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Preface 

Constantly increasing attention is paid in the course 'Vibration 'Theory' to 
vibration of mechanical systems with distributed parameters, since the real 
elements of machines, devices, and constructions are made of materials that 
are not perfectly rigid. 'Therefore, vibrations of the objects including, for ex­
ample, rod elastic elements excite the vibrations of these elements, which can 
produce a substantial effect on dynamic characteristics of moving objects and 
on readings of instruments. 

For a mechanical engineer working in the field of design of new technolo­
gies the principal thing is his know-how in developing the sophisticated math­
ematical models in which all specific features of operation of the objects under 
design in real conditions are meticulously taken into account. So, the main 
emphasis in this book is made on the methods of derivation of equations and 
on the algorithms of solving them (exactly or approximately) taking into con­
sideration all features of actual behavior of the forces acting upon elastic rod 
elements. 

'The eigen value and eigen vector problems are considered at vibrations of 
curvilinear rods (including the rods with concentrated masses). Also consid­
ered are the problems with forced vibrations. When investigating into these 
problems an approximate method of numerical solution of the systems of lin­
ear differential equations in partial derivatives is described, which uses the 
principle of virtual displacements. 

Some problems are more complicated than others and can be used for 
practical works of students and their graduation theses. 

'To facilitate the solution of these problems, the book includes Appendices 
containing the concise description of the foundations of rod mechanics (static 
and dynamic). 'The Appendices are useful not only for solving the problems 
presented. 'They can also be used when the problems concerning the dynamics 
of spatially curvilinear rods are solved. 'The conditions of these problems can 
be formulated by an instructor at practical lessons. 

Answers to some problems contain short descriptions of solution algo­
rithms without numerical results. Students should continue these solutions 
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by themselves using computer methods. This must promote the deeper un­
derstanding of the vibration theory and the better experience in program­
ming while solving nonstandard problems, when no ready library programs 
are available. 

In preparation of the manuscript the author has used the manuals and 
lecture courses prepared by him at the 'Applied Mechanics' chair in the Bau­
man Technical University (Moscow, Russia). The monograph is intended for 
use by students, postgraduates, and lecturers of engineering universities. It 
can be also useful for mechanical engineers whose practical work is connected 
with the vibration theory. 

Moscow, September, 2003 Valery A.Svetlitsky 
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torsional stiffness of rod; 
bending stiffness of rod relative to y (or x2) axis; 
bending stiffness of rod relative to x (or x3) axis; 
stiffness coefficient; 
modulus of elasticity of the first kind; 
cross section area; 
disturbing force; 
modulus of elasticity of the second kind; 
Heaviside function; 
geometrical features of rod cross section; 
Krylov function; 
stiffness coefficient of elastic base; 
torsional and two bending momenta; 
components of concentrated force in 
a related coordinate system; 
components of concentrated force in 
a Cartesian coordinate system; 
eigenfrequency (natural frequency) of vibration; 
axial and two cutting forces; 
components of a distributed load in; 
a related coordinate system; 
components of a distributed load in; 
a Cartesian coordinate system; 
kinetic energy; 
coefficient of viscous friction; 
logarithmic decrement of damping; 
Dirac delta function; 
dynamic viscosity coefficient; 
potential energy; 
density of material; 
angular displacement; 
angular velocity; 
frequency of free vibrations; 
components of concentrated moment in 
a related coordinate system; 
components of concentrated moment in 
a Cartesian coordinate system. 
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Problems and Examples 

1.1 Vibrations of Perfectly Flexible Rods 

1 Derive the differential equation of small vibrations of a string (Fig. 1.1) 
subject to the action of a distributed load (q is the load per unit length). The 
tension of the string is Q10, and its mass per unit length is m 0 (when deriving 
the equation, assume that the tension Q10 remains constant). 

'!(z,t) 

z 

!/ 

Fig. 1.1. 

2 Determine the frequencies of free vibrations of a string (Fig. 1.2) and the 
velocity of propagation of its transverse displacements (the gravity force of the 
string should be disregarded) . Use the following numerical values: l = 0.5 m, 
Q10 = 30 N, the string diameter d = 1 mm, and the material (steel) density 
(} = 7800 kgjm3 . 

3 A heavy homogeneous filament of length l is fixed at the point 0 (Fig. 1.3) 
and is under the action of the force of gravity in the equilibrium vertical 
position. The mass of a unit length of the filament is m 0 . 
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Fig. 1.3. Fig. 1.4. 

Derive the differential equation of small free vibrations of the filament with 
respect to its vertical equilibrium position and determine the frequencies of 
natural vibrations. 

4 Derive the differential equation of small vibrations and calculate the first 
frequency of vibrations for a heavy filament with a weight at its end (Fig. 1.4). 
The weight mass is m, and the mass of a unit length of the filament is m0 so 
that m =mol. 

5 A heavy homogeneous filament of length l is fixed at the point 0 between 
two vertical planes (Fig. 1.5). Both the filament and the planes rotate about 
the vertical axis with a constant angular velocity w. 

Derive the differential equation of small free vibrations with respect to 
the vertical equilibrium position and determine the frequencies of filament 
vibrations as a function of the angular velocity w. Establish the least possible 
value of the critical angular velocity. The mass of a unit length of the filament 
is mo . 
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Fig. 1.5. Fig. 1.7. 

6 Det ermine the first two frequencies of natural transverse vibrations of a 
string (Fig. 1.6) whose mass (mass of the string unit length) varies according 
to the law 

. 'ffZ 
m = mo +m1smT. 

Assume that, under vibrations, the string tension Q10 remains practically 
unchanged. 

7 Determine the lowest frequency of transverse vibrations of a string (Fig. 1. 7) 
whose mass varies (along the string length) as 

. 7rZ 
m = mo + m1 sm z;· 

8 A filament fixed at the point 0 is on a rotating disk (Fig. 1.8). Derive 
the differential equation of small transverse vibrations of the filament with 
respect to the equilibrium position, under which the filament has a rectilinear 
form. 

9 Derive the differential equation of small transverse vibrations of a string 
lying on a flexible inertialess base (Fig. 1.9) and determine the frequencies of 
natural vibrations. The string tension is Q10 and the mass of a unit length of 
the filament is m 0 . When the string is displaced from its equilibrium position, 
it is under the action of a restoring force proportional to this displacement. 
The proportionality coefficient is k . 

10 At the initial moment, the deviation of a string (Fig. 1.10) has the form 

y = y0 sin T , and all velocities are zero. The string tension is Q10. Determine 

the string deviations in subsequent time instants. 
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Fig. 1.8. 
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Fig. 1.9. 
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Fig. 1.10. 

11 Derive the differential equation of small transverse vibrations of a branch 
of a flexible gearing (Fig. 1.11). Determine the vibration frequencies , eigen 
functions, and the critical velocity w of motion in the general case and for 
a particular case when the velocity of motion of the flexible gearing is w = 
16 m/s, the gearing length is l = 0.6 m, the mass of a unit length of the flexible 
gearing is mo = 0.3 kgjm, the cross section area of the flexible gearing is F = 2 
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cm2, and the initial tensions of the gearing branches are Q10 = Fa10 = 800 N 
and Q2o = 400 N. 

!J l 

Fig. 1.11. 

12 Find the velocities of propagation of perturbation waves along the 
branches of the flexible gearing (see Problem 11) and determine the velocity 
of motion of this gearing, under which the perturbations do not propagate 
against the gearing motion. 

13 Investigate the stability of transverse vibrations of the branches of an 
operating flexible gearing under a steady-state regime of vibrations of the 
gearing blocks (Fig. 1.12). The mass of a unit length of the flexible gearing 
is m0 = 0.3 kg/ m, the gearing length is l = 0.6 m, and its cross section area 
is 2 cm2. Under steady-state vibrations of the blocks, the full tensions in the 
branches vary according to the following law (see solution to Problem 11) 

where aw = 4 MPa; a2o = 2 MPa; La1 = 1.95 MPa; 6a2 = 1.86 MPa; and 
w = 88 s-1 . 

The velocity of motion of the flexible gearing is w = 16 m/s. 

14 Figure 1.13a presents schematically an operating belt conveyer with a 
nonuniformly distributed weight. The tension of the working branch of the 
conveyer is Q 10 (the conveyer branch can be considered as a belt with zero 
bending stiffness) . In a coordinate system fixed to the conveyer belt (in the 
coordinate system y1, z1 moving with the velocity w) the distribution of the 
lading mass misdescribed by the following equation (1.13b) 

. 21rz1 
m = mo + m1 sm -h- (m « mo). 

The mass of the belt unit length is m2. 
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Fig. 1.12. 

Set up the differential equation of vibrations of a driving branch of the 
conveyer and examine (approximately) the stability of small vibrations. The 
numerical values are as follows: Qw = 2 kN, mo = 20 kg/m, m1 = 2 kg/m, 
m2 = 1.2 kg/m, l = 2.025 m, h = 0.45 m, and w = 2 mfs. 

z 

Fig. 1.13. 

15 A perfectly incompressible fluid flows along a perfectly flexible vertical 
pipe (Fig. 1.14). The pipe is fixed at the points A and B, and pulled with the 
tension Q10 . The fluid velocity w along the height of the pipe and the fluid 
pressure p on the segment AB can be assumed constant. The mass of a unit 
length of the pipe is m1 and the mass of fluid per a pipe unit length is m2. 
The area of the inner cross section of the pipe is F. Determine the frequencies 
of free vibrations of the pipe. 
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Fig. 1.14. Fig. 1.15. 

16 A perfectly incompressible fluid flows inside a flexible vertical hanging 
pipe (Fig. 1.15) with the velocity w. The mass of a unit length of the pipe is 
m 1 ; the fluid mass per a pipe unit length is m 2 . Neglect the fluid pressure. 

Set up the differential equation of small transverse vibrations of the pipe 
with respect to the vertical equilibrium position. 

17 Determine the velocities of propagation of perturbations in the pipe (see 
Fig. 1.14) and the fluid flow velocity, at which perturbations do not propagate 
against the fluid flow. 

18 Under transverse vibrations, a string is deformed (extended), which results 
in a change of its initial tension. It is a usual practice to neglect this additional 
tension when the equation of string vibrations is derived. However, the error 
in determining the frequencies of free vibrations remains unclear in this case. 

Determine the lowest frequency of free vibrations of a string (Fig. 1.10) 
taking its extensibility into account and find the error that results from ne­
glecting the string extensibility. The area of the string cross section is F, and 
the Young's modulus of the first kind is E. The initial tension of the string is 
Qw. 

19 A steel string is placed between the poles Nand Sofa permanent magnet 
(Fig. 1.16). The string tension is Qw, the mass of a unit length is mo. The 
attraction force of the magnet when the string is displaced from its neutral 
position (the force acting upon a unit length of the string) is equal to 
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s 

z 

Fig. 1.16. Fig. 1.17. 

Assuming the string displacement to be small (y « h), derive the differ­
ential equation of small transverse vibrations of the string and determine the 
frequencies of its free vibrations (see solution to Problem 107 in Part I). 

20 Derive the differential equation of small transverse vibrations of a string 
in a magnetic field and investigate approximately their stability (Problem 19), 
if k1cl>6 =au+ a12 sinwt (the magnetic field is time-variable). The numerical 
values of the problem are as follows: Q10 = 160 N, m 0 = 6 ·10-3 kg/ m, l = 0.1 
m, a= 10 mm, au= 0.008 Njm, a 12 = 0.004 Nj m, and w = 5000 s- 1. 

21 A tightened string 1 (Fig. 1.17) carries the constant current ! 0 and is 
subjected to the action of a magnetic field generated by another, infinitely 
long stiff cord 2 that carries the current h =Ito sinwt. 

The string remains practically rectilinear due to its large bending stiffness. 
The force of attraction of the string 1 by the cord 2 (acting upon a unit length 
of the string) is equal to 

2ftlok 
q--­

- (a - y)' 

where y is the string displacement under vibrations. The string tension is Q10 

and the mass of the string unit length is m 0 . 

Derive the differential equation of small vibrations of the string. 

22 At the instant t = 0 a constant force Po suddenly acts upon a string 
(Fig. 1.18) at a distance lo from the left support. The string tension is Q10 

and the mass of a unit length is mo. 
Derive the expression for a transverse displacement of the string at the 

point of the force Po application as a function of time. 

23 The point-like load Po moves with the constant velocity v along a string 
lying on a linear inertialess flexible base (Fig. 1.19). The stiffness of the base 
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Fig. 1.18. Fig. 1.19. 

is k, the string tension is Q10 , and the mass of a unit length is m 0 . At the 
initial instant, the load is above the left support. 

Determine the string bending deflection as a function of the velocity of 
motion of the load. 

24 Figure 1.20 presents schematically a moving electric locomotive whose 
current collector is pressed with a constant force to a tightened wire and 
slides along the wire with the constant velocity v when the electric locomotive 
moves. At the initial instant the current collector is at the point 0 where the 
wire is fastened. 

Investigate the vibrations of the wire (string), assuming that under vibra­
tions the force pressing the current collector to the wire remains practically 
constant and is equal to Po. The force of the wire tension is Qw and the mass 
of a unit length is mo. 

Fig. 1.20. 

25 Figure 1.21 shows schematically a segment of an overhead ropeway with 
a load of mass M that moves with the constant velocity v. The cable tension 
is Q10 and the mass of its unit length is mo . At the initial moment, the load 
is above the left support. 

Derive the differential equation of small transverse vibrations of the cable 
(string). 
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Fig. 1.21. 

26 Determine the vertical displacement of the load with mass M (see Problem 
25) in a particular case when one can neglect the force of inertia M Yo in 
comparison to the gravity force Mg. 

!I 
J 
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l 

Fig. 1.22. 

27 The string has two segments. The masses of unit lengths of the first and 
the second segments are mw and m2o, respectively. The force of the string 
tension is Qw. Set up the equation for determining the frequencies of small 
vibrations of the string using the method of initial parameters and determine 
the forms of string vibrations. Solve the problem for the case, when at the 
instant t = 0 a momentum J(zx = h) acts upon the string at the point K 
(Fig. 1.22). 

28 Derive the equation for determining the frequencies of string vibrations 
taking the point-like mass M (Fig. 1.23) into account. To this end, take ad­
vantage of (1) the method of initial parameters and (2) approximate method 
with only one term retained (determine the first frequency). 
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Fig. 1.23. 

29 Derive the equation for determining the frequencies of string vibrations 
taking the concentrated (not point-like) mass (Fig. 1.24) into account. The 
moment of inertia of the mass M relative to the axis perpendicular to the 
plane of drawing and passing through the point K (center of mass) is equal 
to JK(JK = gMr2 ). Neglect the gravity force of mass M. 

!J 

z 

t 

Fig. 1.24. 

30 Before applying the concentrated axial 'dead' force Po (Fig. 1.25) the 
force of string tension was Qw. Determine the frequencies of string vibrations 
as a function of P0 . The area F of string cross-section and the Young modulus 
E are specified. 

31 The point of the axial line with the coordinate ZK has a forced vertical 
displacement YK = YKo coswt (Fig. 1.26). Determine the amplitudes of steady­
state vibrations of the string. The force of string tension is Qw. 

32 Figure 1.27 demonstrates a belt moving with the velocity w and a con­
centrated mass M placed upon it at a distance of h. The mass is free to move 
in the vertical direction when the belt vibrates. Determine the frequencies 
of belt vibrations, restricting to a two-term approximation. The force of belt 
tension is Qw. 



Fig. 1.26. 
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Fig. 1.27. 

33 Set up an algorithm for determination of exact values of frequencies for 
the conditions of Problem 32. 

34 A string has two segments (Fig. 1.28). The masses of unit lengths are 
equal to mo1 and mo2 for the first and second segments, respectively. The force 
of string tension is Q10 . Determine the amplitude of steady-state vibrations of 
the string under the action of the force P(t) =Po coswt at the point K. When 
solving approximately, take advantage of the Galerkin method, restricting to 
a single-term approximation. 
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Fig. 1.28. 

35 Determine by an approximate method (with restriction to a two-term 
approximation) the amplitudes of steady-state vibrations of the string under 
the action of the force P(t) =Po coswt at the points K 1 and K 2 (Fig. 1.29). 
The unit length of the string is mo and the tension force is Q10 . A spring with 
force c is installed at the point K 1 . 

K1 K2 P(t) 

z 

t 

Fig. 1.29. 

36 Find the exact solution to the equation of small vibrations of the string 
and determine the amplitudes of string vibrations at the points K 1 and K 2 

(see Problem 35) for steady-state vibrations. 

37 Give an algorithm for exact solution of the equat ion of small steady-state 
vibrations of the string and determine the amplitudes of string vibrations at 
the points K1 and K2 (see Problem 35) taking into account the distributed 

forces of viscous drag o: ~~, where o: is a constant coefficient. 
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38 A point-like mass M moves with the constant velocity v along a string 
lying on a linear flexible base. The stiffness coefficient of the base (the bed 
coefficient) is equal to k (Fig. 1.30). At the instants t = 0 the mass M was 
at the origin of coordinates. Restrict to the case when the velocity v is small 

f)2y f)2y 
so that (see solution to Problem 25) the terms 2v {)zf)t and v 2 {)z2 can be 

neglected. 

.Y 
u ---

Fig. 1.30. 

z 

Determine, with restriction to a two-term approximation, the bending de­
flections at non-steady-state vibrations for the following cases: (1) the mass 
M is on the string (the deflection under the moving mass is included) and (2) 
the mass M has left the string. Assume that the relation between the string 
and the base is bilateral. 

39 Figure 1.31 shows the moving tape of a tape-drive mechanism. The tension 
of the tape is Q10. Solve the equation of small free vibrations of the tape under 
the steady-state regime (at w = const) assuming that the vibrations are caused 
by the momentum J applied at the instant t = 0 to the tape element located 
at the distance ZK from the origin of coordinates. 

1.2 Torsional vibrations of rods 

40 Derive the differential equation of free torsional vibrations of a solid 
shaft with a round section (Fig. 1.32) and determine the frequencies of free 
vibrations of the shaft for the cases when it is fastened as shown in Fig. 1.32. 
The modulus of elasticity in shear of the shaft material is G and its density 
is (2. 

41 Determine the velocity of propagation of a torsional wave (shear wave) 
over the solid shaft if G = 80 GPa and e = 7800 kgj m3 . 
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Fig. 1.32. Fig. 1.33. 

42 Determine the velocity of propagation of a torsional wave along a spring 
(Fig. 1.33) and the frequencies of free torsional vibrations of the spring if 
l = 0.2 m, D = 0.1 m; d = 5 mm; the number of coils i = 20; the first-kind 
modulus of the material of the wire from which the spring is coiled is E = 200 
GPa, and its density is e = 7800 kg/m3 (the spring has a small angle oflead). 

Hint: change the spring for an equivalent rod of round section [5]. 

43 Derive the differential equation for determining the frequencies of free 
vibrations of a shaft with disks at its ends (Fig. 1.34). The moments of inertia 
of the disks are J1 and J2 . The density of the rod material is e and the shear 
modulus is G. Demonstrate that at e = 0 (inertialess shaft) the frequency of 
vibrations for the disks is equal to that obtained in Problem 233 of Part I. 

1.3 Extensional vibrations of rods 

44 Derive the differential equation of extensional vibrations of a rectilinear 
rod and determine the frequencies of vibrations for the cases when the rod is 
fixed as in Fig. 1.32. The Young's modulus of the first kind is E for the rod 
material, its density is {!, and the cross section area is F; the rod elements 
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do not execute transverse motions and are displaced only in the longitudinal 
direction. 

45 Determine the velocity of propagation of compression waves along the 
rod if E = 200 GPa and e = 7800 kg/m3 . 

46 Derive the differential equation of free extensional vibrations of the rod 
with a distributed longitudinal load q(z, t) (Fig. 1.35). 

/ 
!I 

/ 
F(z ) 

z z 

Fig. 1.35. Fig. 1.36. 

4 7 Derive the differential equation of free vibrations of a rod in the case of 
a variable cross section area (Fig. 1.36). 

48 The left end face of a rod (Fig. 1.37) is linked with a spring of force 
c = EF fl. Derive the differential equation for determination of the frequen­
cies of free vibrations and determine by the graphical method the first three 
frequencies of small vibrations of the rod. The mass of a unit length of the 
rod is mo. 

49 For the case or a rod fixed as is shown in Fig. 1.38 derive the equation 
of frequencies and determine the first two frequencies of free vibrations if 
c = EFjl. 
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~ b) Fig. 1.38. 

Fig. 1.37. 

50 Both end faces of the rod are connected with springs (Fig. 1.39). Derive the 
equation for determination of the frequencies of rod vibrations and calculate 
the first two frequencies of free vibrations if c1 = 2c2 = EFjl. 
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Fig. 1.39. Fig. 1.40. 

51 A rod moving with a constant velocity v along the z axis (Fig. 1.40) 
bumps against a perfectly rigid wall so that the left butt of the rod remains 
further fixed with the barrier rigidly. Determine the maximum displacement 
of the right end face and the maximum value of the axial thrust at the left 
end of the rod. 

52 The rod I I flying with a constant velocity v along the z axis hits the rod 
I at the instant t = 0 and, henceforward, they vibrate together (Fig. 1.41). 
Determine the time variation of the axial force at the place of conjunction of 
two rods. 

53 Derive the differential equation for determination of the frequencies of 
free extensional vibrations of a step-shaped rod (Fig. 1.42) of a homogeneous 
material (with density e) for the case when h = 2l/ 5 and l2 = 3l j 5. Find the 
first four frequencies of free rod vibrations. 

54 Derive the equation for determination of the frequencies of free extensional 
vibrations of the step-shaped rod (Fig. 1.43). 
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Fig. 1.43. Fig. 1.44. 

55 Determine the first frequency of free extensional vibrations of the rod 
(Fig. 1.44) whose area of cross section and the mass per unit length vary 
according to the following formulas 

F = Fo(l + z / l); m = mo(l + z/l). 

56 Find the first two frequencies of free longitudinal vibrations of the rod 
(see Problem 55). 

57 A rod pressed by the forces N is suddenly disengaged at the instant t = 0 
from the action of the forces (unloaded). Establish the law of motion for the 
rod sections. Figure 1.45 gives a diagram of displacements of the rod sections 
at the initial moment. 

58 A rod is stretched by the force P (Fig. 1.46) that is suddenly discharged. 
Establish the law of time variation of the displacement of the right end face 
of the rod. 

59 Determine approximate values of the amplitudes of forced extensional 
vibrations of the rod (Fig. 1.47) under the action of harmonic longitudinal 
force P = Po sin wt applied to a free end of the rod. The section area of the 
rod and its mass per unit length vary as 

F = Fo(l + z / l); m = mo(l + z/l). 

60 A rod begins to move under the action of suddenly applied (at the in­
stant t = 0) force Po the keeps henceforth a constant value (Fig. 1.48). De­
termine the axial force in the section z = l/2 at the moment t 1 = l fa that 
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arises at extensional vibrations of the rod. The mass of the rod unit length is 

mo (a= JEF/mo). 
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Fig. 1.49. 

61 At the moment t = 0 the constant force P is suddenly applied to the 
right end face of the rod (Fig. 1.46). Determine the maximum value of the 
displacement of the point of force application and establish the difference with 
the case when the force P is gradually increases (the rod is loaded with the 
force P statically) . 
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62 A bullet moves inside a barrel (Fig. 1.49a) with the constant velocity v. 
The force of friction between the barrel and the bullet is constant and equal 
to Po. The mass of the barrel unit length is m 0 . Write the expression for axial 
displacements of the barrel sections as a function of velocity v. At t = 0 the 
bullet is at the origin of coordinates. Schematically, the barrel with the bullet 
can be represented as a rod loaded by the constant stress Po moving along 
the axis (Fig. 1.49b). 

z z 

Fig. 1.50. Fig. 1.51. 

63 Determine the first three frequencies of free longitudinal vibrations of the 
rod with mass Mat the end (Fig. 1.50) if M = m 0 l, where m 0 is the mass of 
the rod unit length. 

64 Determine the first three frequencies of free vibrations of a rod with a 
concentrated mass at the end (Fig. 1.50) for the case when the upper section 
is free (M =mol, where mo is the mass of the rod unit length). 

65 The upper section of the rod (Fig. 1.51) is forcibly displaced in the 
vertical direction according to the law z = A sin wt. There is a concentrated 
mass M on the lower end of the rod. Determine the displacement u of an 
arbitrary section of the rod under a steady-state regime of vibrations and the 
amplitude of longitudinal vibrations of mass M. 

66 Figure 1.52a presents schematically an explosive cartridge I of a solid­
propellant jet engine. The cartridge is placed inside the motor body. Since in 
most cases it is required that a jet engine should provide for a constant thrust 
during the charge burning, the fuel-propellant cartridge is usually manufac­
tured in such a form that keeps its surface constant during combustion. The 
simplest form of a cartridge providing for a constant combustion surface is a 
cylindrical tube (Fig. 1.52b). In this case, the reduction of the external sur­
face in the process of burning is compensated by equally increasing surface of 
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Fig. 1.52. 

the inner hole. As a rule, the butt section of the cartridge has an inhibitory 
coating (to avoid the end face combustion). 

Derive the differential equation of small free longitudinal vibrations of a 
burning cartridge, assuming that the pressure in the engine chamber remains 
constant when the cartridge burns. The full time of combustion is h, the 
Young's modulus of the first kind is E for the material of charge, its density 
is (}, and the combustion rate (burnt out propellant mass per unit t ime) is 
constant. When solving the problem, assume that the modulus E remains 
constant and does not depend on the propellant temperature. 

67 Determine the velocity of propagation for a compression wave along a 
cylindrical spring whose lower butt is rigidly fixed to a base (see Fig. 1.33) 
and find the frequencies of its free vibrations. Take the following numerical 
data: l = 0.2 m, the mean diameter of spring coils is D = 0.1 m, the diameter 
of the spring wire is d = 5 mm, the number of sring coils i = 20, the elasticity 
modulus of the second kind is G = 80 GPa for the wire material, and the 
density of this wire material is (} = 7800 kgjm3 . The spring has a small angle 
of lead. 

Hint: change the spring for an equivalent rod [5]. 

68 A spring with a small angle of lead of coils is placed into a groove of a disk 
(Fig. 1.53) and rotates together with the disk with the angular velocity D. 
Derive the differential equation of small extensional vibrations of the spring 
and determine the lower frequency of its vibrations as a function of the disk 
angular velocity (neglect the friction between the spring and the disk). 

The spring force for extension is c, the mean diameter is D , the wire 
diameter is d, the number of spring coils is i, and the elasticity modulus of 
the second kind is G for the wire material. 
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Hint: when deriving the equation of extensional vibrations of the spring, change 
it for an equivalent rod [5]. 

z 

Fig. 1.53. 

69 Determine the critical velocity fl* of disk rotation, at which the lower 
frequency of spring vibrations (see Fig. 1.53) becomes equal to zero. 

70 A spring is on the disk that rotates with a constant angular velocity fl 

(Fig. 1.54). Before disk starts rotating, the spring is stretched with the force 
No and fixed at the points A and B. The spring force for stretching is c, 
the mean diameter of spring coils is D, the wire diameter is d, the elasticity 
modulus of the second kind for the wire material is G, and the number of coils 
is i. The spring has a small angle of lead. 

Derive the differential equation of small extensional vibrations of the spring 
taking the disk angular velocity fl into account. 

8 

Fig. 1.54. 

71 A stretchable filament is fixed on a rotating disk (Fig. 1.55). The mass 
of the filament unit length is m 0 , the elasticity modulus of the first kind is E 
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for the filament material, the sectional area is F, and the filament tension is 
Qw at fl = 0. Derive the differential equations of small free vibrations of the 
filament (neglecting the gravity force) taking the disk angular velocity into 
account and determine approximately the lower frequencies of vibrations. 

Fig. 1.55. 

1.4 Bending vibrations of rectilinear rods 

72 For the cases of fixing shown in Fig. 1.56 derive the differential equation 
of small transverse vibrations of t he rod and determine the frequencies of free 
vibrations. The mass of the rod unit length is m 0 and its bending stiffness is 
EJx. 

73 Determine the frequencies of the rod free vibrations for the cases shown 
in Fig. 1.57. 

7 4 Demonstrate that in the case of a variable (over the length) moment of 
inertia lx(z) the differential equation of small vibrations of the rod has the 
following form 

75 Derive the differential equation of small free vibrations of a rod placed 
into the permanent magnetic field (Fig. 1.58) and determine the frequencies 
of the free vibrations if, when the rod is deflectefrom its equilibrium position, 
the force 
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Fig. 1.56. Fig. 1.57. 

acts upon its unit length. 
Find the critical value of cl>o. 

N s 

Fig. 1.58. 

76 A hinge-supported rod (Fig. 1.59) has the following parameters variable 
over length: the bending stiffness 

EJx = EJo ( 1 +sin 7rt) 3 

and the mass per unit length 
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m = mo ( 1 + sin ~ z) . 

Determine using the Galerkin method the fundamental frequency of free 
vibrations under a single-term approximation. 

!I 

Fig. 1.59. 

77 Refine the fundamental frequency obtained under the first approximation 
(see Problem 76) by considering the second approximation. 

78 Determine the first frequency of free vibrations of the rod (Fig. 1.60) 
whose bending stiffness is EJx, the mass per unit length is m 0 , the length is 
l, and the distance between supports is b = l/2. 
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Fig. 1.60. Fig. 1.61. 

79 At the moment t = 0 the force Po is suddenly applied to the rod of 
constant stiffness (Fig. 1.61). The mass of the rod unit length is m 0 . Investigate 
the rod vibrations caused by the force Po applied and determine the time 
variations of the maximum normal strain in the section z = lo. 

80 Determine the bending deflections of the rod depending on the velocity v 
of displacement of the force Po over the rod (Fig. 1.62). The bending stiffness 
of the rod is EJx and the mass of its unit length is mo. At the initial moment 
the point of application of the force Po is above the left support. The numerical 
data are the following: J0 = 0.1 cm4 , E = 200 GPa, m 0 = 8 kg/m, and l = 15 
m. 
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Fig. 1.62. Fig. 1.63. 

81 The dynamical jet gun is designed using the principle of dynamic balanc­
ing of the acting force of a shot by the reaction of powder gases effluent from 
the behind-the-bullet space (Fig. 1.63). The mass of the barrel unit length is 
mo. 

Determine the angular velocity of the bullet attained by it upon flying 
out of the barrel (assume that the bullet moves with a constant velocity v). 
When solving the problem, assume that the bullet acts upon the barrel with 
a constant force that is equal to the gravity force of the bullet. Neglect the 
force of inertia Jy. 

82 Derive the differential equation of small free vibrations of a rod lying 
on an elastic base (Fig. 1.64a), if the reactive force acting upon the rod unit 
length from the side of the elastic base is proportional to its bending deflection 
ky, where k is the stiffness coefficient for the base (the bed coefficient). 

The mass of the rod unit length is m 0 and the bending stiffness is EJx. 
Assume that at small vibrations the rod does not break off the base. Neglect 
the mass of the base involved into vibrations (i.e. , assume that the elastic base 
is equivalent to a set of uniformly distributed inertialess springs, Fig. 1.64b). 
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Fig. 1.64. 
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83 Using the Rayleigh method, determine the first frequency of free vibra­
tions for the rod lying on an elastic intertialess base (Fig. 1.65), if the stiffness 
coefficient of the base is k, the mass of the rod unit length is m0 , and the 
bending stiffness is EJx. 
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Fig. 1.65. Fig. 1.66. 

84 A rod lies on an elastic inertialess base (Fig. 1.66). The elastic restoring 
force acting upon the rod unit length from the base side is proportional to 
the bending deflection and is equal to ky. Determine the frequencies of free 
vibrations of the rod for two variants of its fixing. 

85 The force Po moves with the constant velocity v along the rod lying on 
an elastic inertialess base (Fig. 1.67). The stiffness coefficient of the elastic 
base is k. Determine the bending deflections of the rod as a function of the 
velocity v of the force displacement. At t = 0 the point of force application is 
above the left support. 
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Fig. 1.67. Fig. 1.68. 

86 A perfectly incompressible fluid flows with the constant velocity w inside 
the hinge-supported pipeline (Fig. 1.68). Derive the differential equation of 
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small transverse vibrations of the pipeline taking t he moving fluid into ac­
count. Determine (by the approximate method) the first two frequencies of 
vibrations. The mean diameter of the pipeline is Dm = 0.1 m, its thickness 
is 5 = 20 mm, the length is l = 1 m, the density of the pipeline material is 
l!P = 2700 kgjm3 ( duralumin), and the elasticity modulus of the first kind is 
E = 70 GPa. The mass of fluid per unit length of the pipeline is mF = 7.68 
kgjm. 

Determine the frequencies of vibrations for three values of the velocity of 
fluid motion: w 1 = 0 , w 2 = 10, and w3 = 20 m j s. Neglect the gravity force 
acting upon the pipeline and fluid. 

87 Determine the critical velocity for the fluid flowing inside the hinge­
supported pipeline (see Problem 86). 

88 Derive the differential equation of small transverse vibrations of the hinge­
supported pipeline if the fluid jet outflows at an angle a to the pipeline axis 
(Fig. 1.69). Take the numerical values from Problem 86. 
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Fig. 1.69. Fig. 1.70. 

Determine the first two frequencies of pipeline vibrations at a = 90° and 
for the fluid velocities w equal to 0, 10, and 20 m/ s. Determine the critical 
velocity of the fluid stream. 

Hint: When the jet leaves the pipeline at the angle a to the axial line, the force 
of jet reaction N = mw2 (1 -cos a) acts upon it in the direction of the z axis. 

89 A perfectly incompressible fluid flows inside a pipeline with variable profile 
(Fig. 1.70). The inner diameter of the pipe changes according to the formula 
d = do - z (do - di) jl where do and d1 are the diameters of the input and 
output sections of the pipe. The pipe has the walls of a constant thickness 
5 (5 « d), the density of the pipe material is {!p , and the fluid density is l!F· 

Derive the equation of small vibrations of the pipe assuming the constant 
flow rate. 

90 The ideal incompressible fluid flows with the constant velocity w inside 
a hinge-supported pipeline having the bending stiffness EJx and lying on an 
elastic base (Fig. 1.71). The mass of the pipeline unit length is m 1 , t he fluid 
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mass per the pipeline unit length is m2, and the stiffness coefficient of the 
elastic base is k (assume that the elastic base is inertialess). 

Determine approximately the first two frequencies of small transverse vi­
brations of the pipeline. 
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Fig. 1.71. 

91 Derive the differential equation of small transverse vibrations of a beam 
(Fig. 1.72) taking into account a constant compressing force N acting upon 
it. Determine the frequencies of beam vibrations. 
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Fig. 1.72. Fig. 1.73. 

92 Investigate the stability of the first four modes of the transverse vibrations 
of the beam (Fig. 1. 72) loaded with the applied compressing force N variable 
in time (N =No+ N 1 sinwt). Use in the problem the following numerical 
data: Jx = 0.1 cm4 , N0 = 1000 N, N 1 = 200 N, m 0 = 0.8 kg/m, w = 300 s-I, 
and l =1m. 

93 How will the solution to Problem 92 be changed, if the constant compo­
nent N 0 of the force N changes its direction into the opposite one? Take the 
numerical values from Problem 92. 

94 When deriving the differential equation of small transverse vibrations of a 
string, its bending stiffness is assumed to vanish. Find the error in determining 
the frequencies of vibrations of the string whose length is l = 1 m, if Jx = 
1rd4 /64 = 5 · 10-6 cm4 , the mass of the string unit length is m 0 = 6 · 10-3 
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kg/m, the tension is Q10 = 100 N, and the elasticity modulus of the first 
kind is E = 200 GPa for the string material (see Fig. 1.2). The string can be 
considered as a hinged rod. 

95 A rod lying on an elastic inertialess base is compressed by a constant force 
N. The mass of the rod unit length is m0 , the bending stiffness is EJx, and 
the stiffness coefficient of the elastic base is k. Derive the differential equation 
of free transverse vibrations of the rod (Fig. 1. 73) and determine the vibration 
frequencies. 
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1.5 Vibrations of rectilinear and curvilinear rods 

More complicated problems are formulated in this paragraph. The methods of solv­
ing them, as well as the necessary equations, are described in the Appendices A-F. 
When solving particular problems, one should obtain partial equations from the 
general equations presented in these Appendices. The equations are given in the di­
mensionless form, which simplifies their numerical integration. The main emphasis 
is focused on the development of algorithms for solving the problems that can be 
implemented in computer calculations. 

96 A rod is loaded with a periodic axial force (Fig. 1.74). Derive (approxi­
mately) the equations for the boundaries of the principal region of parametric 
vibrations. When solving the equations of rod vibrations, take advantage of 
the virtual displacement principle. One should restrict oneself to a single-term 
approximation. 
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Fig. 1.74. Fig. 1.75. 

97 Figure 1. 75 demonstrates a rod lying on an elastic base with a linear 
characteristic. The rod is loaded with the axial periodic force P(t). Using 
the Rayleigh method, determine t he region of the main parametric resonance. 
Restrict consideration to a single-term approximation. 

98 The force P applied to a point-like mass m (Fig. 1. 76) suddenly disappears 
at the instant t = 0. Determine the dynamic reaction in the hinge. The rod 
section is constant. Neglect the inertia of rotation and the forces of viscous 
drag. Consider the case when the rod has a variable section. 

99 The momentum J has acted upon a concentrated mass (Fig. 1. 77). De­
termine the angle of rotation of the mass m in the plane of drawing under the 
free vibrations that arise after termination of the momentum action. 

100 Figure 1.78 demonstrates a rod moving with the velocity wo in a viscous 
medium. The follow-up uniformly distributed force q1 = -q10e1 ( qlO = ,Bw~) 
acts upon the rod. Derive the equat ion of small vibrations and determine the 
first two eigen values, taking advantage of the approximate method of solution. 
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Fig. 1.78. 

101 Determine the amplitude of steady-state vibrations of the rod in section 
K (Fig. 1.79), taking advantage of the approximate method of solution (see 
Appendix E) . 
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Fig. 1.79. 

102 A forced angular displacement (kinematic perturbation) is specified in 
the K section of the rod (Fig. 1.80). Determine the amplitude of the moment 
at the embedment (x1 = 0) under steady-state vibrations. 

103 The periodic force P(t) (Fig. 1.82b) is applied to the rod of constant 
section (Fig. 1.82a). Using the Duffing method, obtain the approximate so-
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Fig. 1.81. Fig. 1.82. 

lution for forced steady-state vibrations. When solving the problem, one can 
use the virtual displacement pr inciple taking the two-term approximat ion. 

104 A point-like mass m moves with the velocity v along a rod lying on an 
elastic base (Fig. 1.81). Determine approximately the angle of rotat ion of the 
rod in the K section at the moment when the mass rolls off from it, restricting 

. . c "d h "fi h d2y 02y to a two-term approx1mat10n. ons1 er t e spec1 c case w en m dt 2 ::::::: ot2 

(see data of Problem 38). 

105 Figure 1.83 depicts a segment of the railway that can be considered as a 
rod lying on the elastic base whose stiffness coefficient is equal to k. The train 
with a length much longer than that of the railway segment moves along the 
rod. The train can be considered as the one-dimensional medium (since the 
distance between railcar wheels h is much less than l) with a zero bending 
stiffness. 

y 

z 

Fig. 1.83. 
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Derive the equation of free vibrations of the rod loaded with a distributed 
inertial load and determine approximately the first two frequencies, restricting 
to a two-term approximation. 

Hint: The railcars are not point-like masses, therefore, one should take into 
account their moments of inertia Jo relative to the car center of mass, i.e., during 
vibrations, the inertial force and the moment of inertia will both act upon the rails 
from the cars. In the limit, one can consider that the rod (rails) is loaded with 
moving distributed inertial load. 

106 A rod is hinged on a disk rotating with the angular velocity D (Fig. 
1.84). The bending stiffness of the rod is EJx and the mass of the unit length 
is mo. 

z 

Fig. 1.84. 

Derive the differential equation of small bending vibrations of the rod 
and determine approximately the first two frequencies of vibrations assuming 
that the rod is nonstretchable. Construct the plot of variation of the first 
frequency p1 versus [2 at the following values of parameters: EJx = 0.5 N·m2 ; 

m 0 = 23.4 · 10-3 kg/m; and l = 0.2 m. 

107 Determine approximately the first two frequencies of transverse vibra­
tions of the rod fixed on a rotating disk (see Fig. 1.84), if one interchanges 
positions of the hinge and the roller (fixing the rod). 

Plot the dependence of the first frequency of transverse vibrations on the 
disk angular velocity [2 and compare with the plot of the previous problem. 
Take the values of parameters from Problem 106. 

108 Derive the differential equation of bending vibrations of a rod hinged on 
a rotating disk (the case shown in Fig. 1.85). The mass of the rod unit length 
is m 0 and the bending stiffness is EJx. 
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Determine, applying the Galer kin method, the first two frequencies of vi­
brations. 

z 

Fig. 1.85. Fig. 1.86. 

109 Figure 1.86 presents a layout of a balancer in the clockwork of a remote 
fuse. The mass m is located at the end of a perfectly rigid lever that is joined 
with a flat hinged rod. The balancer is on a disk rotating with the angular 
velocity rl. The mass of the rod unit length is mo and the bending stiffness 
is Elx. 

Derive the differential equation of small vibrations of the balancer rela­
tive to the dynamical equilibrium position taking the rod mass into account; 
specify the boundary conditions necessary for solving the equation derived. 
Assume that the rod segment of length h is perfectly rigid. 

110 The mass m = 0.02 kg if fixed to a hinged pinned flat rod with the 
help of a perfectly stiff lever of length h = 30 mm. Using the approximate 
method (Rayleigh method) derive the dependence of the vibration frequency 
of mass m (see Fig. 86) located on the rotating disk (balancer of a remote 
fuse clockwork) on the angular velocity n. When solving, restrict to the first 
approximation, approximating the bending deflections by the expression of 
the form y = Y1 (z) sin pt, where Yl is the dynamic bending deflections of the 
rod with respect to the equilibrium position in the coordinate system rotating 
with the disk. 

The mass of the rod unit length is m 0 = 23.4 · 10- 3 kg/m, the bending 
stiffness is Elx = 0.5 N m2 ; l = 120 mm; b = 30 mm; and [l = 100 rad/ s (see 
Fig. 1.86). 

111 Demonstrate that the first frequency of the balancer vibrations (obtained 
by the Rayleigh method) does not depend on the initial deformed state of the 
system caused by the field of centrifugal forces (see Problem 110). 
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112 What changes will occur in the exact equation of vibrations of an elastic 
rod, if one changes its work holding (interchanges positions of the hinge and 
the roller) in Problem 109) (see Fig. 1.86). 

113 Using the Rayleigh method, determine the first frequency of vibrations 
of the rod shown in Fig. 1.84 (see Problem 106). Take numerical data from 
Problem 110. 

114 What condition for parameters of the balancer in Problem 113 should 
be met in order that the first frequency would be independent of the disk 
angular velocity. 

115 Determine the first frequency of vibrations of the balancer with mass m 
placed on a rotating platform (see Fig. 1.86). For solution, use the Rayleigh 
method and the numerical data of Problem 110. 

Fig. 1.87. Fig. 1.88. 

116 Determine the frequencies ofradial vibrations of a thin ring (Fig. 1.87). 
The mass of the ring unit length is m0 , the section area in F , the elasticity 
modulus of the first kind is E, and 6 <t: R. 

117 A ring (Fig. 1.88) is under the action of t he internal pressure p , variable 
in time (p = Po + p1 sin wt). The mass of the ring unit length is m0 , t he cross 
section area is F, the elasticity modulus of the first kind is E, the ring width 
ish, and its thickness is 6 (6 <t: R) . Determine the amplitude of steady-state 
radial vibrations of the ring. 

118 A thin ring rotates about the symmetry axis with the angular velocity 
fl (Fig. 1.89). Derive the differential equation of radial vibrations of the ring 
and determine the frequency of free radial vibrations and the critical velocity 
of rotation of the ring. 
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Fig. 1.89. Fig. 1.90. 

119 Determine the frequency of small angular vibrations of the ring with 
respect to the axial line (see Fig. 1.89) assuming that the axial line of the ring 
remains strain-free, while its cross sections rotate during vibrations through 
one and the same angle rp (Fig. 1.90). The mass of the ring unit length is m 0 , 

the elasticity modulus of the first kind is E, and R » 8. 

120 A ring from a rod with the constant section (Fig. 1.91) is situated on a 
rotating disk. The angular velocity wo of disk rotation is constant. Derive the 
equation of small vibrations of the ring in the plane of drawing taking into 
account the inertia of rotation of the rod elements. 

Fig. 1.91. Fig. 1.92. 

121 Figure 1.92 shows a ring of length l made from a rod of constant section. 
The ring is loaded with a tracking static load q. Derive the equation of small 
vibrations of the ring with respect to the plane of drawing taking into account 
the inertia of rotation of the rod elements. 

122 Derive the equation of small vibrations of the ring (see Fig. 1.92) rotating 
with the constant angular velocity w0 with respect to the plane of drawing 
taking into account the inertia of the rod elements. 
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123 Derive the equation of small vibrations of the rod with concentrated 
masses m 1 and m 2 (Fig. 1.93), if the mass m 1 is point-like and the mass m 2 

possesses some inertia of rotation. The tensor of inertia J0 relative to the 
principal axes of the mass m 2 is known. The principal axes of the mass m2 

coincide with the principal axes of the rod section (atE:= c2 ). One can neglect 
the relative size a in comparison with the rod length (q « l). 

Xz 

Fig. 1.93. 

124 Figure 1.94 shows a rod of variable section with hinge (at E: = ci) and 
elastic (at E: = c2 ) intermediate supports. A force directed along the x2 axis 
arises in the elastic support under vibrations. Derive the equations of small 
vibrations of the rod in the plane of drawing taking local constraints into 
account. 

/. 

.x, 

Fig. 1.94. Fig. 1.95. 

125 Spiral springs (Fig. 1.95) are used in time-measuring instruments. Derive 
the equations of small vibrations of the spiral spring of constant section in 
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the plane of drawing, if its axial line is an Archimedean spiral. Determine the 
spiral curvature as a function of the arc coordinate E. 

126 At the instant t = 0 the force P applied to the end face of a constant­
section round rod (Fig. 1.96) stops acting. Determine the horizontal displace­
ment (along the x 1 axis) of the point K under free vibrations. The vibrations 
of the rod proceed in the plane of drawing. Neglect the rotation inertia of the 
rod elements and the drag forces. (Fig. 1.96) 

Fig. 1.96. 

127 At the instant t = 0 a concentrated moment Wl is applied to a round 
rod of constant section (Fig. 1.97a). The moment is constant (Fig. 1.97b). 
Determine the moment in the embedment that arises under the rod vibra­
tions. On of principal axes of the rod section is perpendicular to the plane of 
drawing, therefore, the vibrations of the rod proceed in this plane. When solv­
ing, take advantage of the approximate method with restriction to a two-term 
approximation. 

128 A momentum] has acted upon a point-like mass m placed on a rod 
of constant section (Fig. 1.98). As a result, the rod with mass m begins to 
execute free vibrations in the plane of drawing. Determine the reaction in the 
hinge. 
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mot-------

b 
t 

Fig. 1.97. 

Fig. 1.98. 



2 

Answers and solutions 

2.1 Vibrations of Perfectly Flexible Rods 

1 Figure 2.1 shows a string element (at an arbitrary instant of t ime) with 
forces acting upon it. 

!J 

0 

iJ2y 
-dm ut2 

Fig. 2.1. 

a,o 

z 

When deriving the formulas we assume the displacements of the string 
points to be perpendicular to the Oz axis. Under small vibrations, t he dis­
placement y and derivatives of y with respect to z are small, therefore, one 
can neglect the terms with their squares as quantities of the second order of 
smallness. 

Taking advantage of the D'Alambert method, we get the following differ­
ential equation (in projections onto the Oy axis) 

(1) 
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When angles are small, to an accuracy of quantities of higher orders of small-
By 82y 

ness, a~ tan a~ az, therefore, dajdz = Bz2 , and (1) takes on the form 

82y QlO 82y q 
-=--+-. 
8t2 mo 8z2 mo 

2 In the case under consideration, g = 0, and the differential equation of 
string vibrations (see solution to Problem 1) assumes the following form 

82y 282y 
-=a - (a2 = QIO/mo) 
8t2 8z2 (1) 

The velocity of propagation of transverse displacements along the string 
is a= JQ 10 jm0 , and a~ 69 m/s. 

We seek the solution to equation ( 1) in the form y = y1 ( z) sin pt. 
The function y1 ( z) should satisfy the boundary conditions of the problem 

(z = 0, y1 = 0; z = l, Yl = 0). From (1) we have 

(2) 

The solution to (2) has the form 

p . p 
Yl = c1 cos - z + c2 sm - z 

a a 

From the boundary conditions it follows that c1 = 0 and sinplja = 0, 
hence p l /a = 1m. Then, the frequencies of vibrations are 

Pn = (7rn/l)../QIO/mo, Pn = 434n (n = 1, 2, ... ) 

3 In the case considered, the tension in the filament is variable along its 
length 

Q1 =mog(l-z)). 

Figure 2.2 shows an element of the filament with the forces acting upon it 
at an arbitrary instant. Let us project the forces onto the Oy axis: 

-dz mo ~:; + (Q1 + dQ1) sin( a+ da)- Q1 sin a= 0, 

or 

Since a= 8yj8z, we have finally 

(1) 
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0 .Y 

Fig. 2.2. 

The solution to equation (1) is sought in the form 

y = YI(z) sin pt. (2) 

After some t ransformations, we get 

(3) 

where z1 = l- z . 

The solution to equation (3) can be expressed through zero-order Bessel 
functions of the first and second kind 

The function y 1 should meet the following boundary conditions: 

z = 0, Zl = l , Yl = 0; 

z = l, Zl = 0, Yl =!= oo. 

(4) 

The displacement of the lower end of the filament should be finite under 
small vibrations. Since the zero-order Bessel function of the second kind Yo 
goes to infinity when its argument vanishes, one must set c2 = 0 in solution 
(4). Then Y1 is finite at z = l. 

In order to satisfy the first condition, it is necessary that Io(2py!ffg) = 0. 
The first three roots of function ! 0 are equal to: K 1 = 2.4; K 2 = 5.52, and 

k3 = 8.65 [2]. Hence the frequencies of vibrations (the first three frequencies) 
are as follows 
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P1 = 1.2vfi7l; P2 = 2.76vfill; P3 = 4.325vfill. 

4 In the case under consideration, the filament tension is 

Q1 = mog(l- z) + mg (1) 

The differential equation of the filament vibrations has the form (see so­
lution to Problem 3) 

fPy 8 [ m dy ] -=- -g+g(l-z)-) 
8t2 az m 0 dz 

(2) 

We seek the solution in the form 

y = Y1 ( z) sin p t (3) 

Assuming z1 = mg + mog(l- z), we find from equations (2) and (3) 

(4) 

Function y1 should satisfy the following boundary condition: y1 (0) = 0 for 
z = 0. 

0 !I 

\ 

\ 
\ 

z 

Fig. 2.3. 

In order to find the second boundary condition, we consider the dynamic 
equilibrium of the mass m (Fig. 2.3). 

The forces of gravity and inertia should yield a net force that balances the 
force of tension. Hence, the force Q1 is inclined to the vertical at angle a. 
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Since we consider small vibrations, a = y{(l). The second condition has 
the form 

( dyl) = mp2y1(l) = p 2 Yl(l). 
dz z=l mg g 

The first boundary condition allows one to derive the following equation 

(5) 

Differentiating expression ( 4) with respect to z and using the relationships 
linking the derivatives of Bessel functions to each other, we have from the 
second boundary condition 

c1 [p
2

Io (2p ~)-~h (2p ~)]+ 
g V mag momg V mag 

(6) 

+c2 [p2 
Yo (2p ~)- pmo Y1 (2p ~)] = 0. 

g V mag Jmomg V mog 

Since m = m 0 l, we find after some algebra (x = pffg): 

c1Io ( v'Sx) + c2Yo ( v'Sx) = 0; 

c1 [x2 I 0 (2x) - xh (2x)] + c2 [x2Yo(2x) - xY1 (2x)] = 0. 
(7) 

Assuming that the determinant of system (7) is equal to zero, we get the 
equation for vibration frequencies. The first frequency of vibrations correspond 
to the first root of the equation 

Io ( v'Sx) [x2 Yo(2x)- xY1(2x)]-

-Yo ( v'Sx) [x2Io(2x)- xh(2x)J = 0. (8) 

Equation (8) can be solved graphically (to determine the first frequencies). 
The first root of equation (8) is x1 = 1.05. 

Hence, the first frequency is 

p = l.05V9fi. 

5 When the filament is deflected from the vertical position of equilibrium, 
in addition to the forces considered above (see solution to Problem 3), the 
distributed centrifugal forces m 0 yw2 act upon it. The differential equation of 
the filament vibrations has the form 
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(1) 

The solution to equation ( 1) is sought in the form y = y1 ( z) sin pt. 
After some transformations (see solution to Problem 3) we get the Bessel's 

equation 

(2) 

where z1 = l- z. 
Equation (2) has the following solution 

Y1 = c1lo (2J(p2 + w2) zi/g) + c2Yo ( 2-j(p2 + w2) zi/g) 

In order to have finite y1 at z1 = 0 (which corresponds to z = l), it is 
necessary to assume that c2 = 0. 

For the second boundary condition to be met (y1 = 0 at z = 0 ) , it is 
necessary that 

Io (2J(p2 +w2)zi/g) =0 

The first three roots of function ! 0 are as follows 

kl = 2.4; k2 = 5.52; k3 = 8.65. 

Accordingly, the first three frequencies of the filament vibrations are 

PI= Vl.44gjl- w2; P2 = J7.6gjl- w2; P3 = -j19gjl- w2 . 

The least value of the critical angular velocity of the filament is 

6 In the case under consideration, the differential equation of string vibrations 
has the form 

(1) 

We seek the solution to equation (1) using the Galerkin method and as­
suming 

nz 2nz 
y =sin T fi(t) +sin - 1-h(t) 

Now the frequencies of vibrations are 

7r 
PI=-

l 

27r 
P2=-

l 

Qw . 
mo [1 + 8mi/ (3nmo)]' 

Qw 
mo [1 + 32mi/ (15nmo)]" 
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7 The frequency of vibrations is 

1r 
p=­

l mo(l+a11)' 

where a11 = _!:_ (1 -cos ;rll) (1 - 2 ;rl l2 ) m 1 . 
2;r 1 l - 4 1 mo 

8 The force of filament tension in a section at a distance z from the axis of 
rotation (Fig. 2.4) is equal to 

l+a 

J 2 mo.f?2 [ 2 2] Q1 = moD rydry= - 2 - (l+a) - z . 
z 

z 

d +da 
\<) 

"' 

(}fp 

!J 
1:;:1 z 

0 Fig. 2.5. 

~ 
Fig. 2.4. 

For small deflections of the filament from the rectilinear form , the force 
Q1 is practically invariable. The differential equation of small vibrat ions of 
the filament has the form 

82y 8 { D2 [ )2 2] 8y } 2 - = - - (l +a - z - + .f? y. 
8t2 8z 2 8z 

9 When a string is deflected from its equilibrium position, the forces shown 
in Fig. 2.5 act upon it. 

Projecting the forces onto the Oy axis, we get after transformations 
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82y 82y 
mo 8t2 = Qw 8z2 - ky. (1) 

We seek the solution to equation (1) in the form y = y1(z) sinpt. For the 
function y1 ( z) we get the following differential equation 

from whence 

r;;:;;;G . r;;:;;;G 
Yl = c1cosy ~z+c2smy ~z. 

The function y1 should satisfy the following boundary conditions: 

hence 

or 

z = 0, Y1 = 0; 

z = l, Y1 = 0, 

c1 = 0; sin J(mop2 - k) Qw ·l = 0, 

mop2 - k 7r2n2 
Qlo l 2 . 

The frequencies of vibrations of the string lying on an elastic base are 
determined by the equation 

Pn = (n=1,2, ... ). 

10 We seek the solution to the equation of string vibrations (equation (1) in 
the solution to Problem 2) using the Fourier method and assuming that 

y = Y(z)T(t); 
. 1rz 1rat 

y(z, t) =Yo sm l cos -l-. 

11 It is more convenient to investigate small vibrations of the moving branch 
of the gearing using the Eulerian variables. Therefore, turning from the total 
time derivatives to local derivatives, we get 

(1) 
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.!/ 

z 

Fig. 2.6. 

The equations of vibrations of the string (Fig. 2.6) assumes the form 

[J2y [J2y ( QlO 2) [J2 y 
at2 + 2w azat - mo - w {)z 2 = o. 

The solution to equation (2) is sought in the form 

y = YI(z)eipt 

(2) 

(3) 

Upon substitution of (3) into equation (2) we have the equations for the 
function Y1 ( z): 

(4) 

The function Y1 should satisfy the following boundary conditions: 

z = 0, Yl = 0; z = l, Y1 = 0. 

Assuming y1 = AeAZ, the characteristic equation for equation ( 4) has the 
form 

2wp . where a 1 = --:-:::-----=- -.,---

(~:-w2)' 
The roots of equation (5) are 

A1 ,2 = i (al ± J af + 4a2) /2. 

The solution to equation (4) can be represented in the form 

Yl = cleAIZ + c2eA2z . 

(5) 

(6) 



52 2 Answers and solutions 

This solution should satisfy homogeneous boundary conditions, and this 
allows one to write 

or 
(7) 

Condition (7) is satisfied at ( .X2 - .XI) l = 21rni or l J ai + 4a2 = 27rn, 
whence, after some transformations we get the following values of the fre­
quencies of vibrations 

Pn = 1rn fjf1o ( 1 _ mow2) 
l mo Qw 

(n = 1,2, ... ). 

After calculations we find Pn = 230 ns-1. 
The critical velocity at which the frequencies of vibrations are zero is equal 

to 

After calculations we get w* = 16.43 mjs. 
Now let us determine the eigen functions. We find the roots of the char­

acteristic equation, .xin) and .X~n), for every frequency Pn: 

A (n) . ( ) 1,2 = Z /'1n + /'2n ' 

/'1n = WPni /'2n = 1rn; 

1rn ( Qw - mow2) 
Pn = y'Q10 

For each pair of roots .xtJ we write the particular solution 

(8) 

Since y(n) (0) = 0 for z = 0, then c~n) = -cin). Assuming cin) = 1, we obtain 
the eigen function 

_x(n) _x(n) 
Yin)(z) = e 1 z- e 2 z (n = 1, 2). 

After some transformations we have 

(n) ( ) 2 · · 2' . Y1 Z = Slll')'1nZ · Slll')'2nZ- lCOS/'1nZ · Slll/'2nZ, (9) 

i.e., the eigenfunctions are complex functions of the form 



2.1 Vibrations of Perfectly Flexible Rods 53 

h (n) 2 . . w ere Yn = sm /lnZ · sm /2nZ; (n) 2 · Th y12 = - COS/lnZ · sm /2nZ· us, we get 
the particular solutions 

and the general solution 

DO 

y(z, t) = L CnYin)eiPnt, 
n=l 

where Cn = Cnl + icn2· 
Now represent the general solution in the form 

where 

y(z, t) = Yn(z, t) + iy12(z, t), 

Yn = f Cln (Yi~) cospnt + Yi;) sinpnt) + 
n=l 

00 

L C2n ( Yi;) COS Pnt - Yi~) sinpnt) ; 
n=l 

00 

Y12 = L C1n ( Yi;) COS Pnt + Yi~) sin Pnt) + 
n=l 

~ ( (n) (n) . ) ~ c2n Yn cos Pnt - y12 sm Pnt . 
n=l 

(10) 

Each of the functions Yn and y12 satisfies equation of vibrations (2). The 
arbitrary constants c1n and c2n can be found from the initial conditions. In 
the general case, at t = 0 the bending deflections of the belt and the velocities 
are known, i.e., 

00 

Yn(z,O) = a1(z) = L (clnYi~) +c2nYi;)); (11) 
n=l 
00 

Yll (z, 0) = a2(z) = L ( ClnPnYi;) + C2nPnYi~)) · (12) 
n=l 

Multiplying equation (11) by PnYi~) and equation (12) by Yi~), and sum­
ming the expressions obtained we have 

00 

alPnY~k) + a2Yik) = L ClnPn (Yin) y~k) + y~k) Yin)) 
n=l 

DO 

+ L C2nPn (y~n)Y~k)- Yin)Yik)) · 
n=l 

(13) 
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Now we integrate equation (13) between 0 and l: 

l 

J ( (n) (n)) d J(2) J(l) a1PnY2 + a2YI z = CinPn nn + C2nPn nn. (14) 

0 

Here 

JCll __ sina1n sin (27rn- ain) sin (27rn + ain). 
nn - 2aln + 4 (21fn - aln) + 4 (27rn + aln) ' 

JC2) = _ cosa1n _ 1- cos (27rn- aln) + 1- cos (27rn + aln). 
nn 2aln 4 (27rn - aln) 4 (21fn + aln) ' 

2WoPn 

Multiplying expression (12) by PnY(k) and (11) by y~k), we find the difference 
of the expression obtained and integrate it between 0 and l: 

l 

J ( (n) (n)) d _ J(l) J(2) alPnYI - a2y2 z - -CinPn nn + C2nPn nn. (15) 

0 

When integrating, we have used the conditions of orthogonality of functions 
Yin) and y~n): 

l 

Jk~ = J (y~k)Y~n)- Yik)Yin)) dz = 0; 

0 

l 

Jk~ = J (Yik)Y~n) + Y~k)Y~n)) dz = 0. 

0 

From system of equations (14) and (15) we determine c1n and c2n (n = 
1, 2, ... ) and get the solution Yu (z, t) to the equation of free vibrations of the 
branch of the flexible gearing. 

12 Write the equation of small vibrations of a gearing branch 

(1) 

where au = 1; a12 = w; a22 =- ( r;:: -w2); 

The characteristic equation for (1) has the following form [6]: 

a22 dt2 - 2a12 dz dt + au dz2 = 0. (2) 
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Equation (2) has two roots: 

dz 
dt =WI; 

dz 
dt = W2, (3) 

where 

(4) 

The straight lines ci = z -wit and c2 = z - w2t are the integrals of 
equations (3). Parameters WI and w2 are the velocities of propagation of 
perturbations. 

Substituting the coefficients of equation ( 1) into expressions ( 4), we get 

W2 = W - (Q;;;' v-:;;;;; 
where WI and w 2 are the velocities of propagation of perturbations along 
the direction of motion of the flexible gearing and in the opposite direction, 
respectively. 

The velocity w*, at which perturbations do not propagate against the 
direction of motion of the flexible gearing, is equal to 

This expression coincides with the equation for w* obtained in Problem 11. 

13 The differential equation of vibrations of a moving flexible gearing (fila­
ment) is derived in Problem 11. 

The distinction of the problem considered from Problem 11 consists in the 
fact that the tension of branches of the flexible gearing is variable in time. 
Therefore, the equation of vibrations takes on the following forms for the 
driving and driven branches, respectively: 

- +2w--- -- + --smwt-w - =0· 82y 82y (Faw F6ai . 2 ) 82y 
8t2 8z8t mo mo 8z2 ' 

(1) 

-+2w--- --+--smwt-w -=0· 82y 82y (Fa2o F6a2 . 2) 82y 
8t2 8z8t mo mo 8z2 ' 

(2) 

We can solve equations (1) and (2) approximately taking advantage of 
the principle of virtual displacements (Appendix E), restricting ourselves to 

a single-term approximation y = h (t) sin ~z. 
For the h(t) function we get the Mathieu's equation. For example, for 

equation ( 1) we have 
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where a = 4 (~)2 Faw/mo- w2; q = 4 (~)2 L>al ; T = 
l w 2 l mow2 

wt 
2 . Upon sub-

stitution of numerical values, we find a = 33 and q = 6. 

14 In the fixed system of coordinates (z1 = z- wt) the mass varies according 
to the law 

m = mo + m1 sin ( 27rZ- 21rwt) 
h h 

The differential equation of vibrations in the Eulerian variables is derived 
for a moving belt in Problem 11: 

(1) 

In the case under consideration the mass of a unit length of the belt is 

. (27rz 21rwt) m3 = m2 +mo +m1sm l;- -h- = 

[ m1 . (21rz 21rwt)] = ( m 2 + mo) 1 + sm -l- - -- · 
m2 + mo 1 h 

(2) 

1 
Dividing both sides of equation (1) by m 3 and expanding - into a series 

m3 
of powers of m 1, we get (retaining only a linear part of the expansion) 

(3) 

To investigate the stability of small vibrations of the belt we apply the 
Galerkin method (principle of virtual displacements). In this case, we restrict 

ourselves to a single-term approximation, assuming y = f(t)sin ~z . 

Then we have the following equation for unknown function f(t) 

f+ { Qw (~)2 -w2(~)2-
mo + m2 l l 

Q 10m1 (1r) 2 
( 21rwt . 21rwt)} -- - ancos--a12sm- f=O. 

mo +m2 l h h 

(4) 

Here 
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/
1 

. 21fZ . 2 JfZ 11 ( 2Jr1) ( 1i ) 
an = sm T sm z-dz = 41f 1 - cos z; - 12 _ 1i ; 

0 

1 J 21rz . 2 1rz 1r . 21r1 1 
a12 = cos --;:;sm z-dz =- 47r sm z;. (12-m; 

0 

Equation ( 4) can be transformed to the form 

d2 f [ . (21rwt )] dt2 + a1 - b sm -h- + ,8 f = 0; (5) 

_ Qwm1 (1r) 2 . 1 2 2 . an were b- 2 -1 v a11 + a12 , tan,B = -. 
(mo + m2) a12 

Now make a conversion to a new independent variable, assuming 

21rwt + ,8 = 27 _ ~. 
h 2 

Equation (5) takes on the form of a Mathieu's equation: 

d2J 
d72 +(a+ 2qcos 2T) f = 0; 

Calculate the coefficients: 

1i (1f) 2( Qw 2) a w a=l.15; 
=(1rw) 2 l mo+m- ' 

12 
2q= (7r~)2b; 2q=0.43, 

which corresponds to a point on the plane of the Ains-Strett diagram (see Fig. 
305 of Part 1) with coordinates (1.15; 0.125) that lies in the unstable region. 

15 Consider an element of the pipe with fluid at an arbitrary instant (Fig. 
2.7). Let us project the forces onto the Oy axis: 

(1) 

where da/dz = (J2yj8z 2 . 

Changing over to the Eulerian variables, we get 

Equation (1) assumes the form 
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y 

z 
Fig. 2.7. 

fPy + 2wm2 82y 
8t2 (m1 + m2) 8z8t 

(2) 

where Q* = Qw - pF - m2w2 
We seek the solution of equation (2) in the form (see solution to Problem 

11) 
y = Yl(z)eipt. 

After transformations similar to those made in Problem 11, we find the 
frequencies of vibrations of the pipe with flowing fluid: 

7rn 
Pn = -l- (n =1,2, ... ). 

16 Unlike Problem 15, in the case considered the force of tension in the pipe 
is variable with length Q1 = m1g(l- z). 

The differential equation of small vibrations of the pipe has the form 

[)2y [)2y 2[)2y- 8 [ 8y] 
(m1 + m2) ot2 + 2m2w ozot + m2w {)z2 - {)z m1g(l - z ) {)z . 

17 The velocities of propagation of a wave of perturbations (see solution to 
Problem 12) are equal to 

The velocity of fluid flow, at which perturbations do not propagate along 
the pipe against the fluid flow, is 



2.1 Vibrations of Perfectly Flexible Rods 59 

18 Figure 2.8 shows the string in a deflected position. Let us find a variation 
of the string length under vibrations. From the figure it follows that 

6dz = dz- dzcosa ~ dz- dz (1- a 2 /2). 

Integrate equation (1) between 0 and l: 

where y' = dy jdz ~a. 

l 

6l = ~ J y'2dz, 
0 

(1) 

Assuming that the relative deformation 6dzjdz is constant over the string 
length, we obtain for the additional tension of the string 

because 6l = 6Q1l/(EF) 

l 

EFJ t2 6Q1 = 2z y dz, 
0 

The equation of the string vibrations with allowance made for the addi­
tional tension takes on the form 

82y 82y 
mo at2 = (QIO + l:,Ql) o z 2. (2) 

We solve equations (2) by the Galerkin method assuming that 

7TZ 
y = Yo sin T · f ( t) 

After some transformations we get a nonlinear equation for f( z ): 

!I 

z 

Fig. 2.8. 
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d2f Q10(~) 2f (~) 4 EF 2/3=. 
dt2 + mo l + l 4m0 Yo 0 

The frequency of vibrations with a correction for the nonlinear term of the 
equation (see solution of Problem 165 in Part 1) is equal to 

p= 

The error in determination of the frequency in the case, when the changed 
tension is not taken into account, is equal to 

3 1r EF 2 ( )
2 

l::.p = 32 l Q10 Yo· 

19 The differential equation of the string vibrations at small displacements 
has the following form 

EPy 8 2 y 82 y 4<P5k1Y 
mo 8t2 = QlO 8z2 + q = QlO 8z2 + lr (1) 

We seek the solution to equation (1) in the form y = y1(z) sinpt. Upon 
substitution of y into equation (1) we get 

The frequencies of vibrations are 

Pn = ( 1rn) 2 Q10 4<P5kl 
- -----3 (n = 1,2, ... ). 
l mo mol1 

20 The differential equation of the string motion has the form 

(1) 

We seek the solution to equation (1) in the form y = n~l fn(t) sin 1f7Z. 
Using the Galerkin method, we get the following equation for unknown 

functions of time 

d2 fn (7fn) 2 4kl ( . ) mo dt2 + Q10 -l- fn- If a1 + a2 smwt fn = 0. (2) 

Equations (2) can be reduced to the form 
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d2 fn 
dt2 +(an+ 2qn COS 2r) fn = 0, 

4 [Qw (1rn)2 4alkll 2qn = ~ 4a2kl where an = 2 - -l- - --z-3 ; 2 z3 . 
w mo mo 1 w mo 1 

Having calculated the values of coefficients, we get (restricting ourselves 
to the case n = 1) a1 = 3.1; and q1 = 0.050, which corresponds to a stable 
mode of the string vibrations. 

21 Since small vibrations are considered, one can assume that 

q = 2hlok ~ 2hlok ( 1 + l!_). 
a-y a a 

The equation of the string vibration has the form 

or 

22 In the case of action of a concentrated force Po, the differential equation 
of the string vibration can be represented in the form 

(1) 

where 8 (z- l0 ) is the Dirac delta function. 
Let us expand the delta function into a Fourier series in terms of the func­

tions that satisfy the boundary conditions of the problem (eigenfunctions): 

00 

"""' 1rnz 8 ( z - lo) = ~ Cn sin -l-
n=l 

The expansion coefficients are 

l 
2 j . 1rnz 2 . 1rnlo c = - 8 ( z - lo) sm --dz = - sm --

n l l l l 
0 

Taking these coefficients into account, equation (1) takes the form 

(2) 

The solution to equation (2) is sought in the form 
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00 

'""" ( ) . nnz y = L...t Yn t sm -l-
n=l 

(3) 

Substituting (3) into (2), we obtain equations in order to determine func­
tions Yn(t) 

d2 yn 2 (nn) 2 2Po . nnlo --+a - Yn = --sm--
dt2 l lmo l 

where a 2 = Qw/mo 

(n=1,2, ... ), 

Solving equation ( 4) at zero initial conditions (Yn = Yn = 0), we get 

2Pol . nnlo ( ann ) 
Yn = Q 2 2 sm -l- · 1- cos -l-t . 

wmon n 

Finally, the solution to equation (1) assumes the form 

2Pol Loo 1 . nnlo . nnz ( ann ) y(z,t) = -- -sm--sm-- · 1- cos--t . 
Q10n 2 n 2 l l l 

n=l 

(4) 

The displacement of the point of application for the force Po is a function 
of time: 

. nnlo 
2Pol oo sm -l-

y(lo,t) = -Q 2 L 2 · (1- cos-a~_nt). 
1on n=l n 

23 The differential equation of vibrations of the string lying on an elas­
tic inertialess base (see solution to Problem 9), with allowance made for a 
concentrated force, has the following form 

{)2y 2 EPy Fob (z- zo) ky 
8t2 =a 8z2 + mo mo' 

where z0 = vt 
Expanding b ( z - z0 ) into a series and assuming that 

00 

'""" ( ) . nnz y = L...t Yn t sm -l-
n=l 

(n=1,2, ... ), 

we get the following equation for Yn(t) (see solution to Problem 22) 

.. 2 nn k 2Po . nnvt 
[ ( ) 2 l Yn + a -l- + mo Yn = lmo sm -z-· 

Since Yn = Yn = 0 at t = 0, we find after some transformations 

(1) 
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. 1rnvt 
Sill -l - - / 2 ( 7rn) 2 k 

2Pol = V a -~- + -m-0 . 1rnz 
y( t, z) = --2 L -----:[=------:-'---..,.----___::,..,]=--- Sill -~- 0 

mo7r n=l n2 a2 (-7rl_n f + ~o - (-7rl_n v) 2 

( 7rn) . V (7rn)2 k - 1- VSill a 2 - 1- + ~t 

24 Figure 1.20 to the problem statement shows a string with the moving load 
Po ( z0 = vt). The differential equation of vibrations of the wire at moving load 
is similar to equation (1) in Problem 23 fork= 0): 

[)2y 2[)2y 2Po 
[} 2 = a 0 2 + - J ( z - z0 ) . 

t z lmo 
(1) 

Let us seek the solution to equation (1) in the form 

CXJ 

""' ( ) . 1rnz y = L....- Yn t Sill - 1-. 
n=l 

Using the principle of virtual displacements we get after transformations 

2Pol ~ 1 . 1rnz 
y(t,z) = ( 2 2) 2 L....- 2Sill-l-x 

m 0 a - v 1r n=l n 

( . 1rnvt v . a1rnt) 
x Sill-1-- ~Sill-1 - . 

25 In the case considered, the transverse force N with which the load acts on 
the cable does not remain constant under vibrations. The force of interaction 
between the cable and the load is 

N = Mg- Mfio ( .. d2y I ) Yo= - 2 . 
dt z = zo 

where y0 is the displacement of the string at the point where the load is 
located, Yo= Ylz = zo; and zo = vt. 

The differential equation of the string vibration (given a traveling force) 
has the form (see solution to Problem 24) 

[)2y = a2[)2y + N J(z- vt). 
8t2 8z2 mo 

Changing for the Eulerian variables we get 
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and, finally, we have the equation of small vibrations of the string with a 
moving concentrated mass M 

02y 2 02y M g M ( 02y 02y 2 02y) 
£:> 2 =a £:> 2 + -b"(z- vt)- - £:> 2 + 2v £:> £:> + v £:> 2 b"(z- vt). 
ut uz mo mo ut uzut uz 

26 In this case the solution is similar to that presented above for Problem 
24, therefore, changing Po for M g, we get 

_ 2Mgl ~ _!_ . 1rnz ( . 1rnvt _ ~ . a1rnt) 
y - 2 ( 2 2) L..., 2 sm l sm l sm l . mo7r a - v n=l n a 

The vertical displacement of the load M g is 

I 2M gl Loo 1 . 1rnvt ( . 1rnvt v . a1rnt) y = -sm-- sm--- -sm-- . 
z=vt mo7r2 (a2 -v2)n=1 n2 l l a l 

27 At each of the segments the equations of small vibrations of the string 
look like 

&2yl {)2yl 
a2 - O· 

&t2 - 1 {)z2 - ' (1) 

where ai = Qw/mw; a~ = Qw/m2o 
Assuming 

yn- YP(z)eipt 
- 0 ' (2) 

we obtain 

(3) 

Further solution is more compact if one takes for each segment its own 
origin of coordinates (see Fig. 1.22). Then we have for equations (3) 

Yl(z) =cicosk1z+c~sink1 z, 
Y0'1(z) =- cik1 sink1z + c~1 k1 cosk1z; 

YJ1(z) =ci1 cosk2z1 +c~1 sink2z1, 

Y0!Il(z) =- cl1k2 sin k2z1 + c~1 k2 cos k2z1; 

(4) 

(5) 

Having determined c~ and c}1 (j = 1, 2) from the boundary conditions, we 
represent relations ( 4) and ( 5) in vector form convenient for further transfor­
mations: 

(6) 



2.1 Vibrations of Perfectly Flexible Rods 65 

where K 1(z, k1) and KII(z, k2) are the matrices of form 

[ 
cosk1z sink1zl 

K 1 (z, ki) - k1 ; 

-k1sink1z cosk1z 

[ 
sin k1z1] 

KII(z1,k2)= cosk2z1 k2 ; 
-k2 sin k2z1 cos k2z1 

-1 -1 I -II -III 
Y oo = Yo z __ 0; Yoo = Yo · 

Z1 = 0 

Since at the point of conjunction of two segments 

or, in the vector form 

(7) 

then, from (6) we have 

-II 1 -1 
Y 00 = K (h,k1)Y00 , (8) 

where K 1 (h, ki) is the transition matrix. 
At the second segment we have for an arbitrary z1 (0 ~ z1 ~ l -h) 

(9) 

For z = 0 and z1 = l - h the boundary conditions 

-1 [ 0 l Y 0 (0,ki)= -tl ; 
Yoo 

should be satisfied. 
At z1 = l - h ( Y~1 (l- l1) = 0) it follows from condition (7) that 

-fl 
k12Y00 = 0, (10) 

where K 12 is the element of the matrix K = KII (l- h, k2) K 1 (h, ki), 
From (10), we obtain the equation for determination of the frequencies 

Pj (j = 1, 2): 

a1 cos [ : 2 (l- h)] sin ( : 1 h) + 

+ a2 sin [ ~ (l - h)] cos ( : 1 h) = 0 ( 11) 
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In the specific case, when m 10 = m 20 , we have (see solution to Problem 2) 

sin ( {tJ!; ph) = 0. 

Equation (11) provides for a possibility to determine the frequencies p1 
numerically. For every frequency we find the partial solutions (solutions to 
equations (3)): 

y; I I k I · k oj = c11 cos ljZ + c 21 sm 11 z 
y;II II k II · k Oj = c11 cos 2jZ1 + c21 sm 2jZ1 

(k11 =pi/a!); 

(k21 = pi/a2). 
(12) 

The partial solutions should satisfy the boundary conditions and condition 
(7): 

z = 0, YJj = 0; Zl = l- h, 
z = h, YJ1 (h) = YJ] (0). 

After transformations, we get 

Then we find from solutions 12 

YJ1(z) = sink11zci;; 

YJ](zl) = [sinkljll·cosk2jZ1-

y;II - O· 
Oj- ' 

cos k2j ( l - h ) . . ] II 
- . k (l l ) smk11h · smk21z1 c11 . sm 2j - 1 

(13) 

Assuming ci; = 1 and passing to z (z1 = z- h), we obtain the eigen 
functions of the boundary value problem (modes of vibrations) for the string 
as a whole: 

[ cos k2j ( l - h ) {

sink11 z, 0:::; z:::; h; 

'P 1 ( z) = cos k21 ( z - h ) - sin k21 ( l _ h) x 

x sink21 (z- h) J sink1jl1, h < z < l. 

The functions 'Pj ( z) satisfy the orthogonality condition 

l 

j 'P1'Pidz = 0 (j -=1- i). 
0 

(14) 
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Upon determining the eigen functions, we find the solution to equations 
( 1) under free vibrations 

00 

y(z, t) = L (Aj cospjt + Bj sinpjt) <pj(z). 
j=l 

(15) 

When the action of momentum J is stopped, the points of the string gain 

the velocities v = _!_ 8 (z- zk), while their displacements are equal to zero. 
mw 

Therefore, 

y(z, 0) = 0; 8yl J - = - 8 (z- zk). 
8z t=O mw 

It follows from the first initial condition that Aj = 0, therefore, 

00 

y(z,t) = LBjsinpjt<pj(z). 
j=l 

At t = 0 we have for the second condition 

(16) 

(17) 

Multiplying equation (17) both from left and from right by I.Pk(z) and inte­
grating between 0 and l, we have, on the strength of orthogonality of functions 
I.PJ(z), 

J<pj (zk) 
BJ = ----'-"-'::-z __:__ 

mwpj J <pJdz 

0 

Thus, under vibrations caused by a momentum applied, the bending de­
flections of the string are equal to 

Y(z)t) -- ~ Jl 'PJ (zk) . t ( ) ~ ----'-"--'---'-- sm PJ · <pj z . 

J=l PJ j <pJdz · mw 

0 

28 Unlike Problem 27, in this case it is required to get the matrix of transition 
from segment I to segment II accounting for the point-like concentrated mass 
M. Figure 2.9 shows the forces acting upon the mass Mat an arbitrary instant 
t ( Ji is the force of inertia). It is clear from the figure that the following 
conditions should be met under vibrations: 
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!! 

Y(l 1,t) 

0 z 

Fig. 2.9. 

aYn I aYII I Ji+Qw~ -Qw~ =0 
uz Zl = 0 uz z = h 

Y1 (Z1 , t) = y n (0, t) 

Assuming (see solution to Problem 27) that 

yii - YPeipt 
- 0 ' 

we find from conditions (1) 

Mp2 YJ (h)+ QwY!Il(O)- QwY~1 (0) = 0; 

YJ1(0) = YJ (lr), 

or, in the vector form, 
-II -I 
Y 0 (0) = AY0 (h), 

(1) 

(2) 

(3) 

(4) 

where Y~1 (0) = [Y61 (0), Y~1 (o)f and A is the matrix of transition though 
the mass M, 

A= [- ~P2 ~]· 
Qw 

(5) 

The matrix of transition from the section at z = 0 to the section at z1 = 
li (li :::::; lr) is 

K1 = A· K 1 (lr). (6) 

The general matrix of transition from z = 0 to z = l (z1 = l- l1 ) looks 
like 

(7) 

Therefore, 
- II - 1 
Y 0 (l - lr) = KY00 . (8) 
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Since the conditions 

z=O, YJ0 =0 and z1=l-lt , Y,II- 0 
0 - ' 

should hold true, then we get from (8) the following equation for determination 
of frequencies 

After some transformations, we have 

sin,\- _!!_,\sin,\ (1- ~) sin,\~l1 = 0, 
m10l l 

(9) 

where,\= pl~. Solving equation (9) numerically, we find the roots -\1 , 

and then the frequencies 

P - Aj Mo 
J - z v~· 

29 Unlike Problem 28, the mass M is not point-like in this problem, therefore, 
under vibrations, in addition to the force of inertia Ji, one should take into 
account the moment of inertia Mi (Fig. 2.10). 

Taking advantage of the d 'Alembert principle, we get two following equa­
tions 

Ji + Q10Y'II (0, t)- Q10Y'1 (0, t) = 0; (1) 

(2) 

Displacements of the points of the string attachment are related by the ex­
pression 

!! 

yl 

z 

Fig. 2.10. 



70 2 Answers and solutions 

yit,=o = yt=h + 2n'h. (3) 

The quantities Ji and Mi appearing in equations (1) and (2) are equal to, 
respectively, 

Assuming 

J = -M82Yi 
t 8t2 

Y1 (z, t) = YJeipt, yn (z, t) = YJ1eipt, 
. t 

{)K = {)Koe'P , 

we get after transformations (exclusion of{) Ko from (1) and (2) ) two equations 
relating the end of the first segment with the beginning of the second segment 
of the string: 

Mp2 y;III + y;'III =- Mp2 y;II + y;'II 2Q 0 0 2Q 0 0 ' 
10 z 1 =0 z 1 =0 10 Z = h z=l, 

(4) 

(5) 

or, in the vector form 

(6) 

Here 

Mp2 
1 

A1= 
2Qw 

( JKp2 - 2rQw) 
2rQw 

r 

Mp2 
1 

A2= 
2Qw 

_ ( JKp2 - 2rQw) -r 
2rQw 
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From relationship (6) we find 

y~ll = AYII , 
Z1=0 z=h 

where 

A1 = A!1A2 = 

-~ [ (;~0 + 2:~10) p2 - 1] 
2r 

Qw 

Mp2 ( JKP2 - 1) 
6.Qw 2rQw 

1 [( rM JK ) 2 ] 
- 6. 2Qw + 2rQw p - 1 

( rM JK ) 2 
6. = 2Qw - 2rQw p + 1. 

(7) 

At r = 0 we get from (7) a matrix of transition through the con­

centrated mass M (see Problem 28). The transition matrices K 11z=h and 

KIIIz
1
=zK (zK = l- h- 2r) for two segments of the string are similar to 

the matrices determined in Problem 28, therefore, the equation relating vec-
-1 -II I -II -II I 

tors Y 00 = Y 0 z=O and Y 0K = Y 0 z
1
=zK has the form 

-II -1 
YoK = K(p)Yoo' (8) 

where 
K(p) = KII(zl)AK1(h). 

Since YJl = YJ0 = 0, from (8) we find the following equation to determine 
the frequencies Pi: 

k12(p) = 0, 

where k12 (p) is the element of matrix K. 

30 After application of the force Po, with allowance for the initial tension 
Qw, the string tensions Q11 and Q12 on the segments I and II, respectively, 
are equal to 

The equation of small vibrations has the following form for every segment of 
the string 

(1) 
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Assuming yi = YJeipt and yn = YJieipt*, after transformations we get 
the following solution in the vector for (see Problem 27) 

-I I -I -II II -II 
Y 0 (z) = K (z)Y00 ; Y 0 (z1) = K (zi)Y00 . (2) 

Since the conditions 

y;II I - y;I I . 0 - 0 ' 
ZI = 0 Z = h 

y;,n I _ y;'r I 
0 - 0 ' 

Z1 = 0 Z = h 

should be satisfied at z = h, the matrix of transition to the segment II is 
equal to 

(3) 

where k1 = pja1 . Therefore, 

-II I -I 
Y 00 = K (h,ki)Y00 . 

On the second segment we have 

Since the condition YJI = 0 must be met at z1 = l- h, then 

k12 = 0, 

where k12 is the element of the matrix K = Kn (l-l 1 , k2) KI (l1, ki). Af­
ter some transformations we get the following equation for determination of 
frequencies: 

31 In this problem, the 'kinematic' excitation of vibrations takes place, which 
presents some difficulties for a solver. Therefore, we describe below the gen­
eral method of solving similar problems that can be used for both exact and 
approximate solutions. 

We assume that an unknown vertical strength P(t) is applied to the string 
at point K, generating vibrations and displacing the point K according to the 
law YK(t). This allows us to consider the problem in question as a problem in 
forced vibrations. The equation of forced vibrations of a string has the form 

fPy fPy 
L(y) = mo at2 - Qw az2 - P(t) 6 (z- ZK) = 0. (1) 

We seek the approximate solution to equation (1) in the form 
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_ 1rz 21rz 
y(z, t) = h sin T + h sin -l-. (2) 

Making transformation with the use of the Galerkin method we arrive at two 
equations 

00 2 1rZK h + P1 h = P(t) sin -l- (P =Po coswt); 

oo 2 . 21rZK h + P2 h = P(t)sm-l-. 

Under steady-state vibrations we have 

1rZK 
Po sin -l-

h = ( 2 2 ) coswt; 
P1 -w 

n . 1rZK 
rosm -l-

h = ( 2 2 ) coswt. 
P2 -w 

As a result, we find 

( 

. 1rZK . 21rZK ) 
- sm -l- . 7rZ sm -l- . 27rz 
y(z, t) =Po ( 2 2 ) sm -l + ( 2 2 ) sm- . 

p 1 - w p2 - w l 

(3) 

(4) 

(5) 

Since at z = ZK the amplitude of displacement of the point K should be 
equal to YKo, then we get from relationship (5) the following equation for 
determination of the unknown amplitude of force P0 : 

[ 

( . 1rZK)2 (. 27rZK)
21 sm-- sm l 

YKo = Po 2 l 2 + 2 2 = Faa. 
P1- w P2- w 

(6) 

Now, having determined Po from equation (6), we get the solution to the 
problem stated in the form 

[ 

. 1rZK . 21rZK l 
- YKo sm -l- . 7rZ YKo sm -l- . 27rz 
y(z,t) = ( 2 2 ) sm- + ( 2 2 ) sm-l- coswt. a p 1 - w l a p 2 - w 

32 The equation of vibrations of a moving string, taking its interaction with 
a point-like mass Minto account, has the form (see solution to Problem 11) 

(1) 

The solution to equation (1) we seek in the form (two-term approximation) 

_ f . 1rz f . 27rz 
y = 1 sm T + 2 sm -l-. (2) 
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Taking advantage of the Galerkin method, we have the following relations 

l J L (fi) sin 7 dz = 0; 
0 

l J 2nz 
L (fi) sin - 1-dz = 0, 

0 

from which two equations for h and h are derived 

auf1 + a12J2- b12i2 + cnh = 0; 

a2d1 + a2d2 + b2d1 + c22h = 0, 
(3) 

M 0 2 1fZK -sm --· a= 
mo l ' 

M 0 1fZK 0 21fZK 
-sin--sm--· 
mo l l ' 
Assuming 

M 0 2 27fZK 
a2 = -sm --

mo l 

h = !10eipt; h = hoeipt, 

let us write based on system (3) the following equation to determine the 
frequencies Pj 

or 

( -p2an +en) 

(b22ip- ap2) 

4 au c22 + a22cn + bi2 2 en c22 
p - p + = 0. 

au a22 - a 2 au a22 - a 2 

From ( 5) we find the desired frequencies 

./ a1- Jai- 4a2 
Pl = v 2 ; P2 = 

a2=-----,­
aua22- a 2 · 

(4) 

(5) 

33 When solving Problem 11 we have derived the equation of small vibrations 
of the moving branch of a gearing that was considered as a perfectly flexible 
rod (string). This problem differs in the fact that the moving string interacts 
in the section K with a point-like mass M. 

Derive the conversion matrix taking the moving string into account. Fig­
ure 2.11 illustrates the forces acting upon the mass M. Unlike Problem 28, 
here an additional concentrated force Jw appears that is caused by changing 
momentum of the string per unit time 

(1) 



2.1 Vibrations of Perfectly Flexible Rods 75 

!! 

z 
z z, 

Fig. 2.11. 

In the projection onto the vertical axis 

(2) 

The equation of dynamic equilibrium of the mass M, taking lw into account, 
has the following form 

-M0;~2K + (Qw- mow2 ) ym(o, t)- (Qw- mow2 ) y'1(h, t) = 0, 

where YK = y1(h, t). 
For vertical displacements of the end of the segment I and the beginning 

of the segment I I of the string the following relation holds true (the point K 
is taken as zero point for the segment I I) 

(3) 

Assuming 
yi(h , t) = y~(l , l)eipt; yn(o, t) = Ybi(O)eir t, (4) 

we get after some transformations the following transition matrix 

(5) 

Now write the transition matrices for segments I and I I. It was established 
in solution to Problem 11 that 

YI(1J) = c1e>.r'7 + C2e>.2 '1; (1J = zjl), (6) 

_ . ( a1 ± J ai + 4a2) . _ 2wpm0 . 
where >.1,2 - 1 , a1 - (Q 2), 

2 10 - mow 
2 

a2 = (Q mop 2). Differentiating equation (6) we get 
10- mow 
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(7) 

Now, assuming Z = (y~, yl) T, let us write down the matrix relating the string 
section at the zero point with an arbitrary section on the segment I (TJ < 'T/K) 
as 

[ 
y~ (0) ]· 
Y1 (0) 

(7) 

The matrix K 1 (from ry = 0 to ry = 'T/K) is equal to 

(8) 

In a similar way we compose the matrix of transition from 'T/K to ry = 1 as 

(9) 

Finally, we have 

(10) 

Since Yl(O) = 0 at TJ = 0, and y1 (1) = 0 at TJ = 1, then we get from the matrix 
K(p,w) 

k22(p,w) = 0. (11) 

Now from condition (11) one determine the frequencies Pj numerically as 
functions of w. 

34 Invoking the mass 

mo = mw [H(z)- H (z- h)]+ m2oH (z- h), (1) 

we get the equation of small forced vibrations of a string with allowance for 
a concentrated force P(t) 

[J2y [J2y 
L(y) = mo fJt2 - Qw f)z 2 - P(t)r5 (z- h) = 0. (2) 

The approximate solution to equation (2) is sought in the form (single-term 
approximation) 

Y = h(t)cpl(z), (3) 

where cp1 ( z) is the function satisfying the boundary conditions, for example, 

1rZ 
'Pl(z) =sin z· (4) 
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For a string having the segments with masses m 10 and m 20 the exact eigen 
function at j = 1 (see solution to Problem 27) is equal to 

{

sinkuz, 0:::; z:::; lr; 
cos k21 (l- ll) 

4?1(z) = cosk21(z -l)- . k (l l ) x 
Sill 21 - 1 

x sin k21 ( z - lr ) sin kulr , lr < z :::; l. 

In accordance with the Galerkin method we obtain 

or 

l J L (ii) 4?1dz = 0, 
0 

h [mw] 4?i 4?i dz + m2o j 4?l14?i1dz]-
o l, 

(5) 

(6) 

- h Qw [J tr?i 4?i dz + j tr?i14?i1dz]- P(t)4?i (lr) = 0. (7) 
0 l, 

After transformations at 4?1(z) =sin ~z (zK =h) we have 

(8) 

where p1 is the approximate value of the first frequency. (If for the function 
4?1(z) we take eigenfunction (5), then we have the exact value of the first 
frequency.) 

Under a steady-state regime 

Expression (9) holds true provided that w -=1- p1, therefore, 

__ 4?1 (ll) 4?1 (z) Po t 
y- 2 2 cosw . 

PI -w 

(9) 

The amplitude YK of the string vertical displacement at point K is equal to 

[4?1 (l1)] 2 Po 
YK = 2 2 . 

PI -w 
(10) 

Now we find the problem's exact solution, assuming that 
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00 

y(z, t) = L fJ(t)<p(z), (11) 
j=l 

where ~Pi ( z) are the eigen functions (see solution to P roblem 27). Substituting 
(11) into equation (2) and taking advantage of the Galerkin method, we have 

l J L (y) <pj(z)dz = 0 

0 

(j=1,2, . .. n). 

From (12) we derive the following system of equations for functions fi(t) 

.. 2 I 
fi +pjfj = P(t)<pj (h) (j = 1,2, .. . n). 

From (13) we determine fJ under steady-state vibrations 

The exact solution has the form 

~ ~P] (h) Po 
y(z, t) = ~ ( 2 _ 2 ) coswt <pj(z). 

i=l Pj w 

(12) 

(13) 

(14) 

35 Changing the action of an elastic constraint on the rod by a concentrated 
force N (Fig. 2.12) we arrive at the equation of small forced vibrations 

where N = - cyj _1 . 
Z- K1 

The approximate solution is sought in the form 

.!/ 

h' 

z 

t 

Fig. 2.12. 
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y = h(t)'PI(z) + h(t)'P2(z). (2) 

A f h h f . . nz d . 2nz 
s unctions 'Pl and ip2 we c oose t e unctwns sm T an sm -l-, respec-

tively. Substituting y into (1) and making use of an algorithm of the Galerkin 
method we write down the following relations 

l l I 1rZ 
L (Y) sin Tdz = 0, I 2nz 

L (Y) sin -l-dz = 0, 

0 0 

from which we derive the differential equations for h and f2: 

f1 + anh + a12h = b1; 

f2 + a21h + a22h = b2. 

Here 

Q10 (1r) 2 2c ( . nlK1 )
2 

an= mo l + lmo sm-l- ; 

2c . nlK1 • 2nlK1 
a12 = a21 = -l -sm-l-sm--; 

mo l 

QlO (2n) 2 2c (. 2nlK1 )
2 

a22=- - +- sin-- · 
mo l lmo l ' 

. 7rlK2 
b1 =Po sm -l- coswt; 

2nlK2 
b2 = Po sin -l- cos wt. 

Let us represent system of equations ( 4) in the vector form 

(3) 

(4) 

(5) 

- - - T 
where b = bo cos wt; b 0 = [b01 , b02] . Under a steady-state regime, we have 

f = fo coswt. (6) 

Substituting (6) into equation (5), we find 

- [ 2 l-1 -f 0 = A- w E = A1bo, (7) 

where 

a12] 6 . 
2 . 

an;;, w ' 
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From (7), we determine the components of vector f 0: 

h b . 7rlK2 b R . 27rlK2 w ere 01 = Po sm -l-; 02 = o Sin -l-. 
The approximate solution to equation (1) under steady-state vibrations, 

accounting for a local elastic (bilateral) constraint, has the form 

( ) ~ . 7rZ ~ . 27rZ y z, t = JOl sm Tcoswt + J02 sm -l- coswt. 

The amplitude values of the rod displacements at points K1 and K2 are equal, 
respectively, to 

. 7rlK1 • 27rlK1 
YKt =lot sm -l- + fo2 sm -l-; 

. 7rlK2 . 27rlK2 
YK2 = fotSm-l- +!o2sm-l-. 

36 The equation of forced vibrations of a string (see solution to Problem 35) 
has the form 

Under steady-state vibrations one can assume that 

y = Yo(z) coswt. (2) 

As a result, we have the following equation 

whose general solution is 

z 

Yo= c1 cos kz + c2 sinkz + ~ j sink(z- h)· b(h)dh, (4) 
0 

~ where k = wV Qw and b = cyo 8 (h- ZK1 )- Po 8 (h- ZK2 ). 

Taking the integral in equation ( 4) we obtain 
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Yo = c1 cos kz + c2 sin kz+ 
1 . + k cyo ( z K 1 ) sm k ( z - z K J · H ( z - z K 1 ) -

1 . 
-Po k sm k (z- ZK2 ) • H (z- ZK2 ). 

In order to determine three unknowns c1, c2, and Yo (zK1 ), we have three 
conditions 

1) z = 0, Yo= 0, C1 = 0; 

2) z = l, Yo= 0; 

3) Z = ZK1 , Yo= Yo (zKJ, c2 sinkZK1 - Yo (ZK1 ) = 0. 

As a result, we get the following system of inhomogeneous equations 

c2 sin kZK1 -Yo (ZK1 ) = 0; 

c2 sin k l + ~ sin ( l - z K J · Yo ( z K 1 ) = ~0 sin k ( l - z K 2 ) , 

from which we find c2 and Yo (zK1 ). The exact solution has the form 

y( z, t) = [ c2 sin kz + ~Yo ( z K J sin k ( z - z K J · H ( z - z K J -

- ~0 sink (z- ZK,) · H (z- ZK2 )] coswt. 

37 Accounting for the forces of viscous drag, the equation of small vibrations 
has the form 

The solution to equation (1) in the case of steady-state vibrations we seek in 
the form 

y = Yo1(z) coswt + Yo2(z) sinwt. (2) 

Substituting (2) into equation (1) let us write two equations for y01 and y02 : 

11 mow2 aw c 
Yo1 + -Q Y01 - -Q Yo2 =-Q Yo1 t5 (z- ZKJ-

10 10 10 
Po 

- -Q J (z- ZK2 ); (3) 
10 

11 aw mow2 c 
Yo2 + -Q Yo1 + -Q Yo2 =-Q Yo2 t5 (z- ZKJ · 

10 10 10 

Assuming y~1 = X1, y~2 = x2, Yo1 = X3, and Yo2 = X4 we obtain the equation 
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_, - -
X +AX=b, 

0 0 
mow2 aw 

QlO Qlg 

A= 0 0 
aw mow ;h= 
QlO QlO 

-1 0 0 0 
0 -1 0 0 

where 61 = <5 (z- zxJ and 62 = b" (z- Zx2 ). 

The solution to equation (4) has the form 

z 

c Po 
-yo1b"1- -62 
Qlo c Q1o 

QYo1b"1 
10 

0 
0 

X =K(z)C + J K(z- h)b(h)dh; 

0 

C = [ci,c2,c3,c4]T, 

or 

X= K(z)C + K (z- ZK1 ) ho1H (z- ZK1 ) + 

(4) 

(5) 

+ K (z- zx2 ) ho2H (z- Zx2 ), (6) 

where 
Po 

QlO 

ho2 = 0 

0 
0 

The components of vector X should satisfy the following boundary conditions 

Z = 0; X3 = X4 = 0; 
Z = l; X3 = X4 = 0; 

From the first condition (z = 0) we find c3 = c4 = 0. From the second condi-
tions ( z = l) we derive two equations for four unknowns ( c1, c2, Ym ( z K 1 ) , yo2 ( z K 1 ) ) : 

(7) 
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Two more equations we write from the conditions z = ZK, x3 = y01 (zKJ and 
X4 = Yo2 (zKl): 

Y01 (ZK 1 ) = k31 (zKJ C1 + k32 (ZK1 ) C2j 

Yo2 (ZK1 ) = k41 (ZK1 ) c1 + k42 (ZK1 ) c2. 
(8) 

From systems of equations (7) and (8) we find c1, c2, Yo1 (zKJ and Yo2 (zK2 ), 

as well as Yo1 (z) and Yo2 (z): 
c 

Y01 (z) = k31 (z) C1 + k32 (z) C2 + k31 (z- ZKJ -Q Y01 (zKJ X 
10 

c 
xH (z- ZKJ + k32 (z- ZKJ -Q Yo2 (zKJ H (z- ZKJ-

10 

Po 
--Q k31 (z- ZK2 ) H (z- ZK2 ); 

10 
c 

Y02 (z) = k41 (z) C1 + k42 (z) C2 + k41 (z- ZK1 ) -Q Yo1 (zKJ X 
10 

c 
XH (z- ZKJ + k42 (z- ZKJ -Q Yo2 (ZK 1 ) H (z- ZK1 )-

10 

Po 
--Q k41 (z- ZK2 ) H (z- ZK2 ). 

10 

The exact solution to equation (1) has the form 

y(z, t) = Yo1 (z) coswt + Yo2 (z) sinwt 

38 The equation of small vibrations of a string lying on an elastic base with 
linear characteristic, taking into account the moving mass M and its gravity 
force M g, has the form 

82y 82y ( 82y) 
mo 8t2 =Qw 8z2 -ky+ -M at2 15(z-zM)-Mg<5(z-zM), (1) 

where ZM = vt. 
The approximate solution to equation (1) we seek (restricting ourselves to 

two-term approximation) in the form 

2 . 
~ '"' ( ) 7fJZ y = ~ J1 t sin -l-. (2) 

j=1 

Substituting (2) into (1) we get 

2 
[ .. 1rjz (7rj) 2 1rjz 1rjzl ~ mofJ sin -l- + Qw T sin -l-fJ + kfJ sin -l-

2 . 
'"' .. . 1rJZ = -M ~ fJ sm-l-15- Mgl5. 
j=1 

(3) 
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Using the principle of virtual displacements we obtain the equations for un­
known functions iJ ( t): 

.. ( 7r ) 2 1 k M 2 .. 7rVt !l+Q10 - -!1 + -!1 = ---!lsin--
1 mo mo mol l 
2 ·· 7rVt 27rvt 2 7rVt 

-M-hsin-sin--- -Mgsin-· 
lmo l l lmo l ' 

.. (21r) 2 1 k M 2 .. 1rvt 21rvt h+Q10 - -h + -h = ---!1 sin- sin---
1 mo mo mol l l 

(4) 

2 ·· . 21rvt2 2 . 21rvt 
-M-hsm--- -Mgsm--

lmo l lmo l ' 

and then find 

·· ·· 2Mg 1rvt 
an (t)!l + a12(t)h +en (t)!l =- mol sin - 1-; 

·· ·· 2Mg 21rvt 
a21 (t)f1 + a22(t)h + e22(t)h =- mol sin - 1-. 

(5) 

In the vector form equations (5) look like 

f +A - 1Cf =A - 1£, (6) 

where A = [an a12] ; C = [en 0 ] . 
a21 a22 0 e22 

Now solve the inho~ogeneous equation numerically at zero initial condi-

tions: t = 0, f(O) = 0, f(O) = 0 on the time interval 0:::;: t:::;: ljv. Having deter­
mined fJ ( t), we find the string bending deflections at the point z(O < z < l) at 
any instant (0 < t < tK ), as well as the bending deflection under the moving 
point-like mass 

_ ( ) f ( ) . 1rvt f ( ) . 21rvt Y ZM = 1 t Sill - 1- + 2 t Sill - 1-. (7) 

At the time tk the mass M leaves the string, and the string begins to execute 
free vibrations under the following initial conditions: 

. 7rZ . 27rZ 
y ( t K' z) = !1 ( t K) Sill T + h ( t K) Sill -l-; 

· 7rZ · 27rZ 
iJ ( t K, z) = !1 ( t K) sin T + h ( t K) sin - 1-. 

(8) 

The equation of free vibrations of the string is 

(9) 

Taking advantage of the Fourier method and assuming y = T(t)Y(z), we get 
two equations 
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.. _x2 
T + -T = 0; (10) 

mo 

(/32=~). QlO 
(11) 

Then determine T and Y: 

.X . .X 
T =Cl cos ;;;;:;-::t + C2Slll ;;;;:;-::t; 

ymo ymo (12) 

Y = c3 cos f3z + c 4 sin f3z. 

The function Y should satisfy the boundary conditions z = 0, Y = 0 and z = 
l, Y = 0, which are fulfilled at c3 = 0 and f3l = 1rn. This allows us to 
determine .X: 

As a result, we have the partial solution 

y(n) = ( c~n) cos Pnt + c~n) sinpnt) sin nnz, (13) 

h (~n)2 Q10 + ~-w ere Pn = " 
mo mo 

The general solution has the following form 

00 00 

Y = Ly(n) = L ( c~n) cospnt + c~n) sinpnt) sin nnz. (14) 
n=l n=l 

At t = 0 (we take the instant when the mass M leaves the string as the zero 
time moment) the bending deflections and velocities of the string are known 
(see equations (8)): 

Y(O,z) =Y(tK,z); Y(O,z) =Y(tK,z). 

Therefore, from equation (14) we find 

00 

Y(O, z) = L c~n) sin nnz; 
n=l (15) 

00 

. ~ (n) . Y(O,z) = ~PnC2 smnnz. 
n=l 

The arbitrary constants are nonzero only for n = 1 and n = 2. Taking equa­
tions (8) and (14) into account, these constants are equal to 
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Finally, we get the following solution to equation (9) of free vibrations of the 
string after the mass M has left it: 

2 

y = 2::= ( cij) cospjt + cJJl sinpjt) sin 1rjz. 
j=l 

39 The algorithm of solving the equations of free vibrations of a tape was 
described in Problem 11. In this case, at t = 0 the bending deflections vanish, 
i.e., a 1 ( z) = 0, while vertical velocities of the tape axial points satisfy the 
following condition 

J 
a2 ( z) = - 8 ( z - z K) . 

mo 

From system of equations (14) and (15) (see solution to Problem 11) we have 

Taking the real part of solution (10) from Problem 11, we obtain 

00 

( ) " [ ( (n) (n) . ) Yn = Yl z, t = ~ C1n y1 cospnt + y2 smpnt + 
j=l 
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2.2 Torsional vibrations of rods 

40 Figure 2.13 shows the shaft element of length dz with the moments M 1 

and M1 + dM1 acting upon it. 
The differential equation of rotation for the shaft element has the form 

(1) 

In order to determine the frequencies of torsional vibrations of the shaft , we 
seek the solution to equation (1) in the following form 

<p = 'PI (z) sinp t, 

where p is the unknown frequency of vibrations. 
From ( 1) we have 

pz . pz 
'PI = CI COS -+ C2 Slll -. 

a a 

The function <p1 should satisfy certain boundary conditions depending on the 
way of holding the end butts. 

In the case shown in Fig. 1.32a (free end butts) the intrinsic moment in 
the end sections is equal to zero: 

This allows us to derive the conditions ~cp I = 0. Hence, 
uz z=O; l 

c/!. = 0, 
a 
p . p p p 

CI - Slll -[ = C2 - COS-[ = 0. 
a a a a 

dz 

dm 
Fig. 2.13. 

(2) 

(3) 
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It follows from relation (2) that c2 = 0 , while from equation (3) sin '!!_z = 0 
a 

(since c1 should be different from zero) . This is possible if p l /a = 1rn ( n = 
1, 2, ... ). 

The frequencies of torsional vibrations of a free shaft (see Fig. 1.32a) are 

7rn fc 
Pn=Tylf (n=1,2, ... ). 

If one of shaft sections is fixed (see Fig. 1.32b), the boundary conditions have 
the form 

z = 0, 

z = l, 

'Pl = 0; 

ocp = o oz . 
After similar calculations, we have frequencies of torsional vibrations of the 
shaft 

_ 2n-1 fc 
Pn- 2[ y 7j (n=1,2, ... ). 

For the case of holding the both end butts, the boundary conditions have 
the form (see Fig.l.32c) 

z = 0, 'Pl = 0; 

z = l, 'Pl = 0, 

and the frequencies of vibrations 

(n = 1, 2, ... ). 

41 The velocity of propagation of a shear wave is 

a= VG'1'Q. 

Upon substituting the numerical values we have a= 3.2 mjs. 

42 Let us change the spring for an equivalent rod of the round cross section, 
equating their torsional rigidities 

GJp E1rd4 /64 
l 1rDi 

where Jp is the geometric moment of inertia for the equivalent rod section. 
The moment of inertia of the equivalent rod is equal to the moment inertia 

of the spring mass: 
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7rd2 D2 
nJ l = n-1rDi-. 
"' p "' 4 4 

(The spring has a small angle of lead, therefore, it can be schematically repre­
sented as consisting of i coils. The moment of inertia of a coil is J = mD2 I 4, 
where m = Q ( 1rd2 I 4) 1r D is the coil mass, and J i is the moment of inertia of 
the entire spring.) 

The velocity of propagation of a shear wave 

a= 2~i~2fg. 
After substitution of numerical values we find a~ 4.1 mls. 

Now the frequencies of torsional vibrations of the spring (the spring is 
equivalent to a rod, one end butt of which is rigidly fixed) 

2n- 1 dl {E 
Pn = -2-l - 27riD2 v e (n = 1, 2, ... ). 

43 The differential equation of small torsional vibrations of a shaft (see 
Problem 40) is written as 

82r.p 2 82r.p 
--=a--
8t2 8z2 (1) 

Solution of (1) is searched in the form r.p = r.p1(z) sinpt that permits, after 
substituting the solution into (1), to get an equation for r.p1: 

82 2 
~ + p 'Pl = 0. 
8z2 a 2 

(2) 

The solution to this equation has the form 

p . p 
'Pl = c1 cos -z + c2 sm -z. 

a a 

The moments of inertia of the disks applied to the end butts of the shaft, and 
this allows us to derive two boundary conditions 

(3) 

(4) 

where Jp is the polar moment of inertia for a shaft section. 
The fulfilled boundary conditions (3) and (4) allow one to get the following 

system of homogeneous equations for c1 and c2: 
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GJ/!-c2 + J1p2c1 = 0; 
a 

(GJ/- cos '!!.z + hp2 sin !!.z) C2-
a a a 

- (GJp!!_ sin !!_z + hp2 COS !!_z) C1 = 0. 
a a a 

Equating the determinant of this system to zero, we have the following equa­
tion for determination of the frequencies of free vibrations: 

(3 - f3(m+n) 
tan - (32 1 , mn -

(5) 

where (3 = plja; m = JdJo; n = J2/Jo, and Jo = glJp. The formula for 
the frequencies of the disks' vibrations derived in solution to Problem 233 in 
Part I follows from (5) as a specific case. To this end we represent (5) in the 
form 

tan(3 m+n 
(3 mn(32 - 1 

and pass to the limit at {2 ---+ 0. 
Then we express m, n, and (3 through the system parameters: 

pl.JQ 
tan--

VG 
J VG (JlhP2 

- ) . 
P J 2G g 

p 

In the limit (at {2 ---+ 0) we have 

2 GJp 
p = (Jl +h) JlJ2l" 
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2.3 Extensional vibrations of rods 

44 Figure 2.14 shows a rod element taken at an arbitrary distance z. The 

inertia force dJ = -dz · F[! d2u2 and the forces Nand N + dN act upon the 
dt 

rod element. 

Taking advantage of the d'Alembert's principle (assuming :t
2
2 = :t

2
2 ), we 

have 

(mo = F[!). 

Substituting N = EF~: into (1), we get 

(a2 = EF/mo). 

We seek the solution to equation (2) in the form 

u = u(z) sinpt, 

where p is the frequency of vibrations of the rod. 
After substitution of (3) into equation (2) we find 

d2u1 p2u1 _ 0 
dt2 + a2 - · 

The solution to equation ( 4) has the form 

pz . pz 
U1 = C1 COS - + C2 Slll -. 

a a 

(1) 

(2) 

(3) 

(4) 

Consider the case of a free rod (see Fig. 1.32a). The solution to the equation 
should satisfy the boundary conditions (the force N at the rod ends is equal 
to zero at z = 0): 

g 
z dz 

+dN 

0 z 
u +du 

Fig. 2.14. 
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au . dul 
N = EF- = EFsmpt- = 0 

&z dz ' 

i.e., ~u 1 I = 0. Similarly, for the second end section we have ~u 1 I = 0. 
Z z=O Z z=l 

The arbitrary constants c1 and c2 cannot be equal to zero simultaneously (then 
u = 0 and no motion takes place). Therefore, in order that the boundary 

conditions would be met, it is necessary that c2 = 0 and sin pl = 0, i.e., 
a 

pl 
- = 1rn (n = 1, 2, ... ). 
a 

to 
For the case shown in Fig. 1.32a the frequency of rod vibrations is equal 

Pn = 7rn {EF 
l v-;;;; (n = 1, 2, ... ). 

The boundary conditions for the case presented in Fig. 1.32b have the form 

z = 0, 

z = l, 

U1 = 0; 

du1 = 0 
dz ' 

and the frequencies of vibrations are determined by the expression 

_ 2n-1 {EF 
Pn - 2 l V -;;;; (n=1,2, ... ). 

Accordingly, for the case shown in Fig. 1.32c 

and 

Z = 0, U1 = 0; 

Z = [, U1 = 0 

Pn = 7rn {EF 
l v-;;;; (n=1,2, ... ). 

45 The velocity of propagation of perturbations 

a= JEF/mo = .JifTQ. 

After substitution of numerical values we obtain a= 5 · 103 mjs. 

46 In the case considered, under free vibrations (see solution to Problem 
44) the force equal to dz · q(z, t) is added to the forces acting upon the rod 
element, and the differential equation of rod vibrations takes on the form 

&2u 2&2u q 
&t2 =a &z2 + mo · 
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47 In the case under consideration (see solution to Problem 44) 

N = EF(z) au az 
The equation of extensional vibrations assumes the form 

48 The boundary conditions have the form 

z = 0, 

z = l, 

au 
-EF=cu· az ' 
~~EF = 0. 

The sign of the elastic force can be taken from Fig. 1.37b, where a rod ele­
ment is shown close to the elastic fixation with a positive direction of the inner 
strength N (assumed at the equation derivation) and a positive displacement 
of the end butt. 

After transformations, we get the equation for determination of the fre­
quency of rod vibrations 

c 
tank= kEF/l 

or, for the case considered, at c = E F / l 

(k = plja). 

Fig. 2.15. 

Pl a 
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1 
tank= k," (1) 

Equation (1) has the following roots: k1 ~ 3n/8; k2 ~ 9n/8; and k3 ~ 
33n /16 (Fig. 2.15). Hence, the frequencies of vibrations are equal to 

P1 = ~~ {EF; 
8 l v --;;;:; P2 = ~~ {EF; 

8 l v --;;;:; P3 = 33~ fEF. 
16 l v --;;;:; 

49 In the general case (for an arbitrary stiffness c), the equation of frequencies 
has the form 

Since c = EF/l, then 

EFk 
tank=---. 

lc 

tank= -k. (1) 

Equation (1), when solved graphically (see Fig. 2.15), has the following 
roots: k1 ~ 2n /3 and k2 ~ 3n /2. Hence, the frequencies are 

P1 ~ ~ ~ {i!fF; 
3 l v --;;;:; 

50 In the case considered, we have the following boundary conditions: 

z = 0, 
8u 
ozEF = c1u; 

z = l, 
8u 
OZEF = -C2U. 

The equation of frequencies has the following form 

tank= 
kEF (c2 + cl) /l 

c1c2- (EF/l) 2 k2 

Hence, the equation has the roots k1 ~ 1.25 and k2 ~ 3.5, and the fre­
quencies of vibrations 

P2 ~ 3.5 {J!fF_ 
l v --;;;:; 

51 At the initial instant u = 0 and ~~ = -v, therefore, after some transfor­

mations we find 

8vl Loo 1 . nnz . nnat 
u=-- -sm--sm--

n2a n 2 2l 2l 
n=l 

(n=1,3,5, ... ). 



203 Extensional vibrations of rods 95 

The displacement of the right end face (z = l): 

(l ) _ 8v l ~ ( -1) ~ 0 1rnat 
u , t - 2 ~ 2 sm l 

7r a n=l n 

The displacement of the right end face reaches its maximum value at the 
0 lj ( ho 0 1rnat1 ( )n~l) time h = a at t 1s moment sm - 2-1- = -1 -2- 0 

The displacement is 

The axial strength is 

N = E F ou = - E F Sv l ~ _.!_ ( 1rn) cos 1rnz sin 1rnat 0 

oz 1r2 a ~ n 2 2l 2l 2l 
n=l 

And, finally, the maximum value of strength 

4vEF ~ 1 n+l vEF ~ 
Nmax = ---~ --( -1) = --- = -vy EFmoo 

1ra 2n- 1 a 
n=l 

52 At the initial instant 

u:=O; u={O 
-v 

for 0 S. z S. l/2; 

for l/2<zS.lo 

The expression for the displacement of an arbitrary section of the rod assumes 
the form 

~ 0 1rnz 0 1rnat 
u= ~cnsm2Tsm~ (n=1,3,5,ooo)o 

n=l 

Since u = u0 at t = 0, then the coefficients of the series are equal to 

8v l 1rn 
Cn =---cos-

7r2an2 4 (n=1,3,5,ooo)o 

The axial strength under rod vibrations 

N=EF 0u = oz 
4E Fv L 1 1rn 1rnz 0 1rnat 

= --- -cos-cos--sin--
a7r n 4 2l 2l 

n 

(n=1,3,5,0oo)o 

Assuming z = l /2, we get the axial strength at the place of conjunction of 
two rods: 
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N =-4EFv L 2_ cos2 1fn si·n 1fnat 
a1r n 4 2l 

(n=1,3,5, ... ). 
n 

53 For every part of the rod the following equation 

cPu 2 82u 
fJt2 =a (Jz2 

is valid. 

(1) 

Seeking the solution to equation (1) in the form u = u 1(z)sinpt we get 

pz . pz 
U1 = C1 COS - + C2 Slll -. 

a a 
(2) 

The amplitude of the longitudinal force 

N=EF~:1 . 
Invoke the following designations: u 11 and N 1 are the displacement and 

the longitudinal force at the first segment, u 12 and N 2 are the same quantities 
at the second segment. 

At the first segment N1 = 0 and, therefore, c2 = 0, i.e., at z = 0 

pz 
Uu = C1 COS-; 

a 

At the end of the first segment 

Ph 
Uu = C1 COS-; 

a 

p . ph 
N1 = --EFc1 sm-. 

a a 

One can choose any value for the amplitude value of the displacement of 
the free end butt, for example, u 11 (0) = 1, then c1 = 1. At the second segment 

Ph 
U12 (h) = Uu (h)= COS-; 

a 
p . ph 

N1 (h)= N2 (h)= -EF1- sm-. 
a a 

Having determined c1 and c2 in solution (2) for the second segment, where 
z changes from 0 to l2 , we obtain for u 12 (z) and N 2 (z) the following equations: 

F1 . ph . pz ph pz 
u12 (z) = -- sm -sm- +cos- cos-; 

F2 a a a a 
p . ph pz p ph . pz 

N2 (z) = --EF1 sm- cos-- -EF2 cos-sm-. 
a a a a a a 

The condition u12(h) = 0 entails the following transcendent equation of 
frequencies 
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F1 hk hk 
-tan-cot-
F2 l l 

(3) 

Solving equation (3) (for example, graphically), one can obtain the fol­
lowing values of the first four roots: k1 = 1.89; k2 = 4.53; k3 = 7.85; and 
k4 = 11.2. Thus, the first four frequencies of rod vibrations are equal to 

54 The equation has the following form 

55 We seek the solution to the equation of extensional vibrations of the rod 
using the Galerkin method and assuming 

The function u1 (z) satisfies the boundary conditions of the problem: 

z = 0, 

z = l, 

du1 = O· 
dz ' 

U1 = 0. 

(1) 

Substituting solution (1) into the equation of rod vibrations, we get (ac­
cording to the Galerkin method) 

After calculations we have 

·· 10 EF0 
f + 3 l2mo f = 0. 

The first frequency of rod vibrations (in the first approximation) 

Pl = 1.826 {J!flib_ 
l v-;;;; 
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56 In order to determine the first two frequencies of the rod vibrations we 
seek the solution to the differential equation of extensional vibrations of the 
rod in the form 

After calculations we have 

p 2 = 5.033 {FJFf;. 
l v -;:;;;; 

57 We seek the solution to the equation of the extensional vibrations of the 
rod using the Fourier method. Assuming u = Z(z)T(t), we get two equations 

d2T - +p2T=O· 
dt2 ' 

d2z p2z ( ED) 
a2 = mro•o ' dz2 + ~ = 0 

where p is the frequency of vibrations. 
The solution to equations (1) and (2) has the form 

u = ( c1 cos p: + c2 sin p:) (c3 cospt + c4 sinpt) 

and should satisfy the following boundary conditions: 

z = 0, 

z = l, 

8u = O· 
{)z ' 

8u = 0 
{)z . 

(1) 

(2) 

Then, we find c2 = 0 , plja = 0, and the frequencies of vibrations are Pn = 
1rna 

l 
Since different modes of rod vibrations with frequencies Pn are possible, 

the general solution to the equation of extensional vibrations of the rod is 
equal to the sum of partial solutions: 

.f... 1rnz ( 1rnat 1rnat ) 
U = ~ COS -[- C3n COS -[- + C4n Sin -[- . 

n=l 

At the initial instant 

u(O,z) = uo (~-f); 
8u = 0 8t- . 

(3) 

(4) 

(5) 
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or 

Ftom condition (5) we get c4n = 0, and from expression (3) we find 

00 nnz nnat 
u = L cos -l- · c3n cos -z-· 

n=l 

At t = 0 

f ( z) = uo ( ~ - T) = f= cos n7z. 
n=l 

Relation (7) is an expansion of the function f(z) into a Fourier series. 
The above coefficients follow from the theory of the Fourier analysis 

l 21 nnz 
C3n = l f(z) cos -l-dz, 

0 

2uo 11 
( 1 z) nnz 

C3n = -l- 2 -y cos -l-dz. 
0 

After calculations, we have 

Expression (6) takes on the form 

for even n; 

for odd n. 

4uo L 1 nnz nnat 
u=- -cos--cos--

n2 n 2 l l 
(n=1,3,5, ... ). 

n 

58 It follows from the boundary conditions of the problem that c1 

0, cosplja = 0, hence, the frequencies 

nna 
Pn=~ n = 1,3,5, .. .). 

(6) 

(7) 

Since at the initial time u = 0, then (see solution to equation 57) the 
displacement of an arbitrary section of the rod has the form 

""""' nnz nnat 
U = LCnSlll~COS~ (n=1,3,5, ... ). 

n 

The displacement at initial instant is specified in the following form 

z 
u = uoy· 
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The coefficients of the expansion 

l 

Cn=- zsm--dz=--(-1) 2 
2uo J . HnZ 8uo n-1 

l 2l H 2n 2 
0 

The expression for the displacement of an arbitrary section of the rod 
assumes the form 

_ 8uo Loo (-1)~ . Hnz Hnat 
U - 2 2 Sill l COS l 

H n 2 2 
(n=1,3,5, ... ). 

n 

The displacement of the right end face of the rod 

(l ) _ 8uo ~ ( -1)~ Hnat 
u 't - H2 L n2 cos 2l (n=1,3,5, ... ). 

n 

59 Let us write the differential equation of vibrations of the rod with a 
concentrated force P: 

fPu fJ [ fJu] 
m ot2 = f)z EF(z) f)z + PJ(z), (1) 

where J(z) is the Dirac delta. 
The solution to equation (1) under steady-state forced vibrations of the 

rod we seek in the form u = u1(z) sinwt. After its substitution into equation 
(1) we get 

d [ du1] 2 dz EF(z) dz + mu1w = -P0 J(z). 

The function u1 can be chosen in the form u1 = a1 cos;~, where a 1 is 

the amplitude of steady-state vibrations that corresponds to the first mode 
of natural vibrations of a homogeneous rod (the function used in solution to 
Problem 35 can be also used as function u1). 

According to the Galerkin method, 

l 

J 2 ( Z) HZ mow a1 1 + l cos 2[-
o 

EFoa1H d [( z) . HZ] HZ - - 1+- sm- -P0J(z)cos-dz=O. 
2l dz l 2l 2l 

After calculations we obtain 
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60 The differential equation of extensional vibrations of the rod has the 
following form (see solution to Problem 59): 

cPu 2 82u Pob"(z -l) 
8t2 = a 8z2 + mo (1) 

We seek the solution to equation (1) in the form 

00 

""""' 1rnz U = L_., Un(t) COS - 1-. 
n=l 

At the initial instant u(O, z) = u(O, z) = 0 , therefore, finally (see solution 
to Problem 51) 

_ 2P0 l f'--. cos(1rnzjl) ( _ 1rnzt) (- )n 
u- EF7r2 L...- n2 1 cos l 1 . 

n=l 

The rod also moves as a rigid body. Let us write the equation of motion 
of the rod as a rigid body: 

moluo =Po, 

from where we have 

The total displacement of the rod sections is 

_ P0t2 2Pol f'--. cos(1rnzjl) ( _ 1rnat) (- )n 
U- l+E 2L...- 2 1 cos l 1. 2mo F1r n 

n=l 

The axial strength in the rod equals 

N = EF8u = _ 2P0 l f sin(1rnzjl) ( 1 _cos 1rnat) ( _ 1)n. 
fu 1r n l 

n=l 

This strength in the section z = l /2 at the moment h = l j a is equal to 

N = - 4: 0 ( -1 + ~ - ~ + ~ - ... ) = Po. 

61 The differential equation of extensional vibrations of the rod can be 
presented (taking the force P into account) in the following form 

fJ2u fJ2u 
mo ot2 = EF oz2 + P0 b"(z -l), (1) 
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where o(z- l) is the Dirac delta. 
We seek the solution to equation (1) in the form 

'"' ( ) . nnz u = ~ Un t sm -l-
n 

(n = 1, 3, 5, ... ). (2) 

Now substitute solution (2) into equation (1), multiply this equation by 

sin n;z, and integrate between 0 and l. As a result, we have 

.. 2 (nn)2 2P n-1 

Un + a 2f Un = lma ( -1) 2 (n = 1, 3, 5, ... ). (3) 

Since at the initial instant ua = u(O) = 0, the solution to equation (3) has 
the form 

8P l 2 ( nnat) n-1 
Un = l 2 2 2 1 - COS -l- ( -1) -2- . 

man an 2 

Finally, we find 

8Pl '"' (-1)n;- 1 
• nnz ( nnat) 

u(z,t) = 2 2 ~ n2 sm-l- 1-cos2l . 
man a n=l,3,5, ... 

The quantity u reaches its maximum value at the time t 1 = 2l /a for the 
point where the force Pis applied (z = l): 

16Pl 1 
Umax = EFn2 L n2 (n=1,3,5, ... ). (4) 

n 

The sum of the series appearing in expression ( 4) is 2:(1/n2 ) = n2 /8, 
n 

therefore, Umax = 2Pl/(EF), i.e., at a sudden application of the load the 
displacement of the rod butt is twice as large as at a static loading. 

62 When a concentrated force acts, the differential equation of extensional 
vibrations of the rod has the following form 

EPu 2 82u Pao(z-za) 
8t2 =a 8z2 + ma 

(1) 

where za = vt. 
We seek the solution to equation (1) in the form 

'"' nnz u = ~ un(t) sin 21:· 
n 

For the functions Un ( t) we get 

.. 2 (nn) 2 2Pa . nnvt 
Un + a 2f Un = lma sm 2[· (2) 
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Since at the initial instant u(O) = u(O) = 0 or un(O) = un(O) = 0, we find 
from equation (2) 

8Pol ( . nnvt . n:nat) 
Un = 2 ( 2 2) 2 sm -l- - sm -l- . mon a - v n 2 2 

The solution to equation (1) takes on the form 

. nnz 
8Pol sm2Z 

u(t, z) = 2 ( 2 2) L 2 x mon a - v n n 

x sm---sm--( . nnvt . nnat) 
2l 2l 

(n=1,3,5, ... ). 

63 In this case, the following boundary conditions take place 

z =0, U= 0; 

z = l, MiPu = -EFau_ 
8t2 8z 

The solution to the equation of extensional vibrations of the rod has the 
following form 

( pz . pz) . 
U = C1 COS~+ C2Slll ~ smpt. 

In order that the first boundary condition would be satisfied, it is necessary 
to assume c1 = 0. The fulfillment of the second boundary condition is provided 
by the equation 

pl Mp . pl 
mocos- = -s1n-, 

a a a 
(1) 

or 
pl mola 

tan-=--. 
a Mpl 

(2) 

Equation (2) can be solved graphically (to obtain the series of first fre­
quencies). Figure 2.15 presents forM= mol the plots of the functions 

pl 
Y1 =tan-, 

a 

mol a 
Y2 = Mpl. 

From the roots (points of intersection of the plots for Yl and Y2) 

P1l/a = 3n/8; P2l/a = 9n/8; p3 l/a = 33n/16, 

we can deduce the frequencies 

P1 = ~~ (EF; 
8 l v -;;;;; P2 = ~~ (EF; 

8 l v -;;;;; P3 = 33~ fEF. 
16 l v -;;;;; 
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64 The boundary conditions have the following form 

z = 0, 
au 
az = O; 

z = l, Ma2u = -EF8u. 
8t2 az 

For determination of frequencies we have the equation 

pl Mpl 
tan-= -l-. 

a mo a 

Figure 2.15 shows the points of intersection of the plots y1 = tan p l and 
a 

y1 = - p l . Consequently, the desired frequencies are 
a 

P1 = ~~ (EF; 
8 l v --;;;;; P2 = ~~ (EF; 

2 l v --;;;;; P3 = ~~ fEF. 
2 l v --;;;;; 

65 The boundary conditions of the problem: 

z = 0, u = zo(t); 

z = l, Ma2u = -EFau. 
8t2 az 

We seek the solution to the equation of steady-state longitudinal vibrations 
of the rod in the following form 

u = u!(z) sinwt ( wz . wz) u 1 = c1 cos ----;;: + c2 sm ----;;: . 

The arbitrary constants are 

M wl wl . wl 
--cos-+sm-
mol a a a 

c2 = A w l M w l . w l . 
cos-- ---sm-

a mol a a 

The displacement of an arbitrary section has the form 

w(l-z) M wl. w(l-z) 
cos - - - sm ---'----'--

( ) a mol a a 
u z, t = A w l M w l . w l sinwt. 

cos-- ---sm-
a mol a a 

The amplitude of longitudinal vibrations of the mass M is 

A 
uo ( l' t) = --w-l,---~M-=c-w~l.-. -w~l · 

cos-- ---sm-
a mol a a 

(1) 
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It follows from formula ( 1) that, when the denominator vanishes, the am­
plitude of vibrations of the mass M becomes infinitely large. The values of w, 
for which this takes place, we find from the equation 

w l lmoa 
tan-=--. 

a Mwl 
(2) 

From the comparison of equation (2) of Problem 65 with equation (2) 
of Problem 63 it follows that the values of w, at which the denominator of 
formula ( 1) in Problem 65 vanishes, coincide with the frequencies of natural 
vibrations of the system. 

66 In the case under consideration the mass per unit length of the rod is 
variable. Therefore, when deriving the equations of motion, we take advantage 
of the theorem of momentum variation for an element of the rod mass ( dm = 
QEdz) and obtain 

(1) 

where F is the current area of the charge section. 
At an arbitrary instant the charge mass M = M 0 - M t, where M 0 is the 

initial charge mass and M is the constant consumption per second (the charge 
mass burning out per unit time). 

At the instant t of termination of the engine operation the mass M is zero, 
therefore, M = M 0 jt1 . Since the charge mass M = QlF, and at the initial 
instant M 1 = QlF0 , the law of time behavior of the area of the charge section 
has the form 

F = Fo (1 - t/t1). 

Equation (1) can be transformed to the form 

1 au E a2u 
tl (1- t/ii) at - {! az2 . 

67 The extension force of the spring (with a small angle of lead) is equal 
to c = Gd4 / (8D3 i). The stiffness of an equivalent rod of the same length is 
EFI/l = Gd4 / (8D3i), where E 1 and F1 are the Young's modulus and the 
section area of the equivalent rod, respectively. 

The equivalent rod mass is equal to the spring mass: 

The velocity of propagation of a longitudinal wave in the rod is 

w; ld {G 
a = V ---;;F; = 7riD2 V 2Q' a= 3.7 m/s. 
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The frequencies of spring vibrations (see solution to Problem 42) are 

n -1 ld fa 
Pn = ~iD2Y2"Q (n=1,2, ... ). 

68 Let us change the spring for a continuous equivalent rod (of the same 
length l) whose extension stiffness should be equal to the spring force: 

(1) 

where E 1 and F1 are, respectively, the elasticity modulus of the first kind and 
the section area of the equivalent rod. 

The mass per unit length for the equivalent rod should be equal to the 
mass per unit length for the spring: 

(2) 

From relationship (2) and from equation (1) we determine the area F1 and 
the modulus E 1 , respectively. Figure 2.16 shows an element of the equivalent 
rod with the forces acting upon it ( u is the longitudinal displacement of the 
rod element under vibrations). The distributed forces act upon the rod in the 
equilibrium state (the inertia forces are q = (eFt) S!2z). Due to the displace­
ment of the element under vibrations, an additional force L:.q = eF1 S!2u acts 
upon it. 

The differential equation of the extensional vibrations has the following 
form 

After transformations, we find 

!J 

I 
~=: (pf1)s'lu 

N .L I N+dtV I 
l - I 

u I "'i--d.m = pF1d 

l 
lu+d.u. 

0 z dz z 

Fig. 2.16. 
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fJ2u - El fJ2u n2 

8t2 - Q f)z2 + J£ u. (3) 

Now we seek the solution to equation (3) in the form u = u 1 (z) sinpt and 
get the following equation for the function u1 

The solution to equation (4) has the form 

The function u 1 should satisfy the following boundary conditions: 

z = 0, 

z = l, 

U1 = 0; 
du1 
dz = O. 

(4) 

which holds true at c1 = 0 and sin>.l = 0 or >.l = 1rn (n = 1,2, ... ). Thus 
we obtain the frequencies of vibrations of the spring in a field of centrifugal 
forces: 

(n = 1,2, ... ). 

69 The first frequency of vibrations (see solution to Problem 68) is equal to 
zero at Dzl2 / ( 1r2a2) = 1, so that we get the critical angular velocity of the 
disk as 

70 The spring can changed for an equivalent rod assuming (see solution to 
Problem 68) 

where E 1 and F 1 are the elasticity modulus of the first kind and the section 
area of the equivalent rod, respectively. 

The mass per unit length of the equivalent rod is mo = QF1 . 

When the disk rotates, the distributed forces act on the spring (per unit 
length), q = m0 fl2 z, which causes a change in the initial level of N 0 . Let 
us find the strength N in the equivalent rod when it rotates. The additional 
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reaction forces R 1 and R2 arising at the points of rod fixing (caused by the 
forces q) satisfy the equilibrium condition 

Considering the deformations of the rod, we derive one more equation. 
The total change of the rod length is equal to zero, therefore, taking advan­
tage of the principle of independent action of forces, we get (neglecting the 
embedment and changing it for the reaction force R2 ) 

The longitudinal strength Nq(z) caused only by the forces q is 

Therefore, 

The total strength in the rod during rotation changes according to the law 

m f22z2 
N 1\T R 0 = 1V 0 + 2 - ----'--,2,-----

The differential equation of longitudinal vibrations of the equivalent rod 
is similar to the following equation given above in Problem 68 

fPu _ E1 fPu n 2 
8t2 - ---;} 8z2 + u u. 

71 As the disk rotates the tension in the filament changes and becomes (see 
solution to Problem 8) variable in length. In order to determine the filament 
tension at D :f. 0 let us consider the filament loaded with distributed forces 
(Fig. 2.17a). 

We find the tension in the filament caused only by the forces q. The sum 
of reaction forces at the points of fixing the filament is 

l f 2 mof22 2 R1 + R2 = moD zdz = - 2-l . 
0 
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z 

~ ~8 

?'""m0 flz 
2dmQ ilu 

at 

t d. +dd 

N t iJ.mQ2(U+Z) 

i12u -dmw 
"?: 

0 
0 z 

a b 
Fig. 2.17. 

Since the variation of the filament length is zero, we get the following 
relation 

l 

RAl = j N1(z)dz 
EF EF 

0 

After calculations, we find 

The tension force in an arbitrary section of the filament (taking initial Qw 
into account) is 

(1) 

Figure 2.17b shows an element of the filament with the forces acting upon 
it. Under vibrations, the filament element is displaced along both the z and 

82u 82y 
y axes. In Fig. 2.17b - dm at2 and - dm Bt2 are the forces of inertia; 

2dm fl ~~ and 2dm fl ~~ are the Coriolis forces; and dm fl2u and dm fl2y 

are the additional centrifugal forces that arise when the element is displaced 
from its initial position. 

The longitudinal strength N (under vibrations) is 

N' = N EFau 
+ 8z ' 
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where EF~~ is the strength in the filament that appear under extensional 

vibrations. 
Projecting the forces onto the axes y and z, we get after some transforma­

tions two differential equations of the form 

f)2y- 2D8u- _1_.!!_ (N'oy) - D2y = 0; 
8t2 ot mo oz oz (2) 

o2u oy 1 oN' 2 - + 2D-- ---- D (z + u) = 0 
8t2 ot mo oz (3) 

Since y and u, as well as their derivatives, are small, one can assume in 
equations (2) and (3) N' ~ N 0 . In equation (3) 

-D2 z _ _ 1_8No = O. 
mo oz 

Then differential equations (2) and (3) assume the form 

82y - D2y - 2D ou - __!__ .!!_ (No oy) . 
8t2 ot - mo oz oz ' 
82u 2 oy 1 82u 
!-) 2 - D u + 2Dn- = -EF !-) 2 . ut ut mo uz 

(4) 

We seek the approximate solution to system of equations ( 4)) using the 
Galerkin method in the form 

• 1rZ 
y = YI(t)sm l' ( ) . 1rZ 

u = u1 t sm 1 . 

After transformations we obtain the following system of differential equa­
tions for YI(t) and u1(t): 

.. [QlO (7r) 2 5 n2] 2n. O Yl + mo T - 4Jt Y1- JtUI = ; 

.. [EF (1r) 2 2 ] . u1 + mo T - D u1 + 2Dy1 = 0. 

(5) 

In order to solve system of equations (5) we assume 

Yl = Asinpt, u1=Bsinpt. (6) 

Substituting (6) into system (5) we get the system of two algebraic homo­
geneous equations for A and B. Equating the determinant of this system to 
zero 

-p2 + Qw (~) 2 
_ ~[22 

mo l 4 

2Dp 

-2D 
= 0, 

2 EF (1r) 2 
2 -p +- - - [2 

mo l 
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we find the approximate values of the first frequencies of filament vibrations 

Pl,2 = Ja ± J a2 - 4b/2, 

where 
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2.4 Bending vibrations of rectilinear rods 

72 The distributed forces of inertia q act upon the rod (Fig. 2.18a) under 
vibrations. As is known, the equation of bending deflections of the rod can be 
represented in the form 

The distributed forces of inertia acting upon the rod unit length are 

()2y 
q = -mo 8t2. 

The differential equation of the bending deflections of the rod takes on the 
form 

(1) 

The solution to equation (1) is sought in the form y = y1 (z) sinpt. For the 
functions Yl ( z) we have 

(2) 

The solution to equation (2) has the form 

where Ki (>.z) are the following Krylov functions [4] 

!/ 

z 0 z 

a b 

Fig. 2.18. 
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1 
K 1 ( .Az) = 2 (cosh .Az + cos .Az) ; 

1 
K3 ( .Az) = 2 (cosh .Az - cos .Az) ; 

K2 (.Az) = ~ (sinh.Az + sin.Az); 

K4 (.Az) = ~ (sinh.Az- sin.Az). 

At z = 0 K1 = 1 and K2 = K3 = K4 = 0. 
In the case of hinge fixing (see Fig. 1.56a) the function y1 should satisfy 

the following boundary conditions: 

z = 0; 

z = l; 

y{ = y = 0; 

Y1 = y{' = 0. 

In the places of hinging of the rod ends the bending deflection and bending 
moment are equal to zero. The bending moment is proportional to the second 
derivative: M = EJxy". 

In order to satisfy the boundary conditions at the left end of the rod one 
needs to set c1 = c2 = 0. 

or 

From the boundary conditions at the right end of the rod we get 

c2K2 (.Al) + c4K4 (.Al) = 0; 

C2A2K4 (.Al) + C4A2K2 (.Al) = 0. 

Now equate the determinant of system (3) to zero: 

K~ (.Al) - K~ (.Al) = 0, 

sinh .Al sin .Al = 0, 

(3) 

(4) 

Since sinh .Al -1- 0, it follows from equation ( 4) that .Al = 0 or .Al = 1rn. The 
frequencies of vibrations are 

- 1f2n2~Jx 
Pn- [2 mo 

(n=1,2,3, ... ). 

The following boundary conditions take place in the case of a cantilever 
rod (see Fig. 1.56b): 

z = 0; 

z = l; 

Y1 = y{ = 0; 

y{' = y{" = 0. 

At the free end of the rod the moment and the cutting force Q = EJxy"' are 
equal to zero. 

The equation of frequencies has the form 

Ki (.Al) - K2 (.Al) K4 (.Al) = 0, 

so that 
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cos.Al = -1/(cosh.Al). (5) 

Equation ( 5) is solved graphically by plotting the functions z1 = cos )..l 
and z2 = -1/(cosh.Al) (Fig. 2.18b). 

The first two roots of equation ((5) are 

(.Al)l = 1.875; (.Al)2 = 4.694. 

The remaining roots, as it follows from the plots, can be represented in 
the form 

(.Al)n ~ (2n- 1)n/2 (n > 2). 

The desired frequencies are 

(EJ; 
Pl = 3.52y -:;;;J4; 

(EJ; 
Pl = 22 v -:;;;J4; 

Finally, in the case shown in Fig. 1.56c the equation of frequencies has the 
following form 

tan )..l = tanh .Al, 

and the frequencies are 

(EJ; 
Pl = 49 v -:;;;J4; 

73 For the case presented in Fig. 1.57a the equation of frequencies has the 
form 

cosh.Al cos )..l- 1 = 0. 

The roots of this equation are 

(.Al)l = 4.73; (.Al)2 = 7.85; (n > 1) 

Then the frequencies are 

(EJ; (EJ; 
Pl = 22.5y -:;;;J4; P2 = 62v -:;;;J4; 

_ [2(n+1)+1] 2 2 (EJ; 
Pn - 2 1f v -:;;;J4. 

For the case of Fig. 1.57b the equation of frequencies looks like 

cosh )..l cos )..l + 1 = 0. 
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The roots of this equation are 

(.Al)l = 1.875; ( .Al)2 = 4.694; (.Al)n = (2n -1)n/2 

Consequently, the desired frequencies are 

fEY; fEY; 
P1 = 2.5v ~; P2 = 22y ~; 

_ (2n -1) 2 
2 fEY; 

Pn- 2 n v~· 

7 4 As is known, the differential equation of the elastic line of a rod with 
variable section has the form 

Differentiating this equation twice with respect to z we find 

75 The differential equation of transverse vibrations of a rod under the action 
of a distributed load has the form 

or, since we consider small vibrations, 

(1) 

We seek the solution to equation (1) in the form 

y = Yl(z) sinpt 

Then we obtain the following equation for the function Yl ( z) 

84yl 4 
8z4 -.A Yl = 0, (2) 

h , 4 _ p 2mo + 4kP6/a3 

w ere A - EJx 

Equation (2) is similar to equation (2) in Problem 72, where the following 
values of the two first roots were obtained for a cantilever rod (see Fig. 2.18b): 
(.Al) 1 = 1.875 and (.Al)2 = 4.694. 

The vibration frequencies corresponding to them are 
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PI= P2 = 

The critical (minimum) value of the magnetomotive force <Po* is found by 
the formula 

76 The differential equation of vibrations of a rod with a variable moment 
of inertia has the form 

We seek the solution to equation (1) in the form 

y = Yo sin 7 f ( t) 
The function sin ~z satisfies the problem's boundary conditions: 

z = 0; 

z = l; 

y=y"=O; 

y" = 0. 

Using the Galerkin method we get 

··jl 1fZ . (7r)2 Jl {)2 ( 7rZ) 1fZ f m sin Tdz - f l E ()z 2 Jx sin T sin Tdz = 0. 
0 0 

After calculations we have 

7r2 EJo 
f + -[4 -4.7! = 0, 

mo 

and in the first approximation the fundamental frequency is 

7r2 {EfTa 
PI= 2.16--rv ~· 

(1) 

77 The symmetric mode of vibrations corresponds to the first frequency, 
therefore, we seek the solution to the equation of vibrations in the form 

( . 7rZ . 37rZ) . 
y = YI sm T + Y2 sm -l- sm p t 

(the function sin 37 z corresponds to the symmetric mode of vibrations). 
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After some transformations we get the system of equations 

( 0.356molp2 EJo 4) - 1.62r7T Yl + 

( EJo 4) + -0.085molp + 6.98r7T Y2 = O; 

( 2 EJo 4) -0.085molp + 6.98r7T Y1 + 

( EJo 4 ) + 0.414molp- 98.92-----z-371" Y2 = 0, 

so that we find the refined value of the first frequency 

71"2 {ETo 
PI= 1.78ll2V ~-

and the frequency P3 corresponding to the second mode of rod vibrations 

71"2 {ETo 
P3 = 14l2V ~-

78 In the case considered the rod consist of two segments, therefore, for each 
of the segments we have 

YI = c1K1 (.-\z) + c2K2 (.-\z) + c3K3 (.-\z) + c4K4 (.-\z) 

Y2 = c{KI (.-\z) + c~K2 (.-\z) + c~K3 (.-\z) + c~K4 (.-\z) 

(O:s;z:s;b); 

(b:S:z:S:l). 

At the first segment YI(O) = y~'(O) = 0, therefore, c1 = c3 = 0. 
At the point of conjunction of two segments y1 (b) = y2 (b) and 

8yll = 8y21 0 

az z=b az z=b 

(1) 

The transverse forces at the end of the first segment and at the beginning 
of the second segment differ by a value of the support reaction, i.e., 

a3Yl I a3Y21 
EJx 8z3 z=b = EJx 8z3 z=b - R, 

where R is the support reaction. 
The conditions of connection of the segments can be satisfied if the bending 

deflections at the second segment are represented as 

R 
Y2 = Y1 + .-\3EJx K4 [.-\(z- b)], (2) 

so that the function K 4 [.-\(z- b)] is identically equal to zero at z :::; b, and it 
is nonzero at z > b. 
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Expression (2) is valid for the entire rod. Substituting the relation for Y1 
into (2), we have at c1 = c3 = 0 

Equation (3) involves three constants (c2 , c4 , and R) that can be deter­
mined from the conditions 

z = b; y = 0; 

z=l; y"=y"'=O. 

We get the following system of three equations for finding the constants 
c2, c4, and R: 

c2K2 (.>.b)+ c4K4 (.>.b) = 0; 
R 

c2K4 (.>..l) + c4K1 (.>..l) + )..2 EJx K2 [.>..(l- b)]= 0; (4) 
R 

c2K3 (.>..l) + c4K1 (.>..l) + .>..3 EJx K1 [.>..(l- b)]= 0. 

Equating to zero the determinant of system ( 4), we have the equation of 
frequencies 

or 

K2 (.>..l) 
K2 (.>..l) 
K3 (.>..l) 

K4 (.>..b) 
K2 (.>..l) 
K1 (.>..l) 

0 
K2[.>..(l- b)] = 0, 
K1 [.>..(l- b)] 

K2 (.>.b) K2 (.>..b) K1 [.>..(l- b)]+ K3 (.>..b) K4 (.>..b) K2 [.>..(l- b)] = 
= K4 (.>..b) K4 (.>..b) K1 [.>..(l- b)]+ K1 (.>..b) K2 (.>..b) K2 [.>..(l- b)]. 

(5) 

The roots of equation (5) can be determined graphically. For the case 
under consideration (b = l/2) the first root is (.>..l) = 0.311, and the frequency 
corresponding to this root is 

[EJ; 
PI = 9. 066 y ;;;:;;l4 . 

79 The differential equation of vibrations of the rod has the following form 

a2 y 2 a4 y Po 
a 2 + a a 4 = - 6 ( z - lo) . 

t z ~0 
(1) 

We seek the solution to equation (1)) in the form 

00 

""' ( ) . ?Tnz y = ~ Yn t sm -l-. 
n=l 
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For the function Yn ( t) we get 

.. 2 nn 2Po . nn l0 ( )
4 

Yn + a -l- Yn = lmo Sill -l- (n=1,2, ... ). (2) 

At the initial moment Yn = Yn = 0, therefore, the solutions to equation 
(2) have the following form 

3 nn lo 
2Po l sin -l- [ a(nn)Zt] 

Yn = moa2n4n4 1 - cos [2 . 

The solution to equation (1) can be represented as: 

. nn lo 
- 2Po l3 Loo Sln -l- . nnz [ - a(nn?t] 

Y - 2 4 4 Sill l 1 COS [2 . a 1r n 
n=l 

The bending moment at an arbitrary section of the rod is 

M _ EPyEJ __ EJx2P0 l3 
- x- X 

8z2 a 2n 4 

~ 1r2 • nnlo . nnz [ a(nn)2t] 
X ~ n 2 z2 Sill -l- Sill -l- 1 -COS [2 . 

The maximum normal strength in the section, where the force is applied, 
is 

. nn lo 
M I 2EJx 00 Sill -l- [ a(nn)2t] lamaxl = w = a2n2W L n2 1- cos [2 . 

x z=lo x n=l 

80 Let us write down the equation of rod vibrations: 

(1) 

where z0 = vt. 
The solution to equation (1) is sought in the form 

00 

"""' . nnz Y = L..- Yn(t) Sill -l-. 
n=l 

(2) 

Upon substitution of solution (2) into equation (1) and some transforma­
tions (see solution to Problem 22) we have for the functions Yn(t) the following 
equations 

.. 2 nn 2P0 . nnvt ( )
4 

Yn +a -l- Yn =mol Sill -l-. (3) 
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The solution to equation (3) has the form 

2Po . nnvt 
a( nn )2t . a( nn )2t -:;;;;;ism -l-

Yn = c1 cos [2 + c2 sm [2 + a2(nn/l)4 _ (nnvjl)2 

Since Yn(O) = Yn(O) = 0 at t = 0, then 

. nnvt nnvjl . a(nn) 2t 
2Po sm -l-- a2(nn/l)2 sm [2 

Yn= --
mol a2(nn/l)4 - (nn/b)2v2 

The solution to equation (1) has the form 

. nnvt nnv/l . a(nn)2t 
oo Sill -- - Slll -----'----::-'-

2Po "'"""' . nnz l a2(nn/l)2 [2 
y(t, z) = mol~ sm -l- a2(nn/l)4 - (nnjb)2v2 

It follows from the solution derived that there are such values of the veloc­
ity v, at which the denominator in the serial terms is equal to zero, however, 
their numerator at these values of v is also zero. If one evaluates this inde­
terminate form, a finite number is obtained, i.e., no critical velocities for the 
moving force exist. 

81 The angular velocity of the bullet at the moment of its exit out of the 
barrel is 

()2y I 
w = &z&t z = l · 

t = ljv 

Using the solution to Problem 80, in which one should take mg instead of 
Po, we get after appropriate transformations 

82 At vibrations of the rod on the elastic base, an additional force dq1 
dz ky acts upon its element. This force is directed against the displacement y. 
Therefore, the equation of vibrations has the form (see solution to Problem 
75) 

(1) 

83 According to the Rayleigh method, Tmax = Ilr + II2 , where II1 and II2 
are, respectively, the potential energies of the rod bending and of the base 
deformation. They are equal 
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l 

1 J 11 II1 = 2 EJxYl dz; 
0 

The maximum kinetic energy is 

The squared frequency of vibrations is 

7rZ 
Instead of y1 ( z) one can take the function sin T, which satisfies all bound-

ary conditions of the problem. After transformations we have 

( )
4 

7r EJx 
- -- +kmo. 
l mo 

p= 

84 The differential equation of rod vibrations is similar to equation (1) of 
Problem 82. We seek the solution in the form y = y1 (z)sinpt. 

For the function y1 ( z) we have 

(1) 

For the case of fixation shown in Fig. 1.66a the roots of the equation of 
frequencies (see solution to Problem 72) are equal to 

(.\ l)l = 1.875; (.\ l)2 = 4.694; (n > 2). 

Hence, 

P1= 
(1.875) 4 EJx k +-· 

l4 mo mo' P2 = 
(4.69)4 EJx k ---+-l4 mo mo · 

For the case shown in Fig. 1.66b the equation of frequencies has the form 

cosh.\l· cos.\l-1 = 0. (2) 
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The first three roots of equation (2) can be determined graphically and 
are equal to 

(.\l)l = 0; (.\l)2 = 4.73; (.\lh = 7.85. 

The frequencies of vibration in this case are 

P2 = 
(4.73) 4 EJx k ---+-· 

l4 mo mo' 
P1 = {k; v-;;;; 
P3 = 

(7.85) 4 EJx k ---+-l4 mo mo · 

85 The differential equation of rod vibrations on an elastic base has the form 

EJ2y 2 84 y k Po -+a - + -y =- o (z- zo). 
8t2 8z4 mo mo 

After calculations similar to those made in Problem 80, we get 

( . 1rnvt v( 1rnjl) . ) 
2p, oo s1n -l-- smpnt o'""' . 1rnz pn 

y(t, z) = -l L..t sm -l- [ 2 l ' 
mo n=l 2 (7rn) 2 Pn- -l- V 

where Pn = a2 (7rn)4 + }5__ 
l mo 

86 The differential equation of rod bending under the action of a distributed 
load has the form 

In the case under consideration the distributed load q1 ( z, t) is represented 
by the force of inertia of both fluid and pipeline (Fig. 2.19). Using the Eulerian 
variables we can write 

where mp is the mass of a pipeline unit length, mp = [JpFp (Fp = 7rDm) and 
mp is the mass of fluid per unit length of the pipeline. 

We derive the following differential equation of transverse vibrations of the 
pipeline 
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!J ( d~ d~) -dmJK-- dmr-
dt2 dt 2 

M+dM 

0 z 
Fig. 2.19. 

&4y &2y &2y 2 &2y -
EJx &z4 + (mp + mp) &t2 + 2mpw &z&t + mpw &z2 - 0. (1) 

Now we seek the solution to equation (1) in the form 

y = Yl(z)eipt 

For the function y1 ( z) we have the following differential equation: 

d4yl 2 . dyl d2yl 
dz4 - ap Yl + lbpdz + c dz2 = 0, 

where a= (mp + mp) / (EJx); b = 2wmpj (EJx); and c = w 2mpj (EJx)· 
Let us seek the solution to equation (2) by the Galerkin method 

(2) 

A . 7r Z B . 27rZ 
y1 = sm T + sm -l-. (3) 

The solution to equation (2) should satisfy the boundary conditions of the 
problem: 

z =0, 

z = l, 

Y1 = 0, 

Yl = l, 
y{' = 0; 

y{' = 0. 

Substituting (3) into equation (2), multiplying sequentially the resulting 
. b . 7rZ d b 2 7rZ d . . . b d [ expresswn y sm T an y sin -l-, an mtegratmg 1t etween 0 an , we 

obtain the following system of two linear homogeneous equations for unknown 
constants A and B: 

A [ ( T) 4 
- ap2 - c ( T rJ- B ~~ p = 0; 

A~~p+ B [16(yr- ap2 - 4c(yr] = 0. 
(4) 
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After calculations, we have the following values of the first two frequencies 
for a series of the velocities of fluid motion: 

w, m/s. 
-1 p1, s 
-1 P2, s . 

Table 2.1. 

0 

24.9 
98.8 

10 

24.2 
101.7 

20 

21.7 
101 

87 The first frequency of vibrations of the pipeline becomes zero at the critical 
velocity of fluid flow. Calculating the determinant of systems of equations (4) 
in Problem 86, we can obtain the equation of frequencies. This equation has 
a zero root if its free term is equal to zero: 

( _ mFw2 ) 
C- . 

EJx 
(1) 

The lowest velocity (critical velocity) at which condition ( 1) is satisfied is 

After substitution of numerical values we get w = 47.8 mjs. 

88 Figure 2.19 shows a pipeline element with forces acting upon it. The 
equation of small vibrations of the pipeline has the form 

(1) 

After transformations we have, taking the formula for N into account (see 
statement of the problem), 

where a= (mp + mF) / (EJx); b = 2wmF/ (EJx); and c = w2mF/ (EJx) 
The characteristic equation has the form 

a2p4 _ p2 [17a( Ty _ 5ac( Tr cos a+ (~~r] + 

+4 ( Ty [ ( Tr- ycosa] [4( Tr- ccosa] = o. 

(2) 

(3) 
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At a= goo equation (3) has no zero roots, i.e., no critical velocity exists; 
at an arbitrary angle a the critical velocity is 

and for a--+ goo w* --+ oo. 
After calculations (at a= goo) we have the following values of frequencies 

Table 2.2. 

w, m/s. 0 10 20 

p1, s -1 24.9 24.5 24.3 
-1 p2, s . 98.8 99.5 102.5 

89 In the case considered the flow velocity is variable along the length of the 
pipe. Since the fluid is incompressible, then 

QpWoFo = QFW(z)F(z) 

Hence, the velocity in the arbitrary section of the pipe is 

w(z) = woFo/ F(z). 

As a result, we have the following differential equation (see solution to 
Problem 86): 

90 The differential equation of vibrations of a pipeline lying on an elastic base 
can be derived from equation (1) of the solution to Problem 88 by invoking 
an additional elastic force ky that acts to the pipeline from the side of the 
elastic base. By this means, we can write 

fPy EJx 84y 2m2w 82y -+ -+ --+ 
8t2 (ml + m2) az4 (ml + m2) azat 

m2w2 8 2 y k + -+ y=O. 
(m1 + m2) 8z2 (m1 + m2) 

(1) 

Now we seek the solution to equation (1) using the Galerkin method and 
assuming sequentially 
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A . 7rZ . 
Yl = Sill Tsillpt; (2) 

A . 27rz 
Y2 = Sill -l- sinpt; (3) 

Solutions (2) and (3) allow one to determine in the first approximation the 
first and the second frequencies of vibrations, respectively. 

Substituting (2) and (3) into equation (1), after some transformations, we 
have 

91 One can assume that the axial compressing strength is constant over 
the rod length under small vibrations. The differential equation of transverse 
vibrations of the rod with allowance for the longitudinal force is a particular 
case of equation (1) in the solution to Problem 88: 

a4y a2y a2y 
EJx oz4 + mo ot2 + N oz2 = 0. (1) 

We seek the solution to equation (1) in the form 

"""" 1rnz y = L.... f n ( t) sin -l-. 
n 

For the functions f n ( t) we get 

f.. [(7rn) 4 EJx _ !!_ 1rnl f = 
n + l [2 n 0. mo mo 

The desired frequencies of vibrations of the rod are 

Pn = (7rn) 4 EJx _ !!_ (7rn) 2 

l mo mo l 

92 The differential equation of transverse vibrations of the rod (see solution 
to Problem 91) has the form 

a4y a2y . a2y 
EJx oz4 + mo ot2 +(No+ N1 sillwt) oz2 = 0. (1) 

We seek the solution to equation (1) in the form 
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y = L fn(t) sin 1r7z (n = 1,2,3, ... ). 
n 

After transformations, we obtain 

[ ( )4 ( )2 ( )2 l ·· EJx 1rn N 1rn N1 1rn . 
fn + -- -- - - - - - - smwt fn = 0. 

mo l mo l mo l 

Now let us make a conversion to a new independent variable (assuming 
wt = 2T- Jr/2): 

where 

The numerical coefficients for several n are as follows: 

n . 

Table 2.3. 

1 

0.535 
0.05 

2 

15.2 
0.22 

3 

83 
0.49 

4 

269 
0.88 

The corresponding points (an, qn) are inside the stable regions on the di­
agram (see Appendix A of Part I). 

93 In this case the coefficients have the values given in Table 2.4. 

n . 

Table 2.4. 

1 

. 1.66 

. 0.05 

2 

20 
0.22 

3 

93.95 
0.49 

4 

292.81 
0.88 

The corresponding points (an, qn) are inside the stable regions on the di­
agram (see Appendix A of Part I). 

94 In order to estimate the error in determining the frequencies, let us 
consider the differential equation of rod vibrations under the action of the 
stretching force Q 10 constant over the rod length ( Q 10 = N), taking into 



128 2 Answers and solutions 

account the bending stiffness (a special case of the equation derived in Problem 
88): 

84y 82y azy 
EJx 8z4 + mo 8t2 - Qw 8z2 = 0. (1) 

The solution to equation (1) is sought in the form 

00 

y = L fn(t) sin 1r7z. (1) 
n 

Substituting (1) into equation (1) and taking advantage of the principle 
of virtual displacements, after appropriate transformations we arrive at the 
following equations 

The frequencies of vibrations are 

nn 
Pn = -[- Q 10 [ 1 + EJx (7rn) 2

] 
mo Qw l 

(n = 1, 2, ... ). 

(n=1,2, ... ). 

If the value of EJx is small (as is usually the case in real strings), then 

nn 
Pn = -l- Qw [1 + ~ EJx (7rn) 2

]. 

mo 2 Q1o l 

Substituting numerical data we obtain 

At small values of n(n < 10) the error does not exceed 5%. For larger 
values of n, determination of the frequencies of vibrations of a real string, 
using the formula for a perfectly flexible string, yields a fairly large error. 

95 The equation of transverse vibrations of a rod lying on an elastic base is 
derived in Problem 82. We add to it a term dependent on the longitudinal 
force: 

84y azy azy 
EJx 8z4 + mo 8t2 + ky + N 8z2 = 0. (1) 

Then we seek the solution to equation (1) in the form 

y = L fn(t) sin 7r7Z (n = 1, 2, 3, ... ). 
n 

For the functions fn(t) we get the equations of the form 
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[(7rn) 4 EJx + }5_ _ !!_(7rn) 2
] fn = O. 

l mo mo mo l 
(2) 

The frequencies of vibrations of the rod are 

Pn = 
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2.5 Vibrations of rectilinear and curvilinear rods 

96 The equation of parametric vibrations of the rod has the following form 
in the dimensionless notation (see paragraph C.2 in Appendix C) 

82u 84u 82u 
L = 072 + OTJ4 +Po coswr [H(TJ)- H(TJ- 0.5)] OTJ2 = 0. (1) 

The solution to equation (1) we seek in the form 

(2) 

Taking advantage of the principle of virtual displacements, we have after trans­
formations 

or 

1 J L sin 7fT) d'T] = 0. 

0 

jC1l + (n4 - n2 0.5coswr) j(l) = 0. 

When solving equation (3) by the Rayleigh method we assume 

Substituting (4) into equation (3) we have two relations 

(3) 

(4) 

(5) 

(6) 

Equating the expressions in brackets to zero, we find the boundaries of the 
main region of instability. 

97 The equation of bending parametric vibrations of the rod has the form 

Setting u = f ( T) sin 7fT) we write the equation for f as 

.. . 4 2 
f + af + [k + 1r + 1r (Pw + Pwo coswor)]f = 0, 

or 
f + aj + (a1 + az coswor)f = 0, (2) 
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Oz 

0,5 

0 
Vat (;.)0 

-O,J 

-1,0 

Fig. 2.20. 

where a 1 = k + 1r4 + 1r2 P10 and a2 = 1r2 P100 . In accordance with the Rayleigh 
method we assume 

wo . wo f = A1 cos 2 7 + B1 sm 2 7. (3) 

Substituting (3) into equation (2) we have 

(4) 

Equating the determinant of system ( 4) to zero, we get the equation 

wo a2 wo a2 a w0 [ ( )2 l [ ( )2 l 2 2 al - 2 + 2 al - 2 - 2 + -4- = 0, (5) 

from which we determine the boundaries of the main region of the parametric 
resonance. At a = 0 we find 

The region of instability is hatched in Fig. 2.20. 

98 In order to solve the equation of free vibrations, one should know the 
bending deflection u of the rod loaded with the force P, i.e., it is necessary to 
solve the equation 
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(1) 

Taking the boundary condition into account, we obtain from expression 
(1) 

(o) = (17- 0.5)3 PH( _ 0 5) _ 1.375 p 3 0.375 p 2 
UX2 6 11 • 12 11 + 4 11 • 

Let us consider two variants of solving this problem. 
1. The variant of solution using the Krylov functions (it can be realized 

only for the rod of constant section) allows one to get the answer in the 
analytical form. 

Considering the force of inertia of the mass as a concentrated force applied 
to the rod, we have the following equation: 

(2) 

Assuming Ux 2 = Ux20 ei>.r, the solution to equation (2) expressed through 
the Krylov functions has the form 

Ux 20 = c1K1 + c2K2 + c3K3 + c4K4-
K4(17- 0.5) (3) 

- A3 n2AoUx2 (0.5)H(17- 0.5), 
0 

where Kj(Ao17) (Ao =-/X). 
Since Ux 20 = u~20 = 0 for 17 = 0, c1 = c2 = 0, and, therefore, 

Excluding Ux 2 (0.5) from equation (3) we write 

Ux 20 = [K3(17) - Aon2K4(17- 0.5)K3(0.5)H(17- 0.5)] c3+ 
+ [K4(17) - Aon2K4(17- 0.5)K4(0.5)H(17- 0.5)] c4. 

(4) 

(5) 

Since the boundary conditions should be satisfied, i.e., u(1) = 0 for 17 = 1, 
we obtain from (5) the following system of two homogeneous equations 

[K3(Ao1) - Aon2K4(Ao0.5)K3(Ao0.5)] c3 + 

+ [K4(Ao1)- Aon2K~(Ao0.5)] c4 = 0; 
[Kl(Ao1)- Aon2K2(Ao0.5)K3(Ao0.5)] c3 + 

+ [K2(Ao1)- Aon2K2(Ao0.5)K4(Ao0.5)] C4 = 0. 

(6) 

From the condition D = 0, where Dis the determinant of system (6), we 
find Aoj. The dimensionless frequencies are Aj = A· Then, for every Aj we 
determine cJj), assuming cJi) = 1: 
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(j) K4(Aoj1)- Aojn2K§(>.oj0.5) 
c3 =-K3 (>.oj 1)- >-ojn2K4(>.oj0.5)K3(>.oj0.5) 

As a result we get the eigen functions 

cpUl(17) = uW = {K3(>-oj17)-
Cl - >.0jn2K4 [>.oj(17- 0.5)] K3(>.oj0.5)H(17- 0.5)}c31 + 

+ {K4(>.oj17)- Aojn2K4 [>.oj(17- 0.5)] K4(>.oj0.5)H(17- 0.5)}. 

When solving equation (2) we assumed that Ux 2 = Ux2oei>-Jr, therefore, 
the general solution to equation (1) has the form 

n 

Ux2 = L ( cUl COSAjT + B(j) sinAjT) cpCil(17)· 
j=1 

For T = 0 we have the following initial conditions: 

n 

Ux 2 (0, 17) = Ux 2o( 17) = L C (j) 'P (j) ( 17 ); 
j=O 

(7) 

From the second initial condition it follows that B (j) = 0. Then we find 
the arbitrary constants C (j) from the equations 

1 1 J Ux20'P(k)d17 = t C(j) J cp(l)cp(k)d17 

0 J=2 0 

(k=1,2, ... ,n). 

Having determined C (j) and B (j), we obtain the solution to equation (1) 
that satisfies the initial and boundary conditions: 

n 

Ux 2 (T,11) = 2..:C(j)cp(j)(17)COSAjT· 
j=1 

The reaction force in the hinge is 

n 

(8) 

R = Qx2(T, 1) = -u;:;(T, 1) =- L cCilcp"'(j)(1) COS AT, (9) 
j=1 

where cp"'(j)(1) = [>.51K4(Aoj1)- >-61n2K1(Aoj0.5)K3(Aoj0.5)] cJj)+>-5jK1(Aojl)­
>.61n2K1 (>.oj0.5)K4(Aoj0.5). 

As a consequence, we have the solution to the problem in the analytical 
form (except for >.01 that were determined numerically). 



134 2 Answers and solutions 

2. The variant of numerical solution with the use of computers (can be 
realized for a rod of any section). In solving the problem numerically we take 
advantage of the system of equations (a special case of equations (C.19) from 
Appendix C) that, for example, for a rectilinear rod of variable section has 
the form (taking the inertia of rotation into account) 

or, in the vector form 

Here, 

[

0 0 

A{l) = 0 0 
0 0 
0 0 

0 
-J33 

0 
0 

m(s) F(lry) 
n 1 = mo = F(O) ; 

0 
0 
1 

A33 
0 

8(ry- 0.5); 

h(lry) 
h3 = F(O)l2; 

A _ J3(lry). 
33- J3(0)' 

(10) 

(11) 

and F(O) and J 3 (0) are, respectively, the section area of the rod and its mo­
ment of inertia with respect to the axis X3 at "1 = 0 (see Appendix C). As­
suming Z = Zoei,\r we get from equation (11) 

(12) 

- - [ 2 JT where !:::,4>o = 64>o n2>. Ux2 8(ry- 0.5), 0, 0, 0 . 
The algorithm of numerical determination of eigen values Aj and eigen 

functions z~i) is presented in Appendix D. 
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Having determined >.j and Z~j) we find the following solution to equation 
(10) (see Appendix E) 

n 
"" ( ( ")- (j) ( ")- (j) ) Z(T,1J) = ~ C 1 Z0 cosAjT+B 1 Z0 sinAjT . (13) 
j=l 

From equation (12) we obtain the expression for Ux 2 : 

n 

U - "" (c (j) Z Ul cos>. ·T + B Ul Z (j) sin>. ·T) 
X2 - ~ 04 J 04 J • (14) 

j=l 

It follows from the initial conditions that 

B(1) = 0; 
n 

u (0 17) = u(o) = ""C (j) Z (j) 
X2 l X2 ~ 04 • 

j=l 

We determine the arbitrary constants C (j) numerically from the system 
of equations 

1 n Ju z(k)d1J- ""cUlzUlz(k)d1J 
X2 04 - ~ 04 04 

0 j=1 

(k=1,2, ... ,n). 

Since Qx2 = f: C (j) Z0(fl cos AjT, the reaction force in the hinge is 
j=1 

n 

R -Q I -""c(Jlz(Jl(1) '· 
- x2 ry=l- ~ 01 COSA1 T. 

j=1 

99 The impulsive force Px2 and moment Mx 3 act relative to the center of 
mass (point 0). They are equal to 

Px 2 = -J COSO:· lz; 

We do not take into account the projection J onto the axis x1 , because 
the rod is assumed to be nonstretchable. In what follows we presume that 
the momentum iJi, mass m, and the moment of inertia J0 are reduced to the 
dimensionless form. After termination of action of J, the mass m attains the 
linear and angular velocities that are, respectively, equal to 

(1) 

J Jh 
where n2 =--and n3 = --. 

mpo l Jopo 
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From equation (13) we can write (see solution to Problem 98) 

n 

'193(T,TJ) = L ( c(j) COSAjT + B(j) sinAjT) Zo~); 
j=1 

n 

Ux 2 ( T, TJ) = L ( C (j) cos AjT + B (j) sin AjT) Z0~). 
j=1 

This problem has the following initial conditions: 

T=O, Ux 2 (0,ry)=O; 

T=O, d3 (0,ry) =-n3 sina·b(ry-1), 

Ux 2 (0, TJ) = -n2 COSet· O(TJ- 1). 

(2) 

From the first condition we get cUl = 0. The second condition results in 
the relations 

n 

L B (j) AjZo~) = -n3 sin a· J(ry- 1); 
j=1 

n 

L B (j) AjZo~) = -n2 cos a· J(ry- 1). 
j=1 

(3) 

(4) 

Let us determine the values of B(j) at which conditions (3) and (4) are 
satisfied most precisely. Consider the integral of the sum of squared errors: 

I= j { [J si~:. h b(ry- 1) + t B (j) AjZo~)l2 + 
0 J-1 

+ [ J ";:w 0("- 1) + t B (j) A;Z0~r }d". 
From the condition of minimum I we have the following system of equa­

tions: 

8I 
8B(k) = 0; (k=1,2, ... ,n) 

or 

n 1 

"""'B (j) >. J (z (j) zCk) + Z (j) zCkl) d-n + n sin a zCk) (1)+ L..J J 03 03 04 04 ., 3 ' Ok 
j=1 0 

+ n 2 cos a· z6~)(1) = 0. 
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After determination of the arbitrary constants B(J), we find the angle of 
rotation of the mass m from equations (2): 

n 

'l'J3 ( T, 1) = L B (J) Z0~) (1) sill'"';'JT· 
j=l 

100 In addition to the term a[Q~~)u'] the term -q1 ~~ also appears in 

the equation of transverse vibrations of the rod in case of follow-up axial 
distributed q1 Taking advantage of the algorithm for solving Problem 86 with 
allowance for the axial forces Q 1 and q1 we have the following equation (in 
the dimensionless form) 

(1) 

Let us consider the approximate solution to equation (1) taking the two­
term approximation (since, under the conditions of the problem, it is required 
to determine the first two frequencies) 

(2) 

where rp(l) and rp(2) are any independent functions satisfying the boundary 
conditions of the given problem: 77 = 0, u = u' = 0; 7J = 1, u = u' = 0. One 
can take as such functions the eigen functions satisfying the given boundary 
conditions. If the Krylov functions are used, we obtain 

Substituting solution (2) into equation (1), we have 

L = j(ll rp(l) + p2) rp(2) + 2wo (i(l) rp'(l) + j(2l rp'(2)) + 

+w6 (t(l) rp"(l) + !(2) rp"(2)) _ f(l) ( Q1 rp'(l)) _ !(2) ( Q1 rp'(2)) + (3) 

+ j(l) ql rp'(l) + f(2) ql rp'(2) + f(l) ( rp(l) rV + l2) ( rp(2)) IV 

Taking advantage of the principle of virtual displacements we can write 
two equations 

or 
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Here 

huf<1l + h12f<2l + bnj(l) + b12i(2) + cuf(ll + c12!(2) = 0; 

h2d(ll + h22f<2l + b21j(l) + b22i(2) + c2d(l) + c22!(2) = 0. 

'1 

hij = J i.p( i) i.p (j) dry; 

0 

1 

1 

bij = 2wo j ( rp'(j) rp< i)) dry; 

0 

Cij = J [ w6rp'(j) + ( i.p (j) rV - ( Ql i.p!(j)) 
1 + ql i.p1(j)] i.p(i) dry. 

0 

(4) 

The coefficients bij satisfy the condition bij = -b1i, therefore, bu = b22 = 
0. Consider in more detail the coefficients Cij· Integrating every term by parts, 
with allowance made for homogeneous boundary conditions to which the func­
tions rp (j) ( ry) and their first derivatives satisfy, we get 

(0) (1) 
Cij = cij + cij , 

1 

where c~Jl = J (1P"(i)rp"(k)- w6rp'(j)rp'(k) + Qlrp'(j)rp'(k)) dry; 

0 
1 

cg) = -cg) = q1 j rp'(J) i.p(k) dry; 

0 

C(l) - c(l) - 0 
11 - 22 - . 

We seek the solution to system of equations (4) in the form 

(5) 

Substituting (5) into ( 4), after transformations we have the following char­
acteristic equation 

(6) 

When composing the above determinant, we have used the following properties 
. . - (0) - (0) - (1) - (1) of the coefficients. h12 - h21, c12 - c21 , b12 - -b21 and c12 - -c21 . From 

(6) we derive the characteristic equation 

(7) 

where ao = hu h22 - hi2; a1 = 0; a2 = hn c~~) + h22ci~) - 2h12ci~ + bi2; a3 = 
(1) (0) (0) ( (0)) 2 ( (1)) 2 . 2c12 b12 and a4 = c11 c22 - c12 + c12 . From equatiOn (7) we find the 

complex eigen values 
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i.e., the problem is dissipative. 

101 The equation of forced vibrations in the dimensionless form looks like 

fPu 84u 
072 + 07]4 = qocoswoTH(rJ- 0.5), (1) 

where (w0 = w;p0 ). Assuming u = u 0 coswoT, we get 

u~v - w5uo = qoH(rJ- 0.5). (2) 

Now let us consider a more general case when the right-hand side of equa­
tion (2) is an arbitrary function. For a rod with constant section 

u~ = 1J3o; 

therefore, equation (2) can be represented as the following system of four 
first-order equations: 

or, in the vector form 

Q~20 +w5uo = b1(7]); 

Mx30 + Qx20 = 0; 

'1930 - Mx 3 0 = 0; 

uo- 1J3o = 0, 

Zo+AZo = b 

(3) 

(4) 

The general solution to equation ( 4) has the following form (for equations 
with constant coefficients) 

'r/ 

Zo = K(rJ)c + J K(rJ- hl)b(h)dh1. (5) 

0 

The fundamental matrix K(rJ) depends on w0 . From equation (5) we get 
the expression for the displacements of points of the axial line of the rod: 

4 'r/ 

uo = L k4jCj + J k41(7]- hl)bl(h)dhl. 
J=l 0 

(6) 

For the problem under consideration 

b1(h) = goH(h- 0.5); -k _ ew0 (ry-h,) 
41 - ' 

therefore, 
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'fJ J k41hdh1 =- ~~ (1- ewo(ry-0. 5)) H(ry- 0.5). 

0 

From the boundary conditions at ry = 0 it follows that c1 = c2 = 0. We 
calculate the arbitrary constants c3 and c4 from the boundary conditions at 
'T/ = 1: 

Mx3o(l) = u6'(1) = k23(1)c3 + k24(1)c4- woqo (1- e0·5w0 ); 

Qxzo(l) = u6"(1) = k13(1)c3 + k14(1)c4- w5qo (1- e0·5w0 ). 

(7) 

Upon determining c3 and c4 from system (7) we find the amplitude of steady­
state vibrations of the rod at the point K 

102 One can assume that the unknown moment rol0 coswT acts in the section 
K, so that the equation of forced vibrations in the dimensionless form is 

(1) 

Under steady-state vibrations we seek the solution to equation (1) in the 
form 

U = u0 (ry) COSWT. 

Then, from (1) we obtain 

It follows from the boundary conditions at ry = 0 that c1 = c2 = 0. At ry = 1 
solution (2) should satisfy the following three conditions: u0 = 0; u6 = '!930 ; 
and u6' = rol0 , or 

c3K3(1) + c4K4(1) = 0; 

c3VwK2(1) + c4 JWK3(1) = '!93oi 

c3wK1(1) + c4wK2(1)- Mo = 0. 

From system (3) we determine c3, c4, and rol0 as functions of 030: 

and derive the expression for u0 ( ry): 

(3) 

(4) 
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uo(rJ) = [a1K3( vWrJ) + a2K4( vfwrJ)] '!93o + a 3'!93° K3 [ vfw(rJ- 1)] . (5) 
w 

The amplitude of the moment in the embedment is 

Mo = u~'(O) = wa1'/J3o. 

103 The equation of forced vibrations of the rod in the dimensionless form 
looks like 

(1) 

We seek the solution to equation (1) by the approximate method (principle of 
virtual displacements), restricting ourselves in accordance with the conditions 
of the problem to the two-term approximation: 

(2) 

One can choose the first two modes of free vibrations of the rod as the functions 
tp(il ( 17). For the boundary conditions of the problem we have the following 
eigen functions: 

(3) 

where Ki are the Krylov functions. 
We represent the virtual displacements in the form 

8u (j) = 8bjtp (j). 

Substituting solution (2) into equation (1 ), in accordance with the principle 
of virtual displacements we get after some transformations 

j(ll + .A6d(1) = Ph(T) 'P(1)(0.5); 
11 

(4) 

j<2l + .x62t<2J = Ph(T) 'P<2l(o.5), 
22 

(5) 

1 2 1 2 
where hn = J ( tp(ll) d17 and h22 = J ( tp<2l) drJ. 

0 0 
For the problem under consideration the equations for determination of 

f(i) turned out to be independent (by virtue of orthogonality of the functions 
tp (j), therefore, we choose only one of them, for example, equation ( 4). Its 
solution for an arbitrary right-hand side has the form 

(6) 
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According to the Duffing method we find the functions JCll and jCll at T = 0 
and T = T: 

jCll(o) = cl; j(ll(o) = C2Al (>.1 = >.~1); 
"(1) 

f(ll(T) = f(ll(O)cos>.1T+ LJQ2sin>.1T+ 
>.1 

T 

+~:I sin>.1(T- r1)Pdr1; 
0 

j(1l(T) =- >.If(1l(o) sin >.1T + j(1l(o) cos >.1T+ 
T 

+ a1 I cos >.1 (T - ri)P dr1, 
0 

(7) 

where a1 = <p(l)(0.5)/hn. 
Under steady-state vibrations the conditions f(ll(O) = j(1l(T) and j(ll(o) = 

j(I) (T) must be satisfied. Therefore, we obtain from system (7) two inhomo­
geneous equations to determine f(l) (0) and j(l) (0): 

where 

(1- cos>.IT)/(1)(0)- sin>.~1T j(ll(o) = b1; 

sin>.If(1l(o) + (1- cos>.IT)jCll(o) = b2, 
(8) 

Having determined f(ll(O) and j(ll(o), we find the solution to equation 
( 4) on the interval 0 ::; T ::; T: 

( !.... < r < r). 2- -
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Similar expression we have for the function JC2l ( T): 

jC2l (0) 
JC2l ( T) = JC2l (0) cos ..\2T + ~sin A2T+ 

a2Po 
~(1- COSA2T) 

a~;o { ( 1 - cos >.2 ~) -+ 

- [ 1 - COS ..\2 ( T - ~)] } ( '£ < T < r). 2- -

The solutions derived are valid under the condition that the determinants 
of system (8) and similar system for JC2l (0) and jC2l (0)) of the form 

are not equal to zero. 

104 The equation of small vibrations of the rod has the following form 

(1) 

where A 33 = EJx3 is the bending stiffness of the rod, and k1 is the stiffness 
coefficient for the base. Assuming Ux 2 = ul, x 1 = ryl, T = Pot, and Po 

(A33 jm0 l4 ) 112 , we reduce equation (1) to the dimensionless form: 

EPu 84 u 82 u 
L = OT2 + OTJ4 + OT2 b(TJ- vaT)+ ku- n2 b(TJ- vaT) = 0, (2) 

where n1 = m/(mol); k = k1l4 jA33; n2 = mg l2 jA33, and vo = vj(lpo). 
Under the two-term approximation we seek the solution to equation (2)) 

in the form 
u = f(l) ( T) sin 7r'TJ + JC2l ( T) sin 2nry. (3) 

Taking advantage of the principle of virtual displacements, we can write 

1 J Lsin nrydry = 0; 

0 

so that after transformations we have 

1 J Lsin2nrydry = 0, 
() 

hufCll + h12fC2l + ( n 4 + k) jCll = 2n2 sin nvoT; 

h2r/(ll + h22 jC2l + (16n4 + k) JC2l = 2n2 sin 2nvoT, 
(4) 
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where hu = 1 + 2nl sin2 7rVoT; h22 = 1 + 2n1 sin2 27rVoT; and h12 = h21 = 
2n1 sin 7rVoT sin 27rvoT. 

As a result, we obtained a system of equations with periodic coefficients. 
The main feature of the given problem is the fact that the time of the process 
(the time of motion of the mass along the rod) is limited. Therefore, the 
vibrations of the rod are unsteady. The time of motion of the mass m along 
the rod is t K = l I v, and the dimensionless time is TK = 1 I vo. Let us write 
system of equations ( 4) in the form 

Here 

H = [ 1 + 2n1 sin2 7rVoT 
2n1 sin 7rVoT sin 27rVoT 

[7r4 + k 0 ] 
B = 0 161r4 + k ; 

The determinant of the matrix H 

2nl sin 7rVoT sin 27rVoTJ . 
1 + 2n1 sin2 27rvoT ' 

b = [ 2n2 ~in 7rVoT ] . 
2n2 Sill 27rVQT 

is always greater than zero, i.e., the matrix H is not degenerate. 

(5) 

Equation (5) can be solved numerically at zero initial data. As a result, 
at T = TK we get j(l)(TK) and j(2)(TK)· Since for the chosen approximate 
solution the rotation angle of the rod in any section is equal to 

then the angle of rotation in the section K at the moment when the mass m 
rolls off the rod (at 'fJ = 1) is equal to 

iJaK = -7r f(l) ( TK) + 27r j(2) ( TK). 

105 Under vibrations, an inertial load from the side of railcars acts upon 
the rod (rails). This load can be considered (in the limit) as distributed. Two 
contact forces are applied to every railcar, and they can be reduced to the 
resultant force Ji and the moment /-li (Fig. 2.21a): 

(1) 

where m and J0 are the mass of a railcar and its moment of inertia with 
respect to the axis perpendicular to the plane of drawing and passing through 
the railcar center, and u2 is the displacements of points of the rod axial line. 

Figure 2.21b demonstrates an element of the rod with all forces applied to 
it. Taking advantage of the d'Alembert's principle we obtain the equations of 
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Jds 

Xz 

0 
b 

Fig. 2.21. 

motion (translational motion along the axis x2 and rotational about the axis 
perpendicular to the plane of drawing) in the dimensionless form: 

aQx2 
JiO + ~ + Ji + qX2 = 0; (2) 

8M3 
OTJ + QX2 + /-li = 0, (3) 

where JiO = -mo ~~2 and qx2 = -ku2 (equation (3) does not involves the 

term accounting for the inertia of rotation of the rod element). 
Let us write the equations relating the moment Mx3 to the rod curvature 

(see Appendix A; for the rod of constant section A33 = 1) and the displace­
ment u2 of the axial line points to the angle of section rotation (for small 
deflections of the axial line of the rod from the straight line): 

(4) 

(5) 
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Since the railcars move with the velocity v, we make use of the Eulerian 
coordinates. As a result, converting to the dimensionless notation, we have 

(6) 

where nu = m/m0 l; J~o) = J0 jm0 l 3 ; and v0 vjlp0 are dimensionless 
coefficients. 

Excluding '193 , Mx 3 , and Qx2 from equations (2)-(5), we obtain the equation 
of free vibrations of the rod with an account of the moving load: 

~~ ( ~2)~~ ~~ 
L = (1 + nu) (h2 + 1- J0 v0 8774 + 2vonu arary-

(O) 84u2 (O) 84u2 2 82u2 _ 
-2voJo 8r8ry3 - Jo 8r28ry2 + nuvo 8ry2 + ku2- 0. 

(7) 

Assuming that the virtual displacements 

where u~i) is the functions satisfying the boundary conditions of the problem 

(for hinged fixity of the rod ends u~i) = sin ni 77), and restricting ourselves to 
a two-term approximation, we find the approximate solution to equation (7) 
as 

In accordance with the principle of virtual displacements we have 

1 J L ( U2(l)' U2(2)) U2(lldry = 0; 

0 

1 J L ( U2(l)' U2(2)) U2(2ldry = 0, 

0 

or, after transformations, 

Here 

auJ1 + a1d2 +bull + b12j2 + cuh + c12h = 0; 

a21J1 + a2d2 + b2d1 + b22j2 + c21h + c22h = 0. 
(8) 
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bn = 0; 

Assuming that h = J10e>-.T and fz = fz0 e>-.T, after some transformations 
we get the characteristic equation 

(9) 

where ao = ana22; a2 = anc22 + a22c11 + bi2; and a4 = cuc22- The roots of 
equation (9) are 

where the frequencies are equal to 

a2 + Ja~- 4a4ao 
2ao 

106 Figure 2.22a demonstrates a position of the rod at an arbitrary instant. 
Projecting the forces onto the axis y (Fig. 2.22b) we obtain 

-modz ~:;- dQ + dzl'1qy + (N + dN) sino/- N sino:= 0, 

(1) 

where a' = a + do:. The distributed load l'1qy acting upon the rod under 
vibrations is equal to L'1qy = m0 D2y. The distributed load qz remains invari­
able at small vibrations of the rod. The longitudinal strength N depends on 
Qz = moD2 z: 

l 

J moil2 ( 2 2) N = qzdz = - 2- l - z . 

z 
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y J 

z 

Fig. 2.22. 

Let us substitute the expressions for Nand 6qy into equation (1): 

a4 y EPy 2 
L(y) = EJx az4 + ma at2 - Jl may+ 

2 8y maJl2 ( 2 2) 82y +man z---- l - z -=0. 
8z 2 8z2 

(2) 

Additionally, the distributed Coriolis force qc = 2maJliJ directed along the 
z axis acts on the rod during its vibrations. Therefore, more exact formula for 
the longitudinal force looks like 

l 

N = J (qz- 2maDiJ) dz. 
z 

8y 
Since in equation (1) the force N is multiplied by az, one can neglect 

l J 8y 8y . 
the term 2maJl at dz az as a value of the second order of smallness m 

z 
l 

comparison to j qzdz ~~. Consequently, the influence of the Coriolis force 

z 
can also be neglected. 

To determine the approximate values of vibration frequencies we seek the 
solution to equation (2) in the form 

. . (A . nz A . 2nz) y=yusmpt+Y12smpt= 1smT+ 2sm-l- sinpt. 

The solution should satisfy the boundary conditions of the problem 

z = 0, y = y" = 0; 

z = l, y = y" = 0. 

(3) 
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ZOO JOO 400 500 .0 

Fig. 2.23. 

Using the Galerkin method we arrive at two relationships: 

l J L(yu, YI2)Yn dz = 0; 
0 

l J L(yu, y12)y12 dz = 0. 
0 

After integration we have two homogeneous equations for unknowns A 1 

and A2: 

[ ( 7r) 4 2 25 2] 20 2 A1 EJx l - mop + 12 moD - g-moD A2 = 0; 

20 2 [ (27r) 4 2 145 2] g-moD A1 + A2 EJx T -mop + 12moD = 0. 

The first two frequencies of rod vibrations are equal to 

P1.2 = V (a ± J a 2 - 4b) /2, 

where 

a= 17~x (T) 4 + 14D2; 

b = 16 ( ~x r (Tr + 44~x ( yrD2 + 19D4. 

The variation of the frequency of vibrations p1 is plotted in Fig. 2.23 (curve 
1) as a function of D. 

107 The differential equation of rod vibrations (see solution to Problem 106) 
has the following form for the considered case of fixing 

84y 82y 2 2 8y mof22 2 82y 
EJx az4 + mo at2 - moD y + moD z az + - 2- z az2 = 0. 
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The frequencies of vibrations are 

P1,2 = j (a± J a2 - 4b) /2, 

where 

a = 17 ~x ( T) 4 + 11 [l2 ; 

b = 16 (~X) 2 
( Tr _ 54.3 ~X ( T r [l2 + 18!?4 . 

The variation of p 1 versus the disk angular velocity !? is plotted in Fig. 
2.23 (curve 2). 

108 The differential equation of bending vibrations of the rod is similar to 
the equation in Problem 106, except for the fact that now the longitudinal 
strength is 

The equation of vibrations of the rod takes on the form (see solution to 
Problem 106) 

a4y a2y 2 
EJx az4 + mo at2 - !? m 0 y -

-mo!?2 (~ - z) ay - mo!?2 (lz - z2) [)2y = 0. 
2 8z 2 8z2 

The frequencies of vibrations are 

P1,2 = j (a± J a2 + 4b) j2, 
where 

109 Figure 2.24 shows a position of the system at an arbitrary instant. The 
bending deflection y and the angle cp characterize the deviation of the system 
from the dynamical equilibrium position in the field of centrifugal forces of 
inertia. Projecting the forces onto they axis we obtain (see solution to Problem 
106) 
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z 

Fig. 2.24. 

fJ4y ()2y 2 8 ( 8y) -
EJx &z4 + mo 8t2 +moD y - 8z N 8z - 0, (1) 

where N = m0 D2 (l2 - z2 ) /2. 
The equation of vibrations of the mass m has the form 

where Jo is the moment of inertia of the mass relative to hinge 0 1 (J0 = mh2 ); 

EJx(&2yj&z2)z=O is the elastic moment acting upon the mass from the side 
of the spring; d is the arm of force m 0 D2 (h + b)d relative to the hinge (at 

small vibrations the Coriolis force moment [m ~; (D + cp)] with respect to 

the point 0 1 is equal to zero). 
Since d = hbrp/(h+ b) and rp = 8yj&z lz=O, we obtain the following bound­

ary condition, to which the solution to equation (1) should satisfy 

&3y I 2 &y I ()2y I 
Jo 8t28z z=O +moD hb &z z=O + EJx 8z2 z=O. 

The remaining boundary conditions have the form 

z = 0, y = 0; z = l, y = y" = 0. 

110 Using the Rayleigh method we determine the maximum values of kinetic 
and potential energies of the system in its relative motion: 

P2 (8y1 ) 2 P2 /
1 

Tmax = 2Jo & z=O + 2 moyl 2dz; 
0 

(1) 

IImax = IJ1 + IIqz + IIqy + IJ2. 
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Here, Ih is the potential energy of spring bending; Ilq. and Ilqy are the 
variations of the potential of distributed forces Qz and Qy, respectively. In this 
case, Ilq. = -Aq. and Ilqy = -Aqy (Aq. and Aqy are the works done by the 
forces Qz and qy in moving through the displacements due to vibrations); while 
II2 = A (A is the work of the forces of inertia acting upon the concentrated 
mass m). 

In expanded form, the expression for the potential energy looks like 

1 Jl 1 2 ( &yl ) 2 
-- q Yl dz + -mD bh -

2 Y 2 &z ' 

(2) 

0 

1 Jz (&y1 )
2 

where 6 = 2 8z dz. 

0 
The last term in equation (2) represents the work of centrifugal forces that 

act on the mass m when it is deflected by the angle <p. 
Figure 2.24 demonstrates the forces acting upon the mass m. The work 

done by the inertia forces is 

z h 

A = J Fz dz - J Fy dy, 
0 y 

where Fz = mD2 z and Fy = mD2 (b + y). 
After integration we have 

2 Z 2 2 [ 1 2 2 ] A = mD 2" - mD b( h - y) + 2 ( h - y ) . 

Since z = h sin <p and y = h cos <p, we get after substitution and transfor­
mations 

Equating T max and II max, we find the frequency as 
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l 

Jo (y{)21z=O + J moyidz 
0 

l J m.fl2yidz + m.fl2 bh (y{) 2 

0 

l 

Jo (y{) 2 1z=O + J moyidz 
0 

(3) 

Since in the first approximation y1 = A sin ~z, the we have after calcula­

tions 

EJ ~ + fl2 [lmo (7r2 - ~) + mbh 7r2] 
2 X 2 p 6 2 l2 

p = l 7f2 

mo- +mh2 -
2 F 

(4) 

Now we substitute the numerical data of the problem into equation (4): 

For the angular velocity Sl = 100 rad/s, the lowest frequency of system 
vibrations is p = 332 s- 1 . 

111 The solid line in Fig. 2.25 shows the position of the system at an arbitrary 
moment under vibrations, while the dashed line marks the position in the state 
of dynamical equilibrium in the field of centrifugal forces. 

According to the Rayleigh method, the maximum kinetic energy value is 
equal to the maximum gain of the potential energy: 

Let us write the potential energy gain in the general form (see solution to 
Problem 110): 

(1) 

We can find the increment of the terms in the right-hand side of equality 
(1 ): 
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I 

L.Ih = Ih - IIw = ~ J Jx(Y~' + y{')2dz-
0 

I I 

-~ J EJx(Y~') 2 dz = EJx J (y~'y{' + ~(y{') 2 )dz; 
0 0 

L.II2 = hbmD2 [~(cpo + cp1) 2 - ~Y5] = hbmD2 ['Po'Pl +~'Pi]; 

3 [1 Jl Jz 1 ')2 1 /I jz( ")2 L.IIqz =moD 2 z (y0 + y1 drydz- 2 z Yo drydz = 
0 0 0 0 

I z I 

= m 0 D2 [ j z j y~y{ dry dz + ~ j (y~) 2 dry dz]; 
0 0 0 

2[1/1 2 1/1 2 L.IIqy = -moD 2 (Yo + yl) dz - 2 Yo dz = 
0 0 

I I 

= -moD2 [ j YoYl dz + ~ j Yi dz] . 
0 0 

Consider the terms (appearing in L.II1, L.IIqz' and L.IIqy) depending on 
the initial state. After integration by parts they can be represented in the 
following form 

I I 

J1 =EJx J y~'y{'dz=EJxl: -y~11Yll: + J yJVyldz; 
0 0 

I z I z 
(2) 

Jz = J z J y~y{ drydz = J z(y~y11:-J y~y1d7]) dz. 
0 0 0 0 

Since Yl = 0 at z = 0; and Yl = 0, yg = 0, and Yllz=O = cp at z = l, then 

I 

J1 = - EJxY~1 I z=O 'Pl + EJx J yJV Yl dz; 
0 

I z 

J2 = J z[y~(z)yl(z)-J y~'(ry)yl(7J)dry]dz-
0 0 

I I z -J zy~(z)y1 (z)dz- J z J y~'(ry)y1(77)drydz. 
0 0 0 
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z 

Fig. 2.25. 

Taking advantage of the Dirichlet's formula, the second term in the ex­
pression for Jz can be converted to the form 

l z l l l J z J y~'(ry)yt(77)drydz = J Yt(z) J z[y~(z)yt(z)- J ryy~'(z)drydz. 
0 0 0 0 z 

Combining in expression (1) all terms depending on the initial deformed 
state, we have: 

l 

A = J [- EJxy~' I z=O + mD2 hbtpo] 'Pl dz + 
0 

l l 

+ J [EJxyJV +zy{most2 -most2 J ryy~'(z)dry-mtD2yo]Ytdz. 
0 z 

(3) 

In equilibrium, there is a balance between the elastic moment (in the 
section z = 0) and the moment of inertia force that acts on the mass: 

EJxy~'lz=O = mhbS72 tp6, 

therefore, the first term in the right-hand side of equation (3) is equal to zero. 
In order to demonstrate that the second term in this equation is also equal 

to zero, we consider the equation of the rod deflection curve under bending 
by the moment Mt = mst2 hbyo: 
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z 

EJxy~' = M1 - R1z + J qy(z- zl) dz1 + R3yo­
o 

z 

-J Qz [Yo(z)- Yo(zl)] dz1. (4) 
0 

l 

Since R 3 = J qzdz, expression (2.5) can be converted to the form 

0 

z 

EJxy~' = M1 - R1z + J moil2yo(zl)(z- z1) dz1 + 

0 

l l 

+ j yo(z)moil2z1dz1 + j moil2z1yo(zl)dz1. (5) 

z 0 

Differentiating equation (2.5) twice with respect to z we get 

l 

EJxYrv- moil2yo(z)- J y~'(z)moil2 zl dz1 + moil2zy~(z) = 0. 

z 

Thus, A = 0 (see formula (3)), i.e., the frequency of vibrations of the 
balancing lever does not depend on the initial strained state. 

112 The equation of vibrations of the flexible rod (spring) is as follows 

a4y a2y 2 a ( n2 2ay) 
EJx oz4 + mo at2 +moil y- az mo2z az = 0. 

113 In this case (as opposed to Problem 110), the work of the forces Qz is 
positive and equal to (see solution to Problem 110) 

l l 

Aqz = J moil2 z J (y{)2 &'7 dz. 
0 0 

The frequency of vibrations is 

7f4 ( 7f2 1 ) 7f2 EJ-- il2lmo - +- +mbh-!?2 
2 X 2 [3 12 2 [2 

p = l (7f)2 
mo2 +m7r2 T 

(1) 

or 
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At the disk angular velocity f2 = 100 rad/s we obtain 

p = 324 s- 1 . 

114 When solving Problem 113 we have received expression (1) for the fre­
quency of vibrations. It follows from this expression that, when the condition 

lm (11'2 !) = mbh11'2 
0 12 + 2 [2 

is met, the frequency of vibrations does not depend on the disk angular ve­
locity. 

115 The expression for the frequency of vibrations of the system is the same 
as in Problem 110 considered above. 

116 The equation of radial vibrations of the ring has the form 

.. EF 
u+-R2 u=O. 

mo 

The frequency of vibrations is 

117 Consider an element of the ring (Fig. 2.26). Projecting all forces onto 
the radius (dm0 = m 0 ds) we obtain 

.. EF Po P1 . u+ --u = -· + -smwt. 
moR2 mo m1 

The constant pressure p0 makes up a static component of the radial dis­
placement of the ring. The amplitude of steady-state vibrations of the ring 
is 

118 Under radial vibrations of the rotating ring an additional radial force 
acts upon it. This force (per unit length) is equal to m 0 f2 2u. 

The differential equation of radial vibrations of the ring has the form 

.. ( EF 2 ) u + moR2 - f2 u = 0. 

The frequency of ring vibrations is 
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(-dmii ) 

ds 

Fig. 2.26. 

p = I EF - [22. 
V moR2 

Thus, the critical angular velocity of the ring is 

119 At the section rotation by an angle <p every point of the ring section is 
displaced along an arc equal to {!<p, where {! is the polar radius of the point 
(Fig. 2.27). The projection of this displacement onto the radial direction is 
u = (!<p sin a = yr.p, which corresponds to an elongation over the circumference 
(of this filament) by 6l = 2ny<p. 

Since the ring filaments are in tension, the potential energy is 

II= J ~ ( ~zr dF = nEir.p2 (1) 

F 

The kinetic energy of the ring rotation about the axial line is 

21rR 

T = j Jo<P; ds = Jot2 2n R . (2) 

0 

The moment of inertia of the ring's unit of length with respect to the axial 
line is 



2.5 Vibrations of rectilinear and curvilinear rods 159 

0 X 

Fig. 2.27. 

where J 12 is the polar moment of inertia of the ring cross section; and F is the 
cross section area. 

From relations (1) and (2) we get the differential equation of the torsional 
vibrations of the ring 

.. EF Jx 
cp+ -R2-J cp = 0. 

mo 12 

The frequency of vibrations is 

p= 

120 The vibrations of the rod take place around its equilibrium state, there­
fore, one needs first to determine the static mode of deformation of the rod. 
The rod is unstretchable and located symmetrically about the axis of rotation, 
therefore, 

From the equations of equilibrium we get 

Q Q20 2 2 
Q2o = 0; 10 = --- = w0 R0 . 

0030 

The equations of small vibrations of the rod whose axial line is a plane 
curve are given in Appendix C. System of equations (C.24) describes small 
vibrations of the rod with a 'runaway' of the axial line out of the plane, i.e., 
the most general case of vibrations of a 'plane' curvilinear rod. 

If the 'plane' curvilinear rod executes free vibrations in the plane of draw­
ing (Fig. 2.28), then, in order to derive a system of equations describing these 
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vibrations, one should put Q3 = M 1 = M2 = 6re1 = 6re2 = 0. As a result, 
we have for a rod of constant section (A33 = n 1 = 1) the following system 
of equations describing these vibrations, with allowance made for rotational 
inertia of rod elements and in dimensionless notation (C.24): 

Iz 

Fig. 2.28. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

where M3 = 6re3. 
Consider the right-hand sides of equations (1)-(3) . Since no concentrated 

forces act upon the rod, one should put in equations (C.24) 

Let us find expressions for the dynamic loads q1 and q2 that appear under 
rod vibrations. 

The dot-and-dash curve in Fig. 1.91 shows the position of the rod axial 
line under vibrations. It follows from the figure that the absolute velocity of 
the point 0 1 is 
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vo1 = d~ (Ro + u). (7) 

The increment of the absolute velocity of the point 0 1 is 

du 
v=vo -vo =-

1 dT 

Passing to local derivatives (see Appendix B) we have 

au 
v =aT +wo xu (lwol = const). (8) 

It is worth noting that the angular velocity of rotation of coupled axes is 

w' =wo+w 

where w is the additional angular velocity of a rod element that arises under 
vibrations. However, as under small vibrations one can consider the compo­
nents of vectors w and u as small quantities, the product w0 x u can be 
neglected. 

The increment of the absolute acceleration of point 0 1 is (the tilde symbol 
in the local derivative notation is omitted) 

dv a (au ) 
dT = aT aT + wo x u + wo x ( au ) aT +wo xu (9) 

or, assuming that for plane vibrations u = u 1 e1 + u2e2, 

(10) 

It follows from equation (10) that the additional dynamic load q acting upon 
the rod that is placed on a rotating disk is equal to 

au2 2 
q1 = 2wo aT +w0u1; 

aul 2 
q2 = -2wo aT - w0u2. 

(11) 

Finally, we have the following system of equations for small vibrations of 
a round rod in the plane of drawing: 
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(12) 

or, in the vector form of notation (see Appendix C) 
2- - -

A (1) 8 z A (3) 8Z 8Z AC2lz = 0 
aT2 + aT + art + · (13) 

Here 

0 0 0 0 -1 0 
0 0 0 0 0 -1 

A(l) = 0 0 0 -h3 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

1 
-w5 0 

Ro 
0 0 0 

1 
Ro 

0 -w5R5 0 0 w5 

A(2) = 0 -1 0 0 0 0 
0 0 -1 0 0 0 

0 0 0 0 0 
1 

--

1 
Ro 

0 0 0 -1 
Ro 

0 

0 0 0 0 0 -2w0 

0 0 0 0 2w0 0 

A (3) = 0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

- T Z = [Ql,Q2,M3,'!93,ul,u2] . 

121 The ring is loaded with a static distributed force, therefore, Q10 

-qoRo, Q2o = Q3o = 0, and Mw = M2o = M3o = 0. The equations of free 
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vibrations of the rod whose axial line is a plane curve are given in Appendix 
C (see equations (C.24)). In the case under consideration they fall apart into 
two independent systems that describe rod vibrations in the plane of drawing 
and with respect to the plane of drawing. For the rod of constant section we 
derive from system (C.24) the following system of equations of rod vibrations 
with respect to the plane of drawing: 

(1) 

For the round section the dimensionless moments of inertia In and I 22 2 
and stiffnesses An and A22 are 

In=~ (~) 2 
J22 = .2_ (~) 2 

8 l ' 16 l 

In the vector form of notation we have 

Here 
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0 0 0 0 0 -1 
0 0 0 -Jn 0 0 

A(l) = 0 0 0 0 -J22 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 qoRo 0 0 0 
1 

0 0 
Ro 

0 0 0 

1 
0 

' 
0 0 0 0 

A(2) = 
1 

0 
An 

0 0 
Ro 

0 

1 
0 0 -1 0 0 

Ro 
0 0 0 0 1 0 

- T Z = [Q3,Ml,M2,'!91,'!92,u3] . 

122 One can derive the equations of small vibrations of the rotating ring as 
a special case of equations (C.24) (see Appendix C). 

It follows from relation (9) (see solution to Problem 120) that at wo = woe3 
the absolute acceleration does not depend on u3, so q3 = 0. Thus, we obtain 
the following equations (at Q10 = 0 and Q2o = w5R5): 

System of equations (1) can be represented in the form 

2- -
A (1) fJ z fJZ A (2lz = 0 

fJT2 + fJ'T] + ' 

where 



2.5 Vibrations of rectilinear and curvilinear rods 165 

0 0 0 0 0 -1 
0 0 0 -Jn 0 0 

A(l) = 0 0 0 0 -J22 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 w6Ro 0 0 0 

0 0 
&30 

0 0 0 
A22 

1 
&30 

0 0 0 0 
A(2) = Af1 

0 
An 

0 0 -&30 0 

0 0 
1 

An 
&30 0 0 

0 0 0 0 1 0 
- T Z = [Q3,Ml,M3,'!91,'!92,u3] . 

123 The presence of concentrated masses results in the appearance of con­
centrated forces of inertia that arise under vibrations. Therefore, we take 
advantage of equations (C.13) of small vibrations (see Appendix C) putting 
in the first two equations 

p (l) = J?) J(ry- 'T/1) + J?) J(ry- 'T/2); 

ro? (1) = ro??) J(ry- 'T/2), 
(1) 

h -J (1) -J (2) d om (2) d" . l £ d h f. . w ere i , i , an 21li are 1mens10n ess orces an t e moment o mert1a, 
respectively, 

(2) 

®(2) = - (~ J2'!9j- ·) 
:v~~ ~ 8 2 eJ . 

j=l T 

The remaining equations of system (C.13) are kept unchanged. 

124 We consider vibrations of the rod about its natural state (i.e., at 
Q10 = Q2o = M30 = 0) in the plane x10x2 (see Fig. 1.94). In this case, 
two concentrated forces R 1 and R 2 act upon the rod in the sections 'T/1 and 
'T/2· They are equal, respectively, to 
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where Rx2 = -c (ui2 ), therefore, similarly to Problem 123 we have (see 
Appendix C) 

P1 = -c (ui2) (i2e1) 8(ry- ry2); 

P2 = R28(ry- ryi)- c (u:i2) (i2e2) 8(ry- ry2); 

i2 = sin('193o + 6'193)e1 + cos('193o + 6'193)e2, 

where '193o is the angle between vectors e 1 and i1 . 

(1) 

Since small vibrations are considered, we obtain after some transforma­
tions (assuming that el ~ ew) 

P1 = -c ( u1 sin2 '193o + u2 cos '193o sin '193o) 8(ry - ry2); 

P2 = R28(ry- ryi)-

-c ( u1 cos '193o sin '193o + u2 cos2 '193o) 8( ry - ry2). 

(2) 

The first two equations of system (C.25) (see Appendix C) after transfor­
mation of their right-hand sides take on the form 

82u1 8Q1 . 2 
n1--- -- + ffi3oQ2 = -csm '193ou18(ry- ry2)-

872 8ry 
-c cos '193o sin '193ou28 ( ry - ry2); 

8 2u2 8Q2 
n1---- + re3oQ1 = R28(ry- ryi)-

872 8ry 

(3) 

The remaining equations of system (C.25) are kept unchanged. 

125 Small free vibrations of the spiral in the plane of drawing are described 
by system of equations (C.25) (see Appendix C). However, in order to use 
them in numerical calculations one needs to know the dependence of re30 
on the coordinate ry. The equation of the Archimedean spiral in the polar 
coordinate system (Fig. 2.29) has the form 

r = ar.p; x 1 = r cos c.p; x2 = r sin tp, (1) 

where a is the spiral parameter. The length of the spiral is l. 
From the conditions of fixing the spiral ( t.p = 0, r = 0, 'P = a?T /2, and 

r = r0 ) we derive the range of variation for the angle t.p (0::::; t.p::::; a?T/2). The 
differential of the arc in the polar coordinate system is 

d 2 - - ( dtp) 2 -2 2 ( dtp) 2 
ry - a dry + a 'P dry ' (2) 

therefore, 



2.5 Vibrations of rectilinear and curvilinear rods 167 

.Xz 

Fig. 2.29. 

dry = aJ1 + r.p2 dr.p (a= aj l). 

Integrating equation (3) between 0 and 1 we obtain 

a1r /2 

1 =a j .)1 + r.p2 dr.p. 

0 

(3) 

(4) 

From expression (4) we determine a. Dividing (1) by l we pass to the 
dimensionless form of notation: 

r: = ar.p; xr = rsinr.p. 

Calculating a, we can find the dimensionless value of r o = 9a7r / 2. From 
this point on we omit the symbol of tilde above dimensionless quantities. From 
equation (2) we get 

dr.p 1 

dry aJ1 + r.p2 · 
(5) 

Integrating equation (5) we find the function r.p(ry) ( r.p = 0 at ry = 0). Taking 
relation (5) into account, we determine the derivatives x{(ry) and x~(ry) : 

1 • cos r.p - r.p sin r.p 
x{(ry) = ar.p 1 cosr.p- ar.pr.p smr.p = ~ ; 

1 + r.p2 

1 ( ) 1 • I Sin r.p + r.p COS r.p 
x2 ry = ar.p smr.p + ar.pr.p cosr.p = ~ . 

v 1 + r.p2 

The formula for the curvature re30 (ry) of a plane curve has the form 

(6) 
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(7) 

Differentiating (6) with respect to TJ and substituting the resulting relations 
into equation (7) we have 

(8) 

Solving equation (5) we find the dependence of 'P on ry, and then determine 
from (8) re30 (ry) as a function of TJ· Taking advantage of equation (C.25) (see 
Appendix C) and knowing the function re30 (ry), one can find the equations of 
small vibrations of an Archimedean spiral. 

126 In order to solve the problem it is necessary first to determine static mode 
of deformation (see Appendix A) and the displacement vector of points of the 
rod axial line. The rod is loaded with a dead force P, and the displacements 
are assumed to be small. The solution of equations of the rod equilibrium is 
considered in detail in [4]. 

When the force P stops acting, we have Q0 = Mo = 0. As a result of solu­
tion of equilibrium equation (A.92) (see Appendix A) we find the components 
u 01 and u 02 of the vector of displacements and the angle '!903 . The we take 
advantage of equations (C.25) of small vibrations of the rod in the plane of 
drawing (see Appendix C), putting in them Q10 = Q20 = M30 = 0. In addi­
tion, for the rod of constant round section re3o = 1f /2; n 1 = 1; A33 = 1, and 
h 3 = d/(16l), where d and l are the rod diameter and length, respectively. 
As a result, we have the following system of equations 

(1) 

Putting u 1 = u1o ( TJ )ei>.r, u2 = u2o ( TJ )ei>.r, and so on, we obtain the equation 

-1 -
Z0 +AZo = 0, (2) 

where 
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0 1f/2 0 0 _x2 0 Q10 

1f /2 0 0 0 0 _x2 Qzo 

A= 0 0 0 h3A2 0 0 
; Zo = M3o 

0 0 -1 0 0 0 '!930 
0 0 0 0 0 -1f/2 U10 
0 0 0 -1 1f /2 0 Uzo 

For the boundary conditions of the problem 

rJ = 0, u10 = uzo = '!?3o = 0; 

rJ = 1, Q1 = Qz = M3 = 0 

169 

we determine .X1 (j = 1, 2, 3). For every .X1 we find the eigenvector zg (see 

Appendix D). In order to solve this problem we need to know only u~6) (rJ) (k = 
1, 2; j = 1, 2, 3). 

The initial conditions have the form 

T = 0, u = u 0 , 

Let us write the expressions for the components of vector U:u: 

u 1 - c (l)u (I) cos A 1T + c (Z)u (Z) cos AzT + c (3) u (3) cos .X3T· 
- 10 10 10 ' 

u 2 = c(lluJ6l cosA1T + cC2luJ6l COSAzT + cC3luJgl cosA3T, 

or, in the vector form of notation, 

( - -(j)) At T = 0 Uj = zu 

[ 
(j) l -(j) u10 

where Zu = (j) • 
Uzo 

n 

u = L c (j)u:(j) COSAjT· 

j=l 

3 

- - ""' (j)-z CJl uo- ~c u ' 

j=l 

We determine the coefficients c (J) from the equations 

(3) 
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1 1 

j (u:oZ~1 l) dry= c C1l j (z2lf dry+ 

0 0 
1 1 

+c c2l J (z~2lz~1 )) dry+ c c3l J (z~3lz~1 )) dry; 

0 0 
1 1 

j (u:oz~2l) dry= c C1l j (z~1lz~2l) dry+ 

0 0 
1 1 

+c c2l j (z~2)) 2 dry+ c c3l J (z~3lz~2)) dry; 

0 0 
1 1 

j (u:oZ~3l) dry= c C1l j (z~1lz~3l) dry+ 

0 0 
1 1 

+c c2l j (z~2lz~3)) dry+ c c3l J (z~3)) 2 dry. 

0 0 

Provided that the rotation angles of the end section are small, the horizontal 
displacement of the point K along the axis x 1 is 

or 

127 We take advantage of equations (C.25) (see Appendix C) putting in 
them Qw = Q2o = 0, n1 = 1, and A33 = 1. Let us represent system (C.25) 
in the vector form 

(1) 

where 
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0 0 0 0 1 0 
0 0 0 0 0 1 

A (1) = 0 0 0 h3 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

0 &30 0 0 1 0 
-&30 0 0 0 0 0 

A (2) = 0 -1 0 0 0 0 
0 0 -1 0 0 0 
0 0 0 0 0 -re3o 

0 0 0 -1 &30 0 
- T Z = [Q1,Q2,\1Jl3,'/93,U1,u2] ; 

- T 
L':-.«<> = [o, o, roh, o, o, o] 5 (ry- ryi) 

For approximate solution of equation (1) it is required to determine first 

(for two-term approximation) the eigenfunctions z61) and z62) (see equations 
(1) of Problem 126). Further on, we seek the solution to equation (1) in the 
form 

(2) 

Let us employ the principle of virtual displacements (see Appendix E) 
assuming 

0 
0 
0 

where Eo= 0 

1 
0 

0 
0 
0 
0 
0 
1 

0 
0 
0 
1 
0 
0 

0 
0 
1 
0 
0 
0 

1 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 

( i) 
ulO 

( i) 
U2o 

( ) '!9 ( i) 
EZi- 3o o o - M(i) 

30 
Q (i) 

10 
Q (i) 

20 
The matrix Eo is a special case of matrix (E.18) (see Appendix E). In 

accordance with the algorithm of deriving equations for f (1) and f (2)) we 
write two equations 

or 

Here 

1 1 

J (- -(1)) L1 · EoZ0 dry = 0; J (- -(2)) L1 · EoZ0 dry = 0, 

0 0 

hu]Cll + h1d(2) + buf(1) + b12!(2) = b1; 

h2d(1) + h2d(2) + b2d(1) + b22!(2) = b2. 
(3) 
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1 1 

hu = j (A (ll"z61l · EoZ61l) d17; 

0 

h12 = j (A <1lz62l . EoZ61l) d17; 

0 

1 1 

h21 = j (A <1lz61l . EoZ62l) d17; 

0 

h22 = j (A <1lz62l. EoZ62l) d17; 

0 

1 

bu = j (z~(ll +A <2lz61l) Eoz61l d17; 

0 

1 

b12 = j (z~<2J +A <2lz62l) EoZ61l d17; 

0 

1 

b21 = j (z~(lJ +A <2lzPl) Eoz62l d17; 

0 

1 

b22 = j (z~<2 J +A <2lz62l) Eoz62l drJ. 

0 

In a more detailed notation the coefficients h 11 and b11 are determined by 
the following expressions: 

/
1 

[( (1))2 ( (1))2 ( (1)) 2] hu = Uw + U2o + h3 '!93o d17; 
0 

1 

b _ J [Q 1(1) (1) + Q 1(1) (1) + M 1(1La (1) +.a 1(1)M (1) + 1(1) "Q (1) + 
11 - 10 uw 20 u2o 30 v3o v3o 30 Uw L.C. 10 

0 

+ 1(1)Q(1) + Q(1) (1) Q(1) (1) Q(1La(1) (M(1)) 2 
U2o 20 re3o 20 uw - re3o 10 u2o - 20 v3o - 30 -

(1) (1) (1) (1) (1)] 
-re3ou2o Qw + re3ouw - '!93o Q2o d17. 

The right-hand sides of the equations of system (3) are equal to 

Let us write system (3) in the vector form 
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Assuming f = F\ and f = F2 , we represent equation (4) in the form of a 
system of first-order equations 

or 

F1 + H-1BF2 = H-1b; 

F2- F1 = o, 

whcce F ~ [!] ; A~ [ _0E H~'B l ; 
The solution to equation (5) has the form 

T 

F=K(T)C+ G(T,Tl)b dT, - - J -(1) 

0 

(5) 

(6) 

where K( T) is the fundamental matrix of solutions to homogeneous equation 
(5). This matrix satisfies the condition K(O) =E. 

The problem under consideration has zero initial conditions (r(o) = 0, 

f = 0) , therefore, 

(7) 

-(1) 
or, since the vector b does not depend on T, 

(8) 

Let us derive the solution to equation (5) for the case when its right-hand 
side does not depend on T, i.e., 

(9) 

We seek the partial solution F0 to inhomogeneous equation (5) in the form 

(10) 

where the components of vector C 1 are constant quantities. 
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Substituting (10) into equation (5) we get AC1 = b(1l, so that C 1 

A - 1b(1). Therefore, 

. - -(1) . 
Smce F = 0 and K(O) =Eat r = 0, then C =-A - 1b . Fmally, we have 

or 

(11) 

Now determine from (11) the vector f whose components J(ll and j(2l 
appear in accepted approximate solution (2) 

From (12) we find 

- [J(1)] -1-
f = f( 2) = P11 (r)H b. 

f (1) = du ( r)b1 + d12( r)b2; 

where dij are the elements of the matrix P11 (r)H- 1 . 

As a result, we get the following solution 

(12) 

(13) 

Under the condition of the problem it is required to determine the moment 
M 3 in the embedment (at 'T/ = 0). According to (13), 

Z3(0, r) = M3 = (dub1 + d12b2)M3~l(O) + (d21b1 + d22b2)M3~l(O). 

128 After termination of the action of momentum the mass m attains the 
velocity ii = (Jjn)I2, therefore, at T = 0 we have the following initial condi­
tions: 

u:(o, ry) = O; 
. J 

u:(o, ry) = --e2kb"(ry- 0.5) 
n 

(n = mlpo). (1) 

Consider vibrations of the rod about its natural state in the plane of 
drawing (Fig. 1.98). One needs to put Q10 = Q2o = 0, n1 = 1, and A33 = 1 
in the equations of small vibrations, for example, in equations (C.25) (see 
Appendix C). The concentrated mass leads to the appearance of P 1 and P2 

in the first two equations of system (C.25): 
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82ul 
P1 = -n2 072 8(17- 0.5); 

8 2u2 
P2 = -n2 072 8(17- 0.5) 

(2) 

As a result, we obtain the following system of equations 

82ul 8Ql 8 2ul 
072 - 817 + re3oQ2 = -n2 072 8(17- 0.5); 

82u2 8Q2 82u2 
----- re3oQ1 = -n2--8(17- 0.5); 
OT2 01] OT2 

82()3 8M3 8() 
h3-- - -- - Q2 = O·, - 3 -6M3 = O· 

OT2 01] 01] ' 

(3) 

where re3o = lj R = 1r. 

Next we determine the eigenvalues and eigenfunctions (vectors). Assum­
ing that 

Q.- Q· ei.h. 
J- JO ' 

we arrive at the equation 

where 

0 -1f 0 0 _x2 0 
1f 0 0 0 0 _x2 

A= 
0 1 0 h3.X2 0 0 
0 0 -1 0 0 0 
0 0 0 0 0 -1f 

0 0 0 -1 1f 0 

n2.X2u10 
n2.X2u2o 

6<.1>= 
0 

· 8(17- 0.5) = 6<.1>0 8(1]- 0.5). 
0 
0 
0 

In the problem considered the boundary conditions have the form 

1] = 0, UlQ = U20 = ()30 = 0; 

1J = 1, u10 = Q2o = M3o = 0. 

The solution to equation (4) looks like 

(4) 
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7J 

Zo = K(ry)C + j G(ry, hi)L><P(ry) dh1, (5) 

0 

where K(ry) is the fundamental matrix of solutions; G(ry, hi) is the Green's 
matrix. 

At 7J = 0 from the boundary conditions it follows that c4 = cs = c6 = 0. 
From equation (5) we get for 7J = 1 

Zo(1) = K(1)C + G(1, 0.5)6<P0. 

From the boundary conditions at 7J = 1 follows 

k21(1)c1 + k22(1)c2 + k23(1)c3 + gnn2-A2uw(0.5) + 

+ g22n2-A2u2o(0.5) = 0; 

k31(1)c1 + k32(1)c2 + k33(1)c3 + g21n2-A2uw(0.5) + 

+ g32n2-A2u2o(0.5) = 0; 

ks1(1)c1 + ks2(1)c2 + ks3(1)c3 + gsln2-A2uw(0.5) + 

+ gs2n2-A2u2o(0.5) = 0; 

In turn, since the integral in (5) is equal to zero at 7J = 0.5, 

uw(0.5) = ksi(0.5)ci + ks2(0.5)c2 + ks3(0.5)c3; 

u2o(0.5) = k61(0.5)cl + k62(0.5)c2 + k63(0.5)c3. 

(6) 

(7) 

Substituting expressions for uw(0.5) and u2o(0.5) into system (6), we ob­
tain after transformations the following system of homogeneous equations for 
unknowns C1, c2, and c3: 

(j = 1,2,3). (8) 

Equating the determinant of system (8) to zero, we write the equation 
for determination of frequencies. Determining, for example, three frequencies 

-X1 (j = 1, 2, 3), we find three eigenvectors z61l corresponding to them. As­

suming cJil = 1, for every Aj we find c{il and cJil from (8). As a consequence, 
-(j) 

the vector C for each AJ is equal to 

C Ul = ( Ul Ul 1 o o o)T 
cl 'c2 ' ' ' ' . 

The eigen vectors are 

-(j) -(j) -
Z0 =K(ry,-AJ)C +G(ry,0.5)6<PoH(ry-0.5). 

The vector L><Po depending on uw(0.5) and u20 (0.5) can be represented in 
the form 
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0 0 0 0 n2.A2 0 
0 0 0 0 0 n2.A2 

L':-.<l>o= 
0 0 0 0 0 0 

· Z~j) (0.5) = D z-Ul (0.5). 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Since Z (j) (0.5) = K(0.5, .>.1 )C (j), the expressions for eigen vectors have the 
form 

-(j) -(j) 
Z0 (ry) = K(ry, .>.1) + GDK(0.5, .>.1)H(ry- 0.5)C . 

Partial solutions to system of equations (3) are 

-(j) -(j) -(j) -(j) . 
Z(l) = Z(o) cos AjT; Zc2l = Z(o) sm AjT· 

At final number of partial solutions the solution is as follows 

n n n 

z = :L c C1lzg] + :L B Ulzg] = :L ( c (j)zc~] cos .>.1T+ 
j=l j=l j=l 

Ftom (9) we have the following expression for vector u: 
n 

u = C J Z cos .>. T + B J Z sin .>. T L ( ( ·J-Ul ( ·J-Ul ) 
u J u J ' 

j=l 

-(j) ulO 
[ 

(j) l 
where Zu = (j) . 

u2o 

(9) 

Now we determine the arbitrary constants C (j) and B (j) using the initial 
conditions. Since u = 0 for T = 0, hence C (j) = 0. The second initial condition 
gives the relation 

J ~ ( ") -(j) 
--5(ry-0.5)e2k = L...tB J .A1Zu . 

n j=I 

(10) 

Multiplying equation (10) by Zu (v) and integrating between 0 and 1 we 
obtain the system of equations of the form 

Having determined C (j) and B (j) we have finally 
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n 
- " ( ·)-(j) Z = ~B 1 Z0 sinAjT. 

j=l 

In the conditions of the problem it is required to determine the reaction 
force R in the hinge, which is equal to 

where 

n 

Q1(l,T) = Z1 = LB(j)Qig)(l)sinAjT· 
j=l 
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A 

Statics of rods: basic equations 

Solving the problems of dynamics of curvilinear rods when the vibrations of 
the rod takes place about the loaded state, it necessary to know the rod's static 
mode of deformation: the equations of small vibrations of the rod depend on 
it (for more details see Appendix C). Therefore, in order to investigate small 
vibrations of a rod (either free or forced), one needs to solve first the equations 
of vibrations of the rod loaded with static forces. 

When deriving the equations of rod equilibrium, two orthogonal systems of 
coordinates are used. One is a Cartesian system with unit vectors Ij, relative 
to which the rod position is determined. The second system with unit vectors 
ej is movable (Fig. A.l), and it is rigidly fixed to the axial line of the rod. The 
fixed (movable) axes can be directed arbitrarily. In order that the equations 
of equilibrium and the equations of motion of a rod element would be simpler, 

Fig. A.l. 
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it is worthwhile, when the orientation of axes is chosen, to take into account 
the following. The origin of coordinates should coincide with the centroid of 
the rod cross section. Next, one of the axes, for example, the axis determined 
by the unit vector e1 (see Fig. A.l), should be oriented along the tangent 
to the axial line of the rod in the direction of increasing coordinate s. It is 
reasonable to align two other axes with the principal central axes of cross 
section. The axes fixed to the principal section axes will be referred to as 
principal axes. Figure A.l shows two positions of the rod: in the unloaded 
(natural) and loaded states. Under the action of slowly increasing forces P (i) 

and moments ro?(v) the rod is strained changing from state 1 into state 2. Ii 
is seen from Fig. A.l that elastic displacements can be so large that the axial 
line of the loaded rod differs strongly from its original form (before loading). 
The external forces in the process of strain can change their directions. The 
directions of vectors Pi and ro?i at the moment of their application to the rod 
are shown in Fig. A.l by dashed lines. 

A.l Derivation of nonlinear equations of rod equilibrium 

When deriving the equations of rod equilibrium we use the following basic 
assumptions: 

1) normal sections that are plane before the strain remain plane after the 
strain too; 

2) the axial line of the rod is unstretchable; 
3) dimensions of cross section are small as compared to the rod length and 

the curvature radius the rod axial line; 
4) different but statistically equivalent local loads produce in the rod (if 

local tensions near the point of load application are not taken into account) 
one and the same stressed state (principle of Saint-Venent). 

Let us consider an element of the rod of length ds and draw all forces 
applied to it (Fig. A.2). The following notation is used in Fig. A.2: Q is the 
vector of internal strength, M is the intrinsic moment, q is the vector of dis­
tributed load (q = Ql e1 + q2e2 + q3e3), and 7l is the vector of distributed 
moment (71 = p,1e 1 + p,2e2 + p,3e3). The directions of the axes of a connected 
trihedral that are determined by unit vectors e2 and e3 coincide with the di­
rections of principal axes of the rod section. The rod element is in equilibrium, 
hence, the sums of all forces and all moments are zero, and this results in two 
vector equations: 

dQ+qds = 0; 

dM + (e1 x Q)ds + Jids = 0, 

or 

(A.l) 

(A.2) 
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Fig. A.2. 

dQ 
ds +q= 0; (A.3) 

dM -
ds + e1 x Q + p = 0. (A.4) 

In order to convert from equations (A.3) and (A.4) to the equations writ­
ten through the components of vectors in the bases {I1} or {e1} , these vectors 
should be represented in the form of decompositions in base vectors. In equa­
tion systems (A.3) and (A.4) the vectors Q, M, and e1 are unknown quantities. 
The acting distributed loads q and p, concentrated forces and moments ap­
plied to the rod (see Fig. A.l), and the conditions of rod fixing are known 

· · · th Th d £ P(i) d cm(v) quantities m ese systems. e concentrate orces an moments ~ 
can be included into equations (A.3) and (A.4) taking advantage of the Dirac 
8. As a result, we have the following equations of equilibrium: 

dQ ~-(i) ds + q + ~ P 8(s- si) = 0; 
j=l 

(A.5) 

- p 
dM - "-(v) 
ds + e1 X Q + JL + ~ ro1 8(s- 8 11 ) = 0, 

11= 1 

(A.6) 

where si and S 11 are the coordinates of points of application of concentrated 
forces and moments, respectively. 

The distributed force q appears in equations (A.5) and (A.6). It can act 
on a part and not over the full length of the rod. In this case, one can write 
the equations using the Heaviside function, i.e. , 

q = q(s)[H(s) - H(s- si)]; 
j:L = p(s)[H(s)- H(s- sv)J, 
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where H(s) is the Heaviside function. 
Equations (A.5) and (A.6) hold true for the case when the rod is unloaded 

in the initial state. The system of these equations is not complete, since in 
the general case it is impossible to determine Q and M from it. The point 
is that equation (A.6) involves the unit vector e1 whose position in space 
is unknown, since it depends on the rod deformation. Therefore, we need to 
derive the relations that would allow us to determine the spatial positions of 
the base vectors ej under deformation of the rod. 

A.2 Transformations of base vectors 

When a rod changes from its natural state 1 (see Fig. A.1) into state 2 with 
loading by external forces, the base vectors eiO bound to the axial line of the 
rod are displaced to another point of space. This transition of the base into 
another point is characterized by the vector u of displacement of the base 
origin (see Fig. A.1) and by the rotation of bound coordinate axes (vectors 
ej)· 

Let us derive the relations that allow one to change from one orthogonal 
base to another. Let {ei} ( i = 1, 2, 3) be a certain base (determining the 
directions of bound coordinate axes) in the three-dimensional space, and {e10} 

be the base fixed to the same rod section before this section is loaded by 
external forces (Fig. A.3). Each vector of t he base {ei} can be decomposed in 
vectors of the original base {ew}: 

Fig. A.3. 
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e1 = luew + h2e2o + h3e3o; 

e2 = l21 ew + l22e2o + l23e3o; 

e3 = b1e10 + b2e2o + b3e3o, 

(A.7) 

where lij are the projections of base vectors ei onto the directions determined 
by vectors ejo. In system of equations (A. 7) the coefficients lij form the matrix 
L: 

(A.8) 

that is referred to as the transition matrix from the base {ejo} to the base 
{ej}. Relations (A. 7) can written in a more compact form: 

(A.9) 

where LT is the transposed matrix. At a reverse conversion of the base {ei} 
to the base {ew}, we have 

(A.lO) 

Let us find the transformation matrix under an arbitrary displacement 
and rotation of the triple of base vectors (Fig. A.4). Since the base vectors 
at a translational displacement of coordinate axes coincide with original base 
vectors, one can restrict oneself to considering only the transformation due 
to rotation of base vectors. An arbitrary rotation of coordinate axes can be 
represented as three independent rotations, therefore, we determine the matrix 
L in the following way. Consider a rotation of initial coordinate axes about 
the axis coinciding with the direction of vector e 10 through a positive angle 
191 (see Fig. A.4a). As a result, we have 

-;1 -
11 = ew; 
-I 
i2 = cos 191 . e2o + sin 191 . e3o 
-I 
i3 =-sin 191. e2o + cos191. e3o; 

The corresponding transition matrix has the form 

ew e2o e3o 
-;I 

[~ 
0 ,;~ ~, l 11 

-I 
cos191 L19 1 = i2 

-;I -sin 191 cos191 13 

As for any matrix of rotation of coordinate axes, the elements of matrix 
L191 can be considered as direction cosines between the base vectors {ei} and 
{Ii}· We make the second rotation through a positive angle 193 about the axis 
coinciding with the direction of vector I3 (see Fig. A.4b). As this takes place, 
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a 

c 
Fig. A.4. 

- II -1 -1 
i 1 = cos {)3 · i 1 +sin {)3 · i2 ; 
-II -1 -1 
i2 = -sin {)3 · i 1 + cos'l?3 · i2 ; 

•" •' 13 = 13; 

In this case, the transition matrix looks like 

I1 I2 

•"' [ sin {)3 11 cos {)3 
-Ill 

cos'l?3 L,13 = i2 - sin {)3 

•"' 0 0 13 

i3 

~] 

b 

Finally, we make the last rotation of coordinate axes through a positive 
angle {)2 about the axis aligned with the vector I~' = e2 (see Fig. A.4c). 

-II 
After that, the base vectors i1 coincide with vectors ei. The corresponding 
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transition matrix has the form 

•' •' 
12 13 

0 ein D, l 
1 0 . 
0 cos {)2 

The general matrix L of conversion from the base {e10 } to base {ei} (the 
transition matrix for rotation of coordinate axes) is equal to the product of 
matrices L1'! 2 , L1'!3 , and Lt!,: 

L = [liJ] = Lt!2 Lt!3 Lt!, (A.ll) 

or 

elO e2o e3o 

e1 cos {)2 cos {)3 
cos {)2 sin {)3 cos {)1 + cos {)2 sin {)3 sin {)1-

+ sin {)2 sin {)1 - sin {)2 cos {)1 

L =e2 -sin {)3 cos {)1 cos {)3 cos {)3 sin {)1 
(A.12) 

e3 sin {)2 cos {)3 
sin {)2 sin {)3 cos {)1- sin {)2 sin {)3 sin {)1-

-cos {)2 sin {)1 - cos {)2 cos {)1 

Other sequences of rotations of coordinate axes are also possible. 
At small angles ofrotation the matrix L (see expression (A.13)), which we 

denote as 6L, takes on the form 

e10 e2o e3o 

e1 [-~, 
{)3 -D,l 

L1')2 = e2 1 {)1 

e3 {)2 -{}1 1 

(A.13) 

or 

6L = E + 6L1, 

where 

6L, ~ [ -~1 {)3 -D,l 0 {)1 

{)2 -{}1 0 
(A.14) 

The matrix L of transformation of base vectors allows one to establish the 
relation between components of vector a in different bases: 
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where ai are the components of the vector a in the base {ei}, and aka are the 
components of the vector a in the base {e10}. 

In the vector form of notation we have: 

a= Lao. (A.l5) 

If it is required to express components of the vector a in the base {eiD} 
through its components in the base {ei}, then from (A.15) we get 

a:a = LTa. 

Similarly, one can determine the transition matrix between the bases {Ij} 
and {ej0 }. The latter characterizes the natural state of the rod (before load­
ing). Let us denote the angles of rotation as '!9~. The matrix L00 obtained 
similar to the matrix L has the form 

cos'!?g cos'!?~ 
cos '!9g sin '!9~ cos '!9~ + cos '!9g sin '!9~ sin '!9~-

+ sin '!?g sin '!9~ - sin '!?g cos '!9~ 

Lo = -sin '!9~ cos'!?~ cos'!?~ cos'!?~ sin '!9~ (A.l6) 

sin '!?g cos'!?~ 
sin '!?g sin '!9~ cos '!9~- sin '!?g sin '!9~ sin '!9~-

- cos '!9g sin '!9~ - cos '!9g cos '!9~ 

Let us determine the transition matrix between the bases {Ij} and {ej} 
(see Fig. A.l). Since 

- zo .. zo .. zo .. 
ejo = jill + j 2 12 + j 3 13; 

ek = lkl ew + lk2e2o + lk3e3o, 

then excluding ejo from (A.l7) we get 

3 3 3 

- "'"' l l0 .. "'l (l)• ek = ~ ~ kj jvlv = ~ kv lv, 

j=lv=l v=l 

where ~~~) are the elements of the matrix 

(A.l7) 

(A.l8) 

(A.l9) 

Let us recall that L0 is a matrix with known elements that characterize the 
spatial configuration of the axial line in the unloaded (natural) state; while L 
is the matrix that characterizes the rotation of vectors of the base {ej} with 
respect to their natural state. If a rod is rectilinear in its natural state, then 
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Knowing the matrix L (l), one can derive the relations linking the vectors of 
the bases {ej} and {Ij}: 

(j = 1, 2, 3). 

Matrix (A.15) allows one to determine the components aj of vector a in 
the base {ej} for known components axj of vector a in the base Ij, i.e., 

- -L(l)_ 
a= ax 

3 

ai = 2.: axjzSl. 
j=l 

(A.20) 

The transition matrices of base vectors are necessary when deriving the 
equations of equilibrium and motion for rods, and when accounting for real 
behaviour of force vectors in the process of loading the rod. 

A.3 Derivatives of base vectors with respect to arc 
coordinate s 

The derivative of a vector with respect to a scalar argument is a vector, 
therefore, it can be represented in the form 

(A.21) 

where reij are the elements of a certain matrix. Multiplying expression (A.21) 
scalarly by ek we have 

Since 
- - { 1, if i = k; 
ei . ek = 0, if i -1- k, 

we have after differentiation of equation (A.22) 

Hence, it follows, taking (A.23) into account, 

(A.22) 

(A.23) 
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therefore, the matrix [ooi1] has only three independent elements: 

Let us invoke the vector 

3 

re = 2::::: ffijej = ffil el + ffi2e2 + ffi3e3. 

j=l 

The derivatives of unit vectors with respect to coordinate s (see relations 
( A.l7)) can be represented in the form 

devo _ _ _ 
ds = <Eo X eva = EnpvffipOenoi 

dei _ _ _ 
ds = rex ei = Ekjiffijek, 

where Ekji and Enpv are the Levi-Civita symbols. 
Then the following relations 

de1 _ _ 
ds = oo3e2 - oo2e3; 

de2 _ _ 
ds = oo1 e3 + oo3e1; (A.24) 

de3 _ _ 
ds = oo2e1 - ffi1 e2, 

hold true. 
Taking relations (A.24) into account, the derivative of an arbitrary vector 

a in the bound coordinate system is equal to 

da d'a 
ds = ds + re X a, (A.25) 

d' 
where ds is the local derivative. 

Let us demonstrate the geometrical meaning of the components oo1j of 
the vector re. When relations (A.24) were established, no constraints were 
imposed on the directions of vectors e2 and e3 . Therefore, one can consider 
these relations as general. For natural axes, which are a special case of bound 
axes, we have 

(A.26) 

where e is the curvature radius of the curve. 
For the case under consideration we introduce a new designation for the 

vector re: the vector fl that is known in differential geometry as the Darboux 
vector. Then, according to the first equation of (A.24), one can write 
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Fig. A.5. 

de 1 
d 

1 = - e2 = She2 + D2e3 = re3e 2 - re2e3. 
s {! 

Hence, it follows that 

i.e. , re3 is the curvature of the curve. 

.r, 

For natural axes, we derive from relations (A.24) the following formulas of 
Serret-Frenet 

(A.27) 

The vector e~ is orthogonal to the vector e3 . In addit ion, it lies in the plane 
a (Fig. A.5) that is orthogonal to the osculating plane, therefore, 

or 

(A.28) 
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Fig. A.6. 

hence, 

-(f) e, 

The component D1 of the Darboux vector characterizes the torsion of the 
curve. 

When changing from natural bound ( ep)) axes (Fig. A.6) to any other 

bound axes (ej) rotated by a known angle '13 with respect to the vector e, the 
components of vector re are expressed through the components of vector D in 
the following way: 

3 

re = L ffij ej = ffil el + D3 sin '13we2 + D3 cos '13we3' 
j=l 

A.4 Equations relating cei to angles ih 

Let us consider the relations 

3 

ei = 2.:: zivevo; 
v = l 

3 

evo = 2.:: zkvek, 
v = l 

(A.29) 
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where lij is the element of matrix (A.l3). Differentiating ei, we have 

(A.30) 

since 

Excluding evo from equation (A.30) we obtain 

(A.31) 

After some transformations we find from equation (A.31) 

dl21 dl22 dl23 
re1 = ds l31 + ds b2 + ds h3 + (l22h3 - l23l32)re10+ 

+ (l23l31 -l21h3)re2o + (l21h2 -l22l3I)re3o; 

dl31 dl32 dl33 
re2 = ds lu + ds h2 + ds h3 + (l32h3 - l33l12)re10+ 

(A.32) 
+ (b3lu - h1h3)re2o + (l31h2 - h2lu)re3o; 

dlu dl12 dh3 
re3 = ds l21 + ds l22 + ds l23 + (h2l23 - h3h2)re10+ 

+ (h3l21 -lul23)re2o + (lul22- h2b)re30· 

Let us express lij in relations (A.32) through the angles '!91, '!92 and '!93. As a 
result, we have 

( d'!91 ) d'!93 . 
re1 = ds + re10 cos '112 cos '113 - ds sm '112+ 

+ (sin '112 sin '!91 + cos '112 sin '113 cos '111) re2o + 

+ (cos '112 sin '113 sin '111 - sin '112 cos '111) re3o; 

d'!92 (d'!91 ) . re2 = ds - ds + re10 sm '113 + cos '113 cos '!91 re20+ 
(A.33) 

+cos '113 sin '111 re3o; 

d'!93 (d'!91 ) . re3 = ds cos '112 + ds + re10 sm '112 cos '!93 + 

+(sin '112 sin '113 cos '111 - cos '112 sin '!91) re2o+ 

+ (cos '112 cos '111 + sin '112 sin '113 sin '111) re3o. 

When writing expressions (A.33) the angles '!91, '!92 and '!93 were reckoned from 
the base axes {eiO} whose position characterizes the natural state of the rod 
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and is assumed to be the initial state. For the sake of convenience of trans­
formations, system of relations (A.33) can be written in the form of a single 
vector relationship: 

-- L d:O +L-(1) 
re- 1 ds reo (-(1) -- -) ce0 - reiOei , (A.34) 

where 

'13= [H d:O [H ds 

[ coe ~, nm ~3 0 -''" ~, l 
L1= -sin rJ3 1 0 . 

sin rJ2 sin rJ3 0 cosrJ2 

(A.35) 

Vector ceJ1l is not equal to vector re0 that characterizes the curve geometry 

in the initial state. The vector ceJ1l has the components in the base {ei} that 
are equal to the vector re0 components in the base {eiO}· Expressions (A.33) 
give a possibility to determine variations of the components of vector re that 
characterize the geometry of the axial line in the loaded state, if the geometry 
of the axial line in the initial state ( reiO) is known. 

A.5 Vector equation of displacements of points of the 
rod axial line 

Since (see Fig. A.l) 
u: = r- ro, (A.36) 

we can derive, differentiating this equation with respect to s, 

(A.37) 

Using the matrix L of form (A.l3) we have 

and, consequently, 

(A.38) 

Converting to the local derivative (see relation (A.25)), we get 
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or, in the scalar form of notation, 

du1 
ds + <E2Ua - <E3U2 + lu - 1 = 0; 

du2 
ds + ffi3U1 - ffil U3 + l21 = 0; (A.40) 

du3 
ds + ffil U2 - ffi2U1 + h1 = 0. 

A.6 Equation connecting the vectors M andre 

Consider in the bound coordinate system ( Fig. A. 7) a rod element in the 
strained state. In the planes passing through the principal axes of the section, 
the axial line projections have curvatures <E2 and <E3 and are project ions of the 
curvature of the spatial axial line. Since the radius of curvature e is directed 
along a binormal to natural axes that is rotated by the angle 7?10 with respect 
to the section principal axes (see Fig. A.7), then 

(A.41) 

Fig. A.7. 
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In addition to bending moments M2 and M3, the moment M1 acts upon 
the rod element, which results in torsion of the rod axial line. This torsion is 
characterized by the component re1 of vector re. Assuming that the moments 
M1, M2, and M3 are proportional to variations of torsion and curvature, we 
obtain three equations: 

M1 = Au(rel- rew) 

M2 = A22(re2- re2o); 

M3 = A33(re3- re3o); 

<Bj - <Bjo = L.rej, 

(A.42) 

where Aii are the torsional and bending stiffnesses that, for a rod of variable 
section, depend on s (An = GJe; A22 = Ely; A33 = EJz); while reiD is the 
torsion and curvature in the strain-free (natural) state. 

System of equations (A.42) can be written in the form of a single vector 
equation: 

M = A(re- reJ 1l), (A.43) 

where A = [A~ 1 A~2 ~ ]· 

0 0 A33 

It should be emphasized that vector reJ1l is not equal to the vector ffio 
that characterizes the initial state of the rod. 

The vector reo is known in the base {eiO}: 

(A.44) 

In order to find the increments of curvature vectors L.rei appearing in 
equations (A.42), one should assume that the vector reJ 1l remains unchanged 
in the bound system of coordinates: this takes place if its projections in this 
coordinate system are invariable. In this case, in the base {ei} 

(A.45) 

A. 7 System of nonlinear equations of rod equilibrium 

The system of vector equations of equilibrium of a three-dimensional curvi­
linear rod has the form 
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Here 

dQ -
ds+P=O; 

dM - -
ds + e1 Q + ~ = 0; 

- d~ (1) 
L1 ds - re + Lre0 = 0; 

du 
ds - (1 -ln)e1 + lz1e2 + h1e3 = 0; 

M = A ( re- reJ 1l) . 

n 
- "'-(i) P = q + L._., P b"(s- si); 

i=1 
p 

~=JI+ L~(v)b"(s-sv)· 
v=1 

(A.46) 

(A.47) 

System (A.46) involving five vector equations contains five unknown vec­
tors: Q, M, ~' re, and u. 

A.8 Reduction of equations to dimensionless notation 

Let us introduce the following new quantities: 

(A.48) 

where ,.._, is the superscript denoting a dimensionless quantity; A33 (0) is the 
bending stiffness at the origin of coordinates. Since centimeter powered to 
minus unity (cm- 1) is the unit of <5-function in equations (A.47), we have 
upon passing to a dimensionless coordinate 

(A.49) 

where J' is the dimensionless function. Substituting relations (A.48) into equa­
tions (A.46) and (A.47), we have after transformations the system of nonlinear 
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equations of rod equilibrium in the dimensionless form of notation (the symbol 
is omitted in dimensionless quantities): 

dQ n . 
- + q + LP(t)J(ry -ryi) = 0; 
dry i=l 

(A. 50) 

- p 
dM - "'-(v) d + e1 x Q + Ji + L...., ~ b(ry- ryi) = O; 

ry v=l 

(A.51) 

-L d19 + L -(1) A-1M- 0 1 dry 2re0 - - (L2 = L- E); (A.52) 

(A. 53) 

(A.54) 

Let us consider in more detail the derived system of nonlinear vector equa­
tions of equilibrium of a three-dimensional curvilinear rod. Equations (A.50) 
and (A.51) are valid for any base, i.e., they are invariant with respect to co­
ordinate systems. From them, for example, one can express the vectors both 
in the fixed coordinate system: 

3 

Q= LQx)j; 
j=l 

and in the moving system: 

3 

Q= LQJeJ; 
j=l 

3 

q= Lqx1 Ij; 
j=l 

3 

q= LqJeJ; 
j=l 

3 

P (i) = "'p(i)'. 
L...., Xj 1) > 

j=l 

3 

P (i)- "'p(i)-. 
- L...., j eJ. 

j=l 

As for equations (A.52) and (A.53), the vectors M, 19, re, reJ 1l, and u in them 
are related only to the base {ej }, i.e., 

3 

M=LMJeJ; 
j=l 

3 

19 = L 79JeJ; 
j=l 

3 

re = L mJeJ; 
j=l 

3 

u = LuJeJ. 
j=l 

A.9 Boundary conditions 

When solving the equations of rod equilibrium, both homogeneous and inho­
mogeneous boundary conditions are possible. For a three-dimensional curvi­
linear rod the total number of boundary conditions is 12 (6 conditions at the 
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left end of the rod for 'rJ = 0 and 6 conditions at its right end for 'rJ = 1). 
For a cantilever rod (see Fig. A.1) we have the following boundary conditions: 
'rJ = 0, u = 0, 19 = 0 and 'rJ = 1, Q = 0, M = 0. For hinged rod for 'rJ = 1, if 
the hinge allows to the rod's front section to rotate with regard to three axes, 
the boundary conditionsfollowing are as follows: u = 0 and M = 0. 

Other variants of fixing the rod ends are possible, for example, those for­
bidding the displacement of a butt section of the rod in some direction that 
is determined by the unit vector ea; in this case the following condition 

(A.55) 

should be met. 
Similar boundary conditions are possible for a butt section rotated by some 

angle (for example, 191 =/= 0, 192 = 193 = 0). 

A.lO External load and its behaviour under rod loading 
process 

Earlier, we have derived the general vector equations of equilibrium of the 
rod loaded with external forces and moments (see expressions (A.50)-(A.54)). 
The equations of equilibrium or motion can be solved only in the case when 
the external load is known. Therefore, it is presumed that all necessary data 
concerning external forces and moments are available. Let us consider in more 
detail possible behaviour of the external load (distributed and concentrated 
forces and moments) appearing in vector equations (A.50) and (A.51). Equa­
tions (A.50)-(A.54) are valid for large displacements of the rod under the 
action of external forces, therefore, one needs to know first the behaviour of 
the external forces in the process of rod loading and, second, whether these 
forces remain constant in direction and magnitude under rod deformation. If, 
in the process of rod strain, external forces and moments keep their direction 
with respect to a fixed coordinate system (as, for example, does the moment 
ro? in Fig. A.8), they are called 'dead' forces. If they keep their direction with 
respect to bound axes (for example, the force P in Fig. A.8), then we refer to 
them as the 'tracking' forces. When general vector equations of equilibrium 
and motion are derived, the 'behaviour' of the external load is immaterial. 
It plays important part when the equations are written in particular bases 
(for example, {ei} or {I1}) and, especially, when these equations are written 
in the scalar form (for numerical methods of solution). If the external load 
is dead, and the equations of rod equilibrium are written in projections onto 
fixed axes in the base {I1}, then projections of the forces Px~), ro?~~), Qx1 , and 
f1x1 do not depend on the strained state of the rod. If the load is tracking (the 
force Pin Fig. A.8), then the projections of external forces in these equations 
depend on the strained state of the rod. 

Let us consider the tracking force 
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m 

I; 

Fig. A.8. 

3 

P = 'L:Piei, 
i=l 

where Pi are constant in the base {ei}· Making conversion to the fixed coor­
dinate system we get 

3 3 

P = LPiei = LPx)1. (A. 56) 
i=l j=l 

Here 
3 

PXj = L:PizS)(ry) (j = 1, 2, 3)' (A. 57) 
i=l 

And zS) are the elements of matrix L(l) (see expression (A.19)). 
Relation (A.57) can be represented in the vector form of notation 

(A.58) 

The projections Pxj depend on zSl(ry), therefore, they are not constant 
quantities. Similarly, one can write down the distributed loads too 

3 

q = LQx)j 
j=l 

3 

Ji = LJLx)j 
j=l 

or, in the vector form, 

- = (L(l))T-qx q, - = (L(l))T-ILx JL. (A.59) 
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For the dead force P we have 

3 

P= LPx)j, 
j=l 

where Px1 are constant in the base {Ij}· 
In the bound coordinate system the projections of dead distributed loads 

are determined by the expressions 

3 

Jli = L J-tx1 lij, 
i=l 

where qx1 and P,x1 are specified functions. 

(A.60) 

In the vector notation, the dead forces in the base {ej} have the form 

(A.61) 

A.ll Vector nonlinear equations of rod equilibrium in 
the bound coordinate system 

In order to derive the equations of equilibrium in the projections onto coor­
dinate axes, it is necessary to represent vectors in an appropriate base (for 
example, the base {ei}) bound to the section's principal axes. In this case, it 
is well to bear in mind that not only projections of vectors depend on the co­
ordinate ry, but the vectors of the base {ei} too. Taking advantage of formula 
(A.25), let us change over in equations (A.50)-(A.53) to local derivatives: 

where 

dQ - -
dry + re x Q + P = 0; 

dM - - -
- + re x M + e1 x Q + rol = 0; 
dry 

~~ + L2reJ1l- A-IM= 0; 

du: 
-+rex u: + (ln- l)e1 + l21e2 + l31e3 = O; 
dry 

M=A(re-reJ1l), 

(A.62) 

(A.63) 

(A.64) 

(A.65) 

(A.66) 
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3 p 
- "'-(i) p = q + L_..,p t5(ry- T/i)i - - "'-(v) ) ~ = J.l + L_.., ~ t5 ( 'T} - 'T/v ; 

i=1 v=1 

sin 1'J2 sin 1'J3 cos 1'J1- sin 1'J2 sin 1'J3 sin 1'J1-
-cos iJ2 sin iJ1 - cos iJ2 cos iJ1 - 1 

(A.67) 

(A.68) 

All vectors appearing in expressions (A.67) must be represented in the 
-(i) -(v) 

base {ej }. If the vectors q, P , Ji, and ID? are known in bound axes, then 
no additional transformations are required. If these vectors or some of them 
are specified (known) in Cartesian axes, then one should write them in the 
bound axes using the matrix of conversion from the base {Ij} to the base 
{ej }. How to determine the vector components when making conversion from 
one coordinate system to another is described in the paragraph A.2 of this 
Appendix. 

A.12 Equations of rod equilibrium in projections onto 
bound axes 

In applied problems it is more convenient to use equations in projections onto 
bound axes. In addition, the components QiO and MiD of vectors Q0 and M 0 

have clear physical meaning in the bound axes: Q10 is the axial force; Q2 and 
Q3 are the crosscutting forces; M1 is the torsion moment; and M 2 and M3 
are the bending moments. 

For better understanding we restrict ourselves to the case when one con­
centrate force Po and one concentrated moment ID?0 are applied to the rod. 
The equations of equilibrium have the following form 

dQw dry+ Q3om2o- Q2om3o + qw + Pwt5p = 0; 

dQ2o dry + Qwm3o - Q3omw + q2o + P2o8 P = 0; (A.69) 

dQ3o dry + Q2om1o - Qwm2o + q3o + P3o8 P = 0; 

dMw 
~ + M3om2o - M2om3o + J.Lw + ID?wt5~ = 0; 

dM2o 
~ + Mwm3o - M3omw - Q3o + J.L2o + ID?2o8ID? = 0; (A.70) 

dM3o 
~ + M2omw - Mwm2o + Q2o + J.l3o + ~3oc5~ = 0; 
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M10 = Au(re10- re10o);} 
M2o = A22(re2o- re2oo); 
M 3o = A33 ( re3o - re3oo); 

( d'l110 ) d'l13o . 
re10 = ~ + re10o cos '112o cos 'l13o - ~ sm '112o + 

+(sin '1120 sin '1110 +cos '1110 cos '112o sin 'l13o)re2oo + 

+ (cos '112o sin '1130 sin '1110 - sin '112o sin '1110) re3oo; 

d'l12o (d'l110 ) . re2o = ~ - ~ + re10o sm 'l13o+ 

+cos 'l13o cos '1110re2oo + cos 'l13o sin '1110re3oo; 

d'l13o ( d'l110 ) . 
ffi3o = ~cos '112o + ~ + re10o sm '112o cos 'l13o+ 

+(sin '112o sin 'l13o cos '1110 -cos '112o sin '1110)re2oo + 

du10 o 
~ + U30ffi20 - U20ffi30 + [11 - 1 = 0; 

du2o 0 
~ + U10ffi30 - U30ffi10 + [21 = 0; 

du3o 0 
~ + U20ffi10 - U10ffi20 + [31 = 0. 

203 

(A.71) 

(A.72) 

(A.73) 

The quantities ffiiOo appearing in equations (A.71) and (A.72) are assumed to 
be known. 

A.13 Special cases of equilibrium equations 

Nonlinear equations of equilibrium for a rod whose axial line is a 
plane curve both before and after loading 

The equations of equilibrium for the case under considerations have the fol­
lowing form 
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dQw 
~- re2oQ2o + qw + Pw8p = 0; 

dQ2o 
~ + re3oQw + q2o + P2o8p = 0; 

dM3o 
dry + Q2o + M3o + rol3o8ro? = 0; 

d'!9 (1) 1 
_____1Q_ - -M3o = re3oo; 

dry A33 
duw d;] - u2ore3o + ln - 1 = 0; 

du2o 
d;] + U1Qffi30 + b = 0; 

M3o = A33(re3o- re3oo), 

(A.74) 

(A.75) 

(A.76) 

(A.77) 

(A.78) 

(A.79) 

(A.80) 

d'!?j~l d'l?3oo . 
where ln = cos'l?3o; l21 = -sin'l?3o; re3o =dry' and re3oo =dry. Smce 

the angle between the tangents to the axial line of the rod before and after 
loading (between the vectors ew and e 100) is '!930 = '!9j~l - '!93oo, equation 
(A.77) can be represented in the form 

d'l?3o _ M3o = O. 
dry A33 

(A.81) 

System of equations (A. 74)-(A.79) allows one to determine the static mode 
of deformation of a plane curvilinear rod at large displacements of points of 
the rod axial line (u 10 , u20 ) and at large angle of rotation '!930 . The equations 
of small vibrations depend on Qo1, Qo2, and Mo3 (see Appendix C). 

Equations of equilibrium at small displacements of points of the 
rod axial line and small rotation angles of the vectors ej of bound 
axes 

We assume that displacements Ujo and angles '!9j are small, and the vector re0 
is 

where re00 is the vector characterizing the axial line geometry for the rod in 
its natural (unloaded) state; and 6re0 is the small increment of the vector 
reo, 

3 

6reo = L 6rejoejo 
j=1 
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The intrinsic moments M 10 , M20 , and M30 are proportional to the components 
of vector 6re0: 

From nonlinear equations (A.62)-(A.65) we obtain after transformations the 
linear equations of equilibrium: 

dQo - - -
dry + reoo x Qo + <Io + 6q0 +(Po+ 6Po)bp = 0; 

dMo - - - -d:;J + reoo x Mo + ew x Q0 +flo + 6p;0 + (~ + 6~)<5~ = 0; 

d19o _ - -1-
- + reoo x fJo - A Mo = 0; 
dry 
d-
d~o + reoo x U:o + fJ3oe2o + fJ2oe3o = 0, 

where re00 and e 10 are known vectors. 

(A.82) 

(A.83) 

(A.84) 

(A.85) 

If the loads are tracking, then in the bound coordinate system 6q0 
6p;0 = 6Po = 6~ = 0. If the loads are dead, then the increments of vectors 
6q0 etc. are not equal to zero. In this case, they depend on fJjo and Ujo 
linearly [4]. 

The vector products can be represented as 

reoo x Q0 = AreQ0; 

reoo x 19o = Are19o; 

reoo x Mo = AreMo; 

reoo x U:o = Areuo, 

where Are= [ re~oo 
-re2oo 

-re3oo 
0 

rewo 

whe<e A,~ [~ ~ ~~] 

lB200 l 
-~1oo . In addition, 

(A.86) 

As a result, we have the system of linear vector equations that allow one to 
determine the static mode of deformation of a three-dimensional curvilinear 
rod: 
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dQo - - - - -
dry + AreQo + qo + 6q0 +(Po + 6Po)b"p = 0; (A.87) 

dMo - - _ _ - -
dry + AreMo + A1 Q0 +f-lo + 6f-lo + (ro? + 6ro?)b"rol = 0; (A.88) 

(A.89) 

(A.90) 

Linear equations of equilibrium for the specific case when the rod 
axial line was a plane curve before loading 

For the case when the rod axial line becomes a spatial curve after loading 
the equations in projections onto bound axes can be derived from system 
(A.87)-(A.90): 

dQw 
dry - re3oQ2o + Pw = 0; 

dQ2o 
~ + re3oQ10 + P2o = 0; 

dQ3o 
~+P3o =0; 

dMw d;J - re3oM2o + rolw = 0; 

dM2o d;J + re3oM10 - Q3o + rol2o = 0; 

dM3o d;J + Q2o + rol3o = 0; 

Mw = An6rew, M2o = A226re2o, M3o = A336re3o, 

d19w 
dry - re3ol12o - 6rew = 0; 

dl12o 
dry + re3ol110 - 6re2o = 0; 

dl13o 
dry - ffi30 = 0; 

duw 
dry- re3oU2o = 0; 

du2o 
dry + re3ou10 - l13o = 0; 

du3o 
dry+ l12o = 0. 

(A.91) 
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If the rod axial line after loading persists to be a plane curve (which is 
possible if Pao = \W10 = ro?2o = 0), then one should set in system of equations 
(A.91): 793o = 0; Mw = M2o = 0; 6rew = 6re2o = 0; 79w = 792o = 0, and 
u30 = 0. As a result, we get the following system of equations: 

dQw 
~ - re3oQ2o + Pw = 0; 

dQ2o 
~ + re3oQw + P2o = 0; 

dM3o 
~ + Q2o + rol3o = 0; 

d7930 - M30 = 0 (M3o = A336re3); 
d77 A33 

(A.92) 

duw d;] - re3ou2o = 0; 

du2o 
d;] + re3ouw + 793o = 0. 
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Basic equations of rod kinematics 

When deriving the equations of motion for rods, it is necessary to know kine­
matic relations that establish a link between generalized displacements and 
their first derivatives with respect to time. 

B.l Time derivatives of vectors of the base {ei} 

Figure B.l shows the positions of movable coordinate axes at different in­
stants t 0 and t 1 . The relations that set up a correspondence between the base 
vectors i1, e10 , and e1 at a variation of their position in space were derived in 
Appendix A. The position of bound axes can be changed either due to trans­
lation of the axes when the rod moves (coordinate s being fixed) (see Fig. 
B.l), or due to a displacement of the axes at a fixed instant t0 when axes drift 
along the s coordinate. Thus, in the general case the base vectors ei depend 
on two independent variables t and s. 

In the former case the variation of axes' position depends on the variation 
of variable t at a fixed value of the s variable, while in the latter case it depends 
on variation of s at a fixed value of t. As the rod moves, the position of its 
axial line in space changes continuously. In order to describe the rod motion 
and to determine the form of its axial line at any time, one needs to know the 
derivatives of the vectors e1 of a fixed base with respect to arguments t and 
s. The appropriate relations for derivatives of vectors e1 with respect to s are 
given in Appendix A. 

The derivative of vector e1 with respect to t is a vector that can be de­
composed in vectors of the base {ei}, i.e., we can present it in the form 

(i,j = 1, 2, 3), (B.l) 

where Wij are the elements of a certain matrix [wi1] similar to the matrix [reiJ]· 
The matrix [wij] is skew symmetric and has only three independent elements: 
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At t0 

Fig. B.l. 

(B.2) 

As a result, we get from (B.2) 

The following equation 

(i = 1, 2,3) , (B.3) 

holds true, where w is the angular velocity vector for rotation of the bound 
coordinate system (w = w1e1 + w2e2 + w3e3). 

For time derivatives of the vectors of a movable base we have the following 
expressions 

(B.4) 
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B.2 Absolute and local derivatives of a vector with 
respect to time 

Let us consider the vector a(t) in a bound (moving) coordinate system (see 
Fig. B.1): 

In the moving coordinate system the components ai of the vector a( t) and the 
base vectors ei depend on time, therefore, taking relations (B.4) into account, 
the derivative of vector a(s, t) has the form 

8a 8a1- 8az_ 8a3_ _ _ 
at= ot e1 + 8t e2 + ot e3 +a1(w x e 1)+ (B.5) 

(B.6) 

8 
where ot is the local partial derivative of vector a that characterizes the time 

variation of vector a relative to the moving coordinate system; w x a is the 
vector characterizing the time variation of vector a due to rotation of the 
coordinate axes. 

Let us derive expressions relating the projections Wj of the angular velocity 
vector w to the angles rh, rh, and 1'J3 . We take advantage of the relations 

(B.7) 

where lip are the elements of matrix [A.12]; epo are unit vectors of the base 
at t = t0 . Differentiating with respect to t, we have 

8lip- -
ot epo = EkjiWjek. 

Since 
epo = lkpek, 

after substitution of (B.9) into (B.8) we get 

Blip 
EkjiWj = 7jtlkp· 

(B.8) 

(B.9) 

(B.10) 

Let us find, for example, the expressions for w1 making all operations of 
summation. Setting j = 1, k = 3, i = 2 (c312 = 1) and summing the right­
hand side of (B.10) over {}, we have 

8l21 8l22 8l23 
W1 = &th1 + &th2 + &th3· (B.ll) 

Setting k = 2, i = 3 (c213 = -1), one can write one more expression for 
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(B.12) 

which can be used to check the validity of relation (B.ll) when a conversion 
is made from angles {) j to explicit expressions for lij. 

For example, for the airplane angles final expressions for projections Wj of 
the angular velocity look like: 

8{)1 8{)3 0 

W1 = 8t COS {)2 COS {)3 - 8t Sill {)2 i 

8{)2 8{)1 0 

w2 = --- --sillfJ3· 8t 8t , 
(B.l3) 

8{)3 8{)1 0 

W3 = 8t COS {)2 + 8t Sill fJ2 COS {)3. 

Relations (B.13) can be represented in the vector form 

[
cos fJ2 cos fJ3 0

1 
- sin fJ2] 

where L 1 = -sin fJ3 0 ; 

sin fJ2 cos fJ3 0 cos fJ2 

the components of vector w are equal to 

To an accuracy of quantities of the second order of smallness one can assume 

where E is the unit matrix. 

B.3 Velocity and acceleration of a point of the rod axial 
line 

Let us consider basic statements of point kinematics as applied to the problems 
of rod dynamics. When moving, every point of the rod axial line has a certain 
velocity v that is related to the time derivative of radius vector r (see Fig. 
B.l) as 

_ dr(s, t) 
v = dt 0 

(B.14) 

Vector v is directed along the tangent to the trajectory of motion of the axial 
line point that is shown by the dashed line. The distinction of the velocity 
of the rod element from the material point velocity lies in the fact r and v 
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are the functions of two independent variables s and t. For example, if the 
coordinate s of point 0 1 of the axial line remains invariable as the rod moves 
(does not depend on t), then we have from expression (B.l4) 

_ &r(s, t) 
v = &t ' 

where 8/ &t is the complete partial derivative. 
In the Cartesian system of coordinates 

3 

v = L:xjij· 
j=l 

In the bound coordinate system (in the base {ej}), converting to the local 
derivative, we obtain 

&r 
v = at + w X r, (B.l5) 

where w( s, t) is the angular velocity vector of rotation of the base {ej}. Since 
(see Fig. B.l) 

r=ro +n 

then we find from (B.l5) 

&u 
v = &t +w xu:. 

The accelerations of points of the rod axial line are 

d2r dv &2r 
dt2 dt &t2. 

Accordingly, in the Cartesian and bound axes 

&2r ~ .. • 
at2 = L.....-Xjlj; 

J=l 

dv &2r &v 
dt = at2 = at + W X V. 

(B.l6) 

The right-hand side of expression (B.l6) in the base {ej} can be represented 
as: 

dv 
dt 
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At small vibrations the terms v1wk can be neglected as quantities of the 
second order of smallness, therefore, we get the following expressions for the 
components of the acceleration vector of a point of the rod axial line: 

dvl avl dv2 
dt at ; dt 

At small vibrations one can set w x u = 0, therefore, the components of the 
velocity vector v are equal to 

The components of the acceleration vector when expressed through the com­
ponents of the displacement vector have the form 

dv1 1i2u1 dv2 
dt 8t2 ; dt 



c 
Basic equations of rod dynamics 

C.l Nonlinear vector equations of motion of 
three-dimensional curvilinear rods 

Let us consider the rod element (Fig. C.la) whose translational velocity is v 
and the angular velocity of rotation is w. We restrict ourselves to the case 
when the axial line of the rod can be considered as unstretchable. In the 
general case both constant and variable distributed forces and moments can 
act upon the element. 

It should be emphasized that such a separation of loads requires additional 
explanation, because the loads depend on the chosen coordinate system. For 
example, the tracking load (invariable in magnitude) in the bound coordinate 
system is constant in time, since its projections· do not depend on t, while in 
the Cartesian coordinate system the load continuously changes its direction 
so that its projections depend on t. 

When studying the rod motion, the internal force factors (vectors Q (1) 

and M(1)), as well as vectors re, u, v, ?Jj, and ware the functions of two 
variables, s and t. 

-(1) -(1) 
The vectors Q and M are, respectively, equal to 

Q (1) = Q0 + Q, M (1) = Mo + M, 

where Q0 and M 0 are static components of the vector of internal forces and 
of the vector of moments, respectively; Q and M are dynamic components of 
the same vectors. 

If the vibrations of an unloaded rod is considered, then one should assume 
Q0 = M 0 = 0. The static mode of deformation of the rod can be deter­
mined from equilibrium equations whose derivation is presented in Appendix 
A, where all explanations to the adopted notation are also given. 

In order to derive the equations of rod motion we tale advantage of the 
d'Alembert's principle. Consider the rod element on which the following force 
and moment of inertia act (Fig. C.lb): 
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.z, 

0~~----------------------~ x, 

b 

Fig. C.l. 

- dv 
dJ· = -dm--

' dt' 
(C. I) 

where dm = m 0 ( s )ds; m 0 ( s) = Fe is the mass of unit length of the rod; F is 
the area of the rod cross section; e is the rod material density; and 

[

Jn 

Jo(s) = : 

0 

0 

( Ji are geometrical moments of inertia of the section relative to principal 
axes). 

The velocity vector is 
du 

v= dt' (C.2) 

where u is the vector of displacement of the points of the rod axial line. 
For an unstretchable rod the arc coordinate s of a point of the rod axial 

line remains unchanged when the rod moves, therefore, 
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du 
where v = dt. 

- 8v 
dJ· =-dm-

z Bt' 
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(C.3) 

Using the d'Alembert's principle, we get the following vector equations of 
rod motion (see Fig. C.l), with allowance made for the inertia of rotation and 
for concentrated forces and moments: 

-(1) n 
av 8Q -(I) "P(i)(I),( ) 

mo ot = ----a;- + q + L.....t u S - Si ; 

z=l 

(C.4) 

---(1) p 
8 oM -(I) (I) '"'- (v)(l) ot (Jow) =----a;-+ e1 X Q + Ji + L.....t rol 0 (s- Sv). 

v=l 

(C.5) 

Changing over to local derivatives in equations (C.4) and (C.5) (see Ap­
pendix A) and omitting the tilde symbol in their notation, we have 

(a- ) aq (l) 
mo {): + W X V = ----a;- + re (l) X Q (l) + p (l) j (C.6) 

---(1) a _ aM -(l) ---(1) _ -(1) -(1) 
- (Jow)- --- re x M - e1 x Q - rol = 0. at as (C.7) 

Here 

n 

P(I) = q(ll + LP(i)(I)o(s- si); 

i=l (C.8) 
p 

\111(1) = p;(l) + Lro?(v)(l) 0 (s- Sv). 
v=l 

-(1) -(1) 
The force P and the moment \111 introduced for more compact nota-

tion of the equations consist of distributed (q and 7i) and concentrated (P (i) 
-(v) 

and rol ) forces and moments applied to the rod. In turn, they can have 
static components independent of time, i.e., 

q(ll = <lo + q; p;(I) = lio + Ji; 
p(i)(l) = p~i) + p(i); rol(v)(l) = rol~v) +rol(v)' 

_ _ -(i) -(v) . __ -(i) -(v) 
where q0 , J-Lo, P 0 , and rol0 are static components; and q, J-L, P , and rol 
are dynamic components. 

Static forces produce the initial static mode of deformation, relative to 
which vibrations occur (this is the most general case). 

Each specific applied problem requires to study very carefully the forces 
that arise under vibrations and depend on the components of vector u and 
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on the angles {)1 . For example, the equation connecting vector M(1) with the 
increment of vector Llre and the equation for the vector of displacements u 
(see Appendix A) have the form 

M (1) = A ( re (1) - reJ1l) = AL::.re; (C.9) 

: + reC1l xu:= (1-lu)e1- be2- b1e3. (C.10) 

Let us write two more equations relating the components of vectors re and 
w to the angles {)1 (see Appendices A and B): 

-(1)- L a13 + L-(1). 
re - 1 as reo ' 

a13 
w = L1 at. 

C.2 Reduction of equations to dimensionless form 

Equations (C.6)-(C.ll) can be reduced to the dimensionless form: 

~ l M (1) _- M (1) A33(0) 
T =pot, W = wpo, V = Vpo , [ ' 

-c1J _ :::::::(1) A33(0) Q (1) _ Q~ C1l A33(0) -(1) _ :::::::(1) A33(0) 
JL - JL l ' - [2 ' q - q [3 ' 

-Ul =(J) A33(0) -(1) 1=(1) 
P =P -l-2-, re = yre , 

~ Jii(TJ) ~ Aii(TJ) -(v) =(v) A33(0) 
Jii(TJ) = Foz2 ' Aii(TJ) = A33(0)' rol = rol -l -, 

(C.ll) 

(C.12) 

( A33(0) ) ~ . 
where Po= mo(O)l4 ; mo(O), and Fo are the mass of a umt length of the 

rod and the section area in the origin of coordinates, respectively; the symbol 
"rv" here denotes dimensionless quantities. 

In an arbitrary section of the rod (changing over to the dimensionless 
coordinate 'T] = s/l) one can express the mass of the rod unit length through 
mo(O): 

mo(TJ) = mo(O)n1(TJ) = eFon1(TJ), 

where n 1 ( 'T]) is a dimensionless function. 
In the dimensionless form we have the following system of differential non­

linear vector equations of the rod motion in the bound coordinate system 
(omitting the symbol of tilde in designations of local derivatives and dimen­
sionless quantities): 
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-(1) 

( Ov - -) 8Q -(1) -(1) -(1) 
n 1 (ry) - + w x v - --- re x Q - P = 0; 

8T 8ry 
-(1) 

8 _ 8M -c1l -(1) _ -(1) -(1) 
-(Jow)----re xM -e1xQ -ro? =0; 
8T 8TJ 

L1 ~~ + LreJ1l - re (1) = 0; 

au: 
8"7 + re C1l xu:+ (Zu - 1) e1 + Z21e2 + b1 e3 = 0; 

a -:a 
L18T- w = 0; 

M(1) =A ( re(ll- reJ1l) = A.6re, 

where Jo is the matrix with dimensionless elements Jii; 

L= 

[
cos 1J2 cos {}3 0 - sin 1J2] 

L1 = - sin {}3 1 0 ; 

sin 1J2 cos {}3 0 cos 1J2 

cos 1J2 sin {}3 cos 1J1 + cos 1J2 sin {}3 cos 1J1-
cos {}2 cos {}3 

+sin 1J2 sin 1J1 - sin 1J2 cos {}1 

-sin {}3 cos {}3 sin 1J1 

sin 1J2 sin {}3 sin 1J1 + 
+ cos {}2 cos {}1 

(C.13) 

Let us recall that angles {} j (components of the vector "J) are the angles of 
rotation of the base {e1} with respect to the base {e10 }. System of equations 

(C.13) includes six unknown vectors: Q (1), M (1), re (1), u, w, and ( {}1, {}2, {}3 ). 

The displacements u1 can be determined (after finding the vector reC1l(TJ,T) 
and the angles 1J1 (TJ,T) from the fourts equation of system (A.13). 

C.3 Equations of small vibrations of rods (linear 
equations) 

Let us derive the vector equations of small vibrations of a rod about its equi­
librium state, assuming that additional internal forces and moments arising 
under vibrations are small, as well as displacements u1 and angles 1J1. We put 

-(1) - -
Q =Qo+Q; 

re (1) =reo+ .6re; 

Ji (1) =flo + Ji; 

MC1l = Mo +M; 

q:Cll =<Io+<I; 

PC1l =Po+ P; 
-(1) - -
ro? = ro?o + ro?. 

(C.14) 
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At small vibrations one can consider the components of dynamic parts of 
above vectors to be small, therefore, when deriving equations, we can neglect 
their products (both vector and scalar): 

w XV= 0, L.re x Q = 0, L.re x M = 0, u x L.re = 0. 

Upon substituting (C.14) into (C.l3) and taking into account only the 
terms that linearly depend on small quantities, we get the equations of small 
vibrations of a rod. In the bound coordinate system the vector equations of 
small forced vibrations of a rod have the following form 

where 

a2u: aQ _ - _ - -
n1(77)---- L.re x Q0 - reo x Q = P; aT2 a77 

a2-:o aM - - - -
Jo--- --- L.re x Mo- reo x M- e10 x Q- rol = 0; aT2 a77 
a-:o -ory + reo X rJ - L':.re = 0; 

Ou 
0"7 + reo X U- 'I'J3e2 + 'I'J2e3 = 0; 

M=AL.re, 

n 
- "-(i) 
p = q + L...- p 15 ( "7 - "li) ; 

i=l 

- - ~-(v) 
~ = f-l + L_.., rol 15 ( "7 - 'Tlv) · 

v=l 

(C.15) 

(C.l6) 

Th t •t• - - P(i) d ""(v) · · th · ht h d "d f e quan 1 1es q, f-l, , an :v~ appeanng m e ng - an s1 es o 
expression (C.16) are dynamic loads. When solving equations (C.15), it is more 
convenient to represent them in the vector-matrix form, since the vectors Q0 , 

Mo, and re0 can be determined form equations of equilibrium (see Appendix 
A). For example, for the vector products L.re x Q0 and L.re x M 0 one can 
write 

where AQ = [-~30 Q;o -Q~:o] ; AM = [-:30 ~30 -::0]. 
Q2o -Qw 0 M2o -Mw 0 

In a similar manner we can also derive the expressions for remaining vector 
products that appear in system of equations (C.l5). After some transforma­
tions, we have 
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M=A6re, 

where A 32 = [ 32~o -~30 :~:o] ; A1 = [~ ~ ~1]. 
-3220 3210 0 0 1 0 

We can write system of equations (C.17) in the form of a single vector 
equation (excluding 6re): 

Q 

where Z = 
M 

19 
u 

A32 

and A(2) = A1 

0 

0 

2- -
A (1) 8 z aZ A (2lz = <I> 

OT2 + OTJ + 

-P 0 0 

<I>= 
-\11? A (1) = 0 0 

0 0 0 

0 0 0 

AQA-1 0 0 

(AMA - 1 + A32) -J 0 
-A-1 A32 0 

0 A1 A32 

(C.18) 

0 -n1E 

-J 0 

0 0 

0 0 

C.4 Equations of small vibrations in projections onto 
bound axes 

From relations (C.17) we derive the following equations in projections onto 
bound axes: 

8 2u1 8Q1 
n1 072 - OTJ + Q2o6823 - Q3o6822+ 

+823oQ2 - 822oQ3 = P1; 
82u2 8Q2 

n1 072 - OTJ + Q3o6821 - Q106823+ (C.19) 
+3210Q3 - 823oQ1 = P2; 

8 2u3 8Q3 
n1 072 - OTJ + Q106822 - Q2o6821 + 

+822oQ1 - 8210Q2 = P3; 
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(C.20) 

fHh 8 + re2o'l?3 - re3o'l?2 - 6re1 = 0; 

aJ2 8 + re3o'l?1 - rew'l93 - 6re2 = 0; 

a13 
OTJ + rew'l?2 - re2o'l?1 - 6re3 = 0; 

(C.21) 

oul 
OTJ + <B2QU3- <B3QU2 = 0; 

8u2 
OTJ + re3ou1 - rewu3 - '1?3 = 0; 

OU3 
OTJ + rewu2 - re2ou1 + '1?2 = 0; 

(C.22) 

(C.23) 

Putting Pj = ro?j = 0 (j = 1, 2, 3) in expressions (C.19) and (C.20), 
we obtain the equations of free vibrations of a curvilinear rod relative to its 
equilibrium state for the case when the rod is loaded with static tracking 
forces, i.e., Qjo i= 0 and Mjo i= 0. 

C.5 Equations of small vibrations of a rod whose axial 
line in the unloaded state is a plane curve 

A special case of system (C.18) - (C.22) 

Figure 1.95 shows a spiral spring whose axial line in its natural state is 
a plane curve. If the spring were deflected in the plane of drawing x 1 Ox2 , 

it would execute small vibrations in the plane of drawing. If it is deflected 
with respect to this plane, small three-dimensional vibrations take place. For 
example, let a spiral (the flexible element of an instrument) be on an object 
moving with acceleration (the object acceleration a is parallel to the plane 
x 1 Ox2 ). Then, the distributed forces of inertia act upon the spiral in the 
plane of drawing. If the axial line of the rod remains to be a plane curve in 
the loaded state, then we should put in equations (C.19) - (C.23) 
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Qw =f. 0, Q2o =f. 0, Q3o = 0; 

Mw = M2o = 0, M3o =f. 0; 

rew = re2o = 0, re3o =f. 0. 
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Considering that the rod axial line becomes a three-dimensional curve, 
from (C.19)- (C.23) we get the following equations offorced vibrations of the 
plane curvilinear rod 

82u1 8Q1 
n1 072 - OrJ + Q2o6re3 + re3oQ2 = P1; 

82u2 8Q2 
n1 072 - Or] - Qw6re3 + re3oQ1 = P2; 

82u3 8Q3 
n1 072 - Or] + Qw6re2 + Q26re1 = P3; 

821'h 8M1 
Jn-----;=;,;:; + re3oM2- M3o6re2 = ~1; 

OT2 u., 
8 2fh 8M2 

J22 072 - &;] - re3oM1 + M3o6re1 + Q3 = ~2; 

82fh 8M3 
h3--- -- -Q2 =~3; 

OT2 Or] (C.24) 
81'h 
Or] - re3o~2 - 6re1 = 0; 

8~2 
OrJ + re3o~1 - 6re2 = 0; 

0~3 - 6re3 = O· 
orJ ' 

8u1 
Or] - 1B3QU2 = 0; 

8u2 
Or] + 1B3QU1 - ~3 = 0; 

OU;> 
orJ + ~2 = 0, 

where M 1 = An6re1; M2 = An6re2, and M3 = A336re3. 
If at arising vibrations the line does not leave the plane x1 Ox2, then one 

should put Qj = 0, M1 = M2 = 0, ~1 = ~2 = 0, 6re1 = 6re2 = 
0, Uj = 0, Pj = 0, and ~1 = ~2 = 0 in equations (C.24). As a result, we 
have 
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82u1 8Q1 
n1 8T 2 - 8'T} + Q2o.6re3 + re3oQ2 = P1; 

82u2 8Q2 
n1--- --- Qw.6re3- re3oQ1 = P2; 

8T2 8ry 
82th 8M3 h3--- --- Q2 = roh; 
8T2 8ry 

8th 
8'T} - .6re3 = 0; 

(C.25) 

8u1 
8ry - ffi3QU2 = 0; 

8u2 
8ry + ffi3QU1 - 733 = 0. 

By analogy with the general case one can present systems of equations 
(C.24), (C.25) in the form of one vector equation 

2- -
A (1) 8 z A (2) 8Z A (3lz = l> 

8T2 + 8ry + . (C.26) 

When free and forced vibrations the plane x 1 Ox2 of a rod unloaded with 
static forces are studied one should set Qw = Q2o = M3o = 0 in equations 
(C.25). 
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Exact numerical method of determining the 
frequencies and modes of rod vibrations 

In Appendix C we derived the vector equation of small free vibrations of a 
three-dimensional curvilinear rod without taking the drag forces into account. 
At ci> = 0 we have 

2- -
A (1) a z az A (2lz = o 

8r2 + ary + 

We seek the solution to equation (D.l) in the form 

or 

Q(r,ry) = Q 0 (ry)ei>-r, M(r,ry) = Mo(ry)eiAr; 

:O(r,ry) = :Oo(ry)ei>-r, u(r,ry) = U:o(ry)ei>-r. 

After substitution of (D.2) into (D.l) we get 

dZo -
dry + B(ry, A)Zo = 0, 

Are AQA-1 0 A2n1E 

where B(ry, A) = A1 (AmA - 1 +Are) A2J 0 

0 -A-1 Are 0 

0 0 A1 Are 

D.l Determination of eigen values (frequencies) 

(D.l) 

(D.2) 

(D.3) 

(D.4) 

Specifying the value of A(l), we find (numerically) the solution to equation 
(D.4): 
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Zo = K[ry, .A(1)]C (D.5) 

where K[ry, .A(1)] is the fundamental matrix of solutions of a homogeneous 
equation. 

In order to find the fundamental matrix K(ry) one should solve equation 
(D.4) twelve times with the following initial conditions 

1 0 0 
0 1 0 

-(1) 
Zo = 

-(2) 
Zo = 

-(12) 
, ... ,Zo = (D.6) 

0 0 1 

One can refine matrix K(ry) using the Picard method. The matrix K(ry) 
satisfies the following equation 

From (D. 7) we find 

dK 
dry +BK=O, 

1J 

KC2l(ry) =- J BKC1l(h)dh+E, 

0 

(D.7) 

(D.8) 

where K (1) (17) is the fundamental matrix obtained as the result of solving 
equation (D.7) at initial conditions (D.6) (first approximation). 

For homogeneous boundary conditions six component of the vector C are 
equal to zero, since at 17 = 0 six components of the vector Z0 are zero. For 
example, at 17 = 0 (rigid fastening) 790 (0) = 0, and u0 (0) = 0. In this case, 
C7 = cs = ... = c12 = 0. The remaining six components of the vector C can 
be found from six boundary conditions at 17 = 1: 

6 

L kij(1)cj = 0. 
j=1 

(D.9) 

Depending on particular boundary conditions, the indices i and j assume 
six different values. For example, if the right end of the rod ( 17 = 1) is free 

( Q(1) = M(1) = 0 ), then the indices i andj, in accordance with the indices of 

components of the vector Z0 , assume the values i = 1, 2, ... , 6; j = 1, 2, ... , 6, 
i.e., system (D.9) takes on the form 

(D.10) 
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In order that the solution to system (D.lO) would be nonzero, it is necessary 
to have its determinant zero, i.e. , 

D(1) = 0. (D.ll) 

Solving equation (D.ll) for a number of values of .X, we find (numerically) 
such Ai for which the determinant D(1) can be considered zero with a preset 
degree of accuracy. These values of Ai are dimensionless frequencies of rod 
vibrations. It should be emphasized that for three-dimensional curvilinear 
rods the type of fastening can be highly variable, i.e., the determinant D(1) 
can be obtained for very different combinations of matrix elements K(1 , .Xk)· 
However, it is always sufficient to have only six columns of matrix K(ry, Ak) in 
order to find the determinant D(1), which considerably reduces the computing 
time when frequencies are determined. 

x, 

Fig. D.l. 

Under vibrations of the rod, for example, in the plane x 1 Ox2 , we derive 
the equation similar to (D.4): 

_, -
Z0 + BZo = 0, (D.12) 

where 

0 - re3o - Q2o/A33 0 n1.X2 0 QlO 

l£30 0 Q10/A33 0 0 n1.X2 Q2o 

B= 
0 1 0 h 3.X2 0 0 

0 0 -1/A33 0 0 0 
Zo = 

M3o 
'!93o 

0 0 0 0 0 - l£30 u10 
0 0 0 - 1 l£30 0 U2o 
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The solution to equation (D.12) 

(D.13) 

should meet six boundary conditions (three boundary conditions at each end 
of the rod). For a rod fixed as it is shown in Fig. D.1, we have 

TJ = 0, u1o = u2o = 0, 'l?3o = 0; 

for rJ = 1, M3o = 0, Q10 = Q2o = 0. 

Since for TJ = 0 matrix K(ry) is the unit matrix, three components of the 
vector C ( c4 , c5 , c6 ) are equal to zero. From the boundary conditions at rJ = 1, 
we obtain three equations: 

kuc1 + k12c2 + k13C3 = 0; 

k21C1 + k22C2 + k23C3 = 0; 

k31C1 + k32C2 + k33C3 = 0. 

Equating the determinant of system (D.14) to zero, 

kll kl2 
D = k21 k22 

k31 k32 

one can find the equation for calculating the frequencies Aj. 

(D.14) 

D.2 Determination of eigen functions for conservative 
problems 

Knowing the frequencies Aj and using equations (D.12), one can determine 

d . · t -z (jJ correspon mg mgen vee ors 0 : 

-(j) 

dZo + B( >.)zUl = 0 dry TJ, J v . (D.15) 

From equation (D.15) we have 

Z Ul - K ( ' ·) C (j) 
0 - TJ, /\} ' (D.16) 

where K (TJ, Aj) is the fundamental matrix of solutions for the eigenvalue Aj· 
The numerical method of determination of the fundamental matrix is de­

scribed in Appendix D.l. For example, for a cantilever rod c~j) = cJjl = ... = 
ci~l = 0 , while cij), cJj), ... , cJjl are not equal to zero and enter as unknowns 
into the system of homogeneous equations 
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(D.l7) 

We express c{j), cJjl, ... , c~j) in system (D.17) through cJjl: 

C (j) - (3 c(j) 
k - k 6 (k = 1, 2, ... ) 5). 

The arbitrary multiplier cJj) can be assumed to be equal to unity. Having 

determined C (J) from equation (D.l6), we obtain the eigenvector 

Z (Jl - K ( >. ·) C (J) 
0 - r], J 0 ) 

-(j) [ ]T whereC0 = f31,f32,f33,f34,f3s,l. 

Th Z <Jl z Ul f h -z Ul 1 e components 07 , ... , 012 o t e vector 0 are equa to 

z (j) - f) (j). z (j) - f) (j). z (j) - f) (j). 
07 - 01 ' 08 - 02 ) 09 - 03 ) 

z (j) - u (j). z (j) - u (j). z (j) - u (j) 
010 - 01 ) 011 - 02 ) 012 - 03 ) 

and are called the modes of rod vibrations. The components Z~f), ... , Z0~) 
characterize the variation with Tf of amplitudes of the components of vec-

-(j) -(j) 
tors Q0 and M 0 under rod vibrations for every frequency AJ. For further 
transformations, it is convenient to represent eigen vectors in the form 

- (j) - [¢ (j)l 
Zo - -(j) ' 

'P 

-(j) [Qul] . [:a<JJ] where ol. = 0 . . ifi(J) = 0. 
'+' -(J) ) y -(J) 

Mo uo 

The vectors ¢ (j) and (j5 (j) characterize the stressed and deformed states 
of the rod, respectively. Such a representation of eigen vectors is convenient 
at solving the problems of rod dynamics approximately. 



E 

Approximate numerical determination of 
frequencies at small vibrations of rods 

An exact numerical method of determination of the frequencies and of the 
modes of rod vibrations corresponding to them is described in Appendix D 
for conservative problems. One of the most efficient approximate methods 
is based on the fundamental principle of mechanics, the principle of virtual 
displacements. 

Consider a homogeneous system of equations of free vibrations similar to 
system (C.15) (see Appendix C): 

- 8 2u 8Q 1- -
L1 = n1(ry) 072 - ary - AQA- M- A 33Q = 0; (E.l) 

2- -

L 2 = J(ry) 8 f)+ aM- AMA -lM- AreM- A1Q = 0; (E.2) 
OT2 OTJ 

- 8'13 - -l-
L3 = ary + A 33'13 - A M = 0; (E.3) 

- au -
L4 = ary + AreU: + A1fJ = 0 (E.4) 

Let us represent system (E.l) -(E.4) in the form of a single equation (see 
Appendix C): 

2- -
L = A (ll 8 Z 8Z A (2lz = 0 

OT2 + OTJ + ' (E.5) 

where Z = (Q,M,19,u)T 
In Appendix D we described a method of determining the eigen vectors 

-(j) 
Z0 . They can be written as 

-(Jl _ [-:;pUll 
Zo - -(j) ' r.p 

(E.6) 

where vector -:;pUl characterizes the coordinate variations of amplitude values 
-(j) -(j) ( ") 

of the components of vectors Q0 and M 0 , and vector 7j5 1 characterizes 
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variations of amplitude values of the components of vectors 79~j) and u:Jil 
(modes of vibrations) under vibrations of the rod with the frequency Aj. In 

-(j) (') turn, each vector 'ljJ and V5 J can be represented in the form 

:~.Ul = '1/Jq . [
-(j)l 

'f/ -(J) ' 
'1/JM 

[
-(j)l -(j) - 'P'I'} 

'P - -Ul , 
'Pu 

h :~.Ul _ Q (j). :~.Ul _ M Ul. -Ul _ -:a(j). -(1) _ -(j) w ere 'f'Q - 0 , 'f/ M - 0 , 'P1'J - v , 'Pu - u . 

(E.7) 

For approximate solution of equation (E.5) one should first determine the 

vector coordinate functions z~j) ( 17) satisfying the boundary conditions of the 
problem. As such functions one can take eigen vectors of free vibrations of an 
unloaded rod of constant section without taking the inertia of rotation of rod 
elements into account. For example, for determination of z~i) one can use the 
following simpler system 

a2u aQ -
- - - - AreQ = 0; 
[)T2 ary (E.8) 

aM _ _ 
ary + AreM - A1 Q = 0; (E.9) 

a19 - -1-ary + Are{) - A M = 0; (E.lO) 

au -ary + Areu- A1{) = 0 (E.ll) 

(for a rod of constant section n 1 = 1 and A33 = 1). Solving this system 
numerically one can determine the vector functions 

[-(i)l z(i) = '1/J . 
0 - (i) ' 

'P 
[-(i)l :~.(i) = '1/Jq . 

'f/ -(t) , 
'1/JM 

[V5Ji)l 
-(i) . 
'Pu 

We seek the approximate solution to equation (E.5) in the form 

i=l 

(E.12) 

(E.13) 

where fi(T) is a continuous function of time. We restrict ourselves to two-term 
approximation 

z = JIZ~ll + f2Z62l. (E.14) 

Substituting (E.14) into equation (E.5) we obtain 

L(Z) = 'f, (E.15) 



E Approximate numerical determination offrequencies 233 

where vector '7 characterizes the error due to approximate computation of 
vector Z according to formula (E.14). 

Initial system of equations (E.l) -(E.4) has two 'physical' equations ( (E.1) 

and (E.2)) and two 'geometrical' equations ( (E.3) and (E.4)). Dimensions 

of terms in these equations are different, therefore, the first six components 
of the vector Z(Qj,Mj) (j = 1,2,3) have dimensions of distributed forces 
and distributed moments, while the remaining six components ('!9j,uj) have 
dimensions of angular and linear displacements. As a generalized displacement 
8Z0 in the vector form we take the functions proportional to vector functions 

z~j) and satisfying all boundary conditions of the problem: 

(E.16) 

Then under two-term approximation 

(E.17) 

where Dbj are independent arbitrary quantities; 

0 0 0 E 
-(i) 
Qo 

[~ 
0 

~] 
-(i) 

Eo= 
0 0 E 0 -(i) Mo E= 1 Zo = -(i) 
0 E 0 0 '!9o 0 
E 0 0 0 -(i) 

Uo 

(E.18) 

Here, one can use as generalized and virtual displacements not only vari­
ations of linear ( Su) and angular ( 1519) displacements, but also variations of 
internal forces ISQ and moments ISM. 

The matrix Eo is introduced in order that all scalar products 

- - -(1) - - -(2) - - -(n) 
Z · EoZ , Z · EoZ , ... , Z · EoZ 

have the dimension of work (in accordance with the principle of virtual dis­
placements). Since 

then 

E -zCil_ 
0 0 -

-(i) 
Uo 
-(i) 
'!9o 
-(i) ' 
Mo 
-(i) 
Qo 

(E.19) 
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i.e., all terms in the right-hand side of (E.19) have the dimension of work. 
Substituting into equation (E.15) expression (E.14) for the vector Z, we get 

A C 1 lZ~ 1 ) f1 +A Cl)z~2l f2 + ( E1Z~(l) +A C 2lZ~ 1 )) h + 

+ ( E1Z~C2 l +A C 2lZ~2)) h = ;y, 

where E 1 is a (12 x 12) matrix and "f =/=- 0. 

(E.20) 

(E.21) 

We require that the integral of vector "f on virtual generalized displace­
ments taken along the entire rod length should be equal to zero, i.e., 

1 J ;yoZd'l] = o, 
0 

or, under a two-term approximation, 

1 1 

f ( -(1)) f ( -(2)) ob1 "f· EoZ0 d1J + ob2 "1· EoZ0 d1J = 0. 

0 0 

Since ob1 are independent, it follows from equation (E.23) that 

1 

f ( -(1)) "f· EoZ0 d'l] = 0; 

0 

1 

f (- -(2)) 'Y · EoZ0 d'l] = 0. 

0 

After transformations we obtain two equations for h and f22: 

where 

auf1 + a12f2 + cnh + c12h = 0; 

a21J1 + a22J2 + c21h + c22h = 0, 

(E.22) 

(E.23) 

(E.24) 

(E.25) 

(E.26) 

(E.27) 
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1 1 

an = j (A <nz61l · E 0Z61l) dry; 

0 

a12 = J (A (llz62) · EoZ61l) dry; 

0 

1 

- j (-z '< 1l +A <2l-z <1l) E -z <1ld · en - o o · o o ry, 
0 

1 

- j (-z '<2l + A <2l-z <2l) E -z <1ld · C12 - 0 0 . 0 0 ry, 
0 

1 1 

- j (A <1l-z <1l E -z <2l) d · a21 - o · o o ry, 
0 

a22 = J (A (1lZ62l · EoZ62l) dry; 

0 

1 

- j (-z '< 1l +A <2l-z <1l) E -z <2ld · C21 - 0 0 . 0 0 ry, 
0 

1 

- j (-z '< 2l +A <2l-z <2l) E -z <2ld C22 - 0 0 . 0 0 ry. 
0 

235 

Putting h = fwei>.T and h = hoei>.T, one can find from (E.26) the charac­
teristic equation for determination of frequencies >.1. 



F 

Approximate solution of equation of rod forced 
vibrations 

Under forced vibrations of the rod we have without taking the forces of viscous 

drag into account (see equation (C.19)) 

(F.l) 

In the case when the forces of viscous drag are taken into account the equation 
of rod forced vibrations takes on the following form: 

2- - -

L = A (1) 0 Z +A <3l &Z + &Z +A <2lz- b = 0. (F.2) 
1 8T2 OT OTJ 

Here 

P(T,TJ) 1 0 0 B (1) 

h= \1Jl(T, TJ) A(3) = 0 0 B(2) 0 

0 0 0 0 0 

0 0 0 0 0 

Equation (F.2) includes the forces and moments of viscous drag that can be 
represented in the dimensionless form of notation: 

f = B<ll 811 · 
1 aT' 

f = B (2) &:0 · 
2 OT 1 

where 

[b''' 0 

0 l [b(') 0 

0 l 11 11 

B(1) = ~ b (1) 0 . B (2) = ~ b (2) 0 . 22 
b (1) , 

22 

0 0 b (2) 
33 33 

We seek the solution to equations (F.l) and (F.2) in the form 
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n 

z = 2::JC1l(r)z61lo 
j=l 

Taking advantage of the principle of virtual displacements (see Appendix E), 
we obtain under a two-term approximation 

(j = 1, 2), (Fo3) 

1 1 1 

where b1 = j (b 0 EozJJl) dry = j (P 0 u) dry+ j (ro? 0 19) dr]o 

0 0 0 
Solving numerically system of equations (Fo3), one can find the approxi-

mate solution to the equations of small forced vibrations of form (Fol) and 
(Fo2)o 
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