 63

WS-AtomicTransaction 6

WS-Coordination 6

WS-Federation 6

WS-GAF 6

WS-I 6

WS-Inspection 27

WS-Management 6

WS-Policy 6

WS-ReliableMessaging 5

WS-Security 43

WS-SecureConversation 6

WS-Trust 6

WSCI 313

WSDL 24

binding 25

data types 24

message 24–5

port 25

portType 25

service 25–6

WSFL 311

WSIF 34

WSRF 60, 66, 69

WS-BaseFaults 62

WS-Notification 61

WS-BaseNotification 61

WS-BrokeredNotification 61

WS-Topics 61

WS-RenewableReferences 62–3

WS-Resource 63

WS-ResourceLifetime 60

WS-ResourceProperties 61

WS-ServiceGroup 62

WSRP 355

X.509 PKI 131

XDR 205, 218

XLANG 311

XML-Encryption 43

XML-Signature 43

XPDL 308

XSD 24

YAWL 326

	cover.pdf
	page_c2.pdf
	page_r1.pdf
	page_r2.pdf
	page_r3.pdf
	page_r4.pdf
	page_r5.pdf
	page_r6.pdf
	page_r7.pdf
	page_r8.pdf
	page_r9.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_r15.pdf
	page_r16.pdf
	page_r17.pdf
	page_r18.pdf
	page_r19.pdf
	page_r20.pdf
	page_r21.pdf
	page_r22.pdf
	page_r23.pdf
	page_r24.pdf
	page_r25.pdf
	page_r26.pdf
	page_r27.pdf
	page_r28.pdf
	page_1.pdf
	page_2.pdf
	page_3.pdf
	page_4.pdf
	page_5.pdf
	page_6.pdf
	page_7.pdf
	page_8.pdf
	page_9.pdf
	page_10.pdf
	page_11.pdf
	page_12.pdf
	page_13.pdf
	page_14.pdf
	page_15.pdf
	page_16.pdf
	page_17.pdf
	page_18.pdf
	page_19.pdf
	page_20.pdf
	page_21.pdf
	page_22.pdf
	page_23.pdf
	page_24.pdf
	page_25.pdf
	page_26.pdf
	page_27.pdf
	page_28.pdf
	page_29.pdf
	page_30.pdf
	page_31.pdf
	page_32.pdf
	page_33.pdf
	page_34.pdf
	page_35.pdf
	page_36.pdf
	page_37.pdf
	page_38.pdf
	page_39.pdf
	page_40.pdf
	page_41.pdf
	page_42.pdf
	page_43.pdf
	page_44.pdf
	page_45.pdf
	page_46.pdf
	page_47.pdf
	page_48.pdf
	page_49.pdf
	page_50.pdf
	page_51.pdf
	page_52.pdf
	page_53.pdf
	page_54.pdf
	page_55.pdf
	page_56.pdf
	page_57.pdf
	page_58.pdf
	page_59.pdf
	page_60.pdf
	page_61.pdf
	page_62.pdf
	page_63.pdf
	page_64.pdf
	page_65.pdf
	page_66.pdf
	page_67.pdf
	page_68.pdf
	page_69.pdf
	page_70.pdf
	page_71.pdf
	page_72.pdf
	page_73.pdf
	page_74.pdf
	page_75.pdf
	page_76.pdf
	page_77.pdf
	page_78.pdf
	page_79.pdf
	page_80.pdf
	page_81.pdf
	page_82.pdf
	page_83.pdf
	page_84.pdf
	page_85.pdf
	page_86.pdf
	page_87.pdf
	page_88.pdf
	page_89.pdf
	page_90.pdf
	page_91.pdf
	page_92.pdf
	page_93.pdf
	page_94.pdf
	page_95.pdf
	page_96.pdf
	page_97.pdf
	page_98.pdf
	page_99.pdf
	page_100.pdf
	page_101.pdf
	page_102.pdf
	page_103.pdf
	page_104.pdf
	page_105.pdf
	page_106.pdf
	page_107.pdf
	page_108.pdf
	page_109.pdf
	page_110.pdf
	page_111.pdf
	page_112.pdf
	page_113.pdf
	page_114.pdf
	page_115.pdf
	page_116.pdf
	page_117.pdf
	page_118.pdf
	page_119.pdf
	page_120.pdf
	page_121.pdf
	page_122.pdf
	page_123.pdf
	page_124.pdf
	page_125.pdf
	page_126.pdf
	page_127.pdf
	page_128.pdf
	page_129.pdf
	page_130.pdf
	page_131.pdf
	page_132.pdf
	page_133.pdf
	page_134.pdf
	page_135.pdf
	page_136.pdf
	page_137.pdf
	page_138.pdf
	page_139.pdf
	page_140.pdf
	page_141.pdf
	page_142.pdf
	page_143.pdf
	page_144.pdf
	page_145.pdf
	page_146.pdf
	page_147.pdf
	page_148.pdf
	page_149.pdf
	page_150.pdf
	page_151.pdf
	page_152.pdf
	page_153.pdf
	page_154.pdf
	page_155.pdf
	page_156.pdf
	page_157.pdf
	page_158.pdf
	page_159.pdf
	page_160.pdf
	page_161.pdf
	page_162.pdf
	page_163.pdf
	page_164.pdf
	page_165.pdf
	page_166.pdf
	page_167.pdf
	page_168.pdf
	page_169.pdf
	page_170.pdf
	page_171.pdf
	page_172.pdf
	page_173.pdf
	page_174.pdf
	page_175.pdf
	page_176.pdf
	page_177.pdf
	page_178.pdf
	page_179.pdf
	page_180.pdf
	page_181.pdf
	page_182.pdf
	page_183.pdf
	page_184.pdf
	page_185.pdf
	page_186.pdf
	page_187.pdf
	page_188.pdf
	page_189.pdf
	page_190.pdf
	page_191.pdf
	page_192.pdf
	page_193.pdf
	page_194.pdf
	page_195.pdf
	page_196.pdf
	page_197.pdf
	page_198.pdf
	page_199.pdf
	page_200.pdf
	page_201.pdf
	page_202.pdf
	page_203.pdf
	page_204.pdf
	page_205.pdf
	page_206.pdf
	page_207.pdf
	page_208.pdf
	page_209.pdf
	page_210.pdf
	page_211.pdf
	page_212.pdf
	page_213.pdf
	page_214.pdf
	page_215.pdf
	page_216.pdf
	page_217.pdf
	page_218.pdf
	page_219.pdf
	page_220.pdf
	page_221.pdf
	page_222.pdf
	page_223.pdf
	page_224.pdf
	page_225.pdf
	page_226.pdf
	page_227.pdf
	page_228.pdf
	page_229.pdf
	page_230.pdf
	page_231.pdf
	page_232.pdf
	page_233.pdf
	page_234.pdf
	page_235.pdf
	page_236.pdf
	page_237.pdf
	page_238.pdf
	page_239.pdf
	page_240.pdf
	page_241.pdf
	page_242.pdf
	page_243.pdf
	page_244.pdf
	page_245.pdf
	page_246.pdf
	page_247.pdf
	page_248.pdf
	page_249.pdf
	page_250.pdf
	page_251.pdf
	page_252.pdf
	page_253.pdf
	page_254.pdf
	page_255.pdf
	page_256.pdf
	page_257.pdf
	page_258.pdf
	page_259.pdf
	page_260.pdf
	page_261.pdf
	page_262.pdf
	page_263.pdf
	page_264.pdf
	page_265.pdf
	page_266.pdf
	page_267.pdf
	page_268.pdf
	page_269.pdf
	page_270.pdf
	page_271.pdf
	page_272.pdf
	page_273.pdf
	page_274.pdf
	page_275.pdf
	page_276.pdf
	page_277.pdf
	page_278.pdf
	page_279.pdf
	page_280.pdf
	page_281.pdf
	page_282.pdf
	page_283.pdf
	page_284.pdf
	page_285.pdf
	page_286.pdf
	page_287.pdf
	page_288.pdf
	page_289.pdf
	page_290.pdf
	page_291.pdf
	page_292.pdf
	page_293.pdf
	page_294.pdf
	page_295.pdf
	page_296.pdf
	page_297.pdf
	page_298.pdf
	page_299.pdf
	page_300.pdf
	page_301.pdf
	page_302.pdf
	page_303.pdf
	page_304.pdf
	page_305.pdf
	page_306.pdf
	page_307.pdf
	page_308.pdf
	page_309.pdf
	page_310.pdf
	page_311.pdf
	page_312.pdf
	page_313.pdf
	page_314.pdf
	page_315.pdf
	page_316.pdf
	page_317.pdf
	page_318.pdf
	page_319.pdf
	page_320.pdf
	page_321.pdf
	page_322.pdf
	page_323.pdf
	page_324.pdf
	page_325.pdf
	page_326.pdf
	page_327.pdf
	page_328.pdf
	page_329.pdf
	page_330.pdf
	page_331.pdf
	page_332.pdf
	page_333.pdf
	page_334.pdf
	page_335.pdf
	page_336.pdf
	page_337.pdf
	page_338.pdf
	page_339.pdf
	page_340.pdf
	page_341.pdf
	page_342.pdf
	page_343.pdf
	page_344.pdf
	page_345.pdf
	page_346.pdf
	page_347.pdf
	page_348.pdf
	page_349.pdf
	page_350.pdf
	page_351.pdf
	page_352.pdf
	page_353.pdf
	page_354.pdf
	page_355.pdf
	page_356.pdf
	page_357.pdf
	page_358.pdf
	page_359.pdf
	page_360.pdf
	page_361.pdf
	page_362.pdf
	page_363.pdf
	page_364.pdf
	page_365.pdf
	page_366.pdf
	page_367.pdf
	page_368.pdf
	page_369.pdf
	page_370.pdf
	page_371.pdf
	page_372.pdf
	page_373.pdf
	page_374.pdf
	page_375.pdf
	page_376.pdf
	page_377.pdf
	page_378.pdf
	page_379.pdf
	page_380.pdf
	page_381.pdf
	page_382.pdf
	page_383.pdf
	page_384.pdf
	page_385.pdf
	page_386.pdf
	page_387.pdf
	page_388.pdf
	page_389.pdf
	page_390.pdf
	page_391.pdf
	page_392.pdf
	page_393.pdf
	page_394.pdf
	page_395.pdf
	page_396.pdf
	page_397.pdf
	page_398.pdf
	page_399.pdf
	page_400.pdf
	page_401.pdf
	page_402.pdf
	page_403.pdf
	page_404.pdf
	page_405.pdf
	page_406.pdf
	page_407.pdf
	page_408.pdf
	page_409.pdf
	page_410.pdf
	page_411.pdf
	page_412.pdf
	page_413.pdf
	page_414.pdf
	page_415.pdf
	page_416.pdf
	page_417.pdf
	page_418.pdf
	page_419.pdf
	page_420.pdf
	page_421.pdf
	page_422.pdf
	page_423.pdf

