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Preface

The finite element method (FEM) has become an indispensable design tool in
modelling and simulation of several engineering systems, and, therefore, the
number of finite element computer programs that are now available to engineers
is remarkable. All fields of engineering are facing great challenges in developing
advanced systems that would contribute in solving problems affecting our life. Due
to this fact, engineers must go through a very meticulous process of modelling,
simulation, visualization, analysis, designing, prototyping, testing, and, finally,
fabrication/construction. With modelling skills, the engineer gathers the physical
and mathematical understanding of a problem, so the engineer combines with
mathematics. Moreover, engineers with modelling and simulation skills must be
able to analyze mathematically the finite element method.

This book provides unified and detailed course material on the FEM for engineers
and students to solve primarily linear problems in mechanical engineering, with
the main focus on static and dynamic structural problems. The purpose of the
book is to contribute to the reader’s understanding of the concepts, theories, and
techniques used in the FEM. Fundamental and classical theories are introduced in a
straightforward manner. Recent state-of-the-art treatment of engineering problems
in designing and analyzing structural systems, including dynamic problems, is also
discussed. Case studies are provided to implement the theory, the methodology, and
techniques of the FEM. A text with significant concepts, theories, and modelling
techniques, like the content in this book, helps engineers to use a commercial FEM
software package in a professional and conscientious manner.

The FEM was originally developed to solve the stress field in continuum
mechanics problems. Therefore, it seems appropriate to begin with the elasticity
basic concepts and the classical theories of stressed materials and, only after,
apply the relationship between forces, displacements, stresses, and strains on the
process of modelling, simulating, and designing engineered technical systems. For
this reason, the first chapter of this book is devoted to the mechanics of solids
and structures by presenting the important basic principles. The derivation of key
governing equations for 3D mathematical models is explained by means of drawings
illustrating all the field variables and the relationships between them. Equations
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vi Preface

for various types of mathematical models, such as 2D and 1D models, are then
obtained from the general equations for 3D mathematical models. From our teaching
practices, the method of introducing the general 3D equations before approaching
other structural components provides students a fundamental background that helps
the process of learning the equations of additional mathematical models.

Practice without theory is blind, but theory without practice is sterile. Therefore,
the readers of this book are encouraged to discover, within the finite element method,
the proper relationship between theory and practice. During the last half century, a
huge number of techniques have been developed in the area of the FEM, but very
few of them are often used in engineering practice. This book does not want to be
exhaustive in theories but be informative enough for the main useful techniques.
All the finite element theories presented are applied explicitly in case studies. Most
of them are presented sequentially, making it easier for readers to follow, and are
discussed in a manner that clarifies concepts of the FEM.

A chapter-by-chapter description of the book is given below.

Chapter 1: Describes the important relationships associated with the elasticity
basic concepts and the classical mathematical models for solids and structures.
Important field variables of solid mechanics are introduced, and the dynamic
equations of these variables are derived. Mathematical models for 2D and 3D
solids, trusses, Euler beams, Timoshenko beams, frames, and plates are covered
in a concise manner.

Chapter 2: The general finite element procedure is introduced and Hamilton’s
principle is used to establish the general forms of finite element equations.
Concept of strong and weak solutions of a system equation of motion is
discussed. Construction of shape functions for interpolation of field variables is
described and their mathematical properties are also discussed. The finite element
equations are discussed for static, eigenvalue analysis, as well as transient
analyses.

Chapter 3: Describes the procedure used to obtain finite element matrices for truss
structures. The procedures to obtain shape functions, the strain matrix, local and
global coordinate systems, and the assembly of global finite element system
equations are described. Very straightforward examples are used to demonstrate
a complete and detailed finite element procedure to compute numerical solutions,
emphasizing the differences between exact and numerical procedures.

Chapter 4: Extends the finite element procedure to the analysis of beam structures.
Shape functions and finite element matrices are described for the Euler-Bernoulli
beam. Examples to demonstrate the application of the finite element procedure
into modal and transient analyzes are presented. Finite element matrices for
frame structures are formulated by combining matrices of truss and beam
elements. 3D beam formulation is described emphasizing the transformation of
element matrices between the local and global coordinate systems. An example
is given to demonstrate the use of 3D beams to solve practical engineering
problems.

http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_3
http://dx.doi.org/10.1007/978-3-319-17710-6_4
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Chapter 5: Presents the finite element equations for the stress analysis of 2D
structures under plane stress and plane strain conditions. Finite element matrices
for 2D solids are derived, namely, the matrices of linear triangular elements.
Concepts of isoparametric and superparametric representation are described and
used to formulate linear and quadratic triangular finite elements. Linear and
quadratic rectangular elements are derived in detail. Important considerations
and requirements for the accuracy of the analysis results and the convergence
of a numerical solution are introduced. An example of steel bracket is used to
study the accuracy and convergence of different mathematical models selected:
Euler-Bernoulli and Timoshenko beam theories and plane stress mathematical
model.

Chapter 6: Describes the procedure used to obtain finite element matrices for plate
and shell structures. Matrices for thin rectangular plate elements, which are
based on Kirchhoff assumptions, are derived, and the continuity requirements for
their shape functions are covered. Matrices for thick rectangular plate elements,
following the Reissner-Mindlin plate theory, are derived in detail. Discussion on
the boundary conditions used at both theories for modelling physical situations
is presented. A flat shell element is formulated by combining a rectangular plate
element and a rectangular 2D solid plane stress element. Meanwhile a general
nine-node shell finite element is also formulated. The difference between flat
and general shell elements is discussed on the Scordelis-Lo cylindrical roof
benchmark problem, using the ADINA program.

Chapter 7: Finite element matrices for 3D solids are developed. Tetrahedron and
hexahedron elements are formulated in detail and the volume coordinates are
described within the process. Higher-order finite elements are also formulated,
and an example of using 3D solids elements for a dental implant modelling is
presented.

Chapter 8: Presents a discussion on some modelling techniques for the stress
analyses of solids and structures. Mesh symmetry, rigid elements and constraint
equations, mesh compatibility, modelling of offsets, supports, and connections
between elements with different mathematical bases are all covered. Advanced
modelling of laminated composite materials is also presented.

Most of the content in the book was selected from excellent existing books
on the FEM (listed in the References), with a special contribution from the K-J
Bathe books. This author has been making fundamental contributions to the finite
element development and was the founder of ADINA R&D, Inc. which developed
the program used for solving the practical examples presented at the book. The
ADINA is also used in the practical lectures of two FEM courses taught by the
authors in the University of Coimbra.

The mentor on the use of ADINA program for instruction in the University of
Coimbra is, unfortunately, no longer with us, having passed away in 2010. Authors
would like to pay tribute to Professor Nuno Ferreira Rilo for the excellent work he
has done in spreading the teachings of FEM using this program.

http://dx.doi.org/10.1007/978-3-319-17710-6_5
http://dx.doi.org/10.1007/978-3-319-17710-6_6
http://dx.doi.org/10.1007/978-3-319-17710-6_7
http://dx.doi.org/10.1007/978-3-319-17710-6_8
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Since FEM is well documented in many existing books, the information within
this book was limited to the necessary minimum required for the use of commercial
FEM software packages in a professional and conscientious manner. Readers
seeking more advanced theoretical background are advised to refer to books such as
those by K-J B.

Coimbra, Portugal Maria Augusta Neto
Ana Amaro

Luis Roseiro
José Cirne

Rogério Leal
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Chapter 1
Mechanics of Solids and Structures

Solid and structural mechanics deal with the elasticity basic concepts and the
classical theories of stressed materials. Mechanical components and structures are
under a stress condition if they are subjected to external loads or forces. The
relationship between stresses and strains, displacements and forces, stresses and
forces are of main importance in the process of modeling, simulating and designing
engineered technical systems. This chapter describes the important relationships
associated with the elasticity basic concepts and the classical mathematical models
for solids and structures. Important field variables of solid mechanics are introduced,
and the dynamic equations of these variables are derived. Mathematical models for
2D and 3D solids, trusses, Euler-beams, Timoshenko-beams, frames and plates are
covered in a concise manner.

1.1 Equations for 3D Mathematical Models

1.1.1 3D Kinematics and Strains

For simplicity reasons a point on a cartesian coordinate system will have coordinates
denoted by x1, x2, x3 and, similarly, the displacements will be denoted by u1, u2, u3.
This notation allows representing coordinates and displacements of a point by xi

and ui, respectively, where the range of index i is of 1, 2, 3 for three-dimensional
applications. Figure 1.1 shows a continuous three-dimensional elastic body with a
volume � and a surface � . The surface of the solid is divided into two types of
surfaces: a surface at which the external forces are prescribed, denoted by � t; and
a surface at which the displacements are prescribed, denoted by �u. The body can
also be loaded by volume or body forces denoted by fb and surface forces denoted
by fs.

© Springer International Publishing Switzerland 2015
M.A. Neto et al., Engineering Computation of Structures: The Finite
Element Method, DOI 10.1007/978-3-319-17710-6_1
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Fig. 1.1 Solid body with
forces applied within the
volume body and on the
surface of the body [1]

F2

F1

F3

F4
F5

Ω

Γt

Γu

fb

fs

The kinematics deal with a continuous displacement field ui, thus the displace-
ment field of a point is defined by three displacement components u, v and w in the
direction of the three coordinate axes x1, x2, x3

u D
2
4

u1 .x1; x2; x3/
u2 .x1; x2; x3/
u3 .x1; x2; x3/

3
5 (1.1)

Strain tensor "ij at any point in the body satisfies the following strain-displacement
relations:

"ij D 1

2

�
@ui

@xj
C @uj

@xi

�
(1.2)

and, therefore, the components of strain can be obtained from the derivatives of the
displacements as follows:

"11 D @u1
@x1

I "22 D @u2
@x2

I "33 D @u3
@x3

�12 D 2"12 D @u1
@x2

C @u2
@x1

I

�13 D 2"13 D @u1
@x3

C @u3
@x1

I �23 D 2"23 D @u2
@x3

C @u3
@x2

(1.3)

The relations presented on the last equation can be rewritten in the following
matrix form

© D L u (1.4)

where © is the strain vector, and as the form

©T D �
"11 "22 "33 �23 �13 �12

�
(1.5)
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Fig. 1.2 Stress components
at a point in a solid [1]
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σ33
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u is the displacement vector defined on Eq. (1.1), and L is a matrix of differential
operators obtained from Eq. (1.3)

L D

2
6666666664

@=@x1 0 0

0 @=@x2 0

0 0 @=@x3

0 @=@x3 @=@x2

@=@x3 0 @=@x1

@=@x2 @=@x1 0

3
7777777775

(1.6)

1.1.2 Stress and Constitutive Equations

The state of stress of any point in the body can be represented in an infinitely
small cubic volume as shown in Fig. 1.2. On each cube surfaces there will be a
normal component and two tangential components of stress. The normal component
is designated as normal stress and the tangential components are named as shear
stresses.

The notation convention for the subscript is that the first letter represents the
index axis that is normal to the surface on which the stress is acting and, the second
letter represents the index axis direction of the stress. The components of the stresses
that are presented are all positive. Thus, the state of stress of a point is completely
defined with the knowledge of nine stress components, ¢ ij. Nevertheless, by taking
moments of forces about the central axes of the cube at equilibrium state, it is
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possible to verify that �12 D �21I �13 D �31I �23 D �23. Therefore, in practice
the state of stress of a point is completely defined with the knowledge of six stress
components. These stresses are often written in a vector of

�T D �
�11 �22 �33 �23 �13 �12

�
(1.7)

At any point in the body, the relationship between the stress and strain is defined
by the constitutive equation of the material and, it is commonly called Hooke’s law.
The generalized Hooke’s law for general anisotropic materials can be written in the
following matrix form

¢ D c © (1.8)

where c is a matrix of material constants and is named stiffness material matrix. The
constitutive equation can be written explicitly as

2
66666664

�11
�22
�33
�23
�13
�12

3
77777775

D

2
66666664

c11 c12 c13 c14 c15 c16
c22 c23 c24 c25 c26

c33 c34 c35 c36
sy c44 c45 c46

c55 c56
c66

3
77777775

2
66666664

"11
"22
"33
2"23
2"13
2"12

3
77777775

(1.9)

Due to the stress and strain tensors symmetry, the stiffness material matrix is also
symmetric, which mean that c matrix is completely defined with the knowledge of
21 independent material constants. However, for isotropic materials the stiffness
material matrix can be reduce to

c D

2
66666664

c11 c12 c12 0 0 0

c11 c12 0 0 0

c11 0 0 0

sy .c11 � c12/ =2 0 0

.c11 � c12/ =2 0

.c11 � c12/ =2

3
77777775

(1.10)

with

c11 D E .1 � �/
.1 � 2�/ .1C �/

I c12 D E�

.1 � 2�/ .1C �/
I G D c11 � c12

2
(1.11)

where E, ¤ and G are Young’s modulus, Poisson’s ratio and the shear modulus of the
material, respectively. Among these three constants there are only two independent
constants: the Young’s modulus and the Poisson’s ratio.
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Fig. 1.3 Stress components
at a small tetrahedron [1]

1.1.3 Cauchy’s Equation

Assume that stress components are known and that an oblique plane cuts the
infinitely small cubic volume, presented in Fig. 1.2, in such a way that is possible
to extract the infinitely small tetrahedron volume presented in Fig. 1.3. The surface
ABC is a face of the tetrahedron volume and is also part of the oblique cut plane,
which the outwards normal n point towards the removed part of the infinitely small
cubic volume. The geometric relations among the areas of the tetrahedron faces can
be defined as,

hABPi D hABCi cos .n; x2/ D A n2

hBCPi D hABCi cos .n; x3/ D A n3

hAPCi D hABCi cos .n; x1/ D A n1

(1.12)

and, taking in account that the tetrahedron must be in equilibrium, is possible
to establish the equilibrium of forces in all directions and, particularly, through
direction x1 as

t1A � �11A n1 � �21A n2 � �31A n3 C 1

3
A h b1 D 0 (1.13)

where it is assumed that volume forces are applied at the centroid of tetrahedron
volume and the distance between point P and the face ABC is h. Simplification of
Eq. (1.13) leads to

t1 D �11n1 C �21n2 C �31n3 (1.14)

Using the same procedure, over directions x1 and x2, is possible to establish

t2 D �12n1 C �22n2 C �32n3

t3 D �13n1 C �23n2 C �33n3
(1.15)
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Fig. 1.4 Stress in a infinitely
small block [1]
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dx1
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Equations (1.14) and (1.15) are represented in a matrix forma as

t D ¢ n (1.16)

where t is the stress vector over face ABC.

1.1.4 Dynamic Equilibrium Equations

The stress distribution in a body at dynamic equilibrium must be compatible with
the overall motion of the body. To formulate equilibrium equations is also necessary
to consider an infinitely small cube, as shown in Fig. 1.4. In general, the stresses
are not uniform and they vary from one point to another in a continuum way. Thus,
even that the infinitely small cube is constructed using parallel cutting planes at
the body and, therefore, their normal match, the Cartesian components of stress on
neighbor points vary of intensity. Nevertheless, if the points on opposite sides are
close enough, is possible to consider that the variation of tension between them is
continuous, linear and defined as

d�ij D @�ij

@xk
dxk (1.17)

Because the body is in dynamic equilibrium it is necessary to account the inertial
forces of the infinitely small cube. So, the equilibrium of forces in the x1 direction
gives [1]
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.�11 C d�11/ dx2dx3 � �11dx2dx3 C .�21 C d�21/ dx1dx3 � �12dx1dx3

C .�31 C d�31/ dx2dx1 � �31dx2dx1 C b1dx1dx2dx3 D � Ru1dx1dx2dx3„ ƒ‚ …
J{nertial force

(1.18)

After accounting the Eq. (1.17) into Eq. (1.18), assuming also the symmetry of stress
tensor and making some simplifications, the latter equation can be written as

@�11

@x1
C @�21

@x2
C @�31

@x3
C b1 D � Ru1 (1.19)

where üi represents the second derivatives of i displacement field with respect time.
Similarly, the equilibrium of forces in the x2 and x3 directions leads to other two

equilibrium equations, written as

@�12

@x1
C @�22

@x2
C @�32

@x3
C b2 D � Ru2 (1.20)

@�13

@x1
C @�23

@x2
C @�33

@x3
C b3 D � Ru3 (1.21)

The equilibrium equations can be written in a matrix form, as

LT¢ C fb D � Ru (1.22)

Using Eqs. (1.22), (1.8) and (1.4) is possible to write equilibrium equations in terms
of the displacement field, as

LTc L u C fb D � Ru (1.23)

Equation 1.23 is the general form of the dynamic equilibrium equation written in a
matrix form. Nevertheless, if loads applied on the body are not time dependent, the
time variation of displacements is zero and the body should be in static equilibrium.
Thus, the static equilibrium equations can be obtained from Eq. (1.23) by setting the
right hand side of this equation equal to zero, leading to

LTc L u C fb D 0 (1.24)

1.2 Equations for 2D Mathematical Models

If a structure has one of its dimensions much smaller than the other two, the analysis
of such structure can be simplified using 2D geometric models. Mathematically
speaking, this procedure try to remove one of the three coordinates, usually the x3,
assuming that all variables of the problem are independent of this coordinate [2].
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There are primarily two types of 2D mathematical models: those that are in plane
stress or strain conditions and those that are in bending conditions.

1.2.1 Plane Stress and Strain Conditions

Structures for which plane stress conditions can be assumed are structures whose
thickness in the x3 direction is very small when compared with dimensions in the
x1 and x2 directions. External forces are applied on the x1-x2 plane and, because
the structure is thin in the x3 direction, .h=L � 1/, the assumption that variations
of the stress components with x3 is uniform and that will be functions of the x1 and
x2 directions � (x1, x2) is valid. Moreover, because the structure in the x3 direction
is under a stress free condition, the micro-equilibrium of any structural point is
achieved by removing the three x3 stress components, see Fig. 1.5, which means
that the transverse stresses are negligible. Therefore, in practice, the state of stress
at any point in a plane stress condition is completely defined with the knowledge of
three stress components. These stresses are often written in a vector form as

¢T D �
�11 �22 �12

�
(1.25)

The strain components at any point in a plane stress condition, for isotropic
materials, may be obtained from the reverse form of Eqs. (1.9) and (1.10), by setting
to zero all the three x3 stress components, leading to

2
66666664

"11
"22
"33
�23
�13
�12

3
77777775

D 1

E

2
66666664

1 �� �� 0 0 0

� � 1 �� 0 0 0

� � �� 1 0 0 0

0 0 0 2 .1C �/ 0 0

0 0 0 0 2 .1C �/ 0

0 0 0 0 0 2 .1C �/

3
77777775

2
66666664

�11
�22
0

0

0

�12

3
77777775

(1.26)

h
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A

x2

x1
x3

Stress free face

s22

s21

s11

s12

Fig. 1.5 Structure in a plane stress conditions
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From Eq. (1.26) is possible to verify that the condition �33 D 0 leads to the
transverse normal strain given by

"33 D � �
E
.�11 C �22/ (1.27)

and the condition �23 D �13 D 0, leads to zero shear strains, i.e.,

�13 D �23 D 0 (1.28)

Structures for which plane strain conditions can be assumed are structures whose
dimension in the x3 direction is very large when compared with dimensions in the
x1 and x2 directions. The applied forces act in the x1-x2 plane and do not vary in the
x3 direction, i.e. loads are uniformly distributed with respect to the large dimension
and act perpendicular to it. Some important practical applications of this strain state
appear in the analysis of dams, tunnels, and other geotechnical works, see Fig. 1.6.
Moreover, the cross-section that is defined in the x1-x2 plane do not vary with the
x3 direction and, therefore, it can be taken as a representative cell.

For a structure in plane strain conditions, the strains in the x3 direction
("33, "13, �23) are negligible and strains are often written in a vector form as

©T D �
"11 "22 �12

�
(1.29)

The stress components at any point in a plane strain condition may be obtained from
the reverse form of Eq. (1.9), with c given by Eq. (1.10), and setting to zero all the
three x3 strain components.

1.2.1.1 Kinematic and Strain Relationships

The kinematics for plane stress or plane strain problems does not account for the
displacement component w in the direction of coordinate x3. Thus, the displacement
vector has the form

x2

x1
x3

x2

x1
x3

cross-section

Fig. 1.6 Structure in a plane strain conditions



10 1 Mechanics of Solids and Structures

u D
�

u1 .x1; x2/
u2 .x1; x2/

�
(1.30)

and, therefore, the components of strain can be obtained from the derivatives of the
displacements as follows:

"11 D @u1
@x1

I "22 D @u2
@x2

I �12 D @u1
@x2

C @u2
@x1

(1.31)

The relations presented on the last equation can be rewritten in the following
matrix form

© D L u (1.32)

where © is the strain vector defined on Eq. (1.29), u is the displacement vector
defined in Eq. (1.30) and L is a matrix of differential operators obtained from Eq.
(1.31)

L D

2
64
@=@x1 0

0 @=@x2

@=@x2 @=@x1

3
75 (1.33)

1.2.1.2 Constitutive Equations

The generalized Hooke’s law for general isotropic materials can be written in the
form of Eq. (1.8), where c is the stiffness matrix for isotropic materials defined on
Eq. (1.10). To obtain the equivalent law for plane stress conditions, the Eq. (1.26)
may be rewritten in a more compact form as

2
4
"11
"22
�12

3
5 D 1

E

2
4

1 �� 0

� � 1 0

0 0 2 .1C �/

3
5
2
4
�11
�22
�12

3
5 (1.34)

where "33 is defined by Eq. (1.27), now inverting Eq. (1.34) yields

2
4
�11
�22
�12

3
5 D E

.1 � �2/

2
4
1 � 0

� 1 0

0 0 .1 � �/ =2

3
5
2
4
"11
"22
�12

3
5 (1.35)

Equation 1.35 is the constitutive equation for isotropic materials under plane stress
conditions.

For isotropic materials in plane strain conditions, the equalities "33 D "13 D
"23 D 0 are imposed in Eq. (1.9), leading to
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2
4
�11
�22
�12

3
5 D E .1 � �/

.1C �/ .1 � 2�/

�
2
4

1 �= .1 � �/ 0

�= .1 � �/ 1 0

0 0 .1 � 2�/ = .2 .1 � �//

3
5
2
4
"11
"22
2"12

3
5 (1.36)

with

�33 D E�

.1 � 2�/ .1C �/
."11 C "22/ (1.37)

1.2.1.3 Dynamic Equilibrium Equations

The dynamic equilibrium equations for problems in plane stress and strain condi-
tions can be obtained from Eqs. (1.19) and (1.20) by removing the terms related to
the x3 coordinate, as

@�11

@x1
C @�21

@x2
C b1 D � Ru1 (1.38)

@�12

@x1
C @�22

@x2
C b2 D � Ru2 (1.39)

The condensed matrix form of Eqs. (1.38) and (1.39) is given by

LT¢ C fb D � Ru (1.40)

where L is a matrix of differential operators defined in Eq. (1.33), u is the
displacement vector defined in Eq. (1.30) and ü is the acceleration vector.

For static problems, the right hand side of Eq. (1.40) is removed, and the static
equilibrium equations can be written as

LT¢ C fb D 0 (1.41)

Notice that Eq. (1.40) has the same form of Eq. (1.22), the only difference resides
in the dimensions of matrices and vectors involved.

1.2.2 Bending Conditions

The geometrical feature of structures under bending conditions is similar to those
under plane stress, that is, thickness in the x3 direction is very small when compared
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with dimensions in the x1 and x2 directions. Nevertheless, external forces are applied
perpendicularly to its geometrical plane and, therefore, they will experience bending
resulting deflection in the normal direction. These kinds of structures are named
plates. Examples of plate structures are wings of aircrafts, wind turbine blades, roof
of houses, solar panels and etc. The main characteristic of plate stresses is that the
stress �33 is assumed to be zero.

From the kinematic point of view there are several theories for analyzing
deflection in plate structures. Nevertheless, these theories can be basically grouped
into major categories: theory for thin plates and theory for thick plates. Thin plate
theory is often called Classical Plate Theory or Kirchhoff plate theory while the
more simple thick plate theory is called First Order Shear Deformation Theory or
Reissner-Mindlin theory.

1.2.2.1 Classic Plate Theory

Derivation of the classical plate model starts from some kinematic assumptions
which were originally made by Kirchhoff. The Kirchhoff assumptions are [3]:

• The transverse normal is infinitely rigid along its own direction;
• The transverse normal of the plate remains straight during deformation;
• The transverse normal remains normal to the reference surface of the plate during

deformation.

The first Kirchhoff assumption implies that every material point that shares the
same transverse normal will move rigidly along the transverse direction, which also
implies that the transverse displacement of every material point of the plate with the
same in-plane location remains the same. Therefore, the transverse displacement of
the plate can be described as

u3 .x1; x2; x3/ D w .x1; x2/ (1.42)

The second Kirchhoff assumption implies that the in-plane displacement field of
the plate is, almost linear in terms of x3 coordinate, defined by

u1 .x1; x2; x3/ D x3	2 .x1; x2/ (1.43)

u2 .x1; x2; x3/ D �x3	1 .x1; x2/ (1.44)

The physical meaning of the in-plane rigid rotations 	1 and 	2 of the transversal
normal is explained by the sketch presented in Fig. 1.7, in which a set of unit
vectors ei .i D 1; 2; 3/ associated with coordinates xi .i D 1; 2; 3/ were introduced
to facilitate the derivation of plate models. This reference frame is attached at a point
of the plate structure such that e3 is along the transverse normal, e1 and e2 define the
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Fig. 1.7 Representation of the in-plane displacement field

Fig. 1.8 Sign convention for
plate displacement and
rotations
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Fig. 1.9 Plate reference
surface slope and transverse
normal rotations of the
Kirchhoff theory

deformed
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∂u3

∂x1
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∂u3
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f2

plate reference surface. The sign conventions for the displacements and rotations
are presented in Fig. 1.8.

Note that because the rigid body rotations of the transverse normal are positive
when they rotate around the positive side of axes, the negative sign in Eq. (1.44) is
to assure that a positive x3 value and a positive value of 	1 rotation will create a
negative in-plane displacement along x2 direction.

The third Kirchhoff assumptions implies that rotations of the transverse normal
must be obtained from the partial derivatives of the reference surface as presented
at Fig. 1.9 and defined by

	1 D @w

@x2
I 	2 D � @w

@x1
(1.45)

Note that the minus sign in the second Eq. (1.45) is due to the sign convention
presented in Fig. 1.8. Substituting Eq. (1.45) into Eqs. (1.43) and (1.44) is possible
to eliminate the variables 	1 and 	2 from the in-plane displacement field. Thus, the
Kirchhoff displacement field for a plate-like structure is written as

u1 .x1; x2; x3/ D �x3
@w

@x1
(1.46)



14 1 Mechanics of Solids and Structures

u2 .x1; x2; x3/ D �x3
@w

@x2
(1.47)

u3 .x1; x2; x3/ D w .x1; x2/ (1.48)

The displacement field presented in Eqs. (1.46), (1.47) and (1.48) assume that the
in-plane displacements of any material point at the plate reference surface are null
and, of any material point placed above or below the reference surface are defined
in order to assure that the surface transverse normal, at this material point, remains
normal to the deformed plate reference surface. So the Kirchhoff assumptions can be
viewed as constraining the plate structure in such a way that physical deformation
must behave according to these assumptions. Physically, we might not be able to
apply such constraints and, therefore, the mathematical model is stiffer than the
original structure leading to displacements that are generally smaller than those
obtained from the 3D theory.

Stress and Strain
Substituting the Kirchhoff displacement field in Eq. (1.2) is possible to obtain the
3D strain field as

"11 D �x3
@2w

@x21
I "22 D �x3

@2w

@x22
I 2"12 D �2x3

@2w

@x1@x2
I (1.49)

"13 D "23 D "33 D 0 (1.50)

The relations presented in Eq. (1.49) can be rewritten in the following matrix
form

© D �x3L w (1.51)

where © is the strain vector defined on Eq. (1.29) and L is a matrix of differential
operators given by

L D

2
64

@2=@x21
@2=@x22

2@2= .@x1@x2/

3
75 (1.52)

The null value of "33 strain is a direct consequence of the first Kirchhoff assumption,
which implies that no strain exist in the transverse direction, while the null value of
transverse shear strains, "13 and "23, is a direct consequence of the third Kirchhoff
assumption. In fact, the 90ı angle between transverse normal line and the reference
surface, before deformation, only can remain at 90ı after deformation if the
transverse shear strains are zero.
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Once the strain field is known, the stress field in the plate structure may be
obtained from the generalized 3D Hooke’s law for isotropic materials, leading to

2
4
�11
�22
�12

3
5 D

2
4

C 2G 
 0


 
C 2G 0

0 0 G

3
5
2
4
"11
"22
2"12

3
5 (1.53)

�33 D 
 ."11 C "22/ I �13 D �23 D 0 (1.54)

where 
 D �E= Œ.1C �/ .1 � 2�/� and G D E= Œ2 .1C �/� is the shear modulus.
Note that Eqs. (1.36) and (1.53) as well as Eqs. (1.37) and (1.54) are equivalents.
Although this stress field naturally flows from the generalized Hooke’s law and
the strain field in Eqs. (1.49) and (1.50), it does not agree very well with the
experimental measurements [3]. This drawback can be overcome by assuming
additional assumptions regarding the stress field. Thus, since the thickness of the
plate is much smaller than the in-plane dimension of the plate is possible to assume
that �33 D 0. Nevertheless, the stress assumption �i3 D 0 corresponds to the plane
stress condition in which the strain "33 is defined as

"33 D �

� � 1 ."11 C "22/ (1.55)

Meanwhile, Eq. (1.55) directly contradicts the "33 strain value presented in Eq.
(1.50) that was obtained using the Kirchhoff assumptions, except when � D 0,
which in general is not true.

Using the transverse normal strain given in Eq. (1.55) and the additional strain
measurements in Eq. (1.49) into the generalized Hooke’s law, will lead to the
following stress field

2
4
�11
�22
�12

3
5 D E

.1 � �2/

2
4
1 � 0

� 1 0

0 0 .1 � �/ =2

3
5
2
4
"11
"22
2"12

3
5 (1.56)

�13 D �23 D �33 D 0 (1.57)

Clearly the above stress field corresponds to the constitutive law for the case of a
plate under plane stress conditions, which means that the stress field in Eqs. (1.56)
and (1.57) conflicts with the stress field obtained using the Kirchhoff assumptions,
Eqs. (1.53) and (1.54). These contradictions can be partially justified by the fact that
we need to rely on the Kirchhoff assumptions to obtain a simple expression of the
3D kinematics in terms of 2D kinematics and we also use the assumption that the
plate is under plane stress conditions, so that the results can better agree with reality
[3]. Finally, the stresses can be obtained by substituting Eq. (1.51) into Eq. (1.56)

¢ D �x3 c L w (1.58)
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Fig. 1.10 Dimensions of an isolated plate cell
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Fig. 1.11 Isolated plate cell and representation of: (a) stresses; (b) shear forces and moments

Notice that in Eq. (1.58) the c matrix is defined according the constitutive law for
plane stress conditions.

Moments and Shear Forces
In order to evaluate the resultant forces and moments acting in a plate it is necessary
to integrate the several stresses through the plate thickness. Figure 1.10 shows a
small representative cell with dimensions dx1 � dx2 from a plate of thickness h.
The plate is submitted to external forces, here denoted by f3, and inertial force
proportional to the material density. Figure 1.11a shows the distributed normal and
shear stresses in two faces of the representative cell. Notice that the two remaining
faces will also have distributed normal and shear stresses, in such a way that the
variation term

�
d�ijI i; j D 1; 2

	
is removed and their sense is opposite to the senses

depicted on the opposite face.

The moments MijI i; j D 1; 2 result from the distributed stresses �ijI i; j D 1; 2

and the transverse shear stress resultants Ni3I i D 1; 2 result from the distributed
shear stresses �i3I i D 1; 2. Although the transversal shear stresses �i3I i D 1; 2

vanish due to the third Kirchhoff assumption and the Hooke’s law, such stress values
are not zero and, they are needed to balance the vertical load on the plate, which is
the primary load mechanism. Nevertheless, is possible to obtain Ni3I i D 1; 2 from
the equilibrium considerations and from these values estimate �i3I i D 1; 2 [3].
For instance, assuming that the transverse shear stresses have a uniform variation
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through the plate thickness, �i3 D Ni3=hI i D 1; 2. Another way to the estimate
transverse shear stresses is through 3D equilibrium equations and the knowledge of
in-plane stresses �ijI i; j D 1; 2.

The classical plate resultants are defined as follows:

M D
2
4

M11

M22

M12

3
5 D

h
2Z

� h
2

x3

2
4
�11
�22
�12

3
5dx3 D

h
2Z

� h
2

x3 ¢ dx3 (1.59)

Using the relation (1.58) into Eq. (1.59) leads to

M D �
h
2Z

� h
2

x23 c L w dx3 D � h3

12
c L w (1.60)

where c has the same form for plane stress conditions, defined by Eq. (1.56), and L
is the differential operator matrix given by Eq. (1.52).

Dynamic Equilibrium Equations
To derive dynamic equilibrium equations for the classical plate model, it is
necessary to consider the equilibrium of the differential plate element presented
in Fig. 1.11. So, considering the equilibrium in the x3 direction, and noting that
d .�/ D .@ .�/ =@xi/ dxi .i D 1; 2/, is possible to write

�
@N13
@x1

dx1

�
dx2 C

�
@N23
@x2

dx2

�
dx1 C .f3 � �h Rw/ dx1dx2 D 0 (1.61)

or

@N13
@x1

C @N23
@x2

C f3 D �h Rw (1.62)

Equilibrium also implies that the summation of moments along all the directions
should vanish. Thus, considering the moment equilibrium with respect to the x1 axes
and neglecting the second order small terms, gives

N23 D @M12

@x1
C @M22

@x2
(1.63)

and summing the moments about to the x2 axis, yields

N13 D @M11

@x1
C @M21

@x2
(1.64)

In which the relation M12 D M21 is used.
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To obtain the dynamic equilibrium equations for plates, the relation presented in
Eq. (1.60) is used in Eqs. (1.63) and (1.64) after which the resulting values of N13

and N23 are substituted into Eq. (1.62), leading to

D

�
@4w

@x41
C 2

@4w

@x21@x22
C @4w

@x42

�
C �h Rw D f3 (1.65)

where D D Eh3=
�
12
�
1 � �2		 is known as the bending stiffness of a plate. The

static equilibrium equation for plates may be obtained from Eq. (1.65) by dropping
the inertial term

D

�
@4w

@x41
C 2

@4w

@x21@x22
C @4w

@x42

�
D f3 (1.66)

Equation 1.66 is the basic equation of Kirchhoff plate bending theory which is a
biharmonic partial differential equation for the transverse displacement that can be
written in a more compact form as

r4w D f3
D

(1.67)

1.2.2.2 Reissner-Mindlin Plate Theory

The Reissner-Mindlin plate theory may be obtained from the Kirchhoff theory by
removing the third Kirchhoff assumption, which implies that the transverse normal
remains straight during deformation, but it not necessarily remains normal to the
reference surface, as shown in Fig. 1.12. Therefore, under such assumptions the
displacement field of the First order Shear Deformation Theory is written in the
form of Eqs. (1.42), (1.43) and (1.44). Nevertheless, the relations on Eq. (1.45) are
no longer valid and, 	1 and 	2 are, respectively, the positive rotations about x1 and
x2 axes of the normal to the reference surface and they are treated as independent
variables.

Because the Reissner-Mindlin plate model has one less assumption, it is expected
that displacements obtained by this model will be larger than those obtained using
the classical plate model based on the Kirchhoff assumptions. Nevertheless, this
assumption is only valid for plates in which shear deformation and rotary inertia
effects are important.

Stress and Strain
Substituting the Reissner-Mindlin displacement field in Eq. (1.2) is possible to
obtain the 3D strain field as

"11 D x3
@	2

@x1
I "22 D �x3

@	1

@x2
I �12 D x3

�
@	2

@x2
� @	1

@x1

�
I (1.68)
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Fig. 1.12 Plate reference surface slope and transverse normal rotations of the Reissner-Mindlin
theory

�13 D 	2 C @w

@x1
I �23 D �	1 C @w

@x2
I "33 D 0 (1.69)

The relations presented in Eqs. (1.68) and (1.69) may be separated into bending
(in-plane) and transverse shear groups. So, Eq. (1.68) can be rewritten in the
following matrix form

©b D �x3L ™ (1.70)

where

©T
b D �

"11 "22 �12
�

(1.71)

L D
2
4

0 �@=@x1
@=@x2 0

@=@x1 �@=@x2

3
5 (1.72)

™T D �
	1 	2

�
(1.73)

and the transverse shear strains can be written as

©s D
�
�13
�23

�
D

2
664

	2 C @w

@x1

�	1 C @w

@x2

3
775 (1.74)
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Fig. 1.13 Transverse shear strains of the Reissner-Mindlin plate theory

In Eq. (1.74) is possible to see that transverse shear strains are independent of the
plate thickness, and they are exactly equal to the additional rotations of the normal
to the reference surface after deformation, as shown in Fig. 1.13. Nevertheless, if
the transverse shear strains are negligible, "13 D 0; "23 D 0, the above equation
will lead to

	1 D @w

@x2
(1.75)

	2 D � @w

@x1
(1.76)

and we are in face of the Kirchhoff theory.
The stress relations may also be separated into bending (in-plane) and transverse

shear groups. Using the in-plane strains given in Eq. (1.70) into the generalized
Hooke’s law for the case of a plate under plane stress conditions, will lead to the
following stress field

¢b D �x3 cb ©b D �x3 cb L ™ (1.77)

where cb still has the same form for plane stress conditions. The transverse shear
stress relates to the transverse shear strain in the form

¢s D
�
�13
�23

�
D
�

G 0

0 G

� �
�13
�23

�
D cs©s (1.78)
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where G is the shear modulus. Since transverse shear strains are independent of the
plate thickness, which mean that are constant through the plate thickness, it follows
that the transverse shear stresses also have a constant distribution through the plate
thickness. However, in plates the transverse shear stress varies at least quadratically
through the plate thickness. The discrepancy between both states of stress is often
corrected by computing the transverse shear correction coefficient, ks, the factor
is computed such that the strain energy due to the transverse shear stresses equals
the strain energy due to the true transverse shear stresses predicted by the three-
dimensional elasticity theory [4,5]. A parameter value of 5/6 has been extensively
used for the case of homogeneous rectangular beams and plates made of isotropic
materials. Thus, Eq. (1.78) is modified as

¢s D ks cs©s (1.79)

Moments and Shear Forces
The resultant forces and moments acting in a Reissner-Mindlin plate can also be
similarly obtained as that of a classical plate. Nevertheless, at this time the transverse
shear resultant forces are defined as

N D
�

N13
N23

�
D

h
2Z

� h
2

�
�13
�23

�
dx3 D

h
2Z

� h
2

¢s dx3 D h ks cs©s D Ds©s (1.80)

Using the relation (1.77) into Eq. (1.59), the resultant moments are defined as

M D �
h
2Z

� h
2

x23 cb ©b dx3 D � h3

12
cb ©b D Db ©b (1.81)

The constitutive relations in Eqs. (1.80) and (1.81) can be rewritten in the
following matrix form

�
M
N

�
D
�

Db 0
0 Ds

� �
©b

©s

�
(1.82)

where Db is the bending stiffness matrix and Ds is shear stiffness matrix.
The equilibrium equations for a Reissner-Mindlin plate can also be similarly

obtained as that of a classical plate. For the purpose of this notes the above concepts
of the Reissner-Mindlin plate will be sufficient and, therefore, the equilibrium
equations will not be shown.
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1.3 Equations for 1D Mathematical Models

If a structure has one of its dimensions much larger than the other two, the analysis
of such structure can be simplified using 1D geometric models. Mathematically
speaking, this procedure try to remove two of the three coordinates, usually x2 and
x3, assuming that all variables of the problem are independent of these coordinates.
The axis of the structure is defined along that longer dimension, and a cross-section
normal to this axis is assumed to smoothly vary along the span of the structure
[6]. There are primarily three types of 1D mathematical models: trusses, shafts and
beams. The main difference among those models is related to the kind of load at
which they are subjected.

1.3.1 Equations for Truss Members

Derivation of the classical truss model starts from some kinematic assumptions
which are [3]:

• The truss cross-section is infinitely rigid in its own plane, remaining plane after
deformation;

• Loads can only be applied axially.

Experimental observations show that these assumptions are reasonable for
slender structures. When one or more of these conditions are not met, the classical
truss model derived based on these assumptions may be inaccurate. To help the
discussion of the mathematical implication of these assumptions, consider a set of
Cartesian axes attached at the geometric center of the truss cross-section, such that
x1 is along the axis of the truss, and x2 and x3 define the plane of the cross-section.
The displacement of an arbitrary point of the truss in the x1, x2 and x3 directions are
defined by u1(xi), u2(xi) and u3(xi) (i D 1, 2, 3), respectively.

The first assumption implies that the displacement of any material point in the
cross-sectional plane solely consists of three rigid body translations u(x1), v(x1)
and w(x1). The second assumption implies that the only rigid body translation
that is different of zero is the axial displacement, as depicted in Fig. 1.14. So the
displacement field for a truss-like structure may be write as

Fig. 1.14 Axial
displacement of a truss
structure

1x

3x

2x

1 1( )u x



1.3 Equations for 1D Mathematical Models 23

u1 .x1; x2; x3/ D u .x1/ I u2 .x1; x2; x3/ D 0I u3 .x1; x2; x3/ D 0 (1.83)

Notice that the truss structure may be loaded with concentrated and distributed axial
loads, the distributed load is denoted by p1(x1) and the concentrated load is denoted
by P1.

Strain, Stress and Axial Force
Substituting the displacement field showed at Eq. (1.83) into Eq. (1.2) is possible to
obtain the 3D strain field as,

"11 D du

@x1
I "22 D 0I "33 D 0I �12 D 0I �13 D 0I �23 D 0I (1.84)

Using the generalized 3D Hooke’s law for homogeneous and isotropic material
and the strain field in Eq. (1.84) is possible to define the stress field as

�11 D .
C 2G/
du

dx1
I �22 D �33 D 


du

dx1
I �12 D �13 D �23 D 0 (1.85)

where 
 and G are defined after Eq. (1.54). Although this stress field naturally flows
from the generalized Hooke’s law and from the strain field in Eq. (1.84), it does
not agree very well with the experimental measurements [3]. This drawback can
be overcome by assuming additional assumptions regarding the stress field. Thus,
since the dimension of the cross-section of the truss is much smaller that the length
of the truss, is possible to assume that �22 D �33 � 0 when compared to �11 this
assumption clearly conflicts with the stress field presented in Eq. (1.85). The reason
is that the first assumption of the classical truss model clearly violates the reality. In
fact, it is well known that when the truss is deformed the cross-section will deform
in its own plane due to Poisson’s effect. For this reason the previous assumption
used to obtaining kinematics is overruled and, instead, the following assumptions
for the stress field is assumed

�11 D E
du

dx1
I �22 D �33 D �12 D �13 D �23 D 0 (1.86)

Because �22 D �33 D 0, from the Hooke’s law it follows that "22 D "33 D ��=E "11
and, this relation contradicts with the strain field in Eq. (1.84) except when � D
0, which in general is not true. Nevertheless, these contradictions can be partially
justified by the fact that to obtain a simple expression of the 3D kinematics in terms
of the 1D kinematics same simplification assumptions are used and that the stress
on Eq. (1.86) can also better agree with reality.

The resultant of axial force that is acting in the truss is defined as

F11 D
Z

A

�11 dA D
Z

A

E"11 dA D S11
du

dx1
(1.87)
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with

S11 D
Z

A

E dA (1.88)

Equation (1.88) is used to compute the truss axial stiffness.

Dynamic Equilibrium Equations
Dynamic equilibrium equations for the classical truss model may be obtained by
eliminating the x2 and x3 dimension terms from Eq. (1.19). Thus, the dynamic
equilibrium equation for a truss structure is

@�11

@x1
C b1 D � Ru1 (1.89)

Substituting Eq. (1.86) into Eq. (1.89) will lead to the governing equations for
elastic and homogeneous trusses as follows

E
d2u

dx21
C b1 D � Ru1 (1.90)

For bars of constant cross-sectional properties, with an area A, the integration of Eq.
(1.90) over the cross-sectional domain will lead to

EA
d2u

dx21
C b1A D �ARu1 (1.91)

Denoting the external force applied in the axial direction of the bar by p1 D b1A and
eliminating the inertial term in Eq. (1.91), the static equilibrium equation for trusses
can be written as

EA
d2u

dx21
C p1 D 0 (1.92)

Equation 1.92 is the basic equation of trusses structures which is a second order
differential equation for the axial displacement.

1.3.2 Equations for Shaft Members

Derivation of the shaft model starts from some kinematic based on Saint Venant
assumptions [3]:

• The shape and size of the cross section in its own plane are preserved, which
implies that each cross section rotates like a rigid body;
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• The cross section does not remain plane after deformation but warp proportion-
ally to the rate of twist;

• The rate of twist is uniform along the beam, which implies that the twist angle is
a linear function of the beam axis.

Using the first assumption of Saint Venant, is possible to conclude that the in-
plane displacement due to the twist angle 	1(x1) can be described as

u1 .x1; x2; x3/ D 0I u2 .x1; x2; x3/ D �x3	1I u3 .x1; x2; x3/ D x2	1 (1.93)

The second assumption of Saint Venant simplification states that the axial displace-
ment field will be proportional to the twist rate k1 D d	1=dx1 and has an arbitrary
variation over the cross-section that can be described by the unknown warping
functions  (x2, x3) such that

u1 .x1; x2; x3/ D  .x2; x3/ k1 (1.94)

It deserves to be noted that the twist rate is constant according to the third
assumption. Figure 1.15 shows the deformation of a square shaft under torsion, is
possible to see that the original plane of the cross section have warped out.

Usually, the warping function  (x2, x3) is solved separately over the cross-
sectional domain according to the elasticity theory and, it is governed by Eq. (1.95)
at all points of the cross-section.

x3

x1

x2

Mt

Mt

σ13

σ31

σ21

σ12

Fig. 1.15 Deformation of a square shaft in torsion
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@2 .x2; x3/

@x22
C @2 .x2; x3/

@x23
D 0 (1.95)

Notice that for isotropic and homogeneous shafts with circular cross-section the
warping function vanishes and the displacement field is described by Eq. (1.93).

Strain, Stress and Torsional Moment
Substituting the displacement field showed at Eqs. (1.93) and (1.94) into Eq. (1.2)
is possible to obtain the 3D strain field as,

"11 D "22 D "33 D "23 D 0I �12 D
�
@ 

@x2
� x3

�
k1I �13 D

�
@ 

@x3
C x2

�
k1 (1.96)

It worth to point here that expressing the twist rate, k1 .x1/, as a function of x1 is
a direct violation of the third Saint Venant assumption.

Using the generalized 3D Hooke’s law for homogeneous and isotropic material
and the strain field in Eq. (1.96) is possible to define the stress field as

�11 D �22 D �33 D 0I �12 D 2G"12I �13 D 2G"13I �23 D 0 (1.97)

The resultant of torsion moment that is acting in the shaft is defined as

M11 D
Z

A

.x2�13 � x3�12/ dA D
Z

A

G .x2�13 � x3�12/ dA (1.98)

Substituting the strain field showed at Eq. (1.96) into Eq. (1.98), is possible to
describe the torsion moment as

M11 D
Z

A

G

�
x22 C x23 C x2

@ 

@x3
� x3

@ 

@x2

�
k1 dA (1.99)

and noting that k1 .x1/ D d	1=dx1 is constant over the cross-sectional area, Eq.
(1.99) may be written as

M11 D S22
d	1
dx

(1.100)

where S22 is the torsional stiffness defined by

S22 D
Z

A

�
x22 C x23 C x2

@ 

@x3
� x3

@ 

@x2

�
dA (1.101)
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For isotropic and homogeneous shafts with circular cross-section the warping
function vanishes and Eq. (1.101) leads to the polar moment of inertia of the
cross-section. For other cross-section geometries S22 is less than the polar moment
of inertia of the cross-section and, therefore, to compute the torsional stiffness it
is necessary to evaluate Eq. (1.101). Nevertheless, for the case of isotropic and
homogeneous shafts with rectangular cross-section the value of torsional stiffness is
computed using a torsional correction factor, k, which means that Eq. (1.100) will
have the form

M11 D G kJ
d	1
dx

(1.102)

where

J D
Z

A

�
x22 C x23

	
dA (1.103)

and the torsional correction factor is defined according relations presented at
Table 1.1.

For the case of isotropic and homogeneous shafts with arbitrary cross-section
different values of the torsional correction stiffness should be used [7].

Static Equilibrium Equation
To derive dynamic equilibrium equations for the shaft model, it is necessary to
consider the equilibrium of the differential element presented in Fig. 1.16.

Summing all the moments in the axial direction yields the following equation

Table 1.1 Torsional correction factor for rectangular cross-sections [2]

a/b 1 1.5 1.75 2 2.5 3 4 6 8
k 0.141 0.196 0.214 0.229 0.249 0.263 0.281 0.299 0.307

Fig. 1.16 Infinitesimal
element of a shaft

dx1

dM11M11 + dx1
dx1

M11 t (x1)
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�M11 C M11 C dM11

dx1
dx1 C t .x1/ dx1 D 0 (1.104)

Last equation can be rearranged in the form,

dM11

dx1
D �t .x1/ (1.105)

and, substituting the resultant moment showed at Eq. (1.100) into Eq. (1.105), is
possible to obtain the shaft dynamic equilibrium equation as

d

dx1

�
S22

d	1
dx1

�
D �t .x1/ (1.106)

Equation 1.106 is the basic equation of shaft structures and is a second order
differential equation.

1.3.3 Equations for Classic Beams

Beam structures are geometrically similar to truss members, the difference is that
the forces applied on a beam structure are perpendicular to the axis of the beam
while on a truss members are parallel to the truss axis. Therefore, a beam member
experience bending. There are several theories for analyzing beam structures, which
can be basically divided into two main groups: theory for thin beams and theory
for thick beams. The thin beam theory is also commonly called Euler-Bernoulli
beam model while the simplest thick beam theory is called Timoshenko beam
model. In Euler-Bernoulli beam theory shear deformations are neglected, and plane
sections remain plane and normal to the longitudinal axis during deformation. In
the Timoshenko beam theory, plane sections still remain plane during deformation
but not necessarily normal to the longitudinal beam axis. The angular difference
between the plane section that might remain normal to the longitudinal axis
and the plane section rotation is the shear deformation. However, experimental
observations have been show that Euler-Bernoulli assumptions are reasonable for
slender structures made of isotropic materials, as the case of the structures analyzed
herein and, therefore, this text focuses on the Euler-Bernoulli theory.

Euler-Bernoulli Assumptions
Derivation of the classical beam model starts from some kinematic assumptions
which are [3]:

• The beam cross-section is infinitely rigid in its own plane;
• The beam cross-section remains plane after deformation;
• Lines that are straight and perpendicular to the geometrical beam axis remain

straight and perpendicular during deformation.
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Consider a set of Cartesian axes attached at the geometric center of the beam
cross-section, such that x1 is along the axis of the beam, x2 and x3 define the plane of
the beam cross-section. The displacement of an arbitrary point of the beam in the x1,
x2 and x3 directions are defined by u1(xi), u2(xi) and u3(xi) (i D 1,2,3), respectively.
The complete 3D displacement field of a beam-like structure implied by the Euler-
Bernoulli assumptions is defined as

u1 .x1; x2; x3/ D �x2
dv .x1/

dx1
� x3

dw .x1/

dx1
(1.107)

u2 .x1; x2; x3/ D v .x1/ (1.108)

u3 .x1; x2; x3/ D w .x1/ (1.109)

The first Euler-Bernoulli assumption implies that the displacement field of any
material point in the cross-section plane will consist of two translations v(x1) and
w(x1), as represented at Fig. 1.17.

The second Euler-Bernoulli assumption implies that the displacement field of
any material point in the cross-section plane with coordinates .x2 ¤ 0; x3 ¤ 0/, has
an axial displacement �x2	3 C x3	2, as depicted in Fig. 1.17. Notice, that because
the sign convention represented in Fig. 1.17 the term x2	3 has a negative sign. In
this way, is assured that a positive value of rotation 	3 will create a negative axial
displacement for a positive x2.

2 0f <

3x
1x

2x

1

dw
dx

3f

1

dv
dx

2 0f >

1x

3x

2x

3 2 1( )x xf

3f

1x

2x

3x

2 3 1( )x xf-

3x

2x
1x

3x

3u
2u

Deformed

Undeformed

Fig. 1.17 Representation of the Euler-Bernoulli 3D displacement
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The third Euler-Bernoulli assumption implies that the rotation of the cross-
section beam must be equal to the slope of the beam axis, as depicted in Fig. 1.17.

	3 D @v

@x1
I 	2 D � @w

@x1
(1.110)

The minus sign on the second equation is a consequence of the sign conventions.
Because of the Euler-Bernoulli assumptions, the mathematical model of the beam
structure is stiffer than the original beam. Thus, the displacement field obtained
using this mathematical model will be smaller than that obtained using the 3D
elasticity theory.

Strain, Stress and Bending Moments
Substituting the displacement field showed at Eqs. (1.107), (1.108) and (1.109) into
Eq. (1.2) is possible to obtain the 3D strain field as,

"11 D �x2
d2v

dx21
� x3

d2w

dx21
"22 D "33 D "23 D "12 D "13 D 0 (1.111)

Denoting the curvatures d2v=dx21;�d2w=dx21 about the axes x2 and x3, respec-
tively, by k3(x1) and k2(x1) is possible to express the axial strain variation in the
form

"11 .x1; x2; x3/ D x3k2 .x1/ � x2k3 .x1/ (1.112)

Using the generalized 3D Hooke’s law for homogeneous and isotropic material
and the strain field in Eq. (1.111) is possible to define the stress field as

�11 D .
C 2G/ "11I �22 D �33 D 
"11I �12 D �13 D �23 D 0 (1.113)

Although this stress field naturally flows from the generalized Hooke’s law and
the strain field in Eq. (1.101), it does not agree very well with the experimental
measurements [3]. This drawback can be overcome by assuming additional assump-
tions regarding the stress field. Thus, since the dimension of the cross-section of
the beam is much smaller that the length of the beam, is possible to assume that
�22 D �33 � 0 when compared to �11, this assumption clearly conflicts with the
stress field presented in Eq. (1.113). The reason is that the first assumption of the
classical beam model clearly violates the reality. In fact, is well known that when the
beam is deformed the cross-section will deform in its own plane due to Poisson’s
effect. For this reason the previous assumption used to obtaining kinematics is
overruled and, instead, the following assumptions for the stress field is assumed

�11 D E"11I �22 D �33 D �12 D �13 D �23 D 0 (1.114)
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Because �22 D �33 D 0 from the Hooke’s law it follows that "22 D "33 D ��=E "11
and, this relation contradicts with the strain field in Eq. (1.111) except when � D 0,
which in general is not true. Nevertheless, these contradictions can be partially
justified by the fact that to obtain a simple expression of the 3D kinematics in terms
of the 1D kinematics same simplification assumptions are used and that the stress
on Eq. (1.114) can also better agree with reality.

The resultant of axial force and bending moments that are acting in the beam are
defined as

F11 D
Z

A

�11dA D
Z

A

E .x3k2 � x2k3/ dA D S13k2 C S14k3 (1.115)

M22 D
Z

A

x3�11dA D
Z

A

x3E .x3k2 � x2k3/ dA D S33k2 C S34k3 (1.116)

M33 D �
Z

A

x2�11dA D
Z

A

x2E .x3k2 � x2k3/ dA D S34k2 C S44k3 (1.117)

with

S13 D
Z

A

E x3 dAI S14 D �
Z

A

E x2 dAI S33 D
Z

A

E x23 dAI

S34 D �
Z

A

E x2x3 dAI S44 D
Z

A

E x22 dA
(1.118)

These quantities are called beam stiffness.

Dynamic Equilibrium Equations
To derive dynamic equilibrium equations for the beam model, it is necessary to
consider the equilibrium of the differential elements presented in Fig. 1.18.

The summation of forces along the axis x2 that are presented in the first sketch
of Fig. 1.18 gives the transverse force equilibrium equation in this direction in the

1dx

33
33 1
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dMM dx
dx

+33M 2 1( )q x

1dx

22
22 1

1

dMM dx
dx

+
22M

3 1( )q x
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3x 1x

2Q 2
2 1

1

dQQ dx
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+

3x

2x 1x

3Q 3
3 1

1

dQQ dx+
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Fig. 1.18 Free body diagram for transverse shear forces and bending moments
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form

dQ2

dx1
D �q2 .x1/C �A Rv (1.119)

While the summation of the moments about an axis parallel to x3 yields

�M33 C M33 C dM33

dx1
dx1 C Q2dx1 � 1

2
.q2 � �A Rv/ .dx1/

2 D 0 (1.120)

And neglecting the second order term leads to

dM33

dx1
D �Q2 (1.121)

Similarly, summing the forces along the axis x3 that are presented in the second
sketch of Fig. 1.18, gives the transverse force equilibrium equation in this direction
in the form

dQ3

dx1
D �q3 .x1/C �A Rw (1.122)

and the summation of the moments about an axis parallel to x2 yields

dM22

dx1
D Q3 (1.123)

In order to remove shear forces Q2 and Q3 from Eqs. (1.121) and (1.123),
respectively, is possible to take the derivative of these equations leading to

d2M33

dx21
D �dQ2

dx1
(1.124)

d2M22

dx21
D dQ3

dx1
(1.125)

and, now, substituting the right hand side of Eqs. (1.124) and (1.125) by the right
hand side of equations (1.119) and (1.122), respectively, leads to

d2M33

dx21
D q2 .x1/ � �A Rv (1.126)

d2M22

dx21
D �q3 .x1/C �A Rw (1.127)
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The dynamic equilibrium equations for beams can be obtained by substituting
Eqs. (1.116) and (1.117) into Eqs. (1.127) and (1.126), respectively:

d2

dx21

�
�S34

d2w

dx21
C S44

d2v

dx21

�
D q2 .x1/ � �A Rv (1.128)

d2

dx21

�
S33

d2w

dx21
� S34

d2v

dx21

�
D q3 .x1/ � �A Rw (1.129)

Notice that in Eqs. (1.128) and (1.129) the bending deformations in two directions
are still coupled if the cross bending stiffness S34 is not zero. Nevertheless, if the
coordinate system orientation is coincident with the principal axes of inertia of the
cross-section then the cross bending stiffness is zero. Under such conditions Eqs.
(1.128) and (1.129) assume the form

d2

dx21

�
S44

d2v

dx21

�
D q2 .x1/ � �A Rv (1.130)

d2

dx21

�
S33

d2w

dx21

�
D q3 .x1/ � �A Rw (1.131)

with

S33 D S44 C S33
2

� HI S44 D S44 C S33
2

C HI H D
s
.S44 � S33/

2

4
C S234

(1.132)

The static equilibrium equations for beams can be obtained by dropping the
dynamic terms on Eqs. (1.130) and (1.131), as

d2

dx21

�
S44

d2v

dx21

�
D q2 .x1/ (1.133)

d2

dx21

�
S33

d2w

dx21

�
D q3 .x1/ (1.134)

1.3.4 Equations for 3D Beams

The 3D beam models can deal with extension, torsion and bending in two transverse
directions. The mathematical model is based in Euler-Bernoulli and Saint Venant
assumptions. So combining the displacement expressions in Eqs. (1.83), (1.93),
(1.94) and (1.107), (1.108) and (1.109) yields
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u1 .x1; x2; x3/ D u .x1/ � x3
dw .x1/

dx1
� x2

dv .x1/

dx1
C  .x2; x3/ k1 (1.135)

u2 .x1; x2; x3/ D v .x1/ � x3	1 .x1/ (1.136)

u3 .x1; x2; x3/ D w .x1/C x2	1 .x1/ (1.137)

The complete 3D displacement field of the beam is expressed in terms of
three sectional displacements u(x1), v(x1), w(x1) and one sectional rotation 	(x1)
associated with the centroid of the beam cross section.

Stress, Strain and Bending Moments
Substituting the displacement field showed at Eqs. (1.135), (1.136) and (1.137) into
Eq. (1.2) is possible to obtain the 3D strain field as,

"11 D du

dx1
� x2

d2v

dx21
� x3

d2w

dx21
(1.138)

"22 D "33 D �23 D 0 (1.139)

�12 D
�
@ 

@x2
� x3

�
k1I �13 D

�
@ 

@x3
C x2

�
k1 (1.140)

Using the following notation:

"011 D du

dx1
I k1 .x1/ D d	1

dx1
I k2 .x1/ D �d2w

dx21
I k3 .x1/ D d2v

dx21
(1.141)

where "0
11 is the axial strain, k1 is the twist rate, k2 and k3 are defined after Eq.

(1.111), the axial strain distribution "11 can be expressed as

"11 .x1; x2; x3/ D "011 .x1/C x3k2 .x1/ � x2k3 .x1/ (1.142)

The expressions in Eq. (1.141) can be considered as the 1D beam strain-
displacement relations for classical 3D beam models.

The beam stress field can be obtained using the strain field in Eqs. (1.138),
(1.139) and (1.140) into the generalized 3D Hooke’s law. For instance, for an
isotropic material yields

�11 D .
C 2G/ "11I �22 D �33 D 
"11I �12 D G�12I
�13 D G�13I �23 D 0

(1.143)

As seen before, introducing the following assumption:

�22 D �33 D 0 (1.144)
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The ending stress field can be written as

�11 D E"11I �12 D G�12I �13 D G�13I
�22 D �33 D �23 D 0

(1.145)

The resultant of forces and moments that are acting in the beam are defined as

F11 D
Z

A

E
�
"011 C x3k2 � x2k3

	
dA D S11"

0
11 C S13k2 C s14k3 (1.146)

M11 D
Z

A

G

�
x22 C x23 C x2

@ 

@x3
� x3

@ 

@x2

�
k1 dA D S22k1 (1.147)

M22 D
Z

A

x3�11dA D
Z

A

x3E
�
"011 C x3k2 � x2k3

	
dA D S13"

0
11 C S33k2 C S34k3

(1.148)

M33 D �
Z

A

x2�11dA D
Z

A

x2E
�
"011 C x3k2 � x2k3

	
dA D S14"

0
11 C S34k2 C S44k3

(1.149)

with

S11 D
Z

A

E dA (1.150)

and with S13, S14, S22, S34 and S44 defined by Eqs. (1.101) and (1.118).
Equations (1.146), (1.147), (1.148) and (1.149) can be written in a matrix form

2
664

F11
M11

M22

M33

3
775 D

2
664

S11 0 S13 S14
0 S22 0 0

S13 0 S33 S34
S14 0 S34 S44

3
775

2
664

"011
k1
k2
k3

3
775 (1.151)

The matrix in equation 1.151 is called classical beam stiffness, in which S11 is the
extension stiffness, S13 and S14 are the extension-bending coupling stiffness, S22

is the torsional stiffness, S33 and S44 are the bending stiffness and S34 is the cross
bending stiffness. Due to the Saint Venant assumptions and to the fact that the beam
is made of isotropic material, the entries on the second row and second column of
the matrix in Eq. (1.150) are all zero except to the diagonal term, which means that
the torsional behavior is decoupled from extension and bending.

Entries on the first row and first column of the matrix in Eq. (1.151) are not
all zero, which means that extension and bending behavior are not decoupled.
Nevertheless, because derivations presented on Sect. 1.3.3 were obtained using
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a beam coordinate system that is located at the centroid of the cross section of
the beam, S13 and S14 are zero. In fact, it is possible to decouple extension and
bending by choosing the origin of the coordinate system in such a way that when an
axial force is applied at this point no bending deformation will appear. Such point is
called centroid of the cross section of the beam. Under this condition all the previous
formulations remains the same, and the constitutive relations will have the form

2
664

F11
M11

M22

M33

3
775 D

2
664

S11 0 0 0

0 S22 0 0

0 0 S33 S34
0 0 S34 S44

3
775

2
664

"011
k1
k2
k3

3
775 (1.152)

Notice that the bending deformations in two directions are still coupled, the cross
bending stiffness S34 is not zero. Nevertheless, assuming that the orientation of
the beam coordinate system is coincident with the principal axes of inertia of the
cross-section, then the cross bending stiffness is zero. Under such conditions, Eq.
(1.152) will have the form

2
664

F11
M11

M22

M33

3
775 D

2
664

S11 0 0 0

0 S22 0 0

0 0 S33 0

0 0 0 S44

3
775

2
664

"011
k1
k2
k3

3
775 (1.153)

S33 and S44 are called principle bending stiffnesses and are defined in Eq. (1.132)

Static Equilibrium Equations
The static equilibrium equations for the 3D beam model can be obtained by
combining Eqs. (1.92), (1.106), (1.133) and (1.134) yields

@

@x1

�
S11

du

dx1

�
C p1 D 0 (1.154)

d

dx1

�
S22

d	1
dx1

�
D �t .x1/ (1.155)

d2

dx21

�
S33

d2w

dx21

�
D q3 .x1/ (1.156)

d2

dx21

�
S44

d2v

dx21

�
D q2 .x1/ (1.157)

These equations are in the form of four uncoupled differential equations in terms
of four beam variables, u, v, w and 	1. The equations are of second order in the axial
displacement and in the twist beam, and fourth order in the transverse displacements
v and w. The solution of these equations can only be obtained if boundary conditions



1.3 Equations for 1D Mathematical Models 37

are defined and, these boundary conditions, can be derived based on equilibrium
considerations using free body diagrams at the boundary points.

1.3.5 Equations for Timoshenko Beams

Considering the Euler-Bernoulli beam theory, already discussed briefly in previous
section, the shear deformations are neglected. While this classic beam theory may
be quite adequate for thin to moderate beam structures made of isotropic material,
many thick beam structures and advanced thin beam structures made of composite
material require the shear effect account.

Composite materials consist of a combination of materials that are mixed
together to achieve specific structural properties. The individual materials do not
dissolve or merge completely in the composite, but they act together as one.
Normally, the components can be physically identified as they interface with one
another. The properties of the composite material are superior to the properties
of the individual materials from which it is constructed. In fact, in this kind of
material, even when the transverse stresses are small when compared to the normal
or to the in-plane shear stresses, they can still can induce failures of composite
in the transverse directions. Thus, the transverse stress is not always neglected in
composite analyses.

So, in this section, a discussion of an alternative approach to formulating beam
structures will be presented. The base of this theory includes the effect of shear
deformations by retaining the assumption that the plane section originally normal to
the neutral axis remains plane but rotates by an amount 	, equal to the rotation of
the neutral axis, dw/dx, minus the shear strain � , as depicted in Fig. 1.13. The total
rotation of the cross section is given, as

	2 D d w

d x1
� �13

	3 D d v

d x1
C �12

(1.158)

The complete 3D displacement field of a beam-like structure implied by the
Timoshenko assumptions is defined as

u1 .x1; x2; x3/ D x3	2 � x2	3 (1.159)

u2 .x1; x2; x3/ D v .x1/ (1.160)

u3 .x1; x2; x3/ D w .x1/ (1.161)
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Where the rotations of the cross sections 	2 and 	3 are positives about the axes x2

and x3, respectively.

Strain, Stress and Bending Moments
Substituting the displacement field showed at Eqs. (1.159), (1.160) and (1.161) into
Eq. (1.2) is possible to obtain the 3D strain field as,

"11 D x3
d	2
dx1

� x2
d	3
dx1

"22 D "33 D "23 D 0

2"12 D �	3 C dv

dx

2"13 D 	2 C dw

dx

(1.162)

Denoting d	2/dx, d	3/dx by k
0

2(x1) and k
0

3(x1), respectively, is possible to express
the axial strain variation in the form

"11 .x1; x2; x3/ D x3k
0
2 .x1/ � x2k

0
3 .x1/ (1.163)

Using the generalized 3D Hooke’s law for homogeneous and isotropic material
and the strain field in Eq. (1.101) is possible to define the stress field as

l�11 D .
C 2G/ "11

�22 D �33 D 
"11I
�23 D 0

�13 D G�13

�12 D G�12

(1.164)

As in the case of Bernoulli beam theory, although this stress field naturally flows
from the generalized Hooke’s law and the strain field in Eq. (1.162), the first relation
of Eq. (1.164) does not agree very well with the experimental measurements. This
drawback can be overcome by assuming additional assumptions regarding the stress
field. Thus, since the dimension of the cross-section of the beam is much smaller that
the length of the beam, is possible to assume that �22 D �33 � 0 when compared
to �11, but this assumption clearly conflicts with the stress field presented in Eq.
(1.164). For this reason the previous assumption used to obtaining kinematics is
overruled and, instead, the following assumptions for the stress field is assumed

�11 D E"11
�22 D �33 D �23 D 0

�13 D G�13
�12 D G�12

(1.165)
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The resultant forces and bending moments that are acting in the beam are defined
as

F11 D
Z

A

�11dA D
Z

A

E
�
x3k

0
2 � x2k

0
3

	
dA D S11k

0
2 C S12k

0
3 (1.166)

M22 D
Z

A

.x3�11/ dA D
Z

A

x3E
�
x3k

0
2 � x2k

0
3

	
dA D S21k

0
2 C S22k

0
3 (1.167)

M33 D �
Z

A

x2�11dA D �
Z

A

x2E
�
x3k

0
2 � x2k

0
3

	
dA D S31k

0
2 C S32k

0
3 (1.168)

F13 D
Z

A

�13dA D
Z

A

G .2"13/ dA D S43k
0
13 (1.169)

F12 D
Z

A

�12dA D
Z

A

G .2"12/ dA D S54k
0
12 (1.170)

M11D
Z

A

.x2�13�x3�12/ dA D
Z

A

x2G .2"13/ dA �
Z

A

x3G .2"12/ dA D S63k
0
13CS64k

0
12

(1.171)

with

S11 D
Z

A

E x3 dAI S12 D �
Z

A

E x2 dAI

S21 D
Z

A

E x23 dAI S22 D �
Z

A

E x2x3 dAI

S31 D S22I S32 D
Z

A

E x22 dAI

S43 D
Z

A

G dAI S54 D S43I

S63 D
Z

A

G x2 dAI S64 D �
Z

A

G x3 dA

(1.172)

Equations (1.166), (1.167), (1.168), (1.169), (1.170) and (1.171) can be written
in a matrix form as
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2
66666664

F11
M22

M33

F13
F12
M11

3
77777775

D

2
66666664

S11 S12 0 0

S21 S22 0 0

S31 S32 0 0

0 0 S43 0

0 0 0 S54
0 0 S63 S64

3
77777775

2
664

k0
2

k0
3

k0
13

k0
12

3
775 (1.173)

Assuming that the origin of the beam coordinate system is located at the centroid
of the cross section and its orientation is coincident with the principal axes of
inertia of the cross-section, all the previous formulations remains the same and,
the constitutive relations will have the form

2
664

M22

M33

F13
F12

3
775 D

2
664

S21 0 0 0

0 S32 0 0

0 0 S43 0

0 0 0 S54

3
775

2
664

k0
2

k0
3

k0
13

k0
12

3
775 (1.174)

S21 and S32 are called principle bending stiffnesses and may be defined according
Eq. (1.132).

Timoshenko Equilibrium Equations
Assuming that Eqs. (1.156) and (1.157) can be written in a general form as

d2

dx2

�
S

d	

dx

�
D q.x/ (1.175)

where 	 is either defined by Eq. (1.158), for the case of Timoshenko theory, or
by dw/dx, for the Euler-Bernoulli theory. So, using Eq. (1.158) into Eq. (1.175), the
Timoshenko differential equation in the plane x1x3 is written as

d2

dx1

�
S33

d

dx1

�
dw

dx1
� �13

��
D q3 .x1/ (1.176)

The static equilibrium Eq. (1.176) is now accounting for the shear term � . The
Timoshenko theory assumes that shear strain is constant over the cross section. In
reality, the shear stress and strain are not uniform over the cross section, so a shear
coefficient, ks, is introduced as a correction factor, allowing the non-uniform shear
strain to be expressed as a constant. So, if the cross section area of the beam is A and,
the shear strain � in Eq. (1.158) is an equivalent constant strain on a corresponding
shear area As [8]

� D Q

As
I � D �

G
I ks D As

A
(1.177)
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Where Q is the shear force. The value of the shear coefficient depends on the shape
of the beam cross sections and was originally introduced by Timoshenko [9]. Bathe
[8] have presented a simple procedure based on the condition that when the shear
force Q acts on the shear area As, the constant shear stress defined in Eq. (1.176)
must yield the same shear strain energy as the correct shearing stress acting on the
cross sectional area A. For rectangular cross sectional beams the value of 5/6 is
obtained.

Using the shear coefficient in Eq. (1.177), the average shear strain is defined as

� D Q

ksAG
(1.178)

Using the latter relation in Eq. (1.158), is possible to rewrite Eq. (1.176) as

d2

dx1

�
S33

d

dx1

�
dw

dx1
� Q13

ksAG

��
D q3 .x1/ (1.179)

Using a similar procedure, is possible to obtain the Timoshenko differential
equation in the plane x1x2, which can be written as

d2

dx1

�
S44

d

dx1

�
dv

dx1
� Q12

ksAG

��
D q2 .x1/ (1.180)

Equations (1.179) and (1.180) are of fourth order in the transverse displacements v
and w. The solution of these equations can only be obtained if boundary conditions
are defined. Note that boundary conditions can be derived from equilibrium
considerations by using free body diagrams at the boundary points.
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Chapter 2
Introduction to Finite Element Method

As discussed in Chap. 1, mechanic problems are governed by a set of partial
differential equations that are valid in a certain domain and they needed to be solved
for evaluating the stress condition of mechanical components. Although analytic
methods can be employed to solve linear problems involving partial differential
equations, its use to analyze complex structures may be a difficult or, even, an
impossible task. Thus, in this chapter, Hamilton’s principle, which one of the most
powerful energy principle, is introduced for the FEM formulation of problems of
mechanics of solids and structures. The approach adopted in this chapter is to
directly work out the dynamic system equations, after which the static dynamic
equations can be easily obtained by simply dropping out the dynamic terms

2.1 Strong and Weak Formulations

Strong formulations lead to strong solutions in the sense that they require strong
continuity in the field variables. For instance, the partial differential equations
developed in the previous chapter are strong forms of the system equations of motion
for structural mechanical systems. Strong solutions of these field variables need to
be differentiable up to an order that assure the correctness of the partial differential
equations. Thus, exact solutions of a strong form of the system equations are
usually very difficult to obtain for complex engineering systems. Thus, alternative
approximation and numerical methods may be used.

The accuracy of both alternative methods relies on the ability to develop accurate
function approximations. In the approximation methods a trial function is defined
by a single expression valid throughout the whole domain, while in the numerical
finite element method the domain is divided into a number of non-overlapping
subdomains and then the approximation is constructed in a piecewise manner over
each subdomain. If the subdomains have a relatively simple shape and if the trial
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functions definition is repeatable over these subdomains, is possible to deal with
assembled regions of complex shapes quite readily. The piecewise definition of trial
or shape functions means that discontinuities in the approximating function or in its
derivatives will occur [1].

A weak form of the system equations can be based on an energy principle. The
energy principle can be categorized as a special form of the variational principle
which is particularly suited for problems of the mechanics of solids and structures
[2, 3]. The weak form is often expressed in a mathematical integral that requires
a weaker continuity on the field variables than strong formulations. Moreover,
formulations based on weak form usually produce a set of discretized system
equations that are easy to solve and that give accurate approximations, especially
for problems of complex geometry. The finite element method is a typical example
of successfully using weak form formulations that leads to a set of well-behaved
algebraic system equations, if the problem domain is properly divided.

2.2 Hamilton’s Principle

To derive the discretized form of the dynamic system equations the Hamilton’s
variational principle will be used. The mathematical form of this principle is stated
as [4, 5]

ı

t2Z

t1

.T � U C W/ dt D 0 (2.1)

where t1 and t2 are the initial and finial times of the analysis, respectively. T is
the total kinetic energy, U represents the potential energy of the flexible structure
and W the potential of the applied forces that are acting in the body. This principle
states simply that for a deformable mechanical system in which the response is time-
dependent, the evolution of the real configuration (path) is defined by the admissible
function that makes the functional at Eq. (2.1) stationary. An admissible function
must satisfy the compatibility equations, the kinematic boundary conditions and
constraints at the initial and final times.

As time unfolds, the motion of the deformable system travels a curve in the
configuration space called the true path. A different path, known as the varied path,
results from imagining the system as moving through configuration space by a
slightly different path defined by the virtual displacement ıu. Of all the possible
paths through configuration space, Eq. (2.1) consider only those that coincide with
the true path at times t1 and t2, and it follows that ıu D 0 at those two times [6].

The kinetic energy associated with a flexible body that has volume � is given
as [7]
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T D 1

2

Z

�

Pu � Pu d� (2.2)

being Pu the velocity vector and � the mass density.
The total potential energy of a deformable structure is given as

U D 1

2

Z

�

�
©T c ©

	
d� (2.3)

where © are the elastic strains and c is the stiffness material matrix.
The total work W done by the external mechanical loading is given by Tzou [8] as

W D
Z

�

uT fb d�C
Z

�s

uT fs d�s C
X

i

uT
i fc

i (2.4)

in which u is the displacement field, fb is the body load vector, fs is the surface load
vector and fc

i is the ith concentrated load vector. Substituting Eqs. (2.2), (2.3), and
(2.4) into Eq. (2.1) and computing its variation yields to the following variational
statement:

2
4
Z

�

•uT� Pu d�

3
5

t2

t1

�
t2Z

t1

2
4
Z

�

�
•uT� Ru � •©Tc © C •uT fb

	
d�C

Z

�s

•uT fs d�s C
X

i

•uT fc
i

3
5dt D 0

(2.5)

The computation of variation is only in u and its derivatives, which means that
the space and time parameters denoted by xi and t are not affected by the variation.
Notice that where the system information is prescribed its variation must be zero.
In fact, if the configuration of the system is prescribed then the variation must
necessarily be zero because otherwise any change in the original configuration
would result in a different problem [6]. Thus, imposing the usual constraint of no
variation at the time endpoints implies that ıu .t1/ D 0 and ıu .t2/ D 0 and Eq.
(2.5) yields to

t2Z

t1

2
4
Z

�

�
•uT� Ru � •©Tc © C •uT fb

	
d�C

Z

�s

•uT fs d�s C
X

i

•uT fc
i

3
5dt D 0

(2.6)
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Because the strain field is related to displacement field, in Eq. (2.6), the unknowns
are the mechanical displacements. The solution of these unknowns will be obtained
numerically using the finite element method.

2.3 Finite Element Method

The standard FEM procedure can be summarized into three main steps: domain
discretization, displacement approximation and finite element equations.

2.3.1 Domain Discretization

The domain discretization is often called domain meshing and it consists on the
division of the original domain into n finite elements. With the computer advent
this task has been used to develop user-friendly pre and postprocessor programs for
numerical simulations in science and engineering, namely GID Pré/Post Processor
[9], Femap [10] etc. These pre/post processors are especially useful for complex
geometries, as the case of a two-dimensional geometry problem presented at
Fig. 2.1.

The meshing technique requires unique numbers for all the finite elements and
nodes that define the structural domain. A finite element is composed of nodes
and of edges; the finite element shape is defined by connecting its nodes in a pre-
defined consistent way to create the element connectivity. The continuity of the
mesh is assured by the connectivity among nodes. To form the entire domain of the
problem is possible to think in the process of building a puzzle where the puzzle
pieces (finite elements) have numbered vertices (nodes). Thus, that one empty
part of the puzzle can be occupied by a puzzle piece it is necessary that numbers
associated with their vertices are coinciding with the numbers of the vertices
that define the outline available. A finite element mesh can be constructed using
different types of finite elements as long as they are compatible on the connection
regions.

The finite element mesh quality can have a large influence on the accuracy of
a simulation based on the solution of partial differential equations [11]. But what,
exactly, is mesh quality? As far as the authors are aware, the only available definition
is proposed by Knupp:

Mesh quality concerns the characteristics of a mesh that permit a particular partial
differential equation simulation to be efficiently performed, with fidelity to the underlying
physics, and with the accuracy required for the problem.

In fact, this definition is true because the same mesh can lead to different
accuracies as different calculations are performed, i.e., one mesh which give
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Fig. 2.1 Example of a surface mesh: (a) surface geometry; (b) surface meshed; (c) zoom of
elements and nodes numbering

accurate static results does not assure accurate dynamic results. On the other hand,
the mesh should not blur the simulation, i.e., finite elements with inverted normal
can cause a loss of fidelity or even cause the simulation halt prematurely. Moreover,
the mesh should not contribute to ill-conditioning of the system matrix that needed
to be solved and, simultaneously, should reduce both global and local errors.
Meanwhile, generally speaking, a finer mesh yields accurate results but increases
the computational cost. Thus, the mesh is usually not uniform and, finer meshes are
used at the areas in which the displacement gradient is larger or at areas in which a
critical accuracy is required.

2.3.2 Displacement Approximation

In order to formulate FEM equations form general finite elements, it is convenient to
use a local coordinate system in which the limits of variation of each coordinate are
related to the position of the basis point of the local system and to the geometrical
limits of the finite element. In Fig. 2.2 is possible to see two different locations
for the local coordinate system; Fig. 2.2a shows the typical placement of a local
coordinate system for 1D meshes and Fig. 2.2b shows the placement of a local
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a b

x1

x1

x2

x1

x2

x1

(e)
(e)x1

(e)x2

0 �(e)

Fig. 2.2 Local and global coordinate systems: (a) 1D mesh; (b) 2D mesh

coordinate system for a 2D mesh. Thus, a finite element mesh has a number of
local coordinate systems that is equal to the number of finite elements within
the mesh.

Using the element local coordinate system is possible to interpolate the dis-
placement within the finite element by a polynomial function that must verify the
boundary conditions at the element nodes and, in the end, the displacement within
the finite element can be interpolated as

Qu .x1; x2; x3/ D N .x1; x2; x3/ u (2.7)

where the superscript .Q�/ stands for approximation and ū is the nodal displacement
associated with the finite element. Note that for notation simplicity, in this section,
the superscript (e) , which is associated with the finite element number, is omitted
in all vectors and matrices. Vector ū is the first quantity that the analyst wants to
evaluate, and can be written as

u D

2
6664

u1
u2
:::

un

3
7775 (2.8)

where n is the number of element nodes and ūi contains the degrees of freedom
associated with node i of the finite element. For 3D mathematical models vectors ūi

have the form

ui D
2
4

ui .x1; x2; x3/
vi .x1; x2; x3/
wi .x1; x2; x3/

3
5

! displacement in the x1-direction
! displacement in the x2-direction
! displacement in the x3-direction

(2.9)
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For 2D or 1D mathematical models vectors ūi can also consist of rotations.
Moreover, for transformation simplicity, nodal rotations should be placed after nodal
displacements following the sequential axes x1; x2 and x3. Thus, at Eq. (2.7), the
dimension of vector ū is defined as n � m, being m the number of degrees of freedom
at one node.

Matrix N in Eq. (2.7) contains the interpolation functions for the nodes of the
finite element. These functions are called shape functions, and they predefine the
shape of the displacement variations with respect to the element coordinates. The
general form of this matrix is

N .x1; x2; x3/ D �
N1 .x1; x2; x3/ N2 .x1; x2; x3/ : : : Nn .x1; x2; x3/

�
# # : : : #

for node 1 for node 2 : : : for node n

(2.10)

where Ni is a sub-matrix containing the shape functions associated with the i nodal
degrees of freedom. The n sub-matrices can be arranged as

Ni D

2
6664

N1 0 0 0

0 N2 0 0

0 0
: : : 0

0 0 0 Nn

3
7775

i

(2.11)

in Eq. (2.11), Nj represents the shape function associated with the jth degree of
freedom at the ith element node.

Shape functions are obtained using the standard procedure presented in the next
section. Meanwhile, for the ith element node is not guaranteed that N1 D N2 D
� � � D Nn it will depend on the element formulation.

2.3.3 Procedure to Define Shape Function

Consider that local coordinates of the ith element node are denoted by vector xi: for
1D problems xi D fx1gi, for 2D problems xT

i D �
x1 x2

�
i
and for 3D problems xT

i D�
x1 x2 x3

�
i
. To create the interpolation function of each displacement component

of a finite element, it is required that the number of shape function equals, at least,
the number of nodes. Some exceptions to the previous rule are for instance: 1D
finite elements based on the Euler-Bernoulli theory and 2D finite elements based on
the Classical theory. For now, consider the explanation of the standard procedure to
obtain the shape functions of one displacement component only. This procedure is
applicable in a straightforward form to the remaining components. First the function
that approximate the displacement component uh .x/ is created in the form of a linear
combination of monomials 	i .x/ and coefficients ai, i.e.

uh .x/ D
nX

iD1
	i .x/ ai D ˆT a .i D 1; � � � ; n/ (2.12)
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Fig. 2.3 Pascal triangle of monomials for 2D cases
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Fig. 2.4 Pascal pyramid of monomials for 3D cases

Note that ai is the coefficient for the monomial known 	i .x/ and needs to be
computed. In fact, 	i .x/ in Eq. (2.12) represent a set of selected monomials:

• For 1D problems are built with n terms of one-dimensional monomials;
• For 2D problems are built with n terms of the Pascal’s triangle shown in Fig. 2.3
• For 3D problems are built with n terms of the Pascal’s pyramid shown in Fig. 2.4

A basis of complete order of p in 1D cases can be obtained by following the first
edge of the Pascal’s triangle presented in Fig. 2.3 and it has de form
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ˆT .x1/ D �
1 x1 x21 x31 x41 x51 : : : xp

1

�
(2.13)

For 2D cases a basis of complete order p it will group all the members of a Pascal
triangle in which the vertices of the base edge are associated with monomials xp

1 and
xp

2, and it has the form

ˆT .x1; x2/ D �
1 x1 x2 x1x2 x21 x22 : : : xp

1 xp
2

�
(2.14)

For 3D cases a basis of complete order p it will group all the members of a Pascal
pyramid, Fig. 2.4, in which the vertices of the base triangle are associated with
monomials xp

1, xp
2 and xp

3, and it has the form

ˆT .x1; x2; x3/ D �
1 x1 x2 x3 x1x2 x1x3 x2x3 x21 x22 x23 : : : xp

1 xp
2 xp

3

�
(2.15)

The coefficients ai in Eq. (2.12) can be computed by applying the displacement
boundary conditions of the finite element at the n nodes, i. e. the displacement at
each finite element node equals the displacement that is calculated using Eq. (2.12).
So, at node i boundary condition has the form

uh
i D ˆ .xi/ a (2.16)

where uh
i represents the nodal value of uh at position xi. Repeating this equation for

all the remaining nodes, the final system of equations can be written in the following
matrix form

u D C a (2.17)

vector ū is defined in Eqs. (2.8) and (2.9). Nevertheless, the vector in Eq. (2.9) has
only one component and matrix C is given by

C D

2
6664

	1 .x1/ 	2 .x1/ � � � 	n .x1/
	1 .x2/ 	2 .x2/ � � � 	n .x2/

:::
:::
: : :

:::

	1 .xn/ 	2 .xn/ � � � 	n .xn/

3
7775 (2.18)

Note that Eq. (2.18) is a matrix with algebraic values for instance, for two
dimensional polynomials is possible to write

C D

2
666664

1 .x1/1 .x2/1 .x1/1.x2/1 � � � �xp
1

	
1

�
xp
2

	
1

1 .x1/2 .x2/2 .x1/2.x2/2 � � � �xp
1

	
2

�
xp
2

	
2

:::
:::

:::
:::

:::
:::

:::

1 .x1/n .x2/n .x1/n.x2/n � � � �xp
1

	
n

�
xp
2

	
n

3
777775

(2.19)
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where
�
xj
	

i represents the jth coordinate of ith element node. Assuming that the
inverse of matrix C in Eq. (2.19) exists, Eq. (2.17) can be used to evaluate the
coefficient vector a, as

a D C�1u (2.20)

Using this information back in Eq. (2.12), is possible to write

uh .x/ D ˆT C�1 u D N u (2.21)

where N is a matrix of shape functions Ni .x/ defined by

N .x/ D ˆT .x/ C�1 D
"
ˆT .x/C�1

1„ ƒ‚ …
N1.x/

ˆT .x/C�1
2„ ƒ‚ …

N2.x/

� � � ˆT .x/C�1
n„ ƒ‚ …

Nn.x/

#
(2.22)

and, C�1
i is the ith column of matrix C�1. Using the information presented in Eq.

(2.22) is possible to write the relation:

Ni .x/ D ˆT .x/ C�1
i (2.23)

In Eq. (2.23) it is assumed that inverse of matrix C exists, if is not the case
the construction of shape functions will fail. The computation of matrix C�1 is
dependent on basis function used and on the nodal distribution of the element [3].
Nevertheless, in this text, the elements that are discussed are those in which matrix
C is invertible.

In the process of computing deformations associated with a finite element,
derivatives of shape functions are needed and, since they have a polynomial form,
they can be obtained very easily.

2.3.4 Characteristic of Shape Functions

Consistency
The consistency of shape functions, within the finite element, is closely linked to its
polynomial order, i.e. it depends on the complete order of monomials 	i .x/ used in
Eq. (2.12). If the complete order of monomial represents a polynomial of order k, the
element shape functions are called k-complete and are said to posses Ck consistency,
if they are able to represent exactly all polynomial terms of order � k. Note that this
requirement applies at the element level and involves all element shape functions.

The verification of this requirement can be done assuming a displacement-based
finite element in which k � n, being n the number of nodes of the element. Hence,
the element displacement in the x1 direction can be defined as
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Qu .x/ D
kX

iD1
	i .x/ ˛i D ˆT’ i D 1; : : : ; k � n (2.24)

where 	i .x/ are monomials that are included in Eq. (2.16). In order to make i D n
in Eq. (2.24), is possible to rewrite this equation such that

Qu .x/ D
nX

iD1
	i .x/ ai D ˆTa i D 1; : : : ; n (2.25)

where

aT D Œ˛1 ˛2 � � � ˛k 0 � � � 0� (2.26)

and vector ˆ is updated in order to include all monomials terms of Eq. (2.16). The
consistency requires that the displacement field in the x1 direction should be exactly
represented for any values of ˛ coefficients, so evaluating Eq. (2.25) in each finite
element node, yields

u D

2
666666666664

u1
u2
:::

uk

ukC1
:::

un

3
777777777775

D

2
666666666664

	1 .x1/ 	2 .x1/ � � � 	k .x1/ 	kC1 .x1/ � � � 	n .x1/
	1 .x2/ 	2 .x2/ � � � 	k .x2/ 	kC1 .x2/ � � � 	n .x2/

:::
:::

:::
:::

:::
:::

:::

	1 .xk/ 	2 .xk/ � � � 	k .xk/ 	kC1 .xk/ � � � 	n .xk/

	1 .xkC1/ 	2 .xkC1/ � � � 	k .xkC1/ 	kC1 .xkC1/ � � � 	n .xkC1/
:::

:::
:::

:::
:::

:::
:::

	1 .xn/ 	2 .xn/ � � � 	k .xn/ 	kC1 .xn/ � � � 	n .xn/

3
777777777775

2
6666666664

˛1
˛2

˛k

0

0

3
7777777775

D Ca

(2.27)

To understand if the displacement field on Eq. (2.24) can be recover, Eq. (2.27)
can be inserted into the displacement approximation (Eq. 2.21), what gives

uh .x/ D ˆT C�1 u D ˆT C�1C a D ˆTa D Qu .x/ (2.28)
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This is what is given in Eq. (2.24). This proves that any field given by Eq. (2.24) will
be exactly reproduced at the element level if shape functions are used, as long as the
given function is included in the approximation function used for constructing the
shape functions [3].

Linear Independence
Shape functions are linearly independent. This property is justified by the fact
that the approximation function in Eq. (2.24) is constructed with basic functions
that are linearly-independent. Thus, because the shape functions are equivalent
to the basis function in the function space, the shape functions are also linearly
independent.

Kronecker Delta Properties
Shape functions have the property of the kroncker delta ıij, which is a function of
two variables, defined as

Ni
�
xj
	 D ıij D



1 i D j
0 i ¤ j

i; j D 1; : : : ; n (2.29)

Kronecker delta property of shape functions implies that the shape function Ni

must equals the unity at node i and zero at remaining element nodes. To understand
this, assume that the element displacement depends only from the displacement at
node i and the displacement at this node is ui. Therefore, the vector of element nodal
displacement is

uT D �
0 0 � � � ui 0 � � � � (2.30)

Using this information into Eq. (2.21) and evaluating the displacement at node j, xj,
yields

Qu �xj
	 D

nX
kD1

Nk
�
xj
	

uk D Niui (2.31)

So, if j D i Eq. (2.31) becomes

Qu .xi/ D Niui (2.32)

to assure that Eq. (2.32) equals the displacement at node i, ui, it is necessary that

Ni D 1 (2.33)

If j ¤ i the displacement computed by Eq. (2.21) must be zero, what yields

Niui D 0 (2.34)
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Which requires

Ni
�
xj
	 D 0 (2.35)

Accordingly Eqs. (2.31) and (2.35) is possible to conclude that shape functions
posses the Kronecker delta function property.

Unity Property
Shape functions verify the unity requirement:

nX
iD1

Ni .x/ D 1 (2.36)

This property is important to assure that the displacement approximation function
is able of reproducing a constant displacement field or a rigid body motion over the
finite element.

Assume that within the finite element the solution should be defined as

u .x/ D c (2.37)

Which means that in each element node the Eq. (2.37) must be verified and,
therefore, the nodal displacements associated with the finite element are defines as

uT D �
c c � � � c

�
(2.38)

So, using Eq. (2.38) into Eq. (2.21) yields

u .x/ D
nX

iD1
Ni .x/ ui D c

nX
iD1

Ni .x/ (2.39)

In order to assure that Eqs. (2.37) and (2.39) give the same value, equality (2.36)
should be verified.

Linear Reproduction
If the first order monomial is included in the basis function, then shape functions
construction must be able to represent a linear function, i.e.

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

nX
iD1

Ni .x/ .x1/i D x1

nX
iD1

Ni .x/ .x2/i D x2

nX
iD1

Ni .x/ .x3/i D x3

(2.40)

In Eq. (2.40)
�
xj
	

i represents the nodal value of the coordinates, xj.
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Assume that within the exact finite element the displacement field in the x1
direction is a linear function of coordinate x1, defined as

u .x/ D x1 (2.41)

The exact nodal displacements associated with the finite element, in the x1 direction,
are defines as

uT D �
.x1/1 .x1/2 � � � .x1/n

�
(2.42)

Using Eq. (2.42) into Eq. (2.21) yields

u .x/ D
nX

iD1
Ni .x/ .x1/i (2.43)

Thus, to assure that Eqs. (2.41) and (2.43) give the same value, equality (2.40)
should be verified.?

2.3.5 Finite Element Equations in Local Coordinate System

Formulation of the finite element equations is based on the application of Hamilton’s
principle to each finite element in the analysis domain. So, it is necessary to create
the discretized form of Eq. (2.6). To do that, is possible to start with the discretized
form of each term that appears in Eq. (2.1) and then apply the Hamilton’s principle.

By substituting Eq. (2.7) into Eq. (2.2), is possible to define the finite element
kinetic energy as

T D 1

2

Z

�e

� PuT Pu d�e D 1

2

Z

�e

� PuT
N

T
N Pu d�e D 1

2
PuT

0
@
Z

�e

�N
T
N d�e

1
A Pu (2.44)

By denoting

m D
Z

�e

�N
T
N d�e (2.45)

That is named mass matrix of the finite element, Eq. (2.44) can be rewritten as

T D 1

2
PuT

m Pu (2.46)

The strain energy is expressed by Eq. (2.3) and, because the finite element strain
field has not been defined, is important to use the differential operator L to write the
element strain field as
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© D Lu D LN u D B u (2.47)

in which B is called the strain matrix. By substituting Eq. (2.47) into Eq. (2.3) we
have

U D 1

2

Z

�e

uTB
T
c B u d�e D 1

2
uT

0
@
Z

�e

B
T
c B d�e

1
A u (2.48)

By denoting

k D
Z

�e

B
T
c B d�e (2.49)

That is named stiffness matrix of the finite element, Eq. (2.48) can be rewritten as

U D 1

2
uTk u (2.50)

Finally, to obtain the work done by the external mechanical loading, Eq. (2.7) is
substituted into Eq. (2.4),

W D
Z

�e

uTN
T
fb d�e C

Z

�e
s

uTN
T
fs d�e

s C
X

i

uTN
T
fc
i D uT f (2.51)

with

f D
Z

�e

N
T
fb d�e C

Z

�e
s

N
T
fs d�e

s C
X

i

N
T
fc
i D Fb C Fs C Fc (2.52)

where Fb, Fs and Fc are the nodal forces acting on the nodes of the element and they
can be added up to form the total nodal force vector f.

Substituting Eqs. (2.46), (2.50), and (2.51) into Eq. (2.1), leads to

ı

t2Z

t1

�
1

2
PuT

m Pu � 1

2
uTk u C uT f

�
dt D 0 (2.53)

and, because the variation and integration operators are interchangeable, is possible
to write

t2Z

t1

�
ı PuT

m Pu � ıuTk u C ıuT f
�

dt D 0 (2.54)
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The variation and the differentiation operators are also interchangeable, i.e.

ı PuT D ı

 
d uT

dt

!
D d

dt

�
ı uT	 (2.55)

and integrating the first term by parts on Eq. (2.54), we obtain

t2Z

t1

�
ı PuT

m Pu
�

dt D
h
ıuTm Pu

it2

t1
�

t2Z

t1

�
ıuTm Ru

�
dt D �

t2Z

t1

�
ıuTm Ru

�
dt (2.56)

Note that in deriving Eq. (2.56), the condition ıu D 0 at t1 and t2 have been used.
Substituting Eq. (2.56) into Eq. (2.54), yields

t2Z

t1

ıuT
�
�m Ru � k u C f

�
dt D 0 (2.57)

To assure that the integral in Eq. (2.57) is zero for any variation of displacements, ıū,
which cannot be zero in the time interval, the quantity in brackets has to vanish, i.e.

m Ru C k u D f (2.58)

Equation (2.58) is the FEM equation for a finite element. m and k are the mass
and stiffness matrices of the finite element and f is the element force vector of the
total external forces acting on the nodes of the finite element. All these element
matrices and vectors are dependent on the shape functions used to approximate the
element displacements.

2.3.6 Coordinate Transformation of the Finite Element
Equations

In general, the domain of structures is divided into many finite elements and each
of these finite elements may possess different local orientations. Nevertheless,
to assemble all the element equations and form the global system equations, all
the element equations must be written in the global coordinate system. Thus, a
coordinate transformation has to be performed for each finite element.

This transformation gives the relationship between the displacement vector ū
defined on the local coordinate system and the element displacement vector u
defined on the global coordinate system, i.e.

u D T u (2.59)
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where T is the transformation matrix and it has different forms depending on
the type of the finite element. The transformation matrix can also be applied to
transform the force vector between the local and global coordinate systems:

f D T f (2.60)

Substituting Eq. (2.59) into Eq. (2.58) leads to

m T Ru C k T u D f (2.61)

Now multiplying at left both sides of Eq. (2.61) by TT , we get

TTm T Ru C TTk T u D TT f (2.62)

By denoting

m D TTm TI k D TTk T (2.63)

Equation (2.62) can be rewritten as

m Ru C k u D f (2.64)

Equation (2.64) is the element equation based on the global coordinate system.

2.3.7 Global Finite Element Equations

Equation (2.64) is valid for each finite element of a structural domain, and the global
finite element system equations are obtained by assembling together all equations
on the form of Eq. (2.64) to obtain

M RU C K U D F (2.65)

where M and K are the global mass and stiffness matrices, U is the vector of global
displacements that contains displacements of the all nodes in the entire problem
domain, and F is a vector that groups all the equivalent nodal forces. The assembly
process consists on adding up the contributions of all elements connected at a
node.

2.3.8 Imposing Boundary Conditions

Solutions of Eq. (2.65) can only be obtained if support conditions are defined,
because the global stiffness matrix does not usually have a full rank and, therefore,
it is non-negative definite or positive semi-definite. Physically, this means that if
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external forces are applied to one unconstrained body, it will be able to move freely
in the space and, therefore, rigid body motion is allowed. Moreover, the elastic
displacements cannot be uniquely determined from Eq. (2.65). Thus, solutions of
Eq. (2.65) are only possible for structural systems that have the rigid body motion
remove. The number of rigid body movements that needs to be removed depends on
the number of physical degrees of freedom that are included in the numerical model.
For instance, when we solve a beam problem using a finite element with six degrees
of freedom per node, three translations and three rotations, and loads do not include
twist moments, the solution is possible only if twist rigid movements are removed
at the numerical model.

Mathematically speaking, the constraints can be imposed by simply removing
the rows and columns of Eq. (2.65) that correspond to the constrained nodal degrees
of freedom. After a correct selection of constrained degrees of freedom, stiffness
and mass matrices in Eq. (2.65) will be of full rank and, therefore, will be positive
definite. Moreover, since both matrices are symmetric, the resultant system will have
a system matrix that is symmetric positive definite.

2.4 FE Static Analysis

In static analysis the external forces are static, which means that no time variation
exists. Thus, the elastic acceleration vector, Ü, that appears in Eq. (2.65) will vanish
and, the static system of equations takes the well known form

K U D F (2.66)

Solutions of Eq. (2.66) may be obtained by numerous methods and algorithms.
Nevertheless, there are essentially two different classes of methods: direct solution
techniques and iterative solution methods. For a direct solution of Eq. (2.66) a
sequence of steps and operations are predetermined in an exact manner, whereas
iteration is used an iterative solution method is employed [2]. For small systems,
Gauss elimination and LU decomposition are often used and, for large systems
the iterative methods can be much more effective. In fact, these and other methods
are available in any library of a finite element program. By solving the Eq. (2.66)
the displacements at the finite nodes are obtained and, the strain and stress in any
element can be retrieved using Eqs. (2.47) and (1.8), respectively.

2.5 Eigenvalue Analysis

The solution of Eq. (2.65) may be obtained by using the so-called direct integration
method. However, a particular solution of this equation is obtained by setting F D 0,
which means that the system is free of external force, then the discretized system
equation becomes

http://dx.doi.org/10.1007/978-3-319-17710-6_1
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M RU C K U D 0 (2.67)

Equation (2.67) is associated with the called dynamic frequency analysis. The
solution of this equation can be assumed as

U D ˆ sin .!t/ (2.68)

where ˆ is a vector containing the amplitude of nodal displacements, ! is the
frequency of vibration and t is the time. Substituting Eq. (2.68) into Eq. (2.67),
is possible to obtain the generalized eigenproblem as

K ˆ D !2M ˆ (2.69)

or

.K � 
 M/ ˆ D 0 (2.70)

with


 D !2 (2.71)

Equation (2.70) is called the eigenvalue equation, in which a non-zero solution
for ˆ only exist if the determinate of the dynamic matrix vanish, i.e.

det .K � 
 M/ D jK � 
 Mj D 0 (2.72)

Expansion of Eq. (2.72) will lead to a polynomial of 
 of order equal to the
dimension of the dynamic matrix .K � 
 M/. So, assuming that the dimension
of the dynamic matrix is of N, the polynomial equation will have a maximum
number of N roots, 
1,
2, : : : ,
N , called eigenvalues. These values are related
to the natural frequencies of the system by Eq. (2.71). The natural frequency is
a very important characteristic of a structure; smaller frequencies have associated
higher amplitudes of displacement and, therefore, are more dangerous. In fact, it
has been found that if a structure is excited by a load with a frequency coincident
with one of the structure’s natural frequencies, the structure can undergo extremely
violent vibration. Moreover, if this excitation prevail in time, it can leads to
catastrophic failure of the structural system. Therefore, an eigenvalue analysis has
to be performed in designing a structural system that is to be subjected to dynamic
loadings.

By substituting an eigenvalue 
i into Eq. (2.70) leads to

.K � 
i M/ ˆi D 0 (2.73)

which is a set of algebraic equations. The solution ˆi is called the ith eigenvector
that corresponds to the vibration mode associated with the ith vibration frequency.
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The vibration mode ˆi gives the shape of the structure when is vibrating at
the frequency 
i. Therefore, analysis of the eigenvalue equation also gives very
important information on the possible shape of vibration experienced by the
structure. Thus, this kind of analysis can also be used to identify the structure
weakness; points with higher amplitude of displacement are weak points that can
be structurally reinforced. Mathematically, eingenvectors can be used to construct
a transformation basis allowing changing the generalized nodal displacements to
generalized modal displacements. This technique is named mode superposition, and
is specially indicated to solve Eq. (2.65) that will be discussed in the next section.

Because the mass matrix is symmetric positive definite and the stiffness matrix
is also symmetric and either positive or positive semi-definite, the eigenvalues are
all real or and either positive or zero. Usually, a zero eigenvalue is possible to
obtain only if rigid body movements are allowed and, physically, the corresponding
eigenvectors represent these rigid body movements without deformation associated.
Moreover, it is possible that the system has coincident eigenvalues and, if there are m
coincident eigenvalues, the eigenvalue is said to be of multiplicity of m. Meanwhile,
for an eigenvalue of multiplicity m there are m linearly independent eigenvectors.
This means that the so-called geometric multiplicity of this eigenvector is also m.
For instance, a beam with a circular cross-section is expected to have, at least, two
coincident eigenvalues that are associated with two similar shape vibrations in two
orthogonal directions.

A great number of numerical methods for the effective computation of the
eigenvalues and eigenvectors for an eigenvalue equations systems, as presented in
Eqs. (2.72) and (2.73), have been developed. Intensive research has been conducted
and many sophisticated algorithms are already available in computational libraries
of finite element programs. The commonly used methods are [12]: jacobi’s method,
Given’s method and householder’s method, the bisection method, inverse iteration,
QR method, subspace iteration, lanczo’s method and etc.

Properties of Eigenvectors
The solution of a generalized eigenproblem in the form of Eq. (2.70) yields N
eigenvalues 
1,
2, : : : ,
N and N corresponding eigenvectors ˆ1,ˆ2, : : : ,ˆN .
Each eigenpair (
1,ˆ1) satisfies Eq. (2.73), i.e.

Kˆi D 
i Mˆi (2.74)

Equation (2.74) says that if we establish a vector 
i Mˆi and use it as a load
vector F in the equation KU D F, then U D ˆi [2]. Equation (2.74) also shows
that an eigenvector is defined only within a multiple of itself, i.e., the relation is also
valid

K .˛ˆi/ D 
i M .˛ˆi/ (2.75)

where ˛ is a nonzero constant. Equation (2.75) states that if ˆi is an eigenvector then
˛ˆi is also an eigenvector and, therefore, is possible to say that an eigenvector is
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only defined by its direction in the N dimensional space considered. So, in structural
mechanics eigenvectors ˆi satisfy Eq. (2.74) and also the relation ˆT

i Mˆi D 1,
which fixes the lengths of eigenvectors.

An important relation that eigenvectors should satisfy is the so-called M-
orthonormality, i.e.

ˆT
i Mˆj D ıijI i; j D 1; : : : ; N (2.76)

where ıij is the Kronecker delta symbol. Premultiplying Eq. (2.74) by ˆT
j and, using

the condition at Eq. (2.76), yields
(
ˆT

i Kˆj D 
i j D i

ˆT
i Kˆj D 0 j ¤ i

(2.77)

which means that eigenvectors are also K-orthogonal.

2.6 Transient Analysis

The transient analysis of a structural system should be performed whenever the
system is subjected to transient excitation. A transient excitation is a time dependent
solicitation that is exerted on the structure, which leads to a structural response that
is also time dependent. The discrete governing equation system for such a structure
is given by Eq. (2.65). However, when the displacements of a flexible body are time
dependent several sets of forces play a role on its response. Among these, forces
that oppose the motion due to the frictional resistance are related in a nonlinear
way with the relative velocity of body points. The structural damping results from
material hysteresis and it can be approximated by a proportional damping [13].
Thus, it should be mentioned that the general system equation for a structure with
structural damping can be written as

M RU C C PU C K U D F (2.78)

where PU is the vector of generalized velocity components and C is the matrix of
damping coefficients that can be determined experimentally.

The finite element damping matrix is often expressed as a linear combination of
the stiffness and mass matrices, and is the so-called proportional damping [14], as

C D ˛K C ˇM (2.79)

where, for the purpose of Eq. (2.79), ˛ and ˇ are the stiffness and mass proportional
damping constants respectively. These parameters can be determined experimen-
tally [15]. However, denoting the damping ratio by 
 the damping constants may be
obtained as fractions of the critical damping for a given frequency as [16]
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i D 1

2

�
˛!i C ˇ

!i

�
(2.80)

Denoting, two fractions of the critical damping ratio by 
1 and 
2 at two different
frequencies !1 and !2, solving the Eq. (2.80) for the damping constants, are
obtained as

˛ D 2 .
2!2 � 
1!1/ =
�
!22 � !21

	

ˇ D 2!1!2 .
1!2 � 
2!1/ =
�
!22 � !21

	
(2.81)

Mathematically, Eq. (2.78) represents a system of linear differential equations of
second order and, in principle, the solution can be obtained by standard procedures
suitable for the solution of differential equations with constant coefficients [2].
However, the procedures available for the solution of general systems of differential
equations can become very expensive if the order of the system matrices is large,
unless specific advantage is taken of the special characteristics of the coefficient
matrices, K, C and M. The procedures that will be presented are divided into
methods of solution: direct integration and mode superposition. The choice for one
method or the other is determined only by their numerical effectiveness.

2.6.1 Direct Integration Methods

In direct integration methods, the Eq. (2.78) is integrated using a numerical step-
by-step procedure. The term direct is used to emphasize that before the numerical
integration no transformation of Eq. (2.78) is carried out. First, direct numerical
integration is based on the solution of Eq. (2.78) only in a set of discrete time
intervals �t. This means that time domain is also discretized in a number of time
steps Nt, in which the solution is obtained. Secondly, direct numerical integration is
also based in the idea that variations of displacements, velocities and accelerations
within each time interval �t are assumed. In fact, it is the assumption on the
variation of displacements, velocities and accelerations within each time interval
that determines the accuracy, stability and cost of the solution procedure [2].
Let’s assume that the domain time is T, which is subdivided into Nt equal time
intervals �t (i.e. �t D Tt=Nt), and the integration scheme employed establishes
an approximate solution at times �t; 2�t; 3�t; : : : ; t; t C �t; : : : ; T . Because an
algorithm calculates the solution at the next required time, t C�t, from the solution
at the previous times, let assume that solutions are known at 0,�t, 2�t, : : : , t
times.

There are two main types of direct integration method: explicit and implicit. In
explicit methods the solution of the displacement at time t C �t are obtained by
using Eq. (2.78) at time t. On the other hand, implicit integrations methods evaluate
displacements at time t C�t by using Eq. (2.78) at time t C�t.
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t

t
−Δt −Δt/2 +Δt/2 +Δt

Initialization

• Obtain U0−Δt using equation (2.92) 

• Calculate effective loads at time t
   using equation (2.90)

• Solve for displacement at t + Δt
   using equation (2.89)

t ≥ tf

t = t + iΔt

Yes

No

• U0 and U0 are prescribed by the
   user and, Ü0 is obtained by        
   equation (2.87).

U, U

• Compute  Üt  using equation (2.86)

• Compute  Ut  using equation (2.82)

Fig. 2.5 Solution procedure for the central difference algorithm

Central Difference Algorithm
The finite difference equations may be explained with the help of Fig. 2.5, in
which the black curve represents the function that is being approximated. The
first approximation is associated with the computation of the first derivative of U,
defined as

PUt D UtC�t � Ut��t

2�t
) UtC�t D 2�t PUt C Ut��t (2.82)

To find the second derivative, first look at the first derivatives at the half intervals

PUt��t=2 D Ut � Ut��t

�t
(2.83)

PUtC�t=2 D UtC�t � Ut

�t
(2.84)

The slope between these two points then is:

RUt D
PUtC�t=2 � PUt��t=2

�t
(2.85)

Substituting Eqs. (2.83) and (2.84) into Eq. (2.85) yields

RUt D 1

2.�t/2
.UtC�t � 2Ut C Ut��t/ (2.86)

Now, to evaluate the displacement solution at time t C�t, let consider Eq. (2.78)
written at time t, i.e.
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M RUt C C PUt C K Ut D Ft (2.87)

So, substituting the relations for Üt and PUt in Eqs. (2.86) and (2.82), respectively,
into Eq. (2.87), yields

�
1

�t2
M C 1

2�t
C
�

UtC�t D Ft �
�

K � 2

�t2
M
�

Ut �
�
1

�t2
M � 1

2�t
C
�

Ut��t

(2.88)

For which is possible to solve for UtC�t.
Equation (2.88) is only effective if for each time step the computation can be

performed very efficiently. For this reason, the method is largely applied only when
a lumped mass matrix can be used and velocity-dependent damping can be neglected
[2]. In that case, Eq. (2.88) reduces to

�
1

�t2
M
�

UtC�t DbFt (2.89)

where

bFt D Ft �
�

K � 2

�t2
M
�

Ut �
�
1

�t2
M � 1

2�t
C
�

Ut��t (2.90)

If the mass matrix is diagonal, the system of Eq. (2.89) can be solved without
factorizing the system matrix, i.e. only matrix multiplications are required to define
the right-hand-side,bFt, and the displacement components are obtained by

.UtC�t/i D
�bFt

�
i

�
�t2

Mii

�
I i D 1; : : : ;N (2.91)

The time step procedure, referred to Fig. 2.5, starts at instant t D 0, in which
initial conditions U0 and PU0 are known, and the accelerations Ü0 are computed
using Eq. (2.87). Nevertheless, to evaluate U0C�t by Eq. (2.89) the vectorbF0 must
be defined, using U0��t, in Eq. (2.90). So, eliminating UtC�t from Eqs. (2.82) and
(2.86), leads to

U0��t D U0 ��t PU0 C �t2

2
RU0 <‹pag‹ > (2.92)

Equation (2.92) is used to define a special starting point and, therefore, the solution
it will be stronger influenced by the initial estimation of displacements. Thus,
generally, in the solution procedure a relatively small time step size must be used.

The central difference method is conditionally stable; this means that if the time
step �t is larger than a critical value �tcr, the computed solution will become
unstable and might grow without limit. The critical value can be calculated from
the mass and stiffness properties of the numerical model [2], i.e.
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�t � �tc Š Tn

…
D 2

!n
(2.93)

where Tn is the smallest period of the numerical model, in which the dimension of
the finite element model is assumed to be n. The period Tn can be calculated solving
Eq. (2.70), and considering the higher frequency !n available in finite element
model. The time steps used in the explicit methods are typically 100–1,000 times
smaller than those used with implicit methods [3].

The central difference method is most effective when low-order elements are
employed. Hence quadratic 3-D solid and shell elements are not allowed. In
the ADINA program the time step can be specified by the user, or calculated
automatically [17]. When the user specifies the time, the program does not perform
any stability checking. It is the user’s responsibility to ensure that an appropriate
stable time step is selected. Nevertheless, when automatic time step calculation is
selected, the time step entry is only used to determine the number of nominal time
steps and the frequency of output results. The stable time step is used instead of the
value set by the user unless this value is smaller.

The Wilson ™ Algorithm
The Wilson method is an extension of the linear acceleration method and the
acceleration is assumed to be liner from time t to time t C ��t, where � 	 1:0

[2]. Obviously, when � D 1:0 the method reduces to the linear acceleration scheme,
but for unconditional stability teat must be higher or equal to 1.37, and usually value
of 1.4 is used. The increase in time is denoted by � , with 0 < � � ��t, then in the
time interval ŒtI t C �� it is assumed that

RUtC� D RUt C �

��t
� RU (2.94)

Integrating Eq. (2.94) in � , assuming � D 0, for time t, and � D ��t, to time
t C � , leads to the velocities equation

�Z

0

RUtC� d� D RUt

�Z

0

d� C � RU
��t

�Z

0

� d� (2.95)

PUtC� � PUt D RUt� C �2

2��t
� RU (2.96)

and, integrating Eq. (2.96)

UtC� D Ut C PUt� C 1

2
RUt�

2 C �3

6��t
� RU (2.97)

In the upper limit of the time interval, � D ��t, the following equalities are
applied
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RUtC��t � RUt D � RU
PUtC��t � PUt D � PU
UtC��t � Ut D �U (2.98)

Using the relations in Eq. (2.98) into Eqs. (2.96) and (2.97) is possible to obtain

PUtC��t D PUt C ��t

2

� RUtC��t C RUt

�
(2.99)

UtC��t D Ut C ��t PUt C .��t/2

6

� RUtC��t C 2 RUt

�
(2.100)

Equation (2.100) can be used to solve for RUtC��t, leading to

RUtC��t D 6

.��t/2
.UtC��t � Ut/ � 6

.��t/
PUt � 2 RUt (2.101)

and, substituting Eq. (2.101) into (2.99) we obtain

PUtC��t D 3

��t
.UtC��t � Ut/ � 2 PUt � ��t

2
RUt (2.102)

To obtain the solution for the displacements, velocities and accelerations at time
t C�t, the equilibrium Eq. (2.78) is written at time t C ��t, as

M RUtC��t C C PUtC��t C K UtC��t D QFtC��t (2.103)

Notice that in the last equation load vector at time tC��t is linearly extrapolated
as

QFtC��t D Ft C � .FtC��t � Ft/ (2.104)

substituting Eqs. (2.101) and (2.102) into Eq. (2.103), we obtain [2]

bKUtC��t DbFtC��t (2.105)

where

bK D K C 6

.��t/2
M C 3

��t
C (2.106)
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Ü

t

τ
t t + Δt t + θΔt

• Calculate effective loads at time
   t + qΔt  using equation (2.107)

• Solve for displacement at t + qΔt
   using equation (2.105)

• Compute  ΔÜ  using equation (2.108)

• Compute  ΔU  using equation (2.109)
t + Δt ≥ tf

t = t + Δt

Yes

No

Initialization

• Compute  Üt+Δt  using equation (2.110)

• Compute  Ut+Δt  using equation (2.111)

• Compute  Ut+Δt  using equation (2.112)

• U0 and U0 are prescribed by the
   user and, Ü0 is obtained by equation
   (2.78).
• select time step and θ
• Form K Matrix using equation (2.106)^

Fig. 2.6 Solution procedure for Wilson-� algorithm

bFtC��t D QFtC��t C M
�

6

.��t/2
Ut C 12

.��t/2
PUt C 2 RUt

�

C C
�

3

.��t/2
Ut C 2 PUt C ��t

2
RUt

�
(2.107)

The complete integration algorithm used within the integration is presented in
Fig. 2.6. From the solution of Eq. (2.105) is possible to evaluate the increment on
acceleration and velocity by Eqs. (2.101) and (2.102), respectively, as

� RU D RUtC���t � RUt D 6

.��t/2
.UtC��t � Ut/ � 6

.��t/
PUt � 3 RUt (2.108)

� PU D PUtC��t � PUt D 3

��t
.UtC��t � Ut/ � 3 PUt � ��t

2
RUt (2.109)

Finally, the accelerations, velocities and displacements for the next time, t C
�t are obtained by setting � D �t in Eqs. (2.94), (2.96), and (2.97), respectively,
leading to

RUtC�t D RUt C 1

�
� RU (2.110)

PUtC�t D PUt C RUt�t C �t

2�
� RU (2.111)

UtC�t D Ut C PUt�t C 1

2
RUt�t2 C �t2

6�
� RU (2.112)
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Ü

t

τ
t t + Δt

Initialization

• Calculate effective loads at time
   t + Δt using equation (2.118)

• Solve for displacement at t + Δt
   using equation (2.116)

t + Δt ≥ tf

Yes

No

(Üt+Δt + Üt)
1
2

t = t + Δt

• Compute  Üt+Δt  using equation (2.119)

• Compute  Ut+Δt  using equation (2.120)

• U0 and U0 are prescribed by the
   user and, Ü0 is obtained by equation
   (2.78).
• select time step and θ
• Form K Matrix using equation (2.117)^

Fig. 2.7 Solution procedure for Newmark algorithm

Because Eqs. (2.110), (2.111), and (2.112) are expressed only in terms of the
same quantities at time t, no special starting procedure is needed in the Wilson-
™ algorithm. Nevertheless, when big time steps are used, the numerical results
obtained by the Wilson-™ algorithm may lead to wrong solutions. This happens
because the method suffers from the so-called numerical damping effect, which
is characterized by a decrease of displacements, velocities and accelerations that is
higher than that observed when structural damping is accounted for.

The Newmark Algorithm
The complete algorithm using the Newmark integration scheme is presented in
Fig. 2.7. The Newmark integration scheme is also based on the linear acceleration
method and in the following assumptions [2]:

PUtC�t D PUt C
h
.1 � ı/ RUt C ı RUtC�t

i
�t (2.113)

UtC�t D Ut C PUt �t C
��
1

2
� ˛

�
RUt C ˛ RUtC�t

�
�t2 (2.114)

where ˛ and ı are parameters that can be computed to obtain integration accuracy
and stability. When ı D 0:5 and ˛ D 1=6 relations (2.113) and (2.114) are
coincident with expressions of the linear acceleration method, which is also obtained
setting teat equal to one in the Wilson � method.

Newmark proposed an unconditionally stable scheme, which correspond to the
constant-average-acceleration method, in which the values ı D 0:5 and ˛ D 1=4
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are used. Because it is also an implicit method, the solution of the displacements,
velocities and accelerations at time t C�t are obtained writing the equilibrium Eq.
(2.78) at this time, i.e.

M RUtC�t C C PUtC�t C K UtC�t D FtC�t (2.115)

To write Eq. (2.115) in terms of UtC��t only; first Eq. (2.114) is used to solve
for RUtC��t, and then substituting the resulting expression of RUtC��t into Eq. (2.113)
leads to expressions of RUtC��t and PUtC��t in terms of the unknown displacements
UtC��t only. These two finally relations are substituted into Eq. (2.115) leading to

bKUtC�t DbFtC�t (2.116)

where

bK D K C 1

˛�t2
M C ı

˛�t
C (2.117)

bFtC�t DFtC�t C M
�

1

˛�t2
Ut C 1

˛�t
PUt C

�
1

2˛
� 1

�
RUt

�

C C
�
ı

˛�t
Ut C

�
1

˛
� 1

�
PUt C �t

2

�
ı

˛
� 2

�
RUt

�
(2.118)

To calculate accelerations and velocities at time t C�t Eqs. (2.113) and (2.114) are
used, which leads to

RUtC�t D 1

˛�t2
.UtC�t � Ut/ � 1

˛�t
PUt �

�
1

2˛
� 1

�
RUt (2.119)

PUtC�t D PUt C
h
.1 � ı/ RUt C ı RUtC�t

i
�t (2.120)

There is a close relationship between the computer implementation of the
Newmark method and the Wilson method, so is quite easily to create a computer
program that accepts both methods. Moreover, it can be showed that the Newmark
is in general stable when the following constraints are satisfied:

ı 	 0:5 (2.121)

˛ 	 .ı C 0:5/2

4
(2.122)

when the parameter ı is smaller than 0.5 an effect of negative numerical damping is
observed.
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2.6.2 Mode Superposition Method

The Figs. 2.6 and 2.7 summarize implicit direct integration schemes, in which is
possible to see that if a diagonal mass matrix and no damping are assumed, the
number of operations for one time step are somewhat larger than 2nmk. Where
n and mk are the order and the half-bandwith of the stiffness matrix considered.
Notice, that an advantage of the finite element analysis is that the global stiffness
matrix is not only symmetric and positive definite but also banded; i.e., kij D 0

for j > i C mk, where mk is the half-bandwidth of the system. The fact that in
finite element analysis all nonzero elements are clustered around the diagonal of
the system matrices greatly reduces the total number of operations and the high-
speed storage required in the equation solution. Nevertheless, the 2nmk operations
are required for the solution of the system equations in each time step [2].
Furthermore, if a consistent mass matrix is used or a damping matrix is included
in the analysis, an additional number of operations proportional to nmk is required
per time step. Therefore, neglecting the operations for the initial calculations, a total
number of about ˛nmks operations is required in the complete integration, where
˛ depends on the characteristics of the matries used and s is the number of time
steps.

Hence, the number of operations required in a direct integration procedure is
directly proportional to the order of the stiffness matrix and to the number of time
steps. Thus, implicit direct integration can be expected to be effective only when
the response for a relatively short duration is required. If the integration must be
carried out for many time steps, it may be advantageous to first transform the
equilibrium equations, Eq. (2.78), into a form in which the step-by-step solution
is less costly.

Modal Transformation
Thus, an alternative way of solving the equilibrium equations is using the so-called
modal analysis technique in which the following transformation is used

U .xi; t/ D ˆ .xi/ x.t/I i D 1; 2; 3 (2.123)

where ˆ is a n � n square matrix and x(t) is a time-dependent vector of order n. The
transformation matrix ˆ will have to be determined and the components of vector
x(t) are referred as generalized displacements. Substituting relation (2.123) into Eq.
(2.78) and premultiplying by ˆT , leads to

bM Rx.t/CbC Px.t/C bK x.t/ DbF (2.124)

where

bM D ˆTM ˆI bC D ˆTC ˆI bK D ˆTK ˆI bF D ˆTF (2.125)
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The objective of the transformation is to obtain new stiffness, mass and damping
matrices bK, bM and Ĉ with a smaller bandwidth than the original system matrices
and, therefore, matrix ˆ should be selected accordingly. In addition, matrix ˆ must
be non-singular in order to have a unique relation (2.123). In fact, in theory, there
can be many different transformation matrices that would reduce the bandwidth
of the system matrices. However, an effective transformation matrix is established
using the displacement solutions of the free-vibration equilibrium equations with
damping neglected, which is defined by Eq. (2.67) and, leads to the solution of the
generalized eigenproblem in Eq. (2.69). So, let’s assume that matrix ˆ is composed
by the n eigenvectors ˆ that form the solution of Eq. (2.69). Moreover, let’s defining
a diagonal matrix œ, which stores the eigenvalues 
i on its diagonal, i.e.

ˆ D �
ˆ1 ˆ2 : : : ˆn

� I œ D

2
6664


1 0 0 0

0 
2 0 0

0 0
: : : 0

0 0 0 
n

3
7775 (2.126)

and, since the eigenvectors satisfy the so-called M-orthonormality, the following
relations are valid

bM D ˆTM ˆ D II bK D ˆTK ˆ D œ (2.127)

Using matrix ˆ defined in Eq. (2.126) into Eq. (2.123) allow to describe the nodal
displacements of the flexible body by a weighted sum of its modes of vibration.

Substituting relations Eqs. (2.126) and (2.127) into Eq. (2.124), we obtain
equilibrium equations that correspond to the modal generalized to the modal
generalized displacements

Rx.t/CbC Px.t/C œ x.t/ DbF (2.128)

The initial conditions on x(t) are obtained using (2.123) and the M-orthonormality
of ˆ , i.e., at initial time we get

x .t D 0/ D ˆTM U0I Px .t D 0/ D ˆTM PU0 (2.129)

The Eq. (2.128) show that if a damping matrix is not included in the analysis, the
finite element equilibrium equations are decoupled.

Modal Analysis Without Damping Effect
Since, the derivation of the damping matrix cannot be carried out explicitly and,
therefore, the damping effects can be included only approximately, in many cases
damping effects are neglected.

So, if velocity-dependent damping effects are not included in the analysis, Eq.
(2.128) reduces to
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Rx.t/C œ x.t/ DbF (2.130)

Equation (2.130) represents a system of n individual equations of the form

xi.t/C 
ixi.t/ Dbfi.t/I bfi.t/ D ˆT
i F.t/I i D 1; 2; : : : ; n (2.131)

with

xij‘tD0 D ˆT
i M U0

Pxij‘tD0 D ˆT
i M PU0

(2.132)

Notice that each ith equation in Eq. (2.131) is the equilibrium equation of a single
degree of freedom system with unit mass and stiffness 
i, which solution can be
obtained using the integration algorithms presented previously. Nevertheless, for the
complete response, the solution of all n equations in Eq. (2.131) must be calculated
and then the finite element nodal point displacements are obtained by superposition
of the response in each modal degree of freedom, i.e.

U.t/ D
nX

iD1
ˆixi.t/ (2.133)

Notice that if time integration methods used on the direct integration procedures
are the same used in the direct integration and in the solution of Eq. (2.131), the
solutions obtained using both procedures are identical. In fact, the only difference
between a mode superposition and a direct integration analysis is that prior to
the time integration, a change of basis is carried out by Eq. (2.123) and, since
mathematically the same space is spanned by the n eigenvectors as by the n
nodal points, the same solution must be obtained in both analyses. The choice of
whether to use direct integration or mode superposition will therefore decided by
considerations of effectiveness only [2]. This aspect is related with the fact that
frequently only a small fraction of the total number of decoupled equations, Eq.
(2.131), needs to be considered in order to obtain a good approximate solution to
the exact solution.

Actually, it will be the frequency content of the loading that determines whether
the ith equation in Eq. (2.131), which is associated the ith frequency of system
vibration, will contribute significantly to the response U(t). To clarify this idea, let’s
consider a one degree of freedom system with the following equilibrium equation

Rx.t/C w2x.t/ D A sin .bwt/ (2.134)

where A and ŵ are the amplitude and the frequency of excitation. The solution of
Eq. (2.134) to the initial conditions x.0/ D 0 and Px.0/ D 0, can be written as [2]

x.t/ D D xstat C xtrans (2.135)



2.6 Transient Analysis 75

with

D D 1

1 � .bw=w/2
I xstat D A

w2
sin .bwt/ I xtrans D

 
1

w
� Abw=w3

1 � .bw=w/2

!
sin.wt/

(2.136)

where D is the dynamic load factor, xstat is the steady state response of the system
and xtrans is the transient response. The dynamic load factor grows to infinite when
bw D w, indicating resonance.

Equation (2.135) shows that the complete response of a single degree of freedom
system is the sum of two contributions [2]:

• A dynamic response defined by multiplying the steady state response by a
dynamic load factor;

• An additional dynamic response which can be called the transient response.

Notice that these observations may be applied in the analysis of a multiple
degrees of freedom system, since the complete response of these systems is obtained
as a superposition of the response measured in each modal degree of freedom
(as presented in Eq. (2.133)) and, secondly, loads can be represented in a Fourier
decomposition as a sum of harmonic sine and cosine contributions. Figure 2.8 shows
the variation of the dynamic load factor as a function of quotient ŵ/w, in which
is possible to observe that no damping is used and, therefore, resonance appears
to the unity value of this quotient. Moreover, is possible to recognize that in the
modes for which the relation ŵ/w is large the dynamic load factor is negligible,
while for modes in which the relation ŵ/w is close to zero the dynamic load factor
is significant and the static response is measured for this case. These behavior may
be justified by the fact that when loads vary rapidly the system is not able to follow
this variation whereas a slow load variation allows to systems track almost statically
this variation. Therefore, in the analysis of a multiple degree of freedom system, the
response associated with the frequencies of the system that are much larger than the
highest frequencies contained in the loads is simply a small static response.

Frequently, only the first p equilibrium equations in Eq. (2.131) need to be
included in the analysis, in order to obtain a good approximate solution. This means
that the response in Eq. (2.123) is obtained by summing the contribution of the first
p modes only, i.e.

Up.t/ D
pX

iD1
ˆixi.t/I p � n (2.137)

where Up approximate the exact solution U of (2.123). Hence, is primarily because
of the fact that in a mode superposition analysis only a few modes may need to
be considered that the mode superposition procedure can be much more effective
than direct integration [2]. However, it also follows that the effectiveness of mode
superposition depends on the number of modes that need to be included in the
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Fig. 2.8 Dynamic load factor

analysis. In general, the kind of structure considered and the spatial distribution
and the frequency content of the loading determine the number of modes to be used.

Frequently, is true that only the first p equilibrium equations in Eq. (2.131)
need to be included in the analysis, but it should always be kept in mind that an
approximate solution of Eq. (2.124) is sought. Meaning that if not enough modes
are considered, the solution of latter equation is not hundred percent correct. So an
indication of the accuracy of analysis at any time t can be obtained evaluating an
error measure "p, such as [2]

©p.t/ D



F.t/ �

�
M RUp.t/C KUp.t/

�



kFk2

(2.138)

where the condition kFk2 ¤ 0 is assumed. If a good approximate solution has been
obtained, the error in Eq. (2.138) will be small at any time t. If not, a possible
error is due to not including enough modes in the analysis. The error in Eq. (2.138)
determines how well equilibrium is satisfied and is a measure of how much the nodal
point loads are not balanced by inertia and elastic nodal point forces. Alternatively,
"p can be seen as a measure of the part of the external load vector that has not be
included in the mode superposition analysis [2]. Since is possible to evaluate

�F D F �
pX

iD1
bfi .Mˆi/ (2.139)

Wherebfi is defined in Eq. (2.131) and is evaluated at each correction step. Assuming
a properly modeled problem, the response to the load vector defined in Eq. (2.139)
should be at most a static response. Therefore, a good correction�U to the solution
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Up can be obtained from

K�U D �F (2.140)

The solution of Eq. (2.140) is called the static correction.

Modal Analysis Including Damping
Considering the analysis of systems in which the damping effect is included, the
mode superposition analysis is particularly effective if it is assumed that damping is
proportional, in that case the following relation is valid

(
cˆT

i Cˆj D 2!i
iI j D i

ˆT
i Cˆj D 0I j ¤ i

(2.141)

where 
 i is the damping ratio associated with the ith frequency. Equation (2.141)
states that the eigenvectors ˆi are also C-orthogonal. The assumption of Eq. (2.141)
means that the total damping in the structure is accounted as the sum of individual
damping in each mode. The damping ratio on one mode could be experimentally
evaluated, for example, by imposing initial conditions that excite the structure on
that mode only (say U0 D ˆi) and measuring the amplitude decay during the
experimental vibration.

Substituting Eq. (2.141) into Eq. (2.128), is possible to reduce Eq. (2.128) to a
system of n individual equations of the form

xi.t/C 2!i
i Pxi.t/C 
ixi.t/ Dbfi.t/I bfi.t/ D ˆT
i F.t/I i D 1; 2; : : : ; n (2.142)

the initial conditions on xi(t) have already been defined in Eq. (2.132). Once more,
is possible to constant that Eq. (2.139) represent the equilibrium equation governing
the motion of the single degree of freedom system considered in Eq. (2.131) with the
additional term related with damping ratio 
 i. The solution procedure of Eq. (2.142)
is the same as in the case when damping is neglected, except that the response in
each mode is obtained by a different equation.

Nevertheless, as in the case of using direct step-by-step integration procedures,
it can be numerically more efficient to evaluate matrix C explicitly and, then
substituted into Eq. (2.141) yielding to damping ratios 
 i. If two damping ratios
can be assumed, the Rayleigh damping defined by Eq. (2.79) can be used, where ˛
and ˇ can determined from the two given ratios as defined by Eq. (2.81). However, it
may be well that the damping ratios are known for many more than two frequencies.
In that case two average values, say 
1 and 
2, are used to evaluate ˛ and ˇ [2].

2.6.3 Practical Considerations

Effective solutions of dynamic problems require an appropriate selection of time
integration scheme and, because this choice depends on the finite element idealiza-
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tion of the physical problem to be analyzed, the choice of an integration scheme and
the finite element model are closely related and must be considered together.

The selection of an appropriate finite element model for structural dynamic
analysis requires the concept that only the lowest vibration modes of a physical
system are being excited by the external load vector. So, assuming that the Fourier
analysis of a dynamic external load includes only frequencies below wl, the finite
element model should at most represent accurately the frequencies of the system
that are below the cutoff frequency wco D 4 � wl [2]. In fact, in Fig. 2.8 it can be
seen that for values ofbw=w .D wl=wco/ smaller than 0.25 an almost static response
is measured and is this response is directly included in the direct integration step-by-
step dynamic response calculations. Moreover, in Eq. (2.136) is possible to observe
that the static displacement response in the highest frequencies is small, thus when
the static response is small it may well be expedient to use wco D wl [2].

The complete procedure for the modeling of a structural vibration problem is
therefore [2]:

• Identify the significantly frequencies contained in the loading, even that those
frequencies change as a function of time, consider that that the highest significant
frequency contained in the loading be wl.

• Chose a finite element model that can accurately represent all frequencies up to
about wco D 4 � wl.

• Perform the direct integration analysis using a time step that should equal about
1
20

Tco, where Tco D 2�=wco.

If the later step is performed by mode superposition method, then the cutoff
frequency would be the highest frequency to be included in the solution.
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Chapter 3
Finite Element Method for Trusses

A truss is a structural element that is designed to support only axial forces,
therefore it deforms only in its axial direction. The cross-section of the bar can
have arbitrary geometry, but its dimensions should be much smaller than the bar
length. Finite element developments for truss members will be performed in this
chapter. The simplest and most widely used finite element for truss structures is
the well-known truss or bar finite element with two nodal points. Such kind of
finite elements are applicable for analysis of skeletal type of truss structural systems
both in two-dimensional and three-dimensional space. Basic concepts, procedures
and formulations can also be found in a great number of existing books [1–3]. In
skeletal structures consisting of truss members, the truss elements are linked by pins
or hinges, without any friction, so there are only forces that transmitted among bars,
which means that no moments are transmitted. In the presentation of this concept
it will be assumed that truss elements have uniform cross-section. These concepts
can be easily extended to treat bars with varying cross-section. Moreover, from the
mechanical viewpoint, there is no reason to use bars with a varying cross-section
since the force in a bar is uniform.

3.1 FE Matrices and Vectors of Trusses

3.1.1 Degrees of Freedom Identification

The application of the finite element method involves dividing the domain into
subdomains with features and loading that are simple to treat. In the case of a
structure consisting of trusses or bar elements, let’s consider that each structural
element has constant elastic properties and uniform cross-section. Moreover, let’s
assume that each of these structural elements is bounded by two nodes (n D 2).

© Springer International Publishing Switzerland 2015
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ℓ(e)

(e)x1

(e)x2

x

x1

x2

x3

(e)u1

(e)u2

(e)p0

u(x)

global node i
local node 1

global node j
local node 2

Fig. 3.1 Truss finite element with two degrees of freedom

Consider the bar divided into m finite elements from which the element (e) is
highlighted, as presented in Fig. 3.1, the extreme points of this element are called
nodal points and are identified by their coordinate x.e/1 and x.e/2 along the local axis
x, which is coincident with the bar axis and has the origin at the first node.

Due to the axial loading, there is only one degree of freedom at each node that is
the axial displacement. Therefore, there is a total of two DOFs for the finite element.

3.1.2 FE Approximation of the Displacement

Taking in account the FEM discussed in the previous chapter, the displacement
within a finite element should be written in the form

Qu .x/ D N .x/ u (3.1)

where ũ is the axial approximation within the finite element (e), N is a matrix of
shape functions with the inherent properties described in Chap. 2 and ū is the vector
of finite element displacements, defined as

http://dx.doi.org/10.1007/978-3-319-17710-6_2
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u D
�

u1
u2

�
(3.2)

Construction of shape functions, to the truss element, follows the standard
procedure described in Sect. 2.3.3. Thus, because there are only two DOFs, i.e.
only two unknowns, a complete basis of order p D 1 can be given in a general form

Qu .x/ D a0 C a1x D �
1 x

�
„ƒ‚…

ˆT

�
a0
a1

�

a

D ˆTa (3.3)

where x.e/1 � x � x.e/2 . Note that the polynomial order of the basis function
depends on to the number of nodes and degrees of freedom per node that are
used to approximate the displacement ũ. Because of the consistency property of
shape functions discussed in Sect. 2.3.4, polynomial basis function should be of a
complete order. If a polynomial basis of the kth order is skipped, the shape function
constructed will only be able to ensure consistency until (k-1)th order, regardless
of how many higher orders of monomials are included in the basis [4]. Due to
the fact that the finite element (e) is connected to the neighbor’s finite elements
by its nodes, the solution given by Eq. (3.3) can be admissible only if the support
conditions in the nodal points are verified, i.e. the displacements of nodal points
should be

Qu .x D 0/ D u1
Qu .x D `/ D u2

(3.4)

Using Eq. (3.3), we have

�
u1
u2

�

„ƒ‚…
u

D
�
1 0

1 `

�

„ƒ‚…
C

�
a0
a1

�

„ƒ‚…
a

(3.5)

Solving Eq. (3.5) for parameters a, leads to

�
a0
a1

�

„ƒ‚…
a

D
�

1 0

� 1=` 1=`
�

„ ƒ‚ …
C�1

�
u1
u2

�

„ƒ‚…
u

(3.6)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2


84 3 Finite Element Method for Trusses

Substituting Eq. (3.6) into Eq. (3.3), leads to

Qu .x/ D ˆTa D �
1 x

�
„ƒ‚…

ˆT

�
1 0

� 1=` 1=`
�

„ ƒ‚ …
C�1

�
u1
u2

�

„ƒ‚…
u

D
"
1 � x=`„ ƒ‚ …

N1.x/

x=`„ƒ‚…
N2.x/

#

„ ƒ‚ …
N.x/

�
u1
u2

�

„ƒ‚…
u

D N .x/u

(3.7)

In Eq. (3.7) is possible to see the shape functions for the finite element truss.
Thus, the shape matrix is then obtained as

N .x/ D �
N1 .x/ N2 .x/

�
(3.8)

where the shape functions for a truss element can be written as

N1 .x/ D 1 � x

`
(3.9)

N2 .x/ D x

`
(3.10)

We obtain two shape functions because the number of DOFs of the finite ele-
ment is also of two. Figure 3.2 shows the graphical representation of Eqs. (3.9)
and (3.10).

From Fig. 3.2, it is clear that function Ni gives the shape of the contri-
bution of the ith degree of freedom to the displacement approximation within
the finite element. Moreover, the maximum contribution is verified at the node
where the ith degree of freedom is located, where its value is the unity. In
this case, the shape functions vary linearly across the element and, therefore,
are called linear shape functions. Substituting Eqs. (3.9), (3.10), into Eq. (3.7),
leads to

1

x

xN1 = 1 −

0 ℓ(e)

N1

1

x

x
ℓℓ N2 =

0 ℓ(e)

N2

Fig. 3.2 Linear shape function for the truss finite element with two degrees of freedom
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Qu .x/ D N1 .x/C N2 .x/ D u1 C .u2 � u1/
x

`
(3.11)

Equation (3.11) clearly states that the displacement within the finite element
varies linearly.

3.1.3 FE Approximation of Strain

The approximation of the element displacements allows the evaluation of other
quantities, namely element strains and stresses. As discussed in Chap. 1 within Sect.
1.3.1, in a truss there are only one strain and stress components. The corresponding
strain can be obtained as

Q"11 .x/ D d Qu .x/
dx

D u2 � u1
`

(3.12)

Equation (3.12) results from the direct differentiation of Eq. (3.11) with respect to
x. This equation shows that strain is constant over the finite element.

Meanwhile, in the previous chapter it was showed that the stiffness matrix is
obtained using the finite element strain matrix, B. In the case of a truss finite
element, this can be easily done. Thus, Eq. (3.12) can be re-written in a matrix
form as

Q"11 .x/ D d Qu .x/
dx

D L N u D B u (3.13)

where the strain matrix B has the following form

B D LN D d

dx

�
1 � x

`
x
`

� D 1

`

��1 1 � (3.14)

3.1.4 Element Matrices in Local Coordinate System

The stiffness matrix for truss finite elements can be obtained using Eq. (2.49) from
the previous chapter, leading to

k D
Z

�e

B
T
c B d�e D A

Z̀

0

�� 1
`
1
`

�
E
�� 1

`
1
`

�
dx D AE

`

�
1 �1

� 1 1

�
(3.15)

where A is the cross-section area of the truss finite element. Note that for the one-
dimensional truss structure, the material constant matrix c reduce to elastic modulus,
E, see Eq. (1.86) in Sect. 1.3.1 of Chap. 1. Because the stiffness matrix on Eq. (3.15)
is symmetric, during the finite element computation, only half of the terms in the
matrix need to be evaluated and stored.

http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_1
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The mass matrix for the truss elements can be obtained using Eqs. (3.8) and
(2.45):

m D
Z

�e

�N
T
N d�e D A�

Z̀

0

�
1 � x

`
x
`

� �
1 � x

`
x
`

�
dx

D A�
Z̀

0

" �
1 � x

`

	2 �
1 � x

`

	
x
`�

1 � x
`

	
x
`

�
x
`

	2
#

dx D A�`

6

�
2 1

1 2

�
(3.16)

The mass matrix is found to be also symmetrical.
The nodal force vector for truss elements can be obtained using Eqs. (3.8) and

(2.52), assuming that the element is loaded by a constant distributed force p0 along
the x- axis, and two concentrated forces fc1 and fc2 at two nodes 1 and 2, respectively.
Thus, the total nodal force vector becomes

f D
Z

�e

N
T
fb d�e C

2X
iD1

N
T
f c
i D p0

Z̀

0

"
1 � x

`

x
`

#
dx C

�
N1 .x D 0/ fc1
N2 .x D `/ fc2

�

D p0`

2

�
1

1

�
C
�

fc1
fc2

�
(3.17)

3.1.5 Element Matrices in the Global Coordinate System

Element matrices presented before are formulated in the local coordinate system, in
which the x-axis coincides with the axis of the finite element bar. Nevertheless, in
practical problems there are many bars with a different orientation with respect to
the reference coordinate system and, therefore, to assemble all the element matrices
is strictly necessary to define these matrices in only one coordinate system that is
the global coordinate system. Thus a coordinate system transformation has to be
performed for each finite element to formulate its element matrices on the global
coordinate system.

3D Trusses
Let’s assume that local nodes 1 and 2 of the finite element correspond to the
global nodes i and j, respectively, as shown in Fig. 3.3. The local displacement
at each finite element node may be projected into the global coordinate system

.xiI i D 1; 2; 3/ leading to global displacement components
�

u.e/j I j D 1; 2; : : : ; 6
�

.
The global displacement at one node in space should have three components in the
x1, x2 and x3 directions, and should be numbered sequentially.

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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global node i
local node 1

global node j
local node 2

(e)u1

(e)u2

(e)u3

(e)u2

(e)u4

(e)u5

(e)u6
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(x1, x2, x3)j

(e)u1

Fig. 3.3 Local and global coordinate systems in the truss finite element

The coordinate transformation gives the relationship between the nodal displace-
ment vector ū based on the local coordinate system and the nodal displacement
vector u, for the same finite element, based on the global coordinate system
.xiI i D 1; 2; 3/

u D T u (3.18)

with

u D

2
66666664

u.e/1
u.e/2
u.e/3
u.e/4
u.e/5
u.e/6

3
77777775

(3.19)

and T is the transformation matrix for the truss element, given by

T D
�

lij mij nij 0 0 0

lij mij nij

�
(3.20)

where

lij D cos .x; x1/ D .x1/j�.x1/i
`

mij D cos .x; x2/ D .x2/j�.x2/i
`

nij D cos .x; x3/ D .x3/j�.x3/i
`

(3.21)
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are the direction cosines of the axial axis and ` is the element length, which can be
computed using the element global coordinates of the two nodes, by

` D
h�

x1j � x1i

	2 C �
x2j � x2i

	2 C �
x3j � x3i

	2i1
.
2 (3.22)

The transformation matrix preserves the length of the displacement vector and,
therefore, it is an orthogonal matrix, i.e.

TTT D I (3.23)

where I is an identity matrix of dimension 2 � 2. The transformation matrix for a
truss element transforms a vector of dimension 6� 1, which is defined in the global
coordinate system, into the correspondent vector of dimension 2 � 1 defined in the
local coordinate system.

Substituting Eqs. (3.15) and (3.18) into Eq. (2.63) yields

k D TTk T D AE

`

2
66666666666666664

l2ij lijmij lijnij
::: �l2ij �lijmij �lijnij

lijmij m2
ij mijnij

::: �lijmij �m2
ij �mijnij

lijnij mijnij n2ij
::: �lijnij �mijnij �n2ij

: : : : : : : : :
::: : : : : : : : : :

� l2ij �lijmij �lijnij
::: l2ij lijmij lijnij

� lijmij �m2
ij �mijnij

::: lijmij m2
ij mijnij

� lijnij �mijnij �n2ij
::: lijnij mijnij n2ij

3
77777777777777775

(3.24)

Taking into account the second formulation of equation (2.63), and Eqs. (3.16) and
(3.18), becomes

m D TTm T D A�`

6

2
66666666666666664

2l2ij 2lijmij 2lijnij
::: l2ij lijmij lijnij

2lijmij 2m2
ij 2mijnij

::: lijmij m2
ij mijnij

2lijnij 2mijnij 2n2ij
::: lijnij mijnij n2ij

: : : : : : : : :
::: : : : : : : : : :

l2ij lijmij lijnij
::: 2l2ij 2lijmij 2lijnij

lijmij m2
ij mijnij

::: 2lijmij 2m2
ij 2mijnij

lijnij mijnij n2ij
::: 2lijnij 2mijnij 2n2ij

3
77777777777777775

(3.25)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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Note that the coordinate transformation preserves the symmetrical properties of
stiffness and mass matrices. The transformation matrix is applied also for the forces
given in Eq. (3.17) and the right hand side of Eq. (2.62), i.e.

f D TT f D p0`

2

2
66666664

lij
mij

nij

lij
mij

nij

3
77777775

C

2
66666664

lijfc1
mijfc1
nijfc1
lijfc2

mijfc2
nijfc2

3
77777775

(3.26)

Both element stiffness and mass matrices have a dimension of 6 � 6 in the three-
dimensional space and the force vector have a dimension of 6� 1, because the finite
element in the global coordinate system has a total of six DOFs.

2D Trusses
A planar truss is a structure in which all the structural components are represented
in the same plane. All the formulations of coordinate transformation can be obtained
from the counterpart of those for spatial trusses by simply removing the rows and/or
columns corresponding to the axe that is not included in the plane of the truss
structure. Assuming that the planar truss is defined in the global x1x2 plane, we
need to remove the rows and/or columns corresponding the x3 axis and, therefore,
the displacement at the first local node should have only two components in the x1

and x2 directions.

The coordinate transformation, which gives the relation between vectors ū and
u, has the same form as Eq. (3.19).

u D

2
6664

u.e/1
u.e/2
u.e/3
u.e/4

3
7775 (3.27)

The transformation matrix T is given by

T D
�

lij mij 0 0

0 0 lij mij

�
(3.28)

and the force vector in the global coordinate system is

f D TT f D p0`

2

2
664

lij
mij

lij
mij

3
775C

2
664

lijfc1
mijfc1
lijfc2

mijfc2

3
775 (3.29)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
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All the equations of a planar truss have a similar form to the corresponding
equations for a space truss. The main difference of the stiffness and mass matrices
is related with their dimension:

k D TTk T D AE

`

2
6664

l2ij lijmij �l2ij �lijmij

lijmij m2
ij �lijmij �m2

ij

� l2ij �lijmij l2ij lijmij

� lijmij �m2
ij lijmij m2

ij

3
7775 (3.30)

m D TTm T D A�`

6

2
6664

2l2ij 2lijmij l2ij lijmij

2lijmij 2m2
ij lijmij m2

ij

l2ij lijmij 2l2ij 2lijmij

lijmij m2
ij 2lijmij 2m2

ij

3
7775 (3.31)

Note that Eq. (3.30) can be obtained from Eq. (3.24), and that Eq. (3.31) can be
obtained (3.25) by removing third and sixth rows and columns.

3.1.6 Global Truss Equations

The discretized form of the global system equations is obtained by assembling the
contributions of all elements connected at the several nodes of the truss structure.
This assemblage process leads to Eq. (2.65) of Chap. 2, which solution can only be
obtained if boundary conditions are define. In fact, the stiffness matrix in Eq. (2.65)
is usually singular, because forces are applied to one unconstrained structure and
rigid body motion is allowed.

In practice, truss structures are supported somehow by ground or by a main
structure at a certain nodes. When a node is fixed some or all displacements
must be zero. The boundary conditions can be imposed numerically in Eq. (2.65)
by cancelling the corresponding rows and columns in the system of equations.
Meanwhile, this equation can be solved leading to the knowledge of displacement,
velocity and acceleration at all nodes. Moreover, the displacements at any position
other than the nodal positions can be also obtained using interpolation over finite
elements by the shape functions.

3.1.7 Recovering Stress and Strain

The strain in any truss element can be recovered using the element deformation
matrix, as

"11 D Bu D B T u (3.32)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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Fig. 3.4 Clamped bar under
a static load

P

ℓ
x1

x2

x

and the element stress can also be recovered using the Hooke’s law defined in Eq.
(1.86) of Chap. 1, as

�11 D EBu D E B T u (3.33)

Note that the quantities defined at Eqs. (3.32) and (3.33) are defined in the
element local coordinate system.

3.1.8 First Discussion Example

Since until now we only talk about the linear truss finite element, let’s consider the
simplest application of a truss structure: a uniform bar subject to a concentrate axial
force.

Example 3.1: A Uniform Bar Subjected to an Axial Force
The bar has a uniform cross-section area, denoted by A and it is fixed at one end and
is loaded at the free end by a horizontal load of P, as shown in Fig. 3.4. The material
of the bar is isotropic with Young’s modulus E.

Exact Solutions
The exact solution can be obtained from the strong formulation of a bar structure,
namely from the governing Eq. (1.92), of Chap. 1. Since the bar is free of body
forces, the equation can now be written as

@2u

@x2
D 0 (3.34)

The general solution of Eq. (3.34) can be obtained very easily as

u .x/ D c0 C c1x (3.35)

where c0 and c1 are unknown constants that can be determined from the boundary
conditions. Since the displacement at the fixed end is known, the displacement
boundary condition is

u .x D 0/ D 0 (3.36)

http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_1
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and, therefore, Eq. (3.36) leads to c0 D 0. To compute c1 is necessary to use the
natural boundary condition, which is related with the stress at the free end of bar,
and can be computed using Eq. (1.86) as

�11jxD` D E
@u

@x

ˇ̌
ˇ̌
xD`

(3.37)

and, simultaneously, from classical mechanics it can be evaluated as

�11jxD` D P

A
(3.38)

So, the boundary condition at the free end of bar is obtained equating Eqs. (3.37)
and (3.38), as

E
@u

@x

ˇ̌
ˇ̌
xD`

D P

A
(3.39)

leading to

c1 D P

EA
(3.40)

Substituting c0 D 0 and Eq. (3.40) into Eq. (3.35), the solution of the displacement
of the bar is written as

u .x/ D P

EA
x (3.41)

and the displacement at the free end is given by

u .x D `/ D P`

EA
(3.42)

Numerical Solution
To evaluate the numerical solution by the finite element method it is necessary to
perform the discretization of the bar. Using one finite element, the bar finite element
model is represented as shown in Fig. 3.5.

Fig. 3.5 A bar modeled by
one finite element

i = 1 j = 2(e = 1)

(1)u1
(1)u2

http://dx.doi.org/10.1007/978-3-319-17710-6_1
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The element stiffness matrix is defined in local coordinate system by Eq. (3.15),
and there is no need to perform coordinate transformation, as the local and global
coordinate systems are parallel. Moreover, since the number of elements at the bar
finite element is only one, there is also no need to perform assembly. Thus, the finite
element equations becomes

AE

`

�
1 �1

� 1 1

�"
u.1/1
u.1/2

#
D
�

F1
F2

�
(3.43)

The right hand side of Eq. (3.43) has the load vector, since there is only one
concentrated load P applied in the global node j D 2, the component F2 is equal
to P and F1 is the reaction force applied at node i D 1 that is unknown.

Note that in Eq. (3.43) the stiffness is a singular matrix, which means that its
determinate is zero, and therefore its inverse does not exist. Thus, to solve Eq. (3.43)
it is necessary to impose boundary conditions. Since the displacement at node i is
known, the easy way of imposing this boundary condition is to simply remove the
first row and the first column of Eq. (3.43),

u.1/2 D P`

AE
(3.44)

Comparing Eq. (3.44) with Eq. (3.42) is possible to conclude that both solutions are
coincident. The displacement variation within the finite element can be obtained by
substituting u.1/1 D 0 and Eq. (3.44) into Eq. (3.7):

Qu .x/ D �
1 � x

`
x
`

� �u11
u12

�
D �

1 � x
`

x
`

� � 0

.P`/ =.EA/

�
D P

EA
x (3.45)

Equation (3.45) is also exactly the same as the exact solution presented in Eq.
(3.41). Using the identity matrix for the transformation matrix on Eqs. (3.32) and
(3.33) is possible to obtain the stress in the bar, as

Q�11 D E
�� 1

`
1
`

� � 0
u12

�
D P

A
(3.46)

This is also exactly the same as the exact solution presented in Eq. (3.38).

Final Discussion
Usually, solutions obtained by the FEM are only approximations of the exact
solutions. Nevertheless, in this example the exact solution is also obtained by using
the finite element method. In fact, the finite element method can lead to the exact
solution of problems, whenever the order of finite element shape functions is equal
to the order of the exact solution of displacement. Therefore, the exact solution of
the problem is included in the assumed displacement function that is used to form
the shape functions. Hence this example allow to confirm the reproduction property
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of the FEM that if the exact solution can be formed by the basis function used
to construct the FEM shape function, the FEM always produce the exact solution.
Making use of this property, one may try to add basis functions that form the exact
solution or part of the exact solution to achieve better accuracy in the numerical
solution [4].

In complex problems exact solutions are difficult to obtain and, usually, they
cannot be written in the form of a combination of monomials. Thus, the finite
element solution based on the use of polynomial shape functions will not reproduce
the exact one. So, a main question arises: how is possible to ensure that the FEM can
produce a good approximation of the solution of a complex problem? The answer
may be sought in the convergence property of finite element method: a numerical
solution converges to the exact solution that is continuous at arbitrary accuracy,
when the element size becomes infinitely small and, as long as, the complete linear
polynomial basis is included in the basis that is used to form the finite element shape
functions. In fact, using the local Taylor expansion of a continuous function u(x),
a continuous displacement in the vicinity of point xi can always be approximated
using the equation

u.x/ D u .xi/C @u

@x

ˇ̌
ˇ̌
Jı
.x � xi/C o

�
h2
	

(3.47)

where h is the characteristic size related to .x � xi/ or to the finite element size and
o(h2) represents a second order error.

Note that if an accuracy of o(h1) is used, means that the second term of the
right hand side of Eq. (3.47) is not included and, therefore, a constant value is used
to reproduce function u(x). However, in a finite element model the definition of
a constant displacement within each finite element of the model will possibly not
be continuous between elements, unless the entire displacement field is constant,
which is only possible for a rigid movement that is not included in equations of
motion. Thus, to guarantee the convergence of a continuous function its local Taylor
expansion must be a complete polynomial up to at least the first order. The Taylor
expansion up to the order of p can be given as

u.x/Du .xi/C @u

@x

ˇ̌
ˇ̌
Jı
.x � xi/C 1

2Š

@2u

@x2

ˇ̌
ˇ̌
Jı
.x � xi/

2 C � � � C 1

pŠ

@pu

@xp

ˇ̌
ˇ̌
Jı
.x � xi/

pCo
�
hpC1	

(3.48)

The error in Eq. (3.48) is of the order o
�
hpC1	 and, therefore, the order of the rate

of convergence is of the same order. For linear finite elements p is equal to one,
and the rate of convergence for the displacement is therefore of o(h2). In terms of a
finite element model, this implies that if the mesh element size is reduced to half,
.h D h=2/, the error associated with the displacement results will be reduced by a
rate of one quarter.

Using this mathematical concept is possible to say that for problems whose exact
solutions are of a polynomial type, the FEM is able to reproduce the exact solution
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using a minimum number of elements, as long as the complete order of the basis
functions incorporate the order of the exact solution. For complex problems whose
exact solutions are of a very high polynomial order or even a non-polynomial type,
is up to the technical finite element analyst to select the mesh density that leads
to the best desired accuracy of the FEM results. A great number of finite element
programs allow to the user select between the so-called h – adaptivity and p –
adaptivity analyses. Conventionally, h is used to represent the characteristic size of
the mesh while p is used to represent the order of the polynomial basis function. So,
h – adaptivity analysis uses finer finite element meshes and p – adaptivity analysis
uses a higher order of shape functions to achieve the desired accuracy of the FEM
results.

3.2 FE Matrices and Vectors for High Order Truss Elements

For truss structures loaded by body forces distributed in the truss axial direction,
the exact solutions are no longer linear and higher order finite elements must
be used for more accurate analysis. The procedure for developing such higher
one-dimensional finite elements is the same as for the linear elements. The only
difference is the number of nodes per element and, therefore, the order of the shape
functions.

In order to simplify the derivation of all matrices and vectors of higher order finite
elements a translation of coordinates is used. So, usually, the natural coordinates �
are used instead of the local coordinates x. Figure 3.6 shows the position of the origin
of the natural coordinates, which is located at the midpoint of the one-dimensional
element.

The coordinate transformation presented on Fig. 3.6 is described as

x D g .�/ D `
2
.�C 1/ I � D h .x/ D 2x

`
� 1

d x D `
2
d�I d� D 2

`
d x

(3.49)

In the natural coordinate system, the element is defined in the range of �1 � � � 1.
The shape function of a higher finite element can be obtained from the so-called
Lagrange polynomials

Nk .�/ D lnk .�/ (3.50)

where lnk is the well-known Lagrange basis polynomials

lnk D
nY

i D 1

i ¤ k

.� � �i/

.�k � �i/
D .� � �1/ .� � �2/ � � � .� � �k�1/ .� � �kC1/ � � � .� � �n/

.�k � �1/ .�k � �2/ � � � .�k � �k�1/ .�k � �kC1/ � � � .�k � �n/

(3.51)
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x

(e)x1 = 0

(e)x2 = ℓ(e)

x1

x2

x3

h1 = −1

h3 = +1h2 = 0

h

Fig. 3.6 Local and natural coordinates in one-dimensional finite elements

i = 1

1 1

ℓ(e)

N1
Nk+1

hnhk+2hk+1hk

h = 0
h2h1 = −1

i = n + 1

hn+1 = −1

h

Fig. 3.7 One-dimensional element of nth order with .n C 1/ nodes

From Eq. (3.51) it is clear that

Nk .�/ D


1 at node k where � D �k

0 at other nodes
: (3.52)

Therefore, the high order shape functions defined by Eq. (3.50) have the delta
function property. Figure 3.7 shows the first and the .k C 1/ th shape functions of an
element of nth order with .n C 1/ nodes.

Using Eq. (3.51), the quadratic one-dimensional element with three nodes, shown
in Fig. 3.8, can be obtained explicitly as
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Fig. 3.8 Shape functions of the one-dimensional element of second order

N1 .�/ D �

2
.� � 1/

N2 .�/ D �
1 � �2	

N3 .�/ D �

2
.�C 1/

(3.53)

Meanwhile, the stiffness matrix is obtained using the finite element strain matrix B.
In the case of a finite element truss that is described by the natural coordinates, the
Eq. (3.12) should be re-written as

Q"11 .x D g .�// D d Qu .g .�//
dx

D d Qu .g .�//
d�

d�

dx
D L N .�/ u D B .�/ u (3.54)

where the strain matrix B .�/ has the form

B .�/ D LN D d

d�

�
�

2
.� � 1/ �1 � �2	 �

2
.�C 1/

� d�

dx
D �

� � 1
2

�2� �C 1
2

� 2
`

(3.55)

The stiffness matrix for truss finite elements can be obtained using Eq. (2.49)
from the previous chapter, leading to

k D
Z

�e

B
T
c B d�e D A

Z̀

0

B
T
.�/ E B .�/ dx D AE

h.`/D1Z

h.0/D�1
B

T
.�/ B .�/ `

2
d�

D EA
3`

2
4

7 �8 1

� 8 16 �8
1 �8 7

3
5

(3.56)

where A is the cross-section area. Note that for the one-dimensional truss structure,
the material constant matrix c reduce to elastic modulus, E, see Eq. (1.86) in Sect.
1.3.1 of Chap. 1.

The mass matrix for the truss elements can be obtained using Eqs. (3.53) and
(2.45) as

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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m D
Z

�e
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N d�e D A�
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1Z
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`
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2
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3
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(3.57)

The mass matrix is found to be also symmetrical.
The nodal force vector for truss elements can be obtained using Eqs. (3.53) and

(2.52), assuming that the element is loaded by a constant distributed force p0 along
the x-axis, and no concentrated forces are applied. Thus, the total nodal force vector
becomes

f D
Z

�e

N
T
fb d�e D p0

Z̀

0

2
64

�

2
.� � 1/�
1 � �2	

�

2
.�C 1/

3
75 dx

D p0`

2

1Z

�1

2
64

�

2
.� � 1/�
1 � �2	

�

2
.�C 1/

3
75 d� D p0`

6

2
4
1

4

1

3
5 (3.58)

3.2.1 Numerical Integration

The integration of the components of all element vectors and/or matrices can be
carried out analytically, as in the previous section. Nevertheless, in the development
of complex finite elements this can be a difficult task. So, in order to have an
adequate tool for the integration of element quantities that are hardly integrable
analytically, numerical integration is introduced and examined for a truss example.
By means of numerical integration, it is possible to integrate arbitrary functions in an
approximate way. The essential advantages of numerical integration are summarized
as follows:

http://dx.doi.org/10.1007/978-3-319-17710-6_2
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• Simplification of the integration;
• Integration of analytically non-integrable functions;
• Selective subintegration for elimination of defects from the element formulation.

In opposition to these advantages there are actually some limitation, namely: the
generation of element matrices and vectors is numerically costly and in some cases,
the element matrices and vectors are integrated inexactly.

Within the framework of numerical integration, the so-called Gauss-Legendre
quadrature is well established. Using the Gauss-Legendre quadrature is possible
to replace the analytical integration of a function f (�) over the domain space � 2
Œ�1; 1� by the weighted sum

1Z

�1
f .�/ d� D

nX
iD1

f .�i/ !i (3.59)

where ! i represent the weight coefficients to the function values at the locations �i

and n is the number of integration points, or the so-called Gauss points. Polynomials
with the degree (p)

p � 2n � 1 (3.60)

can be integrated exactly by Gauss-Legendre quadrature, higher-order polynomials
and other functions can be integrated only approximately. The Gauss-Legendre
quadrature is summarize in Table 3.1.

To define the necessary integration order for the exact integration of the element
quantities as such stiffness, mass and load vector it is necessary to account for
the integrand function. For instance, to numerically integrate the component k11
in Eq. (3.56) will have

k11 D 2EA

`

1Z

�1

dN1
d�

dN1
d�

d� D 2EA

`

1Z

�1

�
� � 1

2

��
� � 1

2

�
d� D 2EA

`

1Z

�1
f .�/ d�

(3.61)

Because the function that needs to be integrated is a second order polynomial
.n D 2/, the number of points that should be used to evaluate exactly the numerical
integration of k11 is of two .n D 2 � 2 � .p D 2/ � 1/. Thus, using a Gauss-
Legendre table is possible to select the information presented in Table 3.2 and use
it as follows

1Z

�1
f .�/ d� D

2X
iD1

f .�i/ !i D
�
�1 � 1

2

�2
w1 C

�
�2 � 1

2

�2
w2 D 1:166667 (3.62)
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Table 3.1 Gauss points and weight factors of the Gauss-Legendre quadrature

(p) .2p � 1/ f (�i) (�i) Weight (wi)

1 1

ℓ(e)

h1 = −1 hn = −1

h

0.0 2.0

2 3

ℓ(e)

h1 = −1 hn = −1

h

�1 D �1=p3 1.0

�2 D 1=
p
3 1.0

3 5

ℓ(e)

h1 = −1 hn = −1

h

�1 D �p
3=5 w1 D 5=9

�2 D 0 w2 D 8=9

�3 D p
3=5 w3 D 5=9

4 7

ℓ(e)

h1 = −1 hn = −1

h

�1 D �0:86114 w1 D 0:34785

�2 D �0:33998 w2 D 0:65241

�3 D 0:33998 w3 D 0:65241

�4 D 0:86114 w4 D 0:34785
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Table 3.2 Two Gauss points and respective weights

Number of points (p) Coordinate of points .˙�i/ Weight (wi)

2 0.577350269 1.0

Fig. 3.9 Clamped bar loaded
by a constant body force
distributed in the truss axial
direction

p0

x1

x2

x
ℓ

and, substituting Eq. (3.62) into Eq. (3.61), yields

k11 D 2EA

`

1Z

�1
f .�/ d� D 2EA

`
� 1:166667 D 2:333333

EA

`
D 7EA

3`
(3.63)

The solution in Eq. (3.63) is the same presented at Eq. (3.56).

3.2.2 Second Discussion Example

Consider the simplest application of a truss structure: a uniform bar subjected to a
constant distributed axial force.

Example 3.2: A Uniform Bar Subjected to a Constant Force Distributed Axially
The bar has a uniform cross-section area, denoted by A and, it is fixed at one end
and loaded by a constant body force distributed in the truss axial direction, as shown
in Fig. 3.9. The material of the bar is isotropic with Young’s modulus E.

Exact Solutions
The exact solution can be obtained from the strong formulation of a bar structure,
namely from the governing Eq. (1.92), of Chap. 1. Since the bar is loaded by
constant body forces, the equation can now be written as

EA
@2u

@x2
D �p0 (3.64)

The general solution of Eq. (3.34) can be obtained by performing two integra-
tions, leading to

u .x/ D � p0
2EA

x2 C c1x C c2 (3.65)

where c1 and c2 are unknown constants that can be determined by the boundary
conditions. Since, the displacement at the fixed end is known, the displacement

http://dx.doi.org/10.1007/978-3-319-17710-6_1
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boundary condition for this case is defined by Eq. (3.36), and, therefore, leads to
c2 D 0. To compute the c1 is necessary to use the natural boundary condition, which
is defined by Eq. (3.37), and from classical mechanics it is clear that at the free end,
the bar is free of stress. So, the boundary condition at the free end is obtained by
setting Eq. (3.37) equal to zero, i.e.

E
@u

@x

ˇ̌
ˇ̌
xD`

D 0 (3.66)

leading to

c1 D p0`

EA
(3.67)

Substituting this value and c2 D 0 into Eq. (3.65), the solution of the
displacement of the bar is written as

u .x/ D p0
2EA

x .2` � x/ (3.68)

and the displacement at the free end is given by

u .x/ D p0`2

2EA
(3.69)

Numerical Solution
To evaluate the numerical solution by the finite element method it is necessary to
perform the discretization of the bar. Using one second order finite element, the bar
finite element model is represented as shown in Fig. 3.10.

The element stiffness matrix is defined in local coordinate system by Eq. (3.56),
and there is no need to perform coordinate transformation, as the local and global
coordinate systems are parallel. The total nodal force vector is defined by Eq. (3.58).
Moreover, since the number of elements at the bar is only one, there is also no need
to perform assembly. Thus, the finite element equations becomes

EA

3`

2
4

7 �8 1

� 8 16 �8
1 �8 7

3
5
2
64

u.1/1
u.1/2
u.1/3

3
75 D p0`

6
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4
1

4

1

3
5 (3.70)

Fig. 3.10 A bar modeled by
one second order finite
element
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To solve Eq. (3.70) it is necessary to impose boundary conditions. Since the
displacement at node 1 is known, the easy way of imposing this boundary condition
is to simply remove the first row and the first column of Eq. (3.70), leading to

EA

3`

�
16 �8
� 8 7

�"
u.1/2
u.1/3

#
D p0`

6

�
4

1

�
(3.71)

Equation (3.71) can be solved by inverting the system matrix, leading to

"
u.1/2
u.1/3

#
D 3p0`2

6EA

�
0:146 0:167

0:167 0:333

� �
4

1

�
D p0`2

2EA

�
0:75

1

�
D p0`2

2EA

�
3=4

1

�
(3.72)

From Eq. (3.72) is possible to see that the axial displacement at the free end, u(1)
3 , is

coincident with the solution presented in (3.69). The displacement variation within
the finite element can be obtained by substituting u.1/1 D 0 and Eq. (3.72) into
Eq. (3.1)

Qu .�/ D p0`2

2EA

�
�

2
.� � 1/ �1 � �2	 �

2
.�C 1/

�
2
4

0

3=4

1

3
5 D p0`2

4EA

�
��

2

2
C �C 3

2

�

(3.73)

In order to compare Eq. (3.73) with the exact solution presented in Eq. (3.68), the
coordinate transformation described by h .x/, at Eq. (3.49), can be substituted into
Eq. (3.73), i.e.

Qu .h .x// D p0`2

4EA

 
�h.x/2

2
C h .x/C 3

2

!
D p0
2EA

x .2` � x/ (3.74)

Equation (3.74) is also exactly the same as the exact solution presented in
Eq. (3.68), when x D `.

Final Discussion
In this example, the exact solution of the displacement field is the second order
polynomial presented in Eq. (3.68). So, to achieve the same results by the use of the
finite-element method was necessary to assure that the order of the finite element
shape functions used within the discretization procedure is equal to the order of
the exact solution of displacement. Therefore, in this way, the exact solution of the
problem is included in the assumed displacement function.



104 3 Finite Element Method for Trusses
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Fig. 3.11 Truss structure with three bars: (a) support conditions; (b) body free diagram

3.2.3 Third Discussion Example

Example 3.3: Truss Structure Subjected to a Vertical Load
Consider the plane truss structure shown in Fig. 3.11. The structure is a planar
structure made with three truss members and a vertical downward force of 10 kN is
applied at the free vertex.

Exact Solutions
To evaluate the exact solution of the truss element forces is possible to use method
of sections [5]. In this method is important to find the values of the reaction forces.
Thus, Fig. 3.11b shows the loading diagram and contains the reaction forces from
the supports. Since there is a pin joint it will have two reaction forces H1 and V1, one
in the x1 direction and the other in the x2 direction, respectively. At the other support
there is a roller joint and hence we have only a reaction force in the x1 direction, H2.
To evaluate the reaction forces we can use equilibrium equations from static, in
which force and moment balance can be written as

8<
:

H1 � H2 D 0

V1 � 10000 D 0

H2 � 1 � 10000 � 1 D 0

()
8<
:

H1 D 10000

V1 D 10000

H2 D 10000

(3.75)

To use the analytical sections method is necessary to introduce a single straight
line cutting through the members whose force must be calculated. However, this
method has a limit in that the cutting line can pass through a maximum of only
three members of the truss structure, if these three bars are not concurrent in the
same point. This restriction is because this method uses the force balances in both
axes direction and the moment balance, which gives a maximum of three equations
to find a maximum of three unknown truss element forces through which this cut
is made. So, performing a cut on the loading vertex, as presented on Fig. 3.12, is
possible to write the following equations, as
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Fig. 3.12 Cut through the
load vertex of the truss
structure
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Fig. 3.13 Global and local
numbering for the
three-element truss
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F2 sin 450 � 10000 D 0

F2 cos 450 C F1 D 0
()



F2 D 14:142 K N
F1 D �10 K N

(3.76)

Performing a similar cut on the others vertexes, is possible to conclude that the
vertical bar has an axial force of 10 kN.

Numerical Solution
In the process of solving numerically this problem is important to perform the
discretization, which comprises numbering the finite elements and nodes. Thus,
Fig. 3.13 shows the numerical model of the truss structure. Since each node can,
in general, move in two directions, there are 3 � 2 D 6 degrees of freedom in the
problem. However, in the local coordinate system of each finite element there is only
one degree of freedom in each node. Table 3.3 shows the dimensions and material
properties of the truss members.

The computation of element matrices implies the knowledge of the transforma-
tion matrix for each finite element. Thus, knowing the coordinates of finite element
nodes in the global coordinate system is possible to use Eq. (3.21) to evaluate
the finite element direction cosines, as presented in Table 3.4. Moreover, since
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Table 3.3 Dimensions and mechanical properties of the truss members

Number of element Cross-sectional area [m2] Length [m] Young’s modulus [GPa]

1 0.01 1 70
2 0.01

p
2 70

3 0.01 1 70

Table 3.4 Global coordinates of nodes and direction cosines of elements

Number of
element

Number of global node
corresponding to

Coordinates
in global
coordinate
system

Direction
cosines

First element node (i) Second element node (j) (x1, x2)i (x1, x2)j lij mij

1 1 2 (0, 0)1 (1, 0)2 1 0
2 2 3 (1, 0)2 (0, 1)3 �1=p2 1=

p
2

3 1 3 (0, 0)1 (0, 1)3 0 1

this problem is a planar problem, there is no need to compute the component nij.
Note that because is a static problem, the element mass matrices don’t need to be
computed.

The element stiffness matrices are defined in the global coordinate system
through Eq. (3.30),

k.1/ D 10�3 � �70 � 109	

1:0

2
664

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

3
775 D

2
664

7 0 �7 0

0 0 0 0

�7 0 7 0

0 0 0 0

3
775 � 108 �Nm�1�

(3.77)

k.2/ D 10�3 � �70 � 109	p
2

2
664

1=2 �1=2 �1=2 1=2

�1=2 1=2 1=2 �1=2
�1=2 1=2 1=2 �1=2
1=2 �1=2 �1=2 1=2

3
775

D

2
664

1 �1 �1 1

�1 1 1 �1
�1 1 1 �1
1 �1 �1 1

3
775

7

2
p
2

� 108 �Nm�1� (3.78)

k.3/ D 10�3 � �70 � 109	

1:0

2
664

0 0 0 0

0 1 0 �1
0 0 0 0

0 �1 0 1

3
775 D

2
664

0 0 0 0

0 7 0 �7
0 0 0 0

0 �7 0 7

3
775 � 108 �Nm�1�

(3.79)
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The next step after getting the element matrices will be to assemble the element
matrices into a global finite element matrix. Since the total degrees of freedom in
the structure is six, the global stiffness matrix will be a 6 � 6 matrix. The assembly
process assures that the global stiffness of each node has the contribution of all
elements that share the node. For example, looking at Table 3.4, it can be seen that
elements one and three contribute to the stiffness associated with the degrees of
freedom at node one, first and second global degrees of freedom. So, by adding the
contributions from the individual element matrices into the respective positions in
the global matrix, according the element connectivity’s, the global matrix can be
obtained. In fact, each one of the local degrees of freedom can be matched to one
global degrees of freedom. By inspection of Fig. 3.13 and of Table 3.4, is possible
to form the Table 3.5 that maps local to global numbers.

Using this table, it can be seen for instance that the third degree of freedom for
the third element is the fifth degree of freedom in the global numbering system,
and the fourth degree of freedom corresponds to the sixth global degree of freedom.
Hence, the value in the third row and fourth column of the element stiffness matrix
of the third element, denoted by k(3)

34 , should be added into the position in the fifth
row and sixth column of the 6 � 6 global stiffness matrix, which can be written as

k.3/34 ! k56 (3.80)

Each one of the 16 positions of the element stiffness matrix of the three elements
must be added into the global matrix according the mapping showed on Table 3.5.
This gives the following results:

K D

2
6666666666664

k.1/11 C k.3/11 k.1/12 C k.3/12 k.1/13 k.1/14 k.3/13 k.3/14

k.1/21 C k.3/21 k.1/22 C k.3/22 k.1/23 k.1/24 k.3/23 k.3/24

k.1/31 k.1/32 k.1/33 C k.2/11 k.1/34 C k.2/12 k.2/13 k.2/14

k.1/41 k.1/42 k.1/43 C k.2/21 k.1/44 C k.2/22 k.2/23 k.2/24

k.3/31 k.3/32 k.2/31 k.2/32 k.2/33 C k.3/33 k.2/34 C k.3/34

k.3/41 k.3/42 k.2/41 k.2/42 k.2/43 C k.3/43 k.2/44 C k.3/44

3
7777777777775

(3.81)

Table 3.5 Finite element code table

Number of
element

First local degree
of freedom

Second local
degree of freedom

Third local degree
of freedom

Fourth local degree
of freedom

1 1 2 3 4
2 3 4 5 6
3 1 2 5 6
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This matrix pre-multiplies the vector of nodal displacements according to Eq.
(2.65) to yield the vector of externally applied nodal forces. The full system
equations, can be written as

108 �

2
66666666666666664

7 0 �7 0 0 0

0 7 0 0 0 �7
�7 0 7C 7
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2

� 7
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2

� 7
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0 0 � 7
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2
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2

7

2
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2

� 7

2
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2

0 0 � 7

2
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2

7

2
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2

7

2
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2

� 7

2
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2

0 �7 7

2
p
2

� 7

2
p
2

� 7

2
p
2

7

2
p
2

C 7

3
77777777777777775

2
66666664

u1
u2
u3
u4
u5
u6

3
77777775

D

2
66666664

0

0

0

�10000
0

0

3
77777775

(3.82)

Note that the only force component of the right hand side of Eq. (3.82) that is
different of zero is the fourth component, which is defined as the force value
that is applied at the node two in the opposite direction of the fourth unknown
displacement.

The solution of Eq. (3.82) is not possible to obtain, because the system matrix
is singular. Thus, to solve Eq. (3.82) is essential take in account the boundary
conditions of the problem. In fact, this matrix can be reduced after applying
boundary conditions, i.e. global displacements u1, u2 and u5 are all known and their
values are

u1 D u2 D u5 D 0 (3.83)

This implies that the first, second and the fifth rows, and also the correspondent
columns, will have no effect on the solution of the matrix equation. Hence, the
corresponding rows and columns can be removed

(3.84)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
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The condensed global matrix is a 3 � 3 matrix, given as follows:

K D 108 �

2
66666664

7C 7
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2

� 7

2
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2

7

2
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� 7

2
p
2

7
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2

� 7

2
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2

7

2
p
2

� 7

2
p
2

7

2
p
2

C 7

3
77777775

(3.85)

It can easily be confirmed that this condensed stiffness matrix is semi-positive
defined. Thus, the constrained global finite element equation is written as

108 �

2
66666664

7C 7

2
p
2

� 7

2
p
2

7

2
p
2

� 7

2
p
2

7

2
p
2

� 7

2
p
2

7

2
p
2

� 7

2
p
2

7

2
p
2

C 7

3
77777775

2
4

u3
u4
u6

3
5 D

2
4

0

�10000
0

3
5 (3.86)

The final step would be to solve Eq. (3.86) to obtain the unknown displacements.
For that, is possible to use direct or iterative solution methods, but since this equation
only involves three unknowns is also possible to obtain the solution manually. To
this end, we obtain

u3 D �1:429 � 10�5m
u4 D �6:898 � 10�5m
u6 D �1:429 � 10�5m

(3.87)

To obtain the stresses in the elements the Eq. (3.33) is used as follows:

�
.1/
11 D E.BTu/.1/ D 70 � 109 � �1 1

� � 1 0 0 0

0 0 1 0

�
2
664

u1 D 0

u2 D 0

u3 D �1:429
u4 D �6:898

3
775 � 10�5

D �1:0 MPa (3.88)

�
.2/
11 D E.BTu/.2/ D 70� 109

�
� 1p

2

1p
2

�
2
664

� 1p
2

1p
2

0 0

0 0 � 1p
2

1p
2

3
775

2
6664

u3 D �1:429
u4 D �6:898

u5 D 0

u6 D �1:429

3
7775

� 10�5 D 1:4 MPa (3.89)
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�
.3/
11 D E.BTu/.3/ D 70 � 109 ��1 1 �

�
0 1 0 0

0 0 0 1

�
2
664

u1 D 0

u2 D 0

u5 D 0

u6 D �1:429

3
775 � 10�5

D �1:0 MPa (3.90)

Note that in Eqs. (3.88), (3.89) and (3.90) the vector of the global element degrees
of freedom can be defined from the rows of Table 3.4. The element axial forces can
be obtained from the classical relations, as

P.1/ D �
.1/
11 A.1/ D �10000 N

P.2/ D �
.2/
11 A.2/ D 14142 N

P.3/ D �
.3/
11 A.3/ D �10000 N

(3.91)

Moreover, using those equations that were eliminated in Eq. (3.84) is possible to
write
h
7� .u1 D 0/C 0� .u2 D 0/� 7� �

u3 D �1:429� 10�5
	C 0� �

u4 D �6:898� 10�5
	

C 0� .u5 D 0/C 0� �
u6 D �1:429� 10�5

	 i� 108 D F1
h
0� .u1 D 0/C 7� .u2 D 0/C 0� �

u3 D �1:429� 10�5
	C 0� �

u4 D �6:898� 10�5
	

C 0� .u5 D 0/� 7� �
u6 D �1:429� 10�5

	 i� 108 D F2
�
0� .u1 D 0/C 0� .u2 D 0/� 7

2
p
2

� �
u3 D �1:429� 10�5

	 C 7

2
p
2

� �
u4D � 6:898� 10�5

	C 7

2
p
2

� .u5D0/ � 7

2
p
2

� �
u6D � 1:429� 10�5

	�� 108DF5

(3.92)

leading to

H1 D F1 � 10000

V1 D F2 � 10000

H2 D F5 � �10000
(3.93)
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Fig. 3.14 Finite element mesh, loading, and boundary conditions of the three-element truss

Equations (3.91) and (3.92) give the reaction values. The numerical solution
presented here can be compared with that computed by the finite element program
ADINA [6]. In this program the truss structure is meshed by two-nodal truss finite
elements with two degrees of freedom per node. The skeletal model of the truss
structure is showed in Fig. 3.14.

The ADINA program plot the boundary conditions using capital letters: B, the
only displacement constrained is that in the x-axes direction; C the displacement of
nodal point 1 is constrained in both axes directions. Using the ADINA input file,
the finite element equations are solved and the results are presented in Fig. 3.15.
A deformation plot showing how the truss actually deforms under the specified
loading is shown in Fig. 3.15a, in which is also presented the contour plot of the
displacement magnitude. The magnitude of the deformation is magnified 10 % as
the truly deformation is much smaller for viewing purposes. Figure 3.15b, c present
the contour plot of the displacement in the x and y directions, while Fig. 3.15d, e
present the contour plot of the axial stresses and axial forces, respectively. Finally,
Fig. 3.15f shows the vector direction of the reaction forces.

Comparing the numerical results computed manually with those computed by
ADINA program it can be seen that are coincident. Moreover, in engineering
practice, problems can be of a much larger scale and, the unknowns or the number
of degree of freedom will be higher. Therefore, numerical methods, or so-called
solvers for solving the finite element equations have to be used. Typical real life
engineering problems might involve hundreds of thousands, and even millions, of
degrees of freedom. Many kinds of such solvers are routinely available in math or
numerical libraries in computer systems [4].
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Fig. 3.15 ADINA numerical solution: (a) displacement magnitude; (b) x displacement; (c) y
displacement; (d) axial stress; (e) axial force; (f) reactions magnitude
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3.3 Review Questions

1. Consider the bar in Fig. 3.16. The bar has a variable cross-section area, denoted
by A and, it is fixed at one end and loaded by a constant body force distributed
in the truss axial direction, as shown. The material of the bar is isotropic with
Young’s modulus E.

(a) Solve for the exact displacement response of the structure.
(b) Using Eq. (3.15) compute the element stiffness matrix.
(c) Using Eq. (3.16) compute the element mass matrix
(d) Using the information of questions b and c, compute the maximum value of

axial displacement and compare with the solution of question a.

2. How many degrees of freedom does a two-node 2D truss finite element has in its
local coordinate system, and in the global coordinate system? If there are some
differences, justify the answer.

3. How many degrees of freedom does a two-node 3D truss finite element has in its
local coordinate system, and in the global coordinate system? justify.

4. Using a finite element program, work out the reaction forces of the truss structure
shown in Fig. 3.17. All the truss members are of the same material (E D 210 GPa)
and with the same cross-sectional area of 0.000314 m2.

2
x

A A

2 [m]

x1

p0 = 10 [N/m] A = 0.01  4−

x2

x2

x3

[m]2

Fig. 3.16 Truss structure with a non-uniform cross-section area

Fig. 3.17 Truss structure 2500 N 2500 N 2500 N

1 m

1 m 1 m
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Chapter 4
Finite Element Method for Beams

A beam is a structural member whose geometry is very similar to the geometry of
a bar. It is also geometrically a bar of an arbitrary cross-section, by bar it is meant
that one of the dimensions is considerably larger than the other two, whose primary
function is to support transverse loading. The main difference between the beam and
the truss is the type of load that they support. In fact, beams are the most common
type of structural component, especially in civil and mechanical engineering. A
beam resists to transverse loads mainly through a bending action and, the bending
is responsible for compressive longitudinal stresses in one side of the beam and
tensile stress on the other beam side. These two regions are separated by the
neutral axis in which the stress is zero. The combination of tensile and compressive
stresses produces an internal bending moment. Finite element equations for beam-
like structures are developed in this chapter.

4.1 FE Matrices and Vectors of Beams

In beam structures, the beams are linked by welding, so forces and moments are
transmitted among beams. The basic concepts, procedures and formulations can
also be found in a great number of existing books [1–4]. In this presentation it will
be assumed that beam elements have uniform cross-section. In fact, if a beam has
a varying cross-section it can be divided into shorter elements where each one can
be seen as a beam with a uniform cross-section. Nevertheless, the finite element
matrices for varying cross-section geometry can also be developed easily using the
concepts before introduced. The beam elements presented in this chapter are based
on the Euler-Bernoulli theory that is applicable to thin beams made of isotropic
material.

© Springer International Publishing Switzerland 2015
M.A. Neto et al., Engineering Computation of Structures: The Finite
Element Method, DOI 10.1007/978-3-319-17710-6_4
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Fig. 4.1 Beam finite element with four degrees of freedom

4.1.1 Degrees of Freedom Identification

A plane beam resists primarily to transverse loading on a preferred longitudinal
plane. Thus, in a planar beam the finite element has two degrees of freedom per node
at its local coordinate system: displacement in the transverse direction and rotation
around the axis normal to the beam plane. The application of the finite element
method involves dividing the domain into subdomains with features and loading
simple to treat. In the case of a structure consisting of beam elements, let consider
that each structural element has constant elastic properties and uniform cross-
section. Moreover, let’s assume that each of these structural elements is bounded by
two nodes (n D 2). Therefore, each beam finite element has a total of four degrees
of freedom, as shown in Fig. 4.1.

Consider the beam divided into m finite elements from which the element (e) is
highlighted, as presented in Fig. 4.1, the extreme points of this element are called
nodal points and are identified by their coordinate �1 and �2 along the local axis �,
which is coincident with the beam axis and has the origin at the middle section of the
beam. Note that often is more convenient to develop the shape functions using the
natural coordinate system than using the local coordinate system, x. The relationship
between both coordinate systems is presented at Chap. 3 on Eq. (3.49).

4.1.2 FE Approximation of the Displacement

Taking in account the FEM discussed in the previous chapter, the finite element
displacement should be written in the form

Qw .�/ D N .�/u (4.1)

where Qw is the axial approximation within the finite element (e), N is the matrix of
shape functions with the inherent properties described in Chap. 2 and ū is the vector
of finite element displacements, defined as

http://dx.doi.org/10.1007/978-3-319-17710-6_3_2
http://dx.doi.org/10.1007/978-3-319-17710-6_3
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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u D

2
664

u1
u2
u3
u4

3
775 (4.2)

For construction the shape functions to the beam element, the standard procedure
described in Sect. 2.3.3 is followed. Since there are four DOFs, i.e. four unknowns,
a complete basis of order p D 3 can be given in a general form

Qw .�/ D a0 C a1�C a2�
2 C a3�

3 D �
1 � �2 �3

�
„ ƒ‚ …

ˆT

2
664

a0
a1
a2
a3

3
775

a

D ˆTa (4.3)

where �1 � � � 1, ˆ is the vector of basis function and a is the vector of
unknowns parameters, as discussed in Chaps. 2 and 3. Note that because the second
and the fourth degrees of freedom of the finite element represent the rotations of the
beam cross-sections at the first and the second nodes, respectively, it is important to
evaluate the differential of Eq. (4.3), as following:

@w

@x
D @w

@�

@�

@x
D 2

`

@w

@�
D 2

`

�
a1 C 2a2�C 3a3�

2
	

(4.4)

In fact, Euler-Bernoulli theory states that both displacement and rotations must
be continuous over the entire domain: within finite elements and in particular
between elements. The shape functions that meet this requirement are said to
have C1 continuity. The requirement of the continuity of shape functions within
each finite element can be trivially achieved, since these functions are interpolated
through polynomial functions that are C1 continuous. The inter-element continuity
is obtained by matching nodal displacements and rotations with adjacent elements.
The physical reason of C1 continuity is illustrated in Fig. 4.2, where the displace-
ment is grossly exaggerated for better visibility.

As discussed previously, due to the fact that the finite element (e) is connected
to the neighbor’s finite elements by its nodes, the solution given by Eq. (4.3) is

a b

Fig. 4.2 Amplification of the deformation of a beam discretized with four elements: (a) Cubic
deflection elements; (b) linear deflection elements. The linear version maintains only C0 continuity,
leading to material gaps and interpenetration at nodes

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_3
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admissible only if the support conditions in the nodal points are verified, i.e. the
displacements of nodal points should be

first node

8<
:

Qw .�1 D �1/ D u1
@ Qw .�1 D �1/

@x
D u2

(4.5)

second node

8<
:

Qw .�1 D 1/ D u3
@ Qw
@x
.�1 D 1/ D u4

(4.6)

Using Eqs. (4.3) and (4.4) to establish the relations on Eqs. (4.5) and (4.6), gives
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Solving Eq. (4.7) for parameters a, leads to
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(4.8)

Substituting the above equation into Eq. (4.3), leads to

Qw .�/ D ˆTa D ˆTC�1u D N .�/u (4.9)

where N is a matrix of shape functions defined as

N .�/ D �
N1 .�/ N2 .�/ N3 .�/ N4 .�/

�
(4.10)

where the shape functions are written as

N1 .�/ D 1

4

�
2 � 3�C �3

	

N2 .�/ D `

8

�
1 � � � �2 C �3

	

N3 .�/ D 1
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�
2C 3� � �3	

N4 .�/ D `

8

��1 � �C �2 C �3
	

(4.11)
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Fig. 4.3 Cubic displacement shape functions of a plane beam element

and their derivatives are
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4

��3C 3�2
	

N2� .�/ D `

8

��1 � 2�C 3�2
	

N3� .�/ D 1

4

�
3 � 3�2	

N4� .�/ D `

8

��1C 2�C 3�2
	

(4.12)

It can be easily confirmed that the two translational shapes functions N1 and
N3 verify the conditions defined by Eqs. (2.29) and (2.36), which graphical
representation is presented in Fig. 4.3. It can be easily confirmed that both rotational
shapes functions N2 and N4 don’t satisfy Eqs. (2.29) and (2.36). This is because these
two shape functions are related to the rotational degrees of freedom and, therefore,
they should verify that their derivative with respect x satisfy Eq. (2.29), i.e.
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(4.13)

The graphical representation of N2x and N4x is presented in Fig. 4.4.
From Fig. 4.3, it is clear that functions Ni .i D 1; 3/ gives the shape of the contri-

bution of the ith displacement degree of freedom to the displacement approximation

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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Fig. 4.4 Cubic rotational shape functions of a plane beam element

inside the finite element, while in the Fig. 4.4 Ni .i D 2; 4/ gives the shape of the
contribution of the ith of rotational degrees of freedom to the element displacement
approximation.

4.1.3 FE Approximation of Strain

As discussed in previous chapter, after computing shape functions is possible
to obtain others quantities, namely the relationship between the strain and the
deflection described in Eq. (1.111), as

Q"11 .x/ D �x3
d2 Qw .x/

dx2
D �x3

d�

dx
� d�

dx
� d2 Qw .�/

d�2
(4.14)

In the previous chapter it was showed that the stiffness matrix is obtained using the
finite element strain matrix B. In the case of a beam finite element, Eq. (4.15) can
be re-written in a matrix form as

Q"11 .x/ D �d�

dx
� d�

dx
� d2 Qw .�/

d�2
D �4x3

`2
d2N
d�2

u D B u (4.15)

where the strain matrix B has the following form

B D LN D �4x3
`2

d2

d�2
�

N1.�/ N2.�/ N3.�/ N4.�/
�

D �x3
`2

�
6� ` .�1C 3�/ �6� ` .1C 3�/

�

D �x3
`2

N��

(4.16)

http://dx.doi.org/10.1007/978-3-319-17710-6_1
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4.1.4 Element Matrices in Local Coordinate System

The stiffness matrix for the beam finite element can be obtained substituting Eq.
(4.16) into (2.49), leading to
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775 d�

(4.17)

where I D
Z

A

x23dA is the second moment of area of the cross-section of the beam

with respect to the x2 axis. Evaluating the integrals in Eq. (4.17) leads to

k D EI

`3

2
664

12 6` �12 6`

4`2 �6` 2`2
12 �6`

sym: 4`2

3
775 (4.18)

To evaluate the mass matrix, Eqs. (4.10) and (4.11) are substituted into Eq. (2.45),
leading to

m D
Z

�e

�N
T
N d�e D A�

Z̀

0

N
T
N dx D A�
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T
N
`
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N3N3 N3N4
sym: N4N4

3
775 d�

(4.19)

where A is the area of the cross-section of the beam. Integrating the Eq. (4.19) the
final element mass matrix is obtained

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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m D A�`
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2
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156 �22`
sym: 4`2

3
775 (4.20)

The nodal force vector for beam elements is obtained using Eqs. (4.11) and
(2.52), assuming that the element is loaded by a constant distributed force q0 along
the x3-axis. The total nodal force vector becomes

f D
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N
T
fb d�e D q0
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0

2
664
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3
775 dx D q0
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2
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2
664

1

`=6

1

� `=6

3
775 (4.21)

Equation (4.21) shows that a uniform transverse load over a beam finite element can
be replaced by two transverse node loads of value (q0`)/2, as may be expected, and
by two nodal moments of values ˙ �

q0`2
	
=12.

4.1.5 Element Matrices in the Global Coordinate System

Element matrices presented before are formulated in the local coordinate system, in
which the local axis are parallel to the reference or global coordinate system. Thus a
coordinate system transformation has not to be performed, since the transformation
matrix is an identity matrix.

4.1.6 First Discussion Example

Example 4.1: A Cantilever Beam Subjected to a Downward Force
Consider the cantilever beam presented in Fig. 4.5. The beam is fixed at one end,
and at the free end has a downward load of 1 kN. The cross-section of the beam is
uniform and is also presented in Fig. 4.5. The beam is made of aluminium with an
Young’s modulus of 69 GPa and a Poisson’s ratio of 0.33.

Exact Solutions
The exact solution can be obtained from the strong formulation of a beam structure,
namely from the governing Eq. (1.156), of Chap. 1. Since the beam is free of body
forces, the equation can now be written as

EI
@4w

@x14
D 0 (4.22)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_1


4.1 FE Matrices and Vectors of Beams 123

P = 1kN

x1

x3

x2
x3

0.1 m

0.06 m

ℓ

Fig. 4.5 Cantilever beam under a static load

The general solution of Eq. (4.22) is obtained after four integrations, as

w .x/ D c0 C c1x C c2x
2 C c3x

3 (4.23)

where ci .i D 0; 1; 2; 3/ are unknown constants that can be determined by the
boundary conditions. Since the displacement and the rotation at the fixed end are
known, the displacement and rotation boundary conditions for this case are

w .x D 0/ D 0 (4.24)

@w

@x

ˇ̌
ˇ̌
xD0

D 0 (4.25)

and, therefore, Eq. (4.24) leads to c0 D 0, Eq. (4.25) leads to c1 D 0. To compute
c2 and c3 is necessary to use the natural boundary condition of beam structures.
The natural boundary conditions are related with the transverse load and with the
bending moment at the free end of beam, as

@

@x

�
�EI

@2w

@x2

�ˇ̌
ˇ̌
xD`

D P ) c3 D � P

6EI
(4.26)

EI
@2w

@x2

ˇ̌
ˇ̌
xD`

D 0 ) c2 D �3c3` D 3P`

6EI
(4.27)

Substituting ci .i D 0; 1; 2; 3/ into Eq. (4.23), the solution of the displacement of
the beam is written as

w .x/ D Px2

6EI
.3` � x/ (4.28)
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Fig. 4.6 A beam modeled by
one finite element

i = 1 j = 2(e = 1)

(e)u1 (e)u2

(e)u3 (e)u4

and the displacement at the free end is given by

w .x D `/ D P`3

3EI
(4.29)

The second moment of area of the beam cross-section related with the x2 is
given by

I D bh3

12
D 1

12
0:1 � 0:063 D 1:8 � 10�6m4 (4.30)

and, assuming a beam length of 0.5 m, using this information in Eq. (4.29), the
displacement at the free end is of 3:355 � 10�4m. Moreover, the rotation of the
cross-section at the free end is given by

@w

@x

ˇ̌
ˇ̌
xD`

D
�

P

2EI
x .2` � x/

�ˇ̌
ˇ̌
xD`

D P`2

2EI
D 1:01 � 10�3rad (4.31)

Numerical Solution
To evaluate the numerical solution is necessary to perform the discretization of
the beam. Using one finite element, the bar finite element model is represented in
Fig. 4.6.

The element stiffness matrix is defined in local coordinate system by Eq. (4.18),
and there is no need to perform coordinate transformation, since local and global
coordinate systems are parallel. Moreover, as the number of elements at the bar
finite element is only one, there is also no need to perform assembly. The finite
element equations becomes

EI
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2
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6` 4`2 �6` 2`2
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u14

3
775 D

2
664

F1
F2
F3
F4

3
775 (4.32)

The right hand side of Eq. (4.32) is related with the load vector components, since
there is only one concentrated load P applied in the global node j D 2, component
F3 is equal to P, F1 and F2 are reactions at the fixed end while F4 is zero because
there is no applied moment at node j D 2.
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To solve Eq. (4.32) it is necessary to impose boundary conditions. Since the
displacement and the rotation at node i are zero, the easy way of imposing this
boundary condition is to simply remove the first and the second rows and the first
and the second columns of Eq. (4.32), leading to

�
12 �6`

� 6` 4`2

� �
u13
u14

�
D `3

EI

�
P
0

�
(4.33)

The matrix in Eq. (4.33) can be inverted leading to

�
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6` 12
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2
664
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Comparing Eq. (4.34) with Eqs. (4.29) and (4.31) is possible to conclude that
both solutions are coincident. After computing u1

3 and u1
4 they can be used back into

the first two equations of Eq. (4.32) to obtain the reactions at node 1

F1 D V1 D EI

`3

�
�12 � `3P

3EI
C 6` � `2P

2EI

�

D �P N

(4.35)

and

F2 D M1 D EI

`3

�
�6` � `3P

3EI
C 2`2 � `2P

2EI

�

D �P` N:m

(4.36)

These solutions agree with the analytical values provided by the Euler-Bernoulli
Beam theory. Thus, the one-element idealization is enough for exactness. The reason
is that the analytical deflection is cubic polynomial and it is included in the span of
the element shape functions. This is also true if we were to calculate the deflection
at any point within the finite element. For example, to calculate the deflection at the
center of the beam, we can use the local coordinate or the natural coordinate system
with � D 0, so substituting the values calculated at the nodes:
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To evaluate the rotation at the center of the beam, the derivatives of the shape
functions are used as follows:
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4.1.7 Second Discussion Example

Example 4.2: Modal Analysis of a Micro Transducer
This example has been presented by Liu and Quek [5] and it consists on the
computation of the natural frequencies of a micro transducer. Figure 4.7 shows
a micrograph of a micro polysilicon resonant micro-beam transducer. Resonant
transducers allowing convert externally induced beam strain into a beam resonant
frequency change. This change in resonant frequency is then typically detected
by implanted piezoresistors or optical techniques. Such resonant transducers are
used for measurements of pressure, acceleration, strain, vibration and so on.
Technical systems that apply this technology are called electro-mechanical systems.
Meanwhile, Micro-Electro-Mechanical Systems, or MEMS, is a technology that
in its most general form can be defined as miniaturized mechanical and electro-
mechanical elements that are made using the techniques of microfabrication. The
critical physical dimensions of MEMS devices can vary from well below one micron
on the lower end of the dimensional spectrum, all the way to several millimeters.

The principle of the resonant transducer actually lies in the clamped–clamped
bridge on top of a membrane. This bridge is actually located at the center of the
micrograph. Figure 4.8 shows a schematic side view of the bridge structure. The

Fig. 4.7 Resonant micro-
beam strain transducer [5]

Clamped beam
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Bridge

Membrane

Fig. 4.8 Bridge in a micro resonant transducer [5]

100 mm 
x1

x3

x2 x3

20 mm

0.5 mm

Fig. 4.9 Geometrical dimensions of a clamped-clamped bridge [5]

Table 4.1 Elastic properties
of polysilicon

Young’s Modulus, E 169 GPa 0.169 N.�m/�2

Poisson’s ratio, � 0.262
Density, � 2,300 Kg/m3 2.3�10�15Kg/�m3

resonant frequency of the bridge is related to the force applied to it (between anchor
points), its material properties, cross-sectional area and length. When the membrane
deforms, for example, due to a change in pressure, the force applied to the bridge
also changes, resulting in a variation in the resonant frequency of the bridge.

Thus, it is important to analyze the resonant frequency of this bridge structure
in the design of the resonant transducer. The beam finite element in the software
ADINA is used to solve the first three resonant frequencies of the bridge. The
dimensions of the clamped–clamped bridge structure shown in Fig. 4.9 are used
to model a bridge in a micro resonant transducer. The material properties of
polysilicon, normally, used to make the resonant transducer, are shown in Table 4.1.

Note that ADINA input files does not mention the units of measurements that will
be used. This implies that the units must be defined by the user and they should be
consistent throughout the input file in all the information provided. For example, if
the coordinate values of the nodes are in micrometers, the units for other values like
the Young’s modulus, density, forces and so on, must also undergo the necessary
conversions in order to be consistent, before they are keyed into the preprocessor of
ADINA. Note that in this case study, all the units are converted into micrometers to
be consistent with the geometrical dimensions, as it can be seen from the values of
Young’s modulus and density that are shown in the third column of Table 4.1. This
is the case for most finite element software, and many times, errors in analysis occur
due to negligence in ensuring the units’ consistency.
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i = 1 j = 2(e = 1)

(1)u1 (1)u2

(1)u3 (1)u4

i = 1 j = 2(e = 2)

(2)u1 (2)u2

(2)u3 (2)u4

Fig. 4.10 A two finite elements model for the clamped-clamped beam

Table 4.2 Finite element code table for the beam

Number of
element

First element
degree of freedom

Second element
degree of freedom

Third element
degree of freedom

Fourth element
degree of freedom

1 1 2 3 4
2 3 4 5 6

Numerical Solution
To evaluate the numerical solution is necessary to perform the discretization of the
beam. Using two finite element, the beam finite element model is represented as
shown in Fig. 4.10.

The element stiffness and mass matrices are defined in local coordinate system
on Eqs. (4.18) and (4.19), respectively. Since the number of beam elements is of two
and both elements have equal geometrical characteristics, the finite element matrices
becomes

k.1/ D k.2/ D EI
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2
664

12 6` �12 6`

6` 4`2 �6` 2`2
� 12 �6` 12 �6`
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m.1/ D m.1/ D A�`
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2
664

156 22` 54 �13`
22` 4`2 13` �3`2
54 13` 156 �22`

� 13` �3`2 �22` 4`2

3
775 (4.40)

The next step, after getting the element matrices, is to assemble the element
matrices into global finite element matrices. Since the total degrees of freedom in
the structure is six, the global stiffness matrix will be also a 6 � 6 matrix. The
assembly process assures that the global stiffness and global mass of each node has
the contribution of all elements that share the node. Table 4.2 shows the mapping of
the local degrees of freedom to the global degrees of freedom.

So, using the concept explained in the Example 3.3 of Chap. 3, each of the 16
positions of the element stiffness and mass matrices of the two elements must be
added into the global matrix according the mapping showed on Table 4.2. This gives
the following results:

http://dx.doi.org/10.1007/978-3-319-17710-6_3
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The equation of the problem is defined in Chap. 2 with equation number (2.70) and
is called the eigenvalue equation, in which a non-zero solution for ˆ only exist if
the determinate of the dynamic matrix vanish, i.e.

det .K � 
 M/ D jK � 
 Mj D 0 (4.43)

where the dynamic matrix is defined as
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The solution of Eq. (4.43) needs to account for the boundary conditions. Thus,
in the process of solving Eq. (4.42), the matrix size can be reduced after applying
boundary conditions, i.e. global displacements u1, u2, u5 and u6 are all known and
their value is defined as

u1 D u2 D u5 D u6 D 0 (4.45)

This means that the correspondent rows and columns have no effect on the solution
of Eq. (4.42). Hence, we can simply remove the corresponding rows and columns
from Eq. (4.43), and the condensed dynamic matrix is obtained as

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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and using Eqs. (4.45) and (4.42) is possible to define the characteristic polynomial
of the eigenvalue problem, as

4:68 � 10�23
2 � 5:18 � 10�15 C 3:81 � 10�8 D 0 (4.47)

The roots of Eq. (4.46) are 
1 D 7:913 � 106 and 
2 D 1:028 � 108, resulting
in the natural frequencies of 477.0 Hz and of 1,614.1 Hz. The correspondent
eigenvectors can be obtained by solving Eq. (2.73) for each eigenvalue. It is worth
to mention that, as expected, the maximum number of natural frequencies given
by this numerical model is of two. In fact even that the dimension of the dynamic
matrix is of 6�6, the accounting for boundary conditions led to a smaller dimension
of the dynamic matrix and, therefore, it is this final dimension that determines the
maximum number of frequencies that can be numerically computed.

The same analysis can be performed in the ADINA program by selecting a
Frequencies/Modes analysis. In this process, the first analysis will be performed
by meshing the beam uniformly into two two-nodal beam elements, as shown in
Fig. 4.10. After, refined uniform meshes of 10, 20, 40 and 60 elements will then
be used to check the accuracy of the results obtained. This is a simplified way of
performing the convergence test. Remember that usually the greater the number
of elements, the greater the accuracy of results [2,5]. However, we can’t simply
use as many elements as possible all the time, since, there is usually a limit to the
computer resources available. Hence, convergence tests are carried out to determine
the optimum number of elements or nodes to be used for a certain problem.

All the frequencies obtained are presented in Table 4.3. Because the clamped–
clamped beam structure is a simple problem, it is possible to evaluate the natural
frequencies analytically. The results obtained from analytical calculations are also

Table 4.3 Frequencies of
vibration of a
clamped-clamped beam

Natural frequencies [Hz]
Number of beam elements First Second Third

2 447.7 1,614.1
10 440.57 1,214.69 2,382.87
20 440.56 1,214.39 2,380.67
40 440.56 1,214.37 2,380.53
60 440.56 1,214.37 2,380.53
Analytical 440.51 1,214.3 2,380.5

http://dx.doi.org/10.1007/978-3-319-17710-6_2
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shown in Table 4.3 for comparison [5]. From the table, it can be seen that the
finite element results give very good approximations of the clamped-clamped
beam natural frequencies. Even with just two finite elements, the error of the
first frequency is of about 1.63 %. Nevertheless, the third natural frequency is not
possible to obtain with the first numerical model of the clamped-clamped beam. It
can also be seen that as the number of elements increases, the finite element results
gets closer and closer to the analytical calculations, and converges such that the
results obtained for 40 and 60 elements show no difference up to the second decimal
place. Moreover, for the first natural frequency the finite element results show no
difference after 20 finite elements, which means that for the calculation of the first
natural frequency is enough consider a numerical model with 20 finite elements. As
expected, is possible to verify that in finite element analyses, the finer the mesh or
the greater the number of elements used, the more accurate the results. However,
more elements corresponds to the use of more computer resources and, therefore,
a longer time of execution. Hence, it is advised to use the minimum number of
elements which gives the results of desired accuracy.

The mode shapes can also be obtained through a modal analysis. Mode shapes
can be considered as the way in which the structure vibrates at a particular natural
frequency. It corresponds to the eigenvector of the finite element equation, just
like the resonant frequencies corresponds to the eigenvalues of the finite element
equation. Figures 4.11, 4.12 and 4.13 represent mode shapes obtained by plotting
the z-eigenvector displacement components using 60 finite elements, and show how
the clamped–clamped beam will vibrate at the natural frequencies.

Mode shapes can be important in some applications, where points of zero
displacements, like the center of the beam in Fig. 4.12, need to be identified for
the installation of some devices. For instance, for sensing capabilities is important
to know where sensors may be placed to detect the desired vibration frequency.
Thus, if a sensor is placed in the middle of beam span, it will be the right place to
detect the first natural frequency.
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Fig. 4.11 First mode shape of the clamped-clamped beam using 60 finite elements
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Fig. 4.12 Second mode shape of the clamped-clamped beam using 60 finite elements
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Fig. 4.13 Third mode shape of the clamped-clamped beam using 60 finite elements

Fig. 4.14 Geometry and load
conditions of a rectangular
beam

1 m

P(t)ˆP(t) = 4 × sin(wt)

4.1.8 Third Discussion Example

Example 4.3: Transient Analysis of a Rectangular Beam
Consider the beam structure shown in Fig. 4.14. The structure is initially at rest and
is subjected to a concentrated end load. The time history of the concentrated end
load is also presented in Figure and the beam geometry and material properties are
listed in Table 4.4.

The solution of this problem can be obtained using the concepts of transient
analysis presented at Sect. 2.6 of Chap. 2. In order to apply either direct integration

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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Table 4.4 Beam geometry
and material properties

Cross section area 0.0004 m2

Young modulus 200 GPa
Density 7,800 kg/m3

or mode superposition methods, is important knowing the load natural frequency
and the beam natural frequencies. Supposing that the natural frequency of load is of
150 rad/s, the identification of natural frequencies and corresponding mode shapes
can be achieved by means of eigenvalue analysis. The frequencies listed in Table 4.5
are calculated with discretization’s using 20 and 40 equal-length elements. In this
analysis we note that the 20-element model is stiffer than the 40-element model.
In fact, after the fourth frequency, all frequency values given by the 20-element
numerical model are higher than those given with the 40-element model.

The frequency of the external load lies between the first and second frequencies
of both models. Using 4�bw as the cutoff frequency, it should be sufficient to include
the response of two modes of vibration in the mode superposition technique, i.e.
to use p D 2 in Eq. (2.137). However, for instructive purpose, let consider the
response corresponding to p D 1; 2; 3; 4 and, because the first fourth frequencies
are predicted well by the 20-element model, the response solution is obtained by
this discretization. The modal solutions are obtained by numerical integration of
Eq. (2.130) with a time step �t D 0:0002, which is about T4/10. For the direct
integration with the Newmark method the solution is also obtained with the same
time step. Nevertheless, for the central difference solution the time step needs to be
sufficiently small for stability. For this reason, the time step can be evaluated using
the highest frequency in the model, leading to �tcrit D 2=!40 D 0:471 � 10�5.
Therefore, in this academic example, the value �t D 0:25 � 10�5 was used.

The results obtained at time 0.01 s are shown in Fig. 4.15 while the results
obtained at ending time are shown in Fig. 4.16. The solution presented at Fig. 4.16
was obtained using only 210 time steps with the Newmark (NM) and mode
superposition (MS) methods, but 16,800 time steps with the central difference
method (CDM) were required. Figure 4.15 illustrate how the predicted response
converges with increasing the number of modes included in the response prediction.
The predicted response using two modes is almost the same as using three or four
modes. Nevertheless, at instant 0.042 s, the predicted response is not sensitive to
the number of modes, Fig. 4.16. Thus, between these two instants, the convergence
behavior of the predicted response is different, which can be justified with the time
history of external load, see Fig. 4.17. Notice that the instant 0.01 s is the moment
at which the maximum magnitude of load is reached while time 0.042 s is the
moment in which the external load is almost zero. Thus the tip displacement of
beam for the 0.01 s instant is ten times greater than for 0.042 s and, because the first
frequency of the numerical model is smaller than the external load frequency, the
modal model with only one vibration mode is unable of reaching the true level of
static displacement.

Moreover, if we consider the second frequency 643 rad/s, we havebw=w2 D 0:23

and from Fig. 2.8 it can be seen that this vibration mode can be important to

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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Table 4.5 Beam natural
frequencies [rad/s]

Frequency number 20-element model 40-element model

1 102.77 102.77
2 643.01 643.00
3 1,795.94 1,795.89
4 3,506.71 3,506.33
5 5,770.59 5,768.88
6 8,573.77 8,568.23
7 11,901.30 11,886.70
8 15,737.40 15,704.00
9 20,066.10 19,998.00
10 24,871.70 24,745.00
11 30,139.50 29,919.80
12 35,854.90 35,497.00
13 42,002.90 41,450.40
14 48,565.20 47,753.80
15 55,515.50 54,381.50
16 62,807.70 61,307.70
17 70,350.10 68,507.60
18 77,940.20 75,956.60
19 85,094.10 83,630.70
20 90,684.10 91,506.60
21 123,063.00 99,560.90
22 130,162.00 107,770.00
23 139,835.00 116,112.00
24 151,064.00 124,560.00
25 163,435.00 133,090.00
26 176,796.00 141,674.00
27 191,101.00 150,282.00
28 206,345.00 158,878.00
29 222,542.00 167,423.00
30 239,695.00 175,870.00
31 257,782.00 184,162.00
32 276,724.00 192,233.00
33 296,351.00 200,002.00
34 316,358.00 207,371.00
35 336,250.00 214,223.00
36 355,295.00 220,423.00
37 372,495.00 225,819.00
38 386,588.00 230,249.00
39 396,097.00 233,554.00
40 424,338.00 235,599.00

evaluate a simple static response and that frequency can contribute to a small
increase of response magnitude, notice that A=w22 D 9:67 � 10�6. Nevertheless,
considering the first frequency bw=w1 D 1:5, which means that dynamic factor load
is close to the unity (resonance) and the response in this mode can contribute to
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Fig. 4.15 Solution obtained at time 0.01 s
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Fig. 4.16 Solution obtained at time 0.042 s

a significant increase of response magnitude, A=w21 D 3:78 � 10�3. Therefore all
natural frequencies, lower than frequencies of content load, should be included in
the mode superposition analysis. This concept can be clarified if considering that the
predicted results are obtained without the first frequency of the system, see Fig. 4.18.
In this case neither of solutions is close to the correct.

4.2 FE Matrices and Vectors for Planar Beams (2-D Beams)

4.2.1 Degrees of Freedom Identification

A plan beam is used to model a straight bar of an arbitrary cross-section, which can
deform not only in the axial direction but also in the transverse direction. Thus, in
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Fig. 4.18 Solution obtained using four frequencies without the first frequency of the system
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Fig. 4.19 Local and global coordinate systems in the 2-D beam element

a planar beam the finite element has three degrees of freedom per node at its local
coordinate system: displacement in the axial and in the transverse directions and
rotation about to the axis that is normal to the beam plane, as shown in Fig. 4.19.
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4.2.2 Local FE Matrices and Vectors for 2-D Beams

The element matrices for a 2-D beam finite element can be formulated combining
element matrices from truss and beam elements, without going through the detailed
process of formulating shape functions. Thus the element displacement vector for a
2-D beam finite element can be written as

u D

2
66666664

u1
u2
u3
u4
u5
u6

3
77777775

(4.48)

Figure 4.20 shows the local degrees of freedom of the truss, beam and the 2-D beam
finite elements. So, it can be seen that combining the truss and beam degrees of
freedom will get the degrees of freedom to the 2-D beam finite element. Table 4.6
establishes the number degrees of freedom equivalence among finite elements.

Table 4.6 can be used to construct 2-D beam matrices and vectors, it is possible to
see that the first degree of freedom for the 2-D beam element is also the first degree
of freedom of the truss finite element, and that the fourth degree of freedom of the
2-D beam corresponds to the second degree of freedom of the truss finite element.
Hence the value of the first row and the first column of the truss stiffness matrix in
Eq. (3.15), denoted by kt

11, should be placed into the position of the first row and
first column of the 6 � 6 local 2-D beam stiffness matrix, i.e.

kt
11 ! k11I kt

22 ! k44I kt
12 ! k14I kt

21 ! k41 (4.49)
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Fig. 4.20 Degrees of freedom in the local coordinate system of truss, beam and the 2-D beam
element

Table 4.6 Equivalence of
degrees of freedom

Truss Beam
Degrees of freedom 1 2 1 2 3 4
2-D beam 1 4 2 3 5 6

http://dx.doi.org/10.1007/978-3-319-17710-6_3
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and the 16 components of the beam stiffness matrix must be placed as follows:

kb
11 ! k22I kb

12 ! k23I kb
13 ! k25I kb

14 ! k16
kb
22 ! k33I kb

23 ! k35I kb
24 ! k36

kb
33 ! k55I kb

34 ! k56
kb
44 ! k66

(4.50)

Notice that due to the symmetry of the beam stiffness, in Eq. (4.49) there are only
ten components. So, the final 2-D beam stiffness can be written as

k D

2
6666666666664

kt
11 0 0 kt

12 0 0

0 kb
11 kb

12 0 kb
13 kb

14

0 kb
21 kb

22 0 kb
23 kb

24

kt
21 0 0 kt

22 0 0

0 kb
31 kb

32 0 kb
33 kb

34

0 kb
41 kb

42 0 kb
43 kb

44

3
7777777777775

(4.51)

Using the information from Eqs. (3.15) and (4.18) into Eq. (4.50) the stiffness
matrix for the 2-D beam is obtained

k D

2
666666666666666664

AE

`
0 0 �AE

`
0 0

0 EI
12

`3
EI
6

`2
0 �EI

12

`3
EI
6

`2

0 EI
6

`2
EI
4

`
0 �EI

6

`2
EI
2

`

�AE

`
0 0

AE

`
0 0

0 �EI
12

`3
�EI

6

`2
0 EI

12

`3
�EI

6

`2

0 EI
6

`2
EI
2

`
0 �EI

6

`2
EI
4

`

3
777777777777777775

(4.52)

The element mass matrix of the 2-D beam element can also be obtained in the
same way as the stiffness matrix, leading to

http://dx.doi.org/10.1007/978-3-319-17710-6_3
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m D

2
666666666666666664

A�`

3
0 0

A�`
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0 0

0
156

420
A�`

22

420
A�`2 0

54

420
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A�`2

0
22
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A�`2

4

420
A�`3 0

13

420
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420
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A�`

6
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A�`

3
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0
54

420
A�`

13

420
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156

420
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420
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0 � 13

420
A�`2 � 3

420
A�`3 0 � 22

420
A�`2

4

420
A�`3

3
777777777777777775

(4.53)

The same procedure can be applied to the force vector as well. Thus the total
nodal force vector becomes

f D

2
666666666666666664

p0`

2
C fcx1

q0`

2
C fcy1

q0`2

12
C mcz1

p0`

2
C fcx2

q0`

2
C fcy2

� q0`2

12
C mcz2

3
777777777777777775

(4.54)

4.2.3 Global FE Matrices and Vectors for 2-D Beams

Matrices formulated previously are for cases in which all structural elements of
a mechanical system have an orientation that is parallel to the reference global
system. Meanwhile, a real mechanical system comprises several structural elements
of different orientations joined together. Thus, before the assemblage process, all
the matrices must first be expressed in a common coordinate system, which is the
global coordinate system. Moreover, the coordinate transformation process is the
same described in Chap. 3 for truss structures.

http://dx.doi.org/10.1007/978-3-319-17710-6_3
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Fig. 4.21 Local and global coordinate systems in the 2-D beam element

Let’s assume that local nodes 1 and 2 of the finite element correspond to the
global nodes i and j, respectively. Furthermore, assume that the finite element is
defined in the x1 � x2 plane. The local displacements and rotations at each finite
element node may be projected into the global coordinate system .xiI i D 1; 2; 3/

leading to global displacement components
�

u.e/j I j D 1; 2; 3
�

, see Fig. 4.21. The

global displacements at one node in space should also have two components in the
x1 and x2 directions, and should be numbered sequentially, after which the global
rotation will be also numbered sequentially.

The coordinate transformation gives the relationship between the nodal displace-
ment vector ū, based on the local coordinate system, and the nodal displacement
vector u, for the same finite element, based on the global coordinate system
.xiI i D 1; 2; 3/.

u D T u (4.55)

with

u D

2
666666666664

u.e/1

u.e/2

u.e/3

u.e/4

u.e/5

u.e/6

3
777777777775

(4.56)
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and where T is the transformation matrix for the 2-D beam element

T D
�

R 0
0 R

�
(4.57)

where R is the 3 � 3 transformation matrix from the local coordinate system to the
global coordinate systems, which components are defined as

R D
2
4

cos .x1; x1/ cos .x1; x2/ cos .x1; x3/
cos .x2; x1/ cos .x2; x2/ cos .x2; x3/
cos .x3; x1/ cos .x3; x2/ cos .x3; x3/

3
5 D

2
4

l11 m12 0

l21 m22 0

0 0 1

3
5 (4.58)

Note that in Eq. (4.58) the third row and third column are easily computed,
once the local x3 direction is coincident with the global x3 direction. Assuming that
the smaller angle between x1 and x1 axes is denoted by ˛, is possible to write the
components of matrix R as

l11 D cos˛ D .x1/j � .x1/i
`

I m12 D cos .90 � ˛/ D sin˛ D .x2/j � .x2/i
`

(4.59)

l21 D cos .90C ˛/ D � sin˛ D .x2/j � .x2/i
`

I m22 D cos˛ D .x1/j � .x1/i
`

(4.60)

where the length of the element can be calculated by

` D
q�
.x1/j � .x1/i

	2 C �
.x2/j � .x2/i

	2
(4.61)

Equation (4.55) simply state that the global displacement at each node is equal
to the summation of all projections of the local displacements at each node into the
several global axes. Thus, using the transformation matrix T, the matrices for the
2-D beam element in the global coordinate system become

k D TTk T (4.62)

m D TTm T (4.63)

f D TT f (4.64)

Note that in these three equations there is no change in the dimension between the
matrices and vectors in the local and global coordinate systems.
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4.2.4 Fourth Discussion Example

Example 4.4: 2-D Structure Subjected to a Vertical Load
Consider the plane beam structure shown in Fig. 4.22. The structure is a planar
structure made with three beam members and a vertical downward force of 10 kN
is applied at the free vertex.

This structure is similar to the structure presented in Fig. 3.11, the only difference
is that the elements are joined together by welding such that both forces and
moments can be transmitted between members. Table 4.7 shows the dimensions
and material properties of the beam members in the structure.

Modelling
In the process of solving numerically this problem is important to perform the
discretization: numbering the finite elements and the nodes. The 2-D structure
is meshed using two-nodal beam elements in the ADINA program. Note that in
ADINA, as well as in many other software’s, a general beam element is the 3-D
beam element that will be formulated in the next section. Meanwhile, in ADINA is
possible to select the element sub-type 2-D that has the same degrees of freedom of
the 2-D beam element formulated in this section.

For the solution of the problem, 30 finite elements are used in the 2-D structure,
as shown in Fig. 4.23. Like all finite element meshes, the connectivity at the nodes
is very important because it provides the required connectivity among elements.
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1V 1 m

1 m

1x
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1 m
2 m

10K N

a b

Fig. 4.22 Beam structure with three beams: (a) support conditions; (b) force reactions

Table 4.7 Dimensions and mechanical properties of the truss members

Number of element Cross-sectional area [m2] Length [m2] Young’s modulus [GPa]

1 0.1 � 0.01 1 70
2 0.1 � 0.01

p
2 70

3 0.1 � 0.01 1 70

http://dx.doi.org/10.1007/978-3-319-17710-6_3
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Fig. 4.23 Finite element mesh of a 2-D structure with representation of loading and boundary
conditions used within the numerical model
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Fig. 4.24 Orientation of beam local axis in the ADINA [6]

In Fig. 4.23 letters B and C are used to represent the boundary conditions applied
at nodes 22 and 1, respectively. Letter B is associated with a support that only
restrains the displacement in the x direction while letter is associated with a support
that fixes both displacements but left the rotation free. In Fig. 4.23 it can also be
seen that the node 12 is not connected to the structure. This node appears because
an auxiliary point was created and, therefore, the mesh procedure creates also a
node in this position. Nevertheless, once this node has not mechanical properties
associated, it will not be considered in the numerical analysis. The auxiliary point
is needed because the cross section needs to be oriented within the x-y plane.

It is important to note the local x2 and x3 axes when specifying the dimensions
of the cross sections. ADINA denotes the cross section beam axes by letters (t) and
(s) and the r-axis is along the axial direction of the beam. The r-s plane is formed by
the two end nodes, node i and j, of the beam and the auxiliary node. The width and
height of a beam element are illustrated in Fig. 4.24.
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Fig. 4.25 Representation of the beam cross-section orientation in the ADINA program

Fig. 4.26 Deformation plot of 2-D structure: (a) contour plot of the x displacement; (b) contour
plot of the y displacement

Cross section orientations are plotted in Fig. 4.25. The ADINA program allows
representing graphically the orientation of the element cross-section by changing
mesh attributes.

Results and Discussion
Using the numerical model presented in Fig. 4.23, the finite element equation is
solved by ADINA and a deformation plot showing how the 2-D beam actually
deforms under the transversal load is shown in Fig. 4.26. The magnitude of the
deformation is magnified 208 times, as the magnitude of the displacement is too
small for viewing process. The maximum absolute value of x-displacement is of
0.1413 mm and the y-displacement is of 0.6824 mm, both displacements are located
in the loading point.

Another important result obtainable from a numerical analysis would be the
stresses that appear with this particular loading condition. However, because the
beam bending stress depends on the point in which the evaluation needs to
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Fig. 4.27 Axial effort plot of 2-D structure: (a) contour plot; (b) element line plot

Fig. 4.28 Shear effort of 2-D structure: (a) contour plot; (b) element line plot

be performed, the ADINA does not account for the beam stress representation.
Nevertheless, if the efforts are known, the stress can be computed from classic
formulas of mechanics. Figures 4.27, 4.28 and 4.29 show the axial, shear and
bending efforts calculated in the 2-D structure. These results can be used to obtain
stresses at different points of the cross-section of the beams. From the results
presented in Fig. 4.27 is possible to evaluate maximum and minimum axial stresses,
i.e.

� D 13992

0:1 � 0:01 D 13:992 MPaI � D � 9893

0:1 � 0:01 D �9:893 MPa (4.65)



146 4 Finite Element Method for Beams

Fig. 4.29 Bending moment of 2-D structure: (a) contour plot; (b) element line plot

and the maximum bending stress at point C can be evaluated from Fig. 4.29 as

� D 75:31 � 0:05�
0:01 � 0:13	 =12 D 4:5186 MPa (4.66)

which means that the maximum combined normal stress at point C is defined as

� D 13992

0:1 � 0:01 C 75:31 � 0:05�
0:01 � 0:13	 =12 D 18:5106 MPa (4.67)

4.3 FE Matrices and Vectors for 3-D Beams

A 3-D beam finite element is used to model a straight bar of an arbitrary cross-
section, which can deform not only in the axial direction but also in the directions
perpendicular to the axis of the bar. In this case the structure is able of carrying both
axial and transverse forces, as well as moments. Therefore, a 3-D beam element
is seen to have the properties of truss, beam and shaft elements. The 3-D element
developed here is also known in many commercial software packages as the general
beam element, or even simply the beam element. Commercial software packages
usually offer both 2-D beam and 3-D beam elements, but 3-D beam structures are
more often used in actual engineering applications. A three-dimensional spatial
structure can practically take forces and moments of all directions. Hence, it can
be considered to be the most general form of element with a one-dimensional
geometry.
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Fig. 4.30 Illustrative
example of a space beam
structure

Beam elements are applicable for the analysis of skeletal type systems of
both planar beams (2-D beams) and space beams (3-D beams). A typical three-
dimensional structure is shown in Fig. 4.30. Beam members in structure are joined
together by welding so that both forces and moments can be transmitted between
members.

In this book, it is assumed that the beam elements have a uniform cross
sectional area. If a structure with varying cross-section is to be modeled using the
formulation in this chapter, then it is advised that the structure should be divided
into several elements with a constant cross-sectional area, so as to simulate the
varying cross-section. Of course, if the variation in the cross-section is too severe
for accurate approximation, the equations for a varying cross-sectional area should
be formulated. This can be done, without much difficulty using the concepts and
procedure given in this chapter. The basic concepts, procedures and formulations
can also be found in many existing textbooks.

4.3.1 Degrees of Freedom Identification

Let’s assume that local nodes 1 and 2 of the finite element correspond to the
global nodes i and j, respectively, as shown in Fig. 4.31. The local displace-
ments and rotations at each finite element node may be projected into the global
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Fig. 4.31 Local and global coordinate systems in the 3-D beam element

coordinate system .xiI i D 1; 2; 3/ leading to global displacement components�
u.e/j I j D 1; 2; : : : ; 12

�
. The global displacements at one node should have com-

ponents in the x1, x2 and x3 directions, and should be numbered sequentially,
after which the global rotations will be also numbered sequentially. Therefore,
for the element with two nodes represented in Fig. 4.31, there are 12 degrees of
freedom.

The element displacement vector for a 3-D beam element in local coordinate
system can be written as

u D �
u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

�T
(4.68)

4.3.2 Local FE Matrices and Vectors for 3-D Beams

The element matrices can be obtained by the process used previously to define the 2-
D element matrices. So, combining the truss, shaft and beams degrees of freedom is
possible to get the degrees of freedom of the 3-D beam finite element. Table 4.8
establishes the number degrees of freedom equivalence among finite elements.
Notice that because the beam element can be on planes x1 � x2 and x1 � x3 the
last two columns of Table 4.8 are related with the beam degrees of freedom on these
planes. Moreover, Iy and Iz are the moment of inertia of the cross-section of the
beam with respect to the x2 and x3 axes, respectively.

The development of a shaft finite element is very similar to the development of
a truss finite element. The only difference is that the axial displacement is replaced
by the angular rotation, and the axial force is replaced by torque. Thus, the stiffness
matrix of a shaft finite element can be defined by Eq. (3.15) of Chap. 3 replacing the

http://dx.doi.org/10.1007/978-3-319-17710-6_3
http://dx.doi.org/10.1007/978-3-319-17710-6_3
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Table 4.8 Equivalence of degrees of freedom for the 3-D beam

Truss Shaft
Beam
x1 � x2 .Iz/

Beam
x1 � x3

�
Iy

	
Degrees of freedom 1 2 1 2 1 2 3 4 1 2 3 4
3-D beam 1 7 4 10 2 6 8 12 3 5 9 11

element tensile stiffness AE/` by the torsional stiffness GJ/`, where G is the shear
modulus and J is the polar moment of inertia of the cross-section of the structure,
i.e.

k
s D GJ

`

�
1 �1

� 1 1

�
(4.69)

From Table 4.8 it can be seen that the value of the first row and the first column
of the shaft stiffness matrix in Eq. (4.69), denoted by k

s
11, should be placed into the

position of the fourth row and fourth column of the 12�12 local 3-D beam stiffness
matrix, i.e.

k
s
11 ! k44I k

s
22 ! k1010I k

s
12 ! k410I k

s
21 ! k104 (4.70)

and using the remaining information of Table 4.8, is possible to build the element
stiffness as follows:

k D
2
666666666666666666666666666666666664

AE

`
0 0 0 0 0 � AE

`
0 0 0 0 0

0 EIz
12

`3
0 0 0 EIz

6

`2
0 �EIz

12

`3
0 0 0 EIz

6

`2

0 0 EIy
12

`3
0 �EIy

6

`2
0 0 0 �EIy

12

`3
0 �EIy

6

`2
0

0 0 0
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`2
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2

`
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`
0 0 0 0 0
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`
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0 �EIz
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`3
0 0 0 �EIz

6

`2
0 EIz
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`3
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`2

0 0 �EIy
12

`3
0 �EIy

6

`2
0 0 0 EIy
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`3
0 EIy

6

`2
0
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`
0 0 0 0 0

GJ

`
0 0

0 0 �EIy
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`
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`
0
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6

`2
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2

`
0 �EIz

6

`2
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4

`
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777777777777777777777777777777777775

(4.71)
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The same procedure is used to obtain the element mass matrix of the 3-D beam,

m D

2
666666666666666666666664

A�`
3

0 0 0 0 0
A�`
6

0 0 0 0 0

0 156
420

A�` 0 0 0 22
420
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13
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A�` 0 �
22
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A�` 0 13
420

A�`2 0

0 0 0 35
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310
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0 0 �
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(4.72)

where

r2 D J

A
(4.73)

in which J is the polar moment of inertia of the cross-section of the beam with
respect to the x1 axis.

4.3.3 Global FE Matrices and Vectors for 3-D Beams

The transformation of the previous element matrices into the global coordinate
system it is important, because is necessary accounting the several orientations of
all local coordinate systems that are in a structure. The coordinate transformation
gives the relationship between the nodal displacement vector ū based on the local
coordinate system and the nodal displacement vector u, for the same finite element,
based on the global coordinate system .xiI i D 1; 2; 3/.

u D T u (4.74)

with

u D �
u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

�T
(4.75)

where T is the transformation matrix for the truss element, given by

T D

2
664

R 0 0 0
0 R 0 0
0 0 R 0
0 0 0 R

3
775 (4.76)
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and R is the 3 � 3 transformation matrix from the local coordinate system to the
global coordinate systems, whose components are

R D
2
4

cos .x1; x1/ cos .x1; x2/ cos .x1; x3/
cos .x2; x1/ cos .x2; x2/ cos .x2; x3/
cos .x3; x1/ cos .x3; x2/ cos .x3; x3/

3
5 D

2
4

l11 m12 n13
l21 m22 n23
l31 m32 n33

3
5 (4.77)

To evaluate the direction cosines, the three-dimensional orientation of the beam
element need to be defined, as for the case of 2-D beams. The two nodes of the
finite element are used to define the local x1 axis. However, the orientation of axes
x2 and x3 can still rotate around the axis of the beam. To prevent this problem, one
additional point in the local coordinate must be defined. ADINA program uses this
auxiliary point to specify the cross-section dimensions of the beam, as point out in
Fig. 4.24. This point can be selected according the desired orientation of the beam,
but should never be selected at the local x1 axis. More details about the computation
of these direction cosines can be view in the literature [5].

Using the transformation matrix, T, the matrices for space finite elements in the
global coordinate system can be obtained as

k D TTk T (4.78)

m D TTm T (4.79)

f D TT f (4.80)

4.3.4 Fifth Discussion Example

Example 4.5: 3D Structure
Consider the beam structure shown in Fig. 4.32. The structure is made with three
beam members and two forces of 10 kN and 15 kN are applied at the free vertex.
The structure dimensions are presented in the figure and the material has a Young’s
modulus of 210 GPa and a Poisson’s ratio of 0.3.

Modelling
The 3-D structure is meshed using two-nodal beam elements in the ADINA
program, 30 finite elements are used in the 3-D structure, as shown in Fig. 4.33. The
letter B is used, once more, to represent the boundary conditions applied at nodes 11,
21 and 31. Letter B is associated with a support that restrains the displacement in the
three axes directions and at node 1 it is represented the resultant load. As explained
before in Fig. 4.24, ADINA denotes the cross section beam axes by letters (t) and
(s) and the r-axis is along the axial direction of the beam. The r-s plane contains the
two end nodes, node i and j, of the beam and the auxiliary node. Nevertheless, the
s-axis may be defined using the global coordinates of a vector that is aligned with
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Fig. 4.32 A 3-D beam
structure

3 m3 m

4 m

x3

x2
x1

15 kN10 kN

0.2 m
0.1 m

Fig. 4.33 Finite element mesh of a 3-D structure with representation of loading and boundary
conditions used within the numerical model

the s-axis. Figure 4.34 shows the orientation of cross section for the three beams.
The cross section orientation that is plotted in Fig. 4.34 was obtained using vector�
0 0 1

�T
for the generation of all elements that are in the x � y plane and the vector�

1 1 0
�T

for the beam that is parallel to the z axis.

Results and Discussion
Using the numerical model presented in Fig. 4.33, the finite element equation is
solved by ADINA and a deformation plot showing how the 3-d beam deforms under
the load is presented in Fig. 4.35. The magnitude of the deformation is magnified
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Fig. 4.34 Representation of the beam cross-section orientation in the ADINA program

40,000 times, because the magnitude of the displacement is too small for viewing
process. The maximum absolute value of displacement is of 0.01286 mm and is
located at the loading point.

Note that because the force of 15 kN is applied in the y direction, the y-
displacement is higher than the x-axis displacement, but they have the same order.
Another important result that could be obtained is the stress associated with this
particular loading condition, as in the case of Example 4.3.

4.4 Discussion

In the formulation of the matrices for the previous 2-D and 3-D beam finite elements,
the superposition of the truss, shaft and beam displacements has been used. This
technique assumes that the axial effects are not coupled with the bending effects,
meaning that axial forces applied on the finite element will not cause any bending
deformation and the bending moments will not result in any axial displacement.
These kind of assumptions are not valid for slander structures where buckling
instability may arise. In practice, buckling is characterized by a sudden failure
of a structural member subjected to high compressive stress, where the actual
compressive stress at the point of failure is lower than the ultimate compressive
stresses that the material is able of withstanding. For these kind of analysis it
is necessary accounting for the axial-bending coupling effect, which leads to an
additional matrix, called geometric stiffness matrix, dependent on the axial load.
Moreover, the axial-bending coupling also appears in curved structures. Thus, in
such cases, if the curvature is very large resulting in a significant coupling effect, a
finer mesh should be used to provide the necessary accuracy.
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Fig. 4.35 Deformation plot of 2-D structure: (a) contour plot of the x displacement; (b) contour
plot of the y displacement

All the beam elements formulated previously are on the so-called Euller-
Bernoulli beam theory suitable for thin beams with a thickness to span ratio smaller
than 1/20. For thick, or thin beams of large thickness to span ratio, the corresponding
thick beams theories should be used to develop thick beams elements. The procedure
of developing thick beams is very similar to that used to develop thick plates, which
will be discussed later in Chap. 6.

4.5 Review Questions

1. Consider the beam in Fig. 4.36. The beam has a constant cross-section area,
denoted by A, and it is fixed at one end and loaded by a distributed constant body
force in the transversal direction, as shown. The material of the bar is isotropic
with Young’s modulus E.

(a) Solve for the exact displacement response of the structure.
(b) Using Eqs. (4.18) and (4.21) compute the maximum value of trans versal

displacement and compare with the solution of question a.

http://dx.doi.org/10.1007/978-3-319-17710-6_6
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A

Fig. 4.36 Beam structure with a uniform cross-section

Fig. 4.37 Frame structure used for lifting loads

(c) Using Eqs. (4.18) and (4.20) compute the first two natural frequencies of
beam.

(d) Assume that the structure, unloaded and in the undeformed stage, is sub-
jected to an impact end load of 300 N. Perform a transient analysis for a
time of 0.5 s. Show the time history of beam tip displacement.

2. How many degrees of freedom does a two-node 2D beams finite element has in
its local coordinate system, and in the global coordinate system? Does rotational
degrees of freedom undergo any trigonometric transformation?

3. Consider the structure in Fig. 4.37, used for lifting loads. All the structural
components are of steel with a Young modulus of 210 GPa. The AB component
is tubular and has an external diameter of 40 mm and a thickness of 3 mm, while
the BD component is a square tube wit external dimensions of 10 � 10 mm2 and
thickness of 2 mm. The AC component is an I-beam, as shown, with a uniform
thickness: AD length of 0.75 m; DC length of 0.25 m; AB length of 0.5 m.
Compute maximum displacement and maximum stress.
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Chapter 5
Finite Element Method for Membranes
(2-D Solids)

The development of finite element equations for the stress analysis of two dimen-
sional structures subjected to external loads that are applied within their 2-D
geometrical plane will be presented in this chapter. The basic concepts, procedures
and formulations can also be found in many existing textbooks [1–4]. The element
developed is called membrane or 2D solid element. The finite element solution
will solve only the selected mathematical model and that all assumptions in this
model will be reflected in the predicted response. Thus, the choice of an appropriate
mathematical model is crucial and completely determines the insight into the
physical problem that we can obtain by this kind of analysis.

5.1 Introduction

In engineering applications there are a great number of practical problems in which
the analyst can idealize the use of bidimensional models and, as discussed in
Chap. 1, there are several mathematical models that can be used to solve them.
For instance, if there is a plate structure with a loading acting in the plane structure,
as presented in Fig. 5.1a, the solution of stress and strain states can be obtained
using 2D solid elements under plane stress conditions. Whereas to model the effect
of the water pressure on a dam, as shown in Fig. 5.1b, there is a need of using
2D solid elements under plane strain conditions. Plane stress conditions are usually
applied to structures that have a relatively small thickness when compared to its
other dimensions, as the case of the structure presented in Fig. 5.1a. Whereas
plane strain conditions are considered in situations in which the thickness of the
structure is relatively large as compared to its other dimensions, and the loading is
uniform along the thickness direction. In both conditions, the system equation can be

© Springer International Publishing Switzerland 2015
M.A. Neto et al., Engineering Computation of Structures: The Finite
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a b
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f1
f1 (x2)

f2

Fig. 5.1 Typical 2D problems in: (a) plane stress conditions; (b) plane strain conditions

drastically simplified, as showed in Chap. 1. Moreover, formulations of plane stress
and plane strain conditions are very similar, the main difference is related with the
material stiffness matrix. The geometrical shape of a 2D solid finite element can
be triangular, rectangular or quadrilateral with straight or curved edges. The order
of 2D solid elements can be determined by the order of the shape functions used
within the displacement numerical approximations, as for the case of any other
kind of finite element. A finite element is called linear if its shape functions are
linear, quadratic if those functions are quadratic and are called high order if their
shape functions are cubic or of an higher order. The edges of linear elements are
straight while in quadratic elements they can be curved. In engineering practice,
the most often used elements are linear. Quadratic finite elements are also used
in situations that require high stress accuracy. Higher order elements have also
been developed for specific problems, but they are less used. 2D solid elements
can only deform in the plane where the geometrical model is defined, so let’s
assume that the geometrical model is defined in the x1 � x2 plane. For plane strain
conditions the thickness of the true structure is not important and is, normally,
treated as a unit quantity uniformly throughout the 2D model. However, for plane
stress conditions, the thickness is an important parameter changing the stiffness
and the stress level. Within this chapter it is assumed that all the structures have a
uniform thickness h. Nevertheless, if the structure has a non uniform thickness, the
numerical model may be created by dividing the original model into parts of uniform
thickness, where in elements of uniform thickness can be used. Alternatively,
formulation of elements with varying thickness can also be easily formulated. The
equations of motion for 2D finite elements are more complex than those for the
1D finite elements, essentially, because of the higher dimension. Meanwhile, the
procedure for developing these equations is very similar to that used at the 1D truss
elements, with the following three-step procedure: (1) construction of the shape
functions matrix; (2) formulation of the strain matrix; (3) calculation of the element
matrices.

http://dx.doi.org/10.1007/978-3-319-17710-6_1
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5.2 2D-Solid Linear Triangular Elements

The formulation of the linear triangular 2D-solid element is the simplest formulation
among all the 2D solid elements, and is also the less accurate compared to
linear quadrilateral elements. Nevertheless, linear triangular finite elements are a
very useful element in the adaptivity of complex geometries. Moreover, triangular
elements are normally used in the mesh of 2D models involving complex geometries
with acute corners. In addition, the triangular configuration with the simplest
topological feature makes it easier to develop meshing processors.

5.2.1 Degrees of Freedom Identification

Consider a 2D geometrical model of a rectangular structure in the x1 � x2 plane,
shown schematically in Fig. 5.2, the 2D domain is divided in a proper manner
into a number of triangular elements. In a mesh of linear triangular elements,
each triangular element has three nodes and three straight edges. Consider now a
triangular element of thickness h, shown in Fig. 5.3, the element nodes are numbered
counter-clockwise. In the 2D solid finite elements the displacement field has two
components (u1, u2) and hence each node has two degrees of freedom. Since a linear

Fig. 5.2 Rectangular domain
meshed with triangular
elements

Fig. 5.3 A linear triangular
finite element x2, u2

x1, u1

1 11(x1, x2)

2 22(x1, x2)

3 33(x1, x2)

(u1, u2)

(u3, u4)

(u5, u6)

A

fs1

fs2
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Fig. 5.4 Graphical representation of the triangular coordinates

triangular element has three nodes, the total number of degrees of freedom of a linear
triangular finite element is six.

The vector of nodal displacements is arranged in the following order:

u D �
u1 u2 u3 u4 u5 u6

�T

„ƒ‚…
displacements
at node 1

„ƒ‚…
displacements
at node 2

„ƒ‚…
displacements
at node 3

(5.1)

The location of nodes is defined by their Cartesian coordinates (xi
1, xi

2) for i D 1,2,3,
but they can also be located in terms of a triangular coordinate parametric system
denoted by �1, �2 and �3. In the literature these parameters have a great number
of names: natural coordinates; area coordinates; barycentric coordinates; shape
function coordinates; etc. in this chapter the name triangular coordinates is used
to emphasize the close association with this particular geometry.

The equation �i D cte represent a set of straight lines parallel to the side opposite
to the ith corner, as shown in Fig. 5.4. The triangular sides are described by the
triangular coordinates: �3 D 0 (side of nodes 1 and 2); �1 D 0 (side of nodes 2
and 3); �2 D 0 (side of nodes 3 and 1). Thus, the three corners have the following
triangular coordinates: 1(1, 0, 0); 2(0, 1, 0); 3(0, 0, 1). The triangular coordinates are
not independent because they verify the following relation:

�1 C �2 C �3 D 1 (5.2)
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The relation between Cartesian and triangular coordinates is defined as

x1 D x11�1 C x21�2 C x31�3
x2 D x12�1 C x22�2 C x32�3

(5.3)

which means that Cartesian coordinates of any point within the finite element can
be obtained from the knowledge of its triangular coordinates and the Cartesian
coordinates of the element nodes. Equations (5.2) and (5.3) can be rewritten in a
matrix form as

2
4
1

x1
x2

3
5 D

2
4
1 1 1

x11 x21 x31
x12 x22 x32

3
5
2
4
�1
�2
�3

3
5 (5.4)

Assuming that element area is different of zero, Eq. (5.4) may be inverted as

2
4
�1
�2
�3

3
5 D 1

2A

2
4

x21x
3
2 � x31x

2
2 x22 � x32 x31 � x21

x31x
1
2 � x11x

3
2 x32 � x12 x11 � x31

x11x
2
2 � x21x

1
2 x12 � x22 x21 � x11

3
5
2
4
1

x1
x2

3
5

D 1

2A

2
4
2A23 Y23 X32
2A31 Y31 X13
2A12 Y12 X21

3
5
2
4
1

x1
x2

3
5 (5.5)

with

Xjk D xj
1 � xk

1I Yjk D xj
2 � xk

2I Ajk D xj
1x

k
2 � xk

1x
j
2I

A D �
x21x

3
2 � x31x

2
2

	C �
x31x

1
2 � x11x

3
2

	C �
x11x

2
2 � x21x

1
2

	 (5.6)

Where A is the triangle area, Ajk is the area subtended by corners j, k and the origin
of the Cartesian system. When the origin of the Cartesian system is taken at the
centroid of the triangle it follows that: A23 D A31 D A12 D A=3.

Equation (5.4) can be used to evaluate partial derivatives, as

@x1
@�i

D xi
1I
@x2
@�i

D xi
2 (5.7)

While Eq. (5.5) can be used to evaluate the inverse partial derivative, as

@�i

@x1
D Yjk

2A
I @�i

@x2
D Xkj

2A
(5.8)

Where j and k denote the sequential permutation of index i. For instance, if i D 2,
then j D 3 and k D 1. Thus, the derivatives of a function f (�1, �2, �3) with respect to
variables x1 and x2 follows the application of the chain rule derivative, as
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(5.9)

5.2.2 FE Approximation of the Displacement

The displacement field ũ it will be a function of coordinates (x1, x2) and, the
displacement at any point in the element, is expressed using the displacement at
the nodes and the shape functions, i.e.

Qu .x1; x2/ D N .x1; x2/ u (5.10)

where N is the matrix of shape functions, defined as

N D
�

N1 0 N2 0 N3 0

0 N1 0 N2 0 N3

�
(5.11)

in which Ni .i D 1; 2; 3/ are the shape functions corresponding to the three nodes of
the triangular finite element. So, Eq. (5.10) can be written explicitly as

Qu1 .x1; x2/ D N1 .x1; x2/ u1 C N2 .x1; x2/ u3 C N3 .x1; x2/ u5
Qu2 .x1; x2/ D N1 .x1; x2/ u2 C N2 .x1; x2/ u4 C N3 .x1; x2/ u6

(5.12)

Note that because the two components are independent from each other, each
displacement component at any point is approximated by an interpolation from
the correspondent nodal degrees of freedom using the shape functions. In the next
section, the shape functions for triangular finite elements will be constructed using
triangular coordinates.

5.2.3 Shape Functions for Triangular Elements

The procedure of determining the shape functions for triangular finite elements
follows the standard procedure described in Sect. 2.3.3 of Chap. 2, by starting with
an assumption of the displacements using polynomial basis functions with unknown
constants. After which, these unknown constants are determined using the nodal
displacements at the nodes of element.

http://dx.doi.org/10.1007/978-3-319-17710-6_2
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Another alternative procedure and effective method for creating shape functions
for triangular elements is to use the triangular coordinates. The use of these
coordinates will immediately lead to the shape functions. That is, Ni D �i for
i D 1; 2; 3, and the displacement field at an arbitrary point p(�1, �2, �3) is defined as

� Qu1 .�1; �2; �3/
Qu2 .�1; �2; �3/

�
D
�
�1 0 �2 0 �3 0

0 �1 0 �2 0 �3

�

2
66666664

u1
u2
u3
u4
u5
u6

3
77777775

D N .�1; �2; �3/u (5.13)

5.2.4 FE Approximation of Strain

As discussed in previous chapter, after computing shape functions is possible
to obtain others quantities, namely the relationship between the strain and the
deflection described in Eq. (1.133) of Chap. 1, as the derivative of the displacement
field with respect x1 and x2,

2
4

Q"11
Q"22
Q"12

3
5 D

2
4
@=@x1 0

0 @=@x2
@=@x2 @=@x1

3
5
� Qu1

Qu2
�

(5.14)

Using the information in Eqs. (5.13) and (5.8) is possible to rewrite Eq. (5.14),
as

"11 D @�1

@x1
u1 C @�2

@x1
u3 C @�3

@x1
u5 D Y23

2A
u1 C Y31

2A
u3 C Y12

2A
u5

"22 D @�1

@x2
u2 C @�2

@x2
u4 C @�3

@x2
u6 D X32

2A
u2 C X13

2A
u4 C X21

2A
u6

"12 D @�1

@x2
u1 C @�2

@x2
u3 C @�3

@x2
u5 C @�1

@x1
u2 C @�2

@x1
u4 C @�3

@x1
u6

D X32
2A

u1 C X13
2A

u3 C X21
2A

u5 C Y23
2A

u2 C Y31
2A

u4 C Y12
2A

u6

(5.15)

Or in a matrix form, as

2
4
"11
"22
"12

3
5 D 1

2A

2
4

Y23 0 Y31 0 Y12 0

0 X32 0 X13 0 X21
X32 Y23 X13 Y31 X21 Y12

3
5

2
66666664

u1
u2
u3
u4
u5
u6

3
77777775

() © D Bu (5.16)

http://dx.doi.org/10.1007/978-3-319-17710-6_1
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where B is the strain-displacement matrix of the triangular finite element. Note
that this matrix is constant over the element, thus the linear triangular elements
are also referred to as a constant strain elements or constant stress elements. In
practice, stress or strain varies across the structure, thus the use of coarse meshes
of linear triangular elements will result in a rather inaccurate stress or strain
distribution.

5.2.5 Element Matrices

The stiffness matrix for finite element can be obtained substituting Eq. (5.16) into
(2.49) from the Chap. 2, leading to

k D
Z

�e

BTc B d�e D
Z

A

0
@

hZ

0

dx3

1
ABTc B dA D

Z

A

h BTc B dA (5.17)

where the material constant matrix c has been given by Eqs. (1.35) and (1.36) of
Chap. 1, respectively, for the plane stress and plane strain problems. Since the strain
matrix B is a constant matrix, as shown in Eq. (5.16), and the thickness of the
element is assumed to be constant, the integration of Eq. (5.19) can be carried out
very easily, which leads to

k D h A BTc B (5.18)

where A denotes the surface element area.
To evaluate the mass matrix, Eq. (5.13) is substituted into Eq. (2.45), leading to

m D
Z

�e

�N
T
N d�e D

Z

A

hZ

0

dx3 �N
T
N dA D

Z

A

h�N
T
N dA (5.19)

For finite elements with a constant thickness and density, Eq. (5.19) yields

m D h�
Z

A

2
666666664

N1N1 0 N1N2 0 N1N3 0

0 N1N1 0 N1N2 0 N1N3
N2N1 0 N2N2 0 N2N3 0

0 N2N1 0 N2N2 0 N2N3
N3N1 0 N3N2 0 N3N3 0

0 N3N1 0 N3N2 0 N3N3

3
777777775

dA (5.20)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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The integration of all the terms in the mass matrix can be carried out by simply
using a mathematical formula developed by Eisenberg and Malvern [5]:

Z

A

�m
1 �

n
2�

p
3 dA D mŠ nŠ pŠ

.m C n C p C 2/Š
2A (5.21)

where �i .i D 1; 2; 3/ are the shape function of triangular elements. Therefore, the
element mass matrix is defined as

m D �hA

12

2
66666664

2 0 1 0 1 0

0 2 0 1 0 1

1 0 2 0 1 0

0 1 0 2 0 1

1 0 1 0 2 0

0 1 0 1 0 2

3
77777775

(5.22)

The nodal force vector for 2D solid elements can be obtained using Eqs. (2.51) and
(2.52), assuming that the element is loaded by a constant distributed force fs on the
edge 2–3 as shown in Fig. 5.3, leads to the following equation

f D
Z

`23

NT
2�3fs d` D

Z

`2�3

2
66666664

0 0

0 0

N2 0

0 N2
N3 0

0 N3

3
77777775

�
fs1
fs2

�
d` (5.23)

where `2�3 is the length of the edge 2–3. Because force fs is constant within the
element edge, the above equation becomes

f D 1

2
`2�3

2
66666664

0

0

fs1
fs2
fs1
fs2

3
77777775

(5.24)

The global finite element equation can be obtained by assembling the element
matrices by summing up the contribution from all the adjacent elements at the
shared nodes.

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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5.3 Isoparametric Representation

The procedure used in the last section, to formulate the element matrices of the
linear triangle, can be extended to formulate quadrilateral elements as well as higher
order triangles. Nevertheless, the use of this procedure encounters the following
difficulties:

• The construction of shape functions that satisfy consistency requirements for
higher order elements with curved boundaries becomes increasingly compli-
cated.

• Integrals that appear in the expressions of the element stiffness matrix and
consistent nodal force vector can no longer be evaluated in simple closed form.

These two drawbacks can be overcome through the concepts of isoparametric
finite elements and numerical integration, respectively. In fact, the linear triangle
presented in the previous section is also an isoparametric element although was not
originally derived busing such concept. Nevertheless, the two key Eqs. (5.4) and
(5.13) that define the triangle geometry and the displacement field, respectively,
confirm the main idea of isoparametric elements, illustrated in Fig. 5.5.

In Fig. 5.5 is evident that if the order of shape functions is higher than one
the geometry of the elements will no longer be straight. An alternative to the
isoparametric concept is the superparametric representation of triangular elements
as illustrated in Fig. 5.6. In this concept the triangular coordinates are used to define
the element geometry while the displacement field is defined by the shape function,
which in turn are expressed in terms of the triangular coordinates. For the linear
triangular element, defined in the previous section, shape functions and triangular
coordinates are coincident.

Meanwhile, if higher order triangular finite elements are developed using the
procedure illustrated in Fig. 5.6, while keeping straight sides, only the displacement
field is improved whereas the geometry remains the same. In this section, the
concept of isoparametric representation is introduced for two dimensional elements.

Triangular coordinates

z1, z2, z3

Shape functions

Ni

Geometry

1, x1, x2

Displacement
interpolation

u1, u2

Fig. 5.5 Isoparametric representation of triangular finite elements
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Triangular coordinates

z1, z2, z3

Shape functions

Ni

Geometry

1, x1, x2

Displacement
interpolation

u1, u2

Fig. 5.6 Superparametric representation of triangular finite elements

5.3.1 Isoparametric Formulation

The procedure presented in Fig. 5.6 can be generalized to an arbitrary two-
dimensional element with n nodes. In this context, two set of relations are required:
one to define the element geometry and the other to approximate the element
displacements, i.e.

1 D
nX

iD1
NiI x1 D

nX
iD1

Nix
i
1I x2 D

nX
iD1

Nix
i
2 (5.25)

u1 D
nX

iD1
Niu.i�1/�kC1I u2 D

nX
iD1

Niu.i�1/�kC2 (5.26)

where Eq. (5.25) is the interpolation equation of element geometry and Eq. (5.26)
is the interpolation equation for the displacement components. Note that in Eq.
(5.26) the index k is the number of degrees of freedom per node, in 2D-solid finite
elements is equal to two. Moreover, these two equations can be combined in a matrix
form as

2
666664

1

x1
x2
Qu1
Qu2

3
777775

D

2
666664

1 1 � � � 1

x11 x21 � � � xn
1

x12 x22 � � � xn
2

u1 u.2�1/�kC1 � � � u.n�1/�kC1
u2 u.2�1/�kC2 � � � u.n�1/�kC2

3
777775

2
6664

N1
N2
:::

Nn

3
7775 I k D 1; : : : ; df (5.27)

In Eq. (5.27) is possible to include additional rows if more variables of the
problem are interpolated by the same shape functions. For example, suppose that
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the thickness h and the temperature field T are both interpolated from the n node
values:

2
6666666664

1

x1
x2
Qu1
Qu2
Qh
QT

3
7777777775

D

2
6666666664

1 1 � � � 1

x11 x21 � � � xn
1

x12 x22 � � � xn
2

u1 u.2�1/�kC1 � � � u.n�1/�kC1
u2 u.2�1/�kC2 � � � u.n�1/�kC2
h1 h2 � � � hn

T1 T2 � � � Tn

3
7777777775

2
6664

N1
N2
:::

Nn

3
7775 I k D 1; : : : ; df (5.28)

Comparing Eqs. (5.27) and (5.28) it can be seen that the vector of shape functions
does not change.

5.3.2 Isoparametric Formulation for Triangular Elements

For the linear triangular element the shape functions are simple the triangular
coordinates. Nevertheless, to developing higher order elements we make use of
the triangular coordinates system. Figure 5.7 shows a general triangular element
of order m, which means that for each triangular coordinate direction the number of
nodes is of m C 1.

The node i(I, J, K) presented in Fig. 5.7 is located at the Ith node in the �1

direction, at the Jth node in the �2 direction, and at the node Kth in the �3 direction.
From Fig. 5.7 it can also be confirmed that at any node the following relation is
verified

I C J C K D m (5.29)

Using this information is possible to write the shape functions in the form [6, 7]

Ni D LI .�1/LJ .�2/LK .�3/ (5.30)

Where LI , LJ and LK are the Lagrange polynomials, and can be written as

Lˇ .�˛/ D .�˛ � .�˛/0/ .�˛ � .�˛/1/ � � � ��˛ � .�˛/ˇ�1
	

�
.�˛/ˇ � .�˛/0

	 �
.�˛/ˇ � .�˛/1

	 � � � �.�˛/ˇ � .�˛/ˇ�1
	 (5.31)

where ˛ D 1; 2; 3 and ˇ D I; J;K. For example, when ˛ D 1 and ˇ D I is possible
to write

LI .�1/ D .�1 � .�1/0/ .�1 � .�1/1/ � � � .�1 � .�1/I�1/
..�1/I � .�1/0/ ..�1/I � .�1/1/ � � � ..�1/I � .�1/I�1/

(5.32)
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i (I, J, K)

(0, m, 0)(m – 1, 1, 0)(m, 0, 0)

(0, m – 1, 1)

(2, 0, m – 2)

(1, 0, m – 1) (0, 1, m – 1)

(0, 0, m)

z1 = 0

z3 = 0

z2 = 0

z3

z2 z1

Fig. 5.7 A general triangular finite element of order m. The node i(I, J, K) is located at the Ith
node in the �1 direction, at the Jth node in the �2 direction, and at the node Kth in the �3 direction
[6]

The polynomial LI(�1) can be interpreted as the Ith basis polynomial of �1 for
constructing a polynomial interpolation of order I over I sample points.

Linear Triangle
The linear triangle studied in the Sect. 5.2 may be presented as an isoparametric
representation element, as

2
666664

1

x1
x2
Qu1
Qu2

3
777775

D

2
666664

1 1 1

x11 x21 x31
x12 x22 x32
u1 u.2�1/�2C1 u.3�1/�2C1
u2 u.2�1/�2C2 u.3�1/�2C2

3
777775

2
4

N1
N2
N3

3
5 D

2
666664

1 1 1

x11 x21 x31
x12 x22 x32
u1 u3 u5
u2 u4 u6

3
777775

2
4

N1
N2
N3

3
5 (5.33)

The shape functions are simply the triangular coordinates. In fact, the linear tri-
angle is the only triangular element that is both superparametric and isoparametric.

Quadratic Triangle
Consider a quadratic triangular element shown in Fig. 5.8, the element has six nodes:
three corner nodes and three mid-side nodes. The calculation of the first shape
function can be considered by noting that the location of node 1 is described by
the following coefficients
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Fig. 5.8 (a) Superparametric
representation of triangular
element; (b) isoparametric
representation of triangular
element

1 2

3

4

56

1 2
4

5

3

6

a b

I D 2I J D 0I K D 0 (5.34)

So, using Eq. (5.30) is possible to write

N1 D L2 .�1/ L0 .�2/L0 .�3/ (5.35)

with

L2 .�1/ D .�1 � .�1/0/ .�1 � .�1/1/
..�1/2 � .�1/0/ ..�1/2 � .�1/1/

I L0 .�2/ D 1I L0 .�3/ D 1 (5.36)

and

.�1/0 D 0 at nodes 2; 3 and 5

.�1/1 D 0:5 at mid-side nodes 4 and 6

.�1/2 D 1:0 at node 1
(5.37)

Note that in Eq. (5.36), L0 .�i/ i D 1; 2; 3 are equal to the unity due to the fact that
Lagrange basis of order 0 are always equal to the unity. Using Eqs. (5.36) and (5.37)
into Eq. (5.35) is possible to write

N1 D .�1 � .�1/0/ .�1 � .�1/1/
..�1/2 � .�1/0/ ..�1/2 � .�1/1/

D .�1 � 0/ .�1 � 0:5/
.1 � 0/ .1 � 0:5/ D .2�1 � 1/ �1 (5.38)

For the other two corner nodes 2, 3 we have exactly the same quantity:

N2 D L0 .�1/L2 .�2/L0 .�3/ D .2�2 � 1/ �2 (5.39)

N3 D L0 .�1/L0 .�2/L2 .�3/ D .2�3 � 1/ �3 (5.40)

For the mid-side node 4 the coefficients I, J and K are defined as

I D 1I J D 1I K D 0 (5.41)
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So, using Eq. (5.30) is possible to write

N4 D L1 .�1/ L1 .�2/L0 .�3/ (5.42)

with

L1 .�1/ D .�1�.�1/0/
..�1/1�.�1/0/ I

L1 .�2/ D .�2�.�2/0/
..�2/1�.�2/0/ I L0 .�3/

(5.43)

and

.�2/0 D 0 at nodes 1; 3 and 6

.�2/1 D 0:5 at mid-side nodes 4 and 5

.�2/2 D 1:0 at node 2
(5.44)

Using Eqs. (5.43) and (5.44) into Eq. (5.42) is possible to write

N4 D .�1 � .�1/0/
..�1/1 � .�1/0/

.�2 � .�2/0/
..�2/1 � .�2/0/

D 2�12�2 D 4�1�2 (5.45)

For the other two mid-side nodes 5, 6 we have exactly the same quantity:

N5 D L0 .�1/ L1 .�2/ L1 .�3/ D 4�2�3 (5.46)

N6 D L1 .�1/ L0 .�2/ L1 .�3/ D 4�1�3 (5.47)

Sides of element may have parabolically curved geometry defined the location of
the mid-nodes 4, 5 and 6. Thus, the triangular coordinates for a curved triangle
are no longer straight lines, but they form a curvilinear system as can be observed in
Fig. 5.8b. Moreover, using the same procedure is possible to develop cubic triangles.
The cubic triangle has a total of ten nodes, which nine are located at the sides and
the tenth node is an interior node.

5.3.3 Isoparametric Formulation for Rectangular Elements

Triangular elements are usually not preferred by many analysts nowadays, unless
there are difficulties with the meshing and re-meshing of models of complex
geometry [8]. The main reason is that triangular elements are usually less accurate
than rectangular or quadrilateral elements. Moreover, the formulation of equations
of rectangular elements is simpler than the formulation of equations for triangular
elements. In fact, the shape functions of rectangular elements can be formulated
easily due to their regularity within the rectangular shape of finite elements.
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h = −1

h = 1

z = −1
z = 1

a

h = −1

z = −1
z = 1

b

h = 1

h
h

z
z

a b

Fig. 5.9 Quadrilateral coordinates: (a) Straight sides; (b) curved sides

Fig. 5.10 Typical shape
functions for Lagrangian
elements [3]

(n, 0)(0, 0)

(0, m) (n, m)
1

1

i ([I, J])

Before presenting examples of rectangular elements, the appropriate natural
coordinate system for that geometry must be introduced. The natural coordinates for
a rectangular element are � and �, which are illustrated in Fig. 5.9, for both straight
sided and curved side rectangles. These are called quadrilateral coordinates and their
variation range is within �1 and C1 taking the value zero over the quadrilateral
medians. This particular variation facilitate the use of standard gauss integration
formulas.

Due to the regularity of nodes along both the natural coordinate directions, the
shape function of elements can be obtained by multiplying one-dimensional shape
functions with respect to the � and � directions, using the Lagrange interpolations
defined in Eq. (3.51) [3]. Thus, consider the element shown in Fig. 5.10 in which a
series of nodes, external and internal, are placed on a regular grid. It is required to
determine a shape function for the point indicated by the blue circle. Clearly, is the
product of a fifth-order and a fourth-order polynomial. The fifth-order polynomial
should have an unity value at all nodes of the second column, and zero elsewhere,
while the fourth-order polynomial should have an unity value on the top row of
nodes and zero elsewhere. This principle of shape construction satisfies all the inter-
element continuity conditions and gives the unity at the nodal point concerned.

http://dx.doi.org/10.1007/978-3-319-17710-6_3
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Thus in two dimensions, if we label the node i by its column and row numbers,
I, J, we have

Ni D N1D
I .�/N1D

J .�/ D Ln
I .�/ Lm

J .�/ (5.48)

where Ln
k are polynomials in one dimension and are known as Lagrange polynomi-

als, which can be written as

Ln
k .�/D

nC1Y

i D 1

i ¤ k

.� � �i/

.�k � �i/
D .� � �1/ � � � .� � �k�1/ .� � �kC1/ � � � .� � �n/ .� � �nC1/
.�k � �1/ � � � .�k � �k�1/ .�k � �kC1/ � � � .�k � �n/ .�k � �nC1/

(5.49)

The polynomial terms that are present in a situation where n D m are presented
on Fig. 5.11, which are based on the Pascal triangle. Is possible to verify that
the number of polynomial terms used is larger than those needed for a complete
expansion of order n.

Linear Rectangular Element
When linear rectangular elements are used, the domain is discretized into a number
of rectangular elements with four nodes and four straight edges, as shown in
Fig. 5.12a. The nodes in each element are numbered as 1, 2, 3 and 4 in a counter-
clockwise direction. Note also that, since each node has two DOFs, the total DOFs

1 1

a b

Complete
expansion of
order 3 

h nz n

z nh nz 3h 3

z 3h 2

z 2h 2

zh 2z 2h

zh

z

z 2

z 3

z 4 z 3h

z 2h 3

zh 3 h 4

h 3

h 2

h

Fig. 5.11 Polynomial terms appearing in a complete Lagrange expansion of a polynomial of order:
(a) three; (b) n [3]
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4 44 (x1, x2)

1 11 (x1, x2)

3 33 (x1, x2)

2 22 (x1, x2)
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b
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3 (+1, +1)

1 (−1, +1)

4 (−1, +1)
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2a 2a

2b

a a

b

b
c

(u1, u2) (u3, u4) (u1, u2) (u3, u4)

(u7, u8)

x2, u2

x1, u1

(u5, u6) (u7, u8) (u5, u6)

h

z

Fig. 5.12 Rectangular finite element and the coordinate system: (a) physical coordinates; (b)
natural coordinates [6]

for a linear rectangular element would be eight. The dimension of the element is
defined here as 2a � 2b � h. Moreover, it will be convenient to use a normalized
coordinate system, thus the natural coordinate system (Ÿ, ˜) with its origin located
at the center of the rectangular element is defined, see Fig. 5.12b.

The relationship between the physical coordinate (x1, x2), Fig. 5.12a, and the
local natural coordinate system (Ÿ, ˜), in Fig. 5.12b, is given by

� D x1 � xc
1

a
) d� D dx1

a

� D x2 � xc
2

b
) d� D dx2

b

(5.50)

Equation (5.50) defines a very simple coordinate transformation between physical
and natural coordinate systems for rectangular elements.

The linear rectangular finite element in Fig. 5.12b is the simplest member of the
rectangular family. It is defined by

2
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1

x1
x2
Qu1
Qu2

3
777775

D

2
666664

1 1 1 1

x11 x21 x31 x41
x12 x22 x32 x42
u1 u.2�1/�2C1 u.3�1/�2C1 u.4�1/�2C1
u2 u.2�1/�2C2 u.3�1/�2C2 u.4�1/�2C2

3
777775

2
664

N1
N2
N3
N4

3
775 (5.51)

Using Eqs. (5.48) and (5.49), the shape functions of the four-node linear element
shown in Fig. 5.12 can be given as
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Fig. 5.13 The nine-node
biquadratic quadrilateral
finite element
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(5.52)

These functions vary linearly on quadrilateral coordinate lines .� D ˙1/ and
.� D ˙1/ but are not linear polynomials as in the case of the three-node triangle. In
fact, From Eq. (5.52), it can easily be seen that all the shape functions are formed
using the same set of four basis functions:

1; �; �; �� (5.53)

which are linearly-independent. The latest basis, in Eq. (5.53), is obtained as the
product of two linear functions and because of that is called bilinear term.

Quadratic Rectangular Element
The nine node rectangular element shown in Fig. 5.13 is the next complete member
of the quadrilateral family. It has eight external nodes and one internal node. This
higher order rectangular finite element is the most widely used and it is defined by
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2
666664

1

x1
x2
Qu1
Qu2

3
777775

D

2
666666666666666664

1 x11 x12 u1 u2

1 x21 x22 u.2�1/�2C1 u.2�1/�2C2
1 x31 x32 u.3�1/�2C1 u.3�1/�2C2
1 x41 x42 u.4�1/�2C1 u.4�1/�2C2
1 x51 x52 u.5�1/�2C1 u.5�1/�2C2
1 x61 x62 u.6�1/�2C1 u.6�1/�2C2
1 x71 x72 u.7�1/�2C1 u.7�1/�2C2
1 x81 x82 u.8�1/�2C1 u.8�1/�2C2
1 x91 x92 u.9�1/�2C1 u.9�1/�2C2

3
777777777777777775

T

2
6666664

N1

N2
N3
:::

N9

3
7777775

(5.54)

This element is often referred to as the Lagrangian quadrilateral in the finite
element literature. Using Eqs. (5.48) and (5.49), the nine-node quadratic element
shown in Fig. 5.13 can be completely defined by

N1 D N1D
1 .�/N1D

1 .�/ D L21 .�/ L21 .�/ D 1
4
� .1 � �/ � .1 � �/

N2 D N1D
3 .�/N1D

1 .�/ D L23 .�/ L21 .�/ D � 1
4
� .1C �/ � .1 � �/

N3 D N1D
3 .�/N1D

3 .�/ D L23 .�/ L23 .�/ D 1
4
� .1C �/ .1C �/ �

N4 D N1D
1 .�/N1D

3 .�/ D L21 .�/ L23 .�/ D � 1
4
� .1 � �/ .1C �/ �

N5 D N1D
2 .�/N1D

1 .�/ D L22 .�/ L21 .�/ D � 1
2
.1C �/ .1 � �/ .1 � �/ �

N6 D N1D
3 .�/N1D

2 .�/ D L23 .�/ L22 .�/ D 1
2
� .1C �/ .1C �/ .1 � �/

N7 D N1D
2 .�/N1D

3 .�/ D L23 .�/ L21 .�/ D 1
2
.1C �/ .1 � �/ .1C �/ �

N8 D N1D
1 .�/N1D

2 .�/ D L21 .�/ L22 .�/ D � 1
2
� .1 � �/ .1 � �/ �

N9 D N1D
2 .�/N1D

2 .�/ D L22 .�/ L22 .�/ D �
1 � �2	 �1 � �2	

(5.55)

From Eq. (5.55) it can be seen that the shape functions are formed using a set of
nine basis functions, defined as

1; �; �; ��; �2; �2; �2�; ��2; �2�2 (5.56)

which are linearly independent. Moreover, because the basis functions in Eq. (5.56)
also so contain the linear basis functions, these shape functions can also be expected
to have linear field reproduction. The shape function associated with the internal
node 9 is called a bubble function, because of its geometric shape. The procedure
used for the nine-node element, can be also used to create any other Lagrange finite
element of higher order.

Meanwhile, the Lagrange type of elements is not very widely used, due to
the presence of the interior node. Figure 5.14 depicts a more widely used eight-
node variant element called serendipity quadrilateral, in which the interior node is
eliminated by kinematic constrains. The element in Fig. 5.14 has four corner nodes
and four mid-side nodes. The shape functions in the natural coordinates for this
quadratic rectangular element are given as [3]
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Fig. 5.14 The eight-node
serendipity element
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Fig. 5.15 Construction of the
N1 shape function of the
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(5.57)

Where (� i, �i) are the natural coordinates of node i, it is very easy to observe that the
shape functions posses the delta function property. Shape functions are constructed
by simple imposing the shape properties. For instance, for the corner node 1, where
�1 D �1 and �1 D �1, the shape function N1 has to pass the following three lines
as shown in Fig. 5.15.

Thus, to ensure that N1 vanish at remote nodes it is necessary to assure that shape
function contains the following functions:

1 � � D 0

1 � � D 0

� � � � � 1 D 0

(5.58)

and, therefore, N1 can then immediately be written as

N1 D C .1 � �/ .1 � �/ .�� � � � 1/ (5.59)
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Fig. 5.16 Construction of the
N5 shape function of the
eight-node serendipity
element [6]
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Where C is a constant that can be determined from the condition that it has to be
unity value at node 1, which gives

C D 1

.1 � .�1// .1 � .�1// .� .�1/ � .�1/ � 1/ D 1

4
(5.60)

And, finally, the shape function N1 can be written as

N1 D 1

4
.1C �1�/ .1C �1�/ .�1� C �1� � 1/ (5.61)

Which is the first equation of Eq. (5.57) when i D 1. Shape functions at all the other
corner nodes can be constructed in exactly the same manner.

To construct the shape function number 5 it is necessary to enforce that this
function must passes through the following three lines, as shown in Fig. 5.16.

1 � � D 0

1C � D 0

1 � � D 0

(5.62)

Thus, shape N5 can be immediately be written as

N5 D C .1C �/ .1 � �/ .1 � �/ (5.63)

Where C is a constant to be determined using the condition that is has to be unity at
node 5, which gives

C D 1

.1C 0/ .1 � 0/ .1 � .�1// D 1

2
(5.64)

Finally

N5 D 1

2

�
1 � �2	 .1C �5�/ (5.65)

Which is the second equation in Eq. (5.57) for i D 5.
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Fig. 5.17 Polynomial terms appearing in a serendipity-type expansion of a polynomial of order:
(a) three; (b) n [3]

To obtain the shape function for nodes 6 and 8, which should be coincident with
the third equation in Eq. (5.57) for i D 6 and i D 8, respectively. It can be easily
seen that all the shape functions can be formed using the same set of basis functions

1; �; �; ��; �2; �2; �2�; ��2 (5.66)

With this mode of generating shape functions for this class of elements, it is
immediately obvious that a fewer degrees of freedom are now necessary for a given
complete polynomial expansion. In Fig. 5.17 it can be seen the serendipity-type
expansion of a polynomial for a cubic element. However, the functions generated by
nodes placed only along the edges will not generate complete polynomials beyond
cubic order. For higher order it is necessary to supplement the expansion by internal
nodes or by the use of nodeless variables which contain appropriate polynomial
terms [3].

5.4 2D-Solid Quadrilateral Elements

As shown previously, the shape functions of rectangular finite elements can be
easily generated, hence the formulation of the equations for rectangular elements
is simpler compared to the triangular elements. Nevertheless, a rectangular element
has a structured geometry and, therefore, is difficult to use it to perform a mesh
discretization of a domain with an irregular geometry. A more general finite element
would be the so-called quadrilateral element, which can have non parallel edges. But
because a quadrilateral element may has an irregular shape, a question arise: how the
numerical integration of the mass and stiffness matrices of quadrilateral elements is
evaluated? Note that the Gauss integration scheme can only be applied on finite
elements with a normalized geometry. Thus, the Gauss integration scheme requires
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the map of a general quadrilateral into the rectangular normalized geometry. This
mapping is assured using the isoparametric formulation of an element. Once the
mapping is established, the rest of the finite element procedure is exactly the same
as that used for formulating rectangular finite elements. So, the simple three-step
procedure is applicable, and will be shown in the following sections.

5.4.1 FE Approximation of the Displacement

The displacement field within the element is expressed as an interpolation of the
nodal displacement using shape functions. So, the displacement vector is assumed
to have the form, i.e.,

Qu .x1; x2/ D N .x1; x2/ u (5.67)

Note that in Eq. (5.67) the shape function are dependent in the physical coordinates
(x1, x2). Nevertheless, as it has been seen in the previous section, the use of natural
coordinates will make the construction of the shape functions and the evaluation
of the matrix integration very much easier. So the mapping between physical and
natural coordinates is assured by Eq. (5.50). This kind of coordinate mapping
technique is one of the most often used techniques in the FEM, and it is very
powerful when used for developing elements of complex shapes.

The displacement vector u, in Eq. (5.67), is assumed to have the form

u D

2
66666666664

u1
u2
u3
u4
:::

u.n�1/�2C1
u.n�1/�2C2

3
77777777775

�
displacements at node 1
�

displacements at node 2
�

displacements at node � � �
�

displacements at node n

(5.68)

and the matrix of shape functions has the form

N D
�

N1 0 N2 0 � � � Nn

0 N1 0 N2 � � � Nn

�

„ƒ‚…
Node 1

„ƒ‚…
Node 2

„ƒ‚…
Node���

„ƒ‚…
Node n

(5.69)

where the shape functions Ni .i D 1; 2; : : : ; n/ are the shape functions correspond-
ing to the n nodes of the rectangular finite element. The shape functions for linear
and quadratic finite elements are presented in Sect. 5.3.3.
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5.4.2 FE Approximation of Strain

Using the same procedure as for the case of the triangular element, the strain matrix
B would have the form

B D �
B1 B2 � � � Bn

�
(5.70)

where Bi .i D 1; 2; : : : ; n/ are the strain matrices corresponding to the n nodes of
the rectangular finite element, i.e.

Bi D

2
666664

@Ni

@x1
0

0
@Ni

@x2
@Ni

@x2

@Ni

@x1

3
777775

(5.71)

To evaluate such matrices a coordinate transformation is necessary and the
derivatives with respect to x1 and x2 are given by the chain rule, as

@Ni

@x1
D @Ni

@�

@�

@x1
C @Ni

@�

@�

@x1

@Ni

@x2
D @Ni

@�

@�

@x2
C @Ni

@�

@�

@x2

(5.72)

Equation (5.72) can be put in a matrix form as

2
64
@Ni

@x1
@Ni

@x2

3
75 D

2
64
@�

@x1

@�

@x1
@�

@x2

@�

@x2

3
75

2
664
@Ni

@�
@Ni

@�

3
775 D J�1

2
664
@Ni

@�
@Ni

@�

3
775 (5.73)

where J is the Jacobian of the two-dimensional transformations that connect the
differentials of (x1, x2) to those of (�, �) and vice-versa. So, using the chain rule:

�
dx1
dx2

�
D

2
664
@x1
@�

@x1
@�

@x2
@�

@x2
@�

3
775
�

d�
d�

�
D JT

�
d�
d�

�
I

�
d�
d�

�
D

2
64
@�

@x1

@�

@x2
@�

@x1

@�

@x2

3
75
�

dx1
dx2

�
D J�T

�
dx1
dx2

�
(5.74)
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To evaluate the entries of J at any rectangular location, let make use of the
isoparametric formulation in Eq. (5.25), which is repeated here for convenience

x1 D
nX

iD1
xi
1Ni .�; �/I x2 D

nX
iD1

xi
2Ni .�; �/I (5.75)

Which can be differentiated with respect to the natural coordinates as,

@x1
@�

D
nX

iD1
xi
1

@Ni .�; �/

@�
I @x2
@�

D
nX

iD1
xi
2

@Ni .�; �/

@�

@x1
@�

D
nX

iD1
xi
1

@Ni .�; �/

@�
I @x2
@�

D
nX

iD1
xi
2

@Ni .�; �/

@�

(5.76)

because the xi
1 and xi

2 do not depend on � and �. Equation (5.76) can be written in a
matrix form, as

J D

2
664
@x1
@


@x2
@


@x1
@�

@x2
@�

3
775 D

2
664
@N1
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� � � @Nn
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@N2
@�

� � � @Nn

@�

3
775

2
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x11 x12
x21 x22
:::
:::

xn
1 xn

2

3
77775

(5.77)

After the computation of Eq. (5.77), the inverse of Jacobian is then obtained by
numerically inverting this matrix, as

J�1 D 1

J

�
J22 �J12

� J21 J11

�
I J D J11J22 � J12J21 (5.78)

where J denotes the determinant of Jacobean matrix.
Using Eq. (5.78) in Eq. (5.73) is possible to obtain the following relation

@Ni

@x1
D J22

J

@Ni

@�
� J12

J

@Ni

@�

@Ni

@x2
D �J21

J

@Ni

@�
C J11

J

@Ni

@�

(5.79)

Which leads to the following Bi matrix

Bi D 1

J

2
6666664

J22
@Ni

@�
� J12

@Ni

@�
0

0 �J21
@Ni

@�
C J11

@Ni

@�

� J21
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C J11

@Ni

@�
J22
@Ni

@�
� J12

@Ni

@�

3
7777775

(5.80)
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Note that the strain matrix in Eq. (5.80) for a linear rectangular element is
no longer a constant matrix, see the shape functions in Eq. (5.52). This implies
that the strain and, therefore, the stress within the finite element is no longer
constant.

5.4.3 Element Matrices

The stiffness matrix of a general 2D-solid finite element is given the Eq. (5.17),
which is reproduced as

k D
Z

A

h BTc B dA (5.81)

In Eq. (5.81), B is the strain matrix that has been discussed previously, h is
the thickness and, if it is variable, it can be interpolated via the shape functions.
Meanwhile, to integrate Eq. (5.81) numerically by a two-dimensional product Gauss
rule, is necessary to reduce it to the canonical form, as

k D
C1Z

�1

C1Z

�1
F .�; �/ d�d� (5.82)

Note that for the case of natural coordinates (�, �), everything in Eq. (5.81) already
fits this form, except the element of area dA.

To evaluate the area transformation, let consider the element with area OABC
presented in Fig. 5.18, the area of this differential parallelogram can be computed as

dA D�!
O B � �!

O A D
"
@x1
@�

d�
@x2
@�

d�

#
�
"
@x1
@�

d�
@x2
@�

d�

#
D @x1

@�
d�
@x2
@�

d� � @x1
@�

d�
@x2
@�

d�

D
ˇ̌
ˇ̌
ˇ
@x1
@�

@x1
@�

@x2
@�

@x2
@�

ˇ̌
ˇ̌
ˇ d�d� D Jd�d�

(5.83)

From Eq. (5.83) is possible to see that J is a (non-constant) scaling factor that
relates the area in the original geometry to an equivalent area in the normalized
geometry. For a well-defined mapping, J must have the same sign at all points in the
normalized geometry and small variations on all model. Moreover, highly distorted
mappings have badly formed elements, meaning that J shows large variations. Thus,
in Eq. (5.82) the matrix function F(�, �) is written as

F .�; �/ D hBTcB J (5.84)
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Fig. 5.18 Parallelogram geometry

Which leads to the following stiffness matrix

k D
C1Z

�1

C1Z

�1
BTcB hJ d�d� (5.85)

The material constant matrix c has been given by Eqs. (1.35) and (1.36),
respectively, for plane stress and plane strain problems. Nevertheless, the evaluation
of the integral in Eq. (5.85) would not be an easy task, since the strain matrix B
is a function of natural coordinate. In practice, the numerical integration scheme is
used to evaluate the integral. The Gauss integration scheme is a very simple and
efficient procedure that performs numerical integral, and it is briefly outlined in the
next section.

To obtain the element mass matrix, Eq. (5.67) is substituted into Eq. (2.45),
leading to

m D
Z

�e

�N
T
N d�e D

Z

A

hZ

0

dx3 �N
T
N dA D

Z

A

h�N
T
N dA D

C1Z

�1

C1Z

�1
h�J N

T
N d�d�

(5.86)

The evaluation of the integral in Eq. (5.86) can be carried out exactly. Nevertheless,
in practice, this integral are calculated numerically, as the case of the stiffness
matrix, using the gauss integration scheme.

http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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5.4.4 Numerical Integration by Gauss Rules

Numerical integration is indispensable for practical evaluation of integrals over
isoparametric element domains. The standard rule is based on the Gauss integration
because such rules use a minimal number of points to achieve a desired level of
accuracy. This efficiency is important to save computational effort, since a matrix
product is evaluated at each simple point. The one dimensional rule has been defined
in Sect. 3.2.1 of Chap. 3.

The simplest two-dimensional Gauss rules are called product rules. They are
obtained by applying the one-dimensional rules to each independent variable. Thus,
the Gauss integration is simple defined as

I D
C1Z

�1

C1Z

�1
f .�; �/ d�d� D

p1X
iD1

p2X
jD1

wiwjf
�
�i; �j

	
(5.87)

where p1 and p2 are the number of Gauss points in the � and � directions,
respectively. Figure 5.19 shows the locations of the first four two-dimensional Gauss
product rules in a square region.
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Fig. 5.19 The first four two-dimensional Gauss product rules for. The sample points are marked
with circles filled the white color

http://dx.doi.org/10.1007/978-3-319-17710-6_3
http://dx.doi.org/10.1007/978-3-319-17710-6_3
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Usually, the same number p D p1 D p2 is chosen if the shape functions are
taken to be the same in both � and � directions. This is in fact the case for all
rectangles presented here. The selection of appropriate number of integration points
depends on the polynomial degree of the integrand. As a general rule, more points
should be used for a higher order of elements. It is also noted that using a smaller
number of Gauss points tends to counteract the over-stiff behavior associated with
the displacement-based finite element method [8]. This over-stiff behavior of the
displacement-based finite element method comes about primarily because of the use
of the shape function. In fact, the displacement in an element is approximated using
the shape functions and the nodal displacements. This implies that the deformation
of the element is actually prescribed in the fashion of the shape function. This gives
a constraint to the element, and thus the element behaves more stiffly than it should.
It is often observed that higher order elements are usually softer than lower order
ones. This is because the use of more nodes decreases the constraint on the element.

5.5 Convergence of Results

Once the finite element method is a numerical procedure for solving complex
engineering problems there are some important considerations to the accuracy of
the analysis results and the convergence of the numerical solution. Thus, in this
section we analyze the requirement of a displacement-based finite element leading
to monotonically convergent solutions.

5.5.1 Definition of Convergence

The procedure of reaching a finite element solution requires the idealization of
an actual physical problem into a mathematical model and, after which, the use
of a numerical method to get its numerical solution. Figure 5.20 summarize this
concept [2].

Frequently, the difficulty in the implementation of Fig. 5.20 is associated with
the definition of the differential equations of motion of the mathematical model,
which in the analysis of complex problems may be unknown, such as the response
prediction of a three-dimensional shell. Thus, in a practical analysis the finite
element idealization of the physical problem is established directly. However, from
the point of view of studding the convergence of the finite element solution with
the number of finite elements used within the finite mesh, it is helpful to assume
that a mathematical model is implied in the finite element representation of the
physical problem. Hence, as the number of finite elements is increased, a proper
finite element solution should converge to the analytical solution of the differential
equations that govern the response of the mathematical model [2]. Nevertheless, if
the differential equations of motion are not known and/or analytical solutions cannot
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4. Boundary conditions, e.g.,
•Prescribed displacement
•Etc.

Yields:
Governing differential equation(s) of 
motion, e.g.,

and principle of virtual work
equation

EA
∂ ∂u = −p(x)
∂x ∂x

Finite Element Solution
• Choice of elements and solution
procedures

Yields:
Approximate solution of the
mathematical model (that is, 
approximate response of mechanical
idealization)

Fig. 5.20 Finite element solution procedure [2]

be obtained, the convergence of solution can be measured only on the fact that all
the basic assumptions in the mathematical model must be satisfied at convergence.

The finite element solution is affected by different sources of errors: Round-off
errors, which are a result of the finite precision of arithmetic’s of the computer used;
errors in the constitutive modeling are due to the linearization and the integration
of the constitutive relations; errors in the calculation of the dynamic response
are due to the errors that arise in the numerical integration of the equations of
motion or to a deficient representation of the behavior of the technical system in
a mode superposition analysis; errors in the iterative solution procedures, because
convergence of the numerical solution is based on measurements on increments
of the solution variables that are small but no zero. Nevertheless, in this section
we will focus only in the finite errors that are due to the interpolation of the
solution variables.

We recall that for the generality of static structural problems presented in
Chap. 1, the exact solution of a mathematical model should be the displacement
field that holds the solution of the following equation

L u D f (5.88)

http://dx.doi.org/10.1007/978-3-319-17710-6_1
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where L is differential operator, u is the exact displacement field and f represents
loading functions. Assuming that the finite solution is represented by uh, this
solution will allow to define the finite element space field given by the interpolation
functions. Thus, is possible to define convergence to mean that

Luh ! Lu as h ! 0 (5.89)

Physically, this statement means that the strain energy calculated by the finite
element solution converges to the exact strain energy of the mathematical model as
the finite element mesh is refined. Depending on the specific displacement-based
finite elements used in the numerical analysis, the finite solution may converge
monotically or nonmonotonically to the exact solution as the number of finite
elements is increased [2].

5.5.2 Criteria for Monotonic Convergence

Generally, if the elements are complete and the elements on the mesh are compat-
ible, the monotonic convergence of a finite mesh is assured. The requirement of
completeness of an element means that the displacement functions of the element
must be able to represent the rigid body displacement and a constant strain rates. The
requirement of compatibility means that all the element degrees of freedom within
and across the element boundaries must be continuous [2]. Physically, compatibility
ensures that no gaps occur between elements when the assemblage is loaded. For
finite elements where only translational nodal degrees of freedom are defined,
only continuity in the displacements must be preserved. However, when rotational
degrees of freedom are also presented and if those are obtained by differentiation
of the transverse displacement, as in the case of the formulation of Euler-Bernoulli
beam elements and of the Kirchhoff plate bending elements, it is also necessary to
satisfy the element continuity in the corresponding first displacement derivatives.

Rigid body displacements are those displacements in which the element is able to
perform rigid body motion, meaning that no elastic stresses are being developed on
it. In the case of 2D-solid elements, the element must be able to translate uniformly
in both directions of its plane and to rotate about its normal without deforming;
these three rigid modes are shown in Fig. 5.21.

Fig. 5.21 Rigid body modes of a plane stress element [2]
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The number of rigid body modes that an element must be able to undergo can
usually be identified by inspection, but for complex finite elements the individual
straining modes and rigid body modes are displayed effectively by representing
the element stiffness matrix in the basis of eigenvectors [2]. Thus, solving the
eigenproblem

kˆi D 
iˆi (5.90)

Or

kˆ D ˆœ (5.91)

where ˆ is a matrix storing the eigenvectors ˆi .i D 1; : : : ; n/ and œ is a diagonal
matrix storing the corresponding eigenvalues. Using the eigenvector orthonormality
property, is possible to evaluate the natural frequencies as

ˆTkˆ D œ (5.92)

Inspection of Eq. (5.92) may show clearly whether the rigid modes and what
additional straining modes are present. Note that since the finite element analysis
overestimate the stiffness, the smaller the element eigenvalues the more effective
will be the element.

The necessity of an element is able to represent constant strain rates can be
physically understood if we assume that more and more elements are used in the
assemblage to represent the structure. Then, in the limit, as each element approaches
a very small size, the strain in the each element approaches a constant value, and any
complex variation of the strain within the structure can be effectively approximated.

As said before, the element compatibility is automatic ensured between truss
and beam elements because they are linked only at nodes, but compatibility is also
relatively easy to maintain two-dimensional plane strain, plane stresses and in three-
dimensional analysis, since only translational degrees of freedom are used as nodal
point variables. However, the requirements of compatibility are difficult to satisfy
in plate bending analysis, and particularly in thin shell analysis if the rotations are
derived from the transverse displacement. For this reason, much of the research
work has been directed toward the development of plate and shell elements, in which
the displacements and rotations are direct variables. So, whether a specific element
is complete and compatible depends on the formulation used within its development
and, each formulation need be analyzed individually [2].

5.6 Discussion Example

From the finite element solution procedure presented in Fig. 5.20, it is clear that
the finite element solution will solve only the selected mathematical model and that
all assumptions in this model will be reflected in the predicted response. Thus, the
choice of an appropriate mathematical model is crucial and completely determines
the insight into the physical problem that we can obtain by the analysis [2].



190 5 Finite Element Method for Membranes (2-D Solids)

A

Ar L=27.5 cm

Steel
column

Two bolts

Weight = 1000 N

Uniform thickness t = 0.4 cm

h=6.0 cm E = 2 x 107 N/cm2

v = 0.3

r =0.5 cm

Fig. 5.22 Physical problem of a steel bracket [2]

In order to define the reliability and effectiveness of a chosen model we can think
on a very comprehensive mathematical of the physical problem and measure the
response of our selected model against the response of the comprehensive model.
In this context, the selected mathematical model is efficient if yields the required
response to a sufficient accuracy and at least cost and, is reliable if the response is
known to be predicted within a selected level of accuracy. Let consider a simple
example of bracket used to support a vertical load, as shown in Fig. 5.22 [2].

The bracket is screwed to a very thick steel column, the thick of the steel is larger
than the thickness and the height of the bracket, meaning that the steel column can
be assumed as a practically rigid structure. Thus, the bracket problem can be solved
applying a rigid column boundary condition to it. Moreover, it is also assumed that
the load is applied very slowly. The load condition is defined relatively to the largest
natural period of the bracket; that is, the time span over which the load is increased
from zero to its full value is much longer than the fundamental period of the bracket.
So, this statement is translate to the mathematical approximation as a static analysis.

To evaluate the total moment at section AA and the deflection at the load
application, see Fig. 5.22, is possible to consider beam mathematical models,
leading to

M D P � ` D 1000 � 27:5 D 27500 Ncm

ı1 D P � .`C rn/
3

3EI
D 1000 � .27:5C 0:5/3 � 12

3 � 2 � 107 � 0:4 � 63 D 0:0508 cm

ı2 D ı1 C P � .`C rn/

5=6GA
D 0:0508C 1000 � .27:5C 0:5/

0:833 � 7692308 � 0:4 � 6 D 0:053 cm

(5.93)
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A L=28 cm

r = 0.5 cm

h=6.0 cm E = 2 x 107 N/cm2

v = 0.3

A P = 1000 N

d

Fig. 5.23 Beam model of a steel bracket [2]

Fig. 5.24 (a) Mesh of nine-node elements used in finite element discretization; (b) displacement
shape representation

where ı1 is the solution based on the Euler-Beurnolli Beam theory while ı2 is
based on the Timoshenko beam theory, which takes the shear effect in account. The
structural model used to evaluate the solutions presented in Eq. (5.93) is depicted in
Fig. 5.23.

The reliability of this mathematical model can be assessed by the comparison
of the solutions in Eq. (5.93) against with those available from a comprehensive
mathematical model, which can be a fully three-dimensional representation of the
full bracket. Although the three-dimensional comprehensive mathematical model
could be a very comprehensive model, a linear elastic two-dimensional plane stress
model will be used instead. In fact, this two-dimensional model can represent the
geometry of the bracket more accurately than the beam model and assumes a two-
dimensional stress distribution in the bracket. So, the bending moment at section
AA and the deflection under the load calculated with this model can be expected to
be quite close to those calculated with a three-dimensional model and, certainly this
two-dimensional model represents a higher model against which we can measure
the adequacy of the results given in Eq. (5.93) [2].

Figure 5.24a shows the finite element discretization used in the solution of the
plane stress mathematical model. Notice that the bolt fastenings and the contact
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Fig. 5.25 (a) Maximum principal stress; (b) effective stress distribution

conditions between the steel column and the bracket are not accounted in the model
and, also, the pin carrying the load is not modeled. Because the numerical model is
based on plane stress conditions, the stress components �33, �23 and �13 are zero.
The displacement was obtained assuming that circular lines delimiting the bolt area
do not have displacement in the direction, while the point placed in the geometrical
center of the support has no any displacement.

Figure 5.24b shows the deformed configuration obtained in the numerical model.
The x3 displacement at the point of load application is of 0.06417 cm. The maximum
displacement of the beam model is considerably less than this value, meaning that
the beam model is considerably more rigid than the plane stress model. In fact,
in the beam model, the assumption that the support is completely rigid neglects
any deformation between the beam and the bolts, which are not in agreement with
the problem physics. Nevertheless, the same magnitude of the bending moment at
section AA is predicted by both models.

Considering these results, is possible to say that the beam mathematical model
is reliable if the required bending moment is to be predicted within 1 % and the
displacement is to be predicted only within 20 % of accuracy [2]. Meanwhile,
the maximum stress in the bracket cannot be predicted accurately by the simple
mathematical beam model. The beam model totally neglects the stress increase due
to the presence of fillets. Figure 5.25 shows the maximum principal stress near
the fillet.

The important points that can be noted here are the following [2]:

• The selection of the mathematical model depends on the response that needs to
be predicted;

• The most effective mathematical model is that one which delivers the answers to
the questions in a reliable manner, i.e. within an acceptable error, with the least
amount of computational effort;

• A finite element model can solve accurately only the chosen mathematical model
and cannot predict any extra information that that contained in the model;

• The reliability of the chosen mathematical model requires the assessment of
the results against the results obtained with a very-comprehensive mathematical
model.
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5.7 Review Questions

1. Why there is need of mapping a quadrilateral finite element into a normalized
geometry? What is the shape of the normalized geometry?

2. What is the geometrical meaning of J in Eq. (5.84)?
3. Assuming that a linear quadrilateral has a constant thickness, how many Gauss

points are required to evaluate the mass matrix and the stiffness matrices exactly?
4. Construct the shape function of a corner node, for the nine-node rectangular

element.
5. Beside the number of nodes per element, what is the main difference between

linear triangle and bilinear rectangular elements?
6. Using Eq. (5.76), compute the Jacobian matrix of the finite element shown in

Fig. 5.26.
7. Compute the end displacement of the beam shown in Fig. 5.27. The beam is made

of a material with Young’s modulus of 200 GPa and is loaded with a triangular

Fig. 5.26 One quadrilateral
finite element

2 cm

1 cm

1 cm

3/4 cm

x

y

Fig. 5.27 Beam under a
triangular load

h

b

1 m30

q
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distributed force, which maximum value is of 200 KPa. The beam has cross-
section dimensions of 0.1 � 0.05 m2.
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Chapter 6
Finite Element Method for Plates/Shells

The development of finite element equations for the stress analysis of two dimen-
sional structures subjected to external loads applied transversely to their 2-D
geometrical plane will be presented in this chapter. The basic concepts, procedures
and formulations can also be found in many existing textbooks [1–3]. The procedure
followed in this chapter is to first develop the FE matrices for plate elements and,
then, the FE matrices for flat shell elements are obtained by superimposing the
matrices of plate elements and those of 2D solid plane stress elements developed
in Chap. 5. Whereas for general shell finite elements the displacement and the
geometry interpolations are obtained by considering also the isoparametric concept.

6.1 Introduction

As discussed in Chap. 1, a plate structure is geometrically similar to the structure
of the 2D plane stress problem, but it usually carries only transversal loads that
lead to bending deformation in the plate. For example, higher floors of a building
are a typical plate structure that carries most of us every day, as are the wings of
aircraft, which usually carry loads like the engines [4]. The plate structure can be
schematically represented by its middle surface laying on the x1�x2 plane, as shown
in Fig. 6.1. The transverse loading on a plate produces deflection and rotation of the
normals of the middle plane. The element developed to model such plate structures
is known as plate element. The formulation of a plate element is very similar to
the formulation of a 2D solid element, except for the process of deriving the strain
matrix in which the theory of plates is used instead. Plates and shells are a particular
form of a three-dimensional solid for which the thickness of such solids is very small
when compared with other dimensions. There are a number of theories that govern
the behavior of such structures, which are based on several assumptions that result
in a series of approximations. The thin plate theory is based on the assumptions
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x1, u1

x3, u3
x2, u2

Middle Surface

h

f3 (x1, x2)
f3 (x1, x2)

Fig. 6.1 A plate and its coordinates system

formalized by Kirchhoff in 1850. Later, in 1945, a relaxation of the Kirchhoff
assumptions was made by Reissner and in a slightly different manner by Mindlin
in 1951. These modified theories are called Reissner-Mindlin and they represent an
extension of the field of application to the thick plates. Although the thick plate
theory is simpler to implement in the finite element method, its analytical treatment
presents more difficulties. In fact, in the thin plate theory it is possible to represent
the state of deformation by the transversal displacement of the middle plane of
the plate, see Eq. (1.49) of Chap. 1. Hence, this formulation introduces second
derivatives of the transversal displacement in the strain definition and, therefore,
in order to assure that the deformation is different of zero, it is necessary to impose
continuity conditions between elements not only in the transversal displacement but
also on its derivatives, which means that displacement approximations must have a
C1 continuity. Thus, to impose continuity at the interface of elements, it will always
be necessary to use both displacement and first derivative of displacement in nodes.

Determination of suitable shape functions for C1 continuities is more complex
than those required for C0 continuity. Indeed, as the complete slope continuity
is required on the interfaces between several elements, the mathematical and
computational difficulties involved rise significantly. However, it is relatively simple
to obtain shape functions that preserve the continuity of displacement and they may
violate its slope continuity among elements but, normally, not at the nodes where
such continuity is imposed. These kind of functions are said to be non-conforming
or incompatible shape functions. The shape functions for rectangular elements are
the simplest to form for thin plates and therefore are introduced first.

6.2 Thin Plate Formulation

Following the Kirchhoff plate theory, see Chap. 1, the bending deformation will
force the cross-section of the plate to rotate in the way shown in Fig. 6.2.

http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_1
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Middle Surface

Middle Surface

undeformed

deformed

Fig. 6.2 A straight fibre that is perpendicular to the middle plane of the plate before deformation
remain straight and normal to it after deformation

The displacement components for a thin plate are written as

u1 .x1; x2; x3/ D �x3
@w

@x1

u2 .x1; x2; x3/ D �x3
@w

@x2
u3 .x1; x2; x3/ D w .x1; x2/

(6.1)

And the strain-displacement relation are defined as

© D �x3¦ (6.2)

where ¦ is the matrix that contains the changes in the curvature of the plate, given as

¦ D Lw D
2
4

@2w=@x21
@2w=@x22

2@2w=.@x1@x2/

3
5 (6.3)

The potential energy expression for a thin plate element is

U D 1

2

Z

A

hZ

0

©Tc © dA dx3 D 1

2

Z

A

h3

12
¦Tc ¦ dA (6.4)

where the relation of Eq. (6.2) have been used in Eq. (6.4). The kinetic energy of
the thin plate is given by

T D 1

2

Z

�

�
�Pu21 C Pu22 C Pu23

	
d� (6.5)
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Fig. 6.3 Continuity
requirements for the normal
slopes [3] > 0→

x1

1 2
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∂2u3 < 0 ←
∂x2∂x1

∂u3
∂x1

x2

∂u3
∂x2

∂2u3
∂x1∂x2

Which is basically a sum of the contribution of three velocity components in the x1,
x2 and x3 directions of all the particles in the entire domain of the plate. Substituting
Eq. (6.1) into Eq. (6.5) leads to

T D 1

2

Z

�

�

 
x23

�
@ Pw
@x1

�2
C x23

�
@ Pw
@x2

�2
C Pw2

!
d� D 1

2

Z

�

PQuT
H PQu d� (6.6)

where

PQu D
�

Pw .x1; x2/ @ Pw .x1; x2/
@x1

@ Pw .x1; x2/
@x2

�T

(6.7)

and

H D �

2
4
1 0 0

0 x23 0
0 0 x23

3
5 (6.8)

6.2.1 Continuity Requirements for Shape Functions

The presence of second order derivatives at the strain representation in the formu-
lation of thin plates indicates that C1 continuity of the shape functions are required.
To ensure the continuity of the displacement u3 and of its normal slope, @u3=@n,
cross an interface line, it is necessary to have both u3 and @u3=@n defined by values
of nodal parameters along that interface. This continuity is difficult to achieve and
reasons for this are given below [3].

Consider that the side 1–2 of a rectangular element is depicted at Fig. 6.3. The
normal direction n is coincident with the x2 direction and, it is necessary that u3 and
@u3=@x2 will be uniquely determined by values of u3; @u3=@x1; @u3=@x2 at the nodes
lying along this line. Thus, following the principles explained in Chap. 4, is possible
to write approximation functions as

http://dx.doi.org/10.1007/978-3-319-17710-6_4
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u3 D w D a0 C a1x1 C a2x2 C � � � (6.9)

and

@u3
@x2

D b0 C b1x1 C b2x2 C � � � (6.10)

The number of constants in each equation must allow determining a unique solution
and they must be evaluated using the nodal degrees of freedom associated with the
line. Thus, similarly to 1-D Euler-Bernoulli beam elements, if only two nodes are
presented in a line, a cubic variation of u3 in the x1 direction should be permissible,
since u3; @u3=@x1 are specified at each node. But, because both 1–2 nodes have only
one degree of freedom of @u3=@x2 at each node, or two-term in line 1–2, only a linear
variation of @u3=@x2 would be permissible. A similar exercise could be performed
along the side placed in the x2 axis in which the continuity of function @u3=@x1,
along this side, is granted by the nodal degrees of freedom at nodes 1 and 4 only.

So, along the side 1–2 the function @u3=@x2 depends only on the 1–2 nodal values
of @u3=@x2 while along the side 1–4 the function @u3=@x1 depends only on the 1–4
nodal values of @u3=@x1. If the function @u3=@x2 is differentiated with respect to
x1, along the side 1–2, the subsequent function @2u3= .@x1@x2/ depends on nodal
parameters of line 1–2 only, while the differentiation of function @u3=@x1 with
respect to x2, @2u3= .@x2@x1/, along the side 1–4, depends on the nodal parameters
of line 1–4. For the case of arbitrary parameters of @u3=@x2 and @u3=@x1 at nodes
2 and 4, respectively, an inconsistency arises at the common node 1, as we cannot
have there the necessary identity for continuous function:

@2u3
@x1@x2

D @2u3
@x2@x1

(6.11)

Meaning that it is impossible to specify simple polynomial expressions for shape
functions ensuring full compatibility when only u3; @u3=@x1; @u3=@x2 are prescribed
at corner nodes [3, 5]. Thus, if any functions satisfying the compatibility are found
with three nodal variables, they must be such that at corner nodes these functions
are not continuously differentiable and the cross-derivative is not unique.

A way of overcoming this difficulty would be to specify the cross-derivative as
one of the nodal degrees of freedom. This, for an assembly of rectangular elements,
is convenient and indeed permissible [3]. But, generally, the extension of this idea
to the nodes at which a number of element interfaces are connected with different
angles, see Fig. 6.4, is not permissible.

Here the continuity of cross-derivatives in several sets of orthogonal directions
implies a specification of all second derivatives at a node. However, if the plate
stiffness varies abruptly from one element to each other, this violates physical
requirements. The difficulties of finding compatible displacement functions have led
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Fig. 6.4 Nodes where
elements meet in arbitrary
directions [3]

x2

x11

Fig. 6.5 2D domain of a
plate meshed by rectangular
elements

to many attempts of ignoring the complete slope continuity while still continuing
with the other necessary criteria, lead to the appearing of several successful non-
conforming elements.

6.2.2 Degrees of Freedom Identification

Consider a 2D geometrical model of a rectangular structure in the x1 � x2 plane,
shown schematically in Fig. 6.5, the 2D domain is divided in a proper manner into
a number of rectangular elements. In a mesh of rectangular elements, each element
has four nodes and four straight edges. Consider now a rectangular element of
thickness h, shown in Fig. 6.6, the element nodes are numbered counter-clockwise.
At each node of the finite element the degrees of freedom are: displacement in the
x3 direction, u3i ; the rotation about the x1 axis, �1i ; the rotation about the x2 axis, �2i

Hence each node has three degrees of freedom. Since a rectangular element has four
nodes, the total number of degrees of freedom of a rectangular element with only
corner nodes is of 12.

The vector of nodal displacements is arranged in the following order:

u D �
u1 u2 u3 u4

�T
(6.12)

with

ui D �
u3i 	1i 	2i

�T
(6.13)



6.2 Thin Plate Formulation 201

x1, f1

x2, f2

1 2

34

2a

2b

a a

b

b
c

x3, u3

(u32
, f12

, f22
)(u31

, f11
, f21

)

(u34
, f14

, f24
)

(u33
, f13

, f23
)

z

h

Fig. 6.6 Rectangular element in natural coordinates

Following the conventions of the first chapter, see Fig. 1.9, is possible to write the
following relations:

�
	1
	2

�
D
�

0 1

� 1 0

�
2
664

@w

@x1

@w

@x2

3
775 (6.14)

The relation in Eq. (6.14) allow transformations needed for shells to be carried out
in an easier manner.

6.2.3 FE Approximation of the Displacement

The displacement field ũ3 is a function of coordinates (x1, x2). A convenient
polynomial function, which can be used to define the shape functions, should have
12 parameters, since the number of DOFs is 12. Thus, this function is obtained by
omitting certain terms of a complete fourth-order polynomial, as

Qu3 .x1; x2/ D Qw D a1 C a2x1 C a3x2 C a4x
2
1 C a5x1x2 C a6x

2
2 C a7x

3
1

C a8x
2
1x2 C a9x1x

2
2 C a10x

3
2 C a11x

3
1x2 C a12x1x

3
2

DˆT a (6.15)

http://dx.doi.org/10.1007/978-3-319-17710-6_1
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From the Fig. 5.11 is possible to see that in Eq. (6.15) the omitted terms are

x41; x21x
2
2; x42 (6.16)

The approximation in Eq. (6.15) has the main advantage of assuring that along any
x1 or x2 constant lines the displacement ũ3 has a cubic variation. The element sides
are composed by lines. In each boundary line the degrees of freedom are the two end
values of slopes and the two displacements, which allow defining uniquely a cubic
variation of the displacement along these sides, see Sect. 6.2.1. As such degrees
of freedom are common to adjacent elements the continuity of the transversal
displacement will be imposed along any interface.

From Eq. (6.15), it can be observed that the gradient of the displacement in the
direction normal to any boundary line varies in a cubic way. For instance, the values
of the normal @u3=@x2 along a line on which x1 is constant, is defined as

@Qu3
@x2

D a3 C a5x1 C 2a6x2 C a8x
2
1 C 2a9x1x2 C 3a10x

2
2 C a11x

3
1 C 3a12x1x

2
2 (6.17)

Nevertheless, on such lines only two values of the normal slopes are defined and,
therefore, the cubic approximation is not specified uniquely. Thus, in general, a
discontinuity will occur and shape functions are said non-conforming.

6.2.4 Shape Functions

The procedure of determining the shape functions of finite elements follows
the standard procedure described in Sect. 2.3.3 of Chap. 2, and begins with an
assumption of the displacements, using polynomial basis functions with unknown
constants. After, these unknown constants are determined using the nodal displace-
ments at nodes of element.

In order to evaluate the vector a of parameters, presented Eq. (6.15), is necessary
to write the 12 simultaneous equations linking the values of displacement and its
slopes at the four nodes, i.e. [3]

Qw Du3i D a1 C a2x
i
1 C a3x

i
2 C a4

�
xi
1

	2 � � �
@Qu3

�
xi
1; x

i
2

	

@x2
D	1i D a3 C a5x

i
1 C � � � i D 1; 2; 3; 4

�@Qu3
�
xi
1; x

i
2

	

@x1
D	2i D �a2 � 2a4x

i
1 C � � � (6.18)

http://dx.doi.org/10.1007/978-3-319-17710-6_5
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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Listing all 12 equations, they are written in a condensed matrix form, as

u D Ca (6.19)

where C is a 12 by 12 matrix depending on the nodal coordinates and a is the vector
of the 12 parameters. Inverting Eq. (6.19) leads to

a D C�1u (6.20)

This inversion can be carried out by computer or algebraically [6]. Substituting
Eq. (6.20) into Eq. (6.15) is possible to write the expression for the element
displacement in a standard form as

Qu3 .x1; x2/ 
 Qw .x1; x2/ D ˆTC�1u D Nu (6.21)

with

ˆT D �
1 x1 x2 x21 x1x2 x22 x31 x21x2 x1x22 x32 x31x2 x1x32

�
(6.22)

An explicit form of the shape function N was derived by Melosh [7] and can be
written in terms of natural coordinates, as

N D �
N1 N2 N3 N4

�
(6.23)

with

NT
i D 1

8
.1C ��i/ .1C ��i/

2
4
2C ��i C ��i � �2 � �2

b�i
�
1 � �2	

a�i
�
1 � �2	

3
5 (6.24)

where (� i, �i) represent the natural coordinates associated with node i and (�, �)
are the natural coordinates, which are related with the physical coordinates in Eq.
(5.50).

6.2.5 FE Approximation of Strain

As discussed in previous chapter, after computing shape functions is possible to
obtain other quantities, namely the relationship between the strain and the deflection
described in Eq. (6.2), as [3]

http://dx.doi.org/10.1007/978-3-319-17710-6_5
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2
4

Q"11
Q"22
Q"12

3
5 D �x3

2
4

@2 Qw=@x21
@2 Qw=@x22

2@2 Qw=.@x1@x2/

3
5

D �x3

2
4

2a4 C 6a7x1 C 2a8x2 C 6a11x1x2
2a6 C 2a9x1 C 6a10x2 C 6a12x1x2

2a5 C 4a8x1 C 4a9x2 C 6a11x21 C 6a12x22

3
5 D �x3¦ (6.25)

noting that the curvatures ¦ in Eq. (6.25), can be written as

¦ D Lw D Qa (6.26)

with

Q D
2
4
0 0 0 2 0 0 6x1 2x2 0 0 6x1x2 0

0 0 0 0 0 2 0 0 2x1 6x2 0 6x1x2
0 0 0 0 2 0 0 4x1 4x2 0 6x21 6x22

3
5 (6.27)

and substituting Eq. (6.20) into Eq. (6.26), we obtain

¦ D QC�1u D Bu (6.28)

Thus, substituting Eq. (6.28) into Eq. (6.25), is possible to write

© D �x3Bu (6.29)

where B is the strain-displacement matrix of the rectangular finite element.

6.2.6 Element Matrices

Standard procedures can now be used. So, the stiffness matrix for the finite element
can be obtained substituting Eq. (6.29) into Eq. (2.49) of Chap. 2, leading to

k D
Z

�e

x23B
Tc B d�e D

Z

A

0
@

hZ

0

x23dx3

1
ABTc B dA D

Z

A

h3

12
BTc B dA (6.30)

where the material constant matrix c has been given by Eqs. (1.35) and (1.36) of
Chap. 1, for plane stress problems. Since the strain matrix B is not a constant matrix,
as shown in Eq. (6.27), and the thickness of the element is assumed constant, the
integration of Eq. (6.30) can be carried out substituting Eq. (6.28) into Eq. (6.30), as

http://dx.doi.org/10.1007/978-3-319-17710-6_5
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_1
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k D h3

12
C�T

0
@
Z

A

QTc Q dA

1
AC�1 (6.31)

where A denotes the surface element area. In Eq. (6.31), the terms not containing
x1 and x2 were moved from the operation of integrating and, if matrix c is constant,
the term within the integration sign can be multiplied out and integrated explicitly.

To evaluate the mass matrix, Eq. (6.21) is substituted into Eq. (6.7), leading to

PQu D
2
4

ˆTC�1 D N
ˆT

x1C
�1 D Nx1

ˆT
x2C

�1 D Nx2

3
5 Pu D N Pu (6.32)

Now, substituting Eq. (6.32) into Eq. (6.6), we obtain

T D 1

2

Z

�

PQuT
H PQu d� D 1

2
PuT

0
@
Z

�

N
T
H N d�

1
A Pu D 1

2
PuTm Pu (6.33)

where m is the element mass defined as

m D
Z

�e

N
T
H N d�e D

Z

A

N
T

0
@

hZ

0

H dx3

1
A N dA D

Z

A

N
T
I N dA (6.34)

with

I D �

2
64

h 0 0

0 h3

12
0

0 0 h3

12

3
75 (6.35)

The integration of all the terms in the mass matrix can be carried out explicitly or
by numerical integration. Nevertheless, to use numerical integration a coordinate
transformation is necessary.

The nodal force vector can be obtained using Eqs. (2.51) and (2.52), assuming
that the element is loaded by a constant distributed pressure fp on the element area,
as

f D
Z

A

NT fp dA D

2
664

f1
f2
f3
f4

3
775 (6.36)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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with

fi D 1

12
fpab

2
4

3

b
� a

3
5 I i D 1; 2; 3; 4 (6.37)

where fi is the nodal load vector for the uniform load defined by Zienkiewicz and
Taylor [3].

6.2.7 Discussion

In the 1950s, the success of the Finite Element Method with membrane-type
structural problems, open the path for its application to plate bending and shell prob-
lems. The first results using rectangular models were published by the late 1950s.
Meanwhile, the construction of successful triangular elements to model plates and
shells of arbitrary geometry proved being more difficult than expected and, their
failures, led to a more complete understanding of the theoretical basis of FEM.

The major source of difficulties in the development of plate bending finite ele-
ments is associated with the stricter continuity requirements. As seen in Sect. 6.2.1,
the aim of attaining normal slope inter-element compatibility, poses serious prob-
lems. The first successful rectangular plate bending element developed by Adini
and Clough [8] has 12 degrees of freedom (DOF) and uses a complete third order
polynomial expansion in x1 and x2, was presented in Sect. 6.2.2. It satisfies the
transverse deflection continuity, but normal slope continuity is only maintained at
the four corner points. Later in 1963, Melosh proposed another expansion of the
approximation polynomial and, erroneously, stated that the element satisfies C1

continuity [9]. The error was noted in a subsequent discussion [10]. The construction
of fully compatible polynomial expansions of various orders for rectangular shapes
was solved by Bogner et al. through Hermitian interpolation functions [11]. Later
in an Addendum published as an Appendix to the 1966 Proceedings volume, they
recognized the lack of the twist mode for dynamic analysis and, therefore, an
additional degree of freedom: the twist curvature, was added at each corner. The
resulting 16-DOF element is complete and compatible, and produced excellent
results. More refined rectangular elements with 36 DOFs have been also developed
using fifth order Hermite polynomials.

Flat triangular plate elements have a wider range of application than rectangular
elements. However, the development of adequate kinematic expansions was not an
easy problem and kept researchers busy for decades. The first fully compatible 9-
DOF cubic triangle was constructed by a macro-element technique as described
in [12]. After this element, several triangular finite elements were presented.
Nevertheless, most of these elements proved to be excessively stiff, particularly
for high aspect ratios. Thus, the research on displacement-assumed models starts



6.3 Thick Plate Formulation 207

to focus on relaxing or abandoning the assumptions of Kirchhoff thin-plate theory.
Relaxing these assumptions has produced elements based on the so-called discrete
Kirchhoff theory [13, 14]. In this method the primary expansion is made for the
plate rotations and, the rotations are linked to the nodal degrees of freedom by
introduction the thin-plate normality conditions at selected boundary points. A clear
and relatively simple account is given by Batoz et al. [15]. The most successful of
these elements is the DKT (Discrete Kirchhoff Triangle), an explicit formulation has
been presented by Batoz [16]. This element is also available in the ADINA program.

A more drastic step is based on the abandoning of the Kirchhoff theory in favor
of the Reissner-Mindlin theory. The continuity requirements for the displacement
assumption are lowered to C0 and the transverse shear becomes an integral part
of the formulation. Thus, Mindlin plate theory works better to thick plates than to
the thin ones. In fact, the construction of robust C0 triangular bending elements is
delicate, as they are susceptible to ‘shear locking’ effects, in the thin-plate regime.
Nevertheless, many structures may not be considered as thin plates, or rather their
transverse shear strains cannot be ignored. Therefore, the Reissner-Mindlin plate
theory is more suitable, and the elements developed based on this theory are more
practical and useful. In the next section will only discuss the elements developed
based on the Reissner-Mindlin plate theory.

6.3 Thick Plate Formulation

Following the Reissner-Mindlin plate theory, see Chap. 1, the bending deformation
will force the cross-section of the plate to rotate in the way shown in Fig. 6.7. The
displacement components for a thick plate are written as

u1 .x1; x2; x3/ D x3	2 (6.38)

Middle Surface

Middle Surface

undeformed

deformed

Fig. 6.7 A straight fibre that is perpendicular to the middle plane of the plate before deformation
remains straight, but not normal to it, after deformation [4]

http://dx.doi.org/10.1007/978-3-319-17710-6_1
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u2 .x1; x2; x3/ D �x3	1 (6.39)

u3 .x1; x2; x3/ D w .x1; x2/ (6.40)

where 	1 and 	2 are the rotations of the plate fiber about the x1 and x2 axes,
respectively. The in-plane or bending strains can be obtained as

©b D �x3¦ (6.41)

where ¦ is the curvature, given as

¦ D L™ D

2
6666664

�@	2
@x1
@	1

@x2
@	1

@x1
� @	2

@x2

3
7777775

(6.42)

where L is the differential operator defined in Eq. (1.72). The transverse shear strains
are defined by Eq. (1.74).

The strain energy expression for a thick plate element is

U D 1

2

Z

A

hZ

0

©T
b¢b dA dx3 C 1

2

Z

A

hZ

0

©T
s ¢s dA dx3 (6.43)

The first term on the right-hand side of Eq. (6.43) is related with the bending stresses
and strains, whereas the second term is for the transverse stresses and strains. �b is
the bending stress that is related with the bending strain by Eq. (1.77), see Sect.
1.2.2.2 of Chap. 1. � s is the average shear stresses relating to the shear strain in the
form

¢s D
�
�13
�23

�
D k

�
G 0

0 G

� �
�13
�23

�
D k cs©s (6.44)

where G is the shear modulus and k is a constant that is usually taken to be 5/6, as
explained in Sect. 1.2.2.2. So, substituting Eqs. (1.77) and (6.41) into Eq. (6.43), the
strain energy can be re-written as

U D 1

2

Z

A

¦T h3

12
cb¦dA C 1

2

Z

A

©T
s hk cs©sdA (6.45)

http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_1
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The kinetic energy expression for a thick plate element is given by

T D 1

2

Z

�

�
�Pu21 C Pu22 C Pu23

	
d� (6.46)

Substituting Eqs. (6.38), (6.39), and (6.40) into the above equation leads to

T D 1

2

Z

A

�

�
h Pw2 C h3

12
P	21 C h3

12
P	22
�

dA D 1

2

Z

A

� PuTI Pu	 dA (6.47)

with

Pu D
2
4

Pw
P	1
P	2

3
5 (6.48)

and I is the matrix defined in Eq. (6.35).

6.3.1 Shape Functions

In the Reissner-Mindlin plate theory the rotations 	1 and 	2 are defined indepen-
dently of the transversal displacement w. Thus, the displacement and rotations can
be interpolated separately with independent shape functions. Actually, the procedure
of field variable interpolation is the same used at the 2D solid finite elements, except
that the number of variables is three instead of two.

The approximation of displacement and rotations for a rectangular finite element
with four corner nodes is given by

Qw .x1; x2/ D
4X

iD1
NiwiI Q	1 .x1; x2/ D

4X
iD1

Ni	1i I Q	2 .x1; x2/ D
4X

iD1
Ni	2i (6.49)

where the interpolation functions are the same as the four-node 2D Solid element in
Chap. 5, i.e. Eq. (5.52). The elements constructed will be conforming elements,
which means that all the field variables are continuous on the edges between
elements. Eq. (6.49) can be re-written as

Qu D
2
4

Qw
Q	1
Q	2

3
5 D Nu (6.50)

where u is the generalized displacement vector for all the nodes in the element,
which are arranged in the following order

uT D �
w1 	11 	21 w2 	12 	22 w3 	13 	23 w4 	14 	24

�
(6.51)

http://dx.doi.org/10.1007/978-3-319-17710-6_5
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and the shape matrix is defined as

N D
2
4

N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4

3
5 (6.52)

6.3.2 FE Approximation of Strains

In thick plates the strain energy is composed by bending and transverse shear strains,
see Eq. (6.45). The approximation of the bending strain in the finite element can be
obtained substituting Eq. (6.50) into Eq. (6.41), as

2
4

Q"11
Q"22
Q"12

3
5 D �x3

2
666664

�@	2
@x1
@	1

@x2
@	1

@x1
� @	2

@x2

3
777775

D �x3¦ D �x3Bbu (6.53)

where Bb is the bending strain-displacement matrix, defined as

Bb D �
Bb1 Bb2 Bb3 Bb4

�
(6.54)

In which Bbi has the form

Bbi D
2
4
0 0 �@Ni=@x1
0 @Ni=@x2 0

0 @Ni=@x1 �@Ni=@x2

3
5 (6.55)

and the derivatives of shape functions are obtained by Eqs. (5.73) and (5.78), leading
to

Bbi D 1

J

2
666664

0 0 �J22
@Ni

@�
C J12

@Ni

@�

0 �J21
@Ni

@�
C J11

@Ni

@�
0

0 J22
@Ni

@�
� J12

@Ni

@�
J21
@Ni

@�
� J11

@Ni

@�

3
777775

cb D � h3

12
c csh D h cs

(6.56)

The approximation of the transverse shear strains in the finite element are
obtained substituting Eq. (6.50) into Eq. (1.74), as

http://dx.doi.org/10.1007/978-3-319-17710-6_5
http://dx.doi.org/10.1007/978-3-319-17710-6_5
http://dx.doi.org/10.1007/978-3-319-17710-6_1
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Q©s D
�
2Q"13
2Q"23

�
D

2
64

Q	2 C @ Qw
@x1

� Q	1 C @ Qw
@x2

3
75 D Bsu (6.57)

where Bs is the shear strain-displacement matrix, defined as

Bs D �
Bs1 Bs2 Bs3 Bs4

�
(6.58)

where Bsi has the form

Bsi D
�
@Ni=@x1 0 Ni

@Ni=@x2 �Ni 0

�
D
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664

1

J
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� J12

@Ni

@�
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1
J

�
�J21

@Ni

@�
C J11

@Ni

@�

�
�Ni 0

3
775 (6.59)

6.3.3 Element Matrices

The stiffness matrix of a general thick finite element is given by substituting Eqs.
(6.53) and (6.57) into Eq. (6.45), from which we obtain

k D
Z

A

BT
b

h3

12
cbBb dA C

Z

A

BT
s hk csBsdA D kb C ks (6.60)

The integration of Eq. (6.60) can be evaluated analytically. However, in practices
the gauss integration scheme is used to evaluate it numerically, being necessary to
reduce it to the canonical form, as

k D
C1Z

�1

C1Z

�1
F .�; �/ d�d� (6.61)

Note that for the case of natural coordinates (�, �), everything in Eq. (6.60) already
fits this form, except the element of area dA. Nevertheless, as seen in Sect. 5.4.3, the
transformation of the element area is defined by

dA D J d�d� (6.62)

leading to the following final expression

http://dx.doi.org/10.1007/978-3-319-17710-6_5
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k D
C1Z

�1

C1Z

�1
BT

b

h3

12
cbBb J d� d�C

C1Z

�1

C1Z

�1
BT

s hk csBs J d� d� D kb C ks (6.63)

To obtain the element mass matrix, Eq. (6.50) is substituted into Eq. (6.47),
leading to

m D
Z

A

NTI N dA D
C1Z

�1

C1Z

�1
NTI N J d�d� (6.64)

The evaluation of the integral in Eq. (6.64) can be carried out exactly. Nevertheless,
in practice, this integral are calculated numerically, as the case of the stiffness
matrix, using the gauss integration scheme.

To obtain the force vector, Eq. (6.50) is substituted into Eq. (2.52), leading to

f D
Z

A

NT

2
4

f3
0

0

3
5 dA (6.65)

where it is assumed that the element is under a force per unit of surface, in the x3

direction, of f3. If the load that is constant, the above equation becomes

fT D 4ab

4
f3
�
1 0 0 1 0 0 1 0 0 1 0 0

�
(6.66)

Equation (6.66) gives the information that the distributed force is divided into four
concentrated forces of one quarter of the total load.

6.3.4 Higher Order Elements

Rectangular thick plate finite elements of higher order can be formulated using the
same procedure used to develop the previous linear rectangular thick plate finite
element. Thus, for a rectangular thick finite element with n number of nodes, the
displacement and rotations are approximated as

Qw .x1; x2/ D
nX

iD1
NiwiI Q	1 .x1; x2/ D

nX
iD1

Ni	1i I Q	2 .x1; x2/ D
nX

iD1
Ni	2i (6.67)

where the shape function Ni is the same used to develop the corresponding 2D solid
finite element.

http://dx.doi.org/10.1007/978-3-319-17710-6_2
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6.3.5 Discussion

The simplicity of developing finite elements based on the Reissner-Mindlin theory
makes it the mostly used to formulate thick plate elements. Nevertheless, the basic
difficulty of this theory is that poor shear strains and stresses are predicted with
Mindlin-based elements. These poor shear strain predictions result in a strong
artificial stiffening of the elements as the thickness/length ratio decreases. This
effect of shear locking is more pronounced for low-order elements and when
elements are geometrically distorted, because the error in the shear stresses is then
larger.

The shear locking can be observed in an isotropic plate with a small constant
thickness, when subjected to concentrated node loads. Thus, assume that the global
finite element equations for a plate under static loads is written as

.Kb C Ks/U D F (6.68)

where Kb is the global bending stiffness matrix while Ks is the global shear stiffness
matrix. In the case of isotropic plates under plane stress conditions, Eq. (6.68) can
be re-written as [17]

�
Eh3

12 .1 � �2/
bKb C Gh bKs

�
U D F (6.69)

where bKb is evaluated from Kb by evidencing common terms, see Eq. (1.35), and
bKs is obtained from Ks. Now, dividing Eq. (6.69) by Eh3=

�
12
�
1 � �2	� leads to

�bKb C ˛ bKs

�
U D 12

�
1 � �2	

Eh3
F DbF (6.70)

with

˛ D 12
�
1 � �2	G

Eh2
(6.71)

For thin plates, the solution of Eq. (6.70) should be of the same order of the
Kirchhoff solution, which means that the effect of bKs term in Eq. (6.70) should
vanish. Nevertheless, observing Eq. (6.70) it can be seen that when h ! 0 the
coefficient ˛ ! 1 grows infinitely, which means that for thin plates the shear
tem in Eq. (6.70) will gain significance relatively to the bending term, in such way
that the bending contribution vanish. Thus, to h ! 0 the solution of Eq. (6.70) is
basically given as

bKsU D 1

˛
bF D 0 (6.72)

http://dx.doi.org/10.1007/978-3-319-17710-6_1
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Note that the trivial solution of Eq. (6.72) is the null solution, meaning that in the
limit ˛ ! 1 the solution of Eq. (6.72) will be stiffer than the solution based on the
Kirchhoff theory. Moreover, the only way to get a solution of Eq. (6.72) different
from the trivial one is making the shear stiffness matrix singular, which can be
achieved by changing the number of Gauss points used for the numerical integration
of stiffness matrices.

Numerical integration is indispensable for practical evaluation of integrals over
isoparametric element domains. The standard rule is based on the Gauss integration
because such rules use a minimal number of points to achieve a desired level of
accuracy. The one dimensional rule has been defined in Sect. 3.2.1 of Chap. 3 while
the two dimensional rule has been defined in Sect. 5.3.4 of Chap. 5. This efficiency
is important to save computational effort, since a matrix product is evaluated at
each sample point. Moreover, in practice, the choice of the numerical integration
order is important because, first, the cost of analysis increases when higher-order of
integration is employed and, secondly, using a different integration order, the results
can be affected by a large amount [2].

Generally, all finite element matrices can be evaluated by numerical integration,
and the appropriate integration order depends on the finite element matrix that
is evaluated and on the specific formulation of the finite element that is being
considered. The first observation in the selection of the order of the numerical
integration is that, in theory, if a high enough order is used, all matrices will be
evaluated very accurately. On the other hand, using a too low order of integration,
leads to an inaccurate evaluation of matrices and the problem solution may not be
possible [2]. In fact, if the order of numerical integration is too low, the matrix can
have a larger number of zero eigenvalues than the number of physical rigid body
modes. A simple example is the evaluation of the stiffness matrix of a three-node
truss element, for which if one-point of Gauss numerical integration is used, the row
and column corresponding to the degree of freedom at the midnode of the element
are null vectors, leading to a structure of stiffness matrix that is singular. Hence, in
general, the integration order should be higher than a certain limit. Meanwhile, as a
general rule, the full numerical integration should always be used for displacement-
based finite element formulation, where the definition of full numerical integration
should be considered as the order that gives the exact matrices when the elements
are geometrically undistorted [2]. Using this integration order for a geometrically
distorted element will not yield the exactly integrated element matrices. However,
the analysis is reliable because the numerical integration errors are acceptably small
assuming of course reasonable geometric distortions.

Noting that the displacement formulation of finite element analysis yields a strain
energy smaller than the exact strain energy of the mathematical/mechanical model
being considered, the displacement results based on a displacement formulation
are obtained with an overestimation of stiffness. Therefore, we may expect that
without evaluating the displacement-based element stiffness matrices accurately,
in the numerical integration, better solution results can be obtained. This expected
behavior can only be effective if the error in the numerical integration is able
to compensate the overestimation of the structural stiffness due to the finite

http://dx.doi.org/10.1007/978-3-319-17710-6_3
http://dx.doi.org/10.1007/978-3-319-17710-6_5
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element discretization [2], in such case the procedure is named reduced integration.
Moreover, additionally to the reduced integration order of all finite element matrices
a selective integration may also be considered, in which case different strain terms
(bending and shear strains) are integrated with different orders of integration.
The key question as to whether a reduced and/or selectively integrated element
can be recommended for practical use is: has the element formulation, using a
specific integration procedure, been sufficiently tested an analyzed for its stability
convergence? If tractable, a mathematical stability and convergence analysis is of
course most desirable.

6.4 Shell Elements

A shell structure carries loads in all directions, and therefore undergoes bending
and twisting, as well as in-plane deformation. Some common examples would be the
dome-like design of the roof of a building with a large volume of space; or a building
with special architectural requirements such as a church or mosque; or structures
with a special functional requirement such as cylindrical and hemispherical water
tanks; or lightweight structures like the fuselage of an aircraft, as shown in the work
of Quek and Liu [4]. Shell elements have to be used for modelling such structures.
The simplest, but widely used, way to obtain a shell element is to superimpose a
plate bending stiffness and a plane stress membrane stiffness. In this way flat shell
elements can be formulated easily by combining the 2D solid element, formulated
in Chap. 5, and the plate element formulated in the previous section. The procedure
for developing such an element is very similar to the short cut method used to
formulate the 3-D beams elements using the truss and beam elements, as discussed
in Chap. 5. Of course, the shell element can also be formulated using the usual
method of defining shape functions, substituting into the constitutive equations, and
thus obtaining the element matrices.

6.4.1 Flat Shell Finite Elements

Flat shell finite elements can be used to model components of shells and can also be
employed to model general curved shells as an assemblage of flat elements. The
curvature of the shell is then followed by changing the orientation of the shell
elements in space. For very large curvatures of the shell a fine mesh of elements
has to be used during the domain discretization. An alternative to this formulation
is presented in the next section. In this section flat shell elements are developed and
presented.

Similar to the 3-D beams, a flat shell finite element has six degrees of freedom
per node: three translational displacements, one displacement in each x1, x2 and
x3 directions, and three rotational degrees of freedom with respect the x1, x2 and

http://dx.doi.org/10.1007/978-3-319-17710-6_5
http://dx.doi.org/10.1007/978-3-319-17710-6_5
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Fig. 6.8 Middle plane of a rectangular shell element

x3 axes, respectively. Figure 6.8 shows the middle plane of a rectangular flat shell
element and the degrees of freedom at the nodes.

The generalized displacement vector for the element can be written as

uT D �
u1 u2 u3 u4

�
(6.73)

where ui .i D 1; 2; 3; 4/ is the displacement vector at node i, defined as

ui D

2
66666664

u1
u2
u3
	1
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	3

3
77777775

i

(6.74)

The stiffness matrix of a 2D solid rectangular finite element is used for
representing the membrane effects of the flat shell element. The corresponding flat
shell degrees of freedom are the in plane displacements u1 and u2. So, the stiffness
matrix associated with the membrane effect can be expressed in the following form:
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2
664

km
11 km

12 km
13 km

14
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24
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34
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44

3
775 (6.75)

In Eq. (6.75) the superscript m stands for the sub-matrices of the membrane matrix
and each sub-matrix have a dimension of 2�2, since it corresponds to the two DOFs
u1 and u2 at each node. Note that the matrix above is the same stiffness matrix of
a four-noded 2D rectangular solid element, except that it is written in terms of sub-
matrices according the nodes.
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In a similar way, the stiffness matrix for a rectangular plate element is used for
representing the bending effects of the flat shell element. The corresponding flat
shell degrees of freedom are the plate displacements u3 and 	1,	2. So, the stiffness
matrix associated with the bending effect can be expressed in the following form:

kb D

2
664
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14
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24
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34
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43 kb

44

3
775 (6.76)

in Eq. (6.76) the superscript b stands for the sub-matrices of the bending matrix that
includes the shear stiffness, as defined in Eq. (6.63), and each bending sub-matrix
have a dimension of 3 � 3.

The stiffness matrix for the flat shell element in the local coordinate system can
be formulated by combining sub-matrices of Eqs. (6.75) and (6.76) as follows:

ks
ij D

2
64

km
ij 0 0
0 kb

ij 0

0 0 0

3
75 I .i; j D 1; : : : ; 4/ (6.77)

leading to the following flat shell stiffness matrix:

k D

2
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ks
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13 ks
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Note that in Eq. (6.77), one additional row and one additional column of zero values
is added to the assemblage of the sub-membrane and sub-bending stiffness matrices,
which are related to the DOF 	3i . In fact, the process of formulating a flat shell
element by superimposing the plate bending behavior and the plane stress behavior
leads to a flat shell finite element with five degrees of freedom in the local coordinate
system, as shown in Fig. 6.9, but since in shell analysis we deal with six degrees of
freedom per node, an additional degree of freedom per node is added to the finite
element.
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Fig. 6.9 Basic flat rectangular shell element with one additional degree of freedom at a node
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Fig. 6.10 Flat rectangular shell element within the analysis of: (a) folded plate structure; (b)
slightly curved shell [2]

Nevertheless, the stiffness coefficients related with these additional degrees of
freedom have been set equal to zero. The reason for doing so is that these degrees
of freedom have not been included in the formulation of the finite element; thus the
element rotation 	3 at a node is not measured and does not contribute to the strain
energy stored in the element. If these additional degrees of freedom are removed, the
stiffness matrix would have a reduced dimension of 20� 20 instead of the extended
dimension of 24 � 24. However, using the extended matrix in Eq. (6.78) will make
more convenient for transforming the matrix from the local coordinate system into
the global coordinate system. The solution of a shell model can be obtained using the
Eq. (6.78) as long as the elements surrounding a node are not coplanar. In Fig. 6.10
it can be seen that for the folded plate model and for the slightly curved shell this
condition is not guaranteed in all the structure.

In these cases, the global stiffness matrix is singular or ill-conditioned because of
the zero diagonal elements in Eq. (6.78) and, difficulties arise in solving the global
equilibrium equations [2]. To overcome this problem it is possible to add a small
stiffness coefficient corresponding to the 	3 rotation, i.e., instead of Eq. (6.77) we
can use

_
ks

ij D

2
64

km
ij 0 0
0 kb

ij 0

0 0 k

3
75 I .i D j D 1; : : : ; 4/ (6.79)

where k is about one-thousandth of the smallest diagonal element of
_
ks

ij .i D j/.
The stiffness coefficient k must be large enough to allow accurate solutions of the
finite element system equilibrium equations and small enough to avoid affecting the
system response significantly.

Similarly, the mass matrix for a rectangular flat shell element can be obtained
in the same way as the stiffness matrix. Thus, the mass matrix for the 2D solid
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element is used for accounting the membrane effects, which can be expressed in the
following form using sub-matrices according to the nodes:
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44

3
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where each membrane sub-matrix has also a dimension of 2 � 2.
The mass matrix for a rectangular plate element is used for describing the shell

bending effects. So, the bending mass matrix can also be expressed in the following
form using sub-matrices according to the nodes:

mb D
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where each bending sub-matrix has also a dimension of 3 � 3.
The mass matrix for the flat shell element in the local coordinate system can be

formulated by combining the sub-matrices of Eqs. (6.80) and (6.81) as follows:

ms
ij D

2
64
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ij 0 0

0 mb
ij 0

0 0 0

3
75 I .i; j D 1; : : : ; 4/ (6.82)

leading to the following flat shell mass matrix:
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Similarly, it is noted that the terms corresponding to the DOF 	3 are zero for the
same reasons as explained for the stiffness matrix.

6.4.2 Flat Shell Finite Elements in Global Coordinate System

The matrices for flat shell elements in the global coordinate system can be obtained
by performing the following transformations:
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K D TTk T (6.84)

M D TTm T (6.85)

F D TT f (6.86)

Where T is the element transformation matrix, given by

T D

2
664

R 0 0 0
0 R 0 0
0 0 R 0
0 0 0 R

3
775 I R D

�
t 0
0 t

�
(6.87)

where R is the transformation matrix for all six nodal degrees of freedom, three
translations and three rotations, thus the t matrix is defined as

t D
2
4

l1 m1 n1
l2 m2 n2
l3 m3 n3

3
5 (6.88)

where lk, mk and nk .k D 1; 2; 3/ are direction cosines, which can be obtained in
exactly the same way as described in Sect. 4.4.3. The difference is that there is
no need to define the additional point 3, as there are already four nodes for the
shell element. The local coordinates (�, �, x3) can be conveniently defined under the
global coordinate system using the four nodes of the flat shell element.

6.4.3 Discussion

The direct superposition of the matrices for 2D solid elements and plate elements
are performed by assuming that the membrane effects are not coupled with the
bending effects at the individual element level. This implies that membrane forces
will not result in any bending deformation, and bending forces will not cause any in-
plane displacement in the element. Nevertheless, for a shell structure in space, the
membrane and bending effects are coupled globally, meaning that the membrane
force at an element may result in bending deformations in the other elements,
and the bending forces in an element may create in-plane displacements in other
elements. These coupling effects are more significant for shell structures with a
strong curvature. Therefore, for those structures, a finer element mesh should be
used. Using the shell elements developed in this approach implies that the curved
shell structure has to be meshed by piecewise flat elements. This simplification in
geometry needs to be taken into account when evaluating the results obtained [4].

http://dx.doi.org/10.1007/978-3-319-17710-6_4
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Fig. 6.11 Nine-node shell finite element and coordinate systems [2]

6.4.4 General Shell Finite Elements

General shell elements can be used to analyze very complex shell geometries and
stress distributions. Nevertheless, as you might have guessed, it is going to be very
mathematically painful.

The displacement interpolation is obtained by considering also the geometry
interpolation, as for isoparametric elements. So, consider a general shell finite
element with a variable number of nodes, q. In Fig. 6.11 is possible to see a shell
finite element for which q D 9.

In which, 0vk
n is a unit vector normal to the shell mid-surface in the t direction at

nodal point k with the following direction cosines
�
0vk

n1 ;
0vk

n2 ;
0vk

n3

	
. Note that a left

superscript is used to denote the configuration of the element; i.e., the superscript
0 denotes the element configuration before deformation while superscript 1 denotes
the element configuration after deformation. So, using the natural coordinates
(
 , �, �), Cartesian coordinates of a point in the element with q nodes, before and
after deformations can be given as [2].
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(6.89)
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Note that in Eq. (6.89) Nk .
; �/ are the two-dimensional Lagrange shape functions
presented at Sect. 5.3.3. Moreover, the first term on the right hand-side of Eq. (6.89)
represent the position of any point in the mid-surface (if � D 0) while the second
term allow to define the position of any point within the shell thickness. For an
element with a variable thickness, the thickness at any point p of the element and
the direction in which the thickness is measured are given as

ap

2
0vp

n D
qX
k

ak

2
Nkjp.
p;�p/

0vk
n (6.90)

The displacement components are defined as
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The first terms in the right hand-side of Eq. (6.91) are displacements in the mid-
surface of the shell and, vk

n stores the increments in the direction cosines of 0vk
n, i.e.

vk
n D 1vk

n � 0vk
n (6.92)

However, the components of vector vk
n can be expressed in terms of rotations at the

nodal point k, (˛k,ˇk). An efficient way for evaluating these rotations is to define
two unity vectors 0vk

1 and 0vk
2 that should be orthogonal to 0vk

n; i.e.

0vk
1 D e2 � 0vk

n

e2 � 0vk
n



 (6.93)

where e2 is represented in Fig. 6.6 and, is an unit vector in the direction of the x2-
axis. Note that for the special case in which the vector 0vk

n is parallel to e2, we may
simply use 0vk

1 equal to e3. The vector 0vk
2 is obtained as

0vk
2 D 0vk

n � 0vk
1 (6.94)

Now, assuming that ˛k and ˇk are the rotations of the director vector 0vk
n bout

the vectors 0vk
1 and 0vk

2, respectively, and assuming that these rotations are small, is
possible to write the following relation

vk
n D �0vk

2˛k C 0vk
1ˇk (6.95)

http://dx.doi.org/10.1007/978-3-319-17710-6_5
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Substituting Eq. (6.95) into Eq. (6.91) leads to
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(6.96)

Equation (6.96) can be written in the standard finite element form, as

Qu .
; �; �/ D N u (6.97)

with
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and
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uT D �
u11 u21 u31 ˛1 ˇ1 � � � u1q u2q u3q ˛q ˇq

�
(6.100)

After the element displacement and coordinates definitions in Eqs. (6.96) and (6.89)
is possible to proceed, as usual, to evaluate the element matrices of a displacement-
based finite element.

To evaluate the strain-displacement matrix, it is necessary to evaluate the
displacement derivatives, i.e. the derivatives of the first equation presented in Eq.
(6.96) are defined as
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and the derivatives of the second and third equations are obtained in a similar way.
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To evaluate the strain-displacement matrix in the form of Cartesian coordinates,
it is necessary to evaluate the Jacobian of the three-dimensional transformations that
connect the differentials of (x1, x2, x3) to those of .
; �; �/ and vice-versa, see Sect.
5.4.2.
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So, using the standard transformation, is possible to write
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Substituting Eq. (6.101) into Eq. (6.104) we obtain
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with,
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http://dx.doi.org/10.1007/978-3-319-17710-6_5
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where J�1
ij denotes the (i,j) component of tensor J�1. The derivatives of ũ2 and ũ3

are obtained in analogous manner.
Using displacement derivatives and the relations in Eq. (1.3) is possible to obtain

the assemblage for the strain-displacement matrix of a general shell finite element.
So, assuming that the rows in this matrix correspond to all six global Cartesian strain
components, "11, "22„ 2"23 the entries in the strain matrix B are constructed in the
usual way, but then the stress-strain law must contain the shell assumption that the
stress normal to the shell surface is zero [2]. Thus, the constitutive relation in Eq.
(1.10) is rewritten as

¢ D csh © (6.108)

where
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3
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T (6.109)

and T represents the matrix that transforms the stress-strain law from the natural
coordinate system of the shell finite element to the global Cartesian coordinate
system. The components of the matrix T are obtained from the direction cosines
of the (r, s, t) coordinate axes measured in the global coordinate system, i.e.

T D

2
66666664

l21 m2
1 n21 m1n1 n1l1 l1m1

l22 m2
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3
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(6.110)

where
l1 D cos .e1; er/ m1 D cos .e2; er/ n1 D cos .e3; er/

l2 D cos .e1; es/ m2 D cos .e2; es/ n2 D cos .e3; es/

l3 D cos .e1; et/ m3 D cos .e2; et/ n3 D cos .e3; et/

(6.111)

http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_1
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For the analysis of a general shell the evaluation of T matrix must be performed at
each integration point that is employed in the numerical integration of the stiffness
matrix. However, in the case of special shells and, in particular, when a plate is
analyzed, the transformations matrix and the stress-strain matrix needs only be
evaluated at specific points and can be repetitively.

It is instructive to compare a general shell element formulation with a shell
element formulation based on the superimposing the plate bending and membrane
stress behaviors. To identity the main computational difference we may simply
compare the strain-displacement matrices at Eqs. (6.56) and (6.59) with Eq. (6.105)
which can be used to develop the shell strain-displacement matrix. In fact, in Eqs.
(6.56) and (6.59) the coordinate � related with the shell thickness direction is not
present, so these element matrices are calculated by integrating numerically in the

 � � element mid-planes, whereas in the general shell element stiffness calculation
numerical integration is also performed in the �-direction.

6.4.5 Boundary Conditions

In plate finite elements based on the Reissner-Mindlin plate theory, the transverse
displacement and the section rotations are treated as independent variables, whereas
for plate finite elements based on the Kirchhoff plate theory the transverse dis-
placement is the only independent variable. Thus, in the Kirchhoff plate theory all
boundary conditions are written only in terms of the transverse displacement, while
in the Reissner-Mindlin plate theory the boundary conditions are written in terms of
transverse displacement and of the section rotations. Because the section rotations
are used as additional kinematic variables, the Reissner-Mindlin plate theory allows
to model more accurately the physical condition of a support.

Consider the support conditions at the edge of the thin structure shown in
Fig. 6.12 [2]. If this structure were modeled employing Reissner-Mindlin plate
theory, the boundary conditions are that the transverse displacement of all nodes
located on the support line is restrained to zero but the section rotations are free.
On the other hand, if this structure were modeled using the Kirchhoff plate theory,
the transverse displacement and the rotation given by @w=@x1 would both be zero
and, therefore, the finite element model would have also to impose that all nodes
located on the support line are not free to rotate about x2 axis, 	2. Hence, the edge
conditions in Fig. 6.12 should consider the following correspondent finite element
model:

For the Reissner-Mindlin plate theory-based elements:
On the support line

u3 D w D 0I 	1 and 	2 are left free (6.112)

For the Kirchhoff plate theory-based elements:

u3 D w D 	2 D 0I 	1 is left free (6.113)
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h (small)
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x3, u3

x2, u2
x1, u1

h/L<<1

L

Rigid support

Fig. 6.12 Knife-edge support for thin structure [2]

where, in Eq. (6.113),

	2 D � @w

@x1
(6.114)

The boundary condition in Eq. (6.112) is referred as soft boundary condition for
a simple support, whereas when 	2 is also set to zero the boundary condition is of
hard type. The plate is said clamped when the knife-edge support is also able to
restrain the rotation 	1. For this case, naturally, we have w D 	1 D 0 on the edge
support, but regarding 	2, an additional choice needs to be made: for a soft boundary
condition 	2 is left free while for a hard boundary condition 	2 is set equal to zero.
In practice, the soft boundary condition is used, but depending on the actual physical
situation, the hard boundary condition may also be employed.

The important point is that when the Reissner-Mindlin plate theory-based
elements are used, the boundary conditions on the transverse displacement and
rotations are not necessarily the same as when Kirchhoff plate theory is being
used and a choice needs to be made for modeling appropriately the actual physical
situation. The same observation hold for the use of the shell elements presented
earlier, for which the section rotations are also independent variables [2].

6.5 Discussion Example

This is a well known Scordelis-Lo cylindrical roof benchmark problem [18]. The
problem consists of a cylindrical roof with rigid support conditions at edges x D
˙L=2 while lateral edges are free, see Fig. 6.13, the material is homogeneous and
isotropic with E D 3� 106 psi and � D 0. The shell is assumed to deform under its
own weight, i.e. load acts vertically down and not perpendicularly to the surface of
the shell [19].
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Fig. 6.13 Scordelis-Lo
cylindrical roof benchmark
problem [20]

Due to symmetry, only one quarter of the cylindrical shell roof needs to be
considered. The shaded region in Fig. 6.13 is modeled using isoparametric shell
elements. The symmetry boundary conditions are specified as follows:

u1 D 	2 D 	3 D 0 on side BC (6.115)

u2 D 	1 D 	3 D 0 on side CD (6.116)

The nodes corresponding to the side DA are fixed for translation in the x2 and x3

directions. The analytical shallow shell solution generally quoted for the vertical
deflection at the center of the free edge, point B, is of �3.703 in. [21]. Nevertheless,
a deep shell exact analytical solution quoted is of �3.6288 in. [22]. In order
to understand the difference between flat and general shell finite elements, the
numerical solution of this example is analyzed, firstly, using the shell element
and, secondly, using the plate element, both elements are available in the ADINA
program.

General Shell Element Solution
The shell element available in ADINA library is a 4–32 node isoparametric element
that can be employed to model thick and thin general shell structures. Either 5 or 6
degrees of freedom can be assigned at a shell element mid-surface node, which can
be defined within the control menu bar selecting the degrees of freedom item [20].
Due to the slight curvature of the roof presented in Fig. 6.13, the shell finite elements
will be almost coplanar. Thus, because of the zero diagonal elements associated
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with the rotational degrees of freedom 	3, the corresponding shell finite element
model with six degrees of freedom per node leads to a global stiffness matrix that is
singular or ill-conditioned. In fact, as suggested in the ADINA modeling guide, the
best option passes to always specify five degrees of freedom at all shell mid-surface
nodes, except for the following cases:

• Shell elements intersecting at an angle;
• Coupling of shell elements with other types of structural elements, such as

isoparametric beams.
• Coupling of rigid links (see Chap. 8);
• Coupling of constraints or generalized constraints to the shell mid-surface nodes;
• Imposing rotational moments or boundary conditions at the node.

In this example the symmetry boundary conditions in Eqs. (6.115) and (6.116)
are defined in the global coordinate system and, therefore, six degrees of freedom
are associated with these two lines allowing there deletion. All the mid-surface
nodes that are not on symmetry boundaries have rotations referenced to the vk

1, vk
2

directions (see Fig. 6.11). Figure 6.14 shows the shell finite element model of the
roof for the case of using two cubic shell finite elements.

Fig. 6.14 Numerical model of the Scordelis-Lo cylindrical roof benchmark problem

Fig. 6.15 Solutions of displacement and stresses for the Scordelis-Lo cylindrical roof benchmark
problem

http://dx.doi.org/10.1007/978-3-319-17710-6_8
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Fig. 6.16 Plate finite element model of the Scordelis-Lo cylindrical roof benchmark problem

The solution of the displacement field is showed in Fig. 6.15. The displacement
of point B is of �3.605 in., which is very close to the quoted value. The local stress
in r direction, � rr, in point C is of 1,344 psi. Note that only two cubic elements can
be used to model this problem, resulting in good agreement with theoretical results
for displacements.

Plate Element Solution
In order to verify the plate finite element of ADINA program when applied to a
curved shell structure, the example of Fig. 6.13 is now modeled by a plate finite
element and, as for the previous example, only one quarter of the structure needs to
be modeled. The numerical model consist on a 12 � 12 � 4 mesh of plate elements,
see Fig. 6.16.

As shown in Fig. 6.16, although a large number of plate elements are used,
the displacement solution for point B is still not as good as the solution obtained
with only two isoparametric shell elements. One reason for that is the flatness of
plate element, meaning that the cylindrical shell roof is approximated by straight
segments. Another reason is that the membrane approximation, used in the plate
element, is based on a constant strain triangle. Thus, the membrane forces are
constant over each element, which limits the capability of the plate element to
describe structures in which the membrane forces vary significantly.

6.6 Review Questions

1. If the plate were made of a composite material, how would the finite element
equation be different?

2. What are the main differences between the thin and thick plate finite elements?
3. What are the main difference between flat and general shell elements?
4. What is the main difference between the soft and hard boundary conditions used

in the elements based on Reissner-Mindlin plate theory? Why there is a need of
using different boundary conditions on the solution of plates based on Kirchhoff
and Reissner-Mindlin?
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Fig. 6.17 Thin plate under
an uniform pressure

x2

x1

1.8 m

A B

C
DRigid 

support

5. A thin plate under a pressure load is shown in Fig. 6.17. Consider following data:
pressure load of 1 KPa; Young’s modulus of 210 GPa; Poisson’s coefficient 0.3;
plate thickness of 0.01 m. Compute the displacement at the plate center, using
12-node and 16-node shell elements. Compare the solution with the theoretical
value given in [20].
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Chapter 7
Finite Element Method for 3D Solids

A three-dimensional (3D) solid element is the most general finite element because
all the displacement variables are dependent in x1, x2 and x3 coordinates. The
formulation of 3D solids elements is straightforward, because it is basically an
extension of 2D solids elements. All the techniques described in 2D solids can be
utilized, except that all the variables are now functions of special coordinate.

7.1 Introduction

An example of a 3D solid structure under loading is shown in Fig. 7.1, where force
vectors have an arbitrary direction in space. A three-dimensional solid can also have
any arbitrary geometry, material properties and boundary conditions in space. As
such, in a three-dimensional stress analysis there are altogether six possible stress
components, three normal and three shear, that need to be taken into consideration.
Typically, the 3D solid finite element shapes can be tetrahedron or hexahedron with
either flat or curved surfaces. Even that the number of nodes in each solid finite
element is different, each node of the finite element will have three translational
degrees of freedom. Thus, the element deformation can be evaluated in all three
directions in space. Since the 3D element is said to be the most general solid
element, the truss, the beam, the plate, 2D solids and shell elements can all be
considered special cases of the 3D solid elements. So, why is there a need to develop
all the other elements? Why not just use the 3D element to model everything?
[1]. Theoretically, yes, the 3D element can actually be used to model all kinds of
structural components, including trusses, beams, plates, shells and so on. However,
it can be very tedious in geometry creation and meshing. Furthermore, due to
the coexistence of different dimensions, it is also most demanding on computer
resources. Hence, if a structure can be simplified into a 1D (trusses, beams and
frames) or 2D (2D solids and plates) structure, always do it and, use 3D solid

© Springer International Publishing Switzerland 2015
M.A. Neto et al., Engineering Computation of Structures: The Finite
Element Method, DOI 10.1007/978-3-319-17710-6_7
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f f '

f"

f '''

Fig. 7.1 Example of a three-dimensional structure under loading conditions

elements only when we have no other choices. The basic concepts, procedures and
formulations for 3D solid elements can also be found in many existing books [2–4].

7.2 Tetrahedron Finite Element

The simplest two-dimensional continuum element is a triangle and, in three
dimensions, its equivalent is a tetrahedron, which is an element with four nodal
corners. In Fig. 7.2 is possible to see the discretization of the structural three-
dimensional body presented on Fig. 7.1, whose domain is divided in a proper
manner into a number of tetrahedron elements. This section will deal with the basic
formulation of such an element.

7.2.1 Degrees of Freedom Identification

In a mesh of tetrahedron elements, each element has four nodes and six straight
edges. Consider now the tetrahedron in the Fig. 7.3, each node has three degrees
of freedom, the three displacements (u1, u2, u3) in the directions of the three
coordinates x1, x2 and x3, making a total of 12 element degrees of freedom.
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Fig. 7.2 Three-dimensional structure divided into four-node tetrahedron elements
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x3, u3
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4 = l

u21

u22

u23

u24

u11

u12
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u14

u31

u32

u33

u34

Fig. 7.3 A tetrahedron finite element

The vector of nodal displacements is arranged in the following order:

u D �
u1 u2 u3 u4

�T
(7.1)

with

ui D �
u1i ; u2i ; u3i

�T
(7.2)
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7.2.2 FE Approximation of the Displacement

Each displacement field QuiI .i D 1; 2; 3/ depend on the coordinates (x1, x2, x3), and
is interpolated by shape functions in the standard finite element form:

Qu .x1; x2; x3/ D N .x1; x2; x3/u (7.3)

where the nodal displacement vector, u, is defined in Eqs. (7.1) and (7.2) while the
matrix of shape functions has the following form:

N D
2
4

N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4

3
5 (7.4)

In the next section the shape functions for tetrahedron finite elements will be
constructed.

7.2.3 Shape Functions

The procedure of determining the shape functions for triangular finite elements
follows the standard procedure described in Sect. 2.3.3 of Chap. 2, by starting with
an assumption of the displacements using polynomial basis functions with unknown
constants. After which, these unknown constants are determined using the nodal
displacements at the nodes of element.

Another alternative procedure and effective method for creating shape for
tetrahedron elements is to use volume coordinates, which is a natural extension from
the triangular coordinates for 2D solids. In fact, the use of the volume coordinates
makes more convenient the shape function construction and the integration of
element matrix. The volume coordinates for node 1 is defined as

�1 D VP234

V1234
(7.5)

where Vp234 and V1234 are the volumes of the tetrahedrons P234 and P1234,
respectively, presented in Fig. 7.4.

The volume coordinate for node 2–4 can also be defined in the same form, as

�2 D VP134

V1234
I �3 D VP124

V1234
I �4 D VP123

V1234
(7.6)

It can be easily confirmed that

�1 C �2 C �3 C �4 D 1 (7.7)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
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Fig. 7.4 Volume coordinates
for tetrahedron element
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Since

VP234 C VP134 C VP124 C VP123 D V1234 (7.8)

It can also be easily confirmed that

�i D


1 at home node i
0 at remote nodes jkl

(7.9)

This means, that the use of these coordinates leads to the shape functions. So, the
relationship among the volume coordinates and the Cartesian coordinates can be
easily derived as

x1 D �1x11 C �2x21 C �3x31 C �4x41

x2 D �1x12 C �2x22 C �3x32 C �4x42

x3 D �1x13 C �2x23 C �3x33 C �4x43

(7.10)

The isoparametric representation of a tetrahedron can be obtained if Eqs. (7.7)
and (7.10) are expressed as a single matrix equation, as follows:

2
66664

1

x1

x2

x3

3
77775

D

2
66664

1 1 1 1

x11 x21 x31 x41
x12 x22 x32 x42
x13 x23 x33 x43

3
77775

2
66664

�1

�2

�3

�4

3
77775

(7.11)
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The inversion of Eq. (7.11) can be expressed as

2
664

�1
�2
�3
�4

3
775 D 1

6V

2
664

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

3
775 (7.12)

Where

ai D

ˇ̌
ˇ̌
ˇ̌
ˇ

xj
1 xj

2 xj
3

xk
1 xk

2 xk
3

xl
1 xl

2 xl
3

ˇ̌
ˇ̌
ˇ̌
ˇ
I bi D �

ˇ̌
ˇ̌
ˇ̌
ˇ

1 xj
2 xj

3

1 xk
2 xk

3

1 xl
2 xl

3

ˇ̌
ˇ̌
ˇ̌
ˇ

ci D �

ˇ̌
ˇ̌
ˇ̌
ˇ

xj
2 1 xj

3

xk
2 1 xk

3

xl
2 1 xl

3

ˇ̌
ˇ̌
ˇ̌
ˇ
I d1 D �

ˇ̌
ˇ̌
ˇ̌
ˇ

xj
2 xj

3 1

xk
2 xk

3 1

xl
2 xl

3 1

ˇ̌
ˇ̌
ˇ̌
ˇ

(7.13)

In which the subscript i varies from 1 to 4, and j, k and l are determined by a
sequential permutation. For instance, if i D 1, then j D 2; k D 3; l D 4 and when
i D 2, then j D 3; k D 4; l D 1. The volume of the tetrahedron element can be
defined as

V D 1

6
�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 xi
1 xi

2 xi
3

1 xj
1 xj

2 xj
3

1 xk
1 xk

2 xk
3

1 xl
1 xl

2 xl
3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

(7.14)

The properties presented at Eqs. (7.6), (7.7), (7.8) and (7.9) show that � i can be used
to define the shape functions of a four-node tetrahedron element, i.e.

Ni D �i D 1

6V
.ai C bix1 C cix2 C dix3/ (7.15)

Because Eq. (7.15) is a linear function of xi .i D 1; 2; 3/, the four-node tetrahedron
finite element is also a linear finite element.

7.2.4 FE Approximation of Strain

The strains can now be obtained by substituting Eq. (7.3) into Eq. (1.4):

© D L Qu D LNu D Bu (7.16)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
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where the strain matrix is given by

B D LN D

2
66666664

@=@x1 0 0

0 @=@x2 0

0 0 @=@x3
0 @=@x3 @=@x2

@=@x3 0 @=@x1
@=@x2 @=@x1 0

3
77777775

N (7.17)

Using Eq. (7.4) and computing the derivatives of Eq. (7.15), is possible to write
the strain matrix as

B D 1

2V

2
66666664

b1 0 0 b2 0 0 b3 0 0 b4 0 0

0 c1 0 0 c2 0 0 c3 0 0 c4 0

0 0 d1 0 0 d2 0 0 d3 0 0 d4
c1 b1 0 c2 b2 0 c3 b3 0 c4 b4 0
0 d1 c1 0 d2 c2 0 d3 c2 0 d4 c2

d1 0 b1 d2 0 b2 d3 0 b3 d4 0 b4

3
77777775

(7.18)

From Eq. (7.18) it can be seen that the strain matrix for a linear tetrahedron finite
element is a constant matrix and, therefore, so it will be the stress. Hence, the
linear tetrahedron elements are referred as a constant strain or constant stress finite
elements.

7.2.5 Element Matrices

The stiffness matrix for 3D solid elements can be obtained by subsisting Eq. (7.18)
into Eq. (2.49) and, because the strain matrix is constant, the element matrix stiffness
matrix is defined as

k D
Z

�

BTcB d� D VBTcB (7.19)

In which the material constant matrix is given by Eq. (1.10).
The mass matrix can be obtained using Eq. (2.45) and Eq. (7.4), leading to

m D
Z

�

�NTN d� D
Z

�

�

2
664

N11 N12 N13 N14

N21 N22 N23 N24

N31 N32 N33 N34

N41 N42 N43 N44

3
775 d� (7.20)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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where

Nij D
2
4

NiNj 0 0

0 NiNj 0

0 0 NiNj

3
5 (7.21)

The integral on Eq. (7.20) can be obtained using the formula of Eisenberg and
Malvern [5].

Z

�

�m
1 �

n
2�

p
3�

q
4 d� D mŠnŠpŠqŠ

.m C n C p C q/Š
6V (7.22)

Thus, Eq. (7.20) can be defined as

m D �V

20

2
666666666666666666666664

2 0 0 1 0 0 1 0 0 1 0 0

2 0 0 1 0 0 1 0 0 1 0

2 0 0 1 0 0 1 0 0 1

2 0 0 1 0 0 1 0 0

2 0 0 1 0 0 1 0

2 0 0 1 0 0 1

2 0 0 1 0 0

sym: 2 0 0 1 0

2 0 0 1

2 0 0

2 0

2

3
777777777777777777777775

(7.23)

The nodal force vector for 3D solid elements can be obtained using Eqs. (2.52)
and (7.4). Assuming that the element is loaded by a distributed force fs on the edge
2–3 of the element, the nodal force becomes

f D
Z

L

2
4
0 0 0 N2 0 0 N3 0 0 0 0 0

0 0 0 0 N2 0 0 N3 0 0 0 0

0 0 0 0 0 N2 0 0 N3 0 0 0

3
5

T 2
4

fs1
fs2
fs3

3
5 dL (7.24)

If the forces are uniformly distributed along the edge directions x1, x2 and x3, then
fs1 ; fs2 and fs3 are constants, and Eq. (7.24) can be rewritten as

f D L

2

�
0 0 0 fs1 fs2 fs3 fs1 fs2 fs3 0 0 0

�T
(7.25)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
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where L is the length of the edge 2–3 and, Eq. (7.25) implies that the distributed
forces are equally divided and applied at the two edge nodes. A similar conclusion
can be also applied to an eventually distributed surface forces applied on any face of
the element and to an eventually distributed body force applied on the entire element
volume.

7.3 Hexahedron Finite Element

Consider now that the structural three-dimensional body presented on Fig. 7.1 is
divided in a proper manner into a number of hexahedron elements with eight nodes
and six surfaces, as shown in Fig. 7.5. This hexahedron element has the eight nodes
numbered in a counter-clockwise manner, as presented in Fig. 7.6. An hexahedron
finite element with eight nodes has a total of 24 degrees of freedom, three degrees of
freedom per node. The construction of shape functions can be facilitated if a natural
coordinate system (
 , �, �) is used. This natural coordinate system has the origin at
the center of the transformed cube, as presented in Fig. 7.6.

Because, this element has also an isoparametric formulation, the coordinate
mapping is performed in a similar way as for plate/shell elements in Chap. 6. The
shape functions are used to interpolate the coordinates, of any point at the element,
from the nodal coordinates, i.e.

x1 D
8X

iD1
Ni .
; �; �/ xi

1I x2 D
8X

iD1
Ni .
; �; �/ xi

2I x3 D
8X

iD1
Ni .
; �; �/ xi

3 (7.26)

Where Ni are the shape functions of a hexahedron finite element.

Fig. 7.5 Three-dimensional structure divided into eight-node hexahedron elements

http://dx.doi.org/10.1007/978-3-319-17710-6_6
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Fig. 7.6 Eight-node hexahedron element and the coordinate systems

7.3.1 FE Approximation of the Displacement

Each displacement field QuiI .i D 1; 2; 3/ will be a function of coordinates (x1, x2, x3),
and is interpolated by shape functions in the standard finite element form:

Qu .x1; x2; x3/ D N .x1; x2; x3/u (7.27)

where the nodal displacement vector, u, is defined in Eqs. (7.1) and (7.2) while the
matrix of shape functions has the following form:

N D �
N1 N2 N3 N4 N5 N6 N7 N8

�
(7.28)

In which each sub-matrix, Ni, is given as

Ni D
2
4

Ni 0 0

0 Ni 0

0 0 Ni

3
5 (7.29)

And the nodal displacement vector is given by

u D �
u1 u2 u3 u4 u5 u6 u7 u8

�T
(7.30)

In which each sub-vector ui is given as

ui D
2
4

uii

u2i

u3i

3
5 (7.31)

In the next section the shape functions for hexahedron finite element will be
constructed.
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7.3.2 Shape Functions

For the hexahedron presented in Fig. 7.6, the shape functions are defined in the local
natural coordinate system as

N1 D 1

8
.1 � 
/ .1 � �/ .1 � �/ I N2 D 1

8
.1C 
/ .1 � �/ .1 � �/

N3 D 1

8
.1C 
/ .1C �/ .1 � �/ I N4 D 1

8
.1 � 
/ .1C �/ .1 � �/

N5 D 1

8
.1 � 
/ .1 � �/ .1C �/ I N6 D 1

8
.1C 
/ .1 � �/ .1C �/

N7 D 1

8
.1C 
/ .1C �/ .1C �/ I N8 D 1

8
.1 � 
/ .1C �/ .1C �/

(7.32)

Or in a more compact way, as

Ni D 1

8
.1C 

i/ .1C ��i/ .1C ��i/ (7.33)

where (
 i, �i, � i) denotes the natural coordinates of node i.
In Eq. (7.33) it can be seen that the shape functions vary linearly in the 
 , � and

� directions and, therefore, often are called tri-linear functions. Moreover, from Eq.
(7.33), it is very easy to verify that the shape functions possess the delta function
property. In addition, since all these shape functions can be formed from the set of
the following eight basis functions:

1; 
; �; �; 
�; 
�; ��; 
�� (7.34)

That contain both constant and linear basis function, these shape functions can
expect to possess both of the unity property as well as the linear reproduction
property.

7.3.3 FE Approximation of Strain

The strains can now be obtained by substituting Eq. (7.27) into Eq. (1.4):

© D L Qu D LNu D Bu (7.35)

where the strain matrix is given by

B D �
B1 B2 B3 B4 B5 B6 B7 B8

�
(7.36)

http://dx.doi.org/10.1007/978-3-319-17710-6_2


244 7 Finite Element Method for 3D Solids

with

Bi D LNi D

2
66666664

@Ni=@x1 0 0

0 @Ni=@x2 0

0 0 @Ni=@x3
0 @Ni=@x3 @Ni=@x2

@Ni=@x3 0 @Ni=@x1
@Ni=@x2 @Ni=@x1 0

3
77777775

(7.37)

Because the shape functions are defined in terms of natural coordinates 
 , � and �,
to obtain their derivatives with respect to x1, x2 and x3 in Eq. (7.37), the chain rule
of partial differentiation needs to be used, as

@Ni

@

D @Ni

@x1

@x1
@


C @Ni

@x2

@x2
@


C @Ni

@x3

@x3
@


@Ni

@�
D @Ni

@x1

@x1
@�

C @Ni

@x2

@x2
@�

C @Ni

@x3

@x3
@�

@Ni

@�
D @Ni

@x1

@x1
@�

C @Ni

@x2

@x2
@�

C @Ni

@x3

@x3
@�

(7.38)

Which can be defined in a matrix form as

2
4
@Ni=@


@Ni=@�

@Ni=@�

3
5 D J

2
4
@Ni=@x1
@Ni=@x2
@Ni=@x3

3
5 (7.39)

Where J is the Jacobian matrix defined by

J D
2
4
@x1=@
 @x2=@
 @x3=@

@x1=@� @x2=@� @x3=@�
@x1=@� @x2=@� @x3=@�

3
5 (7.40)

Note that because the coordinates x1, x2 and x3 of any point within the finite element
are interpolated by the shape functions from the nodal coordinates, is possible to
use Eq. (7.26) into Eq. (7.40), which gives

J D

2
666664

@N1
@


@N2
@


@N3
@


@N4
@


@N5
@


@N6
@


@N7
@


@N8
@


@N1
@�

@N2
@�

@N3
@�

@N4
@�

@N5
@�

@N6
@�

@N7
@�

@N8
@�

@N1
@�

@N2
@�

@N3
@�

@N4
@�

@N5
@�

@N6
@�

@N7
@�

@N8
@�

3
777775

2
666666666664

x11 x12 x13
x21 x22 x23
x31 x32 x33
x41 x42 x43
x51 x52 x53
x61 x62 x63
x71 x72 x73
x81 x82 x83

3
777777777775

(7.41)
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and Eq. (7.39) can be re-written as

2
4
@Ni=@x1
@Ni=@x2
@Ni=@x3

3
5 D J�1

2
4
@Ni=@


@Ni=@�

@Ni=@�

3
5 (7.42)

The relation in Eq. (7.42) can be used to compute the strain matrix in Eq. (7.37),
in which all the derivatives of the shape functions with respect to x1, x2 and x3 can
be computed as

@Ni

@xj
D J�1

j1

@Ni .
; �; �/

@

C J�1

j2

@Ni .
; �; �/

@�
C J�1

3

@Ni .
; �; �/

@�

.i D 1; : : : ; 8I j D 1; 2; 3/

(7.43)

From Eqs. (7.43) and (7.32) it can be seen that the strain matrix for an eight-node
hexahedron finite element (trilinear) is no longer a constant matrix and, therefore,
so will not be the stress.

7.3.4 Element Matrices

The definition of the strain matrix, B, allow to compute the stiffness matrix for 3D
solid elements, by substituting B into Eq. (2.49), i.e.

k D
Z

�

BTc B d� D
C1Z

�1

C1Z

�1

C1Z

�1
BTc B jJj d
 d� d� (7.44)

where jJj denotes the determinant of Jacobean matrix and c is given by Eq. (1.10).
Because the strain matrix is dependent on the natural coordinates 
 , � and �, the
evaluation of Eq. (7.44) can be very difficult. Therefore, the triple integration of
Eq. (7.44) can be performed using numerical integration schemes, namely the
Gauss integration scheme discussed in Sect. 5.4.4. For the case of three-dimensional
integrations, the Gauss integration is sampled in three directions, as follows:

I D
C1Z

�1

C1Z

�1

C1Z

�1
f .
; �; �/ d
 d� d� D

nX
iD1

mX
jD1

lX
kD1

wiwjwkf
�

i; �j; �k

	
(7.45)

The mass matrix for the hexahedron element can be obtained by substituting the
shape matrix, Eq. (7.28), into Eq. (2.45), as

m D
Z

�

�NTN d� D
C1Z

�1

C1Z

�1

C1Z

�1
�NTN jJj d
 d� d� (7.46)

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_6
http://dx.doi.org/10.1007/978-3-319-17710-6_2
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In Eq. (7.46), the triple integral can also be carried out using Gauss integration. If
the hexahedron is rectangular with dimensions of a � b � c the determinate of the
Jacobian matrix is simply given by [1]

jJj D abc D � (7.47)

and the mass matrix can be explicitly obtained as

m D

2
666666666664

m11 m12 m13 m14 m15 m16 m17 m18

m22 m23 m24 m25 m26 m27 m28

m33 m34 m35 m36 m37 m38

m44 m45 m46 m47 m48

m55 m56 m57 m58

Sym: m66 m67 m68

m77 m78

m88

3
777777777775

(7.48)

where

mij D
C1Z

�1

C1Z

�1

C1Z

�1
�abcNiNjd
d�d�

D �abc

C1Z

�1

C1Z

�1

C1Z

�1

2
4

Ni 0 0

0 Ni 0

0 0 Ni

3
5
2
4

Nj 0 0

0 Nj 0

0 0 Nj

3
5 d
d�d�

� �abc

C1Z

�1

C1Z

�1

C1Z

�1

2
4

NiNj 0 0

0 NiNj 0

0 0 NiNj

3
5 d
d�d�

(7.49)

or

mij D
2
4

mij 0 0

0 mij 0

0 0 mij

3
5 (7.50)

In which

mij D �abc

C1Z

�1

C1Z

�1

C1Z

�1
NiNj d
d�d� (7.51)

All the components of mass matrix can be easily computed if shape functions in Eq.
(7.33) are used.

The nodal force vector for a rectangular hexahedron finite element can be
obtained using Eqs. (2.52), (7.28) and (7.29). Assuming that the element is loaded
by a distributed force fs on the edge 2–3 of the element, the nodal force becomes
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f D
Z

L

2
666666666664

0
N2

N3

0
0
0
0
0

3
777777777775

2
4

fs1
fs2
fs3

3
5 dl (7.52)

If the forces are uniformly distributed along the edge directions x1, x2 and x3, then
fs1 ; fs2 and fs3 are constants, and Eq. (7.52) can be rewritten as

f D L

2

�
0 0 0 fs1 fs2 fs3 fs1 fs2 fs3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�T
(7.53)

where L is the length of edge 2–3. Eq. (7.53) implies that the distributed forces are
equally divided and applied at the two end nodes of edge 2–3.

7.4 Higher Order Elements

7.4.1 Tetrahedron Elements

Higher order tetrahedron elements can be constructed from linear tetrahedron
element by adding additional nodes at the edges and faces of element, such as
the 10-node tetrahedron element presented in Fig. 7.7 that is a quadratic element.
Compared with the linear tetrahedron finite element developed previously, six
additional nodes are added at the middle of the edges of the element.
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Fig. 7.7 Higher order 3D tetrahedron elements: (a) 10-node tetrahedron element; (b) 20-node
tetrahedron element
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The shape functions for a quadratic tetrahedron element can be defined in volume
coordinates as [1]

Ni D .2�i � 1/ �iI i D 1; 2; 3; 4

N5 D 4�2�3I N6 D 4�1�3

N7 D 4�1�2I N8 D 4�1�4

N9 D 4�2�4I N10 D 4�3�4

(7.54)

where � i is the i volume coordinate, which is coincident with the shape function for
the linear tetrahedron elements given by Eq. (7.15).

The 20-node tetrahedron element is a cubic element. Compared with the linear
tetrahedron element developed earlier, two additional nodes are added evenly on
each edge of the element, and four-node central-face nodes are added at geometry
center of each triangular surface of the element. The approximation of a 20-node
tetrahedron can be based on a complete polynomial up to third order. The shape
functions for this cubic tetrahedron finite element in the volume coordinate are given
as follows:

Ni D 1

2
.3�i � 1/ .3�i � 2/ �i for corner nodes i D 1; 2; 3; 4

N5 D 9

2
.3�1 � 1/ �1�3I N11 D 9

2
.3�1 � 1/ �1�4

N6 D 9

2
.3�3 � 1/ �1�3I N12 D 9

2
.3�4 � 1/ �1�4

N7 D 9

2
.3�1 � 1/ �1�2I N13 D 9

2
.3�2 � 1/ �2�4

N8 D 9

2
.3�2 � 1/ �1�2I N14 D 9

2
.3�4 � 1/ �2�4

N9 D 9

2
.3�2 � 1/ �2�3I N15 D 9

2
.3�4 � 1/ �2�4

N10 D 9

2
.3�3 � 1/ �2�3I N16 D 9

2
.3�4 � 1/ �3�4

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

for edge nodes

N17 D 27�2�3�4

N18 D 27�1�2�3

N19 D 27�1�3�4

N20 D 27�1�2�4

9>>>>>=
>>>>>;

for centre surface nodes

(7.55)

7.4.2 Brick Elements

Lagrange Type Elements
A Lagrange type brick element can be developed using the concept described
in the development of 2D rectangular elements in Chap. 5. Figure 7.8 shows

http://dx.doi.org/10.1007/978-3-319-17710-6_5
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Fig. 7.8 Brick finite element
of arbitrary high order
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Fig. 7.9 High order 3D serendipity elements: 20-node quadratic element; 32-node cubic element

a brick finite element of arbitrary high order, with a number of nodes
.n C 1/ .m C 1/ .p C 1/. The element is defined in natural coordinates over
the domain .�1 � .
; �; �/ � C1/. Due to the regularity of the nodal distribution
along the 
 , � and � directions, the shape function of the element can be simply
obtained by multiplying one-dimensional shape functions with respect to the and �
directions using the Lagrange functions defined in Eq. (3.51) as

Ni D N1D
I N1D

J N1D
K D lnI .
/ lmJ .�/ lpK .�/ (7.56)

Due to the delta function property of the 1D shape functions given in Eq. (3.52),
it is easy to confirm that the Ni defined by Eq. (7.56) also has the delta function
property. Meanwhile, due to the presence of interior nodes the Lagrange type
elements are not widely used.

Serendipity Type Elements
A Lagrange type brick element without interior nodes is called Serendipity type
element. A Serendipity type of brick elements may be created using the concept
described in the development of 2D rectangular elements in Chap. 5.

Figure 7.9 shows a 20-node and 32-node serendipity finite elements. The 20-
nodal element is a tri-quadratic element with 8 corner nodes and 12 mid-side nodes.

http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_2
http://dx.doi.org/10.1007/978-3-319-17710-6_5
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The shape functions in the natural coordinates for the quadratic brick element are
given as follows [1]:

Nj D 1
8

�
1C 
j


	 �
1C �j�

	 �
1C �j�

	 �

j
 C �j�C �j� � 2	

for corner nodes j D 1; : : : ; 8

Nj D 1
4

�
1 � 
2	 �1C �j�

	 �
1C �j�

	
for mid � sides nodes j D 10; 12; 14; 16

Nj D 1
4

�
1C 
j


	 �
1 � �2	 �1C �j�

	
for mid � sides nodes j D 9; 11; 13; 15

Nj D 1
4

�
1C 
j


	 �
1C �j�

	 �
1 � �2	

for mid � sides nodes j D 17; 18; 19; 20

(7.57)

where (
 j, �j, � j) are the natural coordinates of node j. It is very easy to observe
that the shape functions have the delta function property. The shape function is
constructed by simple inspections, making use of the shape properties. For example,
for corner node 2, where 
2 D 1; �2 D �1; �2 D �1, the shape function N2 it only
vanish at remote nodes if passes the following four planes:

1C 
 D 0 ) vanishes at nodes 1; 4; 5; 8; 11; 15; 19; 20
� � 1 D 0 ) vanishes at nodes 3; 4; 7; 8; 10; 14; 18; 19
� � 1 D 0 ) vanishes at nodes 5; 6; 7; 8; 13; 14; 15; 16

 � � � � � 2 D 0 ) vanishes at nodes 9; 12; 7

(7.58)

So, the shape N2 can then be immediately written as

N2 D C .1C 
/ .1 � �/ .1 � �/ .
 � � � � � 2/ (7.59)

where C is a constant to be determined using the condition that it has to be unity at
node 2, which gives

C D 1

.1C 1/ .1 � .�1// .1 � .�1// .�1 .�1/ � .�1/ � 2/ D 1

8
(7.60)

and, finally, is possible to write

N2 D 1

8
.1C 
2
/ .1C �2�/ .1C �2�/ .
2
 C �2�C �2� � 2/ (7.61)

That is coincident with first Eq. at Eq. (7.57) for j D 2.
Shape functions at all other nodes can be constructed using a similar procedure.

Moreover, following the similar procedure, the shape functions for the 32-node tri-
cubic element can be written as
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Nj D 1
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1C 
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j D ˙ 1
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Nj D 9
64

�
1C 
j


	 �
1 � �2	 �1C 9�j�

	 �
1C �j�

	
for side nodes with


j D ˙1I �j D ˙ 1
3
I �j D ˙1

Nj D 9
64

�
1C 
j


	 �
1C �j�

	 �
1 � �2	 �1C 9�j�

	
for side nodes with


j D ˙1I �j D ˙1I �j D ˙ 1
3

(7.62)

7.5 Discussion Example

In this example a simple beam structure subjected to an end moment is analyzed.
The problem consists of a rectangular beam with the dimensions shown in Fig. 7.10,
the material is homogeneous and isotropic with E D 210 GPa and � D 0:3.

In order to understand the difference of degrees of freedom between 2D-Beam
and 3D-Solid numerical models, the solution of this example is analyzed, firstly,
using the 2D-Beam finite element and, secondly, using 3D-Solid finite elements.
Nevertheless, a deep exact analytical solution can be obtained from the strong
formulation of a beam structure, namely from the governing Eq. (1.155), of Chap.
1. Since the beam is free of body forces, the equation can now be written as

EI
@4w

@x41
D 0 (7.63)

The general solution of Eq. (7.63) can be obtained very easily after four integrations,
as

w .x/ D c0 C c1x C c2x
2 C c3x

3 (7.64)

0.21 [m]

x1
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x3
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A

Fig. 7.10 Beam structure loaded by an ending moment

http://dx.doi.org/10.1007/978-3-319-17710-6_2
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where ci .i D 0; 1; 2; 3/ are unknown constants that can be determined by imposing
the boundary conditions. Since the displacement and the rotation at the clamped end
are known, the boundary conditions are

w .x D 0/ D 0 (7.65)

@w

@x

ˇ̌
ˇ̌
xD0

D 0 (7.66)

and, therefore, Eq. (7.65) leads to c0 D 0, while Eq. (7.66) leads to c1 D 0. To
compute c2 and c3 is necessary to use the natural boundary condition. The first
natural boundary condition is related with the transverse load and second one is
related with bending moment at the free end of beam, those can be write as

@

@x

�
�EI

@2w

@x2

�ˇ̌
ˇ̌
xD0:21

D 0 ) c3 D 0 (7.67)

EI
@2w

@x2

ˇ̌
ˇ̌
xD0:21

D 5 ) c2 D �5 (7.68)

Substituting ci .i D 0; 1; 2; 3/ into Eq. (7.64), the solution of the displacement of
the beam is written as

w .x/ D � 2x2

2EI
(7.69)

and the displacement at the free end is given by

w .x D 0:21/ D �5 � 0:212
2EI

D �1:05 � 10�4m (7.70)

Moreover, the rotation of the cross-section at the free end is given by

	2jxD0:21 D �@w

@x

ˇ̌
ˇ̌
xD0:21

D
�
5x

EI

�ˇ̌
ˇ̌
xD0:21

D 1:00 � 10�3rad (7.71)

The stress � xx at the free end can be obtained using Eq. (7.69) into Eqs. (1.111)
and (1.113), leading to

�xx D E"xx D E

�
�z

d2w

dx2

�
D 5z

I
(7.72)

2D-Beam Element Solution
To get the 2D-Beam solution, firstly it is necessary setting up the 1D geometrical
of the beam, meaning that the geometry of the straight line representing the beam
neutral axis can be used. Since the 2D-Beam finite element has one rotational

http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_1
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Fig. 7.11 Numerical solution of the clamped beam: (a) displacement solution; (b) rotational
solution

degrees of freedom per node, the external moment can be directly applied in
the geometric point that is located at the free end of beam. The solution of
the displacement and rotations fields are showed in Fig. 7.11. These values are
coincident with exact values.

3D-Solid Element Solution
To use the 3D-Solid finite element on modelling the beam structure subjected to an
end moment, it is necessary setting up the 3D geometrical of the beam, meaning that
the geometry of a straight line representing the beam neutral axis can no longer be
used. Figure 7.12 shows the 3D beam geometry with boundary conditions. Because
the rotational degrees of freedom are not included on a 3D-Solid element, the
rotational movement of the beam cross section at the clamped end, can no longer be
constrained. Another discussion point that is associated with the lack of rotational
degrees of freedoms in the 3D-solid elements, is the following: how to apply the
external bending moment? The solution is to replace the bending moment by a
simple couple. A couple is a pair of forces, equal in magnitude, oppositely directed,
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Fig. 7.12 Tridimensional geometry of beam structure with boundary conditions

and displaced by perpendicular distance or moment. If the two forces are P and � P,
then the magnitude of the torque is given by M D P�d, where d is the perpendicular
distance between the two forces, the arm of the couple. Using d D 0:01 and M D 5

at the previous formula, we get the magnitude of P, i.e. 500 N. The external force is
applied considering two different scenarios: a the two opposite forces are applied in
two opposite points; b the two opposite forces are distributed over the two opposite
top widths. Figure 7.13 shows both loading scenarios.

The numerical model consist on a 16 � 8 � 1 mesh of 8-node hexahedron
elements, and the results of z-displacement for scenario a is of �0.001035 m and
for scenario b is of �0.001042 m. The maximum z-displacement of b scenario
compares better with the exact solution than that obtained for the a scenario, but
the difference between both values is not significant. Moreover, if higher order
hexahedron elements were used, a better solution will be computed.

Figure 7.14 shows the stress � xx distribution computed by ADINA in both
loading scenarios. These values can be compared with the exact solution given by
Eq. (7.72) when z D 0.005, which gives 5 MPa.

From Figure 7.14 it can be seen that loading scenario b leads to high levels of
stress concentration on the neighborhood of the point at which the concentrated
load is applied, the maximum stress � xx on the model is of 24.23 MPa. But at a
sufficiently large distance from this point, the maximum stress is coincident to that
one of loading scenario a [6]. Despite the extra effort in the geometry and mesh
modelling of a 3D model, the advantage is quite visible in this example, the analyst
can have access to the stress distribution in any arbitrary plane in the complete
model.

Although a 3D-Solid finite element doesn’t has rotational degrees of freedom,
is possible to estimate the rotation of cross section at the free end. For that, one
can take into account the x-displacement at the free end. Hence, using the Reissner-
Mindlin assumption, the rotation of the beam cross section, in the loading scenario
a, is given as
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Fig. 7.13 Tridimensional geometry of beam structure and loading scenarios: (a) two opposite
forces are distributed over the two opposite top widths; (b) two opposite forces are applied in two
opposite points
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and, in the loading scenario b, is given as
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The value given in Eq. (7.74) is computed in the point at which the concentrated
load is applied. Nevertheless, for a node placed far enough of this point, the rotation
of the beam cross section is of 0.000935 rad.
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Fig. 7.14 Stress � xx distribution for cases in which: (a) two opposite forces are distributed over
the two opposite top widths; (b) two opposite forces are applied in two opposite points

7.6 Case Study: Stress Analysis of a Dental Bridge

A dental bridge usually consists of a false tooth or teeth suspended between two
supports. The bridge support can be natural teeth, implants or a natural tooth and
an implant. Support elements have a height above the soft tissue, and the bridge
is cemented in the support elements as one unit. Figure 7.15 illustrates how this is
done. While this works well for one missing tooth, or possibly two adjacent missing
teeth, it can be inadequate for replacing multiple missing teeth, because long-span
bridges may put too much stress on the adjacent teeth. A dental implant consists of
a root form that is screwed in the jawbone and then a prosthetic screw is screwed in
the implant and then a false crown is attached to that abutment, as is shown in the
Fig. 7.15.

Because of the recent growing interest in aesthetics and metal allergies, metal-
free restorations have become common treatments. In particular, all-ceramic crowns
and fixed partial dentures (FPDs) using zirconia have spread rapidly, and zirconia
has been widely used in frameworks of crowns and FPDs due to its unique
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Fig. 7.15 (a) Dental bridge components; (b) dental implant [7]

mechanical properties [8, 9]. FPDs using zirconia are assumed to improve the
rigidity of the bridge and allow them to reduce the distortion under functional loads
[10].

In all ceramic fixed partial dentures the connector area is a common fracture
location. The survival time of fixed partial dentures may be improved by altering
the connector design in regions of maximum tension [11]. Study of such stress
distribution is a very active research and, in this case study, an example of modelling
a zirconia bridge with 4 teeth (12, 11, 21 and 22- FDI) by the finite element method
is used to access the stress distribution.

Meshing
Because the 3D modelling of any structure is generally more complex than the 1D or
2D modelling, in this case, the geometry of the ceramic bridge was scanned optically
by the principle of triangulation and, afterwards, the geometrical model of the bridge
was imported into ADINA. Figure 7.16 shows a schematic representation of all
dental bridge components that were used in the modelling process. The adhesive
cement is, generally, a resin with a very small thickness (0.15 mm) and, because
the glass ionomer and the resin modified glass ionomer cements had better bonding
strength than zinc phosphate and polycarboxylate, the resin based cements are the
gold standard for bonding fibre posts owing to their high bonding strength [12]. The
first and second supports shown in Fig. 7.16, intend to represent dental implants that
can be used to teeth replacement. Hence, in this case study, the bridge was fixed with
acrylic resin to duplicate titanium implants, which were fixed at the model base in a
region 11 mm below the bridges base.

The meshing process can have a strong effect on the numerical results, thus
the quality of mesh has to be prosecuted during a convergence study. The 3D
mesh of dental bridge components is shown in Fig. 7.17. The numerical model
is divided into three element groups, allowing the analyst to distinguish among
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Fig. 7.16 Schematic representation of dental bridge components

Fig. 7.17 3D mesh of dental bridge components
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Table 7.1 Mechanical properties of dental bridge components

Material Young modulus [GPa] Poisson’s coefficient

Zirconia 210 0.27
Glass ionomer 12 0.3
Titanium 110 0.3

them more conveniently. This division allows also that each element group may
has associated different mechanical properties. The mesh can be generated with the
help of automatic mesh generators able of treating the relatively complex shape of
a dental bridge. Due to the non-convex geometry of the dental bridge, some mesh
generators may not be able to mesh it with hexahedron elements. So, the solution
shown in Fig. 7.17, is the one that more mesh generators are able to achieve, i.e. the
solution that end up with tetrahedron elements.

Material Properties
In this case study, an anterior zirconia dental bridge is cemented over two implants.
Therefore, the dental bridge finite model will be considered with the mechanical
properties of Zirconia and the finite element model of implants will be modelled
using the mechanical properties of titanium. The finite element model of the
adhesive cement is represented by a volume with a thickness of 0.15 mm and the
mechanical properties of Glass ionomer [9]. As mentioned before, this is an example
in which is convenient dividing the model into three element group. In all element
groups it is assumed that the materials have isotropic properties, which are listed in
Table 7.1.

Loading and Boundary Conditions
Boundary conditions for static analysis are prescribed at the nodes placed in a region
11 mm below the bridges base. The model is constrained in such away that the
three nodal degrees of freedom of each node placed on the external surfaces in the
region 11 mm below the bridge are restrained. The bridge-adhesive and adhesive-
implant interfaces are assumed to be completely bonded without any loosening. For
the static analysis a resultant load of 200 N is applied [13]. The load area is located
at the middle point of the bridge on the imaginary line that passes through the incisal
edge. The direction of the resultant load makes an inclination angle of 130ı with the
bridge plan, as shown in Fig. 7.18.

Results and Discussion
Running the problem in ADINA, we are able to get the displacement and stress
distributions of all dental bridge components. Figure 7.19 shows the displacement
distribution obtained in all components, while Fig. 7.20 shows the stress (von-
Mises) distribution over the zirconia dental bridge only. From the stress distribution,
one can observe that the area that is under higher level of stress is coincident
with the loading area, but as in the case of discussion example of Sect. 7.4, this
stress level should not be considered for the analysis of the dental bridge behavior.
Nevertheless, remaining on the lingual side of the bridge, the higher level of stress
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Fig. 7.18 Perspective view of the bridge loading

Fig. 7.19 Distribution of the displacement magnitude over the dental bridge

is located at the middle connector just below the loading area and its value is about
300 MPa. Figure 7.21 shows the stress distribution on the buccal side of dental
bridge, showing a von-Mises stress of about 315 MPa. From this figure is also
possible to conclude that the left side connector is under higher level of stress than
the right side connector. The difference of stress on both connector is clearly affected
by the connector area, being the connector with a smaller area the one who shows
higher stress level.
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Fig. 7.20 Stress, von-Mises, distribution in the lingual side of dental bridge

Fig. 7.21 Stress, von-Mises, distribution in the buccal side of dental bridge

Although the number of clinical studies that supports zirconia’s performance
potential has been growing, the primary issues noted in such studies are related
with chipping, wear, and fracture of the veneering ceramics, and fracture that can
occur in the most vulnerable part of the connector [14]. The veneering ceramics
exhibit some compositional and microstructural differences comparatively to those
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used for lithia disilicate-reinforced glass–ceramic, but are manufactured to identical
international standards in terms of mechanical properties. So, based on clinical
observations, the question arises: whether zirconia veneers are more susceptible
to chipping than LDRGC veneers? Answering at this question may comprise the
dental bridge model presented here. In fact, Wakabayashi et al. [15] reported
that the thickness ratio of the core to the veneer is the dominant factor that
controls the failure initiation site in bilayered ceramic disks with a relatively strong
core and weak ceramic veneer. So, further research on this issue comprise the
generation of dental bridge model that should include ceramic veneer geometry.
Nevertheless, because this is a case study that was selected to show some daily
practical capabilities of 3D-solid numerical models, further developments are no
longer presented.

7.7 Review Questions

1. How many components of the stress tensor is possible to evaluate from a
numerical analysis in which 3D-Solid elements are used?

2. What is the difference on the strain approximation when 4-node tetrahedron
elements and 8-node hexahedron elements are used?

3. How many Gauss points should be selected for evaluating mass and stiffness
matrices for four-node tetrahedron elements?

4. How many Gauss points should be selected for evaluating mass and stiffness
matrices for eight-node tetrahedron elements?

5. A simple beam structure is under an end tip load as shown in Fig. 7.22. Consider
the following data: Young’s modulus of 210 GPa; Poisson’s coefficient 0.3.
Compute the displacement at the free end plate and the maximum normal
stress, using 4-node and 8-node 3D-solid elements. Compare solutions with the
theoretical values.

A

0.21 [m]

x1

P = 300 [N]

x3

x3

x2
0.01

[m]
0.06

Fig. 7.22 Cantilever beam
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Chapter 8
Advanced FEM Modelling

This chapter presents a discussion on some modelling techniques for the stress
analyses of solids and structures. Mesh symmetry, rigid elements and constraint
equations, mesh compatibility, modelling of offsets, supports and connections
between elements with different mathematical bases are all covered. Advanced
modelling of laminated composite materials are also presented.

8.1 Geometry Modelling

Actually, structural components can have a very complex geometry and the analyst
should decide, whenever possible, on how can reduce a complex geometry to a
controllable one. In this process, the analyst must decide in what kind of finite
element should be used in the numerical model: tridimensional (3D), bidimensional
(2D solids, plates or shells) or unidimensional (1D truss, 1D beam) finite elements?
The answer to this question requires a good understanding of the mechanics of
the problem. Thus, often, the easier answer is to think in 3D elements, since this
kind of element can be used for modeling the generality of structures. However,
for structures with a complex geometry, it can be extremely expensive if only 3D
elements are used within the domain. In fact, the generality of complex structures
have on its geometry several ranges of dimensions and, therefore, the mesh is
often a combination of different type of elements created to take advantage of that
geometrical feature. The analyst should analyze the problem in hands, examining
the geometry of the problem domain, and try to make use of 2D and 1D elements for
areas or parts of the structure that satisfy the assumptions that lead to the formulation
of 2D or 1D elements [1]. This process is very important, because the use of 2D and
1D elements can drastically reduce the number of DOFs.

In Fig. 8.1, is possible to see that the modeling of the geometry of a part,
in which 3D elements are used, has the same geometrical shape of the original
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Fig. 8.1 Geometry modeling: (a) physical model of the structural component; (b) geometry
created in the numerical model [1]

structure. Nevertheless, the geometrical modeling of parts of a component in which
2D elements are used needs only the geometric creation of its neutral surface,
whereas for parts where 1D elements are used, needs only the geometric creation
of its neutral axes. Thus, theoretically, an additional advantage of using 2D or 1D
element is that the task of creating geometry can be drastically diminished.

The quantity and the quality of information that is required for the result is
another important factor, when it comes to the creation of the problem domain. For
instance, if critical results are expected for specific areas, the analysts should give a
detailed modelling of the geometry of these areas. Nowadays, many structures are
designed using Computer Aided Design (CAD) packages. Therefore, the geometry
of such structures is already created electronically. Moreover, most commercial
preprocessors of FEM software packages can read certain formats of CAD files.
So, making use of these files can reduce the effort in creating the geometry of the
structure, but it requires a certain amount of effort to modify the CAD geometry to
be suitable for FEM meshing [1].

8.2 Meshing

Finite element mesh generation can be performed by package codes such as Cubit,
Fluent, Patran, Adina and etc. these and others mesh generation codes are specially
suitable to create initial meshes on complicated geometries arising from assemblies
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of mechanical parts such as those found in automobiles, nuclear reactors, and
even particle accelerators [2]. For instance, in the automobile industry a common
application of finite element method is that of crash simulations involving non-
linear computational mechanics [3]. Thus, over the years, automotive engineers have
devised certain mesh quality metrics that are used to automatically detect defective
meshes [4]. The metrics measure such things as whether or not an individual element
within a mesh is inverted, has excessively small or large angles, poor shape, and
other undesirable properties. So, in this section, we will give an overview on what
may contribute to mesh quality and how it is measured. An interesting point of view
of what, exactly, is mesh quality is given by Knupp: Some would say it is a little
bit like pornography in that one knows it when one sees it, but can’t define it ahead
of time [2]. With a more precise definition, Knupp says: Mesh quality concerns
the characteristics of a mesh that permit a particular numerical simulation to be
efficiently performed, with fidelity to the underlying physics, and with the accuracy
required for the problem.

8.2.1 Mesh Density

To minimize the problem DOFs, often, the mesh is created using different density
of elements in its several areas, such that a finer mesh is applied in the areas of
interest, namely expected zones of stress concentration, re-entrant corners, holes;
slots; notches; or cracks. Figure 8.2 shows an example of a finite element mesh
with mesh density transition. In this example the gear tooth is meshed with a finer
density, in which is located the contact area, and the region at the center of the gear
is meshed with a relatively coarse mesh, because this region is not so critical.

Fig. 8.2 Finite element mesh
of a gear
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Pre-processors of FEM packages can control the mesh density by using the called
mesh density parameters: line, surface, volume subdivisions; the mesh seeds are
created before meshing and, after the geometry creation.

8.2.2 Element Distorsion

Since the very early days of finite element research is well known that a distorted
finite element is much less accurate than a finite element of regular shape (e.g.
a quadrilateral element as compared to a rectangular element). Nevertheless, it
is not always possible to create regular shaped elements, especially for cases in
which an irregular geometry needs to be meshed. Irregular or distorted elements are
acceptable in FEM, but there are limitations, and it is necessary to control the degree
of element distortion in the process of mesh generation [1]. The distortion of a finite
element is measured against its basic shape, i.e. quadrilateral are measured against
square, triangle elements are measured against isosceles triangle, hexahedron
elements are measured against Cube and tetrahedron elements are measured against
isosceles tetrahedron. In this context, five possible forms of element distortions are
listed as follows [5]:

• Aspect ratio: distortion related with the elongation of element, describes the
proportional relationship between its width and its height, see Fig. 8.3a.

• Angular distortion: when the angle between edges approaches either 0 degrees
and 180 degrees (skew or taper geometry), see Fig. 8.3b. angular distortions
occur frequently in practice and are usually unavoidable. For instance, they are
present in the transition regions from coarse to finer meshes, next to complicated
geometrical boundaries, in meshes generated by automatic mesh generators and,
in meshes created by adaptative algorithms.

• Curvature distortion: the straight edges of the element are distorted into curves
when matching the nodes to the geometric points, see Fig. 8.3c. In practice,
curved-edge distortions occur also very frequently when modeling curved bound-
ary, the edges of the elements that form the boundary have to be curved.

• Volumetric distortion: is the distortion measured by the determinant of the
Jacobean matrix and is used to calculating the element stiffness matrix. The
Jacobean matrix allows transferring the irregular shape of the element within
the physical coordinate system into a regular one in the non-dimensional natural
coordinate system. For concave elements there are areas outside the elements that
will be transformed into an internal area in the natural coordinate system, see the
shadowed area in Fig. 8.4. The element volume integration for the shadowed area
based on the natural coordinate system will thus result in a negative value.

• Mid-node position distortion: can occur with higher order elements. Mid nodes
should be placed as close as possible to the middle of the element edge. The limit
for mid-node displacement away from the middle edge of the element is a quarter
of the element edge, as shown in Fig. 8.4b.
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Fig. 8.3 Classification of element distortion: (a) aspect ratio; (b) angular distortion; (c) curvature
distortion [1]

Some of the FEM preprocessors have a tool for analyzing the element distortion
rate for the created mesh. Moreover, some of FEM packages allow to define limit
values to the several distortion classifications and the numerical simulations can
only run if these values are not exceed.

8.3 Mesh Compatibility

The finite element method makes use of the assumption of displacement
admissibility, which demands continuity of the displacement field in the entire
problem domain, and a mesh is said compatible if displacements are continuous
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Fig. 8.4 Classification of element distortion: (a) Mapping between the physical coordinate and
the natural coordinate for volumetric distorted elements; (b) limits for the mid-node displacing
away from the middle edge of the element [1]

along all the edges of all elements. The use of different types of elements in the same
mesh or improper connection of elements can result in an incompatible mesh [1].

8.3.1 Compatibility in the Order of Elements

Generally, high-order elements have a higher number of nodes per element than low-
order elements. Thus, mesh incompatibility issues can appear in meshes comprised
of different element types, for instance when a quadratic element is joined with
one or more linear elements, as shown in Fig. 8.5, an incompatibility due to the
difference in the orders of shape functions used appears.

The eight-node element in Fig. 8.5 has quadratic shape functions, which implies
that the displacement along the edge follows a quadratic function. On the other
hand, the four-node linear element in the same Fig. 8.5 has linear shape function,
which result in a linear displacement along each element edge. The combination
of both elements within a mesh could result in the two combinations presented
in Fig. 8.5a, b. For the case shown in Fig. 8.5a, the displacement of nodes 1 and
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Fig. 8.5 Incompatible mesh caused by different shape functions along a common edge of the
quadratic and linear elements: (a) a quadratic element connected to a one linear element; (b) a
quadratic element connected to two linear elements [1, 6]
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Fig. 8.6 Use of elements of the same type with complete edge-to-edge connection automatically
ensures mesh compatibility [1, 6]
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Fig. 8.7 Transition element used to connect quadratic and linear elements, assuring mesh
compatibility, in the edge of nodes 1, 2 and 3 the displacement field varies quadratically while
along the edge of nodes 4 and 5 varies linearly [1]

3 for the quadratic and the linear element is the same, but displacement of the
edges between nodes 1 and 3 will be different [1]. A possible discrepancy in the
displacement field along this edge is shown by the dotted lines in Fig. 8.5a. For
the case shown in Fig. 8.5b, the incompatible of nodes 1, 2 and 3 for the quadratic
element and two linear elements is the same, but displacement of the edges between
nodes 1 and 2 and nodes 2 and 3 will be different.

This type of mesh incompatibility can be solved using only one type of element
throughout the entire domain. In this case, a complete compatibility is naturally
satisfied, see Fig. 8.6. Nevertheless, if for some reason elements of different orders
needed to be used, the mesh compatibility can be guaranteed using transition
elements. An example of transition elements is shown in Fig. 8.7, which is a
five-node element. This element can be obtained from one linear element by
adding one additional node along one side, resulting in a quadratic variation of the
displacement along this edge, while preserving the linear behavior in the other three
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Fig. 8.8 Incompatible mesh
caused by sliding element
along a common edge [6]
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edges. An alternative method that assures the mesh compatibility is based in the
use of multipoint constraints (MPC) equations. Nevertheless, this method is more
complicated and requires the ability to create constraint equations.

8.3.2 Sliding Incompatibility

The mesh sliding incompatibility is illustrated in Fig. 8.8. This case of incompat-
ibility is the outcome of connecting nodes with different nature: middle-edge and
corner nodes. The finite element developers knows that one of major difficulties in
the development of finite elements is associated with the continuity requirements,
namely the slope inter-element compatibility, see Sect. 6.2.1. Thus, the majority of
finite elements meet the requirement of displacement inter-element continuity, while
ignoring the complete slope inter-element continuity.

In Fig. 8.8 is possible to see that although the order of the shape functions of
these connected elements is the same, the sliding of the left finite element along the
edges of the other two right elements can result in incompatible deformation modes
of edges comprised between nodes 1 and 2. The dashed line has a different slope
than the blue line. The method for fixing the problem of the mesh incompatibility
of sliding elements is to make sure that there are no sliding elements in the mesh.
Most mesh generators are designed not to produce such an element mesh. However,
care needs to be taken in the process of creating a mesh manually [1].

8.4 Mesh Symmetry

A great number of structures and objects show some degree or level of symmetry.
Objects such as drinks can exhibit axial symmetry, and even huge structures such
as the Eiffel Tower in Paris exhibits mirror symmetry [1]. So, an experienced finite
element analyst should be able to take advantage of all structural symmetries during

http://dx.doi.org/10.1007/978-3-319-17710-6_6
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Fig. 8.9 Geometrical model of a cubic block

the modeling process. In fact, because of symmetry properties of some structures
the analyst can reduce the total number of degrees of freedom of the system and,
therefore, the CPU time used to solve the problem. Moreover, because only a part of
the structural model is required during modeling, the time expended by the analyst
to create the model is also reduced.

8.4.1 Plane Symmetry

Plane symmetry can also be called mirror symmetry if the symmetry is about a
particular plane; moreover, the majority of CAD programs use the term mirror
symmetry instead of plane symmetry. The position of the mirror is called the plane
of symmetry. A structure is said symmetric if there is symmetry of geometry, support
conditions and of material properties. The majority of structures shows only one
plane of symmetry, while others are symmetric with respect to multiple planes.
An example of these structures is the cubic block presented in Fig. 8.9, the cube
geometry has three planes of symmetry and the simplest geometric model is just
one-eight of the cube.

The structure presented in Fig. 8.10 is symmetric with respect the axis and,
therefore, the right half of the domain can be modeled with imposing the following
boundary condition on the line located over the symmetric axis

u1 D 0 (8.1)

Loading conditions on a symmetrical structure are of main importance to classify
the problem as symmetrical, anti-symmetrical or neither. The loading is considered
symmetric if loads can also be reflected off a particular plane, as for the loading
in Figs. 8.10 and 8.11. Moreover, because in Fig. 8.11 the support conditions are
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Fig. 8.10 2D solid with an axis of symmetry: the x1 axe. One half of the geometric model is
modeled on the right hand side of the figure, imposing symmetric boundary conditions in the line
containing the points 1, 2 and 3
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Fig. 8.11 Symmetric beam structure

also symmetric with respect to the axis x2, the problem is said symmetric, which
means that the analysis of half of the whole structure using the symmetric boundary
conditions would yield as complete a solution as that of the full model with at least
less than a quarter of the effort.

If the structure is symmetric but the loading is anti-symmetric, the problem is
said to be anti-symmetric. The problem presented in Fig. 8.11 can be transformed
into an anti-symmetric problem using loads on opposite directions. In that case,
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modeling half of the structure must be accomplished with anti-symmetric boundary
conditions, i.e. the rotation is free and the displacement is zero on the plane of
structure symmetry.

When deciding the boundary conditions to the structural plane of symmetry, the
following two general rules can be used:

If the problem is symmetric

• There are no translational displacement components normal to the plane of
symmetry;

• There are no rotational displacement components with respect to the axes that
are parallel to the plane of symmetry.

If the problem is anti- symmetric

• There are no translational displacement components parallel to the plane of
symmetry;

• There are no rotational displacement components with respect to the axis that
is normal to the plane of symmetry.

8.4.2 Axial Symmetry

A solid or structure is said to have axial symmetry when the solid can be generated
by rotating a planar shape about an axis. The stress distribution in an axisymmetric
structure is three-dimensional and could be calculated using a 3D solid finite
element idealization. However, such a solid can be modelled by simply using special
types of 2 or 1D element, called axisymmetric elements. In this way it is possible
to take advantage of the axisymmetric geometry of the structure and, depending on
the exact loading applied, reduce the modelling and computational efforts. When
the load is independent of the angle � , it is also called axisymmetric. Problems
in which both the geometry and load are axisymmetric are named axisymmetric
problems. The important characteristic of these axisymmetric problems is that all
quantities, be they stress, displacement, strain, or anything else associated with the
problem, must be independent of the circumferential variable � .

Using symmetry conditions, the two components of the displacement field in the
section of the body along the axis of symmetry, which define the planar shape of
revolution, define completely the state of strain and, therefore, the state of stress.
Such a cross-section is presented in Fig. 8.12.

If r and x3 denote respectively the radial and axial coordinates of a point,
with u and v being the corresponding displacements, it can readily be seen that
precisely the same displacement functions as those used in Chap. 5 can be used
to define the displacements within the finite element [7]. In plane stress or strain
problems, the stress or strain components normal to the coordinate plane are not
involved, due to zero values of either the stress or the strain. However, in the

http://dx.doi.org/10.1007/978-3-319-17710-6_5
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Fig. 8.12 Axial symmetry of
a 3D structure, which can be
modelled using 2D
axisymmetric elements
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Fig. 8.13 Stress and strain
components for an
axisymmetrical problem
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axisymmetrical situation any radial displacement automatically induces a strain in
the circumferential direction, and as the stresses in this direction are certainly non-
zero, fourth component of strain and of the associated stress has to be considered.
Thus, four components of strain have now to be considered, Fig. 8.13 illustrates and
defines these strains and the associated stresses.

8.5 Constraint Equations

In the modelling of beams, plates and shells, the finite element models are defined
using the corresponding neutral geometric surface of the structure, as shown in
Fig. 8.1. In many applications, stiffened plates are often reinforced by beam-like
structures and beams are loaded by off-centroidal forces or linked to others off-
centered beams, as shown in Fig. 8.14.

For elements that are not collinear or coplanar, there will be a distance of offset
between the nodes in the finite element model. Figure 8.14b and d show typical
cases of beams with different thickness joined. For the case of Fig. 8.14b a proper
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Fig. 8.14 Plate and beams with offset linkages

finite element technique may be needed to model accurately the actual connected
situation. In the case of Fig. 8.14d, however, there are two offsets ’ and ˇ at the
corner. In such cases, if the offsets are too small compared to the length of the
beam `, we can often ignore it, and the connection is simply modelled by extending
the corner nodes to the joint. If the offsets are too large, it has to be treated using
proper modelling techniques. Whether offsets should be modelled depends upon the
engineering judgment [1]. A rough guideline shown below can be followed:

• If ` > 100 � ˛, the offset can be safely ignored;
• If 5 � ˛ < ` < 100 � ˛, the offset needs to be modelled;
• If ` < 5 � ˛, the ordinary beam, plate and shell elements should not be used.

For the cases where the offset needs to be modelled, there are three methods
that can be used: very stiff element; rigid element and constraint equations. Note
that constraint equations are only used if the rigid element is not available in the
software package or if, being available, the rigid elements doesn’t are suitable for
the recommend design. The methodologies that making use of very stiff elements
are based on the application on an artificial element with very high stiffness (high
Young’s modulus, large second moment of inertia or large cross-sectional area).
Generally, this is done by increasing the Young’s modulus by a factor of about
106. This method is very simple and convenient to use, but because can leads to a
large difference in stiffness among the elements, is not recommended. Alternatively,
is possible to use rigid elements or rigid links. Rigid links are special constraint
equations, which can be established automatically by the program between two
nodes, a master node and a slave node. As the nodes displace due to deformation,
the slave node is constrained to translate and rotate such that the distance between
the master node and the slave node remains constant, and that the rotations at the
slave node are the same as the corresponding rotations at the master node [8].

8.5.1 Creation of Constraint Equations

The main idea of using constraint equations is ensuring that the relative displace-
ment between two nodes is according the connection between them. This happens
for cases in which the finite element analysis of a structure involves the mixing
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Fig. 8.15 Solid and plate
linkages
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Fig. 8.16 Solid and plate linkages

elements of different type. For instance, assume that the connection between 3D
solid elements and shell elements presented in Fig. 8.15 is necessary. Because
solid elements provide stiffness in only the three displacement directions and a
shell element provide also the stiffness for two rotations, solid and shell elements
are incompatible. So, to connect the two dissimilar elements together, is necessary
create constraint equations to account for the rotational degrees of freedom defined
in the shell element.

First, we consider the connection among shell and solid finite elements in the
way shown in Fig. 8.16a. A node in a solid element has three DOFs: translational
displacement components u, v and w; whereas a node in a shell element has five
(or six) DOFs: three translational displacement components u, v and w; and two
rotational DOF. The nodes at the interface (white nodes) are not shared among 3D
solid and shell elements, which means that continuity of translational displacements
can only by ensured if mesh compatibility on the displacement interface is assured.
For that, let assume that the first edge of 3D solid element is coincident with the edge
7–3 of the hexahedron presented in Fig. 7.6. So, along this edge, the displacements
can be interpolated as

dx1 D N3d6 C N7d9
dx2 D N3d7 C N7d10
dx3 D N3d8 C N7d11

(8.2)

and the displacement at the white node can be obtained substituting the coordinates
.
 D 1; � D 1; � D 0/ in shape functions, as

http://dx.doi.org/10.1007/978-3-319-17710-6_7
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d1 D dx1 .
 D 1; � D 1; � D 0/ D d6 C d9
2

d2 D dx2 .
 D 1; � D 1; � D 0/ D d7 C d10
2

d3 D dx3 .
 D 1; � D 1; � D 0/ D d8 C d11
2

(8.3)

Constraint equations on the form of Eq. (8.3) can also be used to solve mesh
incompatibilities of type presented in Fig. 8.7.

Nevertheless, the rotational DOFs of shell nodes are still free. Therefore, the
shell can rotate freely with respect to the solid structure and the continuity of the
rotational movement between both structures is not assured. This is because the shell
rotational movement cannot be transmitted onto the node of a 3D solid element,
simply because it does not account for the rotational DOF. An effective method
to fix the rotation of the shell structure on the 3D solid mesh is to use constraint
equations to create a rotational connection between the two types of elements. The
detailed process is given as follows. First, assume that there is a very thin rigid
welded joint, assuring the connection between the shell and the solid, as shown in
Fig. 8.16b. This welded joint connects three nodes together, one in the shell and two
on the solid. These three nodes have to move together with the rigid welded. Thus,
following classical or Reissner-Mindlin plate theories assumption, which states that
the transverse normal of the plate remains straight during deformation, the constraint
equations are given as:

d4 D 	1 D d7 � d10
h1

d5 D �	2 D d9 � d6
h1

(8.4)

In which small values of rotations are assumed, meaning that sin	2 � 	2 and
sin	1 � 	1.

In many practical application some portions of a structure are best modeled with
shell elements and others with solids. A very simple example that can be used to
study this kind of approaches is a cantilever beam loaded at the tip as presented in
Fig. 8.17a.

A 0.2032 � 0.0254 � 0.00635 mm3 (l � b � h) aluminum beam is used to investi-
gate different interfaces connections. The beam Young’s modulus is of 68.9475 GPa
and the Poisson ratio is of 0.3. The load at the tip is of 266.89 N and acts in the x3

direction. The theoretical solutions for bending deflection and stress can be provided
by beam theory, which not includes end effects and assumes that plane sections
remain plane after bending. However, the solutions obtained with models presented
at Fig. 8.17b, c and d include end effects. The finite element model in Fig. 8.17b
contains implicitly 3D-Solid hexahedrons with 8 and 20 nodes, which are denoted
by acronyms H8 and H20, respectively, while the finite element model in Fig. 8.17c
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Fig. 8.17 Cantilever beam loaded at the tip: (a) geometrical dimensions; (b) 3D-solid finite model;
(c) shell finite model; (d) finite model using 3D-solid and shell elements

contains implicitly Shell elements with 4 and 8 nodes, which acronyms are Q4 and
Q8, respectively. Figure 8.17d shows the numerical model using interfaces: H8Q4
that is the interfacing model of 8-node Hexa and 4-node shell elements; H20Q8 is
the interfacing model of 20-node Hexa and 8-node shell elements. In all numerical
models, the load is distributed over the beam tip element face.

Figure 8.18a show the linear numerical solutions (Beam, Q4 and H8) for the
variation of the displacement along the beam span. The worst solution was obtained
by the H8 numerical model, because of geometrical dimensions and of bending
solicitation of the beam. Nevertheless, increasing the mesh density of this numerical
model may leads to an improvement of the solution presented in Fig. 8.18a.

The solution of the H8Q4 model is closer to the beam solution than the H8
solution, but is not as closer as the Q4 solution. This behavior can be explained
by the use of constraint Eq. (8.4), this equation states that the rotational degrees
of freedom of shell interface nodes are dependent on the displacement of the solid
interface nodes and, because the displacement solution of the H8 is stiffer than the
theoretical one, the rotational degrees of freedom of the shell interface nodes are
under approximated, as shown in Fig. 8.19a, b. The solution of H20Q8 model is very
close to the beam and Q8 solutions and, as can be seen in Fig. 8.19c, in this case the
rotational degrees of freedom of the shell interface nodes are better approximated
from the displacement of the solid interface nodes. The effect of different interfaces
connection in the normal stress is shown on Fig. 8.20, in which is possible to seen
that both interfaces have perturbation of stress continuity in the interface nodes,
being higher for the case of H8Q4 model.

Figure 8.21 shows a finite element model created with shell and 3D-Solid finite
elements, the difference between this model and the H8Q4 model is related with
the position of the solid part. The solutions of this model, denoted by Q4H8, are
presented in Fig. 8.22.
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Fig. 8.21 (a) Cantilever
beam load at the tip; (b) finite
element model using shell
and 3D-solid elements
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Fig. 8.22 Cantilever beam results: (a) Variation of x3 displacement along the beam span; (b)
rotation about axis x2 in linear models

Figure 8.22 shows that changing the location of the solid part may leads to
a better approximation of displacements and rotational degrees of freedom. This
behavior can be justified with the different effect of Eq. (8.4) on the shell structure:
in the H8Q4 model Eq. (8.4) seems to be a rigid boundary condition to the shell
structure, while in the Q4H8 model the Eq. (8.4) represents a load condition to the
shell structure. So, in this second situation, the forces from solids elements are well
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introduced as moments and forces into shell elements, while in the H8Q4 model
the shell structure is over-constrained. Hence, a finite element analyst is faced with
simplification issues that can be used to save computational time, however, the
simplification itself could be very time consuming and, eventually, an additional
source of errors. So, knowledge, experience and engineering judgment are very
important in the finite element modelling of a system.

8.6 Material Modelling

Materials modelling is as vast as the types of existing materials. For decades,
emphasis has been placed on structural (metals, polymers, composites, etc.) and
geotechnical (soils and rocks) classical materials. Behavior prediction of such
materials subjected to a given load (mechanical or thermal) in process operations or
stress – strain/heat transfer analysis has constituted the bulk of numerical approaches
available in the literature. The existing solution approaches are comprehensive and
provide accurate results for most classical materials subjected to strain paths of
reasonable complexity [9].

In the framework of finite element formulation, material modelling issues allow
that a finite element can be used to the response prediction of problems in which
specific constitutive descriptions are necessary. In fact, finite element equations
contain displacement and strain-displacement matrices plus the material constitutive
matrix. Displacement matrices are related with the mathematical models that can
be used to summarize the displacement field of a physical problem, while strain-
displacement matrices arise naturally from the kinematic analysis of a deformable
body, in which the displacements of the material particles are assumed to be much
smaller than any relevant dimension of the body, and the stress may be described
as a mobilized internal material reaction which resists any tendency towards
deformation. But, the stress and strain tensors are insufficient for description of
the mechanical behavior of deformable bodies [10]. Body deformations depend on
the applied forces and the force-displacement or the stress-deformation relationship
depends on the material of the body. Therefore, to complete the specification of the
mechanical behavior of a body we require additional equations. These equations are
called the constitutive equations and serve to distinguish one material from another
[10]. The main purpose of this section is to present some fundamental aspects related
to the use of material laws in linear finite element analysis.

8.6.1 Generalized Hooke’s Law

It has been found experimentally that for most solid materials, the measured strains
are proportionally to the applied forces, as long as the load does not exceed the
elastic limit. This experimental observation can be stated as follows: the stress
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components at any point in the body are a linear function of the strain components
[10]. This statement tracks the generalized Hooke’s law and is only valid for
linear elastic materials. Hence, the generalized Hooke’s law allows relating the nine
components of stress to the nine components of strain as [11]

�ij D cijkl"klI i; j; k; l D 1; 2; 3 (8.5)

Where ¢ ij are the components of the second order tensor known as the Cauchy
stress tensor, "kl are the infinitesimal components of another second order tensor
known as strain tensor and cijkl is a fourth order tensor known as the stiffness tensor
and its individual components are the material coefficients. The nine equations
presented at Eq. (8.5) contains a total of 81 material coefficients. However, as
explained in Sect. 1.1.2, the state of stress of a point is completely defined with
the knowledge of only six stress components, ¢ ij. Moreover, due to the symmetry
of both stress and strain tensors, the state of stress is often written in the form of
Eq. (1.9). The reduction in the number of material coefficients can be explained as
follows: the � ji stress components can be obtained as

�ji D cjikl"klI i; j; k; l D 1; 2; 3 (8.6)

Subtracting Eqs. (8.6) and (8.5) leads to

�ij � �ji D �
cijkl � cjikl

	
"kl D 0 ) cijkl D cjikl (8.7)

and, because the strain components are also symmetric, Eq. (8.5) can be written as

�ij D cijlk"lkI i; j; k; l D 1; 2; 3 (8.8)

Subtracting Eq. (8.8) from Eq. (8.5), the equation obtained is defined as

�ij � �ij D �
cijkl � cijlk

	
"kl D 0 ) cijkl D cijlk (8.9)

Hence, because both cijkl D cjikl and cijkl D cijlk relations are true, there are only 36
independent elastic coefficients and the generalized form of Hooke’s law may thus
be written as

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

�11 D c11"11 C c12"22 C c13"33 C c14�23 C c15�13 C c16�12
�22 D c21"11 C c22"22 C c23"33 C c24�23 C c25�13 C c26�12
�33 D c31"11 C c32"22 C c33"33 C c34�23 C c35�13 C c36�12
�23 D c41"11 C c42"22 C c43"33 C c44�23 C c45�13 C c46�12
�13 D c51"11 C c52"22 C c53"33 C c54�23 C c55�13 C c56�12
�12 D c61"11 C c62"22 C c63"33 C c64�23 C c65�13 C c66�12

(8.10)

http://dx.doi.org/10.1007/978-3-319-17710-6_1
http://dx.doi.org/10.1007/978-3-319-17710-6_1
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Nevertheless, as shown in Eq. (1.9), the number of independent material coeffi-
cients can be further reduced. So, let U0 be the strain energy per unit of volume that
represent the work done by internal stress and is given as [10]

dU0 D ¢Td© (8.11)

with the property that

¢ D
�
@U0

@©

�T

I �ij D @U0

@"ij
; i; j D 1; 2; 3 (8.12)

Using Eq. (8.10) into Eq. (8.11) is possible to conclude that the strain energy per unit
of volume is a quadratic function of strain, meaning that its second order derivative
with respect the strain components should be constant.

Equations (8.10) and (8.12) yield

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

�11 D @U0

@"11
D c11"11 C c12"22 C c13"33 C c14�23 C c15�13 C c16�12

�22 D @U0

@"22
D c21"11 C c22"22 C c23"33 C c24�23 C c25�13 C c26�12

�33 D @U0

@"33
D c31"11 C c32"22 C c33"33 C c34�23 C c35�13 C c36�12

�23 D @U0

@�23
D c41"11 C c42"22 C c43"33 C c44�23 C c45�13 C c46�12

�13 D @U0

@�13
D c51"11 C c52"22 C c53"33 C c54�23 C c55�13 C c56�12

�12 D @U0

@�12
D c61"11 C c62"22 C c63"33 C c64�23 C c65�13 C c66�12

(8.13)

So, the differentiation of Eq. (8.13) yields

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

@�22

@"11
D @2U0

@"11@"22
D c21 D @�11

@"22
D @2U0

@"22@"11
D c12

@�33

@"11
D @2U0

@"11@"33
D c31 D @�11

@"33
D @2U0

@"33@"11
D c13

:::

@�12

@"11
D @2U0

@"11@�12
D c61 D @�11

@�12
D @2U0

@�12@"11
D c16

(8.14)

That is cij D cji, which shows that the matrix of elastic coefficients is symmetric and,
therefore, there are only 21 independent elastic coefficients for a general anisotropic
linearly elastic material.

http://dx.doi.org/10.1007/978-3-319-17710-6_1
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Fig. 8.23 Material symmetry
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8.6.2 Material Symmetry

In some kind of structural materials there are special kinds of material symmetry for
which elastic coefficients may remain invariant under a coordinate transformation.
For instance, consider that an anisotropic material has only one plane of material
symmetry. A material with one plane of material symmetry is called a monoclinic
material.

Let consider the x1x2 plane as the plane of material symmetry. This case is
illustrated in Fig. 8.23, and can be given by the following transformation:

x0
1 D x1I x0

2 D x2I x0
3 D -x3 (8.15)

that gives the following transformation matrix

A D
2
4
1 0 0

0 1 0

0 0 �1

3
5 (8.16)

and the transformed stress and strain tensors ¢ 0 and ©0 are given, respectively, as

¢ 0 D AT¢ A
©0 D AT© A

(8.17)

Which yields

2
4
� 0
11 �

0
12 �

0
13

� 0
22 �

0
23

Sym � 0
33

3
5 D

2
4
�11 �12 ��13

�22 ��23
Sym �33

3
5 (8.18)
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2
4
"0
11 "

0
12 "

0
13

"0
22 "

0
23

Sym "0
33

3
5 D

2
4
"11 "12 �"13

"22 �"23
Sym "33

3
5 (8.19)

Now, using the constitutive law, on both coordinate systems, and comparing the
stress in Eq. (8.18) as

�11 D � 0
11 () c11"11 C c12"22 C c13"33 C c14�23 C c15�13 C c16�12

D c0
11"

0
11 C c0

12"
0
22 C c0

13"
0
33 C c0

14�
0
23 C c0

15�
0
13 C c0

16�
0
12 (8.20)

using the relations from Eq. (8.19), the above equation reduce to

c14�23 C c15�13 D c0
14�

0
23 C c0

15�
0
13 () c142"23 C c152"13 D �c0

142"23 � c0
152"13
(8.21)

Noting that c0
ij D cij, Eq. (8.21) can only be true when c14 D c15 D 0. Similarly,

the following relations are also true:

�22 D � 0
22 ) c24 D c25 D 0

�33 D � 0
33 ) c34 D c35 D 0

�12 D � 0
12 ) c64 D c65 D 0

(8.22)

Therefore, for a monoclinic material the number of independent constants reduce to
13, and if the plane of symmetry is the x1x2, the stiffness matrix is given as

c D

2
66666664

c11 c12 c13 0 0 c16
c22 c23 0 0 c26

c33 0 0 c36
sym c44 c45 0

c55 0

c66

3
77777775

(8.23)

Let assume that the material under consideration has one more plane of material
symmetry. This case is illustrated in Fig. 8.24, in which the additional plane of sym-
metry is defined along x2x3 axes, and can be given by the following transformation:

x0
1 D -x1I x0

2 D x2I x0
3 D -x3 (8.24)

which gives the following transformation matrix

A D
2
4

�1 0 0

0 1 0

0 0 �1

3
5 (8.25)
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Fig. 8.24 Material symmetry: (a) about planes x1x2 and x2x3; (b) about planes x1x2 and x1x3

and the transformed stress and strain tensors ¢ 0 and ©0 are given, respectively, as

2
4
� 0
11 �

0
12 �

0
13

� 0
22 �

0
23

Sym � 0
33

3
5 D

2
4
�11 ��12 �13

�22 ��23
Sym �33

3
5 (8.26)

2
4
"0
11 "

0
12 "

0
13

"0
22 "

0
23

Sym "0
33

3
5 D

2
4
"11 �"12 "13

"22 �"23
Sym "33

3
5 (8.27)

Now, using the stiffness matrix given in Eq. (8.23) and comparing the compo-
nents of stress tensors of Eq. (8.26), is possible to write

�11 D � 0
11 () c11"11 C c12"22 C c13"33 C c16�12

D c0
11"

0
11 C c0

12"
0
22 C c0

13"
0
33 C c0

16�
0
12 (8.28)

Which holds true when c16 D 0. Following a similar procedure is possible to
conclude that

�22 D � 0
22 ) c26 D 0

�33 D � 0
33 ) c36 D 0

�13 D � 0
13 ) c45 D 0

(8.29)

Thus, the number of independent constants reduces to nine and the elastic coefficient
matrix reduced to:
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c D

2
66666664

c11 c12 c13 0 0 0

c22 c23 0 0 0

c33 0 0 0

sym c44 0 0

c55 0

c66

3
77777775

(8.30)

Alternately, if the second plane of material symmetry is selected along the axes
x1x3, as shown in Fig. 8.24b, then the transformation is as following:

x0
1 D x1I x0

2 D -x2I x0
3 D -x3 (8.31)

Leading to the following transformation matrix

A D
2
4
1 0 0

0 �1 0

0 0 �1

3
5 (8.32)

and the transformed stress and strain tensors ¢ 0 and ©0 are now given, respectively,
as

2
4
� 0
11 �

0
12 �

0
13

� 0
22 �

0
23

Sym � 0
33

3
5 D

2
4
�11 ��12 ��13

�22 �23
Sym �33

3
5 (8.33)

2
4
"0
11 "

0
12 "

0
13

"0
22 "

0
23

Sym "0
33

3
5 D

2
4
"11 �"12 �"13

"22 "23
Sym "33

3
5 (8.34)

Now using the same procedure as this used previously it will be possible to show
that the reduced stiffness matrix has also the form of Eq. (8.30).

When a material has (any) two orthogonal planes of material symmetry is called
an orthotropic material. In fact, is possible to understand that when two orthogonal
planes are planes of material symmetry, a third mutually orthogonal plane is also
a plane of material symmetry, and Eq. (8.30) remains true for this case also. Note
that unidirectional fibrous composites are an example of orthotropic materials. A
unidirectional fibrous lamina with the principal material directions is shown in
Fig. 8.25. The direction 1 is along the fiber, directions 2 and 3 are perpendicular
to the direction 1, and they are mutually perpendicular to each other. The direction
3 is along the thickness of lamina.
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Fig. 8.25 unidirectional
lamina with principal
material axe directions

x2

x1

x3

The stiffness matrix components of Eq. (8.30) are not directly measured from
laboratory tests. The quantities that can be measured by laboratory testing are engi-
neering or material constants like Young’s modulus, shear modulus and Poisson’s
ratio. Thus, the orthotropic material properties of a lamina are obtained either
by theoretical approach or by laboratory testing [11]. The relationship between
engineering constants and the stiffness matrix components is not straight forward.
Therefore, this relationship will be developed based on the relationship between
engineering constants and the compliance matrix components.

The compliance matrix gives the strain-stress relationships of a linear elastic
material and can be obtained from the reverse form of Eq. (8.5) leading to

©ij D sijkl ¢kl (8.35)

or in an extended form as
2
66666664

"11
"22
"33
2"23
2"13
2"12

3
77777775

D

2
66666664

s11 s12 s13 0 0 0

s21 s22 s23 0 0 0

s31 s32 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s55 0

0 0 0 0 0 s66

3
77777775

2
66666664

�11
�22
�33
�23
�13
�12

3
77777775

(8.36)

all components of compliance matrix are obtained from the engineering constants,
which can be defined as

Ek D ¢kk

©
.kk/
kk

I k D 1; 2; 3 (8.37)

Gij D ¢ij

2©
.ij/
ij

I i ¤ j (8.38)

�mn D �"
.mm/
nn

"
.mm/
mm

I m ¤ n (8.39)
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Fig. 8.26 Experiments for extracting Young’s modulus and Poisson’s ratios ¤12 and ¤13

Equation (8.37) defines the Young’s modulus in 1, 2 and 3 directions, in which
Ek relates the normal stress and the extension strain on the face with the normal
vector, when the applied load is in the direction xk. Shear modulus are defined in
Eq. (8.38), Gij relates the in-plane shear stress and the in-plane shear strain acting
in the plane xixj, it should be noted that Gij D Gji. In Eq. (8.39), the term ¤mn

represent the Poisson’s ratio and it is defined as the ratio between extension strain in
the direction perpendicular to the direction of applied stress and the extension strain
in the direction of applied stress. It should be noted that, in general, �mn ¤ �nm.

In order to evaluate the quantities in Eqs. (8.37), (8.38), and (8.39) is possible to
make laboratory tests. For instance, assume that lamina specimens are subjected to
a sequence of four experiments:

Experiment 1 the lamina is loaded in traction along the fibrous direction, as shown
in Fig. 8.26, and the strains along the three principal directions are recorded as the
load is varied.

Young modulus E1 can be obtained as the slope of the axial stress (�11) versus
axial strain ("(11)

11 ) curve, while Poisson’s ratios are given as

�12 D �"
.11/
11

"
.11/
22

I �13 D �"
.11/
11

"
.11/
33

(8.40)

Due to the definition of elasticity modulus and the definitions in Eq. (8.40) is
possible to write

©
.11/
11 D s11¢11 ) s11 D ©

.11/
11

¢11
D 1

E1
(8.41)

©.11/nn D sn1¢11 ) sn1 D ©
.11/
nn

¢11
D ©

.11/
nn

E1©
.11/
11

D ��1n

E1
I n D 2; 3 (8.42)
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Fig. 8.27 Experiments for extracting Young’s modulus E2 and Poisson’s ratios ¤21 and ¤23

Experiment 2 the lamina is loaded in traction along direction x2, as shown in Fig.
8.27, and the strains along the three principal directions are recorded as the load
is varied. Young modulus E2 can be obtained as the slope of the axial stress (�22)
versus axial strain ("(22)

22 ) curve, while Poisson’s ratios are given as

�21 D �"
.22/
11

"
.22/
22

I �23 D �"
.22/
33

"
.22/
22

(8.43)

Once more, using the definition of elasticity modulus and the information in Eq.
(8.43) is possible to write

©
.22/
22 D s22¢22 ) s22 D ©

.22/
22

¢22
D 1

E2
(8.44)

©.22/nn D sn2¢22 ) sn2 D ©
.22/
nn

¢22
D ©

.22/
nn

E2©
.22/
22

D ��2n

E2
I n D 1; 3 (8.45)

Experiment 3 the lamina is loaded in traction along direction x3, and the strains
along the three principal directions are recorded as the load is varied. Young
modulus E3 can be obtained as the slope of the axial stress (�33) versus axial strain
("(33)

33 ) curve, while Poisson’s ratios are given as

�31 D �"
.33/
11

"
.33/
33

I �32 D �"
.33/
22

"
.22/
33

(8.46)

and using the definition of elasticity modulus and the information in Eq. (8.46) is
possible to write

©
.33/
33 D s33¢33 ) s33 D ©

.33/
33

¢33
D 1

E3
(8.47)
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Fig. 8.28 Experimental tests: (a) for extracting shear modulus G23;. (b) for extracting shear
modulus; (c) for extracting shear modulus G21

©.33/nn D sn3¢33 ) sn3 D ©
.33/
nn

¢33
D ©

.33/
nn

E3©
.33/
33

D ��3n

E3
I n D 1; 2 (8.48)

Experiment 4 the lamina is loaded in shear within plane x2x3, as shown in Fig.
8.28a, and the slope of the in-plane shear stress (�23) versus angular strain (2"(23)

23 )
curve gives the shear modulus G23, and is possible to write

2©
.23/
23 D s44¢23 ) s44 D 2©

.23/
23

¢23
D �

.23/
23

¢23
D 1

G23

(8.49)

and in a similar way, is also possible to load the lamina by shear within planes x1x3

and x1x2 to get shear modulus G31 and G21, respectively, as shown in Fig. 8.28b, c.
The slope of the in-plane shear stress versus angular strain curves gives the shear
modulus as

2©
.13/
13 D s55¢13 ) s55 D 2©

.13/
13

¢13
D �

.13/
13

¢13
D 1

G13

(8.50)

2©
.21/
21 D s66¢21 ) s66 D 2©

.21/
21

¢21
D �

.21/
21

¢21
D 1

G21

(8.51)
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After all these experiments is possible to write the compliance matrix in the form:

s D

2
66666666666666664

1

E1
��21

E2
��31

E3
0 0 0

� �12

E1

1

E2
��32

E3
0 0 0

� �13

E1
��23

E2

1

E3
0 0 0

0 0 0
1

G23

0 0

0 0 0 0
1

G13

0

0 0 0 0 0
1

G12

3
77777777777777775

(8.52)

And, from elementary linear algebra, it is known that the inverse of a symmetric
matrix is also a symmetric matrix. Then, because the stiffness matrix is symmetric
and the compliance matrix is the inverse of stiffness matrix, the compliance matrix
has to be symmetric also. Thus, Eq. (8.52) and the symmetry property of compliance
matrix allows deriving more useful relations. For instance, form the comparison of
components sij and sji, the following relations are given

¤21

E2
D ¤12

E1
I ¤31

E3
D ¤13

E1
I ¤23

E2
D ¤32

E3
I (8.53)

Or in a compact form

¤ij

Ei
D ¤ji

Ej
I i; j D 1; 2; 3I .no sum over i and j/ (8.54)

The stiffness matrix can be obtained using Eq. (8.52) into Eq. (8.36) and inverting
the resulted equation, the stiffness matrix of an orthotropic material will be defined
as

c D

2
6666666666664

E1 .1 � �23�32/
�

E1 .�21 C �23�31/

�

E1 .�31 C �21�32/

�
0 0 0

E2 .�12 C �32�13/

�

E2 .1 � �13�31/
�

E2 .�32 C �12�31/

�
0 0 0

E3 .�13 C �12�23/

�

E3 .�23 C �13�21/

�

E3 .1 � �12�21/
�

0 0 0

0 0 0 G23 0 0

0 0 0 0 G13 0

0 0 0 0 0 G12

3
7777777777775

I

� D 1 � .�12�21 C �13�31 C �23�32 C �13�21�32 C �12�23�31/

(8.55)
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Using the relations on Eq. (8.53) into the second equation of Eq. (8.55), is
possible to write � as

� D 1 � .�12�21 C �13�31 C �23�32 C 2�13�21�32/ (8.56)

A special class of orthotropic materials is those that have isotropy in one plane, for
instance the x2x3 plane, meaning that in this plane the material has the same material
properties on both directions and, therefore, the following relations are true

E2 D E3I ¤13 D ¤12I ¤31 D ¤21I ¤23 D ¤32I G13 D G12 and G23 D E2
2 .1C ¤23/

(8.57)

Substituting the relations of Eq. (8.57) into Eq. (8.52), yields

s D

2
66666666666666664

1

E1
��12

E1
��12

E1
0 0 0

� �12

E1

1

E2
��23

E2
0 0 0

� �12

E1
��23

E2

1

E2
0 0 0

0 0 0
1

G23

0 0

0 0 0 0
1

G12

0

0 0 0 0 0
1

G12

3
77777777777777775

(8.58)

Equation (8.58) defines the compliance matrix for the called transverse isotropic
materials, and they are described by five independent elastic constants, instead of
nine for fully orthotropic. The stiffness matrix for transverse isotropic materials can
be found from the inverse of the compliance matrix.

Is well known that for isotropic materials there are constraints on material
constants, namely Young’s modulus and shear modulus should be always positive
and the Poisson’s ratio should not be larger than half. If these constraints are violated
then, for certain load conditions, the strain energy may be non-positive and the
evolution of material is not thermodynamically inadmissible [12]. The requirement
of positive definiteness of strain energy for isotropic material is also valid for the
case of orthotropic materials. Thus, the work done by all stress components must
be positive and, this condition, requires that both compliance and stiffness matrices
must be positive definite. The physical meaning of these requirements can be clarify
if we assume that each component of stress field is applied isolated, then is possible
to find the corresponding strain component from the corresponding diagonal entry
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of compliance matrix and, therefore, for the strain energy to be positive definite
is necessary that the diagonal entries of the compliance matrix must be positive,
yielding

E1;E2;E3;G23;G13;G12 > 0 (8.59)

To assure the positive definiteness of stiffness matrix, is possible to consider
states of deformation that include only one strain component at a time and find
the corresponding stress, using the corresponding diagonal entry of the stiffness
matrix. Hence, to assure that the strain energy produced by each one of this stress
components is positive definite, is necessary to assure the following conditions

.1-¤23¤32/ ; .1-¤13¤31/ ; .1-¤12¤21/ > 0 (8.60)

� D 1 � .�12�21 C �13�31 C �23�32 C 2�13�21�32/ > 0 (8.61)

If relations on Eq. (8.53) are used into Eq. (8.60), the Eq. (8.60) can be further
rewritten as

j¤12j <
�

E1
E2

�1=2
j¤21j <

�
E2
E1

�1=2

j¤13j <
�

E1
E3

�1=2
j¤31j <

�
E3
E1

�1=2

j¤23j <
�

E2
E3

�1=2
j¤32j <

�
E3
E2

�1=2
(8.62)

The conditions on Eq. (8.62) estimate that Poisson’s coefficients must be smaller
than ratios of Young’s modulus of the lamina. Since E1, generally, is much greater
than the other two Young’s modulus, Eq. (8.62) justifies that Poisson’s ratio greater
than unity is feasible for an orthotropic lamina.

Using relations on Eq. (8.53) into Eq. (8.61) and rewriting the resulted equation,
is possible to obtain the following relation

�13�21�32 <
1 � �12�21 � �13�31 � �23�32

2

�13�21�32 <

1 � .�21/2
�

E1
E2

�
� .�13/2

�
E3
E1

�
� .�32/2

�
E3
E1

�

2

(8.63)

Because the terms inside the brackets are all positive, the right-hand-side of Eq.
(8.63) is always smaller than 1/2, and is possible to write

�13�21�32 <
1

2
(8.64)
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Fig. 8.29 Principal material
directions and reference
coordinate system of a
unidirectional lamina x3 ≡ z

x2 ≡ y

x1 ≡ x

12

3

q

Equation (8.64) shows that the three Poisson’s ratios can’t have all large positive
values and that their product must be smaller than 1/2.

8.6.3 Stress and Strain Transformations

Often we may want to describe the behavior of a structure with reference to more
than one set of axes. For instance, the analysis of an airplane can be done using
different loading axes for wings and fuselage or the analysis of fibrous composite
materials in which the principal material directions may not be parallel to the
directions of a reference axis system. Nevertheless, it must be clear that if we change
the axis system in which some physical information (stress or strain) is described
does not change the physical quantity, only its description. Thus the stress state and
the strain state do not change, we just describe them differently. In order to introduce
this description it should be noted that the stress and strain states are described by
second order tensors and, therefore, they follow tensor transformation rules.

In this section two different coordinate systems are used and, therefore, the
two following nations are defined: subscripts 123 denote quantities described
in principal material directions; while subscripts xyz denote the corresponding
quantity in reference coordinate system. Figure 8.29 shows the orientations of both
coordinate systems. The fibers assumed their orientation by a simple rotation of
the principal material axes about the 3 axis. The orientation angle ™ is considered
positive when the fibers rotate counterclockwise from the Cx towards the Cy.
Transformation of stress and strain tensors, between both coordinate systems,
follows the transformation rules of second order tensors described in Eq. (8.17),
in which is necessary to define the transformation matrix between both coordinate
systems, and for that, it is necessary the knowledgment of direction cosines of this
axes transformation, which are given below in Table 8.1. In Eq. (8.17), the primed
stress components denote the component in 123 coordinate system.

Using the relation in Eq. (8.17), transformation matrix of Table 8.1 and the stress
symmetry, is possible to obtain each component of stress in the coordinate system
of principal material directions as



298 8 Advanced FEM Modelling

Table 8.1 Direction cosines for the axes transformation

From/ Direction cosines
To 1 2 3

x a11 D cos ™ a12 D cos (90ı C ™) a13 D cos (90ı)
y a21 D cos (90ı–™) a22 D cos (™) a23 D cos (90ı)
z a31 D cos (90ı) a32 D cos (90ı) a33 D cos (0ı)

�11 D a11a11�xx C a21a21�yy C a31a31�zz

C 2a31a31�yz C 2a31a11�xz C 2a21a11�xy

(8.65)

and using the information on Table 8.1 yields

�11 D cos2 � �xx C sin2 � �yy C 2 cos � sin � �xy (8.66)

The remaining stress components can also be obtained in a similar way, and the
final relation may be written using the pseudo-vector form of stress tensor as

¢ D T�¢ (8.67)

where ¢ represents the pseudo-vector of stress components in the principal material
direction axes, ¢ is the pseudo-vector of stress components in the reference
coordinate system and T� is the newly defined transformation matrix given as [13]

T� D

2
66666664

m2 n2 0 0 0 2mn
n2 m2 0 0 0 �2mn
0 0 1 0 0 0

0 0 0 m �n 0

0 0 0 n m 0

-mn mn 0 0 0 m2-n2

3
77777775

(8.68)

where m D cos � and n D sin � . Because T� is not a symmetric matrix, the
inverted relation of Eq. (8.67) is written as

¢ D R�¢ (8.69)

R� is a transformation matrix that can be obtained from matrix T� replacing � with
�� .

In a similar way, is possible to transform the strain components between the two
coordinate systems. Strains are also represented by a second order tensor, hence the
second equation in transformation Eq. (8.17) is applied to the strain tensor and using
the strain symmetry is possible to write
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"12 D a11a12"xx C a21a22"yy C a31a32"zz

.a21a32 C a31a22/ "yz C .a32a11 C a31a12/ "xz

C .a22a11 C a21a12/ "xy

(8.70)

Substituting the direction cosines and rearranging, yields

"12 D � sin � cos � "xx C sin � cos � "yy C �
cos2� � sin2�

	
"xy (8.71)

And because the shear strains are half of the engineering shear strains, i.e.

�12 D 2"12 and �xy D 2"xy (8.72)

Equation (8.71) assumes the following form

2"12 D �2 sin � cos � "xx C 2 sin � cos � "yy C �
cos2� � sin2�

	
2"xy (8.73)

and if m D cos � and n D sin � are used in previous equation, a simplified form is
written as

2"12 D �2mn "xx C 2mn "yy C �
m2 � n2

	
2"xy (8.74)

Each of one of the other five strain terms can also be obtained in a similar way, and
the final relation may be written using the pseudo-vector form of strain tensor as

© D T"© (8.75)

where © represents the pseudo-vector of strain components in the principal material
direction axes © is the pseudo-vector of stress components in the reference coordi-
nate system and T" is the newly defined transformation matrix given as [13]

T" D

2
66666664

m2 n2 0 0 0 mn
n2 m2 0 0 0 �mn
0 0 1 0 0 0

0 0 0 m �n 0

0 0 0 n m 0

-2mn 2mn 0 0 0 m2-n2

3
77777775

(8.76)

The matrix T" is the transpose of the matrix R� in Eq. (8.69) and, therefore, Eq.
(8.75) can also be represented as

© D RT
�© (8.77)
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In a similar form, the inverse relation is given by

© D TT
�© (8.78)

8.6.4 Transformation of Stiffness and Compliance Matrices

The transformation of stress and strain components between the material and
global coordinate systems have been discussed in the previous section, but it is
also required to relate the stress components with strain components in the global
coordinate system. For that, it is necessary to transform the stiffness and compliance
matrices components from the material coordinate system to the global coordinate
system.

To obtain these transformations, let the stress-strain relations given in Eq. (8.5)
be used in the stress transformation described by Eq. (8.69), and written as

¢ D R�¢ D R�c © (8.79)

now, substituting Eq. (8.77) into Eq. (8.79) yields to

¢ D R�c © D R�c RT
�© D c © (8.80)

Where the transformed stiffness matrix c is defined as

c D R�c RT
� (8.81)

and, the material stiffness matrix in Eq. (8.81) is defined in the laminate (global)
coordinate system as

c D

2
66666664

c11 c12 c13 0 0 c16
c22 c23 0 0 c26

c33 0 0 c36
sym c44 c45 0

c55 0

c66

3
77777775

(8.82)

Where the cij components are expressed in the global coordinate system and are
directly dependents on the layer orientation of the orthotropic material.

In order to relate the compliance coefficients in both coordinate systems, Eq.
(8.35) is used in Eq. (8.78) yielding

© D TT
�© D TT

� s ¢ (8.83)
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and substituting Eq. (8.67) in the latter equation leads to

© D TT
� s ¢ D TT

� s T�¢ D s ¢ (8.84)

The quantity s D TT
� s T� contains the transformed compliance coefficients referred

to the laminate coordinate system.

8.6.5 Reduced Form of Stiffness and Compliance Matrices for
an Orthotropic Lamina

Equation (8.36) is written in the most general case. However, most laminates are
thin and experience a planar state of stress, i.e., the transverse stresses �33, �13 and
�23 are negligible. Nevertheless, when fibers that provide the strength are in the x1x2

plane, the fiber-reinforced composite laminates are much weaker in the transverse
direction. Therefore, even when the transverse stresses are small, when compared to
the values of in-plane stresses, they still can induce failures of the laminates in these
transverse directions. Consequently, transverse stresses are not always neglected in
the laminate analyses. By neglecting the transverse normal strain and by including
the transverse shear stress, the strain stress relations given by Eq. (8.36) reduces to

2
666664

"11
"22
2"23
2"13
2"12

3
777775

D

2
666664

s11 s12 0 0 0

s12 s22 0 0 0

0 0 s44 0 0

0 0 0 s55 0

0 0 0 0 s66

3
777775

2
666664

�11
�22
�23
�13
�12

3
777775

(8.85)

Where the components of the reduced compliance in Eq. (8.85) are those in Eq.
(8.52) by removing the third row and third column.

Equation (8.85) is written in a reverse form to obtain the stress-strain relations,
as

2
666664

�11
�22
�23
�13
�12

3
777775

D

2
666664

c11 c12 0 0 0

c12 c22 0 0 0

0 0 c44 0 0

0 0 0 c55 0

0 0 0 0 c66

3
777775

2
666664

"11
"22
2"23
2"13
2"12

3
777775

(8.86)

Where the reduced stiffness coefficients are now given by

c11 D E1
�

I c22 D E2
�

I c44 D G23

c55 D G13I c66 D G12

c12 D E2�12
�

I � D 1 � �12�21

(8.87)



302 8 Advanced FEM Modelling

Equation (8.86) is the constitutive equation of an orthotropic lamina written in
its material coordinate system. For the conditions defined, the stress-strain relations
expressed in the laminate coordinate system are

2
666664

�11
�22
�23
�13
�12

3
777775

D

2
666664

c11 c12 0 0 c16
c12 c22 0 0 c26
0 0 c44 c45 0

0 0 c54 c55 0

c61 c62 0 0 c66

3
777775

2
666664

"11
"22
2"23
2"13
2"12

3
777775

(8.88)

or in a compact form

¢p D cp ©p (8.89)

where ¢p D �
�11 �22 �23 �13 �12

�T
is the stress pseudo-vector, ©p D�

"11 "22 2"23 2"13 2"12
�T

is the deformation pseudo-vector and cp is the matrix
of the reduced stiffness coefficients, defined in the laminated coordinate system
given as

cp D Rp cp RT
p (8.90)

Matrix cp is the reduced stiffness defined in Eq. (8.86) and matrix Rp is obtained
from the transformation matrix in the right hand side of Eq. (8.69) by removing the
third row and third column.

8.6.6 Finite Element Matrices for Laminated Plates

In preceding chapters we presented some of the tools needed for understanding
elastic response of small volume of fiber-reinforced material assuming that the fibers
and the matrix material were smeared into one equivalent homogeneous material.
Nevertheless, fiber-reinforced materials are most frequently applied in the form of
multiple layers of material to form a laminate. Each layer is thin and may have
different fiber orientation, and in some cases, not all the layers are of the same
material [13]. Actually, two laminates may involve the same number of layers and
the same set of fiber angles, but the two laminates can be different and most certainly
can exhibit entirely different behavior due to the arrangement of the layers [13].
Figure 8.30, shows two laminates with the same number of layers and the same set
of angles, but different arrangement of layers.

The first step on the discussion of laminates is to have a method for describing
the laminate, especially the fiber orientation of each layer. The fiber angle of the
several layers is identified by specifying the fiber angle ™ of each layer relatively
to global Cx. The specification starts with layer 1, which is the layer at the most
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a b

Fig. 8.30 Stacking sequence of laminates: (a) [90/0]s laminate; (b) [0/90]s

x1 ≡ x

x3 ≡ z

x2 ≡ y

Layer 1, q = 90

Layer 2, q = 0

Layer 3, q = 0

Layer 4, q = 90

Fig. 8.31 Stacking sequence of laminate [90/0]s

negative z location. For instance the laminate in Fig. 8.30a is a [90/0/0/90] laminate,
while the laminate in Fig. 8.30b is a [0/90/90/0]. Where, in each case, the global Cx
is aligned as showed in Fig. 8.31.

Additionally, to the method used to describe the fiber orientation of each layer, it
is also necessary to establish a coordinate system for specifying locations through
the thickness of the laminate. Figure 8.32 shows a global coordinate system and a
general laminate, in which the total number of layers is of nl.
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x3 ≡ z

x1 ≡ x

x2 ≡ y

Layer 1
Layer 2

Layer k

Layer nl

2
h

2
h

x1 ≡ x

x3 ≡ z

h0h1h2

hnl
hnl−1

hk−1
hk

a

b

Fig. 8.32 Coordinate system and layer numbering for a typical laminated plate

The laminate thickness is denoted by h, and the k individual layer is located
between the point x3 D hk-1 and x3 D hk, as shown in Fig. 8.32. If the laminates
shown in Fig. 8.30 have layers with the same thickness, then both laminates are
called symmetric. A laminate is said symmetric when the material, angle and
thickness are located symmetrically with respect to the reference surface.

In order to describe the finite element matrices of laminated plates, let assume
that flat shell finite elements of Sect. 6.4.1 are used. Thus, following Eq. (6.77), the
element stiffness matrix for layer k can be formulated by combining sub-matrices
as follows

�
ks

ij

	
k

D

0
BB@

2
664

km
ij kmb

ij 0

kbm
ji kb

ij C ks
ij 0

0 0 0

3
775

1
CCA

k

I .i; j D 1; : : : ; 4/ (8.91)

Where (km
ij )k is the membrane stiffness sub-matrix, given by

�
km

ij

	
k

D
Z

A

.Bmi/
T.Dm/kBmj dA (8.92)

and Bmi is the membrane strain sub-matrix associated with node i, which is
described in Eq. (5.71), and (Dm)k is the sub-matrix that relates resultant membrane
forces to membrane strains defined as

.Dm/k D
2
4

c11 c12 c16
c21 c22 c26
c61 c62 c66

3
5

k

.hk � hk�1/ (8.93)

http://dx.doi.org/10.1007/978-3-319-17710-6_6
http://dx.doi.org/10.1007/978-3-319-17710-6_6
http://dx.doi.org/10.1007/978-3-319-17710-6_5
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In Eq. (8.91), (kb
ij)k is the bending stiffness sub-matrix, given by

�
kb

ij

	
k

D
Z

A

.Bbi/
T.Db/kBbj dA (8.94)

and Bbi is the bending strain sub-matrix associated with node i, which is described
in Eq. (6.56), and (Db)k is the sub-matrix that relates generalized moments to
generalized curvatures and is defined as

.Db/k D
2
4

c11 c12 c16
c21 c22 c26
c61 c62 c66

3
5

k

�
h2k � h2k�1

	
(8.95)

In Eq. (8.91), (ks
ij)k is the shear stiffness sub-matrix, given by

�
ks

ij

	
k

D
Z

A

.Bsi/
T.Ds/kBsj dA (8.96)

and Bsi is the shear strain sub-matrix associated with node i, which is described in
Eq. (6.59), and (Ds)k is the sub-matrix that relates resultant transverse shear forces
to shear strains and is defined as

.Ds/k D k

�
c44 c45
c45 c55

�

k

.hk � hk�1/ (8.97)

In Eq. (8.91),
�

kmb
ij

�
k

D
�

kbm
ji

�T

k
is the coupling membrane-bending stiffness

sub-matrix, given by

�
kmb

ij

	
k

D
Z

A

.Bmi/
T.Dmb/kBbj dA (8.98)

and (Dmb)k is the sub-matrix that relates resultant membrane forces to generalized
curvatures and is defined as

.Dmb/k D
2
4

c11 c12 c16
c21 c22 c26
c61 c62 c66

3
5

k

1

3

�
h3k � h3k�1

	
(8.99)

As each layer may have different properties, the elasticity matrices must be
evaluated by a summation carried out all over the thickness. Therefore, equivalent
single layer theories produce an equivalent stiffness matrix, which is a weighted sum

http://dx.doi.org/10.1007/978-3-319-17710-6_6
http://dx.doi.org/10.1007/978-3-319-17710-6_6
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of the individual layer stiffness through the thickness. Thus, the element stiffness
matrix for the laminate can be formulated as

ks
ij D

nlX
kD1

�
ks

ij

	
k

(8.100)

Where nl is the layer numbers of the laminate.

8.6.7 Force and Moment Resultants for Laminated Plates

Integrating the stress through the laminate thickness the resultant forces and
moments acting in the laminate are obtained. Hence, the resultant membrane forces
are

Nm D
2
4

N11
N22
N12

3
5 D

nlX
kD1

hkZ

hk�1

2
4
�11
�22
�12

3
5 dx3 (8.101)

The resultant bending moments are

M D
2
4

M11

M22

M12

3
5 D

nlX
kD1

hkZ

hk�1

2
4
�11
�22
�12

3
5 x3 dx3 (8.102)

While the resultant shear forces are written as

Ns D
�

N23
N13

�
D

nlX
kD1

hkZ

hk�1

�
�23
�13

�
dx3 (8.103)

Since in the Reissner-Mindlin plate theory, the transverse shear strains are constant
through the laminate thickness, it follows that the transverse shear stresses also
have a constant distribution through the laminate thickness. However, in plates the
transverse shear stress varies at least quadratically through the layer thickness. This
discrepancy between the two states of stress is often corrected in computing the
transverse shear force resultants by multiplying the integrals in Eq. (8.103) by a
parameter k, called shear correction coefficient, as

Ns D
�

N23
N13

�
D k

nlX
kD1

hkZ

hk�1

�
�23
�13

�
dx3 (8.104)



8.6 Material Modelling 307

The factor k is computed such that the strain energy due to the transverse shear
stresses equals the strain energy due to the true transverse shear stresses predicted
by the three-dimensional elasticity theory. A parameter value k D 5/6 has been
extensively used for the case of homogeneous rectangular beams and plates made
of isotropic materials. However, the shear correction factor for a general laminate
depends on the lamina properties and on the lamination schemes.

Using relations (8.89), (5.14), (6.53) and (6.57) into Eqs. (8.101), (8.102) and
(8.104) and integrating through the laminated thickness the constitutive relations
can be written in a compact form as

2
4

Nm

M
Ns

3
5 D

2
4

Dm Dmb 0
Dmb Db 0

0 0 Ds

3
5
2
4
©m

¦

©s

3
5 (8.105)

where ©m is the vector of membrane strains defined by Eq. (5.14), ¦ is the vector of
bending curvatures described in Eq. (6.53) and ©s contain the shear strains described
in Eq. (6.57). The matrix on the right-hand-side of Eq. (8.105) is called laminate
stiffness matrix, and defines a relationship between the stress resultants, applied to
the laminate, and the reference surface strains and curvatures. Sub-matrices Dm,
Db, Ds and Dmb are evaluated performing a summation carried out all over the
thickness of Eqs. (8.93), (8.95), (8.97) and (8.99), respectively. Often laminates are
classified according their stacking arrangement and this kind of classification have
some effects on the form of laminate stiffness matrix. For instance, for symmetric
laminates the matrix Dmb is zero, which means that there is no coupling between
extension and bending load.

8.6.8 Laminated Composite Cylindrical Roof Loaded Under Its
Own Weight

Laminated composite plate structures find numerous applications in aerospace,
military and automotive industries. The role of transverse shear is very important in
composites, as the material is weak in shear due to its low shear modulus compared
to extensional rigidity [14]. Hence, the effect of transverse shear deformation
on deflection and stresses of laminated composite panels must be accounted for,
especially in plates with side-to-thickness ratios of 10 or smaller.

Discussion example of Sect. 6.5 is now analyzed assuming that the shell is
laminated of a composite material. The boundary conditions are those presented
in Fig. 6.13 of Sect. 6.5. The material properties are [15]

E1 D 25 E2I E3 D E2I G12 D G13 D 0:5E2I �12 D �13 D 0:25 (8.106)

http://dx.doi.org/10.1007/978-3-319-17710-6_5
http://dx.doi.org/10.1007/978-3-319-17710-6_6
http://dx.doi.org/10.1007/978-3-319-17710-6_6
http://dx.doi.org/10.1007/978-3-319-17710-6_5
http://dx.doi.org/10.1007/978-3-319-17710-6_6
http://dx.doi.org/10.1007/978-3-319-17710-6_6
http://dx.doi.org/10.1007/978-3-319-17710-6_6
http://dx.doi.org/10.1007/978-3-319-17710-6_6
http://dx.doi.org/10.1007/978-3-319-17710-6_6
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Table 8.2 Maximum
transverse deflections of a
laminated cylindrical shell
roof

Layers R/h w [15] w [ADINA]

2 20 12.1529 12.120
50 5.4211 5.414

100 3.1191 3.116
10 20 8.7239 8.695

50 3.1358 3.130
100 1.8877 1.887

Fig. 8.33 Composite laminates with ten layers and radius-to-thickness ratio of: (a) 100; (b) 20

This problem is solved using the ADINA program, and because in ADINA the
Poisson’s ratio is defined differently from the standard convention, the Poisson’s
ratio in Eq. (8.106) is modified using the following relation [8]

�ADINA
ij D Ej

Ei
�ij (8.107)

The composite shell solution quoted for the vertical displacement at the center of
the free edge, point B in Fig. 6.13, for two layers and ten-layer antisymmetric cross-
ply [0/90/0/90/ : : : ] laminated shells and for different radius-to-thickness ratio are
presented in Table 8.2 [15]. In the ADINA program the load is applied considering
a mass proportional load, so in order to assure that the composite shell is always
loaded under the same conditions, i.e. under its own weight, the density � is always
of 0.208333 [lb/in3]. The vertical displacement presented at Table 8.2 is normalized
using the following dimensionless relation

w D 10 wB
E1h2

�R4
(8.108)

The solutions are obtained modelling one quarter of the structure and a mesh
density of 4�4 using the 16 node isoparametric shell element. The thickness of the
shell that has a radius-to-thickness ratio of 20 is about five times higher than the
thickness of the shell that has the radius-to-thickness ratio of 100. In order to see the
thickness difference between both laminates, Fig. 8.33 shows both laminated shells
for the case of ten layers.

In Fig. 8.33 is also possible to visualize the principal material direction associated
to the top layer, a triad is plotted within each finite element showing the direction of

http://dx.doi.org/10.1007/978-3-319-17710-6_6


8.6 Material Modelling 309

a b

c d

–7.5

–5.5

–3.5

–1.5

0.5

2.5

4.5

6.5

0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0

Th
ick

ne
ss

Stress_xx [Pa]

0
90
0

90

0

0

0

90

90

90

–7.5

–5.5

–3.5

–1.5

0.5

2.5

4.5

6.5

–80.0 –60.0 –40.0 –20.0 0.0 20.0 40.0

Th
ick

ne
ss

Stress_yy [Pa]

0
90
0
90
0

0

0

90

90

90
Layer

–7.5

–5.5

–3.5

–1.5

0.5

2.5

4.5

6.5

0.0 500.0 1000.0 1500.0 2000.0 2500.0 3000.0 3500.0 4000.0

Th
ick

ne
ss

Stress_xx [Pa]

0
90
0
90
0

0

0

90

90

90
Layer

–7.5

–5.5

–3.5

–1.5

0.5

2.5

4.5

6.5

–30.0 –20.0 –10.0 0.0 10.0 20.0 30.0

Th
ick

ne
ss

Stress_yy [Pa]

0
90
0
90
0

0

0

90

90

90
Layer

Fig. 8.34 Stress distribution through the thickness: (a) and (b) laminated with R/h D 100; (c) and
(d) laminated with R/h D 20

Fig. 8.35 Stress distribution through the thickness of laminated with R/h D 20

the principal material coordinate system. Normal stresses distribution through the
thickness in point B are presented in Fig. 8.34. Is clear that 0ı layer carries the most
axial stress, i.e. stress parallel to the axis of cylinder, while the 90ı layer carries the
most circumferential stress. Since the thickness of a cylinder, or a structure, greatly
determines its weight, and this roof is loaded by its own weight, we could think
that a thicker roof will show higher levels of stress, but Fig. 8.34 does not confirm
this effect. Nevertheless, that can be explained with the improvement of bending
stiffness of a thick cylinder.

The distribution of axial stress through the thickness of the laminated roof with
the R/h D 20 ratio is shown in Fig. 8.35.
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Strain displacement relation/relationship(s),

2, 197
Strain energy, 21, 41, 56, 188, 208, 210, 214,

218, 285, 295, 296, 307
Strain matrix, 57, 85, 97, 120, 158, 181, 183,

184, 204, 225, 239, 243, 245
Strong form, 43, 44, 91, 101, 122, 251
Superparametric elements, 166, 167, 169,

170
Supports, 59, 81, 83, 104, 115, 118, 142, 143,

151, 190, 192, 226, 227, 256–258, 261,
265, 273

Symmetry
axial, 272, 275–276
plane, 273–275
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Tetrahedron element, 234–239, 247–248, 259,

262, 268
Thick plate theory, 12
Thin plate theory, 195, 196, 207
Timoshenko beam theory, 28, 191
Torsional, 26, 27, 35, 149
Transformation matrix, 59, 72, 87–89, 93,

122, 141, 150, 220, 286, 287, 289,
297–299, 302

Transient
analysis, 63–78, 132–135, 155
dynamic analysis, 77
response, 75

Triangular element(s), 159–166, 168–171, 179,
181, 206

Truss(es), 1, 22–24, 28, 81–112, 115, 137, 139,
142, 146, 148–150, 153, 158, 189, 214,
215, 233, 265

V
Variational principle(s), 44
Vibration

modes, 61, 62, 78, 133–134
problems, 78

Volume coordinates, 236, 237, 248

W
Weak form, 43–44
Wilson ™ algorithm, 67–70
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