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Series Preface

Mechanical engineering, an engineering discipline borne of the needs of the
industrial revolution, is once again asked to do its substantial share in the call
for industrial renewal. The general call is urgent as we face profound issues of
productivity and competitiveness that require engineering solutions, among
others. The Mechanical Engineering Series features graduate texts and
research monographs intended to address the need for information in con-
temporary areas of mechanical engineering.

The series is conceived as a comprehensive one that covers a broad range
of concentrations important to mechanical engineering graduate education
and research. We are fortunate to have a distinguished roster of consulting
editors on the advisory board, each an expert in one of the areas of concen-
tration. The names of the consulting editors are listed on the next page
of this volume. The areas of concentration are: applied mechanics; bio-
mechanics; computational mechanics; dynamic systems and control; energetics;
mechanics of materials; processing; thermal science; and tribology.

Professor Marshek, the consulting editor for dynamic systems and control,
and I are pleased to present the second edition of Vibration of Discrete and
Continuous Systems by Professor Shabana. We note that this is the second of
two volumes. The first deals with the theory of vibration.

Austin, Texas Frederick F. Ling

vii



Preface

The theory of vibration of single and two degree of freedom systems is covered
in the first volume of this book. In the treatment presented in the first volume,
the author assumed only a basic knowledge of mathematics and dynamics on
the part of the student. Therefore, the first volume can serve as a textbook for
a first one-semester undergraduate course on the theory of vibration. The
second volume contains material for a one-semester graduate course that
covers the theory of multi-degree of freedom and continuous systems. An
introduction to the finite-element method is also presented in this volume. In
the first and the second volumes, the author attempts to cover only the basic
elements of the theory of vibration that students should learn before taking
more advanced courses on this subject. Each volume, however, represents a
separate entity and can be used without reference to the other. This gives the
instructor the flexibility of using one of these volumes with other books in a
sequence of two courses on the theory of vibration. For this volume to serve
as an independent text, several sections from the first volume are used in
Chapters 1 and 5 of this book.

SECOND EDITION

Several important additions and corrections have been made in the second
edition of the book. Several new examples also have been provided in several
sections. The most important additions in this new edition can be summarized
as follows: Three new sections are included in Chapter 1 in order to review
some of the basic concepts used in dynamics and in order to demonstrate the
assumptions used to obtain the single degree of freedom linear model from
the more general multi-degree of freedom nonlinear model. Section 3.7, which
discusses the case of proportional damping in multi-degree of freedom systems
has been significantly modified in order to provide a detailed discussion on
experimental modal analysis techniques which are widely used in the vibration
analysis of complex structural and mechanical systems. A new section, Section
5.10, has been introduced in order to demonstrate the use of the finite-element

ix



X Preface

method in the large rotation and deformation analysis of mechanical and
structural systems. The absolute nodal coordinate formulation, described in this
section, can be used to efficiently solve many vibration problems such as the
vibrations of cables and flexible space antennas. A new chapter, Chapter 6,
was added to provide a discussion on the subject of similarity transformation
which is important in understanding the numerical methods used in the large
scale computations of the eigenvalue problem. In this new chapter, the Jacobi
method and the QR decomposition method, which are used to determine the
natural frequencies and mode shapes, are also discussed.

CONTENTS OF THE BOOK

The book contains six chapters and an appendix. In the appendix, some of
the basic operations in vector and matrix algebra, which are repeatedly used
in this book, are reviewed. The contents of the chapters can be summarized
as follows:

Chapter 1 of this volume covers some of the basic concepts and definitions
used in dynamics, in general, and in the analysis of single degree of freedom
systems, in particular. These concepts and definitions are also of fundamental
importance in the vibration analysis of multi-degree of freedom and continu-
ous systems. Chapter 1 is of an introductory nature and can serve to review
the materials covered in the first volume of this book.

In Chapter 2, a brief introduction to Lagrangian dynamics is presented. The
concepts of generalized coordinates, virtual work, and generalized forces are
first introduced. Using these concepts, Lagrange’s equation of motion is then
derived for multi-degree of freedom systems in terms of scalar energy and work
quantities. The kinetic and strain energy expressions for vibratory systems are
also presented in a matrix form. Hamilton’s principle is discussed in Section
6 of this chapter, while general energy conservation theorems are presented
in Section 7. Chapter 2 is concluded with a discussion on the use of the
principle of virtual work in dynamics.

Matrix methods for the vibration analysis of multi-degree of freedom sys-
tems are presented in Chapter 3. The use of both Newton’s second law and
Lagrange’s equation of motion for deriving the equations of motion of multi-
degree of freedom systems is demonstrated. Applications related to angular
oscillations and torsional vibrations are provided. Undamped free vibration
is first presented, and the orthogonality of the mode shapes is discussed.
Forced vibration of the undamped multi-degree of freedom systems is dis-
cussed in Section 6. The vibration of viscously damped multi-degree of free-
dom systems using proportional damping is examined in Section 7, and the
case of general viscous damping is presented in Section 8. Coordinate reduc-
tion methods using the modal transformation are discussed in Section 9.
Numerical methods for determining the mode shapes and natural frequencies
are discussed in Sections 10 and 11.



Preface xi

Chapter 4 deals with the vibration of continuous systems. Free and forced
vibrations of continuous systems are discussed. The analysis of longitudinal,
torsional, and transverse vibrations of continuous systems is presented. The
orthogonality relationships of the mode shapes are developed and are used
to define the modal mass and stiffness coefficients. The use of both elementary
dynamic equilibrium conditions and Lagrange’s equations in deriving the
equations of motion of continuous systems is demonstrated. The use of
approximation methods as a means of reducing the number of coordinates of
continuous systems to a finite set is also examined in this chapter.

In Chapter 5 an introduction to the finite-element method is presented. The
assumed displacement field, connectivity between elements, and the formula-
tion of the mass and stiffness matrices using the finite-element method are
discussed. The procedure for assembling the element matrices in order to
obtain the structure equations of motion is outlined. The convergence of the
finite-element solution is examined, and the use of higher order and spatial
elements in the vibration analysis of structural systems is demonstrated. This
chapter is concluded with a discussion on the use of the absolute nodal
coordinate formulation in the large finite-element rotation and deformation
analysis.

Chapter 6 is devoted to the eigenvalue analysis and to a more detailed
discussion on the similarity transformation. The results presented in this
chapter can be used to determine whether or not a matrix has a complete set of
independent eigenvectors associated with repeated eigenvalues. The definition
of Jordan matrices and the concept of the generalized eigenvectors are intro-
duced, and several computer methods for solving the eigenvalue problem are
presented.
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1

Introduction

The theory of vibration of single degree of freedom systems serves as one of
the fundamental building blocks in the theory of vibration of discrete and
continuous systems. As will be shown in later chapters, the concepts intro-
duced and the techniques developed for the analysis of single degree of
freedom systems can be generalized to study discrete systems with multi-
degrees of freedom as well as continuous systems. For this volume to serve as
an independent text, several of the important concepts and techniques used
in the analysis of single degree of freedom systems are briefly discussed in this
chapter. First, the methods of formulating the kinematic and dynamic equa-
tions are reviewed in the first three sections. It is also shown in these sections
that the dynamic equation of a single degree of freedom system can be
obtained as a special case of the equations of the multi-degree of freedom
systems. The free vibrations of the single degree of freedom systems are
reviewed in Sections 4 and 5, and the significant effect of viscous, structural,
and Coulomb damping is discussed and demonstrated. Section 6 is devoted
to the analysis of the forced vibrations of single degree of freedom systems
subject to harmonic excitations, while the impulse response and the response
to an arbitrary forcing function are discussed, respectively, in Sections 7and 8.

1.1 KINEMATICS OF RIGID BODIES

The dynamic equations of motion of multi-degree of freedom mechanical and
structural systems can be formulated using the Newtonian or the Lagrangian
method. Using either method, the formulation of the kinematic position and
velocity equations is a necessary step which is required in developing the
inertia, elastic, and applied forces of mechanical and structural systems. When
the approach of the Newtonian mechanics is used, one must also formulate
the kinematic acceleration equations in addition to the position and velocity
equations. In the Lagrangian method described in the following chapter, the
equations of motion are formulated using the scalar energy quantities and, as
such, the formulation of the acceleration equations is not necessary. In the
case of a general rigid body displacement, the kinematic position, velocity, and
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F1G. 1.1. Coordinates of the rigid body.

acceleration equations can be expressed in terms of six independent param-
eters: three parameters describe the absolute translation of a reference point
on the rigid body, and three rotation coordinates define the body orientation
in a selected global frame of reference. Using these six independent parameters,
the position, velocity, and acceleration vectors of an arbitrary point on the
rigid body can be systematically developed. Figure 1 depicts a rigid body that
has a body coordinate system denoted as X, Y, Z,. The global position vector
of an arbitrary point on this rigid body can be described using the translation
of the reference point O, as

r=R + Auy, (1.1)

where R is the global position vector of the reference point as shown in the
figure, A is the transformation matrix that defines the orientation of the body
in the global coordinate system, and u, is a constant vector that defines the
location of the arbitrary point with respect to the reference point. The vector
u, is defined in terms of its constant components as

=[x y I (1.2)

Planar Kinematics In the case of planar motion, the rotation of the rigid
body can be described by one parameter only, while the translation can be
described by two parameters. In this case, the vector R has two time-varying
components, while the transformation matrix is a function of one angle that
defines the rotation of the rigid body about the axis of rotation. Without any
loss of generality, we select the axis of rotation to be the Z axis. If the angle
of rotation is denoted as 0, the transformation matrix A can be written in this
special case as
cos@ —sinf 0

A=|sinf cosf O
0 0 1
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while the vector R is defined as

R=[R, R, O]

Spatial Kinematics In the case of a general three-dimensional displace-
ment, the vector R is a function of three time-dependent coordinates, while
the transformation matrix is a function of three independent parameters that
define the rotations about the three perpendicular axes of the body coordinate
system. A simple rotation ¢ about the X,-axis is defined by the matrix

1 0 0
A,=|0 cos¢ —sing
0 sing cosg¢

A simple rotation 6 about the body Y,-axis can be described using the rotation
matrix

cos@ 0 siné
A = 0 1 0
—sinf 0 cosf@

Similarly, a simple rotation y about the body Z,-axis is described by the
rotation matrix

cosyy —siny O
A,=|siny cosy O
0 0 1

The three independent rotations ¢, 6, and i, shown in Fig. 2, can be used to
define an arbitrary orientation of a rigid body in space. Since these angles are
defined about the moving-body axes, the sequence of the three transforma-
tions previously defined can be used to define the transformation matrix that

¥4
Z,Z, b X,
Yb Zb Yb Zb Y, b
VY, V7/'
X, X,
Xp X,

Initial configuration Rotation ¢ Rotation & Rotation ¥
about X, axis about Y, axis about Z;, axis

F1G. 1.2. Three-dimensional rotations.
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defines the final orientation of the body as
A=AAA,
cos 0 cos —cos @ sin Y sin @
=| singsinfcosy +cosgsiny —singsinfsiny + cosgcosy —sin ¢ cosd

—cos@sinBcosyy +singdsiny  cos ¢ sin 0 siny + sin ¢ cos Y cos ¢ cos 0

(1.3)

The columns of this transformation matrix define three unit vectors along the
axes of the body coordinate system. It can be demonstrated that this matrix
satisfies the following orthogonality condition:

ATA=AAT=1

where I is the 3 x 3 identity matrix. The orthogonality of A implies that the
inverse of A is equal to its transpose. Furthermore, since the transformation
matrix in planar kinematics is a special case of the spatial transformation
matrix, the planar transformation matrix also must satisfy the preceding
orthogonality condition.

In the spatial kinematics, different sequences and angles of rotations can
be used to define the body orientation. Therefore, different transformation
matrices that depend on the selection of the sequence and angles of rotations
can be obtained, as demonstrated by the following example.

P

Example 1.1

In this section, the rotations ¢, 0, and y are defined about the axes of the body
coordinate system. If these rotations are performed about the axes of the global
coordinate system, a different sequence of multiplication must be used to define the
final transformation matrix. In this case, the final orientation of the body is deter-
mined by using a sequence of three rotations about the fixed axes. The transforma-
tion matrix A is defined in this case as follows:
A=AAA,
with which, upon using the previously obtained expressions for the simple rotation
matrices A,, A,, and A,, one obtains
cosBfcosy —cosgsiny +singsinfcosy sin ¢ sin Y + cos ¢ sin 6 cos Y
A= cosfsiny cosgcosy +singsinfsiny  —sin ¢ cos Y + cos ¢ sin 8 sin
—sin sin ¢ cos 6 cos ¢ cos 0

1.4

It can be shown that this transformation matrix is also orthogonal.

Velocity Vector The velocity vector can be obtained by differentiating
the position vector with respect to time. This leads to

v=["=R+AIl,, (15)
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The velocity vector also can be written in the familiar form

v=R+oxu (1.6)
where
o = [wx wy wz]T

is the angular velocity vector and
u = Ay,

One can prove the following cross-product identity:

® X u=@ou
where
0 -—w,
=] o, 0 -,
-0, O, 0
The velocity vector then can be written as
v=R + @Au, (1.7)
It follows from Eqgs. 5 and 7 that
@A =A
or )
@ = AAT

Using this identity and the transformation matrix of Eq. 3, it can be shown
that the angular velocity vector @ can be expressed in terms of the angles ¢,
0, and  and their time derivatives as (Shabana, 1989 and 1994)

o =Gp (1.8)
where
1 0 sin &

G=|0 cos¢ —singcosé
0 sing cosgcosf

B=[s 6 yI'

Note that the components of the angular velocity vector are not the time
derivatives of the orientation coordinates.
The angular velocity vector also can be defined in the body coordinate
system as
0,=ATe

where o, is the angular velocity vector defined in the body coordinate system.
This vector can be written in terms of the orientation coordinates and their
time derivatives as

W, = GbB (1.9
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Using the angles that define the transformation matrix of Eq. 3, one can show
that

cosfcosy siny O
G,=| —cosfOsiny cosy O
sin 0 0 1

B Example 1.2

Using the different definition of the sequence of rotations and the resulting transfor-
mation matrix defined in Example 1, and using the identity

®=AAT
the angular velocity vector can be defined in terms of the orientation coordinates

and their derivatives as

o =G
where
cosfcosy —siny O

G=]cosfsiny cosy O
—sin 0 0 1
B=[s 6 yI'

It also can be shown, in this case, that the angular velocity vector defined in the
body coordinate system is given by

W, = GbB
where
1 0 sin 0

G,=|0 <cos¢ singcosf

0 —sing cos¢gcosf

Angular Acceleration Vector The angular acceleration vector o is
defined as the time derivative of the absolute angular velocity vector o, that
is,

a=0

which also can be written in terms of the derivatives of the orientation
coordinates as

o=Gp+ Gp
The angular acceleration vector also can be defined in the body coordinate
system as

o, = ATG
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This equation also can be written as
a, = AT = AT(Aw, + Ady)
The following identities can be verified (Shabana, 1994):
ATA=®, @0,=0,x0,=0

It follows, upon the use of these identities and the orthogonality property of
the transformation matrix, that

o, = G

1.2 DYNAMIC EQUATIONS

The three-dimensional motion of a rigid body can be described using six
equations which can be written in terms of the velocities and accelerations.
In the Newton—Euler formulation, a centroidal body coordinate system that
has an origin rigidly attached to the body center of mass is used. The Newton-
Euler equations can be written as (Shabana, 1994)

ml 0 R 3 FR 0
[ 0 Ib][ab] B [Fjl + [—wb y (I,,m,,)] (1.10)

where m is the total mass of the rigid body, I, is the inertia tensor, and Fp
and F, are the vectors of forces and moments acting at the center of mass of
the rigid body. The inertia tensor is defined as

Ixx Ixy Ixz
L=|1, I, I, (1.11)
_Ixz Iyz Izz

where

»

p(x* + 20 dV, I,= j p(x* + y*) dv,
v | 4

IXX=J p(y2+zz)dl/’ Iyy=
14

o/

I, = ——J pxy dV, I,= ——J pxz dV, I, = —j pyzdV
| 4 | 4 1 4

in which V and p are, respectively, the volume and mass density of the rigid
body. In the Newton—-Euler equations, the vector R is the global position
vector of the center of mass of the body. As a result of using the center of mass
as the reference point, there is no inertia or dynamic coupling between the
translation and the rotation of the body in the Newton—Euler formulation.

Constrained Motion A mechanical system that consists of n, rigid bodies
can have at most 6 n, independent coordinates. The number of independent
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coordinates or the degrees of freedom of the system is
ng = 6n, — n,

where n, is the number of the system degrees of freedom, and »n, is the number
of constraint functions that describe the relationships between the 6 n, coordi-
nates. The dynamics of a mechanical system that has n, degrees of freedom
can be described using n, independent differential equations only. In order to
demonstrate this fact, we consider the case in which the rigid body rotates
about a fixed axis. Without any loss of generality, we assume that the axis of
rotation is the Z,-axis of the body coordinate system. In this special case, the
angular velocity and acceleration vectors are

0,=[0 0 yI', a,=[0 0 yI
In this case, the vector of centrifugal forces can be written as
@, X (Ib(")b) = l/)2[—1)72 Ixz 0]T

and the Newton—Euler equations of the rigid body can be written as

fm 0 0 0 0 O][R,] [Fa 0 ]
0m 0 0 0 O0f|R Fg, 0
00m000iz',=FR,_J,20
0 0 0 I, I, I, ||on Fo =1,
0 0 0 I, L, I,]||a, F, I,
0 0 0 I, I, L. |[o] |[Fa. | 0

Since the rotation is about a fixed axis, there is only one independent orienta-
tion coordinate, and the rigid body has four independent coordinates. The
accelerations of the rigid body can be expressed in terms of the independent
accelerations as

(R, [t 0 0 0]
R, 01 0 O|[R,
R, 0 0 1 OfR,
s | [0 0 0 of|R,
%y, 000 0|V
| o, |0 0 O 1]

This matrix can be written compactly as

i = B, (1.12)
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where
ii=[ii.x Ry Rz Opx aby abz]T

iii = [R.x R.y ﬁz ‘/J]T

—

1000
0100
0010

B, =
0000
0000

[0 0 0 1]

Substituting the constraints of Eq. 12 into the Newton—Euler equations, and
premultiplying by the transpose of the matrix B,, one obtains

m 0 0 O7[R, Fry
0 m 0 0[[R
0 0 m O(|R, Fr.
0 0 0 I,||v F,,

If we further assume that the body does not translate along the Z-axis, the
number of degrees of freedom is reduced by one, and we obtain the Newton—
Euler equations which govern the planar motion of the rigid body as

m 0 O07[R, Fr.
0 m O [|R,|=|Fg (1.13)
0 0 L.J[¥ F.

Example 1.3

We consider the case of the spherical pendulum shown in Fig. 3. The rod is assumed
to be uniform with mass m, and length I. The centroidal coordinate system of the
rod is assumed to have principal axes such that the products of inertia of the rod
are all equal to zero. In this case, the inertia tensor of the rod is defined as

I, 0 0
lb = 0 Iyy 0
0 0 I

zz

Since point O is assumed to be a fixed point, the absolute acceleration of this point
is equal to zero, and therefore,

a4y = R+ Aoty X ) + A(®, X (@, X Uyp)) =0
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Az

s

F1G. 1.3. Spherical pendulum.

1 T
ubo=|:0 O E:I

is the position of point O with respect to the center of mass of the rod. It follows that

where

R = A0, + ¥
where
Y= —A{w, x (0, X W)} = “A‘I’g“bo

Using the acceleration constraint equations, the accelerations of the rod can be
expressed in terms of the angular accelerations as

B il R HEE
n-[%] w-[3]

Substituting into Eq. 10 and premultiplying by the transpose of the matrix B,, one
obtains

where

(mioiino + 1), + miifpATy = iifoATF + F, — @, x (I,m;) (1.14)

It can be shown that

I — 0 0

xXx + 4
(mityoii,o + 1) = 0 I, + "’_’2 0

4
0 0 I,
wbywbz
e
mii oA"Y = 4 T Wpx Wy
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It also can be shown that the vector of gyroscopic forces is given in terms of the
components of the angular velocity vector as

wbywbz(lyy - Izz)
— @y X (Ibwb) = wbwaz(lzz - Ixx)
wbway(lxx - Iyy)
If the gravity is the only force acting on the pendulum, one has
Fr=[0 0 -mg]", F,=[0 0 O]
It follows that
l
ﬁIOATFR = —mgi[aaz —4aszy OJT
where a;; are the elements of the transformation matrix A. Therefore, the equations

of motion of the spherical pendulum, defined by Eq. 14, can be written explicitly in
a matrix form as

_ 2 -
L+™ 0
4 s
mi? o
0 Iyy + T 0 by
abz
| o 0 L.
wbywbz
ml?
=T — Wy Wy,
0
as; wbywbz(lyy - Izz)

I
— mgi —ay |+ wbwaz(lzz - Ixx)

0 wbway(lxx - Iyy)

1.3 SINGLE DEGREE OF FREEDOM SYSTEMS

Single degree of freedom systems are special cases of multi-degree of freedom
systems or continuous systems. The dynamics of these systems is governed by
one differential equation which can be obtained by imposing more motion
constraints. Clearly, a more detailed and accurate model requires, in many
applications, the use of more degrees of freedom. Nonetheless, the theory
of vibration of single degree of freedom systems remains one of the fundamen-
tal building blocks in the analysis of multi-degree of freedom and continuous
systems. In order to demonstrate how the mathematical model of a single
degree of freedom system can be obtained as a special case of a multi-degree
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of freedom model, we use Eq. 13, which defines Newton-Euler equations for
the planar motion of rigid bodies. If we assume that one point on the rigid
body is fixed such that its velocity remains equal to zero, as in the case of a
simple pendulum, one has

v=R + Au, =0
where in this special case

R=[R, RI, u=[x yI

i - ¢|:——sin Y —cos x//]

cosy —siny

Note that R is the global position vector of the center of mass of the body,
and u, is the position vector of the fixed point with respect to the center of
mass of the body. The two velocity constraints of the fixed point can be
differentiated with respect to time. The result of the differentiation can be used
to write the acceleration vector of the center of mass in terms of the angular
acceleration as

. [R] _.[ xsiny+ycosy . [xcosy — ysiny
R—[R'yil—w[—xcosn//+ysin¢]+¢2[xsinw+ycosw]

These constraint equations can be used to write the accelerations of the body
in terms of the independent angular acceleration and velocity as

R, xsiny + y cos ¥ X COS Y — y sin y
i=|R,[=¢| —xcosy +ysiny [ +§?| xsiny + ycos ¥
y 1 0

The coefficient vectors of the angular velocity and accelerations on the right-
hand side of this equation are orthogonal as the result of the orthogonality
of the tangential and normal components of the acceleration of the center of
mass. Substituting the preceding equation into Eq. 13, which defines the
Newton-Euler matrix equation in the case of planar motion, and premulti-
plying by the transpose of the coefficient vector of the angular acceleration
defined in the preceding equation, one obtains the independent differential
equation of motion of the single degree of freedom system as

(I, + mI*) = F,, + Fp(xsiny + y cos §) + Fg,(—x cos § + y sin §)

where
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Example 1.4

It was shown in Example 3 that the equations of motion of the spherical pendulum
are

ml? )
Le+— 0 0
xx t 4 Ay
ml? o
R L |
abz
| o 0 L. |
Wpy Wy,
ml?
= ,__4- —wbwaz
0
asz; @pyWps(lyy — L)
_ mgi —ay |+ Wy, (L,; — 1y)
0 Wy Wy (lex — 1)

The case of a simple pendulum can be obtained as a special case of the spherical
pendulum by using the following assumptions:

aby = &y, = 0; wby = Wp, = 0
Using these assumptions, the matrix equation of motion of the spherical pendulum
reduces to
mi? l

Ixx + T Opx = —mga32§

Since the rotation is assumed to be about the X-axis only, one has
as; = sin ¢, Upe = @

The equation of free vibration of the single degree of freedom simple pendulum
reduces to

. !
Iod + mgisin¢ =0

where I, is the mass moment of inertia about point O and is defined as

mil?
In=1,+—
o 4

Linear and Nonlinear Oscillations The results of the preceding exam-
ple demonstrate that the dynamics of simple single degree of freedom systems
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FiG. 1.4. Multi-body system.

can be governed by second-order nonlinear differential equations. Non-
linearities can be due to nonlinear restoring, damping, or inertia forces.
Because of the kinematic constraints, the inertia forces associated with the
system degrees of freedom can take a complex nonlinear form. In order to
demonstrate this, we consider the multibody system shown in Fig. 4. The
system consists of two homogeneous circular cylinders, each of mass m and
centroidal mass moment of inertia I, and a connecting rod AB of mass
m, and length /. The cylinders, which have radius r, are assumed to roll without
slipping. Because of the rolling conditions, the velocities of the centers of mass
of the cylinders are equal and given by

Vo=vVe=[—-rf 0T

The absolute velocities of points 4 and B are equal since the angular velocity
of the connecting rod is equal to zero. These velocities, which are also equal
to the absolute velocity of the center of mass of the rod, are defined as

—~(r — acos 0)0
Vp=Vy=Vo+Vo=Vo+ @ XTIy= abisin 6

where v, is the velocity of point A with respect to point O, @ is the angular
velocity vector of the cylinders, and r ,, is the position vector of point A with
respect to point O and is defined as

ro=1[asind —acosf]’

The absolute acceleration of the center of mass of the cylinders and the
acceleration of the center of mass of the rod a,, which is equal to the accelera-
tions of points A and B, are

a,=ac=[—-rf 0

[a,,,] [-—(r — acos 0)6 — ab? sin 0]
a, = =a,=ag=

a,, af sin @ + ab? cos 0

The multi-body system shown in Fig. 4 has one degree of freedom, and
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D, Dy 1Ry,
(a)
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Fi1G. 1.5. Dynamics of the subsystems.

©

therefore one must be able to obtain one differential equation that does
not include the constraint forces. This equation can be obtained by using
D’Alembert’s principle (Shabana, 1994). To this end, we consider the free
body diagram of the right cylinder shown in Fig. 5a, where R;, and R, will
be used to denote the components of the reaction forces. By taking the
moments of the inertia forces of the right cylinder about point D, and equating
the results with the moments of the applied and joint forces, one obtains

10 + mr*6 = —R,(r — acos 6) + R,asin 0

We can also consider the forces acting on the connecting rod 4B. Using the
free body diagram shown in Fig. 5b and taking the moments of the inertia
and applied forces about point 4, we obtain

l |
m,a,,,i = —R,,I— m,gi

Next we consider the equilibrium of the subsystem shown in Fig. 5¢. We apply
again D’Alembert’ s principle by taking the moments of the inertia and applied
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forces about point D,. The result is

16 + mr*6 — m,a,.(r — a cos 6) + m,a,, (é + asin 0)

=R, (r —acos ) — R, (I + asin 8) — m,g(é + asin 0)
Adding the first and third of the last preceding three equations, subtracting
the second equation from the result, and using the expression for the accelera-
tion of the center of mass of the connecting rod, one can eliminate the joint
reaction forces and obtain the equation of motion of the multi-body system
shown in Fig. 4 as

1 . .
2 {I + mr? + Em,(r2 + a* — 2ra cos 9)} 6 + m,raf* sin 6 + m,gasin 6 =0

Since for a cylinder I = mr?/2, the preceding equation reduces to

3 1 . .,
2 {imr2 + im,(r2 + a? — 2ra cos 0)} 6 + m,rad*sin 0 + m,gasin § = 0

This a nonlinear differential equation that governs the dynamics of the single
degree of freedom multi-body system shown in Fig. 4. If we use the assump-
tion of small oscillations, the preceding equation becomes a linear second-
order ordinary differential equation given by

2 {;mr2 + %m,(r - a)z}é + m,gad =0

In this book, we will focus on the analysis of linear systems. The vibration
analysis of complex nonlinear multi-body systems is discussed in the multi-
body literature (Shabana, 1989). In the remainder of this chapter, we briefly
review the theory of vibration of single degree of freedom systems, which is
important in the vibration analysis of multi-degree of freedom systems as well
as continuous systems. The cases of free and forced vibrations as well as the
effect of the damping on the dynamics of single degree of freedom systems will
be examined.

1.4 OSCILLATORY AND NONOSCILLATORY MOTION

In this section, we study the effect of viscous damping on the free vibration of
single degree of freedom systems. The differential equation of such systems
will be developed, solved, and examined, and it will be seen from the theoreti-
cal development and the examples presented in this section that the damping
force has a pronounced effect on the stability of the systems.
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HIE I

T
(a) (b)

Fi1G. 1.6. Damped single degree of freedom system.

Figure 6(a) depicts a single degree of freedom system which consists of
a mass m supported by a spring and a damper. The stiffness coefficient of
the spring is k and the viscous damping coefficient of the damper is c. If the
system is set in motion because of an initial displacement and/or an initial
velocity, the mass will vibrate freely. At an arbitrary position x of the mass
from the equilibrium position, the restoring spring force is equal to kx and
the viscous damping force is proportional to the velocity and is equal to cx,
where the displacement x is taken as positive downward from the equilibrium
position. Using the free body diagram shown in Fig. 6(b), the differential
equation of motion can be written as

mx =mg — cx — k(x + A) (1.15)

where A is the static deflection at the equilibrium position. Since the damper
does not exert force at the static equilibrium position, the condition for the
static equilibrium can be written as

mg = kA
Substituting this equation into Eq. 15 yields
mx = —cx — kx
or
mx +cx+kx=0 (1.16)

This is the standard form of the second-order differential equation of motion
that governs the linear vibration of damped single degree of freedom systems.
A solution of this equation is in the form

x = Ae™



18 1. Introduction

Substituting this solution into the differential equation yields
(mp* 4+ cp + k)de” =0

From which the characteristic equation is defined as

mp?+cp+k=0 (1.17)
The roots of this equation are given by
c 1  RE—
Pr=— g e~ dmk (1.18a)
c 1 3
Py = z—rﬁ—ﬁ./c ~ 4mk (1.18b)

Define the following dimensionless quantity

¢ = (1.19)

c
C
where ¢ is called the damping factor and C, is called the critical damping

coefficient defined as B
C. = 2mo =2./km (1.20)

where w is the system circular or natural frequency defined as
® = .\/kim (1.21)

The roots p, and p, of the characteristic equation can be expressed in terms

of the damping factor ¢ as
—fw+ wE -1 (1.22a)
—to -0/ -1 (1.22b)

i

Py
D2

If £ is a greater than one, the roots p, and p, are real and distinct. If £ is
equal to one, the root p, is equal to p, and both roots are real. If £ is less
than one, the roots p, and p, are complex conjugates. The damping factor ¢
is greater than one if the damping coefficient ¢ is greater than the critical
damping coefficient C,. This is the case of an overdamped system. The damp-
ing factor £ is equal to one when the damping coefficient ¢ is equal to the
critical damping coefficient C.. In this case, the system is said to be critically
damped. The damping factor £ is less than one if the damping coefficient ¢ is
less than the critical damping coeflicient C,, and in this case, the system is said
to be underdamped. In the following, the three cases of overdamped, critically
damped, and underdamped systems are discussed in more detail.

I

Overdamped System In the overdamped case, the roots p, and p, of
Eq. 22 are real. The response of the single degree of freedom system can be
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written as
x(t) = A,eP' + A,eP? (1.23)

where 4, and A, are arbitrary constants. Thus the solution, in this case, is the
sum of two exponential functions and the motion of the system is non-
oscillatory. The velocity can be obtained by differentiating Eq. 23 with respect
to time as

x(t)=p, A e + pyA,e™ (1.24)

The constants 4, and A4, can be determined from the initial conditions. For
instance, if x, and X, are, respectively, the initial displacement and velocity,
one has from Egs. 23 and 24

XO = Al + A2
Xo=p1A, + pA,

from which 4, and 4, are

A = XoP2 — Xo (1.25)
P2— Dy

A, =207 PXo (1.26)
P2 — Dy

provided that (p, — p,) is not equal to zero. The displacement x(t) can then
be written in terms of the initial conditions as

1
x(t) = [(xop2 — Xo)eP*" + (Xo — pyXo)eF*] (1.27)
P2 — D

Example 1.5

The damped mass—spring system shown in Fig. 6 has mass m = 10 kg, stiffness
coefficient k = 1000 N/m, and damping coefficient ¢ = 300 N -s/m. Determine the
displacement of the mass as a function of time.

Solution. The natural frequency  of the system is

k /1000
w:\/%: ST = 10rad/s

The critical damping coefficient C_ is
C. = 2mw = 2(10)(10) = 200 N-s/m
The damping factor ¢ is given by
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Since £ > 1, the system is overdamped and the solution is given by
x(t) = A e?" + A,e"
where p, and p, can be determined using Eq. 22 as
pr= —to+ 08 1= —(15(10) + (10, /(1.5 — 1 = —3.8197
pr= —fo— 0 JE — 1= —(15)(10) — (10) /(1.5 — t = —26.1803
The solution x(t) is then given by
x(t) = A eP + A,eP? = A, e7 38197 4 g 7201803

The constants 4, and A, can be determined from the initial conditions.

Critically Damped Systems For critically damped systems, the damp-
ing coefficient c is equal to the critical damping coefficient C.. In this case, the
damping factor ¢ is equal to one, and the roots p, and p, of the characteristic
equation are equal and are given by

Ph=Pr=p=—w

The solution, in this case is given by
x(t) =(A, + A, t)e (1.28)

where A, and A, are arbitrary constants. It is clear from the above equation
that the solution x{¢) is nonoscillatory and it is the product of a linear function
of time and an exponential decay. The form of the solution depends on the
constants A, and A4, or, equivalently, on the initial conditions. The velocity
X can be obtained by differentiating Eq. 28 with respect to time as
X(t)=[A, — o4, + A,0)]e (1.29)

The constants 4, and A, can be determined from the initial conditions.
For instance, given the initial displacement x4 and the initial velocity X, Egs.
28 and 29 yield

Xo = A,

Xo=A, — WA,

from which
A, = x, (1.30)

A, = Xo + wxg (1.31)
The displacement can then be written in terms of the initial conditions as

x(f) =[x + (%o + wxo)t]e™™ (1.32)
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Example 1.6

The damped mass—spring system shown in Fig. 6 has mass m = 10 kg, stiffness
coefficient k = 1000 N/m, and damping coefficient ¢ = 200 N - s/m. Determine the
displacement of the mass as a function of time.

Solution. The natural frequency w of the system is

w= E= IL.9(‘)=10rad/s
m 10

The critical damping coefficient C_ is given by
C. = 2mo = 2(10)(10) = 200 N -s/m

The damping factor ¢ is given by

Since & = 1, the system is critically damped and the solution is given by Eq. 28 as
x(t) = (A4, + Ayt)e” 1™

where the constants 4, and A, can be determined from the initial conditions by
using Eqs. 30 and 31.

Underdamped Systems In the case of underdamped systems, the damp-
ing coefficient ¢ is less than the critical damping coeflicient C_. In this case,
the damping factor £ is less than one and the roots of the characteristic
equation p, and p,, defined by Eq. 22, are complex conjugates. Let us define
the damped natural frequency w, as

wg=w/1 - (1.33)

Using this equation, the roots p, and p, of the characteristic equation given
by Eq. 22 are defined as

Py = —(w + iwy (1.34a)

P2 = —{w —iwy (1.34b)

In this case, one can show that the solution x(¢) of the underdamped system
can be written as

x() = Xe *“ sin(wyt + ¢) (1.35)

where the amplitude X and the phase angle ¢ are constant and can be
determined from the initial conditions. The solution x(t) is the product of an
exponential decay and a harmonic function. Unlike the preceding two cases
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of overdamped and critically damped systems, the motion of the underdamped
system is oscillatory.

The velocity x(z) is obtained by differentiating Eq. 35 with respect to time.
This leads to

x(t) = Xe %[ — (w sin(wgt + @) + w4 cos(wyt + ¢)] (1.36)

The peaks of the displacement curve can be obtained by setting x(¢) equal to
zero, that is,

Xe %[ —Ew sin(wgt; + @) + wy cos(wgt; + #)] =0
where t; is the time at which peak i occurs. The above equation yields
tan(wyt; + ¢) = =8 = vi-& (1.37)
dw ¢
Using the trigonometric identity
tan 6

J1+tan? @’

sin 8 =

Eq. 37 yields
sin(wgt; + ) = /1 — & (1.38)
Equations 35 and 38 can be used to define the displacement of the peak i as
X; = /1 — & Xe on (1.39)

Undamped Vibration Note thatin the case of undamped systems, ¢ = 0,
and Eqgs. 35 and 36 reduce in this special case to

x(t) = X sin(wt + ¢) (1.40)
X(t) = wX cos(wt + ¢) (1.41)

Example 1.7

The damped mass-spring system shown in Fig. 6 has mass m = 10 kg, stiffness
coefficient kK = 1000 N/m, and damping coefficient ¢ = 10 N-s/m. Determine the
displacement of the mass as a function of time.

Solution. The circular frequency w of the system is

w:\/gz /4——1000=10rad/s
m 10

and the critical damping factor & is given by

C. = 2mw = 2(10)(10) = 200 N - s/m
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Therefore, the damping factor £ is given by

The damped natural frequency w, is given by

ws = w1 — & =10/1 — (005 = 9.9875 rad/s

Substituting o, £, and o, into Eq. 35, the solution for the undamped single degree
of freedom system can be expressed as

x = Xe %> 5in(9.9875t + ¢)

L where X and ¢ are constants which can be determined from the initial conditions.

Equivalent Coefficients The linear differential equation of free vibra-
tion of the damped single degree of freedom system can, in general, be written
in the following form

mX + ceX + kex =0 (1.42)

where m,, ¢, and k, are equivalent inertia, damping, and stiffness coefficients,
and the dependent variable x can be a linear or angular displacement. In this
general case, m,, c,, and k, must have consistent units. The natural frequency
w, the critical damping coefficient C,, and the damping factor ¢ are defined,
in this case, as

w= |k (1.43)
me
C.=2muw=2./mk, (1.44)
C
_ G 1.45
¢ c (1.45)

Note that Eqs. 42, 43, 44, and 45 reduce, respectively, to Egs. 16, 21, 20, and
19 in the simple case of damped mass—spring systems. The use of Eqs. 43-45
is demonstrated by the following example.

Example 1.8

Assuming small oscillations, obtain the differential equation of the free vibration
of the pendulum shown in Fig. 7. Determine the circular frequency, the critical
damping coefficient, and the damping factor of this system, assuming that the rod
is massless.

Solution.  As shown in the figure, let R, and R, be the components of the reaction
force at the pin joint. The moments of the externally applied forces about O are
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FiG. 1.7. Angular oscillations.

M, = — (ki sin 0)] cos 0 — (cl6 cos 6)I cos 6 — mgl sin 0
For small oscillations, sin 6 = 6 and cos 6 ~ 1. In this case, M, reduces to
M, = —ki%0 — 1?0 — mglo
One can show that the moment of the inertia (effective) forces about O is given by
M = ml?0

Therefore, the second-order differential equation of motion of the free vibration is
given by
—kI20 — cl?0 — mgl0 = ml*0
or .- .
ml?0 + cl*6 + (kl + mg)lf =0 (1.46)
which can be written in the general form of Eq. 42 as
mb+c+k8=0
where
m, = ml?
c, = cl?
ke = (kl + mg)l
where the units of m, are kg - m? or, equivalently, N - m - s, the units of the equivalent

damping coefficient ¢, are N - m - s, and the units of the equivalent stiffness coefficient
k. are N -m. The natural frequency w is

k. (k! + mg)! kl + mg
o= [S= [—ZT = [ radfs
m, ml ml

The critical damping coefficient C_ is
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ki
C. =2m.o =2ml? /~iﬂ
mi
=2./ml3(kl + mg)

The damping factor ¢ of this system is

Ce cl?

Ce 2. /miP(kl + mg)

1.5 OTHER TYPES OF DAMPING

Thus far, we have considered the case of a viscous damping force which is
proportional to the velocity. In many cases, such simple expressions for the
damping forces are not directly available. It is, however, possible to obtain an
equivalent viscous damping coefficient by equating energy expressions that
represent the dissipated energy during the motion. In this section, we consider
the case of structural damping which is sometimes referred to as hysteretic
damping and the case of Coulomb or dry friction damping.

Structural Damping The influence of the structural damping can be seen
in the vibration of solid materials which, in general, are not perfectly elastic.
When solids vibrate, there is an energy dissipation due to internal friction,
which results from the relative motion between the particles during deforma-
tion. It was observed that there is a phase lag between the applied force F and
the displacement x, as shown by the hysteresis loop curve in Fig. 8, which

Fa

F1G. 1.8. Hysteresis loop.
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clearly demonstrates that the effect of the force does not suddenly disappear
when the force is removed. The energy loss during one cycle can be obtained
as the enclosed area in the hysteresis loop, and can be expressed mathemati-
cally using the following integral

AD=IFM (1.47)

It was also observed experimentally that the energy loss during one cycle
is proportional to the stiffness of the material k and the square of the amplitude
of the displacement X, and can be expressed in the following simple form

AD = nckX? (148)

where ¢, is a dimensionless structural damping coefficient and the factor = is
included for convenience. Equation 48 can be used to obtain an equivalent
viscous damping coefficient, if we assume simple harmonic oscillations in the
form

x = X sin(wt + ¢)
The force exerted by a viscous damper can then be written as
Fy=c¢.x =c.Xw cos(wt + ¢) (1.49)

and the energy loss per cycle can be written as
AD=dedx=Jcei dx (1.50)

Since x = dx/dt, we have
dx = x dt (1.51)
Substituting Egs. 49 and 51 into Eq. 50 yields

AD = J cxdt = J c.w*X? cos?(wt + @) dt
0 0
= nc.wX? (1.52)
where 7 is the periodic time defined as
_2n
)

Equating Egs. 48 and 52 yields the equivalent viscous damping coefficient as

¢, = X6 (1.53)
w
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(a) (b) (c)

FiG. 1.9. Coulomb damping.

Coulomb Damping Consider the mass—spring system shown in Fig. 9.
In the case of Coulomb damping, the friction force always acts in a direction
opposite to the direction of the motion of the mass, and this friction force can
be written as

F. = uN (1.54)

where u is the coefficient of sliding friction and N is the normal reaction force.
If the motion of the mass is to the right, x > 0, and the friction force F; is
negative, as shown in Fig, 9(b). If the motion of the mass is to the left, x < 0,
and the friction force F; is positive, as shown in Fig. 9(c). Therefore, the
vibration of the system is governed by two differential equations which depend
on the direction of motion. From the free body diagram shown in Fig. 9(b),
it is clear that if the mass moves to the right, the differential equation of
motion is

mx=—kx—F, x>0 (1.55)

Similarly, the free body diagram of Fig. 9(c) shows that the differential equa-
tion of motion, when the mass moves to the left, is

mx = —kx + F, x <0 (1.56)
Equation 55 and 56 can be combined in one equation as
mi+kx=FF (1.57)

where the negative sign is used when the mass moves to the right and the
positive sign is used when the mass moves to the left. Equation 57 is a
nonhomogeneous differential equation, and its solution consists of two parts;
the homogeneous solution or the complementary function and the forced or
the particular solution. Since the force F; is constant, the particular solution
X, is assumed as

x,=C

where C is a constant. Substituting this solution into Eq. 57 yields
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-k
X, =F —

k

Therefore, the solution of Eq. 57 can be written as

x(t) = A, sin wt + A, cos wt—f, x>0 (1.58)
: F; .
x(t) = B, sin wt + B, cos wt + T x<0 (1.59)

where w is the natural frequency defined as

k
= |-
m
and A, and 4, are constants that depend on the initial conditions of motion
to the right, and B, and B, are constants that depend on the initial conditions
of motion to the left.
Let us now consider the case in which the mass was given an initial
displacement x, to the right and zero initial veloctiy. Equation 59 can then
be used to yield the following algebraic equations

Fy
=B, +-!
Xo = B2 + K
0= wB,
which imply that
K
B,=0, B,= -t
1 2 0 k
that is,
E
x(t) ={ xo — =~ Jcos wt + f (1.60)
k k
and
. F\ .
xX()= —w xo—I sin wt (1.61)

The direction of motion will change when x = 0. The above equation then
yields the time ¢z, at which the velocity starts to be positive. The time ¢, can
be obtained from this equation as

F
0= ——w(xo - —Ef)sin wt,

tx=

or

n
w
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At this time, the displacement is determined from Eq. 60 as

x(t,):x(ﬁ)z x4 (1.62)
w k

which shows that the amplitude in the first half-cycle is reduced by the amount
2F;/k, as the result of dry friction.

In the second half-cycle, the mass moves to the right and the motion is
governed by Eq. 58 with the initial conditions

( n > 2F;
x( =)= —=xo+ "
w k

Substituting these initial conditions into Eq. 58 yields

A4, =0
and
F
Ay, =x5—3-—
2= Xp k
The displacement x(¢) in the second half-cycle can then be written as
K F
x(t)=<x0— 3kf)cos wt—;f (1.63)
and the velocity is
, F .
X()= —| xg — 3? w sin wt (1.64)

Observe that the velocity is zero at time t, when t, = 2n/w = 1, where 7 is the
periodic time of the natural oscillations. At time ¢,, the end of the first cycle,

the displacement is
2n 4F;
x(tz)—x<g)—x0—(7(~»> (1.65)

which shows that the amplitude decreases in the second half-cycle by the
amount 2F;/k, as shown in Fig. 10. By continuing in this manner, one can
verify that there is a constant decrease in the amplitude of 2F;/k every half-
cycle of motion. Furthermore, unlike the case of viscous damping, the fre-
quency of oscillation is not affected by the Coulomb damping. It is also
important to point out, in the case of Coulomb friction, that it is not necessary
that the system comes to rest at the undeformed spring position. The final
position will be at an amplitude X/, at which the spring force F, = kX, is less
than or equal to the friction force.
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FIG. 1.10. Effect of the Coulomb damping.

1.6 FORCED VIBRATION

Figure 11 depicts a viscously damped single degree of freedom mass—spring
system subjected to a forcing function F(t). By applying Newton’s second law,
the differential equation of motion can be written as

ms + cx + kx = F(t) (1.66)

where m is the mass, ¢ is the damping coefficient, k is the stiffness coefficient,
and x is the displacement of the mass. Equation 66, which is a nonhomo-
geneous second-order ordinary differential equation with constant coeffi-
cients, has solution that consists of two parts; the complementary function x,

C
———
k LR
AMA/
T O
Ll
cx €4— : :
b F0) = »mi
kx €4— '

FIG. 1.11. Forced vibration of single degree of freedom systems.
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and the particular solution x, that is,
X =X+ X, (1.67)

where the complementary function x, is the solution of the homogeneous
equation
miy, + cX, + kx, =0 (1.68)

The complementary function x,, is sometimes called the transient solution since
in the presence of damping this solution dies out. Methods for obtaining the
transient response were discussed in the preceding sections. The particular
solution x,, represents the response of the system to the forcing function, and
is sometimes called the steady state solution because it exists long after the
transient vibration disappears. The transient solution contains two arbitrary
constants, while the steady state solution does not contain any arbitrary
constants. Therefore, the solution of Eq. 67 contains two arbitrary constants
which can be determined by using the initial conditions.

In the analysis presented in this section, we consider the case of harmonic
excitation in which the forcing function F(t) can be expressed in the form

F(t) = F, sin wgt (1.69)
Substituting this equation into Eq. 66 yields
mxX + ¢x + kx = F sin w;t (1.70)
The steady state solution x, can be assumed in the form

X, = Ay sin gt + A, cos wgt (1.71)

which yields the following expressions for the velocity and acceleration
Xp = wgA, €OS Wit — WA, sin gt (1.72)
%, = —wf Ay sin ot — wf A, cos ot = —wix, (1.73)
Substituting Egs. 71-73 into Eq. 70 and rearranging terms yields
(k — w}m)(A, sin gt + A, cos wet) + car(A, cos wet — A, sin w;t)
= F, sin wt
or
[(k — wfm) A, — caxA,] sin wgt + [caxA; + (k — wim) A,] cos wt
= F, sin w4t
This equation yields the following two algebraic equations in 4, and A4,
(k — w}m) A, — caxA, = F, (1.74)
cA, + (k— wfm) 4, =0 (1.75)



32 1. Introduction

Dividing these two equations by the stiffness coefficient k yields
(1 —rY) A, — 2réA, = X,
2rEA, +(1 —r) 4, =0

where

(1.76)
(1.77)

(1.78)

(1.79)

(1.80)

in which C, = 2mw is the critical damping coefficient. The two algebraic
equations of Eqgs. 76 and 77 can be solved using Cramer’s rule in order to

obtain the constants 4, and A, as

Xy —=2r¢
4 - 0 1—r  (1-r)X,
YT =) 218 (1 = r) 4 (2rE)?
1—-r2 X,
4, = 2ré 0 —(2r8) X,

(= B2+ @2rE) (1 — ) + (2r8)

The steady state solution x, of Eq. 71 can then be written as

X, = T r?(:r(i@ [(1 = r?) sin w;t — (2r&) cos w;t]

which can be written as

X .
RV (e e

where y is the phase angle defined by

Y = tan™! (T_Z_r%)

Equation 84 can be written in a more compact form as
X, = Xof sin(wet — )

(1.81)

(1.82)

(1.83)

(1.84)

(1.85)

(1.86)

where B is the magnification factor defined in the case of damped systems

as
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1
C A=)+ rey
If the damping factor ¢ is equal to zero, the magnification factor f reduces to

B=—]—2

1 —r

[ (1.87)

When r = 1, that is w; = w, the magnification factor in the case of undamped
systems approaches infinity. This case is known as resonance.

The magnification factor ff and the phase angle ¢ are shown, respectively,
in Figs. 12 and 13 as functions of the frequency ratio r for different damping
factors &. It is clear from these figures, that for damped systems, the system
does not attain infinite displacement at resonance, since for @ = w, which
corresponds to the case in which the frequency ratio r = 1, the magnification
factor reduces to

1
p= 2 (1.88)
Furthermore, at resonance the magnification factor § does not have the
maximum value, which can be obtained by differentiating § of Eq. 87 with

5.0

4.0

30

K-

0.0 1.0 20 30 4.0

Frequency ratio (r)

F1G. 1.12. Magnification factor.



34 1. Introduction

n
.—__’_________=
I
%/——-
s n
2[E=0.75 E=02
=1 & =007
{=0
0.0
0.0 1.0 20 3.0 40

Frequency ratio (r)

Fi1G. 1.13. Phase angle.

respect to r and setting the result equal to zero. This leads to an algebraic
equation which can be solved for the frequency ratio r at which the magnifica-
tion factor f is maximum. By so doing, one can show that the magnification

factor # is maximum when
r=1-28 (1.89)

At this value of the frequency ratio, the maximum magnification factor is
given by
1

Bmax = ;éﬂ—/—'*—'{_—iz

Force Transmission From Eq. 84 and Fig. 12itis ciear that by increasing
the spring stiffness k and the damping coefficient ¢ the amplitude of vibration
decreases. The increase in the stiffness and damping coefficients, however, may
have an adverse effect on the force transmitted to the support. In order to
reduce this force, the stiffness and damping coefficients must be properly
sclected. Figure 14 shows a free body diagram for the mass and the support
system. The force transmitted to the support in the steady state can be written
as

(1.90)

F = kx, + cx, (1.91)
From Eq. 86, X, is
X, = wgXo B cos(wet — )
Equation 91 can then be written as
F, = kX sin(wet — ) + cweXop cos(wet — )
= XoB/k? + (cox)? sin(wpt — W) (1.92)
where

R— (193)
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FIG. 1.14. Transmitted force.

and y, is a phase angle defined as
W, = tan™! (f%f> = tan"1(2r&) (1.94)

Equation 92 can also be written as
F, = XokB/1 + (2r&)? sin(wpt — ) (1.95)

Since X, = F,/k, the above equation can be written as

F = FoBJ/1 + 2r&)? sin(wgt — §)

_ (1.96)
= Fof, sin(wet — )
where
B = B\/ 1+ (2"5)2
1+ ‘(ZrC)2 (1.97)

- S — )2+ (2r)?

Note that f, represents the ratio between the amplitude of the transmitted
force and the amplitude of the applied force. fi, is called the transmissibility
and is plotted in Fig. 15 versus the frequency ratio r for different values of the
damping factor &. It is clear from Fig. 15 that g, > 1 forr < \/5, that is, in this
region the amplitude of the transmitted force is greater than the amplitude of
the applied force. Furthermore, for r < ﬁ the transmitted force to the
support can be reduced by increasing the damping factor £. For r > \/5,
B, < 1, and in this region the amplitude of the transmitted force is less than
the amplitude of the applied force. In this region, the amplitude of the trans-
mitted force increases by increasing the damping factor £.

Work Per Cycle Equation 86, which defines the steady state response to
a harmonic excitation in the presence of damping, implies that, for a given
frequency ratio r and a given damping factor &, the amplitude of vibration
remains constant. This can be achieved only if the energy input to the system,
as the result of the work done by the external harmonic force, is equal to the
energy dissipated as the result of the presence of damping. In order to see this,
we first evaluate the work of the harmonic force as

dW, = F(t) dx = F(t)x dt
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Fi1G. 1.15. Transmissibility.

where W, is the work done by the external force per cycle, and is given by

2njor
W, = j F(t)% dt

0

2nfwy
= j F, sin wgt X Py cos(wet — ) dt
0

2n

= FOXOBJ sin wgt cos(wet — W) d(wgt)

(V]
which upon integration yields
W, = nF, X, f sin y

Similarly, one can evaluate the energy dissipated per cycle, as the result of the
damping force, as

2njon
W, = cxx dt

1]
2n

=cXZpwy J cos?(wet — ) d(wyt)

0
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which upon integration yields

W, = neXEfo,
Note that the input energy to the system is a linear function of the amplitude
of the steady state vibration X, f, while the energy dissipated as the result of

the damping force is a quadratic function of the amplitude. Since at the steady
state they must be equal, one has

or
nFy X sin y = neXZ BPwy
which defines the magnification factor § as

0/0

p=—"—siny

Using the definition of X, and the phase angle ¥ given, respectively, by Eqgs.
80 and 85, the magnification factor # can be written as

FolXoGny = & 2re
h= w&mnw cox J(1 —r?)? + (2r¢)?

and since cwy/k = 2ré, the above equation reduces to
1
S =732+ (2ré)

which is the same definition of the magnification factor obtained by solving
the differential equation. It is obtained here from equating the input energy,
resulting from the work done by the harmonic force, to the energy dissipated
as the result of the damping force. In fact, this must be the case, since the
change in the strain energy in a complete cycle must be equal to zero owing
to the fact that the spring takes the same elongation after a complete cycle.
This can also be demonstrated mathematically by using the definition of the
work done by the spring force as

2njan
W, = f kxx dt
0

2n
= kX2p? f sin{wet — ) cos(wet — ) d(wet)

0

B =

which upon integration yields
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Example 1.9

A damped single degree of freedom mass—spring system has mass m = 10 kg, spring
coefficient k = 4000 N/m, and damping coefficient ¢ = 40 N -s/m. The amplitude
of the forcing function F, = 60 N, and the frequency w; = 40 rad/s. Determine the
displacement of the mass as a function of time. Determine also the transmissibility
and the amplitude of the force transmitted to the support.

Solution. The circular frequency of the system is

k  [4000
w= [—= [——=20rad/s
m 10

The frequency ratio r is given by
o; 40

r=—=

2
w 20
The critical damping coefficient C_ is defined as
C. = 2mw = 2(10)(20) = 400 N-s/m

The damping factor £ is then given by

which is the case of an underdambed system. One can then write the complete
solution in the following form

x(t) = x, + X,
= Xe ' sin(wyt + @) + Xo B sin(wpt — ¢)
where w, is the damped circular frequency

wg=w/1 — =201~ (0.1)* = 19.8997 rad/s

The constants X, f, and  are

Fo 60
Xo= = 000 = 0015 m
g = 1 _ 1 B 1
A=) SO - +2@x2x01)? /9+016
=0.3304
o 2r¢ _ {2(2(0.1) i,

_ 1 = 222 = 4O. =0. d

Y = tan (l — r2> tan (I - (2)2> tan™'(0.13333) 13255 ra

The displacement can then be written as a function of time as
x(t) = Xe ?'sin(19.8997¢ + ¢) + 0.004956 sin(40¢ — 0.13255)

The constants X and ¢ can be determined using the initial conditions. The trans-
missibility f, is defined as
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. Jrrerey 1+(2x2x0.1)?
=2 =P+ Q2 x 2 x0.1)

The amplitude of the force transmitted is given by

|F,| = Foff = (60)(0.35585) = 21.351 N

= 0.35585

1.7 IMPULSE RESPONSE

An impulsive force is defined as a force which has a large magnitude, and acts
during a very short time duration such that the time integral of this force is
finite. If the impulsive force F(t) shown in Fig. 16 acts on the single degree of
freedom system shown in Fig. 17, the differential equation of motion of this
system can be written as

mx + ¢x + kx = F(t)

Integrating this equation over the very short interval (t,, t,), one obtains

1z 1z 1, t;
f m)'édt-i—‘[ C)Edt-{-J‘ kxdt:j F(t) dt (1.98)
t 0 H 131
F(n4
Fo
L L T

F1G. 1.16. Impulsive force.

FIiG. 1.17. Single degree of freedom
system under the effect of impulsive
force F(r). Z
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Since the time interval (¢,, t,) is assumed to be very small, we assume that x
does not change appreciably, and we also assume that the change in the
velocity X is finite. One, therefore, has

3]
lim J exdt =0

-1y Jo,

2
lim J‘ kxdt =0

-ty Jry

Therefore, if ¢, approaches ¢,, Eq. 98 yields

f ms dt=f2F(t) dt (1.99)

1

Since x = dx/dt, Eq. 99 can be written as

rmdx=r F()dt (1.100)

Xy 1

where X, and x, are, respectively, the velocities at ¢, and t,. Equation 100
yields

5]
m(x, — x,) =f F(t)dt
The preceding equation defines

1"
Ax =Xy — %, = — [ F(¢) dt (1.101)
m),
where Ax is the jump discontinuity in the velocity of the mass due to the
impulsive force. The time integral in Eq. 101 is called the linear impulse I and
is defined by

2
I=J F(t) dt (1.102)
1
In the particular case in which the linear impulse is equal to one, I is called
the unit impulse.
Equation 101 can be written as

Ax =X, — X, = 1 (1.103)

m
This result indicates that the effect of the impulsive force, which acts over a
very short time duration on a system which is initially at rest, can be accounted
for by considering the motion of the system with initial velocity I/m and zero
initial displacement. That is, in the case of impulsive motion, we consider the
system vibrating freely as the result of the initial velocity defined by Eq. 103.
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The free vibration of the underdamped single degree of freedom system shown
in Fig. 17 is governed by the equations

xX(t) = Xe™ ' sin(wyt + ¢) (1.104)
X(t) = —EwXe % sin(wyt + @) + wyXe * cos(wat + ¢)  (1.105)

where X and ¢ are constants to be determined from the initial conditions, w
is the natural frequency, £ is the damping factor, and w, is the damped natural

frequency

ve= 1=
As the result of applying an impulsive force with a linear impulse [ at ¢t = 0,
the initial conditions are

x(t =0)=0, X(t=0)=%

Since the initial displacement is zero, Eq. 104 yields
¢=0
Using Eq. 105 and the initial velocity, it is an easy matter to verify that
x(t) = ~m—fud e~ sin w4t (1.106)
which can be written as
x(t) = TH(¢) (1.107)
where H{(t) is called the impulse response function and is defined as

1
H(t) = —— e %' sin w,t (1.108)
mwy

F Example 1.10

Find the response of the single degree of freedom system shown in Fig. 17 to the
rectangular impulsive force shown in Fig. 16, where m = 10 kg, k = 9,000 N/m,
¢ = 18 N-s/m, and F, = 10,000 N. The force is assumed to act at time ¢t = 0 and
the impact interval is assumed to be 0.005 s.

Solution. The linear impulse I is given by

I 0.005
1 :f F(t)dt = f 10,000 dr = 10,000(0.005) = SON ‘s
L3

0

The natural frequency of the system w is given by

k{9000
w—\/’:n_ /W=3Orad/s




42 1. Introduction

The critical damping coefficient C, is
C, = 2mo = 2(10)(30) = 600
The damping factor £ is

The damped natural frequency w, is
0y =0/l - & =30/1 - (0.03)* = 29.986 rad/s

The system response to the impulsive force is then given by

x(1) = i e sin w,t
mmy
B 50 .
"~ (10)(29.986)

= 0.1667¢~ % sin 29.986¢

~(0-03%30) i 29.986¢

1.8 RESPONSE TO AN ARBITRARY FORCING FUNCTION
In this section, we consider the response of the single degree of freedom

system to an arbitrary forcing function F(t), shown in Fig. 18. The procedure
described in the preceding section for obtaining the impulse response can be

F()4

_/ |

il 4

=

FiG. 1.18. Arbitrary forcing function F(z).
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used as a basis for developing a general expression for the response of the
system to an arbitrary forcing function. The arbitrary forcing function F(t)
can be regarded as a series of impulsive forces F(t) acting over a very short-
lived interval dr. The force F(r) then produces the short duration impulse
F(1) dr, and the response of the system to this impulse for all t > z is given by

dx = F(t)dt H(t — 1) (1.109)
where H(t)is the impulse response function defined by Eq. 108. It follows that
1
dx = F(t) dt-—— e %" U gin wy(t — 1) (1.110)
maigy

In this equation, dx represents the incremental response of the damped single
degree of freedom system to the incremental impulse F(t) dt fort > 7. In order
to determine the total response, we integrate Eq. 110 over the entire interval

x(1) = j F(nH(t — 1) dt (1.111)
0
or
x(t) = L F(t)e "9 sin wy(t — 1) dt (1.112)
mawy Jo

Equation 111 or Eq. 112 is called the Duhamel integral or the convolution
integral. It is important to emphasize, however, that in obtaining the convolu-
tion integral we made use of the principle of superposition which is valid only
for linear systems. Furthermore, in deriving the convolution integral, no
mention was given to the initial conditions and, accordingly, the integral of
Eq. 111, or Eq. 112, provides only the forced response. If the initial conditions
are not equal to zero, that is,

xo=x(t=0#0 and/or Xo=Xx(t=0)#0

then Eq. 112 must be modified to include the effect of the initial conditions. To
this end, we first define the homogeneous solution and determine the arbitrary
constants in the case of free vibration as the result of these initial conditions,
and then use the principle of superposition to add the homogeneous function
to the forced response.

Special case A special case of the preceding development is the case of an
undamped single degree of freedom system. In this case, wy = w and & = 0 and
the impulse response function of Eq. 108 reduces to

1.
H(t)= — sin ot (1.113)
mao

The forced response, in this special case, is given by
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mow J,

l t
x(t)=—J F(t) sin ot — 1) dt (1.114)
If the effect of the initial conditions is considered, the general solution is given
by

Xo . [ .
x(t) = icﬂsm wt + x4 cos wt + _j F(t)sin o(t — t)dr  (L1.119)
) mw J,

Example 1.11

Find the forced response of the damped single degree of freedom system to the step
function shown in Fig. 19.

Solution. The forced response of the damped single degree of freedom system to
an arbitrary forcing function is

1 t
x(t)=—— I F(t)e "™ sin wy(t — 1) dt
moy Jo

In the case of a step function, the forcing function F(t) is defined as

F(t) = Fy; t>0

that is,
1 t
x(t) = — J Fye U9 sin ay(t — 1) dt
may Jo
F t
=0 J e % sin w,(t — 1) dt
may jo
F, e %t
=~ 1 - ———cos(wyt —
oo  costo v
F(n) &

Fo

~v

F1G. 1.19. Step function.
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FIG. 1.20. Response of damped single degree of freedom system to a step forcing
function.

where the angle i is defined as

- 14
V= tan l("l - 52>

The response of this system is shown in Fig. 20.

Problems

1.1

1.2.

1.4.

A single degree of freedom mass—spring system consists of a 10 kg mass sus-
pended by a linear spring which has a stiffness coefficient of 6 x 10° N/m. The
mass is given an initial displacement of 0.04 m and it is released from rest.
Determine the differential equation of motion, and the natural frequency of the
system. Determine also the maximum velocity.

The oscillatory motion of an undamped single degree of freedom system is such
that the mass has maximum acceleration of 50 m/s? and has natural frequency
of 30 Hz. Determine the amplitude of vibration and the maximum velocity.

. A single degree of freedom undamped mass—spring system is subjected to an

impact loading which results in an initial velocity of 5 m/s. If the mass is equal
to 10 kg and the spring stiffness is equal to 6 x 10° N/m, determine the system
response as a function of time.

The undamped single degree of freedom system of Problem 1 is subjected to the
initial conditions x, = 0.02 m and %, = 3 m/s. Determine the system response
as a function of time. Also determine the maximum velocity and the total energy
of the system.
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1.5. A single degree of freedom system consists of a mass m which is suspended by a

1.6.

1.7.

1.8.

1.10.

linear spring of stiffness k. The static equilibrium deflection of the spring was
found to be 0.02 m. Determine the system natural frequency and the response
of the system as a function of time if the initial displacement is 0.03 m and the
initial velocity is zero. What is the total energy of the system?

N
iy

ot

FiG. P1.1

The system shown in Fig. P1 consists of a mass m and a massless rod of length
1. The system is supported by two springs which have stiffness coefficients k, and
k,, as shown in the figure. Derive the system differential equation of motion
assuming small oscillations. Determine the natural frequency of the system.

If the two springs k, and k, in Problem 6 are to be replaced by an equivalent
spring which is connected at the middle of the rod, determine the stiffness
coefficient k, of the new spring.

If the system in Problem 6 is given an initial angular displacement 6, counter-
clockwise, determine the system response as a function of time assuming that
the initial angular velocity is zero. Determine also the maximum angular
velocity.

. In the system shown in Fig. P2,m = Skg, k, = ks = kg = 1000 N/m, k; = k, =

1500 N/m, and k, = 3000 N/m. The motion of the mass is assumed to be in the
vertical direction. If the mass is subjected to an impact such that the motion
starts with an initial upward velocity of 5 m/s, determine the displacement,
velocity, and acceleration of the mass after 2 s.

The system shown in Fig. P3 consists of a mass m and a massless rod of length
l. The system is supported by a spring which has a stiffness coefficient k. Obtain
the differential equation of motion and discuss the stability of the system.
Determine the stiffness coefficient k at which the system becomes unstable.
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ki
ks
k,
ks
m
ks
ke
FiG. P1.2

1.11. The system shown in Fig. P4 consists of a uniform rod which has length I, mass
m, and mass moment of inertia about its mass center I. The rod is supported by
two springs which have stiffness coefficients k, as shown in the figure. Determine
the system differential equation of motion for small oscillations. Determine also
the system natural frequency.

.

M

Ve

Fic. P1.3
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1.14.

1.15.

1.16.
1.17.

1.18.

1.19.

1. Introduction
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Fic. P1.4

. A damped single degree of freedom mass—spring system has m = 4 kg, k =
3000 N/m, and ¢ = 300 N-s/m. Determine the equation of motion of the system.

. A damped single degree of freedom mass—spring system has m = 0.5 kg, k =
1000 N/m, and ¢ = 10 N-s/m. The mass is set in motion with initial conditions
Xo = 0.05 m and x = 0.5 m/s. Determine the displacement, velocity, and accel-
eration of the mass after 0.3 s.

A viscously damped single degree of freedom mass—spring system has a mass m
of 2 kg, a spring coefficient k of 2000 N/m, and a damping constant c of 5 N -s/m.
Determine (a) the damping factor £, (b) the natural frequency w, (c) the damped
natural frequency w,, and (d) the spring coefficient needed to obtain a critically
damped system.

An overdamped single degree of freedom mass—spring system has a damping
factor £ = 1.5 and a natural frequency w = 20 rad/s. Determine the equation of
motion and plot the displacement and velocity versus time for the following
initial conditions: (a) x, = 0, X, = 1 m/s; (b) x, = 0.05 m, %, = 0; and (c) x, =
0.05m, X = 1 m/s.

Repeat Problem 15 if the system is critically damped.

A mass equal to 0.5 kg attached to a linear spring elongates it 0.008 m. Determine
the system natural frequency.

For the system shown in Fig. P5, let m=0.5kg, a=02m, | =04m, k=
1000 N/m. Determine the damping coefficient ¢ if the system is to be critically
damped. If the system has an initial angular velocity of 5 rad/s counterclockwise,
determine the angular displacement and angular velocity after 0.3 s. Assume
small oscillations.

For the system shown in Fig. P6, let m =0.5kg, [=05m, a=02m, and
k = 3000 N/m. Determine the damping coefficient c if: (a) the system is under-
damped with & = 0.09, (b) the system is critically damped; and (c) the system is
overdamped with £ = 1.2,
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L
L
L

FiG. P1.5

FiG. P1.6

1.20. The system shown in Fig. P7 consists of a uniform bar of length /, mass m, and
mass moment of inertia I. The bar is supported by a spring and damper which
have stiffness and damping coeflicients k and c, respectively. Derive the differ-
ential equation of motion and determine the system natural frequency and the
critical damping coefficient.

1.21. A single degree of freedom mass—spring system has the following parameters,
m = 0.5 kg, k = 2 x 10* N/m, coefficient of dry friction u = 0.15, initial displace-
ment x, = 0.1 m, and initial velocity X, = 0. Determine:

(1) the decrease in amplitude per cycle;

(2) the number of half-cycles completed before the mass comes to rest;
(3) the displacement of the mass at time t = 0.1 s;

(4) the location of the mass when oscillation stops.
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1.22.

1.23.

1.24.

1.25.

1. Introduction

Ay |

k

2—'\/\/\/\/—

FiG. P1.7

A spring—mass system is subjected to a harmonic force which has an amplitude
30 N and frequency 20 rad/s. The system has mass m = 5 kg, and stiffness
coefficient k = 2 x 10* N. The initial conditions are such that x, = 0, X, = 2
m/s. Determine the displacement, velocity, and acceleration of the mass after 0.5,
1,15s.

A single degree of freedom mass—spring system has a mass m = 3 kg, a spring
stiffness k = 2700 N/m, and a damping coefficient ¢ = 18 N-s/m. The mass
is subjected to a harmonic force which has an amplitude F; =20 N and a
frequency w; =15 rad/s. The initial conditions are x, =1 ¢cm and %, =0.
Determine the displacement, velocity, and acceleration of the mass after time
t=05s.

For the system shown in Fig. P8, let m = 3 kg, k, = k, = 1350 N/m, ¢ = 40
N-s/m,and y = 0.04 sin 15¢. The initial conditions are such that x, = 5 mm and
Xq = 0. Determine the displacement, velocity, and acceleration of the mass after
timet =1s.

y = Y, sin oyt —_— >
4t—>

[@) [O 1N

Fic. P1.8

For the system shown in Fig. P9, let m = 3 kg, k, = k, = 1350 N/m, ¢ = 40
N-s/m, and y = 0.02 sin 15¢. The initial conditions are x, = S mm and x, = 0.
Determine the displacement, velocity, and acceleration of the mass after time
t=1s.
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1.26. Derive the differential equation of motion of the system shown in Fig. P10,
assuming small angular oscillations. Determine also the steady state response of
this system.

1.27. In Problem 26, let the rod be uniform and slender with mass m = 0.5 kg and
I =0.5m. Let k = 2000 N/m, ¢ =20 N-s/m, and F = 10sin 10t N. The initial
conditions are 8, = 0 and 6, = 3 rad/s. Determine the displacement equation of
the beam as a function of time.

1.28. Determine the forced response of the undamped single degree of freedom spring-
mass system to the forcing function shown in Fig. P11.

F(t) &

0 t t, t

FiG. P1.11



52 1. Introduction

1.29. Determine the forced response of the damped single degree of freedom mass—
spring system to the forcing function shown in Fig. P11.

1.30. Determine the response of the damped single degree of freedom mass—spring
system to the forcing function shown in Fig. P12.

F(t) 4

~v

0 t,

FiG. P1.12

1.31. Obtain the response of the damped mass—spring system to the forcing function
shown in Fig. P13.

F() &

I

~v

0 ty t,

FiG. P1.13
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Lagrangian Dynamics

The differential equations of motion of single and multi-degree of freedom
systems can be developed using the vector approach of Newtonian mechanics.
Another alternative for developing the system differential equations of motion
from scalar quantities is the Lagrangian approach where scalars such as the
kinetic energy, strain energy, and virtual work are used. In this chapter, the
use of Lagrange’s equation to formulate the dynamic differential equations of
motion is discussed. The use of Lagrange’s equation is convenient in develop-
ing the dynamic relationships of multi-degree of freedom systems. Important
concepts and definitions, however, have to be first introduced. In the first
section of this chapter, we introduce the concept of the system generalized
coordinates,and in Section 2 the virtual work is used to develop the generalized
forces associated with the system generalized coordinates. The concepts and
definitions presented in the first two sections are then used in Sections 3-5 to
develop Lagrange’s equation of motion for multi-degree of freedom systems
in terms of scalar quantities such as the kinetic energy, strain energy, and
virtual work. An alternate approach for deriving the dynamic equations of
motion using scalar quantities is Hamilton’s principle which is discussed in
Section 6. Hamilton’s principle can be used to derive Lagrange’s equation and,
consequently, both techniques lead to the same results when the same set of
coordinates is used. The use of conservation of energy to obtain the differential
equations of motion of conservative systems is discussed in Section 7, where
general conservation theorems are developed and their use is demonstrated
using simple examples.

2.1 GENERALIZED COORDINATES

In the Lagrangian dynamics, the configuration of a mechanical system is
identified by a set of variables called coordinates or generalized coordinates
that completely define the location and orientation of each component in the
system. The configuration of a particle in space is defined using three coordi-
nates that describe the translation of this particle with respect to the three

53
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perpendicular axes of the inertial frame. No rotational coordinates are needed
to describe the motion of the particle and, therefore, the three translational
coordinates completely define the particle position. This simplified description
of the particle kinematics is the result of the assumption that the particle has
such small dimensions that a point in the three-dimensional space is sufficient
to describe the position of the particle. This assumption is not valid, however,
when rigid bodies are considered. The configuration of an unconstrained
rigid body, as demonstrated in the preceding chapter, can be completely
described using six independent coordinates, three coordinates describe the
location of the origin of the body axes and three rotational coordinates
describe the orientation of the body with respect to the fixed frame. Once this
set of coordinates is identified, the global position of an arbitrary point on the
rigid body can be defined.

In this chapter and subsequent chapters, the vector q will be used to denote
the system generalized coordinates. If the system has n generalized coordi-
nates, the vector q is given by

a=[a, 9. " 4] 2.1

In this book we will assume that the generalized coordinates q,, ¢q,, ..., g, are
independent, and as such, the number of system generalized coordinates is
equal to the number of system degrees of freedom.

Figure 1 shows some examples of vibratory systems, which have different

g4, =X
Y I
7 —

: -
s el
(a)
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) (e)

F1G. 2.1. Generalized coordinates.
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types or numbers of generalized coordinates. The system shown in Fig. 1(a)
is a single degree of freedom system, and accordingly the vector of generalized
coordinates q reduces to a scalar since q = g, = x. The configuration of this
system can be completely defined in terms of the generalized coordinate q,.
The configuration of the two degree of freedom system shown in Fig. 1(b), on
the other hand, is completely defined by the coordinates ¢, = x, and g, = x,,
that is,

9=[9, @.1I"=[x; x]"
Similarly, the vector of the generalized coordinates of the system shown in
Fig. 1(c) is

9=1[q, ¢.1"=[0, 6,1

The position coordinates of an arbitrary point p in this system can be written
in terms of these generalized coordinates as

x, =1, sin 0, + dsin 0,

yp= —1l,cos; —dcos b,
where d is the position of point p with respect to point O, measured along the
rod axis.

The system shown in Fig. 1(d) has more than two degrees of freedom. One

can verify that the vector of generalized coordinates of this system is given
by
9=[9: 9. 9,1"=10[6, 6, 6,1
It is important to emphasize at this point that the set of generalized coor-
dinates ¢, q,, ..., ¢, is not unique. For instance, the configuration of the
system shown in Fig. 1(c) can also be described by the generalized coordinates
q, = x, and g, = x, as shown in the figure. In many cases, simple relation-

ships can be found between different sets of generalized coordinates of the
system. For example, in Fig. 1(c) one can verify that

x, =1;sinb,
X, =1,sin6, + I, sin 6,
The inverse relationship can also be obtained as

sin 0, = ?

1

X2 — X
l;

6, = sin™! (xl)
ly

Sin 02 =

or
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The coordinates 6, and 6, or x, and x, in the example of Fig. 1(c) are
independent since they can be arbitrarily changed. Any coordinate which
can be expressed in terms of the other coordinates is not an independent
one and cannot be used as a degree of freedom. Similarly, a coordinate which is
specified as a function of time is not a degree of freedom since it has a specified
value and cannot be changed arbitrarily. For instance, consider the system
shown in Fig. 1(¢) which has the two degrees of freedom ¢, = x and g, = 6.
If g, is specified as a function of time, say ¢, = x = X, sin w;t where X, and
wy are, respectively, given amplitude and frequency, then the system has only
one degree of freedom which is g, = 8. The relationship ¢, = x = X, sin w;t
can be considered as a kinematic constraint imposed on the motion of the
system, and every such kinematic constraint relationship, as demonstrated in
the preceding chapter, eliminates one of the system degrees of freedom. In
other words, the number of system degrees of freedom is equal to the number
of coordinates minus the number of kinematic constraint equations, provided
that these kinematic constraint equations are linearly independent.

Example 2.1

Discuss different alternatives for selecting the generalized coordinates of the two
degree of freedom system shown in Fig. 2.

Solution. Since the system has only two degrees of freedom, mainly the vertical
displacement and the rotation, only two generalized coordinates are required to
identify the configuration of the system. As shown in Fig. 2, one set of coordinates
is given by

q=[a; 9.1 =0y 01"

where y, is the vertical displacement of the center of mass of the beam and 8 is the
angular oscillation of the beam. The coordinates y, and 6 can be used as the system
degrees of freedom since they are independent and are sufficient to define the
configuration of the system. For instance, given an arbitrary point p at a distance
I, from the center of mass of the beam, the vertical displacement of the arbitrary
point p can be expressed in terms of the coordinates y, and 0 as

Yo=Y+ 1,sind

—
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FiG. 2.2. Two degree of freedom system.
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As a second choice for the generalized coordinates, one may select the following set:
a=[q 9.1 =0y 01

where y, is the vertical displacement of the end point a. The coordinates y, and 0
are also independent and can be used to define the displacement of an arbitrary
point on the beam. The vertical displacement of the point p can be expressed in
terms of the generalized coordinates y, and 0 as

l .
y,,=y,,+(§+ l,)sm()
where [ is the length of the beam. Observe that the vertical displacement of the

center of mass y, which was previously used as a generalized coordinate can be
expressed in terms of the new set of generalized coordinates y, and 6 as

!
=y, + sin0
Ve = Ya+ 3sin

An alternate set of generalized coordinates is also the following:

a=[a;, 4:1"=[y. »l"

where y, is the vertical displacement of the end point b. In terms of these coordinates,
the vertical displacement of the center of mass and the arbitrary point p are given,
respectively, by

= Yo = Va

Ve 3

/2 +1
yp=Ya+(yb_ya) [ P

Also, the angular orientation 8 can be expressed in terms of the new set y, and y, as

sin0=y—7&

0 =sin™? (’vvb — y,,)
{

Clearly, for a simple system such as the one used in this example, there are an
infinite number of different sets of generalized coordinates. In many applications,
proper selection of the generalized coordinates can significantly simplify the dy-
L namic formulation.

2.2 VIRTUAL WORK AND GENERALIZED FORCES

In this section, the important concept of the virtual work is introduced and
used to provide definitions for the generalized forces associated with the
system generalized coordinates. As will be seen in the following section, the
definition of the generalized forces is an important step in the Lagrangian
formulation, wherein the dynamic equations of motion are formulated in
terms of the generalized coordinates.
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Since the generalized coordinates are sufficient to completely identify the
configuration of a system of particles or rigid bodies, the position vector of
an arbitrary point in the system can be expressed in terms of the generalized
coordinates as

r= r(ql’ QZs rey qn) = r(q) (22)

where r is the position vector of an arbitrary point in the system, and
q=1[q, q; "+ q,]7 is the vector of generalized coordinates which are as-
sumed to be independent.

At this point, we introduce the concept of the virtual displacement which
refers to a change in the configuration of the system as the result of an arbitrary
infinitesimal change in the vector of system generalized coordinates q, consis-
tent with the forces and constraints imposed on the system at the given instant
of time ¢t. The displacement is called virtual to distinguish it from an actual
displacement of the system occurring in a time interval At, during which the
time and constraints may be changing. For a virtual change in the system
coordinates, Eq. 2 yields

or
a%rléql + 6—(126% +t

or

or = 2a.

04, (23)

where Jr is the virtual change in the position vector of Eq. 2, and dq; is the
virtual change in the generalized coordinate g;. Equation 3 can be written in a
compact form as

or=Y G dq; 24

Let F be the vector of forces that act at the point whose position vector is
defined by the vector r of Eq. 2, then the virtual work due to this force vector
is defined by the dot product

OW =F-ér = F'or (2.5)
which upon using Eqgs. 3 and 4 yields

or or or
SW=F"_—6q, + FT-—dq, + - + FT —dq,
3q, N PR oq,
n or
= FT__6q; (2.6)
J; 0q; 9

Now we define the generalized force Q; associated with the jth system gen-

eralized coordinate g; as
0, -F ", i=1,2...n bX)
0q;

Using this definition, the virtual work of Eq. 6 can be expressed in terms of



2.2. Virtual Work and Generalized Forces 59

the generalized forces Q; as
oW = Qléql + Q25q2 + 0+ Qnéqn

= Y. 0;0q; (2.8)
j=1
which can be written in a vector form as
oW = QTéq 29
where Q is the vector of generalized forces defined as
Q=00 2 - QT (2.10)

Example 2.2

Derive the generalized forces due to the spring, damper, and the external force F(r)
of the damped single degree of freedom system shown in Fig. 3.

Solution. For this single degree of freedom system, the vector of generalized

coordinates q reduces to a scalar given by

qy =X
It follows that
ox = dq,

The forces that act on this system are shown in the figure and given by
f=F({t) - kx —cx
The virtual work is then defined as
oW = fox = (F(1) — kx — cx)ox
Since in this example x = g, and x = ¢q,, in terms of the generalized coordinate g,
the virtual work W can be written as
OW = (F(t) — kq, — ¢4,)dq,

= Q,0q,

where @, is the generalized force associated with the generalized coordinate g, and
is defined as
Q. =F(t) - kq, — cq,

cxX :

F(r) Joo F(r)
— 1 |
kx

(b)

F1G. 2.3. Single degree of freedom system.
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Xy =4, X2 = 4,
H Fi(1) Fy(1)
Fi(1) Fy(1) ——» —>
‘ > o — . ey — X)) [T
: €1 X, — —P> <4+ _
: i : R klxl ‘_—3 1
kl 24 u/ /kl /. J} 77,

() (b)

FIG. 2.4. Two degree of freedom system.

Example 2.3

For the two degree of freedom system shown in Fig. 4, obtain the generalized forces
associated with the generalized coordinates g, = x, and ¢, = x,.

Solution. As shown in the figure, the following force
Si=—kixy —cyxy + ky(xg — xp) + ¢, — x,) + Fi(1)
acts at a point whose displacement is x, = q,. The force f, given by
Ja = —kylxy — x1) — (% — x1) + F3(0)

acts at a point whose displacement is x, = g,. Therefore, the virtual work W is
given by
W = f6x, + f,0x,

Using the fact that x, = q,, X, = q,, X, = q,, and X, = §,, the virtual work W
can be expressed in terms of the generalized coordinates as

OW ={—kiqy —c1q, + ka(g; — q1) + {2 — q1) + F(1)}dq,

+ {—ky(g2 — q,) — €2(q; — q,) + F,(1)}dq,
or
OW = {F(t) — (ky + ky)g, — (¢, + ¢3)d, + k29, + €24,}04,

+ {F(t) = k2qy — €245 + kg, + €24,}04,
Example 2.4

For the three degree of freedom pendulum system shown in Fig. 5, obtain the
generalized forces associated with the generalized coordinates ¢, = 0,,49, = 8,,and
g5 = 05, where F and M are defined as

F =[F Fz]T, M=[M| M, MJ]T

Solution. The position vector of the point of application of the force F is given by

the vector
e ) l,sin @, + 1,sin 0, + I3 sin 6,
Tl | =W cos 8, + 1, cos 8, + 15 cos 05)

where [, I,, and I, are the lengths of the rods. The virtual change in the position
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Y4

FiG. 2.5. Three degree of freedom system.

vector r can be written as
r = l, cos 0,60, + 1, cos 0,60, + I, cos 0,60,
" | 1, sin 8,80, + 1, sin 0,60, + I, sin 0,66,
which can be written as
o0
or = ory| _[licos8; I;cos8, I;cos b,y 601
“lér,| | I,sin6, I,sin®, Isiné, 2
60,

61

The virtual work of the component M; of the moment is M,56;. Therefore, the virtual

work 6W of the force vector F and the moment M is given by

SW = FTor + M750
where
50 = [60, 80, 60,1"

The virtual work W is then given in a more explicit form by

80
SW=T[F, F,] I8 cos 6, I cos 8, I cos 8, 50:
lysin6, Il,sin8, I;sinb,
86,
40,
+[M, M, M,]| 6,
50,

=[M, + |,(F, cos 8, + F, sin 0,) M, + L,(F, cos 0, + F, sin 6,)

86,
Mj; + I3(F; cos 8; + F, sin 05)] | 66,
50,
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which can also be written as

W =00, Q, 0,]]90,|=Q%0
50,

where the generalized forces Q,, Q,, and Q. associated, respectively, with the
generalized coordinates 0,, 8,, and 8, are defined as

Q,=M, +1[,(F cos, +F,sin6,)
Q,=M, + |,(F, cos 0, + F, sin 0,)

L Q3 = M; + [5(F, cos 0, + F, sin 6)

2.3 LAGRANGE’'S EQUATION

In this section, we utilize the concepts introduced in the preceding section to
develop Lagrange’s equation of motion for a system of particles. The obtained
Lagrange’s equation, however, can be applied to the dynamics of rigid bodies
as well, since a rigid body can be considered as a collection of a large number
of particles.

In the following discussion, we assume that the system consists of n, parti-
cles. The displacement r of the ith particle is assumed to depend on a set of
generalized coordinates g;, where j = 1, 2, ..., n. Hence

ri=ri(qla q23~~" qm t) (211)

Differentiating Eq. 11 with respect to time using the chain rule of differentia-
tion yields

r,_ar", +6r‘_ +m+6r‘, +6ri
a‘q‘l% 6q2q2 6q,,q" at
n ort ort
= g+ — 2.12
Laglita (2.12)

The virtual displacement Jr' can be expressed in terms of the virtual change
of the generalized coordinates as

= 5q (2.13)

The dynamic equilibrium of the particle can be defined using Newton’s second

law as
p=F (2.14)

where p' is the vector of linear momentum and F' is the vector of the total
forces acting on the particle i. The linear momentum vector p' is defined
as

pi — mil-_i
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where m' is the mass of the particle i which is assumed to be constant.
Consequently,

p' = mi¥ (2.15)
Substituting Eq. 15 into Eq. 14 yields
mi — F =0
which yields
(m¥ — F)Tor' =0 (2.16)

By summing up these expressions for the particles and using the definition of
Sr' given by Eq. 13, one obtains

(mi — F")T<Z": a—'iaqj) -0

/=1 dq;

=
o

1

which can also be written as

=
3

(m'F — FO)T (gg 5qj> =0 (2.17)

J

M=

]

10

il

J 1

Define the generalized force Q; associated with the generalized coordinate g; as

or

T 2.18
0=y F o @.19)

One can also show that

no( Or o df . . or o d (or
igiT 7~ | — s BT ) T — 77
i; <mr aqj) ,-Zi [dt(mr 5%‘) " dt(aq,):l @

It is, however, clear from Eq. 12 that

or _or 590
i, g, (220
Furthermore,
d(@r">_ LR N o o (2.21)
dt\ég;) = & q,00,™ " dq,0t  aq; '
Substituting the results of Eqs. 20 and 21 into Eq. 19 yields
N1 G N o I 0
=1 U T (L,,,iiTei AL iaiTai
.-; m'¥ 5, .-; t[aqj(zmr r)} 6qj(zmr i)
_wed oT! _6T‘ 59
© &idi\dg;)  0g; (222)

where T is the kinetic energy of the particle i defined as

T! = imiti Ty (2.23)
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The kinetic energy of the system of particles is given by
T=YT (2.24)
i=1

Therefore, Eq. 22 can be written in terms of the kinetic energy of the system
of particles as

oot d[oT\ oT
mil — = (-} —-— 225
iZi dq; dt (54) 0q; (225)
Substituting Eqgs. 18 and 25 into Eq. 17 yields
»1dfor\ oT
Elala) -5 -ofns 29

Since the generalized coordinates gq,, g5, ..., q, are assumed to be linearly
independent, Eq. 26 yields a set of n equations defined as

d (8T\ oT
() Q,=0, j=12...n

di\og;)  oq;
or
d (0T oT
- )-Z=0, i=12,..., 227
p (&jj) 5qj QJ j n ( a)

This equation is called Lagrange’s equation of motion. Clearly, there are as
many equations as the number of generalized coordinates. These equations
can be derived using scalar quantities, mainly the kinetic energy of the system
and virtual work of the applied and elastic forces. The use of Lagrange’s
equation for developing the differential equations of motion for single and two
degree of freedom systems is demonstrated by the following examples.

Example 2.5

Using Lagrange’s equation, develop the differential equation of motion of the single
degree of freedom system given in Example 2 and shown in Fig. 3.

Solution. The system of Example 2 has one degree of freedom and only one
differential equation results from the application of Lagrange’s equation which can

be stated in this case as
d(oT oT _ 0
di\ox) ox

It was shown in Example 2 that the generalized force Q is given by
Q= F(t) — kx — cx
The kinetic energy of this system is given by

T =imx?
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which yields

T
o =0
%™ @

ox

aT . d [T
%

—) =mx, and

Using Lagrange’s equation, one obtains

mi = F(t) — kx — ¢x
or
mix + cx + kx = F(1)

which is the same differential equation obtained for this system by applying New-
ton’s second law.

Example 2.6

Using Lagrange’s equation, derive the differential equations of motion of the two
degree of freedom system given in Example 3 and shown in Fig. 4.

Solution. Since the system has the two degrees of freedom g, = x; and g, = x; as
generalized coordinates, the application of Lagrange’s equation yields the two

equations
dfor oT 0
de\oq, aq,

d{aT oT 0
di\og,) dq, *’
where T is the total kinetic energy of the system and Q, and Q, are the generalized

forces associated, respectively, with the system generalized coordinates. The kinetic
energy T is defined as

. . . om0 |4
T=%"‘1‘I%+%mz‘l%=%[‘h ‘12][ ' :”:1]
0 my]l4,

It was shown in Example 3 that the generalized forces Q, and Q, are given by
Q= Fi(t) = (ky + ky)q, — (¢ + )4y + k,q; + 24,
Q, = Fy(t) ~ kyq; — €242 + k2q, + c,4,

By using the definition of the kinetic energy, one obtains

oT . d[oT . oT
- = Mgy, =mq,, ol

04, de\aq, aq,
oT = d d (0T _ . T 0
4, = Mmyq,, dr 5; = my{q,, Fh_

Substituting into Lagrange’s equation for ¢, and gq,, yields, respectively, the
following two differential equations:

mGy = Fy(t) = (ky + k))gy — () + )4, + kpq, + €24,

myi; = Fy(t) — kyq; — ¢34, + kyqq + ¢34
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or
mdy + (¢, + ¢3)4, — €24, + (ky + k3)q, — k,q; = Fi(1)

Mmygy + €34y — €24, + kg, — kyq, = Fy(1)

which can be written in a matrix form as

I:ml O:I["I'n]+[cx+cz —C2:|[41]+[k|+kz —kz:H:‘h]z[Fx(l):l
0 my,|l4, —C; ¢y 4, —k, k, q; F (1)

which is the same matrix equation that can be obtained for this two degree of
freedom system by applying Newton’s second law.

Example 2.7

Using Lagrange’s equation, derive the differential equation of motion of the two
degree of freedom system shown in Fig. 6. Use the assumption of small oscillations.

Solution. We select x and 0 as the system generalized coordinates, that is,
q=[x 6]
The kinetic energy of the system is
T = imi* + im,x2 + 110°
where m_ is the total mass of the rod, x_ is the absolute velocity of the center of mass
of the rod, and I is the mass moment of inertia of the rod about its mass center,

that is,

m,I?
="
12

where [ is the length of the rod. The absolute velocity of the center of mass of the

i
o P

IS T

FiG. 2.6. Pendulum with moving base.
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rod can be expressed in terms of the generalized velocities as

—

xczx+0§

where the assumption of small oscillation is utilized.
The kinetic energy T can then be written in terms of the generalized velocities as

. 1\? .
T =4imx? + %m,(i + 02) + 116?

!l . 12\ .
fm+m)x* + m,i)'d) + %(1 + m, 4~>62

. .
m+m)x? + m,ixe + 11,6°

Cir. py|mEm m,(l/2) || x
=il 6][m,(l/2) I ][0]

where I, is the mass moment of inertia of the rod about point O and is given by
2
Io=1+ mrz
The virtual work of all the forces acting on the system is given by
OW =[F(t) — kx — cx]6x — m,gdy,

where g is the gravitational constant, and dy, is the virtual displacement of the
center of mass in the vertical direction which is given by

Therefore,

l
OW = [F(t) — kx — ¢X]dx — meg s sin 060

= Qxax + Qoée

where Q, and Q, are the generalized forces associated, respectively, with the gen-
eralized coordinates x and 6 and defined as

0, = F(t) — kx — cx

I !
Qs = —m,gism()z —m,gEO

The application of Lagrange’s equation yields the following two equations:

d (0T 5T_Q
di\ox/) ox <

d(oT\ aT _
a\a) =%

Differentiation of the kinetic energy with respect to time and with respect to the
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generalized coordinates yields

oT l.
.= (m + mr)x + mr76
0x 2

TN wemizam s T o

di\ox =m m,x+m,§, a_
Meomtsrnd () oml st 1,6
(39 r2 oY dt 69 _mr§x+ o
oT _,
%_

Substituting these equations in Lagrange’s equation and using the expressions
for the generalized forces yields

[ .
(m+m,)5c'+m,§0=F(t)—kx-—cx
L+ 1,0 Lo
m, - X = — —
r2 o mrgz
or
I .
(m+m,))'c'+m,§0+cx+kx=F(t)
[ 5 !
m,§x+100+m,g§0=0

which can be written in a matrix form as
I:m +m, m/(l/2) || % + ¢ 0]Ix + k 0 x| | F@
m(2y I, || 6 0 offé 0 mg(/2|l0] | 0

Remarks Lagrange’s equation as defined by Eq. 27a states that the gen-
eralized external force Q; associated with the jth generalized coordinate is
equal to the generalized inertia force associated with the same coordinate.
This generalized inertia force is defined in terms of the system kinetic energy as

d(oT or
Ji= | — |- = i=1,2,..., 2.27b
(@i = 4, (aqj) da; J n ( )
Therefore, Lagrange’s equation as defined by Eq. 27a can be written as
(Qi)j = Qja j= 1,2,...,n (2.270)

Note that the generalized inertia force (Q;); was originally defined by Eq. 25 as

©);= ¥ mim ™ (2.27d)
i=1 a‘Ij
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which is the same as (see Eq. 20)

Q)= 3, mi'r'”g—'.— (2.27¢)
i=1 q;
Therefore, in the Lagrangian formulation, one can use Eq. 27b, Eq. 27d, or Eq.
27e to obtain the generalized inertia forces associated with the system gen-
eralized coordinates. These equations can be applied to systems of particles as
well as rigid-body systems. In rigid-body dynamics, there are inertia forces as
well as inertia moments. Therefore, in the case of a system that consists of
particles and rigid bodies, Eqs. 27d and 27e must be modified to

@)= 3 miTe ' i[ '-T_+19";Z] (2271)

and

n - i n
©); = 3. m i [ ¥ 'T~ + I'e‘ag] (2279)
i= i=1 04; 04;

where r! is the vector of coordinates of the center of mass of the rigid body i,
6’ is its angular orientation, m’ and I’ are, respectively, its mass and mass
moment of inertia about the center of mass, and n,, is the total number of rigid
bodies in the system.

In order to demonstrate the use of the equations presented in this section
in the case of rigid-body systems, we consider the system shown in Fig. 6. It
was shown in the preceding example that the use of Eq. 27b leads to the
following generalized inertia forces associated with the coordinates x and 0,
respectively

Q)= m + m)5 +m, 0

(Qi)p = m, :

2x + 1,6

where m is the mass of the block, m, and | are, respectively, the mass and length
of the rod, and I, is the mass moment of inertia of the rod about point O.
Without linearizing the kinematic relationship, the coordinates of the center
of mass of the rod can be written as

l
x+ -sin@

ME
rc S = l
Ve
~5 cos 6

Differentiating these kinematic equations once and twice with repect to time
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leads to the velocity
ol
X+ 0_-cosf
- [.X.CJ 2
rc = . = b
Ve )

Bisin()

and the acceleration
5
i:c - ["C] B
Ve

i+950056—92£sin0

. .
0-sin 0+ 02écos£)

2
Note that
or, O, _ OF, 1
ax  0x o0x |0
l cos 0
or, ok, OF, |2
a0 o0 06 l .
~sin @
2
Therefore, the use of Eq. 27f leads to
. 0x L OF, .. 00
Qi) = mi o mie o+ 196—)2

Since 6 is an independent coordinate, d6/0x = 0 and the preceding equation
leads to
or
— s --T—c
(Qi)x =mx + mrrc 6X
"+élcosf) ézlsin() !
) T 2
=mx + m, 0

.
isin9+92§cost‘)

—~—

0
. . ol
=(m+ m)x + m,Hicos 6 —m0 5 Sin 0

Assuming small oscillations, the generalized inertia force associated with the
coordinate x becomes

Q) = (m + m)x + mréé

which is the same generalized inertia force previously obtained. Similarly, the
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generalized inertia force (Q;), associated with the coordinate §, can be obtained
using Eq. 27f as

. Ox ] "

(Qi)0 = mx% + m,l'cT ’é' + 18

06
a0
or .
_ 2T e i
mf, 20 + 1
which upon using the definition of ¥, and Jr./00 yields
"+9l osH—ézlsinB ! cos 0
rrohe 2 2 )
(Qi)B =m, I I l + 10
il 32 ! [
82sm0+020059 2smH
2

N 1. .
= m,xicosﬂ + m,ZB + 10

= m,jéé cos 8 + 1,0

where I, = I + m,(1%/4).
As in the case of the preceding example, we assume small oscillations. In
this case cos 8 = 1, and consequently (Q;), reduces to

l -

Qi) = mré)‘é + 16
which is the same as the generalized inertia force obtained by using the kinetic
energy. Note also as the result of Eq. 20, the generalized external force Q; can

also be written as
oF
04;

Qj — Zl FiT

2.4 KINETIC ENERGY

As was shown in the preceding section, one alternative for formulating the dy-
namic equations is to obtain an expression for the kinetic energy of the system
and use it with Lagrange’s equation, as defined by Eq. 27a. In this section, the
formulation of the kinetic energy using vector and matrix notation is discussed.

System of Particles In many applications, such as the examples pre-
sented in the preceding sections, the position vector of the particle i in the
system can be expressed in terms of the generalized coordinates as

ri = rl‘(ql7 q2’ I qn) (228)
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and the velocity vector as

i,._ar",+ar" + '+6'_
g, " ag, aq, ™
" orf
=Y —g 2.29
PR (2.29)

which can be written using matrix notation as

4
. ot or ar)| 42
P = — = 2.30
o o) ; 230
qn
This equation can be written in a compact form as
i' = B4 (2.31)
where
. ot or ort
B=|_ — — - = (2.32
[aql 0, 6q,.] )
a=[a a - ¢l (2.33)
The kinetic energy of the system of particles can also be obtained as
T' = im't'TH (2.34)

where m' is the mass of the particle i. Substituting Eq. 31 into Eq. 34 yields
T' = i (B (B'9)
= Lmq"B B = 14" BTB)q (235)

The kinetic energy of the system of particles can also be obtained as

3
©

T

2 T = ¥ 147 BTB)q

i=1

W

qT Zp (miBiTBi)(']
i=1

which can be written as
T =1q4"Mq (2.36)

where M is the mass matrix of the system of particles, defined as
M=7Y (m'BTB) (2.37)
i=1

The kinetic energy of Eq. 36 is a quadratic function in the generalized velocity
vector {, and the mass matrix M is symmetric and may be constant or may
depend on the system generalized coordinates.
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Rigid Bodies The kinetic energy of rigid bodies can also be expressed in
a form similar to Eq. 36. For instance, for a rigid body i in the system, let x!
and y! be the x- and y-coordinates of the center of mass of the body and let
0' be the angular orientation of the body. The kinetic energy of the body can
be written as

T = im'3¥ + im'y¥ + 410" (2.38a)
where m* and I' are, respectively, the mass and the mass moment of inertia of

the body, and the mass moment of inertia is defined with respect to the center
of mass of the body. Equation 38a can also be written as

m 0 0][x!
T | IOl | B
0 0 I'|é
= J4™™ig] (2.38b)
where
g =[x y. 01
and
m 0 0
Mi={0 m' O
o 0 o

The absolute velocities x/, y!, and 6! can be expressed in terms of the gen-
eralized velocities as

n Oxl
x:: = €4 .
j; a‘h 9
P Oyl
Ye = j;l aq] J
; "0
B jzl 0q; 9
That is,
q' = Bq (2.38¢)
where the matrix B'is a 3 x # matrix defined as
[ 0x!  ox! ) oxi]
09, 0q, aq,
;| oy oyl dy:
B = e 2.38d
0q, 0q, aq, ( )
o0' 00 o0’
| 94, 0q, aq, |
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Substituting Eq. 38c into Eq. 38b leads to an expression for the kinetic energy
in terms of the generalized velocities as
Ti = %qTBtTM:th

which can also be written as

T' = 14"™™Miq (2.39a)
where M is the mass matrix of the rigid body defined as

M = BTM:B! (2.39b)

The kinetic energy of a system of rigid bodies is

1

n

T=YT-=
1

o

[\

1

__Zl §'™M'q

where n,, is the total number of bodies in the system.
The system kinetic energy can also be written as

T= %«f[z" M'}q = 44"y
i=1
where M is the system mass matrix defined as

M=% M
i=1

lllustrative Example Consider the system shown in Fig. 7a, in which AB
is a uniform rod that has mass m, mass moment of inertia I, and length . The
kinetic energy of the rod can be defined using Eq. 38b. However, the rod has

N
NN
s ‘\\ A
A @ \\ Fa —p- ’
i \ \\\\\ o
: N \‘\ ¢
! ) N
_J; _______ AT N D o e i AB
I B

(a) (b)

F1G. 2.7. Generalized mass.
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only one degree of freedom since point A slides in the vertical direction only,
while point B slides in the horizontal direction only. Because of these two
restrictions on the motion of the rod, one has the following kinematic relation-
ships:

l
xA=xc—§cos()=0

l
yB=yc~§sin0=0

where x, and y; are the horizontal and vertical coordinates of points 4 and
B, respectively. The preceding two equations, which show that the center of
mass of the rod follows a circular trajectory which has a radius //2, lead to

% | 01 —sin 6
v.| 2| cos®

The absolute velocities of the rod can then be expressed in terms of the
independent angular velocity as

- -
%, ) sin 0
Y I L = B#
Ve ~cos @ BO
0 2
. 1 .
where B is a 3 x 1 matrix which is recognized as
- -
l
~3 sin 0
B=| |
= 0
5 cos
L 1 -

Using an equation similar to Eq. 39a, the kinetic energy of the rod can be
expressed in terms of the independent angular velocity as

_ Loy j2 _ ml> 2 _ U m
T_2B M,Bb- = (I+ ) )0 —5100
where I, is the mass moment of inertia about point o shown in Fig. 7b. In this
figure, point o is the point of intersection of the lines of action of the reaction
forces F, and Fy. The preceding equation shows that the generalized mass
matrix associated with the independent coordinate of the rod reduces to a
scalar defined by the mass moment of inertia about point 0. Note that by
using simple trigonometric identities, one can show that the length oc is I/2.
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Definitions In both cases of systems of particles and rigid bodies, the
kinetic energy is a quadratic function in the system velocities, or more precisely,
a homogeneous, second degree quadratic form in the velocities 4, 45, ..., 4,.
The mass matrix M is said to be the matrix of the quadratic form. A quadratic
form is said to be positive (negative) if it is equal or greater (less) than zero for
all the real values of its variables. A positive (negative) quadratic form is said
to be positive (negative) definite if it is equal to zero only when all its variables
are equal to zero. A positive (negative) quadratic form which is equal to zero
for some nonzero values of its variables is said to be positive (negative)
semidefinite. A quadratic form which can be positive or negative for the real
values of its variables is said to be indefinite. The matrix of quadratic form is
said to be positive (negative) definite, positive (negative) semidefinite, or in-
definite according to the nature of the quadratic form.

Since there can be no motion of particles and rigid bodies while the kinetic
energy remains equal to zero, the kinetic energy is always a positive definite
quadratic form. Consequently, the mass matrix is always positive definite.
Therefore, the mass matrix is nonsingular, its determinant has always nonzero
value and its inverse exists.

Vector Form of Lagrange’s Equation Using the quadratic form of Eq.
36, Lagrange’s equation can be expressed in a vector form. First, we introduce
the following notation:

T
%q —T,=4'™ (2.40)
‘(3% =T, (2.41)

where vector subscript implies differentiation with respect to this vector.
Using this notation, one can then write Lagrange’s equation in the following
vector form:

d

d—t(T")T - (Tq)T =Q (2.42)
or

M) — ()7 = Q 243

where Q is the vector of generalized forces associated with the generalized
coordinates and defined as

Q=[0; 2, - QT (244)

Observe that Lagrange’s equation can also be written compactly as

Qi__‘Q
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where Q; is the vector of the generalized inertia forces expressed in terms of
the kinetic energy as

d re
Q= (M) - (1)

Example 2.8

Using Lagrange’s equation, derive the differential equation of motion of the system
shown in Fig. 8.

Solution. The position vectors of the two masses are given by

o x,] [ lisin8
- Vi " L~y cos 6,

rz _ xZ—‘ _ ll Sin 01 + 12 Sin 02
B ¥ | | =1,cos 8, — 1, cos 6,

The velocity vectors are given by

o %] 0,0, cos 6, ] [l cos8, © 6, _B'a

)7 L sine, [T |y sing, o6, ] ¢
iz=[x2:|_[9,ll cos 8, + 6,1, cos 6, [licos6, 1,cos6,][6,
Vs 0,1, sin 0, + 6,1,sin0, | | I,sin6, I,sin6, || 6,

=B%§

where

FiG. 2.8. Double pendulum.
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and the coefficient matrices B! and B? are given by
B - licosf, 0
I,sing, 0
B = lycosf, [,cos@,
l;sinf, [,siné,
The kinetic energy of the system is
i

R R N
T=3 T =2 mi

i=1 25
=im 'TH' + Im, 1?72
= }4"m,B'TB'q + 14"m,B"B%
= %‘.IT[mlB”Bl + szZTBZ]q
= 14"Mg
where the mass matrix M is defined as

M =m,;B'"B' + m,B?"B?

_ lycosB, Il;sin® ][l cos®, O
=Ml o 0o ||Ising o0
lycosf I;sinB |[1 cos8, 1I,cosb,
" lycos 0, I,sinf, || !, sin0, I,sin6,
_ ml? 0 N myl? m,l, 1, cos(6, — 65)
0 0 myl, 1, cos(0, — 6,) m, 12

(my + my)l} mylyl; cos(0, — 6,)
m,l, 1, cos(§, — 0,) m, 12

The virtual work of the forces that act on the system is given by
oW = —m,gdy, — m,gdy, + M, 50, + M, 40,
where the virtual displacements dy, and dy, are
oy, =1, sin 0,60,
dy, =1, sin 6,80, + 1, sin 6,60,
That is,
OW = —m,gl, sin 0,60, — m,g(l, sin 6,60, + [, sin 6,60,)
+ M, 06, + M, 40,
= (M; —mgl, sin 0, — mygl, sin 0,)60, + (M, — m,gl, sin 6,)30,
which can be written as
OW = 04,60, + Q4,00, = Q'dq

where Qq4, and Q,, are, respectively, the generalized forces associated with the
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coordinates 6, and 6, and are given by

Q- Q,,l:l _ [M, — mygl, sin 8, — m,gl, sin 0,]
Qo2 M, — mygl, sin 6,

Having determined the kinetic energy and the generalized forces, one can use
Lagrange’s equation. To this end, we evaluate the following:

oT d d .
d < ) (Tq) = E(‘ITM) = ‘.iTM + (lTM

di\eg) " dt
That is,
%(Tq)T =Mi + Mg
where M is the matrix
B [ 0 —myl, 1,(0, — 8,) sin(0, — 02)]
—myl, 1,(6, — 6,)sin(8, — 0,) 0

Therefore,

d(oT\" _ (m, + m,)3 m,l, 1, cos(6, — 6,)1[ 6,
dit\aq) | myl,1, cos(d, — 6;) m, 13 0,
_ I:mzllIZO'.Z((:)l - 9:2) Sin(ol - 02)]
myl 1201(91 - HZ)Sin(Bl - 92)
One can also show that
oT\" _ (T = —m,l,1,6,0, sin(0, — 6,)
éq) Y | myl,1,0,0, sin(0, - 0,)

Substituting into Lagrange’s equation of motion given by Eq. 42 or 43, one obtains
the differential equations of motion of this system.

2.5 STRAIN ENERGY

The generalized elastic forces of the springs, which were obtained in the
preceding sections using the virtual work, can also be obtained using the strain
energy expression. For example, in the single degree of freedom mass—spring
system shown in Fig. 3, the strain energy due to the deformation of the spring
is given by

= 1kx? (2.45)

By using this expression for the strain energy, the generalized force of the
spring can simply be defined as

U
Q= =

o =

For this system, one can write Lagrange’s equation of motion in the following

—kx (2.46)
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d(oT T\ _ 0+ 247

A )= Q, (2.47)
where Q is the vector of all generalized forces excluding the spring force. Using
Eq. 46, Eq. 47 can be written as

d(oT oT ou —
ile) - (2)+ (5) =0 (249

In general, one may write Lagrange’s equation in the case of n generalized
coordinates in the following alternate form

d{oT oT oU
) -— 4+ - =0. =1 .
dt (54;') 0q; * oq & J=b.n 24

J

form:

where U = U(qy, q,, .- -, 4,) is the strain energy function that depends on the
system generalized coordinates. Keeping in mind that the differentiation of
the scalar strain energy function with respect to the generalized coordinate
vector q = [q, q, 95 - q.]" leads to a row vector, that is,

oU ou oUu ou
—=U,== = - 2, (2.50)
oq 1 [aql 04, 54,.]

Eq. 49 can be written using vector notation as
d (oT\" oT\" [oU\" _
=) = — ] = 2.51
i) () +(5) - 220

where Q = [0, Q, -+ Q,]" is the vector of all generalized forces excluding
the elastic forces which are accounted for using the strain energy function
U.

We have previously shown that the kinetic energy function T can be
expressed as a quadratic form in the vector of system generalized velocities.
One can also show that the strain energy function U of linear systems can be
expressed as a quadratic form in the vector of generalized coordinates. In fact
U can be written as

= 3q"'Kq (2.52)
where K is the symmetric stiffness matrix of the system given by
ki

k,, k,, symmetric

K - (2.53)

knl an T knn
Consequently, the term dU/dq in Lagrange’s equation of Eq. 51 is the fol-
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lowing row vector:
ou

i K= [Z ki1 g; Z ki2g; - Z kj,.q,]
q = =

j=1

Since the stiffness matrix is symmetric, that is, K = K7, one has

-

kquj

~.
]
.

-

k,.q.
; 2 (2.54)

~.
L}

oU\"
(a) ~Ka=

Z knjd;
_.-’_l

where k;; = k;. It is important, however, to emphasize that, while the kinetic
energy is always a positive-definite quadratic form in the velocities, the strain
energy can be a positive-semidefinite quadratic form in the coordinates. This
situation occurs when the system has rigid-body degrees of freedom. The
motion of such a system can occur without any change in the potential energy.
The stiffness matrix of such a system is always singular and the system is said
to be semidefinite. The dynamics of the semidefinite systems will be discussed
in more detail in the following chapter.

Example 2.9

Using the strain energy function, determine the stiffness matrix of the two degree
of freedom mass-spring system shown in Fig. 4.

Solution. The strain energy of the spring k, is
U, = 3k, x} = 3k, q3
The strain energy of the spring k, is
U, = tka(x; — x,)? = 1k2(q: — q,)?
The total strain energy of the system is
U=U, + U, =ik q] + 1ki(q, — ,)*
=4(ky + ky)af — k19,9, + 3k, 43

which is a quadratic form in the generalized coordinates g, and g, and can be

written as
k, +k —k
U = 4a, q;][‘ 1 ) ]["]
—k, k, q;

= 1q"Kq
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where K is the stiffness matrix defined as

K[tk —k
—k2 k2

which is the same stiffness matrix obtained in Example 6 using the virtual work.

2.6 HAMILTON’'S PRINCIPLE

Another alternate approach for deriving the differential equations of motion
from scalar energy quantities is Hamilton’s principle which states that

ty I
5J (T — V)dt+f SW,. dt =0 (2.55)
1

1 L5}

where T is the system kinetic energy, V is the system potential energy, and
oW, is the virtual work of the nonconservative forces. Hamilton’s principle
is sometimes written in the following form:

5f Ldt+f SW,. dt =0 (2.56)

1 1

where L is called the Lagrangian and defined as
L=T-V (2.57)

Hamilton’s principle of Eq. 55 or its alternate form of Eq. 56 states that the
variation of the kinetic and potential energy plus the line integral of the virtual
work done by the nonconservative forces during any time interval between t,
and ¢, must be equal to zero.

The potential energy V is defined as the strain energy minus the work done
by the conservative forces, that is,

V=U-W, (2.58)

where W, is the work done by the conservative forces. Excluding the forces
that contribute to the strain energy U, one may define the virtual work of all
other forces, conservative and nonconservative, as

SW = SW, + 6W,, (2.59)

Substituting Eqs. 58 and 59 into Eq. 55 leads to the following alternate form
of Hamilton’s principle:

tz tz
aj (T—U)dt+J‘ SWdt =0 (2.60)

When applying Hamilton’s principle it is assumed that the system co-
ordinates are specified at the two end points t; and t,, that is,

oq(t;) = oq(t;) =0 (2.61)
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or
0q,(ty) = dq,(t;) =0
6q,(t,) = 0q,(t;) =0 (262)

0q,(t,) = 0g,(t;) =0

Relationship Between Hamilton’s Principle and Lagrange’s
Equation The use of Hamilton’s principle is equivalent to the application
of Lagrange’s equation. In fact Hamilton’s principle can be used to derive
Lagrange’s equation of motion. To this end, we write

z 2 5 (9T, oT
- = (%Lsq+ 2" 54 63
5L T dt J ST dt j <6q6q+ aq&;)d: (2.63)

1

Using integration by parts, the second term in the preceding equation yields

o (5T oT\ . = (= d[oT
S oqde=(=)oq| — | S(=)sqar
J. Golsra= (Gl - [ a5

Using the assumption of Eq. 61, the preceding equation reduces to

2 (0T 2d (0T
— =—| | .64
L (aq)éq dt L dt(&(])éq dt (2.64)

Substituting Eq. 64 into Eq. 63 yields
t2 29T d (0T
1] Tdt:_[ [———<~,)]6th (2.65)
J.,I ., LOq dt\0q
f2 2 (oU
d Udt= — |dqdt 2.66
J va] G ass

t L
J oW dt = j QToq dt 2.67)
t t

1 1

Similarly,

where Q is the vector of generalized forces.
Substituting Eqs. 65-67 into Hamilton’s principle of Eq. 60 yields

21T d{oT\ oU .
L [56_5<5E>_6Aq+0]5th_0 (2.68)
If the coordinates q,, ¢, .. ., g, are independent, the integrand in Eq. 68 must

be identically zero. This leads, after rearranging terms, to the following fami-
liar form of Lagrange’s equation:

d 0T\ OT\T JUNT
a?(ai) ‘(%) *(5&) =Q (269)
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—

Example 2.10

Use Hamilton’s principle to derive the differential equation of motion of the single
degree of freedom system of Example 2.

Solution. The system kinetic energy is
T = imx?

The system strain energy is
U = $kx?

The virtual work of all forces, excluding the spring force, that act on this system is
oW = F(t)éx — cxdx
Using Hamilton’s principle of Eq. 60, one has
ty ¥
6J‘ (T—U)dt+f Wdt=0
ty t

1

where

tz tz
5J (T - U) dt=6J. Emx? — Lkx?) dt
' t

= I (mxdx — kxdx) dt
f
which, by integrating by parts the first term, leads to

t 1
- [ (mxox + kxdx) dt

t JIU

t2
5J (T — U) dt = mxdx
t

Substituting this expression and the expression of the virtual work into Hamilton’s
principle and using Eq. 61 lead to

t2

[ (mxX + kx — F(t) + cX)ox dt =0

i

Since dx is an independent coordinate, the above equation leads to
mx + cx + kx = F(t)

which is the same equation of motion obtained in Example 5.

Example 2.11

Use Hamilton’s principle to derive the differential equations of motion of the system
shown in Fig. 9.
Solution. The kinetic and strain energies of the system are given by

T =4im, %} + imyx3

U = sk, x} + 3ky(x; — x,)
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Fy{t) N F() N
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Fi1G. 2.9. Two degree of freedom system.

The virtual work of the damping and external forces is given by
SW = —c %,8x, — €3(%5 — X%;)8(x; — x,) + Fy0x; + Fy0x,

The variation of the time integral of (T — U) can be obtained as

ty 12
0 [ (T-U)dt=4 J Cimy X3 + dmyx3 — 3kyx] — fko(x, — x,)?] dt
Jit 1

f2
= J [m %, 8%, + my%,0%, — kyx,0x, — ky(x; — x,)0(x, — x,)] dt
4

By integrating by parts and using the assumption of Hamilton’s principle that the
displacements are specified at the end points ¢, and ¢,, one obtains

ty t2
6J‘ (T - U)dt=j [—m%,0x, — my%,0xy — k x,8x,
ty t
— ky(xy — x1)8(x; — xy)] dt
By rearranging the terms, one obtains
1 t
JJ (T-U)dt = ——J. {[m %, + (k, + k;)x; — kyx,]6x,
4 L

+ [my%, + kyxy — kyx,10x,} dt
Using this equation and the expression of the virtual work W, Hamilton’s principle
yields

6-[ (T—U)dt+J oWdt=0

1

That is,

—J {[mlil + (kl + kz)xl - kzXz](sxl + [mz.fz + kzX2 - kle}(st} dt
t

L]
+ [ [—c X0x; — ca(%; — %1)0(x3 — x,) + F6x; + F,6x,]dt =0
Ji
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which yields, after rearranging terms,

2
j [m %+ (cy + c2)%; — ca%X; + (ky + ky)x; — kyx, — Fy16x, dt
L5

+ f [my%; + caXy — %) + kyxy —kyx, — F,]0x,dt =0

Since x, and x, are assumed to be independent coordinates, the preceding equation
leads to the following two differential equations:

mXy 4 (¢ + )% — €%, + (kg + kp)xy — kyx; = Fy

myXy + €%y — €% + Kkyxy —kyx, = F,

2.7 CONSERVATION THEOREMS

In this section, a special case of the preceding development is considered. This
is the case of conservative systems in which all the forces acting on the system
can be derived from the potential function V. In this case

SW,. =0 (2.70)

Substituting this equation into Hamilton’s principle of Eq. 55, one obtains

5JIZ(T— Vydt =0 Q71

or equivalently
1
o J Ldt=0 (2.72)

1

where L = T — V is the Lagrangian of the system.
Clearly, for a conservative system Lagrange’s equation reduces to

d(oL\ oL
=2y -Z=0, j=1,2,..., 2.73
dz<aq,.) a4, / " @7
or
d(oL\ oL
dfoLy _oL . _ 4o 274
dt(fk:;) sq) 7 " 9

Observe that the total time derivative of the Lagrangian L is given by

Zn: (6L oL ) (275)

0q,
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Substituting Eq. 74 into Eq. 75, one obtains

dL e [oL, d <6L>
@~ At a\a,
" d (oL
v 4%, 276
;§=:1 dt (5¢L' q’) (276)
This equation can be rewritten as
dL d o 8L
&~ ZG=0
&k ag; "

or equivalently

( Zl an ) (2.77)

Since the potential energy V is independent of the velocity, one has

oL 0T
= (2.78)
dq4; 04;
Substituting this equation into Eq. 77, one gets
d » 0T
“L-%Y 2 4l=0 2.79
ilt-1%) &P
That is,
Z (2.80)

6qj

where H is a constant called the Hamiltonian. Equation 80 is valid for any
conservative single or multi-degree of freedom system. The Hamiltonian H
can be written in a more convenient form using the following identity:

oT
Z g;=2T (2.81)
Jj=1 3
Substituting this equation into Eq. 80 and using the fact that L = T — V, one
obtains

H=—(T-V-2T)=T+V (2.82)

which implies that the Hamiltonian is equal to the total energy of the system.
Since, for conservative systems, the Hamiltonian H is constant, one has
dH

0= A(T + V)= (2.83)

This equation can be used to develop the dynamic equations of motion of
conservative single and multi-degree of freedom systems, as demonstrated by
the following examples.
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r Example 2.12

Use the method of conservation of energy to derive the equation of free vibration
of the single degree of freedom system of Example 2 assuming that the damping
coefficient is equal to zero.

Solution. The Hamiltonian of the system is given by
H=T+V=1imi?* + jkx?
Applying Eq. 83, one obtains

o (% + kxx =0
dt mxx XX

This equation can be rewritten as
(mx + kx)x =0
Since x is not equal to zero for all values of ¢, one must have
mx + kx =0

which is the equation of undamped free vibration of the single degree of freedom
system.

Example 2.13

Use the method of conservation of energy to derive the differential equations of the
free undamped vibration of the system in Example 9.

Solution. The kinetic energy of this system is
T=14im %} + imyx3
and the strain energy is given by
U=V =ikxi+ikylx,—x,)
The Hamiltonian of the system is
H=T+V=4mx}+imyx3 + 3k xq + $ky(x; — x,)?
The application of Eq. 83 leads to

dH . . . , , ,
——=mX Xy myXa Xy + kyx X+ ky(xp — x ) (X2 — %)

dt
=0
This equation can be rewritten as
[my X, + kyxy — kyp(xy — x)1%; + [my%; + ky(x; — x4)]X, =0

Since X, and %, are independent velocities, their coefficients in the above equation
must be equal to zero. This leads to the following two differential equations of
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motion for the undamped two degree of freedom system:
myiy + (ky + ky)x, — kyx; =0

m2'i2 + kzxz - klxl =0

Nonlinear Systems Conservation theorems can also be applied to non-
linear constrained multi-body systems. In order to demonstrate that, we
consider the multi-body system shown in Fig. 10, which was considered in
the preceding chapter. The system consists of two homogeneous circular
cylinders, each of mass m and centroidal mass moment of inertia I, and a
connecting rod AB of mass m, and length I. The cylinders, which have radius
r, are assumed to roll without slipping. Because of the rolling conditions, the
velocities of the centers of mass of the cylinders are equal and given by

Vo=ve=[-rd 0]7
The velocity of the center of mass of the connecting rod is equal to the absolute
velocities of points A and B since the angular velocity of this rod is equal to
zero. These velocities are defined as

—(r —acos 0)8
af sin 0

V,=VB=VA=V0+VAO=VO+(D><I'A0=[

where v, is the velocity of point A with respect to point O, v, is the absolute
velocity of the center of mass of the connecting rod, o is the angular velocity
vector of the cylinders, and r,, is the position vector of point A4 with respect to
point O defined as

ro=1[asinf —acosf]"
The kinetic and potential energies of the system are
T= 2(1 mvyvg + 1192) + lm,v,Tv,
2 2 2
V =m,ga(l — cos 0)

Fi1G. 2.10. Multi-body system.
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Using the velocity expressions, the Hamiltonian can be written as

1 .
H=T+V= {1 +mr? + Em,(r2 + a*> — 2 ar cos 9)}()2 + m,ga(l — cos 6)

It follows that

dH 1 . s
s 2{1 + mr? + im,(r2 + a? — 2ra cos 6)} 00

+ m,rab® sin 6 + m,gad sin 6 = 0

Since for a cylinder I = mr?/2, the preceding equation leads to

3 L, " o .
2 smr? + im,(r + a* — 2racos ) ; 6 + m,ra6? sin  + m,ga sin 6 = 0
which is the same nonlinear differential equation obtained in the preceding
chapter by applying D’Alembert’s principle.

2.8 CONCLUDING REMARKS

In this chapter, a brief introduction to the subject of Lagrangian dynamics is
presented, and the important concepts of the generalized coordinates, virtual
work, and the generalized forces are introduced. These concepts are then
used to derive Lagrange’s equation from Newton’s second law. The final form
of Lagrange’s equation is presented in terms of scalar energy quantities such
as the strain and kinetic energies. The quadratic forms of the kinetic and strain
energies are also examined and used to define the system mass and stiffness
matrices. Hamilton’s principle which represents an alternate approach for
deriving the dynamic equations of motion using scalar quantities was also
discussed. It was also shown that Lagrange’s equation or Hamilton’s principle
can be used to develop conservation theorems that can be used to derive the
differential equations of motion of conservative systems.

The development of Lagrange’s equation using the vector equation of
Newton’s second law given by Eq. 15, consists of several steps. At the end of
each intermediate step, the resulting equations can be used to derive the
dynamic equations of the mechanical system. Equation 16, for example, is the
well-known principle of virtual work in dynamics. This important equation can
be written as

W, = W, (2.84)

where W, is the virtual work of the inertia forces and 6 W, is the virtual work
of the applied forces. The virtual work of the workless constraint forces is
equal to zero and, consequently, such forces do not appear in Eq. 84. Equation
84, even though it is an intermediate step in deriving Lagrange’s equation,
represents a powerful tool which can be used to develop the equations of
motion of mechanical systems. The use of Eq. 84 can be demonstrated by
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Fi1G. 2.11. Application of the principle of virtual work in dynamics.

considering the simple pendulum shown in Fig. 11(a). The free-body diagram
as well as the inertia-force diagram are shown in Fig. 11(b). The position of the
center of mass of the rod can be expressed in terms of the degree of freedom

of the system £ as

I l
xc-—-isinﬂ, yc=—§c039
It follows that

ox, = % cos 046, oy, = é sin 866

19 !
xc=5cose, jzc=~2~sin0
The components of the acceleration of the center of mass are
10

. [, .
xc—icosﬂ—il) sin 0

10 l.
. =—sinf + = 8> cos
yc 2 2

The virtual work of the inertia forces and moments can then be written as

W, = mi 6x, + my by, + 1666

. l., . l
~m(§0c089—20 sm())(zcos()é@)

I . ! ., I .
+m(§05m9+§0 cos 9><§sm960)

+ 1666
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This equation can be simplified and rewritten as
\? . o
oW, = m(i) B(cos? 0 + sin? 6)66 + 1066

o o

The virtual work of the external forces is given by

oW, = —mgdy, = —mg% sin 666

Note that the virtual work of the reactions R, and R, is equal to zero since
the virtual change in the position vector of point O is equal to zero. Therefore,
the application of Eq. 84 leads to

1\? < !
= 11600 = —mg _ si
[m(2> + ] 1] mgzsm060

" 1
1,0 + mgi sinf =0 (2.85)

which leads to

where

l 2
lo=1+m (i) 286)

Equation 85 can also be obtained by the direct application of Newton’s second
law or Lagrange’s equation. It is derived in this section using the principle of
virtual work in dynamics. Equation 86 is the parallel axis theorem which states
that the moment of inertia about an arbitrary axis is equal to the moment of
inertia about a parallel axis passing through the center of mass plus the total
mass of the body multiplied by the square of the distance between the two
axes. Equation 86 can also be derived using the kinetic energy of the system.
In the example shown in Fig. 11, the kinetic energy is

T = $mx2 + §my? + 116 (2.87)

If X, and y, are expressed in terms of the generalized velocities, Eq. 87 yields

A 2 3 2
im (g cos 0) +1im (1-2(2 sin 9) + 1162

. 1\? .
mb? (§> [cos? 0 + sin? 0] + 1162

T

i

Il
[N
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Since cos? 0 + sin? 0 = 1, the preceding equation leads to

12 .
=%1092

where I, is defined by Eq. 86.

Problems

2.1. The single degree of freedom system shown in Fig. P1 consists of a mass m, a
damper ¢, and two springs k, and k,. Develop expressions for the kinetic and
strain energies and the virtual work of the damping force. Use these energy and
work expressions to develop the equations of free vibration of the system.

FiG. P2.1

2.2. In the case of free vibration of the system shown in Fig. P1, show that the time
rate of change of the sum of the kinetic and strain energies is equal to the negative
of the damping coefficient multiplied by the square of the velocity, that is,

%(T+ U)= —cx?

where x is the displacement of the mass.

2.3. Derive the differential equation of motion of the system shown in Fig. P1 by using
Newton’s second law, and also by using Lagrange’s equation.

2.4. Show that the kinetic energy of a system of n particles can be written as

2
m;v;

N~

n
T=_m?+)
i=1

N~
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25.

2.6.

2.7

28

29.

2.10.

211

2. Lagrangian Dynamics

where m is the total mass of the system of particles, v, is the velocity of the center
of mass, m; is the mass of the particle i, and v, is the velocity of the particie i
with respect to the center of mass.

In the case of a rigid body, derive the principle of work and energy which states
that the change in the kinetic energy of a rigid body is equal to the work of the
forces acting on the body.

Use the principle of work and energy obtained in Problem 5 to derive the
equation of motion of the system shown in Fig. P1. Compare the use of this
principle with the result presented in Problem 2.

Obtain expressions for the kinetic and potential energies and the virtual work
for the system shown in Fig. P2 in the following two cases:

(a) small angular rotations,
(b) finite angular rotations.

Derive the equations of motion in the two cases using the principle of virtual
work in dynamics.

m, I, i w

AN
o
o

Fic. P2.2 FiG. P2.3

Obtain the differential equation of free vibration of the single degree of freedom
system shown in Fig. P3. Assume small oscillations.

In Problem 8, determine the time rate of change of the sum of the kinetic and
strain energies.

The system shown in Fig. P4 consists of a rigid massless bar of length I, + /,, and
two masses m,; and m, which are rigidly attached to the bar. Obtain the differen-
tial equation of free vibration of this system by using Lagrange’s equation. Use
the assumption of small oscillations.

The virtual work of the inertia forces of a rigid body can be written as

oW, = f pETor dV
14
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FiG. P24

where V is the volume of the body, p is the mass density, and r is the global
position vector of an arbitrary point on the rigid body. Using the preceding
equation, determine the virtual work of the inertia forces of the rigid body in
terms of the acceleration of the center of mass, and the angular acceleration of
the body. Assume the case of planar motion.

Repeat Problem 11 in the case of three-dimensional motion.

For the system shown in Fig. PS5, determine the mass and stiffness matrices using,
respectively, the kinetic and strain energies. Use the energy expressions and
Lagrange’s equation to develop the matrix equation of motion of this system.

Using the assumption of small oscillations, obtain the differential equations of
motion of the double pendulum shown in Fig. P6 using Lagrange’s equation.

my

.mz

Fic. P2.5 FiG. P2.6
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2.15.

2.16.

2.17.

2.18.

W
-

Massless
rod

m,

FiG. P2.7 FiGc. P2.8

Derive the differential equations of motion of the two degree of freedom system
shown in Fig. P7 using Lagrange’s equation. Assume small oscillations.

In the system shown in Fig. P8, AB is a massless rod which pivots freely about
a pin connection at A. If the generalized coordinates are selected to be the angular
orientation of the rod 8 and the displacement x, of the mass m,, obtain the
differential equations of this system using Lagrange’s equation. Use the assump-
tion of small oscillations.

By using Lagrange’s equation, derive the equations of motion of the two degree
of freedom system shown in Fig. P9.

In the system shown in Fig. P10, 4B is a rigid bar which pivots freely about a
pin connection at A. At equilibrium the bar ABis in a horizontal position. Derive
the differential equation of motion of this system using Lagrange’s equation.

ky

L omy
2
F(t) = F, sin wyt F(t) = Fysin oyt

FiG. P29 FiG. P2.10
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F(t) = F, sin wyt

y = Yy sin wgt

Fic. P2.11 FiG. P2.12

Using Hamilton’s principle, obtain the differential equations of motion of the
system shown in Fig. P9.

Using Hamilton’s principle, obtain the differential equations of motion of the
system shown in Fig. P11.

Obtain the differential equations of motion of the oscillatory system shown in
Fig. P12 using Lagrange’s equation.

Use Hamilton’s principle to derive the equations of motion of the system shown
in Fig. P12.

Use the principle of virtual work in dynamics to derive the equations of motion
of the system shown in Fig. P9.

Use the principle of virtual work in dynamics to derive the nonlinear equation
of motion of the system shown in Fig. P13. The system consists of two cylinders,
each of which has mass m, and a connecting rod that has mass m, and length
I. The cylinders are assumed to roll without slipping.

FiG. P2.13
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Multi-Degree of Freedom Systems

The methods of vibration analysis of single degree of freedom systems can be
generalized and extended to study systems with an arbitrary finite number of
degrees of freedom. Mechanical systems in general consist of structural ele-
ments which have distributed mass and elasticity. In many cases, these systems
can be represented by equivalent systems which consist of some elements
which are bulky solids which can be treated as rigid elements with specified
inertia properties while the other elements are elastic elements which have
negligible inertia effects. In fact, the single degree of freedom systems discussed
in the preceding chapters are examples of these equivalent models which are
called lumped mass systems.

We have shown in the preceding chapters that a single degree of freedom
system exhibits motion governed by one second-order ordinary differential
equation while a two degree of freedom system exhibits motion governed by
two second-order ordinary differential equations. It is expected, therefore, that
a system having n degrees of freedom exhibits motion which is governed by
a set of n simultaneous second-order differential equations. An example of
these systems is shown in Fig. 1.

In Section 1 of this chapter, the general form of the second-order ordinary
differential equations of motion that govern the vibration of multi-degree of
freedom systems is presented, and the use of these equations is demonstrated
by several applications. In Section 2, the undamped free vibration of multi-
degree of freedom systems is discussed and it is shown that a system with n
degrees of freedom has n natural frequencies. Methods for determining the
mode shapes of the undamped systems are presented and the orthogonality
of these mode shapes is discussed in Section 3. In this section, we also discuss
the use of the modal transformation to obtain n uncoupled second-order
ordinary differential equations of motion in terms of the modal coordinates.
Sections 4 and 5 are devoted, respectively, to the analysis of semidefinite
systems, and the conservation of energy in the case of undamped free vibra-
tion. In Section 6, the forced vibration of the undamped multi-degree of
freedom systems is discussed. The solution of the equations of motion of

98
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F1G. 3.1. Example of multidegree of freedom systems.

viscously damped multi-degree of freedom systems is obtained in Section 7
using proportional damping, while the case of general viscous damping is
covered in Section 8. In Section 9, the modal truncation technique frequently
used in order to reduce the number of degrees of freedom is discussed, and
Sections 10 and 11 are devoted to the classical computer and numerical
methods used in the vibration analysis of multi-degree of freedom systems.

3.1 EQUATIONS OF MOTION

Using matrix notation, the general form of the matrix equation of motion of
the multi-degree of freedom system is given by

Mi+Cqj+Kg=F 3.1)

where M, C, and K are, respectively, the mass, damping, and stiffness matrices,
q is the vector of coordinates, and F is the vector of forces that act on the
multi-degree of freedom system. If the system has n degrees of freedom, the
vectors g is given by

a=[q g9, - g1 (3.2)

and the mass, damping, and stiffness matrices, and the vector F are given in
a more explicit form as

Mgy my; 0 My,

M=| M2 M2 T M (3.3)

my, mg, e m
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'Cu C12 Cin

c=| 2 7 (3.4)
_cnl cn2 Cnn
-ku ki, kin

K=k K ke (3.5)
_knl kn2 knn

and
F=[F F, - EI" (3:6)

where my;, ¢;;, and k;;, i, j = 1, 2, ..., n, are, respectively, the mass, damping,
and stiffness coefficients.

Special Cases Equation 1 is the general form of the matrix equation that
governs the forced damped vibration of the multi-degree of freedom system.
The equations of motion of the free damped vibration can be obtained from
Eq. 1 by letting F = 0, that is,

Mj+Cig+Kq=0 (3.7a)
which can be written in a more exﬁlicit form as
my, my, omy, 4, €y €12 7 C||
el | It P et |
My My oo My || 4, Cai Ca2 " Candlda
kiy k2 kin || 41 0
N | R (3.7b)
kny ka0 Knndl@n 0
Furthermore, if we assume the case of free undamped vibration, Eq. 7 reduces to
M{i + Kq=0 (3.8a)
or
my, my, - my |l 4, kiv ki - ki1l 44 0
Mo map oma || o (ke ke Kl da || O g
Mmoo mydlad Lk ke o kallad Lo

Similarly, the case of undamped forced vibration can be described by the
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following matrix differential equation
Mij+Kq=F (3.9a)

which can also be written in a more explicit form as

my, my comy, || 4, kiy kip o k|l 4 F,
my, My, - my, || g, + kyy ki ot kil 42 _ F, (3.9b)
mnl mn2 e mnn qn knl knz e kml qn Fn

The use of Newton’s second law and Lagrange’s equation in deriving the
differential equations of motion of several multi-degree of freedom systems is
demonstrated by the following examples.

Rectilinear Motion Figure 2(a) shows a multi-degree of freedom system
which consists of n masses connected by springs and dampers. The system has
n degrees of freedom denoted as x,, x,, ..., X,, which can be written in a vector
form as

x=[x;, x, " x,1" (3.10)
Let F be the vector of forces that act on the masses, that is,
F=[F, F, = E]J' (3.11)

The free-body diagrams of the masses are shown in Fig. 2(b). By direct
application of Newton’s second law, it can be verified that the equations of
motion of the masses are given by

mixX; = —kix; +ky(x; —x;) —c Xy +cp(X; — %)+ Fy

myx, = —ky(x; — x1) + kalxs — x3) — (%, — X;) + ¢3(X3 — %) + F,

ki(x; — x;_y) —> iy X4y — x;)
+— —>

c(%; — X;-y) . - Civ(Xieg — X;)
(b)

F1G. 3.2. Multidegree of freedom rectilinear system.
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m%; = —ki(x; = x;1) + ki (Xioy — X)) — (% — Xi-y)
+ ¢ (Xipy — X)) + F
mnxn = —kn(xn - xn—l) - kn+lxn - Cn(x'n - 'x':n—l) - Cn+1')&n + Fn

which can be rearranged and written as
myXy +(cy + c2)%y — c%X; + (ky + ky)x; — kyx, = Flw

MmyXy +(cy + €3)X; — €% — 3%y + (kg + k3)x; —kyxy — kyx; = F,

mX; + (6 + €)X — €%y — Gy Xinq + (ki + Kio)X — kxeoy — iy Xy = F;

mnin + (Cn + Cn+1)xn - Cnxn'l + (kn + kn-H)xn - knxn—l = FnJ
: e . (3.12)
These equations can be written in a matrix form as

Mx+Cx+Kx=F (3.13)
where the vectors x and F are defined by Eqgs. 10 and 11, and

my, my, ‘- my, m 0 0 - O
Y R T S IE NP
Lm.,,l My, = My, 0 0 0 m,l
Ckyy ks ks o kg,
K=o el
b Ky ks
Tk, +k, -k, O 0
_ —k, kz'f-k3 —.k3 0 (3.15)
| o 0 0 - k 4k
[c,, c¢; ci3 Cin
C= Cay C?Z Cy3 Cop
Len € Gy Cu
(e, +¢;,  —c, 0 0
_| T et 6 0 (3.16)
o 0 0 eyt o
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The differential equations of motion of Eq. 13 obtained from the application
of Newton’s second law can aiso be obtained using Lagrange’s equation. To
this end, the system kinetic energy, strain energy, and the virtual work of
nonconservative forces are defined as

T =3mx} + 5my%3 + - + ymx? + - + im, %2 (3.17)
U =3k x}+ 3ka(xy; — x,)F + -+ 3hi(x; — xi) 2 + - + Sk X2 (3.18)
OW = Fiéx, + Fy6x, + -+~ + F;éx; + - + F,0x, — ¢, X,0x,
— oy = X,)0(xy — x3) =0 = 6 = %i-)0(0x; — x;-4)
ey %%, (3.19)

For this multi-degree of freedom system, Lagrange’s equation can be stated as

d({oT\ oT oU )
Zi‘t(a—x.l)_g;c‘;""g‘;:Qn '_1’21--"" (320)

where Q; is the generalized force associated with the coordinate x;. In order
to determine @; we rewrite Eq. 19 in the following form:

OW = [F, — (¢, + ¢)%; + ¢%,]0x, + [F, — (€3 + c3)X; + 3%,
+ e3%3]0x; + o+ [F = (¢ 4 i) % + Ci%imq + Caq X1y 16X, 4+ 0

+ [F, — (Cp + Cpy1)%n + CaXy-1]10x, (3.21)
from which we can define the following:

Qy=F, —(c; + )%, + %,

Q:=F, —(c; + c3)%; + %, + c3%;

i . (3.22)
Qi =F —(c; + i) % + CiXimy + Ciay X4y T

Qn = Fn - (Cn + Cn+1)xn + Cnx.n—l

One can also verify that

d(oTy_or_ . . 3
i\ax,) "o, =M i=12.n (3.23)

i
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and
ou ]
. (ky + ky)x; —kyx,
1
ou
ox, = (ky + k3)x; — kyx; — k3x;
U > (3.24)
ox. = (k; + kip)x; = kixi_y — kiyy X
ou
dx = (kn + kn+1)xn - knxn—l

Substituting Eqgs. 22-24 into Eq. 20 leads to the following set of n second-order
differential equations:

~

mixX, + (kg + ky)x; —kyx; = Fp — (¢, + ¢,)%, + 3%,

mziz + (k2 + k3)X2 - kle - k3x3 = F2 - (Cz + C3)x'2 + C2x'1 + C3X'?3

m%; + (ki + ko )x — kixioy — ki Xy = F— (¢ + €)% + €%y q

+ € Xt

mnin + (kn + kn+l)xn - knxn—l = Fn - (C,, + cn+1)x.n + cnx'n-l J
(3.25)

which are the same set of equations given by Eq. 12.

Angular Oscillations Figure 3(a) shows a set of n masses which are
rigidly connected to massless rods which have length I. The rods are pinned
at their ends as shown in the figure. Let T = [T; T, --- T,]" be the vector of
external torques that act on the rods. By using the free-body diagram shown
in Fig. 3(b) and applying Newton’s second law or D’Alembert’s principle with
the assumption of small angular oscillations, one can verify that the differ-
ential equations of motion of the masses are given by

m 120, = —m,gl6, — k120, + k,1%(0, — 0,) — ¢, 120, + c,1%(0, — 6,) + T,
my 120, = —m,glf, — ky1%(0, — 0,) + kl%(0; — 0,) — c;1%(6;, — 6,)
+ ¢330, —6,)+ T,
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kil(gi - 0:‘-1) ki+ll(0i+l - 0.')

m;16;

c.-l(é,» -6y C.‘ul(éin - 9.)

g

(b)

Fi1G. 3.3. Angular oscillations.

ml20, = —mglf, — k10, — 0,_,) + ki 164y — 6) — cilz(éi - 95—1)
+einl04 —6)+ T,

m, 120, = —m,gl6, — k126, — 6,_,) = kys11%6, — ¢l (0, — 6,,) — cos1 126,
+ T,
These equations can be rearranged and written as
m 120, + (¢, + ¢ )20, — ¢, 120, + [(k, + ky)I* + m,gl]0, — k,1%0, = T,
my 120, + (c; + c3)120, — 120, — 31260, + [(ky + k3)I2 + mygl10, — k, 126,
— k3120, =T,
m120; + (c; + c;ip )20, — ¢126,_; — ¢y 12614y + [k + kis)? + migll6;
— k120, — ki 126, = T;

M 120, + (c, + uis)120, — 120,y + [(ky + kpiy)1? + m,gl16, — k,126,_,
=T,
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which can be written in a matrix form as
MO+CO+KO=T

where 0 is the vector of angular oscillations given by

0=[0, 6 = 6]
and the mass, damping, and stiffness matrices, M, C, and K are given by
[(m, 12 0 o - 0
0 mi* 0 -+ 0
M=| 0 0 myl* -~~~ 0
| O 0 0 - ml
[ (cy + )12 —c,l? 0 0
—cy 2 (c; + cy)l? —cyl? - 0
C= 0 "‘Cslz (C3+C4)12 e 0
i 0 0 0 (P
[k, + k)17 + m, gl —k, 2 0 0
—k,l? [(ky + k3)I? + mygl] — k12 0
K= 0 —kyl? [k + k)IZ + mygl] - 0
| 0 0 0 o [y + iy )2+ mygl]

In the case of angular oscillations, appropriate units must be used for the mass,
damping, and stiffness coefficients. For example, the units for the mass coeffi-
cients must be kilogram - square meters (kg - m?), for the damping coefficients
newton - meters - seconds (N-m-s), and for the stiffness coefficients newton -
meters (N -m).

The differential equations of motion of the system shown in Fig. 3(a) can
also be obtained by applying Lagrange’s equation. The system kinetic and
strain energies in the case of small oscillations are defined as

T= %mlllél2 + %mzlzézz 44 %milzgiz bt %m,,lz(j,,z
1 & .
=_ Y m;l*0}
25
U= %k,lzef + %kzlz(()z _ 01)2 4+ %k512(9.~ _ 9"*1)2 4o
+ Lk, 126, — 0,_1)% + Lk, 1202

The virtual work of the gravity and nonconservative forces acting on the
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system is given by
SW=T,60, + T,00, + -~ + T,60, + - + T,88, — c,1%6,00,
- Czlz(éz - é1)6(02 —0)— = Cilz(éi - éi—x)‘s(ei —04)—
- Cnlz(én - én—l)é(én - O.n'-l) - c,,leé,,éé,, - Z mlgleléel
i=1
It is left to the reader to show that the use of the kinetic energy, strain energy,

and virtual work given above in Lagrange’s equation leads to the same
differential equations of motion obtained by applying Newton’s second law.

Torsional Oscillations Figure 4(a) shows a set of n disks connected by
massless shafts. The disk i in the system has mass moment of inertia I; and is
subjected to an external torque T;. Figure 4(b) shows the free-body diagrams
of the disks. The application of Euler equations leads to the following n
differential equations of motion:

119.1 = _klgl + k2(92 - 01) + Tl
L6, = —ky(0, — 0,) + ky(03 —6,) + T,

L0, = — k6, — 0,_,) + k1 By — 6) + T,

I,,é;, = —kn(gn - onAl) - kn+10n + ’I:l

where 6; is the torsional oscillation of the disk i and k; is the torsional stiffness
of the massless shaft i defined as

T,

4~

hA
k, k, @k
(— m|
1,
T; 4\ I-é,-

k(6 — 6,_,) ki@ —0) @

(b)

“~
{
lZ

QN

ANNNNN

F1G. 3.4. Torsional oscillations.
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in which G, J;, and I; are, respectively, the modulus of rigidity, the second
moment of area, and the length of the shaft i. The preceding n differential
equations can be written in the following matrix form

MO+KO=T
where
0=[6, 0, - 6]
T=[T, T, - E]T
I, 0 0 --- 0
m=|? B0 0
0 0 O I,
and
k1+k2 —‘kz 0 ot 0
—kz k2+k3 —k3 ot 0
K= 0 —k3 k3+k4 0
0 0 0 okt kyyy

The differential equations of motion for the torsional system shown in Fig. 4(a)
can also be obtained by using Lagrange’s equations. For this system, the
kinetic energy, strain energy, and virtual work are defined as

T=300} + 301,03+ + 31,62 + - + 41,0
U=13k0] +3k,(0,—0,) +  + 5kiOry — 0 + - + 3 ki 67
oW =T,00, + T,60, + -~ + T;60, + --- + T,60,
These scalar energy and work expressions can be used with Lagrange’s equa-

tion in order to obtain the n second-order differential equations of motion of
the n-degree of freedom torsional system shown in Fig. 4(a).

Example 3.1

The torsional system shown in Fig. 5 consists of three disks which have mass
moment of inertia, I, = 2.0 x 103kg-m?, I, = 3.0 x 10°kg-m?, and I; = 4.0 x 10°
kg-m?2. The stiffness coefficients of the shafts connecting these disks are k; =
12 x 10°N-m, k, = 24 x 10° N-m,and k5 = 36 x 10° N-m. The matrix equation

FIG. 3.5. Three degree of freedom torsional system.
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of motion of the free vibration of this system is given by

M+ KO=0
where, in this example, M, K, and 0 are given by

[1, 0 0O 10 00

M=|0 I, 0|=2x10* 0 15 O fkg'm?
0 0 I 0o 0 2
[k, —k, 0 1 -1 0

K=| -k, ki+k, —k, |=12x10%} —1 3 =2 |N'm
| 0 —ky,  ky+ky 0 -2 5

6= [01 02 03]T

in which 0,, 0,, and 0, are the torsional oscillations of the disks.

Formulation of the Stiffness and Flexibility Matrices In this
section, the stiffness matrix was obtained as the result of application of
Newton’s second law or Lagrange’s equation. There are other techniques
which can also be used to formulate the stiffness matrix. One of these methods
utilizes the definition of the stiffness coefficients. In order to demonstrate the
use of this method, let us consider the case of static analysis, in which the
equations derived in this chapter reduce to

Kq=0Q

where K is the stiffness matrix, q is the vector of generalized coordinates, and
Q is the vector of generalized forces.
The preceding equation can also be written as

n
Z kija; = Q;
=1
This equation can be written explicitly as
kirgy + kiaga + - + kugi + - + kinq, = Q;

where k;;,i,j = 1, 2,..., n, are the elements of the stiffness matrix. Note that
the stiffness coefficient k;; is the force resulting from a unit displacement of the
coordinate i, while holding all other coordinates equal to zero. The stiffness
coefficient k;; (i # j), on the other hand, is the force associated with the
coordinate i as the result of a unit displacement of the coordinate j while
holding all other coordinates equal to zero. Since the stiffness matrix is
symmetric, it is also clear that k;; is the force associated with the coordinate
Jj as the result of a unit displacement of the coordinate i. It is left to the reader
to try to use this approach to develop the stiffness matrices of the systems
presented in this section.

The flexibility matrix is defined to be the inverse of the stiffness matrix, we,
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F1G. 3.6. Evaluation of the stiffness and flexibility coefficients.

therefore, have the following equation for the static equilibrium:
¢=K"Q

where K™! is the flexibility matrix. The preceding equation yields

q; = jiﬁij =f1Q1 +f2Q2 + + £ Qi+ + £ Qs

where f;; are the flexibility coefficients. Note that the flexibility coefficient
fii1s equal to the displacement of the coordinate i as the result of the applica-
tion of a unit load Q; while Q; (j # i) are all zeros. The flexibility coefficient
/f;; is the displacement of the coordinate j as the result of the application of a
unit load Q; = 1 associated with the coordinate i while Q; (j # i) are all equal
to zero. The flexibility matrix is symmetric and consequently f;; is also equal
to the displacement of the coordinate i as the result of the application of a unit
load Q; while all other forces are equal to zero. The flexibility matrix can be
found using the unit load approach or by the direct inversion of the stiffness
matrix.

We demonstrate the use of the methods discussed in this section for formu-
lating the stiffness and the flexibility matrices using the system shown in
Fig. 6. If the mass m, is given a unit displacement while holding the mass m,
fixed, the force acting on the mass m, is given by

kiy=ky +k,

while the force acting on the mass m, as the result of a unit displacement of
the mass m, is
ki, = —k,

Similarly, if the mass m, is given a unit displacement while holding the mass
m, fixed, the force acting on the mass m, as the result of this displacement is

k21 = —kz

and the force acting on m, is
kys =k,

Therefore, the stiffness matrix K is given by

kit ks —k,
"‘[ kK

In order to determine the elements of the flexibility matrix, a unit load
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Q, = lisfirst applied statically at the mass m,, while the external force acting
on the mass m, is assumed to be equal to zero. In this case, the displacements
of the two masses are equal and are given by

1
I =f21 = k_l

In order to determine f,, and f;,, a unit load @, = 1 is applied statically to
the mass m, and Q, is assumed to be zero. Using the concept of equivalent
springs (Shabana, 1996), it is clear that

ky + k, 1
f22__kl"(—2_" le_kA

1

Therefore, the flexibility matrix K™! is given by

K_,z[l/kl 1/k, ]
1k, (ks + klkyk,

Note that KK™! = K™!K =1, where I is the 2 x 2 identity matrix.

3.2 UNDAMPED FREE VIBRATION

In the case of undamped free vibration of multi-degree of freedom systems,
Eq. 1 reduces to
Mi+Kq=0 (3.26)

In hike manner to the case of single degree of freedom systems, we assume a
solution in the form

q = A sin(wt + ¢) (3.27)
where A is the vector of amplitudes, o is the frequency, and ¢ is the phase
angle. Differentiation of Eq. 27 twice with respect to time leads to

i = —w?Asin(wt + ¢) (3.28)
Substituting Eqs. 27 and 28 into Eq. 26 leads to
—w*MA sin(wt + @) + KA sin(wt + ¢) = 0

which leads to
KA — 0*MA =0 (3.29)

Natural Frequencies Equation 29 which is sometimes called the stan-
dard eigenvalue problem can be considered as a system of homogeneous
equations in the vector of unknown amplitudes A. This equation can be
written in the following form:

(K- w*™M]A =0 (3.30)
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This equation has a nontrivial solution if and only if the coefficient matrix is
singular, that is,
K — w*M|=0 (3.31)

This equation is called the characteristic equation and can be written in a more
explicit form as

2 2 2 2

ki, —o’my ky, —@’my; ki;—o’mg, ki, — w*m,,
2 2 2 2

kyy —w’myy kyy — @’my,  kyy — 0’my, kyp — @°my,
2 2 2 2 _

kyy —w*myy ki — 0’myy kyy — 0’my; k3 — @’my,| =0 (3.32)
2 2 2 2

knl — w'm,, an —w'm,, kn3 — WMy, knn — w'my,

The above equation leads to a polynomial of order n in w?, and as such, the
term of highest order in this polynomial is (w?)". The roots of this polynomial
denoted as w?, w?,..., w? are called the characteristic values or the eigenvalues.
If the mass matrix M is positive definite and the stiffness matrix K is either
positive definite or positive semidefinite, the characteristic values w?, w?, ...,
w? are real nonnegative numbers. The square roots of these numbers, w,, w,,
..., w,, are called the natural frequencies of the undamped multi-degree of
freedom system. Thus, a system with n degrees of freedom has n natural
frequencies.

Mode Shapes Associated with each characteristic value w;, there is an
n-dimensional vector called the characteristic vector or the eigenvector A;
which can be obtained by using Eq. 30 as follows:

[K - 0?M]A, =0 (3.33)

This is a system of homogeneous algebraic equations with a singular coeffi-
cient matrix since w? is one of the roots of the polynomial resulting from
Eq. 32. Therefore, Eq. 33 has a nontrivial solution which defines the eigen-
vector A, to within an arbitrary constant. The eigenvector (amplitude) A; is
sometimes referred to as the ith mode shape, normal mode, or principal mode
of vibration.

As a generalization to the procedure used for the case of the two degree of
freedom systems (Shabana, 1996), we may write the general solution in the
case of undamped free vibration of the multi-degree of freedom system as

q=0o,A; sin(wt + @) + a0, A, sin(w,t + ¢,) + - + a,A, sin(w,t + ¢,)
= Y oA;sin(w;t + ¢;) (3.34)
i=1

where o; and ¢, i =1, 2, ..., n, are 2n arbitrary constants which can be
determined from the initial conditions.
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Initial Conditions By differentiating Eq. 34 with respect to time, one

obtains

q= Z o;w;A; cos(w;t + @)
=1

(3.35)

Let q, and §, be, respectively, the vectors of initial displacements and veloci-
ties. Substituting these initial conditons into Eqs. 34 and 35, one obtains

q = Z ;A sin ¢;
i=1

n
Go = Z ,w;A; COS ¢;
i=1
We may define the following two constants:
a; = o; sin ¢, i=1,2,...,n
b,~=ot‘-COS¢,-, i=l,2,...,n

In terms of these constants, Eqs. 36 and 37 can be written as

(3.36)

(3.37)

(3.38)
(3.39)

(3.40)

(3.41)

(3.42)
(3.43)

(3.44)

(3.45)

Qo = .Zl a;A;
qO = Z blwlAl
i=1
which can be written in a matrix form as
®a = q,
d)(!)b = (.IO
wherea = [a, a, -~ a,]",b=[b, b, -~ b,]7, and o and ® are the matrices
rwl 0 O 0
0 w, 0 0
|0 0 0 w,
D=[A, A, A,]
—An Ay Any
I T
Aln A2n Ann

The matrix @, whose columns are the eigenvectors, is called the modal matrix.
Equations 42 and 43 represent a system of 2n linear algebraic equations
that can be solved for the vectors of unknowns a and b. If the number of these
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equations is large, numerical techniques can be used on digital computers
to solve this system of equations. Once the vectors of the 2n unknowns
a={[a, a, -~ a,]"and b= [b, b, --- b,]" are determined the constants o;
and ¢; of Eqgs. 38 and 39 can be calculated from the following relationships:

w=a?+b, i=12..n (3.46)

¢,-=tan"%, i=1,2...,n (3.47)

These constants can be substituted into Eqs. 34 and 35 in order to determine
the displacements and velocities as functions of time.

Example 3.2

In the torsional system of Example 1, the symmetric mass and stiffness matrices
were given by

[1, 0 0 10 0
M=|0 I, 0[=2x10|0 15 0 |kg-m?
[0 0 1 00 2
[k, —k, 0 1 -1 0
K=| -k, k,+k, —ky |=12x10°] -1 3 —2[N'm
| o —k,  ky+ ky 0 -2 5

and the governing equation of motion of the free vibration is
M6 + Ko =0
We assume a solution in the form
0 = A sin(wt + ¢)
By substituting this assumed solution into the differential equation, one obtains
[K—-wM]JA=0

Substituting for the mass and stiffness matrices, we get

f 1 —1 0] 1 0 0
6 x 105 —1 3 —2|-w?x10%]0 15 0||A=0
| 0 -2 5] 00 2

which can be rewritten as

1 =1 0] 10 0
-1 3 =2|-g]l0 15 0||A=0
0 -2 5] 00 2

This system has a nontrivial solution if the determinant of the coefficient matrix
is equal to zero. This leads to the following characteristic equation:

B —-55*+756—-2=0
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B, = 0.3516,
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B, = 1.606,
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B, = 3.542

Since w? = 6008, the natural frequencies associated with the roots §,, B, and f,

are given, respectively, by
w, = 14.52 rad/s,

w, = 31.05 rad/s,

and w,; =46.1rad/s

For a given root B, i = 1, 2, 3, the mode shapes can be determined using the

equation
1 -8 -1 0 Ay 0
—1 3 — I.SB“ —2 Al'2 = 0
0 -2 528 |1 4i3 0

which, by partitioning the coefficient matrix, leads to

—1 (3 — 1.58)
I

A | 1 528
= a@d  11cR 111 Ai
A | 3BF—1358+ 11 2

or

-2

5 - Zﬁ][jj B [g]

Using the values obtained previously for f;, i = 1, 2, 3, we have

A, [0.649
[ 4,5 0302
[42,7] _ [ —0.607 4
| A, | -0679 7%
‘An“: —2.54 4
[ 43, | 2438 |7

= :IAll for w, = 14.52rad/s

for w, = 31.05 rad/s

for w, =46.1rad/s

Since the mode shapes are determined to within an arbitrary constant, we may
assume A;, = 1,fori =1, 2, 3. This leads to the following mode shapes:

(A, 1
A=A, |=10649
| 4,5 ] 0302
An] [ U]
A, =] A,, | = —-0.607
| A23 | | —0679 |
Ay, [ 1]
A; =] A, —-2.54
[ A3 | 2438 |
The modal matrix @ is then defined as
1 1 1
®=10649 —-0607 —2.54
0.302 —-0.679 2.438

Figure 7 shows the modes of vibration of the system.
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3.3 ORTHOGONALITY OF THE MODE SHAPES

An important property of the mode shapes is the orthogonality. This property
guarantees the existence of a unique solution to the system of algebraic
equations given by Egs. 42 and 43. In this section, we discuss this important
property which can be used to obtain a set of n decoupled differential equa-
tions of motion for the multi-degree of freedom systems. These decoupled
equations are expressed in terms of a new set of coordinates called modal
coordinates defined using the modal matrix which is sometimes referred to as
the modal transformation.

For the ith and jth natural frequencies w; and w; and the ith and jth mode
shapes A; and A;, Eq. 33 can be written as

KA, = 0}MA, (3.48)
KA, = 0}MA; (3.49)

Premultiplying Eq. 48 by the transpose of the vector A; leads to
ATKA, = 07 ATMA, (3.50)

Taking the transpose of Eq. 49 and postmultiplying the resulting equation by
the vector A;, we obtain
ATKTA; = 0} ATMTA,

Since the mass and stiffness matrices are symmetric, the preceding equation
leads to
ATKA, = 0} ATMA, (3.51)
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Subtracting Eq. 51 from Eq. 50 yields
(w} — 0})A]MA, =0 (3.52)

If »? and w? are distinct eigenvalues, that is, o} # o/, and M is a positive-
definite matrix, we conclude from Eq. 52 that

ATMA, =0 fori#j

(3.53)
#0 fori=j

That is, the eigenvectors associated with distinct eigenvalues are orthogonal
with respect to the mass matrix. The positive definiteness of the mass matrix
guarantees that ATMA, is not equal to zero for the nonzero vector A;. There-
fore, we may write Eq. 52 as
ATMA, =0  fori#j
(3.54)
=m; fori=j
where m; is a real positive scalar.
The mode shapes are also orthogonal with respect to the stiffness matrix.
This can be proved by writing Eqs. 48 and 49 in the following alternate form:

1
w;
1
MA, = KA, (3.56)

Following a procedure similar to the one used to prove the orthogonality of
the mode shapes with respect to the mass matrix, one can easily verify that

ATKA; =0 fori#j
o (3.57)
= k; fori=

where k; is a nonnegative scalar.

Linear Independence of the Mode Shapes The orthogonality with
respect to the mass or stiffness matrix can be used to show that the mode
shapes of a multi-degree of freedom system are linearly independent, and as
a consequence, any of these mode shapes cannot be written as a linear
combination of the others. The linear independence is an important property
which assures us that the modal matrix of Eq. 45 has a full rank and accord-
ingly a solution of Egs. 42 and 43 does exist.

The set of vectors A, A,, ..., A, are said to be linearly independent, if the
following relationship,

BiAi + B A+ +BA+ -+ A, =0 (3.58)

where f,,i=1,2,..., n, are scalars, holds only when the scalars 8,, §,, ..., ,
are all identically equal to zero. In order to prove that this is indeed the case,
we premultiply Eq. 58 by ATM and use the orthogonality conditions of
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Eq. 54 to obtain BATMA,; = m; =0

Since m; is not equal to zero, we conclude that

Bi=0

foranyi=1,2,...,n Thatis, the mode shapes of the multi-degree of freedom
system are indeed linearly independent. Accordingly, the modal matrix & of
Eq. 45 has a full rank and is thus nonsingular.

In proving the orthogonality conditions, it was assumed that the eigen-
values w? and w} are distinct. In some engineering applications, however, the
case of repeated roots, in which two or more eigenvalues are equal, may be en-
countered. For a general eigenvalue problem, the eigenvectors associated with
repeated roots may or may not be linearly independent. Let w? be an eigen-
value with multiplicity s, that is, w?, ®?,, ..., ®?%,_, are equal eigenvalues.
If the rank of the matrix [K — w2M] is equal to n — s where n is the number
of the system coordinates, it can be proved that the system of equations

[K — 0?M]A, = 0

has s nontrivial linearly independent eigenvectors A,, A, ., ..., A,,,_;. If the
rank of the matrix [K — w?M] is greater than n — s, the vectors A,, A, , ...,
A, ., associated with the repeated eigenvalues are not totally independent,
and in this case, the number of linearly independent eigenvectors is less than
the number of the system coordinates. However, if the mass matrix M and
the stiffness matrix K are real symmetric, it can be shown (Wylie and Barrett,
1982) that the eigenvectors associated with repeated eigenvalues are linearly
independent.

Modal Transformation The orthogonality of the mode shapes can be
used to obtain a set of n uncoupled second-order differential equations in
terms of a new set of coordinates called modal coordinates. Each of the
resulting equations is similar to the equation of the single degree of freedom
system.

For convenience, we reproduce the following matrix equation of motion of
the undamped free vibration of the multi-degree of freedom system:

Mi+Kq=0 (3.59)
We now make the following coordinate transformation:
q=o0P
¢11 ¢12 ¢13 ¢1n Pl
S R | (3.600)

¢nl ¢n2 ¢n3 ¢nn Pn

or equivalently, n

q;=Y, ¢:P, (3.60b)
i=1
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where ® is the modal transformation defined by Eq. 45, and P is the vector
of modal coordinates. Differentiating Eq. 60 twice with respect to time and
substituting into Eq. 59 yields

M®P + KOP =0 (3.61)
Premultiplying this equation by ®7 yields
O"MOP + ®'KOP =0 (3.62)

Using the orthogonality of the mode shapes with respect to the mass and
stiffness matrices (Egs. 54 and 57), the above equation yields

M, P +K,P=0 (3.63)
where ~
ATMA, 0 0 0
0 ATMA, 0 0
M, = 0™ = 0 0 ATMA, - 0
| 0 0 0 -~ ATMA,
[(m, 0 0 0
0 my O 0
=0 0 m =~ O (3.64)
(0 0 0 m,
and ~
ATKA, 0 0 0
0 ATKA, O 0
K,=0"K® =| 0 0 AJKA, - O
o0 0 0 ATKA,
[k, 0 o0 0
0 k, 0 0
=0 0 Kk, - 0 (3.65)
(0 0 0 - &,

Note that M, and K, are diagonal matrices. The matrix M, is called the
modal mass matrix and the matrix K, is called the modal stiffness matrix. The
scalars m; and k; defined by Eqs. 54 and 57 are called, respectively, the modal
mass and stiffness coefficients.

Owing to the fact that the modal mass and stiffness matrices M, and K, are
diagonal, the modal coordinates in Eq. 63 are not coupled. That is, Eq. 63
contains n uncoupled second-order ordinary differential equations which can
be written as

mP +kP,=0, i=12..n (3.66)
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This equation is similar to the equation of motion of the undamped single
degree of freedom system. Furthermore, it is clear from Eq. 48 that the natural
frequency w; can be obtained using the equation

ATKA,
2 Si 3.67
@i = ATMA, (3.67)
or equivalently L
w? = (3.68)

That is, the square of the natural frequency of a mode is equal to the modal
stiffness divided by the modal mass; a relationship which is similar to the
definition used in the case of single degree of freedom systems.

The solutions of the differential equations of Eq. 66 take the form

Po=Csin(g + ), i=12..,n (3.69)

in which C; is the amplitude and ; is the phase angle. The constants C; and
Y; can be determined from the initial conditions on the modal coordinates.
These initial conditions can be obtained using the transformation of Eq. 60
as

P,=®7q, (3.70)

where P, is the vector of the initial values of the modal coordinates, g is the
vector of the given initial displacements, and ® ! is the inverse of the modal
matrix. Similarly,

P, =014, (3.71)

Thus, the initial modal coordinates and velocities can be determined once
the initial displacements and velocities are given. The constants C; and y; can
be expressed in terms of the initial modal coordinates and velocities as

P'o 2
G = (ZT) + (Po)? (3.72)
 =tan"! — 2 3.73
Y =tan 5 (3.73)

i0

The jth physical coordinate can then be determined using Egs. 60 and 69 as
q; = Zx ¢;iP: = Zi $;;C: sin(w;t + )

= 2”: CA, sin(w;t + ;) (3.79)
=

which is the same solution obtained in the preceding section and defined by
Eq. 34, in which the coefficients of the mode shapes are the modal coordinates
defined by Eq. 69.
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Inverse of the Modal Matrix In Egs. 70 and 71, the initial modal
coordinates and velocities are expressed in terms of the inverse of the modal
matrix. The orthogonality of the modal matrix with respect to the mass or
stiffness matrices can be used to define the inverse of this matrix. From Eq.
64 we have

®™M® =M,

where M, is a diagonal matrix whose inverse can be easily obtained. Pre-
multiplying the preceding equation by the inverse of the matrix M, one

obtains
M;‘ OP™MP =1

where 1 is the n x n identity matrix. By postmultiplying the above equation
by @}, we get
M, '®@™MOp ' = ™!
or
o' =M,'®'™™

This equation is useful in defining the initial modal coordinates and velocities
given in Eqgs. 70 and 71.

Normalized Mode Shapes In many situations, it is desirable to normal-
ize the mode shapes with respect to the mass matrix or with respect to the
stiffness matrix. In order to normalize the mode shapes with respect to the
mass matrix, we divide each mode shape by the square root of the correspond-
ing modal mass coefficient, that is,

A; A
A, =L = i=1,2...,n

- i
™ Jm JATMA,
where A, is the mode shape i normalized with respect to the mass matrix. It
is clear that

1
ATLMA, = —ATMA, =1
m;
or
oMo, =1

whereIisann x nidentity matrix, and ®,, is the modal matrix whose columns
are the mode shapes which are normalized with respect to the mass matrix.
We also observe in this case the following
T 1 T ki 2
AinKA;, = —AKA, = — = o;
m; m;
It follows that
OIKD, = o,

where o,, is a diagonal matrix whose diagonal elements are the square of the
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system natural frequencies. This matrix is defined as
w!@ 0 0 - 0
0 w3 O 0
o,=[0 0 wi -~ 0
0 0 0 -

The mode shapes can also be normalized with respect to the stiffness matrix.
To this end, we divide each mode shape by the square root of the correspond-
ing modal stiffness coefficient, that is,

A; A;
: : i=1,2,...,n

Ag=—t=—"1L
ko JATKA,

where A is the ith mode shape normalized with respect to the stiffness matrix.

Clearly, in this case we have

1 m
AIMA, = —ATMA, = ‘= —
is is kl' ] ] kl' wz
and as a consequence, “
OTKD, =1
OIMP, = o,

where @, is the modal matrix whose columns are the mode shapes normalized
with respect to the stiffness matrix, and «, is the matrix

Yo 0 0 - 0
0 1lw: 0 - 0
o= 0 0 1wl 0
0 0 0 - lu?

The matrix ®,, is said to be orthonormal with respect to the mass matrix,
while the matrix ®, is said to be orthonormal with respect to the stiffness

matrix.
Example 3.3
In Example 2, the mass and stiffness matrices were given by
1 0 O
M=2x10*0 15 0 }kg-m?
00 2
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1 -1 0
K=12x10%| -1 3 -2 |N'm
0 -2 5

The natural frequencies were found to be @, = 14.52 rad/s, w, = 31.05 rad/s, and
; = 46.1 rad/s and the modal matrix
1.000 1.000 1.000
®=|0649 —-0607 -—2.541
0302 -0.679 2438

This modal matrix is orthogonal with respect to the mass and stiffness matrices.
One can show the following:

1.814 0 0 m, 0 0
M, = ®™M® =2 x 10°| 0 2475 0 ={0 m O
0 0 22.573 0 0 m,
3828 0 0
K,=®"K® =2 x 10%/ 0 238 0
[ 0 0 4977
ky, 0 0] [e?m O 0
=0 k, O0|={ 0 @lm O
0 0 k] | O 0 owim,

where m; and k; are, respectively, the modal mass and stiffness coefficients.

The modal matrix can be normalized with respect to the mass matrix M or with
respect to the stiffness matrix K. For example, in order to make the modal matrix
orthonormal with respect to the stiffness matrix, for each mode shape A; we use the
following equation:

A‘,s=_é"_
JATKA,
It follows that ~
A | 1.000 0.1143
A, = L= 0.649 | = 1072 0.0742
‘" /ATKA. 87497 x 10?
AiKA, * 7 0302 0.0345
[ 1.000] [ 0.0458]]
A, = : 0.607 | = 102 —0.0278
2T TKA, 21845 x107| LT -
VAzKA; * ] ~0679 | —0.0311 ]
A | [ 1.000] [ 0.0102]
A, = 1= —2.541 | = 1072| —0.0259
: T 97.949 x 102
VA3KA, L 2438 | 0.0249 |

The new modal matrix which is orthonormal with respect to the stiffness matrix is
then given by
0.1143 0.0458 0.0102

@, =107%) 00742 —0.0278 —0.0259
0.0345 —0.0311 0.0249
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One can show that
OIKD, =1

where L is the 3 x 3 identity matrix, that is, the modal stiffness coefficients are all
equal to one. One can also show that

4743 0 0 l/w? 0 0
MO, = 1073| 0 10372 0 =l 0 1w? o
0 0 0.4705 0 0 [lw?

Similarly, if the modal matrix is made orthonormal with respect to the mass matrix,
one has

O'MO, =1
and
0.2108 O 0 w@ 0 0
OTKD, =10°| 0 0964 0 =l 0 w o
0 0 2.1254 0 0 ol

That is, the modal mass coefficient m; = 1 for i = 1, 2, 3 and the modal stiffness
coefficient k; = w?, i = 1,2, 3.

.Example 3.4

In this example, we consider the free vibration of the system in the preceding
example as the result of the initial conditions

0.1 10
0, =|005|rad and @, =| 15rad/s
0.01 20

The equations of motion of this system in terms of the modal coordinates are
given by Eq. 66. The solution of these equations are given by Eq. 69 and the
arbitrary constants are defined by Egs. 72 and 73. The initial modal coordinates
and velocities can be obtained using Eqs. 70 and 71. It is required, however, in these
equations to evaluate the inverse of the modal matrix. We have previously shown
that

O '=M,'0™

By using this equation and the results of the preceding example, the inverse of the
modal matrix ®~! may be written as

[0.2755 © 0 (1000 0649 0302][20 0 o0
o '=|0 0.202 0 1000 —0607 —0679([0 30 0
K 0 002215 ][ 1.000 —2541 2438][0 0 40

[0.551 0537  0.333]
=] 0404 —0.368 —0.549
[ 0044 —0.169  0.216 |
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The initial modal coordinates are given by

0551 0537 033301 0.085
P,=®'0,=| 0404 —0368 —0549| 005|=| 0017 |rad
0044 —0.169  0.216]] 0.01 ~0.002

and the initial modal velocities are

0.551 0537  0.333][ 10 20.225
P,=®'0,= 0404 —0368 —0549| 15|=| —12.460 |rad/s
0044 —0.169  0.216]] 20 2.228

Using the initial modal coordinates and velocities, the modal coordinates can be
defined by using Eq. 69, or its equivalent form given by

Py . .
P, = Pgcoswit + sinwt, i=1273
w

i

which yields
P, 0.085 cos 14.52t + 1.393 sin 14.52t

P=| P,|={ 0017 cos 31.05t — 0.401 sin 31.05¢
P, —0.002 cos 46.1t + 0.048 sin 46.1¢
The physical coordinates @ can then be obtained using the relationship

6 =P

Special Case As was pointed out earlier, in order to determine the initial
conditions of the modal coordinates P, and P,, it is not necessary to obtain
the inverse of the modal matrix shown in Egs. 70 and 71. If the number of
degrees of freedom is large, an LU factorization of the modal matrix can be
used to solve for the initial modal coordinates and velocities. The ortho-
gonality of the mode shapes with respect to the mass or stiffness matrices can
also be used as an alternative to find the inverse of the modal matrix. In this
later case, as shown previously, the inverse of the modal matrix can be
expressed in terms of the inverse of the diagonal modal mass matrix as

o' =M,'®'™™

where M, is the diagonal matrix defined in Eq. 64. Therefore, the initial
conditions associated with the modal coordinates can be obtained using Eqs.
70 and 71. These two equations yield

MpPO = QTMqO

M,P, = ®"™Mq,
Using these equations, one can show that if the vectors of initial coordinates
g, and initial velocities q, are proportional to a given mode shape, then the

multi-degree of freedom system will oscillate in this mode of vibration, a case
which is equivalent to the vibration of a single degree of freedom system. In
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order to demonstrate this, let us consider the special case in which q, and §,
are proportional to the mode shape i. One can then write ¢, and §, as

Qo = d, A,

9o = d,A;

where d; and d, are proportionality constants. Therefore, the initial condi-
tions associated with the modal coordinates can be expressed as

MpPO = dl(bTMAi
M, P, = d,®"MA,

Because of the orthogonality of the mode shapes with respect to the mass
matrix, one can easily verify that the preceding equations yield

dm. .
mJ'Pjo‘—'{l] /=

0, j#i
and
L] d2m~ ] = l
miFio = {0 U e
which yields the following:
d j=i
Po=<4 "
0 {0, j#i
) dz, j =i
P =
7 {0, j#i

which implies that among the equations
mli);+k_,1‘?,=0, j=1,2,...,n

only one equation which is associated with mode i has a nontrivial solu-
tion and the vibration of the multi-degree of freedom system is indeed equiva-
lent to the vibration of a single degree of freedom system. Therefore, every
mode shape can be excited independently. Similarly, one can show that if the
vector of initial coordinates or velocities is proportional to a linear combina-
tion of m mode shapes where m < n, only m mode shapes are excited and only
m equations associated with m modal coordinates have nontrivial solutions.
In this special case, the motion of the n-degree of freedom system is equivalent
to the motion of an m-degree of freedom system.

3.4 RIGID-BODY MODES

There are situations in which one or more of the eigenvalues may be equal to
zero. This is the case of a semidefinite system, in which the eigenvector asso-
ciated with the zero eigenvalue corresponds to a rigid-body mode of vibration.
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In a rigid body mode, the system can move as a rigid body without deforma-
tion in the elastic elements. For a semidefinite system, the stiffness matrix is
positive semidefinite and, consequently, its determinant is equal to zero. By
using Eq. 68, one may rewrite Eq. 66 for mode k as

ﬁk + w,ka = 0
If w, = 0, which is the case of a rigid-body mode, the preceding equation leads
to .
Pk = 0
which can be integrated to obtain the modal coordinate as
Pk = PkOt + PkO

where P, and P,, are, respectively, the initial modal coordinates and velocities
associated with the rigid-body mode.
Observe that for the rigid body mode k, Eq. 33 reduces to

KAk=0

Since K is a singular matrix, the preceding system of equations has a nontrivial
solution, and there exists a nonzero vector A; such that
ATKA, =0

As a consequence, there is no change in the potential energy of the system as
the result of the rigid-body motion. Observe also that the rank of the stiffness
matrix must be equal to the number of degrees of freedom minus the number
of the rigid-body modes of the system. Consequently, the equation KA, = 0
has as many independent nontrivial solutions as the number of the rigid-body
modes of the system. In general, the degree of singularity or the rank deficiency
of the matrix K defines the number of dependent equations in the system
KA, = 0. The number of the remaining independent equations is less than the
number of the elements of the vector A,, and as such, these independent
equations can be solved for only a number of unknown elements equal to the
rank of the matrix. The other elements can be treated as independent variables
that can be varied arbitrarily in order to define a number of independent
solutions equal to (n — r), where n and r are, respectively, the dimension and
rank of the stiffness matrix.

It is important to emphasize at this point that while AJKA, = 0 for the
rigid-body mode k, A{ MA, is not equal to zero. However, the equation

©w2ATMA, = ATKA,

is satisfied since w, = 0. Nonrigid-body modes are sometimes referred to as
deformation modes. The complete solution of the equations of free vibration
can thus be expressed as a linear combination of the rigid-body and deforma-
tion modes.

For the purpose of demonstration, consider the four degree of freedom
system shown in Fig. 8. The equation of motion of this system can be de-
veloped using the principle of virtual work in dynamics discussed in the preced-
ing chapter. For this system, the virtual work of the inertia and applied forces
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YA

Fi1G. 3.8. Semidefinite system.

can be written in the case of small oscillations as
OW, =m X, 0x; + my%, 0x; + my%; 0x3 + myX, 0x,
OW, = —kyxy 6x; — ky(xy — x1) 6(x3 — x,) — myg 8y; — mug oy,
where x4, x4, y3, and y, in the case of small oscillations are given by
x3=x, +1Isinf, = x, + 16,

X4 =X, +1Isinf, = x, + 16,

y3 = —lcos 8,
Yo = —lcos 8,
The coordinates X5 and X, in the case of small angular oscillations are
%y =%, + 10,
X, =%, + 16,
Therefore, the virtual work of the inertia forces is given by
OW, = m, %, 8x, + my%, x5 + my(%, + 10,) 6(x, + 16,)
+ my(%, + 10,) 8(x, + 16,)
=[(my + m3)%, + myl0,] 0x, + [(m; + my)%, + mylh,] 6x,
+ myl(%, + 10,) 66, + m, (%, + 10,) 60,

which can be written in a matrix form as

(my + mj) 0 m,l 0 %

O (mZ + m4) 0 M4I .22

oW, =[6x, 6x, 66, 06,] m;l 0 myl? 0 0,
0 m4l 0 m4lz éz

=4q'Q,
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where q = [x; x, 6, 6,17, and Q; is the vector of generalized inertia forces
given by

(my + mjy) 0 ml 0 X,

0 my+my) O myl || %,

Q=1 . 0 my? 0 || 6
0 m,l 0 mi*||8

The virtual work of the generalized applied forces is

SW, = —kyx; 6x; — ky(x; — X;) 8(x; — x;) — myglf, 60, — m,glf, 66,
= —[ky + ky)x; — kaxp] 0x; — (kyx; — kyxy) 6,
— m5gl8, 66, — m,gl0, 60,

which can be written in a matrix form as

(ki +k;) —k, O 0 X,
—k, k, 0 0 X

0 0 mygl 0 8,

0 0 0 mglll b,

oW, = —[dx, éx, 06, 40,]

=6q'Q,

where Q. is the vector of generalized applied forces defined as

(kl + k2) '—kz 0 0 Xl

o_| R k0 0 ix
¢ 0 0 mygl O 0,
0 0 0 mglllo,

The principle of virtual work in dynamics states that
oW, = oW,

Since the coordinates x, x,, 6, and 8, are independent, one has as the result
of the application of the principle of virtual work in dynamics

Qi = Qe
which leads to the differential equation
Mij + Kq=0

where the mass matrix M and the stiffness matrix K are

(ml + m3) 0 m3l 0
Mol 0 mtm) 0 my
msl 0 myl2 0

0 myl 0 myl?
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(ky +k,) —k, O 0
—k, k, 0 0
0 0 mygl O

0 0 0 mygl

In this system, there are inertia coupling terms between the translational and
rotational coordinates, while there are no elastic coupling terms. Note that
the stiffness matrix is positive definite and it is nonsingular. Therefore, the
system shown in Fig. 8 has no rigid-body modes. Any possible motion leads
to a change in the system potential energy which in this case is a positive-
definite quadratic from.

Let us consider now the case in which the effect of gravity is not considered.
In this case, the stiffness matrix becomes

(kl + kz) “kz 0 0
‘—kz k2 0 0
K=
0 0 00
0 0 00

The rank of this stiffness matrix is two since there are only two linearly
independent rows. Therefore, the stiffness matrix is singular, its determinant
is equal to zero, and the potential energy becomes a positive semidefinite
quadratic form. That is, there exist possible configurations of the system,
different from the zero configuration, such that the system potential energy is
equal to zero. In fact, for this system, as the result of neglecting the effect of
gravity, there are two rigid-body modes. The natural frequency associated
with each of these modes can be determined using the characteristic equation
and is precisely equal to zero. The associated mode shape can be determined
using the equation

[K —o!M]A; =0
Since w, = w, = 0, the above equation for i = 1, 2 reduces to
KA; =0, i=12

Recall that the rank of the 4 x 4 stiffness matrix is two. One is then guaranteed
that the preceding matrix equation has two linearly independent solutions.
These two linearly independent solutions can be written as

0 0
0 0
Al ——(11 1 s Az = 0y 0
0 1

where , and a, are arbitrary nonzero constants. The physical interpretation
of these two solutions is that when the gravity effect is neglected, the rods
connected to the masses m, and m, can have independent rigid-body rotations
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without any change in the system potential energy. That is
ATKA; =0, i=12

Note also that a linear combination of the vectors A; and A, can still be
selected as an eigenvector, for example, one may choose A, and A, as

0 0

0 0

A =ua ek A,= o
2

0 oy

with a,, a,, and «, as constants. These two vectors can also be used as the
rigid-body modes since they are linearly independent and satisfy the equation
KA, = 0,i = 1, 2. Observe that the condition ATKA; = 0 remains valid, while
ATMA; # 0 (i = 1, 2) since the kinetic energy is always positive definite. In
fact, for the two rigid-body modes A, and A,, one can show that

2
Y ATMA; = aZm,1? + aim,l?
i=1
which is proportional to the rotational kinetic energy of the two rods, and o,

and a, are constants. Observe also that the orthogonality conditions

ATKA-,:O,}’ '#], l,]=1,2,3,4

are still in effect.

Example 3.5

We consider the system of Example 1, when k, = 0. This is the case in which the
shaft is free to rotate about its own axis. In this case, the stiffness matrix is given by

k, -k, O 1 -1 0
K=| -k, k +k, —k,|=12x105 =1 3 -2|N'm
0  —k, Kk 0 -2 2

which is singular since the sum of the second and third rows is the negative of the
first row. Consequently, the rows of the stiffness matrix are not linearly independent.
The rank of this matrix is equal to two and, therefore, the system has one rigid body
mode. The mass matrix, however, remains the same and is given by

I, 0 0 1 0 0
M=|0 I, 0{=2x10%|0 15 Olkg-m?
0 0 I, 00 2
The matrix equation of the free vibration of this system is given by
Mb + K0 =0

By assuming a solution in the form of Eq. 27, we obtain the following standard
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eigenvalue problem:
[K-o0*M]A=0

in which the determinant of the coefficient matrix can be written as
1-8 ~1 0
-1 3-158 -2 |=0
0 -2 2-28

where f = »?/600. Therefore, the characteristic equation can be written in terms
of B as
B —B)p—-3)=0

which has the following roots
B, =0, By=1, and B;=3
The corresponding natural frequencies are
w, =0, w, = 24495 rad/s, and w; = 42.426 rad/s

The first natural frequency w, corresponds to a rigid-body mode. In order to obtain
the mode shapes, we use the following equation:

l‘ﬂi -1 0 Au 0
-1 3-158 -2 4, =0, i=1,23
0 -2 20=8)]l 4, |o

which, by partitioning of the coefficient matrix, leads to the following equation:
=1 3 - 156 -2 A 10
[O]A“+[ -2 2(1—/3»][/4.-3]‘[0
3-158 -2 4:]_[1],
-2 20-g)fl4s] o™
That is,

A _ 1 -4 2 1],
As| 20-8)3-158)-4 2 3-158)|lo]""
For the rigid-body mode, f, = 0 and, accordingly,
A2 2 2 1
= = A
[ e[
In this mode of vibration, all the disks have the same amplitude and the system

moves as one rigid body. For the second and third natural frequencies, one has the
following deformation modes

4, —1Jo 2 1 0
= —— A = A
I:A”] 4 [2 1s]lof™? [ -os |7
45,1 -1[-4 27t -20
= Ay = A
[A33] 2[ 2 —tslo]™™ 1o

or
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FI1G. 3.9. Modes of vibration of the semidefinite system.

We may assume that A;, = 1fori = 1,2, 3. The resulting modal matrix is given by

1.0 1.0 1.0
®=110 00 -20
1.0 —-05 1.0

Figure 9 shows the modes of vibration of the system examined in this example.
Observe that
1 -1 01|10
ATKA, =12 x 10°[1.0 10 1.0]| —1 3 =2 10|=0
0 -2 21110

while
1 0 0}]10
ATMA, =2 x 10°[10 10 10]{0 15 O|[10]|=9x 103
00 2 1.0

that is, the modal stiffness coefficient associated with the rigid-body mode is equal
to zero, while the modal mass coefficient is not equal to zero. Therefore, if the system
vibrates freely in its rigid-body mode, the strain energy is equal to zero while the
kinetic energy is not equal to zero. Observe also that ATMA, = 0, and ATKA, = 0,

fork =2, 3.

3.5 CONSERVATION OF ENERGY

Using the modal expansion, it can be shown that in the case of the undamped
free vibration of the multi-degree of freedom systems, the sum of the kinetic
and potential energies is a constant of motion. To this end, we write the kinetic
and potential energies of the multi-degree of freedom system as

T =14"Mg
U=3qKq

By using the modal transformation, the kinetic and potential energies can be

apow pay [
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expressed in terms of the modal variables as
T = }PT®O"MOP
= P™™,P
U = PTO'KOP
= $P'K,P

where M, and K, are, respectively, the diagonal modal mass and stiffness
matrices, and P is the vector of modal coordinates. In terms of the modal mass
and stiffness coefficients m; and k;, the kinetic and potential energies can be
written as

Tzlimipiz
24
In
U=*ZkiPiz
245

In the case of free vibration, the modal coordinates and velocities are harmonic
functions given by
P, = C;sin(w;t + ;)

Pi = G, cos(w;t + ¥;)
Substituting these two equations into the expressions of the kinetic and
potential energies, one obtains

1

T=*
25

m;Crw? cosX(w;t + ;)

IM:

U= % Y k,CEsin}(w;t + ;)
i=1
Adding these two equations and keeping in mind that k; = m,w?, one obtains
1
T+U-= 3 Y. k;CHcos*(w;t + ¥) + sin*(w;t + ;)]
i=1

which can simply be written as

T+ U =—;— Z’l: kl-Ciz
i=1

or, alternatively,

12
i=1

That is, the sum of the kinetic and potential energies of the conservative
multi-degree of freedom system is constant.

Rayleigh Quotient Inthe preceding sections, it was shown that the vibra-
tion of the multi-degree of freedom system can be represented as a linear
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combination of its mode shapes. However, a multi-degree of freedom system
can vibrate at one of its mode shapes only if this mode is the only mode that
is excited. Let us assume that the system is made to vibrate freely at its ith
mode shape. In this case, the sum of the kinetic and potential energies of the
system can be written as

which implies that
k,  ATKA,

m, ATMA,

2
i
m

w

That is, the square of the natural frequency associated with the mode i can be
written in a form of quotient where the numerator is proportional to the
potential energy, while the denominator is proportional to the kinetic energy.
This quotient is called the Rayleigh quotient.

If the vibration of the multi-degree of freedom system is described by an
arbitrary vector q, the Rayleigh quotient can be written as

_9'Kq

q'Mq
If q is parallel to any of the eigenvectors, the Rayleigh quotient is precisely the
eigenvalue associated with this eigenvector. In the general case, however, q

can be expressed as a linear combination of the linearly independent mode
shapes as

R(q)

q= i oA
=1

If we assume that the mode shapes are made orthonormal with respect to the

mass matrix, that is T
A" MA, = 1,

the Rayleigh quotient can be written as

25?2 2 2
i=1 _ djwy + G+ + dwl
m = 2 p) . )
Z a? a1+az+' + a,,
1




136 3. Multi-Degree of Freedom Systems

@iod + a3+ + al) ,
p) 7 3 = W
ay a3 + 0+ o,

for any integer m. It follows that the minimum value of the Rayleigh quotient
is the square of the natural frequency associated with the fundamental mode of
vibration. If, however, the shape of the ith mode can be assumed, the Rayleigh
quotient can be used to provide an estimate of the square of the natural
frequency corresponding to this mode. In practical applications, this is seldom
done for high-frequency modes, since the shape of these modes cannot be
assumed with good accuracy. Therefore, the Rayleigh quotient is often used
to obtain an estimate for the fundamental frequency of the system, since in
many applications the shape of the fundamental mode can be assumed with
sufficient accuracy.

In order to demonstrate the use of the Rayleigh quotient to predict the
fundamental frequency, the system of Example 1 is considered. The mass and
stiffness matrices of this three degree of freedom system were found to be

10 0
M=2x10*]0 15 0|kg m?
00 2
I -1 0
K=12x105| -1 3 —2|N'm
0 -2 5

Let us assume that the deformation of the system in its first mode can be
described by the harmonic function sin(rnx/2!). Using this function and assum-
ing that the distances between the disks are equal, one has an estimate for the
elements of the first mode shape as

nl
A, =sin- =100
{1 = Sin 30
.om203) . o=m
A, = 31n—2—1— = sm§ = 0.8660
/3 .
A= sin%—) = smg =05
Therefore, a rough estimate of the first mode shape is
1.00
A, =] 0.8660
0.50

In this case, one has
1 -1 01[ 1.00

ATKA, =12 x 10°[1 0.8660 0.5]| —1 3 —210.8660
0 -2 51105

=1243 x 10°
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I 0 0]f]1.00
ATMA, =2 x 10°[1 08660 0.5]{0 15 0]|0.8660
0 0 21|05
=5.2499 x 10°
Therefore, an estimate for the fundamental frequency using the Rayleigh
quotient can be obtained as

ATKA, 1243 x 10°
i =2. 10?
©U R ATMA, 52499 x 10° ~ 2677 % 10

which yields w, = 15.387 rad/s. The exact fundamental frequency evaluated
in Example 2 is 14.52 rad/s. That is, with a rough estimate for the first mode
shape, the error in the obtained fundamental frequency using the Rayleigh
quotient is less than 6 percent.

3.6 FORCED VIBRATION OF THE UNDAMPED SYSTEMS

The general matrix equation which governs the forced vibration of the un-
damped multi-degree of freedom systems is given by

Mj + Kq=F (3.75)

where M and K are the symmetric mass and stiffness matrices of the system,
q is the vector of the displacements, and F is the vector of the forcing functions.
Equation 75 is a set of n coupled differential equations which must be solved
simultaneously. When the number of degrees of freedom is very large, deter-
mining the solution of these equations becomes a difficult task. An elegant
approach to overcome this problem is to use the modal superposition tech-
nique discussed in the preceding sections. In this technique, the vector of
displacements is expressed in terms of the modal coordinates using the modal
transformation matrix. The displacement vector, in this case, is written as a
linear combination of the mode shapes. By utilizing the orthogonality of the
mode shapes with respect to the mass and stiffness matrices, n uncoupled
differential equations of motion can be obtained. These equations can be
solved using techniques that are similar to the ones used in the solution of the
equations of motion of single degree of freedom systems.

By using the mode superposition technique, the displacement vector ¢ is
expressed as

g = 0P (3.76)

where P is the vector of modal coordinates, and ® is the modal transformation
matrix whose columns are the mode shapes of the multi-degree of freedom
systems. Differentiation of Eq. 76 twice with respect to time yields

ij=oP (3.77)
Substituting Egs. 76 and 77 into Eq. 75 yields
MoP + KOP = F
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Premultiplying this equation by the transpose of the modal transformation
matrix, one obtains
®"MoP + O'KOP = ®'F (3.78)

which can be rewritten as
M, P+ K,P=0Q (3.79)

where M,,, K, and Q are, respectively, the modal mass and stiffness matrices,
and the vector of modal forcing functions defined as

M, = ®'"M® (3.80)
K, = ®"K® (3.81)
Q=9'F (3.82)

By using the fact that M, and K, are diagonal matrices and by using the
definition of the elements of M, and K, given by Egs. 64 and 65, Eq. 79 can
be written in the following alternate form:

mP+kP=0Q, i=12..n (3.83)

where @, is the ith element in the vector Q.

The differential equations given by Eq. 83 have the same form as the
differential equations that govern the vibration of the undamped single degree
of freedom systems. As discussed in Chapter 1, the solution of the differential
equations given by Eq. 83 can be expressed as

Py .
P(t) = Py, cos w;t + —2 sin w;t
;

1 (3.84)
+ J Q,(1) sin w;(t — 1) dt, i=12..,n

m;w; Jo

i
where P,, and P,, are the initial conditions associated with the ith modal

coordinate. Having determined the modal coordinates from Eq. 84, the vector
of displacements q can be obtained using Eq. 76.

Example 3.6
Find the response of the system of Example 1 to the step load given by

1
F(t)=10*| 2 [N'm
4
Assume that the system is to start from rest and neglect the damping effect.

Solution. In order to be able to use Eq. 79, we first evaluate the vector of modal

forces Q defined by Eq. 82 as
Q=9'F
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Using the modal matrix @ obtained in Example 2, the vector Q is given by

1.0 0.649 0.302 |{ I
Q=0"F=]|10 -0607 —0679||2]x10*
10 —2.54 2438 || 4

3.506
=10*] —2.930
5.670

The equations of motion can then be written in terms of the modal coordinates as
mP +kP=0Q, i=123

wherem;and k;,i = 1,2, 3, are, respectively, the modal mass and stiffness coefficients
defined in Example 3. Since Q; is constant, one can verify that the solutions of the
above equations, in the case of zero initial conditions, are given by

P = %(1 — cos w;t)

i

Using the results of Examples, 2 and 3, we have

P, 0.0463 (1 — cos 14.52t)
P=| P, | =] —0.0062(1 — cos 31.05¢)
P, 0.0006 (1 — cos 46.1¢)

The vector of torsional oscillations 0 is given by

1.0 1.0 1.0 P,
0=dP=|0649 —0607 —254 || P,
0302 -0679 2438 || P,

P, + P, + P,
=| 0.649P, — 0.607P, — 2.54P,
0.302P, — 0.679P, + 2.432P,

3.7 VISCOUSLY DAMPED SYSTEMS

We considered thus far the free and forced vibrations of undamped multi-
degree of freedom systems, and it was demonstrated that, for the undamped
system, the eigenvalues and eigenvectors are real. This is not, however, the
case when damping is included in the mathematical model, since for a viscously
damped multi-degree of freedom system, the eigenvalues and eigenvectors can
be complex numbers. Even though in many applications damping is small, its
effect on the system stability and system response in the resonance region may
be significant.

The general matrix equation that governs the vibration of the viscously
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damped multi-degree of freedom system is given by
Mi+Cq+Kq=F (3.85)

in which C is the damping matrix defined as

€11 €12 Cy3 Cin
C21 €22 (€33 Can

C=|c3 ¢33 ¢33 = cay (3.86)
Cni1 Cn2 cn3 Can

In general, ®"C® is not a diagonal matrix, and as a consequence, the use of
the modal coordinates does not lead to a system of uncoupled independent
differential equations. In the remainder of this section, we will consider an
important special case in which the damping matrix is proportional to the
mass and stiffness matrices. In this special case, a system of uncoupled dif-
ferential equations expressed in terms of the modal coordinates can be ob-
tained. The case of a general damping matrix is discussed in the following
section.

Proportional Damping If the damping matrix can be written as a linear
combination of the mass and stiffness matrices, the matrix C takes the form

C =aM + pK (3.87)
where a and f§ are constants. Substituting Eq. 87 into Eq. 85 yields
M{ + M + fK)q + Kq=F (3.88)

The vector of displacement q can be expressed in terms of the modal co-
ordinates by using the mode shapes of the undamped system as

q=®P (3.89)

where @ is the modal transformation matrix and P is the vector of modal
coordinates. Substituting Eq. 89 into Eq. 88 yields

M®P + (aM + BK)DP + KOP = F (3.90)
Premultiplying this equation by ®7, one obtains
O™MODP + ®T(aM + BK)OP + O'KOP = OTF (3.91)

Using the orthogonality of the mode shapes with respect to the mass and
stiffness matrices yields

MB+CP+K,P=Q (3.92)
in which
M, = O"M® (3.93)

K, = Ko (3.94)
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C, = ®"(eM + K)® = aM, + fK, (3.95)
Q=®'F (3.96)

Because the matrix C is assumed to be a linear combination of the mass matrix
M and the stiffness matrix K, the modal damping matrix C, is diagonal. The
elements on the diagonal of this matrix are denoted as ¢;,i = 1, 2, ..., n. The
modal damping coefficient c; can be expressed in terms of the modal mass and
stiffness coefficients m; and k;, respectively, by using Eq. 95 as

Equation 92 can be then written as n uncoupled differential equations as
mbP +c,P+kP=Q, i=12..n (3.98)

These equations, which are in the same form as the differential equation of
motion which governs the forced vibration of damped single degree of freedom
systems, can be also written in the following form

P+ 28w + ol P = %’ (3.99
where the modal damping factor &; is defined as
g= o (3.100)
2m;w;

As discussed in the case of the single degree of freedom systems, the solution
of Eq. 99 will depend on the modal damping factor &, In the case of an
underdamped system in which &; < 1, the solution of Eq. 99 is given by

Po + &Py

Wy;

P(t) = e~ 5[ P, cos wyt + sin wy;t]

+ J’ Q.(0)h(t — 1) dr, i=12...,n (3.101)
o]

where P, and P, are, respectively, the initial modal coordinate and velocity
associated with mode i and

Wg; = wi\/l - éiz

et (3.102)
sin wy;t

hi(t) =

m;wy;

in which wy; is the damped natural frequency of mode i, and h; is the unit impulse
response associated with the ith mode of vibration.

Experimental Modal Analysis The concept of proportional damping
discussed in this section can also be used in cases in which the damping is
small. Despite the fact that in these cases the resulting modal damping matrix
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F1G. 3.10. Resonance curve.

is not, in general, diagonal, a reasonable approximation can be made by
neglecting the off-diagonal terms. The matrix C, can then be considered as a
diagonal matrix and a set of independent uncoupled differential equations
expressed in terms of the modal coordinates can be obtained. This approxima-
tion is acceptable in many engineering applications, since structural damping
is usually small. Furthermore, there are several experimental teehniques which
can be used to determine the natural frequencies, mode shapes, and modal
damping coefficients. Figure 10 shows a resonance curve that can be obtained
experimentally for a multi-degree of freedom system by exciting the system
using a vibration exciter and measuring the coordinate g; at a selected point.
The resonance curve of a multi-degree of freedom system has a number
of resonance regions equal to the number of the system degrees of freedom,
which is equal to the number of the system natural frequencies. Each reso-
nance region can be considered as a resonance curve of a single degree of
freedom system, and, therefore, for a lightly damped system, the frequencies
at which the peaks occur define approximate values for the system natural
frequencies. The techniques described in the first volume of this book (Shabana,
1995) for the experimental determination of the damping factors of single
degree of freedom systems then can be used to determine the damping factor &;
associated with the ith mode shape. Experimental modal analysis techniques
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also can be used to determine the mode shapes of the multi-degree of freedom
systems. In order to demonstrate this, we rewrite Eq. 92 as

.. . e
MP+Cp+KP=0®F
This equation also can be written in the case of a harmonic excitation as
mP, + ¢;P, + kP, = ATF,sinwgt, i=12,...,n

where F, is the vector of force amplitudes. The preceding equation defines the
steady state solution for the modal coordinate i as

A?Fo/ki
P =

L=+ 2ng)
r= ol Y; =tan™! (—2"'5—'2>

1 —r

sin(e,t — ;)

where

The vector of physical displacements can be obtained using the modal trans-
formation as

q=0P=ZA1P1+A2P2+"'+A"P"
i=1

n AAT )
= > F, sin(w,t — ¥)
=k J(1 = r2)? + (2ré)?
In the resonance region of a mode i, the solution is dominated by this mode,
and as a consequence, one has

AAT
mi\/(wiz - w})z + (2fiwiwf)2
In the resonance region,

q= Fa Sin(wft - l/’l)

AAT _AAT
J0? — 02 + Qw0 280}

It follows that

L —— F,sin(w,t — ;) =

2€ K, ~7- BiF, sin(w,t — ;) (3.103)

26 k;
where
B, = A AT

The symmetric matrix B; has n? elements, but only n of these elements are
unique. There are two methods which can be used to determine the n unique
elements of the matrix B;. In the first method, the excitation is made at n nodes,
one at a time, and the measurement is taken at one node. The obtained n
measurements define, to within an arbitrary constant, the row of the matrix
B; that corresponds to the measured coordinate. In the second method, the
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excitation is made at only one node, and all of the elements of the vector
q are measured. In this case, the n measurements can be used to define, to
within an arbitrary constant, the column of the matrix B, that corresponds to
the point of excitation.

If one row or one column of the matrix B, is determined, one can use this
row or column to determine the entire mode shape vector A;. For example, if
the vector A; = [a, a, ... a,]", the matrix B; takes the following form:

ai aa, aay; - a,a,
a,a, a3 a,a; - a,a,
l' =
e g2
a,a, a,a, a,a, a?

If, for instance, the excitation is made at the kth nodal point, the measurements
of the n elements of the nodal displacement vector q can be used to define the
kth column of the matrix B; given by

[a,a, aya, ... a} ... a,a]"
Knowing the numerical value (a,)%, one can determine a,, and use other
elements of the preceding vector to evaluate all the elements of the mode
shape A,.

We also note that, because of the phase angle y;, the phase between the
force and the displacement must be determined. At resonance, ; = n/2 or
—n/2. This phase must be determined in order to correctly determine the sine
of the elements of the matrix B;. As previously pointed out, the matrix B; can
be determined using Eq. 103 to within any arbitrary constant. Once the
mode shapes are determined, the modal mass coefficients can be calculated.
For example, if the elements of the vector q are measured, all of the other
variables in Eq. 103 are known except the modal stiffness coefficient k;, which
can be calculated using any of the scalar equations of Eq. 103. Using this
stiffness coefficient and the natural frequency of the mode i, the modal mass
coeflicient also can be determined. As we previously demonstrated, the mode
shapes can be scaled such that either the modal mass or the modal stiffness
coefficient is equal to one.

The procedure for the experimental determination of the mode shapes and
the modal parameters is outlined in this section in order to demonstrate the
basic concepts underlying an important practical tool widely used in industry
for the vibration analysis of many mechanical systems. The actual implemen-
tation of this procedure requires a more detailed presentation (Brown et al.,
1979; Ewins, 1984; Shabana, 1986) that includes elaborate statistical and error
analysis. Figure 11 shows an example that demonstrates the wide use of
experimental modal identification techniques in construction machine indus-
try. Figure 12 shows some the mode shapes and frequencies that were deter-
mined experimentally for the hydraulic excavator shown in Fig. 11.
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Fi1G. 3.11. Hydraulic excavator

3.8 GENERAL VISCOUS DAMPING

The assumption made in the preceding section that the damping matrix is
proportional to the mass and stiffness matrices enables us to use the modal
transformation matrix to decouple the equations of motion. The procedure
outlined in the preceding section led to n uncoupled differential equations
expressed in terms of the modal coordinates. Each of these equations is similar
to the differential equation of motion of the viscously damped single degree
of freedom system.

In this section, we discuss the case of a general viscous damping matrix
which cannot be expressed as a linear combination of the mass and stiffness
matrices. Before we start our discussion on the case of general damping matrix,
we present some matrix results that will be used frequently in this chapter.

If B is a nonsingular matrix that has A; as an eigenvalue, then 1/X; is an
eigenvalue of the matrix B™! since

BA; = LA,
implies that
A; = L,B7A,
or
iA =B'A
A i i

This equation shows that 1/A; is an eigenvalue of B! and A, is the corre-
sponding eigenvector. Furthermore, it can be shown that A, is also an eigen-
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vector of the matrix B2. This can be demonstrated by premultiplying the

eigenvalue problem by B to yield

A;

}.,- BAl = )s.,z

B2A,

is an eigenvalue of B2, and A, is an eigenvector for both

2
i

which implies that A;

;1s an eigenvalue

B and B2. Using a similar procedure, it can be shown that if
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of the matrix B, then A* is an eigenvalue of B*, and the matrices B and B* have
the same eigenvector.

If B is a symmetric matrix, the eigenvectors of B are orthogonal. If A, is
normalized such that ATA; = 1, then one has

ATBA, =%, ATB*A, =2

It follows that if @ is the matrix of the eigenvectors of the symmetric matrix
B and the matrix B¥, then

OTBD = A, OTB'® = A*

where A is a diagonal matrix whose diagonal elements are the eigenvalues.

Exponential Matrix Forms Ifais a scalar, the use of Taylor series shows
that

ER
ef=l4ats+g+
If B is a matrix, one also has
(B1)? (Bt)3
2! 3

This is a convergent series that has the properties

=1+4+Bt+-——

eBre Br __ el!(r+1)

el!te—l!! _ I
d By _ Bt
Ei(e } = Be

It is then clear that if B is skew symmetric, then e® is an orthogonal matrix.

It was previously demonstrated in this section that if &, is an eigenvalue and
A, is the corresponding normalized eigenvector of the matrix B, then A¥ and
A; are the eigenvalue and eigenvector of the matrix B*. Therefore, if @ is the
matrix of the eigenvectors, one has

B = oAt !

where A is a diagonal matrix whose diagonal elements are the eigenvalues of
the matrix B. Using the preceding identity, the exponential form of the matrix
Bt can be written as

PATOTC | BAYDP
2 3

At (Ar)?
=®(I+At+(2) +(3‘) +--->d>"‘

e =1+ QAD! +

= QeMP!
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Note that the matrix e® is never singular since its inverse is defined by the
matrix e~ ®. This is also clear from the determinant

A tr(Br)

Ieml = ei.lteﬁ.zt___e nt = o

This determinant cannot be equal to zero.
As an example, we consider the matrix

4 1 2
B=(1 0 0
2 00
which has the eigenvalues
A, =0, A, =35, Ay = —1

The corresponding orthonormal eigenvectors are

0 5 1

1 1 1
Ai=—| 2|, Ay=—=|1|, Ay=—1| -1
1\6 1 2@2 3\/82

The matrix e is

It follows that

'SeSr + et esr — et es: — et W
6 6 3
B _ oAt = e —et e +5e+24 M+ 5 -6
er =" - 6 30 15

e —e' 4 5eT—6 27+ 10e7 +3
3 15 15
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State Space Representation In the remainder of this section, we will
present a technique for solving Eq. 85 in the case of general viscous damping
matrix. To this end, we define the state vector y as

y= [‘_‘] (3.104)
q

Clearly, the state vector has dimension 2n. Differentiation of this vector with

respect to time leads to
.19
=1, (3.105)
N

Premultiplying Eq. 85 which governs the vibration of a viscously damped
multi-degree of freedom system by the inverse of the mass matrix leads to

G§+M'Cqg+M'Kq=M"'F
which can be written as
= -M'Cqd—M'Kq+M'F
This equation with the following identity
i1=14
where Iis an n x n identity matrix leads to

NN NN

which can be written compactly as
y =By + R(t) (3.106)

in which the state vector y is defined by Eq. 105 and the 2n x 2n matrix B
and the 2n-dimensional vector R(t) are given, respectively, by

0 I
B= _
[—M"K —M"C] (3.107)

0
R(t) = [M“‘F] (3.108)

Free Vibration If the viscously damped multi-degree of freedom system
is vibrating freely, the vector of forcing functions F is identically zero, and
accordingly

R(t)=0 (3.109)
Equation 106 then reduces to

y = By (3.110)
To this equation, we assume a solution in the form

y = Ae" (3.111)
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where in this case, the vector A has dimension 2n and pu is a constant.
Differentiating Eq. 111 with respect to time leads to

¥y = pAe* (3.112)
Substituting Eqs. 111 and 112 into Eq. 110 yields
uAet = BAe*
which leads to
[B—uIlJA=0 (3.113)

where I in this equation is a 2n x 2n identity matrix. Equation 113 is an
eigenvalue problem in which the coefficient matrix

H=B-—ul (3.114)

is called the characteristic matrix.
Equation 113 has a nontrivial solution if and only if the determinant of the
coefficient matrix is equal to zero, that is,

Hl=|B—-ull=0 (3.115)

This equation defines a polynomial of order 2nin u. The roots of this poly-
nomial, which may be complex numbers, define the eigenvalues u,, 5, ..., Uz,
Associated with each eigenvalue y;, there exists an eigenvector A; which can
be determined to within an arbitrary constant using Eq. 113 as

BA; = ;A (3.116)
In this case, the modal matrix is defined as
O=[A, A, - A,] (3.117)
It can be verified that
O 'BO=p (3.118)

where @ is the 2n x 2n modal matrix whose columns consist of the 2n
eigenvectors A;, i = 1,2,..., 2n, and p is the diagonal matrix

gy 0 0 - 0
0 pu, 0 - 0

p=[0 0 u - 0 (3.119)
0 0 0 -

Recall that, for any integer r, the following identity holds:
O'BO =p"

The modal transformation of Eq. 117 can be used to obtain 2n uncoupled
first-order differential equations. To this end, we write

y = ®P (3.120)
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and
y=op (3.121)

where P is a 2n-dimensional vector. Substituting Egs. 120 and 121 into
Eq. 110 yields

®P = BOP
or
P =® 'BOP
which upon using Eq. 118 can be written as
P=pP (3.122)

This is a system of 2n uncoupled first-order differential equations which can
be written as )

P. = P, i=12..,2n (3.123)
The solution of these homogeneous first-order differential equations is simple
and can be obtained as follows. Equation 123 can be written as

dP,
4‘ = .P.
dr Mt
or
dPp,
= dt
P. H;

which upon integration yields

In P =yt + C, (3.124)

where C, is the constant of integration.
An alternate form of Eq. 124 is

P = etitgCo
Using the initial conditons, one can show that e“© = P,; and consequently,
P; = P,pe" (3.125)

where P, is the initial condition associated with the coordinate P;. These initial
conditions can be obtained by using Eq. 120 as

P, =®y, (3.126)

where y, is the state vector which contains the initial displacements and
velocities. Having determined the 2n coordinates of Eq. 125, the displacements
and velocities of the multi-degree of freedom system can be obtained using
the transformation of Eq. 120.

Forced Vibration Equation 106 describes the forced vibration of vis-
cously damped multi-degree of freedom systems. This equation with Egs. 120
and 121 can be used to obtain 2n uncoupled differential equations. In order
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to demonstrate this, we substitute Eqs. 120 and 121 into Eq. 106. This yields
®P = BOP + R(1)

or
P=®"'BOP + & 'R(1)

which upon using Eq. 118 can be written as
P=pP+Q (3.127)

where the matrix p is defined by Eq. 119 and Q = [Q, Q, - Q,,]" is the
vector
Q=®"'R (3.128)

Equation 127 is a set of 2n uncoupled first-order differential equations which
can be written as
P, =uP + Q,, i=12..,2n (3.129)

The solution of these equations is given by
t
P, =e*'Py + f e* 90, (1) d, i=1213..,2n (3.130)
0

Define the diagonal matrix T, as

e#ll 0 0 N 0
0 el‘zl 0 e 0
T, )= 0 0 e -~ 0 |[=e™ (3.131a)
0 0 O e el‘Zn‘
and
T,(t, 1) =e*™? (3.131b)
or more generally
T, (¢, t;) = e*@ 7" (3.131¢)
The matrix T,(¢) can also be expressed in a series form as
2 I
Tl(t)=e"‘=l+tu+5u2+§u3+'~- (3.131d)

In terms of the matrix T,, Eq. 130 can be written as

1

P=T,)P, + f T,(t — 1)Q(1) de (3.132)

0

This equation is expressed in terms of the vector of modal coordinates P. In
order to obtain the space coordinates and velocities, we use Eqs. 120, 126, and
128 and multiply Eq. 132 by the modal matrix @ to obtain

y=®P = OT,® 'y, + f OT,(t — )® 'R(1) dr
0
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which can be written compactly as
y =Ty, + j T(t — 1)R(r) dt (3.133)
0

where T is called the state transition matrix and is defined as
T=¢T, 0! (3.134)

The state transition matrix which plays a fundamental role in theory of linear
dynamic systems satisfies the following identities:

T(t,, t;) =T=T(O)
T(t;, t,) = T(t5, 15)T(t,, ty)
T(ty, t2)T(t,, ty) =1
[T(t;, t;)17" =T, ty)
T(e,)T(t,) =T, + )

where 1 is the identity matrix.

Hlustrative Example In order to demonstrate the use of the state transi-
tion matrix in the vibration analysis of mechanical systems, a simple viscously
damped single degree of freedom system is considered. The equation of motion
of such a system is given by

m + ¢ + kg = F(1)

where m, ¢, and k are, respectively, the mass, damping, and stiffness coefficients,

F(t) is the forcing function, and q is the degree of freedom of the system. The

differential equation of the system can also be written in the following form
k c ., F(v

o ke, FO
q mq mq m

F
—w?q — 2¢wg + Fioy
m

where o is the natural frequency of the system and ¢ is the damping factor,

that is -
k ¢
w—\/m, C—me

One can, therefore, define the state equations as

§ = [Z] B [—(;2 —zlzw] [3] ¥ [F(g/m]

From which the matrix B and the vector R(t) of Eq. 106 can be defined as

0 1
B= [—-wz —250)]
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0
Rlt) = [Fm/m}

The characteristic matrix H of Eq. 114 can then be defined for this system as
H=B —ul

.
T —wr —2tw—p

which defines the characteristic equation as

iy 1
Hl =
IH —o? —2{(0—;1’

=uRto +p) +w?=0
This is a quadratic equation in u which can simply be written as

w2+ 2op + w* =0
The roots of this equation are

= —¢w+w /& -1
py=—Co — /&~ 1

The eigenvector A; associated with the eigenvalue y; can be obtained by using
Eq. 113 or Eq. 116. In this case one has

R 1 % _
[(B—uwlA; = [_wl —28w — /IJ [AiZ] =0

A = A,

which yields

The eigenvector A; can then be written as

Aiz[ljl, i~ 1,2
H;

and the modal matrix @ of Eq. 117 is
1 1
D= [A1 Az] =
Hy Ko
It follows that ®~! is the matrix

N
Hy = L — 1
which must satisfy the identity of Eq. 118. The state transition matrix T is

given in this example by

T = OT,®"!

il wll Sl
Ho—p M2 ]L O e ]L—p 1
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It is left to the reader as an exercise to show that the use of Eq. 125 and 133
leads, respectively, to the free and forced vibration solution obtained in
Chapter 1 in the case of the single degree of freedom systems.

3.9 APPROXIMATION AND NUMERICAL METHODS

We have shown in the preceding sections that the solution of the equations
of motion of the multi-degree of freedom system can be expressed in terms of
the modal coordinates. It was also shown that the generalized forces asso-
ciated with the modal coordinates can be obtained by premultiplying the
vector of externally applied forces by the transpose of the modal matrix, and
as a result, the frequency contents in a generalized force associated with a
certain mode depend on the frequency contents in the externally applied
forces. Clearly, if the modal force has a frequency close to the natural frequency
of the corresponding mode, this mode of vibration will be excited and this
mode will have a significant effect on the dynamic response of the system.
Quite often, the frequency content in a given forcing function has an upper
limit and accordingly mode shapes which have frequencies higher than this
upper limit are not excited, and their effects on the dynamic response of the
system can be ignored. In this case, the multi-degree of freedom system can
be represented by an equivalent system which has a smaller number of degrees
of freedom determined by the number of the significant low-frequency modes
of vibration. If the multi-degree of freedom system has only one significant
mode of vibration, the system can be replaced by an equivalent system which
has only one degree of freedom. Similarly, the multi-degree of freedom system
can be represented by a two degree of freedom system if only two modes are
significant. The procedure of eliminating insignificant modes is called modal
truncation.

Consider a system which has n degrees of freedom and assume that only m
modes of vibration are significant, where m < n. We have previously shown
that the vibration of the n degree of freedom system is governed by n second-
order ordinary differential equations which can be written in the following
form:

M§ + Cq4 + Kq =F() (3.135)

where M, C, and K are, respectively, the n x n mass, damping, and stiff-
ness matrices, and q and F are, respectively, the n-dimensional vectors of
displacements and externally applied forces. Let ®, be the modal matrix
which contains only the m significant modes of vibration, that is, ®, has n
rows and m columns and accordingly it is not a square matrix. The elimination
of insignificant mode shapes can be expressed mathematically as

q=®P (3.136)
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where the vector of modal coordinates P consists in this case of m elements.
Substituting Eq. 136 into Eq. 135 and premultiplying by the transpose of the
modal matrix @, one obtains

O'M®,P + &TCO,P + OTKD,P = ®TF(r) (3.137)

Assuming the case of proportional damping, and utilizing the orthogonality
of the mode shapes with respect to the mass and stiffness matrices, Eq. 137
can be rewritten as

M, P+ C,P+K,P=Q (3.138)

where M, C,, and K, are square diagonal matrices with dimension m x m,
and P is the m-dimensional vector of the modal coordinates.

Equation 138 has m second-order uncoupled differential equations which
can be solved for the m modal coordinates as discussed in the preceding
sections. The n-dimensional vector of actual displacements can be recovered
by using the transformation of Eq. 136.

p—

Example 3.7

For the three degree of freedom torsional system discussed in Example 2, it was
shown that the mass and stiffness matrices are given by

20 0
M=10*{0 30 O |kg-m?
0 0 4
I -1 0
K=12x 10| ~1 3 -2 |N'm
0 -2 5

The modal matrix @ for this system is given by

1.000 1.000 1.000
®=|0649 —-0607 -—2541
0302 —-0.679 2438

The equation of motion of the undamped system is
M + K6 = F

where 0 is the vector of the torsional oscillations of the system. It was also shown
that the natural frequencies of this system are w, = 14.52 rad/s, w, = 31.05 rad/s,
and w5 = 46.1 rad/s. If we assume that the frequency content in the forcing function
F is not in the resonance region of the third mode, we may ignore this mode by
deleting the third column of the modal transformation ®. In this case, the reduced
number of degrees of freedom m is equal to two and the new modal transformation
®, is given by
1.000 1.000
o, =] 0649 —0.607

0.302 —-0.679
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By using Eq. 136, the system equations of motion can be expressed in terms of the
modal coordinates as

M,P+K,P=Q

where M, and K, are 2 x 2 diagonal matrices defined as

3628 0 m 0
= @7 =10} ="
M, =ormo, = 0| L -0

7.656 0 k, 0
= T = S =
K, = &Ko, =10 [0 47.72] [0 kz]

where m; and k;, i = 1, 2, are the modal mass and stiffness coefficients. The gen-
eralized modal force vector Q is a two-dimensional vector defined by

Q=0'F

Similarly, if the upper limit on the frequency content in the forcing function is
much below the second natural frequency of the system, we may replace the three
degree of freedom system by an equivalent single degree of freedom system. This is
the case in which we ignore the second and third modes of vibrations. In this case,
the modal transformation is reduced to a column vector defined as

1.000
®, = 0649
0.302

where, in this case, m = 1. Using this modal transformation, the equation of motion
of the equivalent single degree of freedom system is given by

m P, + kP =Q,
where m, = 3.628 x 10% k, = 7.656 x 10°, and Q, is the scalar defined by
0, = ‘DzTF

Direct Numerical Integration The method of mode superposition
discussed in this chapter is widely used in the vibration analysis of multi-
degree of freedom systems. In addition to the physical insight gained from its
use, the mode-superposition technique leads to a set of uncoupled differential
equations which can be solved in a closed form in a manner similar to the
equations that describe the vibration of single degree of freedom systems.
Furthermore, if high-frequency modes of vibration do not significantly con-
tribute to the solution of the vibration equations, modal truncation can be
used to reduce the number of degrees of freedom as described in this section.
In this case, one has to determine only the low-frequency modes of vibration.

In some other applications, however, such as in the case of impact loading,
the contribution of the high-frequency modes of vibration is significant. If the
number of degrees of freedom is very large, the use of the mode-superposition
technique is not recommended since the solution of the eigenvalue problem



158 3. Multi-Degree of Freedom Systems

for a large system becomes a difficult task. Another situation where the use of
mode superposition is not recommended is in the cases where the vibration
equations are nonlinear. As a simple example, consider the multi-degree of
freedom system shown in Fig. 3 and discussed in Section 1. In deriving the
equations of motion of this system, the assumption of small oscillations was
used. This leads to a set of linear differential equations which can be solved
using the techniques discussed in the preceding sections. If the displacements
of the masses are large such that the assumption of small oscillations is no
longer valid, the resulting differential equations of motion are no longer linear,
and the mode shapes and natural frequencies of the system are no longer
constant. Consequently, the use of the mode-superposition technique can be
very expensive computationally.

An alternate approach for the use of the modal-expansion method is the
direct numerical integration of the system differential equations.This subject
was discussed in Chapter 5 of the first volume of this book (Shabana, 1996)
and the method presented there for the analysis of single degree of freedom
systems can be generalized to the case of multi-degree of freedom systems. To
this end, we write the equations of motion of the linear or the nonlinear system
in the following general form:

Mii = fl (q, q’ t)

where f, is a vector function which can be nonlinear in the coordinates,
velocities, and time. In the case of linear systems, the vector function f, is
given by

fl(q’ q’ t) = _Cq - Kq + F(t)

Assuming that the mass matrix is nonsingular, the preceding two equations
can be used to define the accelerations as follows:

i=M"1(q401

One may define the vectors y = [y, y,]" as

Y1 q
y = = .
HEH
Using the preceding two equations, ¥, can be defined as
Y. =M7f,(q.q, 1) = M, (y,,y,, 1)
=M (y, 1)
which can be written compactly as
¥2 =Gy, 1) (3.139)

where

G(y’ t) = M_lfl (ya t)
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Equation 139 can be combined with the equation
Yi=Y2

to yield the following system of equations

o Vi — Yy:
y [y] [G(y, r)]

For a system of n degrees of freedom, the preceding equation has 2n first-
order differential equations which can be integrated numerically using direct
numerical-integration methods such as the Runge—Kutta method (Shabana,
1996).

3.10 MATRIX-ITERATION METHODS

The methods presented thus far for the vibration analysis of multi-degree of
freedom systems require the evaluation of the mode shapes and natural fre-
quencies which define the solution of the vibration equations. If the number
of degrees of freedom is very large, the solution of the characteristic equation
to determine the natural frequencies becomes more difficult and in these cases,
the use of the numerical methods is recommended.

It was shown in the preceding sections that the equations of the free
undamped vibration of the multi-degree of freedom system can be written as

Mi+Kq=10 (3.140)
We assumed a solution for this equation in the form
q = A sin(wt + ¢)
which upon substitution into Eq. 140 leads to

o*MA = KA (3.141)
If the mass matrix is assumed to be nonsingular, Eq. 141 can be written as
w’A = M KA (3.142)
which can be written as
AA = HA (3.143)
in which
A= w? (3.144a)
H, =M K (3.144b)

Equation 143 is referred to as the stiffness formulation of the cigenvalue
problem of the multi-degree of freedom system. Note that in this formulation,
the lowest eigenvalue corresponds to the lowest natural frequency in the
system.
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Alternatively, if the stiffness matrix of the system is nonsingular, Eq. 141
leads to

0’)K'MA =A
which can be written as
uA = H;A (3.145)
where
)= a% (3.146a)
H; =K'M (3.146b)

Equation 145 is referred to as the flexibility formulation of the eigenvalue
problem of the multi-degree of freedom system. In this formulation, the
lowest eigenvalue corresponds to the highest natural frequency of the
system.

In the following, we discuss some numerical methods which can be used to
determine the eigenvalues and eigenvectors of the system using either the
stiffness or the flexibility formulation.

Matrix-Iteration Method This method, which is an iterative procedure
refered to as the Stodla method, can be used with either the stiffness or the
flexibility formulation. When it is used with the stiffness formulation, the
solution converges to the mode shape which corresponds to the highest
eigenvalue, or equivalently the highest natural frequency. On the other hand,
if the flexibility formulation is used the solution converges to the mode shape
which corresponds to the highest eigenvalue which corresponds in this case
to the lowest natural frequency.

In the remainder of this section, the matrix-iteration method is discussed
using the flexibility formulation of Eq. 145. In this method, a trial shape
associated with the lowest natural frequency is assumed. We denote this trial
shape which should represent the best possible estimate of the first mode as
A |, where the first subscript refers to the mode number and the second sub-
script refers to the iteration number. Since the mode shape can be determined
to within an arbitrary constant, without any loss of generality, we assume that
the first element in A, is equal to one, that is,

1
I (AIO)Z
= 3.147
7 (Ayo)s (3.147)

In the matrix-iteration method the vector A, is substituted into the right-
hand side of Eq. 145. This yields

A= #11‘&11 = Hf"ilo (3.148)
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Since the eigenvalue u is not known at this stage, we select A, such that its
first element is equal to one. This in turn will automatically define yu,,. IfA,,
is the same as A, then A, is the true mode shape. If this is not the case, we
substitute A, in the right-hand side of Eq. 145. This leads to

A, = ﬂlZAIZ = Hr;‘u

= ~1~H,2310 (3.149)
Ky

If A, is the same or close enough to A, convergence is achieved, otherwise
A, is substituted into the right-hand side of Eq. 145 to determine A ;. This
process continues until A ; is close enough to Kl(j_l, for some integer j. The
vector A, ; then defines the first mode shape and the scalar y,; defines the first
(highest) eigenvalue. This eigenvalue corresponds to the lowest natural fre-
quency which can be determined by using Eq. 146a as

w, = /—L (3.150)
Hyj

Clearly, the stiffness formulation can be used if the interest is in determining
the higher mode of vibration.

Convergence 1t can be proved that the iterative procedure described in
this section converges to the first mode shape of vibration of the system. Let
A, A,, ..., A, be the linearly independént true mode shapes of the multi-
degree of freedom system. Since these mode shapes are linearly independent,
any other n-dimensional vector can be expressed as a linear combination of
these mode shapes. Therefore, the initial guess A |, can be written in terms of
these mode shapes as

Ajpg=0A; + A, + -+ 2,A

=Y oA, (3.151)
k=1
where «,, a,, ..., a, are scalar coefficients. Since the mode shapes can be

determined to within an arbitrary constant, the iteration procedure described
in this section leads to the following relationships:

AU = HfAl(j-l) = Hf(HfAl(j—Z))
=HiA,, (3.152)
Substituting Eq. 151 into Eq. 152, one obtains

= Y «HiA, (3.153)
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It is clear from the eigenvalue problem of Eq. 145 that
HA, = n A,
If both sides of this equation are multiplied by H;, one obtains
HP A, = wH A, = i A,
If we multiply both sides of this equation again by H;, we get
HP A, = iH A, = 1 A,
One, therefore, has the following general relationship:
HiA, = A,
Substituting this equation into Eq. 153 yields

A1j= Z akH{Ak = Z akﬂf;Ak
k=1 k=1
in which

Hy > Py > U3 > > U,

(3.154)

(3.155)

As the number of iterations j increases, the first term in the summation of
Eq. 155 becomes larger in comparison with other terms. Consequently, A,

will resemble the first true mode A, that is,

A= kZI akﬂf;Ak ~ ooy pu A,

as j increases.

Example 3.8

are given by

matrix as
1

5
5
2

LSl
i
N n o=
DN

(3.156)

For the torsional system of Example 1, the symmetric mass and stiffness matrices

In order to use the flexibility formulation, one has to find the inverse of the stiffness
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The matrix H; of Eq. 145 is given by
11 75 4

H=K'M=__|5 175 4
36001 5 3

Based on the initial guess, we assume the trial shape of the first mode as

1
A,=]08
04 |
Substituting this trial shape into the right-hand side of Eq. 145, one obtains

11 75 471

- 1
Au=HA,= 20| 5 75 4fl08

18.6

= seo0| 126
23 4]fo4 6

which can be used to define A,,, pt;,, and @, as

1.00 186
A,=|067741, p,= %6—0 =5.1667 x 1073,  w,, = 13912 rad/s
0.3226

Substituting the vector A, into the right-hand side of Eq. 145
11 75 1.00

17.3709
A,2=H,A“=m 5 75 41106774 = 11.3709
2 3 41]]03226 5.3226
which yields
1.000
" 17.3709
A, =] 0.6546

, =-—__ =48253 x 1073,
Hiz 3600 53 x 10

w,, = 14.3959 rad/s
0.3064

Using K,z as the new trial vector, we obtain

ma—ti =t |'s 75 4 || ossas |- 1| unnss
= = . . =——1 1L
a T 360 2 3  4]]0.3064 3600 5.1894
which defines A5, p, 3, and w, ; as
- 1.000 17.1351
A3 =10.6498 |, i3 = — =4.7598 x 1073, ;3 = 14.4947 rad/s
0.3028

Observe that the matrix-iteration method is converging to the solution obtained
in Example 2. If we make another iteration, we have

11 7.5 47[1.000
A,4=Hr313=3~6& 5 75 4]]06498 | =
2 3 4/(]|03028

17.0847
11.0847
5.1606

1 -

3

6

163



164 3. Multi-Degree of Freedom Systems

which defines A4, u,4, and w,, as

1.000

. 17.0847 )

Aa=[0649 |, piy= o= 47488 X 107, 0, = 14516 rad)s
0.302

Analysis of Higher Modes In order to prove the convergence of the
matrix-iteration method to the mode shape associated with the lowest natural
frequency, we utilized the fact that our initial estimate for the trial shape can
be expressed as a linear combination of the linearly independent true mode
shapes. Clearly, the convergence will be faster if the trial shape is close to the
shape of the first mode. Furthermore, the matrix-iteration method is more
efficient if the natural frequencies are widely separated, since in our analysis
of convergence we have made the argument that the jth power of the first
eigenvalue is much higher than the jth power of the other eigenvalues.

In order to determine the second mode of vibration, we simply eliminate
the dependence of our trial shape on the first mode of vibration. By using a
similar argument to the one we previously made we can prove that this trial
shape will converge to the second mode of vibration, since the jth power of
U, forlargej,is assumed to be much higher than the jth power of u5, g, .. ., i,

Let us assume that the trial shape for the second mode A, can be expressed
as a linear combination of the true mode shapes, that is,

n

Ay = Y wmA, (3.157)

k=1

where a,, a5, ..., a, are constant scalars. In order to eliminate the dependence
of the trial shape on the first mode of vibration, we use the orthogonality
condition. Since the mode shapes are orthogonal with respect to the mass
matrix, one has

A—{MAZO = A¥M[kzl (xkA,‘:l
— ¢,ATMA, + ,ATMA, + - + 0,ATMA,
=a,ATMA,

If the trial shape is assumed to be independent of the first mode of vibration,
the preceding equation reduces to
ATMA,, =0 (3.158)
This is a scalar equation, which can be written as
by(Az0)1 + ba(Az0)2 + " + by(Az0)y =0 (3.159)

where b, b,, ..., b, are constant scalars, and (4,,), is the kth element of the
trial shape A,,. The constant scalars by, b,, ..., b, are assumed to be known
at this stage, since the first mode is assumed to be known. These constants are
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simply given by
b'=[b, b, - b]=ATM (3.160)
Dividing Eq. 159 by b,, one obtains
(A20)1 = 512(A20)2 + $13(A20)3 + =~ + 514(A20)n (3.161)

in which the first element in the trial mode shape is expressed as a linear
combination of the other elements, and
b,
Sik = — bTa
In addition to Eq. 161, one has the following simple equations:

(Azo)z = (Azo)z

k=2,3,...,n (3.162)

(Azo.)s = (Azo)a_ (3.163)
(Az0)n = (A20)n
Combining Egs. 161 and 163 one obtains
A, =8,A, (3.164)
where S, is called the sweeping matrix of the first mode and is given by
0 512 S13 7 Sie
o 1t o0 -~ 0
s, =({o o 1 - 0 (3.165)
6o 0 o - 1

In Eq. 164, the dependence of the trial shape on the first mode is eliminated.
When Eq. 164 is substituted in the right-hand side of Eq. 145, one obtains

Ay = Hrsﬁizo
This leads to the following iterative procedure:
A;;=HS Ay, (3.166)

This iterative procedure will converge to the second mode of vibration, thus
defining u,, and A,. The scalar u, can then be used to determine the second
natural frequency.

In order to determine the third mode of vibration using the matrix-iteration
method, the dependence of the trial shape on the first and second modes must
be eliminated. To this end, we use the following two orthogonality conditions:

ATMA,, =0 (3.167a)
ATMA,, =0 (3.167b)

Using these two conditions, the first two elements in the trial-shape vector A 5,
can be expressed in terms of the other elements in a manner similar to Eq. 161.
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This leads to the sweeping matrix S, which has the first two columns equal
to zero. That is, the form of this sweeping matrix is as follows:

0 0 5,3 S14 54
0 0 553 5 - S2n

S,=(0 0 1 o - 0 (3.168)
00 O o - 1

Observe that the sweeping matrix S, of Eq. 165 has a column rank n — 1, and
the sweeping matrix S, of Eq. 168 has a column rank n — 2.

Using the sweeping matrix S,, one can define the trial shape vector which
is independent of the first and second modes as

Ao =8S,A,, (3.169)
By substituting this equation into Eq. 145, one obtains
Az, = H(S, Aao
This leads to the iterative procedure, which can be expressed mathematically

as
Aj;=HS Ay, (3.170)

In order to determine an arbitrary mode i using the matrix-iteration
method, one has to determine the sweeping matrix S;_, using the following
orthogonality relationships:

ATMA,, =0
A;MA;O = 0
AiT—xMAio =0

By using the sweeping matrix S;_,, Eq. 170 can be generalized for the ith mode
as
A= Hfsi-l‘&i(j—l) (3.171)

This iterative procedure converges to the ith mode since the dependence of
the trial shape on mode 1, 2,...,i — 1 has been eliminated using the sweeping
matrix S;_,.

Example 3.9

In Example 8, it was shown that the first mode of vibration of the torsional system

of Example 1 is given by
1.000

A, =|0649
0.302
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In order to determine the second mode, we use the orthogonality condition of
Eq. 158

ATMA,;, =0
The vector b of Eq. 160 is given by
2 00
b" = ATM =[1.000 0.649 0302][{0 3 O [ x 10®
00 4

=10°[2.000 1947 1.208]
Therefore, s,,, k = 2, 3, of Eq. 162 are defined as
[s2 ;31 =[—-09735 -0.604]
The sweeping matrix S, of Eq. 165 is given by
0 545 S3 0 —-09735 -0.604

S, =10 1 0 |]=]|0 1 0
0 0 1 0 0 1
Therefore, ~
’ 11 75 41{0 -09735 -0.604
HS =—-1| 5 75 4{]0 1 0
3
600 2 3 4110 0 1

) [0 —3.2085 —2.644
=__|0 26325 0980
3600 [0 1053 2.792

We may assume the following trial shape for the second mode:

1.0
A,py=| —10
-1.0

which leads to B
0 —3.2085 -—2644 1.0

. 1
Au=HS Ay =] 0 26325 0980 || 10

[0 1053 2792]| —10
5.8525

—36125
| —3.845

1
~ 3600

This vector can be used to define A,,, u,,, and w,, as

1.000
< 5.8525
A, =] —061726 |, Uy = 3600 = 1.6257 x 1073, W,y = 24.8016 rad/s
—0.65698

For the second iteration, we substitute A, into the right-hand side of Eq. 166. This
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yields
| [0 —3.2085 —2.644 1.00
A22=HfSlf\2,=m 0 26325 0980 || —0.61726
|0 1.053 2792 j| —0.65698
| [ 3.7175
= 3600 —2.2688
| —2.4843
which defines A,,, 5, and w,, as
1.000
. 3.7175 N
A,=|—-06103], = =10326 x 1073,  w,, = 31.119 rad/s

—0.6683 3600

For the third iteration, we have

0 —32085 —2.644 1.000
An=HS Ay =0 0 26325 0980 || 06103
0 1053 2792 || —0.6683

1 3.725
=—| —2.2615

36001 _ 2.509

Using this vector, A, 5, #1,3, and @, can be defined as

1.000
N 3.725 -3
A,;=| —0.607 [, U3 = = 1034 x 1077, w,3 = 31.087 rad/s
3600
-0.673
Another iteration shows that
1.000
A,,=| —0606 |, w,y,=3105rad/s
—0.678

Comparing these results with the result of Example 2 demonstrates the convergence
of this method to the true second mode of vibration.

In order to use the matrix-iteration method to determine the third mode, we use
the two orthogonality conditions of Egs. 167a and 167b. This leads to the following
sweeping matrix:

0.4096

0 0
S,=10 0 —1.0412
00 1

Hence,
| 11 75 4 00 0.4093
HS,=—-| 5 75 4 0 0 -—1.0415
3600 2 3 4 0 0 1
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{ 00 0.69105
= 3600 0 0 —176475
00 1.6941

We may assume a trial shape for the third mode as

1.00
Ay =] —1.00
1.00
The first iteration then yields
0 0 0.69105 1.00
Ay =HS,A;0=—-|0 0 —1.76475 || —1.00
3600 00 1.6941 1.00
{ 0.69105
=_—| —1.76475
1.6941

This vector can be used to define A, y15,, and w;, as

1.000

o 0.69105
Ajy=| =25537 |, pay = s = 19196 x 1073, ;, = 72.1766 rad/s
24515
The second iteration yields
1.000
Ay, =1 —25537 |, 1, =47059 x 1074,  m,, = 46.0978 rad/s
24515

Rigid-Body Modes In asemidefinite system, the stiffness matrix is singu-
lar. In this case, the inverse of the stiffness matrix does not exist because of the
rigid-body modes. The matrix equation of free undamped vibration of such
systems can be written as

Mj + Kq=0 (3.172)

Since the natural frequencies associated with the rigid-body modes are equal
to zeros, these modes can be calculated or identified by inspection. These
rigid-body modes will be denoted as A, , A,;, ..., A,, , where n, is the number
of the rigid-body modes. The solution vector of Eq. 172 can be expressed using
the mode superposition as

q= ’ZI wAa+ Y B (3.173)

where «; and S, are constants and ny is the number of deformation modes. In
order to use the flexibility formulation to determine the deformation modes,
the rigid-body modes must be eliminated by writing the solution vector q in
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terms of the deformation modes only. Therefore, Eq. 173 reduces to

=3 AA (3.174)

Using the orthogonality of the mode shapes and Eq. 174, we have the following
relationships:

AMq=0
, (3.175)
Al Mq=0

The scalar equations in Eq. 175 can be combined in one matrix equation,
which can be written as

Bq=0 (3.176)
where B is the matrix
AT
rl
AT
B=| “*|M (3.177)
AT

If the relationships of Eq. 175 are assumed to be linearly independent, the
matrix B has a full row rank. Observe that the dimension of the matrix B is
n, x n where n = n, + ny is the total number of generalized coordinates.
Equation 176 can then be used to write n, coordinates in terms of the other
ny coordinates. In this case, Eq. 176 can be written in the following partitioned

form:
(B, B] m -0
q;

B,q; +Biq; =0 (3.178)

where B, is an n, x n, matrix and B; is an n, x n, matrix. The partitioning in
Eq. 178 is made in such a manner that the matrix B, is a nonsingular matrix.
Such a matrix exists since the matrix B is assumed to have a full row rank.
The vector q, of Eq. 178 can then be expressed in terms of the vector q; as

9, = —B;'Byq (3.179)

Using Eq. 179, the vector q of the generalized coordinates can be written as

(8] Lnta]-L )

which can be written as

or

q =B,q; (3.180)
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where B, is the matrix defined as

1
B, = [—B.;IB.]

Differentiating Eq. 180 twice with respect to time, one obtains
i=B4; (3.181)

Substituting Eqgs. 180 and 181 into Eq. 172 and premultiplying by the trans-
pose of the matrix B, one obtains

B'MB,§j; + B/KB,q, = 0

which can be written as

M4, + Kiq; =0 (3.182)

where
M, = BMB, (3.183)
K; = B'KB, (3.184)

The stiffness matrix in Eq. 182 as defined by Eq. 184 is a nonsingular matrix
since the rigid-body modes are eliminated. Therefore, the flexibility formula-
tion as described earlier in this section can be used with the matrix-iteration
method to determine the mode shapes numerically.

—

Example 3.10

In this example, the matrix-iteration method is used to determine the vibration
modes of the torsional system of Example 5. The mass and stiffness matrices of this
system were given by

200 1 -1 0
M=10*0 3 0|, K=12x10% —1 3 -2
0 0 4 0 -2 2

This system has one rigid-body mode which occurs when all the disks have the
same displacement. Therefore, n, = 1 and

1.00
A =100
1.00
The matrix B of Eq. 177 can then be determined as
2 00
B=ATM=[1.000 1.000 1.000]]0 3 0] x 103
0 0 4

= 10°[2.000 3.000 4.000]
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Substituting this matrix into Eq. 176 with the vector ¢ =[0, 0, 6,]", one
obtains
20, +30, +46,=0

or
6,

[2 3 46,|=0
03
From which 8, can be expressed in terms of 6, and 0, as
0, = —1.50, — 26,

Therefore, the vector q can be written in terms of 6, and 0, as

0, -15 =200 0
q=[0,[=| 1 0 [02] (3.185)
0, 0 1 }
This defines the matrix B, of Eq. 180 as
-15 -200
B, = 1 0
0 1

The matrices M; and K; of Eq. 183 are given by

2 0 Off —1.5 -—-200

~15
M,»=B,TMB,=103[ 200 (1) (1)] 03 0|l 1 0
‘ 00 4i[ o 1

75 60
=10°
[6.0 12 J
1 -1 o][-15 —200

~1.
K,-zB,TKB,=12xlO5[ > 10] -1 3 =2 10 00

~200 0 1
o -2 2f o 10
825 30
=12 x 10°
8 [3.0 6.0]

Using M; and K;, the reduced system of equations can be written as
Mg, + Kiq; =0

75 60714 825 3016 0
0’ 2+ 12 x 10° 2=
! [6.0 12 ][03] e [3.0 6.0] [03 0
This system has no rigid-body modes, and, therefore, other vibration modes can be
determined using the analytical methods or the numerical procedure described in

this section. Having determined the modes of 0, and 6,, Eq. 180 or, equivalently,
L Eq. 185 can be used to determine the modes of 6,, 6,, and 6,.

or
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3.11 METHOD OF TRANSFER MATRICES

In the preceding section, a numerical procedure for determining the mode
shapes and natural frequencies of the multi-degree of freedom systems was
discussed. The convergence of this numerical procedure was proved and
numerical examples that demonstrate its use were presented. The basic idea
used in the matrix-iteration method or Stodla method, as it is sometimes
referred to, is that an assumed mode shape is successively adjusted until the
true mode shape is obtained. Once convergence is achieved the natural fre-
quency associated with this mode can be evaluated. In this section, an alterna-
tive method which proceeds in the reverse sequence is discussed. That is, an
initial assumption for the frequency is first made. By successive adjustments,
the true frequency is obtained and the mode shape associated with this fre-
quency is simultaneously evaluated. The procedure discussed in this section
is suitable for the analysis of mechanical and structural chain systems whose
elements are arranged along a basic axis.

In order to demonstrate the fundamental concept of the procedure, we
first discuss Holzer’s method. We then generalize this procedure by using a
rectilinear mass—spring multi-degree of freedom system. The application of
the method to other systems such as torsional systems are also discussed
before we conclude this section.

Holzer's Method This method is basically a trial-and-error scheme for
determining the natural frequencies of multi-degree of freedom systems. While
the method has had its widest application in the analysis of multi-degree of
freedom torsional systems, the same concept, can be applied to the analysis
of other systems as demonstrated later in this section.

Figure 13 shows a torsional system which has n degrees of freedom. Recall
that if this system vibrates at one of its natural frequencies, the shape of
deformation will be the mode shape associated with this frequency. We have
previously shown that in the case of free vibration, the equation of motion of
the muilti-degree of freedom system is given by

Mij + Kq =0

where M and K are, respectively, the symmetric mass and stiffness matrices,
and q is the vector of generalized coordinates. A solution of the equation of

I I, I3 I,
(Z }k, (Z }kz Ci ;‘#©

F1G. 3.13. Holzer’s method.
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motion is assumed in this case in the following form:
q = A sin(wt + )

where A = [4; A, --- A,]"is the vector of amplitudes of the disks. Substitu-
ting this solution into the equation of motion yields the following relationships
between the amplitudes of the disks:

[K -~ w*M]A =0 (3.186a)
where
I, 0 0 0]
M = 0 I.2 O 0
0 0 0 1, |
and
[y Ky kin |
K - kZl k22 an
_knl kn2 Knn_f
[k, =k 0 - 0
_ —ky ky+k, —k, - 0
| 0 0 0 e k(fl"l)

Therefore, Eq. 186a yields the following scalar equations:
LA, + k(A — A4;)=0)
Lw?A, + k(A — A)) + ky3(A, — A3) =0
LAy + ky3(As — Ay) + kyy(A; — A) =0 ¢ (3.186b)

Inszn + k(n—l)n(An - An-l) =0

7

where I; denotes the mass moment of inertia of the disk j and k;; is the ijth
element of the stiffness matrix K. Since there is no external force or couple
acting on this system, adding the preceding equations yields

Y, Lw?d;=0 (3.187a)
ji=1

Since the mode shape can be determined to within an arbitrary constant,
without any loss of generality we assume that the amplitude of the first disk
is equal to one. Assuming different values of w, Eq. 186a or 186b can be solved
for the amplitudes A,, A5, ..., 4,. For example, from the first equation in Eq.
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186b, the amplitude A, can be written in terms of the amplitude A4, as

1, w?A,
kya

A2=A1

Once A, is determined A5 can be calculated by using the second equation in
Eq. 186b as

k Lw?A
A=Ay — 224y — 4y - 2222
23 23

Continuing in this manner, all the amplitudes corresponding to the assumed
value of w can be determined. The assumed value of w and the calculated
amplitudes can then be substituted into Eq. 187a. If this equation is satisfied,
then w is a root of this equation and accordingly the assumed w is a natural
frequency of the system and the corresponding amplitudes A,, A4,, ..., 4,
represent the mode shape associated with this frequency. One, therefore, may
write Eq. 187a as

igﬁ4=mﬁ (3.187b)
£

One can then plot f(w?) as a function of w? and the roots of this function
which define the natural frequency of the system can easily be found.

The method of transfer matrices can be considered as a generalization of
the Holzer’s method. The application of the transfer-matrix method to the
vibration analysis of rectilinear mass-spring systems as well as torsional
systems is also discussed in this section.

Rectilinear Mass—-Spring System Figure 14 shows a multi-degree of
freedom mass—spring system. Let X; denote the acceleration of the mass i, F}
is the spring force acting on the mass from the right and F} is the spring force
action on the mass i from the left. The dynamic equilibrium condition for the
mass i is given by

m%; = Fr — F! (3.188)
k; L
AN—] iy =AM M L AAAN—] Moy
L 7 2 e 7. i’z
X;
—>

ki
F_, ¢\ —PFl4— ™ |—»F

F1G. 3.14. Transfer matrix method.
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If we assume harmonic oscillation, the displacement of the mass i can be
written as
x; = X, sin(wt + ¢) (3.189a)

_ where X, is the amplitude, w is the frequency, and ¢ is the phase angle.
Equation 189a implies that
% = —w?x; (3.189b)

Substituting this equation into Eq. 188 and rearranging the terms in this
equation, one obtains
Fr = —wzm,-x,- + E‘ (31903)

Furthermore, for the point mass m; we have
(3.190b)

= X.

x;=x

Equations 190a and 190b can be combined into one matrix equation. This

yields
H 1 offx
EIRE @i

which can be written compactly as
s; = P;s} (3.192)

= g [

- Fir ’ [ Fil
1 0

P =

! [_wzm,’ l]

The vectors s! and s, are called the state vectors, and P; is called the point
matrix.

If we consider the equilibrium of the massless spring k;, the following
relationships can be easily verified:

where

si

and

xl = x! + 1 Fr
i i-1 k.‘ i—-1

F = FL,

These two equations can be combined in one matrix equation. This leads to
X; 11 Uk || xi-y
Fl17lo 1 jlF,

si = Hisl_, (3.193)

which can be written as
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where H; is called the field matrix, and is defined as

11k,
H‘z[o 1]

Substituting the vector s; as defined by Eq. 193 into Eq. 192, one obtains
sf = PH;s}_, (3.194)
which can also be written as
s; =T, (3.195)

where T, is called the transfer matrix defined as

r-pn-| ! o1 1k,
U —ePm; 1|01

1 1/k;
- [—wzm,. (- wzm,./k,.)] (3.196)

Using a similar procedure, the state vector s{_, can be expressed in terms of
the state vector sj_, as
Sy = Toysi, (3.197)

which, upon substituting into Eq. 195, leads to
s =TT_si,
Continuing in this manner, one obtains
8 =TT, T, T;s (3.198)

where sg is the state vector at the initial station. We may then write Eq. 198
in the simple form
s; = T,s} (3.199)

where the matrix T, is given by
T,=TTL T, T (3.200)

Equation 199, in which the state vector at station i is expressed in terms of the
state vector of the initial station, represents two algebraic equations. Usually
a force boundary condition or a displacement boundary condition would be
known at each end of the system. When these boundary conditions are sub-
stituted into this equation, one obtains the characteristic equation which can
be solved for the natural frequencies, which can then be used to determine the
mode shapes of the system. This procedure represents one alternative for using
Eq. 199. Another alternative which is more suited for a system with a large
number of degrees of freedom is to use a numerical procedure based on
Holzer’s method. The natural frequency of the system and the unknown
boundary condition at station 0 are assumed. The unknown values of the
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displacement and force at station 1 can then be determined by using the
transfer matrix T,. This process can be continued until the other end of the
system is reached, thus defining the boundary condition at this end. Since
either the displacement or the force must be known at this end, the results
obtained using the procedure of the transfer matrix can be checked and the
error can be determined. If the error is not equal to zero or is relatively small,
another value of the natural frequency is assumed and the entire procedure is
repeated. This process is continued until the error becomes zero or relatively

small.

Example 3.11

That is,

x{_
Fi|

X2
0

[

Similarly, we have

|

The use of the transfer-matrix method is demonstrated in this example by using the
simple two degree of freedom system shown in Fig. 15. We assume for simplicity
thatm, = m, = mand k, = k, = k. The boundary conditions at station Oare x = 0,
and F = F,. The boundary conditions at mass 2 are x = x, and F = 0. By using
Eq. 195 one has

r o __ T
s; =T;sp

1 1k ] [ 1 1k 0
—o'm (1=o*m) || Fy| | —0®m (1 — w?*mjk)

Fo

r __ r
s; = T8}

which can be written in a more explicit form as

(x3] [x] [ ! 1/k [x:]
[F5] 0] | —wim (1 —o?mk)]||F

which, upon substitution for x| and Fj, yields

B 1k 1 1k ][o ]
| —0?m (1 — &*m/k) || —w?m (1 — o’m/k) || Fy

[ (1 = wmpk) (1K) (2 — w?m/k)

0
B A R [

k, k, o
ny - My

ST IS

FiG. 3.15. A two degree of freedom system.
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which yields the following two algebraic equations:

o ool _wim
L k

o'm\? o’m
=|({1- _2M g
o=[(1-) ="

The second algebraic equation yields

o*m\! o’m [wlm\? w*m
_emy _OR_(2E) 324 1-0
(1 k) k (k k

k k\?
w‘—3w2—+<—> =0
m  \m

Observe that this is the characteristic equation of the system which has the follow-
ing roots:

or

2_k -
w —z—m[3+\/g]

k k
w?=038197—, @, =O.618\/:
m m

k k
w0} = 261803, w2=1.618\/;

If we substitute these values for w, and w, into the first algebraic equation obtained
from the application of the transfer-matrix procedure, we obtain for the first mode

That is,

Fy w?m\ F, Fy
=12~ =_—(2-0.38197) = 1.61803 —
Xy = <2 ) =2 - 038197) 3

and for the second mode

2
F
%(2 - M) = %(2 — 261803) = —0.61803 -

X, =

k

Since x, = Fy/k, the first and second mode shapes are given by

1 1
A = . A, =
! [1.61803] z [—0.61803]

Torsional System The transfer-matrix method can also be used in the
vibration analysis of torsional systems. The point, field, and transfer matrices
can be obtained in a manner similar to the case of rectilinear mass—spring
systems. Figure 16 shows a disk i, the left surface of which is connected to a
shaft which has stiffness k;, while the right surface is connected to a shaft which
has stiffness k;,. Assuming harmonic oscillations, the equation of motion of
the disk is given by
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1i-y I; i 5

FiG. 3.16. Torsional system.

where M, is the moment, [; is the mass moment of inertia of the disk, and 6,
is the angular oscillation which can be used to define the equation

9, =0 = 0] (3.202)

Equations 201 and 202 can be combined in order to obtain

o; 1 o[ o
[Mi'] N [~w21‘. 1][1\4;] (3.203)

which is in the same form as Eq. 191 developed for the rectilinear system. It
can, therefore, be written in the form of Eq. 192 as

si = P;s| (3.204)

where the state vectors s} and s} are defined by

r__ Gir SI__ 9"'
Tl YT

and the point matrix P, is given by

1 0
Pi= [—wzli 1]

If we consider the equilibrium of the shaft k; which is assumed to be massless,
we have

1
k;

0." =0/, +; M,

Ml =M,

which can be combined in one matrix equation as

[Q_.] _ [1 l/k.-:H: .y ] (3.205)
M;l 0 1 i-1

where the field matrix H; can be identified as

ok
w=fo
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Equation 205 can be substituted into Eq. 203. This yields
si = Tisiy (3.206)

where T, is the transfer matrix defined in this case as

tot
T"_P"H"_[—wzl,. 1][0 1]

[ 1/k,
‘[—«»21.- (1 —wzz.-/k.-)] (3207

If Eq. 206 is applied to successive points of the torsional system one obtains
equations similar to Eqgs. 199 and 200 developed for the rectilinear mass—
spring system.

Example 3.12

In order to demonstrate the use of the transfer-matrix method in the vibration
analysis of torsional systems, we consider the simple two degree of freedom system
shown in Fig. 17 which consists of two disks which have moments of inertia I, and
I, and two shafts which have torsional stiffness coefficients k, and k,. For simplicity,
we assume that I, = I, = I and k; = k, = k. The boundary conditions at station
0is 0 = 0and M = M,, while the boundary conditions at station 2 are § = 6, and
M = 0. We, therefore, have

[0; [ 1 1/k o] [ 1 1/k 0
M| | -0l (1=l || M5 | =0T (1 — &2k || M,
6] [6.] [ 1t 1/k 0;

Myl o] | -0 (1 -kl M

These two matrix equations yield

0,1 [ 1 1/k 1 1/k 0
0] | -0l (-]l - -k || M,

[ -k L2 — w?I/k) 0
T =02 - 0*lk) -0k + (1 — 0?1k || M,

and

F1G. 3.17. Two degree of freedom system.
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which yields the following two scalar equations:

o=l(; w?I\? wle
) e M

The second algebraic equation yields the characteristic equation of the system

k k\?
4__3 27 - =0
w wl+<1)

which defines the natural frequencies of the system w, and w, as

k
o, =0.618\ﬁ, w, = 1.618\/§

By using a similar procedure to the one described in the preceding example, one
can show that the mode shapes of this system are given by

1 1
A = =
! [1.61803]’ Az [—0.61803]

Problems

3.1. By using Newton’s second law, obtain the differential equations of motion of the
multi-degree of freedom system shown in Fig. P1.

Fic. P3.1

3.2. By using Lagrange’s equation, obtain the differential equations of motion of the
system shown in Fig. P1.
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34

35

3.6

3.7

38

3.9.

3.10.

Problems 183

2, ;
Ll LLLLLL Ll LIS LY my
N2 0} v
1/2 02 !
kl
—AAMNA— ! m,
12 0, |
( A
m, m, my ms
FiG. P3.2 Fic. P3.3

Determine the natural frequencies and the mode shapes for Problem 1, taking
ky=k,=ky=k,=k=1x10N/m,andm, =m, =m; =m=2kg

Repeat Problem 3, for the case in which k, = k, = k; = k, =k and m; = m,
m, = 2m,and m; = m.

Obtain the differential equations of free vibration of the three degree of free-
dom system shown in Fig. P2 by using Newton’s second law. Assume small
oscillations.

Use Lagrange’s equation to derive the differential equations of free vibration of
the system of Problem 5. Obtain also the natural frequencies and the mode shapes
of vibration, assuming that m, = m, =my = 1kg, [ =0.5m,and k;, =0, k, =
ky =2 x 10* N/m.

Derive the differential equations of motion of the system shown in Fig. P3.
Determine the natural frequencies and the mode shapes of vibration. Assume
that m;, = m, = my = 1 kg, and | = 0.5 m. Assume small oscillations.

Assuming small oscillations, determine the natural frequencies and mode shapes
of vibration of the system shown in Fig. P4. Assume thatm, = 2kg,my =m; =
05kg I, =1, =05m,and k, = 2 x 10° N/m.

Figure PS5 depicts a shaft which supports three disks which have mass moments
of inertia I,, I,, and I,. The shaft, which is assumed to have negligible mass, has
a circular cross section of diameter d and modulus of rigidity G. Obtain the
differential equations that govern the torsional vibration of this system.

Obtain the natural frequencies and mode shapes of the torsional system of
Problem 9 assuming that the shafts are made of steel and have equal diameters
of 00Im, I, =1, =1,=1x103kg-m?and!, =1, =1;=05m.
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3.12.

3.13.

3.14.

3.15.

3.16.

3.17.
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Xy

m;

FiGc. P34 FiG. P3.5

FiG. P3.6 ' Fic. P3.7

. Assuming small oscillations, derive the differential equations of motion of the

system shown in Fig. P6 by using Newton’s second law. Obtain also the differ-
ential equations using Lagrange’s equation of motion.

In Problem 11,if m, =m, = my; =m = 1kg, and k; = k, = k =2 x 10* N/m,
obtain the natural frequencies and mode shapes, assuming that the length of the
rod is 0.5 m.

By using Newton’s second law or Lagrange’s equation, derive the differential
equations of motion of the system shown in Fig. P7. Assume small oscillations.

In Problem 3, if m = 3 kg, k = 1000 N/m, and the initial displacements of the
masses m,, m,, and m, are, respectively, 0.01, 0, and 0 m, determine the solution
of the free vibration assuming that the masses have zero initial velocities.

For the system shown in Fig. P4,let m; = m, = my =2kg,l, =, = 0.5m, and
k, = 1000 N/m. The masses m,, m,, and m;, are assumed to have zero initial
displacements. Obtain the solution for the free vibration assuming that the rod
1, has initial angular velocity of 3 rad/s.

Find the solution of the free vibration of the system of Problem 8 in terms of
the initial displacements and velocities.

Obtain the solution for the free vibration of the system in Problem 12 in terms
of the initial conditions.



318
3.19.
3.20.
321
3.22.

3.23.

3.24.

3.25.

3.26.

3.27.
3.28.

Problems 185

Determine the modal mass and stiffness coeflicients of the system of Problem 6.
Determine the modal mass and stiffness coeflicients of the system of Problem 8.
Determine the modal mass and stiffness coefficients of the system of Problem 10.
Determine the modal mass and stiffness coefficients of the system of Problem 12.

In Problem 12, if the spring k, is removed, does the new system have a rigid-body
mode? If the answer is yes, identify this rigid-body mode.

Show that, for an n-degree of freedom system, if the vectors of initial coordinates
and velocities are proportional to a linear combination of m mode shapes, where
m < n, then the motion of the n-degree of freedom system is equivalent to the
motion of an m-degree of freedom system.

In Problem 12 determine the natural frequencies and mode shapes if the effect
of gravity is neglected.

By inspection identify the rigid-body modes of the system shown in Fig. P7 if
the effect of gravity is neglected.

Using Lagrange’s equation or Newton’s second law, obtain the differential
equation of motion of the forced vibration for the system shown in Fig. P8. The
moment M is given by M = M, sin w;t, where My = 2 N-m, and w; = 5 rad/s.
Assume small oscillations, m; = m, = my = 1 kg, k; =k, = 10 N/m,¢c, = ¢, =
10 N-s/m,and I = 0.5m.

FiG. P3.8

In Problem 26, if ¢, = ¢, = 0, obtain the steady-state solution.

The system shown in Fig. P9 consists of masses which are connected by elastic
elements and a damper. The system is subjected to support excitation as shown
in the figure. Derive the differential equations of motion of this system.

y = Y, sin wgt

Fic. P39
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3.30.
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3.33.

3.34.
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k,
m 11
F(1) = F, sin wyt j (ONE
C k3 A
ky
a, a; as a, m
%D k k L |7
1 2 7
a,+a,+as+a,=1 F(t) = Fy sin gt
Fic. P3.10 FiG. P3.11

In Problem 28, obtain the steady-state solution for the undamped system. As-
sume m, =m, =my =1 kg, k, =k, =k; =1 x 10> N/m, ¥, = 001 m, and
o = 4 rad/s.

Assuming small oscillations, derive the differential equations of motion of the
system shown in Fig. P10.

Obtain the differential equations of motion of the system shown in Fig. P11.
Assume small oscillations.

Obtain the differential equations of motion of the system shown in Fig. P12.
Assume small oscillations.

Use the state transition matrix to determine the solution of the free-vibration
equation for the underdamped and overdamped single degree of freedom
systems.

Use the state transition matrix to determine the solution of the equation of the
forced vibration of the underdamped single degree of freedom systems.

Obtain the differential equations of motion of the vehicle system shown in
Fig. P13. Assume small angular oscillations.

Xy

my. ]

FiG. P3.12
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€2 k, I

IITLE77 7.

FiG. P3.13

If the damping coefficient of the system in Fig. P9 is equal to zero and if m; =
1 kg, my, =15 kg, my =2 kg, k, =6 x 105 N/m, k, = 8 x 10° N/m, k, =
10 x 10° N/m, determine the natural frequencies and the mode shapes using the
matrix-iteration method.

Show that the reduced system equations of motion obtained in Example 10 leads
to the same natural frequencies and mode shapes determined in Example 5.

Use the matrix-iteration method to determine the natural frequencies and mode
shapes of the system of Problem 3, assuming that m = 2.5 kg,

Use the matrix-iteration method to determine the natural frequencies and mode
shapes of the system of Problem 8 assuming that k, = 1.5 x 10> N/m.

Determine the natural frequencies and mode shapes of the system of Problem
27 using the matrix iteration method.

Determine the mode shapes and natural frequencies of the system of Problem
36 using the transfer-matrix method.
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Vibration of Continuous Systems

Mechanical systems in general consist of structural components which have
distributed mass and elasticity. Examples of these structural components are
rods, beams, plates, and shells. Our study of vibration thus far has been limited
to discrete systems which have a finite number of degrees of freedom. As has
been shown in the preceding chapters, the vibration of mechanical systems
with lumped masses and discrete elastic elements is governed by a set of
second-order ordinary differential equations. Rods, beams, and other struc-
tural components on the other hand are considered as continuous systems
which have an infinite number of degrees of freedom. The vibration of such
systems is governed by partial differential equations which involve variables
that depend on time as well as the spatial coordinates.

In this chapter, an introduction to the theory of vibration of continuous
systems is presented. It is shown in the first two sections that the longitudinal
and torsional vibration of rods can be described by second-order partial
differential equations. Exact solutions for these equations are obtained using
the method of separation of variables. In Section 3, the transverse vibrations
of beams are examined and the fourth-order partial differential equation of
motion that governs the transverse vibration is developed using the assump-
tions of the elementary beam theory. Solutions of the vibration equations are
obtained for different boundary conditions. In Section 4, the orthogonality of
the eigenfunctions (mode shapes or principal modes) is discussed for the cases
of longitudinal, torsional, and transverse vibrations and modal parameters
such as mass and stiffness coefficients are introduced. The material covered
in this section is used to study the forced vibration of continuous systems in
Section 5, where the solution of the vibration equations is expressed in term
of the principal modes of vibration. Section 6 is devoted to the solution of the
vibration equations subject to inhomogeneous boundary conditions, while in
Section 7 the effect of damping on the vibration of viscoelastic materials is
examined. In Section 8, the use of Lagrange’s equation and the scalar energy
quantities in deriving the differential equations of motion is demonstrated.
The last three sections are devoted to the use of approximate methods in the
analysis of continuous systems.

188
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4.1 FREE LONGITUDINAL VIBRATIONS

In this section, we study the longitudinal vibration of prismatic rods such as
the one shown in Fig. 1. The rod has length ! and cross-sectional area A. The
rod is assumed to be made of material which has a modulus of elasticity E
and mass density p and is subjected to a distributed external force F(x, f)
per unit length. Figure 1 also shows the forces that act on an infinitesimal
volume of length éx. The geometric center of this infinitesimal volume is
located at a distance x + dx/2 from the end of the rod. Let P be the axial
force that results from the vibration of the rod. The application of Newton’s
second law leads to the following condition for the dynamic equilibrium of
the infinitesimal volume:

92 oP
pAaT';(Sx = P+ 5 0x — P+ F(x,)ox

which can be simplified to yield

o%u oP
b?éx = a(ﬁx + F(x, t)ox

Dividing this equation by dx leads to

o*u OP
pAS: =5+ F(x0) @.1)

pA

The force P can be expressed in terms of the axial stress o as

P = Ao 4.2)
The stress ¢ can be written in terms of the axial strain ¢ using Hooke’s law as
o = Eg, (4.3)
while the strain displacement relationship is
Ju
6= (4.4)

Substituting Eqs. 3 and 4 into Eq. 2, the axial force can be expressed in terms

Fix,0) F(x, )x
- —>—>—> —> —> A

oP

! ox

FIG. 4.1. Longitudinal vibration of rods.
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of the longitudinal displacement as

0
P=EA " (4.5)
Ox
Substituting Eq. 5 into Eq. 1 leads to
o’u 0 ou
A—=—(EA— :
pA=7 =5 (EA 6x) + F(x,t) (4.6)

This is the partial differential equation that governs the forced longitudinal
vibration of the rod.

Free Vibration The equation of free vibration can be obtained from Eq.
6 by letting F(x, t) = 0, that is,

ou 0 ou
A—=_—|EA— i
ot? 6x( 6x) @7
If the modulus of elasticity E and the cross-sectional area A are assumed to

be constant, the partial differential equation of the longitudinal free vibration
of the rod can be written as

0%u 0%u
or
0u u
Friair “9

where ¢ is a constant defined by

c= \/E (4.10)
p

Separation of Variables The general solution of Eq. 8 can be obtained
using the method of the separation of variables. In this case we assume the
solution in the form

u(x, 1) = ¢(x)q(1) (4.11)

where ¢ is a space-dependent function and g is a time-dependent function.
The partial differentiation of Eq. 11 with respect to time and with respect to
the spatial coordinate leads to

az
51 = $d0) 4.12)
az
3= #0400 (4.13)

where () denotes differentiation with respect to time and (') denotes differentia-
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tion with respect to the spatial coordinate x, that is,

d%q
G(t) = = 414
a0 ="1, (4.14)
" d2¢
#"(x) = ix? (4.15)
Substituting Eqgs. 12 and 13 into Eq. 9 leads to
¢4 =c’¢'q (4.16)
or
¢ _ g
2= == 417
¢ 4

Since the left-hand side of this equation depends only on the spatial coordinate
x and the right-hand side depends only on time, one concludes that Eq. 17 is
satisfied only if both sides are equal to a constant, that is

LA SR (4.18)
¢ 4q
where o is a constant. A negative constant —w? was selected, since this choice
leads to oscillatory motion. The choice of zero or a positive constant does not
lead to vibratory motion and, therefore, it must be excluded. For example, one
can show that if the constant is selected to be zero the solution increases
linearly with time. While if a positive constant is selected, the solution contains
two terms; one exponentially increasing function and the second is an expo-
nentially decreasing function. This leads to an unstable solution which does
not represent an oscillatory motion.

Equation 18 leads to the following two equations:

2
¢ + (g) $=0 (4.19)
j+wiq=0 (4.20)
The solution of these two equations is given by

¢(x)=Alsin%)x+A2 cos 2 x 4.21)
c

q(t) = B, sin wt + B, cos wt 4.22)

By using Eq. 11, the longitudinal displacement u(x, t) can then be written
as

u(x, t) = ¢(x)q(t) = (Al sin%)»x + A, cos%x) (B, sin wt + B, cos wt)
(4.23a)
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where A,, A,, B, B,, and w are arbitrary constants to be determined by using
the boundary and initial conditions.

Elastic Waves Equation 23a can also be written in the following alternate
form:

u(x, t) = A sin (%)x + ¢l>sin(wt + ¢,)

where A, ¢,, and ¢, are constants that can be expressed in terms of the
constants A, A,, By, and B,. By using the trignometric identity

sin ((;)x + ¢1)sin(wt + ¢,)

= %[cos(?x + ¢, —wt — ¢2) - cos(?x + ¢, + ot + ¢2>],

the preceding equation for the displacement u can be written as

A A
u(x, t) = icos(?x —wt+ ¢, — ¢2> — 2cos($x +ot+ ¢, + ¢2)

which can be written as

u(x, t) = fi(kx — ot + ¢,,) + fr(kx + w0t + ¢,) (4.23b)
where the constants ¢,,, ¢,, and k are
P =01 — ¢
$p=01 + ¢,
=%
C

and the functions f, and f, are defined as

fitkx — ot + ¢,) = gcos(kx —wt + ¢,)

Siltkx + wt + ¢,) = ——gcos(kx + wt + ¢,)

The function f;(kx — wt + ¢,) represents a harmonic wave traveling in
the positive x direction with a wave velocity ¢ = w/k, while the function
falkx + ot + ¢,) represents another elastic harmonic wave traveling in the
opposite direction with the same wave velocity ¢, where ¢ is defined by Eq. 10.
Therefore, Eq. 9 is often called the wave equation of the longitudinal vibration
of the rod. Note that the wave velocity ¢ is constant and depends on the
material properties of the rod. The constant k which relates the wave velocity
¢ to the frequency of the harmonic w is called the wave number.
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Boundary Conditions and the Orthogonality of the Eigenfunc-
tions In order to demonstrate the procedure for determining the constants
in Eq. 23a, we consider the example shown in Fig. 2 where the rod is fixed at
one end and is free at the other end. The boundary condition at the fixed end
is given by

u©0,t)=0 (4.24)

while at the free end, the stress must be equal to zero, that is,

o1 = Ee(l, ) = EXBY _ g
Ox

which can be used to define the boundary condition at the free end as

du(l,t)
0x

The boundary condition of Eq. 24 describes the state of displacement at the
fixed end. This type of boundary condition is called geometric boundary
condition. On the other hand, Eq. 25 describes the state of force or stress at
the free end of the rod. This type of condition is often refered to as natural
boundary condition. That is, the geometric boundary conditions describe the
specified displacements and slopes, while the natural boundary conditions
describe the specified forces and moments. Substituting Eqs. 24 and 25 into
Eq. 23a results in

u(0,) = ¢(0)q(t) = A,q(t) =0

=u'(l,ty=0 (4.25)

w(l,t) = #(Dq(t) = ‘:<A, cos%)l -4, sin%’ 1) q(t) = 0

which lead to the following two conditions:

A, =0 (4.26)
[
4, cosw? =0 4.27)
For a nontrivial solution, Egs. 26 and 27 lead, respectively, to

#(x) = A, sin % x (4.28)

F1G. 4.2 Fixed-end conditions.
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and
cos — = 0 (4.29)

Equation 29 is called the frequency or the characteristic equation. The roots
of this equation are given by

wl =n 3n 5n (2n— )z

?=§,7’7,""T,‘.' (430)
This equation defines the natural frequencies of the rod as
2j—1
“’1‘:(}2_1—)“’ =123, ... (4.31)

Using the definition of the wave velocity ¢ given by Eq. 10, the jth natural
frequency w; can be defined as

Q- E
w; = T ;, J= 1, 2’ 3, (432)

Thus, the continuous rod has an infinite number of natural frequencies.
Corresponding to each of these natural frequencies, there is a mode shape or
an eigenfunction ¢; defined by Eq. 28 as

¢j=Aljsin%)jx, i=1,23,... 4.33)

where A,;,j = 1,2, 3, ..., are arbitrary constants. The eigenfunctions satisfy
the following orthogonality condition:

! 0 if i#j
@ dx = . 4.34

L hdy dx {hi if =] (439
where h; is a constant. The longitudinal displacement u(x, t) of the rod can
then be expressed as

u(x,t) = _ #i(x)q;(t)

J

8

I
—

s

]
-

(Cjsin w;t + D; cos w;t) sina?)"x (4.39)
J

where C; and D; are constants to be determined by using the initial conditions.

Initial Conditions Let us assume that the rod is subjected to the following
initial conditions:
u(x, 0) = f(x) (4.36)

u(x, 0) = g(x) (4.37)

Substituting these initial conditions into Eq. 35 leads to

u(x,00=f(x) = 3 D, sin x (4.38)
=1
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0 . w;
u(x,0) = g(x) = ), o;C;sin—x (4.39)
=1 c
In order to determine the constants D; in Eq. 38, we multiply this equation
by sin(w;/c)x and integrate over the length of the rod. By using the orthogonal-
ity condition of Eq. 34, one obtains

1
Dj = % J\ f(x) Sin%x dx, ]= 15 2, 39 v (440)
0

Similarly, in order to determine the constants C;, we multiply Eq. 39 by
sin(w;x/c), integrate over the length of the rod, and use the orthogonality
condition of Eq. 34. This leads to

2 [ . .
C,-=—J g(x)sin—2xdx, j=1,23,... (4.41)
lw; Jo c

Observe that the solution of the equation of the longitudinal vibration of the
rod given by Eq. 38 is expressed as the sum of the modes of vibrations which
in this case happen to be simple harmonic functions. The contribution of each
of these modes to the solution will depend on the degree to which this par-
ticular mode is excited. As the result of a sudden application of a force, as in
the case of impact loading, many of these modes will be excited and accord-
ingly their contribution to the solution of the vibration equation is significant.
It is important, however, to point out that it is possible for the rod to -
vibrate in only one of these modes of vibration. For instance, if the initial
elastic deformation of the rod exactly coincides with one of these modes and
the initial velocity is assumed to be zero, vibration will occur only in this mode
of vibration and the system behaves as a single degree of freedom system. In
order to demonstrate this, let us consider the special case in which the initial
conditions are given by

.
u(x,0) = sin—x
c

u(x,0)=0

Clearly, the initial displacement takes the shape of the kth mode. Substituting
these initial conditions into Eqs. 40 and 41 and using the orthogonality of the
mode shapes, one obtains

0 if j#k
D.=
/ {1 if j=k
C;=0, j=12..
That is, the solution of the equation of longitudinal vibration of Eq. 35 reduces
in this special case to

. .
u(x, t) = q,(t) sm?"x = D, cos w,t sin— x
c



196 4. Vibration of Continuous Systems

which demonstrates that the rod indeed vibrates in its kth mode due to the
fact that the initial conditions in this special case cause only the kth mode of
vibration to be excited. The continuous system in this special case behaves as
a single degree of freedom system. This can be demonstrated by differentiating
the displacement twice with respect to x and t, yielding, respectively,

0%u w, \ . W
pe —<?> q.(t) sm—c—x

*u Wy

=5 = §,(t) sin—x

atz qk( ) c

Substituting these two equations into the partial differential equation of
Eq. 9, one obtains

W . Wy 2 .y
Gy sin—x = —w}q, sin—*x
¢ C

which leads to the following differential equation:
g + 0iq =0

This equation is in the same form as the equation which governs the free
vibration of a single degree of freedom system. The frequency of oscillation in
this case is w,. _

If the initial conditions take a different form, the resuits will be different
and other modes may be excited as well. For example, one can show that
if the initial displacement of the system is a linear combination of several
modes, only these modes will be excited. The solution can then be represented
by a truncated series which has a finite number of terms instead of the infinite
series of Eq. 35. In this case, the continuous system can be analyzed as a
multi-degree of freedom system with the number of degrees of freedom being
equal to the number of modes which are excited. In many applications in
practice, this approach is being used in the study of vibration of continuous
systems. Quite often, a finite number of modes are excited and the techniques
used in the analysis of multi-degree of freedom systems are often used in the
analysis of continuous systems as well. It is important, however, to point out
that the accuracy of the reduced finite-dimensional multi-degree of freedom
model in representing the actual infinite-dimensional continuous system will
greatly depend on the judgment of which modes are significant. The analysis
of the frequency content of the initial conditions and the forcing functions
may be of great help in deciding which modes can be truncated.

Other Boundary Conditions From the analysis presented in this section
it is clear that the mode shapes and the natural frequencies of the rod depend
on the boundary conditions. Thus far we have considered only the case in
which one end of the rod is fixed while the other end is free. Following a similar
procedure to the one described in this section, the natural frequencies and
mode shapes can be determined for other boundary conditons.
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If the rod is assumed to be free at both ends, the boundary conditions are
given by
ou(0,1) 0 ou(l,t)

Ox 0x

Using these boundary conditions and the separation of variables technique,
one can show that the frequency equation is given by

0 4.42)

I
sinw? =0 (4.43)

which yields the natural frequencies of the longitudinal vibration of the rod
with free ends as )

. i [E
w, =T 2 o123, (4.44)
! I I\p

The associated eigenfunctions or mode shapes are given by
§ = Az cos (4.45)

Another example is a rod with both ends fixed. The boundary conditions in

this case are given by
u©,t =0, ul,by=0 (4.46)

Using these boundary conditions and the separation of variables method, one
can show that the frequency equation is given by

wl

sin— =20 4.47)
¢
which yields the natural frequencies
jac jn |E .
w; =" s i=123, (4.48)

The mode shapes associated with these frequencies are

¢,.=Al,.sin’i;’f, i=1,23,... (4.49)

Example 4.1

The system shown in Fig. 3 consists of a rigid mass m attached to a rod which
has mass density p, length /, modulus of elasticity E, and cross-sectional area
A. Determine the frequency equation and the mode shapes of the longitudinal
vibration.

Solution. The end condition at the fixed end of the rod is given by

u0,1)=0 (4.50)

The other end of the rod is attached to the mass m which exerts a force on the rod
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mii(l, t)

pE AL P, 1)

() (b)

Fi1G. 4.3. Longitudinal vibration of a rod with a mass attached to its end.

because of the inertia effect. From the free-body digram shown in the figure, the
second boundary condition is given by

o%u(l, 1) ou(l, 1)
=Pl = oA = ~E4—

or
*ult) du(l,t)

ULy L _EA
(T ox

(4.51)

The longitudinal vibration of the rod is governed by the equation

u(x,t) = ¢(x)q(1)
. w w .
= <A1 sin—x + A, coszx>(Bl sin wt + B, cos wt) (4.52)
c

Substituting Eq. 50 into Eq. 52 yields
A, =0

Using this condition and Eq. 52, one gets
. WX .
u(x, t) = ¢(x)q(t) = A, sin— (B, sin wt + B, cos wt)
C

which yields

o*u . WX .

—5 = —w?A, sin— (B, sin ot + B, cos wt)
ot ¢

ou wx .

— = —A, cos— (B, sin ot + B, cos wt)
ox ¢ c

Therefore, the second boundary condition of Eq. 51 yields
) w ol .
—mw?A, sing(Bl sinwt + B,coswt) = —EA ;A, cos?(Bl sinwt + B, coswt)
c

This equation implies

mwc . wl wl
——sin— = cos —
EA
or
| EA
tan 2 = 22 (4.53)
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This is the frequency equation which upon multiplying both of its sides by wl/c,
yields

where M is the mass of the rod. The preceding equation can be written as

ytany=u (4.54a)
where
wl M
Y=, p=—
c m

Note that the frequency equation is a transcendental equation which has an infinite
number of roots, and therefore, its solution defines an infinite number of natural
frequencies. This equation can be expressed for each root as

ytany; = u, ji=1213,... (4.54b)
where
w;l
=

and the eigenfunction associated with the natural frequency o, is
. WX
¢ =A;sin-"
¢

Table 1 shows the first twenty roots of Eq. 54b for different values of the mass ratio
u.

TABLE 4.1. Roots of Eq. 54b

Mode v

number 1/p=0 1/p=0.01 1/p=0.1 lu=1 1/u=10
1 1.5708 1.5552 1.4289 0.8603 0.3111
2 47124 4.6658 4.3058 3.4256 3.1731
3 7.8540 77764 7.2281 6.4372 6.2991
4 10.9956 10.8871 10.2003 9.5293 9.4354
5 14.1372 13.9981 13.2142 12.6453 12.5743
6 17.2788 17.1093 16.2594 15.7713 15.7143
7 20.4204 20.2208 19.3270 18.9024 18.8549
8 23.5619 23.3327 22.4108 22.0365 21.9957
9 26.7035 26.4451 25.5064 25.1725 25.1367
10 29.8451 29.5577 28.6106 28.3096 28.2779
11 32.9867 326710 31.7213 31.4477 31.4191
12 36.1283 35.7847 34.8371 34.5864 34.5604
13 39.2699 38.8989 37.9567 37.7256 377018
14 42.4115 42.0138 31.0795 40.8652 40.4832
15 45.5531 45.1292 44.2048 44.0050 43.9846
16 48.6947 48.2452 47.3321 47.1451 47.1260
17 51.8363 51.3618 50.4611 50.2854 50.2675
18 549779 54.4791 53.5916 53.4258 53.4089
19 58.1195 57.5969 56.7232 56.5663 56.5504

20 61.2611 60.7155 56.7232 59.7070 59.6919
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—
Example 4.2

The system shown in Fig. 4 consists of a prismatic rod which has one end fixed and
the other end attached to a spring with stiffness k as shown in the figure. The rod
has length I, cross-sectional area A, mass density p, and modulus of elasticity E.
Obtain the frequency equation and the eigenfunctions of this system.

Solution. As in the preceding example, the boundary condition at the fixed end is
given by
u0,t)=0

At the other end, the axial force of the rod is equal in magnitude and opposite in
direction to the spring force, that is,

P(l,t)y= ~ku(l, 1)
Since P = EAu/, the preceding boundary condition is given by
EAu(l,t) = —ku(l, 1)

Using the technique of the separation of variables, the solution of the partial
differential equation of the rod can be expressed as

u(x, 1) = ¢(x)q(t)
LW () .
= (A, sin—x + A, cos—x)(Bl sin wt + B, cos wt)
c c
As in the preceding example, the boundary condition at the fixed end leads to

A;,=0

Therefore, the expression for the longitudinal displacement u may be simplified and
written as

u=g¢x)q(t)= A, sinﬂ(i)»x(B1 sin wt + B, cos wt)
¢

and

w w .
u' =—A, cos—x(B; sinwt + B, cos wt)
¢ ¢

By using the second boundary condition, the following equation is obtained:

w w
EA(i)cosfl = —ksin—|
c [ c
or
w EAw
tan—[ = —
c ke

Multiplying both sides of this equation by wl/c and using the definition of ¢ =

IS

F1G. 4.4. Longitudinal vibration of a rod with one end attached to a spring.




4.2. Free Torsional Vibrations 201

/E/p, one obtains

ol ol EAw?l EAo’lp  o’M
T T T TTRE T T Tk
where M is the mass of the rod. The above equation is the frequency equation which
can be written as
w*M
k

ytany = —

where
wl

'y = —
¢
The roots of the frequency equation can be determined numerically and used to
define the natural frequencies, w;, j = 1, 2, 3, .... It is clear in this case that the
eigenfunction associated with the jth natural frequency is

. ayx
¢,~=Ausm?

The frequency equations and mode shapes of the longitudinal vibrations
obtained using different sets of boundary conditions are presented in Table 2.

4.2 FREE TORSIONAL VIBRATIONS

In this section, we consider the torsional vibration of straight circular shafts
as the one shown in Fig. 5a. The shaft is assumed to have a length [ and a cross
section which has a polar moment of inertia /. The shaft is assumed to be
made of material which has modulus of rigidity G and mass density p and
is subjected to a distributed external torque defined per unit length by the
function T (x, t). In the analysis presented in this section, the cross sections of
the shaft are assumed to remain in their planes and rotate as rigid surfaces
about their centers. The equation of dynamic equilibrium of an infinitesimal
volume of the shaft in torsional vibration is given by
2

plpgéx =T+ %géx — T+ T.ox (4.55)
where 6 = 0(x, t)is the angle of torsional oscillation of the infinitesimal volume
about the axis of the shaft, T is the internal torque acting on the cross section
at adistance x from the end of the shaft, and dx is the length of the infinitesimal
volume. Equation 55 can be simplified and written as

0%0 _ oT
o oOx
From elementary strength of material theory, the internal torque T is propor-
tional to the spatial derivative of the torsional oscillation 6. The relationship

between the internal torque and the torsional oscillation is given in terms of
the modulus of rigidity G as

pl + T (4.56)

00

T=Gl, 5 (4.57)
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TaBLE 4.2. Frequency equations and mode shapes of the longitudinal vibrations
E wl
¢= _[—,y=—, A; = constant
¢

P
Boundary conditions Frequency equation Mode shapes
x wx, 1) wl =0
s - cos ==
7 . WX
7 | ¢; = A;sin —
(2j — Dne ¢
0=
Fixed-Free ! 2
(x. 1) in wl
X Hix, S —_—=
b - ¢ w;x
E——— = Aycos ==
jme ¢
Free-Free @ =
X wlx, 1 sin 21 =0
4> i
4 . WX
" ¢, = Ajsin ——
7 ; jme ¢
Fixed-Fixed !
X ulx, B —
Py S ytany = u . ox
7 ¢; = A;sin ——
Y m ¢
% M
M where yu = -
Fixed-Mass
X X, 1)
; > —p
2
7 oM . WX
:.T_}V\/\,E yiany = -2M L
k
Fixed-Spring
x (X, 1
: ™ m ¢$; = Ajcos—
l M c
M where u = .
Free-Mass
X u(x,
—
:::W =2 4= Aycos %
W / ycoty = k = i c
k
Free-Spring
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=y ()

(a) (b)

FiG. 4.5. Torsional vibration.

Substituting Eq. 57 into Eq. 56, one obtains

20 o[ o0
oY Gl, T 458
Pl ax< P ox )* ‘ 4.38)

If the shaft is assumed to have a constant cross-sectional area and a constant
modulus of rigidity, Eq. 58 can be expressed as
0%0 0%0

Free Vibration The partial differential equation that governs the free
torsional vibration of the shaft can be obtained from Eq. 59 if we let T, = 0,
that is,

020 . %0
which can be rewritten as
0%0 0%0
a = (461)

where ¢ is a constant that depends on the inertia properties and the material
of the shaft and is given by

G
c= [~ (4.62)
p

Equation 61 is in the same form as Eq. 9 that governs the longitudinal
vibration of prismatic rods. Therefore, the same solution procedure described
in the preceding section can be used to solve Eq. 61. Using the separation of
variables technique, the torsional oscillation 8 can be expressed as

0 = ¢(x)q(1) (4.63)

where ¢(x) is a space-dependent function and g(r) depends on time. Following
the procedure described in the preceding section, one can show that

#(x) = A, sin%{ + 4, cos%x (4.64)

q(t) = B, sin wt + B, cos wt (4.65)
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where A,, A,, By, B,, and w are arbitrary constants to be determined using
the boundary and initial conditions. Substituting Egs. 64 and 65 into Eq. 63
yields

O(x, t) = (Al sin? + A, cos ?)(B1 sin wt + B, cos wt)  (4.66)

Boundary Conditions Equation 66 is in the same form as Eq. 23a which
describes the longitudinal vibration of prismatic rods. Therefore, one expects
that the natural frequencies and mode shapes will also be in the same form.
For example, in the case of a shaft with one end fixed and the other end free,
the natural frequencies and eigenfunctions of torsional vibration are given by

2j—nc @2j—-Dn |G .
o= Aoy =123 (4.67)

¢,.=A1,.sm%'f, ji=1,23,... (4.68)

and the solution for the free torsional vibration is

0=y sin“¥(c, sin w;t + D; cos w;t) (4.69)
s
where the constants C; and D;, j = 1, 2, 3, ..., can be determined by using

the initial conditions as described in the preceding section.
In the case of a shaft with free ends, the natural frequencies and eigenfunc-
tions are given by

L L A R X 4.70
G=T = T (4.70)
§=Ayyeos L, j=1,23,. @4.71)

and the solution for the free torsional vibration of the shaft with free ends has
the form

® w;x )
0= Zl cos—ém(Cj sin w;t + D; cos w;t) 4.72)
=
where C; and D;, j =1, 2, 3, ..., are constants to be determined from the

initial conditions.
Similarly one can show that the natural frequencies and mode shapes of the
torsional vibration in the case of a shaft with both ends fixed are

_dme _jm Gy (4.73)

g,=A4,sn?% j=1,23, ... (4.74)
C
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and the solution for the free torsional vibration is given by
< . w;x .
=73 smT(Cj sin w;t + D; cos w;t) (4.75)
Jj=1

As in the case of longitudinal vibrations discussed in the preceding section,
the orthogonality of the mode shapes can be utilized in determining the
arbitrary constants C; and D; using the initial conditions.

Example 4.3

The system shown in Fig. 6 consists of a disk with a mass moment of inertia I,
attached to a circular shaft which has mass density p, length [, cross-sectional polar
moment of inertia I, and modulus of rigidity G. Obtain the frequency equation
and the mode shapes of the torsional vibration.

Solution. The two boundary conditions in this case are given by
8(0,t)=0
T(,t) = GLO(, 1) = —1,0(, 1)
The solution for the free torsional vibration can be assumed in the form
O(x, 1) = @(x)q(r)
= (A1 sin? + A, cos%)(Bl sin wt + B, cos wt)
Substituting the two boundary conditions into this solution and following the

procedure described in Example 1, it can be shown that the frequency equation is
given by

ytany =p
where
wl pl,l \/5
y=—, =—, = [=
¢ d p
This equation has an infinite number of roots v, j =1, 2, 3, ..., which can be

used to define the natural frequencies w; as

=2 j=1,23,...

L FIG. 4.6. Torsional vibration of a shaft with one end attached to a disk.
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Example 4.4

The system shown in Fig. 7 consists of a straight cylindrical shaft which has one end
fixed and the other end attached to a torsional spring with stiffness k, as shown in
the figure. The shaft has length I, mass density p, cross-sectional polar moment of
inertia I,, and modulus of rigidity G. Obtain the frequency equation and the
eigenfunctions of this system.

Solution. The boundary conditions in this case are given by
0(0,1) =0
T(t)=GI 00 1) = —k0b(, 1)
The solution for the free torsional vibration is given by

0(x,1) = ¢(x)q(r)
. WX wx .
= (A, sin— + A, cosT)(Bl sin wt + B, cos wt)
c

Substituting the boundary conditions into this solution and following the proce-
dure described in Example 2, it can be shown that the frequency equation is given by

ytany = —pu
where
wl © o w?pll, G
’y = —, ” = . CcC = —
¢ k, 14
Theroots y;,j = 1, 2, 3,..., of the frequency equation can be obtained numerically.
These roots define the natural frequencies w;,j = 1, 2,3, ..., as
i
w,=y’7, i=1,23,...
The associated mode shapes are
. WX
¢ = A,;sin——
c
v p.G I, 1 ke

)

LF[G. 4.7. Torsional vibration of a shaft with one end attached to a torsional spring.

./

Table 3 shows the frequency equations and mode shapes of the torsional
vibration obtained using different sets of boundary conditions.

4.3 FREE TRANSVERSE VIBRATIONS OF BEAMS

It was shown in the preceding two sections that the differential equations that
govern the longitudinal and torsional vibration of rods have the same form.
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TaBLE 4.3. Frequency equations and mode shapes of the torsional vibrations

wl

G
(c = \[—, y=—,A4;= constant)
P c

207

Fixed-Spring

Boundary conditions Frequency equation Mode shapes
wl
. :’ 6 cos — = 0
w;x
‘4 ¢; = A;sin ——
7 2j — nc ¢
- CiT T
Fixed-Free
)
sin — =
¢
;X
¢; = A cos %
jme
wj = T
. ol
, :’ '9/ sin— =0
c
Y. . WX
¢; = A;sin —é—
v fme
. . W)=~
Fixed-Fixed !
X N
= ¥ \e ytany = u .
Y v ¢; = A, sin -
7 \) o c
Pl ! ’ where y = Phy!
Iy r= I
Fixed-Inertial mass
X g
7
jmd ytany = —p
w;x
7 Y ¢; = A;sin —=
s
pdp 1 kg w?pll, Y c
where u = o
Fixed-Spring '
> § ’
yeoty = —p
;X
’ O ¢; = Ajcos——
podpd 1,1 ¢
iy where u = 5
d
Free-Inertial mass
S
ycoty =pu
w;x
- @; = A, cos —é—
peip ! ks where,u=w:]”
t
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The theory of transverse vibration of beams is more difficult than that of the
two types of vibration already considered in the preceding sections. In this
section, the equations that govern the transverse vibration of beams are
developed and methods for obtaining their solutions are discussed. There are
several important applications of the theory of transverse vibration of beams;
among these applications are the study of vibrations of rotating shafts and
rotors and the transverse vibration of suspended cables.

Elementary Beam T heory In the elementary beam theory all stresses
are assumed to be equal to zero except the normal stress o which is assumed
to vary linearly over the cross section with the y-coordinate of the beam as
shown in Fig. 8. The normal stress ¢ can be written as

o =ky 4.76)

where k is constant, and y = 0 contains the neutral surface along which the
normal stress ¢ is equal to zero. The assumption that all other stresses are
equal to zero requires that the resultant of the internal forces be zero and that
the moments of the internal forces about the neutral axis equal the bending
moment M. Consequently,

f odA =0, f yodA=M 4.77)
A A

where A is the cross-sectional area of the beam. Substituting Eq. 76 into
Eq. 77 yields

k J ydA =0 (4.78)
A

k f yrdA=M (4.79)
A

Since k is a nonzero constant, the first equation implies that the neutral and
centroidal axes of the cross section coincide. The second equation can be

vad

F1G. 4.8. Elementary beam theory.
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used to define k as

k = (4.80)

IR

where I, is the moment of inertia of the cross section about the z-axis of the
beam cross section, and is defined as

IZ=I y*dA
A

Table 4 shows the area properties of selected shapes of the cross section.
Substituting Eq. 80 into Eq. 76 yields

oMy 4.81)
I
Using Hooke’s law, the strain ¢ is given by
c My
- = 482
*TETEL (4.82)

Let v denotes the transverse displacement of the beam. For small deformations
(dv/dx « 1), it can be shown that
d?v € M

=——-=— 483
dx? y El (483)

1 ~
r ~
where 7 is the radius of curvature of the beam. Equation 83 implies that

M= —ELv" (4.84)

This equation is known as the Euler—Bernoulli law of the elementary beam
theory.

Partial Differential Equation In order to determine the differential
equation for the transverse vibration of beams, we consider an infinitesimal
volume at a distance x from the end of the beam as shown in Fig. 9. The length

F(x, 1) x
\ 4 l l L
oM
M M+ —dox
dx
| 4
1%
V4 —
ox +6x6x

F1G. 4.9. Moments and shear forces.
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210
TABLE 4.4. Moments of inertia of the cross sections
Shape Area Moment of inertia
Circle
7
4 nD? 1 nD*
C = y =12 =
> 4 64
e
Rectangle
T Z
t bh3 hb?
f I A=bh ly=~_912=4
h C+ _.._m; 12 12
P—
Triangle
Zh A= l_’ﬁ
? 2 3 bh3
=
h c - ) ok 36
i = =3
I‘w...,..m.mm b w—-’{
Ellipse
V4
nab® nba?
A = mab Iy=_4 y £z = 4
Circular Sector Area
Zh A= ,yrZ
- T — rt L
- ly=z(v—7sm 2y)
A/’ﬁ— __2rsiny
‘\\\”?:;\\V y 3 y

a7
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of this infinitesimal volume is assumed to be éx. Let Vand M be, respectively,
the shear force and bending moment, and let F(x, t} be the loading per unit
length of the beam. Neglecting the rotary inertia, the sum of the moments
about the left end of the section yields

oM % (6x)* 0% (6x)?

M+ —6x—M— V6x——(5 )2 — F(x, )~~~ — pA—

0x 2 ot 2 =0

(4.85a)
Taking the limit as dx approaches zero, the preceding equation leads to

oM
V= (4.85b)
Ox
The dynamic equilibrium condition for the transverse vibration of the beam
is obtained by applying Newton’s second law as
0%v ov
pA(Sxé—i =V+ —a—‘éx — V + F(x, t)ox (4.86)
where p is the mass density and A is the cross-sectional area. Equation 86 can
be rewritten after simplification as

otv oV
AW =3 + F(x, t) (4.87)
Substituting Eq. 85b into Eq. 87 yields
*v M
Freiuiy + F(x, 1) (4.88)

The moment M can be eliminated from this equation by using the moment
displacement relationship. To this end, Eq. 84 is substituted into Eq. 88. This
leads to

?v 07 .,

Fri —EP(EIZU )+ F(x, 1) (4.89)

If E and I, are assumed to be constant, Eq. 89 becomes
0% o*
A= — —
a2~ "ELzat oy (4.90)

In the case of free vibration, F(x, t) = 0 and Eq. 90 reduces to

% , 0%
-——atz = —C 6——;4 (4.91)
where c is a constant defined as
El,
c= (4.92)
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Separation of Variables Equation 91 is a fourth-order partial differ-
ential equation that governs the free transverse vibration of the beam. The
solution of this equation can be obtained by using the technique of the
separation of variables. In this case, we assume a solution in the form

v = $(x)q(t) (4.93)

where ¢(x) is a space-dependent function, and ¢(t) is a function that depends
only on time. Equation 93 leads to

0 d?

57: = ¢(x)%z(t) = $(x)§(0) (4.94)
v d* ;

75 =T 00 = g0 (495)

Substituting these equations into Eq. 91, one obtains

$(x)g(t) = —c*$™(x)q(t)
which implies that

@_ _ 2¢iv(x)= 2
- e TY (4.96)

where w is a constant to be determined. Equation 96 leads to the following
two equations:
g+ owq=0 (4.97)

¢ — (?)2 $=0 (4.98)
The solution of Eq. 97 is given by
q = B, sin wt + B, cos wt (4.99)
For Eq. 98, we assume a solution in the form
¢ = Ae**
Substituting this assumed solution into Eq. 98 yields

e (e) o

or

which can be written as
M—n*t=0 (4.100)

I et 4.101
n \/: ( )

where
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The roots of Eq. 100 are
Ay=n,  Ay=-—n, Ay=in, Ag=—in

where i = ./ — 1. Therefore, the general solution of Eq. 98 can be written
as
P(x) = A" + Are™™ + A€ + Age”™ (4.102)

which can be rewritten as

e —e™ ™ e+ e ™

3 + Ag 2

inx e—inx emx + e—mx

3 + Ag 3

¢(x) = As

+ A (—1i) (4.103)

where
As + Ag 4. = Ae — As
2 2 2

Ag — iA, A=A8+iAJ
2 4 2

A =

Ay =

Equation 103 can then be rewritten, using Euler’s formula of the complex
variables, as

#(x) = A5 sinh nx + Ag cosh nx + A, sin nx + Agcosnx  (4.104)

Substituting Egs. 99 and 104 into Eq. 93 yields

v(x,t) = (As sinh nx + Ag cosh nx + A, sin nx + Ag cos 1x)
-(B, sin wt + B, cos wt) (4.105)
where  is defined by Eq. 101 as

w = cn? (4.106)
Boundary Conditions The natural frequencies of the beam, as well as
the constants that appear in Eq. 105, depend on the boundary and initial

conditions. For example, if the beam is simply supported at both ends the
boundary conditions are

v(0,t) =0, v"(0,1) =0
v(l,t) =0, v'(L)=0
which imply that
$0) =0, ¢0)=0
() =0, ¢"()=0
It is clear that in this case, there are two geometric boundary conditions that

specify the displacements, and there are two natural boundary conditions that
specify the moments at the ends of the beam. Substituting these conditions

(4.107)
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into Eq. 104 yields

As+ A3 =0
Ag— Ag =
Assinhnl + Agcoshyl + A, singl + Agcosnl =0 (4108
Assinhnl + Agcoshyl — A;singl — Agcosyl =0
These equations are satisfied if A5 = 4g = A4 = 0 and
A;sinpl=0 (4.109)
The roots of Eq. 109 are
nl=jrn, j=123,... 4.110)
Therefore, the natural frequencies are given by
wj=j;f2c=!$\/§§, j=123,... @.111)
and the corresponding modes of vibration are
¢ =Aqsinnx, j=1273 .. (4.112)

The solution for the free vibration of the simply supported beam can then be
written as

v(x, t) = Z ¢4, = Z (C; sin w;t + D; cos w;t) sin n;x (4.113)
j=1 Jj=1
The arbitrary constants C;and D;,j = 1,2, 3,..., can be determined using the
initial conditions by the method described in Section 1 of this chapter.
In the case of a cantilever beam, the geometric boundary conditions at the

fixed end are
v(0,t) =0, v'(0,)=0

and the natural boundary conditions at the free end are
v(Lt) =0, v"'(,t)=0
These conditions imply that
$(0)=0, ¢0)=0
¢")=0, ¢"(h=0
Substituting these conditions into Eq. 104 yields the frequency equation
cos nlcosh nl = —1

The roots of this frequency equation can be determined numerically. The first
six roots are (Timoshenko et al., 1974) n,1 = 1.875, n,1 = 4.694, n,l = 7.855,
nal = 10996, 55l = 14.137, and n4l = 17.279. Approximate values of these
roots can be calculated using the equation

ﬂjl x(j— %)n
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The fundamental natural frequencies of the system can be obtained using
Egs. 92 and 101 as

R S
w;=n;¢c =1

The first six natural frequencies are
I,

El
w, = 3.51563 ﬁ ; = 2203364 [
El, 1 -
0y = 617010 [, w0, =1209120 |-

I
13

m

3

l'n

EI
ws = 199. 8548\/ [ e =298.5638

In this case it can be verified that the mode shapes are
$,(x) = Ag;[sin n;x — sinh n;x + Djcos n;x —coshn;x)],  j=1,2,...
where Ag; is an arbitrary constant and

cos n;l + cosh ;!
sin n;l — sinh n;l

B, =

Example 4.5

Neglecting the effect of rotary inertia, find the first four natural frequencies of the
transverse vibration of a beam with free ends. The beam has length I, cross-sectional
area A, moment of inertia I,, mass density p, and modulus of elasticity E.

Solution. At the free end of a beam, the bending moment and shear force are equal
to zero. Therefore, the boundary conditions in this example are given by

¢$"0=0, ¢"0)=0, ¢N=0 ¢ (D=0
Substituting the first two boundary conditions into Eq. 104 yields
¢'(0) =n’Ag —n*Ag =0
$7(0) = n*As — 1°A; =0
which imply A¢ = Ag and A5 = A,. Hence
#(x) = As(sinh nx + sin nx) + Ag(cosh nx + cos nx)

Substituting the third and fourth boundary conditions into this equation, one
obtains
As(sinhpl —sinnl) + Ag(coshnl — cosnl) =0

As(coshnl — cosnl) + Ag(sinhyl + sinnl) =0

sinhnl — sinyl coshnl — cosnl || As 10
coshnl — cosyl sinhyl +sinyl |} A4 |0

That is,
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This system of homogeneous algebraic equations in the unknowns 45 and A has
a nontrivial solution if and only if the determinant of the coefficient matrix is equal
to zero. This leads to the following frequency equation:

(sinh? nl — sin? yl) — (cosh nl — cos nl)* =0
Since
cosh? yl —sinh2 pl =1 and cos? yl + sin? gl = 1,
the frequency equation can be simplified to
cosnlcoshnl =1
This equation is satisfied if #/ = 0. Therefore, the first natural frequency is
w, =0
This frequency is associated with a rigid-body motion of the beam. Thus the
associated mode shape is given by
Pi(x) = A5y + Agyx

One can show that the second, third, and fourth natural frequencies are defined by
the equations

w, = nc= r]zlzlgz = (4.730)2152
W, = (7.8?3)2152

W, = (10.996)2152

The function ¢(x) obtained in this example is expressed in terms of the constants
As and Ag. The relationship between these two constants is
Ag sinhnl —singl _ coshnl — cosnl

fo_ - =D
A coshnl — cosnl sinhnl + singl

Therefore, the space-dependent function ¢ can be expressed in terms of one constant
as

#(x) = As;[sinh n;x + sin m;x + Dj(cosh njx + cos ;x)],  j=1,23,...

The first three deformation mode shapes of the beam are shown in Fig. 10.

";\ /‘l First mode
\_—/

L\ e
~—— 3 Second mode
S < Third mode

FiG. 4.10. First three deformation mode shapes of a beam with free ends.
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Example 4.6

Neglecting the effect of the rotary inertia, find the first four natural frequencies of
the transverse vibration of the beam in the preceding example if both ends of the
beam are fixed.

Solution. For a beam with fixed ends the boundary conditions are
p0)=0, 0 =0 ¢(=0 - ¢)=0

Substituting these boundary conditions into Eq. 104, and following the procedure
described in the preceding example, one can show that the frequency equation, in
this case, is given by

cosnlcoshyl=1

The first four roots of this equation are
n,l = 1.875, Nyl = 4.694, nyl = 7.855, nal = 10996
The space-dependent function ¢;(x) is given in this case by
¢,(x) = Ag;[sin m;x — sinh m;x + Dj(cos ;;x — cosh m;x)],  j=1,2,3,...
where D; is a constant defined as

_ sinn;l — sinhn;l

coshn;l — cosn;l
= = —

cosn;l — coshn;l sinn;l + sinhn;l

The first three mode shapes of vibration, in the case in which both ends are fixed,
are shown in Fig. 11.

Q_Z__A_E First mode
M Second mode

N jxt Third mode

FIG. 4.11. First three mode shapes of a beam with fixed ends.
Table 5 shows the frequency equations and eigenfunctions of the transverse
vibrations of beams with different end conditions.

Effect of the Rotary Inertia In the analysis presented in this section it
was assumed that the cross sections of the beam during deformation remain
perpendicular to the neutral axis, and accordingly the rotation of the cross
section of the beam is not taken into account. This assumption leads to the
simple relationship between the shear force and the moment given by Eq. 85.
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TABLE 4.5. Frequency equations and mode shapes of the transverse vibrations

w EI,
n=_|—-,c=_[——, A; = constant
c pA

Boundary conditions Frequency equation Mode shapes
!\ ! sinnl =0 A
SIS %/ " e #; = A;sinn;x
w; = 12
Simply Supported
/l/
g cos nl coshnl = —1 #;(x) = A;[sin n;x — sinh n;x
. + Dj(cos n;x — cosh n;x)]
nl=(j—4Hn SOy ’
2 cos ;] + cosh n;l
H w; = nic ) = Py e —
Cantilever Beam sin n;l — sinh 1,
[ #,(x) = A;[sinh n;x + sin n;x
+ Dy(cosh n;x + cos n;x)]
cos gl coshnl =1
__cosh n;l — cos ;!
Free-Free I sinh n;l + sin y;!
7 ~ . .
; o #;(x) = A;(sin n;x — sinh n;x
+ Dj(cos n;x — cosh n;x)]
7 cos nl cosh nl = 1 ’ !
__cosh n;l —cos ;]
Clamped-Clamped 47 sinnl + sinh n;l
7
l #;(x) = A;[sinh ;x — sin n;x
+ Dj(cosh n;x — cos ;x)]
7 : tanh nlcotnl = 1
e D — sinh n;l — sin ;!
" . i _W‘T_——j
Fixed-Simply Supported cosh n;l — cos n;
“ lcosh nl sin nl — sinh 5l cos nl ¢,(x) = A;[sinh n;x — sin n;x
i " cosh nl cos nl + 1 + Dj{cosh n;x — cos n;x)]
M M __sinhyyl +sinnl
= Tm 77 " cosh )l + cos njl
Fixed-Mass
I #(x) = Ajsin n;x + D; sinh 7;x)
7&7 tanh yl cot nl =1 ]
s _ singl
. i~ sinh y;l
Pin-Free 4
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This simple beam theory in which the rotation of the cross section is assumed
to be insignificant as compared to the translational displacement is valid only
when the height of the beam is small compared to its length. If the height is
denoted as h and the length as I, the accuracy of the simple beam theory is
acceptable when h/l < 1/10.

Lord Rayleigh (1894) in his study of wave propagation obtained more
satisfactory results when he took into account the effect of the rotary inertia
of the cross section. If we make the assumption of small deformation, the
rotation of the cross section about the z-axis can be defined as

ov
o= —
0x
In this case, the sum of the moments given by Eq. 85a must be equal to the
rotary inertia. This leads to
oM %a )
— = V=pl,— =pl,——
Ox Pla o = Pl gxar
where I, is the second moment of area of the cross section. This equation,
upon differentiation with respect to x, leads to

aV M o*v
ax  axz  Plgcarn

Substituting this equation into Eq. 87, one obtains
% o*M o%v
Ay = — I Fix,t
PAGE = ~xt TPl gz T 0
which upon the use of Eq. 84 leads to

% 0? 0%v o*v
pAW= pa (EI26 >+p1Za 262+F(xt)

The second term on the right-hand side of this partial differential equation
represents the effect of the rotary inertia. Observe that if the effect of rotary
inertia is neglected, this equation reduces to Eq. 89 which was obtained earlier
in this section.

It is clear from the results presented in the preceding example that the first
mode shape has no nodes. That is, zero displacements occur only at the fixed
ends. On the other hand, the second mode has one node and the third mode
has two nodes. The analysis of higher modes shows that as the mode number
increases, the number of nodes increases. Consequently the change in the slope
of the curve that describes the shape of a high frequency mode is much faster
than the change in the slope of the curve of the low-frequency modes. There-
fore, for high-frequency modes, the rotation of the cross sections can be
significant and the use of the simple beam theory that neglects the effect of the
rotary inertia can lead to a significant error in the analysis of these modes in
particular and in the analysis of the wave motion in general.
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4.4 ORTHOGONALITY OF THE EIGENFUNCTIONS

In this section, we study in more detail the important property of the orthogo-
nality of the eigenfunctions of the continuous systems. This property can be
used to obtain an infinite number of decoupled second-order ordinary differ-
ential equations whose solution can be presented in a simple closed form. This
development can be used to justify the use of approximate techniques in later
sections to obtain a finite-dimensional model that represents, to a certain
degree of accuracy, the vibration of the continuous systems. Furthermore, the
use of the orthogonality of the eigenfunctions leads to the important defini-
tions of the modal mass, modal stiffness, and modal force coefficients for the
continuous systems. As will be seen in this section, there are an infinite number
of such coefficients since a continuous system has an infinite number of degrees
of freedom.

Longitudinal and Torsional Vibration of Rods The partial differ-
ential equations that govern the longitudinal and torsional vibration of rods
have the same form, and consequently the resulting eigenfunctions are the
same for similar end conditions. Therefore, in the following we discuss only
the orthogonality of the eigenfunctions of the longitudinal vibration of rods.

It was shown, in Section 1, that the partial differential equation for the
longitudinal vibration of rods can be written as (see Eq. 7)

o*u 0 ou

where u = u(x, t) is the longitudinal displacement, p and A are, respectively,
the mass density and cross-sectional area, and E is the modulus of elasticity.
The solution of Eq. 114, which was obtained by using the separation of
variables technique, can be expressed as

u(x, 1) = ¢(x)q(1) (4.115)

where @(x) is a space-dependent function, and g(t) depends only on time and
can be expressed as

q(t) = B, sin wt + B, cos wt 4.116)
By using Egs. 115 and 116, the acceleration 0%u/dt* can be written as
o%u
P —0?$(x)q(t) @.117)

Hence, Eq. 114 can be written as
—pAw?P(x)q(t) = (EA ¢'(x))'q(t)

which leads to
—pAw? §(x) = (EAP'(x)) (4.118)
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For the jth eigenfunction ¢, j = 1,2, 3, ..., Eq. 118 yields
(EA/(x)) = — pAw] d;(x) (4.119)

Multiplying both sides of this equation by ¢,(x) and integrating over the
length, one obtains

! !
j (EAG{(x)) $(x) dx = —wfj PAB;(x)$i(x) dx

Integrating the integral on the left-hand side of this equation by parts, one
obtains

! !

_ J' EA$(x)(x) dx = —w? ( pAG(X)(x) dx  (4.120)

0 J0

EA¢(x)éi(x)
]
where [ is the length of the rod.

For simple end conditions such as free ends (¢’(l) = 0) or fixed ends (¢(!) = 0),
the first term in Eq. 120 is identically zero, and this equation reduces to
r r

EAgj4i dx = o} | pAd dx 4.121)
0 0

o

Similarly, for the kth eigenfunction, we have
! rl

EA¢¢;dx = wf | pAgd; dx (4.122)
0

JO J

Subtracting Eq. 122 from Eq. 121, one obtains
!
(0} — ©}) J pAdid dx =0 (4.123a)
0

Assuming that w; and o, are distinct eigenvalues, that is, w; # w,, Eq. 123a
yields for j # k

Jl pAgp.dx =0

0

\ (4.123b)
J EAg;$dx =0
o
and for j = k we have
!
[ pApldx =m;
‘l" (4.123¢)
[ EA¢?dx =k;
40
The coefficients m; and k;, j = 1, 2, 3, ..., are called, respectively, the modal

mass and modal stiffness coefficients. They have, respectively, the units of mass
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and stiffness. It is also clear from Eq. 121 that
ki=w?m, j=1273, ... (4.124)
That is, the jth natural frequency w; is defined by

1
EA$? dx
e

0

wl:,;’= 1 5 j=1’2,3,_,, (4125)
! ’ pAP? dx
0

For torsional systems one can follow a similar procedure to show that the
Jjth natural frequency of the torsional oscillations is given by

=1,23,... (4.126)

where G is the modulus of rigidity and I, is the polar moment of inertia.

If the end conditions are not simple the definitions of the modal mass and
stiffness coefficients given by Eq. 123c must be modified. To this end, the
general relationship of Eq. 120 must be used to define the modal coefficients
as demonstrated by the following example.

Example 4.7

Find the orthogonality relationships of the mode shapes of the longitudinal vibra-
tion of the rod shown in Fig. 12.

Solution. The boundary conditions for this system are

u(0,0)=0
2u(l,t) ou(l, t)
il it —EA-
m——s ku(l,t) — E Ew
These conditions yield
$(0)=0

and
(k — w*m)g(l) = —EA()

The general orthogonality relationship of Eq. 120 can be written as

1

EA¢j(¢ (1) — EA}(0)¢(0) — J. EAg(x)4i(x) dx

0

!
= —w}J pA(x)P(x) dx

0

By using the boundary conditions of this example, this orthogonality relationship



4.4. Orthogonality of the Eigenfunctions 223

pE A4l k X
- - ——'m —

FiG. 4.12. Longitudinal vibration of bars.

can be written as

—(k — w}m¢ (D) — [

JO

! 1

EA$(x)4i(x) dx = —w} J pAS(x)4(x) dx

0

or

1 ]

k(D) + .[

]

EA$(x)¢i(x) dx = o] [m@-(l)m(l) + J-

0

PA(x)(x) dx]

Similar relationship can be obtained for mode k as

i 1
k(N (l) + f EA$(x)¢(x) dx = o} I:m¢j(l)¢k(l)+ J pA(x)4(x) dXJ
0

0

o

Subtracting this equation from the one associated with mode j, we obtain the
following orthogonality relationships for j # k:

!
me (D () + j PAG(x)p(x)dx =0

]

k(D) + J EAgj(x)¢i(x)dx = 0

]

and for j = k we have
i

mei(l) + J pAPI(x)dx = m,

0
!

kg2 (1) + J EA$A(x)dx = k;
0

where m; and k; are, respectively, the modal mass and stiffness coefficients. The jth
natural frequency of the system can be defined as

1
k() + J EA$¥(x) dx
0

|

w; = =

2
J [
T omed(l) + J‘ pAPE(x)dx

]

3

If m and k approach zero, the natural frequency w; approaches the value obtained
by Eq. 125 for the simple end conditions.

Transverse Vibration It was shown in Section 3 that the partial differ-
ential equation that governs the free transverse vibration of beams is given by

o 0? o
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where v = v(x, t) is the transverse displacement, p is the mass density, A is the
cross-sectional area, E is the modulus of elasticity, and I, is the moment of
inertia of the cross section about the z-axis. The solution of this equation can
be written using the separation of variables technique as

v = ¢(x)q(t) (4.127b)

where ¢(x) and q(t) are, respectively, space- and time-dependent functions.
The function q(t) is defined as

q(t) = B, sin wt + B, cos wt
Substituting Eq. 127b into Eq. 127a yields
@*pAg(x)q(t) = (EL#"(x))" q(t)
or
©’pAd(x) = (EL¢"(x))"
Therefore, for the jth natural frequency w;, one has
(EL#Y = w?pAd,

Multiplying this equation by ¢, and integrating over the length, we have
i

1
f (EL$.)' ¢ dx = w? f pAphdx  j=1,2,3,... (4128
0 4]

The integral on the left-hand side of this equation can be integrated by parts
to yield

— EL 44

] { I
J (EL.¢7)' ¢ dx = (EL¢7) ¢,
[ o 0o
]
+ J EL ¢ ¢y dx
Q
Substituting into Eq. 128, one obtains

(EL$;)Yb| — ELJ;di

] 1 ]
+J EL ¢} dy dx
0 0 0
1
=wfj pApd dx,  j=1,2,3,... (4.129)
0

This is the general expression for the orthogonality condition of the eigenfunc-
tions of the transverse vibration of beams.

One can show that if the beam has simple end conditions such as fixed ends,
free ends, or simply supported ends, the orthogonality condition of Eq. 129
reduces to

] ]

J EL¢|¢y dx = w?} j pAP;, dx (4.130)

0o 0
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Similarly, for the kth natural frequency w,, we have

4 1
j El ¢; i’dX=wa pAS;B, dx (4.131)

0 [

Subtracting Eq. 131 from Eq. 130, we obtain the following relatinships for
the simple end conditions in the case j # k:

f pAddudx =0

,° (4.132)
j EL# ¢ dx =0
(4}
and forj =k :
f pAgtdx =m;
° (4.133)

]
[ EL#?dx = k;

[

o

where m; and k; are, respectively, the modal mass and modal stiffness co-
efficients which from Eq. 130 are related by

k= w?m, (4.134)
or
{
N j EL ¢} dx
wz = J = —Ol_—-'“* (4'135)

J
" j pAgtd

0o

If the end conditions are not simple, Eq. 129 can still be used to define
the modal mass and stiffness coefficients as demonstrated by the following
example.

Example 4.8

Obtain the orthogonality relationships of the transverse vibration of the beam
shown in Fig. 13,

Solution. 'The boundary conditions for this system are

v0,=0, POI_,
Ox
a*o(l, t
—;it(z—) = (ELv"(l, 1)) — ko

ELv"(t) + kv'(L,t) = 0
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o, E 1,1

FiG. 4.13. Transverse vibration.

By substituting these boundary conditions in the general orthogonality relation-
ship given by Eq. 129, one can verify that the orthogonality relationships for this
example are given for j # k by

j pAG b dx + mg ()i (l) = 0
0

]
[ EL¢jpidx + kgD () + k,#j()éi(D) = O

0

and forj =k
]
-[ pABtdx + mg}(l) = m
0
]
J Elz(zb}’2 dx + k¢}(1) + k,¢}2(l) =k;
0
where m; and k;, j =1, 2, 3, ..., are, respectively, the modal mass and stiffness

coefficients. Therefore, the jth natural frequency wj is defined as

1
f EL@! dx + kg2(l) + k,872(0)

0

k
a)l = ;} = T
i '[ pA$? dx + mg2(l)

0

If m, k, and k, are equal to zero, the natural frequency w; becomes the same as the
natural frequency defined by Eq. 135 for the cases of simple boundary conditions.

L—

Rigid-Body Modes Unrestrained continuous systems have rigid-body
modes. An example is the beam with free ends discussed in Example 5. It was
shown that the first natural frequency of the system is equal to zero and
corresponds to the rigid-body mode

$i(x) =c; + cpx

where ¢, and c, are constants. The expression of the rigid-body mode ¢, is
the sum of a translational and rotational motions. The rigid-body translation
is represented by the constant c¢,, while the contribution of the rigid-body
rotation is represented by ¢, = ¢;(x). In the case of pure translation ¢, =0,
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while in the case of pure rotation ¢, = 0. The general displacement of the
beam, however, is the combination of the rigid-body and deformation modes.
A rigid-body mode does not contribute to the change in the system potential
energy. In order to demonstrate this fact, we use the orthogonality condition
of Eq. 133 which is applicable to the case of simple end conditions. The modal
stiffness coefficient associated with the rigid-body mode of a beam with free
ends is defined as

!
k, = J ELg¢;" dx

Q
! 62
= J‘() EIZW(CI + sz) dx

where E, I, and [ are, respectively, the modulus of elasticity, the second
moment of area of the cross section, and the length of the beam. Clearly, the
modal stiffness coefficient associated with the rigid-body mode of the beam is
equal to zero, that is, if the beam moves as a rigid body there is no change
in the strain energy. One, however, can show using the orthogonality condi-
tions, that the modal mass coefficient associated with a rigid-body mode is
not equal to zero, since there can be no rigid-body motion of the beam with
zero kinetic energy. Since the square of a natural frequency is defined to be
the modal stiffness coefficient divided by the modal mass coefficient, the
natural frequency associated with a rigid-body mode is identically equal to
zero. In analogy with the definitions used in the analysis of multi-degree of
freedom systems, a continuous system which has a rigid-body mode is said to
be positive semidefinite, while a continuous system which does not have a
rigid-body mode is said to be positive definite. Observe from the orthogonality
conditions presented in this section for the cases of longitudinal, torsional, and
transverse vibrations, that the modal mass and stiffness coefficients must be
nonnegative numbers. In the case of a positive-definite system, both the kinetic
and strain energies must be positive for nonzero displacements, and equal to
zero only when the displacements are equal to zero. In the case of a positive-
semidefinite system, the kinetic energy of the system must be greater than zero
for nonzero velocities and equal to zero only when the velocities are zero. The
strain energy of a positive-semidefinite system on the other hand is positive
but it can be equal to zero for a nonzero rigid-body displacement.

4.5 FORCED VIBRATIONS

In this section, we use an analytical approach for developing the differential
equations of the forced vibrations of continuous systems. As shown in the
preceding sections, the vibrations of continuous systems are governed by
partial differential equations expressed in terms of variables that are space and
time dependent. In this section, the orthogonality of the eigenfunctions (mode
shapes) are used to convert the partial differential equation to an infinite
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number of uncoupled second-order ordinary differential equations expressed
in terms of the modal coordinates. These equations are similar to the equations
that govern the vibration of single degree of freedom systems.

Longitudinal Vibration It wasshown in Section 1 that the partial differ-
ential equation that governs the longitudinal forced vibration of rods is given
by
ou 0 ou
A-— = | EA— F(x,t 4.136
T 3x< 6x)+ 1) ( )
where p, A, and E are, respectively, the mass density, cross-sectional area, and
modulus of elasticity, u = u(x, t) is the longitudinal displacement, and F(x, )
is a space- and time-dependent axial forcing function.
Using the technique of the separation of variables, the displacement u can
be written as

[V]a

u(x, t) = 2, 4(x)q;(t) (4.137)

I
-

j

where ¢; is the jth space-dependent eigenfunction (mode shape) and g; is the
time-dependent modal coordinate. A virtual change in the longitudinal dis-
placement u is

du = i 4,04; (4.138)
P

Multiplying Eq. 136 by du and integrating over the length of the beam leads to

] 62 i a au ]
oudx = | —| EA— |éudx + f F(x, t)oudx (4.139)
5 ot 0 0x Ox o

Substitutmg Eqgs. 137 and 138 into Eq. 139 yields

i J [pA4(x)¢(x)di — (EA(X))4(x)qi — Q;] dx 6q; =0 (4.140)

TM&

where

Q; = F(x, t)¢;(x) (4.141)

By using the integration by parts, one has

g J ' EA,(x)¢)(x) dx (4.142)
0

0

!
J (EA4(x)) ¢j(x) dx = EAi(x)¢;(x)

o]
Substituting this equation into Eq. 140 yields

5 [i j [PAG(B()d, + EAG )0, — 0;] dx

— EA$i(x)¢i(x) qk] 69;=0 (4.143)
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Using the boundary conditions and the orthogonality relationship of the
eigenfunctions, one can show in general that

-] 1
,;1 U (pAG(X)d(x)di + EAG(x)$(x)q,) dx

— EAgi(x)¢;(x)

i
0

where m; and k; are, respectively, the modal mass and stiffness coefficients that
depend on the boundary conditions and can be defined using the orthogonal-
ity relationships of the eigenfunctions. One may substitute Eq. 144 into
Eq. 143. This yields

X, mydy + kiq; — 0,189, =0 (4.145)

Since the virtual changes éq; are linearly independent, Eq. 145 yields

These are uncoupled second-order ordinary differential equations which are
in the same form as the vibration equations of the single degree of freedom
systems. Therefore, their solution can be obtained using Duhamel’s integral
as
= t+@' wt+i— t (7) sin wi(t — 1) d
q; = qjo COS ; o sin @; o Jo Q;(7) sin w; 1) dt,

j=1,23,.. (4.147)

where g, and g, are the initial modal displacements and velocities and w; is
the jth natural frequency defined as

k.
w,:\/% i=1,2,3,...
J

Having determined q; using Eq. 147, the longitudinal displacement u(x, t) can
be determined by using Eq. 137.
In the case of free vibration, the modal force Q; is equal to zero and Eq. 146
reduces to
mg; + kiq; =0, j=1273 ...

The solution of these equations is

qj=qjocoswjt+gj—°sinwjt, j=1273,...
Q;
i)

Example 4.9

If the rod in Example 7 is subjected to a distributed axial force of the form F(x, t),
determine the equations of forced longitudinal vibration of this system.
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Solution. The boundary conditions in this example are

u(0,t) =0
2
Y _ku(Lt)—E

m
ot?

y ou(l,t)
X

which yield
$(0) =0
EA¢(Dq(t) = —kg(l)q(t) — mp(1)d(r)
That is,
$(0)4,(0) = 0
EAg(Ng(D9(0) = — k(D (Dau(t) — m(Di(Ddi(0)
The last term on the left-hand side of Eq. 144 can be written as

EAgi(x)¢(x)

!
9 = (EAg(Dg,(1) — EAL(0)¢;(0))g
0

which upon using the boundary conditions yields

1
EA$(04(x) | 4 = —kd (D (Dax — mé (1), (D
0

Therefore, Eq. 144 can be written as

© !
k; f (pAB(X)4;(X)di + EAB(x)8;(x)qs) dx + ki ()4;(1gi + méy(d;(1)ds

8

1
= [m¢u(l)¢,-(1) + f pAG(x)¢(x) dx]iik
1 0

k

i

+ kil [k¢k(1)¢j(l) + j EA(x)¢(x) dx} @

0

Comparing this equation with the orthogonality relationships obtained in Exam-
ple 7, it is clear that

8

1
[m¢k(1)¢j(l) + j pA¢k(X)¢j(x) dx] 4
1

k [

EA¢(x)¢;(x) dx] Q= myg; + k;q;

+ i [kask(lw,-u) + J

o

where m; and k; are the modal mass and stiffness coefficients defined by

m; = mp3() + f A} (x) dx

[}

{
k; = kg2(l) +f EA$A(x)dx,  j=1,23,...
(1]
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Therefore, the equations of motion of the forced longitudinal vibration of the rod,
expressed in the modal coordinates, are

quj+k14j=Qj, i=123, ..

Concentrated Loads [If the force F is a concentrated load that acts at a
point p on the beam, that is, F = F(t), there is no need to carry out integration
in order to obtain the modal forces. In this case the virtual work of this force
is given by

oW = F(t)éu(x,, t)

t)Z¢ »)94;(t)

= Zl Q,04;(t)

where Q;, j =1, 2, 3, ..., is the modal force associated with the jth modal
coordinate and defined as

Q; = F()¢y(x,)

in which ¢;(x,) is the jth mode shape evaluated at point p on the beam.

Initial Conditions As in the case of the multi-degree of freedom systems,
the orthogonality conditions can be utilized in determining the initial condi-
tions g;0 and 4,0, j = 1, 2, 3, .... Let f(x, 0) and g(x, 0) be, respectively, the
initial displacements and velocities of the rod, that is,

f(x,0) = u(x, 0) = Z #(x)q;0 (4.148)

g(x,0) = t(x, 0) Z x)djo (4.149)

Multiplying these equations by pA¢, and integrating over the length yields

! o !
f pAG(X)S( = ; [j PAG(X)4;(x) dx]qjo (4.150)

! Y !
L pAG(x)g(x,0)dx = [J PAG(x)¢;(x) dX] djo (4.151)

Jj=1 0

These two equations can be used to determine the initial modal displacements
and velocities. To this end, the orthogonality conditions may be utilized. For
example, in the case of simple boundary conditions, one has

l . .
prm x)dx—{o A
m; if j=k
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Substituting this orthogonality relationship into Egs. 150 and 151, we obtain

1 ]
djo = m. PA¢j(X)f(x, 0) dx

Y
1 1

q.jO = J‘ pA¢j(x)g(x9 0) dx .’ = 1, 2a 3’
mj 0

If the end conditions are not simple, Eqs. 150 and 151 can still be used to
solve for the initial modal displacements and velocities. For instance, if we
consider the problem of Example 7, one of the orthogonality conditions was
given by
! if j#k
if j=k

where m is the concentrated mass attached to the end of the rod. The preceding
equation may be written as

i I:m¢j(1)¢k(l)qj' + (J PAB(x)dy(x) dx) qj] =mq,

j=1 0

me (N (1) + J

0

0
pAG(x)Pi(x) dx = {
m;

which can be rewritten as
© ]
m(ul, 1) + 3, ( J pAG(x)di(x) dX) q; = mq,
7= (o]

which at t = 0 leads to

s

it

1
[J PA¢j(x)¢k(X) dx:l 9jo = MGxo — mé (1) f(l, 0)

J 0

M8

[J PAG;(x)(x) dx] 4jo = Mo — m(D)g(l, 0)

0

J

Il

Substituting these two equations into Eqs. 150 and 151, one obtains

1
o = mi[ f pABS(x, 0)dx + m ()1, 0)]

o

1
ro = ;nl—[ J pAG(X)g(x, 0) dx + m1)g(l 0)], k=1,23,...

k 0

Torsional Vibration The equation for the forced torsional vibration takes
a similar form to the equation of forced longitudinal vibration. This equation
was given in Section 2 as

2?0 0 o6
T o =_{G1. = T(x,t 4.152
pl, FTE ax( pax) + To(x, t) ( )
where p, I, and G are, respectively, the mass density, polar moment of inertia,

and modulus of rigidity, 8 = 8(x, t) is the angle of torsional oscillation, and
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T.(x, t) is the external torque which is time and space dependent. The solution
of Eq. 152 can be expressed using the separation of variables technique as

B(x, 1) = i $,04,(t) (4.153)

Following the same procedure as in the case of longitudinal vibration, one
can show that the equations of the torsional vibration of the shaft in terms of
the modal coordinates are given by

md; + kiq;=0Q;,  j=123, ... 4.154)

where m;and k; are, respectively, the modal mass and stiffness coefficients and

i

Q; =J T.(x, )¢(x) dx (4.155)
0

The solution of Eq. 154 is defined by Eq. 147. Therefore, the mathematical

treatment of the linear torsional oscillations of shafts is the same as the one

used for the longitudinal vibration of rods.

Transverse Vibration The partial differential equation of the forced
transverse vibration of the beams was given by Eq. 89 as

2 62 az
pA % - (EI, o ") = F(x, 1) (4.156)

where p, A, I,, and E are, respectively, the mass density, cross-sectional area,
second moment of area, and modulus of elasticity, v(x, t) is the transverse
displacement, and F(x, t) is the forcing function which may depend on the
spatial coordinate x and time t. By using the technique of separation of
variables, we may write the transverse displacement v as

0= 3 $x)q,0 (4.157)

Multiplying both sides of Eq. 156 by the virtual displacement v and inte-
grating over the length of the beam we obtain

! 62v ik o*v !
f |: 625v+a 2( Izﬁ)év:ldx=J‘OF(x,t)5vdx

which upon using Eq. 157 yields

>3 j [pAB(x)8,)d + (EL e} (X)) 8,(x)q154; dx

k=1

IMs

= f‘, f F(x, 1)¢;(x)éq; dx (4.158)
=t Jo
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Integration by parts yields

l

1 !
f (EL ¢ (x))"¢)(x) dx = (EL.¢/)¢;| — EL¢/ ¢ +f EL ¢/ ¢/ dx (4.159)
0 0

0

Substituting this equation into Eq. 158 and using the boundary conditions
and the orthogonality relationships of the eigenfunctions, one gets

i [m;d; + kjq; — Q;16g; =0 (4.160)

j=1

where m; and k; are the modal mass and modal stiffness coefficients that
depend on the boundary conditions and can be defined using the orthogonal-
ity of the mode shapes, and Q; is the modal forcing function defined as

!
Q= J F(x, )g,(x) dx (4.161)

0

Since the modal coordinates q;,j = 1,2, 3, ..., are independent, Eq. 160 yields
the following uncoupled second-order ordinary differential equations:

md; + ka; =0, j=1,23,... (4.162)

These equations are in a form similar to the one obtained in the preceding
section for the two cases of longitudinal and torsional vibrations.

r Example 4.10

For the system given in Example 8 obtain the uncoupled second-order differential
equations of transverse vibration.

Solution. The boundary conditions for this system are

ov(0, t)
v(0,1) =0, =
0x
o%v(l, t

T = (B0 — ko,

and
ELv'(LY) + ko' (Lt)=0

which yield

$0)=0, ¢'0)=
m@()4(t) = (EL¢" (1)) q(t) — ke ()q(1)
EL¢"(Dq(1) + k,¢'(q() =
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Substituting the boundary conditions at the fixed end into Eq. 159 yields

1 i
J (EL$/(x))'¢(x)dx = (EL.¢/)¢;| — EL&'¢;
[ 0

4 !
+f EL$ 4 dx
0o 0
= (EL ¢ (D) ¢()) — (EL#(0))4,(0) — EL ¢ (Ng}(1)
i
+ EL¢,(0)¢;(0) + J EL g ¢ dx
(1]

13
= (EL#/ ()Y 4()) — ELG (/) + [ EL g ¢ dx

Multiplying this equation by g,(t) and use the remaining boundary conditions, we
obtain

! 1
J (EL ¢/ (x))'8;(x) dxg, = (EL ¢/ (D) $()qx — EL. ¢, ()¢ (1)g, + J ElL¢/ ¢ dxq,
0 0
= me(Ng(N4,(t) + kd (N (Da(t) + k(D) (D (t)
1
+J EL ¢/ ¢ dxq,(t)
0

Substituting this equation into Eq. 158 yields
a e !
> {kZl f [pAd(x)¢(x)dilt) + EL & ¢ qu(1)] dx + my(1)4;(1)G(0)
=1 k=1 Jo

+ kg (Dg(Dau(t) + k,¢é(l)¢,-’(l)qk(t)} og; = Z F (x, )¢;(x) dx dg;

By using the orthogonality relationships obtained in Example 8, the preceding
equation can be written as

-Z. [mid; + kjq; — Q;169; =0
£
or

mg; + k;q; = Q;, j=123,..

where
rl

m;= | pAg}(x) dx + mg}(l)

o
1

ki= | ELg;*(x)dx + kg}(l) + k()
0

]

0;= 1 F(x, t)¢(x)dx
0

4.6 INHOMOGENEOUS BOUNDARY CONDITIONS

The solution of the vibration equations of continuous systems subject to
homogeneous boundary conditions, which are not time dependent, was ob-
tained and examined in the preceding sections. In this section, we discuss the
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case of inhomogeneous, time-dependent boundary conditions. To this end, we
consider the partial differential equation that governs the longitudinal vibra-
tion of bars and is given by

*u 0%

75 F(x, 1) (4.163)
subject to the initial conditions
u(x,0) =f(x),  ulx,0) = g(x) (4.164)

and the inhomogeneous boundary conditions

au(0,t) — bu'(0,t) = hl(t)}

ayu(l, t) + bu'(l, 1) = hy(2) (4.165)

where ¢, a,, a,, by, and b, are constants and h, and h, are given functions.

In order to solve Eq. 163 subject to the inhomogeneous boundary condi-
tions of Eq. 165, the problem may be reduced to one with homogeneous
boundary conditions. This can be achieved by introducing an auxiliary
assumed function W(x, t) which is twice differentiable and satisfies the boun-
dary conditions of Eq. 165. It is not necessary, however, that the function W
satisfies the partial differential equation. In terms of the new function W, the
function u(x, t) can be written as

u(x, t) = Wix, t) + Z(x, t) (4.166)

where Z(x, t) is an unknown function which will be determined. Substituting
Eq. 166 into Eqgs. 163-165 leads to

Z—c2Z"=F(x,t)— W + *W" (4.167)

subject to the initial conditions

Z(x,0) = f(x) = W(x, 0)

2(x,0) = g(x) — Wix, 0)} (@169
and the boundary conditions

a,Z0,t)— b, Z'(0, t)=0} (4.169)

a,ZLy+b,Z'(L,t)=0

Observe that Z(x, t) satisfies the new inhomogeneous partial differential equa-
tion given by Eq. 167 subject to the homogeneous boundary conditions given
by Eq. 169.

The method described in this section can be used to solve a large class of
vibration problems in which one point on the continuous media is subjected
to a specified excitation. This is demonstrated by the following example.

Example 4.11

Consider the longitudinal vibration of a bar with length .. One end of the bar is
assumed to be fixed, while the other end has a specified sinusoidal motion. If the
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initial conditions are assumed to be zero, find the series solution of the vibration
equation of this system.

Solution. The partial differential equation of the system is
u,=cu,, O<x<l >0
subject to the inhomogeneous boundary conditions
u(0,t) =0
u(l, t) = sin wt

and the initial conditions
u(x,00=0

u(x,0) =0

Observe that the function
W = W(x) sin wt

is twice differentiable and satisfies the inhomogeneous boundary conditions. Let
w = ke for some constant k. This choice of the function W satisfies the differential
equation as well as the boundary conditions. Clearly,

a*w
5+ k*W =0, Ww(0) =0, wil=1
dx
which implies that
sin kx
Wi =
0= Sk

and accordingly
Wi(x, t) = W(x) sin wt

_sinkx, ket
= sinkl e

The function u(x, t) can then be written as
u(x, t) = Z(x, t) + W(x, t)

where Z(x, t) is an unknown twice differentiable function. Substituting the preced-
ing equation into the partial differential equation, one obtains the following partial
differential equation:

Z-c*2"=0
subject to the boundary conditions
Z{0,t) =0, Z(,n=0
and the initial conditions
Z(x,0)= —W(x,0) =0

—ke sin kx

Z(x,0) = —W(x, 0) = P
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Note that in this case the boundary conditions are homogeneous, and also the
right-hand side of the resulting partial differential equation is zero because the
selected function W(x, t) satisfies the original partial differential equation. The
function W(x, t) does not have to satisfy this condition which leads in this example
to a simplified equation. The new partial differential equation in Z can be solved
by the methods described in the preceding sections. The solution u can then be
obtained using Eq. 166, and it is left to the reader to verify that
sin kx © (=1 nmx . nnct

£l = t Ty ———_*-— i — -3
u(x, t) sin kI + Lo mtc/l)’sm i sin ]

4.7 VISCOELASTIC MATERIALS

In the case of undamped free and forced vibration of continuous systems,
the effect of discrete damping elements as well as structural damping is
not considered. It is, however, clear at this point that the effect of external
damping as the result of discrete damping elements such as dashpots can be
introduced to the vibration equations by developing an expression for the
virtual work of the damping forces. Internal damping, however, is present in
most materials as the result of friction between the particles. It has been
observed that the amplitude of free vibration of a solid specimen decreases
with time even in the cases in which the specimen is isolated from any source
of external damping. Such materials are called viscoelastic. There are various
models for describing the behavior of viscoelastic materials. The simplest
model is called the Kelvin—Voigt model in which the stress acting on the body
is assumed to be proportional to the strain and its time derivative, that is,

o = E¢ + yé (4.170)

where o and ¢ are, respectively, the stress and strain and E and y are constants
that depend on the properties of the material.

In order to demonstrate the use of the simple Kelvin—Voigt model in the
vibration analysis of viscoelastic continuous systems, we consider the vibra-
tion of a uniform rod of length | and cross-sectional area A. The elastic force
acting on the rod can be written as

P=cA 4.171)
The strain displacement relationship for this simple example is given by
Lo (4.172)
0x

By using this equation, the stress of Eq. 170 can be expressed in terms of the
displacement as
ou 2%u

=E_— i 4.173
¢ E(’)x+y6x6t ( )
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Substituting this equation into Eq. 171 one obtains

ou o%u
=EA_— +yA — 4.174
il SR @174
Substituting this expression for P into Eq. 1 of Section 1, one obtains
o’u 0 ou o%u
- =—_|EAZ" + 94— F(x,t 4.175
oA ot ox (E x T 6x6t> 0 ( )

where p is the mass density and F(x, t) is the external force. If the cross-
sectional area is assumed to be constant, Eq. 175 reduces to
u 0% ou

= + bzm + F(x, 1)/pA (4.176)

e
p p

If y = 0, Eq. 176 reduces to the same equation obtained for the undamped
longitudinal vibrations of rods.
If the external forces are absent, Eq. 176 reduces to

where

u 0% , @u

OU_ 29" 2 TH 4177
a2 = S T @177

A solution of this equation can be obtained using the separation of variables
technique. To this end, we assume a solution of the form

u(x, 1) = ¢(x)q(t) (4.178)
Substituting this equation into Eq. 177 leads to
¢§ = c*¢"q + b*¢"g
= (c%q + bg)g”
This equation can be rewritten as
4 __¢
clq+b*q 4

Since the left-hand side of this equation depends on ¢ only, and the right-hand
side depends on x only, one must have

”

A

g

1 Y __p
Favbi-g- P (4.179)



240 4. Vibration of Continuous Systems

where B2 is a constant. One therefore has

§+2wd+w?*q=0 (4.180)
¢"+ B9=0 (4.181)
where
w=cp (4.182)
_bB
(=50 (4.183)

The solution of Egs. 180 and 181 in the case of lightly damped system can be
expressed as
q=X,e " sin(wgt + y,) (4.184)
¢ = X, sin(fx + ) (4.185)

where w, = w\ﬂ — &% and X, ¥,, X,, and y, are constants which can be
determined using the boundary and initial conditions as described in the
preceding sections. The use of this procedure leads to the definition of the
eigenfunctions ¢;. The general solution can then be written as the sum of the
normal modes as

u(x, 1) = Y @(x) X, 6”5 sin(wy;t + ¥y ) (4.186)
j=1
where subscript j refers to the jth mode of vibration.

Wave motion One may observe that each term in Eq. 186 is the product
of two harmonic functions, one of them depends on x only, whilst the other
depends on ¢t only. Using the definition of ¢(x) given by Eq. 185, each term in
the series of Eq. 186 can be written as

ui(x, 1) = X;; X, €75 sin(B;x + ) sin(wy;t + ¥y;) (4.187)
By using the following trigonometric identity
sin «, sin a, = ${cos(o; — a,) — cos(a; + a,)},
Eq. 187 can be written as

uj(x, ) = Aje"%°" {cos(Bix — wyjt + Y) — cos(Bix + wyjt + ¥,)}
(4.188)

where
A= 3X1; Xy

Ui = V2; — Wy (4.189)
Vpj = V2 + ¥y

The terms between the brackets in Eq. 188 represent two harmonic waves,
traveling in opposite directions with the same speed w,;/f;. The amplitude of
these two waves is multiplied by the exponential decay e™%#. Consequently,
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the amplitude of the resulting wave motion will decrease with time as the result
of the damping effect. If the damping is equal to zero, the amplitude of the two
harmonic waves remains constant. Recall from the analysis presented in Sec-
tion 1, that in the case of undamped elastic rod, harmonic waves with different
frequencies travel with the same phase velocity which is constant and equal
to ¢ = \/E/p. In this case the elastic medium is said to be nondispersive and
the group velocity is constant and equal to the phase velocity. This is not,
however, the case when viscoelastic materials are considered. The phase
velocity of harmonic waves that have different frequencies are not in general
equal. Consequently, the group velocity is no longer equal to the phase
velocity and it becomes dependent on the wave number.

4.8 ENERGY METHODS

Lagrange’s equation, which utilizes scalar energy quantities, can be used as
an alternative to the methods described in the preceding sections for the
formulation of the vibration equations of continuous systems. We demon-
strate the use of Lagrange’s equation by considering the longitudinal vibration
of rods.

It was shown, in the case of longitudinal vibration, that the solution can be
assumed, using the technique of the separation of variables, in the form

u(x, 1) = il 6,94,(1) (4.190)
P2

For simple boundary conditions, the kinetic and strain energies and virtual
work are given, respectively, by

I
T = gj pAu? dx (4.191)
0
!
U= ;J EAu'? dx (4.192)
¢}
]
SW = f F(x, t)ou dx (4.193)
(4]

Substituting for 4, u’, and du from Eq. 190 and using the appropriate orthogo-
nality conditions, the kinetic and strain energies and the virtual work can be
written as

T=13 md} (4.194)
£

U=13 ke (4.195)
£

W =Y 0,8, (4.196)
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where m; and k; are, respectively, the modal mass and stiffness coefficients, and
Q; is the generalized force associated with the jth modal coordinate. By using
the expressions for the kinetic and strain energies, the virtual work, and the
following form of Lagrange’s equation of motion,
d (6 T) oT U
a\ag,) " aq, " 2

J

=Q;, j=123,.. (4.197)

one can show that the same system of differential equations of motion deve-
loped in the preceding sections can be obtained. This system of equations is
written as

md;+kg;=0Q;, j=123,... (4.198)
Clearly, if the boundary conditions are not simple, the expressions for the
kinetic and strain energies may take a different form. For example, if a mass
m is attached to the end of the rod, the kinetic energy expression becomes

1
T=1 [ pAu?(x, t) dx + Imu(l, 1) (4.199)
JO

Similarly, if a spring of stiffness k is attached to the end of the rod, the strain
energy expression becomes

1
U= %f EAu'*(x, t) dx + tku?(l, t) (4.200)
0

In the case of torsional oscillations, the expressions for the kinetic and strain
energies in the case of simple boundary conditions are

T=1 [ pl,6%(x, t) dx (4.201)
Jo

U=} [ GJO*(x, t) dx (4.202)
vo

and in the case of transverse vibrations

T=1 [ pADA(x, t) dx (4.203)
JO

Uu=14 : Elv"?(x, t) dx (4.204)

Conservation of Energy From the analysis presented in this section it is
clear that regardless of the type of vibration (longitudinal, torsional, or trans-
verse), the kinetic energy and strain energy of the system can be written,
respectively, as

12 .
T=§Z m;g}
IS

1 & 2
U=5 Y kg
=
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where m; and k; are, respectively, the modal mass and stiffness coefficients
which can be defined using the orthogonality relationships, and g; and ¢; are,
respectively, the modal coordinates and velocities.

It was shown in the case of free undamped vibration that the modal co-
ordinate g; can be expressed in the form

g; = By;sin w;t + B,; cos w;t
which can be rewritten in another alternate form as
q; = C; sin(w;t + ;)

where B, ;, B,j, C;, and ; are constants that can be determined by using the
initial conditions.
The modal velocity g, can also be written as

4; = w;C; cos(w;t + ;)
Therefore, the kinetic and strain energies can be written in a more explicit form

as

lco
T=§Z w?C?m; cos? (w;t + )

1 &=
Jj=

Recall that k; = w}m;, and consequently, the kinetic energy can be expressed
in terms of the modal stiffness coefficients as

1

T=-
2;

nMs

jzkj cos? (w;t + )
The sum of the kinetic and strain energies can then be written as

T+U

Il
NO|
Ms

C}k; cos? (wt+|p)+ C?k-sin2 (w;t + )
J J J J

“.
L
-

It
BN =
s

Clk; [cos (w;t + ;) + sin? (w;t + ;) :I

-
1§
—

I
D]
™18

1l
-

C1'2 kj
J

That is, the sum of the kinetic and strain energies is a constant that can be
written in the following form

l o
= 2,2
T+U-= 5,-:21 C;w;m
Since both the kinetic and strain energies are nonnegative numbers, the strain

energy becomes maximum when the kinetic energy is minimum., Similarly, the
kinetic energy becomes maximum when the strain energy is minimum. The
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contribution of each mode to the total energy of the system depends on the
initial conditions as represented by the constant C;, the natural frequency of
this mode, and the modal mass and stiffness coefficients.

As discussed in Chapter 2, the fact that the energy of the system, during the
undamped free vibration, is conserved can be utilized to derive the equations
of motion. To this end, we write

d

which can be written more explicitly as

O

dil
dt[ Z(mq,+kq,):| 0

Since m; and k; are constant coefficients, taking the derivatives in the preceding
equation, one obtains

Z (m;d; + kiq;)4; =0

If we assume ¢§;,j = 1, 2, 3, ..., to be independent velocities, their coefficients
in the preceding equation must be equal to zero. This yields

quj+kj4j=0, j=1273 ..

which is the same system of equations that can be obtained using Lagrange’s
equation in the case of undamped free vibration. These are uncoupled differ-
ential equations expressed in terms of the modal coordinates. Since there is
no coupling between the modes, one may expect that there is no exchange of
energy between different modes, and as a consequence, the total energy
associated with each mode is conserved. In order to see this, the total energy
associated with an arbitrary mode j can be written as

T, + U = imq} + 3k;q}

where T; and U are, respectively, the kinetic and strain energies associated
with the jth modal coordinate. Since in the undamped free vibration, the
modal coordinates and modal velocities are harmonic functions, one has

T, = w? C?m; cos? (w;t + )
l]j = LCJ-ZkJ- sin? (w]'t + ‘/’j)
which yields

That is, the total energy associated with each mode is indeed constant.
Owing to the fact that the modal coordinates and velocities are simple
harmonics, the total energy associated with a particular mode j can be written
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as
T+ U= %cjlkj = U (4.205)

or alternatively as
’];. + UJ = %Cjzwjzmj = 'I}* (4.206)

where T;* and U are the maximum kinetic and strain energies of the mode
j. Therefore, the total kinetic energy associated with a mode is constant and
is equal to the maximum kinetic energy or the maximum strain energy.

4.9 APPROXIMATION METHODS

It is clear from the analysis presented thus far that the exact solution of the
free and forced vibration of continuous systems is represented by an infinite
series expressed in terms of the principal modes of vibration. In many applica-
tions, high-frequency modes of vibration may not have a significant effect on
the solution of the vibration equations such that the contribution of these
high-frequency modes can be neglected and the solution may be represented
in terms of a finite number of modes or in terms of assumed polynomials that
describe the shape of deformation of the continuous systems.

In this section and the following sections we discuss several approximate
methods that can be used to determine the fundamental natural frequencies
of the continuous systems. In some of these methods a finite-dimensional
model, which is in a form similar to the mathematical model that governs the
free vibration of the multi-degree of freedom system, is first developed. The
resulting reduced system of equations can be used to determine a finite set of
natural frequencies and mode shapes.

We shall present first an approximate method, called Rayleigh's method,
that can be used to determine the fundamental natural frequency of the
continuous systems. Recall from the analysis presented in the preceding
section that in the case of free undamped vibration, the energy associated with
any mode of vibration is conserved. The sum of the kinetic energy and strain
energy of a mode remains constant and equal to the maximum kinetic energy
or equal to the maximum strain energy. Consequently, for the jth mode of
vibration, the conservation of energy in the case of undamped free vibration
leads to

T* = U¥, =123, ... (4.207)
where T;* and U* are, respectively, the maximum kinetic and strain energies
associated with mode j. By using Egs. 205 and 206, it is clear that the natural
frequency of the jth mode can be defined using the following equation

k.
0} =2 =2, j=123,... (4.208)

where T* = w? ’I_}"‘. Note that in the case of longitudinal vibration, the preced-
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ing equation and Eq. 120 yield

]
j EA¢/*(x) dx — EA4]*(x)l},
2 4]

w? = j, (4.209a)

pAGH(x) dx
0

where E, p, A, and [ are, respectively, the modulus of elasticity, mass density,
cross-sectional area, and length of the rod. In the case of simple end conditions,
Eq. 209a reduces to

1
f EA¢*(x) dx
2 0

wf =29 (4.209b)
i pPAH(x) dx
1]

In the case of transverse vibration, the conservation of energy of the mode
j and Eq. 208 lead to

I
j Elz¢j”2 dx + [(EL¢)¢; — EIz¢j”¢j,]lIO
2o J0 (4.210a)

Wy = i
J‘ pA@} dx

0

where E, p, I,, and | are, respectively, the modulus of elasticity, mass density,
moment of inertia of the cross section, and length of the beam. In the case of
simple end conditions, Eq. 210a reduces to

]
f EL¢}* dx
0} = (4.210b)
f pAP} dx

0

Note that the numerators in Eqs. 209a—-210b are proportional to the strain
energy of mode j while the denominator is proportional to the kinetic energy
of that particular mode. The expressions on the right-hand side of these
equations are called Rayleigh quotients.

In many practical applications, it is difficult to determine the exact mode
shapes. Nonetheless, due to the fact that in many of these applications the
shape of the first mode is simple, a guess, with reasonable degree of accuracy,
can be made for a shape that resembiles the first mode. In this case the Rayleigh
quotient can be used to determine an approximate value for the fundamental
natural frequency. In order to demonstrate this procedure, let us consider the
case of a cantilever beam and choose the following function to approximate
the fundamental mode shape

— X
¢ = b(l — cos f) (4.211)
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where b is a constant. Since we have simple end conditions in the case of a
cantilever beam, the Rayleigh quotient of Eq. 210b can be used to obtain an
estimate for the fundamental natural frequency ,. Substituting Eq. 211 into

Eq. 210b, one obtains
i _ [ TT.Z X 2
L EL@/*(x)dx . L El, <412 Ccos f) dx

z6f= 1 _ =TI 1\ 2
J pAP?(x) dx I pA(l — cos ﬁ) dx

0 0

w? (4.212)

where @, is the approximate fundamental natural frequency. If we assume the
case of a uniform beam which is made of homogeneous material, one can show

that Eq. 212 leads to
. 3.667 [EI,
wl = Wy x 72—* p—A

The exact fundamental natural frequency of a cantilever beam is

3.5156 [EI,
w0, =25 /p_A 4.213)

This equation shows that the error in the solution obtained by using the
approximate Rayleigh method is less than 5%,.

The assumed mode of Eq. 211 satisfies all the geometric boundary condi-
tions at the clamped end, but satisfies only one of the natural boundary
conditions at the free end (¢”(l, t) = 0). In Rayleigh’s method, the assumed
functions must satisfy only the geometric boundary conditions, it is not
necessary that these functions satisfy the natural boundary conditions. The
error in the fundamental natural frequency obtained using the Rayleigh
quotient becomes smaller if the integrals

1
f EL($;> — 47?) dx
0
and
3
J pA(d7 — 47) dx
0
are small.

The use of the Rayleigh quotient to predict the fundamental natural fre-
quency always leads to an approximate eigenvalue which is higher than the
exact one, that is, (0; — w,) is always greater than or equal to zero. In order
to prove this result, let the assumed eigenfunction of the beam have an

arbitrary shape that can be represented as a linear combination of the exact
eigenfunctions, that is

G = ¢y + by +

a0
= Z ¢
i=1
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where a;,j = 1,2,..., are constants. In this case, the Rayleigh quotient for the
beam can be written as

1
J EL#}*(x) dx
R = ;

pAP* dx
0

[,
(

which upon using the orthogonality conditions leads to

s

o]
]

2
a,.¢,."> dx

2
,~¢,~> dx

(=]
il
-

o

I
o 2
°
b
™Ms

[}
—

a0 Q0
L Eaein
a0 0

Since w, < w, < '--, and the modal mass coefficients are always positive, one
has

0
2 .2, 2 2
Goim; o) ofm

8

[]

R="

a0
2
L %M

v

J
This equation indicates that the exact fundamental natural frequency is indeed
the minimum of the Rayleigh quotient, and any assumed shape for the funda-
mental mode will lead to an approximate value for the natural frequency that
is higher than the exact one. This fact can be demonstrated by using another
example. We consider again the case of a cantilever beam and assume the
fundamental mode to be the static deflection of the beam. In this case the
function @, can be chosen as

. = b[x* — 4lx® + 612x]

where b is a constant defined as
_ A
T 24El

It follows that B
@; = b[4x> — 12Ix? + 121%x]

dr = 12b[x? — 2Ix + 1%]
Substituting ¢, and ¢; into the Rayleigh quotient of Eq. 210b, one obtains

353 [EL
W, T W, =? p7
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Comparing this estimated value with the exact solution of Eq. 213, it is clear
that the error in the estimated fundamental natural frequency, using the static
deflection as the assumed mode, does not exceed 0.5%,.

Effect of the Rotary Inertia The Rayleigh quotient can be used to
examine the effect of the rotary inertia on the fundamental frequency as well
as higher natural frequencies. To this end, we consider the same example as
the one discussed in Dym and Shames (1974). We have previously shown that
the exact eigenfunctions of a simply supported beam are given by

Jjrx

¢j=sin T j=12,... (4.214)
In this case, one has
{ { . 3
¢} (x) dx = sin2 ] dx = 1
o 0 l 2
1 . 2 { : 52
J 8/2(x) dx = (’%‘) [ coszjnTx dx = (’;l) | 4.215)
0 Jo
! . 4 1 .
"2 ]7[ . jﬂx (]7[)
J:) ¢ (x) dx = (T) L sin? T dx = 2

The Rayleigh quotient that accounts for the effect of the rotary inertia can be
written for mode j as

4
f EL¢? dx

2 _

Wj = 77 I
[ pAP} dx +f pl,¢;* dx
Jo

4.216)

Assuming the case of a uniform beam with constant modulus of elasticity and
using the identities of Eq. 215, one obtains

El (’”2
e 20
T (jm)?
A
pAZ + Pl

which can be written as
2 EL(jm*/pAl*

W= =-—
J s j 2.2\ /p\2
12 )\1
where h is the height of the cross section.
The exact natural frequency w;, neglecting the effect of the rotary inertia, is

o, = (7Y [EL 4218
i =\T oA (4.218)

(4.217)
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The fundamental natural frequency obtained by including the effect of the
rotary inertia is given by Eq. 217 with j = 1 as

E 4 4
o = ELT/pAl” (4.219)

G0

Clearly, in the case of a long thin beam ((h/l) « 1), the effect of the rotary
inertia on the fundamental mode of vibration is not significant as compared
to the frequencies of higher modes of vibration.

Rayleigh—Ritz Method Inthe Rayleigh method discussed in this section,
the fundamental natural frequency of the system was predicted by assuming
an approximate shape for the first mode. The Rayleigh—Ritz method can be
considered as an extension of the Rayleigh method. It allows us, not only to
obtain a more accurate value of the fundamental natural frequency, but also
to determine the higher frequencies and the associated mode shapes.

In the Rayleigh-Ritz method, the shape of deformation of the continuous
system is approximated using a series of trial shape functions that must satisfy
the geometric boundary conditions of the problem. The shape of deformation
of the continuous system can be written as

w(x) = ¢4, (%) + C28,(x) + = + €, B,(x)

- ; ¢H(x) (4.220)

where ¢@,, @,, ..., and ¢, are the trial shape functions which can be the
eigenfunctions, a set of assumed mode shapes, or a set of polynomials, and

€15 €35 - -, €, are constant coefficients called the Ritz coefficients. In Eq. 220,
the functions ¢, , ¢, ..., and ¢, are assumed to be known, while the coefficients
¢, ¢y, ..., and ¢, are adjusted by minimizing the Rayleigh quotient with

respect to each of these coefficients. This procedure leads to a homogeneous
system of n algebraic equations. For this system of equations to have a
nontrivial solution, the determinant of the coefficient matrix must be equal to
zero. This defines an equation of order n in w?, and the roots of this equation
define the approximate natural frequencies, ®,, w,, ..., and w,. These ap-
proximate natural frequencies can be used to determine a set of approximate
mode shapes for the system. By using this procedure, the continuous system
which has an infinite number of degrees of freedom is represented by a model
which has n degrees of freedom. The accuracy of the finite-dimensional model
in representing the actual infinite-dimensional model depends on the choice
of the trial shape functions.
We have shown previously that the Rayleigh quotient can be written as

U*
T

w? =R 4.221)



4.9. Approximation Methods 251

where, by using the expression of Eq. 220, T* and U* can be written as

T % ¥ 5m (4.222)
ve=1¥ Z kit (4.223)
2458 45

where m;; and k;; are mass and stiffness coefficients that depend on the shape
functlons For example, in the case of longitudinal vibration of a rod with
simple boundary conditions, the mass and stiffness coefficients are

1 —
m'.j = J:) pA&_‘JJ dx and k,‘j = J‘o EAJ;-'(”,—’ dx

whereas in the case of transverse vibration of a beam with simple boundary
conditions, the mass and stiffness coefficients are

I

{
my; = L pAgpdx  and k= L EL @@/ dx

Note that if the shape functions are chosen such that they satisfy some
orthogonality relationships, the mass coefficients m;; or the stiffness coeffi-
cients k;; can be equal to zero if i # j.

By usmg matrix notation, Eqs. 222 and 223 can be written as

T* = 1c™™c (4.224)
U* = 1c"Ke (4.225)

where M and K are, respectively, the system mass and stiffness matrices, and
¢ is the vector of Ritz coefficients defined as

c=[c; ¢ - ]

Substituting Eqs. 224 and 225 into the Rayleigh quotient of Eq. 221, one
obtains

U* ic'Ke

R===1+5—- .

T* $c'™c (4.226)
In order to minimize the Rayleigh quotient with respect to the Ritz coefficients,
we differentiate R with respect to these coefficients and set the result of the
differentiation equal to zero. This leads to

_. oU* oT*
T* — U*
OR Jc de
—_— = — = 0
de [T*])?
That is
T* ou* - U* 6_Ti =
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which upon dividing by T* and using Eq. 221, one obtains
ou* ,0T* _

S 0 (4.227)
Observe that
ou* | aT*
e % e =M
and, consequently, Eq. 227 leads to
[K - w*M]c=0 (4.228)

This is a system of n algebraic homogeneous equations that has a nontrivial
solution if the determinant of the coefficient matrix is equal to zero. That is

K — 0?M| =0 (4.229)

This leads to a nonlinear equation of order n in 2. The roots of this equation
define the system natural frequencies w?, w?, ..., w?. Associated with each
natural frequency, w;, there is a vector of Ritz coefficients ¢; which can be
determined to within an arbitrary constant by solving the equation

[K — o}M]c; =0 (4.230a)
which can be written more explicitly as
(ky, —wjzm“) (kll-wjzmlz) (ku—wjzmu) € 0
(kyy “'wjzmzl) (kzz—wjzmzz) (an—wjszn) Cy - 0 ’
(kyy — 02me) (ks — 02my) - (= 0?my) [ 0], [0
j=12...,n (4.230b)

The approximate mode shape associated with the frequency w; can be ob-
tained by using Eq. 220 as

wi(x) = 61;51 (x) + C2j$2(x) + -+ C..,«Z,.(X)
= Z ijak(x)’ .’= ]’27---7’1 (4231)
k=1
Once the natural frequencies and mode shapes are determined, the continuous
system which has an infinite number of degrees of freedom can be represented
by an equivalent multi-degree of freedom system. In this case, the vibration of
the continuous system can be described using the separation of variables as

w(x, t) = Z wi(x)q;(t) (4.232)

where q;(t),j = 1, 2, ..., n, are the time-dependent coeflicients.
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It can be shown that if the assumed shape functions happen to be the exact
eigenfunctions, the Rayleigh—Ritz method yields the exact natural frequencies
and the exact mode shapes. In order to demonstrate this, let us consider the
case of a simply supported beam with a uniform cross section and constant
modulus of elasticity. We choose the shape functions to be the exact eigenfunc-
tions and consider the case in which the number of Ritz coefficients is equal
to three, that is

#i(x) = sin Jmx

X 1,23
7

The mass coefficients m;; and the stiffness coefficients k;; are
- m/2 ifi=j
= Ad.d dx =
I . 4 3 . . .
S (in)*EL/2I° fi=]
k.= | EL3" " dx =

where m = pAlis the total mass of the beam. The matrices M and K are given
by

100 J1 o o
M=%’010, K=£%§—0160
00 1 0 0 8

Substituting the matrices M and K into Eq. 229, one obtains
1-8 0 0
0 16 — 0 =0
0 0 81—-p
where f = w?(ml3/El,n*). The preceding equation leads to

(1-p)16 - )81 —p)=0

It is clear that the roots of this equation are

B=jt

which define the three fundamental natural frequencies of the beam as

. [EL .
wj=(.’n)2 ;;Jiy ]J= 1, 2;3

These are the same as the exact natural frequencies of the simply supported
beam. The Ritz coefficients associated with each natural frequency can be
obtained by using Eq. 230 which can be written for this system as

1-—[3j 0 0 Cy;
0 16——/31- 0 ;i |=10

0 0 81— B || cs
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The solution of this equation for j = 1,2, 3 is

C11 0 0
cl = O s CZ = sz s C3 = 0
0 0 Ci3

Therefore, the first mode shape is

wi = ¢y, 6,(x) + 218,(x) + €31 65(x)

- . X
=ch(x) =cyy SmT

Similarly, the second and third mode shapes are

. 2mx
W,(X) = ¢, Sin ——

{

. 3nx
Wi(X) = ¢35 sin ——

l
Which are the exact eigenfunctions.

Example 4.12

Consider the case of a cantilever beam which has a uniform cross-sectional area
and a constant modulus of elasticity. Assume that the shape of deformation of the
beam is in the form _ B

w(x) = ¢,¢,(x) + c,6,(x)

where B B
#(x) = ¢ and $(x) =&
where ¢ = x/l and [ is the length of the beam. The assumed shape functions @, (x)

and ¢, (x) satisfy the geometric boundary conditions, that is, the deflection and slope

are equal to zero at the fixed end (x = I). _
Using the assumed shape functions ¢, (x) and ¢,(x), the mass coefficients are

1 !
my, = j PAGE(x) dx = J pAL* dx

0 0
t m
4
= de="_
L méE* dE 5

1
my; =my = j pAJI(X)%(X) dx = J mé® d&

0 0

o3

1

!
mz; = [ PAB3(x) dx = j mge df =

Jo o

~| 3

where m is the total mass of the beam.
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Similarly, the stiffness coefficients are

b= [ endorac= [/ e[} i
=J1E11[2] a= "2k
Ky, =ky, = J" EL#{(x)4;(x) dx =_[ El [14 o op
f . 1[125] d':_GEI
0
ks = I' EL§} () dx = f‘ El l:llz 52:g§x)] dx

272
)

Therefore, the matrices M and K can be defined as

11 ELL|4 6
_ 5 6 =_i
M"”[% %]’ = [6 12]

Substituting these two matrices into Eq. 229, one obtains

0, awx)] i

4—B/5 6—p/6|
6-—p/6 12—-p/7|
where
mi3
F=otg

z

One, therefore, has the frequency equation

(-3

which yields the quadratic equation
% — 12248 + 15120 =0

This equation has the roots
B, = 12.4802, B, = 1211.51981

From which the first two fundamental frequencies can be determined as

EI, El,
0, = 353273 |5 w, = 348069 [

255

The exact fundamental natural frequency is 3.5156 /EI,/ml3. The error in the
frequency estimated using the Rayleigh—Ritz method is less than 0.5%,. The exact

value of the second natural frequency of the cantilever beam is 22.0336

EL/ml*.

Therefore, the error in the second natural frequency is about 58%,. A significant
improvement in the second natural frequency can be obtained by increasing the

number of shape functions.
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4.10 GALERKIN’'S METHOD

Galerkin’s method is a technique used for obtaining an approximate solution
for both linear and nonlinear partial differential equations. In order to apply
Galerkin’s method an approximate solution for the displacement field is first
assumed. Since this approximate solution is not, in general, the same as the
exact solution, substitution of the assumed solution into the partial differential
equations and the boundary conditions leads to some error called a residual.
In Galerkin’s method, the criterion for selecting the assumed solution is to make
the error small. In order to demonstrate the use of Galerkin’s method, we write
the partial differential equations of the systems discussed in this chapter in the
following general form

D(w(x, 1)) — F(x,t) =0 (4.233)

where F(x, t) is an arbitrary forcing function and D(w(x, t)) is a function that
depends on the type of the problem considered. For example, in the case of
longitudinal vibration of rods, the function D(w(x, t)) is given by

0*u 0%u
D(W(x, [)) = af — Cz 5-2

where in this case w(x, t) = u(x, t) is the longitudinal displacement of the rod,
and D is the differential operator defined as

? 8
= — — C"——
or? ox?

and ¢ = \/ E% Similar definitions can be made in the case of the torsional
oscillation of shafts. In the case of transverse vibrations of beams, the function
D(w(x, t)) can be recognized as
D(w(x, 1)) 62v+ , 0%
) =5+t
WX or? ox*

where w(x, t) = v(x, t) is the transverse displacement of the beam, ¢ =
V EL/pA, and D is a differential operator that can be defined as
02 o*
=Y L2
D=Ga+e 5
In Galerkin’s method the unknown exact solution w(x, ) is approximated
by the function w(x, t} which can be written as

W(x, 1) = Zl 8,(x)a,(0) (4.234)

where @-(x) are assumed shape functions and g;(t) are unknown coordinates
that depend on time. The assumed functions #;(x) are chosen to satisfy the
boundary conditions of the problem. Due to the fact that the assumed approxi-
mate solution is not the same as the unknown exact solution, Eq. 234 will not
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satisfy the partial differential equation of Eq. 233, that is
D(w(x, t)) — F(x,t) #0
Therefore, the preceding equation can be written as
D(w(x, 1)) — F(x,t) = R, (4.235)

where R, is the residual or the error that results from the use of the ap-
proximate solution. By taking a virtual change in the assumed approximate
solution of Eq. 234, one obtains

ow(x, 1) = }_j (x) 84(t) (4.236)

Multiplying both sides of Eq. 235 and integrating over the solution domain
yields

n ! _
D { J [D(W(x, 1)) — F(x, ) — R.]4(x) dx} 0g,(t) =0
Jj=1 0

Since the coordinates g;(t) are assumed to be linearly independent, the preced-
ing equation yields
]

j' [D(W(x, 1)) — F(x, )](x) dx = J Rg(x)dx, j=1,2,...,n (4237

0 0

In Galerkin’s method, the assumed shape functions Jj(x) are chosen such that

!
I R.g(x)dx~0, j=12..n (4.238)

0

Consequently, Eq. 237 yields n differential equations which can be written as

f ' [D(W(x, 1) — F(x,)]4(x)dx =0, j=1,2,...,n (4.239)

It is clear that in Galerkin’s method the assumed shape functions Jj(x) can be
considered as weighting functions selected such that the error R, over the
solution domain is small. Consequently, Galerkin’s method can be considered
as a special case of the weighted residual techniques. In the weighted residual
techniques there are broad choices of the weighting functions or error distribu-
tion principles, whereas in Galerkin’s method the weighting functions are
selected to satisfy the criterion of Eq. 238.

—

Example 4.13

In order to demonstrate the use of Galerkin’s method, we consider the longitudinal
forced vibration of a prismatic rod. The governing partial differential equation of
the system is
%u 0%u

EA—— = F(x, 1)

A —
P ox2
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We assume a solution in the form

i(x, 1) = $,(x)q,(1) + B2(x)q,(0)
where
f=1-¢& ) =¢
in which & = x/I. It follows that
Sii(x, 1) = @, g, + ¢, 0q,
Multiplying both sides of the partial differential equation by & and integrating

over the volume, we obtain

! % o _
f . I:pA Fri EA a2 F(x, t)] Siidx =0 (4.240a)

The first term in Eq. 240a represents the virtual work of the inertia forces and can
be written as

Pooot ST I -
'[ PAW(S“ dx = J pAld1d: + ,d,1(¢, 09, + ¢, 0q,] dx
0

0

which can be written using matrix notation as
i 62‘7
'[ pA P S dx = §"™M éq (4.240b)
1]
where q = [q, q,]", and M is the mass matrix defined as

! ¢#? 47152] [%
= _ - dx =
M L"A[m P73 R

where m = pAl is the mass of the rod.
The second term in Eq. 240a represents the virtual work of the elastic forces. This
term can be integrated by parts to yield

Wi N[
|

1 62— a— ]
—J EAS S 6tdx = —EA— ou
o Ox 0x

' oud
EA_——(ou)d
0+L 6x(?x( ) dx

While this equation automatically accounts for any set of boundary conditions, in
this example, for simplicity, we consider simple boundary conditions. Consequently

1
=0

0

o __
EAaéu

One, therefore, has

1 2= 1 7
—f £a % sudx =f EaZ% 2 (sa) dx
o O 0x

x ° dx

- j EAW 4, + G021 (%00, + B 6031 dx

=q'K 3q (4.240¢)
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where the stiffness matrix K is defined as

CoTE R, EA[ 1 -1
hLEA[J;J; J;]dx‘T[—l 1]

The third term in Eq. 240a is the virtual work of the external forces and can be
written as

I 1
—J F(x,t)dudx = — J F(x,0)[$, 69, + ¢, 6q,] dx
0 0

=0, 69, + Q, 94,

in which

1
0, = —j F(x, )8, (x) dx

0

l
Q= —J F(x, 1)¢,(x) dx
V]
One can then write the virtual work of the external forces as

1
- 'f F(x, t) 07 dx = QT 4q (4.240d)

0o

where

Q=[0, ¢,

Substituting Eqs. 240b—d into Eq. 240a, one obtains the differential equations of
the rod written in a matrix form as

[i™+qK-Q"]éq=0

Since the components of the vector q are assumed to be linearly independent, the
preceding equation leads to

Mg+ Kq=Q

which can be written more explicitly as
S B I MR
s 3114> -1 1]l9: Q;

411 ASSUMED-MODES METHOD

The assumed modes method is closely related to the Rayleigh-Ritz and
Galerkin methods discussed in the preceding sections. In fact, it leads to the
same dynamic formulation as Galerkin’s method if the same assumed dis-
placement field is used. In the assumed modes method, the shape of deforma-
tion of the continuous system is approximated using a set of assumed shape
functions. This approach can be used in the dynamic analysis of structures
with complex geometrical shapes and complex boundary conditions. For such
systems, it is difficult to determine the exact eigenfunctions. If, however, the
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deflected shape of the structures resembles the shape of deformation of some
of the simple systems as the ones discussed in this chapter, the eigenfunctions
of the simple systems can be assumed as the shape functions of the more
complex structure. Another alternative is to use experimental testing to de-
termine the shape of deformation by measuring the displacements at selected
nodal points. The shape of deformation between these selected nodal points
can be defined using polynomial functions. As was shown in this chapter, the
vibration of continuous systems can be represented in terms of an infinite
number of vibration modes. Each of these modes can be excited independently
by the use of appropriate initial conditions or forcing functions. Therefore,
the determination of the shape of the fundamental modes of vibration by
experimental measurements is possible. In fact, the use of modal testing to
determine the mode shapes and natural frequencies of continuous systems is
an integral part in the design of many mechanical systems. In addition to
the mode shapes and natural frequencies, modal testing also provides the
modal stiffness, mass, and damping coefficients associated with these modes.
By using these coefficients, a finite-dimensional model can be developed for
the continuous systems.

Let us assume that the shape functions that define the deflected shape of
the continuous system can be obtained experimentally or by inspection. In
terms of these shape functions, an approximation for the displacement field
can be assumed as

wix, 1) ~ );1 8,04,(1) (4.241)

where w(x, t) = u(x, t) in the case of longitudinal vibration, w(x, t) = 0(x, t) in
the case of torsional vibration, and w(x, t) = v(x, t) in the case of transverse
vibration, q@-(x) may be the jth eigenfunction or an assumed polynomial, g; is
a time-dependent coordinate, and n is the number of elastic degrees of freedom
used in the assumed solution. By using a finite number of terms in the solution,
the kinetic energy and strain energy can be written as

n n

T= %Z My g4y (4.242)
j=1 k=1
U=1%) 2 kud;d (4.243)

-
il

—

x=
fl

1

The equations of vibration can be developed using these energy expressions
and the following form of Lagrange’s equation:

1<£>—al+€9=gj, j=1,23...,n (4.244)
dt\0q; 0q; 0q;

This procedure leads to the following n ordinary differential equations of
motion:

k; (mjdy + kpay) = Q;, ji=123,...,n (4.245)



4.11. Assumed-Modes Method 261

These equations can be written compactly in a matrix form as
Mj+Kq=Q (4.246)

where M and K are, respectively, the n x n mass and stiffness matrices,
q=1{q: 9; ... 9,17 is the vector of generalized coordinates, and Q =
[Q: O, ... Q,]" is the vector of generalized forces. The preceding matrix
equation is in a form similar to the matrix equation of the multi-degree of
freedom systems, and therefore, the techniques discussed in the preceding
chapter can be applied to obtain a solution for this matrix equation. Clearly,
Eq. 246 represents an equivalent finite-dimensional model for the infinite
degrees of freedom continuous system. An equivalent single degree of freedom
model can be obtained if n is equal to 1. The use of this coordinate reduction
procedure is demonstrated by the following example.

Example 4.14

If the transverse vibration of a beam with one end fixed and the other free is
approximated by

v(x, 1) = 1(x)q, (1) + $,(x)q,(1)
where

$i(x) =32 - 2¢°
800 = 1E° - &%)

in which [ is the length of the beam and ¢ = x/I, obtain the matrix equation of
motion of this system.

Solution. The displacement and velocity of the beam can be expressed as

v ) =[5 $)] ["“"]
q,(t)

5,0 =[50 FB] [‘?“”]
4,(t)

Also

V) = [F) F0] ["""]
q,(1)

_ E _ g _ q,(t)
[0 -2 fee-v][50]

Therefore, the kinetic energy and strain energy are given by

1
T=1 J pADtdx = 1 §™q
0

]
U=1i J Elv"%dx = 1q"Kq

0
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where q = [, 9,]" and M and K are the mass and stiffness matrices defined as

i b
M= 1 2] dx = -
f pA[ ]W #:] dx [ [¢z¢1 ¢ :Idx

1 _
| 13 11/210
—111/210  1%/105

1 T _ _ 1 Tn2 T qn
K = f El[%} [F #1dx= f El[—,,‘ , —,‘,zz] dx
JO 2 JO ¢2 ¢l 2
_EI 12/12 -6/l
0| -6 4
The virtual work of the external force is

1 1
oW = f F(x,t)avdx=f F(x, [, $z][6q']dX=[Q. Qz][éq']
0 oq,

0

where

1
Q.= J F(x, t)‘;l dx
0

!
Q= J F(x, t)‘;z dx

]

Therefore, the matrix equation for the equivalent two degree of freedom system can
be written as

ul s —wolfa ] Bl e —emfa]|_[e
P o 0 ||, | T T -6 4 (g, 0,

Problems

4.1. Determine the equation of motion, boundary conditions, and frequency equation
of the longitudinal vibration of the system shown in Fig. P1, assuming that the
rod has a uniform cross-sectional area.

4.2. The system shown in Fig. P2 consists of a uniform rod with a spring attached
to its end. Derive the partial differential equation of motion and determine
the boundary conditions and frequency equation of the longitudinal vibration.

o, E Al pE AL

FiG. P4.1 FiG. P4.2



4.3.

4.4.

4.5.

4.6.

4.7.

48.

49.

4.10.

Problems 263

pE Al
m
% . M s i
FiG. P4.3 FiG. P4.4

Obtain the equation of motion, boundary conditions, and frequency equation of
the system shown in Fig. P3.

Determine the equation of motion, boundary conditions, and frequency equation
of longitudinal vibration of a uniform rod with a mass m attached to each end.
Check the fundamental frequency by reducing the uniform rod to a spring with
end masses.

Derive the equation of motion of longitudinal vibration of the system shown in
Fig. P4. Obtain the boundary conditions and the frequency equation for the case
in which k, = k, = k.

Determine the equation of motion, boundary conditions, and natural frequencies
of a torsional system which consists of a uniform shaft of mass moment of inertia
I and a disk having mass moment of inertia I, attached to each end of the shaft.

Determine the equation of torsional oscillation of a uniform shaft with one end
fixed and the other end attached to a disk with inertia I,. Obtain the boundary
conditions and the frequency equations.

Obtain the equation of torsional oscillation of a uniform shaft with a torsional
spring of stiffness k attached to each end.

Derive the partial differential equation of the torsional oscillations of a uniform
shaft clamped at the middle and free at the two ends. The shaft has length I,
modulus of rigidity G, mass density p, and cross-sectional area A.

For the system shown in Fig. P5, obtain the partial differential equation of the
longitudinal vibration, the boundary conditions, and the frequency equation.

piEy AL

NN

01, Ez, Ay, I

Fi1G. P4.5
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4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4. Vibration of Continuous Systems

Check the results by letting the two rods have the same dimensions and by
comparing with the results obtained by solving problem 1.

Determine the equation of transverse vibration, boundary conditions, and fre-
quency equation of a uniform beam of length / clamped at one end and pinned
at the other end.

Obtain the frequency equation of the transverse vibration of the beam shown in
Fig. P6.

0, E 1,1

ké k,

FiG. P4.6

A uniform rod which is fixed at one end and free at the other end has the following
initial conditions:

u(x, 0) = A4, sin

u(x,00=0

X
1

2

Obtain the general solution of the longitudinal vibration.
Repeat Problem 13 for the following initial conditions:
u(x,0) =0
nx
i(x,0) = ¥, sin —
u(x, 0) o sin 51

For the system of Problem 13, examine the validity of using the initial conditions

(x, 0) = A, cos
X = —_
u(x, 0021

u(x,00=0
What is the expected solution? Comment on the results.

A uniform shaft which is fixed at one end and free at the other end has the
following initial conditions:

nnx
B(x, 0) = A, sin ——
(x, 0) o Sin T

0(x,0)=0

where n is a fixed odd number. Obtain the solution of the free torsional vibration
of this system.
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4.18.

4.19.

4.20.

421.

4.22.

423
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Repeat Problem 13 in the case where the initial conditions are given by
u(x,0) = Agx
u(x,00=0
Repeat Problem 16 by considering the following initial conditions:
0(x, 0) = Ay(x + x?)
f(x,0) =0

For a uniform rod with both ends free, obtain the solution for the longitudinal
vibration if the initial conditions are given by

nnx

u{x,0) = A, cos ;
u(x,0)=0
Repeat Problem 19 using the following initial conditions:
u(x, 0) = Ayx?
u(x,0)=0
Comment on the validity of using these initial conditions.

A uniform rod with one end fixed and the other end free is subjected to a
distributed axial load in the form

F(x, t) = x sin 5t

Determine the response of the system as the result of application of this forcing
function.

p. E Al

F(t)
1

FiG. P4.7

Determine the response of the system shown in Fig. P7 to the concentrated
harmonic forcing function F(r).

rEAL F(t) = Fy sin oyt
Z —

FiG. P4.8

The system shown in Fig. P8 is subject to a concentrated axial force at the mass
attached to the end of the rod. Determine the response of this system to this end
excitation.
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4.24.

4.25.

4.26.

4.27.

4.28.
4.29.

4.30.

431
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p, E Al p. G 1, ! 1y

fwn

F—p y = Y, sin w;t

T= T, sin w;t

Fi1G. P4.9 Fi1G. P4.10

Determine the response of the system shown in Fig. P9 to the harmonic motion
of the support.

Determine the response of the torsional system shown in Fig. P10 to the har-
monic torque excitation.

Repeat Problem 22 if the forcing function F(t) is the periodic function shown in
Fig. P11.

Determine the response of the beam shown in Fig. P12 to the forcing function
F(t) = F, sin axt
Repeat Problem 27 if F(t) is given by the periodic function defined in Problem 26.

The system shown in Fig. P13 consists of a uniform beam with one end pinned
and the other end free. Determine the response of this system to the harmonic
support excitation.

Repeat Problem 22 if the force F(¢) is given by the rectangular pulse shown in
Fig. P14.

If the longitudinal displacement of the system of Problem 22 is represented by

u(x, 1) = ¢,(x)q; + $2(x)q;

where
. WX . 3nx
#y(x) = sin 57, $,(x) = sin 1
F(r) &
Fy __ a
< F(t)
»:
0 T2 T| 312 2T 4 7
7 pEII
FiG. P4.11 F1G. P4.12
p. E 1,1

] ]

FiG. P4.13
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4.33.

4.34.

4.35.

4.36.

4.37.

4.38.

Problems 267

Fo

15

FiG. P4.14

and g, and g, are time-dependent coordinates, obtain the matrix equation that
governs the forced vibration of this system.

Repeat Problem 31 if
$:(x) =0, $a(x) = x

Obtain the solution of the longitudinal vibration of a uniform rod with one end
fixed and the other end condition is

u(l,t) = d cos wt
where d is a constant. Assume zero initial conditions.

By using the Rayleigh-Ritz method determine the natural frequencies and mode
shapes of a beam with free ends. Assume that the modulus of elasticity and the
cross-sectional area of the beam are constant. Use the following assumed function

D(x) = c; + c3x + c3x* + ¢ x°

Compare the results obtained using the Rayleigh-Ritz method and the exact
solution.

Determine the natural frequencies and mode shapes of the system shown in Fig.
P2 using the Rayleigh—Ritz method. Assume that the trial functions are the exact
eigenfunctions of a rod with one end fixed and the other end free. Consider the
two cases in which n = 2, 3. Plot the approximate mode shapes and compare the
results with the exact ones.

Repeat Problem 35 assuming that the trial function is:
ux) =y, ¢x’
i=1

Comment on the results.

Using Galerkin’s method obtain a three degree of freedom mathematical model
that represents the system of Problem 34. Use the mode shapes obtained in
Problem 34 as the assumed shape functions.

Use Galerkin’s method to obtain a two and three degree of freedom mathemati-
cal model for the system of Problem 35. Use the mode shapes obtained in
Problem 35 as the assumed shape functions.



5
The Finite-Element Method

The approximate methods presented at the end of the preceding chapter for
the solution of the vibration problems of continuous systems are based on the
assumption that the shape of the deformation of the continuous system can
be described by a set of assumed functions. By using this approach, the
vibration of the continuous system which has an infinite number of degrees
of freedom is described by a finite number of ordinary differential equations.
This approach, however, can be used in the case of structural elements with
simple geometrical shapes such as rods, beams, and plates. In large-scale
systems with complex geometrical shapes, difficulties may be encountered in
defining the assumed shape functions. In order to overcome these problems
the finite-element method has been widely used in the dynamic analysis of
large-scale structural systems. The finite-element method is a numerical ap-
proach that can be used to obtain approximate solutions to a large class of
engineering problems. In particular, the finite-element method is well suited
for problems with complex geometries.

In the finite-element method, the stucture is discretized to relatively small
regions called elements which are rigidly interconnected at selected nodal
points. The deformation within each element can then be described by inter-
polating polynomials. The coefficients of these polynomials are defined in
terms of physical coordinates called the element nodal coordinates that de-
scribe the displacements and slopes of selected nodal points on the element.
Therefore, the displacement of the element can be expressed using the separa-
tion of variables as the product of space-dependent functions and time-
dependent nodal coordinates. By using the connectivity between elements, the
assumed displacement field can be written in terms of the element shape func-
tion and the nodal corrdinates of the structure. Using the assumed displace-
ment field, the kinetic and strain energy of each element can be developed,
thus defining the finite-element mass and stiffness matrices. The energy expres-
sions of the structure can be obtained by summing the energy expressions of
its elements. This leads to the definition of the structure mass and stiffness
matrices.

268
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Fi1G. 5.1. Finite element discretization.

Figure 1 shows a continuous system or a structure which is divided to
a finite number of elements which collectively approximate the physical de-
scription of the system. These elements are assumed to be rigidly connected
at selected nodal points whose displacements and slopes are the elastic co-
ordinates of the system. Figure 2 shows some typical finite elements which are
commonly used in the dynamic analysis of the structural systems. Observe
that different number of nodes can be used for different types of elements. The
nodal coordinates of these elements are also shown in Fig. 2.

In this chapter, we discuss the formulation of the mass and stiffness matrices
of the continuous systems using the finite-element method. In Sections 1-3,
the general procedure for defining the assumed displacement field in terms
of the element shape function and the nodal coordinates of the continuous
system is described. In Section 4, the formulation of the mass matrix is
developed using the kinetic energy of the elements. In Section 5, the element
strain energy is used to define the stiffness matrix of the structure. The
formulation of the structure equations of motion is presented in Section 6,
while the convergence of the finite-element solution is examined in Section 7.
Sections 8 and 9 are devoted to the analysis of higher-order and spatial
elements, respectively. Examples are presented throughout the chapter in
order to demonstrate the use of the formulation presented for different types
of elements.
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FIG. 5.2. Finite elements: (a) truss element; (b) triangular element; (c) beam element;
(d) rectangular element.

5.1 ASSUMED DISPLACEMENT FIELD

Each finite element represents a continuous system which has an infinite
number of degrees of freedom. However, by choosing the size of the element
to be small, the deformation of the finite element can be approximated by
using relatively low-order polynomials. The coefficients of these polynomials
in the dynamic case are time dependent. Therefore, in a selected coordinate
system of element j, the displacement field is defined as

w=Sia, j=12..n, (5.1

where S/ is a space-dependent matrix, a’ is the vector of the time-dependent
coeflicients of the polynomials, and n, is the total number of elements used to
discretize the continuous system. The displacement w’ can be a scalar, two-
dimensional or three-dimensional vector depending on the type of element
used.

The time-dependent coefficients in Eq. 1 lack an obvious physical meaning,
In the finite-element method, these coefficients are expressed in terms of the
time-dependent element nodal coordinates. This relationship can be written
as

a'=Si¢, j=1,2,..,n, (5.2)

where S} is a constant matrix which can be obtained by defining the displace-



5.1. Assumed Displacement Field 2n

ments and slopes at the nodal points and ¢’ is the vector of the element nodal
coordinates.

By substituting Eq. 2 into Eq. 1, the displacement field of the element can
be expressed in terms of the element nodal coordinates as

w=SSi¢, j=12...,n, (5.3)
which can be written as
w=S¢, j=12,...,n (5.9
where §/ is the space-dependent element shape function defined as
=SS, j=12..,n, (5.5)

The procedure described in this section for writing the displacement field in
terms of the space-dependent element shape function and the time-dependent
nodal coordinates is a general procedure which can be used for many elements.
The use of this procedure is demonstrated by the following examples.

Truss Element The truss element shown in Fig. 2(a) is assumed to carry
only tension or compression loads. Therefore, only axial displacement is
allowed. The displacement field of this element is expressed using a first-order
polynomial as

u' =aj + ajx (5.6)

where aj and aj are time-dependent coefficients. Equation 6 can be written in
the form of Eq. 1 as
4 aj
w' =[1 x] [ai] (5.7

where the space-dependent matrix S§ and the time-dependent vector a’ are
recognized as

Si=[1 x] (5.8a)
a' =[al aj]" (5.8b)

As shown in Fig. 2(a), this element has two nodal points. Each nodal point
has one degree of freedom which represents the axial displacement of this
node. One can, therefore, write the following conditions:

wix=0)=uj (5.9a)
wi(x = V)= uj (5.9b)
where u{ and uj are the element nodal coordinates and ! is the length of the

element. Substituting the conditions of Eq. 9 into Eq. 7, yields

wix=0)=[1 0] [“j‘] = uj

az
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and

e,

wix=)=[1 V] [“] =uj

a

[ ST

These two equations can be written in one matrix equation as

[+ L[

The solution of this equation defines the coefficients aj and aj in terms of the
nodal coordinates uj and uj as

all 1 ¥ O][u
ai| Pl -1 1]|ud

where S} of Eq. 4 can be recognized as

Y A
) = -3 .
S 11[—1 1] (5.10)

The element shape function § of Eq. 5 can then be defined using Egs. 8 and
10 as
1 0
. . x\ x
S=¥8=[1 x}l -1 1= [(1 - ﬁ) F:I (5.11a)

vy

which can also be written as

S=[1-9 ¢& (5.11b)
where £ is the dimensionless parameter
X
¢= F

One can then write the displacement of the element in terms of the element
nodal coordinates as
w = quj

i
=[-8 & [Zj] (5.11¢)

This equation can also be written as
w = ¢{()ul + 5O}
where .
#E)=1-¢ and @) =¢

Note that when x = 0, that is, & = 0, ¢J(0) = 1, and ¢4(0) = 0, while when
x =l thatis, £ = 1, ¢i(1) = Oand ¢{(1) = 1. That is, the element of the shape
function ¢/ takes the value one at node i and the value zero at the other node.
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Triangular Element Several finite-element formulations for the two-
dimensional triangular elements can be found in the literature. In this section,
we consider the simplest one which is called the constant-strain triangular
element. The element is shown in Fig. 2(b) and has three nodal coordinates.
Each node has two degrees of freedom which represent the horizontal and
vertical displacements of the node as shown in Fig. 2(b). Therefore, the element
has six nodal coordinates given by

o =[] vl ul of uf ofJ (5.12)

The displacement field is approximated by the following polynomials:
w=aj + ajx + ajy (5.13a)
vi=aj+aix +aily (5.13b)

This element in which the displacement field is defined by the preceding
equation is called constant strain since

j
gi = al = ai
0x
J
gl—a‘v :aj
y 6
oy
ou  ov’

That is, the strain is the same at every point on the element.
Let (x,, y;), (x5, y;), and (x3, y;) be the coordinates of the nodal points of
the element. It is clear that

ui = aj + azx, + ajy,

. ; X ; 14
vl = ajl + alx, + aly,, k=1,2,3} (5.14)

where u] and v] are the nodal coordinates of the jth node. By using a similar
procedure to the one described in the case of the truss element, Eq. 14 can be
used to write the coefficients a{, ai, ..., af in terms of the nodal coordinates
ul, v{, uf, v}, ui, vi. This leads to the following displacement field:

;)

J
uy

J
Uy

i [w] [N 0 N, 0 N 0|4
W= . |= ] (5.15a)
b 0 N, 0 N 0 Ny
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where the scalars N,, N,, and N, are defined by

N, = 2A’ 555 0X293 — X3V + X(v2 — y3) + ¥(x3 — x,)] ]

N, = 2A,[x3.V1 —x1y3 + x(y3 — y1) + y(x; — x3)] ¢ (5.15b)
1

Ny = =5 [x1y: — X290 + x(yy — y2) + y(x, — x1)]1

247

in which A/ is the area of the element defined by the determinant.

L xy
"% I x; y,
1 x5 y;

Consequently, the matrix S’ of Eq. 4 can be recognized as

; N 0O N, 0 Ny O
S'l — 1 2 3 i
[0 N, 0 N, 0 NJ (5.16)

Observe that
0 if k#i

Ne(xis yi) = {1 i k=i

Beam Element The beam element shown in Fig. 2(c) has two nodal points.
Each node has three nodal coordinates that represent the longitudinal and
transverse displacements and the slope. These nodal coordinates are

o =[ul vof 0] u v} 61 (5.17)

Since we selected six nodal coordinates, our displacement field must contain
six coefficients. The longitudinal displacement is approximated by a first-
degree polynomial, while the transverse displacement is approximated by a
cubic polynomial. The displacement field is, therefore, given for element j by

w =aj +ajx (5.18a)
vi=aj +ajx + aix? + aix3 (5.18b)
Note that the axial displacement is described by a first-order polynomial. That
is, the axial strain is constant within the element and 8%u//0x? = 0. On the

other hand, the transverse displacement is described using a cubic polynomial
and consequently the shear force is assumed to be constant within the element.
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At the nodal points, one has

o = af

uj =af + aill

vi =aj

b= af + afl + a0 + al(?
0] = aj

0 = aj + 2aill + 3al(l’y

where I/ is the length of the element. The preceding equations can be used
to define the displacement field in terms of the nodal coordinates. This leads to

. uj s
w=| =5 (5.19)

where ¢ is the vector of the element nodal coordinates defined by Eq. 17, and
S’ is the space-dependent element shape function defined by

X X
(l—ﬁ> 0 0 i
x\? x\ [x x\2 x\?
° 1—3(,-,) +z(,,.) ”[z‘f”(z"f) *(z)] °
0 0

oG -26) 6 -G

Note that the shape function of the truss element can be obtained from the
shape function of the beam element as a special case in which the transverse
deformation is neglected.

S =

Rectangular Element The rectangular element shown in Fig. 2(d) has
four nodes. Each node has two degrees of freedom that represent the hori-
zontal and vertical displacements. The nodal coordinates of the element are
defined by the vector ¢’ as

Ol ol ul o) wl o ul WY
The assumed displacement field of this rectangular element can be written as
w =af + ajx + ajy + ajxy

vV=al +alx+aly+ alxy
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Following the procedure described in the case of the truss, triangular, and
beam elements, one can show that the shape function of the four-node rect-
angular element is given by

g_[M 0 N 0O N 0 N O
O NN ON, O N, O N,

where

1
N, = Eé(b — x)(c —y)

1
N, = ZI;(b + x)(c — )

1

N.=_
s = b+ e+
No= (b — (e +)
T gpe ey

Observe again that
0 if k#i

Nk(xi’ ,V.) - {1 lf k -

5.2 COMMENTS ON THE ELEMENT SHAPE FUNCTIONS

The assumed displacement field of the element is represented by simple
functions expressed in the form of polynomials. The use of these simple
functions guarantees that the displacement field within the element is contin-
uous. Furthermore, the assumed displacement field must include low-order
terms if the approximate solution is to be close enough to the exact solution.
For example, consider the assumed displacement field of the beam element
given by Eq. 18. If the beam is subjected to a static axial end load F, the exact

solution is
‘ F .
ul = (ﬁ) x v=0

where E/ and A’ are, respectively, the modulus of elasticity and the cross-
sectional area of the element j. Note that if we omit the term aj x in the assumed
axial displacement of Eq. 18a, we delete the term that contains the exact
answer. It is, therefore, important that the order of the polynomial is selected
in such a manner that the approximate solution converges to the exact
solution. This property is called the completeness. The completeness require-
ment guarantees that the approximate solution converges to the exact solution
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as the number of elements increases. The order of the polynomials in the
assumed displacement field can be increased by increasing the number of
nodes of the element or/and by increasing the number of coordinates of the
nodes by considering higher derivatives of the displacements.

It is clear that as a part of the completeness requirements, the assumed
displacement field of the element must be able to represent the state of constant
strain. The rigid-body motion without strain is a special case of the state of
constant strain. Therefore, rigid-body modes must be present in the assumed
displacement field. In this section, we examine this property for the elements
discussed in the preceding section. The procedure for doing this is to assume
that the element undergoes an arbitrary rigid-body motion. The values of the
nodal coordinates as the resuit of this motion can be determined and sub-
stituted into the displacement field of the element in order to check whether
this assumed displacement field can represent this rigid-body motion.

Truss Element 1If the truss element whose assumed displacement field is
defined by Eq. 11 undergoes a rigid-body transiation d, in the direction of
the x-coordinate, the values of the nodal coordinates as the result of this
rigid-body motion become

(W] wj]"=[d, V+d]"

Substituting this vector into Eq. 11c, the displacement of an arbitrary point
on the element as the result of this rigid-body motion is given by

W= [(1 - &) ﬂ[ﬁ]

-0 al, b, |-

which indicates that each point on the element indeed translates by the
amount d,. Consequently, the truss-element shape function as defined by
Eq. 11b can be used to describe an arbitrary rigid-body translation aiong the
x-coordinate of the element.

Rectangular Element While the truss element is used to describe only
axial displacements, the linear rectangular element is used to describe an
arbitrary planar displacement. An arbitrary rigid-body motion is described by
a translation and a rotation. If the linear rectangular element undergoes an
arbitrary rigid-body translation d, in the horizontal direction, the element
nodal coordinates as the result of this rigid-body displacement become

¢=[-b+d, —c b+d, —c b+d, ¢ —b+d, I

Substituting this vector into the displacement field presented in the preceding
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section, one obtains the displacement of an arbitrary point on the element as
the result of this rigid-body motion as

[ —b+4d, ]
—c

b+d,
mz[ﬁ]z[Nl 0 N, 0 N 0 N, 0] —c
vl 0O N O N, 0 Ny 0 N, b+d,
C
—b+d,
. ¢

{PM+M+M—MMHM+M+M+MM,
(=N, = N, + N3 + Ny)c

Observe that
Ny +N,+ Ny + N, =1

~M—M+M+M=f

X

b

vetess [

That is, the displacement of an arbitrary point on the element as the result of
this rigid-body translation is d,. It is, therefore, clear that the element shape
function as defined in the preceding section can be used to describe an
arbitrary rigid-body translation in the x-direction. By using a similar proce-
dure one can also show that this element shape function can also be used to
describe an arbitrary rigid-body translation in the y-direction.

If the element undergoes a rigid-body rotation «, the value of the nodal
coordinates as the result of this rigid-body rotation is

—Ny+ N+ N;— N, =

and accordingly

¢ =[(—bcosa+csina) (—bsina—ccosa) (bcosa+ csina)
(bsina —ccosa) (bcosa —csina) (bsina + ccosa)

(—=bcosa—csina) (—bsina + ccosa)]’

Substituting this vector in the assumed displacement field of the bilinear rect-
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angular element defined in the preceding section, one obtains

e ul _ (—N,+N2+N3—N4)bcosa+(Nl+N2—N3—N4)csina]
v/ (—=N; + N, + Ny —N,)bsin a +(—N; — N, + N3 + N,)c cos

_[xcosa—ysinal [cos @ —sin a][x]

_I:xsina+ycosoc:l_ sina  cosa ||y
which indicates that the element shape function of the bilinear rectangular
element can be used to describe an arbitrary rigid-body rotation. This rotation
can be finite or infinitesimal.

By using similar procedures, one can also show that the shape function of

the constant strain triangular element can be used to describe an arbitrary
rigid-body motion.

Beam Element Following the procedure described in this section, it is an
easy matter to show that the shape function of the beam element presented
in the preceding section can be used to describe an arbitrary rigid-body
translation. In order to examine the ability of this shape function in describing
an arbitrary rigid-body rotation, we consider the case in which the element
rotates a rigid-body rotation defined by the angle a. In this case, one must have

w] [cosa —sina][x] [xcosa
vi| |sina cosa [{0|] |[xsina
where x is the coordinate of an arbitrary point on the element. In this case
. o)
0)=_—=sina
Ox
and accordingly the vector of nodal coordinates as the result of this rigid-body
rotation is given by
¢'=[0 0 sina Fcosa lsina sina]l

Substituting this vector into the displacement field of the beam element as
defined by Eqgs. 19 and 20, one obtains

u’ X COS o cosa —sina || x
v/ X sin a sine cosa ||O

the that, in order to arrive at this result, we assumed that the slope 8/ =
Ov'/0x = sin o instead of the angle « or tan «. Clearly,

sinqy~tana ~ o

if the rigid-body rotation « is infinitesimal. In the classical finite element
literature, the slopes at the nodes are assumed to represent infinitesimal
rotations in order to allow treating the element coordinates using vector
algebra. Transforming the nodal coordinates between different frames is then
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possible. The use of infinitesimal rotations as nodal coordinates, however,
leads to difficulties in the large rotation and deformation analysis of structural
systems as discussed in Section 10 of this chapter.

5.3 CONNECTIVITY BETWEEN ELEMENTS

In the preceding sections, the displacement field of the element was defined in
the element coordinate system. In the finite-element approach, a structural
component is discretized using a number of elements, each of which has its
own coordinate system. Because of geometrical considerations imposed by
the shape of the structural components, the axes of the element coordinate
system may not be parallel to the axes of the global coordinate system.
The connectivity conditions between elements, however, require that when
two elements are rigidly connected at a nodal point, the coordinates of this
point as defined by the nodal coordinates of one element must be the same as
defined by the coordinates of the other element. Therefore, before applying
the connectivity conditions, the nodal coordinates of the elements must be
defined in one global system.

Coordinate Transformation As shown in Fig. 3, let p/ be the angle
which the X’-axis of the element j coordinate system makes with the X-axis
of the global coordinate system. Let C’ be the transformation matrix from the
element coordinate system to the global coordinate system. The transforma-
tion matrix C is given by

sin g/ cos g/

Ci— [cos B’ —sin B’] (5.21)

Element j

YA}

FiG. 5.3. Connectivity conditions.



5.3. Connectivity Between Elements 281

Therefore, the displacement field w’ of Eq. 4 can be written in the global
coordinate system as

u = Clw = C'Si¢/ (5.22)
In this equation, the vector of nodal coordinates ¢’ is defined in the jth ele-
ment coordinate system. This vector can be expressed in terms of the global
coordinates as 3

q =Cl¢f (5.23)

where ¢} is the vector of nodal coordinates defined in the global coordinate
system and C’ is an orthogonal transformation matrix. In the case of the
triangular element the matrix C’ is given by

¢t oo 0
=0 CT o (5.24)
0 o0 (T

where C/ is defined by Eq. 21. ~
In the case of the beam element the matrix C’ is given by

. cr o
C= [ ; cﬂ] (5.25)
1
where CJ is the matrix
cospi —sinf/ 0O o o
Ci=[sinp/ cosp O0|= |:0T 1] (5.26)

0 0 1

Substituting Eq. 23 into Eq. 22, the global displacement vector can be ex-
pressed in terms of the global element nodal coordinates as

ll{; - stiéiq.é (5.27)
which can be written as . o
u, = Siq} (5.28)
where _
S, =C'SC (5.29)

Connectivity Conditions Having defined the element nodal coordi-
nates in the global system, one can proceed a step further to write the
displacement vector in terms of the total vector of nodal coordinates of the
structure. To this end, we define the total vector of nodal coordinates of the
structure as

qg = (ql 92 .“ qn]T (530)

where n is the total number of nodal coordinates of the structure. One can
then write the vector of nodal coordinates of the element in terms of the
structure nodal coordinates as

q, = Bq, (5.31)
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1 2 2
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F1G. 5.4. Connectivity between two beam elements.

1
v
0! AV,

where B’ is a Boolean matrix whose elements are either zeros or ones. For
example, we consider the beam shown in Fig. 4. The beam is divided into two
finite beam elements. For these two elements the nodal coordinates are

11 1 gt o1 1 piav
q =[u; vy 07 u; v 0;]
2_r1,2 .2 g2 .2 .2 p29T
q; = [ur vt 67 w3 v; 03]

Since the structure has three nodes, the total vector of the structure nodal
coordinates is given by

q, =[u, v, 0, u, vy 0, uz vy 03]T

The vector g, of the nodal coordinates of the first element can be written as

q; = B'q,
where B! is the matrix
(1 00000 O0O0O]
01 0000O0O0O0O
Bl_001000000
“loo o1 0000O0O 0
000010000
(000001 0O O]
Similarly, for the second element
q; = Bq,
where ~ _
000100UO0TO0O0
000O0T1TU0O0GO0O
l32=000001000
0000O0OT1O00
0000O0OTOTO
(00000 0O0O0O0 1]

That is, the structure of the matrices B! and B? defines the second node as a
common node for the two elements in this example. Note that, in general, the
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matrix B has the number of rows equal to the number of element coordinates,
and the number of columns equal to the number of nodal coordinates of the
structure.

The global displacement vector w) of element j can now be expressed in
terms of the total vector of the nodal coordinates of the structure. To this end,
we substitute Eq. 31 into Eq. 28 to obtain

w=S/Bq, j=12..n (5.32a)

This equation and Eq. 29 will be used in the following sections to develop the
element mass and stiffness matrices. The structure mass and stiffness matrices
can then be obtained by assembling the element matrices.

Kinematic Constraints In many structural applications some of the
nodal coordinates may be specified. For example, one end of a beam or a truss
in a structural system may be fixed. Such conditions can be used to reduce
the number of the elastic degrees of freedom of the structure. In these cases
the vector of nodal coordinates q, can be written as

g =[0f &7
where g, is the vector of specified nodal coordinates and g; is the vector of free

nodal coordinates or the system degrees of freedom. If the specified nodes are
fixed, one can write the vector g, in terms of the system degrees of freedom as

q, = B.g; (5.32b)

where B, is an appropriate matrix whose entries are either zeros or ones.
If no nodal coordinates are fixed, B, is the identity matrix. Substituting Eq.
32b into Eq. 32a yields

v, = S'B'B. g, (5.32¢)

The use of the development presented in this section is demonstrated by the
following examples.

Example 5.1

For the structural system shown in Fig. 5, obtain the connectivity matrices. Assume
that the system is divided into two beam elements.

Solution. As shown in the figure, the structure has three nodal points. The nodal
coordinates of the structure defined in the global coordinate system are

Qg=[“l v, 0, u, v, 8, u; v, Ba]T

The coordinate systems of the elements are also shown in the figure. For the first
element itis clear that 8! = 90° and, accordingly, the matrix C/ of Eq. 21 is given by

cl = cos ' —sin '] [cos90° —sin90°
sin ' cosf' | |sin90° cos 90°

£
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v; vy A 4
+ 6 4 Element 2
0, C u, S u, H—» )—}
“&’t
Uy
0, " Element 1
Y

F1G. 5.5. Structural system.

For the second element 2 = 0 and, accordingly, the matrix C? is the identity
matrix, that is,

Therefore, the matrices CY, j = 1, 2, of Eq. 26 are given by

0 -1 0
ci=1 o o
0 0 1
[1 0 0
C2={0 1 0
LOOI

We can then write the nodal coordinates of the two elements as

qj=C_jq£9 i=12

_ [cm o
Clz[o C{T]

That is, the nodal coordinates of the element defined in the global system are

where C/ is the matrix

1 1 .1 pt L1 1T
‘lg=[‘U1 up 0 —v; u; 03]
2 2 .2 p2 2 .2 2T
q; = [ut v 07 u; v; 03]
Since these two vectors are defined in the global coordinate system, we also

have
1 T
q; = [u, vy 6, u, v, 6,]

q:=[u2 v, 0; uy; v, os]T
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That is, the connectivity matrices B! and B2 are defined for this system as

1 0000000 O]
010000000
g_|001 000000
000100000
0000T100TO0O
0 0000100 0]
[0 0 010000 0]
000010000
gz_|0 00001000
00000O0T1O00
00000O0GO0T10O
o 0000000 1]

Furthermore, since in this example node 1 is fixed, one has
u; =0, =60,=0
and the degrees of freedom of the system are given by
g =[u, v, 0, uy vy 6,1

The vector of nodal coordinates of the structure can be expressed in terms of these
degrees of freedom as

[«,] [0 0 0 0 0 0]
v, 00000 O]~ -
9, 00000 O™
s 100000;2
v, [=|0 1 00 0 Off 2
9, oo 100 off™
s 00010023
vy 0000 1 0f3
(651 [0 0000 1]
where the matrix B, in this example can be recognized as
[0 0 0 0 0 0]
000O0GO0O
0000000
100000
B.={0 1 00 0 0
001000
000100
0000T10
[0 0 000 1]

By using the matrices C', C!, B!, B,, and the vector g, defined in this example, the
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displacement field of the first element can be defined by using Egs. 29 and 32c as
u! = C'S!C'B'B.q;
Similarly, the displacement field of the second element is

u? = C2S2C?B?B,q,

5.4 FORMULATION OF THE MASS MATRIX

In this section, the element mass matrix is formulated using the kinetic energy
expression. Two approaches are commonly used in the finite-element formula-
tion of the mass matrix. The first approach is the lumped-mass approach in
which the element mass matrix is obtained by lumping the element mass at
the nodal points. One way of using the lumped-mass approach is to describe
the inertia of the element by concentrated masses which have zero moment of
inertia about their centers. This approach leads to a singular mass matrix in
problems involving beams since there is no inertia assigned to the rotational
degrees of freedom. Clearly, this approach has the drawback that the kinetic
energy becomes a positive-semidefinite quadratic form instead of positive-
definite. Another way of using the lumped mass approach is to describe the
inertia of the element using small rigid bodies attached to the nodal points of
the element. The process of doing this, however, is arbitrary.

The second approach which is used in the finite-element formulation of
the mass matrix is the consistent-mass formulation. In this approach, the
assumed displacement field of the element is used to define the element kinetic
energy. Consequently, the resulting mass matrix is often nondiagonal and
positive definite. This is the approach which we will discuss in this section for
the formulation of the element mass matrix.

Element Mass Matrix The kinetic energy of the element j is defined as

TV = %J plultal dVi,  j=1,2,...,n, (5.33)
v

4

where V7 and p/ are, respectively, the volume and mass density of the element
j and &/ is the global velocity vector which is defined using Eq. 32c as
W =SiBBg, j=12..,n, (5.34)

where B’ is the Boolean matrix that defines the connectivity of the element,
B, is the matrix of the kinematic constraints, and S} is the shape matrix defined
by Eq. 29.

Substituting Eq. 34 into Eq. 33, one obtains

T = 147 BTB [ J piSITS] dvf] BB
vi
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which can also be written as
T/ = %quM{(']f, j=12,...,n, (5.35)

where MY is recognized as the jth element mass matrix and it is defined as
M| = BIBT [I p’SI'S} de] BB, j=12..,n (5.36)
Vs

Observe that this matrix has dimension equal to the number of degrees of
freedom of the structure. Using the definition of the matrix S} of Eq. 29 and
the orthogonality of the transformation matrix C’, the mass matrix M{ of
Eq. 36 can be written as

Mi = BIB"C"M/C’'B’'B,, j=1,2,...,n, (537
where M/ is the element mass matrix defined in the element coordinate system.

This element mass matrix is given by

M = f pISTSIdVi,  j=1,2,...,n, (5.38)
»

4

The mass matrix M is symmetric and has dimension equal to the number of
the element nodal coordinates. The global element mass matrix M{, on the
other hand, has a dimension equal to the number of free coordinates of the
structure.

Structure Mass Matrix The mass matrix of the structure can be defined
by summing the kinetic energies of its elements. To this end, we write

T=%T1 (5.39)

where T is the kinetic energy of the structure.
Substituting Eq. 35 into Eq. 39 leads to

T= %qf[zl M{]qf
I5
which can be rewritten as
T= %QrTMr‘.lr (540
where M is recognized as the structure mass matrix and is defined as
M, =Y M (5.41)
j=t1

By using Eq. 37, the structure mass matrix M; can be written in a more
explicit form as

M, = ¥ BTBTC"M/C/B'B, (5.42)
j=t

where the element mass matrix MV is defined by Eq. 38.
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F Example 5.2

For the truss element with the shape function defined by Eq. 11, the element mass
matrix M/ defined in the element coordinate system is given by

M/ = f p.iSJTdeVf
Vi

J

_m"21
T 61 2

where m/ is the mass of the element j. The system shown in Fig. 6 consists of
two truss elements which have equal masses. The transformation matrices C’
and C’ for these elements are the identity matrices. The connectivity matrices B!

and B? are
1 00
B! =
o ¥ o]

010
B =
[001]

Therefore, the matrices M} and M? are

Mt! — BlTélTMlélnl — BITMIBI

[1 0] 2 1 0]
_m‘ 0 1 |:2 1][1 0 O:I_ml 120
3 1 2]lo 1t o 6

K oj 6_0 0 0]

Mfz = BZTCZTMZCZBZ — BZTMZBZ

[0 0] I 0]
I [2 1][0 ! 0]_m2 0o
6 1| 6

6~01—l200 01 2]

If we assume that m' = m? = m, the structure mass matrix M, can then be defined as

2
M, =Y M/=M!+M?
j=1

210 000
=%120+%021
[0 0 0 01 2
[2 1 0]

m

=—|1 4 1
0 1 2

F1G. 5.6. Two-truss member.
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r Example 5.3

For the beam element with the shape function defined by Eq. 20, the element mass
matrix M/ is given by

M/ =J' pISTSI dvi
Vi

0 0 0
0 0 0
_ 0 0 0
llB=
BB, 0 -1 0
1 0 0
[0 0o 1

mass matrix of the first element using Eq. 37 as

M‘! = BTBlTélTMICl B'B

(=2 I = 2 = A =

[1/3
0 13/35 Symmetric
;0 11210 12/105
=m
1/6 0 0 1/3
0 9/70 13//420 0 13/35
| 0 —13/420 —I*/140 0 —11//210 [*/105 |

[ 1335 0 —11/210 0 0 0]

0 1/3 0 000

_ | -1210 0 /105 0 0 0

i B 0 0 000

0 0 0 000

0 0 0 0 0 0]

For the second clement one has

1 0 0 0 0 O]
010000
_ 001000
CBB.=0 60100
000O0T1 0
[0 0 0 0 0 1]

where m’ and I/ are, respectively, the mass and length of the element and superscript
j on the major bracket implies that all quantities inside the bracket are superscripted
with j. If we consider the structural system of Example 1, for the first element, one
can show by direct matrix multiplication that

o oo o o O
[=RN =i ol - -]

where the matrices C!, B!, and B, are evaluated in Example 1. If we assume that
the two elements have the same mass m and equal length I, one can then write the
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Therefore, the mass matrix M? of the second element is

Mfl = BTBZTCZTMZCZ BZB

173 0 0 1/6 0 0o |

0 1335 11210 0  9/70  —13/420
_,| 0 uw2o o pjros o 13y40 1140

1/6 0 0 1/3 0 0

0 970 13420 0  13/35 —11i210

| 0 —13/420 —1140 0 —11//210 1?/105 |

The composite mass matrix of the structure can then be obtained as

2
M= 5 Mi=M!+ M}

Jj=1

[ 74/105 0 —111/210 1/6 0 0 |

0 74/35 11210 0 9/70  —13/420

_ | D110 1210 277105 0 134420 —1%/140
1/6 0 0 1/3 0 0

0 9/70 13420 0 1335  —11i210

) —13/420 —1%/140 0 —11//210 [?/105

5.6 FORMULATION OF THE STIFFNESS MATRIX

There are several techniques for developing the stiffness matrix of the finite
element. In the analysis presented in this section, the strain energy is used to
formulate the stiffness matrices. To this end, some basic concepts and defini-
tions which are important in the analysis of continuous systems are briefly
discussed.

Stress-Strain Relationships For anelement j, the strain energy is given
by

Ul = %f ) (5.43)
vJ

where V7 is the element volume and ¢/ and &’ are, respectively, the vectors of

stress and strain. The stress and strain vectors are in general six-dimensional

vectors which can be written as

°i=[01 G, O3 04 Os UG]T

=[0x g, 0 Oy Oy GZX]T

and
e=1[e & & & ¢&s 56]T

=[8x 8y & exy Eyz ezx]T
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For an isotropic material, the stress components can be expressed in terms of
the strain components as
E

g, = m[(l — 2V)£_x + Vﬁt]

= ——dR [(1 — 2v)e, + ve,]

% =T + vl = 2v) VI T Ve

o, = E [(1 = 2v)e, + ve,]

T+ v)(1 =2v) =T
a,, = Ge,y, g,, = Ge,,, o, = Ge,,

where E, G, and v are, respectively, the modulus of elasticity, modulus of
rigidity, and Poisson’s ratio, and ¢, = ¢, + ¢, + ¢,. The stress vector ¢’ can be
written compactly using the constitutive equations as

o/ = Eg/ (5.44)

where E/ is the matrix of elastic coefficients. The preceding equation is the
generalized Hooke’s law. The matrix E’ of the elastic coefficients depends on
the material properties of the structure. This matrix can be written explicitly
in terms of the modulus of elasticity, modulus of rigidity, and Poisson’s ratio
as

[[1—v v v 0 0 o
v 1—v vy 0 0 0
= E v v 1-—v 0 0 0
T (d+wi=2w| o0 0 0 (1-2v2 0 0
0 0 0 0 (1 —2v)2 0
| 0 0 0 0 0 (1 —2v)2 ]
The inverse of this matrix is
1 —v —v 0 0 0 ]
—v 1 -V 0 0 0
(Bt = 1 —y -y 1 0 0 0
Ei 0 0 0 2(t+v 0 0
0 0 0 0 21 +v) 0
| 0 0 0 0 0 2(1 +v) |

Accordingly, the strain components can be expressed in terms of the stress
components as

&, =

[Gx - V(O'y + az)]

oy -

&, =

y [ay - V(Ux + az)]

| —
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1
& = E[az - V(O'x + ay)]
o [ 4
Exy = g’ 8yz=€’ 6zx=*(z';f

where the modulus of rigidity G can be expressed in terms of the modulus of
elasticity E and Poisson’s ratio v as

E
G=2(l+v)

For plane strain, ¢, = ¢,, = ¢,, = 0, the stress—strain relationships reduce in
this special case to

E

Oy = 0+ Wi =2 [ —v)e, + vg, ]
E

O'y = m[(l - V)Sy + st]
vE

a, (&x +¢), 0, =Gey,

T+ v —2v)

which can be written in a matrix form as

a, 1—v v 0

o, | E v 1—v 0 Z"
o, | (+wl-=2v| v v 0 Gy
Oy 0 0 (1-2v)2 i

Observe that in the case of plane strain, one has
g, = v(o, + 0,)
The inverse relationships are given by

_1+v

Ex = E [ax - V(O’x + ay)]
1+v

g, = E (o, — v(o, + 0,)]
2(1 +v)

Eyy = B -Gy

which can be written in a matrix form as

e

* 1

g, =(Zv) —v 1=v 0 g,
Eyy 0 0 2}}oy,
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Another special case is the case of plane stress. In this case, 0, = g,, = 0,, =
0. By using a similar procedure to the case of plane strain, the constitutive
relationships in the case of plane stress can be obtained.

Strain-Displacement Relationships For a linear elastic material, the
strain-displacement relationships are

_ ou _ v _ ow
&y a—, Ey = '—;, €, = a

_ ou Ov

Exy dy ' ox

_ v Ow

29z dy

_ ow du

2" ox 0z

where u, v, and w are the translational displacements of an arbitrary point on
the elastic medium in the x, y, and z directions, respectively. That is

w=[u v wl'
The strain-displacement relationships can be written compactly as
¢/ = DWW (5.45)

where D' is a differential operator defined as

[0/0x O 0 ]
0 o6y O
D = 0 0 d/oz
d/dy d/ox O
0 0d/oz d/oy
| 6/0z 0 8/ox |

Element Stiffness Matrix The constitutive equations and the strain-

displacement relationships can be used to express the strain vector in terms
of the derivatives of the displacement.
Substituting Eq. 45 into Eq. 44 yields

o/ = E'DiW/ (5.46)
which can be written in terms of the nodal coordinates of the structure as

o' = E'D'S'C'B'B,q; (5.47)
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Similarly, the strain &/ can be written as
¢ = D/S'C/'B/B.q, (5.48)
Substituting Eqs. 47 and 48 into the strain energy of Eq. 43, one obtains

vi=1 f qf BTBTC'(D'S)TE/D’S/C'B'B, g, dV’ (5.49)
”

J

where the symmetry of the matrix of elastic coefficients has been utilized.
Equation 49 can be written in a simple form as

U’ = 197 Kiq (5.50)
where K{ is the global element stiffness matrix defined as
K/ = BIB/TC'T [j (D'S')'E'D’S/ dV’:I C'B'B, (5.51)
Vi
The global stiffness matrix K{ can be written as
Ki{ = BITB"C'K/C'B'B,, j=1,2,...,n, (5.52)

where K/ is the element stiffness matrix defined in the element coordinate
system and is given by

K= J (DISHTEDIS dVi,  j=1,2,...,n, (5.53)
vi

In order to illustrate the procedure discussed in this section for formulating
the element stiffness matrix, we consider the four node, eight degree of freedom
planar rectangular element. The shape function of this element is defined in
Section 1 as

g_[M 0 N 0 N O N O
0 NN 0O N, 0O N, 0 N,

where
i
N, = 4*[;‘;(” —x)(c —y)
N, = : b+ x)(c —y)
2 —EE( X y
1
1

where 2b and 2¢ are the dimensions of the element as shown in F ig.. 2(d). In
the case of two-dimensional displacement, the differential operator DY is given
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by - -
~— 0
ox
. 0
J— _
D 0 3
i)
| dy Ox |
Therefore,
[ ON, oN, ON, oN, ]
Y 2 - 0 0
ox 0 0x 0 ox 0x
- oN, oN, ON, oN,
S/ = -— 0 —= 0 — 0 ——
PY=1 0 5y oy oy 3y
ON, 0N, ON, 0N, ON; ON, 6_1!‘3 f’l":
|0y ax dy ox dy ox dy ox |
in which
aNl_ (c—) aNl__(b“x)
ox dbc ’ dy 4bc
N, =y N __(+x
ox  4bc ’ dy 4bc
oN; _(c+y) ON; (b +x)
ox  dbc ’ dy  4bc
Ny, (c+) ON, (b—x)
dx  4bc 3y 4bc
Therefore, the matrix D’S’ is given by
[e=» 0 e-p 0
DjS"=4T)c 0 —(b — x) 0 —(b+ x)
—b-x) —(c—y —-b+x) (-
c+y 0 —(c+y 0
0 b+ x) 0 b—x) (5.54)
b+x) c+y) b-x —(c+y)

If we consider the case of plane stress, the matrix of elastic coefficients E/ is
given by

E

ST

1 v
v 1 0
00

0

(I —v)2
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where E and v are, respectively, the modulus of elasticity and Poisson’s
ratio of the element. Assuming that the element has a constant thickness and
constant modulus of elasticity and Poisson’s ratio, the use of Eq. 53 leads to

4 b
K/ = J [ (D'SY)TE'D’S/t dx dy
—-cJ=b
where ¢ is the thickness of the element. Using the matrices DS’ and E’, the
stiffness matrix of the four node rectangular element can be written explicitly
as

kll
kay kaa
kyy ki, ki, symmetric

=_Et B kay kazy kaz Kay
12(1—"2) ksi ks, ksy ksa kss

i

L
in which the stiffness coefficients k;; are

kiy =ksyy =kgs =kqy=4r+2(1 —vyr!
kyy =kyq = ke = kgg = 4r™" + 2(1 — v)r
ky = _km = _ksz = —ky3 = ksa = k74 = k65 = _k87 = %(1 +v)
ky, = kqs = —4r+ (1 —v)r!
kyy = —kgy = —kay =kqy =key = —kss =kgs = —ks6 = —%(1 =)
kg =kqyy=—=2r—(1 —vr!
kyy =ks3=2r—2(1 —vr7!
kg = kge =2r' —=2(1 = v)r
key =kgya = —=2r"" —(1 —V)r
kg, =kes=—dr'+(1 —)r
where r = ¢/b.

Structure Stiffness Matrix The structure stiffness matrix can be de-
fined by summing the strain energy expressions of its elements, that is,

U= i U/ (5.55a)
j=1

J
where U is the strain energy of the structure. Substituting Eq. 50 into Eq. 55a
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yields
U=iq [Z‘ K%] % (5.55b)
Jj=1
which can be written as
U = }q/ Kcq, (5.56)
where K; is the stiffness matrix of the structure which is defined as
K=Y K (5.57)
j=1
or in a more explicit form as
K, =Y B'BTCTK/C/B'B, (5.58)
j=1

where K is the jth element stiffness matrix defined in the element coordinate
system.

Example 5.4
The strain energy for the truss element of Example 2 is
Ul=%\| olefdv/
Vi
where o/ and &} are, respectively, the stress and strain components. The stress—
strain relationship in this simple case is given by
of = E'¢}

where E/ is Young’s modulus of the element material. The strain displacement
relationship is
.o -
el = = piyl
o ox
where the differential operator of Eq. 45 reduces in this case to

.0
Di=_
ox

The displacement u’ can be written in terms of the nodal coordinates as
u = Sig/

where $/ is the element shape function defined as

That is,
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Therefore, the stiffness matrix of Eq. 53 can be written as

K = J (D'S)TED'S/ dV
v

= A F1r- E[—-1 1]d
I Jdx
CEA 1 -1
TV -1 1

where A/ is the cross-sectional area of the truss element j. The stiffness matrix K/ is
defined in the element coordinate system. The global matrix can be obtained using
a procedure similar to the one described for the mass matrix of the system discussed
in Example 2.

—

Example 5.5

Using the assumptions of the elementary beam theory and neglecting rotary inertia
and shear deformation, one can show that the strain energy for a beam element j

can be written as
v dui\? 2pi\2
Ui=4 Eidi| — E'V| — d
s LG +er(za) Jo

where E’ is the modulus of elasticity, A/ is the cross-sectional area, I/ is the second
moment of area, and u’ and v/ are, respectively, the axial and transverse displace-
ments. The strain energy can be written in the following form:

i v v o EjAj 0 (uj)/
U - ;J; [(u ) (U ) ]|: 0 Ejlj][(vj),,:] dx

Ry
v | = | v |9
(') Sy
where S/ and S} are the rows of the element shape function defined by Eq. 20, that is,
o[
7[5
S

One can then write the strain energy as

Ul = _%qJT Klqj

where

where the stiffness matrix K/ is defined as

’}
K/ = f [ELAISITSE + EIS)S)] dx
0

Using the shape function of Eq. 20, it can be shown that the stiffness matrix of the
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beam element is given explicitly by

[ A1
0 12/12
wo EP o 6/l
Wl —a1 0
0 12/
[ 0 6/1

4
0
—6/l
2

A/l

0
0

299

|

Symmetric

12/1
-6/l

4

=

where superscript j on the major bracket implies that all the variables inside the
bracket are superscripted with j. Note that K/ is the element stiffness matrix defined
in the element coordinate system.

For the structural system of Example 1, if we assume that the two elements have
the same dimensions and material properties and follow a procedure similar to the
one used for the mass matrix in Example 3, one can show that the stiffness matrices
K/! and K? of the two elements are given, respectively, by

e

(1272 0 61 0 0 0
0 A1 0 000
o JEl om0 4 00 0
R 0 0 000
0 0 0 000
[ 0 0 0 0 0 0
and
[ /1 0 0 -A41 O 0 |
0 122 6/l 0 —12/* 6/l
o El o 6/ 4 0 -6/l 2
T A 0 0 A/l 0 0
0 -1 -6/l 0 1222 -6/l
[ 0 6/ 2 0 -6/l 4 |

where E, I, I, and A, are, respectively, the modulus of elasticity, second moment of
area, length, and area of the elements.

The composite stiffness matrix of the structure can then be obtained using

— A/l

Eq. 57 as
2
K =Y Ki=K} +K?
j=1
That is,
[ (A1 + 12/1%) 0 6/
0 (A/ +12/12) 6/l
El 6/ 6/! 8
K= —
I —A/l 0 0
0 —12/ —6/l
| 0 6/1 2

0
0
A/l
0
0

0 0
-1/ 6l
—6/l 2
0 0
12/ —e/l
-6/l 4

-
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5.6 EQUATIONS OF MOTION

In the preceding sections, expressions for the element kinetic and strain
energies were obtained and used to identify, respectively, the element mass
and stiffness matrices. The structure kinetic and strain energies can be ob-
tained by adding the energy expressions of its elements. This leads to the
definition of the structure mass and stiffness matrices. In this section, the
energy expressions are used with the virtual work of the external forces to
define the equations of motion of the structure.
Let F/ be the vector of the external forces that acts at a point p’ of element j.
If F/ is defined in the global coordinate system, the virtual work of this force
vector is given by
oW = FToul (5.59)

Using Eq. 32¢, the virtual change du} can be written as
= C/'S'C'B’/B_d¢g; (5.60)

where §/ is evaluated at the point of application of the force. Substituting
Eq. 60 into Eq. 59 yields

Wi = FI'C/SIC’'B'B_dq;

which can be written as
Wi = Qj"og, (5.61)

in which Q{ is the generalized force vector given by
i =BIB[CTSTCF, j=1,2,..,n, (5.62)
The virtual work of the forces acting on the structure is given by

W =73 6w
=1

J
= z Qi"5q, = QFéq (5.63)

where Qs is the vector of generalized forces associated with the generalized
nodal coordinates of the structure and is defined as

Q= Z Q (5.64)

Having defined in the preceding sections the kinetic and strain energies of the
structure and having obtained the generalized forces associated with the
structure nodal coordinates, one can use Lagrange’s equation to develop the
equations of vibration of the structure as

M + Kege = Qs (5.65)
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where M; and K; are, respectively, the symmetric mass and stiffness matrices
developed in the preceding sections, g, is the vector of nodal coordinates
defined in the global coordinate system, and Qy is the vector of generalized
forces defined by Eq. 64. If the system is viscously damped, Eq. 65 can be
modified in order to include the damping effect. In this case, the matrix
equation of motion takes the form

Mi§s + Cege + Kegqr = Q¢ (5.66)
where C; is the damping matrix.

Equations 65 and 66 are in a form similar to the matrix equation obtained
for the multi-degree of freedom systems. Therefore, the solution techniques
discussed in Chapter 3 can be used to obtain a solution for the matrix equation
of Egs. 65 and 66. If the number of nodal coordinates of the structure is very
large, modal truncation methods can be used in order to reduce the number
of degrees of freedom.

The use of the procedure described in this section for formulating the
equations of motion of structural systems is demonstrated by the following
example.

—

Example 5.6

Figure 7 shows the structural system discussed in Examples 1, 3, and 5. The force
vector F(t) = [F cos @ F sin «]" acts at point B as shown in the figure. The virtual
work of this force is given by

oW? = F'éul,
where uZ; is the position vector of point B defined in the global system. The virtual
change duZ, can be obtained using Eq. 60 as

dul; = C2S2C?B?B,dq,

Observe that in this example C2 and C? are identity matrices and, accordingly, dulg
reduces to

Su = S*B?B_sq,

F(t)
__5,4

7. L

F1G. 5.7. Forced vibration.
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in which the shape function S must be evaluated at point B at which x = I. By
using the shape function of Eq. 20 and substituting x = /, one obtains

S? = 000100
000O0T1O0
Furthermore, from the results of Example 5, BB, is the identity matrix. Therefore,

the virtual work reduces to

SW? = FTS2%5q,

F'(;uZT
5U2
000
=[Fcosa Fsina] 10 04 a0,
0 0 0 0t Off du,
vy
[ 00, |
-6u2_
ov,
o0
=[0 0 0 Fcosa Fsina 0]| _ >
du,
v,
| 90, |

“which can be written compactly as
oW? = Qf"oq,

where Q7 is the vector of generalized forces resulting from the application of the
force F and is given by

Q?=[0 0 0 Fcosa Fsina 0]
Since there are no forces acting on the first element one has
Q =0
By using Eq. 64, the generalized forces of the structure can then be obtained as
Q=0 +Qf =0Qf

The mass and stiffness matrices of this structural system were obtained, respectively,
in Examples 3 and 5. Using the results presented in these two examples and Eq. 65,
the vibration equations of this structural system can be written as

Mg, + Keq = Q;

or in a more explicit form as

[ 74/105

0 —11210 1/6 0 0 iz

0 7435 1210 0 970 —13/420 || 5,
11210 11210 2105 0 131420  —1%/140 || 6,

i Y 0 0 13 0 0 iiy
0 9/70  131/420 O 1335  —11210 || &,

o —13/420 —I/140 0 —11p210 2105 || 6, |
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J——

303

(AT + 12/1%) 0 6/l —A/l 0 0 u,
0 A/ + 12/ 6/ 0 —12/17 6/l v,
El 6/l 6/1 8 0 -6/l 2 0,
1 — A/l 0 0 A/l 0 0 uy
0 —12/12 —6/1 0 12/12 —6/1 || vy
i 0 6/l 2 0 -6/ 4 ||6,]
C o T
0
0
= Fcos a
F sin o
L 0 ]

Remarks The close relationship between the finite-element method and
the classical approximation techniques, discussed at the end of the preceding
chapter, should be apparent by now. In fact, the finite-element method can be
regarded as a special case of the Rayleigh—Ritz method. While in both tech-
niques the separation of variables is used to write the displacement field in
terms of a set of assumed shape functions and a set of time-dependent co-
ordinates, there are some important differences between the two techniques.
For example, in the finite-element method, the time-dependent coordinates
represent physical variables such as the displacements and slopes at selected
nodal points. By defining these variables in a global coordinate system, the
assembly of the finite elements is possible. In the Rayleigh—Ritz method, the
coefficients in the assumed displacement field may lack any physical meaning.
Furthermore, in the Rayleigh—Ritz method, the assumed displacement field
is defined for the whole structure. In many practical applications, especially
in structures with complex geometry, difficulties are encountered in defining
a suitable displacement field. This basic problem is avoided by using the
finite-element method, since the assumed displacement field is defined over
the domain of a small element. Consequently, the global deflected shape
of the structure is defined by simply selecting the appropriate boundary
conditions imposed on the element nodal coordinates. By assuming the dis-
placement field for relatively small elements, low-order interpolating func-
tions can be used, leading to a simple formulation for the element mass and
stiffness matrices. The element matrices, which are often computer generated,
are assembled in order to obtain the mass and stiffness matrices of the
structure.

5.7 CONVERGENCE OF THE FINITE-ELEMENT SOLUTION

The finite-element theory guarantees that the approximate finite-element
solution converges to the exact solution by increasing the number of elements.
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The use of more elements, however, leads to an increase in the number of
degrees of freedom and, accordingly, an increase in the number of differential
equations which must be solved. In this section we examine the accuracy of
the finite-element solution. In particular, we consider the finite-element solu-
tion of the eigenvalue problem and compare the obtained results with the
exact solution.

In the case of free undamped vibration, Eq. 65 or Eq. 66 leads to

Mfii[ + quf = 0 (567)

were M; and K; are, respectively, the mass and stiffness matrices of the
structure formulated using the finite-element method, and q; is the vector of
free nodal coordinates. As in the case of multi-degree of freedom systems we
assume a solution to Eq. 67 in the form

q; = A sin(wt + ¢) (5.68)

where A is the vector of amplitudes, o is the frequency, ¢ is time, and ¢ is the
phase angle.
Substituting, Eq. 68 into Eq. 67, one obtains the standard eigenvalue
problem
[Ki — o’M;JA =0 (5.69)

For this system of equations to have a nontrivial solution, the determinant of
the coefficient matrix must be equal to zero, that is

1K, — w?M,| =0 (5.70)

This is the characteristic equation which is of order n in w?, where n is the
number of degrees of freedom of the system. The roots of the characteristic
equation define the eigenvalues w?, w3, ..., w?. The eigenvector or mode shape
associated with the natural frequency w; is obtained using Eq. 69 as

[K; — w}M]JA; =0 (5.71)

In order to examine the convergence of the finite-element solution, we
consider the simple example of the longitudinal vibration of a prismatic rod
with one end fixed. It was shown in the preceding chapter that the exact
natural frequencies and mode shapes of the rod are

_@k—1n [E
P = 21 p

b= At sin‘%x, k=1,23,...

where E, p, and | are, respectively, the modulus of elasticity, mass density, and
length of the rod; 4, is an arbitrary constant and c is the wave velocity

without dispersion defined as
\/E
c= [—
p
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Let us consider the case in which the rod is represented by one truss element.
In this case, since one end of the rod (x = 0) is fixed, the assumed displacement
field is

u(xs t) = 54(0

where ¢ = x/I and g(t) is the axial displacement of the free end. The kinetic
energy of the rod in this case is

1 1 1
T=— [ Au? dx =1 pAlg* | E*d¢
2 )o 0
1pAl ,
=234
The strain energy is
1! 1EA
U==| EAW)? dx=-"—¢q*
2L W) dx =54

Clearly, in this case, the mass and stiffness matrices reduce to scalars since the
system has one degree of freedom. The mass and stiffness coefficients are

pAl EA
ERC

Therefore, the approximate solution for the first natural frequency is

o = /k11_1.73205\/f
b '”11— ! p

1.570796 [E
wl:f ;,

that is, the error in the finite-element solution using one element is about 109,
Observe that the estimated solution is higher than the exact solution since the
continuous system is represented by one degree of freedom.

If the same rod is divided into two equal elements, each has length I/2, the
system has two degrees of freedom, and the resulting mass and stiffness
matrices of the rod are

pAl[4 1 2EA[ 2 -1
M = e—— =
f 12[1 2]’ Kr 1[—1 1]

Equation 70 then defines the characteristic equation as
2—-48 —-1-8
~-1—-p4 1-28

where 8 = (pl?/24E)w?. The characteristic equation can be expressed in terms
of B as

my, =

The exact solution is

=0

2-4p(1 -2 -1 +p*=0
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which can be written as
182 -108+1=0

The roots of this equation are f§; = 0.108194 and B, = 1.320377. Since

24EB, .
CUIZ = 7, 1= 1, 2,
the approximate natural frequencies are

1.6114 [E
L= =
! p
56292 [E
w2 = -
! p

Observe that the use of two finite elements instead of one element leads to an
improvement in the fundamental natural frequency. The error in the case of
the two elements is less than 2.6%,. The exact value of the second natural

frequency is 3
4.71239 \/E

(1)2 = —.

l p

The error in the second natural frequency using two finite elements is about
19.5%. By increasing the number of elements, a better approximation can be
obtained for the second natural frequency. Roughly speaking, a reasonable
approximation for a set of low-frequency modes can be achieved by using a
number of degrees of freedom equal to twice the number of the desired natural
frequencies. Table 1 and Fig. 8 show the computer results obtained using the
finite-element method. The number of degrees of freedom used in this model
is 150 degrees of freedom. In Table 1, the obtained finite-element results for
the modal mass and stiffness coefficients as well as the natural frequencies are
compared with the exact solution. These results are presented for a rod with
length 3.6 m, modulus of elasticity E = 2 x 10! N/m?, and mass density p =
7870 kg/m>. The rod has a circular cross-sectional area with diameter 0.0185 m.
Observe that by using a large number of nodal coordinates, the finite-element
method can be used to obtain very good approximations for the fundamental
natural frequencies. Note also, from the results presented in Fig. 8, the good
agreement between the approximate mode shapes obtained using the finite-
element method and the exact eigenfunctions obtained by solving the partial
differential equation.

Semidefinite Systems Systems which admit rigid-body motion are
called semidefinite systems. The strain energy of such systems is a positive-
semidefinite quadratic form in the displacement coordinates. That is, the strain
energy can be zero for nonzero values of the system coordinates. It was shown
previously that the element shape functions can describe rigid-body displace-
ments. The shape function of the truss element has one rigid-body mode that
describes the rigid-body translation along the axis of the element. The rect-
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TABLE 5.1. Modal coefficients.

307

Modal mass coeflicients

Modal stiffness coefficients

Natural frequencies

Mode Exact Finite element Exact Finite element Exact Finite element
number  solution solution solution solution solution solution
1 3.808 3.807 1.84234 x 107 1.84231 x 107 2199.56 2199.83
2 3.808 3.807 1.65811 x 108 1.65796 x 108 6598.70 6599.27
3 3.808 3.806 4.60585 x 108 4.60476 x 108 10997.82 10999.40
4 3.808 3.804 9.02747 x 108 9.02334 x 108 15396.95 15401.51
5 3.808 3.802 1.49230 x 10° 1.49118 x 10° 19796.10 19804.28
6 3.808 3.799 222923 x 10° 2.22675 x 10° 24195.19 2421035
7 3.808 3.796 3.11355 x 10° 3.10873 x 10° 28594.30 28617.28
8 3.808 3.792 4.14527 x 10° 4.13672 x 10° 3299347 33028.85
9 3.808 3.788 5.32436 x 10° 5.31032 x 10° 37392.56 37441.68
10 3.808 3.783 6.65085 x 10° 6.62888 x 10° 41791.71 41860.26
11 3.808 3.777 8.12472 x 10° 8.09199 x 10° 46190.83 46286.48
12 3.808 3. 9.74598 x 10° 9.69896 x 10° 50589.95 50714.75
13 3.808 3.765 1.15146 x 10'®  1.14489 x 10'®  54989.02 55144.14
14 3.808 3.757 1.34307 x 10'° 133414 x 10"  59388.29 59590.92
15 3.808 3.750 1.54941 x 10'°  1.53752 x 10'®  63787.37 64031.66
16 3.808 3.742 1.77049 x 10'® 175498 x 10’  68186.48 68483.22
17 3.808 3.733 200631 x 10'° 198641 x 10'°  72585.61 72946.67
18 3.808 3.724 2.25687 x 1010 223169 x 10'°  76984.77 77412.68

Fourier method
Finite-element method

Fourier method
Finite-element method

Fourier method

- = -

1l
Fourier method o
Finite-element method

-

Mode 50

FiG. 5.8. Mode shapes.
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F1G. 5.9. Rectangular element.

angular and triangular element shape functions have three rigid-body modes
that describe an arbitrary rigid-body planar motion. While the beam element
shape function has three rigid-body modes, it can be used to describe only
infinitesimal rigid-body rotations and arbitrary rigid-body translations in two
directions. Clearly, if the number of the fixed coordinates of a structure
discretized using the finite-element method is less than the number of the
rigid-body modes of the element shape functions, the structure will have
rigid-body degrees of freedom. Consequently, the strain energy of the system
is a positive-semidefinite quadratic form.

Let us consider the case of the four node, eight degree of freedom bilinear
rectangular element shown in Fig. 9. The shape function of this element was
developed in the first section of this chapter and its stiffness matrix was
developed in the preceding section. The vector of nodal coordinates of this
element is

C=0d of W ool Wl of T
As previously mentioned, the shape function of the bilinear rectangular ele-
ment has three rigid-body modes. It can be shown that possible three rigid-
body modes are

Ai=[1 01 0101 0]
A,=[0 10101 0 1]
b=[c =b ¢ b —c b —c —b]"

where 2b and 2c are the dimensions of the element as shown in Fig. 9. Note
that the vectors A} and A4 describe rigid-body translations in two orthogonal
directions, while the vector A% describes a rigid-body rotation. Note also that
the vectors A%, A%, and A are orthogonal, that is

A'AL =0 for i#k

Clearly, a rigid-body motion of the bilinear rectangular element can be ex-
pressed as a linear combination of the vectors A, A%, and A},
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By using the stiffness matrix of the bilinear rectangular element developed
in the preceding section, one can show that the rigid-body modes A/, A%, and
A4 have no contribution to the elastic forces. In fact, the use of direct matrix
multiplications shows that

KAL=0, k=123

Consequently, for a more general rigid-body displacement that can be ex-
pressed as a linear combination of Aj, A%, and A, the vector of elastic forces
is equal to zero. Furthermore, since K/Aj is equal to zero, for k = 1, 2, 3, one
has

AJKAL =0, k=1,23

That is, the stiffness coefficients associated with the rigid-body modes A%, A3,
and Af are equal to zero. Therefore, the strain energy can be zero for nonzero
values of the coordinates and it is indeed a positive-semidefinite quadratic
form when the element has one or more of its rigid-body modes.

The mass coefficients associated with the rigid-body modes A%, A%, and A4
are not equal to zero. By using the shape function of the bilinear rectangular
element developed in the first section of this chapter, it can be shown that the
element mass matrix is given by

40 20 1 0 2 0]
04020102
20402010
wo"0 2040201
6|1 0204020
01020402
20102040
0201020 4

where m’ is the mass of the element. Observe that
AJ;TMJ' Ajl =mf
ATMIA), = po

J
ASMIA, = 262 + )

That is, the mass coefficients associated with the rigid-body modes of the
element are not equal to zero. Consequently, the kinetic energy of the element
is a positive-definite quadratic form in the velocities. In fact, the mass coeffi-
cients associated with the rigid-body modes A/, A, and A, are the exact mass
coefficients that are used in the dynamics of rigid bodies. Moreover, the vectors
AJ, A%, and A are orthogonal with respect to the mass matrix, that is

ATMPAL =0 if i#k
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5.8 HIGHER-ORDER ELEMENTS

Thus far, we have considered simple elements in order to demonstrate the use
of the powerful finite-element technique in the dynamic analysis of structural
systems. It was shown that the degree of the polynomial used to describe the
element displacement field depends on the number of nodal coordinates of
this element. In fact, the number of coefficients of the interpolating polynomial
must be equal to the number of the degrees of freedom of the element.
Therefore, the order of these polynomials can be increased by increasing the
number of nodal coordinates. Two approaches can be used to achieve this
goal. In the first approach, the number of nodal points of the element is
increased using the same type of nodal coordinates. In the second approach,
the same number of nodal points is used, and the number of nodal coordinates
is increased by using higher derivatives of the displacement variables. This
leads to an increase in the number of degrees of freedom of each nodal point.

While the use of higher-order elements leads to an increase in the dimen-
sions of the element matrices and consequently larger number of calculations
are required, it has the advantage that fewer higher-order elements are needed
in order to obtain the same degree of accuracy. Furthermore, the use of
higher-order elements produces more accurate results in applications where
the gradient of the displacements cannot be approximated by low-order
polynomials.

lllustrative Example To demonstrate the development of the kinematic
and dynamic equations of higher-order elements, we consider the truss ele-
ment shown in Fig. 10. This element has three nodal points, each node has
one degree of freedom that represents the axial displacement at this node. The
second node is assumed to be centrally located between the end points of the
element. Since this element has three degrees of freedom, a quadratic inter-
polating polynomial with three coefficients can be used. This polynomial can
be written as

W =aj + ahx + ajx? (5.72)
which can also be written as
@
w=[1 x x2]|a (5.73)
a)

l@

O t+—>u Q>

12

»

F1G. 5.10. Three-node truss element.
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where ai, aj, and aj are three coefficients which can be determined using the
conditions

w(x =0) = uj
wix=12)=uj (5.74)
wix=10=uj

where | is the length of the truss element.
Substituting Eq. 74 into Eq. 73, one obtains

uj 1 0 0 aj
uy =11 1)2 1?/4|]|a}
uj 1 I I? |4

This equation can be solved for the coefficients aj, aj, aj in terms of the nodal
coordinates u{, uj, u} as

aj 1 0 0 uj
ay | =| =3/ 4/ —1/1 || u}
al oz a4z 2 ||

Substituting this equation into Eq. 73, the displacement field of the element
can be written in terms of the nodal coordinates as

1 0 0 [ul
w=[1 x x| =31 41 —yi||u
Y/ Y L VIE | B

This equation leads to
u/ = Nyuj + Nyuj + Nyuj (5.75)

where

Ny =(01-=-20(01-¢)
Ny =4¢(1 = ¢) (5.76)
Ny = —¢&(1 - 2¢)

in which ¢ = x/I. Observe that

3
N+ N, +Ny=3 N=1 (5.77)
i=1
and
_j1 atnodei 57
“7 )0 atall nodes other than i (5.78)

The kinetic energy of the three-node truss element is

L[ .
Ti = Ef pA(id)? dx (5.79)
0
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where p and A are, respectively, the mass density and cross-sectional area of
the element, and
ul
1
1
Substituting Eq. 80 into Eq. 79 yields
T/ = 1§ Mg/ (5.81)
where ¢/ = [u] uj u4]", and MV is the 3 x 3 element mass matrix defined as
) N NN, NNy
Ml ='[ pA Nle sz N2N3 dx
0 | N3N, N3N, N% |

which can be written as -~
| Nt NN, NN,

M"=m‘[ N,N, N} N,N,|d¢ (5.82)
° LNsNx N3N, Na? ]

where m is the total mass of the element. Upon carrying out the integrations
in Eq. 82, it can be shown that the element mass matrix MV is given by

e 2 -
M= 216 2 (5.83)
-1 2 4

The strain energy of the three-node truss element is given by
i

Ui = % J EA@W)? dx (5.84)
0

in which (') denotes differentiation with respect to x and
ul = Njuj + Nyuj + Njuj (5.85)

Substituting Eq. 85 into Eq. 84, the strain energy of the three-node truss

element can be written as
Ui = 1¢/'Kig/ (5.86)

where K’ is the 3 x 3 element stiffness matrix defined as

1 N> NiN; NiN;

K= J EA| N3;N; N32  NjNj |dx
°  [N3N{ N3N; NP
. [ NE NN NN
= J EAl} N;N; Nj2 N3N, | dé
0 N;N; NjN; N3
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which upon integration yields

EA 7 -8 1
K"=T -8 16 -8
1 -8 7

Let us consider the case of a rod with one end fixed and the other end free.
If we assume that only one three-node truss element is used, the system has
two degrees of freedom and the eigenvalue problem is given by

KA = ©®°MA

where A is the vector of amplitudes, o is the frequency, and M and K are
defined in this case as

_m[8 1 L 16 —8
15|t 2 3| -8 7

Therefore, the characteristic equation of the system can be written as

16—-88 —8—p
-8—-8 T1-28

in which B = (ml/SEA)w?. It follows that
(16 — 88)(7T—28)— (8 + f)* =0

which can be written as

=0

15> — 1048 + 48 =0
This quadratic equation has two roots

B, =0.497193 and B, = 6.43614
which define the first two natural frequencies of the system as

SEAp;
mli

wl_157669\/EA 1.571669\/E
p

EA 567280 [E

w, = 5.67280 *_LL il
l p

Comparing these results with the results obtained in the preceding section
using the two-node truss element, it is clear that the three-node truss element
gives better accuracy for the fundamental natural frequency. This is an ex-
pected result since higher-order interpolating polynomials and more degrees
of freedom are used in the case of the three-node truss element as compared
to the two-node truss element.

, i=12

That is,
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F1G. 5.11. Higher order triangular element.

While only the three-node truss element is discussed in this section as an
example, other higher-order elements can be developed using a similar proce-
dure. For example, in the case of a four-node truss element a cubic interpolat-
ing polynomial with four coefficients must be used. The element in this case
has four degrees of freedom and, consequently, the resulting mass and stiffness
matrices are 4 x 4. Other examples of higher-order elements are the six-node
and the ten-node triangular elements shown in Fig. 11. The six-node triangular
element has 12 degrees of freedom. The displacement field of this element is
approximated using a quadratic polynomial, that is

w=a] +aix+aly +ajx*+alxy + aly?
v'=al + alx + aly + alox® + af,xy + af,y?

The ten-node triangular element has 18 degrees of freedom. The displacement
field within this element is approximated using cubic polynomials. In this case
the displacements u’ and v’ are defined by
w=al+ajx +ajy + ajx® + aixy + aly* + aix® + afx?y
+alxy’ + afoy’
v/ =af, +aj,x + ajyy + aix* + alsxy + aley? + af,x* + ajgx?y
+ aloxy® + ajoy’
Observe that an internal node (node 10) is introduced for this element in order
to have complete cubic polynomials.

5.9 SPATIAL ELEMENTS

The procedure for developing the kinematic and dynamic equations for spatial
elements is very similar to that of the planar elements. There are slight
differences in the analytical development of the spatial finite elements as
compared to the planar elements. While in planar elements, the displacement
of a nodal point is at most two-dimensional; axial and transverse displace-
ments, in spatial elements the displacement of a nodal point can be three-
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AYS
2z P

X/

FiG. 5.12. Spatial transformation.

dimensional. Furthermore, bending and extension of the three-dimensional
element in more than one plane (as well as torsion) are possible. Therefore, in
general, using the same order of approximation, three-dimensional elements
have a larger number of nodal coordinates as compared to planar elements.
Another difference between the spatial and planar elements lies in the
transformation of coordinates from the element coordinate system to the
global coordinate system. In planar elements, the transformation depends
only on one independent angle. This transformation is given by Eq. 21 as

Ci= [cos ﬁf' —sin ﬁ’]
sin 8/ cos f’

where B is the angle the X/-axis of the element makes with the X-axis of the
global system. In the spatial analysis, however, three independent orienta-
tional coordinates must be used. Figure 12 shows the coordinate system
X’YIZ' of the element j. The orientation of this coordinate system in the X YZ
global coordinate system can be described using the direction cosines. Let ¥,
§’. and k’ be unit vectors along the axes X, Y/, and Z’ of the element, and let
i, j, and k be unit vectors along the global axes X, Y, and Z, respectively. Let
B{ be the angle between X7 and X, let B be the angle between X’ and Y, and
let B§ be the angle between X’ and Z. The components of the unit vector i/
along the X-, Y-, and Z-axes are given, respectively, by

ay; =cos pf =¥-i
oy =cos B =i"j (5.87)
a3 =cos B =ik

where o, a;,, and a, , are the direction cosines of the X/-axis with respect
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to the X, Y, and Z-axes, respectively. In a similar manner the direction cosines
®,4, &5, and a5 of the axis Y/ and the direction cosines a5, a3,, and a5; of
the axis Z’ can be defined as

531 =.ij'i
3%} =jj'.i (5.88)
az3 =jj'k

and
tx:“ = kj'i
ay, = ki (5.89)
X33 = ki'k

Since the direction cosines a;; represent the components of the unit vectors
¥, j’, and k’ along the axes X, Y, and Z, one has

i/ = ay i+ ag,f + ok
jl = ot»“i + azzj + a23k (590)
k" = a:“i + a32j + a33k

Let us now consider the vector u whose components in the element coordinate
system are denoted as 4, v, and w. In the global coordinate system the
components of the vector u are denoted as u, v, and w. The vector u can,
therefore, have the following two different representations

u=u¥ + vj/ + wk/ (5.91)
or
u=ui+vj+wk (5.92)

Substituting Eq. 90 into Eq. 91, one obtains
= o, i + o,j + a;3k)
+ Doy 0 + 055§ + oy3k)
+ Wy, i+ ay,) + o33k)

which leads to
u=(0t,, &+ 0y, U+ oty Wi

+ (g2 + 3,0 + 232 W)j
+ (038 + 03370 + 233 Wk (5.93)
By comparing Egs. 92 and 93, one concludes
U =0y U+ 0,0+ 03, W
V=0l + 00 + A3, W

W= 03U + 030 + 033 W
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That is, the relationship between the global and local components can be
written in the following matrix form

u Oy Oy O3y u
v = alz azz a32 5 (594)
w ®y3 O3 OA33 w

from which the transformation matrix C’ can be recognized as

®yp Opp %3y
C=la, oy ay (5.95)

O3 O3 33

This transformation matrix is expressed in terms of nine direction cosines ;;,
i,j = 1,2, 3. These nine components, however, are not independent. They are
related by the six algebraic equations

Wy 0y + Ua % + O3 tyy = Oy, k,1=1,2,3 (5.96)

where d,, is the Kronecker delta, that is

5 — 1 ifk=1
Tl ifk#1

Therefore, there are only three independent direction cosines in the transfor-
mation matrix of Eq. 95. This transformation matrix can be used to define the
nodal coordinates of the three-dimensional element in the global coordinate
system.

In the remainder of this section, we discuss the assumed displacement field
of some of the three-dimensional elements. The development of the mass and
stiffness matrices of these elements is left as an exercise, since a similar procedure
to the one previously discussed in this chapter can be used. The mass matrix
can be defined using the kinetic energy expression, while the stiffness matrix
can be defined using the strain energy expression and the general elasticity
relationships presented in this chapter. In the case of beam and plate elements,
the classical beam and plate theories may be used in order to simplify the
elasticity equations.

Beam Element Figure 13 shows an example of a three-dimensional beam
element. This element has two nodal points, one located at each end. Each
node has six degrees of freedom u/, v/, w/, 6], 6], 6], i = 1, 2, where u/, v},
and w/ are the translational displacements of the node i and 6}, 6/, and 6/,
are its rotations about the three perpendicular axes of the element. Therefore,
the element has twelve degrees of freedom which are defined as

o=[ul of wi 0l 0 6 uj v} wi 6l 6, 017 (597
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F1G. 5.13. Beam element.

The shape function S/ of this element is

1-¢ 0 0
6(¢ — &%) 1-32%+28 0
6(¢ — &2) 0 1 —3&% +2¢°
0 —(1 =& (1 = Qin
(1 —45+ 30 0 (=¢+28 - &)
gir_ | (1+4 - 38y (& -2+ 8 0
¢ 0 0
6(—¢&+ & 3¢ -28° 0
6(—& + &) 0 382 -28°
0 - 1&g I&n
(—2¢ + 38 0 -8
(28 - 38y (=& + ) 0

(5.98)

where & = x/I, n = y/l, and { = z/I, and [ is the length of the beam element.

Solid Element Figure 14 shows the eight-node brick element. This element
has 24 degrees of freedom which represent the displacements of the nodes
along three perpendicular axes. The shape function of the brick element may
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F1G. 5.14. Solid element.

be derived using the interpolating polynomials
w =al +aix+ajy+ajz+aixy + alyz + alzx + afxyz
vi=al +ajox +al,y+ajz+alsxy+al,yz+ alszx + algxyz

wi=al, + ajgx + aloy + ajoz + a,xy + al,yz + ajyzx + aj,xyz
(5.99)
The 24 nodal coordinates are

i Tl i owi owl vl owd wl vl owi owd v owi oul pl wi
¢ =[ul vf wi up vl wi ui vi wi uy vy wi ui vi wi
ul vl owi ouh o vi owiouf vl wil" (5.100)

By using Eqs. 99 and 100, one can show that the shape function of the solid
element is given by

N, 0 0 N, 0 0 ... N, 0 0
S$={0 N, O 0 N, O .. 0 N, O] (5101
0 0 NN 0 0 N, ... 0 0 N,

where
Ny =§(1 =61 —m(1 =0, Ns=g(1 + &1 —n(1 =)

Ny =31 =M +m(1 =0), Ne=35(1+80+m1—Y)
Ny=30 -0 +mA+0),  Ny=§(1+O0+m+0)
Ne=3(1 =0 —m +0), Ng=3(1+0—m+)
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in which ¢ = x/a, n = y/b, and { = z/c, where 2a, 2b, and 2c are, respectively,
the dimensions of the solid element in the X -, Y-, and Z-directions.

Tetrahedral Element A typical constant strain tetrahedral element is
shown in Fig. 15. The element has straight sides with four nodes, one at each
corner. Each node has three nodal coordinates that represent the translational
displacements of the nodes along three perpendicular axes. Therefore, the
element has 12 degrees of freedom. The displacement field of the element may
be described using the following interpolating polynomials

w=ad| +ax+ay+az
v =al + alx + aly + a}z (5.102)
w =al +alox +aj,y+al,z
The vector of nodal coordinates of the tetrahedral element is
¢=[ v wi w0 whowh ohowh oW o) wil' (5.103)
By using these nodal coordinates and the assumed displacement field of Egq.

102, it can be shown that the element shape function is
NN 0 0 N, 0 0 N 0 O N, O O
S$={0 N O O N, 0 O N, O O N, O (5.104)
06 0 NN O 0 N, 0 0 N, O 0 N,
where the scalars N, i = 1, 2, 3, 4, are
Ni(x,9,2) = Cyy + Cyyx + Cy1y + Cyy 2
Ny(x, y,2) = Cy3 + Capx + C33y + Cy,z
N3(x, y,2) = Cy3 + Co3x + Cy3y + Cyaz
Ny(x, p,2) = Cig + Coax + C3uy + Cyuz

3

F1G. 5.15. Four-node tetrahedral element.
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and VY is the volume of the tetrahedral element defined as

Vi

[= Y

=

=
N

Pt ek e
= =
> w

Y1
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Y3
Ya

Zy
Z3
Z3
Z4

Plate Element Figure 16 shows a plate element that has four nodal points,
one at each corner. Each nodal point has five degrees of freedom, three
displacements along three perpendicular directions and two rotations about
the X/- and Y/-axes. This plate element, therefore, has 20 nodal coordinates



322 5. The Finite-Element Method

which can be written in vector form as
o =L vf wi 0 6 u vh wh 0 6
wh vhowh 6L 00 Wi o) wi 6l 67" (5.105)
The extension of the plate (membrane effect) may be described using the
interpolating polynomials of the planar bilinear rectangular element, that is

W=al +abx + aby + aﬁXY} (5.106)

v =al+alx +aly+ alxy
By using these interpolating polynomials and the shape functions of plate

bending presented by Prezemieniecki (1968), a plate element shape function
that accounts for the membrane and bending effect can be defined as

(1 —¢)1—n) 0 ]

0 (1=801—n)
0 0 (1 +26)(1 = &1 + 2n)(—n)®
0 0 (14 28)(1 = &)1 — n*)nb
0 0 —&a(l — &)1 + 2n)(1 — n)?

(1=%n 0. 0
0 1= 0
0 0 (1 +28)(1 = &)*3 — 2n)n?
0 0 —(1 4281 = &1 — nn’b

o 0 0 —&(1 = &3 - 2n)n’a

&n 0 0
0 én 0
0 0 (3 —25)E(3 - 2nn?
0 0 —(3 - 28)&(1 —nn*b
0 0 (1 -&)&3 - 2nn’a

&1 —n) 0 0
0 (1 —n) 0
0 0 (3 — 26)&¥(1 + 2n(1 — n)?
0 0 (3 = 28)&X(1 — n)*nb

| o 0 (1 -8 +2n)(1 —n’a |
(5.107)

where ¢ = x/a and n = y/b, and a and b are, respectively, the dimensions of
the plate element along the X/ and Y’ element axes as shown in Fig. 16.
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FIG. 5.16. Plate element.

5.10 LARGE ROTATIONS AND DEFORMATIONS

Rectangular, triangular, solid, and tetrahedral elements are referred to as
isoparametric elements, since both the position and the deformation of these
elements can be described using the same shape function. This is mainly due
to the fact that the shape functions and the nodal coordinates of these
isoparametric elements can be used to describe an arbitrary rigid body dis-
placement as demonstrated in Section 2 of this chapter. In the classical finite
element literature, beams and plates are not considered as isoparametric
elements because the displacement gradients at the nodes are used to describe
infinitesimal rotations. Such a linearization of the slopes leads to incorrect
rigid body equations of motion when the beams and plates rotate as rigid
bodies (Shabana, 1996a). Such a difficulty can be circumvented if no infini-
tesimal or finite rotations are used as nodal coordinates. In this section, we
introduce a simple and efficient procedure referred to as the absolute nodal
coordinate formulation. This formulation, in which no infinitesimal or finite
rotations are used as nodal coordinates, can be efficiently used in many large
deformation applications. In this formulation, the nodal coordinates are
defined in the inertial frame in terms of absolute nodal displacements and
displacement gradients, and as a consequence, no coordinate transformations
are required to determine the element inertia properties. The absolute nodal
coordinate formulation leads to a constant mass matrix, and as a consequence,
an efficient procedure can be used for solving for the nodal accelerations. In
the absolute nodal coordinate formulation, the beam and plate elements can
be treated as isoparametric elements since their shape functions and nodal
coordinates can be used to describe an arbitrary rigid body displacement. The
displacement gradients at the nodes can be determined in the undeformed
reference configuration using simple rigid body kinematics. In this section, we
briefly describe the absolute nodal coordinate formulation, which can be used
in the large rotation and deformation analysis of beam and plate structures,
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F1G. 5.17. Absolute nodal coordinate formulation

such as the vibrations of cables and flexible space antennas. For simplicity, in
the development presented in this section, we drop the superscript j, which
defines the element number.

Absolute Nodal Coordinate Formulation In the absolute coordinate
formulation (Shabana, 1996b), the coordinates of the element are defined in
an inertial coordinate system, and as such no coordinate transformation is
required for the elements. Furthermore, no infinitesimal or finite rotations are
used as nodal coordinates, and instead slopes that are obtained as the deriva-
tives of the displacements are used. In this case, the matrix equation of motion
of the finite element can be written in the simple form

Mé + Ke = Q (5.108)

where M is the element mass matrix, K is the element stiffness matrix, e is the
vector of the element nodal coordinates, and Q is the vector of generalized
nodal forces. In Eq. 108, the element mass matrix is constant, and it is the
same matrix that appears in linear structural dynamics. The element stiffness
matrix, on the other hand, is a nonlinear function of the nodal coordinates
even in the case of small deformations.

In order to demonstrate the use of the absolute nodal coordinate formula-
tion in the analysis of rigid body motion, we consider the uniform slender
beam shown in Fig. 17. The beam has length /, cross-sectional area A, mass
density p, volume V, and mass m. The coordinate system of this beam element
is assumed to be initially attached to its left end, which is defined by point O
as shown in the figure. Even though, in the absolute nodal coordinate formula-
tion, the displacements in the orthogonal directions can be interpolated using
the same polynomials, we use in this section, for the purpose of demonstration,
the shape function of a planar beam element that was defined in Section 1 of
this chapter as

s_[1-¢ 0 0 ¢ 0 0 ]
L0 138428 HC-28248) 0 38228 P -8

(5.109)
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where ¢ = x/I. The vector of nodal coordinates associated with the shape
function of Eq. 109 is

e=[e;, e, e; e, es eg)” (5.110)

where e, and e, are the translational coordinates at the node at O, e, and es
are the translational coordinates of the node at B, and e, and e are the slopes
at the two nodes. An arbitrary rigid body displacement of the beam is defined
by the translation R = [R, R,]" of the reference point O, and a rigid body
rotation 0. As the result of this arbitrary rigid body displacement, the vector of
nodal coordinates e can be defined in the global coordinate system as

e=[R, R, sin@ R,+Icosf® R,+Isinf sin6]T (5111)

Note that the slopes in the preceding equation are defined using simple rigid
body kinematics, since in the case of a rigid body motion, the location of an
arbitrary point on the element as the result of the translation R and the
rotation 6 can be defined as

. L R, + xcos @
B r B R, + xsin 0

0 .

a—:: =sin 8
It can be demonstrated that the element shape function of Eq. 109 and the
vector of nodal coordinates of Eq. 111 can be used to describe the exact rigid
body motion of the element if the slopes are used instead of the infinitesimal
rotations. This is clear from the following equation:

R, +xcos
Se_l:Ry+xsin 0] (5.112)

It follows that

which is the same as the vector r previously determined using simple rigid
body kinematics. The preceding equations clearly demonstrate that the ele-
ment shape function and the nodal coordinates can describe an arbitrary rigid
body displacement provided that the coordinates are defined in the inertial
frame and the slopes are defined in terms of trigonometric functions. There-
fore, the conventional finite element shape function can be used to describe
an exact rigid body displacement, and as a consequence, beam elements can
be treated in the absolute nodal coordinate formulation as isoparametric
elements.

Using the slopes as nodal coordinates, the element kinetic energy takes the
following simple form:

T = 4e™™e (5.113)

where M is the constant mass matrix that was previously defined in this
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chapter as

M = f pS™SdV
| 4

Strain Energy While in this section we consider only the case of small
deformations for simplicity, the absolute nodal coordinate formulation can
be used efficiently to solve large deformation problems. One needs only to
change the form of the stiffness matrix, which is nonlinear even in the case of
small deformations. If we select point O on the beam element as the reference
point, the components of the relative displacement of an arbitrary point with
respect to point O can be defined in the inertial coordinate system as

Uy S, - Slo)e]
u= = 5.114
[“y:l [(Sz —S;0)e ( )
where S, and S, are the rows of the element shape function matrix, and S,,
and S,, are the rows of the shape function matrix defined at the reference

point O. In order to define the longitudinal and transverse displacements of
the beam, we first define the unit vector i along a selected beam axis as

Ig—Tp

i=[, i]'T=2 9 (5.115)
! 2 rg — Fol
where r,, and r are the global position vectors of the two end points of the

beam. A unit vector j perpendicular to i can be obtained as
i=0ix »1T=kxi (5.116)

where k is a unit vector along the Z axis. Then, the longitudinal and transverse
deformations of the beam can be defined as

T- _ . . _
u, = [“’] = [“ ' x} = [“X‘* N "] (5.117)
u, u) U jy + u,jy

If we assume a linear elastic model, a simple expression for the strain energy

U can be written as
1! ou;\? o*u,\?
— 5.118
ZL (EA(ax> +EI(5) |dx (5.118)

where E is the modulus of elasticity and I is the second moment of area. It
can be shown that the use of the absolute nodal coordinate formulation
produces zero deformation in the case of an arbitrary rigid body motion.
Using the simple definition of the strain energy presented in the preceding
equation, one can show that the stiffness matrix in the case of a linear elastic
model is nonlinear. In the case of large deformation analysis, another expres-
sion for the strain energy that is based on the nonlinear strain-displacement
relationships must be used. Since the governing equations in the case of small
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and large deformation analysis are nonlinear and must be solved numerically,
there is little to be gained by using the small strain assumptions.

Problems

5.1. The beam element shown in Fig. P1 has two nodal points. The coordinates of
each node are given by v, and 6,, i = 1, 2. The element has length [. If the
displacement is described using the polynomial

v=a, +a,x + a;x* + a, x>,

obtain the element shape function.

Y
Tl”l 4"
6, "4\ 0, €

————— N—X

FiG. P5.1

5.2. For the structure shown in Fig. P2, obtain the displacement field of each element
in terms of the structure nodal coordinates. Assume that the structure is dis-
cretized using the truss elements shown in the figure.

FiG. P5.2

5.3. Obtain the displacement field of each truss element of the structure shown in
Fig. P3 in terms of the nodal coordinates of the structure. Identify the element
transformation and connectivity matrices.

A 1 2 A

FiG. P5.3
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5.4. Using the shape function obtained in Problem 1 for the beam elements, obtain

5.5.

5.6.

5.7

5.8.

59.

the displacement field of each element of the structure shown in Fig. P4 in terms
of the structure nodal coordinates. Identify the element transformation and
connectivity matrices. Assume that the length of element j is I,

Repeat Problem 4 using the shape function of the beam element given in Section
1 of this chapter.

FiG. P5.4 FiG. P5.5

Using the beam element of Problem 1, obtain the displacement field of each
element expressed in terms of the nodal coordinates of the structure shown in
Fig. PS. Identify the element transformation and connectivity matrices.

Repeat Problem 6 using the shape function of the beam element given in Section
1 of this chapter.

FiG. P5.6

Obtain the displacement field of the elements of the structure shown in Fig. P6
by using the element defined in Problem 1. Assume that the clements have equal
lengths. Identify the element transformation matrices as well as the connectivity
matrices.

Repeat Problem 8 using the finite beam element given in Section 1 of this chapter.



5.10.

5.11.
5.12.
5.13.
5.14.

5.15.
5.16.

5.17.
5.18.

5.19.

5.20.
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By using the finite-element method obtain the mass and stiffness matrices of the
structure of Problem 2.

Derive the mass and stiffness matrices of the structure of Problem 3.
Obtain the mass and stiffness matrices of the structure of Problem 4.
Develop the mass and stiffness matrices of the structure of Problem 5.

For the structure given in Problem 6, define the structure mass and stiffness
matrices.

For the structure of Problem 7, obtain the structure mass and stiffness matrices.

Using beam elements, obtain the mass and stiffness matrices of the structure of
Problem 8.

Define the mass and stiffness matrices of the structure of Problem 9.

Obtain the generalized forces associated with the structure generalized co-
ordinates as the result of the application of the force F shown in Fig. P7. Assume
that the structure is discretized using two equal beam elements and the element
shape functions are the same as obtained in Problem 1.

F(t)

FiG. P5.7

Repeat Problem 18 using the shape function of the beam element given in Section
1 of this chapter.

The structure shown in Fig. P8 is discretized into three equa! truss elements.
Obtain the generalized forces associated with the structure generalized co-
ordinates as the result of the application of the force F.

Fi1G. P5.8
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5.21.

5.22.

5.23.

5.24.
5.25.

5.26.
5.27.
5.28.
5.29.
5.30.
5.31

5. The Finite-Element Method

The structure shown in Fig. P9 is discretized using two-dimensional beam ele-
ments. The length, mass, and moment of area of element j are denoted, respec-
tively, by I/, m/, and I’. Obtain the generalized forces associated with the structure
generalized coordinates as the result of application of the forces F, and F,. Use
the beam element defined in Problem 1.

omt,

Fi1G6. P59

Repeat Problem 21 using the two-dimensional beam element defined in Section
1 of this chapter.

Using the shape function of the beam element defined in Section 1 of this
chapter, obtain the generalized forces associated with the structure generalized
coordinates as the result of applying the forces F| and F, on the structure shown
in Fig. P10.

30°

FiG. P5.10

Repeat Problem 23 using the beam element defined in Problem 1.

Derive the matrix differential equations of free vibration of the structure of
Problem 2.

Obtain the differential equations of free vibration of the structure of Problem 6.
Obtain the equations of free vibration of the system of Problem 7.

Obtain the equations of motion of the system of Problem 20.

Derive the differential equations of motion of the system of Problem 21.
Derive the differential equations of motion of the system of Problem 22.

Identify a set of rigid-body modes for the two-dimensional beam element and
discuss the orthogonality of these modes with respect to the mass and stiffness
matrices.



5.32.

533
5.34.
5.35.
5.36.
5.37.
5.38.

5.39.
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Identify a set of rigid-body modes for the two-dimensional triangular element
and discuss the orthogonality of these modes with respect to the element mass
and stiffness matrices.

Determine the element shape function of the six-node triangular element.
Determine the element shape function of the ten-node triangular element.
Develop the mass and stiffness matrices of the three-dimensional beam element.
Obtain the mass and stiffness matrices of the solid element.

Obtain the mass and stiffness matrices of the tetrahedral element.

Identify a set of rigid-body modes for the three-dimensional beam element and
discuss the orthogonality of these modes with respect to the element mass and
stiffness matrices.

Identify a set of rigid-body modes for the solid element and discuss the orthogo-
nality of these modes with respect to the element mass and stiffness matrices.



6
Methods for the Eigenvalue Analysis

In addition to the matrix-iteration method discussed in Chapter 3, there are
several other computer methods that are widely used for solving the eigen-
value problem of vibration systems. Among these methods are the Jacobi
method and the QR method. In these methods, which are based on the similarity
transformation, a series of transformations that convert a given matrix to a
diagonal matrix which has the same eigenvalues as the original matrix are
used. Not every matrix, however, is similar to a diagonal matrix. and therefore
we find it appropriate to devote several sections of this chapter to discuss the
similarity transformation before we briefly discuss the computer methods used
for solving the eigenvalue problem of vibration systems. Several definitions
will be used repeatedly throughout the development presented in this chapter.
Some of these definitions are summarized below.

Monic Polynomials A monic polynomial is a nonzero polynomial with a
leading coefficient equal to one. An example of such a polynomial in 2 is

fA) =18~ 513+ 12 +8

The coefficient of the term that has the highest power in A in this nonzero
polynomial is one, and therefore the preceding polynomial is a monic polyno-
mial. The definition of the monic polynomial will be used repeatedly in this
chapter, and for this reason we will slightly change the way we write our
characteristic matrix for a matrix B to (A1 — B) instead of (B — AI).

Quotient and Remainder If f(4) and g(A) are two polynomials such that
g(4) # 0, then there exist unique polynomials g(4) and r(4) such that
f(A) = q(D)g(d) + r(4)

with r(A) = O or the degree of r(4) is less than the degree of g(4). The polynomial
q(4) is called the quotient and r(A) is called the remainder. If r(A) = 0, g(4) is
said to be a divisor or a factor of f(1) . We also say that f(4) is divisible by
g(4). For example, the polynomial

SR =22+6A+5

332
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can be written as
fA=GA+50A+1)

It follows that the polynomials (A + 5) and (4 + 1) are divisors or factors of
f(A). If, on the other hand, we consider the polynomial g(1) = (4 + 2), then
f(4) can be written as

fA=(@A+4g(4) -3
where, in this case, the remainder r(4) = —3, which is a polynomial of a

degree less than the degree of g(4).

Greatest Common Divisor A monic polynomial g(4) is said to be the
greatest common divisor of the nonzero polynomials f;(4) and f,(4) if the
following two conditions are satisfied:

(1) g(4) divides both f,(2) and f,(4).

(2) If h(4) divides both f;(4) and f,(4), then h(4) divides g(4).

Least Common Multiple The least common multiple of two polynomials
f1(A) and f,(4) is a polynomial g(4) such that:

(1) f1(A) and f,(4) are factors (divisors) of g(4).
(2) If h(4) is a polynomial such that f, (1) and f,(A) are divisors of h(4), then
g(A) is a divisor of h(4).

6.1 SIMILARITY TRANSFORMATION

Two square matrices B and D are said to be similar if there exists a nonsingular
matrix ® such that

B=®'Do 6.1)
It is clear that if B is similar to D, then D is similar to B since
D = ®BO !

Furthermore, if B is similar to D and D is similar to E, then B is similar
to E, for

B=0;'Do,, D = ®;'E®,
implies that
B =(®,0,) 'E(®,P,)
It also can be verified that
¢ 'B"® = (@ !BO)" 6.2)



334 6. Methods for the Eigenvalue Analysis
r-Example 6.1

Let

It is clear that

Since

one has

ooy -1 1

Characteristic Polynomial Similar matrices have the same characteris-
tic polynomials. In order to demonstrate this, let B and D be two similar
matrices such that

B=0"'Do
The characteristic polynomial of B is
[Al-B| =0

where A is the eigenvalue of the matrix B. It follows from the similarity
transformation that

[AI = B| = |l — ®7'D®| = |® (il — D)®|
= |®7!|Al - D||®|
Since
07| ®| =1
one has
{AI — B| = |Al — D| (6.3)
which implies that similar matrices have the same characteristic polynomial
and, consequently, have the same eigenvalues. It also follows that similar
matrices have the same trace and the same determinant.

The equality of the characteristic polynomial is a necessary, but not a
sufficient, condition for the similarity of two matrices. For example, the two

matrices
10 1 1
B=[o 1}’ D‘[o 1]
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have the same characteristic polynomial (1 — 1), but B and D are not similar,
since for any nonsingular matrix @ one has

O 'BO=0"'D=1

Note that because B and D have the same characteristic polynomial, they have
the same eigenvalues A, = 4, = 4 = 1. Associated with these repeated eigen-
values, the matrix B has the two independent eigenvectors

el wef)

This is because the characteristic matrix (AI — B) has rank zero, and, as a
consequence, there are two independent solutions for the homogeneous sys-
tem of algebraic equations (AI — B)A = 0. On the other hand, the matrix D
does not have two independent eigenvectors associated with the repeated
roots A, and 1, since the characteristic matrix (AI — D) has rank one, and,
therefore, there is only one independent solution for the system of homoge-
neous algebraic equations (A1 — D)A = 0. The independent eigenvector of the
matrix D takes the form
|
~[o]

Recall that the number of dependent variables in a system of homogeneous
algebraic equations is equal to the number of independent equations, which
is the same as the rank of the coefficient matrix in this system of equations. It
follows that the number of independent solutions is the same as the degree of
singularity of the coefficient matrix, and is equal to the dimension n minus the
rank r of the matrix.

In general, a matrix that has s repeated eigenvalues has s linearly indepen-
dent eigenvectors associated with these repeated eigenvalues if the matrix is
similar to a diagonal matrix. If a matrix is not similar to a diagonal matrix,
the s repeated eigenvalues do not correspond to s linearly independent eigen-
vectors, but they do correspond to a set of generalized eigenvectors, which will
be introduced in later sections.

As demonstrated by the example of the two matrices B and D previously
presented in this section, having the same characteristic polynomial is not
sufficient for the similarity of two matrices. In fact, one should not be able to
find a nonsingular matrix ® such that @ ! D® is equal to a diagonal matrix.

6.2 POLYNOMIAL MATRICES

A polynomial in an arbitrary square matrix B can be written as
fB) = ool + o, B + ;B> + -+ + a,B" (6.4)

where a,, a,, ..., and «, are scalar coefficients. It can be shown that if f(B)
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and f,(B) are two polynomials in the arbitrary matrix B such that
fiB)=apgl + 0,B + 2, B% + -+ + a,B"
f2(B)= B0+ BB+ B,B*+ -+ B,B"
then
f1(B) + f>(B) = f5(B) + fi(B) (6.5)
[1B)f2(B) = f,(B)f,(B) (6.6)

which imply that operations with polynomial matrices follow the same rules
as scalar polynomials. This fact can be used to obtain matrix identities, as
demonstrated by the following example.

Example 6.2

It is known from scalar polynomials that

PZ—l=(A-1A+1)
P+l=@+DA2-1+1)

It follows that for any arbitrary square matrix B, one has
B -1=B-DB+1)
B +1=B+DB*~-B+1)

Cayley—Hamilton Theorem The Cayley—Hamilton theorem, which we
present here without proof, states that every symmetric matrix satisfies its
characteristic polynomial.

—

Example 6.3
The matrix
4 1 2
B={1 0 0
2 00

has the characteristic polynomial
JAI -B|=43—4A2-51=0

The matrices B? and B? are

21 4 8 104 21 42
B*=| 4 1 2}, B*=| 21 4 8
8 2 4 42 8 16

Using the characteristic polynomial, it can be shown that

B>-4B>-5B=0
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The Cayley—Hamilton theorem also can be used to define the inverse of
nonsingular square matrices. As an example, we consider the matrix

15 0
B=}] -1 1 2
-2 2 -1

which has the characteristic polynomial
A—-22+30=0

It follows from the Cayley—Hamilton theorem that
B*-B2+30I=0

or
1= :_1{33 — B?}
30

Premultiplying this equation by B™!, one obtains

[1 -1 —17]

6 6 3

-1 1 11
-1 "2 _ =2 - =
B ‘30{B B} 6 30 15
2 1
% 5 7]

Minimal Polynomial The minimal polynomial of an arbitrary square
matrix B is the nonzero monic polynomial of least degree that has B as a zero.
Every matrix has a unique minimal polynomial, for if f;(B) and f,(B) are two
different minimal polynomials of B, then f;(B) — f,(B) would be a nonzero
polynomial of lower degree that has B as a zero. If this polynomial is divided
by the leading coefficient, one obtains a monic minimal polynomial with lower
degree. This contradicts the fact that f;(B) and f,(B) are minimal polynomials
of B. Therefore, B has a unique minimal polynomial.

Every polynomial that has the matrix B as a zero is divisible without
remainder by the minimal polynomial of the matrix B. In order to prove this
fact, suppose, on the contrary, that g(B) = 0 is a polynomial in B that is not
divisible by the minimal polynomial f(B) of the matrix B. It follows that

g(B) = f(B)h(B) + r(B) (6.7)

where h(B) is the quotient and r(B) is the remainder that has a degree less than
the degree of f(B). Since f(B) = 0 and g(B) = 0, one also has r(B) = 0. This
contradicts the assumption that f(B) is the minimal polynomial of the matrix
B. Consequently, the minimal polynomial of a matrix B is a divisor of any
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polynomial that has B as its zero. In particular, the minimal polynomial is a
divisor of the characteristic polynomial of the matrix.

It was previously pointed out that if B is an arbitrary square matrix, and
® is any nonsingular matrix, then

O 'B"® = (P 'BO)"
for any integer m. It follows from this identity that
O f(B)® = f(®'BD) (6.8)

This identity can be used to show that similar matrices have the same minimal
polynomial. In order to prove this assertion, suppose that B and D are two
similar matrices such that B = ® ' D@®. If f(D) = 0, then

f(B) = f(®@"'D®) = &~ f(D)® = 0

which implies that the set of polynomials having B as a zero is the same as
the set of polynomials having D as a zero, and hence the minimal polynomials
of two similar matrices are identical.

As in the case of the characteristic polynomial, the equality of the minimal
polynomials is a necessary, but not sufficient, condition for the similarity of
two matrices, as demonstrated by the following example.

—
Example 6.4

Consider the two matrices

The characteristic polynomials of these two matrices are
Al -B] =@ - 1)(4-2)?
|l =D} =(1—1)*1-2)

Since these two characteristic polynomials are not the same, B is not similar to D.
It can be shown, however, that B and D have the same minimal polynomials:

gB)=B-DB-2)=0
gD)=D-HD-2)=0

These are the monic polynomials of least degree that have B and D as zeros.

If B is the block diagonal matrix
B,

B= _ (6.9)
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then the characteristic polynomial of B is the product of the characteristic
polynomials of its diagonal blocks, that is,

|AI — B| = |AI — B, ||AI — B,|-- |41 — B|| (6.10)

The minimal polynomial of a block diagonal matrix is the least common
multiple of the minimal polynomials of its diagonal blocks.

6.3 EQUIVALENCE OF THE CHARACTERISTIC MATRICES

It can be shown that the eigenvectors associated with distinct eigenvalues of
a matrix are linearly independent, and hence a matrix that has distinct eigen-
values is similar to a diagonal matrix. For example, if B is an n x n matrix
that has the distinct eigenvalues 4,, 4,, ..., 4,, then the eigenvectors A, A,,
..., A, associated with these eigenvalues are linearly independent. Further-
more, since

BA, = J,A; (6.11)
one has
B® = ®A (6.12)

where ® is the modal matrix, and A is a diagonal matrix that has the
eigenvalues as the diagonal elements. The matrices ® and A are

®=[A, A, ... A] (6.13a)
Ay
A, 0
A= (6.13b)
0 A,

Premultiplying both sides of Eq. 12 by ® ™!, one gets
O 'BO =A (6.14)

which implies that if B has linearly independent eigenvectors, then B is similar
to a diagonal matrix whose diagonal elements are the eigenvalues of B.
Furthermore, the matrix of the similarity transformation ® is the modal
matrix whose columns are the linearly independent eigenvectors of B.

Condition for Similarity In the analysis presented in Chapter 3, it was
pointed out that the number of independent eigenvectors associated with
repeated roots depends on the rank of the characteristic matrix. In fact, two
matrices B and D are similar if their characteristic matrices (A1 — B) and
(A1 — D) are equivalent, that is, if (AI — B) can be obtained from (Al — D) by
a series of elementary operations. Similarity implies the equivalence of the
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characteristic matrices since, if B is similar to D, then there exists a nonsingular
matrix @ such that

D =@ 'Bd
It follows that
(Al — D)= @'l — B)®
which shows that the characteristic matrices of the two similar matrices B
and D are equivalent. Conversely, if the characteristic matrices (I — B) and

(AI — D) are equivalent, then there exist two nonsingular matrices V and W
such that

(A - D)= V(I - B)W
By comparing the coefficients of A and the constant terms, we conclude that
VW=1  D=VBW

which imply that
D = W 'BW

proving that Band D are similar if their characteristic matrices are equivalent.

Invariant Factors A characteristic matrix can be reduced by a series of
elementary operations to the diagonal form

fi(3)
f2(4) 0 6.19)
0 AT

This diagonal matrix is called a canonical diagonal A-matrix if each diagonal
element f(2) is a divisor of the next element f;,, () and if all nonzero diagonal
elements are monic polynomials. Therefore, an example of a canonical diago-
nal matrix takes the form

(6.16)
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where f,(4), ..., fi(%) are monic polynomials such that f,(4) is a divisor of
finr).

In addition to having the same characteristic and minimal polynomial,
similar matrices have the same canonical diagonal matrix; that is, their charac-
teristic matrices can be reduced by a series of elementary operations to the
same diagonal form. Therefore, the diagonal elements of the canonical diago-
nal A matrix, which are called the invariant factors, are unique. It follows that
similar matrices have the same invariant factors.

—
Example 6.5

The matrices

412 3 4 6
B=|1 00|, D=[-1 -1 -1
200 2 2 2

are similar since there exists a nonsingular matrix

1 -1 0
V=|0 1 -1
0 0 1
such that
D=VBV!
where
1 11
Vi=10 11
0 01

The matrices B and D have the same eigenvalues:
Ay=—1, Ay=35, ;=0

The eigenvectors of B associated with these eigenvalues are

1 5 0
Ag;=| -1, Ap,=|1], Apy = 2
=2 2 -1

The eigenvectors of D are

2 4 -2
Ap, = 11, Apz =] -1, Apy = 3
-2 2 -1

Note that because of the similarity of B and D,

Ap; = VAB:‘
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The characteristic matrices of B and D are

A—-4 —~1 =2
AU-B)=| -1 A 0
-2 0 A
A—-3 -4 -6
(Al -— D)= 1 A+1 1
-2 -2 i1-=2
Define the two matrices
1 5 0
©Q;=[Az Ap, Ap]=| -1 1 2
-2 2 -1
2 4 -2
Oy =[Ap, Ap; Ap3]l= 1 -1 3
-2 2 -1
It can be shown that
1+ 1 0 0]
@ (Al - B)®y = 0 A-5 0
: | O 0 id
(A+1 0 0]
@, (Al - D)®, = 0 A-5 0
| 0 0 4]

In this case, the canonical diagonal A-matrix, which can be obtained by elementary
operations, is
1 0 0
0 1 0
0 0 A4+ 1HA-5)
Note that the matrix ®; and its inverse, which reduce the characteristic matrix

to a diagonal form, are the products of elementary matrices. These matrices can be
written as

®; = (E4E3E2E1)"

Wi

d’;l = (E4E3E2E1) =

Q= O
o~ P |
W o|"‘ P
o

where E, E,, E;, and E, are the elementary matrices

100 1 00
E,=|1 10, E,={0 1 2
201 00 1
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1 -+ o0 1 0 0
E;=[{0 1 0], E,=|0 3 0
| 0 —3 1] 0 0 -—1]
The inverses of the elementary matrices are
1 0 0] 1 0 0]
Ej'=|-1t 1t 0], E'={0 1 =2
| -2 0 1] | 0 © 1]
1 L 0 1 0 0
E;'={0 1 0], E;'!={0 30 0
[0 2 0 [0 0 -1
n Similar comments apply to the matrix ®,.

Each characteristic matrix can be reduced to a canonical diagonal A-matrix
whose diagonal elements are the invariant factors. It can be shown that the
kth diagonal element (invariant factor) of the canonical diagonal matrix,
which is a monic polynomial, is the greatest common divisor of all minors of
order k divided by the greatest common divisors of all minors of order k — 1.
For example, using the matrix B of the preceding example, one can show that
the minors of order 2 of the characteristic matrix of B are

M11=1~2, M12=_l, M13=22
My, = —4 My, =i —4l—4  My=-2
M31=2A., M32=—2, M33=12—4A—‘1

The polynomial with a leading coefficient one, which represents the greatest
common divisor of all the minors of the matrix (AI — B), is 1. This is also the
greatest common divisor of the minors of order 2 of the matrix (A1 — D). It
can be shown that equivalent matrices have the same greatest common
divisors of the kth-order minors.

6.4 JORDAN MATRICES

While similar matrices have equivalent characteristic matrices that can be
reduced by a series of elementary operations to a unique diagonal form, not
every matrix is similar to a diagonal matrix. A matrix B is similar to a diagonal
matrix A if and only if B has a complete set of linearly independent eigen-
vectors. For, if B has linearly independent eigenvectors, the matrix ® whose
columns are these independent eigenvectors is nonsingular. In this case, the
eigenvalue problem leads to
B® = ®A

where A is a diagonal matrix whose diagonal elements are the eigenvalues of
B. The preceding equation demonstrates that B and A are similar. Conversely,
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if B is similar to a diagonal matrix, then B has a complete set of linearly
independent eigenvectors since

V7BV = A
implies that
BV = VA

which proves that V is the matrix of the linearly independent eigenvectors
which can be determined to within an arbitrary constant. The question of the
linear independence of the eigenvectors arises when a matrix has repeated
eigenvalues, as is demonstrated by the following example.

Example 6.6
The matrix
11 =20
-5 7 —-10 0
B=1_22 _20
00 01

has the characteristic equation
[AI-Bl=(A~2%4—-1)=0
which defines the four eigenvalues
M=Ad=A=2 A =1

The matrix B has three repeated eigenvalues, 4,, 4,, and A,, and one distinct
eigenvalue, 4,. The matrix (1,1 — B) has rank 3, and as such the system of homoge-
neous algebraic equations

(4] —B)A, =0

has one independent nontrivial solution:

A, =

-0 O ©

For the repeated roots, one can show that the matrix (4,1 — B) has rank 2, and
therefore the system of homogeneous algebraic equations

(LI-B)A, =0, =123

defines the following two independent eigenvectors:

A=

S = N O
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In this case, the matrix B is not similar to a diagonal matrix. One, however, can
show that the matrix B is similar to the matrix D defined as

2 00

o O O
O O N =
== S B e

0
0
1
and

B=VDV

where

[=20 S IRV
OO - O
O - N
!
(%)
SO -0
|
— N2
_0 O @

L

The preceding example demonstrates that not every matrix is similar to a
diagonal matrix. In particular, matrices that do not have a complete set of
independent eigenvectors are not similar to diagonal matrices, but instead are
similar to matrices that belong to a class called Jordan matrices.

A matrix of order m in the form

. ]
y 1
y 1 0
G, = o (6.17)
0
y 1
L Y

is called a Jordan block. The characteristic polynomial of this matrix is
(y — )™, and as such y, which has multiplicity m, is the only eigenvalue of G,.
Since the minimal polynomial of G, divides the characteristic polynomial, the
minimal polynomial must be in the form (y — A)*, where k < m. It can be
shown, however, that k = m, and the minimal polynomial of a Jordan matrix
is identical to the characteristic polynomial (y — 1)™. That is,

(PI—Gy)#0 for k<m
=0 for k=m
For example, if G, is the 3 x 3 matrix, then
0 -1

GI-Gy)=|0 o0 -1
0 0 0
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which shows that

01— Gy’ =

S O o o O
S O oo o
o

vl Gb)3 =

000

Clearly, (yI — G,)is a nilpotent matrix of degree 3. It follows that the character-
istic matrix of a Jordan block of order m is a nilpotent matrix of order m, and,
as a consequence, the minimal polynomial of G, is (y — A)™.

We also observe that the rank of the matrix (4,1 — G,)ism — 1, and, as a
consequence, the system of algebraic equations (4,1 — G,) A; =0 has m — 1
independent algebraic equations that define one independent nontrivial solu-
tion regardiess of the order m of the matrix.

A Jordan matrix consists of Jordan blocks that may have different charac-
teristic values. Jordan matrices then assume the following form:

where each Jordan block G,; has a number of repeated eigenvalues equal to
its dimension. An example of a Jordan matrix is the matrix D of the preceding
example:

2100

G 00 0200
D=10 Gy 0 =1y, ,
0 0 Gy 0 001

where
2 1
Gy, = [ :I, Gy, =2, Gy =1

As demonstrated in the preceding example, the eigenvalues of the matrix D are
A=Ay =4y =2, Ay =1

Associated with these four eigenvalues are only three independent eigen-
vectors, since the rank of the matrix (4,1 — D) s 2, and, as a consequence, the
system (4,1 — D)A, = 0 has only two independent nontrivial solutions asso-
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ciated with the three repeated eigenvalues 4,, 4,, and 1,. Using a similar
procedure, it can be shown that each Jordan matrix has a number of linearly
independent eigenvectors equal to the number of its Jordan blocks. Since the
condition of similarity of two matrices implies the equivalence of their charac-
teristic matrices, similar matrices have the same number of linearly indepen-
dent cigenvectors. It follows that if a matrix B is similar to a Jordan matrix
whose Jordan blocks are not all scalars, the matrix B does not have a complete
set of eigenvectors. An example of such matrices was presented in the preced-
ing example.

It is clear from the discussion presented thus far that each square matrix is
similar to a Jordan matrix since diagonal matrices are special cases of Jordan
matrices in which the Jordan blocks are scalars. It is also clear that two Jordan
matrices are similar if and only if they consist of the same Jordan blocks
and differ only in the distribution of these blocks on the main diagonal. For
example,

G1= ’ G2=

OO O W
O O W o
O W - O
wm O O O
O O W
OO WO
O W - O
w -0 O

are similar, but these two matrices are not similar to

300 0
0310
Gs=lo 0 3 o0
0005

It can be shown that G, and G, have only two independent eigenvectors: one
associated with the three repeated eigenvalues A, = 1, = 4; =3 and one
associated with the distinct eigenvalue 1, = 5. The matrix G, on the other
hand, has three linearly independent eigenvectors: two associated with the
repeated eigenvalues 4, = 1, = A, = 3 and one associated with the distinct
eigenvalue 1, = 5.

As another example, we consider the two matrices

3100 3100

0 310 0 3 00
G= —
10031’620031

0 0 0 3 0 0 0 3

These two matrices have the same repeated eigenvalues, but they are not
similar since G, consists of one Jordan block while G, consists of two Jordan
blocks. As a consequence, G, has only one independent eigenvector, while G,
has two independent eigenvectors.



348 6. Methods for the Eigenvalue Analysis

6.5 ELEMENTARY DIVISORS

Previously, we defined the kth invariant factor of a matrix as the greatest
common divisor of all minors of order k of the characteristic matrix divided
by the greatest common divisor of all minors of order k — 1. It was also shown
that similar matrices have equivalent characteristic matrices and, as a conse-
quence, have identical invariant factors. It can, therefore, be concluded that
Jordan matrices which are not similar do not have identical invariant factors.
In order to demonstrate this fact, we consider the two matrices

2 0] 2 1]

Gl'[o 2/ G"[O 2]

Their characteristic matrices are
A=2 0 A—-2 —1

0 i-2J (“_GZ)'_ 0 /1—2]

(ll—Gl)=[

The greatest common divisors of the minors of order 1 and 2 of (AI — G,) are,
respectively, (A — 2) and (A — 2)2. Therefore, the matrix of invariant factors of

G,is
A=2 0
0 1-2

The greatest common divisors of the minors of order 1 and 2 of (AI — G,) are
1 and (4 — 2)?, respectively. It follows that the matrix of invariant factors of

G, is
[1 - ]
0 (4—2)7°

Using a similar procedure and the induction principle, it can be shown that
the canonical diagonal matrix of an n-order Jordan block in the form of Eq.
17 is given by

G, = 3 (6.18)

-4

Let f(4) be the ith invariant factor of an arbitrary matrix that, in general,
can be written as

Sy = epreg e

where e,(4), e,(4), ..., e,(4) are distinct irreducible monic polynomials. The
elements

s s §,
ey, exr, ..., ek
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are called the elementary divisors of the invariant factor f(4). The elementary
divisors of an arbitrary matrix are the elementary divisors of all of the
nonconstant invariant factors of this matrix.

Example 6.7
Consider a matrix that has the invariant factors
1, 1,442 A2(4 + 2), A2(A + 2)2

The elementary divisor of the first nonconstant invariant factor is 4 and of the
second invariant factor it is A2. The elementary divisors of the third nonconstant
invariant factor are A2 and (4 + 2), and of the fourth invariant factor they are 12
and (A + 2)>. Hence, the elementary divisors of the matrix are

A A% A% A% (A +2), (A + 20

L

Since similar matrices have the same invariant factors, it follows that similar
matrices have identical elementary divisors. The elementary divisors can be
used to determine whether or not a matrix is similar to a diagonal matrix.
Using the definitions of the invariant factors and the elementary divisors, it
is easy to verify that the elementary divisors of a diagonal matrix are all of
the first degree. Hence, a matrix is similar to a diagonal matrix if and only if
all of its elementary divisors are of the first degree. Note that a Jordan block
has only one elementary divisor, (y — 4)", as demonstrated by Eq. 18, where
n is the dimension of the Jordan block. The elementary divisors of a Jordan
matrix consist of the elementary divisors of its blocks. Recall that a diagonal
matrix can be considered as a special case of a Jordan matrix in which the
Jordan blocks are of order 1.

Example 6.8
The matrix
3 1 -3
B=| -7 -2 9
-2 -1 4
has the characteristic matrix
A-3 -1 3
AI—-B)= 7 A+2 -9
2 1 A1-4

The invariant factors of the matrix B are 1, 1, (1 — 1)(4 — 2)2. Consequently, the
elementary divisors of the matrix Bare (1 — 1),(4 — 2)2. The matrix B then is similar
to the Jordan matrix

Q

i
oo~
oo
N - o

L
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6.6 GENERALIZED EIGENVECTORS

The procedure described in the preceding sections provides a systematic way
of determining whether or not a matrix is similar to a diagonal matrix. First,
we reduce, by a series of elementary operations, the characteristic matrix to a
diagonal canonical form, thus defining the invariant factors. These invariant
factors also can be determined using the greatest common divisors of the
minors of the characteristic matrix. The invariant factors then can be used to
define the elementary divisors. If all of the elementary divisors are polynomials
of the first degree, the matrix is similar to a diagonal matrix. If some or all of
the elementary divisors are not polynomials of the first degree, the matrix is
not similar to a diagonal matrix, but it is similar to a Jordan matrix. Recall
also that a matrix which has a complete set of linearly independent eigen-
vectors is similar to a diagonal matrix regardless of the number of repeated
eigenvalues. In this case, the matrix of the similarity transformation is the
matrix whose columns are the independent eigenvectors. The matrix of the
eigenvectors can also be defined as the product of a set of elementary matrices
which reduce a given matrix and its characteristic matrix to a diagonal form.,

If a matrix B does not have a complete set of eigenvectors, a question arises
as to which Jordan matrix is similar to B and what is the matrix of the
similarity transformation. In order to briefly discuss this question, we consider
the matrix

11 =20
-5 7 —-10 0
B‘—zz-zo
00 0 1

which has the eigenvalues 4, = 1, = 4; = 2 and 4, = 1. There are two inde-
pendent eigenvectors associated with the triple eigenvalue 4 = 2, and as such
the matrix B is not similar to a diagonal matrix, but similar to the Jordan
matrix

2100
0200
€=loo 20
0001

The independent eigenvectors associated with the eigenvalues of the matrix
B are

A = R Ay =

0
2
1 1 A4=

N —

0
0
0
1

o

0

These three eigenvectors represent the first, third, and fourth columns of the
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matrix of similarity transformation
V=[A, A, A; A,]

where A,, the missing eigenvector, is called the generalized eigenvector.
In order to illustrate the procedure for determining the generalized eigen-
vector, we write

V!BV =G
It follows from this equation that
BV = VG
or
A, 10 O
B[A, A, A, AJd=[A, A, A, A g '1)2 Z g
0 0 0 A,

This matrix equation yields
BA, = 1,A,, BA, = 1,A; + A,
BA, = 1;A,, BA, = 1,A,
Therefore, the generalized eigenvector A, must satisfy the equation
BA, = 1,A; + A,

Using the matrix B and the results previously obtained for A,, one can show,
as demonstrated later in this section, that the generalized eigenvector A, is

A,=[0 1 0 O (6.19)

and the matrix of the similarity transformation is

1 000
5120
V=[A, A, A, A=
[ 1 2 3 4] 2 0 1 0
00 0t
Note that A; and A, are two linearly independent vectors. Using a similar
procedure, one can show that if A, = 4, = -+ = , of a given n-dimensional

matrix B have only one independent eigenvector, the r linearly independent
generalized eigenvectors must satisfy the following relationships:

BAI =21A1, BA2=112A2+A1,-..,BA'.=I{,,A,+A'_1

It follows that the independent vectors that form the columns of the matrix
of the similarity transformation can be obtained by using either the equation

BA; = LA, (6.20)
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or the equation
BA; = LA+ A, (6.21)

Since (4,1 — B) is a singular matrix, Eq. 21 is a system of nonhomogeneous
algebraic equations which can be solved for the unknown generalized eigen-
vector A;. In order to demonstrate the procedure for solving this system, we
consider the equation for the generalized eigenvector A, of the matrix B
considered earlier in this section. The equation

(B—-4,DA, =A,

yields
-1 1 =2 0][4y 1
-5 5 —10 O|[ Ay | |5
-2 2 —4 0|4, |2
00 0 1|4, 0

The coefficient matrix in this system has rank 2 since the second and the third
rows are multiples of the first row. The application of the Gaussian elimination
procedure shows that the above system reduces to

-1 1 =2 0][4,
00 0 0{|a,,
00 0 offa,,
00 0 1|fdA,, 0

i

OO -

This system leads to the following two independent algebraic equations:
_“Azl +A22—2A23 = 1
Ay =0

Since the number of these equations is less than the number of unknowns,
there is an infinite number of solutions that can be obtained by partitioning
the variables as dependent and independent. The number of dependent vari-
ables is equal to the number of equations, while the remaining are the free or
the independent variables. If we select A, and 4,, as the dependent variables,
the preceding equations can be written as

Ay =1+ Ay + 24,5,

A =0
It follows that
Ay 0 1 0
A,, 1 1 2
= = A A 6.22
A, A, 0 + o |42 + 1 |42 (6.22)
A,y 0 0 0
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The first vector on the right-hand side of this equation is the particular solution,
while the sum of the last two vectors is the homogeneous solution. Since A,
and A,; can be given arbitrary values, there is an infinite number of solutions
for A ,. One choice of A ,, which previously was presented in Eq. 19, is obtained
by assuming that A,, = 4,, = 0. This vector is linearly independent of A,,
which is obtained from the homogeneous part of Eq. 22 by selecting 4,, = 1
and A4,, = 2. Another choice for 4,, and A4,; will lead to a different general-
ized eigenvector A,. For instance, if we choose 4,, =1 and A,; =0, we
obtain

A,=[1 2 0 0]

In this case, we obtain a different similarity transformation matrix

1 1 00
220
V1=[A1 Az A3 A4]= 201 0
0 0 0 1
The inverse of V, is
2 -1 2 0
-1 1 -2 0
_1_
Vit = -4 2 -3 0
0 0 0 1
One can show that
21 00
0200
VBV, =
PTTIT10 0 200
0 0 01

which demonstrates that the matrix of similarity transformation is not unique
since the eigenvectors and the generalized eigenvectors are not unique.

6.7 JACOBI!I METHOD

In the remainder of this chapter, we discuss some numerical techniques for
solving the eigenvalue problem. We start with the Jacobi method, which can
be used to determine the eigenvalues and eigenvectors of symmetric matrices
only.

Recall that if B is a symmetric matrix, then there exists an orthogonal matrix
® such that

®'B® =D (6.23)

where D is a diagonal matrix whose diagonal elements are the eigenvalues of
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B. In the Jacobi method, the matrix ® is determined as the product of a series
of orthogonal transformation matrices called Jacobi rotation matrices. The
Jacobi rotation matrix R;, at step i, is just a plane rotation matrix which takes
the form

1 0
0 1
cosy - 0 -+ —sin6,
R, = o | 0 (6.24)
sir; 6 - 0 coé 0,
L 1_

In this matrix, all of the elements other than those appearing in two columns,
say k and [, are the same as the elements of the identity matrix. The sine and
cosine functions appear in the elements of the kth and /th rows and columns.
The corresponding elements in the product

S = RTBR,
are

Sex = by cos? 6, — 2by, sin 0, cos 6, + by, sin? 6,
S = Sy = (by — by) sin 6; cos 6, + by,(cos® 6; — sin? @) (6.25)
Sy = by sin? 0; — 2b,, sin 6; cos 0; + by, cos? 6,

where b;; are the elements of the matrix B. If the off-diagonal elements s,, and
s, of the matrix S are to be zero, one must select 6, such that
0 = ! tan™! 2bu
2 by — by
It follows that, with a proper selection of the angle 6;, each step of the Jacobi
method can be used to annihilate two off-diagonal elements. While the next
transformation may introduce nonzero elements in the positions of the ele-
ments previously set to zeros. the successive applications of the Jacobi rotation
matrices lead to the required diagonal matrix. The product of the Jacobi
rotation matrices defines the orthogonal matrix @, whose columns are the
eigenvectors of B, as

(6.26)

® =R,R,...R, (6.27)

The Jacobi method becomes inefficient as the order of the matrix increases,
and as such, this method is recommended only for moderate-size matrices
with order about 10.
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Example 6.9

In order to demonstrate the procedure for applying the Jacobi method, we consider
the symmetric matrix B:

4 1 2
B=|1 0 0
200
In order to annihilate b,, and b,,, we use Eq. 26 to define 0, as
1 2(1)
=_tan"! - = 13.283°
0, 3 tan i 0

The Jacobi rotation matrix R, is

cos, —sinf; O 09732 02298 0
R,=|sinf, cosf 0f=]02298 09732 0

0 0 1 0 0 1
It follows that
4.2358 0.0 1.9464
RIBR, = | 00 —0.2361 —-04596

1.9464 —0.4596 0.0
In order to set to zero the elements in positions (1,3) and (3,1), we define 0, as

L 2(1.9464)

- U0 2129190
2" 4335800

0, =

which defines R, as

cosd, 0 -—sinf, 09317 0 -0.3631
R, = 0 1 0 =10 1 0
sin, 0 cos@, 0.3631 0  0.9317

The second step in the Jacobi method leads to

49939 —0.1669 00
RIRIBR,R, =| —0.1669 —02361 -0.4282
0.0 —0.4282 —0.75843

Note that the previously set zero elements in positions (1,2) and (2,1) are no longer
zeros after the second step. Nonetheless, by continuing this process a diagonal
matrix can be obtained, and the diagonal elements of this matrix are the eigenvalues
of B. The exact eigenvalues of the matrix B are —1, 5, and 0.

Generalized Eigenvalue Problem The Jacobi method discussed in this
section can be used in the case of symmetric matrices. In the case of the
generalized eigenvalue problem, one has

KA = AMA (6.28)



356 6. Methods for the Eigenvalue Analysis

where M and K are, respectively, the symmetric mass and stiffness matrices.
Premultiplying the preceding equation by M™!, one obtains
(M'K)A = AA

where M 'K is not necessarily a symmetric matrix. A symmetric eigenvalue
problem, however, can be recovered by using Cholesky decomposition M =
LLT, where L is a lower triangular matrix. Premultiplying Eq. 28 by L™, one
obtains

B(LTA) = ALTA
where

B=L'K(L™)

The matrix B is symmetric and has the same eigenvalues as the matrix MK,
and its eigenvectors are LTA.

6.8 HOUSEHOLDER TRANSFORMATION

Another method for determining the eigenvalues and eigenvectors of a sym-
metric matrix is to use a sequence of Householder transformations that reduce
the symmetric matrix to a simpler tri-diagonal form. The eigenvalues and
eigenvectors of the tri-diagonal matrix can be calculated more efficiently. The
resulting eigenvalues are the same as those of the original symmetric matrix,
and the product of the resulting Householder transformations defines an
orthogonal matrix which relates the eigenvectors of the tri-diagonal matrix
and the original symmetric matrix.

A Householder transformation or an elementary reflector associated with
a unit vector v, is defined as

H=1-2vyv] (6.29)

where I is an identity matrix. The matrix H is symmetric and also orthogonal
since

HH=(-2v,v)){ - 2v,v)) =1
It follows that H = H" = H™!. Tt is also clear that if v = |v|v,, then
Hv = —v
Furthermore, if u is the column vector
u=[1 0 0 --- O] (6.30)
and
v=b+ fu (6.31)
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where

B =1bl=/b"b (6.32)

2w'
Hb = {l - (|—VD—2} b

Using Eq. 31 and the definition of §, one can show that

-B
0
Hb=—fu=| 0 (6.33)

then

0
This equation implies that when the Householder transformation constructed
using the vector v of Eq. 31 is multiplied by the vector b, the result is a vector
whose only nonzero element is the first element. Using this fact, a matrix can
be transformed to an upper-triangular form by successively applying a series

of Householder transformations. In order to demonstrate this procedure, we
consider the rectangular n x m matrix:

bii by, b13 blm
I R R (634)
bnl bn2 bn3 e bnm
First, we construct the Householder transformation associated with the first
columnb, = [b,; b,, ... b,,]". This transformation matrix can be written as
BB
H =1- 2'_"_‘
blb,
where
b, =b, + fu,

in which f, is the norm of b, and the vector u, has the same dimension as b,
and is defined by Eq. 30. Using Eq. 33, one has

B
0
Hb,=—-Bu =} 0
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It follows that
=By (bi2)r (by3)y 0 (i

0 (b22)1 (b23)1 = (bam)
B,=H,B= 0 (b32)1 (b33); =+ (b3m)
0 (B o) (s

Now we consider the last n — 1 elements of the second column of the matrix
B, which form the vector

by, = [(b2)1 (b32)y = (buz)x]T
A Householder transformation matrix H,; can be constructed such that

-,
0
H,b, = —fu, = 0

0
where f, is the norm of the vector b,, and u, is the (n — 1)-dimensional vector
defined by Eq. 30. Note that, at this point, the Householder transformation

is only of order (n — 1), and this transformation can be imbedded into the
lower right corner of an n x n matrix H,, where

1 0
Ha = [o H}

The matrix H, is orthogonal and symmetric, and when it is multiplied by an
arbitrary matrix, it does not change the first row and the first column of that
matrix. By premultiplying B, by H,, one gets
=By (b)) (by3)y (brm
0 —B: (b23); - (bm):
B, =H,B, =H,H,B= 0 0 (bs3)s =+ (b3m)2

0 0 (ba3)z (bum)2
Next, we consider the vector that consists of the last n — 2 elements of the
third column of the matrix B,. This vector is

by =[(b33)2; (bs3)2 " (bna)z]T
A Householder transformation matrix Hj; can be constructed and imbedded
into the lower right corner of the n x n matrix H;, where
1 0 O
H;={0 1 0
0 0 Hj
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Using this matrix, one has

=B b2y (bia)y o (bymh

0 "ﬂz (bzs)z (b2m)2
H;B, =H;H,H,B= 0 0 —B3 o (bam)s

0 0 0 e (bnm)3
where f, is the norm of the vector b;. It is clear that, by continuing this process,
all of the elements below the diagonal of the matrix B can be set equal to zero.
If B is a square nonsingular matrix, the result of the Householder transforma-

tions is an upper-triangular matrix. If B is a rectangular matrix, the result of
m Householder transformations is

R
B,=H,H,_ - HB= [ 0‘] (6.35)

where R, is an m x m upper triangular matrix. If the matrix B is symmetric,
a sequence of Householder transformations can be used to obtain a tri-
diagonal matrix that is similar to B, as demonstrated by the following example.
The product of the resulting sequence of the Householder transformations
defines the matrix that defines the relationship between the eigenvectors of B
and the eigenvectors of the tri-diagonal matrix.

f——

Example 6.10

Use the Householder transformation to determine the eigenvalues and eigenvectors
of the symmetric matrix

4 1 2
B=|1 0 0
200

Solution First we construct the Householder transformation associated with the
last n — 1 elements of the first column. This defines the vector

b,=[1 21"
Using this vector, we define
H;;=1-2v,v]
where v, is a unit vector along the vector

v=b, + fu,
[a)e - [13]

v, = [0851 0.526]"

It follows that
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and
—0448 —-0.895
H;;=1-2vV[=
b Wi [—0.895 0.447]
This matrix can be imbedded in a 3 x 3 Householder transformation matrix:
{0 1 0 0
H, = [0 H ] =0 —0448 —-0.895
a 0 -0895 0447
The product H; B is
4 1 2
HB=] -2238 0 0
0 00
Also,
4 —-2238 0
H,BH, =| —2238 0 0
0 0 0
This is a tri-diagonal matrix that has the eigenvalues A, = —1.0, 4, = 0.0, and
A3 = 5. The corresponding eigenvectors are
1.0 0.0 —2.238
A, =]2238], A,=]00], A, = 1.0
0.0 1.0 0.0
Since H, is an orthogonal matrix, B is similar to H,BH,, and as such it has the
same eigenvalues. Furthermore, if
BA = /A
one has
(H,BH,)(H,A) = Ai(H, A)
which demonstrates that if A, is an eigenvector of H; BH,, then the eigenvector of
Bis
A = HT'A, = H)A,
It follows that
1.0 0.0 —2.238
A =] -10], A,=| —0895 |, A, =| —0448
-20 0.447 —0.895

6.9 QR DECOMPOSITION

As was demonstrated in the preceding section, a sequence of Householder
transformations can be used to reduce an arbitrary matrix to an upper-
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triangular matrix. For example, the first Householder transformation con-
structed using the first column of an arbitrary matrix B can be used to set the
last n — 1 elements of this column equal to zero. The second Householder
transformation sets the last n — 2 elements of the second column equal to zero,
the third transformation sets the last n — 3 elements of the third column equal
to zero, and the procedure continues in this manner to set all of the elements
below the diagonal equal to zero. It follows that n — 1 Householder transfor-
mations can be used to systematically reduce an arbitrary n x n matrix to an
upper-triangular matrix.

Let B be an n x n matrix, and H,, H,, ..., H,_; be a sequence of House-
holder transformations designed to reduce B to an upper-triangular matrix
R. One then has

H, ,H,,-H,B=R (6.36)

Since the Householder transformations are symmetric and orthogonal, one
has

Hf = H;' = H,
Using this identity, Eq. 36 can be written as
B= HIHZ . .Hn—ZHn—lR

Since the product of orthogonal matrices defines an orthogonal matrix, the
preceding equation can be written as

B =QR (6.37)
where Q is an orthogonal matrix defined as
Q=H,H, H,_,H,, (6.38)

Equation 37 states that an arbitrary square matrix B can be written as the
product of an orthogonal matrix Q and an upper triangular matrix R.

Example 6.11

Find the QR decomposition of the matrix

0 -3 5
B={ -2 2 =3
6 -2 0

Solution We consider the first column of the matrix B, which we write as b, =
[0 —2 6]". The norm of this vector

B = |b,| = /40 = 6.3246
Define

v=D>b, + fu, =[63246 —20 6.0]"
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A unit vector along v is
v, =[0.7071 —0.2236 0.6708]"
The Householder transformation constructed using this vector is

00 03162 —09486
H =1-2vv=| 03162 09 03
~0.9486 0.3 0.1

It follows that
—6.3246 25296 —0.9486

B, =H,B= 0.0 0.2514 —1.1190
0.0 0.0 —5.6430

The last two elements of the second column of this matrix form the vector b, =
[0.2514 0.0]". The norm of this vector is

B, =02514
Define a vector

w=b, + B,u, = [0.5028 0.0]"
A unit vector along this vector is
w =[1 o

The Householder transformation constructed using this vector is

-1 0
H2(=I—2wlwf=[ 0 1]

This matrix can be imbedded in a three-dimensional matrix H, as

1 00

1 0
H2=0H=0—10
2 0 01

Using this matrix, one has
—6.3246 2.5296 —0.9486

B, =H,B, =H,H,B= 0 —-0.2514 1.1190
0 0 —5.6430
which is an upper-triangular matrix. Therefore, the matrix B can be written as
B=QR
where
0 ~03162 —0.9486
Q=H,H,= 0.3162 -09 0.3
—-09486 -03 0.1
—6.3246 2.5296 —0.9486
R = 0 —-0.2514 1.1190

0 0 —5.6430
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Using the QR decomposition, an iterative procedure can be developed for
determining the eigenvalues and eigenvectors of an arbitrary square matrix
B. In this procedure, B is first decomposed into its QR factors as

B =Q,R, (6.39)

Using the Q, and R, matrices in this decomposition, a new matrix B, is
defined as

B, =R,Q, (6.40)
It is clear from Eq. 39 that R, = QTB, and as a consequence
B, = QIBQ, (6.41)

Since Q, is an orthogonal matrix, Eq. 41 demonstrates that B, is similar to
B, and therefore these two matrices have the same eigenvalues. In the iterative
procedure for determining the eigenvalues and eigenvectors of B, the QR
factors of B, are determined as

B, = Q;R,
A matrix similar to B, can be defined as
B, =R,Q;

This process continues until a matrix B, that is similar to B is obtained in a
diagonal or a Jordan form. The eigenvalues of B; are the same as the eigen-
values of B, and the eigenvectors of B can be obtained from the eigenvectors
of B; using the product of the orthogonal matrices Q in the QR factors.

Before using the QR decomposition, it is more efficient computationaily to
reduce B first to a tri-diagonal form using a sequence of Householder transfor-
mations. By reducing B to a simple form, fewer QR factorizations are required
and the procedure becomes much less expensive. Another method that can be
used to increase the speed of convergence of the QR algorithm is to use a shift
of the origin of the eigenvalues. We note that if 1 is an eigenvalue of B, then
4+ c is an eigenvalue of B + cI, and both B and B + cI have the same
eigenvectors. This fact can be demonstrated by adding cA to both sides of the
equation

BA = 1A
to yield
B+cDA=(A+c)A

This equation shows that (4 + ¢) is an eigenvalue of (B + ¢I) and A is the
associated eigenvector. More discussion on the selection of the constant ¢ and
the convergence of the QR method with shift can be found in the text by
Atkinson (1978).
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Problems

6.1. Find the eigenvalues and eigenvectors of the matrix

4 -5
=[x 2
Evaluate also the products
(O 'BD)°, o 'B!°®
where @ is the matrix of the eigenvectors of B.
6.2. Find the eigenvalues and eigenvectors of the matrix

20 00 00
B=]00 12 04
00 04 18

Evaluate also the products
(®'BD)'°, o 'B'®
where @ is the matrix of the eigenvectors of B.
6.3. Find the eigenvalues and eigenvectors of the matrix
-1 1 2
B= 00 2
0 0 2
and also find the matrix products
(O 'BD)'°, o 'B'°®
where @ is the matrix of the eigenvectors of B.

6.4. Using the Cayley—Hamilton theorem, show that the matrix
4 -5
B =
;2]

B2-B-2=0

satisfies the identity

Use this identity to find the inverse of the matrix B.
6.5. Using the Cayley—Hamilton theorem, show that the matrix

20 00 00
B=|00 12 04
00 04 18
satisfies the identity

B-HB-212=0
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6.7.

6.8.

6.9.

6.10.

6.11.

6.12.
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Show also that the inverse of B can be expressed in terms of B as
B! =4(B?- 5B+ 8])

Using the characteristic polynomials, determine which of the following matrices
is not similar to the others:

-1 1 2 52 8 16 1 00
B,=| 00 2|, B,=|838 6|, B,=|020
00 2 16 6 17 00 2

Find the minimal polynomials of the matrices

20 00 0O -1 1 2
B, =100 12 04], B, = 00 2
00 04 18 0 0 2

What is the minimal polynomial of the following matrix?

000
0
0
2

1
0
B=
0
0

(=TT ]
(=2 S B

Using elementary matrix operations, find the transformation that reduces the
characteristic matrix of the matrix

to a diagonal form. Find also the invariant factors of the matrix B.

Show that the matrix

110
B=10 1 1
0 0 2

1s not similar to a diagonal matrix. Determine the invariant factors of this matrix.

Find the elementary divisors of the two matrices

1 1 0] 100
B,=|0 1 0{, B,={0 1 0
0 0 2] 0 00
Using the elementary divisors of the matrix
(1 10
B=10 11
|0 0 2

determine the Jordan matrix that is similar to B.
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6.13.

6.14.

6.15.

6.16.

6. Methods for the Eigenvalue Analysis

Use the elementary divisors to find the Jordan matrix that is similar to the matrix

[ 21 0]
B=|-1 40
| -1 3 1]
Determine the independent or generalized eigenvectors of the matrix
21 0]
B=| -1 40
| -t 3 1]
Using the Jacobi method, find the eigenvalues and eigenvectors of the matrices
3 4 6 4 12
B,=| -1 -1 -1}, B,=]1 00
2 2 2 200

Use the QR decomposition to find the eigenvalues and eigenvectors of the
matrices

3 4 6 41 2
B,=| -1 -1 -1, B,=(100
2 2 2 200



Appendix A
Linear Algebra

In this appendix, we summarize some important results from vector and matrix
algebra that are useful in our development in this book. Most of the vector
and matrix properties presented in the following sections are elementary and
can be found in standard texts on linear algebra.

A1 MATRICES

An m x n matrix A is an ordered rectangular array that has m x n elements.
The matrix A can be written in the form

ayr dys Ayn
azy Gzz - 4y,

A== | . . . (A.1)
Q1 Q2 0 Gy

The matrix A is called an m x n matrix since it has m rows and n columns.
The scalar element g;; lies in the ith row and jth column of the matrix A.
Therefore, the index i, which takes the values 1, 2, ..., m, denotes the row
number, while the index j, which takes the values 1, 2,. .., n, denotes the column
number.

A matrix A is said to be square if m = n. An example of a square matrix is
30 —-20 095
A=163 00 100
9.0 35 1.25

In this example m = n = 3, consequently, A is a 3 x 3 matrix.

The transpose of an m x n matrix A is an n x m matrix denoted as AT and
defined as

367
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A1y Gy vt Gy
A2 Gz 0 Gy

AT = (@)= . . . . (A2)
Ain Q2n 0 Oy

For example, let A be the matrix

Ao 20 —40 -75 235
100 85 100 00

The transpose of A is given by

20 00
—-40 85
A=
-75 100
235 00

That is, the transpose of the matrix A is obtained by interchanging the rows
and columns.

Definitions A square matrix A is said to be symmetric if a; = a;;, that is,
if the elements on the upper right half can be obtained by flipping the matrix
about the diagonal. For example

30 =20 1.5
A=) =20 0.0 23
1.5 23 1.5

is a symmetric matrix. Note that if A is symmetric, then A is the same as its
transpose, that is, A = AT.

A square matrix is said to be an upper triangular matrix if a; = 0 for i > j.
That is, every element below each diagonal element of an upper triangular
matrix is zero. An example of an upper triangular matrix is

6.0 25 102 —-110
0.0 8.0 5.5 6.0
00 00 32 —40
0.0 0.0 00 -22

A square matrix is said to be a lower triangular matrix if a;; = 0 for i <.
That is, every element above the diagonal elements of a lower triangular



A.2. Matrix Operations 369

matrix is zero. An example of a lower triangular matrix is
60 00 00 00
25 80 00 00
10.2 5.5 32 0.0
-11.0 60 -40 -22

The diagonal matrix is a square matrix such that a; = 0if i # j; that is, a
diagonal matrix has element a; along the diagonal with all other elements
equal to zero. For example

50 00 00
A=|00 10 00
00 00 70

is a diagonal matrix.

The null matrix or the zero matrix is defined to be the matrix in which all
the elements are equal to zero. The unit matrix or the identity matrix is a
diagonal matrix whose diagonal elements are nonzero and equal to one.

A skew-symmetric matrix is a matrix such that a; = —a;. Note that since
a; = —aj forall i and j values, the diagonal elements should be equal to zero.
An example of a skew-symmetric matrix A is

00 -30 -50
A=|30 00 25
50 =25 0.0
Observe that AT = —A.

The trace of an n x n square matrix A, denoted by tr A is the sum of the
diagonal elements of A. The trace of A can thus be written as

trA =) a; (A3)
=i

Note that the trace of an n x n identity matrix is n, while the trace of a
skew-symmetric matrix is zero.

A.2 MATRIX OPERATIONS

In this section, we discuss some of the basic matrix operations which are used
throughout this book.



370  Appendix A. Linear Algebra

Matrix Addition The sum of two matrices A and B, denoted by A + B is
given by

where b; are the elements of B. In order to add two matrices A and B, it is
necessary that A and B have the same dimension, that is, the same number of
rows and the same number of columns. It is clear from Eq. 4 that matrix
addition is commutative, that is

A+B=B+A (A.5)

—

Example A.1

The two matrices A and B are defined as
Ao 30 10 —-50 B 20 30 60
120 00 20/ “1-30 00 -50
The sum A + B is given by
30 10 —50 20 30 60
A+B=
* [2.0 00 2.0]+ [—3.0 00 —5.0]
[ 50 40 10
1 -10 00 -30
while A — B is given by
A_Bo 30 1.0 =50 20 30 60
"7 720 00 20 -30 00 -50
_J1to -20 -110
B “I50 00 7.0

Matrix Multiplication The product of two matrices A and B is another
matrix C defined as

C=AB (A.6)

The element c; of the matrix C is defined by multiplying the elements of the
ith row in A by the elements of the jth column in B according to the rule

Cij = by + apby + - + ayby
= ; aikbkj (A'7)
Therefore, the number of columns in A must be equal to the number of rows
in B. Observe that if A is an m x n matrix and B is an n x p matrix then C is

an m x p matrix. Observe also that, in general, AB # BA. That is, matrix
multiplication is not commutative. Matrix multiplication, however, is dis-
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tributive, that is, if A and Barem x pmatricesand Cisap x nmatrix, then

(A 4+ B)C=AC + BC (A.8)
Example A.2
Let ~ _
0 4 1 0t
[3 2 1] 2
Then B _
0 4 1 1 5 2
AB=|2 1 t]{fo O0|=[5 4
13 2 1]]5 2 55
Observe that the product BA is not defined in this example since the number of
columns in B is not equal to the number of rows in A.

Perhaps it is important to emphasize that the associative law is valid for
matrix multiplications. That is, if A is an m x p matrix, B is a p x q matrix,
and C is a ¢ X n matrix, then

(AB)C = A(BC) = ABC

Determinant The determinant of an n x n square matrix A, denoted as |A|,
is a scalar defined as

gy Gy2 o Gy
azy 4z -0 Ay,

|Af=1{ . — . (A.9)
Ay Gnz o Gp

In order to be able to evaluate the unique value of the determinant of A, some
basic definitions have to be made first. The minor M;; corresponding to the
element ij is the determinant formed by deleting the ith row and jth column
from the original determinant |A|. The cofactor C;; of the element a;; is defined
as

Cl'j = (—1)l+"M,'j (AIO)

Using this definition, the value of the determinant in Eq. 9 can be obtained
by expanding the determinants in terms of the cofactors of the elements of an
arbitrary row i as follows

A = Z:I aijcij (A.11)
f=

Observe that the cofactors C;; are determinants of ordern — 1. If Aisa 2 x 2



372 Appendix A. Linear Algebra

a a
A___[ 11 12]’
az; Qp;

the cofactors C;; associated with the elements of the first row are

matrix defined as

Ciy = (=1’ay; = ay,, Ci;=(—1ay = —ay,

According to the definition of Eq. 11, the determinant of the 2 x 2 matrix A
can be determined using the cofactors of the elements of the first row as

[Al =a,,Ciy +a,,Cy, = ay,a;, — ay,a,,
If Ais a3 x 3 matrix defined as
a1y a1 ap3
A=lay ay ay|
ay; as; das;

the determinant of A in terms of the cofactors of the first row is given by

3
|A| = 21 aijCij =a,,Cy; +a,,Ci, +a5Cy;
f=

where
az; Qa3 a;, az; az, 4z;
Cu = s CIZ = - ’ C13 =
az; Qi3 as, as; as; Q4sz
That is, the determinant of A is
azz Q433 az; Q4; azy 4az;
|A} =ay, —a; + d;;
a3, dass as; ds; as; 4aj;

= a,,(a,,833 — A3383,) — a,,5(a2,a33 — a33a3,) + a15(az,a3; — a;3,a3,)

(A.12)

One can show that the determinant of a square matrix is equal to the determi-
nant of its transpose, that is
Al = |AT), (A.13)

and the determinant of a diagonal matrix is equal to the product of the
diagonal elements. Furthermore, the interchange of any two columns or rows
changes only the sign of the determinant. One can also show that if a matrix
has two identical rows or two identical columns, the determinant of this matrix
is equal to zero. This can be demonstrated by the example of Eq. 12, for
example, if the second and third rows are identical, a,, = a;3,,d,, = a;3,,and
a,3 = az;. Using these equalities in Eq. 12, one can show that the determinant
of the matrix A in this special case is equal to zero. A matrix whose determinant
is equal to zero is said to be a singular matrix. For an arbitrary square matrix,
singular or nonsingular, it can be shown that the value of the determinant
does not change if any row or column is added to or subtracted from another.
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Inverse of a8 Matrix A square matrix A~' that satisfies the relationship

ATTA=AA =1 (A.14)

where 1 is the identity matrix, is called the inverse of the matrix A.
The inverse of the matrix A is defined as

Al

-1

where C, is the adjoint of the matrix A. The adjoint matrix C, is the transposed
matrix of the cofactors C;; of the matrix A.

Example A.3

Determine the inverse of the matrix

0 01
Solution. Observe that the determinant of the matrix A is equal to one, that is
Al =1
The cofactors of the elements of the matrix A are
C,=1, C,,=0, Ci;=0, Cy=-1
Cy, =1, C,; =0, C;, =0, Cy, = —1
Cy; =1

The adjoint matrix, which is the transpose of the matrix of the cofactor elements,
is given by
C, G Gy 1 -1 0

C=]|C,; G Gy, |=]|0
Cis Gy Gy 0 0 1

Therefore,
1 -1 0
C
At="=]0 1 -1
[A]
0 0 1
It follows that
1 -1t ot 1 1t 1 00
ATTA = t —tl{o 1 1]l=l0o1 0
0 ][0 01 00 1
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Note that if A is the 2 x 2 matrix

a a
A= o]
a1 Qy;

the inverse of A can be simply written as

A"=L|: a2 —axz]
|Al[ ~a;, a4

where |A| = (a,;a,, — a,,a,,). If the determinant of A is equal to zero, the
inverse of A does not exist. This is the case of a singular matrix.
If A and B are nonsingular square matrices, then

(AB)"' =B !'A™!

It can also be verified that
(A—I)T = (AT)—I

That is, the transpose of the inverse of a matrix is equal to the inverse of its

transpose.
A square matrix A is said to be orthogonal if
ATA=AAT =1
In this case
AT = A—l

That is, the inverse of an orthogonal matrix is equal to its transpose. An
example of orthogonal matrices is

Az[cos() —sm()] (A15)

sinf cos@
For this matrix, one has

ATA = cos@ sinf|tcosf —sinf
" | —sin@ cosf||sind cos@
_[cos* 0+ sin 0 0
- 0 sin? 6 + cos? 0

Using the trigonometric identity

cos? 0 + sin? @ = 1,

one obtains
ATA =1

and the matrix A defined by Eq. 15 is indeed an orthogonal matrix.

A.3 VECTORS

An n-dimensional vector a is an ordered set
a=(a,dy...,a, (A.16)
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of n scalars. The scalar q;, i =1, 2, ..., n, is called the ith component of a.
An n-dimensional vector can be considered as an n x 1 matrix that consists
of only one column. Therefore, the vector a can be written in the following
column form

a,
a=|” (A17)
The transpose of this column vector defines the n-dimensional row vector
a'=[a, a, ... a,]
The vector a of Eq. 17 can also be written as
a=[a, a, ... a]" (A.18)

By considering the vector as special case of a matrix with only one column or
one row, the rules of matrix addition and multiplication apply also to vectors.
For example, if a and b are two n-dimensional vectors, defined as

a=[a, a, ... a,]"
b=(b b, ... b1%,
then a + b is defined as
a+b=[a,+b ay+b, ... a,+b]"

Two vectors a and b are equal if and only if a; = b, fori= 1,2, ..., n.
The product of a vector a and scalar « is the vector

oa = [aa, aa, ... aa,]’ (A.19)

The dot, inner, or scalar product of two vectors a = [a, a, ... a,]" and
b=[b, b, ... b,]" is defined by the following scalar quantity

b,
b,
ab=a"b=[a, a, ... a]| (A.20a)
b,
= albl + azbz + e + a,‘b,,
which can be written as
ab=a"bh= Z a;b; (A.20b)

i=1

It follows thata-b = b-a.
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The length of a vector a, denoted as |a|, is defined as the square root of the
dot product of a with itself, that is

la| = /aTa = (a? + a2 + -+ + a?)'/? (A.21)

The terms modulus, magnitude, norm, and absolute value of a vector are also
used to denote the length of a vector.

Example A.4
Let a and b be the two vectors
a=[0 1 3 2], b=[-1 0 2 3]

then
a+b=[0 1 3 2]"+[-1 0 2 31"

=[-11 5 s
The dot product of a and b is

ab=a"=[0 1 3 2]

3
=0+0+6+6=12
The length of the vectors a and b is defined as
lal = /aTa = [(0) + (1) + (3)? + (221" = /14 ~ 3.742
(bl = /bTh = [(— 1)2 + (0)* + (2)? + (3)*]"* = /14 ~ 3.742

Differentiation In many applications in mechanics, scalar and vector
functions that depend on one or more variables are encountered. An example
of a scalar function that depends on the system velocities and possibly the
system coordinates is the kinetic energy. Examples of vector functions are the
coordinates, velocities, and accelerations that depend on time.

Let us first consider a scalar function f that depends on several variables

4y, 943, .- 4, and the parameter ¢, that is
f=141, 492 4u V) (A.22a)

where ¢, q,, ..., g, are functions of t, that is, g, = ¢;(t).
The derivative of f with respect to time is

G_Sda, Adey, | e Y
dt oq, dt 0q, dt dq, dt ot
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which can be written using vector notation as

dg,
dt
a _|o o o 44z of
g B S 2z A.22b
dt [6‘11 0q, aqn] . * o ( )
dg,
This equation can be written compactly as
df dfdq of
A St U A2
dt " oqdt o (A-23)
in which df/dt is the partial derivative of f with respect to t and
=09, 9, ... 4] (A.24)
of [6f of of ]
—=fi=| = ... (A.25
oa 117 a, 20, :

which defines the partial derivative of a scalar function with respect to a vector
as a row vector. Note that if f is not an explicit function of time of/ot = 0.

Example A 5

Consider the function
S, 92,0 = ‘If + 3(1; ~t?

where g, and g, are functions of the parameter t. The total derivative of f with
respect to the parameter ¢ is
df _dfdq,  of dq, of

dt  dq, dt ~ 0q, dt Ot

where
of o of
- =24y, =~ =943, —= =2
3, M 5, T !
Hence
df dq, dq,
—= 2 _ 271<
dt Vde 942 dt 2
da,
dt
={2g, 943] d -2t
’p)
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where 0f/0q can be recognized as the row vector

o

3 =fo=1[29, 9431

Consider the case of vector functions that depend on several variables.
These vector functions can be written as

fl =fl(q1’ qas -5 qp> t)
fl =f2(q1’ qZ’.--'a qns t) (A26)
fm =fm(ql’ qzs -+ qps t)

where g; = ¢;(t),i = 1,2,..., n. Using the procedure previously outlined in this

section, the total derivative of an arbitrary function f; can be written as
@=%@ %, =12,....,m
dt odqdt ot

in which df;/0q is the row vector

af,._[af,. o @]

oq |9q, dq, T 0,
Consequently,
FARERANEAICANED
dt 0q, 04, oq, || dt ot
o ] |7 w | n|lde| |7
1= dt | =|0q, 0q, ‘ 0q, || dt 4| Ot (A.27)
Bo| | Tn o S| 0| | D
| dt | | 99, Oq, 0q, || dt | | ot ]
where
f=0fi o - ful' (A.28)

Equation 27 can be written compactly as

df  ofdq of
ar_otdq o A.29
di " oqdr o (A.29)

where the m x n matrix 0f/0q, the n-dimensional vector dq/dt, and the m-
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dimensional vector 0f/dt can be recognized as

(% U O]

0q, 04, 0q,
a . |B BT
X g =00 32 " (A30)
oq .

S O n

| 09, 04, q, |
dq [dg, dg, dg, |"
Aogq =1 22 I A3l
ai ¥ | dt  dt dt (A3
of [of, o m |1
Z=f =2 2 m A32
ot L | ot Ot ot (A-32)

If £ is not an explicit function of the parameter ¢, then df;/dt is equal to zero.
Note also that the partial derivative of an m-dimensional vector function f
with respect to an n-dimensional vector q is the m x n matrix f, defined by
Eq. 30.

Example A.6
Consider the vector function f defined as
N qi +3q3 — 1
f=1/|= 847 — 3t
fs 297 — 64,4, + 43
The total derivative of the vector function f is
_gf_,—
dt 2, 942 ‘% —2
Z—:: ‘Z—f: = 16q, 0 dq: +1 -3
4, (49, — 642) (29 — 64 || 4 0
dt

where the matrix f, can be recognized as
2q, 9q3
fy= 16q, 0
(44, — 6q;) (29, — 6q,)
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and the vector f, is

of
5=l=0-2 -3 oF

In the analysis of mechanical systems, we may also encounter scalar func-
tions in the form

0 =q'Aq (A.33)

Following a similar procedure to the one previously outlined in this section,
one can show that

aQ T
“Z=q"A + AT .
2 = 4A+AD (A34)
If A is a symmetric matrix, that is, A = A7, one has
aQ T
a—q =2q'A (A.35)

Linear Independence The concepts to be introduced here are of funda-
mental importance in the development presented in this book. Their use is
crucial in formulating many of the dynamic relationships presented in several
chapters of this text.

The vectors a, a,, ..., a, are said to be linearly dependent if there exist
scalars e, e,, ..., e,, which are not all zeros, such that

e,a, +ea,+ - +ea, =0 (A.36)

Otherwise, the vectors a,, a,, ..., a, are said to be linearly independent.
Observe that in the case of linearly independent vectors, none of these vectors
can be expressed in terms of the others. On the other hand, if Eq. 36 holds, and
not all the scalars e, e,, ..., e, are equal to zero, one or more of the vectors
a,,a,,...,a,can be expressed in terms of the other vectors.

Equation 36 can be written in matrix form as

[a, a, ... a,J| “|=0 (A.37)

which can be written compactly as
Ae=10 (A.38)

wheree = [e, e, ... ¢,]" and the columns of the coefficient matrix A are the
vectors ay, a,, ..., a,, that is

A=[a, a, ... a,] (A.39)

If the vectors a,, a,, ..., a, are linearly dependent, the system of homogeneous
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algebraic equations defined by Eq. 38 has a nontrivial solution. On the other
hand, if the vectors a,, a,, ..., a, are linearly independent vectors, then A must
be a nonsingular matrix since the system of homogeneous algebraic equations
defined by Eq. 38 has only the trivial solution

e=A"0=0

Consequently, in the case where the vectorsa,, a,, ..., a, are linearly dependent,
the square matrix A must be singular. The number of linearly independent col-
umns in a matrix is called the column rank of the matrix, while the number of
independent rows is called the row rank of the matrix. It can be shown that
for any matrix, the row rank is equal to the column rank and is equal to the
rank of the matrix. Therefore, a square matrix which has a full rank is a matrix
which has linearly independent rows and linearly independent columns. We
conclude, therefore, that a matrix which has a full rank is a nonsingular matrix.
Consequently, ifa,, a,, ..., a, are n-dimensional linearly independent vectors,
any other n-dimensional vector can be expressed as a linear combination of
these vectors. For instance, let b be another n-dimensional vector. We show
that this vector has a unique representation in terms of the linearly in-
dependent vectors a,, a,, ..., a,. To this end, we write b as

b=xa, +x,a; + -+ x,a, (A.40)

where x;, x,, ..., x, are scalars. In order to show that x,, x,, ..., x, are unique,
Eq. 40 can be written as

X1
b=[a, a, ... a,] x:2
,
which can be written compactly as
b = Ax, (A.41)

where A is a square matrix defined by Eq. 39 and x is the vector
x=[x;, x; ... x,]"

Since the vectors a,, a,, ..., a, are assumed to be linearly independent, the
coefficient matrix A in Eq. 41 has a full row rank and, therefore, it is non-

singular. This system of algebraic equations has a unique solution x which
can be written as

x=A"b

That is, an arbitrary n-dimensional vector b has a unique representation in
terms of the linearly independent vecotrs a,, a,, ..., a,. A familiar and
important special case is the case of three-dimensional vectors. One can show
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that the three vectors

1 0 0
a = 0 3 a = 1 N 83 = 0 N
0 0 1

are linearly independent. Any other three-dimensional vector b=
[b, b, b;]" can be written in terms of the linearly independent vectors a,,
a,,and a; as

b = bja, + b,a, + bya,

where the coefficients x,, x,, and x; can be recognized in this special case as
xl =b1, x2 =b2, and X3 =b3

The coefficients x,, x,, and x, are called the coordinates of the vector b in the
basis defined by the vectors a,, a,, and a,.

—
Example A.7

Show that the vectors

are linearly independent. Find also the representation of the vectorb=[—1 3 0]"
in terms of the vectors a,, a,, and a,.

Solution. 1In order to show that the vectors a,, a,, and a, are linearly independent,
we must show that the relationship

elal + 2282 + 6333 = 0
holds only when e, = e, = e; = 0. To this end, we write

1 1 1
e, |0 +e| 1] +ell]|=0
0 0 1

which leads to
e, +e,+e;=0
e; +ey=0
e;=0
Back substitution shows that

ey =e,=¢, =0

That is, the vectors a,, a,, and a; are linearly independent.
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In order to find the unique representation of the vector b in terms of these
linearly independent vectors, we write

b = xlal + xZaz + x383

which can be written in a matrix form as

b = Ax
where
111 [ 1
A=]0 1 1} b= 3
0 01 0

Therefore, the vector of coordinates x can be obtained as

x, 1 -1 -1 -4
x=|x,|=A"={0 1| -1 3= 3
X3 0 1|l o

A.4 EIGENVALUE PROBLEM

In the analysis of structural systems, we often encounter a system of homo-
geneous algebraic equations in the form

Ay =y (A.42)

where A is a square matrix, y is an unknown vector, and 2 is an unknown
scalar. Equation 42 can be written in the form

(A—ADy=0 (A.43)

where I is the identity matrix. Equation 43 represents an algebraic system of
homogeneous equations which have a nontrivial solution if and only if the
coeflicient matrix (A — AI) is singular. That is, the determinant of this matrix
is equal to zero. This leads to

|IA—-AI=0 (A.44)

This is called the characteristic equation of the matrix A. If Aisann x nmatrix,
Eq. 44 is a polynomial of order n in A. This equation can be written in the
following form

a A"+ a, A" 4+ 4+a,=0 (A.45)

where a;,i =0, 1, 2, ..., n, are the scalar coefficients of the polynomial. The
solution of Eq. 45 defines n roots 4,, 4,, ..., 4,. These roots are called the
characteristic values or the eigenvalues of the matrix A. Associated with each
of these eigenvalues, there is an eigenvector y; which can be determined by
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solving the system of equations
(A— Ay, =0 (A.46)

If A is a real-symmetric matrix, one can show that the eigenvectors asso-
ciated with distinctive eigenvalues are orthogonal, that is

Yiy;=0 if i#j
MY A0 i Q=)

Example A.8
Find the eigenvalues and eigenvectors of the matrix
4 1 2
A=[1 00
2 00

Solution. The characteristic equation of this matrix is

4-41 1 2
|[A—All=1] 1 -4 0
2 0 -A
=@ -2+ i+41=0
This equation can be rewritten as
AA=5(1+1)=0
which has the roots
A =0, Ay =35, Ay=—1

The ith eigenvector associated with the eigenvalue 4; can be obtained using the
equation

(A—-4Dy, =0
The solution of this equation yields
0 5 1
=] 2|, Y.=|1|, vyi=[-1
—1 2 -2
Problems

A.l. Find the sum of the following two matrices

-30 80 —205 0 32 0
A= 50 110 13.0 |, B=| —-175 57 0
70 200 0 120 68 —10.0

Evaluate also the determinant and the trace of A and B.

A.2. Find the product AB and BA, where A and B are given in Problem 1.



A3.

A4

AS.

A6.

AT

A8

A9.

A 10.

Problems 385

Find the inverse of the following matrices

-1 2 -1 0 -3 5
A= 2 -1 of, B=|-2 2 -3
0 -1 1 6 -2 0

Show that an arbitrary square matrix A can be written as
A=A +A,
where A, is a symmetric matrix and A, is a skew-symmetric matrix.

Show that the interchange of any two rows or columns of a square matrix
changes only the sign of the determinant.

Show that if a matrix has two identical rows or two identical columns, the
determinant of this matrix is equal to zero.

Let
A, A
a-[h A
Ay Ay
be a nonsingular matrix. If A, is square and nonsingular, show by direct matrix
multiplications that

Al = [(A,'} +B;H™'B,) -—BIH“]

~H™'B, H!
where
B, =Af11A12, Bz=A21AH
H=A,, -BA;; =A;; — A B,
= Ay, — A21AI}A12
Let a and b be the two vectors

a=[1 0 3 2 -5]7
b={0 -1 2 3 -8
Finda + b,a-b, |a], and |b|.
Find the total derivative of the function

a1, 92,93, 1) = 9,95 — 33 + 5¢°

with respect to the parameter t. Define also the partial derivative of the function
S with respect to the vector q(t) where

q() =[q:() g,() q;(0]"

Find the total derivative of the vector function

fi g} +3g3 — 5q3 + 1°
f=r,|= 95— 43
/s 9194 + 4293 + 1

with respect to the parameter t. Define also the partial derivative of the function
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All

A2

A.13.

A.l4,

A.lS.

Appendix A. Linear Algebra

S with respect to the vector

a=[q, 92 95 4.]"

Let Q = q"Aq where A is an n x n square matrix and q is an n-dimensional
vector. Show that
09 .
—=q" A+ AT
aq "9 (A+A)

Show that the vectors

®
|
-
®
~
il
B
w
I

are linearly independent. Determine also the coordinates of the vector b =
[1 —5 3]"in the basis a,, a,, and a;.

Find the rank of the following matrices

2 51 35 1 0
A={6 9 3|, B=12 0 ~13
4 0 2 71 29

Find the eigenvalues and eigenvectors of the following two matrices

2 -1 0 6 -2 0
A=|-1 2 -1, B=|-2 2 -3
0 -1 1 4 -4 -3

Show that if A is a real-symmetric matrix then the eigenvectors associated with
distinctive eigenvalues are orthogonal.
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