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Preface

Constantly increasing attention is paid in the course ’Vibration Theory’ to
vibration of mechanical systems with distributed parameters, since the real
elements of machines, devices, and constructions are made of materials that
are not perfectly rigid. Therefore, vibrations of the objects including, for ex-
ample, rod elastic elements excite the vibrations of these elements, which can
produce a substantial effect on dynamic characteristics of moving objects and
on readings of instruments.

For a mechanical engineer working in the field of design of new technolo-
gies the principal thing is his know-how in developing the sophisticated math-
ematical models in which all specific features of operation of the objects under
design in real conditions are meticulously taken into account. So, the main
emphasis in this book is made on the methods of derivation of equations and
on the algorithms of solving them (exactly or approximately) taking into con-
sideration all features of actual behavior of the forces acting upon elastic rod
elements.

The eigen value and eigen vector problems are considered at vibrations of
curvilinear rods (including the rods with concentrated masses). Also consid-
ered are the problems with forced vibrations. When investigating into these
problems an approximate method of numerical solution of the systems of lin-
ear differential equations in partial derivatives is described, which uses the
principle of virtual displacements.

Some problems are more complicated than others and can be used for
practical works of students and their graduation theses.

To facilitate the solution of these problems, the book includes Appendices
containing the concise description of the foundations of rod mechanics (static
and dynamic). The Appendices are useful not only for solving the problems
presented. They can also be used when the problems concerning the dynamics
of spatially curvilinear rods are solved. The conditions of these problems can
be formulated by an instructor at practical lessons.

Answers to some problems contain short descriptions of solution algo-
rithms without numerical results. Students should continue these solutions
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by themselves using computer methods. This must promote the deeper un-
derstanding of the vibration theory and the better experience in program-
ming while solving nonstandard problems, when no ready library programs
are available.

In preparation of the manuscript the author has used the manuals and
lecture courses prepared by him at the ’Applied Mechanics’ chair in the Bau-
man Technical University (Moscow, Russia). The monograph is intended for
use by students, postgraduates, and lecturers of engineering universities. It
can be also useful for mechanical engineers whose practical work is connected
with the vibration theory.

Moscow, September, 2003 Valery A.Svetlitsky
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torsional stiffness of rod;

bending stiffness of rod relative to y (or z2) axis;
bending stiffness of rod relative to z (or z3) axis;
stiffness coefficient;

modulus of elasticity of the first kind,;
cross section area;

disturbing force;

modulus of elasticity of the second kind,;
Heaviside function;

geometrical features of rod cross section;
Krylov function;

stiffness coefficient of elastic base;
torsional and two bending momenta;
components of concentrated force in

a related coordinate system;
components of concentrated force in

a Cartesian coordinate system;
eigenfrequency (natural frequency) of vibration;
axial and two cutting forces;
components of a distributed load in;

a related coordinate system;
components of a distributed load in;

a Cartesian coordinate system;

kinetic energy;

coefficient of viscous friction;
logarithmic decrement of damping;
Dirac delta function;

dynamic viscosity coefficient;

potential energy;

density of material;

angular displacement;

angular velocity;

frequency of free vibrations;

components of concentrated moment in
a related coordinate system;
components of concentrated moment in
a Cartesian coordinate system.
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Problems and Examples

1.1 Vibrations of Perfectly Flexible Rods

1 Derive the differential equation of small vibrations of a string (Fig. 1.1)
subject to the action of a distributed load (g is the load per unit length). The
tension of the string is @19, and its mass per unit length is mg (when deriving
the equation, assume that the tension (1o remains constant).

Fig. 1.1.

2 Determine the frequencies of free vibrations of a string (Fig. 1.2) and the
velocity of propagation of its transverse displacements (the gravity force of the
string should be disregarded). Use the following numerical values: [ = 0.5 m,
Q10 = 30 N, the string diameter d = 1 mm, and the material (steel) density
o = 7800 kg/m3.

3 A heavy homogeneous filament of length [ is fixed at the point O (Fig. 1.3)
and is under the action of the force of gravity in the equilibrium vertical
position. The mass of a unit length of the filament is mg.
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Fig. 1.2.

Fig. 1.3. Fig. 1.4.

Derive the differential equation of small free vibrations of the filament with
respect to its vertical equilibrium posmon and determine the frequencies of
natural vibrations.

4 Derive the differential equation of small vibrations and calculate the first
frequency of vibrations for a heavy filament with a weight at its end (Fig. 1.4).
The weight mass is m, and the mass of a unit length of the filament is mg so
that m = mgl.

5 A heavy homogeneous filament of length [ is fixed at the point O between
two vertical planes (Fig. 1.5). Both the filament and the planes rotate about
the vertical axis with a constant angular velocity w.

Derive the differential equation of small free vibrations with respect to
the vertical equilibrium position and determine the frequencies of filament
vibrations as a function of the angular velocity w. Establish the least possible
value of the critical angular velocity. The mass of a unit length of the filament
1S Myo.
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z

Fig. 1.5. Fig. 1.7.

6 Determine the first two frequencies of natural transverse vibrations of a
string (Fig. 1.6) whose mass (mass of the string unit length) varies according
to the law
. T2
m = mg -+ miSin —.

l

Assume that, under vibrations, the string tension Q1o remains practically
unchanged.

7 Determine the lowest frequency of transverse vibrations of a string (Fig. 1.7)
whose mass varies (along the string length) as

. T2
m=m0+mlsm-l—.
1

8 A filament fixed at the point O is on a rotating disk (Fig. 1.8). Derive
the differential equation of small transverse vibrations of the filament with
respect to the equilibrium position, under which the filament has a rectilinear
form.

9 Derive the differential equation of small transverse vibrations of a string
lying on a flexible inertialess base (Fig. 1.9) and determine the frequencies of
natural vibrations. The string tension is Q19 and the mass of a unit length of
the filament is my. When the string is displaced from its equilibrium position,
it is under the action of a restoring force proportional to this displacement.
The proportionality coefficient is k.

10 At the initial moment, the deviation of a string (Fig. 1.10) has the form
Y = Yo sin %5 , and all velocities are zero. The string tension is Q1. Determine

the string deviations in subsequent time instants.
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Fig. 1.8.

Fig. 1.10.

11 Derive the differential equation of small transverse vibrations of a branch
of a flexible gearing (Fig. 1.11). Determine the vibration frequencies, eigen
functions, and the critical velocity w of motion in the general case and for
a particular case when the velocity of motion of the flexible gearing is w =
16 m/s, the gearing length is I = 0.6 m, the mass of a unit length of the flexible
gearing is mo = 0.3 kg/m, the cross section area of the flexible gearing is F' = 2
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cm?, and the initial tensions of the gearing branches are Q19 = Fo1g = 800 N
and Q90 = 400 N.

Fig. 1.11.

12 Find the velocities of propagation of perturbation waves along the
branches of the flexible gearing (see Problem 11) and determine the velocity
of motion of this gearing, under which the perturbations do not propagate
against the gearing motion.

13 Investigate the stability of transverse vibrations of the branches of an
operating flexible gearing under a steady-state regime of vibrations of the
gearing blocks (Fig. 1.12). The mass of a unit length of the flexible gearing
is mg = 0.3 kg/m, the gearing length is | = 0.6 m, and its cross section area
is 2 cm?. Under steady-state vibrations of the blocks, the full tensions in the
branches vary according to the following law (see solution to Problem 11)

01 = 0190 + Aoy sinwt; 09 = 099 + Aogsinwt,

where 010 = 4 MPa; 099 = 2 MPa; Aoy = 1.95 MPa; Aoy = 1.86 MPa; and
w=288s7 L
The velocity of motion of the flexible gearing is w = 16 m/s.

14 Figure 1.13a presents schematically an operating belt conveyer with a
nonuniformly distributed weight. The tension of the working branch of the
conveyer is Q19 (the conveyer branch can be considered as a belt with zero
bending stiffness). In a coordinate system fixed to the conveyer belt (in the
coordinate system y;, 21 moving with the velocity w) the distribution of the
lading mass m is described by the following equation (1.13b)

. 27z
m = mg + my sin (m <« my).

1

The mass of the belt unit length is mo.
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Fig. 1.12.

Set up the differential equation of vibrations of a driving branch of the
conveyer and examine (approximately) the stability of small vibrations. The
numerical values are as follows: Q19 = 2 kN, mg = 20 kg/m, m; = 2 kg/m,
mg = 1.2 kg/m, | =2.025 m, l; = 0.45 m, and w = 2 m/s.

m ) 2 o y

7 ey - ’ .
4 A ,/'/ / 7 A /_,.-;.'
’/%f% 7 //’ s, f/é/ i
b &

Fig. 1.13.

My

15 A perfectly incompressible fluid flows along a perfectly flexible vertical
pipe (Fig. 1.14). The pipe is fixed at the points A and B, and pulled with the
tension (19. The fluid velocity w along the height of the pipe and the fluid
pressure p on the segment AB can be assumed constant. The mass of a unit
length of the pipe is m; and the mass of fluid per a pipe unit length is mq.
The area of the inner cross section of the pipe is F'. Determine the frequencies
of free vibrations of the pipe.
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Fig. 1.14. Fig. 1.15.

16 A perfectly incompressible fluid flows inside a flexible vertical hanging
pipe (Fig. 1.15) with the velocity w. The mass of a unit length of the pipe is
my; the fluid mass per a pipe unit length is ms. Neglect the fluid pressure.

Set up the differential equation of small transverse vibrations of the pipe
with respect to the vertical equilibrium position.

17 Determine the velocities of propagation of perturbations in the pipe (see
Fig. 1.14) and the fluid flow velocity, at which perturbations do not propagate
against the fluid flow.

18 Under transverse vibrations, a string is deformed (extended), which results
in a change of its initial tension. It is a usual practice to neglect this additional
tension when the equation of string vibrations is derived. However, the error
in determining the frequencies of free vibrations remains unclear in this case.

Determine the lowest frequency of free vibrations of a string (Fig. 1.10)
taking its extensibility into account and find the error that results from ne-
glecting the string extensibility. The area of the string cross section is F', and
the Young’s modulus of the first kind is E. The initial tension of the string is

Q10~

19 A steel string is placed between the poles NV and S of a permanent magnet
(Fig. 1.16). The string tension is Q19, the mass of a unit length is mg. The
attraction force of the magnet when the string is displaced from its neutral
position (the force acting upon a unit length of the string) is equal to

kP2 k&2

g=F —-F = .
T T W=y (+w)p?
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Fig. 1.16. Fig. 1.17.

Assuming the string displacement to be small (y < [;), derive the differ-
ential equation of small transverse vibrations of the string and determine the
frequencies of its free vibrations (see solution to Problem 107 in Part I).

20 Derive the differential equation of small transverse vibrations of a string
in a magnetic field and investigate approximately their stability (Problem 19),
if k1®2 = a11 + aj2sinwt (the magnetic field is time-variable). The numerical
values of the problem are as follows: Q10 = 160 N, mg = 6-1073 kg/m, I = 0.1
m, a = 10 mm, a;; = 0.008 N/m, a2 = 0.004 N/m, and w = 5000 s~ L.

21 A tightened string 1 (Fig. 1.17) carries the constant current I and is
subjected to the action of a magnetic field generated by another, infinitely
long stiff cord 2 that carries the current I; = I1g sinwt.

The string remains practically rectilinear due to its large bending stiffness.
The force of attraction of the string 1 by the cord 2 (acting upon a unit length
of the string) is equal to

_ 2L Lk
(a—y)’
where y is the string displacement under vibrations. The string tension is @1
and the mass of the string unit length is my.
Derive the differential equation of small vibrations of the string.

22 At the instant t = 0 a constant force Py suddenly acts upon a string
(Fig. 1.18) at a distance lg from the left support. The string tension is Q1o
and the mass of a unit length is my.

Derive the expression for a transverse displacement of the string at the
point of the force Py application as a function of time.

23 The point-like load Py moves with the constant velocity v along a string
lying on a linear inertialess flexible base (Fig. 1.19). The stiffness of the base
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Fig. 1.18. Fig. 1.19.

is k, the string tension is @10, and the mass of a unit length is mg. At the
initial instant, the load is above the left support.

Determine the string bending deflection as a function of the velocity of
motion of the load.

24 Figure 1.20 presents schematically a moving electric locomotive whose
current collector is pressed with a constant force to a tightened wire and
slides along the wire with the constant velocity v when the electric locomotive
moves. At the initial instant the current collector is at the point O where the
wire is fastened.

Investigate the vibrations of the wire (string), assuming that under vibra-
tions the force pressing the current collector to the wire remains practically
constant and is equal to Py. The force of the wire tension is Q19 and the mass
of a unit length is my.

Fig. 1.20.

25 Figure 1.21 shows schematically a segment of an overhead ropeway with
a load of mass M that moves with the constant velocity v. The cable tension
is Q10 and the mass of its unit length is mg. At the initial moment, the load
is above the left support.

Derive the differential equation of small transverse vibrations of the cable
(string).
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Fig. 1.21.

26 Determine the vertical displacement of the load with mass M (see Problem
25) in a particular case when one can neglect the force of inertia Mijy in
comparison to the gravity force Mg.

Fig. 1.22.

27 The string has two segments. The masses of unit lengths of the first and
the second segments are mig and mqyg, respectively. The force of the string
tension is QQ19. Set up the equation for determining the frequencies of small
vibrations of the string using the method of initial parameters and determine
the forms of string vibrations. Solve the problem for the case, when at the
instant ¢t = 0 a momentum J(zx = l;) acts upon the string at the point K
(Fig. 1.22).

28 Derive the equation for determining the frequencies of string vibrations
taking the point-like mass M (Fig. 1.23) into account. To this end, take ad-
vantage of (1) the method of initial parameters and (2) approximate method
with only one term retained (determine the first frequency).
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Fig. 1.23.

29 Derive the equation for determining the frequencies of string vibrations
taking the concentrated (not point-like) mass (Fig. 1.24) into account. The
moment of inertia of the mass M relative to the axis perpendicular to the
plane of drawing and passing through the point K (center of mass) is equal

to Jx(Jg = 2 Mr2). Neglect the gravity force of mass M.
5

Fig. 1.24.

30 Before applying the concentrated axial 'dead’ force Py (Fig. 1.25) the
force of string tension was Q1¢. Determine the frequencies of string vibrations
as a function of Py. The area F of string cross-section and the Young modulus
FE are specified.

31 The point of the axial line with the coordinate zx has a forced vertical
displacement yx = yxo coswt (Fig. 1.26). Determine the amplitudes of steady-
state vibrations of the string. The force of string tension is Q1o.

32 Figure 1.27 demonstrates a belt moving with the velocity w and a con-
centrated mass M placed upon it at a distance of [;. The mass is free to move
in the vertical direction when the belt vibrates. Determine the frequencies
of belt vibrations, restricting to a two-term approximation. The force of belt
tension is Q1p.
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Fig. 1.27.

33 Set up an algorithm for determination of exact values of frequencies for
the conditions of Problem 32.

34 A string has two segments (Fig. 1.28). The masses of unit lengths are
equal to mo1 and mygq for the first and second segments, respectively. The force
of string tension is @19. Determine the amplitude of steady-state vibrations of
the string under the action of the force P(t) = Py coswt at the point K. When
solving approximately, take advantage of the Galerkin method, restricting to
a single-term approximation.
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Fig. 1.28.

35 Determine by an approximate method (with restriction to a two-term
approximation) the amplitudes of steady-state vibrations of the string under
the action of the force P(t) = Pycoswt at the points K; and K> (Fig. 1.29).
The unit length of the string is mo and the tension force is Q9. A spring with
force c is installed at the point Kj.

Fig. 1.29.

36 Find the exact solution to the equation of small vibrations of the string
and determine the amplitudes of string vibrations at the points K; and K>
(see Problem 35) for steady-state vibrations.

37 Give an algorithm for exact solution of the equation of small steady-state
vibrations of the string and determine the amplitudes of string vibrations at
the points K; and K> (see Problem 35) taking into account the distributed
forces of viscous drag a—y, where « is a constant coefficient.

ot
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38 A point-like mass M moves with the constant velocity v along a string
lying on a linear flexible base. The stiffness coefficient of the base (the bed
coefficient) is equal to k (Fig. 1.30). At the instants ¢ = 0 the mass M was
at the origin of coordinates. Restrict to the case when the velocity v is small
%y 2 0%y

and v*—= can be

020t 822

so that (see solution to Problem 25) the terms 2v

neglected.

Fig. 1.30.

Determine, with restriction to a two-term approximation, the bending de-
flections at non-steady-state vibrations for the following cases: (1) the mass
M is on the string (the deflection under the moving mass is included) and (2)
the mass M has left the string. Assume that the relation between the string
and the base is bilateral.

39 Figure 1.31 shows the moving tape of a tape-drive mechanism. The tension
of the tape is Q10. Solve the equation of small free vibrations of the tape under
the steady-state regime (at w = const) assuming that the vibrations are caused
by the momentum J applied at the instant ¢ = 0 to the tape element located
at the distance zx from the origin of coordinates.

1.2 Torsional vibrations of rods

40 Derive the differential equation of free torsional vibrations of a solid
shaft with a round section (Fig. 1.32) and determine the frequencies of free
vibrations of the shaft for the cases when it is fastened as shown in Fig. 1.32.
The modulus of elasticity in shear of the shaft material is G' and its density
is .

41 Determine the velocity of propagation of a torsional wave (shear wave)
over the solid shaft if G = 80 GPa and ¢ = 7800 kg/m?3.
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Fig. 1.31.

Fig. 1.32. Fig. 1.33.

42 Determine the velocity of propagation of a torsional wave along a spring

(Fig. 1.33) and the frequencies of free torsional vibrations of the spring if

l=02m, D=0.1m;d=>5 mm,; the number of coils i = 20; the first-kind

modulus of the material of the wire from which the spring is coiled is £ = 200

GPa, and its density is ¢ = 7800 kg/m? (the spring has a small angle of lead).
Hint: change the spring for an equivalent rod of round section [5].

43 Derive the differential equation for determining the frequencies of free
vibrations of a shaft with disks at its ends (Fig. 1.34). The moments of inertia
of the disks are J; and J;. The density of the rod material is ¢ and the shear
modulus is G. Demonstrate that at ¢ = 0 (inertialess shaft) the frequency of
vibrations for the disks is equal to that obtained in Problem 233 of Part I.

1.3 Extensional vibrations of rods

44 Derive the differential equation of extensional vibrations of a rectilinear
rod and determine the frequencies of vibrations for the cases when the rod is
fixed as in Fig. 1.32. The Young’s modulus of the first kind is E for the rod
material, its density is g, and the cross section area is F’; the rod elements
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Fig. 1.34.

do not execute transverse motions and are displaced only in the longitudinal
direction.

45 Determine the velocity of propagation of compression waves along the
rod if E = 200 GPa and g = 7800 kg/m?>.

46 Derive the differential equation of free extensional vibrations of the rod
with a distributed longitudinal load ¢(z,t) (Fig. 1.35).

Fig. 1.35. Fig. 1.36.

47 Derive the differential equation of free vibrations of a rod in the case of
a variable cross section area (Fig. 1.36).

48 The left end face of a rod (Fig. 1.37) is linked with a spring of force
¢ = EF/l. Derive the differential equation for determination of the frequen-
cies of free vibrations and determine by the graphical method the first three
frequencies of small vibrations of the rod. The mass of a unit length of the
rod is myg.

49 For the case or a rod fixed as is shown in Fig. 1.38 derive the equation

of frequencies and determine the first two frequencies of free vibrations if
c= EF/Il.
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Fig. 1.37.

50 Both end faces of the rod are connected with springs (Fig. 1.39). Derive the
equation for determination of the frequencies of rod vibrations and calculate
the first two frequencies of free vibrations if c; = 2c; = EF/l.

4 e &F ¢ - if
7 X , z
%
[ i o _ £
l . ! .
i - 4 .
Fig. 1.39. Fig. 1.40.

51 A rod moving with a constant velocity v along the z axis (Fig. 1.40)
bumps against a perfectly rigid wall so that the left butt of the rod remains
further fixed with the barrier rigidly. Determine the maximum displacement
of the right end face and the maximum value of the axial thrust at the left
end of the rod.

52 The rod II flying with a constant velocity v along the z axis hits the rod
I at the instant ¢ = 0 and, henceforward, they vibrate together (Fig. 1.41).
Determine the time variation of the axial force at the place of conjunction of
two rods.

53 Derive the differential equation for determination of the frequencies of
free extensional vibrations of a step-shaped rod (Fig. 1.42) of a homogeneous
material (with density g) for the case when [; = 2{/5 and I3 = 3(/5. Find the
first four frequencies of free rod vibrations.

54 Derive the equation for determination of the frequencies of free extensional
vibrations of the step-shaped rod (Fig. 1.43).
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Fig. 1.41. Fig. 1.42.

Fig. 1.43. Fig. 1.44.

55 Determine the first frequency of free extensional vibrations of the rod
(Fig. 1.44) whose area of cross section and the mass per unit length vary
according to the following formulas

F=Fy1+z/l); m=mo(l+2z/l).

56 Find the first two frequencies of free longitudinal vibrations of the rod
(see Problem 55).

57 A rod pressed by the forces N is suddenly disengaged at the instant t = 0
from the action of the forces (unloaded). Establish the law of motion for the
rod sections. Figure 1.45 gives a diagram of displacements of the rod sections
at the initial moment.

58 A rod is stretched by the force P (Fig. 1.46) that is suddenly discharged.
Establish the law of time variation of the displacement of the right end face
of the rod.

59 Determine approximate values of the amplitudes of forced extensional
vibrations of the rod (Fig. 1.47) under the action of harmonic longitudinal
force P = Pysinwt applied to a free end of the rod. The section area of the
rod and its mass per unit length vary as

F=FQ+z/l); m=m(l+2/1).
60 A rod begins to move under the action of suddenly applied (at the in-

stant ¢ = 0) force Py the keeps henceforth a constant value (Fig. 1.48). De-
termine the axial force in the section z = /2 at the moment ¢; = I/a that
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arises at extensional vibrations of the rod. The mass of the rod unit length is

mo(a:\/m).
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61 At the moment t = O the constant force P is suddenly applied to the
right end face of the rod (Fig. 1.46). Determine the maximum value of the
displacement of the point of force application and establish the difference with
the case when the force P is gradually increases (the rod is loaded with the
force P statically).
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62 A bullet moves inside a barrel (Fig. 1.49a) with the constant velocity v.
The force of friction between the barrel and the bullet is constant and equal
to Py. The mass of the barrel unit length is mg. Write the expression for axial
displacements of the barrel sections as a function of velocity v. At t = 0 the
bullet is at the origin of coordinates. Schematically, the barrel with the bullet
can be represented as a rod loaded by the constant stress Py moving along
the axis (Fig. 1.49b).

z Y z

Fig. 1.50. Fig. 1.51.

63 Determine the first three frequencies of free longitudinal vibrations of the
rod with mass M at the end (Fig. 1.50) if M = mypl, where mg is the mass of
the rod unit length.

64 Determine the first three frequencies of free vibrations of a rod with a
concentrated mass at the end (Fig. 1.50) for the case when the upper section
is free (M = mgl, where myg is the mass of the rod unit length).

65 The upper section of the rod (Fig. 1.51) is forcibly displaced in the
vertical direction according to the law z = Asinwt. There is a concentrated
mass M on the lower end of the rod. Determine the displacement u of an
arbitrary section of the rod under a steady-state regime of vibrations and the
amplitude of longitudinal vibrations of mass M.

66 Figure 1.52a presents schematically an explosive cartridge I of a solid-
propellant jet engine. The cartridge is placed inside the motor body. Since in
most cases it is required that a jet engine should provide for a constant thrust
during the charge burning, the fuel-propellant cartridge is usually manufac-
tured in such a form that keeps its surface constant during combustion. The
simplest form of a cartridge providing for a constant combustion surface is a
cylindrical tube (Fig. 1.52b). In this case, the reduction of the external sur-
face in the process of burning is compensated by equally increasing surface of
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Fig. 1.52.

the inner hole. As a rule, the butt section of the cartridge has an inhibitory
coating (to avoid the end face combustion).

Derive the differential equation of small free longitudinal vibrations of a
burning cartridge, assuming that the pressure in the engine chamber remains
constant when the cartridge burns. The full time of combustion is ¢, the
Young’s modulus of the first kind is F for the material of charge, its density
is g, and the combustion rate (burnt out propellant mass per unit time) is
constant. When solving the problem, assume that the modulus F remains
constant and does not depend on the propellant temperature.

67 Determine the velocity of propagation for a compression wave along a
cylindrical spring whose lower butt is rigidly fixed to a base (see Fig. 1.33)
and find the frequencies of its free vibrations. Take the following numerical
data: [ = 0.2 m, the mean diameter of spring coils is D = 0.1 m, the diameter
of the spring wire is d = 5 mm, the number of sring coils 7 = 20, the elasticity
modulus of the second kind is G = 80 GPa for the wire material, and the
density of this wire material is ¢ = 7800 kg/m?. The spring has a small angle
of lead.

Hint: change the spring for an equivalent rod [5].

68 A spring with a small angle of lead of coils is placed into a groove of a disk
(Fig. 1.53) and rotates together with the disk with the angular velocity 2.
Derive the differential equation of small extensional vibrations of the spring
and determine the lower frequency of its vibrations as a function of the disk
angular velocity (neglect the friction between the spring and the disk).

The spring force for extension is ¢, the mean diameter is D, the wire
diameter is d, the number of spring coils is ¢, and the elasticity modulus of
the second kind is G for the wire material.



24 1 Problems and Examples

Hint: when deriving the equation of extensional vibrations of the spring, change
it for an equivalent rod [5].

Fig. 1.53.

69 Determine the critical velocity {2, of disk rotation, at which the lower
frequency of spring vibrations (see Fig. 1.53) becomes equal to zero.

70 A spring is on the disk that rotates with a constant angular velocity {2
(Fig. 1.54). Before disk starts rotating, the spring is stretched with the force
Ng and fixed at the points A and B. The spring force for stretching is c,
the mean diameter of spring coils is D, the wire diameter is d, the elasticity
modulus of the second kind for the wire material is G, and the number of coils
is i. The spring has a small angle of lead.

Derive the differential equation of small extensional vibrations of the spring
taking the disk angular velocity {2 into account.

Fig. 1.54.

71 A stretchable filament is fixed on a rotating disk (Fig. 1.55). The mass
of the filament unit length is my, the elasticity modulus of the first kind is E
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for the filament material, the sectional area is F', and the filament tension is
Q10 at 2 = 0. Derive the differential equations of small free vibrations of the
filament (neglecting the gravity force) taking the disk angular velocity into
account and determine approximately the lower frequencies of vibrations.

Fig. 1.55.

1.4 Bending vibrations of rectilinear rods

72 For the cases of fixing shown in Fig. 1.56 derive the differential equation
of small transverse vibrations of the rod and determine the frequencies of free
vibrations. The mass of the rod unit length is mg and its bending stiffness is
EJ,.

73 Determine the frequencies of the rod free vibrations for the cases shown
in Fig. 1.57.

74 Demonstrate that in the case of a variable (over the length) moment of
inertia J;(z) the differential equation of small vibrations of the rod has the

following form ,
0? 0%y 0%y
B2 <E‘]“”(z)5fz_2) == moga

75 Derive the differential equation of small free vibrations of a rod placed
into the permanent magnetic field (Fig. 1.58) and determine the frequencies
of the free vibrations if, when the rod is deflectefrom its equilibrium position,
the force

k@2 kdl

(a-y)? (a+y)?

g=F —-F =
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Fig. 1.56. Fig. 1.57.

acts upon its unit length.
Find the critical value of @g.

Fig. 1.58.

76 A hinge-supported rod (Fig. 1.59) has the following parameters variable
over length: the bending stiffness

3
EJ.,=FEJy (1 + sin %)

and the mass per unit length
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. T2
m = mg (1+sm7) .

Determine using the Galerkin method the fundamental frequency of free
vibrations under a single-term approximation.

77 Refine the fundamental frequency obtained under the first approximation
(see Problem 76) by considering the second approximation.

78 Determine the first frequency of free vibrations of the rod (Fig. 1.60)
whose bending stiffness is EJ;, the mass per unit length is mg, the length is
[, and the distance between supports is b = 1/2.

Fig. 1.60. Fig. 1.61.

79 At the moment ¢ = 0 the force Py is suddenly applied to the rod of
constant stiffness (Fig. 1.61). The mass of the rod unit length is my. Investigate
the rod vibrations caused by the force Py applied and determine the time
variations of the maximum normal strain in the section z = lg.

80 Determine the bending deflections of the rod depending on the velocity v
of displacement of the force Py over the rod (Fig. 1.62). The bending stiffness
of the rod is EJ, and the mass of its unit length is 7. At the initial moment
the point of application of the force P, is above the left support. The numerical
data are the following: Jy = 0.1 cm*, E = 200 GPa, mg = 8 kg/m, and [ = 15
m.
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Fig. 1.62. Fig. 1.63.

81 The dynamical jet gun is designed using the principle of dynamic balanc-
ing of the acting force of a shot by the reaction of powder gases efluent from
the behind-the-bullet space (Fig. 1.63). The mass of the barrel unit length is
mo.

Determine the angular velocity of the bullet attained by it upon flying
out of the barrel (assume that the bullet moves with a constant velocity v).
When solving the problem, assume that the bullet acts upon the barrel with
a constant force that is equal to the gravity force of the bullet. Neglect the
force of inertia Jy.

82 Derive the differential equation of small free vibrations of a rod lying
on an elastic base (Fig. 1.64a), if the reactive force acting upon the rod unit
length from the side of the elastic base is proportional to its bending deflection
ky, where k is the stiffness coefficient for the base (the bed coefficient).

The mass of the rod unit length is mg and the bending stiffness is FJ,.
Assume that at small vibrations the rod does not break off the base. Neglect
the mass of the base involved into vibrations (i.e., assume that the elastic base
is equivalent to a set of uniformly distributed inertialess springs, Fig. 1.64b).

Fig. 1.64.
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83 Using the Rayleigh method, determine the first frequency of free vibra-
tions for the rod lying on an elastic intertialess base (Fig. 1.65), if the stiffness
coefficient of the base is k, the mass of the rod unit length is mg, and the
bending stiffness is EJ,.

y

Fig. 1.65. Fig. 1.66.

84 A rod lies on an elastic inertialess base (Fig. 1.66). The elastic restoring
force acting upon the rod unit length from the base side is proportional to
the bending deflection and is equal to ky. Determine the frequencies of free
vibrations of the rod for two variants of its fixing,.

85 The force Py moves with the constant velocity v along the rod lying on
an elastic inertialess base (Fig. 1.67). The stiffness coefficient of the elastic
base is k. Determine the bending deflections of the rod as a function of the
velocity v of the force displacement. At ¢t = 0 the point of force application is
above the left support.

Fig. 1.67. Fig. 1.68.

86 A perfectly incompressible fluid flows with the constant velocity w inside
the hinge-supported pipeline (Fig. 1.68). Derive the differential equation of



30 1 Problems and Examples

small transverse vibrations of the pipeline taking the moving fluid into ac-
count. Determine (by the approximate method) the first two frequencies of
vibrations. The mean diameter of the pipeline is D,, = 0.1 m, its thickness
is 6 = 20 mm, the length is [ = 1 m, the density of the pipeline material is
op = 2700 kg/m? (duralumin), and the elasticity modulus of the first kind is
E = 70 GPa. The mass of fluid per unit length of the pipeline is mp = 7.68
kg/m.

Determine the frequencies of vibrations for three values of the velocity of
fluid motion: w; = 0, we = 10, and w3 = 20 m/s. Neglect the gravity force
acting upon the pipeline and fluid.

87 Determine the critical velocity for the fluid flowing inside the hinge-
supported pipeline (see Problem 86).

88 Derive the differential equation of small transverse vibrations of the hinge-
supported pipeline if the fluid jet outflows at an angle « to the pipeline axis
(Fig. 1.69). Take the numerical values from Problem 86.

Fig. 1.69. Fig. 1.70.

Determine the first two frequencies of pipeline vibrations at a = 90° and
for the fluid velocities w equal to 0, 10, and 20 my/s. Determine the critical
velocity of the fluid stream.

Hint: When the jet leaves the pipeline at the angle o to the axial line, the force
of jet reaction N = mw?(1 — cos &) acts upon it in the direction of the z axis.

89 A perfectly incompressible fluid flows inside a pipeline with variable profile
(Fig. 1.70). The inner diameter of the pipe changes according to the formula
d = do — z(dp — dy) /I where dg and d; are the diameters of the input and
output sections of the pipe. The pipe has the walls of a constant thickness
§ (6 < d), the density of the pipe material is gp , and the fluid density is o.

Derive the equation of small vibrations of the pipe assuming the constant
flow rate.

90 The ideal incompressible fluid flows with the constant velocity w inside
a hinge-supported pipeline having the bending stiffness F.J, and lying on an
elastic base (Fig. 1.71). The mass of the pipeline unit length is m;, the fluid
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mass per the pipeline unit length is m2, and the stiffness coefficient of the
elastic base is k (assume that the elastic base is inertialess).

Determine approximately the first two frequencies of small transverse vi-
brations of the pipeline.

Fig. 1.71.

91 Derive the differential equation of small transverse vibrations of a beam
(Fig. 1.72) taking into account a constant compressing force N acting upon
it. Determine the frequencies of beam vibrations.

Fig. 1.72. Fig. 1.73.

92 Investigate the stability of the first four modes of the transverse vibrations
of the beam (Fig. 1.72) loaded with the applied compressing force N variable
in time (N = Np + Nysinwt). Use in the problem the following numerical
data: J; = 0.1 cm?, Ny = 1000 N, Ny = 200 N, mg = 0.8 kg/m, w = 300 s~ !,
and l =1 m.

93 How will the solution to Problem 92 be changed, if the constant compo-
nent Ny of the force N changes its direction into the opposite one? Take the
numerical values from Problem 92.

94 When deriving the differential equation of small transverse vibrations of a
string, its bending stiffness is assumed to vanish. Find the error in determining
the frequencies of vibrations of the string whose length is [ = 1 m, if J, =
nd*/64 = 5-107% cm*, the mass of the string unit length is mg = 6- 1073
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kg/m, the tension is Q19 = 100 N, and the elasticity modulus of the first
kind is E = 200 GPa for the string material (see Fig. 1.2). The string can be
considered as a hinged rod.

95 A rod lying on an elastic inertialess base is compressed by a constant force
N. The mass of the rod unit length is mg, the bending stiffness is EJ,, and
the stiffness coefficient of the elastic base is k. Derive the differential equation
of free transverse vibrations of the rod (Fig. 1.73) and determine the vibration
frequencies.
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1.5 Vibrations of rectilinear and curvilinear rods

More complicated problems are formulated in this paragraph. The methods of solv-
ing them, as well as the necessary equations, are described in the Appendices A-F.
When solving particular problems, one should obtain partial equations from the
general equations presented in these Appendices. The equations are given in the di-
mensionless form, which simplifies their numerical integration. The main emphasis
is focused on the development of algorithms for solving the problems that can be
implemented in computer calculations.

96 A rod is loaded with a periodic axial force (Fig. 1.74). Derive (approxi-
mately) the equations for the boundaries of the principal region of parametric
vibrations. When solving the equations of rod vibrations, take advantage of
the virtual displacement principle. One should restrict oneself to a single-term
approximation.

Iz Iz j
0,5¢ =P coswt
e R P =Py +Pygcaswh
. e e T 7
{ L |
j—— =]
Fig. 1.74. Fig. 1.75.

97 Figure 1.75 demonstrates a rod lying on an elastic base with a linear
characteristic. The rod is loaded with the axial periodic force P(t). Using
the Rayleigh method, determine the region of the main parametric resonance.
Restrict consideration to a single-term approximation.

98 The force P applied to a point-like mass m (Fig. 1.76) suddenly disappears
at the instant ¢ = 0. Determine the dynamic reaction in the hinge. The rod
section is constant. Neglect the inertia of rotation and the forces of viscous
drag. Consider the case when the rod has a variable section.

99 The momentum J has acted upon a concentrated mass (Fig. 1.77). De-
termine the angle of rotation of the mass m in the plane of drawing under the
free vibrations that arise after termination of the momentum action.

100 Figure 1.78 demonstrates a rod moving with the velocity wg in a viscous
medium. The follow-up uniformly distributed force ¢; = —qi0€1 (qw = ﬂwg)
acts upon the rod. Derive the equation of small vibrations and determine the
first two eigen values, taking advantage of the approximate method of solution.
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Fig. 1.76. Fig. 1.77.

Fig. 1.78.

101 Determine the amplitude of steady-state vibrations of the rod in section
K (Fig. 1.79), taking advantage of the approximate method of solution (see
Appendix E).

Fig. 1.79.

102 A forced angular displacement (kinematic perturbation) is specified in
the K section of the rod (Fig. 1.80). Determine the amplitude of the moment
at the embedment (x; = 0) under steady-state vibrations.

103 The periodic force P(t) (Fig. 1.82b) is applied to the rod of constant
section (Fig. 1.82a). Using the Duffing method, obtain the approximate so-
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lution for forced steady-state vibrations. When solving the problem, one can
use the virtual displacement principle taking the two-term approximation.

104 A point-like mass m moves with the velocity v along a rod lying on an
elastic base (Fig. 1.81). Determine approximately the angle of rotation of the
rod in the K section at the moment when the mass rolls off from it, restricting

d? 0?
to a two-term approximation. Consider the specific case when mgg ~ B—téj
(see data of Problem 38).

105 Figure 1.83 depicts a segment of the railway that can be considered as a
rod lying on the elastic base whose stiffness coefficient is equal to k. The train
with a length much longer than that of the railway segment moves along the
rod. The train can be considered as the one-dimensional medium (since the
distance between railcar wheels {; is much less than ) with a zero bending
stiffness.

Fig. 1.83.
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Derive the equation of free vibrations of the rod loaded with a distributed
inertial load and determine approximately the first two frequencies, restricting
to a two-term approximation.

Hint: The railcars are not point-like masses, therefore, one should take into
account their moments of inertia Jy relative to the car center of mass, i.e., during
vibrations, the inertial force and the moment of inertia will both act upon the rails
from the cars. In the limit, one can consider that the rod (rails) is loaded with
moving distributed inertial load.

106 A rod is hinged on a disk rotating with the angular velocity 2 (Fig.
1.84). The bending stiffness of the rod is EJ, and the mass of the unit length
is my.

Fig. 1.84.

Derive the differential equation of small bending vibrations of the rod
and determine approximately the first two frequencies of vibrations assuming
that the rod is nonstretchable. Construct the plot of variation of the first
frequency p; versus {2 at the following values of parameters: EJ, = 0.5 N-m?;
mo = 23.4-1073 kg/m; and [ = 0.2 m.

107 Determine approximately the first two frequencies of transverse vibra-
tions of the rod fixed on a rotating disk (see Fig. 1.84), if one interchanges
positions of the hinge and the roller (fixing the rod).

Plot the dependence of the first frequency of transverse vibrations on the
disk angular velocity {2 and compare with the plot of the previous problem.
Take the values of parameters from Problem 106.

108 Derive the differential equation of bending vibrations of a rod hinged on
a rotating disk (the case shown in Fig. 1.85). The mass of the rod unit length
is mg and the bending stiffness is EJ,.
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Determine, applying the Galerkin method, the first two frequencies of vi-
brations.

Fig. 1.85. Fig. 1.86.

109 Figure 1.86 presents a layout of a balancer in the clockwork of a remote
fuse. The mass m is located at the end of a perfectly rigid lever that is joined
with a flat hinged rod. The balancer is on a disk rotating with the angular
velocity 2. The mass of the rod unit length is m¢ and the bending stiffness
is EJ,.

Derive the differential equation of small vibrations of the balancer rela-
tive to the dynamical equilibrium position taking the rod mass into account;
specify the boundary conditions necessary for solving the equation derived.
Assume that the rod segment of length & is perfectly rigid.

110 The mass m = 0.02 kg if fixed to a hinged pinned flat rod with the
help of a perfectly stiff lever of length h = 30 mm. Using the approximate
method (Rayleigh method) derive the dependence of the vibration frequency
of mass m (see Fig. 86) located on the rotating disk (balancer of a remote
fuse clockwork) on the angular velocity 2. When solving, restrict to the first
approximation, approximating the bending deflections by the expression of
the form y = y1(z) sin pt, where y; is the dynamic bending deflections of the
rod with respect to the equilibrium position in the coordinate system rotating
with the disk.

The mass of the rod unit length is my = 23.4 - 10—3 kg/m, the bending
stiffness is EJ; = 0.5 N m?; [ = 120 mm; b = 30 mm; and £ = 100 rad/s (see
Fig. 1.86).

111 Demonstrate that the first frequency of the balancer vibrations (obtained
by the Rayleigh method) does not depend on the initial deformed state of the
system caused by the field of centrifugal forces (see Problem 110).
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112 What changes will occur in the exact equation of vibrations of an elastic
rod, if one changes its work holding (interchanges positions of the hinge and
the roller) in Problem 109) (see Fig. 1.86).

113 Using the Rayleigh method, determine the first frequency of vibrations
of the rod shown in Fig. 1.84 (see Problem 106). Take numerical data from
Problem 110.

114 What condition for parameters of the balancer in Problem 113 should
be met in order that the first frequency would be independent of the disk
angular velocity.

115 Determine the first frequency of vibrations of the balancer with mass m
placed on a rotating platform (see Fig. 1.86). For solution, use the Rayleigh
method and the numerical data of Problem 110.

Fig. 1.87. Fig. 1.88.

116 Determine the frequencies of radial vibrations of a thin ring (Fig. 1.87).
The mass of the ring unit length is myg, the section area in F, the elasticity
modulus of the first kind is F, and § < R.

117 A ring (Fig. 1.88) is under the action of the internal pressure p, variable
in time (p = pg + p1 sinwt). The mass of the ring unit length is myg, the cross
section area is F', the elasticity modulus of the first kind is E, the ring width
is h, and its thickness is § (§ < R). Determine the amplitude of steady-state
radial vibrations of the ring.

118 A thin ring rotates about the symmetry axis with the angular velocity
2 (Fig. 1.89). Derive the differential equation of radial vibrations of the ring
and determine the frequency of free radial vibrations and the critical velocity
of rotation of the ring.
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Fig. 1.89. Fig. 1.90.

119 Determine the frequency of small angular vibrations of the ring with
respect to the axial line (see Fig. 1.89) assuming that the axial line of the ring
remains strain-free, while its cross sections rotate during vibrations through
one and the same angle ¢ (Fig. 1.90). The mass of the ring unit length is my,
the elasticity modulus of the first kind is F, and R > 6.

120 A ring from a rod with the constant section (Fig. 1.91) is situated on a
rotating disk. The angular velocity wq of disk rotation is constant. Derive the
equation of small vibrations of the ring in the plane of drawing taking into
account the inertia of rotation of the rod elements.

Fig. 1.91. Fig. 1.92.

121 Figure 1.92 shows a ring of length [ made from a rod of constant section.
The ring is loaded with a tracking static load g. Derive the equation of small
vibrations of the ring with respect to the plane of drawing taking into account
the inertia of rotation of the rod elements.

122 Derive the equation of small vibrations of the ring (see Fig. 1.92) rotating
with the constant angular velocity wy with respect to the plane of drawing
taking into account the inertia of the rod elements.
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123 Derive the equation of small vibrations of the rod with concentrated
masses my and my (Fig. 1.93), if the mass m; is point-like and the mass ma
possesses some inertia of rotation. The tensor of inertia Jy relative to the
principal axes of the mass msy is known. The principal axes of the mass mo
coincide with the principal axes of the rod section (at € = £5). One can neglect
the relative size a in comparison with the rod length (¢ <« I).

Fig. 1.93.

124 Figure 1.94 shows a rod of variable section with hinge (at ¢ = £1) and
elastic {at € = £3) intermediate supports. A force directed along the z, axis
arises in the elastic support under vibrations. Derive the equations of small
vibrations of the rod in the plane of drawing taking local constraints into
account.

Fig. 1.94. Fig. 1.95.

125 Spiral springs (Fig. 1.95) are used in time-measuring instruments. Derive
the equations of small vibrations of the spiral spring of constant section in
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the plane of drawing, if its axial line is an Archimedean spiral. Determine the
spiral curvature as a function of the arc coordinate €.

126 At the instant ¢t = O the force P applied to the end face of a constant-
section round rod (Fig. 1.96) stops acting. Determine the horizontal displace-
ment (along the z; axis) of the point K under free vibrations. The vibrations
of the rod proceed in the plane of drawing. Neglect the rotation inertia of the
rod elements and the drag forces. (Fig. 1.96)

Fig. 1.96.

127 At the instant ¢ = 0 a concentrated moment ® is applied to a round
rod of constant section (Fig. 1.97a). The moment is constant (Fig. 1.97b).
Determine the moment in the embedment that arises under the rod vibra-
tions. On of principal axes of the rod section is perpendicular to the plane of
drawing, therefore, the vibrations of the rod proceed in this plane. When solv-
ing, take advantage of the approximate method with restriction to a two-term
approximation.

128 A momentum J has acted upon a point-like mass m placed on a rod
of constant section (Fig. 1.98). As a result, the rod with mass m begins to
execute free vibrations in the plane of drawing. Determine the reaction in the
hinge.
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Fig. 1.97.

Fig. 1.98.
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Answers and solutions

2.1 Vibrations of Perfectly Flexible Rods

1 Figure 2.1 shows a string element (at an arbitrary instant of time) with
forces acting upon it.

Fig. 2.1.

When deriving the formulas we assume the displacements of the string
points to be perpendicular to the Oz axis. Under small vibrations, the dis-
placement y and derivatives of y with respect to z are small, therefore, one
can neglect the terms with their squares as quantities of the second order of
smallness.

Taking advantage of the D’Alambert method, we get the following differ-
ential equation (in projections onto the Oy axis)

0%y

da
w"}—QlOE‘Fq:O- (1)

—myg
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When angles are small, to an accuracy of quantities of higher orders of small-

B_Z%’ and (1) takes on the form

62y#Qm@_i_ q

ot mg 022 mg

3]
ness, o & tan o ~ —y, therefore, da/dz =

0z

2 In the case under consideration, ¢ = 0, and the differential equation of
string vibrations (see solution to Problem 1) assumes the following form

o2 0%y
8712/ = (12@ (a® = Qi0/m0) (1)

The velocity of propagation of transverse displacements along the string

is a = v/Q10/mg, and a = 69 m/s.

We seek the solution to equation (1) in the form y = y;(z)sinpt.

The function y;(z) should satisfy the boundary conditions of the problem
(z=0,91=0; z=1, yp =0). From (1) we have

&y |, [P\’
= =0 2
(2w 2)

The solution to (2) has the form

p . D
Yy =C€1C0S—2 4+ C28In —2
a a

From the boundary conditions it follows that ¢; = 0 and sinpli/a = 0,
hence pl/a = wn. Then, the frequencies of vibrations are

pn = (mn/1)\/Q10/mo, pn=1434n (n=1,2,..)

3 In the case considered, the tension in the filament is variable along its
length

Q1 = mog(l - 2)).
Figure 2.2 shows an element of the filament with the forces acting upon it
at an arbitrary instant. Let us project the forces onto the Oy axis:

2

Y ¥ (Q1 + dQ1) sin(a + da) — Q1 sina = 0,

—dz my @

o 0? 0]
Y
mow = &(Qla)-
Since a = dy/dz, we have finally

2
= au-23). M
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Fig. 2.2.

The solution to equation (1) is sought in the form
y =y1{z)sinpt. (2)
After some transformations, we get

d?y;,  1dy;  p?
S P —0 3
dz?2  zdn + gz 4 ’ (3)

where 21 =1 — 2.
The solution to equation (3) can be expressed through zero-order Bessel
functions of the first and second kind

y1=cly (2 pQZl/g) + c2Yo (2 p221/9) (4)
The function y; should meet the following boundary conditions:

z=0, zn=1l, y1=0;
z=1, z1=0, y # .

The displacement of the lower end of the filament should be finite under
small vibrations. Since the zero-order Bessel function of the second kind Yj
goes to infinity when its argument vanishes, one must set ¢a = 0 in solution
(4). Then y; is finite at z = {.

In order to satisfy the first condition, it is necessary that Io(2p+/1/g) = 0.

The first three roots of function Iy are equal to: K; = 2.4; K5 = 5.52, and
ks = 8.65 [2]. Hence the frequencies of vibrations (the first three frequencies)
are as follows
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p1=1.2y/g/l; p2=2.76+/g/l; p3=4.325/g/l.
4 In the case under consideration, the filament tension is

Q1 =mog(l - 2) +mg (1)

The differential equation of the filament vibrations has the form (see so-
lution to Problem 3)

oy _ 0 [m
ot oz

dy
— l—2)—= 2
o+ al-930)] 2)
We seek the solution in the form
y=1y1(z)sinpt 3)

Assuming z; = mg + mog(l — z), we find from equations (2) and (3)

z
y1 =cilp (21—) —1> + oYy <2E 2l (4)
g\ mo gy mo

Function y; should satisfy the following boundary condition: y;(0) = 0 for
z=0.

Fig. 2.3.

In order to find the second boundary condition, we consider the dynamic
equilibrium of the mass m (Fig. 2.3).

The forces of gravity and inertia should yield a net force that balances the
force of tension. Hence, the force @1 is inclined to the vertical at angle .
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Since we consider small vibrations, & = y;(l). The second condition has
the form

d mp?y (1l 2
(%) @ P,
2/ 2=l mg g

The first boundary condition allows one to derive the following equation

l l
elol 2p m + mot + Yo | 2p m + mol -0 (5)
mog mog

Differentiating expression (4) with respect to z and using the relationships
linking the derivatives of Bessel functions to each other, we have from the
second boundary condition

2
p m pmo m
| —Io (2 - ILi(2py/— ) |+
D) B B
2
D m pmyg m
+a| Dy (2 )- Y(2,/—)}:0.
’ [ 9 o\ mog Vmomg T\ mog
Since m = mgl, we find after some algebra (z = p\/l/g):
c1lo (V8x) + Yy | V8z) =0;
(VEz) + eaxi (Vi) -

a [2°1o(2z) — 211 (22)] + ¢2 [¢°Yo(22) — 21 (22)] = 0.

Assuming that the determinant of system (7) is equal to zero, we get the
equation for vibration frequencies. The first frequency of vibrations correspond
to the first root of the equation

Io (\/@) [xZ’YO(Qx) - zY1(2x)] -
~Yo (\/8—x> [1132.[0(2113) —zh (2x)] =0. (8)

Equation (8) can be solved graphically (to determine the first frequencies).
The first root of equation (8) is x; = 1.05.
Hence, the first frequency is

p = 1.05y/g/l.

5 When the filament is deflected from the vertical position of equilibrium,
in addition to the forces considered above (see solution to Problem 3), the
distributed centrifugal forces mogw@? act upon it. The differential equation of
the filament vibrations has the form
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0? 0 0
= 5 |st- ]+ )

The solution to equation (1) is sought in the form y = y1(z)sinpt.
After some transformations (see solution to Problem 3) we get the Bessel’s
equation
d?y;  1dyr  (p*+w?)
dz2 2z dx + gz

y1 =0, (2)

where z; =1 — z.
Equation (2) has the following solution

n =clp (2 (p? +w2)z1/g) + Yy (2 (p? +w2)z1/g)

In order to have finite y; at z1 = 0 (which corresponds to z = [), it is
necessary to assume that c, = 0.

For the second boundary condition to be met (y; = 0 at 2 = 0 ), it is
necessary that

Iy (2 (p? +w2)z1/g> =0
The first three roots of function Iy are as follows
k1 =24; ko =5.52; k3=8.65.
Accordingly, the first three frequencies of the filament vibrations are
p1=/144g/l—w% py=+/T6g/l—w? ps=+/199/l - w?.

The least value of the critical angular velocity of the filament is
wy = 1.24/g/1.

6 In the case under consideration, the differential equation of string vibrations

has the form 52 52
. mz\ 0%y y
(o msin ) G = @iz g

We seek the solution to equation (1) using the Galerkin method and as-
suming

2
y = sin 7TTzfl(t) + sin —Tiﬁ(t)

Now the frequencies of vibrations are

_ T Q10 .
L=\ o [1+48my/ (3mmy)]’

» _2r Q1o
27 1\ mo [+ 32my/ (15mmg)]
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7 The frequency of vibrations is

l mo(l—f—au)’

l wl ml my
where a1 = o (1 — cos E) (1 — m) —

8 The force of filament tension in a section at a distance z from the axis of
rotation (Fig. 2.4) is equal to

l4+a
92
Q= / mo$2%ndn = m02 [(l +a)? - 22] .

Fig. 2.5.

Fig. 2.4.

For small deflections of the filament from the rectilinear form, the force
(21 is practically invariable. The differential equation of small vibrations of
the filament has the form

%y 0 {.02

0
W——az —[(l+a)2—z2]—y}+02y

2 0z

9 When a string is deflected from its equilibrium position, the forces shown
in Fig. 2.5 act upon it.
Projecting the forces onto the Oy axis, we get after transformations
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0%y 0%y
mow = QlO@ ~ky. (1)

We seek the solution to equation (1) in the form y = y1(z) sinpt. For the
function y;(z) we get the following differential equation

32.7!1 2
QIOW + mop“y1 — ky1 = 0,

cos m0p2—k2+c sin mopz—k
= —_— 2 —_—Z.
Q1o Q1o

The function y; should satisfy the following boundary conditions:

from whence

z2=0, y1=0;
zZ = l, Y1 = 0,
hence
Cc = 0; sin vV (m0p2 — k) Ql() = 0,
or
mop® —k _ wPn?
Q1o 2

The frequencies of vibrations of the string lying on an elastic base are
determined by the equation

2anlo

Pn=A—F—— T —
" 12m0 mo

(n=1,2,..).

10 We seek the solution to the equation of string vibrations (equation (1) in
the solution to Problem 2) using the Fourier method and assuming that

y=Y(2)T(t);
mat

Tz
y(z,t) = yo sin 7 cos =~

11 It is more convenient to investigate small vibrations of the moving branch
of the gearing using the Eulerian variables. Therefore, turning from the total
time derivatives to local derivatives, we get

dy oy Oydz Oy 0Oy

a "ot Tazot ot a9z )
ﬁ = Q_y__ + 2w a2y + a_

az ~ a2 R
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Fig. 2.6.

The equations of vibrations of the string (Fig. 2.6) assumes the form

0%y 0%y Q1o 2\ 0%y
5§+2wazat_<3%§_w>5§_0' @

The solution to equation (2) is sought in the form

y =1y1(z)e?" (3)

Upon substitution of (3) into equation (2) we have the equations for the
function y1 (2):

d2y, 2upi  dy P

dz? (QIO 2) dz (QIO 2) v )
— —w —-— —w
mo mo

The function y; should satisfy the following boundary conditions:
z=0,y1=0; z=1I, y1=0.

Assuming y; = AeM? , the characteristic equation for equation (4) has the
form
N —a1id+ a2 =0, (5)

2wp p2

=) ")
mg mo

The roots of equation (5) are

)\1,2 =i<(11 + \/a% +4a2> /2

The solution to equation (4) can be represented in the form

Yy = cle)‘lz + cze)‘QZ. (6)

where a; =
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This solution should satisfy homogeneous boundary conditions, and this
allows one to write

1 1
Ml ghat| = 0;
or
eldz =) — 1. (7)

Condition (7) is satisfied at (A2 — A1)l = 27ni or [y/a? + 4ay = 2mn,
whence, after some transformations we get the following values of the fre-
quencies of vibrations

2
P = @<1—m°w> (n=1,2,..).

IV mg Q1o

After calculations we find p,, = 230 ns!.
The critical velocity at which the frequencies of vibrations are zero is equal

/ QlO
Wy = et
Mo

After calculations we get w. = 16.43 m/s.
Now let us determine the eigen functions. We find the roots of the char-

to

acteristic equation, ,\§") and )\gn)’ for every frequency p,:

= WPn; n = TN,
Tin D Y2 . (8)
™ (Qlo — mow )

bn = o

For each pair of roots ,\§"§ we write the particular solution

(n) (n)
~l(n) - an)e)\l z+c;")e’\2 z

Since (™ (0) = 0 for z = 0, then i = —c{™. Assuming c¢{™ = 1, we obtain

the eigen function
(n) (n)
w2 =M F M 2 (n=12).
After some transformations we have
(n)

y; ' (2) = 2sin7y1p2 - sil Yoz — 20 COS Y12 - SiN Yo, 2, (9)

i.e., the eigen functions are complex functions of the form

y$(2) = P (2) + iyD(2),
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where yﬁl) = 2sin vy, 2 - sinYon 2; 1/52) = —208 Y12 - Sin y2, 2. Thus, we get

the particular solutions
y(n) — ygn)eipnt

and the general solution

o .
n=1

where ¢, = ¢p1 + icp2.
Now represent the general solution in the form

y(2,t) = y1i (2, t) + iy12(z, 1), (10)

where

Y ——chn Uiy cospnt + i3 sinpat) +

Y12 = Z Cin y12 cos ppt + y1 smpn +

Z Con <y§2 COS Ppt yu s1npnt)

n=1
oo
Z (1/11 COS Pyt — y§2) smpnt)

Each of the functions y;; and y;2 satisfies equation of vibrations (2). The
arbitrary constants ci, and co, can be found from the initial conditions. In
the general case, at t = 0 the bending deflections of the belt and the velocities
are known, i.e.,

Mg

yu(z 0 —0[1 (Clnyll +62ny§2)>7 (11)

—

n=

oo
U11(2,0) = az(z Z (Clnpny12 + 02npny§1)) . (12)

n=

—

Multiplying equation (11) by pnyg) and equation (12) by yﬁ), and sum-
ming the expressions obtained we have

k k
a1pnyd + agy® chnpn< (r) () | (F) gn))

(13)
+ Z ConPn < ™) (k) ygn)yyc)) .
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Now we integrate equation (13) between 0 and {:

!
[ (cpnss? + ) de = cunpnd@ + copi R (1)
0
Here
O sinain, . sin(2mn —a1,) | sin(27n 4 an)
T %00, 4 (2mn — a1yn) 427+ a1n)
J@ _ cosain 1—cos (2mn —a1n) | 1—cos(2mn +ain)
" 2aq, 4(2wn — ain) 427+ a1,)
2w0pn
Ain =

Q10 — mow?’
Multiplying expression (12) by p,y*® and (11) by ygk), we find the difference
of the expression obtained and integrate it between 0 and [:

l

/ arpnyi™ — azyé")) dz = —cinpnd{Y) + conpnJY. (15)
0

When integrating, we have used the conditions of orthogonality of functions

y{™ and y{™:

l
/ (589987 -yl dz = 0;

0
i
7O _ / (k) ™ + <n>> dz =0
0

From system of equations (14) and (15) we determine ¢;,, and ¢z, (n =
1,2,...) and get the solution y11(z,t) to the equation of free vibrations of the
branch of the flexible gearing.

12 Write the equation of small vibrations of a gearing branch

%y %y %y
155 + G255 +a228z2 ) (1)
where a11 =1; a2 =w; ag =— Qo _ w2>;
mo

The characteristic equation for (1) has the following form [6]:

a9 de? — 2a19dzdt + a1y dz?2 =0. (2)
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Equation (2) has two roots:

dz _ . dz _
a v T

where

2
ai2 + /07y — 11022
)

w, =
a
a12 — a7o — 11022
Wy = .
a1

The straight lines ¢; = z — wit and ¢ = z — wst are the integrals of
equations (3). Parameters w; and wy are the velocities of propagation of
perturbations.

Substituting the coefficients of equation (1) into expressions (4), we get

[ &10 [ &10
w =w+ 9——; Wy =W — Q—,
mo mo

where w; and we are the velocities of propagation of perturbations along
the direction of motion of the flexible gearing and in the opposite direction,
respectively.

The velocity w,, at which perturbations do not propagate against the
direction of motion of the flexible gearing, is equal to

w, = ] 920
mo

This expression coincides with the equation for w, obtained in Problem 11.

13 The differential equation of vibrations of a moving flexible gearing (fila-
ment) is derived in Problem 11.

The distinction of the problem considered from Problem 11 consists in the
fact that the tension of branches of the flexible gearing is variable in time.
Therefore, the equation of vibrations takes on the following forms for the
driving and driven branches, respectively:

0%y 0%y Foyy FAop . .\ 0%y
—8_ﬁ+2w828t_( o + o Smwt—w)ﬁ—o, (1)
0%y 0%y Foy FAoy .\ 0%y
—J 49 — i — — =0; 2
oz 90t ( mo + mo sinwt - w ) 022 ’ )

We can solve equations (1) and (2) approximately taking advantage of
the principle of virtual displacements (Appendix E), restricting ourselves to

. . . T4
a single-term approximation y = f1(t) sin -

For the fi(t) function we get the Mathieu’s equation. For example, for
equation (1) we have
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——d2f1 + (a+2qcos27)f; =0
dT2 q 1 — 9
2 F - w? 2 t
where a = 4 (f) Mﬂ—[—)———w—; = (I) ! T = w_. Upon sub-
l w? 1/ mow? 2

stitution of numerical values, we find a = 33 and ¢ = 6.

14 In the fixed system of coordinates (z; = z —wt) the mass varies according
to the law

. <27rz 27rwt>
m = mg + my sin

0L
The differential equation of vibrations in the Eulerian variables is derived
for a moving belt in Problem 11:

9%y Py | 0% %y
ms (W+2w8—28¥ +w W) —-Qlogz‘g- (1)

In the case under consideration the mass of a unit length of the belt is

. 2wz 2mwt
m3z =mg+mg+mysin| — — =
hooh @
( + )11+ mi . 2wz 2mwwt
=(m m —sin{ — — .
2 0 mo + My I i1

1
Dividing both sides of equation (1) by ms and expanding — into a series
ms
of powers of m,, we get (retaining only a linear part of the expansion)

%y Py | 0%
Z 949 g9
52 T Vozar T 522 )
Q1o my . (27z 2mwt\] 0%
- 1+ sin | —— — a5 =0.
(mo + mg) mo + Mo I I / Oz

To investigate the stability of small vibrations of the belt we apply the
Galerkin method (principle of virtual displacements). In this case, we restrict

. . . . . TZ
ourselves to a single-term approximation, assuming y = f (t)sznT .

Then we have the following equation for unknown function f(t)

Fal Qo (m\'_ ()
mg + mo \ [ l (4)
Q10m1 ™ 2 2mwt . 2wt
ey [ aji Cos — a2 Sin f=0.
mg +mag \ [ l1 I

Here
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1
a —/Sln2ﬂ512w—zz h 1-— 02_7rl i ;
1= Lo 4r I Z_12)°

2 3 2ml 1
cosﬂsmz?rzdz——-—s' LI S

I ] -y

=]

oy

[\v]

Il
O\H =}

Equation (4) can be transformed to the form

ef [al—bs1n<27;:"t+ﬁ>]f (5)

m T2 a
were b = _Q{();)z (7) Vaii +afy; tanf = L

(mo + ma a2
Now make a conversion to a new independent variable, assuming

2mwt
I

T
=27 — —.
+p5 T3

Equation (5) takes on the form of a Mathieu’s equation:

azf

T2 + (a +2gcos2t) f =0

Calculate the coefficients:

P : Qo 2) ao1as
(rw)? \ 1 mo +m ’ o

2q = —171); 2q = 0.43,

which corresponds to a point on the plane of the Ains-Strett diagram (see Fig.
305 of Part 1) with coordinates (1.15; 0.125) that lies in the unstable region.

15 Consider an element of the pipe with fluid at an arbitrary instant (Fig.
2.7). Let us project the forces onto the Oy axis:

2 d2
dtg medz—= 4 + Qioda — pFda = 0, (1)

de?
where da/dz = 0%y/022.
Changing over to the Eulerian variables, we get

d2y 321/' d2y _ (aZy 62y 262y)
mo -— ] .

—mldz

il AN 9 _ AN, Wit
Mgz =™ Mg 52 T a0t TV 522

Equation (1) assumes the form
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Fig. 2.7.

Py m Py @ oy
ot?2  (mq +mg) 820t  (my + my) 922

=0, (2)
where Q, = Q19 — pF — maw?
We seek the solution of equation (2) in the form (see solution to Problem
11) _
y = yi(2)e?".
After transformations similar to those made in Problem 11, we find the
frequencies of vibrations of the pipe with flowing fluid:

| Qio — pF ( mow? )
n=—4)—— |1 - ——— n=12,...).
P l V (my + ma) Qo — pF ( )

16 Unlike Problem 15, in the case considered the force of tension in the pipe
is variable with length Q1 = mig(l — 2).
The differential equation of small vibrations of the pipe has the form
02 o2 2 0% 0

y y _0 _ %
(m1+ms) 5 + 2mawg s+ maw S = 5 [mlg(l ?) azJ '

17 The velocities of propagation of a wave of perturbations (see solution to
Problem 12) are equal to

. maw Q10 — pF _ maw Q10 — pF'
W= ———— 4 ———; wy= -/ -
my + ma my + ma my +ma m1 + mg

The velocity of fluid flow, at which perturbations do not propagate along
the pipe against the fluid flow, is
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w. — Mt me [Q10 — pF'
* mo mi+mo

18 Figure 2.8 shows the string in a deflected position. Let us find a variation
of the string length under vibrations. From the figure it follows that

Adz = dz —dzcosa ~ dz — dz (1 — a?/2). (1)

Integrate equation (1) between 0 and I:

l
/ y l2dz,
0
where y' = dy/dz =~ a.
Assuming that the relative deformation Adz/dz is constant over the string
length, we obtain for the additional tension of the string

Al =

DO | =

l
EF
AQy = 25 [y
Ql 2] /y dZ,
0

because Al = AQ1l/(EF)
The equation of the string vibrations with allowance made for the addi-
tional tension takes on the form

0%y 0%y
mo— = (Quo + AQ1) —5. 2
0 5¢2 (Quo ! 022 2)
We solve equations (2) by the Galerkin method assuming that

. Tz
y=yosin = (1)

After some transformations we get a nonlinear equation for f(z):

Fig. 2.8.
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&Ef Qo ()" ‘EF , ,
—+ —| = — =0.
a2 " me ( 7) T+(7) ameth!
The frequency of vibrations with a correction for the nonlinear term of the
equation (see solution of Problem 165 in Part 1) is equal to

Qo (7\> 3 ‘EF
= e + - yU
mo l 4 l 4m0
The error in determination of the frequency in the case, when the changed
tension is not taken into account, is equal to

3 EF
AP—@(;) O Y0

19 The differential equation of the string vibrations at small displacements
has the following form

0%y 0%y 0%y  APik1y
a5 = Qo5 9= Qo5 + . (1)
2 022 022 3

We seek the solution to equation (1) in the form y = y1(z)sinpt. Upon
substitution of y into equation (1) we get

42k
QlO y1 g L+ mep? ) y1 = 0.
ll

The frequencies of vibrations are

2
™ ng 4@%]{11
n = —_ ) = - =1,2,...).
P \/( l ) mo mgl:f (n )

20 The differential equation of the string motion has the form

82 4k
Q10 lll (a1 + agsinwt) y. (1)

nz
We seek the solution to equation (1) in the form y = Z fn(t)sin WT

Using the Galerkin method, we get the following equatlon for unknown
functions of time

2
m%wlo(”n) fom @+ asinut =0, (2

Equations (2) can be reduced to the form
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d2f,
32 + (an + 2qp cos27) fr, =0,
her _ 4 QIO ﬂ 2 _ 4a1kq . 9y — i4a2k1
WHEEE Gn =07 | 'mo \ 1 mol$ |’ q"_meoli’"

Having calculated the values of coefficients, we get (restricting ourselves
to the case n = 1) a1 = 3.1; and ¢; = 0.050, which corresponds to a stable
mode of the string vibrations.

21 Since small vibrations are considered, one can assume that

2
_ Illok ~ 2[1[0’6 (1 + y)

a—y a a

The equation of the string vibration has the form

8?2 2
—f = Qloa—g +4q

or
822./ o @@ T 2[0[10 sin wt + 2[0[1()Sinwt

ot2  mg 022 moa? moa

22 In the case of action of a concentrated force Py, the differential equation
of the string vibration can be represented in the form

82
Qlo + Pyd (z — o). (1)

where § (z — lp) is the Dirac delta function.
Let us expand the delta function into a Fourier series in terms of the func-
tions that satisfy the boundary conditions of the problem (eigen functions):

oo

™z
1) = E . sin ——
6 (z—1p) Cn SN —

n=1

The expansion coefficients are

Nll\.’)

!
6{(z—1o) smzrﬁ—dZ— 2sinm
l l l
0

Taking these coefficients into account, equation (1) takes the form

5 = Qm sin —. (2)

9%y 2. 2P, - mnly ™Mz
o2 Z::T I !

The solution to equation (2) is sought in the form
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> ™z
= t) sin —— 3

Substituting (3) into (2), we obtain equations in order to determine func-
tions yn,(t)

d?y, o f7mn 2 2P, . wnly
T = 206in 720 (n=1,2,...), 4
a2 +“(1)y e ) “)

where a? = Q10/mo
Solving equation (4) at zero initial conditions (y, = y, = 0), we get

2Pl . 7l . ( anmn )

Yn = Oromon?n? sin ] 1 — cos —l—t .

Finally, the solution to equation (1) assumes the form

z,t) = — Sln —— sin ———
U0 = Grom? 242 0 l

2Pl <1 . wnly . mnz amn
. (1 — cos ———t) .

The displacement of the point of application for the force Py is a function

of time:
mnlg

2Pl sin I amn
= (1= cos 2224 .
y(lo, t) Quor? 24 2 ( cos — t)

23 The differential equation of vibrations of the string lying on an elas-
tic inertialess base (see solution to Problem 9), with allowance made for a

concentrated force, has the following form

0%y 2 0%y  Pyd(z—z0) ky
2 - %2 T e e (1)

- )

where zg = vt
Expanding § (z — zp) into a series and assuming that

we get the following equation for y,(t) (see solution to Problem 22)

of ™ 2 k 2Py . mnut
a‘l — ) +— 1 Yyp=-—sIn .
l 0 m l

in +

Since y, = ¥, = 0 at t = 0, we find after some transformations



2.1 Vibrations of Perfectly Flexible Rods 63

™ . o (TN 2 kt
mmwt_ (T)vsm a (T) +E

l 5 (T2 k
()= 220y D) e
YL, m071'2 ot n2 [a2 (7{l_n)2+i_<%v>2:| l .
mo

24 Figure 1.20 to the problem statement shows a string with the moving load
Py (29 = vt). The differential equation of vibrations of the wire at moving load
is similar to equation (1) in Problem 23 for k = 0):

82y _ 282:(/ 2P0

W—aaZQ"}'m‘(S(Z—ZO). (].)

Let us seek the solution to equation (1) in the form
> ™z
= t)sin ——.
y 7; yn(t) sin —

Using the principle of virtual displacements we get after transformations

2Pl .1 . mnz
—sin — X
7; — sin —

t,2) = ———5—
y( 72) mo (ag _,UQ),R_Q

. mnut v . amnt
X | sin — —sin .
l a l

25 In the case considered, the transverse force IV with which the load acts on
the cable does not remain constant under vibrations. The force of interaction
between the cable and the load is
Yy
zZ =2y

d2

de?

N = Mg — Mo (il'o:

where yo is the displacement of the string at the point where the load is
located, yo = ylz = 295 and zg = vt.
The differential equation of the string vibration (given a traveling force)
has the form (see solution to Problem 24)
@zaQ& 6(z—vt).
ot? 022 mo

Changing for the Eulerian variables we get

0%y % . o Q2_y>

ﬁ-}-Z’U

+v

N:MQ_M( 820t T 822

zZ = Z0
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and, finally, we have the equation of small vibrations of the string with a
moving concentrated mass M

0%y  ,0% Mg M (0% 0%y 0%y
WZ(I ﬁ‘*‘m—oé(Z—Ut)_m_O(_‘i‘?U + 2 )5(z-vt)'

a2 oz0t " " 922

26 In this case the solution is similar to that presented above for Problem
24, therefore, changing Py for Mg, we get

2M gl i 1 . mz (. ™ot v . amnt
= — sin — |{ sin — —sin .
y mom? (a? — v?) n? l l a l

n=1

The vertical displacement of the load Mg is

2Mgl 1 ¢ ¢ t
Y = — =n9 Z — sin mut (sin et _ Y sin ann ) .

z=uvt mon? (a? — v?) £ n? l l a l

27 At each of the segments the equations of small vibrations of the string
look like

3zyl 232YI o 52yl 282YH

o Uge =0 THm T wga =0 M
where a} = Q10/m10; a3 = Qi0/m20
Assuming
yl= Yi(z)elPt; YU = vil(2)eP?, (2)
we obtain
2,
Wk =0, Wen=o (9=T0).

Further solution is more compact if one takes for each segment its own
origin of coordinates (see Fig. 1.22). Then we have for equations (3)

Y{)I(z) =c} coskiz + cg sin k1 z, )

Yy (2) = — kg sinky 2z 4 kg cos ki 2;

YOH(z) =cIlI coskoz1 + cIZI sin ko 21,

(5)

YoM (2) = — cf'ke sin k21 + c5'ka cos koz1;

Having determined c} and ¢ (j = 1,2) from the boundary conditions, we
represent relations (4) and (5) in vector form convenient for further transfor-
mations:

—I —I <II —II
Y, = Kl(za k1)Yo0, Yo = KH(za k2)Y g0, (6)
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where K!(z, k) and K'(z, k) are the matrices of form

k sin k2]

K! (z,k1) — coskiz —k1 :
—kisink1z coskiz
[ coskoz —sin bz |

KII (21, kQ) — 241 k2 :

—k2 sin k‘gzl COS k‘gzl

—I —I 11 Sl
Yo=Y i Yo=Y .
00 o, — ¢ 00 0f, =0

Since at the point of conjunction of two segments
/ !
Yo (l, k) = Yo' (0,k2) Yol (l,kr) = Yo T (0, k)

or, in the vector form

<l <1

Y(] (lla kl) = YOO (Oa k?) 3 (7)
then, from (6) we have

<II I I

Yoo =K' (I1, k1) Yoo, (8)

where K! (I1, k1) is the transition matrix.
At the second segment we have for an arbitrary 21 (0 < 23 <1 —1)

—II I
Y, = K" (21, k) K1Y - (9)

For z = 0 and z; = [ — [; the boundary conditions

3 0 —I1I 0
Y, (0, k1) = ik Y, (1 —like) = </

00 0

should be satisfied. o
At zy=1-1 (YO (i-h)= O) it follows from condition (7) that

/1
k12Y00 = 0, (10)

where K, is the element of the matrix K = K (I — 11, ko) K! (I3, k1),
From (10), we obtain the equation for determination of the frequencies

p; (3 =1,2):

ai cos [ﬂ (i- ll)] sin (ﬁll) +
as ax

+assin L% = 11)] cos (ﬂzl> =0 (11)

ai
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In the specific case, when myo = mgg, we have (see solution to Problem 2)

. mio
sin —npli ) =0.
(\/ Qu’ 1)

Equation (11) provides for a possibility to determine the frequencies p;
numerically. For every frequency we find the partial solutions (solutions to
equations (3)):

YOIJ- :Cllj COSk?ljZ—f-Céj sinkljz (klj :pi/al); (12)
YE)I]I = CIII] cos k2j21 + ng sin k2j21 (kgj = pi/a2) .

The partial solutions should satisfy the boundary conditions and condition
(7):
z=0, YOIj:O; z1=101-1, YbIJI:O;
z=1, Yy (l)="Yg(0).
After transformations, we get
c{j =0 012j = cIIIJ sin ki;lq;
11 _ _ cosky (i-1h) I
2 sinkg; (1 —11) V'

Then we find from solutions 12
YOIj (z) = sin kljzc{Ij;
YOIJI (Zl) = [sin k)ljll - COS kgjzl——

_cosky (I — 1)
SiIlej (l - ll)

(13)

sin kljll - sin k?2j21:| CIII]
Assuming ¢}, = 1 and passing to z (21 = z — l1), we obtain the eigen

functions of the boundary value problem (modes of vibrations) for the string
as a whole:

sinkljz, nggll;

COS k)gj (l — ll)

sinka; (1 — 1) (14)
X Sinkgj (Z — ll) sinkljll, h<z<l

0i(z) = [cos koj (z—11) —

The functions p;(z) satisfy the orthogonality condition

l
/Wj%‘dz =0 (G #1).
0
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Upon determining the eigen functions, we find the solution to equations
(1) under free vibrations

y(2,t) = Y (A; cosp;t + B; sinp;t) p;(2). (15)
=l

When the action of momentum J is stopped, the points of the string gain

J
the velocities v = —— § (z — 2 ), while their displacements are equal to zero.
mio
Therefore,
Oy J
z,0)=0;, = =—90(z—z).
Y0 =0 gl = (e

It follows from the first initial condition that A; = 0, therefore,

y(z,t) = Z Bjsinp,t p;(z). (16)
=1

At t = 0 we have for the second condition

J oo
— (2 —2) = Bipip;. 17
Mo ( k) ; iPjPj ( )

Multiplying equation (17) both from left and from right by ¢x(z) and inte-
grating between 0 and [, we have, on the strength of orthogonality of functions
@i (2),
Jp; (k)
1

miop; / SO?dZ
0

B; =

Thus, under vibrations caused by a momentum applied, the bending de-
flections of the string are equal to

y(z,t) = Z —#J(Z—k)— sinp;t - @;(2).

=l
Pj / @3dz - mig
0

28 Unlike Problem 27, in this case it is required to get the matrix of transition
from segment I to segment II accounting for the point-like concentrated mass
M. Figure 2.9 shows the forces acting upon the mass M at an arbitrary instant
t (J; is the force of inertia). It is clear from the figure that the following
conditions should be met under vibrations:
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Fig. 2.9
oy oyl %Yy
Ji+ Qo — Qo =0 (Ji—_Ma20>§
Z =0 Zlz=1 t (1)
YI (lly t) = YH (Oa t)
Assuming (see solution to Problem 27) that
YI — YOIeipt’ YII — }/E)Heipt’ (2)
we find from conditions (1)
Mp?¥g (1) + QoY ™ (0) — Q10¥5'(0) = 05 )
Y5(0) = Y5 (),
or, in the vector form,
<l <!

where ?;I (0) = [YE(0), Y (0)]T and A is the matrix of transition though
the mass M,

1 0
A=| Mp* . (5)
Q1o

The matrix of transition from the section at z = 0 to the section at z; =
hWly=lh)is
K, =A -K'(l)). (6)
The general matrix of transition from z = 0to z =1 (21 =1 —11) looks
like
K=K"(-15)AK! (). (7)
Therefore,
—II I
Yo (I—h) =KYy,. (8)
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Since the conditions
z2=0, Y§=0 and z=1-1;, Yi'=0,

should hold true, then we get from (8) the following equation for determination

of frequencies
]{}12 = 0.

After some transformations, we have

sin A —

M ! !
o AsinA <1 - %) sin)\Tl =0, (9)

where A = pl gg. Solving equation (9) numerically, we find the roots A;,
10

N [Quo
bi l mig

29 Unlike Problem 28, the mass M is not point-like in this problem, therefore,
under vibrations, in addition to the force of inertia J;, one should take into
account the moment of inertia M; (Fig. 2.10).

Taking advantage of the d’Alembert principle, we get two following equa-
tions

and then the frequencies

Ji + QuoY™ (0,8) — QuoY" (0,8) = 0; (1)

8YH
Zl:o—-’ﬂK> —|—Q1()’I‘ ( Ey —’19[{) =0. (2)

Displacements of the points of the string attachment are related by the ex-
pression

11

15]
M; + Qor < 5,

z1=l

Fig. 2.10.
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=y!

21=0

YII

+ 2rdk. (3)

z=l

The quantities J; and M, appearing in equations (1) and (2) are equal to,
respectively,

yu| 4yl
62}/2‘ z1=0 =l
Ji = Mo | Yi= - 5 = |;
0%k
M;, = —-Jk IR

Assuming

YI (Z, t) — Ybleipt’ YII (Z, t) — YOIIeipt’
Ik = Ik, eP?,
we get after transformations (exclusion of ¥, from (1) and (2) ) two equations

relating the end of the first segment with the beginning of the second segment
of the string;:

Mp? Mp?

i v M Ll
2Q10 2120 2120 2Q10 ;= 2=l
(Jz‘p2 — 2T‘Q10) YOH + TYO/H _
2TQ10 z1=0 z1=0
Jip? — 27"Q10> I n
S (i AT 3 IS V22 { BT
( 2rQ1o 0 2=l, 0 2=l 5)
or, in the vector form
Al?g = A2?é (6)
z1= z=ly
Here
_ My 1
2Q10
A= 0 ;
(JKP - 27‘Q10>
i 2rQ10
- My 1
2Q10
Ay = 9
_ (M) r
i 2rQ10
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From relationship (6) we find

a2l 1

Y, =AY ,
z1=0 z=ly
where
A =AT'A; =
1 M
el &
| A L\2Quw  2rQuo Q10 )
= 2 2 b
GRS (e )]
AQ1o \ 2rQ1o A [\2Qw0  2rQuo
M J,
A = ( " - K ) p2 + 1.
2010 2rQuo
(7)
At r = 0 we get from (7) a matrix of transition through the con-
centrated mass M (see Problem 28). The transition matrices K! l and
Z=l1
KU (zx =1 —1; — 2r) for two segments of the string are similar to
zZ1=2
the rriatrfi{ces determined in Problem 28, therefore, the equation relating vec-
tors Yoo = Vg . and Yox = ?}f‘ has the form
z= Z1=ZK
<II _—
Yok =K(p) Yo, (8)

where
K(p) = K"(z1)AK'(lh).

Since Yok = Ygy = 0, from (8) we find the following equation to determine
the frequencies p;:

k12(p) =0,
where k12(p) is the element of matrix K.

30 After application of the force Py, with allowance for the initial tension
Q10, the string tensions @11 and Q12 on the segments I and II, respectively,
are equal to

l l
Qu=Qu+h(1-=2); Q12 = Qo — Po—
l l

The equation of small vibrations has the following form for every segment of
the string
62YI 5 a2yl 62YH 9 82YH
[ — 0.

— a5 ; —a
ot2 1522 ot2 2 922

where a? = Q11/mo; a3 = Qi2/mo.

=0. (1)
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Assuming Y1 = Ye'?t and Y = Y{'ePt*, after transformations we get
the following solution in the vector for (see Problem 27)

Yo(z) = K (2)¥00; Yo (21) = K™ (21) Yoo 2)

Since the conditions

YH — YI . Y/II - YO/I

Olz,=0 Olz=1" % Iz =0 z=1

should be satisfied at z = [y, the matrix of transition to the segment II is
equal to

sin klll
cos kilq
K'(1,k) = ke, (3)
—k’l Sinklll COS k’lll

where k1 = p/a;. Therefore,
<II I
Yo = K' (I1, k1) Yoo
On the second segment we have
—II e al
Y, (z1) = K% (21, ko) K (13, k1) Yoo
Since the condition YOH = 0 must be met at z; =1 — [y, then
k12 =0,

where ki2 is the element of the matrix K = K" (I —Iy,k) K (I3, k). Af-
ter some transformations we get the following equation for determination of
frequencies:

a1 cos [g (I— zl)] sin (gzl) + agsin [a—i (1— zl)} cos (211) —0. ()

31 In this problem, the ’kinematic’ excitation of vibrations takes place, which
presents some difficulties for a solver. Therefore, we describe below the gen-
eral method of solving similar problems that can be used for both exact and
approximate solutions.

We assume that an unknown vertical strength P(t) is applied to the string
at point K, generating vibrations and displacing the point K according to the
law yk (t). This allows us to consider the problem in question as a problem in
forced vibrations. The equation of forced vibrations of a string has the form

02 02
L(y) =7TL0&‘;J‘ —QloB—Z—Z—P(t)é(z—zK)=0, (1)

We seek the approximate solution to equation (1) in the form
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~ . Mz .2
7(z,t) = f1sin T + fa2sin ? (2)

Making transformation with the use of the Galerkin method we arrive at two
equations

f1+P2f1:Ptsinm—K P = Pycoswt);
1 l

3)

. 2
fo + P2fy = P(t)sin leK.

Under steady-state vibrations we have

Py smmTK B sin%
fi= W 7 coswt; fao o) coswt (4)

sin — | . (5)

Since at 2z = zx the amplitude of displacement of the point K should be
equal to yxo, then we get from relationship (5) the following equation for
determination of the unknown amplitude of force Py:

2 21z 2
<sin —Wle ) <sin ] K )
yko =P P + po— = Pya. (6)

Now, having determined P, from equation (6), we get the solution to the
problem stated in the form

. TZK . 2mzi
YKo S e rz (YkoSIM—— Iz
sin — + ——————+—sin — | coswt.

o=\ Tm—ey T P e T

32 The equation of vibrations of a moving string, taking its interaction with
a point-like mass M into account, has the form (see solution to Problem 11)
8%y 8%y (Qm 2) 8%y M 9%

2 w

L) =52 + 255, — 22 e gtz ) =0 (1)

mo
The solution to equation (1) we seek in the form (two-term approximation)

~ . .2
y:flsmE+fgsm "z

;i - (2)
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Taking advantage of the Galerkin method, we have the following relations

L () sin ?dz =0,

o

!
/L(@ sin ?dz = 0;
0

from which two equations for f; and f2 are derived

anfi+ azfo —biafo+cinfi =0;
a1 f1 + azafo + barfi + confo =0,

8w
where a11 =14+ a5 a12 = a21 = @; a2 =1+ ag; big = —bay = 37> =
2 2
@—wz E ;C2 = @—uﬁ —2~7I a1 = £Sin2——ﬂ'2K; o =
mo l mo l ™Mo l
M 2K . 22K M |, 27zk
— sin —— sin ; g = — sin )
mo l l myo
Assuming

fr = froePh fo = faoelP?
let us write based on system (3) the following equation to determine the
frequencies p;

(—p2a11 + 011) (—b12ip - apz)

. 2 2 = 0’ (4)
(bo2ip — ap?)  (—p2ag + c22)
or )
a11C22 + ascyy + b c11¢€
p4— 11C22 22 112 12,2 4 11622 . -0 (5)
11022 — & aj1a2 — &

From (5) we find the desired frequencies

[ay —4a2 /a1+\/a%—4a2
2 b)

2
a11Ce2 + agaci1 + by gy = _C11C22
) 2 =

aiagzz — a2

where a1 = — .
a2 — &

33 When solving Problem 11 we have derived the equation of small vibrations
of the moving branch of a gearing that was considered as a perfectly flexible
rod (string). This problem differs in the fact that the moving string interacts
in the section K with a point-like mass M.

Derive the conversion matrix taking the moving string into account. Fig-
ure 2.11 illustrates the forces acting upon the mass M. Unlike Problem 28,
here an additional concentrated force J,, appears that is caused by changing
momentum of the string per unit time

Jw = —mw2 (EH- b él_) . (1)
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Fig. 2.11.

In the projection onto the vertical axis
Ju = —mow? [y (0) — " ()] - (2)

The equation of dynamic equilibrium of the mass M, taking J,, into account,
has the following form

& yx
—M—=
ot?
where yx = y'(I1,1).
For vertical displacements of the end of the segment I and the beginning

of the segment I7 of the string the following relation holds true (the point K
is taken as zero point for the segment IT)

+ (@10 — mow?) y™(0,2) — (Q10 — mow?) ¥ (I1,t) = 0,

y1(0,1) = y' (I, 1). (3)
Assuming . .
y' (1, 1) = o, )P ¢ (0, 1) = yg'(0)e™, (4)
we get after some transformations the following transition matrix
My
A= Q10 — mow? | - (5)
0 1

Now write the transition matrices for segments I and I1. It was established
in solution to Problem 11 that

y1(n) = 1M + e (7 = 2/1), (6)
here A ‘ (al +/a? + 4a2> Qwpmeo
where =i ca =0
1,2 5 1= O = mow?)

2
mop

———————. Differentiating equation (6) we get
(Q10 — mow?)

a9 =
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Y1 () = c1 M7 + cprgeten, (7)

Now, assuming Z = (y}, yl)T, let us write down the matrix relating the string
section at the zero point with an arbitrary section on the segment I (n < nk)

_ y1(n) AreM o Ager2 || yh(0)
Z(n) = =1 N : (7)
y1(n) e et2n 1(0)

The matrix K! (from 1 = 0to 1 = ng) is equal to

I )\16)‘1 nK )\26/\2nk

K = : (8)

e MK e 2K

In a similar way we compose the matrix of transition from ng ton =1 as

o Aer(I-mx) )\ ere(1-nk)

K (9)

eM(1-nk) er2(1-nk)

Finally, we have
Z(1) = KYAK'Z(0) = K(p,w)Z(0). (10)

Since y1(0) =0 at n =0, and y1(1) = 0 at n = 1, then we get from the matrix
K(p, w)

k22(pa ’U)) =0. (11)
Now from condition (11) one determine the frequencies p; numerically as
functions of w.

34 Invoking the mass
mo = Mio [H(z)—H(z—ll)]+m20H(z—l1), (1)

we get the equation of small forced vibrations of a string with allowance for
a concentrated force P(t)

2 2
L(y):mo%—Qlo%—P(t)5(2—ll):0- (2)

The approximate solution to equation (2) is sought in the form (single-term
approximation)

y = ft)ei(2), (3)
where ¢1(z) is the function satisfying the boundary conditions, for example,

p1(2) = sin 7. (4)
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For a string having the segments with masses myy and msqg the exact eigen
function at j = 1 (see solution to Problem 27) is equal to

sinkuz, szﬁll,
_coska (I — 1)

v1(z) coskay (2 — 1) sk (= 1) X (5)
X sin k21 (z—ll)sinkull, h<z<l
In accordance with the Galerkin method we obtain
!
[r@endz=o, (6)
0

or

15 !
£ |mao / Pl pidz + mag / plotldz | —
0 1A
121 {
—ﬁ@o/ﬂﬂw+/ﬁw%z—P@ﬂmww.w>
0 11

Tz
After transformations at ¢1(z) = sin R (zx =11) we have

fi+pifi = ¢} () Pycoswto, (8)

where p; is the approximate value of the first frequency. (If for the function
p1(z) we take eigen function (5), then we have the exact value of the first
frequency.)

Under a steady-state regime

= w1 (1) Py coswt
(r} —w?)

Expression (9) holds true provided that w # p;, therefore,

¢1 (l) ¢1 (2) Po

COS wt.
2 ’2
p

g =
The amplitude yx of the string vertical displacement at point K is equal to

o1 (1))° Py

10
o (10)

Yk =

Now we find the problem’s exact solution, assuming that
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(o]
y(Z,t) Zij(t)QD(Z), (11)
j=1

where @;(z) are the eigen functions (see solution to Problem 27). Substituting
(11) into equation (2) and taking advantage of the Galerkin method, we have

1
[r@eiaaz=0  G=12..n. (12)
0

From (12) we derive the following system of equations for functions f;(t)

fi+pifi=P®)¢H) (=12 ..n) (13)
From (13) we determine f; under steady-state vibrations

o} (11) Pycoswt

fj(t) = (p2 _wz)

(14)

The exact solution has the form

35 Changing the action of an elastic constraint on the rod by a concentrated
force N (Fig. 2.12) we arrive at the equation of small forced vibrations
82 Yy 2

2_QIO_Z_N6(2_1K1)“P5(z_lK2):O’ 1)

o
Ly) =mogz — Qi

where N = —cy‘

Z:lKl .
The approximate solution is sought in the form

Fig. 2.12.
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7= fit)p1(2) + f2(t)p2(2). (2)

. . T2 . 27z
As functions ¢y and @2 we choose the functions sin T and sin —» Tespec-

tively. Substituting 7 into (1) and making use of an algorithm of the Galerkin
method we write down the following relations

l l

2
/L@ﬁm%ﬁz=& /L@ﬁmfﬁwzo, (3)
0 0

from which we derive the differential equations for f; and fa:

fi Fanfi+ anfo = by;

. (4)
f2 + a2 fi +azafo = by
Here
9 2
aj] = Qﬁ (E) + __2_6_ sin 7TlK1 ;
mo l lmg l
2¢c . 7l'lK1 . 27‘(’1}{1
a1 = ag, = — sin sin ;
Imyg l l
Qo (27 2 2¢ . 27k, 2
agg = — | — + — | sin ;
mo l Img l
)
by = Pysin il lK2 coswt;
27l
by = Pysin WZKZ coswt.
Let us represent system of equations (4) in the vector form
f+Af=b, (5)

where b = bg coswt; by = [bo1, bog]T. Under a steady-state regime, we have
f = f coswt. (6)
Substituting (6) into equation (5), we find
fo=[A—w?E]"" = Aby, (7)
where

2
a2 — W a12

A A
A= 2|
a1 ail —w

A A

AN = ((1,11 - w2) (022 - w2) — 12021
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From (7), we determine the components of vector f:

2
(au — W ) a2

= 7Y o, — 32y .
for A 01 = —~=bo2;

G (a11 - w2)
Jo2 = N bo1 + A boz,

l 2
where by = Ppsin MK ; bo2 = Pysin e .

The approximate solution to equation (1) under steady-state vibrations,
accounting for a local elastic (bilateral) constraint, has the form

. .2
y(z,t) = fo1 sin _7rl_z coswt + fgo sin —% cos wt.

The amplitude values of the rod displacements at points K; and K, are equal,
respectively, to

. ml . 2wl
Yk, = fo1sin lKl + fo2sin lKl ;
K, 2nlk,

Yk, = fo1sin + fo2 sin T

l

36 The equation of forced vibrations of a string (see solution to Problem 35)
has the form

82y a2y 5
L(y) = Moy ~ Qlﬂé; +cyd(z — zk,) — Pocoswtd (2 — zx,) =0. (1)
Under steady-state vibrations one can assume that
y = yo(z) coswt. (2)

As a result, we have the following equation

82
Q106—Zy22+m0w2y0(z)30905(2—21{1)_])06(2_2}(2)’ (3)

whose general solution is

z

Yo = c1cos kz + cosinkz + % /sin k(z — h) - b(h)dh, (4)
0

where k = w, /én—o and b=cyod (h — zk,) — Pod (h — zk,).
10

Taking the integral in equation (4) we obtain
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Yo = c1coskz + cosinkz+
1 .
+ 7 Yo (2k,)sink (z — zk,) - H(z — zK,) —

—PO%sink(z—z;@)-H(z—zKE).

In order to determine three unknowns ci, ¢z, and yo (2k, ), we have three
conditions

Dz= Yo =0, c1 =05
2)z= Yo = 0;

3)z=1z2K,, Yo=uo(zK,), cosinkzrx, —yo(zk,)=0.
As a result, we get the following system of inhomogeneous equations
cosinkezk, — Yo (2k,) = 0;

P
cosinkl + %sin(l —2K,) " Yo (2K,) = ?Osink(l - ZK,),

from which we find ¢3 and yg (2k, ). The exact solution has the form

y(z,t) = |cosinkz + %yo (zk,)sink (z — zx,) - H(z — 2k, ) —

- %sink(z - 2K,) - H(z — zx,) | coswt.

37 Accounting for the forces of viscous drag, the equation of small vibrations
has the form

82y 82y
mo— 8t2 Qw +cy5( —2x,) — Pocoswt 6 (z — zx,) = 0. (1)

The solution to equation (1) in the case of steady-state vibrations we seek in
the form
y = Yo1(2) coswt + yo2(z) sinwt. (2)

Substituting (2) into equation (1) let us write two equations for yo1 and yoga:

. Mow ow c
+ 2 01 — ——yo2 =016 (2 — 2k, ) —
Yo1 Q10 vor Qloyo2 wam ( 1)
P
——96(z—2K,); 3
Bosemm)i ©

Yoo + w@/01+ 2y02 —yo25(z—21<1).
Q Ql QIO

Assuming yJ; = x1, yle = 2, Yo1 = Z3, and Yoz = x4 We obtain the equation
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X'+ AX = b, (4)

in which X = [X1, X2, X3, X4]" = [1d1, Yd2, vo1, %o2) "

mow aw c Py
0 0 —/— — —— 9161 — —06
Qo ng meoé YT Qu ”
A=|0 o X Tl %= ——Y0101 ;
Q10 Q1o 10
-1 0 0 0
0 -1 0 0 0

where 61 = 6 (2 — 2k, ) and 63 = § (2 — zk,).
The solution to equation (4) has the form

2)C+ [ K(z — h)b(h

(5)
= [61,02,03,04]
or
X =K(2)C+K (2 — 2zk,) bor H (z — zk,) +
+K(z—ZK2)BO2H (Z_ZKQ)’ (6)
where
< o1 (2x,) _ B
mem K, 1
— c _
boi = | —wyo2 (2x,) | ; boz = 0
Q1o
0 0
0 0

The components of vector X should satisfy the following boundary conditions
z2=0; z3=x4=0;
z=1 ; T3 =Tq4 = 0;

From the first condition (z = 0) we find ¢3 = ¢4 = 0. From the second condi-
tions (z = I) we derive two equations for four unknowns (c1, c2, yo1 (2, ) , vo2 (2k,) ):

ks1(Der + ksa(l)ea + @%;ym (zKy) k31 (I — zr,) +

[
+ 0.0v0 (2K,) k32 (I — 2K, ) — mkal (I —2K,) =0;

[
ka1 (D)er + kaa(Dea + algym (zk,) kar (I — z,) +

P,
+ ——yo2 (2k,) kaz (I = 256,) — ka1 (I — 2c;) = 0.
Q1o Q10
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Two more equations we write from the conditions z = zx, z3 = yo1 (2K, ) and

T4 = Yo2 (ZKl)i

yo1 (2x,) = ka1 (2k,) 1 + k32 (2K, ) c2;

Yoz (2K, ) = ka1 (zk,) &1 + ka2 (2K,) c2.
(
):

(8)

From systems of equations (7) and (8) we find ¢1, ¢2, yo1 (2K, ) and yo2 (2k,),

as well as yo1 (2) and yo2 (2
c
Yo1 (2) = k31 (2) 1 + k32 (2) co + k31 (2 — 2k, ) 0o (2K,) X

C
—1yo2 (2K, ) H (2 — 2K,) —

XH(Z “ZKl) + k3o (Z —ZKI) Ql

Py
~ ka1 (2 — zK,) H (2 — 2K,) ;
Q1o
Yoz (2) = ka1 (2) c1 + kaz (2) c2 + ka1 (2 — 2k,) mym (2K, ) %
c
XH(Z - ZKI) + ka2 (Z - zKl) my02 (zKl)H(z - ZKI) -
P,
——Ok'41( ZKZ)H(Z—ZK2)~
Q1o

The exact solution to equation (1) has the form

y(z,t) = yo1 (2) coswt + Yoo (z) sinwt

38 The equation of small vibrations of a string lying on an elastic base with
linear characteristic, taking into account the moving mass M and its gravity
force Mg, has the form

0? 02 02
_%:ngz—g—ky—i-<—Ma—tg)5(z—zM)—Mg5(z—zM), (1)

where zp; = vt.
The approximate solution to equation (1) we seek (restricting ourselves to
two-term approximation) in the form

Z t) sin % (2)

Substituting (2) into (1) we get
2 - 7r.]2 7['] 2 sz 7{-.72
Z |:m0f] sin T + QlO (T) sin Tf] + k'f] sin T =

j=1

2 .
= —MZf] sin Zr—%fé —Mgd. (3)

=1
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Using the principle of virtual displacements we obtain the equations for un-
known functions f;(t):

= m\2 1 k M2. | wut
fi+Q1o (7) E(;fl + Eo-fl = _m_07f1 sin -
. t 2mvt 2 t
_Mmfgsm%—m 77} —%—OMgsmW;] ; "
2
- 2 1 k 2 ot 2mut
fa+Quo (T) m_f2+m_0f2-———7f1$ln 7 sin T
. 2
- M—g—fz sin 2ot - ngsm 27rvt,
l 0 l lmg
and then find
. . 2M . 71"Ut
a1 (t)f1 + a2(t) fo + cra(t) fr = - gsm—;
z z 2Mgqg . 2wt
az1(t)f1 + az(t) fa + co2(t) fo = — V9 gin 2T
mol l
In the vector form equations (5) look like
f+A-1CF=A"F, (6)
where A = |%11 %12| . o _ (U 0
a1 agz2|’ 0 cool’

Now solve the inhomogeneous equation numerically at zero initial condi-
tions: t = 0, £(0) = 0, £(0) = 0 on the time interval 0 < t < I/v. Having deter-
mined f;(t), we find the string bending deflections at the point 2(0 < z < I) at
any instant (0 < t < tx), as well as the bending deflection under the moving
point-like mass

7 (enr) = Fi(0)sin 8 4 folt)sin (7)

At the time t; the mass M leaves the string, and the string begins to execute
free vibrations under the following initial conditions:

y(tk,2) = fl(tK)sinWTZ + fa(tx) sin 27;_2; o
8
§(tk,2) = fi(tx)sin % + fa(tk) sin?_

The equation of free vibrations of the string is

0%y 0%y

9Y 0102 Y gy 9
™o 522 Q10 5,2 Y 9)
Taking advantage of the Fourier method and assuming y = T'(¢)Y (2), we get
two equations
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. A2
T+ —T=0 (10)
mo

2 _
Y"+6%Y =0 <ﬂ2 = ’\Q10k> : (11)

Then determine T and Y:

A A
T =cy1 cos —=t + ca sin ——t,;
' VMo 2 Vo (12)

Y =c3c0s Bz + cq8in Bz.

The function Y should satisfy the boundary conditions z =0, Y =0and z =
I, Y = 0, which are fulfilled at ¢3 = 0 and 8l = mn. This allows us to
determine A:

A=/ (™) Quo+k (n=1,2,..).

As a result, we have the partial solution

Y™ = (cﬁ") cos put + 5 sinpnt) sinmnz, (13)
k
where p, = 4/(mn)? Qo + —.
m mo

The general solution has the following form

Y = Z Y™ = Z (c§") cos ppt + 5 sinpnt) sinnz. (14)
n=1 n=1

At t = 0 (we take the instant when the mass M leaves the string as the zero
time moment) the bending deflections and velocities of the string are known
(see equations (8)):

Y(0,2) =Y (tx,2); Y(0,2) =Y (tk,2).

Therefore, from equation (14) we find

Y(0,2) = Z ™ sin nz;
Y(O, z) = ancgn) sin mnz.

n=1

The arbitrary constants are nonzero only for n = 1 and n = 2. Taking equa-
tions (8) and (14) into account, these constants are equal to

V= fitx), &P =foltk),
P = fi(tk), & =fa(tx).
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Finally, we get the following solution to equation (9) of free vibrations of the
string after the mass M has left it:

Y= Z ( (9) cosp;t + c(J) smpjt) sinmjz.

=1

39 The algorithm of solving the equations of free vibrations of a tape was
described in Problem 11. In this case, at ¢ = 0 the bending deflections vanish,
i.e.,, a1(z) = 0, while vertical velocities of the tape axial points satisfy the
following condition

ag(z) = —ni—O(S(z —2K).

From system of equations (14) and (15) (see solution to Problem 11) we have
J
+—y " (2k) = c1nPad @) + conpadiY;
mo
“e¥2" (2K) = = CtnPr i) + ConPa ).

Taking the real part of solution (10) from Problem 11, we obtain

[e o]
Yn Z Cin ( cos ppt + yé )sinpnt) +
i=1

+con (y§n) cos ppt — yén) sinpnt> ] .
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2.2 Torsional vibrations of rods

40 Figure 2.13 shows the shaft element of length dz with the moments M;
and M; 4+ dM; acting upon it.
The differential equation of rotation for the shaft element has the form

o _ 0%
o2 022

In order to determine the frequencies of torsional vibrations of the shaft, we
seek the solution to equation (1) in the following form

(a®=G/o). (1)

» = ¢1(2)sinpt,

where p is the unknown frequency of vibrations.
From (1) we have

Dz . Dz
1 = €1 COS — + C2 81N —.
a a

The function ¢; should satisfy certain boundary conditions depending on the
way of holding the end butts.

In the case shown in Fig. 1.32a (free end butts) the intrinsic moment in
the end sections is equal to zero:

m| =267, —sinpt. 1,22

— =0.
z=0 Oz 0z
. . . Oy
This allows us to derive the conditions — = 0. Hence,
0z l2=0;1
Y4
-=0 2
C2 a ) ( )
e12sin 21 = ;2 cos 21 = 0. (3)
a a a a

Fig. 2.13.
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It follows from relation (2) that ¢ = 0 , while from equation (3) sin gl =0
(since ¢; should be different from zero). This is possible if pl/a =7mn (n =
1,2,...).

The frequencies of torsional vibrations of a free shaft (see Fig. 1.32a) are

™ |G
= — — n= ]., 2, - N
Pn ] 3 ( )
If one of shaft sections is fixed (see Fig. 1.32b), the boundary conditions have
the form

Z=07 901_07
Op

_l —_— =

#=H %

After similar calculations, we have frequencies of torsional vibrations of the

shaft
n—-1 |G
DPn = 2l :.(_)— (n=1,2,...).

For the case of holding the both end butts, the boundary conditions have
the form (see Fig.1.32¢)

z=0, ¢1=0;
Z:l7 901:()7

and the frequencies of vibrations

mm |G

n = —— —_ :1,2,....
2 T\ 3 (n )

41 The velocity of propagation of a shear wave is
a=+/G/o.

Upon substituting the numerical values we have a = 3.2 m/s.

42 Let us change the spring for an equivalent rod of the round cross section,
equating their torsional rigidities

GJ, End*/64
1 wDi '’
where J, is the geometric moment of inertia for the equivalent rod section.

The moment of inertia of the equivalent rod is equal to the moment inertia
of the spring mass:
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nd? _ D?
QJpl = QTWDZT

(The spring has a small angle of lead, therefore, it can be schematically repre-
sented as consisting of 4 coils. The moment of inertia of a coil is J = mD?/4,
where m = o (7rd2 / 4) wD is the coil mass, and Ji is the moment of inertia of
the entire spring.)

The velocity of propagation of a shear wave

. ld E
T omiD?2\ o

After substitution of numerical values we find a = 4.1 m/s.
Now the frequencies of torsional vibrations of the spring (the spring is
equivalent to a rod, one end butt of which is rigidly fixed)

2n—1 dl E
Pn———zrm”—g- (n=1,2,...).

43 The differential equation of small torsional vibrations of a shaft (see
Problem 40) is written as
& 2 0%p 2
Solution of (1) is searched in the form ¢ = ;(2)sinpt that permits, after
substituting the solution into (1), to get an equation for ¢;:

o1 pPer
=0. 2
072 a? 0 2)

The solution to this equation has the form

. D . P
1 =C1CO0S—2+ CaSIn —2.
a a

The moments of inertia of the disks applied to the end butts of the shaft, and
this allows us to derive two boundary conditions

0 o
w9 (5) o (5). 2

9 &
o (5). = () @

where J, is the polar moment of inertia for a shaft section.
The fulfilled boundary conditions (3) and (4) allow one to get the following
system of homogeneous equations for ¢; and cs:
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D 2. A
GJpy=cy + Jip“cy =05

a
(GJ,,B cos Bl + Jop? sin I—)l) co —

a a a
- (GJ,,E sin 21 + Jop? cos Bl) ¢ =0.
a a a

Equating the determinant of this system to zero, we have the following equa-
tion for determination of the frequencies of free vibrations:

tan B = %, (5)

where 8 = pl/a; m = Ji/Jo; n = J2/Jp, and Jy = plJ,. The formula for
the frequencies of the disks’ vibrations derived in solution to Problem 233 in
Part I follows from (5) as a specific case. To this end we represent (5) in the
form

tan  m+n
8 mn3?-1

and pass to the limit at p — 0.
Then we express m,n,, and 8 through the system parameters:

ply/o

t
NVG __ (hth)
Ve <J1J2p2 ) '
VG| —5=— —
VG G ¢
In the limit (at ¢ — 0) we have
GJ,

2 __
p° = (J1+ J2) Tl
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2.3 Extensional vibrations of rods

44 Figure 2.14 shows a rod element taken at an arbitrary distance z. The

d2
inertia force dJ = —dz - F gd—tr[; and the forces N and N 4+ dN act upon the

rod element.

d2 2
Taking advantage of the d’Alembert’s principle (assuming Frei (g—t?—)’ we
have
dz m@—dN (mo = Fo) (1)
0qZ = 0o=1=10).
e ou
Substituting N = EF& into (1), we get
O ,0% 9
— =a‘= =F . 2
912 a 922 (a F/mo) (2)
We seek the solution to equation (2) in the form
u=u(z)sinpt, (3)
where p is the frequency of vibrations of the rod.
After substitution of (3) into equation (2) we find
2 2
dug  pw (4)

dt? a?

The solution to equation (4) has the form
2z z
U1 = €1 COS Pz + cosin p_.
a a

Consider the case of a free rod (see Fig. 1.32a). The solution to the equation
should satisfy the boundary conditions (the force N at the rod ends is equal
to zero at z = 0):

Fig. 2.14.
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d
N=EF _ Ersinptd™ — o,
0z dz
. du, .. ) du,
ie., — = 0. Similarly, for the second end section we have — =0.
dz z=0 dz z=l

The arbitrary constants ¢; and ¢, cannot be equal to zero Simultauneousl}7 (then
u = 0 and no motion takes place). Therefore, in order that the boundary

. pl .
conditions would be met, it is necessary that co = 0 and sin 2° = 0, ie.,
a

p—l=7rn(n=1,2,...).

For the case shown in Fig. 1.32a the frequency of rod vibrations is equal
to

mn (EF
n = ——4] — =1,2,...).
P TV e (n )

The boundary conditions for the case presented in Fig. 1.32b have the form

z2=0, u =0
du1
z ) dz k)

and the frequencies of vibrations are determined by the expression

_2n-1 [EF
m 21 mo

Accordingly, for the case shown in Fig. 1.32¢

z=0, wu; =0
Z=l, U1=0
and
mn |EF
= —/— =1,2,...).
Dn I ™o (TL y &y )

45 The velocity of propagation of perturbations

a=+EF/my=+E/p.

After substitution of numerical values we obtain @ = 5 - 10° m/s.

46 In the case considered, under free vibrations (see solution to Problem

44) the force equal to dz - g(z,t) is added to the forces acting upon the rod

element, and the differential equation of rod vibrations takes on the form
Pu  ,0%u ¢

o2 =" 922 " mg’
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47 In the case under consideration (see solution to Problem 44)

N= EF(z)% (mg - gF(z)).

The equation of extensional vibrations assumes the form

0%v ON 0 ou

48 The boundary conditions have the form

z2=0, ——g:EF = cu;
ou
= _— F: .
z=I, azE 0

93

The sign of the elastic force can be taken from Fig. 1.37b, where a rod ele-
ment is shown close to the elastic fixation with a positive direction of the inner
strength N (assumed at the equation derivation) and a positive displacement

of the end butt.

After transformations, we get the equation for determination of the fre-

quency of rod vibrations

C
tank—m (k—pl/a)

or, for the case considered, at ¢ = FF/l

Fig. 2.15.
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1
tank = —. 1
- 1)

Equation (1) has the following roots: k; =~ 37/8; ko =~ 97/8; and k3 =~
337/16 (Fig. 2.15). Hence, the frequencies of vibrations are equal to

_ 3 EF 97 /E' 33w /EF
pl_SZ 'ITLO’ p2_8l y DP3 = 16l

49 In the general case (for an arbitrary stiffness ¢), the equation of frequencies
has the form

tank = —EFk.
lc
Since ¢ = EF/l, then
tank = —k. 1)

Equation (1), when solved graphically (see Fig. 2.15), has the following
roots: k1 =~ 27/3 and k =~ 37/2. Hence, the frequencies are

/EF /EF
P2~ -~

50 In the case considered, we have the following boundary conditions:

z=0, 8—uEF = C1U;
0z

z = l’ a—/UI_ElF’ = —CU
0z

The equation of frequencies has the following form

kEF (c2+ 1) /1 (k: p_l).

tank = — 5
cica — (EF/1) k2 a

Hence, the equation has the roots k; =~ 1.25 and ke = 3.5, and the fre-
quencies of vibrations

1 25 EF 3.5 EF
mo’ 1V mg

0
51 At the initial instant u = 0 and 8—1: = —uv, therefore, after some transfor-

mations we find

8vl 1 . mz . wnat
U= - ﬂ_zanz:nz —2l—'SlIl 2l (n=1,3,5,)
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The displacement of the right end face (z = I):

8vl o (—1)"7_1 . mnat EF
u(l’t)_w_%z 5 sin— a= o |

The displacement of the right end face reaches its maximum value at the

m™aty 1yt
21 =1 )

time t; =1/a ( at this moment sin

The displacement is
8vl 1 1 vl
Umaz = —— (l+ g+ o+ ) = ——

The axial strength is

N—EF%——EFS’Uli 1 (Wn>cosﬂzs'n7mat
- - 21 o Mo

Oz m2a n?
n=1

And, finally, the maximum value of strength

WEF 1 vEF R
Nm = — —-1 n+1 = — = — .
az Ta nzz:l on — 1( ) vV EFme

a

52 At the initial instant

. 0 for 0<2<1/2;
u=0; U=
—v for 1/2<2z<Ll.

The expression for the displacement of an arbitrary section of the rod assumes
the form

oo
™z mnat
prd TL. — sl _— :1’3,57....
u nilc sin 5] sin —~ (n )

Since © = g at t = 0, then the coefficients of the series are equal to

vl ™

—mCOS'Zl— (Tl:1,3,5,)

Cn =

The axial strength under rod vibrations

ou
N=FEF— =
0z
4EFv 1 ™ ™mz mnat
_ 2 cos TP cos T2 G TRAL
o En ., cos cos —-=sin —~ (n ,3,5,...)

Assuming z = [/2, we get the axial strength at the place of conjunction of
two rods:
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4FEFv Z 02 ™ g mnat
— — sin
—n 4 21

N=-

(n=1,3,5,...).
am

53 For every part of the rod the following equation

O%u 0%u
ikl 1)

is valid.
Seeking the solution to equation (1) in the form u = u;(2)sinpt we get

U = ¢ cos:[E + ¢ sin?z. (2)
a a
The amplitude of the longitudinal force

du1
N=FEF——.
dz

Invoke the following designations: u1; and N; are the displacement and
the longitudinal force at the first segment, u12 and N3 are the same quantities
at the second segment.

At the first segment N7 = 0 and, therefore, ¢ =0, i.e., at 2 =0

2z
U1l = €1 cosp—; N1y =c.
a
At the end of the first segment
plh

bi p .
U131 = €1 COS —; Ni = —=FEFc¢;sin—-.
a a a

One can choose any value for the amplitude value of the displacement of
the free end butt, for example, u11(0) = 1, then ¢; = 1. At the second segment

l
U112 (ll) = U11 (ll) = COS ?%1-;
ph
N1 (ll) = N2 (ll) = —EFl— sin T

Having determined ¢; and ¢z in solution (2) for the second segment, where
z changes from 0 to [, we obtain for u12(2z) and Nz (2) the following equations:

F l l
u12(z)=——lsm&smp—+cosp ! oszz;
F a a a a
I 2 l
No(2) = ——EF1 sin 2L cos 22 — QEFQ cos 22 sin 22.
a a a a a a

The condition u12(lz) = 0 entails the following transcendent equation of
frequencies
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F1 l k l2k pl
— tan cot — k=—]. 3
F2 l l ( a ( )

Solving equation (3) (for example, graphically), one can obtain the fol-
lowing values of the first four roots: k1 = 1.89%;ky = 4.53;k3 = 7.85; and
k4 = 11.2. Thus, the first four frequencies of rod vibrations are equal to

1.89 |E 453 |FE
P1=——4/—; P2 = ——4/—;
l 0 l 1Y

785 |E 11.2 |FE
P3=—F—1/"s Pa= ——4/—
! 0 ! 0

54 The equation has the following form
P Lk Iok ( k= pl > .

tan —— = — tan —
B, en T = —tansy a

55 We seek the solution to the equation of extensional vibrations of the rod
using the Galerkin method and assuming

w=f®)uz) =7 Ouo (1 - 22/17). (1)

The function u;(z) satisfies the boundary conditions of the problem:

du1
:0 —_— .
z b dz )
z=1, u; = 0.

Substituting solution (1) into the equation of rod vibrations, we get (ac-
cording to the Galerkin method)

mgf/uguldz - f/ [EF ]uldz =

After calculations we have

10 EFy
3 1?2mg

f+ f=o.

The first frequency of rod vibrations (in the first approximation)

1.826 [EF,

plz-_l— m().
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56 In order to determine the first two frequencies of the rod vibrations we
seek the solution to the differential equation of extensional vibrations of the
rod in the form

u= [ulo (1 - (2/1)2) v uZ0(1 - (2/1)3)] sinpt

After calculations we have

1.794 |EF, 5.033 /EF),
pL=————; P2=——4/——.
l mo l mo

57 We seek the solution to the equation of the extensional vibrations of the
rod using the Fourier method. Assuming v = Z(2)T(t), we get two equations

da’T

Frl +p*T = 0; (1)
&2z p2z EF,
w0 (#=20). @)

where p is the frequency of vibrations.
The solution to equations (1) and (2) has the form

2z 2z
U= (cl cosp— + ¢g sin p_) (cscospt + cysinpt)
a a

and should satisfy the following boundary conditions:

Ou

= — =0

z =0, Ep ;
ou

=1 — =0.
2=0 Oz

Then, we find ¢ = 0, pl/a = 0, and the frequencies of vibrations are p, =
mna

Since different modes of rod vibrations with frequencies p,, are possible,
the general solution to the equation of extensional vibrations of the rod is
equal to the sum of partial solutions:

(3)

™mz mnat mnat )
l )

o0
u = E cos - <C3n COS —— + ¢4y SIN

n=1

At the initial instant
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From condition (5) we get c4,, = 0, and from expression (3) we find

= nz t
u= Z Ccos FT - Cgp, COS 777;(1 . (6)

Att=0 -
f(2) = uo (-;- - %) = Zcos%i (7)

Relation (7) is an expansion of the function f(z) into a Fourier series.
The above coefficients follow from the theory of the Fourier analysis

or

After calculations, we have

oo — 0 for even n;
Bn = 4uo/( 2 2) for odd n.

Expression (6) takes on the form

4 1 ™z mnat
2 n2 [ [
n

(n=1,3,5,...).

58 It follows from the boundary conditions of the problem that ¢; =
0, cospl/a = 0, hence, the frequencies

pn:.@ (a: ——EFO, n:173’5?"')'

Mo

Since at the initial time & = 0, then (see solution to equation 57) the
displacement of an arbitrary section of the rod has the form

t
u—-chsm—co W;? (n=1,3,5,...).

The displacement at initial instant is specified in the following form

U = Up

.
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The coefficients of the expansion

1
2u, . TNz 8u, n—1
Cp = —l—g/zsm —2l—dz = 7r21;)2 (-1)=
0

The expression for the displacement of an arbitrary section of the rod
assumes the form

oo
t
:77_0; sm%nl—zcosm;? (n=1,3,5,...).

The displacement of the right end face of the rod

o0
wnat

8u0 (—1
——2—2 Y (n=1,3,5,...).

n

59 Let us write the differential equation of vibrations of the rod with a
concentrated force P:

2y u
mg? = % [EF(Z)%;] + Pé(z), (1)

where 6(2) is the Dirac delta.

The solution to equation (1) under steady-state forced vibrations of the
rod we seek in the form u = u;(2) sinwt. After its substitution into equation
(1) we get

d du1 2 _
P [EF( )— p ] + muw® = —Pyd(z).

. . Tz .
The function u; can be chosen in the form u; = a; cos —, where a; is

the amplitude of steady-state vibrations that corresponds to the first mode
of natural vibrations of a homogeneous rod (the function used in solution to
Problem 35 can be also used as function u;).

According to the Galerkin method,

l
2o (14 ) cos ™
/mow ai (1+ l)COS2l
0
EF0a17r d z T T
] o [<1+ l)s1n2—l] Pyé(z )cos—2—ldz—0.

After calculations we obtain

16P017l’2
dmow?l? (372 — 4) — EFyn? (3m2 4+ 8)°

a; =
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60 The differential equation of extensional vibrations of the rod has the
following form (see solution to Problem 59):

Pu _ 0% | Rd(z 1) "
a2~ " 92 mo

We seek the solution to equation (1) in the form
mnz
u= Z un(t) cos —

At the initial instant u(0, z) = (0, z) = 0 , therefore, finally (see solution
to Problem 51)

2Pyl < cos(mnz/l) mnat
= GFa2 > l—cosT (-1)™
n=1
The rod also moves as a rigid body. Let us write the equation of motion
of the rod as a rigid body:

molﬁo = PQ,
from where we have
Pyt?
ug = .
0 2mol

The total displacement of the rod sections is

Pot? 2Pyl K cos(mnz/l) (1 s 7mat> (1)

- 2mgl  EFn? n?
n=1

The axial strength in the rod equals

N = EF@ _ 2Rl Z sin(rnz/l) (1 ~ cos Wnat) =

Oz T n

n=1

This strength in the section z = [/2 at the moment ¢, =[/a is equal to

61 The differential equation of extensional vibrations of the rod can be
presented (taking the force P into account) in the following form
0?u 0?%u

Moy = EF 5= + Pod(z — 1), (1)
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where §(z — 1) is the Dirac delta.
We seek the solution to equation (1) in the form

u=Zun(t)Sinzr$ (n=1,3,5,...). (2)

Now substitute solution (2) into equation (1), multiply this equation by
. TNz )
sin ——, and integrate between 0 and [. As a result, we have

7rn)2 2P n_1
Up =

i, + a2 (57 (L)% (n=1,3,5,..)). (3)

Since at the initial instant ¥y = u(0) = 0, the solution to equation (3) has

the form
8P 2 mnat n-1
= (1 1),
Imom2a?n? ( Ry, >( )

Finally, we find

8P1 (—1)“57’l . TNz mnat
u(z,t) = ——— Z oy sin—— 1 —cos 57 ) -

= 3 2
m Qa
04" 135,

The quantity u reaches its maximum value at the time ¢; = 21/a for the
point where the force P is applied (z = {):

16P1 1

umax=E_FF ; ﬁ (n:1,3,5,) (4)

The sum of the series appearing in expression (4) is Y.(1/n2?) = n2/8,

n
therefore, umax = 2Pl/(EF), i.e., at a sudden application of the load the
displacement of the rod butt is twice as large as at a static loading.

62 When a concentrated force acts, the differential equation of extensional
vibrations of the rod has the following form

0%u . 20%u  Pod(z — z)
# Yot T m L

where zg = vt.
We seek the solution to equation (1) in the form

™mz
:E (t) sin ——.
u nu()sm2l

For the functions u,(t) we get

7rn>2 2P, . mnut
n

. 2 (TN _ 4o
Un +a (21 Imo S 21
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Since at the initial instant %(0) = u(0) = 0 or u,(0) = %,(0) = 0, we find
from equation (2)

" — 8Pl sin L sin mnat
" mon2 (a2 — v2) n2 21 21 )

The solution to equation (1) takes on the form

sin e
8Pyl 5T
u(t,2) = mon? (a2 — v2) > n2
n
t t
X (sin%—sin%) (n=1,3,5,...).

63 In this case, the following boundary conditions take place

z=0, u=0;
0%u Ou
£=h 12 Bz

The solution to the equation of extensional vibrations of the rod has the
following form

Z 2z
U= (c1 cos pz + ¢osin P——) sinpt.
a a

In order that the first boundary condition would be satisfied, it is necessary
to assume c¢; = 0. The fulfillment of the second boundary condition is provided
by the equation

mocosp—l = @sin p_l’ (1)
a a a
or l l
pl  mela
tan — = .
an a Mpl )

Equation (2) can be solved graphically (to obtain the series of first fre-
quencies). Figure 2.15 presents for M = mgl the plots of the functions

—tan 2! __ mpla
1= P Y2 = Mpl
From the roots (points of intersection of the plots for y; and y2)
pil/a=3n/8; pal/a=97/8; p3l/a=337/16,

we can deduce the frequencies

_3x [EF 9z [EF _ 3n [EF
pl_Sl mo’ p2_8l TI’LQ7 p3_16l mo'
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64 The boundary conditions have the following form

ou
= 0’ _ = 0;
z 0z
0%u Ou
= M— =—-FEF—.
z=b ot bz
For determination of frequencies we have the equation
pl  Mpl
tan — = .
a mola

l
Figure 2.15 shows the points of intersection of the plots y; = tan b and
a

l
Y1 = —% . Consequently, the desired frequencies are

_5r JEE _3m JEF. _br [EBF
pl_Sl m()’ p2—2l m()’ p3_21 mo‘

65 The boundary conditions of the problem:

z2=0, u = 2o(t);
0%y ou
z = l, Mw = -—EFg;

We seek the solution to the equation of steady-state longitudinal vibrations
of the rod in the following form

. wz . wz
u = uy(z) sinwt U] = €1 COS — + Cosin — | .
a a

The arbitrary constants are

M wl wl
m—a—COS—;+Sln—
— A _ 0
a =4 ca=A wl M wl  wl
€0s — — — — sin —
a mol a a

The displacement of an arbitrary section has the form

cos __w(l = 2) — _]\([__w_l sin w___(l —2)

_ a mol a a .
u(z,t) = A T Mol ol sin wt.
cos — — — —sin —
a mol a a
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It follows from formula (1) that, when the denominator vanishes, the am-
plitude of vibrations of the mass M becomes infinitely large. The values of w,
for which this takes place, we find from the equation

tanw—l = tmoa
a Muwl

(2)

From the comparison of equation (2) of Problem 65 with equation (2)
of Problem 63 it follows that the values of w, at which the denominator of
formula (1) in Problem 65 vanishes, coincide with the frequencies of natural
vibrations of the system.

66 In the case under consideration the mass per unit length of the rod is
variable. Therefore, when deriving the equations of motion, we take advantage
of the theorem of momentum variation for an element of the rod mass (dm =

oEdz) and obtain
9 [ 0u 0?%u

where F' is the current area of the charge section.

At an arbitrary instant the charge mass M = My — M¢t, where My is the
initial charge mass and M is the constant consumption per second (the charge
mass burning out per unit time).

At the instant ¢ of termination of the engine operation the mass M is zero,
therefore, M = My/t;. Since the charge mass M = glF, and at the initial
instant My = plFy, the law of time behavior of the area of the charge section
has the form

F=FQ1-t/t1).
Equation (1) can be transformed to the form

Fu_ 1 Bt
o2ty (1—t/t;) 0t o 022

67 The extension force of the spring (with a small angle of lead) is equal
to ¢ = Gd*/ (8D%). The stiffness of an equivalent rod of the same length is
EF/l = Gd*/ (8D%), where E; and Fy are the Young’s modulus and the
section area of the equivalent rod, respectively.

The equivalent rod mass is equal to the spring mass:

oF|l = nDignd?/4.

The velocity of propagation of a longitudinal wave in the rod is

EF
——-——QFl mDM, a=3.7m/s.




106 2 Answers and solutions

The frequencies of spring vibrations (see solution to Problem 42) are

_n-11d /G
Prn="7"1D%\ 2

68 Let us change the spring for a continuous equivalent rod (of the same
length !) whose extension stiffness should be equal to the spring force:

C=E1F1/l, (1)

where F; and F} are, respectively, the elasticity modulus of the first kind and
the section area of the equivalent rod.

The mass per unit length for the equivalent rod should be equal to the
mass per unit length for the spring:

w2ipDd?

From relationship (2) and from equation (1) we determine the area F; and
the modulus Fj, respectively. Figure 2.16 shows an element of the equivalent
rod with the forces acting upon it (u is the longitudinal displacement of the
rod element under vibrations). The distributed forces act upon the rod in the
equilibrium state (the inertia forces are ¢ = (pF}) £22z). Due to the displace-
ment of the element under vibrations, an additional force Aq = pF} £2%u acts
upon it.

The differential equation of the extensional vibrations has the following
form

o _on
otz 9z

After transformations, we find

dz - oFy dz + Agdz.

Yy
A\q:OgF,)SPza
A . R
u | \\Fd.m=/oF,d
> | u+du
Bl B D o
o z dz z

Fig. 2.16.
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2
—— = — =+ % (3)
Now we seek the solution to equation (3) in the form u = u;(2)sinpt and
get the following equation for the function u,

d?u; (224 p%)uy

2 e =0 (a®> = E1 /o). (4)

The solution to equation (4) has the form

92 2
U] = €1 COS Az + ¢o 8in Az (A: %) .

The function u; should satisfy the following boundary conditions:

z =0, u; = 0;
z=1 %—
=1, o =

which holds true at ¢; = 0 and sin A\l = 0 or A\l = 7n (n = 1,2,...). Thus
we obtain the frequencies of vibrations of the spring in a field of centrifugal

forces:
m™m | E 272
n= | =/ (1= 55 =1,2,..).
P l 0 ( m2n2q? (n )

69 The first frequency of vibrations (see solution to Problem 68) is equal to
zero at 2212/ (7%a?) = 1, so that we get the critical angular velocity of the

disk as
0 =T |5
Ly e

70 The spring can changed for an equivalent rod assuming (see solution to
Problem 68)

4 E 1 2
Gdt BB o 1o md

c=8D%m 1 l 1

where E; and F) are the elasticity modulus of the first kind and the section
area of the equivalent rod, respectively.

The mass per unit length of the equivalent rod is mo = oF1.

When the disk rotates, the distributed forces act on the spring (per unit
length), ¢ = mf22z, which causes a change in the initial level of Ny. Let
us find the strength N in the equivalent rod when it rotates. The additional
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reaction forces R; and Ry arising at the points of rod fixing (caused by the
forces q) satisfy the equilibrium condition

l

2212

R1+R2=/qdz=m02 .
0

Considering the deformations of the rod, we derive one more equation.
The total change of the rod length is equal to zero, therefore, taking advan-
tage of the principle of independent action of forces, we get (neglecting the
embedment and changing it for the reaction force R»)

!
Ryl [ Ng(2)dz
E\Fy EFy
0

The longitudinal strength N,(z) caused only by the forces ¢ is

mof2222

Ny(2) =/m002§d§: 5
0

Therefore,
mg$2212
Ry = —> 5
The total strength in the rod during rotation changes according to the law
92 2
N = Not Ry - MO

The differential equation of longitudinal vibrations of the equivalent rod
is similar to the following equation given above in Problem 68

v E; % 2
o7~ g oz T
71 As the disk rotates the tension in the filament changes and becomes (see
solution to Problem 8) variable in length. In order to determine the filament
tension at {2 # 0 let us consider the filament loaded with distributed forces
(Fig. 2.17a).

We find the tension in the filament caused only by the forces q. The sum
of reaction forces at the points of fixing the filament is

m092

!
Ri+ Ry = /mOQQZdz = 2.
0
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Fig. 2.17.

Since the variation of the filament length is zero, we get the following
relation

l

Ral [ Ni(z)dz _ mol2?z?

EF"/ EF Mi(z) = —=5—)-
0

After calculations, we find

_ m0l292

Ra 6

The tension force in an arbitrary section of the filament (taking initial Q10
into account) is

1 2
N =Qi10+ Ra — N1 = Q10 + 0.5mol*02 (5 - 7—2) ) (1)

Figure 2.17b shows an element of the filament with the forces acting upon
it. Under vibrations, the filament element is displaced along both the z and

2 2
y axes. In Fig. 2.170 —d and —dmZY are the forces of inertia;

oz 12
2dm Q% and 2dm Qgg are the Coriolis forces; and dm 2%u and dm 2%y
are the additional centrifugal forces that arise when the element is displaced
from its initial position.

The longitudinal strength N (under vibrations) is
ou

N' =N+ EF—,
0z
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ou .
where EF 5 is the strength in the filament that appear under extensional
z

vibrations.
Projecting the forces onto the axes y and z, we get after some transforma-
tions two differential equations of the form

%y ou 1 0 ([ ,0y 2

o a—m—oa(f"az)—”y—o’ ®
0%y oy 1 ON'

i e = SR ®)

Since y and u, as well as their derivatives, are small, one can assume in
equations (2) and (3) N’ = Ny. In equation (3)

mo Oz

Then differential equations (2) and (3) assume the form

Py oty a02 - LD (),

2 ot medz \| 0z @
0%u 9 Ay 1 0%u

We seek the approximate solution to system of equations (4)) using the
Galerkin method in the form
z
y:yl(t)sinzl—, u:ul(t)sin?.
After transformations we obtain the following system of differential equa-
tions for y1(t) and wuy(t):

2 5
4+ 2 (E) — =822y — 2020, = 0;
mo l 4 (5)
EF 2
i1 + |:— (z> — 92:‘ uy + 28279, = 0.
mo l
In order to solve system of equations (5) we assume
y1 = Asinpt, u; = Bsinpt. (6)

Substituting (6) into system (5) we get the system of two algebraic homo-
geneous equations for A and B. Equating the determinant of this system to
Zero

2
—p? 4 Quo ()" _ 5 Yo)
mo l 4

, _
20p 2y B (f-) o
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we find the approximate values of the first frequencies of filament vibrations

pr2 =1\ at+/a?—4b/2,

™\ (EF , Qu\ _ 2,
l mo mo 4

= (7) -] [ e -]

where

I

a
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2.4 Bending vibrations of rectilinear rods

72 The distributed forces of inertia ¢ act upon the rod (Fig. 2.18a) under
vibrations. As is known, the equation of bending deflections of the rod can be
represented in the form

The distributed forces of inertia acting upon the rod unit length are

0%y
9= Mo
The differential equation of the bending deflections of the rod takes on the
form 52 a4 EJ
Y 207y 2 z
— —= = =—1. 1
ot? ta 0z4 0 (a mo ) )

The solution to equation (1) is sought in the form y = y1(z) sinpt. For the
functions y1(z) we have

643/ p2
8z41 — My =0 <)\4 = ‘a—Q) . (2)

The solution to equation (2) has the form
y1 = 1K1 (Az) + coKo (A2) + c3Ks (A2) + caKy (A2),

where K; (A\z) are the following Krylov functions [4]

Fig. 2.18.
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1 1
K; (A2) = 3 (cosh Az + cos Az); Ko (A2) = 3 (sinh Az + sin A\z) ;
1 1
Kz (A\2) = 3 (cosh Az — cos Az); Ky(Az) = 3 (sinh Az —sin Az) .

Atz=0 KlzlandK2:K3:K4=0.
In the case of hinge fixing (see Fig. 1.56a) the function y; should satisfy
the following boundary conditions:

2=0;  y=y=0
z=1 y =y =0.

In the places of hinging of the rod ends the bending deflection and bending
moment are equal to zero. The bending moment is proportional to the second
derivative: M = EJ,y".

In order to satisfy the boundary conditions at the left end of the rod one
needs to set ¢; = ¢ = 0.

From the boundary conditions at the right end of the rod we get

Ko (/\l) + csKy (/\l) = 0;

2 2 (3)
XKy ()\l) + 4 A Ko (/\l) =0.
Now equate the determinant of system (3) to zero:
K3 (A) — K3 (\) =0,
or
sinh Al sin Al = 0, (4)

Since sinh Al # 0, it follows from equation (4) that Al = 0 or Al = wn. The
frequencies of vibrations are

m2n?2 [EJ,
= ——4] —— =1,2,3,...).
p 2V mg (n )

The following boundary conditions take place in the case of a cantilever
rod (see Fig. 1.56b):

z=0;  y1=y =0

"

z=1; yl =y =0.

At the free end of the rod the moment and the cutting force Q = EJ,y"’ are
equal to zero.
The equation of frequencies has the form

K3 (M) — K2 (\) Kq (N) = 0,

so that
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cos Al = —1/(cosh Al). (5)

Equation (5) is solved graphically by plotting the functions z; = cos Al
and zp = —1/(cosh Xl) (Fig. 2.18b).
The first two roots of equation ((5) are

(M), =1.875;  (Al), = 4.694.

The remaining roots, as it follows from the plots, can be represented in
the form

(A, = (2n—1)/2 (n > 2).
The desired frequencies are

EJ, EJs _ (2n-1°x% [E],

Finally, in the case shown in Fig. 1.56¢ the equation of frequencies has the
following form

tan A\l = tanh Al,

and the frequencies are

EJ, EJ, (4n+1)2n? [EJ,

=16.4 1=4 = .
pl 6 l4a 9 147 pn 16 m()l4

73 For the case presented in Fig. 1.57a the equation of frequencies has the
form

coshAlcosAl—1=0.

The roots of this equation are

2n + 1
(), =4.73; (M), =785  (A), = =2 2+ T (n>1)
Then the frequencies are
EJ, EJ,
=22, =62
P = 5 Tn()l4’ D2 6 m0l4’
[2tn+1)+1 27r2 EJ,
Prn= 2 mol4 )

For the case of Fig. 1.57b the equation of frequencies looks like

coshAlcosAl+1=0.
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The roots of this equation are
(A), =1.875;, (M), =4.694;  (\), = (2n—1)7/2

Consequently, the desired frequencies are

[EJ, EJ,
p1=25 mold’ P27 22 ol
_(2n-1\* , [ET,
Pn= 2 T m0l4'

74 As is known, the differential equation of the elastic line of a rod with
variable section has the form

8%y

= M(z).

Differentiating this equation twice with respect to z we find

0? 0%y 0%y
o7 (EJ'a—) ==l g

75 The differential equation of transverse vibrations of a rod under the action
of a distributed load has the form
oy 0%y
EJ,— —= =g,

24 M0 =1
or, since we consider small vibrations,

643/ &y 3
EJ, e +mo—=— 52 = 4kPy/a”. (1)

We seek the solution to equation (1) in the form
y = y1(z)sinpt

Then we obtain the following equation for the function y;(z)

My
— My = 2
4 0 2)
4kP§
where /\4 g%;ﬁ
Equation (2) is similar to equation (2) in Problem 72, where the following
values of the two first roots were obtained for a cantilever rod (see Fig. 2.18b):

(Al); = 1.875 and (Al), = 4.694.
The vibration frequencies corresponding to them are
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. 2 EJ, 4k®?
p1= \/(1'875)4 Ble 2% = \/(4 694 20z _ 2600

molt  admg molt  admg

The critical (minimum) value of the magnetomotive force @, is found by
the formula

EJ,a3
144k

Po. = 1/(1.875)4
76 The differential equation of vibrations of a rod with a variable moment

of inertia has the form
0? 0%y 8%y
— | E = 0. 1
az2( J82>+m8t2 0 (1)
We seek the solution to equation (1) in the form
. TZ
y = yosin —=f(t)
The function sin WTZ satisfies the problem’s boundary conditions:

z2=0,  y=y"=0
z=1; y"” =0.

Using the Galerkin method we get

1
5 . TZ 0 TZ\ . TZ
f/msdez—— - /(')_ J sin — )sdez—O.
0 0

After calculations we have

E
f+” %4U 0,

and in the first approximation the fundamental frequency is

EJy

pl—-216 )
l my

77 The symmetric mode of vibrations corresponds to the first frequency,
therefore, we seek the solution to the equation of vibrations in the form

. Tz . 3wz .
Y= ylsln7+ygsmT sinpt

.. 3wz . -
(the function sin - corresponds to the symmetric mode of vibrations).
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After some transformations we get the system of equations

EJ,
(0.356m0lp2 - 1.62l—307r4> Y1 +

EJ
+ <—0.085molp + 6.981—307r4) Yy = 0;
EJ
(—0.085m0lp2 + 6.98———1307r4> y+
EJ
+ <0.414molp - 98.921—307r4) Yo =0,

so that we find the refined value of the first frequency

2

EJ

P = 17815, [ 220
[2 my

and the frequency p3 corresponding to the second mode of rod vibrations

7I'2 EJO
P =1\
0

78 In the case considered the rod consist of two segments, therefore, for each
of the segments we have

y1 =Ky ()\Z) + Ko ()\Z) + c3K3 ()\Z) + 4Ky ()\Z) (0 <z< b),

Y2 = ;K1 (A2) + c5Ka (Az) + c§K3 (A\z) + c;Ka (A2) (b <z <)

At the first segment y;(0) = yg'(0) = 0, therefore, ¢; = ¢3 = 0.
At the point of conjunction of two segments y;(b) = y2(b) and

)
0z |,_

_ O
b_az

2=b

The transverse forces at the end of the first segment and at the beginning
of the second segment differ by a value of the support reaction, i.e.,

Py »Pys

EJ 823 823

=FEJ,

z=b

_R’

z=b

where R is the support reaction.
The conditions of connection of the segments can be satisfied if the bending
deflections at the second segment are represented as

R
Y2 =y + mIQ Mz — b)] > (2)

so that the function K4 [A(z — b)] is identically equal to zero at z < b, and it
is nonzero at z > b.



118 2 Answers and solutions

Expression (2) is valid for the entire rod. Substituting the relation for y;
into (2), we have at ¢c; = ¢c3 =0

Y = 6K (A2) + caKa (A2) + %1{4 Az —b)]. 3)

Equation (3) involves three constants (cg, ¢4, and R) that can be deter-
mined from the conditions

z=b; y=20;
2 =1 y//:ymzo

We get the following system of three equations for finding the constants
c2, ¢4, and R:

caKa (Ab) + c4K4 (Ab) = 05
R

oKy ()\l) + c4 K3 ()\l) )\ZEJ

KQ[)\ ]:0; (4)

K3 ()\l) + ecs Ky ()\l) + K, [)\(l — b)] =0.

MEJ,
Equating to zero the determinant of system (4), we have the equation of
frequencies
Ko (M) Ky (D) 0
Ko (N)  Ka2(A) Ka[MI-d)]| =0,
Kz (M)  Ki(M)  Ki[MI-0)]
or

K3 (Ab) K2 (Ab) K1 [A(l — )] + K3 (Ab) Kq (Ab) K2 [A(I — b)] =

~ K (M) Ka (M) K1 A0 — B)] + K1 (D) Ka OD) Ko P )], )

The roots of equation (5) can be determined graphically. For the case
under consideration (b = [/2) the first root is (A!) = 0.311, and the frequency
corresponding to this root is

EJ,

p1 = 9066/~

79 The differential equation of vibrations of the rod has the following form

Py L0y B
6t2 +a @—m_o(s(z—l()) (1)

We seek the solution to equation (1)) in the form

o0
Tz
=" yn(t)sin——.
y n:1yn()sm ;
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For the function y,(t) we get

4
2P, l
in+a (”l”) Yo = Z inm;O (n=12.). 2)

At the initial moment y,, = g, = 0, therefore, the solutions to equation
(2) have the following form

l
2Py 13 sin mz 9 a(mn)?t
Yn = —— 711 [1—cos 5 ]
moalmin l

The solution to equation (1) can be represented as:

™ l()
2Py 13 & Sin—— L ain ™ {1 cos a(mn)%t
Y= gt — ot l 12 '

The bending moment at an arbitrary section of the rod is

62

Y EJ.2P, 3
M= gl = = >
2w mnly . 7wnz a(7rn)2t
X ng_l ’rL2_l2 sin —l“ sin l [1 — 12 :I .

The maximum normal strength in the section, where the force is applied,
is
mnly

L [1—cos“(”—")2t].

l2

2EJ, oo gin

=22 2
2=lo a7rW£n=1 n

M
|0max| T

Ws

80 Let us write down the equation of rod vibrations:

62 a2 64’!] _ P()
otz 824 myg
where 2 = vt.
The solution to equation (1) is sought in the form

™z
y——Zyn s1n——. (2)

Upon substitution of solution (2) into equation (1) and some transforma-
tions (see solution to Problem 22) we have for the functions y, (t) the following

equations
4
™ 2Py, . mnut
in +a® Yo = — sin 2. 3)
0l mol l
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The solution to equation (3) has the form

2P, . mnut

a(mn)%t N mol S
2 a2(wn/)t — (mnv/1)?

Since y,(0) = g (0) = 0 at t = 0, then

a(mn)?t
12

Yn = C1 COS + ¢o sin

sip TVt v/l sin a(mn)?t
_ 2R T T @(mn)l) 2
Y= el a2(nn/l)d — (wn/b)2v2
The solution to equation (1) has the form
g T v/l sin a(mn)?t
(t,2) = 2P isinw_nz T a(mn/l)? I2
P = el 27T a2(rn/l)* — (mn/b)2v?

It follows from the solution derived that there are such values of the veloc-
ity v, at which the denominator in the serial terms is equal to zero, however,
their numerator at these values of v is also zero. If one evaluates this inde-
terminate form, a finite number is obtained, i.e., no critical velocities for the
moving force exist.

81 The angular velocity of the bullet at the moment of its exit out of the
barrel is

w= Oy

020t

z=1
t=1/v

Using the solution to Problem 80, in which one should take mg instead of
Py, we get after appropriate transformations

2
o 1—(—=1)"cos a7rlvn

T mol = a?(mn/l)? — 02

_ 2my

82 At vibrations of the rod on the elastic base, an additional force d¢; =
dz ky acts upon its element. This force is directed against the displacement y.
Therefore, the equation of vibrations has the form (see solution to Problem
75)
2 4
Oy BLdy o
mg 0z mo

83 According to the Rayleigh method, Tiax = II1 + IIs , where IT; and Il
are, respectively, the potential energies of the rod bending and of the base
deformation. They are equal
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1
/ ky?dz.
0

1

/EJIy1 dz; Il =
0

I, =

l\’)l»—t
DO~

The maximum kinetic energy is

l
p
Thax = ?/ Oy%dz
0

The squared frequency of vibrations is

1 !
EJ, / y?dz +k / yidz
0 0

p = 7

mo /yfdz

0

Instead of y1(z) one can take the function sin ?, which satisfies all bound-

ary conditions of the problem. After transformations we have

p:\/(7> o

84 The differential equation of rod vibrations is similar to equation (1) of
Problem 82. We seek the solution in the form y = y;(z) sinpt.
For the function y;(z) we have

- Xy =0 (A‘*:?i— k ) (1)

a2  a’myg

For the case of fixation shown in Fig. 1.66a the roots of the equation of
frequencies (see solution to Problem 72) are equal to

(A, =1875 (M), =4.694; (M), =(@n—1)n/2 (n>2).

Hence,

(18754 EJ, k (4.69)*EJ, k
p=t— ="t —;  p= L

4 my  mo’ “* my mo
For the case shown in Fig. 1.66b the equation of frequencies has the form

coshAl-cosAl—1=0. (2)
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The first three roots of equation (2) can be determined graphically and
are equal to

(AD;=0;  (AD)y;=473;  (M);=T.85.

The frequencies of vibration in this case are

% \/ 4734 EJ, k&
PL=4/—5 Pp2= +—;

mo’ 4 my mo’
7.85)4 EJ. k
p3 = ( 1 ) 4+ —.
l my myo

85 The differential equation of rod vibrations on an elastic base has the form

Py L0  k Py
W-l—a 5;4‘+m—0y—%(5(2—20)

After calculations similar to those made in Problem 80, we get

<, mnut  v(wn/l) )
Sin —— — —————=sinp,t
l pn

(7))

2P . TNz
t.2)= "2 ki
y(t, 2) 7 n2=1 sin —

1
where p, = \/a2<_7zr_z) + i
l my

86 The differential equation of rod bending under the action of a distributed
load has the form

oy
EJ;C@ = ql(z,t).

In the case under consideration the distributed load ¢;(z,t) is represented
by the force of inertia of both fluid and pipeline (Fig. 2.19). Using the Eulerian
variables we can write

0%y 0%y 0%y 0%y
£) = —mp—=2 — 242 229
a(2,1) = —mp Gy —me <8t2 e T B2
where mp is the mass of a pipeline unit length, mp = gpFp (Fp = 7D,,) and
my is the mass of fluid per unit length of the pipeline.
We derive the following differential equation of transverse vibrations of the
pipeline
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Fig. 2.19.
9y 0%y Py . 0%y
EJo= 2 w?—= =0. 1
gz1 T (me HmE) g+ dmpw Ty ey @)
Now we seek the solution to equation (1) in the form
y=u(2)eP?

For the function y;(z) we have the following differential equation:

d*y: dy, | d*m
Py apy1+1bpd +c 122

where a = (mp +mg) / (EJ,); b= 2wmp/ (EJ;); and ¢ = w?mp/ (EJ;).
Let us seek the solution to equation (2) by the Galerkin method

=0, (2)

ylesinﬂTz+Bsin2lﬂ. (3)
The solution to equation (2) should satisfy the boundary conditions of the
problem:
z=0, y1 =0, yi = 0;
z=1, v =1, y{ = 0.
Substituting (3) into equation (2), multiplying sequentially the resulting
expression by sin Tz and by sin 2%, and integrating it between 0 and [, we

obtain the following system of two linear homogeneous equations for unknown
constants A and B:

4
™ 2T\ | _ g8
A (l) ap C(l) B3lp 0;
(4)
A% B s ' 2_40(Z ’ =0
3P ] WA T) T
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After calculations, we have the following values of the first two frequencies
for a series of the velocities of fluid motion:

Table 2.1.
w,m/s. ... ... 0 10 20
p,s Tt 24.9 24.2 21.7
pa, s~ 98.8 101.7 101

87 The first frequency of vibrations of the pipeline becomes zero at the critical
velocity of fluid flow. Calculating the determinant of systems of equations (4)
in Problem 86, we can obtain the equation of frequencies. This equation has
a zero root if its free term is equal to zero:

(ORI OR RG> I

The lowest velocity (critical velocity) at which condition (1) is satisfied is

w (EJ,
We = T4/ .
LV mp

After substitution of numerical values we get w = 47.8 m/s.

88 Figure 2.19 shows a pipeline element with forces acting upon it. The
equation of small vibrations of the pipeline has the form

2@) _ &y

922

0%y 0%y
Blogatmegs

i 92
+ +mp (—y+2w—y+w

o2 020t 022 =0 (1)

After transformations we have, taking the formula for N into account (see
statement of the problem),

Oty 0%y 0%y 8%y
321 T 0% T g teesagz =0, (2)

where a = (mp +mp) / (EJ); b= 2wmgp/(EJ;); and ¢ = w?mgp/ (EJ,)
The characteristic equation has the form

4 2 2
a?p?t — p? [17@(1;-) - 5ac(%> cosa + (g?)
™\ /72 m\2
+4(7) (7> —ycosa 4(—[) —ccosa] =0.

+
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At a = 90° equation (3) has no zero roots, i.e., no critical velocity exists;
at an arbitrary angle « the critical velocity is

T EJ,
Wy = T

My Ccos

and for o« — 90° Wy — OO.
After calculations (at & = 90°) we have the following values of frequencies

Table 2.2.
w,mfs. ... ... .. 0 10 20
pL,s t ... . 24.9 24.5 24.3
pa,s . 98.8 99.5 102.5

89 In the case considered the flow velocity is variable along the length of the
pipe. Since the fluid is incompressible, then

opwoFy = orw(2)F(2)  (F(2) = nd*(2)/4).
Hence, the velocity in the arbitrary section of the pipe is
w(z) = woFy/F(2).

As a result, we have the following differential equation (see solution to
Problem 86):

0? &%y nd?\ 6%y
922 (EJI@) + (QP?rdé + .QF—> W+

0%y  orwiF? 0%y
0z0t F 922

+ 20rwo Fy

90 The differential equation of vibrations of a pipeline lying on an elastic base
can be derived from equation (1) of the solution to Problem 88 by invoking
an additional elastic force ky that acts to the pipeline from the side of the
elastic base. By this means, we can write

0%y EJ, @ 2mow 0%y
otz (m1 +mg) 824 (my + ma) 820t (1)
mow? 0%y k

(my + mg) 822 (my + mg)y

Now we seek the solution to equation (1) using the Galerkin method and
assuming sequentially
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y1 = Asin WTZ sinpt; (2)

2mz
y2 = Asin % sinpt; (3)
Solutions (2) and (3) allow one to determine in the first approximation the
first and the second frequencies of vibrations, respectively.
Substituting (2) and (3) into equation (1), after some transformations, we

have
B EJ, (3)4 Lk mow? (W)Z_
PV +ma)\T) T tma)  ma+ma\1)
B EJ, (21)4+ ko mu? (%)2
P2 (my +mg) \ 1 (m1 + ma) (my + mz) l )
91 One can assume that the axial compressing strength is constant over
the rod length under small vibrations. The differential equation of transverse

vibrations of the rod with allowance for the longitudinal force is a particular
case of equation (1) in the solution to Problem 88:

84y 0%y 0%y

We seek the solution to equation (1) in the form
™mz
y = Z fn(t) sin -

For the functions f,(t) we get
4
- )\ EJ, N ™
fn+[(7) 2}@:0.
mo m() l
The desired frequencies of vibrations of the rod are
_ / ™ 4EJZ N ™ 2
Pr=V\T ) e T mo\ T )

92 The differential equation of transverse vibrations of the rod (see solution
to Problem 91) has the form

64y 82y 82

. Yy
EJ, 254 + mo——= 52 + (No + Npsinwt) 32 = 0. (1)

We seek the solution to equation (1) in the form
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y=2n:fn(t)sinﬂ—?3 (n=1,2,3,..).
After transformations, we obtain
" EJ 4 N 2 N 2
fa + () - () -2 (IE) sinwt fn=0.
mo l mo \ ! mo \ 1

Now let us make a conversion to a new independent variable (assuming
wt =27 —m/2):

fn + [an + 2¢, cos27] f, = 0,

where

4 |EJ, (™™ 4 N [mn\? 4 Ny /(7™ 2
ap = —% — _— — ; 2qn = — Q| —
w? | my \ I mg \ | w?mo \ 1

The numerical coefficients for several n are as follows:

Table 2.3.
T 1 2 3 4
O 0.535 15.2 83 269
G2 - o e e 0.05 0.22 0.49 0.88

The corresponding points (a.,g.) are inside the stable regions on the di-
agram (see Appendix A of Part I).

93 In this case the coefficients have the values given in Table 2.4.

Table 2.4.
N 1 2 3 4
L P 1.66 20 93.95 292.81
Q2 - e e 0.05 0.22 0.49 0.88

The corresponding points (ay, g,) are inside the stable regions on the di-
agram (see Appendix A of Part I).

94 In order to estimate the error in determining the frequencies, let us
consider the differential equation of rod vibrations under the action of the
stretching force Q10 constant over the rod length (1o = N), taking into
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account the bending stiffness (a special case of the equation derived in Problem
88):

84y Zy
EJ, S —+—m0 8t2 - Qro=—> 922 = (1)
The solution to equation (1) is sought in the form
> ™mz
y=> fa (t)sin —=. (1)

n

Substituting (1) into equation (1) and taking advantage of the principle
of virtual displacements, after appropriate transformations we arrive at the
following equations

Q10(Z—">2+EJ (”n) }fn_o (n=1,2,...).

The frequencies of vibrations are

™ [ Q1o EJ, (ﬂ'n)Z]
n= 1 =21+ ™ n=1,2,.).
P IV mg [ Qo \ ! ( )

If the value of EJ, is small (as is usually the case in real strings), then

Qu[, 1EJ _2]
m= Tl rea () ]

Substituting numerical data we obtain

Q1o

Pn = — l o

mOfn +

(14 50-10"*n?).

At small values of n(n < 10) the error does not exceed 5%. For larger
values of n, determination of the frequencies of vibrations of a real string,
using the formula for a perfectly flexible string, yields a fairly large error.

95 The equation of transverse vibrations of a rod lying on an elastic base is
derived in Problem 82. We add to it a term dependent on the longitudinal
force: a1 oy 92
Y Y
gt g R+ N

Then we seek the solution to equation (1) in the form

. Tz
y=2fn(t)smT (n=1,2,3,...).

EJ, =0. (1)

For the functions f,(t) we get the equations of the form
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. m\*EJ, &k N [mn)\?
f”[(?) mo +m—0—m—o(7)}f”:0' )

The frequencies of vibrations of the rod are

an\* EJ, k N [(mn\?2
=1/ +——-—{) -
l mo my mo l
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2.5 Vibrations of rectilinear and curvilinear rods

96 The equation of parametric vibrations of the rod has the following form
in the dimensionless notation (see paragraph C.2 in Appendix C)

0%u Ot 0%u
L=w+84+P0COSWT{H(77) H(n-— 05)]62=0. (1)

The solution to equation (1} we seek in the form
u= fO(r)sinmn. (2)

Taking advantage of the principle of virtual displacements, we have after trans-
formations

1
/Lsinwndn =0.
0

or
fO + (7% = 720.5coswr) f) = 0. (3)

When solving equation (3) by the Rayleigh method we assume
O = a4 cos %)T + by sin %)7'. (4)

Substituting (4) into equation (3) we have two relations

2 2
<w4+%—“’z> by = 0; (5)

2 2
4_ T Y =
<7r 1 4)(11 0. (6)

Equating the expressions in brackets to zero, we find the boundaries of the
main region of instability.

97 The equation of bending parametric vibrations of the rod has the form

o4 62 0 0%u
6771: (P10 + Prioo coswm')a 7; + aau + — 572 + ku (1)

Setting u = f(7)sin 7y we write the equation for f as
f+af +[k+n*+7%(Py + Pigo coswor)]f =0,

or
f—i— af + (a1 + az coswoT)f =0, (2)
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7
e,

va, 2va W
f////1 ]

=0,J ‘
_,,0 02

Fig. 2.20.

where a; = k+ 7% + 2Py and a3 = 72 Pygo. In accordance with the Rayleigh
method we assume w w
f = Aj cos 707' + Bj sin ?OT. (3)

Substituting (3) into equation (2) we have

2
W a
[“1 - (70) t3

[ 2
aw W a

(4)

Equating the determinant of system (4) to zero, we get the equation

wo\ 2 as | w\? ay alw?

0
_ (%0 =2 —(2Y) =22 = 5
|:a1 (2>+2 l:al (2> 2jl+ ) 0, (5)
from which we determine the boundaries of the main region of the parametric
resonance. At a = 0 we find

(@] =@

The region of instability is hatched in Fig. 2.20.

a2:2

98 In order to solve the equation of free vibrations, one should know the
bending deflection u of the rod loaded with the force P, i.e., it is necessary to
solve the equation
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&)
ont

Taking the boundary condition into account, we obtain from expression

(1)

=Pé(n—0.5). (1)

Let us consider two variants of solving this problem.

1. The variant of solution using the Krylov functions (it can be realized
only for the rod of constant section) allows one to get the answer in the
analytical form.

Considering the force of inertia of the mass as a concentrated force applied
to the rod, we have the following equation:

Oy,  0%uy, ?uy, m
81’]4 + 572 = —N2y 72 (5(1’] - 05) <7L2 = m_Ol) . (2)

Assuming ugz, = ug,,e™7, the solution to equation (2) expressed through
the Krylov functions has the form

Ugy, = 1K1 + c2Ko + 3Kz + 4Ky —

_Mng)\ouzz(o'f’)k{(n - 0.5), @

%
where K;{Aon) ()\0 = V).
Since ugy,, = ul = 0forn =0, c; = ¢z =0, and, therefore,
um20(0.5) = C3K3(0.5) + C4K4(0.5). (4)

Excluding u,(0.5) from equation (3) we write

Uzgo = [K3(n) — AomaKa(n — 0.5)K3(0.5)H (n — 0.5)] c5+

+ [Ka(n) — AonaKa(n — 0.5)K4(0.5)H(n — 0.5)] 4 ®)

Since the boundary conditions should be satisfied, i.e., u(1) = 0 for n = 1,
we obtain from (5) the following system of two homogeneous equations

[K3(Ao1) — AonaKa(200.5)K3(Ae0.5)] s +
+ [Ka(Aol) — AonaK3(A00.5)] cq4 = 0;

[K1(Xol) — Aon2Ka(Xo0.5)K3(X00.5)] 3 +
+ [K2(Mo1) — Aon2Ka(A00.5)K4(A00.5)] ¢4 = 0.

(6)

From the condition D = 0, where D is the determinant of system (6), we
find Ao;. The dimensionless frequencies are A\; = y/A¢;. Then, for every Aj we

determine céj ), assuming c(] )= 1.
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NON K4(Agj1) — Agjn2K3(Ao;0.5) |
K3(Aoj1) — Aojn2Ka(Ao;0.5)K3(Ao;0.5)

As a result we get the eigen functions

W (n) = ul) = {Ka(hojn)—
— Aojn2Ka [Aoj (1 — 0.5)] K3(Xo;0.5)H(n — 0.5)}es”+
+ {Ka(Aojn) — Aojn2Ky [Aoj(n — 0.5)] Ka(ro;0.5)H(n — 0.5)}.
When solving equation (2) we assumed that ug, = uz,0e™7", therefore,
the general solution to equation (1) has the form

n

Ug, = Z (C @ cos \j7 4+ B sin /\jT) 0 (n). (7)
j=1

For 7 = 0 we have the following initial conditions:

n
Uz, (0 77 = U’iv20 Z c (,0
Jj=0

’(.1@2 (07 77) = 0

From the second initial condition it follows that B{) = 0. Then we find
the arbitrary constants C (/) from the equations

1

1 n
/Uzzow(k)dnzzc(j)/cp(l)cp(k)dn (k=1,2,...,n).
0 =2 0

Having determined C (9) and B (), we obtain the solution to equation (1)
that satisfies the initial and boundary conditions:

n

Ug, (1,m) = »_ C Do () cos ;. ®)

j=1

The reaction force in the hinge is

R = Qu,(7,1) = —ug,( Z C Up"U) (1) cos Ar, (9)

where (p/’/(j)(l) = [/\ng4()\()]'1) - /\éj’ngKl(/\0j0.5)K3()\0j0.5)] C3(j)+)\8jK1()\0j1)—
)\éj’ngKl(/\0j0.5)K4()\0j0.5).

As a consequence, we have the solution to the problem in the analytical
form (except for Ao, that were determined numerically).
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2. The variant of numerical solution with the use of computers (can be
realized for a rod of any section). In solving the problem numerically we take
advantage of the system of equations (a special case of equations (C.19) from
Appendix C) that, for example, for a rectilinear rod of variable section has
the form (taking the inertia of rotation into account)

%uzy,  OQu, %uq
711(77) 87'22 - 677 = —n2 87—22 6(77 - 05);
%9 oM,
Js3() 55 — 5 — Quy = 0;
003 1
—— — ——M;, =0;
on  As(n)
Oy, _
(9_7’] - '193 = 0,
or, in the vector form
0’Z 0Z — —
AWZZ L 224 ARTZ = NS 11
or? + On + (11)
Here,
00 0 -m 0 8 g 8
W_{00-J 0| ,@ .
AT = 00 O o |’ A _AL 0 o}’
33
00 O 0 0 0 ~10
8%u,
sz —nN2 u22
_ M, _ or
Z=|"g|; a8 = 0 8(n— 0.5);
3 0
Ug, 0
=) _Elm) o, Js) , = J3Um)
me  F(0) F0)12° 7 550)°

and F(0) and J3(0) are, respectively, the section area of the rod and its mo-
ment of inertia with respect to the axis z3 at 7 = 0 (see Appendix C). As-
suming Z = Zpe'*™ we get from equation (11)

Zo+BOinZo =08, (Bl =A® -xAD), (12)

—_ - ) T

where Ady = AP, [ng)\ Ug, 0(N — 0.5),0,0,0] .
The algorithm of numerical determination of eigen values \; and eigen

functions Zéj) is presented in Appendix D.
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Having determined A; and Z 2 we find the following solution to equation
(10) (see Appendix E)

Z(r,n) =

AMB

ﬂ.

(C(J)Z(J cos \;T + B(J)ZO(]) sin A; 7') (13)
J

From equation (12) we obtain the expression for ug,:
Ugy = Z (C(J Z cos A\jr + BWZHD) sm)\jT) . (14)
j=1
It follows from the initial conditions that
B — 0;

n
Ug, (0,7) = u;(l) - Z C(J)Zo(i)-

j=1

We determine the arbitrary constants C (/) numerically from the system
of equations

1
/uzgzo dn = ZC(J)Z(J)Z(k)dn (k=1,2,...,n).
0 j=1

n .
Since Q,, = Y. C (j)ZO(f ) cos A;T, the reaction force in the hinge is
i=1

R=Qq,
=

99 The impulsive force P,, and moment M,, act relative to the center of
mass (point O). They are equal to

P, = —-Jcosa - ig; M,, = —Jhsina - ia.

We do not take into account the projection J onto the axis z;, because
the rod is assumed to be nonstretchable. In what follows we presume that
the momentum |J|, mass /m, and the moment of inertia Jy are reduced to the
dimensionless form. After termination of action of J, the mass m attains the
linear and angular velocities that are, respectively, equal to

Uy, (0,1) = ~ng cos 193(0, 1) = —ngsinaq, (1)

where ng =
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From equation (13) we can write (see solution to Problem 98)

d3(m,m) = Z (C () cos A7+ BWsin /\jT) ZO(?{);

- (2)
Ug, (T,M) = Z (C () COS ;T + BW Sil’l)\j’T) Zoi)

j=1

This problem has the following initial conditions:

T = 07 uz’z (0’ Tl) = 0;
7=0, 93(0,7) =—-nasina-6(n—1),
Ug,(0,1) = —ngcosa - 8(n — 1).

From the first condition we get C¥) = 0. The second condition results in
the relations

BUWNZD = —ngsina - 6(n —1); (3)

M=

1

<.
Il

BN ZY = —nycosa-8(n—1). (4)

NE

<.
I
-

Let us determine the values of B() at which conditions (3) and (4) are
satisfied most precisely. Consider the integral of the sum of squared errors:

1 2
Jsino - h L -
1:/{[—5—”}—:*5(77—1”2 "BONzP| +
0

=1

n
3(n—1)+> Bz
j=1

2
n [Jcosa }dﬂ-

From the condition of minimum I we have the following system of equa-
tions:

oI

M:O, (k:l,Z,,n)

or

1
S B, / (z&g‘)z(g’;) n Z()(Z)ZSIZ)) dn + nzsina - Z59 (1) +
J=1 0
+n 78 1) =
2cosa - Zgy (1) = 0.
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After determination of the arbitrary constants B(Y), we find the angle of
rotation of the mass m from equations (2):

6 !
[Q1(m)u] the term _ql% also appears in
) on

the equation of transverse vibraution;7 of the rod in case of follow-up axial
distributed ¢; Taking advantage of the algorithm for solving Problem 86 with
allowance for the axial forces @1 and ¢; we have the following equation (in
the dimensionless form)

84 8 du 82 2 2

100 In addition to the term

ot an aron " a2 T br2

Let us consider the approximate solution to equation (1) taking the two-
term approximation (since, under the conditions of the problem, it is required
to determine the first two frequencies)

u=fO()eM () + FP (1)@ (n), (2)
where () and ¢(? are any independent functions satisfying the boundary
conditions of the given problem: n =0, u=v'=0; n =1, u =u' = 0. One
can take as such functions the eigen functions satisfying the given boundary
conditions. If the Krylov functions are used, we obtain

Ky (Ao;1)

0D (n) = Ky (Aojn) — K3 (Moj1)

K (Aojm) -
Substituting solution (2) into equation (1), we have
L= FOoM 4 F@ @ 49y (fu)@/(l) + f'(z)(p/m)) +
sl (fu)(pu(l) +f(2>¢,~<2)) ey <Q1¢<1>> — @ <Q1¢<2>) n (3)
FFO D 4 @ g @ 4 fO) ((pu))“’ + @ <¢<2))“’

Taking advantage of the principle of virtual displacements we can write
two equations

1 1
/ LeMdn = 0; / Le®dn =0,
0 0

or
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hin O 4 haaf@ 4011 FD + 012D + 11D + c105P = 0;

hat fO) + haa f + boy fO) + bag f ) + 01 f O + can f P = 0.
Here

1 1

hiy = / oDpWdy by = 2w / (¢

0

1 v

e = / [ #9 + (p0)" = (@) + qw’(”] o dn

0
The coefficients b;; satisfy the condition b;; = —b;;, therefore, b1; = bag =

0. Consider in more detail the coefficients c;;. Integrating every term by parts,
with allowance made for homogeneous boundary conditions to which the func-
tions ¢ ) () and their first derivatives satisfy, we get

Cij = CE?) + CZ(-Jl»),

1

where ¢{J / //(J) &8 _ 20 ®) | 0 0 k)) dn;

0
1

1 .
D = eV = ¢ /(p'(])go(k)dn; NONENCINNY
0
We seek the solution to system of equations (4) in the form

fO = froe?; @ = foge. (5)

Substituting (5) into (4), after transformations we have the following char-
acteristic equation

h11A? + C(O) h122? + ng) + 012 + bi2A
det ©) =0; (6)
hiad? + 9 — ) —b1ox haa A2 + ¢

When composing the above determinant we have used the following properties

of the coefficients: hia = ho1, cgg) = 021 , big = —bg; and 052) = —021) From

(6) we derive the characteristic equation
ao)\4 + a2>\2 + azA +ag =0. (7)
where ag = hi1hoy — h%2; a1 =0; ap = h11022 +h2201 2h12c +b12, az =

2
20512)612 and a4 = cgq)cg; - (c@) + (c&?) From equation (7) we find the
complex eigen values
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A2 = a1 £iBy; g4 = ag £ ifs,
i.e., the problem is dissipative.
101 The equation of forced vibrations in the dimensionless form looks like

8y O*u
52 + —8—5‘1 = go coswoTH(n — 0.5), (1)
where (wo = w/po). Assuming u = ug coswoT, we get

uév — wiug = qoH(n — 0.5). (2)

Now let us consider a more general case when the right-hand side of equa-
tion (2) is an arbitrary function. For a rod with constant section

! . "o_ . "o__
Uy = "9307 Uy = Ml‘aoa Uy = szO)

therefore, equation (2) can be represented as the following system of four
first-order equations:

Qa0 + wiuo = b1(n);
M:ch + QZ20 = 07
Y30 — Myy0 = 05

ug — 930 =0,
or, in the vector form
Zo+AZy=hb (b = [b1,0,0,0T). (4)

The general solution to equation (4) has the following form (for equations
with constant coefficients)

n
Zo = K(n)E + / K(n — hy)B(h)dh,. (5)
0

The fundamental matrix K(n) depends on wy. From equation (5) we get
the expression for the displacements of points of the axial line of the rod:

4 n
Ug = Z k4jCj + /k41 (77 - hl)bl (h)dhl (6)
Jj=1 0

For the problem under consideration
b1(h) = goH(h — 0.5); E‘n - ew0(77—h1),

therefore,
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n

/k41b1dh1 = —2 (1 - e“"’("—o's)) H(’I7 — 05)
wo

0

From the boundary conditions at n = 0 it follows that ¢; = ¢co = 0. We
calculate the arbitrary constants c3 and c4 from the boundary conditions at
n=1

Mqyo(1) = ug' (1)
Qazo (1) = ug"(1) =

Upon determining c3 and ¢4 from system (7) we find the amplitude of steady-
state vibrations of the rod at the point K

It

(7)

k23(1)03 + k24(1)04 — Woqo (1 _ eO.SuO) :
k13(1)cs + k1a(1)eq — W(z)QO (1 _ eO-Swo) .

uok (1) = kaz(1)cs + kaa(1)cs — (%% (1 _ eO.SuO) '

102 One can assume that the unknown moment Mg cos wr acts in the section
K, so that the equation of forced vibrations in the dimensionless form is

02 ot
8—7_1;+8—7;:-=93t0cosw7'6'(n—1). (1)

Under steady-state vibrations we seek the solution to equation (1) in the
form

u = ug(n) cos wr.

Then, from (1) we obtain

4

uon) = 3" €Ki (Vo) + 22K [Van — 1)) Hin - 1). (2)

i=1

It follows from the boundary conditionsat n = 0 that ¢y =co = 0. At =1
solution (2) should satisfy the following three conditions: ug = 0; u§ = Ys0;
and ud’ = Mo, or

C3K3(1) + C4K4(1) = 0;

c3vVwKa(1) + cav/wKs(1) = Y305 (3)
ngKl(l) + C4(UK2(1) — M() =0.

From system (3) we determine cs, cq, and My as functions of faq:
c3 = a1930; c4 = az30; Mo = azVao, (4)

and derive the expression for ug(n):
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uo(n) = v[alK?»(\/‘;??) + a2 Ky(vwn)] 930 + @3V K3 [Vw(n—-1)]. (5)

w

The amplitude of the moment in the embedment is

Mg = ué’(O) = wa11930.

103 The equation of forced vibrations of the rod in the dimensionless form
looks like
0%u  0*u

L(u) = 52 + ot P(r)é(n—0.5)=0. (1)

We seek the solution to equation (1) by the approximate method (principle of
virtual displacements), restricting ourselves in accordance with the conditions
of the problem to the two-term approximation:

u= fO ()M ) + FP(r)e® (n). (2)

One can choose the first two modes of free vibrations of the rod as the functions
©®(n). For the boundary conditions of the problem we have the following
eigen functions:

K4(Xo;1)

() = Ky i) — =207~/
® 4(Xosm) Koy 1)

Ks(Aojm), (3)

where K; are the Krylov functions.
We represent the virtual displacements in the form

Su) = 5bj<p(j).
Substituting solution (2) into equation (1), in accordance with the principle
of virtual displacements we get after some transformations
.. P(T)

FU 42650 = 5220 (0.5); @

. P(r
R ) Q

l l
where h11 = f ((P(l))2 d"] and h22 = f (@(2))2 d’l7
0

For the pgoblem under consideration the equations for determination of
@ turned out to be independent (by virtue of orthogonality of the functions
© ), therefore, we choose only one of them, for example, equation (4). Tts
solution for an arbitrary right-hand side has the form

oM(0.5) [

f(l) =1 COS AT + copsin A7 + ) /Sin/\l(T—Tl)PdTl;
h11A

. W 7
fO = —Xjersin AT + Areg cos AT + i— cos Ay (1 — 1) Pdry.
11
0
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According to the Duffing method we find the functions f and f at 7 = 0
and 7 =T

PO =c;  fOO) =M (M =2

f(1)
FOT) = FD0) cos \ T + ! )\(O) sin \; T+

1
T
a1 .
+)\—/sm)\1(T—7”1)Pd71;
1
0

FOT) == A fD(0)sin M T + f1(0) cos T+
T
+a; /cos/\l(T — 7 )Pdmn,
0

where a; = 1(0.5)/hy;.

_ Under steady-state vibrations the conditions f(1)(0) = f)(T) and f()(0) =
fO(T) must be satisfied. Therefore, we obtain from system (7) two inhomo-
geneous equations to determine f(1)(0) and () (0):

(1~ cos W) f(0) — T2NT ) 0) —
A1 (8)
sin A1 fV(0) 4 (1 — cos M T) F1(0) = by,
where
T/2 T
b = a;fo / sin A\ (T — 7)dm — / sin A\ (T — 7 )dn | ;
0 T/2
T/2 T
b =a1 Py / cos A\ (T —7p)dm — / cos A\ (T — 1 )dn

0 T/2

Having determined f(1)(0) and f()(0), we find the solution to equation
(4) on the interval 0 < 7 < T

f(1)
f(l)(T) = f(l)(()) COSA\1T + f )\(0) sin \y 7+
1

( a1 P, T
a;\go(l—cos/\lr) (OSTS 5) ;
1

alPo{( T)
1—cosAj— | —
LY, 2
1-— A r T< <T
cosA (T 5 2_7_ .
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Similar expression we have for the function f)(r):

F(2)
f(2)(7') = f(2)(()) €oS AaT + ! )\(O) sin Aa T+
2
ai\ljo (1 — cos Ag7) (0 <r< g) :

2
1—cosAg— | —
TN A2 2
T T
— _ - — —<r< .

The solutions derived are valid under the condition that the determinants
of system (8) and similar system for f(2)(0) and £ (0)) of the form

b (1 —-cos\T) —sinNT/\
- sin A\, T (1=cosA\T)

are not equal to zero.

104 The equation of small vibrations of the rod has the following form
8%u, *u, 2
A

5 t2 2+ Asg o7,

mo + + kg, — (mg m8 Ua ) &(xy —vt) =0, (1)

ot?

where Ags = EJ,, is the bending stiffness of the rod, and k; is the stiffness
coefficient for the base. Assuming u,, = ul, 1 = nl, 7 = pot, and py =
(Ass/ m()l‘1)1/27 we reduce equation (1) to the dimensionless form:

0%u 0w %

L=5++35+t5+3

572 8 5.3 d(n —vo71) + ku —na d(n — vo7) =0, (2)

where n1 = m/(mol); k = k11*/A33;n2 = mg1?/As3, and vo = v/(Ipo).
Under the two-term approximation we seek the solution to equation (2))

in the form
u= fA(r)sinan + f@(r)sin 2m7. (3)

Taking advantage of the principle of virtual displacements, we can write

1 1
/Lsinn'ndn-——(); /Lsin27r77d77=0,
0 0

so that after transformations we have

huf(l) + hufm) + (7r4 + k) f(l) = 2n9 sin Ty T;
hor f + hoo f) + (167* + k) @ = 2n, sin 27w,
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where hy1 = 1+ 2n4 sin? mvo7r; hoe = 1 + 2n; sin? 2mveT; and hip = hoy =
2n1 sin oo T sin 2w v T.

As a result, we obtained a system of equations with periodic coefficients.
The main feature of the given problem is the fact that the time of the process
(the time of motion of the mass along the rod) is limited. Therefore, the
vibrations of the rod are unsteady. The time of motion of the mass m along
the rod is tx = l/v, and the dimensionless time is T = 1/vy. Let us write
system of equations (4) in the form

f+H'Bf = H'b. (5)
Here
_ 1 + 2nq sin? VT 2ny sin w7 sin 2mveT|
| 2ny sin v T sin 2wveT 1+ 2nq sin? 2w |’
T+ k 0 — 2N Sin TUeT
0 167 +k 2n9 sin 2mvgT

The determinant of the matrix H
D =1+ 2n; sin® 7T + 2nq sin? 2rvoT

is always greater than zero, i.e., the matrix H is not degenerate.

Equation (5) can be solved numerically at zero initial data. As a result,
at 7 = 7 we get f((rx) and £ (7x). Since for the chosen approximate
solution the rotation angle of the rod in any section is equal to

0
¥ = 6_:; = mcosmn - fO(7) + 2w cos 27 - F (1),
then the angle of rotation in the section K at the moment when the mass m
rolls off the rod (at n = 1) is equal to

O3k = —mfD(1x) + 2w fP (7).

105 Under vibrations, an inertial load from the side of railcars acts upon

the rod (rails). This load can be considered (in the limit) as distributed. Two

contact forces are applied to every railcar, and they can be reduced to the
resultant force J; and the moment y; (Fig. 2.21a):

2 2

Ji = _mi%; Wi = —J0%7 (1)

where m and Jp are the mass of a railcar and its moment of inertia with

respect to the axis perpendicular to the plane of drawing and passing through

the railcar center, and ug is the displacements of points of the rod axial line.

Figure 2.21b demonstrates an element of the rod with all forces applied to

it. Taking advantage of the d’Alembert’s principle we obtain the equations of
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Fig. 2.21.

motion (translational motion along the axis £2 and rotational about the axis
perpendicular to the plane of drawing) in the dimensionless form:

0Q,
Ji 2 Ji ro — 0; 2
o+ an + Ji + qu, (2)
OMj3
8211,2 . .
where Jip = —mo—— and ¢y, = —kuz (equation (3) does not involves the

2
term accounting fo(r%ghe inertia of rotation of the rod element).

Let us write the equations relating the moment M, to the rod curvature
(see Appendix A; for the rod of constant section A3z = 1) and the displace-
ment ug of the axial line points to the angle of section rotation (for small
deflections of the axial line of the rod from the straight line):

093 .
n M, = 0; (4)
Ouz _ g, 0. (5)

on
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Since the railcars move with the velocity v, we make use of the Eulerian
coordinates. As a result, converting to the dimensionless notation, we have

0? 0%u 0
Jiz—nn(a?—l-? Lpm 8iy+ 38?)

o (0) 8u2 63 28U2 _%
wi=~Jo (8728n+20662+°83 V= )

where n11 = m/mel; JSO) = Jo/mol?; and vo = v/lpy are dimensionless
coefficients.

Excluding 93, M, and Q,, from equations (2)-(5), we obtain the equation
of free vibrations of the rod with an account of the moving load:

(6)

0%usy ©0) 2\ 0tuz Pug
L= (1+n11)w + (1—]0 v%) B —I—21)0'n11a on -
© Oz o) Oup ’

20U
—2’UOJ 883 0 W+n11082+kuz—0

Assuming that the virtual displacements

Z(Saz u2 ,

where uéi) is the functions satisfying the boundary conditions of the problem

(for hinged fixity of the rod ends uéi) = sin7in), and restricting ourselves to
a two-term approximation, we find the approximate solution to equation (7)
as

up = FDup® 2y, @

In accordance with the principle of virtual displacements we have

L (uz(l), u2(2)) usMdn = 0;

L (u2<1), U2<2)> us®@dn = 0,

O\H O\H

or, after transformations,

a11f1 + a12f2 + bufl + b12f2 +enfit+cafo=0
a21f1 + agafa + bar fi + baafo + o1 fi + coafo = 0.

Here
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1
ayl] = 5 l:(l + n11) + 7T2J(O)] aijg = 0,
1
as =0; an =3 [(1 +n11)+ 47r2J(§0)} :

8
b11 = 0; b12 = _§ (7111 + 47(2J(§0)) )

8
by = 3 (nn + 7T2J(§0)) ; bz = 0;
1
=g [( J(O))w - N +k} c12 = 0;
1
C21 = 0 Coo = 5 |:]_67I'2 (1 - Jéo)> - n1147r2 + k‘] .

Assuming that f; = fipe*™ and fo = foe ", after some transformations
we get the characteristic equation

ao\t + ao)? + a4 = 0, (9)

where ag = a11a22; a2 = ai1c22 + azecy1 + b2y; and a4 = c11¢92. The roots of
equation (9) are

/\1,2 = :f:i,@l, )\3,4 = ﬂ:iﬁg,

where the frequencies are equal to

ag — \/ag — 4asag as + \/a% — 4aqag
B = , and By = .
2a0 2a9

106 Figure 2.22a demonstrates a position of the rod at an arbitrary instant.
Projecting the forces onto the axis y (Fig. 2.22b) we obtain

2

—modzt Y _dQ +dzAgy + (N +dN)sine’ — Nsina =0,
. oQ oty
or (smce 5. =FEJ, 3, 4)
84y (92 0 Oy

where @/ = a + da. The distributed load Ag, acting upon the rod under

vibrations is equal to Ag, = mg 2%y. The distributed load ¢, remains invari-

able at small vibrations of the rod. The longitudinal strength N depends on
2

q. = mgf2°z:

l

2
N = /quZ = mOQQ (l2 — 22) .

z
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Fig. 2.22.

Let us substitute the expressions for N and Ag, into equation (1):

o0t 02
L(y) = EJza—zZ + mo——atg — ®moy+ -
Oy mof2? 0%y
2,00 mofl” o5 2\ 07y _
+mgf2 23, 5 (I — 2%) 522 0

Additionally, the distributed Coriolis force qc = 2mqg 2 directed along the
z axis acts on the rod during its vibrations. Therefore, more exact formula for
the longitudinal force looks like

!
N = /(qz — 2mo2y) d=.

o
Since in equation (1) the force N is multiplied by B_Zz/’ one can neglect

!
the term / 2m09%dz% as a value of the second order of smallness in

z
l

0z

0
comparison to / qzdz—g. Consequently, the influence of the Coriolis force

z
can also be neglected.
To determine the approximate values of vibration frequencies we seek the
solution to equation (2) in the form

2
Yy =y115inpt 4+ yiosinpt = (A1 sin % + Assin %z) sinpt. (3)

The solution should satisfy the boundary conditions of the problem

2=0,y=y" =0
2=l y=y"=0.
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Fig. 2.23.

Using the Galerkin method we arrive at two relationships:

! !
/L(yn,yu)yu dz = 0; /L(y117y12)y12 dz = 0.
0 0

After integration we have two homogeneous equations for unknowns A;
and As:

2
— —9m092A2 =0;

A 5

EJ,(Z f 2 2 2
z\ 7 mop 12 0

29—0m092A1 + As

2r\* 14
EJ, (TW) —m0p2+1—25m092 =0.

The first two frequencies of rod vibrations are equal to

pro= \/<a ++/a? 4b) /2,

where

4
o =175 (f) + 1402
mo l

2 8 4
EJ,
b=16(Z7) (1) 4B (T) 02 4 1000,
my l mo \ 1
The variation of the frequency of vibrations p; is plotted in Fig. 2.23 (curve
1) as a function of £2.

107 The differential equation of rod vibrations (see solution to Problem 106)
has the following form for the considered case of fixing
o'y 0? Oy  mo 2% ,0

2
Y 2 2 y _
Ejmﬁﬁ'mow—mog y + mo{?2 Zaz-i- ) Z@—O
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The frequencies of vibrations are

P12 = \/(aﬁ: v a? —4b> /2,

where

4
a=172% (%) + 1102

mg
2 8 4
b=16(E%2) (™) —5a38%(T) 024 1800
mo l my l

The variation of p; versus the disk angular velocity {2 is plotted in Fig.
2.23 (curve 2).

108 The differential equation of bending vibrations of the rod is similar to
the equation in Problem 106, except for the fact that now the longitudinal
strength is

N = mg$2? (lz - z2) /2,

The equation of vibrations of the rod takes on the form (see solution to
Problem 106)

841/ 821‘/ 2
EJJE—BZ4 + mo——at2 — 2*mpy —
l Oy  mof2? 0%y
mof?2 (2 z) P 5 (lz — 2°) ) 0

The frequencies of vibrations are

P1,2=\/(ai a2+4b)/2,

where

4
0 =172 G) +15.7602,

mo
EJ, 4 EJ, 4
B (7Y oaven?| [16202 (T von2| 4+ Bon,
mo l mo l 9

109 Figure 2.24 shows a position of the system at an arbitrary instant. The
bending deflection y and the angle ¢ characterize the deviation of the system
from the dynamical equilibrium position in the field of centrifugal forces of
inertia. Projecting the forces onto the y axis we obtain (see solution to Problem
106)
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Fig. 2.24.

T 924 ot? 0z 0z

where N = m$2? (1% — 22) /2.
The equation of vibrations of the mass m has the form

4 2
ELTY L m 8V ety - 2 (N@> =0, 1)

62y

Jop = —mof2®(h + b)d — EJ, 5oz

)

z=0

where Jp is the moment of inertia of the mass relative to hinge O; (Jo = mh?);
EJ,(0%y/82%),—0 is the elastic moment acting upon the mass from the side
of the spring; d is the arm of force mo2%(h + b)d relative to the hinge (at

small vibrations the Coriolis force moment [m—a—t (24 ¢)] with respect to

the point O; is equal to zero).
Since d = hbp/(h+b) and ¢ = 8y/8z|,=0, we obtain the following bound-
ary condition, to which the solution to equation (1) should satisfy

03y Oy %y
Jooe 22hb== EJ,
B0z, T M|, T e

The remaining boundary conditions have the form

z2=0, y=0; z=lLy=y"=0.

110 Using the Rayleigh method we determine the maximum values of kinetic
and potential energies of the system in its relative motion:

l
8y1> p /
Trnax = —J — 2;
( B / oy1 (1)

I yox = 111 + qu + qu + II5.
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Here, IT, is the potential energy of spring bending; II,, and II,, are the
variations of the potential of distributed forces g, and gy, respectively. In this
case, I, = —A,, and II;,, = —A,, (A, and A,, are the works done by the
forces ¢, and g, in moving through the displacements due to vibrations); while
IT; = A (A is the work of the forces of inertia acting upon the concentrated
mass m).

In expanded form, the expression for the potential energy looks like

l l
_1 8y1
Hmax—2/EJz<82)d + [a.nas-
0 0

; (2)
dy

/qyyl dz + mQth ( 821) ,

0

l\Jl»—t

oy
whereA—2/(az> dz.
0

The last term in equation (2) represents the work of centrifugal forces that
act on the mass m when it is deflected by the angle .

Figure 2.24 demonstrates the forces acting upon the mass m. The work
done by the inertia forces is

z

h
A:/dez—/Fydy,
y

0

where F, = m$?%z and F, = m22(b +y).
After integration we have

2 1
A :mﬂz% — m§2? [b(h—y)+ 5(h2 —y2)] .

Since z = hsinp and y = hcos ¢, we get after substitution and transfor-
mations

2 3
A =m2? % sin? ¢ — hb(1 — cos ) — %(1 — cos? @)] =
o2
= hbmd2? (1 — cos o) = hbthQ?.

Equating Tiax and Il .y, we find the frequency as
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/EJzyl dz+m0/!2 z/ ) ? dzdz
/moyldz

/mmﬁa+mmm@y
—= l : (3)
"2 2
Jo (y1) B +/m0y1dz
0

Tz
Since in the first approximation y; = Asin R the we have after calcula-

Jo (

tions

7.‘_2 1 2
EJ, 3—|—!22 Img| —— = —}-mbh2
\ 21 6 2 l
b= 1 2 . (4)
m0§ + th 12

Now we substitute the numerical data of the problem into equation (4):
p® = 1.1302% + 1.04 - 10°.
For the angular velocity {2 = 100 rad/s, the lowest frequency of system
vibrations is p = 332 s~ 1.

111 The solid line in Fig. 2.25 shows the position of the system at an arbitrary
moment under vibrations, while the dashed line marks the position in the state
of dynamical equilibrium in the field of centrifugal forces.

According to the Rayleigh method, the maximum kinetic energy value is
equal to the maximum gain of the potential energy:

AI]max = Thax-

Let us write the potential energy gain in the general form (see solution to
Problem 110):

Al = A1 + N1 + Aﬂqz + Aﬂqy. (1)

We can find the increment of the terms in the right-hand side of equality

(1):
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l

1
AHl = Hl — HlO = E/Jx(yé' + yl")2dz —
0

l

l
1 1
-5 [ Enas= B, [ (uet + 310 ds
0 0

ATy = Hom2 | 50 + 1) = 58] = hom2 wr + 342
l z l z
oty =mo® |3 [+ [wi+uirands -1 [ [ yand =
0 0 0 0
l z l
=moﬂz[/2/yéy{dnd2+ %/(96)2(177(12];
0 0 0
l l
Ally, = —mgpf2? [% /(yo + yl)2 dz - %/yg dz =
0 0

l l
1
= —moﬁz[/yoyl dz+§/yfdz].
0 0

Consider the terms (appearing in AIl}, AIl,,, and All,,) depending on
the initial state. After integration by parts they can be represented in the
following form

5

l l
" v
— dz;
o Yo y1|0+/y0 Y
0
l l z (2)

Jo = /z/yéyl' dndz = /z(yéyl . —/yéyldn> dz.
) 0

0
Since y1 =0 at z=0; and y; =0, y%:O,andy1| o =% at z=1, then

z=

l

EJ, /yo"yl” dz=EJ,
0
z

l

J; = —EJzyé'.zzoapl + EJE/yOIVyl dz;
0

l z

5= z[y5<z>y1<z> -/ yé’(n)yl(mdn] dz -
0 0

l z

‘/l e - [ [ 5 Onmnd.
0

0 0
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Fig. 2.25.

Taking advantage of the Dirichlet’s formula, the second term in the ex-
pression for J; can be converted to the form

i l l

/ZZ/zyo”(n)yl(n) dndz = /yl(Z)/Z[yé(Z)yl(z) —/nyé'(Z)dndZ-
0 0

0 0 z

Combining in expression (1) all terms depending on the initial deformed

state, we have:
l
A= / [— EJyyy . + m.Qthgoo] p1dz +
0
l (3)

!
—I—/ [EJzyOIV + zy{mo 2% — mo$2? /nyo"(z) dn — m12%yo|y1 dz.
0

z

In equilibrium, there is a balance between the elastic moment (in the
section z = 0) and the moment of inertia force that acts on the mass:

EJ.yll = mhb?p3,

therefore, the first term in the right-hand side of equation (3) is equal to zero.

In order to demonstrate that the second term in this equation is also equal
to zero, we consider the equation of the rod deflection curve under bending
by the moment M; = m{22hbyo:



156 2 Answers and solutions

EJyy) = M1 — Riz + /qy(z — 2z1)dz1 + Rsyo—
0

z

- [ - i) @ (@

0

!
Since R3 = / ¢.dz, expression (2.5) can be converted to the form
0

EJ.yl =M — Rz + /mg(22yg(z1)(z —2z1)dz+
0

l l
+/yo(z)m092z1 le + /m002z1y0(z1) le. (5)
z 0

Differentiating equation (2.5) twice with respect to z we get

!
EJy™ — mo2%yo(z) — /yé’(z)mg(le dz; + mo$2%2yy(z) = 0.

z

Thus, A = 0 (see formula (3)), i.e., the frequency of vibrations of the
balancing lever does not depend on the initial strained state.

112 The equation of vibrations of the flexible rod (spring) is as follows

oy y 2 0 2% 50y
EJI@ + mgw + mof2°y — -5; (m()?z £> =0

113 In this case (as opposed to Problem 110), the work of the forces g, is
positive and equal to (see solution to Problem 110)

l !
Ay, = /m0!22z/(y1')2 dndz.
0 0

The frequency of vibrations is

4 2 2
T 9 s 1 T 5
r— — — 4 = —=1
, EJ. 573 le0<12+2)+mbhl2
— 2 [
m02+m7r (l)

or
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p? = 0.62022% 4+ 105.
At the disk angular velocity 2 = 100 rad/s we obtain

p=2324s"1,

114 When solving Problem 113 we have received expression (1) for the fre-
quency of vibrations. It follows from this expression that, when the condition

I 7r_2+l _mbh7r2
°\12 "2/ T2

is met, the frequency of vibrations does not depend on the disk angular ve-
locity.

115 The expression for the frequency of vibrations of the system is the same
as in Problem 110 considered above.

116 The equation of radial vibrations of the ring has the form

i EE o
u m0R2’U,— .

The frequency of vibrations is
p= R\ EF/m,.

117 Consider an element of the ring (Fig. 2.26). Projecting all forces onto
the radius (dmg = mods) we obtain
EF
U+ —=u= &-f- —pisinwt.
moR2 mo my

The constant pressure pg makes up a static component of the radial dis-
placement of the ring. The amplitude of steady-state vibrations of the ring
is

= )41
! EF )\’
mi m0R2 w

118 Under radial vibrations of the rotating ring an additional radial force
acts upon it. This force (per unit length) is equal to mg{2?u.
The differential equation of radial vibrations of the ring has the form

EF
. Eeninli _92 — .
U+ <m0R2 )u 0

The frequency of ring vibrations is
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Fig. 2.26.

_[EBF _,

mo R2

Thus, the critical angular velocity of the ring is
N, =/ EF/{(moR?).

119 At the section rotation by an angle ¢ every point of the ring section is
displaced along an arc equal to gy, where g is the polar radius of the point
(Fig. 2.27). The projection of this displacement onto the radial direction is
u = gy sina = yy, which corresponds to an elongation over the circumference
(of this filament) by Al = 27ye.

Since the ring filaments are in tension, the potential energy is

E (N2 nEJyp?
H_/5(7> dF = —2. (1)
F

The kinetic energy of the ring rotation about the axial line is

2R
22 22
T = / Joprds _ N, g 2)
2 2
0

The moment of inertia of the ring’s unit of length with respect to the axial
line is
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Fig. 2.27.

Jo=01J, = Fo1J,/F = myJ,/F,

where J, is the polar moment of inertia of the ring cross section; and F' is the
cross section area.

From relations (1) and (2) we get the differential equation of the torsional
vibrations of the ring

EF J,

. B L.
Pt R 7,

The frequency of vibrations is

. EF J,

p= m0R2 J 0 '
120 The vibrations of the rod take place around its equilibrium state, there-
fore, one needs first to determine the static mode of deformation of the rod.

The rod is unstretchable and located symmetrically about the axis of rotation,
therefore,

My=0; quo=¢q30=0; g20= —ngO-

From the equations of equilibrium we get

420 252
Q20 =0; Quo=-——"=uwiR;.
30

The equations of small vibrations of the rod whose axial line is a plane
curve are given in Appendix C. System of equations (C.24) describes small
vibrations of the rod with a ‘runaway’ of the axial line out of the plane, i.e.,
the most general case of vibrations of a ’plane’ curvilinear rod.

If the 'plane’ curvilinear rod executes free vibrations in the plane of draw-
ing (Fig. 2.28), then, in order to derive a system of equations describing these
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vibrations, one should put Q3 = M; = My = A=; = Azy = 0. As a result,
we have for a rod of constant section (Ass = n; = 1) the following system
of equations describing these vibrations, with allowance made for rotational
inertia of rod elements and in dimensionless notation (C.24):

Fig. 2.28.

O*u;  0Q
5 oy =P v
o? 0
6:22 B —8%2 — Quolees + &30Q2 = Py; (2)

62193 aMS
Js3 572 - 777— - Q2 =0; (3)
%9773 — Nz = 0; (4)
Ou
3—771 — agoug = 0; (5)
ou
3_772 — &zou; — Y3 =0, (6)

where M3z = Ases.
Consider the right-hand sides of equations {1)-(3). Since no concentrated
forces act upon the rod, one should put in equations (C.24)

P=q, P=q.

Let us find expressions for the dynamic loads ¢; and ¢ that appear under
rod vibrations.

The dot-and-dash curve in Fig. 1.91 shows the position of the rod axial
line under vibrations. It follows from the figure that the absolute velocity of
the point O; is
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Vo, = (f—T (Ro +1). (7

The increment of the absolute velocity of the point O; is

- - . _du _ Ry
V—VOI—VO—H-; VO—E .

Passing to local derivatives (see Appendix B) we have

V= ou +wo x U (|wo| = const) . (8)

or

It is worth noting that the angular velocity of rotation of coupled axes is
O =wo+w

where @ is the additional angular velocity of a rod element that arises under
vibrations. However, as under small vibrations one can consider the compo-
nents of vectors @ and W as small quantities, the product @y x @ can be
neglected.

The increment of the absolute acceleration of point O; is (the tilde symbol
in the local derivative notation is omitted)

QY__‘?_ 6—ﬁ+_ XU ) +@g X £9E+— X U 9)
dr  or \or Wo x H wo or Wo x u

or, assuming that for plane vibrations @ = u1€; + ug@2,

d&v o%u

a—; = 6_7'2- + 260 X ﬁ — wgulél +w02U2§2. (10)

It follows from equation (10) that the additional dynamic load ¢ acting upon
the rod that is placed on a rotating disk is equal to

— __ R 2 _ 2
q=-2 (wo X ll) + wpuie; — wouz2€2

or (since Wy = wge€s)

8uz
q1 = 2wo—— + wyus;
or
(11)
= —2w, % — wiu
q2 0 7 ou2.

Finally, we have the following system of equations for small vibrations of
a round rod in the plane of drawing:
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azul 0Q1 Oug 5
572 on + 3002 — 2wo 7= — wour = 0;
O%uy  0Qy Huy
arz ~ on Wy RG M3 — 230Q1 + 2wo—— a7 + wiug = 0;
0%9; OM.
J33 —87'23 —3 - Q2 = 0;
89 (12)
oy M=
%71 — &30uz = 0;
bu 1
%2' + @3ou1 — U3 = 0; <M3 = Ae3s; 30 = E) ,
or, in the vector form of notation (see Appendix C)
NP2 92 0Z ¢
Al a 53 +AY o 8n+A( Z=o. (13)
Here
0 0 0 0 -1 0
0 0 O 0 0 -1
A _ [0 0 0 —Jiz 0 0
10 0 0 0 0 0|’
0 0 O 0 0 0
0 0 O 0 0 0
1 -
0 = 0 0 —wi 0
o
R_o 0 —ng?] 0 O wg
@-]0 -1 0 0 0 0
AT = 0 -1 0 0 o |’
1
0 0 0 -
1 R
0 0 0 -1 = 0
- Ry i
0 0 0 0 0 —2w
0 0 0 0 20 O
A(3) _ 0O 0 0 O 0 0 .
10 0 0 0 0 0 ’
0 0 0 O 0 0
0 0 0 0 0 0

= [Q1,Q2, M3, V3, u1,ug]".

121 The ring is loaded with a static distributed force, therefore, Q1o =
—goRo, Q2 = Q30 =0, and Mg = My = M3 = 0. The equations of free
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vibrations of the rod whose axial line is a plane curve are given in Appendix
C (see equations (C.24)). In the case under consideration they fall apart into
two independent systems that describe rod vibrations in the plane of drawing
and with respect to the plane of drawing. For the rod of constant section we
derive from system (C.24) the following system of equations of rod vibrations

with respect to the plane of drawing:

82’U3 8Q3
972 _8—7)_ — goRo M3 = 0;
32191 oM, M,
Jip—mat — =2
1 87'2 87} Ro 0’
0%9, OM, M,
J. e et =0;
22 87_2 (917 RO +Q3 ) (1)
00 _0a My _
on Ry An
0%
L M. =0:
87] R() 2 )
6U3
8_77 + 9, =0

For the round section the dimensionless moments of inertia Ji; and Joo2

and stiffnesses A1; and Asy are

(

1
J11=§

d

2
—> y J22

_ 1
16

d

l l

(

2
G
> ; A11 - 2E, A22 =1.

In the vector form of notation we have

o
00, O

A
oT2

on

Here

—+APZ=0.
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00 0 0 0 -1
00 0 —-J; 0 0
Am_[0 0 0 0 i O],
=lo 0o 0 o o ol’
0 0 0 O 0 0
0 0 0 0 0 0
0 0 gR, O 0 0]
1
0 0 — 9
;T "
0 —-— 0 0 0 0
A2 — 1}0 ) ’
0 —— 0 0 —-—— 0
An . Ry
0 0 1 — 0 o0
Ry
0 0 0 0 1 0

z = [Q3a M17M2a 1917192711'3],1‘-

122 One can derive the equations of small vibrations of the rotating ring as

a special case of equations (C.24) (see Appendix C).

It follows from relation (9) (see solution to Problem 120) that at @y = wo€3
the absolute acceleration does not depend on us, so gs = 0. Thus, we obtain

the following equations (at Q19 = 0 and Q20 = wiR3):

i)2U3 8Q3 2 R(z)
— 2 b+ wi——M, =0;
8T2 617 0 A22 2 ’

82191 8M1 230

Juw-— an +A—22M2= ;
Jzza;ZZ—%—%Ml-FQs—O,
%—1;1—3830192—%:0,
%4—3830191—%:0,

Ous

— 419, =0 (Ml = AllA%l, M, = A22A2€2).

on
System of equations (1) can be represented in the form

0’2 0Z

Al —+APZ =0
or? + on + ’

where
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00 0 0 0o -1
00 0 —Ju O 0
A0 _ [0 0 0 0 —Jm 0]
=lo o 0o o o o]}’
00 0 0 0 0
0 0 0 0 0 0
0 0  wiRy O 0 0
0 0 O
%30 A22
1 B0 g 0 0 0
A® _ An
0 —— 0 0 —m3 O]
All ) 30
o 0 @ —— 0 0
A £30
o o 0 0 1 o

Z = [Qg, Ml,Mg,'ﬁl,ﬁQ,u,?,]T‘

123 The presence of concentrated masses results in the appearance of con-
centrated forces of inertia that arise under vibrations. Therefore, we take
advantage of equations (C.13) of small vibrations (see Appendix C) putting
in the first two equations

PY =35 —m) + 376 - ny);

0 &)
B =375 - m),

where ji(l), jim, and ﬁi@) are dimensionless forces and the moment of inertia,

respectively,

(1) — 0%, _

I == Z or? AN
j=1

=(2) "L 9%, _

Jl = - Z aTQJ J 3 (2)
i=1

—(2) - 82193'_

9)31 - — Z 87’2 ej
i=1

The remaining equations of system (C.13) are kept unchanged.

124 We consider vibrations of the rod about its natural state (i.e., at
Q10 = Q20 = Mzg = 0) in the plane z,0zy (see Fig. 1.94). In this case,
two concentrated forces R; and Ry act upon the rod in the sections 7; and
12. They are equal, respectively, to
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R; = Ry®,, R; = R,,i»

where R;, = —c (i), therefore, similarly to Problem 123 we have (see
Appendix C)

P1 = —C (ﬁig) (igél) 5(7] - ’I’]g);
Py = Ryd(n —m) — ¢ (Uiy) (i282) 6(n — m2); (1)
i = sin{¥39 + Ads)€; + cos(Ps0 + Ads)€q,

where 93 is the angle between vectors €; and i; .

Since small vibrations are considered, we obtain after some transforma-
tions (assuming that € = €19)

P1 = —c (uy sin® ¥30 + ug cos P39 sinds0) 6(n — 72);
Py = Ryb(n —m) — (2)
—c (u1 cos Y30 sin V3¢ + ug cos? 1930) 5(n —n2).

The first two equations of system (C.25) (see Appendix C) after transfor-
mation of their right-hand sides take on the form

0? b3l '
ny 8:21 - -% + 30Q2 = —csin? Psou16(n — n2) —
—ccos V3 sin ¥aouad(n — n2);
8211/2 8Q2 (3)
M5z~ o + &30Q1 = Rod(n —m) —

—cuy cosV3g sin W30 (n — 12) — ¢ cos? Ds30u2d(n — n2).

The remaining equations of system (C.25) are kept unchanged.

125 Small free vibrations of the spiral in the plane of drawing are described
by system of equations (C.25) (see Appendix C). However, in order to use
them in numerical calculations one needs to know the dependence of a3
on the coordinate n. The equation of the Archimedean spiral in the polar
coordinate system (Fig. 2.29) has the form

T=ayp; 1 =TCOSY, T =Tsinyp, (1)

where a is the spiral parameter. The length of the spiral is {.

From the conditions of fixing the spiral (¢ = 0, » = 0, ¢ = aw/2, and
r = ro) we derive the range of variation for the angle ¢ (0 < ¢ < an/2). The
differential of the arc in the polar coordinate system is

~ {dy 2 dy 2
2 _~(ap 2 2 QP
a1 —a<dn) e (dn> ’ @

therefore,



2.5 Vibrations of rectilinear and curvilinear rods 167

Fig. 2.29.

dn =av/1+ ¢?dy (@ =a/l). (3)

Integrating equation (3) between 0 and 1 we obtain

am/2

1=a/ VI+ @2 de. (4)
0

From expression (4) we determine @. Dividing (1) by [ we pass to the
dimensionless form of notation:

T = ay; Ty =T cos p; T, =Trsin¢g.

Calculating @, we can find the dimensionless value of 7o = 9an/2. From
this point on we omit the symbol of tilde above dimensionless quantities. From
equation (2) we get

dp 1

- - - 5
dn a1+ 2 )
Integrating equation (5) we find the function ¢(n) (¢ = 0 at n = 0). Taking
relation (5) into account, we determine the derivatives z{(n) and z4(n):

— .n
x1(n) = ap’ cosp — app'sing = Losp PSP,
V1+e?
i cos
1) = a4 app’cosyp = ELEOSE
V1+e?

The formula for the curvature ses3o(n) of a plane curve has the form
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— "2 12 7
@30(n) = /1" + x5 (7)

Differentiating (6) with respect to n and substituting the resulting relations
into equation (7) we have

1 (2+¢%

s ©

a30(n)

Solving equation (5) we find the dependence of ¢ on 7, and then determine
from (8) =30(7n) as a function of . Taking advantage of equation (C.25) (see
Appendix C) and knowing the function gs3o(7n), one can find the equations of
small vibrations of an Archimedean spiral.

126 In order to solve the problem it is necessary first to determine static mode
of deformation (see Appendix A) and the displacement vector of points of the
rod axial line. The rod is loaded with a dead force P, and the displacements
are assumed to be small. The solution of equations of the rod equilibrium is
considered in detail in [4].

When the force P stops acting, we have Q, = My = 0. As a result of solu-
tion of equilibrium equation (A.92) (see Appendix A) we find the components
ug; and ugy of the vector of displacements and the angle ¥p3. The we take
advantage of equations (C.25) of small vibrations of the rod in the plane of
drawing (see Appendix C), putting in them Q190 = Q20 = M3p = 0. In addi-
tion, for the rod of constant round section &3p = 7/2; ny = 1; Az3 = 1, and
Js3 = d/(161), where d and [ are the rod diameter and length, respectively.
As a result, we have the following system of equations

82U1 8Q1 ™

oz " on T3 =0

6211,2 (9@2 ™

o2 oy 2 =Y
9?9 OM.

J33——23-—3—Q2=0;
or on (1)

o0 o

an 3—=Y

aul ™

oy 22 0

8u2 s

6_7’] + §U1 — 93 =0.

Putting u; = u10(n)e*™, us = uz(n)e*”, and so on, we obtain the equation
Z; + AZ() =0, (2)

where
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0 w/2 0 0 A2 0 Q10

7r/2 0 0 0 0 22 Q20
10 0 0 J33\2 0 0 5 | Msg
A=y 0 -1 0 0 o |1 %= Y30
0 0 0 0 0 —m/2 U10

0 0 0 -1 7['/2 0 U220

For the boundary conditions of the problem

n =0, uo = ug =930 =0;
n=1Q1=Q2=M3=0

we determine A; (j = 1,2,3). For every \; we find the eigen vector (see
Appendix D). In order to solve this problem we need to know only u,CO ( ) (k=
1,2;j=1,2,3).

The initial conditions have the form

T =0, = T, u=0.
Let us write the expressions for the components of vector du:

(2) (3)

COS AT + c® )ulo COS A3T; 3)
Uy = c(l)uéo) COS AT + 0(2)u20 cos A7 4B )UQ(O) COS A3T,

up = (l)u 10 cos/\17+c( )u

or, in the vector form of notation,

n

Z a® COS A;T.

A =0 (m,-20)
3 Ny
Ty = Zc (J)Zij)’
j=1

X

where ij’ =1
U20

We determine the coefficients ¢ () from the equations
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1 1
+c¢ @ /( 3 dn+c(3)/ (3 dn.
0 0

Provided that the rotation angles of the end section are small, the horizontal
displacement of the point K along the axis x; is

Uy, = (Uri1) = (U1k€1 + U2k®2)i1 = —ug,
or

Ugy = — (c (1)u2(é)(1)cos AT+ )u2(0)( 1) cos Ao + c(3)u2(g)(1) COS)\3’7’) .

127 We take advantage of equations (C.25) (see Appendix C) putting in
them Q10 = Q2 = 0, n1 = 1, and A3z = 1. Let us represent system (C.25)
in the vector form
0°Z 0Z = —
=AW 4+ Z L APZ_A$ =0 1
oz Tan t : e

where
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1

0 0 O 0 1 0
0 0 O 0 0 1
AM_ [0 0 0 Jiz 0 O
~f{fo o o 0O 0 0|’
0 o 0 0 0 O
0 0 0 0 0 0O
[0 ey 0 0 1 0
— 30 0 0 0 0 0
. O -1 0 0 0 0 |
AP =1 0 -1 0 0 0 |’
0 0 0 0 0 —a30
0 0 0 -1 &3 0

Z = [Q17Q27m371937u17 ’U'Q]T; AE = [0707%3707070]T6 (77 - 771)

For approximate solution of equation (1) it is required to determine first

(for two-term approximation) the eigen functions Z( ) and Z, ) (see equations
(1) of Problem 126). Further on, we seek the solutlon to equation (1) in the

form
Z=fOMZ ) + F (N2 ). 2)

Let us employ the principle of virtual displacements (see Appendix E)
assuming

0Z = 50 B0ZYY; 67 = 6B Z?,

@ ]
0 0 0 0 1 0 “1(%
00 00 0 1 U
/00 0 1 0 O0f,. o _ | 936

where E() = 0 0 1 0 0 ol’ Eozo = Mg((;)
1 00 0 0 0 )

0 1.0 0 0 0 )
20

The matrix Ey is a special case of matrix (E.18) (see Appendix E)
accordance with the algorithm of deriving equations for f(1) and f®) we
write two equations

1

1
/L1 Eoz(” dn = 0; /L1 EOZO(Q) dn=0,
0 0

or

R f O 4 hiaf @ 401 f D +biaf @ = by
hot f D + hoaf @ + bor f ) 4 byof @ =

Here
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1 1
hay :/(A(Uzé”-EOZé”) dn; P /(A<1>z E Z(l))dn;
0 0
1 1
hat :/(A(l)z(l) EoZ,”)dn;  ha = /(A<1>z D BoZ,”) dn;
0 0
1
b1 =/<Z§(”+A<2>Z§”) EoZ. Vdn;
0
1
b12:/< 1(2)+A(2)Z(2)) EOZO(l)d'I],
0
1
bo = / (z(;(l) +A(2)Zé1)) E07é2)d77;
0
1
by = / (2 + ADZ) Bz an,
0

In a more detailed notation the coefficients h;; and b1y are determined by
the following expressions:

1
i = / [(ug))? + (u2§3>)2 + Jas (193%))2] dn;
0

1

bllz/[ 1’(01) (1)+Q’(1) 1)+M3’61 193 _}_19:;5)1) /(1 AQ(1)+
0

2
I(I)Qm +3330Q20 Ulo - 3330Q10 Uzé) - 2(1)19(1) - <M3(1)) -

_$30u20 Ql((ll) + 3330,“1 ﬂ(l)Q(l)]

The right-hand sides of the equations of system (3) are equal to

(M: EoZ, ) dn = M9V (m);

(M: EoZ, ) dn = M9 (my).

O\H D\H

Let us write system (3) in the vector form
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Hf + H'Bf = H 'b. (4)

Assuming = F, and f = F,, we represent equation (4) in the form of a
system of first-order equations

F, + H 'BF, = H 'b;

F, —F; =0,
or . —
F+AF=b"', (5)
_ It o H'B| _, [HB] _ b
where F = [_|; A= : b = . b=
f -E 0 0 b,

The solution to equation (5) has the form
F = K()C + / G(r,m)bVdr, (6)
0

where K(7) is the fundamental matrix of solutions to homogeneous equation
(5). This matrix satisfies the condition K(0) = E.

The problem under consideration has zero initial conditions (?(0) = 0,

?: 0), therefore,

T

F) = [GrmbpVan (Gnn) =KWK m), ()
0

—(1
or, since the vector b( ) does not depend on T,

F(r) = /G(T, 71)dm B, (8)
0

Let us derive the solution to equation (5) for the case when its right-hand
side does not depend on 7, i.e.,

F =K(7)C + Fy. (9)
We seek the partial solution Fy to inhomogeneous equation (5) in the form
Fo =Cy, (10)

where the components of vector C; are constant quantities.
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Substituting (10) into equation (5) we get AC; = B(l), so that C; =
A_lg(l). Therefore,

F-K)CT+A 5",

Since F = 0 and K(0) = E at 7 =0, then C = _A-15Y Finally, we have

F- (B k()50 _pE®)

_|f P Pl [H
F=||= . (11)
Py P 0

=n|

Now determine from (11) the vector f whose components f (1) and f (2
appear in accepted approximate solution (2)

= [f@ -
From (12) we find
FO =dyi(7)by + daa(7)be; @ = dyy(7)by + daa(7)bg,

where d;; are the elements of the matrix Py;(7)H™1.
As a result, we get the following solution

1 = (2
Z = (diib + d12b2)Z(§ 4 (do1b1 + dzzbz)zé ), (13)

Under the condition of the problem it is required to determine the moment
M3 in the embedment (at 7 = 0). According to (13),

23(0,7') = M; = (dubl + d12b2)M3(01)(0) + (d21b1 + d22b2)M3(02)(0)

128 After termination of the action of momentum the mass m attains the
velocity © = (J/n)iz, therefore, at 7 = 0 we have the following initial condi-
tions:

W0 =0; WO =-Tendl1-05) (n=mip). (1

Consider vibrations of the rod about its natural state in the plane of
drawing (Fig. 1.98). One needs to put Q10 = Q20 =0, ny = 1, and A3z = 1
in the equations of small vibrations, for example, in equations (C.25) (see
Appendix C). The concentrated mass leads to the appearance of P; and P,
in the first two equations of system (C.25):
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6211,1
P, =—ny 572 é(n —0.5);
0%uy m
P2 = —ngmé(n - 05) (n2 = m_ol)

As a result, we obtain the following system of equations

0%u oQ 0%u

EEI_ - 8_771- + &e30Q2 = —nzﬁé(’r] — 0.5);

d%u oQ 0%y

B gy e = g 0 —03)
0295  OM; 093

J33W_8_n_Q2—0’ —a—n‘—AMB—O,

o 19}

ainl — ae3quz = 0; % + ae3ou; — Y3 =0,

where &30 = /R = .
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(2)

Next we determine the eigen values and eigen functions (vectors). Assum-

ing that
iAT, _ AT, _ AT, _ iAT
Qj = Qjoe""; uj =wujoeT; Y3 =130e"; Mz = Mzee"",
we arrive at the equation

Zo + AZy = A®,

where
0 -7 0 0 A2 0
T 0 0 0 0 X2
A=]0 1 0 J3A2 0 0
—lo o0 -1 0 0o o0’
0 0 0 0 0 -x
0 0 0 -1 T 0
ng)\ Uu10
ng)\2u20
X = 8 .8(n — 0.5) = ABed(n — 0.5).
0
0

In the problem considered the boundary conditions have the form

n=0, u=ug =7V3 =0;
n=1, wup=Qp =Mz =0.

The solution to equation (4) looks like
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n
Zo = K0T+ [ Gln,hu)SB(r) by, (5)
0

where K(7) is the fundamental matrix of solutions; G(n, h1) is the Green’s
matrix.

At 7 = 0 from the boundary conditions it follows that ¢4 = ¢5 = ¢cg = 0.
From equation (5) we get for n =1

Zo(1) = K(1)C + G(1,0.5)A®,.
From the boundary conditions at n = 1 follows

ko1 (1)e1 + kaa(1)ea + kaz(1)es + garnaXugg
+ gaanaX?ugg

ka1 (1)er + ksa(1)cz + ksz(1)cs + gainoA? u1o(
+ g3ama A0 (0.

ks1(L)er + ksa(1)ca + ks3(1)es + gs1mar®uio (0.
+ g52n2\%u20(0.5) = 0;

In turn, since the integral in (5) is equal to zero at n = 0.5,

u10(0.5) = k51(0.5)c1 + ks2(0.5)ca + ks3(0.5)cs;

u20(0.5) = k61(0.5)c1 + ke2(0.5)ca + keg3(0.5)cs @)

Substituting expressions for u;19(0.5) and u20(0.5) into system (6), we ob-
tain after transformations the following system of homogeneous equations for
unknowns ci, ¢z, and cs:

ejic1 +ejc2 +ejzc3 =0 (1=1,2,3). (8)

Equating the determinant of system (8) to zero, we write the equation
for determination of frequencies. Determlmng, for example, three frequencies
Aj (7 =1,2,3), we find three eigen vectors ZO corresponding to them. As-
suming 03( ) = 1 for every A\; we find c ) and 02] ) from (8). As a consequence,

the vector C for each ); is equal to
CY = (e,¢{,1,0,0,0)".
The eigen vectors are

Z = K(n,2,)C 1+ G(,0.5)ABH(y — 0.5).

The vector A®, depending on u19(0.5) and u20(0.5) can be represented in
the form
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0 0 0 0 mnpA? 0
0 0 0 O 0 naA?
= [0 0 0 O 0 0 7 ) _n7d
APy = 00 0 0 0 o | %o (0.5) =DZ"(0.5).
0o 0 0 O 0 0
0 0 0 O 0 0
Since ZY (0.5) = K(0.5, Aj)—c(j), the expressions for eigen vectors have the

form
Z () = K(n, ;) + GDK(0.5,\;)H (1 — 0.5)C .
Partial solutions to system of equations (3) are

7 () €)) @) )]
Z(l) = Z(g) COS A;T; Z(2) = Z(J sin A;7.

At final number of partial solutions the solution is as follows

n

Z-= chz(f) + Z BUZY) = Z (CVZ) cos A+

+B(j)z((g)) sin )\jr>. (9)

From (9) we have the following expression for vector U:

=

(C (J')Z(f) cos \;7 + B (j)_Z—TEj) sin /\jT) )

n
i=1

iy

where Zij) =1
Uz

Now we determine the arbitrary constants C ) and B ) using the initial
conditions. Since @ = 0 for 7 = 0, hence C ) = 0. The second initial condition
gives the relation

—%5(7; —05)ex =Y B WA\ZY, (10)
j=1

Multiplying equation (10) by Z,, (v) and integrating between 0 and 1 we
obtain the system of equations of the form

1

——u20 ZB(J))\ /( 9Dz (v )) dn.

0

Having determined C ) and B ) we have finally
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n .
7= Z B (J)Zéj) sin A;7.
=1

In the conditions of the problem it is required to determine the reaction
force R in the hinge, which is equal to

ﬁ = Ql(l,T)él,

where

Ql(l,’T) = Z1 = ZB(J)QI%)(I) Sin)\jT.
j=1
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A

Statics of rods: basic equations

Solving the problems of dynamics of curvilinear rods when the vibrations of
the rod takes place about the loaded state, it necessary to know the rod’s static
mode of deformation: the equations of small vibrations of the rod depend on
it (for more details see Appendix C). Therefore, in order to investigate small
vibrations of a rod (either free or forced), one needs to solve first the equations
of vibrations of the rod loaded with static forces.

When deriving the equations of rod equilibrium, two orthogonal systems of
coordinates are used. One is a Cartesian system with unit vectors i;, relative
to which the rod position is determined. The second system with unit vectors
€, is movable (Fig. A.1), and it is rigidly fixed to the axial line of the rod. The
fixed (movable) axes can be directed arbitrarily. In order that the equations
of equilibrium and the equations of motion of a rod element would be simpler,

Fig. A.1.
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it is worthwhile, when the orientation of axes is chosen, to take into account
the following. The origin of coordinates should coincide with the centroid of
the rod cross section. Next, one of the axes, for example, the axis determined
by the unit vector €; (see Fig. A.1), should be oriented along the tangent
to the axial line of the rod in the direction of increasing coordinate s. It is
reasonable to align two other axes with the principal central axes of cross
section. The axes fixed to the principal section axes will be referred to as
principal axes. Figure A.1 shows two positions of the rod: in the unloaded
(natural) and loaded states. Under the action of slowly increasing forces F(i)
and moments ﬁ(,,) the rod is strained changing from state 1 into state 2. Ii
is seen from Fig. A.1 that elastic displacements can be so large that the axial
line of the loaded rod differs strongly from its original form (before loading).
The external forces in the process of strain can change their directions. The
directions of vectors P; and ®; at the moment of their application to the rod
are shown in Fig. A.1 by dashed lines.

A.1 Derivation of nonlinear equations of rod equilibrium

When deriving the equations of rod equilibrium we use the following basic
assumptions:

1) normal sections that are plane before the strain remain plane after the
strain too;

2) the axial line of the rod is unstretchable;

3) dimensions of cross section are small as compared to the rod length and
the curvature radius the rod axial line;

4) different but statistically equivalent local loads produce in the rod (if
local tensions near the point of load application are not taken into account)
one and the same stressed state (principle of Saint-Venent).

Let us consider an element of the rod of length ds and draw all forces
applied to it (Fig. A.2). The following notation is used in Fig. A.2: Q is the
vector of internal strength, M is the intrinsic moment, q is the vector of dis-
tributed load (§ = ¢1€1 + g2€2 + ¢3€3), and @ is the vector of distributed
moment (I = p1€; + po€2 + p3€s). The directions of the axes of a connected
trihedral that are determined by unit vectors @ and €3 coincide with the di-
rections of principal axes of the rod section. The rod element is in equilibrium,
hence, the sums of all forces and all moments are zero, and this results in two
vector equations:

dQ + qds = 0; (A1)
dM + (&; x Q)ds + fids = 0, (A.2)

or
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Fig. A.2.
dQ
— +q9=0; A3
o Ta=0 (A.3)
dM —
—£+61XQ+;—L=O. (A4)

In order to convert from equations (A.3) and (A.4) to the equations writ-
ten through the components of vectors in the bases {i;} or {€;}, these vectors
should be represented in the form of decompositions in base vectors. In equa-
tion systems (A.3) and (A.4) the vectors Q, M, and & are unknown quantities.
The acting distributed loads q and 7, concentrated forces and moments ap-
plied to the rod (see Fig. A.1), and the conditions of rod fixing are known

quantities in these systems. The concentrated forces f(i) and moments ﬁ(u)
can be included into equations (A.3) and (A.4) taking advantage of the Dirac
0. As a result, we have the following equations of equilibrium:

dQ _ &K= N

—?+q+ZP (s — si) = 0; (A.5)
j=1

L PR ot 1) = A8

E+61XQ+M+VZ::1 (s—s,,)—(), ( )

where s; and s, are the coordinates of points of application of concentrated
forces and moments, respectively.

The distributed force @ appears in equations (A.5) and (A.6). It can act
on a part and not over the full length of the rod. In this case, one can write
the equations using the Heaviside function, i.e.,

q=4q(s)[H(s) - H(s — s:)];
B=n(s)[H(s) — H(s — s.)],
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where H(s) is the Heaviside function.

Equations (A.5) and (A.6) hold true for the case when the rod is unloaded
in the initial state. The system of these equations is not complete, since in
the general case it is impossible to determine Q and M from it. The point
is that equation (A.6) involves the unit vector € whose position in space
is unknown, since it depends on the rod deformation. Therefore, we need to
derive the relations that would allow us to determine the spatial positions of
the base vectors €; under deformation of the rod.

A.2 Transformations of base vectors

When a rod changes from its natural state 1 (see Fig. A.1) into state 2 with
loading by external forces, the base vectors €;0 bound to the axial line of the
rod are displaced to another point of space. This transition of the base into
another point is characterized by the vector T of displacement of the base
origin (see Fig. A.1) and by the rotation of bound coordinate axes (vectors
€;).

Let us derive the relations that allow one to change from one orthogonal
base to another. Let {€;} (i = 1,2,3) be a certain base (determining the
directions of bound coordinate axes) in the three-dimensional space, and {€10}
be the base fixed to the same rod section before this section is loaded by
external forces (Fig. A.3). Each vector of the base {€;} can be decomposed in
vectors of the original base {€1¢}:

Fig. A.3.
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€1 = l11€10 + l12€20 + l13€30;
€2 = l21€10 + l22€20 + [23€30; (A.7)

€3 = I31€10 + [32€20 + I33€30,

where [;; are the projections of base vectors €; onto the directions determined
by vectors €;9. In system of equations (A.7) the coefficients [;; form the matrix
L:

il b3
L=[l]=lar la2 ], (A.8)
Ia1 Iz 33

that is referred to as the transition matrix from the base {€;0} to the base
{€;}. Relations (A.7) can written in a more compact form:

& = L&, (A.9)

where LT is the transposed matrix. At a reverse conversion of the base {€;}
to the base {€10}, we have
€, = Lg,, (A.10)

Let us find the transformation matrix under an arbitrary displacement
and rotation of the triple of base vectors (Fig. A.4). Since the base vectors
at a translational displacement of coordinate axes coincide with original base
vectors, one can restrict oneself to considering only the transformation due
to rotation of base vectors. An arbitrary rotation of coordinate axes can be
represented as three independent rotations, therefore, we determine the matrix
L in the following way. Consider a rotation of initial coordinate axes about
the axis coinciding with the direction of vector €19 through a positive angle
% (see Fig. A.4a). As a result, we have

</ —
1; = ejo,

</ — . —
i, =cos?; €y +sinv - €30 ;

</ . — —
i3 = —sind - €0 + cos vy - €30;
The corresponding transition matrix has the form

10 EN) €30

e
1 0 0

Ly, =i, |0 cos sind |,
0 —sin?d; cost

As for any matrix of rotation of coordinate axes, the elements of matrix
Ly, can be considered as direction cosines between the base vectors {€;} and
{i;}. We make the second rotation through a positive angle 3 about the axis
coinciding with the direction of vector i3 (see Fig. A.4b). As this takes place,
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Fig. A.4.

< </ . 3/

i; = cosd3 i) +sinds - iy;
s/ . 3/ </
iy, = —sin¥s -i; + cos¥s3 - iy;
" </

13 = 13;

In this case, the transition matrix looks like

17 12 13
s .
1; cos U3 sinds O
sm .
Ly, = iy |—sin %3 cosvs O
s
i 0 0 1

Finally, we make the last rotation of coordinate axes through a positive

=/
angle ¥ about the axis aligned with the vector izl = &, (see Fig. A.4c).
After that, the base vectors i;l coincide with vectors €;. The corresponding
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transition matrix has the form

</ -/ </
51 1o 13
M .
1, | costs 0 sinds

i/ 0 1 0

Ls, =1,
1 _sindy 0 cosvy

13

The general matrix L of conversion from the base {€10} to base {€;} (the
transition matrix for rotation of coordinate axes) is equal to the product of
matrices Ly,, Ly,, and Ly, :

L = [l;] = Ly,Ly, Ly, (A1)
or
€p €20 €39
_ [ cos P9 sin Y3 cos¥ 4+ cos ¥ sin Y3 sin 94 _]
&1 | cos; cos v +sin ¥y siny — sinJ9 cos V1
) (A.12)
L=¢e —sinds cos ¥ cos U3 cos Y3 sin ¥

sin Y9 sin ¥3 cos¥1— sin ¥ sin¥3 sin 91 —

€3 | sind cos ¥ .
3 2 3 — cos g sinth — cos g cos

L

Other sequences of rotations of coordinate axes are also possible.
At small angles of rotation the matrix L (see expression (A.13)), which we
denote as AL, takes on the form

€ € €3
Ly, =€ | -3 1 9|,
ez | U9 - 1

or
AL =E + ALy,
where
0 93 —99
AL, = [ 93 0 P . (A.14)
D) -t 0

The matrix L of transformation of base vectors allows one to establish the
relation between components of vector @ in different bases:

a; = akoli,
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where a; are the components of the vector @ in the base {€;}, and axo are the
components of the vector @ in the base {€10}.
In the vector form of notation we have:

a = Laj. (A.15)

If it is required to express components of the vector @ in the base {€;0}
through its components in the base {€;}, then from (A.15) we get

a, = LTa.

Similarly, one can determine the transition matrix between the bases {i;}
and {€jo0}. The latter characterizes the natural state of the rod (before load-
ing). Let us denote the angles of rotation as 199. The matrix L°0 obtained
similar to the matrix L has the form

cos 9 cos g €O 99 sin 93 cos ¥+ cos 3 sin 99 sin 99—
2 3 +sin9)sin 99 — sin¥J cos ¥?

L= | —sin¥) cos 99 cos 93 cos 99 sin 99 . (A.16)

sin 99 sin ¥ cos ¥~ sin 99 sin 99 sin 99—
— cos 99 sin 99 — cos ¥y cos ¥

sin 99 cos 99

Let us determine the transition matrix between the bases {i;} and {&;}
(see Fig. A.1). Since

éjO = l?ﬁl + 19252 + l?3i3; (A 17)
€ = lr1€10 + lk2€20 + k3€30,
then excluding €;o from (A.17) we get

3 3 3
& = ZZ w5 =Y 105, (A.18)
j=1v=1

v=1
where [ ,S) are the elements of the matrix
LW =LL° (A.19)

Let us recall that L is a matrix with known elements that characterize the
spatial configuration of the axial line in the unloaded (natural) state; while L
is the matrix that characterizes the rotation of vectors of the base {€;} with
respect to their natural state. If a rod is rectilinear in its natural state, then

L’=E.
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Knowing the matrix_f(l), one can derive the relations linking the vectors of
the bases {€;} and {i,}:

T_ T __
5 =[LO] L=t L, (i=123)

Matrix (A.15) allows one to determine the components a; of vector a in

the base {€;} for known components a,; of vector a in the base 1;, i.e.,
) 3
f_i:L( )52 (az_—-zawjij>;
i=1

3
a; = Z alei(jl) .
j=1

The transition matrices of base vectors are necessary when deriving the
equations of equilibrium and motion for rods, and when accounting for real
behaviour of force vectors in the process of loading the rod.

(A.20)

A.3 Derivatives of base vectors with respect to arc
coordinate s

The derivative of a vector with respect to a scalar argument is a vector,
therefore, it can be represented in the form

de; > _
ds = Zaeijej, (A21)
j=1

where @;; are the elements of a certain matrix. Multiplying expression (A.21)
scalarly by ex we have

de; _
dSl e = Xik- (A.22)
Since
L ifi—k:
g = isk (A.23)
0, if 7 # k,
we have after differentiation of equation (A.22)
R
ds *Tds T

Hence, it follows, taking (A.23) into account,

Xk = —Rki,
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therefore, the matrix [2e;;] has only three independent elements:

0 —ae3 a9
[%ij] = 3 0 —ae1
— &2 —a&e1 0

Let us invoke the vector
3
x = E ®&;€; = ®1€) + &€ + *3€3.
Jj=1

The derivatives of unit vectors with respect to coordinate s (see relations
(A.17)) can be represented in the form

de,, _  _ _
= &9 X €,0 = Enpr&p0€no;
ds
de; o _
=38 X e; = Ekj; Xk
ds JeITE

where exj; and €,,, are the Levi-Civita symbols.
Then the following relations

de; _ _

—— = &3€z — &egs;

ds

de, _ _

— = &1€3 + &3€y; (A.24)
ds

des _ _

—)— = &281 — &€y,

ds

hold true.
Taking relations (A.24) into account, the derivative of an arbitrary vector
a in the bound coordinate system is equal to

da d'a
-— = —4=EXa, A.25
ds ds t®xa ( )
!
where — is the local derivative.

Let Ss demonstrate the geometrical meaning of the components a;j of
the vector . When relations (A.24) were established, no constraints were
imposed on the directions of vectors €2 and €3. Therefore, one can consider
these relations as general. For natural axes, which are a special case of bound

axes, we have
de; 1
— =-e A.26
ds o 2> ( )
where g is the curvature radius of the curve.
For the case under consideration we introduce a new designation for the
vector : the vector (2 that is known in differential geometry as the Darboux

vector. Then, according to the first equation of (A.24), one can write
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Fig. A.5.

Hence, it follows that

1
r=22=0; (H=a3=—,
Q
i.e., @3 is the curvature of the curve.
For natural axes, we derive from relations (A.24) the following formulas of
Serret-Frenet
de; _ de, _ des _
—_:Q N ——:—Q _Q_' ——:—.Q . A.27
1s 3825 1% 3€1 + {21€3; ds 1€2 ( )
The vector €; is orthogonal to the vector €;. In addition, it lies in the plane
a (Fig. A.5) that is orthogonal to the osculating plane, therefore,

% _ i (%) g = - tim |20 e, = ~Wig
ds ~ As=o s )T T A As [T T s
o de 49
€3 0= _  AUi_
ds = Qleg = ds €ea, (A28)
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Fig. A.6.

hence,
2 =dv/ds.

The component §2; of the Darboux vector characterizes the torsion of the
curve.
When changing from natural bound (éj(l)) axes (Fig. A.6) to any other

bound axes (€;) rotated by a known angle ¥ with respect to the vector &, the
components of vector @ are expressed through the components of vector {2 in
the following way:

3
> = ®j€; = ®1€1 + (23 sin ¥19€2 + §23 cos ¥1p€3, (A.29)
j=1
ddio
ds

where &1 = 2 +

A.4 Equations relating z; to angles 9y

Let us consider the relations

3 3
€ = E liv€u0; €, = E Ik €k,
v=1 v=1
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where ;; is the element of matrix (A.13). Differentiating €;, we have

3
del dlu/_ deuO
Z < €,0 + lu/ ds ) =22 X €, (A30)

since

— 3
deuO — — — —
ds =39 X €0 = 3y X E lk,,ek .

k=1

Excluding €, from equation (A.30) we obtain

Z {dlw (Zlk“ek> + L [aeo x (Zlkuek>

v=1

} % X €. (A.31)

After some transformations we find from equation (A.31)

dl di dl
®’ = d_251l31 d22 l32 + d23 I3z + (laglzs — laglsa)ee10+

+ (lasls1 — Izalss)eeao + (la1ls2 — laals1 )ees0;
dl di dl
=g it d32112 + g hs + (a2l — lashz)®io+
(l33l11 - l31l13)&20 + (l31112 - l32l11)%307
dl dl dl
&3 = d_zllm 12122 + d13 l23 + (li2los — hislaz)@10+

(513121 — li1l23) 220 + (linla2 — li2la1)ees0.

(A.32)

Let us express l;; in relations (A.32) through the angles ¥;, ¥2 and ¥3. As a
result, we have

d
+ (sin 95 sin ¥y + cos Vg sin 93 cos 1) &g+

do dd
® = (——1 + 3810> cos Uy cos U3 — d—53 sin ¥o+

+ (COS ’192 sin 193 sin ’191 — sin 192 COs 191) 230,
dds dd,y

&y = — — (— + 331()) sin Y3 + cos U3 cos ¥y @0+

ds d (A.33)

+ cos Y3 sin ¥ &30;

ds ds

+ (sin ¥ sin Y3 cos ¥; — cos Yo sin Y1) sea0+

dd dd
@3 = —— cos ¥y + (——1 + 0‘910) sin ¥3 cos J3+

+ (cos ¥2 cos Y1 + sin g sin I3 sin ¥y ) a30.

When writing expressions (A.33) the angles ¥, ¥ and 93 were reckoned from
the base axes {€;0} whose position characterizes the natural state of the rod
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and is assumed to be the initial state. For the sake of convenience of trans-
formations, system of relations (A.33) can be written in the form of a single
vector relationship:

dv _ _ o
Ll‘d— -+ L (1) (&él) = &ioei), (A34)
where
% 9
9= |P2]; 9 ;
U3 95
(A.35)
cosPzcost¥3 0 —sindg
L1 = —sin ’193 1 0
sindgsinds 0O cos Uy

Vector & (1) is not equal to vector &, that characterizes the curve geometry

in the 1n1t1al state. The vector aaél) has the components in the base {€;} that

are equal to the vector @, components in the base {€;0}. Expressions (A.33)
give a possibility to determine variations of the components of vector & that
characterize the geometry of the axial line in the loaded state, if the geometry
of the axial line in the initial state (z;0) is known.

A.5 Vector equation of displacements of points of the
rod axial line

Since (see Fig. A.1)

U=T—Tg, (A.36)
we can derive, differentiating this equation with respect to s,
da
— =€ — €1p. A.37
i 1 — €10 (A.37)

Using the matrix L of form (A.13) we have
€10 = 1@ +121@€21 + 3183,

and, consequently,
du _ _
4 = - ln)e — @ — i@, (A.38)

Converting to the local derivative (see relation (A.25)), we get
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a_
d-‘sl +®xA=(1—111)81 — 1218 + 3183, (A.39)

or, in the scalar form of notation,

du

—— + segug — sesup + I — 1 = 0;

ds

du

—-—d; + &3u; —&uz + log =05 (A.40)
d

‘ﬂ + ®1ug — ouq + 131 = 0.

ds

A.6 Equation connecting the vectors M and =

Consider in the bound coordinate system ( Fig. A.7) a rod element in the
strained state. In the planes passing through the principal axes of the section,
the axial line projections have curvatures &, and &3 and are projections of the
curvature of the spatial axial line. Since the radius of curvature p is directed
along a binormal to natural axes that is rotated by the angle 9,5 with respect
to the section principal axes (see Fig. A.7), then

sin Y1 . cos Y10
= = (23 sinYp; ®3 =
[

®9 = {25 cos V1. (A41)

Fig. A.7.
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In addition to bending moments M3 and M3, the moment M; acts upon
the rod element, which results in torsion of the rod axial line. This torsion is
characterized by the component a&; of vector @®. Assuming that the moments
My, My, and M3 are proportional to variations of torsion and curvature, we
obtain three equations:

d9
My = Aq1(2e1 — 210) (381 =+ d_;o) ;

M; = Agy(es — ®2); (A.42)

M3 = Azz(e3 — ®30);

®&; — & = A%j,
where A;; are the torsional and bending stiffnesses that, for a rod of variable
section, depend on s (Ay; = GJ,; Agy = EJy; Aszz = EJ,); while a9 is the
torsion and curvature in the strain-free (natural) state.

System of equations (A.42) can be written in the form of a single vector
equation:

M=A@z-s"), (A.43)
Aqq 0 0
where A= 0 A22 0
0 0 Az
It should be emphasized that vector %él) is not equal to the vector &y

that characterizes the initial state of the rod.
The vector 2 is known in the base {€;0}:

&) = &10€10 + *20€20 + E30€30- (A.44)

In order to find the increments of curvature vectors As; appearing in
equations (A.42), one should assume that the vector '2'651) remains unchanged
in the bound system of coordinates: this takes place if its projections in this
coordinate system are invariable. In this case, in the base {€;}

@él) = &10€1 + &20€2 + &E3p€3. (A.45)

A.7 System of nonlinear equations of rod equilibrium

The system of vector equations of equilibrium of a three-dimensional curvi-
linear rod has the form
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+P=

228l

— +eQ+R®=0;
ds

LY etz = (A.46)
ds
dua
P (1—-1ln1)e; + 1218 + I183 = 0
M=a(z-=").
Here
=q-+ Zf’_ 1)(5 (s — s;);
(A.47)

™ CrA §(s—su).

Il
’;I
M‘b T

v=1

Il

System g_ .46) involving five vector equations contains five unknown vec-
tors: Q, M, 9,2, and u.

A.8 Reduction of equations to dimensionless notation

Let us introduce the following new quantities:

(A.48)

= =2l Aii(n) = Ayl /A33
5" ﬁ%)/A% 7 (") (u)/A33

where ~ is the superscript denoting a dimensionless quantity; As3(0) is the
bending stiffness at the origin of coordinates. Since centimeter powered to
minus unity (cm~!) is the unit of J-function in equations (A.47), we have
upon passing to a dimensionless coordinate

11~ )] = 7501 =m0, (A.49)

where 6 is the dimensionless function. Substituting relations (A.48) into equa-
tions (A.46) and (A.47), we have after transformations the system of nonlinear
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equations of rod equilibrium in the dimensionless form of notation (the symbol
~ is omitted in dimensionless quantities):

dQ _ &y

d—3+q+2p()5(n—m)=0; (A.50)
=1

dM — 2w

W+él><Q+n+Es)z< '6(n —n;) = 0; (A.51)

v=1

—dd - _a) g .

Ll% + L2830 —A"T"M=0 (L2 =L - E), (A52)

du _ _ _

—(—1—7; + (111 - 1)e1 + lg1€9 + 13163 = 0; (A.53)

M=A (@ - @0“)) : (A.54)

Let us consider in more detail the derived system of nonlinear vector equa-
tions of equilibrium of a three-dimensional curvilinear rod. Equations (A.50)
and (A.51) are valid for any base, i.e., they are invariant with respect to co-
ordinate systems. From them, for example, one can express the vectors both
in the fixed coordinate system:

Q=

M-

3 3
T — 0 = (%) )T
ijlj; qzqujlja P ’ =2Pz(;)1]7
g=1 j=1

j=1

and in the moving system:
3 3
Q=ZQ1‘§]‘; ﬁzijéj;
j=1

As for equations (A.52) and (A.53), the vectors M, ¥, =, Eo(l), and U in them
are related only to the base {€;}, i.e.,

. 3 .
Po_ ij(z)éj'
j=1

A.9 Boundary conditions

When solving the equations of rod equilibrium, both homogeneous and inho-
mogeneous boundary conditions are possible. For a three-dimensional curvi-
linear rod the total number of boundary conditions is 12 (6 conditions at the
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left end of the rod for = 0 and 6 conditions at its right end for n = 1).
For a cantilever rod (see Fig. A.1) we have the following boundary conditions:
n=0,T=0,9=0and =1, Q =0, M = 0. For hinged rod for = 1, if
the hinge allows to the rod’s front section to rotate with regard to three axes,
the boundary conditionsfollowing are as follows: @ = 0 and M = 0.

Other variants of fixing the rod ends are possible, for example, those for-
bidding the displacement of a butt section of the rod in some direction that
is determined by the unit vector €,; in this case the following condition

(T 8) =0 (A.55)

should be met.
Similar boundary conditions are possible for a butt section rotated by some
angle (for example, ¥; # 0, 93 = 93 = 0).

A.10 External load and its behaviour under rod loading
process

Earlier, we have derived the general vector equations of equilibrium of the
rod loaded with external forces and moments (see expressions (A.50)-(A.54)).
The equations of equilibrium or motion can be solved only in the case when
the external load is known. Therefore, it is presumed that all necessary data
concerning external forces and moments are available. Let us consider in more
detail possible behaviour of the external load (distributed and concentrated
forces and moments) appearing in vector equations (A.50) and (A.51). Equa-
tions (A.50)-(A.54) are valid for large displacements of the rod under the
action of external forces, therefore, one needs to know first the behaviour of
the external forces in the process of rod loading and, second, whether these
forces remain constant in direction and magnitude under rod deformation. If,
in the process of rod strain, external forces and moments keep their direction
with respect to a fixed coordinate system (as, for example, does the moment
M in Fig. A.8), they are called ’dead’ forces. If they keep their direction with
respect to bound axes (for example, the force P in Fig. A.8), then we refer to
them as the ’tracking’ forces. When general vector equations of equilibrium
and motion are derived, the ’behaviour’ of the external load is immaterial.
It plays important part when the equations are written in particular bases
(for example, {&;} or {i;}) and, especially, when these equations are written
in the scalar form (for numerical methods of solution). If the external load
is dead, and the equations of rod equilibrium are written in projections onto
fixed axes in the base {i,}, then projections of the forces Px(jz), sm;j ), gz, and
pz; do not depend on the strained state of the rod. If the load is tracking (the
force P in Fig. A.8), then the projections of external forces in these equations
depend on the strained state of the rod.
Let us consider the tracking force
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Fig. A.8.

3
P=> Pg
i=1

where P; are constant in the base {€;}. Making conversion to the fixed coor-
dinate system we get

3 3
P=> P& =) Pj. (A.56)
i=1 j=1
Here
ZPZ“ (G=1,2,3), (A.57)

And li(jl) are the elements of matrix L (1) (see expression (A.19)).
Relation (A.57) can be represented in the vector form of notation

P, = (L <1>)T P. (A.58)

The projections P, depend on li(jl)(n), therefore, they are not constant
quantities. Similarly, one can write down the distributed loads too

3
A=) i (qx] Z‘h m) ;
j=1
3
=Y el (MJ Zuz (1)> ’
j=1

or, in the vector form,

4, = (L“))Ta, = (Lu))T—ﬂ, (A.59)
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For the dead force P we have
3 —_
P=> P i,
7j=1

where P, are constant in the base {i;}.
In the bound coordinate system the projections of dead distributed loads
are determined by the expressions

3 3
= ao,lss  T= Y Haylis, (A.60)
j=1 i=1

where q;; and p; are specified functions.
In the vector notation, the dead forces in the base {€;} have the form

G=LWg,; m=LWg,; P=LOP,; R=LOR,. (A.61)

A.11 Vector nonlinear equations of rod equilibrium in
the bound coordinate system

In order to derive the equations of equilibrium in the projections onto coor-
dinate axes, it is necessary to represent vectors in an appropriate base (for
example, the base {€;}) bound to the section’s principal axes. In this case, it
is well to bear in mind that not only projections of vectors depend on the co-
ordinate 7, but the vectors of the base {€;} too. Taking advantage of formula
(A.25), let us change over in equations (A.50)-(A.53) to local derivatives:

QR 5x«q+P=0 (A.62)
dn

%+§xﬁ+élx6+ﬁ:0; (A.63)
49 +LmY —A M =0, (A.64)
dn

da _  _ _ _ _

37- +a2&Xu+ (l11 — 1)81 + l31€5 + l31€3 = 0; (A65)
M=a(z-="), (A.66)

where
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3 ) P
P=q+) PY%wm—n); T=m+> Fn-mn) (A.67)
i=1 v=1

cos Vg sinvs cos 1+ cos g sin 3 sind; —

cos 9 cos s — 1 + sin ¥, sin ¥ — sin ¥y cos

=i
N
Il

—sinds cos ¥ cosdz — 1 cos 93 sin ¥

sin ¥g sin¥3 cos ¥, — sin s sin ¥z sin ¥, —

sin 94 cos ¥ .
2 3 — cos Uy sin —cos¥pcost — 1

(A.68)

All vectors appearing in expressions (A.67) must be represented in the

base {€;}. If the vectors q, ?(Z),ﬁ, and ®"“ are known in bound axes, then
no additional transformations are required. If these vectors or some of them
are specified (known) in Cartesian axes, then one should write them in the
bound axes using the matrix of conversion from the base {i;} to the base
{€;}. How to determine the vector components when making conversion from
one coordinate system to another is described in the paragraph A.2 of this
Appendix.

A.12 Equations of rod equilibrium in projections onto
bound axes

In applied problems it is more convenient to use equations in projections onto
bound axes. In addition, the components Q;o and M;g of vectors _QO and M
have clear physical meaning in the bound axes: Q10 is the axial force; Q2 and
()3 are the crosscutting forces; M is the torsion moment; and My and M3
are the bending moments.

For better understanding we restrict ourselves to the case when one con-
centrate force Py and one concentrated moment M are applied to the rod.
The equations of equilibrium have the following form

dTin-o- + Q30220 — Q20230 + q10 + Piodp = 0;
%7720 + Q10230 — Q30210 + G20 + Peodp = 0; (A.69)
%1730 + Q20810 — Q10220 + q30 + P3odp = 0;
dﬁ{’lo + Moz — Maozeso + p10 + Wiodgp = 0;
dl(;/-:;o + Mioaezo — Msoeer0 — Q3o + poo + Maodgy = 05 (A.70)
dM3

+ Maoz10 — Mioz20 + Q20 + 130 + Maodgy = 0;
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Mo = Aq1(2e10 — 2100);
Moo = Azz(ee20 — 2200); (A.71)
M3o = Ass(se30 — 2300);

d?d dd
®10 = 10 + @190 |} cos g cos 3y — 30 sin Po0+
dn dn

+(sin Pog sin¥1g + cos ¥1g cos Pog sin ’1930)22200 +

+(cos ¥ag sin¥zg sin 919 — sin ¥oq sin Y10 )33300;

ddio

&0 = - (— + 88100) sin ¥30+
dn

(A.72)
~+ cos ¥39 cos Y1pa200 + €Os V30 sin ¥192300;

Y30 dvo
9
an cos Yo +( an

+(sin P20 sin W30 cos Y19 — cos Vg sin P19 )00 +

&30 = + %mg) sin Yo cos Y39+

—‘r(COS Yo cos P10 + sin ¥ sin Poq sin 1930)%300;
J

duio
dn
duagg

rr + uio30 — uso®10 + 19; = 0; (A.73)

0 )
+ ugosea0 — ugetesg +1j; — 1 =10;

du
d_;o + ug0210 — U020 + 19; = 0.

The quantities &;09 appearing in equations (A.71) and (A.72) are assumed to
be known.

A.13 Special cases of equilibrium equations

Nonlinear equations of equilibrium for a rod whose axial line is a
plane curve both before and after loading

The equations of equilibrium for the case under considerations have the fol-
lowing form
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d
dQT;O — &20Q20 + q10 + Prodp = 0; (A.74)
d
dQ;o + &30Q10 + g20 + P2odp = 0; (A.75)
dM.
dnso + Q20 + M30 + M300gp = 0; (A.76)
vy 1
d_?;70 - A—33—M30 = #300; (A.77)
du
E;E —ugo®so + i1 —1=0; (A.78)
d
220 4 wggseso + Iy = 05 (A.79)
dn
M3o = Azs(ze30 — 2300), (A.80)
Y dd300
where l1; = cos¥30; l21 = —sin3g; se30 = —33'7—0, and ae3gg = . Since

the angle between the tangents to the axial line of the rod before and after

loading (between the vectors &9 and €q¢) is 930 = 19éé) — Y300, equation
(A.77) can be represented in the form

ddzp Mz
—_— — —=0. A.81
dn Ass ( )

System of equations (A.74)-(A.79) allows one to determine the static mode
of deformation of a plane curvilinear rod at large displacements of points of

the rod axial line (u19, ug) and at large angle of rotation ¥39. The equations
of small vibrations depend on Qo1, Qoz2, and Mo3 (see Appendix C).

Equations of equilibrium at small displacements of points of the
rod axial line and small rotation angles of the vectors €; of bound
axes

We assume that displacements u;o and angles ¥; are small, and the vector @&
is

2y = oo + A%y,

where 2o is the vector characterizing the axial line geometry for the rod in
its natural (unloaded) state; and A3, is the small increment of the vector
EOa

3
AEO = E A&joéjo (Ejg ~ éj) .
j=1
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The intrinsic moments Mig, Ma2g, and M3 are proportional to the components
of vector A@&®@:

Mjo = Aii Aaejg.

From nonlinear equations (A.62)-(A.65) we obtain after transformations the
linear equations of equilibrium:

d

% + &gy X QO + q qp + Aqo + (Po + AP())(SP = 0 (A82)
dM, — —

—W + 2 290 X MO +e €ejpg X QO + [ Ho + A:U‘O (W + Ag.m)(%)t = 0; (A83)
% + &gy X ’190 - A_1M0 =0; (A84)
du

_(;170 + 2o X Up + P30€20 + Y20€30 =0, (A.85)

where &gy and €;9 are known vectors.

If the loads are tracking, then in the bound coordinate system Aq, =
ATig = AP = AR = 0. If the loads are dead, then the increments of vectors
Aqy etc. are not equal to zero. In this case, they depend on ¥ and uj o
linearly [4].

The vector products can be represented as

oo X Qp = AxQy; oo X Mo = AxMy;

. _ _ o _ = (A.86)
2o X Yo = Axdo; 3oy X U = Az,
0 —&300 200
where Age = | 300 0 —=2199 | . In addition,
—&200 2100 0

€10 x Qg = Ay x Qp; V30820 + I20€30 = A1,

0 0 o
where A; = |0 0 —1}.
0O 0 o
As aresult, we have the system of linear vector equations that allow one to
determine the static mode of deformation of a three-dimensional curvilinear
rod:
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dQ, — — —
f_n_o +AxQo + Qo + Ao + (Po + APo)ép = 0;
dM, — — - —
dn + AaeMy + A1Qq + i + At + (M + AR)dgp = 0;
ddo 9 —INF V3 —
an +Axpdo— A" My=0  (My=AAS);
H + Azl + A150 =0.
dn

(A.87)
(A.88)

(A.89)

(A.90)

Linear equations of equilibrium for the specific case when the rod
axial line was a plane curve before loading

For the case when the rod axial line becomes a spatial curve after loading

the equations in projections onto bound axes can be derived from system
(A.87)-(A.90):

d
% — &30Q20 + Pio = 0;
n
d
3220 + 2230Q10 + Poo = 0;
n
d
W0 4 py =,
dn
dM
3 10 _ g0 Mo + Ryo = 0;
n
d M-
d7720 + ae30M19 — Q30 + Mo = 0;
dM:
) 30 4 Qoo + Mo = 0;
n
Mo = Ain A, Moy = A Asey,
dd
d—lo — g9t — Azig = 0;
7
dv
=2 + agothio — Aegy = 0
dn
ddsg
Vs _ -0
d’l’] 230 )
duyp
g, ®s0U20 = 0;
n
du
d—QO + 2e39u10 — V30 = 0;
n
du
2 gy =

M3o = AzzAsesg,

(A.91)
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If the rod axial line after loading persists to be a plane curve (which is
possible if P3g = Mg = Myp = 0), then one should set in system of equations
(A91): P30 = 0; M1o = Mzo = 0; Azep = Aseyg = 0; Y10 = Y20 = 0, and
uzg = 0. As a result, we get the following system of equations:

d
?10 — &30Q20 + Pio = 0;
n
d
de + 230Q10 + P2o = 0;
n
dM.
q %0 4 Qa0 + M3 = 0;
4 19" o (A.92)
30 30
——=0 M3y = AszANee3);
an Aos (Mso 33Qeeg)
duo _ ® 0
an 3020 = 0;
dugo

—— + &3qu1g + V30 = 0.
dn
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Basic equations of rod kinematics

When deriving the equations of motion for rods, it is necessary to know kine-
matic relations that establish a link between generalized displacements and
their first derivatives with respect to time.

B.1 Time derivatives of vectors of the base {€;}

Figure B.1 shows the positions of movable coordinate axes at different in-
stants to and t¢;. The relations that set up a correspondence between the base
vectors i;, €0, and €; at a variation of their position in space were derived in
Appendix A. The position of bound axes can be changed either due to trans-
lation of the axes when the rod moves (coordinate s being fixed) (see Fig.
B.1), or due to a displacement of the axes at a fixed instant ¢y when axes drift
along the s coordinate. Thus, in the general case the base vectors €; depend
on two independent variables ¢ and s.

In the former case the variation of axes’ position depends on the variation
of variable t at a fixed value of the s variable, while in the latter case it depends
on variation of s at a fixed value of t. As the rod moves, the position of its
axial line in space changes continuously. In order to describe the rod motion
and to determine the form of its axial line at any time, one needs to know the
derivatives of the vectors €; of a fixed base with respect to arguments ¢ and
s. The appropriate relations for derivatives of vectors €; with respect to s are
given in Appendix A.

The derivative of vector €; with respect to t is a vector that can be de-
composed in vectors of the base {€;}, i.e., we can present it in the form

— 3

66,‘ _ _ o

ot Zwijej = Wij€; (4,5 =1,2,3), (B.1)
j=1

where w;; are the elements of a certain matrix [w;;| similar to the matrix [se;;].
The matrix [w;;] is skew symmetric and has only three independent elements:
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Fig. B.1.
0 —Ww3 w9
Aw = [w,-j] = w3 0 —wi| . (B2)
—Ww?2 w1 0

As a result, we get from (B.2)

aél—wé wo€3; 662——w"e'+w€' %—wé—wé
o Wae 263, 5 T Twsel 183, o = w2el 1€2.
The following equation
A e, =wxeg (1=1,2,3), (B.3)

holds true, where @ is the angular velocity vector for rotation of the bound
coordinate system (@ = w181 + w€s + wW3€3).

For time derivatives of the vectors of a movable base we have the following
expressions
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B.2 Absolute and local derivatives of a vector with
respect to time

Let us consider the vector a(t) in a bound (moving) coordinate system (see
Fig. B.1):

5(1‘,) = al(t)€1 + CLQ(t)EQ + ag(t)ﬁg.

In the moving coordinate system the components a; of the vector a(t) and the
base vectors €; depend on time, therefore, taking relations (B.4) into account,
the derivative of vector a(s,t) has the form

oa oa; _ Oa,_ Oaz

5{ = Wel + —%eg + Weg + al(w X él)+ (B5)

+ag(w x €3) + az(@ x €3) = % +wxa, (B.6)

0 . .
where — is the local partial derivative of vector a that characterizes the time

variation of vector a relative to the moving coordinate system; @ x @ is the
vector characterizing the time variation of vector @ due to rotation of the
coordinate axes.

Let us derive expressions relating the projections w; of the angular velocity
vector w to the angles 91, U2, and ¥3. We take advantage of the relations

€; = l;,€,0, (B.7)

where l;, are the elements of matrix [A.12]; €, are unit vectors of the base
at ¢ = tg. Differentiating with respect to t, we have

Oli,_ _
Otp €p0 = EkjiWj€k. (B.S)
Since
€p0 = lkpék, . (B.9)
after substitution of (B.9) into (B.8) we get
ol;
ekjiwj = —8;—plkp. (B.IU)

Let us find, for example, the expressions for w; making all operations of
summation. Setting j = 1,k = 3,4 = 2(e312 = 1) and summing the right-
hand side of (B.10) over g, we have

ol ol ol
wy = %131 + —8%2132 + 6—2:733- (B.11)
Setting k = 2,4 = 3(e213 = —1), one can write one more expression for

Wi
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Ol Ol32 Ol33
= 5 + == e —— o+ En
which can be used to check the validity of relation (B.11) when a conversion
is made from angles 1, to explicit expressions for I;;.
For example, for the airplane angles final expressions for projections w; of
the angular velocity look like:

— -3, (B.12)

o ovs .
wy = v cos ¥ cos ¥z — Bt sin ¥g;
99, 0V .
_ _ . B.13
wo 5 e sin ¥3; ( )
03 91
w3 = T cos¥y + — e sin ¥, cos 3.

Relations (B.13) can be represented in the vector form

a9
T-1.%
YT MG
cos¥acosdz3 0 —sindy %
where L; = —sin Y3 1 0 ;9 = |Y2|. At small angles ¥,
sin¥acosd¥z 0O cos Ug 93

the components of vector @ are equal to
wp = (9’191/6t, wo = 6192/615, w3z = 8’(93/625
To an accuracy of quantities of the second order of smallness one can assume

89 89
Lig =B

where E is the unit matrix.

B.3 Velocity and acceleration of a point of the rod axial
line

Let us consider basic statements of point kinematics as applied to the problems
of rod dynamics. When moving, every point of the rod axial line has a certain

velocity ¥ that is related to the time derivative of radius vector T (see Fig.
B.1) as
- _ dr(s,¢)

Vector V is directed along the tangent to the trajectory of motion of the axial
line point that is shown by the dashed line. The distinction of the velocity
of the rod element from the material point velocity lies in the fact T and v
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are the functions of two independent variables s and t. For example, if the
coordinate s of point O; of the axial line remains invariable as the rod moves
(does not depend on t), then we have from expression (B.14)

Ot(s,t
oo O
ot
where 8/0¢t is the complete partial derivative.
In the Cartesian system of coordinates

In the bound coordinate system (in the base {€;}), converting to the local
derivative, we obtain

V=_—-+4WXTF, (B.15)

where @(s, t) is the angular velocity vector of rotation of the base {€;}. Since
(see Fig. B.1)

3 3
Tr=Trg+1u (F():Zroﬁj—FZujéj),
then we find from (B.15)
u

V= ——+wxnu.

ot
The accelerations of points of the rod axial line are

d’r _ dv _ 9°F

iz At o
Accordingly, in the Cartesian and bound axes

2F . .

7a = 2 Bl
i=1 (B.16)
9%F

dv = ——4WXV
dt ~ a2 ot ‘

The right-hand side of expression (B.16) in the base {€;} can be represented
as:

dv 51}1 _ 51)2 _
= = | 57 twavz —w3vz €1 + | - w3V —wiv3 | €2+

6t )
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At small vibrations the terms v;jw; can be neglected as quantities of the
second order of smallness, therefore, we get the following expressions for the
components of the acceleration vector of a point of the rod axial line:

d’Ul _ 51)1 dUQ - 5’02. d’l)3 o 51)3

d¢t ot’ dt  o6t’ dt = ot
At small vibrations one can set @ x U = 0, therefore, the components of the
velocity vector ¥ are equal to

é,l_j'_l_- v _5’!1,2 5’1]43.
a’

ot T e

The components of the acceleration vector when expressed through the com-
ponents of the displacement vector have the form

m =

dv; 52u1_ dvg 52112‘ dvs  O%us

dt -~ o2’ At ez’ dt | o2
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Basic equations of rod dynamics

C.1 Nonlinear vector equations of motion of
three-dimensional curvilinear rods

Let us consider the rod element (Fig. C.1a) whose translational velocity is ¥
and the angular velocity of rotation is @. We restrict ourselves to the case
when the axial line of the rod can be considered as unstretchable. In the
general case both constant and variable distributed forces and moments can
act upon the element.

It should be emphasized that such a separation of loads requires additional
explanation, because the loads depend on the chosen coordinate system. For
example, the tracking load (invariable in magnitude) in the bound coordinate
system is constant in time, since its projections do not depend on ¢, while in
the Cartesian coordinate system the load continuously changes its direction
so that its projections depend on t.

When studying the rod motion, the internal force factors (vectors 6(1)

— (1 p— .
and M( )), as well as vectors %, U, V, ¥;, and @ are the functions of two
variables, s and .

The vectors 6(1) and M(l) are, respectively, equal to
Q¥V=qQ,+q M"Y =M, +M,

where Q, and M, are static components of the vector of internal forces and
of the vector of moments, respectively; Q and M are dynamic components of
the same vectors.

If the vibrations of an unloaded rod is considered, then one should assume
60 = Mjp = 0. The static mode of deformation of the rod can be deter-
mined from equilibrium equations whose derivation is presented in Appendix
A, where all explanations to the adopted notation are also given.

In order to derive the equations of rod motion we tale advantage of the
d’Alembert’s principle. Consider the rod element on which the following force
and moment of inertia act (Fig. C.1b):
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Fig. C.1.

= dv _ d . _
dJi = —dma, d,ui = —a—i (Jow) ds, (Cl)
where dm = mg(s)ds; mg(s) = Fg is the mass of unit length of the rod; F is
the area of the rod cross section; p is the rod material density; and

Ji 0 0
Jo(s) = 0 J22 0 (J,'i = QJi)
0 0 J33

(J; are geometrical moments of inertia of the section relative to principal
axes).
The velocity vector is
da
dt’
where W is the vector of displacement of the points of the rod axial line.
For an unstretchable rod the arc coordinate s of a point of the rod axial
line remains unchanged when the rod moves, therefore,

V=

(C.2)
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- ov 0
dJ; = —dm%, 47T, = —— (Jow) ds, (C.3)
da
where v = —u.
Using the d’Alembert’s principle, we get the following vector equations of
rod motion (see Fig. C.1), with allowance made for the inertia of rotation and
for concentrated forces and moments:

(1)
8" 8 i 1
oGy = QS “+ZP(( (s - 51): (C.4)
(1)
o oM v
= (J0@) = 55—+ x Q' +u(1)+§:‘m()(15(s—su) (C.5)

v=1

Changing over to local derivatives in equations (C.4) and (C.5) (see Ap-
pendix A) and omitting the tilde symbol in their notation, we have

_ ()

" (Z—Z e V) L UL ARS (C:6)
— (1)

%(Jow)—ahgs —mz0OxMY —e xqP —m® —o. (C.7)

Here

PY =g+ P (s—s0);

o (C.8)
z = A Zﬁ(u)(l)é (s—s,).

v=1

The force ﬁ(l) and the moment ﬁ(l) introduced for more compact nota-
tion of the equations consist of distributed (q and %) and concentrated (P ©

and 5)7(”)) forces and moments applied to the rod. In turn, they can have
static components independent of time, i.e.,

a<”—ao+a- B =T + 7
poO® _ P +P( ﬁ(v)(l)zﬁ()(V)+ﬁ(V)’

where G, Ty, ?él), and ﬁéy) are static components; and q, T, ?(l), and B
are dynamic components.

Static forces produce the initial static mode of deformation, relative to
which vibrations occur (this is the most general case).

Each specific applied problem requires to study very carefully the forces
that arise under vibrations and depend on the components of vector T and
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. == (1 .
on the angles 9;. For example, the equation connecting vector M( ) with the
increment of vector A% and the equation for the vector of displacements @
(see Appendix A) have the form

MY = A (ﬁ(l) —ﬁél)) = AA®; (C.9)
gl;—+ﬁ(l) xU=(1-1l11)€ —la1€2 — l31€5. (C.10)

Let us write two more equations relating the components of vectors 2 and
w to the angles ¥; (see Appendices A and B):

o9

— =1

== Ll& + Laeé ); (C.11)
oY

w=L—. 12

w=1I ot (C.12)

C.2 Reduction of equations to dimensionless form

Equations (C.6)-(C.11) can be reduced to the dimensionless form:

= = — ~ (1) Aa2(0
T=pot, @=0py, V=vpol, M =M —”331(—),

_ ~1)A33(0) 1) = A33(0) _ ~(1) Az3(0

gt =7 37(), Q" =q 3132(), g =q 3;3(),

@ _gY A3132(O)’ =0 _ %%(1)7

5 Ju(m) & Ai(n) o) 50 A33(0)

w(n) = ,  Au(n) = , W= )
A 3
where pg = ( 3?(25)1)4) ; mp(0), and Fy are the mass of a unit length of the

mo

rod and the section area in the origin of coordinates, respectively; the symbol
”~" here denotes dimensionless quantities.

In an arbitrary section of the rod (changing over to the dimensionless
coordinate n = s/l) one can express the mass of the rod unit length through
my (0)

mo(n) = mo(0)n1(n) = oFoni(n),

where n1(n) is a dimensionless function.

In the dimensionless form we have the following system of differential non-
linear vector equations of the rod motion in the bound coordinate system
(omitting the symbol of tilde in designations of local derivatives and dimen-
sionless quantities):
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(1)
n1(n) (g—g +wxv> o ~=s0xq" PV =0,
(1)

BE(JOG)—(?M —ﬁ(l)XH(l)—él XG(I)_gﬁ(l):O;
T
9 )~ _,
L18_n+L$0 - =0; (C.13)
ou = (1) _ _ — —
.55.4_;9 x U+ (I11 — 1) € + l21€2 + I3183 = 0;
89
L2 5=
Yor w=0;

MY = A (@(U - @él)) = AN,
where Jg is the matrix with dimensionless elements J;;
costtacost¥s 0 —sindds
L, = — sin ;3 1 0 ;
sintdacosvs 0O cos Vs

cos g sin 3 cos 1+ cos Jg sin ¥3 cos 91—

cos ¥, cos ¥ . . .
2 3 + sin ¥, sin % — sin¥9 cos

L= —sinds cos 1 cos ¥3 cos 3 sin

sin ¥, sin Y3 cos ¥ — sin¥q sin Y3 sin +

sin ¥ cos .
2 3 — cos Ug sin + cos g cos

Let us recall that angles ¥; (components of the vector 5) are the angles of
rotation of the base {€;} with respect to the base {€;0}. System of equations

(C.13) includes six unknown vectors: —Q(l), I\_/I_(l), =W 1, @, and (91,792, 93).
The displacements u; can be determined (after finding the vector =W (n,7)
and the angles ¥;(n, 7) from the fourts equation of system (A.13).

C.3 Equations of small vibrations of rods (linear
equations)

Let us derive the vector equations of small vibrations of a rod about its equi-
librium state, assuming that additional internal forces and moments arising
under vibrations are small, as well as displacements «; and angles 9;. We put

QV=q+g MY=M+M
1) — =) + A, a(l) =q,+q; (C.14)
=fo + 1 p =Py +P; CrA =M + W

—~

ax
s
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At small vibrations one can consider the components of dynamic parts of
above vectors to be small, therefore, when deriving equations, we can neglect
their products (both vector and scalar):

wxv=0, Amx Q =0, AZEx M =0, ax A% = 0.

Upon substituting (C.14) into (C.13) and taking into account only the
terms that linearly depend on small quantities, we get the equations of small
vibrations of a rod. In the bound coordinate system the vector equations of
small forced vibrations of a rod have the following form

0’a  0Q = = =
n1(n)ﬂ—%-A%XQo—€BoXQ=P;
23
M
819—8 —A&XM()—&()XM—-el()XQ 9)3 0
0972 ~ o
9 _ C.15
_19+@0X19—AE=0; ( )
on
ou  __ _ _ _
8—+330><11—193e2+192e3=0;
M = AN,
where
?:§+Z_P_()5(77 nz)a
i=1
B b ) (C.16)
R=p+> % 5(m-n)
v=1

The quantities q, 7, ﬁ(l), and ﬁ(u) appearing in the right-hand sides of
expression (C.16) are dynamic loads. When solving equations (C.15), it is more
convenient to represent them in the vector-matrix form, since the vectors 60,
My, and 28, can be determined form equations of equilibrium (see Appendix
A). For example, for the vector products A% x Q, and A% x My one can
write

AB X Qy = AgA®, A% x My = AyAS,

0 Q30 —Q2 0 Mz  —Mayo
where Ag = |—Q30 0 Qu |; Am=|—-Ms 0 Mg
Q2 —Quo 0 My  —Myo 0

In a similar manner we can also derive the expressions for remaining vector
products that appear in system of equations (C.15). After some transforma-
tions, we have
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0’u  0Q —
L S _AQAT - AxQ =
1(7’)8 2 an QLxE ZEQ Pa
9% oM — —
T _AuAT - ApM - =&,

9 — Cc.17
&9 + Axd— A =0; ( )
on
ou —

— + Agxpu+ A9 =0
on
M = AAZ=,
0 —30 X920 0 0 0
where A% = X390 0 —&101 ; A1 =10 0 —1].
—&90 210 0 0 1 0

We can write system of equations (C.17) in the form of a single vector
equation (excluding AZ):

0?Z 97 _
AV L Z L APDZ=3 18
Z o T (C.18)
Q -P 0 0 0 —mE
where Z = 1\_/1 ;P = - . A = 0o 0 —-J 0 ,
v 0 00 0 0
u 0 00 0 0
Az AgA™! 0 0
and A® = |A1 (AMAT +Az) —J 0
0 ~-A~! Az 0
0 0 ‘A1 A%

C.4 Equations of small vibrations in projections onto
bound axes

From relations (C.17) we derive the following equations in projections onto
bound axes:

o2 0 )
711—u21 9 + Qaolee3 — Qzolae+
or on
, +eez0Q2 — ®20Q3 = Py;
0%ug  0Q2
MFE T By + Q30l & — Qrolees+ (C.19)
, +e10Q3 — ®30Q1 = P
7] 0
m?u; - —;%3 + Quoley — Qrol 1+

+a@20Q1 — ®10Q2 = P3;
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0*9, oM, )
Juw oy o0 M3 + 30 M2—
_ —Mso Ay + MaoAaez = My
0%9, OM,
9v2 972 M Mae
T2 972 an se3p M1 + &e10M3 f (C.20)
B —MioAews + MzpAeer + Q3 = My;
0%93 OM;
gvs 98 oM Mi—
J33 572 gy 0 2 + se20 M
—MyoAe; + MigAsey — Q2 = NMs; |

oY
—1 + &20’193 — 3330192 — A%l = 0;

% + 3011 — ®1093 — Asey = 0 (C.21)
o9
-3 + 1002 — &g — Aeesg = 0;

on
8U1

—— + segouz — ®3ouz = 0

on
S + @3ou1 — ®10uz — Y3 = 0; (C.22)

ou
== 4 ®ous — oy + ¥ = 0;

on
M1 = Alle“‘dl; M2 = A22Ao“32; M3 = A33A2P,3. (023)

Putting P; = ®; = 0 (j = 1,2,3) in expressions (C.19) and (C.20),
we obtain the equations of free vibrations of a curvilinear rod relative to its
equilibrium state for the case when the rod is loaded with static tracking
forces, i.e., @jo # 0 and Mo # 0.

C.5 Equations of small vibrations of a rod whose axial
line in the unloaded state is a plane curve

A special case of system (C.18) - (C.22)

Figure 1.95 shows a spiral spring whose axial line in its natural state is
a plane curve. If the spring were deflected in the plane of drawing x,Ouxo,
it would execute small vibrations in the plane of drawing. If it is deflected
with respect to this plane, small three-dimensional vibrations take place. For
example, let a spiral (the flexible element of an instrument) be on an object
moving with acceleration (the object acceleration a is parallel to the plane
210x2). Then, the distributed forces of inertia act upon the spiral in the
plane of drawing. If the axial line of the rod remains to be a plane curve in
the loaded state, then we should put in equations (C.19) - (C.23)
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Qo #0, Q20#0, Q30=0;
Mg = M2 =0, Mjzo#0;
10 = a2 =0, @39 #0.
Considering that the rod axial line becomes a three-dimensional curve,

from (C.19) - (C.23) we get the following equations of forced vibrations of the
plane curvilinear rod

82U1 6@1
152 an + Q0 &s + 230Q2 = Pi;
0Puy 8
nlBT; 66372 — Qrolees + 230Q1 = Pa;
6 u 0
157 23 6Q3 + Quol®s + Q2 = Ps;
029, oM,
Jua—; T on + @30 Mz — MzoAeey = My;
n
0%9, OM:
Jaa a7 22 - _8_2 — @30M1 + MzoAeer + Q3 = My;
n
0?93  OM.
J336—23 - 52— Qo = Ms;
4 on (C.24)
)
a—l— - &30’(92 — AEEl =0
on
)
?—'2 + @30t — Ay = 0;
on
1o00;
5773 — AEE?, = 0;
Ou
_8?1 — ee3oug = 0;
0
e + segou; — V3 = 0;
on
8U3
—— +09,=0
87’] + Vs )

where M1 = AuAéEl; M2 = AQQA?EQ, and M3 = A33A333.

If at arising vibrations the line does not leave the plane z;Ox, then one
should put Qj = 0, M1 = Mg = 0, 191 = 192 = 0, A%l = A%Q =
0, u; =0, P;=0,and M =My =0 in equations (C.24). As a result, we
have
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0? 7]

nl—‘};—l _ % + Q2023 + 230Q2 = Pr;
or 87]
0? 0

nl_a‘% - ;22 Qrolees — &30Q1 = P
8293 OM;

J33W - 6—77 _Q2 _sm37

o

—57—73’- — Az = 0

ou

8_771 -~ &g3ouz = 0;

—8—% + &3qu; — Y3 = 0.

on

(C.25)

By analogy with the general case one can present systems of equations

(C.24), (C.25) in the form of one vector equation

+A<3>z b.

8

872

(C.26)

When free and forced vibrations the plane z;0z2 of a rod unloaded with
static forces are studied one should set Q19 = Q20 = M3¢ = 0 in equations

(C.25).
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Exact numerical method of determining the
frequencies and modes of rod vibrations

In Appendix C we derived the vector equation of small free vibrations of a
three-dimensional curvilinear rod without taking the drag forces into account.
At & = 0 we have

0’7 0Z = — — — T
n-_= @7 — - i
ANTS 45, +APZ=0 (Z-@M3,a"). (D.1)
We seek the solution to equation (D.1) in the form
Z(r,m) = Zo(n)e™", (D.2)
or
Q(r,m) = Qu(m)e™™, M(r,n) = Mo(n)e; (D3)
B(r,m) = Fo(me,  u(r,m) = To(n)e". '
After substitution of (D.2) into (D.1) we get \
dZ, =
==+ B(n,\)Zy =0, (D.4)
dn
Axp .A.Q.A.—1 0 )\2n1E
-1 2
where B(n, ) = A (AnA T +HAx) N 0
—A-! Ax 0
0 0 A,y Az

D.1 Determination of eigen values (frequencies)

Specifying the value of A(1), we find (numerically) the solution to equation
(D.4):
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Zo = K[, \(1)]C (K(o) - E) (D.5)

where K|[n, A(1)] is the fundamental matrix of solutions of a homogeneous
equation.

In order to find the fundamental matrix K(n) one should solve equation
(D.4) twelve times with the following initial conditions

1 0 0
0 1 0

Z =1, z2=|"1,....z2"? = (D.6)
0 0 1

One can refine matrix K(7) using the Picard method. The matrix K(n)
satisfies the following equation

dK

dK | BK = D7
a t 0, (D.7)
From (D.7) we find
7
K@ () = — / BK®(h)dh + B, (D.8)
0

where K ()(n) is the fundamental matrix obtained as the result of solving
equation (D.7) at initial conditions (D.6) (first approximation).

For homogeneous boundary conditions six component of the vector C are
equal to zero, since at n = 0 six components of the vector Z, are zero. For
example, at n = 0 (rigid fastening) ¥o(0) = 0, and Wp(0) = 0. In this case,
¢y = cg = ... = ci2 = 0. The remaining six components of the vector C can
be found from six boundary conditions at n = 1:

k‘i]‘(l)cj‘ =0. (Dg)

6
=1

j
Depending on particular boundary conditions, the indices 7 and j assume
six different values. For example, if the right end of the rod (n = 1) is free
(6(1) =M() = O), then the indices 4 and 7, in accordance with the indices of

components of the vector Zg, assume the values i = 1,2,. .., 6;,j=12,...,6,
i.e., system (D.9) takes on the form

kllcl -+ k1262 + ...+ leCS = 0,
e e e e e e (D.lO)
keic1 + keaca + ... + keggce = 0.
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In order that the solution to system (D.10) would be nonzero, it is necessary
to have its determinant zero, i.e.,

D(1) = 0. (D.11)

Solving equation (D.11) for a number of values of A, we find (numerically)
such \; for which the determinant D(1) can be considered zero with a preset
degree of accuracy. These values of \; are dimensionless frequencies of rod
vibrations. It should be emphasized that for three-dimensional curvilinear
rods the type of fastening can be highly variable, i.e., the determinant D(1)
can be obtained for very different combinations of matrix elements K(1, Ag).
However, it is always sufficient to have only six columns of matrix K(n, \x) in
order to find the determinant D(1), which considerably reduces the computing
time when frequencies are determined.

Fig. D.1.

Under vibrations of the rod, for example, in the plane x10z2, we derive
the equation similar to (D.4):

Zy+BZy =0, (D.12)
where
0 —&e3p —Q20/Ass 0 niA2 0 Q1o
30 0 Q10/Ass3 0 0 ny A2 Q20
B— 0 1 0 J33)\2 0 0 : zo _ M3,
0 0 —1/Az3 0 0 0 Y30
0 0 0 0 0 —a&30 UlO
i 0 0 0 -1 230 0 | _UQOJ
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The solution to equation (D.12)
Zo = K(n)C (D.13)

should meet six boundary conditions (three boundary conditions at each end
of the rod). For a rod fixed as it is shown in Fig. D.1, we have

n=0, up=uxp=0, J3=0;
for n=1, Mz =0, Qio=Q20=0.
Since for n = 0 matrix K(7) is the unit matrix, three components of the

vector C (¢4, cs,ce) are equal to zero. From the boundary conditions at n = 1,
we obtain three equations:

ki1c1 + kigce + kizez = 0;
kaicy + kaaco + kozez = 05 (D.14)
ksic1 + ksaco + kazez = 0.

Equating the determinant of system (D.14) to zero,

|k k2 ks
D =|ka koo ka|=0,
k31 ksz ka3

one can find the equation for calculating the frequencies ;.

D.2 Determination of eigen functions for conservative
problems

Knowing the frequencies \; and using equations (D.12), one can determine

corresponding eigen vectors Zéj):

4z
dn

+Bm,\)ZY = 0. (D.15)

From equation (D.15) we have
z,” =K(n.1,)CT”, (D.16)

where K (7, A;) is the fundamental matrix of solutions for the eigen value A;.

The numerical method of determination of the fundamental matrix is de-
scribed in Appendix D.1. For example, for a cantilever rod c7(] = cq’ -
cl(g) =0, while cl(j ) , cQ(J ), cen, céj ) are not equal to zero and enter as unknowns
into the system of homogeneous equations
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ki1 (L, A)el? + kia(L, A7 )es” +...+k16(1,,\j)c6<j) —0;
k1 (1, A)c? + kea(1,A)es” + ... + kes(1, 4;)ed? = 0.

We express c(J), G ), . .,cs(j) in system (D.17) through céj):

C]Ej) =5kcéj) (k=1,2,...,5).

The arbitrary multiplier céj ) can be assumed to be equal to unity. Having

determined €% from equation (D.16), we obtain the eigen vector
Zéj) =K@, )‘j) C(Ej)’

where Eéj) = 81, B2, B3, Ba, Bs, 1]

The components ZO(?)./ ce Zo(fg of the vector Zéj) are equal to

ZO(;) - 19(%)7 Z 19(5% ’ ZO "9(%)’

Zoo=uels Zgh =uqds Zoh=ug,
and are called the modes of rod vibrations. The components Zo(lj ), .. ZO(J )
characterize the variation with 7 of amplitudes of the components of vec-
tors _—éj) and Méj) under rod vibrations for every frequency A;. For further
transformations, it is convenient to represent eigen vectors in the form

_y [a®
where ) = | 0 }

The vectors 1/) and %) characterize the stressed and deformed states
of the rod, respectively. Such a representation of eigen vectors is convenient
at solving the problems of rod dynamics approximately.

<l
—_—
gl 3l
SO~
. .
> 2



E

Approximate numerical determination of
frequencies at small vibrations of rods

An exact numerical method of determination of the frequencies and of the
modes of rod vibrations corresponding to them is described in Appendix D
for conservative problems. One of the most efficient approximate methods
is based on the fundamental principle of mechanics, the principle of virtual
displacements.

Consider a homogeneous system of equations of free vibrations similar to
system (C.15) (see Appendix C):

— oa  9Q - —

L, :nl(n)a—2 =% ~AQATM - AxQ =0; (E.1)
= %9 oM i — —

Ls = g—: +Axpd—-ATM =0 (E.3)

Let us represent system (E.1) -(E.4) in the form of a single equation (see
Appendix C):

L:A(l)_+__+A(2)Z:O, (E.5)
T n
where Z = (Q,M,9,1)
In Appendix D we described a method of determining the eigen vectors
—Z_é]). They can be written as

) — ()
70 _ ¢
ZO - I:G(])} ) (E6)

where vector ¥ @) characterizes the coordinate variations of amplitude values

of the components of vectors _éj) and Méj), and vector ) characterizes
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variations of amplitude values of the components of vectors 19(1) and U —(’ )

(modes of vibrations) under vibrations of the rod with the frequency ;. In

()

turn, each vector ¥~ and %) can be represented in the form

. —(3) — ()
—G _ |¥e _ay_ |Ps
11’ ! = — () ) (P(J) = NOIE (E7)
Uy Pu
where Eg) = Gé ; M M(J) 7 =99, 70 =l

For approximate solution of equatlon (E. 5) one should first determine the

vector coordinate functions zo(j)(n) satisfying the boundary conditions of the
problem. As such functions one can take eigen vectors of free vibrations of an
unloaded rod of constant section without taking the inertia of rotation of rod
elements into account. For example, for determination of ZO(J) one can use the
following simpler system

o*u BQ

872 377 - AxQ=0; (E.8)
On

99 + Axd — A"M = 0; (E.10)
on

ou —

(for a rod of constant section n; = 1 and Asz = 1). Solving this system
numerically one can determine the vector functions

—- (1) —(#) — ()

=@ _ ¥ —@ _ |¥Q oy _ | P

ZOZ = N = —@ | ‘P() al ON I (E.12)
M

Z=3 £(NZ ), (E.13)

where f;(7) is a continuous function of time. We restrict ourselves to two-term
approximation

7 = 1iZ" + £,Z07. (E.14)
Substituting (E.14) into equation (E.5) we obtain

L(Z) =7, (E.15)
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where vector ¥ characterizes the error due to approximate computation of
vector Z accordlng to formula (E.14).

Initial system of equations (E.1) -(E.4) has two ’physical’ equations ((El)

and (EZ)) and two ’geometrical’ equations ((E3) and (E4)) Dimensions

of terms in these equations are different, therefore, the first six components
of the vector Z(Q;, M;) (j = 1,2,3) have dimensions of distributed forces
and distributed moments, while the remaining six components (¥;,u;) have
dimensions of angular and linear displacements. As a generalized displacement
6Zo in the vector form we take the functions proportional to vector functions

Z( 2 and satisfying all boundary conditions of the problem:
0Z) = o0 BoZy";  0ZY = 6b,E0Z”. (E.16)
Then under two-term approximation
R ALY (2) (2)
0Zo = (SZO + (SZ = 5b1E0Z0 + (SbQE()ZO (E17)

where 0b; are independent arbitrary quantities;

— ()
0 0 0 E d
0o 0 E o =0 [|M? oo

Eo = ; Z0= Mol E= o 1 o], (Bag)
E 0 0 0 AL

Here, one can use as generalized and virtual displacements not only vari-
ations of linear (0u) and angular (519) displacements, but also variations of
internal forces 5Q and moments 6M.

The matrix Ey is introduced in order that all scalar products

Z Bz, Z - Ez®,.... 7 - BZ™

have the dimension of work (in accordance with the principle of virtual dis-
placements). Since

'ag”
A A
EOZO = M(z) 3
0
= (i)
0

then

Z-EZ” =Q.- 1 +M. 3 19 M +7.-Q, (E.19)
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i.e., all terms in the right-hand side of (E.19) have the dimension of work.
Substituting into equation (E.15) expression (E.14) for the vector Z, we get

AVZV [+ AVZ 4+ (B2 + ADZ7) fit (E.20)
+(BiZ " + AQZ?) =7, (E.21)

where E; is a (12 x 12) matrix and 7 # 0.
We require that the integral of vector 7 on virtual generalized displace-
ments taken along the entire rod length should be equal to zero, i.e.,

1
/ 56Zdn = 0, (E.22)
0

or, under a two-term approximation,

1 1
0 0

Since 6b; are independent, it follows from equation (E.23) that

('y EoZé1)> dn = 0; (E.24)

(7 . EOZE”) dn = 0. (E.25)

o— O\H

After transformations we obtain two equations for f; and f22:

anfi + a2 fa+enfr +crafa = 0; (E.26)
an1f1 + azafo + e fi + caaf2 =0, (E.27)

where
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l l
a11=/(A(l>—Z—(§ EOZ(U d’?; a2 / A(l)z(§2) .EO-Zél)>d
O 0
1
C11 :/( I(l +A(2)Z ) E(]ZO d’l’],
0
1
c12=/(z/(2)+A(2)Z ) Eozél)dﬂ,
0
1 1
a2 :/<A(1)7 EOZ(Q) dna Q22 / DZé EOZ )d’l’],
0 0
1
c21:/(z’(1)+A<2>z“’) EoZ " dn;
0
1
Co2 = / <Zé(2) +A(2)Z(2)) 'EOZéQ)dW
0

Putting f1 = fi0e"™ and fy = fa0e'*", one can find from (E.26) the charac-
teristic equation for determination of frequencies ;.
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Approximate solution of equation of rod forced
vibrations

Under forced vibrations of the rod we have without taking the forces of viscous

drag into account (see equation (C.19))
- 1 0°Z BZ = =
L=AC APZ-b=0. .
R B Z 0 (F.1)

In the case when the forces of viscous drag are taken into account the equation
of rod forced vibrations takes on the following form:

- _ _
=A)7 —+AY —+ —+ A¥YZ b= F.2
L 192 + or + on + 0 (F.2)
Here
P(r,n) 1 0 0 B®

5 |Brm|. A®_ |0 0 B® 0

0 0 0 0 0

0 0 O 0 0

Equation (F.2) includes the forces and moments of viscous drag that can be
represented in the dimensionless form of notation:

fi=BO g‘; f2=B<2>g—f;
where
D0 0 @ 0 0
BO=|0 by of; B@=|0 b3 o0
0 0 by 0o o0 bP

We seek the solution to equations (F.1) and (F.2) in the form
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Z=3 0Nz
j=1

Taking advantage of the principle of virtual displacements (see Appendix E),
we obtain under a two-term approximation

ajifi + ajafo+ciifi +cjofa =b; (1=12), (F.3)
1 1 1
where bj:/(B‘EOZéj)> dn:/(ﬁ-ﬁ)dn-}—/(ﬁ'g)dn.
0 )

0
Solving numerically system of equations (F.3), one can find the approxi-
mate solution to the equations of small forced vibrations of form (F.1) and
(F.2).



Foundations of Engineering Mechanics

Series Editors:

Vladimir I. Babitsky, Loughborough University

Jens Wittenburg, Karlsruhe University

Further volumes of this series can be found on our homepage: springeronline.com

Landa,P.S.
Regular and Chaotic Oscillations, 2001
ISBN 3-540-41001-5

Muravskii, G.

Mechanics of Non-Homogeneous and
Anisotropic Foundations 2001

ISBN 3-540-41631-5

Babitsky, V. I., Krupenin, V. L.
Vibration of Strongly Nonlinear
Discontinuous Systems, 2001
ISBN 3-540-41447-9

Gorshkov, A. G., Tarlakovsky, D. V.,
Transient Aerohydroelasticity

of Spherical Bodies, 2001

ISBN 3-540-42151-3

Lurie, A. L.
Analytical Mechanics, 2002
ISBN 3-540-42982-4

Manevitch, L. L., Andrianov, I. V.,
Oshmyan, V. G.

Mechanics of Periodically Heterogeneous
Structures, 2002

ISBN 3-540-41630-7

Slepyan, L. L.

Models and Phenomena in Fracture
Mechanics, 2002

ISBN 3-540-43767-3

Nagaev,R.F.
Dynamics of Synchronising Systems, 2003
ISBN 3-540-44195-6

Svetlitsky, V. A.

Statistical Dynamics and Reliability
Theory for Mechanical Structures, 2003
ISBN 3-540-44297-9

Neimark, J. I.

Mathematical Models in Natural Science
and Engineering, 2003

ISBN 3-540-43680-4

Babitsky, V. Shipilov, A.
Resonant Robotic Systems, 2003
ISBN 3-540-00334-7

Le xuan Anh

Dynamics of Mechanical Systems with
Coulomb Friction, 2003

ISBN 3-540-00654-0

Perelmuter, A., Slivker, V. L.
Numerical Structural Analysis, 2003
ISBN 3-540-00628-1

Andrianov, 1. V., Awrejcewicz, J.,
Manevitch, L. I. (Eds.)

Asymptotical Mechanics of Thin-Walled
Structures, 2004

ISBN 3-540-40876-2

Shorr, B.F.
The Wave Finite Element Method, 2004
ISBN 3-540-41638-2

Ginevsky, A., Vlasov, Y. V,, Karasov, R. K.
Acoustic Control of Turbulent Jets, 2004
ISBN 3-540-20143-2

Svetlitsky, V. A.
Engineering Vibration Analysis 1, 2004
ISBN 3-540-20658-2

Svetlitsky, V. A.
Engineering Vibration Analysis 2, 2004
ISBN 3-540-20782-1

Kolpakov, A. G.
Stressed Composite Structures, 2004
ISBN 3-540-40790-1





