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by Marek Capiński and Tomasz Zastawniak

An Introduction to Hilbert Space and Quantum Logic
by David W. Cohen

Unsolved Problems in Geometry
by Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy

Berkeley Problems in Mathematics (Third Edition)
by Paulo Ney de Souza and Jorge-Nuno Silva

The IMO Compendium: A Collection of Problems Suggested for the
International Mathematical Olympiads: 1959–2004
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We often felt that there is not less, and perhaps even more, beauty
in the result of analysis than there is to be found in mere contemplation.

Niko Tinbergen, Curious Naturalists (1958).



Preface

As a student I discovered in our library a thin booklet by Frederick
Mosteller entitled 50 Challenging Problems in Probability. It referred to a sup-
plementary “regular textbook” by William Feller, An Introduction to Proba-
bility Theory and its Applications. So I took this one along, too, and started on
the first of Mosteller’s problems on the train riding home. From that evening,
I caught on to probability. These two books were not primarily about abstract
formalisms but rather about basic modeling ideas and about ways — often
extremely elegant ones — to apply those notions to a surprising variety of
empirical phenomena. Essentially, these books taught the reader the skill to
“think probabilistically” and to apply simple probability models to real-world
problems.

The present book is in this tradition; it is based on the view that those
cognitive skills are best acquired by solving challenging, nonstandard proba-
bility problems. My own experience, both in learning and in teaching, is that
challenging problems often help to develop, and to sharpen, our probabilistic
intuition much better than plain-style deductions from abstract concepts.

The problems I selected fall into two broad categories, even though it is in
the spirit of this collection that there actually is no sharp dividing line between
them. Problems related to probability theory come first, followed by problems
related to the application of probability in the field of mathematical statis-
tics. Statistical applications are by now probably the most important reason
to study probability. Thus, it seemed important to me to select problems il-
lustrating in an elementary but nontrivial way that probabilistic techniques
form the basis of many statistical applications. All problems seek to convey a
nonstandard aspect or an approach that is not immediately obvious.

The word puzzles in the title refers to questions in which some qualitative
nontechnical insight is most important. Ideally, puzzles can teach a productive
new way of framing or representing a given situation. An obvious example of
this is the introductory “To Begin Or Not To Begin.” Although the border
between the two is not perfectly sharp (and crosses occur), problems tend to
require a more systematic application of formal tools and to stress more tech-
nical aspects. Examples of this deal with the distribution of various statistics
such as the range or the maximum, the linearization of problems with the
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powerful so-called Delta technique, or the precision (standard error) of cer-
tain estimates. These examples have in common that they all seek to apply
basic probability notions to more or less applied situations. Such approaches
— the Delta technique mentioned earlier is a typical example — are not usu-
ally covered in introductory books. Rather, they often appear hidden behind
thick technical jargon in more advanced treatments, even though their prob-
abilistic background is often essentially elementary. Thus, a major aim of the
present collection is to help bridge the wide gap between introductory texts
and rigorous state-of-the-art books.

Many puzzles and problems presented here are either new within a
problem-solving context (although as topics in fundamental research they are
of course long known) or variations of classical problems. A small number
of particularly instructive problems have been taken from previous sources,
which in this case are generally given (the titles referenced at the end of the
book contain a large number of related challenging problems).

My approach in the Solutions section is often fairly heuristic, and I fo-
cus on the conceptual probabilistic reasoning. I think that — especially with
natural science students — purely technical issues are in fact not usually the
major obstacle: after all, the mathematical level of most elementary probabil-
ity applications is not too advanced when compared to, say, even introductory
fluid dynamics. Rather, the hardest part is often to develop an adequate un-
derstanding of, and intuition for, the characteristic patterns of reasoning and
representing typically used in probability. Thus, technical tools such as deriva-
tives or Taylor series are used freely whenever this seemed practical, but in a
clearly informal, engineer-like, and nonrigorous way. My advice is: whenever
you hit upon a problem or a solution that seems too technical, simply skip it
and try the next one.

To specify the background required for this book, a fair number of problems
collected here require little more than elementary probability and straight
logical reasoning. Other problems clearly assume some familiarity with notions
such as, say, generating functions, or the fact that around the origin ex ≈ 1+x.
It is probably fair to say that anybody with a basic knowledge of probability,
calculus, and statistics will benefit from trying to solve the problems posed
here. Of course, you must try any way of attack that might promise success —
including considering significant special cases and concrete examples — and
resist the temptation to look up the solution! To help you along this way, I
have provided a separate section of short hints, which indicate a direction into
which you might orient your attention.

Potsdam, April 2007 Wolf Schwarz
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0

Notation and Terminology

P probability.
rv random variable, usually set in boldface, e.g., T, N.
DF the distribution function of an rv, F (t) = P(T ≤ t).
pdf the probability density function of a continuous rv; if the

DF, say F , of T is differentiable, then the pdf f(t) =
F ′(t).

E the expectation of an rv. For a continuous rv T with pdf
f we have E[T] =

∫∞
−∞ t · f(t) dt, usually denoted as μ.

Var the variance of an rv, Var[T] = E[(T− E[T])2], is usually
denoted as σ2.

i.i.d. rvs random variables that are independently and identically
distributed.

geometric rv a positive discrete rv N with P(N = n) = p · (1 − p)n−1,
where n = 1, 2, . . .. Its mean is 1/p, its variance (1−p)/p2.

Poisson rv a nonnegative discrete rv with P(N = n) = λn · e−λ/n!,
where n = 0, 1, 2, . . .. Its mean and variance are λ > 0.

normal rv a continuous rv with pdf

n(x|μ, σ2) =
1

σ
√

2π
exp

[

− 1
2

(
x − μ

σ

)2
]

Its mean is μ, its variance σ2. The case μ = 0, σ = 1
defines a standard normal rv Z, the DF of which is usually
written as P(Z ≤ z) = Φ(z).

exponential rv a nonnegative continuous rv with pdf f(t|λ) = λ e−λt. λ is
called the rate of the distribution; an alternative notation
replaces 1/λ with μ. Its mean is 1/λ, its variance 1/λ2.
The DF is F (t|λ) = 1 − e−λt.

gamma rv the sum of n independent exponential rvs with rate λ. Its
density is f(t|λ, n) = λ e−λt (λt)n−1/(n− 1)!. Its mean is
n/λ, its variance n/λ2.



2 Notation and Terminology

mgf for a continuous rv T ≥ 0 the moment generating func-
tion g(s), s ≥ 0, is the Laplace transform of its pdf f ,
that is, g(s) =

∫∞
0

e−st f(t) dt.
pgf the probability generating function g(z) of a nonnegative

discrete rv N is the expectation of zN, that is, g(z) =
E[zN] =

∑∞
n=0 zn · P(N = n), 0 ≤ z ≤ 1. In particular,

g′(1) = E[N].
tail formula for a continuous rv T ≥ 0 with DF F , we have E[T] =∫∞

0
[1 − F (t)] dt; also, E[T2] = 2

∫∞
0

t [1 − F (t)] dt.
ML estimate the maximum likelihood (ML) estimate of a parameter;

obtained by maximizing the likelihood of the data with
respect to that parameter.

Bayes’ theorem states that for any two events A and B with P(A) > 0 we
have P(B|A) = P (A|B) · P(B)/P(A).

hazard function the hazard function h(t) of a positive rv T with density f
and DF F is defined as the conditional density at t, given
that T ≥ t. That is, h(t) = f(t)/[1 − F (t)].



1

Problems

1.1 To Begin or Not to Begin?

An urn contains k black balls and a single red ball. Peter and Paula draw
without replacement balls from this urn, alternating after each draw until the
red ball is drawn. The game is won by the player who happens to draw the
single red ball. Peter is a gentleman and offers Paula the choice of whether
she wants to start or not. Paula has a hunch that she might be better off if
she starts; after all, she might succeed in the first draw. On the other hand,
if her first draw yields a black ball, then Peter’s chances to draw the red ball
in his first draw are increased, because then one black ball is already removed
from the urn. How should Paula decide in order to maximize her probability
of winning?

1.2 A Tournament Problem

Ten players participate in the first round of a tennis tournament: 2 females
and 8 males. Five single matches are fixed at random by successively drawing,
without replacement, the names of all 10 players from an urn: the player drawn
first plays against the one whose name comes up second, the third against the
fourth, etc.

a. What is the probability that there will not be a single match involving
two female players? Is this probability smaller, equal to, or larger than the
corresponding probability with 20 females and 80 males?

b. Try to answer the general case in which there are 2n players, of whom
2 ≤ k ≤ n are female. What is the probability p(k, n) that among the n
matches there will not be a single one involving two female players?
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1.3 Mean Waiting Time for 1 − 1 vs. 1 − 2

Peter and Paula play a simple game of dice, as follows. Peter keeps throw-
ing the (unbiased) die until he obtains the sequence 1 − 1 in two successive
throws. For Paula, the rules are similar, but she throws the die until she
obtains the sequence 1 − 2 in two successive throws.

a. On average, will both have to throw the die the same number of times?
If not, whose expected waiting time is shorter (no explicit calculations are
required)?

b. Derive the actual expected waiting times for Peter and Paula.

1.4 How to Divide up Gains in Interrupted Games

Peter and Paula play a game of chance that consists of several rounds.
Each individual round is won, with equal probabilities of 1

2 , by either Peter or
Paula; the winner then receives one point. Successive rounds are independent.
Each has staked $50 for a total of $100, and they agree that the game ends as
soon as one of them has won a total of 5 points; this player then receives the
$100. After they have completed four rounds, of which Peter has won three
and Paula only one, a fire breaks out so that they cannot continue their game.

a. How should the $100 be divided between Peter and Paula?
b. How should the $100 be divided in the general case, when Peter needs

to win a more rounds and Paula needs to win b more rounds?

1.5 How Often Do Head and Tail Occur Equally Often?

According to many people’s intuition, when two events, such as head and
tail in coin tossing, are equally likely then the probability that these events
will occur equally often increases with the number of trials. This expectation
reflects the intuitive notion that in the long run, asymmetries of the frequen-
cies of head and tail will “balance out” and cancel.

To find the basis of this intuition, consider that 2n fair and independent
coins are thrown at a time.

a. What is the probability of an even n : n split for head and tail when
2n = 20?

b. Consider the same question for 2n = 200 and 2n = 2000.
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1.6 Sample Size vs. Signal Strength

An urn contains six balls — three red and three blue. One of these balls
— let us call it ball A — is selected at random and permanently removed
from the urn without the color of this ball being shown to an observer. This
observer may now draw successively — at random and with replacement —
a number of individual balls (one at a time) from among the five remaining
balls, so as to form a noisy impression about the ratio of red vs. blue balls
that remained in the urn after A was removed.

Peter may draw a ball six times, and each time the ball he draws turns
out to be red. Paula may draw a ball 600 times; 303 times she draws a red
ball, and 297 times a blue ball. Clearly, both will tend to predict that ball A
was probably blue. Which of them — if either — has the stronger empirical
evidence for his/her prediction?

1.7 Birthday Holidays

The following problem is described in Cacoullos (1989, pp. 35–36).
A worker’s legal code specifies as a holiday any day during which at least

one worker in a certain factory has a birthday. All other days are working
days. How many workers (n) must the factory employ so that the expected
number of working man-days is maximized during the year?

1.8 Random Areas

Peter and Paula both want to cut out a rectangular piece of paper. Because
they are both probabilists they determine the exact form of the rectangle by
using realizations of a positive rv, say U, as follows. Peter is lazy and generates
just a single realization of this rv; he then cuts out a square that has length and
width equal to this value. Paula likes diversity and generates two independent
realizations of U. She then cuts out a rectangle with width equal to the first
realization and length equal to the second realization.

a. Will the areas cut out by Peter and Paula differ in expectation?
b. If they do, is Peter’s or Paula’s rectangle expected to be larger?
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1.9 Maximize Your Gain

A nonnegative rv U has DF F and density f = F ′; its mean μ and variance
σ2 are both finite. A game is offered, as follows: you may choose a nonnegative
number c; if U > c then you win the amount c, otherwise you win nothing.

As an example, suppose U is the height (measured in cm) of the next
person entering a specific public train station. If you choose c = 100 then you
will almost surely win that amount. A value of c = 200 would double your
amount if you win, but of course drastically reduce your winning probability.

a. Find an equation to characterize the value of c that maximizes the
expected gain.

b. Give a characterization of the optimal value of c in terms of the hazard
function of U (see page 2 for the definition of the hazard function).

c. Derive c explicitly for an exponential rv with rate λ (see page 1 for a
definition). How large is the maximum expected gain?

1.10 Maximize Your Gain When Losses Are Possible

Under the same assumptions as in Problem 1.9, the rule of the game is
changed, as follows: if U > c an amount of c is won, but otherwise the amount
c is lost.

a. Characterize the value of c that maximizes the expected gain, G(c).
b. Can the game be unfavorable, i.e., can (even) the maximum expected

gain become negative?
c. How large is the maximum expected gain for an exponential rv with

rate λ? Compare this to the solution of the previous problem; explain the
difference.

1.11 The Optimal Level of Supply

A man offers milk to the spectators of the weekly baseball matches. Before
each match, he orders c units of milk at a price of b > 0 per unit; during the
match he sells each unit for a price of s > b. Because the milk cannot be kept
fresh for a week, each unsold unit imposes a loss of b. The actual demand D
of milk varies from week to week, according to a strictly increasing DF F with
density f . Assume that F (0) = 0 and that D is a continuous rv with finite
mean.

a. For given prices b, s, and a given demand structure F , the milkman can
choose among different values of c. Consider c as a continuous variable, and
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denote as G(c) the expected net gain as a function of c. Discuss the shape
and qualitative properties of G.

b. What is the optimal amount of milk, copt, the man should stock in order
to maximize his expected net gain?

1.12 Mixing RVs vs. Mixing Their Distributions

The concept of a “mixture distribution” is used in probability and its
applications in at least two different ways that have quite different meanings.

Let X and Y be two independent normal rvs, with means μx = 50 and
μy = 150 and standard deviations of σx = σy = 10. Consider the rv A defined
by

A =
1
2

(X + Y)

The idea here is that in each realization both a value of X and a value of Y
are generated, and half of each is added to produce the value of A. Thus, in
a fairly direct sense each individual realization of A contains (is made up of)
one part of X and one part of Y — in this sense, A is a 50/50 mixture of X
and Y, much like one mixes half a pound of butter and half a pound of flour.

Next, consider an rv B that comes, in each realization, with probability 1
2

from a normal distribution (namely, that of X) with mean μ = 50 and stan-
dard deviation 10 and with probability 1

2 from a normal distribution (namely,
that of Y) with mean μ = 150 and standard deviation 10. Thus, its density
is equal to

fB(b) =
1
2

[ n(b|μ = 50, σ = 10) + n(b|μ = 150, σ = 10) ]

where n( · |μ, σ) is the normal density with mean μ and standard deviation
σ. The idea here is that in each realization either a value of X or a value of
Y is generated (but not of both) with equal probability, and that this value
then determines that of B. However, across many realizations, the density of
B will still represent a 50/50 mixture of X and Y.

a. Sketch the densities of A and B. Is A normally distributed? Is B?
b. Derive the means and variances of A and B. Compare and explain.
c. Let X, Y be two arbitrary but independent rvs with densities fX , fY ;

means μx, μy; and standard deviations σx, σy. Let 0 ≤ p ≤ 1 be a proportion
mixing either the rvs themselves:

A = p · X + (1 − p) · Y

or their densities

fB(b) = p · fX(b) + (1 − p) · fY (b)

Derive for this more general case the means and variances of A and B.
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1.13 Throwing the Same vs. Different Dice

The standard binomial sampling scheme assumes n independent trials with
a constant probability of success. Suppose, for example, that we are given a
single fair die, and that the success event consists in throwing, say, a 5. Thus,
each single throw results in a success with probability p = 1

6 . Within n = 144
independent trials, we would thus expect about n · p = 24 successes, and the
variance of the number of successes would be equal to n · p · (1 − p) = 20.

a. Suppose we are given two biased dice. Die A will show a 5 with prob-
ability p = 1

4 , and die B shows a 5 with probability p = 1
12 . With these two

dice 144 trials are conducted, as follows. For the first 72 trials we use die
A, and during the last 72 trials we use die B. Given that the average success
probability across both dice is equal to (1

4 + 1
12 )/2 = 1

6 , we would again expect
24 successes. Is the variance of the number of successes larger than, equal to,
or smaller than with the standard binomial sampling scheme?

b. Again we are given the two dice A and B described in a. This time,
however, we select at random one die and then throw this selected die 144
times, observing again the number of throws yielding a 5. Is the variance of the
number of successes larger than, equal to, or smaller than with the standard
binomial sampling scheme?

c. Once again we are given the two dice A and B. This time, however, in
each of 144 trials we start by choosing at random one of the two dice, then
throw it and observe whether or not the trial yields a 5. Is the variance of the
number of successes larger than, equal to, or smaller than with the standard
binomial sampling scheme?

1.14 Random Ranks

Peter draws n = 100 independent realizations of a continuous rv and ranks
them in increasing order from 1 to 100. Subsequently, Paula draws a single
value from the same population and inserts this value into the rank order
created earlier by Peter. For example, if her value is such that 50 of Peter’s
draws are smaller and 50 are larger, then the rank associated with her draw
would be 51 — that is, overall, her value would be the 51st in increasing order.
Or, if her value is smaller than all 100 of Peter’s, then the rank 1 would be
associated with it.

a. Is it more likely that Paula’s value will occupy rank 51 than rank 1?
b. Derive for general n the probability that Paula’s value will occupy rank

k, where 1 ≤ k ≤ n + 1.
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1.15 Ups and Downs

Ups and downs occur in probability just as in real life. An elementary prob-
ability version with the real-life property that ups are (more) often followed
by downs is as follows.

Let (A,B,C) be three independent and identically distributed continuous
rvs that are realized sequentially: first A, then B, and finally C. Let us say that
an increment occurs with B if B > A, and a decrement otherwise. Similarly,
an increment occurs with C if C > B, and a decrement otherwise.

a. Suppose you are told only that B has led to an increment, but not the
actual value of B. Argue that conditional on this information C is twice as
likely to yield a decrement than an increment — even though B and C are
independent.

b. Random variables are said to be exchangeable if their joint density is
the same for any permutation of its arguments. Thus, if (A,B,C) are ex-
changeable, then their density, say f(a, b, c), is the same for any permutation
of (a, b, c). Note that exchangeable rvs may still be dependent. Does the prop-
erty described in a. still hold if (A,B,C) are exchangeable?

c. Suppose that the three rvs have the same marginal distribution with
mean μ and variance σ2, and let them have the common pairwise correlation
�. Show that the correlation of the rvs B − A and C − B is generally equal
to − 1

2 .

1.16 Is 2X the Same as X1 + X2?

Let X be a continuous rv with density f , and let X1, X2 be two inde-
pendent rvs, both distributed as is X. It is then not usually the case that
the rv 2X is distributed as is X1 + X2. However, the Cauchy density whose
standardized form is given by

f(x) =
1
π
· 1
1 + x2

possesses this property: X1 +X2 has the same distribution as the rv 2X. It is
illustrated and compared to the standard normal distribution in Figure 1.1.

a. Based on the property described earlier, argue without any explicit
calculation that the variance of the Cauchy distribution is necessarily infinite.

b. Give an inductive argument for the rather unintuitive feature that for
the Cauchy distribution the arithmetic mean from a sample of n = 2k indepen-
dent realizations of X has exactly the same distribution as each contributing
summand itself.
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Fig. 1.1. The standard Cauchy and the standard normal density look basically similar:
they are both unimodal and symmetric around x = 0. However, the Cauchy has thicker
tails, whereas the normal density is more concentrated around its mean.

1.17 How Many Donors Needed?

To organize a charity event that costs $100, an organization raises funds.
Independent of each other, one donor after another gives some amount of
money (considered as a continuous quantity here) that is exponentially dis-
tributed (for definition, see page 1), with a mean of $20. The process is stopped
as soon as $100 or more has been collected. Find the distribution, mean, and
variance of the number of successive donors needed until at least $100 dollars
has been collected.

1.18 Large Gaps

Denote as {N(t), t ≥ 0} a Poisson process with rate λ. Let W be the
waiting time until for the first time no event in {N(t)} has occurred for the
last τ time units. Derive E[W]. For example, {N(t)} might stand for the
sequence of cars passing at a crosswalk. A pedestrian needs τ seconds to cross
the road — how long does it on average take before he has reached the other
side of the road?
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1.19 Small Gaps

Related to the preceding problem, let U be the waiting time until two
events occur within τ time units. Derive E[U].

In some applications, the event that has latency U is called a “coinci-
dence.” For example, a volume of biological tissue could be permanently de-
stroyed when two damaging particles are absorbed within τ (or less) time
units. The idea here is that following the first absorption the tissue needs to
recover for τ time units; this opens a window of vulnerability during which a
further (second) particle has a lethal effect.

1.20 Random Powers of Random Variables

Let M, N be independent Poisson rvs (for definition, see page 1), with
parameters (means) α, β ≥ 0, respectively. Define a rv Q ≡ MN.

a. Find the expectation E[Q].
b. Does E[Q] generally increase as a function of α and β? Explain.

1.21 How Many Bugs Are Left?

Peter and Paula are given copies of the same text for independent proof-
reading. Peter finds 20 errors, and Paula finds 15 errors, of which 10 were
found by Peter as well. Estimate the number of errors remaining in the text
that have not been detected by either Peter or Paula.

1.22 ML Estimation with the Geometric Distribution

Let the discrete rv K have a geometric distribution (see page 1),

P(K = k) = p · (1 − p)k−1 , k = 1, 2, . . .

and let { ki; i = 1, . . . , n } be n independent realizations from it.
a. Find the maximum likelihood (ML) estimate (for definition, see page 2),

p̂, of p. Give a simple argument why p̂ overestimates p.
b. Determine the asymptotic standard error, a.s.e.(p̂), of this estimate as a

function of p. Consider the asymptotic standard error as p → 0 and as p → 1.
For which value of p is a.s.e.(p̂) maximal?

c. Explain the apparent paradox that p̂ is, on the one hand, the reciprocal
of a sum of rvs (which in turn will tend to normality), and on the other hand
that it is itself asymptotically normally distributed.
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1.23 How Many Twins Are Homozygotic?

Twin pairs are either homozygotic (with probability α) or dizygotic (prob-
ability 1 − α). In the first case, their common sex is genetically determined
only once, for both twins together, so that they must necessarily be of the
same sex. In the second case, the twins’ sexes are determined independently
and therefore could potentially be different. Suppose that generally in any
genetic sex determination in a given population the outcome will be “male”
(m) with probability β and “female” (f) with probability 1 − β.

Obviously, the sex-related classification of any given twin pair (i.e., mm vs.
ff vs. mf) is readily apparent, whereas the determination of their homo- vs.
dizygotic status requires elaborate genetic diagnostics. Specifically, if the two
twins are of opposite sexes (i.e., the pair is mf) then they must necessarily
be dizygotic, but if they are not (i.e., an mm or ff pair) then they may be
either homo- or dizygotic.

a. L. v. Bortkiewicz (1920; for a summary, see von Mises, 1931, p. 407) has
collected the sex-related classification for a total of n = 17798 twin pairs born
in Berlin from 1879 to 1911. The frequencies were n(mm) = 5844, n(ff) =
5612, and n(mf) = 6342. From these data, how could one estimate the latent
probability α of a twin pair to be homozygotic?

b. Is the estimate of β significantly different from 1
2?

1.24 The Lady Tasting Tea

In 1935, R.A. Fisher presented the famous “lady tasting tea” problem1.
A lady claims she can tell whether in a tea-plus-milk infusion the tea (type
T cup) or the milk (type M cup) was poured in first. To test this claim, the
lady is presented with n cups of type T and n cups of type M; her task is to
tell these two sets — which differ in nothing other than the order in which
tea and milk were poured in — apart. More specifically, after she has been
informed that there is an equal number of T and M cups, she first tastes the
content of each of the 2n cups and then singles out those n of them that she
thinks are, say, of type T; this implies that she considers the remaining n cups
to be of type M.

As a simple model of this situation, suppose the lady can identify the true
state of any given cup with probability θ, 0 ≤ θ ≤ 1; with probability 1−θ, she
can only guess. Of course, the skeptic’s claim would be that θ = 0. Judgments
about successive cups are considered to be independent.

a. Define a “hit” to occur when a cup is correctly classified. Explain why
the number of hits is necessarily the same for both the set of n cups the lady
1

Fisher, R.A. (1935).
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designates as type T and the remaining set of n cups she considers to be of
type M. Therefore, if we know the number of hits in the first set, the number
of hits in the second set is redundant.

b. What is the probability pn(k|θ) that among the n cups she selects as
being of type T, there will be exactly k, 0 ≤ k ≤ n, hits, i.e., cups that are in
fact of type T?

c. Suppose the lady’s ability to tell T and M apart corresponds to θ =
0.50 in the preceding model. Thus, while not perfect, she clearly does much
better than guessing. Using the largest possible significance level below the
conventional α = 0.05, how large is her probability β(n) to demonstrate her
ability in an experiment involving n = 4, 10, and 20 cups of each type? (A
computer is required to do these calculations.)

1.25 How to Aggregate Significance Levels

Suppose a one-sided statistical test is based on a statistic Λ that under
the H0 has the distribution function F , the rejection region being formed by
large values of Λ. The test is applied to a first set of data and the statistic
Λ = λ1 is observed, with an associated observed p-value of p1 = P(Λ > λ1) =
0.09. On a second independent set of data the same test is applied, and this
time a statistic Λ = λ2 is observed, with an associated observed p-value of
p2 = P(Λ > λ2) = 0.07.

a. Argue that the observed p-value is a rv that is uniformly distributed on
[0, 1] if H0 is true.

b. From a., derive a way to aggregate p1, p2 into a single overall p-value.
c. With the procedure from b., describe the set of {(p1, p2)} that is judged

overall-significant at some given theoretical significance level α, such as α =
0.05.

1.26 Approximately How Tall Is the Tallest?

Let U be a continuous rv with strictly increasing DF F , and let Mn be
the largest of n independent realizations of U.

a. Determine the probability of the event {Mn ≤ F−1(1 − x/n)}, where
F−1 is the inverse function of F .

b. From a., derive an approximation, valid for medium and large n, for the
DF, say Gn(m), of Mn.

c. Show that if U is exponentially distributed, then Mn tends to the double
exponential distribution.

d. Suppose the height (measured in cm) of males in a country is normally
distributed, with mean μ = 176 cm and standard deviation σ = 8 cm. Sketch
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the approximate DF of the height of the tallest male, if there are (i) 4 million
males (as in a small country) or (ii) 120 million males (as in a large country).
Compare these graphs to the corresponding figures for females, assuming that
their height is normally distributed, with mean μ = 170 cm and standard
deviation σ = 7 cm.

1.27 The Range in Samples of Exponential RVs

Let T be an exponential rv with density λe−λt; the parameter λ is called
the rate of the density (cf. page 1). It is not difficult to show that E[T] = 1/λ.
Exponential rvs have two interesting properties.

(i) The minimum of independent exponential rvs, which may have different
rates, is again exponentially distributed, with a rate equal to the sum of the
individual rates. For example, the minimum of two independent exponential
rvs with rates λ1 and λ2 is again an exponential rv, with rate λ1 + λ2.

(ii) If an exponential rv T is larger than some other positive independent
rv — let us call it Q — then the excess T−Q is again exponentially distributed
with rate λ. This characteristic feature holds also, as a special case, when Q is
a constant, say q. It is sometimes called the “lack-of-memory” property: given
that T exceeds Q, then its additional lifetime, from there on, has exactly the
same distribution as the original lifetime — just as if the process had “no
memory” for the already-elapsed period of time.

We draw a sample of n i.i.d. realizations of T (for the meaning of i.i.d., see
page 1). Let the rv T(i), i = 1, . . . , n be the ith smallest value in this sample.
The positive rv Rn = T(n) − T(1) is the largest minus the smallest value; it
is called the range of the sample. Of course, the value of Rn will vary from
sample to sample, according to some distribution that depends on λ and, of
course, on n.

a. Use the two properties described earlier heuristically to derive an ex-
pression for the expectation of Rn.

b. Similarly, reason heuristically to find the distribution function of Rn

without explicit calculations.

1.28 The Median in Samples of Exponential RVs

As in Problem 1.27, let T be an exponential rv with density λe−λt. We
draw a sample of size n = 2k− 1 (k a positive integer) i.i.d. realizations of T,
and estimate the median of T by the kth order statistic of this sample, i.e.,
the midmost element of the sample that is both larger and smaller than k− 1
other realizations. Call this median estimate M.
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a. Derive the density of M.
b. Find an expression for the expectation of M, and show that for small

k it is severely biased.

1.29 Breaking the Record

Consider a process in which, in a chronological (sequential) order, the i.i.d.
realizations of an rv X with parent density f and DF F are generated, yielding
the sequence {Xi; i = 1, 2, . . .}. From time to time, it will then be the case
that a realization Xi occurs that is larger than the largest value that has been
seen so far. In accordance with the everyday meaning of this term, such a
realization is called a record. By this definition, X1 is necessarily a record.
Also, the second record is the first realization of X that is larger than X1 was.
In general, the rth record is the first realization of X that is larger than the
(r − 1)th record. Denote the density of the rth record as gr(x).

a. Consider a sequence of n = 100 realizations of X. How many records
could there be minimally and maximally? Give a simple recursive argument,
relating the cases n−1 and n, to find how many records one would on average
expect to see in n = 100 realizations. Explain why the number of records is
independent of the parent distribution f .

b. Derive (in terms of f, F ) the density of the second record, g2(x).
c. Give an inductive argument to establish the general result that the

density

gr(x) = f(x) · 1
(r − 1)!

· {− ln[1 − F (x)]}r−1

d. Explain that in the exponential case of f(x) = λe−λx the result de-
rived in c. could be anticipated without explicit calculations from the lack-of-
memory property described in the statement of Problem 1.27.

1.30 Paradoxical Contribution

Two large predatory birds, A and B, feed on the same habitat. Bird A’s
daily prey (in grams) is normally distributed with mean μA = 60 g and
σA = 5; for bird B, μB = 40 g and σB = 10. Thus, on average, bird A
is a more successful predator; also, its amount of daily prey is less variable
than that of bird B. Clearly, on average, the daily overall prey of both birds
together equals 100 g. However, as both birds feed on the same habitat, the
correlation, �, of their daily prey is negative across days, say � = −0.8: any
given animal in the habitat that has fallen prey to A is no longer available to
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B, and vice versa. Let us assume that the situation is adequately described
by a bivariate normal distribution.

On an unusually successful day, A and B together manage to reap 175 g.
a. Try to estimate from the information given how much, in expectation,

bird A’s share was on days in which A and B together have reaped 175 g.
b. Try to answer the question in a. if the birds feed on different habitats

so that � = 0.

1.31 Attracting Mediocrity

Peter has an IQ of 90 whereas the IQ of Paula is 110. However, due to un-
systematic biological or psychological day-to-day variation that is unrelated
to the IQ per se, any single measurement of either IQ is distorted by an inde-
pendent additive measurement error that has a zero-mean normal distribution
with variance σ2. For example, if Paula’s IQ were measured repeatedly, the
outcomes would be normally distributed with a mean of 110 (her “true” IQ)
and a standard deviation of σ.

a. Suppose that either Peter or Paula is selected at random (p = 1
2 ), and

his/her IQ is measured. You do not know who was selected, but you are told
that the result of this first measurement is 105. Now the same person —
whose identity is unknown to you — is measured a second time. What is your
prediction for the outcome of this second measurement if σ = 3?

b. Answer the same question if σ = 20.
c. Suppose that instead of just contemplating Peter and Paula we now deal

with a large population of individuals whose true IQs (an rv that we may call
T) is normally distributed with mean μT and variance σ2

T . As before, each
individual measurement is distorted by an independent and additive normally
distributed error E that has zero-mean and variance σ2. A single person is
drawn at random from this large population, his/her IQ is measured, and the
outcome is some above-average value x > μT . Show that when the IQ of that
same person is measured a second time, the expected outcome of the second
(“repeated”) measurement is larger than μT but smaller than x.

1.32 Discrete Variables with Continuous Error

Sometimes an underlying latent (i.e., not directly observable) rv N of the-
oretical or practical interest is generically integer-valued, such as a binomial,
Poisson, or geometrical rv. However, measurements S of it are distorted by a
random error E that is continuous. For example, a random integer number of
coins of one type (e.g., dimes) is inserted into a vending machine with a con-
trol balance that registers the total weight, say in units of the nominal weight
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of a single dime. In this example, there will be an integer number of coins,
but due to minting imperfections, wear-off, and soiling, each coin will differ
somewhat from its ideal nominal weight. Summing the individual deviations
from the nominal weight across all coins we get the overall measurement error
E.

If we assume that the measurement error E (thought to be independent of
N) has a normal distribution with zero mean and standard deviation σ > 0,
then the actually observed measurements are in fact realizations of the rv
S = N + E. Let f be the density of S.

a. Characterize in words or with a figure the changes of the density f as
σ varies from a near-zero value to larger values. When, approximately, will f
change from multi- to unimodality? To fix ideas, consider the example of a
geometric distribution, P(N = n) = p · (1 − p)n−1, p = 0.2.

b. Argue that f can also be interpreted as a discrete mixture of normal
densities with means μ = n and common standard deviation σ, the mixture
weights being given by P(N = n).

1.33 The High-Resolution and the Black-White View

Ideally, many properties and processes of the real world show extremely
fine gradations and variations. However, in order to measure and to process
this information, we are often forced to simplify and reduce it. For example,
many measurement devices digitize quantities (such as force, voltage, or time)
that in theory are conceptualized as continuous variables. An extreme form
of data compression is thresholding, which reduces a continuous input into
a simple binary output. Two important questions then are: how should this
threshold be set, and how much information do we lose along the way? The
following problem deals with these two questions in a simple but exemplary
context.

Consider a sample of n independent realizations {ti, i = 1, . . . , n} of an
exponential rv with density f(t|μ) = (1/μ) exp(−t/μ). Researchers A and
B both seek to estimate the unknown mean, μ. A observes the n original
raw data and can make use of the full information to estimate μ. B on the
other hand obtains the data only after they have passed a digital filter with a
threshold-type mechanism, such that each realization is classified as 0 if it is
≤ c, and classified as 1 if it is > c. Suppose k, 0 < k < n, of the n realizations
turned out to be ≤ c.

a. Derive the ML estimate of μ and its asymptotic standard error (a.s.e.)
from the raw data as seen by researcher A.

b. For a given threshold value c, derive the ML estimate of μ from the
digitized data as seen by researcher B. Does this estimate correspond to your
intuition?

c. Find the a.s.e. of this estimate from the data as seen by researcher B.
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d. For a given value of μ what is the “best” threshold value of c, i.e., the
one that minimizes the a.s.e. determined in part c.? How large, relative to the
estimate in a., is this a.s.e.?

1.34 The Bivariate Lognormal

The standard parametric model for simple correlation and regression con-
texts is the bivariate normal distribution. It is quite interesting to see how im-
portant characteristics regarding, e.g., the correlation coefficient change under
a different bivariate distribution model, such as the lognormal distribution.

Let X be a normal rv with mean μx and standard deviation σx. Then the
rv U = exp(X) has a univariate lognormal distribution. A basic result about
the rv U is that its expectation is equal to E[U] = exp(μx + 1

2σ2
x).

Similarly, let the rvs < X, Y > have the bivariate normal distribution
with parameters < μx, μy, σx, σy, � >, where μy, σy are the mean and standard
deviation of Y, and � is the correlation of X and Y. Then the pair < U =
exp(X),V = exp(Y) > has a bivariate lognormal distribution. Note that
< U,V > are a pair of nonnegative rvs.

a. Based on the result given earlier concerning the expectation of U =
exp(X), derive without new explicit calculations the variance of U.

b. Assume that < X,Y > are uncorrelated, � = 0. In this case, are the
rvs < U,V > uncorrelated, too?

c. Explain why for � = +1 the < U,V > are perfectly correlated, too, if
σx = σy. Why does this result not extend to � = −1 as well, even though
in the bivariate normal model the cases � = +1 and � = −1 are perfectly
symmetric?

d. Using the results from a. and b., show that the correlation of U and V
equals

corr(U,V) =
exp(�σxσy) − 1

√[
exp(σ2

x) − 1
] [

exp(σ2
y) − 1

]

1.35 The arcsin(
√

p) Transform

Let the rv N be the number of successes in n independent trials, each with
success probability p. Clearly, N is binomially distributed with parameters n
and p, and p̂ = N/n is the usual estimate of p. It is unbiased — that is,
E[p̂] = p — and its variance is Var[p̂] = p(1−p)/n, which varies as a quadratic
function of p. However, many applications — especially in analysis of variance
and regression contexts — require variables that may differ in mean but not
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in variance across conditions. To circumvent this problem, it is customary to
analyze the strictly increasing transformation arcsin(

√
p̂) rather than p̂ itself.

a. Let g(p) be a differentiable function of p. Argue heuristically that if n
is large, then

g(p̂) = g(p + Δp) ≈ g(p) + Δp · g′(p)

where Δp is the sampling error p̂− p of the estimate p̂. From this representa-
tion, derive the approximate mean and variance of the rv g(p̂).

b. At first glance, the choice of the transform p �→ g(p) = arcsin(
√

p) seems
rather exotic. Give a principled rationale for this particular choice.

1.36 Binomial Trials Depending on a Latent Variable

In many situations, the outcome of binomial trials is modeled through
an underlying latent — that is, not directly observable — rv X with strictly
increasing DF Φ, such that each of the binomial trials yields a success if and
only if X ≤ c. For example, in a population of individuals the susceptibility
to flu may follow a particular population distribution. A flu is successfully
avoided by an individual i if his or her (standardized) susceptibility Xi does
not exceed some critical, but unknown, flu threshold c. From observations of
the relative flu frequency in a random sample taken from this population, one
would then like to estimate the threshold parameter, c.

Suppose n binomial trials yield k successes, leading to the usual estimate
p̂ = k/n for the true success probability p = Φ(c). Thus, on equating p̂ = Φ(ĉ),
the natural estimate, ĉ, of the model parameter c is Φ−1(p̂), where Φ−1 is the
inverse function of Φ.

Of course, from sample to sample our estimate ĉ will vary, just as the rel-
ative success probability, p̂, of which it is a function. Determine the approxi-
mate standard error (i.e., the standard deviation) of the estimate ĉ based on
a sample of n trials if Φ is

a. the standard logistic DF, Φ(x) = 1/[1 + exp(−x)],
b. the standard normal DF.

1.37 The Delta Technique with One Variable

Let X be an rv with expectation μ and variance σ2, and let f(X) be a
given, known function of X. In general then

E[f(X)] 	= f [E(X) ]

a. Find a series-based approximation to E[f(X)] when σ is small so that
X is concentrated in the neighborhood of μ.
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b. Apply this result to the case of f(x) = ex when X is a normal rv with
mean μ and variance σ2. Compare this approximation to the exact result for
this case, E[exp(X)] = exp(μ+ 1

2σ2), as given in Problem 1.34. When will the
approximation be acceptable?

c. A machine is constructed to throw a ball vertically with an initial ve-
locity of 120 [m/s]. However, due to imperfections of the machine, the actual
angle varies from throw to throw according to a normal distribution with a
mean of 90◦ and a standard deviation of 10◦. What is, approximately, the ex-
pected maximum height that the ball will reach, neglecting the air resistance?

1.38 The Delta Technique with Two Variables

Problem 1.37 can be generalized to functions of more than one rv. Thus, let
X, Y be two rvs with expectations μx, μy, variances σ2

x, σ2
y, and correlation

�. Also, let f(X,Y) be a given function of these rvs.
a. Find a series-based approximation to E[f(X,Y)] that holds when X

and Y are concentrated in a region around the point (μx, μy).
b. Apply this result to the case of the ratio of two independent rvs, i.e.,

f(x, y) = x/y and � = 0.
c. Explain how the solution in part b. may also be obtained from the

solution of Problem 1.37, related to functions of a single rv.
d. Consider the special case of an rv defined as

Fm,n =
U/m

V/n

where U, V are independent χ2-rvs, with m,n degrees of freedom, respec-
tively. Compare for this case the approximation to the exact result, namely
the mean of the F -distribution, which is n/(n − 2).

e. Suppose that in question c. of problem Problem 1.37 in addition to, and
independent of, the variation of the angle α, the initial velocity v0 of the ball
varies according to a normal distribution with μv0 = 120 [m/s] and σv0 = 10
[m/s]. Under these conditions, what is, approximately, the expected maximum
height the ball will reach?

1.39 How Many Trials Produced a Given Maximum?

Let N be a positive discrete rv with probability distribution p(n) and
associated probability generating function g(z) = E[zN] (cf. page 2). Also, let
Xi be continuous i.i.d. rvs, with a common DF F . The rv defined by

M = max
i=1,...,N

{Xi}
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is then a random maximum — the largest of a random number (namely, N)
of rvs (namely, the Xi). It is intuitively clear that M and N are positively
related — if N is large, then M will, on average, tend to be larger, because it
is then the maximum of a larger number of i.i.d. realizations.

a. Consider the simple case that N equals (with probability 1
2 ) either 1 or

2. This implies that E[N] = 1.5. Assume the Xi to be uniform rvs on [0, 1].
This means that the random maximum M is (with equal probability) either
simply X1 (namely, if N = 1) or the maximum of X1 and X2 (i.e., if N = 2).
Given that M = 0.9, what is the conditional expectation of N?

b. Show that in general

r(x) = E[N | max(X1, . . . ,XN) = x ] = 1 + F (x) · g′′[F (x)]
g′[F (x)]

c. Consider r(x) for the case that N has a geometric distribution, so that
P(N = n) = p · (1 − p)n−1.

d. Consider r(x) the special case in which N equals either 1 or k > 1, both
with probability 1

2 . For a uniform rv, F (x) = x, 0 ≤ x ≤ 1, the case k = 2
corresponds to part a.

1.40 Waiting for Success

The probability p of a certain event is usually estimated by looking at how
often it occurs in n independent trials. If this frequency is k, then the usual
estimate of p is k/n. In this procedure, n is fixed in advance, independent of
the outcome of the individual trials.

An alternative way to estimate p is to look at how long (i.e., how many
trials) it takes to achieve a preset number r of successes. With this procedure,
the total number of trials required is an rv, Nr. Intuitively, the larger Nr is,
the smaller will be our estimate of p.

a. Use E[N1] to derive a moment estimate, say p̂, for p. In Problem 1.22
we already saw that p̂ is also the ML estimate of p derived from N1. Find the
expectation of this estimate. Is p̂ biased?

b. Argue that E[Nr] = r · E[N1], and derive a moment estimate for p
based on Nr. Use the results from Problem 1.37 to derive its approximate
expectation. When will this approximation be valid?

c. Haldane2 proposed the improved estimate p̂ = (r−1)/(Nr−1) for r > 1.
What is the bias of Haldane’s estimate?

2
Haldane, J.B.S. (1945).
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Hints

2.1 To Begin or Not to Begin?

Consider the cases k = 0, 1, 2, 3 by drawing a tree diagram that depicts
the possible sequence of events. Then insert the conditional probabilities along
the branches of this diagram. For example, for k = 2 the first ball may be
black (p = 2/3) or red (p = 1/3), etc.

2.2 A Tournament Problem

a. Consider one of the two female players: there are nine other players who
could be selected as her opponent, and one of these nine is the other female
player.

b. Consider how many different orders (that is, different with respect to
the sex of the players) of the 2n players can be formed when k of them are
females (F ) and 2n − k are males (M). For example, for k = 3, n = 4, one
specific such order is < MFMMFMFM >. It is a “positive” case because
no two females will have to play against each other. How many such positive
cases are there altogether?

2.3 Mean Waiting Time for 1 − 1 vs. 1 − 2

a. Assume that Peter starts with a 1 but fails to get another 1 in his next
throw. This implies that the second throw cannot be the start of a 1− 1 run.
Consider why this is different for Paula.

b. Conditioned on the first throw, define suitable states describing the
current state of the game, such as the starting state or “last throw a 1.”
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2.4 How to Divide up Gains in Interrupted Games

a. Consider that Peter only needs 2 more points, whereas Paula needs 4.
If they were to continue from that state on, how often would Peter have won
2 more rounds before Paula had won 4 more rounds?

b. Consider that if Peter needs to win a more rounds and Paula needs to
win b more rounds for an overall win, they could pretend that they play a
fixed number of a + b− 1 further rounds. Explain why with this fixed number
of additional rounds exactly one of the two will necessarily reach the required
number of wins.

2.5 How Often Do Head and Tail Occur Equally Often?

a. Compute the relevant probability using the binomial distribution.
b. Consider that for increasing n the binomial distribution converges to

the normal distribution.

2.6 Sample Size vs. Signal Strength

Derive, separately for Peter and Paula, the probability of the two scenarios,
conditional on A being red vs. blue. For example, how likely is it to draw six
times a red ball, when A is red vs. blue? Then use Bayes’ theorem.

2.7 Birthday Holidays

Let f(n) be the expected number of man-days when n workers are em-
ployed. Consider f for extreme cases such as n = 1, n = 2, and n → ∞.

2.8 Random Areas

a. Consider the case that U is equal to 1 or 2 with probability 1
2 . Then

Peter’s area will necessarily be either 12 = 1 or 22 = 4 whereas that of Paula
could be 1, 2, or 4. Determine the probabilities associated with these different
outcomes, and then compute the expected areas.

b. Remember that the variance is defined as Var[U] = E[U2]− E2[U] ≥ 0,
that is, E[U2] ≥ E2[U].
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2.9 Maximize Your Gain

a. In order to win a large amount, one would like to choose a large value
of c. On the other hand, the larger c chosen, the smaller the probability to
win anything at all gets. Denote as G(c) the expected gain as a function of c.
Derive G by conditioning on whether U ≤ c or U > c. Next, maximize G as
a function of c.

b. The hazard function of U is defined as f(u)/[1−F (u)]; cf. page 2. Relate
this to part a.

2.10 Maximize Your Gain When Losses Are Possible

a. Derive G by conditioning on whether U ≤ c or U > c. Next, maximize
G as a function of c.

b. Consider whether G > 0 for at least some values of c.
c. The solution of the equation

2e−x(1 − x) = 1

is x = 0.315.

2.11 The Optimal Level of Supply

a. Consider the two extreme options c = 0 and c = ∞. What is the
behavior of G as c → 0 from the right?

b. Argue that conditional on D = d the expected gain will be equal to
d(s − b) − (c − d)b for 0 ≤ d ≤ c, and equal to c(s − b) for d > c.

2.12 Mixing RVs vs. Mixing Their Distributions

a. Consider how likely it is that A assumes the value of 100. How likely is
this for B? Also, consider what would happen to A and B if the variance of
X and of Y would tend to zero.

b. and c. For A, apply the general rules to obtain the expectation and
variance of a sum of rvs.

For B, introduce an indicator variable I that equals 1 with probability p
and 0 with probability 1 − p. Then write

B = I · X + (1 − I) · Y
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Now apply the general rules to find the expectation and variance of B. For
example, if two rvs are independent then the expectation of their product is
equal to the product of their expectations. Also, if two rvs are independent
then functions of them are independent as well.

2.13 Throwing the Same vs. Different Dice

a. Denote a success (= the throwing of a 5) in any given trial as 1 and a
failure as 0. Consider that the successive trials are always independent. This
means that the variance of the total number of successes is the sum of the
variance of the success (= 0 vs. 1) within each individual trial. Observe also
that whereas the trials are always independent, their success probability is not
identical: that for the trials 1-72 differs from that for trials 73-144.

b. Reformulate the question in terms of Problem 1.12: the number of suc-
cesses is a “mixture” (with mixing weights p = 1 − p = 1

2 ) of choosing either
die A or die B.

c. See the hints for part a.

2.14 Random Ranks

a. Consider first the case that Peter draws just n = 1 value. How likely
is it that Paula’s draw will occupy rank 1 or rank 2? Next consider n = 2,
enumerate all possible orders of Peter’s two draws and the single draw of
Paula. How many of them are such that Paula’s draw is smallest, intermediate,
or largest?

b. Try to generalize the reasoning in a.

2.15 Ups and Downs

a. Note that this problem really asks for P(C > B |B > A). Rewrite this
according to the definition of a conditional probability, and express it in terms
of the six (equally likely) possible rank orders of (A,B,C).

b. Do the assumptions needed in part a. still hold for exchangeable rvs?
c. Distribute the covariances in Cov(B − A,C − B). Determine similarly,

e.g., Var(B − A).



Hints 27

2.16 Is 2X the Same as X1 + X2?

a. Use general linearity properties of the variance; specifically, consider
(and compare) the variance of X1 + X2 and of 2X.

b. Consider first the case of n = 2. Then try to relate the case of n = 2k+1

to the case n = 2k.

2.17 How Many Donors Needed?

Condition on the amount x (which has an exponential density with mean
20) given by the first donor, and distinguish the cases that it is smaller or
larger than t = 100. If x ≥ t, then only one donor was required. If x < t, then
the “residual problem” remains to collect a further amount of t − x.

2.18 Large Gaps

The Poisson process is defined by independent exponential interevent
times. Look up the two properties of exponential rvs stated in Problem 1.27.
Condition on the point of time when the first event occurs, and distinguish
the cases that this first event occurs before or after τ .

2.19 Small Gaps

The Poisson process is defined by independent exponential interevent
times. Look up the two properties of exponential rvs stated in Problem 1.27.
Consider the course of events that could happen during the τ time units fol-
lowing the first event.

2.20 Random Powers of Random Variables

a. Consider first the special cases of (α = 0, β > 0) and (α > 0, β = 0).
Condition on M = m, then relate to the probability generating function of
N, which is defined as g(z) = E[zN].

b. Consider again the case of α = 0.
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2.21 How Many Bugs Are Left?

Assume that Peter and Paula independently detect any given error with
probabilities pA, pB , respectively, and denote the (unknown) total number of
errors in the text as n. Denote as nA the number of errors detected by Peter, as
nB the number of errors detected by Paula, and as nAB the number of errors
detected by both. Derive the expected frequencies corresponding to nA, nB ,
and nAB and relate them to pA, pB , and n.

2.22 ML Estimation with the Geometric Distribution

a. Write down the likelihood of the data, and maximize its logarithm.
Consider the special case of n = 1.

b. The asymptotic variance of p̂ depends on the true value of p; it is given
by the negative reciprocal of the expected Fisher information,

a.s.e.2(p̂) =
−1

E
[

∂2 ln L
∂ p2

]

c. Consider the Taylor expansion of f(x) = 1/x at the point x0 = 1/p.
Also, note that as n increases a.s.e.(p̂) tends to zero so that p̂ will then be in
a neighborhood close to p.

2.23 How Many Twins Are Homozygotic?

a. Derive the probability for a twin pair to be mm, ff , or mf . Then choose
α and β so as to maximize the likelihood of the observed data.

b. If L0, L1 are the likelihoods of the restricted (β = 1
2 ) and unrestricted

(β free) model, respectively, then

λ = −2 ln
L0

L1

is χ2-distributed, with df equal to the number of additional parameters de-
termined by the restricted model, i.e., df = 1 in the present case.
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2.24 The Lady Tasting Tea

a. Set up a 2 × 2 table with the true state (T vs. M) of the cups as one
variable and the response the lady gives (“T” vs. “M”) as the second variable.
Reformulate the conditions of the experiment in terms of this table’s margins.
Assume the lady designates k type T cups correctly as “T”, and consider what
this implies for the other entries of the table.

b. Condition first on the event that the lady correctly identifies x1 type T
and x2 type M cups, 0 ≤ x1, x2 ≤ k. This leaves her with a total of 2n−x1−x2

nonidentified cups: n − x1 of them being type T, n − x2 being type M. Next,
she needs to randomly designate k − x1 of the n − x1 type T cups as being
of type T in order to obtain a total of k hits among the n cups she selects as
type T. Finally, sum across the pairs (x1, x2) and weigh by the probabilities
associated with them.

c. Insert into the result from part b., using θ = 0.50.

2.25 How to Aggregate Significance Levels

a. Express the observed p-value (if H0 is true) obtained from a single
application of the test in terms of F .

b. If U is a uniform rv on [0, 1], then the rv V = −2 lnU has an exponential
distribution with rate λ = 1

2 , i.e., a χ2-distribution with df = 2. This implies
that the sum of two independent Vi will have a χ2-distribution with df = 4.

c. In the aggregation procedure suggested by b., which pairs of (p1, p2) will
lead to a significant value of χ2

4?

2.26 Approximately How Tall Is the Tallest?

a. Note that the largest of n independent realizations of U is smaller
than m if and only if all n realizations are individually smaller than m. That
is, P(Mn ≤ m) = [P(U ≤ m)]n. Also note that the rv F (U) is uniformly
distributed. The DF of the uniform distribution is H(z) = z, and therefore

P[F (U) ≤ 1 − x/n] = P[U ≤ F−1(1 − x/n)] = 1 − x/n

b. Use the fact that if n is not too small (1−x/n)n ≈ e−x; then apply the
results from part a.

c. For the exponential distribution, 1− F (x) = exp(−λx). Insert this into
the results from part b.
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d. Use part b. with the cumulative normal distribution, Φ(x). An excellent
approximation1 to its extreme tail (x > 5.50) is given by

1 − Φ(x) ≈ 1
x
√

2π
· exp

(

−x2

2
− 0.94

x2

)

2.27 The Range in Samples of Exponential RVs

a. Consider the development of the process “chronologically.” Also, first
look at the range in the simplest case of n = 2.

b. Apply the lack-of-memory property of exponential rvs as described in
the statement of the problem: conditional on T(1) = t, the remaining n − 1
rvs all have a displaced exponential distribution, with their origin at t.

2.28 The Median in Samples of Exponential RVs

a. For M to equal m, how many realizations have to be smaller than, equal
to, and larger than m?

b. Using the two properties of exponential rvs described in Problem 1.27,
consider the expected distances from one order statistic to the next.

2.29 Breaking the Record

a. Consider the case that the n = 100 successive realizations are arranged
in perfectly increasing (or perfectly decreasing) order.

Let E(n) be the expected number of records with n realizations. Try to
explicitly derive E(n) for n = 1, 2, 3, 4. Then relate E(n) to E(n − 1), distin-
guishing the two cases that Xn is, or is not, larger than the largest value seen
so far. How likely are these two cases?

Which effect would a monotone increasing transformation have that is
applied to all n realizations?

b. Condition on the value of X1.
c. Show that if the proposition holds for r then it also holds for r + 1.
d. Look up the lack-of-memory property stated in Problem 1.27. What

does this imply about the excess by which each new record surpasses the
previous record? Insert the exponential distribution into the general result for
gr found in part c.
1 Due to Derenzo, S.E. (1977).
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2.30 Paradoxical Contribution

a. Consider the separate roles of the two means, of the two variances, of
the correlation, and of the fact that 175 g is considerably above the sum of the
individual averages. Note that the question really asks for a particular condi-
tional expectation. The expectation of exactly which conditional distribution
is this?

b. Should the expectation for bird A now be smaller, equal to, or larger
than with the scenario in a.?

2.31 Attracting Mediocrity

a. Given the measurement of 105 and the value of σ = 3, how likely is it
that Peter or Paula was selected? For example, if Peter was selected, which
result would you predict for the second measurement?

More formally, use Bayes’ theorem to find the probability that Peter or
Paula had been selected, given the value of 105 observed. Then weigh your
predictions for the second measurement by these conditional probabilities.

b. Consider extreme special cases such as σ → 0 or σ → ∞.
c. Note that a given measurement can be represented as X = T + E,

the sum of the (randomly selected) true IQ, plus the associated (positive
or negative) measurement error. If we knew the true IQ T of the specific
person selected, then we should clearly predict the value T as the expected
outcome of the second measurement of that person (given that the error of
the second measurement has a mean of zero). Then, what we are looking for
is E[T|T + E = x]. This is a special case of our solution to Problem 1.30.

2.32 Discrete Variables with Continuous Error

a. Consider extreme cases for σ, such as σ → 0 and σ → ∞.
b. Condition on N = n, then write down the explicit formula for f .

2.33 The High-Resolution and the Black-White View

a. Write down the likelihood function L(μ), take its natural logarithm, and
maximize it.

Under wide conditions (satisfied here)
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a.s.e.2(μ̂) =
−1

E
[

∂2 ln L
∂ μ2

]

b. Formulate the likelihood function L(μ) for the data as seen by researcher
B. Take its natural logarithm, and maximize. One intuition here might be that
k/n represents an estimate of the probability for a single measurement not to
exceed the threshold c; this probability equals 1 − exp(−c/μ).

c. Use the general expression for the a.s.e. stated earlier. Also, think about
the qualitative dependence of the a.s.e. on c. For example, what happens for
very small and very large values of c?

d. Minimize the result obtained in c. with respect to the threshold c;
compare to the result obtained in a.

2.34 The Bivariate Lognormal

a. Start from the definition of the variance; see page 1. Then use the fact
that [exp(a)]2 = exp(2a). Relate this to the given expectation of U.

b. Recall that functions of independent rvs are independent as well.
c. Note that scaling parameters in the (linear) relation between X and Y

turn into powers in the relation between U and V.
d. Start from the definition of the covariance; to deal with the term E[UV],

note that exp(a) · exp(b) = exp(a + b). Then relate again to the result about
the expectation of U.

2.35 The arcsin(
√

p) Transform

a. Note that if n is large, then p̂ is necessarily close to p. Thus, Δp is bound
to be small, so that Taylor’s approximation holds in a neighborhood of the
order of Δp around p (cf. Problem 1.37).

b. Consider the variance of g(p̂) derived in part a. and specify which con-
dition the function g must satisfy so that this variance becomes independent
of p. Specifically, consider in this context the differential equation

g′(p) =
1

2
√

p(1 − p)

2.36 Binomial Trials Depending on a Latent Variable

If n is not too small, then p̂ will usually be relatively close to the true
population value, p. This means that ĉ = Φ−1(p̂) will also be close to the true
population value, c. Then use Taylor’s approximation to Φ−1 around p.
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2.37 The Delta Technique with One Variable

a. Consider the Taylor expansion of f(x) around μ up to the order 2. Then
take the expectation with respect to X.

b. Note that for f(x) = ex, we have f(x) = f ′(x) = f ′′(x). Therefore, the
second-order Taylor expansion of ex around x0 = μ is

f(x) ≈ eμ

[

1 + (x − μ) +
1
2
(x − μ)2

]

Now determine the approximation to E[f(X)].
c. From elementary mechanics, for a given angle α the maximum height is

equal to

f(α) =
v2
0

2g
sin2(α)

where g is the gravitational constant and v0 is the initial velocity.

2.38 The Delta Technique with Two Variables

a. Form the Taylor expansion of f(x, y) around the point (μx, μy) up to
the order 2. Then take the expectation with respect to (X, Y).

b. Insert the special case of f(x, y) = x/y into the result of part a., using
the facts that the second derivatives of f with respect to x and y are zero and
2x/y3, respectively.

c. First note that f(x, y) may be written in product form as g(x) · h(y),
where g(x) = x and h(y) = 1/y. Functions (such as g, h) of independent rvs
are themselves independent; thus, the expectation of their product factors into
the product of their individual expectations.

d. This problem addresses a special case of the situation considered in parts
b. and c. Also, recall that a χ2−rv with r degrees of freedom has expectation
r and variance 2r.

e. Look up the solution to part c. of Problem 1.37. Then apply the results
from part a. to the function

f(v0, α) =
v2
0

2g
sin2(α)
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2.39 How Many Trials Produced a Given Maximum?

a. Consider the conditional probability P[N = 1 |M = 0.9 ]. Apply Bayes’
formula to it, and note that P[N = 2 |M = 0.9 ] is necessarily the complement
thereof. Then form E[N |M = 0.9 ].

b. To find the conditional expectation E[N | max(X1, . . . ,XN) = x ], first
take a closer look at the associated conditional distribution, the expectation
of which we seek to derive. Thus, use Bayes’ theorem to relate the known
quantity P[max(X1, . . . ,XN) = x |N = n ] to the quantity we are looking for,
namely, P[N = n | max(X1, . . . ,XN) = x ]. Next use this latter distribution
to get an expression for its expected value. Finally simplify this expression,
using elementary manipulations of the generating function g.

c. The generating function in this case is

g(z) =
pz

1 − z(1 − p)

d. The generating function in this case is

g(z) =
z + zk

2

2.40 Waiting for Success

a. The waiting time N1 has a geometric distribution. Also, make use of
the identity (−1 ≤ x < 1)

∞∑

n=1

1
n

xn = − ln(1 − x)

b. The rv Nr is distributed as is the sum of r independent rvs N1. The
latter rv has mean 1/p and variance (1 − p)/p2. Therefore, Nr has mean r/p
and variance r · (1 − p)/p2. Consider the results from Problem 1.37 for the
case of f(x) = r/x.

c. Note that the rv Nr has the so-called negative-binomial distribution,

pr(n) =
(

n − 1
r − 1

)

pr (1 − p)n−r , for n ≥ r .
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Solutions

3.1 To Begin or Not to Begin?

The best strategy depends on the parity of k. If k is even then the player
who starts drawing has an advantage, but if k is odd, Peter’s and Paula’s
chances are equal.

To see why, consider a slightly revised, but functionally equivalent proce-
dure to play this game: first Peter and Paula draw balls as before, but without
inspecting their color, continuing until the urn is empty. Each player then in-
spects the balls in front of him or her, and the player who finds the red ball
in his or her own sample has won. Notice that with this revised procedure the
winner will always be the same as with the original procedure. Therefore, the
probability of winning for each player will also be the same as in the original
game.

Consider first the case that k is odd, so that the total number of balls,
1 + k, is even. Thus, after all balls are removed, both players will have drawn
an equal number of balls, namely 1+k

2 . Now, each half of the 1+k balls has the
same probability to contain the red one. Thus, the probability for Peter and
Paula to find the red ball contained in his or her own sample is 1

2 . However,
when k is even, then the total number 1 + k of balls in the urn is odd. Thus,
the player who starts will eventually have sampled 1 + k

2 balls, as opposed to
only k

2 balls drawn by the other player. Thus, the ratio favoring the starting
player is

1 + k
2(

1 + k
2

)
+ k

2

=
2 + k

2 + 2k

For example, if k = 0, the player who starts will necessarily always win. If
k = 2, the starting player collects a total of two balls out of three, and so has
a probability of 2

3 to win. Therefore, Paula should generally start drawing: if
k is even, she gains a real advantage, and if k is odd at least nothing is lost.
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3.2 A Tournament Problem

Let us say a given player is at rank i if his or her name is the ith one drawn
from the urn. The total number of different ways to distribute the k female
players among the 2n ranks is

(
2n
k

)
. Clearly, not all of them are favorable; for

example, if a female player is drawn first (rank 1) and another female player
is drawn second (rank 2), then the condition mentioned in the problem is not
satisfied.

How many different favorable ways are there to distribute the k females
players among the 2n ranks? Imagine we put together successive pairs of
ranks, namely (1, 2), (3, 4), . . . , (2n − 1, 2n). Of these n pairs we may select k
to associate exactly one female player with each of them; the number of ways
to select these k pairs from a total of n pairs is

(
n
k

)
. However, within each

of the k pairs chosen, the respective female may be placed either at the odd
or at the even rank of that pair, yielding a total of 2k ·

(
n
k

)
different ways to

distribute k female players among 2n ranks such that each of the n pairs has
at most one female.

p(k, n) then is the ratio of the favorable over all possible cases, i.e.,

p(k, n) =
2k ·

(
n
k

)

(
2n
k

) =

(
2n−k

n

)

(
2n
n

) · 2k

Note that the formula also covers the trivial cases of k = 0, 1.
For a constant fraction of female players p(k, n) declines rapidly as n in-

creases. For example, with k = 2 females among 2n = 10 players, chances
are 8/9 = 88.9% that there will be no match involving only females (i.e.,
that those two females will not have to play against each other). However,
with k = 20 females among 2n = 100 players (thus, again a fraction of 20%
females), the corresponding probability drops to about 9.2%. That is, with a
probability of more than 90% there will among all 50 matches be at least one
match with two female players.
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3.3 Mean Waiting Time for 1 − 1 vs. 1 − 2

a. Peter’s sequence will usually consist of a certain number of 1s, each of
which is followed by a number different from 1 with p = 5/6. If, after obtaining
a 1, he fails to achieve the desired 1 − 1 run, then the number thrown was
necessarily different from 1 and, therefore, cannot constitute the potential
beginning of a potential 1 − 1 run. This is different for Paula: if she fails to
throw a 2 after an initial 1, then she may do so by throwing another 1, which
in turn could be the start of a potential 1 − 2 run. Therefore, the expected
waiting time will be somewhat shorter for Paula.

b. As for Peter, let us assume that in each throw a 1 occurs with a fixed
probability of p. We are looking for the expected waiting time to see two 1s
in a row for the first time; call this expectation W.

Start

Outcome first trial State Probability
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�
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�
�

�
�

�
�

�� �������

�������	

2 − 6

1

As at start 1 − p

2 − 6 As at start p · (1 − p)

1 Game is over p2

1 − p

p
1 − p

p

Fig. 3.1. Tree diagram showing the possible starting events of the game and their
probabilities. The insert “2 − 6” stands for any of the integers from 2 to 6.

Consider the outcome of Peter’s first throw. With probability 1 − p, the
outcome is different from 1, that is, one of the numbers from 2 to 6. In this
case (shown as the upper branch in Figure 3.1) one trial is used up, and the
state of the game after the first trial is as it was before the game started. This
means that the additional expected waiting time — namely, in addition to the
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first trial — is just as large as the original expected waiting time was; that is,
it equals W. Therefore, if the first case applies (which has probability 1 − p),
then the conditional expectation of the total waiting time is equal to 1 + W.

With probability p, Peter’s first trial results in a 1, in which case we need
to consider the outcome of the second trial. If his second trial results in a 1
too, then he has achieved two 1s in a row, and the game is over after only
two trials. This case is shown as the lowest branch in Figure 3.1, and its
overall probability is equal to p2. Alternatively, his second trial might not
yield another success, in which case he is again in the same state as he was
right before the start of the game, except that he has already spent two trials.
This case is shown as the middle branch in Figure 3.1. The expected number
of throws in this case is 2+W, and its overall probability is equal to p · (1−p).

These three cases exhaust all opening possibilities, and they are mutually
exclusive. Therefore, we can obtain an equation for W by conditioning on these
three cases and weighing each conditional expectation of W by the probability
of each case. That is,

W = (1 + W) · (1 − p) + (2 + W) · p(1 − p) + 2 · p2

On isolating the terms containing W, the solution of this equation is

W =
1 + p

p2

Specifically, for p = 1/6, Peter’s mean waiting time until the first time two
consecutive 1s show up equals 42.

The corresponding computation for Paula’s expected number of throws
is slightly less straightforward. One of the easiest ways is to define a simple
Markov chain describing the current state of the game using just three states
Si, as follows. Let S0 be the starting state, let S1 be the state when the last
throw was a 1, and let S2 be the final (absorbing) state 1 − 2. The rules of
the game then imply the following transition matrix:

S0 S1 S2

S0

S1

S2

⎡

⎢
⎢
⎢
⎢
⎣

5
6

1
6 −

2
3

1
6

1
6

− − 1

⎤

⎥
⎥
⎥
⎥
⎦

For example, a throw in state S0 (at start) will lead with probability 1/6 into
state S1 (namely, if a 1 is thrown), and with probability 5/6 will Paula stay
in state S0 (with any other number thrown). Similarly, after a 1 has been
thrown (i.e., out of state S1), Paula will either stay in state S1 (if a further
1 is thrown, probability 1/6), or she will enter the final state S2 (if a 2 is
thrown, probability 1/6), or she will enter state S0 (any number other than 1
or 2, probability 2/3).
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Therefore, if Wi denotes the mean number of steps to the absorption at
S2 out of state Si, then reasoning much as we did to derive W for Peter

W0 = 1 +
5
6
W0 +

1
6
W1

W1 = 1 +
2
3
W0 +

1
6
W1 +

1
6
W2

(note that by definition W2 = 0). For example, out of state S0, the expected
number of throws needed to get into S2 consists in any case of the throw done
in this state, plus a further number of throws needed thereafter. This further
number equals W1 if the first throw results in a 1 (probability 1/6), and it
equals W0 if the first throw results in some number other than 1 (probability
5/6).

Solving for W0, we get W0 = 36. Thus, Paula will on average need only 36
throws, whereas Peter requires on average 42. What at first appears to be a
trivial and negligible variation of the rules has in fact a noticeable influence
on how many throws will be needed.
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3.4 How to Divide up Gains in Interrupted Games

a. Peter and Paula seem not to have agreed on how to proceed when the
game is interrupted before one of them has won 5 points. Clearly, then, one
option is that both simply retain their original $50 because the game has not
been completed according to the rules originally agreed on.

On the other hand, Peter might argue that he had already made consid-
erable progress toward winning 5 points and therefore claim more than his
original $50. A rational basis of this claim could be to consider in how many
similar cases Peter would finally have won over Paula — if the game had con-
tinued. More precisely, Peter needs 2 more points, whereas Paula still needs
twice as many, namely 4. Thus we may legitimately ask: what is the proba-
bility that Peter would have won the 2 required points before Paula had won
4 points?

The hard way to compute this probability is to enumerate all possible
sequences that end favorably for Peter and to sum their probabilities. Note
that Peter’s victory necessarily ends with a point made by him and may be
preceded by 1, 2, 3, or at most 4 rounds of which Peter has won exactly one.
The complete list contains 10 possible sequences of successive winners (A
= Peter wins a round, B = Paula wins a round): { AA, ABA, BAA, ABBA,
BABA, BBAA, ABBBA, BABBA, BBABA, BBBAA }, and their probabilities
are easily found to add up to 26/32 = 0.8125. This result suggests that Peter
might claim $81.25, in which case Paula receives $18.75. Clearly, when the
number of rounds that Peter and Paula would still need to win gets larger,
then this procedure of explicit enumeration becomes fairly laborious.

A more elegant way to go about this problem is to realize that after at
most 5 more rounds either Peter or Paula must have won: if Peter wins 2 or
more of these 5 rounds, then Paula has won at most 3 rounds — not enough
for her to achieve the required total of 5 points. Conversely, if Paula wins 4
or 5 rounds, Peter has won at most 1. Therefore, by an argument somewhat
similar to the one we used to solve Problem 1.1, a procedure equivalent to
the original rules is to pretend to play exactly 5 more rounds: if Peter wins 2
or more of these, this is equivalent to him reaching a total of 5 points before
Paula did. On the other hand, if Paula wins 4 or more of these 5 rounds, then
she must have reached a total of 5 points before Peter has. The advantage
of this reconceptualization is that for a fixed number of rounds (namely, 5)
the required probabilities are easily computed from the binomial distribution
with n = 5, p = 1

2 . For example, the probability that Peter wins no round or
only 1 round out of 5 is

(
5
0

)(
1
2

)5

+
(

5
1

)(
1
2

)5

=
6
32

in agreement with the result obtained by the lengthy explicit enumeration
described earlier.
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b. More generally, if Peter needs to win a more rounds and Paula needs
to win b more rounds for an overall win, they could pretend that they play
a fixed number of a + b − 1 further rounds. Exactly one of the following two
mutually exclusive events will then obtain:

1. Peter wins a or more points, in which case Paula wins less than b, or
2. Paula wins b or more points, in which case Peter wins less than a.

The first event implies that Peter had won a points before Paula had won
b; the second event means that Paula had won b points before Peter had
won a. Therefore, with respect to the winning probabilities, the procedure is
functionally equivalent to the rules originally set out, namely to stop when
either Peter has collected a, or when Paula has collected b further points.

The probability, e.g., of the first event enumerated here is then easily found
by summing the respective binomial terms:

P(Peter wins overall | a, b) =
1

2a+b−1
·

a+b−1∑

i=a

(
a + b − 1

i

)
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3.5 How Often Do Head and Tail Occur Equally Often?

a. From the binomial distribution, the probability of an even n : n split
with 2n coins equals

p(2n) =
(

2n

n

)

· 2−2n

For 2n = 20 coins, the probability p(20) = 0.1762, meaning that in expectation
only in 17.62% of all experiments in which 20 coins are thrown, will there be
an even 10 : 10 split. This value is already considerably smaller than the
even-split probability with just two coins, which equals p(2) = 1

2 .
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Fig. 3.2. The area under the standard normal density between zl = −1/
√

2n and

zu = 1/
√

2n can be approximated by a rectangle of width
√

2/n and height 1/
√

2π,
the value of the normal density at x = 0. The figure illustrates this approximation for
n = 10.

b. For increasing n, the direct computation of p(2n) gets impractical and
does not easily permit more general insights. However, we know that the
binomial converges to the normal distribution as n increases. Given that the
mean and variance of the binomial distribution with 2n trials and p = 1

2 are
μ = n and σ2 = n/2, this fact implies that p(2n) must tend to the area under
the standard normal density from the lower limit

zl =
(n − 0.5) − n

√
n/2

= − 1√
2n
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to the upper limit

zu =
(n + 0.5) − n

√
n/2

=
1√
2n

For example, zu = −zl = 0.2236 for the value n = 10 considered earlier, which
yields the approximation 0.1769, very close to the exact value.

As is indicated in Figure 3.2, this area under the standard normal density
may in turn be further approximated geometrically by a rectangle of width
dz = zu −zl =

√
2/n and height equal to the ordinate of the standard normal

density at the midpoint between zl and zu, which is zm = 0. From the equation
of the standard normal density, we know that the ordinate at zm = 0 is equal
to 1/

√
2π. Referring to Figure 3.2,

p(2n) ≈ (width of rectangle) × (height of rectangle)

=
√

2/n · 1√
2π

=
1√
nπ

a function that decreases monotonically with the square root of n.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50

ev
en

-s
pl

it 
pr

ob
ab

ili
ty

 p
(2

n)

n
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For example, for n = 10, this approximation yields 17.84%, as compared to
the exact result of 17.62% derived in a. The geometry of Figure 3.2 indicates
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that the area of the approximating rectangle overestimates the actual area
under the normal density, but even for n = 10 this error is quite small. For
n = 100, we get p(2n) = 3.99%, and for n = 1000, we have p(2n) = 1.78%.
Figure 3.3 shows as vertical lines the exact binomial probabilities and as a
smooth curve the approximation p(2n) = 1√

nπ
, which is excellent. Clearly,

then, as n increases, the probability of an even split gets smaller and smaller,
contrary to intuitive notions.

As so often, our intuition is perhaps better characterized as fuzzy rather
than wrong. Indeed, our considerations imply that the relative deviations of
the two frequencies — namely, relative to the number of coins thrown —
will decrease steadily as n increases. This means, for example, that the two
relative frequencies will both approach 50% closer and closer as n increases.
But, as Figure 3.3 suggests, this does not mean that the (absolute) frequencies
themselves will differ by less and less.
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3.6 Sample Size vs. Signal Strength

Many people believe that Peter’s evidence for A being blue is much
stronger than that of Paula. In fact, their evidence is exactly equally strong.
What matters in the present situation is only the difference of the number of
red and blue balls drawn; this difference being given, it is unimportant on how
many observations (draws) it was based. Here are the relevant computational
details.

Let r, b stand for red and blue, respectively. What we really want to know
in this problem is this: what is the probability of A being blue if (e.g.) six
out of six balls drawn are red? Correspondingly, what is the probability of A
being blue, if 303 out of 600 balls drawn are red?

Consider the first question. The conditional probability that we are looking
for here is P(A = b| < rrrrrr >), where < rrrrrr > stands for a sequence of
six successive draws of red balls. By Bayes’ theorem,

P(A = b| < rrrrrr >) =

=
P(< rrrrrr > |A = b)P(A = b)

P(< rrrrrr > |A = b)P(A = b) + P(< rrrrrr > |A = r)P(A = r)

=
1

1 + P(<rrrrrr>|A=r)
P(<rrrrrr>|A=b)

because P(A = b) = P(A = b) = 1
2 , so that this factor cancels throughout.

Also, if A = b then three red and two blue balls remained in the urn, so that
in each independent draw a red ball had a probability of 3/5 to be selected.
Hence, P(< rrrrrr > |A = b) = (3/5)6. Similarly, P(< rrrrrr > |A = r) =
(2/5)6. Putting these facts together and canceling common terms, we see that

P(A = b| < rrrrrr >) =
1

1 + (2/3)6
= 0.919

Thus, conditional on the six observations made by Peter, the ball A was blue
with about 91.9%.

Now let us look at Paula’s data. By the binomial distribution, if A was
blue then her probability to obtain, in 600 draws, 303 red and 297 blue balls
is equal to

P(303 r ∧ 297 b|A = b) =
(

600
303

) (
3
5

)303 (2
5

)297

In a similar way,

P(303 r ∧ 297 b|A = r) =
(

600
303

) (
2
5

)303 (3
5

)297
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The ratio of the latter to the former probability is (2/3)6; thus, for Paula we
obtain

P(A = b|303 r ∧ 297 b) =
1

1 + (2/3)6

This value is identical to that for Peter, meaning that their evidence in favor
of A being blue is actually equally strong.

Obviously, the same will be true whenever the difference between red and
blue balls drawn is the same for Peter and Paula. Given that difference — the
“signal strength” — the number of draws in which it was obtained does not
differentially influence the strength of the evidence obtained.

As stated, many people tend to think that Peter’s evidence for A being
blue is much stronger. In fact, the large conditional probability of nearly 92%
is quite in line with this intuition. What seems much more surprising though
is that the conditional probability is equally large for Paula. To see why, it is
important to realize that a split of 303/297 is in fact quite unlikely under both
hypotheses, A = b and A = r. For example, in the first case we would expect
about 360 red and about 240 blue balls among 600 draws; in the second case
these numbers would be reversed. Thus, the split of 303/297 is — in absolute
terms — actually quite unlikely under both hypotheses, but — in relative
terms — it is much more compatible with the hypothesis of A = b than with
A = r.
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3.7 Birthday Holidays

Let f(n) be the expected number of man-days when n workers are em-
ployed. We seek to maximize f as a function of n. Thus, first we need to derive
an explicit expression for f . Even before we do so, it is easy to see that there
must be at least one maximum for the function f . Clearly, f(1) = 364, and ne-
glecting the probability of a birthday coincidence, f(2) ≈ 2 · 363 = 726. Thus,
initially f increases. On the other hand, as n → ∞, there will be no birthday-
free day at all, meaning that the expected number of man-days tends to zero
as n gets very large. Together, then, f must have at least one maximum.

To locate this maximum, consider first some specific day i, where i =
1, . . . , 365. Let Xi be an rv that equals 1 if none of the n workers has his
birthday on this specific day whereas Xi = 0 if at least one worker has his
birthday on that day. With n workers, how likely is it that Xi = 1? Clearly, for
any individual worker, the probability not to have his birthday on day i equals
364/365. Therefore, with independent birthdays, the probability P(Xi = 1)
that no worker has his birthday on day i is equal to (364/365)n. This implies
that the expectation E[Xi] = P(Xi = 1) = (364/365)n.

Now, define the rv S =
∑365

i=1 Xi. In words, S is the total number of
birthday-free days. Clearly, the Xi are not independent, but for the expecta-
tion E[S] we have

E[S] = E[
365∑

i=1

Xi]

=
365∑

i=1

E[Xi]

= 365 · (364/365)n

Now, f(n) = n · E[S], because in expectation the n workers will have to
work on E[S] days, yielding n · E[S] man-days. Thus,

f(n) = n · 365 · (364/365)n

Figure 3.4 shows the function f . Looking at the change of the sign of the
difference f(n+1)−f(n) it is easy to see that its maxima occur at n = 364 and
n = 365, yielding f(364) = f(365) = 48943.5 expected man-days. In the case
of n = 364, each worker needs to work, in expectation, on 134.5 days per year;
in the case of n = 365 this expectation drops to 134.1 days per year. On the
level of the man-days, this drop of man-days per worker is just compensated
by the additional man-days contributed by the added 365th worker.
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Fig. 3.4. The expected number, f(n), of man-days per year if n workers are employed.
The maxima occur at n = 364 and n = 365, yielding f(364) = f(365) = 48943.5
expected man-days. With these values, each worker will have to work about 134 days
per year.
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3.8 Random Areas

Peter just generates a single realization of U, and so the area of his square
will be equal to U2. Thus, on average the area of his square is equal to
APeter = E[U2].

Paula generates two independent realizations of U for the width and length
of her rectangle, let us call these realizations U1 and U2. Accordingly, the area
of her rectangle will be equal to U1 ·U2. On average the area of her rectangle
equals

APaula = E[U1 · U2]
= E[U1] · E[U2]
= E2[U]

because U1 and U2 are independent and have the same distribution as U.
Therefore,

APeter − APaula = E[U2] − E2[U] = Var[U] ≥ 0

that is, APeter ≥ APaula. On average, the area of Peter’s square is larger than
that of Paula’s rectangle, even though all lengths and widths of all rectangles
(a square is a rectangle) are generated by realizations of the same generic rv,
U.
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3.9 Maximize Your Gain

a. As stated in the Hints, in order to win a large amount, one would like
to choose a rather large value of c. On the other hand, the larger c is chosen,
the smaller the probability of winning anything at all.

Let us call the chosen value of c the “strategy” of the player and denote
its expected gain as G(c). Thus, with the strategy c, the gain will be zero
with probability P(U ≤ c) = F (c), and it will be equal to c with probability
P(U > c) = 1 − F (c). Putting these two cases together, we get

G(c) = 0 · F (c) + c · [1 − F (c)] = c · [1 − F (c)]
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Fig. 3.5. The relation between the expected gain, G(c), and the number, c, that was
chosen. The example assumes that U has an exponential distribution f(t) = λ exp(−λ t)
with mean 1/λ = 50. The optimal choice of c is then just 50, in which case the expected
gain equals 18.39.

To get an idea about G, it is useful to first study its boundary values.
From the “tail formula” (see page 2) for the expected square of U,

E[U2] = μ2 + σ2

= 2
∫ ∞

0

u[1 − F (u)] du

= 2
∫ ∞

0

G(u) du < ∞
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because the first two moments of U were assumed to be finite. It must then
be the case that G(c) tends to zero as c → ∞; otherwise the integral would
diverge. Also, G is nonnegative, and from G(0) = G(∞) = 0 we conclude that
G must have at least one maximum over the positive reals.

Differentiating G with respect to c and setting this derivative equal to zero
gives

dG(c)
dc

= [1 − F (c)] − cf(c) = 0

i.e.,
f(c)

1 − F (c)
=

1
c

b. The left-hand side of the last equation is the hazard function h of U;
cf. page 2. The equation states that the optimal strategy c is the abscissa at
which the hazard function h(c) crosses the function 1/c.

c. For an exponential rv, the hazard function is constant, h(c) = λ. There-
fore, the optimal strategy is c = 1/λ, i.e., to choose the expected value of U,
see Figure 3.5. With this strategy, the expected gain is

G(
1
λ

) =
1
λ
· e−1

i.e., about 36.8% of the expected value of U. This value appears remarkably
small, but due to the large spread (relative to its mean) of the exponential
distribution, there is no way to further improve it within the given setting.
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3.10 Maximize Your Gain When Losses Are Possible

a. With the strategy c, the gain (actually, loss) will be equal to −c with
probability P(U ≤ c) = F (c), and it will be equal to +c with probability
P(U > c) = 1− F (c). Weighing these two cases by their respective probabili-
ties, we get

G(c) = −c · F (c) + c · [1 − F (c)]
= c · [1 − 2F (c)]

Figure 3.6 shows the qualitative behavior of G.
Differentiating G with respect to c and setting this derivative equal to zero

yields the optimum condition

dG(c)
dc

= 1 − 2 [cf(c) + F (c)] = 0
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Fig. 3.6. The relation between the expected gain G(c) and the number c that was cho-
sen. The example assumes that U has an exponential distribution f(t) = λ exp(−λ t),
with mean 1/λ = 50. The optimal choice of c is then 15.75, in which case the expected
gain equals 7.24.

b. Note from the form of G(c) that if c is smaller than the median of U,
then G(c) is positive. Therefore, the global maximum of G cannot be negative.

c. For an exponential rv with rate λ, the optimum condition yields
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2e−λc (1 − λc) = 1

The solution to this equation is c = 0.315/λ. Compared to Problem 1.9, the
less favorable rules of the current game clearly suggest a rather more cautious
strategy; compare Figure 3.6 to Figure 3.5. Correspondingly, the expected
gain with the optimal strategy decreases to just 0.145/λ, roughly 40% of
what the player could expect under the rules of the previous problem. On
the other hand, although less attractive, the game should still be accepted by
the player, because its expected gain is positive when the optimal strategy is
chosen.
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3.11 The Optimal Level of Supply

a. Clearly, if he orders no milk at all, there will be no gain and no loss,
G(0) = 0. For very small c, the man will almost certainly sell his entire lot c,
thereby gaining c(s−b). Thus, for small c, the net gain G will increase linearly
with slope s − b and thus be positive. For very large c, almost surely not all
stocked milk will be sold; in this situation, each additional unit stocked will
impose an additional loss of b. Thus, for c large, G will decrease linearly with
slope −b. Therefore, G must have at least one positive maximum for c > 0.
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Fig. 3.7. The typical relation between expected net gain, G(c), and the amount of
milk stocked, c. The example assumes that one unit of milk costs b = 1 and is sold for
s = 1.50. The demand is normally distributed, with mean 100 and standard deviation 20.
(The normal distribution is not strictly positive, but for the values chosen it practically
is.) The optimal amount the milkman should stock is then about 91 units, in which case
his expected net gain is 39.1.

b. If he orders c units and sells only some of them, 0 ≤ d ≤ c, then the
conditional expected net gain G(c|D = d) will be equal to d(s − b) − (c − d)b
because his gain from the d units sold is d(s−b), and the cost of the remaining
c − d nonsold units is (c − d)b. On the other hand, if d ≥ c he will sell all c
units, yielding G(c|D = d) = c(s − b).

Conditioning on the demand D we get
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G(c) =

∞∫

0

G(c|D = d) · f(d) dd

=

c∫

0

[d(s − b) − (c − d)b]f(d) dd +

∞∫

c

c(s − b)f(d) dd

= s ·
c∫

0

[1 − F (d)] dd − cb

after slight rearrangements and an integration by parts. From the usual nec-
essary maximum condition

dG(c)
dc

= s[1 − F (c)] − b = 0

We then get

copt = F−1

(

1 − b

s

)

where F−1 is the inverse function of F ; it is unique because F was assumed
to be strictly increasing. Note that

d2G(c)
dc2

= −sf(c) < 0

so that G is concave downward: starting from (0|0) it first increases toward a
unique maximum at copt and then decreases, with an asymptotic slope of −b.
The typical qualitative behavior of the function G is shown in Figure 3.7.
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3.12 Mixing RVs vs. Mixing Their Distributions

a. The densities of A and B are shown in Figure 3.8.
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Fig. 3.8. Upper panel: density of the mixture of two normal rvs, lower panel: mixture
of two normal densities.

Note that A will in each realization be close to the mean of 100. In contrast,
B will in each realization be close to either 50 or 150 but will practically never
be equal to its mean of 100.

b and c. Let us first consider the general case, and then in turn insert the
specific results for p = 1

2 .
We start with the rv

A = p · X + (1 − p) · Y

where X and Y are independent rvs. On taking expectations and variances
we immediately get from the usual standard rules for the moments of sums of
independent rvs

E[A] = p · E[X] + (1 − p) · E[Y]

and

Var[A] = p2 · Var[X] + (1 − p)2 · Var[Y]

For example, if the variances of both X and Y tend to zero, then the variance
of A will tend to zero as well.



Solutions 57

In the normal distribution example, first note that p · X and (1 − p) · Y
are both normal rvs, too. Therefore, A is itself normally distributed because
it is the sum of two normal rvs. As shown in the top panel of Figure 3.8, its
mean is 100 and its variance is 50. The standard deviation of slightly above 7
means that the interval 100 ± 2 · 7 = [86, 114] brackets approximately 95% of
the distribution of A.

To obtain the corresponding results for B, we introduce a binary variable
I that indicates from which of the two distributions the current realization of
B was drawn. Specifically, I = 1 with probability p and I = 0 with probability
1−p. Clearly, I and I2 take on the same values (namely, 0 and 1) with the same
probabilities: thus, E[I] = E[I2] = p. This implies that Var[I] = E[I2]−E2[I] =
p(1 − p).

Using I, we can write

B = I · X + (1 − I) · Y

Now we apply the standard rules to determine the expectation and variance
of B. For the expectation we get

E[B] = E[I · X] + E[(1 − I) · Y]
= E[I] · E[X] + E[(1 − I)] · E[Y]
= p · μx + (1 − p) · μy

By the definition of the variance

Var[B] = E[B2] − E2[B]

We have already determined the expectation of B, so we next turn to the
expectation of its square. On squaring B

B2 = I2 · X2 + (1 − I)2 · Y2 + 2 · I · X · (1 − I) · Y

we have, factoring the expectation of independent rvs (such as I2 and X2):

E[B2] = E[I2] · E[X2] + E[(1 − I)2] · E[Y2] + 2 · E[I(1 − I)] · E[X] · E[Y]

The required insight at this stage is that I(1 − I) necessarily equals zero (as
I equals zero or one). Thus, E[I(1 − I)] = 0, so that the last summand drops
out altogether. This leaves us with

E[B2] = p · E[X2] + (1 − p) · E[Y2]

On the other hand, on squaring E[B] we get

E2[B] = p2 · E2[X] + (1 − p)2 · E2[Y] + 2p(1 − p) · E[X] · E[Y]

Forming E[B2] − E2[B] and simplifying we obtain our final expression
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Var[B] = p · σ2
x + (1 − p) · σ2

y + p(1 − p) · (μx − μy)2

Comparing with the result for Var[A] we immediately see that Var[A] < Var[B]
if we exclude the trivial cases of p = 0 and p = 1. It is instructive and
characteristic that whereas the variance of A equals zero if the variances of
X and of Y are zero, the same is not true for the rv B (except for the trivial
case that the expectations of X and Y are also the same).

For the case of the two normals, the mean of B equals 100, just as the
mean of A. However, its variance and standard deviation are very much larger
than that of A; specifically, σB = 51.
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3.13 Throwing the Same vs. Different Dice

a. In this problem the successive trials are independent, but the first and
the last 72 trials have a different success probability.

Let Xi, i = 1, . . . , 144, equal 1 if a success occurs in trial i and be equal
to zero if not. With the sampling scheme in a., the probability of obtaining a
success during the trials 1, . . . , 72 is equal to 1

4 , thus E[Xi] = P(Xi = 1) = 1
4

and Var[Xi] = P(Xi = 0) · P(Xi = 1) = 3
16 . The success probability during

the trials 73, . . . , 144 is equal to 1
12 , thus E[Xi] = P(Xi = 1) = 1

12 and
Var[Xi] = P(Xi = 0) · P(Xi = 1) = 11

144 .
Let S =

∑144
i=1 Xi be the total number of successes during all 144 trials.

The Xi are not all identically distributed; they are, however, independent of
each other, so that the variance of their sum is equal to the sum of their
individual variances. That is,

Var[S] = 72 ·
(

3
16

+
11
144

)

= 19

Thus, although the mean number of successes is equal to that in the standard
binomial scheme (namely, 24), the variance around that mean is actually
somewhat smaller.

This same effect would be even more pronounced if in the first 72 trials
the success probability were p = 1

3 , and in the last 72 trials p = 0, yielding
again a mean success probability of p = 1

6 across all 144 trials. On average,
there would thus again be 24 successes, but the variance would only be equal
to 72 · 2

9 = 16. Many people find this counterintuitive, because the variation
of the basic success probability across trials seems to “throw in additional
variance,” but that is not true.

b. It is important to realize that in this problem the successive trials are not
independent. For example, if the first trial yielded a success, it gets more likely
that the second trial will also yield a success, because a success in the first
trial represents probabilistic evidence that die A was chosen. This argument
would become very obvious if die A had a success probability of p = 1

3 , and
die B of p = 0 (the average of both dice being again 1

6 ). Then a success in the
first trial necessarily implies that die A must have been chosen.

The present problem is actually a variant of the one treated in Problem
1.12. Let I be a binary rv that takes (with probability 1

2 ) the value 1, which
indicates that die A was selected, and (with probability 1

2 ) the value 0, indi-
cating that die B was selected. Using the rv I we may write

S = I · X + (1 − I) · Y

where X and Y are the numbers of success with die A and B, respectively.
Obviously, X is a binomial rv with n = 144 and p = 1

4 , and Y is a binomial rv
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with n = 144 and p = 1
12 . This implies that the mean and variance of X are

μx = 144 · 1
4 = 36 and σ2

x = 144 · 1
4 · 3

4 = 27. Similarly, the mean and variance
of Y are μy = 144 · 1

12 = 12 and σ2
y = 144 · 1

12 · 11
12 = 11. In Problem 1.12 we

have seen that

E[S] =
1
2
· μx +

1
2
· μy = 24

and

Var[S] =
1
2
· σ2

x +
1
2
· σ2

y +
1
4
· (μx − μy)2 = 163

Thus, the variance in the present scheme is much larger than in the standard
binomial case with p = 1

6 . The reason is that the choice for die A or B is
made only once, for all 144 throws. If we select die A, we expect on average a
total of 36 successes, whereas if we select die B, we will on average just see 12
successes. The mean number of successes remains 24, but the spread around
this mean gets very large under the present sampling scheme. Depending on
whether we choose die A or B, the number of successes will typically range
from about 5 to about 46 — a very considerable variation!

c. In this problem the successive trials are again independent because the
“current” die is selected anew each time, independent of all previous events,
and as all trials are executed in the same way, they all must have the same
success probability. Clearly this success probability equals ( 1

4 + 1
12 )/2 = 1

6
in each individual trial, and so the situation corresponds exactly to the usual
binomial scheme. Therefore, the mean and variance of the number of successes
are 24 and 20, respectively.

Why is the variance with the present scheme slightly higher than in scheme
a.? Intuitively, it is important to realize that in scheme a. it is guaranteed that
exactly 72 trials are done with die A and with die B. In contrast, with the
present sampling scheme, the actual number of trials carried out with die
A and with B will fluctuate somewhat around 72, thereby adding a further
variance component.
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3.14 Random Ranks

a. Consider first the scenario when Peter draws just two values; let us call
these values a and b. Let us call x the value obtained by Paula. Clearly, because
the draws are independent and are obtained from the same population, all six
orders are equally likely: abx, axb, bax, bxa, xab, xba, where, e.g., bxa stands
for the order b < x < a. Two of them are such that Paula’s draw (x) is first,
second, or third. Thus, all three ranks for Paula’s draw are equally likely.

b. In general, there are (n + 1)! equally likely orders (i.e., permutations)
of the n values drawn by Peter and the single value drawn by Paula. How
many of them are such that Paula’s value ends up at rank k? If rank k is
reserved for Paula’s value then there remain n! orders in which the n values
drawn by Peter can be arranged around this rank. For example, if n = 3, and
Paula’s value (call it x) is fixed at rank 2, Peter’s three values (say, a, b, c) can
be arranged as follows: axbc, axcb, bxac, bxca, cxab, cxba. These are those six
outcomes in which Paula’s value x ends up at rank no. 2. Obviously, exactly
the same generative procedure could be used to put Paula’s value x at any
rank from 1 to 4. In general, then, of the (n + 1)! permutations there are n!
such that Paula’s value appears at rank no. k. Thus, the probability for each
possible rank k of Paula’s draw is equal to n!

(n+1)! = 1
(n+1) . Note that this

value is independent of the actual rank, k.
Specifically, with n = 100 each rank for Paula’s draw from 1 to 101 is

equally likely. Intuitively, most people think that it is much more likely that
Paula’s draw will eventually occupy some middle, intermediate rank, such as
k = 51, rather than an extreme rank such as k = 1 or k = 101. But that is
not correct: any rank is equally likely.
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3.15 Ups and Downs

a. Consider the six possible rank orders of (A,B,C); each of these orders
is equally likely because the rvs were assumed to be identically and indepen-
dently distributed. If, e.g., abc stands for the increasing order A < B < C,
then three of the six orders are such that A < B, so that an increment occurs
with B. These are those orders in which the letter a occurs before b, namely,
abc, acb, cab. The mere fact that there are three (an odd number) such orders
already implies that following an increment with B there cannot be an equal
probability for increments and decrements with C. Indeed, only the case abc
yields a further increment, whereas acb and cab represent a decrement, i.e.,
C < B. Therefore, the conditional probability of a decrement with C, given
an increment at B is 2

3 : despite the independence of all rvs involved, ups are
more often followed by downs than by a further up.

b. Let f(a, b, c) denote the joint density of (A,B,C). The assumptions
stated in question b. imply that, e.g., f(a, b, c) = f(c, a, b), and similarly for
any permutation of the three arguments. Therefore, each of the six possible
rank orders must still be equally likely, so that the argument from a. still goes
through, even for dependent but exchangeable rvs.

c. To find this correlation, we first determine the associated covariance

Cov(B − A,C − B) = Cov(B,C) − Var(B) − Cov(A,C) + Cov(A,B)
= γ2 − σ2

where γ2 denotes the (common) covariance between any pair of the three rvs.
Also, from standard linearity properties of the variance we find

Var(B − A) = Var(B) + Var(A) − 2Cov(B,A)
= 2 (σ2 − γ2)

and for reasons of symmetry, Var(C−B) = 2 (σ2 − γ2). Therefore, the corre-
lation

corr(B − A,C − B) =
Cov(B − A,C − B)

√
Var(B − A) · Var(C − B)

=
γ2 − σ2

2(σ2 − γ2)

= −1
2

The successive differences (B − A) and (C − B) are negatively correlated
because B occurs in both expressions, but with opposite signs. For example,
if B is particularly large, then (B − A) will usually be positive and (C − B)
will usually be negative.
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3.16 Is 2X the Same as X1 + X2?

a. Let σ2 denote the variance of X. According to the general rules, the
variance of the rv 2X is 4σ2, whereas the variance of the rv X1 + X2 is equal
to 2σ2. Therefore, if both of these rvs are to follow the same — Cauchy —
distribution, then σ2 must be either infinite or zero. However, in the latter
case the probability mass would be concentrated at a single point, and so X
would be a constant, not a Cauchy rv. Therefore, the first case applies, and
σ2 = ∞.

b. Consider first the case of n = 2. If, as stated, X1 + X2 is distributed
as is 2X, then it is also true that X is distributed as is (X1 + X2)/2, i.e., the
arithmetic mean of a sample of two. Thus, the property holds for n = 2k = 2,
i.e. for k = 1.

Next, assume that the sum of 2k independent Cauchy rvs is distributed
as is 2kX. Consider then the sum of 2k+1 independent Cauchy rvs: it may be
thought of as 2k independent Cauchy rvs plus another 2k independent Cauchy
rvs. By assumption, both components are individually distributed as is 2kX,
and so their sum has the same distribution as 2k(X1+X2). But we saw earlier
that X1 + X2 is distributed as is 2X, and so the sum of 2k+1 independent
Cauchy rvs has the same distribution as 2k(2X) = 2k+1X.

By induction, then, the sum of 2k independent Cauchy rvs is distributed
as is 2kX. Dividing by the scalar n = 2k yields the assertion: the arithmetic
mean of n = 2k independent Cauchy rvs is distributed as is any of the con-
tributing summands individually. This property seems rather counterintuitive
and appears to many as deeply disturbing: it defies our nearly universal belief
that the precision of arithmetic means necessarily increases with increasing
sample size. What seems especially disturbing is that the Cauchy distribu-
tion (see Figure 1.1 looks fairly “well-behaved”: it does not have particularly
bizarre or exoctic shape and is not easily dismissed as a mere mathematical
curiosity. The property actually holds for any n, not just for n = 2k, but this
fact requires slightly more elaborate arguments.
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3.17 How Many Donors Needed?

Denote as t the amount that needs to be collected (in the present problem,
t = 100), and let Ai be the amount of money given by donor i = 1, 2, . . ., which
has an exponential distribution with mean 1/λ = 20. Also, let the “running
total” be Sn =

∑n
i=1 Ai. The basic problem then is to find information about

the discrete rv

N = min
n≥1

{Sn ≥ t}

that is, the smallest index n such that Sn is t or more. Let p(n|t), n = 1, 2, . . .,
denote the probability that N = n when a total of t needs to be raised.

Our basic approach is to condition on the amount given by the first donor,
A1. If A1 is larger than t, then N = 1; the probability p(1|t) of this event is
P(A1 ≥ t) = exp(−λt). To determine p(n|t) for n > 1, assume that the first
donor gives an amount A1 = x, x < t, which has the density λ exp(−λx). For
N to be equal to n, following this first donor, the residual amount of t − x
needs to be raised from the next n− 1 donors, an event that by definition has
probability p(n−1|t−x). The essential insight here is that when A1 = x, x < t,
then we are left with a situation that is exactly analogous to the original
problem, except that now we ask for the probability that n − 1 donors are
required to first reach or exceed t − x dollars.

Integrating across the possible values of 0 ≤ x < t gives

p(n|t) =
∫ t

0

λe−λx p(n − 1|t − x) dx , n > 1

This is the basic relation that determines the p(n|t), and its explicit solution is
essentially a technical matter. One blunt way to solve this elementary integral
equation is simply to guess the building pattern by computing the first few
successive terms p(n|t), using the known result for p(1|t).

A more systematic way is to pass to Laplace transforms (see the defini-
tion of the moment generating function on page 2), which turn convolutions
into products. Denoting the Laplace transform of p(n|t) with respect to t as
L(s|n) =

∫∞
0

e−stp(n|t) dt,

L(s|n) =
λ

λ + s
· L(s|n − 1) , n > 1

But from p(1|t) = exp(−λt), we know that L(s|1) = 1/(λ + s), and so by
induction

L(s|n) =
1
λ
·
(

λ

λ + s

)n

, n ≥ 1

We note that (again using the convolution property) the last factor is just
the Laplace transform of the density of the sum of n exponential rvs, each
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Fig. 3.9. The probability p(n|t) that exactly n donors are needed to collect at least
t = 100 dollars when the amount each donor gives is exponentially distributed, with a
mean of 20 dollars. On average, it requires 6 donors, not 5, as the intuitive estimate
100/20 = 5 would suggest.

with rate λ; therefore, its inverse transform is the gamma density (cf. page 1).
Taking the factor 1/λ into account, we obtain the shifted Poisson distribution:

p(n|t) =
(λt)n−1

(n − 1)!
· e−λt

an expression that is also seen to be valid for n = 1. Thus, the number N of
donors required to collect t or more dollars is distributed as is 1+M, where M
has a Poisson distribution with mean λt. From this representation, it directly
follows that E[N] = 1 + λt and Var[N] = λt.

For the values of t = 100 and 1/λ = 20, the mean number of donors is 6,
not 5, as the intuitive estimate 100/20 = 5 would suggest. Figure 3.9 shows
the corresponding distribution p(n|t).
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3.18 Large Gaps

Our basic approach is to condition on the time T1 when the first event
occurs after the start of the process at t = 0. If this first event occurs after
τ , then the waiting time W was simply τ ; the probability of this event is
exp(−λτ). Put more formally, E[W|T1 > τ ] = τ . On the other hand, with
density λ exp(−λt), the first event occurs at some time t < τ . In this case, the
process is at t in the same state as it originally was at t = 0. Therefore, the
residual waiting time, from t on, is in expectation again equal to E[W], and so
the expected total waiting time in this case (t < τ) is E[W|T1 = t] = t+E[W].

Putting these two cases together,

E[W] = τe−λτ +
∫ τ

0

λe−λt (t + E[W]) dt

Simplifying and isolating the expectation, the solution is

E[W] =
1
λ
· (eλτ − 1)

For example, if a car passes on average every 10 seconds (i.e., 1/λ = 10),
and 20 seconds are needed to pass the road, then the expected waiting time is
about 1 minute and 4 seconds. For a slower pedestrian who needs 40 seconds to
pass the same road, the expected waiting time increases sharply to 8 minutes
and 56 seconds, more than eight times as long.
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3.19 Small Gaps

Clearly, to even get a chance for a coincidence, we need at least the first
event to occur. In expectation, this takes 1/λ time units. Following this first
event, two mutually exclusive scenarios may take place. Either the next (i.e.,
second) event occurs within the next τ time units — in this case, by definition,
the coincidence occurs with this second event. With density λ exp(−λt) the
second event occurs 0 ≤ t ≤ τ time units after the first one, and the expected
total waiting time in this case is equal to 1/λ + t. Or no further event occurs
during the first τ time units following the first one, an event that has a proba-
bility of exp(−λτ). In this case, the state t = τ time units after the first event
is exactly the same as it was originally at t = 0, and so the residual waiting
time, from there on, is again E[U], in addition to the 1/λ + τ time units that
have already elapsed. Putting these two cases together,

E[U] =
∫ τ

0

(
1
λ

+ t

)

λe−λt dt +
(

1
λ

+ τ + E[U]
)

e−λτ

Simplifying and isolating the expectation, the solution is

E[U] =
1
λ
· 2 − e−λτ

1 − e−λτ

For example, if in a situation of exposition to a radiating substance par-
ticles are absorbed on average every 10 seconds (i.e., 1/λ = 10) and a critical
(e.g., damaging) event requires that two particles be absorbed within no more
than τ = 1 second, then the expected waiting time to the damage is about
115 seconds. If the “critical period” (the period of vulnerability) is doubled
to τ = 2 seconds, then the damage will in expectation occur after about 65
seconds. If, on the other hand, the mean interevent time is cut in half to
1/λ = 5 seconds, then the damage will (with τ = 1) in expectation occur
after only less than 33 seconds, underlining the asymmetric roles played by
the rate λ and by the critical period τ , even if their product is kept constant.
Note that if the product λτ is large — i.e., if the critical period is much larger
than the mean interevent time of the Poisson process, τ � 1/λ — then the
expected waiting time E[W] tends to 2/λ, reflecting the fact that under these
conditions the waiting time to the coincidence simply reduces to the waiting
time until the first two events have occurred.
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3.20 Random Powers of Random Variables

a. As a preliminary result, let us first determine the pgf g(z) of the rv N.
By the definition of a pgf (cf. page 2),

g(z) = E[zN] =
∞∑

n=0

zn · P(N = n)

=
∞∑

n=0

zn · e−ββn/ n!

= e−β ezβ
∞∑

n=0

e−zβ(zβ)n/ n!

= e(z−1)β

because the sum in the next-to-last line adds up the probabilities of a Poisson
rv with rate zβ (cf. page 1). Note that g(z) is finite for any real z, because
the series

∑∞
n=0 xn/n! converges to ex for any real x.

Next, we condition on M = m:

E[Q] =
∞∑

m=0

E[Q|M = m] · P(M = m)

=
∞∑

m=0

E[mN] · e−ααm/m!

Note that for any real m, the expression E[mN] is equal to g(m), as determined
before. Therefore,

E[Q] =
∞∑

m=0

e(m−1)β · e−ααm/m!

= e−(α+β)
∞∑

m=0

(
αeβ

)m
/m!

= e−(α+β) exp
(
αeβ

) ∞∑

m=0

exp
(
−αeβ

) (
αeβ

)m
/m!

This sum is again of the general Poissonian form, with mean αeβ ; it therefore
adds up to 1. This gives

E[Q] = exp
[
α
(
eβ − 1

)
− β

]

b. For convenience, let E[Q] = exp[ψ(α, β) ]; taking logarithms then gives
ψ(α, β) = α

(
eβ − 1

)
− β. Thus, E[Q] increases if and only if ψ increases.
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Now,

∂ ψ

∂α
= eβ − 1

which is positive for β > 0, since for β = 0 we have E[M0] = 1. Therefore,
E[Q] generally increases with α.

Consider next that

∂ ψ

∂β
= αeβ − 1

and this partial derivative is negative whenever α < e−β . Now, 0 < e−β ≤ 1,
so that there will be regions in which the partial derivative ∂ ψ/∂β is negative
whenever α < 1. Figure 3.10 illustrates the principal cases using α = 0.0, 0.4,
and 1.1.
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Fig. 3.10. The expectation of MN as a function of β, the mean of N, for α = 0.0
(bottom curve), 0.4 (middle curve), and 1.1 (top curve), where α is the mean of M.

To better understand this result, consider a special case of this condition,
namely, α = 0, in which case M will be equal to zero with probability 1. Now,
because 00 = 1, and 0n = 0 for n > 0, the expectation of MN reduces to
P(N = 0) = e−β , the only contributing term. But the larger β, the smaller
will be e−β , and so E[Q] decreases monotonically with β when α = 0 (see
Figure 3.10, bottom curve). If 0 < α < 1 then E[Q] first decreases and then
increases with β (Figure 3.10, middle curve). Finally, if α ≥ 1 then E[Q]
increases monotonically with β (Figure 3.10, top curve).
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3.21 How Many Bugs Are Left?

Assume that Peter and Paula independently detect any given error with
probabilities pA, pB , and denote the (unknown) total number of errors in the
text as n. Denote as nA, nB , and nAB , respectively, the number of errors
detected by Peter, by Paula, and by both. The expected number of errors
found by Peter is n · pA, yielding the estimate p̂A = nA

n . Similarly, p̂B = nB

n .
The expected number of errors found by both is n · pA · pB . Equating this
expectation to the corresponding observation nAB and inserting the previous
estimates p̂A, p̂B gives1

nAB = n · p̂A · p̂B

= n · nA

n
· nB

n

=
nA · nB

n

Thus, our final estimate, say n̂, of the unknown number of errors is:

n̂ =
nA · nB

nAB

Given that together Peter and Paula have detected nA+nB−nAB different
errors, the number of remaining (as yet undetected) errors is estimated to be
n̂ − nA − nB + nAB , which after slight algebraic simplification is equal to

(nA − nAB)(nB − nAB)
nAB

For the data given, Peter and Paula had found a total of 25 different errors.
The estimate n̂ = 20·15

10 = 30, so that 5 errors are estimated to have gone
undetected by both.

A different approach to this problem is best understood by thinking of
Peter and Paula proofreading the text one after another (cf. Feller, 1968, ch.
II). Suppose as before that of the total number (which is n) of errors Peter
finds exactly nA, he thus misses n − nA errors. Next, Paula proofreads the
text, and she spots nB errors. Any of these nB errors found by her is either
one of those nA errors that had previously also been found by Peter, or it is
one of the n − nA errors that Peter had missed. The probability that among
the nB errors detected by Paula there are nAB of the former and nB − nAB

of the latter type is given by the hypergeometric distribution:

g(n|nA, nB , nAB) =

(
nA

nAB

)
·
(

n−nA

nB−nAB

)

(
n

nB

) , where n ≥ nA + nB − nAB

1 See Pólya, G. (1975).
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For given values of nA, nB , and nAB this expression depends on the unknown
value of n. To estimate it, we maximize g as a function of n. By looking at
the ratio g(n + 1)/g(n) ≥ 1 it may be shown that g has two maxima, namely
the solution n̂ derived earlier, and n̂− 1. This is illustrated in Figure 3.11 for
the values of nA = 20, nB = 15, and nAB = 10.
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Fig. 3.11. The function g(n|nA, nB , nAB) for the values of nA = 20, nB = 15, and
nAB = 10 has two maxima: one is located at n̂ = 30, and one at n̂ − 1 = 29.
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3.22 ML Estimation with the Geometric Distribution

a. The likelihood of the data is

L(p) =
n∏

i=1

p · (1 − p)ki−1

= pn ·
n∏

i=1

(1 − p)ki−1

and so its logarithm equals

ln L(p) = n ln p + ln(1 − p)
n∑

i=1

(ki − 1)

= n
[
ln p + (k − 1) · ln(1 − p)

]

where k denotes the arithmetic mean of the n observations ki. Differentiating
and solving for p, we obtain the ML estimate p̂ = 1/k.

Consider the expectation of p̂ for n = 1, in which case p̂ = 1/k1. Clearly,

E[p̂] =
∞∑

k=1

1
k
· p · (1 − p)k−1

= p +
1
2
p(1 − p) + . . .

> p

so that p̂ will overestimate p (for an explicit result, see Solution 3.40, and
Figure 3.28 there).

b. From the preceding expression for lnL we have

−∂2 ln L

∂ p2
= n

[
1
p2

+
k − 1

(1 − p)2

]

Now, E[k] clearly equals 1/p, because the expectation of each individual real-
ization ki equals 1/p, and so

−E

[
∂2 ln L

∂ p2

]

= n

[
1
p2

+
1
p − 1

(1 − p)2

]

=
n

(1 − p) p2

Therefore, the a.s.e.(p̂) will be equal to p
√

(1 − p)/n. As Figure 3.12 illus-
trates, this function is maximal when p = 2/3, in which case the a.s.e. is equal
to 0.385/

√
n.
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Fig. 3.12. The asymptotic standard error of p̂ as a function of the actual success
probability, p. The size of the sample from which p̂ was obtained is n = 100. The
a.s.e.(p̂) is maximal for p = 2/3.

It seems mildly surprising that the a.s.e.(p̂) has a maximum in p. One way
to look at it is that as p → 1, typically the realizations ki will all be either 1
or at most 2, say, so that there will not be much variability from sample to
sample in the statistic p̂ = 1/k in this case. On the other hand, when p → 0,
the ki will typically all be quite large (and thus so will be their average, k),
in which case p̂ = 1/k will nearly always be a small, positive number that,
in absolute terms, will not vary much from sample to sample. Therefore, one
would expect some intermediate value of p to have a maximal a.s.e.(p̂).

c. Consider the function f(x) = 1/x in the neighborhood of the fixed point
x0 = 1/p (see Figure 3.13, for the value of p = 1

2 ). By Taylor’s expansion, for
x close to x0 we have (f ′(x) = −1/x2)

f(x) ≈ f(x0) + (x − x0)f ′(x0)

= f

(
1
p

)

+ (x − 1
p
)f ′(

1
p
)

= p − (x − 1
p
)p2

= 2p − xp2

We already know that a.s.e.(p̂) → 0 as n → ∞. Therefore, when n is large,
p̂ = 1/k must be close to p and k be close to 1/p, so that the preceding linear
approximation will be satisfactory. Inserting into the approximation,
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Fig. 3.13. The function f(x) = 1/x and its first-order Taylor expansion g(x) = 1−x/4
around the point x0 = 1/p, here illustrated for p = 1

2
, so that x0 = 2. Clearly, if the

sample mean x = k is in the ±0.25 neighborhood of the expectation x0 = 1/p (which
will be the case if n is not too small), then the linear approximation of g(k) = 1 − k/4
to f(k) = 1/k will be satisfactory.

p̂ = f(k) =
1
k
≈ 2p − k p2

As a mean, k will tend to normality, and so therefore will p̂ as a linear ap-
proximation to it. For example, because E[K] is equal to 1/p, it is clear that
E[p̂] = 2p − E[k]p2 = p if the linear approximation holds, that is, if n is suf-
ficiently large. Indeed, the approximation gives us an easy alternative way
(using the fact given on page 1 that Var[K] = (1 − p)/p2) to determine the
asymptotic variance of p̂, not via the Fisher information as earlier, but simply
by determining the variance of 2p − k p2.
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3.23 How Many Twins Are Homozygotic?

a. From the assumptions stated, the probabilities for any given twin pair
to be mm, ff , or mf are

pmm = αβ + (1 − α)β2

pff = α(1 − β) + (1 − α)(1 − β)2

pmf = 2(1 − α)β(1 − β)

For example, for twins to be mm, they could either be homozygotic (probabil-
ity α) and their common sex is male (probability β), or dizygotic (probability
1−α) and both of them independently become males (probability β ·β). The
probabilities pff and pmf arise in similar ways; clearly, pmm + pff + pmf = 1.

With these probabilities at hand, the likelihood of the data is given as

L(α, β) = (pmm)n(mm) · (pff )n(ff) · (pmf )n(mf)

where, for example, n(mm) is the number of pairs in which both twins are
male. Taking the logarithm of L and maximizing it in α, β yields the ML
estimates α = 0.2872 and β = 0.5065 for the data reported by von Bortkiewicz
(1920). The shape of the log likelihood function is sketched as a contour plot
in Figure 3.14.

It seems quite remarkable that from the observed sex-related twin classifi-
cation alone, without any invasive genetical analysis, we are able to infer that
about 29% of these twin pairs must have been homozygotic. Also, for each
genetic sex determination, the outcome “male” was slightly more probable
(β = 0.5065) than “female” (1 − β = 0.4935), a small but reliable difference
of about 1.3% that has long been known.

b. Is this latter effect significant? If we maximize the preceding likelihood
L(α, β) subject to the constraint that β = 1

2 , then the corresponding ML
estimate for the probability of a homozygotic twin pair is α = 0.2873, nearly as
before. Comparing the two models via the likelihood ratio statistic λ described
in the Hints, we get λ = 4.70, df = 1, which has a significance level of about
0.03. Thus, the restriction of β = 1

2 has significantly decreased the fit of the
model, so that the effect β > 1

2 is probably real (as is strongly suggested by
other, independent evidence).



76 Solutions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

α

 0.3  0.4  0.5  0.6  0.7

β

Fig. 3.14. Contour plot of the log likelihood function for the data of von Bortkiewicz
(1920); the lines connect points of equal likelihood. The maximum occurs at the point
(α = 0.2872 |β = 0.5065). The sketch indicates that for any given value of α the
likelihood is maximal near β = 1

2
.
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3.24 The Lady Tasting Tea

a. Suppose that among the set of n cups the lady designates as type T
there are k hits. Thus, the remaining n − k cups of this set must be of type
M, and so the remaining k cups of type M will be members of the second set
designated as type M (i.e., k hits). This reasoning may be seen more clearly
by considering the following table:

The lady’s response:

“Tea first” “Milk first” Sum

Tea first k n
Infusions’ true state:

Milk first n

Sum n n 2n

The margins of the table capture the boundary conditions of the experiment:
there are n cups of either type, and the lady has to designate exactly n of the
2n cups as being of type T and exactly n as being of type M. Given these
boundary conditions, the only way to complete this table is

The lady’s response:

“Tea first” “Milk first” Sum

Tea first k n − k n
Infusions’ true state:

Milk first n − k k n

Sum n n 2n

b. Our strategy is to first look at how many cups of either type the lady will
“directly” identify. Given this information, we next ask for the (conditional)
probability that she completes her set of n to-be-selected type T cups in such
a way so as to obtain k hits.

Denote as X1,X2 the number of type T and type M cups, respectively, that
the lady identifies correctly. Clearly, according to the model the probability
of the event (X1 = x1,X2 = x2) is the product of the two binomials

P(X1 = x1,X2 = x2) =
(

n

x1

)

θx1(1 − θ)n−x1

(
n

x2

)

θx2(1 − θ)n−x2
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Conditional on X1 = x1,X2 = x2, 0 ≤ x1, x2 ≤ k, there remain n−x1 type T
and n−x2 type M cups that the lady has not been able to identify, a total of
2n−x1−x2 cups. Out of this total, she needs to select, on a random guessing
basis, further n−x1 cups to complete her set of n cups designated as type T.
In order to score k hits among this set, it is then necessary that among the
n−x1 further cups she selects there will be k−x1 type T cups and thus n−k
type M cups, an event that has the hypergeometric probability

(
n−x1
k−x1

) (
n−x2
n−k

)

(
2n−x1−x2

n−x1

)

Note that if the lady identifies more than k type T cups or more than k type
M cups, then her number of hits will necessarily exceed k. On summing across
all contributing values 0 ≤ x1, x2 ≤ k, and collecting powers to the same base,
we find

pn(k|θ) =
k∑

x1=0

k∑

x2=0

(
n

x1

)(
n

x2

) (
n−x1
k−x1

) (
n−x2
n−k

)

(
2n−x1−x2

n−x1

) · θx1+x2(1 − θ)2n−x1−x2
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Fig. 3.15. The probability distributions pn(k|θ) of hits (k) among n = 50 cups of
either sort for θ = 0.0, 0.2, 0.4, 0.6, 0.8.

Note that if θ = 0, then pn(k|θ) reduces to the term with x1 = x2 = 0 (i.e.,
00 = 1) and thus to the hypergeometric distribution. Figure 3.15 illustrates
how the distributions of correctly identified cups of each type (out of n = 50
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for each type) change with increasing values of the sensitivity parameter, θ.
For θ = 0, the lady will on average just guess half (k = 25) of all cups of each
type correctly, and chance variations around this value are symmetric. On the
other hand, with θ = 0.8, the lady will on average classify 45.2 cups of each
type correctly, and only rarely (p = 0.042) will she fall below k = 43. It is
equally clear from Figure 3.15 that the lady will face considerable problems to
prove her ability beyond reasonable doubt, relative to pure guessing behavior,
even with a design using as many as 2 × 50 cups, if her θ is positive, but
smaller than about 0.4.

c. For each n, we first define a critical level, kc(n), which is the smallest
value of k reached or exceeded only with probability α(n) ≤ 0.05 if the lady is
simply guessing (i.e., if θ = 0). To demonstrate her ability with n cups of each
type, the lady needs to reach or exceed kc(n). From the preceding solution
with θ = 0.50, the probability β(n) of this event is

n kc(n) α(n) β(n)
4 4 0.014 0.302
10 8 0.012 0.571
20 14 0.013 0.881

Thus, with just 4 cups of each type, there is little hope (β(4) = 0.302) for
the lady to demonstrate her ability because she would need to classify all of
the cups correctly. Even with 10 cups of each type (in which case 8 or more
hits are required), she will still fail to convince the skeptic with probability
1 − β(10) = 0.429. Clearly, then, even with a substantial ability as indexed
by θ = 0.50, it needs quite a number of independent trials to grant her a fair
chance to demonstrate that indeed she does better than guessing.
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3.25 How to Aggregate Significance Levels

a. First note that the p-value observed in a single application of the test
is an rv, say U. This simply reflects the fact that even when H0 is true, on
repeating the test with independent data the obtained p-values will vary from
replication to replication. What, then, is the distribution of U?

Under H0 the observed p-value U is defined by the relation U = 1−F (Λ),
and so

P(U ≥ u) = P[1 − F (Λ) ≥ u]
= P[F (Λ) ≤ 1 − u]
= P[Λ ≤ F−1(1 − u)] (where F−1 is the inverse of F )
= F [F−1(1 − u)]
= 1 − u

so that U is uniform on [0, 1].
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Fig. 3.16. The function p2 = k/p1 for k = 0.00865 and k = 0.00131. An aggregate
test would be judged overall-significant at the level α = 0.05 if the point (p1, p2) falls
below the hyperbola p2 = 0.00865/p1. Under H0, the probability of this event is given
by the area (= α) under the hyperbola.
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b. At a (too) quick glance one might think that the overall p-value is
simply equal to p1 · p2. However, if this were true, then it would be possible
to decrease the aggregate p-value simply by accumulating more and more
independent tests, as p1 · p2 · . . . gets smaller with each additional test.

A more convincing procedure is based on the fact observed in a. that (if
H0 is true) U is uniform, and so V = −2 lnU has an exponential distribution,
with mean 2, which is the same as a χ2-distribution with df = 2. Thus, from
the additivity of χ2, when k tests are carried out, the aggregate

k∑

i=1

Vi = −2
k∑

i=1

lnUi

will have a χ2-distribution with df = 2k. In particular, for k = 2

P(V1 + V2 > t) = exp(− t

2
) ·
(

1 +
t

2

)

which for t = −2 ln(0.09)− 2 ln(0.07) = 10.134 yields an aggregate p-value of
0.038. Therefore, when two independent tests are individually not significant
at the level of, say, α = 0.05, then their aggregate may well be significant at
this same level. On the other hand, after obtaining a significant p1 < α from
a first data set, the observed p-value from the second data set may be such
that overall the aggregate from (p1, p2) is not significant at the level α.

c. A simple numerical computation — or a look into a χ2-table for df = 4
— shows that (1+t/2) ·exp(−t/2) = 0.05 if t = 9.49. Thus, to get a significant
aggregate p-value at the level of α = 0.05, we need

−2 lnU1 − 2 lnU2 > 9.49 or
U2 < 0.00865/U1

Therefore, when drawn into a unit square, the set of points (p1, p2) that
falls below the hyperbola p2 = 0.00865/p1 would be judged overall-significant
at the level α = 0.05. Under H0 the probability of (p1, p2) falling below this line
would be 0.05 (see Figure 3.16). For α = 0.01, the corresponding hyperbola
is p2 = 0.00131/p1.

Finally, we should realize that even though the rule to aggregate −2 ln p
across different tests is simple and general, other aggregation rules exist that
can be more powerful. For example, in aggregating two independent t-tests
from the same population, it is more powerful to merge the two samples (and
not to aggregate their ps) so as to obtain a single overall value of t and from
it, in turn, an overall value of p.
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3.26 Approximately How Tall Is the Tallest?

a. Mn is smaller than m if and only if all n realizations of U are smaller
than m, and so its DF is [F (m)]n. Also note that the rv F (U) is uniformly
distributed, which means that P[F (U) ≤ z] = z. From these facts, we obtain,
successively

P[Mn ≤ F−1(1 − x/n)] =
{P[U ≤ F−1(1 − x/n)]}n =
{P[F (U) ≤ (1 − x/n)]}n = (1 − x/n)n

b. First note that the last expression tends to e−x if n is not too small.
Next, let m = F−1(1− x/n); solving for x we get x = n [1− F (m)]. Inserting
these approximations and relations,

Gn(m) = P(Mn ≤ m) ≈ exp{−n · [1 − F (m)] }

This approximation is reasonable, even for moderate values such as n ≥ 10,
and is excellent for n ≥ 25. Therefore, if, as m increases, 1−F (m) tends to a
simple limiting form (such as a power or exponential function), then the last
equation gives the limiting distribution of Mn as n gets large.

It is important to realize here that for medium or large n, the only region
of interest, as far as Mn is concerned, is the rightmost tail of F . To illustrate,
the interval [−0.68,+0.68] contains the middle 50% of the standard normal
distribution, but the middle 50% of the maximum from n = 100 independent
standard normal rvs are contained in the interval [2.20, 2.76].

c. For the exponential distribution, 1 − F (m) = exp(−λm), and so

Gn(m) ≈ exp{−n e−λm}
= exp{−e−[λm−ln(n)]}

Therefore, Mn tends to the double exponential distribution with a location
parameter that increases in proportion to ln(n).

d. The two DFs are sketched in Figure 3.17. Solving from the expression
for Gn derived earlier, the medians are for males 216.8 cm (n = 4 million
males) and 221.7 cm (n = 120 million males); the corresponding figures for
females are 205.7 cm and 209.9 cm.

The effect of the population size is plausible if one considers the population
of 120 million as consisting of 30 subpopulations of 4 million each. It is clear
that 30 independent “trials” (each consisting of looking at the maximum of
n = 4 million) will usually lead to a larger overall maximum than just one
such “trial.” The mean base height difference of 6 cm between males (176 cm)
and females (170 cm) translates into a difference of more than 11 cm between
the tallest man and the tallest woman in the smaller population, and into a
corresponding difference of nearly 12 cm in the larger population. Looking at
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Fig. 3.17. Lower panel: the DF of the height of the tallest male in a population of 4
million (left curve), and 120 million males (right curve). In both populations, height is
normally distributed with a mean of 176 cm and a standard deviation of 8 cm. Upper
panel: same as bottom, but for females whose height is normally distributed with a mean
of 170 cm and a standard deviation of 7 cm.

extremes magnifies and exaggerates the differences seen at the more central
representative portions of the distributions. Note also that even the tallest
woman in a population of 120 million females will still be about 7 cm shorter
than the tallest man from a population of just 4 million males.
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3.27 The Range in Samples of Exponential RVs

a. Consider the process chronologically as a “race” of n rvs starting from
t = 0. In the statement of the problem we noticed that for n independent
exponential rvs, the minimum T(1) is again exponential, with rate nλ and,
therefore, expectation 1/(nλ).

According to the lack-of-memory property of exponential rvs (as described
on page 14), the remaining n − 1 rvs all have a shifted exponential density
k(u|T(1) = t) = λe−λ(u−t) for u ≥ t, the shift being the value of the smallest
realization. The situation then is just as if the remaining n − 1 rvs start a
“fresh race” from T(1) on, independent of the actual value of T(1). It follows
that the second-smallest value will, in expectation, be 1/[(n−1)λ] larger than
T(1) which itself has expectation 1/(nλ). Together, then, T(2) will have an
expectation equal to 1/(nλ) + 1/[(n − 1)λ], that is,

E[T(2)] =
1
λ

(
1
n

+
1

n − 1

)

Continuing this same argument, we see that for 1 ≤ k ≤ n

E[T(k)] =
1
λ

k∑

i=1

1
n + 1 − i

Now, the expectation of the rv Rn is

E[Rn] = E[T(n) − T(1)]
= E[T(n)] − E[T(1)]

=
1
λ

n∑

i=1

1
n + 1 − i

− 1
nλ

=
1
λ

n∑

i=2

1
n + 1 − i

=
1
λ

n−1∑

i=1

1
i

Clearly, for moderately large n this expression tends to (ln n)/λ.
b. Consider again that given some minimum value T(1) the remaining

n − 1 rvs are independent shifted exponentials with origin T(1). Therefore,
the probability that they all exceed T(1) by an amount less than or equal to
r > 0 is equal to

P[Rn ≤ r] = [ 1 − exp(−λr) ]n−1

which is the DF we were looking for.
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Fig. 3.18. The density fn(r) of the range of (from left to right) n = 10, 100, 1000,
10000 exponential rvs with rate λ = 1.

Clearly, for large values of n, this DF will differ only very little from the
DF of the maximum T(n), which is [ 1 − exp(−λr) ]n. This is in keeping with
the fact that for large n, the minimum T(1) tends to zero, so that effectively
the range tends to the maximum.

By differentiation, the corresponding density is

fn(r) = (n − 1)λ exp(−λr) [ 1 − exp(−λr) ]n−2

In hindsight, it is possible to “read” the form of this density intuitively as
follows. For the range to be equal to r, the following events are needed. First,
of those n−1 rvs that are larger than the minimum T(1), exactly n−2 exceed
T(1) by less than r; this event has probability [ 1 − exp(−λr) ]n−2. Second,
one of those n − 1 rvs exceeds T(1) exactly by r, the density of this event is
λ exp(−λr). Finally, there are n−1 mutually exclusive ways to pick this latter
rv, which together yields the formula for the density fn.

Four examples (n = 10, 100, 1000, 10000) of fn are graphed in Figure 3.18
that show the basic logarithmic relation that multiplicative (factor of 10)
progressions of n translate into additive shifts of fn of about ln 10 ≈ 2.30.
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3.28 The Median in Samples of Exponential RVs

a. For M to be equal to m, the following events need to happen. First,
exactly k − 1 out of the 2k − 1 realizations have to be smaller than m; for
each realization, this probability is equal to 1 − e−λm, and there are

(
2k−1
k−1

)

different ways to choose these k−1 realizations out of 2k−1. Next, one of the
realizations has to be equal to m, which has the density λe−λm; given the first
choice, there remain k ways to choose this realization. Finally, the remaining
k−1 realizations all have to be larger than m, which for each realization has a
probability equal to e−λm; there are no further choices involved here, because
this set is fixed by the two previous choices. Putting this together, the density
g2k−1 of M is

g2k−1(m) = k

(
2k − 1
k − 1

)

(1 − e−λm)k−1 · λe−λm · (e−λm)k−1

= λk

(
2k − 1
k − 1

)

e−kλm · (1 − e−λm)k−1

b. The direct, but harder way is to multiply g2k−1(m) by m, and to in-
tegrate it over the positive reals; in doing so, we need to expand the term
(1 − e−λm)k−1 binomially.

Alternatively, consider that the smallest realization will have an exponen-
tial distribution with rate (2k−1)λ (see statement (i) on page 14) and thus an
expectation equal to the reciprocal of this rate. Next, the distance or “waiting
time” from the smallest to the second-smallest realization is again an expo-
nential rv, with rate (2k − 2)λ. Summing the successive expected distances
from one order statistic to the next up to the kth realization in ascending
order (i.e., up to the sample median), we directly obtain

E[M] =
1
λ

k∑

i=1

1
2k − i

=
1
λ

2k−1∑

i=k

1
i

Approximating the latter sum by the integral of 1/x from k to 2k − 1, the
sum tends, for large k, to ln(2k − 1) − ln(k) = ln(2 − 1/k) ≈ ln 2, so that
E[M] → ln 2/λ, which is the population median, namely the value that each
of the generic exponential rvs exceeds with probability of 1

2 . However, for
small k, E[M] is considerably larger than ln 2/λ (e.g., for k = 1, it is equal to
1/λ), and this bias decreases only slowly with k. For example, even when M
is estimated from a sample of size 15, its still overestimates the true median
considerably, in expectation by nearly 5%.
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3.29 Breaking the Record

a. If, in the most extreme case, the n = 100 realizations form a perfectly
increasing order then there will be 100 records. On the other hand, if the first
realization already happens to be the largest, then there will be just 1 record.
In general, then, the number of records among the first n realizations may be
any integer from 1 to n.

The Xi were assumed to be identically and independently distributed;
this implies that all n! permutations of the n realizations are equally likely,
only one of which forms a perfectly increasing order. Thus, it is extremely
improbable (i.e., p = 1/n!) that n records will be observed. Similarly, there
are (n − 1)! permutations in which the first realization is largest (the other
n − 1 realizations can then be arranged arbitrarily) so that with probability
p = (n − 1)!/n! = 1/n there will be just 1 record.

Let E(n − 1) be the expected number of records with n − 1 realizations.
Now, if a new, nth realization is added, then it may either exceed the largest
value seen in the first n−1 realizations, or it may not. In the last case, no new
record is added to the previous ones, and in the first case, one further record is
added. How likely are these cases? Clearly, the probability that the maximum
of n realizations Xi will occur, specifically, at the last position i = n is just 1/n
(the maximum may occur at any of the n positions with equal probability).
Weighing the two cases by their probabilities,

E(n) = (1 − 1
n

) · E(n − 1) +
1
n
· [1 + E(n − 1)]

= E(n − 1) +
1
n

Given that E(1) = 1, it follows that

E(n) =
n∑

i=1

1
i

For example, with n = 100 realizations there will on average be about 5.19
records. Clearly, E(n) increases in an approximately logarithmic way with n.

Note that by definition records are determined by ordinal information only.
Thus, for any given sequence of realizations, the number of records does not
change when all values undergo the same monotone increasing transform.

b. Consider the different, mutually exclusive ways in which the second
record takes on the specific value x. First, the rv X1 must take on some
value u, the corresponding density is f(u), where the admissible region is
−∞ < u < x. For, if already X1 ≥ x then the second record could not possibly
take on the value x. Given that X1 = u, a variable number i, i = 0, 1, . . . of
further nonrecord realizations may follow that all have to be smaller than or
equal to X1 = u (otherwise the first of them would be a record). The different
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values of i correspond to different, mutually exclusive ways whose probabilities
add; the probability of i realizations smaller than u equals [F (u)]i. Finally, the
next realization needs to attain the value x > u; the corresponding density is
f(x). Integrating across the admissible region of the variable u we get

g2(x) =
∫ x

−∞

[
f(u) · [F (u)]0

]
du · f(x) +

∫ x

−∞

[
f(u) · [F (u)]1

]
du · f(x) + . . .

=
∫ x

−∞

[

f(u) ·
( ∞∑

i=0

[F (u)]i
)]

du · f(x)

= f(x) ·
∫ x

−∞

f(u)
1 − F (u)

du (because
∞∑

i=0

zi =
1

1 − z
for 0 ≤ z < 1)

= −f(x) · ln[1 − F (x)]

c. We can reason very much as we did in part b. Suppose, then, the claim
to hold for some integer r:

gr(x) = f(x) · 1
(r − 1)!

· {− ln[1 − F (x)]}r−1

What, then, is the density gr+1(x)? For the (r + 1)th record to take on the
value x, the following needs to be case. First, the rth record must take on
some value u, the corresponding density being by assumption gr(u), where
again the admissible region is restricted to −∞ < u < x, because otherwise
the (r + 1)th record could not possibly take on the value x. Following the rth
record equaling u, a variable number i, i = 0, 1, . . . of nonrecord realizations
may arise that, therefore, all have to be smaller than or equal to u. Finally, the
next realization needs to take on the value x > u, the corresponding density
being f(x). Integrating across the admissible region of the variable u we get,
using a summation technique as in part b.,

gr+1(x) =
∫ x

−∞

[

gr(u) ·
( ∞∑

i=0

[F (u)]i
)]

du · f(x)

= f(x) ·
∫ x

−∞

f(u)
1 − F (u)

1
(r − 1)!

{− ln[1 − F (u)]}r−1
du

= f(x) · 1
r!

· {− ln[1 − F (x)]}r

which is just the proposition for gr+1(x). Given that the proposition holds for
r = 1 (when g1(x) = f(x)), it holds generally for any integer r.

Figure 3.19 shows the density gr(x) of the rth record for r = 1, 2, 4, 8, 16
when the parent distribution f(x) (which is shown for r = 1) is the standard
normal. The means of these distributions necessarily increase; the variances
may be seen to decrease with r.
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Fig. 3.19. The density gr(x) of the rth record for (from left to right) r = 1, 2, 4, 8,
16 when the parent distribution (r = 1) is standard normal.

d. By the definition of the (r+1)th record, it is the first realization following
the rth record that is larger than the rth record was. By the lack-of-memory
property of exponential rvs (as described on page 14), the (r + 1)th record
will exceed the rth record by an exponentially distributed excess, whatever
the specific value and the distribution of the rth record are. For exponen-
tial rvs, the first record is by definition exponentially distributed. The second
record exceeds the first record by an exponentially distributed excess; there-
fore, it is distributed as is the sum of two such exponential rvs. Continuing
this argument inductively, we see that the rth record is distributed as is the
sum of r independent exponential rvs, each with rate λ. This sum has the
gamma (r, λ)-density (cf. page 1)

gr(x) = λe−λx · (λx)r−1

(r − 1)!

which agrees with our general result for gr found in part c. For exponential
rvs, new records exceed the previous record by an amount that always has the
same (exponential) distribution (and therefore, e.g., the same expectation).
This is quite different from the case of the normal distribution shown in Figure
3.19, in which old records are exceeded by new ones by an amount that on
average gets smaller and smaller as r increases.
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3.30 Paradoxical Contribution

Clearly, 175 g is considerably above the sum of the individual averages,
given the relatively small standard deviations. It is true that A’s average is
higher, but note that B’s spread is twice as large as A’s. Therefore, in rather
extreme regions of the joint amount of prey — such as 175 g clearly is — B is
much more likely to have contributed considerably. But A’s and B’s success
rates are coupled by a strong negative correlation. Paradoxically, this implies
that on those occasions A is actually quite likely to have had a particularly
unsuccessful day — despite the large overall prey!

For systematic quantitative inferences, let the rvs A,B denote the amount
of prey of bird A and B, respectively. What, in essence, we are looking for is
the conditional expectation

μA|s = E[A|A + B = s]

that is, the expectation of the associated conditional density (writing for short
densities as if they were probabilities)

P(A = a|A + B = s) =
P(A = a,B = s − a)

P(A + B = s)

The numerator in the last expression is a bivariate normal, and the denom-
inator is a univariate normal, because the sum of two normal rvs is normal
again. Inserting the appropriate densities and algebraically simplifying the re-
sulting expression, we obtain again a univariate normal, with an expectation
that may be conveniently expressed in multiples of μA as follows

μA|s
μA

=
1 + (1 + t)v� + tv2

1 + 2v� + v2

where v = σA/σB and t = (s − μB)/μA.
The expression gives the conditional mean μA|s in units of the uncondi-

tional mean μA. For the figures given, with � = −0.8, we get μA|s = 35 g,
which is actually considerably less than A’s unconditional average of 60 g.
With � = 0, we get μA|s = 75 g, which is still clearly less than B’s share of
μB|s = 100 g, despite A’s larger overall mean, reflecting again the relatively
larger influence of the ratio σA/σB in extreme regions of the sample space.

The preceding equation permits a quite general analysis of the situation.
For example, if s = μA+μB , i.e., t = 1, then it is generally true that μA|s = μA,
independent of the variances and the correlation. However, even if � = 0 the
“naive” expectation of a strictly mean-based “proportional share” μA|s =
s · μA

μA+μB
will in general not hold.
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3.31 Attracting Mediocrity

a. If σ equals only 3 then it is extremely unlikely that when Peter is tested a
result like 105 could obtain — after all, this outcome is five standard deviations
above his “true” mean of 90 (see the top panel in Figure 3.20). Therefore, given
the measurement of 105 we can be fairly confident that Paula was originally
selected. Given that the error in repeated measures is independent and has
zero mean, our natural prediction is that the second measurement should be
close to 110, Paula’s actual IQ.
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Fig. 3.20. The distribution of observed IQ measurements when Peter (IQ 90) or Paula
(IQ 110) is selected at random with p = 1

2
, for different values of σ. For σ = 3 (top

panel), measurements of Peter’s and Paula’s IQ are clearly separated, so that results
such as x = 105 will nearly always stem from Paula. However, as σ increases, the large
measurement error (middle panel σ = 10, lower panel: σ = 20) dilutes the IQ difference
between Peter and Paula. Note the different vertical scales for the three panels.

b. Reasoning as in part a., we must realize that with σ = 20 the measure-
ment error can easily outweigh the base difference of 20 IQ units that exists
between Peter and Paula2, see the bottom panel in Figure 3.20. Specifically,
a value like 105 could then nearly as likely stem from a single measurement of
Peter’s IQ as from one of Paula’s. But if either of these cases is approximately
2 Remember that a normal distribution with μ = 0, σ = 20 effectively ranges from

about −40 to +40.
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equally probable, then our best prediction for the second measurement is the
overall mean of Peter’s and Paula’s IQ, i.e., 100.

More formally, let the indicator rv I equal 0 if Peter and 1 if Paula was
selected. Also, to be somewhat more general, let us assume that Peter’s IQ is
μ0, and that of Paula is μ1 > μ0. Bayes’ theorem states that the probability
that Peter was selected, given the observed measurement x, is

P(I = 0|X = x) =

=
P(X = x|I = 0) · P(I = 0)

P(X = x|I = 0) · P(I = 0) + P(X = x|I = 1) · P(I = 1)

=
1

1 + n(x|μ1,σ2)
n(x|μ0,σ2)

(because P(I = 0) = P(I = 1) =
1
2
)

=
1

1 + r(x)

where r(x) =
n(x|μ1, σ

2)
n(x|μ0, σ2)

= exp

{(
μ1 − μ0

σ

) [
x − μ0+μ1

2

σ

]}

Our prediction E2(x) for the second measurement is a weighted mean of μ0

and μ1, the weights being the two complementary conditional probabilities
P(I = 0|X = x) and P(I = 1|X = x) = 1 − P(I = 0|X = x). That is,

E2(x) = μ0 ·
1

1 + r(x)
+ μ1 ·

r(x)
1 + r(x)

= μ0 + (μ1 − μ0) ·
r(x)

1 + r(x)

Clearly, if r(x) → 1, then E2(x) → (μ0 + μ1)/2. Our result indicates that this
condition will be satisfied when σ � μ1 − μ0, i.e., when the measurement
error dominates the IQ base difference, or when the measurement is close
(in terms of σ) to the overall mean, x ≈ (μ0 + μ1)/2. In the first case of
a large measurement error, any given measurement x may have equally well
resulted from selecting Peter or Paula. In the second case of measurements
close to the overall mean, the odds also favor neither Peter nor Paula. In
both cases it seems reasonable, for lack of more specific evidence, to predict
a second measurement that is close to the overall mean, (μ0 + μ1)/2. Finally,
if r(x) → ∞, then E2(x) → μ1. The form of r(x) shows that this condition
will be satisfied when either x is exceptionally large, x � (μ0 + μ1)/2, or the
measurement x is at least above average, x > (μ0 + μ1)/2, and σ is small
relative to μ1 − μ0. Both cases strongly suggest that Paula was selected, and
so we expect a second measurement that is close to Paula’s mean, μ1.

For the values given in our example, μ0 = 90, μ1 = 110, and x = 105, we
have

r(x) = exp
(

100
σ2

)
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Fig. 3.21. The predicted value of the second IQ measurement as a function of the
standard error of the measurement, σ, when the first measurement equaled x = 105.
Peter’s IQ equals 90, Paula’s 110.

and so the predicted mean for the second measurement is

E2 = 90 +
20

1 + exp
(
− 100

σ2

)

This function is shown in Figure 3.21 which illustrates and summarizes our
conclusions reached earlier. Specifically, for σ = 3, we would expect a value
of E2 = 109.9997, very close to Paula’s IQ, whereas for σ = 20, a value of
E2 = 101.24 is predicted, quite close to Peter’s and Paula’s overall IQ mean
of 100.

c. Note that a given measurement can be represented as X = T + E,
the sum of the (randomly selected) true IQ, plus the associated measurement
error (which may be positive, zero, or negative). If we knew the true IQ T of
the specific person selected, then we should obviously predict just this value T
as the expected outcome of the second, repeated measurement of that person,
because the error of the second measurement has a mean of zero.

Now, we do not actually know the true IQ of the selected person for sure,
but we do at least have some indirect evidence. Specifically, the observed
value of x attaches to each of the various possible true IQ values a different
(conditional) probability. For example, a very high value of x is certainly
suggestive of a high true IQ T, especially if σ is not too large. Weighing
each possible IQ value by this conditional probability, we get the conditional
expectation E[T|T + E = x]. This is a special case of a question that we
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already looked at in Problem 1.30, see solution 3.30. The special conditions
here are that the mean of E is zero, and that T and E are independent.
Translated into the present notation, our previous result now reads

E[T|T + E = x] = μT ·
1 +

(
x

μT

)
· r2

1 + r2

where r2 = (σT /σ)2 > 0 and the text of the problem stated that x > μT . It
is now elementary to show that μT < E[T|T + E = x] < x.

This result means that the repeated measurement of a person with an
above-average first measurement also tends to be above average, but it also
tends to be systematically smaller than the first measurement was. The latter
aspect is often called regression toward the mean, after Francis Galton, who
introduced this concept in 1877. Galton noted that the sons of tall fathers are
usually also taller than average, but tend to be somewhat shorter than their
fathers. That this phenomenon is not to be causally explained can be seen by
the fact that it also holds when the roles of fathers and sons are reversed: the
fathers of tall sons are mostly also tall, but not quite as tall as their sons are.
Once it is realized, the phenomenon of the regression toward the mean can
be recognized in many everyday situations. For example, a restaurant seemed
excellent when it was first visited; upon revisiting, it still seems fairly good,
but not quite as good as the first time.

An intuitive, informal explanation of this phenomenon is as follows3. Con-
sider, to be specific, that T is normally distributed with a mean of μT = 100
and a standard deviation of σT = 10, as with many IQ tests. Consider that a
person was drawn at random, the measured IQ being x = 130. What should
we expect when the IQ of that same person is measured a second time? Es-
sentially, three groups of people may be distinguished whose measurement led
to the observation of x = 130. First, there will be people whose true IQ is
actually lower than 130 (e.g., 125) but the measurement error happened to
be positive (e.g., +5), for example, because they were lucky in guessing the
right alternatives. For these people, we would thus predict a value below 130
for the second measurement. Second, there will be people whose true IQ is
actually higher than 130 (e.g., 135) but the measurement error happened to
be negative (e.g., −5). For these people, we would thus predict a value above
130 for the second measurement. Finally, there are those whose true IQ is
actually 130 (or very close to it); for those people, we would predict 130 for
the second measurement as well. The crucial point now is that there are more
people in the first than in the second group: this follows from our assumption
that across the population considered, the true IQ has a normal distribution
around the mean of μT = 100. This assumption implies that there will be
more people with an IQ of, say, 125 (first group) than those with 135 (second
group). Therefore, we expect more people who on the second measurement

3 see Freedman, D., Pisani, R., and Purves, R. (1997).
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show a lower rather than a higher result. Complementary considerations show
that when the first measurement was below average, the second measurement
will still tend to be below average yet somewhat higher, i.e., closer to the
mean4.

4 A general and elegant derivation of a basic related result is due to Das, P. and

Mulder, P.G.H. (1983).
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3.32 Discrete Variables with Continuous Error

a. Clearly, when σ → 0 f will simply tend to P(N = n), as there will
be no significant measurement error. When σ increases to, say, σ = 0.15,
each integer realization of N = n is distorted by an error that is still small
enough to keep the overall measurement S clearly separated from realizations
of S arising from N = n − 1 or N = n + 1. Thus, each integer will then
be surrounded by a component normal density carrying a weight equal to
P(N = n), yielding a density f with multiple separate modes centered around
the integers. However, as σ increases even more, say to σ = 0.5, then repeated
measurements S arising from N = n and N = n + 1 will show significant
overlap. Typically, the resulting density f gets unimodal — if the underlying
distribution of N is itself unimodal — when σ exceeds 0.55 and approaches a
smooth, “well-behaved” shape for σ > 0.70.
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Fig. 3.22. A geometric rv (p = 0.2) convolved with normal N(0, σ2) noise. The
undistorted distribution of N is indicated by the discrete vertical lines. Upper panel:
σ = 0.15; middle panel: σ = 0.35; lower panel: σ = 0.75. Note the different vertical
scale used for the top panel.

Figure 3.22 shows as an example the distibution of a geometric rv that is
convolved with noise following a normal N(0, σ2) distribution. If the amount of
the noise (σ) is small relative to the unit steps (n = 1, 2, . . .) of the geometric
rv (top level), then the discrete nature of the underlying distribution of N
remains clearly visible in the multiple peaks of the resulting distribution of
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measurements, S. However, if σ increases (middle and bottom panels) then
the noise dilutes this underlying discrete structure, and the distribution of the
measurements assumes a smooth, unimodal form.

b. Let g(x|μ, σ2) be the normal density with mean μ and variance σ2. The
basic insight is to note that conditional on the event N = n, the observation
S = s if and only if the measurement error — which we assumed follows a
normal density with mean 0 and standard deviation σ — is equal to E = s−n.
In this way, we get

f(s) =
∞∑

n=0

f(s|N = n) · P(N = n)

=
∞∑

n=0

g(s − n|0, σ2) · P(N = n)

=
∞∑

n=0

g(s|n, σ2) · P(N = n)

But this is a discrete mixture of normal densities with means μ = n and
common standard deviation σ, the mixture weights being given by P(N = n).
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3.33 The High-Resolution and the Black-White View

a. The likelihood function for the data as seen by researcher A is

L(μ) =
n∏

i=1

f(ti|μ)

=
1
μn

exp

(

− 1
μ

n∑

i=1

ti

)

which implies

ln L(μ) = −n · [ ln(μ) +
1
μ
· t ]

where t is the arithmetic mean of the ti. Differentiating this expression gives

∂ ln L

∂ μ
= −n · [ 1

μ
− 1

μ2
t ]

=
−n

μ2
· [μ − t ]

Thus, the maximum of the likelihood function occurs at μ̂ = t, which is the
ML estimate obtained by A. As we will reason, E[t] = μ, so that this estimate
is unbiased.

Also,

∂2 ln L

∂ μ2
= −n · [− 1

μ2
+

2
μ3

t ]

=
n

μ3
· [μ − 2t ]

Taking expectations, noting that E[t] = μ, we get

a.s.e.2(μ̂) =
−1

E
[

∂2 ln L
∂ μ2

]

=
μ2

n

Alternatively, because μ̂ is just the sample mean t, we could have derived
this result in the present case, without explicit calculations, from general
properties of sums of rvs, as follows. First, we note that the raw data, the
exponential rvs ti, have a mean of μ and variance μ2. Thus, the sum of the ti
has a distribution (in fact, a gamma, cf. page 1) with mean nμ and variance
nμ2, which in turn means that the estimate t has mean μ and variance μ2/n.
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Thus, in the present case, the s.e. derived from the log-likelihood function
holds not only asymptotically, i.e., for large samples, but also for any finite n.

b. From the DF of the ti, the probability for any single realization to be ≤ c
equals 1 − exp(−c/μ), the complementary event has probability exp(−c/μ).
Thus, for the data as seen by researcher B, the likelihood function is

L(μ) = [ 1 − exp(−c/μ) ]k · [ exp(−c/μ) ]n−k

or, equivalently

ln L(μ) = k ln[ 1 − exp(−c/μ) ] − (n − k)c/μ

Differentiating lnL with respect to μ gives

∂ ln L

∂ μ
=

c

μ2

[

n − k

1 − exp(−c/μ)

]

On setting this equal to zero and solving for μ, the ML estimate obtained by
B is

μ̂ = − c

ln(1 − k/n)

This estimate makes sense intuitively: k/n represents an estimate of the proba-
bility for a single measurement not to exceed the threshold c; equating this es-
timate with the corresponding theoretical probability 1−exp(−c/μ), we obtain
the estimate μ̂. A technical problem with this estimate is that it is undefined if
k = 0 or k = n. Therefore we use the modified estimate μ̂ = −c/[ln(1−1/2n)]
(i.e. k∗ = 1/2) if k = 0, and μ̂ = 0 if k = n.

c. To determine the a.s.e. of B’s estimate of μ, we need, as before, the
expected second derivative of the log-likelihood. To find this expectation it
helps to rewrite the first derivative as follows

∂ ln L

∂ μ
=

c

μ2 [1 − exp(−c/μ)]
· {n[1 − exp(−c/μ)] − k}

Let us rewrite this product formally as f(μ) · g(μ). Its derivative is equal to
f ′(μ) · g(μ) + f(μ) · g′(μ). Now, the only random quantity — across which we
will have to take the expectation — in this expression is k. Its expectation
appears only in the first summand, f ′g, and equals E[k] = n[1 − exp(−c/μ)].
Therefore, E[g(μ)] = 0, and we are left with only the term f(μ) · g′(μ), which
is independent of k. In this way we get

E[
∂2 ln L

∂ μ2
] = f(μ) · g′(μ) = − c

μ2 [1 − exp(−c/μ)]
· n · exp(−c/μ) · c

μ2

Simplifying and rearranging, we obtain
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a.s.e.2(μ) =
−1

E
[

∂2 ln L
∂ μ2

]

=
μ4

nc2
[exp(c/μ) − 1]

The a.s.e. is shown for μ = 1 in Figure 3.23 as a function of the threshold
value c.
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Fig. 3.23. The asymptotic standard error (a.s.e.) of the estimate of the mean from
a sample of n = 100 exponential rvs with actual mean μ = 1, as a function of the
threshold value c used to digitize these rvs. For comparison, the horizontal line shows
the a.s.e. of the estimate from the original (nondigitized) rvs, which equals 0.1 in this
case. The value of c that minimizes the a.s.e. is 1.59; at this point, the a.s.e. for the
estimate from the digitized data is only about 1.24 as large as the a.s.e. of the estimate
derived from the original data.

d. Figure 3.23 illustrates that for a given value of μ there is one threshold c
that minimizes the a.s.e. of B’s estimate. Thus, if one could technically adjust
this threshold, one would like to set it such that the resulting estimate of μ
is maximally precise. To find this “best” threshold, we need to differentiate
a.s.e.2(μ) as obtained earlier with respect to c, set this expression to zero, and
solve for c. Letting Q = c/μ > 0, this procedure leads to the equation

1 − exp(−Q) =
1
2
Q

which cannot be solved explicitly; however, numerically it is not difficult to
compute its root, which equals Q = 1.59. This means that
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copt = 1.59 · μ

This optimal threshold value seems surprisingly large. Indeed, using it, nearly
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Fig. 3.24. The estimate μ̂ = −c/[ln(1− k/n)] as a function of the observed fraction,
p = k/n, of realizations ≤ c. Obviously, the larger this ratio, the smaller we will estimate
the mean μ to be. The threshold c illustrated here is 1.59 ·μ, in which case the expected
value of p is about 0.80, which would lead to an estimate close to μ. Note that in
this region of p small or even medium sampling errors in p = k/n do not influence the
estimate μ̂ too much. This is quite different if we choose c smaller so as to decrease the
expected fraction (p) of realizations ≤ c (consider, e.g., p = 0.2, where the curve gets
quite steep, so that even relatively small errors in p will strongly influence μ̂).

80% of all realizations will, in expectation, fall below it. Intuitively, one would
rather expect a median-like threshold value to be maximally informative —
so that about an equal number of realizations would fall above and below
it. Also, one might expect threshold values that are exceeded (on average) in
80% versus in 20% to be essentially equivalent, yielding in a sense complemen-
tary — and thus equally informative — black-and-white pictures, much like
a positive image and its negative. However, the decreasing slope of the func-
tion in Figure 3.24 indicates that this intuition neglects that with a relatively
high threshold c, the sampling error inherent to the binomial proportion k/n
influences the estimate μ̂ much less than with a lower threshold. The value
of copt = 1.59 · μ represents the best compromise between these conflicting
aspects.

How good is B’s estimate, relative to that of A? Forming the ratio of the
a.s.e. of the estimate obtained by B to that obtained by A, we get
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a.s.e. of B
a.s.e. of A

=
μ

c

√
exp(

c

μ
) − 1

which depends on the ratio μ/c only. If B uses the optimal value copt =
1.59 · μ then the ratio of the a.s.e.s equals 1.24. This value seems surprisingly
small: after all, B receives only an extremely condensed version of the original
complete data set as seen by A. Even so, the a.s.e. of the estimate derived
from these highly condensed data is less than just one-quarter larger than
that of A’s estimate; that seems like little cost (a slightly larger a.s.e.) for
a considerable benefit (much more compact data). One practical drawback,
though, is that copt depends on μ: in order to set the optimal threshold, one
would in principle have to know beforehand exactly how large μ is — in which
case no estimation would be needed. In practice, some prior estimate of μ will
be used in order to select c. The preceding results make it clear that this will
usually degrade the performance of B’s estimate in proportion to the error of
the prior estimate.
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3.34 The Bivariate Lognormal

a. The text of the problem provides the basic result that if U = exp(X) is
a lognormal rv (i.e, X is a normal rv with mean μx and variance σ2

x), then

E[U] = exp
(

μx +
1
2
σ2

x

)

The variance of U is defined as

Var[U] = E[(U − E[U])2] = E[U2] − E2[U]

By the definition of the rv U = exp(X), we have U2 = [exp(X)]2 = exp(2X).
Now, the rv W = 2X is normal again, it has mean 2μx and variance 4σ2

x.
Therefore, the expectation of U2 can be determined by applying the basic
result about E[U] to the rv W. This gives

E[U2] = E[exp(W)]
= exp

(
2μx + 2σ2

x

)

where the term 2σ2
x results, more explicitly, from 1

2 (4σ2
x).

On the other hand, again using the result about E[U] we have

E2[U] =
[

exp
(

μx +
1
2

σ2
x

)]2

= exp
(
2μx + σ2

x

)

Inserting these partial results, we finally obtain the variance of U as

Var[U] = E[U2] − E2[U]
= exp

(
2μx + σ2

x

)
·
[
exp

(
σ2

x

)
− 1

]

b. Under the bivariate normal model, � = 0 implies that X and Y are
stochastically independent. Now, if two rvs are independent, then functions
of them — such as exp(X) and exp(Y) — are independent, too. Because
independence implies zero correlation, the correlation between U and V is
zero as well.

c. If � = +1, we may write Y = α + βX deterministically. From standard
regression theory we also know that the regression coefficient β = �

σy

σx
= 1

under the present assumptions of � = +1 and σx = σy. Thus, Y = α + X,
deterministically. Inserting this relation into the definition of the U,V, we get
U = exp(X) and

V = exp(Y) = exp(α + X) = exp(α) · exp(X) = k · U

where k = eα is a positive constant. Clearly, the correlation of U with V =
k · U is perfect.
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Why does this reasoning not go through when � = −1, even though in
the bivariate normal case � = +1 and � = −1 play perfectly symmetrical
roles? The reason is that with � = −1 (and still assuming that σx = σy) the
regression coefficient becomes β = −1, which implies

V = exp(Y) = exp(α − X) =
exp(α)
exp(X)

=
k

U

Whereas U shows a perfect linear correlation with k · U, that is not true of
U and k/U.

Note that the assumption of σx = σy is critical in both cases � = ±1; if it
does not hold, then U and V will not be perfectly correlated, even if � = +1.
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Fig. 3.25. The correlation between U and V as a function of the correlation � of
the original rvs X and Y, when σx = σy = σ, for σ = 1

2
, 1, 2 (the lowest, middle, top

solid line on the left side of the graph, respectively). The comparison with the identity
function (the dotted line y = x) illustrates that the correlation between U and V is
always weaker than that between X and Y, except in the limiting case of � = +1. Note
that for σ ≥ 2, the correlation is never negative by any substantial amount — even as
� → −1!

d. The correlation coefficient is defined as the covariance divided by the
product of the standard deviations of the two rvs whose correlation we seek
to determine. The covariance in turn is defined as

Cov[U,V] = E[UV] − E[U] · E[V]
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The last two expectations in this expression are known from the basic result
about E[U] so that the only really new part concerns the expectation of the
product UV. Now, by the definition of U, V

UV = exp(X) · exp(Y) = exp(X + Y)

Let the rv S = X + Y. Clearly, S is normally distributed, with mean μs =
μx + μy and variance σ2

s = σ2
x + σ2

y + 2�σxσy. It then follows from the basic
result about E[U] that

E[UV] = E[exp(S)]

= exp
(

μs +
1
2
σ2

s

)

Putting together this result — with μs, σs expressed in terms of the original
parameters as earlier — and the previously known facts about the means and
variances of U, V, the correlation coefficient is, after slight simplification,
found to be

corr(U,V) =
exp(�σxσy) − 1

√[
exp(σ2

x) − 1
] [

exp(σ2
y) − 1

]

Note that the correlation between U and V is completely independent of the
means of X and Y. As explained earlier, the exponentiation turns the location
parameters μx, μy of X and Y into scaling factors of U and V. Because
variations of the scaling factors generally do not change linear correlations,
the result was to be expected. On the other hand, the standard deviations
σx, σy of X and Y turn into powers for U and V, which generally do influence
the linear correlation coefficient.

The result about the correlation of U and V may also be used to verify
the properties we already discussed in part c. Note, in particular, that in the
equal-variance case σx = σy = σ we get

corr(U,V) =
exp(�σ2) − 1
exp(σ2) − 1

The correlation of U and V is shown in Figure 3.25 as a function of the
correlation � of the original rvs X and Y, for three values of σ. For � = +1, the
two correlations are identical, but for any other value the correlation between
U and V is weaker than that between X and Y.
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3.35 The arcsin(
√

p) Transform

a. If n is large, then the estimate p̂ will tend to be close to p. That is, the
sampling error Δp = p̂ − p is bound to be small, so that Taylor’s expansion
holds in a neighborhood of the order of Δp around p. Therefore,

g(p̂) = g(p + Δp) ≈ g(p) + Δp · g′(p)

The rv Δp = p̂ − p has E[Δp] = 0 and variance

Var[Δp] = Var[p̂ − p] = Var[p̂] = p(1 − p)/n

Thus, the expectation of the transformed estimate g(p̂) is, approximately,

E[g(p̂)] ≈ E[g(p) + Δp · g′(p)]
= g(p) + E[Δp] · g′(p)
= g(p)

and its variance is

Var[g(p̂)] ≈ Var[g(p) + Δp · g′(p)]
= Var[Δp] · [g′(p)]2

=
p(1 − p)

n
· [g′(p)]2

b. The last result in part a. indicates that if g would satisfy the differential
equation

g′(p) =
1

2
√

p(1 − p)

then the variance of the transformed estimate, Var[g(p̂)], would indeed be
independent of p (the factor 2 in the denominator here is arbitrary; it just
helps to avoid trivial scaling issues). Standard analysis techniques5 show that
the solution to this differential equation is

g(p) = arcsin(
√

p)

Thus, for this particular choice of g, the variance of the transformed estimate
equals Var[g(p̂)] = 1/(4n), which is independent of p.

Figure 3.26 illustrates the principal behavior of the transform g. If the
scaled transform g∗(p) = 2

π arcsin(
√

p) is used instead, then the transformed
p-values fall into the interval [0, 1], just like the original probabilities do.
5 It is simplest to start from the inverse of g: p = g−1(v) = sin2(v); next, differenti-

ate p with respect to v to get dp/dv = 2 sin(v) cos(v) = 2
√

p(1 − p), which yields
the desired result by the differentiation rule for inverse functions.
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Fig. 3.26. The function g(p) = arcsin(
√

p) is nearly linear across most of its range.
For very small or large p, the curvature of g compensates for the quadratic decrease in
the variance of p̂ in those regions.
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3.36 Binomial Trials Depending on a Latent Variable

If n is not too small, p̂ will not show a very large sampling error. That is, p̂
will not be too far away from p, and so ĉ = Φ−1(p̂) will be in a neighborhood
of Φ−1(p) that can approximated by the first-order Taylor expansion to Φ−1

around p:

ĉ = Φ−1(p̂) ≈ Φ−1(p) + (p̂ − p) · dΦ−1(p)
dp

Therefore, the approximate standard error of ĉ can be found by computing
the standard deviation (s.d.) of the right-hand side, which contains only one
random quantity, namely, p̂. According to standard calculus relations, the
derivative dΦ−1(p)/dp is equal to 1/Φ′(x), evaluated at x = Φ−1(p). Note
that Φ′(x) is simply the density corresponding to the DF Φ(x). This implies
that the standard error (s.e.) of ĉ is, approximately, equal to

s.e.(ĉ) ≈ s.d.
[

Φ−1(p) + (p̂ − p) · dΦ−1(p)
dp

]

=
s.d.(p̂)

Φ′[Φ−1(p)]

By standard binomial theory, s.d.(p̂) is equal to
√

p(1 − p)/n. Estimating p
by p̂, we find the approximate standard error of ĉ as

s.e.(ĉ) ≈
√

p̂(1 − p̂)/n

Φ′[Φ−1(p̂)]

In the logistic case, considerable simplifications of this somewhat unwieldy
expression arise, which probably helped to make this model so popular. From
Φ(x) = 1/[1 + exp(−x)], we have Φ′(x) = exp(x)/[1 + exp(x)]2; also, the
inverse DF is given by Φ−1(p) = ln[p/(1 − p)]. Taken together, this implies
that Φ′[Φ−1(p)] = p(1 − p), and so the approximate standard error of ĉ takes
the particularly simple form

1
√

n p̂ (1 − p̂)

In the normal case, Φ′(x) is the standard normal density function, and
Φ−1(p̂) is the usual “zp̂-value” corresponding to p̂. In this case, the approxi-
mate standard error of ĉ is estimated by

exp
(

1
2
z2

p̂

)

·
√

2π p̂(1 − p̂)/n

These two standard errors are compared graphically in Figure 3.27 for n =
100. This comparison reveals that the s.e. of ĉ is minimal if p = 1

2 . Note that
in contrast the s.d.

√
p(1 − p)/n of the associated binomial estimate p̂ — the

relative frequency of successes seen in the n trials — is maximal, not minimal,
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Fig. 3.27. The approximate standard error of ĉ under the logistic (upper curve) and
the normal model (lower curve) when the estimate is based on n = 100 trials.

if p = 1
2 , and this binomial s.d. forms the numerator of s.e.(ĉ). However, the

denominator is also maximal for p = 1
2 , and it exerts the dominating influence

on the behavior of the ratio. This fact essentially reflects the geometry of the
function c = Φ−1(p). Near p = 1

2 , small or even medium sampling errors
in estimating p will just lead to minor associated errors in the estimate of c
because the function c = Φ−1(p) is relatively flat in this region. This, however,
is quite different when p is close to 0 or 1, in which case even small sampling
errors |p̂ − p| will lead to relatively large errors |ĉ − c| because c = Φ−1(p) is
quite steep in those regions.

Figure 3.27 also indicates that under the logistic model the s.d. of ĉ is
generally larger. Partly, this is simply due to the spread of the logistic dis-
tribution, which is larger by a factor of π/

√
3 ≈ 1.81 than for the normal. A

second factor relevant here is that with the logistic the approach p → 0 and
p → 1 is considerably slower than for the normal. Even if we equate the spread
of the logistic model with that of the normal version by the appropriate scale
factor, the s.e. for the logistic model is still larger for values of p < 0.16 or
p > 0.84, but it is smaller in between these values.
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3.37 The Delta Technique with One Variable

a. We expand f as a Taylor series around x0 = μ, as follows

f(x) = f(μ) + (x − μ) f ′(μ) +
1
2
(x − μ)2 f ′′(μ) + . . .

Keeping terms up to the order of two and taking expectations,

E[f(X)] ≈ E[f(μ)] + E[(X − μ)] f ′(μ) +
1
2
E[(X − μ)2] f ′′(μ)

= f(μ) +
1
2
σ2 f ′′(μ)

by the definition of the variance σ2, and because E[(X − μ)] = 0.
b. For f(x) = ex, we have f ′(x) = f ′′(x) = f(x). Thus, the approximation

from part a. takes the form

E[exp(X)] ≈ eμ +
1
2
σ2 eμ

= eμ

(

1 +
1
2
σ2

)

In this relatively simple case, we already know the exact result from Problem
1.34

E[exp(X)] = exp
(

μ +
1
2
σ2

)

= exp(μ) · exp
(

1
2
σ2

)

= exp(μ) ·
(

1 +
1
2
σ2 + . . .

)

Thus, when σ is small so that eσ2/2 can be approximated by the first two terms
of the exponential series, eσ2/2 ≈ 1 + 1

2σ2, the approximation is acceptable.
In practice this requires that σ ≤ 1 in the present example.

More generally, note that the approach in part a. is based on approximating
f by a quadratic function around μ. When f is a polynomial up to order two,
this approximation is exact; for some functions it is quite acceptable over a
considerable range, while still other functions (e.g., f(x) = ex) may only very
locally be approximated by a quadratic. The condition for the approximation
to work is that the density of X be concentrated within that region around
μ where the quadratic approximates f well. Typically, the approximation is
invoked in situations when f has a much more complicated form than ex so
that exact results are hard to obtain (see part c.), and when σ is known to be
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small — for example because it decreases with the sample size (e.g., when X
is a sample mean).

c. From elementary mechanics, for a specific angle α (measured in radi-
ans6), the maximum height (measured in meters, [m]) is equal to

f(α) =
v2
0

2g
sin2(α)

where g = 9.81 [m/s2] is the gravitational constant. Therefore, we are looking
for E[f(α)] when the angle α is considered as an rv. In the present case, we
find f ′′(α) = (v2

0/g) · cos(2α), and on inserting into our result from part a.,
we get

E[f(α)] ≈ f(μα) +
1
2
σ2 f ′′(μα) =

v2
0

2g

[
sin2(μα) + σ2

α cos(2μα)
]

The problem states that the initial velocity is v0 = 120 [m/s], and that the
ball is on average thrown vertically. That is, we have μα = π/2 (i.e., 90◦).
Also, the standard deviation measuring the variation of the angle from throw
to throw is given as σα = 0.1745 (i.e., 10◦). Note that any deflection from
the vertical decreases the maximum height the ball will reach. The “naive”
prediction — when the variability of the angle α is neglected altogether — of
f(μα) = 733.9 [m] will therefore necessarily overestimate the true mean. The
above series-approximation to E[f(α)] predicts an expected maximum height
of 711.6 [m] – that is, more than 22 [m] lower than the naive prediction. This
approximation is in fact quite close to the exact expectation of 712.3 [m].

6 The radian corresponding to an angle α measured in degrees is 2π · (α/360◦).
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3.38 The Delta Technique with Two Variables

a. We expand f as a Taylor series around (μx, μy). To do so, let us write
as fx(a, b) the first partial derivative of f with respect to x, evaluated at the
point (x = a, y = b). Similarly, fxy(a, b) is the mixed partial derivative ∂2f

∂x ∂y

evaluated at (x = a, y = b). With this notation,

f(x, y) = f(μx, μy) + (x − μx) fx(μx, μy) + (y − μy) fy(μx, μy) +
1
2
(x − μx)2 fxx(μx, μy) +

1
2
(y − μy)2 fyy(μx, μy) +

(x − μx)(y − μy) fxy(μx, μy) + . . .

Keeping terms up to the order of two and taking expectations,

E[f(X,Y)] ≈ E[f(μx, μy)] + E[(X − μx)] fx(μx, μy) + E[(Y − μy)] fy(μx, μy) +
1
2

E[(X − μx)2] fxx(μx, μy) +
1
2

E[(Y − μy)2] fyy(μx, μy) +

E[(X − μx)(Y − μy)] fxy(μx, μy)

= f(μx, μy) +
1
2

σ2
x fxx(μx, μy) +

1
2

σ2
y fyy(μx, μy) + �σxσy fxy(μx, μy)

where we have used the facts that E[(X − μx)(Y − μy)] = �σxσy, and that
the two expectations involving the first derivatives are zero.

b. For f(x, y) = x/y and � = 0, the required partial derivatives are

fxx =
∂2f

∂x2
= 0 and fyy =

∂2f

∂y2
=

2x

y3

Inserting this into our results from a. gives

E

[
X
Y

]

≈ μx

μy
+

1
2

σ2
y

2μx

μ3
y

=
μx

μy

[

1 +
(

σy

μy

)2
]

c. First note that when two rvs are independent, so are functions of them.
Therefore, their expectations may be factored:

E

[
X
Y

]

= E[X] · E
[

1
Y

]

= μx · E
[

1
Y

]

The second factor can now be approximated using the results of Problem 1.37
for functions of a single rv. Specifically, with f(y) = 1/y so that f ′′(y) = 2/y3,
we obtain
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E

[
1
Y

]

≈ 1
μy

+
1
2
σ2

y

2
μ3

y

=
1
μy

[

1 +
(

σy

μy

)2
]

confirming our previous result. Note, however, that this reduction to the uni-
variate case relies on our factoring of f(x, y) = g(x) · h(y), say; more com-
plicated choices of f that do not admit a similar factorization will generally
require the results obtained in part a.

d. In the case of the F -distribution, both the numerator U/m and the
denominator V/n have an expectation equal to one; the variance of the de-
nominator is 2/n. Inserting this into the results from part b., we get

E[Fm,n] ≈ 1 +
2
n

=
n + 2

n

For n > 2, the exact result is n/(n − 2). The error of the approximation is
4/(n(n − 2)), and therefore it decreases rapidly in n.

Note that the approximation correctly predicts three qualitative facts:

1. E[Fm,n] is independent of m,
2. E[Fm,n] generally exceeds one, and
3. this excess decreases with n.

e. In addition to random variations of the angle α, now the initial speed
varies according to a normal distribution with μv0 = 120 [m/s] and σv0 = 10
[m/s]. We know that for a given initial speed v0 and angle α, the maximum
height is

f(v0, α) =
v2
0

2g
sin2(α)

Writing v = v0 for short, we get

E[f(v,α)] ≈ f(μv, μα) +
1
2

σ2
v fvv(μv, μα) +

1
2

σ2
α fαα(μv, μα)

+ �σvσα fvα(μv, μα)

From the assumed independent variation of the initial speed and the angle, we
have � = 0, so that the last summand drops out. Of the remaining terms, the
first and third summands had already been calculated in part c. of Problem
1.37; together they are equal to 711.6 [m]. An easy calculation shows that the
derivative required for the second summand is

fvv =
∂2f

∂v2
=

1
g

sin2(μα)

so that the individual contribution from variations of the initial speed is
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1
2

σ2
v

1
g

sin2(π/2) =
1
2

(10 [m/s])2
1

9.81 [m/s2]
= 5.1 [m]

Thus, the variation of the initial speed adds, in expectation, 5.1 [m] to the
maximum height of the ball. Together with our previous results from Problem
1.37, the approximation yields an expected maximum height of 716.7 [m],
which is quite close to the true expectation of 717.2 [m]. By comparison, the
“naive” prediction — when the variation of v0 or α is simply neglected — is
equal to 733.9 [m].

Similar to our considerations in part c., when the angle and the initial
speed vary independently we could again have simply factored the expectation

E[f(v,α)] =
1
2g

· E[v2] · E[sin2(α)]

and then treat the factors individually. The maximum height predicted by
this simpler approach is 716.5 [m], which is nearly as good as the prediction
found earlier. As we saw before, this approach is often simpler, but it depends
critically on two features: f must be factorizable, and the rvs need to be
independent. In the present problem, both conditions are satisfied.

We may also note that variations of the initial speed increase the expected
maximum height, whereas the previous problem showed that variations of the
angle decrease it. Can you see why that is?
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3.39 How Many Trials Produced a Given Maximum?

a. From Bayes’ formula, we find the conditional probability

P[N = 1 |M = 0.9 ] =
P[M = 0.9 |N = 1 ] · 1

2

P[M = 0.9 |N = 1 ] · 1
2 + P[M = 0.9 |N = 2 ] · 1

2

=
P[M = 0.9 |N = 1 ]

P[M = 0.9 |N = 1 ] + P[M = 0.9 |N = 2 ]

Consider the two conditional probabilities in this expression in turn.
Given that N = 1, the density of M is simply the uniform density itself,

i.e., equal to f(x) = 1 for 0 ≤ x ≤ 1.
Turning to the case of N = 2, the DF of the maximum of N = 2 rvs is

[F (x)]2, where F is the DF of the parent rv X. Differentiating, the associated
density is 2f(x)F (x), where again f stands for the density of X. For a uniform
rv X, we have F (x) = x and f(x) = 1, and so 2f(x)F (x) = 2x.

Evaluating these two expressions at x = 0.9 we get

P[N = 1 |M = 0.9 ] =
1

1 + 1.8
=

5
14

and thus the complementary probability P[N = 2 |M = 0.9 ] = 9
14 . Overall

then

E[N |M = 0.9 ] = 1 · 5
14

+ 2 · 9
14

=
23
14

= 1.643

Given that the unconditional expectation of N already equals 1.5, conditioning
on the relatively large value of M = 0.9 increases the expectation of N only to
a remarkably small degree. In fact, even in the most extreme case of M = 1,
the conditional expectation of N would increase only slightly up to 1.667.

b. Recall (cf. page 2) that the generating function g of a positive rv N is
defined as

g(z) =
∞∑

n=1

zn · p(n)

where p(n) = P(N = n). We will need two elementary properties of g later.
First, by direct differentiation with respect to z

g′(z) =
∞∑

n=1

n · zn−1p(n)

Also, by a further differentiation

g′′(z) =
∞∑

n=1

n · (n − 1) · zn−2p(n)
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which upon elementary algebra yields the identity
∞∑

n=1

n2 · zn−2p(n) =
1
z
· g′(z) + g′′(z)

We now turn to the evaluation of the conditional probability, much as in
part a. By Bayes’ theorem,

P[N=n | max(X1, . . . ,XN)=x]=
P[max(X1, . . . ,XN)=x |N=n] · p(n)

∑∞
n=1 P[max(X1, . . . ,XN)=x |N=n] · p(n)

Of course, conditional on the event {N = n}, we may replace max(X1, . . . ,XN)
with max(X1, . . . ,Xn), the maximum of n independent realizations of X,
which has the DF Fn and thus the density n · f · Fn−1. Therefore,

P[N = n | max(X1, . . . ,XN) = x ] =
n f(x) Fn−1(x) p(n)

∑∞
n=1 n f(x) Fn−1(x) p(n)

Next, we determine the conditional expectation of N,

E[N| max(X1, . . . ,XN) = x ] =
∞∑

n=1

n · P[N = n | max(X1, . . . ,XN) = x ]

=
∑∞

n=1 n2 f(x)Fn−1(x) p(n)
∑∞

n=1 n f(x)Fn−1(x) p(n)

= F (x) ·
∑∞

n=1 n2 Fn−2(x) p(n)
∑∞

n=1 nFn−1(x) p(n)

Now, the numerator and denominator of the second factor of this latter ex-
pression correspond exactly to the two expressions we derived earlier. Upon
inserting them, and after very minor algebraic simplifications, we obtain

r(x) = E[N| max(X1, . . . ,XN) = x ] = 1 + F (x) · g′′[F (x)]
g′[F (x)]

c. We only need to insert the partial results for geometric rvs. The gen-
erating function of a geometric rv is g(z) = pz/[1 − z(1 − p)]. Differentiating
twice, the ratio

g′′(z)
g′(z)

=
2(1 − p)

1 − z(1 − p)

and so, after slight algebraic simplifications

r(x) = E[N| max(X1, . . . ,XN) = x ] =
1 + (1 − p)F (x)
1 − (1 − p)F (x)

It is quite remarkable that, for any choice of F (x), even an exceptionally large
value x of the maximum — so that F (x) → 1 — only leads to a conditional
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expectation for N equal to 2/p − 1, which represents less than a doubling of
N’s unconditional expectation, 1/p. For example, if p = 1

2 , then the uncondi-
tional expectation E[N] = 2. Observing an exceptionally large value x as the
random maximum (with F (x) ≈ 1) would then still only yield a conditional
expectation for N of 3. In this sense, E[N] varies only weakly with the value
of the random maximum in the geometric case.

d. If N can take on only the two values 1 and k (with equal probability)
then the generating function is clearly g(z) = (z+zk)/2. Differentiating twice,
the ratio

g′′(z)
g′(z)

=
k(k − 1) · zk−2

1 + k · zk−1

and so, after slight algebraic simplifications

r(x) = E[N| max(X1, . . . ,XN) = x ] =
1 + k2[F (x)]k−1

1 + k[F (x)]k−1

Trivially, for k = 1, the conditional expectation is generally equal to 1. For
k = 2, the conditional expectation equals [1+4F (x)]/[1+2F (x)], as derived in
part a. for a uniform parent. However, when k � 1, observing an exceptionally
large value x of the random maximum — so that F (x) ≈ 1 — leads to a
conditional expectation for N that is close to (1 + k2)/(1 + k) ≈ k. This is in
keeping with the fact that very large values of the random maximum increase
the odds for N being equal to k, not to 1.



118 Solutions

3.40 Waiting for Success

a. Clearly, N1 has the geometric distribution p(n) = p(1 − p)n−1 , where
n = 1, 2, . . ., and so its expectation is 1/p, suggesting the moment estimator
p̂ = 1/N1. The same estimate is derived from maximizing the likelihood
function (see Problem 1.22).

The Taylor series expansion of − ln(1 − x), valid for −1 ≤ x < 1, is
∞∑

n=1

1
n

xn = − ln(1 − x)

Applying this sum to the present problem, the expectation of p̂ is seen to be

E[p̂] =
∞∑

n=1

1
n

p (1 − p)n−1 =
p

1 − p

∞∑

n=1

1
n

(1 − p)n = − p

1 − p
ln p = f(p)

 0

 0.2

 0.4

 0.6

 0.8

 1
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f(
p
)

p

Fig. 3.28. The expectation of the estimate p̂ as a function, f(p), of the actual value
of p, which is for comparison indicated by the identity function. Clearly, E[p̂] has a
systematic and quite large bias.

Plotting this function as in Figure 3.28 shows that generally f(p) > p. For
example, when p = 1

2 , the mean estimate p̂ is f(0.5) = 0.693. Thus, p̂ has
little to recommend itself.
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b. An obvious way to improve our estimate is to look at how long (i.e.,
how many trials) it takes to get r > 1 successes. The expectation for the
waiting time to the rth success equals r times the expected waiting time for
the first success, because the situation after the first success (now waiting for
the second success) is just the same as at the beginning. That is, E[Nr] =
r · E[N1] = r/p. Thus, if we equate the observed waiting time Nr with its
expectation and solving for p, our moment estimator of the success probability
becomes p̂ = r/Nr.

How large is the bias of this estimate for r > 1? To answer this question
we first note that p̂ is the reciprocal of the mean of the r individual geometric
waiting times from one success to the next. Thus, if r is not too small, Nr/r
will converge to a normal distribution, with mean μ = 1/p, and a variance
σ2 = (1 − p)/(r · p2) that decreases in proportion to r.

We can now apply our result from the solution of Problem 1.37 to the
rv X = Nr/r with f(x) = 1/x, so that f ′′(x) = 2/x3. If the variance of
X = Nr/r is small (i.e., if r is not too small) then

E[r/Nr] = E[1/X] ≈ f(μ) +
1
2

σ2 f ′′(μ)

and inserting μ = 1
p we get

E[r/Nr] ≈ p +
1
2
· 1 − p

r · p2
· 2p3

= p +
p(1 − p)

r

Obviously, p̂ = r/Nr still overestimates p, but this bias diminishes as r in-
creases. Actually, if r is not very small, then the approximation is quite good.
For example, even if p = 1

2 and r = 2, which is the worst case after r = 1,
our approximation yields E[p̂] ≈ 5/8 = 0.625, whereas the true expectation
may be shown to be E[p̂] = 0.614. Thus, our approximation to E[p̂] is fairly
accurate, but for a value as small as r = 2, p̂ still overestimates p markedly,
even though this bias is already considerably smaller than for r = 1.

c. For r > 1, Haldane (1945) proposed the modified probability estimate
p̂ = (r − 1)/(Nr − 1). To find its expectation, we have to weigh p̂ by the
probabilities for the various possible values of the rv Nr, which has the so-
called negative-binomial distribution,

pr(n) =
(

n − 1
r − 1

)

pr (1 − p)n−r , for n ≥ r

Thus

E[p̂] =
∞∑

n=r

r − 1
n − 1

(
n − 1
r − 1

)

pr (1 − p)n−r

Elementary algebraic operations on this sum will show that it is equal to p.
Thus, Haldane’s estimate is actually unbiased.
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