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Preface

Not many disciplines can claim the richness of creative ideas that make up the
subject of analytical mechanics. This is not surprising since the beginnings of analyti-
cal mechanics mark also the beginnings of the theoretical treatment of other physical
sciences, and contributors to analytical mechanics have been many, including the most
brilliant mathematicians and theoreticians in the history of mankind.

As the foundation for theoretical physics and the associated branches of the
engineering sciences, an adequate command of analytical mechanics is an essential tool
for any engineer, physicist, and mathematician active in dynamics. A fascinating dis-
cipline, analytical mechanics is not only indispensable for the solution of certain
mechanics problems but also contributes so effectively towards a fundamental under-
standing of the subject of mechanics and its applications.

In analytical mechanics the fundamental laws are expressed in terms of work
done and energy exchanged. The extensive use of mathematics is a consequence of
the fact that in analytical mechanics problems can be expressed by variational state-
ments, thus giving rise to the employment of variational methods. Further it can be
shown that the independent variables may be either displacements or impulses, thus
providing in principle the possibility of two complementary formulations, i.e. a dis-
placement formulation and an impulse formulation, for each problem. This duality is
an important characteristic of mechanics problems and is given special emphasis in the
present book.

The book begins by discussing fundamental concepts such as coordinate transfor-
mation, degrees of freedom, virtual displacement and virtual work, holonomic and
nonholonomic constraints, work, potential energy, duality, complementary potential
energy, kinetic energy, complementary kinetic energy, and generalized variables, all in
the first chapter. :

Readers not familiar with variational methods are now directed to Appendix A,
which is devoted to the calculus of variations, and introduces concepts such as func-
tions and functionals, extrema, the Euler-Lagrange equations, extrema of functionals
subject to some constraints, and functionals with variable end points.

In the second chapter variational methods are used to develop extremum formula-
tions of differential type for problems in dynamics. It begins with D’ Alembert’s prin-
ciple, and then introduces Gauss’ principle of least constraint, Hertz’ principle of least
curvature in configuration space, and ends with Lagrange’s equation, in dual represen-
tation, i.e. in displacement and impulse variables.

The third chapter presents variational methods in integral form. Duality, e.g. for-
mulation in conventional and complementary form, is again emphasized, and
Hamilton’s principle is discussed, as is the significance of Lagrange multipliers, and
the concept of ignorable coordinates.

The fourth chapter deals with canonical transformations, the fifth is devoted to the
applications of variational methods in gyrodynamics and the sixth chapter illustrates
some of the foregoing theory in special applications.

The text is intended for senior undergraduate or for graduate students, as well as
for engineers, physicists, and mathematicians engaged in work in the multifarious
branches of theoretical and applied mechanics.
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Students using the text are expected to be familiar with the rudiments of mechan-
ics and to have an adequate command of elementary dynamics and of differential and
integral calculus.

The derivation of each significant formula is followed by the discussion of a prac-
tical example, in order to acquaint the student with typical situations, typical results,
and typical numerical values. For the same purpose, there are numerous problems fol-
lowing each chapter. The type of problems chosen covers the whole range from pro-
grammed learning type problems to engineering applications.

The nomenclature employed, and the answers to the problems are compiled in
appendices. The conventional practice of citing detailed references to the literature has
not been followed in this text because of its introductory nature. Chapters end with a
list of publications under the heading of Suggested Reading for those interested in trac-
ing work back to its sources, or for further study of the subject matter.

Each chapter is essentially self-contained, allowing teacher and reader flexibility
of instruction without loss of coherence.

The summation convention is to apply when subscripts i, j, k and / are used. It
does not apply when subscripts m, n, r and s are used.

In Appendix B there is a listing‘of symbols used in the book. The unfortunate
shortage of suitable characters causes certain symbols to be used twice, or even more
frequently, sometimes for similar but often for entirely different quantities.

We are grateful Drs. Inna Sharf, Jim Haddow, and Marinos Stylianou for reading
the manuscript of this text and making valuable suggestions for improvement of its
clarity in the composition. We are also grateful to Ms. Wendy Smith and Mrs. Guida
Nene for typing this manuscript and cheerfully agreeing to make the numerous changes
as the manuscript was being developed. Finally we wish to thank Mr. Serkan Dost for
his help in the preparation of all the drawings for the manuscript.

B. Tabarrok F.P.J. Rimrott
Victoria 1993 Toronto 1993



Chapter 1

FUNDAMENTALS

A Historical Note

Mechanics as a separate scholarly discipline is usually considered to have been
founded by Galilei (1564-1642), specifically with his Discorsi (1638), which contain
the inertial law (now generally referred to as Newton’s first law). Laws of mechanics
are statements about a wide range of experimental observations. Prior to Newton’s
(1643-1727) time, many independent and sometimes contrary statements were made in
regard to the motion of bodies. Newton (1687), in effect, laid the foundations of
present-day mechanics in his three celebrated laws. These laws, based upon the con-
cepts of mass, length and time, aim at relating the motion of a body to the forces act-
ing on the body, at each instant of time. Thus these laws express cause (force) and
effect (motion) relationships, at each instant of time, and since these relationships are
vectorial in nature, this approach is often referred to as vectorial mechanics.

Leibniz (1646-1716) who was a contemporary of Newton proposed another quan-
tity, the vis viva' (It: living force), as the proper gauge for the dynamical action of a
force. His living force has the dimensions of energy and is scalar in nature. In this
approach, referred to as analytical mechanics, the laws of mechanics are expressed in
terms of work done and energy expended. Euler (1707-1783), D’Alembert (1717-
1783) and Lagrange (1736-1813) made very significant contributions to the further
development of mechanics and later Hamilton (1805-1865) expressed the laws of
mechanics in a variational statement. Although Newton’s and Hamilton’s statements
are equivalent, they differ in the sense that while the former are in the form of cause
and effect relationships at each instant of time, the latter is in the form of extremum
conditions of a functional over an arbitrary period of time. Further contributions to the
development of mechanics were made by Jacobi (1804-1851) and in more recent times
by Einstein (1879-1955) who, in his theory of relativity, brought the concepts of
length, time and simultaneity of events under critical review. Rather new is the appli-
cation and use of the concepts of complementary formulations (Trent, 1952; Toupin,

+  vis viva = mass times velocity squared = mv?
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1952; Crandall, 1957; Tabarrok, 1984). A special feature of the present book, is the
illustration of the complementary formulation whenever feasible.

1.1 Review of Basic Concepts

Newton’sf(1687) second law of motion states that when a resultant force F acts on a
particle of constant mass m, the particle’s acceleration a will change according to

F = ma (1.1.1)
Euler’sf(1752) expansion of Newton’s second law into
d
F = —B 1.1.2
@ (1.1.2)

brought the decisive breakthrough for Newtonian mechanics. Now referred to as the
linear momentum law, equation (1.1.2) states that the resultant force F applied to a
body equals the time derivative of the body’s linear momentum B, which is defined as

B = jvdm 1.1.3)

where v is the velocity of the mass element dm. The application of Euler’s linear
momentum law is not always obvious. The examples following this section are
intended to demonstrate this.

In 1775 Euler introduced a second postulate, now referred to as the angular
momentum law,

- 4
M = —H (1.1.4)

which states that the resultant torque M, about some reference point O, applied to a
body equals the time derivative of the body’s angular momentum H. The angular
momentum is defined as

H = jr X Vdm 1.1.5)
m

where r is the position of the mass element dm, measured from the same reference
point 0, which must be either at rest or it must be the mass centre in case of a finite-
sized body.

For a point mass (or particle), i.e. a body of finite mass and infinitesimal volume,
Euler’s momentum laws furnish Newton’s second law, provided the mass is constant.

Newton’s second law holds in an inertial frame with respect to which the
acceleration a in (1.1.1) is measured. The same is true for Euler’s linear momentum
law and v in (1.1.3) is measured in the same inertial frame. The existence of such a
frame is a fundamental postulate of Newtonian dynamics. The dependency of a

t Isaac Newton (1642-1727), English physicist (Philosophiae naturalis principia mathematica, 1687)
11 Leonhard Euler (1707-1783), Swiss mathematician
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physical law upon a specific reference frame raises some doubts, and while Newton
was aware of this weakness, he was unable to rectify it. It was left to Einstein® to
remove this weakness and show that all physical laws are frame-independent, in his
relativistic mechanics.

The dependency of a law upon an inertial reference frame implies that this law
generally takes different forms when expressed in terms of different frames. For
instance, in an accelerating (with respect to the inertial frame) frame the relation
between force and acceleration must take into account the acceleration of the moving
frame. Note, however, that if the moving frame has only a constant translational velo-
city with respect to the inertial frame, the equations remain unchanged. Only under
this so-called Galilean'™ coordinate transformation, does Euler’s linear momentum law
remain invariant.

In cases where the coordinate frame used is not an inertial frame, one has to
ensure that the linear momentum B and its derivative B are absolute, i.e. they are
expressed with respect to an inertial frame. In order to achieve this for a rotating
frame, one proceeds in the following fashion. For

Bx
B =[e e el|B, | = {&} {B} (1.1.6)
B,
one obtains for its absolute time derivative
B, B,
B=1leeel|lB | +I[eéél|B, 1.1.7)
B, B,
The first term on the right side is often called "B circle" and written
B,
B = [e, e e]|B (1.18)
B

z

and represents the change of magnitude of the linear momentum. The second term on
the right side of equation (1.1.7) can be shown to be (a derivation is given in Chap V)

B,
O x B =1[ééél|B, (1.19)
B,

where Q is the angular velocity of the xyz coordinate system relative to the inertial
frame. Equation (1.1.9) represents the rate of change of the direction of the linear

t Albert Einstein (1879-1955), German physicist
1t Galileo Galilei (1564-1642), Italian astronomer ("Eppure si mudve)
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momentum. With the help of equations (1.1.8) and (1.1.9) the absolute time derivative
(1.1.7) of the linear momentum (1.1.6) can now be written

B=B+QxB (1.1.10)

Example 1.1.8 is intended to illustrate the significance of this equation.
One can now combine equations (1.1.7) and (1.1.10) and obtain

B, + Q xB-e

B=1[eee]llB +QxB-e (1.1.11)
B, + Q xB-¢,
or more compactly
B={¢) (B +QxB-e¢) (1.1.12)
A coordinate system for which
QxB-¢ =0 (1.1.13)
and
v =0 (1.1.14)

is said to be inertial (or Galilean). Such a system translates at constant velocity.

If equations (1.1.13) and (1.1.14) are satisfied and furthermore the coordinate’s origin
remains at rest, i.e. if

Vo = 0 (1.1.15)

then the coordinate is said to be absolute (or space—fixed). Thus a space-fixed coor-
dinate does not change in direction and both the acceleration and the velocity of its
origin are zero.

Example 1.1.1
Let us examine a rigid body of finite size carrying out a translatory motion, defined by the same
velocity and the same acceleration for each of its mass elements dm , as shown in Figure 1.1.

The body’s linear momentum (1.1.3)
B=Ivdm =vjdm = mv (a)
and its time derivative
B =mv=ma ®
According to Euler’s linear momentum law (1.1.2), F = Bor
F = ma ©)

Thus Newton’s second law is obtained. To determine the line of action of the resultant force F
we apply Euler’s angular momentum law.



erF=irxi'dm @

where the left hand side is the torque about the refence point C.
Since v = a is the same for each mass element dm ,

erF=[’erm]xa (e)
The first moment Im r dm vanishes if the reference point C is the mass centre of the body. Then
rc x F=0 or rcis collinear with F (f.g)

ie. the force F must act through the mass centre C to effect pure translation.

Figure 1.1 Rigid body translatory acceleration

Example 1.1.2

Next let us examine a thin rigid rod of length / and of uniformly distributed mass m , which is to
rotate about point 0, as shown in Figure 1.2. The rod is subjected to the force F, and we wish to
determine the point of application of F, such that the reaction force at 0 would vanish.

The linear momentum in y -direction is

1
By = [ dn = [& &) (F dx) @
l .
By = Em 10 (b)
and its time derivative
. 1 .-
By = Em ) 0 (C)

Since F, is the only force actiqg on the body (reaction is to vanish) we have from Euler’s
linear momentum law (1.1.2), F, = B,, thus

Fy=—;-mlé @
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For the horizontal direction, the linear momentum at time ¢ for the mass m + dm is
B, =mv + dnyv, (@)
At time ¢ + dr, the mass element dm has joined m and both move at a velocity v + dv, such that
By =(m +dm) (v +dv) ®)

Euler’s linear momentum law (1.1.2) in the form B, + Fdr = B, , 4, then requires that

mv +dmv, + Fdt = (m+dm) (v +dv) ©)
or Fdt = mdv + dm(v -v,) + dm dv ()]
After dropping the second order term dm dv, Euler’s linear momentum law then provides us with
F=mv + m(v-v,) (e)

If we now introduce a relative velocity
Vel = V=V, ®

then

F=mv + mvy ®

which reduces to equation (e) of example 1.1.4 if v,, = 0, and to equation (d) of example 1.1.5 if
Vy =V,

A v+dv

o

m-dm

t t+dt

Figure 1.7 Rocket moving vertically
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The absolute velocity of the point mass m is obtained as

F=ef{F) + (& (r) =1 + Qxr

®)

where the first term, :- = {e}T {#}, represents the velocity with respect to the rotating frame,

and the second term, Q x r = {&}T {r}, represents the contribution of the moving frame,

which rotates at an angular velocity of
0
Q =e e ¢€]|0
]
with the velocity with respect to the moving frame given by
F
o
r=1[e e €]|0

0
and
€ € €, 0
Qxr=10 0 é=[exeye,] ro
r 0 0 0

The absolute velocity becomes
P
T =[e ¢ ¢l ré
0

With the absolute velocity v = ¥ known, the linear momentum can be established
mF
B=mv=1I[e el|lmb

0

In order to obtain the time derivative B of the linear momentum, we form

B = B + QxB
Since
i
L .. .
B =1l[e e e]|md + m0
0
and since
€ ey €; —mréz
QxB=|0 0 0| =[e e ]| mb
mi mrd 0

we obtain

©

@

©)

®

@

®)

®

®
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mi - mré?
B=1[e e ¢l]|mbd+ 2mid ®
0

Euler’s linear momentum law now gives the force required to move the mass, i.e.

F=8B o

Since it can be shown that the acceleration of the mass is

Fo- ré?
a=[e e el rd + 276 (m)
0

we conclude, that equation (I) is equivalent to Newton’s second law

F=ma (n)

Note that, since the Oxyz coordinate frame is not an inertial frame, special steps are taken to
ensure that velocities and accelerations are absolute, i.e. taken with respect to an inertial frame.

Problems

1.1.1

1.1.2

1.1.5

1.1.6

A uniform rod of mass m and length / is suspended at one end to form a pen-
dulum. Establish the differential equation of motion.

A horizontal water jet of 10 mm diameter is impinging at 12 m/s on a deflector
where its direction is changed by 60°. The encounter with the deflector makes
the water jet lose some mechanical energy and the jet leaves the deflector at
only 10 m/s. What force is transmitted from the deflector to the water?

Sand is falling into an initially empty freight car at the rate of ¢ = 10 kg/s.
Initially the mass of the freight car is m, = 12 000 kg. A constant resultant
horizontal force F = 70 N is pulling the car. Initially the car is at rest. How
fast will it be moving after 100 seconds?

Sand is falling out of a freight car at a constant rate of ¢ = 10 kg/s. Initially,
the mass of car plus sand is m, = 60 000 kg. The constant resultant horizontal
pull force F =700 N. If starting from rest, how fast is the freight car moving
after 100 seconds?

Use the Tsiolkovsky equation, with m, = 10 000 kg, ¢ = 150 kg/s, v,, = 2500
m/s, and find (a) the time at which the final rocket mass m; = 1000 kg has
been reached, (b) the associated velocity. (c) Is the initial acceleration adequate
to overcome the gravitational attraction? (d) What height will the rocket reach?

A point mass can slide along a rod x as shown. The rod itself is rotating in a
horizontal plane at an angular velocity 8. The origin 0 is subject to a velocity
vo = v + at, where a is a constant acceleration and v is a constant speed.
Obtain (a) the linear momentum B of mass m and (b) the time derivative B.
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In this case, the transformation is linear and, as long as o # B (or P+ nm), the
transformation is unique. For incremental changes in the coordinates, we have from

equation (1.2.1),

dry cosot  cosP | | U1

dry |~ | sina sinf | | du,
i.e. the transformation matrix is not affected, because of the linear character of the
transformation.

The coordinates used to locate a particle need not be distances. Thus in Figure
1.10 one can see that the particle may be located by (r, ) or (r, sinf) or even
(A, sin6). The transformation equations relating the Cartesian coordinates (r; = x,
r, =y) to e.g. the coordinate set (4, sinB) are nonlinear,

A=Y sinf = —2L— (1.2.2)

2 \/xz + y2

In order to check that these transformations are valid, we consider small changes in
one coordinate system and see if the associated small changes in the other coordinates
are unique. To this end, we derive the following differentials

y
m
r
Area A
0 X
0
Figure 1.10 Position of particle m
_M, L A
dA = ™ dx + P dy
. d(sinB) 0(sin0)
d(sin@) = ———= dx + ——=
(sin@) . dx 3 dy
Evaluating the derivatives via equation (1.2.2), we find
b X
dA 2 2 dx
dsind) || oy X2 dy (123)

(x2 +y2)3/2 (x2 + y2)3/2
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Since the determinant, the so-called Jacobian® of the transformation, of the above
coefficient matrix given by

b X
; 2 2
= xy 2 =
(x2 +y2)3/2 (x2 + y2)3/2
is definite, i.e. J # 0, provided x # 0 and y # 0, we conclude that the transformation
is valid.
As the coordinates used to locate a particle need not be distances, the term gen-

eralized coordinates is used. It is conventional to denote generalized coordinates by g;.
Thus the area and sine coordinates used above, would be

x2y

e (1.2.4)

g, =A q, = sin@ (1.2.5)
The Jacobian for the transformation ¢; = ¢(x,y) and g, = g,(x,y) then is
%1
J ox o 1.2.6
T (20
ox dy

In certain problems it may be convenient to use a moving coordinate frame. As a sim-
ple example consider the case in Figure 1.11, where the particle can be located by (x,
y) in the fixed coordinate system and by (g, g,) in the moving system. If we assume
that the linear velocity v and the angular velocity @ are constants and that the two
coordinate systems were initially coincident, then the following relationship can be
established between the two sets of coordinates:

q1

q2

X Vx cos o  —sin ot

y| Ty '+ sinot  cosar
Note, that the (x, y) coordinate system represents an inertial frame as does the (x,y,)
coordinate system, on account of its constant linear velocity v, while the (¢, ¢,) coor-
dinate system does not, on account of its angular velocity ®. More generally, one can
express the transformation from generalized coordinates ¢; to Cartesian coordinates r;
by

ri =Ti@1 G2 43 o Qi lns ) i=12,..n 1.2.7)
j=12,..m

withn <m.

t Carl Gustav Jacob Jacobi (1804-1851), German mathematician
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1.3  Degrees of Freedom and Constraints

The number of degrees of freedom for a system of particles depends not only on the
number of particles in the system, but also on how the motion of each particle is phy-
sically constrained. The degrees of freedom are equal to the number of independent
incremental displacements required to describe the changes in the system’s
configuration.

Constraints of a system can be represented by equations of constraint. If these
equations relate the position coordinates themselves, the constraints are said to be
holonomic (gk: holo = whole). If, on the other hand, these relations are amongst the
differentials of the position coordinates i.e. amongst incremental displacements, and
cannot be integrated to yield relations amongst the position coordinates themselves, the
constraints are said to be nonholonomic. For systems subjected to holonomic con-
straints, the number of independent coordinates required to specify the configuration of
the system is the same as the number of incremental displacements required to
describe the changes in the configuration of the system. On the other hand, for sys-
tems subjected to nonholonomic constraints, the number of coordinates, required to
describe the configuration of the system, is larger than the number of the independent
incremental displacements required to describe the changes in the configuration of the
system.

The number d of degrees of freedom and the number of holonomic and nonholonomic
constraints of a system of particles are related by

d=3N-h-v (1.3.1)
with
N = number of particles
h = number of holonomic (position) constraints

v = number of nonholonomic (velocity) constraints

The degrees of freedom discussed here involve displacements, and are, strictly speak-
ing, positional (or kinematic) degrees of freedom. Later on, where complementary for-
mulations are discussed, there will occur impulsive degrees of freedom.

Holonomic Constraints
In some holonomic constraints the coordinates r; may be related as

filry, rar3s s Tjs v T)) = Q4 i=12,..,h (1.32)
j=12,..m
when m is the number of original coordinates and % is the number of holonomic con-

straints. Clearly, m > h. The o; are a set of constants.

Since the coordinates r; in equation (1.3.2) may be functions of time, one can see that
time enters this type of constraint implicitly. Such holonomic constraints are classified
as scleronomic (gk: sclero = hard). As a simple example, consider the case of a bead
constrained to move along a straight wire as shown in Figure 1.12. In this case, the
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constraint equations may be expressed as

filrypry) = f1xy) =y - X = b 1.3.3)

faors) = foz) =z =0

S

witho; = b and o, = 0.
In other holonomic constraints all or some of the constraints may be moving. In

such cases, time will appear explicitly in the constraint equations. Such holonomic
constraints are classified as rheonomic (gk: rheo = flow) and may be expressed as

f,-(rl, ro, r3, veey rj, veey rm, t) = a,‘ i = 1,2,...,h (134)

j = 12,.m

Figure 1.12 Bead m sliding on a straight wire

As a simple example, consider again the case of the bead on a wire, Figure 1.12. This
time suppose the wire is rotating about an axis perpendicular to the xy-plane at the
intercept of the wire with the x axis, with constant angular velocity ®, such that
0 = wr. In this case, time will appear in the constraint equation (1.3.4).

fryryt) = f(xyt) =y -(x+a)tanwt = 0 1.3.5)

with oy = 0. For a system of N point masses subject to # holonomic constraints, it
is possible to find (3N — k) independent generalized coordinates to specify the
configuration of the system at any instant of time. The number n of these independent
generalized coordinates also constitutes the number of degrees of freedom for the sys-
tem.

n =3N - h (1.3.6)
Before considering nonholonomic constraints, let us derive the differential of a

rheonomic holonomic constraint. For a constraint equation of the type in equation
(1.3.4), we find
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_ f of oy 9 of 4 =
df dr1+ 5 dry+ + o dr,, + 3 —Ldt =0 1.3.7)

It is worth noting that while the relation f amongst r; and time may be nonlinear, the
relation df is always a linear function of the dr; and dt. The coefficients sari— and
of

i
7y may of course be linear or nonlinear functions of the coordinates and time.

Now in some problems, the constraints appear as a set of relations amongst the
differentials dr; and dr as

bydry+bydry+ -+ +b, dr, +b, dt =0 (13.8)

The coefficients b; and b, may be functions of the r; and of time.

We now ask the question: Is it possible to convert a relation amongst the dr; and dt
to one amongst the r; and t? On comparing equations (1.3.7) and (1.3.8), one can see
that the answer is in the affirmative only if

_of po=Of b,=%§ (1.3.9)

arl 2 ar2

In other words, if equation (1.3.8) represents an exact differential, then the relation
amongst the dr; and df may be integrated to yield a relation amongst the r; and ¢ as
in equation (1.3.4). The constraints are then holonomic in spite of the fact they are
expressed in differential form. Otherwise such constraints in differential form are

nonholonomic.

One can check the integrability of a constraint relation amongst the differentials as fol-
lows. If a continuous function f exists, such that the relation (1.3.8) represents an
exact differential of f, then one can write

o of _ 9 of

E)_rj o, = ar, o, Jjk=12,..m (1.3.10)
2 2o

ar ot ot Or;

or using equation (1.3.9)

9y = 2 k=

ar b, = o b; jk=12,..m (1.3.11)
3 Y

ar b = ot bj

Satisfaction of equations (1.3.11) implies that the required function f exists, i.e. the
relation amongst the differentials is immediately integrable. The conditions of integra-
bility are actually somewhat less restrictive than equations (1.3.11) imply, because in
some cases equations such as (1.3.8) can be made exact by an integrating factor (see
problems 1.3.1 and 1.3.2). For a scleronomic system of only two variables, equations
(1.3.11) are automatically satisfied. In this case, the constraint equations are always
holonomic.
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By way of an example, take the case of the bead sliding on a wire at a fixed angle 0.
For this problem, the position of the bead may be specified by a single generalized
coordinate r, as shown in Figure 1.12. The constraint relating the two Cartesian coor-
dinates r{ =x andry =y is

_ Yy
flyury) = P tan 0 1.3.12)

with al = tan®.
We can satisfy the constraint relation (1.3.12) directly in terms of the generalized coor-
dinate ¢ = r by using equations (1.2.7) and setting
ry =x = rcosb-a (1.3.13)
r, =y = rsinf (1.3.14)
The relation between the Cartesian coordinates r; = x and r, =y, and the generalized
coordinate ¢ =r is
r2 = (x +a)*+y? (1.3.15)

This is the reduced transformation equation. From this equation one can see that when
x and y are given one can determine r, but the reverse i.e. determination of x,y from
r is not possible. However we also have the constraint equation (1.3.12) at our dispo-
sal. To check the validity of the transformation we examine incremental changes in
x,y and see if they correspond to unique incremental changes in r. Thus from equa-
tions (1.3.15) and (1.3.12) we obtain

2r dr = 2ydy + 2(x+a)dx (1.3.16)
0= _ y& (1.3.17)
x+a (x+a)2
Now expressing r in terms of x, and y, we may write
[ x+a y |
dr V@ +a)? + y2 Vo +a)? +y2 dx
] 4T oa
—y 1
| (x +a) X +a |

Since the Jacobian of the transformation is not zero, the transformation is one to one.

Nonholonomic Constraints

As originally pointed out by Voss', there may be cases where equation (1.3.8) is not
an exact differential (and cannot be made so by an integrating factor), then the con-
straints remain as relations amongst differentials only and are referred to as nonholo-
nomic. If b, =0, and the b; are not explicit functions of time, the constraints are
classified as scleronomic, otherwise they are rheonomic.

t Aurel Edmund Voss (1845 - 1931), German mathematician
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q, = X,92 = y,q3 = oand ¢4 = ¢, as shown in Figure 1.14. However, it can be seen that
the differentials of these variables are related as

dx = ds coso dy = ds sino ds =rdo

with o as yaw angle, and ¢ as roll angle.

On using the last equation in the former two equations, we obtain two relations amongst the
differentials as

dx —r coso.d¢
dy - r sinad¢

]

0 @
0 ®)

On checking for integrability of these equations, we find that several of the conditions given in
equation (1.3.11) are satisfied but some are not. For instance, with a, = 0, and a4 = - rcosa,
20, 0,
oJu a

We conclude that equations (a) and (b) are not integrable. This fact can also be readily seen on
physical grounds. If the disk starts from a certain position and rolls along two different paths, so
that the final position of the point of contact is the same in each case, the two final values for
coordinates o, ¢ may be different. If o and ¢ were functions of x and y, then the final values of
o and ¢ would have been the same. ) )

1]

Finally, it is worth noting that by dividing equations. (a) and (b) by dr, one can express these
nonholonomic constraints as a set of relations amongst velocities.

X - (rcoso)p = 0 ©
witha, = a, = 1,a; = a, = 0,a3 = aq = 0,a4 = ay = —rcosa, and

y - (rsinayp = 0 %))
witha, = a, = 0,a; = a, = l,a3 = a4 = 0,a4 = a4 = - rsino.

In order to establish the degrees of freedom of the system, one may begin by looking at the
disk, which is a rigid body, with 6 degrees of freedom when not constrained. The centre of the
disk is subject to the holonomic constraint,

z =7 ] ©)
and the disk is to remain vertical i.e. it is subject to the holonomic constraint
pitch angle (of disk) = 0 ®)

thus h = 2.

Further, there are the two nonholonomic constraints given by equations (c) and (d), i.e. v=2.
Thus, from equation (1.3.1), the degrees of freedom are

d =6-h-v=6-2-2 =2 @)

From equation (1.3.6) the number of coordinates required to describe the configuration of the disk
at any time 7, are

n = 6-h = 6-2 = 4 (h)
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1.3.4 Find the Jacobian of the transformation (a) from polar (r,0) to Cartesian (x,y)
coordinates, and (b) from Cartesian to polar coordinates, and (c) the numerical
value of each Jacobian at the moment when r = 10 'm, and 8 = 60°. (d) Sup-
pose now O = constant, find the Jacobian of the reduced transformation, i.e.
when d6 =0, from polar (r,0) to Cartesian (x,y) coordinates, and (e) from
Cartesian to polar coordinates, and (f) the numerical value of each Jacobian for
r =10 m, 6 = 60°.

1.3.5 Assuming that the keel of the boat shown prohibits motion normal to the axis
of the boat, write down the constraint equation and identify the nature of the
constraint. How many degrees of freedom does the system possess?

1.4  Virtual Displacements and Virtual Work
Let us examine the static equilibrium of a scleronomic system of N particles. For

equilibrium of the kth particle, the resultant of all forces acting on this particle must
vanish i.e. we write

Fa)k =0 k=12,.,N (1.4.1)

Now imagine each particle to undergo an infinitesimal displacement dr;. This dis-
placement is imagined in the sense that the forces (F,;), are considered not to change
as a result of dr, and further, as we shall see later, that 8r, need not necessarily coin-
cide with actual displacements. Such imagined displacements are referred to as virtual
displacements, i.e. displacements in effect but not in reality. Associated with the vir-
tual displacements 8r, and the forces (F,;);, we can compute the virtual work as fol-
lows

W = Fg) o1, = 0 (1.4.2)

where the summation convention applies.

Clearly, 8W will be zero, for all dr;, by virtue of equation (1.4.1). Thus the vector
equations of equilibrium are equivalent to the vanishing condition of the scalar virtual
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respectively. Allowing incremental changes in x; and y,, but not in @, we find

8x; = 9a cosd 50 8y, = ~2a sind 50 (d,e)
On substituting into equation (a), we deduce on account of the arbitrariness of 50, that
F = —g—mg tan6 ®

Rheonomic Constraints

We have seen that in the case of scleronomic constraints, if the virtual displacements
satisfy the constraint equations, then the work of the constraint forces will vanish. In
the case of rheonomic constraints an additional restriction must be imposed. This res-
triction requires that during the virtual displacements, time shall be held fixed. This
requirement once again illustrates the imagined nature of virtual displacements since
all actual displacements are associated with changes in time. The reason for holding

vt

0
Figure 1.17 Virtual displacement when time is held fixed

time fixed, when virtual displacements are applied, can be readily deduced from the
simple example shown in Figure 1.17. In this example of a block sliding without fric-
tion on an incline, one can see that even when 8r satisfies the constraint, i.e. the block
remains on the incline, the reaction force R will do some work since R and 8r are not
orthogonal. On the other hand, when time is held fixed and the constraint is satisfied,
the work of R will vanish since 8r is orthogonal to R.

In summary, we note that if virtual displacements are defined such that
i)  constraints are satisfied,
ii) time is held fixed,

then the constraint forces will make no contribution to the associated virtual work and
the vanishing of virtual work will yield the equations of equilibrium amongst the
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applied forces.

Generalized Forces

Let us now express virtual work in terms of generalized displacements and generalized
forces. To this end, let the Cartesian coordinates r of a system of N particles be
expressed in terms of n generalized displacement variables g. That is, we assume that
all holonomic constraints are satisfied and the reduced transformation equations take
the form

rj = rj(@1.92-Gir-qnst) Jj =12,.3N (145)
i =12,.,n
From equation (1.4.5), we find the total differential dr; as
ar; = Yigg + Lig 1.46
rj = aq‘ q; + at t ( 4. )

To ensure that the constraint forces do no work, we must hold time fixed in which
case the last term in equation (1.4.6) drops out, and the virtual displacements 8rj
become

or;
or; = % oq; 147
Denoting the applied forces on the particles by F; we thus obtain for the virtual work
oar;
W = F; Srj = F; W ; (1.4.8)
or
W = Q, dq; 1.4.9)
with
Q;, = F; ai (1.4.10)
' 7 9g; o

as the generalized forces.
If there exist some nonholonomic constraints relating the incremental displacements
dr;, they may be expressed as relations amongst dg; and dr via equation (1.4.6). Then
eliminating the excess dr; and dg;, expressions for virtual work may be written in
both coordinate systems leading to the determination of generalized forces Q;.

It is, by the way, quite instructive to retain the last term of equation (1.4.6) and
write an expression for real increment of work done. In this case since time is not
held fixed, work done by all forces must be taken into account. Thus we write

arj or;
aw = (Fgy);dr; = (Fall)jﬁdqi + (Fall)jvydt (1.4.11)
]

or dWw = Qu)i dgi + Qan)y dt (1.4.12)
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1.5  Work Function and Potential Energy
The actual work
W = [F-dr (1.5.1)
done by forces F, can be obtained from equation (1.4.12), which we rewrite as
aw = Q;dq; + Q, dt i =123,.,n 1.5.2)
with the Q as defined by equations (1.4.8) and (1.4.12). For a certain type of force

the expression dW for an increment of work turns out to be an exact differential of a
function U, such that

_ou ., dU
dau = —aqi dq; + T dt
Then
_ U _ U
0= 2 and Q= 3 (1.5.3)

This function U, from which all the generalized forces may be generated, is called the
work function, and forces that possess a work function are classified as monogenic, i.e.
generated from a single function (It: mono = single). One important property of
monogenic forces is that the work done by such forces is independent of the displace-
ment path. This can be readily seen by evaluating the work done from some initial
state 0 to a final state f. Writing

! Uy
faw = [ aU
) U,
and integrating, we find
W = U - U, = U@y.tr) - Ugo1,) (1.54)

Equation (1.5.4) implies that the work done depends only on the initial and final
states, and is independent of the path between the states. When time does not appear
in U explicitly, the work done, over a closed path, i.e. when the initial g, and the
final g states are equal, will be zero. Forces generated from such a work function are
classified as conservative forces.

It is important to be able to check if a system of forces is monogenic or not. Such a
check would test for the existence of a work function or, put another way, it would
test for exactness of the differential increment dW in equation (1.5.2). Accordingly,
this test is similar to that used for identifying a constraint as holonomic or nonholo-
nomic.

If a continuous function U exists, then
d JU Jd JU

i=123,..n
——— = e——— . _ ylrytyecny (1'5'5
dq; 9g; dq; 9g; j=123,. )
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and
QU _23u
dq; ot T aq,
On using equations (1.5.3), we can express these exactness conditions as
0 __9 i=123,.,n
a‘Ii Q; = 3g; Q; Jj=123,..n (1.5.6)
d
aq. EZ T

If equations (1.5.6) are satisfied for a given system of forces, then these forces are
monogenic and they possess a work function.

Instead of working with the work function U, it is usually more convenient to
introduce another function called the potential energy function V, from which mono-
genic forces QO may be derived. The potential energy is defined as the negative of the
work function, i.e.

V = -U (1.5.7)

so that

_ oV _ v

0 = 0 =-5 (1.5.8)

The negative sign has the effect of decreasing the potential energy when positive work
is done by the force, i.e. as the force does some work, its potential for doing further
work is reduced. Employing the potential energy function, equation (1.5.4) for the
work done becomes

W =V,-V (1.5.9)

i.e. the final potential energy is subtracted from the initial potential energy.

Example 1.5.1
Consider the work done as the spring shown in Figure 1.18 is stretched. Denoting the spring
force by F, we have

dW = F cos® dx + F sinf dy (a)

Here we can express cos® and sin@ in terms of the end positions of the spring. With the
fixed end at the origin, we have cos® =x/I and sin® =y/l. Hence

daw = F%dx + F%dy ®)

with dg, = dx and dq, = dy, i.e. we use x and y as our generalized coordinates.
If the spring is linear, with stiffness k and unstretched length /,,, then the force F is related to the
deformation (! - /,) as

F = -k(-1,) ©
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x'y
ve= | d{%k(x2+y2) - kl,,Vx5+y7} 0)
xo'yo
or
vo= ey - w T o+ 2wz = Lea-uy ®

including an integration constant chosen such that V =0 when ! = ,, i.e. when the spring is
unstretched.
The work done by the spring force as the spring is extended from a state V at (xo, yo) to a state
Vf at (xf, yf) is

W = Vo, - Vg @
From this expression, one can see that the work done W is independent of path and it depends on

the initial and final values of the potential energies. If the initial and final states coincide, the
work done will be equal to zero.

(xpyy)

Rough horizontal plane

(% y0)

Figure 1.19 Work done by a friction force

Example 1.5.2

As an example of forces which are not monogenic (sometimes called polygenic forces), consider
the work done by the force of friction, as a block of weight mg slides from the initial position
X0, Yo, to a final position x,y;, on a rough horizontal plane (Figure 1.19).

Now
dW = F,dx + F, dy (@)
But F = umg, where p is the coefficient of friction, and the force acts in a direction opposite to
that of the motion, hence

dW = - umgcos® dx — pmgsind dy ®)
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= Qxdx + Qydy ©

such that
Qr = - pmgcosd @
Q, = - pmgsin® ©

In the present example cos@ and sin® are not functions of the initial and the final positions. Thus
at any point the angle 8 must be known (i.e. the path must be prescribed), before the increment
of work may be computed. Hence it is valid to writt dW = Q.dx + Q,dy + Q¢d6, with

. 0 X
Qs = 0. Now we can see that since o # 3

, dW is not an exact differential. .

If we denote the path by s, then

- a4 ing = L
cos0 = i sinf = s ®
and
dx2 + 2
aw = 'wng‘—Tde ®)
But
ds? = dx? + dy? )
therefore
2112
dW=—umg[1+[i’1” dx )
dx
and the total work done
X d 2Y12
- ay :
W-pmgi[ 1+[dx]] dx ()}

In the above equation, the quantity under the integral is not an exact differential. Therefore, the
integration cannot be performed until y = y(x) is specified, i.e. the integration depends upon the
path from the initial to the final location. The force does not possess a potential energy.

Example 1.5.3

The system shown in Figure 1.20 is for the purpose of demonstrating how the explicit appearance
of the time ¢ in the potential energy expression affects the virtual work. Note that the upper end
of spring 3 moves down at a prescribed constant speed v. The connecting bar A remains hor-
izontal. All four linear springs are unstretched when ¢, = g, = ¢t = 0. Assume that no
vibrations occur.

The potential energy of the system shown, with the generalized displacements ¢, and g, is
1
v.o= < [kl @2-qF + kagf + ks(@=-w)l + kigqf ] - migqy - mygq; (a)
and the generalized forces associated with ¢ | and g, are

r1%
0, = R = ki (@2—-9q) - kagy — k3(qi—Wt) — kaq, + myg ()
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Other Forms of Potential Energy

We have seen that potential energy functions, from which generalized forces may be
derived, are usually scalar functions of generalized displacements and in some cases
also of time. However this form is not unique. That is, it may be possible to define
new forms of potential energy for certain classes of forces which are not derivable
from the usual scalar form. For instance the forces on a point charge moving in an
electromagnetic field cannot be derived from a scalar potential energy function alone,
but they may be derived from a combination of scalar and vector potential energy
functions. We mention this point here for sake of completeness but will not pursue
the matter further (see e.g. Goldstein, 1980).

Problems

1.5.1 The potential energy of a point spacecraft m in the gravitational central force
field is given by

v o= _bm
r

where 1 = 398 601 km?®/s? for the Earth as master, and r is the distance
between Earth centre and spacecraft. (a) How much work is done by the attrac-
tion force if a spacecraft (m =1 000 kg) is moved from a parking orbit of r; =
7 000 km to a geosynchronous orbit of r, = 42 164 km? (b) What is the
potential energy of the same spacecraft when it is located at the surface (r = 6
371 km) of a (nonrotating!) Earth sphere? (c) What is its potential energy at
r =oo?

1.5.2 The potential energy of a mass m located at a height y above the surface of the
Earth is

V. = mgy

(a) Show that this formula is in agreement with the potential energy expression
for a spacecraft, provided y is small compared to the Earth sphere’s radius of
‘R =6 371 km. (b) With R =6 371 km and p = 398 601 km?/s2, what is the
value of g ? Why does it differ from the standard g = 9.80665 m/s??

1.5.3 Use V =mgy to obtain the potential energy stored in a 10 kg mass as it is
raised from sea level to the top of 8 848 m high Jolmo Lungma (Mount
Everest). Considering the substantial height, can you suggest an improvement
on the value of the potential energy?

1.5.4 Find the work done in moving a particle once around a circle in the xy plane,
if the circle has its centre at the origin and its radius is 3 m, and the force field
is given by

2 -y + z
F=[e,ceyez]x+y—z2 N
3x - 2y + 4z
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1.5.8 Determine the potential energy of the spring shown in Figure 1.18 by using the
generalized coordinates ¢; = [ and g, = O (instead of the Cartesian coordi-
natesry = x andr, = y).

1.5.9 Calculate the work W done by a friction force F = — 1 mg, with i = 0.2 and
m = 10 kg, as it moves from xq = 0 to x; = (V3/4) m along a path given by
y = 2x2. Make a sketch.

1.6 Stability of Static Equilibrium

When all the forces in a system are conservative, i.e. derivable from a potential energy
function V, the problem of static equilibrium reduces to the problem of extremization
of V. The nature of the potential energy’s stationary values distinguishes between
equilibrium conditions which are stable, neutrally stable, or unstable. To examine this
point in some detail, let us follow Dirichlet' and expand the potential energy V into a
Taylor'' series, near a point 0 of equilibrium. Thus

v 1 1 v

7= Vo + 34; onj + or W ondek T m Odejd(IdeI +
(1.6.1)
where V = V(@14293 " 4j»" " 4n)
and Vo = V(@10920930 " " " djos """ 4n0)
Static equilibrium means that the resultant forces are zero. Thus, each
0 = - % =0 (1.62)

at equilibrium, i.e. all first derivative terms in equation (1.6.1) vanish. Further, if the
equilibrium position 0 is a stable one, then V — V> 0 is a requirement, and hence all
the terms following must be positive for all possible values of dg;. Thus the second
derivative quadratic terms must be positive definite. If the quadratic terms vanish at 0,
one must examine the nature of higher order terms for positive definiteness. If all the
higher order terms also vanish at 0, the equilibrium position is neutrally stable,

For the quadratic terms in (1.6.1) to be positive definite it is required that

-
V’qm V’quqz .......... V,q‘q" dq,
Vsgag, ceeveriens svevvense vovsrennns d
[dqlqu """ dqn] 0 .q2 >0
| Viggy oo o Vg, |, L n

(1.6.3)

1 Peter-Lejeune Dirichlet (1805-1859), German mathematician
tt Brook Taylor (1685-1731), English mathematician
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and the equilibrium conditions are found as

v
0 0
ie. kO —F | sin0=0 (a)

Equation (a) shows that the configuration 6 = 0 is a possible equilibrium position for all values of
F. For non-zero values of 6, equilibrium conditions are governed by

unstable
equilibrium

/

stable

post -
equilibrium

buckling

buckling (bifurcation
point)

pre-buckling 0

Figure 1.22 Equilibrium force magnitudes

k0
F=1sne

®)

Figure 1.22 shows the possible paths of equilibrium configurations. To study the stability
of these equilibrium solutions, we examine the second order derivatives of V.

2.
i;6‘25=k—1=1cose ©

Thus for the fundamental path, for which 6 = 0, stability is governed by

k —Fl1>0 or F<§ stable
k —Fl<0 or F>llc- unstable

For the post-buckling path, for which F > k/I and © > 0, we substitute for F, from equation (b)
into equation (c) and find that for stability

0
k[l—m]>0 )



Since equation (d) is true for all values of 8, we deduce that the equilibrium given by equation
(b) is always stable.

It remains to examine the critical point C. For this point, F. = k/I and the first and the second
derivative terms vanish. Hence we examine the third order derivative

v :
Fro F | sin@

which also vanishes for = 0. Proceeding to the fourth order derivative, we find
% =F 1 cos®

which is positive at 6 = 0, and we conclude that at the critical point C, the potential energy has a
local minimum point and the equilibrium is stable.

I

Figure 1.23 Potential energy

In Figure 1.23 the potential energy is plotted against 0, for three different values of F . From this
plot, it is evident that for a small load, Fi/k < 1, namely below the critical value of F, only the
vertical position of the column is stable, and the system is attracted to 6 = 0° whereas above this
critical value F, = k/I the system is attracted to one of the two stable positions on the two sides
of the vertical position. The vertical position itself is unstable since at this point V attains a max-
imum, as can be deduced from equation (c).

Example 1.6.2
Consider a particle m which can slide without friction on a surface z = %(x -2+ %(y - 13

as shown in Figure 1.24. The potential energy of this particle is V = mgz or

V=%mg(x-2)2+%mg(y-—l)3 (@)









sign definiteness of the matrix

P Gl
00? 909y 2k — FI cos ©
v rad —*
969y oy’
Thus
D, = 2k - Flcosd
D, = 2k - Flcos®)(k — Flsiny) — k2

For 8 = y = 0, the stability of equilibrium requires that
D, = 2 - Fl >0
D, = 2 - Fl)(k - FI) - k2 >0
Inequality (i) leads to

Inequality (j) leads to either

F > 2.618% or

-k

k — Fl cosy

k

F < 0382 N
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®

®
(U

®
)

&)

(1m)

By inspection, we conclude that, of the three, F < 0.382 % is the requirement to make the

equilibrium state 6 = y = 0 stable.

Problems
A particle m subjected to its weight mg can slide friction-free along a path

1.6.1

1.6.2

1.6.3

whose shape is given by

y=4——;—x3

Examine the stability of the particle at x =0, by using its potential energy

V =mgy.
Plot three potential energy curves

V= %k 02— F I(1 - cosf)

in the domain —180° <0 < 180°, for F = k/2I, F =k/l, and F = nk/2l.

Find the angle 0, for ¢ = 0.729/, at which the system shown is in equilibrium,
by i) using the virtual work theorem, ii) minimizing the total potential energy.
Assume that the contact surfaces are frictionless. Is the equilibrium stable or

unstable?
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W, = —Fdy, - Fidx; =0 @

But x; and y, are not independent. We can satisfy the displacement constraint equation
xf +y3 =1 ®)

by choosing (0) as the single generalized coordinate. Then the reduced transformation equations
become

y, = I sinf and x; = I cosO ©)
Their variations are
8y, = 1 cosb 60 and dx; = —1 sinB 80 (G
Thus we have the constraint
8x; = - tan@ dy, ©
Substituting from equation (e) into equation (a), we find
W, = - (F,- F;tan0)dy, = 0 ®)
or
F, — Fytan® = 0 ®
To obtain the kinematic fit conditions for x, and y,, we write
Wy = -y, 8, - %8I (h)

But the impulses 7, and I, are not independent, they are required to satisfy the equilibrium equa-
tion (g). Thus we obtain the impulse constraint equation
dl, dI,

@ —&—t—tane =0 @)

or

81, — &I, tan@ = 0 G
Substituting from equation (j) into equation (h), we find

Wy = (atan® + X8I, = 0 k)

or
X = —y,tanf o
Equation (I) can be seen to be essentially the same as the kinematic constraint equation (e).
Before leaving this example, it is worth noting that the constraint equations for 8W;, i.e. the
kinematic constraint equations, are always in terms of kinematic variables alone. On the other
hand, the constraint equations for 8Wj;, namely the force equilibrium equations, are not always in
terms of forces alone. In this example for instance, the kinematic quantity 6 appears explicitly in

the equilibrium equation F, + F, tanf = 0. In evaluating the relation amongst the 8I; from
equilibrium equations, the kinematic quantities are treated as being fixed.
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dvV +dV" = —(Fdu + udF)
or
d(V +V")=-d(Fu)
ie.
V+V" =-Fu @

In the special case when the force deformation relation is linear and zero deformation corresponds
to zero force, V = V*, but in general V # V*. In the above example if V" is expressed in terms
of u via equation (a), and the result is compared with V, it will be found that V* = 3V.

Kinetic Energy and Complementary Kinetic Energy
Consider again the definition (1.7.1) of an increment of work,

dw = F - dr
Using Euler’s linear momentum law (1.1.2), we may write
dB dr
= F - dr = =— - = — - dB = - dB 1.8.
aw r dr dr @ d v (1.8.3)

In analogy with the definition of the potential energy V, in equation (1.8.1), we now
define a kinetic energy T of a single particle as

T = [v-dB (1.8.4)

To carry out the integration we need to express v as function of B. This relation can
be inverted, and once again in analogy with the definition of the complementary poten-
tial energy V", in equation (1.8.2), we define a complementary kinetic energy (or
kinetic coenergy) function T" as

T" = jB < dv (1.8.5)

If N point masses are involved in a system, the kinetic energy and coenergy are
defined as the sums

T = [v, -dBy (1.8.6)
T" = [By - dv, (1.8.7)
A particle m moving in three-dimensional space would have a kinetic energy of
T = [xdB, + [ydB, + [7dB, (1.8.8)
and, with x = B,/m ,y =By/m,z =B,/m,
T = i B2 + B? + B = B (1.8.9)

Its kinetic coenergy would be
T" = [B,di + [B,dy + [B,di (1.8.10)

and, with B, =mx, B, =my, B, =mz
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T = %m(x2 + 3 = 22 (1.8.11)
Equation (1.8.11) shows that the function %mvz, which is usually referred to as

"kinetic energy", is strictly speaking the complementary kinetic energy.
Adding equations (1.8.4) and ( 1.8.5) gives

T + T =j(v-dB + B-dv) = jd(v-B) (1.8.12)

The right side of equation (1.8.12) contains a total differential. Thus an integration
can be carried out to give

T +T =v-B (1.8.13)
Also note that
oO_ _ g, (1.8.14)
an J
and
oT
— =V 1.8.1
28 v (1.8.15)
For rotational motion the kinetic energy is given by
T = [0 - dH (1.8.16)
and the kinetic coenergy by
™ = [H - do (1.8.17)

where H is the angular momentum vector, and ® the angular velocity vector.

A point mass m on a circular path with centre 0 in the xy plane, would have an angu-
lar momentum of

0
H = [e, e ¢] 0 (1.8.18)
Co
where C = mr? is the inertia moment, and an angular velocity of
0
© = [e e e]l0 (1.8.19)
0]
such that the kinetic energy becomes
H 1 H?
T =|o-dH=[Zd == (1.8.20)
and the kinetic coenergy
T" = [H-do = [Codo = %sz (1.8.21)
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Expressions for kinetic energy and kinetic coenergy of a rigid body in 3D space are
derived in chapter V.

The examples following are intended to bring to light the physical nature of the func-
tions T and T".

y
c

dT*=Bdy

b= B/m
Vi+ (B/mc?
il
dT =vdB
r B
0

Figure 1.28 Velocity versus momentum plot for relativistic mechanics

Example 1.8.2
Let us have a look at the kinetic energy and the complementary kinetic energy of a single mass
point of constant mass m, in Newtonian and relativistic mechanics.

For speeds much lower than the speed of light, linear momentum and linear velocity are related
by

. B
Vo= o @

Hence
2
T = -82—m ad T = %mvz (b)

Now for the linear relation (a) which holds in Newtonian mechanics, one can see that T =T",
but in relativistic mechanics T # T*. In the special theory of relativity (Figure 1.28)
v = B/m @

V1 + BUm2c?

where ¢ (=299 792.458 km/s) is the speed of light, and one can easily show that

T = jvdB = mcz[‘\/1+—"%i—2--—l] ©)
2
™ = IB dv = m02[1 - '\/1 - %2—] ®
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By differentiating equations (b) and (c) or (e) and (f), and using the associated relation (a) or (d),
we find

or oar’
a—B- v av =B (g9h)

At the speed of light, i.e. for v = ¢, the complementary kinetic energy becomes
T = m? @
Since, from equation (f),
B = —2— 0

T = o ®

Without the integration constant -mc?, introduced to make T = 0 when B = 0 in equation (¢), the
integral of equation (e) would give

2
E = mcz‘\/1+f%—2 o

At rest B = 0, and the rest energy is then given by Einstein’s celebrated equation
E, = mc? (m)
From a mass at rest, energy can, by the way, still be withdrawn by changing the mass.
AE, = Amc? m
e.g. in a nuclear reaction, a small amount Am of mass is converted into an amount AE , of energy
(which happens to be quite large by virtue of the large value of the speed of light!).

Problems

1.8.1

1.8.2

For a system of particles, show that the complementary kinetic energy may be
expressed as the sum of: i) Complementary kinetic energy due to a single par-
ticle having a mass equal to the total mass of the system and moving with the
velocity of the system’s centre of mass, ii) Complementary kinetic energy due
to the motion of the particles relative to the system’s centre of mass. This is
known as Konig’s' theorem.

Assuming that the concentrated masses m; and m, represent all masses and
that consequently the link / is massless, find expressions for the complementary
kinetic energy T~ and the kinetic energy T of the crank mechanism shown, i.e.
T" in terms of 6, and T in terms of p.

t Samuel K6nig (1712-1757), German mathematician
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Time will appear in these transformation equations explicitly if a moving reference
frame is used and/or rheonomic constraints are present.

The velocities can now be determined as

oo i o i = 123 1.9.1
rj = Eqi'f"'aT 1 = 343D5.00y N (0')

or in matrix form
{r} = [UlHq} + {r,} 1.9.2)

where the ¢; are scalar quantities and represent generalized speeds. The term general-
ized velocities for the ¢; is also in wide-spread use. The complementary kinetic
energy is

T* = %{i‘}T[m]{i'} (1.9.3)

where {r}T = [X'fl, )"1 Z'l, x.z, };2, 52, )23,..., ZN]
From equations (1.9.2) and (1.9.3)

T" = %[{r,, o+ @y ur’ ][m][u]{q} + {r,,}]
or

« _ 1. . . 1

T" =AY W NG} + (r ) ImIUHG ) + S iry ) Imdiry ) (194)
It is of interest to note that the expression for T*, in terms of generalized coordinates,
turns out to be in three parts. These may be designated T3, T and T,, such that

equation (1.9.4) may also be written

*

T" =T, + T; + T,
with
T, = —;—-{q' VAG)} quadratic in generalized speeds
T] ={b}{g}={¢}{b} linear in generalized speeds (1.9.5)
T, =C independent of generalized speeds
and
[A1 =1 [mlJ] a symmetric matrix
(b} =1 [m){r,} a column matrix (1.9.6)
c = %{r,, VT imlir,) a scalar

It is also of interest to note that T* is a positive definite function of {F}, as one can
see from equation (1.9.3). However, T* is not a positive definite function of {4},
since T is linear in ¢; and hence its sign depends upon the sign of ¢;.
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When the transformation equations (1.9.1) do not include time explicitly (scleronomic
systems), T and T, will vanish and in this case, T" (= T) will be a positive definite
function of ¢;.

As in the case of Cartesian coordinates, for linear momenta (1.8.16), we may
define a set of generalized momenta p; as

or* _ 9Ty Ty
3; dg; 34

pbi = (1.9.7)

Hence
{p} = [Alg} + (b} (1.9.8)

Equation (1.9.8) shows that the linear relation between the generalized momenta and
generalized velocities does not pass through the origin. The term {b} can be looked
upon as additional momenta due to the motion of the ¢ coordinate system. It is also
important to note that both [A] and {b} may be functions of the generalized coordi-
nates ¢; and time. Now in terms of the Cartesian coordinates r;, we may define the
momenta as

(B) = 7} = mUIG) + ()] (19.9)

From equation (1.9.9), we find that
Ui{g} = [mIYB} - {r,} (1.9.10)

On substituting [J]{¢g} from this equation into equation (1.9.8) and using equation
(1.9.6), we find the transformation equation for the momenta as

p} = UI"(B) (1.9.11)
where {p} are the generalized momenta (1.9.8) and {B} are the Cartesian linear
momenta (1.9.9).

Equations (1.9.2) and (1.9.11) show that apart from the term {r,,}, the velocities and
momenta follow congruent transformation laws. Finally, let us consider the sum of the
kinetic energy and complementary kinetic energy functions, i.e.

T + T" = (B} {F} 1.9.12)
On substituting for {r} from equation (1.9.2), we may write

T + T" = {B}T[[J]{d} + {r,,}] (1.9.13)

which on account of equation (1.9.11) may be written as
T + T" = {p¥i{g} + (B} (r,} (1.9.14)

Equations (1.9.12) and (1.9.14) show that the product of momenta and velocities is
not, in general, an invariant of the transformation. Only when time does not appear in
the transformation equations explicitly, does this product remain invariant. Finally, let
us remove {B} from equation (1.9.14) by the use of equations (1.9.9) and (1.9.4).
When this is done, we find
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T + T = {pY'{g} + T} + 2T,
Hence
PY{g) =T + (T, + T} +T)) - (T} + 2T)
or
p¥igy =T + T, - T, (1.9.15)
To determine T in terms of {p} and {r,}, we may eliminate g; from equation

(1.9.14) using the momentum-velocity relation of equation (1.9.8). When this is done,
we find

T = SEVUATp) - BIAIYe) + T, 916

Noting that [A] and {b} are functions of g; and time, one can see that in general, the
kinetic energy T is a function of the generalized momenta p;, generalized coordinates
g;,» and time. Since in Newtonian mechanics T =T", we may also determine T by
eliminating ¢; from T * via equation (1.9.8).

It is of interest to note that

Ol _ it
{ap} = [AI7{p} (1.9.17)

is not the relative generalized velocity {q } but rather the absolute generalized velocity

[{q} + [ATYD) ] , as becomes evident from equations (1.9.17) and (1.9.8).

Example 1.9.1

A particle can slide without friction on a rigid wire bent in the form of a circle of radius a. The
wire rotates about its vertical diameter with constant angular velocity @, and it moves along the x
axis with constant velocity v as shown in Figure 1.29. Determine the complementary kinetic
energy and the kinetic energy of the particle in terms of the generalized variables.

In this problem, we have the following holonomic constraints
(x -vt)+y?+22=qa? (@
y = (x — vt)tanwt

The system has one degree of freedom. The sole generalized coordinate shall be ¢, = 6. The
reduced transformation equations for this problem take the form

ry = x = a sin® coswt + vt
ry =y = a sin® sinor ®)
r, = z = —a cosb

The velocities may now be derived as
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7
I \@ ]
0
X
W—
Figure 1.29 Bead on a rotating circular frame
x cos0 cosot —-a o sind sinot + v
y | = a0} cosO sinwt | + a o sin® coswt
7 sin® 0
Thus
[ cos® coswt — ao sin® sinowt + v}
[J1 = a| cosO sinwt and (ry} = a sind cosw?
| sin® 0 i
The Cartesian momenta are given by B, = mx, B, =my, B, =mz, i.e.
B, mx cosf coswt -ma® sind sinwt + my |
(B} = | By | =| my | =ma8| cosO sinot | + ma® sin® coswt
B, mz sin® 0 i

Consider next the complementary kinetic energy given in Cartesian coordinates by

T" = % m(E2+ % + 39

On using the velocities in equation (c), we find T* = T° (6, 0,¢)as

=L ma2ée? + % mao?sin?@ + —;— mv? + mav( cosd coset — o sind sinwe) ()

2

©

@

©






The absolute generalized velocity
oT -1 1 A \4
e - AT (p} = b = 0 + —;cosecosmt (m)

Figure 1.30 shows the various kinetic energy terms in a velocity-momentum diagram.
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Chapter I1

DIFFERENTIAL VARIATIONAL FORMULATIONS

2.1 D’Alembert’s Principle

D’Alembert’ brought the problems of motion under the umbrella of problems of equili-
brium. Using Euler’s linear momentum law (1.1.2), we have that, when a point mass
is acted upon by a set of forces resulting in F, it will acquire a linear momentum B,
such that

F = B @.1.1)
Consider now an increment of work done by the force F, as well as by D’Alembert’s

inertial force -B, as the point mass undergoes an imagined virtual displacement or.
Then

W, = (F-B)-&r=0 (2.1.2)

because of relation (2.1.1).
If virtual displacements dr are chosen such that they are kinematically admissible,
i.e. they satisfy the constraint equations, and for which time is held fixed, then the con-

straint forces will not contribute to 8W;, and need not be included in F, effecting a
noticeable simplification.

For the case of a system of N particles, the virtual work expression (2.1.2)
becomes

W, = (F, - B,)-dr, = 0 k =1,23,..N @2.1.3)
D’Alembert’s principle is inertial element focussed, i.e. the forces F, are those
impressed upon the inertial elements (masses) whose momentum derivatives are By.

For a point mass m, B = m ¥, and D’Alembert’s principle (2.1.3) can be
expressed as

t Jean LeRond D’Alembert (1717-1783), French mathematician (Traité de dynamique, 1758)
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Example 2.1.1
Consider the point mass m moving in a horizontal plane, as shown in Figure 2.1, and subjected to
a force F. The equations of motion are to be established in polar coordinates.

The linear momentum components are

B, = mX = m(Fcos® — rsin0) (a)
B, = mj = m(Fsind + récose) ®)
The time derivatives are
B, = mi = m(Fcos® — 270sin@ — rOsin® — ré%cos6) ©
B, = mj = m(Fsind + 2-@cos® + récosd — ré’sing) @

D’ Alembert’s principle (2.1.3) requires that

Fr - mi)x + (F, - my)dy = 0 ©
Since
x = rcos@ and y = rsin® (f.g)
we find
6x = cos@ &r — rsin® 30 and 8y = sin® & + rcos6 66 (h,i)

Further we may introduce radial and transverse force components given by
F, = F,cos0 + F,sinf and F, = —F,sin@ + F,cos0 (k)

Now expressing equation (e) in terms of generalised coordinates ¢, = r and ¢, = 6, we obtain
for D’ Alembert’s principle

(F, — m(F - r6))or + (F, — m(r® + 276))50 = 0 1)
Since 8r and 80 are arbitrary, we conclude that
F, - mG - ré) = 0 and F, —m@r® + 20) = 0  (mn)

are the equations of motion.

Example 2.1.2
The equations of motion of the oscillator chain of Figure 2.2 are to be obtained via D’Alembert’s
principle.

Equation (2.1.3) with k = a, b, c, requires that

8Wl = (Fa—é,,)ﬁx,,+(Fb—l§,,)8x,,+(Fc—éc)&xc=0 (a)
The free-body diagram of Figure 2.2 allows us to write for the virtual work
W, = (Fi—Fy~B,)0x, + (Fy—F3~By)dx, + (F3—F4—B.)ox, = 0 ®)

On comparing with equation (a) we note that in the present case, apart from a change in sign, the
forces acting on the masses are:

Fqg = F1-F, Fy = F3-F3 F, = F3-F, ©

Now from constitutive equations for the force elements and for the inertial elements we have that
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On substituting from equations (), (d), and (c) into equation (b) and noting that dx,, x, and &x,
are independent and arbitrary, we obtain the following equations of motion:

mg 0 0 ||% ki+tky, -k 0 X4 0
0 m O Jx’,, + —k2 k2+k3 -k3 Xp = 0 )
0 0 m X, 0 — ks k3 + kg Xc 0

Example 2.1.3

Let us derive the equilibrium equation of motion of the particle sliding on the rotating ring as
shown in Figure 1.29, by D’ Alembert’s principle.

For the force of gravity we have the virtual work
F-or = -mgd: (@)
In this case it is possible to define a potential energy V as
V. = mg( + a) ®)
Introducing the generalized coordinate 0, we have z = — a cos6, then
V. = mga(l - cosB) ©)
and & = mgasin0d = -F-3r @

Next let us derive the inertial forces by differentiating the Cartesian momenta B,, B, and B, with
respect to time. Using the expressions we had derived for these momenta in example 1.9.1, we
find that

B, cosO coswt sin@ cosw?
B, | =ma®|cos sinox | — ma@?*|sind sincr ©
B, sin —cos6
cosO sinw? sin@ cosw¢
— 2 maOw |—cos6 coswt | — maw?|sind sinemt
0 0

Finally, on using D’ Alembert’s principle (2.1.2) we may write

. . . 8x
-8V - (B, B, B,1|8y|=0 ®
&z

The Cartesian virtual displacements in equation (f) may be expressed in terms of a single
generalized 80 via the reduced transformation equations. To prevent the constraint forces from
contributing to 8W;, time will be held fixed, i.e. & = 0. Then

dx c0sO coswt
8y | = |cosO sinox | a 80 @
&z sin@
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Finally substituting from equations (¢) and (g) into equation (f), and recognizing that 80 is
arbitrary, we find the equilibrium equation of motion as

ma® - maaw?sinfcos® + mgsind = 0 )

It is of interest to note that while the constant translational velocity v appears in the momentum
velocity relations, it is absent in the equations of motion. This is because a uniformly translating
frame is itself an inertial frame.

In this example one may be tempted to use the form of D’ Alembert’s principle, as given in
equation (2.1.3), for the generalized variables 86 and p,. Now we showed earlier in example
19.1 that pg = ma? © + mav cosB cos . On differentiating the generalized momentum
with respect to time and comparing the result with the inertial force in equation (h), we can see
that pg does not yield all the terms of the inertial force. That is, the time derivative of the
momentum is equal to the inertial force only for inertial frames.

Problem

2.1.1 Two particles of masses m; and m, are attached by an inextensible string and
placed on a double incline as shown. Using D’Alembert’s principle determine
the system’s equation of motion. Neglect frictional forces.

m

g

2.2 Complementary Form of D’Alembert’s Principle

By associating a force with the inertial effects, D’Alembert extended the range of
applicability of 8W; from static problems to problems of motion. The inertial force
arises as the time derivative of a particle’s momentum and the conditions for the appli-
cation of 8W; remain unchanged. That is, the virtual displacements must satisfy the
kinematic constraints and for these displacements time is held fixed. The vanishing of
OW; then yields the equilibrium equations amongst the resultant applied force, and the
inertial force.

Now it will be recalled that the second form of virtual work is made up of pro-
ducts of velocities and virtual impulses. In this case the virtual impulses must satisfy
the equilibrium equations and for these impulses time is held fixed. The vanishing of
dW); then yields the conditions of compatibility or kinematic fit.
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For an inertial element, such as a mass particle, we can readily write the expres-
sions for 8W; in terms of the particle’s velocity v. For an elastic element, which is
more naturally described in terms of its deformations, we need to introduce an associ-
ated velocity. This velocity is simply the time derivative u of the deformation u.
Thus it can be seen that the deformations of elastic elements, in the expression for
OWy;, are analogous to the momenta of the inertial elements in the expression for W;.

The complementary form of D’Alembert’s principle thus requires the compatibil-
ity of the extension rates of the force elements with the velocities of the inertial ele-
ments. To illustrate this let us consider first a simple mass-spring oscillator. To
satisfy the equilibrium conditions, which is the prerequisite of the complementary for-
mulation, we set I, the impulse in the spring, equal to B, the momentum of the mass,

I=8B 221

Hence we may write the complementary form of D’Alembert’s principle, in terms of
equilibrating impulses, as

Wy = (v - )-8 = 0 2.22)
For an arbitrary 98I,

vV=ou 2.2.3)

For a system of N inertial elements (masses) and M force elements (springs), there

will be M independent impulse variables, to write the virtual work of the spring exten-

sion rates. For the inertial elements, the net momenta can be expressed in terms of the

impulses via the equilibrium conditions. For each of the N inertial elements we may

relate the momenta to the impulses in the force elements through the equilibrium equa-
tions and write

k=12 .,N
B, = B, ) i= 1.2 m 2.2.4)

where I; denote the impulses in the m force elements connected to particle £ . Now
we may express the complementary form of D’Alembert’s principle

SWH = Vi 8Bk - l.ll . 811 =0 (2.25)
Expressing the momenta B, in terms of impulses I; via the equilibrium equations
(2.2.4) we obtain
dB,
) f
To put this expression in the more familiar form shown for a single mass spring oscil-
lator, as given in equation (2.2.2), we introduce a resultant velocity v; such that

OB,
\/" (FII—) =V (2.2.7)

6WH = Voo . 811 - I.II . 811 =0 (226)

t In the general case the momenta B, may be functions of impulses and kinematic variables ¢ and ¢. We will
consider this more general case in section 2.10.
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Then the expression for the complementary form of D’Alembert’s principle becomes
Wy =@w - u)-8; =0 (2.2.8)
with I = 1,2,3,.., M.

Since the virtual impulses &I, are independent, then their coefficients may be
equated to zero for conditions of kinematic fit, which in this case become the compati-
bility equations of motion. These equations, given by the vanishing condition of the
bracketed term in equation (2.2.8) must be expressed in terms of equilibrating
impulses. This is done by invoking the constitutive equations for the force and inertial
element. Thus in equation (2.2.6) the velocity v, of the kth mass is first expressed in
terms of momentum B, and subsequently in terms of impulses I, via equation (2.2.4).
For force elements in the constitutive relations are often, though not always, in terms
of extensions u. Thus for a linear spring of stiffness &

¥ = - % and i o= — Ik 2.2.9)
For a cubic stiffening spring of stiffness A
j13 . 1 i
u = - W and u = - 3 W (2210)
For a linear dashpot of damping ¢
w=-1 and i=-1 2.2.11)
c c

Example 2.2.1
The equations of motion of the oscillator chain of Figure 2.2 are to be obtained via the comple-
mentary form of D’ Alembert’s principle.

From the general expression in equation (2.2.5) we write
8WH = v‘,SBa + Vbst + Vcch - 111811 - 112812 - 113813 - 114814 =0 @

But equilibrium conditions require that
B, = (I,-1y By = (I,-1y B, = (I3-1y ®)

Substituting from (b) into (a) and collecting terms multiplied by the same virtual impulse we can
write this expression as

Wy = (Vg —u) 8l + (v — vy — Bl + (Ve = vy — U383 + (v, —1g)dly, = 0 (0)

On comparing this expression with equation (2.2.8) we deduce that the resultant velocities v, are
in this case

VIS Vg V2= Vp—Vg V3= VoV V4= -V @
Now from the constitutive equations for the inertial and force elements we have that
Vo = Iy — I)m, vp = (2 — I3)my Ve = (I3 — 1)im, )

—il/kl U, = —iz/kz us = —ig/k:; Ug = —i4/k4

uy

Substituting from equation (¢) into (c) and noting that 8/,, 8/, 85, and &8I, are arbitrary and
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Example 2.2.2

The system of Figure 2.3 is made up of two masses and two linear springs. Let the velocity v,
of the first mass be prescribed, and let a prescribed force F act on the second mass. We wish to
obtain (a) the (equilibrium) equation of motion of the system in the displacement formulation and
(b) the (compatibility) equation of motion in the impulse formulation.

(a) Since the velocity of the first mass m, is prescribed, the system has only one (posi-

tional) degree of freedom in the displacement formulation. We may write the D’ Alembert princi-
ple for the system as

W, = (F, - éb)sxb =0 @)
where F,, includes all forces impressed upon mass m;, i.e.
Fo = F + k(% —x) — ko (®)
with
t
X, = l v, dt ©
and
B, = mi, @

Thus the (equilibrium) equation of motion emerges as
mpky + (ky+kdxy = F + k%, @©
It is worth noting that the virtual work done by the spring forces may be expressed as

k k
L@ - )P+ x| = ®

k(& — x)0x, — koxpdx, = -9 > >

since 8%, = 0. The term in brackets on the right side of equation (f) will be recognized as the
work function of the two springs. Thus the prescribed kinematic variable ¥, can be included in
the work function or the potential energy. On the other hand, for the prescribed force a separate
virtual work expression must be written unless the force possesses a potential.

(b) Next let us obtain the compatibility equations of motion for the same system from the
complementary form of D’Alembert’s principle. We note at the outset that the system possesses
two independent impulses associated with the two springs. Thus the complementary formulation
has two (impulsive) degrees of freedom. Now we can write the virtual work of the various velo-
cities in the expression for Wy, as follows:

Wy = v,08B, + vpOBy, — u, 8y — uy 81, =0 (€))
But equilibrium conditions, as depicted in Figure 2.3, require that
B, = I, By =1, -1, + T ®
hence
Wy = v, 8, + vy, — 8, + &) — i, 8, — 0y 8, = 0 )

Now noting that 87 = 0 and collecting terms multiplied by the same virtual impulse, we can
write

Wy =T, — vy — updly + (vp — U0, = 0 G)
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-dV - By -dr, = 0 @2.3.1)

where the dr; are real displacements and dV = -F; - dr; is the change in potential
energy due to changes in real displacements. Now since real displacements occur over
a time interval we may write equation (2.3.1) as

- dl'k
-dvV - By-——dt = 0 (2.32)
dt
If we now express the velocity vector I; as vy, equation (1.12.2) becomes
-dv - v,.-dB, = 0 2.3.3)
With dT' = v, - dB,, we deduce that
-dv - dI = 0 234

which, upon integration, becomes
V + T = constant. 2.3.5)

Several points are worth noting here. First in deriving the above result for conserva-
tion of energy we had to assume the following:

i)  All forces, other than the inertial forces, possess potential energy.

ii) Time does not appear explicitly in the reduced transformation equations nor
in the total potential energy function.

Second, it is of interest to see that it is the total energy and not a combination of an
energy and a complementary energy that is conserved. Now for Newtonian mechanics
T =T" and hence in Newtonian mechanics one can also assert that, under the above
conditions i) and ii),

V + T" = constant 2.3.6)

Finally if the force displacement relation, implicit in the expression for V, is linear,
then V = V" and one can also assert that

V* + T = constant 2.3.7)
and
V* + T* = constant (2.3.8)
If the force-displacement relation is nonlinear, V* may be some multiple of V , say
V' = 1V, then
c
¢V + T" = constant (2.3.9)

The results in equation (2.3.5) to (2.3.9) can also be derived from the comple-
mentary form of D’Alembert’s principle.
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Example 2.3.1
As an example consider a mass-spring system with a nonlinear spring for which the force is given
by F = - hx® (Duffing-type’ oscillator). The potential energy is (Example 1.8.1)
.
Vv = 2 hx (a)

There are no energy losses, consequently we conclude that

V + T = constant ®)
WithT = T' = %miz,
1,4 1 .,
V + T = z—hx + 5m.x = constant (c)

Differentiating equation (c) with respect to time, we obtain
Emi + hd) = 0 @

The term in the bracket will be recognized as the differential equation for a Duffing-type oscilla-
tor.

It will be recalled that for this problem

vVt =3V )
Thus in this case we can write
%V' + T" = constant ®
or
V' + T" =3V + T = constant + 2V @)

i.e. the sum V* + T" is not a constant.

Problems

231

232

Derive the expression T +V = constant from the complementary form of
D’ Alembert’s principle.

Use the constant mechanical energy T + V of a pendulum and the generalized
coordinate ¢ = 6 to (a) derive the (nonlinear) differential equation of motion.
(b) Plot the generalized force Q versus the generalized position g. (¢) Show
that the mechanical coenergy T* + V* is not a constant. (d) Write
(T + V) and (T" + V") for small displacements and show that for the
linearised system the mechanical energy sum and the mechanical coenergy sum
are the same.

1t Georg Duffing (1861-1944), German engineer
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2.4 Gauss’ Principle of Least Constraint

D’Alembert’s principle is not an extremum principle since the inertial forces in this
principle are not derivable from a function. Gauss' gave an ingenious reinterpretation
of D’Alembert’s principle, which changes it into a minimum principle. Gauss’ princi-
ple can be derived from D’Alembert’s principle as follows.

Suppose that at a given instant, ¢, we know the real positions and the velocities
but not the accelerations of all the particles in a system. At a small increment of time
T later we can determine the positions of the particles by a Taylor series expansion.
Thus
1
2
Since, the positions and velocities are specified at time ¢ and are not subject to varia-

tion, deviations in the position of the particles can arise from variations of accelera-
tions, i.e.

R +7 = @) + )T + =50 + - (2.4.1)

S, (t +1) = %12 ot (2.4.2)

This relationship is true no matter what constraints may exist amongst the 3r;.
Now let us write D’ Alembert’s principle (2.1.4) using the virtual displacements at
time (¢ + 7). Then we have, with 8f = — OB, that
m

[Fk - ék] -8B, =0 (2.43)

Finally, on recognizing that the forces F, are also prescribed, i.e. 8F, = 0, we may
write equation (2.4.3) as

[Fk - lik] -8[ F, - ﬁk] =0 (2.4.4)
or
8Z =0 (2.4.5)
where
z=%[Fk—1§k]~[Fk—f3k] (2.4.6)

In equation (2.4.4), several points are worthy of note. First, one can see that in this
equation, we have a true minimum principle. The minimization is_with respect to the
momentum derivatives B, . If there exist no constraints, i.c. all 3B, are independent,
then each coefficient of 6B, must vanish and the value of Z will be exactly zero. On
the other hand, if some constraints exist, the coefficients of 8B, cannot be equated to
zero. In this case, the value of Z will be larger than zero. As such, Z is an indicator
of constraints and Gauss referred to Z as the zwang (= constraint) of the motion

t Carl Friedrich Gauss (1777-1855), German mathematician (Disquisitiones arithmeticae, 1801)
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whose variation must vanish - hence the principle of least constraint.

Since in Gauss’ principle, only momentum derivatives, or equivalently accelera-
tions, are subject to variations, constraints amongst displacement and/or velocities must
be converted to a set of relations amongst the accelerations. This is done simply by
differentiating the constraint equations with respect to time, twice for holonomic con-
straints and once for nonholonomic constraints. Thus Gauss’ principle can be used for
holonomic and nonholonomic systems. It is also of interest to recognize that the con-
straints amongst accelerations always emerge as linear relationships allowing one to
eliminate the superfluous accelerations readily.

Finally, one can interpret equation (2.4.4) as the least squares minimization of
(F; — B;). The method of least squares minimization of errors was also discovered by
Gauss.

Gauss’ principle may be expressed in terms of generalized coordinates g;, by
expressing T, in terms of the generalized coordinates as shown in equation (2.1.7).

Starting from the complementary form of D’Alembert’s principle and following a

similar procedure, it is also possible to find a complementary form of Gauss’ principle,
namely

8z =0 (2.4.7)

where

z" = %[v, - ﬁ,]-[v, - i.,] (2.4.8)

with v; and u; as velocities and extension rates, as in equation (2.2.8).

y=bx2

Figure 2.4 Bead on a parabolic wire

Example 2.4.1
A particle is forced to move without friction along a wire bent in the form of a parabola y = bx?,
as shown in Figure 2.4. Let us derive the particle’s equation of motion via Gauss’ principle.
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In this example, we have the holonomic constraints

y = bx? z=0 (@

Differentiating twice, we find
y =2bxx and z2=0 ®)
j =268 +2b x ¥ and £=0 ©

Now since in Gauss® principle the displacements and velocities are prescribed and only accelera-
tions are subject to variations, we find from equation (c) that

& = 2bx & (Y]

Using equation (2.4.5), we may write

) —;—[(F, -mi o+ (F,-my + F,-mi] = 0
In this example, F, = F, = 0 and F, = -mg. Hence
8 i) + (mg + mj¥) = 0
or
¥ o+ (@+y))¥y = 0 ©
On eliminating 8y from equation (e) via equation (d), we arrive at
K+ 2x(g+y)8& = 0 ®

Now it remains to recognize that 8x is arbitrary and hence its coefficient must vanish. It remains

to

remove y from this coefficient. Using equation (c) for y in equation (f), we find the particle’s

equation of motion as

(1 +46%D + %A = -2gbx

Problems

24.1

242

243

A particle is forced to stay on the surface

z = fx.y)

and is acted upon by the force F. Using Gauss’ principle of least constraint,
find the equation of motion.

A particle of mass m moves without friction on a horizontal plane. It is sub-
jected to the constraint:

sinat?dx - cosat’dy = 0

where a = constant and where the Cartesian coordinates (x,y) specify its
position. Obtain the equations of motion for this particle by means of Gauss’
principle of least constraint.

Obtain the equation of motion for a simple mass-dashpot-spring oscillator by
means of Gauss’ principle of least constraint.
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244 A particle m is forced to stay on the surface z = %ax2 + bxy + _217- cy?

and is acted upon by a force F. Using Gauss’ principle of least constraint, find
the equations of motion.

2,5  Configuration Space and Hertz’ Principle of Least Curvature

It is possible to represent the configuration of a system of N particles by the position
vector of a single point in a 3N dimensional space. For such a space, called the
configuration space, we may use a rectilinear coordinate system with 3N axes. Now
we need to establish a relation between measurements of length in the configuration
space and the 3D physical space. To this end, we relate the incremental changes in
the position vector R of the representative point in the configuration space, to the
corresponding changes in the position vectors r; of the N particles in the 3D space as
follows

{dR} =[\mdx, midy, \mydz, \mydx, - - \mydzy 1  (2.5.1)
Now the elemental arc length, ds, in the configuration space may be computed as
ds?=dR - dR = (mdr), - dr, (2.5.2)

The advantage of the relation defined in equation (2.5.1) is that when equation (2.5.2)
is divided through by 2dt?, we find
2
1 ds 1 -2 *
- |& = = =T 2.5.
Z{dt] 2 M Tk @53)
Equation (2.5.3) shows that the total complementary energy of the N particles is equal

to the complementary kinetic energy of a single particle of unit mass, moving in the
3N dimensional configuration space.

Now if the motion of the N particles is constrained and only n coordinates are
required, with n < 3N, then not every point of the configuration space of 3N dimen-
sions will be accessible and the motion of the representative point will be confined to a
manifold of n dimensions. Alternatively, we may define a new configuration space of
n dimensions corresponding to the n coordinates. In this case, the n coordinate axes
will generally be curved rather than straight. Once again, we may define a convenient
metric for this curvilinear space by expressing the elemental arc length of this space as

ds? = {dg;}' [m;] {dg;} i,j=1,2,3 ..n @2.5.4)
where [m;;] is the mass matrix of the system. On dividing through by 2dt?, we find
2
1 |ds 1. .
7 [7{] = Sl ¥ Imi1 445} 25.5)

The right hand side term will be recognized as the complementary kinetic energy of a
scleronomic system.

As the configuration of the N particles changes in time, the representative point
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traces out a curve in the configuration space. Hertz' showed that, in the absence of
impressed forces, the trajectories of the representative point in the configuration space
are lines of least curvature.

Hertz’ principle of least curvature may be derived from Gauss’ principle of least
constraint as follows. In the absence of the impressed forces, Gauss’ principle reduces
to

5 (% mid) =0
which by virtue of equation (2.5.1), may be written as

55—53— =0 2.5.6)

Also, if there are no impressed forces, the kinetic energy, and in Newtonian mechanics
also the complementary kinetic energy, of the system will remain fixed. Thus we also
have that

a constant
de
es+des v eS
P
R

Figure 2.5 Trajectory of the representative point

t Heinrich Hertz (1857-1894), German physicist
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d’R  dR
iz ar? 1

aTlal 2
dt at

It remains to show that equation (2.5.7) is related to the curvature of the trajectory in
the configuration space. We will demonstrate this for the simpler case of a two-
dimensional configuration space. In this case,

ds2

d’R ]2
=0 (2.5.7)

R,
R = [e; e)] 2.5.8)
R,
as shown in Figure 2.5. The derivative
dR |
dR ds
s [e; e;] dR, = e 2.5.9)
ds

represents a unit vector in tangential direction. The magnitude of a unit vector is con-
stant, so that a change of a unit vector can only be perpendicular to the vector, thus

de, = —dOe, 2.5.10)
and since
de = xds 2.5.11)
where ¥ is the curvature, we obtain
deg
R = -XKe, (2.5.12)
Combining equations (2.5.9) and (2.5.12) one finds that
d’R
? = — Ke, (2.5.13)
d 4R 4R K2 (2.5.14)
an PRI = 5.

On returning to equation (2.5.7), we can now interpret this equation as the minimiza-
tion of the magnitude of the curvature in the 3N dimensional configuration space.
One can show that paths of minimum curvature are geodesics on curved surfaces.
When there are no constraints, the trajectories in the configuration space are straight
lines. It is interesting to note that this finding for a system of N particles represented
by the motion of a single particle in the 3N configuration space is similar to Newton’s
first law for a single particle in 3D space. Finally, it is worth noting that Hertz’ prin-
ciple makes a statement about the trajectory of the motion in the configuration space,
but it does not provide information on the motion as a function of time. Although of
fundamental importance, Hertz’ principle does not provide a practical method for
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analyzing the dynamics of systems.

Figure 2.6 A system of two force-free particles

Example 2.5.1
Consider the system involving the two particles shown in Figure 2.6. No forces are acting. As a
consequence each particle will continue at a constant speed along a straight path in 3D space.

The changes in position vector in configuration space are obtained from

de = \Jma dxa dR4 = '\me dx,,
dRy = \m, dy, dRs = \my, dy,
dR3 = \jma dZa dRg = ‘\me dz,, (a)
The kinetic coenergy is
T = %(m,,va2 + myvd) = constant ®)
. 2 _ .2 .2 .2 2 _ 22 .2 .2 . . . .
Withv, = X, + y, + z, andvy = x5 + Yy, + 2, it can be expressed in Hertzian coordi-
nates
T = S ® + R} + R} + RE + R} + RY) = constant ©

Since there is no external force acting, the velocity R is constant, i.e. the imagined single particle
of unit mass moves at a velocity of constant magnitude

HRIl = VR? + R} + R? + R? + R? + R? @

along a straight path (minimum curvature) in the 6 dimensional Hertzian configuration space.
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2.6 Lagrange’s Equations

Let us consider again D’ Alembert’s principle in terms of generalized coordinates. For
this purpose, we require to express the virtual displacement 8r; and the accelerations
T, in terms of generalized coordinates g; .

Let the transformation equations be

I =5 (G 15 2o 5o e ot)

Th o = _rk 8q 2.6.1)
en T i .0.
¢ aqi ‘
and r = —'k q + * 2.6.2
Te aq, i ot ( e )

In deriving equation (2.6.1), time is held fixed so as to prevent constraint forces from
entering the virtual work expression.

Consider now the virtual work of the applied and the inertial forces. For the
former, we may write

al'k
F, -0r, = F, - =—dq
k * 0L [ 7 dq;
or Fk . Srk = Qi 8(],' (263)
h 0 F, . 2% 2.6.4)
where - .2 .6.
i k aq'
For the virtual work of the inertial forces, we have that
. . or;
Bk . 81'k = Bk . ——‘8(],' (2.65)
9q;
It is convenient to write the inertial force on the right hand side of equation (2.6.5) in
the following modified form
- ory d or; d |9
B, — = —|B,-— | - By — |=— 2.6.6
k3, dt[  3a; B ur |5 2.66)
But
or o’r o,
A il 3 LIS N . 2.6.7)
dt | 9gq; 9q;0q; dg; ot

Now an examination of the right hand side of equation (2.6.7) reveals that this term is
just

—1; —_—

0 d 9 | o . ory
aq,- o aq; [ ] (2.6.8)

— e 7« + —
aql 9% ot
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Equations (2.6.7) and (2.6.8) show that

d |9 d |d
—_— =] = == 2.6.9
dt [8q, ] aq, [dt T ] ( )
Furthermore, from equation (2.6.2), we find that
or or,
—+ - 2 (2.6.10)
aq,- aqi
Now making use of equations (2.6.9) and (2.6.10), we may write equations (2.6.6) as
. O d ory 9
BL— = —|B,— | - B, —Tr 2.6.11)
Finally, since B = mF, the virtual work of the inertial forces may be written as
. Or d 9 1 i o 1 .
B, —&, = | — ——B, - - —=—B,'r ; 2.6.12
k aq‘_&b {dt 2, 2 T 3q, 2 ok |04 ( )

Now recognising the —%—Bk ‘T, terms as the system’s kinetic coenergy T" (g, g, t),

and using equation (2.6.4), we may express D’Alembert’s principle (2.1.5), in terms of
generalized coordinates, as

[ d or" oT*

dr 3, dg;

- Q,’ 8q,- = 0 (2613)

If the constraints are holonomic, each 8¢; will be independent and the term in the
brackets of equation (2.6.13) must vanish, leading to the fundamental form of the cele-
brated Lagrange' equations;

d or* oaT* .
a - = 0, i=12,.n 2.6.14
dt dg; 9g; ¢ G619

For each system there are altogether n such equations, where n is the number of gen-
eralized coordinates.
Considering equation (1.8.13), equation (2.6.14) may also be written

d, _ I
dt aq,

= Q (2.6.15)

Equation (2.6.15) shows once again that the time derivative of the generalized momen-
tum does not yield all terms of the* inertial force. That is, part of the inertial force is

to be obtained from the term —3l—. Only for Galilean coordinate systems in which
i
T* is not a function of g;, is the inertial force equal to the time derivative of the

t Joseph Louis Lagrange (1736-1813), French mathematician (Mécanique analytique, 1788)
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generalized momentum.

It is worth emphasizing that Lagrange’s equations, as derived above, hold for
holonomic systems in which the g; are independent. We shall examine the extension
of Lagrange’s equations to nonholonomic systems later (see section 3.6).

In the special case when the F; are derivable from a potential energy function V,
we may write

Fk . dl’k = - dV
or on using equation (2.6.3)
av
Qi dg; = Fy-dr, = - dV(g) = - - —dg
q;
av
or Q,- = _ﬁ (2.6.16)
For such a case, Lagrange’s equations may be expressed as
d or’ -
— - —@T -V) =0 2.6.17
a2, 2, ( ) ( )

Since in most cases V is not a function of generalized velocities, it is convenient to
define a new function L, called the Lagrangian, as

*

L = T -V (2.6.18)
and express Lagrange’s equations as
d dL oL .
—_—— - — =0 i=12,...n 2.6.19
dt dg; 9g; @619

Equation (2.6.19) is the most frequently quoted form of Lagrange’s equation, and is
called the standard form. If in addition to forces which possess a potential, there exist
other generalized forces Q,~', which are not derivable from a potential function,
Lagrange’s equations take the form;

L L ’
4o _ oL _ , (2.6.20)
dt aq‘ aq,
Example 2.6.1
Consider again the system shown in Figure 1.29. For this system, we found for the kinetic coen-
ergy
T = —;-m a%®® + osin’) + %mv2+ mav (8cosBcoswt — @sinBsinwt) (@

and for the potential energy
V =mga(l — cosB) ®)






92

Example 2.6.2
Consider the two degrees of freedom system shown in Figure 2.7, with point mass m and general-
ized positions q; = r and g5 = 0. For this system, we have for the complementary kinetic
energy
T° = Sl + (6] @
and for the potential energy
V =-mg(r —r,) +mgr(1 —cos@) + %k(r —r,)? ®)

where 7, is the original unstretched length of the spring. Forming the Lagrangian L =T" -V,
we find for the r coordinate

QI% = mF and LI k(r —r,) + mgcos® (c.d)
oF or
and applying the Lagrange equation (2.6.19) in its standard form
49 _ oL P r? —ry - -
& ¥ mr mr®” + k(r-r,) mgcos® = 0 (e)
Similarly for the 6 coordinate,
g.—l;' = mr?o and %’ = — mgr sin® (f.g)
and applying the Lagrange equation (2.6.19) in its standard form
d oL _ oL _ .2 ¥ ino =
& % 3 = mr‘0 + 2mrr® + mgrsin@ = 0 (h)
or, after cancelling r,
mr@ + 2m i@ + mgsin@=0 @)

Note that equation (e) involves forces, while equation (h) involves torques.

Problems
2.6.1 The simple pendulum of length r shown is connected to the edge of a disk of

radius R by a pin joint. The link is massless and the horizontal disk rotates
about its centre O at a constant angular velocity . (a) Use the Lagrangian
equation to obtain the equation of motion in terms of ¢. (b) What is the natural
frequency of the pendulum’s vibration for small angles ¢ ?
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Let two possible sets of coordinates be (¢1,92.--4is--qn) and
(919259 --qn)- There exists a one to one relation between these two coordinate
systems expressed as

@i = GG 1 G2 reeeslst) @1.1)
Then
. og; . 9g;
s = —g. + — 2.7.2
Gi=gi @72)

J

The Lagrangian, being a scalar quantity, has the same value in the two coordinate sys-
tems i.e.

Lg.4.t) = L'g'§t) 2.13)
Consider now the various terms of Lagrange’s equation
L _ A % . AL %

- = o — - ; 2.74)
9g; 9g; 9dq; 9g; dgq;
But from equation (2.7.2), we deduce that
9q; ’q .. &g
- 7 ’ ” qk + 7
aq; 9q;9q; dg;ot
d 94

dt aqj’

2.7.5)

Hence equation (2.7.4) may be written as
L _ AL %% . 3L d 94
dq; 9; dg; dg; dt aq;
Next consider the term
a | o %

aéj’ = 3, aéj’ 2.7.6)
Once again from equation (2.7.2), we find that
o
a;, 3
Substituting into equation (2.7.6), we find
g’-:— = oL ai 2.7.7)
%, 3 dg

Now writing Lagrange’s equation for the g j' system, we have that

d oL’ oL d{BL aq;} oL 94 3L 4 o4
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Using Lagrange’s equation (2.6.19) for the coordinate 0 yields
B + yeosty-0 - Vsiny-0 + 2£sin0 = 0 ®
and for the coordinate y
Bcos(y —6) + y + O*sin(y—-0) + -f-sin\y =0 M)

Next let us use the generalized coordinates 6;, 6,. Noting that 6, = 6 and 6, = y — 0, we may
write the complementary kinetic energy as

T = %mlz(2é12 + 20, + )bicosd, + (6, + 6,9) o)
and the potential energy
V = -mgl(2cos8, + cos(6;, + 6y) (1)
Using Lagrange’s equation (2.6.19) for the coordinate 0, yields

20, + (20, + 8,)c088, — (20, + 0)0,5in0, + 6, + O, + %(2sin6, +sin(®, +6)) = 0 (K

and for the coordinate 6,

0,(1+cosdy) + O, + OZsind, + =‘Iisin(e1 +0)=0 o
Now we have
90 _ oy _ .. 90 _ oy _
28, =1 and 28, =1 20, =0 and 2, =1 (m)

Equation (I) may be obtained from equations (g) and (h) through use of equation (2.7.7), or

d oL oL” _ |4 aL oL | 06 d oL oL | oy
el =R b i )
dr 28, 96, dt 96 00 | 06, dt gy oy |00,

Thus multiplication of equation (g) with zero, and equation (h) by one, and introduction of the
new coordinates gives

B,cos0, + O, + O, + OFsinG, + f-sin(e,+ez) =0 ©

which is identical to equation (l).

2.8 Complementary Form of Lagrange’s Equations

Starting from the complementary form of D’Alembert’s principle and following a line
of development similar to that used for derivation of Lagrange’s equations, we can
derive a complementary form of Lagrange’s equations. As one may anticipate, various
terms in Lagrange’s equations have their counterparts in the complementary Lagrange
equations. These may be summarized as follows:
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Lagrangian Formulation

Cartesian Variables

r displacements
F Forces
B momenta (masses)

Generalised Variables

q; generalized displacements
Q; generalized forces
D; generalized momenta

Constraints

q; must satisfy kinematic constraints

Energy terms

Complementary Formulation

I impulses
v velocities
u stretches (springs)

S; generalized impulses
§; generalized speed
e; generalized stretch

S; must satisfy equilibrium equations

T = complementary kinetic energy T = Kkinetic energy

V = potential energy V' = complementary potential energy

L =T" -V = Lagrangian (2.6.18) L*=T-V" = complementary
Lagrangian (2.8.1)

Virtual work
of forces , of velocitlies
W, = 0; 8 dWy =s; 8S;
Lagrange equations

d dL oL , d oL* aL* ,

—-— — - =— = 0Q; (26.20) _ = - = = 5 (282

dt 9q; 9g; ! dr 9s; oS; i @82

Example 2.8.1

As an illustration of an application of the complementary Lagrange equation (2.8.3), consider the

motion of a simple pendulum (Figure 2.9).

T

Invoking relation (1.1.8) and introducing
kinetic energy becomes

The kinetic energy of the point mass m is

BZ
= o @)
a generalized angular impulse S = /| = B, the
S2
2mi? ®)

To evaluate the potential coenergy V*, let us start from the more familiar expression for the

potential energy V.

14

Then

mgl (1 — cos0)

©
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Example 2.8.2

The system shown in Figure 2.10 involves a bead m sliding without friction along a massless rod.
The bead is attached to a linear spring. The rod rotates at a prescribed constant 6 = wp in a
horizontal plane. The system’s equation of motion is to be established (a) by the conventional
approach and (b) by the complementary approach.

(a) Generalized Displacement Formulation:

Withg = r,q = F, the system’s kinetic coenergy is

= TG ) = 5 mit + o made? @
and its potential energy is
V= V@) = 3kG - ) ®
For simplicity we choose V =0 at ¢ = 0 and obtain the Lagrangian
L=L@@) =T -V =om- & - mod g’ ©
Lagrange’s equation (2.6.20)
then leads to
mj + (k-mod}qg =0 )

and represents the system’s equilibrium equation of motion expressed in terms of a generalized
displacement variable.
(b) Generalized Impulse Formulation:
We may view equation (e) as that of a nonrotating oscillator with a modified spring constant
(k — mg). Now letting the impulse in the modified spring be S, we may write for the comple-
mentary Lagrangian

s? 52

L(S,S)=E+m ®

and we may obtain the compatibility equation of motion from equation (2.8.2)

d oL’ oL’
dt o8 oS 0 ®
as
S s _
k - mod Y wm T 0 ®
Example 2.8.3

As an illustration of an application of the complementary Lagrange equation involving speeds s
without energy, consider the system in Figure 2.11.
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_d__i’L__aL=s._j t)

where s, is a speed without energy and includes the dashpot’s speed Sy/c and the prescribed
velocity v, of the free end. Thus

.85 .
Sy = T + v (l)
Equation (h) with (i) then results in
§; - 5, S, .
m = 2 tw ()

It is worth noting that the effect of the dashpot can be taken into account by means of a
potential-type function defined as

oo 2
= 2% &)
which can be incorporated in the complementary Lagrange equation
4 _at 0
dt as j as j aS j /

We shall consider such potentials for dissipative forces in section 2.9.
Rearranging equations (g) and (j) provides us with the compatibility equations of motion

$;  Si S
R (m)
Sy S, S
Tt m T T ®
Problems
2.8.1 Solve Problem 2.6.3 by means of the complementary form of Lagrange’s equa-
tion.
2.8.2 Solve Problem 2.6.4 by means of the complementary form of Lagrange’s equa-
tion.

2.8.3 A simple Duffing-type oscillator has a differential equation of motion given by
mi + hx3 = 0
Use the complementary Lagrange equation to derive the compatibility equation
of motion. '

2.8.4 Establish the equations of motion for the system shown, by (a) Lagrange equa-
tions, and (b) complementary Lagrange equations.
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or since v = (% + y2)*
n-1

Wy =-aG?+y%) 2 (i &x +y &) 2.9.3)
For a system of N, such particles moving in the xy plane, the total virtual work
becomes
n-1
Wi ot = —0; ['2+y'2] ? [x & +y sy] ,, 2.9.9)

Finally, it remains to express )éj, dx;, etc. in terms of the generalized variables ¢;, g;
and dq;, to find the associated generalized forces.

If the reduced transformation equations are

x]' =Xj(q,t) and )’, =yj(q’t)
then
o ox; dy oy
‘. = —21 . —L o= —d .
T T nd G T
and
ox; ady;
= —1 8. L= —2L 8.
8x] aq’ 8ql a'nd ayj aq‘ 8ql

On using these equations in equation (2.9.4), we may express the total virtual work as
SW; 11 = —Cpi 34

and thereby identify generalized dissipation forces Qp; .

Given a constitutive relation, as in equation (2.9.1), it is natural to enquire
whether such a relation admits the development of a function from which the dissipa-
tive forces may be derived, in much the same way as one derives conservative forces
from a potential energy function. What is required is a function D (v) such that

oD
—=-F 2.9.5
> D 2.9.5)

From equation (2.9.5), it is clear that D has the dimensions of power, and it is
therefore referred to as the power function. For the constitutive relation in equation
(2.9.1), one can see that

avn+l

D = P 2.9.6)

For the case of viscous damping when n = 1, the power function becomes

D= % av? 2.9.7)
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In this case, D = ——;— Fpv) is known as Rayleigh’s" dissipation function, and one can

see that in this case, the dissipation function is equal to one half the rate of work done
by the dissipative force.

Now as in the case of potential and kinetic energy functions, one can also define
a function that complements the power function. This can be done whenever the con-
stitutive relation is invertible. In this case, the complementary power function D"
so defined as to express the constitutive relation as

oD"*
= - 2.9.8
oFp v 298)
for the relation given in equation (2.10.1), one can show that
1
. Fp |n
L n D

D = P Fp [—a ] 2.9.9)

For the case of viscous damping when n =1, D=D".

The existence of a power function allows one to incorporate the associated dissi-
pative forces into Lagrange’s equations. In this case, we require the generalized dissi-
pative force given by the derivative of D with respect to the generalized velocity, i.e.

) ) OX; ) 0y; ) 0z;
o = -2 - |25, B, DI g
9q; axj 9q; a)’j aq,j azj aq;

Now substituting into Lagrange’s equations, we obtain

49 _ o , 9D _ 0/ (2.9.11)

dt dg; 9g; og;
where the Q,~” are forces which are not monogenic, i.e. do not possess a potential

energy function or a dissipation function. Analogous development for the complemen-
tary procedure gives rise to the following equation
aD ”

d oL* aL*
— - -— - = S

. ‘ ;
dt 9S; as; as;

Lk

(2.9.12)

in terms of generalised impulse variables. The last term on the left hand side provides
the rate of stretch for the dashpots i.e.

ép; = — D" oS, 2.9.13)

and the sj" accounts for all other velocities not present on the left hand side, i.e. not
derived from a kinetic energy function.

+ John William Strutt, Lord Rayleigh (1842-1919), English physicist
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(x], y ]) X
0
Figure 2.12 Two interconnected particles on a horizontal plane
Example 2.9.1

Consider the two particles in a horizontal plane connected by a massless rigid rod, as shown in
Figure 2.12. Let us assume that damping forces on m, and m, are given by Fp ,=—av; and

Fp,=-av,. The generalized dissipative forces may be found as follows.

Method 1
Let us write down the virtual work of the two damping forces

Wi =-la; %, 8x1 + a1y18y1 + azi2dx; + azy; By @

But x,, y;, etc. are not independent. If we choose to work with the three degrees of freedom x,
¥, and 0, as shown in Figure 2.13, we may write the following reduced transformation equations

xy=x —1; cos® and yi=y -1, sinf ®)
Xy =x + 15 cosO y2 =y +1,sin0
Evaluating 8x,, etc. and %, etc. in terms of 8x, 8y, 86 and %, y, and @ respectively, from equa-
tion (b) and substituting in equation (a), we find
W, = — (@, +api — (asl,—ayly)0 sin6]5x
- [@1+a)y + (azly— a;l))f cosd]dy
—[agd? +al?)® — (ayly - ayly)(x sin® — y cos6)159 ©
The terms multiplied by &x, dy, 80 are then the generalized dissipative forces.

Method 2
We can also derive the generalized forces from Rayleigh’s dissipation function, as follows
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Example 2.9.2

The system shown in Figure 2.13 is comprised of two masses, one linear spring and one viscous
damping dashpot. Using the complementary procedure, we may obtain the equations of motion
of this system as follows:

Method 1: Using the complementary Lagrange equation

Ensuring the satisfaction of the equilibrium requirements by taking -B, = B, = §, and
F =S,we may express the energy and polar functions as follows

T =S$%2m, + S¥2m, (@)
V' =5%2% ®)
D' =S5%2 ©
Then
L' = sz[l +L] -8 @
2m, 2m, 2k

Substituting into the complementary Lagrange equation (2.9.12), we find the equation of motion
as

S S 11

k+c+[ma+mb]s—0 ©
Method 2: Using the virtual work expression
Using the free body representation of Figure 2.13, where equilibrating impulses are shown, we
may write

8W,,=va5S—é185—é2&S—vb&S' (@)
or
Wy = (va — €1 — €3 — )8 ®)
Now from the equilibrium conditions we have that
B, =-B, =S ©
and from the constitutive equations
B,
==t =S @
ma ma
B, N
vy = = - — )
my my
The spring compression rate is
€, = % (f)
and the damper compression rate is
. S
€2 = -7 ®)

Substituting back into equation (b), we find
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2.10 Limitations of the Complementary Formulation

Two difficulties can arise in the application of the complementary formulation.
The first concerns the determination of the complementary potential energy function.
When the force displacement relation,

F = F(r) (2.10.1)

say for an elastic element, is nonlinear, it may be difficult and in some cases impossi-
ble to invert. In the absence of such an inverse relationship it is not possible to evalu-
ate the complementary potential energy function given by

V'®) = - [r@) dF (2.102)

The source of the nonlinearity in equation (2.10.1) may be the material behaviour of
the elastic element and/or large charges in the geometry of the elastic element as it is
loaded.

The second difficulty arises when some kinematic variables appear in the equili-
brium equations. In this case it is not possible to express the momenta of the inertial
elements in terms of impulses of the force elements alone. This prevents the compati-
bility equations of motion from being expressed in terms of impulses alone. To exam-
ine this point in greater detail consider the equilibrium equations of motion given by
Lagrange’s equations

ag;

d |or" or* v
4 - = = Q. 2.10.3
i) e a0
Recognising the first term as the time derivative of momenta, and the third term as the
forces S; with a potential energy V, we can write equation (2.10.3) as

dp; . *

@i _ S, + aT
dt aq,

Integrating this expression with respect to time we find

+ 0 (2.10.4)

pi =S + I%dt v [ (2.10.5)

Now the term (9T */9g;) is non zero when non inertial coordinate system are used and
then this term accounts for such apparent forces as Coriolis and centrifugal, that is, this
term is essentially kinematic in nature. It will be recalled that in the general case

*

1" = 2 @ (4144} + (YT (4) + C (2.106)
where [A], {b}T and C may be functions of ¢;. Hence the first integral in equation
(2.10.5) may involve ¢; and g;. The nonconservative forces Q; may also be functions
of ¢; and ¢;. Thus in the general case the momenta depend on impulses and the
kinematic variables. Nevertheless the complementary formulation can still be used.
Thus from equation (1.9.16) we determine the kinetic energy function as
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- Llig I Lo -1 s, or” ,
T = 2[S'+j(aq. +Q,)dt}[A] {s,+j( +Q,)dt}

i 9g;
- AT (b} + T, (2.10.7)
and invoking the complementary Lagrange equation
d | ov’ or
= . + — =0 2.10.
we obtain the compatibility equations of motion as
d |ov” 1 oT”
— - A ; -— + 0; =0 2.10.
dt [as,] + iy [S] + I(aq] Q])dt ( 09)

Evidently the first term describes the time rate of stretch for the elastic elements and
the second term gives the velocity of the inertial terms. We see them that in this gen-
eral case the equation of motion are integro-differential equations. We may of course
remove the integral term through differentiation with respect to time. This, however,
will result in a higher order equation requiring one additional initial (or other) condi-
tion for evaluation of the integration constants.

Example 2.10.1

Let us obtain the equilibrium and compatibility equations of motion for the Kepler central force
problem. In Kepler’s problem of planetary motion the gravitational force, directed to a central
point, which we take as the origin of our axes, is inversely proportional to the square of the dis-
tance of the particle from the centre. Thus using the coordinates r and 6, we have that

r ‘F/

Figure 1.14 The central force problem
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F = ——WT" (a)
r

where p is a constant. This force is conservative and may be obtained from the potential energy

v =-E ®

r

The complementary kinetic energy for the particle is given by

T = —'%'- [r‘2+(ré)2] ©
Now evaluating the following terms

aaT(; = mr’ = p, aaT; =m =p, de)
= epy’ )
g_g =0 aa_‘,/ = &2 (i)

we can establish the equilibrium equations of motion via Lagrange’s equation as
£ ) = 0 D)
%(mi)—mréz+r&2=0 ®

The first of these equations shows that the momentum py is constant in time.

To develop the compatibility equations of motion we must satisfy the equilibrium equations
() and (k). To this end we let

m = C @©
and rewrite equation (k) as
p — mr6? =S =0 (m)

where S, = F. It should be noted that the centrifugal force, mr6? in equation (m) is kinematic
in nature and was obtained from aT"/9r. Integrating equation (m) we can express the momentum

pr as

pr =5 + [mr&ar @)

We may now obtain the kinetic energy of the particle from the general expression
T +T =p,F + peb (0)

and eliminating 7( = p, / m) and 6( = pg / mr?). This leads to

ps . _ c P

T=2mr2 2m_2mr2+_ ®

2m
or using equation (n)
. 2
c? [S, + Imr92dt]
T = 2 + (q.)

2mr 2m
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The force displacement relation in equation (a) is invertible allowing the computation of the com-
plementary potential energy from

1 1
. _ Mz _ 5
V-I[F]dF—2(umF)2 ®

where we have taken the negative sign outside the square root since its function is simply to
account for the opposite signs of » and F. We now express V" in terms of S, as

-

1
= 2(ums,)? ()
and substitute T and V* in the complementary Lagrange equation to obtain the compatibility
equation of motion as

1

1 A2
d [pm)2 S,+!mr9 dt_
dt[s', * m =0 ®

Using equation (a) we note that the first term in equation (t) is (). The second can be
interpreted via equation (n) and is p,/m. Hence the compatibility equation of motion, as given in
equation (t) is an integro-differential equation and it also involves the kinematic variables
r and 6. We may remove the integral term by differentiating through with respect to time. Thus
we obtain

1 . .
2 -_— 2
4 o 2 + M =0 )
a’ | s, m

Equation (u), being of third order, will require three initial conditions. Alternatively we may
relinquish the impulse variable S, and work with the force variable F = §,. Then equation (u)
becomes

1
d? 2 F + mr®®
d—[}ﬁﬂ] P =0 ®

Finally we attempt to remove the kinematic variables as follows. First using equation (e) we
express the centrifugal force as

2 2
a2 c: _ C
mr®” = mr ——- = — (x)

Next we use equation (a) to remove r and express the centrifugal force
3

C2 C2 CZF-Z_
o 3 = B )
-m [ P;”_]z -m (wm)?

Finally we can express the compatibility equation of motion in terms of F alone as
3
2 252
da \pm| F __CF __,
ar* | F m %

m? (pm)
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Chapter IIT

INTEGRAL VARIATIONAL FORMULATIONS

D’Alembert’s principle and Gauss’ principle of least constraint are examples of
differential variational formulations. These formulations make independent statements
at each instant of time during the motion. By contrast integral variational formula-
tions, which we shall examine in this chapter, make a single, all inclusive, statement.
That is, the motion over an arbitrary period of time is considered as a whole. While
the various differential and integral variational formulation take different forms, they
are of course related and they make equivalent statements about the motion.

3.1 Hamilton’s Principle

In D’Alembert’s principle, the component of virtual work done by the inertial forces
cannot be derived from a single work function. Hence even if the impressed forces
possess a potential, D’ Alembert’s principle still cannot be expressed as an extremum
principle. By means of an integration over time, Hamilton® transformed D’Alembert’s
principle to a form wherein inertia forces can be derived from a single function. If the
impressed forces are also derivable from a single function, then D’Alembert’s princi-
ple, as transformed by Hamilton, becomes a true extremum principle, albeit an integral
rather than a differential variational principle.

To derive Hamilton’s principle, we integrate D’Alembert’s virtual work expression
(2.1.3), over an arbitrary period of time. Since this expression vanishes at each instant
of time, its integral from ¢, to ¢, will also vanish. Thus

143

j(Fk - By) -8, dt =0 G.1.1)
131

Now let us integrate the second term in the bracket, by parts.

+ William Rowan Hamilton (1805-1865), Irish mathematician.
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[}
-[B, o ar = —J' [k-&'k]dt + j[Bk-%&k]dt (3.1.2)
4

The first part on the right hand side of equation (3.1.2) is integrable and we obtain
boundary terms. Thus

[$)

d
- —[Bk'Srk]dt=—Bk-8rk
ja

: (3.1.3)
4
The second part, on making use of the interchangeable nature of variation and
differentiation operations, may be written as

ty ty t 12

[ B, -—jt—ﬁrk dt = [B -8, di = [B Svedr=[8T"dr (3.14)
t 1 h h

Returning to equation (3.1.1) and summing over all particles, we can write it as
1

j @w; +8T*)dt - B, - dr, |"f=o (3.1.5)
5]

where 8W; denotes the virtual work of all the applied forces. In equation (3.1.5) we
have Hamilton’s law of varying action. In view of the presence of the time boundary
terms in equation (3.1.5), and the virtual work of nonpotential type forces in dW,,
Hamilton’s law is not an extremum principle.

Now it will be recalled that the virtual displacements dr; are arbitrary and ima-
gined. However, to ensure that the constraint forces make no contribution to the vir-
tual work expression, we required that time be held fixed for these displacements and
all kinematic constraints be satisfied by these displacements. We now impose an addi-
tional requirement for the virtual displacements. We require that at times ¢, and ¢, the
virtual displacements vanish. The physical implication of this requirement is that the
real displacements at times #; and ¢, are taken as known and no variations are allowed
at these limits. Under this stipulation equation (3.1.5) reduces to

[$)

[@w, + 8T")dt =0 (3.1.6)
h

In the special case where the impressed forces possess a potential energy function V,
equation (3.16) takes the form

173

j ST* -Vt =0 (3.1.7)
13}

In equation (3.17) we have Hamilton’s variational principle. Since the time limits are
fixed, the operations of integration and variation may be changed allowing one to write
Hamilton’s principle in the following form

My = 0 (3.1.8)
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where the functional
[#)

My = [Lar (3.1.9)
h

is the action, with units Js, and
L =T -V

We note that Hamilton’s principle makes a single statement for the entire motion, from
time ¢ to t,. This statement can be expressed as follows: Amongst all kinematically
possible motions in the interval t| to t,, the actual one is characterized by the station-
ary condition of the functional 1. The stationary conditions of Il; emerge as the
equilibrium equations of motion.

For the more general case where there exist potential and nonpotential forces,
Hamilton’s principle takes the form

53 Iz

[oLdt + [Fi-8ndt = 0 (3.1.10)
‘1 l]

where the second term accounts for the virtual work of nonpotential forces F;. In this
case, the expression in equation (3.1.10) remains an incremental quantity and does not
possess extremum character.

In terms of generalized displacements, equation (3.1.5) takes the form

[#)

[@w +eryar = p, 8q,~|'2 3.1.11)
b

15}

where the p; (= 0T " /9¢;) are the generalized momenta. When the generalized forces
possess a potential energy V, a Lagrangian function L(= T* — V') may be defined and
equation (3.1.11) may be written as

1§

[oLar = p;8g | (.1.12)
15}

h

On imposing the condition that all 8g; = 0 at ¢, and ¢, we arrive once again at equa-
tion (3.1.8). If the 8q; do not disappear at ¢, and ¢,, and if we write p; = JL/dq;,
then

1

o ar = IL &, 3.1.13)
9q;

hL

Example 3.1.1
Consider a simple linear oscillator, with ¢, = x, and kinetic coenergy and potential energy given
by
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"‘-—l 2 _l 2
T = T and V= 2kx (ab)
Then the Lagrangian is
-7 _ - .l '2_l 2
L=T V = 2mx ka ()

1 ., 1,,
ny = [[imi2 - Lec2ar @
,.[ 2 2
[#]
STy = sf[%mtz - %kx2]dt =0 ©

Carrying out the variation, we can write it as
ty )

m[%8% di —ijaxd: =0 ®
l‘] x]

Now let us take a closer look at the first integral

f 4] 4] #]
Lo .d d .. .
J:xSxdt _J:xdt 8xdt—[d'[x8x]dt—.;[x&dt ®
13
t
- x'5x|,]2-—j.'x'8xdt

h
Imposing the conditions 8x=0 at the boundaries ¢, and ¢,, the integral (g) becomes simply
2
—I i o dt ()
n
Returning to equation (f) we obtain
2

j(m.ic' + ko) dxdi = 0 @
h

Since dx is arbitrary between ¢, and ¢, , Hamilton’s principle requires

mi + kx =0 (0]

Problems

3.1.1 A particle of mass m is thrown upward with initial velocity components x, and
Yo-
(a) Using Hamilton’s principle derive the particle’s equations of motion.
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(b) Solve these equations and determine the particle’s trajectory as a function
of time.

(c) Use this trajectory in Hamilton’s functional and evaluate this functional
from the initial time to the time when the particle reaches the horizontal
ground again.

(d) Approximate the shape of the trajectory by a half sine curve and deter-
mine the value of Hamilton’s functional, over the same period of time, for
this varied trajectory. Comment on the values of the functional deter-
mined in parts (c) and (d).

3.1.2 The motion of a mass-spring oscillator is given by x = A sinwt where

© = Vkim. Assuming a varied path represented by
x = A sino¥ + € sin2wt, where € is a small quantity, show that for the

actual path the value of Hamilton’s functional, over 7 of a complete oscilla-

tion, is zero while for the varied path, the functional has the positive value of

3 2

— mno e-.

g ™

3.1.3 Use Hamilton’s principle to establish the differential equation of motion for a
simple pendulum.

3.1.4 The kinetic coenergy of a particle rising at a speed of v = v, — gt is

T" = —;— m(v, — gt)®. (a) What is the action Iy of the particle’s kinetic
coenergy between ¢t = t; and t = t,? (b) What is the numerical value of

the action, for m = 2 kg, v, = 3 m/s, g = 9.80665 m/s, t; = 0 and
ty = 1257

3.2 Complementary Form of Hamilton’s Principle

For the derivation of this principle, we start from the second form of the virtual work

principle (see section 1.7). Noting that the virtual work done by the velocities of mass

particles is given by 8T, we may express the time integral of the total virtual work as
£

[ @wy +8r)dr = 0 (B.2.1)
31

where dW; is the virtual work of the other velocities.

In some cases, the form of 8W); is such that its integration over time allows one to
express it as —=3V"*. To illustrate this, consider for simplicity the case of a linear
spring of stiffness k. Denoting the impulse in the spring by S and the associated
deformation by e, we may write the virtual work term for this spring as

SW” = —é SS (322)

But
e = =Sk (3.2.3)
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hence
5 ty ..
S
[owy ar = j-,-c-as dt (3.2.4)
t fl
We can carry out a partial integration of the right hand side term. To this end we
write
tdfs S Sec | f 8[82
—|= t - | — t = — - == 2.
;[dt[kascz ,J,kSSd A . tjlz[k]dt (3.2.5)

Recognizing the integrand of the second term on the right hand side in equation (3.2.5)
as 8V and stipulating that 85 = 0 at ¢,, and ¢,, we may return to equation (3.2.4) and
write it as

ty 1

[owyar = -[&v" ar (3.2.6)
h 1

Finally substituting from equation (3.2.6) into equation (3.2.1), we may write
43

j 3T -v*dt = 0 (3.2.7)
4

In equation (3.2.7) we have the complementary form of Hamilton’s principle. Since
the times ¢; and ¢, are fixed, we may interchange the operations of variation and
integration and express this principle as

My = 0 (3.2.8)
where
2]
Mp = [L"at (3.2.9)
t
and
L* = T1-V" (3.2.10)

Recalling that equilibrium conditions, amongst the impulses S;, constitute the essential
constraints of the complementary form of Hamilton’s principle, we may state this prin-
ciple as follows: Amongst all possible equilibrating motions in the interval t{ to t, the
actual one is characterized by the stationary conditions of the functional Ily. The sta-
tionary conditions of I1;y emerge as conditions of compatibility or kinematic fit.

In the more general case where there exist speeds derivable from an energy and
others that are not derivable from an energy, the complementary form of Hamilton’s
principle takes the form

1) 143

[oL de + [sj8;ar = 0 (3.2.11)
151 1
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where the second term accounts for the virtual work of velocities s;” which cannot be
derived from an energy function. In this case, the expression in equation (3.2.11)
remains an incremental quantity and does not possess extremum character.

Example 3.2.1

Consider a simple linear oscillator, with the momentum of the mass B = S, the spring impulse.
Having thus satisfied the condition of equilibrium one may write the kinetic energy and potential
coenergy of the oscillator as

B _ 1 » - Ll
T = o = st and V' = st (a,b)

Then the complementary Lagrangian is
»-5? ©

The functional

2]
- [l le2_ Lg2
o = ;[[st oS ]dt @
1

is the complementary action (or coaction). Extremising this functional

5]
- 1o _ 1a _
oy = sj[ms TR ]dt 0 ©
Equation (e) can be rewritten into

2 2

%js 8sdt - %js 8dt = 0 ®
n h

We can now integrate the second term by parts. To this end we write
ta ta ta 2
- d d - .. _ .. . ty
ls Sosar = J:dt(S&S)dt—-‘J:S&dt— Js&a:+sss,l )

Now imposing the conditions 8S = 0 at ¢, and ¢, and returning to expression (f) we obtain

f
J:[ms+k8]8$dt—0 ®)
Since &S is arbitrary between ¢, and ¢,, equation (h) is satisfied if
1 1 & .
-5+ 85 =0 @

Problem
3.2.1 The system shown moves to the right such that the distance x; measured from
a fixed wall, is given by x; = vt + %atz. Determine the equations of motion
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Now if we require that all 8q; should vanish at times 7, and ¢,, the last term drops out
and satisfaction of equation (3.3.5) for arbitrary and independent dq; leads to
Lagrange’s equations

4L _ 3L

- -— 0 i =12,..,n 3.3.6)
dt 9g; 9q;

By a similar development, we can show that the extremum conditions of the com-
plementary form of Hamilton’s principle, namely

[$)

My = 8[L"S;,S;,ndt = 0 3.3.7)
h

where the complementary Lagrangian L" is a function of generalized impulses S,
their time derivatives S; and the time 7, emerge as the complementary Lagrange equa-

tions
*

dr 3 as;

=0 (3.3.8

3.4 Conservation of Energy

In Section 2.3 we showed that under certain conditions the total energy of a system
will be conserved. This result was obtained by replacing virtual changes of displace-
ments and energy terms, in D’Alembert’s principle, by the corresponding real changes.
We now follow a similar procedure and consider real changes in displacements in
Hamilton’s principle, and in so doing, we bring to light the general relation which
exists between the total energy of a mechanical system and the Lagrangian function L.

Recognizing that for virtual displacements, d¢;, time is held fixed, whereas real

infinitesimal displacements occur during an infinitesimal time dt = €, we note that for
these displacements to coincide, we must choose

d; = dq; = €gq; (3.4.1)
Consider next the real and virtual changes in the Lagrangian,
oL oL .

3L = =—38q + —d8¢; 3.4.2
a q,' aql aq-‘ aq ( )

oL oL . oL
dL —dq; + —dg; + —dt 343
5% 2 = (3.4.3)

From these latter equations, it is evident that dL and 8L can coincide only if time
does not appear in the Lagrangian explicitly. Under this condition, the last term in
equation (3.4.3) drops out and for this case, we may write 8L = dL. Furthermore
since € = dr,

dL

dL = e—C (3.4.4)
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Let us now invoke Hamilton’s principle. It may be recalled that in deriving this
principle, we imposed an additional requirement on the virtual displacements namely
that the variations of displacements be limited to the range t = ¢, to ¢t = ¢, and that at
the end points the displacements were not allowed to vary. In this way, we were able
to drop the boundary term in Hamilton’s law of varying action. For actual displace-
ments, if the variations at time ¢, and ¢, were to vanish, then they would vanish every-
where in the range ¢, to ¢,. Hence to compare actual displacements, we must allow
variations of displacements at the fixed limits ¢, and ¢,. It is not difficult to see that
the variation of actual displacements amounts to a vertical shift in the g¢ diagram.

For the case that variations at end points are allowed, Hamilton’s law of varying
action, equation (3.1.13), is
t
fora = Lo | (3.4.5)
94

3]

Now replacing the virtual changes in L and ¢g; by real changes, as given by equations
(3.4.1) and (3.4.4), above equation becomes

dL oL L
e | —at ] (3.4.6)
;[ dt ag; |,
Carrying out the integration and rearranging, we may express equation (3.4.6) as
t
el - Lg|7 =0 (3.4.7)
9g; f

Equation (3.4.7) indicates that under the conditions specified, in particular that time
shall not appear in L explicitly, the term in the square brackets is an invariant of the
motion. It remains to interpret the physical meaning of this term. Now we have that

L =T -V (3.4.8)
If V is a function of displacements only, then
oL ar*

= = — = D 3.49)
9q; 9q;

Under this condition, equation (3.4.7) may be written as
L - p;q = constant (3.4.10)

Now if the system is scleronomic, time will not be present explicitly in L. Further,
for scleronomic systems

pig = T+T" (3.4.11)

and in this case equation (3.4.10) becomes
T*"-V) - (T +T") = constant
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or for conservative scleronomic systems
T +V = constant (3.4.12)

It should be noted that it is the sum of the energies that is conserved. This result can
also be derived from the complementary form of Hamilton’s principle.

In Newtonian mechanics, since T = T, one may also assert that, under the con-
ditions specified
T +V = constant (3.4.13)

In rheonomic systems, very often time appears explicitly in the Lagrangian. However,
in some rheonomic systems while time is present explicitly in the transformation equa-
tions, it drops out of the Lagrangian. For such systems, once again equation (3.4.10)
holds, however, in this case the interpretation of the term p;g; is different.

We have seen in section 1.9 that for rheonomic systems in general
T" =T, + T} + T, where T, is quadratic in generalized velocities, T} is linear in
generalized velocities, and T, is independent of generalized velocities. For these sys-
tems, we showed in equation (1.9.15) that
pig = T+T5-T, (3.4.14)
Hence for rheonomic systems for which time does not appear explicitly in the Lagran-
gian, equation (3.4.10) implies that
(T +T] +T, -V)-(T +T5 -T,) = constant

or
H =T+V-T] -2T, = constant (3.4.15)
Thus in this case, the total energy T + V is not conserved yet the expression in equa-

tion (3.4.15) is conserved. The quantity H is the Hamiltonian of the motion. For the
case of Newtonian mechanics, equation (3.4.15) simplifies to

(T +T{ +T,+V) - 2T, - T] = constant
or
(T +V) - T, = constant (3.4.16)
Since T, is not a function of the generalized velocity, it is apparent that it may be

combined with the potential energy V. Then equation (3.4.16), valid for a conserva-
tive rheonomic system, becomes

T5 +V' = constant (3.4.17)
where
Vi = V-T, (3.4.18)

with V' as the effective potential energy.

For conservative rheonomic systems for which equation (3.4.17) holds, the rate of
change of the total energy (T* + V) in the system will be
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d * d %*. d * *.
- T2+ T +T,+V)= Z T+ -T))+ Z (T] +2T,)) (3.4.19)
Now since the first term on the right hand side vanishes, we find

d * - i * *
ST HV) = 2 (T +2T)) (3.4.20)

Example 3.4.1

Consider again the problem shown in Figure 1.29. In section 1.9 we derived the reduced transfor-
mation equations for this problem and noted that they were rheonomic both on account of the
angular velocity o and the linear velocity v. Further, in section 2.6, we showed that the Lagran-
gian for this system may be written as

L = %m (@29 + a’0%in®0) + %mv2 + mav (Bcosbcoswr — wsindsinwr) — mga (1 — cosd)  (a)

We note here that the system is not only rheonomic, but that time appears in the Lagrangian
explicitly and hence in this case, energy is not conserved.

Example 3.4.2
If in the problem shown in Figure 1.29, the linear velocity v = 0, then the Lagrangian does not
contain the time explicitly,

L = -;—mazéz + %mazco2 sin’0 - mga (1 — cosd) @)

Yet the problem is still rheonomic, on account of the angular velocity ®, or more specifically on
account of time appearing explicitly in the reduced transformation equations

x = a cosd coswt y = a sin@ sinw¢ ®)

The total energy of the system given by

E =T +V =T +V =T, +T] +T, +V ©
= %mazé2 +0 + %mazcozsinze + mga (1 — cosd) @

is not constant. This is easily seen on physical grounds, since energy must be continuously sup-
plied or withdrawn in order to keep ® constant.

The Hamiltonian (3.4.15) is

H = T, +V =T, -T, +V
= %mzéz - %mazwzsinze + mga (1 - cos@) )
Thus
% = O(ma®® - ma’w’sinfcosd + mga sinf) ®

Now the term in the bracket vanishes on account of the equation of motion obtained in example
2.6.1, thus the Hamiltonian (e) is constant.
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From equation (3.4.20) we may compute the rate at which energy enters the system. Thus

d * *.
a 2T,
dt(T]+ T,)

% (ma’w’sin’0)

2ma’w? sind cos® (€3]

This result may be interpreted as follows. Differentiating T* with respect to the angular velocity
o, we find the angular momentum about the z axis as follows

H, = ma® o sin’* 0 t)
Thus the torque about the z axis given by

M, = dit H, = 2ma’afsing cosd o

Finally we compute the rate at which this torque does work on the system as
M,0 = © 2ma’wsind cosd) @

which is identical to the rate of energy entering the system are given in equation (g).

Finally, let us formulate this problem in terms of Cartesian inertial coordinates. Taking the origin
of the axes at the centre of the circle, we find

L = —';l[x2+y2+z'2] - mgz ®)

However, x, y and z are not independent. We have the following holonomic constraints
2+ ¥+ 22 = a? (1))
y = x tanor (m)

It can now be seen that if for instance the coordinates y and z were to be eliminated from L in
equation (k), via equations (I) and (m), time would appear in the Lagrangian explicitly and
accordingly in this case, neither the total energy (I + V ) nor the Hamiltonian ( T3 + V'), in
terms of x, x and ¢, will be conserved. If for a given system the total energy is conserved,
(T" + V) will remain an invariant of the motion independent of the coordinate systems used. On
the other hand, for a system for which the total energy is not conserved, there may exist a coordi-
nate system in which the Lagrangian will not contain time explicitly. For such a coordinate sys-
tem the Hamiltonian (T + V') will be an invariant of the motion.

Whenever the Lagrangian does not include the time explicitly, the invariance of
(L - p; ¢;) provides an additional equation which may be used in integrating the
equations of motion. In the case of single degree of freedom problems, this additional
equation leads to a complete solution for the problem. This solution may be
developed as follows. Given that

f@,q) = E = constant (3.4.21)
then
q = g(E’ q)
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and
dq
t = |—— + ¢
J 8E.q) ¢
The integration constant ¢, and the constant E, which appear in the solution

t = h(g,E,t,) (3.4.22)

may be obtained from the initial conditions. It is worth noting that the solution
obtained in this manner is in the inverse form, that is, time is given as a function of ¢
rather than the reverse.

Figure 3.1 Bead on cycloid path

Example 3.4.3
A bead of mass m slides without friction on a wire bent in the shape of a cycloid, as shown in
Figure 3.1. The parametric equations of the cycloid in the vertical plane are

x = R(¢-sind) y = R(1-cosd) @

If the bead starts from point y, with zero velocity, determine the time taken for the bead to reach
the lowest point on the wire.

The theorem of conservation of energy provides a direct way to determine the time of des-
cent for the bead.

From the position coordinates for the bead, we find
i = Ro(1-cosd) y = Résing ®
Then

T = %(xuy'z) = m R?$*(1 - cost) ©



The potential energy of the bead is given by
V = -mgy = -mgR(l-cosd)

Now recognizing that the initial energy is given by

E = -mgy, = -mgR(1-cosdy)

we may express the conservation of energy as
f@&. 6 = [mR%’—mgRI(1-cosp) = -mgR(l-cosp) =

and on rearranging, we find

6 _ W,\/cosqy,—co&b
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@

©

®

63}

Consider for the moment the special case when ¢, = 0. In this case, y, = 0 and the bead starts
from the origin. If we denote the time of descend in this case by ¢,, we find from equation (g)

‘o x
d
a = [
! I Vg/R
or
I = ul
? VgiR

®m

@

Returning to the general case, and denoting the time of descend by ¢, we find from equation (g)

n x
_ do
o '!dt ) 3[ 4\/cos¢1 - cosd
1 - cos¢

To carry out the integration, let

cosp = o
Then
—sinpd¢ = da
or
N1-?dp = do
and
-1
T
arcdost o, — o)1+ a)

Above integral is of the type
2ax +b

|

arcsin

dx
J Vax? + bx + ¢ V-a Vb2 — dac

@

(]

o

(m)

()

)



134

and for our case
a = -1 b = (1-0y) c = o @)

Thus integration of equation (n) yields
-1
“20+0; -1

Vg/IR t; = arcsin ———m —— @

V1 +20, + 0 arccost;

On reverting back to the original variables, we find

—2cosd + cosd;, — 1

Vg/R t, = in
g/R 1y = arcs cosd; + 1

L)

and finally, on substituting for the limits, we determine the time of descent as

nho= 7"\/? (O]

It is of interest to note that ¢, = ¢, i.e. the time of descent is independent of the initial position of
the bead on the cycloidal wire. This feature of the cycloid curve was used by Huygens', in 1658,
for the construction of pendulum clocks for which the period of pendulum oscillation given by

T = 41|:‘\/§ t)

is independent of amplitude.

It is of interest to compare this period of oscillation with that of a pendulum oscillating with a

small amplitude, namely
T
Tpendulum = 217\/ 2 ()

Thus a cycloid pendulum with R = has the same period as a simple pendulum of length /.

z
4

Problems

3.4.1 A bead of mass m is installed at the end of a linear spring of stiffness k£ and
unstretched length r,, in a horizontal disk rotating at constant angular velocity
®. (a) Write x and y in terms of r and determine whether the system is
scleronomic or rheonomic. (b) Write the Lagrangian and establish the equation
of motion. (c) Form the effective potential energy V'. (d) Form T, + V' and
show that it is constant. (¢) How much power, as function of time, must be
supplied to the system to keep the angular velocity @ constant?

t Christiaan Huygens (1629-1695), Dutch physicist and mathematician (Horologium oscillatorium, 1673)
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. i
[—(T FVY 2T AT ] ;o= j EL' (3.5.3)

For the special case of Newtonian mechanics with T = T* (=T,  +T," +T,"),
equation (3.5.3) simplifies to

AT +V) = —j ———dt (3.5.4)

where
V. = V-T, (3.5.5)
We may write equation (3.5.4) as

Ty +V), = Tr+V), + j AL 4 (3.5.6)

Thus if (75 + V'),I is given, say as an initial condition, we can assert that

T +V) + j —=dt = constant (3.5.7)
for all ¢.
If the change A(T* + V) of the total energy is to be determined, then
t
A * - ‘ d * *
T +V) = —j—dt + JE (T} +2Ty) dt (3.5.8)
3
since T+ V = T, +V + T} + 2T,
Example 3.5.1

Consider the problem shown in Figure 3.2. The reduced transformation equations for this prob-
lem take the form

x = Isin® (I, - vt)sin® % = (I, - vt)cos® 8 — vsin® (@

I, — vt)cosd y = =, - vt)sin® 6 — vcos® ®)

y = lcosb
Using these velocities, we find the complementary kinetic energy as

T = %m[v2+(lo - vt)%Y ©)

Likewise the potential energy becomes
Vv = -mg(, - vt)cos® @

From equation (c) and (d) we may form the Lagrangian and find its partial derivative with respect
to time as
oL

> -mv(l, - vt)0* — mgvcosd ©)
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Invoking equation (3.5.7) we may write for the example at hand
t
(T3 + V), - [ mv[(, —vt) & + ¢ cosb] dt = constant @
h
Differentiating through with respect to time we find

% %’- a, - vt)zéz— mg(l, — vt)cosd — -’;1 v? -mv(l, - vt)é2— mg v cos® = 0 G)

or

[, -vt)6 — 2v6 + gsinB)]6 = 0 ®
where the term in square brackets will be recognized as the equilibrium equation of motion for
the system.

Problem

3.5.1 Let the string velocity of the problem shown in Figure 3.2 be zero when
t = 0 and increase linearly according to v = at. Form AT, + V) and
AT* + V) and show that the string tension force is in equilibrium with the
component of the weight along the string, plus the centrifugal force plus the
force due to the acceleration of the mass.

3.6 Constraint Equations and Lagrange Multipliers

In deriving Hamilton’s principle we did not consider the constraint equations expli-
citly. We had assumed that these equations were satisfied implicitly via the reduced
transformation equations. Now this can be done for holonomic constraints but not for
nonholonomic constraints, since in this case only the derivatives of the generalized dis-
placements are related - the generalized displacements themselves remain independent.
Accordingly, Hamilton’s principle, as given in equation (3.1.8), holds only for holo-
nomic systems for which the constraint equations are satisfied implicitly via the
reduced transformation equations.

Holonomic Constraints

Now let us consider Hamilton’s principle subject to some side constraints. First we
will examine the holonomic constraints. In this case the h constraints amongst
n + h generalized coordinates may be expressed as

f,' (‘11"12"13’ ..... ,q]', ..... dn +h> t) =0 i=12, .., h n>h (361)

We may take these constraint equations into account by the Lagrange multiplier
method’. To this end we multiply each constraint equation by an undetermined
Lagrange multiplier, A;, and sum the resulting terms to obtain

+ An account of this method is given in Appendix A
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A f; = 0 (3.62)

Since equation (3.6.2) holds at each instant, the integral of A;f; over the period ¢; to
t, will also vanish. Therefore, we may append this integral to Hamilton’s functional
(3.1.9) without affecting the value of the functional. Thus we write

t, t,

Oy = [ Ldt - [ A\ f;dt (3.6.3)
t 1
and for its variation
t
8y = [8L - Nf;)adr (3.6.4)
3}

Now in the modified functional IT; we may freely vary the g; and the A;. The
Euler-Lagrange equations of the calculus of variations corresponding to these variables
emerge as follows:

. d oL oL _ of;
For dq;: i %, - 24, = -\ 34, (3.6.5a)
A, fi =0 (3.6.5b)

From equation (3.6.3) it can be seen that above extremum conditions are associated
with the modified (or augmented) Lagrangian L , given by

L =L -M\f; (3.6.6)
or

L =T -V (3.6.7)
where

V = V +MNf; (3.6.8)

is the modified (or augmented) potential energy.

Now since the generalized displacements were varied freely without regard to the
kinematic constraints, the constraint forces, which maintain the kinematic constraints,
will also contribute to the work done. Indeed we can see that these constraint forces
possess a potential energy which must be added to the potential energy V of the
impressed forces. It now becomes apparent that the addition of the term A; f; , in
equation (3.6.8), is not merely for mathematical convenience but it has a clear physical
significance. There is however, one important difference between the potential energy
V of the impressed forces and the potential energy A; f; of the constraint forces. The
latter can be determined only when the solution is found since the A; are determined
only as part of the solution. Nevertheless the forces of constraint can be formally
derived from their potential energy A; f;. We conclude that at the solution, the gen-
eralised constraint forces R;, associated with ¢;, may be determined as follows

R - ofr) N
s a‘Ij - 'aij qu !

(3.6.9)
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and, from the calculus of variations, the variation can be written

2
- f||4L_ X 4L _ o 43 _ oL )
mH —J'[[d'a’f a"]sx+[d‘9é 39]80+[d:ax ax]d}‘]d"o(d)

where each term in brackets must vanish since 8x, 80 and SA are now treated as independent.

For &x: —— - — =0 )

dt ox ox
which upon differentiation of the modified Lagrangian (b) results in
mi + kx + A =0 ®
For 60: 16 =Ar =0 ()]
For &A; x -r6=20 (h)

Equations (f), (g), and (h) represent the equations of motion.
On substituting for A, from equation (g) into equation (f) we obtain

i k- L6 < 0 o
But from equation (h), 0 = x/r. Hence equation (i) becomes
m+)F vk = 0 W
r

and represents the equation of motion after elimination of A. This equation could have been
obtained directly by eliminating 0 from the Lagrangian, via equation (a).

Next let us evaluate the generalized forces of constraint. The force in x direction, given by
equation (3.6.9).

d d
Ry = o, Moo= - ax(%(x re)) = -4 k)
From equation (f), A = —mx¥ — kx, and it follows that the magnitude of the required force is
given by
R, = R, = mx + kx 1)

and it is provided by the friction between the ground and the wheel.
The reaction torque associated with 0 is given by

R, = Ry = - %(Mx -r0) = ri (m)

or from equations (g) and (m)

Ry = 19 (n)
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Nonholonomic Constraints

Let us now examine the case of nonholonomic constraints. These constraints, which
may be expressed as

a;dg; + aydt = 0 i =12,..,v (3.6.10)
j =12,..,n

can also be taken into account by the Lagrange multiplier method. However, in this
case the term to be appended to Hamilton’s functional is not a function but rather a
nonintegrable differential of first order. As such these terms must be appended to the
first variation of the Lagrangian rather than the Lagrangian itself. Before doing so we
also note that since in Hamilton’s principle time is not varied, the nonholonomic con-
straints amongst virtual displacements take the form

a; 8¢, = 0 =12,y (3.6.11)

Now multiplying each constraint equation in equation (3.6.11) by a multiplier A;
and appending the sum of such terms, integrated from ¢, to ¢,, to the first variation of
L, we find

t, 1

oL d - [ a; 8 d = 0 (3.6.12)
t t

or
1#3

J@L - X a;8g)dt =0 (3.6.13)
4

Oa evaluating the variations of L with respect to g; and combining all terms multi-
plied by 8q;, the conditions for satisfaction of equation (3.6.12) are found as

d oL oL

- — - — = - AN a; J=12,.,n (3.6.14)

dt aqj aq]° v
In equation (3.6.14) we have n equations for determination of the g, and v Lagrange
multipliers. These equations must be solved along with the v constraint equations
(3.6.10) amongst the displacements. On division through by d¢, we may write these
equations as

a,-j q] + a;, = 0 i=12,...,v (3615)
Thus in contrast to the case of holonomic constraints, the nonholonomic constraint

equations (3.6.14) are not obtained as conditions of extremum of a functional.

Now there are a number of points of interest to note. First we observe that the
Lagrange multiplier method once again yields the constraint forces. Thus from equa-
tion (3.6.14) we see that the constraint force associated with g; is given by

Rj= —(7\,101]'+)L2(12j + - + 7\.‘, avj) = - )\.,'a,'j (3616)

In this case though, there exists no potential energy for the forces of constraint. This
is apparent from equation (3.6.12) wherein the contribution of constraint forces appears
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in the form of a virtual work rather than a potential energy. Thus while the constraint
forces associated with holonomic constraints are mechanically equivalent to conserva-
tive or monogenic forces, the forces associated with nonholonomic constraints may be
viewed as being equivalent to polygenic forces.
The n second order equations of motion require 2 initial conditions. Since all the g;
are independent, n of the initial conditions may be specified freely. On the other hand
the velocities q'j are not all independent. We may specify (n—Vv) of such velocities
freely but the remainder must be evaluated via the constraint equations (3.6.15).
It is also worth noting that it is always possible to express the holonomic constraints,
in equations (3.6.1), in the format of the nonholonomic constraints in equations
(3.6.15). Thus on evaluating the time derivative of f;, we may express the holonomic
constraints as

of; of; .

—q + — =0 3.6.17

aq; o (3.6.17)
Accordingly the method of accounting for nonholonomic constraints can also be used
for holonomic constraints. The converse, however, is not possible.

It is tempting to append the velocity form of the nonholonomic constraint equa-
tions to the Lagrangian by means of Lagrange multipliers. This will lead to incorrect
equations of motion. To illustrate consider for simplicity the case of a single nonholo-
nomic constraint equation with the modified Lagrangian as

E =L —X(alql+az(iz+ t ‘a,)
The first Lagrange equation now becomes

d | oL oL
L= -2 =0
949, 99,

d | oL aL 8
d [ oL oL _ dX ~|day . day . da;
or dt [aql] aql - dt a4 +x[aq1 i+ 8q2 q2+ ot
da da da
S ) et St i 3.6.18
[afll % 94, 7 9q ( )

on combining the various terms we may write equation (3.6.18) as

d|aL| oL _dXx da; day | . ~| 9a; dq
= +A | — - =— +..+A 3.6.1
[aél] 3,  dr [342 aql]q2 [ o  dqy G619

Now comparing with the correct equation of motion in equation (3.6.14) we note that
apart from the inconsequential difference between A and A (A = — dA/dt), the first
term on the right hand side of equation (3.6.19) is correct. However the remaining
terms should not be present. We can now see that these unwanted terms will drop out
if the velocity constraint equation is holonomic, i.e.
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9q; da; 9g; oq,

— = —= and — = —

aq; 9q; ot 9g;
As a final comment we point out that one is also tempted to satisfy the velocity form
of the nonholonomic constraints by eliminating some of the velocities from T*. Such
a procedure tacitly assumes that the nonholonomic constraint forces possess a potential

. . * . . . .

that may be combined with T . Once again the resulting equations of motion,
obtained in this manner will be incorrect unless of course the constraint equations are
integrable, i.e. they are holonomic.

Mg

<

(x1, y1)

0

Figure 3.4 Two-mass system with nonholonomic constraint

Example 3.6.2

The two particles shown in Figure 3.4 move on a horizontal plane and are connected by a rigid
massless rod of length /. The particles are supported on knife edges which prevent either particle
from having a velocity component along the rod. Motion normal to the rod takes place without
friction. We wish to analyse the motion of this system.

Using x,, ¥, X3, ¥2 as the Cartesian displacements we need to satisfy the following holo-
nomic constraint

(2=x1)* + G-y = PP @
We can satisfy this holonomic equation directly by introducing the generalized coordinates locat-
ing the centre of mass of the system and the rod’s orientation, namely ¢, = x, g, =y and g3 = 0.
The reduced transformation equations can now be written as

x1=x—-;—lcos9 y1=y——;-lsin6 ®)
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1 1 .
x2=x+51cos9 y2=y+—2—lsm6

The constraint preventing motion normal to the knife edges can also be written in terms of the
genralized coordinates as

(cos@) &x + (sin@) 8y + (0)d6 = O ©)
or on dividing through by df we may express this nonholonomic constraint as
Xcos® + ysinf = 0 ()

With the three independent coordinates and one nonholonomic constraint equation the system has
two degrees of freedom but all three coordinates are required for describing the configuration of
the system.

The complementary kinetic energy of the system can now be written as

T = m Gy 1P ©
Now we invoke equation (3.6.14)

d | oL oL

el Bl I Y ®

‘2]z,

In the problem at hand we have only one nonholonomic constraint for which
a, = a;, = cosb
ap = aj, = sind ®
a3 = ap =0

Thus the equations of motion emerge as

2m¥ = - A cosO )
2my = - A, sin® @)
l 28 _ .
S 176 =0 (0]

The third equation indicates that the angular momentum is conserved, and hence
6 = @ = constant k)
and
0= +86, o

We will let 8, = 0 for convenience. We may substitute from equation (1) into equations (h) and
(i) and find two equations in terms of three variables. These equations must now be solved
together with the nonholonomic equation (d).

From equations (h), (i) and (1) we find
y = X tan ¢ (m)
Also from equation (d)

tan ot = - x/y (n)
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Equations (m) and (n) combined lead to

Xx +yy =0 (o)
or
d .2 .2
a gy -
&) 0
that is,
2 + 3% = v? = constant ®

This equation shows that the mass centre for this system moves with a velocity of constant mag-
nitude v,, i.e. the system follows a circular path.

Now since the direction of motion is always normal to the rod, we have

¥ = —v, sinot @
y = v, cosot ®
Integrating these equations we find
vO
x = — cost + A )
®
Vo . B t
= — sin¢ +
y P ®

The integration constants A and B can be determined from initial conditions. If the initial condi-
tions are such that A = B = 0, then
¥ +y = — U))

and the motion is represented by a circle about the origin of the coordinate system. It remains
now to find A;. Using the solution for, say, x(¢) in equations (h) and (1) we find

)\,1 = 2mV0(0 (V)

The components of the generalized force (3.6.16) associated with the nonholonomic constraint in
equation (d) are found as

R, = R, = - Ma,, = F, = —Aose¢ = - 2mv,0cos®t (w)
R, = R, = — Mayy, = F, = —)sint = —2mv,wsint x)
Ry = Rg = — Majg = Mg = 0 (V)]

Consider now the changes in the energy of the system. Evidently the problem is sclero-
nomic since time does not appear explicitly in the reduced transformation equations and the
Lagrangian. Hence energy is conserved in this problem. Since there is no potential energy, then
=T =0

dt
or

da 2 .2, 1oay
dtm(x+y+4l(-)) 0
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Integrating the derivative terms and collecting similar terms we find the following extremum con-

ditions:
For 8x: mi ~mgsina+A; =0 ®
dy: my+r =0 ®
mr? .
on: - i = Mr cosf — Apr sinl = 0 (h)
. d | mrt .

These four system equations in terms of the six unknowns must be solved along with the two
nonholonomic equations, which we rewrite as follows:

X = rfqcos{ 0]
y = rMsin§ ®)
Now equation (i) may be readily integrated yielding
f; = ¢ = constant (1))
and § = oy +§ (m)

where ¢ and §, are the constant initial angular velocity and angular position of the disk. From
equations (f) and (g) we find the Lagrange multipliers

A = mg sino — mi
M= -my
Evaluating ¥ and y from equations (j) and (k) we may express the Lagrange multipliers as
A, = mg sina — mr (ij cosf — 1\ sinl) )
Ay == mr (ij sing + 0 cos) ®

Now substituting from equations (n) and (p) into equation (h) we obtain the governing equation
for m as follows

= —i— f— sino cos (gt + §,) @
Integrating this equation we obtain
0= 28 M Gy gy 1 L)+, ®
r 9
and n=—3£—sin7 cos (gt +§,) + Wt + 7, ()
3r of

We let 1}, = O for simplicity. Finally substituting from equations (r) and (m) into the constraint
equation (j) we obtain

= %—%“cﬁ sin2 (ot + §,) ®
which on integration yields

X = - -gﬁsi—;% (cos 2(at + §,) — cos 2§,) + x, ()
4
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Also by substituting from equations (r) and (m) into equations (k) we find

y = % £IN% Gin? (@t + &) )
g
which on integration yields
1 gsina sin2(wgt + &)
= - -— |+
y 3 o [‘ 2 o Yo (w)

Evidently the motion is fairly complex. It is of interest to note that if the disk’s angular velocity
o # 0 the disk will not move down the incline, but sideways. However if we set wg=§, =0
we find from equations (u) and (w), through use of L"Hospital’s rule that

= 3%:2”,, ®
Yy =15 )

Problems

3.6.1 Use (a) a direct approach, and (b) Lagrange multipliers, to establish the equa-
tion of motion of the single degree of freedom system shown. The disk rolls
without slippage. (c) Determine the constraint force.

m,1

3.6.2 A particle of mass m moves under the influence of gravity on the inner surface
of the paraboloid of revolution x> + y2 = az, which is assumed frictionless.
Using the Lagrange multiplier method and Hamilton’s principle, derive the
equations of motion of the particle.

3.6.3 Use a Lagrange multiplier  for  the  constraint  equation
f =x% 4+ y? - = 0, and find the equation of motion for a simple pen-
dulum of length / and mass m, in terms of the angle 0.
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3.6.4

3.6.5

3.6.6

3.6.7

Use a Lagrange multiplier  for the constraint equation
f =x%2+ y2 + z2 = |2 = 0, and find (a) the equations of motion for a
spherical pendulum of length / and point mass m, in terms of x, y, and z. (b)
Show that the angular momentum component H, = constant, (c) that the total
energy E = T* + V = constant, and (d) that 2\/ represents the constraint
force transmitted through the string.

A bead slides down, without friction, a wire in the shape of a helix of radius a
and pitch h, as shown. Find the z component of its motion.

In example 3.6.2, using the velocity from the nonholonomic constraint, elim-
inate one of the velocities from 7" and show that using T* in this form in
Hamilton’s principle leads to an incorrect result. Explain why this is the case.

A particle of unit mass is subjected to a force with potential energy
V = V(x,y) and is constrained in the xy plane with the slope of its trajectory
proportional to time. Determine the particle’s equilibrium equation of motion.

3.7 Ignorable Coordinates

Depending upon the generalized coordinates used, it may happen that one or more of
the generalized displacements will be absent in the Lagrangian while their velocities
are present. Such generalized displacements are called ignorable or cyclic coordinates.
Lagrange’s equations, associated with ignorable coordinates, can be partially
integrated. To see this, consider for simplicity the case of the single ignorable coordi-
nate which we arrange to be the last generalized displacement g,. The case for multi-
ple ignorable coordinates can be dealt with in a similar manner. Now since g, is
absent in L, then

oL
94,

0 3.17.1)
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Example 3.7.1
Consider the two degree of freedom system shown in Figure 3.6a. Taking the spring as linear,
we may use x; and x, as generalized coordinates and express the Lagrangian of this system as

1 . . k
L = 5 mil + mif) - 5 -x) @

In this case neither x, nor x, is an ignorable coordinate. However let us introduce a different set
of generalized coordinates, related to x, and x, as follows

Xy = q1 + q2 ()
X2 = ¢ ©
In terms of ¢, and g, the Lagrangian takes the form
1 . . 1 R 1
L = om@+§) + 5 mdi - 5 kai @

Now it is evident that ¢, is an ignorable coordinate since it does not occur in the Lagrangian.
The associated generalized momentum p, may be derived from (dL/dg,) and is given by

aL . .

P2 = —— = my(@1+qy) + myg, = c, = constant @©
9,
or mx; + myx; = ¢, ®

The interpretation of equation (f) becomes apparent when we note from the transformation equa-
tions (b) and (c) that ¢, is a rigid body displacement, whereas q, is the elastic displacement.
Thus the momentum associated with g, is the momentum of the two masses in a rigid body
motion.

Now from equation (¢) we have that

s ca—mg, @
q2 —m|+m2 g

Further the equation of motion associated with g, can be obtained from

4 9 _ oL _,
dt a‘h aql
as
d ,. .
'”17‘(41"”‘12) + kg =0 (h)

It now remains to eliminate ¢,, from equation (h), via equation (g). The equation of motion for
q1, then takes the form

mn;

m‘h + kg = 0 @)

Example 3.7.2

Let us consider next the system shown in Figure 3.6b and let us analyse this system by the com-
plementary procedure, with the generalized impulses S, and S, as coordinates. We find, with
B = §, - §,, for the kinetic energy
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1 B? 1 81 - 8)?
T_2m_5 m @

and for the complementary potential energy of the two linear springs with stiffnesses k; and k5,

i 2 i 2
. 1 §i 1 53
2 2 T 2, ®
and for the complementary Lagrangian L* = T - V°,

32 i 2

1 , 1181 S3

* = - - = |— -
L 2 81752 2 [kl + kz} ©

where §; and S, are the spring impulses.

On comparing this expression for L* with that of the Lagrangian (a) for the system of
Example 3.7.1 we note a mathematical similarity. Specifically it is evident that, disregarding
signs, the following correspondence exists

x <—> § m <—> 71; ()]

From this similarity it follows that the (equilibrium) equations of motion for system 3.6a and the
(compatibility) equations of motion for system 3.6b are mathematically similar. We may then
consider these two systems as duals of one another.

Returning to the question of ignorable coordinates it can be seen that by a transformation of
impulses, similar in form to the transformations in equations (b) and (c) of Example 3.7.1, we can
show that system 3.6b, in its complementary formulation, possesses one ignorable coordinate. It
is also worth noting that system 3.6a in its Hamiltonian formulation has two degrees of freedom
and one ignorable coordinate. The same system, in its complementary Hamiltonian formulation
has one degree of freedom and no ignorable coordinates. The reverse is the case for the system
shown in Figure 3.6b.

Finally we note that in the Hamiltonian formulation ignorable coordinates of the g -type do
not appear in the expression for the Lagrangian (T* — V). These ignorable coordinates are gen-
erally associated with rigid body motions and they do not give rise to elastic deformations. The
momenta, associated with such ignorable coordinates, are conserved. In the complementary Ham-
iltonian formulation ignorable coordinates are of the S-type, i.e. they do not appear in the com-
plementary Lagrangian (T — V") expression. These ignorable coordinates generally do not give
rise to kinetic energies. The extensions, associated with such ignorable coordinates, are con-
served.

Example 3.7.3
In Kepler’s problem of planetary motion (Figure 3.7), with ¢, = r and g, = 6, the comple-
mentary kinetic energy and potential energies are

T" = —;—m[r'2 + rzéz] and vV = ——“fn— ab)
The Lagrangian is consequently
L =T'-V=%m[r'2+r262]+“—m— ©
r

and one equation of motion is
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e =Vl - b2/a2

Figure 3.7 The Kepler problem

do oL _ . 2 4 Bmo
& o > - ™ mr9+r2 =0 )
The coordinate 6, being absent in the Lagrangian, is ignorable. Thus g% = 0 and the second
-equation of motion becomes
d oL
dt 36 0 ©
or
Po = AL _ % - co = constant ®
a0
Solving for 6,
. Co
6 = — (8
mr
We may eliminate it from equation (d) of motion, which then becomes
. wm cd
mr+ —& - — = 0 (h)

r2 3

Since ignorable coordinates can be eliminated from Lagrange equations it is natural to
enquire whether it is possible to eliminate them from Hamilton’s functional, from the
outset. Certainly equation (3.7.5) may be used to eliminate ¢, from the Lagrangian.
However from equation (3.7.5) it can be seen that by prescribing (g, - - * ¢,1), at the
end points #; and 1,, we cannot prescribe g,. Thus at least for g, we are obliged to
retain the boundary terms of Hamilton’s functional, as given in equation (3.1.12).
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Hence Hamilton’s principle must now be expressed as
i

8[Ldt = p,3q,
b

t

2 (3.7.6)

31

But p,, the generalized momentum associated with the ignorable coordinate g,, we
have shown to be a constant. That is,
193 2

t . .
Pn 84, t: = p, 8 J G,dt = & j Cp Gndt (3.7.7)
i f

Therefore Hamilton’s functional may now be expressed in the following modified form
173

8fLgdt = 0 (3.7.8)
h

where Lp = L - c,q, 3.7.9)
Now it is permissible to eliminate ¢, via equation (3.7.5).

For the case of k ignorable coordinates, k equations of the type (3.7.5) can be
derived and a modified Lagrangian may be defined as

LR = L - Ci(ii i = n—k+l,...,n (3710)

The modified Lagrangian from which the velocities associated with ignorable coordi-
nates have been eliminated, is called the Routhian®™ R of the system. Thus

R = R(ql;-"qn — k> q.]’“'a dn — k> cn —k + 1o Cn) (3.7.11)
leading to a modified Lagrange equation
ia_R - R =0 Jj =12 .,n-k (3.7.12)
dt aqj aq]

The following example 3.7.4 illustrates the application of the Routhian.

Example 3.7.4
Consider Kepler’s problem of planetary motion again as shown in Figure 3.7.
The Lagrangian, L = T" - V,is
L = lm[;2+(ré)2] + B2 @)
2 r
Evidently 0 is an ignorable coordinate, and consequently the momentum associated with 6 is con-
served, i.e.
BL 20
- = = mr‘6 = cg = constant
3 Pe ]

t Edward John Routh (1831-1907), English mathematician
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. Co
o 6 = —2 ®)
mr

Now we may form the modified Lagrangian (3.7.9) as
Ly = L-cb = 20 + 001 + B2 - 0 ©

It remains to eliminate § from Lg, via equation (b). The result takes the form
2

o_om o bm  Ce
R(ry) = >’ + " o ()
4R _ R _,
dt or or
yielding
. um c§
mr + > - —3 = 0 (e)
r mr

In principle, once r is determined as a function of ¢, we may determine 0 by integration of equa-
tion (b). Unfortunately r cannot be obtained as function of time in closed form in this case, and
consequently 6 cannot be established in closed form either.

There are, however, a few compact relationships that can be established. They are known
as Kepler’s laws. The first says that point satellites move on conic sections about their point
master, e.g. for an elliptic orbit

a(l - €

= =L ®

1 + ecos®
with the integration constants a = semi-major axis and € = eccentricity.

Then there is Kepler’s second law which follows from the constancy of angular momentum
as expressed by equation (b), which can be rearranged to state that equal areas r2d @ are swept
out in equal time intervals dt.

ar = 240 ®
Co
And lastly there is Kepler’s third law which states that the square of the time T required for
one complete orbit is proportional to the cube of the orbit’s major axis.

3
= 2 ‘\ja_
T n m (h)

It is also of interest to note that the term cg/2mr? may be viewed as an apparent potential
energy V,,,, with an associated force which is proportional to 1/r® and is repulsive. Thus we can
write a total potential energy as

2

V +V S co (i)

appa
P r 2mr?

For a circular orbit, i.e. under steady conditions, when # = 0, the balance of the attractive and
repulsive forces leads to the following equilibrium condition:

m c} .
u7=——3 )
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cd . oy
thus r = -m—le or 6 = '\/ 3 (k)

To see if this equilibrium configuration is stable we can evaluate the second derivative of the
combined potential energy and obtain

dAV + Vi) 3cd

r

For the equilibrium configuration in equation (j) one can see that (V + V,,,,) attains a minimum
indicating that the steady equilibrium configuration is stable!

Problem

3.7.1 A satellite (im = 500 kg) of the earth (W = 398 601 km3/s2) is on a circular
orbit of 7000 km radius. What is (a) the magnitude of its potential energy V,

and (b) of its apparent potential energy V,,,?

3.8 Hamilton’s Canonical Equations
Although in Hamilton’s principle both the displacements and velocities are varied,
these variations are not independent. Let us relax this requirement and allow indepen-
dent variations for the velocities g; and the displacements q;. We do this by letting
the velocities be g;. We can establish the relation between the velocities g; and the
displacements g; by means of some side constraints of the following form
g — ¢ =0 i = 1,2,.,n 3.8.1)
These constraint equations are holonomic and we may take account of them by form-
ing a modified Lagrangian as follows
Ly = L@,8.t) — Mg —q:) (3.82)
Now we have a three-variable problem allowing variations of g, g and A. On deter-
mining the extremum conditions of the modified functional,
t2 19

8[Lag,g. M)dt = 8[(Lg.g,1) - N (g — gNdt =0 (383)
t 13}

with respect to g;, g;, and A;, we find the following Euler-Lagrange equations.

_ d oLy oL, oL _
For 8g;: & o, - 2 0 or o, -\ = 0389
d aLx aLx aL .
) —_—— - — =0 — - A = 8.
q; & % 34, or 2, A 0(3.8.5)
. d aLA BL;‘ _ .
o\ i o, T 0 or g —-¢q = 0 (386

Now from equation (3.8.4) it can be seen that at extremum conditions
A = oL 0

E = agi (T —V) = D; (3.8.7)
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where p; are the generalized momenta associated with the velocities g;. Equation
(3.8.5) then expresses conditions of equilibrium amongst the inertial and the impressed
forces.

Having determined the solution for A;, we may return to equation (3.8.2) and replace
A; by p;. The modified Lagrangian then becomes

L, = T -V) - p; 8 - 4) (3.8.8)

Since p; and g; are related via equation (3.8.7), in the modified Lagrangian L, we
have a two-variable problem allowing for independent variations of p; and q;. We
proceed to eliminate the g; . If the system is scleronomic then

pigi = T+T" (3.89)

which on substitution into equation (3.8.8), yields
Lp = Ppi q.i - H (3.8.10)
where H =T+V (3.8.11)

The term H, which for scleronomic systems represents the sum of the kinetic and
potential energies, is the Hamiltonian function (3.4.15), with H = H(q, p).

For rheonomic systems we have seen, in section (1.9), that
™ = T, +T] + T, (3.8.12)
pigi =T +T, - T, (3.8.13)

1 _ 1 _
amd T = > (p}T AT (p) - 5 VAT (b) + 1] (3814)

Hence for these systems the modified Lagrangian, in equation (3.8.8), becomes
L, = L + pig; - (T +V-T]-2T,) (3.8.15)

Now the presence of 7], in the term in the round brackets, implies that this term is
not only a function of p; and g; but also of ;. However we may remove g; from this
term by expressing T in terms of p;. This can be done as follows:

We have that

7 = (b} {4} (3.8.16)
and {g} = AT dp} - (b} (3.8.17)
Hence 77 = (Y AT {p} - (b} AT (b} (3.8.18)

Substituting from equations (3.8.18) and (3.8.14) into equation (3.8.15) we may
express the modified Lagrangian as L, = p;q; — (I'+V - T] -2T,) = p;q; - H
. 1 _ 1 _
oo L, = {pV {4} - GV AT {p} + S 0} AT (b}
- Y AT p} - T, + V) (3.8.19)

Once again the term in the round brackets is referred to as the Hamiltonian function
(3.4.15), with
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H =T+V -T] - 2T, (3.8.20)

In this more general case the Hamiltonian may be a function of not only p; and g;, but
also of time ¢. It is convenient to express this Hamiltonian function in three parts:

Hp,q,t) = Hy + Hy + H, (3.8.21)

where H, = %{p VAT Yp) is quadratic in p (3.8.22)
H, = -bY[ATYp} is linear in p (3.8.23)

H, = %{b}T[A]“{b} ~ T' +V isnotafunctionofp (3.824)

It should be noted that if time does not appear explicitly in the reduced transformation
equations, the vector {b} would be zero and the Hamiltonian in equation (3.8.20)
would simplify to the form given for scleronomic systems, in equation (3.8.11).

No matter whether the system is scleronomic or rheonomic the relation between
the modified Lagrangian and the Hamiltonian function takes the following form:

L, = pqg - H@gpt) (3.8.25)
From this relation it follows that
oL, oH
P
5 = T35 3.8.26a
ag; ag; ( )
oL oH
P _
o T3 (3.8.26b)

Now returning to Hamilton’s principle we can write a modified form of this extremum
principle as
8y =0 (3.8.27)
17} 1
where My@,q) = [Lydt = [{(pig; - Hdr (3.8.28)
1 1

In the functional in equation (3.8.28) the momenta p; and displacements g; are subject
to independent variations. The displacements must satisfy the kinematic constraints,
whereas p; may be varied freely.

Consider now the Euler-Lagrange equations of the calculus of variations for ITj,
namely

d 9oL, oL,

—_— - — =0 3.8.29

@ % % (¢82%)
and

d 9L, oL,

—— - — =0 3.8.29b

dt ap‘ ap, ( )
which lead to

-p; = OH (3.8.30a)
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and

M
ap;
In equations (3.8.30) we have Hamilton’s celebrated equations, referred to as the
canonical equations of motion, by Jacobi (gk: canon = general rule). The first of these
equations expresses the equilibrium amongst inertial and other forces, whereas the
second expresses a generalized velocity-momentum relation for the particles. These

equations being first order, are generally easier to integrate than Lagrange’s equations
which are second order differential equations.

As in its original form the modified form of Hamilton’s prmmple holds for systems
which are holonomic and for which all forces possess potentials. If there exist forces
Q, which are not derivable from potentials then the virtual work of these forces must
be added to OI1y. That is in this case

[}

(3.8.30b)

q;

1[8{1’.-4.- - H} + O/ Sq;]dt = 0 (3.8.31)
h
The associated system equations now take the following forms:

For  &¢;: 5 = H oy (3.8.32a)

aq,

. oH

. . - .8.32

dp; 4; %, (3.8.32b)

If nonholonomic constraints are active, they may be appended to the modified func-
tional by means of Lagrange multipliers A,, as follows:
73

j [8 {pigi - H} + Myay 8q,-] a = 0 (3.8.33)
31
In this case the system equations take the following forms:

For &g;: -D; - Ay Gy (3.8.34a)

a‘Il

. oH

Y ; = .8.34
8p; i = 5 (3.8.34b)
Example 3.8.1

Consider again the system shown in Figure 3.3. The complementary kinetic energy for this sys-
tem may be expressed as

T = %(mi:z + 189 @

By choosing ¢ = x as generalized coordinate and satisfying the kinematic constraint, x = r6,
we may express T" as

. 1 I].
T =5[m+r—2]q2 (®)



Then the momentum associated with ¢ is found as

BT. = |m+

9q
from which q = —LI
m+ —

We may now evaluate the kinetic energy as

T = [dgdp = [—L—ap
m+

The potential energy is

The Hamiltonian function, H = T + V in the present case, can be expressed as
2
P

m+ =

H =

The canonical equations become

oo

oq

oo

and q—ap

These two first order equations are equivalent to the single second order equation

Example 3.8.2

Consider the spherical pendulum shown in Figure 3.8.

The kinetic coenergy is

T
and
or’ 2
= — = ml
Po % ¢
py = mity sin’

Then the kinetic energy may be expressed as

1
2

r

1%

If.
[m+r—2]q+kq

= 5 i @+ VP sintg)
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displacements ¢;). The extensions ¢; form the second set of variables (corresponding
to the momenta p; ). The constraint to be relaxed in this case is the impulse-force
relationship. We proceed by letting the forces be K;. Then we relate the impulses S;
to the force by setting S; = Kj, and introduce these equations as constraints. On
appending these constraints to the complementary form of Hamilton’s principle, by
means of Lagrange multipliers, we obtain, analogous to equation (3.8.3),

[$)

SfIL* K4 - MK - Spd = 0 (3.9.1)
h

Carrying out the variations with respect to S;, K; and A;, we find the following

extremum conditions.
*

For SKj: %{—]— - =0 (3.9.2)
8S;: %l;; -4 =0 (3.93)
B\;: Ki -8 =0 (3.9.4)
From the first of these equations we find
A, = gﬁ; = ;’Tj(r -V = - 3‘1’{; e (395

On substituting this extremum value of A; in the functional in equation (3.9.1), we
obtain the following modified functional

[}

[o@ - v*) - ej&; - Spuae = 0 (3.9.6)
t
But ¢ K; = - (VI + V") and hence the above functional simplifies to
[}
[3T + V) + ¢Syt = 0
;
or [BlH(S, e, ) + €Syt = 0 (3.9.7)
31

In this functional S; and e; are varied independently. The impulse S; must satisfy the
equilibrium equations whereas e; may be varied freely.

The extremum conditions of the functional in equation (3.9.7) emerge as the following
canonical equations

. oH
R (3.9.8)
; oH
-8 = 22 (3.9.8b)
J aej

with
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HS,et) =T + V (3.9.9

Equations (3.9.8) are valid for scleronomic and rheonomic systems. For the latter case
the expression for T will involve time explicitly (see example 3.9.1). When there are
speeds sj' which are not derivable from a kinetic energy function, their virtual work
must be appended to the modified Lagrangian in equation (3.9.1) in an analogous
manner to that described for the classical Hamilton canonical equation in section 3.8,
leading to

oH

éj = as, + 5/ (3.9.10a)

- oH

S; = e, (3.9.10b)
Example 3.9.1

Let us obtain the complementary canonical equations of a linear oscillator with stiffness k and
mass m. Denoting the spring deformation by e and the corresponding impulse by S, we have

52 ke?
H-T+V-—2+T (a)
Then the canonical equations (3.9.8) become

oH

. M
A ®)
; dH

-5 = sy ke ©

It is of interest to note that the first of these equations expresses the relation between the velocity
(S/m) of the mass and the deformation rate of the spring. This is a compatibility relation. The
second equation expresses the force-deformation relation, ie. the constitutive equation, for the
spring.

Now let a force F sin Q¢ act on the mass. Then from the equilibrium equation we have that
B =S + F sinQt @

Where B is the momentum of the mass. Intergrating equation (d) and taking the integration con-
stant as zero, we obtain

F cos Qt
B = S§ - Q )

B2 ke?
Now T_E’ V—T ®
and H=T4+YV

2

1 F cos Qt ke?

becomes H_Zm[s_ o + 5 ®

The explicit appearance of time in the Hamiltonian indicates that the system is rheonomic. Using
the canonical equations (3.9.8) we obtain the governing equations as
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Example 3.9.3
For Kepler’s problem (Figure 3.7) the Hamiltonian is
_ 1 sr2 1 53 pm
H_T+V_2m+2me,2_e, @)

The canonical equations (3.9.8) give the equations of motion as

ée=%=»fei2 @
-So= 2 -0 ©

Equation (e) states that the angular momentum Sg = constant, i.e. it is conserved.

Problems

3.9.1 At a moment of time, a linear oscillator (m = 10 kg, k = 12 N/m) has an
extension of 0.1 m and a velocity of 0.05 m/s. Determine the numerical value
of its Hamiltonian.

3.9.2 Given is a simple pendulum. Use S (= mi 2()) and e (= 0) to find (a) the Ham-
iltonian. Write (b) the complementary canonical equations and (c) combine
them into a second order differential equation.

3.10 Elimination of Ignorable Coordinates

We have seen in section 3.7 that the presence of ignorable coordinates admits partial
integration of the equations of motion associated with the ignorable coordinates. In
this way it is possible to eliminate the ignorable coordinates. The process of elimina-
tion is considerably simplified in the Hamiltonian formulation of the equations of
motion.

If the Lagrangian function does not contain an ignorable coordinate, say g,,, then the
Hamiltonian function will not contain it either. Then from Hamilton’s canonical equa-
tions (3.8.30) it follows that

. oH
- = 0 .10.1
Dn %, (3.10.1)
or Dn = ¢, = constant (3.10.2)

Thus the conservation of momentum associated with the ignorable coordinate is once
again established.

Now since in Iy, as given in equation (3.8.28), the momenta are varied indepen-
dently, and p,, is now a constant, then the term in Il given by
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17 1
t

Ipnqndt = Gy jqndt = Gy [n],‘2
t h

leads to a constant which may be dropped as far as the variations of Il are con-
cerned. Hence the reduced form of the action IT;; may be expressed as

2

I, q1,.49n-1>P1,.Pn-1) = J(Pié.' - Hydt i =123,.,n-1 (3.10.3)
4

After solving the reduced problem, the ignorable variable may be determined as
function of ¢ by direct integration, since the right hand side of the corresponding
canonical equation (3.8.30)
oH

apn

dn (3.104)
is then an explicit function of ¢.
The same procedure holds for any number of ignorable variables.

Example 3.10.1
Consider again Kepler’s problem of planetary motion (Figure 3.7). For this problem, with
g, = r and g, = O, we found for the complementary kinetic energy

T" = —;—m(f'z + (ré (@)
T’ . ar .
Then = = mF and — = = mr?0
o pPr Y Pe (®)
From the definition of the kinetic energy T, we find that
2 2
pr Peo pr pPé
T = w dp, + IW‘ dpy = am * 2mr? ©
For this system the Hamiltonian, with V = - Hr’l’ takes the form
H = T +V
2 2
g = P, Po__ pm @

2m 2mr? r
Since 0 is not present, it is an ignorable coordinate.
The equations of motion can now be obtained, from the canonical equations (3.8.30), as

oH Pé  um

pr = Y T o 2 ®

. oH

Pe = -39 = 0 (@
H P

r - apr - m (h)

é - oH Pe

e m? o
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Equation (g) can be integrated directly and yields a constant value for the angular momentum
associated with the ignorable coordinate 6, i.e.

Pe = Cg = constant G

Now substituting from equations (h) and (j) into equation (f) we may obtain a single second order
equation of motion as
. cd pum
m - — + — = 0 &)

mr3 7'2

which is in agreement with the equation obtained earlier via the Routhian. The coordinate 6 can
be eliminated directly from the action ITy by simply dropping the term pg6 from the functional.
Thus the reduced form of the action may be expressed as

32 ‘2 2 2
. . r c
Ny = I{piq; - H}dt = I{p,r - [;’—m + 2m°rz - J*r—'”] }dt )

i i

In this functional only r and p, are subject to variation. The resulting extremum conditions
emerge as follows:

8

For &r: b- — + B = 0 (m)
mr r
&p,: —i'+p—' = 0 (n)
m

These results are consistent with equation (k), as can readily be verified.

Problem

3.10.1 A satellite (n = 500 kg) of the earth (u = 398 601 km>/s2) passes its peri-
gee (rpr = 7000 km from earth centre) with a velocity of 28 800 km/h. Its
(constant) generalized momentum pg = cq = 28 Gg km?%/s. Make a sketch
of the orbit, and calculate (a) the magnitude of its generalized momentum p,
and (b) of its generalized momentum rate p, .

3.11 Phase Space and State Space

We have seen that in Lagrangian mechanics the motion of a system, with n coordi-
nates, may be visualized as trajectories of a single representative point in n-
dimensional configuration space. Now in Hamiltonian mechanics the equations of
motion entail 2n variables; namely the n displacements and the » momenta. To visu-
alize the motion as trajectories of a representative point, we now need to introduce a
space of 2n dimensions. This 2n-dimensional pg-space was named phase space by
Gibbs'.

Now in discussing the configuration space in section 2.5, we found it advanta-
geous to establish a particular metric for this space, based on the complementary

+ Josiah Willard Gibbs (1839-1903), American mathematician and physicochemist
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kinetic energy. This metric gave the configuration space a curvilinear geometry. For
the phase space there seems no particular advantage in constructing a special metric
other than the usual metric of a 2n dimensional rectilinear space. Hence in the phase
space the ¢; and p; form rectangular coordinates, in a 2n dimensional space, of the
representative point. We may go one step further and introduce the time as an addi-
tional dimension. This (2n+1) dimensional space is called the state space. While
both the extended configuration space (including the time coordinate (Figure 3.11)) and
the state space (Figure 3.12) allow one to view the motion of a complex system as that
of a single point, the state space (Figure 3.13) has some distinct advantages. To see
this consider the solution of Hamilton’s first order equations (3.8.30). We may express
such solutions formally as

q; ;. sq? P seDin 1) i = 12,..,n
pi = Di@Fsslis P rlin ) (3.11.1)

where ¢9.....497, P{.....p5 are the constants of integration which we may identify as
the 2n initial conditions. Equations (3.11.1) show that the motion may be viewed as a
mapping from 2n coordinates (g9...., g% P{s... P2, t) to the 2n coordinates
(g 15+++sGn »+++sD 15---Pp ot )- This mapping is one to one and hence the trajectories of

S

NS
arctan (4.)

0 Iqoll

Figure 3.11 The gt -configuration space

the representative point, in state space as well as in phase space, never cross each
other. This is assured from the uniqueness of the solutions for the canonical equations.
Thus all the trajectories in state space and phase space are well ordered without any
overlappings.
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Consider next the solution of the second order Lagrangian equations of motion.
We may write these solutions formally as

G = q;(@3sq?s GYenrrrt)

In this case one can see that the mapping between the current position (q,t) and the
initial position (g, .?,) is no longer one to one and it is affected by the infinite choice
of initial velocities. This implies that the trajectories in the configuration space are not
well ordered and the totality of such trajectories forms a maze of crisscrossing lines.

=
N

Figure 3.12 Phase space

Example 3.11.1

Consider the motion of a simple mass-spring oscillator. In the Lagrangian description the equa-
tion of motion for this system is given by

mg + kg = 0 (a)

with the solution
9 .
q = q,coset + o sinwt ®)

where ® = Vk/m and ¢, and ¢, are the initial displacement and the initial velocity of the mass.
The configuration space for this system, i.e. the g-space, is one dimensional and it is clear that
in this space all possible motions of the oscillator are superimposed. Let us next represent the
motion of the oscillator in the g¢-space as shown in Figure 3.11. Evidently the trajectories associ-
ated with different initial conditions, which in this case determine the total energy in the system,
crisscross in the g¢-space.

Consider next the equations of motion in the Hamiltonian formulation. The system’s Ham-
iltonian function is given by

H = 1[L2+kq2] ©

2| m

yielding the first order differential equations of motion

oH
- — = _kq d
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. _ OH _ p
q - ap = m (e)
with the solutions
p = P, cosot — q, mo sinwt ®
Po .
= — sine¢ + oY,
q o sin g, €OS (€3]

where p, and g, are the initial momentum and the initial displacement of the mass. For this
example the phase space, i.e. the pg-space, is two-dimensional. In this space the trajectories do
not cross. The equation for these trajectories can be found by eliminating the time in equations
(f) and (g). Subsequent to some manipulations one can express the trajectory equation as ellipses
2 2

P 4 _
26m © 2EIk ! ®
2 ki 2
where E = !2’Lm + -%— is the initial total energy.

Thus for different initial conditions, which also determine the initial energies, different non-
intersecting ellipses are obtained in the phase space, i.e. pg-space as shown in Figure 3.12. Finally
we may depict the motion in the state space, i.e. pgt -space, as shown in Figure 3.13. In this case
we obtain non-intersecting, elliptic helices.

~
N
N
- .
o==] """ "= T3 ':~
RN =Pl ~a
K
) —
- = 33410
> q

Figure 3.13 State space

Problem

3.11.1 A simple spring-mass oscillator (m = 0.1 kg, & = 12 N/m), has an initial
momentum of 2 kg m/s, and an initial displacement of 0.5 m. (a) Plot its tra-
jectory in phase space. (b) Plot its trajectory if the initial displacement is
0.6 m.
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3.12 Hydrodynamic Analogy

There exists an interesting analogy between Hamilton’s equations of motion and the
field description of fluid flow. To bring out this analogy, consider the position of a
fluid particle as a function of time. If the particle starts at time #, from the position
(%, ,Y0+2,) then at time ¢ we may formally give the location of the particle as

X = X (X, Y0255 1) (3.12.1a)
Yy = ¥ (X, Y9, 2,5 1) (3.12.1b)
=z (X, Yps 2o, 1) (3.12.1¢)

Here again we have a one to one mapping for the particle’s coordinates, from its initial
to its final position. The analogy between equations (3.12.1) and (3.11.1) is apparent.
The essential difference between these equations is that for the former we have three
coordinates (x,y,z), in three-dimensional space whereas for the latter we have 2n
coordinates (q,....q,; » P 1»-----P,,) in the phase space. From this analogy further similar-
ities can be deduced. Consider for instance the velocity of a fluid particle located at
(x,y,z). We may express this velocity as

. ox . 9 . 0z
X = E (o5 Yo» 20) y = _a§ (o5 Yos 20) z = 5 (%05 Yo 2,) (3.12.2)
Now since the mapping in equation (3.12.1) is one to one, it is possible, in principle,
to invert these relationships and thereby eliminate (x,.y,.z,) from equations (3.12.2).
Then the field velocities may be expressed as

X = x&x,y,z,1) (3.12.3a)
y =y &, y,z,t) (3.12.3b)
z = zx,y,2,¢t) (3.12.3¢)

Above equations give the velocity vector, at any point in space, at any time. If the
particle description (13.12.1) is given we can obtain the field description (3.12.3) by
differentiations and eliminations. On the other hand if the field description is given we
can obtain the particle description by integrating equations (3.12.3).

The form of the field velocity equations (3.12.3) is similar to that of Hamilton’s
canonical equations, (3.8.29) and (3.8.30),

g = %H(q,p,o = £i@p.D) (3.12.43)
p; = __E%H(q’p’t) = g @,p,t) (3.12.4b)

This similarity enables us to visualise the motion of a system as the flow of a fluid —
the so called phase fluid — in 2n-dimensional phase space. The flow of this phase
fluid has a number of characteristics which can be deduced through the analogy with
the flow of real fluids in three-dimensional space. Consider for instance the case of
steady flows. In this case the velocity of a real fluid, at any point in space, is indepen-
dent of time. This implies that for steady flows x,y and z, in equations (3.12.3),
become independent of time. For the phase fluid an analogous situation arises when
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the Hamiltonian becomes independent of time, as can be seen from equations (3.12.4).
This occurs for scleronomic systems and for some rheonomic systems [see equations
(3.4.15)]. Thus for such systems the flow of the phase fluid is analogous to the steady
flow of real fluids.

We have seen that for scleronomic systems the Hamiltonian is equal to the total energy
of the system and, if the Hamiltonian is independent of time, then the total energy will
remain a constant i.e.

H(g,p) = E = constant (3.12.5)

Equation (3.12.5) represents a hypersurface in 2n-dimensional phase space. Thus we
may conclude that for scleronomic systems the representative point, in the phase space,
moves on surfaces associated with given energy levels. For each energy level there
will be a different surface. The aggregate of all possible motions of the given sclero-
nomic system can be viewed as a set of non-intersecting surfaces in the phase fluid.
The analogues of these surfaces are the stream lines for steady flow of real fluids.

Figure 3.14 Phase space for scleronomic system

Consider next the condition of incompressibility. For the real fluid this condition may
be expressed as
ox dy dz
ox oy 0z

The analogue of equation (3.12.6) for the phase fluid takes the form
ag; op;
_— + —
9g; 9p;

0 (3.12.6)

=0 (3.12.7)
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But from the canonical equations (3.8.29) and (3.8.30)

3 . d oH 3%H
9, - 9 OH _ oH 3.12.8
3g; ¥ dq; p; 9q;9p; ( )
and
2
o , = O oH, __ _oH (3.12.9)

T o 9 " 9q;p;

On substituting from equations (3.12.8) and (3.12.9) into equation (3.12.7) we note that
the latter is identically satisfied. This implies that the phase fluid imitates the
behaviour of incompressible real fluids. A more striking analogy can be observed if
we restrict ourselves to two-dimensional flows for which we may take z = 0. In this
case the condition of incompressibility may be identically satisfied through the intro-
duction of a stream function y defined by

: o= Y o o— _ Y
X ay and y o (3.12.10)

A comparison of equations (3.12.10) and (3.12.4) reveals that the stream function
and the Hamiltonian H are analogous quantities. Thus surfaces of constant H in the
phase space correspond to lines of constant W for two-dimensional flows, namely the
stream lines.

The condition of incompressibility for the phase fluid permits us to add a new
conservation law to the previous energy theorem, namely the constancy of the phase
fluid density. Consider again the representation of the motions of a scleronomic sys-
tem in phase space. Suppose that for various possible initial conditions the energies of
this system lie between E; and E,. Then the paths for various motions will lie
between the two surfaces H = E; and H = E, as indicated schematically in Figure
3.14. Subsequent to different initial conditions the system will move along different
paths in the phase space. Now let us cut out a region R; wherein all the initial condi-
tions are contained. As time progresses, region R; will move and it may become dis-
torted. At some time ¢ later, all the representative points will occupy a region R,.
For example, the representative point corresponding to one particular set of initial con-
ditions moves from point A to point B. It is clear that the number of representative
points in regions R and R, is the same and since the volumes of these regions is also
the same, due to incompressibility, then the density of the phase fluid remains con-
stant. This conservation of phase fluid density was discovered by Liouville! and is
known as Liouville’s theorem.

t Joseph Liouville (1809-1882), French mathematician
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Figure 3.15 Variations in space and time

3.13 Principle of Least Action

In Hamilton’s principle, although the interval of time from #; to ¢, is arbitrary, the
limits ¢, and ¢, themselves are fixed. That is, in this principle all admissible motions
are considered over the same period of time; namely from #; to ¢, and time is not
varied, i.e. for variations of ¢;, time is held fixed. We may remove this restriction by
considering motions over different periods of time. In this case the limits #; and ¢,
will not be fixed and from Figure 3.15 it can be seen that to the first order of small-
ness the total change in the displacements, between motions over different periods of
time, may be expressed as

A = ¢; 8 + O (3.13.1)

On substituting for 8g; from equation (3.13.1) into Hamilton’s principle in equa-
tion (3.1.11) we obtain
3]

[s@* - vyar = p;Ag; - 4 &) I,'f (3.132)
31

In equation (3.13.2) the time limits are no longer fixed.
Now for any integral with variable limits, we have that
2 L$) [} 12

Ajg(t)dt = jA[g(t)dt] = j[Ag(t)]deg(t)A(dt) (3.13.3)
1 15 t

3

and on using equation (3.13.1) we may express this equation as

12 ty 17

Ajg(t)dt = j[g‘(t) 5t +8g @) dt + jg(t)d(at) (3.13.9)
1 N N
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where we have taken note of the fact that for ¢,
At = &t

and hence
Adt) = d@t)

Now we may carry out a partial integration of the last term in equation (3.13.4) and
write this equation as

1, t; 1,

Ty da
A;[g(t)dt = ;[[g ()8 +8g(t)1dt + ;[g(t) . (8t) dt

7] 1#)

15
or A jg(t)dt = j[g(t)at +8g ()] dt +j {% (g (£)8t] - g ()8t }dt
t t A

[#] L7}

ie. Afgwydr = [ 8g@eydr + g(t) &t l,’f (3.13.5)
1 f

In equation (3.13.5) we have the Leibniz rule for variation of integrals with variable
limits!,
In view of equation (3.13.5) we may express equation (3.13.2) as

73

Aj (T* - V)dt - [(T* - V)dt]
4

! . t

L= p (A — ¢;80) sz (3.13.6)
Let us initially restrict ourselves to scleronomic systems. In this case
T + T" = p; q; and equation (3.13.6) may then be rearranged into the form

i

MA@ - Vi = [~ + T + piAg] |,'f (3.13.7)
tH

Next consider the total change in the time integral of the Hamiltonian. Once again
restricting ourselves to scleronomic systems and making use of equation (3.13.5) we
may write

12 7]
12

Af@ + vy = [&T + Vidt + T + V)& | (3.138)
t 1
Finally let us add equations (3.13.7) and (3.13.8) to find
12 iy
A j T + THdt = j ST + V)dr + p;Ag; I,'f (3.13.9)
15 13}

Now, to simplify, let us impose the following two constraints:

1 An alternative derivation of this result is given in Appendix A
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i) For all admissible motions the total energy shall remain unchanged, i.e.
T +V) = 0.

ii) For all motions the trajectories shall be coterminal in space (but not necessarily in
time), i.e. Ag; = 0 at ¢; and ¢, (Figure 3.16).

0 —5t; [ > 35,

Figure 3.16 Variations with coterminal points in space

Subject to these constraints the variational statement in equation (3.13.9) reduces to
2

AI(T +THdt = 0 (3.13.10)

In equation (3.13.10) we have the principle of least action. In words this princi-
ple states that amongst all possible motions of conservative systems between any two
prescribed configurations, the real motion will be such as to render the functional in
equation (3.13.10) an extremum.

It is of interest to compare the principle of least action with Hamilton’s principle.
For the former the total energy must remain constant while for Hamilton’s principle
this restriction does not apply. On the other hand in Hamilton’s principle time is held
fixed whereas for the principle of least action this restriction does not apply. To
appreciate these differences consider the following situation. Suppose the motion of a
system is recorded on a movie film. Further suppose that during the filming a clock is
present so that the configuration of the system, at each instant of time is recorded.
Now if part of the film, between times ¢, and ¢,, read on the clock, is destroyed one
can determine the motion of the system, during this period, via Hamilton’s principle
since in this case the configuration of the system is known at given times ¢, and ¢,. If
on the other hand the clock was not in the film, so that #; and ¢, would not be known,
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then it would not be possible to reconstruct the motion of the system during this period
from Hamilton’s principle. However one can reconstruct the motion during this period
from the principle of least action providing that no energy was added or extracted from
the system during this period of time.

It should be mentioned that the principle of least action predates Hamilton’s principle
by some ninety years. It is possible to arrive at the principle of least action more
directly rather than via Hamilton’s principle. Such a direct derivation was given by de
Maupertuist in 1744 who expressed this principle as follows: "Among all possible
motions nature chooses that which reaches its goal with the minimum expenditure of
action".

De Maupertuis was not able to satisfactorily establish the quantity to be minimized and
he was not aware of the requirement for constancy of energy. Clearer and more
rigorous derivations of this principle were given later by Euler and Lagrange'™.

It is possible to express the principle of least action in an alternative form by explicitly
satisfying the constancy of energy. Thus letting
T +V =E
where E is a constant, we may remove T from equation (3.13.10) and write it as
[}

Aj(E—V+T*)dt =0
h

1§

or Aj(L +E)dt =0 (3.13.11)
15}

since L = (T" -V).

Although this form of the principle resembles Hamilton’s principle, it must be remem-
bered that in this principle time is allowed to vary whereas in Hamilton’s principle
time is held fixed. With its variable limits, equation (3.13.11) provides a useful means
for evaluating the period of oscillation of vibrating systems (see example 3.13.1).

Example 3.13.1
Consider a simple oscillator for which we may write the Lagrangian as

L = %(ﬁ-oﬁ D with o = kim @

Let us approximate one half period of oscillation by a parabola as
x(t) = at - bi? (®)

t Pierre Louis Moreau de Maupertuis (1698-1759), French physicist, mathematician and philosopher (President
of Frederick the Great’s Academy of Sciences in Berlin, with academicians Lagrange, Euler, Voltaire, Lam-
bert, etc.)

tt  The question of priority for the Principle of Least Action gave rise to a heated and lengthy controversy. A
brief account of this controversy may be found in "On the Principle of Least Action and its Complementary
Form", Solid Mechanics Archives, Vol. 6, 3, 1981, by B. Tabarrok.
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Then the duration of one half period of oscillation is (a/b) and the amplitude of the motion
occurs at t = a/2b whenx = a%4b.

Substituting (b) into equation (3.13.11) we find

alb
2
A‘[[%(a—%t)z—%(at—btz)z-l-E]dt =0 ©)
where E is the total energy in the system. Evaluating the integral we find
3 2 5
a o a a| _
A6b—60b3+Eb =0 ()]
Now extremizing the terms in the square bracket first with respect to a and.then with respect to
b we find
2 2 4
a o a E
% 12675 -0

a’ o*a’ Ea

662 20b* b

Solving for @ and b we find

a = 3 b=u)3-E:

10
Then the duration of one period = % = 6.324. The exact answer is 2rt = 6.253. The amplitude
of oscillation is
2

a 1.369

= == \E

4b o E

VIE £

The exact solution is o = 1414 pra Clearly a better approximation in (b) will yield more

accurate results.

Before considering further applications for the principle of least action it is worth
expanding this principle to rheonomic systems. For such systems it will be recalled
[see equation (3.4.14)] that the product p; ¢; may be expressed as

pig = T +T, -T, (3.13.12)
Using this equation we may rewrite equation (3.13.6) as

2]

Af@ vy - (@ -V |,'f = piAg: It'l’ T +T) ~THst I:f (3.13.13)
151

Further, noting that T* = T, + T; + T,, we may rearrange equation (3.13.13)
and express it as

1#]

* * * * * !
A[@;+TI+T,=Vydt = = [T +V) - T} - 2T, |‘I’+ piAg; L’z‘ (3.13.14)
13

Now the term in the square brackets on the right hand side will be recognized as the
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Hamiltonian for rheonomic systems (see equation (3.8.20)). As before, we next evalu-
ate the total change in the time integral of the Hamiltonian:

[ #1 il

Adet = j&Hdt + HO
1 i

)
31

(3.13.15)

where for the present rheonomic case H = (T + V) -T] - 2T,. It remains to add
equations (3.13.15) and (3.13.14) to obtain

iy t2

* *. t
A j T + Ty - THdt = J’SHdt + pidg; |} (3.13.16)
15 t
Finally we impose the following two constraints:
i) H = constant (3.13.17)
ii) Ag; =0 at ¢; and ¢, (3.13.18)

Under these conditions the functional in equation (3.13.16) simplifies to

173

Af (T + T3 - THdt = 0 (3.13.19)
31

A number of points are worthy of note at this juncture. First it will be recog-
nized that in general the Hamiltonian is not a constant for the motion of rheonomic
systems. However as we have seen, in section 3.4, for some rheonomic systems it is
possible for the Hamiltonian to be conserved while the total energy is not conserved.
For such systems the extremum principle in equation (3.13.19) is applicable. We may
satisfy the constancy of the Hamiltonian explicitly and write equation (3.13.19) as

t

A j (L+H)dt =0 (3.13.20)
31

where in this case L = T, +T] +Tg — V. Consider next the interpretation of the
integrand in equation (3.13.19). We showed earlier, in equation (3.4.14), that the
expression in the integrand of equation (3.13.19) is simply p;g;. Thus we may finally
express the principle of least action as

£}

Afpgidt = 0 (3.13.21)
h

Recognizing that for scleronomic systems p;q; = T + T, we conclude that the
above form of the principle of least action holds for scleronomic as well as rheonomic
systems.

In equation (3.13.21) the quantities subject to variation are the generalized displace-
ments ¢;. The momenta p; are to be expressed in terms of g; and g;. The variations
of the displacements are subject to the constraints in equations (3.13.17) and (3.13.18).
However the trajectories are not constrained to be coterminal in time.
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It can be seen that time may be removed from the functional in equation (3.13.21) and
the principle of least action may be expressed as
9
Afpia d)dg = 0 (3.13.22)
qGio
Once again the quantities to be varied are the displacements g;.

Example 3.13.2
Let us derive Newton’s equations for a system of N particles, from the principle of least action.

Using Cartesian inertial coordinates and expressing the momenta in terms of velocities, we

may write the principle of least action (3.13.21) as
)

Af oniy i de = 0 @
n

Using Leibniz’ rule we may express this functional as

5]

[ ey irar + @iy iide |17 = 0 o
n
2
or [ 20mi) 8t + (i) %8 |7 = 0 ©
h

We must now satisfy the two constraints (3.13.17) and (3.13.18) of the principle of least action.

These are:
i) ST+V) =0 )
For Newtonian mechanics
3 [%xﬁ v] =0
ie. (m x), ﬁjt,- + QY— 8x,~ =0 (e)
ax,‘
and ii) Ax; = Ox; +x8t = 0 at t; and ¢, (3)

Using equation (e) in (c) we may rearrange the equation to the following form
12 tz
=0 ®

n

j [(m x); &%; — ﬂ‘ ﬁx,] dt +(m x); x; 0t
A Bx;

We can now integrate the first term of the integrand as follows

2
d : - % . t
;[{Z [(m £); 8] = (m); &x; ~ ox; 6xi}dt +(mx) x 8t |,° =0
)
or j{(m X+ %/'} &x; dt — (mx); (Bx; + x;8t) :lz =0 )
tl i
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The boundary term drops out on account of equation (f) and the vanishing of the first term yields

v _ 0 )

(m x),+$

Example 3.13.3
Derive the equation of motion for the system described in Example 3.4.2 by means of the princi-
ple of least action.

This problem is rheonomic in nature but since time does not appear explicitly in the
Lagrangian, the Hamiltonian is conserved and hence the principle of least action applies. Thus in
this case we have from equation (3.13.19)

2

Aj(T+T;—T:)d:=o @
h

andsince T = T* = T, + T} + Ty we may express this functional as
2
AI(2T3+TI)dI =0 ®)
gt

We found earlier for this problem T = —- m a%’ and T} = 0. Then

=

2

Ajm a¥tdt = 0 ©
h

Using Leibniz’ rule we can express this as

2

. . t
Ja(m @ dt + m a® 0% |,f =0 @
1
Carrying out the variations we find
5
o " . t

[oma2680a + ma2és | =0 ©
n

We must now impose the constraints of this principle. These are
i) constancy of the Hamiltonian, i.e.

T +V -T; -2Ty) = 0

or S3(T+V-T5) =0
which for the problem at hand becomes
5(% ma® 6 + mg a (l—cose)—%maza)zsinze) -0 ®
or m a® 0 80 + mg a sind 80 — m a’w? sin® cosd 56 = 0 ®

Substituting from equation (g) into equation (€) we obtain
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f

J [m a® 6 80 — masin®(g — a w® cosb) 56] dt + ma’6°dt
1

Q=0 ®

On integrating the first term we obtain
‘2

—J[m a*0 + m asinb(g — w*acosd) ] 56d: + ma?6 (56 + 65t)
1

f
f

=0 ()]

The last term drops out on account of coterminal space variations at ¢; and ¢,, and the vanishing
of the integrand yields

2

ma*6 — m a’o®sinb cosd + mg a sind = 0 G

which is the equilibrium equation of motion.

Problems

3.13.1 Derive the differential equation of motion of a simple oscillator, with mass m
and spring stiffness k, from the principle of least action.

3.14 Jacobian Form of the Principle of Least Action

The functional for the principle of least action as given in equation (3.13.10) is not
easy to use. This is because the limits in this functional are not fixed. The lower limit
may be specified without loss in generality, however in order to satisfy the conserva-
tion of energy throughout the actual and varied paths, the upper limit must be varied in
a definite manner. It is possible to overcome the problem of varying limits by
expressing the principle of least action in the form given in equation (3.13.22). The
problem of the constancy of the Hamiltonian for actual and varied paths still remains
and must be satisfied explicitly.

For scleronomic systems Jacobi showed that the problems of varying limits and
constancy of the Hamiltonian, which in this case is the total energy E, may be solved
at once by the following procedure. By not recognizing a distinction between T and
T", Jacobi expressed the integrand of equation (3.13.10) as follows

T + T = 2T" = 2T = 2T 2r" = 2T \gm;d; (3.14.1)

Now from our discussions on the configuration space, in section 2.5 one can recognize
the second square root term, in equation (3.14.2), as the incremental distance, ds, in
the configuration space. Furthermore, the condition of constancy of energy may be
satisfied by noting that, T +V = E, and V2T =v2(E-V). Then equation (3.14.2)
may be written as

T +T° = 3E -m% (3.14.3)

allowing one to express the functional in equation (3.13.10) as
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A j V2E =V)ds = 0 (3.14.4)

In equation (3.14.4) we have Jacobi’s functional for the principle of least action. In
the special case when there are no impressed forces, i.e. V = 0, Jacobi’s principle of
least action reduces to

A j ds = 0 (3.14.5)

This functional indicates that the representative point in the configuration space
moves along paths of shortest distance. Such paths are geodesics of the curvilinear
configuration space and are characterized by minimum curvature. It will be recalled
that the same result was obtained in Hertz’ principle of least curvature discussed in
section 2.5.

Returning to the general case, we note that the integrand of the functional in equation
(3.14.4) is a function of ¢; and not s. Furthermore for different paths in the
configuration space the arc lengths will be different and hence the functional in equa-
tion (3.14.4) has variable limits. Therefore this functional still does not provide a
practical means for solving dynamics problems. Both these difficulties may be
resolved by expressing ds in terms of the differential for one of the generalized dis-
placements, via the metric of the configuration space. The following example illus-
trates the approach.

Example 3.14.1
Consider the motion of a particle of mass m in the field of gravity. For this problem

V = mgy (@
and from the metric of the configuration space we have that
m@dx® + dy?y) = ds?
or ds = \m(1 + y?)dx ®)

where y° = dyldx.
Using equations (a) and (b) in Jacobi’s functional for the principle of least action, we find
X2

A j \2m(E — mgy)1 +y2)dx = 0 ©
X1

In equation (c) the independent variable x is not varied, and the limits of the integral are fixed.
Therefore there is no distinction between the & and A operators. For simplicity let us take the
value of E as zero and then recognizing that the constants m and g do not affect the extremum
conditions of the functional, we may express equation (c) as

X2
sj«ly(1+y'2)dx = 0 @
X1

It is worth noting that time has been removed from this functional and the extremum of the
functional is expected to yield the equation for the frajectory of the motion rather than the
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equation of motion in time.

The functional in equation (d) is of standard type with a function y(x) and its first deriva-
tive y'(x) in its integrand. Thus the Euler-Lagrange equation for this functional takes the familiar

form of
d| oL oL _
£[5)-% -
where L = Vyd+y?) ®

Once again the replacement of ¢ by x is evident in equation (¢). We should also note that
x does not appear explicitly in the Lagrangian in equation (f). This is similar to the case when ¢
is absent in the Lagrangian in Hamilton’s principle. Earlier we showed that when ¢ does not arise
explicitly in L, then

L - p; g; = constant )
where the momenta p; = _BA By analogy we can then write for the functional (d) the follow-
ing conservation statement

\y(d+y?) -y % Vy(1+y?) = constant = b )
'y
The differential equation (h) may be rearranged to yield
y = b1 + y? ®
where b is a constant. To solve equation (i) let
y - = 2 )
Then equation (i) becomes
2
” _ z d _ idﬁ
L ®
But dy = 2zdz which on substitution into equation (k) and integration yields
X
= X 1
2z + a b o

where a is another constant of integration. On eliminating z between equations (i) and (I) we
find the trajectory of the particle as

2
4 - b) = [f—a] (m)

This equation will be recognized as a family of parabolas. For a particular solution the constants
a and b may be determined from boundary conditions.

There is a striking similarity between Jacobi’s principle of least action and Fermat’s’
principle of least time in geometrical optics. Fermat’s principle states that a ray of
light, in passing from a point A to a point B, describes a path for which the time of
transit is a minimum with respect to all possible paths connecting A to B. This princi-
ple may be expressed as

T Pierre de Fermat (1601-1665), French mathematician
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as
v

o = 0 (3.14.6)

Pl

where ds is an element of the path and v is the velocity of light. Comparison of the
functionals in equations (3.14.5) and (3.14.6) reveals an analogy between the
integrands V2(E — V) and 1/v. Now in optics the geometrical theory is known to fail
in cases where the wavelength of light is of the same order of magnitude as the dimen-
sions of the objects upon which it falls. In such cases the geometrical theory of light
must be replaced by the physical, wave theory of light. The transition from the wave
theory to the geometrical theory had been well understood. In mechanics too it is
known from the work of Bohr!, Einstein'?, and Planck't that the laws of mechanics
on a small atomic scale differ from those on the large scale. However, treatment at
first consisted in accepting, in general, the known laws of classical mechanics and sup-
plementing them by additional rules or laws which appeared as limitations to the gen-
eral theory.

It was not until 1924 that the significance of the analogy between optics and mechan-
ics began to be understood. Guided by this analogy de Broglie® put forward the idea
that a wave length was to be associated with a particle and that a new theory of
mechanics, closely connected with wave optics, should be developed. Such a theory
was developed by Schrodinger® in 1926 when he derived his celebrated wave equa-
tion for quantum mechanics.

Problems
3.14.1 Using the principle of least action as
6, p
.
A _— dé6 = 0
(!I (pr d e pe)

obtain the orbit equation of Kepler’s problem.

3.15 Some Generalizations of the Principle of Least Action

In section (3.13) we derived the principle of least action from the form of Hamilton’s
principle wherein only the generalized displacements are varied. Let us now use the
form of Hamilton’s principle which admits independent variations of momenta and dis-
placements, for the derivation of the principle of least action. In this case correspond-
ing to equation (3.13.6) we find

t Niels Hendrik David Bohr (1885-1962), Danish physicist
+1  Albert Einstein (1879-1955), German physicist

+++  Max Planck (1858-1947), German physicist

° Louis-Victor de Broglie (1892-1987), French physicist

0% Erwin Schrodinger (1887-1961), Austrian physicist
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123

AJ pig; — Hldt — [piq; — HIdt

'2 . ‘z
i, = PilAg — q;d1) |- (.15.1)

On adding equations (3.13.15) and (3.15.1) we obtain

t t

A'[Piqidt = jsH + Ap;

L7
(3.152)
51

Equation (3.15.2) holds for rheonomic as well as scleronomic systems. Now once
again we impose the two constraints associated with the principle of least action,
namely

il
o

Ag;
Under these conditions the functional in equation (3.15.2) simplifies to
2]

1

at f; and 1,

Equation (3.15.3) is in effect the same as that derived earlier as equation (3.13.21).
However in the case of equation (3.13.21) only the gq; were subject to variation
whereas now both the p; and the g; may be varied independently. This flexibility
allows us to remove the time directly from the functional in equation (3.15.3) and
write it as

Afp" d; = 0 (3.15.4)

Example 3.15.1
Let us derive Hamilton’s canonical equations from the principle of least action. Through Leibniz’
rule we can write equation (3.15.3) as

t f

t
A'[piqidt=Ja(pi¢;)dz+piqf6t h=0 0)
1 1
)
t
or J.((?i op; +p; 84) dt + pigi 8t |0 = 0 ®)
1
Integrating the second term under the integral we obtain
f
. . . '
J(Qi dp; — pi 8q;)dt + p; Bq; +q; &t) :f =0 ©
1

Now on imposing the constraint on coterminal end points in space we may drop the last term.
We must also impose the constraint on the constancy of the Hamiltonian. Thus

oH oH
aﬁpi*'a—qi&li—o (O]
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Now one can see that the integrand in equation (c) will vanish, subject to the constraint equation
(e), if

oH
ap;

_OH

and pi = %
)

g = ®

Returning to equation (3.15.4) we can select one of the g; as our new independent
variable, and in this way we obtain a new form for the principle of least action.
Without loss of generality we select g, for this purpose and write equation (3.15.4) as

qn
Al @igi +pda, = 0 i=12.,0-1) (3155
4no

where q; = dg;/dg,. In the functional of equation (3.15.5) all the momenta and the
first (n—1) of the generalized displacements are subject to variation. The displacement
q,, which now is the independent variable, is not varied and hence the limits in this
functional are fixed. Accordingly we may also express this functional as
qn1 qn1
8 [ @id/ + p)dg, = [ 8@ia + pag, = O  (3156)
9no o

There is of course a side constraint, namely the constancy of the Hamiltonian, associ-
ated with this functional. Restricting ourselves to scleronomic systems we may
express the constancy of the Hamiltonian as

L Byp +v =E (3.15.7)
2 m

From this relation we obtain the last momentum as

Pn = \jzm,,[E -V - %(%),- p,.] j=12.0-) (3158

and on substituting from equation (3.15.8) into equation (3.15.6) we obtain the follow-
ing functional

o , I » i=1,23,.., (1)
qjslp.-q.-+ 2my |E=V =By | Vg, j_1 575 (yog)B159)

Now the momenta and displacements may be varied freely in the functional in equa-
tion (3.15.9). It is worth noting that while p,, has been eliminated, g,, is still present in
this functional through the potential energy V. However g,,, as pointed out already, is
not varied and as such the functional in equation (3.15.9) has 2(n-1) dependent vari-
ables. The variations of this functional yield the following extremum conditions:
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’ m '/m‘
For &p;: ¢q; - nBi = 0 (sum on j only) (3.15.10)

‘\/2m,, [E -V - ("I:‘—)jpj:'

m, aVlaq,

pi -
'\/2m,, [E -V - (%),'Pj]

On eliminating the square root term between equations (3.15.10) and (3.15.11) we find
the following interesting result

8q;: - =0 (3.15.11)

[ ]jp] + ajq] 0 (3.15.12)
-l— L . . g a
or ” [2( )jpj + V] = %, (3.15.13)

Now if g, is absent in V, i.e. if g, is an ignorable coordinate, then equation (3.15.13)
may be integrated to yield

2 Byp; + V= constant j = 12..0-1)  (3.15.14)

In equation (3.15.14) we have a statement of conservation of energy. In this statement
only (n—1) coordinates are involved. However this statement holds only if g, is an
ignorable coordinate and on comparing equation (3.15.14) with equation (3.15.7), we
conclude that for such a case

%)

ie. Dn constant (3.15.15)

Thus, as found earlier, the momentum associated with an ignorable coordinate is a
constant of the motion.

constant

Example 3.15.2
Consider again the motion of a particle in the field of gravity. Let us take y as g,, then the
extremum conditions in equations (3.15.10) and (3.15.11) become,

dx Px

for op, : ol @)
y 2
2m |E + mgy - ﬁ
dpx
ox : Tiy—- = 0 ®)

The latter equation shows that p, is conserved with respect to y. This is consistent with the fact
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that x is an ignorable coordinate with respect to the independent variable y. On substituting the
solution of equation (b) into equation (a) we may write the latter as

£ . 2 ©
dy = VB + Cy

where A, B and C are constants. Integration of equation (c) yields the following family of para-
bolic trajectories:
24

= —+B + C d

x C y @

It is of interest to note that had we taken x as g,, then the differential equations would

have been more complex since y is not an ignorable coordinate. In this case however we would

have the "reduced" energy conservation equation (3.15.13) since x is an ignorable coordinate.
This equation becomes

2
da P _ =
i [ 2 mgy] 0
p2
ie. -2—";1— - mgy = constant )

Once again comparing the true energy conservation condition with equation (€), one can see that

p, = constant )
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Chapter IV

CANONICAL TRANSFORMATIONS AND THE HAMILTON-JACOBI
EQUATION

Introduction

We have seen that the equations of motion for dynamical systems can take a variety of
forms depending upon the generalized coordinates used. It will also be recalled that
when ignorable coordinates arise the associated equations may be partially integrated.
Recognizing the equivalence of different forms and attributing the presence of ignor-
able coordinates to the particular set of generalized coordinates used, it is natural to
enquire whether it is possible to transform the equations of motion, expressed in terms
of a given set of coordinates, to another set of coordinates for which all the general-
ized coordinates are ignorable. In this way the problem of solving the equations of
motion reduces to a transformation. The researches of Hamilton and Jacobi revealed
that the required transformation may be obtained from a single function which is
governed by a differential equation referred to as the Hamilton-Jacobi equation.

4.1 Canonical Transformations

We have seen in section 2.7 that the form of Lagrange’s equation is invariant under a
transformation of generalized displacements Q; = Q;(¢,t). Such a transformation
will change the Lagrangian L(g, ¢, t) to a new form L(Q, Q, t). However from a
variational viewpoint the extremum conditions associated with L and L are identical in
form. The same is not the case for Hamilton’s equations. This is because Hamilton’s
equations are obtained from a particular form of the Lagrangian, L = p; ¢; — H
wherein the momenta and the displacements may be varied independently. An arbi-
trary transformation of p; and g; to a new set of coordinates P;, Q; of the form:

0 = Qi@,p,1) 4.1.1)
P; = Piq.p.1) 4.1.2)

would not preserve the particular form of the Lagrangian from which Hamilton’s equa-
tions are derived. Accordingly the transformations for p; and g; must be restricted to
those that preserve the particular form of the Lagrangian from which Hamilton’s
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equations are derived. This requirement will be satisfied if we introduce a function
K(Q,P,t) such that the Lagrangian in the new coordinates takes the form
L = P;Q; - K. Then, for the new coordinates Hamilton’s principle becomes

5[ O - K@.,P.,t)dt =0 @.13)
the extremum conditions of which yield the equations
: oK
P = 414
5 - - 9K
P; = 30; 4.15)

Evidently the function X plays the role of the Hamiltonian in the new coordinate set.
Transformations which preserve the form of Hamilton’s canonical equations are called
canonical transformations.

Now if the form of Hamilton’s equations is to remain invariant then the particular
forms of the Lagrangian in the two coordinate systems can differ at most by the total
time derivative of an arbitrary action function S, i.e.

ty 173

173
[@ig; - Hydt - [PiQ; - K)dt = j%st—dt = S(t) - S(t) 4.16)
t t I8

or

pi di - H = PiQi - K + %S (41.7)
In order to affect the transformation between the two sets of variables, S must be a
function of both the old and the new variables. That is, besides time ¢, the function S,
called the generating function, must depend on 4n variables. However only 2n of
these will be independent since the two coordinate systems are related through the 2n
transformation equations (4.1.1) and (4.1.2). Thus the generating function may be
written as a function of 2n independent variables in one of four forms:

Sig.Q.1),  S,4.P,t),  Si@.P,0),  S;(.0.1)
By substituting S in Eq. (4.1.7) we obtain
, : as, . s, .  aS,
@i g - H)-EPQ -K) = a_q,-q‘ + a_Q,-Q‘ + 5 4.1.8)

Now balancing the coefficients for ¢; and Q; we note that the satisfaction of equation
(4.1.8) requires that

9S,(q,Q.1)
e .19)
aSl (q’Q’t)
P = - ———— 4.1.10
and
k = $@en o, @.1.11)

ot
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Equations (4.1.9) and (4.1.10) provide the information required for the transformations
indicated in equations (4.1.1) and (4.1.2). By solving for Q; in terms of ¢, p and ¢,
from equation (4.1.9), we may establish the first transformation equation (4.1.1). Sub-
stitution of this expression for Q; into equation (4.1.10) allows one to express P; in
terms of g, p and ¢ and establishes the transformation equation (4.1.2). Thus if S; is
known the required transformations from (p, q,t) to (P,Q,t) may be determined,
and in addition from §; the connection between the new Hamiltonian K and the old
Hamiltonian H, may be established as indicated in equation (4.1.11).

Now we may express equation (4.1.7) in the following alternative form
. . d
pigg —-H = -P Q0 -K + i [Sl(q,Q,t) + P; Q,-] 4.1.12)

In the last term of equation (4.1.12) three of the four sets of variables arise. We may
eliminate Q; from this term by expressing Q; in terms of ¢; and P; through equation
(4.1.10). In this way only ¢; and P; will arise in the last term of equation (4.1.12) and
we may therefore introduce a second generating function S, and write

. : d
pigi —H = -PFQ - K + —-5)q.P.1) (4.1.13)

Following the procedure outlined above we can show that equation (4.1.13) will be
satisfied under the following conditions:

aS2 (q’ P’ t)

aSZ (q’P’ t)
0, = _Z)_P,_ 4.1.15)
dS,(q,P,t
K = H + —2—(“%—) (4.1.16)

Equations (4.1.14) to (4.1.16) once again provide the information required for the
transformations (4.1.1) and (4.1.2). Thus equation (4.1.14) may be solved for P; in
terms of p;, q; and ¢, and thereby the transformation equation (4.1.2) may be esta-
blished. On substituting this expression for P;, into equation (4.1.15) we find the
transformation equations (4.1.1).

To introduce the SI form of the generating function let us write equation (4.1.13)
in the following form

d . ; d

—Wiq) -pigg -H = -PQ -K + —S8q,P,t) 41.17)

dt dt
or

. ; d

-piqg -H = -P,Q0; -K + i [S2 g,P,t) - p; q,-] (4.1.18)
Now eliminating g; from the last term of equation (4.1.18) via equation (4.1.14) and
introducing S} (p, P, t), we may write equation (4.1.18) as

d

-piq -H = -PQ - K + i

Si@,P,t) (4.1.19)
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The satisfaction of equation (4.1.19) requires that

sy @, P, 1)
D m e — (4.1.20)
U ;
s} (@, P,1)
Q = T 4.1.21)
os] (p,P,t
k = 1@k 4.1.22)
ot
To complete the cycle we write equation (4.1.19) in the following alternative form
. d A d *
- Dbiq - H = - E(P, Q,) + P,‘ Q,‘ - K + ZSI(p,P,t) (4.1.23)

or.
-pig -H =P 0 -K + % [SI(p,P,t) - P; Q,-] 4.129)

This time we need to remove P; from the last term. We may do so via equation
(4.1.21) and on introducing the generating function S;(p, Q,t), we may write equa-
tion (4.1.24) as

-Big -H = PG - K + S520,0,n (4129
Equation (4.1.25) may be satisfied under the conditions
G = - ﬁ%ﬁﬁ 4.126)
P, = - Eféig_éig’_’) @4.127)
K = w + H (4.1.28)

Above equations too, may be used to generate the transformation equations (4.1.1) and
(4.1.2).

Although all four generating functions, S, S,, S} and S; facilitate canonical transfor-
mations, one or the other of these functions may be more advantageous to use in a
particular problem. It should also be noted that when the generating functions do not
depend on time explicitly, then the Hamiltonian will be an invariant of the transforma-
tion.

Example 4.1.1
Consider the following form of the generating function

Sxq.P.1) = qP; @
The associated transformation equations (4.1.15) to (4.1.17) yield the relations
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pi = P 9 = q H = K (b.c.d
Thus the above form of S, generates the identity transformation.
Consider next the generating function

S1@.P,1) = pi Pi ©
The associated transformation equations (4.1.21) to (4.1.23) yield the relations
@ = - P g = p H = K (f.g.h)

Evidently the above form of S} interchanges the momenta and generalized displacements.
Another class of transformations is characterized by the generating function

SZ(q’Pvt) = fi (q’t)Pl' (i)

where f; may be any assumed set of functions. The transformation equations associated with S,
show that the displacements are transformed as

0 = fig.n) ()]

In this case we see that the new displacements are obtained from the old displacements and do
not depend on the old momenta. This is the case of point transformation under which, as pointed
out earlier, Lagrange’s equations remain invariant. It can now be concluded that all point
transformations are canonical providing their associated momenta are derived through the
appropriate transformations. In this example the momenta transform as

of ;
. = —Lp.
pl aql J
Example 4.1.2
Let us identify the transformation affected by the following generating function
§2 = - Q1(p1cos @y + pysinQy) (@)
Using equations (4.1.27) and ( 4.1.28) we obtain
as;
41——‘E—Q1¢03Q2 ®)
as; .
qz=—E=lean2 ©
9S; .
Py =~ ‘5‘621' = pycos @z + p, sin Q, @
oS3 .
Py=-55-= Q1 [p2cos Q; - py sin Q5] ©)
0,

This will be recognized as a transformation from Cartesian coordinates
q1=%,42=Y,P1=Px, P2= Py to polar coordinates 0, =r, 0, =6, Py = P, and P, = P,.
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Example 4.1.3
Finally consider the following generating function
$1g,0.0) = T og’otQ @

where m and o are constants whose significance will become evident in the following. The
transformation equations (4.1.9) and (4.1.10) associated with S, yield the relations

T

p = 3 = mauq cot Q )
_ % m _og®

P= 0 2 siifQ ©

Through these equations we may express P and Q in terms of p and q. However for our pur-
poses it is desirable to express p and ¢ in terms of P and Q. From equations (b) and (c) we find

q = \/% sin @ @
and
p = V2maP cos 0 )

As the generating function does not involve the time explicitly, the Hamiltonian will have
the same value in the old and the new coordinates. The constants in §; have been chosen with
the problem of the simple linear oscillator in mind. For the simple linear oscillator

2 2
p L
T = £ = 3
2m v 2 2
where k is the stiffness of the spring. Then for the Hamiltonian H = E = T + V inthe
present case,

2 2 2
_ P kg _ P me’
H m T 2 m T T2 14 ®

where ® = <k/m is the natural frequency of the oscillator. Let us now evaluate the Hamil-
tonian in the new coordinate system using the relations in equations (d) and (¢). Then, since
asS llal = 0,

K = H = oPcos’Q + oPsin’Q = «P @

Using this expression for K in equations (4.1.4) and (4.1.5) we find the governing equations in
the @, P coordinates as

. oK .
=——=0
P : )]
, - 9K _
Q = 5 =0 &

Equation (j) shows that Q is an ignorable coordinate and the associated momentum P is con-

served. Thus from equations (i) we have
K

P = =
(0]

g|x

- E
= % (L)
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Equation (k) shows that
0 = of + o (m)

where o is a constant of integration fixed by the initial conditions. Finally from equations (d)

and (j) we find that
q = \/ 2E2 sin@r + o) (m)
mo

which is the familiar form of the solution for the simple linear oscillator.

Here we have an example of canonical transformation which changes the Hamiltonian to a
form in which the generalized displacements are ignorable. It can therefore be seen that, in prin-
ciple, canonical transformations provide a new approach for the solution of the equations of
motion. In section 4.3 we return to this point and consider a systematic method for finding
transformations such that all the new generalized coordinates are ignorable.

4.2 Infinitesimal Canonical Transformations

The canonical transformation equations considered in the above section are quite gen-
eral in nature. Let us now make use of these transformation equations to relate two
states of a given system. That is in the state space we identify the system, at two
states, by the coordinates (g;, p;, t) and (Q;, P;, t) and relate these states via canoni-
cal transformation equations. Evidently such a transformation describes the evolution
of motion from the state (g;, p;, t) to the state (Q;, P;, t).

Let us initially consider two states close to each other. Then Q; and P; will
differ very slightly from g;, p;. It will be recalled that if the generating function S,
takes the form S, = g; P;, then the identity transformation results. For our pur-
poses we need another form of S, (g, P, t) which generates a transformation only
slightly different from the identity transformation. Thus let us take

Sxq.P,t) = qP; + €¢G(q,P,1) 4.2.1)

where € is a small parameter and for the present case of the evolution of system’s
motion we may identify € with an incremental change in time. We may view G as
another generating function similar in form to S,. Using the transformation equations
associated with S,, namely equations (4.1.14) and (4.1.15), we find

aS, oG
pi = E = P,‘ + eﬁ (422)

as, oG
Qi = a—P,' = q + SE 4.23)

or
_ %

O - q = ¢ P, 4.2.49)
P, - p = - 39 4.2.5)

daq;
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These equations represent an infinitesimal canonical transformation. It should be
noted that the small changes in the coordinates and momenta are of first order in €.
Thus if we neglect terms of order €2 and higher, we can replace each P; by p; inG.
The resulting function G(g, p,t) can then be considered as the generator of the
infinitesimal canonical transformation. Under these conditions we may write equations
(4.2.4) and (4.2.5) as

g = ¢ 29 (4.2.6)
op;
oG
dp; = - &€ — 4.2.7)
' aq;
Since the changes are due to the passage of time, we can let ¢ = dtr and for this

case we denote the generating function G by H(q, p, t). Then equations (4.2.6) and
(4.2.7) may be expressed as

oH .
dt a_p,_ = gq; dt = dg; 4.2.8)

- dt — = dp; 4.2.
3 pi 4.2.9)

Above equations will be recognized as Hamilton’s canonical equations (3.8.29)
and (3.8.30). Hence we conclude that the Hamiltonian function can be considered to
generate an infinitesimal canonical transformation at each instant of time. Since the
result of two canonical transformations, applied one after the other, is equivalent to a
single canonical transformation, the values of ¢ and p at any time ¢ can be obtained
from their initial values by a canonical transformation which is a continuous function
of time. According to this view the motion of a mechanical system corresponds to the
continuous evolution of a canonical transformation. The Hamiltonian can thus be
recognized as the generating function for the system’s motion in time.

Conversely, there must exist a canonical transformation from the values of the
coordinates at time ¢ to their constant initial values. Obtaining such a transformation
is obviously equivalent to solving the problem of the system’s motion. We examine
this point in some detail in the next section.

4.3 Hamilton-Jacobi Equation

Let us seek a canonical transformation from the coordinates ¢ and momenta p at time
t, to a new set of constant quantities which may be the 2n initial conditions g, and p,
att = 0. Such a set of transformation equations, relating the old and the new coordi-
nates,

q q(,>Po 1)
P = P Do)

are exactly the desired solution of the equations of motion since they give the coordi-
nates as a function of their initial values and time.
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To ensure that the new coordinates are constant in time, we need only require that
the transformed Hamiltonian K, shall be identically zero, for then the equations of
motion become

oK :
— - . = 4. .1
5 = % =0 @3.0)
ok ;
- —_— = P. = 4.3.2
Now K is related to the old Hamiltonian and the generating function by the equation
oS
= + = 4.3.
K H o 4.3.3)
and hence will be zero if S satisfies the equation
H(g,p,1) + ———aaf =0 4.3.4)

Depending on the type of generating function used, equation (4.3.4) will take on
different but equivalent forms. For instance using S,(¢,P, t) and recalling that the old

momenta are related to S, by p; = 9S,/dq;, we may express equation (4.3.4) as
aSZ(q,P,t) 882 3S2
—_—— + H@ o Gyy =—... ™) =0 4.3.5
ot (ql qn aql aqn ) ( & )

In equation (4.3.5) we have the celebrated Hamilton-Jacobi equation. It should
be noted that the independent variables of this partial differential equation are the gen-
eralized displacements ¢; and time ¢. The new momenta P; are constants by virtue of
K = 0. The integration of equation (4.3.5) will involve (n + 1) constants. However
since in this equation only the derivatives of the generating function S, appear and S,
itself is absent, one can see that one of the integration constants is simply an additive
constant tacked on to S,. This constant has no importance as far as the transformation
is concerned, since only the partial derivatives of S, appear in the transformation equa-
tions. Thus dropping this additive constant we may express a complete solution of
equation (4.3.5) as

S2:@y - @By Bast) 4.3.6)
where none of the P; constants are solely additive. Now by definition we have that
Sy = S,(q,P,t) and through the Hamilton-Jacobi equation we have ensured that

the new momenta P; are constants. Without loss of generality we may identify these
constant momenta with the integration constants fB;, i.e. we simply take

Pi = B" (4.37)

Returning to equation (4.3.5) we can see that in the Hamilton-Jacobi equation it is the
momenta, and hence also the kinetic energy, that are expressed in terms of the deriva-
tives of the generating function. Finally we note that the Hamiltonian is a quadratic
function of the momenta, and that it may also be a nonlinear function of the g;.
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If we use the generating function S5 (p, @, t) in equation (4.3.4) and recall that

the old displacements are related to S by g; = — 955/dp;, we find
385(p.0 1) 353 353
2T 4 HQPp o Ppm—  —=,t) = 0 (438
5 @, Pr ops P, ) 4.3.8)

Equation (4.3.8) may be viewed as a complementary form of the Hamilton-Jacobi
equation. In this equation the momenta and time are the independent variables. The

new displacements are constants by virtue of K = 0. The solution of equation
(4.3.8) may be formally expressed as
S; = S;(pl T Ppy Qg O, t)

This time we identify the constants o with the new (constant) displacements.
That is, we set

0 = o 4.3.9)

It is worth noting that it is the generalized displacements, and hence also the potential
energy, which are expressed in terms of the derivatives of S5 in the complementary
Hamilton-Jacobi equation. Although equations (4.3.5) and (4.3.8) look formally alike,
we shall see in the following examples that depending on the problem, they can take
quite different forms.

It can be shown that S, and S ; give rise to equations (4.3.5) and (4.3.8) respec-
tively.

Some insight into the physical significance of the generating functions can be
gained by evaluating the total time derivative of these functions. Thus for S,(¢, P, t),
noting that the P; are constants, we find

ds, a5, as,

- w t di (4.3.10)
Now recognizing that dS,/0t = — H and 9dS,/dq; = p;, we may express Eq.
(4.3.10) as
ds, .
— =P - H =L 4.3.11)
Hence
S, = [Ldt + constant 4.3.12)

That is, S, is the functional for Hamilton’s principle. In this functional time is not
varied and the Hamiltonian need not be conserved.

In a similar manner we can show that

*

S = - [Gigq + H)t + constant (4.3.13)
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Example 4.3.1
Consider the planar vertical motion of a single particle of unit mass in the field of gravity. For
this problem the Hamiltonianis H = T + V,

H o= 207 + p) + o @
and the Hamilton-Jacobi equation becomes
oS oS

= o) + —[(—2)2 + (—)2] + g =0 ®)

This nonlinear partial differential equation admits a solution by separation of variables. We take
a solution of the form

Saxyd) = S&x) + §0) + S@) ©
On substituting from equation (c) into (b) we find
ds, 1, dSy , das, .,
dl+2[(dx)+(d)l+gy—0 @)

Now recognizing that in this equation we have terms which are pure functions of ¢, x and y, it
follows that equation (d) will be satisfied if

ds,
- = "B ©
ds,
= - PR ®
195, .- B
2t = B 5 @®

Where B, B, are constants.

On rearranging we may express S, as

f\/ [Bx—-——gy]dy (b

Hence the original generating function S,(x,y,r) may be written as

2
But + P +J'\/2[Bl-%—gy]dy ®

The constants B, and B, are as yet unspecified. We may associate these constants with the new
(constant) momenta P, and P,. It should, however, be noted that dS,/dt (= 8S,/dt) is equal to
the constant Hamiltonian. Thus B, has the dimension of energy, but it can nevertheless be associ-
ated with the initial momentum p,, .

Then from the relations between Q; and S,, namely Q; = dS,/dP;, we find
2

0 = o = - j[z(B, - -l 0)

0 = @ =x + I[2(Bn-——gy)]"’dy ®
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where o, and a, are constants identified with the new (initial) displacements. Integration of
equation (j) yields the motion of the particle as a function of time, while the integration of equa-
tion (k) provides the orbit of the particle. Hence for the motion of the particle we find

w4t o= - Lpg - B gyp o
1 P 1 2 8y

and for the orbit

2
o - x = %[2(31—%2-9)1” (m)

The four constants in equations (1) and (m) may be determined from the two initial displacements
and the two initial momenta. Consider for instance, the case of a projectile of unit mass ejected
horizontally from the top of a hill. Then taking the origin at the hill top we have o, and a, as
the initial displacement which we take as

o =0 =0 )
Recalling that B, is the constant energy and B, a constant momentum, we take
B = 2312 By = do ©
Substituting from equations (n) and (o) into equations (I) and (m) we find from equation (1)
R S
y=-58 ®
and from equation (m)
)
x2 = - Zxo y (q)
8

Example 4.3.2
Next let us analyze the same problem via the complementary Hamilton-Jacobi equation. In this
case we have

as; g,,_’+£,2_+ 38y _

R 2 T &y O @
where we have expressed y as a derivative of S with respect to py. It is worth noting that for
this problem the form of the complementary Hamilton-Jacobi equation is quite different from the
direct Hamilton-Jacobi equation. Once again attempting a solution by separation of variables we
assume

$2 = S0 + 5.0 + S, @) ®

On substitution into equation (a) and collecting terms of similar nature we observe that

px = constant

as’

_—= - a a constant c
7 ©)
ds’ 2 2

L - @

dp, g 2 2
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On integrating these equatibns we may express

2 2
o 1 Py Px
S = - + I;[OL——E*-—Z-‘]dPy ©)
This time we identify o with the new (constant) displacement Q,. Then using the relation
between S; and P;, namely P; = — 353/0Q;, we find
1 Dy
P, = =t - —=|dp =1t - = ®
Y b g vy g
or
py = (¢ -Bsg ®

where B is again a constant. Above equation implies that the momentum in the y direction is a
linear function of time. The x momentum remains constant as noted earlier. Once again § may
be evaluated from the initial conditions. The displacement of the particle, as a function of time,
may be obtained from the integration of the momentum-velocity relation.

Example 4.3.3
As another example consider the motion of a simple pendulum. For this problem the Hamiltonian
takes the form

pé

H = o + mgl (1 - cos 0) (a)

where [/ is the length of the pendulum and © denotes the angle of the pendulum measured from
the vertical. The pendulum’s angular momentum is denoted by pg = I 0, where I is the moment
of inertia about the suspension point. Now recalling that in terms of S,(¢,P,t) the old
momenta are given by p; = 9S,/dg;, we may write the Hamilton-Jacobi equation for the pendu-
lum as

B2, L Brp L - cose) = 0 ®
a 2" 00 8 o) = )

To solve this equation we attempt, once again, a solution by separation of variables. We assume
S2 = S§(@) + Se®) ©

Upon substitution from equation (c) into (b) and collecting terms involving ¢ only and 6 only, we
deduce that

ds,

- = - B a constant @
1 dSe 2 _
2 (de) + mgl(1 cos6) = B (e)
Solving for S, and S and substituting into equations (c), we find
Sy = - Bt + [V2ITmgl (cos® — D) + Pl d6 ®

In equation (f) we may identify the constant § with the new (constant) momentum. The associ-

ated new (constant) displacement is obtained from the relation Q; = 9S,/0P;. Thus for our case
1

-t + d

J V2I[mgl(cos® — 1) + B]

Q = o = 0 (g)
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Now to cast the above integral into a more recognizable form we note from equation (e) that B is
the total energy of the pendulum. Thus if we denote the amplitude of the pendulum oscillation by
¢, we may express B as the maximum value of the potential energy namely;

B = mgl(1 - cosp) (h)
Substituting into equation (g) yields
I do .
t + 0o =
I V2I mgl(cos® - cosd) ®
14
or t+o=| 5 - G)
29 20
'\/1 mgl (sin 2 sin 2)
Finally by letting
- I T
sin 2 = sin 2 sinv k)
above integral may be transformed into
I dv
t + o= a0
‘[ ‘Jlmgl(l s sinzc)

where k = sin%

Equation (1) is the well known elliptic integral of the first kind associated with the pendu-
lum problem. For small values of the amplitude ¢, it is readily shown that equation (1) results in

9=¢sin'\/EI‘5I(t + o) (m)

and for a bob pendulum, with I = mi?,

9=¢sin'\/;(t+a) (n)

Example 4.34
Now let us analyze the same problem via the complementary Hamilton-Jacobi equation. This
time we need to remove the displacement © from the Hamiltonian. Noting that the old displace-

ment is related to S5(p, Q,t) by ¢; = — 9S5/dp; and noting that cos® is an even function we
may express the complementary Hamilton-Jacobi equation for the pendulum as
as;  pé aS;
—_ 4 1 - =
5 + 2 mgl [ cos (3pe )] 0 (a)
Attempting a solution by separation of variables we write
S3 = S@) + S, (®)
Substituting into equation (a) and grouping similar terms, we find
s ©
a -~ °

2 ds,

14 Po
£9 - —)] = d
+ mgl[l - cos( . )N = o @
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Solving for S, and S,,' o and substituting into equation (b) we obtain

pé
7—a+mg1 dpe — o

Once again we identify the constant o with the new (constant) displacement. The new (constant)

* 1
Sy = j al'CCOS{m—gl

momentum P is obtained from the relation P; = ~ 9S5/0Q;. For the problem at hand we find,
after some manipulations:
oS3 dpe

2 2
_bs, Pe o
'\/2mgl (o T ) = ( 2 o)
In the above equation we have an elliptic integral, though not in one of the standard forms'.
Now from equations (a) and (c) it can be seen that

pé
o o = mgl(cos® — 1) )
For small values of 0, the square of (cos6 — 1) may be neglected. In that case equation (e)

simplifies to

B_,=_J’ dpe =’\/Iarcsin Pe @)
T Vaar
or
pe = V204 sinow (B - 1) )
where
o’ = ﬂlgi @

In these expressions we have the solution for small amplitude oscillations of the pendulum.
The constants o and  may be evaluated from the initial conditions.

t On rewriting equation (e) as follows

dj
B-1=- j Po
\/(a - 2 gl - @ - 2]
21 21
and letting
200 = a2 4lmgl = b? and py = a cosv

one can cast the above integral into one of the standard elliptic integrals.

B -t = - j_..z.lﬂ_
Vb2 — a’sin’v
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Problems

4.3.1 Write the Hamilton-Jacobi equation for a single degree of freedom oscillator
and by solving this equation determine the motion of the oscillator.

4.3.2 Use the Hamilton-Jacobi equation to solve Kepler’s ;*)roblem of motion in an
inverse square central force field, in terms of S, and S,.

4.3.3 A particle of mass m moves in a force field whose potential energy in spherical
coordinates is given by

cosO

V=-K2

r

Write the Hamilton-Jacobi equation for this particle and find an expression for
S, in integral form.

4.4 Hamilton’s Characteristic Function

In the above examples we were able to separate the generating function S (or S3) into
two parts, one involving g (or p) alone and the other time alone. Such a separation of
variables is always possible whenever the old Hamiltonian does not involve time expli-
citly. In the following we examine this point further but restrict our discussions to the
generating function S,. Similar conclusions hold for the other generating functions.

If H is not an explicit function of time, the Hamilton-Jacobi equation (4.3.5)
becomes
as, H oS, 0 441
—— + y = On g
E (q % ) @.4.1)

The first term involves only the explicit appearance of ¢ in S,, whereas the second
term is concerned only with the explicit appearance of ¢ in S,. The time variable
can therefore be separated by assuming a solution for S, of the form

S)q.B.t) = Wyq.B) - By 4.4.2)
where the B stand for the new (constant) momenta. Upon substituting this form of S,
into equation (4.4.1), we find

—dT = _Bl and H(q, —"'a—q—-) = Bl (443)

The differential equations (4.4.3), referred to as the modified Hamilton-Jacobi equa-
tion, do not involve the time. One of the constants of integration appearing in S,,
namely B;, is now equal to the constant value of H. The function W, is known as
Hanmilton’s characteristic function. It is not difficult to see that W,(q, P) is indeed
the generating function for canonical transformations when the Hamiltonian is a con-
stant (see section 4.1). For this case we find the transformation equation as

H =K =E 4.4.4)

Di = — and 0 = — 4.4.5)
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Using equation (4.4.5) we may express the constancy of the Hamiltonian as
oW,
H(q’P) = H(q’ a_q) = E (4.4.6)

which is essentially identical to equation (4.4.3).

Hamilton’s characteristic function provides another solution approach - one that
was illustrated in Example 4.1.3. In this approach we require that all the new dis-
placements be ignorable. Then

p, = - 9K

0Q;

where the B; are a set of constants. The new displacements can then be determined as
follows

=0 or P,' = Bi (447)

. 0 1 when i =1
0 AT
Integrating with respect to time we find
0, =1t + B
0 =B for i1 4.49)

The only coordinate which is not simply a constant of the motion is @, which is
equal to the time plus a constant.

The characteristic function W, possesses a physical significance similar to that of
S,. As W, does not involve time explicitly, its total time derivative is

Wy _ W, ' (4.4.10)

a 34; q9; = Diq; 4.
and hence

Wy = [pigidt = [p;dg; (4.4.11)

Equation (4.4.11) reveals that W, is the functional for the principle of least action, for
which the Hamiltonian is conserved but the time is allowed to vary.

4.5 Hamilton’s Optico-Mechanical Analogy
When we examined Jacobi’s form of the principle of least action in section 3.14, we
pointed out an interesting analogy between this principle and Fermat’s principle’ of
least time, in geometrical optics. Through the Hamilton-Jacobi equation one can gain
further insight into this analogy.

Consider a conservative system for which the Hamiltonian is a constant of the
motion. Then the relation between the generating functions S, and W, may be
expressed as

t Pierre de Fermat (1601-1665), French mathematician
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Sag.Pit) = Wyq.P) - Et (4.5.1)

Now a constant value of W, describes a fixed hypersurface in the phase space. Thus
for W, = a and W, = b we may envisage two fixed surfaces in the phase space.
Likewise for different constant values of S, we will have further surfaces in the state
space. From equation (4.5.1) it follows that at time ¢ = 0, the surfaces W, = a and
W, = b coincide with the S, = a and S, = b surfaces. However at a time dt
later, the surface S, = a, coincides with the W, = a + Edt surface. Likewise
the surface S, = b, now coincides with the W, = b + Edt surface. It is evident
then that the S, surfaces propagate in the state space in an analogous manner to the
propagation of waves in 3D space. Since the constant S, surfaces change their shape
in the course of time, the wave velocity of these surfaces will change from point to
point. To determine this wave velocity let us consider the simpler case of a single
particle moving in 3D space.
If at a given point the perpendicular distance between two neighbouring S, sur-
faces is denoted by ds, then at this point we may express the wave velocity as
ds
u=— 4.5.2)

Now in the time dt, the S, surface moves from a given W, surface to a new surface
on which the value of the characteristic function is W, + dW,, where

dW, = E dt 4.53)

We may evaluate the change dW, from the geometry of the surface as follows. We
have the directional derivative

aw,
—= = (grad W,)n 4.5.4)
ds
where n is the unit normal vector in the direction of s. We also know that (grad W,)
is normal to the surface W, = constant. Therefore
grad W,
= —— 4.5.
" | grad W, | (45.5)

Substituting into equation (4.5.4) we obtain
dW, = grad W, + ds 4.5.6)
Finally using equation (4.5.6) in conjunction with equations (4.5.3) and (4.5.2) we
deduce that
E

ul = ———— 5.
" | grad W, | @57

Now the magnitude of the gradient of the W, surface is readily obtained from the
Hamilton-Jacobi equation. Noting that for a single particle
aw, aw, oW,

—[ (—)2 (——)2 (7)21 =T =E -V 4.5.8)

we may express the wave velocity as
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E
2m(E - V)

It will be recalled that when we compared the integrands of Fermat’s principle of
least time and Jacobi’s principle of least action, we deduced that the expression
IN2(E = V) for the representative particle of unit mass moving in the configuration
space was analogous to the velocity of light. This analogy is now reinforced by equa-
tion (4.5.9) which also shows that the velocity of light is analogous to the velocity of
the S, surfaces moving in the configuration space. It is of interest to relate the velo-
city of the S, surfaces to the momentum (and hence the velocity) of the particle. This
is readily accomplished by noting that

lul = 4.5.9

BZ
E -V =T=— (4.5.10)
2m
Substituting into equation (4.5.9), we find
m=£ - £ @4.5.11)
B my

Thus the particle velocity is inversely proportional to the velocity of the S, surface,
i.e. as the particle speeds up, the S, surface slows down. What about the direction of
the particle’s motion? Clearly the direction of the particle’s motion is tangential to its
momentum vector. The momentum vector is given by

S(dt)=b
S(0)=b
S(dt) =a
S(0) =

o

ds

AN

Figure 4.1 Motion of the S, surface and the momentum vector of a particle



212

oW,
ox
B
* ow,
B =1e e, e, ] By = [e, e, e, —QF 4.5.12)
B, W,
b az -

and the gradient of the W, surface is normal to the surface. Hence we conclude that
the particle’s motion is normal to the W, (and hence also to the S,) surfaces. In terms
of the analogy with optics we note that the particle’s motion is analogous to the direc-
tions of light rays. The motion of the S, surface and the momentum vector of the par-
ticle are depicted in Figure 4.1.

The analogy between optics and mechanics has an interesting history. This anal-
ogy was first noted by Johann Bernoullit who compared the motion of a particle in a
given field of force with the propagation of light in an optically heterogeneous
medium. Using this approach Johnann Bernoulli solved the famous brachystochrone
problem - the curve of quickest descent. Maupertuis’ too was aware of this analogy
and he demonstrated how the law of refraction of light can be deduced from his princi-
ple of least action. However the realization that problems of mechanics and geometri-
cal optics can be handled from a unified point of view is due to Hamilton'tt, The
significance of the analogy for the development of laws of mechanics at the atomic
scale was not realised until the nineteen twenties when Schrodinger® derived the wave
equation from the Hamilton-Jacobi equation and paved the way for the development of
quantum mechanics.

+ Johann Bemoulli (1667-1748), Swiss mathematician

+t Pierre Louis Moreau de Maupertuis (1698-1759), French physicist
111 William Rowan Hamilton (1805-1865), Irish mathematician

©  Erwin Schrodinger (1887-1961), Austrian physicist
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Chapter V

RIGID BODY DYNAMICS

Introduction

In the foregoing we have studied the motion of particles. Strictly speaking, the term
point mass should have been used instead of particle, in order to emphasize the
theoretical nature of the concept. A point mass represents a finite mass of infinitesimal
volume. Reality comes close to it in many cases. Even a huge body such as the
earth, can be looked upon as a point mass, for example when its fundamental motion
about the sun is investigated.

We will now introduce another useful concept, viz. that of a rigid body, i.e. a
body of finite size and fixed geometry. There is, of course, no such thing as a rigid
body in nature, all real bodies deform, to some extent, under loads, but some bodies
come close to being rigid, and the benefits derived from making the assumption of
rigidity far outweigh the disadvantages.

The translatory motion of a rigid body can be analysed in the same fashion as the
motion of a point mass at the center of mass of the rigid body. This has been illus-
trated in examples 1.1.1 and 1.1.2.

On the other hand, the rotatory motion of a rigid body requires a new treatment,
which is the subject of the present chapter. A rotating body is often called a gyro-
scope, or simply a gyro (gk: gyros = ring), and the field of study of its dynamic
behaviour is consequently called gyrodynamics.

5.1 Rotating Coordinate System
In gyrodynamics it is often useful to introduce rotating reference axes. The basis vec-
tors of such axes change with time relative to a fixed inertial coordinate system. A
vector, such as the position r, may be expressed in terms of its components in the
rotating coordinate system as

x

r=1J[eee]|y (5.1.1)
g
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Equation (5.1.10) for the velocity r may be differentiated again to obtain the accelera-
tion,

F=@@F +Qxr (5.1.13)
With the help of equation (5.1.10) one obtains eventually

00 o o
r=1oT + QXr + 2Qxr + Qx(Qxr) (5.1.14)

with @ = O, because @ X Q = 0.

Example 5.1.1
To illustrate the velocity of the tip of a basis vector, assume that an orthogonal coordinate system
Oxyz is subject to an angular velocity given by

Q = [e € € ] 3 rad/s
4 @
12

Let us find the velocity of the tip of the basis vector e,. We may use, either equation (5.1.9) or
equation (5.1.10). The first approach, with

e, = [e e e,]. 1
0 (®)
0
gives
éx = QXe = € €y €y = [e €y e] |0
3 4 12 12 ©
1 0 0 -4
The second approach, with
[Q;] = 0 -
-12 0 3 @
4 -3 0
and
€ = 0 12 -4 €
é, -12 0 3 e, )
éz 4 -3 0 e,
gives
& = [012 4] e | = [e, e ¢e1 [0
e, 12 6y
e —4
¢4

as found in equation (c).
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Problems
5.1.1 A disk is rotating about its z-axis at Q, = 0.2 rad/s = constant. A point mass

m slides along a slot in the disk whose shape is given by y = 2x2. At the
moment when it passes the point x = 1, the point mass has a relative velocity
component X = 0.3 m/s = constant. Determine (a) the absolute velocity r, and
(b) the absolute acceleration F of the point mass at that moment, using

. o
V=V+ QxXv.

5.1.2 A rotating refrence frame with its origin coincident with that of a fixed or iner-
tial frame has the angular velocity (relative to the fixed frame)
Q=te - 12 e, + (3t +2)e;, where ¢ is the time. The position vector
of a particle of time ¢ as observed in the rotating frame is given by

r=(2+1)e — 5Ste, + 3¢, Find (2) the apparent velocity I and

acceleration T and (b) absolute velocity I and acceleration T at time ¢t = 1.

5.2 Momentum Velocity Relation

Suppose one point of a rigid body is fixed in space limiting the body’s motion to one
of pure rotation. Let a reference frame Ox;y,z; be attached to the body and let the
angular velocity of the body-fixed frame be denoted by .

Let us now relate the angular momentum vector H, about the fixed point, to the angu-
lar velocity vector @ of the body. By definition

H = j r X rdm (5.2.1)

m
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Now since the position of each material element dm is fixed relative to the frame
attached to the body, I vanishes in the expression for I as given in equation (5.1.10)

and we can write the above expression for angular momentum as

H=[rx@x ndn (5.22)
m
From vector algebra we have that
rx@xn=o0C  1r-r@®:--71 (5.2.3)
which, on expansion allows us to write
rx (@xr = {(oxl(yl2 +z8) - Xy - cozlxlzl}eJrl
+ {(o)’I (x12 + z12) - WXy - mzlylzl}eyl
+ {coz, af +yP) - o.xzy - (oy,ylzl}ezl (5.2.4)
On substituting into equation (5.2.2) and carrying out the integration we can write
H = [exl e)’l e21] lexl lxl)’l lell mxl
le)’l 1)’1)’1 IYIll m.YI (5‘2'5)
]xlzl IY|Z| 12121 (ozl
where
11]1'] J(ylz + 212 )dm Ix’y] = _leyld’n = ]ylxl
m m
Iy, = [(z} + x})dm I, - [yizrdm = 1,
m m
12]2] j (xlz + y12 ) dm Ix,z, - jxlzl dm = 12]11
m m
or in matrix notation
(H} = [1]{w} (5.2.6)

The quantities I, ,, , 1, , I, are called the moments of inertia about the xy, yy, z;
axes respectively. The quantities I, , , I, ., I, . are called products of inertia.

Equation (5.2.6) is in essence the generalisation of the more familiar constitutive equa-
tion B = mr for a single particle. We see that the rotational inertia of a body is not
scalar but rather tensorial in nature. Hence the inertia matrix [ / ] is reference frame
dependent and in general the angular velocity and angular momentum vectors have
different directions. It is natural to enquire under what conditions will these vectors,
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namely @ and H, have the same directions and will differ only in magnitude.
Under such conditions H = Aw , where A is a scaler and equation (5.2.6) becomes

[I]{w} = Mo} (527
This is a linear eigenvalue equation with solutions provided by
L= A Ly, Ly
Ly, Iy~ A 1., =0 (5.2.8)
I, 1, L.~ A

The vanishing of the above determinant will yield values for the three eigenvalues and
the substitution of these into equation (5.2.7) will provide the associated eigenvectors.
These latter vectors identify the principal axes of the body and one can show that a
transformation from the x;, y;, z; axes to the principal axes x y z of the body -
diagonalises the inertia matrix allowing one to write the momentum velocity relation
for a rotating body in the form

H, A 0 of | @
H, | =10 B 0| | o (5.2.9)
Hz 0 0 C mz

Where A ,B,C are the principal moments of inertia which are the eigenvalues of equa-
tion (5.2.7).

From their definitions one can show that certain restrictive conditions apply to the
inertia elements. These include

lex, + Iyl}’l 2 I, (5.2.10a)
Iyl)’x + 12121 2 Ix,x, (5.2.10b)
Lo, + Iy, 2 1, (5.2.10¢)

These conditions require that I, , = I,, when I, = 0. They also require if
1

1, 1is the largest of the three and I, , = I, , ,then I, , >1, ., =1, > Elzm'

Since (y; —z)?> 20, we find that y? +z? > 2y,z,, and consequently

Lyey 2 211, (5.2.11a)
L, = 21, (5.2.11b)
L, 2 21, (5.2.11¢)

Equations (5.2.10) also apply of course to the principal inertia moments. Consequently
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A+B 2C (5.2.12a)
B +C 2A (5.2.12b)
C+A 2B (5.2.12¢)

According to the Huygens-Steiner parallel axes theorem, the inertia tensor [/ ], for
an Oxy,z; coordinate system parallel to a CEm;{; coordinate system with origin at
the mass center C (Figure 5.3), which need not be a principal axes system, can be
obtained from

(Il =1[Ilc+ml(FT +2D)  -%7 s
-5y (F+x) -yn | G213
gkt -nin (R D)

For a reference frame attached to the body the inertia tensor will be constant, and then
the time derivative of the angular momentum becomes,

H = (e} [[; 1} + (& V[ 10} (5214

Analogous to equation (5.1.8), we write the first term as IO{ ("H circle"), and the

second term can be shown to be

Figure 5.3 Parallelepiped

+ Christiaan Huygens (1629-1695), Dutch physicist and mathematician
Jakob Steiner (1796-1863), Swiss mathematician
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(&Y [I;1{w;} =@ x H (5.2.15)
such that
H=H+ oxH (5.2.16)
Example 5.2.1

Let us establish the inertia moments and inertia products for the parallelepiped of uniform mass
distribution of Figure 5.3.

a

J')cl2 dm = lez pbcdx; = % palbc = -;—ma2 @
J' 2 gm = L2 J’ 2dam = L ome?
Yi = 3 zi dm = 3 mc (be)

ba
1 1 1
jXIYIdm = I‘[xl}’lpc dx, dy, = Epazf I)’ld)’l = Z‘Pazb% = ~4—mab @
m

1 1
J.xlzldm = 4 mac ;’[ylzl dm = Zmbc (e.f)

where p is the density and m = pabc is the mass of the parallelepiped. Collecting terms

Lervey -l -1
[I;] = m 3 4 ‘:
_1 1.2, 2 _1
4ab 3(a +c9 4bc ®
_1 _1 1. 2,2
4ac 4bL‘ 3(a +b%)

Note that the result applies for the body and the coordinate system used.

Example 5.2.2
For the parallelepiped of example 5.4.1 let us determine the principal axes and the principal
moments of inertia by taking the dimensions a = b =c.

The inertia matrix in equation (g) can now be evaluated numerically as

3 3

2 "4 T4

ma? 3 3

il="3"17 2 %
3 3

4 4 2

The eigenvalues and the associated eigenvectors of this matrix can be readily computed as

M = 0917 ma® [0.707 -0.707 0.0 1
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m ., 2 2
—(b*+c?) 0 0
(Il = 12
m 2 2
0 —12(0 +a®) 0 d)
m 2 2
0 0 —12(a +b%)

The inertia tensor for a parallel coordinate system Ox,y,z; is given by equation (5.2.13).
Since ¥; = a/2,y; = b/2 and Z; = c/2, the second term of equation (5.2.13) becomes

%(b%c’) —%ab --':—ac
- m m. .2, .2 _n

4ab 4(c +a’) 4bc (e)
- L:—ac —%’-bc i:—(a2+b2)

Adding the matrices (e) and (d) results in

Lo+ cd Lo Lo
(Il = m|3 | 1 4 ‘:
—_— — (g2 2 ——
2 ab 3(a +c?) 2 bc ®
-=ac L l(a’ +b?
4 4 3

i.e. the result (g) of Example 5.2.1.

Problems

5.2.1 Determine the (a) principal moments of inertia and (b) directions of the princi-
pal axes for the right triangle ABC.

y
C
C
b
X
A a B

5.2.2 A block of uniform mass distribution has a mass of 600 kg and side lengths
a =1mb = 15m,¢c = 2m. Place a Cxyz coordinate system along the
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principal axes, and determine the  angular momentum  if
o, =30 =40, =12 rad/s. If this angular velocity (which also
represents the axis of rotation) remains constant (in space), what is the time
derivative of the angular momentum?

5.3 Rotational Kinetic Energy and Kinetic Coenergy
The complementary kinetic energy of an arbitrary mass element dm is

ar* = %dm IF12 (.3.1)

For the case that the absolute velocity of the origin O of the coordinate system is zero,
the velocity I of the mass element dm is given by

Fr = @ Xr (5.32)
The complementary kinetic energy (1.8.4) of rotation of the whole body is then

T = %’J;Imxrlzdm. (5.3.3)
With an angular velocity ® of the rigid body given by
o = [e e e, ]- Wy,
o, 5.34)
L mzl
and a position r of a mass element dm given by
r = [e, e, e, ]-x1
Y1 (5.3.5)
Zy
the complementary kinetic energy becomes
T" = % U 0F + L, 02 + L, o) + 2,0,0, + 2, 0,0, + 2,0 0,)
or T" = 5 {0}l [1] {0} (5.3.6)

In case the Ox,;y;z; coordinate system coincides with the principal axes, the inertia
matrix diagonalises and the complementary kinetic energy becomes

*

T = %(Amf + Bw? + Col). (5.3.7)

Since, o, = H,/A, o, = H,/B,and ®, = H,/C ,and in Newtonian Mechanics
T = T*, we may obtam an expressmn for the kmetzc energy from equation (5.3.7) as
1 sz H 2 sz

T = 3| B C

(5.3.8)
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One may also write
T + T" = o-H (5.3.9)
analogous to equation (1.8.12).

5.4 Euler Equations

Euler’s momentum law is a statement of equilibrium between the torque M and the
angular momentum rate H of a body in rotational motion The vectors M and H are
measured from a fixed point about which the body rotates. Thus

M = H (5.4.1)

Using equation (5.2.16) we can express equation (5.4.1) in component form as follows
M, =H, + o, H, - o H, (5.4.22)

M, = H, + o, H, - o H, (5.4.2b)

M, =H, + o, H, - o H, (5.4.2c)

We now invoke the constitutive equations that relate the components of H to those of
®. These equations take their simplest form in the body-fixed principal coordinate
system. Then

H,=H =A0, H =H =Bo, H, =H =Cao, (5.4.3a,b,c)

On substituting from equation (5.4.3) into equation (5.4.2) and using the components
of M in the principal coordinate ssytem we arrive at Euler’s celebrated equations.

M, = A, - B -0 oo (5.4.42)
M, = Bd, - (C -Ao, o (5.4.4b)
M, = Co, - A -Bao, o, (5.4.4¢c)

Through equation (5.4.3) we may eliminate the angular velocities and express Euler’s
equations also in terms of angular as

B -C

M, = H, - 2c— Hy H: (5.4.52)
: C-A

M, = H, - ZZSHH (5.4.5b)

M, = 1 - 4 A;B H, H, (5.4.5¢)

Although Euler’s equations do not admit general closed form solutions we can deduce
two integrals of motions for the special case of torque-free motions. Thus letting
M = 0 and multiplying equations (5.4.5a, b, ¢) by H,, H,, H, respectively and
adding them we find

H H, + H H, + H H, =0 (5.4.6)
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not necessarily be a constant and the terminal point of vector @ will be confined to the
invariable plane.

The conservation equations (5.4.8) and (5.4.9) describe spherical and ellipsoidal sur-
faces respectively. Thus for torque-free motions we can picture the terminal point of
the momentum vector H to remain on the intersection of the sphere and the ellipsoid
described by these equations.

Example 5.4.1

Let us examine the constant angular velocity motion, about the principal axes, under
torque-free conditions. The following motions evidently satisfy Euler’s equations, under the
stated conditions

W, = W o, =0 o, =0, (@)
0, = O, o, =0 o, =0, ()
0, = 0 o, =0 o, =0, (c)

Where 00, 00, 0, are constants. Indeed these are the only possible motions for the case of
o = constant, when the principal moments of inertia A, B, C are unequal. This can be seen by
substituting @, = ,,, ®, = W,and @, = @, in Euler’s equations (5.4.4) and noting that
under torque-free conditions at least two of the three constant angular velocities must vanish for a
solution to exist.

Next let us examine the stability of the motion described .in equation (a). To this end we
consider small perturbation about the steady motion by letting

W, = Wy + O my=B w, =Y )]

Substituting these into Euler’s equations for torque-free motions and neglecting quadratic terms in

o, B, v we find
Ad =0 )
BB + (A - €)@y =0 ®
CY+ (B — A)woB =0 ®

The first equation shows that o = constant and with y = B = 0 we obtain, once again a solu-
tion of type (a) but with slightly changed angular velocity around the x axis. To solve the last
two equations let us substitute for B from equation (g) into equation (f). This will provide the
equation

BCY+ (A - C)A - B)oZy=0 (h)

This linear equation will be recognised as that of an oscillator with inertial properties BC and
stiffness coefficient A — C) (A - B) 02. Evidently the motion will be bounded (stable) if

A -C)A -B)>0 @)

That is when A is either the largest or the smallest of the three principal moments of inertia. If
A is the intermediate principal inertia the motion will grow exponentially (unstable).
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moving frame to Cx3y3z3, coincident with the body-fixed axes Cxyz.

Conversely, if the body-fixed frame is in a given orientation the corresponding Euler
angles may be determined as follows. The angle between the z and Z axis is the
nutation angle v. Once v is determined, the nodal line may be located and the y and
¢ may then be measured from the nodal line to the X axis and the x axis respectively.

For computational purposes the various rotations are best described through matrix
multiplications. Thus a rotation through the precession angle y transforms the basis

vectors e, e, , e, of the Cx axes to those of the Cxyz; axes as follows
Xo, “Y0* “Zo 00?0 1141

€x, cosy siny O[S
e | =|[-siny cosy Of]e, 652
e, 0 0 1 e,

or {e}; =[R lieole) (5.5.3)

where [ R ] is called the rotation matrix. For three successive rotations one obtains

{els = [Rha[R Loy [R Lo (e (5.54)
with the remaining rotation matrices
[RLer = [1 0 0 |
0 cos V sin v (5.5.5)
| 0 —sin v Cos V |
[(RBez = [coso sin ¢ 0
—-sin ¢ cos O 0 (5.5.6)
0 0 1]
We may write equation (5.5.4) as
{e}s =[R N ole) (5.5.7)
where [R ]3(__0 = [R ]3(_2 [R ]2(_1 [R ]1(__0 (558)
is given by
COSY cos G — siny cosV sinG siny cosc + cosy cosv sinG sinv sinc
[ R 130 = |~ cosy sinG — sin ycos vcos G — siny sinG + COsy COsV COSG sinv cosc
siny sinv — cosy sinv cosv
5.59)

Since the above rotation matrices relate the basis vectors of orthogonal frames they are
orthogonal matrices with the property that

(R =[RT]! (5.5.10)

Thus the inverse relation to (5.5.7) may be expressed as
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{elo=[R1pes{e}s (5.5.11)
with [R Joes = [R ¥ ie.
COSY COSC — siny COSV sinG — Cosy sinG — siny CosV CosG  siny sinv
[ R lo3 = |siny coso + cosy cosv sinG — siny sinG + cosy cosv cosG  — cosy sinv
sinv sinG sinv cosc cosv

(5.5.12)

Above development shows that a sequence of finite rotations may be determined via
the laws of matrix multiplication and not those of vector addition.

Example 5.5.1

The book experiment is the most convincing, when it comes to demonstrating that the angles
0., 6, and 6, do not have vector characteristics. Place a book on a table top. Then carry out a
90° rotation about the book’s x axis, followed by a 90° rotation about the book’s y axis. Note
the final position (a) of the book in Figure 5.8.

6, =90° 8, =90°
y ly
: i
z L] [ ] - — x
. y
(a)
)

X X

Figure 5.8 Book rotation experiment

Then repeat the experiment beginning with the rotation about the y axis, and note that the
final position is now different (b). Thus 6, and 6, do not follow the commutative law of vector
addition, or in other words 6, and 0, are not x and y components of a vector.
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Example 5.5.2

We may use the vector character of d 0 to obtain the general equations of motion for a rigid body
in an inertial frame of reference. To this end we consider a rigid body as a large collection of
particles connected together in such a way that the distances between the particles remain con-
stant. With this in mind we can write D’ Alembert’s principle for the set of particles as

B - F) 8 =0 @
where B; are the linear momenta of the particles and F; are the externally applied forces acting
on the particles. Now we must ensure that dr; satisfy the kinematic constrains of fixed distances

between the particles. This is a very restrictive requirement and allows only two types of virtual
displacements:

or; = or pure translation ®)

and or; = 80 x r; pure rotation ©)

substituting from equation (b) into (a) we obtain

[Z B,] - or = [Z Fi] - or @
and since Or is arbitrary
B = TF ©
Now we can write this equation as
Bon = Fr ®
where B, = XB;, = Y m¥, ®
and Foo = YL F
For pure translatory motion f; = f,, where f, is the velocity of the body’s centre of mass.
Then we can express B, as
Bon = [T ten = Micn )

where M is the total mass of the body. It can now be seen that for translatory motion equation
(f) expresses the fact that the centre of mass of a rigid body moves as if all the mass was concen-
trated in that point and all the forces were acting there. Next consider the rotatory motion. We
substitute from equation (c) into (a) and obtain

B, - 30 xr;)=F - (50 xr;) )
or r; X 1'3,-) - 80 = (r; X F;) - 30 ®
and again noting that 80 is arbitrary, we can write

H=M ®
where

H = [r; x B;] and M=r xF )
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H is the angular momentum of the body and M is the applied torque. The moment arms r; for
both H and M, in equation (e), are from the origin of the inertial axes. Equation (k) will be
recognised as Euler’s equation of rotatory motion.

Problems

5.5.1 Draw a (constant) H vector for a torque-free axisymmetric (B = A) gyro.
Draw the z axis at an angle v ("attitude") from the H wvector. For
H = 120kgm%s, A = 24m*%g, C = 10m?g, v = 10°, find o, and
@, = Vo? + o2

5.5.2 A fast-spinning (w, = ®; = constant) axisymmetric (B = A) gyro is mounted
in massless gimbal rings. The gyro is constrained such that y = y = 0 and
W, = -, sinc and ®, = w,sinc with ®, = constant and 6 = ;.
Determine the torque required to maintain this motion.

5.6 Components of o, H and M in Different Coordinates Systems

The time derivatives of the Euler angles, (y, v, 6) are called Euler rates (or Euler fre-
quencies). These rates are also vectorial in nature. If we introduce the basis vectors
ey, €y, and e; along the directions of these rates we will be able to describe any vector
in three dimensional space in terms of these basis vectors. It is however important to
note that ey, e,, €; are not mutually orthogonal (see Figure 5.7). Now the angular
velocity vector ® may be described in terms of its components in various reference
frames. Thus in terms of the body-fixed frame we have

W =¢e€0 +e w0 +ew (5.6.1)

¥
and in terms of the axes defined by the Euler rates we have
®=e, Y+ evV+ed (5.6.2)

To relate the components (w,, ®,, ®,) to the rates (y, V, G) we express the basis vec-
tors (ey, ey, €g) in terms of (e, e,, ;). From Figure 5.7 we can see that

e, = e cosV + e, sin v (5.6.33)
e, = € CoSC — e sin ¢ (5.6.3b)
e; = € (5.6.3¢)

where e, is the basis vector along the intermediate axis y, and may be related to

e, e, as follows

e, = e, sinc + e

y COS O (5.6.4)

Y2

Substituting from equations (5.6.3) and (5.6.4) into equation (5.6.2) and collecting
terms associated with e,, e,, e, and comparing with equation (5.6.1) we find

®, = ysinvsino + vcoso (5.6.5a)
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®, = ysinvcosc — Vsino (5.6.5b)
w, = \y cosv + 6 (5.6.5¢)
Combined they give the transition relationship
@y | = |sinvsino cos G 0 "
o, sihvcoso —sino 0 v (5.6.6)
o, cos vV 0 1 6

Unlike the rotation matrices, the square transition matrix in equation (5.6.6) is not an
orthogonal matrix, since as noted earlier (ey, €y, €5) do not form a mutually orthogonal
triad of basis vectors. Nevertheless this transition matrix can be inverted yielding

sin ¢ Cos O
: - - 0
V| = sin v sin v ("
% cos O -singo 0 o, (5.6.7)
G _sino _coso 1 o,
tan v tan v

It can be seen that this relationship breaks down when v = 0, that is when e; and e,
coincide and the three basis vectors lie in one plane. This singularity in the Euler
angle system can be avoided by defining different angular coordinates but we will not
pursue this matter at this juncture.

The angular velocity vector @ may also be expressed in terms of its components in the
space-fixed frame as

W =0y e + Wyey + Wz e (568)

The relationships between the components (0, ®y, ®z) and the Euler rates (\il, v, 6)
can be readily established by invoking the rotation matrix [ R ]3_ relating the com-
ponents of ® in the body-fixed and space-fixed frames. Thus using the relation

@, Wy
®, | = [R 30| oy (5.6.9
, 1974
in equation (5.6.7) we can deduce that
. _siny sin 1
v = tan v tan v Wy
v cosy sin y 0 ®y (5.6.10)
G sin _cosy 0 o
i sin v sin v

The inverse of this transition relation is given by
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x| = |0 cos y sin y sin v v
Wy 0 sin y —cosysinv ||V (5.6.11)
o 1 0 cos v 6

The above transformation equations relating the components of the vector @ in the
three coordinate systems:

(ex, ey, €z) space - fixed
(ex, ey ’ ez) body - fixed
(ey, ey, €5) Euler axes

apply of course to other vectors such as the angular momentum vector H and the vec-
tor of applied torques M. Thus we can write for instance

Hy | = [o cos sin y sin v H,
Hy 0 sin y -cosysinv | | H, (5.6.12)
Hy [ 1 0 cos v Hg
Hy | = [sinvsino cos © 0f||Hy

and H, sin v cos © -sino Of|H, (5.6.13)
H, | cosvV 0 1] [ Hg

Similarly
My | = [o cos ¥ sin y sin v M,
My 0 sin y —cosysinv || M, (5.6.14)
M, | 1 0 cos Vv Mg
M, |= |sinvsino cos G 0| |My

and M, sin vV cos G -sin o 0 M, (5.6.15)
M, cos v 0 1] Mg

Inverse relationships are similar to those of the vector .

Before closing this section let us reconsider the question of integrability of the angular
velocity. To this end we write the first of equation (5.6.6) as

W, dt = sinvsino dy + cos6 dv + 0-do (5.6.16)
and on replacing w, dt by d6, we write
do, = aydy + aydv + asdo (5.6.17)

where ay = sin Vv sinc a, = cos G ag = 0 (5.6.18)
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Now we ask if the incremental relation in equation (5.6.17) is an exact differential
which upon integration can yield a relationship of the type

6, =0,(,v,0 (5.6.19)

If the answer is in the affirmative and the other two equations in (5.6.6) can be simi-
larly integrated, then the existence of (8,, 6, 8,) can be assured by virtue of the
existence of (Y, v, 6). However since for instance

da da,
—— #
ov oy
we can see that equation (5.6.17) is not an exact differential and a relationship of the
type (5.6.20) does not exist.

(5.6.20)

5.7 Angular Momentum, Kinetic Energy and Coenergy in terms of Euler Angles

We have seen that kinetic energy and coenergy expressions for rotation of the body
take the following simple forms

H? H? H}?
“%7”“*‘5‘*5] G7D
T = -;-[Aco,? + Ba? + Ccof] (5.72)

when the components of H and w are expressed in body-fixed principal axes. Evi-
dently the derivatives of T and T", with respect to their arguments, yield the associ-
ated variable, that is, for example
o _ H, and oT
0w, oH,

= O, etc. (5.7.3a,b)

Now let us express T and T" in terms of Euler angles and rates. Using equations
(5.6.13) and (5.6.5) in equations (5.7.1) and (5.7.2) we find

T = %{% H, sin v sin G + H\,coscs)2 + %(HW sinvcosc — H, sin o)’
+ % (Hy cos v + Ho)z} (5.7.4)
T" = %{A (\ilsinVSinG + vcoso)l + B (\ilsinVcosO‘ - v sin 0)?
+ C (ycosv + 6)2} (5.1.5)

We may now obtain the associated generalised momenta from equation (5.7.5) as
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Py = aaT. = A(\i!sinvsinc+\'1cosc)sin\'sin0'
A4
+ B (\ilsinvcosc ~ Vv sin 6) sin v cos 6
+ C (\il cosV + G)cosvV (5.7.6a)
oT" SRV .
Dy = ™ = A (ysinvsin 6 + Vcos G) cos
- B (\il sin v cos 6 — Vv sin ©) sin 6 (5.7.6b)
oT"* . .
Dg = % = C(ycosv + O) (5.7.6¢)

The generalised momenta (p;, Py, P ) differ from the components of H in the direc-
tion of the Euler rates namely (Hy, Hy, Hs). To establish the relationship between
these two sets of components we may derive the generalised momenta in the following
indirect manner. For p, for instance we may write

oT* 00, N oT* 9, oT* 0w,

Py = 00, Oy 0w, Jy 00, Jy 67.7)
Now one can see that
ow,
a\if = e "€ = cos(x,y) et (5.7.8)
and using equation (5.7.3a) we deduce that
py = Hye -e, + Hoe e, + Hoe e, (5.7.9)
or Py = H- ey (5.7.10a)
Similarly py = H-e, (5.7.10b)
and Ps = H-eg (5.7.10c)

Thus (py, Py, P are the projections of the H vector onto the ey, e, and e; axes (see
Figure 5.9). Now we may express H - e, for instance in terms of components of H

along (e, e, ey) by writing

H-e, = Hyey, ey, + He, e, + Hes ey (5.7.11)

Thus H- e =py = Hy, + Hgcosv (5.7.12a)
and similarly H-e = p, = H, (5.7.12b)
H- e = p; = Hycosv + Hg (5.7.12c)

These relations may be inverted giving

1
H, = - cos Vv (5.7.13a)
v by = Po ) sinv
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H, = p, (5.7.13b)
1
H, = (- cos Vv + _— 5.7.13¢)
N Py Po sin?v (
Z

Figure 5.9 Angular momentum components and projections

In like manner we may generate a set of generalised velocities from the kinetic energy
expression as follows

©, = Zj-I_TW = -}‘-(stinvsino + H, cos ©) sin v sin G
+ % (H sinvcos G — H, sin ) sin v cos ¢
+ —é—; (Hycosv + Hg) cosv (5.7.14a)
= Bégv = % (HW sinvsinc + H, cos G) cos G
- é- (Hy sinvcoso - H,sinc)sinG (5.7.14b)
0y = a?fc = £ @Hycosv + Hy (5.7.14¢)

Through a similar development we can show that (@, ®,, ;) are the projections of
o onto the ey, ey, and e axes and are related to the components (y, v, G) as follows
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0y = \|I + G cosV (5.7.153)
o, = Vv (5.7.15b)
Wy = Gcosv + G (5.7.15¢)

These equations, on inversion yield

. 1
Y = (0, — O cos V) 7y (5.7.16a)
V=, (5.7.16b)
6 = (-0, cosV + W) —12— (5.7.16¢)

sin“ v

For the vector M the components in the Euler axes are (M, My, M) and as can be
anticipated the projections turn out to be (Qw, 0Oy, Q). This can be shown by writing
an expression for the virtual work in the two coordinate systems as

M, 36, + M, 36, + M, 80, = Q,dy + Q0,8 + Q580 (5.7.17)

Now transforming M, etc. to My, etc. via equation (5.6.15) and 86, etc. via equation
(5.6.6) and collecting similar terms we can show that

Qy = My + Mgcos v (5.7.17a)
Oy = M, (5.7.17b)
Qs = Mycosv + M, (5.7.17¢)
with the inverse relationships
M, = (@Qy — QgcosV) sin12v (5.7.18a)
M, =0, (5.7.18b)
Mg = (-QycosV + Qg) —— (5.7.18¢)

sin® v

From the foregoing we can see that in the (e, ey, e;) frame the corresponding
component/projection pairs are
(¥, v, 6,) — components of ® <—> (@y, @, Og)-projections of @
(Hy, Hy, H;) — components of H <—>  (py, py, po)-projections of H
and WM w M,, My — componentsof M <—> (Q v Q.. Qs)-projections of M

While the components have vector character, the projections do not.

Thus far we have expressed T° and T in terms of the components of @ and H
respectively. Evidently these functions can also be expressed in terms of the projec-
tions of @ and H. Thus substituting from equation (5.7.16) into equation (5.7.5) we
can write
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sin 6
sin v

* 1 2
T = 5{‘4 [((ow—coocosv) + (ovcoso']

COSC
sinv

+ B [(ww ~ g COS V) - (ovsinc]2 + C mg} (5.7.19)
The derivatives of T* with respect to the projections of @ namely @y, ®, and o, will
yield expressions for the components of the associated momenta H, H,, and H.
These expressions are the inverses of those in equations (5.7.14). Finally we express
T in terms of the projections of H namely 9y, py, po)- This is readily accomplished
by substituting from equations (5.7.13) into equation (5.7.4) and obtaining

1 1 sin G 2
= E{X[(pw—p(,cosv) i + pvcoso]
1 COSO . 2 1
t 3z [(Pw - PcCOSV)m - p,sin 0] t pé} (5.7.20)

Once again the derivatives of T with respect to the projections of H namely,
@y PvsPo) Will yield expressions for the components of the associated rates
(¥, v, 6), that is the inverse of equations (5.7.6).

Problems
5.7.1 At a point in time, a gyro has an angular momentum of
H =[e ¢ ¢]f 300
400 | kg m%s
1200
(a) Obtain the components (Hy, Hy,Hs) in Euler axes if
v =90° v =10° o = 60°.
(b) Obtain the generalized momenta projections (py, Py, Pg) for the same
Euler axes.

5.7.2 A torque-free gyro has an angular momentum of
H = [e, e €1 120

0 | kgm?s
0
and an inertia tensor of
24 0 0
U1 =]0 15 0| mkg
0 0 10

with respect to a gyro-fixed principal coordinate system Cxyz originating at the
gyro’s mass centre C.
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(a) Calculate the numerical value of the generalized momenta p; using Euler
coordinates with v = 10°.

(b) Determine the Cartesian components (H,, Hy, H,) of the angular momen-
tum, at the moment when ¢ = 0°.

(c) Find the kinetic energy.

5.8 Lagrange’s Equations

With the expression for T in terms of generalised velocities
41 = V¥,q, = vand g3 = G and the generalised coordinates we are now in a posi-
tion to obtain the equation of motion via Lagrange’s equations

= (=) - 5— = 0; 5.8.1)

If the generalised forces Q; (torques in the present case) do not possess a potential
energy then may be obtained via the virtual work expression

W = 0,8y + 0,8 + Q580 (5.8.2)
Thus Lagrange’s equations of motion for rotatory motion take the form
Py — aaT“: = Qy (5.8.32)
Py - aaTv‘ = Qy (5.8.3b)
Po ag; = Q¢ (5.8.3¢c)

where T* and the generalised momenta are given in equations (5.7.7) and (5.7.8). Itis
worth noting that y is absent in T* and hence it can be considered as an ignorable
coordinate."

Although Lagrange’s and Euler’s equations appear to be different, they describe the

same motion of course but in different (and related) variables. To see this consider
Lagrange’s third equation (5.8.3c) which on expansion becomes

C %(\i!cosv +06) - A (\itsinvsino + \"cosc)(\i!sinvcosc — Vsin 6)

+ B (\if sin vcos 6 — V sin 6) (— \|! sinvsinc — vcoso) = Q5 (5.84)

By introducing the angular velocities (®,, ,, ,) from equation (5.6.6) into this
equation we obtain

Ca, + B - A)n,0, = Q4 (5.8.5)

which is the third of Euler’s equations of motion and it also reveals that Q5 = M,.
By systematic permutations of the subscripts and A B and C we can obtain the first
two Euler equations from equation (5.8.5). However it should be noted that while the
Largrange equations associated with 6 coincides with the Euler equation in the princi-
pal direction z, the same is not the case for the remaining two equations. One can see
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for instance that while Q, is a torque along the line of nodes M, is a torque along the
second principal axes.

Example 5.8.1

A fast spinning (G > \il, V), axisymmetric (B = A) gyro is mounted in massless gimbal rings. It
has two linear torsion springs mounted such that Qy =—ky ¥y, Qy=—kyV, Qs =0. Establish
the equation of motion for the o coordinate.

From Lagrange’s equations (5.8.3) we have

kyy + py = 0 (a)
. or'
kyv + py - 'aT =0 ®)
. or’
Po = 55 = 0 ©
with
pe = L = Cos + &) @
° 36
. d or’ - cL ..
Dg = a2 C (ycosv — yvsinv + G) )
or' S . - .
5 - A (y sinv sinG + V cosG) (Y sinv cosc — V sinG)
+ B (y sinv coso — v sinG)(y sinv sinc — v cosv) ®
so that

C (y cosv — v sinv + &) — A (y sinv sinG + V coso)(y sinv coss — v sing)
— B(y sinv coso — v sinc)(y sinv sinc — v coso) = 0 (g)
with B = A, equation (c) eventually becomes
C (y cosv — v sinv + &) — A (y” sin®v sin20 — 2yV sinv sin’c) = 0 1))

Example 5.8.2
A fast spinning (©; =6 > V), uisymmeﬁc (B = A) gyro is mounted in massless gimbal rings.
The gyro is constrained such that y =y =0, and v = — @, = constant. Further 6 = 0.

The torques required to maintain this motion are to be determined. From Lagrange’s equa-
tions (5.8.3) we have

Qy = Py - % @
_ . ar

v = Py v )
or’

Q6 = ljc‘To‘ ©
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ar’

With = 0, and
oy
or’ s o .
Py = v = A vsinv sinG cos6 — A v sinv sin6 cosc + C 6 cosv (d)
py = C 6 cosv ®©
Py = Ep“’ = C(G cosv — VG sinv) = — C VG sinv )

Thus, from equation (a), the required torque becomes

Qy = C o o sinv (®
With
pv=%=A\"cos26+A\"sin20=A\" ()
py=AV =0 )
831; = —-C (ycosv + G) ysinv = 0 ()
equation (b) gives
0 =0 ®
And with
pc=a;6=C(¢cosv+d)=Cé o
ps=C8& =0 (m)
aTrt
o = 0 (n)
from equation (c)
Qs =0 ©

Example 5.8.3
The case of a torque-free axisymmetric gyro is of particular importance in practical applica-
tions (satellites). For a torque-free gyro, the angular momentum H is constant, in magnitude as
well as direction. It turns out to be advantageous to choose the generalized Euler coordinates
such that the angular momentum H is directed along the precession axis e,. Thus
H
H = [eyeye5] | 0 (@
0

As a consequence, the generalized momenta (5.7.10) become
Py = H (®)
pv = 0 ©



247

Ps = H cosv (d)
Under these conditions the kinetic energy (5.7.20) simplifies to

N R e 1
T = S H - sin?v + c cos?v @©)
and the generalized velocities become
: H
v o= 3 ®
v =0 and vV =y, @
G = “‘_Cﬁl-cosv‘7 (h)
Cc
The Cartesian velocity components are
H . .
W, = —sinv, coso i)
A
0, = H V, sinc 0
A
0, = % cos Vv, &)
0
o = (e e e] | )
(‘DZ
and
0
H = [e,e,e] | Hsinv, (0)
H cosv,
Example 5.84

Given is an axisymmetric gyro (Figure 5.10) with constant attitude angle v, and zero spin torque
component i.e. M; = 0. The precession is to increase at a constant rate ie. ¥ = Yyt + V..
The torque components M\, and M, required to achieve this motion are to be determined.

For axisymmetric gyros (A = B) the expression for 7" simplifies to

*

T = %[A ’sin’v + V) + C(ycosv + 6)) @

Then from Lagrange equations (5.8.1) we find the equations of motion as

Ay, sin®v, + Cy,c08’v, + CGcosv, = Q ®
(C - AW?sinvycosv, + Cy Gsinv, = O, ©
Cy,cosv, + CS = Qg @
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Finnally we can determine the torque components as

My = Ay, (m)
M, = C(Yo + W) GosinV, + (C — AXWo! + Wo) Y, Sin V, COS V, )
MO‘ =0 (0)

Problems

5.8.1 A spinning (6 = 10rad/s = constant) axisymmetric (B = A) gyro is
mounted in massless gimbal rings. The gyro is to move at a constant nutation
rate V = —2 rad/s, while y = 0, and C = 50 m*g. What torque is
required to maintain this motion?

5.8.2 A spinning (6 = constant) axisymmetric gyro is mounted in massless gimbal
rings. The gyro is to move at a constant rotation rate v, while the precession
y = 0. What torques are required to maintain this motion?

5.8.3 The motion of a torque-free axisymmetric gyro is described in Euler angles,
with the angular momentum vector and the precession rate collinear. Find the
generalized forces Q;, and the Eulerian torque components M;, which are
required to give the gyro a constant y, with all the other velocities remaining
unchanged, ie. 6 = constant, v = 0,v = v,.

5.9 Other Generalised Variables for Describing Angular Positions

The Euler angles are the best known of the generalised coordinates for describing the
angular positions of rigid bodies. However for certain applications other coordinates
have been proposed. For instance in the aeronautical field the preferred coordinates
are the yaw, pitch, and roll angles. Other angular coordinates include the Cardan
angles and Bryant angles. Occasionally a constrained set of four coordinates known as
the Euler parameters are also employed. Various coordinates have their advantages
and drawbacks. For instance the four coordinates of the Euler parameters overcome
the singularity of the three angle representations by Euler, Bryant and Cardan angles.
Specialised texts on space and rigid body dynamics describe these alternative coordi-
nates and illustrate their use.
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Chapter VI

SPECIAL APPLICATIONS

Introduction

The Lagrangian equations of motion often take the form of second-order nonlinear
differential equations. Such equations rarely admit analytical solutions. In some cases
it is possible to linearize the equations of motion by imposition of some acceptable
approximations. The linearized equations may then be solved analytically. An impor-
tant class of such problems is the case of small amplitude oscillations about a position
of equilibrium or about a predetermined steady motion. The process of linearization
may be -carried out on the differential equations or one may introduce the pertinent
approximations when the energy and virtual work terms are written down. In this
chapter we outline the latter procedure and describe methods of solution for the linear-
ized equations.

As a second area of application we consider the special case of spike loads (also
called impulsive loads) and spike speeds and determine the changes in the energies of
a system when it is subjected to such loading.

6.1 Approximate Expressions for T*, V, D and W,
Consider a restricted class of problems which do not involve moving coordinates or

moving constraints. For such problems time will not appear explicitly in the transfor-
mation equations and for a system of N particles we may write these equations as

l'k = Iy (ql’ G2 ceees iy oors q,,) k = 1, 2, ceeey N (611)

where r; is the position vector for the kth particle in 3D space. Now let us expand
for r,, by Taylor series, about the position of equilibrium defined by (r;),. Then we
have

2

ary , 1 971y , i=12,..n
r, = (), + (a—q)o a + 3 (aq'aq- o ;" + 1 j o1, a012
i i94;

where the terms (), are evaluated at the position of equilibrium and ¢;” are the per-
turbations about the position of equilibrium. Since the ( ), terms are constants, we
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may write an approximation for the velocities as

. o, .,
Yk approx = (a_q)o q; 6.1.3)
i

For the sake of simplicity in notation, from now on we drop the prime on ¢;” and
unless otherwise stated we take ¢; to mean small velocities about the position of
equilibrium. With this understanding and using equation (6.1.3 ) we obtain an approx-
imate expression for the complementary kinetic energy of the system as

* a(m I')k or Ty
Tapprox = 3’ aq,' o (a o tI, q] 6.1.4)
or in matrix notation
* 1 .. .
Tapprox = 2 {q }T [m]{q} 6.1.5)

where the square symmetric matrix [m], called the mass matrix, has constant ele-
ments.

Consider next the Rayleigh dissipation function which may be expressed as
D = % € Py - B 6.1.6)

where ¢ is the coefficient of viscous drag on the kth particle. Once again using the
approximate expression for the velocities, as given in equation (6.1.3), we may obtain
an approximate expression for Rayleigh’s dissipation function as

. d(cr) or
Dﬂpprox = _;- ( aq. * )o (a Tk ) q: q] (6.1.7)
or in matrix form
Damar = 14V [c14) 6.18)

where [c], called the damping matrix, is symmetric and has constant elements.

Next let us obtain an approximate expression for the potential energy. Assuming that
V is a function of the small displacements about the position of equilibrium, namely
g;» we may expand V(g) into a Taylor series, about the position of equilibrium.
Then

oV i=12,..,n
= (V)o + (%)o q; 2 (a a )o q; q/ + - j= 12,...n (6-1-9)
The first term in equation (6.1.9) is a constant. Since it does not influence the
equations of motion, we set (V), = 0. The second term vanishes since by definition
(@V/9q;), = O at a position of equilibrium. Hence as a first approximation for V
we find
1. o

Vaprar = 75 (5,5~ 34,4, Yo 4i 4j (6.1.10)
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or
Vapprox = ';_{q }T k1 {q} 6.1.11)

where [k] is a symmetric matrix called the stiffness matrix and its elements are con-
stants.

Finally consider the virtual work terms of forces not included in V nor in D.
Denoting such disturbing forces by Fk we may write the associated virtual work term
for the N particles as

W, = F, - o, k = 123,..N 6.1.12)

Now letting dry, = r, - (r;), and using the linear terms in equation (6.1.2) we
obtain an approximate form of 8W, as

W approx = F} ( )08q, i = 123,...,n (6.1.13)
or
W) gprax = (Q'V (8q) (6.1.14)
where the column matrix {Q’} of generalized disturbing forces has elements given by
o = F (ﬁ-)o (6.1.15)
9g;

Since the approximate forms of T and D are quadratic in velocities, and approxi-
mate forms of V and 8W,; are quadratic and linear, respectively, in displacements,
their use in Lagrange’s equation (2.10.11.) yields a set of linear differential equations
of the form

m]{G} + [c]1{q) + k1{g} = {Q) (6.1.16)

Example 6.1.1

Consider the double pendulum shown in Figure 6.1. Let the two particles be subjected to viscous
dissipation forces, in the x direction, with coefficients c,, c, and suppose that a disturbing
force F, acts on the second particle, as shown.

The reduced transformation equations for this problem may be written as
1, sin 6,
rno= e el 1, cos 6,
l,sin @, + /5sin 0,
rp o= l& ey] -l cos 01 - I, cos 6,

@

Use of these equatlons for evaluations of T* and D, will yield expressions which are not qua-
dratic in 6; and 02 However, if the motion is restricted to the vicinity of the equilibrium position
defined by 6, = 6, =0, we may obtain approximate expressions for T* and D which are qua-
dratic in 91 and 92, and V which is quadratic in 6, and 6,. Using equation (6.1.3) we find
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. L. . [miE +myad malily] | %
Topprox = 2 [6; 6] my 1y 1y my 12 (h)
6,
In like manner we find that
. c . Cy . . . X
Dapprox = 71 112 el2 + —2_ (112 912 + 211 12 el e2 + 122 e22) (l)
or
. ci 1t + ¢ 1t calily| |6
Dapprox = E (6, 6,1 . @)
iy cr 13 0,
Consider next the expression for V. From Figure 6.1 we note that
v = mlgll (l—c()sel)+ ng[ll (I—Cosel) + 12(1—00392)] (k)
Now using equation (6.1.10) we obtain an approximate expression for the potential energy as
1
Vapos = 5 [(ml glicos 8 + my gl cos 6y)g =0 6f o
+ (m3 gly cos B2)e, =0 922]
or
) my gly + my gl 0 0,
Vapprox = '2_ [0, 6;] 7 (m)
0 my g12 92

Finally let us evaluate the force F; = e, F, acting on m,. To this end we write the virtual work
of this force as

BWI = F2' . 5!‘2 (n)
or
dr, dry
W, = (e F)) [(ﬁ) 56, + (352—) 592] ©
Now evaluating the derivative of r,, at the position of equilibrium, we find
8“’l approx = (e, Fy) - [ex I, 59l + 1y 892)] ®
we may write this expression as
56,
Wigprox = [Q1 Q2] @

56,
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where

.

Q1 = Fily Q, = Fil @®

Using the approximate expression derived for T*, V, D, and 8W;, we may obtain the linearized
equation of motion from Lagrange’s equation (2.10.11) as

mlllz + Inzllz Inzlllz 'él 01112 + 02112 0211 12 él
+
mylyl,y my 13 6, 2l 1, 213 6,
my gly +my gl 0] {6 Faly
+ = s)
0 maygly| | 6, Faly
Problem

6.1.1 A uniform circular disc of mass m and radius a turns freely about its axis
which is fixed horizontally. A pendulum of mass m and length 2a/3 is
attached to the rim of the disc. Consider small amplitude oscillations about the
equilibrium position and obtain the linearised equations of motion.

6.2 Free Undamped Oscillations

In the absence of damping and disturbing forces the linear equations (6.1.16) of motion
become

(m1{g} + [k1{q} = {0} 6.2.1)

To obtain a solution let us assume that all g; vary in time in a similar manner. That
is we let
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{g@®)} = {uhp@® 6.2.2)

where {p} is a column matrix of constants y; and y(¢t) is a scalar function. Substitut-
ing from equation (6.2.2) into equation (6.2.1) we find

(m1{unly + [kl{nly = {0} (6.2.3)
On premultiplying equations (6.2.3) by {u}? and rearranging, we may write
¥ TR (6.2.4)
y (W) [m] {p}

Now noting that the right hand side of equation (6.2.4) is a constant, say w?, we have
that

@ = AT ) 625)
{w)T [m] {u)
and
y + ety = 0 (6.2.6)
Equation (6.2.6) reveals that
y = Acoswt + B sin ot 6.2.7)

i.e. the motion is sinusoidal in time with angular frequency ®. The constants A
and B may be determined from initial conditions.

Returning to equations (6.2.3) and using the solution (6.2.7) we find that @? is
governed by the following eigenvalue equation

k] - @ [m]) {p} = {0) (6.2.8)
Associated with the roots @? that satisfy equation (6.2.8), there are r eigenvectors
{pn}, allowing one to write
Y = A,cos®t + B, sin®,t 6.2.9)
For instance, for a four degree of freedom system, equation (6.2.2) becomes

q1 (1 |51 (31 rlll
q2 K2 H2 K2 1)
as| = |ms| 1 * us |72 * us | 73 * s | V4 62.10)
-44_ _H4_1 LH4_2 _l»l4_3 _ll4_4
with
y1 = A coswit + B, sinot

Y2 = A, coswyt + B, sinw,t
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On assuming sinusoidal oscillations with frequency ®, the equations of motion take the form of
the eigenvalue equation (6.2.8)

(k] - @®[m]) {(p} = {0} ®

For nontrivial solutions the determinant of the coefficient matrix must vanish, ie.
det (k] — w*m]) = 0. Subsequent to some algebraic manipulations this condition is found as

@ - !})[m2 - & 5)]
m

m’-(§+3%)] =0 ®

The condition for vanishing of the determinant shows that the three natural frequencies of
the system can be obtained from

of = & @)
2 & . .
o = o+ @
o} = 9';-+-3,;l’E @

For each of these frequencies we may obtain the associated mode of vibration by substitut-
ing the values of ®? in equation (f). Evidently then the matrix ([k] — @?[m]) will be singular,
making {p} indeterminate. That is absolute values of {p} cannot be determined. We can, how-
ever, obtain relative values for the elements of {1}. To this end we may for instance ascribe a
unit value for one of the y;’s and obtain the corresponding values for the others. Thus letting

U, = 1 for the first mode, i.e. when ® = @, = -f— we can solve for p, and p,., from

- £

mgl + k% —ki? 0 7 |m? 0 0 1 0
—kI? mgl + 2ki? —ki? 0 m?* 0 W =10 ®
0 —ki? mgl + ki? 0 0 m? M, 0

The solution shows that p, = p. = 1, that is, in the first mode (Figure 6.3) the masses move in
unison, under the gravitational force, while the springs do not contribute to this motion. We write
forr =1,

rh = | = |1 o
He |, 1

Following a similar procedure the second and third modes of the system can be found. For the
second mode r = 2, we find

Ha 1
mh = || =10 (m)
e |, L-1

Evidently in the second mode the two end masses move in opposite directions, while the middle
mass remains at rest. In passing it is worth noting that in this case one cannot choose and ascribe
a unit value to M and hope to find u, and u.. The second mode exhibits one vibration node,
that is a point where there is no motion. In this mode the node is located in the middle of the
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system.
For the third mode r = 3, we find
Ha 1
uhy = [m| =[-2 (n)
Ke |, 1

The end masses move in unison, while the middle mass moves in the opposite direction, with
twice the amplitude. In this case there are two vibration nodes, one in between the first and the
second mass and the other in between the second and third mass.

The general solution is

0, 1 1
0, | = ||yt + |0 |y2 + |-2{y; ©)
0, -1 1
or
0, 11 1]n
Ob = 10 -2 Y2 (p)
0‘: 1-11 y3
or -
{6} = [l {y} @
with
y1 = A; cos®it + B sinot )
y2 = Aj; coswyt + B sin oyt (s)
y3 = Aj cos®y + Bj sin oy ®)

The y coordinates are called the modal coordinates as opposed to the physical coordinates
denoted by 6. The six integration constants, A, A,, Aj, B}, B,, B3, may be determined from ini-
tial conditions, that is from the initial displacements and velocities of the three masses.

Orthogonality of Modes of Vibration

The eigenmodes of vibration have certain orthogonality properties that can be used to
advantage when the equations of motion are to be solved. Consider the equations of
motion for the vibration in two distinct modes r and s. According to equation (6.2.8)
we can write these as

of [m] {u}, = [k]{uh (6.2.11)
o? [m] {u}; = [k {u (6.2.12)
Premultiplying the first of these by {p}] and the second by {u}7 we obtain
o (n}] m] (1), = (W} k] {n), (6.2.13)
of (11 m] (1), = (R} k] (), 6.2.14)
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Ss
B3 = - - Sz ©

Thus the kinetic energy becomes

1 .2 2 2
T = — (@B + By + B
2(1 3 3)

oo T

1 N 3 2 S4 2 s5 2
2m[(Sl+l)+(Sz Sl+,)+(1-Sz)] @
Consider next the complementary potential energy. For the springs we may write

. 1 . .

Vieng = 5 [ST + 87 ©

For the gravity component we wrote the approximate potential energy for small amplitudes, for
one pendulum, as

1
ngvity = 2mg 167 ®
Then
avgnvity 5
o - mgl® = —§ ®

Noting that the force displacement relation is linear and thus the potential energy and the comple-
mentary potential energy are equal, we may evaluate V;,.vi.y for one pendulum as

» =V = 1 1 s 2 = $* b
gravity — gravity T ? mg (- m_gl) - 2mgI ()

Thus the total complementary potential energy for the three pendulum system may now be
expressed as

14

1
2mg 1
Using above expressions for T and V* and L* = T - V' in the complementary Lagrange
equation

v’ =%[s'12+s'§1+ [S2 + §2 + §2] @

4a

- =0 ()]
dt aS'j aSj
we find the equations of motion as
M ..]
vk 0 0 0 o |5
0 1k 0 0 0 ||S2
0 0 Umgl 0 0 || S| +
0 0 0 1/mgl 0 |3,
0 0 0 0 lmgl || .
Ss
2Um ~lUm Uml  -Uml o |$ 0
-1l/m 2im 0 1ml -l/ml |} S, 0
Uml 0 Umi? 0 0 {[ss] = |0 ®)
~lml Uml 0 Umi? 0 ||s, 0
0 -Uml 0 0 Umi® J| s 0

Above equations of motion are statements of compatibility. Noting that
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§, .

-k— = —el (l)
and

S, S, S, S+ 8 B, B,

[m M ml] - [m YW T m T m T m (m)

we can interpret the first equation of motion as: the rate of compression of the first spring is
equal to the rate at which the first two masses move towards each other.

Assuming a harmonic solution with frequency @, we convert the equations of motion into
the following eigenvalue form

2im - 0%k -lm Uml -Uml 0 M 0
-Um  2Um - 0¥k 0 Uml ~1/ml 173 0

Vmi 0 Umi? — @¥mgl 0 0 wli=(0] m
~1ml Vml 0 1Umi? — w¥mgl 0 ™ 0
0 ~Umi 0 0 Umi® — @¥mgl || ps | LO

On expanding the determinant and equating it to zero, we find the following characteristic equa-
tions for the eigenvalues >

o (@ - -f—)[co2 - (-f— + %)] [mz—(§-+3—':)] =0 ©)

Thus we find five frequencies, two of which are equal to zero, pointing to a double degeneracy.
The remaining frequencies are, as expected, identical to the frequencies obtained by the direct
energy formulation. The two zero frequencies are associated with the two degrees of statical
indeterminacy of our system. The corresponding modes describe the nonzero values of S )i which
are in self-equilibrium and hence do not give rise to momenta for the masses.

The eigenvalues o2 and the associated eigenvectors {p}, are as follows:

r=1 m3=§ [0, 0 1, L, 11 = (W o
r=2 o = L4 8 (L, 1,28 o %) = W @
r =3 o} = 37"+§ (3. -3 7% 2% ZE) - o

These vectors, as expected, exhibit orthogonality properties with respect to either of the two sys-
tem matrices. For the (equal) zero frequencies we may find many (linearly related) vectors. For
instance the following eigenvectors are associated with the zero frequencies:

For
r =4 o =0 (1, 1, -1, 0, 11 = ({(uJd s)
r=>5 o} =0 (2,1, =20, 1, 11 = {ud ®

Again each of these vectors is orthogonal (with respect to either system matrix) to the nonzero
frequency mode vectors. However the two vectors are not mutually orthogonal (with respect to
either system matrix). Nevertheless we may construct a new vector and require that it be orthog-
onal to one of the zero frequency mode vectors. To this end we write
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1 2 a
1 1 a
{Wa + b{nls = (-] + b2 = |a3| = {a}) ()
0 I a4
I I o5

Now we require that the vector {a} be orthogonal (with respect to one of the system matrices of
equation (k)) to, say, the first zero frequency mode i.e.

mMi1-1011{wk 0 o0 0 0 1 2

0 Uk O 0 0 1 1

0 0 Umgl 0O 0 -1l +8/-20]] =0 W)

0 0 0 1lUmgl O 0 !

00 O 0 1Umgl 1 !
or

2 2! 3 31

( et mg) + b( et ) 0 (w)
Therefore

b= -2 ®)

and from equation (u), after cancelling a multiplicative constant, we find the new eigenvector,
associated with the second zero frequency mode as

0} =0 (=L L1, =2, 1,] = (R}ew )
The general solution of equation (k) is
(S} = miy} @
or
5 0 1 3 1 -1][y
s, o 1 3 11|
S;| = 1% % -1 1] ys
;: 1 0 -_}—;n—g- 0 -2 i:
1—ﬂk’5- % 1o
with
y1 = A; cosmt + B; sin o

y2 = A, coswy + B sin oyt
y3 = Az cosmst + Bj sin ot
ya = Ay + By
ys = As + B

Note that in this example the modal coordinates y are impulses, rather than displacements.
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Problems

6.2.1 For the triple pendulum of Figure 6.2 find (a) the three natural frequencies, and
(b) the integration constants A and B, if / =2.5 m, ¥k = 12 N/m, m = 2 kg,
0, =0, 0, =003rad, 6, =0.06 rad, 6,, =0,, =0, =0. Write (c) the
solutions for the three angles as function of time.

6.2.2 Given is a two-mass, one-spring system, as shown. Find the complementary
Lagrangian, establish the equation of motion in the impulse coordinate, and find
the natural frequency.

6.2.3 For the Problem 6.1.1 obtain the natural frequencies and modes of vibration.

6.3 Modal Matrix and Decoupling of Equations of Motion

The n linearly independent eigenvectors of a linear system may be used as basis vec-
tors of a new n dimensional space which we may call the eigenvector space. As we
have seen these basis vectors exhibit orthogonality properties with respect to the two
system matrices. We may establish a transformation from the configuration space to
the eigenvector space by means of a new matrix called the modal matrix. The modal
matrix is set up by stacking the eigenvectors of the system, side by side, as follows

(Wl = [uh (ko (B e (R)] 6.3.1)

where {u}, is the rth eigenvector (or modal vector). Now denoting the coordinates of
a point in the eigenvector space by [y; ¥, .... ¥, ....y,], y, being the coordinate meas-
ured along the {1}, basis vector, we may write the relation between the coordinates g;
in the configuration space and the coordinates y, in the eigenvector space as

{g} = [y} 6.3.2)

This transformation equation may be used to diagonalize the two system matrices, that
is in the eigenvector space the equations of motion become decoupled. We illustrate
this for the case when the variables are generalized displacements and the equations of
motion take the form of equilibrium equations. Similar results hold for the comple-
mentary energy formulation.

Noting that [4] is a square matrix of constants, we can transform the equilibrium
equations of motion for free vibrations

[m1{q} + [Kk1{q} = {0} 6.3.3)
to
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[m]ul {y} + k1l {y} = {0}
Premultiplying through by [u]7 we obtain
W’ 1 5} + 7 k1M ) = {0) (6.3.4)
which may be written as

m1} + K1y} = {0} (6.3.5)

Recalling the structure of the modal matrix one can see that the triple matrix product
(W7 [m] [u] has the following form

(T ] el Tl o 0 Dml ), |
[m] = ' [ml@u] = ' . '
R R P (R ) RSP (T H [r;t]{u}n_
Wl ey, 0 - o |
_ (6.3.6)
0 0 {u}n’[r;t]{u}”

This matrix is diagonal, in view of the orthogonalit’s_' of the eigenvectors with respect
to the mass matrix. Likewise the triple product [U]° [k] [U] yields a diagonal matrix
[£,] and therefore equation (6.3.5) may be written as

mo_-; O 0 Y1 k=1 O 0 Y1 0
0 m_, Y2 0 k- Y2 0
.0 St .0 =
0 0m_, yn 0 0k -p In 0
6.3.7)

where m, and k, are the modal mass coefficients and the modal stiffness coefficients,
given by

m, (w3 (m] (W, (6.3.8)
and

ky

(W] k] {(u), (6.3.9)

For free vibration
[m1{y} + [k]1{y} = ({0} (6.3.10)
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or
my + ky =0 (6.3.11)

with
kim, = ? 6.3.12)
Since the eigenvectors are determined to within a multiplicative constant, it is possible
to normalize them such that all the modal mass coefficients become equal to unity.

Then the modal stiffness coefficients become equal to k,/m,, i.e. equal to the eigen-
values 2.

In the modal coordinates the now decoupled equations of motion can be solved
independently. Thus for the r th mode we find

Y, = O,), cosw,t + % sine, ¢ (6.3.13)
r
where (y,), and (y,), are the initial displacement and initial velocity, in mode r.
Normally the initial conditions are specified in terms of the physical coordinates
q;. From the transformation equation (6.3.2) we may determine the initial conditions
in the modal coordinates as follows:

l, = Mg}, (6.3.14)
Bl = W4}, (6.3.15)

The orthogonality property of the eigenvectors allows one to compute [u]™! indirectly
and easily as follows. Given that

W' mlg = m] (6.3.16)
where [m, ] is the diagonal modal mass matrix, we may obtain [u]™ as

Wt = T im] (6.3.17)
If furthermore the eigenvectors are normalized such that each m, = 1, the computa-

tion of [u]~! simplifies to a matrix product.

Once the solution for each mode has been obtained in the modal coordinates y,,
the solution in the physical coordinates ¢; may be computed via equation (6.3.2). It
can be seen that the motion of the system in the physical coordinates is made up of a
linear combination of the system’s motion in modal coordinates, in each of its modes.

Similar argumentation can be employed when generalized impulse coordinates are
used. Instead of equation (6.3.2), one would then begin with

{S} = My} (6.3.18)

where [l1] is the modal matrix made up of impulse eigenvectors stacked side by side.
Since the modal matrices are of an order equal to the number of degrees of freedom of
the system, it is clear that the displacement and impulse modal matrices need not be of
equal order.
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Example 6.3.1

Consider the problem of the three pendulums of example 6.2.1 again. Suppose that the motion of
the system is started with the initial conditions

6, =0 0,
éa = (éa)o éb

0 o =0
0 6 =0 @

where (,), is the initial angular velocity. For this problem the eigenvectors, as determined ear-
lier, can be stacked side by side to form the modal matrix (6.3.1) as

m= (1 1 1

1 0o -2 ®)
1 -1 1
The modal mass matrix (6.3.6) can now be computed as
m] = " [m] W ©
or
3m? 0 0
ml=1, 0 2m? 0 @
0 0 6mi?

with an inverse

1
—s 0 0
3mi?
1
A=l 0 X o
[m,] ol ©
1
© 0 &r
Next let us compute [u]™. From equation (6.3.18) we have that
(MY % e M | ®
or
11 1
3 3 3
- o |1 1
- = ) 0 2 ®
111
6 3 6

Now since at t+ = 0, the ¢; = 6; = 0, it can be seen from equation (6.3.15) that all (y,), also
vanish. We may determine (y,), using equations (6.3.16) and (g). Thus

b7 1313 3] |6

.l =l o -2 0 ()
il 6 -13 16 0
Hence

O = (6,),/3 0 = (0,),/2 02 = (0,),/6 )
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Accordingly the angular displacements y, in the 3 modes, as obtained from equation (6.3.13),
may be written as follows

yi(t) = B;sinwy = (g:o): sin @, ¢
yat) = Bysinwy = (%2)" sin @, ¢ 0]
y3(t) = Bsysinwyt = % sin w3 ¢
where the natural frequencies squared, ®?, as found earlier, are given by
of = & of = &+ £ of = & 435 ®

Finally transforming back to the physical coordinates, we find for {g} = [u] {y},

Ba) sin @,

30)1 !
O ool @,
0, = 0 -2 W sin Wy! @
0, -1 1 .

ie"—)o- sin @3¢

603 3

Thus the angular displacements ¢; = 6; of the three masses can be expressed as a function of
time as follows:

1 . . 1 . . | :
0, = -3-m—1(9.z)., sin o)t + E(ea)o sin wyt  + _6(73(9“ )o sin @t
1 .. . 1 .
6, = 3—(01(0‘; Yo sin ;¢ - ?6;(9.1 )o sin @st (m)
6. = -—l—(é )o sin @t - L((:) )o Sin Wt  + L(('9 )o sin st
c 30)1 'alo 2(02 a/o 6(1)3 alo
Problem

6.3.1 Given is a two-mass, three-spring oscillator chain as shown. Use g, and g,
and find (a) the kinetic coenergy, (b) the potential energy, and (c) the Lagran-
gian. Establish (d) the equations of motion of free vibration. By letting
ky=k,=ks and m, = 1/2 my, solve for (¢) the natural frequencies, and find
(f) the modal eigenvectors. Establish (g) the modal matrix, and (h) write the
decoupled equations of motion.
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o 2 Yr
Voo o+ oy = — (6.4.7)
mr

One method of solving this equation is to represent the force Y (¢) by its associated
elemental impulse Y dt, such that the associated change of momentum is given by

Ydt = mdy (6.4.8)
where dy denotes a change in the velocity of the mass. Now we showed in equation
(6.3.13) that under free vibrations the response of the system is given by

yt) = (y), coswt + % sin ot
Thus when the system is initially at rest, the application of an elemental impulse incre-
ment Y (0)dt at time ¢t = 0 will give rise to an incremental displacement response of

p
dy = 2 gnar = YOIT G o (6.4.9)
(0] mam

Suppose next that the elemental impulse increment is applied at time ¢+ = 7T (see Fig-
ure 6.4). In that event the response will commence at time ¢ = T, and at time ¢ we
find

dy = YOIT 4 o - 1) (6.4.10)
ma@o
or
dy = gt -1)Y@®)dt 6.4.11)
Y
Y(0) dr
0 t
-] <—dt
y dy = g(1) Y(0) dr
/ !
0 \/
Y
Y(t)dt y
Ole—r — ‘-d‘t
y dy =g(t-1) Y(1)du
-~ 1t
0 N——

Figure 6.4 Spike force, impulse and response
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where
sin W(t — 1)
mo
is the so-called unit impulse response.

gt -1 6.4.12)

Now we may represent the forcing function Y (¢) by a series of incremental
impulses acting one after the other each at its time of application . Since the system
is linear, the total response may be obtained by superposition of responses for each
incremental impulse. Thus we may write
!

Jet-DY@®adr (6.4.13)

o

t
[y
o

or

t
) = [Y@) gt -1 dt (6.4.14)

The integral in equation (6.4.14) is the Duhamel (or faltungs or convolution) integral.

To illustrate the application of equation (6.4.14) let us consider the case of a har-
monically varying forcing function with frequency €. That is we write

Y(t) = Y, cosQt (6.4.15)
On substituting into equations (6.4.14) and (6.4.12) and carrying out the integration, by
parts (twice), we find the particular solution as
Y,(cos Q¢ — cos o)

y@) = (6.4.16)
m@Q? - o?)
Thus the complete response in the th mode may be written as
j, (0) Y,
) = O)———o—- cos ®,f + — sin .t + ————— cos Q¢
y}‘ yr( mr(Qz—wrz) r (or r mr(Qz—(g)rz)
6.4.17)

It is of interest to note that the general motion is composed of oscillations at the
natural frquency ®, and the forcing frequency Q. In any real system, where some
light damping is always present, the oscillations with frequency ®, will decay while
those with frequency Q will persist. Accordingly the former part of the response is
called the transient while the latter is the steady state.

If one specifies that initial displacement y,(0) = O and initial velocity
¥,(0) = 0, then of equation (6.4.17) there remains

Y,(cos Qt - cos w,1)

= 6.4.18
yr (8 @ — b ( )

1 Jean-Marie-Constant Duhamel (1797-1872), French mathematician
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In the special case when Q — ®,, where ®; is one of the natural frequencies ®,
of the system, the responge becomes indeterminate in form. We may however evaluate
this term by L’Hospital’s' rule as

4 [cos Qt — cos W]

Y
ys(t) = —— lim dQ
mg Q-a, L[QZ_(M]
aQ s
Yo t sinQt Yo t sin (0N
)= —> lim LSW¥ _ o 6.4.19
¥ () mg Qi)r?) 2Q my 20 ¢ )

Thus in this case the response becomes (Figure 6.5)

ys() = t sin ot (6.4.20)

o
2m.\‘ 0).\‘
This equation shows that in the case of resonance (2 = ®,) in mode s, the modal
response y,(¢) increases linearly in time. For most real systems there is always some
damping present and also the increase in response amplitude brings into play nonlinear
effects which have been neglected. These effects generally limit the growth of the
response.

y
Y,
— ¢
2mw \
0 t
Figure 6.5 Response at resonance

Problems
6.4.1 Solve the Duhamel integral for the step function Y(t) = Y, = -constant.

t Guillaume Francois Antoine Marquis de I'Hospital (1661-1704), French mathematician.
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Y
6.4.2 Solve the Duhamel integral for the ramp function ¥ (t) = t—l T.
1

6.5 Free Damped Oscillations

When viscous damping forces are present the linearised equilibrium equations of free
motion take the following form

m1{g} + [c1{q} + [k1{q} = {0} 6.5.1)

where [c] is the damping matrix. For light damping, which is the most common case,
the amplitudes of damping forces will be much smaller than those of inertial and elas-
tic forces. As such one can anticipate that the motion of a lightly damped system will
be very close to that of an undamped system. The major differences arise near reso-
nance. Damping forces typically limit the oscillation amplitudes at resonance.

In attempting to solve equation (6.5.1) by a transformation to modal coordinates
we note that the eigenvectors of the undamped system will not, in general, be orthogo-
nal with respect to the damping matrix and hence the modal matrix of the undamped
system cannot be used to diagonalize the [c] matrix. Knowing that [m] as well as [k]
can be diagonalized, one can approximate the [c] matrix by a linear combination of
the mass matrix and the stiffness matrix. That is we let

[€lgpprox = alm] + BIk] 6.5.2)
where o and P are some unknown scalar multipliers to be determined later from the
damping characteristics of the system, with o in s and B in s. On substituting
from equation (6.5.2) into equation (6.5.1) and also transforming from the physical

generalized coordinates {q } to the modal coordinates {y }, via the modal matrix of the
undamped system, we find

(m]pl {y} + (am] + BKDMI{y} + KIml{y} = {0} (6.53)

Now on premultiplying this equation by [u]7, as in equation (6.3.4), we obtain decou-
pled equations of motion, in the modal coordinates. These appear as

m,y, + (am, + Bk)y, + ky = 0 (6.5.4)
or
Vo + 2, @, 5 + ofy, = 0 6.5.5)
where
o? = kim, (6.5.6)
and
2, 0, = o+ B} 6.5.7)

Note that o and B are constants for the whole system, not just for one mode.
The auxiliary equation for the differential equation (6.5.5) takes the form

D2 + 2, @,D + w2 = 0 (6.5.8)

with roots given by
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Dy, = -Lo, £ o{Z-1 6.5.9)
Thus the solution becomes
Bt = Cee NG e p L NG Do (6.5.10)

where C, and E, are integration constants to be determined from initial conditions.

Now depending upon the value of (., three distinct types of motion can be
identified:
i) >1. In this case y, decays exponentially. The fastest decay occurs when
€,=1. This value is called critical damping.

ii) ,<1. For this case, equation (6.5.10) may be expressed as

y = e ot (A, cosw,, t + B, sinw, t) 6.5.11)
where
o, VI-C = w, (6.5.12)
is the damped natural frequency. The motion is oscillatory with decaying ampli-
tude.

ili) {,<0. In this case the motion is again oscillatory, but y, grows exponentially.
This case of negative damping (or fanning) gives rise to dynamic instability.

Denoting the initial conditions in the rth mode by y,(0) and y,(0), we may express
y, () as
e“g,(l),t yr(o) + Crmryr(o) . (6.5.13)

¥ 0 cosw, t + ————— sin o, ¢

3@ = o

From a knowledge of the damping ratio {, for any two modes, the coefficients o and
B may be found by means of equation (6.5.7). If data exist for several modes, the
coefficients o and P are best determined from a least square fit of equation (6.5.7) to
the data available.

Problems

6.5.1 A lightly damped system with two degrees of freedom is measured to have the
undamped natural frequencies ®, = 12 rad/s and ®w, = 20 rad/s. The damp-
ing ratios associated #¥ith these frequencies are {; = 0.09 and {, = 0.04.
Determine the damping constants o and [ for this system.

6.5.2 A lightly damped system’s decoupled equations of motion are

3 0| P 0.18 0 1 4 0 0

0 2| 5| Yo o019 |y, tlo 5| ly| T |0
Find (a) the damping coefficients o and B, (b) the undamped natural frequen-
cies ®,, (c) the damping ratios ,, and (d) the damped natural frequencies ®,, .
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Hence in the case of damped forced oscillations the function g (¢) of equation (6.4.11)
takes the following form for the rth mode

L ot

g = sin ,, ¢ 6.6.4)

r=Ucr

and the total response in the r th mode may be determined from

t
@) = [Y,@ g@-1vdr (6.6.5)
0

Example 6.6.1

Let us determine the response in mode r when a constant step force Y, is applied at time ¢t = 0,
in this mode. Assuming that initial values of y and y are equal to zero, the complete response
may be derived from equation (6.6.5) as follows

Y, ¢ -Lee
m,®, o

»@) = sin o, (t - 1) d7 @

Carrying out the integration by parts (twice) we find the response as

Y -
»@) = —02 1 - ! cosw, t +

&
mo? NI-¢

Evidently the transient component, with oscillations at frequency ®,., will die out due to the
exponential term.

sin o, ¢ (b)

Problem

6.6.1 Find the steady-state response of a damped single degree of freedom system,
subject to a forcing function Y = Y, cos Q¢.

6.7 Small Oscillations About Steady Motion

In the last section we considered small oscillations about the position of equilibrium
which is considered to be fixed. In some systems a dominant steady motion can pre-
vail and a small perturbation may then bring about small oscillations about the dom-
inant steady motion. Consider for instance the motion of a conical pendulum rotating
in a horizontal circle. Under steady motion the orientation of the pendulum from the
vertical and the angular velocity of the pendulum about the vertical will remain con-
stant. Indeed we can see that the angular momentum, in the circular orbit, will be
conserved. Satellites orbiting the earth and tops spinning on horizontal plates provide
other examples of steady motion for which certain coordinates and velocities remain
constant in time. In such systems generally some momenta are conserved which
implies that the coordinates associated with those momenta are ignorable coordinates.
If the steady motion of such systems is perturbed, oscillatory motions about the origi-
nal steady motion will result. In this oscillatory motion the variables which had
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1 2

R
2 mi%in%0

The general equation of motion for © can now be obtained from

R = -'g— %Y - + mg 1 cos® @©

and yields

2
Cy C0sO 8 .

— 0 + 2sin@ = 0

m? I* sin°0 1 ®

For steady motion 06=6=0 By taking the steady state values of 6 and w as 6 and \ilo

respectively we can write for the steady state motion

0 -

cy cosby
m? I*sin’ @,

= & sinoy ®

using equation (c) we can simplify this expression to

cosdy = - ®)
Tyo
Now suppose the bob m of the pendulum is tapped lightly with a hammer and assume for the
moment that p,, remains unchanged. This will give rise to oscillatory motion about the steady
motion. To obtain linear equations for this secondary motion we may expand the Routhian about
the position of steady motion.

Taylor Series Expansion of Routhian

In the general case of the Routhian we consider small deviations g;” from the steady
state motion and write the Routhian as R(g;, ¢;) = R (g0 + q;’, ¢jo + 4;") where
(Gio» gio) are steady state values of the generalized coordinates and velocities. Now
expanding by Taylor series up to the second order terms about the steady state motion
we have

R JR | . 1 R 1 R P R .
Ropprox =R+ | 5— i+ | = i+ = g+ — - g+ - g+
prox = (R Jo [aqi]oq [adi]oq 2 [quaqj]oq %+ [aqiaqj]oq q; [aqiaqj]oq q;
6.7.1)

where (), terms are constants to be evaluated for the steady state motion. The linear-
ized equations of motion can now be obtained from

A aR"{”’f‘”‘ _ Raprax _ 6.72)

and they take the form

2r_| o, [ 2R ] [ 2 ||,
9G;94; Jo 94;99; o 9g;9q; |o|

R oR
- - l=1] =0 6.7.3
[aq,-aqj ]oq’ [a‘b’ ]0 ©73)
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Now in these linearised equations of motion the condition of steady (gross) motion
requires that (dR/dgq;)y = O, since under steady conditions momentum associated with
q; is conserved i.e. g; is an ignorable coordinate. The remaining terms may be written
in matrix notation as follows

[m1{gY + [c1{q) + [k1{q}) = O 6.7.4)
where
[
[m] = ?R, symmetric
94:94; )o
2 2
[c] = ?R - ?R skew symmetric
| 94i94; Jo 94;9q; |o
o’R .
k] = symmetric
.aq,'aq,-]o d

Equation (6.7.4) resembles the equation for damped oscillations. However in the
present formulation no account has been taken of any damping forces. The skew sym-
metric matrix [c] in equation (6.7.4) arises due to the presence of gyroscopic forces
whenever ¢;’ are measured in a moving reference frame. These forces, in contrast to
real damping forces, do no work in the system and do not affect the energy in the sys-
tem. This can be seen in the skew symmetry of [c] which ensures that

{gYT [c1{gY =0 (6.7.5)

Nevertheless the gyroscopic forces can have a marked influence on the stability of the
motion as we will see in a subsequent section.

Example 6.7.2
Let us obtain the linearised equation of secondary motion for the conical pendulum of example
6.7.1. We found that under steady motion

B =6, =0 (a)
and cosfp = —3—2 ()
r Yo

Now expanding the Routhian into a Taylor series, retaining the nonzero terms up to the second
order, and setting ® = 0, + &, we find

2
cy €0s8y .
Rapprox = (R) + [mlz Siﬂ390 - mglsmeo]§ ©
2
1| c& (1+2cos’y) R YY)
- = | =—————5—— + mgl cosb, + —ml
2 [ mi? sin"6, gl cosy | & + o mi"%

The first term being a constant does not influence the equations of motion and may be dropped.
We also note the absence of gyroscopic terms. From the remaining terms of the Routhian we
obtain the following equations of motion

. c2(1 + 2cos%0p) cl cosf,
12 N i mgl - |——— - mglsinGy| = 0 d
mli*§ + [ i sin'0q + mgl cosBp| & i sin%6, mgl sin@, @)
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Now the last term will be recognised as the condition for steady motion (see example 6.7.1) and
vanishes. The equation of motion for small amplitude oscillation then becomes
2 2
" cy (1 + 2 cos“8
g + ¥ (2 Wiahe 0)
m*“l* sin"Q,

+ %coseo]é =0 ©)

We can now see that the small secondary oscillations about 6, have an angular frequency given
by
2 2 1
cy (1 + 2c0s°6,
= _".(_“‘—4") + £ cosh, ®
m** sing, l

To determine the ignorable coordinate y as a function of time we invoke the general expression
for p,, derived earlier, which we now write as

py = mitysin® (8 +E) = cy ®
Then
b= Sv
V= i sin? 0 + &) ®

We assumed earlier that the disturbance does not affect the value of the constant momentum p,.
If the value of p, is altered but remains a constant, say T, then in the above relations ¢, may be
replaced by €. It is usually assumed that c\, is a good approximation for T\, i.e. the momentum
Py does not change significantly as a result of the disturbance.

Figure 6.7 Mass-spring system mounted on rotating table

Example 6.7.3

Consider the motion of a mass-spring system on a rotating horizontal table as shown in Figure
6.7. The X.,Y axes are inertial and fixed in space, while q,, g, are attached to the table and
rotate with a constant angular velocity . Let us obtain the equations of motion for small oscilla-
tions.
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The transformation equations from the X, Y to ¢, ¢, coordinates take the form

X = (a +q)oswt — g, sinot (a)
Y = (a +q))sine¥ + g, coswt (®)
Then
X = ¢, cos0f — 0 (a + q,)sinOf — §oSinA¢ — g,0CosO! ©
Y = ¢, sinor + @ (@ + ¢ ,)cos0f + §, COSOf — q,0Sine @
and
T = % x*+ Y1) ©

may be expressed in terms of the rotating coordinates as

=2 {q% +47 + 1@ +q)* + ¢710% + 2@ + q))d2 - 24 Qz]m} ®

The potential energy of the spring may be written directly in terms of the rotating coordinates as
k

v=Ealgtrad - 102 ®

where I, is the unstretched length of the spring. Now forming the Lagrangian L = (T* - V) we
may obtain the equations of motion as

m(Gy - 2042 (@ + q)od) + ;’T"l =0 ®)
m(iiz+20)¢il-q2w2)+‘a§q¥‘ =0 @
2

Gyroscopic coupling terms are clearly present in these equations. Letting ¢, = gpoand g, = O,
under steady motion, i.e. when §, = ¢, = ¢, = ¢, = 0 we have

-m @@ + g0’ + [%,l-] =0 0)
0
oV
A [
[aqz]o ®

For small oscillations we can set ¢, = g0 + x and g, = y and then expanding V(q,, ¢;) in
equation (g) into a Taylor series we find

v v 1,2, 2|490—"1o
Vapprox = (V 3, 3N, ~k - 1
P ( )o+[aql]ox+[aq2]0y+2 [x +y [ P ﬂ+ o

The first term being a constant does not affect the equations of motion, that is, we can set
(V) = 0. The third term vanishes on account of the conditions for steady motion as given in
equation (k). By the same reason the second term may be expressed as

[%]ox = m (a + q1o)x©’ (m)

Thus we can now write the Lagrangian for small oscillations about steady motion as
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L= 2 (24574 (@ + g+ X7+ Y% + 205(@ + g+ %)

2
-1
- 2yl - (SB2+y? ["—‘;’m—"] 1+ @+ g a?) ®

The equations of motion can be determined via Lagrange’s equations as

k-mo?
m 0f|x 0 -2mo | |x 0 x 0
+ + _1 = (o)
0 m]|y me 0 ||y k[M]—m(oz y 0
0

q10

6.8 Solution of the Linear Equations of Motion
For the general linear equations of the type
(ml1{g} + [c1{q} + [k1{q} = {0} 6.8.1)

where the matrices have constant elements and the approach used in section 6.5 cannot
be used, we may assume a solution of the following form

{q} = {A} e 6.8.2)
Substituting into equation (6.8.1) we find a set of homogeneous linear equations
[x2[m] + Mc] + [k]] {A} = {0} 6.8.3)
For non-trivial solutions then
det A[m]+Alc]+[k]] = O 6.8.4)

which leads to a characteristic polynomial of order n in A2. Since the coefficients of
this polynomial are real, its n roots, namely the n eigenvalues will be in complex con-
jugate pairs of the type

A, =a tio, A, = a, —-io,
where i = V-1.

The constants a, and ®, are real and they can be positive, zero or negative. We can
now make the following observations about the solutions of the equations of motion.

a) If all @ are negative and all ® # 0, the motion will be damped simple harmonic.
If all A are real and negative, the disturbed motion will gradually settle back to
steady motion. '

b) If all @ are positive with all @ # 0, or if all A are real and positive, the disturbed
motion will grow exponentially with time. In this case then the motion is
unstable in the vicinity of the steady motion.

The conditions a) always prevail when the matrix [c] is due to physical damping
only. When the matrix [c] accounts for gyroscopic terms only, the characteristic poly-
nomial for the eigenvalues will have even terms only, as is the case when gyroscopic
terms are absent. Conditions a) and b) can arise when [c] is due to gyroscopic and
physical damping terms.
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Once the eigenvalues are determined the corresponding eigenvectors {A } may be
computed via equation (6.8.3). However the elements of the eigenvectors will be in
general complex. For an oscillatory mode then the various coordinates will move with
the same frequency but will be out of phase.

VA
\"
b
mg

/

90‘ 0 Y
X

v

Figure 6.8 Spinning top

Example 6.8.1

Consider the motion of a spinning top as shown in Figure 6.8. Using Euler angles and Euler fre-
quencies we can express the Lagrangian of this system as

L = %[A (6% + ¥ sin®V) + C (6 + y cosv)?] — mglcosv @

where / is the distance from O to the centre of mass of the top. It is now clear that both y and ¢
are ignorable and we may remove these coordinates. Let us however remove 6 only. We have
that

aL
a6
Now the modified Lagrangian Ly can be expressed as

Po = = C(@+ycosv) = cq ®)

Ly = L —cqO ©
Removing G from Ly via equation (b) we obtain the Routhian
2

. Cc .
R = %[A (6 + ¢ sin’v) - —Cl + coy cosv] — mgl cosv (@
The equations of motion can now be obtained from Lagrange’s equations in the form
d dR dR
a R _ X, _»
dr aq, aq; (e)

from which there emerge
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for ¢; = . A(y sin® + 2 ysin vcos V) - cousin v = 0 ®

for g, = v A V- A y*sinv cosv + coysinv — mgl sinv = 0 ®

The presence of the gyroscopic terms (- ¢4 Vv sinv) in (f) and (co\ilsinv) in (g) can be observed.
For steady motion 6 = y = 0. Then from equation (f) we obtain the condition for steady
motion (steady precession) as

i cot NecZ — 4A mgl cosv
Yo = 24 cosv (h)

There are therefore two possible steady precession rates, provided that
c2 > 4A mgl cosv ®

Thus the magnitude of the angular momentum c,; must be large enough to provide gyroscopic
stabilisation. To obtain the equations for small amplitude oscillations about steady motion we set

V= yotd, and V=v+Badv =25
in the Routhian and expand into a Taylor series

Regprox = (R)o + (A Y7 sinv cosv + mgl sinv — cqy sinv), B+

(A V)ofs + (A W sinv + g cosV)gG + % AR +
% (A y? cos2v — mgl cosv — c gy cosv) P + —;— (A sin?v),0 G)

+ (24 w sinv cosv — ¢ ¢ sinnu)y & B

Now using R ,,,,,, in Lagrange’s equation (€) and taking note of the conditions for steady motion,
we obtain the equations of motion for small oscillations about the steady motion as

A B - @A \ifcosZV—mglcosv-ca\il cosv)pp - (A \irsin2v - cgsinv)g = 0 &)

(A sinV)y & + (A ysin2v — cesinv) B = 0 a
where the ( ), are constant terms. For the special case of vp = 90°, these equations simplify to
A 0]]|a 0 -c||a 0 0 a 0
+ + = (m)
0 Af|p cg O B 0 Ay}| LB 0

Now assuming a solution of the form
a=A e¥ and B=AeV )

we find the condition for a nontrivial solution of the above equations as

A A —coh A, 0
‘ = )
ch AMT+yd | | Az 0
The vanishing of the determinant of above matrix yields
AZA + AP+ =0 ®)



286

which provides us with the eigenvalues

1 1
. c2l7 . c2l3
A’l=0, M=0, l3=i[\|’g+A_¢;] N M:—i [\voz.‘.-A% (q)
Substituting these values back into equation (1) and letting A; = 1, we find the eigenvectors as
1 1
l] [l}
’ 3 ° d ° (r)
a2 | Ayl
0 0 i1+, —i+ 20
Co [

The presence of i in the computed value for A, implies that o lags f by 90°.

Problem

6.8.1 For Kepler’s problem of central force motion obtain (a) the condition for steady
motion. Then by considering a small disturbance about the steady motion
obtain (b) the equation for small oscillations about the steady motion. Show
(c) that the period of this oscillation is the same as the orbital period of the
steady motion.

6.9 System Response to a Step Impulse

Spike forces, i.e. forces of very large magnitude and very short duration, arise typically
in impact problems. For purposes of mathematical modelling such forces are assumed
to have the following distribution over time. Prior to impact the force is taken as zero.
During the period, At¢, of impact the force is assumed to be very large approaching
infinity as A+ — 0. However the impulse, i.e. the area under the force time-curve, is
assumed to remain finite. After impact the force is again taken as zero. A system
subjected to such spike forces will normally suffer finite discontinuities in its veloci-
ties. On the other hand, given the short time duration for these forces and the finite
changes in velocities, one can see that the changes in the system configuration, over
the short period of time, will be negligibly small. It follows then that such properties
of the system that depend upon its configuration, such as positions or mass distribu-
tion, will remain constant during the action of spike forces. Furthermore, the impulse
of any other force of finite magnitude, over the small period Az, can be considered
negligibly small compared with the impulse of the very large spike forces.

In the following we use Lagrange’s equations and Gauss’ principle of least con-
straint for the analysis of motion resulting from a spike force.

Lagrangian Method
Lagrange’s equation in its fundamental form (2.6.20) is

d ort _ art _ 0
dt  3g; og; '
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Let us now split the generalized force Q; into the usual components Q,,, i.e. elastic,
gravitational, dissipative, etc., and a spike force Q;, such that

4 o or 0. = O 6.9.1)

dt aq, aq f

Integrating equation (6.9.1) with respect to time between the limits ¢+ = 0 and
t = At, we find

* * Ar * At
oT oT aT
= - - - — + Q;, |dt = Qi dt (69.2)
i |a ;i |, ! [ 9g; * ] ! ®
We now invoke the definition of generalised momenta p; = Y and write
qi
or* or*
= p - = = - 6.9.3
Ap i p ] I At p 1 0 aq-' o aq-' . ( )

On taking the limit as Az — 0 we note that the integral on the left hand side of equa-
tion (6.9.2) vanishes since (9T " /9q; + Q;,) is finite in magnitude. On the other hand
the integrand on the right hand side approaches infinity as A+ — 0, but the integral,
which yields the step impulse G; of the spike force Q;;, remains finite. Thus noting
equation (6.9.3), we may write equation (6.9.2) as

Ap; = G; (6.9.4)

It is useful to put this equation into a virtual work form. To maintain the dimensions
of work we write the virtual work in terms of virtual velocities rather than virtual dis-
placements. Thus we write

W, = (4p; - G))dg; = 0 6.9.5)

Now it will be recalled that in general the transformation relating the Cartesian coordi-
nates r to the generalized coordinates g takes the form

rj = rj (ql,qz,...,q,',...,q" ,t) (69.6)

The associated transformation for the forces, when time is held fixed, was shown to
take the form

or;
0 = F 3= 6.9.7)

On integrating equation (6.9.7) over the period from 0 to Az we deduce that for spike
forces

u A arj
gQis = (J;Fjdt 5;

or

G = I _L (6.9.8)
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where I; is a step impulse if F; is a spike force (Figure 6.9). Also it was shown that
in general the relation (1.9.8) between the generalized momenta and generalized velo-
cities takes the form

{r} = [Alq} + (b} (6.9.9)
where the vector {b} arises due to the explicit appearance of ¢, in equation (6.9.6).
Again ¢ is taken as a constant over the short period Az when the spike force is acting.

Thus for a spike force the column matrix {b} vanishes, and we may invert equation
(6.9.9) to obtain

{4} = [ATYp}) (6.9.10)
Using equation (6.9.4) we have then
{Aq} = [ATY{G} (6.9.11)

Since [A] is a positive definite matrix, the above relation, implying a finite change in
velocities, can always be obtained.

F F
F -5
At =0
I=[Fdt
1
t t
0 kst p, 0
1 1
t t
0 (@ 0 (b)

Figure 6.9 A triangular spike force (a) and its idealization (b)

Example 6.9.1

Four rigid bars each of mass m and length ! are pin-jointed at their ends to form the rhombus
ABDE as shown in Figure 6.10. The system lies on a smooth horizontal plane and it is subjected
to a step impulse 7, at point A. Determine the angular velocities of the bars and the linear velo-
city of the mass centre immediately after the application of the step impulse /.
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L

Figure 6.10 Pin-jointed rhombus subjected to step impulse

Evidently after the application of the impulse / the system will acquire some complemen-
tary kinetic energy. This energy will be in part due to translation of the four bars and in part due
to their rotation.

For a typical bar such as DE, we can write the coordinates of its mass centre as

1, . 1
xG=?Ism9 yG=EIcos6 @
Hence the complementary kinetic energy of bar DE becomes
1 ? 1 11
» _ ﬂ 1,4 . _ e 1 A2
Tpe = 2[[210cose] +[yc 210sm0]]+ 2.19 ®)

where the first two terms account for the translational and the last term for the rotational com-
ponent of the complementary kinetic energy, with

I S
J—l2ml ©

as the bar’s inertia moment, and yc as the velocity component of the system’s mass centre in the
y direction. Writing the energy terms for the remaining three bars in like manner we find the
total complementary kinetic energy as

T =2myd + 27 ¢ @
The change Ap; in the generalized momenta can now be determined from equation (6.9.3).
L

Ap, = = A@dmyc) = 4m Ayc @©
(o
Ape = AQaTé— = A@4JIO) = 4 A ®
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To evaluate the generalized step impulses G; we write down the virtual work of the step
impulse /. Before doing so we need the displacement and velocity of point A in the y direction

Ya = Yo — lcos® ®
with yo = 0, and
Ja = Jc + (sin0)6 ®
Now
W, = Idy, @
= I8c +11sin® 30 G
We conclude that
G, =1 ()
and
Ge = Ilsind o
We can now determine the changes in the system’s momenta using equation (6.9.4). Thus
Ap, -G, = 4mDyc -1 = 0 (m)
and
Apg — Gg = 4JAD - I1sin® = 0 )

Thus the acquired initial velocities are
I

Aye = —
Ye - (0)
n _ 11lsin®
AO = 27 P
If we assume that the system was at rest at the beginning of the impact, then its kinetic coenergy
immediately after impact would be
AT" = % 4m (Ayc)* + % 47 (A6)? @

Constraint Consideration

Whether any constraints present are holonomic or nonholonomic, they may be
expressed in differential form as follows:

ajdrj + aydt = 0 (6.9.12)
or
a;r; + a, = 0 j = 123,..3N (6.9.13)
where the r; represent Cartesian coordinates.

Now let us invoke the virtual work expression of equation (6.9.5) and write it for
Cartesian coordinates
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W, = (AB; - I)&; = 0 6.9.14)

Since B = mr for each mass, we recognize that equation (6.9.14) involves velocities
rj by virtue of AB; and virtual velocities &;. To prevent the constraint forces from
doing work, virtual velocities are considered at a fixed time, that is for virtual veloci-
ties time is not varied and hence virtual velocities must satisfy the instantaneous con-
straint equation

a; 8 = 0 (6.9.15)

On the other hand, the velocities appearing in AB; must conform to the actual con-
straint equations as given in equation (6.9.12).

Now let us write the virtual work expression, with AB; = B; — Bj,, as
8W] = (B] - Bjo - 11) 8"] =0 (6.9.16)
Noting that Bj, and I; are given quantities, and consequently 8B;, = 0and &/; = 0,
and further noting that B; = (mr')j for each mass m, we may express the virtual

velocities as 8r'j = 8(—m—J = I;). Then the condition (6.9.16) of W, vanishing

j
becomes
AB;
(ABj - Ij) &(—L+ - 1].) =0 6.9.17)
m;

Noting that the constant m has no effect on the virtual changes in the second bracket,
we may introduce a function
1
z =3 (AB; - I;) (AB; - I;) (6.9.18)
and minimize it by setting
& =0 (6.9.19)

i.e. the vanishing condition (6.9.17) is equivalent to minimization of z with respect to
AB;.
The function (6.9.18) may also be written in vector form

z = —21—(ABk - L) (AB, - L) (6.9.20)

which exhibits some resemblance to equation (2.4.6) of Gauss’ principle of least con-
straint. Sometimes this approach for spike forces is indeed referred to by the same
name. The point to note, however, is that in the minimum principle presented here the
quantities varied are the linear momenta, whereas in Gauss’ principle of least con-
straint proper the quantities varied are the time derivatives of linear momenta.
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Figure 6.11 Horizontal spike force

Example 6.9.2

The pendulum shown in Figure 6.11 is pulled through the platform at a constant velocity v. At
time ¢+ = 0, the point mass is struck horizontally by a spike force (or step impulse). Determine
the angular velocity of the pendulum immediately after impact.

The constraint for this problem is

22+ y2 = (o - n)

or in differential form
xdx + ydy + v(ly — vt)dt =0 (@)
or
x +yy +v(lp-w) =0

Thus @, = x,a, = y,a, = v(lp — vt). With B, = mi and B, = my, we may now write
Gauss’ constraint (6.9.18) as

1
= (@8 - 17 + @8] ®
Minimizing z with respect to B, and B, we have
(ABx - I)Mx + (ABy)SBy =0 (C)

However the virtual velocities are not independent and they must satisfy the instantaneous con-
straint equation, namely

& = - @
or

aBy = - ©)
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Substituting into equation (c)
(AB,—I)—iAB, 8, = 0 ®

The term in the large bracket must therefore vanish. However B, ,B, and x, y are not independent
either, and they must conform to the rheonomic constraints. An expedient way of satisfying the
constraints is to use the coordinate 6 and let

x = (I, — w)sin® (g)
y = -(, — vt)cos (h)
% =(, - vt)0cosd — v sind @)
y = (I, — vt)0sin® + v cosd )
such that
B, = m(l, — v)dcos® — mv sin ®
B, = m(l, - w)0sin® + mv cosd )
since over the short time interval Ar, neither the configuration of the system nor the velocity v
change
AB, = [m(I, - vt)cose] Ad (m)
AB, = [m(z, - vt)sine] A8 )

since Av = 0.

Substituting equations (m) and (n) into equation (f) realizing that 8B, is arbitrary and sim-
plifying we find

(4 - v)ad - Lcoso = 0 ©)
m
or
. I cos O
4 = m(l, - wvt) ®

Energy Change
Due to the changes Ag in velocities one can expect a change AT” in the kinetic coen-
ergy of the system, when the system is subjected to a step impulse.

For cases where ¢ is taken as constant over the very short period At the kinetic
coenergy (1.9.4) becomes simply

T" = —;- @) 14144} (6.9.21)

and the change,

AT = 2L A1)y - 5 @IFTAT (), ©69.22)
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with [A] as the symmetric matrix (1.9.6). For such a system the generalized momenta
are as given by equation (6.9.10), i.e.

{p} = [Al{q} (6.9.23)
and hence
* 1 . 1 .
AT" = S @& Ply - 5 145 P (6.9.24)
Now premultiplying equation (6.9.23) by {q )} we deduce that

{4l ) = {4)] 1414} (6.9.25)

On transposing the right hand side and recalling the symmetry of [A ] we find
417 ) = (@) ) (6.9.26)

On substituting from equation (6.9.26) into (6.9.24) we may express the change in the
kinetic coenergy as

AT = Ak + @Dl - ) 6.927)

Next noting that the change in generalized momenta is equal to the generalized
impulses according to equation (6.9.4), we may write

AT = Ak + 1D (6) 6.9.28)

or

*

AT* = %{G}T Udla + (d)o) (6.9.29)

That is, the change in kinetic coenergy is given by the product of the generalized step
impulse and the mean of the velocities after and before the impact.

‘1.1 q2 ‘q3
cA m 4’B m oD
I l A
1

Figure 6.12 Two-rod system subjected to step impulse
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Example 6.9.3

Two rods AB and BD, each of mass m and length /, as shown in Figure 6.12, are smoothly
hinged at B and rest on a smooth horizontal plane. A step impulse 7 is applied at D normal to
BD giving rise to velocity v, at D. Find (a) the initial velocities of points A and B, (b) the mag-
nitudes of initial angular velocities of AB and BD about their centres of mass and (c) the change
in the complementary kinetic energy of the system.

Take q1,92,93 as the generalized displacement coordinates of the system for the transverse
motion. The complementary kinetic energy for rod AB may be expressed as

2 2
. m| 41+ 42 1 mi? | 42 - 41
T"B‘z[ 2 ]*212[ ] ] @

where the first term describes the complementary kinetic energy for the translational motion of
the mass centre and the second term gives the complementary kinetic energy for rotation about
the mass centre. We may write this in matrix form as follows

m .
q1
92

.1 .3
Tap = 2 (91 ¢2] 'm

6
For BD the complementary kinetic energy is of the same form but expressed in terms of ¢, and
¢3. Thus the total complementary kinetic energy of the system becomes

®)

wlz o3

m m
— — 0
1 1 ; ; a
« _ 1 .07 o= Lo m 2m m .
r =3 {a} (Al {q}) 2 41 92 93] 3 3 6 l{z ©
m m q3
0 6 3
The virtual work of the impulse [ is given by
W, = G184, + G28G2 + G3d43 = I 843 ()]
such that
Gy =0 0 1] ©
The generalized momenta p; are
m m
3 6 0 a1
. m 2m m .
{p} = [Al{q) = 6 3 6 ‘{2 ®
m m q3
0 6 3

Equating the changes {Ap } to the step impulse {G } according to equation (6.9.4) gives
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m n 0
3 26m Aq, 0
m m .
7 > 5 | |2 = | ®
0 m m Aq3
6 3
Solving for the velocity changes we find
. 71 . 2 . v
Aq3= —2—;=vo Aq2=_7vo Ag, = Ta (h)
The initial angular velocity of AB will be
[ 2 1 ] v
. . - 5 - T v
Agy - Aqy 7 7 __3 Y ®
1 1 7 1
The initial angular velocity of BD will be
2
By -8y _ P g, "
1 1 7 1

and the change in complementary kinetic energy may be computed by using equation (6.9.29)

AT" = -%lAq';; = %lv,,
= % m v}
-3t o
The magnitude of step impulse required to produce a Ag; = v, is, from equation (h)
1= 2y, 0

Bertrand’s Theorem

If a system at rest is subjected to some spike forces, the kinetic coenergy resulting will
be greater than if the system had been subjected to additional scleronomic constraints
and subjected to the same spike forces.

To prove this theorem, let T* and T, be the kinetic coenergies of the system
before and after the constraints are imposed respectively, both immediately after appli-
cation of the step impulse. Now writing virtual work expressions for the uncon-
strained and the constrained systems respectively, we have

{3¢}7 [A1dq) - (O) = {84} {G) (6.9.30)
1817 1A1 (g}, - (Oh) = (3¢}7 (G} (6.9.31)

The null vectors indicate that the system is initially at rest. The subscript ¢
identifies the constrained system.
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As virtual velocities let us take
3¢} = {84}, = {49} 6.9.32)

This can be done for the constrained system since the constraints are scleronomic and
{q}, satisfies the same constraint equations as {8¢q }.. For the unconstrained system,
{g}, is certainly an admissible virtual velocity vector. Using equation (6.9.32) in
equations (6.9.30) and (6.9.31) and subtracting the latter from the former, we find

@)\ Fa1dqy - 4)) = 0 (6.9.33)

We may now expand equation (6.9.33) and write it in the following modified form:
1T AT (@) - 2 (d)e A1) = 5 () - (@DTATAG) - (4))
(6.9.34)

Evidently the right hand side of equation (6.9.35) is a positive quantity and the left
hand side gives T* - T,. This proves the theorem.

Example 6.9.4
Let us consider the system of example 6.9.3, this time let point A be pinned. Thus Ag, = 0.
Let us determine Ag,, Ags, and the change in the kinetic coenergy of the system.

Since Ag; = 0, the governing equation becomes
2m m
) 6 | | A2 0
{ap} = [Al{AMq)} = | . m Ajs =1y @
6 3
Solving equation (a)
.- _ 81
Ag; = T m ®)
LAl
Ag; = 7 m ©

The kinetic coenergy change (6.9.29) is

nr
T m

AT* =§G.~(A«i.~)=%[ou%ﬂ @
which is smaller than the kinetic energy change (k) of example 6.9.3. Now in this problem if an
additional constraint is imposed we would expect the resulting kinetic coenergy to be further
reduced. Is this however always the case? From equations (b) and (c) we can see that the result-
ing motion will have a node (where the transverse velocity A = 0) at a point between points B
and D. The point, which is the instantaneous centre of rotation, is at a distance of (//5) to the
right of B. Thus if this point is constrained by means of a frictionless pin the value of the result-
ing kinetic energy will be unchanged since the constraint will be in effect inactive. Based on this
perspective we can present Bertrand’s theorem as an extremum problem in the magnitude of 7",
That is 7* will assume its maximum value, when the active constraints are least. To illustrate,
suppose we introduce a constraint by means of a frictionless pin at some point x to the right of B.
Then ¢, and ¢5 will be related by
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42=-l13l_x ©

Under the additional constraint T* becomes

.9 2
» _ M3 X |
SRR "

Now setting dT" /dx to zero we obtain

4x
Il -x

-1 =20
or

x =15 (@

That is, T* will assume its maximum value when the constraint is at the instantaneous centre of
rotation and is therefore inactive.

Kelvin’s Theorem

This theorem states that if any points of a system are suddenly set in motion with
prescribed velocities, the kinetic coenergy of the resulting motion will be less than that
of any other kinematically admissible motion in which the given points have the same
prescribed velocities.

To prove this, suppose the prescribed velocities are brought about by step
impulses G;. Then from the expression for virtual work in equation (6.9.5) which we
now write in terms of velocity, we have that

, , , . i=1,2,..,3N
[(mg); — (md)gl 84; = G; 8¢; j=12 ..k (6939

where N is the total number of particles and & is the number of prescribed velocities.
Now for simplicity let us assume that the system is initially at rest, i.e. (mgq);o = O.
Suppose we use the actual velocities as virtual velocities. This is admissible since
actual velocities also satisfy the kinematic constraints. Then equation (6.9.35) can be
simplified and expressed in the following two forms:

(mdq); ¢; = Gj q;
(mq); ¢; = G, g;
It follows then that
(mq); ¢; = (mdq); g
Let us now add and subtract % (mq); q; and -;— (mdq;)g; to the right hand side and
write the above equation as
- 1, .. . 1 L e 1 . . . .
mq); q; = —(mqg); q; + ‘2“(”1 89);8q; - Elm(q - 89)); [(@ - 39)); (6.9.36)
on rearranging

Tn8); 4 = m @) & = M@ - 8D G -89) (693D
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In equation (6.9.37) we can recognise the first term as an expression for an admissible
kinetic coenergy and the second term as the actual kinetic coenergy. Since the
difference between these energies is positive, the actual kinetic coenergy is least. In
other words the actual motion corresponds to the minimum value of kinetic coenergy.

Example 6.9.5
Consider example 6.9.4 again and this time suppose §3( = A ¢3) is prescribed. Let us now write

the expression for the kinetic coenergy of the system in terms of linear and angular velocities of
the centres of mass for the two rods. Then we have

. m ., mi? ) m ., m? 2
T = | = = =z v
[2‘1‘-‘.24(‘)],B-'-[ch-'-%mBD @

But now we need to introduce the kinematic constraints
. ! -
(@c)ep + ‘2‘(0))30 = q3
. 1
(@)an~ 5@ = 0 ®)

(dc)sp - é(w)BD = (dc)as + é(fﬂ)‘m

where we have taken the positive angular velocities in the anticlockwise direction. These three
constraint equations in terms of four variables can be satisfied in an infinite number of ways.
That is there exist an infinity of kinematically admissible motions. For such admissible motions
T" can be expressed in terms of one of the variables, say (w)gp. Thus satisfying equations (b)
we find

@c)ep = 43 - %(m)BD

@ )as = - - é(ﬁ))sn

(©)aB T (®)Bp

Substituting these results in equation (a) we find

*

5. = 2 -
T = TP - Em gl + Tmdd ©

Now minimizing T" with respect to (®)gp we obtain
dT‘
d(o)pp

2m 5 -
= le(m)sn - gmUIs =0

o @m =2 & @
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from equation (b) we now find
. 3 -
@c)p = FIRE
and since
G = 3 (& + 39
we have
. _l - ©
q2 4 qs3

in agreement with the result found earlier in example 6.9.4.

Carnot’s Theorem

This theorem states that when scleronomic constraints are suddenly imposed on a sys-
tem, part of the system’s kinetic coenergy will be lost. Again we invoke the virtual
work theorem in equation 6.9.5.

(@i — Pi0) - G)dg; =0 (6.9.38)

For the present case there are no generalized impulses ie. G; = 0 and we must
choose the virtual velocities so that they satisfy the constraints. This being the case
the virtual work of the step impulses associated with the constraint forces will vanish.
Further we may use actual velocities immediately, after the imposition of constraints,
as admissible velocities. Then equation (6.9.38) may be written as

i =piola; = O or Pi 4i = Pio 4 (6.9.39)

Now let us add and subtract -;— Pio gio and % P; ¢; to the right hand side and write

the above equation as

. 1 . 1 . 1 . .
Pidi = S Piodiot 5 Pidi 5@1’0 = P Qo — qi)

where we have used the fact that p;; = mg;pand p; = mg;.
On rearranging we have

1 . 1 . 1 . .
2Pi 4 =5 Pio dio = = 5 ®io = P) @io — 4i) (6.9.40)
Now the first two terms on the left hand side will be recognized as the kinetic coen-
ergy just after and just before the imposition of the constraints. The right hand side
term being negative implies that kinetic coenergy will be reduced when the constraints
are imposed. The "lost energy" in effect is converted to nonrecoverable energy.

The converse of Carnot’s theorem is also true. That is when some constraints are

suddenly removed, as in an explosion of a shell, the fragments of the shell will acquire
additional kinetic coenergy.
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is free to rotate about its end C which is pinned. A step impulse is applied to
A, towards D, a point in BC such that DC = % BC. Find the resulting veloci-
ties in the rods.

6.10 System Response to a Step Displacement

It is of interest to enquire what kind of problem, when written in the complementary
formulation, would have equations analogous to those obtained for the spike force
problem (6.9.1).

As noted in the spike force problem, we find the spike force so dominant, that
other forces present become negligibly small. This is a consequence of the high mag-
nitude and short duration of the spike force. Now in the complementary formulation,
the place of the spike force will be taken by a spike velocity, and the place of the step
impulse will be taken by a step displacement.

The complementary Lagrange equation (2.8.2)

doL ot _ o
dt 9s; oS; J
can be written, with the help of Table 1.11.1,
d v’
- =2 = 5 .10.1
ar 35, S; (6.10.1)

Now let the generalized speed be split into the usual speed components s;, and
the spike speed s, such that

Sj = sju + sjs (6102)
and the complementary Lagrange equation (6.10.1) can be rearranged to
d av*"

—_— — -_— . = S

/ 6.103
dr g5, T €103
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Integrating equation (6.10.3) with respect to time between the limits ¢ = 0 and
t = At gives

av* v’ r r
- - - + (s;,)dt = s;s dt (6.10.4)
and using e; = - %_VS—’ we obtain
J
At A
e |N e lo + !sj,, dt = !sjs dt (6.10.5)

Taking the limit as At — 0 we note that the integral on the left hand side of equation

(6.10.5) vanishes, since Sju is finite.

On the other hand, the integrand on the right hand side approaches infinity as
At — 0, but the integral, which yields the generalized displacement d; of the speed s;s
remains finite. Thus, we may write equation (6.10.5) as

Ae; = d (6.10.6)

That is the imposed spike velocity s;; gives rise to changes in the stretch of the associ-
ated force element with potential coenergy (e.g. spring, gravitational force). Equation
(6.10.6) is analogous to equation (6.9.4).

It is useful to express equation (6.10.6) in virtual work form. To maintain the
dimension of work, we write the virtual work expression in terms of virtual forces &S
rather than virtual impulses. Thus

Wy = (Ae; - dp)dS; = 0 (6.10.7)

Equation (6.10.7) is essentially static in nature and is the analogue of equation
(6.9.14).

Example 6.10.1

The system shown in Figure (6.13) is subjected to a displacement d,. We wish to determine the
spring stretches and the system’s complementary strain energy.

For the complementary formulation of this problem we need an equilibrating set of impulses.
Such a set is shown in Figure (6.13). However since we are dealing with a static problem, iner-

tial and damping forces may be neglected. That is
pr =0 @
p2 = 0 )
S, = constant ©
This implies that
S + 83 = S3 @

Thus there are there unknown forces and we have one equilibrium equation (d) relating the three
forces. The problem has therefore two degrees of statical indeterminacy.
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Hence the stretches are

S, ks d,

Ao = = T Ltk tk ®
S, ks d,

Aez = —kz B k1+k2+k3 ©

fes - Sy [5itSa] _ (k) d ©
k3 k3 k1+k2+k3

The complementary strain energy of the system can now be obtained from equations (e), (k) and
(M as

o _ 1 kit + k),

V=E(k1+k2+k3)d‘ @

Analogue of Bertrand’s Theorem

An analogue of Bertrand’s theorem may be developed for elastostatic problems. Con-
sider for instance an elastostatic system with n degrees of statical indeterminacy. Let
the system be subjected to a number of prescribed displacements. Under this
configuration the elastic system will store a certain amount of complementary potential
(strain) energy. Now the analogue of Bertrand’s theorem asserts that this complemen-
tary potential energy will be reduced if the degrees of statical indeterminacy of the
system are reduced, for instance by releasing some of the redundant members.

Example 6.10.2

Consider the last example again but this time let us remove the first spring and thereby reduce the
statical indeterminacy of the system from two to one. We wish to compute the complementary
strain energy of the new system.

The new value of the V* can be readily computed from equation (q) of example (6.10.1) by

setting k, = 0. That’s if the stiffness of the first spring vanishes the spring will carry no force.
Hence for the new system

1 k3ky
2 Gorkp ! @

Voew =

Now the analogue of Bertrand’s theorem asserts that V* > V,.,,. Using equation (a) above and
(q) of the last example we can write this inequality as

k1+k2 ko

kit kot ks Kyt ks ®)
or (ky + ko)ky+ k3) > kolky+ ko + k3) (©)
ie. kyks >0 ()

which evidently is true since k, and k5 are both positive.
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Analogue of Kelvin's Theorem

This theorem may be stated as follows. If an elastostatic system is subjected to some
forces the complementary strain energy of the system will be least when the compati-
bility requirements of the system are satisfied. This theorem will be recognised as the
classical minimum complementary strain energy principal of elasticity.

Analogue of Carnot’s Theorem

This theorem states that that if in a statically indeterminate elastostatic system, sub-
jected to some prescribed displacements, the degrees of statical determinacy are
reduced, by removal of some redundant members, part of the systems complementary
strain energy will be lost. The "lost energy" is in effect converted to nonrecoverable
energy.

Example 6.10.3
Consider once again the system shown in Figure 6.13. We found the complementary strain
energy of this system in example (6.10.1) as

ky(ky+ky)

V' = _l._._
2 (ky+ky+ky !

(@
In example (6.10.2) we noted that when the statical determinacy of the system was reduced by
removal of the first spring, the complementary strain energy reduced to

1 k3k2 2
2 ky+ks di ®

Viw =

Thus the reduction in V", brought about by the removal of the first spring in given by

ki (ky +k k3 k
AV = 1 [kstki+ky)  k3ky a2 ©
2 {ky+ky+ks ko + k3

or AV' = 1 ki by d? d
2 | (kg +ko+ky) (kp+ky)| |

Now before the first spring was removed, we found, in example (6.10.1), that it had a force
ks ky

BT T hkR ©
Hence the contribution of this spring to V" is given by
* .§2 k‘.% k 1 2
Vi=7—= —d
YT 2k 2k +kp k) ®
Now the analogue of Carnots theorem asserts that
AV > V] ®

That is the reduction in the complementary strain energy is larger than that which was stored in
the first spring. To demonstrate, we obtain from equations (d) and (g)



1 1

>
(ky + kg + ks)(ko + k) (ky + ko + ko)

The truth of this statement is self evident since £, > 0.
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Appendix A

THE CALCULUS OF VARIATIONS

Introduction

The calculus of variations provides the mathematical foundation for the study of
analytical mechanics as well as a number of other branches of physical sciences. In
this appendix we study the essentials of the calculus of variations for applications to
problems of analytical dynamics.

We. begin our study by introducing the notion of a functional and by way of
motivation pose a number of classical problems concerned with the extremum of func-
tionals. We then show that the extremum conditions of a functional appear as solu-
tions of a differential equation - the so-called Euler-Lagrange equation. Next we con-
sider the extremization of functionals subject to different types of constraints and show
that the Lagrange multiplier method provides a versatile technique for taking account
of such constraints. Finally we consider functionals with variable end points and
derive associated extremum conditions.

A.1 Functions and Functionals

A function, for example u = u(x,y), establishes a relationship between two or more
variables e.g. u, and x and y . Generally the dependent variable, u, is expressed in
terms of one or more independent variables, in this case x and y, and when the
numerical values of the independent variables are specified, that of the dependent vari-
able can be calculated. ‘

A functional establishes a relationship between one variable and several functions.
Consider, for instance,

s = f:‘z F(x,u(x),u (x)v(x),v(x))dx (A.1.1)

Here in order to calculate a numerical value for s one must specify the functions u (x),
and v (x).
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For only one function, we may write

x ’
s = L,z F(x,y(x),y (x)) dx (A.1.2)
y
/
/
Yy B
S
N =1
X
[
0 p b
Figure A.1. Distance between two points in a plane
Example A.1.1

What is the shortest distance between two points in a plane? The distance between points A and
B may be expressed as (see Figure A.1)

s =] ds @
But
ds =Va? + ay? = '\/T%)zdx ®)
Thus
s = [T a ©

Clearly when y, as a function of x, takes different forms, the functional s will take different
values. Hence in equation (c) we have the integrand F = V1 + y?, and we ask which particular
form of y, as a function of x, minimizes s.

The study of finding the minima and/or maxima of functionals is referred to as the cal-
culus of variations. We shall develop procedures for finding such extremum condi-
tions of functionals in due course. For example A.1.1 at hand it is worth noting that:

1)

Different forms of y which compete to minimize s in (c) are all functions of x,
i.e. the independent variable is not altered.
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2) All forms of y which are allowed to compete for minimization of s should pass
through points A and B, where x =a and x = b respectively.

3) The forms of y considered must be continuous in the interval AB so that y in the
integrand should remain finite.

Thus there are some restrictions to be imposed on competing functions. In other prob-

lems the restrictions may take different forms. Such restrictions on the competing

functions are referred to as the admissibility requirements.

Problem
A.1.1 The brachystochrone problem: A particle m subject to gravitation g on a fric-
tionless path s of arbitrary shape z = z(x), is to move between points (0,0) and
(x5, z,) in the shortest time possible. Determine the integrand F in
X2

t = [ F dx
o

2 ~

A.2 Review of Extremum Values of Functions

The maximum (minimum) points of functions are distinguished by the property that
slight changes of the independent variables will result in a decrease (increase) in the
value of the dependent variable whether the changes in the independent variable are
positive or negative. For instance for a function such as y = y (x), if there exists a
minimum point at x = a, we have that

ya + &-y@)>0 (A.2.1)

Where € is a small change in x and it may be positive or negative.
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Let us expand y(a + €) by Taylor series near the pointx = a :

- ’ 1 ” 2 1 " 3
ya + &=y@ + y|, & + 2 la& * 3y |act + (A22)

The derivatives y', y~ etc. are all evaluated at x = a and hence the functiony = y(x)
and its derivatives must be continuous atx = a.

From equation (A.2.2) it can be seen that if the signof [y(@ + €) —y(a)]isto
be independent of the sign of €, as € approaches zero, the coefficient of y  must vanish
since the sign of this term does depend upon the sign of €. Further, it is apparent from
equation (A.2.2) that at a maximum point the coefficient of €2, namely —21—'- y”, must be

non-positive while at a minimum point it must be non-negative. Thus summarizing

’

y =0 and y <0 —  maximum point
(A.23)

,

y =0 and y >0 —  minimum point

It is of course possible for y to vanish at a point where y* = 0. In that case condi-
tions in relations (A.2.3) are not sufficient to determine the nature of the point and one
must examine the coefficients of higher order terms. Thus at x = 0 of the function
y =x3 the coefficient of € does not vanish and since the value of this term will
depend upon the sign of € one must conclude that x = 0 is neither a maximum nor a
minimum point of the function. On the other hand x = O for the function y = x*
can be readily seen to be a minimum point.

It is to be noted that our definition of a maximum or minimum point, in effect
describes a "turning point" of the function. Now a given function may possess several
turning points in its range and while the conditions stated in relations (A.2.3) hold
locally at every turning point, they do not yield information as to whether a given
point is the global maximum or the global minimum point of the function. Thus for
determining global extremum points a systematic search must be carried out amongst
all the turning points of the function in the domain of the independent variable. It is
also possible for a function to attain its extremum value at the boundaries of its range.
In that case the extremum point need not be a turning point and such conditions in
relations (A.2.3) may not hold.

In the case of a function of two independent variables such as
z = z(x,y) (A24)

we have a surface which can be pictured as a terrain. We are now interested in
finding the peaks of the hills and the lowest points of the valleys in this terrain.

Atapointx = a,y =b the following possibilities may arise

i) Maximum '

Then
z@a@ + &b + a)—z(a,b)<0
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independent of the sign of small increments € and x and as€ — Oand o — 0.
ii) Minimum
Then
z@ + &b + 0)—z@,b)>o0
independent of the sign of e and x and ase — Oand o — 0.
iii) A saddle point (see Figure A.2)

-

Figure A.2. A saddle point

Then for some values of € and o, again independent of their signs, we may have
z@ + &b + 0)—-z(@,b)>0
z@ + &b + 0)-z(@,b)=0
z@@ + &b + ) —z(a,b)<0
ase — Oanda — 0.
Again let us expand z(@ + €, b + o) br a Taylor seriTs aboutx = a,y =b>b.

“z(a + &b + 0)=z@,b) + z, € + z, o+
( )=1z(@a,b) * [a 3 las
L, e + L 2 o + z l EO0 + — z I e +---
21 7% ap 20 7 lap Y lap 31 T ap
(A.2.5)

where, ( ),, implies partial differentiation with respect to x etc., and once again all
the partial derivatives are evaluated at x =a,y =b. Hence it is assumed that
z(x, y) is continuous and possesses continuous derivatives at (a, b).
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By a similar reasoning for the independence of the sign of
[z@ + &, b + &) ~z(a, b)] from the signs of € and o we conclude that for the
cases i, ii, and iii, cited above, we must have

z, =0 z,, =0 at (a, b) (A.2.6)

To find out whether the point (@, b) is a maximum or minimum point we examine the
second order terms. These form a quadratic function Q (g, &) which we write as

Zoxx 2 €
QE o = -21!—[8 a][ N H“] (A27)

Zoxy Zoyy

For a maximum or minimum point the sign of Q0 must be independent of the signs of
€ and a.. Thus for a minimum point, Q should remain non-negative for all real values
and either signs of € and . Likewise, for a maximum point, Q should remain non-
positive for all real values and signs of € and o.

This property of O, namely possessing only one sign, independent of signs of €
and/or a, depends upon the form of the symmetric coefficient matrix in equation
(A.2.7). If this matrix is positive definite, then @ will maintain a positive sign for all
real values of € and . Conversely, if this matrix is negative definite then Q will
always maintain a negative sign. In the next section we will comment on properties of
positive definite and negative definite matrices. For the simple case at hand we merely
state that if the 2 X 2 coefficient matrix is to be positive definite, its determinant and
both of its diagonal elements should be positivei. On the other hand, if the 2 x 2
matrix is to be negative definite, its determinant should be positive and both of its
diagonal elements should be negative. Summarizing now we have that sufficient con-
ditions for maximum and minimum points are

a) z,, =0 Z, =0 (A2.8)
Zox Ziy

b) ., |>0 (A.2.9)
,xy ’yy

Further, at a minimum point

Z,e >0  or >0 (A.2.10)

Zoyy
and at a maximum point

Zye <0 or <0 (A.2.11)

Zoyy

Finally, consider the case when conditions a) above are satisfied but the determinant in
b) is negative. In this special case, the sign of Q (g, o) will generally depend upon the
value and the sign of the ratio ( €/a ). In particular, it is possible to find one value of
( €/a. ) for which Q becomes equal to zero. This is the case of a saddle point. If the
determinant in b) vanishes identically the nature of the point remains indeterminate and

+ Clearly if the determinant and one of its diagonal elements is positive the other diagonal element will necessari-
ly be positive.
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one must examine the higher order terms in the Taylor series expansion of the func-
tion.

Example A.2.1
Let us determine the maximum and minimum points of
2x,y) = 2%y + 0’ - axy @
where a is a constant.
Z, = (2x +y - a)y z, =2y +x - a)x ®)
Zye = 2y Zyy = 2

Zy =2 +2y —a

For the vanishing of z,, and z,, the following four solutions exist:

©

win ®

x =0 y =0 ; x =0 y

x =a y =0 ; x=% y

For a positive definite coefficient matrix (A.2.9), the requirement of
; @

2 oxx z»yy > zﬂxy

takes the form

4xy >[2 + y)-al’ ©
Now on substituting the above four possible sets of x and y in this equation we note that only
the case x = a/3,y = a/3 satisfies the inequality requirement. We also note that if @ is a posi-

tive constant then z,., >0 and hence (a/3, a/3) is a true minimum point. If a happens to be
negative then the point (a/3, a/3) will be a maximum point.

Finally consider the case of a function of n variables
w = f(ul, Ugyeuss u,,) (A212)
To examine the point u; =¢q, Uy =q,, .., U, =q, we consider the neighbouring

points u;=q;+€&, U,=qg,+E etc., where €, €, ,.. are small incre-
ments. Then expanding into a Taylor series we have

w(@;+8€,92+8,...9, +&,) = W@, 92 - ) +

ow 1 *w 1 Pw

w fe L L 9w | oo L 9w e 4 a2l

au,- ! 2! aui auj v 3t aui aul allk PRk ( 3)
415 92---59n 415 92-+5qn 915 92s--5qn

where the partial derivatives are evaluated at the point g, g5, - - ' g,. Now the
independence of the sign of [ w(g; + €;) ] from that of €; requires that at a stationary
point
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ow

2. -0 i=12-n (A2.14)

91 92v-qn

The nature of the point, that is, whether it is a minimum or maximum point, is
governed by the quadratic terms. If the matrix

Pw  w  Pw  Pw ]
Ou;ou; Oujou, Oujdus ou du,
0*w 0w dw _ ow
Oupodu; Ouyou, du,dus ou; du,
(A.2.15)
0w o*w dw _ w
| ou, ou; du, du, du, duj ou, ou,, |

is positive definite, at (¢, 5,..., ¢,), then we have a minimum point. On the other
hand, if the matrix is negative definite, then we have a maximum point.

An essential property of positive definite matrices is that they possess positive
determinants and positive principal minors. A square matrix of order n has (n-1)
principal minors. The first principal minor is a determinant of order (n—1) obtained by
removing one row and one column that share a diagonal element. The second princi-
pal minor, being a determinant of order (n-2), is obtained by removing two such rows
and columns. Finally, the (n—1)th principal minor will be a diagonal element of the
matrix.

A negative definite matrix of order n is also characterized by the sign of its

determinant and its principal minors. These should be positive if they are of even
order and negative if they are of odd order.

By appropriate transformations a symmetric matrix can be diagonalized. If the
given matrix is positive definite, its diagonal form will have all its elements greater
than zero. The diagonal form of a negative definite matrix will have all its elements
smaller than zero. In their diagonal forms it can be seen that sign definite matrices
give rise to quadratic forms which are sums of squared terms multiplied by plus or
minus 1.

Problems

A.2.1 Given is the function

x2 )’2

z - — — —
a? b?
Search for minima, maxima, and saddle points.
A.2.2 Plot the surface

z = x% + xy? - 3xy
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Using a graphics program, for -1<x <4and -1<y <4.

A.3 Stationary Values of Definite Integrals

In problems involving the calculus of variations we are seeking functions which
extremize a definite integral. The determination of the necessary conditions for
extremization of a definite integral is relatively simple. However to show that a given
function actually minimizes the definite integral, is considerably more involved. For-
tunately in physical problems the nature of the extremum state is often apparent from
physical considerations.
Let the definite integral be
b
I = [F@x,y,y)dx (A3.0)
a

We are given the integrand F and the boundary points a,b and we are seeking
y = y(x) which extremizes /.

Figure A.3. Extremizing function y (x) and an admissible function y, (x)

Clearly the admissible functions y (x) must:
i)  Pass through pointsx = g andx = b.
ii) Be continuous and single valued functions of x in the interval a <x <b.

The last requirement is imposed to ensure that the integrand F is defined in an unam-
biguous manner.
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Suppose now that the required extremizing function is y,(x) and let y(x) be
another admissible function (Figure A.3).
Then we may write

y (&, x) Yo(¥) + et(x) (A.3.2a)

and yE x) = y,(x) + et (x) (A.3.2b)
where € is a small parameter which does not depend upon x, and the function #(x) is
an arbitrary function independent of €. Evidently ¢(x) is continuous in the domain of

x between a and b, and further at x =a and x = b, it must vanish since y(x) is an
admissible function.

Now let the specific value of I at the extremum condition be denoted by I,.
Then

b
I, = [F@&,y,,)dx (A3.3)
a
For y (x) we have
b
I =1, + N = [F@x,y,y)dx (A3.4)
a

In equation (A.3.4) it can be seen that to evaluate the integrand we require to know the
three quantities x,y, and y. In other words these quantities can be regarded as three
independent variables of F. The fact that one of these variables happens to be the
derivative of another, is incidental as far as the changes in the value of F are con-
cerned. The integrand of equation (A.3.4) can then be regarded as the function F
when two of its independent variables, namely y, and yo', are changed by amounts &t
and et respectively. For a given x we may then expand F by a Taylor series about
y, and y,. Thus we write

F(x,y, +et,y,,'+et') = F(x,yo,yo')+ 9F et + a—F et
%Y |, ¥ |,
2 2 , 2 ,
LOF | ep+t 3L Pl e L 20F | g2y
2! ay2 2! ay ° 2! ayay 0
1 o°F 3
_— — 1) M A.3.5
e |, (A3.5)
where 9F and — | etc. imply the partial derivative of F with respect to
% |, |, ,

its argument y and y’, evaluated at y, and y,. It is assumed that at y, and y, these
partial derivatives are continuous. We emphasize that x, the independent variable, is
not changed here. It is now apparent that
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b
A =ef|rE g
al ¥l » o
2 b 2 o3
,,e_j[,z_a_g var PP | 2 2r ]d“... 36
a H° |, ayady |, ay? |,
or
e2
N o= el + Sh (A3.7)

where € I, is called the first variation of the definite integral, and €2 I, is its second
variation.

Evidently if 7, is the maximum value of I, then Al must be negative for
sufficiently small values of €, whether € is positive or negative. Hence sufficient con-
ditions for I, to be maximum are

I, =0 I, <0 (A.3.8)

Similarly for /, to be minimum we have as sufficient conditions
I, =0 I, >0 (A39)
Evidently A/ vanishs when € = 0 hence at extremum condition

oF /9y l o = OF/dy, as an inspection of equations (A.3.2) indicates. Thus from here
on we need not retain the subscript o.
From equations (A.3.6) and (A.3.7), we have that

b
oF » oF
I, = t— +t — | dx (A.3.10)
I[ % 3 ]
Integrating the second term of the integrand by parts we have
b x=b
Il_jr[-aﬁ-ia—F,]dx+§5,t (A3.11)
a oy dx dy dy x=a

Now since #(x) is equal to zero at x =a andx = b the second term of equation
(A.3.11) vanishes. Further, recognizing that ¢#(x) is an arbitrary function we conclude
that for 7, to vanish identically, i.e. for all possible admissible forms of #(x), then we
must have

Z =22 =09 (A3.12)

Equation (A.3.12) is referred to as the Euler-Lagrange equation® of the functional in

t+ Leonhard Euler (1707-1783), Swiss mathematician
Joseph Louis Lagrange (1736-1813), French mathematician
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equation (A.3.1). Its satisfaction is a necessary condition for the stationarity of the
functional. By stationarity we mean the condition /; = 0 without being specific about
the sign of 1,.

The derivatives arising in the Euler-Lagrange equation require some clarification.
We have already pointed out that in obtaining the derivatives of F with respect to y
and y’, the latter is treated as an independent variable. However in carrying out the
differentiation of OF /dy” with respect to x it should be borne in mind that y and y’ are
functions of x. Thus

d | oF . o°F oOF d o%F dy
NSy = ot =2 S

dx | 9y dyox  dydy dx gy dx

The origins of the calculus of variations date back to the time of Euler and
Lagrange — hence the name Euler-Lagrange equation. The derivation of this equation

as outlined here is essentially due to Lagrange. Euler arrived at the same equation via
a different scheme of reasoning. It is worth considering Euler’s approach briefly.

To find the stationary condition of the functional / in equation (A.3.1) Euler first
discretized the functional and thereby he reduced the problem of extremizing the func-
tional to the problem of extremizing a function. His method is as follows:

Let the interval between x = a and x = b be divided into n subintervals and, for

convenience, let us take these to be of equal lengths Ax. Thus the set of values for
the x and y coordinates become (see Figure A.4)

(A.3.13)

a and x,

Xos X1y X2y woees Xi—ls Xps Xgpls oo Xy with x, b (A3.14a)

yo’ )’1, }’2, cesey yk—l’ yk, yk+l’ ereey yn Wlth yo B (A.3.14b)

The derivative y’ may be approximately represented by the following central difference
formula.

o and y,

. Y+l — V-1
O =, +Txk— (A.3.15)
Then the functional
b
I = [Fx,y,y)dx (A.3.16)
a
may be approximately represented by a function
L Vi1 ~ Vi1
Typprox = E,OF Xes Yir =5 ] Ax (A.3.17)

To find the stationary condition of /
I

approx W€ must now evaluate the derivatives of

approx With respect to yj, and equate them to zero.
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0 X0 X1 X1 Xk Xpet Xn
a b

Figure A.4. Discrete representation of y (x)
The only terms in / g that involve y; are

F |xe i —y—"—*—‘zju—y""] Ax (A.3.182)

F X1 Yiots T] Ax  and (A.3.18b)

:
F Xe_15 k-1 M] Ax (A.3.18¢)

.

Thus we have
alappmx oF 1 oF 1 oF
= [9F| Ax 4 LBl Ao LI Ar 20 (A319)
L7 [ay]qu 2Ax [ay X=Xy 2Ax | 3y X=Xy 4y

Now recognizing that the last two terms express the change in [—;’i] at x;, i.e.
'y

Al 2E = 1| £ - | 9E (A3.20)
ay X=Xk 2 ay X=Xg41 ay X=Xk -1

and finally dividing by Ax and equating the whole expression to zero, we have

oF A | oF
- - | = =0 (A321)
[ay ]4 Ax [ay ]-x
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In the limit, as Ax approaches zero, above equation becomes

oF d | oF
— - —|— =0 A3.22

Example A.3.1
Let us return to the problem of example A.l.1 of the shortest distance between two points in a
plane. The integrand in this case was

F o= V1+y? @
Since y is absent in the integrand, the Euler-Lagrange equation (A.3.12) becomes simply
18] :
or
_d _ ¥y _, ©
dx W

which on integration yields

— = constant

This equation can be satisfied only if y’ is equal to a constant, say m, i.e. y’ = m or
y = mx + ¢ d)

where ¢ is a constant of integration.
Alternatively if we differentiate equation (c) we find, after some simplifications

”

(1+y212 0 €

Equation (e) states that the extremizing function must have zero curvature.

In this example, it is apparent that the solution corresponds to minimum value of the functional.
Either equation (d) or equation (e) then state the shortest distance between two points is a straight
line.

Problems
A.3.1 Given is an integrand

F (t,y,y) = %m(y +at) - mg(y + %atz)
Use the Euler-Lagrange equation to obtain y = y(¢). The boundary condi-
tionsare y =y = 0 when ¢t = 0.

A.3.2 The shortest distance between the points (0, 0) and (2, 4) in a plane i$ meas-
ured along a line



323

Yo =
Use y = x% and t = 10x — 5x2, such that
y =y, + ¢t

(a) What is the magnitude of € ? (b) What is the distance between (0, 0) and
( 2, 4) measured along y,? (c) What is the distance between, (0, 0) and (2, 4)
measured along y? (d) Is y an admissible function? Why? (e) Does y
satisfy the Euler-Lagrange equation? (f) Does y, satisfy the Euler-Lagrange
equation? (g) In order to satisfy the Euler-Lagrange equation for the shortest
distance between two points, what form must y assume?

A.4 A Note about Weak and Strong Variations

Earlier we expressed an admissible function y(x) in terms of the extremizing function
¥, (x) as follows

y&x) = y,(x) + et(x) (A4

Further we stipulated that #(x) should be independent of €. The reason for this
requirement is that we wish to ensure that as € — 0 not only does y (x) —y, (x) but
also all derivatives of y (x) approach the corresponding derivatives of y,(x). By relat-
ing ¢ (x) and € it is possible to relax the requirement for convergence of the derivatives
of y(x) to those of y,(x) as € = 0. For example if we let

t(x) = sin —"2- (A42)
€
’ 1 X
then tx) = — cos = (A.4.3)
€ €

Now as & approaches zero, &t (x) vamshes and hence y(x) approaches y,(x). On the
other € (x) does not vanish and y (x) does not approach y, (x)

Whenever ¢(x) is independent of € we speak of a weak variation and when ¢ (x)
is related to € we speak of a strong variation. In this text we shall be concerned with
weak variations only.

A.5 An Alternative Expression for a Single Euler-Lagrange Equation
Consider the total derivative of F with respect to x. That is
dF _ OF oF . OF »

— = — + —y +— 5.
e e % y 3y y (A5.1)
But from the Euler-Lagrange equation we have that
oF d | oF
oF _ d|9oF A.52
Substituting this expression for dF /dy in equation (A.5.1) we obtain
dF oF . d | oF . oF
— = —+y —|=|+y — 5.
. FIR e [ 3y ] y 3y (A5.3)
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On rearranging and simplifying this expression we obtain

d CoF | _ oF

Now equations (A.5.2) and (A.5.4) provide alternative differential equations for the
determination of the extremizing function as we can see by carrying out the
differentiation indicated in equation (A.5.4). Thus

F LU L O L, L, d O
ox ayy ay'y Y ay’ " ay’ ox
or
Jor_a or ] _
y [ay . ay'] 0 (AS)5)

Equations (A.5.2) and (A.5.4) allow partial integration under two special conditions. If
F does not contain y, then from equation A.5.2 it follows that

d , oF oF
—(=—)=0 or —— = constant (A.5.6)
dx ~ dy dy
On the other hand if F does not contain x explicitly then equation (A.5.4) becomes
%(F —y'a%f;) =0 or F —y'%r-,- = constant (A.5.7)

0,09

(x2 ) 22 )

Z

Figure A.5. The brachystochrone problem - a bead m sliding down a smooth wire

A.6 The Brachystochrone Problem

A smooth wire joins the points (0,0) and (x,,z,) as shown in Figure A.5. A bead
slides along the wire under gravity and without friction. Given the initial velocity of
the bead what should be the shape of the wire such that the time of travel for the bead
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between the two points is as short as possible? This problem, referred to as the bra-
chystochrone problem, was one of the early examples which involved the essential
ideas of the calculus of variations. The word brachystochrone is derived from Greek
words meaning shortest time. The problem was posed by Johann Bernoulli in 1696 as
a challenge to the mathematicians of the time. Johann Bernoulli himself, his elder
brother Jakob Bernoulli, Newton, Leibniz and de L’Hospital" gave the correct solution
for the problem.

For simplicity let the initial velocity of the bead be zero. Then the kinetic coen-
ergy of the bead at any instant will be equal to the loss of the bead’s potential energy,
ie.

% m? = mgz (A.6.1)
Where v is the bead’s velocity and g denotes the gravitational attraction constant.
From equation (A.6.1) we have that

& _ 5o
— S— S 2
y dt gZ
1
or dt ds
V2 gz
But ds = Vax?+d:?2 = V142 dx

” %
and thus ¢ 1+2 ] dx (A6.2)

X2
= |
il
In the functional in equation (A.6.2) the independent variable, x, is absent. It is then
convenient to use the alternative form (A.5.4) of the Euler-Lagrange equation. Thus
for the extremum condition of the functional in equation (A.6.2) we may write

’ Y% ’ A
1+2° —z'-i 1+27
z oz z

After carrying out the differentiation, above expression simplifies to
z(1+2%) = 2R (A.6.3)

Equation (A.6.3) is a first order nonlinear ordinary differential equation the solution of
which provides the path for quickest descent of the bead. To solve let

= constant = 2R

, o
z = cot 2
Substituting into equation (A.6.3) and simplifying we find
z = 2R sin? % = R( - cos ) (A.6.4)

+ Jakob Bernoulli (1654-1705), Swiss mathematician (coined the term "integral")
Johann Bemoulli (1667-1748), Swiss mathematician (Euler’s teacher)
Guillaume Francois Antoine Marquis de L’Hospital (1661-1704), French mathematician
Gottfried Wilhelm Leibniz (1646-1716), German philosopher (calculus).
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Having obtained z in terms of o, we now consider the relation between x and o.

. . dz a o
= — = — h = —
Since z o cot > we have dx dz tan )
but dz = R sinado
Hence dx = R sino tan % do or dxk = R(-cosa)da
On integrating we obtain
X = R(@-sina) + ¢ (A.6.5)

Where c is a constant of integration. Equations (A.6.4) and (A.6.5) are the parametric
equations of a cycloid the curve for which is obtained by the locus of a point on a cir-
cle rolling along a straight line in the xz plane. To determine the constant of integra-
tion we take the initial position of the bead at the origin of the coordinate axes,
x =0,z =0 and o =0. From equation (A.6.5) it then follows that ¢ = 0. The curve
for the cycloid is shown in Figure A.6 from which it is apparent that the constant R is
the radius of the rolling circle.

To determine the required value of R for the given points (0,0) and (x5, z,) we
can write from equations (A.6.4) and (A.6.5)

z = R(1-cos oy X, = R(o,~-sin ay)
These two equations can now be solved for R and .

Ro

K z=R (1 - cosa)
, |

x = R (o - sinat)

Z

Figure A.6. The cycloid curve solution of the brachystochrone problem
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Problems

A.6.1 Determine the stationary function and the value of the following functional with
the given end conditions

Y 7
[ y©) =1 y) = 0

y

A.6.2 Given are the initial point (0, 0) and the final point (2, 3) of a brachysto-
chrone. (a) Find the constants R and o, and (b) make a sketch.

A.6.3 A bead moves on a frictionless cycloid in the gravitational field from point
(0, 0) to point (mR, 2R). Calculate the time of travel, if the initial velocity is
zero, and R = 2m.

A.6.4 The tautochrone (gk: same time) problem is complementary to the brachysto-
chrone problem in the sense that it asks for the shape of the wire for which the
time of descent of a frictionless bead to the lowest point will be a constant, i.e.
independent of the starting point. Show that the tautochrone shape is a cycloid.

A.6.5 Fermat’s principle states that a ray of light will travel between two fixed points
along the curve for which the travel time is a minimum. Obtain the required
functional and show that its Euler-Lagrange equation takes the following form

”

vy 8v'+8v

_ Z 0
1+y” x’ T

where v (x,y) is the variable velocity of light.

A.7 Path-independent Functionals

It is possible for the extremum value of a definite integral to be dependent upon the
limits of the integral only. Consider for instance the integral

b
I = j[ny + @2 + 3y yax (A7.1)

When the integrand F[ = 2xy + ®? + 3y2)y'] is substituted into the Euler-Lagrange
equation it is found that this equation is identically satisfied immaterial of the form of
¥, as a function of x. Hence an extremum value of the integral / is dependent only
on the limits of the integral. To examine this further let us consider the implications
of the Euler-Lagrange equation being identically satisfied.

OF (xyy) _ d OF (xyy) _
r L Wyy) 4 of Wyy) AT2
dy dx dy ¢ )
OF (x,y ) FF(yy) , FFGayy) dy | 3F(yy) d¥y| _
or - > + n - + ) =0
dy dy ox dy dy dx ay dx?
(A73)

2 ”
Then %—I; must vanish since y does not appear in any other term in equation (A.7.3).
y
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This implies that F can be at most a linear function of y  or generally

F = plyy + q&y) (A7.4)
where p and ¢ can be functions of x and y but not of y.
Substituting from equation (A.7.4) into equation (A.7.2) we find

pEy) - og(xy) _ d =
ay y + ay dxp(xay) - O
or
9 . , % _ 9 _ & - _
dy * dy ox ) 0
- 9 _ 9
ie. 3 i (A.7.5)
Returning now to the integral / we may write
b b
I = de.x = j(py'dx + qdx)
a a
y(®) b
or I = ! pdy + [qar (A.7.6)
y(a) a

Finally we show that providing equation (A.7.5) holds the integrand of equation
(A.7.6) becomes an exact differential. To this end let us consider a continuous func-
tion ¢ = ¢(x,y), the differential of which is given by

2 %
do = X 4+
¢ ox dy b

On comparing with the integrand of I we note the correspondence between

% _ %
o <—>q and 3 <—>p (A71.7)

However since ¢(x,y) is a continuous function of x and y, we also have the condition
of continuity
% _ 9%
axdy  dyox
now for the correspondence between (p,q) and the derivatives of ¢ to be valid it is
further required that from equations (A.7.7) and (A.7.8), we obtain
%9 _ 9
dy  ox
which is the condition we showed to be true in equation (A.7.5). Finally we may
rewrite equation (A.7.6) as

I = [do = ¢by®) - ¢@y@) (A79)

It is a simple matter to show that in the example we considered in equation
(A.7.1), the integrand is the differential of the following function

(A7.8)
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¢=x2y+y3+c

A.8 Several Dependent Functions
We now consider the more general case of integrals of the type
b

I = [F®.q14 " 441,93, qdx (A8.1)
a

where ¢; may be varied independently, and g; are the derivatives of ¢; with respect to
x. For simplicity consider the case of two dependent functions.
b

1 = JF(xa ql’ 42: qia qé)dx (A.8.2)
a

Let us take the extremizing functions as ¢o(x) and g,n(x) and as before let us express
any pair of admissible functions ¢, and g, as

g1 = g t+ et (x)
42 = g *+ 1)
For the admissible functions, the value of the integral may be written as

b
I =1,+Al = IF(x,qlo + €, g0 + €1, + €5 gy + €,)dx (A83)
a

Expanding the integrand by Taylor series about ¢ o and g9, we obtain

oF . 2
=g + —tyldx + € + — tHldx + O(e A8.4
‘[[3‘11 o, 1] I[aqz 20, 2] (&%) (A.84)

2
Now for Al = el; + —82—1 5 +... and integrating the ¢ terms by parts we can write
the first variation of the integral Al as

OF d OF oF |*
= ¢g|lt - dx + ¢t +
¢ J l[afh dx a‘h] N % |,
b
oF d oF oF |°
€ th| m— - — —|dx + et — A.8.5
;’; 2[342 dx 342] 2 3, . A8

According to admissibility requirements, #; and ¢, vanish at points x = a and
x = b and hence the terms to be evaluated at these points also vanish. Arguing now
on the arbitrariness of ¢, and ¢, (apart from the admissibility requirements) we con-
clude that for I, to be identically zero we must have
oF d OJF

-— = — = = 0 A.8.6a
94, dx 9q, ¢ )

and
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9F _ d OoF
99, dx 9q,

The above pair of Euler-Lagrange equations govern the extremizing solutions q(x)
and q,(x).

In this case we can again obtain a useful expression which will be satisfied if the
above pair of Euler-Lagrange equations are satisfied. The required expression is given
by

=0 (A.8.6b)

d + dF + oF oF

—I|F -¢, — -9 —| = —=— A87
dx [ T ? 342] ox (82
On carrying out the differentiations and subsequent simplifications we obtain the fol-
lowing equation

,[ap d ap] ,[ap d oF

q, q; ?2 - Eajl =0 (A.8.8)

3¢,  dx og,

Evidently equation (A.8.8) will be satisfied if equations (A.8.6) are satisfied.

Generalization of the above considerations to the case of n dependent variables is
self-evident, giving the following Euler-Lagrange equations

oF _d O _ i =12---n (A.8.9)

It is relatively easy to show that the following expression will be satisfied if the
Euler-Lagrange equations (A.8.9) are satisfied:

d + dF oF ,
—|F - ¢ —| = — i =12--- A.8.10
. [ gi aq,-'] o n ( )
Example A.8.1
Find the stationary functions and stationary value of
7
faad = [[@F + @2 + 200 Jax @
Subject to the boundary conditions
GO =0 @) =1 @0 =0 ) = -1 ®)
We now have
F = @) + @) + 24 ©
oF oF
—_— = 2 _— = 2 d
aql q2 aq2 q1 ( )
, oF '
ELAN I g

oq, 9q;



Hence the Euler-Lagrange equations give
2 - q1 = 0 1-9; = 0
i.e. a pair of simultaneous differential equations. Eliminating ¢, we obtain

vV -q1 = 0

Hence g1 = c1€* + 6™ + cc08x + cg4sinx
and from the first of the second order equations we have
g2 = c1e* + ce™ — c3c08x — cy48inx
Now, imposing the boundary conditions (b) we obtain
g = ¢ = ¢3 =0 cg = 1
i.e. the required solutions are
q1 = sinx gy = -—sinx

and the value of the functional is

n

2
I = 1[[2cos2x - 2sinfxJdx = 0

Substituting the solutions obtained into equation (A8.7) we
-2 cos’x — 2sin>x = constant, which is evidently true.

Problems
A.8.1 Given is an integrand
1 .2 1 ) 1
F = -2—mr + Emrze - Ek (r—r‘,)2

331

©

®

@)

)

@®

@

&)

find

where ¢ is the independent variable, and ¢, =r(t) and g, = 6(t) are the two
dependent variables. Find (a) the two Euler-Lagrange equations that have to be

satisfied to make the functional
I = J‘ F dt

stationary. Also (b) show that m r2@ = constant.
A.8.2 Given is an integrand

F = -%-mi'z + %mrzé2 + %
(a) Find the two Euler-Lagrange equations that have to be satisfied to make the
functional
I = J’F dt
stationary. (b) Check whether the integrable combinations
— p

1 + € cosO



332

and

R*6 = h
satisfy the Euler:/l._agrange equations identically, where p, €, and h are con-
stants and 7 = Vup .

A.9 Variational Notation
Earlier we expressed an admissible function y (x) in terms of the extremizing function
Yo (x), as

yx) = y,(x) + et(x) (A9.1)

The term €t (x) is referred to as the variation of the function y. Lagrange introduced
the notation 8y for this variation and so in Lagrange’s notation, equation (A.9.1) may
be written as

yx) = y,(x) + dy) (A9.2)
Likewise y) = y,x) + &y'(x)
y @) = y, () + &y'(x) etc.

Clearly the differential of a function y, i.e. dy, and the variation of y denoted by Jdy,
are different quantities. The first denotes a small change in the value of the given
function while the second is a small change in the function itself. Also dy is meaning-
less without a corresponding change in x, namely dx, while for 8y there is no change
in x (see Figure A.7).

dy
y = =0
dy =
iy_zO A
dx
oy =0
x
0

Figure A.7. Variation 8y and differential dy of function y (x)
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We shall see that the § notation exposes some striking similarities in the opera-
tions of variation and differentiation and herein lies the main advantage of this nota-
tion. However with such similarities there is the risk of overlooking the essential
differences between the differential and the variation of a function.

Consider now the following operations on two independent functions F; and F,,

i) OF, + Fp)) = &F; + &F, (A.9.3)
Proof: Let G = F, +F,
then G = (G +3dG) - G
SG = (F1+8F1+F2+8F2)—(F1+F2)
G = 8F1 + 8F2
ii) OF,-F,) = FF,; + F\0F, (A.94)
Proof: Let G = F|-F,

then G = (G +dG) - G
G = (F, + dF\)F, + 8F,) — FF,
now dropping the second-order term we obtain
SG = F 18F 2 + F 28F 1

Fl] F,8F, — F,oF,

iii) — (A9.5)
Fy F?
Proof: Let G = F—l
2
e ~F,+oF, F,
Rearranging and again dropping the second-order term, we have
- F0F, + F,0F
G = 1912 2 200"y
F;
Now let us consider what is meant by
d
— &
i
Clearly since & = (y, +et) -y,
d d , dy
—_— = —§¢& = & = — A R
p y o € € e (A.9.6)

i.e. the derivative (with respect to the independent variable) of the variation of a func-
tion is equivalent to the variation of the degivative of that function.

Consider next the operation ) I F dx
a

Since the limits of the integral are fixed, then
b b b b

sjpdx = j(F+8F)dx-dex = jardx (A.9.7)
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i.e. variation of a definite integral (with fixed limits) is equivalent to the integration of
the variation of the integrand. The above commutative laws hold only when the
differentiations and integrations are with respect to the independent variable.

Consider for instance the following case where the two variables x and y are
related through a parameter 0,

x = x() and y = y@®
Here 0 is the independent variable and it is not to be varied. However both x(8) and
y () are subject to variation. Suppose we require to determine & Zx—y ] Now
Q = .-dl / ﬂ
dx de deo
denoting the derivatives of x and y, with respect to 6 by x and y respectively we may
write
dy y iy - y &
8 — = _— = —_—
| dx ] ° [ x ] S
d d
) — 9 —d
or d & ao > - /x) ae””
L dx J i X i X
do do
o _ ds _ b d A
) e i dy ir dr ox (A.9.8)

If x had been the independent variable then &x would have vanished and above
expression would then have simplified to the commutative form we obtained earlier.

The & notation can also be used to represent equation (A.3.7) by writing

ANl = & + %821 (A.9.9)
where the first variation is
8 = el (A.9.10)
and the second variation
? = €1, (A.9.11)

Problems
A.9.1 Given is a functional

b
I = j‘\j1+y'2dx
a

Use the 8 variation symbol and derive the condition which the integrand has to
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satisfy in order to make the functional stationary.
A.9.2 Given is a functional

b
1= [y V1 +y2dx
a

Use the § variation symbol and derive the condition which the integrand has to
satisfy in order to make the functional stationary.

A.10 Constraint Equations

Until now we have considered the stationary properties of functions and functionals in
the absence of constraints. We now examine the extremum conditions of functions
subject to some constraints. Subsequently we will extend the analysis for determina-
tion of extremum conditions of functionals subject to various types of constraints.

Suppose we require to determine the extremum points of the function
W = W(x,y) subject to the constraint y = y(x). Geometrically this implies that
we search for maximum and minimum points on the surface W = W(x, y). How-
ever the domain of our search is to be restricted to those points on the surface, whose
projection on the xy plane fall on the curve y = y(x) (see Figure A.8).

W=W(x y) Domain of search

Figure A.8. Search on the surface W = W(x,y) subject to constraint y =y (x)

To take a more general case let us examine the extremum condition of the func-
tion
W = W,y,z) (A.10.1)

subject to the constraint



336

ox,y,z) = 0 (A.10.2)

In principle we can use the constraint equation to eliminate one of the indepen-
dent variables, say z, from W = W(x, y, z). Then the constraint equation would be
explicitly satisfied and we may proceed to determine its extremum points. In practice
this elimination may be very cumbersome and sometimes impossible. Further the
elimination of one independent variable renders the relation between the dependent
variable and the remaining independent variables somewhat artificial.

Now for the extremum points of W we require that

- W W W 4 =
W = Srdc v Shdy + Grds =0 (A.103)

Also by the nature of the constraint equation (A.10.2) we have
=90 gy By, 00, A.104
do axd.x E’yy azz 0 (A.10.49)

If no constraints were present we would consider dx, dy and dz as arbitrary and
independent and we would equate their coefficients to zero. However in the presence
of constraints we are unable to do so since dx, dy and dz are no longer independent.
The relation amongst these increments is provided by equation (A.10.4). In contrast to
the relation amongst x,y, and z, which may be very complicated, we note that the
relation amongst dx, dy, dz is linear. As such one of the increments in equation
(A.10.3) can be readily eliminated via equation (A.10.4). Thus we may write, for
example

%Q dx + gi dy
= _ ox ly
dz = % (A.10.5)
0z

Substituting this into equation (A.10.3) we obtain

aw = W, - W, 0, /0,,)dx + W,, — W, 0,/0,,)dy = 0(A.10.6)
90
ox

where Oy = etc.

Having explicitly satisfied the constraint amongst the increments we may now consider
dx and dy as independent and arbitrary. Thus the extremum conditions of
W = W(,y, z), in the presence of constraint ¢(x, y, z) = 0, are

Wy — W, 0,/0,, = 0 Wy - Wio,/0, = 0 (A10.7)

It is worth emphasizing that while the elimination of dz was easily accomplished,
z itself remains in equations (A.10.7). Thus these two equations have three unknowns
and they must be solved simultaneously with the constraint equation (A.10.2). Finally
we point out that we could equally well have eliminated dx or dy instead of dz and
while then the formal appearance of equations (A.10.7) would be different, the solution
of these equations, along with the constraint equation, would yield the same extremum
points.
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Example A.10.1
Find the rectangular parallepiped of maximum volume V which fits inside a sphere of radius R .
Taking the origin of the axes at the centre of the sphere we have that

W =V = 8uxy @

while the constraint equation is
¢=x2+y2+z2—R2=0 (V)]

For extremum volume we have
Ve = Vo 0,0, = 0 Vy = Vo 0,/ =0 ©
and o(x,y,2) = 0 @

In the present problem, these conditions take the following forms

8yz — 8x¥y/z =0 ©
8xz - 8xy%z =0 ®
and 2 + y* + 22 = R? @)
From equation (¢) 2% = x? assuming y # 0 ()
From equation (f) z2 = y? assuming x# 0 )

Substituting into equation (g) we findz = * R /3. Hence the maximum volume is

8 3 .
V = —R )
3V3 ¢
and the minimum volume, by the way, from equations (¢) and (f) withx = y = 0, is
V=0 &)

Lagrange Multipliers

For the extremization of functions, subject to constraints, Lagrange put forward a
scheme which at first sight appears to complicate the problem but which usually sys-
tematizes the manipulations enough to bring about a substantial net gain.

Consider equations (A.10.3) and (A.10.4) again and let us multiply the latter by a
parameter A, referred to as the Lagrange multiplier, and add it to the former. The
equations to be satisfied are then

aw + Mo = W, + M, )dx + W, + M,)dy + W,, + M,;)dz = 0
dé¢ = ¢, dx + ¢ydy + ¢,dz =0

Since in effect we have added zero to dW, we have not changed the problem. Now
proceeding as we did in the previous section, we obtain the extremum conditions as

W, + Ayy) — W, + 09,,)0,,/¢,, =0 (A.10.8)
W,y + M,y = W, + X0,)0,,/6,, = 0 (A.10.9)
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We have not so far specified the parameter A. Now suppose we choose A such that

W, + M, =0 (A.10.10)
Then the above extremum conditions simplify to

W, + A, =0 (A.10.11)

W, + A, =0 (A.10.12)

The systematic form of equations (A.10.10), (A.10.11) and (A.10.12) is quite remark-
able since the underlying reason for the first is quite different from that of the last two.
For the extremum conditions we must now solve these three equations. However now
A has joined the rank of the unknowns. The fourth equation which must be solved
along with the above three is clearly the constraint equation. We note then that A is
obtained only at the solution along with the specific values of x, y, and z. As such A
is a constant.

The above procedure increases the number of unknowns but it also enables one to
view the entire problem in a new light. On examination of equations (A.10.10),
(A.10.11), (A.10.12) and the constraint equation (A.10.2) it is apparent that these equa-
tions can be derived directly as the extremum conditions of a new function F, defined
as,

F(x,y,z,A) = W,y,z) + M(,y,z) (A.10.13)

Treating A as a new independent variable we obtain the extremum conditions for F, in
the absence of any constraints, as follows

%Vx_ -0 o W, + Ab, =0 (A.10.142)
oF

5 -0 W. + M, =0 (A.10.14b)
%'Z_ -0 o W, + Ab, =0 (A.10.14c)
_g% =0 - ox,y,z) =0 (A.10.14d)

From the above equations it is apparent that A cannot be zero unless the constraint is
inactive. Therefore instead of F we can equally well search for the extremum condi-
tions of

f =AW +9¢ (A.10.15)

in which case A" = 1/A.

The procedure we have outlined is readily generalized for extremization of func-
tions subject to more than one constraint. Thus for a function of n variable such as

W1, g, - q,) which is subject to m constraints (m < n), of the form
;G192 " q,) = 0,with i = 1,2---m, we first form a new function
F((Ip qo " 4y, )\-1, 12, c ).,,,) =W + 7»,' ¢i (A1016)

and then seek the extremum conditions of F in the absence of any constraints. The n
equations of the form dF /dq,, = 0 and the m constraint equations are then sufficient
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for the determination of the n variables, and the m Lagrange multipliers A;.

Example A.10.2
Determine the volume of the largest rectangular parallepiped that will fit inside an ellipsoid.

Taking the origin at the centre of the ellipsoid we require to extremize the volume V', given

by
W=V=8xyz (@
and the constraint is
2 2 2
x y: z
= = + + 5 -1=0
¢ 2 b7 2 ®
We now form the new function
x2 2 22
F=8xyz+l(?+-bL2+;§-—l) ©
and obtain the necessary conditions for its extremum values as
oF 2)
g = 8)’ z + ?x =0 (d)
oF 20
W = 8xz + ?y =0 ()
JF 2
% 8xy + czz =0 ®
2 2 2
aF_x+L+z__1=0 (@

N a2 2 c?
multiplying the first equation by x, the second one by y and the last one by z, and adding them,
we obtain

22

3y 27L("2 y: y=0 (h
+ M5 + 5+ ) =
a? b? c? )

which in view of the constraint equation (g) may be written as
k14

W +24=0 or A=- > @)
Substituting this value into equation (d) and multiplying the result by x we obtain
va-%xz):o or x = an3 0
Similarly we obtain
y = b3 z =ch3 ®)
Hence the required volume is
V = 3 abc o

3V3
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Example A.10.3
As an example of a problem which involves more than one constraint consider the following. Let

us determine the maximum agd minimum digtances from the origin to the curve defined by the
intersection of the ellipsoid xT + % + -;? = landthe planez = x + y.

In this case the quantity to be extremized is given by W = 52 = x2 + y2 + z? and the
constraints ¢; = 0 and ¢, = 0 are the equations of the ellipsoid and the plane. The intersection
curve is clearly an ellipse and we can determine its equation by substituting from the second con-
straint equation into the first. In that way the number of constraint equations would reduce to

one. However let us retain the two constraints and define a new function F, as

2 2 2
F=x2+y2+22+kl(5—+L+z——l)+lq(x+y—z) (@)
4 5 25

The necessary conditions for an extremum of F are
oF _ Ax _ _ 2N
w SEr g k=0 o x=- e ®
oF _ 2\y _ _ 5\,
73;-2y+ 5 + 4 =0 or y——27~1+10 ©
oF _ 27\.12 _ _ ZSM
S TEr s k=0 o 7T+ 50 @

Substituting these values of x, y, and z into the second constraint equation and dividing through
by A,, we find

2 5 25
M4 T +10 T+ 50

=0 ()

or
2020 + 10)2A, + 50) + 5 + 4)(2A + 50) + 25(0 + 42\, + 10) = O
This equation simplifies to

'17)»12 + 2450 + 750 = 0 or A+ 100172, + 75) = 0 ®
from which we obtain the roots M=-10 or M= - % (g.h)
Using the first root in equations (b), (c) and (d) we obtain
1 1 5 -
x = 3k y=ghk 2= 3h 3%
Substituting these values into the first constraint equation we find
%0t ! O
from which
A =t 6V519 (m)
Use of this value of A, in the expressions (i,j,k) for x, y, and z yields
x =2 22519 y=2=3519 and :z =t 5519 (n,0,p)

Therefore the value of s = x2 + y2 + z2 = (20 + 45 + 125)/19 = 10. If we employ
the second root of A; and proceed in like-manner we find
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x = + 40646 y = t 35646 z = + 5646 (q.r.8)

The value of 52 in this case is (1600 + 1225 + 25)/646 = 75/17
Thus the required maximum value is 10 and the minimum value is 75/17.

Algebraic and Differential Equation Constraints

In the functional
b
I=[F@,u,v,w,u,v,w)dx (A.10.17)
a

let u, v and w be related through a constraint equation which for generality includes
the derivatives of u, v and w as well, i.e.

G,u,v,w,u,v,w) =0 (A.10.18)
We will as usual write some varied functions as follows
u = u, + du v =v, + Ov w=w, + ow
where u,, v, , and w, form the required solution.
The first variation of / can now be evaluated and expressed as

b
8 = | F s & —‘-’E,Su' + Es 4 a—F,Sv' + Lo 4 —aETSW' dx
2 au au av av aW aW

(A.10.19)

As yet, the varied functions have not been restricted in any way and hence they will
bring about a change in the value of G. By constraining this change to zero we can
ensure that the varied functions will satisfy the constraint equation G = 0. Thus we
impose the condition that

9G

G sy + 995 sy + 994, + %G5, 4+ 9G 5,

0 = o+ 5 3,0+, v aw

It is worth noting that while x may appear in G in explicit form, its associated incre-
ment does not arise in 8G since the independent variable is not varied.

Equation (A.10.20) provides the required relation amongst the variations. We
will again use the Lagrange multiplier method. This time however, we will integrate
the product A 8G from x = a to x = b and then add it to 8 I. Since dG van-
ishes at every point x, this addition will not affect the value of 8/. Also the vanishing
of 3G at every point x implies that at each such point the Lagrange multiplier may
have a different value, i.e. now the Lagrange multiplier may be a function of x. The
modified first variation of / can thus be written as

=0 (A.1020)
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oG oF oG oF G
3 = j{[ = ]8 +[av”‘av ]8v+[a +Aaw]8w +

9F 129G |+ | 2E 4228 [ov'+ | 2E 4229 | 6w’
ou ou ov bl ow’ ow’
(A.10.21)

As usual the terms that involve derivatives of variations can now be integrated and
finally for extremum conditions the coefficients of variations du, and dv, and dw can
be equated to zero. It is apparent that the net effect is equivalent to the extremization
of a modified functional whose integrand is given by H = F + AG. If we have k
constraints, then H can be writenas H = F + A; G; (i = 1,2, ..k).

In the present case A(x) may be treated as an extra function to be varied indepen-
dently. The associated Euler-Lagrange equation will then emerge as the equation of
constraint.

Example A.104

As an illustration consider the functional
b

= JFix,y, ¥,y dx @
a
We may replace this functional by
b
= [F@x,y,z,2)dx ®
a

subject to the constraint G = y* — z = 0. Thus we now form the modified integrand
H®x,y,y,2,z2,0) = F(x,y,z,2) + My - z) ©)

and obtain its Euler-Lagrange equations as follows:
oH d oH oF d

For  Jy: —é-y———d—xa—y,=0 - E—Ex=0 e)

o oL, , Fa-LE o o

S\ 3—1){—ddng=0 - y —z=0 ®

From equation (f) we have A= aa—l: - i—g—f (h)
Substitution into equation (e) yields

a—F-i[a—",]+d—2[a—ﬁ]=o 0
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Before leaving this example it should be noted that the presence of y* and z  in H gives
rise to the following boundary terms

x=b
oH
—08 =0
" |

x=b
oH
— 0
" |

Hence, at @ and b we require that either 5y = Oand 8z = 8y = 0 (imposed boundary condi-

tions) or that 5ﬂ = A = Oand —aﬂ = sf— = 0 (natural boundary conditions). Clearly, if /
'y Z y
is extremized directly, the same conditions will be obtained.

Problems

A.10.1 Use the Lagrange multiplier method and find the rectangular parallelepiped of
maximum volume which fits inside a sphere of radius R.

A.10.2 Use (a) the Lagrange multiplier method to fit the largest rectangle into an
ellipse. (b) What is the area of the rectangle, if the ellipses’ semi-major axis is
4 m, and its eccentricity is 0.5?

A.10.3 Determine the maximum and minimum distances from the coordinate origin to
the curve defined by the intersection of the ellipsoid

2 2 2
2 22y
22 32 32

and the plane

Also make a sketch.

A.10.4 The end points of a cable of length L = 6 m are fastened to the points
x =0,y =0and x = 1 m, y = 0 of an xy coordinate system. Deter-
mine the shape of the curve assumed by the cable, if the area between cable
and x -axis is to be a maximum.

A.10.5 Let an area under a curve and above the x-axis be of a constant value J = A.
Determine the shape and length / = L of the minimum perimeter curve
enclosing the area.

A.11Variable End Points
Until now we have considered functionals with fixed end points. Thus in the simple

functional
b

I = [F@,y,y)d (A.1L.1)

we have required that at the ends x = @ and x = b the values of y be
prescribed. We now relax this restriction and consider two generalizations. In the first
we allow y to vary while x, at the ends, is retained at ¢ and b. In the second
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generalization we allow the end values of y and of x to vary.

In the first case we compare admissible functions with end points on the
lines x = a and x = b, as illustrated in Figure A.9. Extremization of / is carried
out as before and we find the first variation as

y(x) y

y
| dy(x)

dy(x)

s 5 ¥
T

X
0 x=a x=b
Figure A.9. Variations of y(x) at end points
t[or oF
8 = =8 + — &|dx (A.11.2)
[+ 2v]

On integrating the second term of the integrand we may write
b
8 = j[a_F _ ia_ﬁ]sydx . g
a ay dx ay ay x=b

In this case 8y does not vanish at the end points and hence for 8/ to vanish, we must
have

xX=a

(A.11.3)

oF d OoF

Z == -0 (A11.9)
in the domain and

9F _ (A.11.5)

dy

at the end points x =a and x = b. This last condition is referred to as the natural —
as against imposed — boundary condition. Clearly it is also possible to have an
imposed boundary condition at one end and a natural boundary condition at the other.
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Example A.11.1
Let us consider the brachystochrone problem again. This time we will seek the curve of the
quickest descend from the origin (0,0) to any point on the vertical linex = b.

As shown earlier the required functional is given by

b
_ 1 V1 + 27
L= o ‘[_’_v; dx @
The integrand is
-\, 2
Fe SZE ®)
Z

The Euler-Lagrange equation and its solution in the form of a cycloid is as derived earlier in Sec-
tion A.6. The solution that satisfies the imposed boundary condition at the origin (0,0) is given
by

x = R(o - sin o) and z = R - cosq) ©)
To determine R we invoke the natural boundary condition at x = b, i..
oF '

z
3’ vz V1 + 22

It is evident then that at this end z° = 0, ie. the solution cuts the line x = b at right angles.
Now since

= 0 @

dz/da. _ sin o,
ox/do. 1 - cosa

we note that at this end oo = n. Further, from the parametric equation for x we find that
R = b/m. Hence the required curve is

=0 ©)

x = %(a—-sina) and z = ;bt-(l—cosa) ®)

Consider next the general variation of
Xp
I = [F@&yy)d
Xa
wherein the end points of the functions competing in the extremization of I are
allowed to move in an arbitrary way. In this case the extremizing solution y, (x), and
an admissible function y (x) will be generally defined on different intervals. In order
that we may compare these functions we have to consider a large enough interval that
contains both y,(x) and y(x). This can be done by drawing tangents to the curves at
their end points as shown in Figure A.10. Now let us denote the difference between
Yo(x) and y(x) as
) = yx) - y,&) (A.11.6)

However, in this case it should be noted that in view of the difference in the intervals
of y(x) and y,(x), the total difference between y(x) and y,(x), which we denote by
Ay (x) is not equal to 8y (x), see Figure A.10.
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y ; ¥
¥(x)
&, Db
¥ '(Xa+8x4 )8%a By(x) i X
{ !
Ay,
“ 8}’a yo'(xa)s.xa yo(x)
—> CE% —> ‘8—xb X
0 X Xy
Figure A.10. General variations at end point

The variation of / may now be computed as follows

xp + &x; X
I -1, = F(x,y, + €.y, + e)dx - [ F(x,,,5,) dx
x, + &x, X,
Xp
= [ (FG,y, + et,y, + &) = F&x,y,5,)} dx (A11.7)
Xa
x,,+8x,,
+

X, + Ox,

j F(x,y, + €,y, + e)dx — j F(x,y, + et,y, + e)dx
Xp Xa

By expanding into Taylor series and retaining terms of the first order of smallness
only, we obtain

Xp
Al = j[a—Fet + a—F,et'] dx
Lo dy
+ F(x,y,y) Y Fx,y,y) xm, dx, (A.11.8)
On integrating the second term of the integrand we may write
Xp
oF d OF
Al = — - — — | etdx + F |, &
x[[ay dx 3y ] o
+ a—F,Sy - F' &, - a—F,Sy (A.11.9)
ay x=x, x=x, ay x=x,
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Now from Figure A.10 it is evident that for a small &x, we can write
Sy | = Ay, - y(x, +8x,) &x, (A.11.10)
X=X,

But y'(x, + &x,) &x, differs from y'(x,)dx, by second order quantities only, so that
we may write equation (A.11.10) as

0

et Ay, - y(x,)dx, (A.11.11a)

X=X,

and similarly

n

et | Ay, — ¥ (xp)0x, (A.11.11b)

X=X

Hence the variation of / may be expressed as

Xp
oF d oF oF oF
Al = - - - 8ydx+——,— Ayb+F————,y 8x,,
i[[ay dx gy } 0y |x=x dy x=xp
oF oF .
- Ay, - |F - —= dx,
ay x=x, ay x=x,
or more compactly as
Xp
OF d OoF oF , | oF - i
Al = — - — — |y dr + — N + |F - —y |&
5 -a]vas ol [r- 3]
(A.11.12)

This is the basic formula for the general variation of / as defined in equation
(A.11.5). If the end points of the admissible functions are constrained to lie on the
straight lines x = a, x=b, i.e. they are coterminal in x as in the simple variable end
point problem considered earlier, then &x, = &x, = 0, while in the case of the fixed
end point problem &x, = &, = 0and 8y, = 8y, = 0. It is also possible for the
admissible functions to be coterminal in y, in which case Ay, = Ay, = 0.

Above result can be readily extended for functionals of the form

Xp

I = [F@yu00 Y ¥iY00 Y dr (A.11.13)
X
In this case we obtain the following extremizing conditions:
9O _dF _, in the domain (A.11.14)
ayi dx ay,
and the boundary conditions
OF =0 for an arbitrary Ay; (A.11.15)

ay i’
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F-y 2 =0 for an arbitrary &;  (A.11.16)
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mathematics.  This important institution had been established only a few years
earlier by Catherine I, along lines laid down by her late husband, Peter the
Great, with the advice of Leibniz. On the very day that Euler arrived in Russia,
Catherine died and the fledgling academy very nearly collapsed because the
new rulers showed little sympathy for learned foreigners. However, the
academy survived and in 1730 Euler found himself in the chair of natural
philosophy rather than in the medical section. Nikolaus Bernoulli had died,
drowning, the year before, and in 1733 Daniel Bernoulli left Russia to occupy
the chair of mathematics at Basel, whereupon Euler, at the age of twenty-six,
became the academy's chief mathematician.

One of the most important works of this period were Euler's treatises on
mechanics. Euler did for mechanics what René Descartes (1596-1650) had done
for geometry, that is he freed it from the shackles of synthetic demonstration
and made it analytical. For the first time the full power of the calculus was
directed towards mechanics and the modern era in that basic science began.
In particular Euler made very significant contributions to problems of rigid
body dynamics. He also devised approximate methods for the solution of the
three body problem (earth, moon, sun) governed by Newton's gravitational
law. This problem had important applications in navigation problems. During
this period Euler began to lose the sight in his right eye.

In 1740 Euler was glad to accept an invitation from Frederick the Great
to join the Berlin Academy. Over the next twenty-four years at Frederick's
court Euler worked on many practical problems ranging from coinage, water
conduits, navigation, canals and pension systems. At Frederick's court he was
not entirely happy. Frederick preferred scholars who scintillated as did
Voltaire.  Consequently in 1766 at the age of fifty-nine Euler pulled up his
stakes and once again migrated back to St. Petersburg, where he was cordially
received by Catherine the Great. Soon after he lost the sight in his other eye
and became totally blind. Even this tragedy did not abate the flow of his
research and publications. He trained himself to write on a slate and his son
transcribed his writings for purposes of publication.

Euler is considered the most prolific mathematician in history. He
published a total of 886 books and mathematical memoirs and his output
averaged 800 printed pages per year. For almost half a century after his death,
works by Euler continued to appear in the publications of the St. Petersburg
Academy. He contributed to many branches of mathematics and he co-founded
(with Lagrange) the calculus of variations. He also wrote in notations we use
today, he was the most successful notation-builder of all times. The symbols e,
7, i, X and f(x) were all introduced by Euler.

All his life Euler had been blessed with an astonishing ability to do
mental calculations, and with a phenomenal memory. All the leading formulas
of the whole range of mathematics, as it existed in his day, were accurately
stowed away in his memory. He was also able to work anywhere under any
condition. He was very fond of children (he had thirteen of his own, all but
five of whom died very young) and would write his papers with a child on his
lap while other children would play around him.
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politics with disastrous results. Not only was he not elected but he annoyed his
patron, the King of Prussia, who stopped Jacobi's allowance. Hearing his
plight, the university of Vienna began angling for him. However, when a
definite and generous offer was tendered, Alexander von Humboldt talked the
King around; the allowance was restored and Jacobi stayed in Berlin.

In his researches Jacobi made very important contributions to the
theory of elliptic functions and functions of complex variables. He also
contributed to the theory of determinants and functional determinants, now
referred to as Jacobians of transformation. In dynamics, Jacobi made the first
significant advance beyond Lagrange and Hamilton. The celebrated Hamilton-
Jacobi equation played an important role in the early days of quantum
mechanics.

Jacobi died in his fourty-seventh year from smallpox.
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Invariance, 60, 94, 194, 196-197

J
Jacobian, 16, 17, 22, 26, 96



K
Kelvin’s theorem, 298
analogue of, 306
Kepler’s laws 156
Kepler’s problem, 58, 114, 154, 155, 208
Kinematically possible, 67
Kinetic coenergy, 54, 57-58, 60-62, 84-85,
87, 89-90, 92, 96-98, 115, 252
rotational, 55, 226, 239
Kinetic energy, 54, 57-58, 60-61, 77, 85, 98,
102, 113, 115, 201
rotational, 55§, 226, 239

L

Lagrange multipliers, 138, 148, 337

Lagrange’s equation, 88-92, 94-97, 98, 101,
103-104, 111, 126, 244
complementary form, 97, 102, 104,
110, 114, 124

Lagrangian, 90-91, 93, 95, 96, 98-99, 101,
121, 155, 193, 194
complementary form, 98, 101-102
modified, 111, 139, 140, 158

Least Action Principle, 177, 183, 184, 188,
189, 209
Jacobian form, 185, 186, 211

Leibniz’ rule, 178

Limitations of the complementary
formulation, 113

Linear momentum, 2, 3, 4, 5, 7-10, 12, 13,
56, 60, 67, 74, 217

M

Mass, 2, 8
Maximum point, 312, 314
Mechanical energy, 7, 13
Minimum point, 312, 314
Modal matrix, 265
Momentum vector, 212

generalised, 72, 90
Monogenic forces, 33, 107
Moving frame, 12, 16, 59, 78

365

N
Natural frequency, 77, 92, 198
Newton’s laws, 1, 2, 28, 86
Nutation angle, 232

o
Orbit, 204
Orthogonality of modes of vibration, 260
Oscillator, 69, 74, 77-78, 121, 123, 180, 198,
199

P
Pantograph, 28
Path independent functionals, 327
Pendulum, 13, 32, 58, 80, 92, 98-100, 112,
205, 206
double, 21, 93, 96-97, 350
of varying length, 137
spherical, 161, 162
spring-force, 91, 163
triple, 32
Percussion centre, 7
Precession angle, 232
Phase space, 170, 172, 175
Pitch angle, 24
Point mass, 2
Polygenic forces, 36
Positive definite, 41, 59-60, 316
Potential energy, 33-34, 37, 40-42, 44,
46-49, 52-55, 52-55, 58, 71, 78-80,
90, 96, 98, 202, 208, 121
complementary form, 52, 54-55, 58,
79, 113, 116, 252
other forms, 39
effective, 129
modified, 139
Power function, 106
complementary form, 107
Principal:
axes, 223
inertias, 223
minors, 316
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R
Rayleigh’s dissipation function, 107, 108,
252
Reaction force, 27
Reduced transformation
equations, 21, 22, 23, 26, 51, 61, 68,
71, 78, 88, 106, 107
Relativistic mechanics, 3
Rheonomic systems, 129, 181, 182
Rigid Body, 4, 215
Roll angle, 24
Rotating coordinate system, 215
Rotation matrix, 233
Rotatory motion, 215
Routhian, 155, 156, 278

Saddle point, 313

Satellite, 157

Scleronomic systems, 20, 26, 60, 78, 129,
146

Second variation, 319

Separation of variables, 203-208

Small amplitude oscillations about position
of equilibrium, 251

Small oscillations about steady motion, 277

Spike loads, 251, 287, 288, 292

Spin angle, 232

Spinning top, 284

Stability of static equilibrium, 41, 45-49

State space, 170, 173, 199, 210

Stationary values, 317

Step displacement, 302

Step impulse, 286, 290

Stream function, 176

T
Taylor series, 41, 81, 251, 252, 279, 312,
313, 315, 318

Torque, 2, 5, 236
Trajectory, 86

U
Unit impulse response, 272

v
Variable end points, 343
Variational notation, 332
Variational statement, 1
Variations:
strong, 323
weak, 323
Vectorial mechanics, 1
Velocity, 2, 7
absolute, 12
Virtual displacement, 26-27, 67-68,71, 81,
88
Virtual impulse, 50, 72, 76
Virtual work, 26-27, 30-32, 47, 50, 67, 78,
88-89, 98, 105-106, 108, 119-120,
253
of second kind, 50, 72, 98, 110, 12:
Vis viva, 1

A%
Work, 1, 30-31, 33-38, 49-50, 52-54
Work function, 33-34, 76

Y
Yaw angle, 24, 249

Zwang, 81
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