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Preface 

The aim of this book, which is a revised edition of a book previously 
published by McGraw-Hill, is to introduce the reader to the subject 
of heat transfer. It will take him sufficiently along the road to enable 
him to start reading profitably the many more extensive texts on the 
subject, and the latest research papers to be found in scientific 
periodicals. This book is therefore intended for students of engineer­
ing in universities and technical colleges, and it will also be of assis­
tance to the practising engineer who needs a concise reference to the 
fundamental principles of the subject. The engineering student will 
find most, if not all, aspects of the subject taught in undergraduate 
courses and, thus equipped, he will be in a position to undertake 
further studies at postgraduate level. 

The aim throughout has been to introduce the principles of heat 
transfer in simple and logical steps. The need for an easily assimilated 
introduction to a subject becomes more urgent when the subject 
itself continues to grow at an ever-increasing rate. It is hoped that the 
material selected and presented will be of value at all levels of reader­
ship. Indebtedness is acknowledged to all those, past and present, 
who have contributed to the science of heat transfer with their origi­
nal work, and as far as possible detailed references are given at the 
end of each chapter. Also grateful thanks are extended to various 
persons and organizations for permission to use certain diagrams, 
tables, and photographs; credit for these is given at appropriate 
points throughout the text. 

It is also hoped that in this edition the changes made will further 
enhance the value of the book. Greater attention has been given to 
numerical methods in conduction, and some basic procedures in 
digital computing are included The chapter on radiation has been 
extended to include an introduction to non-luminous gas radiation 
and a short section on solar radiation. Numerous small changes have 
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been made throughout in the light of reviews and criticisms received. 
New worked examples are included to extend the range of applicabi­
lity, and some of the original problems set have been replaced by more 
recent ones. SI units are now used exclusively, and conversion factors 
for British units are included in appendix 2. 

Many of the problems included are university examination 
questions; the source is stated in each case. Where necessary the units 
in the numerical examples have been converted to Sl. Indebtedness 
is acknowledged to the owners of the copyright of these questions for 
permission to use them, and for permission to convert the units. The 
universities concerned are in no way committed to the approval of 
numerical answers quoted. 

Much of the material in this book has been taught for a number of 
years at undergraduate level to students at The City University. 
Grateful thanks are due to Professor J. C. Levy, Head ofthe Depart­
ment of Mechanical Engineering, and to Mr B. M. Hayward, Head 
of the Thermodynamics Section. Discussions with colleagues at City 
and elsewhere have also contributed in numerous ways, and for this 
help sincere thanks are expressed. 

Finally, thanks are due to Malcom Stewart, of The Macmillan 
Press, who has been responsible for the production of both editions, 
and also to my wife, who has typed the manuscript revisions. 

Department of Mechanical Engineering, 
The City University 

JOHN R. SIMONSON 
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NOMENCLATURE 

heat transfer per unit time, or a physical variable in dimension­
less analysis 
radius, radial direction 
residual value 
resistance 
universal gas constant 
scaling factors in electrical analogy 
electrical shape factor 
thermal shape factor 
temperature 
absolute temperature 
time, time increment time constant 
overall heat transfer coefficients 
velocity of temperature wave 
velocity 
specific volume 
electrical potential, volume 
coordinate direction, linear dimension 
length of temperature wave 
thermal diffusivity 
absorptivity 
coefficient of cubical expansion 
boundary layer thickness 
thickness of laminar sub-boundary layer 
thermal boundary layer thickness 
equivalent conducting film thickness 
emissivity 
eddy diffusivity 
eddy thermal diffusivity 
eddy mass <;iiffusivity 
fin effectiveness 
equivalent effectiveness of finned surface 
temperature difference, logarithmic temperature difference 
angle in cylindrical coordinate system 
wave-length 
dynamic viscosity 
kinematic viscosity 
density 
electrical resistivity 
reflectivity 
Stefan-Boltzmann constant, surface tension 
shear stress 
transmissivity 
turbulent shear stress 
angle in spherical coordinate system 

Dimensionless groups 
F Fourier number, ll.t1X/a2 
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Gr Grashof number, {Jg8p 2 / 3 11-12 

J Colburn J-factor, St. Pr2 13 

Le Lewis number, D/11. 
Nu1 Nusselt number, hl/k 
Pr Prandtl number, cPJ-tlk 
Ra Rayleigh number, Gr.Pr 
Re1 Reynolds number, pvl/J-1 
Sc Schmidt number, v/D 
(Sc). turbulent Schmidt number, e/em 
Sh Sherwood number, hm/(pi)tm/DP 
St Stanton number, h/pvcP 
(St)M mass transfer Stanton number, Sh/(Re.Sc) 

Suffices 
a at axis of tube 
a,w air, water, (in hygrometry) 
b black body 
b limit of laminar sub-boundary layer 
c cold fluid 
d, I, X length terms used in dimensionless groups 
e equivalent 
f fluid 
h hot fluid, heated length 
i, j components of mixture (in mass transfer) 
i, 0 inlet, outlet, (in heat exchangers) 
m mean value 
n direction of component 
0 datum length 
r radial direction, or radial position 
s surroundings, of free stream 
sat. saturated temperature 
t temperature, turbulent 
w wall 
x,y,z direction of component 
(} angular component 
A. monochromatic 

Superscript 
average value 



1 
Introduction 

One of the primary concerns of the engineer is the design and 
construction of machines many times more powerful than himself 
or any of his domestic animals. The development of this skill over 
the centuries has been fundamental to the growth of civilization. 
Man's early efforts to harness the power of wind and water owed 
very little to engineering science, and indeed the early steam engine 
was a practical reality before the science of thermodynamics was 
firmly established. In contrast, there is now a vast fund of engineer­
ing knowledge behind the present day prime movers. 

Much engineering activity is directed to the controlled release of 
power from fossil and nuclear fuels, and with making that power 
available where it is needed. The laws of heat transfer are of the 
utmost importance in these activities. The generation of power from 
the energy changes of chemical and nuclear reactions involves the 
transfer of vast quantities of thermal energy. Further, chemical 
processes of combustion yield temperatures at which most construc­
tional materials would melt; adequate protection by heat transfer 
processes is therefore vital. The distribution of energy as electricity 
is accompanied, at all stages, by certain wastages manifested as 
rising temperature of the equipment. Heat transfer considerations 
enable these temperatures to be controlled within safe limits. 

The laws of heat transfer find application in many other fields of 
engineering. Chemical and process engineering, and manufacturing 
and metallurgical industries are examples. In addition, the civil and 
constructional engineer and environment control engineer need 
considerable knowledge of the subject. Large city buildings must 
be economically heated and insulated, and air conditioning is 
increasingly necessary. 

To the mechanical engineer heat transfer is a subject closely 
allied to applied thermodynamics. The first and second laws of 

2 



2 ENGINEERING HEAT TRANSFER 

thermodynamics state the relations between the physical entities of 
heat and work, and the limit to the amount of work that may be 
obtained from any source of heat. Even this limit cannot be reached 
in practical engineering processes because of their inherent irreversi­
bility. These irreversibilities may be accounted for in calculations 
but, even so, thermodynamics alone leaves a lot of questions un­
answered. There is no time scale and, consequently, thermodynamics 
will not permit the calculation of physical sizes necessary to achieve 
a given objective. In a steam power plant it is necessary to transfer 
the thermal energy of the hot combustion gases of the burnt fuel to 
the water in the boiler tubes. The actual rate of transfer to produce 
a required flow rate of steam may be known, but without the laws 
of heat transfer and knowledge of the properties of the engineering 
materials to be used, it is not possible to calculate the size and 
surface area of the tubes required. From an economic point of 
view, the boiler must be made as small as possible, hence the heat 
transfer rate must be as high as possible. Elsewhere in the plant, 
heat transfer considerations are necessary in insulating the steam 
delivery lines and in condensing the low pressure turbine exhaust. 

Heat transfer processes, then, are described by equations which 
relate the energy to be transferred in unit time to the physical area 
involved. Other factors entering the equations are the temperatures, 
or the temperature gradient, and some coefficient which depends on 
various physical properties of the system and on the particular 
mechanism of heat transfer involved. Three basic mechanisms of 
heat transfer are recognized. They may occur separately, or simul­
taneously. Separate equations may be written to describe each 
mechanism, and when two or more mechanisms occur simul­
taneously it is sometimes possible to add the separate effects; but 
sometimes it is necessary to consider the equations of the participat­
ing mechanisms together. The subject matter thus conveniently 
sub-divides itself into the separate basic mechanisms of heat transfer, 
and the combinations of them. 

Heat is transferred by conduction, convection, and radiation. 
Before describing these processes, it is desirable to clarify what is 
meant by 'heat'. In the study of thermodynamics, heat is defined as 
an energy transfer between communicating systems, arising solely 
from a temperature difference. Thus a heat transfer is strictly a 
phenomenon occurring only at boundaries of systems, and a heat 
transfer elsewhere in a system is more correctly a redistribution of 



INTRODUCfiON 3 

internal energy within the system. As it is convenient to keep to the 
conventional language of heat transfer, this should be kept in mind, 
and the word heat will not in most cases be in accord with the 
thermodynamic usage. · 

Conduction is the mode of heat transfer in a solid material and 
occurs by virtue of a temperature difference between different parts 
of the material. Conduction also occurs in liquids and gases but is 
generally associated also with convection, and possibly with radia­
tion as well in the case of gases. tonduction within a solid is a 
transfer of internal energy; this energy is, in fact, energy of motion 
of the constituent molecules, atoms, and particles of which the 
material consists. The kinetic energy of the motion is proportional 
to the absolute temperature; molecular collisions lead ~o energy 
transfer to regions oflower kinetic energy. Under steady conditions 
a molecule will pass on the same amount of energy that it receives. 
Under non-steady conditions the flow of energy is governed by the 
changing energy levels. 

The theory of conduction heat transfer was established by Joseph 
Fourier whose work was published in Paris in 1822,1 but pioneer 
work was done by Biotin 18042 and 1816.3 Conduction is described 
by an equation known as the Fourier rate equation 

dt 
Q =- kA-

x dx (1.1) 

The rate of heat flow (in only the x-direction, see Fig. 1.1) is propor­
tional to the product ofthe area of flow and the temperature gradient, 
the constant of proportionality being the thermal conductivity k 
which is a property of the material. The negative sign results from 
the convention of defining a positive heat flow in the direction of a 
negative temperature gradient. The property k may be a function of 
temperature and direction of heat flow. Materials with directional 
dependence of thermal conductivity are said to be anisotropic. 

The units involved depend on the system chosen. In the SI system, 
the unit of heat or internal energy is the joule, hence rate of heat 
transfer is measured in Jfs or W. However, the kilojoule, (kJ), and 
kilowatt, (kW), are accepted multiples of the SI unit, and to be consis­
tent with general usage in thermodynamics, the kJ and kW are the 
preferred units in this book. With the area in m2 and the temperature 
gradient in K/m, the units of k are kW/m K~ This follows the British 
Standards recommendation4 for the presentation of complex units. 
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uniform temperatures over each face 
• t 
i 

dt 
Q = -kA-

x dx 

conductivitY.. k 

X 

Fig. 1.1. Fourier's law for one-dimensiolllll steady state conduction ;, a 
plane slab of material. 

In the British system of units, used in the majority of publications in 
English up to the mid 1960s, the rate of heat transfer is measured in 
British thermal unitsjhour, or Btujh, and with the area in ft2 and the 
temperature gradient in °F/ft, k is measured in Btu/(ft h °F). 

Conduction in fluids generally forms a very small part of the total 
heat transfer, convection being the predominating mechanism. 
Convection is the name given to the gross motion of the fluid itself, 
so that fresh fluid is continually available for heating or cooling. 
Apart from the bulk movement of the fluid, there is generally a 
smaller motion of eddies which further assists in distributing heat 
energy. Convection heat transfer is sub-divided into two different 
kinds, natural and forced. Heat transfer by natural convection 
occurs between a solid and a fluid undisturbed by other effects 
when there is a temperature difference between the two, as in a 
kettle ofwater.lt is not often that a fluid can be regarded as entirely 
at rest, so frequently there is a small amount of forced convection as 
well. But true forced convection requires a major applied motion of 
the fluid in relation to the source or sink of heat, so that natural 
convection effects are negligible. An important aspect of natural 
convection is that the fluid motion which does occur is due entirely 
to natural buoyancy forces arising from a changing density of the 
fluid in the vicinity of the surface. Within the realms of both natural 
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and forced convection there are two sub-divisions of laminar and 
turbulent flow convection. In forced convection separation of flow 
can occur from the surfaces of immersed bodies, for example, in the 
flow across the outside of a pipe. A further type of forced convection 
involves a phase change of the fluid, as in boiling and condensing. 

It is thus evident that many factors enter into heat convection, 
including the shape and magnitude of the solid-fluid boundary, 
characteristics of the fluid flow, such as the magnitude of turbulent 
eddies, and the conductivity of the fluid itself. 

Because of these complexities many convection problems are not 
amenable to mathematical solution, and recourse is made to tech­
niques of dimensional analysis and experiment. Thus many empirical 
dimensionless relationships are now available in the literature to 
enable. the engineer to design his heat transfer apparatus, whether 
it be an industrial heat exchanger or domestic convector. 

Newton (1701)5 proposed a general equation to describe convec­
tion heat transfer, 

(1.2) 

Figure 1.2 indicates that heat transfer is occurring from a surface 
of area A at temperature t 1 to a fluid at a lower temperature t 2 • 

fluid, t 2 

Q = hA(t1 - t 2) 

Fig. 1.2. Diagrantmlltic representation of convection from a flat plate, 
illustrating the use of Newton's equation. 

h is the convection coefficient and has the units kW/(m2 K) in the 
SI system, or Btu/(ft2 h °F) in the British system. It takes care 
of the many factors entering a particular example of convection, 
and the value of h will vary for differing flow regimes, fluid properties, 
and temperature differences. The main problem in the analysis of 
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Table 1.1 

Convection system 

Natural convection 
Forced convection (air) 
Forced convection (liquids) 
Boiling heat transfer (water) 
Condensation (steam, filmwise) 
Forced convection (liquid metals) 

Range of h,* kW/(m2 K) 

0·004-0·05 
0·01-0·55 

0·1-5·5 
1·0--110·0 

0·55-25·0 
3·0-110·0 

* For numerical conversion factors, see the Appendix 

convection is to predict values of h for design purposes. The value 
of h in different regimes and for different fluids is generally within 
the ranges indicated in Table 1.1. 

The third mode of heat transfer known as radiation is rather 
different in nature from the first two. Conduction and convection 
occur within solid or fluid material and often are present simul­
taneously. In contrast, radiation is an energy transfer which is 
transmitted most freely in a vacuum. It occurs between all material 
phases. All matter at temperatures above absolute zero emits electro­
magnetic waves of various wave-lengths. Visible light together with 
infra-red and ultra-violet radiation forms but a small part of the total 
electromagnetic spectrum. The mechanism by which radiation is 
propagated is not of any direct concern to the mechanical engineer, 
who is mostly interested in overall effects rather than in molecular 
detail. It is sufficient to say that radiation is energy emitted by vibrat­
ing electrons in the molecules of material at the surface of a body, and 
the amount emitted depends on the absolute temperature of the 
body. 

The third equation to be introduced at this stage dates from 1884 
when the work of Boltzmann6 consolidated the earlier work of 
Stefan (1879). 7 Known as the Stefan-Boltzmann equation, it is 

Q = oAT4 (1.3) 

where T is the absolute temperature, A is the surface area of a per­
fectly radiating body and u is the Stefan-Boltzmann constant and 
has the value of 56·7 x 10- 12 kW/(m2 K4 ), or 0·171 x 10- 8 Btu/ 
(ft2 h 0 R4 ). Stefan established this relationship experimentally, 
subsequently Boltzmann proved it theoretically. A perfectly 
radiating or black body emits at any given temperature the maxi-
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mum possible energy at all wave-lengths. The energy emitted will 
be less for real materials. This equation defines an energy emission, 
rather than an energy exchange. The area A will also be absorbing 
radiation from elsewhere, which must be taken into account in an 
energy exchange relationship. The emitting and absorbing charac­
teristics of surfaces, and the 'view' that surfaces have of each other, 
are factors which enter the consideration of radiation exchanges. 

REFERENCES 

1. Fourier, J. B. Theorie analytique de Ia chaleur, Paris, 1822. Translated by 
A. Freeman, Dover Publications, New York, 1955. 
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5. Newton, I. Phil. Trans., Roy. Soc., London, Vol. 22,824 (1701). 
6. Boltzmann, L. Wiedemanns Annalen, Vol. 22, 291 (1884). 
7. Stefan, J. Sitzungsber. Akad. Wiss. Wien. Math.-naturw. Kl., Vol. 79, 391 
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2 
The equations of heat conduction 

2.1. The Nature of Heat Conduction 

The Fourier equation of heat conduction (1.1) has already been 
introduced. This equation is for one-dimensional heat flow, and 
may be written in a more general form: 

at 
Q = -kA­" an (2.1) 

where Q" is the rate of heat conduction in then-direction, and at;an 
is the temperature gradient in that direction. The partial derivative 
is used since there may exist temperature gradients in other direc­
tions. One-dimensional conduction does not often occur in practice 
since a body would have to be either perfectly insulated at its edges or 
so large that conduction would be one-dimensional at the centre. 

Equation (2.1) expresses an instantaneous rate of heat transfer. It 
may be re-written 

Qn at 
q" =A=- kan (2.2) 

where q" is the heat flux in heat units per unit time and per unit 
area in the n-direction. This is a vector quantity since it has magni­
tude and direction. The greatest heat flux at an isothermal surface 
will always occur along the normal to that surface. 

Heat conduction within a solid may be visualized as a heat flux 
which varies with direction and position throughout the material. 
This follows from the fact that temperature within the solid is a 
function of position coordinates of the system (e.g., x, y, z). In addi­
tion, temperature may be a function of time, (t), so in general 
t = f(x, y, z, t). 

The problem of determining the magnitude of heat conduction 

8 
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resolves itself to finding first the isotherms within the system and 
the way in which their positions vary with time. In steady state 
conduction the isotherms remain stationary with time, and one may 
visualize a large number of isothermal surfaces throughout the 
system, differing incrementally in temperature. The heat flux 
normal to any one surface will vary with position depending on the 
distance between surfaces. It is then necessary to sum the heat flow 
through the boundary surfaces if internal heat sources are present, or, 
if not, through any isothermal surface. In unsteady conduction the 
problem is complicated by the fact that isothermal surfaces are no 
longer fixed, and the rate at which heat is being stored must be taken 
into account. 

Before taking the first step, which is to develop the equation for 
temperature as a function of position and time, it is opportune to 
introduce some facts about different conducting materials. 

Solid materials may be divided into two groups, metallic and 
non-metallic, for which there is a marked contrast in the values of 
conductivity. The Appendix lists properties for some of the more 
useful materials. The high values of conductivity of metals are 
attributable to the well ordered crystalline structure of the material. 
The close arrangement of molecules permits a rapid transfer of 
energy and, in addition, free electrons play a considerable part. 
Metals such as copper which are good electrical conductors also 
conduct heat well. There is also a marked similarity between 
conduction heat transfer and the flow of electricity, and the electrical 
analogy is often used in the solution of conduction problems. 

In contrast, non-metals do not have a well ordered crystalline 
structure and, in addition, are often porous in nature. Thus energy 
transfer between molecules is seriously impeded, and the values of 
conductivity are much lower. The small pores within the material, 
being full of air, further restrict the flow of heat since gases are poor 
conductors. This is because molecules of a gas are relatively widely 
spaced and the transfer of energy depends on collisions between 
these molecules. 

The thermal conductivities of most substances vary with tempera­
ture, and for accuracy such variation should be allowed for in 
conduction problems. However, this is a complication which may 
be ignored in an introductory study of the subject because the 
variation with temperature is not great. Over a reasonable tem­
perature range the relationship between conductivity k1 and tern-
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perature t may be assumed linear: 
kt = k0 (1 + tXt) (2.3) 

where k 0 is the conductivity at temperature t0 , and IX is a constant. 
In most practical applications it is sufficient to assume a mean 
uniform value for conductivity. 

A complication more serious than temperature variation of con­
ductivity occurs in certain engineering materials, viz., that conduc­
tivity may vary with the direction of heat flow. This arises commonly 
in l~minated materials used in electrical engineering. Thus the 
conductivity parallel to the laminates is different to the value 
perpendicular to the laminates. Most types of wood also exhibit 
this property, the conductivity parallel to the grain being different 
to that across the grain. Conducting materials exhibiting this 
property are said to be anisotropic. In the absence of this property 
the material is said to be isotropic. For anisotropic materials the 
analysis of conduction is more difficult and is not included in this 
introductory text. The basic ideas are given by Eckert and Drake, 1 

and the general treatment may be found in the work of Carslaw and 
Jaeger.2 

Differential equations of the temperature field will now be 
developed in two coordinate systems, Cartesian and cylindrical. 

2.2. The Differential Equation of Conduction in a Cartesian 
Coordinate System 

The material of the system is assumed to be isotropic and the conduc­
tivity is assumed invariable with temperature. Consider the infini­
tesimal element of the material represented by the volume dx dy dz 
in Fig. 2.1. The heat flowing into and out of the element is resolved 
in the x-, y- and z-directions. Thus from the Fourier equation the 
rate of heat flowing into the element in the x-direction is 

ot 
dQx =- kdydz­

ox 

since the area of flow normal to the x-direction is dy dz and the 
temperature gradient is ot/ox. The rate of heat flowing out of the 
element in the x-direction is 

o ( ot ) dQ(x+dx) = - k dy dz ox t + ox dx 
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dQ(z+dz) 

dQ, 

Fig. 2.1. Conduction in an element of material in Cartesian coordinates. 

at o2 t 
- k dy dz ox - k dx dy dz ox2 

Therefore the net rate of heat flow into the element in the x-direction 
IS J2t 

dQx - dQ(x+dx) = k dx dy dz -;-2 
uX 

(2.4) 

In a similar manner, the net rates of heat flow into the element in the 
y- and z-directions are given by 

o2 t 
dQY - dQ(y+dy) = k dx dy dz oy2 (2.5) 

(2.6) 

The total rate of heat flow into the element is the sum of the right­
hand sides of equations (2.4), (2.5), and (2.6), which is 

k dx dy dz - + - + -( o
2t o2t o2t) 

ox2 oy2 oz2 

In addition to heat flowing into and out of the element, the possi­
bilities of heat being generated within the element (e.g., due to the 
flow of electricity) and of heat being stored within the element (as 
in the case of unsteady conduction) have to be considered. 
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If q' is the rate at which heat is generated per unit volume, the 
rate of heat generation within the element is 

q' dxdydz 

The rate at which heat is being stored within the element is 
governed by the rate of temperature change otjot. If pis the density 
of the material and eP the specific heat at constant pressure, the 
rate of heat storage will be 

at 
dx dy dz peP at 

This assumes the element may expand or contract freely at constant 
pressure. The rate at which heat is being stored within the element 
is equal to the sum of the net rate of heat flow into the element and 
the rate of heat generation within it, hence: 

ot (o 2 t o2t o2t) 
pep at = k ox2 + oy2 + oz2 + q' 

where rx = k/ peP and is known as the thermal diffusivity of the 
material. It is a ratio of the heat conduction to heat storage qualities 
of the material. 

Equation (2.7) is the general differential equation of conduction 
in a Cartesian coordinate system and may be simplified to suit 
any particular application. Thus the equation for unsteady conduc­
tion in one dimension without heat generation is 

(2.8) 

since q', o2 tjoy2 and o2t/oz2 are equal to 0. 
For any problem of steady conduction, otjot = 0, since there is 

then no variation of temperature with time. The equations for 
two- and one-dimensional steady conduction with heat generation 
are 

(2.9) 

(2.8) 



THE EQUATIONS OF HEAT CONDUCTION 13 

and 

(2.10) 

it being permissible to use the total derivative in the one-dimensional 
case. In the absence of heat generation the equations reduce to 

_ (o2t 02t) 
0 - (X ox2 + oy2 and 0 =ex(~) dx2 

and, consequently, 

(2.11) 

and 
d 2 t 
dx2 = 0 (2.12) 

Problems involving equations (2.8) to (2.12) will be considered in 
later chapters. 

2.3. The Differential Equation of Conduction in a Cylindrical 
Coordinate System 

Often, conduction problems involve heat flow in solid or hollow 
round bars and, consequently, the cylindrical coordinate system, 
Fig. 2.2, is used. The general approach is exactly the same as before 
except that heat flows in radial, circumferential, and axial directions 
have now to be considered. The element to be considered has volume 
rdO dr dz. Heat flowing into the element in the radial direction is 

ot 
dQ, = - k dz rdO or 

and out of the element in the radial direction, 

dQcr+dr) = - k dz(r + dr) dO :r (t + :: dr) 

Hence 
ot o2 t 

dQ, - dQcr+dr> = k dz dr dO or + k dz rdl:l ar2 dr (2.13) 

neglecting a term of higher order. 
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z 

Fig. 2.2. Conduction in an element ofnwterial in cylindrical coordinates. 

In a similar manner, the net heat flowing into the element in the 
circumferential direction is found to be 

and, in the axial direction, 

The rate of heat generation within the element is 

q' rde dr dz 

(2.14) 

(2.15) 

and the rate at which heat is being stored within the element is 

at 
rde dr dz pep at 

Then an energy balance for the element leads to the general dif­
ferential equation for heat flow in three dimensions in a cylindrical 
coordinate system. i.e., 

ot (8 2 t 1 ot 1 o2 t 82 t) q' 
at = (/. or2 + -;: or + r2 882 + oz2 + pep (2.16) 

This equation may similarly be simplified to suit any particular 
problem. Steady one-dimensional heat flow in the radial direction 



THE EQUATIONS OF HEAT CONDUCTION 15 

only will be considered in later chapters. With heat generation 
within the material the equation is 

(d 2 t 1 dt) q' 
rx dr2 + -;: dr + peP = 0 (2.17) 

and without heat generation, 

d 2 t 1 dt 
-+--=0 
dr2 r dr 

(2.18) 

PROBLEM 

Show that the general equation of heat conduction in spherical coordinates 
is given by 

at [a 2 t 2 at 1 a ( . at) 1 a2 t] q' 
Jt = et: ar2 + r ar + r2 sin </J a¢ Stn </J a¢ + r2 sin2 c/> a()2 + pep 

and transform the equation in rectangular coordinates (2.7) into spherical 
coordinates by making the substitutions 

REFERENCES 

x = r sin </J cos () 

y = r sin </J sin () 

z = r cos </J 

1. Eckert, E. R. G., and Drake, R. M. Introduction to the Transfer of Heat 
and Mass, 2nd ed., McGraw-Hill, New York (1959). 

2. Carslaw, H. S., ·and Jaeger, J.C. Conduction of Heat in Solids, Oxford 
University Press (1947). 



3 
One-dimensional steady state 
conduction 

The simplest example of steady state conduction in one dimension 
is the transfer of heat through a single plane slab. Many simple 
problems, such as conduction through the wall of a building, 
approximate to this. 

3.1. Conduction in Plane Slabs 

To calculate the conduction rate in a single slab of isotropic invariable 
thermal conductivity materiaL Fourier's law applied to an infinite­
simal layer within the slab, Fig. 3.1, may be integrated directly. Thus 

tl 
-.-

qx 

XI 

dt 
Qx =- kA­

dx 

--tl R= 
dt 

"' ~ 
t ~ - t2 

dx 

X 
x2 

q 

X 

thermal condu ctivity, k 

X 

Fig. 3.1. One-dimensional steady state conduction in aplllne slllb. 

16 
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and hence 

Q _ - kA(t2 - tt) 
"- (x2- xt) 

(3.1) 

where (x 2 - x 1) is the thickness of the slab and A is the area of the 
slab. Using consistent units, the heat transfer calculated will be in 
heat units per unit time. 

The same result will be obtained if the appropriate differential 
equation is integrated. Integration twice of equation (2.12~ 

d2 t 
dx2 = 0 

gives 

(3.2) 

where C 1 and C 2 are constants of integration to be determined from 
the boundary conditions, i.e., the temperatures at x 1 and x 2 • 

Equation (3.2) indicates that the temperature variation through the 
slab is linear. The temperature gradient from equation (3.2) used in 
Fourier's law gives equation (3.1). Equation (3.1) may be re-written 
as 

Q" - - k(tl - t2) 
--qx- ' A x 2 - x 1 

(3.3) 

in which form it may be compared with Ohm's law describing the 
flow of electricity, i.e., 

· . (Vt - V2) 
Current density (r) = -( ---), 

p x2- Xt 

Potential difference 
Resistance of unit area 

where p is the resistivity of the material, in units of ohms x length. 
The heat flux qx is analogous to current density i; the temperature 
drop (t1 - t 2) is analogous to potential difference (V1 - V2); and 
the resistance per unit area to heat transfer, (x2 - xt)jk, is analogous 
to electrical resistance per unit area, p(x2 - x 1). The usefulness of 
this similarity will be made more apparent later. 

Conduction through a system of plane slabs of different material 
has often to be considered. A partition wall comprising two layers 
of plaster board separated by a thickness of glass-fibre insulation, 
or a furnace wall consisting of a layer of fire brick and a layer of 
insulating brick, are typical examples. Further, such a system may 
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separate two fluids of different temperatures, when the actual wall 
temperatures are not known. The processes of heat transfer between 
the wall surfaces and the adjacent fluid are by convection and 
radiation. Figure 3.2 shows such a system. The Newton equation 
for convection may be written in the sign convention of equation (3.1). 
Thus 

(3.4) 

In this equation, qc is the heat flux due to convection at the solid/fluid 
interface, and tw is the wall temperature and tr the fluid temperature. 
The region in the fluid where the temperature changes from tr to 
tw is known as the boundary layer. he is the convection coefficient 
and is assumed known. Its determination forms the subject matter 
of Section 2, where the suffix c is dropped. 

X 

Fig. 3.2. A multiple plllne slab separating two fluids, one-dimensional steady 
state conduction. 
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As a convenience, the radiation exchange between the wall and 
fluid or some other surface beyond the fluid may be expressed by an 
analogous equation 

(3.5) 

Since radiation exchanges are a function of the fourth power of the 
absolute temperatures involved, the radiation coefficient ~ is 
heavily temperature-dependent. 

The total heat flow or conduction flux qx from the wall by convec­
tion and radiation is found by adding (3.4) and (3.5): 

qx = qe + q, = - he(tf - tw) - hR(tf - tw) 

- (he + hR)(tf - fw) (3.6) 

A multiple slab of two layers of conductivities k1 and k 2 which 
separates two fluids f1 and f2 at temperatures tu and tr2 is now 
considered. For exchange between fluid f 1 and wall surface at t 1 : 

qx = -(he+ hR)fl(t1 - tu) 

For conduction through the two layers of material: 

For exchange between the wall surface at t 3 and the fluid f2 : 

qx = - (he + hR)f2(tf2 - t3) 

Re-arranging and adding : 

qx + + +~--~--[ 1 x 2 - x 1 x 3 - x 2 1 J 
(he + hR)fl k1 kz (he + hR)rz 

and hence 

where 
1 
u 

= - (trz - trd 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

1/U is the overall thermal resistance per unit area between fluids 
and U is the overall heat transfer coefficient. The resistances to heat 

B 

(3.10) 
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flow due to convection and radiation act in parallel and the 
resistances due to the conducting layers act in series. The heat flow is 
calculated from (3.10), once the overall coefficient U is found from 
(3.11), and interface temperatures follow from (3.7), (3.81 and (3.9). 

Sometimes in composite structures slabs of differing thermal 
conductivity are present as shown in Fig. 3.3. This situation may be 
treated one-dimensionally provided it is assumed that the y-z faces 
of the intermediate slabs have uniform temperatures. The total resis­
tance may be deduced by adding the intermediate resistances in 
parallel before adding the others in series. 

A2 

-Q 
Al A3 

kl 

A4 

k2 

k3 

k4 

R4 
-Q 

ks 

Fig. 3.3. One-dimensiolllll steady state conduction in 11 series-ptl1'tdlel 
system of slabs; tz IIIUi t3 are uniform temperatures in the y-z plane. 

EXAMPLE 3.1 

(a) The reduction of heat loss from buildings is of very great practical 
and economic importance. The Institution of Heating and Ventilating 
Engineers in the IHVE Guide Book A, 1970, give values of overall 
heat transfer coefficient (known as U values and expressed as 
W/(m2 K) and not kW/(m2 K)) for various types of walL window, and 
roof. Some typical values are given in Appendix 3. Use the U values 
given below to calculate the heat transfer rate through a house 
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structure in cases (i) and (ii). In both cases the wall area is 110m2, 

wood-frame window total area 14m2, upstairs ceiling area 36m2 , 

environment temperature difference 21 oc. 
Case (i) 335 mrn solid brick walL U = 1·5 W/(m2 K); pitched 

roof with felt, foil-backed board ceiling, U = 1·5 W/(m2 K); 
single-glazed windows, U = 4·3 W/(m2 K). 

Case (ii) 335 mrn solid wall plus 30 mrn foam board lining, 
k = 0·026 W /(m K); pitched roof as before plus 50 mrn glass-fibre 
insulation U = 0·5; double-glazed windows, U = 2·5 W/(m2 K). 

Solution. For parallel heat flow through walls, windows and roof, in 
case (i) 

Q = 21(110 X 1·5 + 36 X 1·5 + 14 X 4·3) = 5860 W 

= 5·86 kW 

In case (ii), the thermal resistance of the insulated wall is the original 
resistance plus the insulation resistance which equals 1/1·5 + 
0·03/0·026 = 1·82. 

New U value = 1/1·82 = 0·55 

Q = 21(110 X 0·55 + 36 X 0·5 + 14 X 2·5) = 2380 W 

= 2·38kW 

A saving of 3·48 kW is achieved Actual heating requirements will be 
greater than the figures calculated on account of air changes, and 
some losses through the ground floor. 

(b) Calculate the U value and the inside glass surface temperature 
of a doubled-glazed window assuming conduction only in the inter­
mediate air space, given: each glass thickness 3 mm, air gap 7 mm, 
k(glass) = 1·05 W/(m K), k(air) = 0·026 W/(m K), inside surface con­
vection coefficient 9 W/(m2 K), outside surface convection coefficient 
15 W/(m2 K), inside and outside environment temperatures 21°C 
and soc. 

Solution. The overall resistance, equation (3.11), is 

1 1 3 7 3 1 
U = 9 + 1000 X 1·05 + 1000 X 0·026 + 1000 X 1·05 + lS 

= 0·111 + 0·00286 + 0· 269 + 0·00286 + 0·0666 
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= 0·452 

:. U = 2·21 W/(m 2 K) 

The temperature drop between the inside environment and the 
inner glass surface, fJ, is given by 

f) 0·111 
------
(21 - 5) 0·452 

. ·. Inner glass surface temperature = 17·08°C 

3.2. Effect of a Variable Conductivity in a Plane Slab 

In considering the variation of k with temperature in the case of 
one-dimensional flow in a plane slab, equation (2.3) for the relation­
ship between k and temperature will be used. 

For conduction in a single plane slab, 

and 

dt 
qx = - ko(l + cxt)­

dx 

qx(x2 - x 1) = -k0 [(t 2 - t 1) + ~(t~ - ti)] 

- k0 [2(t 2 - t 1) + ct(t2 - t 1)(t2 + t 1)] 

2 

- k0 [2 + ct(t2 + t 1)](t2 - t 1) 

qx = 2(x2 - xd (3.12) 

It will be found that equation (3.12) can also be obtained by taking 
an average of the conductivities at temperatures t 2 and t 1 and substi­
tuting into equation (3.3). Equation (3.12) may be used to find the 
interface temperature between two plane slabs, e.g., for two materials 
where klt = k10(1 + ext) and k 21 = k20(1 + f3t). The heat flux 
through both slabs is the same, hence 

- k10[2 + ct(t2 + t 1)](t2 - t 1) = - k20[2 + f3(t 3 + t 2)](t3 - t2 ) 

2(x2 - xd 2(x 3 - x 2 ) 

This equation may be solved to find t 2 , and then qx may be calcu­
lated. 
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EXAMPLE 3.2 

The heat flux through a plane slab 0·1 m thick is 146 kW/m2 for 
surface temperatures of 120° and 30°C. Find the value and sign of 
IX in the thermal conductivity function given that k0 = 0·16 kW/(mK) 

Solution. Using equation (3.12) 

146 = -0·16 [2 + 1X(30 + 120}](30- 120)/(2 X 0·1) 

2 + 150 IX = 146 X 0·2/(0·16 X 90) 

= 2·03 

:. (J( = +0·03/150 = +2·0 X 10- 4 K-l 

3.3. Radial Conduction in Cylindrical Layers 

Conduction through thick walled pipes is a common heat transfer 
problem, and may be treated one-dimensionally if surface tempera­
tures are uniform. The heat flow is then in the radial direction only. 
Figure 3.4 illustrates the situation for a single layer. Fourier's law 
may be applied to a cylindrical layer at radius r: 

Q = - kA dt 
r dr 

Here A is the surface area at the radius r, and obviously A will vary 
between the inner and outer radii. It is therefore convenient to 
consider a unit length of cylinder, when the radial heat transfer is 

dt 
Q = - k(2nr)­

' dr 
(3.13) 

2nr is the area per unit length. Since the same quantity Q, is flowing 
through a steadily increasing cylindrical area, the temperature 
gradient must decrease with increasing radius. Integrating: 

(3.14) 

By analogy with Ohm's law, the thermal resistance per unit length 
of cylinder in this case is [In (r 2/r 1)]/2nk. 
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-Q, 

• c::::J • 
tl In '2/'1 R=--

2nk 
t2 

r 

Fig. 3.4. Steady state radial corubu:tion in a cylitulricallayer. 

Equation (3.14) may also be derived from the general equation 
for the cylindrical coordinate system (2.16) which simplifies to 

d2t + ~ dt = 0 ((2.18)) 
dr2 r dr 

for the case of steady radial conduction in the absence of internal 
heat generation. This equation may be integrated to give 

(3.15) 

where C 3 and C 4 are constants of integration to be found from boun­
dary conditions. Thus, if t = t 1 at r = r 1 and t = t2 at r = r2 , it 
is found that 

(t 2 - t 1) 1 r 
t= n-+t 1 

In r2/r 1 r 1 
(3.16) 

To obtain equation (3.14), the temperature gradient is found by 
differentiating (3.16) and substituting back in (3.13). 

A thick walled steam pipe with lagging is a familiar example of 
multiple cylindrical layers, and the treatment is similar to the 
multiple plane layer. Figure 3.5 shows two cylindrical layers separat-
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ing two fluids f1 and f2 • It is assumed that heat transfer at the 
surfaces is in each case predominantly by convection. Considering 
unit length, at the inside surface: 

Q, = - 2nr1h.1(t 1 - tu) 

The same quantity is conducted through the two layers, hence 

Q - 2 k (t2 - tt) - 2 k (tJ - t2) 
,--11:1 --11:2 

In r2/r1 In r3/r2 

1 In r21r1 In r3!r2 1 

2nrl hcl 2n k1 2nk2 2nr3hc2 

Fi«. 3. 5. Stelllly 1t11te rtulilll collllllction in concentric cylituler• Jeptll't~ting 
twojllUdl. 

It is also convected from the outside surface, so 
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Re-arranging and adding these equations gives: 

or 

where 

1 
u 

Q, = - U(tc2 - ted (3.17) 

U is the overall heat transfer coefficient per unit length between the 
two fluids an<J 1/U is the thermal resistance of unit length and consists 
of the sum of individual thermal resistances to conducted and 
convected heat flow. 

3.4. Critical Thickness of Insulation 

Closer inspection of the thermal resistance per unit length of a 
cylindrical system, given in (3.17), shows that the external convec­
tion resistance decreases with increasing radius, so that the sum of 
the conduction and convection resistances of a layer of insulation will 
at some radius pass through a minimum value. For a layer of insu­
lation having internal and external radii of r; and ro, a thermal 
conductivity k, and an external convection coefficient h, the thermal 
resistance per unit length will be (lj2nr0 h) + ((ln r0 /r;)/2nk) and this 
will have a minimum value obtained by putting 

~(-1- + ln ro/r;) _ 0 
dr0 2nr0 h 2nk -

1 1 . --+-=0 
r~h kr0 

or 

k .. 1 d" T0 = h = cnttca ra IUS (3.18) 

This is the value of outer radius for which heat transfer through the 
system will be a maximum. It follows that if for a given k and h the 
external radius is less than k/h, then increasing the thickness of 
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insulation up to a radius of k/h will increase, rather than decrease 
the heat loss from the system. The situation is likely to arise if k has 
a relatively high value, and h a relatively low value. 

3.5. Radial Conduction in Spherical Layers 

Another simple instance of one-dimensional conduction is that 
which can occur in a spherical layer. Conduction will be only in 
the radial direction if the temperatures of the two spherical surfaces 
are uniform. The radial conduction is given by: 

(3.19) 

and the overall heat transfer coefficient for a double spherical layer 
separating two fluids f1 and f2 is 

The value of the critical r 0 for a sphere is 2k/h. 

3.6. Conduction with Heat Sources 

The flow of electricity in a material gives rise to ohmic heating 
and, generally, the resulting heat flow is at least two-dimensional. 
However, if the flow of current in a flat wide bar, or the heating of 
a flat plate by eddy currents is being considered, then the heat flow 
is essentially one-dimensional if edge effects are neglected. (See 
Fig. 3.6, where l ~ b). 

The general equation for the rectangular coordinate system, when 
applied to this problem, reduces to 

O=oc- +-( d
2 t ) q' 

dx2 peP 
((2.10)) 

Assuming q' uniform in space, equation (2.10) is integrated to give 

(3.20) 

where C 5 and C6 are constants of integration to be determined 
from boundary conditions. 
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A 

X 

Fig. 3.6. One-dimensional conduction in a p/one layer with internal heat 
generation. 

The heat transfer at any plane, x, is obtained by differentiating 
equation (3.20) and applying Fourier's law. Thus 

q = - k (~) (3.21) 
X dx X 

If dt/dx = 0, the temperature is a maximum and the heat flux is 
zero. Thus if one face of the slab is insulated, it will also be the hottest. 
The maximum temperature is found by putting the value of x at 
which dt/dx = 0 into equation (3.20). 

One-dimensional conduction in the radial direction will occur in 
a rod or hollow cylindrical bar if surface temperatures are uniform. 
The maximum temperature will occur at the centre of a rod, and at 
an intermediate radius in a hollow bar if both surfaces are cooled. 
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The general equation in cylindrical coordinates (2.16) reduces to 

oc(d2t +! dt) + _1_ = 0 ((2.17)) 
dr2 r dr peP 

for this situation. The solution of this is 

q'r2 
t = - 4k + C 7 In r + C 8 (3.22) 

which may be obtained by making the substitution dt/dr = p. 
Values of C 7 and C8 , the constants of integration, may be found by 
substituting the known boundary conditions, see Fig. 3.7. The value 
of rat which dt/dr = 0 gives the position of the maximum tempera­
ture, and this substituted in (3.22) gives the value of the maximum 
temperature. 

The following example illustrates the way in which ohmic heating 
problems may be solved. 

r 

Fig. 3. 7. Radial conduction in a cylindrical layer with internal heat generation. 
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EXAMPLE 3.3 

An internally cooled copper conductor of 4 em outer diameter and 
1·5 em inner diameter carries a current density of 5000 amp/cm2 • 

The temperature of the inner surface is maintained at 70°C, and it 
may be assumed that no heat transfer takes place through insulation 
surrounding the copper. Determine the equation for temperature 
distribution through the copper, hence find the maximum tempera­
ture of the copper, the radius at which it occurs, and the heat 
transfer rate internally. Check that this is equal to the total energy 
generation in the conductor. For copper, take k = 0·38 kW/(mK) 
and the resistivity p = 2 x 10- 11 k ohm metre. 

Solution. If i is the current density, 

q' = pi2 = 2 X 10- 11 X (5000 X 104) 2 kWjm3 

= 5 x 104 kW/m3 

The boundary conditions are that at r = 0·75 em, t = 70°C and 
that at r = 2 em, dt/dr = 0. This is because the heat transfer is zero 
at r = 2 em. It follows that the maximum temperature also occurs 
at r = 2 em. The constants of integration in equation (3.22) may 
now be found. 

dt - q'r + c7 = 0 
dr 2k r 

at r = (}02 

C8 is given by 

5 X 104 X 0·02 + C7 = O 
2 X 0·38 0·02 

- 1318 + C7/0·02 = 0 

c, = 26·3 

5 X 104 (0·75) 2 
70 = - 4 x 0.38 x 100 + 26·3ln (0·0075) + C8 

= -1·85- 128·7 + C8 

C8 = 200·6 

The equation for temperature is therefore : 

t = - 32,900r2 + 26· 3 In r + 200·6 

with r in metres. 
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The maximum temperature occurs at the outer radius. Substituting 
r = 0·02 min the above equation gives 

f max= - 13-17 - 102·8 + 200·6 

= 84·6°C 

To calculate the heat transfer rate internally, it is first necessary to 
find the temperature gradient at r = 0·0075 m. Thus 

(dt) 5 X 104 X 0·0075 26·3 
dr r=0·0075 2 X 0·38 + 0·0075 

- 494 + 3510 

+ 3016 

The heat transfer internally is in the direction of negative radius, 
hence 

Q(-r) = - (-kA~:) 
+ 0·38 X (27t X 0·0075) X 3016 

53·9 k W jm length 

This result may be checked since all the heat generated in the 
conductor must be dissipated internally. 

PROBLEMS 

Q<-rl = (volume/m length) x q' 

= n(0·02 2 - 0·0075 2 ) X 5 X 104 

= 53·9 kW/m length. 

1. The walls of a refrigerator for a shop consist of slag wool 0·1522 m thick 
sandwiched between sheet iron, 0·0794 em thick, on one side and asbestos 
board, 0·953 em thick, on the other. The total surface effective for heat transfer 
is 37·2 m2 • The atmospheric temperature is 18·3oC and the temperature in 
the cold room is - 3·9°C. 

The thermal conductivity of iron, slag wool. and asbestos board may be 
taken as 69·1, 0·346, 1·21 x 10- 3 respectively and the surface heat transfer 
coefficient as 1· 705 x 10- 3 ; in k W, m, K, units. 

Compute the heat leakage into the refrigerator. (Ans. 0·51 kW.) (King's 
College, London). 
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2. A spherical container 1·22 m internal diameter is made of sheet metal of 
negligible thermal resistance and covered by cork insulation 0·457 m thick. 
The interior contains a liquefied gas at -62·2·c for which a surface heat 
transfer coefficient of 1·06 kW/(m2 K) may be considered to apply. The 
atmospheric temperature is 18·3·c. Moisture vapour permeates the cork and 
freezes at a suitable position to form an ice barrier. The mean surface co­
efficient for the outside may be regarded as 0·021 kW/(m2 K). Calculate the 
thickness of the ice assuming that the conduction characteristics of the cork 
remain constant throughout. 

Assume the thermal conductivity for cork is 43·2 x 10- 6 kW/(m K). (Ans. 
0·305 m.) (Queen Mary College, London). 

3. A 30 mm diameter pipe at too•c is losing heat by natural convection to 
the atmosphere at 2o•c at the rate of0·1 kW perm length. It is required to 
cut down this loss to 0·05 kW/m. Two insulating materials A and Bare avail­
able. There is sufficient of A to use it at the rate of 3·14 x 10- 3 m3 fm length, 
and of B to use it at the rate of 4·0 x 10- 3 m 3 fro. The thermal conductivities 
of A and B are 0·005 and (}001 kW/(m K) respectively. Is it possible to 
achieve the required degree of insulation? Assume the convection coefficient 
applicableto the bare pipe is also applicable to the outer surface of insulation. 
(Ans. B inside (}0437 kW/m; A inside 0·0742 kW/m.) (The City University) 

4. Calculate the surface temperature and the maximum temperature of a 
10 mm diameter steel conductor carrying 5000 amps and forced CQDvection 
cooled to the atmosphere at 15•c with a convection coefficient of 5·55 kW/ 
(m2 K~ For the conductor, take the electricuresistivity as 8 x 10- 8 ohm m, 
and the thermal conductivity as (}12 kW/(m K). (Ans. 161·3·c and 178·2°C.) 

5. (i) Define the term thermal resistance and show that, when heat flows 
through a number of individual resistances in series, the overall resistance is 
equal to the sum of the individual resistances. 
(ii) A double-glazed window consists of two sheets of glass separated by a 
gap. The gap is filled with a gas, but is sufficiently thin to prevent convection 
between the two sheets of glass. The area of the window in elevation is A, 
the thickness of each sheet of glass is x and the thickness of the gap is y. The 
thermal conductivities of the glass and of the gas in the gap are k" and k, 
respectively. The surface heat-transfer coefficients inside and outside the 
building are h1 and h2 respectively; the corresponding air temperatures are 
t 1 and t2 • Neglecting radiation, obtain an expression for the heat transfer 
rate q, in terms of A, x, y, k", k,, h1 , h2 , t 1 , and t2 • 

(iii) Find the percentage reduction in heat loss when a single-glazed window 
is replaced by a double-glazed window. Assume that the values of A, x, k"' 
h1 , h2 , t 1 , and t2 are the same for both windows, the symbols having the same 
meaning as in section (ii). Numerical data: 

x=0·318cm; y=0·635cm; 
k" = 865 x 10- 6 kW/(m K) k, = 26 x 10- 6 kW/(m K) 
h1 = 8·52 x 10- 3 kW/(m2 K) h2 = 14·2 x 10- 3 kW/(m2 K) 

(Ans. 56·5 per cent) (Imperial College, London). 
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6. The inner surface of a 0·23 m furnace wall is at 800°C. The outer surface 
convects to the atmosphere at 21 oc, with a coefficient of 0·012 kW/(m 2 K). 
The conductivity of the furnace wall is 870 x 10- 6 kW/(m K). To cut down 
heat loss, an additional wall 0·23 m thick of insulating brick is added on the 
outside, having a conductivity of 260 x 10- 6 kW/(m K). For the same outer 
surface coefficient, calculate the percentage reduction of heat loss, the brick 
interface temperature, and the brick outer surface temperature. (Ans. 71·1 %, 
633°C, 73°c.} 

7. Show that for the conduction of heat in an isotropic solid, the following 
equation holds: 

a ar a ar a ar "' ar 
-k- + -k- + ~k- + Q = pc­ox ax ay ay az az ar 

where T, k, p, c, and Q"' are temperature, thermal conductivity. density, 
specific heat-capacity, and density of rate of heat supply respectively; and 
where t is the time and x, y, z are rectangular cartesian coordinates. 

A thin ribbon of metal carries an electric current of density J and is immersed 
in an electrically non-conducting liquid which is thereby caused to boil and 
is at a uniform temperature. The heat transfer coefficient between the ribbon 
and the liquid is also uniform. Show that the mean temperature of the ribbon 
(as estimated, for example by resistance measurements) exceeds the surface 
temperature by: 

where 2b and a are the thickness and the electrical resistivity of the ribbon. 
(Assume that J, a, and k are uniform and that the loss from the edges is 
negligible.) (Queen Mary College, London). 

8. Show that the heat transferred in steady conduction through a hollow 
sphere is given by 

4nkrr 1( ) Q=--11-t 
r- r 1 

where r and r 1 , t and t 1 are the outer and inner radii and temperatures 
respectively. 

A thin sphere of radius r 1 is maintained at a temperature t 1 by internal 
heating, in surroundings at t 2 . The sphere is covered with an 'insulating' 
layer of conductivity k and radius r. Give a physical explanation for the fact 
that a certain thickness of insulation may increase the rate of heat loss rather 
than reduce it; prove that for maximum heat loss r = 2k/h, where his the heat 
transfer coefficient based on unit area of outer surface. (University of Bristol). 

9. An electric current carrying cable has a solid core of radius r 1 , covered 
by an outer concentric layer of insulation to radius r2 • Resistance heating, 
assumed homogeneous, is Q Btu per sec per ft length. The insulation material 
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has a thermal conductivity k Btujft s deg F and surface heat transfer co­
efficient h Btu/ft2 s deg F. 

Show that the steady temperature on the core surface, relative to the 
surroundings is 

~(~log.~+ r~h)oF 
Hence establish that a choice of outer radius r2 = k/h yields the minimum 
core surface temperature. 

Show that the temperature distribution within the core is given by 

Q d 2 t ldt 
--=-+-­

' nrfkc dr 2 r dr 

where tis the temperature at radius rand kc is the thermal conductivity of the 
core. 

A solution of the equation 

may be taken as y = iAx2 + c. 
Establish that, for the condition of minimum temperature, the temperature 

at the cable axis, above the surroundings is 

Q (1 k 1 1 ) 
2n klog.Gh + k + 2kc 

(University of Glasgow). 

10. Heat is generated at a uniform rate q in each unit of volume of a plate 
of large surface area and of thickness L. The faces of the plate are cooled so 
that their temperatures are maintained at eland e2 in a region remote from 
the edges. The thermal conductivity k of the plate material is constant. 

Show that the maximum temperature within the plate is 

el + 82 + qU + _k_(e - e )2 (University of Manchester). 
2 8k 2qL 2 2 I 



4 
Two-dimensional steady state 
conduction 

It is important to realize that in many cases a conduction problem 
is over simplified by the use of one-dimensional treatment, which 
means the neglect of edge and corner effects which must be present 
in any finite object. The error involved in this neglect will depend 
on the dimensions of the system. Consider, for example, the wall of 
a building some 6 m long and 200 mm thick. In the absence of doors 
and windows, conduction through such a wall will be one-dimen­
sional over the greater part of the 6 m length and the error involved 
in neglecting the corner effects will not be great. In contrast, conduc­
tion through a chimney, say, 300 mm square internally and 1 m square 
externally, is essentially two-dimensional. Again a simplifying 
assumption is being made, since near the base and top of the chimney 
conduction will be three-dimensional. Thus those problems will be 
considered in this chapter which may be assumed to be two­
dimensional without introducing significant error. This will cover 
the majority ofheat conduction problems which are sufficiently simple 
to include in an introductory text. 

Two-dimensional problems in rectangular coordinates only are 
to be considered. The two equations, with and without heat genera-
tion, are: 

( iJlt o2 t) q' rx-+- +-=0 
ox2 oy2 pep 

((2.9)) 

o2 t o2 t 
ox2 + oy2 = 0 ((2.11)) 

Solutions to these equations are, of course, possible, but the more 
readily obtained ones depend on the choice of somewhat unrepre­
sentative configurations or boundary conditions. As an alternative, 

35 
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therefore, numerical procedures will be described. These have an 
advantage of being applicable to any two-dimensional shape. The 
first method, involving simple arithmetic, is suited to problems 
having specified boundary temperatures. The second method, which 
can consider more general and complicated boundary conditions, 
involves the use of a digital computer. 

The main difference between the analytical solution and 
numerical methods is that the former will given an equation from 
which the temperature may be obtained anywhere in the solid, 
whereas the latter will give values of temperature at chosen specific 
points only. The accuracy will depend on how close together are 
the chosen points ; however, many points will entail much more 
work than a few. 

4.1. A Numerical Solution of Two-Dimensional Conduction 

A numerical method involving a process known as relaxation1 will 
be introduced by consideration of a typical example of two­
dimensional conduction, the right-angled corner. The method is 
suited to simple problems involving only a few specific points. For 
conduction fields involving many points, some elementary computing 
procedures are considered in Section 4.2. 

A right-angled corner, forming part of a square hollow section, 
such as a chimney, is shown in Fig. 4.1. For boundary temperatures 
uniform on the inside and outside surfaces, a one-eighth unique part 
exists as shown, involving only 11 mesh points in this example. 

It is necessary to replace the differential equation (2.11) by finite 
difference approximations relating temperatures around a mesh 
point, and this is possible if temperatures vary continuously in the 
x- and y- directions, expressible as t = f(x) and t = f(y). Using 
MacLaurin's series, the temperatures at points 1 and 3 may be 
expressed in terms of t0 at point 0, the differential coefficients of 
t = f(x) at x = 0 at point 0, and the mesh size a. Thus: 

(ot) a (o2t) a2 (o3t)a3 at X= +a, tl =to + OX 0 ll + OX2 0 2! + OX3 3! + ... 
(4.1) 

(4.2) 
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y 
t specified at boundary 

m' 

I t specified at 
""" boundary 

,~ 1· 1/s th unique part 

-+-+-~1------l----~ lines of 
symmetry 

X 

Fig. 4.1. Construction for a numerical solution of two-dimensional conduction, 
in a quarter of a hollow square section. 

neglecting higher powers. When added together these give 

or 

(4.3) 

Writing similar equations for t2 at y = +a and t4 at y = -a, it is 
possible to obtain in like manner 

(4.4) 

Both (4.3) and (4.4) contain discretization errors involving terms 
containing fourth and higher powers of a. Equation (2.11) may thus 
be replaced by 
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( iJ2t) + (iPt) = t1 + t 2 + t3 + t4 - 4t0 = 0 (4.S) 
OX2 0 oy2 0 a2 

or simply 

With heat generation equation (2.9) would be replaced by 

t 1 + t2 + t 3 + t4 + a2q'/k - 4t0 = 0 

(4.6) 

(4.7) 

Equations of the form of (4.6) or (4.7) may be written for every 
mesh point in the field and the problem is then to obtain a solution of 
the set of simultaneous equations. In hand calculations, the relaxation 
process is used. Guesses are made of temperatures at the points, 
bearing in mind the boundary temperatures and the proximity to the 
boundaries. On substitution of the guessed temperatures into (4.6) 
or (4.7), a solution other than 0 is likely to be obtained. This is known 
as the residual. When all mesh points have their correct temperatures, 
the residuals will be zero. To eliminate a residual of + r or - r, it will 
be seen that t0 must be increased by + r/4 or - r/4 respectively. 
Carrying out this operation will alter the residuals at surrounding 
field points by the same amount, i.e., +r/4 or -r/4. Care must be 
exercised around lines of symmetry. Thus tm = tm' in Fig. 4.1, and 
eliminating a residual of ±r at m will alter the residual at n by 
± r /2 and not by ± r /4. Eliminating a residual at n will have the normal 
effect on the residual at m and m'. 

To carry out the relaxation process, the initial residuals due to 
guessed temperatures are calculated, then the residuals are elimi­
nated one by one starting with the largest. Subsequent operations 
may re-introduce residuals previously eliminated, so that some points 
must be treated more than once. The process generally continues 
until residuals are ±2 or smaller, indicating temperatures are within 
to of their correct value. The magnitude of error arising depends 
on the overall temperature range involved. 

To illustrate a step in the procedure, let t4 = 120° (boundary value), 
t0 = 80°, t 2 = 40°, t 1 = 100° and t 3 = 70° as original guesses in 
Fig. 4.1. Then equation (4.6) gives: 100 + 40 + 70 + 120 - 320 = 
+ 10. The residual of + 10 could be reduced to -2 by adding 3° 
onto t0 to give 83°. Residuals at points 1, 2 and 3 are then increased 
by + 3. If heat generation is present the constant term a2q' jk is 
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included in the equation. It does not enter into the relaxation proce­
dure, but it is seen to have the effect of raising the general level of 
temperature. 

Once the temperatures are known, heat conduction in the section 
is obtained from a summation of conduction along the mesh lines. 
Heat transfer through unit length of the whole section would be the 
average of heat conduction in and out at the hotter and cooler 
boundaries respectively. Now imagine point 0 to be at the centre of 
a square of size a at a temperature t0 • Similarly there are squares at 
t 1, t2 and t 3, etc., and at the boundary there is a half-square at t4 • Heat 
conduction between 4 and 0 per unit length of section is given by 

(to - t4) 
Q<4 _ 0 > = - k(a x 1) = k(t4 - t0)kW/m (4.8) 

a 

Total heat conduction at the boundary is a summation of similar 
terms. 

EXAMPLE4.1 

Establish the temperatures a-k in the duct shown, by relaxation, and 
calculate the conduction heat transfer through the duct. k for the duct 
is 0·1 kW/(mK). 

d e f g_ h k 

c 
~oo .I 

'---------4: ____.l_------l-
Fig. Example 4.1. Unique part of rectangular duct. 

Solution. Take initial guesses for the temperatures as: a = 50°, 
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b = 48°,C = 41°,d = 25°,e = 41°,f = 46°,g = 47°,h = 48°,j = 50°, 
k = 50°. Residuals are calculated first, e.g., for point a: 80 + 20 + 
48 + 48 - (4 x 50) = -4. The relaxation table with initial resi-
duals shown is as follows: 

Mesh point: a b c d e f g h j k 
Initial residual: -4 -1 +9 +22 +7 +4 +6 +5 -2 0 

Operation: 
+6atd=31o +15 -2 +13 
+4 at c = 45° +3 -1 +2 
+3ate=44° +5 +1 +7 
+2 at f= 48° +3 -1 +8 
+2 at g = 49° +1 0 +7 
+2 at h = 50° +2 -1 0 
+ 1 at d = 32° 0 +1 +4 
+1 ate= 45° +2 0 +2 
-1 at a= 49° 0 +2 
+1 at f = 49° +1 -2 +3 
+1 at g = 50° 0 +2 0 +2 +1 -1 -1 0 0 0 

Final temperatures are: a = 49°, b = 48°, c = 45°, d = 32°, e = 45°, 
f = 49°, g = 50°, h = 50°,j = 50°, k = 50°. 

For the whole duct, heat conduction in = 4[fk(80-49) + 
k(80-48) + k(80-45) + k(80-45) + k(S0-49) + k(8~50) + k(8~50) 
+ k(S0-50) + fk(80-50)] = 101·4kW/m. 

Heat conduction out = 4[fk(49-20) + k(48-20) + k(45-20) + 
2k(32-20) + k(45-20) + k(49-20) + k(5~20) + k(~20) + k(5~20) 
+ fk(50-20)] = 100·2 kWfm. The average figure is 100·8 kW/m. 

4.2. Elementary Computing Procedures for Two-Dimensional 
Steady State Conduction 

The simplest possible case has been considered so far, i.e. that of fixed 
boundary temperatures. H these are uniform then the boundary is 
said to be isothermal. What happens beyond the boundary to create 
the isothermal condition is outside the scope of the problem, and 
in this sense the exercise is rather unrealistic. A boundary which is 
convecting or radiating, or perhaps is insulated, is the more practical 
situation. Mesh points occurring on such boundaries will have 
temperature relationships other than (4.6) or (4.7) for points in the 
field Also, internal boundaries between different conducting 
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materials may exist. With these and other complexities such as the 
boundary shape, the work soon becomes too complicated to be 
treated by relaxation methods. However, whatever these complexi­
ties may be, the problem always reduces to solving a set of simul­
taneous equations, and two computer-based methods are available. 
The first is that of a direct solution using the Gaussian elimination 
method\ and the second, is an iterative solution. The essentials of the 
second method will be described siQce one basic programme with 
minor changes may be applied to a wide range of problems. 

4.2.1. Mesh Point Temperature Relationships for Boundary Points. 

The first step in preparing a computer programme is to consider all • 
the different mesh point temperature relationships that will be 
involved. Later these can be translated into a form suitable for the 
programme. The relationships to be used are based on the electrical 
resistance analogue, a technique used extensively for conduction 
problems prior to the availability of computers. It should be pointed 
out that in some instances this method produces the same result as 
the true finite difference relationship (e.g. equations (4.6) and (4.9) 
below), but when a difference does occur the order of accuracy is 
lower. For further discussion the reader is referred to Bayley, Owen, 
and Turner2 • 

To introduce the method involved, consider the field point shown 
in Fig. 4.2. The square mesh is of size a, and the material has thermal 
conductivity k. The resistances between the centres of squares 1 to 4 

2 

4 

electrical equivalent 

Fig. 4.2. Field node in two-dimensional steady state conduction. 



42 ENGINEERING HEAT TRANSFER 

and square 0 are therefore equal, and are aj(k x a x 1) for unit 
thickness of the field. The conduction heat transfer (or 'current') 
across this resistance, for temperature t 1 at point 1, and t0 at point 0 
is therefore [ -(k x a x 1)ja](t0 - t 1) = k(t 1 - t0 ). The summation 
of heat transfers from all mesh points to point 0 must be zero in 
steady state and hence 

k(t 1 - t0 ) + k(t2 - t0 ) + k(t 3 - t0 ) + k(t4 - t0 ) = 0 

t 1 + t2 + t 3 + t 4 - 4t0 = 0 ((4.6)) 

Thus equation (4.6) has been confirmed by this method. 
Some representative examples of boundary mesh points will now 

•be given. 

Convecting Boundary. Figure 4.3 shows the physical situation at a 
convecting boundary. Double resistances (or half conductances) 

fluid 

1 

2 

electrical equivalent 

Fig. 4.3. Boundary node with convection. 

exist between points 1 and 3 and point 0, and a convection resistance 
Rc exists beyond the solid boundary, of magnitude 1/h(a x 1). The 
energy balance is 

k(t - t ) k(t - t ) 
1 o + 3 0 + k(t - t ) + ha(t - t ) - 0 2 2 2 o r o-

. tl + t3 .. - 2- + t2 + (hajk)tc - (2 + hajk)t0 = 0 (4.9) 
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fluid 

2 

electrical equivalent 

Fig. 4.4. External boundary corner with conJJection. 

Boundary Corners with Convection. An external corner is shown in 
Fig. 4.4. and the energy balance is given by 

k(t 1 - t0 ) k(t2 - t0) ha ( _ ) ha ( ) _ 0 
2 + 2 + 2 tr to + 2 tr - to -

:. t 1 + t2 + (2ha/k) tr - (2 + 2ha/k) tr = 0 (4.10) 

For the internal corner shown in Fig. 4.5, it is left to the reader to 
show that 

[(t1 + t2)/2] + t3 + t4 + (ha/k) tr - (3 + ha/k) t0 = 0 (4.11) 

Ji-
~L I 2 r----~-

1 a/2 I 
I 
I 4 I L ____ L_ 

I 
I 

l 3 I 
L ____ j 

2 
fluid 

1 

3 

Fig. 4.5. Internal boundary corner with conJJection. 
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4.2.2. Preparing the Field and the Equations for the Programme. 

Examples have been given of mesh point temperature relationships. 
The reader should now be in a position to write further relationships 
for other situations which may arise. 

In preparing the programme, the first step is to define the field within 
an array ofi rows and J columns, and to write the temperature equa­
tions in terms of (I, J) subscripting. It should be noted that because of 
differences in (I, J) subscripting, more than one equation may be 
required for a given physical situation, as for example, in four separate 
boundary corners. Figure 4.6 shows the first for a sample programme, 
for part of a square duct, having 6 rows and 10 columns. Nine separate 
equations exist in the field, and ofthese equations 3, 4, 7 and 8 are used 
only once at the points shown, equation 2 is used for 8 points, equation 
6 for 3 points, equations 5 and 9 for 4 points, and equation 1 for 22 
points. 

J=1, 10 
2 

TF1,HCON1 

3 
!",""' 

' ""~ ."" 
""' • 

I= 1 I""~ 9 --1-1-
'6 I 

--1 t}-1- ~~ ' 
' I' 

5 

I~, 6 

_A_ 8~ TF2, I 
7 

mesh s1ze ,~1 

lines of symmetry 

Fig. 4.6. Fieklforan elementary FORTRANprogramme-partofa hollow 
duct. TF1, TF2, fluill temperatures; HCON 1, HCON 2, conf!ection coef­

ficients; TK, thermal conductiflity. 

Equation (4.6) for the field is written in FORTRAN as 

X=(T(I+ 1, J)+ T(I-1, J)+ T(I, J + 1)+ T(l, J -1))/4·0 (4.12) 

where X is the temperature calculated in an iteration from previously 
calculated values. This is equation 1 in the programme, and together 
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ITER=O 
30 1=0 

DO 40 J=1,10 
DO 40 I=1,6 
K=M(I ,J) 
GO TO (1,2,3,4,5,6,7,8,9,10),K 

1 X=(T(I+1,J)+T(I-1,J)+T(I,J+1)+T(I,J-1))/4.0 
GO TO 45 

2 X=(0.5+(T(I,J+1)+T(I,J-1))+T(I+1,J)+CT1)/D2 
GO TO 45 

3 X=(T(I,J+1)+CT1)/D1 
GO TO 45 

4 X=(T(I,J-1)+T(I+1,J)+CT1)/D2 
GO TO 45 

5 X=(T(I+1,J)+T(I-1,J)+2.0*T(1,J-1))/4.0 
GO TO 45 

6 X= (0. 5* (T (I ,J+ 1) +T (I ,J-1)) +T (I-1 ,J) +CT2) /D4 
GO TO 45 

7 X=(T(I,J-1)+T(I-1,J)+CT2)/D4 
GO TO 45 

8 X=(T(I,J+1)+2.0*T(I-1,J)+CT2)/D3 
GO TO 45 

9 X•(T (I-1 ,J) +T (I ,J+ 1)) /2.0 
GO TO 45 

10 X=T(J,I) 
45 DT=O.O 

DT=ABS(T(I ,J) -X) 
IF(DT-0.005)46,46,40 

46 1=1+1 
40 T(I,J)=T(I,J)+1.7*(X-T(I,J)) 

ITER=ITER+ 1 
IF(ITER-200)47,47,50 

47 IF (L-60) 30,48,48 

Fig. 4.7. lteratifle sequence. 

with the other nine equations, appears in Fig. 4.7. In these equations 
the following FORTRAN symbols are used: 

CTl = HCONl •A•TFl/TK 
CT2 =HCON2•A•TF2/TK 
Dl=l·O+HCONhA/TK 
02=2·0+ HCONl•A/TK 
D3=3·0+HCON2•A/TK 
D4=2·0+HCON2•AfTK 

The terms used above are detailed in Fig. 4.6. 
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4.2.3. The Iterative Technique. Starting with a set of given temtr 
eratures in the field, the iterative method consists of solving every 
equation in the field to obtain a new set of temperatures, each 
temperature being compared with the corresponding value in the 
previous iteration. If the difference in temperature is less than 0·005°, 
then convergence is assumed at that point and iterations are con­
tined until convergence has been obtained at all points. This method 
is known as the Gauss-Siedel iterative technique. The part of the 
programme that carries out the selection of the correct equation at 
each point, and tests for convergence in the iteration, is reproduced in 
Fig. 4.7. Initially, equation numbers are read into a storage array as 
integer values, M(I, J). In statement 40 an accelerated convergence 
technique3 is used. This is known as the extrapolated Liebmann 
method. The test for convergence at all points takes place in state­
ment 47, statements 48 and 50 being the continuation and end of 
the programme, respectively. 

Preparation of the complete programme should now present no 
undue difficulties to readers conversant with FORTRAN. For further 
background material the reader is referred to Fenner4 • 

The advantage of the method is that provided the field is correctly 
specified, and an appropriate set of equations is written, then any 
two-dimensional problem can be solved. 

4.3. The Electrical Analogy of Conduction 

The mathematical similarity between Fourier's law and Ohm's law 
has already been referred to. Thus, one-dimensional composite 
systems may be represented by a number of resistances in series, and 
it has been seen in Section 4.2 that two-dimensional fields may be 
represented by grids of resistances, as in Figs. 4.2 to Fig. 4.5. The 
technique may be extended to transient work by adding a capacitance 
at each node, the value being proportional to the thermal capacity 
of the node. Comparison of the two fundamental laws results in 
scaling factors being defined. Thus, let Q = 9/R,, and I = V /R, so 

I V R sl = -; s2 = -; s3 =-
Q () R, 

It is seen that values for only two of these can be chosen independently 
since S1 = S2/S3• For transient work, two further scaling factors 
must be introduced. Thus S4 = Te/T, the ratio of electrical to thermal 
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time constant, and S 5 = CfCt, the ratio of electrical to thermal capa­
citance. Since the time constant is the product of resistance and 
capacitance it also follows that s4 = s3 X Ss· 

Complex two-dimensional shapes in steady state may be simulated 
by a continuous analogue using electrically conducting paper. Thus 
Fig. 4.8a shows a simple example with isothermal (constant voltage) 
boundary conditions. These are made using high-conductivity silver 
paint with an additional copper wire buried in the paint. Using the 
probe shown it is possible to plot the constant voltage lines between 
the boundaries. 

(a) 

v:j 
(b)+~ 
~ I w~l 

+ 

wire 

paint 

Fig. 4.8. Electrical analogy of two-dimensiolflll conduction. 

An element of conducting paper, length l, width w, and thickness 
t, is shown in Fig. 4.8b, There is a potential difference of V between 
the ends of the length l, and a current I is flowing. 
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If R is the resistance of the element, then I = V/R, 
and R = pl/wt, where p is the resistivity of the material; (units of 
ohms x length). Then, 

(4.13) 

where Si is the 'shape factor'. The shape factor for this rectangular 
element is w/1. Any other geometrical shape which passed the same 
current for the same voltage drop would have the same shape 
factor. 

A similar equation may now be written for a geometrically similar 
element, length L, width W and thickness T, along which heat is 
conducting. () is the temperature difference and k the conductivity, 
hence from Fourier's law, 

WT 
Q = k -9 = k S T() L q 

(4.14) 

where Sq = W/L and is the shape factor for the element. As the 
elements are geometrically similar, the shape factors are equal. 
Dividing (4.14) by (4.13): 

(4.15) 

Q will be in heat units per unit length and time, with T as unit 
thickness. Thus from measurements of I and V and from a knowledge 
of() and k for the conducting problem, the heat flow may be calcu­
lated. Equation (4.15) is valid for any geometrical shape, provided 
the prototype and model are geometrically similar, when the shape 
factors are equal. p/t is a property of the conducting paper and is 
supplied by the manufacturers. It has a value of about 2000 ohms 
per square. (R = pl/wt = p/t for a square, regardless of its size.) 

Conducting paper is rolled during manufacture, and this can result 
in an anisotropic effect. To account for this let the element in Fig. 
4.8b have an equal resistance in both principal directions. Then 
p1 1/wt = p2 wjlt, where p1 is now the resistivity in the direction of 
current flow shown. It follows that 1/w = .J(p2/p1). The model in 
Fig. 4.8a·would then be made rectangular to the extent indicated by 
measurements of p1 and p2• 

Structures of composite material having differing thermal 
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conductivities may be simulated by punching regular holes in the 
paper, to produce an area having an increased resistance. Convecting 
boundaries may be included either by cutting a band of paper outside 
the boundary into strips normal to the boundary, or by adding carbon 
resistors Rc at the edge4 , so that Rc/R = (1/h)/(L/k WT) where his the 
convection coefficient. 

Three-dimensional shapes of rectangular form may be modelled 
using a number of sheets of paper to represent layers in the third 
coordinate direction, with additional resistances joining the centres 
of corresponding elements. Complicated three-dimensional shapes 
may be simulated in electrolytic tanks 5 . 

PROBLEMS 

1. The diagram shows a plan view of the vertical insulation round the walls 
of a liquefied natural-gas storage tank. The inside and outside surface temp­
eratures of the insulation are -161 o and + 1 oc. Calculate the heat transfer 
rate into the tank per metre height. Treat points a and b as fixed boundary 
temperatures of - 53° and - 107°C and assume one-dimensional conduction 
through the tank sides. Take k for the insulation as 50 x 10- 6 kW/(m K). 
The mesh size is 0·2 m. (Ans. 0·1764 kW /m.) (The City University). 

-161°C 

I. 
2·4m 

.I 

2. The sketch below represents a cross-section of a homogeneous bar of metal, 
the faces of the bar being maintained at the temperature shown. Show how the 
relaxation method of obtaining the temperatures at the points A, B, C, D, E, 
and F is derived, and use the method to make a first estimate of these tempera­
tures, working to the nearest degree. 
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(Note. Rigorous derivation is not required, merely description and the 
important assumptions.) (Ans. A, C, 79o; B, 81°, D, F, 52°; E, 50°.) (University 
of Leeds). 

3. Write a FORTRAN programme (deriving all the necessary equations) to 
calculate the heat transfer through the duct shown in the figure. The inside 
and outside fluid temperatures are 200° and 30°C, the thermal conductivity 
is 0·005 kW/(m K~ and inside and outside convection coefficients are 0·1 
and 0·05 kW/(m2 K). The mesh size is 3 em. (Ans. 2·796 kW/m.) 

1 2 3 
15 

4 9 10 12 
tD-1 kW/(m1 K 

11 16 v 
2(0°C v 

v 14 8 
v 

v 
13 

5 6 7 

4. An H-section copper conductor (see diagram) carries an overload current 
of 54,000 amps. In steady state conditions, the surface temperature is 60°C. 
Using a 0·5 em grid, determine the temperatures within the copper. Calculate 
the total heat transfer at the surface, k W fern length. The electrical resistivity 
of copper is 2 x w-s ohm m, and the thermal conductivity is 0·381 kW/ 
(m K). (Ans. 0·73 kW/cm.) 
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5 
Transient conduction 

In any thermal system, transient heat transfer generally occurs before 
and after steady state operating conditions. The time duration of the 
transient condition can be of importance in design, and further, 
excessive thermal stress may arise. A simple approach is to assume 
the system is lumped, i.e. the temperature is uniform in space and is a 
function of time only. In a more detailed analysis, temperature will 
also be a function of position. 

5.1. The Unifonn Temperature, or Lumped Capacity, System 

The ratio of internal thermal resistance to external convection 
resistance of a system is known as the Biot number, and when the 
Biot number is smalL say <0·1, the system will effectively follow a 
single heating or cooling curve, as in Fig. 5.1. 

Considering the cooling curve in Fig. 5.1, for a system of mass m, 
and specific heat cP, having a surface area A, a convection coefficient 
h, and excess temperature () cooling by d() in timed t, it follows that 

or 
- mcP d() = hA() dt 

d() hA dt 
-=--dt=-­
() mcP T 

where T = mcJhA = time constant = product ofthermal resistance 
and capacitance. 

Cooling from ()1 to ()2 will take timet given by 

()2 t 
ln- =--

()t T 
or 

(5.1) 
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Fig. 5.1. Heatill{l and cooling cunesfor lumped systems. 

53 

The heating curve in Fig. 5.1 is the result of an internal heat source, 
and the maximum temperature rise (}max is achieved when the rate of 
cooling is equal to the rate of heat release. For a volume V and heat 
release rate q' 

q'V = hA (}max (5.2) 

At some temperature 0 the energy balance with a density p is given by 

pVcP dO= (q'V- hAO) dt 

:. - = --In (q'V - hAO) t [ 1 ]6t 
pVcP hA 0 

(5.3) 
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where e. is the temperature rise at time t. 

. .!_ = _ l [q'V - hA8fl 
.. T n q'V j 

e-t/T = 1 - hA(}t 
q'V 

Introducing (}max from (5.2) this then gives 

(}t = (}max (1 - e -t/T) (5.4) 

When(} = 0, (5.3) becomes pVcP d(} = q'V dt 

.". (d(}) = q'V = hA (}max = (}max 

dt o=o pVcP pVcP T 

Hence the time constant will appear on the heating curve as shown in 
Fig. 5.1. This provides an experimental method for measuring T and 
deducing, for example, the convection coefficient, h. 

EXAMPLE 5.1 

An electric motor is designed to operate on a repetitive load duty 
between temperature limits of 30° and 55°C, assuming an ambient of 
15°C. Heat dissipation on load is 0·38 kW, and the off-load period is 
294 seconds. The motor has an effective mass of 3·5 kg, specific heat 
of 0-45 kJ/(kg K), and a surface convection coefficient of 0·15 kW/ 
(m2 K). Determine: (i) the cooling area to be provided; (ii) The maxi­
mum temperature that would be achieved if the motor ran indefini­
tely; (iii) The duration of the allowable load period. (The City 
University) 

Solution. The motor cools from 55° to 30°C in 294 seconds, hence the 
time constant may be found: (30--15)/(55-15) = e-t;T wheret = 294 
therefore tjT = 0·982 and T = 300 sees. But 

T = mcPjhA = (3·5 x 0·45)/(0·15 x A) 

:. A = (3·5 x 0·45)/(0·15 x 300) = 0·035 m2 

At the maximum temperature rise, all energy dissipation is convected 
away, hence (}max hA = 0·38 

.".(}max= 0·38/(0·15 X 0·035) = 72·5 
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The maximum temperature is therefore 72·5 + 15·0 = 87·5°C. 
To establish the load period, use equation (5.4) to determine the 

times to reach temperature rises of 40° and 15° from ambient. Thus: 

40 = 72·5(1- e- 1 ,;300) :. t1 = 241 sees 

15 = 72·5 (1 - e- 121300) :. t2 = 69·6 sees 

The load period is (t 1 - t2) = 171·4 sees. 

5.2. The Solution of Transient Conduction Problems in 
One Dimension 
The discussion is limited to one-dimensional transient conduction in 
rectangular coordinates for which the equation is 

ot = oc (azt) ((2.8)) ot ox2 

For the general problem, numerical procedures will be described. 
It is necessary to replace equation (2.8) by a finite difference 

relationship. Figure 5.2 shows a plane slab uniformly divided into 
sub-slabs of thickness a, with a temperature contour at some time t0 . 

Recalling the argument of section 4.1 it will be seen that the tempera­
tures t3 , 0 , t4 , 0,and t 5, 0 are related 

t3,0 + ts,o = 2t4,o + (!~~) a2 

4,0 
and hence 

(5.5) 

With a forward time step, the finite difference relationship for ( atj at) 
is 

(at) = t4,1 - t4,o 
at 4 .o ilt 

where t4 • 1 is the temperature at point 4 at time t1, which is Llt after t0 . 

Equation (2.8) can now be replaced by 

(5.6) 

This may be re-arranged as 

t4.1 = F(t 3, 0 + t5 , 0) + t4,0(1 - 2F) (5.7) 
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where F is the Fourier number, lita.fa2 = litk/ pcPa2• This compares 
energy conducted in time lit, proportional to lit k/a, to energy stored, 
proportional to pcPa, and hence gives a measure of temperature 
response. 

E__j 
2 

total slab width 

X 

Fig. 5 • .2. Treatment of a plane slab for trflllsient coiUluction in one dimension. 
(First subscript denotes position, second subscript denotes time.) 

5.2.1. A Numerical Method. Equation 5. 7 is suitable for performing 
a numerical solution. Values of lit and a are chosen to give a suitable 
value of F. The coefficient of t4 ,0 must remain positive for the solution 
to be stable, hence F ~ f. IfF = t then t4 •1 is simply the average of 
t3 ,0 and t5 ,0 • For smaller values ofF increased accuracy will be ob­
tained In order to solve a problem it is, of course, necessary to know 
the boundary temperatures after each time interval lit. 

EXAMPLE 5.2 

The surfaces of a brick wall, 300 mm thick initially 20°C throughout, 
rise in temperature at a constant rate of 10°C every 2500 seconds. 
Dividing the wall into six equal slabs find the temperature distribu­
tion in the wall after l<f seconds. Use F = t. a. = 0·05 x 10- 5 m2 /sec. 
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Solution. It is seen that F = Llt rxja2 = 2500 x 0·05/(105 x 0·052) = 
0·5. From equation (5.7), with F = t, the following table may be 
written: 

Node Surface 1 2 3 4 5 Surface 
Initial temperatures 20 20 20 20 20 20 20 

At: 2500 sees 30 20 20 20 20 20 30 
5000 sees 40 25 20 20 20 25 40 
7500 sees 50 30 22·5 20 22·5 30 50 

10000 sees 60 36·25 25 22·5 25 36·25 60 

Convection at a solid boundary can be allowed for in a numerical 
solution by setting up an energy equation for the boundary slab. 
The change in stored energy over the chosen time interval is equal 
to the conduction from the adjoining slab plus the convection from 
the boundary fluid. A relation between the fluid temperature and 
temperatures in the <>olid is thus obtained. 

This procedure is based on the electrical analogy of transient 
conduction in which a capacitance is added at each node. Referring 
to the surface half-sub-slab in Fig. 5.2 

(a x 1) 
---xpx 

2 
. ( ) _ k X 1(t2,0 - t1,0) Llt 

( p t1 1 - t1 0 - ---'--=-'--"----------''-'-"'--' , a 
+ h x I (t r. 0 - t 1, 0 ) Ll t 

. t = (2kilt)t + (2hLlt)t· + t ( 1 _ 2kLlt _ 2h M) 
.. 1,1 pcPa2 2,o pcPa t,o 1,0 pcPa2 pcPa 

.". t1,1 = 2F t2 ,0 + 2FB tr,o + t1,0 (1 - 2F (1 + B)) (5.8) 

where B = hajk, which is the Biot number of a sub-slab, and F is the 
Fourier number as before. A new stability criterion applies to the 
boundary equation, i.e., F(1 + B) ::::; t, for the coefficient of t 1 0 to 
remain positive. This means that F < t and the numerical procedure 
using equations (5.7) and (5.8) is more complicated throughout the 
whole field. 

5.2.2. The Schmidt Graphical Method. In Fig. 5.2 it can be seen that 
the averaging of temperatures can be carried out by drawing. This is 
the basis of the Binder-Schmidt1•2 method. 

The Schmidt method can be used also at a convecting boundary. 
In Fig. 5.3, the temperature contours in both fluid and conducting 
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solid at time 0 are shown. The heat transfer rate at the wall surface 
by convection must be equal to the conduction rate at the wall 

kjh 

actual temp. / ~­
contour of fluid, 
at time 0. 

temperature contour 
in conducting 
medium at time 0. 

Fig. 5.3. Convection at the surface. 

surface at time 0. The conduction rate is given by 

qx = - k(~) 
OX w,O 

The convection rate is given by 

qx = - h(tw,O - tr,o) 

Hence 

k(:~) = h(tw,o - tr,o) 
w,O 

and 

tw,O - tr,o 
k/h 

If a triangle is constructed by drawing a tangent to the temperature 
gradient (otjox)w,o• with the tangent intersecting tr,o produced 
horizontally at P, then the height of the triangle is clearly 
(tw, 0 - tr, 0 ) and the base is kjh. So it is possible to imagine the real 
wall extended into the fluid region by an amount k/h, and the 
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temperature history of the imaginary surface corresponds to the 
temperature history of the fluid. The possibility of the surface 
convection coefficient varying with time can also be accommodated 
in the graphical procedure for solving this type of problem. The 
construction involved is shown in Fig. 5.4. 

In Fig. 5.4a, h is taken as being constant and therefore a vertical 
line may be drawn at a distance k/h from the left-hand surface of the 
plane specimen. Mesh lines are drawn as shown, at !a either side 
of the surface, then continuing at intervals of a. The fluid tempera­
tures tc. 0 , tc, 1 , etc., are then indicated on line 00. It is necessary 
that the temperature contour on the left of the surface is tangential 
to the temperature gradient at the surface, and this is achieved by 
drawing tc, 0 , tw, 0 , and t 1. 0 as a straight line. The point representing 

00 Owl 2 3 

Fig. 5.4a. Transient conlluction at 
the wall surface, h constant. 

0 w 1 2 3 
Fig. 5.4b. TrtliiSient conduction at 

the waU surface, h variable. 

temperature t0 , 0 is clearly useful for constructional purposes, though 
the temperature itself has no meaning. In Fig. 5.4b the construction 
for a variable h is shown; it will be seen that tc, 1 has moved hori­
zontally as well as vertically relative to tc, 0 • 

Having obtained the temperature time history for a particular 
problem it is possible, by simple repetitive calculations, to determine 
the quantities of energy entering, leaving, or being stored. The time 
interval between each temperature contour is ~t. Hence, the heat 
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transfer by convection to the surface over the first time interval is 

h(tr, 1 ; tr,o _ tw, 1 ; tw,o)t\t (5.9) 

i.e., h(average fluid - average wall temperature) x time interval. 
The summation of such calculations over all the time intervals will 
give the total heat transfer to the specimen. Energy being stored may 
be calculated in a similar manner by considering average slab tem­
peratures before and after a given interval. Thus, the energy stored 
between 0 and 1 in the time scale for the initial half slab and second 
slab is 

apc{(tw,1: t1,1 _ tw,o: t1,o) + (t1,1; t2,1 _ t1,0; t2,o)] 

(5.10) 

Alternatively, the total energy stored at time 1 relative to some datum 
temperature may be readily calculated. 

A common boundary condition is a sudden temperature disconti­
nuity at zero time. This may be represented by a straight line drawn 
across the k/h width in the fluid, as shown in Fig. 5.5. This gives the 
first construction point from which the solution may proceed. This 
method is only approximate, and a more rigorous procedure is 
described by Hsu. 3 

first 
construction 
point 

assumed temp. 
profile in 
fluid at t 0 

r--1--=---==_.,,----., body temperature 
at t 0 

Fig. 5.5. Sudden fluid temperature clumge at a surface. 
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5.3. Two-dimensional Transient Conduction 

In two-dimensional transient conduction in rectangular coordinates 
the differential equation is 

at = ex (a 2t + a2t) at ax2 ay2 

(5.11) 

and referring back to the nomenclature of Fig. 4.1, the finite difference 
relationship for a field point with a forward time step can be seen to 
be 

to.1- too = ex(tl,o + t2,o + t3,o + t4,o- 4to,o) (5.12) 
At a2 

This is re-arranged to give 

to,l = F(t1.o + t2,o + t3,o + t4,o) + to,o(l - 4F) (5.13) 

with the stability requirement that F ~ ±-
In transient work, alternate finite difference relationships having 

backward time steps may be used. The equivalent of equation (5.12) 
would be: 

to,l + to,o =ex (tl,l + t2.1 + t3, 1 + t4,1 - 4to,t) (5.14) 
Llt a2 

Then t0 ,0 is the only known temperature, and equations for all points 
must be solved simultaneously to obtain the temperatures after the 
next time step. However, there is no stability restriction in this case. 
The reader is referred to Bayley4 for a full discussion of these methods. 

The two-dimensional steady state computing methods discussed 
in Section 4.2.2 may be modified to deal with transient problems 
using equations with forward time steps, by substituting transient 
equations for the steady state ones and by replacing the iterative 
technique by a scheme for solving the equations throughout the field 
for as many time steps as are required. Boundary equations may be 
derived following a similar procedure to that in Section 5.2.1. To 
illustrate, it may be verified that the transient equation for point 2 
in Fig. 4.6 is, in FORTRAN 

T(I, J)=F•(TP(I, J + 1)+ TP(I, J -1)+2·0•TP(I+ 1, J)) 

+2·0•F•BhTF1 + TP(I, J)•S(2) 

where T(I, J) denotes the new temperature, TP(I, J) the existing 
temperature, and 
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TK = thermal conductivity of material 
DT = time interval 
D = density of material 
C = specific heat of material 
A =mesh size 
F = TK•DT /(D•C•A**2) 
S(2) = (l·0-4·0•F-2·0•F •Bl) 
Bl = HCONhA/TK 

Since different stability criteria exist the coefficient S(I) is sub­
scripted to enable a DT value to be determined to satisfy all equations. 

5.4. Periodic Temperature Changes at a Surface 

A periodically changing surface temperature can also be dealt with 
by numerical or graphical methods, but the work involved is 
probably not justified in view of the fact that an analytical solution 
is not too lengthy for this particular boundary condition. 

The problem to be considered is one in which a plane slab of 
material, referred to as a 'semi-infinite solid', is regarded as being 
infinitely thick, the periodic surface temperature existing at the face 
of the slab where x = 0. The surface temperature varies in a sinu­
soidal manner and, because of the assumption of infinite thickness, 
the temperature history within the material is controlled only by 
the surface variation. Further, conduction takes place in only one 
dimension, so that edge effects are neglected or the specimen is 
regarded as being sufficiently large in the y-direction for conduction 
to be one-dimensional over the area of material of interest. An 
additional assumption is that the cyclic variation of temperature at 
the surfa~ has been going on for a time sufficiently long for tempera­
tures elsewhere in the slab to be repeated identically in each cycle. 
The general result obtained, as will be seen, is that the interior 
temperature cycle lags behind the surface variation, depending on 
the depth and, in addition, has a diminished amplitude compared with 
the maximum surface values. This type of analysis finds application 
wherever a cyclic variation of temperature occurs, as in annual or 
daily temperature variation of buildings or the ground exposed to 
solar radiation, and, in the other extreme, in the cylinders of recipro­
cating engines. The chief restriction on the validity of the analysis is 
whether the object in question may be regarded as infinitely thick. 
The depth in the material at which the temperature amplitude has 
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become, say, only 1 per cent of the surface value is the criterion by 
which this is judged. 

The surface of the slab has a mean temperature t. It varies in a 
sinusoidal manner between an upper temperature limit oft + (Om)o 
and a lower limit of t - (Om)0 . Thus, if 0 is the temperature dif­
ference between the actual temperature at any instant and the 
mean then, at the surface where X= 0, e varies between ± (Om)o 
where Om denotes the maximum difference. Further, at some depth 
X in the slab, e varies between ±(Om>x· The frequency of the tem­
perature variation is n cycles per unit time, so 1/n is the period of 
the variation. The boundary conditions of the problem are set by 
the sinusoidal temperature variation at the surface, given by 

0 = (Om)o sin(2nnt) (5.15) 

which is the value of 0 at x = 0, and t = t. At x = 0 and t = 0, 
0 = 0. In equation (5.12) 2nn is the angular velocity of the sine wave 
in rads/unit time. 

Since 0 is the temperature variation about a mean value t, 0 may 
be regarded as the temperature variable since tis constant. For this 
case the one-dimensional unsteady equation, (2.8), becomes 

ae = oc(iJ20) (5.16) ot ox2 

Since 0 varies sinusoidally at the surface, it can also be expected to 
do so within the solid, but between reducing limits and further, the 
phase shift will depend on the time to penetrate to depth x, hence 
the form of solution chosen is 

e = ce-pxsin(2nnt- qx) (5.17) 

where C, p, and q are constants to be determined. The constants p 
and q may be found by substituting equation (5.17) in equation (5.16). 
The partial differential coefficients found from ( 5.17) are 

ae - = 2nnce-px cos(2nnt- qx) at 

:: = - pCe-px sin(2nnt- qx)- qCe-qx cos(2nnt- qx) 

()20 
ilx2 = p2 Ce-pxsin(2nnt- qx) + pqCe-pxcos(2nnt- qx) 

+ pqCe- px cos(2nnt - qx) - q2 Ce- px sin(2nnt - qx) 
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Hence, equation (5.14) becomes, noting that ce-px may be cancelled 
from all terms : 

2nn cos(2nnt - qx) = cx[p2 sin(2nnt - qx) 

+ 2pq cos(2nnt - qx) - q 2 sin(2nnt - qx)] 

(2nn - 2pqcx) cos(2nnt - qx) = cx(p2 - q 2 ) sin(2nnt - qx) 

Since there is no cosine term on the right, it follows that 

(2nn - 2pqcx) = 0 

pq = nnjcx 

Further, as there is no sine term on the left, it follows that 

p2- q2 = 0 

or p = q 

Thus, from these results, 

p = q = ± (nn/cx)0 "5 

The negative solution means an exponential increase of (} with x, 
hence taking the positive result only, equation (5.17) becomes: 

(} = C exp[- x(nnjcx)0 "5 ] sin[2nnt - x(nn/cx)0 "5 ] (5.18) 

This result may now be compared with the boundary condition at 
x = Oand t = t. Thus (5.18) gives 

(} = C sin 2nnt 

and the boundary condition gives 

(} = (Om)o sin 2nnt 

Thus comparing these two equations shows that C = (Om)o. The 
final solution is therefore 

(} = (Om)o exp[ -x(nnjcx)0 "5 ] sin[2nnt- x(nnjcx)0 "5 ] (5.19) 

This equation shows that the maximum variation of(} decreases 
exponentially with x, the distance into the solid, according to the 
equation 

(5.20) 

The general form of the result given by equation (5.19) is shown in 
Figs. 5.6.and 5.7. In Fig. 5.6 the temperature variation with distance 
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distance x 

X=O 
representation of a semi-infinite solid 

00 

X=O --+----oo 

00 

Fig. 5. 6. Established temperature variation vs. distance into solid, at t = l/2n. 

at a chosen time is shown, and in Fig. 5.7 temperature variations 
with time at the surface and depth x are shown. It will be seen that 
a temperature wave propagates into the solid, and also that the 
cyclic variation of temperature at some depth x lags behind the 
surface variation. The phase difference in temperature variation 

,__----period 1/n------1 

x = 0 time lag at depth x, 

~ JC:J 
Fig. 5. 7. Temperature variation with time at x = 0, and at depth x. 
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at depth x given by x(nnjrx.)0 "5. Hence the time lag of a certain 
temperature excess (diminished in value at depth x) will be given 
by 

2nnAt = x(nn/rx.)0 "5 

At= ~(-1 )0·5 
2 nnrx. 

(5.21) 

At for a complete temperature wave of length X is 1/n hence, for 
a complete wave, the wave-length is given by 

2n = X(nn/rx.)0 "5 

X = 2(nrx./n)0 "5 (5.22) 

Also, the velocity of propagation of the temperature wave into the 
solid is 

X . 
U = - = 2(nnrx.)0 5 

1/n 
(5.23) 

The ratio of maximum temperature variations about the mean may 
be compared using equation (5.20). Thus: 

((~m)x = exp[- x(nn/rx.)0 "5 ] 

m)o 

If it is required to determine the distance x at which (8m)x has 
decreased to a certain percentage of (8m)0 , this result may be re­
arranged to give 

(5.24) 

Finally, the heat transfer rate at the wall surface, at x = 0, may 
be determined from 

q = 1 = - k(~~L=O 
and from equation (5.19), 

(~~L=o - (8m)0(nn/rx.)0 "5(sin 2nnt +cos 2nnt) 

Using the identity, 

sin(2nnt + n/4) = sin 2nnt cos n/4 + sin n/4 cos 2nnt 

= (1/)2)(sin 2nnt + cos 2nnt) 
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it follows that 

(:~L=o = - (Om)o(2nn/cx)0 "5 sin(2nnt + n/4) 

and hence, 

q = k(Om)o(2nn/cx)0 "5 sin(2nnt + n/4) (5.25) 

From equation (5.25) it will be seen that the surface heat transfer 
rate varies sinusoidally and with the same frequency as the surface 
temperature, but leading by a period of 1/8n. The total heat transfer 
at the wall is given by 

J q dt = J k(Om)o(2nn/cx)0"5 sin(2nnt + n/4) dt 

= - k(Om)o(1/2nncx)0 "5 cos(2nnt + n/4) heat/unit area (5.26) 

Thus the energy stored, as represented by an integral of heat transfer 
rate at the surface, also varies with the same frequency, but it will 
be found that it lags behind the surface temperature variation by a 
period of 1/8n. Further, it will be apparent that the surface heat 
transfer is both to and from the solid and that the energy stored is 
in sequence both positive and negative relative to the mean 
temperature. 

EXAMPLE 5.3 

In a cyclic heating process the inside of a furnace wall is subjected to 
a sinusoidal temperature variation. The temperature rises from a 
minimum of 100°C to a maximum of 750°C in 3 hours. With k = 

692 x 10- 6 kW/(m K) and ex = 0·0516 x 10- 5 m2fsec, determine: 
(i) the velocity of the temperature wave penetrating the wall; 
(ii) the time lag of the wave function at a depth of0·2 m compared with 
the surface; (iii) the maximum and minimum temperatures at a depth 
of 0·2 m; (iv) the temperature at a depth of 0·2 m when the surface 
temperature is a maximum; and the surface temperature when the 
temperature at a depth of0·2 m is a maximum (The City University). 

Solution. (i) The period (1/n) is 6 hours. From (5.23) 

U = 2(1t X 0·0516 X 3600/6 X 105)0 "5 

= 0·0622mjh 
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(ii) The time lag is given by ( 5. 21), 

0·2 ( 6 X 105 ) 0 .5 

~t = l 7t X 0·0516 X 3600 
= 3·22hours 

(Check: 0·2 m at 0·0622 mjh takes 3·22 hours.) 
(iii) The maximum and minimum temperatures at 0·2 mare obtained 
from (5.20). (Om)o is 325 

(Omlx = 325 X exp[ -0·2(7t X 105/6 X 0·0516 X 3600)0 "5] 

= 325 X 0·03477 = 11·3 

The mean temperature is 425°C, hence the maximum is 436· 3°C, and 
the minimum is 413-7°C. 
(iv) Using equation (5.19); e = 325 X 0·03477 sin (2nnt - 1·07n). 
Surface temperature is a maximum at t = 1! hours = in (mean to 
maximum), hence e = 11·3 sin (0·5 7t- 1·07n) = 11-3 sin (- 0·57n) 
= -11·3 sin 0·43n = -11·02°. Hence temperature at 0·2 m is 
425 - 11·02 = 414°C. The temperature wave at 0·2 m must advance 
in phase by 1·07n to reach its maximum value, when the surface wave 
will be at 1·57n. Hence 0 = 325 sin (1·57n) = -325 sin (0·43n) = 
-317° 

:. the surface temperature is 425- 317 = 108°C 

PROBLEMS 

1. Steel strip ofthickness 1·27 em emerges from a rolling mill at a temperature 
of 538°C and with a velocity of 2·44 m/sec. The strip is cooled in such a way 
that its surface temperature falls linearly with distance from the mill at a rate 
of nooc;m. 

Derive a finite difference method for dealing with this case of transient heat 
conduction assuming that heat flows only in the direction normal to the strip 
faces. 

Subdividing the strip into six increments of thickness, determine the tem­
perature distribution in the strip and the heat flux from the surface at a 
position 2·74 m from the mill. (For steel take thermal conductivity 43·3 
X w- 3 kW/(m K), thermal diffusivity 0·98 X w- 5 m2 /s.) (Ans. 3·41 X 103 

kW/(m 2)(University of Manchester). 

2. A steel pipe, 2·54 em wall thickness, is initially at a uniform temperature 
of 16°C when a liquid metal at 572°C is pumped through it for a time of 10 sec 
and with a surface coefficient of 2·84 kW/(m2 K). It may be assumed that 
the pipe diameter is large enough for the wall to be considered plane, that 
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no heat loss occurs from the outside of the pipe and from the inside after the 
flow of liquid metal has ceased. 

Derive a numerical method to deal with this case using finite increments 
of thickness and making the simplification that the heat capacity of the 
surface half-increment is negligible. Using four increments determine the wall 
temperature distribution after 18 sec. (For steel take thermal conductivity 
0·041 kW/(m K), density 7530 kgfm3 and specific heat 0·536 kJ/(kg K.) (Ans. 
280°C, 174°C.) (University of Manchester). 

3. At a certain instant in transient one-dimensional conduction through a 
3 em thick slab of chrome steel, 40 em square, the temperature distribution 
along the 3 em thickness is given by t = (60 + 1·2x2 + 0·3x3)°C where xis 
the distance from one 40 em square face. Calculate the rate of energy storage 
in the slab, and the rate of change of temperature at each square face, at the 
particular instant. Take p = 7833 kgfm3, k = 0·0398 kW/(m K), cP = 
0·46 kJ/(kg K). (Ans. + 9·74 kW, +()-266 K/s and +()-865 K/s.) (The City 
University). 

4. Given the differential equation (at;ar:) = a.(a2tjax2 ), for unsteady conduc­
tion in a 'one-dimensional' wall, show that the temperature tn,p+t at some 
section nand time instant (p + 1) can be calculated approximately from 

t•,p+t = F[t•+t,p + t.-t,p + (~- 2)t•,p] 

The temperatures in the right-hand bracket are values at equidistant sections 
(n - 1), n, (n + 1), preceding (p + 1) by a finite time interval L\7:; F = a.!uf!ix2 

is the Fourier number. 
Plane 1 is a distance Ax/2 to the right of a wall surface. Prove that, if the 

convection coefficient and temperature of the fluid to the left of the surface is 
h and t. respectively, 

tt,p+t = F[t2,p + 2 ~ Bts,p + ( ~- ~: ~)tt,p] 
where B = h!ix/k. (University of Bristo[). 

5. An insulating screen is intended to withstand the penetration of high 
temperature for as long as possible. Select either material A, B, or C as being 
best for this purpose. 

Material 

A 
B 
c 

kkW/(mK) 

600 X 10- 6 

600 X 10- 6 

280 X 10- 6 

1500 
1200 
750 

cP kJ/(kg K) 

0·84 
1-60 
1-10 



70 ENGINEERING HEAT TRANSFER 

The screen is 5·3 em thick and is divided into 5 increments. It is initially 15°C 
throughout; the temperature of one face rises linearly by 20°C per minute. 
Regard the other face as insulated. Determine, for the chosen material, and 
by a numerical technique, the time before the insulated face temperature 
starts to rise, and the temperature of this face after 18 minutes. (Ans. B, 
15 mins, 24·4°C.) (The City University). 

6. In order to carry out an approximate analysis of a butt-welding process, it 
is assumed that there is a uniform rate of heat generation at the contact face 
between the two bars, that heat conduction occurs only in a direction normal 
to the contact face and that the physical properties of the bars are constant. 
Derive a numerical method to deal with this case by sub-dividing the bars into 
finite increments of length. 

Apply the method to obtain the approximate temperature distribution in 
two similar steel bars, initially at 16°C, after 10 sec. The heat generation rate 
is 1·005 kJ/(cm2 s) and this acts for a period of 5 sec. Use 0·635 em increments 
of length and, for steel, take thermal conductivity= 45 x 10- 3 kW/(m K), 
density = 7690 kg/m3 and specific heat = 0·545 kJ/(kg K). (Ans. 1195°C 
maximum at joint, after 10 sec: 384°C.) (University of Manchester). 

7. A steel slab 2·54 em thick is initially at a uniform temperature of 650°C. 
It is cooled by quenching in water which may be assumed to reduce the 
surface temperature suddenly to 93·5°C. Derive a numerical method to deal 
with this case by considering a finite number of interior slices. The heat flow 
may be assumed normal to the sides of the slab. Use the method to determine 
the time required to reduce the centre temperature to 450°C (sub-divide the 
slab into eight slices). For steel take a thermal diffusivity = 1-16 X w- 5 m2 js. 
(Ans. 3-47 sec.) (University of Manchester). 

8. A large steel plate 7·62 em thick initially uniformly at 816°C is quenched 
in oil at 38°C. If the oil temperature remains constant and there is negligible 
surface resistance, estimate the time required to reduce to 427°C: 

(a) the average temperature of the slab, 
(b) the centre-line temperature. 

Thermal diffusivity of steel = 1·032 x w- 5 m2 js. (Ans. 22·3 sec, 52·0 sec.) 
(University of Leeds). 

9. A current of 3 amps is passed along a 1 mm diameter wire of resistance 
3·5 ohmsjm. The wire reaches a steady temperature of 60°C in an atmosphere 
of 20oc. Calculate the initial rate of temperature rise of the wire, and the 
temperature after a time lapse equal to the thermal time constant of the wire. 
The mass is 25 gjm and the specific heat 0·460 kJ/(kg K). (Ans. 2·74 Kjs, 
45·2°C.) (The City University). 

10. An internal combustion engine runs at 2500 r.p.m. The thermal diffusivity 
of the carbon steel of the cylinder walls is 1·16 x w- 5 m2 js. The temperature 
of the cylinder wall varies sinusoidally between 5000 and 100°C. Assuming 
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that the cylinder wall behaves like a semi-infinite solid, determine the depth 
into the wall in em at which the temperature amplitude has decreased to 1 per 
cent of the surface value, and plot the heat transfer rate at the wall surface 
over a complete cycle. k = 40 x 10- 3 kW/(mk). (Ans. 0·194cm, limits 
±2·68 X 104 kW/m2 .) 

11. Write a transient programme in FORTRAN for the section in Question 
3, Chapter 4. Assume the duct is initially at 30oC throughout, and then gas at 
200°C enters the duct. Find the temperature distribution and the total heat 
transfer into and out of the duct at 30 and at 360 seconds after the hot gas 
enters. (Ans. 30 sees: 277·1 kJ in, 78 x 10- 6 kJ out; 360 sees: 2015·7 kJ in, 
19·54 kJ out.) 
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6 
Forced convection: boundary 
layer pri nci pies 

6.1. Introduction 

In Chapter 1 it has been shown that to evaluate convection heat 
transfer, the magnitude of the coefficient h in Newton's equation 
has to be found. The study of convection centres round the behaviour 
of the fluid flowing past a surface, and the subject matter divides itself 
under various headings concerned with the type of flow situation 
or the method of analysis. This chapter shows how the convection 

-----x 

free stream, v8 

transition • ! • turbulent 

Fig. 6.1. Boundary layer growth on a flat plate. 

coefficient may be determined by an approximate analytical method 
for simple cases of laminar flow. References to other methods will 
also be given. 

Some familiarity with the flow of viscous fluids is assumed, and 
the growth of laminar boundary layers is illustrated in Figs. 6.1 and 

72 
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6.2 where the turbulent boundary layer is also shown. Thus Fig. 6.1 
shows the growth of laminar and turbulent boundary layers on a 
flat plate with a transition region occurring at 

pv.x 5 10s --~ X 

ll 
(6.1) 

where ll is the coefficient of molecular viscosity. The boundary layer 
exists as a result of the action of viscous shear within the fluid, the 
shear stress being proportional to the velocity gradient 

dvx 
7: =Jl-

dy 
(6.2) 

The group in equation (6.1), pv.x/Jl, is the dimensionless Reynolds 
number, and is the ratio of momentum forces ex: pv;, to shear forces ex: 
Jlvsfx. Fig. 6.2 shows the growth of a laminar boundary layer in a tube 

1------- starting length----! fully fully 
developed developed 
laminar turbulent 
flow flow 

Fig. 6.2. Boundary layer growth in a tube. 

with fully developed turbulent flow shown for comparison. The 
starting length is the length of tube required for the boundary layer 
to become fully developed. The velocity profiles follow closely the 
following equations: 

for laminar flow: ..!!.. = 1:: (2 -1::) 
V8 r r 

(6.3) 

for turbulent flow:..!!.. = (~)t 
va r 

(6.4) 

where v is the velocity at distance y from the tube wall, V8 is the 
velocity at the axis. 

Thermal boundary layers also exist. These are flow regions where 
the fluid temperature changes from the free stream value to the value 
at the surface. Examples in flow over a flat plate are shown in Fig. 6.3. 



74 ENGINEERING HEAT TRANSFER 

(a) 
heat transfer from 

wall to fluid 

(b) 

heat'transfer from 
fluid to wall 

Fig. 6.3. Examples of temperature boundary layers. 

6.2. Equations of the Laminar Boundary Layer on a Flat Plate 

In an exact analysis of laminar flow convection over a flat plate, 
for example, see Bayley, Owen and Turner1, the differential equations 
of momentum and energy of the flow are used to obtain the tempera­
ture gradient in the fluid at the wall, and hence the convection 
coefficient In this Section the laminar flow differential equations 
will be derived together with integral equations for an approximate 
analysis to be introduced in the next Section. 

6.2.1. The Differential Equations of Continuity, Momentum and 
Energy. The control volume within the boundary layer in Fig. 6.4. is 
to be considered. For continuity, assuming steady state conditions 
with unit depth and fluid density p, the mass flow rates in and out in 
the x-direction are 

and 
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respectively and hence the net flow into the element in the x-direction 
is 

ovxdxd -p- y OX 
Similarly the net flow into the volume in the y-direction is 

ov 
- p-=-.2dydx 

oy 

The total net flow in must be zero, hence 

- p(OVx + 5)dxdy = 0 
ox oy 

Since p, dx and dy are not zero, it follows that 

ovx +5= 0 
ox oy 

(6.5) 

The equation of momentum arises from the application of New­
ton's second law of motion to the element, assuming the fluid is 

~ dx 

11 ctx( :~x )+ J1 ctx(~~x)cty 
.---------, 

p dy 

Fig. 6.4. Element of boundary layer for continuity and momentum balance. 
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-kd £! 
Yax 

-k dx .E.i 
ay 

( at a2t ) -kdy -+-dx 
ax ax2 

Fig. 6.5. Element of boundary layer for energy balance. 

Newtonian (i.e., viscosity constant), an absence of pressure gradients 
in the y-direction, and viscous shear in the y-direction is negligible. 
The rates of momentum flow in the x-direction are pv;dy and 
p[vx + (ovxfox)dx] 2dy for the fluid flow across the left- and right­
hand vertical faces. The flow across the horizontal faces will also 
contribute to the momentum balance in the x-direction. In the 
x-direction, for the bottom face the momentum flow entering is 
pvyvxdx, and for the top face the momentum flow leaving is 

p(vy + ~dy )(vx + ~;dx )dx 

The viscous shear force on the bottom face is - J.l(ov)oy) dx and on 
the top face is 

udx[uvx + !}_(ovx)dy] · oy oy ay 
so that the net viscous shear in the x-direction is J.l dx(o 2vxfoy2 ) dy. 
The pressure force on the left face is pdy, and on the right - [p + 
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(opjox)dx] dy giving a net pressure force in the direction of motion 
of - (opjox) dx dy. Equating the sum of the net forces to the momen­
tum flow out of the control volume in the x-direction gives, after 
neglecting second-order differentials and using the continuity 

avx avx a vx op (6 6) equation: ( ) 2 

p vx ox + vy ay = ll oy2 - ox . 

The energy equation may now be deduced assuming constant 
properties and an absence of shear work as in a low velocity flow. 
Fig. 6.5 shows the energy terms involved, and it will be seen that 
there are four convective terms in addition to the conduction terms 
used in deriving equation (2.7). The energy balance is simply that 
rate of net conduction in + rate of net convection in = 0, hence 

- [pc (v ot + OVY t + OVY ot dy)]dxdy = 0 
p yay oy oy ay 

Using the continuity equation and neglecting the second-order terms: 

at at ( o2t o2t) 
vx ox + vy oy = (X ox2 + oy2 (6.7) 

The conduction in the x-direction is usually neglected in comparison 
with other terms and hence o2tjox2 may be dropped from equation 
(6.7). If in equation (6.7) the pressure gradient is assumed small and 
is neglected a similarity is then apparent between the equations of 
momentum and energy: 

ovx ovx _ (o2vx) 
vx ox + vy oy - v oy2 

at at (o2t) 
VxOX + VY(]y =(X oy2 

v is the kinematic viscosity or momentum diffusivity, Jlfp, and 
vja = (/l/ p)/(k/ peP) = JlcJk, which is called the Prandtl number, Pr. 
If v = a, then Pr = 1, and the pair of equations will lead to identical 
non-dimensionalised solutions of vx and t as functions of y. The 
Prandtl number is the ratio of fluid properties controlling the 
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velocity and temperature distributions, and it can vary between 
around 4 x 10- 3 for a liquid metal to the order of 4 x Hf for a 
viscous oil. 

6.2.2. The Integral Momentum and Energy Equations of the Laminar 
Boundary Layer. To consider the motion in the boundary layer, an 
elemental control volume is chosen that extends from the wall to 
just beyond the limit of the boundary layer in the y-direction, is 
dx thick in the x-direction, and has unit depth in the z-direction. 
This is shown in Fig. 6.6. An equation is sought which relates the 
net momentum outflow in the x-direction to the net force acting in 
the x-direction. 

Fig. 6.6. Elemental control volume in laminar boundary layer. 

The momentum flow across the face AB will be 
{J fopv; dy 

Similarly, the momentum flow across the face CD will be 

f {J df{J 
0 

pv; dy + dx 
0 

pv; dydx 
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Fluid also enters the control volume across the face BD at the rate 

d fi5 
dx o pvxdydx 

This is the difference between the fluid leaving across face CD and 
entering across face AB. The fluid entering across face BD has a 
velocity v. in the x-direction, hence the flow of momentum into 
the control volume in the x-direction is 

d fi5 
V5dx 

0 
pvx dy dx 

Hence the net outflow of momentum in the x-direction is 

dfi5 d fi5 
-d pv~ dy dx - v.- pvx dy dx 

x 0 dx 0 

Pressure forces will act on faces AB and CD, and a shear force 
will act on face AC. There will be no shear force on face BD since 
this is at the limit of the boundary layer and dvxfdy = 0. The net 
force acting on the control volume in the x-direction will be 

(6.8) 

The pressure gradient may be neglected as small compared with 
the shear force at the wall, and the equality of the net momentum 
outflow to the net force gives 

(6.9) 

This is the integral equation of motion in the laminar boundary 
layer, and was first derived by von Karman. 2 

The integral energy equation may be derived in much the same 
way. In this case, a control volume extending beyond the limits of 
both temperature and velocity boundary layers may be considered 
initially, Fig. 6.7. The principle of conservation of energy applied 
to this control volume will involve the enthalpy and kinetic energy 
of fluid entering and leaving, and heat transfer by conduction at the 
wall. Kinetic energy may be neglected as being small in comparison 
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velocity boundary 
layer, t5 

:-------
,' -~D 

A-"" Y = Y. /-'! / 
' ./ '/\ 

/rtemperature 
// 1 boundary layer, 

i (),/ 
/ ----_c· 

Fig. 6.7. Control volume in temperature and velocity boundary layers. 

with other quantities. The enthalpy flow rate across face AB is 

and across face CD 

f y. d fy. 
0 

CpPVxt dy + dx 
0 

CPPVxt dy dx 

Fluid will also enter the control volume across face BD at the rate 

d fy. 
dx o pvxdydx 

Again this is the difference between the flow rate out at face CD 
and in at face AB. The enthalpy flow will be 

Finally, heat transfer by conduction across the wall at AC will 
amount to 

-k dx(!!!_) oy y=o 
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For conservation of energy: 

d JY· d Jy. (ot) cpts -d PVx dy dx - -d pcPtvx dy dx - k dx :l = 0 (6.10) 
X 0 X 0 uy y=O 

Beyond the limit of the temperature boundary layer, the temperature 
is constant at t., and hence the integration need only be taken up 
to y = <51" Equation (6.10) therefore gives 

d J6
' (ot) - (t. - t)vx dy - OC - = 0 

dX O OY y=O 

(6.11) 

This, then, is the integral energy equation of the laminar boundary 
layt:r. 

6.3. Laminar Forced Convection on a Flat Plate 

The integral equations (6.9) and (6.11) will now be applied to the 
problem of laminar forced convection on a flat plate. The method 
is due to Eckert.3 The analysis assumes the viscosity is uniform with 
temperature. The first step is to use the integral equation of motion 
to derive an equation for boundary layer thickness. The velocity 
contour may, for example, be assumed a polynomial 

vx = a + by + cy2 + dy3 

where a, b, c, and dare constants. The constants may be found by 
applying known boundary conditions. Thus Vx = 0 at y = 0, and 
hence a = 0. Also vx = v. at y = <5, and (ovJoy)6 = 0 at y = <5. 
Further, since both vx and vy are zero at y = 0, it follows from (6.5) 
that o2vJoy2 = 0, at y = 0. These results lead to 

b = ~ ~ d v. 
2 <5' c = 0, = - 2<53 

and hence 

~: = ~(~) - M~r 
Applying the integral equation of motion, 

d f/J 
-d PVx(v. - vx) dy = Tw 

X 0 

(6.12) 
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The wall shear stress is found by considering the velocity gradient 
at y = 0; this is found to be 3vJ2b. The above equation leads to 

On integration 

d 2 39{> 3 v. 
dx pv. 280 = 2."1J 

2 d s: _ ~. 280 JW5 d 
pv. u - 2 39 {> x 

{> d{J = 140 . ~ dx 
13 v. 

{J 2 140vx 
2 = 13v. + C 

C = 0, since {> = 0 at x = 0 

or 

X 

4·64 
Ret 

X 

(6.13) 

This result, due to Pohlhausen,4 is required later on in considering 
the integral energy equation. 

The temperature distribution in the boundary layer is assumed to 
follow a similar law to the velocity distribution. Thus: 

() = (t - tw) = dy + ey2 + fy3 

where, again, d, e, and f are constants. The boundary conditions 
are that at y = i51 (the thickness of the temperature boundary 
layer), ()=e. and also (iJ()jiJy)b, = 0. Also, from equation (6.7) it 
follows that (iJ2()jiJy2)y=O = 0 because vx and vy are both zero at 
y = 0. From these conditions it follows that 

and hence 

(6.14) 
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Turning to the integral energy equation, the substitutions 
8 = (t - tw) and 8, = (t, - tw) are made to give 

~fa, (8, - 8)vx dy - IX (:8 ) = 0 
dx o y y=o 

From the temperature equation (6.14) it follows that 

(a8) 38, 
IX oy y=O = IX2DI 

(6.15) 

This result is substituted in equation (6.15) together with the ex­
pressions for 8 and vx to give: 

ddxf:l [8• - ~(i) 8• + ~(i r 8"] 0 [~(~)v.- ~(~ r v,] dy = ()(~~: 
A useful substitution is that A. = D1/D. 

38, 
= ()(2A.!5 

This then leads to 

d [ (3A. 3A. 3 
)] 38, 

dx 8•v,!51 20 - 280 = IX2A.!5 

It is convenient here to neglect the term 3A. 3/280 as being small in 
comparison with 3A.j20. This is justified since A. has the value of 1 
if Pr = 1, and will not be far removed from 1 at other values of Pr 
fairly close to 1. Hence 

d 3A.!51 3 
--=1)(--

dx 20 2A.!5v, 

~(A.2 !5) = lOa 
dx v,A.!5 

2A.!5dA. + A. 2d!5 = 1 OIX 
dx dx v,A.D 

2A.2!52dA. + A_3i!5 = lOa 
dx dx v, 

D 
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Equation (6.13) forb may now be substituted. 

b 4·64 (xv)t 
- = -t, and hence b = 4·64 -
X Rex V5 

2A221·6xv. dA. + A- 3 • 21·6v =lOa 
V5 dx 2 V5 V5 

(6.16) 

This equation may be solved by making the substitution A. 3 = p, 
and p = x", and the solution obtained is: 

(~) 3 = 0·93 + M 
b Pr xt 

noting that ajv = Pr, and M is a constant of integration. The thick­
ness of the thermal boundary layer will be 0 at the beginning of the 
heated section, at x = xh, say, and hence 

M= 
0·93x~ 

Pr 
and finally: 

This result may be simplified further by assuming that the plate is 
heated along its entire length, or xh = 0, in Fig. 6.8, 

hence 
b Pr 
~ = (0·93)t } 

0 bt 1 
or, approximately, - -t 

b Pr 

X 

(6.17) 

Fig. 6.8. Lamillllr forced convection on a flat plate. Heating commences xh 
from the leading edge. 
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Using the equations for 150 15, and the value of(oOjoy)y=o it is possible 
to determine the heat transfer at the wall, since 

qw =.k(~(J) = k32~•, from (6.14) 
uy y=O v 1 

The heat transfer rate at the wall is expressed non-dimensionally. 
qw/0. is the heat transfer coefficient h, and the group hx/k is the 
dimensionless Nusselt number, Nu. It is interpreted as the ratio 
of two lengths, the characteristic linear dimension of the system, 
and an equivalent conducting film of thickness 15;. Figure 6.9 shows 

lt~ 
Fig. 6.9. To illustrate the significtiiiCe of the Nusselt lllllllber. 

how 15; is defined. The heat transfer at the wall is qw = hO. and may 
be expressed as qw = (k/15;)0 •. It follows that h = k/15; and hence 

hx x 
Nu=-=-

k 15; 

The linear dimension of the system is generally large in comparison 
with 15;. 

A Nusselt number may therefore be obtained: 

Nu = qwx = 3x = 3x Re~ Prt 
"' e.k 215, 2(0·93)t4·64x 

using (6.17) to eliminate 151, and (6.13) to eliminate 15. 

Nu"' = 0·332Re~ Prt (6.18) 

This gives the local Nusselt number at some distance x from the 
leading edge of the plate. The average value of the convection 
coefficient h, over the distance 0 to x is given by: 

1J"' li=- hdx 
X 0 

of the system, 
the system, 
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where 

h = 0·332k(:~r Prt, from equation (6.18) 

1i = ~ 0·332(v·x)tp,t 
X t V 

and 

Nu = 0·664 Ret Prt X X (6.19) 

This equation expresses in non-dimensional form the heat transfer 
by convection at the surface of a flat plate. 

EXAMPLE 6.1 
Air flows at 5 m/s along a flat plate maintained at 17°C. The bulk 
air temperature is 27°C. Determine at 0·1 m ,0·5 m and 1·0 m from 
the leading edge, the velocity and temperature boundary layer 
thicknesses, and the local and average convection coefficients. Use 
mean properties of air from Table A6. 

Solution. At 325 K, p = 1·087 kgfm3, k = 28·1 x 10- 6 kW/(m K), 
p. = 1·965 x 10- 5 Pas, and Pr = 0·703. 

The Reynolds numbers at x = 0·1, 0·5 and 1·0 m with v, = 5·0 mjs; 
together with the boundary layer thicknesses using fJjx = 4·64/Re!, 
equation (6.13), and fJJ(J = 1/Prt, equation (6.17), and the local 
and average coefficients using equations (6.18) and (6.19), are cal­
culated and tabulated below: 

Rex {)mm {)1 mm hkW/(m2 K) likW/(m2 K) 

X= 0·1 2·76 X 104 2·79 3-14 13-8 X 10- 3 27·6 X 1.(}- 3 

0·5 1·38 X lOS 6·26 7·04 6·15 X lQ- 3 12-3 X 1()-3 

1·0 2·76 X lQS 8·92 10·02 4·37 X 10- 3 8·74 X 10-3 

6.4. Laminar Forced Convection in a Tube 

Laminar forced convection in a tube will be considered for the case 
of fully developed flow and constant beat flux at the wall. For fully 
developed flow it may be assumed that the velocity profile has a 
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parabolic shape. It is first necessary to derive the energy equation 
for flow in a tube. To do this, a small cylindrical element of flow 
may be considered, as in Fig. 6.10. The element is of length dx, 
radius r on the inside, and radius r + dr on the outside. Energy will 
flow into and out ofthe element in the radial direction by conduction, 

Fig. 6.10. Element ojlllmitlllr flow in a tube. 

and in the axial direction by convection. Conduction into the 
element is . at 

Q = - k2nr dx -
r ar 

Over the change of radius dr, this conduction rate will change by 

aQ, dr = - k2n dx !.._ (/t) dr 
or ar ar 

(6.20) 

This change in conduction rate is accounted for by the difference 
between the convection rates into and out of the element in the 
axial direction. The axial velocity through the element is constant 
but the temperature changes in the axial direction. The rate of 
convection into the element is 

2nr dr pvcPt 

and out of the element, it is 

2nr dr pvcP( t + :~ dx) 



88 ENGINEERING HEAT TRANSFER 

Hence, the difference is 
or 

2nr dr pvcPox dx 

The sum of this and the right-hand side of (6.20) is zero, hence on 
cancelling terms, 

1 o ( ot } _ pep ot --r- ---
vr or or k ox 

(6.21) 

This is the energy equation for laminar flow in a tube. With a con­
stant wall heat flux qw, and constant fluid properties, the temperature 
of the fluid (at any radius) must increase linearly in the direction of 
flow, so that 

or 
ox = constant 

Other conditions applicable are that at r = 0, (tube axis), ot/or = 0 
and at r = rw, t = tw. Also at r = rw, the heat flux is related to the 
temperature gradient, 

Since otfox is assumed constant, equation (6.21) reduces to a 
total differential equation. The velocity vis a function of the velocity 
at the axis of the tube, v., and the radius r. The assumed parabolic 
velocity distribution, equation ( 6.3), expressed in terms of r measured 
from the axis is 

~ = 1 - (!...)2 
v. rw 

where r w is the wall radius. 
This result must be substituted into equation (6.21) before inte­
grating. Hence, after re-arrangement, 

~(rot) = ! ~v. [1 - (!...)2]r 
or or ex ox r w 

This is integrated to give 

r~ = ] ~v. ( r2 
- ~) + C 1 or ex ox 2 4r; 
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and after a second integration, gives 

1 ot (r2 r4 ) 
t=~ 0xva4- 16r; +C 1 lnr+C2 (6.22) 

C 1 and C 2 are constants of integration to be found from boundary 
conditions. Since otjor = 0 at r = 0, it follows that C 1 = 0. The 
other boundary condition is that at r = rw, t = tw. Hence, 

t = ~ ~v [r; - r;J + C 
w (1. OX a 4 16 2 

C = t - ~ ~v 3r; 
2 w (1. OX a 16 

Hence equation (6.22) becomes, after some re-arrangement, 

t = ~ ~v r2 [~(!_) 2 
- __!_(!_) 4 

- 2_] + t (6.23) 
(1. ox a w 4 rw 16 rw 16 w 

This equation may be expressed as a temperature difference, 
8 = t - tw. Further, if 8a is the temperature difference between the 
axis, where r = 0, and the wall, ea may be found from equation 
(6.23) by putting r = 0. Hence, 

e = ~ ~ v r 2 (- 2_) 
a (1. OX a w 16 (6.24) 

The temperature profile may be expressed non-dimensionally by 
dividing equation (6.23) by equation (6.24). 

(6.25) 

The equation for heat transfer at the wall may be obtained by con­
sidering the temperature gradient at r = r w. Thus, from equation 
(6.25) 
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and 

In terms of the Nusselt number, Nud 

(6.26) 

This value of Nusselt number is based on the difference in tem­
perature between the tube axis and the wall. However, from a 
practical point of view it is more convenient to consider the difference 
in temperature between the bulk value and the wall. The bulk 
temperature is the mean temperature of the fluid, and the tempera­
ture difference required is given by 

rw 2nr drpvc/1 
e = _oc__ ___ _ 

m J:w 2nr drpvcp 

Introducing equations for v and e, this becomes 

This, on integration, gives em = ~i e •. 
The heat transfer at the wall is, 

q = -k(de) =4ke.=~-72e 
w dr rw 3r w 3r w 44 m 

This is now equivalent to 
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Hence 

h=~.72 
3rw 44 

and 

N hd 4k 72 2rw 
ud = k = 3r w • 44 · T 

8 72 
= ]•44 

= 4·36 (6.27) 

These results are independent of Reynolds number because, for 
fully developed flow, the boundary layer thickness is equal to the 
tube radius. 

ExAMPLE6.2 
Water at a mean temperature of 40°C flows at a mean velocity of 
0·1 mjs in a 3 mm bore tube having a constant wall flux of 1·0kW/m2• 

Determine the temperature of the water as a function of radius, 
using equation (6.23). Use fluid properties from Table AS. 

Solution. It is necessary to obtain atjax, also V3 the velocity of water 
at the centre of the tube. 

Consider an energy balance on 1m of tube: 

qwnd x 1 = mass flow x cP x temperature rise 

at 
:. ax = qwnd/(maSS flow X CP) 

1·0 X 7t X 3 4 X 106 
= X ---::-------

4·178 X 1000 7t X 32 X 0·1 X 994·6 

where cP = 4·178 kJ /(kg K), and p = 994·6 kg/m 3 

:. atjax = 3·22K/m 

The laminar flow velocity distribution is given by 

(vfva) = 1 - (r/r w)2 
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where V8 = velocity at r = 0, hence for continuity: 

vmnr! = Iw 2nr[v8 - V8 (r/rw)2] dr 

2 2nr!va 2 
= 1trwva- --4- = nrwVa/2 

:. V8 = 2vm 

With IX= 15-1 x 10- 8, equation (6.23) becomes: 

t = :~: X 3·22 X 0·1 X 2 X ~-~: [~(;J2 
- : 6(;J4

- : 6] + tw 

= 9·6[~(!__)2 - 2_(!__)4
- ~] + tw 

4 rw 16 rw 16 

At r = r wo t = tw; at r = 0, t = tw - 1·8°C. 

PROBLEMS 

1. Derive the heat flow equation of the boundary layer 

d f' (dO) dx o (8. - O)U dy = ex dy o 

and apply this equation to 'slug' flow of a liquid metal along a plate of uniform 
temperature to find the thickness of the temperature boundary layer. 0 would 
be the liquid metal temperature relative to the plate temperature. Assume 
that the temperature profile in the boundary layer can be described by an 
equation of the form 

where a, b, and care constants to be determined from the boundary conditions. 
Hence prove that the local Nusselt number N" is given by 

N" =J(n ~ 2).j(R)>) = 0·534.j(R)>) 

It can be shown that if the velocity profile can be approximated by an 
equation of the form 

the velocity boundary layer thickness is then given by 

0 J[ 2n
2 J ~ = (4- n)R" 
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Show that for a liquid metal of P = 0·01 the temperature boundary layer 
thickness is approximately equal to M. (University of Bristol). 

2. Prove that, in hydrodynamically fully-developed laminar flow through a 
tube, the temperature field is determined by the following partial differential 
equation 

1 o ( ot) 1(ot) 
Ur or r or = ~ OX 

where r is the distance from the axis of the tube, and U is the velocity at r. 
Hence derive an equation for the fully developed temperature profile, 

when the heat flux qw is constant along the wall of the tube. You may assume 
that the velocity profile is given by 

~0 = 1 - (ir 
Show that the temperature profile can be put into dimensionless form as 

t: ~ t~ = :0 = 1 - ~(ir + ~(ir 
where t, t0 , and tw are the local, axial, and wall temperatures respectively, 
and R is the radius of the tube. Also show that the Nusselt number 

qwd 8 
00k 3 

Explain, by writing down the initial equations, how you would derive the 
Nusselt number qwd!Omk, where ()m is the bulk temperature of the fluid relative 
to the wall. (University of Bristol). 

3. Show that if a flat plate has a heated section commencing at xh from the 
leading edge, the local Nusselt number at distance x from the leading edge, 
(x > xh), is given by: 

Nux = 0·332 Re! Pr*(1 - (xh/x}*)-t 

Determine the velocity and thermal boundary layer thicknesses and the local 
heat transfer rate at 1 m from the leading edge of a plate heated 0·5 m from 
the leading edge, for air at 27°C flowing over the plate at 0·5 mjs, if the 
temperature of the heated section is 127°C. (Ans. {J = 0·0298 m, fJ, = 
0·0243 m, 0·184 kW/m2.) 

4. The velocity in the boundary layer of a stream of air flowing over a flat 
plate can be represented by 

; = ~(~)- ~(~r 
where U is the main stream velocity, u the velocity at a distance y from the 
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flat plate within the boundary layer of thickness b. The variation of boundary 
layer thickness along the plate may be taken as 

bjx = 4·64(Rex)--t 

If the plate is heated to maintain its surface at constant temperature show 
that the average Nusselt number over a distance x from the leading edge of 
the hot plate is 

(University of Leeds). 

5. If in laminar flow heat transfer on a flat plate the velocity distribution 
is given by Vx = V,(yjb), and assuming in this case that there is no shear at 
the limit of the boundary layer, show that the boundary layer thickness is 
given by 

bjx = 3-46/Re! 

where b is the boundary layer thickness at x from the leading edge. Also 
show that the average Nusselt number at x is given by 

Nux = 0·73 Re! Pr+ 

with heating commencing at x = 0. 
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7 
Forced convection: Reynolds 
analogy and dimensional analysis 

Consideration of convection has so far been limited to laminar flow. 
For turbulent flow, it is possible to introduce additional terms into 
the momentum and energy equations to account for the presence of 
turbulence, and to obtain numerical solutions to the finite difference 
forms of the equations. 1• 2 However, these methods have only 
become possible with the use of the more recent and more powerful 
generations of digital computer, and at an introductory level the 
more classical approaches will be followed. 

7.1. Reynolds Analogy 

The approach to forced convection known as Reynolds analogy is 
based on similarities between the equations for heat transfer and 
shear stress, or momentum transfer. The original ideas were due 
to Reynolds 3 • 4 and the analogy has been subsequently modified and 
extended by others. 

as 
The equation for shear stress in laminar flow, (6.4), may be written 

dv 
r = pv-

dy 
(7.1) 

where v is the kinematic viscosity, J.L! p. A similar equation may be 
written for shear stress in turbulent flow. A term e, eddy diffusivity, 
is introduced, which enables the shear stress due to random turbulent 
motion to be written 

dv 
'• = pe dy 

95 

(7.2) 
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When turbulent flow exists, the viscous shear stress is also present 
which may be added to -r1• The total shear stress in turbulent flow 
is thus 

dv 
-r = p(v +e)-

dy 
(7.3) 

e is not a property of the fluid as v is. It depends on several factors 
such as the Reynolds number of the flow and the turbulence level. 
Its value is generally many times greater than v. 

7.1.1. Shear Stress at the Solid Surface. In developing Reynolds 
analogy the heat transfer at the surface of a fiat plate or of a tube is 
ultimately compared with the shear stress acting at that surface. 
This shear stress is obtained by substituting (dv/dy),=·O into the 
equation for t. Thus, for laminar flow on a flat plate, x from the 
leading edge, with the Reynolds number Rex based on the free stream 
velocity and x, 

'I" 0·647 
CJ =--t 

Rex 
(7.4) 

where Cf is the skin friction coefficient defined as -rw/!pv;. v. is the 
free stream velocity. An average value Cd for the length x is found to 
be 2Cffor laminar flow, where Cfis the local value at x. The derivative 
of the turbulent velocity profile substituted into (7.2) leads to an 
infinite shear stress at the wall. This is overcome by assuming the 
existence of a laminar sub-layer, as in Fig. 6.1. For turbulent flow 
on a flat plate, Cf and Cd are given by 

and 

Cf = 0·0583(Re")-t (7.5) 

Cd = 0·455 
(log Re")2·ss 

(7.6) 

Equation (7.6) is an empirical relationship, 5 which takes into account 
the laminar and turbulent portions of the boundary layer. 

The ratio of the velocity at the limit of the laminar sublayer to 
the free stream velocity is also of importance, as will be seen later ; 
this is a function of the Reynolds number at x from the leading edge : 

vb 2·12 
V8 (Rex)0 "1 

(7.7) 
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Corresponding relationships for flow in tubes are usually ex­
pressed in terms of a friction factor f, which is four times larger 
than Cf in terms of the surface shear stress. Thus f = 4Tw/i-pv~, 
where Vm is the mean velocity of flow 

In laminar flow, !=~ 
Red 

(7.8) 

and in turbulent flow, f = 0·308 
(Red)* 

(7.9) 

and vb 2·44 
(Red)t 

(7.10) 
Vm 

The derivations of these relationships may be found in the more 
advanced texts on heat transfer, or fluid mechanics, e.g., refs. 6, 14. 

The friction factors quoted above are for smooth surfaces. 
Values are increased if the surface is rough. For any tube surface, 
the average wall shear stress Tw acting over a length L can be found 
by considering the forces acting. Thus, if Ap is the pressure loss and 
d the tube diameter, the pressure force Apnd2 /4 is equal to the wall 
shear force •wndL, assuming the tube is horizontal. 

7.1.2. Heat Transfer across the Boundary Layer. Equations for 
heat transfer across the boundary layer. are written in analogous 
form to (7.1) and (7.3). Thus in laminar flow, heat transfer across 
the flow can only be by conduction, so Fourier's law may be written 
as dt 

q = -pc rx­
P dy (7.11) 

In turbulent conditions energy will also be carried across the flow 
by random turbulent motion, and the heat flux may be written 

dt 
q = - pcp(rx + Bq) dy (7.12) 

where Bq is the thermal eddy diffusivity, a term analogous to e. 
The basis of Reynolds analogy is to compare equations (7.1) and 
(7.11) for laminar flow, and equations (7.3) and (7.12) for turbulent 
flow. 

In equations (7.3) and (7.12) it has been seen that the ratio v/rx is 
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the Prandtl number; similarly efea is known as the turbulent Prandtl 
number, though this is not a property of the fluid as is vjrx. 

Some initial assumptions must now be made. The first is that 
e = eq. This means that if an eddy of fluid, at a certain temperature 
and possessing a certain velocity, is transferred to a region at a 
different state, then it assumes its new temperature and velocity in 
equal times. This assumption is found by experiment to be approxi­
mately true. (eq/e varies between 1 and 1·6. For a review of this 
subject, see ref. 6.) A second assumption is that q and T have the 
same ratio at all values of y. This will be true when velocity and 
temperature profiles are identical. Identical profiles occur in 
laminar flow when the Prandtl number of the fluid is 1. In turbulent 
flow, with e = eq, the groups responsible for velocity and tem­
perature distributions, (v + e) and (rx + eq), are also equal when 
Pr = 1. Further, even when the Prandtl number is not 1, (v + e) 
and (rx. + eq) will be nearly equal, since e and eq are very much 
greater than v and rx. 

The simple Reynolds analogy is valid when Pr = 1, and the 
Prandtl-Taylor modification 7 • 8 which takes into account a varying 
Pr is valid for a fairly restricted range, say 0·5 < Pr < 2·0. 

7.1.3. The Simple Reynolds Analogy. With the assumptions noted 
above it is now possible to proceed to a consideration of the simple 
analogy. Flow is assumed to be either all laminar or all turbulent, 
and Pr = 1. By comparing equations (7.1) and (7.11) for laminar 
flow, it follows that 

q 
r 

k dt 
,u dv 

(7.13) 

This gives the ratio of q/T at some arbitrary plane in the flow. 
Noting that q/T has the same value anywhere in the y-direction, 
it is possible to express qw/Tw at the wall in terms of free stream and 
wall temperatures and velocities. 
Thus 

(7.14) 

Details of the nomenclature are shown in Fig. 7.1. vw at the wall is 
zero. 
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• 

Fig. 7.1. Velocity and temperature distributions for the simple Reynolds 
analogy. 

For turbulent ffow, equations (7.3) and (7.12) give 

q _ pep( a. + eq) dt 
~- p(v+e)dv 

Thus, between the free stream and wall : 

qw (t.- tw) -=;c . .:_::__--=.:.. 
'rw p Vs 

(7.15) 

Equations (7.14) and (7.15) for laminar and turbulent flow are 
clearly identical if Pr = 1, i.e., if cP = kfp., or p.cp/k = 1. Re-arranging 
equation (7.15) gives 

h = qw = 'rwCp 

o. v. 

where o. = (t. - tw), and where h is the surface heat transfer co­
efficient. 

Substituting the skin friction coefficient Cf gives 

or 

h Cf 
pv.cP = T (7.16) 

This is one form of the result obtained from the simple Reynolds 
analogy; it gives the convection coefficient h in terms of the skin 
friction coefficient Cf h/ pv,cP is the Stanton number St. It is the 
Nusselt number divided by the product of the Reynolds and Prandtl 
numbers. Further re-arrangement is possible; for example, con-
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sidering laminar flow at distance x from the leading edge of a fiat 
plate, both sides of (7.16) are multiplied by xjk to give 

hx Cf pv.xcP 
T=T-k-

But cpJJ./k = I. or cPjk = 1/JJ., hence 

hx Cf pv.x 
---

k 2 J1 

or 

(7.17) 

Cf may be replaced by 0·647(Rex)-t from equation (7.4) to give 

Nux= 0·323(Rex)t (7.18) 

for laminar flow on a fiat plate. This result may be compared with 
equation (6.18) obtained by consideration of the integral boundary 
layer equations. If Pr = I in this equation then the result is 

Nux= 0·332(Rex)t 

Reynolds analogy may also be applied to flow in tubes, and for this 
purpose e. and v. in the above analysis may be replaced by the mean 
values ()m and vm, since the velocity and temperature distributions 
are identical. The linear dimension is now the diameter of the tube, d. 
The relationship will be 

hd Cf pvmd 
---

k 2 J1 

or 

(7.19) 

For turbulent flow in tubes, f = 0·308(Red)-t from (7.9) and 
Cf = ±! from the definition off Substituting for Cf in (7.19) 
gives 

(7.20) 
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7.1.4. The Prandti-Taylor Modification of Reynolds Analogy. The 
simple Reynolds analogy agreed quite well with experiment in 
laminar flow and also with results where Pr = 1 in both laminar 
and turbulent flow. The modification proposed by Prandtl and 
Taylor goes a long way to meeting the discrepancies generally 
found in turbulent flow when there is no restriction on Pr. A laminar 
sublayer is considered in addition to the turbulent boundary layer. 
This makes an important difference to the analysis even though the 
sublayer is quite thin. The fact that it is thin is also important in 
that it makes it possible to assume a linear temperature and velocity 
distribution with negligible error. 

For turbulent heat and momentum exchange between the free 
stream and the laminar sublayer, as in Fig. 7.2, applying equation 
(7.15) gives: 

qb cp(t. - tb) 

rb (v. - vb) 
(7.21) 

y 

Fig. 7.2. Velocity and temperature distributions for the Prandti-Taylor 
modification of Reynolds analogy. 

In the laminar sublayer, the equations are 
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and 

and hence 
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(7.22) 
0 w f..I.Vb 

Because the velocity and temperature distributions are straight 
lines in the laminar region qw = qb, and •w = •b· Hence the right­
hand sides of (7.21) and (7.22) are equal. 

and 

cp(ts - tb) k (tb - tw) 
---"---"-----=-- = - --=---"---

Pr(t, - tb) 

(tb - tw) 

If (t,- tw) is written as e,, then the above may be re-arranged to 
give 

e, vb 
1 + -(Pr- 1) 

v, 

and eliminating (tb - tw)/vb between this result and equation (7.22) 
gives 

't'w f..I.V, 1 + vb (Pr - 1) 
v, 

qw e, 
-=Cp-------

't'w v, 1 + vb (Pr - I) 
(7.23) 

v, 

This equation is Reynolds analogy as modified by Prandtl and 
Taylor. It may be noted straight away that if Pr = 1 in this equation, 
then the relationship reduces to equation (7.15), i.e., Reynolds 
original equation. Further, if vb = 0, i.e., there is no laminar sub­
layer so that flow is entirely turbulent, the equation again reduces 
to the original relationship. A further simplification is that if flow 
is all laminar, which means that vb = v, equation (7.23) becomes 

qw cPe, k8, 
-=--=-
't'w v,Pr V,f..l. 
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Equation (7.23) may now be treated in a similar manner to (7.15) 
by re-arranging and introducing the coefficient Cf. Thus: 

qw Cj 1 -e = pv.cP-2 (7.24) 
s vb 

1 + -(Pr- 1) 
v. 

For turbulent flow on flat plates, both sides are multiplied by x/k 
and J1 is introduced to the right-hand side to give 

qwx pv.x CpJl Cf 1 

e.k =--;;- k 2. 1 + vb(Pr _ 1) 
v. 

Cf RexPr 
Nux=T 

1 + vb(Pr- 1) 
v. 

Also, for turbulent flow on flat plates, equations (7.5) and (7.7) are 
introduced to give t 

N u = 0·0292Re xPr 
x 1 + 2·12Re, io(Pr- 1) 

(7.25) 

This is the local Nusselt number. To obtain an average Nusselt 
number over some total length of plate, Cd from equation (7.6) 
may be substituted for Cf in this analysis. 

An alternative to this result was suggested by Colburn, 9 in which 
the denominator in equation (7.25) was replaced by Prt. Re­
arranged, this gives 

St~rt = 0·0292Re_; 0 · 2 

and if Cf is substituted, this gives 

Cf 
St Prt =- = J 

X 2 ' (the Colburn J-factor) 

This result reduces to equation (7.16) when Pr = 1. 

(7.26) 

(7.27) 

For turbulent flow in round tubes, equation (7.23) may be suit­
ably modified. e. becomes em' the temperature difference between 
the mean fluid temperature and the wall, and v. similarly becomes 
vm. Introducing k, Jl, and the linear dimension d, gives 

qwd PVmd Cp/1 Cj 1 
emk = -11-T·T· 1 + vb (Pr _ l) 

Vm 
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Cf RedPr 
Nud = -. ----='------

2 vb 
1 + -(Pr- 1) 

Vm 

Finally, equations (7.9) and (7.10) are introduced to eliminate Cf 
and vb/vm, and remembering that f = 4Cf, the result obtained is 

- 0·0386Re,iPr 
N ud = ----,-------.-=----

1 + 2·44Red *(Pr- 1) 
(7.28) 

This is an average Nusselt number, because an average friction 
factor was used. 

The relationships (7.25) and (7.28) agree remarkably well ·with 
experiment over a small range of Prandtl number. 

EXAMPLE 7.1 

Compare the heat transfer coefficients for water flowing at an 
average fluid temperature of 100°C, and at a velocity of 0·232 mjs 
in a 2-54 em bore pipe, using the simple Reynolds analogy, equation 
(7.20), and the Prandtl-Taylor modification, equation (7.28). At 
lOOoC, Pr = 1·74, k = 0·68 x 10- 3 kW;(m K), and v = 0·0294 x 
w- 5 m2 js. 

Solution. The Reynolds number is : 

vd 0·232 X 0·0254 X 1()5 

0·0294 = 20'000 v 

In the simple analogy, Nud = 0·038Re~"75 , and Re~·75 = 1643 

62·5 X 0·68 X 10- 3 

Nud = 62·5, and 1i = 0_0254 

= 1·675 kW/(m2 K) 
In the Prandti--Taylor modification, 

- 0·0386Re~· 7 5 Pr 
Nu = ------=:....,---­

d 1 + 2·44(Red) *(Pr - 1) 

Re} = 3·45 

Nu = 0·0386 x 1643 x 1·74 = 72_4 
d 1 + (2·44/3·45) X 0·74 
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72·4 X 0·68 X 10- 3 
1i = = 1·937 kWj(m2 K) 

0·0254 

The first answer is thus 13·5 per cent lower than the second, which 
may be assumed more correct. This solution is for flow in smooth 
pipes. 

7.2. Dimensional Analysis of Forced Convection 

Convection heat transfer is an example of the type of problem 
which is difficult to approach analytically, but which may be solved 
more readily by dimensional analysis and experiment. 

The process of dimensional analysis enables an equation to be 
written down which relates important physical quantities, such as 
flow velocity and fluid properties, in dimensionless groups. The 
precise functional relationship between these dimensionless groups 
is determined by experiment. 

Suppose that in a given process there are n physical variables 
which are relevant. These variables, which may be denoted by 
Q 1 , Q2 , ••• , Q,, are composed of k independent dimensional 
quantities such as mass, length, and time. Buckingham's pi theorem10 

states that if a dimensionally homogeneous equation relating the 
variables may be written, then it may be replaced by a relationship 
of (n - k) dimensionless groups. 

Thus, if 

then 

</J2(1t1, 'Tt2 • • • · • 'Tt(n-k)) = 0 

Each n term will be composed of the Q variables, in the general 
form 

1t = Q1Q~Q3 ... Q~. 

and will be dimensionless. The set of n terms will include all inde­
pendent dimensionless groupings of the variables. No n term can 
be formed by combining other n terms. A set of equations for 
a, b, c, ... , x is obtained by equating the sum of the exponents of 
each independent dimension to zero. This will yield k equations 
for n unknowns. One method of solution is to choose values for 
(n - k) of the exponents in each term. The selected exponents must 
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be independent, which can be shown to be true if the determinant 
formed from the coefficients of the others does not vanish. 

An alternative procedure is to select k of the Q variables and to 
combine them in turn with each of the other (n - k) Q variables. 
The selection k of the Q quantities must together involve all the 
independent dimensions, but they must not form a dimensionless 
group by themselves. Further, each of the (n - k) Q variables in 
each rr term is given the exponent 1. This facilitates the algebra, 
as will be seen, and is allowable since it only amounts to reducing 
then term by some unknown root. Thus, if there were six Q variables 
and four independent dimensions, the two n terms would be: 

nl = m·Q~·QJ·Qi•Qs 

n 2 = Q~2Q~2Q32Qi2Q 6 

In each n term there are therefore four simultaneous equations for 
the four unknown exponents. 

This procedure will now be applied to forced convection. For a 
detailed mathematical proof of the pi theorem, the reader is referred 
to Langhaar. 11 

The physical variables are selected by consideration of the govern­
ing differential equations, e.g. (6.6) and (6.7) for laminar flow. The 
dependent variable is the convection coefficient h, and for an incom­
pressible fluid in the absence of viscous dissipation, the independent 
variables are a velocity v, a linear dimension I, and the fluid pro­
perties of thermal conductivity k, viscosity p., specific heat cP, and 
density p. The presence of turbulence does not add any further 
variables. The velocity and linear dimension are normally those 
which define the Reynolds number for the flow, e.g., free stream 
velocity and distance from leading edge for flow along a flat plate, 
and mean velocity and diameter for flow in a tube. 

The independent dimensional quantities to be used are mass M, 
length L, time T, temperature 8, and heat H. Heat, of course, is not 
independent as it has the same dimensions as kinetic energy, 
ML2/T 2, but for present purposes it can be regarded as independent 
provided there is no transference of energy from one form to 
another. Heating effects due to fluid friction are consequently 
neglected, and the results are invalid for high speed flow. Inspection 
of the dimensions of the physical variables shows that when the 
dimensions of H and () occur, (in h, k, and cp), they do so in the 
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same combination of Hj(). Thus Hj() can be regarded as an inde­
pendent dimensional quantity. 

In forced convection there are therefore seven physical variables 
involving four dimensional quantities. Consequently, three n terms 
will be obtained. Four variables which together involve all four 
dimensions, and which do not themselves form a dimensionless 
group, are v, l, k, and J.l.· Then h, cP, and p will each appear in a 
separate independent n term. Then terms are 

1tt = va•[b•k••Jl.d'h 

1t 2 = va>[b>k•> Jl.d>cp 

1t3 = va'lb,kc'JJ.d'p 

The n 1 term may be written 

which is dimensionless. The following equations for al' b1, c1, 

and d1 are obtained: 

L a 1 + b1 - c1 - d 1 - 2 = 0 

T -a1 - c1 - d1 - 1 = 0 

Hj() Ct + 1 = 0 

M d1 = 0 

It is found that a 1 = 0, b 1 = 1, c1 = -1, and d 1 = 0. The n1 term 
is thus hljk. In a similar manner, it is found that the n2 term is 
'Jl.Cp/k and the n3 term pvlfJJ.. These groups are recognized as the 
Nusselt, Prandtl, and Reynolds numbers, and the result may be 
expressed: 

c/J 2(Nu, Pr, Re) = 0 

or, more usually, 

Nu = c/J(Re, Pr) (7.29) 

since the Nusselt number contains the dependent variable h. 
Equation (7.29) agrees in form with Reynolds analogy, in that the 
Nusselt number is a function of the Reynolds and Prandtl numbers. 
Actual functional relationships have been determined for various 



108 ENGINEERING HEAT TRANSFER 

fluids, geometries, and flow regimes; these may be used to predict 
h in similar circumstances, provided the Reynolds and Prandtl 
numbers fall within the same· ranges. There is, of course, no restric­
tion to the system of units which may be used, provided they are 
consistent. 

Scale model testing is a valuable practical application of the use 
of these dimensionless relationships. By means of experiments on 
a model, the performance of a projected design may be estimated. 
The requirements are that the model must be geometrically similar 
to the full scale design; also that Reynolds and Prandtl numbers 
must be reproduced exactly. Then the flow patterns and fluid and 
thermal boundary layers will be correctly modelled and, conse­
quently, the Nusselt number determined on the model will be the 
correct value for the real thing. 

Some of the more useful results will now be summarized. It 
should be pointed out first, however, that the dimensional analysis 
just considered was based on the assumption of constant fluid 
properties and also that a single linear dimension was sufficient to 
describe the system. Both of these assumptions are invalid in 
certain circumstances. Viscosity is often the most temperature 
dependent fluid property, and a varying viscosity will have a 
considerable effect on the fluid boundary layer. If this is allowed for 
in the dimensional analysis, an additional term, such as a viscosity 
ratio to some power, will appear. In a result of the form of equation 
(7.29), fluid property values at some mean temperature are used. 
Consequently, when these equations are used to predict heat transfer 
coefficients, property values at the appropriate mean temperature 
must be inserted. For pipe flow, an average or mean fluid temperature 
is used. If the flow across a certain section of pipe were to be· 
thoroughly mixed, then an average fluid temperature would be 
obtained. It will depend on the velocity profile as well as the tem­
perature profile. To evaluate an average heat transfer coefficient 
over a length of pipe, then property values at a mean of the average 
temperatures at the two ends must be inserted. When flow over a 
flat plate is being considered, a mean film temperature may be used. 
This is the average of the free stream fluid temperatures and the 
wall temperature. In addition, an average of two mean film tem­
peratures may be used when considering an average convection 
coefficient over a length of plate. 

When an additional linear dimension is required, as in the case 
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of thermal boundary layer development in pipe flow, a length ratio 
to some power will appear in the analysis. 

7.3. Empirical Relationships for Forced Convection 

Some of the more important relationships are now listed. 

Laminar flow in tubes. An average Nusselt number between entry and 
distance x from entry is given by 

( d)t( )0·14 Nu4 = 1·86(Re4)t(Pr)t ~ :w (ref.l2) (7.30) 

All physical properties are evaluated at the arithmetic mean bulk 
temperature between entry and x, with the exception of JJ.w which is at 
the wall temperature, and the equation is valid for heating and cooling 
in the range 100 < (Re4)t(Pr)t(d/x)t < 10,000. 

Turbulent flow in tubes. For fluids with a Prandtl number near unity, 
and only moderate temperature differences between the fluid and the 
wall, (5°C for liquids, 55°C for gases), McAdams13 recommends: 

(7.31) 

where n = 0·4 for heating, and 0·3 for cooling, and Re4 > 10,000. 
This is for fully developed flow, i.e., (xjd) > 60, and all fluid pro­
perties are at the aritumetic mean bulk temperature. 

For both larger temperature differences and a wider range of 
Prandtl number: 

Nu4 = 0·027(Re4) 0 "8(Pr)t{JJ./JJ.w)0 "14 (ref. 12) (7.32) 

In this equation 0·7 < Pr < 16,700, and all other details are as 
before, with JJ.w taken at the wall temperature. 

Turbulent flow along flat plates. For this type of flow, Chapman 
recommends: 

Nux = 0·036Prt(Re~·s - 18,700) (ref. 14) (7.33) 

This is based on a consideration of laminar flow (for which 
Nux = 0·664(Rex)t(Pr)t) and turbulent flow after transition at 
Rex = 400,000, for 10 > Pr > 0·6. Fluid properties are evaluated 
at the mean film temperature. 
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Heat transfer to liquid metals. Liquid metals are characterised by 
their very low Prandtl numbers. Experimental correlations are 
for uniform wall heat flux and constant wall temperature in turbulent 
flow in smooth tubes. Thus: 

uniform heat flux, Nud = 0·62S(RedPr)0 "4 (ref. lS) (7.34) 

constant wall temperature, Nud = S·O + 0·02S(RedPr)0 "8 (ref. 16) 

(7.3S) 

All properties are evaluated at the bulk temperature of the fluid, 
with (x/d) > 60, and 102 < (RedPr) < 104 • 

The temperature profile becomes very peaked compared with the 
velocity profile, when the Prandtl number is very small, as shown 
in Fig. 7.3. 

velocity 
profile 

Fig. 7. 3. Normalized temperature arulllelocity profiles for flow in a tube at 
llery low llall!es of Pr. 

EXAMPLE 7.2 

Freon at a mean bulk temperature of -10°C flows at 0·2 m/s in a 
20 mm bore pipe. The freon is heated by a constant wall heat flux 
from the pipe, and the surfaCe temperature is 1S°C above the mean 
fluid temperature. Calculate the length of pipe for a heat transfer 
rate of 1·S kW. Use fluid properties from table AS. 

Solution. At -10°C, v = 0·0221 x 10- 5,k = 72·7 x 10- 6 kw/(mK), 
Pr = 4·0, f.L = 31·6 x 10- 5 Pas. At +S°C, JL = 28·8 x 10- 5 Pas. 

A comparison of results using equation (7.31) and (7.32) may be 
obtained. Re = 20 x 0·2 x 105/1000 x 0·0221 = 18,100. Therefore 
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Re0 "8 = 2547. Pr = 4·0, hence Pr0 "4 = 1·74 and Prt = 1·588. 

(J1/J1w)0 "14 = (31·6/28·8)0 "14 = 1·013 

From equation (7.31), Nud = 0·023 x 2547 x 1·74 = 102·0 

Ill 

From equation (7.32), Nud = 0·027 x 2547 x 1·588 x 1·013 = 110·7 

Using the second result, which is 8·5 per cent larger than the first, 

h = 110·7 X 72·7 X 10- 6 X 103/20 = 0·402 kW/(m2 K) 

The pipe length required is calculated from Q = ndLh(tw - t 1) 

where tw and t I are the wall and fluid temperatures, hence 

L = 1·5/(n X 20 X 10- 3 X 0·402 X 15) = 3·96m 

PROBLEMS 

1. The expression, Stanton number = ~ x friction factor, may be derived 
from the simple Reynolds analogy. Briefly explain this analogy, discussing 
any assumptions made and stating limitations to the application of the above 
expression. 

Air at a mean pressure of 6·9 bar and a mean temperature of 65·5oC flows 
through a pipe of 0·051 m internal diameter at a mean velocity of 6·1 m;s. 
The inner surface of the pipe is maintained at a constant temperature and the 
pressure drop along a 9·14 m length of pipe is 0·545 bar. Determine: (a) the 
Stanton number, and (b) the mean surface heat transfer coefficient. (Ans. 
0·002, 0·087 kW/(m2 K.) (University of London). 

2. Deduce the Taylor-Prandtl equation 

~ = ~[1 + a(~r- 1)] 
which gives the heat transfer per unit area and time, H. in terms of the drag 
force per unit area. F, and in which Pr denotes the Prandtl number CJJ,/k: 
the other symbols having their usual meaning. (a = vb/v,.) 

Use the Taylor-Prandtl equation to show mathematically the following 
deductions, and explain them in simple terms: 

(a) For gases the Taylor-Prandtl equation approximates closely to the 

Reynolds equation. (Reynolds equation is !!_ = dJ but for liquids the 
F v 

divergence is considerable.) 
(b) For turbulent flow the Taylor-Prandtl equation reduces to the Reynolds 

. b c I" fl . H k8 equatiOn ut 10r stream me ow 1t reduces to-=-. 
F jJ,V 

(c) If the value of the Prandtl number is unity, then the form of the Taylor­
Prandtl equation for streamline and turbulent conditions is identical. 
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(d) With liquids of very low thermal conductivity, the whole of the tem­
perature drop occurs in the boundary layer. (King's College, London). 

3. Discuss the effects of boundary layers on heat transfer by convection, and 
show that, if Reynolds analogy between friction and heat transfer applies, 

h f 
cPpii 2 

It was found during a test in which water flowed with a velocity of2·44 m/s 
through a tube 2·54 em inside diameter and 6·08 m long, that the head lost 
due to friction was 1·22 m of water. Estimate the surface heat transfer coeffi­
cient, based on the above analogy. For water p = 998 kg/m3, cP = 4·187 
kJ/(kg K). (Ans. 21-4 kW/(m2 K.) (Queen Mary College, London). 

4. Air at a temperature of 115·6°C enters a smooth pipe 7·62 em diameter, 
the wall of which can be maintained at a constant temperature of 15·6oC. 
The rate of flow of air is 0·0226 m 3 /sec. Estimate the length of pipe necessary 
if the air is to be cooled to 65·5°C, using the following assumptions: Prandtl 
number for air = 0·74; f = 0·007; velocity at boundary of sub layer is half 
the mean velocity in the pipe. (Ans. 12·55 m.) (University College, London). 

5. A transformer dissipates 25 kW to cooling oil entering at 40° and leaving 
at 60°C. The oil is subsequently divided equally into 16 tubes in a heat 
exclanger. Calculate the convection coefficient of the oil in the heat exchanger 
tube, given: Internal tube diameter, 10 mm; oil properties: p = 870 kg/m3, 

cP = 2·05 kJjkgK~ J1. = 0·073 Pas, Pr = 1050, k = 140 x 10- 6 kW/(mK); 

for laminar flow: 

for turbulent flow: 

Nud = 0·125 (Red Pr)t 

Nud = 0·023 (Red)0 ' 8 (Pr)t 

(Ans. Flow is laminar, 0·0722 kW/(m2 K).) (The City University). 

6. It is proposed to test the cooling system of an oil-immersed transformer 
by means of a model. The transformer dissipates 100 kW, the model is 
lo linear size, with 4~ 0 surface area. Assuming the basic mechanism of heat 
transfer is forced convection in a cylindrical duct, (0·5 em diameter on the 
model), determine the energy dissipation rate and the velocity in the model. 

Mean temperature differences are the same in the transformer and model. 
Ethylene glycol is used in the model. Use Nud = 0·023 Re~·s Pr0 ' 4 ; Re = 
2200; for oil: k = 131·5 X 10- 6 kW/(m K), Pr = 80; for ethylene glycol: 
k=256 X 10- 6 kW/(mK),Pr=80,v=0·868 X w- 5 m2/s.(Ans.9·75kW, 
3·82 m/s.) 

7. (a) Describe the following dimensionless quantities used in the study of 
heat transfer: Nu, Re, Pr, Gr, St, giving their physical interpretations in a 
form of simple ratios. 

(b) Describe, using suitable formulae, what is known as Reynolds analogy. 
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Show that under certain conditions, 

St = 2-cfpv2 

(See also chapter 8.) (University of Oxford). 

8. Air at mean conditions of 510°C, 1·013 bar, and 6·09 m/s flows through 
a thin 2·54 em diameter copper tube in surroundings at 272oC. 

(a) At what rate, per metre length, will the tube lose heat? 
(b) What would be the reduction of heat loss if 2·54 em of lagging with 

k = 173 X 10- 6 kW/(mK)wereappliedtothetube?TakeNd = 0·023(Rd)0 "8 

P0 "33 with all the properties taken at the bulk air temperature. Assume the 
surface heat transfer coefficient from the outside of the unlagged and lagged 
tube to be 17·0 and 11·3 X 10- 3 kW/(m2 K) respectively. (Ans. 0·174kW/m, 
32 per cent.) (University of Bristol). 

9. A 100 MW alternator is hydrogen cooled. The alternator efficiency is 
98·5 per cent and hydrogen enters at 27° and leaves at 88°C. It then flows 
in a duct at a Reynolds number of 100,000. Calculate the mass flow rate of 
coolant and the duct area. For hydrogen: cP = 14·24 kJ/(kg K), J-1 = 0·087 x 
10- 4 Pas. (Ans. 1·73 kg/s, 5·0 m2.) 

10. Explain and derive the simple Reynolds analogy between heat transfer 
and fluid friction. Outline the Prandtl-Taylor modification to the simple 
theory. 

2·49 kg/s of air is to be heated from 15 to 75oc using a shell and tube heat 
exchanger. The tubes which are 3·17 em in diameter have condensing steam 
on the outside and the tube wall temperature may be taken as 100°C. Specify 
the number of tubes in parallel and their length if the maximum allowable 
pressure drop is 12·7 em of water. 

Assume that f = 0·079 Re-t and that the air has the following properties: 
density 1·123 kg/m3, kinematic viscosity 1·725 X 10- 5 m2/s. (To solve this 
problem, see also chapter 13.) (Ans. 94 tubes, 3·75 m long.) (University of 
Leeds). 

REFERENCES 

1. Patankar, S. V. and Spalding, D. B. Heat and Mass Transfer in Boundary 
Layers, 2nd ed., International Textbook Company, Scranton, Pa. 
(1970). 

2. Bayley, F. J., Owen, J. M. and Turner, A. B. Heat Transfer, Nelson 
(1972). 

3. Reynolds, 0. Proc. Manchester Lit. Phil. Soc., Vol. 14,7 (1874). 
4. Reynolds, 0. Trans. Roy. Soc. Land., Vol. 174A, 935 (1883). 
5. Schlichting, H. Boundary Layer Theory, McGraw-Hill Book Company, 

Inc., New York (1955). 
6. Knudsen, J. G. and Katz, D. L. Fluid Dynamics and Heat Transfer, 

McGraw-Hill Book Company, Inc., New York (1958). 



114 ENGINEERING HEAT TRANSFER 

7. Prandtl, L. Z. Physik., Vol. 11, 1072 (1910). 
8. Taylor, G. I. British Adv. Comm. Aero., Reports and M em. , Vol. 274, 423 

(1916). 
9. Colburn, A. P. Trans. AIChE, Vol. 29, 174 (1933). 

10. Buckingham, E. Phys. Rev., Vol. 4, 345 (1914). 
11. Langhaar, H. L. Dimensional Analysis and Theory of M ode/s, John Wiley, 

New York (1951). 
12. Sieder, E. N. and Tate, G. E. Ind. Eng. Chem., Vol. 28, 1429 (1936). 
13. McAdams, W. H. Trans. AIChE, Vol. 36, 1 (1940). 
14. Chapman, A. J. Heat Transfer, 3rd ed., The Macmillan Company, 

New York (1974). 
15. Lubarsky, B. and Kaufman, S. J. NACA Tech. Note 3336 (1955). 
16. Seban, R. A. and Shimazaki, T. T. Trans. ASME, Vol. 73, 803 (1951). 



8 
Natural convection 

Forced convection heat transfer has now been considered in some 
detail. The energy exchange between a body and an essentially 
stagnant fluid surrounding it is another important example of 
convection. Fluid motion is due entirely to buoyancy forces arising 
from density variations in the fluid. There is often slight motion 
present from other causes; any effects of these random disturbances 
must be assumed negligible in an analysis of the process. Natural" 
convection is generally to be found when any object is dissipating 
energy to its surroundings. This may be intentional, in the essential 
cooling of some machine or electrical device, or in the heating of 
a house or room by a convective heating system. It may also be 
unintentional, in the loss of energy from a steam pipe, or in the 
dissipation of warmth to the cold air outside the window of a room. 

Fluid motion generated by natural convection may be laminar 
or turbulent. The boundary layer produced now has zero fluid 
velocity at both the solid surface and at the outer limit, and the profile 
is of the form shown in Fig. 8.1. In laminar flow natural convection 

bulk fluid temp. 
_L ______ _ 

l 
direction of 

induced motion 

Fig. 8.1. Natural convection boundary layer on a verticulflat plate. 
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from a vertical plate, it is possible to obtain a solution of the bound­
ary layer equations of motion and energy, if a body force term is 
included. This approach is limited in general application and, conse­
quently, the method of dimensional analysis will be used. 

8.1. The Body Force 

Before undertaking a dimensional analysis of natural convection it 
is necessary to consider the nature of the body force. If Ps is the 
density of cold undisturbed fluid, p is the density of warmer fluid, 
and () is the temperature difference between the two fluid regions, 
then the buoyancy force on unit volume is 

(p.- p)g 

and Ps is related to p by 

Ps = p(l + /30) 

where f3 is the coefficient of cubical expansion of the fluid. Thus 
the buoyancy force is 

[p(l + /30) - p ]g = pg/30 (8.1) 

The independent variables on which the natural convection 
coefficient h depends may now be listed. A buoyancy force term would 
appear in the differential equation of momentum, hence /3, g, and () 
appear in addition to the fluid properties p, J.l., cP and k, and the 
linear dimension characteristic of the system, l. This is the dimension 
which would be used in the Reynolds number for a forced flow in the 
same direction as the natural convective flow. f3 and g are usually 
combined as a single variable flg since variation of g is unlikely. 

8.2. Dimensional Analysis of Natural Convection 

The procedure outlined in chapter 7 will now be followed to obtain 
the dimensionless groups relevant to natural convection. There are 
eight physical variables and five dimensional quantities, so that 
three n: terms are expected. H and 0 may not be combined to form 
a single dimensional quantity, since temperature difference is now 
an important physical variable. 

Five physical variables selected to be common to all n: terms are 
p, J.l., k, 0, and /. These fulfil the necessary conditions. h, cP, and flg 
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will each appear in a separate 1t term. The 1t terms are : 

1tl = patfl.bt/c"t(JdtJeth 

1t2 = pazfl.bzk"z()'hJezcP 

1t3 = palfl.bl/c"l(JhJelpg 
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After writing the necessary equations to obtain the exponents 
a to e in each 1t term, it is found that 

The n3 term is the Grashof number and the dimensionless relation­
ship may be expressed as 

ifJ (Nu, Pr, Gr) = 0 
or, 

Nu = ifJ(Gr, Pr) (8.2) 

The Grashof number is the ratio of buoyancy force to shear 
force, where the buoyancy force in natural convection replaces the 
momentum force in forced convection. pgpO is the buoyancy force 
per unit volume, therefore pgp() x l would be for unit area. The 
ratio of buoyancy to shear force per unit area is pgp()Jf(fl.vfl). But 
velocity is a dependent variable proportional to (fl.fpl). hence the 
ratio of buoyancy to shear force becomes pgp2()13ff1.2• 

Many experiments have been performed to establish the func­
tional relationships for different geometric configurations convect­
ing to various fluids. Generally, it is found that equation (8.2) is of 
the form 

Nu = a(GrPrf (8.2a) 

where a and b are constants. The product GrPr is the Rayleigh 
number Ra. However, results are generally quoted in terms of(GrPr) 
since it is often necessary to vary Gr at some fixed Pr. Laminar and 
turbulent flow regimes have been observed in natural convection, 
and transition generally occurs in the range 107 < GrPr < 109 

depending on the geometry. 

8.3. Formulae for the Prediction of Natural Convection 

Some of the more important results obtained will now be presented. 
These may be used for design calculations provided the system under 
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consideration is geometrically similar and that the value of (GrPr) 
falls within the limits specified. Generally, there are no restrictions 
on the use of any specific fluid. Example 8.1 shows how the formulae 
are used. Figure 8.2 shows the principal geometries with external 
flow in the direction of the arrows. For more extensive reviews of 
available information, see for example, refs 1 and 2. In addition, 
ref. 2 may be consulted for details of natural convection in enclosed 
spaces and natural convection effects in forced flow when the 
Reynolds number is very small, a situation known as combined or 
mixed convection. 

1 f l J I I 

J 
Horizontal cylinders 

Vertical surfaces 

Horizontal flat surfaces 

Fig. 8.2. Principal geometries in IUltural convection systems showing direction 
of convective flow. 

8.3.1. Horizontal Cylinders. Detailed measurements indicate that 
the convection coefficient varies with angular position round a hori­
zontal cylinder, but for design purposes values given by the follow­
ing equations 3 are constant over the whole surface area, for cylinders 
of diameter d. 

Nud = 0·525(GrdPr)0 "25 

when 104 < GrdPr < 109 (laminar flow) and 

(8.3) 

(8.4) 
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when 109 < GrdPr < 1012 (turbulent flow). Below GrdPr = 104 , 

it is not possible to express results by a simple relationship, and 
ultimately the Nusselt number decreases to a value of 0·4. At these 
low values of GrdPr the boundary layer thickness becomes appre­
ciable in comparison with the cylinder diameter, and in the case 
of very fine wires heat transfer occurs in the limit by conduction 
through a stagnant film. Fluid properties are evaluated at the average 
of the surface and bulk fluid temperatures, which is the mean film 
temperature. If the surface temperature is unknown, a trial and 
error solution is necessary to find h from a known heat transfer rate. 

8.3.2. Vertical Surfaces. Both vertical fiat surfaces and vertical 
cylinders may be considered using the same correlations of experi­
mental data. The characteristic linear dimension is the length, or 
height, of the surface, l. This follows from the fact that the boundary 
layer results from vertical motion of fluid and the length ofboundary 
layer is important rather than its width. Again average values of 
Nu1 are given, even though in the case of Gr1Pr > 109 the boundary 
layer is initially laminar and then turbulent. With physical constants 
at the mean film temperature the numerical constants as recom­
mended by McAdams 3 are 

Nu1 = 0·59(Gr1Pr)0 "25 (8.5) 

when 104 < Gr1Pr < 109 (laminar flow) and 

Nu, = 0·129(Gr1Pr)0 "33 

when 109 < Gr1Pr < 1012 (turbulent flow). 

(8.6) 

8.3.3. Horizontal Flat Surfaces. Fluid flow is most restricted in the 
case of horizontal surfaces, and the size of the surface has some bear­
ing on the experimental data. The heat transfer coefficient is likely 
to be more variable over a smaller fiat surface than a large one, when 
flow effects at the edges become less significant. Further, there will 
be a difference depending on whether the horizontal surface is 
above or below the fluid. Similar, though reversed, processes take 
place for hot surfaces facing upwards (i.e., cold fluid above a hot 
surface), and cold surfaces facing downwards (i.e., hot fluid below 
a cold surface). In either case, the fluid is relatively free to move due 
to buoyancy effects and be replaced by fresh fluid entering at the 
edges. The following relationships are generally recommended for 
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square or rectangular horizontal surfaces up to a mean length of 
side (I) of 2ft: 

Nu1 = 0·54(Gr1Pr)0 ' 25 

when 105 < Gr1Pr < 108 (laminar flow) and 

Nu1 = 0·14(Gr1Pr)0 ' 33 

(8.7) 

(8.8) 

when Gr1Pr > 108 (turbulent flow). Thus turbulent flow is possible 
in this geometrical arrangement. 

The converse arrangement is the hot surface above a cold fluid, 
or hot surface facing downwards, and a hot fluid above a cold 
surface, or cold surface facing upwards. In either case, it is obvious 
that convective motion is severely restricted since the surface itself 
prevents vertical movement. Laminar motion only has been 
observed, and the recommendation is 

Nu1 = 0·25(Gr1Pr)0 ' 25 (8.9) 

when Gr1Pr > 105. Fluid properties are again taken at the mean 
film temperature. 

8.3.4. Approximate Formulae for use with Air. A great deal of 
natural convection work involves air as the fluid medium and the 
fluid properties of air do not vary greatly over limited temperature 
ranges. Thus it is possible to derive simple formulae from equations 
(8.3) to (8.9) in which the physical properties in the Nusselt, Grashof, 
and Prandtl numbers are grouped together and assumed constant. 
From equation (8.2a) 

h = constan{kl-b(pg:2CPrJob[3b-l 

= constant x Ob[3b- 1 (8.10) 

It will have been noted that b = 0·25 in laminar flow and 0·33 in 
turbulent flow, so that the index of lis - 0·25 in laminar flow and 0 
in turbulent flow. The simplified expressions become 

((})0·25 
h = C l in laminar flow (8.11) 

and 
h = C0°'33 in turbulent flow (8.12) 
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where the value of C, the constant, depends on the configuration 
and flow, and l is the characteristic dimension. 

The resulting expressions for horizontal cylinders, vertical and 
horizontal surfaces, based on the relationships given by McAdams/ 
are: 

Horizontal cylinders (or·25 laminar flow { h ~ ()-()()131 d 
d =diameter 

h = 0·001240°'33 turbulent flow 

Vertical surfaces (or·25 laminar flow { h ~ (}00141 I 
l =height 

h = 0·001310°'33 turbulent flow 

Horizontal surfaces 
l = length of side 

Hot, facing upwards } (or·25 laminar flow { h ~ <Hl0131 I 

Cold, facing downwards h = 0·001520°'33 turbulent flow 

Hot, facing downwards } (or·25 laminar flow 
Cold, facing upwards 

h = 0·00058 l 

The numerical constants in these equations give h in kW/(m2 K) 
with 0 in oc and linear dimensions in m. To determine whether flow is 
laminar or turbulent it is necessary to find the approximate value of 
( GrPr) and to see to which flow regime the value corresponds, as given 
in earlier Sections. For this purpose take pgp2cf.p.k = 6·4 x 107• 

This is multiplied by (linear dimension)3 X 0 m K to obtain the 
dimensionless (GrPr). 

ExAMPLE 8.1 

An oil filled electric heating panel has the form of a thin vertical 
rectangle, 2m ,long by 0·8 m high. It convects freely from both 
surfaces. The surface temperature is 85°C and the surrounding air 
temperature 20°C. Calculate the rate of heat transfer by natural 
convection, and compare the result with that obtained from the 
simplified formula for air. 

Fluid properties at the average of surface and bulk air tempera­
tures, 53°C, are p = 1/326, Pr = 0·702, p = 1·087 kg/m3, p. = 
1·965 x 10- 5 Pas and k = '28·1 x 10- 6 kW/(m K). 
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Solution. The characteristic linear dimension is the panel height, 
0·8 m. The product ( Gr1Pr) must first be found. (} = 85 - 20 = 65. 

Gr1Pr = [(1/326) X 9·81 X 65 X 1·0872 X 0·83/(1·965 X 10- 5) 2] 

X 0·702 = 2·15 X 109 

Hence the flow is turbulent, and Nu1 = 0·129(Gr1Pr)0 "33 may be used. 

Nu1 = 0·166 x 103 

and 

1i = 0·166 x 103 x 28·1 = 5_85 x 10_3 kW/(m2 K) 
0·8 X 106 

Using the simplified relationship, 1i = 0·00131 X (}0 "33 = 0·00131 X 

65°"33 = 5·26 x 10- 3 kW/(m2 K) 
This represents 10·1 per cent error on the value from equation (8.6). 

The convection from both sides of the panel is 
Q = 2 X 2 X 0·8 X 65 X 5·85 X 10- 3 =1·215kW 

using the more accurate value of 1i. 

PROBLEMS 

1. Describe briefly how experimental data on heat transfer by convection 
obtained from small scale experiments may be applied to full-scale industrial 
plant, and specify the conditions which must be satisfied for this to be possible. 

Define the Nusselt, Prandtl, and Grashof numbers and show that they are 
dimensionless. Calculate the rate of heat transfer by natural convection from 
the outside surface of a horizontal pipe of 15·2 em outside diameter and 
6·1 m long. The surface temperature of the pipe is 82°C and that of the 
surrounding air 15·6°C. 

The following relations are applicable to heat transfer by natural convection 
to air from a horizontal cylinder; for laminar flow, when 104 < (GrPr) < 109 

Nu = 0·56(GrPr)* 

and for turbulent flow, when 109 < (GrPr) < 1012 

Nu = 0·12(GrPr)t 
The properties of air given below, corresponding to the 'mean film tempera­
ture', i.e., 49°C, may be used. 

Kinematic viscosity v = 1·8 X 10- 5 m 2 js 
Thermal conductivity k = 0·0284 X 10- 3 kW/(mK) 

Coefficient of cubical expansion P = 3~2 K- 1 

Prandtl number Pr = 0·701. (Ans. 1·275 kW.) (Queen Mary College, 
London). ' 
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2. The transfer of heat by natural convection from vertical planes may be 
calculated by using the following formula which is valid for all P, for R less 
than 109 and for N greater than 5. 

N 4/R = 2P/(5 + lOPt + lOP) 
where N = Q" L/k8, 

R = (t'lp)gL 3pcp/Jlk, 
p = JlCp/k, 

and where 
L = height of plane, 
8 = temperature difference, 

cP = isobaric specific heat-capacity 

k = thermal conductivity 
g = gravitational acceleration 

Jl = viscosity, p = density, 
(t'lp) =difference between density of fluid near plane and density of fluid 

far away, 
Q" = surface density of rate of heat transfer. 

Some busbars are in the form of strips which run horizontally and are ten 
times as high as they are thick. They are made of copper for which the 
resistivity is 2 x 10- 8 ohm m. 

They are to be designed for operation at 87·8°C in an atmosphere which is 
at 32·2°C and at 1·013 bar. Calculate the height of busbar for use with a 
current of 10,000 A. Assume that both radiation and that part of the convec­
tion which is from the top and bottom edges of the bars are negligible. 
(Ans. 0·35 m.) (Queen Mary College, London). 

3. By dimensional analysis show that for natural convection of a perfect gas 

~ = 1{( 1:!).e~ ~ roHJl~p)} = f(GrPr) 

where v is the kinematic viscosity, r; is the surface temperature and T0 is 
the temperature in the bulk of the fluid. Give a brief statement of the assump­
tions made. 

A metal plate, 0·609 m in height, forms the vertical wall of an oven and is at 
a temperature of 171°C. Within the oven is air at a temperature of 93·4oc 
and atmospheric pressure. Assuming that natural convection conditions hold 
near the plate, and that for this case Nu = 0·548(GrPr)0 .25 , find the mean 
heat transfer coefficient, and the heat taken up by the air per second, per 
metre width. For air at 132·2°C, k = 32·2 x 10- 6 kW/(m K), Jl = 0·232 x 
10- 4 Pas. (Ans. 4·11 x 10- 3 kW/(m2 K), 0·195 kW/m.)(Queen Mary College, 
London). 

4. A factory is heated by a bank of eight 50 mm diameter steam pipes placed 
under grilles in the floor. Steam at 139°C passes through the pipes and the 
mean air temperature in the factory is l5°C. Assuming each pipe convects 
freely calculate the length of the bank of pipes necessary to give 10 kW of 
heating. (Ans. 42·8 m.) 

5. A tubular heater mounted horizontally is 25 mm diameter and dissipates 
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0·075 kW/m length. The surrounding air temperature is 30°C. Assuming 
h = 0·00127 (8/diameter)0 "2 ' kW/(m2 K) with the diameter in metres, 
calculate the surface temperature and the value of the natural convection 
coefficient. (Ans. 126°C, 0·01 kW/(m2 K).) 
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Separated flow convection 

Separation is an important characteristic of the type of flow 
encountered in many modern heat transfer devices. Design require­
ments of compactness have resulted in the rapid growth of the use 
of complex geometrical heat transfer surfaces, which have developed 
from the single tube and tube bank placed across the line of flow. 
A single tube or cylinder placed in a cross-flow is completely sub­
merged in the fluid and it therefore forms an obstacle around which 
the fluid must flow. A boundary layer exists on the cylindrical surface 
with free stream velocity at its extreme and zero velocity at the wall. 
However, the free stream velocity increases around the front of the 
cylinder and at low approach velocities flow within the boundary 
layer also accelerates. Behind the cylinder free stream and boundary 
layer flow decelerates again in a more or less reverse pattern. At 
higher approach velocities the increased velocity around the front 
of the cylinder which is accompanied by a drop in static pressure 
is not followed by a similar increase in velocity in the boundary layer, 
due to the increased viscous stress at the higher velocity gradients. 
Thus, in the boundary layer the fluid has lost velocity before it 
starts to decelerate behind the cylinder and it is then opposed by a 
'surplus' of static pressure which forces the boundary layer away 
from the surface. Separation, or break-away, results in the formation 
of turbulent eddies which are carried downstream behind the 
cylinder. Separation occurs nearer the front of the cylinder as the 
approach velocity increases, and occurs much more readily in flow 
over blunt ended obstacles. 

Local heat transfer coefficients have been measured around the 
circumference of cylinders in cross-flow. 1 They have minimum 
values at the point of separation and increase forwards towards the 
point of stagnation, but they increase more towards the rear of the 
cylinder. This may be attributed to the scrubbing action of the eddies 
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formed in that vicinity. Average values of heat transfer coefficient 
have also been extensively determined as these are required for 
design purposes. Owing to the degree of turbulence produced in a 
tube bank, convection coefficients are high and average values for 
tubes several rows back are found to be higher than for those at 
entry due to the action of eddies shed from the leading rows. 2 

The pattern of events in the tube bank has led to the evolution 
of the compact heat transfer surface which is in general a complex 
of finned cross-flow passages. The use of fins as a means of increasing 
heat transfer coefficients is discussed in chapter 12. Flow through 
such a system is largely composed of turbulent eddies, and even at 
low approach velocities a high degree of turbulence is to be found. 
For this reason the usual transition between laminar and turbulent 
flow at Reynolds numbers around 2500 does not exist, and turbulent 
flow has been found to persist to Reynolds numbers as low as 800. 3 

In any arrangement of this type in which high heat transfer rates 
may be obtained in a small space, the advantages have to be balanced 
against the effect of increased pressure loss on overall performance. 
Pressure loss is due to the total drag of the shapes involved and due 
to shear over the fins. It may be measured across the whole system 
and related to a friction coefficient by an expression similar to the 
equation for flow in pipes: 

(9.1) 

Such a form is useful since it has been found generally that fo can 
be related to the Reynolds number of flow. In the determination of 
fo from tJ.p, the values of L, d, and Vm have to be defined in relation 
to the particular geometry. The symbol fo is used to indicate that 
it represents essentially a drag loss rather than a loss due to viscous 
shear. 

9.1. Relationship between Heat Transfer and Pressure Loss in a 
Complex Flow System 

In the experimental determination of the performance of complex 
heat transfer surfaces, Schenck4 found that an 'experimental 
analogy' exists between heat transfer and friction, even though the 
net friction effects involved are essentially due to drag forces. Thus 
Fig. 9.1 shows the Colburn J-factor plotted against f 0 , as defined in 



SEPARATED FLOW CONVECTION 127 

equation (9.1), for a wide range of different surfaces including plain 
fins on tubes, plain and dimpled tubes, tube and spiral fins, flattened 
tubes with plain grooved and wavy fins, pin fins and interrupted 
plate fins. This particular plot is valid for Reynolds numbers in 
excess of 5000. 

The use of this information is illustrated in the following example. 
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I I II II 
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fo 
Re > 5,000 

Fig. 9.1. Relationship between the !-factor and fo for flow in a complex 
system. By courtesy of H. Schenck, Jr., and The American Society of Naval 

Engineers, Inc. 

ExAMPLE 9.1 

A compact forced convection oil cooler has a front area of 0·15 m2 

and a surface area of 40m2 jm2 frontal area. Air at 28°C enters the 
cooler at 30 mjs. The average temperature of the heat transfer sur­
face is 126°C. f 0 is found to be 0·1. Estimate the heat transfer 
performance. 

Solution. From Fig. 9.1 the J-factor is 0·01. The J-factor is given 
by equation (7.27): J = StPrt, for mean conditions where St = 

Tijpv.cP. At a mean temperature of77°C, p for air is 0·998 kg/m3, cP = 
1·009 kJ/(kg K), Pr = 0·697. Hence the heat transfer coefficient is 
given by 

h X (0·697)t = 0·01 
0·998 X 30 X 1·009 

:. Ti = 0·386kW/(m2 K) 
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The heat transfer rate is nAO, where A = (surface areajunit area) X 

(frontal area), 

.". nA = 0·386 X 40 X 0·15 X (126- 28) 

= 227kW 

9.2. Convection from a Single Cylinder in Cross Flow 

Much experimental work has been done to determine the heat 
transfer coefficient from a single cylinder in cross flow. Investiga­
tions have included both fine heated wires and large pipes. A recent 
examination of available data is that of Douglas and Churchill 5 

and the equation which represents their results is 

(9.2) 

This equation is only valid for Red > 500. Nusselt and Reynolds 
numbers are based on the cylinder diameter d, velocity is the free 
stream, or undisturbed fluid velocity, and fluid properties are 
evaluated at the average film temperature. Hsu 6 has proposed that 
for Red < 500 the following equation may be used: 

Nud = 0·43 + 0·48(Red)± (9.3) 

Both of these equations are valid only for the simpler gases with 
similar Prandtl numbers, since the small Prandtl number effects 
are accommodated in the numerical constants. Both equations are 
valid in heating as well as cooling of the cylinder. 

9.3. Convection in Flow across Tube Bundles 

Many examples of heat transfer across tube bundles occur in 
industry, e.g. in cross-flow heat exchangers, and on the shell side 
of shell and tube heat exchangers, (see Chapter 13). It is therefore 
necessary to be able to predict convection coefficients in such 
situations. 

Snyder2 found that the local Nusselt number on tubes in cross 
flow achieved a constant value after the third row of tubes, and a 
useful correlation is that of Colburn,7 for the average Nusselt 
number for all tubes, for ten or more rows of tubes in a staggered 
arrangement: 

Nud = o·33(do;xr·6 (Pr)t (9.4) 
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disc-and-doughnut baffles segmental bafiles 

Fig. 9.2. Types of sheU baffle; see also Fig. 13.2 which shows doug hut and 
900 segmental baffles. 

d is the tube diameter, Gmax = mass velocity = p x v where v is the 
velocity through the smallest free-flow area between tubes, fluid 
properties are evaluated at mean of wall and bulk fluid temperatures, 
and 10 < Red < 40,000. A much more detailed analysis for staggered 
and in-line tube arrangements of different spacings was carried out 
by Grimison 8• 

On the shell side of shell and tube heat exchangers, two relation­
ships proposed by Donohue9 may be used. The baffie arrangements 
quoted are illustrated in Fig. 9.2. 

For disc-and-doughnut baffies: 

( dG )o·6 ( )o·14 
Nud = 0·033('6 Jl e (Pr)t :w (9.5) 

For segmental baffies, the (0·033 d~'6 ) in (9·5) is replaced by 0·25. Note 
that Ge = J(GwGc), where Gw = mass velocity through the baffie 
window area, and Gc = mass velocity based on flow area at the 
diameter of the shell. Fluid properties are evaluated at the fluid 
bulk temperature, with the exception of Jlw which is at the tube wall 
temperature. It is important to note that in using equation (9.5) all 
terms are dimensionless groups except for (0·033 d~'6 ). Here de is an 
equivalent diameter = 4(SySv - 1td2 j4)/(1td} where ST = tube trans­
verse spacing, Sv = tube vertical spacing, d = tube diameter, and 
de is in mm. 

The above equations give only very basic correlations of cross­
flow convection, for further information the reader is referred to 
Kays and London. 10 
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ExAMPLE9.2 
In a shell and tube heat exchanger, the tubes are 25·4 mm diameter 
and are spaced at 50·8 mm centres both horizontally and vertically. 
Water flows at 24·6 kg/s in the shell, and the baffie window area is 
0·0125 m2 and the net shell area is 0·05 m2• The water bulk tempera­
ture is 60°C and the tube wall temperature is 90°C. Calculate the 
shell side heat transfer coefficient. 

Solution. Property values of water are taken from Table A5. Thus, 
J1. = p x v, and at 60°C J1. = 47·0 x 10- 5, at 90°C J1. = 31·9 x 
10-s Pas. Pr = 3·02, k = 651 x 10- 6 kW/(m K). 

Equation 9.5 will be used. First calculate de, the equivalent 
diameter. 

de = 4(STSv - nd2 /4)/nd 

= 4(50·82 - n x 25·42/4)/n x 25·4 = 104 mm 

0·033 d~"6 = 0·033 X (104)0 "6 = 0·533 

Gw = mass velocity through baffie window = p x velocity. But, 
p x velocity x area = 24·6 kg/s. 

Gw = 24·6/0·0125 = 1970 

Gc =mass velocity through the shell = 24·6/0·05 = 492 

Ge = .j(GwGc) = .j(1970 X 492) = 984 

R = 984 x 2·54 x 10s = 5·31 104 (Re)0·6 = 684 
e 100 X 47·0 X ' 

(Pr)t = (3·02)t = 1·445 

- = - = 1·056 ( J1. )0·14 ( 47 )0·14 
Jl.w 31·9 

Nud = 0·533 X 684 X 1·445 X 1·056 = 556·0 

1i = 556 X 651 X 10- 6 = 14·3 kW/( 2 K) 
0·0254 m 
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PROBLEMS 

1. A gas is blown across two geometrically similar tube banks. In case (a) 
there are 10 tubes 15 mm diameter by 200 mm long, the gas velocity is 50 mfs, 
the gas temperature is 18°C, the tube surface temperature is 80°C and the 
heat transfer rate is 1·26 kW. In case (b) the ten tubes are 30 mm diameter 
by 400 mm long, the velocity is 30 m/s, and gas and surface temperatures 
are 15° and 70°C, and the heat transfer rate is 2·78 kW. With the following 
gas properties, determine A and B in the relationship Nu4 = A(Re4 )B for 
the tube banks. 

(a) k = 30 X 10- 6 kW/(mK), p = 1·0kg/m3 and Jl = 2·05 X w-s Pas; 
and(b)k = 26 X 10- 6 kW/(mK),p = 1·18kg/m3 andJJ. = 1·85 X 10- 5 Pas. 
(Ans. A = 0·0219, B = 0·81.) (The City University). 

2. Air at 1·5 bar and 100°C passes through a compact heat exchanger at 
107 m/s. The pressure drop is 0·2 bar. Given that the values of L and d are 
0·5 m and 10 rom respectively, calculate the drag loss factor f0 , the J-factor, 
and the heat transfer in the exchanger, assuming a flow area of 0·2 m2 and 
a surface area of 15m2 per m2 flow area. Take cP = 1·012kJ/(kgK), 
Pr = 0·692. (Ans. f 0 = 0·05, J = 0·0072, 630 kW.) 

3. Hydrogen passes through a staggered bank of 200 tubes, 1·8 m long, and 
25·4 mm diameter. The mass velocity is 1·5 kg/(m2s). Calculate the rate of 
heat transfer for a mean gas temperature of 373 K and a tube surface to gas 
temperature difference of 50 K. Calculate also the heat transfer rate if air 
at twice the mass velocity is substituted for hydrogen. (Ans. 479 kW, 68·1 kW.) 

4. Carbon dioxide flows in the shell side of a shell and tube heat exchanger. 
There are 36 tubes 15 mm diameter by 2m long. The shell area for flow is 
0·025 m2 and the baffie window area is 0·0125 m2 • The vertical and hori­
zontal spacing of the tubes is 22·5 rom between centres. The mass flow of 
carbon dioxide is 0·6 kg/s at a mean temperature of 400 K. The mean tube 
surface temperature is 300 K. Calculate the convective heat transfer coef­
ficient on the shell side of the tubes and the heat transfer rate. (Ans. 0·168 
kW/(m2 K), 568 kW.) 
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Convection with phase change 

Convection processes with phase change are of great importance, 
particularly those involving boiling and condensing in the fluid 
phase. Such processes occur in steam power plant and in chemical 
engineering plant. Convection in the liquid to solid phase change 
is also of importance, as for example in metallurgical processes, 
but this cannot be considered here. 

10.1. Description of Condensing Flow 

Two types of condensation are recognized, in which the condensing 
vapour forms either a continuous film of liquid on the solid surface, 
or a large number of droplets. Film condensation is the more 
common; drop formation occurs generally in an initial transient 
stage of condensing flow, or if for any reason the surface is un­
wettable. A condensing vapour generally forms droplets around 
nuclei of minute solid particles, and these droplets merge into a 
continuous film as they grow in number and size. The film then 
flows under the action of gravity so that the process may continue. 
As condensation depends on conduction of heat away through 
the solid surface, the growth of a liquid film will impede the con­
densation rate. Condensation is also impeded if a non-condensable 
gas is mixed with the vapour, since the concentration of gas tends 
to be greater at the surface as the vapour changes its phase, and 
this acts as a thermally insulating layer. It is thus desirable to 
prevent the film growing in thickness, and for this reason horizontal 
tubes are most commonly used as the condensing surface. Cold 
water flows inside the tube whilst the vapour condenses outside. 
The tubes are staggered vertically to prevent too great a build-up 
of film on the lower tubes as liquid drips off the upper ones. In 
comparison with the horizontal tube a vertical tube or flat surface 
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will.allow the liquid film to grow in thickness considerably, and 
the average heat transfer rate per unit area is somewhat smaller 
than for the horizontal tube. 

10.2. A Theoretical Model of Condensing Flow 

Nusselt proposed an analysis of condensation in 1916.1 This was 
applied first to a vertical surface and the same mechanism was then 
extended to the horizontal tube. The results agree well with experi­
ment. The analysis of the vertical surface will be given here to 
illustrate the method, and the reader may refer to the literature for 
the more lengthy analysis of the horizontal tube. 2•3 

Certain simplifying assumptions are made in the analysis. The 
film of liquid formed flows down the vertical surface under the 
action of gravity and flow is assumed everywhere laminar. Only 
viscous shear and gravitational forces are assumed to act on the 
fluid, thus inertial and normal viscous forces are neglected. Further, 
there is no viscous shear between the liquid and vapour phases, so 
there is no velocity gradient at the phase interface. (The temperature 
of the surface is assumed constant at tw and the vapour is saturated 
at temperature tsa1,). The mass flow rate down the surface increases 
with distance from the top; this increase is associated with the 
amount of fluid condensing at any chosen point. The model to be 
considered is shown in Fig. 10.1. The velocity profile is of the form 
shown, with v" = 0 at the surface, and (8vJoy),= 6 = 0 at the liquid­
vapour interface. 

Assuming that the vertical surface has unit width, it is necessary 
to consider an element of fluid dx dy and unit depth, at a distance 
x from the top of the plate. The body force on this element is 
pg dx dy. The shear stress at y is 

The shear stress at y + dy is 

These shear stresses act over an area 1 x dx. Balancing the forces 
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f-----y 

Fig.JO.J. Condensation on a vertical surface. 

gives 
iFv 

pg dx dy = (ty- ty+dy) dx = - J1 ai dx dy 

d2vx pg 
dy2 J1 

and on integration, 
pgy2 

Vx = - ~ + Cly + c2 
The boundary conditions are that Vx = 0 at y = 0 and dvxfdy = 0 
at y = ~.the thickness of the film. Hence 

C 0 d - pg~ + C1 = o 
2 = , an 

J1 
The equation for vx is thus 

Vx = -7(Y;- Y~) (10.1) 
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The mass flow at x can then be obtained by integrating over the 
film thickness b. Thus 

m = J: pvxdy = J:- p~g(y;- yb) dy 

p2gb3 p2gb3 p2gb3 
---+--=--

6f.1. 2f.1. 3f.1. 

But b is a function of x, and 

dm p2gb2 . db 
dx f.1. dx 

(10.2) 

Next, the heat transfer, dQ, resulting from the condensation of an 
element of matter, dm, may be considered. This quantity of energy 
is conducted across the film to the wall, so by Fourier's law, 

dQ = k dx(tsat. - tw) = k dx8w 
b b 

(10.3) 

where dx is the area of the element of surface of unit depth. dQ may 
also be expressed as dmhrg• assuming the vapour is saturated and 
there is no undercooling of liquid. From these relationships, dm 
may be expressed as 

or 
dm k8w 
dx hrgb 

Equations (10.2) and (10.4) may be combined to give 

p 2gb2 db k8w 
-f-1.- dx = hrgb 

(10.4) 

This result may be integrated between the top of the surface down 
to x to give 

or 

(10.5) 
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This is the relationship between film thickness and distance x from 
the top of the surface. From equation (10.3) a convection coefficient 
may be obtained as 

and hence 

Thus the local Nusselt number may be written as 

Nux= 0·7o6(hr~:wx 3r (10.6) 

An average Nusselt number is then obtained by integrating hx from 
0 to x and dividing the result by the area x x unit depth, to give 

Nu = -Nu = 0·943 rgP gx 4 (h 2 3 )* 
x 3 x JLkOw (10.7) 

The analysis on the horizontal tube of diameter d yields a similar 
expression for the average Nusselt number, thus 

Nud = o-n5(hr~::3)* (1o.s> 

EXAMPLE 10.1 

Steam at 0·25 bar absolute condenses on 30 mm diameter horizontal 
tubes which have a surface temperature of 40°C. Calculate the 
average heat transfer coefficient. 

Solution. The saturation temperature is 65°C at which hr8 = 
2345·7 kJjkg. The mean film temperature (at which liquid fluid 
properties are taken) is 53°C. Hence p = 986 kg/m3, J1 = 526 x 
10- 6 PaS, and k = 646 X 10- 6 kW/(m K). Ow = (tsat - tw) = 25°C. 
Equation (10.8) gives 

- _ . (2345·7 X 9862 X 9·81 X 0·033)* 
Nud- 0725 526 x 646 x 10 12 x 25 

= 0·725 X (712 X 108)i 

= 0·725 X 517 = 375·0 

k 375·0 X 646 X 10- 6 

n = 375·0 X d = 30 X 10 3 

= 8·08 kW/(m2 K) 
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Equation (10.7) for a vertical surface may be applied to a vertical 
tube provided the diameter is not small, when the liquid film 
becomes two-dimensional, and hence it is possible to compare the 
relative merits of horizontal and vertical tubes. Thus 

hd = 0·770(~)* 
hx d 

If (xjd) is 75, say, it follows that hd = 2·26 hx. Thus over twice the 
fluid is condensed with the tubes arranged horizontally, hx being 
the coefficient for the vertical tube. 

For more advanced topics on condensation the reader is referred 
to the literature. It is not possible to consider in this introductory 
text the effects of turbulence in the liquid film, 3 velocity of the con­
densing vapour,4 superheat, 3 or condensing flow inside tubes. 5 

10.3. Boiling Heat Transfer 

Heat transfer to boiling liquids is a subject at present under intensive 
study. It is of paramount importance in the power generation 
industry. Several fairly well defined regimes of heat transfer are 
now recognized, and values of heat transfer coefficient associated 
with each have been measured. 

Thus when there is a free liquid surface above the heated surface, 
the regime is known as pool boiling, and sub-cooled boiling occurs 
when the bulk liquid temperature is below the saturation value. As 
the temperature rises to saturation, saturated boiling occurs, increas­
ing in intensity as the surface temperature rises to give bulk boiling. 
The term nucleate boiling is associated with these regimes as bubbles 
leave nucleation sites, leading to film boiling as bubbles completely 
cover the surface. 

A simple experiment involving an electrically heated wire im­
mersed in water illustrates the simpler boiling mechanisms. 6 The 
variation of heat flux with the difference in temperature between the 
wire and liquid has been observed by numerous investigators and 
the general form of the result is shown in Fig. 10.2. As the wire warms 
up initially heat transfer is by natural convection. As the wire 
temperature reaches a few degrees in excess of the saturation 
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temperature streams of tiny bubbles will be observed to leave the 
surface of the wire. These bubbles are produced at nucleation sites, 
since a minor roughness of the surface is necessary for the bubble 
to form. Higher temperatures are found to be necessary for nuclea­
tion to begin if the surface is made especially smooth. Part 1-2 of 
the curve in Fig. 10.2 is natural convection, and this becomes 
steeper in region 2-3 as boiling proceeds. This initial boiling is 
known as nucleate boiling. The heat transfer rate is significantly 

8, (wire- fluid) 
Fig. 10.2. The boiling curve, after Farber and Scorah (6). 

improved by the stirring action of the bubbles. Bubble formation 
becomes increasingly energetic as point 3 is approached. At this 
point the bubbles tend to merge together to form a continuous 
vapour enclosure round the wire. When this happens nucleate 
boiling gives way to film boiling and there is a reduction in heat flux 
due to the thermally insulating effect of the vapour. This situation 
leads to a rapid increase in wire temperature and possible melting, 
unless the current input is quickly reduced. Once film boiling is 
safely established, the heat flux will again increase with temperature 
until the wire melts, the mechanism here being convection and 
radiation through the vapour. 

Many useful calculations on boiling may be made from the 
Rohsenow correlation 7 which is in terms of the difference in tern-
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perature between the surface and the fluid saturation value and the 
heat flux per unit area, for a number of surface/liquid combinations 

c 1() [Q/A J( a )]0·33 
~7 = csf J.I.Ihrg g(pl - PJ 

where 

cP1 = specific heat of saturated liquid 
hr8 = enthalpy of vapourisation 
Pr1 = Prandtl number of saturated liquid 

J.1.1 = viscosity of saturated liquid 
p1 = density of saturated liquid 
Pv = density of saturated vapour 
a = surface tension of liquid vapour interface 
(} = heated surface saturation temperature difference 

Q/ A = heat flux per unit area 
g = gravitational acceleration 

csf = experimental constant 

(10.9) 

The value of Csr is 0·013 for water-copper and water-platinum, and 
0·006 for water-brass. The equation is dimensionless, so any system 
of units may be used without correction. 

The use of this correlation may be extended to flow in tubes, 
when Rohsenow and Griffith8 recommend that a convective heat 
flux may be calculated from (7.32) and added to that from (10.9) to 
obtain a total heat flux for the boiling flow. 

Boiling processes may be further sub-divided when considering 
the flow of fluid vertically in a tube. The process may be associated 
with the type of flow.9 Various flow regimes are shown in Fig. 10.3. 
These are: sub-cooled liquid flow, 'frothy' or 'bubbly' flow at low 
dryness fraction, 'churn' or 'slug' flow in which slugs of vapour 
appear, annular or climbing film flow, fog or dispersed liquid flow, 
and finally dry wall flow at the saturated steam condition. Associated 
boiling processes are tabulated in Fig. 10.3. Sub-cooled nucleate 
and film boiling are examples of local boiling. There is no overall 
production of vapour; this is condensed in the main bulk of the 
fluid after being produced at the wall of the tube. Very high con­
vection coefficients result because of the activity at the wall, and 
this heat transfer mechanism is finding application in other situ-
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Order ofmag 

Quality Mechanisms 
nitude of co-
efficients 

kW/(m2.Iq 
Convection to 

Gas superheated 1· 7 

~1·0 
vanour 

Convection 17 Dry wall only 
Fog or 

dispersed 
liquid 

Annular Convective 115 to 
or Boiling 260 
climbing u depending on 
film velocity and 

0 
heat flux. 

Churn Bulk boiling (but reducing 
or a 

t 
to 0· 3-6 

slug 
C> with film 

Frothy 
OCli,04 

Saturated boiling) ~ .. 
or .. . nucleate 
bubbly . . . •. boiling 

Sub-cooled I 
x=o Sub-cooled 

nucleate boiling 
liquid Convection to 6 water 

Fig. 10.3. Flow and boiling regimes in a vertical heated tube. From data 
of Firman, Gardner, and Clapp (9). By courtesy of the Institution of 

Mechanical Engineers. 

ations where a high convection coefficient is valuable. Saturated 
nucleate boiling occurs when the bulk fluid temperature has 
reached the saturation value, and is therefore associated with 
flow at low dryness fraction. This mechanism persists into the slug 
flow regime when it is termed bulk boiling. When, with the in­
creasing velocities, annular flow is established, convective heat 
transfer between the annulus of liquid and the core of vapour takes 
place and the nucleate process tends to be suppressed. This is 
known as convective boiling. Initially, the vapour core is thought 
to be fairly dry, but with accelerated flow the liquid annulus is 
entrained as a dispersed spray or fog in the core. Once the liquid 
phase has left the tube wall, as in the dry wall region, the heat 
transfer coefficient drops rapidly. The mechanism is by convection 
and by conduction to individual droplets impinging on the wall. 
Finally, when the steam becomes superheated, heat transfer is by 
convection only. Film boiling is avoided in the foregoing as far as 
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possible. It occurs with excessive heat fluxes and results in drastic 
reductions in the boiling coefficient and very high metal tem­
peratures. The order of magnitude of the heat transfer coefficients 
associated with the type of flow and mechanism of heat transfer 
are also shown in Fig. 10.3. It will be observed that the coefficients 
vary over a considerable range. 

It will be appreciated from what has been said so far that boiling 
heat transfer is a complex subject and to take the subject any further 
is beyond the scope of this text. Working formulae and procedures 
exist in the literature for the determination of boiling coefficients 
for design purposes, and the reader may refer to Bagley10 for a 
recent statement from the boiler industry, and to Jakob11 and to 
Hsu3 for more comprehensive treatments of the subject. 

EXAMPLE 10.2 
Using the Rohsenow equation, calculate the heat transfer coeffi­
cient for boiling when water boils at atmospheric pressure in 
a copper pan with the copper surface at l20°C, and compare with 
the convection coefficient for water flowing in a 40 mm diameter 
tube at 1 mfs under the same conditions, using equation (7.32). 
Use Csr = 0·013, cP 1 = 4·216 kJ/(kg K), h~ = 2256·7 kJfkg, Pri = 
1·74, Jl.i = 279 x 10- 6 Pas, Pi= 957 kg/m , Pv = 0·598 kg/m3, cr = 
0·0587 N/m. At a mean temperature of ll0°C, Pi = 950 kg/m3, 
p. 1 = 252 x 106 Pas, Pr = 1·56; k = 684 x 10-6 kW/(mK) and at 
120°C p.1 = 230 x 10- 6 Pas. 

Solution. The Rohsenow equation will give Q/ A from which h may 
be found. Thus: 

4·216 X 20 _ 0·013 [ Q/A X 106 X J( 0·0587 )]0·33 

2256·7 X (1·74)1'7 - 279 X 2256·7 9·81(957-0·598 

Q/A = 358·0 kW/m2 

and h = (Q/A);e = 358·0/20 = 17·9 kW/(m2 K). From equation 
(7.32), 

hd _ . (950 X 1 X 40 X 106) 0 '8 • t (252)0 ' 14 
k - 0 027 X 252 X 103 X (1 56) X 230 

= 442 

1i = 442 X 684 X 103 = 7·57 kW/( 2K) 
106 x 40 m 
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PROBLEMS 

To solve Question 1 see also chapter 13. 

1. An air heater consists of horizontal tubes 30 mm diameter and 23 mm 
bore arranged in vertical banks of twenty. Air passes inside the tubes and 
is heated from 32°C to 143°C by saturated steam at 180°C which passes 
over the tubes. The mean air velocity is 23 m/s and the air flow 3·82 kg/s. 
Calculate the number and length of tubes required The heat transfer coef­
ficient for saturated steam to tube surface (h,.) can be found from 

h = 0·725 (k~ p; ghr, )* kW /(m2 K) 
•• Ndp.Jlt 

where the suffix c denotes condensate properties evaluated at the saturation 
temperature, g is the gravitational acceleration in m/s2, N is the number of 
horizontal tubes in a vertical bank, d is the outside diameter in m, t is the 
temperature difference between the saturated vapour and the tube surface 
and may be assumed to be 11 oc. The other symbols have their usual 
meaning. (Ans. 400 tubes, 1·52 m.) (University of Glasgow). 

2. Water flows in a 0·8 em bore copper tube at a Reynolds number of 10,000. 
The saturation temperature is 290°C and the wall temperature 310°C. 
Calculate the boiling heat flux using the Rohsenow equation and hence the 
total heat flux. Use the following property values: u = 0·0162 Njm, hr, = 
1473 kJfkg, p1 = 733 kgfm3, P. = 39·5 kgfm3, cP1 = 5-42 kJ/(kgK), Pr1 = 
0·9,p.1 = 93 x 10- 6 Pas,p.w = 90 x 10- 6,k = 558 x 10- 6 kW/(mK).(Ans. 
1060 kW/m2, 1089 kWjm2.) 

3. Describe the 'Farber-Scorah Boiling Curve' together with the mechanism 
of heat transfer relating to each section of the curve. Discuss the following 
topics in relation to the heat transfer to a fluid in which nucleate boiling occurs: 

(a) Temperature distribution in the fluid; 
(b) The nature of the heating surface; 
(c) The operating pressure. 

(University of Leeds). 

4. Steam is being condensed on flat vertical surfaces. If the drag on the steam 
side of the condensate film can be neglected, derive an expression for the local 
and mean heat transfer coefficient on the surface. 

Discuss the assumptions which you make in the derivation. 
If the surfaces are parallel and steam enters the space between two surfaces 

at the top, show how you would correct the derivation for the drag of the 
flowing steam on the condensate film. (University of Leeds). :-

5. Outline the Nusselt theory of film condensation, indicating the steps which 
lead to the following formula for the average surface heat transfer coefficient 
hm during the condensation of a saturated vapour on a plane vertical surface: 

N = hmL = 0·943(p2gL3hr,)* 
Um K p.Kfl.T 
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Lis the height of the surface, g the acceleration due to gravity, hr8 the enthalpy 
of evaporation, AT the difference between the temperatures of the vapour 
and the surface and p, J-1, and K are respectively the density, absolute viscosity, 
and thermal conductivity of the condensate at the saturation temperature. 

Saturated steam at 149°C is to be condensed in a cylinder of diameter 
1·217 m and length 0·305 m, having its axis vertical. The curved wall is main­
tained at 10°C by external coolant and no condensation takes place on 
the two horizontal surfaces. The steam is fed in through a pipe in the top 
surface of the cylinder. 

Determine the initial average surface heat transfer coefficient, and estimate 
the time taken to fill the container with water which may be assumed to 
remain at 149°C. (Ans. 4·85 kW/(m2 K), 0·976 h.) (University of Cambridge). 
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11 
Mass transfer by convection 

The last few chapters have considered heat transfer to or from a fluid 
adjacent to a solid surface, a process known as convection heat 
transfer. It has been assumed that the fluid was a single substance, 
as far as overall effects were concerned. This will not always be the 
case, and many situations exist in which diffusion of a component 
within a mixture occurs, or in which a component of the mixture 
evaporates or condenses at a surface. Thus, for example, in drying 
processes, water is removed from a solid surface by an air current, 
resulting in a two-component flow of air and water vapour. In this 
and in other processes, an energy transfer is generally involved as 
well as the process of mass transfer which takes place at a micro­
scopic level by molecular diffusion near the surface, and also by eddy 
diffusion further from the surface if the overall flow is turbulent. 

11.1. Mass and Mole Concentrations 

If two gases at equal temperature and pressure are separated in a 
container by a partition, the two gases will mix together when the 
partition is removed, and the process will stop when the concentra­
tion of each gas is uniform throughout. The gas molecules move 
about at random, but if a higher concentration of a particular gas 
exists on the left of an imaginary dividing plane than on the right, 
then on average more molecules of that gas will be moving from left 
to right than from right to left, and eventually an equilibrium con­
centration of the gas will be established. The driving force for this 
transfer of material across the imaginary plane is the concentration 
of the gas involved. This may be measured in terms of both the 
mass and mole concentrations. 

Thus if c; is the molar concentration of a gas component i in a 
mixture, in mols/m3, then for a perfect gas c; may be expressed as 

145 
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p/Rm T, where P; is the partial pressure of component i in the mixture, 
and Rm is the universal gas constant. 

11.2. Molecular Diffusion 

Molecular diffusion is described by an Ohm's law type of equation, 
known as Fick's law 

g.= -Ddc; 
1 dy (11.1) 

g; is the mass transfer by diffusion of component i in mols per unit area 
and time, in the y-direction, c; being the concentration of component 
i and D being the molecular diffusion coefficient. The units of 
dc;/dy are molsfm4, with the result that the diffusion coefficient is 
in m2/s. Equation (11.1) is similar to Fourier's law in that the positive 
flux is in the direction of a negative gradient of the driving force. 
For gases, equation (11.1) becomes: 

(11.2) 

11.3. Eddy Diffusion 

Equation (11.1) for molecular diffusion may be extended to describe 
the turbulent condition, in a similar form to equations (7.3) and (7.12) 
for turbulent shear and heat transfer'. Thus: 

de. 
g.= - (D + e )-1 

1 m dy (11.3) 

This equation indicates that molecular diffusion is still present and 
that the contributions due to molecular and eddy diffusion are 
additive. em is the eddy mass diffusivity for component i and is a 
measure of the mass transfer of i due to the action of turbulence. It 
must not be confused with e, which is a measure of the transfer of 
momentum involving the entire mass of turbulent eddies. 

11.4. Molecular Diffusion from an Evaporating Fluid Surface 

Consider the isothermal evaporation of fluid i into a gas j as shown 
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in Fig. 11.1. It is assumed that the component i is convected away 
at a higher level so that concentration gradients near the fluid 
surface, the region of interest, remain constant. Since only two 
components are present, i and j, the total pressure P is the sum of 
the partial pressures pi and Pr Hence, 

and 

Pi= P- Pi 

dpj = dpi 
dy dy 

A pressure gradient of opposite sign for j implies diffusion of j in 
the opposite direction to the diffusion of i. But there can be no 
actual transfer of j through the horizontal boundary surface (apart 
from a solution of j in i which is neglected), even though a diffusion 
of j relative to i exists. This situation results in a convective flow of i 
upwards, as well as the diffusion. If gi is now the total molar transfer 
of i upwards, per unit area and time, then 

The convective flow is the product of velocity and concentration. 
vy may be determined by writing a similar equation for component 
j, with gi = 0. Thus: 

or, putting in terms of Pi, 
_ D dpi (P - Pi) _ O 

gi - R T dy + vy R T -
m m 

Hence gi is now given by: 

D dpi D Pi dpi 
gi = - Rm T dy - (P - Pi) Rm T dy 

F 
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D P dpi ---- --
RmT (P- Pi) dy 

This equation is known as Stefan's law.1 

With only two components involved, Stefan's law may be expressed 
as 

DP dpi 
g-=---

1 RmTPi dy 

This is integrated between planes 1 and 2, Fig. 11.1, to give 

DP l Pi2 g-= n-
1 RmT(y2 - Yt) Pit 

----~-·-·------(L_r ··. p ~.,, + ,, 

Yl i I p = Pi! + Pi! 

(11.4) 

(11.5) 

Fig. 11.1. Vertical diffusion of evaporating fluid i into stagnant gas j. 

where pi2 and pjl are the partial pressures of the stagnant gas at 
planes 2 and 1. If a logarithmic mean pressure is introduced, such 
that 

(p-), = Pi2 - pjl (11.6) 
J m ln Pi2/Pit 

and ifln Pi2/pi 1 is eliminated from equation (11.5), then 
gi = DP(pi2- Pid (11.7) 

RmT(pi),m(Y2- Yt) 

With reference to Fig. 11.2 it can be seen that Pi2 = P - Pi2 and 
Pit = P - PH, and on substitution into equation (11.7) gives 

DP(pil - Pi2) 
g i = -=--=:-=:-:..::...-,----=....:.=----c-

RmT(pjhm(y2- Yt) 
(11.8) 

Just as in heat transfer where the process of convection can be 
described by the Newton equation, q = h(t1 - t 2), in whic.h h is 
the convection coefficient, it is possible to describe mass transfer 
processes by a similar relationship 
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p p 

y 

Fig. 11.2. Variation of partial pressures of diffusing vapour i into stagnant 
gasj. 

or for gases, 
(11.9) 

hm 
gi = R T(Pil - Piz) 

m 

hm is the mass transfer or film coefficient, and the concentration 
or partial pressure difference is the mass transfer driving force. 
Comparing equations (11.8) and (11.9) it is evident that 

h = DP 
m (pj)lm(Yz - Yt) 

(11.10) 

Here (y 2 - Yt) is the length or thickness of the material layer 
across .which mass transfer is taking place. 

ExAMPLE 11.1 

Calculate the rate of evaporation of water at l6°C at the bottom of 
a vertical tube 200 mrn tall by 30 mm diameter into an atmosphere 
of 30 per cent relative humidity at l6°C. 

Solution. Using equation (11.5), with D = 2·75 X w-s m2/s, p = 
1·013 bar (atmospheric pressure), Pit = P -Pit = 1·013 - 0·0182 
= 0·9948, where Pit = saturation pressure at 16°C, and pi2 = P­
pi 2 = 1·013- 0·3 x 0·0182 = 1·0075, where pi2 = 0·3 x saturation 
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presure at 16°C, and Rm = 8·3143 kJ/kg mol K), 

2·75xl0~ 5 xl·013xl05 1 1·0075k l/( 2 ) 

gi = 8·3143 x 103 x 289 x 200 x 10- 3 n0·9948 g mo m s 

= 5·80 X 10-6 X ln 1·0125 

= 7·15 x 10- 8 kg molj(m2 s) 

7·15 X 10~ 8 X 1!: X 302 

The evaporation rate = 4 x 106 

5·05 x 10~ 11 kg mol;s 

11.5. Mass Transfer in Laminar and Turbulent Convection 

In convective mass transfer, the existence of a boundary layer in 
which the concentration gradient of the diffusing medium varies 
between the wall value and the free stream value, may be assumed. 
The boundary layer will be all laminar, or turbulent with a laminar 
sublayer, depending on the free stream flow. When heat transfer 
by convection was introduced in chapter 6, the equations of 
momentum (6.6), and energy (6.8), when applied to a laminar 
boundary layer on a flat plate, were derived. A similar equation 
of mass diffusion may be obtained, which is derived by consideration 
of the diffusion and convection of mass into a fluid element. Applied 
to a laminar boundary layer on a flat plate the equation is: 

ocj OCj Do2cj 
VxOX + Vyoy = oy2 (11.11) 

A striking similarity between this equation and equations (6.6) and 
(6.8) is apparent. However, it should be noted that when momentum, 
energy, and mass transfer are occurring simultaneously in a laminar 
boundary layer, equations (6.6), (6.8), and (11.11) considered 
together represent a simplification of the true picture. This is 
because mass diffusion depends on temperature gradients as well 
as concentration gradients. The effect is very small except when 
the temperature gradients are very large, and consequently it is 
neglected. 

When the boundary conditions of the above equations are con­
sidered for the case of heat and mass transfer in convective flow, 
an important difference will be found compared with the boundary 
conditions of convection heat transfer alone. 
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Thus in heat and mass transfer: 

At y = 0, Vx = 0, Vy = Vw, C; = C;w, e = 0 
At y = free stream, Vx = v., C; = Cis• e = e. 

In heat transfer alone : 

At y = 0, Vx = 0, Vy = 0, e = 0 

At y = free stream, Vx = v., e = e. 
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The difference is that vy is not zero at the wall when mass transfer 
is taking place. If it can be assumed that vw is zero then the energy 
and momentum equations have the same boundary conditions in 
the presence of mass transfer. In other words, the flow pattern and 
the heat transfer are not influenced by the existence of mass transfer. 
Whether or not vw is small enough to be neglected will depend on 
the magnitude of the mass transfer taking place. When the mass 
transfer of water vapour in air is being considered, which is the primary 
interest and scope of this treatment, then vw may be neglected. This 
is due to the very low concentrations of water vapour in air that 
are encountered, which makes the velocity vw very small compared 
with other velocities of the flow field. This is an important simpli­
fication because it makes it possible to solve mass transfer problems 
by considering the similarity with heat transfer. 

Consequently, it is not necessary to consider the boundary layer 
equations of heat and mass transfer any further, except to note the 
-;imilarity of form between them. In considering heat transfer, it 
was pointed out that equations (6.6) and (6.8) lead to identical 
velocity and non-dimensionalized temperature profiles when v = a, 
or when Pr = 1. Similarly, the velocity and normalized concentra­
tion profiles are identical when v =D. v/D, the Schmidt number Sc, 
is equivalent to the Prandtl number in heat transfer. 

The similarities between heat and mass transfer noted so far would 
lead one to expect that the mass transfer coefficient as defined by 
equation (11.9) would depend on dimensionless groups, in the same 
way that the heat transfer coefficient in convection can be expressed 
as a function of the Reynolds and Prandtl numbers. Thus it is found 
that 

h;l = f (Re, Sc) (11.12) 

where hml/D is the mass transfer Nusselt number, and is known as 
the Sherwood number Sh. This form of the Sherwood number may 
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be used for fluids where concentrations are expressed in mole units. 
For gases, equation (11.10) indicates that a more appropriate 
dimensionless group is 

hm(pj)lm(y2 - Yt) hml (pjhm 
--=--'---'--=-----';..__::.;_ = - --

DP D P (11.13) 

(y2 - y 1) in equation (11.10) becomes the characteristic length l. It 
is to be noted that the factor (p1hmfP in equation (11.13) arises from 
consideration of the convective velocity normal to the wall, which 
was assumed above to be small enough to be neglected. If vy in the 
analysis leading to equation (11.8) is neglected, then (p1hm/ P 
would disappear. Thus, in consideration of simultaneous heat and 
mass transfer involving the air-water vapour system, the Sherwood 
number is hml/D. But for mass transfer in general, in the absence 
of heat transfer, the Sherwood number is (hml/D)(p1)1mfP. 

Experimental studies of mass transfer in geometrical arrange­
ments of practical importance have been made. In many cases, 
experiments have involved the evaporation of liquids, and par­
ticularly water, into air. A typical example is the evaporation of a 
liquid from an annular film inside a pipe to air flowing along the 
pipe. The work of Gilliland and Sherwood2 includes data for water 
and various organic fluids of Schmidt number in the range 0·60--2·5, 
over a range of Reynolds number from 2000 to 35,000 and pressures 
between 0·1 and 3·0 atm. The Reynolds number is based on the 
velocity of the air relative to the pipe, not on the velocity of the air 
relative to the moving liquid film. The empirical relationship 
obtained is 

(11.14) 

The linear dimension is the pipe diameter d. 
The similarity of equation (11.14) to the corresponding convec­

tive heat transfer equation is apparent. In general, if the dimension­
less heat and mass transfer coefficients are compared for the special 
case of D = oc, then they are equal at a given Reynolds number. 
Thus, 

hml D =f(Re,Sc) 

and 
hl k = f(Re,Pr) 
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But D = oc, so Se = v/D = vjoc = Pr. 

hml hi 
v=I 

D oc h 
h =h-=h-=-

m k k pep 
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(11.15) 

Thus hm and h are simply related. This law was first derived by 
Lewis, 3 and is referred to as the Lewis relation. An alternative form 
is 

(11.16) 

where CP =peP, and is a specific heat on a volume basis. By con­
sidering a turbulent mass and energy exchange, it can be shown 
that the Lewis relation is valid in turbulent flow even if D does not 
equal oc. In laminar flow, the relation is valid only for D = oc. The 
group D/oc is the Lewis number Le, and has the value of 1 in this 
special case. 

11.6. Reynolds Analogy 

The similarity between equations for heat transfer and momentum 
transfer led to the Reynolds analogy between heat transfer and fluid 
friction; in a similar manner an analogy may be deduced between 
mass transfer and fluid friction. The equations to be compared are, 
in laminar flow : 

t = pv ddyv' and g. = - D dei 
I dy 

and in turbulent flow: 

dv de. 
t = p(v + e) dy' and gi = -(D + e.J dy' 

As in heat transfer, a simple analogy may be considered in which the 
flow is either all laminar, when e and em are zero, or the flow is all 
turbulent. It is also necessary to assume that gJt is a constant 
across the depth of flow, which means that gi and t both vary in a 
similar manner withy. This implies similarity in the dimensionless 
contours of velocity and concentration across the flow, as when 
Sc = 1. 
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Considering laminar flow, the mass transfer equation integFated 
between the free or bulk stream s, and the wall w, is divided by the 
shear stress equation integrated between the same limits, to give: 

giw D(cis - Ciw) 

pvv. 
(11.17) 

This may be re-arranged to give the mass transfer coefficient, hm. 
Thus: 

h giw 
m=---

Cis- Ciw pvv. 

If the friction factor, Cf = -r:wf!pv:, is introduced, then 

hm = C: (~)v. (11.18) 

A mass transfer Stanton number may be assumed such that 

(Sh) 
(StlM = (Re) x (Sc) 

Hence, equation (11.18) may be written as 

hm CJ 
(St)M = -;;: = 2(Sc) (11.19) 

The comparison with heat transfer is complete for the special case 
when Sc = 1. 

In consideration of turbulent flow, the assumption that v and D 
are small in comparison with e and em may be made in addition to 
the assumption of similarity in velocity and concentration contour. 
The turbulent flow equations may be integrated and divided out 
to give: 

giw Bm(Cis - Ciw) 

rw pev. 

This is re-arranged to give 

Cf 
(St)M = 2(Sc), 

(11.20) 

(11.21) 
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where (Sc), is the turbulent Schmidt number (e/em). 
A more exact analysis will, of course, take into consideration the 

existence of a laminar sublayer which will be present at the solid 
boundary in the case of turbulent flow. Colburn4 made a Prandtl­
Taylor type analysis of Reynolds analogy for mass transfer for 
gases, and obtained the result: 

h = iCfv,Pj(pj)lm 
m 1 + vb/v,(Sc - 1) 

(11.22) 

where vb is the velocity at the limit of the laminar sublayer. By 
analogy with heat transfer, Chilton and Colbum5 replaced the 
denominator of equation (11.22) by set. Since hm/v, is (StlM, the 
above result then gives 

(11.23) 

Thus, a mass transfer J-factor has the same value as the heat transfer 
J-factor, equation (7.27). Experimentally, it has been found that J 
and JM have similar relationships with each other, though in cases 
where drag rather than pure friction exists, values are less than 
iCf For further information on this topic, the reader is referred to 
Sherwood and Pigford, 6 Chapter 3. 

11.7. Combined Heat and Mass Transfer 

In the treatment of simultaneous heat and mass transfer it is assumed 
that the presence of mass transfer does not affect the heat transfer 
equations. The approach is then by considerations of similarity. 

11.7.1. The Wet and Dry Bulb Thermometer. The combination of 
heat and mass transfer effects in many evaporative processes are 
the same as those in the wet and dry bulb thermometer. 

The essential details of this instrument are shown in Fig. 11.3, 
and two simple equations may be written down to describe the 
simultaneous processes of heat and mass transfer. Thus: 
Heat transfer : 

(11.24) 
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Wet-bulb 
temperature 

lr 

Dry-bulb 
temperature 

L, 

Moist air a t t •• 
concentration cwa 

Mass transfer: Heat transfer: 
hmkwr - Cwal h(t. - tr) 
Wet fi lm attr 
Concentration 
Cwr 

Fig. 11.3. Details of the wet and dry bulb thermometer. 

mw is the mass of water in lb or kg evaporating from unit area of 
the wet wick in unit time. hrg is the enthalpy of evaporation at the 
wet wick temperature. 
Mass transfer: 

(11.25) 

This follows from equation (11.9), and cwr is the concentration of 
water vapour in air at the wet wick, and Cwa the concentration in 
the surrounding air. Normally, equation (11.25) is used with mole 
units, but for present purposes it is convenient to express the 
concentrations of water vapour in mass per unit volume, then gw 
becomes equal to mw in equation (11.24). The two equations are 
then combined to give 

h(ta - tr) -- hrg 
hm{l/Vwr - 1/ Vwa) 

(11.26) 

The concentrations now become the reciprocal of the specific 
volumes at the film and air conditions. Equations (7.27) and (11.23) 
may now be used to relate the heat and mass transfer coefficients. 
These two equations give 

StPr+ = Cf = (St)MSc+ {pj)Im 
2 p 
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But the group (pj'hm/P may be made equal to 1, and hence: 

!!__ = pc (Sc)t 
hm P Pr (11.27) 

This result is now substituted in equation (11.26), and also a./D 
may be substituted for Sc/Pr to give 

(11.28) 

ExAMPLE 11.2 
An hygrometer gives a dry bulb temperature of 22°C and a wet bulb 
temperature of 16°C. Calculate the relative humidity of the air. 
The Schmidt number of water vapour diffusing in air may be taken 
as 0·6 and the Prandtl number of air 0·7. 

Solution. a.jD = 0·6/0·7 = 0·856, and (a./D)+= 0·90. pis the density 
of air at the mean temperature of 19°C, and is 1·215 kgjm3• cP at 
19°C is 1·0045. 

At the wet wick air is saturated with water vapour, and hence the 
partial pressure of the vapour from steam tables is 0·01817 bar. 
R., for water vapour is 8·3143/18 = 0·461 kJ/(kg K) 

1 Pw 0·01817 X 105 = 0,01363 k / 3 

Vwr = RwT = 0·461 x 289 x 103 g m 

hr1 at 16°C = 2463·1 kJjkg 

Equation (11.28) is now used to find 1/vwa 

1·215 X 1·0045 
2463.1 X 0·9 X (22 - 16) = 0·01363 - (1/vwa) 

0·00268 = 0·01363 - (1/vwa) 

1/vwa = 0·01363 - 0·00268 = 0·01095 

Working back from this result the partial pressure of the vapour 
may be found. 

= 0·01095 X 0·461 X 295 X 103 = 0,0149 b 
Pw 10' ar 
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At 22°C, Psat = 0·02642, hence the relative humidity is (0·0149/ 
0·02642) x 100 = 56·5 per cent. The same result is obtained by 
comparing the specific volume 1/0·01095 = 91·2, with the saturation 
value at 22°C, 51·49. Hence the relative humidity is (51·49/91·2) x 
100 = 56·5 per cent. 

A less accurate solution to this problem would have been obtained 
by using the Lewis relation. The relation between the heat and mass 
transfer coefficients would be : 

h: = pep, instead of h: = pep(~ r 
In general, equation (11.27) is to be preferred, since even if flow is 
turbulent, the Lewis relation is invalidated (except when Le = 1) 
by the existence of the laminar sublayer. Equation (11.27) resulted 
from considerations of the existence of the sublayer. 

PROBLEMS 

t. Calculate the rate of evaporation from the surface of a pond of area 
2000 m2 into still air at 25°C. The relative humidity of the atmosphere 0· 3 m 
above the surface of the pond may be assumed constant (due to air currents 
at that level) at 50 per cent. (Ans. 11·35 kg/h.) 

2. Air at 25°C and of 40 per cent relative humidity enters a vertical 8 em 
diameter pipe at 4 mjs. Water also at 25°C runs slowly down the inside 
surface of the pipe. Calculate the length of pipe necessary to saturate the 
air. (Ans. 4·74 m.) 

3. Air at atmospheric pressure and 16°C having a relative humidity of 45 per 
cent flows at a velocity of 5 mjs over a porous plate 0·5 m long. Water is 
forced through the porous plate at a rate equal to the evaporation Toss so that 
the exposed surface is always wet. 

The plate is maintained at a temperature of 10°C by supplying heat to the 
plate. Use the following information to estimate the rate at which this heat 
should be supplied. 

KinematiC ViSCOSity 1·448 X 10-S m 2 js; thermal diffusivity 2·04 X 10-S 
m2 js. 

Diffusivity of water vapour in air, 2·19 x w- 5 m 2 js. 
Thermal conductivity, 24·2 X 10- 6 kW/(mK). 
Latent heat of water, 2477 kJfkg. 
Free stream concentration, 4·96 x 10- 3 kg/m3 • 

Interface concentration, 9·3 X 10- 3 kgjm3• 

The average Nusselt number over a distance x from the leading edge of a 
hot plate is 

Nu = 0·66(Pr)t(Rex)t 

(Ans. 0·0716 kW/m2) (University of Leeds). 
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4. On the assumption of the similarity between the processes of heat and mass 
transfer and the equality of the molecular diffusivities of heat and mass, 
derive the Lewis relation for mass transfer, 

h 
ho =-

sP 

where h0 and h are the mass and heat transfer coefficients respectively and sP 
is the volumetric specific heat at constant pressure of the gas carrying the 
transferred substance. Under what conditions does the relation apply regard­
less of the equality of the molecular diffusivities of heat and mass? 

Moist air at 16°C, 1 bar and of relative humidity 20 per cent, blows over 
the surface of a square cooling pond of 15m side, containing water at 50°C. 
The mean velocity of the air is 6 mfs and is parallel to one pair of sides. 
Assuming that the mean Nusselt number for heat transfer in longitudinal 
flow over a plane surface is given by 

Nux = 0·036 Prt(Re~·S - 23,100) 

estimate the rate in lb per hour at which water is lost from the surface of the 
pond, (a) by using the Lewis relation, and (b) by any other method in which 
the assumption that D = ex is not made. Comment on the answer. 

The effect of the presence of water vapour on the transport properties of 
air may be neglected. 

Kinematic viscosity of air, v = 1·47 x 10- 5 m2/s. 
Thermal diffusivity of air, ex= 1·99 x 10- 5 m2/s. 
Diffusion coefficient for water vapour in air, D = 2·79 x 10- 5 m2fs. 

(Ans. (a) 0·328 kg/s, (b) 0·261 kg/s, using equation (11.28).) (University of 
Cambridge). 
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12 
Extended surfaces 

Convection from a solid surface to a surrounding fluid is limited by 
the area of that surface. It would seem reasonable, therefore, that if 
the surface area could be extended, then a gain in total heat transfer 
would be achieved. This is done by adding fins to the surface. Heat 
transfer is then by conduction along the fin, and by convection from 
the surface of the fin. It is likely that the convection coefficient of 
the basic surface will be altered by the addition of fins, due to the 
new flow pattern involved and the fact that the temperature of the 
fin surface will not be uniform. Though the average surface tempera­
ture is reduced by the addition of fins, the total heat transfer is 
increased. In the treatment that follows it is assumed that the 
convection coefficient is known. The Nusselt _numbers of finned 
surfaces may be determined experimentally. 

There are various types of fin, the most common being the 
straight fin, the spine, and annular fin. The straight fin is rectangular 
in shape and generally of uniform cross-section, and the spine is 
simply a short thin rod protruding from the surface. Annular fins 
are often found if the primary or basic surface is cylindrical. Examples 
are to be found in heat exchangers and air-cooled petrol engines. 
Extended surface nuclear fuel cans are shown in Fig. 12.1. These 
are both straight and spiral in form. 

Only the straight fin and spine will be considered here in detail. 
Fins of non-uniform cross-section and annular fins are more 
complex mathematically, and the reader is referred elsewhere for 
details. 1•2•3 

12.1. The Straight Fin and Spine 

These are shown in Fig. 12.2. The straight fin has length L, and 
height l (from root to tip). These definitions are used whatever the 
actual orientation of the fin may be. In developing the theory of heat 
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transfer in a fin it is assumed that the thickness, or diameter of the 
spine, is small compared with the length. Conduction along the fin 
may then be assumed to be one-dimensional. The conduction and 
convection heat transfers involved are shown in Fig. 12.3. Two 
important dimensions of fins are their area of cross-section A, and 
their perimeter P. In the straight fin it is convenient to assume that 
a is small compared with L. Thus: 

Straight fins 
Spines 

P = 2L 
P = nd 

Consider an element of a fin or spine as shown in the figure . 
Conduction into the element at x is Qx. This must be equal to 
the sum of the conduction out of the element at x + dx and the 

Fig. 12.1 . Examples of magnesilun alloy fuel cans with extelflled surfaces 
for gtu-cooled nuclear reactors. Photograph by courtesy of lmperilll Metal 

lnllustries ( Kynoch) Limited. 
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convection from the surface of the edge of the element. Thus 

dt 
Q =- kA-

and 

x dx 

dt d 2 t 
Q(x+dx) = - kA dx- kA dx2 dx 

Qh = hP dx(t - t.) 

Qx = Q(x+dx) + Qh 

d 2 t 
- kA dx2 dx + hP dx(t - t.) = 0 

d 2 t hP 
dx2 - kA (t - t.) = 0 

d 

Fig.l2.2. The straight fin and the spine. 
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Fig. 12.3. Heat transfer from an extended surface. 
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Since t. is assumed a constant surroundings temperature, (t - t.) 
may be replaced by 8, and d 2tjdx2 becomes d 20jdx2• 

d20 _ hP 0 = 0 
dx 2 kA 

This differential equation in 8 has a solution of the form: 

(12.1) 

where 

= ( hP)t 
m kA (12.2) 

and C 1 and C 2 are constants of integration to be determined from 
boundary conditions. 

The first boundary condition is that e = Oo at X = 0. Therefore, 
from equation (12.1): 

(12.3) 
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The second boundary condition depends on the heat transfer 
from the tip of the fin. If the fin may be assumed long and thin this 
is very small and may be assumed to be zero with very little error. 

(dO) _ 0 
dx x=l 

(12.4) 

Solution of equations (12.3) and (12.4) yields the values of C 1 and 
c2,i.e., 

Ooem' 
and c2 = ml ml e + e 

Substitution of these values back into equation (12.1) gives 

[
em(l-x) + e-m(l-x)J 

0=0 
0 em'+e ml 

0 cosh m(l- x) 
00 = coshm/ 

(12.5) 

Even though it was assumed that (dO/dx)<x=n = 0, the temperature 
at the end of the fin is still above t., and is given by 

0 _ Oo 
1 - coshml 

(12.6) 

This is obtained by putting x = I in equation (12.5). 
The total heat transfer from the fin is obtained by considering 

the conduction into the fin at the root. Thus : 

Qo = - kA(dO) 
dx x=O 

= mkAOo[sinh m(l- x)l 
coshm/ Jx=o 

= mkA00 tanh ml (12.7) 

This result applies equally to the straight fin and spine, the appro­
priate value of m has merely to be substituted. 
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If the fin is comparatively short the assumption of no heat transfer 
from the tip of the fin is not valid. Under these conditions the heat 
transfer at the tip is given by 

- kA(dO) = + hA01 
dx .x=l 

- k(mC 1 eml - mC2 e-ml) = + h01 (12.8) 

The constants C 1 and C 2 may now be obtained by solving equations 
(12.3) and (12.8). Substituting for C2 in (12.8) and eliminating 01 by 
using (12.1): 

-k[mC1 eml- m(00 - C 1)e-m1] = +h[C1 eml + (00 - C 1)e-m1] 

This then gives : 

00[e-m1 - (h/km)e-m1] c - -:-=;,----=-=--:::.-;:----:-:---::----:-:-:::;----=----,= 
1 - (eml + e ml) + (h/km)(eml - e ml) 

C - Oo[eml + (h/km)eml] 
2 - (eml + e ml) + (h/km)(eml- e-ml) 

and 

and on substituting back into equation (12.1) gives 

e em(l-.x) + e-m(l-.x) + (h/km)[em(l-.x)- e-m(l-.x)] 

Oo = (eml + e ml) + (h/km)(eml - e ml) 

which may be expressed as 

(} cosh m(l - x) + (h/km) sinh m(l - x) 
00 cosh ml + (h/km) sinh ml 

(12.9) 

The temperature difference at the end of the fin is given by 

(} = Oo 
1 cosh ml + (h/km) sinh ml 

(12.10) 

The heat transfer from the fin is obtained as before by considering 
(dO/dx).x=o· Thus 

Q0 = - kA(d(J) 
dx .x=o 

= -kAOo[-msinhm(l- x)- (h/k)coshm(l- x)l 
cosh ml + (h/km) sinh ml J.x=o 
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= mkAOo[sinh ml + (h/km) cosh ml] 
cosh ml + (h/km) sinh ml 

= mkAOo [ tanh ml + h/km J 
1 + (h/km) tanh ml 

EXAMPLE 12.1 

(12.11) 

A transistor heat sink is a 100 mm length of aluminium section as 
shown consisting of a 70 mm x 100 mm plate with 12 integral fins 
25 mm high by 1 mm thick. If the plate is at 45 K above the surround­
ings find the percentage of heat transfer from the sink that occurs 
from the fins. k = 0·15 kW/(m K), h = 0·03 kW/(m2 K). Neglect 
heat transfer from the plate and fin edges. (The City University). 

Solution. The plate surface temperature excess is 45 K, so heat 
transfer by convection from the plate is (40 + (4 x 6)) x 100 x 2 x 
0·03 X 45 X 10- 6 = 0·0173 kW. 
For the fins, m = (2 x 0·03 x 1000/0·15 x 1)0 "5 = 20·0 
For fins 25 mm in height, ml = 20·0 x 25·0/1000 = 0·5 
Tanh ml = 0·462. Hence heat transfer from 12 fins 100 mm long 

= 20·0 X 0·15 X 1 X 45 X 0·462 X 100 X 12/106 = 0·075 kW 
The total heat transfer is 0·0923 k W, 81·3 per cent of this being from 
the fins. 

-H-
lmm 

'--- ....__ 

40mm 

--lf--
6mm 

Fig. Example 12.1. 

l! 
1 
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12.2. Limit of 1)sefulness of the Straight Fin 
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It is important to recognize the fact that fins may not necessarily 
improve heat transfer from a surface, and the conditions under 
which fins will not be useful must be investigated before any design 
work is contemplated. There are only two possibilities to consider, 
either increasing a fin height will improve heat transfer, or in some 
circumstances reducing the fin height will give an improvement, 
and the limiting condition is that dQ 0/dl = 0. 

The equation for heat transfer from a fin with the end condition 
given by (12.8) may be considered (equation (12.11)). In this equation, 
m, k, A, and (} 0 are constants, and therefore it is pol'sible to write 

d [ tanh ml + hjmk J 
dl 1 + (h/mk) tanh ml = 0 

[1 + (h/mk)tanhml]m [tanhml + (h/mk)]h/k 
cosh 2 ml cosh 2 ml ------------=------ = 0 

[1 + (h/mk) tanh mlF 

This will be zero when the numerator is zero, i.e., if 

m[1 + (h/mk) tanh ml] - (tanh ml + h/mk)h/k = 0 

m- h2/mk 2 = 0 

mk = h (12.12) 

If this result is substituted back into equation (12.11), it is found 
that 

which is the heat transfer from the surface occupied by the fin 
root, if the fin were not there. If mk > h, then Q0 will be larger 
than this value, and the provision of fins will be worth-while. For 
the straight fin, equation (12.12) leads to the result that 

2k 
-> 1 
hA 

(12.13) 

This, then, is the requirement which indicates that fins will improve 
the heat transfer from the surface. 

12.3. Fin and Finned Surface Effectiveness 

A fin effectiveness may be defined by relating the actual fin per-
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formance to that of an 'ideal fin' which has a uniform temperature 
all along its surface equal to the temperature at the root. Such a 
fin would result if constructed of a material having infinite thermal 
conductivity. The heat transfer from an ideal fin would be defined by 

Q~ = Plh()0 (12.14) 

neglecting heat transfer from the end. 
Taking the heat transfer from the actual fin to be given by (12.7) 

Q0 = mkA00 tanh ml 

then the fin effectiveness, 1Jr, would be given by 

Q0 mkA00 tanh ml 
1'/r = Q~ = Plh00 

This reduces to 
Q0 Atkt tanh ml - = ----,----,---
Q~ htptz 

Q0 tanhml 
Q~ = ml 

(12.15) 

If the fin which has a significant end heat transfer is compared with 
the ideal fin as defined by ( 12.14) then 

tanh ml + h/km 
1'/r = ml + (hl/k) tanh ml 

(12.16) 

The fin effectiveness is a useful idea in relation to the next topic 
to be considered, the overall heat transfer coefficients of surfaces 
which have fins. In chapter 3, overall coefficients were derived for 
plane and cylindrical surfaces. Similar coefficients can be written 
for surfaces, both plane and cylindrical, on which fins have been 
added. 

In the derivation of (12.15) it is seen that 

(1JrPI)h00 = mkA()0 tanh ml 

so 1'/r may be interpreted as the fraction of fin area which may be 
regarded as being at ()0 all over for purposes of calculating heat 
transfer. A function 1'/re is now introduced which is the fraction of 
area of a finned surface at () 0 . If A8 and AR are the total fm surface 
area and fin root area per unit area of primary or basic surface, 
respectively, then the total area of surface at 00 is 1 - AR + '7rA8 • 
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As the total area is 1 - AR + A8 , the ratio of actual to ideal heat 
transfer from a finned surface is 

(1 - AR + flcAJh80 1 - AR + fleAs 
fire = = (1 - AR + As)h80 1 - AR + A8 

(12.17) 

An alternative method of assessing a finned surface is to compare 
its performance with that of the surface without fins, thus a surface 
'coefficient of performance' would be given by 

C 0 P - (1 - AR + flcAJhOo - 1 - A A (12.18) . . . - 1 X h8o - R + 'lc s 

12.4. Overall Coefficients of Finned Surfaces 

Fins are often added to only one surface to reduce the thermal 
resistance on that side. However, Fig. 12.4 shows a plane surface 
with fins both sides. Heat transfer to the a-fins per unit plane area is 
given by: 

Q = -h.(1 - AR +fleAs>. (t1 - t,) 

Similarly, from the b-fins to fluid b 

Q = - hb(1 - AR + flrAs)b (tb - t2) 

The heat transfer by conduction across the slab is 

k 
Q = --(t2- tl) 

X 

fluid a 
t. 

t I t2 

fluid b 
tb 

Fig.12.4. Plane finned surfaces separating two fluids. 
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These three quantities are equal and combine to give 

Q = - U(tb - !3 ) 

where U is the overall heat transfer coefficient, given by 

u = 1/{ 1 + ~ + 1 } 
'-ha(l - AR + '7rAs)a k hb(1 - AR + '7rAs)b 

(12.19) 

In this analysis, the group (1 - AR + '7rAs)a means that AR, '7r and As 
all refer to the a-fins, and similarly for the b-fins. 

A similar result may be obtained for a tube finned internally and 
externally, as shown in Fig. 12.5. Unit length of tube may be con­
sidered and the following three equations for heat transfer may be 
written: 

Convection inside : 

Conduction : 

Convection outsid~: 

Q = - ha2nr 1 (1 - AR + '7rAs)a(t 1 - tJ 
2nk 

Q=-1 I (t2-t1) n r 2 r 1 

Fig.J2.5. Cylindricalfinned surfaces separating two fluids. 

These equations then lead to the result 

Q = - UL(tb - ta), 
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where 

1/ 
r 1 In r2/r 1 UL= i +---
1.. 2nr 1 (1 - AR + 'leAs) aha 2nk 

+ 2nr2(1 - A: + tlrAs)bhJ 
(12.20) 

This has units of k W /(m K) or the equivalent. It is to be noted that 
(1 - AR + tJrAJa is the fully effective surface area per unit area of 
the a-primary surface. This must then be multiplied by the area of 
primary surface per unit length, 2nr 1 . (Sufftx L denotes U for unit 
length of tube). 

Alternative expressions for U in terms of unit area of tube surface 
may also be obtained. If U Lin equation (12.20) is divided by 2nr2 , 

the area of external primary surface per unit length, the result is 

UA=1/{ r2 +r2lnr2/r1 
r 1 (1 - AR + 'lrAs)aha k 

+ (1 - AR ! 'lrAs)bhJ 
(12.21) 

This has units ofkW/(m2K) where the area refers to the external tube 
surface (primary) area. The corresponding result for the unfinned 
surface is 

(12.22) 

This is again in terms of external tube surface area. 
These results are used in heat exchanger theory, in chapter 13. 

EXAMPLE 12.2 

A stainless steel heat exchanger tube is 25 mm outside diameter with 
a 2·5 mm wall thickness. Convection coefficients inside and outside 
are 6·0 and 1·0kW/(m2 K) and the thermal conductivity is 0·04 
kW/(m K). A similar tube has 20 axial fins 14 mm high by 2 mm thick. 
Find the overall coefficient in both cases, and in each case state which 
thermal resistance is controlling. 
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Solution. In the first case, equation (12.20) simplified for no fins 
becomes equation (3.17) with only one conduction term . 

. _ 1/{ 1 ln1·25 1 } 
'' U L- 21t X 0·01 X 6·0 + 21t X 0·04 + 21t X 0·0125 X 1·0 

= 1/(2·65 + 0·887 + 12·75) 

= 1/16·3 = 0·0614 kW/(m K) 

The convection resistance on the outside is clearly the largest and is 
therefore controlling, meaning that to reduce the overall resistance 
greatest benefit will be obtained by reducing this part of it. 

In the second case, fins are added to the outside surface. The 
fm efficiency, '1 = (tanh mQ/ml. Considering 1 m length, 

m = .j(hPfka) = .j(1·0 x 2·0/0·04 x 0·002) 

= 158 and ml = 2·22 

'1 = (tanh 2·22)/2·22 = 0·977 /2·22 = 0·44 

For the finned surface, 2nr0 = 2n x 0·0125 = 0·0785 m2/m 

2nr 0AR = root area/m length = 20 x 0·002 x 1 = 0·04 m2 fm 

2nr 01'fAs = effective fin area/m length = 20 x 2 x 0·014 x 0·44 

= 0·246m2/m 

1/2nr0(1 - AR + '7A8)h0 = 1}(0·0785 - 0·04 + 0·246) x 1·0 

= 3·51 

Equation (12.20) now gives 

U L = 1/(2·65 + 0·887 + 3·51) 

= 0·142 kW/(m K) 

Although the inside and outside resistances are now similar, the 
outside one is just still controlling. 

12.5. Numerical Relationships for Fins 

The range of fm problems that may be analysed is greatly increased 
by the introduction of simple numerical relationships. Thus it is 
possible to include a variable convection coefficient, or even a 
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Fig. 12.6. Straight sidedfm with h dependent on position. 

transient analysis of a straight sided fin. Further, flat rectangular 
fins of the type encountered in air-conditioning equipment, can 
readily be analysed. The necessary relationships are deduced by the 
methods outlined in Chapters 4 and 5. Some examples are now given. 

In Fig. 12.6 is shown a straight sided fin having a convection 
coefficient dependent on position. Separate relationships would be 
required for the root node, the tip node, and a further one for nodes 
in between. For central nodes: 

(b x 1)k (t 2 - to) + (b x 1)k (t1 - to) + h0(2x x 1)(tr - t0 ) = 0 
X X 

( 2h0 x) ( 2h0x) t 1 + t 2 + lJk tc - 2 + lJk t0 = 0 

In FORTRAN the statement would be: 

X =(T(I -1) + T(I + 1) + BTF(I)•TF)/(2·0+ BTF(I)) (12.23) 

Used in an iterative procedure X is the new value of T(l), and 

BTF(I) = 2·0•H(I)•X/(B• TK) 

where H(l) is the value of the convection coefficient at node I, 
X= x. B = b, TK = k, and TF = tr. Corresponding FORTRAN 
statements for root and tip nodes are: 

(12.24) 

X= (T(I - 1) + 0·5• BTF(N)• TF)/(1·0 + 0·5•BTF(N)) ( 12.25) 

Hence it is seen that the root node is at the surface temperature T(1) 
and BTF(N) refers to the end node at I = N. 

Fig. 12.7 shows the layout of a flat rectangular fm having a circular 
or elliptical root, which is approximated to the rectangular grid. 
Such a fm is usually symmetrical, so only one quarter need be con­
sidered. The general FORTRAN programme in Chapter 4 is suitable 
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outline of root 

.----, 
: I 
I t2 I 

r----1-- -~-l __ l 
l I I I 
I 13 !1 I 
I I to I Y 1 
L ___ _j ___ L _ __ ...J 

I I f 
element thickness b, 
convecting to tr on both 
faces 

_____] X t I_ 
I 4 I 
I I 
L __ _ ...J 

Fig. 12.7. Flat rectangular fin with circular root. 

for a steady state analysis of temperatures in such a fin. The equation 
for a field node is obtained from: 

k b ( tl - to t3 - to) k b (t2 - to t4 - to) y --+-- +X --+--
X X y y 

+ 2hxy(tr - t0 ) = 0 (12.26) 

Other equations are needed for side and corner boundary nodes, 
obtained from similar energy balances. 

PROBLEMS 

1. The diagram shows the cross-section of a nuclear reactor fuel element 
consisting of a uranium fuel rod 28 mm diameter contained in a magnox 
can which has longitudinal tinning on its external surface. The fuel rodfcan 
interface temperature is 430°C and the heat release rate is 65·6 kW per m 
length. Calculate the maximum temperature within the fuel rod, the tern-
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longitudinal fins 

perature drop across the 2·5 mm wall of magnox, and the total surface 
area of longitudinal tinning per unit length, given that the fm root is 40 per 
cent of the external can surface area, fin efficiency is 90 per cent (based on 
fins + splitters which also act as fins), mean coolant gas temperature 280°C, 
surface convection coefficient 0·8 kW/(m2 K), k for magnox 0·15 kW/(m K~ 
k for uranium fuel 0·0325kW/(mK). (Ans.: 591°C, 11·5°C, 0·589m2/m.) 
(The City University). 

2. A long bar, having a perimeter P and cross-sectional area A, is heated at 
one end and loses heat freely to the atmosphere from the surface and the 
other end. If the loss of heat from the surface is proportional to the tem­
perature difference between the surface and the air, show that the temperature 
distribution along the bar is in accordance with the differential equation 

d2e =~de +Pse 
dx2 k dt Ak 

where a and k are the specific heat, per unit volume, and the thermal con­
ductivity, respectively, for the material of the bar and S is the surface heat 
transfer coefficient. Hence show that, for the bar under consideration and 
under steady conditions, the temperature ex at any point distance X from the 
heated end of the bar is given by 

where 

e = --~(e-mx + Ge-2mlemx) 
x 1 + Ge- 2ml 

km- S 
G=-­

km + S 
and m = (~~r 

In order to measure the temperature of heated air flowing along a pipe, a 
thermometer pocket, of the form shown in the figure, is screwed into the 
wall of the pipe and projects into the air stream. 
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0·95 em. dia. 

:~~~~~7~-6~~·~cm~.~.~~~~~7 
pipe wall 

I 
I 

thermocouple 
leads 

The temperature of the wall of the duct is 93·4°C and the thermocouple 
reads 182°C but, owing to conduction along the walls of the thermometer 
pocket, the thermocouple indicates a temperature below the true air 
temperature. 

Estimate the true temperature of the air. 
The heat transferred from the gas stream to a cylinder placed at right angles 

to the direction of flow is given by 

Nu = Q·2 Re0 "6 

For the air in the duct the following properties may be assumed: 

k = -36·7 X 10- 6 , J1. = 0·26 X 10- 4, p = 0·77 

all in k W, m, K units and for the material of the thermometer pocket 
k = 121 x 10- 3 in the same units. The air velocity is 15·2 mjs. (Ans.: 
195°c.) (King's College, London). 

3. A bar simulating a gas turbine blade, cooled at the root, is 10·2 em long 
and has a cross-sectional area (A) 1·93 cm2 , and a perimeter (p) of 7·6 em. 
Gas at 815°C streams across it, and one end is cooled to 483°C. The mean 
heat transfer coefficient for the gas flow conditions can be assumed constant 
over the surface at 0·284 kW/(m2 K), and the thermal conductivity of the 
material of the bar (k) is 26 x 10- 3 k W /(m K). Show that 

8x cosh mL(1 - xjL) 
8, = coshmL 

where 

8x = t8 - tx, 8, = t8 - t" m = J :~ 
L is the length of the bar and x the distance from the cooled end, t8 being the 
gas temperature and tx and t, the appropriate blade temperatures. Hence 
find the heat passing to the cooled end of the bar in k W. Neglect the heat lost 
from the uncooled end of the bar. (Ans.: 0·11 kW.) (Queen Mary College, 
London). 
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4. Heat flows from a body A along a wire of diameter d and length I, the other 
end of the wire being connected to a body B. The conductivity of the wire is 
k and the surface coefficient of heat transfer ia2kd. 

The temperature of the body A is maintained at (JA above the temperature 
of the environment, and the temperature of the body B is 98 above the tem­
perature of the environment. Derive an expression for the temperature of 
the wire at x from A, and deduce the particular values of 98 for which 

(a) heat flow into B is one-half of the heat flow from A, 
(b) heat flow into B is zero. (University of Oxford). 

5. The cooling system of an electronic package has to dissipate ()-153 kW 
from the surface of an aluminium plate 100 mm x 150 mm It is proposed 
to use 8 fins each 150 mm long and 1 mm thick. The temperature difference 
between the plate and surroundings is 50 K, the thermal conductivity of 
plate and fins is 0·15 kW/(m K), the convection coefficient is0·04 kW/(m2 K). 
Calculate the height offm required and the effectiveness of the whole cooling 
surface. (Ans.: 30·3 mm, 88·4%.) (The City University). 

6. Show that the rate of heat transfer per unit width from a straight fin of 
uniform rectangular cross-section is given by 

q = kmdt0 tanh ml 

where k is the thermal conductivity, m = .j(2hfkd), his the surface coefficient, 
d is the fin thickness, t0 is the base temperature difference and 1 is the length. 
Neglect heat flow through the tip. 

Fins of this type project from a plane wall at 10·2 em intervals. Each fin 
is 1·27 em thick and 15·2 em long. Assuming the same surface coefficient 
of45·5 X 10- 3 kW/(mK), find the ratio ofthe heat loss from this walltothat 
from a plane wall at the same temperature. (Take k = 43·3 x w- 3 kW/ 
(mK). (Ans.: 2·37 to 1.) (University of Manchester). 
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13 
Heat exchangers 

Much of the basic conduction and convection theory finds its 
greatest application in the heat exchanger. Whenever it is necessary 
to transfer energy from one fluid to another in large quantities, 
some form of heat exchanger is used. The most common form of 
heat exchanger is that in which two fluid streams pass through in 
steady flow, and heat transfer takes place through a separating wall. 
Mechanisms involved are therefore convection to or from the solid 
surface and conduction through the wall. The wall may be corrugated 
or finned to increase turbulence and the heat transfer area. 

The thermal capacity of a heat exchanger is usually kept small, 
and is of significance only in transient conditions. However, a 
regenerative type of heat exchanger does have a large thermal 
capacity matrix through which the hot and cold fluids pass alternately. 
By this means energy is transferred indirectly between the fluids. 

This chapter is concerned only with non-regenerative heat ex­
changers in which the fluids are separated. Other types of heat 
exchanger exist in which the fluids mix. These include cooling 
towers and jet condensers, for example. The basic principles will 
be considered in relation to the simplest types only. 

13.1. Types of Heat Exchanger, and Definitions 

The two basic types of heat exchanger are the in-line or uni­
directional flow exchanger and the cross-flow exchanger. Flow is 
along the same axis in the in-line exchanger, but the two fluids may 
flow in the same or opposite directions giving tise to the names 
parallel and counter flow. The in-line exchanger may consist simply 
of two concentric tubes, one fluid flowing in the inner tube and the 
other in the annulus. Alternatively, there may be a number of tubes 
within a large tube or shell and to increase heat transfer the shell 
fluid is made to flow partly across the tubes by means of baffles. 

178 
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Counter and parallel flow also occur in plate heat exchanges in 
which the fluids flow between closely spaced plates sealed at the 
edges. Fig. 13.1 shows some simple in-line arrangements and Fig. 
13.2 shows a part section of a shell and tube heat exchanger with 
baffies in the shell of the segmented and 'doughnut' type. 

The cross-flow exchanger is, as its name implies, one in which 
the two fluid streams flow at right angles. Gas-to-gas heat exchangers 

(a) Counter flow concentric 
tube exchanger 

(b) Parallel flow 
concentric tube 
exchanger 

~~~;, I -I t] .ei'~j 
(c) Tube and shell exchanger in parallel flow. 

Tube fluid may be reversed to give 
muntec flow. j ~ 

IlL 
(I 1--

t I 
(d) Two-pass tube and shell exchanger. 

Flow is partly counter, partly parallel. 

Fig. 13.1. Basic in-line heat exchangers. 

are often of this type. Their analysis is complicated because fluid 
temperatures vary in both the direction of flow and at right angles 
to that direction. 

The temperature variations of the fluids in parallel and counter 
flow are shown in Fig. 13.3. Temperatures are plotted against length 
or area of heat exchanger surface. The inlet end, where length or 
area is zero is regarded as being the end where the hotter of the two 
fluids enters. The fluids are regarded as being hot or cold, for con­
venience, and th is a temperature of the hot fluid, tc a temperature 

.H. 



Fig. 13.2. A liquid/liquid shell and tube heat exchanger. This type of unit is 
used for cooling transformer oil, with water as the cooling medium. Pressure 
drops: oil flow in the shell, 5-12 psi, water flow in the tubes, 1-5 psi. The heat 
transfer area is in the range 110-1090 ft2, and the heat transfer rate is in the 
range 70-1950 kW. Photograph by courtesy of Associated Electricallntbatries 

Limited. 
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of the cold fluid. Suffixes 1 and 2 are used for inlet and outlet of 
individual streams, and 8; is the temperature difference between 
fluids at the inlet end and 80 the difference at the outlet end of the 
exchanger. An important term in heat exchanger theory is the 
capacity ratio C. It is a ratio of the products of mass flow rate and 

(a) Parallel flow 

. I -e 
t,l ·r o 

(b) Converging at inlet end (c) Diverging at inlet end 
Counter flow 

T thl 
I 

8; 
I 
j_t--o-----+r 

(d) Boiling (e) Condensing 

Fig. 13.3. Temperature distributions. 

specific heat of each stream. It is always the ratio of the smaller 
product to the larger, since they are not necessarily equal. Thus, 
if mhcph is the 'capacity' of the hot stream and mccpc is that of the 
cold stream, then 

(13.1) 

if 
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(13.2) 

In counter flow, the temperature distributions are rather different 
depending on the capacity ratio. Thus, in Fig. 13.3b, the temperatures 
are converging at the inlet end when mhcph > mecpe and equation 
(13.1) applies. In Fig. 13.3c the temperatures are diverging at the 
inlet end when mecpe > mhcph and equation (13.2) applies. 

In parallel flow it is obvious that te2 will approach th2 for an infi­
nitely long heat exchanger, but can never exceed th 2 • In counter flow 
it is quite normal for tc2 to exceed th2 and, consequently, the counter 
flow exchanger is the more 'effective'. Effectiveness is the ratio of 
energy actually transferred to the maximum theoretically possible. 
Again, the definition depends on the relative thermal capacities of 
the streams. The maximum theoretical transfer will take place in 
counter flow in an exchanger of infinite length and, in such a case, 
te2 -+ th 1 when mhcph > mecpc• and th2 -+ te 1 when mhcph < mecpe· 

Thus the maximum transfers in the two cases are : 

mecpe(thl - tel) when mhcph > mccpe 

mhcph(thl - te 1) when mhcph < mccpe 

The actual transfers in the two cases are mccpe(te2 - te 1) and 
mhcph(th 1 - th2), and hence E, the effectiveness, becomes 

(13.3) 

and 

(13.4) 

These definitions may be used in either counter or parallel flow, 
but the value of E will be lower in parallel flow. 

Temperature distributions with a change of phase are also 
shown in Fig. 13.3. These will occur in boiling, Fig. 13.3d, and 
condensing, Fig. 13.3e. Only the phase change takes place in the 
exchanger, so the temperature of the boiling or condensing fluid 
does not change. The temperature distributions are the same for 
both parallel and counter flow. The capacity ratio C becomes 0 

In counter flow, 
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for both boiling and condensing since the larger thermal capacity 
is in each case infinite. This follows, since by definition, cP = dh/dt 
= oo when dt = 0. Equations (13.3) and (13.4) may be used in 
condensing and boiling, respectively. 

The other limit of capacity ratio is C = 1 and occurs when the 
thermal capacities of the two streams are equal. This is not illustrated, 
but it results in the temperature distributions being parallel straight 
lines in the case of counter flow, e being a constant over the whole 
heat exchange area. 

13.2. Determination of Heat Exchanger Performance 

The primary purpose of a heat exchanger is to achieve the required 
transfer rate using the smallest possible transfer area and fluid 
pressure drop. A large exchanger can mean unnecessary capital 
outlay and high pressure drop means a reduced efficiency of the 
plant considered overall. Generally, a smaller exchanger can be 
produced by tinning surfaces to increase the overall heat transfer 
coefficient. However, this leads to a higher fluid pressure drop, 
and the best design is often a compromise between conflicting 
requirements. In fact, a number of different designs for a given duty 
may be acceptable. 

The heat transfer requirement, Q, can be expressed in three ways: 

(13.5) 

(13.6) 

(13.7) 

em is a mean temperature difference between the fluids, and U A 

and U L are mean coefficients, in kW(m2K) and kW/(mK) or equiv­
alent units, applicable over the entire area A or length L of the ex­
changer. It is general practice to work in terms of the external 
surface area of the tubes in heat exchanger design, and the overall 
coefficient VA in terms of this area is given by equations (12.21) 
for finned surfaces and (12.22) for plain surfaces. 

13.2.1. Counter and Parallel Flow. If the mass flow rates and inlet 
and outlet temperatures are known, the heat transfer Q will be 
known, but further details of the exchanger cannot be specified 
until em is known. em can be derived as follows: 
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Consider an incremental area of heat exchanger surface as shown 
for either counter or parallel flow in Fig. 13.4. The heat transfer 
over the area dA can be expressed in three ways as before, thus 

i 
0 

Parallel flow 

"'i ~ 

dA or dL 
Counter flow 

A or L 

(13.8) 

(13.9) 

(13.10) 

Fig. 13.4. For the determilllltion of logarithmic mean temperature difference. 

The temperature difference at the point in question is 

and the increment in temperature difference is 

dO = d(th - tc) 

= dth - dtc (13.11) 
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If de is expressed in terms of dQ from (13.9) and (13.10), 

de= dQ dQ 
------ for parallel flow (13.12) 

and 

(13.13) 

since dth is negative in both cases, and dtc is positive for parallel 
flow and negative for counter flow. It follows that d8/dQ has 
constant but different values for parallel and counter flow, and 
therefore 

eo - ei ( 1 1 ) 
--Q- = - mhcph ± mccpc 

(13.14) 

with + for parallel flow and - for counter flow. Further, dQ from 
equation (13.8) may be substituted in (13.12) and (13.13) to give 

This is integrated from 0 to A to give 

(13.15) 

The term in parentheses is now eliminated between (13.15) and 
(13.14) to give 

(13.16) 

This result is clearly identical in form to equation (13.5) and it is 
seen that 

(13.17) 

This is the required logarithmic mean temperature difference. It is 
the same for counter and parallel flow, though eo and ei in terms 
of values of th and tc are different as can be seen from Fig. 13.3. 

for parallel flow 
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EXAMPLE 13.1 

0·2 kg/s of an alcohol is to be cooled from 75 to 35°C in a counter 
flow heat exchanger. Cooling water enters the exchanger at l2°C 
and at the rate of 0·16 kg/s. The convection coefficient between the 
alcohol and the tube wall is 0·34 kW/(m2K), and between the 
tube wall and the water, 0·225 kW/(m2K). The tubes may be assumed 
thin. cP for the alcohol is 2·52 kJ/(kg K) and for water is 4·187 
kJ/(kgK). 

Calculate the capacity ratio, the effectiveness, and the area of 
the heat exchanger surface. 

Solution. For the hot stream, alcohol, 

mhcph = 0·2 x 2·52 = 0·504 kJ/(s K) 

For the cold stream, water, 

mccpc = 0·16 X 4·187 = 0·671 kJ/(s K) 

From equation (13.2~ C = mhcpJmccpc = 0·504/0·671 = 0·75. An 
energy balance gives 

0·2 X 2·52 X (75 - 35) = 0·16 X 4·187 X (tcz - 12) 

20·15 = 0·671tc2 - 8·05 

.". tc2 = 41·8°C 

From equation (13.4), 

E = th 1 - th 2 = 75 - 35 = 0_635 
thl - tel 75 - 12 

The heat exchange area may be found from equation (13.5). To find 

()0 = 35 - 12 = 23, ()i = 75- 41·8 = 33·2 

() = 23 - 33·2 = -10·2 = 28 K 
m In (23/33·2) -In 1·44 

The 
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Since the tubes are thin, r 1 = r2 in (12.22), so U A is given by 

1 1 1 1 1 
-=--+--= -+-u A halcohol hwater 0·34 0·225 

UA = 0·1355kW/(m2K) 

Equation (13.5) gives 20·15 = UAA8m = 0·1355 x A x 28 

A= 5·31 m2 

187 

13.2.2. Cross Flow. Analysis of the cross-flow heat exchanger is 
more complicated owing to temperature variation across the flow. 
This variation will depend on whether the fluid is mixed or unmixed. 
A mixed fluid is free to move across the flow direction; an unmixed 
fluid is constrained in parallel flow passages. Thus, if an exchanger 
consisted of a bank of tubes placed across a duct, the fluid in the 
duct would be mixed while the fluid in the tubes would be unmixed. 

Results of analyses of this type of exchanger are available as 
correction factors. 1•2 Equation (13.5) would become 

where F is a factor to be obtained from the appropriate graph, and 
Om is the mean temperature difference, (13.17), calculated for counter 
flow with the same inlet and outlet temperatures as for cross flow. 
Figure 13.5 shows F for a cross-flow exchanger with one fluid 
mixed and one fluid unmixed. In applying the factor F it does not 
matter whether the hotter fluid is mixed or unmixed. 

13.3. Heat Exchanger Transfer Units 

One would now expect to be able to go ahead and design a heat 
exchanger, using equations (13.5) to (13.7) and information from 
earlier chapters to evaluate U A for the particular configuration 
in mind. However, U A cannot be determined until something is 
known of the tube sizes and velocities of flow, and the method of 
procedure from theory so far developed can be extremely involved 
and iterative. For example, supposing the tube sizes, length and 
U A were decided upon, in order to check the design performance 
the value of Q and outlet temperatures of the fluids must be regarded 
as unknowns and equations (13.5) to (13.7) cannot be solved directly 



t.l - ttl 
z = tsl - t,2 = (mcp)tube 

t,2 - t, 1 (mcp)shell 

Fig. 13.5. Logarithmic temperature difference correction factor for cross 
flow, one fluid mixed, one fluid unmixed. From R. A. Bowman, A. E. Mueller, 
and W. M. Nagk. Trans. ASME, Vol. 62, p. 283 (1940). By permission of 

the American Society of Mechanical Engineers. 

for Q, tc2 , and th2 , because of the logarithmic form of ()m. The 
approach using transfer units is very useful from this point of view. 
The method was developed by Kays and London. 3 

The effectiveness E, and capacity ratio C of a heat exchanger 
have already been defined. These quantities will now be used in 
conjunction with a new term, Number of Transfer Units, NTU, 
to determine heat exchanger performance. As with E and C, the 
definition of NTU depends on the relative magnitudes of the thermal 
capacities of the fluid stream. Thus, 

NTU = UAA' h w en mhcph > mcCpc 
mccpc 

(13.18) 

and, 
(13.19) 

Thus the denominator is always the smaller thermal capacity. The 
performance of heat exchangers will now be examined using the 

NTU = UAA' h w en mhcph > mcCpc 
mccpc 
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definitions of C, E, and NTU in equations (13.1) to (13.4) and 
(13.18) and (13.19). 

13.3.1. Counter Flow Exchanger. Let mhcph be assumed the smaller 
quantity, then the definitions of NTU, C, and E are 

E = tht - th2 
thl - tel 

Equations (13.9) and (13.10) for counter flow (where temperature 
increments are negative) give 

(13.20) 

Now, dO = d(th - tc) = dth - dtc, 
and mhcph(dth - dtc) = dtc(mccpc - mhcph) 
using equation (13.20). Again, using (13.20), dtc may be eliminated 
to give 

= -dQ(1- C) 

Using equation (13.8) to eliminate dQ gives 

d d - u A dA0(1 C) th- tc- - -
mhcph 

Integrating: 

= -NTU(1- C) 
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The left-hand side of this equation may be manipulated as follows: 

th2 - tel thl - tel - (thl - th2) 

thl - te2 thl - tel - (te2 - tel) 

1 - thl - th2 
thl - tel 

1 - C(thl - th2) 
(thl - tel) 

1-£ _ -NTU(l-C) 

1- CE- e 

from the right-hand side, above. This final result is now rearranged 
to give 

1 _ e-NTU(l-C) 

E = 1 - C e Nruo C) 
(13.21) 

If mecpe had been assumed the smaller quantity, the same equation 
would have been obtained, where E, NTU, and C would have 
then been defined by the alternative expressions. 

A relationship exists, then, between E, NTU, and C given by 
equation (13.21). Using this result it is possible to determine outlet 
temperatures te2 and th2, and Q, the overall heat transfer for a given 
design, without using a trial and error solution. 

EXAMPLE 13.2 

Determine the effectiveness and fluid outlet temperature of an oil 
cooler handling 0·5 kg/s of oil at an inlet temperature of l30°C. The 
mean specific heat is 2·22 kJ/(kgK). 0·3 kg/s of water entering at l5°C 
passes in counter flow at a rate of 0·3 kg/s. The heat transfer surface 
area is 2·4 m2 and the overall heat transfer coefficient is known to be 
1·53 kW/(m2 K) 

Solution. The thermal capacities are: oil, 0·5 x 2·22 = HI kJ/(s K), 
water, 0·3 x 4·182 = 1·255 kJ/(s K) 

c = 1·11/1·255 = 0·885 

manipulated as follows: 



and, 

Then, 

HEAT EXCHANGERS 

1·53 X 2·4 
NTU = = 3·31 

1·11 

1 - 3·31(1- 0·885) 
E = thl - th2 = - e 

-1--~0~8~8~5--'3'3~1~(1~0"8~8~5) 
thl - tel - 0 e 

1 - e- 0 .38 0·316 
1 - 0·885 e 0 "38 = 0·395 = 0"8 

130° - th2 

130° - 15° 

(oil outlet) 

By enthalpy balance 

( - ) = 1-11 X (130- 38) = 81·5K 
tc2 tel 1·255 

(water outlet) 

191 

When U A is not known, this must be determined from either 
equation (12.21) or (12.22), with the individual convection co­
efficients determined from the equation appropriate to the fluid, 
flow geometry and type of flow, as given in earlier chapters. It is 
convenient to use standard tube sizes to give a suitable value of 
Re and number oftubes for the specified mass flow. Several attempts 
may be necessary to achieve a suitable U A combined with a fluid 
pressure loss which is acceptable. 

13.3.2. Parallel Flow Exchanger. A similar analysis in parallel flow 
will yield the result 

1 _ e-NTU(l +C) 

E=------
1+C 

(13.22) 

Again this result is independent of which fluid stream has the 
smaller thermal capacity, provided the appropriate definitions of 
E, NTV, and C are used. 
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13.3.3. Limiting Values of C. It has already been noted that C = 0 
in both condensing and boiling. When this is so both equation 
(13.21) and (13.22) reduce to 

E = 1- e-NTU (13.23) 

Thus, the effectiveness is the same for both counter and parallel 
flow. 

The other limiting value is C = 1 for equal thermal capacities 
and, in this case, for parallel flow equation (13.22) gives 

1 _ e-2NTU 

E=----
2 

(13.24) 

In the case of counter flow for C = 1 it is necessary to do a fresh 
analysis from first principles since equation (13.21) becomes 
indeterminate. For this case it is possible to write 

and also 

Also 

E may be written as 

E = thl - th2 (thl - te2)NTU 
(thl - th2) - (tel - th2) (thl - te2)NTU - (tel - th2) 

NTU 
E = when C = 1 

NTU + 1' 
(13.25) 

13.3.4. Cross-Flow Exchanger. Convenient graphical plots of 
effectiveness as a function of NTU and capacity ratio are available 
for cross flow. Figure 13.6 is for one fluid mixed and one fluid un-

Also 
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mixed. When the capacity ratio of mixed to unmixed fluid is greater 
than 1, the NTU is then based on (mcP) of the unmixed fluid. 

(mcp)mixed = O, 00 
(me ) . d 

100 

80 

p unmue I 

! --r- 0·25 -- -
g~ / 

/ ~ ~ -/ 

/ ~ 
~ b;" ...?- 0·75 

~ ~ ~-
--- 1·33 

lh ~ v - "(mcp)mixed 

;w (me p)unmixed 
=1 

(tr 
I 
I 

2 3 4 5 
Number of transfer units, NTU = U AA/(mcp)min 

~ fi::~xOO fiWd 

Fig. 13.6. Effectiveness vs. NTU for a cross-flow exchanger, one fluid mixed, 
one fluid unmixed. From Lompact Heat Exchangers, by W. M. Kays and A. L. 
London, McGraw-Hill Book Company, Inc., New York (1958). Used by 

permission of McGraw-HiU Book Company. 

13.4. Plate Heat Exchangers 

The plate type of heat exchanger is basically of the in-line type, but the 
construction is very different from the conventional shell and tube 
concept. A plate heat exchanger consists of a frame in which a 
number of heat-transfer plates are supported and clamped between 
a header and a follower. Each plate has four ports and the edges of 
the plates and ports are sealed by gaskets so that hot and cold 
fluids flow in alternate passages formed between the plates. This 
means the fluids flow in very thin streams having a high heat-transfer 
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Fig. 13.7. A typical flow diagram of a plate heat exchanger showing a two­
pass arrangement (diagram by courtesy of the A.P. V. Company Ltd). 

Fig. 13.8. A Paraflow-type R145 plate heat exchanger, capable of accepting 
up to 955m3 per hour at 10·7 bar, and up to 130°C;plate size is 2122 X 849 mm 

(photograph courtesy of the A.P. V. Company Ltd). 
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area, and corrugations on the plates promote turbulence and very 
high heat-transfer rates. Since the plates are usually arranged for 
general counter-current flow, very close approach temperatures 
are obtained. Figure 13.7 shows a typical flow diagram. Because 
of these advantages, the plate heat exchanger is being used exten­
sively in an increasing number of industrial applications. 

The performance of a plate heat exchanger may be expressed in 
terms of equations (13.5) to (13. 7), but since the overall coefficient is 
obtained from empirically determined charts, the characteristics are 
expressed in terms of chosen parameters only. Thus, using equations 
(13.5) and (13.7), 

For a plate heat exchanger A is the product of n, the number of 
plates, and a, the individual plate area, so 

mhC ph(thl - th2) = U Ana em 

mhcph (thl - th2) n =----.~~--~ 
PN em 

where PN is the plate number, UAa. For mhcph being the minimum 
capacity rate, or for equal rates as defined previously, it is seen from 
equations (13.19), (13.5), and (13.7) that (th1 - th 2)/()m = NTU, the 
number of transfer units, and hence 

me 
n=~ x NTU 

PN 
(13.26) 

The performance of a particular plate design can be expressed 
graphically in terms of the plate number, the NTU value, and the 
pressure drop plotted against the plate rate, or the mass flow rate 
across a plate, see Fig. 13.9. Separate curves would exist for different 
capacity ratios, and from such information for various plate designs, 
the required unit for a particular duty can be selected. Certain 
correction factors have to be introduced, on account of concurrency 
and other effects which depend upon the particular plate arrange­
ment, and on account of uneven distribution along the plate pack 
due to pressure losses along the ports. For exactness liquid proper­
ties have also to be considered, and separate relationships would 
apply to laminar and transitional flow. 
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pressure 
loss 

plate rate 

"' .9 

Fig. 13.9. Plate IUlmber, pressllre loss fl1lll NTU clulracteristics of a plate 
heat excluurger for tllrblllentflow. 

PROBLEMS 

1. A tubular heater of the counter flow type is used to heat 1·26 kgjs of 
fuel oil of specific heat 3-14 kJ/(kg K) from 10° to 26·7°C. Heat is supplied by 
means of 1·51 kgjs of water which enters the heater at 82°C. 

(a) Derive an equation relating the temperatures of oil and water at any 
section of the heater. 

(b) Determine the necessary surface if the rate of heat transfer is 1·135 
kW/(m2 K). (Ans.: 1·013 m2) (University College, London). 

2. In a test on a steam condenser the rate of flow of cooling water was varied 
whilst the condensation temperature was maintained constant. The following 
results were obtained : 
Overall heat transfer coefficient K, kW/(m2 K) 2·7 2·98 3·39 3·59 
Water velocity V, m/s 0·986 1·27 1·83 2-16 

Assuming the surface coefficient on the water side to be proportional to 
V0 "8, determine from an appropriate graph, the mean value of the steam side 
surface coefficient. The thickness of the metal wall is 0·122 em and thermal 
conductivity of tube material O·lllkW/(mK). (Ans.: 6·04kW/(m2 K.) 
(University of Manchester). 
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3. A counter flow heat exchanger consists of a bundle of 20 mm diameter 
tubes contained in a shell. Oil flowing in the tubes is cooled by water flowing 
in the shell. Tbe flow area within the tubes is 4·4 x 10- 3 m2 . The flow of oil 
is 2·5 kgjs; it enters at 65°C and leaves at 48°C. Water enters the shell at 
20 kgjs and at tsoc. Calculate the area of tube surface and the effectiveness 
of the excltanger. For the oil in the tubes take Nu4 = 0·023 (Re4) 0 "8(Pr)0 "33, 

cp = 2·15 kJ/(kg K~ J.l = 2·2 X to-sPas, p = 880kgjm3, k = 190 X w- 6 

kW/(m K); for water Ji = 1·2 kW/(m2 K), cP = 4·19 kJ/(kg K). (Ans.: 2·23 ml, 
34 %.) (The City University). 

4. (i) Define the term 'mean temperature difference' as applied to a heat 
exchanger and show that, for a counter flow heat exchanger, it is given by 

where Atm is the mean temperature difference, M 1 is the temperature difference 
between tbe two fluids at one end of the heat exchanger, and ~t2 is the tem­
perature difference at the other end. State any necessary assumptions. 

(ii) A tubular, counter flow oil cooler is to use a supply of cold water as 
the cooling fluid. Using the following data, calculate the mean temperature 
difference and the required surface area of the tubes. 
Data: Oil 

Entry temperature, oc 121 
Exit temperature, oc 82·3 

Water 
15·6 

Mass flow rate. kg/s 0·189 0·378 
Specific heat,kJ/(kg K) 2·094 4·187 
Mean overall coefficient of heat transfer, referred to outside surface of 

tubes, 0·454 kW/(m2 K). (Ans: 80·0 K, 0·422 m2.) (Imperial College, London). 

5. Two counter flow heat exchanger schemes are shown in the diagrams. 

fluid 

fluid 
90oC 

(b) 

l40°C 

water 80°C 

water 80°C 
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In each scheme it is required to cool a fluid from 140° to 90°C using a counter 
flow rate of water of 1·2 kg/s entering at 30° and leaving at 80°C. In scheme 
(b) each unit takes half the flow of the fluid. The overall heat-transfer coeffi­
cient is 0·9 k W /(m2 K) in both cases. Calculate the total area of heat exchange 
surface in each case, assuming a capacity ratio of 1. (Ans.: (a) 4·65 m2, 

(b) 4·83 m2.) (The City University). 

6. An industrial fluid is cooled by oil in a parallel flow heat exchanger, 
from 280° to 160°C while the oil enters at 64° and leaves at 124°C. Find the 
minimum temperature to which the oil could be cooled in parallel flow 
and also in counter flow for the same entry temperatures. Find the ratio 
of heat exchange area in parallel flow to that in counter flow, for an outlet 
fluid temperature of 160°C. (Ans.: 136°C, 64°C, 1·23 to 1.) 

7. An oil cooler consists of a straight tube, of inside diameter 1·27 em, wall 
thickness 0·127 em enclosed within a pipe and concentric with it. The external 
surface of the pipe is well lagged. 

Oil flow through the tube at the rate of 0·063 kg/s and cooling water flows 
in the annulus between the tube and the pipe at the rate of 0·0756 kgfs and 
in the direction opposite to that of the oil. The oil enters the tube at 177°C 
and is cooled to 65·5oC. The cooling water enters at 10°C. 

Estimate the length of tube required. given that the heat transfer co­
efficient from oil to tube surface is 1·7 kW/(m2 K), and that from the surface 
to water is 3·97 kW/(m2 K). Neglect the temperature drop across the tube 
wall The specific heat ofthe oil is 1-675 kJ/(kg K). (Ans.: 2·67 m.) (University 
of London). 

8. A tank contains 272 kg of oil which is stirred so that its temperature is 
uniform. The oil is heated by an immersed coil of pipe 2·54 em diameter in 
which steam condenses at 149°C. The oil, of specific heat 1·675 kJ/(kg K) is 
to be heated from 32·2° to 121 oc in 1 hour. Calculate the length of pipe in the 
coil if the surface coefficient is 0·653 kW/(m2 K). (Ans.: 3·47 m.) 

9. Explain briefly what is meant by the term 'surface or film coefficient' in 
heat transfer considerations. 

A counter-flow heat exchanger having an overall heat transfer coefficient 
of0·114 kW/(m2 K) is used to heat to 329°C the air entering the combustion 
chamber of a gas turbine cycle. The pressure ratio of the cycle is 5 : 1 and the 
heating fluid is the exhaust from the turbine which expands the gas from 
650°C with an isentropic efficiency of 82 per cent. If the air conditions initially 
are 1·013 bar and 21 oc and the isentropic efficiency of the compressor 
is 80 per cent, calculate the area of heat exchanger for a total fluid mass flow 
of 22·7 kgfs. 

Assume a logarithmic mean temperature difference and constant specific 
heat of 1·0 for the air and 1·09 kJ /(kg K) for the products. y = 1·4 for air 
and products. (Ans.: 424m2.) (University of Manchester). 

10. Define the terms 'effectiveness' and 'number of transfer units' as applied 
to heat exchangers stating any assumptions involved. Obtain a relationship 
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between effectiveness and number of transfer units for a counter-current heat 
exchanger and plot this relationship when the ratio of the stream heat 
capacities is 0·5. 

20·15 kg/s of an oil fraction at a temperature of 121 oc is to be cooled in a 
simple counter-current heat exchanger using 5·04 kg/s of water initially at 
10°C. The exchanger contains 200 tubes each 4·87 m long and 1·97 em outside 
diameter; the resulting heat transfer coefficient referred to the outside tube 
area is 0·34 kW/(m2 K). If the specific heat of the oil is 2·094 kJ/(kg K) 
calculate the exit temperature of the oil. (Ans.: 90·8°C.) (University of Leeds). 
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14 
The laws of black- and grey-body 
radiation 

The processes of heat transfer considered so far have been intimately 
related to the nature of the material medium, the presenc of solid­
fluid interfaces, and the presence of fluid motion. Energy transfer 
has been observed to take place only in the direction of a negative 
temperature gradient, and at a rate which depends directly on the 
magnitude of that gradient. 

It is now necessary to consider the third mode of heat transfer 
which is characteristically different from conduction a.t'ld convec­
tion. Radiation occurs most freely in a vacuum, it is freely trans­
mitted in air (though partially absorbed by other gases) and, in 
general, is partially reflected and partially absorbed by solids. 
Transmission of radiation, which can occur in solids as well as 
fluids, is an interesting phenomenon because it can occur through 
a cold non-absorbing medium between two other hotter bodies. 
Thus the surface of the earth receives energy direct by radiation from 
the sun, even though the atmosphere at high altitude is extremely 
cold. Similarly, the glass of a green house is colder than the contents 
and radiant energy does not stop there, it is transmitted to the 
warmer absorbing surfaces inside. Radiation is also significantly 
different from conduction and convection in that the temperature 
level is a controlling factor. In furnaces and combustion chambers, 
radiation is the predominating mechanism of heat transfer. 

As already mentioned in chapter 1, radiant energy is but part of 
the entire spectrum of electromagnetic radiation. All radiation 
travels at the speed of light and, consequently, longer wave-lengths 
correspond to lower frequencies, and shorter wave-lengths to higher 
frequencies. The entire spectrum of electromagnetic radiation extends 
from about 10- 4 angstrom units (10- 14 metres), the wavelength 

200 
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region of cosmic rays, up to about 20,000 metres, in the region 
of Hertzian or electric waves. The wave-length region generally 
associated with thermal radiation is 103-106 angstrom units, which 
includes some ultra-violet, all the visible, and some infra-red radia­
tion. Figure 14.2 shows part of the spectrum of electromagnetic 
radiation. 

Since radiation energy exchange depends on the rates at which 
energy is emitted by one body and absorbed by another, it is neces­
sary to establish definitions relating to these characteristics of 
surfaces. Further, not all of the energy emitted by one body may 
necessarily fall on the surface of another due to their geometric 
arrangement, and this too must be investigated. This then forms 
the general approach by which engineers may consider radiant 
energy exchange. 

14.1. Absorption and Reflection of Radiant Energy 

Three possibilities may follow the incidence of radiation on the 
surface of a body. Some may be transmitted through the body leaving 
it unaltered. Some may be absorbed on the surface, resulting in an 
increase in temperature of the body at the surface. The remainder 
will have been reflected. This can take place in two ways, either as 
specular reflection where the angle of reflection is equal to the angle 
of incidence, or as diffuse reflection where the reflected energy leaves 
in all directions from the surface. Thus polished surfaces tend to be 
specular and rough surfaces diffuse. 

The percentage of incident energy absorbed by a surface is defined 
as a, the absorptivity; the percentage reflected is p, the reflectivity, 
and the percentage transmitted is r, the transmissivity. Thus it must 
follow that 

a+p+r=1 ( 14.1) 

Energy absorbed on the surface is, in fact, absorbed in a finite 
thickness of material, and if the body is very thin less absorption 
and more transmission may take place. It will be assumed that 
'thick' bodies only will be considered, for which r = 0. Hence 

a + p = 1 (14.2) 

In engineering applications of radiation, there will generally be a 
gas separating solid bodies, and often this gas is air which may be 
assumed to have no absorptivity or reflectivity, so r = 1. Combus­
tion gases containing carbon dioxide and water vapour behave 
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very differently, however, and an elementary treatment of non­
luminous gas radiation appears later in this chapter. 

14.2. Emission, Radiosity, and Irradiation 

To be consistent with previous nomenclature, Q is the energy 
emitted by a surface in heat units per unit time. This energy emission 
results from the surface temperature and the nature of the surface. 
However, Q may not be the total energy leaving that surface, there 
may also be some reflected incident energy. Thus J is defined as the 
Radiosity, which is the total radiant energy leaving the surface, in 
unit time. Similarly, G is defined as the Irradiation which is total 
incident energy on a surface, some of which may be emission and 
some reflection from elsewhere. 

If G is the incident energy, pG will be reflected. Thus 

J = Q + pG (14.3) 

14.3. Black and Non-black Bodies 

All materials have values of IX and p between 0 and 1. However, it is 
useful and important to imagine a material for which IX = 1 and 
p = 0. A body composed of this material is known as a black body; 
it absorbs all incident energy upon it and reflects none. For real 
materials the highest values of IX are around 0·97. Artificial surfaces 
may be arranged in practice which are virtually black. Consider 
Fig. 14.1. The hollow enclosure has an inside surface of high absorp­
tivity. Incident energy passes through the small opening and is 

Fig.14.1. Artificial black-body surface. 

absorbed on the inside surface. However, some is reflected, but 
most of this is absorbed on a second incidence. Again, a small 
fraction is reflected. After a number of such reflections the amount 
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unabsorbed is exceedingly small and very little of the original 
incident energy is reflected back out of the opening. The area of 
the opening may thus be regarded as black. 

The work of Stefan and Boltzmann led to the law named after 
them which gives the emission of radiant energy from a black 
body. Thus 

(14.4) 

is the Stefan-Boltzmann law for black-body radiation. T is the 
absolute temperature and a is the Stefan-Boltzmann constant and 
has the value 56·7 x 10- 12 kW/(m2 K 4). A derivation of this law 
is given by Jakob. 1 

Black-body radiation consists of emission over the entire range 
of wave-length. Most of the energy is concentrated in the wave­
length range already mentioned. The point to note is that the 
energy is not distributed uniformly over this range. Thus qb;. may 
be defined as the monochromatic emittance, the energy emitted 
per unit area at the wave-length A, for a black body. It must follow 
that 

qb = ( qb;. dA = aT4 (14.5) 

The variation of qb;. with wavelength was established by Planck2 in 
his quantum theory of electromagnetic radiation, thus 

c A-5 
q - 1 

bJ. - exp (C2/AT)- 1 

where A = wavelength, J.U:n, T = absolute temperature, C 1 = 3·743 
x 105 kWJJ4fm2 , C2 = 1·439 x 104 JJK. The form of the varia­
tion of qbJ. is shown in Fig. 14.2, and it is seen that there is a peak 
value of qb;. which occurs at a wave length which is related to the 
absolute temperature by Wien's displacement law: 

Amax T = 2897·6 J..l K 

Real materials that are not black will have monochromatic 
emittances that are different from qbJ.• and hence it is useful to 
define a monochromatic emissivity ei. by the equation 

q;. = e;.qb;. 

or (14.6) 
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Wien's law 
A max T = 2897•6ttK 

1·0 2·0 4·0 6·0 8·0 
()-3- Qo7p visible range oflight 

~ wavelength A. 

u/v light ---1 f--- infrared light (to 10-3m)-

Fig. 14.2. Variation of black body emissi-oe power qbA with waf!elengtlr and 
temperature. 

The black and non-black emittances which give 6;. are measured at 
the same temperature. In general, 6;. is a function of wave-length, 
temperature and direction. Real surfaces often exhibit directional 
variation in emissive power, thus non-electrically conducting 
materials emit more in the normal direction whereas for conducting 
materials often the reverse is true. For practical calculations, quoted 
emissivities are total hemispherical values. Most real materials 
exhibit some variation in s;. with wave length. These are known as 
selective emitters. However, there is a second type of ideal surface, 
known as a grey surface, where the emissivity is constant with 
wave-length. Some real materials approximate closely to this ideal, 
but the concept reduces calculations to the extent that it is worth­
while to accept the error introduced in exchange for the simplifica-
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Fig. 14.3. Comparison of the emission of black, grey, and selective emitting 
surfaces; t:._ = qJqbA• 

tion afforded. Both grey-body and selective emission are shown in 
Fig. 14.3. It must follow that for a grey body 

(14.7) 

The value of B used for a grey body is generally a function of the 
temperature of the surface, but again a simplifying assumption 
enables a suitable constant value to be used, irrespective of tempera­
ture, provided the range is not too large. Values of B for real materials, 
and the temperatures at which they are valid, are given in Table A.7 
(see p. 244). 

It is now apparent that materials exist for which a < 1 and also 
for which the emission is not equal to the black-body emission. By 
means of Kirchhoff's law the relationship between a and B may be 
established. 

14.4. Kirchhoff's Law 3 

Consider a small black body of area A1 completely enclosed by a 
larger body with an internal black surface area A 2 , as in Fig. 14.4. 
Both surfaces are at the same temperature. The small body will emit 
at the rate A 1aT4 and must also absorb energy at the same rate 
otherwise the temperature of the body will change. The concave 
surface A 2 will emit A 2aT4 , but only A 1aT4 of this is incident upon, 
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Fig. 14.4. To demonstrate Kirchhoff's law. 

and absorbed by, A 1 • If F is the fraction of energy leaving A 2 

which is absorbed by A 1 , then 

F- A1uT4- A1 
- Azo"T4- Az (14.8) 

The remainder of the energy emitted by A 2 will be re-absorbed by 
A 2 as it will miss A 1 • 

Now consider what happens when the black body of area A 1 is re­
placed by a grey body of identical dimensions, with an absorptivity 
of a and an emissivity of e, the temperature throughout remaining 
at T. Since there is again thermal equilibrium the energy actually 
absorbed on A 1 must equal the energy emitted by A 1 • The energy 
emitted by A 2 is A 2uT4 and this is also the radiosity of A 2 since 
nothing is reflected by A 2 • Of this, only FA 2uT4 will fall on A 1 

and only aFA2 uT4 will be absorbed. A 1 will itself emit eA 1uT4 
and this must equal the energy absorbed. 

But 

from (14.8) 

Therefore 

e=a (14.9) 

Thus, Kirchhoff's law, as stated by equation (14.9), says that the 
absorptivity is equal to the emissivity at any given temperature. 
It follows that for a black body for which a = 1, that e = 1 and, 
consequently, e < 1 for a grey body. Since it is possible to use a 
suitable value of e for grey bodies over a temperature range, the 
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value of r:t. over that range is the same. -This does not hold for real 
materials that are true selective emitters when the temperature 
difference is very large, because the bulk of the energy absorbed 
by either body is in a very different wave-length region than the 
energy emitted by that body. 

14.5. Intensity of Radiation 

The radiation from a unit area of black body is qb = aT4 • For 
diffuse radiation from a small flat area of black surface dA, the 
entire emittance Qb must pass through a hemispherical surface 
surrounding the emitting area. It is necessary to consider the 
distribution of radiant energy per unit area over the spherical 
surface, before calculations can be made of radiation exchanges. 

The intensity of black-body radiation, I, is the radiation emitted 
per unit time and unit solid angle subtended at the source, and per 
unit area of emitting surface normal to the mean direction in space, 
and may be expressed as 

(14.10) 

This is shown in Fig. 14.5. dA 2jr2 is the solid angle subtended by 
dA2• The radiant energy per unit area at the hemispherical surface is 
the radiant flux dQb/dA2• The surface of dA1 has been specified as 
diffuse, thus Lambert's law4 states that I is constant in the hemi­
spherical space above dA 1 . From the above definition of I it thus 

Fig.14.5. To evaluate intensity of radiation. 
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follows that dQJdA 2 will have a maximum value at any given r 
when cjJ = 0, i.e., when dA 2 is on the normal to dA 1 • Further, 
dQJdA2 is zero when cjJ = 90° and, in addition, dQb/dA2 will vary 
inversely as r 2 . In general, 

where the suffix n implies on the normal to dA 1 . 

For Lambert's law to be true, I for a black surface must depend 
on the absolute temperature only. From equation (14.10), 

(14.11) 

and from Fig. 14.6 it is seen that dA 2 = r dcjJ (r sin cjJ dO) = 
r 2 sin cjJ dcjJ dO. Hence 

dQb = I dA 1 sin cjJ cos cjJ dcjJ dO 

The total radiation passing through the hemispherical surface is 

Fig./4.6. Detailfrom Fig. 14.5. 

then 
Qb = IdA 1 f"'="12f8=2

" sincjJcosc/Jdc/JdO 
t/>=0 8=0 

ft/>=x/2 
= 2ni dA 1 <J>=o sin cjJ cos cjJ dcjJ 
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= nl dA 1 

I = qb = uT4 
1t 1t 

(14.12) 

14.6. Radiation Exchange between Black Surfaces 

It is now possible to consider the radiation exchange between two 
arbitrarily disposed black surfaces of area A1 and A 2 , and at 
temperatures T1 and T2 • Small elements of each surface dA 1 and 
dA 2 are considered as shown in Fig. 14.7. They are distance r 

Fig.14.7. Arbitrarily disposed black surfaces exchanging radiation. 

apart, and the line joining their centres makes angles r/J 1 and r/J 2 

to their normals. Each element of area subtends a solid angle at the 
centre of the other; these are dw 1 subtended at dA 1 by dA 2 , and 
dw 2 sub tended at dA 2 by dA 1 • The solid angles are given by: 

d _ dA 2 cos r/J 2 
(1)1- 2 ' r 

d d dA 1 cos r/J1 
an w2 = 2 r 

From equation (14.11) the radiant energy emitted by dA 1 

impinges on dA 2 is given by : 
that 

(dA 2 cos r/J 2 ) 
dQb0 _ 2> = I 1 dA 1 cos rjJ 1 r 2 (14.13) 

Since both surfaces are black this energy is absorbed by dA 2 • A 
similar quantity of energy is also radiated by dA 2 and absorbed by 
dA 1 expressed as 

(14.14) 
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The net exchange is 
dQb(1- 2) - dQb(2 -1) = dQb(l2) 

and 

Equation (14.12) is now used to give the final result 

dQ _adA 1dA2cos¢1cos¢2(T4 - T 4 ) 
b02l - nr2 1 2 (14.15) 

The total radiation exchange between the two surfaces A 1 ang A 2 
amounts to a summation of the net energy exchange between dA 1 
and all elements of area A 2, and the net exchange between all other 
elements of A1 and all elements of A 2 • From equation (14.13), the 
total energy radiated by A 1 that falls on A 2 is given by 

Q _ f i cos¢ 1cos¢2dA 1dA 2 
b(l - 2l - I 1 r2 

At Az 

= aTif i cos </> 1 cos </> 2 dA 1 dA 2 

nr2 
• At A2 

But the total energy radiated by A 1 is 

Qbol = A 1aT{ 

Hence the fraction of energy radiated by A1 that falls on A 2 is 

Qb(l-2l=_1_J f cos¢1cos¢2dA 1dA2 
Q A n~ b(1) 1 At Az 

= F1-2 (14.16) 

F 1 _ 2 is known as the geometric configuration factor of A 1 with 
respect to A 2 • Thus the energy radiated by A1 that falls on A2 may 
be expressed as 

(14.17) 

Similarly, from equation (14.14) the total energy radiated by A 2 

that falls on A 1 is given by 

4 I f cos 4>1 cos 4>2 dA1 dA2 
Qb(2-1l = aT 2 nr2 

At Az 
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and the total energy radiated by A 2 is A 2crTj:, so that 

Qb(2-ll = _1_ i i cos c/> 1 cos c/> 2 dA 1 dA2 
Q A n~ b(2) 2 At Az 

= F2-1 (14.18) 
and 

(14.19) 

From equations (14.16) and (14.18) it is seen that F1_2 and F2_ 1 are 
simply related : 

(14.20) 

The net radiation exchange from equations (14.17) and (14.19) can 
be expressed in terms of either configuration factor, thus 

Qb(t2l = Ft-2Atcr(Tf- Tj:) 

(14.21) 

It is necessary to know or to be able to c_alculate configuration 
factors before black-body radiation exchanges can be determined. 
Only a few results will be considered here, and the reader is referred 
elsewhere for further information on this subject. 1·5•6 

14.6.1. Examples of the Black-Body Geometric Configuration Factor 

(i) Cases where F1_2 = 1. The simplest case is when surface A1 is 
entirely convex and is completely enclosed by A 2 • Then F1_ 2 must 
be 1, since all the energy radiated by A1 must fall on A 2 • It follows 
also that F2 _ 1 is At! A 2 • In this case, the net black-body radiation 
exchange is 

(14.22) 

Another simple example is when surfaces A1 and A 2 are parallel 
and large, and radiation occurs across the gap between them, so 
that in this case A 1 = A 2 and all radiation emitted by one falls on 
the other if edge effects are neglected. Hence, 

F1-2 = F2-1 = 1 

Concentric surfaces may be included if the gap between them is 
small so that little error is introduced by the small difference 
between the area of A 1 and A 2. The net radiation exchange is again 
given by equation (14.22). 

G 
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(ii) Small arbitrarily disposed areas. In some circumstances it is pos­
sible to use equation (14.15) as it stands, if the areas dA 1 and dA 2 

are small. Thus the energy received by a small disc placed in front 
of a small window in a furnace could be approximately calculated 
this way. 

(iii) Thermocouple in a circular duct. A simple practical example of 
the geometric configuration factor is found in consideration of a 
thermocouple in a circular duct. It may be assumed that the thermo­
couple joint is represented by a small sphere and, further, that it is 
situated at the centre of a duct of length 2L and radius R. It is 
illustrated in Fig. 14.8. The line joining elements of area always 

y·;f; 
i dA -

-----~--

t-1- r-dl 

l--L I L__j 
Fig.14.8. The thermocouple configuration/actor. 

strikes the thermocouple joint normally, so cos 4J 1 is always 1. The 
element of area of the duct wall is 2nR dl. Since A 1 is a very small 
sphere of radius rc, dA 1 is the disc area nr:, and is constant. 

Applying equation (14.16) gives 

Qb(l-2) = dA 1 f cos 4J 2 ~nR dl 
Qb(tl At A2 nr 

But cos 4J 2 = R/r and r = (R 2 + /2 }!-

(14.23) 
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EXAMPLE 14.1 

A thermocouple situated at the centre of a circular duct 10 em 
diameter by 0·25 m long has a spherical bead 2 mm diameter. It 
reads 185°C with gas at 200°C flowing along the duct; the wall of 
the duct is at 140oC. Determine a convection coefficient for heat 
transfer between the gas and the bead, assuming radiating surfaces 
are black. 

Solution. Convection to the thermocouple from the gas is equal to 
the radiation exchange between the thermocouple and the wall. 

The configuration factor is (0·052 °:~~1252}! = 0·93. If h is the 

convection coefficient, and A the area of the bead, then 

Qb = 0·93 X A X 56·7 X 10- 4 [(;~~r- (;~~rJ = hA8 

where()= 200- 185 = 15 

52·7 X 10-4 (441 - 292) = 15 h 

h = 0·0523 kW/(m2 K) 

0·9~n~~• 0·8~ 

0·7 

0·6 ~l=l+l=l+h-t 

7 
'-l..- 0·4 

0·3 

0·2 

0·1 

1·0 2·0 3·0 4·0 5·0 6·0 
R 2 = W/D 

Fig. 14.9. Configuration factors for parallel opposed rectangles. (From A. J. 
Chapman, Heat Transfer, The Macmilllln Company, New York (1974). By 

permission of the publishers.) 
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(iv) Parallel and perpendicular rectangles. Radiation exchanges 
between finite parallel rectangles and perpendicular rectangles 
with a common edge occur in furnaces, etc., and details of the 
application of equation (14.16) to these cases may be found in ref. 6. 

Calculated values of the configuration factor are available in graphi­
cal form, shown in Fig. 14.9 for parallel rectangles and Fig. 14.10 
for perpendicular rectangles. 

N 
I 

'-'..-

R 1 = L/D = 0·02 
~-<.= 

0·5 

0·4 1---

f----
0·3 

0·2 
/ 

0·1 ./ -
0 
0·1 

0·05 
0·1 

v ·2 
./ -...... 

/ 
OA 

0·6 
./ 

!--' 1·0 
./ 1·5 

v v 2·0 
!.--' 

~ 

:....c;..-

0·2 0·3 0·4 0·6 0·81-0 
R 2 = WjD 

~ 

4·0 

6·0 10· 
20·0 

2·0 3·0 4·0 6·0 8·0 10 

Fig. 14.10. Configuration/actor for perpendicular rectangles with a comnwn 
edge. (From A. J. Chapman, Heat Transfer, The Macmillan Company, New 

York (1974). By permission of the publishers.) 

14.7. Grey-Body Radiation Exchanges 

When radiating surfaces are grey, the emissivities of those surfaces 
must be taken into account as well as their geometric configuration. 
To enable the equation for a net energy exchange to be written in 
a similar manner to that for black-body radiation. Hottel 8 intro­
duced a new factor $'. Thus a net exchange is expressed as 

Q<tz> = A,~- 2a(Tt- Ti) (14.24) 

The derivation of ff will be considered by means of an electrical 
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analogy of radiation. 7 In the case of a net black-body radiation 
exchange, (14.21) is compared with Ohm's law, so that 

Qb02> = F1 _ 2A1a(Ti- Ti) is equivalent to I= 11V/R 

Hence 

Qb(t2> =I; a(yt- Ti) = 11V; 

The corresponding electric circuit is shown in Fig. 14.11. 

R=-1-
AtFt-2 

Surface 1 o---c===::J---- Surface 2 
V1 = uTt V2 = uT~ 

Fig. 14.11. An equivalent electric circuit for a net black-body radiation 
exchange Qb(llJ = A 1F1 _ 2u(Tt- T~). 

An important initial assumption is that each radiating surface 
has a constant value of p and e over the whole surface. From the 
definitions of radiosity and irradiation in section 14.2 it follows that 
the net rate at which energy leaves a grey surface is the difference 
J - G, and from equation (14.3) 

J = eQb + pG 

1 _ G = 1 _ J - eQb 
p 

and since p + e = 1 for opaque surfaces, this reduces to 

e 
J - G = -(Qb - J) 

p 
If two surfaces only are involved, and these form an enclosure, this 
is also the net energy exchange between them, Q02>, and the equa­
tion may be compared with Ohm's law so that Qb/A, which is aT4 , 

and J /A are potentials and p/Ae is the resistance. The correspond­
ing circuit element for either surface is shown in Fig. i4.12. 

R = _p__ 
Ae 

o---c=:J-o 
V= QJA V= J/A 

Fig.l4.12. 

Hence 
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Further, for surfaces of area A 1 and A 2 (at temperatures T1 and 
T2 ) which have configuration factors of f 1 _ 2 and F2- 1, the net 
energy exchange is also the difference between the total radiation 
leaving A 1 which reaches A 2, and the total radiation leaving A 2 
which reaches A 1 • Thus 

Q(t2) = (~:)AtFt-2- (~:)A2F2-1 
But, from the reciprocal relationship, A 1F1 _ 2 = A2F2_ 1 , 

( J! J2) Q02> = --- AtFt-2 
AI A2 

This may also be represented by a circuit element, with potentials 
JdA 1 and J 2 /A 2 and resistance 1/A 1F1 _ 2 , as shown in Fig. 14.13. 

R=-1-
AtFt-2 

o--r==J---0 
V = JtfAt V= J 2/A2 

Fig.J4.13. 

To simulate completely an energy exchange between the surfaces 
A 1 and A 2 , three circuit elements may be joined in series as shown 
in Fig. 14.14, the whole circuit now being compared to equation 
(14.24). oT1 and uTi are the end potentials (equivalent to Qb(t)/A 1 
and Qb<z/ A2), and the total resistance is 

~+ 1 +~ 
A1e1 A 1F1 _ 2 A 2e2 

R=-1-
AtFt-2 

1 

A2F2-1 

Fig. 14.14. Complete circuit for radiation exchange between two grey surfaces 
forming an enclosure. 
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From equation (14.24) the resistance is also given by 1/ A 1 ~ _ 2 , 

hence 
1 Pt 1 P2 ---=--+ +--

A!~-2 A 1e1 A 1F1 _ 2 A 2e2 

Multiplying both sides by A1 and substituting 1 - e for p gives 

1 (1 - e1 ) 1 A 1 (1- e2 ) --- -- +--+----
ffl-2 e1 F1 _ 2 A 2 e2 

(14.25) 

This result may be used for any two surfaces of area A 1 and A 2 , 

provided they form an enclosure, for which the configuration factor 
is F1 _ 2 . Equation (14.25) simplifies for the special case of infinite 
parallel or concentric grey planes for which F1 _ 2 = 1 and A 1 = A 2 • 

Then, 
1 

~-2=-----
1 1 
-+--1 

(14.26) 

e1 e2 

This result can also be readily achieved without reference to the 
equivalent electric circuit. 

A further simple result which is useful is that if A 1 is completely 
enclosed by A 2 , so that F 1 _ 2 = 1, and A 2 is large compared with 
A 1 so that 

then equation (14.25) reduces to 

(14.27) 

EXAMPLE 14.2 

A small oven measures 0·4 m by 0·5 m by 0·3 m high. The floor of 
the oven receives radiation from all the walls and roof which are at 
300°C and have an emissivity of 0·8. The floor is maintained at 
150°C and has an emissivity of0·6. Calculate the radiation exchange. 

Solution. A 1 is the total area of walls and roof, which is 0·74 m2 . 
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A 2 is the area of the floor, 0·2 m2 . Since A 1 encloses A 2 , F2 _ 1 = 1 
and F 1 _ 2 = A 2/A 1 = 0·27. 

The grey-body factor g;_ _ 2 is ( 1 ) ( ) 
- - 1 + - 1- + 3·7 -1 - 1 
0·8 0·27 0·6 

1 

= 0·156 

The radiation exchange is 

[(573)4 (423)4
] 0·156 X 0·74 X 56·7 X 10- 4 100 - 100 = 0·495 kW 

14.8. Non-luminous Gas Radiation 

The more simple gas molecules such as the monatomic gases, and 
diatomic gases of symmetric structure such as oxygen and nitrogen, 
are effectively transparent to thermal radiation. However other gases 
and vapours are good absorbers and emitters, and gas radiation 
plays an important part in many practical heat transfer calculations. 

The absorptive properties of a gas layer or volume depend on 
the wave-lenth of the incident radiation, and on a function of the 
number of gas molecules in the path length, expressed as a function of 
path length and partial pressure. Thus 

di._ = -I._a._pdx 

expresses the reduction of intensity of the monochromatic incident 
beam in passing through a distance dx at partial pressure p, where a._ 
is the absorption coefficient. If I._ has the value I ._0 at x = 0, this will 
integrate to give 

(14.28) 

In terms of the transmissivity 'r ._, I._ = I ._0 "C._, and hence the trans­
missivity is given by 

(14.29) 

Since 'r._ +IX._ = 1 for a gas, it follows that 

(14.30) 

This is also equal to the emissivity e._ if Kirchhoff's law is assumed to 
be valid. 
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In order to calculate a radiation exchange between a gas volume 
and an enclosing surface, account must be taken of radiation entering 
the gas volume from all directions. This would lead to the determina­
tion of emissivity (e8) and absorptivity (ctg) for a particular size and 
shape of gas volume. Such calculations are necessarily complex. 
However Hottel9 has shown that gas volume shapes of practical 
interest can be compared to equivalent hemispheres, where the 
radiation from the surface to the centre of the base has a constant 
path length, the radius, which is known as the mean beam length 
for gas volume. Table 14.1 shows examples of mean beam length 
for simple shapes. 

Table 14.1. Beam lengths of some simple gas volume shapes 

Shape 

Sphere 
Infinite Cylinder 
Cube 
Space outside infinite bank of tubes, 

centres on equilateral triangles, 
diameter = clearance 

Characteristic 
dimension, D 

Diameter 
Diameter 

Length of side 

Clearance 

Mean beam 
length 

0·66D 
D 

0·66 D 

3-4D 

The mean beam length of any shape may be calculated approxi­
mately as L = 3·4 x (volume of gas)/(area of enclosing surface). 

Hottel has also made available extensive empirical data on the 
emissivities of radiating gases which are presented as a function of 
the product of partial pressure and beam length. Data for carbon 
dioxide and water vapour are given in Appendix 4, together with 
the procedure for calculating eg and IXg for gas mixtures. 

14.8.1. Calculation of Radiation Exchange between Non-luminous 
Gases and Containing Surfaces 

(a) Black Surfaces. If the gas volume is enclosed by a black surface of 
area A, the rate of radiation from the gas to the surface is 

Q(g-s) = egAcrr: (14.31) 
where ~ is the absolute temperature of the gas. The rate of radiation 
from the surface absorbed by the gas is 

Q(s-g) = IXgAcrT: 
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Hence the net exchange between the gas and surface is 

Q(gs) = aA(egr;-- a.g~) (14.32) 

(b) Grey Surfaces. For the case of grey surfaces, the electrical network 
analogy of Section 14.7 may be used. Figure 14.5 shows a gas 
contained by two grey surfaces at T1 and T2 together with the analogy 
circuit. It is assumed all radiation leaving surface 1 is transmitted 
through the gas to reach surface 2. 

Fig. 14.15. Electrical analogy of gas radiation in11ol11ing two grey surfaces. 

The radiation leaving surface 1 transmitted to surface 2 is J1 F1 _ 2 -rg, 
and that leaving surface 2 transmitted to surface 1 is J2F2 _ 1 -rg. 
Hence the net exchange between surfaces by transmission is 
J1 F1 _ 2-rg- J2F2_ 1-rg. Using the reciprocal relationship A 1F1 _ 2 = 

A2F2-1' 

Q(s1s2) = AlFl-2(1- a.g)(JdA1- J2/A2) 

This gives the top resistance in the circuit between the JdA1 and 
J2/A2 nodes. The gas emits egar;-, of this Fg_ 1egT: reaches surface 1. 
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The radiation leaving surface 1 absorbed by the gas is J 1 F1 _ga.g, 

hence the exchange between surface 1 and the gas is 

Q<•tgl = All';_ -l·g(JdAl - ar:) 

assuming a.g = c:g, and the reciprocal relation A 1 F1 _ g = AgF _1 • A 
similar relation exists between the gas and surface 2. Thus th: resis­
tances between the JdA 1 and aT: nodes, aPJ.d the l 2/A2 and ar: 
nodes are obtained. The aT: node is a source or sink node unless 
there is no chemical reaction when it becomes a floating potential 
between the J1/A1 and J2/A 2 values. For a gas contained by a 
single grey surface the circuit consists of the two resistances between 
the a7'1, J 1/A1 and ar: nodes only. 

14.9. Solar Radiation 

Interest in solar radiation as an energy. source has increased sub­
stantially in recent years as the finite limits of fossil fuel reserves 
have become more apparent. Even in Great Britain useful amounts 
of sunshine are available either for direct conversion to electricity in 
photo-voltaic cells or for absorption as low grade heat in flat plate 
collectors. 

The energy reaching the outer atmosphere of the earth may be 
calculated approximately by assuming the earth to be seen as a 
disc of radius 6436 km at a radial distance of 150·6 x 106 km from 
the sun. Hence the percentage of the sun's radiation reaching the 
earth is (1t X 64362)/(41t X 1012 X 150·62) X 100 = 4·56 X 10- 8 per 
cent. The sun may be assumed a black-body emitter having a surface 
temperature of 6000 K and surface area of 6·131 x 1018 m2, 

therefore the emission is 56·7 x 10- 12 x 6·131 x 1018 x 60004 

= 4·506 x 1023 kW. Consequently the amount reaching the outer 
atmosphere based on the earth's disc area is 21·4 x 1013 kW, or 
1·646 k W /m2 of earth's surface. 

The measured quantity of energy received on unit area perpen­
dicular to the sun's rays outside the earth's atmosphere at the mean 
distance between the sun and the earth is known as the solar constant. 
This is 2·00 calf(cm2 min) or 1·388 kW/m2, rather less than the result 
of the approximate calculation. 

Amounts reaching the surface of the earth which may be put to 
use are very much less, and indeed, at Kew the annual mean radia-
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tion received averaged over 24 hours is of the order of 100 W/m2• 

Corresponding figures for the United States and Australia are about 
180 and 200W/m2 • 

From these figures it is possible to carry out feasibility studies of, 
say, flat plate collectors for domestic hot water and lighting, bearing 
in mind a collection efficiency of 10--15 per cent for conversion to 
electricity using semi.oconductor devices, and 50--70 per cent for 
conversion to low-grade heat, by absorption on black surfaces 
under glass. 

EXAMPLE 14.3 

A flat plate solar collector has a selective surface with an absorptivity 
of 0·92 and an emissivity of 0·15. The coefficient for heat loss by 
convection is 0·003 kW/(m2 K). If the area is 20m2 calculate the 
rate of energy collection, and the collection efficiency at a time when 
the solar insolation is 800 W /m2, for a collector temperature of 
60°C and an ambient temperature of 18°C. 

Solution. The rate of collection is 0·92 x 0·8 kW, less the losses, 
per m2• The radiation loss is uer per m2 = 56·7 X 10- 12 X 0·15 
x 3334 = 0·105 kW/m2• The convection loss is 0·003 (60 - 18) 
= 0·126 kW/m2 • 

Hence the net rate of collection is 0·92 x 0·8 - 0·105 - 0·126 
= 0·505 kW/m2• Hence the rate of collection for 20m2 = 10·1 kW. 
The collection efficiency = (0·505/0·8) x 100 = 6H per cent. 

PROBLEMS 

1. An electric oven is internally a 0·3 m cube. The back wall is maintained at 
300°C and other surfaces may be assumed to be at a uniform l00°C. The 
emissivity of all surfaces is 0·8. Calculate the grey-body configuration 
factor and the net radiation transfer from the heated wall. (Ans.: 0·77; 
0·348kW.) 

2. A spherical thermocouple is situated at the middle of the length and on 
the axis of a pipe of length L and diameter D to measure the temperature of 
the gas flowing through the pipe. Assuming that the couple is so small in 
comparison with the duct that the surface ofthe couple is always perpendicular 
to the direction of radiation, deduce from first principles the expression 

L 
Fh-c = .j(D2 + Ll) 



BLACK- AND GREY-BODY RADIATION 223 

which gives the 'area factor' of the system. Both the couple and the pipe may 
be considered to be black bodies. 

In an installation similar to that described above, the thermocouple is 
3 mm in diameter and the pipe is 0·92 m long and 0· 31 m in diameter. The gas 
temperature is 149°C and the internal surface of the pipe is 65·6°C. Heat is 
being transferred from the gas to the couple at the rate of0·79 kW/m2• What 
would be the reading of the thermocouple if both the couple and the pipe 
can be considered as black? The expression for the area factor given above 
may be used. (Ans. 136°C.) (King's College, London). 

3. A thermocouple situated in the passage of an air pre-heater may be con­
sidered to be a sphere of 1·9 mm diameter and of emissivity 0·56. The passage 
may be regarded as a black spherical enclosure. 

The air flows along the passage at 2·44 m/s, and the heat transfer by convec­
tion between the air and the spherical thermocouple element is given by 
Hd/k = 0-4Re0 .65 , with the diameter of the sphere as the characteristic 
dimension. 

A galvanometer connected to this thermocouple indicates a temperature 
of 316°C whilst that connected to a thermocouple embedded in the wall of 
the duct indicates a temperature of 455°C. Calculate the true temperature of 
the air. (Ans. 288°C.) (King's College, London). 

4. A galvanized steel pipe of outside diameter 7·62 em passes through a large 
enclosure containing air in which the walls are at 26·7°C. The surface coeffi­
cient of heat transfer by convection to the air is 8·52 x 10- 3 kW/(m2 K). The 
pipe surface has an emissivity of 0·28 and a constant temperature of 99°C. 
Determine the apparent coefficient of heat transfer due to radiation. 

It is proposed to cover the pipe with a layer of asbestos felt, 0·159 em thick. 
Assuming as a first approximation that the apparent radiation coefficient is 
independent of temperature, and that the temperature of the pipe remains 
constant, estimate the equilibrium temperature of the outer surface of the 
asbestos and compare the rates of heat transfer from the pipe with and 
without insulation. Comment on the result in the light of the assumptions 
made. 

For asbestos, conductivity is 86·5 x 10- 6 kW/(m K), emissivity is 0·93. 
(Ans. 2-43 x 10- 3 kW/(m2 K), 68·8°C, 0·23 and 0·19 kW/m.) (University of 
London). 

5. Two large parallel plates, 1 and 2, having emissivities on their inner faces 
of 0·5 and 0·8 are maintained at 300° and lOOoC respectively. A third plate 
having unknown emissivities on its faces A and B is placed between the 
other two plates. When face A is pointing towards plate 1, the third plate 
reaches an equilibrium of 278°C. When the third plate is turned round so 
that face B is pointing towards plate 1, its equilibrium temperature drops to 
140°C. Determine the emissivities of the two faces A and B. (Ans. Face A, 
B = 0·916, Face B, B = 0·102.) (The City University). 

6. An air heater consists of a cylindrical former 0·508 m long and 1·9 em 
diameter closely wound with thin resistance wire. The heater is installed 
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across a rectangular duct 0·508 m wide by 0·127 m across, into which air is 
blown at a speed of 7·15 mjs at 15·6oC and 1·013 bar. The wire surface 
temperature is maintained at 550°C and its emissivity is 0·85. The duct walls, 
at 15·6oC may be assumed black to incident radiant heat. Convective transfer 
is correlated by 

- = 0·26 -- __ P hd (pUd)0·6 (J.l.C )0 ·3 

k J.1. k 

where U is the cold entry velocity. Estimate the kilowatt input to the heater. 
Predict the effect of varying former diameter d by establishing an expression 
for air temperature rise in terms of d. (Ans. 1·72 kW.) (University of Glasgow). 

7. Calculate the rate of energy absorption on a flat plate heat collector 
positioned normally to the sun's radiation, given the information in Section 
14·9, plus the following: collector area 20m2, absorptivity to solar radiation 
0·96, emissivity of plate 0·2, transmissivity of upper atmosphere 0·626, 
collector surface temperature 68°C, atmospheric temperature 20°C, 
natural convection coefficient from collector 0·003 kW/(m2 K). (Ans. 10·75 
kW.) 

8. A billet reheating furnace has a brick interior 10m x 3m x l m. The 
brick surface has an emissivity of 0·85 and is maintained at 900°C. Billets 
pass slowly and continuously through the furnace on a moving floor and 
may be assumed to receive heat transfer to an exposed surface area of 30m2 • 

Combustion gases, assumed transparent to radiation, at 900°C pass through 
the furnace. The convection coefficient between gases and billets is 0·05 
kW/(m2 K). The emissivity of the billets is 0·7. Calculate the total furnace 
heat output for a mean billet temperature of 450°C, and the percentages of 
this output which are due to (a) radiation, and (b) convection. (Ans. 2485 kW, 
(a) 72-8%, (b) 27·2 %.) (The City University). 

9. Distinguish briefly between the various factors commonly used to modify 
the simple Stefan-Boltzmann relation for transfer of heat by radiation. 

A furnace consists essentially of a long refractory tube, cross-section 
rectangular 0·305 m by 0·203 m. The furnace encloses a heat-resisting steel 
pipe of 7·62 em o.d. The furnace wall temperature is maintained at 872°C, 
the pipe surface at 371°C. Assuming both surfaces to be grey, calculate the 
net rate of heat transfer by radiation. 

Emissivity of furnace wall = 0·8; emissivity of steel = 0-40. 
In the usual nomenclature: 

1/§; 2 = 1/Fll + (1/e 1 - 1) + (A 1/A 2 )(1/e2 - 1) 

(Ans. 8·26 kW/m.) (University of Leeds). 

10. An annular combustion chamber is contained between an inner 
cylinder of 1·83 and an outer cylinder of 2·44 m diameter. Combustion gases 
within the annular space have a mean temperature of 870°C and they con-
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tain 8 per cent by volume of each of carbon dioxide and water vapour. The 
pressure within the combustion chamber is 2 atmospheres. The outer 
cylinder is maintained at 424 oc and the inner cylinder at 488°C. Calculate 
the net radiation from the gas perm length of chamber, and the heat extracted 
from each wall. The emissivity of the inner wall is 0·9, and of the outer wall 
0·6. (Ans. 258 kW/m, inner 126·8 kW/m, outer 131·2 kW/m.) (The City 
University). 

11. A molten metal bath is heated in a furnace by hot gases which pass 
between the surface of the metal and a suspended brick roof. The hot gases 
which may be considered non-radiating are at 1370oC and the brick roof is 
at 1094°C. There is no heat loss through the furnace roof, all heat reaching it 
being radiated to the metal surface. Convective heat transfer coefficients are: 
from gas to roof, 28·4 x 10- 3 kW/(m2 K), gas to molten metal, 39·8 x 10- 3 

kW/(m2 K). From the radiation viewpoint the roof and metal surface are of 
equal area and may be regarded as infinite parallel planes. The roof may be 
taken as black, and the metal surface as grey, emissivity D-2. 

Calculate the total rate of heat transfer to the molten metal per square 
metre of surface. (Ans. 21·87 k W fm2). (University of Leeds). 
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Appendix 1 

Heat Transfer Literature 
The following is a list of journals, proceedings, and bibliography 
which may be consulted in order to keep abreast of the most recently 
published work in heat transfer. 

The International Journal of Heat and Mass Transfer, Pergamon 
Press, monthly 

The Journal of Mechanical Engineering Science, The Institution of 
Mechnical Engineers, bi-monthly. 

Journal of Heat Transfer, Transactions of the American Society of 
Mechanical Engineers, Series C, quarterly. 

Proceedings of the International Heat Transfer Conferences, e.g., 
4th 1970 (Paris), 5th 1974 (Tokyo), Elsevier Publishing Company, 
Amsterdam. 

Progress in Heat and Mass Transfer, Monograph Series of the 
International Journal of Heat and Mass Transfer, Pergamon 
Press. 

Advances in Heat Transfer, Academic Press, New York. 
Proceedings of the Heat Transfer and Fluid Mechanics Institute, 

Stanford University Press, California. 
Heat Bibliography, HMSO London, annual. 
Reports of the National Engineering Laboratory, East Kilbride, 

(available on request). 
The Engineering Index, Engineering Index, Inc., New York. 
Applied Science and Technology Index, The H. W. Wilson Company, 

New York. 
The British Technology Index, The Library Association, London. 
ISMEC Bulletin, Information Service in Mechanical Engineering. 

The Institution of Mechanical Engineers. 
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Science Abstracts A, Physics Abstracts, The Institution of Electrical 
Engineers. 

Science Abstracts B, Electrical and Electronic Abstracts, The 
Institution of Electrical Engineers and The Institute of Electrical 
and Electronic Engineers, Inc. 

Appendix 2 
Units and Conversion Factors 
SI units are used exclusively in this book. However, much of the 
existing heat transfer literature is in British units, and SI-British 
conversion factors are therefore included. The kJ and kW are 
accepted alternatives to the J and W in the use of SI units. They are 
the units of energy and power generally used in the teaching of 
engineering thermodynamics and are the preferred units used in this 
book. For a complete discussion see The UseofSI Units, published 
by the British Standards Institution, PD 5686: 1972. 

The Basic SI units are: 

Mass 
Length 
Time 
Temperature 

1 kg = 2·2046lb 
1 m = 3·2808 ft 
1 S = 2·778 X 10- 4 h 
1 K = 1·8 °Rankine 

Derived SI units are: 

Force 
Pressure 

Density 
Specific 

volume 
Energy 
Power 

1 N = 0·2248 lbf (1 newton = 1 kg mjs2) 

1 Pa = 14·5 x 10- 5 lbf/in2 (1 pascal= 1 Njm2) 

1 bar = 105 Pa = 14·5lbf/in2 

1 kgjm3 = 0·06243 lb/ft3 

1 m3jkg = 16·0179ft3 jlb 
1 J = 1 Nm; 1 kJ = 103 Nm = 737·6 ft lbf 
1 W = 1 Nm/s; 1 kW = 737·6ftlbf/s = 1·341 h.p. 
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Table A.2. Thermal Properties of Solids: non-Metals 

c" x 103 p t k X 103 IX 

(k~1K) (:~) (OC) (~:) (~2) 

Bakelite 1590 1273 20 0·232 0·0114 x w- s 
Bricks: 

Common 837 1602 20 0·692 0·0516 
Face 2050 20 1·32 
Chrome 837 3011 200 2·32 0·0929 

550 2-48 0·0981 
900 1·99 0·0800 

Diatomaceous earth 204 0·242 
(fired) 872 0·312 

Fire clay 
(burnt 1450°C) 963 2323 500 1·28 0·0568 

800 1·37 0·0619 
1100 1·402 0·0619 

Magnesite 1130 204 3·81 
648 2·77 

1204 1·90 
Concrete 879 1906- 20 0·814- 0·0490-

2307 1-40 0·0697 
Glass, plate 837 2707 20 0·762 0·0336 
Plaster, gypsum 837 1442 21 0·485 0·0413 
Stone: 

Granite 816 2643 1·73- 0·0800-
3·98 0·183 

Limestone 908 2483 99 1-26 0·0568 
299 1·33 0·0594 

Marble 808 2499- 20 2·77 0·0394 
2707 

Sandstone 712 2163- 20 1·63- 0·106-
2307 2·08 0·127 

Wood, cross grain : 
Cypress 464 30 0·097 
Fir 2721 417 24 0·109 0·0095 
Oak 2387 609-481 30 0·166 0·0126 
Yellow pine 2805 641 24 0·147 0·0083 

Wood, radial: 
Oak 2387 609- 20 0·173- 0·0111-

481 0·207 0·0121 
Fir 2721 417 20 0·138 0·0124 
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Table A.2. Continued 

cP x 103 p t k X 103 ex 

(k~JK) (~~) (OC) (~:) (~2) 

Asbestos 816 577 0 0·151 
816 577 100 0·192 

Cotton 1298 80·1 20 0·0589 0·194 

Cork, board 160 30 0·0433 
Cork, expanded scrap 1884 44·8- 20 0·0363 0·0155-

119 0·0439 
Earth, coarse gravelly 1842 2050 20 0·519 0·0139 
Felt, wool 330 30 0·0519 
Fibre, insulating board 237 21 0·0485 
Glass wool 670 200 20 0·0398 0·0284 
Ice 1926 913 0 2·22 0·124 
Silk 1382 57·7 20 0·0363 0·0439 

Adapted from A. J. Chapman, Heat Transfer, The Macmillan Company, New York 
(1960); L. S. Marks, Mechanical Engineers' Handbook, 5th ed., McGraw-Hill Book 
Company, Inc., New York (1951); W. H. McAdams, Heat Transmission, 3rd ed., 
McGraw-Hill Book Company, Inc., New York (1954); and E. R. G. Eckert and R. M. 
Drake, Jr., Heat and Mass Transfer, McGraw-Hill Book Company, Inc., New York 
(1959). 
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Table A3. Thermal Conductivity of Some Building Materials 

Asbestos cement sheet 
Asbestos felt 
Asbestos insulating board 
Asphalt, roofing 
Brick, common, dry 
Brick, wet 
Chipboard 
Concrete, gravel1:2:4 

vermiculite aggregate 
cellular 

Cork, granulated, raw 
slab, raw 

Fibreboard 
Glass, window 
Glassfibre, mat 
Hardboard 
Plasterboard, 'gypsum 
Polystyrene, expanded board 
Polyurethane foam 
Polyvinyl chloride, rigid foam 
Roofing felt 
Tiles, clay 
Tiles, concrete 
Tiles, PVC asbestos 
Urea formaldehyde foam 
Vermiculite granules 
Wilton carpet 

1520 
144 

72~900 
1920 
1760 
2034 

35~1360 
224~2480 

40~880 
32~1600 

115 
160 

28~20 
2500 

50 
560 

1120 
15 
30 

25-80 
96~1120 

1900 
2100 
2000 
8-30 
100 

k(W/(mK)) 

0·29-0·43 
0·078 

0·11-0·21 
0·58 
0·81 
1-67 

0·07-0·21 
1·4 

0·11-0·26 
0·08-0·65 

0·046 
0·05 

0·05-0·08 
1·05 
0·033 
0·08 
0·16 
0·037 
0·026 

0·035-0·041 
0·19-0·20 

0·85 
HO 
0·85 

0·032-0·038 
0·065 
0·058 

k(W/(mK)) 
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Table A3. Continued 

U values for Building structures, based on the difference between 
inside and outside environment temperatures, and for sheltered, 
normal and severe external exposure, in W/(m2 K). 

Sheltered Normal Severe 

260 mm cavity wall, 105 mm inner 
and outer leaves, plus 16 mm 
lightplaster on inner face 1·3 1·3 1·3 

220 mm solid wall, with 16 mm light 
plaster 1·8 1·9 2·0 

335 mm solid wall, with 16 m light 
plaster 1-4 1·5 1-6 

Pitched roof, tiles on battens with 
roofing felt, roof space, foil 
backed plasterboard ceiling 1-4 1·5 1-6 

As above, plus 50 mm glass fibre loft 
insulation 0·49 0·5 ()-51 

Window, single glazing, 30% area 
due to wood frame 3·8 4·3 5·0 

As above, double glazing 2-3 2·5 2·7 

From the IHVE Guide Book A, 1970, 4th ed., The Institution of Heating and Ventilat­
ing Engineers, London. The above U values and thermal conductivities are a brief 
extract only (used by permission of the Institution of Heating and Ventilating 
Engineers). 
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Table A.7. Normal Total Emissivity of Various Surfaces 

Ref. t Emissivity 
("C) 

Aluminium: 
Highly polished plate, 98· 3% pure 11 237-576 (}039--0·057 
Rough polish 1 100 0·18 
Commercial sheet 1 100 0·09 
Heavily oxidized 2 93-505 0·20--0·31 
Al-surfaced roofing 5 38 0·216 

Brass: 
Highly polished, 73·2 Cu, 26·7 Zn 11 247-357 0·028--0·031 
Polished 1 100 0·06 
Rolled plate, natural surface 10 22 0·06 

Chromium, polished 1 100 (}075 
Copper: 

Carefully polished electrolytic copper 6 80 0·018 
Polished 1 100 (}052 
Molten 3 1076--1278 0·16--0·13 

Iron and steel : 
Steel, polished 1 100 (}066 
Iron, polished 12 427-1028 0·14--0·38 
Cast iron, polished 9 200 0·21 
Cast iron, newly turned 10 22 0·44 
Wrought iron, highly polished 16 38-249 0·28 
Iron plate, completely rusted 10 19 0·69 
Sheet steel, shiny oxide layer 10 24 0·82 
Steel plate, rough 5 38-372 0·94--0·97 
Cast iron, molten 15 1300-1400 0·29 
Steel, molten 7 1522-1650 0·43--0·40 
Stainless steel, polished 1 100 0·074 

Lead, grey oxidized 10 24 0·28 
Magnesium oxide 8 278-827 0·55--0·20 
Nichrome wire, bright 14 49-1000 0·65--0·79 
Nickel-silver, polished 1 100 0·135 
Platinum filament 4 27-1230 0·036--0·192 
Silver, polished, pure 11 227-627 0·02--0·032 
Tin, bright tinned iron 10 23 0·043, 0·064 
Tungsten filament 18 3320 0·39 
Zinc, galvanized sheet iron, fairly 

bright 10 28 0·23 
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Table A.7. Continued 

Ref. t 
(OC) 

Asbestos board 10 23 
Brick: 

Red, rough 10 21 
Building 14 1000 
Fireclay 14 1000 
Magnesite, refractory 14 1000 

Candle soot 17 97-272 
Lampblack, other blacks 14 50-1000 
Graphite, pressed, filed surface 8 249-516 
Concrete tiles 14 1000 
Enamel, white fused, on iron 10 19 
Glass, smooth 10 22 
Oak, planed 10 21 
Flat black lacquer 5 38-94 
Oil paints. 16 different, all colours 13 100 
Aluminium paints, various 13 100 
Radiator paint, bronze 1 100 
Paper, thin, pasted on blackened plate 10 19 
Plaster, rough lime 16 10-87 
Roofing paper 10 21 
Water (calculated from spectral data) 0-100 

245 

Emissivity 

0·96 

0·93 
0-45 
0·75 
0·38 
0·952 
0·96 
0·98 
0·63 
0·90 
0·94 
0·90 

0·96-0·98 
0·92-0·96 
0·27-0·67 

0·51 
0·92. 0·94 

0·91 
0·91 

0·95-0·963 

(Note: When temperatures and emissivities appear in pairs separated by dashes, 
they correspond; and linear interpolation is permissible.) 
By courtesy of H. C. Hottel, from Heat TransmisJion, 3rd ed., by W. H. McAdams, 
McGraw-Hill Book Company, Inc., New York (1954). 
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Table A.8. Diffusion Coefficients 

p (T)l·Bl 
Water in air: D (m2/s) = 2·3 x 10-s ; To 

Po = 0·98 bar; T0 = 256 K 

Diffusing Medium of Temperature Diffusion Schmidt 
material diffusion coefficient number 

(OC) (m2/s) (v/D) 

NH3 Air 0 0·216 X 10- 4 0·634 
C02 Air 0 0·120 1-14 
C02 Hz 18 0·605 0·158 
Hg Nz 19 32·515 0·00424 
02 Air 0 0·153 0·895 
02 Nz 12 ()-203 0·681 
Hz Air 0 0·547 0·250 
Hz 02 14 0·775 0·182 
Hz Nz 12·5 0·738 ()-187 
H20 Air 8 0·206 ()-615 
H 20 Air 16 0·281 0·488 
C6H6 Air 0 0·075 1·83 
C6H6 C02 0 0·053 1-37 
C6H6 Hz 0 0·294 3·26 
CS2 Air 20 0·088 1·68 
Ether Air 20 0·077 1·93 

Ethyl alcohol Air 0 0·101 1·36 
Ethyl alcohol Air 40 0·118 1·45 

Adapted from Table A-9, E. R. G. Eckert and R. M. Drake, Jr., Heat and Mass 
Transfer, McGraw-Hill Book Company, Inc., New York (1959). 



Appendix 4 
Gas Emissivities 
The curves in Figs. Al and A2 give respectively emissivities of carbon 
dioxide and water vapour. In each case there are separate curves for 
constant values of the product of partial pressure and mean beam 
length. As the total pressure is increased, the lines of the C02 

spectrum broaden, and a correction factor from Fig. A3 is applied 
for pressures other than 1 atmosphere. In the case of water vapour, 
the emissivity depends on the actual partial pressure and the total 
pressure as well as on the product of partial pressure and beam length. 

Pco2 L = 0'001 m bar 

HXXJK 1500K 200)K 2500K 

Fig. A 1 Emissif!ity of carbon dioxide; adapted from W. H. McAdams, 
Heat Transfer, McGraw-HiU Book Company, 3rd ed., New York (1954); 

by permission of the publishers. 
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0·8 
0·6 
0·5 
0·4 
0·3 

Fig. A2. Emissillity of water llapour; adapted from W. H. McAdams, Heat 
Transmission, 3rd ed. McGraw-HiU Book Company, New York (1954); 

by permission of the publishers. 

Hence Fig. A2 is for actual partial pressures extrapolated to zero, 
and the emissivity is multiplied by a correction factor from Fig. A4. 
When carbon dioxide and water vapour are both present the sum of 
emissivities is reduced by a value & obtained from Fig. AS, to 
allow for mutual absorption. Thus s8 = Ss2o + Sco2 - ~e. To 
estimate absorptivities to radiation from enclosing surfaces, which 
depend on the gas temperature as well as the surface temperature, 
Hottel recommends an emissivity figure (s) is first determined at 
the surface temperature and at (pL)(T./~). Then 

!Xco2 = s(~/1'.)0·65 

~2o = s(~/1'.)0·45 
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Pco L m bar 
2 

5·0 
total pressure, atm 

Fig. A3. Adapted from W. H. McAdams, Heat Transmission, 3rd ed., 
McGraw-HiU Book Company, New York (1954); by permission of the 

publishers. 

(total pressure + PH20 ) 12, atm 

Fig. A4. Adapted from W. H. McAdams, Heat Transmission, 3rd ed., 
McGraw-HiU Book Company, New York (1954); by permission of the 

publishers. 

400K 810K >HOOK 

PH2o PH20 PH20 

Pco2 + PH2o Pco2 + PHp Pco2 + PH20 

Fig. AS. Adapted from W. H. McAdams, Heat Transmission, McGraw-Hill 
Book Company, New York (1954); by permission of the publishers. For 
lines of constant Pco. L + P820 L, in m bar, 1-1·5 m bar, 2-1·0 m bar, 3-JJ·6 

m bar, 4-JJ·S m bar, 6-JJ·2 m bar, 7-lJ·1 m bar. 
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Then the correction factors are applied as in the case of emissivity 
determination, and finally the mutual absorption correction is 
similarly made. 

EXAMPLE 

A 1·5 m cubic chamber contains a gas mixture at a total pressure of 
2·0 bar and a temperature of 1000 K. The gas contains 5 per cent 
by volume of carbon dioxide and 10 per cent water vapour. Determine 
the emissivity of the gas mixture. 

Solution. The beam length is (2/3) x 1· 5 m = 1·0 m. 

pL(C02) = 0·1 m bar, B = 0·112 

pL(H20) = 0·2 m bar, 8 = 0·18. 

The correction factor for C02 at 1·97 atm = 1-15 from Fig. A3, and 
for H 20 at (0·197 + 1·97)/2 = 1·083 atm, is 1·5, from Fig. A4 

Bco2 = 0·112 x 1-15 = 0·129 

8 820 = 0·18 x 1·5 = 0·270 

The correction for mutual absorption is at Pu2of(p002 + Pu20) = 0·66, 
and pL(C02) + pL(H20) = 0·3 m bar. From the set of curves at 
1100 K, As = 0·035, at 810 K, = 0·016. Hence & may be taken as 
0·023. 

8 = 0·129 + 0·270 - 0·023 = 0·376 g 
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