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Preface

The first two editions of this book were written within the scope of linear and
statical aspects of structure, and with equal weight on the classical and modern
methods of solution. This new third edition is distinguished from the first two
by including elements of nonlinear and dynamic behavior of structure and by
shifting emphasis to the matrix analysis of structure. As a result, three new
chapters have been added in this edition; namely, the direct stiffness method,
elastic stability, and structural dynamics, all presented in matrix notation. The
direct stiffness method is important in that it formalizes the structural analysis
readily for computer programming. The matrix analysis of elastic stability dem-
onstrates the direct stiffness approach to solving buckling problems. And the
structural dynamics is arranged so that it leads to the course of earthquake
engineering, which has become an increasingly popular topic, especially in
California,

In order to accommodate these new materials while at the same time retaining
the same length as previous editions, the entire second edition was restructured
by deleting some of the original materials and by trimming and merging others
without impairing the integrity and continuity of the whole book. With changes
here and there, two goals remain intact: the treatment is kept simple but com-
prehensive, and the text is readable and teachable. The length of little more than
four hundred pages is not intimidating to students and the contents are at an
elementary level throughout.

As in the second edition. the author wishes to express his sincere appreciation
to many university professors and students in varigus parts of the world, who
have read, used. and supported this book. Special thanks are due to Dr. Y. C.



xii Preface

Fung, professor at the University of California at San Diego, and to Mr. D.
Humphrey, senior engineering editor at Prentice Hall, for their enthusiastic en-
couragement and editorial guidance. The author is also grateful to Dr. B. Koo,
professor at the University of Toledo, Dr. K. P. Chong, professor at the University
of Wyoming, and Dr. Z. A. Lu of the University of California at Berkeley for
their helpful suggestions and kind interest in the development of the revision,
and to Mr. S. N. Yao of Washington State Highway Department for providing
solutions to the problems in Chapters 11 and 13. Finally, the author is indebted
to his wife, Nelly, for her careful typing of the manuscript.

Y. Y. Hsieh
Monterey Park, California
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Introduction

1-1 ENGINEERING STRUCTURES

The word structure has various meanings. By an engineering structure we mean
roughly something constructed or built. The principal structures of concern to
civil engineers are bridges. buildings, walls, dams, towers, shells, and cable
structures. Such structures are composed of one or more solid elements so
arranged that the whole structures as well as their components are capable of
holding themselves without appreciable geometric change during loading and
unloading.

The design of a structure involves many considerations, among which are
four major objectives that must be satisfied:

1. The structure must meet the performance requirement (utility).

2. The structure must carry loads safely (safety).

3. The structure should he economical in material, construction, and overall
cost (economy).

4. The structure should have a good appearance (beauty).

Consider, for example, the roof truss resting on columns shown in Fig.
1-1. The purposes of the roof truss and of the columns are. on the one hand,
to hold in equilibrium their own weights, the load of roof covering, and the wind
and snow (if any) and. on the other hand, to provide rooms for housing a family,
for a manufacturing plant. or for other uses. During its development the design
is generally optimized to achieve minimum expenditure for materials and con-
struction. Proper attention is also given to the truss formation so that it is both

1



2 Introduction Chap. 1

Fig. 1-1

practical and aesthetic. In this book, however, we are concerned only with the
load-carrying function of structures.

1-2 THEORY OF STRUCTURES DEFINED

The complete design of a structure is outlined in the following stages:

1. Developing a general layout. The general layout of a structure is selected
from many possible alternatives. The primary concern is the purpose for which
the structure is to be built. This stage involves the choice of structural type,
the selection of material, and a tentative estimation of cost based on a reasonable
analysis of a preliminary structural design. It may also involve selecting the
best location or adapting the structure to a site that has not been predetermined.,
There are many other considerations, including the legal, financial. sociological,
cultural, aesthetic, and environmental aspects. It is clear that this stage of design
calls for an engineer with a high order of experience. skill, general knowledge,
and imagination.

2. Investigating the loads. Before a refined structural analysis can be carried
out, it is necessary to determine the loads for which a given structure should
be designed. General information about the loads imposed on a structure is
usually given in the specifications and codes. However. it is part of the designer’s
respensibility to specify the load conditions and to take care of exceptional cases.

The weight of the structure itself together with the material permanently
attached to it is called dead load and is regarded as fixed in magnitude and
location. Since the dead load must be approximated before the structure is
designed, the preliminary data are only tentative. Revision must be made if the
initial estimation is not satisfactory.

All loads other than dead load may be called live loads. Live loads are
generally classified as movable loads and moving loads. Movabie loads are foads
that may be transported from one location to another on a structure without
dynamic impact; for example, people. furniture. and goods on a building floor.,
or snow or ice on a roof. Moving loads are loads that move continuously over
the structure, such as railway trains or tracks on a bridge. wind on a roof or
wall, or hydrostatic pressure on an abutment. Moving loads may also be applied
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_suddenly to the structure—for example, the centrifugal and longitudinal forces
induced by the acceleration of vehicles and the dynamic forces generated by
earthquakes.

. In an ordinary structural design all loads are treated as static loads in order
to simplify the analysis. In this way the impact due to a moving live load is
exprgssed as a percentage of the live load, and the earthquake force is commonly
considered to be a horizontal force equal to a fraction of the weight of a structure.

Other load considerations may include thermal effects and resistance to
bomb blasting.

3. Stress analysis. Once the basic form of the structure and the external loads
are defined, a structural analysis can be made to determine the internal forces
in various members of the structure and the displacements at some controlling
points. When live loads are involved, it is important to determine the maximum
possible stresses in each member being considered. The principles governing
this phase of design are usually discussed in the theory of structures.

4. Selection of elements. The selection of suitable sizes and shapes of members
and their connections depends on the results of the stress analysis together with
the design provisions of the specifications or codes. A trial-and-error approach
may be used in the search for a proportioning of elements that will be both
economical and adequate. A sound knowledge of strength of material and process
of fabrication is also essential.

5. Drawing and detailing. Once the makeup of each part of the structure has
been determined, the last stage of design can begin. This final stage includes
the preparation of contract drawing, detailing, job specification, and final cost;
this information is necessary for construction to proceed.

These five stages are interrelated and may be subdivided and modified. In
many cases they must be carried out more or less simultaneously. The subject
matter of the theory of structures is stress analysis with occasional reference to
loadings. The emphasis of structural theory is usually on the fundamentals rather
than on the details of design.

1-3 THEORIES OF STRUCTURES CLASSIFIED

Structural theories may be classified from various points of view. For convenience
of study, we shall characterize them by the following aspects:

1. Statics versus dynamics. Ordinary structures are usually designed under
static loads. Dead load and snow load are static loads that cause no dynamic
effect on structures. Some live loads, such as trucks and locomotives moving
on bridges, are also assumed to be concentrated static load systems. They do
cause impact on structures; however, the dynamic effects are treated as a fraction
of the moving loads to simplify the design.

The specialized branch that deals with the dynamic effects on structures
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of accelerated moving loads, earthquake loads, wind gusts, or bomb blasts is
structural dynamics.

2. Plane versus space. No structure is really planar, that is, two-dimensional.
However, structural analyses for beams, trussed bridges, or rigid frame buildings
are usually treated as plane problems. On the other hand, in some structures,
such as towers and framing for domes, the stresses between members not lying
in a plane are interrelated in such a way that the analysis cannot be simplified
in terms of component planar structures. Such structures must be considered
as space frameworks under a noncoplanar force system.

3. Linear versus nonlinear structures. Linear structure means that a linear
relationship is assumed to exist between the applied loads and the resulting
displacements in a structure. This assumption is based on the following conditions:

a. The material of the structure is elastic and obeys Hooke’s law at all points
and throughout the range of loading considered.

b. The changes in the geometry of the structure are so small that they can
be neglected when the stresses are calculated.

Note that if the principle of superposition is to apply, a linear relationship
must exist, or be assumed to exist, between loads and displacements. The
principle of superposition states that the total effect at some point in a structure
due to a number of causes (forces or displacements) acting simultaneously is
equal to the sum of the effects for the causes acting separately.

A nonlinear relationship between the applied actions and the resulting dis-
placements exists under either of two conditions:

a. The material of the structure is inelastic.

b. The material is within the elastic range, but the geometry of the structure
changes significantly during the application of loads.

The study of nonlinear behavior of structures includes plastic analysis of
structures and buckling of structures.

4. Statically determinate versus statically indeterminate structures. The term
statically determinate structure means that structural analysis can be carried out
by statics alone. If this is not so, the structure is statically indeterminate.

A statically indeterminate structure is solved by the equations of statics
together with the equations furnished by the geometry of the elastic curve of
the structure in linear analysis. We note that the elastic deformations of the
structure are affected not only by the applied loads on the structure but also by
the material properties (e.g, the modulus of elasticity E) and by the geometric
properties of the member section (e.g., the cross-sectional area A or the moment
of inertia I). Thus, loads, material properties, and geometric properties are all
involved in solving a statically indeterminate structure, while load factor alone
dominates in a statically determinate problem.

5. Force versus displacement. Force and displacement are two categories of
events that affect a structure. The objective of a structural analysis is to determine
the forces and displacements pertaining to the structure and to analyze their
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relationships as specified by the geometric and material properties of structural
elements. Structural analysis in a broader sense can then be divided into two
categories: the force method and the displacement method. In the force method,
we treat the forces as the basic unknowns and express the displacements in
terms of forces; whereas in the displacement method, we regard the displacements
as the fundamental unknowns and express the forces in terms of displacements.
In matrix analysis of linear structures, the force method is often referred to as
the flexibility method, and the displacement method is called the stiffness method.

1-4 ACTUAL AND IDEAL STRUCTURES

All analyses are based on some assumptions not quite in accordance with the
facts. It is impossible for an actual structure to correspond fully to the idealized
model on which the analysis is based. The materials of which the structure is
built do not exactly follow the assumed properties, and the dimensions of the
actual structure do not coincide with their theoretical values.

To illustrate, let us take a simple example. In designing a reinforced concrete
beam of rectangular section, the values of E and I are usually assumed to be
constant. However, the amount of reinforcing steel placed in the beam varies
with the stresses; therefore, the values of E and I are not constant throughout
the span. Besides, there is great uncertainty involved even in choosing a constant
E or I. Even without considering other factors, such as the supports, the con-
nections. and the working dimensions of the structure, we find that the behavior
of an actual structure often deviates from that of an idealized structure by a
considerable amount. However, it does not follow from this that the results of
analysis are not useful for practical purposes. We must set an idealized model
in order to carry out practical analysis, and from practical analyses we make
the idealization more and more consistent with actuality.

1-5§ SCOPE OF THIS BOOK
Three major types of basic structures are thoroughly discussed in this book:

I. Beam
2. Fruss
3. Rigid frame

A beam. in ils narrow sense, is a straight member subjected only to transverse
Jouds. A beam is completely analyzed when the values of bending moment and
shear are determined.

A fruss is composed of members connected by frictionless hinges or pins.
The loads on a truss are assumed to be concentrated at the joints. Each member
of a truss is considered as a two-force member subjected to axial forces only.
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A rigid frame is built of members connected by rigid joints capable of
resisting moment. Members of a rigid frame, in general, are subjected to bending
moment, shear, and axial forces.

This book is confined exclusively to the planar aspect of structure. The
first four chapters deal with the basic concepts of structure and an analysis of
statically determinate structures in which only forces are involved. Chapter 5
deals with elastic deformations, whereas Chapter 6 discusses the method of
consistent deformations, a classical force method for analyzing statically inde-
terminate structures. Chapters 7 and 8 present the slope-deflection method and
the moment-distribution method, respectively. They are the classical displacement
methods for analyzing statically indeterminate structures. The remaining chapters
(9 to 14) are concerned with the matrix analyses of structures, including the
matrix force method, the matrix displacement method, the direct stiffness method,
elements of elastic stability, and structural dynamics.



Stability and Determinacy

2-1 EQUATIONS OF EQUILIBRIUM FOR A COPLANAR
FORCE SYSTEM

The first and major function of a structure is to carry loads. Beams, trusses,
and rigid frames all have one element in common: Each sustains the burden of
certain loads without showing appreciable distortions. In structural statics all
force systems are assumed to act on rigid bodies. Actually, there are always
some small deformations that may cause some small change of dimension in
structure and a shifting of the action lines of the forces. However, such deviations
are neglected in stress analysis,

A structure is said to be in equilibrium if. under the action of external
forces. it remains at rest relative to the earth. Also, each part of the structure,
if tuken as a free body isolated from the whole, must be at rest relative to the
carth under the action of the internal forces at the cut sections and of the external
forces thereabout. If such is the case. the force system is balanced, or in
equilibrium, which implies that the resultant of the force system (either a resultant
force or a resultant couple) imposed on the structure, or segment thereof, must
be rero.

Since this book is confined to planar structures, all the force systems are
coplanar. The generally balanced coplanar force system must then satisfy the
following three simultancous equations:

YE =0 YF =0  XM=0 (-

where X F, = summation of the x components of each force in the system
X F, = summation of the vy components of each force in the system
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The subscripts x and y indicate two mutually perpendicular directions in the
Cartesian coordinate system;
2 M, = summation of moments about any point « in the
plane due to each force in the system

Note that X F, also represents the x component of the resultant of the force
system, = F, the y component of the resultant of the force system, and = M,
the moment about a of the resultant of the force system.

The alternative to Eq. 2-1 may be given by

2F=0 XM =0 3SM=0 (2-2)
provided that the line through points a and b is not perpendicular to the y axis,

a and b being two arbitrarily chosen points and the y axis being an arbitrarily
chosen axis in the plane. Or

M, =0 FM,=0 SM=0 (2-3)
provided that points a, b, and ¢ are not collinear, a, b, and ¢ being three

arbitrarily chosen points in the plane.
The explanation of Eq. 2-2 is as follows:

1. Let R denote the resultant of the force system. Assume that R # 0. Since
2 M, =0and 2 M, = 0, the resultant R cannot be a couple. It must be a
force through a and b and by assumption is not perpendicular to the y axis.

2. By £ F, = 0, we mean that the resultant has no y-axis component and
must therefore be perpendicular to the y axis.

The foregoing contradictory statements lead to the conclusion that the force
is also zero. Therefore, Eq. 2-2 is the condition for R = 0.
A similar explanation is given here for Eq. 2-3:

1. Assume that R # 0. Since S M, = 0,3 M, = 0, and I M, = 0, the
resultant R cannot be a couple. It must be a force through a, b, and c.
2. But by assumption a, b, and ¢ are not collinear.

These statements lead us to conclude that the force is also zero. Therefore,
Eq. 2-3 is the condition for R = 0.

Two special cases of the coplanar force system in equilibrium are worth
noting:

1. Concurrent forces. If a system of coplanar, concurrent forces is in equilibrium,
then the forces of the system must satisfy the following equations:

XF=0 SF =0 (2-4)
Another set of independent equations necessary and sufficient for the equi-
librium of the forces of a coplanar, concurrent force system is

2F=0 XYM, =0 (2-5)
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provided that point a is not on the line through the concurrent point of forces
and perpendicular to the y axis.
A third set of equations of equilibrium for a coplanar, concurrent force
system is
> M, =0 > M, =0 (2-6)
where a and b are any two points in the plane of the forces, provided that the
line through a and b does not pass through the concurrent point of forces.

2. Parallel forces. If a coplanar, paralle] force system is in equilibrium, the
forces of the system must satisfy the equations

SF=0 >M=0 @7
where the y axis is in the direction of the force system and a is any point in
the plane.

Another set of independent equations of equilibrium for a system of coplanar,
parallel forces may be given as

> M, =0 > M, = (2-8)

where a and b are any two points in the plane, provided that the line through
a and b is not parallel to the forces of system.

There are two simple, special cases of equilibrium that deserve explicit
mention:

1. Two-force member. Figure 2-1 shows a body subjected to two external
forces applied at a and b. If the body is in equilibrium, then the two forces
cannot be in random orientation, as shown in Fig. 2-1(a), but must be directed
along ab, as shown in Fig. 2-1(b). Furthermore, they must be equal in mag-
nitude and opposite in sense. This car be proved by using first the equations
S M, = 0and = M, = 0. In order for the moment a to vanish, the force F,
must pass through a. Similarly, the force F, must pass through b. Next, since

> F = 0, it is readily seen that F, = —F,.
F,
e,
F,<~
\Fb
~
\Fb
(@ ®)
Fig. 2-1

2. Three-force member. Figure 2-2 shows a body subjected to the action of
three external forces applied at a, b, and c¢. If the body is in equilibrium, then
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-~
n\\

(b) \ F,

(a)
Fig. 2-2

the three cannot be in random orientation, as shown in Fig. 2-2(a). They must
be concurrent at a common point O, as shown in Fig. 2-2(b); otherwise, the total
moment about the intersection of any two forces could not vanish. A limiting
case occurs when point O moves off at infinite distance from «, b, and ¢, in
which case the forces F,, F,, and F, are parallel.

2-2 SUPPORT REACTIONS

Structures are either partially or completely restrained so that they cannot move
freely in space. Such restraints are provided by supports that connect the structure
to some stationary body, such as the ground or another structure. The first step
in structural analysis is to take the structure without the supports and calculate
the forces, known as reactions, exerted on the structure by the supports. The
reactions are considered part of the external forces other than the loads on the
structure and are to balance the other external loads in a state of equilibrium.

Certain symbols used to designate supports must first be described. There
are generally three different types of support: the hinge, the roller, and the fixed
support. Some intermediate models of support between the idealized three can
be made to respond to the reality. The distribution of the reactive forces of a
support may be very complicated, but in an idealized state the resultant of the
forces may be represented by a single force completely specified by three elements—
the point of application, the direction, and the magnitude. It may be noted that,
in analysis, the direction simply means the slope of the action line, while the
magnitude of force may be positive or negative, thus indicating not only its
numerical size but also the sense of the action line.

Hinge support. A hinge support is represented by the symbol % or

W% . It can resist a general force P in any direction but cannot resist the
moment of the force about the connecting point, as illustrated in Fig. 2-3.

The reaction of a hinge support is assumed to be through the center of the

connecting pin; its magnitude and slope of action line are yet to be determined.
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~—
-~
-~
~

/’
R, = 5‘ == e —
/4 T
R, -
R/ '39:
Fig. 2-3

It is therefore a reaction with two unknown elements which could equivalently
be represented by the unknown magnitudes of its horizontal and vertical com-
ponents, both acting through the center of the hinge pin. This representation is
justified by the following equations from statics:

— R
Rl = VR? + R 0, = tan"kl (2-9
where |R| = magnitude of the reaction R
R, = x component of R
R, = y component of R
8, = angle that R makes with the x direction

The magnitude and direction of R can be determined if the unknown magnitudes
of R, and R, are found.

Thus, a hinge support can also be replaced by two links along the horizontal
and vertical directions through the center of the connecting pin, as shown in
Fig. 2-4(a). Each link is a two-force member, the axial force of which represents
an element of reaction (R, or R,). In general, a hinge support is equivalent to
two supporting links provided in any two different directions, which are not
necessarily an orthogonal set, through the connecting point, as shown in Fig.
2-4(b), where R, and R, indicate the axial forces in two links. The reaction R
at the pin can always be determined if the magnitudes of R, and R, are obtained.

(a) (®)

Fig. 24



12 Stability and Determinacy Chap. 2

Roller support. A roller support is represented by either the symbol % or

%—. The support mechanism used is such that the reaction acts normal to
the supporting surface through the center of the connecting pin, as shown in
Fig. 2-5(a)~(c). The reaction may be either away from or toward the supporting
surface. As such, the roller support is incapable of resisting moment and lateral
force along the surface of support.

A roller support supplies a reactive force, fixed at a known point and in a
known direction, the magnitude of which is unknown. It is therefore a reaction
with one unknown element.

A link support. shown in Fig. 2-5(d), is also of this type since the link is
a two-force member and the reaction must be along the link.

-

(@) (b) (© (d)
Fig. 2.5

Fixed support. A fixed support is designated by the symbol 2‘— It
is capable of resisting force in any direction and moment of force about the
connecting end, thus preventing the end of the member from both translation
and rotation. The reaction supplied by a fixed support may be represented by
the unknown magnitudes of a moment called M,, a horizontal force R,, and a
vertical force R, acting through the centroid of the end cross section O, as shown
in Fig. 2-6(a). These three unknown elements can be expressed as equal to a
single force R with its three elements—the magnitude, direction, and point of
application—yet to be determined, as shown in Fig. 2-6(b). Now the magnitude
and direction of R can be related to its components R, and R, by Eq. 2-9,

LR,

X

{a) ®)
Fig. 2-6

IRl=VR:+ R 6, =tan
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and the point of application O' can be located by the distance d from O, which,
in turn, is related to M, by

g M
RX
Since fixed support provides moment resistance, it is one step beyond the
hinge support in rigidity.
Two devices equivalent to the fixed support are shown in Fig. 2-7. Each
is composed of a hinge and a roller and represents three elements of reaction
capable of resisting both force and moment.

| 1
- H

Fig. 2-7

2-3 INTERNAL FORCES AT A CUT SECTION OF A
STRUCTURE

A truss structure is composed of pin-connected members and is assumed to be
pin-loaded, as shown in Fig. 2-8(a). Now if any one of the members is taken
from its connecting pins as a free body, the forces exerted on the member must
be concentrated at the two ends of the member through the centers of pins.
Furthermore, these two systems of concurrent forces can be combined into two
resultant forces that must be equal, opposite, and collinear, as indicated in Fig.
2-8(b). In other words, each member of a truss is a two-force member. Hence,
the internal forces existing in any cut section of a truss member (assumed straight
and uniform) must be a pair of equal and opposite axial forces to balance the
axial forces exerted on the ends, as shown in Fig. 2-8(c).

The fact that each member of a truss represents an unknown element of
internal force enables us to obtain the total number of unknown elements of
internal force by counting the total number of members of which the truss is
composed.

F

4 4 \/ : F\ F
o \ s A F‘F

N

(a) (b) (©
Fig. 2-8
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Members of structures, such as beams and rigid frames, are acted on by
more than two forces. Let us investigate the elements of internal force in any
cut section A-A of the beam in Fig. 2-9(a) or of the rigid frame in Fig. 2-9(b).

We begin by taking the free bodies of the portions to the left and right of
section A-A, as shown in Fig. 2-9(c) and (d). It is obvious that forces of internal
constraint must exist between these two portions in order to hold them together.
Such internal forces, of course, always occur in pairs of equal and opposite
forces. The actual distribution of these internal forces cannot be easily discovered.
To maintain the equilibrium of the free body, however, the internal forces must
be statically equal and opposite to the system of forces acting externally on the
portion considered, and the internal forces can always be represented by a force
applied at the centroid O of the cross section together with a couple of moment
M. Furthermore, the force can, in turn, be resolved into a normal component
N and a tangential component V. Thus, in Fig. 2-9(c) and (d) we represent the
stress resultant on any section A-A by the three unknown magnitudes of N, V,
M, called, respectively, the normal force, the shearing force, and the resisting
moment at that section.

ZQ:
2z
%a
AN

Fig. 2-9

From .th‘e foregoing discussion, we remember that to take a free body from
a beam or ngnd_ frame we must assume three unknown elements of internal force
generally existing in the cut section.
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2-4 EQUATIONS OF CONDITION OR CONSTRUCTION

Structures such as trusses, beams, and rigid frames may sometimes be considered
to be one rigid body sustained in space by a number of supports. Out of several
such rigid bodies a compound form of structure may be built by means of
connecting devices, such as hinges, links, or rollers, and mounted on a number
of supports. In either the simple or the compound type of structure the external
force system of the entire structure, consisting of the loads on the structure and
Fhe support reactions, must satisfy the equations of equilibrium if the structure
is to remain at rest. However, in the compound type of structure the connecting
devices impose further restrictions on the force system acting on the structure,
thus providing additional equations of statics to supplement the equations of
equilibrium. Equations supplied by the method of special construction (other
than external supports) are called equations of condition or construction. We
discuss these further in Sec. 2-6.

2-5 STABILITY AND DETERMINACY OF A STRUCTURE
WITH RESPECT TO SUPPORTS

When one considers the design of a structure, one must give careful thought to
the number and arrangement of the supports directly related to the stability and
determinacy of the structure. In the following discussions we shall treat the
structures as a monolithic rigid body mounted on a number of supports. Thus,
there will be no internal condition involved, and the stability and determinacy
of the structure will be judged solely by the stability and determinacy of supports.

1. Two elements of reaction supplied by supports, such as two forces each
with a definite point of application and direction, are not sufficient to ensure the
stability of a rigid body, because the two are either collinear, parallel, or concurrent.
In each of these cases, the condition of equilibrium is violated, not because of
the lack of strength of supports, but because of the insufficient number of support
elements. This situation is referred to as statical instability.

If two reactive forces are collinear [see Fig. 2-10(a)], they cannot resist an
external load that has a component normal to the line of reactions. If they are
parallel [see Fig. 2-10(b)], they cannot prevent the body from lateral sliding. If
they are concurrent [see Fig. 2-10(c) or (d)], they cannot resist the moment about
the concurrent point O due to any force not through 0.

Algebraically, in each of the cases above, one equilibrium condition is not
satisfied. For instance, in Fig. 2-10(a) or (b) the condition £ F, = 0 is violated
(x indicates the direction normal to the line of reaction); whereas in Fig. 2-10(c)
or (d) the condition = M, = 0 is not fulfilled. The body is, therefore, not in
equilibrium; it is unstable.

Only under some very special conditions of loading can the body be stable,
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such as those shown in Fig. 2-11. In Fig. 2-11(a) the applied loads acting on
the body are themselves in equilibrium; therefore, no reaction is required. In
Fig. 2-11(b) the applied load is in the same direction as the reactions, so equilibrium
can be maintained for the parallel force system; and in Fig. 2-11(c) or (d) the
applied load is through the concurrent point O; therefore, equilibrium can also
be established.

Structures stable under special conditions of loading but unstable under
general conditions of loading are said to be in a state of unstable equilibrium
and are classified as unstable structures.

2. Atleast three elements of reaction are necessary to restrain a body in stable
equilibrium. Consider each of the cases shown in Fig. 2-12. The rigid body is
subjected to restraints by three elements of reaction, and the restraints can be
solved by the three available equilibrium equations. The satisfaction of all three
equilibrium equations, S F, = 0, S F, = 0,and 2 M = 0, for loads and reactions
acting on the body guarantees, respectively, that the body will neither move
horizontally or vertically nor rotate. The system is said to be statically stable
and determinate.

3. If there are more than three elements of reaction, as in each of the cases
shown in Fig. 2-13, the body is necessarily more stable, because of the additional
restraints. Since the number of unknown elements of reaction is greater than
the number of equations for static equilibrium, the system is said to be sratically
indeterminate with regard to the reactions of support.

4. That the number of elements of reaction should be at least three is a
necessary but not a sufficient condition for an externally stable structure. There
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are many cases that are obviously not stable with respect to the support system
even though three or more than three elements of reaction are supplied. When,
for example, the lines of reaction are all parallel, as in Fig. 2-14(a), the body is
unstable, because it is vulnerable to lateral sliding. Another case is shown in
Fig. 2-14(b), where the lines of the three reaction elements are originally concurrent
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at point O. The system is also unstable because, even though complete collapse
probably will not result, a small initial rotation about O because of the moment
caused by any force not through O will certainly occur until the three reaction
lines form the triangle indicated by the crosshatched lines.

The above-mentioned instability, which results from the inadequacy of
arrangement of supports, is referred to as external geometric instability.

5. A monolithic rigid body is rigid by definition; hence, it will have no problem
of internal instability. Furthermore, at any cut section of a monolithic rigid
body, the elements of internal force, which are no more than three in number,
can always be determined by the equations of equilibrium, once the reactions
are completely defined. Therefore, the stability and determinacy of the entire
system mentioned in this section are solely determined by the stability and
determinacy of supports and reactions.

Let us sum up the main points of the foregoing discussions as follows:

1. If the number of unknown elements of reaction is fewer than three, the
equations of equilibrium are generally not satisfied, and the system is said to be
statically unstable.

2. If the number of unknown elements of reaction is equal to three and if no
external geometric instability is involved, then the system is statically stable and
determinate.

3. If the number of unknown elements of reaction is greater than three, then
the system is statically indeterminate: it is statically stable provided that no
external geometric instability is involved. The excess number n of unknown
elements designates the nth degree of statical indeterminacy. For example, in
each case of Fig. 2-13 there are five unknown elements of reaction. Thus,
5 — 3 = 2, which indicates a statical indeterminacy of second degree.
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2-6 GENERAL STABILITY AND DETERMINACY OF
STRUCTURES

Structural stability and determinacy must be judged by the number and arrangement
of the supports as well as the number and arrangement of the members and the
connections of the structure. They are determined by inspection or by formula.
For convenience, we shall deal with the general stability and determinacy of
beams, trusses, and rigid frames in separate sections.

2-6a General Stability and Determinacy of Beams

If a beam is built up without any internal connections (internal hinge, roller, or
link), the entire beam may be considered as a single monolithic rigid body placed
on a number of supports, and the question of the stability and of the determinacy
of the beam is settled solely by the number and arrangement of supports, as
discussed in Sec. 2-5.

Now let us investigate what will happen if a certain connecting device is
inserted in a beam. Let us suppose that a hinge is introduced into the statically
stable and determinate beam of Fig. 2-15(a) or (b). The beam in each case will
obviously become unstable under general loading as the result of a relative
rotation between the left and the right portions of the beam at the internal hinge,
as' indicated in Fig. 2-15(c) or (d). That the hinge has no capacity to resist
moment constitutes a restriction on the external forces acting on the structure;
that is,

M=0
about the hinge. In other words, the moment about the hinge calculated from

the external forces on either side of the hinge must be zero in order to guarantee
that these portions will not rotate about the hinge.

% >

(@) (b)
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(e) (3]
Fig. 2-15
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Referring to Fig. 2-15(c) or (d), we see that in each case there are three
elements of reaction supplied by supports, whereas there are four conditions of
statics to restrict the external forces—three from equilibrium plus one from
construction. This means that the number of unknown elements of reaction is
one fewer than the independent equations of statics available for their solution.
Therefore, the equations of statics for the force system are generally not satisfied.
The beam is statically unstable unless we provide at least one additional element
of reaction, such as the additional roller support shown in Fig. 2-15(e) or (f),
which makes the total number of unknown elements of reaction equal to the
total number of independent equations of statics needed to determine the elements.
If this is done, the beam will be restored to a statically stable and determinate
state.

Next, let us suppose that a link (or a roller) is introduced into a section
of the statically stable and determinate beam of Fig. 2-15(a) or (b). We expect
that this beam will be less stable than one with a hinged connection because the
link (roller) cannot resist both moments about the link pin and forces normal to
the link. The beam will collapse under general types of loading as a result of
the relative rotation and the lateral translation of the left and right portions of
the beam at the link, as indicated in Fig. 2-16(a) or (b).

(© )

Fig. 2-16

That a link (or roller) has no capacity to resist lateral forces and moments
constitutes two restrictions to the external forces acting on the structure, namely,

H=90 and M=
about the link (either of two pins). H is the sum of forces on either side of the
link in the direction normal to the link. The satisfaction of condition H = 0for
the portion of the structure on either side of the link prevents the movement of
one portion of the structure relative to the other in the direction normal to the
link. Satisfying condition M = 0 for the portion of the structure on either side
of the link ensures that these portions will not rotate about the pins of the link.
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Referring to Fig. 2-16(a) or (b), we find that in each case there are three
elements of reaction supplied by the support system, while there are five conditions
of statics to restrict them—three from equilibrium and two from construction.
Since the number of elements in reaction is two fewer than the number of statical
equations to determine them, the beam is, therefore, quite unstable unless we
supply at least two more elements of reaction, such as the hinged support shown
in Fig. 2-16(c) or (d), to balance the situation. This done, the beam will be
restored to its statically stable and determinate state.

There are beams for which the number of reaction elements is greater than
the total number of independent equations of statics available. The beams are
then classified as statically indeterminate, and the excess number of unknown
elements indicates the degree of statical indeterminacy.

Geometric instability is most likely to occur whenever internal connections
are introduced into an originally stable structure. Consider, for example, Fig.
2-17(a). The beam is statically indeterminate to the first degree. Now if a hinge
is inserted into the beam, as shown in Fig. 2-17(b), it seems to be statically
determinate. However, when a load is applied, a small initial displacement will
result and will not be resisted elastically by the structure. In such a case, the
beam is unstable not because of the inadequacy of the supports but because of
the inadequacy of the arrangement of members. This situation is referred to as
internal geometric instability. Very often when this occurs, the structure will
collapse. In the present case collapse will not occur; the beam will come to rest
in a position such as that marked by the dashed lines shown in Fig. 2-17(b).

H Vi A 5,
@ (b)

Fig. 2-17

From the foregoing discussions, a criterion may be established for the
statical stability and determinacy of beams. Let r denote the number of reaction

elements and ¢ the number of equations of condition (¢ = 1 for a hinge; ¢ =
2 for a roller; ¢ = 0 for a beam without internal connection).

1. If » < ¢ + 3, the beam is statically unstable. .
2. If r = ¢ + 3, the beam is statically determinate provided that no geometric

instability (internal and external) is involved.
3. If r > ¢ + 3, the beam is statically indeterminate.

Further illustrations are given in Table 2-1.
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TABLE 2-1

Beam recrEc+3 Classification

m 52 5=35 Stable and determinate
(4

Stable and indeterminate
M 62 6>5 to the first degree

52 5=5 Unstable*

—0— o8 43 4<6  Unstable
. gom

g——o—g__—ﬁ 63 6=6 Stable and determinate

72 7>5 Unstable*

\\o/’

.

* Internal geometric instability; a possible form of displacement is indicated by the dotted lines.

2-6b General Stability and Determinacy of Trusses

A truss is composed of a number of bars connected at their ends by a number
of pinned joints so as to form a network, usually a series of triangles, and mounted
on a number of supports, such as the one shown in Fig. 2-18(a). Each bar of
a truss is a two-force member; hence, each represents one unknown element of
internal force (see Sec. 2-3). The total number of unknown elements for the
entire system is counted by the number of bars (internal) plus the number of
independent reaction elements (external). Thus, if we let 5 denote the number
of bars and r the number of reaction components, the total number of unknown
elements of the entire system is b + r. Now if the truss is in equilibrium, every
isolated portion must likewise be in equilibrium. For a truss having j joints, the
entire system may be separated into J free bodies, as illustrated in Fig. 2-18(b),
in which each joint yields two equilibrium equations, S F, = 0 and 3 F, =0,
for the concurrent force system acting on it. From this a total of 2j independent
equations, involving (b + r) unknowns, is obtained. We may thus establish
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Fig. 2-18

criteria for the statical stability and the determinacy of a truss by counting the
total unknowns and the total equations.

1. If b + r < 2j, the system is statically unstable.

2. If b + r = 2j, the system is statically determinate provided that it is also
stable.

3. If b + r > 2j, the system is statically indeterminate.

The satisfaction of condition b + r = 2j does not ensure a stable truss.
For the truss to be stable requires fulfillment of further conditions. First, the
value of r must be equal to or greater than the three required for statical stability
of supports. Next, there must be no inadequacy in the arrangement of supports
and bars so as to avoid both external and internal geometric instability.

Basically, a stable truss can usually be obtained by starting with three bars
pinned together at their ends in the form of a triangle and then by extending
from it by adding two new bars for each new joint, as shown in Fig. 2-18(a).
Since this truss satisfies b + r = 2j(b = 13, r = 3, j = 8), it is statically
determinate.

Suppose that this truss form is changed, as shown in Fig. 2-19. The number
of bars and joints remains the same; the criterion equation is still satisfied. But
it is geometrically unstable, since there is no bar to carry the vertical force
(shear) in the panel where the diagonal is omitted. Other examples are given in
Table 2-2.

% 4 % Fig. 2-19

Figure 2-20 shows a long-span trussed bridge, which we may consider to
be composed of three rigid trusses connected by a hinge A and a link BC and
mounted on a number of supports. These connections are not completely rigid,
so certain equations of condition are introduced to restrict the external forces
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TABLE 2-2
Truss b r J b+ rE2 Classification
% 7 3 5 10 =10 Stable and determinate
b
a — e [
< 7 3 5 10 = 10 Unstable*

7 3 5 10 = 10 Unstable**

Unstable

6 4 5 10 = 10 Stable and determinate

Stable and indeterminate
to the second degree

6 4 5 10 = 10 Unstable***

8 o>
o
A"
A%,
el
A
=

* Internal geometric instability due to three pins a, b, ¢ on a line; possible displacement as
indicated by dotted lines.

** External geometric instability due to parallel lines of reaction.
*** Internal geometric instability due to lack of lateral resistance in panel abcd.

acting on the structure. In this case the hinge at A provides one condition
equation, M, = 0, which means that the moment about A4 of the forces on either
side of A must be zero. The hanger BC provides two condition equations,
Mg = 0 (or M- = 0) and H = 0, which means that the moment about B (or
C) of the forces on either side of B (or C) must be zero and also that the sum
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of the horizontal forces on either side of the hanger must be zero, since the
vertical hanger is incapable of resisting horizontal forces.

_ The stability and determinacy of the truss may be investigated by first
counting the number of bars, joints, and reaction elements. It is found that the
equation b + r = 2j is satisfied by the truss since b = 40, r = 6, and j = 23.
Thus, the necessary condition for the system to be statically determinate is
fulfilled. Next, there is no obvious instability either in the formation of the truss
or in the supports. Both the portions to the left of A and to the right of BC are
rigidly formed and adequately supported. The portion in the center span is also
rigidly formed. Its connection to the side portions by a hinge and a hanger
constitutes three elements of support. In regard to reactions, there is a total of
six elements that can just be determined by 8ix statical equations, three from
equilibrium and three from construction. Thus, the entire system is stable and
statically determinate; furthermore, it is stable and statically determinate as
regards support reactions.

There are certain cases in which the stability or instability of a truss is not
obvious. One way of determining stability is to attempt a stress analysis and to
discover whether the results are consistent or not. An inconsistent result indicates
that the answer is not unique but infinite and indeterminate. If such is the case,
then the truss is said to be unstable. We discuss this further in Sec. 3-5.

2-6¢c General Stability and Determinacy of Rigid
Frames

A rigid frame is built of beams and columns connected rigidly, such as the one
shown in Fig. 2-21(a). The stability and determinacy of a rigid frame may also
be investigated by comparing the number of unknowns (internal unknowns and
reaction unknowns) with the number of equations of statics available for their
solution. Like a truss, a rigid frame may be separated into a number of free
bodies of joints, as shown in Fig. 2-21(b), which requires that every member of
the frame be taken apart. As discussed in Sec. 2-3, there are usually three
unknown magnitudes (N, V, M) existing in a cut section of a member. However,
if these quantities are known at one section of a member, similar quantities for
any other section of the same member can be determined. Hence, there are
only three independent, internal, unknown elements for each member in a frame.
If we let b denote the total number of members and r the reaction elements,
then the total number of independent unknowns in a rigid frame is 3b + r).
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{a)

(b) Fig. 2-21

Next, a rigid joint isolated as a free body will generally be acted.u.pop }Jy
4 system of forces and couples, as indicated in Fig. 2-21(b), since a rigid joint
is capable of resisting moments. For equilibrium of such a joint, this system,
therefore, must satisfy three equilibrium equations, £ F, = 0, 3 F, = 0, and
X M = 0. Thus, if the total number of rigid joints is j, then 3;j independent
cquilibrium equations may be written for the entire system.

It may happen that hinges or other devices of construction are introduced
into the structure so as to provide additional equations of statics, say a total of
¢. Then the total number of equations of statics available for the solution of
the (3b + r) unknowns is (3 + ¢). The criteria for the statical stability and
determinacy of the rigid frame are thus established by comparing the number of
unknowns (3b + r) with the number of independent equations (3 + ¢):

LIE3b + r<3j + ¢, the frame is statically unstable.

2I83h + r = 3j + ¢, the frame is statically determinate provided that it is
also stable.

3303 + r >3 + ¢. the frame is statically indeterminate.

It should be recalled from the similar discussion sealing with the criteria
for trusses that satisfaction of the condition 3b + r=3j + ¢ does not warrant
a stable frame unless r = 3 and, also, that no geometric instability is involved
in the system.

Consider the frame in Fig. 2-21(a). There are six joints (including those at
supports), six members, and six reaction elements, but no condition of construction.
fi‘hus, b+ r=18+6> 3 +c=18 + 0. The €Xxcess number six in unknowns
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TABLE 2-3
Frame b roj ¢ 3b+rE3j+c¢ Classification
Indeterminate to
-9 9 90 > the 12th degree
7 wE 7
-—O0—4— 00— Indeterminate to
09 9 4 39> 31 the eighth degree
T 7y
0 9 9 1 39 > 28 Indeterminate to
the 11th degree
77 77
Indeterminate to
- *
09 9 3 39> 30 the ninth degree
777 77
¢ d
al b " Indeterminate to
1076 9 0 36> 27 the ninth degree

2 A A

*If a pin is inserted in a rigid frame, generally, ¢ = the number of members meeting at the
pin minus one. Inthiscase ¢ = 4 — | = 3.

** The overhanging portions, such as ab and cd on the right side of the frame, shoutd not be
counted in the number of members.

Suppose that we wish to analyze the degree of indeterminacy of the frame
shown in Fig. 2-22(a). The best approach is to cut members, as indicated in
Fig. 2-22(b), so that the structure is separated into three statically determinate
and stable parts. The number of restraints removed to accomplish this result
gives the degree of indeterminacy of the frame. Since each cut involves three

w
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Fig. 2-22
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internal unknown elements, the total number of restraints removed by four cuts
is (4)(3) = 12; the frame is statically indeterminate to the 12th degree.

The advantage of this approach over counting the number of bars and joints
and reaction elements will easily be seen when we come to determine the degree
of indeterminacy of the frame of a tall building, such as the one shown in Fig.
2-23. Since the building can be separated into 12 stable and determinate parts
by 77 cuts in the beams. it is statically indeterminate to the 231st degree.

é/%%%%fﬁ»%%%?zéz%

Fig. 223

PROBLEMS

2-1. Discuss the stability and determinacy of the beams shown in Fig. 2-24.

A\
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2-2. Discuss the stability and determinacy of the trusses shown in Fig. 2-25.
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Fig. 2-25
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2-3. Discuss the stability and determinacy of the rigid frames shown in Fig. 2-26.
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Structural Statics

3-1 GENERAL

In this chapter we analyze planar statically determinate structures, including
beams, trusses, and rigid frames.

A beam is defined as a structural member predominantly subjected to
bending moment. We limit our discussions to beams of symmetrical section, in
which the centroidal axis is a straight line. Furthermore, we assume that the
beam is acted on by only transverse loading and moment loading and that all
the loads and reactions lie in the plane of symmetry. It thus follows that such
a beam will be subjected to bending and shear in the plane of loading without
axial stretching and twisting.

The basic types of statically determinate beams are simple beams and
cantilever beams. A beam that is supported at its two ends with a hinge and a
roller is called a simply supported beam, or simple beam. A cantilever beam is
fixed or built-in at one end and free at the other end. The end portion (or
portions) of a simple beam may extend beyond the support to form a simple
beam with overhang. Several beams of different types may be connected by
internal hinges or rollers to form a compound beam. These are illustrated in
Fig. 3-1.

A truss, such as the one shown in Fig. 3-2, may be defined as a plane
structure composed of a number of members joined together at their ends by
smooth pins so as to form a rigid framework the external forces and reactions
of which are assumed to lie in the same plane and to act only at the pins.
Furthermore, we assume that the centroidal axis of each member coincides with

31
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AR

7 7

Simple beam Cantilever beam
b7
Simple beam with overhang Compound beam
Fig. 3-1

the line connecting the joint centers at the ends of member and that the weight
of each member is negligible in comparison to the other external forces acting
on the truss. From these conditions it follows that each member in a truss is a
two-force member and is subjected only to direct axial forces (tension or
compression).

A modern truss made of bolted or welded joints is not really a truss by a
strict interpretation of this definition. However, since a satisfactory stress analysis
may usually be worked out by assuming that such a structure acts as if it were
pin-connected, it may still be called a truss.

Common trusses may be classified according to their formations as simple,
compound, and complex. A rigid plane truss can always be formed by beginning
with three bars pinned together at their ends in the form of a triangle and then
extending from this two new bars for each new joint, as explained in Sec. 2-6.
Of course, the new joint and the two joints to which it is connected should never
lie along the same straight line, to avoid geometric instability. Trusses whose
members have been so arranged are called simple trusses, for they are the
simplest type of bar arrangement encountered in practice.

Fig. 3-2
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The trusses shown in Fig. 3-3 are all simple trusses. The shaded triangle
abc in each truss diagram is the base figure from which we extended the form
by using two additional bars to connect each of the new joints in alphabetical
order.

1t can easily be shown that there exists a very definite relationship between
the number of bars b and the number of joints j in a simple truss. Since the
base triangle of a simple truss consists of three bars and three joints, the additional
bars and joints required to complete the truss are (b — 3) and (j — 3), respectively.
These two numbers should be in a 2:1 ratio. Thus,

b—-—3=2j-3)
or
b+3=2j

Comparing the above equation with the necessary condition for a statically

determinate truss (see Sec. 2-6) given by

b+r=2j
we find that if the supports of a simple truss are so arranged that they are

composed of three elements of reaction neither parallel nor concurrent, then the
structure is stable and statically determinate under general conditions of loading.

d .
b S h b e f
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If two or more simple trusses are connected together to form one rigid
framework, the composite truss is called a compound truss. One simple truss
can be rigidly connected to another simple truss at certain joints by three links
neither parallel nor concurrent or by the equivalent of this type of connection.
Additional simple trusses can be joined in a similar manner to the framework
already constructed to obtain a more elaborate compound truss.

Trusses that cannot be classified as either simple or compound are called
complex trusses.

Figure 3-4(a) shows a simple truss. Rearranging the bars results in a compound
truss such as the one shown in Fig. 3-4(b). However, the truss shown in Fig.
3-4(c), made of the same number of bars and Joints, does not belong to either
of the above categories and may be termed a complex truss. Similarly, we find
that the truss shown in Fig. 3-5(a) is a simple truss, that in Fig. 3-5(b) a compound
truss, and that in Fig. 3-5(c) a complex truss.

b d
a f
e
(a)
d f
b g
a 14
c

(a) ®) ©

Fig. 3-5

A rigid frame may be defined as a structure composed of a number of
members connected together by joints some or all of which are rigid, that is,
capable of resisting both force and moment as distinguished from a pin-connected
Joint, which offers no moment resistance. In steel structures, rigid joints may
be formed by certain types of riveted, bolted, or welded connections. In reinforced
concrete structures, the materials in the joined members are mixed together in
one unit so as to be substantially rigid. In the analysis of rigid frames, we assume
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Fh.at the centroidal axis of each member coincides with the line connecting the
Joint centers of the ends of the member. The so-called joint center is therefore
the gopcurrent point of all centroidal axes of members meeting at the joint. With
the joint rigid the ends of all connected members must not only translate but
a!so rotate identical amounts at the joint. Rigid frames are usually built to be
highly statically indeterminate. The discussion of statically determinate rigid
frames in this chapter is primarily of academic interest rather than of practical
use and serves as a prelude to the analysis of statically indeterminate frames.

3-2 ANALYSIS OF STATICALLY DETERMINATE BEAMS

To illustrate the general procedure in analyzing a statically determinate beam,
let us consider the loaded beam in Fig. 3-6(a).

The first step in the analysis is to find the reactions at ends a and b, denoted
by R, and R,, respectively. This can readily be accomplished by applying the
equilibrium equations:

> M, =0 > M, =0

or >M,=0 > F, =0
y A m—I—Tm
aL—x a&-——— -{—— —{——-»O— - - - -ﬂb

X
g y

(a)

)

I

R,

o~
o

{b)
Fig. 3-6

Next we investigate the shear force and bending moment at each transverse
cross section of the beam. The shear force at any transverse cross section of
the beam, say section A-A, at a distance x from the left end [see Fig. 3-6(a)],
is the algebraic sum of the external forces (including those of reaction) applied
to the portion of the beam on either side of A-A. The bending moment at section
A—A of the beam is the algebraic sum of the moments taken about an axis



36 Structural Statics Chap. 3

through O (the centroid of section A-A) and normal to the plane of loading of
all the external forces applied to the portion of the beam on either side of
A-A. By considering either the left or the right portion as the free body, as
shown in Fig. 3-6(b). we readily see that the shear resisting force at section V,
is equal and opposite to the shear force for that section just defined; and the
resisting moment at section M, is equal and opposite to the bending moment
for the section just defined. The values of V. and M, can be found from the
two equations of equilibrium
2F=0 and SM =0

for the portion considered.

Since the shear and bending moment in a transversely loaded beam will,
in general, vary with the distance x defining the location of the cross section on
which they occur, both are therefore functions of x. Itis advisable to plot curves
or diagrams from which the value of functions (V. and M,) at any cross section
may readily be obtained. To do this, we let one axis, the x axis, coincide with
the centroidal axis of the beam, indicating the position of the beam section, and
the other axis, the y axis, indicate the value of function V, or M,. The graphic
representation is called shear or moment curve.

Our sign conventions for beam shear and moment are as follows:

1. Shear is considered positive at a section when it tends to rotate the portion
of the beam in the clockwise direction about an axis through a point inside the
free body and normal to the plane of loading; otherwise, it is negative [see Fig.
3-7(a)].

2. Bending moment is considered positive at a section when it tends to bend
the member concave upward; otherwise, it is negative [see Fig. 3-7(b)].

I
= L3

(b)

Fig. 3.7
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Such sign conventions, although arbitrary, must be carefully observed to
avoid confusion.
The analysis of statically determinate beams is illustrated in the following
examples.
Example 3-1
Figure 3-8(a) shows a simple beam under a concentrated load P acting at C.
The reactions R, and Ry are readily found to be

Pb Pa
Ry =— B =

! [
from X My = 0and S M, = 0.
The shear at any section to the left of P is equal to R,; that is,
Pb

V.= —
) [

The shear at any section to the right of P is found to be equal to R but with
negative sign, according to our sign convention. Thus,

D<x<a)

v, = _fl‘—’ (a<x <)
P
fe—’ >t b ﬁ
Al Y B
7. ¢ %44
{ >
RA=ﬂl ?]Rs=ff
! !
(a)
LA
Pb
T + )
—_ Pa

(b)

()

Fig. 3-8
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A change process of shear occurs at section C, the total change being — P (from
Pb/lto ~Pa/l). In this connection, we note that at a concentrated load (including
reaction) there is, in general, an abrupt change in the shear equal to the load.
Consider the shear in the immediate vicinity of each support. The shear on a
section an infinitesimal distance to the right of point A is Ph/I; therefore, the shear
curve rises abruptly from zero to Pb/l at A. Similarly, the shear goes to zero from
the value —Pa/t at B. In general, the shear curve always starts at zero and ends
at zero [see Fig. 3-8(b) for the shear curve].
The bending moment at any section distance x from A is given by
Pb

M,=Tx O=<x=<gqg

M_,=flf(1—x) lasx=<]
Both are of linear variation and are plotted in Fig. 3-8(c).

If there are several concentrated loads on the beam, we need as many
linear equations to represent the shear or moment as the number of segments
involved. The shear or moment diagram is then composed of a series of line
segments.

It is customary to drop the coordinate axes in the diagram unless the origin
of the coordinate system is otherwise specified.

Example 3-2
Figure 3-9%(a) shows a simple beam subjected to a uniform load of intensity w.
Because of symmetry, the reactions are each equal to wi/ /2, as shown. Then
at any section distance x from the left end A, we have

V, = 3 wx
wl wx?
M, = = x - —
T2
These are shown in Fig. 3-9(b) and (c), respectively.
Example 3-3

Figure 3-10(a) shows a simple beam subjected to an external couple of M applied
at C.

The reactions R, and R; must be such as to form a couple to balance M.
They must be equal to M/! and opposite in sense, as indicated in Fig. 3-10(a).

In this case the shear is of constant value equal to —M/I in the range
0 < x <[, as shown in Fig. 3-10(b).

The moments vary linearly from A to C and from C to B and are given by

m, = -2 O<r<a

M,=¥(1—x) a<x<sly

The process of moment changes at C(x = a), the total change being M (from — Ma/l
to Mb/!). The moment diagram is shown in Fig. 3-10(c), and the point of inflection
{zero moment) is at C where the moment curve passes the x axis.
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If the beam is subjected to several loads (or several groups of loads), the
shear or the moment diagram may be plotted separately for each load (or each
group of loads) and then combined into one diagram by the principle of
superposition.

Table 3-1 shows that application of this principle in drawing a qualitative
moment diagram for a simple beam (or a general member) restrained by end
moments.

TABLE 3-1

Combined Moment

Case Separate Moment Diagram .
pe & Diagram*

M,

(2) M, ]Mz
: A A
A ! 2
3 M
Pabjl

2
w { wi?/8

(5) ]M
wi/g

M,
/) AN 5 <\,

6 __. !

* With large end moment (or moments) the combined moment diagrams for Cases (3), (4), (5),
or (6) could be all negative without point of inflection.

2
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From Table 3-1, we see that if the beam carries no load but end moments,
the moment curve is a straight line with one point of inflection or no point of
inflection. If the beam carries a concentrated load or a uniform load together
with the end moment on one end or both ends, the moment curve may pass
zero at one, or two, or no point on the beam axis.

It may be worth mentioning here that if the beam is made of elastic material,
the beam will be deformed under load; the elastic deformations of beams are
primarily caused by bending. With reference to the moment diagram and points
of zero moment, we can easily sketch the deflected elastic curve.

Example 3-4

Figure 3-11(a) shows a cantifever carrying a distributed load the intensity of which
varies linearly from w per unit length at the fixed end to zero at the free end.
At any section distance x from the free end q,

_(mx {) __wx
AV ]
w)(2 X W.)(3

M. = —<7) (3) = Tl

These are plotted in Fig. 3-11(b) and (c), respectively.

Ve

[l

l ! 7
a3 + >
! wXx
(a) :
N - wi
V, = WXz 2
(b) 21
wi?
6
{©)

Fig. 3-11

Example 3-5
For the loaded compound beam of Fig. 3-12(a), draw the shear and moment diagra{ns.
Theoretically we can use two equilibrium equations and a condition equation
(M = 0 at hinge b) to find the three reaction elements and then determine the shear
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and moment of the beam. But in the present case, we can conveniently separate
the beam from the connecting hinge into two portions, a simple beam and a cantilever,
as shown in Fig. 3-12(b). The shear and moment diagrams are easily drawn for
each of the separated portions and then combined, as shown in Fig. 3-12(c) and
(d), respectively.
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wi?
e

Fig. 3-12
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3-3 RELATIONSHIPS BETWEEN LOAD, SHEAR, AND
BENDING MOMENT

There exist at any cross section of a loaded beam certain relationships between
load, shear, and bending moment that are tremendously helpful in constructing
the shear and bending moment curves.

Consider a portion of a beam of any type subjected to transverse loading
and moment loading, such as the one shown in Fig. 3-13(a). To investigate the
relationships among load, shear, and bending moment in a beam, we may classify
the beam segments in the following way [as partly illustrated in Fig. 3-13(a)]:

1. Segment under no load

2. Segment under distributed load
3. Segment under concentrated load
4. Segment under moment load

We shall deal with each of these four cases as follows:

1. Segment under no load. As indicated in Fig. 3-13(a), a segment between
two concentrated loads is an example of a segment under no load. Let us take
an element cut out by two adjacent cross sections at a distance dx apart, as
shown in Fig. 3-13(b). On the left-hand face of this element, we represent the
shear force and bending moment by V, and M, and on the right-hand face of

A = - M M
{p > # /) 7}1;2
k- - o o o e
® ® ©
(@)
g ] T /] iy ""1‘?
s
A N B
'l?t/,+dv, lv,+dV, lrvx‘ lV,

(b) © (3] ()



44 Structural Statics Chap. 3

the element, by V, + dV, and M, + dM,, in which dV, and dM, are changes
of shear and moment in dx. We assume that x increases from left to right. Since
the element is in equilibrium, we have from SF, = 0
V.= (Ve +dV,) =0
that is, dv, =10
or V. = constant (3-1)
Also from M, = 0,
M.+ Vdx — (M, + dM,) = 0
Reducing and using Eq. 3-1, we arrive at
dM

— = constant (3-2)
dx

Equation 3-1 states that no change of shear takes place, and Eq. 3-2 states that
the rate of change of bending moment at any point with respect to x is constant.

2. Segment under distributed load. Let us take an element subjected to a
distributed load cut out by two adjacent cross sections distance dx apart, as
shown in Fig. 3-13(c). Assume a downward distributed load in a positive direction.
From 2F, = 0,

Ve= (Vi +dV,) - wdx =0

dV, = —w.dx
dv.
S 3-3
or T W, (3-3)

From ZM, = 0,
dx
M.+ V.dx - w_de-z— - M, +dM,)=0

Neglecting the small term w,(dx)*/2 and reducing, we find that

dM. :

& - (3-4)
Equation 3-3 states that the rate of change of shear with respect to x at any
point is equal to the intensity of the load at that point but with the opposite
sign. Equation 3-4 states that the rate of change of bending moment with respect
to x at any point is equal to the shear force at that point.

3. Segment under concentrated load. Figure 3-13(d) shows an element subjected
to a concentrated load P. Now P is assumed to be acting at a point. As the
distance between two adjacent sections becomes infinitesimal, there will be no
moment difference between the sections to the immediate left of P and to the
immediate right of P. However, an abrupt change in the shear force equal to
P between the two sections takes place, since from IF, =0,

V.~ P-V,=
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or Vi=V. =P (3-5)

as indicated in Fig. 3-13(d). Accordingly, there will be an abrupt change in the
derivative dM, /dx at the point of application of concentrated force.

4, Segment under moment load. Figure 3-13(e) shows an element subjected
to a couple of M. Now M is assumed to be acting at a point. As the distance
between the two adjacent sections becomes infinitesimal, there will be no shear
difference between the sections to the immediate left of M and to the immediate
right of M. However, there wiil be an abrupt change of moment equal to M
between the two sections, for from M, = 0 we have

M,—-M-M. =0
or M, =M,- M (3-6)
as indicated in Fig. 3-13(e).

Construction of the shear and moment diagrams is facilitated by the rela-
tionships previously stated. For instance, the equation

av,
dx
implies that the slope of the shear curve at any point is equal to the negative

value of the ordinate of load diagram applied to the beam at that point. There
are cases worth noting:

= — ¥ 73_

1. For a segment under no load, the slope of the shear curve is zero (i.e.,
parallel to the beam axis). The shear curve is therefore a line parallel to the
beam axis.

2. For a segment under a uniform load of intensity w, the slope of the shear
curve is constant. The shear curve is therefore a sloping line.

3. At a point of concentrated load, the intensity of the load is infinite, and
the slope of the shear curve will thus be infinite (i.e., vertical to the beam axis).
There will be a discontinuity in the shear curve, and a change process of shear
equal to the applied force occurs between the two sides of the loaded point.

4. Under distributed load the change in shear between two cross sections a
differential distance dx apart is :

dV, = —w.dx
Thus, the difference in the ordinates of the shear curve between any two points
a and b is given by

— Fg— d
V, — V, L w,.dx 3-7)

— (area of load diagram between a and b)

il

Suppose that there are additional concentrated forces S P acting between
a and b. The result of the shear difference between th; two points must include
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the effect due to ZP:
Vb - Va

—j. wedx — O P

ta (3-8)
—(area of load diagram between a and b + >, P)
in which ZP has been assumed to act downward.
Similarly, from the equation

aM
Txay
dx )
the slope of the bending moment curve at any point equals the ordinate of the

shear curve at that point. We note the following:

1. If the shear is constant in a portion of the beam, the bending moment curve
will be a straight line in that portion.

2. If the shear varies in any manner in a portion of the beam, the bending
moment curve will be a curved line.

3. At a point where a concentrated force acts, there will be an abrupt change
in the ordinate of shear curve and, therefore, an abrupt change in the slope of
the bending moment curve at the point. In fact, the moment curve will have
two different slopes at that point.

4. Maximum and minimum bending moments occur at the points where a
shear curve goes through the x axis—the maximum where shear changes from
positive (at the left) to negative (at the right); the minimum in the reverse manner.

5. For a concentrated force system the maximum bending moment must occur
under a certain concentrated force, since change of shear from positive to negative
must occur at a certain point where a concentrated force is applied.

6. Referring to the equation dM,/dx = V., we find that under transverse
loading the change in bending moment between two cross sections a differential
distance dx apart is given by

dM, = V. dx

Therefore, the difference in the ordinates of the bending moment curve between
any two points ¢ and b is given by

Xh
Mb - M(l = f dex
Xa (3-9)
= area of shear diagram between ¢ and b
If there are external moments SM acting between a and b, then the result
of the moment difference between the two points must include the effect due to
these moments:

Xb
M,,—M,,=J Vedx — DM
X (3“10)
= (area of shear diagram between a and b) — EM
in which M has been assumed to act in a counterclockwise direction.
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Example 3-6
Consider the beam shown in Fig. 3-14(a). From =M, = 0 and ZM, = 0, the support
reactions are found to be
R, = 22kN R; = 14 kN
We may now regard the beam as being in equilibrium under the balanced system

SkN 15 kN
2m
¥ 2 kN/m
\ {1 T T 1T [ 1 1
a o b c 7 d e
~ 2m | 6m J 2m J
| - |
@)
S kN 15 kN
l VL 2 kN/m
| [ T 1 [ ]
3 A
22 kN 14 kN
(b)
17kN i
13 kN
+30 4 kN 1
I —
-10 —24 4
5 KN 2 kN 5
10 kN
(c)
20 kNm

1 4 kN-m

(d) Fig. 3-14
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of applied loads and reactions and present the load diagram as shown in Fig.
3-14(b).

A freehand sketch of the shear diagram can then be drawn, as in Fig. 3-14(c).
In connection with this diagram, we note the following facts:

1. The shear at ¢ goes from 0 dropping to —5 kN; also, the shear at ¢ is 0.
Recall that the shear curve always starts at zero and ends up at zero.

2. There will be constant shear in portion ab since it is not loaded. As a resuit,
the shear curve in this portion is a horizontal line parallel to the beam axis.

3. Except abrupt changes in shear at b, ¢, and d corresponding to the concentrated
forces acting at these points, the shear curves from b to ¢ are sloping lines, the
slope being given by

% = —w= -2
that is, 2:1 downward to the right, as indicated in Fig. 3-14(c).
A freehand sketch of a bending moment diagram can be drawn, as in Fig.
3-14(d). In connection with it, we note the following:

1. Moments at a and ¢ are null. The moment curve from «a to b is a sloping
line with the slope given by
dm _
dx
that is, 5:1 downward to the right, as indicated in Fig. 3-14(d).

2. There are extreme values of moment at points b, ¢, and d where the shear
curve goes through the x axis. Minimum bending moments occur at b and d since
abrupt changes in the slope of moment curve from negative to positive take place
at these points, corresponding to the abrupt changes in shear from negative to
positive. Maximum bending moment occurs at ¢, where an abrupt change in the
slope of the moment curve from positive to negative takes place, corresponding to
the shear change from positive to negative at c.

3. Since the shear curve between bc or ¢d or de decreases from left to the right,
the slope of the moment curve in each portion also decreases from left to right.
This means that the moment curve in each portion is concave downward.

4. One way to obtain the ordinates of the moment diagram at 4, ¢, and d is to
compute the areas of the shear diagram [see the values indicated in Fig. 3-14(c)],
from which we may find the moment difference between any two points:

M, - M,=-10kN'm M, —M,=30kN'm
M,— M, = -24kN-'m M.—M,= 4kN-°m
From the above and using M, = M, = 0, we find that
M, = —10kN*m M, =20kN-'m M;= —4kN*'m
as indicated in Fig. 3-14(d).
The algebraic sum of the total area of the shear diagram for the beam is zero

in this example, since M, = M, = 0 and there is no moment force acting between
a and e.

V=-5
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3-4 ANALYSIS OF STATICALLY DETERMINATE TRUSSES

4

(a)

3[[[@5’7
a b ¢ d v
A
j

The method of joint and the method of section are the most fundamental tools
in the analysis of trusses. These procedures may be explained by considering
a specific example, such as the simple truss shown in Fig. 3-15.

Method of joint. The reactions
R, = R, = 12 kips
are first obtained by taking the whole truss as a free body.

The two equations of equilibrium =F, = 0 and £F, = 0 are then applied
to the free body of each joint in such an order that not more than two unknown
forces are involved in each free body. This can always be done for a simple
truss. In this example we start with joint a at the left end and proceed in
succession to joints b and B; then we turn to joint d at the right end and proceed

3* ' 3

4 16 0 16
1511 1201>7% |+9 +12 5%

' é f +16 +16 +16 t
19' 112* ! 12 Yo 112 12

)
Jat20ft = 601t
>

/ S =(12)3) = 20 T
! Vo Sec = 2009 =
ae—p 461-——01-’——> Se =16 B ¢ 42 = (206)
S. = 20)4) = 16 l ZV' \
Sp =
9

.

See = 20)3) = 16
R,=12

=12 gy (20 - 12)H) =0

Sce = (12)3) = 20 Sy = 0 t;z
16

\ Sac = 2003) =16 _C \
P S—— Y, s @

‘Q —e—»
l Sy = 16 lf

12

= (20)3) = 12
(b)
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to joints C and ¢. We thus provide three checks for the analysis by obtaining
the internal forces in members BC, Bc, and bc¢ from two directions.

The analysis for each joint is given briefly in Fig. 3-15(b). Usually, when
the slopes of the members are in simple ratios, the solution for unknown forces
can readily be obtained by inspection rather than by using equations. The arrows
in each free body of the joint indicate the directions of the member forces acting
on the joint, not the actions of the joint on the member. Note that the internal
force in the member is a tensile force if it acts outward such as §,, and that the
internal force in the member is a compressive force if it acts toward the joint
such as S,5.

The answer diagram [Fig. 3-15(c)] gives the results obtained from the preceding
analysis together with the horizontal and vertical components. A plus sign indicates
a tensile force, and a minus sign indicates a compressive force.

Method of section. Sometimes when only the forces in certain members
are desired or when the method of joint is less convenient for solving forces, it
is expedient to use the method of section, which involves isolating a portion of
the truss by cutting certain members and then solving the forces on these members
with the equilibrium equations. Consider the truss in Fig. 3-15(a). Let us determine
the internal forces in the members BC, B¢, and bc.

We start by passing a section m—m through these members and treating
either side of the truss as a free body (see Fig. 3-16). Note that the sense of
the unknown force in each cut member is assumed to be tensile and if this is
done, a plus sign in the answer indicates that the assumed sense is correct, and
therefore tension; whereas a minus sign indicates that the assumed sense is
incorrect, and therefore compression.

Since in each free body only three unknown forces are involved, the unknowns
can be solved by three equilibrium equations. In this example, it is convenient

3* @
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Se S5 15 ft
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Fig. 3-16
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to sqlve Spc by ZM,. = 0; S, by ZMp = 0; and Sp. by 2F, = 0. Thus, if we
consider the left portion of Fig. 3-16 as a free body, we have

SM, =0 (12)(40) — (9 + 3)(20) + 1585 =0
Sge = — 16 kips (compression)
SMp =0 (12)(20) — 15S,. = 0
S, = +16Kkips (tension)
>F, =0 12=(9 +3) — Vg =0
Ve. = 0o0r Sg. =0

in which V. represents the vertical component of Sz.. Since Sp. = (5/3)Vp,,
the zero value of Vg, evidently implies the nonexistence of Sg..

In applying the method of section, we note that by proper choice of moment
centers we can often determine the forces on certain members, such as the
members BC and bc of Fig. 3-16, directly from the moment equations and avoid
solving simultaneous equations. This technique is called the method of moment
and can best be illustrated in the following example.

Example 3-7

In Fig. 3-17(a) is shown a simple nonparallel chord truss. Find the forces in chord

members cd and CD and in the diagonal Cd.

First, from SM, = O for the entire structure, the reaction at a is found to be

(5)60) + (4 + 3 + 2+ D9
R, =

8

Next. to find the internal force in member cd, we pass a section m—m through

members CD, Cd, and ¢d, as indicated by the dashed line in Fig. 3-17(a), and take
the left portion of the truss as a free body, as shown in Fig. 3-17(b).
From M, = 0,

_ (150)(50)

wd T 30
To find the internal force in member CD, we use the same free body and
resolve S¢p into a vertical component Vp and a horizontal component H¢p at D,

as shown in Fig. 3-17(c).
From M, = 0,

= 150 kips

= 250 kips {tension)

o = "'9—5-%(——75—) = —34] kips (compression)
25.2 . .
Thus, Sep = (-341)(—7—5—2> = - 344 kips (compression)

Similarly. to find the internal force in member Cd, we resolve Sy into a
vertical component V., and a horizontal component Hc, at d, as shown in Fig.
3-17td). Note that the moment center is chosen at o, where the extending lines of
members CD and ¢d intersect. The distance oa is found to be 200 ft.



52 Structural Statics Chap. 3

@l p E c LI
5 c 11
Sk
251t
5 V2 P T
. b ¢ d e g h
C@I 6{)“ 90~ 9{)" 90* 9(’)" _]

8 at 25ft = 200t

(o
B
301t
a Scd
A b rc
150% SO ft
(b) (¢ (d)
Fig. 3-17
From ZM, = 0,
_ (150)200) . .
Vea = 75 109 kips (tension)
7.8 . .
Thus, Seq = (109)(?> = 142 Kkips (tension)

In general, no truss is analyzed by one method alone. Instead, it is often
analyzed by a mixed method based on knowledge from both the joint and section
methods combined as illustrated in the following example.

Example 3-8
In Fig. 3-18(a) we have a compound truss consisting of two simple trusses (shaded)
connected by three bars, BC, EF, and GH. The truss is subjected to a vertical

load of 90 kN at joint D.
The first step in the analysis is to obtain the reactions at A and E by considering

the entire truss as a free body. Thus,
H, = 120 kN H:; = 120kN Ve = 90 kN
as indicated.

After this the method of joint fails, since each remaining joint involves more
than two unknowns. It also appears at first glance that it is not possible to apply
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the method of section, since we cannot take any section that cuts only three bars
that are not concurrent. However, if we pass section m—m through five bars, as
indicated in Fig. 3-18(a), we can easily obtain from XM, = O that

120) _ _
T - 30 kN

AF =

by taking either portion of the truss as a free body and by assuming that S,r acts
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in a positive direction. Similarly, from M, = 0 or SF, = 0, we obtain that
SCD = 30 kN

Having done this. we can solve the forces for the remaining bars by the
method of joint without difficulty. An answer diagram for the analysis is given in
Fig. 3-18(b).

In analyzing a complex truss, we frequently find that the method of joint
and the method of section, described in previous sections, are not directly applicable.
For example, let us consider the loaded complex truss shown in Fig. 3-19(a).
After the reactions at A and E are found, we observe that no further progress
can be made by either the method of joint or the method of section. One way
to handle this is to substitute for the bar AD a bar AC and thus obtain a stable
simple truss, as in Fig. 3-19(b), which can be completely analyzed by the method
of joint for the given loading. Next, let the same simple truss be loaded with
two equal and opposite forces X at A and D representing the internal force in
bar AD, as shown in Fig. 3-19(c). Again a complete analysis can be carried out
by the method of joint such that the internal force for each member will be
expressed in terms of the unknown X. Or for convenience, we put a pair of
unit forces in place of the X’s, as given in Fig. 3-19(d). It is apparent that the
bar forces obtained from Fig. 3-19(d) times X will give those of Fig. 3-19(c).

Now the analysis of Fig. 3-19(a) can be made equivalent to the superposing
effects of Fig. 3-19(b) and (c) if we let the bar force of AC obtained from (b)
and (c), or from (b) and (d) times X, be equal to zero. Thus, if we let ] denote
the force in any bar of (b) and §; the corresponding bar force of (d), then the
corresponding internal force S, in any bar of (a) is expressed by

S;=8 +8X
in which X is solved by
SAC = SAC + 6ACX = 0

Sic
or X= -

Sac
With the value of X determined, the force in any other bar of the given truss
can be obtained without difficulty.
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It should be noted that complex trusses may often be arranged so as to be
geometrically unstable. However, it is not always possible to see a critical form
Just by inspection. Detection is based on the principle that if the analysis for
the truss yields a unique solution then the truss is stable and statically determinate;
on the other hand, if the analysis fails to yield a unique solution, then the truss
has a critical form.

3-5 A GENERAL METHOD FOR ANALYZING STATICALLY
DETERMINATE TRUSSES

Theoretically, we can always solve any statically stable and determinate truss
by 2j simultaneous equilibrium equations for j joints of the system. The method
is perfectly general but must be done with the aid of a modern computer.

As a simple illustration of this process, let us consider the three-hinged
truss shown in Fig. 3-20. The unknown elements involved in this truss are the
reaction components H, and V, at joint A, H; and V; at joint B, and the bar
forces S, and §,. The six unknowns can be solved by six equilibrium equations,
two for each of three discrete joints. Thus,

Joint A:
SF, =0 H, +0.6S,=0
SF, =0 Vy+08S5,=0
Joint B:
>F,=0  Hy;—08S5,=0
>F,=0 Vg + 0.65, =0
Joint C:

SF.=0 068, -085,=0
SF, =0 0.8S, + 0.6S, = —10

Fig. 3-20
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Collecting the preceding six equations in matrix form gives

1 0 0 0 06 0 H, 0

010 0.8 0 V. 0

6 0100 ~0.8 | JHp| _ 0

000T1O 0.6 Ve 0

0 060 0 06 —-08]1}S, 0

0 0 0 0 08 0.6 LS, -10

D X E
or DX = E
The unknown values are found by
X=D'E

The problem is now to find D~'. In this case,

1 0 0 0 -0.36 —0.48
01 00 -04 -064
D' = 0 01 0 -064 0.48
10 0 0 1 0.48 —0.36
0000 0.6 0.8
000 0 -08 0.6
After the performance of matrix multiplication, we obtain
H, 4.8
V, 6.4
_ HB . —4.8
Y=V, (T 36 (N
A -8
S, -6

It should be noted that the unknowns X are to be uniquely determined by
X = D7'E under the condition of the nonsingularity of the square matrix D;
that is, the determinant containing the same elements as D is not zero. This
principle provides a general way of detecting the stability of a structural system;
that is, if

[D| % 0

then the system has a unique solution, which indicates that the system is stable;
on the other hand, if

ID| =0

then the system is unstable, since many solutions are possible. Refer to Fig.
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3-20. If we replace the hinge support at B with a roller (Hp = 0), then

1 00 0 0.6 0

010 0 08 0
D= 00000 -0.8
1000 10 0.6
0 00 0 06 -08
0 00 0 08 0.6

Apparently,
ID| =0

implying that the truss is unstable.

Although the illustration we have considered concerns a simple truss, the
principle and the method of detecting a critical form described above can be
applied to other types of structures, such as beams and rigid frames.

3-6 DESCRIPTION OF BRIDGE AND ROOF TRUSS
FRAMEWORKS

Figure 3-21 shows a typical through trussed bridge. The word through indicates
that the trains (or vehicles) actually travel through the bridge. If the bridge is
installed under the floor or deck, then the bridge is called a deck bridge. 1f the

Top chord
Top diagonal
Stry, ‘

4
Sway
frame é?

)
/ Q
Vertical
|
Bottom

o diagonal
| \engt Panel diag
LV point

Bottom
chord

Floor
beam

Fig. 3-21
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trains pass between trusses but the depth is insufficient to allow the use of a
top chord bracing system, the bridge is called half-through.

Referring to Fig. 3-21, we place the road surface (or the rail and tie system
in railways) on the short longitudinal beams called stringers, assumed simply
supported on the floor beams which in turn are supported by the two main
trusses. The moving loads on bridge are transmitted to the main trusses through
the system of the connection of road surface (or rail and tie), stringer, and floor
beam.

The top series of truss members parallel to the stringer are called top chords;
while the corresponding bottom series of members are called bottom chords.
The members connecting the top and bottom chords form the web system and
are referred to as diagonals and verticals. The end diagonals are called end
posts, and the side verticals are called hip verticals. The point at which web
members connect to a chord is called a panel point, and the length between two
adjacent panel points on the same chord is called the panel length.

The cross struts at corresponding top-chord panel points, together with the
top diagonals connecting the adjacent struts, make up the top-chord lateral system.
The bottom-chord lateral system is composed of the floor beams and the bottom
diagonals connecting the adjacent floor beams.

The two main trusses are also cross braced at each top-chord panel point
by sway frames. The frame in the plane of each pair of end posts is called a
portal frame.

The members of a main truss may be arranged in many different ways.
However, the principal types of trusses encountered in bridges are shown in
Fig. 3-22. Among these types, the Pratt, Howe, and Warren trusses are more
commonly used. We may note that in the Pratt truss the diagonals, except the
end posts, are stressed in tension and that the verticals, except the hip verticals,
are stressed in compression under dead load. On the other hand, in a Howe
truss the diagonals are in compression and the verticals are in tension. Note
also that, of all the trusses shown in Fig. 3-22 under dead load, the upper chords
are in compression and bottom chords in tension.

A typical roof truss framework supported by columns is shown in Fig.
3-23.

A roof truss with its supporting columns is called a bent. The space between
adjacent bents is called a bay. Purlins are longitudinal beams that rest on the
top chord and preferably at the joints of the truss, in accordance with the
definition of truss. The roof covering may be laid directly on the purlins for
very short bay lengths but usually is laid on the wood sheathings that, in turn,
rest either on the purlins or on the rafters (if provided). Rafters are the sloping
beams extending from the ridge to the eaves and are supported by the purlins.

For a symmetrical roof truss the ratio of its rise, center height, to its span,
the horizontal distance between the center lines of the supports, is called pitch.

The truss consists of top-chord, bottom-chord, and web members. Although
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the purlins act to strengthen the longitudinal stability, additional bracing is always
necessary. The bracing members may run from truss to truss longitudinally or
diagonally and may be installed in the plane of the bottom chord, the top chord,
or both. Surface loads are transmitted from covering, sheathing, rafter, purlin
and distributed to adjacent trusses.

The common types of roof trusses are shown in Fig. 3-24.

& Howe truss \% é\ Pratt truss %\

N Howe truss & \& Warren truss &

Howe truss with monitor Fink truss

Saw-tooth truss Three-hinged arch

Fig. 3-24

3-7 ANALYSIS OF STATICALLY DETERMINATE RIGID
FRAMES

To analyze a statically determinate rigid frame, we start by finding the reaction
components from statical equations for the entire structure. This done, we are
able to determine the shear, moment, and axial force at any cross section of the
frame by taking a free body cut through that section and by using the equilibrium
equations. Based on the centroidal axis of each member, we can plot the shear,
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bending moment, and the direct force diagrams for the rigid frame. However,
it is the bending moment diagram with which we are mainly concerned in the

analysis of a rigid frame.
The following numerical examples will serve to illustrate the procedure.

Example 3-9
Analyze the rigid frame in Fig. 3-25(a). Let H,, V,, and M, denote the horizontal,
vertical, and rotational reaction components, respectively, at support «, and let V'
be the vertical reaction at support ¢.

|
mw"“
b T 5 e

6 kN ~e— 4m

e Fe=30KN
%7/———-»;1 = 6kN .t
//’ a

M, =78 kN-m\t/

a (a)
12 kN/m

3kN/m 4.5kN-'m 3 km 40.6 kN-m
p ¥4 |a2in . L e b ¢ m .
\*,« sesivm 84 mle—!
.. -m
45KN € o AN 30kN &S KN'm .
a

6 kN o J0kN'm 94.5 kN-m
=
? 6 kN 78 kN-m
\./78 kN+m
()
42 kN
()
Fig. 3-25
From the condition equation M, = 0, we find that vV, = 30 kAIjIl; fr07n;
=0, M, =

SF, = 0, H, = 6 kN; from 2F, = 0.V, = 42 kN; and from ZM,

kKN - m, as indicated in Fig. 3-25(a).

After all the external forces acting on the rigid frames are determined, the
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internal forces at each end of the members can easily be obtained by taking each
member as a free body [Fig. 3-25(b)]. Take member ac, for instance. At end ¢ of
ac, we find the shear force equal to zero by applying £F, = 0; axial force equal
to 42 kN (down) from ZF, = 0; and the resisting moment equal to 90 kN - m
{clockwise) from =M, = 0. By inspection, we see that the shear and moment at
end ¢ of the overhanging portion ac are 4.5 kN (up) and 4.5 kN * m (clockwise),
respectively. Finally, we use the equilibrium of joint ¢ to obtain the end forces at
¢ of member ce as

shear = 37.5kN (up) moment = 94.5 kN -m (counterclockwise)

With all the end forces for each member found, the shear, bending moment,
and axial force in any section of the frame can be obtained by simple statics.

The moment diagrams for beam be and column ac are shown separately in
Fig. 3-25(c).

Example 3-10

Analyze the simply supported gable frame shown in Fig. 3-26(a), which is composed
of two columns and two sloping members.

From 2F, = 0, 2M, = 0, and ZF, = 0 for the entire frame, the reaction
elements are found to be

H, = 8 kips V, = 11 kips V. = 21 kips
as shown in Fig. 3-26(a).

Next, we take member ab as a free body. With the end forces known at a,

we can readily obtain those at the other end b from the equilibrium conditions:
shear = 8 kips moment = 80 ft-kips axial force = 11 kips
acting as indicated in Fig. 3-26(b).

Following this, we sketch the free-body diagram for joint b, as shown in Fig.
3-26(c). Note that the joint is shown in an exaggerated manner, since theoretically
it should be represented by a point and all forces acting on the joint should be
concurrent at this point.

Next, let us take member be as a free body subjected to the external load of
2 kips per horizontal unit length. With the internal forces known at end b, we can
apply 2F, = 0, ZF, = 0, and M, = 0 to obtain the internal forces at end ¢ as

horizontal force = 0 vertical force = 5 kips moment = 104 ft-kips
These act as indicated in the upper sketch of Fig. 3-26(d). To determine the forces
in each section of the member, we resolve all the indicated forces into components
normal and tangential to the member section, as shown in the lower sketch of Fig.
3-26(d). For instance, at end b we have
normal force (axial force) = (11)(#) = 6.6 Kips
tangential force (shear) = (11)(#) = 8.8 kips
Similarly, at end ¢ we have
normal force (axial force) = (5} = 3 kips
tangential force (shear) = (5)(¢) = 4 kips
The total uniform load on member be is 16 kips, of which there are
(16)(3) = 12.8 kips acting transversely to the member axis
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(16)(®) = 9.6 kips acting axially to the member axis
thus giving a uniform load of intensity:

2.8 . . .

10 = 1.28 kips/ft acting transversely to the member axis

2% = 0.96 kip/ft acting axially to the member axis

63
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With these determined, the shear, bending moment, and direct force in any section
of member bc¢ can readily be obtained, as shown in Fig. 3-27.

80 ft-kips 11 28*/& total 12.85) 104 ft-kips
Load 6.6* 4—7-4— <—\ ! ] <_ -;—) 3k
8 5% 1o x 0. 96*/ft total 96
10 ft N
>
k
88 y o
x = 88 - 1 28
Shear + X
b N c
28x2 4
M, = 80 + 8.8x — 2% 104 f-kips
80 ft-kips
Moment r’i
b ¢
3k

]

. b c
Axial force — - 596
NeZ T

6.6 *

Fig. 3-27

In this manner we may proceed from member bc to joint ¢, then to member
cd and joint d, and finally to member de. However, it seems more convenient to
analyze de now and then to turn to joint 4 and member cd, and to leave the joint
¢ as a final check, as shown in Fig. 3-26(e), (f), (g), and (h), respectively. The
bending moment diagram for the whole frame is plotted in Fig. 3-26(1).

Example 3-11
Consider the three-hinged frame loaded as in Fig. 3-28(a). The four reaction elements
at supports a and e are first obtained by solving simultaneous equations, three from
equilibrium and one from construction.

> F, =0 H,-H =0

>F, =0 V,+ V.- 12=0

>M, =0 12V, — (12)(10) = 0
M. =0 6V, — 8H, = 0
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which give
V, = 10 kips V, = 2 kips H,= H, = 1.5kips
The free-body diagrams for members ab, bd, de are then drawn as in Fig.
3-28(b). From these we plot the moment diagram for the frame, as shown in Fig.
3-28(c).
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It is interesting to note that in this particular case the portion to the right of
hinge ¢ (i.e., cde) carries no external load and is therefore a two-force member if
isolated. The line of reaction at support e, called R,, must be through points e and
¢ and must meet the action line of the applied load at some point o, as shown in
Fig. 3-29(a). Now if we take the whole frame as a free body, we see that the system

constitutes a three-force member subjected to the applied load and support reactions.
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Thus, the line of reaction at support «, called R,, must be through points a and o
so that the three forces are concurrent at point o as required by equilibrium. The
vectors R, and R, can then be easily determined by the equilibrium triangle, as

shown in Fig. 3-29(b).
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Fig. 3-29

In the case where loads are placed both to the left and to the right of the
connecting hinge of a three-hinged frame, one way to analyze this is to use the
method of superposition. This is illustrated in Fig. 3-30, in which the case shown
in part (a) can be made equivalent to the sum of effects of (b) and (c), each analyzed

by the method discussed previously.

Fig. 3-30
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3-8 APPROXIMATE ANALYSIS FOR STATICALLY
INDETERMINATE RIGID FRAMES

As previously mentioned, the rigid frames of present-day construction are highly
indeterminate. It will be seen in the later chapters, which deal with statically
indeterminate structures, that to obtain the solution for a building frame based
on more exact analyses is often tedious and time consuming. In many cases,
we cannot obtain the solution without the aid of modern electronic computers.
For this reason empirical rules and approximate methods were often used in the
past by structural and architectural engineers in designing various kinds of in-
determinate structures. In order to do this, as many independent equations of
statics as there are independent unknowns must be available. The additional
equations of statics are worked out by reasonable assumptions based on experience
and knowledge of the more exact analyses. Even today the approximate methods
are still useful in a preliminary design and cost estimation.

To illustrate, consider a frame subjected to uniform floor loads, such as
the one shown in Fig. 3-31(a). The frame is indeterminate to the 24th degree
since eight cuts in the girders would render the frame into three stable and
determinate parts and since each cut involves the removal of three elements of
restraint (i.e., bending moment, shear, and axial force). A preliminary survey
of stresses may be performed by assuming the following so that the indeterminate
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68 Structural Statics  Chap. 3

frame can be solved by a determinate approach, that is, by equations of statics
alone:

1. The axial force in each girder is small and can be neglected.

2. A point of inflection (zero moment) occurs in each girder at a point one-
tenth of the span length from the left end of the girder.

3. A point of inflection occurs in each girder at a point one-tenth span length
from the right end of the girder.

This would render the frame equivalent to the one shown in Fig. 3-31(b), which
is statically determinate.

Another case that may also be worth brief mention, without going into
details, is the approximate analysis for wind stresses in building frames. Consider
a frame subjected to lateral forces (equivalent wind) acting at the joints such as
the one shown in Fig. 3-32(a). The frame is statically indeterminate to the 27th
degree. There are several methods available for dealing with the problem. The
method chosen to illustrate this is called the cantilever method and is based on
the following assumptions:

1. A point of inflection exists at the center of each girder.

2. A point of inflection exists at the center of each column.

3. The unit axial stresses in the columns of a story vary as the horizontal
distances of the columns from the center of gravity of the bent. It is usually
further assumed that all columns are identical in a story, so that the axial forces

w mm W

@) (b)
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of the columns in a story will vary in proportion to the distances from the center
gravity of the bent.

This would lead the frame to appear as the form shown in Fig. 3-32(b).
Note that the last assumption virtually puts the column axial forces in one story
in terms of a single unknown [see the dashed arrows in Fig. 3-32(b)]. It is
therefore equivalent to making (n — 1) additional assumptions for each story,
n being the number of columns in one story. In this case, there are three for
each story, or nine in total regarding column axial forces. As a result, the total
number of additional equations is 30 (9 from column axial forces and 21 from
inserting pins), which is three more than are necessary. However, it happens
that a statical analysis for the frame can be carried out without inconsistency
on the basis of the foregoing assumptions.

PROBLEMS

3-1. In each part of Fig. 3-33 qualitative loadings are shown. Draw the shear and moment
diagrams consistent with these loadings; give the equation for each curve.
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3.2. Sketch the shear and moment diagrams for each of the loaded beams shown in Fig.
3-34. Use the relationships between load, shear, and moment.

12kN
3 kN/m 1 20kN-m 2 kN/m
[ TT 711 (‘ P 1+ 111
Y F AN P
4m %2m{2m Zm‘J;‘ 4m {2m'
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. 1 | I
12t -~ 6m
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m m 2
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(e) ()

Fig. 3-34
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3.3. Determine the bar force in each member of the trusses shown in Fig. 3-35 by the
method of joint.
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3-4. By the method of section, compute the bar forces in the lettered bars of the trusses
shown in Fig. 3-36.

I

“20“ lzo*

L Sat16ft = 80 ft

éj Jlok ‘10* ‘10"9’ ‘10* ‘10"
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y 181t
%5 18 ft = 90 f |
t t = t
@ | . g
¥ 100*
.
151t
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s 2
T 4at20ft = 80ft
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Fig. 3-36
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3.5. By the mixed method of joint and section, determine the bar forces in the lettered

bars of the K truss shown in Fig. 3-37.

b 101t
J —F
N 201t
Y
¥ Foor e
| 6at 20ft = 120ft %

I Fig. 3-37

3-6. Make a complete analysis of the compound truss shown in Fig. 3-38.

C

3 > 24*
9 ft
6ft
Y 4 F
L Jat12ft = 361t *'l!

Fig. 3-38

3.7. Use the substitute-member method to make a complete analysis of the complex
truss shown in Fig. 3-39. Repeat it by solving 12 joint equations if a digital computer

is available.

Fig. 3-39
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3-8. Analyze each of the frames shown in Fig. 3-40, and draw the bending moment

diagram.
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3-9. Analyze each of the frames shown in Fig. 3.41 and draw the shear, moment, and
axial force diagrams for member bc.

10 kN/m of horizontal length 10 kN/m of 2m ] 2m
vertical length [«

Fig. 3-41

3.10. Analyze the frame of Fig. 3-42 by the cantilever method. Assume constant EI for
all members.

4"—1—»
10t

L2-z!j;— : “
: vjlii wn o w
L 0ft . 1SR 1, 20f
re— g T ™ Fig. 3-42



Influence Lines

4-1 THE CONCEPT OF THE INFLUENCE LINE

In the design of a structure, as discussed in Sec. 1-2, the loading conditions for
the structure must be established before the stress analysis can be made. For
a static structure, we are mainly concerned with two kinds of load, dead load
and live load (the impact load being a fraction of the live load). The dead load
remains stationary with the structure, whereas the live load, either the moving
or the movable load, may vary in position on the structure. When designing
any specific part of a structure, we should know where to place the live load
so that it will cause the maximum live stresses for the part considered. The part
of the structure and the type of stress may be the reaction of a support, the
shear or moment of a beam section, or the bar force in a truss. The position
of the load that causes the maximum bending moment at a section will not
necessarily cause the maximum shear at the same section, and the condition of
loading that causes the maximum axial force at one member may not cause the
maximum axial force at some other member. To handle these, it is advisable
to plot curves that show the individual effect on a desired force clement at a
certain location of the structure caused by a unit load moving across the structure
span. This can be done by taking the x axis to indicate the path of the unit
moving load, and the y axis the corresponding force variation at the given
location. The graphic representation of the relationship y = f(x) is called the
influence line.

As an illustration, let us draw a bending moment influence line for the
midspan section of a simple beam 10 ft long [Fig. 4-1(a)]. We may first divide
the span into equal segments, say 10 segments AB, BC, . .., JK, to indicate

6
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d)Unit moving load
AT T T
4 B € D E ® 6 H I J K
B 10at1ft = 10ft N
| 7

(a)

(®)

Fig. 4-1

the position of load. As the unit load moves continuously from the left to the
right, we focus our attention on the midspan section F and compute the bending
moment at F for each 1-ft interval. The results are plotted in Fig. 4-1(b), which
gives the bending moment influence line for section F. The abscissa coincides
with the beam axis, indicating the position of the load, and the ordinate gives
the corresponding moment at F due to the single unit load placed at the ordinate.
For instance, the ordinate at D is 1.5, which is the value of the moment at F
caused by a unit load at D.

Of course, we need not always plot the influence line in this fashion, since
it is time consuming. In most cases we can find an equation y = f(x) expressing
the desired force y at the given section in terms of the load position x. The
plane curve represented by the equation gives the desired influence line. To
illustrate this technique, let us use the same problem but picture it in a different
way, as shown in Fig. 4-2(a). The unit load is placed at a distance x from the
left end A. The reactions at ends A and K are expressed as functions of x,

_ao-xnM _ ., _x (XY= X
Ra= 10 =17 R« (1())(1) 10

respectively. When the moving load is confined to the left of section F (as
shown), the bending moment at F' may be found from Ry:

or ‘ _‘f‘
y=3
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6

r

N st st

I g

(b)

Fig. 4-2

where y denotes My. As the moving load is confined to the right of section F
(not shown), the bending moment at F may be found from R,:

X X
MF—SRA-(5)<1~E)—5—5

or
X
=5——
Y 2

Selecting the coordinate axes as shown in Fig. 4-2(b), we plot y = x/2 and
Yy =35 = (x/2). The curve AfK given in Fig. 4-2(b) is the desired bending moment
influence line for section F, and the corresponding diagram AFKY is called the
bending moment influence diagram for section F.

A generalized definition of the influence line may be given as follows: An
influence line is a curve whose ordinate (y value) gives the value of the function
(shear, moment, reaction, bar force, etc.) in a fixed element (member section,
support, bar in truss, etc.) when a unit load is at the ordinate.

Although in this particular case the influence diagram of Fig. 4-2(b) is
identical with the moment diagram for the same beam under a unit load at
midspan, we must not confuse the influence diagram with a bending moment
diagram for the beam. Whereas the ordinate in the latter shows the bending
moment at the corresponding section due to a fixed load, the ordinate in the
influence diagram shows the bending moment at a fixed section due to a unit
load placed at that point.
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4-2 USE OF THE INFLUENCE LINE

An influence line is a useful tool in stress analysis in two ways:

1. It serves as a criterion in determining the maximum stress—that is, it is
a guide for determining what portion of the structure should be loaded in order
to cause the maximum effect on the part under consideration.

2. It simplifies the computation.

To illustrate, consider a simple beam 10 ft long subjected to the passage
of a moving uniform load of 1 kip/ft without limit in length and a movable
concentrated load of 10 kips that may be placed at any point of the span [see
Fig. 4-3(a)]. Determine the maximum bending moment at the midspan section
C.

We start by drawing the bending moment influence line for section C, as
in Fig. 4-3(b). It is apparent from the influence line that to obtain the maximum
M_, the single concentrated load of 10 kips should be placed at the midpoint of
the span, where the maximum ordinate of the influence line occurs, and the
uniform load should be spread over the entire span.

Next, to compute the bending moment at C due to the live loads so placed,
we simply multiply each load by the corresponding influence ordinate and add.

P=10*
w= lk/ft ¥ ]

HERNEENN .
Load % c %

5t ap 51t
_ 1= 10ft -
(a)

25

A Y B

C

(b)

P=10%

wdx ¥ w = 14/ft
NUEEE’ RERRRERERRRREEEY
e

Fig. 4-3
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Referring to Fig. 4-3(b) and (c), we obtain

M¢ = P(2.5) + 2, (w dx)y
Note that the uniform load is treated as a series of infinitesimal concentrated
loads each of magnitude w dx, and the total effect of the uniform load is the
summation

> (w dx)y

Now,
!

wydx=wfydx

0

1

2 (wdx)y = J

0
= (load intensity) X (area of influence diagram)

Therefore, the total bending moment at C is
M. = (10)(2.5) + (1)(2'—5;‘(1—'! =25 4+ 12.5 = 37.5 ft-kips

This value may be checked by the conventional method of computing M,:

M, = (129)(5) + “)(810)“ = 25 + 12.5 = 37.5 ft-kips

In this simple case, such a conclusion may be drawn without the aid of
the influence diagram; but for more complicated moving load systems, we find
that the influence diagram can be of substantial help, as discussed in Sec. 4-5.

4-3 INFLUENCE LINES FOR STATICALLY DETERMINATE
BEAMS

The basic approach to drawing influence lines for a statically determinate beam
is to apply the equilibrium based on the procedure of taking the appropriate free
body as the unit load travels along the beam span. It is often convenient to
construct the reaction influence lines first and then deduce the shear and moment
influences.

Example 4-1
Consider the simple beam with an overhang shown in Fig. 4-4(a). To construct
the influence line for Ry, we place a unit load distance x from end A and apply
2 M. = 0 to obtain
20 — x
R =
i 16
The expression represents a straight line with a maximum ordinate of £ at A and
a'minimum ordinate of 0 at C, as shown in Fig. 4-4(b). Note that when the unit
load is placed at B, the influence ordinate for Ry should be equal to unity.
The influence line for R; may be found by applying = F, =0:
20—-x x-—-4
6 16

Re=1-Ry=1-
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which is also a linear function of x, as shown in Fig. 4-4(c). As a check, the ordinate
at C should be equal to unity, and that at B to zero.

The influence line for the shear at the section just to the left of B, called
(Vg)., is given in Fig. 4-4(d). As long as the unit load is on the overhanging portion
of beam, (V3), = —1; as the load passes B to the right, (Vg), = 0.

The influence line for the shear at the section just to the right of B, called
(Vg)r, is shown in Fig. 4-4(e). As long as the unit load is on the overhanging portion
of beam, (V) equals R but with opposite sign. When the load is on the simple-
beam portion, (V;); equals R;.

By a similar approach, we construct the influence line for shear at section
D, as shown in Fig. 4-4(f). As a check, when the unit load passes D from the left
to the right, the shear at D increases suddenly from -3} to +3% (i.e., there is an
abrupt change of shear equal to unity at D).

The influence line for the moment at D is shown in Fig. 4-4(g). We note that
as long as the unit load is confined to the portion AD, the moment at D may be
found from R,

1% 7 O=x=38)

-4 3x ~ 12
Mp = 12R, = (12)(" ) =2
which represents a straight line from A to D with ordinates of —3 at A and +3 at
D. When the load passes D to the right, the moment at D may be found from Rj:
20 - x 20 — x
MD——4R3—(4)< T3 )—— "

B=<x=20)

which represents a straight line from D to C with ordinates of +3 at D and 0 at
C.

Finally, we construct the influence line for the moment at B, as in Fig.
4-4(h). When the load is placed at A, Mj has its. greatest negative value of 4. As
the load travels from A to B, the moment varies linearly from —4 to 0. As the load
enters the portion BC, there is no moment at B.

A more simple and elegant way to construct beam influence lines is to
apply Miiller-Breslau’s principle, which can be stated as follows:

1. To obtain an influence line for the reaction of any statically determinate
beam, remove the support and make a positive unit displacement of its point of
application. The deflected beam is the influence line for the reaction.

2. To obtain an influence line for the shear at a section of any statically
determinate beam, cut the section and induce a unit relative transverse sliding
displacement between the portion to the left of the section and the portion to
the right of the section keeping all other constraints (both external and internal)
intact. The deflected beam is the influence line for the shear at the section.

3. To obtain the influence line for the moment at a section of any statically
determinate beam, cut the section and induce a unit rotation between the portion
to the left of the section and the portion to the right of the section keeping all
other constraints (both external and internal) intact. The deflected beam is the
influence line for the moment at the section.
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Miiller-Breslau’s principle is based on the theorem of virtual work, which
states that if a compatible virtual displacement is induced in an ideal system in
equilibrium under balanced forces, the total virtual work 6W done by all active
forces is equal to zero.

To prove the theory, we take the case of a simple beam. The proof is
generally applicable to more complicated beams. Figure 4-5(a) shows a simple
beam subjected to a single unit moving load. To find the reaction at A by the
method of virtual work, we remove the constraint at A, substitute R, for it, and

£ ¢ %y

(b)

(©

(d)

Fig. 4-5
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let A travel a small virtual displacement 8s, along R,. We then have a deflected
beam A'B, as shown in Fig. 4-5(b), where y indicates the transverse displacement
at the point of unit load. Applying 8W = 0, we obtain

(R)Bs4) — (ANy) =0

Y

. R, = =—

from which A7 5s,
If we let 6s, = 1
then R,=Yy

Since y is, on the one hand, the ordinate of the deflected beam at the point
where the unit load stands and is, on the other hand, the value of function R,
due to the unit moving load (i.e., the influence ordinate at the point), we conclude
that the defiected beam A’'B of Fig. 4-5(b) is the influence line for R, if 8s, is
set to be unity.

To determine the shearing force at any beam cross section C, we cut the
beam at C and let the two portions AC and CB have a relative virtual transverse
displacement 8s. at C without causing relative rotation between the two portions.
This is equivalent to rotating AC and BC the same small angle about A and B,
respectively. Applying W = 0, we obtain

(Ve)@Bse) — ()(y) = 0

from which Ve = 2
8s¢

If we let Os¢c = 1

then Ve=y

This proves that the deflected beam AC,C,B of Fig. 4-5(c) is the influence line
for V. It should be pointed out that the virtual displacement is supposed to be
vanishingly small and that when we say 8s. = 1, we do not mean that 8s, =
1 ft or 1 in. but one unit of very small distance for which the expressions

cc, =4

CC2 =

— S -~

shown in Fig. 4-5(c) are justified.

To determine the moment at any beam cross section C by the method of
virtual work, we cut the beam at C and induce a relative virtual rotation between
the two portions AC and CB at C without producing relative transverse sliding
between the two. Thus, by §W = 0,

(Mc)@0c) — (I)(y) =0

from which Mc=—
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If we let 86 = 1

then MC =Yy

This proves that the deflected beam AC’B of Fig. 4-5(d) is the influence line for

M. Note that when we say 80 = 1, we do not mean that 86, = 1 radian.

One unit of 8. may be as small as t§s radian, for which it is justified to write
AA’ = a-* 80, = a units BB’ = b 86 = b units

as indicated in Fig. 4-5(d).

Example 4-2

Figure 4-6(a) shows a compound beam. Draw influence lines for Ry, Vp, Mp, Ve,
and M by Miiller-Breslau’s principle.

® ®
T ; .
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To construct the influence line for R,. we remove support A and move end
A up a unit distance. The deflected bean A’CB shown in Fig. 4-6(b) is the influence
line for R,. Note that portion CB is a cantilever and will remain unmoved.

To construct the influence line for V,,, we cut the beam through D and et
the left portion of beam have a relative transverse displacement equal to unity with
respect to the right portion of beam at D without causing relative rotation between
the two. The deflected beam AD,D,CB shown in Fig. 4-6(c) is the influence line
for Vp. .

To construct the influence line for My, we cut the beam through D and let
the left portion of beam rotate a unit angle with respect to the right portion at D,
The deflected beam AD’CB of Fig. 4-6(d).is the influence line for M,.

The influence line for V, is shown in Fig. 4-6(e) by AC'E'EB, which results
from cutting the beam through E and moving the left portion of beam down a unit
distance with respect to the right portion of beam at £ while keeping the deflected
portion C'E’ parallel to BE.

The influence line for M is shown in Fig. 4-6(f) by AC'EB, which results
from cutting the beam through E and rotating the left portion of beam a unit angle
with respect to the right portion of beam at E. Point E is kept fixed in the original
position. :

4-4 INFLUENCE LINES FOR STATICALLY DETERMINATE
BRIDGE TRUSSES

As stated in Sec. 3-6, the live loads on the deck of a bridge are transmitted to
the loaded chords of main trusses through the system of stringers and floor
beams. The stringers running parallel to the main trusses are usually assumed
to act as simple beams supported by the adjacent floor beams, which, in turn,
are connected to the panel points (truss joints) of the loaded chords (see Fig.
3-21). Any live load on the deck is thus considered as a panel-point load at the
loaded chord in a truss analysis.

We can draw influence lines for the bar forces of a bridge truss by placing
the unit load at each successive panel point of the loaded chord, computing the
bar forces as the influence ordinates, and connecting adjacent influence ordinates
by straight lines. The reason that the influence line between consecutive panel
points will be a straight line can be explained as follows. Refer to Fig. 4-7(a)
for a diagram of a truss chord loaded with cross beams and stringers. Let a
unit load travel along a panel m—n. When the unit load is at m, we let y,, be
the corresponding influence ordinate for it; when the unit load is at n, we let ¥,
be the corresponding influence ordinate for it [see Fig. 4-7(b)]. Now when the
unit load is in any intermediate position, say at distance x from m, it will be
transmitted to the girder through the floor beams at m and n with values
(! — x)/l and x/I, respectively. The effect of the load is found by multiplying
each of these values by the corresponding value of the influence ordinate, and

adding. Thus,
W) = (252 + ()
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1
x - x
B | d

L
| — ]
- i1

mI T

in which y denotes the influence ordinate where the unit load is located as
indicated in Fig. 4-7(b). This expression, being linear in x, specifies the influence
ordinate for the general intermediate position in the panel.

Fig. 4-7

Example 4-3

For the truss shown in Fig. 4-8(a), draw the influence lines for forces in members
aB, Bb, Bc, and bc.

We start with a unit load at joint 2 and then move it to b, ¢, and d successively.
Each time we place the unit load at a joint, we compute the bar forces (or components)
in the desired members and we erect the ordinates to the respective influence lines,
as shown in Fig. 4-8(b)—(e). Finally we connect the consecutive ordinates by straight
lines to complete the influence lines.

Although it is always possible to obtain the ordinates to an influence line
for any element for a unit load at each point of a truss, the method may become
time consuming when dealing with a truss involving many panels without the
aid of a computer. Alternatively we may first seek the influence lines for support
reactions since they are related in a simple manner to the unit load of variable
position. After that we can deduce the influence lines for bar forces very quickly,
as can be seen in the following example.

Example 4-4

Figure 4-9(a) shows a Warren truss. Let us draw the influence lines for bar forces
(or components) in members c¢d and Cc.

The influence lines for reactions R, and R, are readily drawn as shown in
Fig. 4-9(b) and (c). They are constructed in the same way as the influence lines
for the reactions of a simple beam 36 m long, because end reactions of a truss are
not affected by the presence of the floor system.

To construct the influence line for the force in bar cd, denoted by S.4, we
pass a section m—m through bars cd, Ce, and BC, as shown in Fig. 4-9(a). With
the unit load at or to the left of panel point ¢, we find that

21R,
Sw="5"
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by using the right portion of truss as a free body and applying M. = 0. With a
unit load at or to the right of panel point d, we find that

_ (RIS
Scd - 5 - a

by using the left portion and the same moment equation. This procedure results
in two straight lines similar to the respective segments of influence lines for R, and
R, but with multipliers. Connecting the influence ordinates at ¢ and d by a straight
line gives the influence line for S, as shown in Fig. 4-9(d).

We employ the same procedure to obtain the influence line for the vertical
component force in bar Cc, denoted by V., except that we apply 2F, = 0 instead
of the moment equation to compute the bar force. As the unit load travels from
a to ¢, we use the right portion of the truss and observe that

VC(‘ = Rg
which represents a straight line identical to the segment of influence line for R..
As the unit load travels from d to g, we use the left portion of truss and find that
VCc = —Ra
which represents a straight line opposite to the segment of the influence line for

R,. Connecting the influence ordinates at ¢ and d by a straight line completes the
influence line for V., as shown in Fig. 4-9(e).

4-5 INFLUENCE LINES AND CONCENTRATED LOAD
SYSTEMS

As mentioned in Sec. 4-2, the influence line serves a guide for determining the
maximum live stresses. Under a single concentrated load or a uniform load, the
critical position causing a certain maximum live stress can be spotted at once
by inspection of the influence line. For more complicated conditions of loading
of various magnitudes and spacings, such as a series of moving wheels on a
locomotive, we cannot tell the critical position by just looking at the influence
line. The method that should be followed in such cases is essentially one of
trial and error with reference to the influence line in order to minimize computations.
Example 4-5

Figure 4-10(a) shows a simple beam subjected to the passage of wheel loads. We

wish to find the maximum reaction at the left end A, the influence line of which is

also shown in the same figure.

Since the influence ordinate increases toward the left, the system of wheel
loads must not stay in an intermediate position on the beam but should continue
to move until wheel load 1 reaches support A. The first possible position for
producing the maximum R, therefore has wheel 1 directly over A as shown in
Fig. 4-10(b). Next, with wheel 1 leaving the span, the second possible position
has wheel 2 over A, as shown in Fig. 4-10(c). In each case, we obtain the value
of R, by multiplying each of the wheel loads by the corresponding influence ordinate
and adding, as indicated in Fig. 4-10(b) and (c), respectively. The final trial position
has wheel 3 over A, as shown in Fig. 4-10(d).
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By comparing the results, we conclude that the maximum reaction is 12.4 kN

when wheel 3 is directly over support A.

Example 4-6

For the bridge truss subjected to the passage of the group of wheel loads in Fig.

4-11(a), find the maximum force in the member Bc.

To do this, we construct the influence line for the vertical component of the

bar force in Bc as shown in Fig. 4-11(b).

The best approach is to try several loading positions and to compare the
changes in the value of the function because of the movement. The increase or
decrease in the value of the function caused by 2 moving load is determined by
the multiplication of three quantities, that is, the load, the slope of the influence
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Fig. 4-11
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-+ (P)(35)(3), or +(P)(5X2), or
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Third (1) -G )—0) J
position g4

line, and the distance the load moves. Let us try the first loading position, shown
in Fig. 4-11(c), with wheel 1 at the peak ordinate. Next, let the system move to
the left until wheel 2 reaches the peak ordinate, as shown in Fig. 4-11(d). The
computations to the right of Fig. 4-11(c) and (d) show that the movement results
In an increase in the value of the function. Next, let this system move farther to
the left until wheel 3 reaches the peak ordinate, as shown in Fig. 4-11(e). The
computations to the right of Fig. 4-11(d) and (e¢) show that this causes a decrease
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in the value of the function. Thus, the second position of loading, shown in Fig.
4-11(d), produces the maximum tensile force in member Bc.

By using the influence diagram, we find the maximum value of V. to be

20 + 15 + 10 + -
(10)< 0 5) (13332
40 4\ 3.33
12.5 — 0.5 = +12kips

or Sg. = + 12\/5 kips

Note that this method of situating a load system for the maximum effect is

perfectly general and may always be employed in cases with more complicated
influence diagrams.

Il

Vae

PROBLEMS

4-1. Given a simple beam 24 ft long, construct the influence lines for the shear and
bending moment at a section 8 ft from the left end, and obtain the maximum shear
and bending moment for the section resulting from a moving uniform load of
3 kips/ft and a movable concentrated load of 50 kips.

4-2. A cantilever beam 20 ft long is fixed at the right end. Construct the shear and
moment influence lines for sections 5 ft, 10 ft, and 20 ft from the free end. Using
the same loadings given in Prob. 4-1, compute maximum shears and moments at
these sections.

4-3. In Fig. 4-12 is shown a simple beam with an overhang. Draw the influence lines
for RB» RC, VD, MB, and MD.

Fig. 4-12

4-4. Given a compound beam such as that shown in Fig. 4-13, construct the influence
lines for R, Rc, Re, Vi, Mz, and Mc. Compute the maximum value for each of
them due to a moving uniform load of 20 kN/m.

A C E
. 2m 2m 3m 3m

4———————»%4—————-——-—> i<-__.———-—-—>

10m

— Fig. 4-13

4-5. Solve Prob. 4-3 by Miiller-Breslau’s principle. .
4-6. Construct the influence lines for Prob. 4-4 by Miiller-Breslau’s principle.
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4-7. For the trusses shown in Fig. 4-14, construct the influence lines for the bar force
(or componeant) in each of the lettered bars.

‘/a
e b d 251t
*
AN c %
L 6at25ft = 150 ft |
[ ’1
()
’ b o2n
Ift
[4 )
] a 251t
| 4
% »
6at25ft = 150ft i
[ ' >
(b)
‘ by c _ 18 ft
' £ —F
a . 181t
% Z = %JL
L Bat24ft = 1921t R
I | g

©
Fig. 4-14

4-8. A simple beam 45 ft long carries moving loads of 5 kips, 10 kips, and 10 kips spaced
5 ft apart. Calculate (a) the maximum left reaction and (b) the maximum shear and
bending moment at a section 15 ft from the left end.

4-9. For the truss and the loading shown in Fig. 4-15, compute the maximum forces in
bats a and b. Consider both tension and compression in bar a.

(All Yoads. are in kips)
5 1010 10 10 6.56.56.56.5
goleciocociot
5at 20ft = 100 ft % Sft  Sft Sft Sft

e - - >

Fig. 4-15
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4-10. For the compound beam and loads shown in Fig. 4-16, find (a) the maximum reaction
at C and (b) the maximum moment at D.

(All loads are in kN)
40 40 40

20
D 2RaONNONORO

4 B c
( 3m g 3m | 3m ; 3m | 24m 1.5m1S5Sm
» | B | | moiem

Fig. 4-16

4-11. Refer to the frame and loads in Fig. 4-17. Find the maximum moment and vertical
reaction at support E due to the passage of loads over the beam.

(All loads are in kN)

10 10 40
®© 6 6

A B C
O D
7 '4___+_—.{
3m 3m
3m 6m [ 3m 4m
g ]




Elastic Deformations

5-1 GENERAL

The calculation of elastic deformations of structures, both the linear displacements
of points and the rotational displacements of lines (slopes) from their original
positions, is of great importance in the analysis, design, and construction of
structures. For instance, in the erection of a bridge structure, especially when
the cantilever method is used, the theoretical elevations of some or all joints
must be computed for each stage of the work. In building design the sizes of
beams and girders are sometimes governed by the allowable deflections. Most
important, the stress analysis for statically indeterminate structures is based
largely upon an evaluation of their elastic deformations under load. By a statically
indeterminate structure we mean a structure in which the number of unknown
forces involved is greater than the number of equations of statics available for
their solution. If such is the case, there will be an infinite number of solutions
that can satisfy the statical equations. In order to reach a unique correct solution,
the conditions of the continuity of structure, which are associated with the
geometric and elastic properties of structure, are a necessary supplement.

Numerous methods of computing elastic deformations have been developed.
Among them the following are considered the most significant in conventional
structural analysis and will, therefore, be discussed in this chapter:

1. The method of virtual work (unit-load method)
2. Castigliano’s theorem
3. The conjugate-beam method

96
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5-2 CURVATURE OF AN ELASTIC LINE

The mathematical definition for curvature is the rate at which a curve is changing
direction. To derive the expression for curvature, we shall consider a curve
such as the one shown in Fig. 5-1. The average rate of change of direction
between points P, and P, is A¢/As. The limiting value of this ratio as As
approaches zero is called curvature, and the radius of curvature is the reciprocal
of the curvature. Thus, if we let k denote the curvature and p the radius of
curvature, we have

Now since tan ¢ = dy/dx,

d dy

dx tan ¢ dx?

) d’

or (1 +tan'¢)%(£=—x%
. d?y dy\'| do
This gives ke [1 + ( dx> dr

b d¢ d?y/dx?
whereby dx 1+ (dy/ dx)?

Fig. 5-1
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Also -d;r = 1 = ! = !
’ ds ds/dx [(dx® + dy)/dx*1'* T [1 + (dy/dx)]"
Hence, ,
_de_ ("_"’> (éi‘) - dy/ax (5-1)
K= s dx) \ds [1 + (dy/dx)’P*?

For a loaded beam with its longitudinal axis taken as the x axis, we may
set dy/dx in formula 5-1 equal to zero if the deflection of the beam is small.
Thus, we obtain.

_do _dYy
= s T e

In general, except for very deep beams with a short span, the deflection
due to the shearing force is negligible and only that due to the bending moment
is considered. In order to develop a formula for the curvature due to elastic
bending, let us consider a small element of a beam shown in Fig. 5-2. Owing
to the action of bending moment M, the two originally parallel sections AB and
A’'B’" will change directions. This angle change is denoted by d¢. If the length
of the element is ds and the maximum bending stress, which occurs at the extreme
fibers, is called f, the total elongation at the top or bottom fiber is c¢ do (see
Fig. 5-2), which equals f ds/E, E being the modulus of elasticity. Thus,

(5-2)

_ fds

cdo = £

or 6 _ f
ds Ec

Replacing f with Mc/I, I being the moment of inertia of the cross-sectional area
of the beam about the axis of bending, gives

¢ _M
ds EI
which expresses the relationship between the curvature and the bending moment.

(5-3)

/ \

N~

// d¢ \\ ‘)M
M( / \\ A®
c 4 K. /1 déd
i[
B

cd® Fig. 5.2
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bNow equating Eqs. 5-2 and 5-3, we obtain the approximate curvature for a loaded
eam:

d’y M

d  EI ©-4

Note that Eq. 5-4 involves four major assumptions:

Small deflection of beam

Elastic material

Only bending moment considered significant
Plane section remaining plane after bending

W=

The curvature, established in the coordinate axes of Fig. 5-1, clearly has
Fhe same sign as M, but the sign may be reversed if the direction of the y axis
is reversed. In that case, we have
d?y M

&~ H (54

5-3 EXTERNAL WORK AND INTERNAL WORK

If a variable force F moves along its direction a distance ds, the work done is
F ds. The total work done by F during a period of movement may be expressed
by

W= f:-Fds (5-5)

where s, and s, are the initial and final values of the position.

Consider a load gradually applied to a structure. Its point of application
deflects and reaches a value A as the load increases from 0 to P. As long as
the principle of superposition holds, a linear relationship exists between the load
and the deflection, as represented by the line oa in Fig. 5-3. The total work
performed by the applied load during this period is given by

s & (Ps 1
W=J;) Fds = L <X dS—'z—PA (5-6)

which equals the area of the shaded triangle oab in Fig. 5-3.

If further deflection A, caused by an agent other than P, occurs to the
structure in the action line of P, then the additional amount of work done by
the already existing load P will be P 8A, which equals the shaded rectangular
area abcd shown in Fig. 5-3.

Similarly, the work done by a couple M to turn an angular displacement
d¢ is M d¢. The total work done by M is

&

W= .¢'Md¢ (5-7)
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F (load)

Pl —pF-————=
F
[
[}

s {deflection}

Fig. 5-3

Also, the work performed by a gradually applied couple C accompanied

by a rotation increasing from 0 to © is given by
W = 31CO (5-8)
Now consider a beam subjected to gradually applied forces. As long as
the linear relationship between the load and the deflection holds, all the external
work will be converted into internal work or elastic strain energy. Let dW be

the strain energy restored in an infinitesimal element of the beam (see Fig.
5-2). We have

dW = iM d¢

if only the bending moment M produced by the forces on the element is considered
significant. Using Eq. 5-3,

¢ _M
ds  EI
Mds
or dé =
¢ EI
M ds
we have dw =
w 2EI

For a loaded beam with its longitudinal axis taken as the x axis, we let
ds = dx and obtain

M?dx
dw =
2EI
The total strain energy restored in the beam of length [ is, therefore, given ‘
by
! a2
M-* dx
W= "
o 2FEI (5-9)

For a truss subjected to gradually applied loads, the internal work performed
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by a mer.nber7 with constant cross-sectional area A, length L, and internal axial
forc_:e S is S°L/2AE. The total internal work or elastic strain energy for the
entire truss is

S?L
W= -
z 2AE (5-10)

In some special cases deformations of structures can be found by equating
external work W, and internal work (strain energy) W;:

We =W, (5-11)

For instance, to find the deflection at the free end of the loaded cantilever
beam shown in Fig. 5-4, we have

WE = %PAb
1y g2
W, = M~ dx
o 2FEI
_ f’(—Px)zdx _ P;zﬁ
o 2EI  6El
Setting W, = W, gives
e
" 3EI
x o
a4 ____ "b
] s
3 ,
o E] constant . Fig. 5-4

Note that the method illustrated is quite limited in application since it is
applicable only to deflection at a point of concentrated force. Furthermore, if
more than one force is applied simultaneously to a structure, then more than
one unknown deformation will appear in one equation, and a solution becomes
impossible. Thus, we do not consider this as a general method.

5-4 METHOD OF VIRTUAL WORK (UNIT-LOAD METHOD)

Consider the two cases in Fig 5-5. Figure 5-5(a) illustrates a deformed elastic
structure (be it a beam, a rigid frame, or a truss) subjected to the gradually
applied loads Py, P, . . . which move their points of application the distances
Ay, A,, . .., respectively. In order to find an expression for the deformation
at any point of the structure, say the vertical deflection component A at point
C, we present the case of Fig. 5-5(b), which shows the same structure with all
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(b)
Fig. 5-5

the actual loads removed but a virtual load of unity being gradually applied at
point C along the desired deflection. Let § denote the distance the unit load
moves its point of application. Note that the virtual load is supposed to be
vanishingly small and so are the corresponding virtual deformations.

Also shown in Fig. 5-5(a) is one of the typical deformed elements (be it a
fiber in a beam or a rigid frame, or a bar in a truss) of length L subjected to
internal forces, called S, with a corresponding change in length dL. In Fig.
5-5(b} the same element is subjected to internal forces, called u, with a corresponding
change in length dL,.

Since the external work done by the applied loads must equal the internal
strain energy of all elements in the structure, we obtain for Fig. 5-5(a),

FPA +3PA, =4 S-dL (5-12)
and for Fig. 5-5(b),
DO =4 u-dL, (5-13)

Now imagine that the case in Fig. 5-5(b) exists first; the actual loads P,
and P, are then gradually applied to it. Equating the total work done and the
total strain energy restored during this period, we have

$(O) + 1 PA, + $PA, +1-A
=32 udL +33 S-dL + S u-dL o (5-14)
Since the strain energy and work done must be the same whether the loads are
applied together or separately, we obtain from subtracting the sum of Egs. 5-12
and 5-13 from Egq. 5-14,
___actual
1-a=2u-dL (5-15)
virtual
Note that Eq. 5-15 is the basic equation of the unit-load method. When the
rotation of tangent at any point in the structure is desired, we need only replace
the unit virtual force with a wnit virtugl couple in the procedure described above,
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and we obtain
actual
1:60=> u-dL (5-16)
| SE—— )
virtual
where « is the internal force for a typical element caused by the unit couple and
6 is the desired rotation angle.
To find a working formula for solving beam deformations, let us consider

a statically determinate beam subjected to loads P, and P, as shown in Fig.
5-6(a); the longitudinal axis of the beam is taken as the x axis. To find the
vertical deflection A at an arbitrary point C, we place a unit vertical force at C,
as shown in Fig. 5-6(b), and apply Eq. 5-15:

1A= > u-dL
To interpret the terms dL and « involved in the equation above, let us first refer
to Fig. 5-6(a) and observe that in the present case dL is the change of length of
any fiber having length dx and cross-sectional area dA caused by the actual loads
P, and P,. dL equals unit elongation times dx and can, therefore, be expressed
by My dx/El, in which M is the bending moment at the section considered
resulting from the actual loads. / the moment of inertia of the cross-sectional
area of the beam about the axis of bending, y the distance from the fiber to the
axis of bending, and E the modulus of elasticity. Next, refer to Fig. 5-6(b) and
observe that « in this case is the internal force of the same fiber resulting from
a fictitious unit load applied at C; u equals the bending stress of the fiber times

P, P, .
d4 |’

y

>~ x— 0 2

Y
Ly

ES
®

Y

Fig. 5-6
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dA, that is, u = my dA/I, where m is the bending moment at the same section
due to the unit load.

Substituting dL = My dx/El and « = my dA/I in the basic equation gives

l-A=Z(%XdA> (%‘-’dx)

!
Mm dxj' R
“Jo EPP A} A

Using [, y* dA = I, we obtain
"Mm dx

-4 = o EJI (5-17)

Equation 5-17 is the working formula for the determination of the deflection
at any point of a beam. If rotation of the tangent at C is desired, we place a
unit couple at C and apply the basic formula
1-9=>u-dL
In a similar manner, we obtain

"Mm dx
~ Jo Er
where m is the bending moment at any section due to a unit couple at C.
Example 5-1

Find the deflection and slope at the free end of a cantilever beam subjected to a
uniform load [Fig. 5-7(a)].

To find A,, we place a unit vertical downward load at b [Fig. 5-7(b)].
_ ["Mm dx [ (=wx¥/2)(=x) dx _owlt
o EI Jo EI T 8EI

1-6

(5-18)

4,

w per unit length

|
I
!
I
!
I
|
I
I
I
R
LT
&
[ ]

.

(a) EI constant

Fig. 5-7
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To find 8,, we place a unit clockwise couple at b [Fig. 5-7(c)}.
'Mmdx _ f’(—wxz/Z)(— dx _ wi
[t

o EI ) El "~ 6EI

=

The positive results indicate that 4, and 6, are in the directions assumed.

Example 5-2

Find 6,. 6., and A¢ of the Joaded beam in Fig. 5-8(a). Assume constant El

AT oy P ¢ 2
= - B a .L b -

- ! A !
(a) {b)

1
1
) S
. 5 .

~ 4 -1 b - -~ a :! - b g

. 1 - _ 1 -
(© (d)

Fig. 5-8
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To do this, we find it is advantageous to use double origins to perform the

integration. That is,
"Mmdx [‘Mmdx ["Mmdx
= +
o EI o EI o EI

The terms of M and m in the expression above, solving for 6,4, 6¢, and Ac,

are evaluated as shown in Table 5-1.

6. - “(Pbx/D[1 — (/D1 dx fh (Pax/)(x/1) dx
A7 EI 0 El

EI\21 T 3F T 3F) T eEll ! I
o = f Pbx/D(—x/1) dx fb (Pax/1)x/1) dx
R ) El 0 EI
_1 (_Pa3b N Pab3) _ Pablb — @)
EI 3 3P 3El
A= J (Pbx/D)(bx/1) dx f” (Pax/Dax/1) dx
<" ) EI 0 El

_ _1_ Pa’b? + Pd*b’ _ Pa*b’
T EI\ 3F 3P 3El

6EIll

1 (Pazb Pd’b Pab3) _ Pab (3a L ggf) _ Pab( + b)
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TABLE 5-1
M m for 6, m for 6, m for A¢
Section Origin Limit Fig. 5-8(a) Fig. 5-8(b) Fig. 5-8(c) Fig. 5-8(d)
Pb x x b
—x I~ - - =X
AC A 0toa ! { i l
Pa X X a
——X - = -x
BC B 0to b / ! / I
If a = b = 1/2, then
Pl pr

=0 = tm AT kE

Example 5-3

Find the deflection at the center of the beam in Fig. 5-9. Use E = 30,000 kips/in.>.
Refer to Tabie S-2 and obtain

"Mm dx
0 I

1 f”’ x 1 ("5010 + x)?
2[1,000 o O3 F T 5k T

1 5 10 1 5 x3 10
—_— T3 ——{ LR
2{1,000[6)(}0 + 1’500(2)[100,\? + 10x” + 3]0}

5 70
= 2(8 + E) =944

Now let us check the dimensions of both sides of the preceding expression.
Note that a unit load of 1 kip must be included in the left side of the expression.

30,000(‘?;":3) (1 kipXAc) = 9.
10%
b cl

5 ﬁx?T;

EA, =

&

44 ft-klpsi rflt;klps ft

10ft _ 1o
I = 1,500 in.r‘]' Symmetrical
¢

40ft 77 Fig. 59

Y

»

1 = 1,000in,
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Sec. 5-4
TABLE 5-2
Section Origin Limit (ft) M (ft-Kips) m (ft-kips)* I (in.")
ab a 0 to 10 5x % 1.000
bc b 0to 10 S(10 + x) 310 + x) 1.500
* We use a unit load of 1 Kip.
9.44 ft'
Thus, Ae = ——F/—7
€7 30,000 in.’
(9.44)(1,728) in.
or = = (.544 in.
¢ 30,000 0.544 in (down)

In a rigid frame the strain energy due to axial forces and shearing forces is
usually much smaller than that due to bending moment and can, therefore, be
neglected. The formula

Mm dx

EIl
previously derived for beam deformations is also good for finding the elastic de-
formations for a rigid frame, as illustrated in the following examples.

ponents at end

. Example 5-4
Determine the horizontal, vertical, and rotational defiection com
of rigid frame shown in Fig. 5-10(2). Assume that all members have the same value
of EI.
1.2%/1t
b » c b b c
101t !
(=)
101t 101t =
) g
’ Aot I
k
(a) (b) @ (d)
Fig. 5-10
To perform the integration for the entire frame denoted by
)

we must consider each member as a unit, the centroidal axis of the member being

taken. as the x axis. Thus,
Mm dx " Mm dx Mm dx Mm dx
= * EI « EI

EI  Jw EI be
s expression, when w
d in Table 5-3, in which we use m, 10

e solve for each of the

F
denote

The terms of M and m in thi
deflection components at a, are liste
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TABLE 5-3

M (ft-kips) m, (ft-kips) m- (ft-kips) m;, (ft-kips)

Member  Origin  Limit () g 5 100)  Fig. 5-100)  Fig. 510c)  Fig. 5-10(d)

ab a 0to 10 0 - X 0 1
be b 0to 10 - 1'22"' ~10 x t
ed P 010 10 —60 X~ 10 10 i

the bending moment at any section due to a unit horizontal force applied at a; m,
that due to a unit vertical force at a; and m; that due to a unit couple at a. Note
that the bending moment resulting in compression on the outside fibers of the frame
is assumed to be positive.

To find the horizontal deflection at a, called A;, we apply

_ [ Mm, dx
A=, EI
1 f"’ 1.2x2 0
= EI[O + . ( 5 (—10) dx + R (—60)(x — 10) dx
_ kips-ft® .
= 5,000 £l (right)
Similarly, we have the vertical deflection at a, called A,,
_ Mm2 dx
A=, EI
_ 1 fl() 12x2 10
= EI[O + X (— 7 (x)ydx + R (—60)(10) dx
_ kips-ft*
= —7,500 £l (down)
and the rotational displacement at g, called A,
Mm3 dx
A =
*7Jr EI
1 f” 1.2x? 0
= EI[O + s |72 (M dx + \ (—60)(1) dx
Kips-ft
= —800 1pEsI (counterclockwise)

Example 5-5 .
Find the deflection components at a of the same frame for each of three loading
cases shown in Fig. 5-10(b)~(d). Let

oy horizontal deflection at a due to a unit horizontal force at a
8y = vertical deflection at a due to a unit horizontal force at a
83, rotational displacement at ¢ due to a unit horizontal force at a
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Then

5 = (m,) dx _ j mm, dx [ mym; dx
" Je EI I e El
since in this case [see Fig. 5-10(b)] M = m,.
Likewise, if the frame is subjected only to a unit vertical force at « [see Fig.
5-10(c)], the three deflection components at a are found to be

[ mom, dx [ (m)dx _ [ mymsdx
B = F EI b = FEI 2" s EI

And if the frame is subjected only to a unit couple at a [see Fig. 5-10(d)], the three
deflection components at a are found to be

mam, dx 5. = mym, dx Bu = (my)* dx
EI . » " EI ® 7 Jr EI

Taking numerical values from Table 5-3 and substituting in each of the expres-
sions above, we find

10 10
dn =—E17 L x dx+f (-—10)(—10)dx+ (x — 107 dx]
kips-ft® .
= t
1,667 £l (right)
] 3 10 10
8y = E} 0+ f (—10)(x) dx + . (x — 10)(10) dx:l
—1,000 kq:;lft (down)
1 10 10 10
8y = -E—I[L (—x)(1)dx + fo (—10)(1) dx + A x — 10)(1)dx]
: 2
= —200 kl_ps-_ft_ (counterclockwise)
El
-ft?
812 = By = — 1,000 k'psl (eft)
1 v, oo, 3 kips-ft’
8y = E[O + J; x“dx + . 10y dx | = 1333 —7— El (up)
1 10 10 klps -ft? lockwise)
8y = E[O + (1) dx + . a0 dx | = 150 —— Fl (cloc
By = —200 k‘pslﬁ (left)
kips-ft’
8y = 150——E—I— (up)
10 2
1 Kips-ft lockwise)
833=—E—1[ dx+f dx+L dx]—30 Tl {cloc

Note that §,; has the same values as 3., but they differ by one dimension of
length. The same is true for 8,; and 83.
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In matrix form the result shown on the previcus page is

Chap. 5

(m,) dx mym, dx mym; dx
rEI FEl r EI
8“ 812 613 R
8 8n 8n| =| [ mm,dx (m,)* dx mym; dx
dn 8 B3 FEI FEI FEI
mum; dx mymy dx f (ms)? dx
r El r EI FEl
16676t —1,000ft -200ft] ..
= |-1000ft 1333ft  150ft I“L;ﬁ—
~200 150 30

The working formula for the deflection of any joint of a loaded truss can
be evaluated from the basic equation, Eq. 5-15,
1A= Du-dL
by considering each member of the truss as an element. Thus, the term dL is
the shortening or lengthening of a bar due to applied loads and can be expressed
by SL/AE. The equation above becomes

& Sul
| 1-A = }12 E (5-19)
where S = internal force in any member due to actual loads
u = internal force in the same member due to a fictitious unit load at
the point where the deflection is sought, acting along the desired
direction
L = length of the member
A = cross-sectional area of the member
E = modulus of elasticity of the member
m = total number of members
Equation 5-19 in matrix form is
L,
AE s,
=2 AP
A=[u - -u,) 4:E L (519
L, (S
AE|

Sometimes the change of bar—length dL is not caused b; any external force
but is due to the effect of temperature. If this is the case, we let dL = ofL and
the working formula for finding deflection due to temperature change is given
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by
1A= > u-atl (5-20)
where a = coefficient of linear thermal expansion
t = temperature rise in degrees
Example 5-6

Find the vertical deflection of joint b of the loaded truss shown in Fig. 5-11(a).
Assume that L (ft)/A (in.) = 1 and that E = 30,000 kips/in.” for all members.

B C D

4
3

321t

%

L #

4at24ft =96t

A

]
y

(a}
B _24 C _24« D

Gz

/ +64* N

+36¢ | +36° +12¢ | 412

b ¢ d ¢
*48“ ‘64" 116“

(b

Fig. 5-11



112 Elastic Deformations Chap. 5

We begin with the evaluation of § and u. The answer diagrams for them are
shown in Fig. 5-11(b) and (c), respectively. Next we apply Eq. 5-19. The complete
solution is given in Table 5-4.

TABLE 5-4
ki
Member = (%) Stkips) ur L <f—mk'£)
ab 1 +36 +9/16 + 20.25
bc 1 +36 +9/16 + 20.25
cd 1 +12 +3/16 + 2.25
de 1 +12 +3/16 + 2.25
BC | —-24 -3/8 + 90
CD 1 —-24 -3/8 + 9.0
aB 1 -60 -15/16 + 56.25
Bb 1 +64 +1 + 64.0
Bc 1 -20 ~-5/16 + 6.25
Cc 1 0 0 0
cD i +20 +35/16 + 6.25
Dd 1 0 0 0
De 1 -20 ~5/16 + 6.25
s +202.0

*We use a fictitious load of 1 (not 1 kip) for determining u values.

Sul _ +202

& = 2 7F 30,000

= +0.00673 ft (down)

Example 5-7
For the loaded structure in Example 5-6, find the absolute deflection of joint b.
To do this, we have to obtain the horizontal deflection of joint b in addition
to the vertical deflection of that joint already found. The vector sum of these two
displacement components is the solution.
When a unit horizontal load is applied at joint & to the right, only the member
ab is under the stress of tension (i.e., ¥ = 1); all other members are unstressed.
The horizontal movement, called A,, at joint & is thus given by

A, = (—“Z‘—é)ab = %&% = +0.0012 ft (right)
and the absolute deflection of joint b is given by

A =) + (A, = V(0.00673)° + (0.0012)* = 0.00684 ft
moving down to the right and making an angle ¢ with the horizontal direction,

-, 0.00673 _
0.00120

¢ = tan tan~!5.72 =~ 80°

Example 5-8

For the same loaded truss [Fig. 5-11(a)], find the rotation of member bc.
Finding the rotation of member bc is equivalent to finding the relative dis-
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placement between ends b and ¢ (in the direction perpendicular to bc) divided by
the length of bc. Assume counterclockwise rotation. We then apply a pair of unit
ﬁctitiogs loads to joints b and ¢ and evaluate the u value for each member, as
shown in Fig. 5-12. The computation leading to the solution of the relative displacement

B +38 C +38 D

)

K \ o X

2\ % \ s

; +1 \L’a 0 /'-> 0 s 321t
+3/16 +3/16 ~3/16 -3/16 N

2 b c a
g f ;a%

4at 241t =96 ft

Fig. 5-12

between joints b and ¢ perpendicular to the original line of bc is contained in Table
5-5. The rotation of the member, denoted by 8, is then determined:

80 _ 8 L
24E  (24)(30,000) 9,000
The positive value of the angle indicates a counterclockwise rotation.

6

TABLE 5-5
L{ft . Sul {ft-kips
Member 1 (IF) S(kips) u vy (T
ab 1 +36 +3/16 +27/4
bc 1 +36 +3/16 +27/4
cd 1 +12 -3/16 - 9/4
de | +12 —-3/16 - 9/4
BC 1 ~24 +3/8 -9
CD 1 -24 +3/8 -9
aB 1 —-60 -5/16 +75/4
Bb 1 +64 +1 +64
Bc 1 -20 -15/16 +75/4
Cc i 0 0 0
) 1 +20 -5/16 ~25/4
0
Dd 1 0 0
De 1 -20 +5/16 ~25/4

+80

et
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Example 5-9
Find the vertical deflection at joint b resulting from a rise in temperature of S0°F
in the top chords BC and CD (Fig. 5-13). a = 0.0000065 in./in./1°F.

On a statically determinate truss, no reactions or internal forces can be developed
because of a temperature rise or drop in truss members. However, certain changes
of bar length will take place if the temperature rises or drops in a bar. This in turn
will cause the distortion of the whole truss.

Temperature rise: 50° F

B c \ D
3
324
.S b c d %
v : /
le 4at24ft = 96ft _
-1
Fig. 5-13
To nind the vertical deflection of joint b, we apply Eq. 5-20,
Ab = z uatl
Note that, in this problem, only bars BC and CD are involved in computation since
the rest of the members undergo no change of length. Now u = —3 [see Fig. 5-

11(c)] and atL = (0.0000065)(50)(24) = 0.0078 for BC and CD. Thus,
A, = 2(—$/(0.0078) = —0.00585 ft

The negative sign indicates an upward movement of joint b.

5-5 CASTIGLIANO’S THEOREM

In 1876, Alberto Castigliano published a notable paper in which he presented a
general method for determining the deformations of linear structures, namely
the first partial derivative of the total strain energy of the structure with respect
to one of the applied actions gives the displacement along that action.

If we use P to denote the action (force or couple), A, the corresponding
displacement (deflection or rotation) along P, and W the total strain energy, the
statement can be expressed by

W
& =3P

To demonstrate the theorem, consider the loaded beam in Fig. 5-14. The

deflected position is represented by the dashed line.

(5-21)
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re > Fig. 5-14

If we consider only the internal work resulting from the bending moment,
we have the total strain energy of the beam (see Eq. 5-9):

3 " MPdx
~ b 2EI

Now let M, be the bending moment at any section due to the gradually applied

load P,, and let M, be the bending moment at the same section due to the

gradually applied load P,. The total bending moment at any section is given by
M=M|+M3=m1P,+m3P3

where m, = bending moment at any section due to a unit load
in place of P,

m, = bending moment of the same section due to a unit load
in place of P,

oW 9 [‘MPdx ('M@M/oP)dx [ Mm,dx
Thus, _ = T = = P A]
aP, P, Jo 2EI 0 EI o EI
d oW 4 [[Mdx _ f’ M(@M/3P;) dx _ [ Mmydx _
an aP,  aP b 2EI ) El o EI 2

The last equality in each of the two expressions above is based on Eg. 5-17
from virtual work. '
Let us now turn to the loaded truss in Fig. 5-15. The total strain energy

(see Eq. 5-10) is

wos SL
T “AE

A] P, Pz Flg. 5-15
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If we let
S, = internal force in any bar due to the gradually applied load P,
S, = internal force in the same bar due to the gradually applied load P,
then the total internal force in any bar is given by
S=8+38 =Pu + Pu,

1l

where 1, = internal force in any bar due to a unit load in place of P,
u, = internal force in the same bar due to a unit load in place of P,
W 8 <SL S(dS/dP )L Su,L
Thus, —— = A
us P, = P 2oAE 2 =2F =N
aw L aS/aP,)L L
and _ c') ZS _ ES( /( ) ES”_ - A-_,

aP, oP, T2AE AE
The last equality in each of the expressions above is based on Eq. 5-19 from
virtual work.

It is interesting to point out that the Castigliano’s theorem basically does
not differ from the method of virtual work for the analysis of linear structures
subjected to external forces. The difference is only a matter of the arrangement
of calculation. Using the method of virtual work, we have from Egs. 5-17 and
5-19,

Mmd
A= f max for a beam or rigid frame

and A= ESHL for a truss

while applying Castigliano’s theorem, we have

M(oM/aP) d
A= f ——(-———/——)-——f for a beam or rigid frame (5-22)

A= 2S(aS/aP) L

and for a truss (5-23)

Example 5-10
Find the vertical deflection at the free end b of a cantilever beam ab subjected to
a concentrated load P at b (see Fig 5-4).

A, = aW M(aM/aP) dx jM
aP 0
6M
Now M= —Px P -x
Therefore, j (—Px)}(—x)dx = P13 (down)
3EI

Example 5-11
i‘or the beam and load shown in Fig. 5-16(a), find the vertical and rotational dis-
placements at the free end a. Given w = 15kN/m, [ = 5 m, E = 20,000 kN/cm?,
and I = 12,000 cm*, determine the magnitude of the displacements.

]
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- b

EI constant

NN

@
&i

//— l
{
\\aL( Qz b t///

. \

0
1 (®)
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Fig. 5-16

To find the displacements at the free end, we note that in this case no vertical
force or moment force actually acts at the free end; thus Castigliano’s theorem
cannot be directly applied. In order to carry out the partial derivative, we must
first assume the imaginary forces Q,, Q., corresponding respectively to the vertical

deflection A, and the rotation 6, at the free end, and then set @, =

final operation.

Q. = 0in the

Refer to Fig. 5-16(b). The moment at any section is given by

wx 3

M=-0x-0 -

It follows that

m = —-Xx and
Q)
A = " MM /3Q,) dx
“ o EI
H(—widf6l)(—x) dx _ wi*
- fo EI ~ 30EI
! M(3M /8Q5) dx
“«~ Jo El
3 J"(—wx3/6l)(—l)dx _
~h El 24EI

Substituting w =
cm® into the foregoing expressions, we have

(15)(5)(10)°

M
30y

-1

(down)

(counterclockwise)

15 kN/m, [ = 5 m, E = 20,000 kN/cm?, and / = 12,000

« = (30)(20,000)(12,000)

(15)(5)°(10)*

= 0.003 rad

= = (24)(20,000)(12,000) B



118 Elastic Deformations Chap. 5

Example 5-12
Find, by Castigliano’s theorem, the horizontal displacement A, and the rotational
displacement A, at support ¢ for the rigid frame shown in Fig. 5-17(a). Consider
the bending effect only.

I !
- a4 pee————— b a X
;%/ ] %//.
d i
! P P

EI constant \ A,

(a) : (b)

Fig. 5-17

321t
Y
(a)
Q 0
3-24+EQ~24+-2_D Q
/
Qj+36+}g'b ¢ d [4 :
> lw +12+3%
1%
148—3 16+%1

(b) Fig. 5-18
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Since no horizontal force or moment actually acts at support ¢, we must
assume forces O, and O, of zero value, corresponding respectively to the desired
displacements A, and A, at ¢ [Fig. 5-17(b)}, in order to carry out the partial derivatives

such that
A = MM /3Q,) dx
F EI
A= MM /3Q,) dx
- F EI

where [, indicates the sign of integration carried through the entire frame. The
complete solution is given in Table 5-6.

Example 5-13
Given the loaded truss in Fig. 5-11(a), find the horizontal deflection at D.
Assume that joint D will move to the right. To apply the theorem we place
an imaginary horizontal force Q acting at D, as shown in Fig. 5-18(a). The bar
forces thus obtained are shown in Fig. 5-18(b). The complete solution is shown in

Table 5-7.
S(3S/6Q)L 36 .
A= = + = +0.0012 ft ht
274E 30,000 (right)
TABLE 5-7
L ., . A 3
Member " (ft/in.%) S(kips) E %Qé (ft-kips/in.?)
ab 1 +36 + 3/4 Q +3/4 +27
be 1 +36 + 3/4 Q +3/4 +27
cd 1 +12 + 1/4 Q +1/4 + 3
de i +12 + 1/4 Q +1/4 + 3
BC 1 -24 +1/2 0 +1/2 -12
CD 1 -24 + 12 0 +1/2 -12
aB 1 -60 + 5/12Q +5/12 =25
Bb 1 + 64 0 0
Be 1 -20 - 5/12Q -5/12 + 8.33
Cc 1 0 0 0
cD 1 +20 + 5/12Q +5/12 + 8.33
Dd i 0 0 0
De 1 -20 - 5/12Q -5/12 + 8.33

Z +36.0

5-6 CONJUGATE-BEAM METHOD

The purpose of this method is to transform the problem of solving the slopes
and deflections of a structure resulting from the applied loads (actual loads) to
a problem of solving the shears and moments of a conjugate beam due to the
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elastic load derived from the angle changes of structural elements. The advantages

<f)fl 1this method over the method of virtual work or Castigliano’s theorem are as
ollows:

1. Unlilfe the previous methods, which are used to find one item of deformation
at one pf)mt of the structure in an operation, this method enables us to find
deforma.tlons at many points of the structure in a single setup.

2. It is generally acknowledged that structural engineers prefer to deal with
shear and bending moment rather than to do tedious integral calculus.

. Consider a typical loaded beam, such as the one shown in Fig. 5-19(a), for
yvhlqh we may plot the moment diagram and, therefore, the M/EI diagram as
in Fig. 5-19(b).

X

LA

(b)

a b c d

(<) Fig. 5-19

We recall that the curvature at any point of the beam of Fig. 5-19(a) is
given by Eq. 5-4a:

d*y M
dx* - TEI
Now since the slope at any point of the beam is expressed by
% = tan 0§ = 0
for small deformation, we have
dd M

dc EI
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M dx
or dg = — Fl
Integrate.
M
= -] — 5-24
] 7 dx (5-24)

Substituting for 8 by dy/dx and integrating again gives

y=f0dx=—jfgdxdx (5-25)

Next, for a beam under a distributed load of intensity w(x), the relationships
between the load, the shear, and the bending moment at any point are given by
(see Sec. 3-3)

a _ _

dx

aM
and I =V
Thus, over a portion of the beam

=~ | wdx (5-26)
and M=dex=—fwdxdx (5-27)

Now suppose that we have a beam, called a conjugate beam, whose length
equals that of the actual beam in Fig. 5-19(a). Let this beam be subjected to
the so-called elastic load of intensity M/EI given in Fig. 5-19(b). [Elastic load
1s sometimes referred to as the angle load, a term obviously associated with.
df = M (dx/ED.] The integral expressions for the shear and moment over a
portion of the conjugate beam, denoted by V and M, respectively, can be
obtained by replacing w in Eqs. 5-26 and 5-27 with M/EI:

- M
V=—f—~d -
I (5-28)

— M
; [ |
an M Eldxdx (5-29)

When we compare Eqs. 5-24 and 5-25 with Eqgs. 5-28 and 5-29, it follows
logically that, with properly prescribed boundary conditions for the conjugate
beam, we may reach the following results:

1. The slope at a given section of a loaded beam (actual beam) equals the
shear in the corresponding section of the conjugate beam subjected to the elastic
load.

2. The deflection at a given section of a loaded beam equals the bending
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Thus far we have stated only that the conjugate beam is identical to the
actual peam with regard to the length of the beam. In order that the above-
statgd identities be possible, the setup of the support and connection of the
conjugate beam must be such as to induce shear and moment in the conjugate
beam in conformity to the slope and deflection induced by the counterparts in

the actugl beam. These requirements are given in Table 5-8 and can be briefly
summarized as follows:

fixed end «— free end
simple end «— simple end
interior connection <> interior support
The symbols between the two groups indicate conjugation.

TABLE 5-8
) Actual Bea.m Conjugate Beam
Subjected to Applied Load Subjected to Elastic Load
i 6=0 V=0
Fixed end —
{y =0 = 0} Free end

‘ 6+0 V #0 .
Free end v
) {y 40 M # 0} Fixed end
Simple end 9#0 2 +0 Simple end
(hinge or roller) y=0 M=0 (hinge or roller)
Interior support 9 #0 z #0 Interior connection
(hinge or roller) ly=20 M=0 (hinge or rolier)
Interior connection 6 #0 z #0 Interior support
¢hinge or roller) y#90 M#+0 (hinge or roller)

Thus, the conjugate beam for the beam in Fig. 5-19(a) is the one shown in
Fig. 5-19(c). If we use the M/EI diagram of Fig. 5-19(b) as the load to put on
the beam in Fig. 5-19(c), the resulting shear and bending moment for any section
of this beam will give the slope and deflection for the corresponding section of
the original beam. Other examples of conjugate beams are shown in Fig. 5-20.

Unlike the actual beams, the conjugate beams may be unstable in themselves.
For instance, the conjugate beams shown in Fig. 5-20(c) and (f) are unstable
beams. However, they will maintain an unstable equilibrium under the action
of an elastic load.

The same figure indicates that the conjugate-beam method is not limited
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Actual beam - Conjugate beam
v
A 1 7 v
(a)
4 ! % A, 1 %
; ;
/)
74 1 v I
(¢
4 o .
a b % a /j a b a 7
(d) ’ .
7 a o~ b a
(e}
4 ‘
a ! 77 7 >
{f)
Fig. 5-20

to the analysis of ‘statically determinate beams; in fact, the conjugate-beam method
is also applicable to statically indeterminate beams.

The sign convention we use may be stated as follows. The origin of the
loaded beam is taken at the left end of the beam with y positive downward and
x positive to the right. As a result, a positive deflection means a downward
deflection and a positive slope means a clockwise rotation of the beam section..
Recall that the derivation from the relationships among load, shear, and bending
moment is based on taking the downward load as positive. Therefore, a positive
M/EI should be taken as a downward elastic load.

Having defined these, we readily see that a positive shear at a’section of
the conjugate beam corresponds to a clockwise rotation at the section of the
actual beam. A positive moment at a section of the conjugate beam corresponds
to a downward deflection 4t the section of the actual beam.

Example 5-14 :
Find, by the conjugate-beam method, the vertical deflection at the free end ¢ of
the cantilever beam shown in Fig. 5-21(a). Assume constant EI. .
To do this, we place an elastic load on the conjugate beam, as shown in .Fig.

5-21(b). The vertical deflection at ¢ of the actual beam is the moment at ¢ of the
conjugate beam. Thus, v

wk’ 1
A= (Eﬁ) (1 - Zk) (down)
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w per unit length

2 »
 EENENEREERL ¢
/ - e
% k J = ~~ IA‘
- —™ =~
! i
(a) - 1
. - b / )
/c
wk? "M
RSN k
2EI "
A T3 .
L wkz) N e
) t™Resultant = 3E1113 El Fig. 5-21

Example 5-15

Find 8,4, 6., and A, for the loaded beam shown in Fig. 5-22(a) by the conjugate-
beam method. Assume constant E/. Note that the deformations were solved by
the method of virtual work in Example 5-2.

The conjugate beam together with the elastic load is shown in Fig. 5-22(b},
in which the resultant of the loading is found to be Pab/2EI acting at a distance
(I + b)/3 from the right end as indicated. Thus,

= w (clockwise)
AT 6EN i
Pab(l + b)  [Pab Pub(b — a) .
. ) o rabtb = 4) se, if b >
- ElL (EII)(Z) BN (clockwise, if a)
_Pa’b(l + b) Pab a\ _Pab’
B = "¢n (EI[)( )(3) = 3En (down)
P
. a Jo-§ k- b i
. lB
g c 55
@) |l ! =!
I (+bp3
'\f Pa
Pab - Y Resultant = 3FI

ENl

s C 2

, t_ Pab(l + b)
(b) GEIl Fig. 522
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Example 5-16

Use the conjugate-beam method to determine the deflection and rotation at point
b in Fig. 5-23(a). E = 20,000 kN/cm’.

To do this, we first plot the moment diagram as shown in Fig. 5-23(b). The
diagram for the elastic load and the conjugate beam is then given in Fig. 5-23(c).

The deflection at & of the original beam is the bending moment about b of
the conjugate beam subjected to the elastic load. Using the overhanging portion
of the conjugate beam, we obtain

_(180)(6)(4) _ 2,160

B = 2EI,  EI

__21600010°
= 20.000060.000) ~ [Bem  (dowm)

Because of the hinge connection provided at b, a change of slope takes place

60 kN
, l
7 ke _ 14
1, = 60,000 cm* T I = 45,6000 em?* 7
I

180 kN+m ()
90 (kN+m)
EI,
e b/(m\
180 (kN-m) l t i
Eh 900 (kN-m?) 360 (kN-m’)
El, EI,
ome
_1BSGNem?) 4+ 135GNmT)
E, ET,

(c) Fig. 5-23
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at that point. ‘In fact, we have different slopes to the immediate left and right of
b, corresponding to the shearing forces in the conjugate beam. Thus,

(180)(6) _ 540

(6 )ess =

2EI EI,
_ (540)(10)* — 0.0045 rad .
m{Z0,000 w0.000 = & ra (clockwise)
270 360 135 360 135
(8 )eign = — + -
b = F- (El, Elz) “EnL T EL
_(360)(10)° (135)(10y*
(20,000)(60,000) ~ (20,000)(45.000}
= —0.0015 rad (counterclockwise)

The relative rotation between the left and right sides of b is the reaction at support
b of the conjugate beam:

90 135 (900)10)* (13510
El, EL  (20,000)(60,000)  (20,000)(45.000)

= 0.006 rad

5-7 MAXWELL’S LAW OF RECIPROCAL DEFLECTIONS

Referring to Fig. 5-24, we note that Maxwell’s law simply states that
Az} = Al'l (5‘30)

where A,, = deflection at point 2 due to the load P applied at point 1
A,, = deflection at point 1 along the original line of action of P
due to the same load applied at point 2 along the original
deflection A,
. ¥ 2 4 1 P12 5
S=—L__L-—2 S __tL &
Bz Ay,
(a) (b)
Fig. 5-24

To prove this statement, both deflections are evaluated by the method of
virtual work. Thus, from Fig. 5-24(a) we have

f M]mv dx

where M, = moment at any section due to load P applied at point 1
m, = moment at the same section due’to a unit load applied at point
2 along the desired deflection

I
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Similarly. from Fig. 5-24(b) we obtain
"M.m, dx
i = o EI
but M, = Pm, and M, = Pm,
It is readily seen that
An = f’(Pm,)mz dx _ f’ (Pmis)imy dx _ "Mym, dx — AL
S El 0 EI o EI -
The special case is that P = 1, for which we can write
8y = 81 (5-31)
where 8., = deflection at point 2 resulting from a unit load applied at point 1
§,» = deflection at point | along the original line of action due to a
unit load applied at point 2 along the original deflection &,

We have hitherto demonstrated the law in regard to applied forces and
their corresponding linear deflections. However, the reciprocity extends also to
rotational displacement. For the case of two unit couples applied separately to
any two points of a structure, the law is: The rotational deflection at point 2 on
a structure caused by a unit couple at point 1 is equal to the rotational deflection
at point I due to a unit couple at point 2.

Because of virtual work we also observe that the rotational deflection at
point 2 due to a unit force at point 1 is equal in magnitude to the linear deflection
at point I along the original force due to a unit couple at point 2.

Maxwell’s law is perfectly general and is applicable to any type of structure
as long as the material of the structure is elastic and follows Hooke’s law.

PROBLEMS

5-1. Use the method of virtual work to determine the vertical deflection at center and
the slope at left end for a simply supported beam subjected to a uniform load over
the entire span. Assume constant EJ.

5-2. Use the method of virtual work to determine the vertical deflections at the load
point and at the center of the beam in Fig. 5-25. E and /I are both constant.

oz |F 0.6! Poar_

4 |

@ E

» Fig. 5-25

A
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5-3. Us.e the method of virtual work to determine the slope and deflection at the load
point of the beam in Fig. 5-26. Use E = 30,000 kips/in.”.

10%

Vi =400in*,

I = 800in.*

I = 400in.*

|

5t i Sft

Sft

el

.
Lo}

>
-

L

Fig. 5-26

-

5-4. By the method of virtual work, find the horizontal, vertical, and rotational displacement

components at point ¢ of the frame shown in Fig. 5-27.

and I = 500 in.*

Use E = 30,000 kips/in.?

10t
5ft 5t
7—-b Y c
10 ft
X d
—-a 77777777, Fig. 5-27

5.5. For the load and beam in Fig. 5-28, use the method of virtual work to determine
the slope and deflection at points b and c.

%
7

1

20 kN

y

b

(4

=

I, = 60,000 cm*

1, = 30,000 cm*

E = 20,000 kN/cm?

3m

3m

Fig. 5-28
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5-6. For the loads and frame in Fig. 5-29, use the method of virtual wgrk to find the
horizontal, vertical. and rotational displacement components at point a. EI = 2
x 10" kN - em’.

w=5kN/m 4
JITTTL
7
1.5m 3m f
10kN > b
1.5m
. N Fig. 5-29

5-7. For the loads and truss in Fig. 5-30, use the method of virtual work to find the
displacement components corresponding to the applied loads at joint B. £ = 20,000
kN/cm® and A = 20 em’.

100 kN

Fig. 5-30

5-8. For the truss in Fig. 5-31, the area of each bar in square inches equals one-half its
length in feet. E = 30,000 kips/in.’. Use the method of virtual work to compute
(a) the vertical deflection at point B, (b) the horizontal deflection at point C, (¢)
the relative deflection between points b and C along the line Jjoining them, and (d)
the rotation of member bec.
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B C
A
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! 3at 12ft = 361t ol Fig. 5-31

5-9. Solve Prob. 5-1 by Castigliano’s theorem.
5-10. Solve Prob. 5-2 by Castigliano’s theorem.

5-11. Solve Prob. 5-3 by Castigliano’s theorem.
5-12. Solve Prob. 5-4 by Castigliano’s theorem.

5-13. Solve Prob. 5-5 by Castigliano’s theorem.

5-14. Solve Prob. 5-6 by Castigliano’s theorem.

5-15. Solve Prob. 5-7 by Castigliano’s theorem.
5-16. Solve Prob. 5-8 by Castigliano’s theorem.
5-17. Solve Prob. 5-1 by the conjugate-beam method.
5.18. Solve Prob. 5-2 by the conjugate-beam method.
5-19. Solve Prob. 5-3 by the conjugate-beam method.

5.20. For the load and beam shown in Fig. 5-32, use the conjugate-beam method to find
the deflection at b and the rotation at ¢. E = 20,000 kN/cm? and / = 5,000 cm’.

10 kN




Method of Consistent

Deformations

6-1 GENERAL

Statically indeterminate structures can be analyzed by direct use of the theory
of elastic deformations developed in Chapter 5. Any statically indeterminate
structure can be made statically determinate and stable by removing the extra
restraints called redundant forces or statical redundants, that is, the force elements
that are more than the minimum necessary for the static equilibrium of the
structure. The number of redundant forces therefore represents the degrees of
statical indeterminacy of the original structure. The statically determinate and
stable structure that remains after removal of the extra restraints is called the
primary, or released, structure. The choice of the redundant forces is arbitrary.
They may be external support reactions or internal member forces or both. In
all cases, the statical redundants should be so chosen that the resulting primary
structure is stable.

The original structure is then equivalent to the primary structure subjected
to the combined action of the original loads plus the unknown redundants. The
conditional equations for geometric consistence of the original structure at redundant
points (releases), called the compatibility equations, are then obtained from the
primary structure by superposition of the deformations caused separately by the
original loads and redundants. There can be as many compatibility equations
as the number of unknown redundants so that the redundants can be determined
by solving these simultaneous equations. This method, known as consistent
deformations, is generally applicable to the analysis of any structure, whether
it is being analyzed for the effect of loads, support settlement, temperature
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change, or any other case. However, there is one restriction on the use of this
method: the principle of superposition must hold.

As an illustration, consider the loaded continuous beam with nonyielding
supports shown in Fig. 6-1(a). It is statically indeterminate to the second degree,
that is to say, with two redundants. The first step in the application of the
method is to remove, say, the two interior supports and to introduce in these
releases the redundant actions called X, and X, respectively, and by so doing
to reduce or cut back the structure to a condition of determinateness and stability.
The original structure is now considered as a simple beam (the primary structure)
subjected to the combined action of a number of external forces and two redundants
X, and X,, as shown in Fig. 6-1(b).

The resulting structure in Fig. 6-1(b) can be regarded as the superposition
of those shown in Fig. 6-1(c)—(e). Consequently, any deformation of the structure
can be obtained by the superposition of these effects.

P Q
b
7 7 5
L
| 2 [T
lxx le ”
P Q
i L o o

Fig. 6-1
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Referring to Fig. 6-1(b), for unyielding supports we find that compatibility
requires

A =0 (6-1)
A, =0 (6-2)
where A, = deflection at redundant point 1 (in the line of redundant force X,)
A, = deflection at redundant point 2 (in the line of redundant force X,)
By the principle of superposition we may expand Egs. 6-1 and 6-2:
Al + A +A,=0 6-3)
Ay + Ay + A =0 (6-4)
where A} = deflection at redundant point 1 due to external loads [see
Fig. 6-1(c)}
Ay = deflection at redundant point ! due to redundant force X,

[see Fig. 6-1(d)]
A;; = deflection at redundant point 1 due to redundant force X,

[see Fig. 6-1(e)]

The rest are similar.
Equations 6-3 and 6-4 may be expressed in terms of the Aexibility coefficients.
A typical flexibility coefficient 8;; is defined by

6;; = displacement at point i due to a unit action at J, all other points
being assumed unloaded '

Thus, Egs. 6-3 and 6-4 may be written as
Al + 8, X, + 88X, =0 (6-5)
A + 86, X, + 8,X>=0 (6-6)
Apparently,
&y = deflection at point 1 due to a unit force at point 1 [see Fig. 6-1(d)]
8, = deflection at point 1 due to a unit force at point 2 [see Fig. 6-1(e)]

and so on.

Both the deflections resulting from the original external loads and the flexibility
coefficients for the primary structure can be obtained by any method described
in Chapter 5. The remaining redundant unknowns are then solved by simultaneous
equations. In general, for a structure with n redundants, we have

AI + auX} + 8[2X2 + o+ SIan = 0
Aé + 62|X1 + 622X2 + -+ 82,,Xn =0

(6-7)

Br + 8 X + 8,0 + - - + 8,X, = 0
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Equation 6-7 in matrix form is

Ay i O - By, X, 0
A; 81 8 - 8, X, 0
&8
&) Lew 8. - sl ) Lo
or simply
AN+ FX=0 (6-9)

In a more general form, we may include the prescribed displacements (other
than zeros) occurring at the releases of the original structures. Then these values

Ay, 4y, . . . must be substituted for the zeros on the right-hand side of Eq.
6-8. Thus,
Aj 8y O - O, Xy Ay
A; 8 8n By X, A,
BN E .. . O (6-10)
A:z Bnl 8112 T 8rm Xn An
or simply
A"+ FX = A (6-11)

in which the column matrix A’ on the left-hand side represents the displacements
at redundant points of the released structure due to the original loads; the square
matrix F represents the structure flexibility, each column of which gives various
displacements at redundant points due to a certain unit redundant force; and the
column matrix A on the right-hand side contains the actual displacements at
redundant points of the original structure. Equation 6-11 expresses the compatibility
at redundant points in terms of unknown redundant forces.

6-2 ANALYSIS OF STATICALLY INDETERMINATE BEAMS
BY THE METHOD OF CONSISTENT DEFORMATIONS

The method of consistent deformations is quite easy to understand and can be
most effectively demonstrated by a series of illustrations. In all the following
examples we assume that only the bending distortion is significant.

Example 6-1
Analyze the propped beam shown in Fig. 6-2(a), which is statically indeterminate
to the first degree. Assume constant EJ.
Solution 1 One of the reactions may be considered as being extra. In this case
let us first choose the vertical reaction at b as the redundant assumed to be acting
downward, as shown in Fig. 6-2(b). By the principle of superposition we may
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Fig. 6-2

consider the beam as being subjected to the sum of the effects of th
uniform loading and the unknown redundant X,, as shown in Fig. 6-2(¢
respectively.

Next, we find that the vertical deﬂectlon at b resulting from the uni
[Fig. 6-2(c)] is given by
wi*
8EI

and that the vertical deflection at b because of a unit load applied at b i1
X, [Fig. 6-2(d)] is given by

Ay =

13
3EI
Note that A; and the flexibility coefficient 8,, may be found by ar

described in Chapter 5.
Applying compatibility equation

Ab Ab + Sbe/, =

. wl* &
we obtain @4- (3E1> X, =0

By =
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{b)

(c)

_3ul
8

The minus sign indicates an upward reaction.

With reaction at b determined, we find that the beam reduces to a statically
determinate one. We can readily obtain reaction components at a from the equilibrium
equations:

>F =0 V, = wl — dwl = 3wl (upward)
> M, =0 M, = 3wl = 3wl® = iwl (counterclockwise)
The moment diagram for the beam is shown in Fig. 6-2(e).

from which X, =

Solution 2 The beam in Fig. 6-2(a) can be rendered statically determinate by
removing the fixed support and replacing it with a hinged support. In addition to
the original uniform loading, a redundant moment M, is then applied to the primary
structure, a simple beam, as shown in Fig. 6-3(a). The unknown M, can be solved
by the condition of compatibility that the rotation at end @ must be zero.

X

w per unit length
I L O I R A B B B

0

T
r §>;

w per unit length

b

T T TTTTTTTTTITITL s
AY
1-M,
e ,,

Fig. 6-3

The rotation at end a for the primary structure due to the uniform loading
alone [Fig. 6-3(b)] is given by
. wi®
6u = %4E1
and that due to a unit couple applied at end a [Fig. 6-3(c)] is given by
l

8ua = IEl
Using the compatibility equation
wi? M,
= @ = + =L =9
6. = 6+ %Mo = 201 * 3EI
we solve for M, = —wl

The minus sign indicates a counterclockwise moment. After M, is determined, the
rest of the analysis can be carried out without difficulty.
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Solution 3 From the previous solutions we recognize that we are free to select
redundants in analyzing a statically indeterminate structure, the only restriction
being that the redundants should be so selected that a stable cut structure remains.
Figure 6-4 will serve as an illustration. Let us cut the beam at midspan section ¢
and introduce in its place a hinge so that the beam is stable and determinate. A
pair of redundant couples, called M., together with the original loading are then
applied to the primary structure, as shown in Fig. 6-4(a).

M, w per unit length

I
[TTTTTIITTTITITIT],

[

[ n JA 2 I

Pt =

w per unit length

LI LTI T T T T TTT T,

c

—~

()

<_x_.1 M,
! Fig. 6-4

The redundant M. is solved by the condition of compatibility that the rotation
of the left side relative to the right side at section ¢ must be zero.
Using the method of virtual work we evaluate the relative rotation at ¢ due
to the external loading alone [Fig. 6-4(b)] as
_ [[Mmdx _ f’ (wlx/4) = wx*/D)2x/Ddx i’
o FEI 0 El © REI
and that due to a pair of unit couples acting at ¢ [Fig. 6-4(c)] as
5 = f’mz dx f[(Zx/’l)2 dx 4l
“ Jo EI o EI

6.

- 3EI
Setting the total relative angular displacement at ¢ equal to zero, we have

wl? 4/
REr " M(E) =0
from which M, = +“l”é'

After M, is determined the rest of the analysis can easily be carried out.

Example 6-2

Suppose that the support at b of Example 6-1 is elastic and the spring flexibility is

S (displacement per unit force), as shown in Fig. 6-5. Determine reaction at b (the

spring force), denoted by X,.
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% w per unit length
« ATTITIIITIIIITIT]>
4 EJ constant Spring
flexibility
c f
/4
! |
'! Fig. 6-5
Assume downward X, (i.e., tension in the spring) as positive. The compatibility
is

A;, + 5;,;,X/, +fX1, = 0

This equation can be explained by putting it in the form
Ay = Bp(—Xp) = fl-X,)
Since (—X,,) represents the compression in the spring, the equation indicates that
the downward deflection at b caused by the beam load minus that caused by upward
reaction should be equal to the spring contraction.
By substituting A, = wi*/8El, 8,, = [*/3EIl in the preceding equation, we

obtain

)1’14 .X‘;,I3

8_E1+—3_E7+be=0

from which
1

3
X, = —=—wlj ——
»= 78" [1 + (3fEl/I3)}
The minus sign indicates an upward reaction.
For a nonyielding support, f = 0, the preceding equation gives
Xh = '—% W[

as found previously.
If a beam is provided with n redundant elastic supports having spring flexibilities

fis fis - - ., fu, respectively, then the general compatibility equation is
Aj dutfi 8 o 8 X, 0
A; a1 3+ ot By X, 0
S . . . S\ 612)
Arll 6n1 8n2 T 811'1 + fn Xn O
Example 6-3

Find the reactions for the beam with two sections shown in Fig. 6-6(a).
In this problem it may be convenient to select the vertical reaction at support
b as redundant. The beam is then considered as a simple beam subject to the
original loading and the redundant R,, as shown in Fig. 6-6(b) and (c), respectively.
The compatibility requires
Ay =A, +8,R, =0
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Using the method of virtual work, we have
Mmf’ dx . Rbf(m,,)z dx _

El EI
j Mm, dx/EI
from which R,= —4——rru-—
f (m,) dx/EI
where M = bending moment at any section of the primary beam caused by the

original loading [Fig. 6-6(b)]

bending moment at the same section of the primary beam caused by
a unit load in place of the redundant R, [Fig. 6-6(c)]

The solution is completely shown in Table 6-1.

fl" (20x — x*/2)(x/2) dx . f“’ (20x)(x/2) dx . 20(200)(x/2) dx
[i (]

i

m,

Ro= 2 ETl 2E] 10 2E]
b 20 (X/Z)Z dx . 10 (x/z)z dX 20.(x/2)2 d.x
0 El 0 2E1 0w 2FEf

= —25.84 kips

The negative sign indicates an upward reaction at support b.

After R, is obtained, we can readily find the reactions at the other two supports
by statics. That is,

R, =R, =20 - (3)25.84) = 7.08 kips
acting upward.
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TABLE 6-1

Section Origin Limit (ft) M (ft-kips) m,, (ft-kips) I
ab a 0 to 20 20r ~ D&Y z 1

2 2

X
dc d 0to 10 20x 3 21

20x — 20(x — 10) X

b ol
[« d 10 to0 20 or 200 5 21

The end moments for a fixed-end beam, called fixed-end moments, are
important in the methods of slope deflection and of moment distribution, which
are discussed in later chapters. The following examples are attempts to solve
fixed-end moments due to common types of loading by the method of consistent
deformations.

Example 6-4
The fixed-end beam of uniform cross section subjected to a single concentrated
load shown in Fig. 6-7(a) is statically indeterminate to the second degree since the
horizontal force does not exist. End moments M, and M; are selected as redundants.
The original beam is then considered as equivalent to a simple beam (not shown)
under the combined action of a concentrated force P and redundant moments M,

PR a P b al
N - R
MA / AS r \B\ My
'Y W
P i
@) pab/2E!
1+ b)/3
pab/EI[
I EI
El
A
[* > l‘ > :‘ 'l
MAI/ZEI Ml2EI
(b)

Fig. 6-7
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and M. It is convenient to apply the conjugate-beam method to determine M,
and M; based on the condition that the slope and deflection at either end of the
fixed-end beam must be zero. In other words, there will be no support reactions
for the conjugate beam, and the positive and negative M/EI diagrams (elastic loads)
given in Fig. 6-7(b) must form a balanced system. Thus, from 2F, = 0,

Pab M, Msl

261 " 261 " 2E1 0
Pab
or M, + M, = ~[”— (6-13)
From M, = 0,
Pab)(L+ b) _ (M) (20 _ (Msl)(1) _
2E] 3 2E1/\3 2EIJ\3)
Pab  Pab?
or WM, + My = % + —;’2— (6-14)
Solving Egs. 6-13 and 6-14 simultaneously, we obtain
mo=B =t (6-15)

Example 6-5
Find the end moments of a fixed-end beam of constant EI caused by a uniform
load, as shown in Fig. 6-8(a).
Because of symmetry, the beam is statically indeterminate to the first degree,
since M, = My = M, as indicated in Fig. 6-8(a). By the method of conjugate beam

[Fig. 6-8(b)], =F, = 0,
wC\(20) Ml
8EI/\ 3 EI

from which M = Hwl? {(6-16)

w per unit length

73 R
YT IITIT,)
M\ y . j/ M
r~ ]
{a) wiz /2
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M A4 B
Ely —
)
11
(b) El Fig. 6-8
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Example 6-6
If the fixed-end beam is loaded with an external couple M as shown in Fig. 6-9(a),
the deflected elastic shape will be somewhat like that shown by the dotted line,

which gives the sense of the end moments as indicated.

143

As before, end moments M, and M; are chosen as redundants. The elastic
loads based on the moment diagrams divided by EI plotted for external moment
M and redundants M, and M;, as given in Fig. 6-9(b) and (c), must be in equilibrium

themselves. From 3F, = 0,
M, MBS Mgl Md

2E1 T 2EN T 2EI T 2EN

M Z_b’.
or MA—MB=—(a—lT——)

From ZM; = 0,

(35)(5) - Ga)) - ()6 - () -

M[a* + 2b(a —b)]
12
Solving Eqgs. 6-17 and 6-18 simultaneously, we obtain

or ZMA_MB=

M
M, = L;I?-(Za -b) M= —[2‘—’(2b - a)

MA/* ~
7"/ \\M \
Y I, A
\ A7 P AR ——— s 2
/ l V. a7 My

\

a
@ Mb*2EIN 2b/3 ‘
Mb \
Ell
+
4 — B
N\l\k}\u%
Ell
f b+
(b) Ma*REN |< >
M 21/3 .
y L 2ETy
- LT
EI -4 = BT ,
] El
h
M_'” I3
2E1 |

{c)

Fig. 6-9

6-17)
a
5) =0

(6-18)

(6-19)
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Note that M, and M, bear the same sense as the externally applied M, as indicated
in Fig. 6-%a). if « > /3 and b > 1/3.

6-3 ANALYSIS OF STATICALLY INDETERMINATE RIGID
FRAMES BY THE METHOD OF CONSISTENT
DEFORMATIONS

The general procedure illustrated in Sec. 6-2 in solving statically indeterminate
beams can be applied equally well to the analysis of statically indeterminate rigid

frames, as in the following example.

Example 6-7

For the loaded rigid frame shown in Fig. 6-10(a), find the reaction components at
the fixed end «, and plot the moment diagram for the entire frame. Assume the
same El for all members.

To do this, we start by removing support ¢ and introducing in its place three
redundant reaction components X, X,, and X;, as shown in Fig. 6-10(b). These
can be taken as the superposition of four basic cases, as shown in Fig. 6-10(c), (d),
(e), and (f), respectively. Since end a is fixed, compatibility requires that

Aj 08 di| | X 0
Arp + 1858851 Xop =90 (6-20)
Ag 83 832 853 ) LX; 0

Taking advantage of Examples 5-4 and 5-5, we note that

{A;} | { 5,000
Ajb = —14 -7.500
Ay ETL oo

and
81 812 813 1 1,667 — 1,000 —200
821 822 833 - E} - 1,000 1,333 150
831 831 833 —-200 150 30
Substituting these values in Eq. 6-20, we obtain

5,000 1,667 ~1,000 —200| { X, 0
-7500p + | —1,000 1,333 150|{X,; =30 (6-21)
— 800 —200 150 304 |X; 0

Solving, we obtain
X] 1
Xyp = 6 ¢ kips
X; 3.33 ft

Note that the solution of this problem could be simplified by setting X, = 6
kips in Eq. 6-20, since we know this value beforehand because of the symmetry
of the loaded frame.

The final results are shown in Fig. 6-10(g); the moment diagram for the whole
frame is shown in Fig. 6-10(h). A sketch of the elastic deformation of the frame
due to bending distortion is shown by the dashed line in Fig. 6-10(i). Note that in
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Fig. 6-10

this case there is one point of inflection in each column and two points of inflection
in the beam.

By referring to Example 6-7 we see that by using the method of consistent
deformations in analyzing a rigid frame, we encounter tedious calculations of
the flexibility coefficients. The work, if done by hand, will become intolerable
if the problem involves as many redundants as a rigid frame usually does. As
a matter of fact, the method of consistent deformations is seldom used for analysis
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of rigid frames by hand calculation, since a solution can be much more easily
obtained by the method of slope deflection or of moment distribution. However,
with the development of high-speed electronic computers, this method has regained
considerable strength in the scope of structural analysis.

6-4 ANALYSIS OF STATICALLY INDETERMINATE TRUSSES
BY THE METHOD OF CONSISTENT DEFORMATIONS

The indeterminateness of a truss may be due to redundant supports or redundant
bars or both. If it results from redundant supports, the procedure for attack is
the same as that described for a continuous beam. If the superfluous element
is a bar, the bar is considered to be cut at a section and replaced by two equal
and opposite axial redundant forces representing the internal action for that bar.
The condition equation is such that the relative axial displacement between the
two sides at the cut section caused by the combined effect of the original loading
and the redundants should be zero.

Example 6-8
Analyze the continuous truss in Fig. 6-11(a). Assume that E = 30,000 kips/in.?
and L(ft)/A(in.?) = 1 for all members.

In this problem it is convenient to select the central support as the redundant
element. We begin by removing support ¢ and introducing in its place a redundant
reaction X, as shown in Fig. 6-11¢(b). The primary structure is then a simply
supported truss subjected to an external load of 64 kips at joint 4 and a redundant
X,. The effects can be separated, respectively, as shown in Fig. 6-11(c) and (d).

B C p

L

Y___%
3

. b
oo
< 4at24ft = 961t
(a)

)

Fig. 6-11
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Since support ¢ is on a rigid foundation, the compatibility equation can be
expressed by

A=A +8.X. =0
Using virtual work gives

S .
S L X, Z
) E(S’u(AL/AE)
from which X = _——
D(ulL/AE)
where §' = internal force in any member of the primary truss due to the original
loading [Fig. 6-11(c)]

u. = internal force in the same member of the primary truss due to a unit

force at ¢ [Fig. 6-11(d)]
The solution is shown completely in Table 6-2.

TABLE 6-2
L S ulL WL
Member A ' (kips) U, A _A~ S =8 + uX, (kips)
(ft/in.?) (fe-kips/in.2)  (ft/in.%)
ab 1 +36 +3/8 +13.5 +9/64 36 ~ 14.1 = +21.9
bc 1 +36 +3/8 +13.5 +9/64 36 —- 14.1 = +21.9
cd 1 +12 +3/8 + 4.5 +9/64 12 - 141 = - 2.1
de 1 +12 +3/8 + 4.5 +9/64 2 - 141 = - 2.1
BC 1 -24 —-3/4 +18 +36/64 —24 + 282 = + 4.2
CD 1 —-24 ~3/4 +18 +36/64 —24 + 282 = + 42
aB 1 —-60 -5/8 +37.5 +25/64 —60 + 234 = =366
Bb I +64 0 0 0 +64 + 0 = +64
Bce 1 —20 +5/8 ~-12.5 +25/64 =20 — 23.4 = —434
Ce 1 0 0 0 0 0
cD 1 +20 +5/8 +12.5 +25/64 +20 — 234 = — 34
Dd I 0 0 v} 0 0
De 1 —-20: -5/8 +12.5 +25/64 —20 + 234 = + 34
b +122 +3.25
122
X, 395 = 37.5 kips

The negative sign indicates an upward reaction at support c.
After X, is determined, we can readily obtain each bar force S from

S=5+ulX
- as given in the last column of Table 6-2.

Example 6-9 , .
Analyze the truss in Fig. 6-12(a). Assume that £ = 30,000 kips/in.” and L(ft)/A (in.”)

= 1 for all members.
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Fig. 6-12

The truss in Fig. 6-12(a) has two redundant elements, one in the reaction
component and the other in the bar. Let us select the horizontal component of
reaction at the right-end hinge and the internal force in bar Cd as redundants. We
then have a primary truss loaded, as shown in Fig. 6-12(b), in which the original
hinged support ¢ is replaced by a roller acted on by a redundant horizontal reaction
X, and the bar Cd is cut and a pair of redundant forces X, applied to it. This may
again be replaced by the three basic cases shown in Fig. 6-12(c)—(e). Since both
the horizontal movement at support e and the relative axial displacement between
the cut ends of bar Cd are zero, we have

(= () o) ) - 1) .

ZSIM'L ll%_L ZMIMZL
AE AE AE X1 _Jo
B DL B A {X} i} { 0} ©
AE AE AE
Note that
§'=internal force in any bar of the primary truss due to the original loading [Fig.

6-12(c)]
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«; = internal force in the same bar of the primary truss due to a unit horizontal
force acting at e [Fig. 6-12(d)]

u; = internal force in the same bar of the primary truss due to a pair of unit axial
forces acting at the cut ends of bar Cd [Fig. 6-12(e)]

Using the values summed up in Table 6-3, we reduce Eq. 6-23 to
b+ [ G-
Xl _J-2561,.
{Xz} = {- 10‘6} ips

The negative signs indicate that the horizontal reaction at hinge e acts to the
left and that the axial force in member Cd is compressive. The rest of the member
forces are obtained by

Solving, we obtain

S =8+ uX, + u, X,
The complete solution is shown in Table 6-3.
Example 6-10
Analyze the truss in Fig. 6-13(a) subject to a rise of 50°F at the top chords BC and
CD. Assume a = 0.0000065 in./in./1°F; E = 30,000 kips/in.%; and L(ft)/A (in.?)
= 1 for all members.

A rise of 50° F A rise of 50° F
B ﬁ D B ﬂ D

1-X,

N b c d ;5; N b c d ;%f
L 42246t = 96t J

(a) (]
Fig. 6-13

The truss is statically indeterminate to the first degree. Cut bar Cd and select
its bar force X, as the redundant as shown in Fig. 6-13(b). The primary truss is
then a simply supported truss subjected to the temperature rise in the top chords
and the redundant axial force X,. Since the relative axial displacement between
the cut ends due to the combined effect of temperature rise and X, must be zero,
we have

A] = A; + 6||X| = 0
2
Il|L
rLY+ X, 2, ——==0
or Sufarl) + X, 3 2=



i v+ v+ TLTH 96+ K¢
02— =0 + 0 + 07— 0 0 0 0 0 0 0 0z— I 2q
S8+ =68 + 0 +0¢ 0 §5+ 0 0 0 §— 0 0 I ra
V6 + =90 - 0 + 0z 0 I+ 0 0T+ 0 I+ 0 0z + I a2
90I— =90l — 0 + 0 0 I + 0 0 0 I+ ¢ 0 I j20)
8+ =68 + 0 +9¢ 0 55+ 0 0 0 - 0 0 I 20
00— =0 + 0 + oz~ 0 0 0 0 0 0 0 07— I g
P+ =0 + 0 + p9+ 0 0 0 0 0 0 0 9+ I 9q
W= =0 + 0 + 09— 0 0 0 0 0 0 0 09— I gr
9Ll—= =v9 + 0 + pg— 0 F+ 0 Pyl + o i~ 0 v~ I an
Y- =0 + 0 + pg- 0 0 0 0 0 0 0 YT I og
9¢l~ =0 + 967~ 2l 0 0 T+~ 0 A+ 0 I+ i+ I ap
0L = =v9 + 967 - ¢l - E4+ I+ L - U+ - I+ zi+ I po
POot+ =0 4 967 — 9¢ 0 ] I+ 0 9¢ -+ 0 I+ 9¢+ I 29
POl+ =0 + 967 — 9t 0 0 I+ 0 9¢+ 0 I+  9¢+ I qv
U Guwiy uyg) (uy/sdy-y)  (ur/sdiy-yp) (;ur/ap
tyin _Am_nu nv_.v_r - \4 \4 v | 4 \ 4 n 'n Amn.m_.xv N Joquiopy
X+ x S =5 Tn'n Tn 1in T°n .8 7'n.8 ' 1
€-9 31av.L
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where A} = relative displacement between the cut ends of the primary truss due
to the temperature rise = Su(a’L) (see Eq. 5-20)
u, = internal force in any member of the primary truss due to a pair of unit

axial forces acting at the ends of the cut section
The solution is shown in Table 6-4.

4X|
——— — 0.00468 = 0
30,000
X, = 35.1 kips (tension)
TABLE 64
L L
Member " u at’L uat’L EA— S = X,

@/in) ® @ (ft/in.) (kip)
ab 1 0 0 0 0 0
be 1 0 0 0 0 0
cd 1 - 0 0 +3% -21.1
de 1 0 0 0 0 0
BC 1 0 +0.0078 0 0 0
CD 1 -2 +0.0078 —0.00468 +3 —-21.1
aB 1 0 0 0 0 0
Bb 1 0 0 0 0 0
Bc 1 0 0 0 0 0
Ce 1 - 0 0 +48 —28.1
cd 1 +1 0 0 +1 +35.1
cD 1 +1 0 0 +1 +35.1
Dd 1 ~# 0 0 +3¢ —28.1
De 1 0 0 0 0 0

= —0.00468 +4

Although these illustrations are aimed at statically indeterminate trusses
with one or two redundants, the procedure described can be extended to trusses
with many degrees of redundancy.

6-5 CASTIGLIANO’S COMPATIBILITY EQUATION (METHOD
OF LEAST WORK)

The method of consistent deformations hitherto discussed involves superposition
equations for the elastic deformations of the primary structure at the points of
application of the redundants X, X,, . . . , X,, the primary structure being stable
and determinate and subjected to external actions, together with n redundant
forces. The expressions that the displacement at each of n redundants equals
zero for a loaded structure with nonyielding supports may be set up by the use
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of Castigliano’s theorem as

A) (M) )
X,
A, Wl o
X,
{7 b= =408 (6-25)
A, oW 0
\ / \8X,,/ .

where W is the total strain energy of the primary structure and is therefore a
function of the external loads and the unknown redundant forces X,, X,, . . .,
X,. There are as many simultaneous equations as the number of unknown
redundants involved. Equation 6-25,

W W W
oX, X, oX,,

is known as Castigliano’s compatibility equation and it may be stated as follows:
The redundants must have such value that the total strain energy of the structure
is a minimum consistent with equilibrium. For this reason it is sometimes referred
to as the theorem of least work. Note that Castigliano’s compatibility equation
is limited to the computation of redundant forces produced only by external
loads on a structure mounted on unyielding supports. It cannot be used to
determine stresses caused by temperature change, support movements, fabrication
errors, and the like.

In the analysis of statically indeterminate beams or rigid frames, we consider
bending moment to be the only significant factor contributing to the internal
energy. Therefore, the total strain energy can be expressed by

3 M? dx
~ ) 2EI

Setting the derivative of this expression with respect to any redundant X,
equal to zero gives

f M(oM/aX;) dx
T A

1

Therefore, for a statically indeterminate beam (or rigid frame) with n redundants,
we can write a set of n simultaneous compatibility equations:
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W 5 M@©M/aX,) dx~ 3
ax, ” EI 0
W f M(3M/3X,) dx 0
39X, El

{ f=J . F=<- (6-26)
W f M(M/oX,) dx

Lax,) L El J )

to solve all the unknown redundants.
In the analysis of statically indeterminate trusses, the total strain energy
can be expressed by

S°L

2AE

Setting the derivative of this expression with respect to any redundant X; equal
to zero gives
D S(S/aX)L

AE 0

Thus, for a statically indeterminate truss with » redundant elements, we have a
set of n simultaneous compatibility equations available for their solution, namely,

’z S(3S/aX1)L ()

AE 0
S(3S/8X,)L 0
2 AE
< ) >=<. 7 (6-27)

S(S/3X,)L
(2 ag ) \0J

Example 6-11
For the fixed-end beam under general loading shown in Fig. 6-14(a), derive a working
formula for solving the end reactions at A.

We select the left-end reaction components M, and V, as redundants, as
shown in Fig. 6-14(b). The primary structure is a cantilever subjected to the original
loads on the span together with the redundant forces M, and V, at the left end.
Aplying the method of least work, we obtain



154 Method of Consistent Deformations Chap. 6

A% 4 ‘ , 1T 1711 }r; B

re 1
(a)
O

A 2
VA«_X—’J
(b)

Fig. 6-14
% _ LI M(aM/;;VIA )dx _ 0 629)

W f‘ M(BM/aV,) dx
vy o E =0 (6-29)

1
Since the bending moment at any section of the primary structure is given by
M=M+M,+ V,x
where M’ indicates the bending moment at the same section of the primary structure
resulting from the original loads on the span, we have

M _ o pd M
oM, oV,
Substituting these in Egs. 6-28 and 6-29 results in the following two equations
{ %
M dx
CE 0 (6-30)
1
Mx dx
N 0 (6-31)

to solve for redundants M, and V,.
For a beam of uniform section with constant EI, Egs. 6-30 and 6-31 reduce

to
!
_L Mdx =0 (6-32)
!
J;Mx dx =90 (6-33)
As an illustration, let us find the fixed-end moments of the beam shown in
Fig. 6-15.
Taking the origin at A, we note that

M=M,+ V,x 0=sx=a
M=M,+ V,x — P(x — a) asxs|
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< a o P b N
T !
7, " V
A
% EI constant B
b ! |
re - Fig. 615

Applying Eqgs. 6-32 and 6-33 gives
!

i a
J;Ma'x=f0(MA+ VAx)dx+f[MA+ Vax — Plx — a)] dx

1

! I
= J;(MA + V,x)dx + f [-P(x — a)ldx =0

V,I*  PH*
5 T 0 (6-34)

or Myl +

{ a {
and LMx dx = fo (M, + Vix)xdx + f M, + V,x — P(x — a)lx dx

{ !
= fO(MA + Vyxox dx + J’ [-P(x — a)lxdx =0

M,I? N V> Pbia +2)) _

or 5 3 6 0 (6-35)
Solving Egs. 6-34 and 6-35 simultaneously, we obtain
Pab® PHY(l + 2a
IR S (RS
Pa’b Pd*( + 2b
Similarly, Mg = — ?2 Vg = LP_J
Example 6-12

Analyze the frame shown in Fig. 6-16(a) by taking the internal shear, thrust, and
moment in the midspan section of the beam as redundants.

Because of symmetry, the shear must be zero in the midspan section e of
the beam, and only thrust and bending moment are left as redundants, as shown
in Fig. 6-16(a). The solution can be simplified by considering only half of the frame,
as shown in Fig. 6-16(b) and Table 6-5.

Applying
Wy g [MeMAM)E_,
M, r El
we have
2 [ o, e )
E_zu (Me‘ S (D dx + | M+ Hex = 15D dx | =0

or 3M, + 10H, - 35=10 (6-36)



156 Method of Consistent Deformations Chap. 6

1.2%t M, M, 1.2%/1t M,
T i, D
V H, e1 ' 5t H,
N ¢
Ves0 Symmetrical
101t
a d Y a
Vi 7 7
(a) (b)
Fig. 6-16
TABLE 6-5
, oM oM
Member Origin Limit (ft) M (ft-Kips) M ﬁ_ (fty
1.2)x°
eb e 0tos M, - (——2—)—){— 1 0
ba b 0to 10 M, + Hx — 15 1 x
Applying
W 0 or f M(@M/3H,) dx — 0
oH, F EI
we have
2T 1o
E_'I[ . M, + H,x — 15)x dx] =
or 3M, + 20H, — 45 =0 (6-37)

Solving Egs. 6-36 and 6-37 simultaneously gives

H, = 1.0kip M, = 8.33 ft-kips
from which we obtain

H, = 1.0kip M, = 3.33 ft-kips
as previously found.

For a highly indeterminate rigid frame, such as the one shown in Fig.
6-17(a), the procedure of the analysis remains the same. The frame is statically
indeterminate to the 24th degree. We may cut it back to three determinate
structures and substitute the redundants X, X,, . . . , X,, at the cut sections as

shown in Fig. 6-17(b).
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P, —> P, —> ‘i-»- -4-7 ?-» 4-{
Py =~ Py —> "4 4—7 "-b Q-{—-—

X X, X
P, = Py —> " 4-4’ r» 4-{

Xs 'Xs
X X
X X X 4y 24

P, — P, 3‘;-» 11-7 2 ‘,* 2-4’

X, X, Xz Xn

i/ 7 77 V4 7 77
(a) (b)
Fig. 6-17

From least work, we have 24 equations to solve for all the redundants
simultaneously, namely,

(WY ()
- 0
X,
aw
- 0
X,
{ " >r=<"}%
ow
0
90Xz
. .7/ \ J

where W is the total strain energy of the frame due to the external loads and
redundant forces. The principle is neat and elegant, whereas the numerical
calculations involved in the equations above are so cumbersome that it is almost
impossible for a structural engineer to reach an exact solution for the system
with only a slide rule or desk calculator. To handle a practical problem like
this, a grossly simplified model of the actual structure was often used. However,
with the advent of the digital computer, the solving of simultaneous equations
can now be performed in a matter of minutes.
Example 6-13
Analyze the truss in Fig. 6-18(a). Assume that E = 30,000 kips/in.? and L(ft)/A (in.%)
= 1 for all members.

The truss is statically indeterminate to the second degree. We may take bars
bC and Cd as redundant members. As shown in Fig. 6-18(b), these bars are cut
and replaced by redundant axial forces X, and X;, respectively. The internal force
for each bar is then computed in terms of the external load and redundant forces

as indicated. The unknowns X, and X, are then solved by the simultaneous equations
T
i
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B C D

321t
a . Y
7 Plen f ‘ 2
L dat24ft = 961t N
€ ) ™
(a)
B -24—-3X,C -24-3X, D
\90 Xy X,
x )
- */ an e
> ’, o
/® o o a >
3 ,,*.\ 3’1 ,.VQX _f:
+ Fix
2 +36 +36 - 31X, +12 -~ %X, +12 .
é_ 11 ¢ d %
7 64% >
(b)
Fig. 6-18
S(8S/8X, L S$(38/0X-)L
> “F and 2———~A 5 =0
as prepared in Table 6-6. Setting
—-78.4 + 4X, + 0.64X, = 0 (6-38)
212 + 064X, + 4X, =0 (6-39)

and solving Egs. 6-38 and 6-39 simultaneously, we obtain

X, = +21.2kips X, = —10.2 kips
The answer for each of the bar forces is given in the last column of Table 6-6.
Note that this procedure can be extended to trusses with many redundants.

Structures made up of some members which are two-force members carrying

only axial forces and others which are not are called composite structures. They
are conveniently analyzed by the method of least work, as illustrated in the
following example.

Example 6-14

Figure 6-19(a) shows a cantilever beam whose other end is supported by a rod.
Find the force in the rod. E = 30,000 kips/in.%.
The structure is statically indeterminate to the first degree. Select the force
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Chap. 6

91t

A; =lin. x 12in.

I =121t T =qkait* X 06X
Vo 4 4
T ———— af——-— —-+¥p

6 ft 6 ft l ] °~8X[
10 104 X

(a) (b)
Fig. 6-19

in the tie rod as the redundant X as shown in Fig. 6-19(b). Then the internal work

in the rod is
X2,
2A,E
and the internal work in the beam is equal to
f (0.6Xx)? dx . f" [0.6Xx — 10(x — 6)]* dx . (—0.8X),
o 2EI 6 2EI 2A,E
Applying dW/aX = 0 gives
X, f"’ 0.6Xx)(0.6x) dx 2{0.6Xx — 10(x — 6)][0.6x] dx
(1]

AE El 6 EI
(—-0.8X)(—0.8)/, -0
AE
or 15X + 207.4X — 3,024 + 1,944 + (0.64X)(12) _
1/144 1/144 : 12/144

After simplifying, we find that
15X + 207.4X — 1,080 + 0.64X =0
which vyields
X = 4.84 kips (tension)

The effect of the axial force of beam on the strain energy is small and can be

neglected.

6-6 INFLUENCE LINES FOR STATICALLY INDETERMINATE
STRUCTURES: THE MULLER-BRESLAU PRINCIPLE

We recall that the Miiller-Breslau principle was used to construct the influence
lines for statically determinate structures (see Sec. 4-3). We shall demonstrate
that the principle is equally applicable to obtaining the influence lines for statically
indeterminate linear structures.
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Suppose that we want the influence line for the reaction at support b of
the indeterminate beam abc shown in Fig. 6-20(a). The influence ordinate at
any point i a distance x from the left end is obtained by placing a unit load at
that point and computing the reaction at support b. The procedure for finding
this reaction is as follows:

1. Remove the support at b and introduce in its place a redundant reaction
called R,. .

2. Consider beam ac as the primary structure subjected to the combined effects
of the unit force at i and R, [see Fig. 6-20(b)].

3. Use the condition of compatibility that the total deflection at point b must
be zero,

Ay = R85 — 8y = 0
See Fig. 6-20(c) for &,; and Fig. 6-20(d) for 5,,.

8y
R, =*~
P b
4. Use the reciprocity
8y = B
o obtain R, = 2t (6-40)
8i;b

A "B &

a l' b c
e =7 &)
(C) ‘sbl
44/’/7] \\LC
O 2
dip Oup ’
//’ 1 \\\
1/ 1 ¢
'%/ i “sxb b

(e) 5bb Fig. 6-20
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Note that in Eq. 6-40 the numerator 8, represents the ordinate of the
deflection curve of the primary beam ac caused by applying a unit force at b.
The denominator 3, is only a special case of §;, (i.e., 8,, = 8, if i = b), as
shown in Fig. 6-20(d). Each ordinate of the curve of Fig. 6-20(d) divided by &,,
will give the corresponding influence ordinate for R, (see Eq. 6-40), as shown
in Fig. 6-20(¢).

Referring to Fig. 6-20(e), we note that at b, §,,/8,, = 1. Hence, the in-
fluence line for R, is nothing more than the deflected structure resulting from
removal of the support at b and introduction in its place of a unit deflection
along the line of reaction.

We have hitherto used the reaction of a support as illustration. This, then,
is the Miiller-Breslau principle and may be stated as follows: The ordinates of
the influence line for any element (reaction, axial force, shear, or moment) of
a structure equal those of the deflection curve obtained by removing the restraint
corresponding to that element from the structure and introducing in its place a
unit load divided by the deflection at the point of application of the unit load.

This may be rephrased as: The deflected structure resulting from a unit
displacement corresponding to the action for which the influence line is desired
gives the influence line for that action.

The Miiller-Breslau principle provides a very convenient method for sketching
qualitative influence lines for indeterminate structures and is the basis for certain
experimental model analyses.

1. In the simplest case the influence line for a reaction component can be
sketched by removing the restraint and allowing the reaction to move through
a unit displacement. The deflected structure will then be the influence line for
the reaction.

Thus, the dashed line in Fig. 6-21(a) shows the influence line for the vertical
reaction at support a of the three-span continuous beam. In Fig. 6-21(b) the
dashed line indicates the influence line for the fixed-end moment at support a
of the fixed-end beam ab. The curve is obtained by replacing the fixed support
at a with a hinge support and by introducing a unit rotation. Figure 6-21(c)
shows the construction of the influence line for the horizontal reaction component
at the fixed support d of a portal frame. Note that the fixed support at d is
replaced by a roller and slide acted on by a horizontal force so as to produce
a unit horizontal displacement.

Note the following:

a. The vertical deflections of the structure will be influence line ordinates
for the vertical loads on the structure.

b. The horizontal deflections of the structure will be influence line ordinates
for the horizontal loads on the structure.

c. The rotation of the tangents of the structure will be influence line ordinates
for the moment load on the structure.

2. The moment influence line for a section of a beam or rigid frame can be
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A¢=I ' ~
al—
]

(a)

Fig. 6-21

drawn by cutting the section and allowing a pair of equal and opposite moments
to produce a unit relative rotation (but no relative translation) for the two sides
of the section considered. The deflected structure will then be the influence line
for the moment. Thus, the influence line for the moment at the midspan section
of a three-span continuous beam is the dashed line in Fig. 6-22.

<7

N
7 N

] b‘/’/ X\\\ c p
%‘\-——”;@; ﬁ\\“"/’& Fig. 6-22

3. The shear influence line for a section of a beam or rigid frame can be drawn
by cutting the section and applying a pair of equal and opposite shearing forces
to produce a unit relative transverse displacement (but no relative rotation) for
the two sides of the section considered. The deflected structure will then be the
influence line for the shear. The influence line for the shear at the midspan
section of the fixed-end beam ab is shown in Fig. 6-23 by the dashed lines.

4. To obtain the influence line for the axial force in a'bar, we cut the bar and
apply a pair of equal and opposite axial forces so as to cause a unit relative
axial displacement for the two cut ends. The deflected structure will give the

desired influence line.
/Aa _ A= 1}\{\\\\\_ b}
4 \\‘\H E Fig. 6-23

=1
s
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Figure 6-24 serves as a simple illustration of obtaining the influence line
for the bar force in »C of the indeterminate truss. The vertical components of
the panel point deflections are thus the influence ordinates for the vertical panel

loads.

f
P
3
i
R, )
(V).
1
1
( Vb)n
1
M, A4
Vm 1
1
XY
Mﬂl

Fig. 6-25
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For highly indeterminate continuous beams or rigid frames the technique
of sketching qualitative influence lines, based on the Miiller-Brestau principle,
is extremely useful in determining the loading patterns for design. Figure 6-25
shows typical influence lines for a five-span continuous beam.

The sketches in Fig. 6-25 indicate that if a maximum R, is desired, then
spans ab, cd, and ef should be loaded; if the maximum values of reaction, of
shear, and of bending moment at b are desired, then spans uab, bc, and de should
be loaded.

Figure 6-26(a) shows the influence line for the positive moment at the
midspan section of A3-B3 of the frame shown. The uniform loading pattern for
obtaining the maximum positive moment of this section is shown in Fig. 6-26(b).
. Numerical examples for influence lines of statically indeterminate structures

ollow.

4 T T 1
P
3 T T 1
) LTt 1
{ T T T 1
0 777%77 TIIIT. 777, 77777777 777777 7777777
A B C A B C

(a) (b)
Fig. 6-26

Example 6-15
Using the Miiller-Breslau principle, construct the influence line for the reaction at
support b of Fig. 6-27(a).

We begin by removing the support at b and placing a unit load along the line
of reaction, as shown in Fig. 6-27(b). The ordinates of the resulting deflection
curve, in Fig. 6-27(b), divided by 8,, give the corresponding influence ordinates for
the reaction at b, called R,.

Probably the easiest method for computing the ordinate of the curve in Fig.
6-27(b) at any point i a distance x from the left end is the conjugate-beam method,
shown in Fig. 6-27(c).

Thus,

? x \x\[x 3P - x}
% = (z&)‘” B (7@7) (z)@ = Tom O0=x=D
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Substituting x = / in the expression above gives
13
8y = gE—I
The influence ordinate for any point i (0 < x < I) is governed by the equation
8;}, _ 3[2x - x3
R, = 5—;,[, = E

as shown in Fig. 6-27(d). Because of symmetry abogt th‘e m?ddle support, we can
accomplish the other half, as shown by the dashed line in Fig. 6-27(d).

EI constant 5. :: Sun
b c a (4
a i b
P 5 B it £
DR RN P N x ;
=~ T o 3Px —
(a) () R,,=—le,—x(0<x<l)
x ) V—Tl RN
a i b c at >x b AN [«
P X 2
— == I2EI [
Y 4EI 2EI / m‘
(©) (@
Fig. 6-27

Example 6-16

Compute the ordinates at 2-ft intervals of the influence line for the moment at the
midspan section d of ab for the beam shown in Fig. 6-28(a).

The ability to resist moment at section d is first destroyed by inserting a pin.
Unit couples are applied on each side of the pin to produce certain relative rotation,
denoted by 6, between the two sides, as shown in Fig. 6-28(b). The conjugate beam
and elastic load are then obtained, as shown in Fig. 6-28(c). Note that we assume
EI = 1 (EI will be canceled out in the final stage of calculation); hence, the elastic
load of Fig. 6-28(c) is the moment diagram based on Fig. 6-28(b).

Referring to Fig. 6-28(c), we may solve reactions R,, R,, and R, by the
equilibrium equations and the condition equation M, = 0. Thus,

(2)29)

>SM, =0 20R, + SR, — —5—(10) =0 (6-41)
DM, =0 ISR, — 20R, — ngi)(w) =0 (6-42)
M,=0  10R - ‘2);—“’)@) =0 (643)

Solving Eqs. 6-41, 6-42, and 6-43 simultaneously, we obtain
R, =10 R. =333 R, = 26.67
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Note that R, is the shear difference between the left and right sides at section
d of the conjugate beam and thus equals the relative rotation 6 between corresponding
portions of the distorted beam in Fig. 6-28(b). The various moments of the conjugate
beam at 2-ft intervals and at point d which correspond to the deflections of the
distorted beam in Fig. 6-28(b) are computed as shown in Fig. 6-28(d).

These values divided by 26.67 (so as to make 6 = 1) will give the ordinates
of the influence line for the moment at section d, as shown in Fig. 6-28(e).

Example 6-17

Compute the influence ordinates at 2-ft intervals for the shear at the midspan section
d of ab for the beam shown in Fig. 6-29(a).
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We start by removing the shearing resistance at section d without impairing
the capacity for resistance to moment. This can be accomplished by cutting the
beam and inserting a slide device. Next, we apply a pair of equal and opposite
unit forces to produce certain relative vertical displacement, denoted by s, between
the two cut ends without causing relative rotation, as shown in Fig. 6-29(b). Also
indicated in Fig. 6-29(b) are the induced reactions and moments at the cut ends
required by equilibrium.

The conjugate beam together with the elastic loads is shown in Fig. 6-29(c).
Attention should be paid to the elastic load M, acting at d. This is necessary since
the relative vertical displacement (without relative rotation) between the two cut
ends at section d of the distorted beam in Fig. 6-29(b) requires a moment difference
(without a shear difference) for the two sides at d of the conjugate beam shown in
Fig. 6-29(c). This can be fulfilled only by applying a moment at d for the conjugate
beam. Referring to Fig. 6-29(c), we solve reactions R,, R., and M, by the equilibrium
equations and the condition equation M, = 0. Thus,

>M, =0 20R, + M, - “0)2(20’ (10) = 0 (6-44)
SM. =0 20R, - M, — ({10)20) (10) = 0 (6-45)
M,=0  10R - (—1—0’2&”@) =0 (6-46)

Solving Eqs. 6-44, 6-45, and 6-46 simultaneously, we obtain
R, = 83.33 R, = 16.67 M,; = 666.67

Note that M, is the moment difference between the left and right sides at
section d of the conjugate beam and therefore equals the relative deflection s between
the corresponding portions of the distorted beam shown in Fig. 6-29(b). The various
moments of the conjugate beam at 2-ft intervals and at d are then computed, as
shown in Fig. 6-29(d).

These values divided by M, = 666.67 (so as to make s = 1) will give the
ordinates of the shear influence line for section d, as shown in Fig. 6-29(e).

For highly indeterminate structures the influence ordinates for various func-
tions may be found by using a computer for a number of equations based on
consistent deformations. Let us consider the four-span continuous beam shown
in Fig. 6-30(a). Find the influence line for the reaction at support b, called R,.

We start by removing support b and applying to it a force X, along the
line of reaction so as to produce a unit displacement at 5. Then, by the Miiller-
Breslau principle the elastic line of the distorted beam, shown by the dashed
line in Fig. 6-30(b), will be the influence line for R,. Also indicated in Fig.
6-30(b) are the induced reactions at supports ¢ and d, called X, and X,, respectively,
and the ordinate of the curve at any point i, called 4;, at distance x from the
left end.

To obtain the value of A; by the method of consistent deformations, we
regard the indeterminate beam in Fig. 6-30(b) as a simple beam ae (primary
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structure) subjected to forces X,, X., and X,, the effects of which can be
separated by the principle of superposition into three basic cases, as shown in
Fig. 6-30(c), (d), and (e), respectively. Thus,
A = 8, X, + 8, X, + 6,X,

in which the unknowns Xy, X., and X, can be solved by the compatibility
condition

Ab Sbb abr de X b | 1

Ac = 8cb 6('0 6('41 ] Xc {= 0 (6'47)

4, Bap Oe 8aa] (X4 0

In a similar manner, we can find the influence line for the reaction at each

of the other supports. This done, the influence lines for the moment and shear
at various points can be deduced from them by simple statics.
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PROBLEMS

6-1. Analyze the beam in Fig. 6-31 by the method of consistent deformations. (a) Use
the reaction at center support b as redundant. (b) Use the internal moment at b
as redundant. Assume constant El.

241t
JI T TTTTTTITTTT T g1
A b4

L1,
#
L 201t J - 20t ;J Fig. 6-31

6-2. Determine the reaction at b in Fig. 6-32 by the method of consistent deformations.
Assume constant El.

gy :
) % J
L 12t ' - 8ft Fig. 6-32

: o ol

6-3. Find the reaction at b in Fig. 6-33 by the method of consistent deformations. Assume

constant E.
1t
AISEEENEEEREEEEREEEEEA
3 I 1=100in*
N I =1500in.*
" o | 0f | mg e

6-4. For the system shown in Fig. 6-34 determine, by the method of consistent deformations,
the reaction at support e. The flexibility of the spring f = 0.2 cm/kN of force; the
bending rigidity of the beam EI = 30,000 kN-m*.

10 kN

Fig. 6-34
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6-5. Find the fixed-end moments for the beams in Fig. 6-35 by the method of consistent

deformations. Assume constant El.

w

N

—

(a)

x

nt n

Fig. 6-35

(b)

6-6. Use the method of consistent deformations to determine the horizontal reaction at
support ¢ of the rigid frame shown in Fig. 6-36. Assume that E = 20,000 kN/cm?
and I = 20,000 cm®.

20 kN/m

al

I

I

[

4

8§ m

I

6m

¢ —
774}77, Fig. 6-36

6-7. Analyze the rigid frame shown in Fig. 6-37 by the method of consistent deformations.
Use the reaction components at support a as the redundants. All members have
the same value of El.

5h

1

-

Ok

51t

| e
I

hNE

10 ft

A8 Fig. 6-37
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6-8. Repeat Prob. 6-7 using the moment forces at joints b, ¢, and d as the redundants.

6-9. Analyze the truss in Fig. 6-38 by the method of consistent deformations. Assume
that E = 20,000 kN/cm® and A = 25 cm’ for all members.

3m

4m

T =

Y

12kN  Fig. 6-38

6-10. Analyze each of the trusses in Fig. 6-39 by the method of consistent deformations.
Assume that E = 30,000 kips/in.? and L(ft)/A(in.?) = 2 for all members.

B C B C B C
16 ft
a d a d a . d
B e Ay P A
90k . 90k k
‘ Jat 121t _l l Jati2ft L Jat 121t
Il ] il g i
(a) (b) (c)
Fig. 6-39

6-11. Analyze the truss in Fig. 6-39(a) (without the external load) subject to a rise in
temperature of 50°F for member BC. Assume that o = 0. 0000065 in./in./1°F.

6-12. Repeat Prob. 6-1 using Castigliano’s compatibility equation.
6-13. Repeat Prob. 6-5 using Castigliano’s compatibility equation.
6-14. Repeat Prob. 6-6 using Castigliano’s compatibility equation.
6-15. Repeat Prob. 6-9 using Castigliano’s compatibility equation.
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6-16. Find the internal force for the tie rod ac of the composite structure show.n i’n Fig.
6-40, and sketch the moment diagram for member ab. E = 30,000 kips/in.*.

Fig. 6-40

6-17. Find the internal forces for all rods of the composite structure shown in Fig. 6-41
and sketch the moment diagram for beam ab. E = 30,000 kips/in.”.

1“/rt-
PP T T T T T T TTTTTTITTIT]

—— - - — - ———— — —— ~

A= 1lin. x 12in,

3in.? 9ft

A =4in?
e | e | 2

Fig. 6-41

6-18. Compute the ordinates at 2-m intervals of the influence line for the reaction at a
of the beam shown in Fig. 6-42.

a £7 constant

¥
N
>

| 2m ] 10m i
Fig. 6-42
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6-19. Compute the influence ordinates at 2-m intervals for the end moment at a of the
beam shown in Fig. 6-43.

% I constant 17
a b
4 7

12m |

[ |

Fig. 6-43

6-20. Refer to the beam in Fig. 6-44. Compute the influence ordinates at 2-m intervals
for the following elements: (a) the reaction at support a, (b) the moment at b, and
(c) the shear at the midspan section of ab.

a L1 constant ¢

b
4> - 2

B 6m | 4m '

f | Fig. 644

6-21. Sketch the influence lines for R,, R, M., V. (left), V. (right), and M and V for the
midspan section of bc of the beam shown in Fig. 6-45.

a b ¢ d e f gz
Ay o Bm Bz 2 BZ P2 Fig. 645

6-22. Sketch the influence lines for the shear and moment in the midspan section of
member ab of the rigid frame shown in Fig. 6-46.

7 7 7 777  Fig. 6-46




Slope-Deflection Method

7-1 GENERAL

Throughout the preceding chapter the methods of analyzing statically indeterminate
structures have used forces (reactions or internal forces) as the basic unknowns.
These are often referred to as the force or action methods. Displacements,
however, may be used equally well as unknowns. Methods using displacements
as the basic unknowns are called displacement methods. One of the important
displacement methods is the method of slope deflection, based on determining
the rotations and deflections of various joints from which the end moments for
each member are found.

The slope-defiection method may be used in analyzing all types of statically
indeterminate beams and rigid frames composed of prismatic or nonprismatic
members. However, in this chapter we discuss exclusively beams and rigid
frames made of prismatic members.

7-2 BASIC SLOPE-DEFLECTION EQUATIONS

The basis of the siope-deflection method lies in the slope-deflection equations,
which express the end moments of each member in terms of the end distortions
of that member.

Consider member ab shown in Fig. 7-1, which is isolated from a loaded
statically indeterminate beam or rigid frame (not shown). The member is deformed
(see the dashed line) with end rotations 6, and 0, and relative deflection A between

the ends. Obviously, the induced end moments at a and b, called M,, and M,,,
176
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! ol
C E] constant b
V — ‘lA
E&D
My, Fig. 7-1

are related to the elastic distortions at both ends as well as to the load on span
ab, if any. Thus,

M,, = f(8,, 6,, A, load on span) (7-1)
M,, = g(8,, 6,, A, load on span) (7-2)
where f and g are symbols for functions.

To find the expressions of Egs. 7-1 and 7-2, let us first establish the following
sign convention for slope deflection:

1. The moment acting on the end of a member (not a joint) is positive when
clockwise. o m’w .
2. The rotation at the end of a member is positive when the tangent to the é,m s
deformed curve at the end rotates clockwise from its original position. *
3. The relative deflection between ends of a member is positive when it cor- ,4 e .
responds to a clockwise rotation of the member (the straight line joining the
ends of the elastic curve).

L

All signs of end distortions and moments shown in Fig. 7-1 are positive.
The sign conventions established here are purely arbitrary and could be replaced
by any other convenient system; but once these conventions have been adopted,
we will restrict ourselves to this system.

Next, let us refer to Fig. 7-1 and observe that the end moments M,, and
M,, may be considered as the algebraic sum of four separate effects:

1. The moment due to end rotation 9, while the other end b is fixed M
2. The moment due to end rotation 8, while end a is fixed
3. The moment due to a relative deflection A between the ends of the member

without altering the existing slopes of tangents at the ends M
4. The moment caused by placing the actual loads on the span without altering
the existing end distortions y\my/.p

. ¥
In each of the cases the corresponding end moments can be evaluated as

follows: \

1. Consider member ab supported as shown in Fig. 7-2(a). The dashed lines
indicate the deformed shape. Note that end a is rotated through an angle 6,,
whereas end b is fixed (8, = 0); there is no relative end displacement between
a and b (A = 0). The corresponding end moments at a and b, denoted by
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(a M, El constant Z,)
) -
7 M

(b} Fig. 7-2

M, and M,,, respectively, can best be found by the method of conjugate beam,

which is shown in Fig. 7-2(b) with the moment diagram divided by EI as its

elastic loads and 6, as its reaction so that the positive shear in the conjugate

beam gives the desxred Jpqsmve slope in the actual beam. From equilibrium
o % o

conditions: < ot #
K\/ ¥ N
o send Ltk ,u.g‘“ogf — bl Mbal (g - :
) %M 0 <2EI> ( ) <2EI 3) =90 (7-3)
" oy ol M\ (1
o o> IV = - |=£) (= Sha) (2 = -
L et 2M, =0 6D (2E1> (3) i <2EI) (3) 0 (7-4)
From Eq. 7-3, g
=3 M (7-5)
Substituting Eq. 7-5 in Eq. 7-4 gives
. 4EI8, 1)
b=l -6
Thus, My, = £l (7-7)

2. Consider member ab supported and deformed as shown in Fig. 7-3, where
end b is rotated through an angle 6, and end ¢ is fixed. The corresponding end
moment at b, called M}, , and the moment at a, called M’ , are obtained similarly:

1y, = 3 M}, (7-8)
2EI8

L, = = f g (7-9)

L, = f’” (7-10)

3. To find the moments developed at the ends as the result of a pure relative
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deflection A between the two ends without causing end rotations, let us consider
the fixed-end beam in Fig. 7-4(a). Because of the symmetry of the deformation
with reference to the midpoint of the member [see the dashed lines in Fig.
7-4(a)], the two end moments must be equal. Thus, if we let M, and MY, be
the end moments at @ and b, respectively, we have
v =My, = ~M

The negative sign indicates that MY, and M, are counterclockwise. The value
of M may be found by the method of conjugate beam, as shown in Fig. 7-4(b).
Note that, besides the distributed elastic loads of the M/EI diagram, a couple
acts at end b equal to A corresponding to the deflection at b of the base structure.

From M = 0, we have
MI\ (1
(5;5—;) (5) mAs0

6EIA
or M= 2
Thus, the moments developed at the ends of a member due to a pure relative
end displacement are given by

6EIA
-
4. Finally, the moments induced at the ends of a member without causing end

distortions when the external loads are placed on the span are nothing more
than the fixed-end moments, usually denoted by M~ and M7,

Mz, = My, = (7-11)

! -

b g
V. El constant Vb
Z

B T .
M\* MflorR S~ M, ,\;[A @j
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(a)

et
MA—a .9 El
El

(b) Fig. 7-4
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/\,'J‘P?‘q.;'g
Summing up the four elements listed above, we have
F
Mab = (Izb + Zb + Z,b x M{zb

Mba = M!,m + M;;u + Mglu * Mf’:u
Using Eqgs. 7-6, 7-7, and 7-9 to 7-11, we find that
4E16, 2EI8, 6EIA

Mab = [ l - [2 * be
E
M, = 2E16, + 4El9, 6 7IA .y
! { r
Rearranging gives
1 A
My = 2E7 (26,‘ + 0, -3 'l“) * MY, (7-12)
l A F
M, = 2E7 26, + 6, — 3 7 * My, (7-13)

which are the basic equations of slope deflection for a general deformed member
of uniform cross section. The equations express end moment M, and M,, in
terms of the end slopes (8,, 6,), the relative deflection between the two ends
(A), and the loading on the span ab.

If we let

I A
—_—= —_ = R
! K l
K being the stiffness factor of the member and R the rigid-body rotation of the

member [see Fig. 7-4(a)], the equations become

M,, = 2EK(26, + 6, — 3R) = M%, (7-14)
M,, = 2EK(26, + 6, — 3R) = ML, (7-15)

The signs and values of M7, and M}, depend on the loading condition on span
ab. 1f the member ab carries no load itself, then M5, = ML, = 0. See Secs.
6-2 and 6-5 for the evaluation of the fixed-end moments. For reference, the
fixed-end moments for a straight member of constant EI due to the common
types of loading are given in Table 7-1.

7-3 PROCEDURE OF ANALYSIS BY THE SLOPE-
DEFLECTION METHOD

The slope-deflection method consists of writing a series of slope-deflection equations
expressing the end moments for all members in terms of the slope (rotation) and
the deflection (relative translation) of various joints, or of quantities proportional
to them, and of solving these unknown displacements by a number of equilibrium
equations which these end moments must satisfy. Once the displacements have
been determined, the end moments for each member may be figured. The solution
thus obtained is umique, since it satisfies the equilibrium equations and end
conditions (compatibility conditions) embedded in the slope-deflection equations.
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To illustrate, let us consider the frame in Fig. 7-5(a). First we draw the
free-body diagrams for all members, as shown in Fig. 7-5(b), where the unknown
end moments for each member are assumed positive (i.e., acting clockwise
according to our sign convention).

Next, we observe that ends a and d of the frame are fixed and will undergo
no rotation (8, = 8, = 0) or linear displacement. Joint b, owing to the restriction
of length ab (we neglect the small change in length in ab due to the axial forces)
and the support a, cannot move otherwise but rotates about a. However, since
the deformations of the frame are extremely small as compared to the length,
we may replace arc length with tangent length without appreciable error. With
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joint b, and therefore ¢, moving a horizontal distance A to the right [see Fig.
7-5(a)], there is a relative deflection A between joints ¢ and b and also joints ¢
and d. There is no relative deflection between joints » and c if the small lengthening
or shortening in ab or cd, caused primarily by axial forces, is neglected. There
are some joint rotations at b and c. Attention should be paid to the fact that
when a rigid frame is deformed, each rigid joint is considered to rotate as a
whole. For instance, members ba and bc rotate the same angle 6, at joint b.
Similarly, members cb and cd rotate the same angle 6, at joint c.

To determine the end moments for each member shown in Fig. 7-5(b), we
write a series of slope-deflection equations as follows:

M., = 2EK,, (8, — 3R) — M%, = 2E< )(0,, —3R) — 25
M,, = 2EK (26, — 3R) + ML, = 2E<——>(2o,, ~3R) + 25
M,. = 2EK, (26 +0)—2E( )20 + 6

be b b ( b ) (7-16)

M. = 2EK ;20. — 3R) = ZE( )(20 3R)

M, = 2EK 0. — 3R) = 2E< )(0 3R)
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Involved in these expressions are three unknowns: 6,, 6., and R (or A/20).
These can be solved by the three equations of statics the end moments must
satisfy.

By taking joints b and c as free bodies, we immediately obtain two equilibrium
equations:

Z Mg s =0 or My, + M, =0 (7-17)
D Mgume=0  or M, +M,=0 (7-18)
Usually, we have as many joint equilibrium equations as the number of joint
displacement unknowns involved. However, with the member rotation R unknown,
a third equation may be more conveniently secured from the equilibrium of the
structure. Referring to Fig. 7-5, by taking the whole frame as free body, we see

that the horizontal shear in ends a and d must balance the horizontal external
force acting on the frame. Thus,

Mab + Mba M(‘d + Mdt‘ _
10 + ( 0 5) + ( 20 ) =0

or Mab + Mba + Mcd + Md(‘ + 100 = 0 (7'19)

Before we try to substitute the expressions of Eq. 7-16 in Egs. 7-17, 7-18,
and 7-19, we should note that if our purpose is to determine the end moments
but not to obtain the exact values of the slope and deflection of each joint, then
we may substitute the relative values for the coefficients 2E1/I, usually some
simple integers, in the slope-deflection equations in order to facilitate the calculation.
This can be done because such a substitution will only magnify the values of §
and A but will not affect the final result of the end moments. Thus, if we set

I

2E2—0 =1
. I
accordingly, 2E<E> =2

and the moment expressions of Eq. 7-16 become
Mub=0b—3R—-25
Mba = 201, — 3R + 25

M, =226, + 6, (7-20)
M, = 2026, + 8,)
M. =26, -3R
M, =6.-3R
Substituting these in Eqgs. 7-17, 7-18, and 7-19 yields
66, +26. ~3R+25 =0 (7-21)
26, + 66. — 3R =0 (7-22)

36, + 36, — 12R + 100 =0 (7-23)



184 Slope-Deflection Method Chap. 7

Solving Egs. 7-21, 7-22, and 7-23 simultaneously, we obtain
0, = —1.20 6, = 5.05 R = 9.30

Note that the values thus obtained are only the relative values of the slope

and the deflection for the various joints. They must be divided by the factor

2EI/20 to give the absolute values of the slope and deflection.
To determine the end moments for each member of the frame, we substitute

6, = —1.20, 6. = 5.05, R = 9.30 in Eq. 7-20 and obtain

M, = —54.10 ft-kips (counterclockwise)
M,, = —35.30 ft-kips {counterclockwise)
M, = +5.30 ft-kips (clockwise)
M., = +17.80 ft-kips (clockwise)

M. = —17.80 ft-kips
M, = —22.80 ft-kips
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5.3 ft-kips

z'oy{L BT

2,03*_€b C e 203 (Fx
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Fig. 7-6
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The answer diagram for the end actions for each member of the frame is
shown in Fig. 7-6(a), which is based on Fig. 7-5(b).

The moment diagram for the frame is drawn as in Fig. 7-6(b). The moment
is plotted on the compressive side of each member. In this particular case each
member has one point of inflection corresponding to the point of zero moment.

Finally, we can sketch the elastic curve of the deformed structure, as shown
in Fig. 7-6(c), by using the values (or relative values) of the joint rotations and
deflections together with the bending moment diagram. Note particularly the
following:

1. The elastic curve of the deformed frame bends according to the bending
moment diagram.

2. Both joints b and ¢ deflect to the right the same horizontal distance.

3. Joint b rotates counterclockwise while joint ¢ rotates clockwise.

4. Since joints b and c are rigid, the tangents to the elastic curves ba and be
at b and the tangents to the elastic curves cb and ¢d at ¢ should be perpendicular
to each other so as to maintain the original formation at the joints of the unloaded
frame.

7-4 ANALYSIS OF STATICALLY INDETERMINATE BEAMS
BY THE SLOPE-DEFLECTION METHOD

The application of the slope-deflection method in solving statically indeterminate
beams will be illustrated in the following examples.

Example 7-1
Figure 7-7(a) shows a continuous, two-section beam, all the supports of which are
immovable. We wish to draw the shear and bending moment diagrams for the
beam. We solve for the end moments and shears as follows:

1. Since 2EK,, = 2E(21)/16 = EI/4 and 2EK,. = 2EI/12 = EI/6, if we let
2EK,, = 3, then 2EK,. = 2 relatively. The relative values of 2EK are shown circled
in Fig. 7-7(a).

2. By inspection 6, = 0 (fixed end at a) and R, = R,, = 0 (immovable supports

at a, b, c).
3. We calculate the fixed-end moments as follows:
M = —&;(162 = —15 fi-kips
M, = +(7'—5é(—19 = +15 ft-kips
M, = _ans — 12 ft-kips
12
M, = LAa2r +12 ft-kips

12
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&.7.5*
7 ¥ P Jsk
“ CL T T T 11 L
@ 21 b% I c@: 4
-~ 16 ft A< © 2 73
i >
(a)
403 5.75*\ 5
a b ¢ J
347
{b)
625
15.75 ft-kips l 6.25ft
i
4.5 ft-kips
a - h ATl c 4
12 ft-ki ‘
16.5 f-kips s 15 fe-kips
(C) Fig. 7-7

4. We write the slope-deflection equations using the relative 2EK values.

My = G)6s) — 15 (7-24)
M,, = 3)26,) + 15 = 66, + 15 (7-25)
M,. = )26, + 6) — 12 = 48, + 20, — 12 (7-26)
M, = (2)20. + 6,) + 12 = 26, + 46, + 12 (7-27)

S. Involved in the equations above are two unknowns, 8, and 6., that can be
solved by two joint conditions:

2 Mgy = My, + M. =0 (7-28)
M., = (5)}3) = 15 (7-29)
Substituting Eqs. 7-25 and 7-26 in Eq. 7-28, and Eq. 7-27 in Eq. 7-29 yields
108, + 26, +3 =0 (7-30)
and 28, + 46, —3 =10 (7-31)
Solving yields 8, = —}% 6. =1

6. Substituting the above values in step 4, we obtain
M, = —16.5 ft-kips
M,, = +12.0 ft-kips
M, = —12.0 ft-kips
M., = +15.0 ft-kips

1l
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7. Having determined the end moments for each member, we can find the end
shears and, therefore, the reactions.

R,=V, = 73 + &?—_—B = 4.03 kips (up)
2 16
-7.5 16.5 - 12 .
Vie = = —3.47 kips
ba 3 + ™3 3.47 kips (up)
12 15~-12 .
Vi = EI T 5.75 kips (up)
R, = 3.47 + 5.75 = 9.22 kips (up)
12 15-12 .
Ve, = ST T T —6.25 kips (up)
V.a = SKips (up)
R. =625+ 5 = 11.25 kips (up)

8. We now draw the shear and moment diagrams. as shown in Fig. 7-7(b) and
(c), respectively.

Example 7-2
For the system and load shown in Fig. 7-8, find a general expression for the spring
force. Given E = 20,000 kN/cm®, I = 5.000 em®, k = 5 kN/cm, w= 4 kN/m,
and | = 3 m, determine the value of the spring force.
Assuming that the contraction of spring at b is A, we write the moment
equations as

I A wl?
Muh - 2E7 (01) - 37) - E‘ (7‘32)
1 A wl®
M, = 2E7(29,, - 37> + It (7-33)
Using M,, = 0, we have
3A wl?
== - — 7-34
"7 2 48EI (7-34)
Substituting Eq. 7-34 in Eq. 7-32 gives
3EIA  wl
= —|——+ — 7-35)
Mub ( ,[- 8 ) (
/y w per unit length
L EERENREREEREERR]
. £7 constant

Spring stiffness &

Fig. 7-8
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Let the spring force be X; hence, X = kA or A = X/k. Thus,

My = - (%ﬁ + 3;—2) (7-36)
Since the compressive force in the spring is equal to the end shear at b,
_nl, My
2 {
Using Eq. 7-36. we obtain
X = %wl(l 13E1) (7-37)
ey

A substitution of £ = 20,000 kN/cm®, I = 5,000 cm*, £k = 5 kN/cm, | =
3m = 300 cm, and wl = (4)(3) = 12 kN in Eq. 7-37 yields
1

X = (%)(12)(1 N 310y ) = 1.2kN
(5X3)(10)°

Some special cases can be derived by specifying the value of spring stiffness.
They are given in Fig. 7-9. For instance, £ = 0 means no axial resistance (free
end) (i.e., X = 0); k = oo means an unyielding support, X = & wi. If the spring
is replaced by an elastic link with length L, cross-sectional area A, and modulus
of elasticity E, then we use k = AE/L in Eq. 7-37.

Z %
2 1 11 117 A1 11117
“ia b fa % Aa b
A=0 hk = oo A[:'/
k= T
Fig. 7-9

7-5 ANALYSIS OF STATICALLY INDETERMINATE RIGID
FRAMES WITHOUT JOINT TRANSLATION BY THE
SLOPE-DEFLECTION METHOD

Some rigid frames, such as those shown in Fig. 7-10(a)—(d), are so constructed
that translations of joints are prevented. Others, although capable of joint translation
in construction, will undergo no joint translation because of the symmetry of
the structure and the loading about a certain axis, such as those shown in Fig.
7-10(e)—(g).

In both cases

R=0

in the equations of slope deflection, so the analysis is considerably simplified,
as we shall see in the following examples.
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7 ' 7
{a) (b) (c) (

d)

€ Symmetrical

Q! Symmetrical Q Symmetrical
T T S 2 2 O
7 7 l/ lr/ l/ 7 71/7 o
{e) (f) (g)
Fig. 7-10
Example 7-3

The end moments for the frame shown in Fig. 7-11 were solved by the force method
(Examples 6-7 and 6-12) and will be re-solved by slope deflection.

1.2%4t
T ] éDI 117,
or| (D ®
EI constant
gl v
I 10 ft |
[ T Fig. 7-11

The analysis is as follows:

1. The relative 2EK values for all members are shown encircled.

2.6, =0, = R = 0, and because of symmetry, 6, = —§,.

3. M = —Mh, = —(1.2010/12 = —10 ft-kips.

4. Equations of slope deflection are then given by
My = —M, = (1)(8,) (7-38)
Mha = _Mal = (])(20/;) (7-39)
My = =M, = (1)26, - 6,) — 10 (7-40)

5. There is only one unknown, 8,, involved in this analysis, and it can be solved
by :

2 Mjointb = Mlm + Mln- =0 (7'41)
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Substituting Eqs. 7-39 and 7-40 in Eq. 7-41 gives
3¢, - 10=20
from which 6, = 3.33
6. Going back to step 4, we obtain
M, = —M, = 3.33 ft-kips
M,, = — M. = 6.67 ft-kips
M, = —M, = —6.67 ft-kips
Example 7-4

Analyze the frame in Fig. 7-12 if the support at a yields 0.0016 rad clockwise.
Assume that EI = 10,000 kips-ft*.

EI
M, = o, + 0) = Z1)0.0016) + 6,

EI
M, = 21%—1(20,, +6,) = —5—(20;, + 0.0016)

2EQI)
20

_2EQD _ El
M, = 0 26, + 6,) = 3 (65)

El
My = (26, + 0.) = ’3‘(291;) 6. =0

The unknown 8, is solved by
Z Mgy = My, + My, = 0

or 46, + 0.0016 = 0
from which 6, = —0.0004
With 6, determined, all end moments can be figured as
10,000 .
M, = T(O.OOBZ — 0.0004) = 5.6 ft-kips
10,000 .
M, = T(—O.OOOS + 0.0016) = 1.6 ft-kips
10,000

M, = -5—(—0.0008) = —1.6 ft-kips

10, .
M, = 0—5009(—0.0004) = —0.8 ft-kips

The deformed structure is indicated by the dashed lines in Fig. 7-12.

8, = 0.0016 radian

a Fig. 7-12
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7-6 ANALYSIS OF STATICALLY INDETERMINATE RIGID
FRAMES WITH ONE DEGREE OF FREEDOM OF JOINT
TRANSLATION BY THE SLOPE-DEFLECTION METHOD

Figure 7-13 shows several examples of rigid frames with one degree of freedom
of joint translation. In each of these examples, if the translation of one joint is
given or assumed, the translation of all other joints can be deduced from it.

For instance, suppose that, in the frame in Fig. 7-13(a), joint a moves to
a’ a distance A. Since we neglect any slight change in the length of a member
due to axial forces, and since the rotations of members are small, joint @ moves
essentially perpendicular to member Aa and, in this case, horizontally. Similarly,
joint b at the top of column Bb must move horizontally. Furthermore, as b is
the end of member ab and the change of axial length of ab is neglected, the
horizontal movement of b [see bb' in Fig. 7-13(a)] must also be A (i.e., aa’ =
bb' = A).

In the same manner, we reason that if joint a in Fig. 7-13(b) moves a
horizontal distance A to a’, the tops of all the other columns must have the same
horizontal displacement.

Let us now consider the case of Fig. 7-13(c) in which the frame is acted
on by a lateral force at the top of column Aa. Joint a cannot move other than
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horizontally. say a distance A, to «'. To find the final location of joint b, we
imagine that the frame is temporarily disconnected at b. Point b, being the end
of member ab, will move to b’ the displacement A, if free of other effects except
that due to the movement of a. However, b is also the end of member Bb: the
final position of b, called ", must be determined by two arcs that restrict the
motion of b'—one from «’ with a radius equal to ab (or a'b’) and the other from
B with a radius equal to Bb. Since the deformations of the frame are very small
in proportion to the length, it is permissible to substitute the tangents for the
arcs, as shown in Fig. 7-13(c). The displacement diagram is shown separately
in Fig. 7-13(c)’, for which we note that A, is the relative displacement between
the ends of member Aa. A, that between the ends of ab, and 4; that between
the ends of Bb. The relationship between 4,, A,, and A, can be expressed by
the sine law:

A| . A: — A3
sing  sin(90° — )  sin 90°
from which Ay = Aytan 6 = A;sin 8

The joint displacements of Fig. 7-13(d) are similar to that described for Fig.
7-13(c), noting that joint « should move perpendicularly to member Aa. From
the displacement diagram shown in Fig. 7-13(d)’ we see that

A A, _ 4
sinf, sin(6, + 6,) sin#,

The procedure described above is now extended to a two-span frame such
as the one shown in Fig. 7-13(e) together with the Jjoint-displacement diagram
in Fig. 7-13(e)’. It may be extended to any number of spans. With the relative

deflection between the ends for each member clarified, it becomes a simple matter
to apply the slope-deflection equations.

Example 7-5

Find the end moments for each member of the portal frame shown in Fig. 7-14(a)
resulting from a lateral force P acting on the top of the column. Assume constant
ET throughout the entire frame.

Because of the lateral force P acting at b, the frame deflects to the right.
Both joints » and ¢ move the same horizontal distance A, as indicated. There are
also rotations 8, at joint b and 6. at joint ¢. Now, since an equal and opposite
force P acting at ¢ would completely balance the original force at b, and would
thus return the structure to the original position (except for some small change of
length in bc), 6, must be equal to §.. Thus,

Mur = My = (1), — 3R) 6. = 0,=0)
Myu = Moy = (1)26, - 3R)
My = My, = (2)(26, + 6,) = 66,

This special case in which the end moments and joint rotations of one side of the
center-line axis of the structure are the same as those of other side is termed
antisymmetry, in contrast to the case of symmetry, in which the values of the end
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P T==
(O
II /
/ @/I

20 ft /
/ /
/ /

A A
pest _l'j b c
¢

I Mab + Mba
20 \\
X ;‘7 d M., a =AM, Al
10t ‘\*/ - \f/
(a) (b)
Fig. 7-14

moments and joint rotations of one side of the center-line axis of the structure are
equal but opposite to those of the other side, according to the sign convention of
slope deflection.

The unknowns, 6, and R, are then solved by two equilibrium equations, one
for joint b and the other for the entire frame:

2 Mgy = My, + My = 0
or 86, —3R =90 (7-42)
By isolating the frame from the supports [Fig. 7-14(b)],

+
ZFX=(2)M+P=O

20
or 36, — 6R + 10P =0 (7-43)
Solving Eqs. 7-42 and 7-43 simultaneously, we obtain
10 80
6, = 1 3P 3R = ] 3P

Substituting these in equations for end moments, we obtain

7
Mub = Mdr = —-—QP

13
60
= = ——P
Mbu Mcd 13
Mbc = M(.;, = +%P

Example 7-6

Draw the bending moment diagram for the frame shown in Fig. 7-15(a). The relative
values of 2EK are circled.
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278.6 ft-kips

o

%4 My + M,

343

a
257.2 ft-kips ft-kips

b
k 4 M“QX d

{c) (d)

Fig. 7-15

To find the end moments, we begin by sketching the relative displacement
diagram, as shown in Fig. 7-15(b). Thus,

A A
R = — = =
ub ["b 1
__ia_ A
Y N T 20
A 3A A
R,="—==X==
Ty 2520
If welet R, = R, then R,. = —3R/4 and R, = 3R/4. The expressions for

the various end moments are now written
M., = (1X6, — 3R) 6, = 0)
M, = (1426, — 3R)
M, = (2)28, + 6. + (3)3R)]
My = (2)[26. + 6, + 3)3R)]
M = )26, — GXIR)] (64 = 0)
M4 = )8, — GYER)
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Two of the three condition equations required to evaluate the three independent
unknowns 6, 8., and R are from £ M = 0 for joints b and ¢. Thus,

My, + M, =0
66, + 26. + 1.5R = 0 (7-44)
My, + M, =
6, + 46, =0 (7-45)

The third condition equation can best be found by expressing £ M, = 0 for
the entire frame, o being the center of moment chosen at the intersection of the
two legs [see Fig. 7-15(c)]. since this eliminates the axial forces from the equation.
Thus,

Mab + Mhu _ M('d + ler .
BT )(35) <—25 )(50) =0

~66, — 106. + 24.5R — 2,000 = 0 (7-46)
Solving Eqs. 7-44, 7-45, and 7-46 simultaneously, we obtain
6, = —21.4 6. = 5.36 R = 78.6
Substitution of these values in the moment expressions yields

M, + My — (100)(20) ~ (

M,, = —257.2 ft-kips M,, = —278.6 ft-kips
M, = 278.6 ft-kips M., = 332.2 ft-kips
M., = — 332.2 ft-kips M, = -343.0 ft-kips

as shown in Fig. 7-15(d).

7-7 ANALYSIS OF STATICALLY INDETERMINATE RIGID
FRAMES WITH TWO DEGREES OF FREEDOM OF JOINT
TRANSLATION BY THE SLOPE-DEFLECTION METHOD

The number of degrees of freedom for joint translation in a rigid frame equals
the number of independent joint translations that can be given to the frame.
Figure 7-16 shows several examples of rigid frames with two degrees of freedom
of joint translation.

Figure 7-16(a) shows an unsymmetrical gable bent subjected to a vertical
load at the top. Under this pressure joint b will move a distance A, to b’ and
joint d a distance A, to d', as indicated. To locate the position of c, let us
imagine that joint ¢ is temporarily disconnected.  Joint c, being the end of member
be, will move to ¢’ (cc’ = bb' = A,). Joint ¢, being the end of member cd,
will move to ¢” (c¢” = dd’ = A,). The final position of ¢ is ¢”, which is the
intersection of the line perpendicular to bc drawn at ¢’ and the line perpendicular
to ¢d drawn at ¢”, as indicated in Fig. 7-16(a). From the displacement diagram
A; (the relative displacement between ends b and ¢) and A, (that between ¢ and
d) is related to A, (that between a and b) and A, (that between d and ¢) by the
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sine law,
A, + A, A, A,
sin(g, + ¢,)  sin (90° — ¢;)  sin (90° — o)
or A +4, A A,

sin(¢, + ¢,) cosd, cos o
so that A; and A, can be deduced from A; and A,.

The case shown in Fig. 7-16(b) is similar to that of Fig. 7-16(a) except that
we assume the tops of the two legs move in the same direction as the result of

a lateral force applied at b. The relationships of Joint displacements are expressed
by

A -4, Ay B A,
sin (¢, + ¢;)  sin (90° — ¢,)  sin (90° — o))
A] - AZ A3 A4

or - = =
sin(¢; + ¢;) cosd, cos
Figure 7-16(c) and (e) show the joint displacements in two-story frames,
and Fig. 7-16(d) shows the joint displacements in a two-stage frame. In each of
these cases, the arrangement of the structure is such that the joint translations
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of the first floor are not required to be in any fixed relationship to those of the
second floor (i.e., the translations of joints b and e are not in a fixed ratio to
the translations of joints ¢ and d). The procedure for finding joint displacements
on each of the floors is the same as that discussed in Sec. 7-6 for one-story
frames. With the relative end displacement for each member consistently de-
termined, it becomes rather easy to analyze the frame by the method of siope

deflection.

Example 7-7
Find all the end moments for the gable bent shown in Fig. 7-17(a). Assume constant
EI throughout the entire frame so that the relative 2EK values are the circled
numbers.
We start by sketching the joint displacements of the frame as shown in Fig.
7-17(b), for which we note that

_ (A + A)sin(90° — ¢y) (A + Ay) cos & 4 A + Ay

sin (¢, + ») T sin[180° — (¢, + $)] S

4

1%/ft of horizontal length
NHEEEREEEREE . Ajc A,
c

9 ft 16t
l<—>1<______..lc :

121

25ft
@ ~ (®) 1/t
LI Pt TrTTT]
251t
k 7
1%/ft 0'\\’-93
[ A NG
¢ NS Mcd+Mdc

18.75 1t +(8)(%)
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since, if we refer to Fig. 7-17(a), cos ¢, = 3 and 180° — (¢, + &) = <c = 90°
in this case. Similarly,

A = (A, + Ay} cos &
Y7 sin [180° — (¢ + )]
Thus, the rotation of each member can be expressed in terms of A, and A,.

_ 4 (L4
Rub h "]—g Ry = (15)(5)(A1 + A:)

Ry= - (i%)(%)(i\x + 4 Ree = %2
If we let A)/I5 = R, and A,/15 = R,, we have
Ru = —R, Ry = 0.8(R; + R>)
Ry = —0.45R, + R R, =R,

The fixed-end moments are found to be

3
= E(A[ + Az)

ML = -MF, = —“i(zg)' = —6.750 ft-kips
M= -M5 = -Qg—&: = —21.333 ft-kips

The expressions for various end moments are then written
M, = (138, + 3R 6, =10
M,, = (1)(26, + 3R))
M. = (D[28, + 6. — 2.4R, + R)] — 6.750
My = (I26, + 6, — 2.4R, + R)] + 6.750
M. = (326, + 6, + 1.35(R, + R,)] — 21.333
My = (D26, + 6, + 1.35(R, + R} + 21.333
Mg = (1026, — 3Ry) (6. = 0)
My = (1X6; — 3R,)

Five statical equations are needed to solve the independent unknowns 4,, 6.,
6, Ry, and R,—three from I M = 0 for joints b, ¢, and d&; one from shear balance
{2 F, = 0) for the entire frame {see Fig. 7-17(c)]; and one from 3 M, = 0 for the
portion of the frame shown in Fig. 7-17(d). Thus,

EMjoimb = Mba + M[,c = 0

46, + 6. + 0.6R, — 2.4R, — 6.750 = 0 (7-47)
2 Mioinlc = Mcb + Mc'd = 0
0 + 3.50, + 0.756, — 1.387(R, + Ry — 14583 = 0 (7-48)

ZMjoimd =Mdc + Mde = 0
0.756. + 3.5, + 1.613R, - 1.987R, + 21.333 = ¢ (7-49)
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2 F, = 0 for the frame of Fig. 7-17(c):
Mab + Mba + Mde + Med _
15 15 B
01, + 0,1 + 2R1 - 2R2 = 0 (7‘50)
2 M, = 0 for the portion of the frame [Fig. 7-17(d)]:
_ (M + My, _(Mea + M _ @
M, ( 5 )(33.75) ( 20 )(31.25) (8)(5)(31.25)
mEs}
> = 0
6, + 3R — 2.25(36, + 6R,) — 1.5625[2.256, + 2.256, + 2.025(R, + Ry}

— 200 + [0.756, + 1.56, + 1.013(R, + Ry + 21.333] + 3125 =0

0

+ M, +

or
5.756, + 2.7668, + 2.0168, + 12.651R, + 2.151R, — 133.833 =0 (7-51)
Solving Egs. 7-47, 7-48, 7-49, 7-50, and 7-51 simultaneously, we obtain
6, = 0.341 6. = 11.039 6, = —8.342
R, = 8.543 R, = 4.561
Substituting these in the expressions for the various end moments, we obtain
M,, = 26 ft-kips
M,, = —M,. = 26.3 ft-kips

M, = —M, = —2.3 fi-kips
Mdc = _Mde = 30.3 ft~kips
Med = —-22 ft-klps

Example 7-8
Analyze the frame in Fig. 7-18(a). Assume that all members are of uniform cross
section, so the relative values of 2EK are the circled numbers. Because of the

10 ft 59.67 fi-ki
105 ¢ d 1ok A\zld’ 10kl d cw\,lzs y
T & o To |d ‘
T | T
208 |@© @ ; | My + Mo, 17569

Py =

. AI ? 20 ) ft-kips %ﬁ\
A A, i VA A b
200> e 20% —»- l\ e’ 20% —t= ~T135.36
F @ "‘,"” f b ¢ ft-kips\E?Of.:;
| t-kips
! X l g _Ailab + Wba !
: 5 ;
}; a . af f / [\ /
K b 4N “Te4.64 frkips

(a) (b) © @

5
©

=
3
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action of the lateral forces, the frame will deflect to the right. Assume that joints
b and e, on the first-floor level, move a horizontal distance A,; joints ¢ and d, on
the second-floor level, move a horizontal distance A., as shown in Fig. 7-18(b).
Antisymmetry exists in this case. Thus,

A A~ A
b =8, b.=0; Ry=Rys= 55‘ R = Rue = =55 '
Now since 6, =0 =Ry =Ry=0

the problem involves a total of four unknowns, 0,, 6., R, and R,., which are to
be solved by four equations of statics, two from S M = 0 for joints b and ¢ and
the other two from shear balance for the frame.

The equations expressing end moments are then written:

My = M, = (10, — 3R, 6, =0)

M,, = Me/ = (1026, — 3R,)

M, = M, = (1)26, + 6. — 3R,,)

M, = M, = (226, + 8,) = 66, 6, = 6.)

My = My = (1026, + 6, — 3R,.)

M= M, = (2)(26, + 6,) = 68. 6, = 6,

The equations from joint equilibrium in moment are then established:
My + My + M,, =0

106, + 6. — 3R, —3R,., =0 (7-52)
Mcb + M,.d =0
6, + 8, —3R,, =0 (7-53)

The third equation is from shear balance for the entire frame isolated from the
supports [see Fig. 7-18(c)}:

(2)(Mul7 + Mba

2 )+20+10=0

0, — 2R, + 100 = 0 (7-54)

The fourth equation results from considering the free body cut out by a horizontal
section just above be; the shear in the two legs [see the dashed lines in Fig.
7-18(c)] must balance the lateral force of 10 kips. Thus,

(2)( 50 )+ 10=0

36, + 36, — 6R,. + 100 = 0 (7-55)
Solving Egs. 7-52, 7-53, 7-54, and 7-55 simultaneously, we obtain
0, = 29.282 6, = 9.945
R, = 64.641 R, = 36.282
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Substituting these in the moment equations, we arrive at

M, = M, = —164.64 ft-kips
M,, = M, = —135.36 ft-kips
M, = M,; = —40.33 ft-kips
M, = M, = +175.69 ft-kips
M, = M,; = —59.67 ft-kips
M., = M, = +59.67 ft-kips

as plotted in Fig. 7-18(d).

7-8 ANALYSIS OF STATICALLY INDETERMINATE RIGID
FRAMES WITH SEVERAL DEGREES OF FREEDOM OF
JOINT TRANSLATION BY THE SLOPE-DEFLECTION
METHOD

The slope-defiection procedure described in the preceding sections may be extended
to the analysis of frames with more than two degrees of freedom of joint translation.
Solving simultaneous slope-deflection equations in terms of joint rotations and
translations, although time consuming, is frequently simpler and more easily
applied than the force method previously discussed. Consider the four-story,
two-bay building frame shown in Fig. 7-19. It would require the solution of 24
simultaneous equations in terms of total force redundants, compared with 16
equations needed by the method of slope deflection: 12 equations expressing
2 M = 0 for each of the 12 joints having rotations and four equations expressing
the shear balance for each floor level of the four stories.

The term kinematic indeterminacy is sometimes used to describe a structure

77777 77777. 77777, Fig. 7-19
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with freedom of joint displacements. A structure having n degrees of freedom
of joint displacements (translations and rotations) is kinematically indeterminate
to the nth degree and requires the solution of n independent kinematic redundants
from the equal number of equilibrium equations. Therefore, the frame shown
in Fig. 7-19 is statically indeterminate to the 24th degree but kinematically in-
determinate to the 16th degree. Obviously a structure with all its joints restrained
against any displacement is said to be kinematically determinate.

7-9 MATRIX FORMULATION OF SLOPE-DEFLECTION
PROCEDURE

In the slope-deflection method, the joint displacements appear as the basic unknown
in the simultaneous equations which express the joint equilibrium of forces in
terms of joint rotations and translations. The matrix formulation of these equilibrium
equations will readily throw light on the analysis, revealing the essence of the
matrix stiffness procedure. This can best be illustrated by going over the problem
in Fig. 7-5.

We start by Eq. 7-16 and, with some modifications, rewrite the slope-
deflection equations as

I
M, =2E-% <9h - ?—A) - 25

l ab ab

1
M,, = 2Eib<20,, - Z’é) +25

lab lab
M, = 2E (26, + 6,)
Lye (7-56)
M, = 2E7’1(260 + 6,)
e
M, = 2EDet 26, _34
ltd l(d
M, = ZEL 6. — 34
. lcd ch
We also rewrite the joint equilibrium equations as
Mba + Mbc = 0
M('b + M‘.d = 0 (7'57)

Mab + Mba + Mcd + Mdc

I » +5=0
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Substituting the various expressions of Eq. 7-56 in Eq. 7-57, we have

4El,, | 4ElL, 2El, 6EL,,
( T h)5b+ g, - Ol 95— g
luh [In- Ilu- [(.ll)
2ElL, 4El,. | AEL, 6E1,
=g, ( be 4 ’)9(— <A =0 (7-58)
1y . Lo l74
6EI,, 6EIl, 2EL,, )
2 /0/)+ 3 10‘ - (‘ E;ll + lZE;I(d>A+ 5=0
Iuh I( o ab I;'d
Equation 7-58 in matrix form is
FJA 6, =1 6. =1 A =1 JL
s [4EL, 1, ; ) ]
r25 EI{II + 4E‘1h( ZE‘[I)( _6£‘71ul7 rehw rO\
[ ub l he [br' l_lb
2EI,. 4El,,. 1. ]
P 0 +’ + b b be + 4bl(¢/ _% < 6, \ — < 0 .
lb(' Ihr' Ir‘rl (-d
6E1,, 6EI,, 12E1,, 12FEI,
:’5 J ——ZJ— s ! [3 t + I3 ! \Aa LOJ
wh cd ub cd
B (7-59)
Equation 7-59 can be put into generalized form
F+SD=F (7-60)

We notice that the column matrix F’ on the left-hand side of Eq. 7-39 or 7-60
represents the fixed-joint action (FJA) under applied member loads, while the
square matrix S is a stiffness matrix, each column of which gives the various
joint actions required to produce a certain unit joint displacement. Note that
the stiffness matrix is symmetrical. The column matrix D represents joint dis-
placements. The column matrix F on the right-hand side of the same equation
contains the actual joint loads (JL) corresponding to the joint displacements. In
our case there are no loads actually acting on joints b and ¢, so the elements
in the JL. matrix are zeros.

It may be interesting to compare Eq. 7-60 with Eq. 6-11 and find out the
duality between the displacement method (stiffness methdd) and the force method
(flexibility method).

The analysis therefore can be performed as follows:

I. Analyze a restrained structure with all joints fixed (kinematically determinate)
and subjected to member loads only [Fig. 7-20(a)]. With reference to Fig.
7-20(b), we see that locking the joint b against rotation requires an artificial
moment force of 25 ft-kips acting clockwise in order to balance the internal
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moment exerted by member ab at that joint. Likewise, preventing the lateral
translation of joint b requires a lateral force of 5 kips acting to the left to balance
the internal shear exerted by member ab at joint b. Simply, the fixed-joint action
is obtained from the algebraic sum of fixed-end actions of the related members.

2. Apply joint displacements individually and successively to joints b and ¢
(free joints) so that the altered structure is restored to the actual displaced
configuration. Figure 7-21 shows the separate cases of unit joint displacement
from which we obtained the joint forces corresponding to these displacements.
For instance, turning a unit rotation of joint » would require a moment force of
(4El s/l + 4EL,/ly:) at joint b, a moment force of 2El,./l,. at joint ¢, and a
lateral force of —6EIL,/, (acting to the left) at b. The rest can similarly be
explained. These are stiffness coefficients which construct the stiffness matrix
of Eq. 7-59.

3. Steps 1 and 2 accomplish the geometric configuration (compatibility). It
remains for us to say that the sum of joint forces thus obtained must be equal
to the actual joint loads (equilibriam). This completes our formulation.
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USlng ZEIab/lab = 2EI(.(1/](.[] = ], ZEI[,(./II)(. = 2, and lab = [(.(1 = 21[,(. = 20,
we reduce Eq. 7-59 to

25 6 2 —% 0, 0
0p + 2 6 —% 6. =40 (7-61)
-5 —35 —35 &5l 1lA 0
Replacing A with R (R = A/20) in Eq. 7-61 gives
25 6 2 =316, 0
0r + 2 6 —3|96,1 =10 (7-62)
-5 —35 —3% #£1IR 0

which is identical to the set of simultaneous equations given in Egs. 7-21 to
7-23.
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PROBLEMS

7-1. Analyze the beam shown in Fig. 7-22 by slope deflection. Draw the she ar and
moment diagrams.

10%
12 ft
o 2% /ft
L 126t g 24t

f

€

e

.
—>]

ET constant Fig. 7-22

7-2. Figure 7-23 shows a frame of uniform cross section. Find all the end mone ats by
slope deflection, and sketch the deformed structure.

/‘lk/ft
A I N A A i
3 b
i 16 ft 4&_1
r D i
d
77077, Fig. 7-23

7-3. Analyze the beam shown in Fig. 7-24 by slope deflection. Draw the sstez=r and
moment diagrams.

/it 4
AL LT LT T LT T T T T 1T 7] |
— N — n 4
/ I =240in. #; I =300in. ;@; d
b ¢
- 154t . l B 201t . l Sft Fig. 724

7-4. Find all the end moments by slope deflection for the rigid frame show—1im Fig.
7-25. Draw the moment diagram, and sketch the deformed structure .
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Fig. 7-25
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7-5. In Fig. 7-24 remove all the loads, and assume that the support b settles vertically
0.5 in. Find all the end moments by slope deflection. E = 30,000 kips/in.>.

7-6. In Fig. 7-25 remove the load, and assume that a rotational yield of 0.002 radian
clockwise and a linear yield downward of 0.1 in. occur at support a. Find the
moment diagram. EI = 10,000 kips-ft’.

7-7. For the system and load shown in Fig. 7-26, use the method of slope deflection to
find the spring force if EI = 2 x 10® kN-cm? and the axial stiffness of the spring

k = 8 kN/cm.
2kN/m

a el 1 LT T T]e

Ay El EI T,
k

d
2
4m l 6m
! I Fig. 7-26

7-8. For the load and frame shown in Fig. 7-27, use the method of slope deflection to
find the reaction at supports a and ¢, and sketch the deformed structure.

16 kN
2.5m
b ¢
2E] P
3m El
a
Sm
Fig. 7-27
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7-9. Find all the end moments by slope deflection for the rigid frame shown in Fig.
7-28. Draw the moment diagram, and sketch the deformed structure. [Hint: There
are two slopes at ¢ (i.e., 8, and 6,,). Use the condition M., = M,, = 0 to evaluate
the two unknowns. ]
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| Fig. 7-28

7-10. For the system shown in Fig. 7-29, use the method of slope deflection to find the
reaction at support d if £ = 20,000 kN/cm? I = 40,000 cm®. and the axial stiffness
of the spring 4 = 5 kN/cm.

20kN

4m 144

6m

Fig. 7-29
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7-11. Analyze each of the frames shown in Fig. 7-30 by slope deflection, and draw the
moment diagram. Assume constant EJ.
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7-12. Find the fixed-end moments for the beams shown in Fig. 7-31 by slope deflection.
Assume that w = 3 kN/m, [/ = 4 m.

Z w 7 Z w L
T TITIT T T STTT I T T T,
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. , [ | !

|
(2) (b)

Fig. 7-31
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7-13. Repeat Prob. 7-3 by the matrix stiffness procedure.
7-14. Repeat Prob. 7-11 shown in Fig. 7-30(b) by the matrix stiffness procedure.
7-15. Use the matrix stiffness method to analyze the frame shown in Fig. 7-32.

2kN/m
LT T T T T 111
7
Im
16 kN = ET constant
3m
a
-

Fig. 7-32




Moment-Distribution Method

8-1 GENERAL

The method of moment distribution was originated by Hardy Cross in 1930 in
a paper entitled “‘Analysis of Continuous Frames by Distributing Fixed-End
Moments.” It is the method normally used to analyze all types of statically
indeterminate beams and rigid frames in which the members are primarily subjected
to bending. The process of moment distribution is initiated by the basic slope-
deflection equation (see Sec. 7-2); the moment acting on the end of a member
is the algebraic sum of four effects:

1. The moment due to the loads on the member if the member is considered
as a fixed-end beam (the fixed-end moment).

2. The moment due to the rotation of the near end (this end) while the far
end (the other end) is fixed.

3. The moment due to the rotation of the far end, the near end being fixed.

4. The moment due to the relative translation between the two ends of the
member.

This suggests that one line of attack might be to allow these effects to take place
separately through a series of steps, first locking the joints and then unlocking
them. For instance, in a rigid-joint structure without joint translation, once the
Jjoints are locked (held against rotation), each member is in the state of a fixed-
end beam. By unlocking (releasing) a joint, we find that resisting moments will
be developed or distributed at the near ends of the members meeting at the joint
in proportion to their stiffnesses or according to their distribution factors. At

211
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the same time moments will be induced or carried over to the far ends of these
members according to their carry-over factors. Joints may be successively released
and reheld, one by one, as many times as necessary until each joint will have
rotated into its actual, or nearly actual, position. Thus, the process is essentially
one of successive approximations which can be carried to any degree of accuracy
desired. We shall define the terms stiffness, distribution factor, and carry-over
factor and explain them step by step in the following sections.

It must be noted that the method of moment distribution, although it depends
on solving slope-deflection equations, is nevertheless a new approach in structural
analysis. For instance, determining the end moments of a highly indeterminate
rigid frame with joint translations prevented does not require solving any si-
multaneous equations, in contrast to the previously discussed methods. Even
in analyzing rigid frames having joint translations, the method of moment distribution
usually does not involve as many simultaneous equations as are required by any
of the methods already discussed.. Furthermore, this method is adaptable to
computer programming, since it is cyclic. As far as hand calculations are concerned,
it is regarded as the most ingenious and convenient method contributed to structural
engineering. o

The method of moment distribution can be applied to structures composed
of prismatic members or nonprismatic members. The present chapter is confined
to beams and frames of prismatic members.

The sign convention adopted is the same as that previously suggested for
the slope-deflection method: clockwise end moment and rotation of a member
are considered positive.

8-2 FIXED-END MOMENT

The application of the method of moment distribution requires knowledge of the
moments developed at the ends of loaded beams with both ends built in. These
moments are called fixed-end moments, often denoted by the symbol M" or
F.E.M. in tables and illustrations.

The determination of fixed-end moments was discussed in Sec. 6-2 and
6-5. For a straight prismatic member the fixed-end moments due to common
types of loading were given in Table 7-1.

8-3 STIFFNESS, DISTRIBUTION FACTOR, AND
DISTRIBUTION OF EXTERNAL MOMENT APPLIED
TO A JOINT

For a member of uniform 'section (constant EI), the stiffness (or more specifically
the rotational stiffness) is defined as the end moment required to produce a unit
rotation at one end of the member while the other end is fixed.

Consider member ab in Fig. 8-1 with a constant section. End b is fixed,
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Mnb=?

G—\ EI constant _ Eb
Naj_ e —" T 8 =00}

R

1 Fig. 8-1

and end a is allowed to rotate. The end moment required at end a to rotate
6, = 1, whereas 8, = 0 is given by '

I I I
M, = 2E7(20a + 6,) = 2E 7(2 +0) = 457
= 4EK
This moment is defined as stiffress and is denoted by S. Thus,
s=agl
1 (8-1)
= 4EK

I/l or K being the stiffness factor.
Let us turn to Fig. 8-2(a), which shows a frame composed of four members,

b b

wa wig
L) \
Ly \

2 Ia IC 7 = 7
a% IJ ]> I} Agc a%—— ‘7 X %(
Jja M‘- Je 4 { ’7) ]
I |
I, \
jd \
7077 77777
d d
(@) )
b

. Mjbh M,
a%——) i+ ” —"%‘4
M, M ’
“M;d
d

(c)



214 Moment-Distribution Method Chap. 8

each with one end fixed and the other end rigidly connected at joint j whose
translation is prevented. If a clockwise moment M is applied to the joint, it will
cause the joint to rotate clockwise through an angular deformation 6, as shown
in Fig. 8-2(b). Since j is a rigid joint, each tangent to the elastic curve of the
connected end rotates the same angle 8. The applied moment M is resisted by
the four members meeting at the joint. The resisting moments M,,, M,,, M.,
and M, will be induced at the ends of the four members to balance the effect
of the external moment M, as shown in Fig. 8-2(c).
Equilibrium of the joint requires that

Mja + M}b + Mj‘. + de = M (8-2)
and the slope-deflection equations for the four members give
1

My, = 4E {20 = 4EK,0 = 56

ja
Mjb = 4F L-’-’@ = 4EKjb0 = SjbO
by (8-3)

I,
M, = 4E fa = 4EK; 0 = S;.0

Je

M, = 4E [’49 = 4EK;0 = S0
jd
Equation 8-3 shows that when an external moment is applied to a joint, the
resisting moments developed at the near ends of the members meeting at the
joint, while the other ends are all fixed, are in direct proportion to the rotational
stiffnesses.
Substituting Eq. 8-3 in Eq. 8-2, we obtain

(S + Sjp + Sie + 8,400 =
or 4E(K;, + Ky, + K;. + K;y)0 =

Thus, = M
b= iEsK (8-4)

where 2K = K, + Ky, + K, + K.

Ja

From Egs. 8-3 and 8-4 we see that

K'a
Mja = ﬁ M = D_,aM

_ Ky

K,
M, = SEM =DM

K,
Mj,,—~EKM DuM
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in which the ratio K;/2K or D; (i = a, b, ¢, d) is defined as the distribution
factor. Thus, a moment resisted by a joint will be distributed among the connecting
members in proportion to their distribution factors. In determining the distribution
factors, only the relative K values for connected members are needed. Thus,
in o st cases we are concerned with the relative stiffness rather than the absolute
stiffniess (Eq. 8-1).

8-4 CARRY-OVER FACTOR AND CARRY-OVER MOMENT

Referring to Fig. 8-2, we evaluate the moments. at the far ends (fixed ends) of
the four members by the slope-deflection method as

L, i
M, = 2Ef‘ = ("‘)Mja

ja

I
M, = 2E g = (1)Mjb

R 2 (8-6)
M, =269 = (N
7 L \2)7F
I
My =2E-g = (1)Mj
ba 2

Equation 8-6 indicates that the moment induced at the far end (fixed) of a
prismatic member equals one-half the distributed moment at the near end. The
ratio (3) is called the carry-over factor, and the induced moments M,;, M,;, M,;,
and M are called the carry-over moments. ,

In general, the carry-over factor may be defined as the ratio of the induced
moment at the far end, which is fixed, to the applied moment at the near end,
which is prevented from translation but is allowed to rotate. Consider Fig.
8-3. If an end moment M, is applied at the near end q, then the moment induced
at the far end b, called M,,, is given by

' Mba = CabMab (8"7)
where C,, is the carry-over factor from a to b. For a member of uniform EI,

M,, = 2E308,)

1

I
Mbu = 2E 7(0(1) = EMab

5
N ) "™
J

gl Fig. 8-3




216 Moment-Distribution Method Chap. 8

Therefore, Cup =13

If we consider end a as the far end (fixed), and end 4 as the near end
(allowed to rotate), we can, in a like manner, prove that

ba = %

Thus for a member of uniform section,

Copo=Chp =14 (8-8)

We recapitulate some of the main points of Secs. 8-3 and 8-4 as follows.
When an external moment is applied to a joint whose translation is prevented,
the joint rotates; but the rotation is checked by members meeting at the joint.
The resisting moment is then distributed to the near ends of the connected
members according to their distribution factors, provided that all the far ends
of these members are fixed. The distributed moment to the near end for each
member based on the free body of the member (not the joint) equals the applied
moment times the distribution factor bearing the same sign as that of the applied
moment. Meanwhile, moment is carried over to the far end of each member,
which equals one-half the distributed moment to the near end and bears the same
sign.

In subsequent illustrations and tables we often use the symbols D.M. to
denote the distributed moment; D.F., the distribution factor; C.0.M., the carry-
over moment; and C.O.F., the carry-over factor.

Example 8-1

For the loaded frame shown in Fig. 8-4(a), find the end moments at g and c.

We begin by putting the portion abc of Fig. 8-4(a) into its equivalent [Fig.

8-4(b)] and obtaining the relative K values for members ab and bc (circled). 1t is

then readily seen that the end moments at ¢ and ¢ are the carry-over moments due
to the external moment 60 kN - m applied to joint . Thus,

1
EMba = ( )( 60)(3 n ]) = —75kN*'m
1
=M,
3 ( )( 60)(3 " 1) —22.5kN'm
The negative signs indicate counterclockwise moments.

20kN 20 kN

Mt‘b =

T o

ta) (h)
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The Process of Locking and Unlocking: One Joint

8-5 THE PROCESS OF LOCKING AND UNLOCKING:

ONE JOINT

217

The essence of moment distribution lies in locking and unlocking the joints based
on the principle of superposition; that is, the effect of an artificial moment applied
to a rigid joint of the frame and then eliminated is the same as no effect on the
actual structure, since the two actions are neutralized. In this section our attention
is confined to those frames that have all joints (including supported ends) fixed
except one, which is allowed to rotate. Figure 8-5(a) shows the case which may
then be considered as the superposition of effects of Fig. 8-5(b) and (c).

b b _ b
177773 g U joint e e
21104 E)@A‘,:L 10 ki
. (b) t-kips
1.2%/f¢ \ 12y [®10]]7 | .
a§IDIElI__.e L_Ke ae ft-kips Re o (Te R .

I 10f | 10kt ¥~ ¥ \Iry K

101

77777, 77777 77077,

() d {b) d ] d
Fig. 8-5

In connection with the setup in Fig. 8-5, we note the following:

1. Suppose that the artificial moment M imposed on joint e [see Fig. 8-5(b)]
is so chosen as to just lock the joint against rotation (keeping 6, = 0) under the
original loading (in the present case, the uniform load over span ae). Each
member of the frame is then in the state of a fixed-end beam; consequently,
fixed-end moments will be developed at the ends of member ae:

(1.2)(10)°
F . _pgF — LAY
ME, = - M, 0

all other member ends being subjected to no moment. The results are shown
in row 1 of Table 8-1.

= 10 ft-kips

TABLE 8-1
End Moment (fi-kips)
ae be ce de
Row Step M, M., M,, M., M., M, M, M.,
1 F.E.M. -10 +10 0 0 0 0 0 0
2 D.M. 0 -1 0 -2 0 -3 0 —4
3 C.O.M. -0.5 0 —1 0 -1.5 0 -2 0
4 by -10.5 +9 -1 -2 - 1.5 -3 -2 -4
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Referring to Fig. 8-5(b)’, we find that the equilibrium condition

EMmim e = 0
requires that the locking moment
M = 10 ft-kips
act clockwise on joint e. ) .

2. Next, let us release the joint ¢ from the artificial restraint, that is, apply
to it an unlocking moment equal and opposite to the locking moment. Referring
to Fig. 8-5(c}, we see a counterclockwise M equal to the value of 10 ft-kips:

M = —10ft-kips
is thus applied to joint e. ) o
As a result of this unlocking moment, the resisting moment will be distributed
at the near ends and carried over to the far ends, as described in preceding
sections. Thus,

1 .

M,, = (—l())(;%) = — 1.0 ft-kip M, = (—1)<E) = —0.5 ft-kip
2 ) 1 .

M., = (*lO)(l—é) = ~2.0ft-kips M, = (_2)(E> = —1.0 ft-kip
3 . 1 )

M, (—10)(-1—0) = —3.0 ft-kips M., = (—-3)(5) = ~ 1.5 ft-kips
4 . 1 .

M, = (—10)(E) = —4.0 ft-kips M, = (—4)(—2—> = —2.0 ft-kips

They are shown in rows 2 and 3 of Table 8-1, respectively.
3. The sum of the resuits from steps 1 and 2 gives the solution, as shown in
row 4 of Table 8-1.

In analyzing problems like this, with all ends fixed except one rigid joint
allowed to rotate, the method of moment distribution provides a very rapid tool,
since it involves only one round of locking and unlocking. More examples to
illustrate this process follow.

Example 8-2

The end moments at a, b, and ¢ for the beam and loading shown in Fig. 8-6(a) may

be obtained by locking joint » and then unlocking it, as indicated in Fig. 8-6(b) and

(c). The complete analysis is shown in Fig. 8-6(d), which contains the following

steps:

1. The values of stiffness for members ab and bc are found to be
4E] 4E]
Ky = 0 Ky = 20

Multiplying each by 30/EI gives the relative K values (circled).
2. The distribution factors are computed according to K/3SK. Thus,

3
Dba—2+3—0‘4 Db(.—m—o.G
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We consider the immovable supports at a and ¢ with infinite stiffness so that
Duh = D('h = 0
The distribution factors are indicated in the attached box at each of the joints.

3. The locking joint b artificially puts members ab and bc in the state of fixed-
end beams. We write the fixed-end moments as

‘ 1)(60)*
M, = -M}, = - {eor )520) = —300 ft-kips
20)(4 .
M; = -M, = 2040 )8(0) = —100 ft-kips

Note that locking joint b means applying an external clockwise moment equal to
200 ft-kips, required by the equilibrium of moments for that joint [see Fig. 8-6(b)'].

4. Unlocking joint b (i.e., eliminating the artificial restraint acting on joint b)
means applying an external counterclockwise moment equal to 200 ft-kips. We
write the distributed moment for each of the near ends according to the distribution
factor.

5. Write down the carry-over moment for each of the far ends equal to one-half
the distributed moment of the near end.

6. The sum of the results from steps 3, 4, and 5 gives the solution.
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Example 8-3
Find the end moments for the frame shown in Fig. 8-7(a) resulting from the rotational
yield of support « 0.0016 rad clockwise. E/ = 10,000 kips-ft”. Note that this problem
was solved by slope deflection in Example 7-4.

201t ba | be
le o
b R 53 X ® 5
21 R +32b R
~16]-16 -08
10ft I +1.6{-1.6
)
/8 = 00016 radian +64 @
-0.8
a +56 a
(a) (b)
Fig. 8-7

The moment required to produce a rotation of 0.0016 rad at a is given by

_4EL,6,  (4)(10,000)(0.0016)
L, 10

if joint b is temporarily fixed. Half the amount of this moment will be carried over

to end b of member ab. By releasing joint b, a process of distribution and carry-
over takes place, as recorded in Fig. 8-7(b). This gives

M., = 5.6 ft-kips M, = — M, = 1.6 ft-kips M., = —0.8 ft-kip

M = 6.4 ft-kips

8-6 THE PROCESS OF LOCKING AND UNLOCKING:
TWO OR MORE JOINTS

For a rigid frame or continuous beam having no joint translation but involving
more than one joint permitted to rotate, the process of moment distribution
consists of the repeated application of the principle of superposition, as stated
briefly in the following steps:

1. The joints are first locked; all members, accordingly, are fixed-end. Write
the fixed-end moments for all members.

2. The joints are then unlocked. Only one joint at a time is selected to be
unlocked. While one joint is unlocked, the rest of joints are assumed to be held
against rotation.

Calculate the unlocking moment at this joint, and write distributed moments
for the near ends of the members meeting at this joint.

3. Also write down the carry-over moments at the far ends of these members.
Note that the carry-over moments constitute a new set of fixed-end moments
for the far ends.
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4. Relock the joint, and select the next joint to be unlocked. Repeat steps 2
and 3.

Note that after a joint is unlocked and the moments at a joint distributed,
the joint is in balance, or in equilibrium, since the artificial restraint is removed.
However, there are other joints still locked by external means; hence, the next
step is to relock the joint and then proceed to unlock the next joint. The process
of locking and unlocking each joint only once constitutes one cycle of moment
distribution.

5. Joints are unlocked and relocked one by one; therefore, steps 2 and 3 are
repeated several times. The process can be halted as soon as the carry-over
moments are so small that we are willing to neglect them.

6. Sum up the moments to obtain the final result.

We see that the analysis starts from an alteration of the original structure
by locking all joints against rotation. This means that artificial restraints are
actually applied to the original structure. The altered structure, consisting of a
number of fixed-end members, is then modified by unlocking and relocking joints
one by one until all artificial restraints are removed or diminished to a sufficiently
small amount. Thus, moment distribution is a method of successive approximations
by which the exact results can be approached with the desired degree of precision.

The complete analysis of a loaded three-span continuous beam by moment
distribution, shown in Fig. 8-8, will serve to illustrate the foregoing procedure.

The presentation of moment distribution for the preceding illustration may
be rearranged as shown in Fig. 8-9. At first glance it seems as if joints b and
¢ were locked and then unlocked simultaneously. However, the performance
can still be considered under the restriction of unlocking one joint at a time.
For the loads given, the fixed-end moments are recorded in step 1 (see Fig.
8-9). Next, we may consider joint ¢ as being held against rotation and joint b
as being unlocked first. The unlocking moment + 10 at b is then equally distributed
to the near ends of members ba and bc as indicated in step 2, and one-half of
the amount is carried over to the far ends of these members as indicated in step
3. Next, we consider joint b as locked and joint ¢ as released, but only partially,
by applying an unlocking moment of —(40 — 30) or — 10 to it, since the complete
releasing of joint ¢ would require an unlocking moment of —(40 — 30 + 2.5)
or —12.5 for the time being. This unlocking moment — 10 is equally distributed
to the near ends of members c¢b and cd, and one-half of the amount is carried
over to the far ends of these members as indicated in steps 2 and 3, leaving the
just-received carry-over moment +2.5 to be handled later.

Referring to step 3 of Fig. 8-9, we find the carry-over moments form a new
set of fixed-end moments for the beam, and a process of unlocking joints can
be carried out in a similar manner. The process will thus be repeated in a cyclic
fashion until the carry-over moments are neglected.

In fact, if the carry-over moments are neglected, the joints, after being
unlocked, are in balance (i.e., no external constraint exists). This gives the
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approximate solution for the analysis. For instance, the first approximation may
be obtained from the sum of steps 1 and 2, the result of the first cycle; the
second approximation may be obtained from the sum of steps 1 to 4, the result
up to the second cycle; and so on. It is interesting to note that, in this particular
problem, even the first cycle yields a good approximation of the exact solution.
After two or three cycles, the carry-over values become negligible.

Note that the beam and the loading shown in Fig. 8-9 are symmetrical, the
data presented on each side of the line of symmetry are equal in magnitude but
opposite in sign. This special display suggests that some modification could be
made in order to facilitate the process of moment distribution by working with
only half the structure. See Sec. 8-7 for modified stiffness. This problem will
be re-solved in Example 8-6 by using modified stiffness.

More examples are given to illustrate the cyclic process.

Example 8-4
Analyze the frame in Fig. 8-10 by moment distribution. The relative stiffnesses for
the frame members are computed first as
21

Kab- = 30 say 4
(cd)
21
K, = o say 3
1
Kbe N 20 &y 3

(cf)
Next, the fixed-end moments for the loaded member bc are found to be
_ (60)( 10)(30)* + (60)(30)(10)*

. _ "
M = @0y (07 = ~225 ft-kips
F_ (6003010  (60)(10)30)* s
M, =+ @0)? @y - 225 ft-kips

The complete analysis is shown in Fig. 8-11. Note that the intermediate values
of the moments at fixed ends e and f are not shown. Since members be and cf are
not loaded, it is evident that

M, = %M;,e = 32.2 ft-kips Mf( = %M(f = 32.2 ft-kips

60*% 60*%

1 30ft | 101t 20ft  A10ft | 30 ft |

[ =,< o a2 a3 Pt 1

a b A\ 4 d
i

% 2E1 2E1 2E] %
EI EI 20 ft
Y
/4 Wfﬁ/
e

Fig. 8-10
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Fig. 8-11

From Fig. 8-11 the values of the moments obtained on the left side of the
center line of the structure are exactly the same as those on the right. Such a
special display is referred to as antisymmetry, which yields

6}, = 0‘-
An adjustment can be made to the stiffness of the center beam b¢ that will permit
the analyst to work with only half the structure. We also find that the final result
My, = M, = 0is known beforehand. The convergence of moment distribution

may be improved by using modified stiffness in beams ab and dc. See Sec. 87 for
modified stiffness. "This problem is re-solved in Example 8-7.

8-7 MODIFIED STIFFNESSES

The examples given in Sec. 8-6 have illustrated three special cases that suggest
that some modifications for simplifying the moment-distribution process might
be found by recognizing certain known conditions.

Consider the frame subjected to a clockwise external moment M applied
to the connecting joint shown in Fig. 8-12(a), for which we note the following:

. 6, = 0; that is, the member is fixed at end q.
2. M, = 0; that is, the member is simply supported at end b.
3.

. = —0; that is, the member rotates through an equal but opposite angle
at the other end c¢ as in the case of symmetry.

4. 6, = 6; that is, the member rotates through the same angle at the other
end d as in the case of antisymmetry.

Referring to Fig. 8-12(b), we find the equilibrium of joint j requires that
My + My + M. +M,=M 8-9)
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Fig. 8-12

From the slope-deflection equations we obtain

and M = 2EK_,[,(20 + 0},)
but M,; = 2EK; (26, + 6) = 0
e
0, = —=
or b 2
0 3
Hence, M, = 2EK, |20 — 5] = 4E ZK,,, 0
= 4EK 6
where we let
b = iKj

» being called the modified stiffness factor for member jb. Similarly,

M, = 2EK,.(26 — 6) = 4EGK,.)0

= 4EK 6
where K. = 1K,
M, = 2EK;,20 + 6) = 4EGK,,)0
= 4EK ;6
where e = 3Ky

Substituting Eqgs. 8-10, 8-11, 8-13, and 8-15 in Eq. 8-9 yields
4EK;, + Ky + K;. + Kj;)0 = M

or - M
4EY K’
where YK =K, + Ky + K. + Ky

(8-10)

(8-11)

(8-12)

(8-13)
(8-14)

(8-15)
(8-16)

(8-17)
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Substituting Eq. 8-17 in Egs. 8-10, 8-11, 813, and 8-15 yields

K.
M" = ‘\I”
J zK'
Mib = —i—(JL,'M
2K (8-18)
K
Mj( = ﬁ‘/‘
2K
My, = Sy
Jd EK’

Thus. it is seen that when an external moment is applied to joint j, the distributed
moments to the near ends of the members meeting at the joint are in direct
proportion to their modified stiffness factors if the conditions of the far ends are
known. By using the modified stiffness factor for one end, we actually eliminate
the carry-over to the other end except for writing down the final result for that
part.

Let us recapitulate the modified stiffness factors for various end conditions:

1. If the one end is simply supported, the modified stiffness factor for the
other end is given by

K =iK (8-19)
2. If the one end is symmetrical to the other end, then
K = 3K (8-20)
3. If the one end is antisymmetrical to the other end, then
K =3K (8-21)
K’ denotes the modified stiffness factor. In parallel with Eq. 8-1, we may have
S’ = 4EK’ (8-22)

S’ being called the modified stiffness. A general definition for modified stiffness
is the end moment required to produce a unit rotation at this end (simple end),
while the other end remains in the actual conditions.

The following examples illustrate the process of moment distribution by
using the modified K values.

Example 8-5

Analyze the symmetrical beam in Fig. 8-13 by using the modified K value in the
center span.

Example 8-6
Analyze the symmetrical frame in Fig. 8-14, which was solved by the methods of
consistent deformations, least work, and slope deflection. Once again the method
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of moment distribution demonstrates its superiority over any other method previously
discussed.

Example 8-7
Analyze the frame in Fig. 8-10 by using the modified stiffness in beams ab, be, and
cd.: The solution is given in Fig. 8-15, which agrees with the result of Example
8-4.
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8-8 THE TREATMENT OF JOINT TRANSLATIONS

The procedure of moment distribution discussed thus far is based on the restriction
that the joints of the structure do not move. However, many frames encountered
in practice undergo joint translations. There are, in general, two types of loaded
frames in which joint translations are involved. The first is a frame under the
action of a lateral force applied at a joint, such as the one shown in Fig. 8-16(a);
the second is a frame that, together with loads acting on its members, forms an
unsymmetrical system, such as the one shown in Fig. 8-16(b). To handle the
latter type of frame, we may resort to the principle of superposition. An artificial
holding force to prevent joint translation is imposed on the structure and is
subsequently eliminated. Thus, the frame in Fig. 8-16(b) can be considered as
the superposed effect of the two separate systems indicated in Fig. 8-16(c) and
(d). In the first place [Fig. 8-16(c)], the translation of joints is prevented by
providing an artificial support at the top of the column so that moment distribution
can be carried out in the usual manner. The required holding force R is then
aobtained by statics. The next step [Fig. 8-16(d)] is to eliminate the artificial
restraint by applying to the top of column a lateral force equal to R but opposite
in direction. The resulting configuration is the same as that shown in Fig.
8-16(a). Therefore, the problem now reduces to dealing with a frame under
lateral forces applied at the joints.

To handle this type of frame, we consider the frame in Fig. 8-17(a) in which
Joints a and d are fixed, whereas joints b and ¢ undergo both translation and
rotation because of the lateral force P applied at the top of column. It is obvious
that if the joint translation of b is specified as A, then the joint translation of ¢
is determined and, in this case, is also A. Now the distortion imposed on joints
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b and ¢ may be regarded as the superposed effect of the two following separate
steps:

1. Translation without rotation [see Fig. 8-17(b)]
2. Rotation without translation [see Fig. 8-17(c)]

In step 1 joints / and ¢ are locked against rotation (68, = 8. = 0), and the
joint translation A is produced by applying a lateral force P,. It is clear that
some external restraints (i.e., locking moments) are required at joints b and ¢
in order to hold both joints against rotation. Also, end moments will be induced
in the members having relative joint translations according to Eq. 7-11, that is,
the respective value of —6EIA/I? for each column end in-the present case. We
call them the F.E.M. due to joint translations, from which the lateral force P,
can be figured. ‘

In step 2 further joint translations are checked by providing an artificial
support at the top of the column. Joints 4 and ¢ are then unlocked so that they
finally rotate to their actual positions. Recall that to unlock a joint means to
apply a moment equal but opposite to the locking moment at the joint. From
the resulting end moments, the holding force P, at the artificial support can be
figured.
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The preceding two steps complete the procedure of moment distribution
for frames having joint translations under Jjoint loads. The procedure differs from
that for frames without joint translation under member loads, only in the source
of fixed-end moments. In the former case, the fixed-end moments arise from
pure joint translations, whereas in the latter case, the fixed-end moments are
due to loads acting on the fixed beams as described in Sec. 8-2.

Referring to Fig. 8-17, we notice that the lateral force applied at the joints,
that is, the sum of P, and P,, is found to be a function of A, a value that we
usually do not know at the outset. However, A can be solved by the force

condition
P) + P2 = P

After the value of A is found, the resulting end moments, which are also expressed

in terms of A, can readily be determined.
As a simple illustration, let us analyze the frame shown in Fig. 8-18(a) by

the method of moment distribution. Because of the lateral force acting on the
column top, joint b and also joint ¢ will move to the right a distance A, causing
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a relative deflection between joints ¢ and b. We thus write the fixed-end mo-
ments due to joint translation equal to —6EIA/I? at column ends a and b. Since
M. = 01is known beforehand, we use modified stiffness for member bc to simplify
the calculation. Next, we perform the process of distribution and carry-over.
The complete analysis is given in Fig. 8-18(b). The resulting end moments are
found to be consistent with a horizontal reaction 9EIA/I® at support a, which
should be equal to the applied lateral force of 9 kN from ZF, = 0. Thus we

have

or
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Substituting this value in the result shown in Fig. 8-18(b), we obtain the answer
diagram given in Fig. 8-18(c).

Practically, we often start with a convenient value for A, or F.E.M., to
carry out the moment-distribution process and then correct the result thus obtained
by a constant of proportionality. The problem is re-solved in Fig. 8-19.

b
225 ba be c SkKN b .~ ¢
= T 7 > v
3 3 %A ("\ %A
-90 o 24 mkN
+30 | +60 9
:"? 30 mkN
60+75 _ 5y . )
=175 a 6 u-a
/A VA
Fig. 8-19
Note that we choose F.E.M. = —90 as a start. The final result of end

moments is associated with a lateral force equal to 22.5 kN. Multiplying the
obtained result by a correction ratio of 9/22.5 will give the answer.

8-9 ANALYSIS OF STATICALLY INDETERMINATE RIGID
FRAMES WITH ONE DEGREE OF FREEDOM OF JOINT
TRANSLATION BY MOMENT DISTRIBUTION

Example 8-8
Figure 8-20(a) shows a loaded one-story bent with an inclined leg. The relative K
value for each member is circled. The end moments were solved by slope deflection
in Example 7-6. Let us now re-solve them by moment distribution.
We begin by finding the relative end displacement for each member as shown
in Fig. 8-20(b). Next, we assume fixed-end moments, due to consistent joint trans-
lations, in proportion to the value of —6EKA/I:

_6E()A)

M, = Mf, = s say - 100
M, = M, = +6—E—(—21[](?3/4—)41 say +150
M, =M, = —% say —150

The process of moment distribution for this particular setup is shown in Fig.
8-20(c). Referring to Fig. 8-20(d), by applying M, = 0 for the entire frame, we
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find the resulting moments are consistent with a horizontal force P = 42.5 kips
acting at b:

(15.15)(35) + (11.5)50) — 109.1 — 1455 — 20P = 0
P = 42.5 kips

The final result, which is obtained by multiplying all the moments in Fig.
8-20(d) by the ratio 100/42.5, is shown in Fig. 8-20(¢).

Example 8-9
Determine all the end moments of the loaded frame in Fig. 8-21(a).
The complete analysis is as follows:

1. Hold the loaded frame at the top of the column, say at joint ¢, against sidesway,
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and obtain the end moments by the usual moment-distribution procedures [Fig.
8-21(b)).

2. From 2F, = 0 for the entire frame, calculate the holding force needed to
prevent sidesway. In this case, it is
4 - 1.5 =25kN
acting to the left, as indicated in Fig. 8-21(b).
3. Remove the artificial holding force by the application of an equal and opposite

force at the top of the column, and find the resulting end moments [see Fig.
8-21(c)].

4. Add the end moments from steps ! and 3 to obtain the final solution [see
Fig. 821(d)].
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Note that the analysis for step 3 [Fig. 8-21(c)] can easily be accomplished by
taking advantage of the result shown in Fig. 8-19.

The technique employed in the preceding examples can be used in analyzing
any frame having one degree of freedom of joint translation.

8-10 ANALYSIS OF STATICALLY INDETERMINATE RIGID
FRAMES WITH TWO DEGREES OF FREEDOM OF JOINT
TRANSLATION BY MOMENT DISTRIBUTION

A rigid frame having two degrees of freedom of joint transiation can be analyzed
by breaking it down into two independent cases in each of which only one degree
of freedom of joint translation is allowed to occur.

Consider the two-story frame in Fig. 8-22(a). To handle it, let us refer to
two separate cases, as shown in Fig. 8-22(b) and (c), each involving only one
degree of freedom of joint translation. Each of these cases can be analyzed by
the method of moment distribution previously described. For example, in the
case in Fig. 8-22(b), joints ¢ and d are held from translation by providing a lateral
support at d, whereas joints b and e are displaced horizontally because of a
force X, applied laterally at . A moment-distribution solution can then be
obtained, and all the end moments, shearing forces, and reactions are in terms
of X;. Let mX, denote the corresponding reaction of the lateral support at d,
m being a constant of proportionality. Note that the deflected shape (dashed
line) indicates the initial position of the frame where the joint displacement of
b and e has been introduced with all joints held against rotation. The final elastic
curve after the joints have been released is not shown.

A similar solution can be carried out for the case in Fig. 8-22(c), where
the pushing force is X, and the reaction of the lateral support at e is nX,, n
being a constant of proportionality.

The superposition of effects in the cases shown in Fig. 8-22(b) and (c)
results in the case shown in Fig. 8-22(d), in which all the internal forces and
reactions can be found as the linear combination of X y and X,. Comparing Fig.

mX_l + Xz
F, ¢ d c d ypmX, Xz, d & _c d
- - =TT ; >
\ 1
\ \ / // X
Fi b e XLE ) c\n b/ gyl b e
> 4 /
// ,’ Xl + an
S af ' f a / a S
A A A Zn o

(a) (b) (c) (d)

Fig. 8-22
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8-22(d) with Fig. 8-22(a), we see that (d) will be the solution of (a) by solving
X, and X, from
X, + nX, = F (8-23)
mX, + X, = F, (8-24)
A similar procedure can be used to analyze the two-stage bent shown in
Fig. 8-23(a) or the gable bent shown in Fig. 8-23(b).

F.
iy
F
A/ /A /
(a)
X, +nX, mX; + X,
F
L ’,
{b)

Fig. 8-23

Example 8-10
Find all the end moments for the frame in Fig. 8-24. Assume the same EI for all
members. This is the same problem as Example 7-8, which was solved by the
method of slope deflection.

o che 10ft

) d
20ft
20 ‘:;b e
201t

¥ a Ja

7, 77  Fig. 824
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To determine all the end moments by the method of moment distribution, we
begin with the analysis of the frame in Fig. 8-25(a). The antisymmetry of the system
permits us to use modified stiffnesses for members be and cd and to work with
only half the structure while balancing moments, as shown in Fig. 825(b). In this
case joints ¢ and d are held from translation by the lateral support at d, and joints
b and e are displaced horizontally an equal distance because of the lateral action
applied at b. Consistent with the joint translation and the property of structure,
we may assume the fixed-end moments for the columns as follows:

Mo, = My, = Mi = Mj, = —100
M}, = M, = Mi, = Ml, = +100

After releasing the joints and balancing the moments, we obtain a set of end
moments [see Fig. 8-25(b)] consistent with a pushing force of 36.13 applied at b
and a lateral reaction of 16.5 acting to the left at d [see Fig. 8-25(c)]. Note that
the reaction at d is first obtained from the baiance of shear of the upper story (i.e.,
from 2F, = 0 for the portion of frame just above the level be). The pushing force
at b is then determined by applying TF, = 0 for the entire frame. Multiplying the
result of Fig. 8-25(c) by the ratio X,/36.13 gives the solution of Fig. 8-25(a), as
shown in Fig. 8-25(d).

Next, let us follow the same procedure and analyze the frame in Fig.
8-26(a), in which joints b and e are held from translation by the lateral support at
¢, whereas joints ¢ and d are displaced horizontally an equal distance due to a
pushing force applied at ¢. Consistent with the sidesway and the property of
structure, the fixed-end moments for the columns bc and de may be assumed to
be

M. = My, = Mi, = Ml = —100

Taking advantage of antisymmetry by using modified stiffnesses in members
be and cd and working with only half the structure, we complete the process of
moment distribution as shown in Fig. 8-26(b). The resulting end moments are found
to be consistent with a pushing force of 13.75 applied at ¢ and a lateral reaction of
16.38 acting to the left at ¢ [see Fig. 8-26(c)]. In this case the force at ¢ is first
obtained from the balance of shear of the upper story, and the reaction at ¢ is then
determined from SF, = 0 for the entire frame.

Multiplying the result of Fig. 8-26(c) by the ratio X,/13.75 gives the solution
for the frame in Fig. 8-26(a), as shown in Fig. 8-26(d).

Let us now sum up the findings in the preceding two steps [Figs. 8-25(d) and
8-26(d)], as shown in Fig. 8-27(a). Moments and forces are taken positive following
the indicated directions.

For solving the frame in Fig. 8-24, we set

X, - 1.19X, = 20 (8-25)

X, — 0.455X, = 10 (8-26)
from which X, = 69.55
X, = 41.64

Substituting these in Fig. 8-27(a) yields the desired solution, as shown in
Fig. 8-27(b).
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XZ - 0455X1 C" ~ d 10" (’" s d
40 2 62ft-kips#[ STy
-207X, 62 ft-kips
+49X, This side same
-249X, 174 ft-kips
+ 508X, 38 ft-kips 38 ft-kips
X, — 119X, \--t’ \}o? 20% :'--;‘-b/ \.\..:
B ot~ R 2 hod~ pugt
4 AN d #1136 ki
2.70%,| 021X, 136 ft-kips / 'ps
—1.27X,| +382X, 174 ft-kips
273X, .
- 0.635X, . 164 ft-kips ‘164 ft-kips
R ‘+4r ‘t A
arrw 7j77.' 077177 ’7;77.
{a) (b}

Fig. 8-27

The small discrepancy between the foregoing result and the more exact solution
obtained by the slope-deflection method (see Example 7-8) is due to the fact that
we complete the moment distribution in each of the foregoing cases with only two
cycles. However, two cycles have provided sufficient accuracy for practical purposes.

Example 8-11
Find all the end moments for the frame in Fig. 8-28(a). Assume the same EI for

all members.

50% ’ Force (k)
41t 61t S0 1.045 1.045 Moment (ft-kips) 50
¢ i Id c..: ‘ 4 A— L{" “nd - “nd
2 ’ \‘L ‘?4\ # 3\5 ’.p‘ ’ ig ”4 ~
436 34.1 2 55 38.1 396
OO
9314 0.330
41t k| 526 ' 412 49 49 4717 46.1
100 100 100
b <-‘1 e \t)"I'/* ‘.}" \‘ ”" 79 N\ N o ‘ “--‘
—+ ¥ - + 3{ e b+ He
A @ N~ 72.51'- i o1 7.9 ,’..\ ,o\\ 80.41’"\
40.8 l 378
313 30 3.0 gs.s 343
0.330 55
D O
20.4~ ‘15.6 ‘4.2 42 162 19.8
47 306 472345 237 036 ~1f036 Ms2g L7 27
I AR o i e Ll D A A
(a) (b) {c) (d)

Fig. 8-28
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The analysis is as follows:

1. The frame is completely prevented from sidesway by introducing lateral supports
at joints d and e. Following the usual procedures for moment distribution, we
determine all the end moments and find that they are consistent with a lateral
holding force of 1.045 kips acting to the left at d and a lateral holding force of 0.330
kip acting to the right at e. The results are recorded, as in Fig. 8-28(b), by the
dashed symbols. (See also Fig. 8-29 for the process of moment distribution in this
step.)

2. Eliminate these artificial restraints by applying a set of equal and opposite
forces to the corresponding joints, as shown in Fig. 8-28(¢c). To analyze it, we take
advantage of the results of the preceding example [see Fig. 8-27(a)] and set

526 +43.6 - 341 — 41.2

20 = 1.045
¢ d
chb{cd dc | de
1 2 2 1
3 3 3 k3
0 1-72 +48 0
+24 |+48 -3 |-16
+18 [-16 +24 {12
-0.7] —-13 -8 -4
+1.5} —4 -0.7] =35
+08] +1.7 +28| +14
+43.6/—-43.6 +34.1{-34.1
+52.6 —41.2
+19] -0.2
—0.3 -2
+3 -7
+12 -8
+36 —-24
0 0
1 1] 1.045 +2345
—3.06 = 0.330
bc | b el ed ¥,
ba | be eb | ef
1 2 2 1
7] 3 il oz
0 |-144 +96 0
+36 | +72 —48 1-24
0 -24 +36 0
+3 +6 —-14 | =7
0 -7 +3 0
+18) +36 -0.5] -0.3
+4081 —934 +72.51-31.3
a Il
+204 1% <> <r-|—15.6
777\ f7
40.8 + 204 313 + 156
30 - 308 30~ 234 Fig. 8-29
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X, - 1.190X, = ~0.330 (8-27)
-0.455X, + X, = 1.045 (8-28)
and solve for X, =19 X, = 1.95

Substituting these in Fig. 8-27(a) yields the result recorded in Fig. 8-28(c) by

the dashed symbols.
3. The superposition of steps I and 2 will give the final solution of the moments,

as in Fig. 8-28(d).

8-11 ANALYSIS OF STATICALLY INDETERMINATE RIGID
FRAMES WITH SEVERAL DEGREES OF FREEDOM OF
JOINT TRANSLATION BY MOMENT DISTRIBUTION

The procedures of moment distribution used in the analysis of frames having
two degrees of joint translation can be extended to the analysis of frames having
multiple degrees of freedom with respect to sidesway. For a frame with n degrees
of freedom of joint translation, the moment-distribution solution may be broken
down into (n + 1) separate cases including:

1. A case in which the frame is held from joint translation by introducing
artificial supports

2. n independent cases in each of which only one degree of freedom of joint
translation is allowed to occur by maintaining (n — 1) holding forces at other
points where sidesway would take place

The superposition of these (n + 1) cases will give the final solution provided
that the artificial holding forces in step 1 are all eliminated by applying the results
obtained in step 2. This necessitates the solution of n simultaneous equations.

To illustrate this procedure, consider the four-story, two-bay building bent,
which has four degrees of freedom of joint translation, shown in Fig. 8-30(a).
The first step is to introduce artificial lateral supports at all the floors, as in Fig.

F, Fy
- -
R, P4 F A
{ ‘ ‘ ‘ ‘_1:2 __’Fz
X b4 y F _F
J77 777 Jz s ’Jx s I T
(a) (b) {c)
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8-30(b). to prevent the frame from sidesway. All the loads are then applied, and
a regular moment distribution without joint translation is performed to obtain
all the end moments from which the reactions (the holding forces) at these
supports can be found. We let F,, F,, F;, and F, denote these forces.

The next step is to eliminate all these artificial forces by applying a set of
equal and opposite forces at the corresponding points, as shown in Fig. 8-30(c).
The sum of the two steps of Fig. 8-30(b) and (c) will give the final solution.

However, to obtain the solution for the frame in Fig. 8-30(c) would require
the complete analysis of four independent cases, as shown in Fig. 8-31. In each
of the four cases, only one degree of freedom of sidesway is involved. We have,
therefore, no difficulty in determining all the end moments and the reactions of
the frame in terms of the lateral force applied to the floor level where the sidesway
is not inhibited. For instance, in Fig. 8-31(a) a lateral force X 1 is applied to the
first floor level which deflects sidewise. Note that the deflected shape (dashed
line) indicates only the initial position of the frame before the balancing moments.
Following the procedure described in Sec. 8-9, we find the reactions of the lateral
supports at the second, third, and fourth floor levels to be r, X,, r,X;, and
raX,, respectively, ry, ry, ry being constants of proportionality. The other
cases shown in Fig. 8-31 are similarly treated. It now remains to find X,, X,
X3, and X, by solving the four simultaneous equations,

X, + rpXy + r3Xs + rpX, = F (8-29)
X, + Xy + rsXs + ruX, = F, (8-30)
ra Xy + rnXs + X + rn X, = F; (8-31)
raX, + rpXs; + rpXs + X, = F, (8-32)

With X, X;, X;, and X, determined and substituted in the cases of Fig. 8-31(a),
(b), (c), and (d), respectively, we superpose the results to reach the solution for
the frame in Fig. 8-30(c).

rar X, 42X ra3Xs Xa
-3 > i - 7—>
- ’
r3 X, r32 X2\ \\ \\ Xils 4 4T3 Xa
—> By S i —+ > > —
. ’ I r X .
r2i X, \\ \\ \\ Xy |/ / 2303 "2454
3 > 1 ~In
\ \ NoXy / S 12X riaXa
> - - -—
T Y ; > 4 4
' 4
/’ / / r13Xs
e T wm v o wm wm W 7 T T

(a) (b) © (d)
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8-12 MATRIX FORMULATION OF THE MOMENT-
DISTRIBUTION PROCEDURE

The moment distribution is a cyclic process and tends to be convergent to an
exact solution. This can best be illustrated by the matrix formulation for the
moment-distribution process listed in Fig. 8-9.

We begin with a column matrix A representing the fixed-end moments. In

this case,
(M) (-30)
M, 30
M:. ) ~40
= ‘ = 8-33
A=\ ( a0 833
M-, ~30
M. J . 30

See the first row of Fig. 8-9.

Next, we form a distribution matrix B with distribution factors as its con-
stituents in such a way that the matrix product BA (a column matrix) will give
the respective distributed moments. Thus,

0 0 0 0 00 -30 0
0-3i~% 0 00 30 5
_]10-4-% 0 00 —-401 5 i
BA=10 0 0-1-10]|) 4~ {-5 (8-34)
0 0 0-4-30 -30 -5
0 0 0 0 00 30 0
See the second row of Fig. 8-9. Apparently, the resulting moment of the first
cycle is
M,=A+BA=(+BA (8-35)

in which 7 is a unit matrix.

Next, let the matrix C perform as a carry-over operator so that the matrix
product CBA, a column matrix, will represent the respective carry-over moments.
Using the result of Eq. 8-34, we have in this case

0£00007( o0 25
100000 5 0
_looozool) sl _J-2s
CBA=1003000]|)-5() 25 (8-36)
0000045 0
000030]( o ~25

See the third row of Fig. 8-9. The carry-over moments constitute a new set of
fixed-end moments. We repeat the same process by replacing A with CBA in
Eq. 8-35 to obtain the moments of the second cycle. Thus,
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M, = (I + B)CBA
For simplicity, we introduce D = CB, and Eq. 8-37 becomes
M, = (I + B)DA
Similarly, we can have
M, = (I + BXD)'A
M, = (I + BX(D)A

245

(8-37)

(8-38)

(8-39)

in which (D)* = (D)D), (D)’ = (DXD)(D), and so on. (Note that at the end of
first cycle, the total moment is M,; at the end of second cycle, the total moment

isM, + M,, and so on.) Summingup M,, M,, . . .

moment:
M=+ B)A + DA + (DA + (DPA + ---]
1
=+ B)(m)(fi)
= (I + B)I — D)"'(A)
In our case

1 0 0 0 00

0 4-% 0 00

_10-%4 % 0 00

I+B=14 0 0 1-40

0 0 0-% 40

[0 0 0 0 01
03000070 0 O
100000(0—4% -2
_ _]l0003200}|0~% -3
D=CB=1001000]||l0 0 o
0000040 0 O
0000320 [0 0 O

[0 -1 -1 0 00

0 0 0 0 00

1o 0 0-1-%0

T10 -3-% 0 00

0 0 0 0 00

0 0 0-1-10

|

O oo O DD

, we obtain the final resulting

(8-40)

(8-41)
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11400

0 -1
010000
001440
013100

000010
1000441

.-'_
i

E 1

Sl o o

|
|
I

(8-42)

OO O~

P N = SR8
o oo oo
P oshiko

—_o o000 o

b S

0

|
o
-
o

Substituting Egs. 8-33, 8-41, and 8-42 in Eq. 8-40 gives

M d‘.

—26.67
36.67
—36.67
36.67
~36.67
26.67

(8-43)

which can be checked with the result shown in the last row of Fig. 8-9.

PROBLEMS

8-1.
8-2.
8-3.
8-4.

Solve the end moments for Prob. 7-1 by moment distribution.
Solve the end moments for Prob. 7-2 by moment distribution.
Solve the end moments for Prob. 7-3 by moment distribution.
Solve the end moments for Prob. 7-4 by moment distribution: (a) not using modified

stiffness; (b) using a modified K value in the center span.

8-5.

1.2
bil#llilll

B K K B B O
1.2%/4

16t

.

>

ey

X

Analyze the box shown in Fig. 8-32 by moment distribution. Assume constant EI.

12ft

Fig. 8-32
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8-6. Analyze the continuous beam in Fig. 8-33 by moment distribution. Assume constant
El

1.2%ft 1.2%/1t 1.2%/ft
,;,;,D M 3 g e
|
|

Sat24ft = 1201t

—‘L§d

Fig. 8-33

8-7. Analyze the continuous beam in Fig. 8-34 by moment distribution. Take advantage
of modified stiffnesses, replacing the unsymmetrical loading system with a symmetrical
and an antisymmetrical system. Assume constant EI.

61t
t i d

12 ft

12% 4k

[+
757, 97
(L 16 ft Cf
g

- L

>

> Fig. 8-34

8-8. Analyze the frame in Fig. 8-35 by moment distribution and find the reaction at

support c.

30 kN

a a b c Y,

1 =

| 3m 3m [ 2m
3m | |
ET constant
e
o Fig. 8-35

8-9. With reference to Fig. 8-36, find the stiffness for end a of member ab if a hinge
connection is inserted in the member at ¢ as shown.

a 4 b

’79”. ET constant
4 | h
| -

ANNNNNNNY

Fig. 8-36
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8-10. Use the method of moment distribution to find the fixed-end moment and the spring

Moment-Distribution Method

force for the beam shown in Fig. 8-37.

AN

12

Fig. 8-37

Chap. 8

8-11. Analyze each of the frames in Fig. 8-38 by moment distribution.
1S kN
| 6m 3m Sm
60 kN lb ¢ g
— —— ¢
3EI a El V.
El 3m
6 E Sm EJ
m 4 d
7%
d
WW/
X 4
A
(a) (b)
60 kN
}‘Zmﬁ ___L. 12kN/m
——0b < b ¢
El E 7B
3m ’
a £
4m EI Ef B
| 4m [ Sm
a d
— Vi | ’
(¢} (d)
Fig. 8-38

8-12. Use the method of moment distribution to find the fixed-end moments for each of

the beams of Prob. 7-12. .
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8-13. Solve the frame in Fig. 8-39 by moment distribution.

-d

61t
El constant oft
9T 8n 8ft 8 ft

Fig. 8-39
8-14. Solve each frame of Prob. 7-11 by moment distribution.
8-15. Analyze the frame in Fig. 8-40 by moment distribution.

/1“/ft
I A O B A B —_
/i s 31 4l EF
!'T LT T T T
d 41 ¢
37 37 301t
201t 21
a b c
77, 77 777
L 40 ft L%A 40 ft _

Fig. 8-40

8-16. Use the matrix formulation of moment distribution to solve Probs. 8-1 to 8-3.



Matrix Force Method

9-1 GENERAL

During the past decades, the rapid development of computers and the growing
demand for better methods of analysis for complex and lightweight structures
led to the development of methods for matrix analysis of structures. The use
of matrix notation in expressing structural theory is in itself simple and elegant,
but the practical value of matrix analysis would not have become clear without
the invention of the high-speed digital computer.

It is true that the classical methods of structural analysis, such as the method
of consistent deformations and the slope-deflection method, which had only
limited use in the past because of operational difficulties in solving a great number
of simultaneous equations, have now regained their strength because of the
advent of the digital computer. It is also true that these methods can be conveniently
expressed in matrix forms. However, the matrix method, to be discussed in this
and the subsequent chapter, has its unique theoretical basis and particular pro-
cedures. The idea is based on the finite-element concept that enables the step-
by-step buildup of the force-displacement relationship of a structure from the
basic elements of which the structure is composed.

The matrix analysis of structures commonly falls into two categories: the
force method (flexibility method) and the displacement method (stiffness method).
The force method treats the member forces as the basic unknowns and relates
the forces to the corresponding displacements by flexibility matrices, whereas
the displacement method regards the nodal displacements as the basic unknowns
and relates the displacements to the corresponding forces by stiffness matrices.
As will be seen, a duality exists between the two approaches. We discuss the
force method in this chapter and the displacement method in Chapter 10.

250
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9-2 BASIC CONCEPTS OF STRUCTURES

Structures such as trusses, beams, and rigid frames are defined as assemblages
of structural elements jointed together at 4 finite number of discrete points, called
nodes or nodal points, and loaded only at these points. The term node is used
instead of joint because often the application point of a concentrated load, not
the conventional joint, is taken as a node.

Distributed loads or any other type of member loads acting between the
nodes can be replaced by equivalent loads at the nodes. To illustrate, let us
consider the three-span continuous beam shown in Fig. 9-1(a), whose center
span is subjected to a distributed load. Let us first fix artificially the joints i and
J of the center span [Fig. 9-1(b)] and then release them [Fig. 9-1(c)]. Since the
application and removal of the artificial forces are neutralized, the original con-
figuration of Fig. 9-1(a) is therefore statically equivalent to the combined effects
of Fig. 9-1(b) and (c). The equivalent nodal loads at i and j in Fig. 9-1(c) are
the reverse of fixed-end actions (moments and shears) in Fig. 9-1(b). Note that
the final forces and displacements in the loaded member i-j must be obtained
by superposing the effects of the fixed-end beam and those resulting from the
nodal-force analysis of the original structure.

:

§o¢>—€»

P rTIl fh

(a) (c)

Fig. 9-1

Any complicated structure can be cut into simpler components. For instance,
a’'truss may be considered as composed of many two-force members pin-connected
at their ends. A rigid frame may be taken as a composition of a number of
three-force members or other convenient units. The behavior of the subdivided
elements, as well as the whole structure, must satisfy the following basic conditions:

1. Equilibrium of forces
2. Compatibility of displacements
3. Force-displacement relationship specified by the geometric and elastic prop-

erties of the elements

These conditions are generally required by a linear structure no matter what
method is used.
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In the systematic analysis of structures, it is essential to introduce the
notation used for force and displacement in this and Chapter 10. Consider the
frame in Fig. 9-2(a), which is composed of three elements (members a, b, and
c) subjected to external loads (nodal forces) denoted by R, R,, and R; with the
corresponding nodal displacements r,, r,, and r;, respectively.

A typical member element is shown in Fig. 9-2(b) and is generally subjected
to the internal forces of the end moments, denoted by Q; and Q;, and the axial
forces, denoted by Q,. The member is also subjected to end shears; however,
the end shears can be expressed in terms of the end moments and therefore are
not considered independent forces. Associated with the end moments and axial
forces are the end rotations ¢; and ¢, and the axial elongation g,. The signs
shown in Fig. 9-2 are considered as positive. A superscript is used for these
quantities to identify their belonging to a particular member. For instance, Q¢,
Qj. and Qf indicate the internal forces for member a, and ¢/, g%, and g} their
corresponding deformations.

R,

R,
[ yb LN

—

R, r;/’ﬁ"r; C%;/./’ o o /qj__ gfg-’gk
ail / NZ:—_/ —»l—<—‘h

[

|

i

{a) (b}
- Fig. 92

In matrix representation, we use a column matrix R,

\ -
to denote ail the nodal forces, and a column matrix r,

(rl

r,

r=4¢"

\ -
to denote the corresponding nodal displacements.
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Also, we use a column matrix Q,
(09

a
J

Q =4Q:bk

i
b
Q7

.-/
to denote all the internal end forces for members a, b, . . . , and a column matrix
q,

@

a
d;

\-/
to denote the corresponding internal displacements.

Frequently involved in the subsequent discussion is the principle of virtual
work, which serves in many cases as an effective substitute for the equations
of equilibrium or compatibility. The principle simply states that for an elastic
structure in equilibirum, the external virtual work is equal to the internal virtual
work (virtual strain energy). The virtual work may be the result of either a
virtual displacement or a virtual force. Thus, if virtual displacements are used,

we have

'R = 8¢"'Q (9-1)
On the other hand, if virtual forces are used,

8R™r = 8Q'q (9-2)

9-3 EQUILIBRIUM, FORCE TRANSFORMATION MATRIX

For a statically determinate structure, each of the member forces may be expressed
in terms of the external nodal loads by using the equilibrium conditions of the
system alone. Thus,

Q1 = bllRl + bIZR'_’ + ...+ b,R,



254 Matrix Force Method  Chap. g

Q: = b:]Rl + bz:Rz + ...+ ban"

(9-3)
Qm = bmlRI + bm2R2 +...0F bmn R,,
in which 0, = Q¢, 0, = Qj..... Observe that R;, R,, . .., R, represent
the total set of applied loads and Q1. Os, ..., O, the total set of member
forces. No connection between the subscripts on R and Q is implied.
The matrix form for Eq. 9-3 is
Q = bR 9-4)
where
bl] blZ <o bln
bZl b22 - e . b2n
b=1" - ’ (9-5)
bml me . . : b'""

is called the force transformation matrix, which relates the internal forces to the
external forces. Matrix b is usually a rectangular matrix in which the typical
element b, is the value of the internal force component Q; caused by a unit
value of external load R;. Note that b is merely an expression of equilibrium
for the system.

As for a statically indeterminate structure, the internal member forces cannot
be expressed in.terms of the external loads by equilibrium alone. However, as
previously stated (see Sec. 6-1), a statically indeterminate structure can be made
determinate by removing the redundant elements. The statically determinate
and stable structure that remains after the removal of the extra restraints is called
a primary structure. We then consider the original structure as equivalent to
the primary structure subjected to the combined influences of the applied loads
and the unknown redundant forces, thereby treating the redundants as a part of
the external loads of unknown magnitude. In this way, we can express member

forces in terms of the original applied loads R and the redundant forces X as
- ,”Q:—; ZZR;R + bXA:ﬁ jeefanslen 4 ,//'("' ol ©-6)

< R | 9.7

or = [blb. {2 -
Q = [bglby] % -7
where b, and by are force transformation matrices representing the separate
influences of the known applied loads R and the unknown redundants X on the

member forces. They are geneally rectangular matrices.
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9-4 COMPATIBILITY

Compatibility is a continuity condition on the displacements of the structure
after the external loads are applied to the structure. Compatibility must be
brought into the analysis of statically indeterminate structures since the equilibrium
equations alone do not suffice to solve the problem.

If we let ry denote the prescribed displacement matrix corresponding to
the redundant force matrix X, the compatibility conditions used in the force
method for solving a static structure are that the displacements at all the cuts
of redundant points caused by the original applied loads, and the redundant
forces must be made to be equal to ry in order that the continuity of the structure
can be maintained. For a loaded structure mounted on rigid supports, the gap
in the displacements at redundant points resulting from applied loads is precisely
removed by the redundant forces. Therefore, the compatibility condition is

ry =20 (9-8)

9-5 FORCE-DISPLACEMENT RELATIONSHIP, FLEXIBILITY
COEFFICIENT, FLEXIBILITY MATRIX

A flexibility coefficient f; is the displacement at point i due to a unit action at
point j, all other points being unloaded. Apparently, the flexibility coefficient
constitutes a relationship between deformation and force. Applying the principle
of superposition, we may express the deformation at any point of a system
caused by a set of forces in terms of the flexibility coefficients.

Our intention is, first of all, to establish the relationship between the member
displacements and the member forces of a structure. Consider a typical member
a taken from a plane structure as shown in Fig. 9-3. As before, the mem-
ber forces are represented by a column matrix Q¢

o7
0 =10¢
;:
and the corresponding member deformations are represented by a column matrix
q°,
qt
q° = 149;
qx
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Note that the clockwise end moments and rotations and the tensile axial forces
and elongation are considered as positive.

Using the flexibility coefficient f};. we may express each of the member
deformations in terms of the separate influences of the whole set of member
forces:

g! = [1Q! + [0 + F404
q; = 507 + [507 + 10k (9-9)
4 = FLOT + FL05 + [10%

or in matrix form,

qa - f‘uQu (9_10)
fii fii fix

in which fO= 15 £ fi (9-11)
s i i

is defined as the element flexibility matrix. Clearly, the coefficient, for instance
fii. is given by
fi=qf as Q=1 0j=0f=
The rest can similarly be defined.
The descriptions above refer to an individual element. For a structure

consisting of a, b, . . . elements, we have
q(l =ftlQll
qb :beb
q Q’
q 0

Let g=4.7 and Q=

These equations can be put in the matrix form
q =f0 (9-12)
fe \
f
where f= ) (9-13)

which is a diagonal matrix with element flexibility matrices as its constituents.
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Since the flexibility coefficients of Eq. 9-11 serve to relate the member
deformations to the member forces, they are certainly governed by the geometric
and material properties of the member. Suppose that the member is prismatic
with length L, cross-sectional area A, moment of inertia /, and modulus of
elasticity E and regarded as simply supported. The elements in the first column
of f“ are, by definition, the member deformation resulting from Q¢ = 1. These
are found to be

a

. L
% = rotation of the leftend = —
ion of the left en 3E]

L

il

rotation at the rightend = ———
& 6El

f4. = elongation of the member = 0

Note that f% and f¢ can easily be determined by the conjugate-beam method
and that f¢ = 0 is apparent. All the other elements can be obtained similarly.
Thus, the member flexibility matrix is given by

L _L
3EI ~ 6EI
oo | oL L
=\~ g O (9-14)
L
0 0 =
AE

Note that the member flexibility matrix is symmetric because of reciprocity.
If the effect of axial forces in the member is neglected, as is usually done
in rigid-frame analysis, then

L 2 -1
4= — 9-15
I = e [—1 2] G-1)
For a truss member subjected to axial forces only,
oo | 2
ro[L]

We have already established the relationship between the member defor-
mations and the member forces (the internal relationship). Next we must establish
the relationship between the nodal displacements r and the nodal forces R (the
external relationship). This may be accomplished by using the technique of
virtual work. We start by Eq. 9-2:

8R™r = 8Q7q (9-17)
Based on Egs. 9-4 and 9-12, namely,
Q = bR and qg = f0
we have 80 = bR
or 5Q7 = 8R'p’ (9-18)
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and g = bR (9-19)
Substituting Egs. 9-18 and 9-19 in Eq. 9-17 yields
3R'r = 8R'H'fBR

from which r = b'fbR (9-20)
If we let

F = b'fb (9-21)
F being called the total flexibility matrix or flexibility matrix of the structure,
then

r=FR (9-22)

For a statically determinate structure Eq. 9-22 gives a direct solution of all the
nodal displacements in terms of the external nodal forces.

If the structure is statically indeterminate, then the external work must
include the work caused by the redundant forces: also, Eq. 9-6 must be used
instead of Eq. 9-4. To relate the displacements to the corresponding forces, we
begin the derivation by

8R'ry + 8X'ry = 807g (9-23)
where ry and ry are displacements corresponding to nodal forces R and redundant
forces X, respectively. Using equilibrium Eq. 9-6 and virtual force, we have

50 = bedR + bydX

so that 80" = 8R"b} + 8X7h% (9-24)
Also, because of Egs. 9-12 and 9-6,
q = fQ = fbeR + fbyX (9-25)

Substituting Eqs. 9-24 and 9-25 in Eq. 9-23 yields
8R'rg + 8X'ry = (SRb + SX bT(fbrR + fbyX)
or  B8R'ry + 8X'ry = 8RT(bRfbeR + bLfbyX) + SXT(b%fbeR + bLfb,X)

Comparing the virtual forces on the left and the right sides of the preceding
equation, we have

rg = bpfbgR + bhfbyX
ry = bYfbgR + bifb.X
These may be arranged as

'R = FRRR + FRXX (9'26)
Fy = FXRR + FxxX (9‘27)

if we let Fpr = bifbe Frx = brfby
(9-28)

Fyp = b;be Fyy = b,{'fbx
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Equations 9-26 and 9-27 may be put in matrix form as

Tr [FRR FRX} R
S T (IS e (9-29)
Fx Fyp i Fxx X
For structures on rigid supports Eq. 9-29 becomes
I'r ’:FRR FRX} R
-------- S [E et S I g (9-30)
rx = Fxr i Fyx X
The compatibility condition is, therefore,
FyrR + Fy, X =0 (9-31)
from which X = —FyyFxiR (9-32)

Equation 9-32 expresses the solution for the redundants.

Substituting Eq. 9-32 in Eq. 9-26, we finally relate the unknown nodal
displacements to the corresponding applied nodal forces, in a statically indeterminate
structure, covering the effects of the redundant forces.

rr = (Fpp — FRXF);)}FXR)R
or simply rg = F'R (9-33)
lf we let F’ = FRR - FRXF.;)}FXR (9'34)
F’ being the flexibility matrix of the indeterminate structure.

With the redundants X found to be —FzyFy:R, the member forces are

then solved by equilibrium:
Q = brR + byX = (bg — byF .;)}FXR)R
That is,
Q = bR (9-39)
if we let b’ = by — byFxxFxr (9-36)
b’ being the force transformation matrix of the indeterminate structure, relating
directly the member forces to the applied nodal loads covering the effects of the

redundants.
An alternative from of F' may be obtained in terms of b':

F' = bLfb' (9-37)
since F' = Fgg — FpxF xxFxg
= b,T;f b — blTef byF A_’):'FXR = b;f (br — byF }E)}FXR)
which yields Eq. 9-37. Note that Eq. 9-34 for finding F' is quite general but
that the alternative form given by Eq. 9-37 is more convenient if b’ is first

determined.
The following identity is useful for checking results:

byfb’ =0 (9-38)



260 Matrix Force Method Chap. 9

This can easily be proved as follows:
b;fb' = b;f(bk - bxF§.!}FA'R) = Fyg — FXXF);)}FXR
=Fyxp — Fxp =0

9-6 ANALYSIS OF STATICALLY DETERMINATE
STRUCTURES BY THE MATRIX FORCE METHOD

As developed in Sec. 9-3, for a statically determinate structure, the internal
forces Q can be solved by equilibrium alone:

Q = bR
See Eq. 9-4.
Also the nodal displacements r can be solved by
r = b'fbR
See Eq. 9-20.

Assume that the purely statical task of evaluating the force transformation
matrix b is not difficult, although this phase of analysis may cost a considerable
amount of labor in complicated problems.

The procedure for analyzing a statically determinate structure by the force
method is as follows:

1. Define the external nodal loads R.
2. Define the internal member forces Q.
3. Determine the force transformation matrix b.

Consider the elements of the first column of 5. If we let
RI:I R2=R3="'=Rn=0
it is readily seen from Eq. 9-3 that Q,, 0, ..., Q, are the elements of the
first column. The rest can be obtained similarly.

4. The internal member forces Q are then solved by

Q = bR
5. Determine individual element flexibility matrices o re ... according to
Eq. 9-15 or 9-16, and assemble them as a diagonal matrix,
fa
fb

6. Compute the flexibility matrix of the structure,
F = b'fb
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7. Find the nodal displacements r,
r=FR
Example 9-1

Find the bar forces of the truss shown in Fig. 9-4. Find also the deflections cor-

responding to the applied loads R, and R,. Assume that L/A = 1| for all members.
The load matrix is

R,
1& b R,
5 '
! a c
d e
i
{ ol
I ™ Fig. 9-4
The truss has five bars designated by a, b, ¢, d, and e. The member-force
matrix is
Q
o
0=40
o
Q(’
The force transformation matrix b is given by
-1 0
0 0
b= 0 -1
0 2
0 0

in which the first column contains the bar forces of the truss in Fig. 9-4 in the
order a, b, c, d, e, resulting from R, = 1, R, = 0. The second column contains
the corresponding bar forces resulting from R, = 1, R, = 0. From equilibrium

-1

: 0
o 0 0 R,
d -1 R,
0 V2
0

S
I
[ e )
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For individual members the flexibility matrices are found to be
i
@ ofho_opo opd o ope o D
S AT
since L/A = 1 for all members. Thus, the diagonal matrix is
i !

f - fn fd -

1
1

1
E 1
fe 1
The total flexibility matrix is then determined:
F = b'fb
i

_[-10 0 00]1 '
00 -1 v2 of E 1

_1fro
T E|0 3

The nodal displacements r are solved by

DO O -

|
o&-—-oo

r=FR
iy _ _1_ 10 Rl
ry a E 0 3 Rz
o _R 3R,
r = E r, = E
Example 9-2

Find the deflections corresponding to the applied loads for the cantilever beam
shown in Fig. 9-5(a). Assume constant EJ.

Since the loaded point of R, must be considered as a nodal point, it divides
the beam into two segments, designated as member a and member b in Fig. 9-5(b).
The internal member forces are shown by dashed lines. From equilibrium

RI::IRZ:lR}:l

Q? —L| -(L1 + Lz) —1 Rl
_ oil _ 0 L, 1
Q= bR o= o L -1 {gz}
4 0 0 1 3
‘ R, Rz R, R,
/! ‘ ‘) &,Q.’ = :'Q? J
aL L, o L TR 1~ a « ~ b QIh )R,
e H > J
{a) ) !

Fig. 9-5
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Note that the elements of the first column of matrix b are the member forces

caused by R, = 1, R, = R; = 0 for the beam shown in Fig. 9-5(b). This gives
Q= -L, Qi =0=0;=0
The second column of matrix b contains the member forces resulting from
R2 = l, Rl = R3 = (. Thus,
Qi = - + Ly 0j =L, Q= -L, Qi =0
And the third column of matrix b contains the member forces due to a unit couple
applied only at the free end of the beam (i.e., R; = 1, R, = R, = 0). This gives
Qf=-1 Q=1 Q=-1 Q=1

The individual member flexibility matrices are
fa — L 2L| —L‘ fb = L 2L'_y ‘Lz
6EI| L, 2L, 6EI| -L, 2L,

2L, -L, 0 0
fod|-Lo2L 0 0
6EI| 0o o 21, -L,

0 0 *Lz 2L2

The total flexibility matrix F is obtained from

F = b7fb = [ —(Ll + Lz) Lz _LZ 0] ( )

from which

-1 i -1 1| \SE
2L1 _Ll 0 O _Ll —(L[ + Lz) _1
-L, 2L, O 0 0 L, 1
0 0 ZLZ "Lz ] 0 —L2 - ]
0 0 -L, 2L, 0 0 1
L 2L} + 3LiL, L
3EI 6EI 2E]
203 + 3L, (L, + Ly (L, + Ly*
6EI 3EI 2F1
L &L+ L) Li+L
2E] 2EI EI
Thus,
L 2L% + 3L1L, L7
3ET 6EI 2EI R
it @+l G+ LY )R
: 6EI 3EI 2EI R
73 2 2 3
i (L, + Ly L+ L
2E1 2F1 EI
3 r3 2 2
R,(2L; + 3LIL R,L
or ro= R\L; + A(2L; 1L>) + 2 (9-39)

3ET 6E1 2EI
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= R(2L} + 3L3L,) RAL, + L, + Ry(L, + L,y

: 6E] Ry 2E] (9-40)
R\Li  RoAL, + L) RyL, + La)
= 2 9.4
" %Er YT 2m - El -4D)

As a particular problem, find the vertical deflection and the rotation at the
free end of the loaded cantilever beam shown in Fig. 9-6.

4 )
4_ L, *L L, |

El constant Fig. 9-6

To do this, we set R, = P, R, = R, = 0 in Eq. 9-40 to obtain
e PQ2L] + 3LiL,)
T 6El
which is the resulting vertical deflection of the end of the beam, and we set R, = P,
R, = R, = 0in Eq. 9-41 to obtain
PL;
2EI
which is the resulting rotation of the end of the beam.

ry =

9-7 ANALYSIS OF STATICALLY INDETERMINATE
STRUCTURES BY THE MATRIX FORCE METHOD

As developed in Secs. 9-3 to 9-5, the procedures for analyzing a statically in-
determinate structure by the force method are given as follows:

I. Define the external loads R.

2. Define the internal member forces @, and specify the redundants X.
3. Calculate the force transformation matrices br and by from equilibrium:

Q= [bRIbX] {g}

4. Determine the individual element flexibility matrices £, f?, . . . , and assemble
them to obtain f

fb
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5. Calculate Fyg:

Fxp = b,{'fbn
6. Calculate Fyy:

Fxx = b/{'f bx

. Find the inverse of Fyy.
Solve the redundants X by

X=-F );;F xrR
and substitute X in the equilibrium equation to obtain the member forces 0.

0 )

9. Alternatively, we may find b’ by
b' = bp — byF 3iFxr
and obtain the member forces Q by

Q=bR

10. If the nodal displacements are desired, calculate F” by
F' = bifb'
and find r; by re = F'R

As seen in the latter part of Example 9-2, if the points where the displacements
are desired are not actually loaded, then we must apply fictitious loads of zero
value at these points in order to carry out the procedures listed above.

Example 9-3

Find the bar forces of the truss in Fig. 9-7(a) by the force method. Also find the
nodal displacement corresponding to the applied load. Assume that E = 30,000
kips/in.? and L(ft)/A(in.?) = 1 for all members.

The truss shown in Fig. 9-7(a) is statically indeterminate to the first degree.
Let us select bar e as the redundant and denote the external load of 12 kips by R,,
as shown in Fig. 9-7(b). The bar forces are denoted by Q°, 0, ..., Q. From
equilibrium based on the primary structure of Fig. 9-7(b),

c 12+ c R,
5 -
S S
X
b d 9 ft b d
e 4
a v a
" 12t 7
i 1

(a) (b)
Fig. 9-7
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R =1X-=
0 1] -4
0’ R
ol _| 1] -1[R
(7] o] -3 X
o 0 1
o) L-t] 1
bR by(
since L/A = 1 for all members
1
1
1 1
f= E 1
\
1
Thus,
FXR = b{’fbﬂ
(N
i
4 i (s)d Mo 33
=l-i-t--pin(g)d gr= -3
0
\—3J
Fyy = b;fbx
F— 4
-3 )
1y} -4
=|— —% —% — -}« ==
[-3-%-4 %11](15) (" F
1
\ 1J
E
-1 _ et
FXX - 4
The redundant force X is then solved by
X = "F,\_'AI'FXRR
E 33 .
= —(Z> <—?) (12) = 9.9 kips
Substituting in the equilibrium equation, we obtain
o 1 —-#] 4.08
0’ i -3 3.06
oL I -3 n2{ _ 4.081,.
U1 0 —2])99[ = —s.04(kips
o 0 1 9.90
ol -3 ot -5.10
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Alternatively, we find
b' = by - bXF/\jAI’FXR

4
1 ; 0.340
8 —_
] 5 0.255
4 IV J =3 U(EN) 33 ) 0340
0 —-if\4 E) ] -049
0 I 0.825
-3 i -0.425
and obtain Q by Q = b'R:
Qo 0.340 4.08
o° 0.255 3.06
ol | 0.340 ) a08],.
07 =1 ~0.495 ( 12) = | _s5.94( KiPs
Q 0.825 9.90
Lo ~0.425 -5.10
To find r,, we first calculate the flexibility matrix of structure F':
F' = b fb'
0.340
0.255
1 0.340 1.4
— 3 —3 — = e—
=[13100 -4 <E> ~0495( = E
0.825
—0.425
The displacement r, is then solved:
= F’Rl
(L4 _ (1412
= (E) (12) = 30,000 ~ 0.00056 ft

in the direction of the applied load.

Example 9-4
Find the member forces (end moments) of the rigid frame in Fig. 9-8(a) by the force
method. E is constant.
The frame shown in Fig. 9-8(a) is statically indeterminate to the second degree.
It may be made determinate by inserting two pins as in Fig. 9-8(b). Then the
structure is subjected to the original applied loads denoted by R, and R, together
with the redundant couples X, and X,. The member forces (end moments) in Fig.

9-8(b), Of, Qf, ..., are shown by dashed lines.
The force transformation matrix is obtained by considering the influences of
R, =1,R, =1,X = 1,and X, = 1 successively and separately, as shown in

Fig. 9-9.
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10*
101t _10ft
| Y ]
@n }
] ¢ d
L =10ft ) )
\resers
(a)
4}{1( ‘10“
k
X, ,‘;Qf \“{Qf 10){/ \,{f \; 10
N~ A
TR A M2 392 e
] ft-kips ft-kips ft-kips
Q 42 fi-kips
| | 4 398*
77?6-6'21 S¢--
| e
b 794
(b} ()
Fig. 9-8
R'=IR2=l X|=1X2=]
o [0 -1 11
i 0 0 -1 0
: 0 0 oo o
4 _é 0 __l_ l R:
J ! - 2 2 2 2
| L .
Qi ~ 0 l —l X[
. 2 2 2 X,
i 0 0 0 1
! 0 0 0 -1
?J 0 0 0 0]
- b by
From individual member flexibility matrices, we form
2 -1 N
-1 2
IS
- L -5 1
f= SE 1~
-3 1
2 -1
N -1 2

Chap. 9
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1T

Fig. 9-9

Using bg, by, and f found previously, we obtain

L'l 3 -3
FXR=b)T(be :E[_;'; _2]

T L |8 2
FXX— bebX'" 6E1 2 6
[ ) —2]7
6erl-2 8

6N (1\[ 6 -2
_1_—__ — R
w e T (B )
2 6

The force transformation matrix of the indeterminate structure is

b = bg ~ bXFAj)}FXR

0 -L| 1 1)

0 0 -1 0

0 0 1 0

L 11

|72 0 2 2

| L 11

2 0 )

0 0 0 1

0 o 0 —1

0 o] | 0o o
6L (1 6 -2 (L i -3
L/\44)| -2 8|\err)| -2 -2
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0 -88] (-3 -48] T
0 0 -12 28 12 -28
0 0 12 -28 -12 28
o Lj-4 0] L |[-135 41 L|-305 -4
88| 44 0] 8| 135 -4 88| 305 4
0 0 -15  -20 15 20
0 0 15 20 -15 =20
[ 0 0] 0 0] 0 0_]
The end moments are then sf)lved by Q = b'R:
¢ 3 —40]
o 12 -28
’ -12 28
JOL_L[-305 -4|[R,
0 (38| 305 4R,
. 15 20
¢ -5 =20
d
@2 Lo o
Using L = 10ftand R, = R, = 10 kips, we obtain
Q¢ = —42 ft-kips
7= -0 = —18.2 ft-kips
Q) = ~Qf = —39.2 ft-kips
Q; = — Q! = 39.8 fi-kips
Qi=0

To check, we find that the identity
byfb' =0
is satisfied by substituting in the values of by, f. and b’ previously found. The

answer diagram for the end moments together with the reactions at the supports
found by statics is shown by the dashed line in Fig. 9-8(c).

Example 9-5 p

Find the end moments for the rigid frame shown in Fig. 9-10(a) by the force method.
Assume constant EI,

The equivalent form of the given loaded frame is shown in Fig. 9-10(b).
Because of symmetry, the vertical reaction at each support of the frame is known
to be 6 kips acting upward, as indicated. If only flexural deformation is considered,
then the nodal axial forces, shown in the frame in Fig. 9-10(b), only increase the
compression in the two columns but cause no effect on the end moments of the
frame and can therefore be neglected in the nodal-force analysis for obtaining end
moments. The primary structure may be chosen as the one shown in Fig. 9-11,
subjected to nodal moments R, and R, and redundant reaction components of the
left support, denoted by X 1 and X;. Those shown by dashed lines are member end
moments 07, 07, . ... They can be expressed in terms of R and X as
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1.2%/ft

Y - .
10 ft-kips R Y10 ft-ki
(%I[ll(llﬁf) ps
6k b 6k
1.2%/ft 6« + 6
i m— wﬁkﬂt\ AN
b/ 0R -kips \b 10 ft-kips
L =10ft 101t
™~ g
a ¢
becezd Yooz ¥ececd 7777
A |
Jex 61
(a) (b)

Fig. 9-10

Ry (= 10ft-kips) ~ e K2 (=10 ft-kips)

{ -+
A ’-h* ? J,,-..\
0; Qi
Li(=10ft)
Yoo %
JV :-/ X, 77;;;
X,
L -
Fig. 9-11

R|=1R2=1xl=]4\f2=1
; 0 0 0 1

QZ 0 0 L -1 ﬁ'

Q;, i 0] -L 1 2
(] -1 0 L -1{17
J

0° 1 1] -L 1 §'

o -1 1 0 -1 2
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From the member flexibility matrices, we form

2 -]
-1 2
L 2 -1
I=%a -1 2
2 -~
-1 2
Thus,
F ‘)('R = b,{’fbk
{0 L -L L -L of[L
o1 1 -1 I —1|\6EI
2 -1 0 0
-1 2 0 0
2 -1 I 0
-1 2 -1 0
2 —1 1 -1
-1 2 -1 1
_ L j-9L 3L
T6EI|l 12 -6
Fxx=b,{'fbx
=L{ 100> -12L
Similarly, 6EI | —12L 13
from which

[18 12L ]7 [18 lzL]
Fal 6El L12L 10L? 6FEI L12L 10L?
L (180L? — 14413 T L 3612
The force transformation matrix of the indeterminate structure is

b' = bg - bXFA:/\}FXR

0 0 0 1
0 0 L-1
vt oof |-L1 (;)[18 12L][—9L 3L]
-1 0 L-1]\36L" | 12L 10L? 12 -6
-1 -L 1
-1 1 0-1
0 0 vo-i] [ s
0 0 -2 1 i -
= oo _ | & —¢)_ ¢ 3
-1 0 - 3 - -3
I o-1 i - T
RN
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The end moments based on the nodal-force analysis are then solved by Q@ =

b'R:
a 1 2 14
; -3 3 2
o 2
i 3 -3 g
1 10
i 3 10 .
pho| 8 8 = {2 Liikips
f -5 —& 10 —%
« . 2
Q; : -8 -4
. 2
s —% 3 -3

The final result is obtained by adding the fixed-end moments [see upper part
of Fig. 9-10(b)] to the end moments of member b. Thus,

of 3 1
% ¥ 5

(8 -1 _ )-% .
Q;’ V-2 +10f= 20 ft-kips
o7 -3 -3

05 — 3 -3

Example 9-6

Use the matrix force method to find the reaction at support C, and the deflection
and slope at B, for the beam shown in Fig. 9-12(a). Assume that the spring flexibility
is f;.

We consider the spring as a member and therefore the system is composed
of the beam portion, denoted as member a, and the spring, denoted as member b.
The whole can be separated into two parts: the fixed-end beam under a uniform
load and the system subjected to nodal forces R,, R, at B and redundant reaction
X at C as shown in Fig. 9-12(b). To obtain the nodal displacements at B and reaction
at C, it is necessary only to analyze the nodal-load system of Fig. 9-12(b).

Z w Z
A4 T 1T 1T 1T 1 E8
Z wlL? Z
7 i 12
L~
AJ T T T 1T 1 s »
ELL p / . + o vl 5
f 1
Member o Member b—"" y /\ w2
c TNl R AL T
, ONC "
A
Spring compression Qb %
|
C
tx’
(a) (b)

Fig. 9-12
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We first relate the end moments Q. QY of member a, and the spring force
Q" to the external loads R,, R,, and X as

Q" -L 1L (R
Qir=1 0 -1i0]¢k
o 0 0i1jlx

by by
The flexibility matrix of member « is
Lo L]
I= 321 611:,1
T6EI 3EI]
The flexibility of member b (spring) is f,. Therefore, the assembled flexibility is
L L 7]
3EI 6T
f= L L
T6EI 3EI
/.

With bg. by, and f obtained, we have
F — b?fb — _L_3 L:
X ONTR T 3R 2E]

3

L.
= blfh, = — )
Fxy = byfby 3E] + £,
1

Feo = ohgrs 7,
X The redundant force X, which is equal to the spring force Q”, is determined
y
X=-F )."):FXRR
wL
1 L' L
B _<L3/3E1 +J§) ["?E_I 55?} wL?
12
3 1
=gk (1 + 3EIj;/L3>
Apparently, if f, = 0,
X =§wL
To find the deflection and slope at B, we use
rr = FrrR + FpxX
Now since
L L’
T 3EI  2EI
Frg = bpfbg = 12 L

2EI  EI
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L3
T3EI
Fry = blT?be= J

LZ
2E1
we reach
L L? L
nl _| 3E1 T2EI|[R, 3EI
{rz} LZ L {R’} LZ (X)
2EI  EI 2E]
Using
wL wL? 3 1
R =— R, = X=2 —_—
) D) gL (1 n 3E1ﬂ/L3)
we obtain

. wL' L dwl
r; (deﬁectlon) = S_EI' et E <:—W
= EM’L 1

8 (3EI/L3 + 1 /f,)

ry(slope) = L L2 WL
21810P 6EI © 2EI\1 + 3EIf,/L}

_ (_3 L L ) i
2 48Elf,) \BEI/L} + 1/f.
As a check, if f, = 0 (rigid support), we have

n=20 ry = —WLJ
! * 7 #8EI
If f, = oo (free end),
wL? wL?
"= e Y = ~eE?

The foregoing procedure for fixing a loaded beam is not limited to the case
of distributed loads. The procedure can also be applied to members subjected
to a set of concentrated loads, if reducing the number of nodes is desirable.

9-8 ON THE NOTION OF PRIMARY STRUCTURE

The procedures for the analysis of statically indeterminate structures by the force
method already discussed are based on the concept of primary structure previously
developed in the method of consistent deformations. The notion of primary
structure serves a convenient means of setting up an equilibrium equation. How-
ever, if we, without considering the notion of primary structure, examine the
basic equation

0 = bR + byX
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we observe that it merely states that Q is linearly related to a set of applied
forces R and a set of unknown forces X. The equation itself does not necessarily
suggest a primary structure. As a result, we may separate these two sets of
influences from the two independent force systems imposed on the original
structure. Doing so does not violate the truth of the preceding equation but
certainly broadens our view of handling the problem.

Now b, represents an array of member forces in equilibrium with unit
applied loads based on the original structure. More specifically, each column
of by represents member forces in equilibrium with a certain unit load applied
to the original structure. Since the original structure is statically indeterminate,
many equilibrating systems may be chosen from to establish each column of b,.

Likewise, each column of by can be thought of as an independent self-
equilibrating internal force system for the original structure. For a structure
indeterminate to the nth degree, by will represent any group of n independent
self-equilibrating member force systems, one for each redundant.

If it is convenient, these member forces may be determined by introducing
a primary structure. However, in a larger sense, the traditional notion of primary
structure is not essential to the analysis of a statically indeterminate structure:
rather, it introduces unnecessary restrictions to the analysis.

Example 9-7
Solve the bar forces of the truss in Fig. 9-7(a) (Example 9-3) by the preceding
generalized procedures.

Solution 1 Disregarding the notion of a primary structure, we may choose a set

of member forces in equilibrium with external load R, = 1, as shown in Fig.
9-13(a). and a set of self-equilibrating internal forces, as shown in Fig. 9-13(b).
Thus,
5 —4
£ -3
5 -4
bR - 3 bx = __3
-5 5
-7 5
+5 Ry=1 -4
—
c
25 ,
7 _ 5
s 5 2
+— +13 —13 -13
4 d
b ; 7
+5 -4
- a
@ ®)

Fig. 9-13
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There are, of course, many other choices that might be made.
FXR = b;fbk
( 5
_13§
1 5 116.5
=[-4 -3 -4 -3 5 — R
[ a(g){ 3p- -
-5
-7
Fyy = b)T(fbx
(—4
-3
1 -4 100
=[-4 -3 -4 -3 5 5]|= = —
[ ] ( E) $231=F
5
. 5
E
-1 =
Fix = Y00
The force transformation matrix is then determined:
b= by~ bXF);)}FXR
5 —4 S 4.660 0.340
1 -3 3.75 3.495 0.255
_ 50 ) -4 E\[-1165 _ 5 _ 4.660{ _ 0.340
3 =3{\100 E 3 3.495( 7} —0.495
-5 5 -5 —-5.825 0.825
-2 ) -6.25 ~5.825 —0.425

This is the same 5’ obtained in Example 9-3 and will lead to the same final results
for the bar forces.

Solution 2 It may be interesting to point out that when primary structure is used
in analyzing an indeterminate structure, the same final results will be obtained if
different primary structures are chosen in developing bz and by.

To illustrate, let us first take member ¢ as the redundant. The bar forces
associated with the given primary structure due to external load R; = 1 are elements
of bg, as indicated in Fig. 9-14(a). Next, let member a be chosen as the redundant.
Setting the redundant force equal to unity, we obtain a set of internal forces in
equilibrium [Fig. 9-14(b)], which forms by.

il

bR bX =

BRR A RO e DD e

1
i
N
0
0
3
4
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R +1
+1 e
) :
_i -
-1
+3 0 0 ; +|} +3
b S
[ 4
‘1 +1
a
(@) (b)
Fig. 9-14
Fyr = b)rrﬂ’k
F 1
' 66
1
= -3 ~31(= = —
=[1 § 1 § d(E) 0? 16E
0
\—3%J
Fyy = b,{ffbx
1N
3
il 100
1 1
= -3 P = —
131 3 %](E) 10~ 16E
-3
\—%J
16E
_l —
FXX - 100
The force transformation matrix b’ is found to be
1 1 0.340
3 H 0.255
. -1 _ { 1{ (16E ﬁ _ 0.340
b= bs— beFixFra ={ 1 (100 16E) ~ | —0.495
0 ~% 0.825
~% -3 —-0.425
the same as previously obtained.
PROBLEMS

9-1. Use the force method to find the vertical deflectio

n at each of the loaded points of

the beam shown in Fig. 9-15. Assume constant EJ.
pe and deflection at the loaded point of the

9-2. Use the force method to find the slo

beam shown in Fig. 9-16.
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L/3 2L/3

P
e ‘ 7y El ‘ 21 7%”
|
|

]

AN

7

Y
A
v

Fig. 9-15 Fig. 9-16

9-3. Find, by the force method, all the bar forces and the vertical deflection at each of
the loaded joints of the truss shown in Fig. 9-17. Assume that A = 10in.2, E =
30,000 kips/in.? for all members.

9ft

2at12ft =241t

Fig. 9-17

9-4. Find, by the force method, all the member forces (end moments) and the nodal
displacements corresponding to the applied loads for the frame in Fig. 9-18. Assume
constant EI.

9-5. Find, by the force method, the slope and deflection at the loaded end of the beam
shown in Fig. 9-19. Assume constant EI.

L
R, * > R
; )

(ST o

¥

Fig. 9-18 Fig. 9-19
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9-6. Find, by the force method, the bar forces and the deflection components at the
loaded point of the truss in Fig. 9-20. Assume that A = 10 in.” and £ = 30,000
kips/in.? for all members.

Y

10 ft

l 12t Fig. 920

9-7. The truss shown in Fig. 9-21 is statically indeterminate to the first degree. Choose
the axial force in bar ¢ as redundant. Use the force method to find the bar forces
and the deflection components corresponding to the applied loads. Assume that
A = 50 cm’ and £ = 20,000 kN/cm? for all bars.

20kN

3.6m

{ 2.7m I 4.8 m

l l Fig. 9-21

9-8. Use the force method to obtain the member end moments for the frame shown in
Fig. 9-22. Assume constant EI.

10~
8ft 8ft g
L 4 e
paS

\ 4
A

;]l

10 ft

X, Fig. 9.22
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9-9. Use the force method to find the member end moments for the frame shown in
Fig. 9-23. Assume constant EI.

9-10. Refer to Fig. 9-24. Find, by the force method, the slope and deflection of the beam
at the point B.

6m ,
e — 2 w
. A4 | A R I A A P B
b 1 A ET constant B C
I
3
= ¢ m D
1 (4
L f L]2
7 7777, —X- 71
Fig. 923 ' Fig. 9-24

9-11. Use the force method to find the member end moments for the gable bent in Fig.
9-25. Assume constant EI.

Fig. 9-25

9.12. Solve Prob. 9-6 disregarding the notion of primary structure.

9-13. Solve Prob. 9-7 disregarding the notion of primary structure.

9-14. Solve Prob. 9-8 by using different primary structures for developing the force
transformation matrices bg and by.
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Matrix Displacement Method

10-1 GENERAL

As previously pointed out, the force method and the displacement method represent
two different approaches to analyzing structures. The basic concepts of the
structure remain the same (see Sec. 9-2). The fundamental difference between
these two methods is that the force method chooses the member forces as the
basic unknowns, whereas the displacement method chooses the nodal displacements
as the basic unknowns. Like the force method, the basic equations of the
displacement method are derived from

1. The equilibrium of forces
2. The compatibility of displacements
3. The force-displacement relationship

The compatibility condition is first satisfied by correlating the external nodal
displacements to the end deformations of the members. The force-displacement
relationship is then established between the member end forces and deformations
and between the nodal forces and nodal displacements. Finally, using nodal
equilibrium equations, we solve for the unknown nodal displacements and, therefore,
for the member forces and deformations of the structure.

10-2 COMPATIBILITY, DISPLACEMENT TRANSFORMATION
MATRIX

The compatibility used in the displacement method is that the geometry of
deformation must be such that the elements of structure fit together at the nodal

282
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points; that is, the member deformations g should be consistently related to the
nodal displacements r. Let a; represent the value of member deformation ¢;
caused by a unit nodal displacement r;. The total value of each member deformation
caused by all the nodal displacements may be written as

Gy = anry toapry + -+ oayr,

G = oyl + Anry o+ ayh,
(10-1)

qm = ph + Ayt +o Ayanl'n
in which ¢, = g, g, = g7, . . . represent the total set of member deformations
and ry, rp, . . ., r, the total set of nodal displacements. Note that no connection

between the subscripts on ¢ and r is implied. In matrix form,

q: Ay At Gy, ry
q: Az Axn ° ° Gy, ry
Am Amr Am2 " Qun ) \ Iy
That is,
q = ar (10-2)
where
an Gy " " Gy,
Q1 4yt Ay
a=| (1020
Ami Qpa * " O

called the displacement transformation matrix, which relates the internal member
deformations to the external nodal displacements. Matrix a is usually a rectangular
matrix. It is simply a geometric transformation of coordinates representing the
compatibility of the displacements of a system.

For example, let us consider the truss in Fig. 10-1. The possible nodal
displacements are one linear displacement at the roller support, denoted by r,,
and two linear displacement components at the top joint, denoted by r, and r;.
Also indicated in Fig. 10-1 are the member deformations of bar ¢ as the result
of the separate influences of r,, r,, and r;, which gives the total ¢° as

q° = 0.6r, — 0.6r, + 0.8r,
¢* and g” can be similarly obtained. The result, put in matrix form, is
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121t

a W
>
5 ] 25 oo
et 1, 9ft 7 Fig. 10-1

qa | 0 0 n
¢t=10 06 08|{n
¢) 06 -06 08]lr

a

Note that the displacement transformation matrix in this case happens to
be a square matrix.

If the same forces and displacements are involved, the relationship between
the displacement transformation matrix and the force transformation matrix can
be obtained by virtual work as follows:

8Rr = 8Q'q

Because of Eq. 94, O = bR
or 8Q" = 8R™bT
and Eq. 10-2, q = ar
we have 8R™r = 8R™bTar
from which

bla=1 (10-3)
Similarly, we can prove

a'b =1 (10-4)

10-3 FORCE-DISPLACEMENT RELATIONSHIP, STIFFNESS
COEFFICIENT, STIFFNESS MATRIX

A stiffness coefficent k; is defined as the force developed at point i due to a
unit displacement at point j, all other points (nodes) being fixed. Like the flexibility
coefficient, the stiffness coefficient constitutes a relationship between force and
displacement. Applying the principle of superposition, we may express the force
component at any point of a system in terms of a set of nodal displacements.
The first step in this analysis is to express the end forces in terms of the
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end deformations of an individual member. Using the stiffness coefficients and
the notation defined in Fig. 9-2, we have

01 = ki + ki + i
;= kgl + kgl + kgl (10-5)
Qk = kiuqi + kZ’,qj’ + kixqi
in which ¢/, g7, and g{ are the end deformations of a particular member ¢ and

Qi, QF, and Qf are the corresponding member forces. It is clear that the stiffness
coefficient, say k§, is defined as

Ki=Q7 as gi=1 ¢i=gq{=0
The rest can be defined similarly.
Equation 10-5 in matrix form is

Qu — kuqa (10_6)
in which
ki kG ki
k= kS kS ke (10-62)

W ki ki
is defined as the element stiffness matrix.
If Eq. 10-6 is premultiplied by (k) ™",

(kll) Q(l pu— (ku ]kll <«

or k)~ 'Q“ (10-7)
Comparing Eq. 10-7 with Eq. 9-10,

¢ = feQ°
we see that

fo= k9! (10-8)

Thus, the element flexibility matrix is the inverse of the element stiffness matrix,
and vice versa.
The descriptions above refer to an individual element. For the entire as-

semblage composed of a, b, . . . elements, we have
Q(I — kaqtl
Qb — kbqb
Q \
o q

Since o= " q =
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the preceding equations can be assembled as
0 = kg (10-9)
where
Lo
I\'h
k= : (10-9a)

which is a diagonal matrix with individual element stiffness matrices as its
constituents.

Refer to Egs. 10-5 and 10-6a, and consider a prismatic member with length
L, cross-sectional area A, moment of inertia I, and modulus of elasticity E. The
elements in the first column of k“ are, by definition, the member forces resulting
from ¢/ = 1, that is, a unit rotation at the left end of the member (see Fig.
9-3). Thus,

4E1

ki = moment at the left end = _f—
. 2EI
k% = moment at the right end = e

axial force of the member = 0

ki
Note that kjand k§ can easily be obtained by the slope-deflection method;
ki = 0 is apparent. All the other elements of k* are similarly determined. Thus,

4EI 2EI
L L
2EI 4EI
kaz e —— -
I I 0 (10-10)
AE
0 0 T
which is a symmetric matrix. As a check, we note that
Lo L M 2B T T oo o
3EI  6EI L L
L L 2El 4FE1
. = = = = 10 1 0
fk=|"eer 3m ° r T |-
L AE
0 = —= 0 0 1
0 iE 0 0 2

When the effect of axial forces is disregarded, as is usually done in rigid

frame analysis,
. Ell4 2
k= L[Z 4] . (10-11)
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For a pin-connected truss,

« _ |AE ;
k-[L] (10-12)

The second step in the analysis is to express the nodal forces in terms of
the corresponding nodal displacements. This can be accomplished easily by the
method of vitual work. Let us start by Eq. 9-1+#

8r'R = 8q"Q (10-13)
From Eqgs. 10-2 and 10-9,
q =ar and Q= kq

wehave éq = adr
or 8q" = &rla” (10-14)
and Q = kar (10-15)

Substituting Eqs. 10-14 and 10-15 in Eq. 10-13 gives
'R = &r'akar

from which R = d"kar (10-16)
if we make K = d’ka (10-18)

K being called the total stiffness matrix, or the stiffness matrix of structure,
which directly relates the nodal forces to the nodal displacements of a structure.
If we premultiply Eq. 10-17 with KX~! on both sides, we have

K''R=K'Kr=r

or r=K 'R (10-19)
Comparing Eq. 10-19 with Eq. 9-22,

r = FR
we have F=K"! (10-20)

It is thus seen that the rotal flexibility matrix is the inverse of the total stiffness
matrix, and vice versa if the same forces and displacements are involved.

10-4 EQUILIBRIUM

Refer to Eq. 10-17:

R =Kr
If r denotes the elements of all possible unknown nodal displacements (not
including the known support or boundary conditions), then R must denote all

the corresponding nodal forces. The equilibrium of each node requires that the
possible nodal forces, expressed in terms of unknown nodal displacements, must
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be equal to the applied loads. Thus, if these nodal loads are given, we can solve
for the unknown nodal displacements by Eq. 10-19,

r=K 'R
and for the member forces by Egs. 10-2 and 10-9,
Q = kg = kar

10-5 ANALYSIS OF STRUCTURES BY THE MATRIX
DISPLACEMENT METHOD

It is interesting that in the discussion of the displacement method the question
of statical redundancy did not arise. The displacement method can apply with
equal ease to statically determinate structures and statically indeterminate structures.
The procedures of analysis by the displacement method are contained in the

following steps:

1. Define all the possible unknown nodal displacements r.

Generally, a pin-connected node has two linear displacement components,
with the rotation of the pin considered free of the connected members. A rigidly
connected node has three displacement components, two linear and one rotational,
but the linear displacements may be excepted if the axial deformations of the
connected members are neglected and sidesway prevented. No displacements
are assigned to the nodes that cannot move. Thus, in a pin-connected truss the
hinged support is considered completely restrained; the roller support has one
liner movement. In a rigid frame the built-in support undergoes no displacement;
a hinged support can have only an angular displacement, whereas a roller support
has one angular displacement and one linear displacement.

2. Determine the displacement transformation matrix a from geometric
configuration.

3. Determine the individual element stiffness matrices ke kb, L. according
to Eq. 10-11 or 10-12, and assemble them in a diagonal matrix:
ku
kb
k =

4. Compute the stiffness matrix of structure K:
K = dka

5. Obtain the inverse of XK.

6. Compute nodal displacements r by
r=K'R
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Note that R is in one-to-one correspondence with r. Some of the R are the
actual loads; others are zero if no load is applied there. All the R are known.
7. Compute the member forces Q by
Q = kar
8. Distributed loads are handled indirectly by the procedure outlined in Sec.
9-2.
Example 10-1
Compute the nodal displacements and bar forces for the truss shown in Fig.
10-2(a). Assume that E = 30,000 kips/in.? and L(ft)/A(in.?) = 1 for all members.
The roller support has a possible displacement r,, and the top joint has possible
displacement components r, and r;, as indicated in Fig. 10-2(b). The nodal forces
R\, R,, and R; correspond to the nodal displacements. Note that R, = R, = 0

and R; = —8 kips in this problem.
gk r3, Ry
—
1 r2, R,
12 ft
Y "’R, !
A # & 3
9 ft 9 ft ’ ’
(a) (b)

Fig. 10-2
Using the results of the example in Sec. 10-2, the displacement transformation

matrix is
1 0 0
a=|{0 0.6 0.8

0.6 —-06 0.8
The individual member stiffness matrix is determined by Eq. 10-12,

AE
H
Since A/L = 1 for all members,
K=k=k=E

from which we form the diagonal matrix

=5
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Thus, the total stiffness matrix is

I 0 0.6 | 0 0
K= udka =10 0.6 -06ENO 0.6 08
0 0.8 0.8 0.6 —-0.6 08
1.36  ~0.36 0.48
= K} - 0.36 0.72 0
(.48 0 1.28
i I 0.5 -0.375
K'=- 0.5 1.639  —0.188
1 ~0.375 ~0.188 0.922
The nodal displacements are then determined by r = K™' R:

nf 05 ~037s][ 0]
rt = 0.5 1639 -0.188 |1 0F =
r El-0375 -0.88  0.922] -8

Using E = 30,000 kips/in.°, we obtain

rn 0.0001
Rt =1 0.00005 pft
r -0.00027

Finally, the bar forces are solved by Q = kar:
o I 0 0 1 3 3
Q' = (E)|0 0.6 0.8 (E) 1.5 ¢ =4 -5¢ Kkips
o 0.6 -0.6 0.8 -7.38 -5

Solve the bar forces for the truss in Fig. 10-3(a). Assume constant E and L(ft)/A(in.)
= 1 for all members.

Example 10-2

The assigned nodal displacements and the corresponding nodal forces are

shown in Fig. 10-3(b). In this problem R, = R, = R; = 10 kips, R, = 0.

10/2* r2.R, re R,
45° b 10* rL. Ry b r3, Ry

- >

a c 9ft a ¢

d e d e

. A

L« 12t 4 “~

@ ®)

Fig. 10-3
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From compatibility,
rp=1 rn=1 rn=1 rg =1
q 0 1 0 0
q -1 0 ! o [|”
g@r=1| 0 0 0 T R
q 0 0 0.8 06"
q -0.8 0.6 0 o J\V
a
Since L/A = 1 for all members, the individual member stiffness matrices are found
to be
ktl_kb_k¢_l\,¢1_kc=
from which
1
1
k=E 1
|
I
Thus, we have the total stiffness matrix:
K = d'ka
o -10o0 -o8] [ 9 4 ) ¢
_ ! 000 0.6 Bl o o0 o |
0 1 0 08 0
0 01 06 0 0 0 08 06
) -08 06 0 O
1.64 —-048 ~—1 0
- —0 48 I 36 0 0
1.64 0.48
0 0 0.48 1.36
2.721 0.960 1.850 —0.653
-t _ 1 0.960 1.920 0.653 —0.230
2.150E| 1.850 0.653 2.721  -0.960
-0.653 —0.230 -0.960 1.296
The nodal displacements are given by r = K 'R:
r 2.721 0.960 1.850 —0.653 1 (10 25.7
il _ 1 0.960 1.920 0.653 —-0.230(j10} _ 1 16.4
ry 2.150E| 1.850 0.653 2721 —0960 V10 ~ E} 243
7 —-0.653 -0.230 -0.960 1.296 (| © -8.57
The bar forces are then obtained from Q = kar.
Q“ 0 1 0 0 16.40
0’ 10 10 || Ba| |- 40
Qy=¢() 0 0 O 1 (1—5) 24'3 - 8.57} kips
Q° 0 0 08 06 _g57 14.30
o  -0.8 06 0 O ’ -10.72)
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Example 10-3
Find all the end moments for the frame shown in Fig. 10-4(a). Assume constant
El.

We assume unknown nodal displacements ry, r,, and r; and their corresponding
forces R,, R,, and R;, as shown in Fig. 10-4(b). Note that r, represents the sidesway
of the frame and that r, and r; represent the rotations at the joints. In the present
case R, = 10 Kips., R. = R, = 0. The dashed lines in Fig. 10-4(b) indicate the

assumed directions for the member moments, @7, Q. . . . , and their corresponding
member rotations. ¢/'. g%, . . .. From compatibility
n=1 rn=1rn=1
o -
™ — e 0
q, 10 0
1
" - — 1 1]
4, 10 "
b, q 0 ! 0 r
q" (- 0 0 1 3
1
4 T 0 1
L 0 0
4 10 |
a

Since the members are identical, the individual member stiffness matrices are the

same:
Ell4 2
a b o _ =2
e
See Eq. 10-11.
fe 104t o fz,Rz f'3,R3
105 | "~ R T g \
’ b :\‘\ b 4 Aa
[4 l4
s
[ a ¢ a ¢
w3
Y -’ -/
77 77 Vo V2
(a) (b)

Fig. 10-4
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Using Eq. 10-9a, we have

4 2
2 4
;o E 42
L 2 4
4 2
2 4
Thus, the total stiffness matrix is
K = d'ka
1 | 1 1
% 16 %% "% T
= 1 10
0 0 0 1 1 0
LI
— 10
2 4 == 10
£l 4 o 10
i M 0 1 0
42 (1) 01
2 4 -
L ~ 10 0 1
1
T 00
0.24 —-0.6 —0.6]
E.
=Z1I:——0.6 8 2
-0.6 2 8 |

L/ 1 60 3.6 3.6
K =—(—> 3.6 1.56 -0.12
ENI0.08/| 36 _012  1.56

The nodal displacements are then obtained from r = K" R:

Ty L( 1 ) 60 3.6 3.6 10 L( i ) 600
rat=—|——=I| 3.6 1.56 —=0.1214 0¢ = =l——= 36
{"3} EI\10.08 36 —0.12 15611 0 EI\10.08
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Finally, the end moments are determined by @ = kar. Using the values of &, a,

and r previously obtained gives

0 ~28.6
Q! —21.4
b 214 .
Q;? = 1.4 ft-kips
’ .
o -21.4

08 ~28.6
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Example 10-4

The end moments of the rigid frame shown in Fig. 10-5 were solved by the force
method in Example 9-5 and will now be re-solved by the displacement method.

. /1.2“/1‘!
10ft-kips( QLI [ T 171 /)wmips
EI constant r b 1}
6"1 + 6
1.2%ft ok 6
I l/I 1 10 fkips 10ft-kipsk*\
A b b
S
; a ¢ == a ¢
-3
K 77 77 77
le 10ft N

{a) (b)

Fig. 10-5

Neglecting the effect of axial deformations, the frame prepared for nodal-
force analysis is shown in Fig. 10-6, where ry and r, denote the joint rotations and

R, and R, denote the corresponding moments. In this problem Ry = -R, =10
ft-kips. The dashed lines indicate assumed directions for member end morments,
Q7. 04, ..., and their corresponding member end rotations, qi.q%, .... The
ro, Ry ry. R,
L N
y ]
E O —
S
i a <
-
JL‘,/}" j"
77 7

[ 10 ft '
Fig. 10-6
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latter can be expressed in terms of r; and r, as

n=1r=1
qf 0 0
q; I 0
gl 11 0] ]r
g7 " |o 11
q; 0 I
q; 0 0

a

The diagonal matrix & is the same as that obtained in the preceding example. The
stiffness matrix of structure is obtained by

K = a’ka
4 2 0 0
2 4 1 0
_011000_5_?_1 4 2 I 0
00 0 1 1 0f\L 2 4 0 1
4 2 0 1
2 4 00
_Efs 2
T L2 8
Thus,
BNl
PRI 4 S I 7 B
El 60 30EI] —1 4
and r=K'R

nl _ L 4 -1 lo{ _ L 50

rf 30EI -1 4] -10f  30EI{-50
Then the member end moments based on the nodal-force analysis (Fig.
10-6) are determined by Q = kar. Using the values of &, «, and » previously found

gives
Q! 3.33
] QZ 6.67
: 3.33 .
gf =4_.3133 ft-kips
o5 —-6.67
o) \ —3.33

The end moments of member b, O and Q}’, must be corrected by adding the
fixed-end moments shown in the upper part of Fig. 10-5(b). The final result is
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Q! 3.33
H 6.67
ol -6.67 b
= 6.67 ft-kips
Q! ~6.67
oy -3.33 B

Example 10-5
Obtain the end moments for the frame shown in Fig. 10-7(a). Use the equivalent
form in Fig. 10-7(b) for the analysis so that the size of the matrices will be reduced.

Assume constant EJ/,

r‘* 10 ft-kips
10 fi-kips { 4 2
¥ 4“1 + 14“
5t 8 51t 4%
y /#*10 f[-kips
' 17 17
T b 14 b 12
S
I a a
-~

(a) (b}
Fig. 10-7

If the effect of axial deformations is neglected, the frame prepared for nodal-
force analysis is shown in Fig. 10-8. The frame is subjected to the joint rotations
r and r; and the corresponding nodal moments R, and R,. In this case, R, = 0
and R, = 10 ft-kips.

As before, the dashed lines indicate the assumed directions for the member
end moments Qf, O, Of, and Q7 and their corresponding end rotations g q4,
g, and g}. The latter can be expressed in terms of r, and r, from compatibility
as

r,#1r3=1

qi 1 0
gl _ 10 1l]r
qf’ B 0 1 14}
a) Lo 0
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r3, R,

K T{ 10 ft \;[é

~ b -~
N

Y

10t

L

rlakl‘v'

é/ Fig. 10-8

Since the members are identical,

4 2
_El2 4
k=7 4 2
2 4
The total stiffness matrix is then determined.
4 2 10
_ o _ |1 0 0 O|fEI\|]2 4 0 1| _Ela 2
K‘“k"‘[0110]<L 4 2lfo 1| T Z[2 8
2 410 0O

from which

Bl

L -2 4 L 4 -1
EI 28 T M4EI -1 2
The nodal displacements are expressed by

| _ pmip_ L | 4 —-1]fo]__L [-10
{Vz}—K R_14EI[—1 2]{10} 14EI| 20

Thus, the end moments from nodal-force analysis, based on Fig. 10-8, are found

to be
o: 4 2 10 0
o\ , _EIl2 4 0 1|( L \[-10]_J428] . .
b= kar =7 4 2llo 1{\7am) ) 20f T )s72( fkips
o 2 4l]0 2.86

After adding the fixed-end moments [see the upper part of Fig. 10-7(b)] to
Q! and Q", we obtain the final solution as

o 0
Qi _ 4.28 i
;b= — 408 ft-kips

i

0 12.86

J
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Example 10-6

The deflection and slope at B for the system shown in Fig. 10-9(a) were solved by
the force method in Example 9-6. and will be resolved by the displacement method,
Note that the spring stiffness is k, or 1/f.

As in Example 9-6. to obtain the nodal displacements at B, it is necessary
only to anulyze the system under nodal loads shown in Fig. 10-9(b). Also shown
in Fig. 10-9(b} by dashed lines are the member deformations ¢ . 4}, and 4" (spring

contraction).
wil
rl,Rl=_2A.
L2
LR, = WET
. 2:%2%
Y 7 » o~
AZ T T T T T s 4 \ B
4 L S A -q a =’
b 4
ey
C !
C
Z
X=qb
(a) (b)

Fig. 109

We first relate ¢, g7. and ¢" to the external nodal displacements r, and r.

a
From the beam stiffness

4EI 2ET]

, L L
k¢ = 2E1 4EI

L L ]
and the spring stiffness k* = k.. we form

4EI 2EI
L L
k= [2El 4Er
L 1
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With matrices @ and % determined, we obtain

r12E1 6FET
T kT
K=dka=|6EI 4B
| L* L
EZ
L L
_SEI L2EI
. i LZ L3 5
4E1{3EI
T\D *k
Using
R| = LZL'
ry -1 2
{’z} H k. - EPY
we solve for
%wL
Fy 1 3
{ } = ——e———— __]_W + k‘WL
n)3EL 1T Y kR

ya
which can be checked with the result found in Example 9-6.

10-6 USE OF THE MODIFIED MEMBER STIFFNESS MATRIX

Referring to Eq. 10-11, we find the stiffness matrix for a uniform member in
frame analysis is given by
«_ EIt4 2
ke = L [2 4]

Note that the elements in the first column of the matrix are the member end
moments obtained by producing in this end (i end) a unit rotation, the other end
(J end) being fixed. The procedure described for obtaining these values is exactly
the same as that for finding the stiffness of the i end and its carry-over value to
the j end in the method of moment distribution, as illustrated in Fig. 10-10.
Recall, in the moment-distribution procedures, that if the actual condition of the
other end is known, then the computation can be simplified by using the modified
stiffness of this end and omitting the presentation of the other portion of structure
in the analysis. This technique can also be applied to the displacement method
by introducing the modified member stiffness matrix. We note the following
special cases:. .
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4EI . 2E]
Suffness Q7 = £ .!_3., Carry-over moment Q7 = I

Member “a™ .
( 4 ¥ 1)
i - 0——‘4/

L
El constant

Fig. 10-10

1. When the other end is simply supported, then the moment needed to produce
a unit rotation in this end is 3EI/L: that is, Q¢ = 3EI/L for ¢/ = 1, as indicated
in Fig. 10-11.

Modified stiffness
3E

ﬁ\ o = T o Member “a” j

Nﬁ=l ////&
| |

—

L

P
- P

P EI constant Fig. 10-11

The modified member stiffness matrix, if we disregard the factors of

7 and q7, is then given by
1
(k%) = [—35} (10-21)

where (k)" denotes the modified member stiffness matrix for member a.
2. When the other end rotates an equal but opposite angle to that of this end
(the case of symmetry),
_Z_EI—
- L -
3. When the other end rotates the same angle as that of this end (the case of
antisymmetry),

k%) = (10-22)

—6_E1—
L L -3
Application of the procedures just described is illustrated by re-solving
Examples 10-3 to 10-5 of Sec. 10-5 as follows:
Example 10-7
Re-solve Example 10-3 by using the modified stiffness matrix.
The frame in Fig. 10-4(a) may be put in the form of Fig. 10-12(a). The structure
and its loading represent a case of antisymmetry for which we may assume the

nodal displacements and their corresponding nodal forces as shown in Fig. 10-12(b}.
Observe that R, = 5 kips and R, = 0.

k) = (10-23)
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¢ Antisymmetrical
!

101t r2, Ry
s I* > 5 R e | TN
o b '_‘s b b -~
Ty i, Qi ,""
45, ;
L =101t c This side same
a
EI constant 0.0 k|, Ry
7777 > brread 777
(a) (b)
Fig. 10-12
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The analysis can be simplified by working with only half the structure if the

modified stiffness matrix for member b is used:

b _ | 8EL
e

4 2 0
- | ¥ _E
Hence, k = [ (k”)'] =7 [2 4 0}

From compatibility

r1=1r'_)_=1

g ~To o,
gip=|-1 1 {r‘}
q; 0 1]\

a
Using the values already found for a and &, we have

K = dka = g[ 0.12 —0.6]
L

~06 10
K—l — L 10 06
T 0.84EI] 0.6 0.12
L [0 o6 |[s|__L [50
= ~1 = -
re KRS 0.84EI[ 0.6 0.12] {0} 0.84E1{ 3}

Thus,

—28.6
=14 —21.4p ft-kips
21.4
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The results, Q¢ = Q' = -28.6 ft-kips, 0] = Qi = —21.4 ft-kips, and Q) =
Qf = 21.4 fi-kips, are the same as previously found in Example 10-3.

Example 10-8
Re-solve Example 10-4 by using the modified stiffness matrix.

The portal frame shown in Fig. 10-5(a) is symmetrical about the center line
of the beam. The frame assumed for nodal-force analysis may be given as in Fig.
10-13. Referring to Fig. 10-5(b), we note that R, = 10 ft-kips. The analysis can
be simplified by working with only half the frame and using the modified stiffness

matrix for member b:
2
(kb)' - {ﬂil

L
. 4 20
Thus, k = [" (kh),]=%12 4 01"
00 2
From compatibility,
qf 0
q;" =31¢[r]
q’ 1

With the values of ¢ and & found, we obtain

6EI
= 4, = |
K = d'ka [ 7 ]
L -4
I -1 2
t follows that K [ 6EI]

@ Symmetrical

r. Ry .’
/ ‘—’ qib, Qib l “x

/-n* ~ b «I‘ * ‘r

4. 95 This side equal
but opposite
a ¢ L=10ft
EI constant
a. 9 ' . ‘

f' ,
. i A

1 101t

3
Y

Fig. 10-13
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With the values of a, , and r, found, we obtain the end moments from nodal-

force analysis as
o7 3.33
Qi = kar; = 16.67¢ ft-kips
0r 3.33

Adding the fixed-end moment of — 10 ft-kips [see the upper part of Fig.

10-5(b)] to Q7 in the result above and using symmetry, we obtain the final solution
as

Q7 = —Qf = 3.33 ft-kips
07 = —Qf = 6.67 ft-kips
Q! = — Q% = —6.67 ft-kips
These are the same as previously obtained in Example 10-4.
Example 10-9

Re-solve Example 10-5 by using modified member stiffness.

Refer to Fig. 10-7. Since the moment at the hinged end is zero, we may
simplify the computation by using the modified stiffness matrix [3EI/L] for member
a and by assuming the frame for nodal-force analysis as in Fig. 10-14. Note that
in present case R, = 10 ft-kips.

ey’ e300
k= kb —-'_042
Lip 2 4

q; 1
q ? =11¢[r]
q’ 0

a

From compatibility

With &k and a determined, we have

K = dka = E—I[7]

L
_ L|10
ry = K lR] - E[7]
ry, R .
' k- 0 10f - K
RN b - B
ik 4. Q;
4,95
a
L= 10ft EI constant

A Fig. 10-14
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Thus, the end moments from nodal-force analysis are given by

0 30 0](1 4.28
Ot = kar, = Eo 4 2[4 (5)[%)]= 572} fikips
0" Llo 2 4flo) \H 2.86

After the values of Qf and Qf are corrected by adding the fixed-end moment
[see the upper part of Fig. 10-7(b)}, we obtain the final solution as previously found

in Example 10-5:
Q) 4.28
Qi =4 -4.28¢ fi-kips
ot 12.86

10-7 THE GENERAL FORMULATION OF THE MATRIX
DISPLACEMENT METHOD

It may be interesting to point out that in a frame structure, there exist generally
two kinds of node: those with unknown displacements associated with known
forces (unprescribed node or free node) and those with known displacements
associated with unknown forces (prescribed node). Throughout the previous
sections of this chapter, we dealt only with the former kind of node. In a more
general case, however, the formulation of displacement procedure should include
also the unknown forces (e.g., the support reactions) and the corresponding
known displacements at the prescribed nodes. As will be seen, the matrix
displacement formulation in this manner leads to a direct analogy with the matrix
force presentation as developed in Sec. 9-5. The procedure can be summarized
as follows:

1. Separate the nodal displacements into two categories: the unprescribed
displacements r, corresponding to the applied nodal loads R and the prescribed
displacements ry corresponding to the forces X yet to be determined.

2. Establish the displacement transformation matrix to relate the element end
displacements g with the nodal displacements r, and ry:

r'r
q =lag i ax]y— (10-24)
a x
where the transformation matrix a is partitioned into a and ay, indicating the
separate influences from r and ry.
3. Assemble the element stiffness matrices &, k°, . . . to obtain
kll
ka
k= . (10-25)
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4. Construct the total stiffness matrix by the process
K = aka

T
dg

I
=

Hag | ayl (10-26)

akkag gfz}ﬂkax
aykag | atkay
5. The overall stiffness expressed in Eq. 10-26 relates the total nodal forces
R and X to the corresponding displacements rr and ry. The general formulation
can be written as

R Kzr : Kgx rs
R S e (10-27)
X Kyg i Kyx Ty
where Kpr = agkar  Kex = akkay (10-28)
Kyg = a;kak Kyx = ﬂ,{’kll.r

The frequently encountered case is that the prescribed displacements are
null (i.e., ry = 0). Then Eq. 10-27 reduces to
R Ker i Kpx g
- . SO (10-29)
X Kyw | Kyx 0

Example 10-10
Consider the hanger made up by a two-section bar as shown in Fig. 10-15(a). The
bar is subjected to load of P at the free end, and load of 2P at the point where the
change of section takes place. Find the elongations measured at the loaded points,
and the reaction at the fixed support [see Fig. 10-15(b}].  Assume that the bar weight
is negligible,

(B]) thy Fig. 10-15
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The bar elongations ¢* and ¢" are related to the nodal displacements re, r,

and ri (r; = 0) as
¢l _[1 =1 ¢ olln
R I R

’
ag ay 3

From the element stiffness matrices & = A\E/L, and k" = A.E/L,, we obtain

L,
k= A-E

L

With matrices ag. ay, and & determined, the partitioned matrices for the total
stiffness matrix are then calculated:
- AE _AE
LI Ll

It

KRR = a,ﬁkak
AE AE | AE

+
L] Ll L:
0

AE
L,

KRX = a;kax

\ AE
KXR = a;kak 0 - l: ]

f:
AE
KXX = a;k(lx = 'L]

| L,
Hence, the force-displacement relationship is
AE _AE
Rl = P LI L| E. ry = 2
Ro=2p| | JAE AE AED AE ], _»
B L, L, L, L
Ry="7" o AE L AE RS0
L, L
We solve the unknown displacements ry and r, by
ny _ -1 )Ry
)1}
A|E A]E -1
| . T F
AE AF AE

-SSR D o
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ﬁ i. _1;2_ P
A\E  AE AE
Lo L,
AE A-E
Therefore, ro= PL, + 3PL,
AE  AE
. 3PLs
T AE
Finally, we obtain the end reaction R, by
Ry = [Kx] {’}
r
PL,  3PL,
- 0 _AZE A|E AZE - —3P
- l‘2 3PL2 -
AE

These results can easily be checked.

10-8 COMPARISON OF THE FORCE METHOD AND THE
DISPLACEMENT METHOD

The force method and the displacement method represent two parallel ways of
analyzing structures. The basic procedures for the two methods may be briefly
recapitulated as in Table 10-1. The duality between the two methods is apparent.
The choice of the methods mainly lies in the accuracy of the solution and the
ease of computation which in turn would depend upon the idealization of
the structure, the rounding off of error, and the type of and formulation of the
problem. Generally, except for structures that involve many joint displacements
but few force redundants, the displacement method is often preferred. Some of
the reasons are as follows:

TABLE 10-1
Force Method Displacement Method

(1) Select member forces as basic un- (1) Select nodal displacements as basic
knowns. - unknowns.

(2) Establish the force transformation (2) Establish the displacemen trans-
matrix. formation matrix.

(3) Evaluate member flexibility ma- (3) Evaluate member stiffness matri-
trices. ces.

(4) Obtain the total flexibility matrix. (4) Obtain the total stiffness matrix.

(5) Express the nodal displacements in (5) Express the nodal forces in terms

terms of the nodal forces. of the nodal displacements.
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I. In the displacement method the irrelevancy of force redundancy enables
the use of the same procedures for analyzing statically determinate structures
and statically indeterminate structures.

2. It is much easier to form the displacement transformation matrix than the
force transformation matrix, since the effects of displacements are often localized.

3. It is found that the displacement method usually produces a well-conditioned
stiffness matrix of structure; whereas in the force method, a well-conditioned
flexibility matrix of the structure depends upon a good choice of force redundants,

Note that a well-conditioned matrix is the one for which the largest terms
lie on the main diagonal and is, thus, most suitable for computer operation.

PROBLEMS

10-1. Find, by the force method, the deflection and slope at the free end for the beam
shown in Fig. 10-16. Repeat it by the displacement method and compare.

. |

A He Fig. 10-16

7

10-2. Find, by the force method, the bar forces and the nodal displacements for the
truss shown in Fig. 10-17. Assume that L/AE = 1 for all members. Repeat it by
the displacement method and compare.

10-3. Solve Prob. 9-6 by the displacement method.

10-4. Solve Prob. 9-10 by the displacement method.

10-5. Analyze the frame shown in Fig. 10-18 by the displacement method. Assume that
EI/L = 1 for both members.

10 kN/m

T

Om

L2 { L2 ] 1
| ! !

Fig. 10-17 Fig. 10-18

10-6. Find, by the displacement method, the slope and deflection at midspan section C
for the simple beam under a uniform load shown in Fig. 10-19. Use modified
member stiffness to simplify calculation.
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AL L T T FPT T T T 7 T g
% LT constant C EZ

| L2 L]2 Fig. 10-19

10-7. Find, by the displacement method, the moment at support B of the beam shown
in Fig. 10-20.

Lowper unit length

r 1 1 ] T [ [ J T 7
C

-
L . L e L

ID&
g >re >

>}
E1 constant Fig. 10-20

- B
%

10-8. Obtain, by the displacement method, all the end moments for the rigid frame
shown in Fig. 10-21.

8k
L 101t P 101t

B' ] c

Y

101t

EI constant D
77, w777 Fig. 10-21

A
77

10-9. Obtain, by the displacement method, all the end moments for the frame of Fig.
10-22, using the modified member stiffness matrix for the center beam due to

antisymmetry.
60% 60
21 1 21 T 21 R
4 3y 2h B 20 C 2 kD
N 30 ft 10ft | 20; | 10ft 304t N
<+ >
10§ (|10 1t
Ve 777,
E F
Fig. 10-22

10-10. For the composite system in Fig. 10-23, construct the displacement transformation
matrix consistent with the nodal displacements shown.
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10-11. Use the displacement method to obtain the end moments for the frame shown in

Fig. 10-24. Assume constant El.

zZ

f!

L

| £07 §

D

NN

Ll L

4

Jl\ ElLL N
T4

r r

Fig. 10-23

s

LA,

L

10f

P R

1011 a ¢ 2

Fig. 10-24

10-12. Use the general formulation of displacement method to solve the frame in Fig.

10-18.
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Direct Stiffness Method

71-1 GENERAL

In the preceding chapter, we discussed the matrix displacement method (stiffness
method) for analyzing simple structures. The structure stiffness matrix was
established by
K = d"ka

However, if the structure to be analyzed is large and complicated and if member
end actions include more force components, then not only must the size of
element stiffness matrices be increased to accommodate these requirements but
the establishment of the displacement transformation matrix a also becomes
involved. Therefore, the preceding procedure in forming the total stiffness matrix
K would appear inefficient.

Alternatively, we may treat each individual member or element as a structure
(member-structure) and obtain the stiffness matrix for the member-structure by
using the smaller matrices a, a”, and k of the member.- The total stiffness of
the entire structure is then constructed by superimposing the stiffness matrices
of the individual structural members. This method, referred to as the direct
stiffness method, casts the analysis into a more formalized format, which may
be readily programmed on a digital computer,

Both the matrix displacement method and the direct stiffness method are
intended to establish the same total structure stiffness matrix K to relate the
nodal forces and displacements, as given by the general expression of Eq.

31
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10-27:

which separates the influences from unprescribed (unknown) nodal displacements
rr and prescribed nodal displacements ry on K. The direct stiffness method
differs from the matrix displacement method only in the manner by which the
total stiffness is constructed. It involves the transforming of the element stiffness
matrices in local coordinates to global coordinates and superposing them through
numbering identification to obtain the structure stiffness matrix. For complex
structure, this difference is important.

11-2 ELEMENT STIFFNESS MATRIX IN LOCAL
COORDINATES

Consider a straight beam element of uniform cross section. Associated with the
element are the generalized end displacements g, including rotations, normal
translations, and axial deformations, and the corresponding generalized forces
Q, including moments, shears, and axial forces. With the nodal coordinates
numbered as shown in Fig. 11-1 for the element i, with its two ends j and k, the
force-displacement characteristics of the element can be given by means of the
matrix equations

2 ky ko ks kg O 0 a9
10,3 ky ky kas kyy O 0 q2
Qs - ks, kn ks ki 00 9
A kyy ko ki ky O 0 qa
Os 0 0 0 0 ks ks qs
Os 0 0 0 0 ke ke 3
or Q = kg (11-1)

where k is the element stiffness matrix with reference to a set of local orthogonal
coordinate axes x and y, x being taken along the centroidal axis of the member.
Note that k contains stiffness coefficients k,q; k.q, as already defined, is the
force Q induced at coordinate o due to a unit displacement g at coordinate 8
while all other g’s are zero. We assume the change in length of the element
due to flexural deformations is negligible. It follows that axial end forces are
not required to maintain static equilibrium of the restrained beam element when
it is subjected to a unit value of end rotation or normal translation. Reciprocally,
no end moments or shear forces are required for the restrained beam element
when it is subjected to a unit value of axial deformation.

The element stiffness matrix is generated by applying a unit value of each
end displacement in turn, and the corresponding column of the matrix gives the
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X
6

Figure 11-1

various end forces induced in the restrained element. Using the information
developed in Sec. 7-2 and Eq. 10-10, we write the element stiffness matrix of
Eq. 11-1 for a prismatic member as:

1 2 3 4 5 6
- 4ET 2EI  6EI 6EI ]
k= | 2 E 7 0|
L L L I’
2EI  4EI  6EI 6EI
T T ¢ o " ol
6EI  6EI  12EI 12E1
T ¢ o Tp 0 o) 3
6EI  6EI  12EI 12ET
T T T fx 0 0 4
0 0 0 0 AE - _AE)
L L
0 0 0 0 _AE - AEL
L L

11-3 ROTATIONAL TRANSFORMATION OF A COORDINATE
SYSTEM

The stiffness matrix given in Eq. 11-2 is determined with respect to the local,
or member, coordinate system. When several members from different directions
meet at a joint, each of the local stiffness matrices of connected members must
be first transformed into a stiffness matrix based on a common coordinate system
before their influences can be added to obtain the joint stiffness coefficients. It
is, therefore, necessary to establish a global, or structure, coordinate system,
in terms of which all element stiffness matrices must be written before assembly.
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Consider a plane vector V (force or displacement), as in Fig. 11-2, rep_{esg_r_xtc?d
by its components V., V, in the set of local orthogonal XY system or V., V, in
the set of global orthogonal XY system. Let the angle between X and X be 6,
as shown. We may express V, and V, in terms of V, and V, as

Vol _ cosf sind | ]V,
V.,] " | -sing cosd}|V,
or V = 6V (11-3)

in which ¢ represents a rotation matrix from the XY system to the XY system.
Inversely,

V=0V (11-4)
That is,
Vv —sin V., ‘
- Lo i V) ars)
We see that
67 =6" (11-6)
Hence the rotation matrix 8 is said to be orthogonal. Thus
V =196V (11-7)

Let us consider the beam element of Fig. 11-1, now shown in Fig. 11-3(a).
Following Eq. 11-3, we can express the forces or displacements at both ends in
terms of those in the global XY system [Fig. 11-3(b)]. Thus,

Os| _ cos 6 sinf [9)
{Qz} - [~sin 6 cos 0} {Qj} (11-8)
and
Ol _ cosf siné | | O
{Q:} - [ —sinf cos 9J {Qf} (11-9)
¥
v
A f/‘y
X
Vx
0
— . X
1%

x Figure 11-2
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X

Q4. 44 /

Figure 11-3

The end moments are not affected by the transformation of coordinate system.

Thus
81-1o {84

Collecting Eqgs..11-8 through 11-10 and rearranging gives:

o 1 0 0 0 0 0 Q,
0 01 0 0 0 0 0
;L 10 0 coso 0 —sin 6 0 [o5
O f 10 0 0 coss 0 —sin6 || Qs
Os 0 0 siné 0 cos 6 0 QOs
O 00 o0 sin 6 0 cos 6 O
local global
or
Q0 =aQ (11-11)

where a is a square matrix called the transformation matrix, which transforms
the member end forces from local coordinates to global coordinates. Inversely,
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we can establish

O=a'0 (11-12)

see that
We see tha ~ . GL13)
that is, the transformation matrix a is orthogonal. Therefore,
0 =40 (11-14)
The foregoing transformation process described for end forces is equally valid

for the end displacements. - '
Refer to Fig. 11-4 for a member i. Given the position coordinates for both

ends as (,, ¥;) and (¥;, ¥;), we can compute

cose=x";xj (11-15)
and
sin 6 = X"-;—y’ (11-16)
where .‘
L=V& -5+ G - 5 (11-17)
%

X Figure 11-4

11-4 ELEMENT STIFFNESS MATRIX IN GLOBAL
COORDINATES

Consider the inclined member of Fig. 11-3(2), in which the end forces and

displacements are situated in a local system. An application of Egs. 11-1 and
11-2 gives
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N [ 4El 1 7.5
(Q; T rfh
0 21 4EI
2 7 7 sym. G-
6EI 6EI 12E]
Q3 - L: - Lz L3 < qs
< =
? 6E] 6E1 12E1 12EI r
Q4 3 3 T T3 3 4
L L L L
AE
Qs 0 0 0 0 A gs
\ = | L L_] \q(y
or

in which k is the element stiffness matrix in local coordinates.
By vector transformation 11-11,

Q=aQ

in which Q represents the end forces expressed in the global system shown in
Fig. 11-3(b). Similarly, for the corresponding displacement vectors,

(11-19)

q =daq (11-20)

Substituting Egs. 11-19 and 11-20 into Eq. 11-18, we have
aQ = kag
or 0 = a 'kag (11-21)
In view of the orthogonality of a, that is, a™' = 4, Eq. 11-21 becomes
O = a'kag (11-22)

We now define

k = a"ka (11-23)

as the element stiffness matrix in global coordinates and therefore write the
force-displacement relation in the global system as

0 =kg
With a defined in Eq. 11-11 and k as in Eq. 11-18, we perform the matrix

operation indicated in Eq. 11-23 and obtain the element stiffness matrix k in
global coordinates, as in Eq. 11-25.

(11-24)
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1 2 3 4 5 6
I K
L
B 4E sym 2
2 L sym-
6EI . 6EI . 1EI ., AE 3
-=7C —=5C. —5Ci + ==}
T A T L¢
| GBI 6EI. 1EI., AE, 12 , AE , 4
OEI .. 6Kl = 12El . AE , REL .,  AE .,
& ThoTa-To AR
6El . 6EI 12E1 AE) 12EI  AE 12EI , AE_,
=T TGN - GG |5 - GG —C + —C
A L‘C( r tT)oC (L-‘ L) ot Te : 5
6EI . 6EI 2El  AE 12EI  AE 12EI , AE_, 12EI , AE ,
_'.——‘- ¥ - ¥ - " 14 A - - x ¥ - y - x e y + —— X
_L_c LIC( o L) ( e +L)CC‘ G~ ¢ G LCJs

(11-25)
in which C, = cos § and C, = sin 8. By Eq. 11-25 all element stiffness matrices
in local coordinates are transformed with respect to the single set of orthogonal
common axes X and Y; the overall structure stiffness matrix can then be developed
with respect to this system of axes.

11-5 A SPECIAL CASE: ELEMENT STIFFNESS MATRIX FOR
A TRUSS MEMBER

For a truss member pin-connected at its ends, since the end moments and
rotations are irrelevant, nodal quantities at each end are identified as in Figs.
11-5(a) and (b) with respect to both local and global coordinate systems. The
member stiffness matrix in local coordinates is therefore given by

1 2 3 4
AE AE
T T 0 0} 1
AE AE
k=" T 0 0l 2
0 0 0 0 3
0 0 0 0] 4

(11-26)
Since

0, =r cosd sind | |0, Q| _| cosé sind |0,
0, | —sin6 cos | |0, Q.f | -sing cosd| |0,

we establish

(0, cos 6 0 sing 0O 0,
10 _ 0 cosd 0 sing |0,
0 —sin 6 0 cosé 0 0;

{92 0 -sind 0 cos||O,
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X

e

(a)

(b) Figure 11-5
or Q =aQ (11-27)
in which a is a transformation matrix. Using Eq. 11-23, that is,
k = a'ka

and performing the matrix multiplications, we obtain the element stiffness matrix
for a truss member in global coordinates as

e sym.

.

2 2
AE |~ Cx Cx

F=2F (11-28)

cc, -cc, C

-C.C, C.C, ~-C:
in which C, = cos # and C, = sin 6, as previously defined.

A helical spring is similar to a truss member in that it provides only axial
resistance. If the spring has a stiffness S, we may replace AE/L with S in Eq.
11-28 to obtain the element stiffness matrix for a helical spring in global coordinates.
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11-6 STRUCTURE STIFFNESS MATRIX

The structure stiffness matrix is to relate the nodal forces and corresponding
displacements of a structure. Consider the structure in Fig. 11-6(a) with 1, 2,

-+« I, ..., nnodal coordinates. The nodal forces R can be linearly related
to the corresponding displacements r in the form
rRx\ K, Kp -+ Ky --- K»;— frf
R, Ky Ky - Ky - Ky, &)
J R, r =K, Ko -+ K; --- K, J 4] r
Rn Kn KnZ T Kni T Klm ty
\ J Lt _" . J
or, simply,
R = Kr (11-29)

in which K is called the structure stiffness matrix or total stiffness matrix. A
typical stiffness coefficient K. is the force induced at coordinate « due to a unit
displacement at coordinate 3, all other coordinate displacements being zero. A
stiffness coefficient of any nodal coordinate is obtained by summing the element
stiffness coefficients of the same subscripts from the members that frame into
that node. To illustrate this procedure, let us try to find K,. Consider the
coordinate / of Fig. 11-6(a). The equilibrium at coordinate i shown in Fig.
11-6(b) requires the nodal force R; equal to the sum of internal forces acting on
the respective elements «, b, and ¢ common to coordinate i. We assume that
coordinate transformation has already been applied, so that the element forces
and displacements refer to the global coordinate system. Thus,

R = Q!+ 07 + Q¢ (11-30)

where Q¢ is the force in the i-direction on element a. The rest are similarly
defined.

By definition, K is the value of R; caused only by r..= 1, all other r being
zero. That is

R; = Ky, = K; (11-31)

Also, with r, = 1, the compatibility requires that all member ends meeting at i
move the same displacement. That is,

—a —

i =9, =g =r=1 (11-32)
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| 74 Ry

Structure Stiffness Matrix

ho, : %
a
r. Ry Ry
> y -
ry. Ry
(a)

Therefore,

Substituting Eqs. 11-31 and 11-33 into Eq. 11-30 gives
Ky=Fo+ B+ B

(b)
Figure 11-6
Q¢ = kigi = kj;
0! =kigi = ki
Qi = kigi = ki

321

(11-33)

(11-34)
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In general, we can write the structure stiffness coefficients at node ; as
Ki=Kj+ki+ky Gh=12....i....n (11:35)
This demonstrates that the structure stiffness coefficients K, can be formed by
the superposition of the element stiffness coefficients with common subscripts
from the members meeting at coordinate i, and this summation process is based
on the nodal equilibrium of forces expressed in terms of displacements.

11-7 THE PROCEDURE OF THE DIRECT STIFFNESS METHOD
IN ANALYZING FRAMED STRUCTURES

In view of the foregoing reasoning, the general procedure for the direct stiffness
analysis of framed structures is outlined by the following steps:

1. Label the separate elements of the structure. The interconnection points
and the supporting points are considered as structure nodes.

2. Identify all nodal coordinates by numbers (nodes of unknown displacement
first) with reference to a set of global axes.

3. For each element, identify member end coordinates and establish the element
stiffness matrix with reference to the local axes.

4. Transform each of the element stiffness matrices in local coordinates to
global coordinates.

5. Superimpose the element stiffness matrices in global coordinates to obtain
the structure stiffness matrix. Be sure that the nodal numbering of each element
corresponds to that of the structure so that the structure stiffness coefficients
K are the collection of all the element stiffness coefficients bearing the same

subscripts ik; that is, —
Ki =Xk (11-36)

where the summation extends over all m elements meeting at node i.
6. The structure stiffness matrix relates the total nodal forces to the corresponding
total nodal displacements in the form

= e { —————— — (11-37)
X Kxr | Kxx Tx

We divide the nodal displacements into two groups: one is the unknown nodal
displacement r, corresponding to known nodal forces R: the other is the known
nodal displacements r, corresponding to unknown nodal forces X.
The solutions are obtained in two steps: first for r; and then for X.
7. Member end forces obtained in global coordinates as linear functions of
the nodal displacements in global coordinates are finally transformed back to
local coordinates in a form of moment, shear, and axial force.

Note that the distributed or other loads applied on the member span are
converted into equivalent nodal loads by a change of sign of fixed-joint actions;
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the e_quivalent nodal loads must be expressed in global coordinates. When cal-
f:ulatmg member forces, the fixed-joint actions in global coordinates are transformed
into local coordinates according to Eq. 11-11.

11-8 ILLUSTRATIVE EXAMPLES

Although the direct stiffness procedure is most suitable for analyzing complicated
problems carried out by the computer, the matrix examples given in this section,
in general, are short enough to be performed and checked by hand calculation.
They serve to illustrate the basic procedure for finding the unknown displacements
and reactions.

Example 11-1
Analyze the truss shown in Fig. 11-7(a) by the direct stiffness method. Assume
L/AE = 1 for all members.

The first step in developing the analysis is to identify the elements and number
the structure nodes (nodes with unknown displacements first). This has been done
in Fig. 11-7(b). The complete nodal displacements and corresponding nodal forces
are written as

( r h ( R,
r R,
rg r; R R
—p = L —p =g P (11-38)
rx Ts X R, |
rs R5
\ Ts J \R¢/

which are partitioned with respect to unknown displacements {rz} = {r, r, rs} cor-
responding to known nodal forces {R} = {R, R, R;} and known nodal displacements
{rx} = {rs rs r¢} corresponding to unknown reactions {X} = {R, Rs R¢;. In the
present case, we have known values:
rn=r=r=R =R;y=0 and R, =P

We wish to solve the unknown joint displacements r;, r,, and r; and the unknown
support reactions R;, Rs, and R.

Consistent with the nodal numbering of the structure in Fig. 11-7(b), we next
label the nodes (end coordinates) of each element, as shown in Fig. 11-7(c).

The stiffness matrix for each element in global coordinates is then computed
according to Eq. 11-28. Each relates the nodal forces and displacements of the
element considered.

Element a T=l C,=cosf =1 C,=sin8 =290
516 4
1 5
— | -1 1 sym 1 (11-39)
=1 000 6
0 00 014
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Element b -AZE— =] C,=cosd = 0.6 C, =sinfd =08
5 2 6 3
0.36 sym. b
T = -0.36 0.36 2 (11-40)
B 0.48 -0.48 0.64 6
—~{(.48 0.48 -0.64 0.64 3
Element ¢ éLE =] C.=cos8 = —0.6 C, =sinf =038
I 2 4 3
0.36 sym. 1
T = -0.36 0.36 2 (11-41)
-0.48 0.48 0.64 4
048 ~048 -0.64 064 13

(b)

1
cosf = 0.6 / cos 0 =—0.6

sinf =0.8 Y sind =0.8

Figure 11-7
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Superimposing element stiffness matrices given in Egs. 11-39 to 11-41, we

establish the structure stiffness matrix as

| 2 3 4 5 6
1.36 sym 1
-0.36 0.72 2
K = 0.48 0 1.28 3 (11-42)
-0.48 0.48 -0.64 0.64 4
-1 -0.36 -048 0 1.36 5
0 -0.48 -0.64 0 048 0641 6

which relates the total set of nodal forces and displacements; that is,

KRR KRX
R, 136 —036 048 | —048 - 0 7
R, -036 072 0 I 048 -036 —048 ||
R; 048 0 128 | —0.64 -048 -0.64 || r,
—_ = i —-——— —
1
R, ~048 048 064 | 064 0 0 s
R; -1 036 —048 { 0 136 048 | | rs
R, 0 -048 064 | 0 048  0.64d Lr,
KXR KXX

(11-43)

Applying the compatibility condition ry = 0, we solve the unknown displacement

rg in terms of known forces R by
re = KiaR
or
-0.36

r 1.36
re=9rn¢=1-036 072

r; 0.48 0
1 0.5
0.5 1.639
0.375 -0.188

0.5
1.639 %
—0.188

The support reactions are then solved by

X = Kxerr
or
R, —0.48 0.48 -—0.64
X=93Rs¢ =11 -036 —-048
R 0 —0.48 -0.64

(11-44)

0.48]"
0

1.28

R,
R,
R;
0

P} (11-45)
0

(11-46)

0.5 0.667
1.639¢ =y -1 P (11-47)
—0.188 ~0.667

With all the nodal displacements found, the member end forces in global
coordinates are obtained by using the element stiffness matrix previously established.
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Thus,
Element a
u 1 -1 0 07 (g¢ -0.5
o -1 10 ofjgil_ ) 05],
451 0 00 o)z 0 (11-48)
‘ 0 0 0 0fl7: 0
Note that §% = r, = 0, 1=n=05g=r,=0,andGi =r, = 0
Element b
[o}4 " 036 -036 048 -0.48 7§ ~-0.500
Sl_|-036 036 -048 048{)72| _ | o0.500
BT 048 -048 064 0641377 = ) -0es7(F (1149
0i) [ -048 048 -064 0.64]|7° 0.667
Note that 7§ = rs = 0, 3% = r, = 1.639, G2 = r, = 0, and T =r = —0.118,
Element ¢
i1 [ 036 -036 -048 0.487 (7% —0.500
Q| _[-036 036 048 -048] g5 | 0.500 )
([T -048 048 064 —064])7 0.667(F (1150
03 | 048 -0.48 -0.64 0.64] |7¢ —-0.667

Note that g§ = r, = 0.5, gs=r = 1639, gi= r, = 0, and gi= r; = —0.188.
Member forces Q in local coordinates are obtained by transforming Q in
global coordinates through the equation

Q=a0

where « is the transformation matrix defined in Eq. 11-27, that is,

(11-51)

[ cosé 0 sing 0
_ 0 cosf 0 siné
4= _sing 0 cos8 O (11-52)
[ 0  —sind 0 cosé
Thus, we have the following
Element a
H [1 0 0 07(-05 -0.5
i{_101 00 0.5 _ 0.5
S =10 01 0 0 P = 0 P (11-53)
A 0 0 0 1 0 0
that is, the member 4 is subjected to an axial tension of P/2.
Element b
g 06 0 08 0 J{-0.500 —-0.833
2l _| o 0.6 0 08)] 0500{, | 0833
{08 0 060 [J-0e7(P=1 o (P (154
Q? 0 -08 0 o06] 0667 0

that is, the member 5 is subjected to an axial tension of SP/6.
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Element ¢
05 -0.6 0 08 O -0.500 0.833
osL_ I o -06 0 0.8 0.500{ , _ | —0.833
0sf =1 -08 0 -06 0 0.667(F =1 o P (11-55)
03 0 -0.8 0 —0.6]~0.667 0

Therefore, member c is subjected to an axial compression of SP/6.
Example 11-2 )

Analyze the rigid frame shown in Fig. 11-8(a) by the direct stiffness method. The
frame is composed of two identical members denoted by a and b and is subjected
to a uniform load over the horizontal member b only.

The equivalent form of the given loaded frame is shown in Fig. 11-8(b), which
consists of two parts: the original frame under the equivalent nodal loads and a
fixed-end beam b. Arbitrary numbering of nodal coordinates are given to the frame
as in Fig. 11-8(¢). Thus we write the complete nodal displacements and forces as

- Y
R =L
12
o R, =0
r ~wlL
r3 R3 - _2——
rs - 2
R rs R R, = ]“;L
AP O it L
rx re =0 X __f _______________
r; = 0
rg = 0 R6 - WTL
75 = 0 R (11-56)
Ry
(R, J

Note that ry, r,, r3, rs, and rs are unknown nodal displacements and R, R;, Ry,
and R, represent support reactions. We wish to determine these unknown quantities
and obtain also the member end forces.

Let us first use Eq. 11-25 to establish the element stiffness matrices in global
coordinates for elements a and b as follows:
Element a C, =cos 6 =08 C, =sinf = 0.6

7 1 9 3 8 2 _
4EI
< sym. 7
2E1 4EI
L L
_ABEI _48El  1.68EI  036AE 5
oo I L L L
48EI  48EI 1.68El 036AE  7.68El _0.36AE 3
L? L? L L L L
3.6EI  3.6EI  S.76EI 0A4SAE  S.J6EI 048AE  432El & 0.64AE 8
T Tz T tTL 5 1L I L
| 36E1 36EI  5.76EI 048AE  S.76EI  0.484E  432EI 0.64AE 4.32E1  O64AE | »
'z L L L Y tTL Tr L L3 L

- (11-57)



328 Direct Stiffness Method Chap. 11

AT
- 0
wlL + wl
7 k3
w per unit length w2 A\\
1 '
0.
!
X
|l 080 .| 1| ‘ b)
r T ™ (
(a)

T (@)
9 .

(c)

>k /GT\

Figure 11-8
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Element b

G

sym.

12E1

12E7

0

0

12E1
L3
0

0

2 5_
|
4
6
AE
2 2
_AE AE|
L L_|

329

(11-58)

Superimposing element stiffness matrices given in Eqgs. 11-57 and 11-58 then
gives the structure stiffness matrix, which relates all the nodal forces to the cor-
responding displacements; that is,

11-56, we can write Eq. 11-59 as

. Krr Krx _
8E1
(7 Y | T e
R 36EI  432E]  1.64AE
2 T 1 "
& I2EL STGEI OABAE  19.68EI 036AE s
3 Wz Iz I L v &
2E1 6E1 4E1
Ra T 0 - T re
AE AE
Rs & o -7 0 o = 4 s
R ML 6EI 12E1 6EI V2EI
*T 7 L2 0 v =z "' e
261 3.6EI 481 4ET
fr T T o L T "
& B6EI _4MEI OSIAE  STGEI OASAE i 36El  4NEL OG4AE .
8 12 f L Iz L 12 fE L 8
48EI  ST6EI 04SAE  T.68EI 0.36AE 48E  S.76EI 0A48AE T.68EI 0.36AE
\ Ry —_— - Y- 0 01 0 - -5 5t "
J L L L L L L L L L L )
— Kxr Kyx
(11-59)

The inverse of stiffness matrix cannot be obtained conveniently in literal form.
This solution must be continued by substituting numerical data or relative values
for the geometric properties. If we select AL*/T = 2,000 and use the data of Eq.
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TN\ _ —
% 8 o
o ~3.6 3284.32 sym. r/L
B S12 0 9424 71968 /L
% 2 0 -6 4 re
0 0 -2000 0 0 2000 /L
> b
————— = [;_I
L
- —“—f— 6 0 -12 6 0 i1 /L= 0
R; 2 ~3.6 48 0 0 10 4 =0
Ryl 36 -1284.32 95424 0 0 | 0 3.6 128432 | re/L = 0
R -48  -95424 -T27.68 0 0 10 -48 954.24 727.68] /L = 0
S (11-60)
in which the coefficients of the stiffness matrix appear to be dimensionless.
Solving for the unknown nodal displacements, we have
d — -1 1Y
(r, 8 -
P sym.
= -3.6  3284.32 0
L 1 L’
Dl |- ) 739 J A Sl
J 7 L2 95424 739.68 > CE
7 2 0 -6 4 1
, 12
3 =9 9
L |0 2000 0 02000 | \ OJ
\
— —_ N
0.164836 m
sym. <
0.0257319  0.0302499 0
1w’
= }-0.0340109 -0.0395686  0.0531275 J_E ?“E—,l
]
~0.133434  ~0.0722188  0.0966966  0.461762 -
0.0257319  0.0302499 -0.0395686 —0.07221838 0.0307499 | | 0

0.0418613
0.0279469

B
i
=]
<
3
g

wl?
£l (11-61)

0.0279469

With the unknown nodal displacements determined, we solve the unknown

reactions:
)12
RL - 22 6 0 12 6 0 0.0418613
2 0.0279469
R, _] 2 ~36 48 0 0] 1560 b wp
Ryl 3.6 —128432 -954.24 0 9 Pt "
R -48 -9542¢4 -727. e
oL 2 72768 0 0 0.0279469 (11-62)
0.112953
- —8.1%675 Lt

0.387047
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which gives
Ry = 0.613wL R; = -0.197wl? Ry, =0 Ry = 0.387wL

Member end forces in global coordinates are obtained by the matrix multiplication
of the respective element stiffness matrices and nodal displacements in global
coordinates.

Element a Fig 11-8(d) shows the end coordinates for member « in global
coordinate system. Using the element stiffness matrix of Eq. 11-57. we obtain:

[ 4
O 2 4 sym.
Q5L Ell -48 -48 727.68

osL 48 4.8 -T27.68 T27.68
QoiL 36 3.6 95424 -95424  1284.32
oiL -3.6 —3.6 -95424 95424 -1284.32 1284.32
0
0.0418613
1] wl?
-0.0374560 [ EJ (11-63)
0
0.0279469
~0.196675
—0.112953
0.386999{
-0.386999 [
0
0
or end moments 0§ = —0.113wL? and 0% = —0.197wL?, horizontal forces Q% =
Qs = 0, and vertical forces 0§ = — Q% = —0.387wL.

Element b Refer to Fig. 11-8(e) for end coordinates, which are the same in
the global or local coordinate system, since member b is horizontal. Using the
element stiffness matrix of Eq. 11-58, we can determine the end forces for member
b in a nodal-force analysis. The final forces in b must include the fixed-end forces
in Fig. 11-8(b). Thus,

[ 0! ) 4 sym. 0.0418613 ~1/12
o 2 4 ~0.0979480 1/12
= -6 -6 12 ~0.0374s600 | 172
d8LL _El |6 6 -2 n2 0 L2500 IRV gt
QL L 0 0 0 0 2,000 2,000 0.0279469} EI 0
oiL 0 0 0 0 -2,000 0.0279469 0
QIL
~ P
0.112955
0
0387047 ,
= 0.612053 (L
0
0 (11-64)

or end moments 0?2 = 0.113wL? and Q% = 0, axial forces Q0% = 0% = 0, and end
shears 0% = 0.387wL and Q% = 0.613wL.



332 Direct Stiffness Method Chap. 11

The end forces for member « of Eq. 11-63 can be expressed in local coordinates
[Fig. 11-8(e)] by applying the transformation matrix of Eq. 11-11. Thus,

Q7 100 0 0 0 ~0.196675
o4 010 0 0 0 ~0.112953
gLy 10 0 08 0 -06 0 0.386999 Wl
osLf "o o0 08 0 -0.6]] 038999
QL 0 0 06 0 08 0 0
Q3L 000 06 0 0.8 0 (1165)
- 0.196675
~0.112953
B 0.309599 W
© ) - 0.309599
0.232199
-0.232199
or end moments Q¢ = -0.113wL’ and Q% = —0.197wL’, end shears Q! =
- Q% = -0.31wL, and axial forces Q5 = ~ Qg = ~0.232wLl.

11-9 COMPUTER PROGRAMS FOR FRAMED STRUCTURES

With the advent of the digital computer, structural problems can readily be solved
by regimented computer procedures. Illustrative programs can be found in nu-
merous texts. The general outline of programs for stiffness method is contained
in the following steps:

. Input of structural data including structure parameters and elastic moduli,
Jomt information (number and coordinates), member mformatlon (designations,
properties, and orientation), and joint restraint list.

2. Formulation of stiffness matrices, including the generation of a structure
stiffness matrix from member stiffness matrices and the inversion of the structure
matrix.

3. Input of load data indicating number of elements, joints, and loading con-
ditions, which are further classified as equivalent joint loads and combined joint
loads.

4. Calculation and output of results, giving joint displacements, support reactions,
and member end actions.

The further development of person-machine communication leads to pro-
gramming systems that are problem-oriented, enabling the solution of an entire
group of related problems rather than one specific isolated problem.

PROBLEMS

11-1. Determine, by the direct stiffness method, the support reactions for the beam shown
in Fig. 11-9.
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w per unit length

L T T 1T T 717

EI constant

11-2. Determine, by the direct stiffness method, the member

1 N I ﬁ_}
} Figure 11-9

end forces and support
reactions for the beam shown in Fig. 11-10.

% |

3 kN/m l24kN
[ ]

[ [ [ T

7
a % b %

EI constant

|

6m ' 2m ,4 2m
f 1 Figure 1110

11-3. Determine, by the direct stiffness method, the bar forces, support reactions, and

nodal displacements for the truss shown in Fig. 11-11.

Assume constant axial rigidity
EA for all members.

g

-

j Figure 11-11

11-4. Determine, by the direct stiffness method, the bar forces and support reactions for
the truss shown in Fig. 11-12. Assume A/L = 1 for all members.
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y
SR S
Y B
~
RS
S8

%// 7/ Figure 11-12

11-5. Find, by the direct stiffness method, the member end forces and support reactions
for the rigid frame shown in Fig. 11-13.

w per unit length

; wi?
L i!f) )

i
H
a A

NN

!

A, EI constant

Y
VA Figure 11-13

11-6. Find, by the direct stiffness method, the member end forces and support reactions
for the rigid frame shown in Fig. 11-14.

w per unit length

| fl L L]
T wl‘ a 7
231 | b A, EI constant
4

N~
Yy
\
N[~
~

] Figure 11-14

1
f
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11-7. Use the direct stiffness method to construct the total stiffness matrix for the frame

shown in Fig. 11-15. Obtain the nodal displacements.

w per unit length

win
~

A, EI constant

Figure 11-15



12

The Treatment of Nonprismatic

Members

12-1 GENERAL

In the previous discussion of framed-structure analysis, we were concerned only
with structures composed of uniform elements. In many instances, however,
the members forming a structure are nonprismatic, or in the more general case,
have variable rigidities such as those shown in Fig. 12-1. The fundamental
concepts of analysis remain the same as if the structure were built up by prismatic
members. However, the expression for member constants, including the fixed-
end actions, the flexibility and stiffness coefficients, and the stiffness and carry-
over factor necessary for a moment distribution, derived specifically for prismatic
members, are no longer valid for nonprismatic members. These constants applied
for nonprismatic members must be first determined so that the analysis of structure
either by slope-deflection equations, or by moment distribution, or by matrix
procedure can be carried out in the usual manner.

In this chapter we develop various integral formulas expressing these constants
and demonstrate how to employ a numerical approach to approximate an integration.

12-2 FIXED-END ACTIONS

Consider a member of varying fluxural rigidity with both ends fixed and subjected
to the bending action caused by member loads, as shown in Fig. 12-2. The
general expression for the fixed-end moments may be found by the method of

336
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—— [

Tapered member Stepped member

— = —

Haunched member

Figure 12-1

Viarving 1/ 2 Figure 12-2

least work, using Egs. 6-30 and 6-31:

!
M dx
o B =
1
Mx dx

= 12-2
oz =0 (12-2)

If the member is made of the same material, we can assume that E is a
constant. The preceding expressions thus become

!
fde =0 (12-3)
o [
!
fodx —0 (12-4)
o [

where both M and I are functions of x.

As an illustration, let us find M, and V, for the fixed beam shown in Fig.
12-3 due to a uniform load over the entire span..

The moment at any section distance x from the left end is

2
wx

M=M|+V1X_

Substituting M in Eqs. 12-3 and 12-4 gives

y ; 1 2
dx jxdx w [ x*dx
M e = 12-5
‘LI+V101 2Jo 1 0 (12-5)
1 1.2 1.3
xdx fxdx wj'xdx
M’foI+V’oI 2b 1 =0 (12:6)
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M, M,
., w 7
Z T T 1T 17 1T"71T 711 3
7
A
A /A
. S
VI ! tVZ
! !
| Figure 12-3
In matrix form,
fl dx fI'L(Lx J*I x2 dx
o/ o I M‘ - i’ 0 1 (12_7)
J"._x_g'f f’xzdx v, 2 f’xzdx
o I o 1 o [

Eliminating V, from Eqgs. 12-5 and 12-6 yields the fixed-end moment at !:

1 2 1 !
, (f * dx)/I) - fo (x dx)/If0 x* dxy/1

0

M, = <E) 7 7 7 3
2 de/lj’0 x* dx)/1 - (fo (x dx)/I)

The fixed-end moment at 2 can aiso be obtained from Eq. 12-8 by taking
the integral origin at 2 and using reverse sign. For a member of varying I, M,
and M, are not equal except in a symmetrical system. For a member of uniform

section, Eq. 12-8 reduces to
{ 2 { !
(j xzdx> —[xdxffdx
0 [} 0 w12

w
Ml:"M2=('i> 7 7 7 2 12
fdxfxzdx - (fxdx)
0 0 0

With M, and M, obtained, we can find V, and V, by simple statics.

(12-8)

(12-9)

12-3 THE ROTATIONAL FLEXIBILITY MATRIX OF A BEAM
ELEMENT

Consider the beam element with a variable cross section subjected to end moments
R; and R, with the corresponding rotations r, and r,, as in Fig. 12-4(a). In order
to find flexibility coefficients, we must have the element properly supported. If
we regard the element as a simple beam, as in Fig. 12-4(b), then the bending
moment at any section distance x from the left end is

(Ry + Ry)x

M=Rl_ l

(12-10)
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Ry, n Ry, r R, 7
M /\ _,__’,;—:]-)Rz
1 2 1 [—/- By
| ! | 7 V4

! | i t
R, +R,
Rl +R2 ]
—
(a) b
Figure 12-4

By the method of least work, we obtain the end rotations r, and r, as

oW f M(3M/3R,) dx
rl = e— = et et
oR, 0

EI
!
_ [IR = R + Ry)x/DI — (x/D)] dx
= fo I (12-11)
_ W _ j’ M(3M/3R,) dx
TR, Jo EI
_ f [Ri = (R, + Ry)x/DIl—x/I) dx (12:12)
0 EI

Setting R, = 1 and R, = 0 in Eqgs. 12-11 and 12-12, respectively, leads to
the rotational flexibility coefficients f;, and f5,:

! 2
[ d=xdx i
.fll - 0 EIIZ (12 13)
I —
o= | LoD (12-14)

0 EIl?

Similarly, setting R; = 0 and R, = 1 in Egs. 12-11 and. 12-12, respectively,
yields

i
_ (I — x)(x) dx i
fo = —fo R (12-15)
" x? dx ’
fo = L——Enz : (12-16)

Collecting Eqs. 12-13 to 12-16 and assuming a constant E, we form the
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rotational flexibility matrix:

_ [ f,z]
ol {fn f
[ -xrdx | N = X0 dx
_ 1 o I 0 1 (12-17)
CEP| j’ ( = x)(x) dx j‘ x* dx
0 I o [
For a member of uniform cross section, this expression reduces to
L2 - (12-18)
L1 = 6EI[ -1 2]

12-4 THE ROTATIONAL STIFFNESS MATRIX OF A BEAM
ELEMENT

Consider the same beam element in Fig. 12-4(a). By definition, the rotational
stiffness coefficients &;; and k,, are the respective moments at coordinates 1 and
2 due to a unit rotation of coordinate 1 (r, = 1). Similarly, the rotational stiffness
coefficients k;, and k,, are the respective moments at coordinates 1 and 2 due
to a unit rotation at coordinate 2 (r, = 1). They are illustrated in Fig. 12-5(a)
and (b).

To find the integral expression for the rotational stiffness matrix, we need
only perform the inversion for the rotational flexibility matrix given by Eq. 12-

17. Thus,
ky k fi fo]™
k= n At _ |Jin Ji2
(4] [k k] [fz; fzz]
L - 0t dx _L i - x)(x) dx 7,4
_ | Ee 1 El*Jo 1
11— 000 dx 1 ["x?dx
El*Jo I El*le 1
E j' X2 dx f’ (- x)(x) dx
= o I 0 I

"dr ['x*dx "x dx\? "
SIS (fT) [, radmde [ X ds
(12-19)

Equation 12-19 shows that the stiffness matrix is symmetrical (i.e., k;; = k).
For a member of uniform cross section, Eq. 12-19 reduces to

2EI2 1
[k]=7[, 2] (12-20)
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An k1,
(\ Varying / A /-//\
- 1

S o g i k%// Z Varying / %

\\\

] L _.] - ! !

T
(a) (b)

Figure 12.5

12-5 THE GENERALIZED SLOPE-DEFLECTION EQUATIONS

The slope-deflection equations derived for a typical uniform member 1-2 (see

Sec. 7-2) are
1 A F
MlZ = 2E7 201 + 62 _ 3 7 + Iwn (12"21)
1 A .
Mz}' = 2E7 202 + 61 - 3 7 + M2| (12'22)

In cases involving a variable moment of inertia, these equations are not valid
and some generalized slope-deflection equations must be formed. To do this,
we recall that the basic slope-deflection equations are derived from the sum of
four separate effects:

1. The rigid body translation A between two ends. This is equivalent to a
rigid body rotation A/l or R of the whole member.

2. The rotation (§, — A/I) at end 1 only.

3. The rotation (§, — A/I) at end 2 only.

4. The application of member loads with end displacement prevented.

These steps are recaptured as in Fig. 12-6 and are also applicable to the
instances of nonuniform member.

! .l
R=A

Ongl nal position

wﬂNT

Deformed position

[ Figure 12-6
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Now the rigid body motion of step 1 causes no moments. Step 2 produces

A

M = ky (01 - 7) (12-23)
A

My = ky (91 - 7) (12-24)

Similarly, step 3 gives

A

My = ki (92 - 7) (12-25)
A

My = ky (92 - 7) (12-26)

Note that &y, k. k;,, and &, are the rotational stiffness coefficients defined in
Eq. 12-19.

The end moments corresponding to step 4 are the fixed end moments
discussed in Sec. 12-2. They are usually denoted by M1, and M%, in slope-deflection
equations.

Collecting these effects, we arrive at the generalized slope-deflection equations
applicable to cases involving variable moment of inertia:

A ‘
My = kb, + ki, — (kyy + klZ)T + M, (1221

A
M:] = k2,0, + kzzeg - (kz] + k22)7 + M2Fl (]2'28)

Assembling Eqs. 12-27 and 12-28 in a matrix and using R = A/l, we have

Mlz"Mfz — kn kl‘l 6, - R _
{Mz, ~ ML T |kn k|6 - R (12:29)
which gives the relationship between member end forces and displacements. For
"a member of uniform section,

k” klZ _ gﬂ 2 1 _
[ku kzz]“ 12 (12-30)

and Eqs. 12-27 and 12-28 reduce to Eqgs. 12-21 and 12-22.

With the fixed-end moments and rotational stiffness coefficients for each
member determined, application of generalized slope-deflection equations 12-27
and 12-28 in analyzing frames composed of nonuniform members can be carried
out by the procedure given in Chapter 7.

12-6 THE STIFFNESS AND CARRY-OVER FACTOR FOR
MOMENT DISTRIBUTION

To develop an expression for stiffness and carry-over factor for a member of
varying I in moment distribution, let us recall the definition of rotational stiffness
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for an end of a member as the end moment required to produce a unit rotation
at this end (simple end) while the other end is fixed; and the definition of carry-
over factor as the ratio of induced moment at the other end (fixed) to the applied
moment at this end. See Fig. 12-7, in which we use the conventional notation
S\2 in moment distribution as the rotational stiffness of end 1 (this end) of member
1-2; C\; as the carry-over factor from end | to end 2. By definition, §,, is the
same stiffness coefficient £,, given in Eq. 12-19. Thus,

!
E f( ) (x* dx)/I

foldx/lj:(x2 dx)/I - (fo[(xa/x)/l)2

The rotational stiffness of end 2 of member 1-2, denoted by S,,, can
similarly be explained and is equal to ky, given in Eq. 12-19. Thus,

(12-31)

S12 =

|
Efo (I - x)?dx/I

Sy = 7 7 7 2
fodx/lfo(xz dx)/I - (fo (x dx)/l)

Note that for a member of nonuniform cross section, S, is usually not equal to
S12. For a member of constant cross section,

(12-32)

Spp =8y = — (12-33)

Again, refer to the setup in Fig. 12-7. The induced moment M,, at end 2
is the carry-over moment from end 1 and is therefore equal to C,S;, or Ciokyy.
But it can also be interpreted as the moment restraint at end 2 due to a unit
rotation only at end 1 and therefore is equal to the stiffness coefficient &, in
Eq. 12-19. Thus,

Cp = % (12-34)

11

Cy; (Carry-over factor)

Required My, =5,
—_——

K\ Varying / 2 V
7 \%J

l b, =1 l My =Cyp8y,

Figure 12-7
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Using the expressions of k;; and &, in Eq. 12-19, we obtain

!
L (I — x)xdx/I

Cp= - (12-35)
j xXdx/I
0
By the same reasoning,
Cyy = ki (12-36)
T kg
Using the expressions of &y, and k., in Eq. 12-19 gives
{
f (I - x)x dx/I
Cy = = (12-37)

n =
fo (- x)Vdx/l

Note that for a member of nonuniform cross section, C;, and C,, are usually
not equal. For a member of constant cross section,

Ca=Cy=1% (12-38)
Since CixSps = kais CiS2y = ki, and kiy = kyy, we reach
CiSiz = €S (12-39)

This relationship provides a check on separately computed value of the stiffness
and carry-over factors.

The determination of fixed-end moments, stiffnesses, and carry-over factors
prerequisite to a moment distribution procedure usually involves a large amount
of computation. Fortunately, the values of a considerable number of these factors
for the more common types of nonprismatic members have been published for
the convenience of structural engineers. One such source is the Handbook of
Frame Constants published by the Portland Cement Association. The member
stiffness matrix and, therefore, the flexibility matrix required for a matrix analysis
of frames can be deduced from these data by using the relationships

kll kl: SIZ CZISZI SlZ CIZSIZ
= = 12-40
[kzx kn] [cnsn S, ] [c,zs,z San (12-40)

12-7 FIXED-END MOMENT DUE TO JOINT TRANSLATION

When frame sidesway is involved, it is necessary to determine the fixed-end
moments due to joint translation for the relevant members before we can carry
out a moment distribution. We recall that the fixed-end moment developed at
either end of a prismatic member because of relative end displacement equals
—6EIA/I*. This is no longer valid for a member of nonuniform cross section.

Consider member 1-2 having varying I subjected to a pure relative end
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translation A, as shown in Fig. 12-8. The moment restraints

. . . : $ atend I and 2 cz
readily be obtained by setting 6, = 6, = MZ, = M%, = 0in the generalized slopde'rj
deflection equations 12-27 and 12-28. Thus, ‘

A
Mu = _(k” + klZ)—[' (12-41)
MZI = "'(k21 + k‘_r_))% (12"42)

in which k1, k1>, kay, and ky, are stiffness coefficients defined by Eq. 12-19.

Equations 12-41 -and 12-42 in terms of the conventional notation of moment
distribution are given as

A
My, = —(S;, + C21521)7 (12-43)

A
= =Syl + C12)7

M,

A
= —(5; + C12512)7 (12-44)

A
= =851 + C21)7

by using the relationship C,,S,, = C,,S,;. For a member of uniform cross section,

S = 8y = 4El/l, Ci; = C, = 4, and the expressions above reduce to

6EIA
12

If end 2 is hinged, the modified fixed-end moment at 1, called M/, resulting
from the relative end translation A can be found by first assuming both ends
fixed and subsequently restoring end 2 to its original hinged condition. Thus,
M, = M, - CuM,,
Using Eqs. 12-43 and 12-44, we obtain

My=M, = - (12-45)

A
M, = =Sl - C|2C21)7 (12-46)
For a member of uniform cross section, this expression reduces to
3EIA
My = == (12-47)

2 1 Varying /

My =7 Figure 12-8
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12-8 MODIFIED STIFFNESS FOR MOMENT DISTRIBUTION

The modified stiffness of this end of a member may be defined as the end moment
required to produce a unit rotation at this end (simple end) while the other end
remains in the actual condition other than being fixed.

Case 1 The modified stiffness for end 1 of member 1-2, if end 2 is simply

supported, is given by
;2 = S|2(1 - C12C2]) (12‘48)

in which S|, denotes the modified stiffness and S, is the stiffness found by the
usual manner. The equation above can be proved as follows.

By definition, the setup in Fig. 12-9(a) gives the configuration for finding
the modified stiffness for end 1 of member 1-2, the other end being simply
supported. To accomplish this, we may break member 1-2 down into two
separate steps, as shown in Fig. 12-9(b) and (c). In Fig. 12-9(b) we temporarily
lock end 2 against rotation (8, = 0). A moment S, applied at end 1 will pro-
duce a unit rotation at | and induce a carry-over moment of C,8); at 2. In Fig.
12-9(c) we release end 2 to its actual condition of zero moment and at the same
time lock end | against further rotation. A moment of —C 12812 must be developed
at end 2 and, consequently, —C,,C,»S;, will be carried over to end 1. The sum
of the foregoing two steps for end 1 gives

fz = SIZ - C21C12512

=S5l - CiCy)
as asserted.
For a prismatic member C;, = C,, = %; therefore,
=4S, (12-49).

Case 2 The modified stiffness for end 1 of member- 1-2, if end 2 rotates
an equal but opposite angle to that of end 1 as in the case of symmetry, is given

Sl'Z M2=O
(a) (\ - . 2
6, =1 7

7 !

Yo, =1

~

0155, Ca) .
o {0 — )
77 05 w

Figure 12-9
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by ,
Siz = 81 = Cpp) (12-50)

To prove this, we refer to Fig. 12-10(a), which is postulated according to
the definition of modified stiffness for the present case.

As before, we break this into two separate steps, as shown in Fig. 12-10(b)
and (c). Figure 12-10(b) shows the usual way of determining S,.. In Fig.
12-10(c) a moment of —S,, is applied at end 2 necessary to bring it back to its
actual position. Consequently, a moment of —C,,S, is carried over to end 1.
The sum of the results of these two steps for end 1 gives

"7 = S - C‘) Sv

12 12 21921

On substituting C,,5,, for C,.5,, in the expression above, we obtain
S = Si(1 = Cyy)

as asserted.
S I
1 2
) 7 6, =1 0,=-1
C
i - 12912
(b) A 9[ =1 0.=0 %

Figure 12-10

For a prismatic member C,; = $; therefore,
St = 881 ' (12-51)
Case 3 The modified stiffness of end 1 of member 1-2, if end 2 rotates
an angle equal to that of end 1 as in the case of antisymmetry, is given by
Stz = Si(l + Cpo) (12-52)
To prove this, we refer to Fig. 12-11(a) for the setup of Si,. As befor_e,
this may be considered as the superposition of two separate cases, as shown in
Fig. 12-11(b) and (c). Consequently,
Sz = S + Gy
On substituting C;,S,, for C,,S,,, we obtain
S = Sl + Cpp)
as asserted.
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Sha
(o :
(a) 72 I
Ay
6 =1
I 2} CySpy
th) 7. 0‘ =1 62 =0 %
/ 8,=0 -
CaSu f ‘m 2 ¥ Sy
(<) % 4-7— ;,E/
21

Figure 12-11

For a prismatic member C,, = 3, therefore,
Siz = 881 (12-53)

12-9 A NUMERICAL SOLUTION

One of the most frequently used methods of approximate integration is the
Simpson’s one-third rule. Consider an integral [ f(x) dx between the limit a and
b. If the integral from x = a to x = b is divided into n equal parts, where n
is an even number, and if yq, y,, . .., ¥.—1, ¥, are the ordinates of the curve
y = f(x) at these points of subdivision (Fig. 12-12), then according to Simpson’s
one-third rule,

b
A
Lf(x) dx =§(yo +4y, + 2y, +4ys+ 000+ 2y, 4y, +y) (12-54)

where A = (b — a)/n. Simpson’s rule gives an accurate result if f(x) is a linear,
quadratic, or cubic function.

yEfX

Figure 12-12
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To illustrate, let us solve the rotational flexibility matrix of a beam element
expressed in Eq. 12-17. Consider the coefficient f5,,

1 f’xzdx (=1
Elf) 1 =10

1]

We divide the length [ into 10 equal segments, each with 0.1/. An application
of Eq. 12-54 yields

1 ['x*dx
fo = EPrJo I
0.1 (DO (4)0.1  (2)(0.2)°  (4)0.3)°  (2)(0.4}  (4.0)0.5)
= — + + +
35[ I 2 L LT T
L 0.6 L, Woy L 20387 L 4097 L (ay
16 ]7 18 19 1]0
(12-55)
with I, = I(0), I, = I(0.1]), I, = I{0.2]), and so on. In matrix form,
fo N
0.04
0.08
0.36
0.1 0.32
FE v L L SR CON PR PR PR PN CA Py PR O R S U <
3E
0.72
1.96
1.28
3.24
g | J
(12-56)
In the same manner, we obtain
1 (' —x)?dx
i A
2 2 2 2 2 2
_ 0.1t + (4)(0.9) + (2)(0.8) + (4)%0.7) + (2)(0.6) + (4)(0.5)
3E 10 11 IZ 13 14 15

@047 @037 @027 @0.17  (1)OF
L 7 A A A
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1 ~ _ _
=%[15’ IO S L AL AL AL AL AL AL A

(1 )
3.24
1.28
1.96
0.72
<1 b
0.32
0.36
0.08
0.04

0 )

(12-57)

1 ' - x))dx
fo=fu=—gp) 7

_ 0.1 ((xo) + 40.90.1) + (20.8)0.2) + @0.7(0.3)
3E 1, I, - L I
+ (2)(0.6)(0.4) + (4)(0.5) + (2)(0.4)(0.6) + (4)(0.3)0.7)
14 . 15 16 I7
+ (2)(0.2)0.8) L 0.D0.9) + (1)(0)(1)]

18 19 110
iy (PR P POl PR R SL P S S AL P

(0 O
-0.36
-0.32
—-0.84
—0.48
{1

-0.48
-0.84
-0.32
—-0.36
. 0 J

Y

(12-58)
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If we let C” = _f“, C]2 = .le’ C21 = ﬁz, al’ld C22 = le, we haVe

i Cn2

Cyp €2

_o.u[lo" NV FLR P FLE P PR R PR 1,’0‘]

3E It I It ;! I ;! I ;! I 15!

[ 1 0 ]

324 —0.36

1.28 —0.32

1.96 -0.84

0.72 -—-0.48

1 —1

0.32 -—0.48

036 —0.84

0.08 —0.32

0.04 —0.36

or simply

[C] = [AllB] (12-59)

For a prismatic member, the I-value for each segment is constant. Therefore,

ciy 2 [i2 -1

= —— 12-6
[021 sz] 6EI[2 —1] ( 0)

That is, the rotational flexibility matrix becomes
fu fel _ U A
fu fo| 6EIL-1 2
as expected. .

With element rotational flexibility coefficients determined, the element ro-
tational stiffness coefficients as well as other constants can readily be derived.

PROBLEMS

12-1. Figure 12-13 shows a beam of varying cross section with both ends fixed and
subjected to the bending action of a concentrated load P. Find the integral expressions

for the fixed-end moments.

a

[P

.
Ir= 4‘1‘ Figure 12-13

0F b o
’
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12-2.
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For the beam element of constant width shown in Fig. 12-14, find, t?y the numerical
method, the rotational fiexibility matrix, Assume that the element is simply supported.

o 3,
4y a b | 1.5d
Y

12-3.

12-4.

Figure 12-14

Use the result of Prob. 12-2 to find the rotational stiffness matrix for the same

element.
For the haunched member of constant width shown in Fig. 12-15, find the stiffnesses
and carry-over factors by the numerical method or from the table of frame constants

{1¢ 3‘
ER 1] *d

12-5.

12-6.

12-7.

12-8.
12-9.

if available.
b l I.2m
no
l

Using the result of Prob. 12-4, give the rotational stiffness and flexibility matrices
for the element shown in Fig. 12-15.

Use the numerical method or table of frame constants to determine the fixed-end
moments for the haunched beam of Fig. 12-15 due to a uniform load of 5 kKN/m
over the entire span.

Use the relevant calculation from Probs. 12-4 to 12-6 to find, by moment distribution,
the end moments for the beam in Fig. 12-16 subjected to a uniform load of 5 kN/m
over the entire span.
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Figure 12-16

Repeat Prob. 12-7 by the method of slope deflection.
Repeat Prob. 12-7 by the matrix force method.

12-10. Repeat Prob. [2-7 by the matrix displacement method.



13

Matrix Analysis of Elastic
Stability

13-1 GENERAL

In Chap. 2 we discussed in detail the statical stability and the geometric stability
of simple framed structures. They are judged by the number and arrangement
of elements and supports of which the structures are composed and are independent
of the externally applied forces. However, the stability with which we are now
concerned is a different kind of stability, which may be called the stability of
equilibrium for an elastic structural system. According to Kirchhoff’s uniqueness
theorem, an elastic body can assume one and only one equilibrium configuration
under a given external loading. The theorem holds true as long as the structure
is linear. When the uniqueness of solution is established, we need to find only
the solution of a given boundary-value problem; that solution is the solution.
. However, there are cases that show the violation of the uniqueness of the solution
in one way or another and are characterized by the disproportionality between
the loads and displacements (nonlinear). For instance, elastic columns and plates
can buckle, narrow beams can collapse laterally, and framed structures can
become unstable under certain specified loads. These problems are all connected
with the loss of uniqueness of solution. Under certain circumstances two or
more solutions may become possible, and the circumstances are said to cause
the instability.
In a classical scientific sense, the stability of an elastic system can be
‘investigated by subjecting it to an infinitesimal disturbance from its equilibrium
position. If the system returns to its original position upon removal of the
disturbance, it is considered to be stable. If it does not return, it is unstable.
The borderline between stable and unstable equilibrium is referred to as neutral
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equilibrium. Our problem is to examine if there can exist an alternative state
{or states) of equilibrium in a displayed position from which critical loads can
be evaluated. )

In the sense of modern matrix analysis of a linear structure, instability of
a structire means the loss of structure stiffness. Consider a framed structure
with nodal forces {R} and the corresponding displacements {r}, which can be
generally related by a stiffness matrix [K]:

[K1{r} = {R} (13-1)

When the effects of axial forces are included, it is shown (Sec. 13-2) that the
elements of [K] are no longer constants but are a function of axial forces. As
the axial effects become critical, it is possible to have the structure acquire some
small displacements {8r} without increase in {R}. Thus,

[KH{r + 8r} = {R} (13-2)
From Eqgs. 13-1 and 13-2, we reach the solution
[K1{or} = {0} (13-3)

For a nontrivial solution (i.e., other than {8r} = {0} to exist, [K] must be singular,
that is,
K| =0 (13-4)

Equation 13-4 implies that the inverse of the stiffness matrix is infinitely
large or that the total stiffness matrix is vanishingly small, thus serving a criterion
for evaluating the critical loads.

As an illustration, consider a vertical bar ab hinged at the bottom and
supported by a spring bc at the top carrying an axial load P, as shown in Fig.
13-1(a). Assume that the bar is infinitely rigid. It is intuitively correct that if
the load P acts truly along ab, the bar is in equilibrium for any magnitude of

lp r=1p £

e
%"\/\/\/\,——-ﬂb r b
Spring stiffness sr

=5

N\
7
\

@) (b) Figure 13-1
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P. However, it is interesting to investigate the stability of the equilibrium for
the system.

Th.e system has a single degree of freedom, that is, the rotation of the bar
about hmge a, or its equivalent, the lateral displacement r at top b, since for
small' rotation ¢, r = I¢. The problem may first be investigated in the following
classical approach.

Suppos.e the bar is turned a small rotation ¢ (clockwise) about a, corresponding
to a sm.all disturbing moment M,, (shown as a dashed line). The bar is brought
to rest. in this position; the balanced force system is shown in Fig. 13-1(b). The
force in the spring is given by sr, s being the spring stiffness. Thus,

M, = srlcos ¢ — Pr
For small ¢, it becomes
M, = srl — Pr (13-5)
After the cause of disturbance is removed (setting M, = 0), we notice that if
srl > Pr, or
P <sl (13-6)

the bar tends to rotate in the counterclockwise direction, that is, to turn back
to the original stable position. However, if

P>l (13-7)
the bar tends to accelerate clockwise, and the original configuration of equilibrium
becomes unstable. If

P =5l » (13-8)
then the system is in neutral equilibrium and the load P = s/ is called the critical
load.

We see that the criterion for stability of equilibrium depends on the relation
between the magnitude of the axial load P, spring stiffness s, and structural
geometry { and is independent of the magnitude of the displacement r or ¢, as
long as the displacement is small.

The problem may also be investigated by the loss of structure stiffness.
Refer to Fig. 13-1(a). For a small rotation at a, we have—from Eq. 13-5—the
corresponding disturbing moment at a given by

M, = sl — Pr
This is equivalent to applying a disturbing force R = M,/l to cause a small
lateral displacement r at the top b (Fig. 13-2). Thus,
M

R = —f = §r — -1-? = (s — f'l;)(r) (13-9)

The stiffness is therefore given by
K=s- ? (13-10)
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Ak

a

7 Figure 13-2

When the stiffness vanishes (K = 0), the system becomes unstable. Thus,
P, = sl (13-11)
as previously found.
Note that the structure stiffness in general consists of two parts: an elastic

stiffness s and a geometric stiffness P/, which depends on the geometry of the
structure and the axial action.

13-2 STIFFNESS MATRIX FOR A BEAM ELEMENT SUBJECT
TO AXIAL FORCE

Consider the element of Fig. 13-3(a) subjected to an axial force P and a set of
end actions {Q} in which O, and Q, are the end moments, whereas Q, and 0,
are the end shears. The corresponding end displacements {g} are shown in Fig.
13-3(b). All signs of forces and displacements depicted in Fig. 13-3 are taken
as positive. We are to establish the element stiffness matrix in the presence of
the axial forces, using the principle of conservation of energy.

We assume that the application of axial load P takes place first; finally {Q}
with {g} are set in, with P kept constant. The system is in equilibrium not only
in the original configuration but also in the later displaced position. During the
end of transition, the external work done is given by

1 P
We= S (0+ 2 [ (3 e (1312
including the work of {Q} and that due to P.
The term ,
1 12
Efo(y) dx (13-13)

represents the axial displacement of one end relative to the other end resulting
from bending. This can be proved as follows.
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We assume that the axial deformation in the beam has taken place before
the axial force P reaches its full value. Therefore, the total beam length [/ would
not change when the end actions {Q} are applied in the presence of axial force
P. Consider an element mn of the beam with the length dx before bending (Fig.
13-4). This element has already been under compression. After bending, mn
displaces to the position m'n’. Since there is no change of length before and
after bending, the arc length m'n’ is equal to dx. The shortening of mn in the
x direction is, therefore,

27172
mn —m'n" = dx — [(dx)2 — (Q dx) }
dx

dy 27]1/2
—dx—dx[l (dx)]
1{dy\*
= — ] = 4+ o
dx — dx [1 2( dx) ]
1 (dy\*
) (dx) dx
where the higher-order terms are neglected in the last step. The approach of

the ends of the column is therefore given by Eq. (13-13).
The internal work, that is, the bending strain energy stored in the member,
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Figure 13-4
is given by
1 ("M*dx  EIf
=3B T —z‘fo(}’")2 dx (13-14)
Setting W, = W, gives
1 P EI ('
5@+ 3 L () dx = — fo (") dx (13-15)

Using the relationship {Q} = [kl{g} in Eq. 13-15, in which [] is the element
stiffness matrix, we obtain

(4 1
{a}"Ikl{g} = EI L (y)dx — P L (y') dx (13-16)

In order to evaluate the stiffness matrix [£], it is necessary to express the
transverse displacement y(x) in terms of the end displacements {g}. This can be
accomplished by assuming a displacement function in a polynomial series

Y(x) = a; + apx + ax? + ax’ (13-17)
and applying the boundary conditions,
y =g, y'=—q atx = 0 (13-18)
Y = 4qa, y'= —q atx = [

to determine the four coefficients. A cubic series is used since the third derivative

(the shear) is constant and the second derivative (the moment) is linear, and

these are consistent with the nodal-force pattern assumed for the beam element.
The coefficients are found to be

a, = qs
@= "4 (13-19)
a; = 3gqs = g3} + Qqy + gl

[2

a, = 2gs — q.) — (g, + @)
4 ™ !3
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Substi_tutin_g these into Eq. 13-17 and rearranging, we express v in terms of the
end distortions {g} in matrix form as -

2 3 2 2 2 ‘ )
[(__)(__)(___ 3 20)] fe
I AVEERE I IANAWE 5 g
N
or simply
y = [¢l{g} (13-20)

in which [§] = [,(x) ¢:(x) ¢s(x) $(x)] With ¢,(0) = —x + 26*/I — ¥/I*. and
so on. Differentiating Eq. 13-20, we write

y' = l¢'Kq} (13-21)
and ¥ = [¢"Hq} (13-22)
where

[¢'] = [$1(x) d3(x) P3(x) pix)]

dx  3x*\[2x  3x? 6x  6x°\(6x 6x°
=l -1+ =) -2 22 % -
[( l 12>(1 12)( r? * 13)(12 13) (13-23)

and

[¢] = [$7(x) $5(x) $3(x) ¢(x)] (13-24)

[[-R)G-F)(F- ) 2)]

Since (¥')* = (y)7(y") and (y")* = (y")(y"), using Eqs. 13-21 and 13-22. we
may write

(') = {af1¢' Vo' Ha} = {a}[d] /}g} (13-25)
in which '
b sym.
'] = RYiPFY — d)é(b{ ¢)£¢.;. .
(did;] = [¢'][¢'] Slbl dids Bl (13-26)
Gidi dids Pids i
and
(") = {g}1¢" V(¢ Ha} = {a} b/} Nq} (13-27)
in which
Py sym.
" o myTr gy ',lld),ll !ZI ’2/ _

Pidl  didT dids  didl
Substituting Egs. 13-25 and 13-27 into Eq. 13-16 gives

! !
(@ hta) = {q}’[EI J e ax - P 1010 dx] @ 1329
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from which we obtain the stiffness matrix [k] of the beam-column as

! 7 ]
[k] = [E[ L ¢/l dx| — [P L [did]] a’le (13-30)
Using the expressions given in qu. 13-23 and 13-24 for [¢'] and [¢"] and
Egs. 13-26 and 13-28 for [¢/¢;] and [¢7d7], we obtain
[~ 4E] 7 2 svm. |
Biduiel . = ym.
; ym 15
2E] 4EI o2
T 30 15 (13-31)
1] = - P
[&] 6E1 6EI 12E1 11 6
I EEE 10 10 51
6EI  6EI  12El 12EI 1 1 6 6
EVEEE 1 L 10 s o5

We recognize that the stiffness matrix is a function of the axial force P and is
made up of two parts: The first is the elastic stiffness matrix of an ordinary
beam element, and the second may be called the geometrical matrix (or stability
matrix) representing the axial effect with force P as a parameter of influence.

The matrix of Eq. 13-31 is derived for an axial compression, but it serves
equally well for a member subjected to tension by changing only the minus sign
before P to plus.

13-3 ELASTIC STABILITY OF A PRISMATIC COLUMN

The stiffness matrix given in Eq. 13-31 can be used to obtain the first approximation
of the critical loads for an axially loaded straight column of uniform EI with
various end conditions. In some instances, the results are strikingly good.

Consider the column shown in Fig. 13-5(a). The general nodal forces and
displacements are related by the stiffness matrix as

i iI[E—I - % sym. frn\

2EI Pl 4EI 2P

T8 T r
B P _6E P nE 6P A\

? 10 2 10 P 51 3

6EI P 6EI P 12EI 6P 12EI 6P
R T R R A a1 0

(13-32)

The simplest case is a fixed-slide column [Fig. i3-5(b)], in which only
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displacement r, can occur while r, = r» = r; = 0. The force-displacement
relationship is therefore given by

2 P
R4=[1 EI 6 ]m

roosl (13-33)
K
The critical load is obtained by setting |K| = 0, that is,
12EI 6P
& 5] 0 { )
from which
p, - 108! 1339

Compared with the theoretical value P, = m*EI/I?, the error is only 1.3% on

the high side.
If the fixed end is changed to a hinged end as in Fig. 13-5(c), then the

equation of equilibrium corresponding to possible displacements r; and r4 becomes

R 4E1 2P 6EI P}
S 5 7 10|}
o | T |6EL_ P 1EL_6PI|
4 o1 P LTl (13-36)

K
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Setting |K| = 0 yields

T8 A A ~
l“([lj” - 5.2’%‘1 +0.15P =0 (13-37)

Let A = EI/I*. Equation 13-37 becomes
0.15P° = S.20P + 1227 = 0 (13-38)
Solving for P gives the smaller value, equal to 2.5\. Thus

P,= ___2.[5251 (13-39)

which is also very close to the exact value (m*El/41%), with an error 1.3% on
the high side.

For a fixed-free column, as shown in 13-5(d), r, = r;, = 0. We have the
force-displacement relationship corresponding to r» and r, as

AEI 2Pl 6EI P
Bl 1T TFow | .
=l6EI P 12E1 6p (13-40)

o

710 57| s

K
Setting |K| = 0 gives the same equation as 13-37. Therefore,

P = E%E_’ (13-41)

The theoretical P,, value in this case is also ’EI/41*. The error is 1.3% on the
high side.

The result is not satisfactory when applied to the case of hinged-hinged
column or hinged-fixed column; besides, the procedure is not directly applicable
to the fixed-fixed column. The way to handle this situation is to idealize the
column into two identical elements and to construct the column stiffness matrix
through the superimposing of the element stiffness matrices. The numbering
scheme for external nodal coordinates of displacements and forces are shown
in Fig. 13-6(a). Corresponding internal element end coordinates of displacements
and forces are shown in Fig. 13-6(b). Since the element coordinates (local)
coincide with the structure coordinates (global), it is convenient to use the direct
stiffness method to establish the column stiffness matrix.

In view of Eq. 13-31 and Fig. 13-6(b), we establish the stiffness matrices
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various end conditions, as shown in Fig. 13-7.

1. Fixed-fixed column
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Comparing this result with the theoretical value

47°El  39.48E1
P o = 12 = 12

we find that the error is 1.3% on the high side.

2. Hinged-hinged column
For a hinged-hinged column [Fig. 13-7(b)]. only ry, rs, and rs are free to

occur. The force-displacement relationship is therefore

e P uEl P ]
R, { 15 ? 10 ry
8EI Pl 24EI P
R\ = o= I o 3.
R, 24E P _ 24E1 + P 192E1 24P rs
s 10 I* 10 P 51|
K
Because of symmetrical displacement, r; = —r;. This enables us to work with
half the column, and the force-displacement relationship reduces to
R 8EI Pl 24EI P
1 T 3k 7 S r
= d 15 ‘ 10 (13-48)
R 24EI P 192E] 24P
* 210 P . ’
KI
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The critical load is obtained by setting the determinant of the modified st_iffne_ss
to zero, that is, {K'l = 0, and solving for the smaller value of P. To simplify

calculations we introduce

_ A
=7
and divide each term by El/l. The condition |[K’| = 0 then takes the form
A 1 A
T 1(24 10)
2 A 1 24
e - =) S{192-2 =0 13-49)
1(24 10) 12<19 5 A), (
which yields
3M% — 416A + 3,840 = O (13-50)
The smaller root of Eq. 13-50 is A = 9.95. Therefore,
- 9.9;351 (13-51)

The theoretical value is 7°EI/I?, or 9.87EI/I>. We find that the error is less than
19 on the high side.
3. Hinged-fixed column
For a hinged-fixed column, as shown in Fig. 13-7(c), the nodal displacements
allowed to take place are r,, r,, and rs. Consequently the corresponding force-
displacement relationship is

[8E Pl 4EI Pl 24El P
R, { 15 l 60 I 10 r
4EI Pl 16EI 2P]
Ryp = Tt & 1 15 0 ryp  (13-52)
Ry 4EI P o 192E1 24P | |r,
210 B si_|

The critical load is obtained by setting [K| = O and solving for the smallest
value of P. As before, we let

AE]
P = —1'2—
and divide each term by EI/I. The condition |K| = 0 then becomes
A A 1 A
8§ - — + — - ——
15 4 60 l (24 10)
4 A 2
+ @ 16 — E)\ 0 =0 (13‘53)
1 A 1 24
— 24 —_— — —_—
l( 1 O) 0 12(192 5 }\)
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The smallest root of A that satisfies the preceding equation is 20.71, giving

P, = _____20'1721” (13-54)

The theoretical value is 20.19EI/I>. The error is 2.5% on the high side.

From the preceding examples, we see that the critical loads obtained by
the stiffness method always err on the high side. This is due to the fact that an
approximate function (a cubic polynomial instead of a trigonometric series) is
used to describe the displaced configuration of the member and any deviation
from the true deflected shape amounts to introducing additional constraints to
the member. These constraints cause the member to be stiffer than the original
one and therefore result in a higher buckling load than the actual one. Note
that this fact generally provides an upper bound to the stiffness matrix.

13-4 ELASTIC STABILITY OF A RIGID FRAME

In the analysis of a rigid frame, if the axial effect on the bending stiffness is not
ignored, then we must use Eq. 13-31 to calculate the stiffness for each element.
However, the axial forces in the members of a statically indeterminate rigid
frame are generally not known exactly at the outset. We therefore must begin
with estimated axial forces and determine the stiffness for each member accordingly.
The frame is then analyzed as a linear structure, following the usual procedure
of stiffness method. If the final results of analysis indicate that the obtained
axial forces differ considerably from the estimated values, then revision to the
analysis must be made.

In handling the stability of a rigid frame (we limit the discussion to the
elastic buckling of rigid frames within their own plane), the problem is considerably
simplified by assuming that the members of the frame are subjected to axial
loads only (known external forces). Before buckling sets in, no bending moments,
and hence no shears, of any kind are induced. In practical instances, the loads
usually act at intermediate locations on the members. However, such loads can
be replaced by statically equivalent loads at the joints. It can be shown that
the critical load obtained in this manner does differ not much from a more exact
analysis in which the effect of bending moment produced by intermediate loads
is included.

Consider now a structural system composed of five members designated
by a, b, c, d, and e [Fig. 13-8(a)]. Four system coordinates are assigned to
identify external nodal displacements r; ({ = 1, 2, 3, 4) and the corresponding
nodal forces R;. Each member has four coordinates to define its end forces or
displacements, as shown in Fig. 13-8(b). The element stiffnesses [£“], [k°1,
..., [k] are-first determined by applying Eq. 13-31 corresponding to nodal
movement. In this particular case we note that no effect of P is included in the
stiffness of member & or e, since initial axial loads are not present. The overall
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force-displacement relationship of the system is then established in the form
{R} = [K]{r}

in which the structure stiffness [K ] can be achieved by the direct stiffness method.

As axial loads increase continuously (we assume all loads increase in the
same proportion), the structure may become unstable. The condition that at the
critical stage the total stiffness [K] must vanish, or IK| = 0, will give the critical
buckling loads. A frame may have several critical loads and associated modes
of buckling. The lowest of these loads is called the first critical load, and the
associated mode is called the fundamental mode.

As a numerical example, let us discuss the stability of the simple portal
frame shown in Fig. 13-9(a). This frame may undergo two possible modes of
buckling: One is the symmetrical mode [Fig. 13-9(b)], and the other is the anti-
symmetrical mode [Fig. 13-9(c)). The first type of buckling can occur only when
the frame is braced against a joint translation. For the purpose of generality,
we work with the frame corresponding to the sidesway mode of buckling. Structure
(external) and member (internal) coordinates corresponding to possible nodal
displacements are shown by numbers in Fig. 13-10(a) and (b), respectively.
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In accordance with Eq. 13-31, we have the stiffness matrix for element ¢,
1 3

[4EL 2P _6EI P

{ 15 I? 10

k) = 13-55
- 6EI P 12EI 6P ( )

3 Y
! 10 ! SIJ

Similarly, for element ¢,

2 3
[4EL 2P _6EL P,
[£] ! P e 10 (13-56
C|lsE, ponE er | Y
I w St ]
The horizontal girder (element b) is not subjected to initial axial load. Thus,
1 2
4El 2EI
— =1
y / {
[£°] = (13-57)
261 4EI|,

{ [

Collecting the element stiffnesses of Egs. 13-55 through 13-57 by the direct
stiffness approach, we establish the structure stiffness matrix [K] to relate nodal
forces {R} and the corresponding displacements {r}.

[8EL 2w 2E em P
R, 15 ] o] [n
2EI 8EI 2Pl 6EI P
Rep = A T R
R) |_SEL, P _em P omm pp| |,
T TR
K
At the critical load, |K| = 0. To simplify presentation, we may set
AET
P = "IT
and divide each term by EI/I. Thus, we have
2 1 A
8 — =\ 2 (-6+2
15 ; ( 6+ 10)
K| = 2 g _ 2, H_e+2) =0  (3-59
15 1\ 7% 1
A 1 A 1 12
—f - + —_— ——f — — — —_— —
1( 6 10) 1( 6+ 10) 12(24 5 A)
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which gives the smallest root of A equal to 7.5. Therefore,
P, =" {13-60)

In the case of the symmetrical buckling mode, where the sidesway is pre-
vented, we have r;, = 0. The stiffness matrix is obtained by erasing the third
row and column of [K] in Eq. 13-58; that is,

R 8EI 2Pl 2EI
! I s I d
2EI  8EI 2P

R A —— e
z ! i 15

K
Using P = AEI/I* and dividing each term by El/I, we have the condition K| =
0 as

(13-61)
r

SET
2 | =0 (13-62)

8 ——a

which gives the smaller root of A equal to 45. Thus the first approximation for
the buckling load is

45EI
P, = —-512— (13-63)

The P,, obtained in Eq. 13-63 is obviously too high, for it is higher than 47°El/ 1,
the critical load for a fixed-end column. To improve the result, we may divide
each of the frame members into two elements and analyze the system accordingly.
This is left as an exercise.
The buckling load for the frame is usually expressed in the form
_ @’El
T (ad)
im which al, is called the effective length of the column and « is called the
effective-length factor. Generally speaking, in the symmetrical buckling mode,
the effective length of the column would be less than the actual length (i.e.,
a < 1) because of the restraint provided by the adjacent girder, whereas in the
antisymmetrical mode, the effective length of the coluinn will exceed its actual
length (i.e., & > 1) because of the sidesway effect. The a-value depends on a
particular buckling configuration and can be determined from the ratio of the
stiffness factor I/l of column section to that of girder section. If we let this
ratio be

(13-64)

G = Ll (13-65)

L/l

we can plot a-values against G to give curves for the symmetrical and antisym-
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metrical modes (Fig. 13-11). Note that G = 0 and G = oo, as indicated in each
curve of Fig. 13-11, represent two extreme conditions of end restraint. The
condition G = 0 implies that 1./l = oo, meaning that the top of column is
infinitely rigid. This gives a fixed-fixed column with & = 3 in the symmetric
mode and a fixed-slide column with @ = 1 in the antisymmetrical mode. Op
the other hand, the condition G = = implies that I,/l, = 0, meaning that the
top of column is completely flexible, that is, pin-ended. This gives a fixed-hinged
column with @ = 0.7 in the symmetrical mode and a fixed-free column with
a = 2 in the antisymmetrical mode.

i I I

2.0+ —
AtG=oo
7 7 a =2
«
0.5 b—"""" AtG=oo
AtG=0 a =07
a =075
| | [ ! | |
0 1 2 3 4 S 6
G
Figure 13-11
PROBLEMS

13-1. Refer to Fig. 13-12. The system consists of two pin-connected rigid bars, each of
length I, and a lateral spring support with stiffness s. The bars are subjected to a
load P acting vertically downward. Determine the critical P.
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P
7
el i
! | Rigid bar

Spring stiffness
=5

Y
7% Figure 13-12

13-2. Discuss the stability of the system shown in Fig. 13-13, which is the same structure
of Prob. 13-1 except that the top end is replaced by a lateral spring support.

P

5

A\

L

i

s
TN

Y W/jﬁ
20 Figure 13-13
13-3. Determine, by the direct stiffness method, the critical load for the column shown
in Fig. 13-14.

-~

Figure 13-14

13-4. Repeat Prob. 13-3 if the end supports are fixed.




374 Matrix Analysis of Elastic Stability Chap. 13

13-5. Determine, by the direct stiffness method, the critical load for the beam shown in
Fig. 13-15.

Z J P
El 2EI I —
1

[ oot
Pt

Y

Figure 13-15

13-6. Figure 13-16 shows the same portal frame discussed in Sec. 13-4. Assuming a
symmetrical mode of buckling and using two elements for each column, obtain, by
the direct stiffness method, the critical load.

P 51 P
Y 2EI Y
i
! El Er
Y
T 77777,  Figure 13-16
13-7. Find, by the direct stiffness method, the critical P for the rigid frame shown in Fig.
13-17.
P
!
v £ |

A ;%
7.

-y _
7 Figure 13-17
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13-8. Discuss the stability for the portal frame with hinged Supports, as shown in Fig.
13-18.
P P
4 £l L4
A
I, EI, EI,

—= W
7 7 Figure 13-18
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Structural Dynamics

14-1 GENERAL

Throughout the previous chapters we have concerned ourselves with structures
subjected only to statical loads producing displacements, which are independent
of time. We shall now deal with structural analysis under dynamic loads. In
one sense, the term dynamic may be defined as time-varying; thus a dynamic
load is the load of which the magnitude, direction, or position varies with time.
Likewise, the structural response (for example, displacements, internal forces,
stresses, strains) to a dynamic load is also time-varying. A further distinction
between static and dynamic analysis is that in a dynamic analysis it is necessary
to take into account the forces produced by the inertia of the accelerating masses,
whereas in static analysis the inertia forces are generally neglected. However,
by the well-known d’Alembert’s principle, the dynamic problem can be reduced
to a static one provided forces equal to the product of masses and accelerations
(with a negative sign) are introduced.

For evaluating structural response to dynamic loads, we have two basically
different approaches: the deterministic and the nondeterministic. If the time-
variation of loading is fully defined, the analysis of structural response is said
to be deterministic. On the other hand, if the time-variation of loading is random
and can only be defined in a statistical sense, then the analysis is nondeterministic.
In this chapter we consider only the deterministic dynamic analysis.

Any structure possessing mass and elasticity is capable of vibration when
disturbed from its equilibrium configuration. In general, the oscillatory motions
of the disturbed structure are periodic, that is, they repeat themselves in equal
intervals of time, called periods. The number of complete cycles of motion in

376
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a unit of time is referred to as the frequency of vibration. There are free and
forced vibrations. Free vibration takes place when an elastic system vibrates
under the action inherent in the system itself without being impressed by external
forces. The system under free vibration vibrates at one or more of its natural
frequencies, which are properties of the elastic system. Forced vibration takes
place under the excitation of external force and at the frequency of the exciting
force, which is independent of the natural frequencies of the system. When the
frequency of the exciting force coincides with one of the natural frequencies of
the system, resonance occurs and dangerously large amplitudes may result.
Therefore, the calculation of natural frequency is of practical importance. In
reality, there always exist forces against the vibration, such as friction, air
resistance, or imperfect elasticity. Since no active forces are supplied in free
vibration, these resisting forces cause the amplitude to diminish gradually until
the motion ceases. This type of motion is called damped free vibration. On the
other hand, forced vibration may be maintained at constant amplitude by externally
supplied forces. .

The degrees of freedom refer to the number of independent coordinates
necessary to describe the motion of a system. Since an infinite number of
coordinates are needed to describe the motion of the distributed mass of an
elastic structure (e.g., a beam), the structure therefore has an infinite number
of degrees of freedom. However, in many cases, we can use simple procedures
to limit the infinite number of degrees of freedom to finite degrees of freedom,
so that it is practical to carry out the analysis.

An elastic system with more than one degree of freedom usually vibrates
without definite pattern. Only under certain specified conditions will some simple
and orderly motions called narural modes (principal modes) of vibration take
place. In natural modes of vibration, each point in the system follows a definite
pattern of equal frequency (natural frequency). Moreover, the more general type
of motion can always be represented by the superposition of natural modes of
vibration.

In general, the structural response to dynamic loading is expressed basically
in terms of the displacements of structure, other responses—such as internal
forces, stresses, and strains—being treated as a secondary phase of the analysis,
which can be derived from displacement patterns.

14-2 LUMPED MASSES

In the dynamic system, the analysis is complicated by taking into consideration
the inertia forces, which are related to the time-displacement history and mass
pattern of the structure. For a structural system having distributed mass and
distributed elastic properties, an infinite number of coordinates are necessary to
define the motion. In practice, we select only a finite number of coordinates to
analyze a distributed-mass system, using either lumped masses or consistent
masses. In this chapter we limit our discussion to the lumped mass system.
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Consider the beam of Fig. 14-1(a). Assume that the beam is divided into
segments and the mass of each segment is lumped (concentrated) into rigid bodies
at discrete nodes, as shown in Fig. 14-1(b), the distribution of the segment mass
to these nodes being determined by simple statics. These lumped masses are
connected by elastic massless springs (treating the member segments as springs),
which possess the original force-displacement properties of the member. Such
an idealized representation of a structure is called a model. The number of
coordinates necessary to describe the motion of each mass depends upon the
type of motion. In a three-dimensional space, six coordinates are required to
represent the degrees of freedom of the motion for each mass. However, in
linear or plane motion, the number of coordinates can be considerably reduced.

7 % ml mz V

7 y — e = =

A Z Y 1 2 Z
(a) (b)

(c)
Figure 14-1

For a system in which only one translational degree of freedom is specified
at any node, the lumped-mass matrix has a diagonal form. To illustrate, refer
to Fig. 14-1(c). The state of motion of two masses m; and m, is described by
the displacements r, and r, the velocities 7, and 7,, and the acceleration 7, and
F», as shown. Writing Newton’s second law for the independent force equations,
we have

Ry = my#, (14-1)
Rz = mzi'z

Rl —_ ml 0 f
W=y a)f a2

For n masses, each associated with one independent translational coordinate,
we can write

In matrix form
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R, m, ¥y
R, my Fy
R, m, | \F,
or simply
{R} = [m] {7} (14-3)
in which [m] is a lumped mass matrix containing the lumped masses my,
my, ..., m, along its diagonal.

14-3 FORMULATION OF THE EQUATION OF MOTION

The basic elements involved in a linearly elastic structural dynamics system
include the mass, the energy-loss mechanism (damping), the elastic properties
(flexibility or stiffness), and the external source of excitation (loading). In its
simplest model is a single-degree-of-freedom vibrating system shown in Fig.
14-2(a), in which the entire mass is concentrated in a rigid block under a time-
varying load F(r). Movement of the block is constrained by the rolier supports,
so that only horizontal translation (x direction) is permitted. The position of the
block at any time is described by x. The elastic resistance to displacement is
provided by the weightless spring of stiffness s; and the energy-loss mechanism
is represented by the damper with damping coefficient ¢ (a viscous damping
is assumed). By d’Alembert’s principle, equilibrium is maintained [see Fig.
14-2(b)] between the external-loading mechanism F(r) and the resistance of the
system, including the mass (the inertia force), the damping, and the spring. Thus

mx + ¢cx + sx-=F(D (14-5)
in which the viscous damping force Fp, is taken equal to the product of damping
coefficient ¢ and velocity x.

or

X

Z
; J’T‘c Fp = ¢cx ——] F()
% PR I Fyy = mx ~t—{—— -8 S
% AN m Fg = sx ——r m
s o)
e U

(a) (b)

Figure 14-2
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One class of motions is called free vibrations, which take place by setting
the applied force Fl1) equal to zero in Eq. 14-5. Thus,
mk + ¢k + s5x =0 (14-6)
The situation can further be simplified by removing the damping force (i.e.,
¢ = 0); then the equation of motion reduces to
mi + sx =0 (14-7)
which represents undamped free vibrations.

In general, the equation of motion of any single-degree-of-freedom complex
system can be presented in the form of Eq. 14-5 with some modifications, and
the dynamic response of linearly elastic multi-degree-of-freedom systems is prac-
tically evaluated by utilizing the basic ideas developed for the single-degree-of-
freedom system, as is seen in various sections to follow.

14-4 UNDAMPED FREE VIBRATION OF LUMPED
SINGLE-DEGREE-OF-FREEDOM SYSTEMS

To introduce elastic vibrations, let us first consider the undamped free vibration
for a lumped single-degree-of-freedom system, shown in Fig. 14-3. Let us give
the mass an initial displacement and suddenly release it at time 1 = 0. We can
describe the motion of the body by Eq. 14-7, namely,

mESr =0 o et
For convenience, we write the equation as

i+ ox=0 (14-8)

with s
o = \/ — (14-9)

m

The general solution of Eq. (14-8) is

x(1) = A, sin ot + A, cos wt (14-10)

Equation 14-10 gives the displacement of the mass at any time 1. Now, since
A;sinwt + A, cos wt = A;sin (! + 27) + A; cos (wt + 27)

. 2
= A, sin w(t + —W) + A, cos w(t + 2—”)
w w

— LIS VA B R :
= fer g ol g fe Kool 8

—X
-t

/ Figure 14-3

Frictionless
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the displacement x of Eq. 14-10 has the same value at time ¢ as at time ¢ +
2w/w. We say that the equation is periodic. The period, commonly given in
seconds, is denoted by T. Thus

T= I (14-11)

w
which is referred to as the natural period of vibration. The reciprocal of T is
the natural frequency, usually denoted by f. Thus

feai=2 (14-12)

The unit of fis cycles per second. The quantity w is called the natural angular
frequency of the motion.

The two constants A, and A, in the general solution of Eq. 14-10 can be
determined from given initial conditions of motion. For example, the initial
conditions x(0) = x, and x(0) = xowill give A, = xoand A, = %,/w. The general
solution of Eq. 14-10 can be written in an alternative form if we use the identity

sinacos B + cosasinB = sin(a + B) — HAriga I»Lm?*i
and introduce two new constants A and ¥ such that v

A =
1 = Acosy (14-13)
A, = Asiny
The result of substituting Eq. 14-13 into Eq. 14-10 is
x(t) = A sin (ot + §) (14-14)
where the constants e ,i/z \>?w'zm-e s “
A ="\/A] + A}
(14-15)
¢ = tan™! 4
A,

are evaluated with the initial conditions. The constant ¢ in Eq. 14-14 is referred
to as the phase angle, and A is called the amplitude of the motion.

A graph of x(7) against ¢ for Eq. 14-14 or Eq. 14-10 is shown in Fig. 14-4.
Such a motion may be represented by the projection of a rotating vector A on
a vertical diameter as it moves around a circle with constant angular velocity
w, as shown. It is readily seen that the motion is harmonic. Note that all
harmonic motion is periodic, but not all periodic motion is harmonic.

The velocity and acceleration are obtained by time derivatives of Eq.
14-14. Thus

(1) = wA cos (0t + ¥) = wA Sin[(wt + ) + -g] (14-16)
1) = —w?A sin (0t + ) = w*A sin [(of + ¥) + 7] (14-17)
These equations indicate that the velocity and acceleration are also harmonic
-2 X .
! )
- -0 o )

LN mer £:0

4=0 U A
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Period T'= 27/ i

One cycle |

Figure 14-4

and can be represented by the vectors wA and A, respectively, rotating with
the sume speed as the displacement vector but in the respective positions of 90°
and 180 anead of it.

Let us consider next the lumped-mass model for a one-story frame performing
a single-degree-of-freedom free vibration. In the idealization [Fig. 14-5(a)], we
assume that the beam is completely rigid and supported by elastic massless
columns. The masses are concentrated on the beam level. Axijal deformation
of members is neglected. With these assumptions, the mass can have only
horizontal motion, which is resisted by the lateral stiffnesses of columns. The
behavior of the frame is therefore analogous to the spring-supported mass shown
in Fig. 14-5(b). The resistance to the horizontal displacement can be represented
by an equivalent spring with a stiffness s equal to the sum of lateral stiffness

.

m

/
WJW/, VIW/ %W/, Frictionless
(a) (b)

Figure 14-5
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(the shear force corresponding to a unit lateral displacement) at top of the
columns. In the present case Lot

s=2 li‘? (14-18)
for a fixed base of columns, assuming that the effect of girder flexibility is
negligible.

Example 14-1

Consider the frame shown in Fig. 14-6(a). Assume the beam weight plus loading
is 8W and the weight of two columns are 0.8W and 1.2W, respectively. We wish
to determine the approximate value of the natural frequency and natural period of
vibration.

The total mass M lumped is 9W/g (g is gravitational acceleration) if we include
one-half of the column masses at the beam level [see Fig. 14-6(b)]. The equivalent
spring stiffness is

12E]  12Q2El) 36EI
S=p YT =0
It follows from Eq. 14-9 that the natural angular frequency of vibration is given by
3 \/E _ [36EYL _, [Elg
R e WL
Thus the natural frequency of vibration is
f= w 1 [Elg
2r w WL

and the natural period of vibration is

1 wL’
T = - = 1r —_—
f Elg
! A
8W
y
EIj{0.8W 12W || 2ES L
Resistance force
Y against sidesway
0 Z =sA
(a (®)

Figure 14-6
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14-5 UNDAMPED FREE VIBRATION OF LUMPED
MULTI-DEGREE-OF-FREEDOM SYSTEMS

The unduamped free vibration of structural systems with more than one degree
of freedom can be investigated by a procedure similar to the lumped mass mode]
developed in the last section. As an illustration, let us refer to Fig. 14-7(a),
which represents the lumped mass system for a two-story shear building with
the masses concentrated at the floor levels. We assume that the beam stiffnesses
are infinite in comparison with the column stiffnesses. Axial member deformations
are neglected. It follows from these assumptions that the system has two degrees
of freedom, represented by the independent lateral translations x; and x, at two
floor levels. where masses m, and m; are lumped. The frame thus behaves like
the spring-supported system of two masses shown in Fig. 14-7(b). The stiffnesses
sy and s, of equivalent springs for the frame are evaluated, respectively, by the
combined lateral stiffness of columns in each story, as illustrated in Example

14-1.
mx, myX,
e e e ———
my 51Xy b= 5, (x5 — x;) ~—{]
m my
55
my S 5
my AVW—
Sy
| {_»
. &
% Frictionless X,
%, V4

(a) (b)
Figure 14-7

For the system shown in Fig. 14-7, the equations of motion are

m,i’, =+ (S| + Sz)xl - SzXz = 0 (14-19)

MyXy — $3x) + S0, = 0
In matrix form,

m 0 X s+ s -5 X 0
KA 1 R e R R

with S = & + 5,9, S = 8y = - S, and $2 = 5. .
The above reasoning can be extended to an n-degree-of-freedom system
with 7 lumped masses. The general equation of motion can be expressed as

(m}z} + [sHx} = {0} (14-21)
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where [m] is a diagonal lumped mass matrix,

my
my
[m] = - (14-22)
m,
and [s] is a stiffness matrix,

Sy S22 0 7 S

Sy S22 Sy
1= : (14-23)

Snl sn2 ) ’ : srm

Premultiplying by [m] ™' reduces Eq. 14-21 to

&} + [m)™' [s}x} = {0} (14-24)
or {x} + [D¥x} = {0} (14-25)
with [D] = [m]™"[s] (14-26)

referred to as the dynamic matrix. The solution of Eq. 14-25 is a set of harmonic
motion expressed in the form

x; = A;sin (wf + ¥) i=12,....m (14-27)
or, in matrix form, '

{x} = sin (0t + $HA}" (14-28)
in which the column matrix {A} represents the amplitudes‘of the deflected shape
at the n coordinates. Noting that Lo, v 17

{3} = —w’sin (ot + YA} = —o*{x} (14-29)
we find after substitution in Eq. 14-25 that e 1;‘.‘ v

~{x} + [DYa} = {0} 727 T (1430)
Substituting Eq. 14-28 into Eq. 14-30 yields

(ID] — [ID{A} = {0} (14-31)

Equation 14-31 represents an eigenvalue (characteristic value) problem. For a
nontrivial selution of {A} to exist, we must have L
D] — 1] =0 Af T (1432

Upon expending this determinant, we obtain an nth-degree polynomial in .
The solution of the polynomial results in n eigenvalues of w®. The §mallest
eigenvalue corresponds to the smallest natural angular frequency, which is called

the first mode. frequency. )
For each eigenvalue of &, a set of Eq. 14-31 can be established. However,
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unique values for amplitudes {A} or displacements {x} cannot be determined:
only the relative amplitudes or the displacement shapes can be found. In other
words. for each eigenvalue of w”, we obtain only a mode configuration called a
natural mode. which is defined by a modal column (eigenvector or characteristic
vector) {4}, If one of the amplitudes in natural mode is set to unity, the rest of
the values {4} can be determined relative to this reference value. This process
of normalization gives the normal mode characteristic shape.
Example 14-2
Consider the lumped mass model for a two-story shear building shown in Fig.
14-8. Assuming identical columns and the same amount of mass concentrated at
each floor level (including the contribution of column mass), we wish to find the
natural angular frequencies and the corresponding normal mode characteristic shapes,

The mass matrix is
_Im 0

The stiffness matrix is determined by Eq. 14-20:

[s]= % Sl |fits -5 _EN 48 -24
S Sz -5 21 L'|-24 24

Consequently, we have the dynamic matrix
EI 48 -24
- Sirel = =L
[D] = [m]™'s] = mL3[—24 24]

The expression of Eq. 14-32 for obtaining the natural angular frequency is,

therefore,
Ery 48 -24] L1 0
mL| -24 24| 9o 1

2

For simplicity of presentation, we let EI/mL® = 1052 The last expression becomes

= 0

— 2 Or— @17

my=my=m

Column EJ
constant
o %///' ;/% V24 7
(a) b) (c)
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480 — w® —240
—240 240 — o°
Using A = »’ and expanding this determinant leads to a quadratic equation,
M — 720\ + 57,600 = 0
which is found to have roots A\, = o} = 91.7and A, = o} = 628.3, or
w; = 9.6rad/s @, = 25.1rad/s

The governing expression for determining the ratio between amplitudes A,
and A, is given by Eq. 14-31. Thus,

Er 48 -24) a1 o) fAl _ o
mL*| =24 24|14, ~“Jo 1|4 7)o
Assuming EI/mL® = 10 as before, we have
480 -240| [a,] _ .fa] _ [0
e G —240 240 | 4, Af o

Substituting @} = 91.7, we find the ratio A,/A, is 1/0.618. The modal column
(eigenvector) of the first normal mode is, therefore,

A _ o618
= {4, - {4

Similarly, with wj = 628.3, we obtain A,/A, = —1/1.62 and the modal column of

the second normal mode,
—_ A] _ - 1.62
wn={a) =170

The two normal mode characteristic shapes based on A, = 1 are shown in Fig.
14-8(b) and (c).

=0

There exists an important property called orthogonality between two modal
columns (natural modes or normal modes) with respect to mass and stiffness
matrices. These relationships are expressed by

{a}[m){A), = 0 (14-33)
and
{AHs){A}, = 0 (14-34)
Equations 14-33 and 14-34 are satisfied by a direct inserting of the matrices
{A}, = {0.618 1}

{Ah = {-1.62 1}

=[5 0]

and _EIl 48 -24
[J=73 —24 24

into the two expressions.
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In the general case of an n-degree-of-freedom system, there are n eigenvalues

w’ and n corresponding eigenvectors {4}, (i = 1, 2, cee n). The orthogonality
properties between two distinct modes j and & are given as
{a}/ImlA) = 0 (14-35)
{A}/[s{A) = 0 (14-36)

which we prove as follows. ' _
Consider two eigenvectors {A}, and {A}, corresponding, respectively, to
eigenvalues ; and w;. Since each eigenvector and its eigenvalue satisfy the

equation of motion of Eq. 14-31, that is,
(D] - & [11HA} = {0} (D) = [m]"'[s)
or (14-37)
[s)}{A} = o’[m){A}

we have
[sHA); = o} [mHiA), (14-38)
and [s{Ak = wilml{Ak (14-39)
Premultiplying Eq. 14-38 by {4}] gives
{AKsHA) = oH{A} [mKA}, (14-40)

Taking the transpose of Eq. 14-40 and noting that [m] and [s] are both symmetric
matrices, we obtain

{AY [s)Ak = oHA) [m){A}, (14-41)
Premultiplying Eq. 14-39 by {4} gives
{4} sHAkK = wi{A} Im}A}, (14-42)
Subtracting Eq. 14-41 from Eq. 14-42, we obtain
(@i — W} HAY ImHAk = 0 (14-43)

In case the frequencies are distinct, that is, w; # wy, the product of the matrices
in Eq. 14-43 vanishes. Thus

{AY ImJ{A}, = 0 forj # k (14-44)
In view of Eq. 14-41 or Eq. 14-42,
{A}[s{AY =0 forj # k (14-45)

This completes our statement that the natural modes, or normal modes, are
orthogonal with respect to the mass and stiffness matrices.

14-6 DAMPED FREE VIBRATION

Damping is associated with energy dissipation. Viscous damping is encountered
by bodies moving through a fluid or structures subjected to motion relative to
a base in an earthquake. For the free vibration of a spring and lumped mass
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system with viscous damping, as shown in Fig. 14-2, the equation of motion is
given in 14-6; that is,

mi+cx+sx=0 (14-46)
The equation has a solution of the form x = e, which, on substitution, yields
(me? + ca + s)e* =0
or

, ¢ s
a+—a+—=0 (14-47)
m m

__c c\’ s
o = o * \/(2’") - (14-48)

The general solution may be written as
x = Bje™ + B,e™® (14-49)

where B, and B, are constants depending on the initial conditions of motion.
The behavior of the damped system depends upon whether the radical of
Eq. 14-48 is real, zero, or imaginary. If the radical is zero, that is,

2
(i) =2 (14-50)
2m m

we call the system critically damped, and we say the corresponding damping
coefficient is the critical damping coefficient, denoted by c... Thus, from Eq.

14-50 we have
Cor = 2V/ s (14-51)
It is convenient to introduce the nondimensional ratio

Hence

c ¢

Co  2\/sm
referred to as the-damping ratio. Then we can write the equation of motion,
Eq. 14-46, in terms of the damping ratio and natural frequency as

(14-52)

i+ 2Aox + o’ x =0 (14-53)
in which @ = \/s/m, as previously defined. The roots of Eq. 14-48 become
a, = (L= VP - Do (14-54)

There are three forms of damping, depending upon whether { is greater
than, less than, or equal to 1.

| Case 1 [ > 1 (Overdamping). The radical V/{* — 1 is real and less than
¢, and hence o; and a, are negative. The general solution is
= B'] e(—-,{d;,‘\ﬁ”'vl)ﬁ)f + Bzg(*L" VI - Dot (14_55)

Equation 14-55 represents an exponentially decreasing function. As ¢ increases,
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the displacement tends to be zero. The motion is not periodic, and the damping
is large enough to prevent oscillation.

Case2 {<1(Underdamping). In this case the radical \/ZZ — 1 is imaginary,
and the roots of Eq. 14-54 can be written as

= (=L + i1 - Do (14-56)
The general solution becomes
x = e “B,sinV/1 - [Pwt + Bycos\/1 ~ Lot) (14-57)
or, equivalently, et i
x=e “Bsin(\/1 - Cot + ¥ (14-58)
with = VB + B
b= tan"l%1 (14-59)

Either Eq. 14-57 or Eq. 14-58 represents a case of oscillatory motion with decaying
amplitude. The rate of decay of the amplitude of oscillation is determined by
the damping factor ¢ "*“. The natural frequency of oscillation is

V=T
=

f 2

When { = 0 (i.e., ¢ = 0), the expression for f reduces to that of undamped
motion. The damping decreases the natural frequency of oscillation by the factor
Vi -2,

Case 3 { = 1 (Critical Damping). Since the radical in Eq. 14-54 is zero

for critical damping, the roots a; and o, are identical and equal to — . Equation
14-49 becomes

(14-60)

X = (B, + By)e ™™ = Be ¢ (14-61)
Equation 14-61 contains only one constant B, which is insufficient to represent

the general solution. In this case, we introduce a function of the form re~ ' that
satisfies the equation of motion and write the general solution as
x = (B + Che (14-62)
The system of critical damping represents the transition between the nonoscillatory
and oscillatory motions. The motion is not periodic as in the case of overdamping,
but it has the smallest damping possible for a periodic motion.
All three motions are illustrated schematically in Fig. 14-9.

For an n-degree-of-freedom system with lumped masses, the equation of
motion becomes

[ml{z} + [l {5} + [s] {x} = {0} (14-63)

where [m] and [s] are lumped mass and stiffness matrices previously defined by
Egs. 14-22 and 14-23, respectively, and [c] is the damping matrix, given by
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S A NN ,

Overdamping Underdamping Critical damping
Figure 14.9
i 2 Cia
Coyp 2 70 Oy
[c] = (14-64)
Cni an Tt (.nn

which relates the coordinate damping forces to the corresponding velocities. A
typical damping coefficient c; is given by

¢; = force corresponding to coordinate i caused by
a unit velocity of coordinate j only

In practice the damping matrix is conveniently assumed to be proportional to
the mass matrix or stiffness matrix or both. Thus,

[e] = ailm] + c,ls]
where ¢, and ¢, are constants of proportionality. This enables making use of
coordinate transformation to uncouple the system so that the solution may proceed
by using the single-degree-of-freedom lumped block. See Sec. 14-8 for normal
coordinates.

Note that the evaluation of a damping property such as c(x) is practically
difficult. Therefore, the damping is usually expressed in terms of the damping
ratio found from experiments on similar structures rather than by an explicit
damping matrix.

14-7 FORCED VIBRATION: STEADY-STATE SOLUTION

If the spring-mass system considered in the preceding section is excited by a
time-dependent force that varies harmonically, then we may write the equation
of motion as

mxX + cx + sx = Fysin &t (14-65)
The solution of Eq. 14-65 is given by the combination of the complementary
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solution (transient solution) representing the free viscously damped vibration
(Fo = 0) and a puarticular solution representing the forced oscillations. Note
that the damped motion will soon disappear and only the steady-state forced
oscillation remains.
Let us assume a particular solution of the form

x = Asin(@t - ) (14-66)
where A is the amplitude and ¢ is the phase angle by which the motion lags the
impressed force. A and y are determined by substituting Eq. 14-66 and its time
derivatives:

Il

X = WA cos (@t — ) = @A sin <at -y + g)
= —%'Asin (@1 — )
into Eq. 14-65. Thus,

~m@°A sin (@t — §) + cBA sin (Et -+ g) + sA sin (@t — ) = Fysin ot
or

) . m
mw-A sin (@t — ) ~ c@A sin (‘aTt ~ ¢ + —)
v v 2 (14-67)
— sAsin(@t — ) + Fysinwt = 0
Equation 14-67 represents the equilibrium between the inertia force, damping
force, elastic force, and impressed force and can be shown graphically in Fig.
14-10, from which we determine

Fo

A= (14-68)
V(s — mad)? + (cw)?
¥ =t (14-69)
) mam\}\
s
Fy
cwA
(a) b)

Figure 14-10



Sec. 14-8 Normat Coordinates 393

By dividing the numerator and denominator of Eqs. 14-68 and 14-69 by s
and substituting the relations w® = s/m and { = ¢/2\/sm, we obtain

Fo/s

A= — = (14-70)
VIl - @/ + 2@ /)
_ -1 2§(6/0~’)
lll = tan h] = ('J/w)z (14'7”

The factor Fy/s in Eq. 14-70 can be regarded as the displacement that a static
force of magnitude F, would produce. Then the ratio

1

VIl - @/0fF + 2@/

represents the magnification factor between the amplitude of oscillations produced

dynamically by a force F, and the displacement produced by the same force

considered as a static load. We observe that for small values of the damping

factor ¢, the amplitude can become very large when @ = w. This phenomenon

is called resonance. A major application of the theory of vibrations is devoted

to the avoidance of resonance in the design of structures that are subjected to
dynamic forces.

If damping is neglected in Eq. 14-65, then the particular solution takes the

(14-72)

form
x = A sin ot (14-73)
with
Fo/s
-0 17-74
A 1 - @/ o) ( )

14-8 NORMAL COORDINATES

The deflected shape of a linear structure can usually be expressed as the sum
of a series of specified displacement patterns. For example, the deflection of a
simple beam of length L under transverse loading can be represented by the
Fourier series of the form

. TX . 2mx . hmx
y=a,smf+azsm—L—+---+a,,smT (14-75)
The undetermined a’s (amplitudes) of the sine-wave shapes may be coqsidered
as the coordinates of the system. In general, any deflection configuration rep-
resented by coordinates {r} can be described by an arbitrary set of compatible
mode shapes [¢] with undeterminated amplitude {u}; that is,

{t = [¢Xu} (14-76)
in which {u} are referred to as generalized coordinates. The number of assumed
shape patterns represents the degrees of freedom.
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To illustrate, let us consider the cantilever column shown in Fig. 14-11(a),
for which the lateral deflection is defined by coordinates {r;, r, r;} at three
levels. Three arbitrary mode shapes of deflection compatible with the constraints
are assumed as in Figs. 14-11{b}, (c), and (d). The lateral deflection described
by original independent coordinates {r, r, r;} can be expressed as the linear
combination of the three mode shapes {¢},, each modified by an amplitude u;
(i = 1.2, 3). Thus

s b ¢12 b1z
Pf = ybup + {bnguy + (bngus
r3 &3 $3 ¢33 (14-77)
b b iz |u
=10y ¢n dn|u:
b b bl lus

It is apparent that matrix [¢] serves to transform from generalized coordinates
{u} to the geometric coordinates {r}. As {u} are independent coordinates, matrix
[¢] is nonsingular and can be inverted. Thus it is always possible to determine
{u} for a given configuration {r}. In the present instance,

u o b P - ry
i = |0y ¢n ¢én g (14-78)
us b3 b3 G r;

If the assumed displacement patterns are the n natural modes or normal
modes of undamped free vibration such that the modal matrix 1¢] in Eq. 14-76
is formed by the eigenvectors {4}, that is,

[¢] = [{A}l {A}z e {A}n] (14-79)

then we can make use of the orthogonality property of {A} in the evaluation of

7— r3 é31 ¢32< 7 b33
r o2 62 b2
r $u $12 $13
py =1 Hy =1 a3 =1
707 VA VA4 V24
Mode 1 Mode 2 Mode 3
(a) (b) (c) @

Figure 14-11
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{u] to avoid _solving simultaneous equations, as in Eq. 14-78. To do this, we
may premultiply each side of Eq. 14-76 with the product of [¢]” and the mass

matrix [m]; thus,
[61"Tm}{r} = (¢ Im)(dNu} (14-80)
In view of Eq. 14-79 and because of the orthogonality property with respect to

mass, the term [¢]"[m]}{$} on the right-hand side of Eq. 14-80 can be expanded
as

CAVmNAL {ANImAY ... {AVIm)A}]
JAMImHAY, {AYImYAL, .. {AMm)A),
Grimlel = | C :
L(ANmlAY (AVDmHAL . (AVImHAL 4ty
A [m)Ah 7
{AYmlA),
L {A}TIm){A},

which is a diagonal matrix. If we let {A}[ml{4}, = m,, {ALIml{A}, = 7. .. o
Eq. 14-81 will take the form
g

n

[0 [mll¢] = - = [m] (14-82)

mn
Substituting Eq. 14-82 into Eq. 14-80 and using matrix multiplication, we obtain
a set of n uncoupled equations,
{A}lT[m]{’} = M,
{A}zrlm]{’ b = Tt
(14-83)

{AYIIm{r} = P,
which can be used to solve for coordinates uy, Uz, ... 5 Un: These mode-
amplitude generalized coordinates are referred to as normal coordinates. From
Eq. 14-83 any normal coordinate ¥; is given by

ui={—£_[_ﬂ]‘{ﬁ (i=12,...,n (14-84)
m;
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The normal coordinates are important for dynamic response analysis of a
linear system in that such analysis yields uncoupled equations of motion, as is
discussed in the next section.

14-9 RESPONSE TO DYNAMIC FORCES: UNCOUPLED
EQUATIONS OF MOTION

On the assumption that damping can be neglected, the equation of motion for
an n-degree-of-freedom system is

(m}{x} + [sl{x} = {F} (14-85)
The stiffness matrix [s] in Eq. 14-85 is generally not a diagonal matrix. For a
distributed-mass system, the mass matrix is also not diagonal. The orthogonality
properties of the natural modes or normal modes with respect to [m] and [s]

now may be used to uncouple Eq. 14-85.
Let

{x} = [o}{u} (14-86)

in which the transformation matrix [¢] is formed by modal columns {4} as defined
by Eq. 14-79 and {u} represents the normal coordinates. It follows that

{5 = (oK} (14-87)
Substituting Eqs. 14-86 and 14-87 into 14-85 leads to
[mll¢Ki} + [slioKu} = {F} (14-88)
Premultiplying each side of Eq. 14-88 by [¢]” gives
(1" Tmll¢Ma} + (6 [slpHu} = [$){F} (14-89)

Because of the orthogonality with respect to the mass matrix, we have, from
Eq. 14-81 or Eq. 14-82,

(61 [mil¢] = [m] (14-90)
where [7] is a diagonal matrix given by
o
m,
[m] =
- n, (14-91)
{A}m}{A}
{AIm}{A},

! {AYmiAY,
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Following the orthogonality with respect to the stiffness matrix, we can
similarly obtain

[¢)[s)(¢] = (5] (14-92)
with
.
K3
[5] =
. 5 (14-93)
{A}xT[S]{A}l
{AN[sHA},
i  {AVIsHAL,
Substituting Eqs. 14-90 and 14-92 into Eq. 14-89 and using the notion
[61{F} = {F} (14-94)
we have
()i} + [sHu} = {F} (14-95)

which represents the equation of motion in normal coordinates for forced undamped
vibration. The uncoupled form of Eq. 14-95 enables us to determine the response
in each normal mode of vibration separately as an independent single-degree-of-
freedom system in normal coordinates and then to superimpose these by the
transformation of Eq. 14-86 to obtain the response in the original coordinates.
This procedure is called the mode-superposition method.

If we use the relationship of Eq. 14-38 for [s] and [m]. that is.

[sHA}, = wjlmliA},
and premultiply this equation with {A}], we have generally
{A}][s){A}; = wHAYm){A}; (G=12,...,n) (14-96)
Substituting Eq. 14-96 into Eq. 14-93, we obtain

$
53

g
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w {AhIm}{A},
w2 {AR[mNA},

o2 (A,
or
5] = [Q](7] (14-97)

Note that [Q][m] = [m)[{Q). ‘
Equation 14-97 relates the generalized stiffness to the generalized mass by
the frequency of vibration. Thus for any mode j, we have

S=wm  (j=12,....n (14-98)
Using Eq. 14-97, we can write Eq. 14-95 in the form
[N} + [mQKu} = {F} (14-99)

Equation 14-99 represents a set of n uncoupled differential equations; that is,
m,[il + m‘]COIZu] = F]

iy + Mywiu, = F, (14-100)
M, + M,wiu, = F,
or i + wju; = % (G=12,..,n) (14-101)
in which ’
F; = {A}{F) (14-102)

Example 14-3
Determine the response of the system shown in Fig. 14-8 to a set of harmonic forces

_JF _ |Fysin ot
= {Fz} a {21?0 sin m}
at levels 1 and 2, respectively.

The governing differentia) equation for determining the response is expressed
by Eq. 14-99; that is,

Um}a} + [mIQNu) = {F}
We first use the modal columns (see Example 14-2)

0.618 —1.620
= {05) gy [t
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to form the transformation matrix [#]. Thus

(6] = [(]).618 —11.620}

The generalized mass matrix [#7] is then given by Eq. 14-90: that is,

= [61"Im]l¢)]

_ 0.618 Film 0 []0618 —- 1.620
‘[—1.620 1”0 mJ [1 i J (14-104)

_ 1382 0
RN 3.624

Substituting the natural angular frequencies @i = 9L.7 and ! = 628.3 from
Example 14-2 into Eq. 14-97 gives

_Jet 0] _[o1.7 0
Q] = [0 w;J = [ 0 628'3} (14-105)

Note that we have used EI/mL*® = 10 in developing w? and w?.
The generalized force matrix is calculated by Eq. 14-94

{F} = [¢){F}

_| 0618 1| [Fsinagr | _ [2.618F, sin &1
- [—1-620 1] {ZFO sin az} = {0.3801’0 sin m} (14-106)

{14-103)

et

[m

Substituting matrices [7], [Q], and {F} into the equation of motion of 14-99 yields

1382 0 al o [1382 0 ][or7 0 ] fu
Lo 364wl T 0 3624 0 628.3 | | i,
_ J2.618F;sinwt

B {0.380P‘(, sin Et}
Equation 14-107 represents two uncoupled equations of motion, each with one
degree of freedom:
(1.382m)id; + (126.73m)u, = 2.618F, sin @7 (14-108)
(3.624m)it, + (2276.96m)u, = 0.380F, sin ot (14-109)

The particular solution for these steady-state undamped, forced vibrations is given
by Eqs. 14-73 and 14-74. Consequently,

(14-107)

_ __2618F;sinar  18%4F, . _
4 T 126 73m)(1 — 7917~ molT = o9 et (14-110
0.380F, sin w? 0.105F0_2 sin &t (14-111)

2= (2276.96m)(1 — %*/628.3) N m(628.3 — @)

Finally, the displacements {u} are transformed by {x} = [¢}{u} to obtain the
total displacements {x}. Thus,
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1.894

{x.} _Josis - 1.620j| 917 - & (Fo sin m)
Xy 1 i 0.105 m
i 6283 — @
¢ 1.170 0.170
97— & 683 - (Fo sin 51)
1.894 0.105 m
917 — & 6283 — &
If we desire to include the damping effect, then the equation of motion for
an n-degree-of-freedom system is given by
[ml{x} + [} + [sHx} = {F} (14-113)
Following procedures similar to those in changing from Eq. 14-85 to Eq. 14-89,
we transform Eq. 14-113 to normal coordinates {u}:
(¢ [mlld)a} + [$)(clplu} + (@) [s)dNu}= [$]'{F} (14-114)
As pointed out in Sec. 14-6, we may, for the sake of convenience, express the
damping matrix [c] as a linear combination of the mass matrix [m] and the stiffness
matrix [s]. If such is the case, the orthogonality condition can apply to the
damping matrix also, so that the term [¢][c][¢] in Eq. 14-114 is a diagonal
matrix, denoted by [¢]. Equation 14-114 then reduces to
(AN} + [l + (5Hu} = {F} (14-115)
which gives a set of n uncoupled equations in normal coordinates, each representing
an independent system with a single degree of freedom. The displacements {u}
are finally transformed to the original {x} by

{x} = [oKu}
thereby superimposing »n separate modes in normal coordinates to reach the total
displacements.

(14-112)

A LITTLE BIT OF EARTHQUAKE RESPONSE

In this section, as the title suggests, we intend to discuss the earthquake response
only in its simplest form and within the scope of deterministic-response analysis
for a linear lumped mass system.

Refer to Fig. 14-12(a) for a single-degree-of-freedom system with a lumped
mass m (representing the concentrated mass of a column-beam element) supported
by an elastic massless column with lateral stiffness s and connected to a damper
with viscous damping coefficient c. Let the system undergo a vibration because
of base motion x, (assumed to be in a horizontal direction), which is a time-
varying displacement of the base from its original position. In the absence of
an external exciting force, the only forces acting on the mass are an inertia force
m(X, + X), a viscous damping force cx, and an elastic force sx, x being the
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c m(.'r'g +X)
: % - cx
7 [F, :I g// 41 D €
———

X

v

-

Xg

_
(a) (b)
Figure 14-12

Base motion

relative displacement of the top from the base. See Fig. 14-12(b). Note that the
inertia force depends upon the total motion, whereas the damping and elastic
forces depend upon the motion of mass relative to the base. Therefore, the
equation of motion is

mE, + )+ ck +sx =0 (14-116)
or mx + cx + sx = —mi, (14-117)
The alternative form of Eq. 14-117 may be given as

X+ 2ox + o’x = — %, (14-118)

where » = \/s/m (natural frequency) and { = ¢/2\/sm (damping ratio), as
previously defined in Egs. 14-9 and 14-52, respectively. Comparing Eq. 14-117
with Eq. 14-5, we see that the effect of base motion is equivalent to an externally
applied force ( —mx,). The determination of X, 1s based on the analysis of
response spectra retained from previous earthquakes.

With respect to a lumped multi-degree-of-freedom system subjected to base
motion, the earthquake-response analysis can be carried out in a manner similar
to that for a single-degree-of-freedom system. By analogy with Eq. 14-116, we
can write the equation of motion in matrix notation as

[m] {41 + {2} + ()i} + [sHx} = {0} (14-119)
in which {I} is a unit column matrix and the term %A1} expresses the fact that
each mass of the system experiences the same acceleration due to base motion.
Rearranging Eq. 14-119 gives

[ml{z} + [c)i} + [sHa} = —[m){D, (14-120)
where the term on the right-hand side of the equation represents the effective
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earthquake forces. The solution of the earthquake response of Eq. 14-120 can
be achieved by following the mode-superposition method discussed in the preceding
section, that is, by first transforming the earthquake response in the original
coordinates to that in normal coordinates to obtain a set of uncoupled equations,
each representing the response of a single-degree-of-freedom lumped block, thus
enabling us to determine the responses in each normal mode separately, and
then superimposing these by the transformation matrix to obtain the response
in the original coordinates.

In practice, since ground motion tends to excite strongly only the lowest
modes of vibration, the earthquake response for a system of many degrees of
freedom can often be approximated by carrying out the analysis based on a few
normal coordinates.

PROBLEMS

14-1. Determine the natural frequency and period of vibration of a mass m attached to
the free end of a light cantilever beam of length L and flexural rigidity EI.

14-2. Determine the natural angular frequencies of vibration for the frame shown in Fig.
14-13. Assume that the beams are infinitely rigid in comparison with column stiffness
and that the masses are lumped at two floor levels.

my
A
EI
EI L
my
Y
\
2EI 2E] EI L
>£ \
/4 W 7
| 3 2% R
g >

Figurc 14-13

14-3. Find the natural angular frequencies and characteristic shapes for the two-degree-
of-freedom systems shown in Fig. 14-14.

14-4. Consider the lumped-mass system shown in Fig. 14-15, which has three degrees of
freedom represented by the lateral translations x,, x;, and x; at three floor levels.
Give the equation of motion of undamped free vibration and obtain the natural
angular frequencies.
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L L L
| | l |
| L .
h 1 Figure 14-14
3
1&
L 53
Y M2
A
L 5y m;=nmy=my=m
my
i
.
L Column ET 5
constant
! Z
7 /4 Figure 14-15

14-5. For the free vibration of Prob. 14-4, obtain characteristic shapes. Check your result
by the orthogonality property.
14-6. Determine the response of the system of Prob. 14-4 to a set of harmonic forces
Fl Fo sin wt
{F} = {Fyr = {2F,;sin !
F; Fy sin ot




Answers to Selected Problems

CHAPTER 2

2-1. (a) Stable and indeterminate to the fifth degree
{b) Unstable
(c) Stable and determinate
(d) Stable and indeterminate to the second degree
2-2. (b) Stable and indeterminate to the third degree
(c) Unstable externally
(d) Unstable internally
2-3. (b) Stable and indeterminate to the fifth degree
(e) Stable and indeterminate to the fourth degree
(f) Unstable externally
(g) Stable and indeterminate to the 102nd degree

CHAPTER 3

33. b) S = S, = +14.6 kKN S = +9.1kN
Sz +17.5 kN Sg. = —18.6 kN
@@ S, = Sea = Sz = Sef =0
Sog = —Sp = 26.9 kN
e S, = Spe = 0 Sas
Spe = —14.4 kN
3-4. (a) S, = —32 kips V, = +12 kips S. = +24 kips
(b) H, = +18.75 kips V, = —15 kips S, = —6.25 kips
() V, = +11.6 kips H, = +166.7 kips S, = —20 kips

i

—1L.3 kN
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3.5.
3-6.

3-7.
3-8.

CHAPTER 4

4-1.
4-4.

4-8.

4-9.

4-10.
4-11.

CHAPTER 5

5-1.
5-2.
5-3.
5-4.

5-5.
5-6.

5-7.
5-8.

(d S, = +20 kips V, = +100 kips V. = —45 kips

() S, = —50 kips

V., = —20 kips V, = +10 kips Vv, = —20 kips S; =0
Sis = Ssc = Scp = Ser = Scr =0 S.p = +15.4 kips

S« = +11.2 kips Spe = —13.6 kips Sgr = — 10 kips

S.s = +7.85kN

(d) M. = +108 ft-kips

(e M, +31.25 ft-kips

() M, = — 144 fi-Kips

it

. @ M. = +333kN-'m

() M, = +71.4kNm

V = 49.33 kips M = 458.67 ft-kips

R, = 45 kN Rc = 175kN Rg = 30 kN

Vg = —55 kN Mg = —-90kN-+m Mqc= —180kN-m
(a) R = 22.78 kips

(b) V = 14.44 kips M = 216.67 ft-kips

V, = +29.68 kips (maximum tension)

V, = —4.4 kips (maximum compression)

S, = +52.75 kips

Rc = 156 kN Mp = 111 kN *m

Mg =135kN-+m R = 55 kN

A, = Swl*/384EI (down) 9, = wl*/24EI (clockwise)

A, = 0.0147P1*/EI (down) Afat midspan) = 0.0236PI%/EI (down)
A = 0.54 in. (down) 8 = 0.006 rad (counterclockwise)

A, = 0.43 in. (right) A, = 0.696 in. (down)

A, = 0.006 rad (counterclockwise)

6, = 0.0023 radian (clockwise) A, = 0.375 cm (down)
6, = 0.0038 radian (clockwise) A, = 135cm (down)
A, = 1.15 cm (right) A, = 0.59 cm (down)

A; = 0.0039 radian (counterclockwise)

A, = 0.1 cm (right) A, = 0.12 cm (down)

(a) Ap = 0.00746 ft (down)

) Ac = 0.00278 ft (right)

(©) Ayc = 0.0002 ft (toward each other)
(d) 9 = 0.000434 rad (clockwise)
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5-20. 6, = 0.003 radian (counterclockwise, at the left side)
0.0017 radian (clockwise, at the right side)
A, = 0.267 cm (down)

(5
-
i

CHAPTER 6

6-1. (a) R, = 50 kips (up)
(b) M, = —100 ft-kips
6-2. R, = 10 kips (up)
6-3. R, = 7.28 kips (up)
6-4. R, = 0.916 kN (up)
6-5. (b) M, = wm (m* + 4mn* + 3n*)/8(m’ + n’)
6-6. H, = 15.24 kN (left)
6-7. H, = 1.25 kips (right) V, = 5 kips (up) M, = 4.16 ft-kips (clockwise)
69. S, = 5.25kN
6-10. (a) S, = —0.75 kip
(b) H, = 30 kips (left)
. (c) Sy = —5.4 kips H, = 31.1 kips (left)
6-11. Sz = S, = +8.75 kips
6-16. S, = +4.25 kips M, = —3.25 ft-kips
The effect of axial force in beam is neglected.
6-17. 21.75 kips, 17.4 kips, and 13.05 kips
6-18. The influence ordinates are 1.3, 1, 0.704, 0.432, 0.208, 0.056, 0
6-19. The influence ordinates are 0, 1.39, 1.78, 1.50, 0.89, 0.28, 0

6-20. (a) The influence ordinates are 1, 0.578, 0.222, 0, ~0.05, 0
(b) The influence ordinates are 0, —0.532, —0.668, 0, —0.30, 0
(c) The influence ordinates are 0, —0.422, 0.222, 0, —0.05, 0

1t

CHAPTEB 7
7-1. M, = -22 ftkips M,, = —M,. = 28 fi-kips M., = 31 ft-kips
7-2. M, = —23.55 ft-kips M,, = 16.89 ft-kips
M,;, = —8.89 ft-kips My = —4.44 ft-kips
7-3. M, = —22.1 ft-kips M,, = - M, = 68.3 ft-kips
M., = 20 ft-kips
7-5. M, = —44.8 ft-Kkips M, = -M, = -34.4 ft-kips

7-6. M, = 4.9 ft-kips M,, = —M,. = —0.9 ft-kip
M, = —M., = 2.24 ft-Kips M, = —1.76 ft-kips



7-7.
7-8.
7-9.

7-10.
7-11.

7-12.

7-15.

CHAPTER 8

8-5.
8-6.
8-7.
8-8.
8-9.

8-10.

8-11.

8-13.
8-15.

Answers to Selected Problems

Spring force =

497

3.58 kN (compression)

R. = 7.35kN M, = ~-326kN-'m

My = —0.63kN+m My, = —M, =24 KkN+'m

My = —187kN+*m

R, = 3.03 kN

(@) M,, = —14.9 ft-kips M, = —M, = 14.9 ft-kips
M, = 39.4 ft-kips M, = -29.8 ft-kips

(b) M, = —120.8 ft-kips M,, = -M, = ~112.6 ft-kips
M, = —M, = 104 ft-kips M, = -103.6 ft-kips

(c) M, = 8.52 ft-kips M,, = —M, = 9.58 ft-kips
M, = -M,= —1ftkip M, = 26.74 ft-kips

@) M,, = M, = —150 ft-Kips M, = M, = 156.25 ft-kips
M, = M., = —6.25 ft-kips M, = M, = —43.75 ft-kips
M. = M, = 43.75 ft-kips

(e) M, = —118.1 ft-kips My, = —M, = —82 ft-kips

M, = —M., = 11.5 ft-kips
M., = —74.1 ft-kips

(a) M,, = 185kN »m

by M,, = -M,, = -24kN-+m

M, = —41.25kN *m M,,

End moment = 14.6 ft-Kips

M, = ~M, = 258 ft-kips

= -M, = -675kN-m

Moments at interior supports are 36.5 ft-Kips and 27.3 ft-kips

M,, = —M, = 11.4 ft-kips

R. = 57.27 kN
K,, = 3EIE/(E + B)

57wl®  288EIA
Muw = =M = g16” = "7
(a) M,. = 61.2kN-m
(b) M,. = —33.8kN+m
(© M,, = —267kN-m
d) M, = 33.9kN+m
End moment = 22.10 ft-kips
M., = 50.9 ft-kips M, =
M, = —35.6 fi-kips Mg =
M., = 119.8 ft-kips M, =
M, = —71.3 ft-kips M, =

it

My = —M, =781 ft-kips

M, = —M., = 0.6 ft-kip

— 12.2 ft-kips
-M, = 85.8 ft-kips
—48.5 ft-kips
- M, = 108.8 ft-kips
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CHAPTER 9

9-1. r, = SPL’/6EI (down)
9-3. r (under 10 kips load) = 0.01608 ft (down)
r (under 20 kips load) = 0.00548 ft (down)

9-4. r, = (4L’R, — L’R,)/6EI rn = (~L’R, + 2LR,)/6EIl
9-5. Deflection = SPL/6EI Slope = PLY/EI

o 3.36 .
9-6. {0t = {8.28 ¢ kips {"}=_{~ ) }ﬂ
{Q} {2.76} rj  AE|-1572

9-7. § = —6.725 kN

99. 0/ = —44kN+m Qi = -10kN+m Qf = —233kNe+em
I S5twl?
-10. = yp3 ¢ 2L
9-10. slope SE] (uL + T3 L3/3E1_ﬂ)
7wlL®
deflection = 17wk

48EI(Y + L*/3EIf)

9-11. Q7 = 0.080LR, — 0.236LR, — 0.274R,
Qf = ~0.094LR, — 0.392LR, + 0.030R,

CHAPTER 10

10-5. The moment at the fixed support = —11.25kN «m
10-7. My = wL*/10
10-8. M, = 8 ft-kips M3za = 16 ft-kips
109. M, = 31 ft-kips Mg, = 62 ft-kips
Mpe = 93.2 ft-kips M:s = 46.6 ft-kips
Mg = ~155.2 ft-kips

10-10. [ 2E1 6EI ]
— 0 X 9 0
L L
4EI 6El
L Y @ o 0
4EI  6EI 2EI  ¢EI
a = 0 — —_— = ==
L L L L’
o 2£EI 6EI 4EI  6EI
L L L Tz
0 0 o o A4E
. I |

1-11. Qf = -46.48 fikips Qf = —QF = ~42.25 fr-kips
b

;= —QF = 33.80 ft-kips Q5 = —30.98 ft-kips

il

il
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CHAPTER 11

11-2. Fixed-end moments are —8.4 kN + m {left) and 12.9 kN « m (right). The rotation
at the interior support is 1.8/EI rad.
11-3. Q¢ = 1.25P Q" = -3.5P
Displacements of the top joint are 5.208PI/AE (right) and 1.953PI/AE (down).
114. Q° = —125P 0" = ~1.06P 0 = —-0.25P
Displacements of the joint are 0.25P1/AE (right) and 1.25 PI/AE (down).
11-5. End moments of the beam are 0.13 wi® and 0.54 wi’. End moments of the column
are 0.46 wi® and 0.22 wi’.
11-6. Fixed-end moment is 0.08 wi? including the axial effect.

CHAPTER 12

L[ o1 -027
12:2. f = 3E1[—0-27 0.40]

Elf5.48 3.70
123. & = 7[3.70 10 ]

0.743 Cye = 0.462
4.62 EL/! Spa = 743 ELJ!

12-4. C,
Sab

_EL[162 3.43
12-5. k =~ [3.43 7.43]
s L] 03w —01s
= EL|-0152 0205

12-6. M5, = —7.5kN+*m M, = 144kN+m
12-7. My, = 203 kN-m M, =223kN-*m
12-8. The moment at the fixed support = 12.85 kN *m

CHAPTER 13
13-1. P, = %’
13-2. If we let s, = 1 and s, = 2, then the first-mode P, = 0.439/ and the second-mode
P, = 4.561]

13-3. The theoretical P, = 26EI/I’
13-6. The theoretical P,, = 25.2EI/I*
13-7. The theoretical P,, = 28.3EI/I’

Il

I

CHAPTER 14

1 [3EI
14-1. f = 2—;\/;"? cycle/s
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ET
13-2. w, = 9,19 Vi”—II:_‘ rad/s

r=ral

i Kl
.= 3 — rad/s
w, = 381 V/ml,‘ rad/s

14-3. @, = 13.86 \/% rad/s

i

w

"ET
19.60 \/ R rad/s
Two modes of the characteristic shape: The symmetrical and the antisymmetrical
IET
144, w, = 2.180 V -T‘ rad/s

/u
VL

8.828 EI ; rad/s
mL}

0.445
14-5. {4}, = <0. 802

{ ) ;’;‘;}
&

802
2.247

w; = 6.109 ; rad/s

il

Wy

{A} =



Index

Absolute stiffness, 215

Action method, 176

Amplitude, 381, 393

Angle load, 122

Antisymmetry, 192, 200, 224, 237, 300, 347,
368

Approximate analysis, of statically indetermi-
nate structures, 67-69

Axial force, 5, 13, 182, 367

influence lines for, 163

Beam sign convention, 36
Beams
definition, 5, 31
deformation
by Castigliano’s theorem, 114-20
by conjugate-beam method, 120-27
by matrix method, 260, 262, 283
by virtual work (unit-load method),
10307
internal force, 14
. stability and determinacy, 19-22
statically determinate, 35-42
analysis
by matrix method, 260, 262
influence lines for, 80-86

types, 31
statically indeterminate
analysis
by consistent deformations, 135~44
by least work (Castigliano’s theorem),
152-55
by matrix method, 264-75, 288, 298
by moment distribution, 218, 220-23,
227
by slope deflection, 185-88
influence lines for, 162, 165-70
Bending moment
curves, 36
definition, 35
influence lines for, 82, 162, 166, 170
Bottom chord, 58
Braces, 60
Bridge trusses, 57
Building bent, approximate analysis, 67-69

Cantilever beam, 31
Cantilever method, 68
Carry-over factor, 215, 342
Carry-over moment, 215
Castigliano. Albert, 114

411
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Castigliano’s theorem, 96, 114, 152
Chord, top and bottom, 58
Coefficient
flexibility, 134, 255
stiffness, 284, 312, 320
Compatibility, 204, 251, 255, 282
Compatibility equation, 132, 135, 152, 180,
255, 259
Complex trusses, analysis, 54
Composite structures, 158
Compound beam, 31
Compound trusses, analysis, 52
Computer program, 332
Concentrated load system, 90
Concurrent forces, 8
Condition equation, 15
Conjugate-beam, 122
Conjugate-beam method, 120-27
Consistent deformations, 132-75
for influence lines, 169
for statically indeterminate beams, 135-44
for statically indeterminate rigid frames,
144-46
for statically indeterminate trusses, 146-51
Coplanar force system, equations of equilib-
rium for, 7-9
Critical damping, 389, 390
Critical Joad, 355
Cross, Hardy, 211
Curvature
of elastic member, 99
mathematic definition, 97

D’Alembert’s principle, 376
Damped vibration, 377, 379, 388
Damping
coefficient, 379, 389
critical, 389, 390
matrix, 390
ratio, 389
viscous, 379
Dead load, 2
Deck bridge, 57
Deformations (deflections), 96131
of beams, 103-07, 116-17, 120-27
computation
by Castigliano’s theorem, 114-20

Index

by conjugate-beam method, 120-27
by matrix method, 260, 262, 273, 287,
305, 322
by virtual work method, 101-14
reciprocal, 127
of rigid frames, 107-10
of trusses, 110-14, 116, 120
Degrees of freedom
of joint translation, 191, 195, 201
of motion, 377
Degree of indeterminacy, 18, 201
Diagonal, truss, 58
Diagram
displacement, 192, 195
influence, 78
Direct stiffness method, 311-35
Displacement method, 5, 176, 250, 282, 304,
307
Displacement transformation matrix, 283
Distributed load, treatment, 251
Distribution factor, 215
Distribution matrix, 244
Dynamic load, 376
Dynamic matrix, 385
Dynamic response, 376
Dynamics, structural, 4, 376-403

Earthquake response, 400
Effective length, 371
Effective-length factor, 371
Eigenvalue, 385
Eigenvector, 386
Elastic deformations
(see Deformations)
Elastic load, 122
Elastic stability, 353—75
of a prismatic column, 360—67
of a rigid frame, 367-72
Element flexibility matrix, 256
Element stiffness matrix, 285
End post, 58
Equation of motion, 379
Equilibrium, 7, 9, 204, 251, 253, 282, 287
stability of, 353
Equilibrium equations, 7-9
External force, 7, 10, 252
External work, 100, 356
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Finite-element concept, 250 Indeterminacy, degree,
Fixed-end moment, 141-44, 153-55, 179, 181, kinematic, 201
212, 217, 220, 244, 336 statical, 18
due to joint translation, 229, 344 Inflection, point of, 41
Flexibility coefficient, 134, 255 Influence diagram, 78
Flexibility matrix Influence line, 76
element, 256, 260, 264, 285 for beams, 80-86
of indeterminate structure, 259, 265 qualitative, 162
rotational, 338 quantitative, 166-70
total, 258, 287 for statically indeterminate structures, 160-
Flexibility method, 5 70
Floor beam, 58 for trusses, 8690
Force use of, 79, 162, 165
concurrent, 8 Instability
external, 7, 10, 252 elastic, 353-75
internal, 13, 253 geometric, 18, 21, 23, 25, 55
normal, 14 statical, 15
parallel, 9 Internal deformation, 253
shear, 14, 35 Internal force, 13, 253
shear resisting, 36 Internal work, 100, 357
system, coplanar, 7
Force-displacement relation, 251, 255, 282, Joint, method of, for truss analysis, 49
284 Joint translation
Force method, 5, 176, 250, 307 fixed-end moment due to, 229, 344
Force transformation matrix, 254, 259, 264, (see also Fixed-end moment)
284 one degree of freedom of, 191-95, 232-35
Forced vibration, 377, 391-93 several degrees of freedom of, 201, 242
Frame two degrees of freedom of, 195-201, 235-42
portal, 58 without, 188-90, 212
rigid, 6 (see also Rigid frames)
sway, 58 Kinematic indeterminacy, 201
Free vibration, 377, 380-91 Kirchhoff’s uniqueness theorem, 333
Frequency, 377, 381 K-truss, 59
Generalized coordinates, 393 Lateral bracing system, 58
Geometric instability Least work, theorem of, 152
external, 18 . Linear structure, 4
internal, 21, 23 Link support, 12
Geometrical matrix, 356, 360 Loads
critical, 355
Half-through trussed bridge, 58 dead, 2
Hinge support, 10 dynamic, 3
Hip vertical, 58 impact, 3
Howe truss, 58 live, 2
movable, 2
Ideal structure, S moving, 2

Impact load, 3 static, 3
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Locking and unlocking, process of, 217, 220,

229
Locking moment, 217, 220, 229
Lumped mass, 377
matrix, 378, 385, 391

Main truss, 58
Matrix formulation
for consistent deformations, 135
for least work, 152
for moment distribution, 244
for slope deflection, 202
for truss analysis, 55
Matrix displacement method, 250-81
Matrix force method, 282-310
Maxwell’s law of reciprocity, 127
Member-structure, 311
Mode-superposition method, 397
Modified member stiffness matrix, 299
Modified stiffness, 226, 346
Moment, bending, 35 (see also Bending
moment)
influence line, 82, 163
method of, for truss analysis, 51
resisting, 35
Moment-distribution method
to nonprismatic members, 336, 342-48
to prismatic members, 211-49
sign convention, 212
Motion
degrees of freedom of, 377
equation of, 379
Movable load, 2, 76
Moving load, 2, 76
Miiller-Breslau's principle, 82, 162

Natural angular frequency, 381

Natural frequency, 377, 381

Natural mode, 386

Natural period, 381

Nodes, 251

Nonlinear structure, 4, 353

Nonprismatic member, 336-52

Normal coordinates, 393-96

Normal mode, 386
characteristic shape, 386

.Orthogonal transformation matrix, 314, 316

Orthogonality of natural modes, 387

Index
Panel
length, 58
point, 58

Parallel forces, 9

Period, 376, 381

Phase angle, 381

Pitch of a roof truss, 58

Planar structure, 4

Point of inflection, 41

Portal frame, 58

Pratt truss, 58

Primary structure, 132, 151, 254, 275

Principle
D’Alembert’s, 376
Miiller-Breslau’s, 82, 162
of superposition, 4

Reaction, support, 10
influence lines, 82, 162
stability and determinacy, 15-18
Reciprocal deflections, law of, 127, 161
Redundants, 132, 146, 151, 254, 259, 332
Relation
force-displacement, 251, 255, 282, 284
load-shear-moment, 43-46
Relative stiffness, 215
Released structure, 132
Resisting moment, 14, 36
Resonance, 377, 393
Rigid frames
definition, 6, 34
deformations
Castigliano’s theorem, 114—18
matrix method, 260, 265, 288, 292-97,
304, 322, 327
virtual work, 107~110
stability and determinacy, 25-29
statically determinate, analysis, 60-66, 260
statically indeterminate, analysis
consistent deformations, 144-46
least work, 155-57
matrix method, 258, 264, 267-73, 288,
292-97, 304, 322, 327-32
moment distribution, 211-49; 336, 342-48
slope deflection, 188-202, 336, 341
Roller support, 12
Roof trusses
conventional types of, 60
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description of, 58
Rotation of member, 180, 341
Rotational flexibility matrix, 338
Rotational stiffness matrix, 340
Rotational transformation of a coordinate
system, 313

Section, method of, for truss analysis, 50
Shear
definition, 35
influence line, 82, 163
Shear curve, 36
Shear resisting force, 14, 36
Sign convention
beam, 36
for conjugate-beam method, 124
for moment distribution, 212
for slope deflection, 177
Simple beam, 31
Slope-deflection equation, 130
generalized, 342
sign convention of, 177
Slope-deflection method, 176~210
for analysis of statically indeterminate
beams, 185-88
for analysis of statically indeterminate rigid
frames, 188-201
for nonprismatic member, 342
matrix formulation of, 202
Stability
elastic, 353-75
statical, 15, 19, 56
Stability and determinacy
of beams, 19-22
of rigid frames, 25-29
of trusses, 22-25, 55
Statically determinate beams, 35-48, 262, 288,
304
Statically determinate rigid frames, 60-66,
260, 288, 304
Statically determinate trusses, 49-60, 261,
289, 323
Statically indeterminate beams, 135, 153, 185,
218, 221, 262, 273, 288, 298, 304, 322
Statically indeterminate composite structures,
158
Statically indeterminate rigid frames, 144, 155,

415

188201, 217, 220, 223, 228-43, 264,
268-73, 327-332
Statically indeterminate trusses, 146, 157, 265,
288, 304, 322
Stiffness,
absolute, 215
direct, 311
geometric, 356, 360
modified, 226, 346
relative, 215
rotational, 212
Stiffness coefficient, 284, 312, 320
Stiffness factor, 180, 213, 225
Stiffness matrix
beam-column, 356, 360
element, 285, 312
in global coordinates, 316
in local coordinates, 312
modified member, 299
rotational, 340
structure or total, 203, 287, 305, 320
Stiffness method, 5
Strain energy, 100
Stress analysis, 3
Stringer, 58
Stringer and floor-beam system, 58
Structure
actual and ideal, 5
engineering, 1
linear, 4
member, 311
nonlinear, 4, 353
planar, 4
primary, 132, 151, 254, 275
statically determinate, 4
statically indeterminate, 4
Substitute-member method, 54
Successive approximation, 212, 221
Superposition, principle of, 4
Support
elastic, 139, 187, 273, 298
fixed, 12
hinged, 10
link, 12
roller, 12
Support reaction, 10
Support settlement, 132, 139, 152, 187, 190,
220, 273, 298
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Sway frame, 58
Symmetry, 192, 224, 300, 346, 368

Temperature effect, 111, 114, 132, 149, 152
Theorem
Castigliano’s, 96, 114, 152
of least work, 152
of virtual work, 83, 253
Three-force member, 9, 65
Three-hinged arch, 60
Through trussed bridge, 57
Top chord, 58
Transformation matrix
displacement, 283
force, 254
orthogonal, 315
Trusses
complex, 34
compound, 34
conventional types, 59, 60
definition, 5, 13, 22, 32
deformation
by Castigliano’s theorem, 116, 118
by matrix method, 261, 265, 289, 323
by virtual work, 110
description of, 57
influence line for, 86—90
simple, 32
stability and determinacy, 22-25, 56
statically determinate, analysis
by matrix method, 260, 289, 323
by method of joint, 49

Index

by method of section, 50

by mixed method, for compound trusses,
52

by substitute-member, for complex
trusses, 54

statically indeterminate, analysis

by consistent deformations, 146—51

by least work, 157

by matrix method, 265, 276, 288, 322

Two-force member, 5, 9, 12, 13, 32, 65

Uncoupled equation of motion, 396
Undampled vibration, 380-88
Unit-load method, 96, 101-14
Unlocking moment, 211, 217, 220
Unstable equilibrium, 16, 353

Vertical, truss, 58
Vibration, 376
damped, 377, 388-91
forced, 377, 391-93
free, 377, 380-91
undamped, 380--88
Virtual displacement, 83, 253
Virtual force, 102, 253
Virtual work
beam influence lines by, 82-86
deformations by, 101-14
theorem of, 83, 253

Warren truss, 58
Well-conditioned matrix, 308
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