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Reflections

Knowledge is an artifact, worthy of design.

– Stefik and Conway (1982)

It has often been said that a person doesn’t really understand

something until he teaches it to someone else. Actually a person

doesn’t understand something until he can teach it to a computer,

i.e., express it as an algorithm . . .

The attempt to formalize things as algorithms leads to a much

deeper understanding than if we simply try to understand things

in the traditional way.

– Knuth (1973)
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Preface

More than 15 years have passed since the publication of Engineering Design: A Syn-

thesis of Views. Significant new material has emerged during this time that deserves

to be incorporated into the unified view presented in the first edition. In addition,

a larger group of people now believe that designing is not just analysis and that

research in design offers the possibility of studying a collection of cognitive pro-

cesses that allows significant insights. Thus, for this new edition, we replace the first

edition subtitle with Representation and Reasoning to make its focus more explicit.

Our approach was to leave the first edition more or less untouched while adding

material that clarifies, updates, and extends the original text. This new material was

placed in sidebars that are keyed to appropriate points in the (original) text. Any

new references were added to the end of the book to allow students and scholars to

explore topics that interest them in more detail. We hope that these additions will

extend the life of the book for another 15 years (or even more!).

The first edition leaned heavily on the field of artificial intelligence (AI). AI-

based models of design, and the techniques AI brings to bear, have changed since

1994. For example, as the field’s understanding of routine and near-routine design

strengthened, researchers moved on to consider nonroutine tasks.

Although design education has changed, it has changed slowly. There are still

many educators and engineers who would benefit from the lessons of the first edition

as well as from the updated material. Engineering design education and design

research in general have grown in importance – and it would be nice to think that

the first edition has played a constructive role in this growth. There is now a new and

wider audience for an expanded and updated “synthesis of views.”

We intend our audience to be engineers interested in understanding more about

engineering design, designers interested in understanding more about the utility of

AI, and AI researchers interested in design. We believe that this book will continue

to attract engineers who do not have any prior knowledge or commitment to this

updated view of design as an area of research and study.
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xii PREFACE

The authors still believe this statement from the Preface of the first edition:

. . . symbolic representation and related problem-solving methods, offer significant

opportunities to clarify and articulate concepts of design so as to lay a better framework

for design research and design education. Inasmuch as there is within AI a substan-

tial body of material concerned with understanding and modeling cognitive processes,

and because the level of articulation in this work transcends in many ways the common

vocabulary of engineering design, we may find it useful to adapt (where possible) and

appropriate the vocabulary and paradigms of AI to enhance our understanding of design.

As a consequence, this second edition continues to include concepts from AI not

only because of their explanatory power but also because of their utility as possible

ingredients of practical design activity. Of course, much has changed in the AI mod-

eling of design and in AI in general, so we have updated the material appropriately.

With the growth in cognitively influenced studies of design since the first edition,

we have also selectively incorporated material from that field. Our goal is still to

provide a focused, concise synthesis, without being so comprehensive that the book

becomes cumbersome.

As you can see, we have retained the Preface to the first edition because much

of it is still highly relevant, and it still sets the tone for the approach used in this

second edition. Some of the updated topics include features, functional represen-

tation and reasoning, affordances, design rationale, ontologies, grammars, genetic

algorithms, routineness, creativity, assumptions, design decision making, analogy,

and collections of agents as representations of teams.

Because we have published widely in this field for many years and share a

long history of association with the Cambridge University Press journal AIEDAM:

Artificial Intelligence for Engineering Design, Analysis and Manufacturing, it should

be no surprise that we lean heavily on our papers and this journal in what we cite.

We have included a wide variety of the work of others, but we hope you will forgive

us for any unintentional bias.

Engineering design education and design research has changed and grown in

importance since the first edition. We hope that many more engineers, students, and

teachers should now be able to benefit from this updated synthesis of views about

representation and reasoning in engineering design.

Clive L. Dym David C. Brown

Harvey Mudd College Worcester Polytechnic Institute

Claremont, California Worcester, Massachusetts



Preface to the First Edition

Design is a central activity in engineering. Indeed, Herbert A. Simon has argued

that design is the central activity that defines engineering – or, at the very least,

distinguishes it from the “pure” sciences – because the role of engineering is the

creation of artifacts. And yet, many of us within the engineering community believe

that design is a misunderstood activity that is not well represented in engineering

education or research. We are very much aware that engineering science dominates

the intellectual landscape of engineering today, and it is certainly arguable that

analysis dominates both engineering education and research. Indeed, it has long

been a concern that design is improperly taught and inadequately represented in

engineering curricula and that too often design is seen as legitimate only when it can

be explained in terms of analysis (as in the notion that design is “iterative analysis”).

One of the problems that design educators and design researchers have faced

is a perceived lack of rigor, and this perception has in turn led to calls for a more

organized, more “scientific” focus to research about design. One aspect of this per-

ception is that design is viewed as a “soft” subject: design is not a “hard” discipline

because it is not sufficiently mathematical. Another aspect is that the vocabulary for

analyzing and describing design is not shared, even within the design community,

although this situation has begun to improve.

We do not intend to revisit the (familiar) arguments about how this state of

affairs has evolved or who, if anyone, is to blame. Instead, we focus on how our

understanding of the discipline of design can be broadened and strengthened and

on ways in which we can discuss design in a more coherent and precise way. In

particular, we will try to demonstrate that recent advances in the field of artificial

intelligence (AI), particularly symbolic representation and related problem-solving

methods, offer significant opportunities to clarify and articulate concepts of design

so as to lay a better framework for design research and design education. Inasmuch

as there is within AI a substantial body of material concerned with understanding

and modeling cognitive processes, and because the level of articulation in this work

transcends in many ways the common vocabulary of engineering design, we may find

it useful to adapt (where possible) and appropriate the vocabulary and paradigms of

AI to enhance our understanding of design.

xiii



xiv PREFACE TO THE FIRST EDITION

We recognize first that the modeling techniques that currently occupy most of

the various engineering curricula, rooted in applied mathematics and usually quite

adequate for analysis, do not in fact represent a vocabulary complete enough for

the synthesis task of generating and choosing among different designs. The situation

is perhaps confused because analytical tools are often used to explore particular

conceptual designs down through a chain of detailed designs to a final design. What

appears to be missing is a language or a means of representing designs more abstractly

than is required for detailed design, for example, but with enough structure (e.g.,

hierarchies and networks) to allow sensible articulation of the issues involved in

the validation of a design at their corresponding levels of detail. Furthermore, this

vocabulary (or language or, even, set of languages) ought to be recognizable and

useful across all engineering disciplines, even if it is not fully applied in every single

instance.

Our basic thesis is that recent advances in AI research offer useful prospects for

representing the kinds of intelligent, informed design knowledge that is beyond the

current scope of mathematical modeling. The single most relevant development of

interest here is the idea of symbolic representation, which allows in computational

terms the processing of lists of words, which in turn facilitates – and even encourages –

the representation of objects and their attributes in a fairly general way. Inasmuch as

these objects can be conceptual as well as physical, the foundation has been laid for

representing qualitative aspects of our thinking about design in ways that we could

not achieve heretofore. The vocabulary of this AI-based research offers interesting

opportunities for articulating concerns about particular designs and about the field

of design itself. That is, recent attempts to use symbolic representation to make

design computable have perforce led to an articulation of the design process that

should be quite useful to the engineering community in its ongoing examination of

design in education, practice, and research.

Thus, we have directed this monograph toward synthesizing an operational

definition of engineering design to better articulate what we mean by engineering

design, how we can discuss both the design of artifacts and the process of design,

and which areas are most amenable to – and perhaps most require – formal research

approaches. The central theme of our discussion, that representation is the key

element in design, parallels the polymathic vision of Simon, who listed representation

as one of the seven subjects in the ideal engineering design curriculum. In addition,

akin to the quotation (p. vi) from Knuth, we argue that recent research in AI aimed at

rendering design computable has provided new techniques for design representation

that enable us to better explicate design concepts and processes. These developments

have at the same time given us computer-aided design tools of unparalleled power

and flexibility. Another consequence of these recent developments is that we now

have available new ways of designing our design knowledge (cf. Stefik and Conway,

as quoted on p. vi) and corresponding problem-solving paradigms that should be

incorporated into the weltanschauung of engineers and designers.

However, although much of this discussion has been motivated by current

research aimed at making design (and other cognitive processes) computable in
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some sense, we most emphatically do not argue that all design should be automated

or even made computable. Design activities encompass a spectrum from routine

design of familiar parts and devices, through variant design that requires some mod-

ification in form or function, to truly creative design of new artifacts. It is difficult to

argue that we can at present model truly creative design. However, although we may

not be able to model – and thus describe and teach – creativity, we must recognize

that the spectrum of design concerns does include many processes that are suscepti-

ble to thoughtful analysis – in other words, that are cognitive processes. Traditional

designers and teachers of design might well complain about the characterization

of design as a cognitive process, but we would respond that this is due to confu-

sion about where creativity and thoughtful process interact and overlap, on the one

hand, and where they are distinct, on the other. The boundary between creativity

and what we recognize as a cognitive process is a moving one, especially in terms

of our understanding, so we must be careful not to develop a new orthodoxy about

design that prejudges where that boundary is and where, as a result, we preclude

what we can learn and teach about design.

We also do not claim that AI has all the answers. Rather, we believe that AI-

based efforts aimed at increasing the options for representing designed artifacts

and the design process are helping produce a deeper awareness of what is involved

in design as well as a vocabulary for discussing design. It is this awareness and its

articulation that is worth exploring and adapting in order to improve the art of

engineering. And because design tasks vary from the routine to the creative (or

from adaptive through variant to original), we suggest that the focus of research in

computer-aided design should not be to simply automate design. Rather, we believe

that such research could be viewed as having both a “science” component and an

“engineering” component, the former being perhaps more basic than the latter. The

goals of the more basic research would include developing better representations,

languages, and problem-solving methods as well as a deeper understanding of the

kind of knowledge used to solve engineering design (and analysis) problems. The

goal of engineering-oriented research could be said to be the creation of designer’s

assistants that support and facilitate the exploration of design alternatives or (perhaps

radically) different designs. In this respect, we also point out that such designer’s

assistants have produced some very tangible gains in product design (cf. Section 1.2).

This book is organized as follows. In Chapter 1, we frame the basic issues in

greater detail. In Chapter 2, we review some definitions of design, both in engineering

and in other domains, and we present a working definition of engineering design that

is sufficiently abstract to acknowledge design both for the production of plans for

making artifacts and as a process in itself. We devote the next two chapters to

defining and characterizing the design process as a thought process, and we pay

special attention to embedding some of the newer ideas into traditional views of

design. In Chapter 3, we outline some traditional views of the design process, both

descriptive and prescriptive, and then we present some more recent descriptions that

reflect some of the research we just mentioned. We then proceed to taxonomies of

design (Chapter 4); that is, we try to characterize design tasks and refine them in
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some detail. Such formalization of the design process has been done only relatively

recently, and so we will probably raise more questions about such taxonomies than

we will provide answers. An extended discussion of artifact representation is given

next (Chapter 5), with particular emphasis on representations used in engineering

and buttressed by examples drawn from recent engineering design research results.

Chapter 5 also raises questions about communicating design requirements and ideas,

particularly in the context of representing design attributes in shared, transmittable

ways.

In Chapter 6, we turn to the next logical step, the representation of the design

process. We start with a look at some key AI-based problem-solving methods and

then review briefly some classical design aids. We do this to introduce some of

the vocabulary (and the underlying ideas) used to describe design as a process of

articulating and solving engineering problems. Then, having identified a language

suitable for discourse about the discipline of design, we provide illustrations of new

representations of design knowledge and how these representations help us apply

that knowledge in design processes. In Chapter 7, we review some of the current

research in engineering design representation with an eye toward identifying future

trends. In this final chapter, we also look at the roles that symbolic representation and

knowledge-based (expert) systems can play in engineering design, in both practice

and education.

In Chapters 5 and 6, especially, we cast many examples in the style of object-

oriented programming. In the research and applications literature, these illustrations

are presented in pseudocode. Although there are some common approaches (e.g.,

object names, attributes, values, and procedures are typically written in a sans serif

type such as Helvetica), there is also a wide variety of practices that depend on the

preferences of individual researchers (or, perhaps more accurately, the capabilities

of their software package!). We adopted Helvetica as the preferred font for all

such examples, but we follow the preferences of the cited authors when it comes to

capitalization, underscores, and so on. Thus, it may appear at first glance that we are

being somewhat inconsistent in our presentation. In fact, however, we are striving

for consistency with the typeface and the intentions of the works cited.

Finally, a note on referencing the many works whose ideas we build on in this

rather personal view of design. In order to not distract you, the reader, with numerous

citations in the text, the “bibliographic notes” appear at the end of each chapter. The

notes outline particular concepts and ideas, along with their appropriate citations,

in what is often called the “social science” style (i.e., author(s) (date)). The notes

are organized by chapter sections, and the citations are keyed to the reference list

found at the end of the book. We worked very hard to be both complete and fair as

we compiled these notes and citations. However, perhaps flaunting our humanity,

we apologize in advance for any errors in this regard and ask for a divine response

from those who have been inadvertently forgotten or improperly cited!
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1 Framing the Issues

The principal thesis of this book is that the key element of design is representation.

If we were to consult a standard dictionary, we would find representation defined

as “the likeness, or image, or account of, or performance of, or production of an

artifact.” Note, however, that whereas our dictionary defines representation as a

noun in which terms such as image and likeness refer to the artifact being designed,

it also suggests aspects of a verb when it defines the design process in terms of a

performance or a production. This suggests that representation in design incorpo-

rates both representation of the artifact being designed as well as representation of

the process by which the design is completed. We now examine briefly both types of

representation.

1.1 Representation of Artifacts for Design

Suppose we are charged with the design of a safe ladder. What does it mean, first of

all, for a ladder to be “safe”? That it should not tip on level ground? That it should

not tip on a mild slope? What is a mild slope? How much weight should a safe ladder

support? Of what material should it be made? How should the steps be attached

to the frame? Should the ladder be portable? What color should it be? How much

should it cost? Is there a market for this ladder?

We have quickly identified several – but by no means all – of the questions in this

very simple design problem, and we would not be able to answer most of them by

just applying the mathematical models that originate in the engineering sciences. For

example, we could use Newton’s equilibrium law and elementary statics to analyze

the stability of the ladder under given loads on a specified surface, and we could write

beam equations to calculate the bending deflections and stresses of the steps under

the given loads. But which equations do we use to define the meaning of “safe” in

this context or to define the color or the marketability? In fact, which equations do

we use to describe the basic function of the ladder? We know that the function the

ladder serves is to allow someone to climb up some vertical distance, perhaps to paint

a wall, perhaps to rescue a cat from a tree limb, but it is for the designer to translate

1



2 FRAMING THE ISSUES

these verbal statements of function into some appropriate mathematical models at

some appropriate time – often early on – in the design process. That is, we have no

mathematical models that describe function directly; we infer functional behavior

by reasoning about results obtained from manipulating mathematical models.

Thus, we recognize already that a multiplicity or diversity of representations is

needed for design, a collection of representation schemes that would enable descrip-

tion of those issues for which analytical physics-based models are appropriate; those

that require geometric or visual analysis to reason about shape and fit; those that

require economic or other quantitative analysis; and those requiring verbal state-

ments not easily expressed in formulas or algorithms. Some of the verbal require-

ments could be statements about function; about form (e.g., a stepladder or an

extension ladder); about intent (e.g., to be used at home or to be used in an industrial

environment); or about legal requirements (e.g., to satisfy government regulations).�

Verbal statements are also made to describe or ref-

erence behavior (e.g., steps on the ladder should

not have too much give), heuristics (e.g., my expe-

rience suggests that fiberglass ladders feel stiffer

than aluminum ladders), design decision alterna-

tives (e.g., Can I choose between a stepladder and

an extension ladder?), preferences (e.g., I like lad-

ders that are bright blue), affordances (e.g., steps

spaced in small, uniform increments enable climb-

ing), constraints (e.g., the ladder can cost no more

than $100), assumptions (e.g., I thought it would fit

in my trunk), and intent or rationale (e.g., the ladder

is for home use).

In essence, representation is modeling.

However, representation in design is much

broader than modeling in engineering sci-

ence, wherein mathematical modeling is the

key idea. In fact, a more apt analogy may be

found in the linguistic notion of abstraction

ladders or in Korzybski’s aphorism, “The

map is not the territory.” The real point,

however, is that we must represent mean-

ingfully much more knowledge than can be

set into mathematical formulas or numeri-

cal realizations of those formulas, and this is

now possible. Advances in computing gener-

ated by AI research allow – and even encour-

age – the representation of symbols and thus

objects, attributes, relationships, concepts,

and so on. New programming styles have emerged in which we can capture more

abstract conceptual and reasoned design knowledge that cannot be reduced to con-

ventional algorithms.

Although we have discussed the role of representation in design before, we

are not the first nor will we be the last to stress the importance of representation.

As we noted previously, representation is one of the seven subjects in Simon’s

ideal design curriculum. (The other six subjects in the curriculum, in which Simon

describes design as the science of the artificial, are evaluation theory, algorithms and

heuristics for identifying optimum and satisfactory designs, formal logic for design,

heuristic search, resource allocation for search, and the theory of structure and design

organization.) A brief sampling of recent design research in which representation

figures prominently includes work on features in mechanical design; shape grammars;

object-oriented data structures; interaction of form, function, and fabrication; formal

theories of design; shape emergence; and so on. We see from this list that the line

between representing artifacts and representing the design process is not a sharp
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one. We will have a chance to explore some of this and related work in Chapters 5

and 6.

It is also important that we recognize that representation is not an end in itself

but rather a means to an end; it is a way of setting forth a situation or formulat-

ing a problem so that we can find efficiently an acceptable resolution to a design

problem. This also implies that representation is strongly coupled to whatever strat-

egy we have chosen for solving a problem (whether in design or in some other

domain). Because it is pointless to invoke alternate representations unless we gain

some leverage thereby, the notion of changing the representation of a problem is

inexorably linked to the idea that there is a problem-solving strategy available to us

that uses this representation in a beneficial way. This is not to say that the research

objective of developing new representations should be limited to those for which a

problem-solving strategy is available. Research on both artifact representation and

problem solving should proceed independently, although perhaps in parallel. But

the development of new representations does suggest that broader paradigms of

problem solving should be integrated into the outlook of engineers and designers,

the idea being that approaches such as AI-based paradigms and tools will become

part of the arsenal of weapons available for better engineering.

1.2 Representation of the Design Process

Let us return to the ladder-design problem, now with a view toward examining the

process by which the design will be done. First, we recognize that the initial statement

of the client’s wishes is rather vague, in large part because it is simply a brief verbal

description. In fact, design projects often originate with a brief verbal statement,

such as President John F. Kennedy’s lunar challenge. To proceed with a design, we

have to flesh out these skimpy skeletons by clarifying and translating the client’s

wishes into more concrete objectives toward which we can work. In the clarification

step, we ask the client to be more precise about what is really wanted by asking her

or him questions: For what purposes is the ladder to be used? Where? How much

can the ladder itself weigh? What level of quality do you want in this ladder? How

much are you willing to spend? However, the degree of precision that we might

demand from the client could well depend on where we are in the design process.

Some of the questions we asked in the hope of clarifying the client’s wishes

obviously connect with our previous discussion (cf. Section 1.1) on artifact represen-

tation, but some lead us into a process in which we begin to make choices, analyze

the dependencies and interrelationships between possibly competing choices, assess

the trade-offs in these choices, and evaluate the effect of these choices on our

overall goal of designing a safe ladder. (There are formal methodologies for iden-

tifying trade-off strategies.) For example, the form or configuration of the ladder is

strongly related to its function: We are more likely to use an extension ladder to

rescue a cat from a tree and a stepladder to paint the walls of a room. Similarly,

the weight of the ladder will certainly have an impact on the efficiency with which

it can be used to achieve its various purposes: aluminum extension ladders have
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replaced wooden ones largely because of the difference in weight. The material of

which the ladder is made not only influences its weight; it also is very influential in

determining its cost and even its feel. Wooden extension ladders are considerably

stiffer than their aluminum counterparts, so users of the aluminum versions have to

get used to feeling a certain amount of “give” and flex in the ladder, especially when

it is extended significantly. Thus, a possible design goal that was not even mentioned

has suddenly emerged: design a safe, stiff ladder.

In the translation step, we convert the client’s wishes into a set of design speci-

fications that serve as benchmarks against which to measure the performance of the

artifact being designed. The translation process is where the “rubber begins to meet

the road,” for it is here that the verbal statement is recast in terms of more spe-

cific design objectives. These specific objectives can be stated in a number of ways,

reflecting variously the desire to articulate specific dimensions or other attributes

of the designed object, which are usually called prescriptive specifications; specific

procedures for calculating attributes or behavior, which are embedded in procedural

specifications; or the desired behavior of the device, which is encoded in performance

specifications. A successful design is one in which performance meets (or exceeds)

the given specifications and satisfies (or exceeds) the client’s expectations. We reiter-

ate that the specifications may evolve or be further detailed and refined as the design

unfolds. The role of specifications in design has been the subject of much thought

and discussion, and it is also clear that the techniques for stating design specifications

(and, later, fabrication specifications) are intimately related to design-representation

issues.

The design process is evolutionary in nature, and we will come across choices

to make and different paths to follow as a design unfolds. In fact, the particular

choices that present themselves often become evident only after we have refined

the original design objective – the client’s statement – to some extent. For example,

at some point in our ladder design, we have to confront the issue of fastening the

steps to the ladder frame. The choices will be influenced by the desired behavior

(e.g., although the ladder itself may flex somewhat, it would be highly undesirable

for the individual steps to have much give with respect to the ladder frame) as well

as by manufacturing or assembly considerations (e.g., would it be better to nail in

the steps of a wooden ladder, or use dowels and glue, or perhaps nuts and bolts?).�

Sometimes (e.g., in Gero’s (1990) simple and often-

cited model of design), the design process is driven

by comparison between the design’s expected

behavior, derived from the desired function, and

the predicted or actual behavior, resulting from the

design’s structure.

Thus, the choices themselves need to be

articulated in some language naturally con-

ducive to making them; that is, choosing

a particular bolt and nut pair to achieve

a certain fastening strength requires access

to a manufacturer’s catalog as well as to

the results of calculations about bearing

and shear stresses. The particular process

involved here could be called component selection, and it is invoked after we have

decomposed the form of the ladder into its components or pieces, and after we have

selected a particular type of component.



1.2 REPRESENTATION OF THE DESIGN PROCESS 5

We are using this very simple example to illustrate the formalization of the design

process through which we make explicit the ways we are doing some elements of our

design. We could say we are externalizing aspects of the process so that we can move

them from our heads into some recognizable language(s) for further analysis. There

is no shortage of attempts to externalize design engineering processes, and we review

many of these process models in Chapter 3. These descriptions and prescriptions are

externalized to the extent that we can draw flow charts to describe the major steps

of a design process, and the descriptions do point to analyses that need to be done

and choices that must be evaluated, some of which can be done with conventional

algorithms. However, these descriptions cannot be made computable because they

are all relatively abstract; that is, they are not refined enough or rendered in sufficient

detail that we can identify the underlying thought processes. Again, the objective in

refining these processes is not just to be able to render them computable; it is to be

able to analyze them in sufficient detail that we can synthesize design processes out

of their fundamental constituent processes. When we do so in earnest in Chapter 6,

we will see that we are taking advantage of research in AI (and related fields such

as cognitive science) to examine and describe the activity that is called design. We

view this as the representation of the design process as opposed to the representation

of the artifacts that are being designed.

A recent knowledge-based system that illustrates the capture of a design process

is called PRIDE; it serves as a designer’s assistant for the mechanical design of paper-

handling subsystems in copiers (see Chapter 6). Designing paper-transport systems

for copiers is difficult because of the number and kind of design variables and their

complex interactions. Nonetheless, by identifying the way designers actually do this

task, the designers of the PRIDE system built a knowledge-based system that does

much of the same design task as human designers. That is, PRIDE uses a variety

of representation formalisms to incorporate both algorithmic and heuristic aspects

of the design problem. It also uses a variety of inference schemes (i.e., reasoning

patterns) and a powerful graphics interface to achieve a relatively complete simu-

lation of the way human designers actually design paper-handling subsystems for

copiers. The PRIDE environment allows the designer to experiment with different

designs, both graphically and procedurally, and it facilitates the tracking of depen-

dencies between design decisions and the maintenance of multiple design paths. The

PRIDE system replicates a designer’s approach to a complex problem in a way that

simply cannot be done in a conventional, numerically based algorithm.

Furthermore, the PRIDE system works so well that it allows experienced design-

ers to do feasibility studies in just a few hours, whereas it used to take four weeks to

develop similar designs. In addition, the PRIDE system is viewed as useful because

it also has led to paper-copier designs that are both more consistent and of higher

quality.

We note two related points. First, the kind of replication or modeling of a

design process that is found in the PRIDE system cannot be achieved by simply

extending the traditional engineering science approaches to incorporate the think-

ing and logic characteristic of operations research (OR), as has been implied by
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some. The reason for this is that the representations inherent in OR approaches,

although they permit the inclusion of economic or similar performance metrics, do

not admit those qualitative or strategic choices that cannot be reduced to numbers.�

A similar critique can be made about the use of deci-

sion theory (referred to as decision-based design

(DBD)) because it requires knowledge of probabil-

ities and utilities (see the Decision-Based Design

Open Workshop Web pages (DBD 2004)).

The second point is that researchers in other

engineering domains (recall that PRIDE’s

domain is mechanical engineering) have

also clearly recognized the utility that

knowledge-based (expert) systems have for

modeling many phases of the design process –

for example, in chemical engineering.

The second line of argument supportive of what has been outlined is that whereas

much of the work in design is empirical in nature, both in design practice and in design

research, there is apparently no objective basis for describing and evaluating experi-

ments in design. Much of what is known and transmitted about how to design artifacts

is – or is perceived to be – anecdotal in nature. To the extent that design knowl-

edge is viewed as design lore, both the development of the discipline of design and

its acceptance by the engineering community as a serious discipline with a rigor and

logic of its own are inhibited. Thus, in this context as well, it could prove useful to

adopt the relevant terminology and paradigms from AI and related cognitive fields,

subjects that are themselves highlighted by experimentation and empirical develop-

ment. One example is the technique of protocol analysis, which may be described as

the process of organizing, understanding, and modeling verbal reports and analyses.

This technique has been applied formally and informally to elicit and organize the

knowledge that designers use in their own domains. The use of a formal structure

and methodology in this particular context is bound to be beneficial in developing a

communicable understanding of the process of design.

1.3 An Illustration from Structural Engineering

To illustrate the importance of representation in design and the diversity of repre-

sentations that we actually use for artifact and process representation, we present

now a brief discussion of the structural engineering problem. In essence, the prob-

lem is as follows (Figure 1.1). A structural need is identified, whether it is for a

mill building or a concert hall. Then we choose a structural concept, perhaps a sim-

ple steel frame and steel roof truss for the mill building, something considerably

more complex for the concert hall, and we move to preliminary design. In this stage,

we usually restrict our efforts to rough sizing of the principal structural members,

the object being to see whether the type of structural system that we have chosen

is practically feasible. We then move on to flesh out the structure by estimating

the types and sizes of the remaining members (e.g., in the mill building, purlins for

the roof truss and floor joists as needed). Then we home in on the final, detailed

design in which we calculate actual dimensions and placements for all members and

their connections. In the final step, we check to ensure that our design meets all

statutory requirements, including both applicable building codes and design codes
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Figure 1.1. A pictorial view of the structural engineering problem (Fenves, 1993).

such as that of the American Institute of Steel Construction (AISC), which lays out

performance specifications for steel members and connections.

Let us now examine the kinds of design knowledge deployed in completing such

a structural design. Among the kinds of knowledge we apply are classical mechanics

(e.g., Newton’s laws); structural mechanics (e.g., models of columns and beams);

geometry of structures (e.g., relating the geometry of members and assemblages

of members to the orientation of the loads they are expected to carry); structural-

analysis techniques (e.g., moment distribution for frames and the method of sections

for truss analysis); behavioral models (e.g., modeling the stiffness of a complete

frame); algorithmic models of structures (e.g., finite element method (FEM) com-

puter codes); structural design codes (e.g., the AISC code); heuristic and experiential

knowledge, both derived from practice and encoded in specifications; and meta-

knowledge about how and where to invoke the other kinds of knowledge. Much of

this knowledge is multilayered. For example, our understanding of the behavior of

structural systems is realized at three distinct levels: spatial layout (e.g., where to

place columns to achieve clear floor spans), functional (e.g., how to support different

kinds of loads), and behavioral (e.g., estimating the lateral stiffness of frames).

How do we represent these different kinds of structural design knowledge?

In fact, we use several different kinds of representations of the knowledge itself,

including mathematical models for classical and structural mechanics (e.g., partial

differential equations and variational principles); case-specific analyses (e.g., buck-

ling of slender columns); phenomenological, “back-of-the-envelope” formulas (e.g.,

the beam-like response of tall buildings); numerical programs (e.g., FEM codes);

graphics and computer-aided design and drafting (CADD) packages; rules in design

codes (e.g., the AISC code); and heuristic knowledge about structural behavior,

analysis techniques, and so forth. Such qualitative knowledge is often subjective

and frequently expressed in rules. Thus, we already employ several different repre-

sentations or “languages” of knowledge, including verbal statements, sketches and
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pictures, mathematical models, numerically based algorithms, and the heuristics and

rules of design codes. When we use these different languages now, we manage to

choose (in our head) the right one at the right time; however, in computational terms,

we should recognize that it would be desirable to link these different representations

or “languages” so that we could model our design process in a seamless fashion. We

should also recognize that we often cast the same knowledge in different languages,

depending on the immediate problem at hand. For example, a statement (typical of

that found in building codes) that the deflection of a floor in a residential building

should not exceed its length (in feet) divided by 360 is actually a restatement of

equilibrium for a bent beam.

The point we want to make with this example is that for “real” engineering

design problems – although it is equally true of our “toy” problem of ladder design –

we are already accustomed to handling very complex representation issues. What is

beginning to be true now is that we want to formally recognize this in the increasingly

elaborate computer-based design tools we are developing. And, even more impor-

tant for our present purpose, as we try to externalize our design knowledge, we are

increasingly conscious of how we think about design. It is this raised consciousness

we seek to expose here.

1.4 On the Role of Computation

The final argument we make in this book is, comparatively speaking, relatively

straightforward. The rapid advances in the field of computer science, in both

software and hardware, have brought increasing opportunities – and pressures –

to “computerize” and automate engineering practice as much as possible and,

at the very least, to automate the tedious and repetitive parts of engineering.�

Current computational resources provide design

support by also allowing complex simulations of

forces and flows, visualizations of those data, ani-

mations of structural models, virtual manufacturing,

and rapid prototyping.

We take it as obvious that there are dif-

ferent opportunities for automation in dif-

ferent domains and for different tasks and

task types within domains. For example, it

has been easier to develop knowledge-based

(expert) systems to perform derivation tasks,

in which assessments are derived from data,

than formation tasks, in which we attempt to form results to meet specified goals.

Similarly, in exploring applications of AI techniques to design, there are going to

be differences that ought to be acknowledged from the outset. For example, truly

routine design (which is essentially a repetitive process) is much more readily auto-

mated than nonroutine design, in which the form and function (or their attributes)

of a successful design may not be easily described, if at all. Thus, replication of

routine design will offer different opportunities for automating with AI techniques

than will the modeling of creative or original design. That is, it is likely that over

time, a hierarchy of design tools will be developed to reflect these differing design

tasks.
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However, the perception of what may be automated – as opposed to what

may be encapsulated in a designer’s assistant – should not be perceived in static

terms. As we articulate and acquire design knowledge, which we must do before

we can represent it, we also acquire a keener understanding of that knowledge.�

The R1/XCON (McDermott 1982) and PRIDE

(Mittal and Dym 1985; Mittal et al. 1986) projects

were among the first to note that the knowledge-

acquisition process caused knowledge to be artic-

ulated that had not been previously recorded (i.e.,

the acquisition process was worthwhile even with-

out the resulting configuration system). In addi-

tion, it is worth noting that an attempt to pro-

gram the R1/XCON configuration design process

as an algorithm failed, whereas using an AI-based

technique (rules) for representing knowledge was

successful.

This results in a new consciousness of that

knowledge, which in turn lays the foundation

for discovering new algorithms, new proce-

dures and strategies, or even new represen-

tations that may allow more of the process

to be automated. Furthermore, as we noted

earlier, the boundary between what we can

understand and model as a cognitive pro-

cess and true creativity is a shifting one, and

we should not at this point preclude any

endeavor that might prevent us from moving

that boundary closer to the edge of complete

understanding.� Still, the goal is not auto-

mation of the entire design process; it is

Recent research has focused on computational

design creativity, arguing that creativity is not a

mystery and that it can be studied scientifically and

investigated computationally (Boden 1994; Brown

2008).

the automation of the routine and the boring,

and the creation of computer-based tools

that facilitate design exploration.

A final note on computation. We have

argued that the mathematics that we use

to describe and analyze many engineering

problems is inadequate for describing and

analyzing many attributes of designed artifacts and design processes. Thus, we need

to augment our mathematical modeling tools with others, such as graphics, logic,

grammars, word and document processors, and – most relevant to this discussion –

those tools based on symbolic representation. We must caution, however, that we

are not saying that there is no mathematical foundation underlying the symbolic-

representation techniques the use of which we advocate. Indeed, there are very

complex mathematical problems involved in computation in general and in devel-

oping the underlying structure of the kinds of AI programs that are used to develop

the kinds of results that we will see later in this book. However, the mathematics

involved there is concerned with representing the symbols and the processes used

to compute with these symbols so that, ultimately, the computer can do as it is told.

Perhaps a very loose analogy is that this particular kind of mathematics is to the

symbolic representation that we espouse as set theory and functional analysis are to

the continuous mathematical models we routinely employ (e.g., the partial differen-

tial equation governing the bending deflection of a plate). Thus, we view as parallel

the descriptive representations offered by continuous mathematical models and by

symbolic representation of physical and conceptual objects and their attributes and

dependencies.
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2 Engineering Design

Design is a ubiquitous word: We see it often and in many different contexts. For

example, just in perusing our daily newspapers, we read about people who are auto-

mobile designers, dress designers, architectural designers, sound-system designers,

aircraft designers, organization designers, highway designers, system designers, and

so on and so forth. In fact, design has been a characteristic of human endeavor for

as long as we can “remember” or, archaeologically speaking, uncover. Design was

done in very primitive societies for purposes as diverse as making basic implements

(e.g., flint knives) to making their shelters more habitable (e.g., the wall paintings

found in primitive caves). However, because people have been designing artifacts

for so long and in so many different circumstances, is it fair to assume that we know

what design is, and what designers do and how they do it?

2.1 From Design to Engineering Design

Well, we do know some of the story, but we do not yet know it all. And, of course, one

of the themes of this book is that we are still struggling to find ways of externalizing

and articulating even that which we do know about design. For example, with regard

to the design of elementary artifacts, it is almost certainly true that the “designing”

was inextricably linked with the “making” of these primitive implements – that there

was no separate, discernible modeling process. However, we can never know for sure,

because who is to say that small flint knives, for example, were not consciously used

as models for larger, more elaborate cutting instruments? Certainly people must

have thought about what they were making because they recognized shortcomings

or failures of devices already in use and evolved more sophisticated versions of

A fairly common idea is that reasoning, and also

learning, can be failure driven; that is, design rea-

soning “fails” because a design concept or deci-

sion is inadequate in some way. Kant (1985) writes

(continued )

particular artifacts. Even the simple enlarge-

ment of a small flint knife to a larger ver-

sion could have been driven by the inade-

quacy of the smaller knife for cutting into the

hides and innards of larger animals.� But we

really have no idea of how these early design-

ers thought about their work, what kinds of

12



2.1 FROM DESIGN TO ENGINEERING DESIGN 13

(continued )

about portions of a designer’s refinement

process being “difficulty driven,” where such

difficulties include missing things and inconsis-

tencies, leading to the use of different strategies.

In the Soar cognitive architecture, a new goal

is created when an “impasse” is reached (i.e.,

when problem solving cannot continue) (Laird et al.

1993).

Petroski (1992) makes a similar point at a

higher level of abstraction, arguing that failure is

a major driver for design and that the failure of

various devices or systems has spurred efforts to

discover more robust engineering solutions.

languages or images they used to process

their thoughts about design, or what men-

tal models they may have used to assess

function or judge form. If we can be sure

of anything, it would be that much of what

they did was done by trial and error (a pro-

cess that has a modern reincarnation in the

method called generate and test in which trial

solutions are generated by some unspecified

means and then tested against given evalua-

tion criteria).

What we do know about design problems

in general – and engineering design prob-

lems in particular – is that they are typically

open-ended and ill-structured, by which we

mean the following:

1. Design problems are said to be open-ended because they usually have many

acceptable solutions. The quality of uniqueness, so important in many mathe-

matics and analysis problems, simply does not apply.

2. Design problems are said to be ill-structured because their solutions cannot

normally be found by routinely applying a mathematical formula in a structured

way.

It is these two characteristics in particular that make design such a tantalizing

and interesting subject. Even the simple ladder design that we broached in Chapter 1

became a complex study because there were choices to make about the form and

structure of the solution and because there was no single language for or ordering

of the many different design issues that had to be addressed. How much more

complicated and interesting are projects to design a new automobile, a skyscraper,

or a way to land someone on the moon.

We can find discussions of design well back in recorded history. One of the most

famous is the collection of works by the Venetian architect, Andrea Palladio (1508–

1580), whose works were apparently first translated into English in the eighteenth

century, in which language they are still available today. Discussions of design have

been prompted by the concerns of domains as diverse as architecture, decision mak-

ing in organizations, and styles of professional consultation, including the practice

of engineering.

Thus, it should not surprise us that there are many, many definitions of design

or that these definitions, at a sufficiently high level of abstraction, seem very much

alike. For example, one might say that design is a goal-directed activity, performed

by humans, and subject to constraints. The product of this design activity is a plan

to realize the goals. Simon offers a definition that seems more closely related to

our engineering concerns: the objective of the design activity is the production of a
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“description of an artifice in terms of its organization and functioning – its interface

between inner and outer environments.”

At a level intermediate to the definitions just given, Winograd and Flores place

design in relation to systematic domains of human activity, where the objects of concern

are formal structures and the rules for manipulating them. The challenge posed here

for design is not simply to create tools that accurately reflect existing domains, but to

provide for the creation of new domains. Design serves simultaneously to bring forth and

to transform the objects, relations and regularities of the world of our concerns.

This concept of design seems to combine the idea of design as an activity with

the explicit articulation of the fact that some objects and their contexts are being

represented – and perhaps changed (or created) by manipulating these representa-

tions – in order to produce a design. This definition thus seems to parallel the view

of representation outlined in Chapter 1.

One aspect of design that we will not explore here, as we move toward a def-

inition of engineering design, is the role of aesthetics in design.� This is largely

because the description, representation, and evaluation of aesthetics comprise an

It is worth noting that there is now a series of

computational aesthetics conferences (with a strong

art/graphics flavor) as well as an international soci-

ety (with a strong mathematics flavor). A brief history

of the computational study of aesthetics is provided

by Greenfield (2005).

extraordinarily difficult task, although sug-

gestions have been made for an algorith-

mic structure for aesthetics in criticism and

design. By excluding aesthetics from further

consideration, we do not intend to suggest

that aesthetics is unimportant in engineer-

ing design; however, we do wish to keep our

discussion bounded and manageable.

We noted earlier that primitive designers almost certainly designed artifacts

through the very process of making them. It has been said that this approach to

design is a distinguishing feature of a craft. With this in mind, it is also useful for

us to distinguish engineering design from those domains – or crafts – wherein the

designer actually produces the artifact directly, such as graphics or type design.

An engineering designer typically does not produce an artifact; rather, he or she

produces a set of fabrication specifications for that artifact. That is, the designer in an

engineering context produces a detailed description of the designed device so that

it can be assembled or manufactured. With the “designing” thus separated from the

“making” of the artifact, a host of issues presents itself, although all of the issues

can be subsumed in a single statement: the fabrication specification produced by the

designer must be such that the fabricator can make the artifact in question without

reference to the designer herself or himself. Thus, that specification must be both

complete and quite specific; there should be no ambiguity and nothing can be left out.

Traditionally, fabrication specifications have been presented through some

combination of drawings (e.g., blueprints, circuit diagrams, and flow charts) and

text (e.g., parts lists, materials specifications, and assembly instructions). Although

completeness and specificity can be had with these traditional means, we cannot
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Research in design rationale (DR) capture, repre-

sentation, and use is concerned with recording the

designer’s intent – that is, the reasons behind the

decisions that led to the final design (Burge and

Brown 1998). DR has been studied for engineering

(Burge and Bracewell 2008) as well as for software

engineering (Burge et al. 2008).

capture a designer’s intent in them, which

can lead to catastrophe.� The 1981 col-

lapse of Kansas City’s Hyatt Regency Hotel

occurred because a contractor, unable to

procure threaded rods sufficiently long to

suspend a second-floor walkway from a roof

truss, hung it instead from a fourth-floor

walkway using shorter rods. The supports of

the fourth-floor walkway were not designed

to carry the second-floor walkway in addition to its own dead and live loads, so

a major disaster ensued. Had the designer been able to signal to the contractor

his intentions of having the second-floor walkway suspended directly from the roof

truss, this accident might never have happened.

This story also can be used to learn another lesson that is a consequence of the

separation of the “making” from the “designing.” Had the designer been able to talk

with a fabricator or a supplier of threaded rods while the design was still in process,

he would have learned that no one manufactured that rod in the lengths needed to

hang the second-floor walkway directly from the roof truss. Thus, while still in an

early design stage, the designer would have had to seek another solution. It has been

true generally in the manufacturing sector that there was a “brick wall” between the

design engineers and the manufacturing engineers. Only recently has this wall been

penetrated – even broken – and manufacturing and assembly considerations are

increasingly addressed while a product is still being designed, rather than afterward.

This new practice, called concurrent engineering, is becoming very important in

design engineering, and it is a field that relies heavily on recent developments in

computation, including the integration of multiple representations of artifacts.

The Hyatt Regency tale and the implications we have drawn suggest that a major

issue in engineering design – as distinguished from craftlike design – is the clear need

for formalisms that can be used to represent fabrication specifications. In designing a

formalism for fabrication specifications, we can learn from this disaster that there are

requirements of completeness, specificity (or absence of ambiguity), and functional

intent that must be addressed. Furthermore, as long as we are developing a new

specification formalism, we should require that it also enable us to evaluate a design in

terms of how well it meets the original design goals. We thus have another indication

of the importance of representation as an issue in engineering design, although our

emphasis would have to focus on translating the original design objectives (and

constraints) into some version of the specification formalism and on recognizing

that these specifications provide the starting point for some manufacturing process.

Mostow’s definition of design reflects some of these concerns:

The purpose of design is to derive from a set of specifications a description of an artifact

sufficient for its realization. Feasible designs not only satisfy the specifications but take

into account other constraints in the design problem arising from the medium in which

the design is to be executed (e.g., the strength and properties of materials), the physical
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environment in which the design is to be operated (e.g., kinematic and static laws of

equilibrium) and from such factors as the cost and the capabilities of the manufacturing

technology available.

As we move closer to a definition of engineering design, we should also account

for the notion of design as a human activity or process, with all that is thus entailed

about context and language. At the same time, as noted before, we must focus on

the idea that plans are going to be produced from which an artifact can be real-

ized. Thus, a definition of engineering design must be broad enough to encom-

pass a variety of concerns but not so abstract as to have no obvious practical

implementation.

2.2 A Definition of Engineering Design

We adopt as our definition of engineering design the one articulated by Dym and

Levitt because it seems to properly situate our exposition:�

A somewhat expanded version of this definition

of design was proposed by Dym et al. (2005):

“Engineering design is a systematic, intelligent pro-

cess in which designers generate, evaluate, and

specify concepts for devices, systems, or processes

whose form and function achieve clients’ objectives

or users’ needs while satisfying a specified set of

constraints” (p. 104).

Engineering design is the systematic, intelli-

gent generation and evaluation of specifica-

tions for artifacts whose form and function

achieve stated objectives and satisfy speci-

fied constraints.

This definition incorporates many impli-

cit assumptions, some of which we have

already anticipated. We now explore the

underlying assumptions in some detail, with

the express intent of exposing the role of

representation in design.

1. As a process, design is thoughtful and susceptible to understanding, even

if complete understanding has not yet been achieved. That is, along the

lines of the discussion in the Preface and Chapter 1, we argue that much

An AI-oriented approach to investigating design

processes offers the powerful advantage that the

need for software implementation forces the form-

ing of concrete models and thus helps elimi-

nate vagueness, as in “then a miracle occurs”

(Harris 2011).

of design can be viewed as a cognitive

process; thus, it can be modeled with in-

creasing success. One of the major con-

tributors to this success is our use of an

AI-oriented approach in which we try to

simulate the design process on a computer,

an activity that forces us to articulate and

externalize what we do when we design

things.�

2. A successful representation – perhaps consisting of some ordering of multiple

representations – can be found for both form and function, and there exists a

calculus for their interaction. Representing function is one of the most difficult

problems in design representation, particularly so in our context of exploring
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whether we can render something computable and so make it explicit.�

(We must keep in mind that what we can do in our head may be distinct from

Representing function, and reasoning about it,

is still considered to be “one of the most dif-

ficult problems,” but there has been a lot of

recent progress. Borgo et al. (2009) and Goel

et al. (2009) provide a good current view, and

two recent special issues of AIEDAM: Artifi-

cial Intelligence for Engineering Design, Analy-

sis and Manufacturing (Stone and Chakrabarti

2005) and a chapter by Wood and Greer (2001)

provide references to most of the additional key

research in the field, including the continuing work

on a “functional basis” (i.e., a standardized set of

functional terms for products).

what we can articulate to a computer

because we apparently have adequate

representations in our head – even if we

are not always able to articulate them.)

Relating function to form or shape is

perhaps still more difficult, at least in

the following sense. For an artifact of

given form or structure, we can usually

infer the purpose of the artifact. How-

ever, given an intended function that

must be served, we cannot automatically

deduce from the function alone what

form or structure the artifact must have.

For example, if we were given pairs of

connected boards, we can examine them

and deduce that the devices that connect them (e.g., nails, nuts and bolts, rivets,

and screws) are fastening devices the purpose or function of which is to connect

the individual members of each pair. However, if we were to start with a state-

ment of purpose that we wish to connect two boards, there is no obvious link or

inference that we can use to create a form or structure for a fastening device.

This does not mean that given a catalog of fastening devices, we cannot

choose one to accomplish a given intention. In fact, we will see in Chapter 5 that

among the attributes we can attach to device descriptions will be function and

intent. But this is helpful only after we have already associated a purpose with

a given device whose structure or form is known to us. Constructing a structure

based on function alone is not, generally speaking, a process that is well enough

understood that we can model it.

Note that we began this explanation with reference to a representation or

to “some ordering of multiple representations.” This is because we recognize

that the same information can be cast in different forms, so there is no need to

restrict ourselves to using a single representation.

3. Given a successful representation broad enough to span form and function, the

original statement of a design problem, and in particular its objectives and any

applicable constraints, can be cast in terms of this representation. This, in a sense,

is a self-evident truth, for we should have to conclude that the representation

is not especially robust – or useful – if we cannot recast our design statement,

design objectives, and given constraints in terms of that representation.

4. There exist problem-solving techniques that exploit this representation for the

generation and enumeration of design alternatives. This too is fairly obvi-

ous for, as we remarked in Section 1.1, there is not much point in looking

for new representations unless we can effectively exploit them to do design

more effectively. This also may distinguish our “engineering” approach from
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a more “scientific” approach because we here are interested in the utility of new

representations.

5. The generated designs can be translated from the multiplicity of representations

into a set of fabrication specifications. Remember that the end point of a success-

ful design is the production of a set of plans for making the designed artifact.

This set of plans, the fabrication specifications, must have the properties of

unambiguousness, completeness, and transparency; that is, it must stand on its

own as thoroughly understandable (cf. Section 2.1).

6. Criteria for design evaluation can be stated and applied in terms of either

the representation used in the problem-solving phase of the design process or

Designers have to face uncertainty throughout their

design work. The designers may be uncertain about

the priorities given to preferences, or even whether

something is really a requirement; make deliberate

assumptions not knowing whether those assump-

tions are “true enough” in this design situation;

make selections from alternatives (e.g., a material)

where that selection may not be overwhelmingly the

best; be unable to know exact dimensions of parts

due to manufacturing variations; and be unable to

anticipate the operating conditions for the prod-

uct, leading to uncertainties about expansion due to

temperature, about wear patterns, and about envi-

ronmental corrosive effects on joints and surfaces.

Such uncertainties will “stack up,” like tolerances,

to produce a design that is riddled with uncertainty

about its quality.

Furthermore, designers may not take the time

or make the effort to calculate, research, simulate,

prototype, or infer everything they need to know:

the result is uncertainty. There also may not be any

theory, or adequate models, about manufacturing

processes or material behavior, for example, which

also produces uncertainty.

A summary of representing uncertainty and

reasoning under uncertainty can be found in Rus-

sell and Norvig (2010), and a general introduc-

tion to uncertainty management for engineering

systems planning and design, such as Taguchi’s

Rough Design methods, is provided by de Neufville

(2004).

the formalisms used for the design and

fabrication specifications. Here, we are

noting simply that we can assess and

evaluate our design at different points

in the design process; consequently, we

may use different versions of our rep-

resentation. It is worth adding, how-

ever, that we make no assumptions

about whether the evaluation criteria

are deterministic in nature or whether

they involve uncertainty.�

If uncertainty is a part of our eval-

uation criteria in a particular design

problem, we should remember that it is

often the case that the manufacture or

use of a device points up deficiencies

that were not anticipated in the orig-

inal design. That is, successful designs

often produce unanticipated secondary

or tertiary effects that become ex post

facto evaluation criteria (e.g., the auto-

mobile being in some sense judged a fail-

ure because of its contributions to air

pollution).

Our definition of engineering design and

its underlying implicit assumptions clearly

rely heavily on the notion that some sort

of representation, formalism, or language

is inherently and unavoidably involved in

every part of the design process. From the

original communication of a design problem,

through its mapping and solution, to its eval-

uation and fabrication, the designed artifact
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must be described; it must be “talked about.” Thus, representation is the key

issue. It is not that problem solving and evaluation are less important; they are

extremely important, but they too must be expressed and implemented at an appro-

Distinctions often are made among needs, require-

ments, constraints, and preferences for design. The

“needs” are what the customer wants, usually in

incomplete terms that often mix functional, behav-

ioral, and structural properties, all expressed at

highly varying levels of abstraction. For software

design, in particular, “requirements” are testable

properties of the resulting design or its perfor-

mance during use. “Constraints” are sometimes

distinguished from requirements in that require-

ments specify what must be true, whereas con-

straints specify what must not be allowed to be

or to become true. “Preferences” provide a basis

for selecting a design from a set of designs, each

of which satisfies both the requirements and the

constraints.

priate level of abstraction. Thus, they are

also inextricably bound up with concepts of

representation.

Before leaving this chapter, we note that

it is open to question as to whether there

is a meaningful difference between specifi-

cations and constraints. Indeed, Simon has

argued that the distinction is ephemeral.�

The difference seems to hinge on whether

we are referring to attributes of the designed

artifact that we choose to optimize, in which

case we speak of specifications, or whether

we are working with attributes for which

“satisficing” (see Chapter 6) is acceptable, in

which case we speak of constraints. Because

this distinction, meaningful or not, is main-

tained in most of the design literature, we

maintain it in our own discussions.

2.3 Bibliographic Notes

Section 2.1: Cross (1989) presents a short discussion of design history and distin-

guishes design from a craft. Generate and test and other AI-based problem-solving

methods are detailed in Dym and Levitt (1991a).� Palladio (1965) is the still-

A modern treatment of AI is presented in Russell and

Norvig (2010), and the art of concurrent engineering

is described by Salomone (1995).

available translation of Palladio’s works.

Discussion of design in other fields includes

architecture (Alexander 1964; Salvadori

1980; Stevens 1990), organizational decision

making (Simon 1981; Winograd and Flores

1986), and professional consultation (Schon 1983). Definitions of design are given

by, among many others, Agogino (1988b), Dixon (1987), Jones (1970), Mostow

(1985), Simon (1981), and Winograd and Flores (1986). Algorithms for aesthetics

are presented in Stiny (1978). Two discussions of the collapse of the Hyatt Regency

in Kansas City in 1981 are Petroski (1982) and Pfrang (1982). Levitt, Jin, and Dym

(1991) describe both needs and architectures for concurrent engineering. Fenves

(1988) and Rehak (1988) stressed the importance of fabrication specifications.

Section 2.2: The definition of design was first presented in Dym and Levitt

(1991a) and was extended in Dym (1992b). The ephemeral nature of the difference

between constraints and specifications was pointed out in Simon (1975).



3 Characterizing the Design Process

Having offered our own definition of engineering design, we now go on to study

design as an activity – that is, the process of design. In this chapter, we review some

of the established models of the design process. Then we go on to describe more

recent articulations, some of which are rooted in the AI-based ideas mentioned

earlier. Parts of the discussion may seem vague or abstract because we are trying to

describe a complex process by breaking it down into smaller, more detailed pieces,

but we are not going to produce a detailed cookbook that must be followed in order

to complete a design. We are simply trying to picture, in words and diagrams, what

is going on in our head when we are doing design.

3.1 Dissecting the Design Process

We start by looking back at the questions we asked (and others that we might have

but did not) in our ladder-design exercise. In so doing, we find that we can decompose

or break down the process into a sequence of steps by extracting and naming some

of those steps. For example, when we ask, “How much weight should a safe ladder

support?” and “For what purposes is the ladder to be used?,” we are

clarifying the client’s requirements.

When we ask, “What is a safe ladder?” and “What is the allowable load on a step?,”

we are

identifying the environment (or at least some aspects of the environment) in which our

design would operate.

When we answer questions such as “What is the maximum stress in a step when it

carries the design load?” and “How does the bending deflection of a loaded step

vary with the material of which the step is made?,” we are

analyzing or modeling the behavior of the ladder.

When we ask, “Can this ladder be assembled?” and “Is the design economically

feasible?,” we are

identifying constraints, including manufacturing, economic, marketing, and other con-

straints.

20
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When we answer questions such as “Can the ladder carry the design load?” and “Is

the ladder safe as it is actually designed?,” we are

testing and evaluating the proposed design(s).

When we ask “Is there a more economical design?” and “Is there a more efficient

design (e.g., less material)?,” we are

refining and optimizing our design.

Finally, when we present the final fabrication specifications for the proposed design

(and typically also the justification for those specifications), we are

documenting our completed design for the client.

We see quite clearly that the questions we are asking about the ladder design

can be recognized as steps in a process in which we move from a fairly abstract

statement of a design objective through increasing levels of detail until we can “build”

a model of the ladder, perhaps optimize and refine some of its features, and then

The focus of the formal study of engineering design

has changed as research has progressed and

matured, moving from restricted, often artificial

“toy” examples of designing toward larger, more

realistic examples. Studies of design have also

moved from routine parametric design toward non-

routine problems and design creativity, from single

designers to design teams, from collocated activity

to distributed activity, and from prescriptive theories

to studies of designers in situ.

Regarding teamwork and communication,

Visser (2006) describes the need for “interdesigner

compatible representations” such as sketches or

gestures, and Fruchter and Maher (2007) provide

a snapshot of the research on support for design

teams. Aurisicchio et al. (2006) studied the infor-

mation requests of engineering designers because

such queries are one of the reasons why designers

are “constantly communicating with others.” Visser

(2006) emphasizes the fact that individual designers

are still designing even when they are in collocated

teams, although they undertake additional activi-

ties that facilitate cooperation. Hence, research on

individual design activity remains very important.

complete the process by documenting both

the fabrication specifications and the justifi-

cation for this particular design. In delineat-

ing the process this way, we are able to iden-

tify the specific tasks that need to be done

to complete a design – and this, again, is the

point of the exercise.

We should also note that as we work

through these steps, we are constantly com-

municating with others about the ladder and

its various features.� When we question the

client about desired properties, for example,

or the laboratory director about the evalu-

ation tests, or the manufacturing engineer

about the feasibility of making certain parts,

we are interpreting aspects of the ladder

design in terms of the languages and param-

eters that these experts use to do their own

work. Inasmuch as the design process can-

not proceed without these interpretations,

we see once again that representation issues

are central both to describing the object

being designed and understanding the pro-

cess by which the design is carried out. We

look now at some descriptions of the design

process.
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3.2 Describing the Design Process
It should be stressed that referring to the design

process should be done with great care. This entire

chapter is about characterizing design. As a result,

we present abstractions of typical processes. In

real life, one or more agents generate designs,

guided or limited by constraints, preferences, eval-

uation knowledge, and a wide variety of knowledge

and data. These limits derive from various sources,

such as the knowledge, skill, and experience of the

designer(s); available tools and methods; externally

imposed needs and requirements; and limitations

imposed by the physics. Hence, the context for a

particular design process can be infinitely varied,

leading to wide variations in the actual process fol-

lowed by different designers – even for the same

requirements! The designer’s knowledge and expe-

rience affect the “routineness” of a problem (Brown

1995). Gero and Kannengiesser (2007) describe

how the developing design solution, as well as the

members of the design team, acts to “situate” the

process.

One of the simplest and most straightfor-

ward models of the design process consists

of three stages.� In the first stage, generation,

the designer proposes various concepts that

are generated, by means unspecified. In the

second stage, evaluation, the design is tested

against the design goals, constraints, and cri-

teria that have been set forth by the client

and the designers. In the third stage, commu-

nication, the design is communicated to the

manufacturers or fabricators. Although this

model has the virtue of simplicity, it actually

tells us relatively little about what goes on. It

is sufficiently abstract that it does cover the

examples we have already discussed, but not

nearly in enough detail to advise us on how

to proceed with a design. We cite one obvi-

ous question, How do we generate designs?

In fact, answering just this question could be

said to be the raison d’être for this book and

all the other books and articles ever written

about design!

One of the simplest models of design considers only

transformations between types of representations.

For example, Gero’s (1990) model of design as

a process connects the required functions (F ), the

behaviors expected given F (Be ), the resulting design

structure (S ), the behaviors that S can produce (Bs ),

and the final design description (D ). It defines the

processes of formulation (F to Be ), synthesis (Be to

S ), analysis (S to Bs ), evaluation (comparing Be to

Bs ), reformulation (S to Be ), and production of the

design description (S to D ). The model does not

prescribe the order in which these processes occur

and does not suggest the kinds of reasoning that

might be used for each type of process. Subsequent

developments include a more complex model, as

well as the use of this model to annotate protocols

collected from designers (i.e., a detailed record of

their activity) to support visualization and analysis of

their activity.

One of the most widely cited models of

the design process is displayed in Figure 3.1.

In this model, the circles usually represent

some form of description of the evolving

design, although they sometimes represent

a stage (e.g., as in the statement of needs

that begins the process).� The rectangles

indicate some design activity (e.g., analyz-

ing a problem or doing a detailed design).

As in our structural engineering example,

we begin with a stated need, which first is

elaborated through a process of questioning

the client and gathering relevant data, until

we arrive at a clear statement of the prob-

lem. Then we enter the conceptual design

stage, in which we look for different con-

cepts (or schemes) that can be used to solve

the stated design problem. In a bridge design,

for example, our different schemes might be

represented by different bridge types, say a
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Need

Statement
of problem

Conceptual
design

Feedback

Selected
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Embodiment of
scheme(s)
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Working
drawings,

etc.

Analysis of
problem

Figure 3.1. A pictorial view of the design process (French, 1992).

classic suspension bridge, a cable-stayed bridge, or an arch. Our assessment of these

three schemes would depend on some of the high-level attributes of our design goal,

including the anticipated span length, financing, type of traffic, and aesthetic values

of the client.

The conceptual design stage is the most open-ended part of the design process:

discussion is relatively abstract in this stage and the focus is on high-level trade-offs

between possibly conflicting goals. Thus, it is here that we are most likely to see

negotiation among participants who have very diverse interests in order to resolve

performance goals and other trade-offs. For example, at this stage in a bridge design,
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we might see structural engineers pitted against investors, traffic analysts arguing

with the authority that wants to build the bridge, and various specialist designers

haggling over priorities. At this stage, we probably focus more strongly on the

function of the artifact than we do on its form – notwithstanding the bridge schemes

just cited – except to the extent that all the participants in the design process see

the artifact as a variation on a known theme or a mutation of a familiar artifact or

design. In conceptual design, too, we cannot predict how subsystems will interact,

which subgoals might conflict, which options may have to be ruled out because of

local conditions, and so on, because we have not yet refined our design very much.

Again, for the bridge design, the nature of the gap being spanned (e.g., Are we

bridging a river or crossing over one or more roadways?) could result in variations in

the span length, which in turn could result in different configurations of the secondary

structural members.

The output of the conceptual-design stage is a set of possible concepts or schemes

for the design. French defined a scheme as:

By a scheme is meant an outline solution to a design problem, carried to a point where the

means of performing each major function has been fixed, as have the spatial and struc-

tural relationships of the principal components. A scheme should have been sufficiently

worked out in detail for it to be possible to supply approximate costs, weights and overall

dimensions, and the feasibility should have been assured as far as circumstances allow. A

scheme should be relatively explicit about special features or components but need not

go into much detail over established practice.

In the structural design problem in Section 1.3, our choice of a steel frame and a

steel roof truss for the mill building would be such a scheme. For the ladder, we might

have a wooden stepladder as our scheme. Note that although we have identified only

one scheme in each of these two examples, the output of the conceptual stage could

be two or more competing schemes. In fact, some would argue that the output of

the conceptual stage should be two or more schemes because early attachment to a

single design choice is viewed as a mistake. This tendency is so well known among

designers that it has produced the aphorism: “Don’t marry your first design idea.”

In any event, at this point in the process, we probably do not have sufficient data

to discard those schemes that will later be viewed as “extra” because they did not

measure up for one reason or another. For example, we may still be entertaining the

notion that the stepladder be made of either wood or aluminum or perhaps some

more exotic material.

The next phase of the design process is called, variously, the embodiment of

schemes and preliminary design. This is the part of the process in which the conceptual

proposals are first “fleshed out”; that is, we hang the meat of some preliminary choices

upon the abstract bones of the conceptual design, or, in French’s connotation, we

embody or endow the conceptual design with its most important attributes. In this

phase, we begin to select and size the major subsystems based on lower-level concerns

that include the performance specifications and the operating requirements. For

the ladder, for example, we would begin to size the side rails and the steps, and
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perhaps decide on the way that the steps are to be fastened to the side rails. In the

mill-building example, we would lay out the roof truss in greater detail, including

locating the roof purlins, estimating the size of the truss-joint connections, and so on.

In preparing such a preliminary design, we might well use various estimates or back-

of-the-envelope calculations and algorithms as well as rules about size, efficiency,

and so on. This phase of the design process makes extensive use of rules of thumb

that reflect the designer’s experience. And, in this phase of the design, we make a

final choice from among our candidate schemes.

The penultimate stage of French’s model is detailing, or as it is usually called in

the United States, detailed design. Here, our concern shifts to refining the choices

made in the preliminary design; our early choices are articulated in much greater

detail, typically down to specific part types and dimensions. This phase of design

is quite procedural in nature, and the procedures themselves are well known to

us. Much of the relevant knowledge is expressed in very specific rules as well as

in formulas, handbooks, algorithms, databases, and catalogs. As a result, detailed

design has benefited greatly from attempts to encode accessible databases within

CADD tools. This stage has also become rather decentralized; that is, it is left

almost completely to component specialists as the design moves much closer to

being assembled from a library of standard pieces.

The final stage illustrated in Figure 3.1 corresponds to the last stage in our dis-

section of the ladder-design process. We regard the production of “working draw-

ings, etc.” as equivalent to producing fabrication specifications for the assembly of

the design and a design justification for the client. However, we should note that

although this model of the process is more detailed than the simple one we dis-

cussed at the beginning of this section, we are not much closer to knowing how to

do a design. Both of the process outlines we have given are descriptive; that is, they

describe what is being done rather than detailing what ought to be done.

3.3 Prescriptions for the Design Process

We now present two prescriptive models of the design process. These models differ

from the two descriptions given in Section 3.2 in that they prescribe a set of tasks that

must be completed to generate a satisfactory design. In the two descriptive models

of the design process that we have just seen, we can recognize within them three

generic tasks that are repeatedly performed, usually in an iterative fashion, within

each phase of the design process. These three tasks are:

Synthesis is the task of assembling a set of primitive design elements or partial designs

into one or more configurations that clearly and obviously satisfy a few key objectives

and constraints. Synthesis is often considered as the task most emblematic of the design

process.

Analysis is the task of performing those calculations (or analyses) needed to assess the

behavior of the current synthesis – or embodiment or preliminary design. For example,

we calculate the bending stress and deflection of a loaded step of the ladder to see how

the step behaves under a given set of loads. There is another argument to be made that
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analysis is a task also done early in the design cycle because analytical thinking is required

to clarify the client’s requirements and lay out the specifications against which the design

will be made and evaluated.

We are doing the evaluation task when we compare our analyses of the attributes and

behavior of the current design to the stated design specifications and constraints to see if

this synthesis is acceptable.

These task descriptions do provide a general statement about what we are

actually doing when we design an artifact, but they are still fairly general. There is a

“mixed” model of the design process wherein the prescriptive tasks are incorporated

within descriptions of phases of the design process, as follows:

We must be careful, however, not to confuse the

word creative with creativity. Here, in this very

abstract prescriptive model, we use the term only

to refer to the stage in which the actual design is

generated (i.e., created ).

1. The analytical phase of the design process involves two activities:

In the programming activity, we identify those issues that are crucial in the design,

in a manner very much akin to our earlier suggestions (cf. Section 3.1) about how

important it is to clarify the client’s objectives. Here, too, a plan is proposed for

completing the design process, perhaps through the construction of a schedule of

milestones and deliverables for the design project.

The second activity we perform in the analytical phase is data collection, in which

we collect and collate as much relevant data as possible and perhaps organize it into

a design database that will be the data source for the duration of the design project.

2. The creative phase of the design process involves three activities:

Analysis is the first activity in the creative phase.� As with our previous description

of this task, it calls for logical thinking and modeling to help us decompose the

design problem into subproblems; complete the

translation of the client’s requirements into

design specifications; review and revise, if neces-

sary, our project schedule; and prepare a budget

for the design process.

The synthesis task as outlined in this model is

quite similar to our previous description of this

task in that it calls for the preparation of skeleton designs that are, essentially,

equivalent to conceptual designs or French’s schemes.

Development of the candidate designs is the final creative task. It includes both

the evaluation of alternative conceptual designs and the preparation of preliminary

designs or prototypes.

3. The executive phase of the design process involves only one activity:

This final activity, communication, is akin to the task of documenting the final man-

ufacturing or fabrication specifications.

This mixed model depicts the design process as a “creative sandwich.” In

the first or analytical stage, we require organization, analysis, and data collection.
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In the final or executive stage, we create fabrication specifications in an objective

and orderly fashion. However, the middle stage, the creative phase, is a sort of puz-

zle. On the one hand, according to the description, the creative task depends on

the application of analysis and logic. On the other hand, this stage also requires the

exercise of subjective judgment and personal involvement in developing schemes

or concepts. In truth, it is this part of the design process that is the most difficult

to model or represent. Even in the clearest books on design, this phase is discussed

only in very general descriptive terms; the design methods described are, in fact,

only design aids that are intended to help us be creative and to cast as wide a net as

possible. However, as we have noted before, the boundaries between what we can

and cannot now model are not static, so we should not be deterred by the apparent

thickness of the creative filling in this design sandwich.

Designers and scholars in Germany have put forward a more detailed set

of prescriptions that reflect an attempt to systematize and formalize the design

process. Two such models are displayed in Figures 3.2 and 3.3. The first reflects

four stages, each of which consists of several tasks and produces specific outputs.

In brief:

1. The clarification phase has as its output a design specification.

This goal is achieved by clarifying the task presented by the client and elaborating

a specification in sufficient detail so as to define a specific target toward which

we can aim our design effort and against which we can, eventually, measure our

success.

2. The conceptual design phase has as its output a concept.

This goal is achieved by identifying the most crucial or essential problems; estab-

lishing a function structure – that is, a framework within which the artifact will

perform its primary function, including a decomposition of the primary function

into subfunctions that will be performed by subsystems or individual components;

formulating a solution procedure that can be (successfully) applied to the design

problem; preparing concepts or skeleton designs or schemes; and evaluating candi-

date schemes against the relevant criteria, including both economic and technical

metrics.

3. The embodiment design phase of the design process actually has two stages, the

first of which has as its goal the production of a preliminary layout and the second

of which has as its output a definitive layout.

The preliminary layout is obtained by refining the conceptual designs, evaluating

and ranking them against the design specifications, and choosing the best as the

preliminary design.

The definitive layout, the final output of the embodiment phase, is obtained by opti-

mizing the preliminary design and by preparing preliminary parts lists and fabrication

specifications.
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Figure 3.2. A prescriptive model of the design process (Pahl and Beitz, 1984).
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Figure 3.3. The design process as outlined in VDI–2221: Systematic Approach to the Design

of Technical Systems and Products (Cross, 1989).

4. The detailed design phase, the final stage of the design process, has as its output

the documentation of the designed artifact.

This goal is achieved by checking our results and documenting our design in final

manufacturing or fabrication specifications.

This model, the most elaborate of those presented thus far, is still not the

most complex. The German technical society of professional engineers, the Verein

Deutscher Ingenieure (VDI), has articulated a number of guidelines aimed at
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making design more systematic. One of these guidelines refines the process into seven

stages (cf. Figure 3.3), each of which has a clearly defined output or product. Such

a systematic refinement is perhaps useful as a checklist against which we can check

We show yet another prescriptive model in Fig-

ure 3.4. It is based on a set of models of five stages

in a design process. The inputs to any one stage

are dealt with by a set of stage-specific design

tasks that produce outputs that form the inputs to

the next stage (Dym et al. 2009). These depic-

tions are not intended to imply a strict linear pro-

cess that is entirely without iteration, as Dym et al.

remind their student readers. Despite allowing back-

ward loops in the process, prescriptive models tend

to suggest that designing is a sequential process

that moves in steps from abstract to concrete.

However, Visser (2006) concludes that “empiri-

cal cognitive design studies show that systematic

implementation of stepwise refinement is rare in

practice,” despite the fact that top-down, breadth-

first refinement is the strategy that experts tend to

favor.

that we have done all the “required” steps,

and it may have some utility from the stand-

point of protecting an organization against

liability for a product design or for assuring

conformance with some institutional design

approach.� However, it is not entirely clear

that this or any other more detailed elabora-

tion adds much to our understanding of the

design process. At the heart of the matter

is our ability to understand and model the

separate tasks done within each phase of the

design process. We can model some design

tasks – for example, evaluation of a scheme

and documentation. Other tasks are not so

easily modeled – for example, decomposi-

tion of function into subfunctions, genera-

tion of concepts, and so on. However, as we

will see in Chapter 6, we are making some

progress in modeling these problem-solving

tasks.

3.4 Information Processing Models of Design

One very interesting feature common to all of the design process models that we

have surveyed – although only rarely made explicit – is that the management and

transformation of information is central to the design process. In their terms, design

information derives from the adaptation of the design specification – and recall that

even the earliest stages of the process are concerned with adding information to the

client’s statement for the purpose of clarifying the client’s objectives and substanti-

ating a design specification. In this light, it is particularly interesting to describe two

information-processing models of design.

The first such model we discuss is called the task-episode accumulation or

TEA model. The principal components of this model are a design state and a

set of design operators situated within a design environment, a “map” of which

is shown in Figure 3.5. The design state incorporates all the information about a

design as it evolves. The most important parts of the design state are (1) proposals

for achieving design goals, and (2) constraints that the design must meet (e.g.,

specifications) or within which the design must operate. The design operators are

primitive information processes that modify the design state as various design tasks



Figure 3.4. Elaboration of the design process that characterizes stages in terms of their inputs, tasks performed, and outputs (Dym
et al., 2009).
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Figure 3.5. A map of the design environment (Ullman, Wood, and Craig, 1990).

are completed. Some of the 10 operators developed in the TEA model are select,

create, simulate, calculate, and so on.�

Although the TEA model lists 10 operators,

Brown (1992) lists more than 30 different roles

for knowledge-based reasoning during designing,

including abstraction, classification, criticism, eval-

uation, patching, planning, and selection. This dif-

ference may be due in part to the fact that TEA

is intended to be an information-processing model,

whereas Brown’s list is driven by types of knowl-

edge and their use. It is actually quite difficult

to choose a “right” level at which to describe

designing sufficiently well enough to build use-

ful computational models. For example, describing

design as “analysis, synthesis, and evaluation” is too

abstract.

This map of the design environment,

based on models of information-processing

psychology, shows that design information is

stored internally, in the mind of the designer,

and externally, in books, papers, drawings,

and the mind of colleagues. We can subdi-

vide the internal storage locations according

to whether they provide short-term mem-

ory (STM) or long-term memory (LTM). In

addition, according to this model, there is

a “processor” that controls the design pro-

cess by mediating between and among the

internal and external storage locations. We

distinguish between STM and LTM because

of their respective sizes and access times.

Access to STM, for example, is very quick,

but its capacity is very small. Cognitive stud-

ies seem to show that only seven chunks or meaningful units of information can

be stored in STM at any instant, and that the chunks of experts are usually larger

than those of novices. Conversely, LTM has an essentially unbounded capacity

but the access time is fairly long, on the order of 2 to 10 seconds per chunk.
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Furthermore, access to LTM is achieved by some triggering mechanisms or oper-

ators that act on information brought into STM (cf. Figure 3.5). Inasmuch as all

design problem-solving information (or, for that matter, any cognitive processing

information) must pass through the STM, we could infer that STM could prove

to be a significant bottleneck for human problem solving – a fact that has obvi-

ous implications for designing computer-based designer’s assistants (cf. Preface and

Section 1.2).

We do not intend to go into further detail about the TEA model, in part because

its authors view it as emerging and still under development, and in part because

some of its details underlie a design taxonomy that we discuss in Section 4.3. In that

taxonomy, we articulate the design state, at various levels of abstraction, and the

roles of some of the operators in greater detail. It is interesting to note, however, that

this model has emerged from a conscious attempt to extend cognitive psychology

models into the design domain.

Case-based reasoning (CBR) systems (Maher

et al. 1995; Maher and Pu 1997) can index cases

(e.g., design plans) by the goals that they satisfy and

by the problems that they avoid. Such CBR systems

can repair failed plans and build up a set of features

that can be used to predict problems (Hammond

1989).

In the second information-processing model, design tasks are proposed and

analyzed in terms of the information they use. We note two basic sets of processes in

this approach. The first set of processes propose design choices. The second set is a

collection of auxiliary processes that provide information in support of generating or

testing a design choice or commitment. As we delineate these two sets of processes,

we introduce more of the terminology common to AI-based research in design

problem solving (see Chapter 6):

1. There are four basic information processes that propose design commitments –

that is, processes that generate design choices or make commitments about

specific aspects of a design. They are:

A basic and often-used approach to design is the decomposition or reduction of

a problem into a set of smaller problems. We thus intend to solve the over-

all design problem by solving subproblems for which we have previously com-

piled or known solutions or that require searches of much smaller solution

spaces.

We can also view design as a process of design planning – that is, of formulating a

plan of steps that need to be taken to produce the fabrication specifications for a

designed artifact. The steps in the plan could be set out as goals to be achieved or in

terms of the parts or components of the artifact.

In the process of design modification,

we explicitly recognize the existence of

previous designs that we can modify to

meet our current design needs. We do

need criteria for choosing designs that

are close to the current problem, and it

would be helpful to know why an old

design fails to meet current goals and

what must be modified so that we can

adapt an old design.�
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Constraint processing (Dechter 2003) is now a

well-developed area as well as a natural fit for

parametric design (O’Sullivan 2006) and config-

uration problems (Felfernig et al. 2011) that can

be handled by assignment (Wielinga and Schreiber

1997).

Constraint processing or manipulation can be

a useful tool for design when the structure of

the artifact is known and the design process

can be reduced to selecting values for variables

and parameters.� This kind of information pro-

cessing is often done algorithmically because

the problem has sufficient structure to make

numerical-modeling approaches such as opti-

mization useful.

2. There are four basic types of information processing that provide auxiliary infor-

mation – that is, information in support of generating or testing a design choice.

These processes are:

The task of translating high-level goals and con-

straints into more detailed versions appropriate to

the subproblems is generally very difficult to exe-

cute: effectively, goals and constraints must also

be decomposed and made more specific. This is

particularly difficult, for example, with constraints

on parameters that are accumulative. For example,

if x is composed of a and b, and x must be less

than 10 inches, then it is difficult to be more precise

about either a or b. Such conjunctive goals are very

difficult to deal with while designing, or repairing

failing designs, due to the inherent dependencies.

The process of generating goals and constraints

for subproblems is very important as we trans-

late high-level goals and constraints into more

detailed versions appropriate to the subproblems

of the original decomposition.�

Recomposition is the process of assembling solu-

tions to subproblems into a coherent solution to

the overall problem. Much of the information

required here is about how the pieces fit together.

Design verification is that part of the design cycle

in which we test our solution to verify that it meets

all goals and constraints.

Design criticism is information used to analyze

failures, identify their causes, and suggest modifi-

cations to fix them.

In closing this brief overview of information-processing models of design, it is

worth noting that the auxiliary information processes are fairly typical problem-

solving skills that can be invoked equally well to solve analysis problems; that is,

they are not unique to design. The processes involved in generating design choices,

conversely, are relatively specialized toward design, where the idea is to create

either an artifact or the specifications for an artifact. It is thus not surprising that the

modeling of these design processes has become a fertile branch of research for the AI

community, in large part driven by the recognition that algorithmic processes – suited

as they are to aspects of evaluation, verification, optimization, and documentation –

are simply inadequate in terms of providing the information needed to generate

designs.

3.5 Design Methods in the Design Process

The descriptions of the design process given here are neither unique nor

exhaustive. There is significant overlap among these process descriptions, the
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taxonomies of design we present in Chapter 4, and the problem-solving tech-

niques we discuss in Chapter 6. This merely reflects the complexity of the design

concerns that come into play in analyzing the design process.

We have also noted that these process descriptions often fail us because they do

not tell us how to go about the business of generating or creating designs. Although

we can be rather specific – to the point of being algorithmic – about some aspects

of the design process, we have a difficult time with design generation. We address

this point in greater detail in Chapter 6 but, having pointed out so often the lim-

itations of these process descriptions, it seems worthwhile to introduce here some

more traditional, inductive design methods, casting them in terms of the AI-based

problem-solving methods that are discussed in much greater depth in Chapter 6. As

a context for this discussion, we use the process description paralleling that shown

in Figure 3.1.

One method used to clarify the original project statement is the construction of

an objectives tree. Here, we make a hierarchical list – which actually branches out

Means-ends analysis (MEA) is a technique for re-

ducing a problem by mapping a difference to an

action or actions that should help reduce that differ-

ence. The “difference” is usually between a cur-

rent state and some desired state (e.g., a goal

or subgoal). MEA is thought of as recursive; that

is, reduced differences may need to be further

reduced.

into a tree-like structure – in which all of

the objectives that the design must serve

are ordered by degree of specificity. Then,

starting at the highest level of abstraction,

we have our top-level design goal, which is

the end the design must serve. As we move

down the list to more detailed and specific

objectives, we find that we are generating

the means by which the design will perform

its desired function. Thus, this method is

related to a general problem-solving tech-

nique called means-ends analysis.�

Conceptual design can be thought of in terms of searching a large space of

possible designs. Because the space is likely to be both large and complex, we do not

The standard functional terms in the functional

basis (Hirtz et al. 2002) are organized into a

hierarchy of different levels, thus providing sup-

port for refinement and perhaps for decompo-

sition. Decomposition typically requires reason-

ing, but CBR can be used. Decompositions can

result in subfunctions that are either indepen-

dent of order or dependent on some behavior

that is part of another subfunction (Erden et al.

2008).

want to look for solutions in an ad hoc

fashion because we may miss good solu-

tions or, at best, take a very long time to

find them. One method often proposed for

generating conceptual designs or schemes is

functional decomposition.� The idea behind

this method is to decompose the primary

function that the design is intended to per-

form into subfunctions, which in turn are

decomposed until some level is reached in

which the design of subsystems or com-

ponents that perform these subfunctions is

relatively clear. Decomposition, or “divide and conquer,” is a way to reduce

a large problem into a set of smaller – and presumably easier – subproblems.
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Of course, in this process we have to keep in mind the interactions between

the subproblems and to monitor their individual solutions to ensure that they

do not violate the assumptions or constraints of the other, complementary sub-

problems.

Another general approach, particularly for conceptual design, is to follow a

strategy of least commitment – that is, to make as few commitments as possi-

ble to any particular configuration because the data available are perhaps too

abstract or very uncertain at this point in the design process. Or, it may be that

the data are simply not available so early in the process. Least commitment is

less a specific method than a strategy or a (good) habit of thought. It militates

against making decisions before there is a reason to make them. The dangers

of making premature commitments are perhaps obvious; that is, that we could

either limit in a suboptimal way the range of designs that might solve a particular

It is often stated that as much as 80% of the life-

cycle cost of a product is determined by design

choices made at the conceptual design stage. How-

ever, with about 80% of the design effort still

remaining at that stage, we cannot estimate costs

easily or accurately unless we can draw analogies

to similar designs. However, every commitment we

make can be used to generate hints about the con-

sequences for life-cycle cost.

problem or that we could become wedded to

a concept that develops unsuitably and from

which we must then withdraw – perhaps after

a significant amount of wasted effort. As a

strategy, least commitment is of particular

importance in early stages of design (e.g.,

conceptual design), where the consequences

of any one design decision are likely to be

propagated far down the line.� In later stages

(e.g., detailed design), we are very interested

in making it easy to test and fix design deci-

sions (see the following discussion).

In preliminary design, we are concerned with generating candidate solutions

and then with either testing them to ensure conformance with design objec-

tives and applicable constraints or evaluating them against metrics – for exam-

ple, cost – that support a choice among otherwise adequate designs. One com-

mon reasoning strategy is generate and test, in which we devise a generating

strategy that automatically generates large numbers of potential designs that are

then tested against the relevant metrics and constraints. With this strategy, how-

ever, we must guard against a combinatorial explosion of the space of candi-

date designs in which we are simply overwhelmed by the number of possible

designs that emerge as a consequence of different combinations of the design

variables.

Often, having generated a solution that fails to meet a specified test, we want

to redirect our search for a solution so as to fix the failure. In particular, in detailed

or final design, we can often identify the decision(s) that precipitated a failure.

In such cases, we can formally apply a problem-solving approach called back-

tracking to remedy the problem by undoing the decision(s) that caused the fail-

ure. This requires that we explicitly articulate the dependencies or links beween

design decisions and the values of the artifact attributes that result from those
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VT, an expert elevator configuration design sys-

tem (Marcus et al. 1987), maintains dependencies

between decisions. When constraints fail, VT uses

the dependency record to guide knowledge-based

backtracking to undo the decision that caused the

failure. This approach does not systematically undo

the last decision made each time because it is a

waste of time if that decision was not the actual

cause of the problem. The dependency record can

also be used to discover how many subsequent

decisions such a change might affect. Other AI-

based systems use implicit or explicit dependencies

in a similar way.

decisions.� Such design methods often use

explicit statements of design constraints

along with mechanisms to post or propagate

them to appropriate points in the assembly

of final design attributes.�

We have focused this short discussion

of design methods on the thought processes

or cognitive tasks that are done during the

design process. This brings us closer to

explaining how we actually go about design-

ing artifacts, and it sets the stage for articu-

lating a taxonomy of design tasks, as we do

next.

3.6 Bibliographic Notes

Constraint posting and propagation are included in

the MOLGEN system (Stefik 1981). Constraints can

be determined and then attached (i.e., posted) to

a future decision (e.g., a variable) so that they can

act as evidence to help decide what the decision

result (e.g., the variable’s value) ought to be. In

a “least commitment” system, posting constraints

allows decisions to be made only when enough

evidence has been gathered such that the result

is clear. MOLGEN reasons about plans for experi-

ments. It can take a constraint on an output of a plan

action and reason about what must have been con-

strained in the action’s input; that is, the constraint is

propagated back “through” the action. The ultimate

type of constraint is a value (e.g., X = 10) because

it acts as a constraint on the values of other vari-

ables, with propagation possible via equations (e.g.,

X + Y > 20).

Section 3.2: Models of the design process

were proposed by Cross (1989) and French

(1985, 1992). French (1992) introduced the

term schemes for conceptual design. The

importance of generating multiple schemes

in conceptual design is pointed out in Pahl

and Beitz (1984) and VDI (1987). The pithy

aphorism on this point was brought to our

attention by Antonsson (1993).

Section 3.3: The tasks of design are out-

lined in Asimow (1962), Dym and Levitt

(1991a), and Jones (1981). The “mixed”

model of design was originated in Archer

(1984) and reviewed in Cross (1989). More

extensive design prescriptions representing

a German approach to systematizing design

are found in Pahl and Beitz (1984) and in

VDI (1987).

Section 3.4: The TEA model of design

was developed by Ullman, Dietterich, and

Stauffer (1988). It is based on models of

information-processing psychology developed in Newell and Simon (1972) and

Stauffer (1987). Another information-processing model of design was developed

by Brown and Chandrasekaran (1989) and is described in reasonable detail in Dym

and Levitt (1991a).



38 CHARACTERIZING THE DESIGN PROCESS

Section 3.5: Traditional methods for design (e.g., objectives trees) are reviewed

in Cross (1989) and French (1992). Means–ends analysis as a problem-solving style

is propounded in Newell and Simon (1963, 1972). Functional decomposition is

described in Cross (1989) and Ullman (1992b), and “divide and conquer” as an

AI technique is detailed in Rich (1983).



4 Taxonomies of Engineering Design

We have now defined, at least tentatively, what we mean by design, and we have

described several views of the process of design. In so doing, we have identified some

of the ways that problem-solving strategies could be employed in the design process.

Now we turn to the task of trying to outline an organizational structure or taxo-

nomy for design. According to the dictionary, a taxonomy is the result of the “study

of the general principles of scientific classification” and a classification, at least in

the natural sciences, is the “orderly classification of plants and animals according to

their presumed natural relationships.” Similarly here, a taxonomy of design might

(1) allow us to classify design problems according to certain characteristics; and

(2) facilitate the organization of the knowledge, representation, and reasoning

schemes that would be useful in modeling different kinds of design.

Are such taxonomies important? Why? One viewpoint is that a scientific the-

ory of design cannot be developed without such a taxonomy. Another is that such

taxonomies allow us to compare design methods and design tools – especially those

reflecting the newer computer-aided technologies the ideas of which are reflected in

this discussion. Our own viewpoint is stated somewhat differently in that we would

stress any increase in our ability to understand and model the thought processes

involved in design as being the best reason for developing such taxonomies. As we

work toward this objective, we will simultaneously increase our abilities to compare

various design tools and to develop and explore new design methods. We note also

that, as with our characterizations of the design process, various taxonomies and clas-

sifications have been proposed, and there is certainly some overlap of ideas among

them. After we review these various taxonomies, in an order roughly corresponding

to their chronological development, we will try to analyze in a principled way what

we have learned from so describing the thought processes of design.

4.1 Routine versus Creative Design

We know that experience gained from previous attempts to design the same or

similar artifacts allows an engineer to solve a design problem more easily and effi-

ciently. Through such experience, we acquire knowledge that helps us relate some

39
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The distinction “routine versus creative” has been

drawn by many researchers (e.g., Brown and Chan-

drasekaran 1989) over the years, but it now appears

to be confusing at best, if not simply wrong. This

is because identifying a design as creative renders

a judgment on that design, relative to personal or

group norms (Boden 1994). Thus, as strange as

it may seem, being creative probably depends as

much on who is making the judgment as on the

design process itself: any design activity may pro-

duce a design that may be judged to be creative.

More formally, creative design has been defined as

requiring a “transformation” of the search space

(i.e., changing the reasoning rules), as described by

Boden (1994) and Gero (1990).

Highly nonroutine design is characterized by

not knowing how to proceed and by a lack of imme-

diately available appropriate knowledge. This sit-

uation typically requires new activity that requires

problem solving and much less reliance on existing

methods. This has been called “innovative design,”

but the term has been defined in various ways. The

distinction “routine versus innovative” is better than

“routine versus creative,” although highly innovative

design does tend to lead to creativity. More recently,

“innovation” has come to mean the implementation

of creative concepts.

of the design requirements to parts or sub-

systems of the artifact that can achieve

those requirements. Similarly, past experi-

ence helps us learn how to assemble and

organize independent parts to achieve a

desired overall behavior. Such cases – in

which we have a lot of the knowledge about

parts, components, systems, and their func-

tions – involve relatively routine design in

which the problem-solving task is largely a

process of matching requirements to pre-

vious attempts at meeting the same set of

requirements.� Although we might have to

repeat this process several times in an itera-

tive fashion to achieve an acceptable design,

it is still a relatively simple task.

Oftentimes, however, the design goal is

a device that is quite different from previ-

ous designs, or the number of alternatives

that must be considered is very large, or

the desired artifact is completely new. In

such cases, the design activity is more com-

plicated: the space of possible design solu-

tions is then both large and complex. In

some cases, the space of possible designs

may not be easily or well defined. Therefore,

any attempt to generate and test all possible

designs would require a prohibitively large

effort, so we need powerful ways to search

through a large, complex space of possible designs. We would expect in such situa-

tions that the knowledge obtained either from experience or from a deeper under-

standing of the domain plays an essential role in guiding our search for plausible

design alternatives. Obviously, we may also use such knowledge to modify a design

if some of our design choices turn out to be undesirable.

The foregoing discussion suggests that we can characterize the type of design we

may be facing in accordance with an assessment of the knowledge we have about the

design domain and of the strategy we will use to solve the particular design problem

at hand. The knowledge assessment depends on how complete is the knowledge we

use to generate designs – especially with regard to the degree of specificity we can

attach to the form, goals, and constraints governing our design problem – and how

complete is our store of additional or auxiliary knowledge that we require to test

possible designs. The second significant factor for assessing design complexity has

to do with how difficult it is to control the problem-solving process we use to search

the space of possible solutions. Thus, we will describe first a taxonomy that is based
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on asking whether a design is routine or whether it is creative. This classification is

more or less equivalent to assessing how difficult it is to generate candidate designs.

Specifically, then, three classes of design are identified in this taxonomy:

Class 1 Design. Also known as creative design. Creative design is rare in that

it usually leads to completely new products or inventions. It is typically char-

acterized by a lack of both domain knowledge and problem-solving strategy

knowledge. Here, the goals are vague, and we are short both of ways to effec-

tively decompose problems and of designs for the subproblems. This kind of

design requires considerable problem solving even in its auxiliary processes. It

is original, rare, and almost certainly not susceptible to encapsulation with cur-

rent representation technologies – probably because we do not understand the

origins or form of true creativity.

Class 2 Design. The distinguishing mark of such design, sometimes called variant

design, is that we know a lot about the design domain; that is, we understand the

sources of our design knowledge but we lack a complete understanding of how

that knowledge should be applied. Thus, although we may be able to successfully

decompose a design task into a number of subproblems of component design,

it is the modification or replacement of the individual components that makes

the design difficult to complete. The continuous revisions in automobile design

that we have seen in the last several years provide a classic example of this.

Automobile basics are still very much the same, but the individual components

are certainly quite different – and much more complex – than their counterparts

of even a decade ago. Thus, although automobiles still have engines, transmission

systems, and wheels, the subsystems that operate and connect them are much

more sophisticated and complicated than they were only a few years ago.

More recently, the intermediate class of designs – between creative design

and routine design – has been termed innovative design, although the emphasis

in this definition varies somewhat. One view is as just expressed; that is, in

innovative design, we lack a clear-cut problem-solving strategy. A second view

is that innovative design perforce hinges on the application of reasoning from

first principles – that is, from the fundamental physical equations and concepts

used by engineers. The two views can be said to converge if we assume that the

domain knowledge we know consists of the fundamental physical knowledge,

whereas the problem-solving strategy we lack is the knowledge of how, where,

and when we should apply this fundamental knowledge.

Class 3 Design. In routine design, we typically know in advance everything

we need to know to complete a design. That is, we can identify the specific

design or domain knowledge we need to complete the design (or, we know the

sources of that design knowledge) and we know how to apply that knowledge.

Thus, we typically would have effective ways to decompose design problems,

well-understood and efficient (compiled) plans for designing components, and

fairly complete information about the possible causes of design failures that

can be appropriately applied during the design process. Still, routine-design
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A three-class model is too abstract to accurately

describe all activity that occurs during design. How-

ever, if we make the description less abstract by

adding more classes and details, then we are less

likely to match every example of design: there are

just too many individual variations due to require-

ments, constraints, preferences, resources, and

knowledge available. (This, by the way, is one rea-

son that algorithmic and decision-based models of

design are limited in their ability to portray the entire

scope of the design activity.) Thus, it seems that

there is always some sort of difficulty when describ-

ing design!

Note that the three classes in the Brown and

Chandrasekaran (1989) model are not distinct: they

depend on two variables, domain knowledge and

problem-solving strategy knowledge, each of which

can vary independently and continuously. In addi-

tion, it is important to recognize that any character-

ization of design activity applies only to a portion of

the whole because each subproblem itself (and its

subproblems in turn) might be Class 1, 2, or 3; that

is, each subproblem might be more or less routine.

It is better to characterize the situation at any single

point in time during design (Brown 1996) because

the situation can vary as the designer switches from

subproblem to subproblem, recognizes what knowl-

edge is appropriate, reasons out a plan to tackle

some design subproblem, retraces steps after fail-

ing, and so on.

problems often require a significant

amount of design knowledge because

there may be complex interactions

among subgoals and among compo-

nents, as a consequence of which we

must anticipate complexities both in

selecting and ordering design plans and

in undoing steps already taken to undo

failures (in the jargon of AI, we call

this backtracking or retracting design

commitments). Thus, even in the sim-

plest class of routine design, there is

more than ample scope for the intelli-

gent deployment of design knowledge.

This taxonomy is interesting and sug-

gestive but, unfortunately, its simplicity is

limiting – the three classes of design do not

appear to carry enough distinctive detail to

be helpful for characterizing the wide vari-

ety of activies that fall under the rubric of

design.� Furthermore, the identification of

a design problem as routine or variant or

creative depends on the experience of the

problem solver who is doing the classifying.

Routineness is thus a relative measure. What

is routine for one designer may not be for

another. Furthermore, given that designers

appear to learn a great deal from experi-

ence, a problem that seemed difficult two

years ago may now be seen as routine by any

given designer. Routineness is thus an “indi-

vidual’s standard,” measured in “the brain

of the beholder.”

Judgments about the routineness or difficulty of

a design problem can be made by an individ-

ual designer, design team, or design community.

Similar judgments are also made about creativity:

they can be made before, during, or after a design

project, and about the designed artifact or the design

process.

In addition, there is also a “community

standard.”� The professional design com-

munity may consider an engineering design

problem routine – meaning that there is an

expectation that the problem will be routine

for all practicing members of the community.

The expectation also may derive in part from

the current state of design education if, for

example, the specific domain knowledge and problem-solving strategy for solving a

particular design problem or class of problems are generally taught in design courses.
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Applying the community standard is itself not a trivial task, although it is prob-

ably easier to see as design problems become less routine. Clearly, the community

standard for a particular design problem is represented by the pool of existing design

solutions. Thus, a design would be deemed “innovative” relative to that pool of exist-

ing designs. However, it is perfectly possible for a design to be innovative relative

to an individual’s standard but not so relative to the community standard. Thus,

design problems are innovative in context, not in and of themselves, so we should

be cautious about labeling innovative design.

Similar reservations could be expressed about the term variant. In some of the

literature, it has been used to describe Class 2 designs as we have just done. In process

planning, the term variant has been used to describe the process of choosing a plan

from among a set of standard plans. Similarly, in design, the term could be taken to

mean producing designs by varying prototypical designs. This describes how a design

is produced but makes no judgment about its quality, originality, or routineness. If

we were to think of variant designs being produced as a result of changing para-

meter values only, without changes in function features, form features, or topology,

we would probably not classify these problems as innovative.

Finally, and as noted previously, routine design is still often sufficiently complex –

and difficult to model computationally – that most KBES design applications have

reflected attempts to provide advice for carrying out Class 3 (routine) design tasks.

Some of these applications are described in Chapters 5 and 6, but first we move on

to describe other design taxonomies.

4.2 A Taxonomy of Mechanical-Design Problems

Chandrasekaran’s (1990) analysis of design tasks

considers that every task can be carried out by mul-

tiple methods, each of which might include other

tasks. Thus, design proceeds recursively through

tasks and methods, with the selection of meth-

ods being context dependent. His analysis pro-

poses that tasks can be of the type propose,

verify, critique, or modify. So, in a highly famil-

iar situation, a propose subtask might be handled

using case-based reasoning (i.e., applying a pre-

vious, similar design case, albeit with minor alter-

ations). In a less familiar situation, a verify subtask

might be done by simulation – for example, by verify-

ing that a particular behavior occurs. This recursive

model clearly explains the myriad possibilities for

design activity.

As noted earlier, one argument for devel-

oping design taxonomies is to further

the opportunities for generalizing design

knowledge into a coherent formal theory

and methodology of mechanical design.

This argument contends that an identifi-

able design process exists only in a fairly

abstract way, as we have seen in Chapter 3,

and that there are many different design

processes that are carried out operationally,

depending on the particular design prob-

lem, the designers involved, and the envi-

ronment in which the design is done.� The

mechanical-design taxonomy proposed by

Dixon and his colleagues is an attempt to

classify design problems, as a starting point

for further discussion aimed at developing a

formal theory of design.
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The “state of knowledge” referred to here concerns

what is currently known about the final design. The

state can be viewed as moving from knowing very

abstract aspects to knowing very concrete aspects,

such as particular parameter values. Typically, the

knowledge state also can be seen as moving from

desirable effects on the user’s environment, via

function, to behavior and then to structure. This

allows design to be defined as progressing from a

more abstract state to a less abstract state. This

progress can be viewed as being orthogonal to the

degree of routineness: some state changes may be

easy and some difficult.

At the highest level of abstraction, a

design problem is characterized here by the

specification of two knowledge types: an

initial state of knowledge and a final desired

state of knowledge.� These two states of

knowledge are each in turn characterized as

being one of six mutually exclusive knowl-

edge types, with the types chosen from a list

of seven knowledge types. Once the initial

and final states are specified, we will iden-

tify problem types as a function of the dif-

ferences between the knowledge types of

the two states. The seven mutually exclu-

sive knowledge types used to define the two

problem states are:

Perceived need. This is the condition or need that provides the motivation for

designing something. Whereas perceived needs are often expressions of social or

economic needs, engineering design is here limited to more refined, less abstract

expressions of functional need. And, it should be noted, not all design problems

begin at this abstract level; that is, many are stated at more refined or detailed

levels. For our stepladder example (cf. Chapters 1 and 3), the perceived need

could be that we want to provide a means to allow people to obtain access

to heights exceeding their own, whereas the engineering-design version of the

perceived need would be a statement of the need to provide the ability to support

a given weight at a certain specified height.

In the taxonomy that we discuss in the next section, it is also noted that

specifications are design requirements or goals that are based on the perceived

need. Such design specifications may be based on functional performance or

they may relate to other constraints, such as spatial constraints, manufacturing

restrictions, cost, or applicable codes and standards.

Function. This is the most detailed statement of the perceived need that can be

made without reference to physical principles, form, or embodiment (see the

following discussion) or specific artifact types. A function indicates what must

be done without specifying how it is to be achieved. A functional requirement is

a translation of the function into a detailed, quantitative, operational statement.

For the stepladder, the functional requirements could state that among other

things, each step should support a person weighing 350 lubes and the weight of

the ladder should not exceed 15 lubes.

Physical phenomena. This is a statement about the underlying physical principles

that will be used to design the artifact, although this statement is done without

reference to how these physical concepts will be displayed in the actual object.

In the German literature, physical phenomena are called the working principles.

Thus, the stresses in a step that supports forces on the step might be restricted
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to be significant only in directions transverse to the step thickness or supported

force.

Dixon et al. make an interesting point here, which is that the physical phe-

nomena just specified for the step are often subsumed in the statement that

the step should respond as a bent beam or plate, in which case we are permit-

ting a phenomenon’s name to be substituted for the phenomenon itself. This

abstraction, although at times very convenient, may in fact inhibit thinking by

short-circuiting the range of options being considered. Although not especially

realistic for a ladder step, the statement given would allow us to design the step

as a beam or as a truss, whereas we would ordinarily perhaps have just required

the step to be a beam.

Embodiment (or concept). Concepts or embodiments represent a generalized

form or shape based on the physical phenomena being developed to achieve a

function. Thus, a ladder step can be seen as a beam, although the beam’s cross

section is not yet specified.

Artifact type. An artifact type represents a concept refined further, wherein the

specific attribute types of the concept – although not their values – are detailed.

Thus, the beam for the step might be specified as a thin plate or as an I-beam

or perhaps as something else again, as long as the artifact type behaves like a

beam.

Artifact instance. Here, specific values are given for the artifact type, thus creat-

ing an instance of the artifact; in current jargon, we are instantiating the artifact.

Thus, we could specify that the step be made of wood and have dimensions of

30 inches × 8 inches × 0.50 inch.

Feasibility. This is simply an assessment of whether a particular aspect of a

design is deemed feasible.

Then, the following two design-problem states are defined:

The initial state of knowledge is one (and only one) of:

perceived need

function

physical phenomenon

embodiment

artifact type

artifact instance

The final state of knowledge is one (and only one) of:

function

physical phenomenon

embodiment

artifact type

artifact instance

feasibility
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Problem Type Initial State Final State

Functional perceived need function

Phenomenological function phenomena

Embodiment phenomena embodiment

Attribute embodiment artifact type

Parametric artifact type artifact instance

Figure 4.1. A taxonomy of types of major design problems (Dixon et al., 1988).

Now, we need to remember that the complete specification of a knowledge state

could, in fact, incorporate more than one of the six types relevant to it, depending on

whether it is an initial or a final state. However, when we define particular problem

types, it is on the basis of a transformation from a single initial knowledge state to

a single final knowledge state. With this in mind, Dixon and his colleagues propose

a taxonomy of five major design problem types (Figure 4.1). Problem types are

identified according to the difference – which is normally a refinement – between

discrete initial and final states of knowledge.

This taxonomy of major problem types does not name all the possible combina-

tions of design problems because, as the authors note, “there are too many possible

combinations to conceive unique, memorable names for all of them.” However, the

definitions of knowledge states can be used to identify some of the more familiar

terms used to describe design problems. For example, for preliminary and conceptual

design and design feasibility,

Preliminary Design: function artifact type

Conceptual Design: function embodiment (concept)

X-Feasibility Study: X-initial state feasibility

It is easiest to think of examples of routine design

occurring in situations where simple choices or

basic calculations are being made – for example,

when a value for a parameter (i.e., a length) is deter-

mined. Thus, there is a strong association between

parametric design and routine design. However,

design is more likely to be routine when sequencing

and decomposition knowledge exists in addition to

decision-making knowledge. This can occur any-

where in the abstract-to-concrete spectrum.

It also follows, then, that a complex

design process can be decomposed into a

series of the basic problem types. We will

see in Sections 4.3 and 4.7 that such decom-

positions can be used to identify design tasks

identified in other taxonomies and that these

decompositions may not be unique. We

could, for example, identify routine design

as the following combination:�

Routine Design: embodiment artifact type

and artifact type artifact instance

To provide some concreteness to this discussion, we show in Figure 4.2 one

example of a knowledge state that might be relevant to the design of wooden
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Need To assemble structures with wooden parts
Function To fasten adjoining wooden parts together
Phenomenon Friction
Embodiment Metal part inserted into adjoining wooden parts
Artifact type Nail
Artifact instance Six-penny galvanized nail

Figure 4.2. An example of a knowledge state definition (Dixon et al., 1988).

stepladders. Here, we could identify as routine design the process of choosing a

concept or embodiment (e.g., a metal part inserted into adjoining wooden parts),

choosing a particular artifact type (e.g., a nail), and then finally instantiating the nail

by identifying a particular size (e.g., a six-penny nail). Clearly, other choices could be

made in the knowledge-state definitions that would lead to other design choices. For

example, the phenomenon chosen could be bonding, in which case the embodiment

would be a bonding agent, the artifact type could be a wood glue, and the artifact

instance would be a particular type or brand of wood glue.

There are subclassifications of this top-level design taxonomy; for example, we

could refine an artifact type as the specification of a physical type, an assessment type,

and a complexity or coupling. We do not need such detail at this point, so we close by

noting that the taxonomy presented in this section focuses on classifying aspects of

the design problem, as distinct from the design process that entails both the people

involved (e.g., the designers) and the design environment in which they work and

the design tools at their disposal.

4.3 A More General Mechanical-Design Taxonomy

We now turn to a mechanical design taxonomy proposed by Ullman that extends the

taxonomy just discussed in several ways. The particular focus of this work is to enable

not only the formalization of design methods and theory but also the comparison of

design tools, especially the more recent computer-aided design environments that

are beginning to appear as commercial products. Furthermore, this taxonomy is

set in the context of the TEA design-process model discussed in Section 3.4. It is

thus relevant both to our continuing focus on the design thought process and as an

elaboration of the TEA model.

Ullman explicitly includes the design environment and the design process in

his taxonomy, arguing that a complete taxonomy must encompass more than the

defined artifact. There are three top-level components: the environment, including

the characteristics of and the constraints on those doing the design; the problem

being solved, as defined by its initial and final states; and the process by which the

initial problem state is changed to its final state. Each of these components is further

refined as shown in the table displayed in Figure 4.3. The slots in the right column

are filled in as various options are identified.

If we now look at the problem part of the taxonomy, we see that it extends the

previous one in a particularly interesting way; that is, the initial and final states are
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Top-Level First-Level Refinement Values

Environment Participants 1. __________
Characteristics 2. __________
Resources 3. __________

Problem Initial State Refinement Level 4. __________
Representation 5. __________

Final State Refinement Level 6. __________
Representation 7. __________

Satisfaction Criteria 8. __________

Process Plan 9. __________
Processing Action 10. __________
Effect 11. __________
Failure Action 12. __________

Figure 4.3. A form for a generalized mechanical design taxonomy (Ullman, 1992a).

detailed in terms of the representation in which they are expressed as well as their

own refinement levels. The latter are chosen from the same list of six possible initial

knowledge states used in the previous taxonomy and applied here to both initial and

final knowledge states; that is,

The initial state of knowledge and the final state of knowledge are each charac-

terized by one (and only one) of:

perceived need

function

physical phenomenon

embodiment

artifact type

artifact instance

The representations indicate the “language” in which that knowledge is stated.

Four such representation languages are identified:

textual

numerical

graphical

physical

The first three of these languages are self-explanatory; the fourth could refer

to a physical model or perhaps to a set of equations or some other mathematical

realization that is used to model the underlying physical phenomena. Thus, each

refinement of an initial or final state will have an accompanying “value” of repre-

sentation language in the appropriate slot (i.e., Slots 5 and 7 in Figure 4.3). We say

more about the representation languages of design in Chapter 5.

Another addition to the problem definition is the identification of the criterion

that must be satisfied to declare a design complete. We like to think of designs being
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optimal in some sense; that is, they are the best designs possible when judged by

some stated criteria. However, the state of the art of optimal design is such that it

normally can be applied only when there is a clear-cut mathematical model of the

design objectives. In reality, however, we are quite pleased if we can satisfice – that

is, if we can find a design solution that is satisfactory when judged by reasonable,

often nonquantitative, measures that are usually less restrictive than those applied in

formal optimization. Furthermore, there is empirical evidence that many designers

work toward just such ends.

We now turn to the process part of this taxonomy, one that is identified as

“still emerging” as research in the area unfolds. Four components are identified

Planning during design might be done in a variety

of ways, from mere plan execution at one end of

the spectrum, via plan instantiation (e.g., using a

parameterized plan), to plan construction from sub-

plans, to full knowledge-based planning. An intro-

duction to AI–based planning is found in Hendler

et al. (1990), and Ghallab et al. (2004) provide a

complete survey.

as essential for characterizing a design: the

plan, the processing plan, the effect, and a

failure action. The refinements of these cat-

egories are displayed in Figure 4.4 and are

detailed as follows:

Plans. Four different kinds of design

planning are identified.� They are design

by fixed plan, in which the design pro-

ceeds in a fully delineated process, as a

“cookbook” approach; selection of a plan from a list of plans, in which instance

designers choose a plan from a set known to them from previous experience;

Design Process

and

Plan

Fixed
plan

Select
from a list

Select
from a list

Parametrized
plan

Parametrized
method

Search

Search

Refine or
Abstract

Decompose
or Combine

Patch

Single
pass

Iterate

Match
similar items

EffectProcessing
Action

Failure
Action

or

or

or

or

Figure 4.4. Refinements of the design process (Ullman, 1992a).
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parameterized plan, in which case a skeletal plan outlining the major steps is

used (with details filled in by the designer) or a single plan is applied with a

control strategy based on values of specified design parameters; and search,

in which instance the techniques prominently used in AI are used explicitly

to search a space of design solutions. These search methods can be weak or

strong, depending on the degree to which domain knowledge is used to guide the

search.

Processing actions. Some kind of action must be taken to execute the design

plans just identified. These processing actions are also four in number and mirror

closely the design plans; that is selection from a list, wherein potential solutions

can be chosen from a list of previously known designs; parameterized methods, in

which the design problems can be represented in terms of a set of mathematical

equations whose solutions depend on various design parameters that are spec-

ified in the description of the problem’s initial state; matching of similar items

is a kind of search that depends strongly on reasoning by analogy; and (again)

search.

It is also possible for designers to move in a direction

opposite to refinement to produce an abstraction of

the current design situation – that is, a higher-level,

less detailed view of the design. More abstract views

are used to recognize specific methods or general

strategies that might be useful or even to recognize

previous designs in the same general category.

Effects. Design processes have three identifiable effects on designs: refine-

ment, in which the design final state is more detailed than is its initial state;

decomposition, in which the design problem

is broken into smaller subproblems for which

the strength of the coupling between sub-

problems is a major issue; and patching, in

which the design is modified in some way

that does not reflect a true refinement, such

as where a longer screw is substituted when

a shorter one will not do.�

Failure actions. The fourth and final category in the classification of design

processes is concerned with the handling of shortcomings or failures in the

proposed design. There are two basic approaches to fixing failures. One is to

stop the process and proceed to apply some external fix. The other approach

is to go through some iterative process to fix the failure by changing the failed

aspects through the application of predetermined strategies and failure-analysis

knowledge. (We see in this last dichotomy the role, albeit implicit, that the

intended use of the taxonomy plays in its construction. In terms of design tools,

the second process assumes that the “design tool” has “an internal logic” that can

be used to iterate to a more satisfactory solution. This notion clearly is related

to the idea of using the taxonomy to compare such computer-aided design

tools.)

We are now in a position to use this taxonomy to describe some of the more

commonly used descriptions of the design process. In doing so, we follow the
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Top-Level First-Level Refinement Values

Problem Initial State Refinement Level Perceived need or function
Representation Textual

Final State Refinement Level Concept
Representation Textual or graphics

Satisfaction Criteria _______________________

Figure 4.5. The completed taxonomy form for conceptual design (Ullman, 1992a).

classification form shown in Figure 4.3. However, unlike Ullman’s presentation,

we (1) delete all of the environment part of the form, consistent with our interest

in the design thought process; and (2) delineate the process part of the form only in

those cases where it is filled out.

Thus, conceptual design is defined simply in terms of the problem alone without

reference to either the design environment or the processes applied (Figure 4.5).

We see that the refinement level and the representation of both the initial and final

states are, in fact, fairly abstract.

Selection design is that process by which a designer selects one or more parts

or components from a list (e.g., a catalog), all of whose members have the requisite

attributes and satisfy the appropriate criteria (Figure 4.6). This particular design

characterization is interesting also because it shows up in a task-oriented taxonomy

that we describe in Section 4.4.

In addition to presenting completed forms for other design processes (e.g.,

layout and detail design, parametric design, a task-episode accumulation model, and

the VDI–2221 design process described in Section 3.3), Ullman presents completed

forms for the “whole model” of routine design (Figure 4.7) as well as for those

portions of a routine design that would be performed by human specialists (Figure

4.8) and by an automated “specialist” – that is, a computer design tool that could

run automatically without human intervention.

In filling out the taxonomy forms for Class 3 design (cf. Section 4.1), all three

of the top-level classes are included because some of the key distinctions involve

both the design environment and the design process. This analysis assumes that we

begin with knowledge about how to decompose a complex object into components

Top-Level First-Level Refinement Values

Problem Initial State Refinement Level Artifact instance
Parts list

Representation Textual or graphics
Final State Refinement Level Artifact instance, part

Representation Textual or graphics
Satisfaction Criteria Satisficing OK

Process Plan Fixed plan
Processing Action Selection
Effect Refine
Failure Action Iterate

Figure 4.6. The completed taxonomy form for selection design (Ullman, 1992a).
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Top-Level First-Level Refinement Values

Environment Participants Computer-assisted design;
single user

Characteristics Unknown
Resources ______________________

Problem Initial State Refinement Level Concept
Representation Textual

Final State Refinement Level Artifact instance, assembly
Representation Textual

Satisfaction Criteria Satisficing OK

Process Plan Mixed
Processing Action Mixed
Effect Refine
Failure Action Iterate

Figure 4.7. The completed taxonomy form for routine design, “the whole model” (Ullman,
1992a).

and that our knowledge of the components is also relatively complete. However,

the overall taxonomy (Figure 4.7) serves only to disguise all the knowledge about

decomposing both artifact and process, and it adds very little to our ability to describe

what is happening – and for the same reasons that we found the routine–variant–

creative taxonomy itself to be limited. The detail is what makes it interesting, but

the taxonomy for the whole routine-design problem disguises that detail.

However, if we refine the routine problem into what the human designer does in

decomposing the problem into properly posed subproblems, each of which is done

by an automated “specialist,” then we find a great deal of information in the “human

decomposition” of routine design (Figure 4.8). It is the human designer who takes

the initial concept (in Ullman’s example, a table) and refines it into a set of artifact

types (say, a top and one or more legs) that can be designed by the specialists.

Jumping from a concept or function to an assembly of artifacts or artifact types is

Top-Level First-Level Refinement Values

Environment Participants Individual designer
Characteristics Unknown
Resources ____________________

Problem Initial State Refinement Level Concept
Representation Textual

Final State Refinement Level Artifact type, assembly
Representation Textual

Satisfaction Criteria Satisficing OK

Process Plan Search
Processing Action Matching similar items
Effect Refine and decompose;

weakly coupled
Failure Action Iterate

Figure 4.8. The completed taxonomy form for routine design, “human decomposition”
(Ullman, 1992a).
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not uncommon in mechanical design because we have a wealth of experience with

many mechanical devices. However, this refinement is often a very difficult process,

which is one of the reasons that detailed taxonomies may be useful for exploring and

understanding design.

4.4 A Task-Level Taxonomy for Selection Design

This short but very pragmatic taxonomy of design was originally presented as part

of a discussion of roles for KBES technology in improving design. This taxonomy

includes the selection of configurations – as well as components – and it includes as

a major element the characterization of the search space in which a design solution

eventually will be found. In each of its four categories, we apply a selection process

to design components and configurations. However, note how the characterizations

given here differ from those that appear in Figure 4.6.

Component selection. Here, we choose a component from among a set of avail-

able components the number of which defines the search space.

Component parameter design. Here, we choose values for parameters for a

component in order to meet stated requirements, such as in V-belt drive design.

The size of the search space is characterized by the number of parameters, which

is typically small.

Wielinga and Schreiber (1997) describe many tasks

that might be termed “configuring” – that is, pro-

ducing a configuration. Although standard defini-

tions of the configuration task require a predefined

set of components, those components may be fully

or partially specified. By varying the specificity of

the components provided, the strength of the pre-

scription of the desired configuration, and the nature

of the requirements and constraints, it is possible

to describe a variety of possible types of configu-

ration design. There are eight major types, includ-

ing verification (i.e., configuration checking), assign-

ment (e.g., assigning people to rooms), parametric

design, and full configuration design.

Configuration selection.� Here, we orga-

nize or assemble a known set of com-

ponents into a specified architecture.

The size of the search space, which may

be quite big, is defined by the number

of feasible combinations of the com-

ponents. One example of configuration

selection is the configuring of VAX

computers for assembly.

Configuration design. Here, we orga-

nize a known set of components into an

architecture that has not been defined

in advance. This is the most compli-

cated task in this taxonomy because

both the components and the architec-

ture in which they are placed may have

to be designed rather than simply selected. The number of parameters could be

very large and their values may vary continuously or discretely, such as in the

design of paper-handling subsystems in copiers.

This pragmatic classification of selection design incorporates elements that are

not captured in the taxonomy given in Figure 4.6. This is in part because Ullman’s

selection design is about selecting components; thus, it can emcompass only the

first two elements of this taxonomy. The motivation for characterizing the search
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space as well as the kind of search is that it facilitates the comparison of computer-

based design tools (one of Ullman’s interests!). However, it is also slightly different

because it suggests a different refinement of the processing actions (or problem-

solving strategies).

4.5 Selection Design Refined

We now present a refinement of the process of selection design, adapted from a

taxonomy of methods for solving arrangement problems.� We present this abstrac-

tion in increasing order of specificity to parallel the creative–routine classifica-

tion outlined in Section 4.1 (and we will see some overlap with that taxonomy).

Brown (1998) suggests another view of configur-

ing: selecting (choosing components) plus relating

(establishing abstract relationships) plus arranging

(establishing specific relationships) plus evaluating

(testing the compatibility of components and verify-

ing that goals have been satisfied).

We return to it in Chapter 6 because it will

be helpful in identifying specific problem-

solving methods within each category. We

will also see that in the descriptions of some

of its constituent elements, this breakdown

incorporates problem-solving strategies in a

very explicit way.

Creative design. This is the process of generating designs for truly unique prod-

ucts – that is, products that are not assembled from libraries of elementary

components in relatively standard ways. Again, such design is still largely the

province of human designers.

Assembling unique solutions from elementary components. This category refers

to design problems the solutions of which are sufficiently distinct from one

another that prototypes cannot be used economically. Solutions are typically

assembled from elementary components to achieve a synthesis that satisfies all

goals and constraints at some level. Inasmuch as the elementary components

invariably interact with one another in significant ways (e.g., geometrically and

functionally), there are numerous constraints to be satisfied among the compo-

nents. Design by assembly requires knowledge of all elementary components,

their attributes, their behavior, and their constraints with respect to other com-

ponents.

Hierarchical generation, testing, elimination, and evaluation of solutions. Here,

we generate all possible solutions at a relatively high level of abstraction, elim-

inate most of them by applying heuristics, generate all solutions at the next

level of abstraction for those that survived the first elimination, and continue

on recursively. In the final step, the surviving solutions are ranked using a set

of evaluation criteria. This approach depends on our ability to generate and

meaningfully test solutions and, as we noted in Chapter 3, can be viewed as a

structured form of trial and error.

Prototype selection and refinement. Here, we include “semicustom” design in

which a library of prototypical solutions serves as the starting point for solving

a new design problem. If we have a good candidate for a prototypical solution,
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we can test it and modify those of its attributes that fail to meet constraints.

This works well for the design of relatively standard products. We note, too, the

argument that prototypes are the very stuff of design.

Pure selection. Here, we satisfy any imposed constraints by selecting an arrange-

ment from a set of known alternatives. We thus require knowledge of all of the

alternatives and their attributes. Pure selection is used to select standard com-

ponents or subsystems in the detailed design stage of semicustom products.

4.6 Knowledge-Level Analysis of Design

We mentioned that one of the potential uses for design taxonomies is the percep-

tion that they could provide useful metrics with which to evaluate and compare

KBES design applications. More than a decade ago, the abstraction of knowledge-

level analysis was proposed for identifying the behavior of a KBES separately

Smithers’ (1998) knowledge-level model provides

a way to describe design in terms of the knowl-

edge used. Types of knowledge include needs

and desires, requirements statements, solution

statements, requirements-formation knowledge,

problem-solving knowledge, and problem-revision

knowledge. Although this knowledge-level model

describes different types of design, such as inno-

vative design, it does not prescribe and does not

explicitly include any control knowledge; rather, it

merely indicates how knowledge might flow.

from the (symbolic) representation used to

implement that behavior.� This abstraction

has been restated in other forms; for exam-

ple, the domain knowledge used in a system

is made up of the “components of exper-

tise.” Regardless of the particular statement

of the abstraction, the aim is to identify a way

of abstracting what a design system does,

so that its domain-independent problem-

solving methods can be identified apart from

the domain knowledge used to solve design

problems.

Clancey’s (1985) model of heuristic classification

was part of a wave of research that looked for

models of generic, domain-independent reasoning.

Jackson’s (1999) excellent – although now sadly out

of print – text on expert systems describes some

of that history. Heuristic classification can be part

of design activity. For example, it can be used to

classify a situation in order to select an appropri-

ate method, plan, or previous design case. Klein

(1991) uses heuristic classification to determine

the type of conflict between agents in a multi-agent

design system. Once the type has been determined,

a mapping is made to a method to resolve that type

of conflict: the more precise the classification, the

more detailed the resolution strategy that can be

suggested.

Analyses of the problem-solving per-

formance of knowledge-based systems

appear to stem from the identification of

the domain-independent, problem-solving

method of heuristic classification as underly-

ing the work of one of the earliest successes

in expert systems, the Mycin system, which

is used by doctors to support the diagnosis

of infectious diseases.� Heuristic classifica-

tion is built around the processes of abstrac-

tion, matching, and refining. In particular,

heuristic classification includes the ability to

abstract data, match symptom and diagnos-

tic data in order to apply heuristics (“rules”)

provided by the domain experts, and obtain

a solution – a diagnosis – by progressively

refining both symptomatic and diagnostic

data.
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Chandrasekaran’s generic tasks (GTs) were origi-

nally seen as building blocks from which practical

knowledge-based systems could be built (Chan-

drasekaran and Johnson 1993). In addition to

heuristic classification, the list of building blocks

included “hierarchical design by plan selection

and refinement.” However, careful analysis reveals

that even the “hierarchical design” building block

included ingredient types of reasoning, such as

basic synthesis, criticism, decomposition, evalua-

tion, and selection. This helps confirm the notion that

tasks and methods are recursive for anything other

than the most routine and often-repeated tasks.

It also can be argued that the symbolic-

representation techniques applied in extant

KBESs do, in fact, provide a straightjacket

because although they represent what is pos-

sible computationally, they might not be suf-

ficiently flexible to describe the tasks that

designers actually perform. Chandrasekaran

proposes that higher-level, more generic

primitives better model how designers actu-

ally solve design problems. These generic

tasks can be combined into a generic

framework for design, called the Propose–

Critique–Modify family of design methods.�

These methods consist of four generic tasks:

design, verify, critique, and modify, and they

can be performed in a variety of ways. The four generic tasks are similar to the pro-

cessing actions described in Ullman’s taxonomy, and they will be seen to be similar

to some mechanisms that are described next.

In a parallel context, Balkany, Birmingham, and Tommelein analyzed sev-

eral configuration-design KBESs with the aim of identifying a structure for

comparing what such systems do. Their work focuses on parsing (from exist-

ing system descriptions) the problem-solving approaches used and the mecha-

nisms devised to support the design problem solving captured in these systems.

Whereas our own motivation for examining taxonomies is, as has been repeat-

edly stated, to delineate the thought processes used in design, their analysis does

provide ideas that may be useful for refining some aspects of the taxonomies

already presented. The decomposition of design problem-solving knowledge here

includes:

Domain knowledge that defines an area of expertise.

Mechanisms or procedures that operate procedurally on well-defined inputs to

produce equally well-defined outputs.

Control knowledge, which is the complete collection of knowledge that is used

to properly sequence the mechanisms.

Problem-solving methods that operate as higher-level procedures that organize

the application of the mechanisms.

Tasks that represent specific applications of a problem-solving method.

Again, it is argued that the domain and the problem-solving method applied

are distinct and independent; that is, a problem-solving method could be applied in

several different domains. In this context, it is the last four of the previous categories

that are likely of greatest interest in refining, in Ullman’s terms, the processing part

of a taxonomy. Conversely, problem solvers are strongly coupled to tasks and can
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be applied effectively only to a single task, so that task analysis must clearly be a

significant component of a process taxonomy.

Of particular interest in this decomposition are the mechanisms, which are artic-

ulated in terms of six functional groupings. Note that the names given to the mecha-

nisms are expressed in a style derived from the symbolic programming languages in

which such knowledge-based systems are written, but they are evocative of what the

methods do. We are interested in them because they represent possible refinements

of the design-processing actions that we have seen previously.

Select–design–extension mechanisms. These mechanisms apply two different

schemes to extend the current state of a design. Preconditions are used to eval-

uate whether an extension to a current design can be made. Rankings are used

to select by formula the best of several possible extensions, assuming that a

single-number metric is available to order the respective degree of desirability.

The availability of such rankings is, of course, suggestive of the use of formal

optimization schemes.

Make–design–extension mechanisms. Here, formulas or algorithms are used

to actually make the specific design extensions recommended by an extension

mechanism. The extensions are made, in turn, by calculating values of design

variables and then propagating them as needed. This is reminiscent of the param-

eterized design process outlined as part of Ullman’s taxonomy.

The selected fixes, or repairs, can be applied one at

a time (disjunctive) or, if necessary, more than one

at a time (conjunctive). Sometimes a fix can cause

another constraint to fail and, in the worst case,

fixing that violation can cause the first constraint

to fail again (antagonistic). Klein (1991) points out

that although the need for fixes might be “compiled

out” of a system at build time (which is very dif-

ficult to do), many computational design systems

use a “knowledge-poor” approach requiring that a

predetermined set of fixes be used at each par-

ticular failure point. Such a set can be preordered

by the amount of work each fix might entail or by

the amount of damage they might do to the partial

design already formed (Brown 1985; Marcus et al.

1987). In some situations, such as constraint fail-

ure, fixes can be reasoned out (e.g., if the test

A > B fails, then suggest an increase in A, a

decrease in B, or both). In general, redesigning

may degrade to designing, so experiential knowl-

edge (e.g., design cases and heuristics) is vital to

maintain efficiency.

Detect–constraint–violation mechan-

isms. Here, design extensions are

evaluated against relevant constraints

to ensure that they have not been vio-

lated.

Select-fix mechanisms are used to select

a repair or fix of a design extension

that fails when tested, as just outlined.

In some KBES applications, the user

of the system is notified that a failure

has occurred and requests intervention

to provide a fix. Other systems provide

a menu of choices, including prompt-

ing the user, applying a precompiled fix

(i.e., an efficient fix already in place),

or generating a repair automatically.

This set of mechanisms could be seen,

then, as an elaboration of the category

of failure actions identified in Ullman’s

taxonomy.

Make-fix mechanisms actually perform

the selected fixes or repairs.�
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Test-if-done mechanisms are applied to verify that a design, or part of a design,

has been satisfactorily completed in terms of the goals set out at the appropriate

level of abstraction – that is, at the appropriate level of component, subsystem,

or overall design.

The decomposition of design knowledge and the specification of mechanisms just

outlined have been used not only to compare some well-known KBESs for configura-

tion design; they also have been used as the basis for building a domain-independent

design environment. As indicated previously, these particular mechanisms may be

useful for refining design-processing actions, although we need to keep in mind

that they have been identified explicitly only for configuration design. Thus, their

usefulness for generally explicating design processes may be limited. However, it

is interesting to note that a similar set of mechanisms is used in the development

of a system (CPD2-Soar) to aid in the design of chemical-distillation processes.

Although intended for a different purpose and embedded within a very different

architecture, the CPD2-Soar system uses operators to define and navigate its prob-

lem space. Acting much as the previous mechanisms, some of CPD2-Soar’s operators

are:

Get-feed operators. These operators interact with the user to define the feed

stream that will be split by the distillation process.

Order-component operators rank the components of a stream in descending

order according to their volatility.

Make-splits operators generate all the possible sharp splits that the system can

apply to the feed stream.

Update-stream operators are used to compute the mole fractions of a stream’s

components, normalize their volatilities with respect to the heaviest component,

and compute the total flow rate of the stream.

Although extrapolating from somewhat strained analogies is always hazardous,

it does appear that the idea of mechanisms identified in this taxonomy could

be extended and applied to other domains. We have more to say about this in

Section 4.8.

Finally, on the topic of knowledge-level analysis, we make explicit once more

a theme developed in Chapter 3. All of the ideas we have described can be viewed

in the larger context of trying to identify what we know, so that we can then think

about how best to express that knowledge usefully in one or another circumstance.

It is interesting that one aspect of this is the argument that truly integrated engi-

neering computational environments cannot be built without our having an explicit

understanding (e.g., a taxonomy!) of the kinds of knowledge we have and the options

from which we can choose when representing a given knowledge type. One appli-

cation of explicitly different knowledge types has been proposed for the domain of

structural design, and the utility of an explicit taxonomy of design knowledge has

been raised.
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4.7 Analysis of Design Tasks

The flavor and orientation of the last analysis of design we review have much in com-

mon with Brown’s three-level classification (cf. Section 4.1) and with the knowledge-

level analysis of Balkany, Birmingham, and Tommelein (cf. Section 4.6). However,

we also point out that the design-task analysis we now describe is placed squarely

by its authors in the context of software engineering in which AI-based approaches

are viewed as a methodology for doing useful software engineering for design. Tong

and Sriram propose that design tasks can be classified along several dimensions,

including:

Available methods and knowledge. This dimension is concerned with the exis-

tence and availability of methods and knowledge to choose the next task in the

design process, execute that task, and select among alternative ways of executing

that task to achieve the best outcome. The available knowledge and methods

are divided into two categories. Generative knowledge and methods are applied

to generate new points in the design space, whereas control knowledge and

methods are used to support efficient convergence of the design process to an

acceptable solution.

Then, somewhat analogously to Brown’s classification, a task is termed

routine if sufficient knowledge is available to directly generate the next point in

the design space and to converge on a solution with little or no search. A design

task is termed creative if a problem-solving process is needed to construct the

design space in the first place or if the best method available is unguided search

through a very large design space.� (See sidebar on p. 40.)

Amount of unspecified physical structure. One way of looking at design is as a

mapping of intended function into a realizable artifact, device, or structure. Thus,

one characterization of a design task is the degree to which the device or structure

is left unspecified by the current design task. Different kinds of design tasks that

produce physical structure include structure synthesis tasks, in which the final

structure will be composed from a set of given primitive parts, which may not be

resident in the applicable database or knowledge base; structure configuration

tasks, in which we compose a structure from a collection of specified parts and

specified connectors (cf. Sections 4.4 and 4.5); and parameter instantiation tasks,

in which we obtain values for a set of given parameters.

Difference in abstraction levels between requirements and specifications.

We have already remarked on the fact that what is wanted in or from a

design is usually stated much more abstractly than are the final fabrication

specifications (cf. Chapter 3). Thus, we may have to work down through sev-

eral levels of abstraction, refining the details each step of the way, as we solve

a design problem. The greater the difference between the abstractions of the

client requirements and the fabrication specifications, the more complex is the

design problem because the greater generality of the former implies a larger

space of possible design solutions.
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Complexity of subproblem interactions. In this category, we try to assess whether

a complex design problem can be decomposed into a set of relatively indepen-

dent (and easy) subproblems, or whether we need to look for a combination of

solutions to subproblems that are highly interdependent. Obviously, the more

complex the interaction, the more complex the design problem. Two kinds of

interactions are distinguished in this characterization. Compositional interactions

arise when some combinations cannot be implemented because of syntactic dif-

ferences; that is, the output of a serial device in a circuit cannot be the input to a

parallel port of another element. Resource interactions arise when combinations

of parts or subsystems lead to different global requirements for the (total) system

or device being designed. Typically, compositional requirements are relatively

local in their effect because the constraints imposed (e.g., by connection rules

or syntax) effectively operate only on the small group of objects whose com-

position defines the current subproblem. Resource interactions tend to operate

globally – that is, as a constraint over the resources of the (total) system or

device.

Amount and type of knowledge provided by the user/designer. In this analysis,

we could argue that human designers are themselves knowledge sources. Thus,

a classification of design tasks (especially in terms of whether they are routine

or creative, in the first dimension) would reflect the total knowledge provided

by both the designer and the design system being analyzed.

Within this general set of dimensions, Tong and Sriram then define four models

of routine design, reflecting in each a consideration of both the kinds of knowledge

available (and, implicitly, we will see, the representation of this knowledge) and the

way the knowledge is applied. These models are:

Conventional routine design involves the application of conventional methods

for problems where knowledge-based techniques are not appropriate. For exam-

ple, when design tasks can be posed in terms of finding the optimal value of an

objective function cast in terms of a linear combination of real-valued variables

and subject to a set of linear constraints, then linear programming techniques

(a subset of operations research (OR)) are the appropriate methods to apply.

Knowledge-based routine design is knowledge-based search that includes sev-

eral different kinds of operations, such as refinement, in which we attach more

detail to points in the design space; constraint processing, in which we prune out

alternatives that violate given constraints; and patching, in which we attempt to

fix or improve incorrect or suboptimal solutions.

Noniterative, knowledge-based routine design refers to design tasks for which

there is sufficient knowledge to complete the tasks in one pass through a top-

down, increasingly detailed refinement.

Iterative, knowledge-based routine design is required when a single pass will

not suffice, which usually happens when there are multiple operative constraints

or objectives, in which case various kinds of iteration are required. We return
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to such iteration in Chapter 6 (see also Section 3.5), but for now we note that

these iterative approaches include backtracking, in which we attempt to undo

errors by undoing their causes through abstraction; optimization or patching; and

problem restructuring, in which the designer (typically) suggests a modification

in the basic design problem that allows a solution to be achieved.

With these characterizations of design tasks and models of routine design in

hand, we could then categorize some of the extant knowledge-based design systems.

However, because our interest is less in categorizing software than in understanding

design thought processes, we leave further discussion of this analysis of design tasks

to the next (and last) section of this chapter.

4.8 Toward a Unified Taxonomy?

Having reviewed these several taxonomies, we face the obvious questions: Can we

integrate the ideas contained in these taxonomies into a unified taxonomy of design?

Moreover, is it worth it? There are no simple or obvious answers to these questions.

We could argue that the endeavor is worthwhile to the extent that a unified taxonomy

helps us to understand and articulate that part of design that can be modeled as a

set of thought or cognitive processes. This could bring us closer to a coherent theory

of design; it could also help us learn (and then teach) what it is that designers do.

Furthermore, a unified taxonomy could help us classify computer experiments in

design modeling, which in turn helps us externalize our thinking about design and

aids in the development of computer-aided design tools that have significant practical

application.

However, it is also true that we are put off by the notion of reducing the ideas

discussed earlier to entries in a table. A table may be the natural representation

for summarizing design-process characteristics, but we are not unsympathetic to the

quote attributed by Steier (1993) to the late Allen Newell to the effect that “you

can’t play twenty questions with Nature and win.” In other words, it may be difficult

to characterize Nature in terms of a specific set of predetermined categories. Thus,

we present what seem to be the most salient ideas about characterizing design in an

orderly but nontabular form. We try to formulate taxonomic ideas for both design

problems and design processes, but we ignore the design environment. It may be

that the design environment is an important issue for locating design work, designing

design organizations, or designing design software. However, we assert that as a

global principle, the institutional environment within which design is done has little

to do with its basic thought processes. However, once a model of design thought

processes is in hand, the activities that situate design in any particular environment

can proceed more intelligently.

We wish to make one more observation before going further. One of the trou-

blesome aspects of dealing with the design literature is that words are used by

different authors to mean different things. For example, design tasks are often

described as if they were processes, as opposed to the dictionary definition, in which
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a task is “an assigned piece of work” or “something hard or unpleasant that has

to be done.” Furthermore, in the design literature, methods may include tasks and

procedures, whereas in other settings, tasks incorporate methods and techniques

and operations. In the sequel, we will set out a characterization of the design process

with an explicit ordering of – in order of decreasing abstraction (or increasing refine-

ment) – task, strategy, method, and mechanism. We will try to conform to some

degree to the dictionary definitions of these terms that are so critical to successful

characterization.

With this in mind, we propose to start by characterizing a design task along

the lines of the definition of a design problem as proposed by Dixon et al. and

extended by Ullman. We consider that design can be viewed as a transformation

of an initial knowledge state to a final knowledge state, much as we described in

Sections 4.2 and 4.3. Thus, we need to articulate both the initial and final states, and

the transformation(s) by which we proceed from one state to the other. Because

the initial and final states are actually representations of the artifact being designed

expressed at different levels of abstraction, our state descriptions must be complete

and unambiguous at their respective levels of abstraction. Thus, at the start of

the design process, we need a sufficiently clear description of the intended end

point of the process and the constraints within which the designed device must

operate. For the resulting design to be accepted as complete, we must have a set of

fabrication specifications that allow the artifact to be built exactly as intended by the

designer.

In general, we view the design activity as one of refinement, in which the initial

state is more abstract than the final state. Although there might be local variations

within a complex design process (e.g., to achieve a specific subgoal, it might be useful

to backtrack to a higher level of abstraction to search for other possibilities in terms

of physical principles, embodiments, components, and so on), the general direction

of design transformation is toward increasing detail or refinement. Furthermore,

recognizing that the six kinds of states are themselves ordered (to some extent and

not altogether accidentally) according to the degree of refinement, we can perhaps

assert that the degree of difficulty of a design problem is roughly proportional to the

number of different layers between the initial and final states. Thus, we posit that

the initial and final states of knowledge are characterized as each being within one

of the following six knowledge-state layers (cf. Section 4.3):

Layer 1 – perceived need

Layer 2 – function

Layer 3 – physical phenomenon

Layer 4 – embodiment

Layer 5 – artifact type

Layer 6 – artifact instance

The next step is the detailing of the knowledge-state layers. Again, we largely

retain the structure proposed by Dixon et al. and Ullman. One modification we

suggest is a refinement of the values that can be inserted into the representation
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slots when numerical representations are identified. It may be useful to distinguish

between discrete and continuous representations because choices of methods and

mechanisms clearly hinge on the nature of the numerical representation. For con-

tinuous variables, some parametric or algorithmic approach might be appropriate,

whereas discrete variables might indicate that approaches based on selection are

more relevant. Thus, five representation languages would be identified here (cf. Sec-

tions 4.3 and 5.1):

textual

numerical–discrete

numerical–continuous

graphical

physical

There are several reasons for a representation to

be “vague,” the main one being that design details

are unknown at that point in the process. Another

possibility is that some of the missing knowledge

is “tacit,” or not easily expressed, where the owner

may not even be aware of knowing it (Haug 2012).

Or, it could be that the maker of the represen-

tation is making assumptions (Brown 2006) about

what knowledge is common and does not need to be

expressed. Some or all of the design may have been

communicated by sketching (Kara and Yang 2012),

where vagueness is often a benefit. Note that such

pen or pencil strokes might also act as “gestures”

(Visser and Maher 2011) that select or emphasize

parts or properties of the design for other design

team members that do not normally get captured

in formal design representations. More detail about

the design intentions and rationale behind early,

vague designs can be obtained by using “protocol

analysis” (Ericsson and Simon 1993). Protocols are

detailed records of the activities of a designer or

design team, often including communication in the

form of speech, sketches, or gestures. Many pro-

tocols are developed by asking the participant(s) to

“think aloud”: this reveals more of the design pro-

cess than would normally be available. Collected

protocols, such as from the Delft Protocols Work-

shop (Cross et al. 1996), are analyzed using encod-

ing schemes to learn about the design process

and knowledge used (Cross 2001). One scheme

annotates each action with a label that indicates

whether it is concerned with structure, behavior, or

function, or a transition among them (Gero et al.

2011).

The knowledge-state layers and their

representations are not likely to be entirely

independent because the more abstract the

layer, the more likely that it is rather vague

knowledge expressed in text.� At the other

end of this spectrum, artifact types and

artifact instances are increasingly specific

descriptors. Note that this has a flavor sim-

ilar to one of the dimensions used by Tong

and Sriram to classify design tasks – that

is, the identification of the differences in

the abstraction levels of the design-problem

specification and the implementation of the

final device. Thus, this dimension seems to

map rather well into the identification of a

design problem.

If – and it is a big “if” – the design prob-

lem is then set out as a statement of the

differences between the (given) initial state

and a (sought) final state, we might think

of the design process as means–ends prob-

lem solving (cf. Section 3.5) and the design

task is the elimination of the gap between

the two problem states by transforming the

initial state into the final state. In this broad

context, the ends are thus the elimination of

the differences between the initial and final

states, whereas the means of achieving that

end is an aggregation of a set of subtasks that

make use of domain knowledge including both generative and control knowledge,

strategies, problem-solving methods, and various specific mechanisms. Along the
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way, we will have to deal with a diversity of representations, so we will have to

invoke – at least implicitly – translations for moving between different representa-

tions. We will elaborate these tasks, subtasks, strategies, methods, and mechanisms

herein; for now, it is useful to think of them as similar to but somewhat more

abstract than the ways they have been defined previously. At the descriptive levels

outlined in Section 3.2, specific design problems can be stated in terms of differ-

ences between paired initial and final states, as we have already done in a few

cases, and design processes can be elaborated by articulating the design task that

needs to be done in terms of the means or subtasks applied in a specific design

context.

We now elaborate the characteristic dimensions of design processes, making use

of some of the tasks, subtasks, strategies, methods, and mechanisms that we now

define (and summarize in Figure 4.9 at the end of the section):

Jackson (1999) includes the often-cited but flawed

list of expert reasoning tasks from the 1980s: inter-

pretation, prediction, diagnosis, designing, plan-

ning, monitoring, debugging, repairing, instruction,

and controlling. Because designing might include

some of the other items in the list (e.g., planning),

researchers such as Clancey (1985) worked to clar-

ify these tasks into an analytic set (i.e., monitor,

diagnose, predict, control) and a synthetic set (i.e.,

specify, design, assemble), with “configure” and

“plan” as subtasks of design. Once such categories

are established, it is easier to focus on identifying

suitable methods. Although these categories may

reflect the general nature of important subtasks,

allowing us to identify “a configuration problem,” it

is better to think of design problems generally as a

mix of tasks requiring a mix of methods.

Design tasks.� Thinking of a task as “some-

thing to be done,” it may be useful to think

of design tasks as being the elimination of

the difference between initial and final states

that can be done relatively easily, with man-

ageable difficulty, or with a great deal of dif-

ficulty. In less colloquial terms, design tasks

can be characterized as routine, innovative

(or variant), and creative. The degree of

difficulty (or “routineness”), as noted sev-

eral times already, depends on the com-

pleteness of the knowledge we can bring

to bear. That knowledge can be character-

ized in turn as being either control knowl-

edge (i.e., knowledge about managing the

process so as to ensure its convergence)

and generative knowledge (i.e., knowledge

used to generate new points in the design

space). In addition to our assessment of the available knowledge, there are

several other factors that contribute to our view of whether or not a design task

is difficult.

One obvious indicator (as noted in the foregoing description of the initial

and final knowledge states) is the difference in the abstraction levels used to

describe these two states. Another indicator of the degree of difficulty is the

degree of interaction among subproblems, although one could suppose that this

is subsumed within the category of the available knowledge. Even where there

are many complicated interactions, they present difficulties “only” to the extent

that the knowledge available for handling them is unknown or uncertain. Thus,

it would seem reasonable to view this dimension as similar to that of identifying

the available control and generative knowledge.
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It is also interesting to examine design tasks in the context of a well-known

spectrum of problem-solving tasks, which ranges from classification or derivation

tasks at one end of the spectrum to formation tasks at the other. In classification

tasks, a solution is derived from a given set of data or facts. In formation tasks, a

problem is solved by forming or synthesizing either an object or a set of plans to

create an object. However, whereas design is often assumed to be a formation

task, the truth is more complicated; that is, it may be an oversimplified assertion

to equate design with formation.

First of all, humans clearly have trouble generating – on demand – cre-

ative new solutions for complex, open-ended problems. Design would be dif-

ficult to do, therefore, if it involved only the continuous formation of unique

solutions. In fact, design tasks at every stage – conceptual, preliminary, and

detailed – often involve a style of problem solving that combines elements of

both selection (or classification) and formation. Furthermore, we have already

seen that several important design tasks involve what have been previously

called, respectively, configuration selection (cf. Section 4.4) and configuration

arrangement (cf. Section 4.5). Thus, it is probably more meaningful to view

design as encompassing both classification (or selection) and formation but also

reflecting a desire to achieve a synthesis that can then be analyzed and evaluated

(cf. Section 3.3).

This last point leads quite naturally to the last indicator of the degree of

difficulty of a design task – that is, the extent to which the physical structure

of the designed artifact must be configured from a given collection of parts and

connectors or composed (or synthesized) from a collection of primitives. With

due regard to the ambiguity of some of these terms and their application, we do

recognize that the more we depart from selection and configuration, the greater

the difficulty we face in completing a design.

Design subtasks occur naturally in the decomposition of complex design tasks

wherein, for example, some parts of a complex system may be designed in a

routine fashion, whereas other parts (or the composition of familiar parts) may

require more innovation. Thus, design subtasks reflect the recursive or iterative

nature of design.

Domain knowledge defines an area of expertise that is used to formulate a

response to the posed task. It could include aspects of the knowledge used to

generate points in the search space as well as control the application of that

knowledge.

Strategies are “careful plans or methods.” Strategies are exercised at the

highest level needed to properly assess the gap between the initial and final

knowledge states. This assessment would account for the differences in the

knowledge-state layers, the availability of domain knowledge, the availabil-

ity of methods and mechanisms (see the following discussion), and, perhaps,

the resources available to solve the design problem posed. The availability
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(and perhaps cost) of resources, although

in part an “environmental concern,” could

clearly influence the choice of strategy (of

which choices have been examined, for

example, within the context of structural

analysis). Design planning is an implemen-

tation of strategic thinking (cf. Section 4.3).

Problem-solving methods are procedures or

processes or techniques to achieve an objec-

tive that “operate as higher-level procedures

that organize the application of the mecha-

nisms.” Some kind of action must be taken

to execute the strategy just identified, and

problem-solving methods are those kinds

of action. These methods might thus be

said to be implementations of the strate-

gies used to solve a given design problem.

Ullman’s processing actions are examples

of such problem-solving methods in that

they define specific techniques for generat-

ing and evaluating points in the design solu-

tion space.�

Mechanisms are “procedures that operate

procedurally on well-defined inputs to pro-

duce equally well-defined outputs.” Examples of these in the domains of config-

uration design and process design have already been given (cf. Section 4.6).

Ullman’s failure actions (cf. Section 4.3) also may be seen as mechanisms.

The proper sequencing of mechanisms is done by the application of control

knowledge.

Effects. Although sometimes seen as things that are done, effects are more

properly seen as results, perhaps of having applied a method or a mecha-

nism. Some of the identifiable effects of applying methods and mechanisms are

(cf. Section 4.3) refinement, decomposition, and patching.

Problem-solving methods (PSMs) (Brown 2009;

Fensel 2000; Motta 1999) describe how an expert or

a computer program can reason using knowledge,

and often heuristics, to achieve a goal. Examples

of reasoning tasks for which PSMs exist include

heuristic classification (useful for selection prob-

lems), configuration, and parametric design. A task

is usually specified by its goal, its inputs, and its

outputs. Several methods might be appropriate for

each task. A PSM may solve the problem directly or

may decompose the task so that other PSMs can

be used. A control structure determines the infer-

ences made by a PSM. The knowledge needed and

the role that the knowledge plays is also specified.

Parametric design specifies the values of a given set

of parameters in response to given requirements.

Appropriate PSMs include “propose and backtrack”

and two types of “propose and revise”: “complete

and revise” and “extend and revise.” The differ-

ence between the two is that the former produces a

complete design before making heuristic revisions,

whereas the latter makes revisions at any point.

This completes our list of dimensions by which design tasks can be analyzed and

described. Although not a formal unified taxonomy, it is an attempt to build on the

work already described in this chapter. We will get some indication of how useful

it is when we discuss the representation of the design process in Chapter 6. In the

meantime, it might best be seen as an informal glossary of terms the formalization of

which could be helpful in describing how we proceed thoughtfully through a design

process (Figure 4.9).
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Design tasks are something to be done; they can be routine, innovative (or variant), or
creative; degree of difficulty (or “routineness”) dependent on completeness of
knowledge.

Design subtasks occur in decomposition of complex designs; they reflect recursive,
iterative nature of design.

Domain knowledge is the area of expertise of response to design task.

Strategies are “careful plans or methods,” exercised at high levels.

Problem-solving methods are procedures, processes, or techniques to achieve objectives;
they operate as higher-level procedures that organize application of mechanisms.

Mechanisms are “procedures that operate on well-defined inputs to produce equally
well-defined outputs.”

Effects are sometimes things to be done; more often seen as results.

Figure 4.9. An outline of the characteristic dimensions of the design process.
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5 Representing Designed Artifacts

We now turn to the representation of designed artifacts. By focusing first on objects,

we risk introducing an artificial distinction into the scope and meaning of design

knowledge. Clearly, design knowledge must incorporate information about design

procedures, shortcuts, and so on, as well as about artifacts. Furthermore, there

is some evidence that designers think about processes as they begin to represent

the objects they are designing, especially when they begin to create sketches and

drawings. And, of course, to fully represent objects and their attributes also means

being able to fully represent concepts (e.g., design intentions, plans, behavior, and so

on) that are perhaps not as easy to describe or represent as physical objects. However,

because the end point of most engineering designs is a set of fabrication specifications

for an object (and, occasionally, the object itself) and because engineers often think

in terms of devices, we start our discussion of representation with physical objects

as our focus. As a consequence, we may somewhat overlap our later discussion

(cf. Chapter 6) of the representation of design knowledge and design processes.

5.1 The Languages of Engineering Design

To discuss different representations of designed objects or artifacts is to talk about

the languages or symbols in which those representations are cast. That is, for us

to describe an object, whether real or conceptual, in detail or abstractly, we must

effectively choose a language with which to write our description.� We pointed out

Visser (2006) points out that designing means constructing representations: both mental and physical. One

of the points of this chapter is that different representations have different strengths. Consequently, it is both

necessary and important that we be able to:

� Integrate representations because the multiple aspects of a designed object are interrelated (e.g., behavior

depends on structure, surface finish depends on material and on manufacturing processes).
� Translate one representation into another to enable additional representation-dependent reasoning, faster

processing (as in knowledge compilation), and knowledge acquisition (e.g., component knowledge from

text), or to perform tool-to-tool information transfer (Eastman et al. 2010).

69



70 REPRESENTING DESIGNED ARTIFACTS

previously (cf. Sections 4.3 and 4.8) that there are several “languages” in which

design information about objects is cast as follows:

Verbal or textual statements are used to articulate design projects; describe

objects; describe constraints or limitations, especially in design codes (see fol-

lowing discussion); communicate among different members of design and man-

ufacturing teams; and document completed designs.

Graphical representations are used to provide pictorial descriptions of artifacts.

These visual descriptions include sketches, renderings, and engineering draw-

ings. The role of CADD systems in producing design pictures of all kinds is

evolving rapidly, as we discuss in cf. Section 5.2.

Mathematical or analytical models are used to express some aspect of an arti-

fact’s function or behavior, and this behavior is in turn often derived from some

physical principle(s). Thus, this language could be viewed as a physical repre-

sentation language (cf. Sections 4.3 and 4.8).

Numbers are used to represent design information in several ways. Discrete

values appear in design codes and constraints (see the following and as attribute

values (e.g., part dimensions). Numbers also appear through continuously var-

ied parameters in design calculations or within algorithms wherein they may

represent a mathematical model.

We include additional notes in this chapter about a variety of representations, some new and some already

mentioned, including functional representations, causal networks, configuration spaces, shape grammars,

solid models, voxels, description logics, ontologies, and neural nets.

�We add to this list two more representations that use words or textual state-

ments but in a very confined format. They derive from programming constructs used

within the context of representation for symbolic computing. These representations

are, in fact, the core ideas behind AI-based programming (cf. Chapter 1). Their

syntaxes or grammars are highly stylized and specific, so they are worth identifying

as separate “languages.” Moreover, we use them extensively in this and subsequent

chapters. These additional representation languages are as follows:

Rules are statements to the effect that we should perform a specified action in

a given situation. Typically written in sets of IF–THEN clauses, the left-hand (IF)

sides of the rules define the situation(s) that must obtain before a rule can be ap-

plied, whereas the right-hand (THEN) sides of the rules define the actions to be

taken. In design, rules are used to represent (1) design heuristics or rules of

thumb; and (2) design codes, such as the building codes that many governmental

entities enforce on buildings and other structures; we subsequently present other

examples.�

In fact, rules are a universal language that we can use to represent any design process or design requirements.

Because this chapter is about representing artifacts, it is clear that rules that state facts that must (or not) be

true of an object can be viewed as declarative knowledge. Even some process-oriented rules, such as those

that describe possible design-task decompositions, may be interpreted as statements about artifact structure.
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More recently, description logics (DLs) provide a

more formalized frame-like representation, based

on logic, with a more prescribed, well-formed, and

consistent usage. For example, DLs provide a way

to “classify” a new concept so that it can be put

into the right place in an existing hierarchy of con-

cepts. Brachman and Levesque’s (2004) book pro-

vides an introduction to DLs, whereas Baader et al.

(2003) is a useful reference. Note, too, that lan-

guages such as OWL for the semantic Web (the

semantically annotated World Wide Web) are based

on DL.

Objects or frames are structures that can

be used to represent objects and their

attributes. They are, in fact, the very

heart of what is called object-oriented

representation. Frames can be viewed

as elaborate data structures that can

be linked to other frames through a

variety of logic-based and/or procedural

calls to data or attributes or calculation

methods. These objects or frames are

interesting because, together with their

underlying networks of links and proce-

dures for storing and passing data, they

can be used to relate descriptions of physical and conceptual objects to each

other in rich and interesting ways.�

We recognize that classifying these two representation schemes – rooted as they

are in symbolic computation – as design languages may be somewhat controver-

sial. However, we will see that these particular constructs do offer effective ways

of stating and applying design knowledge. Furthermore, we also will demonstrate

that these structures can be used to organize and integrate design knowledge that is

represented in one or more of the other design languages, thus laying the ground-

work for developing integrated computational environments for design. However,

to illustrate their utility for expressing information about designed artifacts, we

present here brief examples of both a rule and a frame that are part of a KBES

(called DEEP) built to assist designers in configuring electrical service for residen-

tial plats. The rule describes how building lots on a street should be clustered or

grouped so that they can be configured efficiently for service. It does this by com-

bining within the rule heuristic knowledge (i.e., a judgment about how close the lots

on a street are to one another) with a relationship derived from basic electrical-

circuit principles (i.e., the transformer size required to meet a specified service

demand).

IF the number of lots on the street is very close or equal to the maximum

number of services that a 50 kVa transformer can serve

THEN cluster all of the lots on that street and serve them with a 50 kVa trans-

former.

The frame example we show here (Figure 5.1) illustrates how particular examples

of a kind of object, called instances, can be described in relationship to a class of

objects that share common attributes. We show in our example an instance of the

class of transformers. (As with the rule example, there is much more complexity than

is described here because the actual links between the instance and its classes are not

shown.) The object description contains slots for particular attributes (i.e., the left-

hand column in Figure 5.1) and it contains (in the right-hand column) the specific
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SLOT/ATTRIBUTE VALUE

SuperClass Components

Class Transformers

InstanceName XFR50_1

Type BURD

DefaultType PADMOUNT

Rating (kVa) 50

Size (ft2) 48

Structure CONCRETE PAD

MaxConnections 6

Coordinates (X1, Y1)

MaxCustomers 21

Figure 5.1. The instance XFR50_1 of the class Transformers (Demel et al., 1992).

values for those attributes that distinguish the particular transformer in question

(i.e., XFR50_1. The slot for the attribute DefaultType is inherited or passed down from

the class Transformers, here as a PADMOUNT transformer, unless it is overridden at

the local level either by a rule application or through intervention by the system user.

In addition, the links (not shown here) can be used to establish and maintain various

kinds of relationships; for example, a CONCRETE_PAD may be part-of a PADMOUNT

transformer, whereas a BURD is a kind-of transformer.

Now, there are other constructs that we could extract from symbolic pro-

gramming, in particular the styles called logic programming and neural networks.

However, we choose not to identify these as design languages or representations

for the following reasons. Logic programming is an implementation of predicate

and propositional calculus that has, in our view, severe limitations in terms of its

Russell and Norvig (2010) include a short intro-

duction to neural networks, whereas Gurney

(1997) is a more detailed but introductory alter-

native.

expressive power. We also would argue that

rules, as an extension of logic program-

ming, serve our purposes quite well. Simi-

larly with regard to neural networks (NNs),�

a much newer computational device, neu-

ral networks are beginning to show some

Because neural networks (NNs) can classify, it

might be argued that, coded in their connec-

tions and weights, they contain knowledge about

the properties of each class. But although there

have been some attempts to extract rules from

NNs, their main application has been as situation

recognizers.

promise for adaptive systems that can

“learn” as they develop. However, neural

networks are much less a representation

scheme than they are transformational sys-

tems that aid in the learning process.� Per-

haps at some point there will be an inte-

gration of neural networks with the greater

power offered by object-oriented program-

ming, but at least in today’s computing envi-

ronment, they do not have as much to offer.

As this work unfolds, at different times we employ different languages to rep-

resent design knowledge. Furthermore, we cast the same knowledge in different
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languages to serve different purposes, which in turn require that we link the differ-

ent languages as we represent different aspects of an artifact or different phases of

the design process. Consider for a moment the structural-design problem outlined

in Chapter 1. We noted that the complete design of a structure requires many kinds

of knowledge, and that we use several different knowledge-representation schemes.

In light of the current discussion, we could say that we are casting various kinds

of structural-design knowledge in terms of the different languages we have delin-

eated. For example, fundamental structural-mechanics knowledge can be expressed

as follows:

Analytically; for example, formulas for the vibration frequencies of structural columns.

Numerically; for example, in discrete minimum values of structural dimensions or in FEM

algorithms for calculating stresses and displacements.

In terms of heuristics or rules of thumb; for example, that the first-order earthquake

response of a tall, slender building can be modeled as a cantilever beam whose foundation

is excited.

Similarly, knowledge about the equilibrium behavior of certain thin structures can

be expressed as follows:

As a rule; for example,

IF a structural element has one dimension much thinner than the other

two

AND it is loaded in that direction

THEN it will behave as a plate in bending.

Mathematically; for example, the fourth-order partial differential equation that governs

the deflections of bent plates.

Verbally and numerically; for example, the deflection of a floor in a residential building

should not exceed its length (in feet) divided by 360.

We have thus restated equilibrium for a bent plate in several forms. We often

cast the same knowledge in different languages, depending on the task at hand. As

we have said before, experts manage to choose the right language at the right time to

solve the immediate problem. However, we need to continually recognize that we are

employing different languages, that these different representations offer us different

insights and utility, and that it would be desirable (in computational terms) to link

these different languages so that we can seamlessly model our designed artifact and

our design process.

5.2 Images of Designed Artifacts

We now turn to the role of graphical or pictorial languages, by which we mean to

include sketches, freehand drawings, and CADD models that extend from simple
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Figure 5.2. Design information adjacent to a sketch of the designed object (Ullman, Wood,
and Craig, 1990).

wire-frame drawings through elaborate solid models. Our discussion is strongly influ-

enced by a recent study of the importance of drawing in the process of mechanical

design because we think the lessons learned from that study are widely applicable to

engineering design. We, too, will focus largely on the roles of the images, leaving for

separate discussion issues relating to the media or environments in which images are

created. For example, we discuss in Section 5.6 the value of combining visual and

other data through their various representations, so some media-related issues are

discussed there. For now, we wish to concentrate on the information transmitted in

the drawing process.

Historically, we are talking about the process of putting “marks on paper.”

Researchers have observed in their investigations that these marks include both

graphic representations and support notation. The graphic representations include

sketches of objects and their associated functions, as well as related plots and graphs.

The support notation includes notes in text form, lists, dimensions, and calculations.

Thus, the marks (or drawings) serve to facilitate a parallel display of information

because they can be surrounded with adjacent notes, smaller pictures, formulas, and

other pointers to ideas related to the object being drawn and designed. That is, a

sketch or drawing offers through adjacency the possibility of an organization of infor-

mation more powerful than the linear, sequential arrangement imposed by the struc-

ture of sentences and paragraphs. An example that illustrates some of these features

is shown in Figure 5.2, which is a sketch made by a designer working on the packag-

ing – to consist of a plastic envelope and the electrical contacts – to accept the batter-

ies that provide the power for a computer clock. Here, the designer has written down

some manufacturing notes adjacent to the drawing of the spring contact. Further-

more, it would not be unusual for the designer to have scribbled modeling notes (e.g.,

“model the spring as a cantilever of stiffness . . . ”) or calculations (e.g., calculating
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Different models of the same object or mechanism

may exist, depending on the assumptions that they

make (e.g., no friction). Models can be related by

the assumptions that they add or remove, produc-

ing a “graph” of models. When models exist only

for components rather than for the whole prod-

uct, product analysis or simulation cannot be done

until a complete product model is assembled from

compatible, smaller existing models of its parts

(Nayak et al. 1991). This may well be task depen-

dent: modeling a current-heated wire as a heat

source is appropriate for analyzing operating tem-

peratures, whereas modeling it as a spring would

not be.

the spring stiffness from the cantilever beam

model) or other information relating to the

unfolding design.�

Now, marginalia of all sorts are familiar

sights to anyone used to working in an engi-

neering environment. In doing both analy-

sis and design tasks, we often draw pictures

and surround them with text and equations.

Conversely, we often draw sketches in the

margins of documents, perhaps to elabo-

rate a verbal description, perhaps to indi-

cate more emphatically a coordinate system

or sign convention. Thus, it should come

as no surprise that sketches and drawings

are as essential to engineering design as any

Although sketching is still included in some uni-

versity coursework – at Massachusetts Institute of

Technology and Imperial College, for example –

there is little mention of it in recent engineering

design texts, although Dym et al. (2009) describe

using different types of sketches to convey design

information. Sketch recognition for mechanical and

electrical design is an active area of research. The

goal is to correctly and automatically recognize

design intent from sketches and convert it into a

representation that can be used computationally.

For example, see the work by Gross, Hammond,

Alvarado, Kara (Fua and Kara 2011) and by Sta-

hovich (Bischel et al. 2009).

other representation. Interestingly enough,

whereas some of the classic engineering

design textbooks stress the importance of

graphical communication, the topic seems

to have vanished in more recent works.�

In domains such as architecture, of course,

sketching, geometry, perspective, and visual-

ization are acknowledged as the very under-

pinnings of the field.

There are many major issues relating

to graphical representation, some of which

are less important in the current context.

For example, graphics can be seen as a

very important aid to memory and as a

means of communicating between short- and

long-term memory, as we discussed when

Graphical representations can also act as a form

of design rationale, where sketches can show the

development of an idea or be the cause of a design

decision (e.g., interference between parts might be

seen). Even nongraphical pen or pencil movements

can be seen as gestures that convey meaning and

might act as rationale.

we described an information-processing

model of design in Section 3.4.� In a simi-

lar vein, graphic images can be used to com-

municate with the external environment –

that is, with other people – so such images

are important in design and manufacturing

organizations (see Section 5.7). Perhaps it is

useful to recapitulate here a partial list of

how drawings are used in the design process:

1. To provide a permanent record of the shape or geometry of a design.

2. To facilitate the communication of ideas among designers and between designers

and manufacturing specialists.
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3. To support the analysis of an evolving design.

4. To simulate the behavior or performance of a design.

5. To help ensure that a design is complete because a picture and its associated

marginalia could serve as reminders of still-undone parts of that design.

Ullman, Wood, and Craig advance several hypotheses about the role of drawing

in the evolution of a design and as a part of the cognitive process of design. Some

of these hypotheses are particularly relevant to our concerns and the first such is as

follows (our ordering differs from the original ordering of the authors):

“Drawing is the preferred method of external data representation by mechanical engi-

neering designers.”

One type of representation for material breaks the

volume of an artifact into many small cells, usually

called “voxels” or “elements.” Although this sort

of representation is commonly used in engineer-

ing to calculate stresses in an object (e.g., finite

element analysis), evolutionary algorithms from AI

offer the possibility of modifying the shape and/or

the material to produce artifacts that are lighter,

stronger, better performing, or easier to manu-

facture. Sims’ (1994) work influenced a lot of

research by demonstrating evolutionary algorithms

that developed designs for small geometric “crea-

tures” whose fitness (e.g., how well they could

move) could be tested in a simulated world. Pol-

lack et al. (2003) report work on structures and on

robots, but with fitness tested by actually making

them. The voxel representation also has been used

for topology design, taking stress and material dis-

tribution into account (i.e., less material where it

is not needed) (Jakiela et al. 2000). Kicinger et al.

(2005) provide a survey of evolutionary computation

used for structural design.

Perhaps this is no more than a reflection

of what Woodson cites as the more accurate

translation of a favorite Chinese proverb:

“One showing is worth a hundred sayings.”

But perhaps it is also a reflection of a Ger-

man proverb also quoted by Woodson; that

is, “The eyes believe themselves; the ears

believe other people.” In fact, a good sketch

or rendering can be very persuasive, espe-

cially when a design concept is new or con-

troversial. And, as noted previously, draw-

ings serve as excellent means of grouping

information because their nature allows us

(at least on a pad or at a blackboard, if not

yet in a CADD program) to put additional

information about the object in an area adja-

cent to its “home” in a graphical represen-

tation of the object being designed. This can

be done for the design of a complex object as

a whole, or on a more localized, component-

by-component basis. Furthermore, graphi-

cal representations are effective for making

explicit geometrical and topological infor-

mation about an object.� However, pictorial

representations are limited in their ability to express the ordering of information,

either in a chain of logic or in time.

Still another hypothesis of interest is that:

“Drawing is a necessary extension of visual imagery used in mechanical design. It is a

necessary extension of a designer’s cognitive capability for all but the most trivial data

representation, constraint propagation, and mental simulation.”
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Heylighen (2011) discusses the role of sketching,

and of sight in general, in her study of a blind archi-

tect. The architect uses models in clay, or some-

times Lego, as well as verbal communication. He

“sees” both the models and the actual buildings

with his hands. Athavankar et al. (2008) studied

how blindfolded designers and architects use hand

gestures to make their mental designs and images

visible to others. He also found that blindfolded

architects could physically navigate an empty space,

imagining themselves in an architectural space that

they have designed. Bilda et al. (2006) carried out

a study that contrasted the designs of expert archi-

tects who were allowed to sketch with those who

were not. Surprisingly, they found no significant dif-

ference between the two groups and so concluded

that sketching is not an essential activity during

conceptual design.

The argument made here is that some

external, graphical representation, in what-

ever medium, is an absolute prerequisite for

the successful completion of all but the most

trivial designs.� Both the research underly-

ing this hypothesis and our everyday expe-

rience – think of how often we pick up a

pencil or a piece of chalk to sketch some-

thing as we explain it, whether to other

designers, students, teachers, and so on –

support this notion and probably more so

in mechanical engineering design than in

some other domains. This is perhaps because

mechanical artifacts quite often have forms

and topologies that make their functions

rather evident.� Think, for example, of such

mechanical devices as gears, levers, and pul-

leys. This evocation of function through

form is not always so clear, and some-

times more abstract graphical representa-

tions are used to show functional verisimil-

itude without the detail of sketches that

are based on physical forms. Two exam-

ples of this sort of graphical abstraction

Designers and design researchers commonly say

that there is “no function in structure,” meaning

that in order to have a function, an artifact has to be

placed in a context and produce a desired effect. The

placement, context, and “desire” all can be varied

(e.g., a pen used as a pointer). It is worth noting

that “no structure in function” also applies because

a function is always stated in an implementation-

free manner (e.g., a device that “provides pointing”

could be a stick or a laser).

are the use of (1) flowcharts to represent

chemical-engineering-process plant designs,

and (2) block diagrams (and their cor-

responding algebras) to represent control

systems.� It is likely true for all domains,

with the varying kinds of abstraction levels

we have just seen, that these pictures and

charts and sketches serve to extend our lim-

ited abilities, as humans, to flesh out compli-

cated pictures solely within our mind.

Causal representations have been used in AI for

quite some time. Knowing that A causes B allows

a system doing diagnosis to suspect a problem

with A if B does not occur when it should. Such

reasoning can be useful during design because

design decisions lead to a device having a behav-

ior; but, if that behavior is not what is needed,

then some design decision (or decisions) might be

wrong. We also can use causal representations

(continued )

The final hypothesis of interest here is:

“Sketching is an important form of graphical

representation serving needs not supported

by drafting.”

The issue here is the relationship of

quick and informal sketches to more formal

drawings whose preparation may require

considerably more time and resources.
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(continued )

to represent “behavior” in function-behavior-

structure representations, allowing qualitative

simulation to be done. More recently, Bayesian

networks (Charniak 1991; Russell and Norvig

2010) have become increasingly popular, with

causal dependencies among events quantified by

conditional probabilities. Giving evidence about

any subset of events allows us to compute the

probabilities about any other subset.

Based on reported observations of archi-

tectural designers at work, this hypothesis

suggests that sketches have a unique role

because they are readily created and eas-

ily changed.� We can see, for example, that

sketches make it easy for a designer to play

with ideas and concepts in much more of

a “brainstorming” mode than is possible

with formal drawings or blueprints. And,

because they can be made in the margins

of blueprints as well as in other contexts,

informal sketches serve both as intermedi-

aries between and as “graphic metaphors”

for the formally drawn plans that depict

artifacts as well as for artifacts themselves.

We should recognize here that this obser-

vation raises interesting questions about

the way both sketching and drawing are

taught (or not, as is increasingly the case)

in engineering programs, as well as about

the future development of CADD systems.

We return to some of these questions in

Section 7.3.

Schön (1983) refers to designing as a “reflective

conversation with the situation,” where the situation

might include a sketch. This enables the designer

to reinterpret it and so be reminded of other pos-

sibilities. The four main activities Schön proposes

are naming the relevant aspects of the situation,

framing the problem in a particular way, mov-

ing toward a solution (i.e., making design deci-

sions), and reflecting to evaluate the “moves.”

Visser (2006) provides a detailed set of the cri-

tiques of Schön’s ideas: essentially that they show

“lack of precision” (i.e., they do not provide enough

detail to allow the design of a computational

model). Gero and Kannengiesser (2008) remedy

this by casting Schön’s ideas in terms of their sit-

uated function-behavior-structure model, providing

a detailed description of “reflection.”

For now, we close this section by observ-

ing first that there is a very strong case to

be made for the fact that graphical repre-

sentations of all kinds – whether done by

hand or on a computer, whether informally

sketched or detailed in a complex set of

blueprints, whether presented bare or anno-

tated with marginalia – represent a great deal

of design information. As already noted,

the importance of graphical representations

in engineering design has been known for

some time. What is of particular interest

to us is the leverage gained from integrat-

ing such representations with other kinds of

representations.� We have more to say about

this in Section 5.6, as well as in the conclud-

ing chapter.

Configuration spaces are a representation intended

to show the “space” of allowable relative posi-

tions of a pair of objects. For example, the cen-

ter of a robot moving among obstacles can only

be in certain places in the space: this could be

mapped in a diagram with two dimensions (x,

y), showing regions allowed and not allowed. For

an object pushing against a rotating cam, the

object moves toward and away from the axis

around which the cam is moving. We then obtain

a picture of allowable positions by plotting angle

(continued )

Our final observation is that although

we have used the word images several

times in this section as well as in its

title, we have not made any reference to
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(continued )

of rotation against axis-to-object distance. This

sort of reasoning allows configuration spaces to be

constructed for mechanisms. Configuration spaces

support retrieval of stored mechanisms (Murakami

2002) and tolerance analysis, as well as enabling

a designer to manipulate the diagram of the space

to point out where the mechanism needs to be

changed (Joskowicz and Sacks 1997).

photographic images (or, for that matter,

have we referred to the “graven images”

of the Ten Commandments – and we will

not start now!). Certainly, photos have much

of the content and impact that are ascribed

to other graphical descriptions, but they do

not seem to be widely used in engineer-

ing design.� One possible exception may be

the use of optical lithographic techniques to

lay out very large-scale integrated (VLSI)

circuits, wherein a photography-like pro-

cess is used. However, it is also true that

we are increasingly collecting more data

by photographic means (e.g., geographic

Photographs, as well as sketches, plans, schemat-

ics, or technical drawings, can act as cases for use

in case-based reasoning, providing examples and

detailed information for designers. The Web pro-

vides access to a huge number of images, so it can

serve as a case base. Image matching is now pos-

sible, allowing various kinds of image-driven Web

searching. Image search by concept map (i.e., spa-

tially arranged text) is possible, where the word

Jeep placed above the word grass could be used to

retrieve pictures of Jeep vehicles on grassy ground.

Image search driven by a given image is also pos-

sible, where features of the given image (e.g., its

color distribution) are used in the search. Another

kind of image search on the Web is driven by sketch-

ing (e.g., the Microsoft MindFinder project). For

example, drawing two circles next to each other

might retrieve images of cars by matching with

wheels.

data obtained from satellites). With com-

puter-based scanning and enhancement

techniques, we should expect that design

information will be represented and used

in this way. One sign of this trend is the

increasing interest in geographic informa-

tion systems (GIS), which are highly special-

ized database systems designed to manage

and display information referenced to global

geographic coordinates. It is easy to envision

that satellite photos will be used together

with GIS and other computer-based design

tools in design projects involving large dis-

tances and spaces (e.g., hazardous-waste dis-

posal sites and inter-urban transportation

systems). Thus, we should not forget pho-

tography as a form of representation.

5.3 Feature-Based Descriptions

We now turn to a representation that can be viewed in some sense as a bridge between

graphical representations and the object-oriented descriptions we discuss in the next

section. CADD (and originally CAD) systems have been used for some time to draw

pictures and plans of objects as they are being designed. The representations in such

systems are generally limited to points, lines, and surfaces. Designers, however, think

about artifacts in ways that are much more encompassing. Even when thinking about

issues of geometry and topology, designers work in terms of aggregated information

and concepts – for example, shapes of surfaces and volumes, holes, fit, interference,

tolerances, and so on. In other words, even when reasoning about spatial issues,

we need a richer and more powerful language or representation to enhance our
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ability to reason about the objects we are drawing (and designing). Feature-based

representation, as it is called, has emerged from just such attempts to enable reasoning

about objects for which data is stored in CADD systems. Thus, the connection

between feature-based and object-based descriptions is that the latter turn out to

be a useful vehicle for representing the additional information about features that

we cannot represent in terms of the points, lines, and surfaces used in CADD

systems.

Features were originally thought of as volumes of solids that were to be removed

(typically by a machining process) because of the interest in relating a part to some

part of a process plan. More recently, they have been assumed to include devices

such as gears, bearings, and shafts, in the contexts of relating an artifact’s intended

function to a form feature in the CADD representation and of trying to represent

the physical features of an artifact so that they can be evaluated. Intermediate to

these are hierarchies of features of a geometric nature that, although they enable

certain functional reasoning, also can be seen as logical extensions of the original

idea of features for processes other than machining. Examples of feature-based

descriptions include windows, corners, and tongues for injection molding; walls and

fillets for extrusion; and walls and boxes for casting. We will soon see that feature

hierarchies are naturally represented in object-oriented descriptions.

What exactly do we mean by a feature?� Although used more often and in

a larger number of contexts, features are still regarded differently by various

Shah and Mäntylä (1995) provide the classic,

comprehensive overview of features. Brown (2003)

reviews various definitions and provides a version

based on the concept that “a feature is anything

about the artifact being designed that is of inter-

est to the designer” (p. 895), specifically, anything

about the structure, behavior, or function that might

affect a goal associated with a particular process.

For example, a process might be manufacturing,

use, or assembly, affected positively or negatively,

whereas a goal might be to be inexpensive, take

little time, or be highly useable.

researchers and users, so that a definitive

definition has yet to emerge. Its first use was

in the phrase form features, which are par-

ticular shapes or volumes associated with a

part, such as holes and slots. It was after fur-

ther work that the use of the term broad-

ened to be inclusive of both form and

function, and the context extended to manu-

facturing and life-cycle concerns of designed

shapes and objects in which both geomet-

ric and behavioral issues figure prominently.

This is largely due to the fact that, as have

noted earlier, designers do not think in terms

of points, lines, surfaces, edges, and so on.

They tend to think in terms of particular forms that are intended to serve a function

imposed by the designer. For example, consider the part shown in Figure 5.3. It is

used as a locator for a piece that is formed within a mold, and is itself made through

the process of injection molding. We must require the shaded surfaces to remain

parallel and at a specified distance from one another if we expect the molded piece

to be kept at a desired location. Now we focus briefly on the tongue and window,

and especially on their functions.

The tongue, as noted, serves to locate the piece within the die. If we want

to change some property of the tongue, we want to ensure that any changes are

consistent with the locating function. Thus, if we modify the tongue’s geometry, we
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Figure 5.3. An injection-molded part (Dixon, Libardi, and Nielsen, 1989).

want to enforce corresponding changes in the rest of the part so that we do not

inadvertently defeat our intended purpose. Similarly, the window over the tongue

makes it easier to mold the piece being molded within a two-plate die whose parting

direction is normal to the tongue, and it makes it easier to extract the part from the

two-plate die. (The parting plane is the plane between the two die faces; the faces are

separated or parted in a direction perpendicular to the parting plane.) If, therefore,

we want to change the nature of the window, we must make sure that we do not

defeat the two purposes that the window serves in our design.

Furthermore, in both cases, as we think about our design (as just outlined), we

think in terms of the tongue, the window, and (if we are being careful) the purposes

we want these features to serve. We are not thinking about the coordinates that

define the window opening or the precise location and orientation of the face at

the end of the tongue. We are, in fact, thinking in terms of the features and their

meaning in terms of what we expect them to do in the finished design. Current

CADD systems, however, typically cannot accommodate these views of the design

unless we extend their respective representations beyond the geometric data into

the aggregated features that we use when we think about the unfolding design. Thus,

as in our previous discussion (cf. Section 5.2) of the role of sketching in design, we

again recognize a need to group information and integrate representations.

We content ourselves for now with a brief look at how we might link CADD

data to richer descriptions. At the same time, we show how object-oriented repre-

sentations lend themselves naturally to enhancing applications of features. There are

two basic ways to go about this process of linking CADD data to other descriptions.

In the first instance, we extract features from traditional CADD databases; that is,

we try to identify form features in the CADD representation and use algorithms to

extract them so that they can be analyzed for their manufacturability. In the second

approach, features are identified and designed in systems that serve as front ends to

CADD systems. The resulting designs are then stored as features in the associated

CADD databases. The front-end systems are often KBESs that are built specifi-

cally for this purpose. This approach, sometimes called design-with-features, appears

intrinsically more interesting because it allows us, as designers, to work with the

concepts we use to think about our work and to then translate the resulting design

into a CADD database entry or file.
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Figure 5.4. An architecture for a computer-aided design system based on design-with-features
(Cunningham and Dixon, 1988).

A basic architecture for systems intended to facilitate design-with-features is

shown in Figure 5.4. Central to this approach is a library of features called design-

with features, which are used by the designer to build up a primary representation

of the designed artifact expressed in terms of these features. One way that we can

characterize a library of design-with features is to sort them into static features,

the basic function of which is structural, and dynamic features, which pertain to

movement or the transmission of energy. The second class, which could include

devices such as gears and crankshafts, has not been developed as yet even in research

systems. The class of static features has been elaborated in terms of five kinds of

features: primitives, intersections, add-ons, macros, and whole-forms. Each class can

be elaborated in greater detail by identifying various attributes that take on specific

values by assignment, calculation, inheritance from a more abstract class, or some

other means (see Sections 5.1 and 5.4). We illustrate two of these classes of static

features to make the points that (1) they are at the right level of abstraction for more

immediate use by a designer than are basic CADD representations, and (2) they can

be sensibly expressed in the object-oriented language of design.

Thus, the primitive features are the primary structural building blocks of a

design-with-features design, two of which are solids and walls, the further decom-

position of which is shown in Figure 5.5. Add-ons are features added to primitives

to achieve some local effect or function (e.g., depressions and openings). Macros are

combinations of primitive features that are structured in advance (e.g., wall combi-

nations and wall-solid combinations). Intersections are features that provide a syntax

for combining either primitives or add-ons on a pairwise basis. Some of the intersec-

tion features are illustrated in Figure 5.6. We can see from Figures 5.5 and 5.6 that
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Figure 5.5. Primitive features (Dixon, Cunningham, and Simmons, 1989).
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Figure 5.6. Intersections (Dixon, Cunningham, and Simmons, 1989).
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the features are expressed in terms, here mostly geometric, that are at a natural

level of abstraction for the designer. Furthermore, we also can see the beginnings of

the hierarchical structure that is one of the hallmarks of object-oriented represen-

tation.

A complete review of feature-based design systems is beyond our current

scope. However, our brief introduction to this still-emerging concept not only illus-

trates its potential; it also illuminates its weaknesses. First and foremost of the

Shape grammars are similar to grammars for natural

languages such as English (Brown 1997). Instead

of a rule such as “a verb phrase is a verb with a

noun phrase,” a shape grammar might have a rule

such as “a house is a block with a roof,” where

shapes – rather than words – are the primitives.

We can then describe complex designs by provid-

ing a set of rules that describe modifications to 2D or

3D shapes. Theoretically, we can use such rules to

analyze the structure of an existing design (anal-

ogous to parsing a sentence) or to generate (syn-

thesize) one design, or all possible designs, from a

given shape “seed.” We can attach actions to rules

to detect the correctness of the resulting shape,

or rule use can give values to attributes (e.g., vol-

ume). One of the strengths of this representation is

that unlike a human designer, it does not become

fixated on a particular approach or biased by past

designs. This allows portions of the design space

that normally would not have been considered to be

generated and presented to designers, thus encour-

aging more diversity and increasing the potential for

more creativity (Cagan 2001).

latter are the extent and generality of the

design-with features library. It is rather unre-

alistic to assume that we will be able to

build – at least any time soon – a library

of design-with features sufficiently robust

to encompass completely even one design

domain, together with all of its relevant

manufacturing and assembly processes. Fur-

thermore, as designer/users, we will want

to (1) enhance and combine existing fea-

tures, and (2) create our own design-with

features. Thus, we will have to confront a

variety of issues, some of which are more

technical in nature, others of which are influ-

enced by organizational considerations. The

technical issues include balancing the need

to have enough features to provide compre-

hensive coverage against the combinatorial

explosion that could emerge if we articulated

all possible features and their attributes,

creating a grammar sufficiently flexible to

allow combinations of primitive features

that might be very different than their con-

stituent primitives, and making it possible

for us to easily design and create our own

primitives.�

One of the challenges – and associated problems – of feature development is

that we have in feature-based representation the nucleus of an idea for maintaining

different perspectives of an artifact as its design is emerging. We could develop form

features, features that reflect different analysis requirements (e.g., stress analysis,

thermal analysis, and kinematics), features that reflect manufacturing or assembly

requirements, features that represent marketing requirements, and so on, for any

given artifact. That is, feature-based design could enable the development of very

powerful design tools – if we can solve the problem of translating between and

maintaining the database of the many different features that would certainly emerge

in complex design projects.
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The institutional or organizational issues include maintaining consistency across

a design organization, maintaining version control, and having a system interface

sufficiently friendly to enable us to combine and create features in the design context

and vocabulary in which we normally do our work. (And, we add parenthetically, a

We must not forget that human–computer inter-

action (HCI) is central to dealing with represen-

tations and to designing in general. Lee et al.

(2010) estimate that about 1 million US workers

use computer-aided engineering or design tools,

and they review “usability principles and best prac-

tices” for such tools. HCI professionals translate

“user friendly” into more explicit specifications:

testable requirements and sets of metrics, such

as time to learn, error rates, and task completion

time.

design-with-features system would be com-

mercially successful only if we, as designers,

can learn to use it without having to become

systems programmers. After all, one of the

very clear lessons of commercial software

development is that the success of a com-

puter tool strongly correlates with the extent

to which it is perceived as “user friendly.”

Although we have said repeatedly that our

main interest in this exposition is the design

thought process and not the resulting soft-

ware, we are not entirely impervious to the

software-related implications.)�

5.4 Object-Oriented Descriptions

We now come to the representation technique that can be said to be the very heart

of this chapter and perhaps, therefore, of this book. Because we have referred to

object-oriented representation as both a representation technique and a language

of design, along with rules, we intend to view object-oriented descriptions through

both prisms in this section. We begin by returning to our ladder problem (cf. Sections

1.1 and 3.1) because we use ladder design to illustrate object-oriented descriptions

in more detail. In particular, we start with a class of objects called Ladder (shown

in Figure 5.7). The physical object is expressed as a collection of attributes or slots.

A value is identified for each slot in one of several ways. Values can be specified

by the user, found by a prescribed calculation or procedure, identified through a

link to one or more different objects, or prescribed by default. Here, the height is

an input parameter specified by the user, as is the type of ladder, although only a

SLOT/ATTRIBUTE VALUE

Height User must specify
Sub_classes (Step Folding Extension)

Width 0.15 * Height

Depth 0.02 * Height

Rung_count Height [in]/12

Sub_parts (Rungs Support)

Draw Points to a procedure that draws
the ladder on the screen

Figure 5.7. The class Ladder showing some of the values and some methods (adapted from
Morjaria, 1989).
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SLOT/ATTRIBUTE VALUE

Name Ladder-A

Type Extension

Height [120in]

Width [18in]

Depth [2.4in]

Rung_count [10]

Sub_parts (Rungs-A Support-A)

Draw Points to a procedure that draws
the ladder on the screen

Figure 5.8. The instance Ladder-A of the class Ladder (adapted from Morjaria, 1989).

limited range of choices is allowed. Procedures are given for calculating some ladder

parameters, such as the width and the number of rungs, and there is a pointer to a

procedure for drawing a picture of the finished ladder. The different types of ladders

(Sub_classes) subsumed by the class Ladder also are identified.

The identification of the ladder’s Sub_classes and the slot Sub_parts point to an

underlying structure and to linkages that make the object data structures outlined

in Figures 5.1 and 5.7 quite rich and powerful as descriptors. Figure 5.8 shows the

instance of the class Ladder – that is, a particular example of one of the members of

Inheritance can quickly get complicated. For exam-

ple, we need a strategy to decide which path to

choose if more than one class higher in the path up

the hierarchy provides a value for the same attribute.

Often, we use the first one found (i.e., closer

above) because that is a more specific descrip-

tion. If there is no strict hierarchy, as happens when

an object belongs to two classes (e.g., “connec-

tor” and “molded part”), then inheritance could pro-

duce contradictory information. If properties can be

“defeated” (e.g., if one particular bolt is not silver),

then inheritance needs heuristic guidance. Fortu-

nately, description logic uses only strict inheritance,

although rules and restrictions can be added, albeit

at a price of decreased efficiency. Earlier structured

representations (e.g., KL-ONE) allowed such things

as arbitrary restrictions on “slot” fillers, as well as

the ability to specify relationships between the fillers

of slots (i.e., between the values of attributes).

See Brachman and Levesque (2004) for more

details.

that class, Ladder-A. The instance is identified

through a link that states, for example, that

Ladder-A is_a Ladder. This particular ladder is

a 10-foot-long extension ladder that has the

specified parameter values and parts shown.

The attributes are inherited from the class

Ladder through the is_a link, with the values

specific to Ladder-A being calculated in accor-

dance with the procedures identified (and

maintained) in the class description (Figure

5.7).� The pieces used to make the ladder are

identified by still other links; for example,

we could say that Ladder-A has_part Rungs-A.

The details of the machinery required to sup-

port this structure are not important here.

Rather, we see that the structure enables

us to describe objects, both conceptual and

“real,” and to describe classes of objects

in a rich yet compact way. The particular

attributes can be chosen to meet the needs

of any particular design project, as we have

seen with design-with features and will see

in subsequent discussion.
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Figure 5.9. The object tree (or inheritance lattice) in the LSC Advisor KBES (Dym et al.,
1988).

Figures 5.9 and 5.10 show two inheritance lattices or object trees of all

of the objects in two KBESs.� The first is from the LSC Advisor, which was

Figures 5.9, 5.10, and 5.11 are examples of the

basics of ontologies. An ontology defines the kinds of

objects, their properties, and relationships between

them that a person or system knows about, or wants

to deal with, for a particular task. Ontologies also

define, as a side effect, a vocabulary of terminology.

Noy and McGuinness (2001) provide a simple intro-

duction to creating any ontology, and Ahmed et al.

(2007) deal specifically with engineering ontologies.

Gómez-Pérez et al. (2004) provide a comprehen-

sive, general overview of the field with examples.

designed to check architectural plans for

conformance with a fire safety code. The sec-

ond is from the DEEP system for design-

ing electrical service for lots in residen-

tial developments (cf. Section 5.1). The

objects in the LSC Advisor are orga-

nized into a hierarchy of subclasses of the

class FLOOR_PLAN_OBJECTS. Note that in

addition to physically realizable objects,

this hierarchy explicitly details conceptual

objects that are crucial to the architectural

design process (e.g., fire zones and smoke

zones). Furthermore, in this representation,

all the objects have in common the slot

LSC_PROBLEM, which is defined in the class FLOOR_PLAN_OBJECTS. Some of the

objects – also called frames – from this lattice are shown in Figures 5.16 and 5.17.

We discuss these frames and the LSC Advisor in more detail in Section 5.5.

Figure 5.10 shows the inheritance lattice of all of the objects in the DEEP system

that is used to configure the electrical service equipment for lots in residential devel-

opments. We previously displayed (cf. Figure 5.1) a particular instance (XFR50_1) of
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Figure 5.10. The object tree (or inheritance lattice) in the DEEP KBES (Demel et al., 1992).

the class Transformers, and we see here how that class and its instances fit into the

overall structure of all of the objects involved in this particular design project. In

fact, the classes Transformers and Handholes (which are typically small underground

structures containing electrical connection and relay devices) are themselves subor-

dinate to a more abstract class or “superclass,” Structures, which is in turn part of the

top-level class that contains all of the objects in the DEEP knowledge base. Notice

the heterogeneity of this lattice; that is, it represents a mix of different kinds of
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physical structures and of more conceptual objects, such as the Configurations, which

represent recommendations for the spatial layout of the cables and other electrical

equipment.

What also may be evident from the discussion, although probably not from the

figure, is that the branches of the object tree are not independent of one another, even

though they look that way in the pictorial representation of the tree. For example,

the transformer instance XFR50_1 has associated with it a specific location (i.e., the

slot Coordinates in Figure 5.1) and a set of lots that it serves (not shown in that

figure, although the total number of lots served is given in the slot MaxCustomers).

The location of this particular transformer and the lots it serves are identified in

appropriate slots in objects elsewhere in the tree; that is, in the classes Configurations

and Lots, respectively.

At this point in time, many KBESs exemplify the use of object-oriented tech-

niques to describe objects as they are being designed. Indeed, we could fill the

remainder of this chapter – and book – with examples from the recent literature.

However, for now we content ourselves with introducing just one more example,

from the domain of structural design, which also illustrates the current state of the art

in terms of routine computer implementation and points the way to the discussion

(in Section 5.5) on integrating representations. The example is derived from a KBES

that builds descriptive models of simple engineering structures by interpreting their

graphical descriptions. In a style perhaps akin to feature extraction (cf. Section 5.3),

the KBES identifies some particular features of physical objects and categorizes

them into classes of structural types. Figure 5.11 shows the hierarchy of structural

objects and types contained in the knowledge base of that system.

Each of the structural objects depicted in the hierarchy of Figure 5.11 is repre-

sented by a frame (or object) in the object-oriented language. A view of part of the

frame for the class of structural object Truss is shown in Figure 5.12. It looks very

much like the class descriptions we have already seen, but it is worth noting that some

of the attribute values shown are in fact labels for procedures that are used to eval-

uate certain properties of a truss. Thus, for example, truss_span, truss_triangulation,

truss_redundants, and truss_stability are the names of procedures or algorithms that

are used to evaluate any instance of the class Truss to assess whether that instance

does have the requisite properties of a structural truss.

We should remember that our partial view and description of this frame leaves

some things undescribed. In particular, although we have specifically identified by

name the procedures that are called to obtain the values for the last four attributes,

we have not distinguished them in any obvious way from the ways by which other

slots are assigned their values. As with previous examples, some values are inherited

from higher classes (e.g., line_element_structure), some by virtue of being in a certain

class (e.g., NumberOfJoints), and so on. As we remarked in the Preface, there is much

variation in style of the pseudo-code that can be used to illustrate objects. Thus,

although we do mimic the styles of the generators of each object, we will not go into

all the detail needed to make explicit the particular meaning of every facet of each

format.
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physical object

structure

line-element
structure

surface-element
structure

beam

unstable
beam

indeterminate
beam

fixed-end
beam

continuous
beam

propped
cantilever

beam

simply
supported

beam

cantilever
beam

indeterminate
truss

determinate
beam

determinate
truss

unstable
truss

stable
beam

stable
truss

frame truss

Figure 5.11. The hierarchy of structural objects in a KBES that interprets structural drawings
(Balachandran and Gero, 1988).

SLOT/ATTRIBUTE VALUE

SuperClasses line_element_structure

SubClasses [stable_truss

unstable_truss]

MembershipCriteria [numberOfMembers numberOfJoints

numberOfSupports typeOfJoints

typeOfForces typeOfSupports

locationOfSupports]

NumberOfJoints [intersection integers greater_than (2)]

NumberOfMembers [intersection integers greater_than (2)]

NumberOfSupports [intersection integers greater_than (1)]

LocationOfSupports joint_locations

Span truss_span

Triangulation truss_triangulation

NumberOfRedundants truss_redundants

Stability truss_stability

Figure 5.12. The class Truss in the structural-drawing interpreter (Balachandran and Gero,
1988).
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Figure 5.13. The interpretation of a two-bay frame (Balachandran and Gero, 1988).

Figure 5.13 shows the first of two sample runs of the interpretation system. We

note that the system has identified a graphical description of a gabled two-bay frame,

recognizing that it is stable and indeterminate to the sixth degree.

Figure 5.14 shows that the apparently unnamed system – which is itself an inter-

esting phenomenon because it often seems that many KBES designers agonize over

Figure 5.14. The interpretation of a truss (Balachandran and Gero, 1988).
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Advising systems can be formed in a variety of ways.

Critiquing systems (Oh et al. 2008; Silverman 1992)

work by taking users’ decisions (e.g., a complete or

partial design) and providing critical feedback that

may cast doubt about some aspect. Critics can com-

ment on a range of things, from actual errors (e.g.,

geometry that cannot be manufactured) to potential

life-cycle problems (e.g., a particular kind of con-

nection is prone to failure in use). A particular criti-

cism can be formed by comparing a user’s decisions

against those already made, or retrieved, by the

advising system. Alternatively, we can store patterns

known to often cause problems, or be suboptimal,

in the advising system and then match them against

the user’s decisions – which is why critics are often

rule-based. Critiquing systems also can be used in

a “proactive” manner, providing suggestions and

guidelines before the designer acts (i.e., critiquing

the situation). For example, some case-based rea-

soning systems provide a case base of past prob-

lems that have occurred during designing, point-

ing to potential difficulties with certain requirements

or decisions that should be avoided. Constraint-

based systems (O’Sullivan 2006) also can be used

to check design decisions as they are made (to

see whether any constraints are violated) or, for

example, to check the specifications of configura-

tions problems that are described in terms of condi-

tional constraint satisfaction (Finkel and O’Sullivan

2011).

the choice of a suitable acronym with which

to identify their work – identified the graph-

ical description of a truss that has 33 mem-

bers and 18 pin joints, and that it recognizes

the truss as being indeterminate to the first

degree. We also note the structuring of the

information about the truss in the pattern

defined in its frame-based description (Fig-

ure 5.12).

5.5 Integrated Descriptions

The descriptions outlined in the previous

section raise some interesting questions. For

example, the LSC Advisor, a prototype

KBES, checks that an architectural design

conforms to fire-safety–code requirements

on such aspects of a building’s floor plan

as the extent of fire and smoke zones, the

location of exits and exit signs, and egress.�

Thus, the LSC Advisor would be most help-

ful to an architect if it were able to sit astride

the CADD system in which a building floor

plan was being designed and check the con-

formance of an emerging layout in real time.

The logical question is: “Can we implement

a system like the LSC Advisor on top of a

CADD system?”�

Although there are examples of integrated repre-

sentations in systems (in academia mostly), they

are usually tailored to specific purposes, such as

functionally based synthesis or configuration. It is a

very challenging problem. There certainly are sys-

tems that provide access to and allow management

of product or building information (Eastman et al.

2011).

Similarly, the graphical interpretation of

structures outlined previously could be seen

as one step in the analysis and design of struc-

tures. Having identified a structural type

from a graphic, which might be a CADD-

based “sketch” of a structural concept, it

would be helpful if we could use the results to

formulate an analysis of the structure. Thus,

the logical question is: “Can we integrate a

system such as the graphical interpreter into

a computational environment for structural

engineering?”

The answer to both questions is that in

principle and increasingly in practice, such

integrations are indeed possible. It is beyond our scope to analyze the software and

hardware issues that might be involved to make such integration possible in a partic-

ular computational environment or organization. However, we can demonstrate that
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the merging of the underlying representations is quite logical and, in principle, rather

straightforward. We do this by exhibiting some aspects of the representations used

in the LSC Advisor, including rules, objects, and a direct connection to the graphical

representation of a floor plan in a commercial CADD system called GraphNetTM.

Our account of how that KBES works, however, is very terse. The rule and frames

we discuss are shown in Figures 5.15–5.17. The object tree into which the frames (or

objects) fit is shown in Figure 5.9.

The floor-plan representation developed in the LSC Advisor was designed to

make it easy to describe the objects in a typical blueprint and to reason about these

objects in the context of analyzing and applying the particular fire code applied,

the Life Safety Code (LSC) of the National Fire Protection Association. As already

observed, the objects in a typical floor plan (e.g., fire zones, rooms, doors, and walls)

are fairly abstract, so rules alone are incapable of describing such objects, especially

when they have many complex attributes. Thus, the combination of rules and frames

represents a first level of integration.

The rule in Figure 5.15 describes properties (WALL_TYPE) that particular walls

(?WALL) forming the boundary (?ZONE) of a fire zone (FIRE_ZONES) must have in

order to comply with the LSC. The identification of particular physical and abstract

objects is done within the CADD system – which serves as the front end to the

LSC Advisor – by the architect. He or she must explicitly identify the floor plan’s

different elements (e.g., the rooms, doors, and walls) and select room labels from a

special list so that the occupancy type (e.g., office and patient’s room) can be properly

determined. This allows direct and automatic translation of the CADD database into

the frame-based floor-plan representation that the LSC Advisor analyzes. As shown

in Figure 5.15, the antecedents of the rules representing the LSC requirements (i.e.,

the rules’ left-hand sides) contain the clauses necessary to trigger their application.

The inheritance lattice for the LSC Advisor, shown in Figure 5.9, points to

the handling of objects in groups. All objects of the same type are represented as

instances of a class; for example, all rooms are instances of the class ROOMS, all doors

are instances of the class DOORS, and so on. Two instances from the LSC Advisor’s

hierarchy are shown in Figures 5.16 and 5.17.

IF: (AND (?ZONE IS IN CLASS FIRE_ZONES)

(THE REQUIRED_ENCLOSURE_RATING OF ?ZONE IS 2)

(THE BOUNDARY OF ?ZONE IS ?WALL)

(THE WALL_TYPE OF ?WALL IS INTERIOR)

(AN OPENING OF ?WALL IS ?OPENING)

(LISP (< (THE RATING OF ?OPENING) 1.5)))

THEN: (AND (A LSC_PROBLEM OF ?ZONE IS

“FIRE RATING OF WALL OPENING TOO LOW:

?OPENING”)

(A LSC_PROBLEM OF ?OPENING IS

“FIRE RATING SHOULD BE 1.5 HOURS.

ACTUAL RATING: ?RATING”))

Figure 5.15. A rule in the LSC Advisor (Dym et al., 1988).
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SLOT/ATTRIBUTE VALUE

CORNER ( # [Unit : CRNR99 BUILDINGS]

# [Unit : CRNR104 BUILDINGS]

# [Unit : CRNR94 BUILDINGS]

# [Unit : CRNR32 BUILDINGS])

EXTERIOR_NODES ( # [Unit : CRNR97 BUILDINGS]

# [Unit : CRNR102 BUILDINGS]

# [Unit : CRNR92 BUILDINGS]

# [Unit : CRNR37 BUILDINGS])

GROSS_AREA (2408.0)

OCCUPANT_LOAD (6200.0)

SUBSPACES (ROOM180 ROOM151 ROOM152)

ZONE_CORRIDORS (CORRIDOR1 CORRIDOR2)

ZONE_DOORS (DOOR79 DOOR86 DOOR89 . . . )

ZONE_EXITS (DOOR79 DOOR86)

ZONE_EXIT_SIGNS (EXIT_SIGN1 EXIT_SIGN3 . . . )

REQ’D_ENCLOSURE_RATING 1.5

NET_AREA (1956.0)

LSC_PROBLEM NIL

Figure 5.16. An instance of the class FIRE_ZONES in the LSC Advisor (Dym et al., 1988).

We see in these two instances how the floor-plan–representation hierar-

chy explicitly relates geometrical information to high-level objects such as walls

and doors, requiring that the architectural CADD system provide such a uni-

fied description of the building. The class NODES, one of the immediate sub-

classes of FLOOR_PLAN_OBJECTS, defines a COORDS slot for storing a single

(x, y) location. One of the subclasses of NODES is CORNERS, which specifies the

perimeter corners for any instance of FIRE_ZONES. The instance also has a slot for

the set of EXTERIOR_NODES it has on the building’s exterior walls. The instances

also have slots for other attributes that are important for conformance checking,

such as the GROSS_AREA, OCCUPANT_LOAD, ZONE_DOORS, and ZONE_EXIT_SIGNS.

We also can store detailed information on construction materials, wall finishes, and

product names for prefabricated items in the slots’ parent classes (e.g., DOORS and

EXIT_SIGNS).

The floor-plan information represented here goes well beyond the purely geo-

metric data of a blueprint. By unifying these diverse types of information, we take a

step beyond most architectural CADD systems, which do not have unified databases

SLOT/ATTRIBUTE VALUE

CORNER ( # [Unit : CRNR113 BUILDINGS]

# [Unit : CRNR112 BUILDINGS]

# [Unit : CRNR139 BUILDINGS]

# [Unit : CRNR138 BUILDINGS])

WALL_TYPE INTERIOR

RATING 2.0

LSC_PROBLEM NIL

WALL_OPENING (DOOR153)

Figure 5.17. An instance of the class WALLS in the LSC Advisor (Dym et al., 1988).
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for materials and floor plans. Floor plans often are generated by drawing programs

with separate databases of lines, arcs, and text strings. Such graphical databases

contain no indication, for example, as to which lines should be understood as rep-

resenting the two sides of the same doorway. This information can be deduced only

by the architect from a complete drawing, unless just such an integration of the

representations is available.

We can also use these two instances to show how the combination of rules and

objects in the LSC Advisor enables efficient evaluation of the fire-resistance rating

of a door in a wall intended to serve as a fire barrier. How can we rapidly and

efficiently identify specific doors in a floor plan that may contain several thousand

objects? First, we can identify all instances of fire zones that are direct descendants

of the class FIRE_ZONES, such as shown in Figure 5.16. This list of objects could have

between two and five entries. Because the class FIRE_ZONES is a subclass of the class

SPACES, it has a slot for the attribute BOUNDARY, which lists all of the walls that

comprise the boundary of that fire zone. This list of walls, with anywhere from 4 to

30 entries, is winnowed down to those with the value INTERIOR in their WALL_TYPE

slot. Members of the class WALLS (e.g., Figure 5.17) contain the slot WALL_OPENING,

which lists all the DOORS in a given wall, so we now have identified the specific doors

to which the relevant rule applies. We can examine the RATING slot of each door so

identified and apply the relevant rule.

There are other interesting aspects of the LSC Advisor’s representation scheme,

including the integration of some complex geometrical calculations and algorithms

with the object-oriented representation. The most interesting (and complex) of these

algorithms are those that measure travel distances to the building’s exits from various

points in the building. These algorithms are needed because the LSC sets upper limits

on the travel distances from room doors to the nearest exit. The travel-distance

algorithms perform the distance-measuring calculations with data derived from the

graphical information; they use the object representations and mechanisms to pass

the calculated distances to the appropriate slots where they can be held until it is

time to apply the appropriate rule. As mentioned previously, however, this is not

the place to review all of the LSC Advisor’s facets. We mention these other features

only to reinforce the idea that integrated representations of designed objects can be

implemented to produce powerful results.

From the viewpoint of design as a discipline, there are obviously some very

good reasons to work toward the integration of representation. A full-blown imple-

mentation of an integrated system combining a KBES such as the LSC Advisor

with an architecturally oriented CADD system and a database of typical architec-

tural components obviously could enhance the architectural-design process. Sim-

ilarly, structural engineers would find it useful to have an integration of repre-

sentations that allowed them to select members, analyze them, and check them

against design codes, such as the Load and Resistance Factor Design (LRFD)

Specification for Structural Steel Buildings published by the American Institute of

Steel Construction (AISC), as well as check them against national and local build-

ing codes, such as the previously mentioned LSC. To complete our discussion of



96 REPRESENTING DESIGNED ARTIFACTS

Design Object Heterarchy Data Item Hierarchy

Performance Limitation Hierarchy
Data Item Instance Network

shape

strength serviceability Req’t 1

standard–specific
behavior

standard–independent
structure and behavior

Req’t 2 Req’t 3

function material data item

basic derived

Figure 5.18. An object-oriented model of a design standard (Garrett and Hakim, 1992).

integrated representations, we show elements of an object-based description of the

LRFD specifications in Figures 5.18–5.21. Two kinds of integration appear in these

examples. In the first, procedural knowledge expressed in algorithmic form appears

within the slots or attributes of some objects. In the second, paralleling to some extent

the descriptions of the LSC Advisor and the graphical interpreter already described,

concepts are integrated in ways that lay a foundation for further developments in

representing designed objects.

Figure 5.18 shows how a design standard can be represented in an object-oriented

way, using as an illustration the requirement that structural columns must meet to

avoid flexural–torsional buckling. The top-level of this collection of objects is a

design object heterarchy that does two things. It identifies the classes of components

and systems to which the design standard applies, which in the present example

are the sets of structural columns shown in the partial design object heterarchy

depicted in Figure 5.19. Each element in Figure 5.19 is part of the parent class

column that is shown in Figure 5.21. Note that a data slot, FTB, is created in this

class to represent the requirement imposed by the standard. Then, an instance of

a requirement rule is created as part of the definition of FTB, so that each and

every column in the class column will inherit this rule and be forced to adhere to its

meaning.

Figures 5.20 and 5.21 show details of the descriptions of columns in terms of

their various attributes. And, to illustrate how object-oriented standard processing

works, we outline a performance check of a particular wide-flange column, W 14×34,

which is subject to a compressive force of 150.0 kips (or 150,000 lb). First, from the

heterarchy (see Figure 5.19), we create an instance of this column, W–ds–column, to

reflect the fact that we are checking a W-section, doubly symmetric, I-shape column.

Using the technique of message passing, by which objects communicate with each
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shape function

non–symmetric

singly–symmetric

beam beam–column

column
doubly–symmetric

doubly–symmetric column

doubly–symmetric I–shape column

doubly–symmetric I–shape standard column

doubly–symmetric I–shape built–up column

doubly–symmetric box–shape column

singly–symmetric column

non–symmetric column

I–shape

standard built–up

W–section

S–section

box–shape

Figure 5.19. A partial design object heterarchy (Garrett and Hakim, 1992).

other in the implementation of object-oriented programming, the lack of an initial

value for the slot FTB in our new instance is communicated to the object FTB, which

in turn asks for a value for the slot FTB–cond1 to determine whether the condition

has already been satisfied. Because it has not, a chain of requests for data is set in

motion because before the calculation can be made, we need to know the values

doubly–symmetric column

inherited from “column” class

FTB:

FTB–cond1:

phi–c:

is–a:  function

dependents: (lambda–e)

ingredients: (E Cw Kz L G J Ix Iy)

π2ECw 1
Ix + Iy(KzL)2

+ GJsym–expression:

Lambda–e:

Ag:

Fe:

definition:

value: unbound

..

.

.

.

Figure 5.20. Part of the class doubly–symmetric column (Garrett and Hakim, 1992).



98 REPRESENTING DESIGNED ARTIFACTS

Figure 5.21. Part of the parent class column in the object-oriented standards model (Garrett
and Hakim, 1992).
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of parameters such as φc (phi–c), the ultimate and nominal resistances (Pu, Pn), the

gross area (Ag), and critical stresses (Fcr, Fe, Fy). In some cases, the user (i.e., the

designer) is prompted for the information; in some cases it is found by looking up

values in a referenced table; and in other cases, it is computed from formulas already

integrated into the object descriptions (Figure 5.20). When we finally complete the

calculation for this case, we find that the definition of FTB–cond1 can compute its

value as true (T) and insert it in the app–conds slot of FTB because the subject column

does satisfy the relevant design standard.

We point out again that this brief discussion of the use of an object-oriented

language to describe the application of a design standard (or the checking of a design

for conformance with a code) is intended to show the integration of different kinds

of knowledge that are expressed in different forms – for example, as values to be

Aurisicchio et al. (2006) studied expert communica-

tion – in particular, information requests from expert

designers. An example of an information request

from one designer to another is “How can I retain the

seal in place?” They were able to classify requests

using several major categories, including the objec-

tive behind the request (e.g., trying to generate an

explanation), whether it is about product or pro-

cess, the type of response required (e.g., yes/no

or an identifier of an information source), and the

process needed to respond to the request. Other

aspects included the kind of reasoning that was

the cause of the request (e.g., diagnosis or func-

tional decomposition) and the things mentioned in

the request (e.g., predicted, observed, or intended

behavior). Note that this analysis relies heavily on a

structure-behavior-function model as well as knowl-

edge of the types of reasoning present during

designing.

looked up in tables or as results to be

obtained from the application of specified

formulas. Thus, the notion of integration

here is more in terms of types of knowledge

and concepts than just of language or repre-

sentation – and a formal taxonomy of engi-

neering knowledge types has only recently

been proposed – but it clearly is still in the

mold of the kind of integrated representa-

tion of designed artifacts that we are dis-

cussing. However, it does set the stage for

the final section of this chapter, wherein we

discuss issues of integration in the context of

communicating about designed artifacts.�

An editorial comment may be appropri-

ate before we leave this discussion of inte-

grated representations. The reader will have

noticed that much of this discussion seems at

least implicitly aimed at the notion of inte-

grating representations in a computational

sense – and this after we have stated repeat-

edly (e.g., in the Preface and in Chapter 4)

that we are interested less in rendering design computable than we are in under-

standing how we think about designed objects and design processes! We maintain,

however, that we are not being as inconsistent as it might appear at first blush. As

humans, we are used to thinking about objects and artifacts in an integrated way,

using different representations as appropriate to answer different questions, per-

form different tasks, and solve different problems. So, here we view the computer

as, loosely speaking, something of a metaphor for modeling how we think–that is, in

terms of different abstractions based on different representations which is a thought

quite consistent with the quotation from Knuth (cf. p. vii) that was one of the starting

points of our journey.
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5.6 Communicating about Designed Artifacts

There has long been a gap between the designers of artifacts and their makers.

Whether a natural evolution of the engineering profession or a reflection of Adam

Smith’s model of specialized labor as a driving force in capitalism (although it is

also evident in societies built on vastly different economic premises), this gap has

nonetheless become a source of significant concern in today’s very competitive

global economy. One of its most common expressions is the desire to tear down

the legendary “brick wall” that is said to exist between designers and manufactur-

ing engineers. The standards processing system just described can be taken a step

further to address such concerns by generalizing the integrated representation of an

object to a product model – that is, a database file within a design organization that

contains all of the information (and its relevant pointers) generated about a specific

project.

Figure 5.22 shows one scheme for structuring a product model for architectural

design; it includes both a CADD representation and code checking or standards pro-

cessing. This product-model description could serve several purposes. With regard

to code checking, an integrated design environment would provide the context for

identifying which standards or code provisions to apply. In the column evaluation

just described, for example, because the chosen wide-flange section could be used

as a beam or as a column, some way must be found to direct the processing to those

standards pertinent to column design. An integrated system would also facilitate the

gathering of the data needed to determine whether the relevant standard has been

met.

The example underlying the illustration in Figure 5.22 is the evaluation of an

object called a building to see whether it conforms to the standards delineated in

the Uniform Building Code (UBC). Per the foregoing discussion, we first identify

which parts of the UBC apply to the particular building specified in Instance–232.

In the example, based on the data provided in the product model, the standards

processing system has found that Instance–232 is covered under the UBC as a Group–

A–Division–2–Type–II–F.R. type of building. The standards processor also creates an

instance of the context from the relevant portion of the code, Instance–102, and links

it to the product model, Instance–232. Then, the data defined in Instance–232 are

used to evaluate the two requirements in Instance–102 of type Group–A–Division–2–

Type–II–F.R.

This simple example contains within it the seeds of several interesting issues

about design communication. One of these is related to understanding the techni-

cal aspects of integrating CADD and other representations (e.g., object or device

representations, analysis programs, codes, documentation, and so on) within an inte-

grated computational design environment. A second issue – or, more accurately, set

of technical and institutional issues – is concerned with the concurrent use of design

software by many users in large design and manufacturing organizations. For exam-

ple, in addition to the technical issue of integrating different representations, we

have to deal with the need for different kinds of information.
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Database Schema Standard
Semantic

Model Group–A–Division–2–Type–II–F.R.

Building

purpose:

intended–occupancy:

no–of–stories:

total–height:

total–floor–area:

no–of–stories:   1
total–height:   100
total–floor–area:   35,000

maximum–height–req’t:

maximum–height–req’t: satisfied

allowable–floor–area–req’t: violated

height–of–building <= 160
no–of–stories <= 4

Classification
Criteria

Standards
Processing

System

CAD

Applications

Database

Instance–232

Design Product Model Standards Processing Environment

Instance–102

purpose:      theater
occupancy–load:    1,500

instance

of

create

create

context identification

design data

evaluation support

design data

instance

of

if no–of–stories = 1
then total– floor–area <= 29,900

allowable–floor–area–req’t:

.

.

.

.

.

.

.

.

Figure 5.22. Interfacing CADD systems with standards processing and design product models
(Hakim and Garrett, 1992).

Engineering change (Jarratt et al. 2011) refers to

changes made to a design during or after the design

process. Such changes can cause other changes,

which propagate through the design. If we know the

reasons behind design decisions (i.e., the rationale),

then we can better manage risk as we propagate

design changes.

We also must confront the issues of

maintaining control of an evolving design,

understanding how and why design decisions

are made, and understanding how these

decisions are propagated and enforced.�

Wanting to understand why a design deci-

sion was made – an issue also raised in

the previous example – prompts us to ask

the question: “Do we gain some advantage
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by articulating, preserving, and communicating the intentions that designers have for

their design?” We address these issues in this (final) section of this chapter, treating

them inversely to the order in which they were raised.

We note first that the product model in Figure 5.22 has communicated,

in an appropriately labeled slot, the purpose of the building under considera-

tion, which here enabled the system to identify which section of the UBC to

“Purpose” plays a role in design rationale and in

functional representations. Designs are triggered

directly or indirectly by a need (i.e., something

desired) – for example, to get to another place.

Users’ – and perhaps designers’ – goals (e.g.,

desired states) are triggered by the need, with the

intention to satisfy that need (i.e., a purpose). Inten-

tions are sometimes seen as very abstract plans.

Functions are an intermediate level between an arti-

fact (i.e., its behavior and structure) and the inten-

tion. If an artifact in use allows progress toward a

goal, or achieves it, then the artifact is said to have

a function. It is only fairly recently that the field has

thought about representing rationale and functions

in this much detail: much work remains to be done

to establish whether it is possible or even worthwhile

(Vermaas and Eckert 2013).

apply.� As noted in Chapter 2, designs can be

seen as realizations of their designer’s inten-

tions. However, design intentions are often

subtle in their expression or are masked

by the complexity of the designed artifact.

Recall that the Kansas City Hyatt Regency

failure was due to the fabricator changing

the structural connections for the second-

floor atrium walkway because he could not

hang it as originally designed. When the

fabricator found that the long hanger rods

were unavailable, he should have learned

why the architect wanted them to be so long.

Had he asked, he would have heard that

the architect intended to hang the second-

floor walkway directly from the roof truss,

not from the fourth-floor walkway. Had the

architect been able to signal this intention to

the fabricator automatically and unambigu-

ously, without waiting (in vain) for the ques-

tion to be asked, this tragedy probably could have been avoided. But, our interest

is not in finding fault or attributing blame. Rather, we wonder whether the repre-

sentation techniques we have described can be used to help convey the designer’s

intentions to whomever makes or assembles the resulting design.

Capturing the designer’s intent does not seem so difficult, especially in light of

the building example we just saw. Surely, we could attach one or more slots to each

and every object description that would allow us to call out the reasons we are doing

something with that object. For example, we could imagine an object description of

the second-floor walkway something like that depicted in Figure 5.23. Using made-

up names for both slots and their values, we can clearly describe a hanger support

system for a walkway in a form that leaves no doubt about the ultimate source of

support of the walkway, or that the path the load must travel is directly to the roof

truss, or that there are no intermediate connections. Conjuring up a description like

this is fairly easy. The real trick is to get this information into the hands of the

fabricators, the people who will actually build what we design.

We should note, however, that this view of capturing design intent will seem

elementary or superficial to some because it leaves the solution to the problem of
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transmitting that intent at the same abstract level as our discussion of integration.

Furthermore, it ignores some recent attempts to use design intent as a point of

departure for reasoning about design. To choose a less dramatic example than the

Hyatt Regency, consider the following circumstance. A contractor is looking at

the specifications for a building – including both the drawings (“plans”) and the

documentation – as she prepares to choose a fabricator for the structural frame as

part of her bid submission. She notes that a particular steel is called out for the frame

members (say, A242) and wonders if a less expensive steel could be substituted. If

the design documentation specified the history of the design process as well as its

results, the contractor would learn that A242 steel was specified for its ability to resist

corrosion, and that this choice was predicated in turn on the fact that the architect’s

design called for the steel frame to be exposed so that he could highlight the structural

function as part of his aesthetic for the building. (This aesthetic approach has, by the

way, led to some spectacular buildings, including Pittsburgh’s US Steel building and

Chicago’s John Hancock tower.)

Now, we note in Chapter 3 that the design process can be viewed as one of

refining abstract goals and objectives – that is, rendering them in increasing detail

until a fabrication specification emerges at the end of the process. In this context,

design intent can be viewed as a recorded history of the design process in which

the reasons that design decisions were made (or that particular refinements were

generated) are tracked as they are implemented. That is, if we could capture design

intent in a systematic fashion, we could review design decisions and understand

the consequences of revising them or undoing them altogether. More than simply

a retrospective glance at the process, design intent becomes a reasoning tool that

Recent work on design rationale (DR) (Burge and

Bracewell 2008; Burge et al. 2008) provides most

of these capabilities. Burge’s work allows both the

syntax and the semantics of the DR to be checked

automatically. For example, selecting a design deci-

sion that was not as well supported as another, or

that was missing some rationale, would be flagged

by the system as suspect. Bracewell’s DR research

(i.e., the DRed system) provides comprehensive

graphical capabilities for displaying large amounts of

rationale.

can help guide verification of a design, mod-

ification of the design as changes are pro-

posed, or reuse of the design for some other

purpose.� With reference to our made-up

example (cf. Figure 5.23), we could perhaps

imagine a KBES or other reasoning system

that has a set of objects that describe load

paths in the proposed building design. Then,

this system could be queried about connec-

tions to which loads could be transferred or

about alternate designs (or consequences) if

we wished to modify existing connections or

insert new ones.

Figure 5.24 shows two instances that we made up to illustrate just how the

different load paths might appear to the user of such a system: the top instance

shows that the second-floor walkway is connected directly to the roof truss and

carries no other load; the bottom instance reflects what the Hyatt Regency fabricator

did (that he should not have!). In addition to the reasoning potential for design, it

clearly would be quite valuable to make building plans – including the architect’s
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SLOT/ATTRIBUTE VALUE

TYPE_OF_HANGER THREADED_ROD

HANGER_CONNECTION NUT_ON_WASHER

NO_OF_HANGER_PAIRS 4

LOCATION_OF_HANGERS ( # [2nd_WALK_DIST030]

# [2nd_WALK_DIST060]

# [2nd_WALK_DIST090]

# [2nd_WALK_DIST120])

CONNECTS (2nd_WALK ROOF_TRUSS)

INTERMEDIATE_CONNECTS NONE

LOAD_TRANSFER_TO ROOF_TRUSS

LOAD_TYPE TENSION

Figure 5.23. An object description for the HANGER for the second-floor walkway for the
Kansas City Hyatt Regency Hotel.

and structural engineer’s intentions – available to the contractor and the fabricator

in this way.

Figure 5.24 shows that through the creation of the slot SUPPORTS, we identified

the functional purpose of the hangers to which they are linked (by virtue of values in

the LOAD_CARRIER slots in Figure 5.24 and the presumed links to the HANGER class

shown in Figure 5.23). America’s most noted architect, Frank Lloyd Wright, is also

famous for the dictum that “Form follows function.” The representation of function

and its links to form and its representations is also a lively area of debate. Does the

specification of function dictate a specification of form? Can we infer function from

form?

We can easily argue from the examples seen in this and the preceding section that

the answers to both questions are, in general, negative. Certainly, the specification

of a structural element to carry compressive loads between floors dictates that we

SLOT/ATTRIBUTE VALUE

LOAD_PATH (2nd_WALK ROOF_TRUSS)

SUPPORTS 2nd_WALK

INTERMEDIATE_CONNECTS NONE

OTHER_LOADS NONE

LOAD_TYPE TENSION

LOAD_TRANSFER_TO ROOF_TRUSS

LOAD_CARRIER TYPE_OF_HANGER

LOAD_PATH (2nd_WALK ROOF_TRUSS)

SUPPORTS (2nd_WALK 4th_WALK)

INTERMEDIATE_CONNECTS 4th_WALK

OTHER_LOADS (4th_WALK_LIVE 4th_WALK_DEAD)

LOAD_TYPE TENSION

LOAD_TRANSFER_TO ROOF_TRUSS

LOAD_CARRIER TYPE_OF_HANGER

Figure 5.24. Object descriptions for two instances of the class LOAD_PATH showing different
load configurations.
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need columns, but the shape of any particular set of columns is contingent on many

more factors than the simple need to carry a compressive force. Similarly, as we

commented about the wide-flange section in the discussion of standards processing,

we could not infer from its form how it was to be used because such I-shaped

elements can be used as both columns and beams or girders. We could make such

an inference if we knew more about the context in which we were designing. For

example, if we were using wide-flange sections for both columns and girders in a

rigid frame, we could look at their relative stiffnesses and infer function from form

by noting that column stiffnesses are designed to be larger than girder stiffnesses by

a factor of 2.5 so as to guarantee stability of the frame (by ensuring that any plastic

The independence of function and structure was

discussed previously. However, a related issue is

how much of the context of a device is included

when describing its function. Chandrasekaran and

Josephson (2000) point out that much of the

description of function in engineering is “device-

centric” (i.e., describing its properties or behavior

with no reference to what effects it has on the

environment in which it is located). An example

is the classic Pahl and Beitz view of defining a

device by its input/output of energy, material, and

signals. Because engineered devices always have

a particular desired effect (i.e., an intended func-

tion) that is usually well understood by all parties,

it is often not explicitly mentioned. For example, “a

pen produces ink at its tip” does not mention the

intended function. However, a complete descrip-

tion of function requires an “environment-centric”

description (e.g., a pen produces ink at its tip so

that with proper placement and movement against

some medium, ink can flow out to make useful

marks).

hinges that form occur first in the girders

rather than in the columns). This brings us

back to the discussion of intent, both as a

guide to design and as data that need to

be transmitted to whomever is in charge of

making the designed artifact. As an expres-

sion of design philosophy and reasoning, the

foregoing column–girder rule of thumb rep-

resents a refinement of a higher-level goal of

avoiding frame instability in the presence of

seismic loading.

It is interesting that functional modeling work usu-

ally makes no reference to manufacturing, although

that is understandable given that it is not usually

concerned with detailed design. Erden et al. (2008)

provide the most comprehensive review of function

modeling, whereas Hirtz et al. (2002) describe the

product-specific, engineering design view (i.e., the

functional basis).

We thus see the need to interpret, refine,

and represent at different levels of abstrac-

tion the intentions we seek to realize in

a design. The question is: “Are issues of

intention for and function of an artifact

inextricably linked to the issue of repre-

senting the artifact?” That is, can we think

of function independently of the represen-

tation of the device that performs that

function?� We can see from the examples,

in fact, that the details of the representation

of the artifact can be chosen apart from the

representation of that function, subject only

to the proviso that in the final analysis we,

as designers, have to produce a set of com-

plete and unambiguous specifications for the

manufacture of that artifact, which means

that this representation must be acceptable

to the manufacturer.�

We return now to the issue of commu-

nicating about the design, both as it unfolds

and as it must be finally conveyed to the man-

ufacturer. As we have said before, whereas
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the issues are both technical and organizational, we think that they are not so much

about representation principles or about the pragmatics of software and hardware.

We address the organizational issues first, starting with the fact that the design of

most complex artifacts requires combining the expertise of specialists in several dis-

crete areas. The various kinds of expertise can be deployed either sequentially or

concurrently. In sequential design, we break down the design task into a sequence

of subtasks for which the output of one designer’s work serves as input to the next.

In concurrent design, specialists in different disciplines (e.g., structural, mechanical,

electrical) or functions (e.g., planners, accountants, operators) work simultaneously –

but separately. In this case, it is of paramount importance that we coordinate design

decisions in real time or periodically review them for consistency and modify them

as needed during periodic reviews. Furthermore, in this case, which is crucial for the

design of complex or substantially innovative artifacts, we need to understand that

the experts or designers working on a piece of the complex artifact will work in the

representations they prefer for their task and on the current state of the design as

they know it.

We are still evolving models of concurrent design and for its support. Fur-

thermore, because we can argue that modeling such design is modeling the design

process, we defer until the end of the next chapter the description of some architec-

tures that have been proposed for concurrent design. For now, it seems reasonable

just to glance at concurrent design with an eye toward identifying the various artifact-

representation issues that might arise.

As the conceptual design of a complex artifact unfolds, high-level specialists

from all relevant design disciplines must (1) agree on the key performance specifi-

cations and constraints arising from each discipline, and (2) articulate and commu-

nicate the assumptions of designers from the participant disciplines because they

could have implications for all other disciplines. As a conceptual design becomes

firm, we can identify both key subsystems that fall primarily within the area of

expertise of a single design specialist and the top-level interface issues that must

Visser (2006) notes that her experiments show

that design teams add the need for new types of

knowledge to support collaboration, to allow them

to manage inter-task dependencies, generate and

understand external representations, and handle

various kinds of communication (Kleinsmann and

Maier 2013).

be coordinated with other specialists. After

we reach this stage, individual design activ-

ities can proceed concurrently, in a much

more loosely coupled fashion. Individual

designers develop partial design solutions

covering the components, materials, dimen-

sions, and other attributes of the subsystems

assigned to them, and they communicate

across discipline or subsystem boundaries

only infrequently.�

As the final, detailed descriptions of all subsystems are developed for a com-

plex undertaking such as an aircraft or power plant, we are then faced with the

overwhelming task of sharing and coordinating an enormous amount of information

about a very large number of objects and devices because we have to ensure that
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all of these pieces fit – functionally, spatially, and temporally. In traditional design

practice, this often involves the circulation to all affected parties of paper drawings

that are “redlined” to identify conflicts, errors, or omissions. This process is serial in

nature and thus extremely time-consuming. Moreover, it is certainly susceptible to

errors.

However, as designers in more and more fields develop syntheses on their own

workstations, their partially developed designs become machine-readable (and, as

we mentioned herein, machine-translatable and interchangeable). That is, three-

dimensional (3-D) CADD models provide a ready alternative to redlining for con-

sistency checking and communication across disciplines. One version of an integrated

3-D model would have separate layers for each discipline’s input, which could be

easily used, for example, to check for spatial consistency (“interference checking”).

It could eliminate the need for physical modeling of artifacts, such as scale models

of refineries and full-scale mock-ups of new aircraft. In historical terms, CAD and

CADD systems have been used largely for documenting design; only recently have

they been used for spatial coordination of designs.

It must be said, however, that current computational design tools provide hardly

any support for automated design synthesis, and they do little for design managers in

verifying functional consistency among an artifact’s subsystems. This indicates a need

for not only the kinds of representational integration we have espoused but also for

software architectures that address the need for intelligent functional coordination

among subsystem designs developed by separate design teams. (We explore this

issue in more detail in Chapter 6.)

Another obstacle to computer-aided design integration has been the incompati-

bility of database architectures for CADD and other systems used by different design

specialists. We could force an administrative solution to this problem by insisting

on the use of a single CADD package, assuming that it can support all of the kinds

of analysis we need. A more evolutionary line of attack on this “Tower of Babel”

design problem is the development of knowledge-based database interfaces that can

mediate between several related but otherwise incompatible databases. Although

we have said that software (and hardware) implementation issues are beyond our

scope, it is worth noting the development of standards by which CADD systems could

share their data (and representations) with other software. The vendors of CADD

systems – perhaps strongly prompted by their customers – have for some time been

interested in facilitating the exchange of data among different software packages.

Most designers and their organizations do not want their options to be limited to a

single piece of software or even to a single vendor; therefore, in response, profes-

sional societies and organizations have provided forums and means to standardize the

format in which data are produced by CADD systems, thus enabling users to share

results more easily. The first step toward this was the Initial Graphic Exchange Spec-

ification (IGES) standard, which was concerned solely with the exchange of drawing

information, not interpretive information. Thus, for example, IGES was concerned

with interchange between wire-frame representations and drawing packages. The
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Product Data Exchange Specification (PDES/STEP) emerged more recently as an

international standard for exchanging product information. Thus, the PDES/STEP

standard is concerned with standardizing a format for many of the kinds of informa-

tion we identified in the various examples and illustrations in this chapter. This is

not to say that a standard for KBESs or object descriptions is emerging but rather

that much of the product knowledge and information they will use and lodge within

their own representations will be available in a standardized format, so the process

of achieving the integration we have repeatedly stressed here will be substantially

eased.

With regard to representational issues and integration, we hope that we have

demonstrated the utility of representing (or describing) objects in different lan-

guages or styles, at different levels of detail or refinement, and in ways that invite

an integrated view. We are, after all, simply trying to imitate what we do as human

designers. We also should say that the discussion presented here has left many top-

ics (and possibilities) untouched. One of the most important of these is the linking

of artifact representations to analysis tools, whether they be expressions of formu-

las on paper, embedded in software for the symbolic manipulation of formulas, or

exercised as numerical algorithms (e.g., finite differences, matrix methods, finite ele-

ments, and so on). Such integration is coming and its appearance is heralded by an

increasing interest in using KBESs as front ends and user interfaces for complex

analysis packages.

Commercial knowledge-based design systems that can be used to generate

design syntheses for semicustom products are becoming increasingly available. These

systems can be developed to run in a fully automated mode or they can keep human

designers in the loop via human interface tools such as product-structure graphs

and geometric CADD visualizations of the design, to which the human designer can

react at each stage of design development. They are based on somewhat different

Work on model-based reasoning (MBR) has cen-

tered on the use of function-behavior-structure rep-

resentations. Unlike case-based reasoning, where

the “case” is retrieved and used essentially “as

is,” models allow inferences and different kinds

of reasoning such as abstraction, prediction, and

evaluation. This MBR research does not nor-

mally include solid models to represent structure,

although they do not preclude it: they often just rely

on schematic descriptions of structure (Goel et al.

1997).

styles of integration but, conceptually, they

are very similar to what we have seen in the

product model idea shown in Figure 5.22 or

to another variant called model-based rea-

soning (MBR).� In such systems, and for

all but the most unique products, designers

at CADD workstations can extract compo-

nents from a database of standard compo-

nents (which may be supplied by the com-

pany, a vendor, or the industry), store them

in an appropriate CADD format, and intro-

duce them into a particular design synthe-

sis. We can identify a unique instance of a

product as a series of components that has been selected, adapted, and appropri-

ately connected to other components in the current synthesis model. As before,

the component descriptions in the CADD database contain – or have pointers
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to – several kinds of descriptive information (e.g., geometry, material properties,

manufacturing specifications, and contractual data) that can be used to support

design, manufacturing, and operation of the product. Each component is typically

represented in a single frame or object at the level of detail at which we wish to

reason about the system. Furthermore, a single component frame can represent a

subassembly consisting of hundreds of separate parts or just one part of a product.

Objects in these product models incorporate geometric, physical, and administrative

attributes of a product’s components as well as their topological structure.

One of the advantages of this approach is that with the product models explicitly

embedded in a KBES, we can deduce a substantial amount of knowledge about

the roles that individual components (e.g., beams, joists, or columns) play in the

A partonomy is a hierarchy constructed of object

descriptions connected by “part-of” relations. Unfor-

tunately, for the representation of knowledge, “part-

of” has a variety of meanings in English (e.g., a brow

is part of a face versus a wheel is part of a car), and

it is not transitive unless it is used carefully. Typ-

ical part–subpart relationships often strongly influ-

ence the decomposition of design problems (Liu and

Brown 1994).

functioning of a product by reasoning about

the hierarchy for a particular product and

the topological links among its components.

Thus, by noting that a beam is part-of a struc-

tural subsystem and is connected-to a gener-

ator platform, for example, we might con-

clude that its role or function in the product

is to provide structural support for the gen-

erator. This allows the beam in our system to

deduce that it supports the generator; thus,

it can reference the weight of the generator

in computing its size.�

One of the principal advantages of the MBR and similar approaches to inte-

grated KBES-based environments is that we can use generic component libraries

represented as frames, whose attributes and behavior can be inherited by instances

of the components in engineered products or systems. Such a library provides signifi-

cant leverage because, among other advantages, it drastically reduces the number of

new rules we would have to employ in a given application. As we design new products

Other key issues that challenge knowledge-based

systems, in addition to the amount of knowledge,

are maintenance and consistency. For practical real-

world, rule-based systems, there can be thousands

of rules. The standard example, XCON (McDermott

1982), at one point had more than 10,000 rules

and needed 30 people to maintain it. Before it could

be added, each proposed new rule had to pass

a battery of tests to show that it was consistent

with existing rules and would add more capability.

Frame-based (object-oriented) systems have similar

problems.

that incorporate generic components, we

can use our already-captured knowledge of

system behavior encoded in the inherited

behavior of the components. The number

of new rules that we will need to configure

such new products will increase only linearly,

or even more slowly if new products share

knowledge with past products.

However, there is a potentially serious

roadblock to the widespread use of the

kind of systems we are talking about, based

as they all are on these very rich object

descriptions.� Virtually all of our experience

with such systems has been with research or
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The National Institute of Standards and Technol-

ogy (NIST) Design Repository Project (Szykman and

Sriram 2002; Szykman et al. 2000) was a sig-

nificant effort to store product information in XML

about artifacts, functions, forms, behaviors, and

flows. Regli et al. (2010) describe a case study

of archiving the semantics of engineering artifacts.

The design repository effort started at the University

of Missouri–Rolla (Bohm et al. 2005) depends on

the functional basis (Wood and Greer 2001). It is

now at Oregon State University and includes about

100 products and more than 6,000 artifacts. The

repository has been in existence for more than 10

years and includes bills of materials, functional mod-

els, function-component matrices, design struc-

ture matrices, and photographs. It has supported

research on analogical reasoning, risk assessment,

biomimetic design, and concept generation.

demonstration prototypes. When we think

of describing all of the components of a large

building – an office skyscraper, for example –

it almost boggles the mind to think of all

the classes, objects, and instances we would

have to develop (in the jargon, instantiate).

A number of objects measured in the (low,

single-digit) thousands would rank among

the most robust and largest systems that

have been developed to date.� No one really

knows how such systems would scale up in

a real-world context where tens or hundreds

of thousands of objects would be required

to realistically describe a complete design.

Thus, we need to give careful thought to the

implementation issues that underlie large

integrated systems.�
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6 Representing Design Processes

We now complete our discussion of representing design knowledge by turning to

the representation of the design process in terms of the languages of design that we

identified in Chapter 5. We take a path parallel to that of the previous chapter as

we show how AI-based problem-solving methods can be used to model the ways we

solve design problems, as well as how we represent the kinds of design knowledge

we use to solve design problems.

6.1 Classical Design Methods

In Chapter 3, we described several prescriptive models of the design pro-

cess. Inherent in these prescriptions is a disposition toward inductive reasoning

wherein we try to induce or infer a solution to a design problem by filling in

incomplete information or knowledge. We might contrast this with a deductive

approach to design wherein, in its most prevalent implementation, we deduce solu-

tions to our current design problem from case studies of previous designs. As

Recent studies seem to show that the reasoning

used by designers is not pure but rather opportunis-

tic. For example, designers do not work top down

only (from general to specific) or just use deduction.

This resonates with the suggestion that design

can be characterized as a mixture of the standard

logical inference types – deduction, induction, and

abduction – that vary as to whether they are truth

preserving. Deduction uses a specific example to

reason from a general statement to produce a result

in a way that preserves truth: for example, B is a

bolt, all bolts are strong, and therefore B is strong.

Induction infers from many different examples

(continued )

discussed in Section 6.2, there is a rough

analogy here between using a set of rules

to analyze the meaning of a set of symp-

toms or conditions, in which case we are rea-

soning deductively, and using a set of rules

to work “backward” from a set of desired

goals in order to find the conditions that

would allow us to achieve those goals, given

the rules under which we are operating. In

the latter case, clearly, we are reasoning

more inductively than deductively. The clas-

sical or traditional methods that we describe

in this section are clearly informed by and

support the inductive nature of the design-

process prescriptions presented earlier (cf.

Section 3.3).�

113
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(continued )

that a general statement about them might

be true: for example, bolt1 is silver, bolt2 is

silver, bolt3 is silver; therefore, all bolts are silver.

Abduction works with a general statement and

a specific example to produce a hypothesis that

might be true: for example, all bolts are strong, B

is strong, and therefore B is a bolt. So, although

design reasoning might include all of the above,

it has been thought that designing might be

an exercise in abduction and that the resulting

design decisions are hypotheses about satisfying

requirements: for example, design A produces

behavior B, B is the required behavior; therefore, A

is likely to be the design.

We add a contextual note. The prescrip-

tive descriptions and their underlying meth-

ods are, in one sense, traditional or clas-

sical because they have been around for

some time. Furthermore, and especially in

the context of the arguments made in this

book, these methods are labeled as tradi-

tional because they predate the vocabulary

and structure of design as it is developing

through AI-based research into design. It

is also interesting to note that the methods

to be described here are found only rarely

in American textbooks on design. They are,

however, found rather consistently in books

written in Europe, especially in England and

Germany.

We begin our review of the inductive methods of the classical tradition with

the construction of objectives trees. These trees represent articulations of our design

objectives or goals, working down from the most abstract – or top-level – objective,

which we put at the head of the tree. Or, equivalently, we can think of each subgoal

as a node of the tree and the top-level goal as the root node. Figures 6.1 and 6.2 show

two objectives trees developed by different teams of undergraduates in a first-year

design course in response to the following project statement given them by a client:

Design a “building block” analog computer kit. Design a rugged, low-cost, easy-

to-use analog computer. It should be easy to reconfigure so that it can model a

wide variety of systems. The basic functional blocks that need to be implemented

(e.g., addition/subtraction, integration, and so on) have, for the most part, been

determined. The focus of this project, therefore, is on the physical layout of the

system, the choice of materials, and ergonomic issues.

Note that the objectives or goals for a project are

not the same as goals set up in the procedural

plans or methods used to solve design problems.

Although both project goals and plan goals can be

represented in a hierarchy, and both become more

specific farther down, problem-solving goals tend

to describe parts of the problem to be tackled (e.g.,

select a length and a width for part X that are com-

patible with parts Y and Z ), whereas objectives tend

to relate to performance and requirements. That is,

problem-solving goals are usually associated with

the plans or methods used to achieve them.

We can see in these two objectives trees

how the client’s overall goals for the project

were refined into increasingly detailed sub-

goals. In effect, the two design teams built

two hierarchical structures, and their goals

in doing so were to clarify what was wanted

by decomposing the client’s objectives into

their component subgoals. Note how the

objectives became more specific as the

client’s relatively abstract project statement

was clarified and refined, much as we found

when we worked on the design of the step-

ladder in Section 3.1, although we can also

see that the two design teams stopped their objectives trees at different levels of

specificity.�
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cover
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Figure 6.1. An objectives tree for a student-designed “building block” analog computer kit
(Gronewold et al., 1993).

Another interesting feature of such objectives trees is that we can “read” in them

the answers to two questions. As we work down the tree, we can answer the question

of how to achieve the various objectives. Thus, the path outlining how the cost can

be minimized is shown in Figure 6.1 as a decomposition of cost elements into basic

attributes of the computer kit and “add-ons” – that is, extra features that add to the

computer’s price. These subgoals are then further decomposed as shown. Similarly,

looking at Figure 6.2, if we want to know how to achieve the goal of portability, we

see that we must achieve subgoals relating to the computer’s weight, size, and power

supply.

By way of contrast, moving up the objectives tree allows us to articulate why

we wish to achieve certain subgoals. Thus, in Figure 6.1, we see that we wish
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Figure 6.2. Part of the objectives tree for a student-designed “building block” analog computer
kit (Hartmann et al., 1993).

Trees showing rule applications (for rule-based sys-

tems) also provide this simple form of explanation.

Looking from a node representing the left-hand

side of a rule toward the node or nodes repre-

senting the right-hand side can be used to explain

how something was shown/decided. Looking in the

other direction can be used to explain why (i.e., what

goal/subproblem needed to be achieved or which

hypothesis shown). Similar dependency structures

between decisions also can be used during back-

tracking to help decide which decision to undo if a

problem is found during designing (e.g., if a con-

straint fails). The assumption is that the current

problem is due to a previously made decision. By

undoing things in order (i.e., the last decision made

gets undone first), we get (inefficient) chronological

backtracking. Nonchronological backtracking allows

us to undo a decision that caused a problem, wher-

ever it is in the chain of prior decisions.

to incorporate feedback loops into our

design so as to make the computer easy

to reconfigure, which in turn means that it

will be more flexible. Similarly, from Fig-

ure 6.2, we can see that we want reli-

able plug-ins to achieve a better structure,

which in turn adds to the reliability of our

design.�

It is also interesting to comment on

another aspect of choosing a direction in

which to traverse objectives trees. We see

in our discussion of AI-based problem solv-

ing in the next section that much of that

approach can be cast in terms of searching

a tree of possible problem states. Further-

more, the direction in which problem trees

are searched has a meaning not unlike what

we have just described for objectives trees.

In searching problem trees, we often use a set

of rules (cf. Section 5.1) to guide our search.
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The direction of the search can be set in terms of matching data to the rules’ left-hand

sides, their antecedents, or in terms of matching goals to the rules’ right-hand sides,

their consequents, to see which data are needed to allow the goals in the consequents

to be achieved. In the first case, we speak of data-driven, forward search. In the sec-

ond case, we speak of goal-driven, backward search. Thus, analogous to objectives-

tree traversal, we can think of (1) forward or downward-directed search as providing

the data that explain how this path is unfolding, and (2) backward or upward-

directed search as delineating the goals that explain why we are achieving these

goals. We describe a problem-solving process called means–ends analysis

As we noted in a previous chapter, the AI technique

of means-ends analysis is usually associated with

recursively reducing differences between a current

state and a desired state by applying actions.

in which the ends are the goals we wish

to achieve and the means are the ways in

which we actually arrive at the goal states.

Means–ends analysis also has been proposed

as a very general model of human problem

solving.�

Now, returning to the two trees shown in Figures 6.1 and 6.2, we see that they

differ from each other in rather obvious ways, even though they were developed

in response to the same client statement. However, this should not be a source

of concern. The specifics of an objectives tree will vary with the inclinations and

experiences of the individual or team that articulates it.� Clearly, the more specific

we can be in developing the nodes of the tree, the more confident we can be that we

There is a significant amount of research on the

difference between expert and novice reasoning

(Feltovich et al. 1997). Novices tend to use more

textbook-like knowledge, for example, using stan-

dard hierarchies, and they search to find the right

way to produce an answer. Experts tend to have

incorporated or compiled more of their reasoning

experience into their knowledge, so they more eas-

ily (with less searching) use the right knowledge at

the right time.

understand our client’s needs and can artic-

ulate an accurate design specification that

expresses those needs. The point is not that

objectives trees will generate a solution.

Rather, it is that objectives trees are a use-

ful way of translating and clarifying what our

goals are, down to a level of detail that we

need for the next steps in the design pro-

cess. Thus, as we have noted before, objec-

tives trees and the other aids we describe in

this section are not algorithms that produce

design solutions but rather aids that help us

organize and externalize our thinking.

Having identified our design objectives in greater detail by means of these trees,

we are still left with much to do, including ranking these objectives according to

perceived degree of importance. It is not unreasonable to argue that rankings ought

to be deferred until design alternatives can be identified, in which case the ranking

of objectives can perhaps be combined with a ranking of the utility or effectiveness

of each alternative. However, it is equally plausible to argue that we should rank our

objectives early on and use these rankings as a guide for focusing our design efforts.

On this basis, we present now the ranking of objectives, which is implemented in

a pairwise-comparison chart, as a tool to help rank the importance of the design

objectives. As an illustration, Figure 6.3 is a comparison chart and its companion
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Figure 6.3. Ranking objectives (in a pairwise comparison chart) for a student-designed “build-
ing block” analog computer kit (Hartmann et al., 1993).

results for the analog computer design developed by the team that developed the

objectives tree in Figure 6.1. We note that the objectives used in the comparison

chart are somewhat different, both in terminology and in their respective depths

in the tree, than are those in the tree. This is because the design team had several

extensive discussions with the client between the time they prepared the objectives

tree and the time they focused on the comparison chart. We can see that the chart

is a relatively simple device in which we simply list the objectives as both the rows

and columns in a matrix or chart and then compare them by pairs, proceeding in a

row-by-row fashion. We assign a 0 or a 1 depending on how we assess the relative

importance of each objective.

We can see from Figure 6.3 that safety is the most important consideration (viz.,

all the 1’s in the second row) and that modularity is the second most important

objective (viz., four 1’s in the last row). Now we can list our objectives in order of

decreasing importance as safety, modularity, low in cost, reliability, small in size, and

light of weight.

Again returning to our objectives trees and proceeding downward into their

depths, we also can use them to identify and characterize the functionality we expect

of our design. That is, instead of simply viewing the trees as increasingly refined lists

of attributes, we should begin to think of our design in terms of the functions that it is

expected to serve, and we should extend this thinking to the designed artifact’s com-

ponents. A design aid called functional analysis may be helpful here. In functional

analysis, we concentrate on what must be achieved by identifying and listing in an

organized way the inputs to the designed device as well as its outputs. Our approach

to functional analysis of a proposed device is to consider it first as a “black box”

(see Figure 6.4(a)) whose inputs and outputs are defined at a fairly abstract level,

consistent with clearly demarking the boundary between the device and its surround-

ings, much as in Simon’s definition of design we recognized the designed artifact’s

inner environment as being distinct from the outer environment in which the device
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Figure 6.4. “Black box” and “transparent
box” models of device functionality (Cross,
1989).

operates (cf. Chapter 2). In the next step, shown in Figure 6.4(b), we replace the

“black box” with a “transparent box” in which we decompose the overall function

into a block diagram of subfunctions whose composite functionality achieves our

overall functional goal.

We can thus think of functional analysis as being equivalent to function decom-

position – that is, to an attempt to parse the function of a complex object into

subfunctions that can be achieved by individual components. Then, at this point,

the design process becomes one of synthesizing an artifact by selecting and con-

figuring components on the basis of their functionality, assuming that appropriate

components can be identified. If not, they will have to be designed as well, and the

functional-analysis process could proceed recursively.

We should keep in mind that one of the crucial aspects of doing a functional

analysis or decomposition is a clear understanding of the system boundary and of

all the inputs and outputs that cross that boundary. We illustrate this in Figure 6.5,

wherein the inputs, outputs, and subfunctions are elaborated for a washing machine.

Notice how the functionality requirements become more elaborate as we recognize

the various inputs and outputs that cross the boundary over a washing cycle. Thus, at

the gross level, we could say that the washing-machine output consists of clean clothes

For a review of recent functional reasoning research,

see Erden et al. (2008) and the AIEDAM: Artificial

Intelligence for Engineering Design, Analysis and

Manufacturing special issues edited by Stone and

Chakrabarti (2005). Umeda and Tomiyama (1997)

provided a shorter, earlier overview.

and dirt. In fact, however, at different stages,

the washing machine will expel dirty water,

less dirty water, and moist clean clothes. Fur-

thermore, depending on our ultimate func-

tional expectations, we could expect to pro-

duce both moist air and dry clothes if we

shifted our boundary to include a drying

function within our machine.�

Having identified the function(s) we wish our design to serve, how do we then

choose the means by which these functions are to be effected? One useful tool for

this stage of the process is the morphological chart, also known as the function–

means table. In this table, we array all of the functions we wish to achieve against

the particular means we can use to effect each function. We show an illustration for
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Figure 6.5. “Black box” and “transparent box” models of a washing machine (Cross, 1989).

the analog computer kit design in Figure 6.6. In the left-hand column are all the

functions and subfunctions that the design must produce; in the row to the right

of each function, we show or describe a number of means of effecting these

functions. In principle, we can find possible solutions by adding or connecting

a single means for each function listed, for example, by using an etched board

for the block-to-block signal connection, relying on gravity to fasten blocks to

the board, using concentric circles to connect power to each block, and so on.�

The approach of moving from functional or behavioral descriptions to preliminary designs or embodiments

(i.e., choosing component types that can provide the behavior and using them as building blocks) has been

used in a variety of systems, including some of the functional reasoning systems referred to previously.

Welch and Dixon (1994) used behavior graphs to model conceptual design: if the graph of a required behavior

matches an existing embodiment (e.g., a gear pair), then that is identified as the solution; otherwise, the graph

is transformed by adding intermediate behaviors. Larger graphs might match to more than one embodiment.

This transformation and matching can be repeated until enough matches are found and a system configuration

is formed. Although the control mechanism for that system is a fairly simple search, the A-Design system

(Campbell et al. 1999) uses a knowledge-directed variant of evolutionary computing that is effectively a parallel

search: a collection of candidate partial designs (a population) is altered by software agents that “grow” new

alternative designs. Each agent “represents” a different electromechanical component type (e.g., gear) and

tries to add it to partial designs in the population. The component types act as building blocks for the design.

Once behavioral equations are attached to the resulting complete designs, instantiation agents can select

actual components to replace the types in the configurations. The resulting actual designs are evaluated.

Promising designs and promising portions of designs are kept and used to seed the next population.
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We can clearly generate more design alternatives if we can identify a large number

of means by which each function can be served. However, it is clearly a good

idea to keep the list of required functions relatively short – perhaps in the range

of six to eight functions or other attributes – so as to make the consideration

of alternatives manageable in combinatorial terms.� It also is a good idea to

express those functions at roughly the same level of detail or refinement so that both

combinations and comparisons are of “apples and apples” rather than of “apples and

oranges.”

Function-based synthesis also can be done using a grammar (Kurtoglu et al. 2010), where grammar rules

relate functions (e.g., from the functional basis), such as STORE electrical energy and SUPPLY electri-

cal energy, to components (e.g., a battery) or configurations of components. This allows us to convert

devices described in terms of “function structures” (i.e., configurations of functions) into configurations of

components by applying rules. There are many research issues we must address about how to imple-

ment such rule-based systems, including acquiring grammar rules by inference from descriptions of known

devices; using functional decomposition rules to convert an initial high-level, “black box” statement of

the problem into a function structure; controlling how rules are applied to generate configurations; and

developing and applying evaluation methods for the configurations. Cagan et al. (2005) survey grammar-

and graph-based methods for computational synthesis, and Chakrabarti et al. (2011) also include other

methods.

The design alternatives generated in a function–means table are not guaranteed

to be admissible. The candidate designs may not make sense physically or economi-

cally, or they may not meet all of the constraints specified for our design. However,

a morphological chart does provide a framework within which we can generate and

explore alternative designs, which can in turn be tested for validity and utility. Thus,

they support the idea of what in the AI literature is called generate-and-test prob-

lem solving (about which we will say more in Section 6.2). Similarly, morphological

charts provide a systematic underpinning to the classic idea of solving problems by

trial and error in that they provide an organized way of generating and listing trial

solutions.

We have by no means covered all of the traditional or classical methods, only

those we view as being most useful and having some relationship to the other pro-

cess models we discuss later in the chapter. There are two other methods that are

worth mentioning, however, if only in passing. Both methods depend on our ability

to list, perhaps in a hierarchical way, the attributes and functions we desire of our

designed device, and they are even less formal in their procedures than the methods

just outlined. The first method is the performance-specification method, the idea of

which is to develop a detailed list of desired attributes to which specific numeri-

cal values can be attached. These values then serve as target goals for the design

process. The second method is called value engineering, and it aims to ensure that

money is not wasted on unnecessary parts or components by asking whether each

part serves a vital function and whether that part adds sufficient value to justify
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its cost in the design. This is done by listing all the artifact’s parts and ana-

lyzing the cost of each part as well as the value that part adds to the whole

device.�

It is difficult to perform intermediate evaluations of designs based on their cost (or other cumulative measures

such as weight) because the cost of a half-completed design is usually not a good predictor of the cost of the

final design. Experienced designers can probably conduct such evaluations in situations they know well. The

MICON system (Birmingham et al. 1992) uses heuristics to address cost during designing, assigning penalty

points to each design alternative based on the fraction of the allocated resource (e.g., available dollars) it

uses, weighted by the fraction of the resource already used (i.e., a criticality measure). Although this strategy

does not always work, and backtracking may be required, alternatives may be worse: for example, picking

the cheapest choice at each turn may end up producing impossibly expensive choices later in the design due

to interactions between choices. MICON is also a system that maps functions to configurations; however,

because it focuses on high-level computer design, it includes both spatial and logical configuration (i.e.,

MICON decides how parts might be laid out on the board, not just how they are connected, by associating

a “layout template” with each functional decomposition). So, when MICON decides that function X needs to

be implemented with two subfunctions A and B, it also allocates space for them and identifies the required

connections.

6.2 AI-Based Problem-Solving Methods

We now describe some problem-solving methods developed by AI researchers using

programming techniques based on symbolic representation. With the advent of sym-

bolic representation, as it became possible to think in terms other than numeric

representation, we could manipulate concepts, objects, or “things,” as well as col-

lections of objects, such as lists of things. We present here a brief overview of these

AI-based problem-solving methods, intending to provide just enough depth to make

the balance of this chapter – concerned as it is with AI-based representations of the

design process – coherent and intelligible. To illustrate the basic methodology and

demonstrate the power and range of symbolic representation, we start with one of

the classics of AI research, the missionaries-and-cannibals (M & C) problem, which

we state as follows:

Three missionaries and three cannibals seek to cross a river. A boat is available which

will hold two people and which can be navigated by any combination of missionaries and

cannibals involving one or two people. If the missionaries on either bank of the river, or

en route in the river, are outnumbered at any time by cannibals, the cannibals will indulge

in their anthropophagic tendencies and do away with the missionaries. Find a schedule

of crossings that will permit all the missionaries and cannibals to cross the river safely.

In this rather wordy problem statement – perhaps not unlike some clients’ design

project statements – we have an initial state, six people on one river bank, and a goal

state, all six having crossed safely to the other bank. Our immediate objective is to

find a safe path between the initial and goal states. We introduce a set of nodes to

represent allowable intermediate states of arrangements of the three missionaries
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Figure 6.6. Morphological chart for the “building block” analog computer (Hartmann et al.,
1989).

and the three cannibals arrayed on the riverbanks, where the dashed line in each

node represents the river (Figure 6.7). It would seem that 64 arrangements are

possible because there are 6 people who can each be in one of two places. However,

on reflection, we find that we need consider only what happens on one riverbank

because each arrangement on that bank has a unique complement on the other bank.

Thus, if we use the notation (#M, #C, +/−) to represent a state on the left bank – the

sign indicates the presence or absence of the boat – it is clear that we can identify
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Figure 6.7. A partial node-and-link representation of the missionaries-and-cannibals problem
(Dym and Levitt, 1991a).

only 32 independent states because there are just 4 states each for both missionaries

and cannibals (i.e., 3, 2, 1, 0) and 2 states for the boat (+, −).

Now we ignore much of the detail of the solution we outline (e.g., the constraint

that the number of cannibals can never exceed the number of missionaries) and con-

centrate on the representation. We represent the M & C problem as a set of states or

nodes in the form of a tree and where transitions between the various states are repre-

sented by links (see Figure 6.7). The initial state is the root node. Nodes are expanded

through the simple expedient of making all the moves that can be made in one boat

trip, starting from the initial state of the root node. Five moves are possible from the

root node (i.e., the boat can be taken by either a cannibal or a missionary, by two of

one kind, or in one trip by one of each kind), and the resulting child nodes are shown

in the tree’s second layer. This process continues (cf. Figure 6.8) until an identifiable

goal state – the state (0, 0, −) – is reached, at which time the search can be concluded,

the path back to the initial state can be retraced, and success can be announced.

The important point for us at the moment is that this amusing little problem

is solved by searching a space of problem states, each of which is represented in

a very simple – yet elegant – way. The representation helps us visualize both the

states and permissible transitions, and it facilitates a very efficient statement of

the arrangements and of the constraints. The representation also ignored a lot of

irrelevant questions, such as “Is the width of the river important?” and “Are there
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Figure 6.8. A partially developed search tree for the missionaries-and-cannibals problem
(Dym and Levitt, 1991a).

restrictions on carry-on luggage?” Thus, we were able to set the representation at just

the right level of abstraction for efficiently searching out a solution. The lesson is that

It is appropriate to ask here whether design is

search. In colloquial terms, designers move through

alternatives gradually, making and refining choices

until they find an acceptable design – and we can

characterize this as search. However, we can model

only the simplest design problems as a formal AI

search that starts with a given: state space, well-

defined goal nodes, start nodes, and operators.

Designers produce new knowledge and require-

ments as they progress. Furthermore, design gen-

erally involves multiple spaces (see Section 6.2.1).

we can, with the right representation, set

up and solve many problems as searches

through problem spaces.�

Another classic search problem is based

on a classic toy, the 8-puzzle (Figure 6.9),

wherein we move tiles around in a 3×3 array

or matrix containing eight numbered tiles

and one empty space. It, too, can be set up

as a search through problem states, as Figure

6.10 shows. We are interested here in one

particular aspect of the complete solution. If

we follow the paradigm introduced in the M

& C problem, we can generate states and test
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Figure 6.9. The 8-puzzle initial and goal states
(Dym and Levitt, 1991a).

them to see if they match the goal state. However, a quick calculation of the combi-

nations of possible moves reveals that there are 362,880 states that can be generated

for the 8-puzzle – and this without accounting for copies of states or tracking moves

so that they are not repeated uselessly! The search tree generated for the 8-puzzle

is very wide; we can see in Figure 6.10 how quickly the tree broadens, and we are

not even close to the solution. The 8-puzzle tree indicates perhaps more vividly than

the M & C problem the need to understand the means by which we might traverse

or search a tree. For example, do we expand the nodes by following the numbers

shown above each node? Or do we follow paths such as 1–2–5–10 or 1–3–7–14? If

so, why? Is there a difference between these two node expansion patterns? Given

the breadth of this tree, can we invoke some knowledge to “narrow” it and so keep

the search within bounds?
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Figure 6.10. A partial solution to the 8-puzzle, where the search beomes very wide (Nilsson,
1980; Dym and Levitt, 1991a).
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In fact, the 8-puzzle is an example of a search that can be guided or directed by

applying some knowledge about the domain. We would direct a search by introducing

an evaluation function that uses heuristic knowledge about the task at hand to assess

whether a particular intermediate state is drawing us closer to our goal state. Thus,

when we expand a node in the 8-puzzle, for each child node we would add the depth

of the node in the tree to the number of tiles not in their proper places, and then

follow the path with the lowest number.

What do our two sample problems have to do with modeling design processes?

We want to build our vocabulary about trees as models of the search space, choosing a

direction for searching a tree, problem characteristics, and problem-solving strategies

for searching trees. Then we can describe some recent work in modeling the design

process.

6.2.1 Models of the Search Space

We have already defined a search space or problem space as that space contain-

ing the set of states of the problem being considered, the operators that describe

transitions between states, and the specifications of the initial and goal states. If each

It is easy to believe that a “state space” contains

all possible “states” in which a design (or config-

uration) may reside, including both incomplete and

complete designs (Woodbury and Burrow 2006).

However, designers often reason in multiple spaces.

For example, when designing a mechanism, we tra-

verse the normal design state space of complete

and partial mechanism designs as we make further

design decisions. We also might reason in the space

of combinations of forces, rotations, and operating

conditions that test the proposed mechanisms (i.e.,

a space of tests). Yet another space might be the

suitable fixes we could apply if problems arise while

we are designing. Still another space might contain

design plans. The key concept is that we manipu-

late each space using different actions that act on

different items and primitives.

state or node in the space represents an

actual configuration of the evolving solu-

tion, then the problem space is called a state

space.� In the M & C problem, for example,

nodes were first represented by the boxes

in Figure 6.7 and then by the notation seen

in Figure 6.8. The operators were shown as

links between the nodes, and the links in

turn stood for feasible moves that individual

or paired missionaries and cannibals could

make.

Unfortunately, to break the analogy, we commonly

talk about the “depth” of a search as we move along

branches toward leaf nodes.

We can think of searching a state space

as traversing a search tree, starting from the

initial state or root node of the tree. As any

given node is expanded, it is termed a parent

node; its successors are called children nodes

or descendant nodes. A node that has no suc-

cessors or children is called a tip node or

leaf node. Thus, the process of expanding a

node is the process of generating its descen-

dants. And, in keeping with our tree anal-

ogy, we talk about the branches of a search

tree when we wish to refer to any nodes and

links stemming from a particular node of the

tree.�
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When we traverse a tree, movement among nodes occurs because some con-

dition or set of conditions triggers an operator. Search operators are quite often

written as rules, with the rule antecedents defining the conditions that must be met

before the rule can be fired, and the rule consequents defining the actions to be taken

if the conditions are met.

6.2.2 Choosing a Search Direction

When we use a tree representation, we have the option of choosing a direction for

the search. We could search forward from our root node, backward from a goal

state, or perhaps in both directions. Although many considerations enter into this

decision (e.g., tree characteristics, problem and data structures, and problem-solving

strategies), there are two basic strategies for making moves up or down a tree, and

these strategies depend largely on the tree topology or shape. In one strategy, we

match the given data against the antecedents of the available rules, find the applicable

rule(s), and take the actions dictated by the consequents of the fired rule(s). This is

data-driven reasoning, or forward-chaining.

In the second strategy, we examine the rule consequents to see which rules have

as their outcomes the goals we wish to achieve. We then examine the antecedents

Unlike basic search, more sophisticated and realis-

tic search methods try to learn. So, the discussion

of design processes ought to include the possibility

of learning during or after designing (Duffy 1997).

Grecu and Brown (1998) outlined several dimen-

sions along which learning in design can be cate-

gorized, including what triggers learning (e.g., fail-

ure), elements that support learning (e.g., critiques),

what is learned (e.g., design rules), the methods of

learning (e.g., by analogy), and the consequences

of learning (e.g., faster design processes). Brown

(1991) presents a discussion of the use of learn-

ing to improve design process efficiency, and more

recent work on learning in design is found in Duffy

and Brazier (2004).

of those rules that have the desired out-

comes to see which facts we need for these

rules to be fired. If the relevant facts are not

available to trigger these rules, we take the

establishment of those relevant facts as sub-

goals, and the search proceeds recursively in

this fashion. This is goal-driven reasoning, or

backward-chaining.

How do we decide on a direction for

searching a tree?� We normally look at two

things: the shape of the tree as expressed in

its branching factor (i.e., the average num-

ber of child nodes that can be reached from

a given node) and the relative number of

initial states. We would generally search in

the direction of the lowest branching factor.

If the branching factor is roughly the same

in either direction, then our choice would

hinge on how the number of initial states relates to the number of goal states, and

we would work toward the larger number. Problems with a large number of goal

states (e.g., chess, where the number of checkmates is quite large) are not amenable

to backward-chaining.

However, whereas these principles are generally applicable to tree search, they

may not be as useful for modeling a design process because other aspects of the
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If we were given a design, then reasoning back-

ward would be asking, given the requirements,

whether we had the design knowledge to produce

that design. But this is not the normal way things get

designed! Backward reasoning makes more sense

for diagnosis, where we are asking whether we

could infer a hypothesized disease from the symp-

toms and any test results, using the available diag-

nostic knowledge.

process may come into play, such as the

basic strategy we adopt for looking at one or

another class of design tasks. It is also worth

pointing out that backward-chaining is pos-

sible only if we have an explicit statement of

the goal state (or of a rather small number of

possible goal states). Furthermore, for prob-

lems where the goal is implicitly defined and,

which is often the case in design, the solu-

tion is specified by various constraints, it is

impossible to reason backward.�

Because humans are not limited to following a sin-

gle control strategy and direction (e.g., top down) all

of the time, computational design systems should

also not be so limited. However, it is more diffi-

cult to include such variety in a system. At the

very least, we need meta-reasoning to decide which

strategy to use and when. Just as meta-knowledge

is knowledge about knowledge (e.g., how reliable it

is), meta-reasoning is reasoning about reasoning.

In design, meta-reasoning might include reason-

ing about which plan to select or which analysis

method to use (e.g., one is faster but another is

more accurate). In rule-based systems, meta-rules

are commonly used to decide which subset of rules

to fire in a given situation.

We also need to be somewhat careful

with our nomenclature, or at least with the

inferences we might draw from our terminol-

ogy. In particular, although we talked before

of working backward from a goal state, this

should not be taken to mean that a goal can-

not be defined as the root node in a tree, as

we will see in our discussion of the PRIDE

system in Section 6.3. In fact, still another

characterization of problem solving is the

contrast between top-down problem solving,

which is usually meant to indicate a solution

working downward from a high-level goal or

an abstract statement, and bottom-up prob-

lem solving, which is usually taken to indicate

an approach based on some original data or

a very low-level problem description.�

6.2.3 Characterizing Problems

A few brief thoughts on characterizing problems are appropriate now, in anticipation

of a subsequent outline of problem-solving strategies. Three broad problem types

have been identified by AI researchers, of which two are of special interest here:

path-finding problems and constraint-satisfaction problems.

The 8-puzzle and M & C problems are in the class of path-finding problems

because the desired outcome is the determination of a set of moves, a path, from an

initial state to a goal state. Engineering design problems can be set up as path-finding

problems, as we see in the next section.

In many engineering design problems, we cannot state explicitly what form

the solution must take, even though we can describe features or characteristics

of the desired solution. That is, we desire in such problems to establish a goal

state that can be described only implicitly at the start of the search. Such problems
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Because design decisions must be both correct

and compatible, almost all knowledge-based design

systems include some type of constraint satisfac-

tion, but rarely are such systems considered a stan-

dard constraint satisfaction problem (CSP) (Dechter

2003). Because variables can appear and disap-

pear during configuration design, a slightly different

approach known as a “conditional CSP” (at one time

called “dynamic CSP”) (Finkel and O’Sullivan 2011)

is needed. When a new variable becomes active

(e.g., because a part has been included in the con-

figuration), the constraints that use that variable

become relevant.

are called constraint-satisfaction problems

because their solution depends on our abil-

ity to articulate, apply, and satisfy the con-

straints that form the implicit statement of

our goals.�

The problem characterizations we have

just outlined are rather naive descriptions

of problem solving. They are so abstract

that they provide no guidance about how

to find paths or satisfy constraints. Thus, we

still need both strategies for achieving these

objectives and algorithms (or rules or oper-

ators) to tell us how to expand the nodes in a

search tree so that our searches can proceed.

Furthermore, the strategies that we use to

solve problems (see Section 6.2.4) may render as relatively moot the distinction just

outlined, at least so far as choosing a problem-solving strategy is concerned. This is

because the available problem-solving strategies often can be applied to both types

of problems, and the differences between the applications become more of detail

and philosophy than of significant principle. For example, although we lack explicit

goal statements in constraint-satisfaction problems, as a practical matter, we have to

generate solutions that we can test against these constraints to see if we are moving

in the direction of our (implicitly stated) goal. When we are trying to construct a

path between two states, we have to generate steps that we can take along the path

and then test them to see if we are on the right path. Thus, in both instances, we need

to generate candidate partial solutions, regardless of what kind of generic problem

we are solving.

6.2.4 Strategies for Solving Problems

We now turn to a very important aspect of problem solving. Recall that even with

our two relatively simple puzzle problems, we applied certain strategies even as we

sought solutions although search. In the M & C problem, we introduced a strategy

called generate and test, whereas in the 8-puzzle we talked about guided or heuristic

search. Thus, problem-solving strategies are intimately tied to the ideas of search,

and so it is useful to have a short discussion of some strategies for solving problems.

The definitions and descriptions we provide are more detailed than the search-

problem characteristics just described and can be used in either path-finding or

constraint-satisfaction problems.

Generate and test may be the most basic strategy. As in the M & C problem,

we simply generate all of the possible states in a systematic manner and then test

each one to see if it is a goal state. A generator must be complete and nonredun-

dant: it must generate every possible state – we cannot afford to miss potential
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Generate and test (G&T) is appropriate if there is

a very small search space (which is not likely in

design), almost all points in the space are accept-

able (they pass the goal test), there is no other

good way to search, there is a good way to gener-

ate potential answers, and testing is efficient and

effective. G&T can be improved by planning before

generating (PG&T) (i.e., gathering information about

likely solutions in order to guide the generation).

G&T also can be influenced (and even improved) by

allowing testing to indicate how good the generated

hypothesis is and letting that influence subsequent

generation. However, this runs the risk of getting

stuck in an unproductive region of the search space.

It also may be possible to move some of the knowl-

edge inherent in testing back into generation so that

generation becomes “smarter” (i.e., G&T becomes

G+&T–). Of course, if all of the testing knowledge

were put into generation, then no testing would

be needed, and the system would only generate

answers!

solutions – but not more than once. We need

a tester to evaluate each state generated to

see if it is a solution or is at least moving

us toward one. For problems having a large

number of possible states, we should be cau-

tious about using generate and test with-

out any domain guidance because the search

performance could be degraded by a combi-

natorial explosion.�

We should also note a point to which

we return in the next section – namely, that

we can use generate and test as a strategy

for generating solutions regardless of the

direction of our search and independently

of whether or not we have explicit state-

ments of our goals. Thus, whether we are

doing forward-chaining, goal-driven search,

or constraint satisfaction, we can still use

generate and test as a basic strategy within

each of the contexts just mentioned.

Hierarchical approaches search first at an abstract

level and then descend to details. For exam-

ple, hierarchical planning produces a complete

abstract plan before refining that plan. There may

be multiple “refinements” before we have com-

plete details. Planning or designing only at the

detailed level tends to proceed linearly with details

at every step. There is usually no way to know

whether these early detailed decisions are going to

adversely affect later ones. This is especially true

given how difficult it is to properly evaluate partial

designs.

Inasmuch as we apply no domain knowl-

edge to aid the search process in its basic

implementation, we consider generate and

test to be blind search. However, as we

hinted for the 8-puzzle problem, we can

do a directed or guided search by using

domain knowledge to prune branches of

the tree that are unlikely to yield a solu-

tion. This technique also has been called

hierarchical generate and test. We might

also observe that function–means tables

(or morphological charts) could be loosely

viewed as hierarchical generate-and-test

tools they provide a way of eliciting can-

didate designs within a framework heavily

dependent on domain knowledge (cf. Sec-

tion 6.1).�

Another basic search strategy is decomposition or problem reduction in which

we divide the problem into (presumably easier) subproblems. We are used to

doing this with complicated integrals, for example, as we do when we make com-

plex travel plans. We might decompose the mechanical design of a certain part

into subgoals such as defining the geometry, checking stress and deflection val-

ues, and ascertaining its manufacturability. The process of subdividing goals is also
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We have to be very careful when describing design

decomposition to distinguish among decomposing

goals, plans, and artifacts. Perhaps the most dif-

ficult thing about using the decomposition method

is putting the solutions to the subproblems back

together again and determining whether they are

compatible: constraint failure is likely to occur if

we have not addressed the subgoals carefully. It is

usually a good idea to generate extra constraints or

requirements and put them in place for each new

subproblem so that our solutions are more likely to

combine well.

called goal reduction or, more casually,

divide and conquer. Recall that we have

seen an analog of this strategy in the clas-

sical approach to function decomposition

(cf. Section 6.1).�

If we can compare a current state to

a goal state and describe the difference

between the two states, we can apply a

strategy called match in which the differ-

ence becomes the basis for choosing the

next operator(s) to apply to the current

state. Beacuse we need domain knowledge

to assess such differences, we can see that

match is a strategy of guided search. Match is

also central to means–ends analysis because

we need to compare differences between

subgoal states if we are to assess where we

are in relation to our goal state.

Least commitment reasoning (LCR) means delaying

decisions until we have enough supporting evidence

to actually make them. Each new decision either

adds new evidence or allows it to be inferred, which

leads to opportunities to decide about some other

part of the solution. For example, a choice of a mate-

rial might add evidence about its required thickness

or suitable fastening methods. We can easily add

LCR to an opportunistic strategy in which control is

given to whichever decision is ready to be made as

soon as it is ready. Human designers tend to commit

early based on their experience with previous sim-

ilar design situations, which contradicts an age-old

design adage: “Never marry your first design.” It is

true, however, that reusing a good previous design

decision reduces work and probably helps make the

new solution good too (as in case-based reasoning).

However, early commitment prunes away other pos-

sible paths through the state space, removing the

possibility of finding innovative solutions or even a

globally optimal solution.

Two other strategies are also worth men-

tioning. The first is perhaps more of a state-

ment of principle than a strategy whose

implementation is especially obvious – that

is, the strategy of least commitment. The

idea here is exactly as expressed in the

aphorism about marrying one’s first design

(cf. Section 3.2) – namely, to make as few

commitments as possible to any particular

configuration when the available data are

either very abstract or very uncertain.� The

other strategy is a deductive one – in con-

trast to almost all the others we have just

described, which are essentially inductive –

and is called case-based reasoning. The idea

here is to see what we can learn or infer

from prior cases and to see whether we can

derive acceptable mutations from previous

designs.�

Case-based reasoning (CBR) is most appropriate when there are many cases available to cover the search

space densely and uniformly, and where simple changes (adaptations) to a case are possible. If no existing

case is close to the answer we need, or if the retrieved case needs major adaptations, then CBR’s advantages

are removed and a more complex kind of reasoning will be needed in to modify a case. The worst possibility

is that modifying a case will be equivalent to designing from scratch!
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6.2.5 Stopping Criteria; Satisficing and Optimizing

Our studies and work in the engineering sciences may have left us with the belief

that engineering problems have unique solutions. This is because we often use lin-

ear mathematics – which imply uniqueness – to model physical problems. Further-

more, even for those problems having more than one solution, we are often content

to accept any solution instead of searching for others – as we did in the M & C

problem, for which we sought any safe path across the river. Whenever we are

satisfied with any one of several solutions, without expressing a preference, we say

that we are satisficing. We do this often in design because we have no mathematical

algorithm or expression that expresses our design goals, so we are unable to find a

formal optimum (see the following).

We can distinguish between the different kinds of

results we can produce as we design. The crudest

is the set of all possible designs, which includes

solutions to other people’s design problems as well

as impossible or incorrect designs. Another, smaller

set is of those designs that satisfy constraints: they

will be acceptable designs but not necessarily for our

problem. Designs that also satisfy the requirements

will satisfice, to use Simon’s term, because they

are what we need. By imposing preferences (e.g.,

more steel in the design is better), we can get an

ordering. By using some sort of equation to define

quality (e.g., favoring low cost and low weight), we

may be able to find an optimal design.

We can find solutions that satisfice sim-

ply by doing an exhaustive search until we

find a solution. We could refine this pro-

cess somewhat by collecting and ordering

several solutions found by exhaustive search

and choosing among them. We can take this

idea to the limit by finding all the solutions

and selecting the “best” from among them,

using whatever criteria seem appropriate.

Thus, we could have sought the shortest safe

path (i.e., the one having the smallest num-

ber of moves between states) in the M &

C problem. Here, we are obviously optimiz-

ing; that is, we are searching for the optimum

solution.�

Note that we can optimize designs with genetic/

evolutionary algorithms (Goldberg 1989; Kicinger et

al. 2005; Mitchell 1998) in which a whole “popu-

lation” of potential solutions is considered at once,

using a fitness function to indicate how good each

solution is. Different strategies (including computa-

tional versions of genetic crossover and mutation)

are applied to produce a new population, with some

bias applied to try to carry over fitter solutions into

that population. New populations continue to be pro-

duced until no significant improvements in the best

solutions are detected. Fitness is calculated in any

way the implementer wants, from a simple equation

combining cost and weight, for example, to using

qualitative or quantitative simulation (e.g., how an

artifact behaves during use).

Although optimization is a very impor-

tant part of engineering design, we do not

delve into it in this exposition because it is

only indirectly connected to our present con-

cerns. This is because the focus of research

in optimization has been on achieving better

algorithmic results rather than on integrating

notions such as knowledge-guided search.�

6.2.6 Weak versus Strong Methods;

the Role of Domain Knowledge

We have several times referred to domain

knowledge and its applications to search.

Sometimes, for example, we do unguided,

exhaustive search; that is, we simply expand

every single node in a search tree without
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invoking any special knowledge we might have about our design or problem domain.

Searches done thusly are said to apply weak methods because they lack the power

available through knowledge-guided search. Thus, their very generality implies a

certain weakness. We also call these methods syntactic search because of the empha-

sis on form or grammar, lacking as they do the meaning or semantics offered by

knowledge-guided search.

In fact, it might be worse than that. If, for example,

domain knowledge is expressed in rules, each rule

applies to a specific situation in a given problem. It

will only work there, so it is powerful, but not gen-

eral. Hence, we can apply a collection of rules only

to a specific collection of situations. Furthermore,

the use of the rules is binary: either they apply in

that situation or they do not, without any graceful

degradation. This is referred to as the “brittleness”

problem (i.e., they work well within range but sud-

denly “break”). In contrast, human experts can fall

back to general knowledge and additional weaker

reasoning to overcome such brittle behavior.

In contradistinction to the weak meth-

ods, we speak of more powerful strong meth-

ods that incorporate varying degrees and

kinds of heuristic and experiential knowl-

edge. We are trading generality for power

because although the weak methods are

almost universally applicable, they may fail

because of combinatorial issues. The strong

methods, conversely, are limited in that the

domain knowledge or heuristics used for a

given problem are unlikely to be applicable

in other domains.�

A good heuristic for searches never overestimates

the number of steps to the goal (Russell and Norvig

2010) and keeps the average number of branches

generated at each step of the search as close to one

as possible. Many situation-dependent heuristics

are needed for design reasoning. Some heuristics

might be general, such as making the most con-

strained choice first in order to prevent likely failure

later, and others quite specific, such as selecting a

preferred decomposition for the design of a partic-

ular component.

When speaking of knowledge-guided

search, we use the word heuristic to mean

a rule of thumb or a piece of advice that we

have learned from experience and that we

know may not always work. Sometimes, as

in the 8-puzzle and for means–ends analy-

ses, we use a heuristic evaluation function to

measure the (conceptual) distance between

a given state and the goal state. Evaluation

functions should provide good estimates of

the merit of particular states in a compu-

tationally efficient manner. If an evaluation

function is computationally complex, it may

be more efficient to do an exhaustive search

instead of spending computational resources

on real-time evaluation.�

6.2.7 Procedures for Moving Through a Search Tree

Now that we have decided we can model our design problem as a search of discrete

states, identified the design problem’s characteristics, chosen a problem-solving strat-

egy, decided what constitutes a solution, and reflected on how much heuristic or other

domain knowledge we can bring to bear, how do we actually move through a search

tree? What we are in fact asking is, “What procedures do we use to actually make a

search happen?”
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When we were looking at the 8-puzzle, we commented that we could follow the

node numbers in Figure 6.10; that is, we could loop along on a row-by-row basis until

we found a solution. Alternatively, we could choose one or more paths that went

straight down and take them, in turn, down to their farthest point, stopping only

if we happen across a solution as we descend downward. We have just described

two classical, blind-search procedures: breadth-first search and depth-first search,

respectively. In breadth-first search, we literally proceed by rows, and we hope that

our solution will lie in a relatively shallow row. If not, we may expend substantial

resources processing a tree – especially a broadening tree – both to expand every

node in each row and to remember all of the previous rows’ results when we start

the next one.

In depth-first search, we dive down along some path, never knowing how deep

it will go or whether there even a solution to be found along this route. Thus, the

drawback to depth-first search is that we could plunge down into some very murky

depths and not even reach a solution. In this case, we can backtrack up the tree

to some convenient branch point and take the next alternate path. We could limit

the damage that might be done by fruitless deep diving by setting a cut-off depth

below which we will not go, even absent a solution. We should note that the memory

requirements for depth-first search are far less extensive than for breadth-first search,

although the processing time tends to be approximately the same in both cases.

However, it can be said that when measured in terms of the path length between

the root node and the solution, breadth-first search produces an optimal result –

the shortest such path – whereas the same cannot be guaranteed for depth-first

search.

Breadth-first search and depth-first search are the two basic types of weak search;

that is, they apply no domain knowledge at all. They are also called exhaustive

searches because they operate simply by following and exhausting lists of all the

nodes in the tree as they are expanded, stopping only when a path runs into a dead

end or a solution is found. At this level of description, these processes differ only

in the way the lists are compiled. The weak methods can be improved by various

techniques, but we find a real increase in power when we use guided or directed

search. Here, we use heuristics, as in the heuristic evaluation function we described

in the 8-puzzle problem, to speed up the search. For example, in a technique called

hill climbing, we use a heuristic evaluation function to estimate the (conceptual)

distance between a given node and the goal node, and we then expand the nodes in

order of increasing distance; that is, we start with those having the shortest estimated

paths to the goal. Hill climbing is a variation on depth-first search, and it is very much

like local parameter optimization. It does have limitations; that is, it can attack local

optima and miss the global optimum entirely.

There are other well-known guided search algorithms (see the bibliographic

notes for further reading). Our point here is simply that they exist, and that they point

to the exploitation of knowledge as a means for improving the problem-solving pro-

cess. Although the kind of domain knowledge we might employ would appear to be
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Most basic uninformed searches (i.e., using little or

no domain knowledge), and even informed searches

(i.e., heuristic), use a lot of memory (Russell and

Norvig 2010), which makes them impractical for

realistic, large-scale problems. For example, the

well-known A* search minimizes the total estimated

solution cost: it guides the search using the actual

cost to a point in the search space, plus the esti-

mated cost from there to the goal. However, an

A* search records all currently explored branches,

the number of which can grow exponentially as the

search gets deeper. A “memory-bounded” version

searches until the allocated memory is full, and then

cannot add a new node to the search tree without

dropping the oldest worst node. If every node in

the tree can be used to get to n new nodes, and

those n nodes each lead to n new nodes, then com-

binatorial explosion quickly overloads both space

and time. Chess is a good example of the surpris-

ingly large size of search spaces: it is estimated

to have more than 1040 possible board positions.

Smart control strategies and the use of heuristics

are necessary to win this battle. One extreme exam-

ple of this battle is a system intended to do creative

design of electrical devices (Koza et al. 2004). It

uses a form of genetic algorithm (called “genetic

programming”) to manipulate populations of alter-

native designs (e.g., for an amplifier). The authors

report using a computer made of 1,000 Pentium

II nodes running in parallel for 4 weeks in order to

produce a solution – albeit an excellent and creative

one that was patentable. In one run of a problem, the

system considered more than 900 million individual

designs!

different than algorithms such as hill climb-

ing, conceptually we are attempting to do the

same thing.�

6.2.8 AI Problem-Solving Strategies in

the Design Context

To complete this bare-bones introduction

to AI-based problem solving, we now try

to put the strategies we described into the

context of design. For the present pur-

poses, the context we use is a simple three-

stage model of design akin to that described

in Section 3.2 and in some of the tax-

onomies we set out in Chapter 4. Thus,

we suggest the use of strategies for, respec-

tively, conceptual, preliminary, and detailed

design.

Conceptual design is, in a sense, the ear-

liest stage of design, and at this point the

design space is likely to be large and com-

plex. This being the case, we prefer not

to look for solutions in an ad hoc fashion

because we may miss good solutions or, at

best, take a very long time to find them. Thus,

knowledge-guided search could be helpful.

Decomposition or “divide and conquer,” the

reduction of a large problem into a set of

smaller – and presumably easier – subprob-

lems, is likely quite applicable. We have to

bear in mind here that subproblems inter-

act, so we must monitor individual solu-

tions to ensure that we do not violate either

assumptions or constraints of the com-

plementary subproblems or of the over-

all problem. We should also try to limit

our commitments to particular configurations because we do not usually have

much reliable data this early in the design process. Knowledge from previous

design cases can often be very useful either by suggesting solutions that have

worked well in the past or rejecting those that have failed in the past. How-

ever, direct reasoning from past cases, called case-based reasoning, is more of a

prospect for the future than the immediate present because there are many complex-

ities in organizing and retrieving relevant cases for large, as-yet-unspecified spaces
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Analogical reasoning has become increasingly im-

portant in recent design research (Goel 1997), espe-

cially for biologically inspired design (Chakrabarti

and Shu 2010). Analogy is a special kind of

knowledge-based reasoning that borrows from past

solutions to inform the solution of the current

problem. So, for example, the problem of stor-

ing cars in a small amount of space could be

informed by the solutions to storing other things

in a small area, for example, plates: stacks of

plates can be mapped to stacks of cars, produc-

ing designs for high-density parking systems where

cars are “stacked.” Normally, some abstracted

characteristic of the desired structure or behav-

ior allows us to identify something from which

we can borrow. For example, both electric current

and water flow and roads direct the movement of

cars, whereas canals direct the movement of boats.

Similarly, pointers are long and thin and so are

laser beams. Biology provides a rich resource for

borrowing: armadillos, for example, might inspire a

flexible armored coating for some device. Indeed, a

whole new subfield of biomimetic design is emerg-

ing. We also can see from these examples why

analogy is typically associated with creative con-

ceptual design. For analogical design, it is possible

to transform a previous design solution from one

domain to another (e.g., plates to cars) or take the

way that a design was derived (i.e., the design

history) and modify that method to work in the

new domain. We also can use analogical reason-

ing to simplify designs (Balazs and Brown 2002).

We note that although analogical reasoning and

case-based reasoning (CBR) are related, they are

distinguished by the fact that analogies are usu-

ally made across domains, whereas CBR is not,

as well as by the need for CBR to make only

small adaptations to a retrieved case to fit the new

problem.

(even though we would love to learn deduc-

tively, as we do from case studies presented

in the classroom).�

When we get to preliminary design, we

begin to worry about generating candidate

solutions and testing and evaluating them.

We test designs to ensure conformance with

design objectives and constraints, and we

evaluate designs against some metric (e.g.,

cost) that allows us to choose from among

satisficing designs. Clearly, this is a time for

generate and test, with the obligatory warn-

ing about combinatorial explosions, so we

also must narrow the search space by prun-

ing the search tree. We can achieve this end

both by hierarchical pruning and by con-

straint propagation.

By the time we get to detailed design,

we are fairly far down the design search

tree. We understand whatever decomposi-

tions we have made, as well as their respec-

tive interactions. Consequently, we could

characterize detailed design as being pro-

cedural in nature. Procedures for detailed

design are rather rule intensive, especially

in terms of the application of heuristics

derived in large part from local experience.

Much of the knowledge thus applied stems

from an institutionalized understanding of

past failures. This is oftentimes dangerous

because we may be tempted to discard solu-

tions that previously have failed, even if

they failed for reasons that are no longer

applicable.

6.3 Models of Design Processes

In this section, we discuss four knowledge-

based systems – one in depth and three

more cursorily – that emulate design

tasks by applying some of the problem-

solving strategies and methods just described. Of necessity, these descriptions are

much shorter than the full descriptions available in the literature, so we may
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In addition to the terms “conceptual,” “preliminary,”

and “detailed,” AI in design research has focused on

“functional design,” “configuration,” and “configu-

ration design” as well as on “parametric design.”

The first concentrates on producing a functional

decomposition from the requirements (Erden et al.

2008). Configuration is concerned with arranging

components selected from a given set of individ-

uals or types, whereas configuration design has

configuration at the core but allows components to

be altered, usually by changing parameter values

(Wielinga and Schreiber 1997). Parametric design

focuses only on changing parameter values to meet

requirements (Dixon et al. 1984). Although para-

metric design is usually detailed design, often con-

cerned with dimensions, it is possible to do con-

figuration design by carefully selecting parameters

(Brown and Chandrasekaran 1989).

not do them the justice they undoubtedly

deserve. However, our present purpose is

simply to demonstrate that the approaches

described in Section 6.2 can be used both to

model real design processes and to further

our understanding and vocabulary of design

as a discipline.�

The systems we discuss are as follows.

First, in the domain of mechanical design,

we describe a KBES that uses a generate-

and-test paradigm to design V-belt drives.

The second application is from the domain of

structural design. The HI-RISE system does

preliminary design of tall office buildings,

using a generate-and-test strategy again,

albeit for a more complicated problem. The

third system we describe takes us back into

the mechanical-design domain – in partic-

ular, the design of paper-handling systems

in copiers. The PRIDE system extends gen-

erate and test to provide analysis and advice in the event of a design failure so

that design failures can be rectified. Finally, from the manufacturing and assembly

domain, we comment briefly on the R1 or XCON system that configures VAX com-

puter orders for assembly on the factory floor. XCON, as it is now known, is perhaps

the most visible success story of a practical application of KBES technology (and

the representation techniques outlined in this exposition). We bring XCON into our

discussion because its authors and developers intended it to use a generate-and-test

strategy.

We perhaps should address the fact that all of our examples make us of the

generate-and-test strategy. Is this all there is? In fact, they do not all share this

characteristic because PRIDE adds to that strategy in rather significant ways, and

we will see that R1/XCON in fact embodies a somewhat different strategy. How-

ever, it must be said that this is a prevalent strategy, both among designers for

doing design and as a paradigm for modeling design in a computable form. It is

partly that generate and test is very powerful, if the generation process is con-

trolled properly, especially for routine and nearly routine design, where we have

a lot of experiential knowledge that we can apply to help us generate sensible

designs. It is also the case – as we observed in our discussion of AI-based prob-

lem solving – that we almost always wind up generating solutions and trying them

out, even within the context of a more general view of problem solving, such as

means–ends analysis. In computational terms, given that we can use rules to rep-

resent much of our experiential knowledge, and object-oriented representation to

describe artifacts, their attributes, and their interaction, it would seem that generate
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Note that in this chapter, “generate and test” (G&T)

is often used in a more colloquial sense (i.e., things

are produced and then tested to see if they are

okay). In AI, G&T is usually associated with repeti-

tively generating a complete hypothesis for a solu-

tion and then testing to see if it actually is one. Many

computational design systems use “extend-model-

and-revise” (EM&R) (Motta 1999), also known as

“propose-and-backtrack.” EM&R works by gradu-

ally extending the design one decision at a time,

checking for problems at each step, attempting

local changes (fixes) if they exist, and backtracking

if no fix removes the problem. The key difference

between G&T and EM&R is that the former produces

and tests a complete design at each step, whereas

the latter does not. “Complete-model-and-revise”

(CM&R), also known as “propose-and-improve,”

starts by generating a complete (and preferably

good) design and then trying to improve it, per-

haps by hill climbing, without backtracking. Note

that although DOMINIC uses CM&R, systems that

use hierarchical heuristic design tend to use EM&R

at different levels; for example, PRIDE and AIR-CYL

(Brown and Chandrasekaran 1989).

and test is a natural implementation for rou-

tine and nearly routine design.�

6.3.1 The Mechanical Design

of V-Belt Drives

Our first description is of a system built

to demonstrate an architecture, called the

design–evaluate–redesign architecture, for

AI-based systems intended to support cer-

tain styles of mechanical design. The prin-

cipal idea behind this architecture is that

design is an iterative process in which three

tasks are often repeated – namely, evalu-

ate a proposed design, decide whether it is

acceptable and, if the design is unaccept-

able, redesign it. We note that different

kinds of knowledge are required for each of

these tasks. For example, the decision about

whether a design passes muster is essentially

a binary judgment – a design is either accept-

able or not acceptable. However, for us to

successfully redesign a failed device, we will

likely require significantly more information

than is embodied in the simple yes-or-no

acceptability decision.�

The key ideas here are (1) “architecture,” and (2)

that different kinds of reasoning require different

knowledge. The architecture is described by a task

structure: a relationship between a task to be done,

the applicable methods for doing it, the types of

knowledge the methods require, and the subtasks

they produce. Chandrasekaran (1990) suggests that

a common task structure (the PVCM pattern) for

design tasks is propose a solution (partial or com-

plete); verify the proposal and exit if you are fin-

ished; critique the proposal to see what is wrong

with it, and then exiting if it is okay; and mod-

ify the proposal to address the criticism. Because

(continued )

In the implementation of the V-belt

design system, an algorithm was used to gen-

erate the original designs. For a given set of

specifications (see the following discussion),

an algorithm produced a complete design

(cf. Figure 6.11). The testing and evalua-

tion phases of the system applied classical

utility-decision theory, whereas suggestions

for the redesign were cast in terms of pro-

duction rules. A frame-based representation

was used to link these tasks (cf. Figure 6.12).

The original specification for a V-belt

design problem is given in terms of values of

six parameters. Of the six, four are hard or

absolute constraints, for which very specific

values must be achieved: drive speed, power,

and the center distance limits. The other two
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(continued )

each P, V, C, and M subtask can be imple-

mented by a number of methods, combining them

enables a wide variety of possible ways to tackle

design problems. This is especially clear when we

note that some methods establish new tasks, which

themselves might have several possible methods.

Thus, PVCM also can be used recursively. Well-

established patterns are seen as “problem-solving

methods” (Brown 2009; Fensel 2000; Motta

1999) or “generic tasks” (Chandrasekaran and

Johnson 1993). One such task structure is encap-

sulated in the DSPL language that separates out

knowledge for selecting, decision making, failure

handling, and planning (Brown and Chandrasekaran

1989).

constraints, load speed and belt life, fall into

the category of having desirable goals as

their specification. In fact, designers strive

to achieve the maximum possible values for

both of these parameters. Figure 6.12 shows

two frames, the lower one being an instance

or specialization of the upper one, and we see

how some of the design parameters unfold,

as well as how the evaluation and redesign

are handled. Note in particular the redesign

recommendation in the last slot of the lower

frame.

The V-belt design system apparently

tested quite well in a comparison with

designs performed by experienced human

designers. In one cited example, it was given

the following design specifications: a drive

speed of 1,800 rpm, load speed of 1,200 rpm,

power of 40 hp, center distance restrictions of 12–28 inches, and required life of 4,000

hours. The algorithm produced a first design of a single belt (type 5 v), with load

and drive-pulley dimensions of 18.7 and 12.5 inches, respectively, a belt length of 80

inches, and a life estimated at 100 hours. The latter specification failure triggered a

series of redesigns, each having a life of at least 4,100 hours, the longest of which was

10,000 hrs. The final design consisted of four (type 5 v) belts, with load and drive-

pulley dimensions of 9.0 and 5.9 inches, respectively, a belt length of 50 inches, and

a life estimated at 5,360 hours. This design met all of the specifications and turned

out to be the cheapest as well.

We have indicated that the basic strategy outlined for the V-belt design system is

generate and test. In light of the suggestion we made earlier that generate and test is

almost always going to be a part of design problem solving, we could wonder whether

this basic strategy is so readily applied to design. In fact – as the authors of this system

also suggest – in its most basic form, generate and test will likely work only for

A design: Drive Pulley Diameter D1

Load Pulley Diameter D2

Belt Type bt

Belt Length I

Number of Belts M

LOAD
DRIVE

M BELTS
TYPE bt

DIAM D2
SPEED N2

DIAM D1
SPEED N1

Figure 6.11. The V-belt design problem (Dixon,
Simmons, and Cohen, 1984).
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ATTRIBUTE VALUE

Name Generic V-Belt Drive

Specialization of rotary-to-rotary power drives

Types A, B, C, D, E

Input Specs power (hp)

load speed (rpm)

center distance (in)

Evaluation Criteria life (hours)

max power (hp)

installation clearance (in)

Name V-Belt Drive

Specialization of generic V-belt drive

Specification power = 80 hp

load speed = 1,200 rpm

center distance = 15–19 in

Design belts: 2 @ B75

output: max power = 89.5 hp

life: 7,500 hrs

center distance: 14 in

Evaluation power: acceptable

life: acceptable

center distance: unacceptable

Recommendations increase belt length 4–6 in

Figure 6.12. Partial frames for the V-belt design system (Dixon and Simmons, 1983).

DOMINIC is a classic example of complete-model-

and-revise (CM&R) problem solving applied to non-

decomposable parametric design problems where

the values are numbers and hill climbing can be used

to “improve” the design at each step. This system,

although reasonably successful when compared to

an expert, suffered from the standard problems

associated with hill-climbing search (e.g., finding

local rather than global maximums and becoming

ineffective if it cannot find a hill to climb). As a

consequence, a second version was produced with

“meta-knowledge” that suggested ways to over-

come those standard problems.

the design of components, parts, and small

systems wherein the initial design and the

iterated redesigns form the totality of the

design picture. For more complex designs,

where the decomposition of both the task

and the artifact are more complicated, and

more hierarchical, we need a more hierar-

chical approach to generate and test.�

6.3.2 The Preliminary Design of

High-Rise Office Buildings

The development of the KBES we now

describe, HI-RISE, was motivated in part

by a desire to externalize and record the

process of preliminary structural design – in particular, the process of establishing a

structural configuration for tall office buildings. We are motivated to describe HI-

RISE both because it is a design system and because it takes a more hierarchical

approach to generate and test. Candidate designs for a structural configuration in

HI-RISE are generated by choosing them from a set of feasible configurations, each

of which is generated from a class of generic structural subsystems. The class of

generic subsystems includes, for example, those that provide the resistance to lateral
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Three-dimensional subsystems core, tube

Two-dimensional subsystems braced frame, shear wall,

rigidly connected frame

Materials steel, concrete

Linear components beams, columns, diagonals

Figure 6.13. A static physical hierarchy in HI-RISE (Maher and Fenves, 1985).

loads on the building, such as loads due to earthquakes or wind. Subsystems that are

used to carry lateral loads in high-rise buildings include rigidly connected frames,

tubes, cores, and braced frames. In addition to a lateral-load resisting system, we

also must specify a (horizontal) floor system to collect gravitational loads and a

HI-RISE can be viewed as working with an AND-OR

tree that gets more specific as you work down it.

The OR nodes represent choices, whereas the AND

nodes represent things that must occur together.

Paths through the tree are selected using con-

straints to check that choices are compatible. HI-

RISE can be seen as selecting and configuring com-

patible subsystems in order to produce a set of

allowable designs.

vertical system to carry those loads down to

the building’s foundation.

HI-RISE selects configurations and then

tests them against several constraints, most

of which are implemented as heuristics

expressed as rules.� Among the kinds of con-

straints that HI-RISE uses in its testing are

spatial constraints on open areas, circulation,

and the location of mechanical equipment;

constraints on construction costs and time;

functional constraints on the load path (via

Note that every system that has a hierarchical orga-

nization needs some sort of control strategy, proba-

bly heuristic, that orders the tasks at every level,

deciding how to move through the hierarchy to

schedule design decisions. This might be done by

going depth-first to the most detailed decisions for

every task in sequence, breadth-first by gradually

moving the whole design to the next more spe-

cific level, or opportunistically by making decisions

when and where they are possible (i.e., where the

prerequisite conditions are met). The strategy can

be controlled by selecting and using prestored plan

fragments at every level, constructing plans dur-

ing design, or setting necessary conditions as goals

and detecting when they are met. Control choices

(including plan selection) can be made with heuris-

tics, means-ends analysis, or the weaker gener-

ate and test. A separate control strategy might be

required for a rough design phase and for handling

failure (e.g., constraint failure).

which loads are eventually carried to the

foundation); equilibrium constraints (which

are actually represented as Boolean func-

tions); and strength stiffness constraints

(also represented as Booleans but based

on approximations of formulas from design

codes).

The representation of the basic design

information is hierarchical; that is, it is

partitioned into a functional level and

a physical level (Figure 6.13). HI-RISE

starts by selecting a functional system, after

which it proceeds depth-first to complete

that functional system (i.e., lateral, hori-

zontal, or gravitational) before attending to

another functional system. The information

at the physical level is itself organized

hierarchically, being typically organized at

descriptive levels such as three-dimensio-

nal, two-dimensional, materials, and linear

components.�
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Figure 6.14. A dynamic physical hierarchy in HI-RISE showing four feasible design
alternatives (Maher and Fenves, 1985).

The physical hierarchies are stored statically in HI-RISE’s knowledge base

(cf. Figure 6.13) and dynamically as a particular preliminary design is unfolding

(cf. Figure 6.14). The dynamic physical hierarchy takes the shape of a tree. Each

child node represents a feasible design developed to the next level of detail. We

have completed a preliminary design for the specified functional level when we

arrive at the bottom level of the tree. In Figure 6.14, we have four feasible designs

for lateral-load systems: two have two-dimensional vertical subsystems and the other

two have core structures: one concrete, the other steel.

The process of assembling or synthesizing a feasible configuration is, as we

noted previously, a depth-first search through the static hierarchy for each func-

tional system. Choices about contending alternatives are made by applying heuristic

elimination rules; for example:

IF the number of stories is > 50

AND the three-dimensional system is a core

THEN alternative _______is not feasible

IF the two-dimensional system

is a rigid frame

AND the material is concrete

AND the number of stories is > 20

THEN alternative _______is not feasible
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HI-RISE also does some analysis, albeit just enough to establish that a system can

carry the anticipated loads, and it does select some parameter values in accordance

The configuration design is taken far enough to

allow HI-RISE to evaluate the designs it finds and

rank them for the user. HI-RISE is notable in that it

provides more than one result, whereas most KBESs

do not.

with some heuristic approximations. For

example, steel columns are usually taken to

be W14 sections, whereas double-angle sec-

tions are usually specified for the design of

braced diagonals.�

We can see in our abbreviated descrip-

tion that HI-RISE extends generate and test

to a more complicated problem, the configuration of structural system for high-

rise office towers. We also see here the extension to hierarchical generate and test,

within the context of a data-driven or forward-chaining search. The data that drive

the search are the original specifications for the building, which include a spatial

grid that is entered manually by HI-RISE’s users. The grid forms the set of spatial

constraints to which the building must adhere; it includes topological constraints that

define the number of stories and the number of bays in each plan direction, and geo-

metrical constraints that define bay dimensions and minimum story height. Thus, like

the system we describe next, the design begins with a spatial description, although

we will now see how such a description initiates a goal-driven design process.

6.3.3 The Mechanical Design of Paper-Handling Systems for Copiers

We now describe the representation of a design process – for the design of paper-

handling systems in paper copiers – within a knowledge-based system called PRIDE.

This is a “real” system, now used daily as a design tool by designers doing feasibility

studies for new copiers. It thus represents not just an academic exercise but also a

convincing demonstration of the kinds of representation and reasoning that have

been at the heart of our exposition. We do not describe the entire system here; we

focus instead on some of the key points of modeling the design process.

If we were to look inside a copying machine, we would see paper being moved

along a complicated paper path, past various components and physical processing

elements, at fairly high speeds, and under rather stringent constraints. Whereas

there are several kinds of paper-handling systems, the PRIDE system focuses on

transport systems that use pinch rolls to move the paper. The design requirements

are prodigious. They include geometrical properties such as paper entrance and exit

locations and angles (Figure 6.15), timing requirements and constraints, permissible

skew with respect to the path, tolerances on some of the engineering parameters, and

the ability to adapt to a variety of paper properties, including size, weight, stiffness,

and curl.

We can, in fact, decompose the design of a paper transport into subproblems,

such as designing a smooth path between the input and output locations, deciding

the number and location of pinch-roll stations to be placed along this path, designing

a “baffle” to be placed around the paper path to guide the paper, designing the sizes
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Pinch Roll Paper Transport NIL Scale: 2.1 mm / screen point

Figure 6.15. A snapshot of a sample paper path in PRIDE, including roll stations, input and
output points, and obstructing regions to be avoided by the transport (Mittal, Dym, and
Morjaria, 1986).

of various pinch rolls (drivers and idlers), selecting the proper materials for the pinch

rolls and baffle, making decisions about paper travel speeds and the forces on the

paper produced by the pinch rolls, calculating the time needed to move the various

sizes of paper, and calculating the various performance parameters and ensuring that

they satisfy the requirements. However, even with a very effective decomposition,

the range of design tasks is enormously diverse because it involves making decisions

about geometry, spatial layout, timing, forces, jam clearance, and so on – the totality

of which are often beyond the scope of a single engineer. The same transport must be

able to handle different sizes and weights of paper, which often presents conflicting

constraints. For example, if the lengths (or widths) of the different sizes of paper

are far apart, then the constraint on the maximum separation of neighboring roll

stations for the smallest paper conflicts with the constraint on not having more than

two stations guiding the paper for the longer papers. The design of the paper path

is further complicated by obstructions that have to be avoided, as well as adher-

ence to strict requirements on the smoothness, continuity, and manufacturability
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of the baffle in which the paper travels. All in all, paper-transport design is a complex

domain.�

Although complex to analyze and represent, paper transport design is quite restricted compared to most

other design problems. Recent research is concerned with how to deal with larger problems, taking their

cue from how people do it, such as designing with teams. Multi-agent design systems (MADS) can be used

to model concurrent engineering and designing with teams in general. Both Lander (1997) and Shen et al.

(2001) provide reviews of the issues and techniques associated with MADS, whereas Danesh and Jin (2001)

address concurrent engineering. In this context, an “agent” is a piece of software that has its own goals,

acts autonomously, and may communicate cooperatively with other agents to collaborate on the solution to a

problem. Key questions include the following: How are agents controlled? Is the design description distributed

or centralized? Can agents be developed to be independent so that they can be added or removed at will?

How will work be allocated among the agents? How will agents communicate with other agents that may

not share the same vocabulary or even the same ontology? How will agents negotiate if there is conflict? A

“big-picture” issue is the decomposition of the design problem into pieces and whether that is done upfront or

reasoned out dynamically. The pieces can vary from individual decisions to whole components. Another issue

is to identify each agent’s “point of view.” For example, in concurrent engineering, different team members (or

agents) can “represent” different phases of the life cycle, so that issues such as maintenance and packaging

are all considered during design.

Given this complex design task, what does PRIDE do to be so helpful, either as

a stand-alone design system or as a designer’s assistant? In brief, PRIDE:

1. Facilitates the designer’s choice of a planar path that avoids obstructions caused

by equipment items within the copier and lies between specified input and exit

points (see Figure 6.15).

2. Automatically checks that all constraints on the path geometry (e.g., smoothness

and minimum radii of curvature) are satisfied.

3. Identifies a physical device (the baffle) in which the paper will be carried along

the path.

4. Identifies, designs, and locates along the path the pinch-roll pairs that grasp and

move the paper along the chosen path.

In fact, PRIDE simulates rather closely the actual design process that experi-

enced copier-system designers have used for years. One of the results is that feasi-

bility studies for preliminary copier designs are now completed and evaluated (with

PRIDE) in hours rather than weeks.

PRIDE uses several representation schemes to incorporate heuristic, relational,

and algorithmic aspects of the design problem, as well as several inference schemes

at different levels of abstraction. PRIDE also has a powerful graphics interface

that facilitates a rather complete simulation of the way human designers actually

design paper-handling subsystems for copiers. Figure 6.16 shows a small part of an

inheritance lattice that describes a paper-transport system designated as Trans5. In

this object-oriented representation (cf. Section 5.1), Trans5 is an object with several

attributes, some of which are linked to other objects, some of which are physical
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Figure 6.16. A stylized version of a small portion of the inheritance lattice that comprises
PRIDE’s knowledge base (Morjaria, 1989).

(e.g., Roll2, Driver1), and some of which are conceptual (e.g., Spec1). We see that

Trans5 has components that are connected to it by one or more SubPart links (e.g.,

Driver1). When we wish to determine which specifications govern the input point,

we obtain the answer through the InputSpecs link that defines the attributes of the

design constraints at the point where the paper enters this subsystem (e.g., Specs1).

Already we can reason about the device we are designing (Trans5) because

we can ask questions such as, “What are the output specifications that govern this

design?” and “How many and what roll stations are there in Trans5?” We can

see from Figure 6.16 that their answers are, respectively, Specs2 and 4: Roll1,

Roll2. . . . With this representation for devices and parts thus established, we can

focus on the process.

Note that PRIDE knows the steps to be taken in

the task at each level of abstraction but determines

the order dynamically. This stands in contrast to

hierarchical systems that also use plans but where

an order is specified. For most routine design tasks,

experts do know the best order for subtasks (and

the goals they satisfy) so that ordered plans can

be acquired and used. In either case, there is no

fixed overall plan for the design reasoning: high-

level plans select and use lower-level plans, thus

dynamically constructing a complete plan for the

design at hand.

The knowledge base in PRIDE repre-

sents a design plan structured as a top-down

process of identifying and satisfying design

goals and subgoals (Figure 6.17). The design

plan decomposes design goals into simpler

steps. We see in Figure 6.17 a top-level

goal of designing the paper transport, as

well as goals for subproblems such as decid-

ing the number of roll stations and decid-

ing the diameter of the driver at Station 4.

For our design plan to work, we must have

the knowledge needed to order the steps, to

perform each step, to detect failures in the

design requirements, and to suggest fixes for

the failures.�
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Design a Paper

Transport

Configure a

Paper Path

Design the

Driver

Choose

Number of

Stations

Generate

Range of

Locations

Identify

Locations

relates goals to subgoals, moving down goal tree

relates goals to their dependencies, moving to left from right

Design the

Idler

Identify Number of

Roll Stations & Their

Locations

Design Roll Stations

For Each Roll Station

Figure 6.17. A stylized version of the goals and methods that comprise PRIDE’s design plan
(Mittal, Dym, and Morjaria, 1986; and Mittal and Araya, 1986).

We can think of the design process in PRIDE as one in which we are configuring

a very complex system. We must first establish the geometry of a path along which

the paper will be transported (see Figure 6.15). After the path is established, we

(as the designers) must choose components and establish their configuration (e.g.,

size, location, and materials) so that different kinds of paper can be smoothly moved

along the path, without jamming. The parts are chosen from a database of parts in

Note that decomposition can be controlled with a

plan; that is, with ordered or partially ordered lists

of subtasks or subgoals, where each item in the

plan represents a smaller piece of the problem.

In situations where different plans are available,

perhaps leading to alternative decompositions, we

need to have knowledge available to evaluate the

suitability of each plan to the situation so that we

can select the best one. Decompositions also can

be determined by reasoning, but this is more diffi-

cult because many different factors can affect how

design decisions should be grouped together (Liu

and Brown 1994).

normal use. Thus, in terms of the definitions

and taxonomies discussed in Chapters 3

and 4, the process includes elements of

both preliminary and detailed design. We

can also characterize the process as routine

design because we know how to decompose

the design (cf. Figure 6.17), we know how to

design the subsystems and components, and

we know what to do when a constraint is

violated.

We can think of PRIDE’s problem-

solving strategy being generate–test–

analyze–advise–modify. It also makes very

effective use of decomposition (as is quite

evident in Figures 6.16 and 6.17)� and,
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ATTRIBUTE VALUE

Type SimpleGoal

Name Goal5

Descriptor “Decide number and location of roll stations”

Status INIT

AnteGoals “Design Paper Path”

InputPara “Paper Path,” “length of PaperPath”

OutputPara “Number of RollStations,” “location of AllRolls”

DesignMethods (SubGoals

Goal51: “Decide min number of rollStns”

Goal52: “Decide Abstract Placing”

Goal53: “Generate Concrete Location”

Goal54: “Build RollStn Structure”)

Constraints (Constr8: “First Stn <= 100 mm.”

Constr17: “Dist. between adj. stn <= 160 mm.”

Constr24: “Dist. between adj. stn >= 50 mm.”)

Figure 6.18. The design goal “Decide number and location of roll stations” in PRIDE in its
object-oriented representation (Mittal, Dym, and Morjaria 1986).

although we do not elaborate the details here, constraint satisfaction. We now

describe just a few elements of the methods by which designs are generated and

how failures are analyzed and fixed.

Although there are distinctions between types of

design (e.g., conceptual and parametric), there is

also a distinction between the phases of design (e.g.,

rough design, design, re-design, and redesign).

Each needs different reasoning and different knowl-

edge. Rough design is seen as partial or approximate

design, perhaps only for some of the attributes, to

determine whether a complete design might suc-

ceed with that approach. Design is the main event:

trying to satisfy the requirements. Re-design is

designing again, throwing away previous unproduc-

tive design efforts but preferably reusing the results

of as much of the previous design effort as possible

and reasonable. Typically, re-design uses a different

method than before, incorporating new knowledge

or newly discovered requirements gained from the

previous design attempt. Although re-design might

just as well be called “design,” it is worth making

the distinction in order to emphasize the difference

in the activities and the context. Redesign involves

incrementally changing a design in response to fail-

ure (e.g., executing a fix).

A design goal in PRIDE is responsible

for designing (and perhaps redesigning) a

small set of design parameters that describe

some part or aspect of the artifact being

designed.� Some of the design parameters in

this domain are paper-path segments, paper-

path length, number of roll stations, diame-

ter, width, and material of each pinch roll,

baffle gap, baffle material, and time taken

by each size of paper during transport. Fig-

ure 6.18 shows a simplified representation of

the goal “Decide number and location of

roll stations.” The variables Descriptor and

Name are used to describe the goal to the

human users. DesignMethods is an ordered

list of all the alternate methods for achieving

the goal. In this example, there is only one

method for carrying out this goal; that is, we

must achieve four subgoals. Constraints con-

tains the verification knowledge about the

acceptability of a design.

Where does the “generate” come into

the picture? In fact, one of the values of

the slot DesignMethods could be a design
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ATTRIBUTE VALUE

type InstanceSetGenerator

name SetGen1

descriptor “Generate standard driver diameters”

assignTo (DesignObject defRollPair driver diameter)

initValue “Find a diameter of 10mm”

classes DriverDiameter

soFar NIL

status INIT

Figure 6.19. A simplified description of a method for generating the driver diameter by
looking through a database of standard diameters (Mittal, Dym, and Morjaria, 1986).

generator, and the approach to generating designs could itself vary. We should note

that from the point of view of capturing a lot of design alternatives, the design

generators are among the most powerful design methods. These methods are all

capable of generating different values for the same (or a small set of related) design

parameter(s). We could attach to these methods heuristic knowledge for making

“good” guesses about initial values to be generated. The generators in PRIDE also

specify the ranges of possible values and increments. We show a design generator

for the goal “design driver diameter” in Figure 6.19: it generates diameters for the

drivers (in a pinch-roll pair) from a known database of acceptable driver diameters.

This particular type of generator belongs to the class InstanceSetGenerator because

the database is composed of instances of different classes of objects. The generated

objects are instances of DriverDiameter. We also can see that this method specifies

that 10 mm is a good starting value for the diameter, probably because the experts

have found this to be a good default choice. Finally, it specifies that this instance

object becomes the value of the design parameter driver diameter.

If our current design runs into trouble, if some requirement is not satisfied, the

PRIDE problem solver analyzes the current partial design and tries to come up

with suggestions to overcome any violations. These modifications may be heuristics

reflecting a designer’s experience in fixing similar problems, or they may be based

Advice provided at failure time is also known as a

“fix” or a “suggestion.” For example, a fix might

suggest a new value for a parameter, a range of

possible values, or a direction in which to change

the value (e.g., increase). Fixes can be predefined

and stored associated with anything that can fail

(e.g., a constraint, a method intended to provide a

value for a parameter, or a plan selector), ready to

be retrieved and used when that knowledge fails.

Alternatively, fixes can be determined by analyzing

the situation at failure time: versions of both PRIDE

and the DSPL language provide this capability.

(continued )

on a more general problem-solving approach

that analyzes dependencies between differ-

ent parts of a design to suggest modifications

that go beyond knowledge directly repre-

sented in its knowledge base. Figure 6.20

shows how advice is provided in PRIDE.

In this example, the design goal “Decide

number of roll stations” calculates a num-

ber of roll stations that produces a viola-

tion of the constraint on the maximum sep-

aration between roll stations. Advice – in

this case based on a built-in heuristic – is

provided to say that the number of roll

stations should be larger than the number

calculated.�
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(continued )

DSPL provides a way to incorporate knowl-

edge (known as “failure handlers”) about which

failure situations are worth trying to fix. The VT

system (Marcus et al. 1987) also has predefined

fixes, ordering them by the likely “damage” they

could do to the existing design. VT cleverly provides

an analysis in advance of using the system that

detects fixes that might be antagonistic (i.e., that

might lead to loops of alternating fixes in opposing

directions). VT is also unusual in that it is able to

combine fixes in order to recover from failure.

PRIDE has many features beyond those

we discuss here, among which is the capac-

ity to maintain multiple designs simultane-

ously and to switch between different partial

designs so that designers can explore differ-

ent options in parallel. A designer can also

selectively undo a design or impose addi-

tional constraints. In fact, PRIDE’s many

features make it very useful as a designer’s

assistant because designers working with

PRIDE often develop suitable designs faster

than either the system or the designer would

have done alone.�

It is worth noting the difference that research goals

make to the design and development of computa-

tional design systems. Although PRIDE mirrors the

configuration design process normally used in that

domain, it adds a lot of features intended to improve

actual use. Other systems might focus on building

(continued )

This snapshot we have taken of the

design process in PRIDE illustrates how

a complicated configuration task can be

described and analyzed with the aid of sym-

bolic representation and concomitant prob-

lem solving. Furthermore, the stylized sym-

bolic descriptions presented here contrast

sharply with the numerical representations

used in procedural programs. This clearly

opens the door to detailed and structured

Figure 6.20. A stylized view of how design advice is handled in PRIDE (Morjaria, 1989; see
also Mittal and Araya, 1986).
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(continued )

the most realistic model of what a designer might

actually be thinking and doing, producing the

most optimal design possible, or using only one

well-understood AI technique (e.g., a constraint

satisfaction problem). Research systems tend to

be built to help answer research questions about

design knowledge or design reasoning. A wide

variety of goals, and a wide variety of types of

design problems and domains, makes it difficult to

compare computational design systems.

discussions of design, both at the blackboard

and on the workstation screen, because we

can clearly realize both a vocabulary and

a structure for talking about the design

process.

6.3.4 The Configuring of Computers

for Assembly

Our final discussion of a design system is also

our shortest. We describe it only to make

a point about keeping our mind open to

different strategies for a given design task

in much the same way that we advocate least commitment strategies in the context

of adopting artifact designs. After all, a model of a design process is itself (or, at

least, it ought to be!) the result of a conscious design process.

XCON is not in use because the company that built

it (Digital Equipment Corporation) is no longer in

business. Before XCON was rewritten in 1987–88,

about 30% of the rules were concerned with out-

put or control; others were concerned with creat-

ing or “extending” partial configurations, database

access, or computation. XCON and its other asso-

ciated expert systems had about 10,000 rules and

handled about 20 different CPU types and about

14,000 components – and all of these system

dimensions were growing. It was 95% to 98% accu-

rate, taking about 2 minutes per configuration, and

saving the company some $4 million a year. It took

about 30 people just to maintain XCON: about 50%

of the knowledge in the system was frequently used,

whereas about 40% of the rules changed every year.

As we noted, R1/XCON is both a pio-

neering KBES and an extravagantly success-

ful one.� It is used on a daily basis in a

very intense manufacturing environment. It

is large, containing more than 10,000 rules,

and it is maintained by a large staff (i.e.,

more than 50 people) because of the lever-

age that it provides its owner in configuring

and delivering high-end scientific minicom-

puter systems. What we want to point out

is simply this. When first conceived by its

principal designer, R1/XCON was intended

to operate through generate and test, with

the initial data for a forward search to come

from customers’ computer orders. It turned

out, however, that for this (and perhaps

other) domain, match was a more appropri-

ate strategy because it was possible to impose

XCON divided the configuration design process into

sequentially ordered tasks, each completed before

the next. The “match” strategy was used through-

out, except for a “bin packing” portion of the problem

where components had to be assigned to positions

that provided resources (e.g., power): this could

not be done without backtracking, so generate and

(continued )

a partial ordering on some of the compo-

nent configurations, so no backtracking or

other failure recovery (e.g., redesign) was

needed, and this partial ordering could be

done dynamically – that is, “on the fly” –

without having to be specified in advance by

the system’s designers. Thus, to paraphrase

a design aphorism in the context of model-

ing design processes, “Never marry your first

strategy.”�
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test was used. Within each task, the use of the

“match” strategy ensured that each rule used kept

the reasoning on the path to a correct solution

(i.e., backtracking was not allowed). But to keep

the reasoning on track, each rule required that

many conditions be true before it could be used:

about 30 on average. This made it very difficult to

add a new rule because that required a correct,

fully specified condition of applicability that was

different from existing ones. This problem was

exacerbated by the large number of people who

were trying to maintain the knowledge base. A new

methodology, known as RIME, was used to rewrite

XCON to help with these problems. Each piece of

knowledge was given a “role” (e.g., propose action,

recognize failure), and different types of tasks

were identified (e.g., select device, select location),

allowing task-specific control. The new rules were

less complex, related to fewer other rules, could be

grouped, and allowed clear naming – all making

it easier to add new rules. Although there were

more rules overall, the new system’s speed was

comparable because it was easier to select rules

and each rule took less time to process.

Section 6.1: The classical design aids or tools

outlined here are elaborated in the excel-

lent exposition of Cross (1989), whose order-

ing and flavor we largely follow. Similar dis-

cussions are found in, for example, French

(1985, 1992), Pahl and Beitz (1984), Ull-

man (1992a), and VDI (1987). The spe-

cific examples used to illustrate the methods

(e.g., the objectives trees shown in Figures

6.1 and 6.2) were developed in a first-year

design course taught at Harvey Mudd Col-

lege (Dym 1993a; Gronewold et al., 1993;

Hartmann et al., 1993). The idea that means–

ends analysis is a general form of human

problem solving was propounded in Newell

and Simon (1963).

Section 6.2: The overview of AI-based

problem-solving techniques is a conden-

sation of the discussion of Dym and

Levitt (1991a). The statement of the

missionary-and-cannibals problem is taken

from Amarel (1978), wherein the reader

can find many elegant representations of

that problem. The 8-puzzle is dealt with

exhaustively in Nilsson (1980). A discus-

sion of problem characterization, includ-

ing the two-player games that are of no interest here, is found in Korf

(1988). The meaning and utility of hierarchical generate and test are devel-

oped in Stefik (1990). Barr and Feigenbaum (1981) contains an extensive dis-

cussion of search, including definitions and algorithms for syntactic search and

weak and strong methods. Search algorithms are also outlined in Charniak and

McDermott (1985), Dym and Levitt (1991a), Stefik (1990), and Winston (1993).

Problem-solving strategies are also discussed in Stefik et al. (1982). The notion of

satisficing was first identified in Simon (1981). Optimization in design is discussed in

Arora (1989), Fox (1971), Gero (1985), Paplambros and Wilde (1988), Vanderplaats

(1984), and Wilde (1978). Case-based reasoning has only recently been applied in

design; a good summary of its applicability to design is contained in Pu (1993). Gero

(1987) addressed the issue of design mutations.

Section 6.3: The architecture for V-belt drive design is described in Dixon and

Simmons (1983, 1984) and Dixon, Simmons, and Cohen (1984). The HI-RISE system

was the subject of one of the earliest doctoral dissertations that applied KBES

techniques to engineering design (Maher, 1984); HI-RISE is also described in Maher
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and Fenves (1985). Some of the earliest attempts to systematize approaches to design

concepts and tasks is represented in the work of Brown and Chandrasekaran (1983).

The most complete description of the PRIDE system appears in Mittal, Dym, and

Morjaria (1986); further elaborations are given in Mittal and Araya (1986) and

Morjaria (1989). The graphics interface to PRIDE is discussed in Morjaria, Mittal,

and Dym (1985). The brief description of PRIDE presented here is adapted from

Dym (1993b). The R1/XCON system is described in Barker and O’Connor (1989)

and McDermott (1981, 1982).



7 Where Do We Go from Here?

We now bring our exposition to a close. We do so by first suggesting potential

uses for and applications of symbolic representation in engineering design. We

then offer a few remarks about research on representation in design, following

which we conclude with some prescriptions for engineering design education.�

Many of the issues discussed in this chapter are still relevant. Because some of the newer aspects were

presented in previous chapters, we try not to repeat them, but we will add a few more. It is clear from

the changes to the topics addressed over time at the American Society of Mechanical Engineering (ASME)

design conferences, particularly the Design Theory and Methodology (DTM) conference, that AI, computational

design, and design cognition have made a huge impact. To see the extent of this influence and how far the

field has come from being dominated by mathematical analysis (especially of kinematics), just look at some

keywords and phrases, taken directly from abstracts of papers at a recent DTM meeting: cognitive model

of design, design by analogy, Bayesian model, problem formulation in design, concept mapping, decision

rationale, qualitative analysis of transcripts, integrated help documentation, design knowledge management,

information foraging behavior, function modeling, nonfunctional requirements, inventive problem solving,

object-oriented graph grammar system, interactive genetic algorithm, association rule learning, overcom-

ing obstacles to creativity, conceptual sketches, model-based product development, identifying heuristics,

addressing consumer variation, characterizing modularity, level of decomposition, design complexity metrics,

reformulating ill-defined problems, designers’ erroneous mental models, design fixation, biologically inspired

design, emotion-based conflict, aesthetic preference, and consistency of human judgments.

7.1 Uses of Symbolic Representation in Engineering Design

We believe that the foregoing discussions confirm that there is considerable scope for

applying symbolic (and other!) representation techniques in engineering design. In

particular, we are thinking of the potential for using KBES techniques to represent

both designed artifacts and design processes. There is a growing body of literature

about and experience with both research prototypes and industrial applications that

perform or assist in the performance of routine design; both R1/XCON and PRIDE

are in daily use in their respective commercial domains. We reviewed some of the

155



156 WHERE DO WE GO FROM HERE?

pioneering work in Section 6.3 – although we should recognize that in terms of

engineering applications, this field is just over a decade old. However, we believe it

is appropriate now to think about how symbolic representation and its extensions

and applications could be used to model and assist with the diversity and complexity

of the design tasks performed by engineers.

7.1.1 Integration with Analysis Tools

Although we have hardly mentioned the word in our exposition, analysis is an

essential element of design. We use qualitative analysis in conceptual design to

Qualitative reasoning can be used to get a feel

for things before and during design. Symbolic quali-

tative values such as {high, medium, low}, {increas-

ing, stable, decreasing}, and {solid, liquid} are used

instead of numbers to identify the important dis-

tinctions in a domain. Then, differential equations,

expressed qualitatively to use those symbolic val-

ues, represent how things may change. For a faucet,

for example, equations link the angle through which

the handle is turned with the size of the open-

ing in the pipe, and link the size of the opening

with the amount of water flowing. Such equations

might indicate how the direction of one change

influences the direction of another (e.g., increas-

ing the opening size leads to increasing water

flow), or state that the faucet does not change

the water temperature. CADET, a case-based sys-

tem for the conceptual design of electromechanical

devices, is an example of a system that uses qual-

itative representations (Narasimhan et al. 1997).

Qualitative equations are used together with causal

relations (e.g., pressure difference causes flow)

and influence graphs (i.e., nodes with directed arcs

connecting them), which summarize the direction

of the influences of variables on others. Influence

graphs can be indexed by the type of variable (e.g.,

types might include flow, fluid flow, signal, or rota-

tional signal), which enables fragments of larger

graphs of existing devices to be reused in new

devices. Bredeweg and Struss (2003) provide point-

ers to further literature in a special issue on quali-

tative reasoning.

“get a feel” for things, approximate analy-

sis in preliminary design to develop rough

estimates and perhaps refine choices, and

finally detailed analysis in detailed design to

develop final values for part sizes, shapes,

and so on.� Thus, one very effective applica-

tion of KBES-based systems to design will be

their use as interfaces or “front ends” to anal-

ysis packages. We can visualize them helping

a designer choose analysis tools and inter-

pret the results obtained from them. Analy-

sis techniques (e.g., finite-element methods

(FEM)) are often implemented as large pro-

grams that are not easy to apply, so KBES-

based analysis tools could be used as expert

checkers. An early step in this direction

was the SACON rule-based system that pro-

vided advice on how to use the MARCTM

FEM package. A later step was the MUMS

research prototype, which explored some of

the qualitative trade-offs we make in choos-

ing among analysis strategies and tools at dif-

ferent stages of modeling in an engineering

or design project. More recently, researchers

have tried to clarify the role of and support

analysis in the early stages of design, where

modeling is a key issue.

We also can go beyond providing inter-

faces to analysis packages by integrating

design and analysis knowledge in one knowl-

edge base. We could then systematically

check designs at each stage of the process

instead of waiting for a stopping point (e.g.,
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the end). Furthermore, the reasons for the failure of the evolving design as deter-

mined by specific analyses can be used to provide suggestions for modifying and

fixing the design (as in PRIDE), thus obviating the need to restart a design from

scratch.

In fact, we really should be thinking about integrating in a seamless fash-

ion all of our design tools, including all those used for analysis, graphics, doc-

umentation, accounting and cost analysis, part specification, manufacturing, and

so on. However, this is still a daunting agenda, so we do not have much experi-

ence to report. One research prototype is IBDE, an integrated system for building

design and construction, which represents a vertical integration of five task-specific

KBESs:

1. ARCHPLAN, for assisting a user with the conceptual design of a building.

2. HI-RISE, for preliminary design of structural floor and wall systems.

3. SPEX, for preliminary and detailed structural-member design using formal rep-

resentations of engineering design standards.

4. FOOTER, for preliminary layout and design of foundations.

5. CONSTRUCTION PLANEX, for developing a construction plan: identifying

activities and their dependencies, estimating durations, estimating costs, and

generating construction schedules.

We term this a vertical integration because each of the systems in IBDE con-

forms to the same underlying representation scheme, so the various KBESs have

little difficulty exchanging data or results. By way of contrast, we can also imag-

ine a horizontal integration, where the commitment to a description within a par-

ticular system – be it a KBES, a CADD system, or another component of the

integrated system – is based on what is the best representation of the knowledge

Computer-aided design and drafting systems can be

augmented in many ways with qualitative or quanti-

tative simulation (e.g., for mechanisms or for stress),

manufacturability estimators (e.g., cost), planners

(e.g., for disassembly or rapid prototyping), virtual

manufacturing systems, checkers (e.g., for codes

and standards), critics (e.g., to indicate potential

life-cycle issues), constraints (e.g., for parametric

and geometric design), and simple intelligence (e.g.,

smart cursors that detect what the user is trying to

indicate or select).

for that system (e.g., heuristic rules, a

set of mathematical models, an algorithm,

sketches or graphics, and so on). We would

seek horizontal integration by facilitating

translation among the representations so

that other design knowledge can be shared

as needed, in the representation that is most

suitable for the immediate application of the

knowledge. There has been some work along

these lines in the domain of structural engi-

neering, and some of the conceptual bases

for such knowledge integration have been

laid down, but there is not much else to point

to at the moment.�
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7.1.2 Integration with Graphics Tools

In a similar vein, and as discussed in Section 5.2, we also should think about inte-

grating our graphics tools with KBESs. To date, CAD systems have been largely

restricted to documenting designs. Integrated CADD systems have been recently

applied to ensuring spatial coordination among design components, although CADD

systems acting alone have not as yet provided much support for automated design

synthesis. However, the situation is changing, especially as more “intelligent” CADD

systems are developed, as we mention herein.

We pointed out previously that sketches and drawings become, with increasing

annotation, important sources of information about an unfolding design. Thus, tools

in which we can integrate sketching and notetaking would be very valuable, especially

if we can link them into CADD packages that can produce more formal drawings

from our sketches. This also means that integrated KBES/CADD systems ought

to support not only the graphics aspects of design representation but also feature-

based approaches and others that make use of design knowledge in the terms that

designers store and apply it. Thus, we would argue that another purpose for inte-

grated KBES/CADD systems is to manage descriptions, functionality, constraints,

and other aspects of design problem solving in a mode in which the representations

are mixed and interchangeable, so that for the task at hand, the designer can use

her system in the most natural representation as well as at the appropriate level of

abstraction.

We have begun to see in the marketplace the emergence of commercial

KBES/CADD packages (some are listed in the bibliographic notes for Section 5.3)

that can be used to generate nearly routine product designs. These systems can

be run in a fully automated manner or they can be used as design assistants by

human designers with a variety of interface tools (e.g., geometric visualizations of

the design). The (human) designer can then react to a given stage of the design and

modify it as she or he sees fit. As we have noted, these tools are limited in their

application to nearly routine, “semicustom” products for which a linear, sequential

design process can be used.

The culture of design is changing; we more often see designers developing

designs and syntheses on their own workstations. Because their designs are machine-

readable even while still only partially developed, we have new opportunities to

coordinate and control concurrent design in real time. An integrated KBES/CADD

package could provide an alternative (to a red pencil on hard copy) for checking

consistency, say, and communicating across disciplines electronically. Furthermore,

models developed within a KBES/CADD package can be used by the package

to check for spatial conflicts. This is why this form of automated verification of

spatial consistency or interference checking has proven to be quite valuable to

designers working in parallel. We can in some cases do away with building phys-

ical models of artifacts (e.g., scale models of refineries and full-scale mock-ups

of new aircraft). However, because we still have trouble representing and rea-

soning about function (cf. Chapter 5), we cannot expect current KBES/CADD
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design tools to be very helpful in verifying functional consistency among an artifact’s

subsystems.

7.1.3 Collaborative and Concurrent Design

Section 5.6 discussed the importance of communicating about designed artifacts, thus

perhaps referring for the first time to the communal nature of much design activity.

In the “real world,” complex systems often are designed by a team of designers and

engineers (and others). This means that we must be able to decompose the complex

system into smaller subsystems if we are to rely on a team design effort. It does

not mean, however, that the subsystem designs can be carried out independently. A

designer who is having trouble meeting the performance requirements for his or her

subsystem often will “negotiate” with those who are designing interfacing modules in

an attempt to modify or relax the requirements. Designers are constantly exploring

choices and balancing different sets of constraints. Although we are still evolving

models of computer support for communal interaction and concurrent design, we

can safely say that extended KBESs can be used to model some aspects of communal

activity. We present here a brief discussion of problems (cast in an organizational

setting because that is what concurrent design is about) that could be opportunities

for KBES applications, in the context of the elementary three-stage model of the

design process (cf. Section 3.2).

In conceptual design, we expect that high-level specialists from all of the spe-

cialties involved will confer to identify the key performance specifications and con-

straints for each discipline and to ensure that assumptions used by designers from

any one discipline – which may have implications for other disciplines – are commu-

nicated to and understood by all. Such coordination meetings, which can be viewed

as tightly coupled concurrent design, constitute a serious overhead cost to the design

budget, especially if the specialist designers work in separate organizations or are

geographically dispersed.

Once we have decided on a specific design concept, as we start to embody par-

ticular schemes in preliminary design, we usually can parcel out the key subsystems

to the appropriate design specialists. At the same time, we can identify the most

important interface issues that must be coordinated with specialists in other disci-

plines. Once this occurs, design activities can proceed in parallel (or concurrently) in

a fashion that we could characterize as loosely coupled. Few meetings are held, and

the individual designers develop partial solutions covering the components, materi-

als, dimensions, and other attributes of the subsystems assigned to them. We would

see only limited communication across discipline- or subsystem-based boundaries.

When we get to detailed design, when final and detailed descriptions of all

subsystems are determined for a large and complex artifact, we must share and

coordinate a staggering amount of information. This is especially true for designed

artifacts such as aircraft, power plants, and large software systems. Somehow, we

have to guarantee that each of the artifact’s subsystems will fit, both functionally

and spatially. Traditionally, such coordination was achieved by circulating paper
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drawings to all affected parties, who would then “red pencil” conflicts, errors, or

omissions. This process is clearly prone to error and very time-consuming because,

as a practical matter, it is a linear process.

We can see that there are many issues involved in coordinating a design organiza-

tion, depending on how interdependent are the specialists’ tasks and on their novelty

and uncertainty. Interdependence and uncertainty are always present in engineer-

ing. Thus, if we want to reduce the number of face-to-face coordination meetings, we

might use KBES techniques to capture and apply the design-management heuristics

of experienced designers and design managers. These heuristics help them to make

some of the following kinds of decisions:

An increasing number of researchers are study-

ing modularity in product design. Modularity implies

that modules are independent and that components

within a module are similar. This enables us to

develop product families in which modules can be

interchanged on a common product “platform” to

produce different members of the family (Simpson

2005). Current research on modularity focuses on

heuristics, measures, and best practices (Zhang

et al. 2004).

Defining efficient boundaries among the arti-

fact’s subsystems. We want to minimize

the number and severity of interface

issues that must be coordinated across

design specialties. Of course, defining such

boundaries involves considerations other

than ease of coordination (e.g., available

fabrication and assembly methods, suppli-

ers’ capabilities, and so on).�

Making good guesses about the required

degree of conservatism in the initial per-

formance specifications for each subsys-

tem. We want to specify functional perfor-

mance requirements and cost contingencies for subsystems so as to achieve a

good balance between the costs of excess conservatism (e.g., wasted materials,

labor, space, and power) and the potential costs of underdesign (e.g., loss of

design flexibility, time lost to redesign, or increased probability of failure of

the completed artifact).

Evaluating and limiting proposed changes in subsystem specifications. We require

experience-based knowledge to assess whether a proposed change is essential

(i.e., the artifact will not meet an important specification without the change),

desirable (i.e., the value of some performance enhancement will outweigh the

costs of making the change), or undesirable (the costs of making a change will

exceed its benefits).

Determining which specialists are likely to be impacted by changes that do get

approved. We ought to be selective in communicating information about such

changes to the affected parties.

Controlling the timing and sequencing of that small number of key design deci-

sions. These key decisions, which often affect many disciplines, usually turn

out to be highly constrained or constraining for one artifact or another.

Two architectures have been developed to model tasks carried out in paral-

lel by human (and computer) agents. Both extend the style of KBESs in their

complete dependence on symbolic representation and problem-solving techniques.

These architectures are called, respectively, blackboards (BBs) and cooperative
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distributive problem solving (CDPS). These architectures, rather than rendering

individual tasks into computable forms, focus instead on supporting the interactions

of multiple agents because this is essential for the support of multidisciplinary design

activities. We have neither the space nor sufficient background here to do justice to

BB and CDPS architectures. Thus, we content ourselves with a few abstract charac-

terizations of the two architectures and leave the interested reader to delve further

into the literature.

The BB architecture attempts to coordinate problem solving much as do

human engineering organizations. Thus, domain knowledge sources are discrete

modules that incorporate chunks of individual expertise about some aspect of the

design domain (e.g., organizational rules and procedures; design standards). The

information-sharing aspect of face-to-face meetings is modeled by having the knowl-

edge sources communicate indirectly with one another by writing to and reading

from a common data structure called a blackboard. We should note here that the

negotiation that happens in coordination meetings is not supported by this architec-

ture. Finally, a BB architecture uses control knowledge sources to develop a strategy

for solving a (design) problem. As problem solving proceeds, recommendations

from the domain knowledge sources are evaluated against this strategy before being

implemented. The control knowledge sources are intended to model the hierarchical

nature of planning and supervision in an organization.

The CDPS architecture goes beyond the BB framework by allowing its equiva-

lent of knowledge sources (KSs) to have considerably more autonomy than they do

in a BB. In particular, in a CDPS network, we would replace each KS with a powerful

KBES free to operate at all levels of the problem hierarchy. Furthermore, we would

give each KBES the freedom to do its problem solving, based on its own knowledge

and resources, without waiting to be ordered into action by a control KS. These ideas

seem much more consistent with how we would do a complex engineering task in

an organizational setting. We should note that BB architectures can accommodate

CDPS ideas by using individual KBESs as control KSs that communicate with other

KBESs through a shared BB space.

In CDPS, as we have hinted, problem solving is done by a network of loosely

coupled, semiautonomous problem-solving agents or nodes. Each node in the net-

work is capable of both sophisticated problem solving and cooperative interaction

with other nodes. In fact, each agent may itself be a complex problem-solving system

that can modify its behavior as circumstances change and plan its own communi-

cation and cooperation strategies with other agents. Thus, because each KBES in

the network works on a piece of the problem, we are effectively decomposing the

problem-solving process. We should recognize, therefore, that there are substantial

issues involved in representing and decomposing the original global task without

losing control of the solution process: we do want a coherent outcome! CDPS is

a rapidly developing set of ideas that does seem suitable for managing multidisci-

plinary design. Further details are found in the literature cited in the bibliographic

notes.

One final note on communal interaction and concurrent design: one prob-

lem common to many large design and engineering organizations is the use by
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Agent-based systems also face the issue of inter-

agent communication. Agent communication lan-

guages (ACLs), such as KQML and FIPA-ACL, have

been proposed (Labrou et al. 1999). Messages have

types (e.g., informing, querying, proposing, com-

manding, refusing) and can include “content” in any

language that both agents share. KIF, the knowl-

edge interchange format, is one such language: it

allows arbitrary sentences in first-order logic to be

expressed. ACLs support both negotiation and dif-

ferent architectures for multi-agent systems.

their staffs of many different kinds of data-

bases, as well as other kinds of applica-

tions. This often is called the “Tower of

Babel” problem because of the use of so

many different languages and applications

tools.� It clearly poses a major obstacle

to computer-aided design integration. Of

course, we could insist on the obvious admin-

istrative solution to this problem; that is,

everyone on staff should use a single CADD

package, although this assumes that the cho-

sen package can support every kind of anal-

ysis needed. A KBES-style approach to the

problem of multiple databases is based on the development of “intelligent” database

management systems that can propagate and resolve constraints among related

attributes of a design to specify additional attributes. Another line of attack is the

development of knowledge-based database interfaces that can mediate between

several incompatible but related databases.

7.1.4 Community Knowledge Bases

There is another dimension to the team effort – namely, how expertise is distributed

among team members. For example, early in the development of the PRIDE project,

while the expert designers’ knowledge was being acquired, we found that each

designer typically had some special knowledge about one or more design subtasks.

It is easy to envisage that a KBES can be used to bring together within one system,

“under one roof,” this otherwise-distributed specialized knowledge. In effect, we

create a community knowledge base that has more expertise than any single expert.

One of the motivations for the PRIDE project was the establishment of just such a

community knowledge base.

A related aspect is that a system that captures the knowledge of a design group

or organization can be used both as a tutor for novice designers entering a design

It is clear that indexing, searching, matching, detect-

ing relevance, and maintaining consistency across

large distributed quantities of diverse data are sig-

nificant challenges for the field of design whether

it involves databases or the Web, both now and for

the foreseeable future.

group and to propagate design styles and

standards across an organization.� Novices

can learn the design domain by exercising

a designer’s assistant on past or hypotheti-

cal cases, and they need to go to the human

experts for help only when confronted with

cases that are beyond the scope of the sys-

tem. We think the propagation of design

standards across an organization is also a self-evident benefit, and it is certainly

feasible if the sponsoring organization is willing to invest in developing, maintain-

ing, and distributing KBES-based design tools across their organizations. Perhaps

the greatest benefit would be for companies whose activities are geographically dis-

persed because consistency of approach could probably be more easily enforced
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this way than with any other technique that would come to mind. Maintaining and

periodically updating a quality design tool is likely to be much more efficient in this

regard than is the periodic issuance of design directives in hard copy – copies that

are likely to end up gathering dust in a file cabinet.

7.2 Research on Representation in Design

There is a very active community of researchers and designers who are exploring

various aspects of representation in design. We will not review that work beyond

what we have described in the preceding six chapters because, first, a detailed survey

would likely be dated by the time our exposition appears. Second, comprehensive

surveys are already available (see the bibliographic notes for pointers) and there

are several meetings each year whose proceedings also provide current snapshots

of what is being done. Thus, we limit ourselves to making a few observations about

some aspects of KBES technology and about the style in which much of the research

on design representation is being done. We begin our observations about style with

some comments on KBES technology.

A major point of our discussion has been to link views of designed objects

and the design process to their respective representations, a linkage that has been

articulated and strengthened because of symbolic representation. We have made

good use of this linkage, particularly as it has been reflected through the applications

of KBESs to design modeling. Such KBESs, although they do increasingly involve

object-oriented languages and concepts, are still reliant on rule-based technology.

The reliance on rules as a form of expression provides several key advantages – many

of which do not obtain for conventional, procedural programs – including having

the ability to separate knowledge from the way it is controlled and used, making the

knowledge used more transparent to the system user, making the solution process

more transparent to the system user, and providing a capacity to add knowledge to

the system incrementally.

Each rule (cf. Section 5.1) in a KBES can be viewed as a separate “chunk” of

knowledge that specifies the situation in which it is applicable and the action that

should then be taken. Because the consequences can be individually examined and

understood, we say that the chunk of knowledge in such a rule is transparent. We

might contrast this with procedural programs, in which we must look at the entire

program to get a sense of the knowledge within because the knowledge used is

inextricably intertwined with how it is used (i.e., its control).

Control in a KBES is exerted by its inference engine, which searches over a set of

rules and keeps track of those whose situation clauses match the problem context at

various points in the solution process. As a result, we can reconstruct how a solution

evolves. This is why we talk about the transparency of a KBES solution. We can

contrast this with procedural programs, which do not normally track their solution

paths; they simply issue final answers.

Finally, because an inference engine can usually “figure out” which rules

or knowledge to apply, we can develop a KBES knowledge base, in which the

knowledge is stored, by starting with general rules and adding increasingly specific
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rules as we acquire more knowledge. We then expect that a KBES developed this

way will exhibit expert problem-solving ability only after more specific, exceptional

pieces of knowledge – expressed in terms of increasingly specific rules – have been

added to its knowledge base. We do not see this capacity for incremental growth in

most procedural programs because they support only one level of problem-solving

knowledge.

We can summarize the three principal problems of rule-based systems as

narrowness, that is, their range of applicability is limited; uncertain coverage, that is,

Rule-based systems are less popular. This is partly

because they were oversold, along with KBESs in

general, as the cure for all ills. Rule bases quickly

get very large for real problems. They are also dif-

ficult to acquire and maintain. Rules may allow

both consistent and inconsistent inferences; sup-

port the coding of the same knowledge in several

ways; and incorporate a lot of situation-specific,

not explicitly stated knowledge, which makes them

very hard to reuse. Also, different rule bases in the

same domain may not be combinable because they

use different ontologies. However, rules can still be

very convenient for small knowledge bases. Unfor-

tunately, many of these issues apply to other types

of knowledge representation as well. One approach

to acquiring rules that removes some of the prob-

lems is to infer them from data: this is often referred

to as data mining.

they do not usually completely cover a

problem domain; and brittleness, that is,

they fail abruptly rather than gradually.

The latter problem has been described

as “falling off the knowledge plateau.”

Most AI researchers point to the need for

richer, deeper representations of engineer-

ing knowledge for solving these problems.�

However, we think that the issue is deeper

than just representation.

To begin with, we know of no uni-

versally accepted definition of engineering

knowledge that characterizes the individ-

ual components of this knowledge and indi-

cates how they might be best represented.

Knowledge is not a homogeneous quantity

that can be uniformly represented by a sin-

gle paradigm. Many different representation

paradigms (e.g., frames, rules, procedures,

formal logic, and graphics) are needed to

adequately represent engineering problem-

solving knowledge. However, we also need guidelines to relate representation tools

to these different kinds of knowledge. Moreover, acquiring engineering knowledge

for encapsulation in a KBES is a difficult, time-consuming, and error-prone process.

It is likely the most important task in developing a KBES, as well as the one for which

assistance – in terms of methods and automated tools – and deeper understanding is

most needed.

KBES developers have generally used one or, at most, a few knowledge repre-

sentation paradigms to represent the knowledge for a particular problem. Knowledge

that could not be represented was either “shoehorned” into an unnatural structure

that worked only for that specific problem or ignored. Not enough attention has

been paid to the organization of the knowledge. For example, it is likely that pieces

of knowledge are missing, although not known to be missing, which may be why

traditional rule-based systems are often brittle. We need, we would argue, a uni-

fied model of engineering knowledge, or else our system-building procedures are

rather like those of “the blind men describing the elephant.” A KBES developer
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describes the parts of the domain knowledge he needs to solve his narrow problem

(i.e., the “elephant”) without knowing how that knowledge relates to other compo-

nents of the larger base of domain knowledge. Thus, attempts to integrate individual

KBESs into unified systems then fail because each was developed in an ad hoc

manner.

Thus, although we believe that the potential offered by symbolic representation

has to a significant extent been realized in both our understanding of and our ability

to do design, we also argue that we need further research into the nature of design

knowledge (as well as into new representation paradigms). Thus, we echo the calls

that have been made for a more systematic approach to design research, some of

which inspired the taxonomies we described in Chapter 4. However, we do this

with the explicit recognition that this cannot be done as an academic exercise alone,

unconnected with real design activity. We wish to be quite clear that, as we said

earlier in this exposition, our goal is not to automate design or to replace human

creativity. However, if we better understand what design knowledge is and how it

can be used, we can better develop design tools that help designers be more creative.

Messages in an agent communication language

transfer knowledge, specifying the ontology that

was used. This allows the receiving agent to make

sense of the meaning of the terms used in the mes-

sage, which facilitates any kind of knowledge use,

such as sharing, reuse, and communication. People

have tried the obvious approach of making “stan-

dard ontologies” for specific domains that can be

adopted by many system builders: for example, Boe-

ing and BAE Systems have tried to build engineering

ontologies (Tudorache 2008). Such ontologies could

be used by either human or computational agents.

The most general approach is the “suggested upper

merged ontology,” which is intended to be a high-

level ontology under which all other ontologies might

fit (Pease 2011). For cases in which ontologies

already exist, the ontology matching approach tries

to make semantic correspondences between two

different ontologies (i.e., In what ways are they sim-

ilar?). This could then lead to a merging of ontolo-

gies. For example, an ontology about gears might

be merged with one about belt drives to produce

a third ontology or, alternatively, to produce a way

of translating queries based on one ontology into

queries based on the other.

Perhaps another way of summarizing

our argument is to note that for all the

progress that is being made in represent-

ing – and, thus, helping us understand –

the thought processes of design, we are in

danger of loosing a flood of ad hoc sys-

tems of limited use. Furthermore, we are

also in danger of developing a more arcane

jargon, as opposed to a shared vocabulary

and structure, because some of this work is

being done without sufficient involvement of

designers and other domain experts.� There

has been a tendency by some AI-oriented

researchers to develop models of how engi-

neers and designers think by relying on

superficial understandings of the underlying

domains. We must remember that applying

AI-based representations, as with any other

techniques that are borrowed from other dis-

ciplines, is a means toward the end of under-

standing how engineers think, analyze, and

design.

Now, as the work we described pre-

viously indicates (cf. Chapters 5 and 6),

KBES technology is reaching a greater

level of acceptance within the engineering

community, the aforementioned drawbacks
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notwithstanding. This acceptance is due to the fact that we can use KBES technolo-

gies to solve ill-structured problems by articulating and applying heuristic knowledge,

whether that knowledge is experiential in origin or derived from first principles. But

this acceptance could be limited if we do not recognize that we are dealing with a new

paradigm of knowledge representation and modeling, and that there are formidable

issues of verification and validation that must be addressed.

The verification aspect of KBES technology is concerned with whether the infer-

ence process is executing exactly as it is supposed to. Thus, the testing issues are

largely domain independent and not too dissimilar from verification aspects of more

conventional software engineering. The validation issue is concerned with the advice

a KBES offers as it completes a task, whether acting as an automating adviser or as a

designer’s assistant. We ask a simple question: How do we know that the KBES has

given valid advice? Now we move sharply away from conventional software engi-

neering because our equally sharp departure from algorithmic approaches makes it

almost impossible to set up benchmarks that will, in and of themselves, inspire confi-

dence in our KBES. The difficulty is that we are dealing with a subjective assessment

of advice that is produced by a nondeterministic, heuristic, and judgmental process.

Perhaps the most convincing form of validation would be to exercise the system over

as large a library of case studies as possible. Assuming the KBES provided reason-

able answers, such an exercise might provide us with the confidence that comes from

repeated successful experience. To be sure, there are questions about how many test

cases we need to run and how accurate we expect the answers to be. However, we

can likely invoke some statistics to assess the probability with which we can expect

future results to be “valid.”

The problem with the new paradigm is related to the issues of verification and

validation, and it is simply that the old scientific test of repeatability does not eas-

ily apply in this domain. Because we are neither using the standard language of

mathematics nor writing conventional algorithms that can be tested on standard

benchmarks, we cannot count on other researchers and developers to repeat our

analyses in their environments. Whereas in many ways AI research is almost exper-

imental in nature, the kinds of programs that are written are not so easily specified

or duplicated that they can be repeated as experiments in other researchers’ labo-

ratories. This may be one of the reasons that we never saw the AI boom that we

expected in the late 1980s and early 1990s. Not only was the potential oversold, but

we also may be victims of not having as yet a convincing enough paradigm for the

way we do our research. The AI community is beginning to come to grips with this

issue, but we must as well. Our own argument is that, as we have stated often, we can

use this technology to develop a better vocabulary and structure for the discipline of

design. We are not especially interested in automating design, save for those tasks

which are largely drudgery. We are interested in providing support for designers, to

free up their time and to enhance their creativity. There is some reason to believe

that we are succeeding in this, and we will continue to do so as long as we maintain

reasonable expectations.



7.3 SYMBOLIC REPRESENTATION IN ENGINEERING-DESIGN EDUCATION 167

7.3 Symbolic Representation in Engineering-Design Education

We describe in this book some of the ways that design can be discussed in a more

coherent manner. We hope that we have demonstrated at least the beginnings of

structure and vocabulary for the discipline of engineering design. We have tried

to address a major concern of many engineering faculty members – namely, that

design is “soft” and lacking in structure and rigor, by illustrating that there exist

formalisms within which design issues can be systematically addressed. We argue

Papers in a recent American Society of Mechan-

ical Engineering conference concerned with

design education include these design represen-

tation and reasoning topics: studies of learn-

ing in and across courses, inspired by psychol-

ogy (e.g., with pretests and posttests); building

a case base of problems with their solutions; coding

student activity using a function-behavior-structure

ontology; the utility of using Wikis for shared repre-

sentations; functional modeling; augmented reality;

analogical reasoning for biomimetic design; sketch

recognition; creativity enhancement techniques and

studies; providing physical interpretations of math-

ematical expressions; and techniques for collabo-

ration in teams. The case for increasing student

awareness of representation issues has been made

for some time (Dym 1999; Dym and Little 2009).

Other related design education themes are found in

Frey et al. (2010) and the references therein.

that design is at least partially a cognitive

activity that can be modeled. However, inas-

much as design knowledge is often design

lore, the tools we need to develop a vocabu-

lary and structure for the discipline of design

must stretch beyond the languages of math-

ematics (e.g., numbers, symbols, and geom-

etry) that have served us so well in analysis

and design depiction. That is, we argue that

the tools we need to develop the study of

design should build on – but not be limited

to – the traditional tools that are now the

major focus of engineering education. We

believe that some of these tools have come

as a direct consequence of recent advances in

the field of artificial intelligence, which have

in turn offered us the opportunity to lay a

better framework for design education and

design research.�

The tools of engineering analysis are well

developed, powerful, and readily available

in both analytical and computer expressions

to those who wish to apply them. These tools are built on years of experience

in the mathematical modeling of physical phenomena, often buttressed by exper-

imental results or practical realizations. However, as any experienced engineer

knows, there is much more to engineering – and especially engineering design –

than can be captured in a formula or an algorithm. Until relatively recently, how-

ever, the tools for formalizing this “strategic” knowledge have not been evident.

As engineering science has come to dominate the landscape of engineering educa-

tion and engineering research, there has been no parallel development of vocab-

ulary and tools for engineering design. Thus, as grounds for serious study, the

“art of engineering” has lain fallow. To recognize that there is an art to engineer-

ing design does not preclude design from being worthy of serious scientific study.

Furthermore, we now have tools to describe and delineate precisely those heuristic

and judgmental aspects of design experience that we could not heretofore capture
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in the languages of engineering science. In short, an emerging paradigm based on

symbolic representation and reasoning facilitates the systematic study of design in

ways that the traditional language of mathematics cannot.

Thus, as we stated earlier, major motivation for this exposition is that the ana-

lytical modeling techniques that currently occupy most of the various engineering

curricula do not represent a vocabulary complete enough for the synthesis task: that

of generating and choosing among different designs. We are missing a language for

representing design at a level of abstraction higher than that required for detailed

design, for example, but with enough hierarchical structure to allow us to articulate

at appropriate levels of detail all of the issues involved in making design choices.

We believe that there must be a language or representation rich enough to span the

gap between “design this structure to be stiff enough” and “place the rivets at the

coordinates shown.” The first statement is abstract and general, having limited prac-

tical meaning; the second is specific and detailed, coming when the design process is

virtually complete.

We try to demonstrate in this exposition that recent developments in AI have

provided new techniques for representing both designed artifacts and the design

process, thus enabling better explication of design concepts. These in turn have

enabled a more coherent structure and vocabulary for the discipline of engineer-

ing design. The kind of replication of a design process found in the systems illus-

trated herein cannot be achieved with traditional engineering-science or operations-

research approaches, or in the graphics representations of modern CADD systems.

These representations, although they permit the inclusion of economic, spatial, and

other performance metrics, do not support qualitative or strategic issues that are not

expressible in formulas or numbers. AI techniques thus offer opportunities to artic-

ulate design concepts, providing a better framework for design education and design

research.

It is important for us to note that we are not suggesting that all students of

engineering design become proficient in AI programming techniques. Neither are we

adding one more requirement – and seemingly a severe one at that – to a curriculum

already viewed as being both overburdened and lacking in depth. Our argument is

simply that we are witnessing the formation of additional languages for engineering,

which are further means for expressing the mental models that we use to describe

engineering problems and their (physical) solutions. Choosing a representation is

the beginning of modeling, although we have seen that representation in design is

broader than in engineering science, where mathematical modeling is the key idea.

Thus, our message is twofold. First, we should stress to a much greater extent to

This is an argument that was made previously

(Dym 1999, 2004; McAdams and Dym 2004)

and that others continue to make (McKenna and

Carberry 2012).

engineering students that mathematics is just

one language for modeling physical pheno-

mena and some aspects of the behavior of

artifacts. That is, we must make students

more conscious of the fact that engineering

is about modeling and representing reality.�
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Second, the approaches described in Chapters 5 and 6 offer another language for

modeling various facets of engineering design. In fact, the symbolic representations

exemplified there are not a second engineering language but perhaps a fifth. We

are used to asking students to start their problem solving by describing the problem

in words (the first language) to make sure they understand what is being asked of

them. We suggest they then list all known quantities and their magnitudes, thus

introducing numbers as a second language. We further suggest that students sketch

the situation before writing down equations, thus introducing graphical representa-

tions before they get to the mathematical realization of the problem (the third and

fourth languages, respectively). Thus, symbolic representation of artifacts and the

design process could be viewed as a fifth language for engineering.

Now (and again), incorporating a fifth language does not mean that all engineer-

ing students learn AI. We have pointed to the emergence of commercial CADD

systems that include some AI-based approaches in their design environments, so the

power of symbolic reasoning can be made available to a designer in a user-friendly

way. Students also can easily learn to think in terms of rule-based descriptions of the

design process and in terms of elementary object-oriented descriptions. Inexpensive

“expert system shells” are now available for many computers. These programming

environments make it easy for students to play with and explore design – or other –

engineering problems within the context of both design and analysis courses. Many

of these tools allow students to use the natural languages of engineering in a natural

way, blending technical terms and features with judgment calls and other heuristics.

Such programming environments can be increasingly integrated with other computer

tools for graphics, simulation, number crunching, and so on. Thus, we are getting

closer to truly integrated computational environments for engineering modeling and

computation, and we should let our students in on their development and their use.

In so doing, we will strengthen engineering design as a discipline and strengthen

engineering as a profession.

On the subject of teaching design, prompted in part by almost three decades

of teaching engineering, we offer a few more comments.� It seems to us that

Dym et al. (2005) present a broad survey of the

many facets of not only design thinking and learn-

ing, especially representation and modeling, but

also estimation, the design of experiments, the role

of design teams, and the utility of intellectual and

gender diversity.

we very often “lose the forest for the trees”

when we implement ideas in engineering

education. For example, how many students

of drafting have been made to feel that

the thicknesses of the lines on their ink-

on-vellum drawings were more important

than the nature and meaning of the draw-

ings themselves? Too often, we focus on the

details of execution rather than the ideas that we are trying to transmit. Now that

we can use CADD programs to do all sorts of other fancy operations on draw-

ings, isn’t it time to introduce descriptive geometry? Now that we can take the

drudgery out of drawing, shouldn’t we focus on the meaning of drawings as sources of

information?
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Similar issues arise with the teaching of design. Currently, there appear to be

three schools of thought in American engineering schools about teaching design.

The traditional design school has it that design is experiential in nature, that “cre-

ativity cannot be taught,” and that whatever discipline is imposed is done through

scheduling and reporting requirements. This school also feels strongly that attempts

to articulate and formalize a scientific theory of design will lead to the ruin of

engineering-design education because creativity of necessity will be stifled. A sec-

ond school of thought, unsurprisingly in view of the development of engineering

education since the Second World War, is made up largely of engineering scientists

Since the first edition of this book, there has been a

dramatic increase in the number of empirical stud-

ies of how designers work (Subrahmanian et al.

2004). Many more researchers are analyzing pro-

tocols collected from designers and design teams

during the design process (Gero et al. 2011) with

the intention of revealing more details of design

thinking. A better understanding of how design is

done should enable us to provide far more effective

computational support.

and other “analytical types” who believe that

there is no “real” content to design educa-

tion. Reacting to the vagueness with which

the content of design courses is discussed by

the first school, the second school believes

that no meaningful discipline of design can

emerge until it can be put into mathemat-

ical terms. Just recently, a third school has

emerged to propound the need for a scien-

tific study of design as a cognitive activity

that can be modeled within the framework

of cognitive science.� Our own view is that

the truth lies – as is so often the case – somewhere between these extreme poles. As

we have said elsewhere, we

do not believe that we can model truly creative design – and this is perhaps where the

debate has been miscast. Design activities encompass a spectrum from routine design

of familiar parts and devices, through variant design that requires some modification in

form and/or function, to truly creative design of new artifacts. Although we may not be

The literature on stimulating creativity is vast: it

seems reasonable to suppose that many of the

techniques apply to designers generally (Shah et al.

2003a) and to creative design more specifically.

Shah et al. (2003b) measured the effectiveness of

ideation techniques using measures of the novelty,

variety, quality, and quantity of ideas. Computational

creativity has also attracted a lot of attention (Boden

1994), and computational design creativity is also

now being investigated more seriously, although

research has been underway for some time (Brown

2008; Gero and Maher 1993).

able to teach creativity, we must recognize that

the spectrum of design concerns does include

many processes that are susceptible to thought-

ful analysis – in other words, that are cognitive

processes. . . .

. . . the root of the many complaints about the

characterization of design as a cognitive process

is due to confusion about where creativity and

thoughtful process interact and overlap, on the

one hand, and where they are distinct, on the

other. This boundary is a moving one, especially

in terms of our understanding. But we must be

careful not to develop a new orthodoxy about

design that prejudges where that boundary is and

where, as a result, we preclude what we can learn

and teach about design.�

But even apart from this debate, we noted in Chapters 3 and 6 that there are

several prescriptive models of design as a process and that they incorporate various
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The continued health of the Design Computing and

Cognition (DCC) series of conferences (previously

known as “AI in Design”), as well as AIEDAM: Arti-

ficial Intelligence for Engineering Design, Analysis

and Manufacturing, is a good sign that the AI,

computational, and cognitive views of design will

continue to affect design and design education.

Recent topics in DCC conferences include design

heuristics, the function-behavior-structure ontol-

ogy, design agents, design rationale, enabling cre-

ativity, evolutionary algorithms, shape rules, brand

identity, neural networks, belief models, automated

layout design, clustering techniques, conceptual

design of multidisciplinary systems, learning con-

cepts, collective design, design teams, brainstorm-

ing, and biologically inspired design. There is strong

interest in studying teams and finding ways to

increase their effectiveness in modeling, studying,

and enhancing creativity; functional representations

and reasoning; analogical reasoning; sketch recog-

nition; and support for biomimetic design. AIEDAM

has recently had special issues on several of these

topics, as well as on configuration, representing

and reasoning in three dimensions, and the role

that gesture plays in design. We should expect

to see those topics, as well as other AI-inspired

topics, appearing more in mainstream design and

design education conferences in the not-too-distant

future.

kinds of inductive design aids and tools. As

we also observed before, we can find few

American textbooks on design that reflect

even this level of thought about the design

process (and we noted in Chapter 5 that

sketching and drawing suffer from a simi-

lar fate). We do use the deductive method

extensively because case studies are cer-

tainly a mainstay of design education. But

for some reason, this collection of inductive

tools, which students can easily learn and

successfully apply (viz., the examples in Sec-

tion 6.1), is largely found in European but

not American textbooks. Our point here is

simple. We believe that there is a discipline

of design, that it encompasses much that can

be taught to students to assist and channel

their natural creativity, and that it is high

time that we reform our engineering curric-

ula to do so.�
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Section 7.1: HI-RISE and R1/XCON were

discussed in Section 6.3.1 and references

to them are found in the correspond-

ing biliographic notes. Some of the earli-

est attempts to systematize approaches to

design concepts and tasks is represented in

the work of Brown and Chandrasekaran

(1983). PRIDE was discussed in Section 6.3

and the references to it are found in the corresponding bibliographic notes. Further

engineering applications of KBESs are found in, for example, Brown and Chan-

drasekaran (1989), Coyne et al. (1990), Dym (1985), Dym and Levitt (1991a), and

Rychener (1988).

The SACON system is described in Bennett et al. (1978) and Bennett and

Englemore (1984). The MUMS system is described in Salata and Dym (1991). The

application of KBESs to modeling in early design is discussed in Finn (1993) and

Finn, Hurley, and Sagawa (1992). The IBDE environment is described in Fenves

et al. (1988). IBDE’s component systems are discussed in the following: ARCH-

PLAN in Schmitt (1988); HI-RISE in Maher (1984); SPEX in Garrett and Fenves

(1987); FOOTER in Maher and Longino (1987); and CONSTRUCTION PLANEX

in Zozaya-Gorostiza, Hendrickson, and Rehak (1989). Elements of a horizontally

integrated approach to structural engineering are found in Jain et al. (1990) and



172 WHERE DO WE GO FROM HERE?

Luth (1990). The arguments for knowledge integration are advanced in Dym and

Levitt (1991b).

Our discussion of some of the aspects of communal and concurrent design activ-

ity is adapted in part from Levitt, Jin, and Dym (1991), which outlines architectures

for concurrent design. The reference list of that article also provides an ample num-

ber of pointers to ongoing work in developing such architectures, but some good

overviews are found in Nii (1986, 1989) for blackboard architectures and in Bond

and Gasser (1988); Durfee, Lesser, and Corkill (1989); and Gasser and Huhns (1989)

for CDPS. Engineering applications of distributed problem solving are described in

Sriram, Logcher, and Fukuda (1989). The development of “intelligent” database

management systems is described in Stonebraker and Rowe (1986). KADBASE,

due to Howard and Rehak (1989), is an example of a knowledge-based database

interface to multiple databases. The means that are used to coordinate engineering

project teams are delineated in Logcher and Levitt (1979) and Thompson (1967).

The issues of using a KBES as a community knowledge base are explored in

Mittal, Bobrow, and de Kleer (1984); Mittal and Dym (1985); Mittal, Dym, and

Morjaria (1986); and Stefik (1986).

Section 7.2: An extensive and very thorough review of design research appeared

in Finger and Dixon (1989a, 1989b). The volumes of Tong and Sriram (1992a, 1992b,

1992c) encompass a wide variety of current work, as do proceedings of relevant

meetings, such as Gero (1992). Some of the concerns expressed about research on

design representation were originally voiced in Dym, Garrett, and Rehak (1992).

KBES architectures and features are described in Dym and Levitt (1991a). Lenat

and Feigenbaum (1987) and Forbus (1988) discuss the limitations of rule-based

representations.

Section 7.3: Much of this section is adapted from Dym (1993b). The quotation is

from Dym (1992a), which was written following a spate of letters in ASME’s Mechan-

ical Engineering magazine in response to two articles by Dixon (1991a, 1991b) that

proposed a more formal approach to engineering-design education.
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