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FOREWORD 

The increasing size and complexity of new structural forces in engineering have 

made it necessary for designers to be aware of their dynamic behaviour. Dynamics 

is a subject which has traditionally been poorly taught in most engineering 

courses. This book was conceived as a way of providing engineers with a deeper 

knowledge of dynamic analysis and of indicating to them how some of the new 

vibrations problems can be solved. The authors start from basic principles 

to end up with the latest random vibration applications. The book originated 

1n a week course given annually by the authors at the Computational Mechanics 

Centre, Ashurst Lodge, Southampton, England. Special care was taken to ensure 

continuity in the text and notations. 

Southampton 1984 
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1. Introductory Remarks 

CHAPTER 1 

INTRODUCTION TO VIBRATION 

by 

G.B. Warburton 

In recent years the number of structures, for which the dynamic forces, likely to 

be encountered in service, have required investigation at the design stage, has 

increased. Several factors have contributed to this increase: growth in size of 

structures of various types; consequential increased importance of wind forces; 

efforts to reduce the effects of earthquakes on structures and to prevent total 

collapse; design of off-shore structures. Two important questions are: why is it 

essential to include dynamic effects in structural analysis and why is this a more 

difficult task than conventional (static) structural analysis? 

Suppose that the stresses in a structure are known for: (a) a static force P at a 

particular location; (b) a force at the same location that varies in magnitude with 

time and has a maximum value of P. Then the dynamic magnification factor is the 

maximum stress at a point for (b) / the stress at the same point for (a). This 

factor depends upon how the force varies with time, the distribution of stiffness 

and mass in the structure and the damping present. In certain circumstances it will 

be very large; in others very small. Obviously, if there is any possibility of the 

dynamic magnification factor being significantly greater than unity, a dynamic 

analysis of the structure is necessary. This book is primarily concerned with 

methods of determining dynamic magnification factors for various types of loads and 

structures. However, no simple rules exist for these factors. Thus there are 

greater conceptual difficulties for dynamic problems than for comparable static 

problems, as the intuition and experience, which help an engineer to form a reason­

able view of the safety of a structure under static forces, do not lead to an esti­

mate of the relevant dynamic magnification factors. Also the time dependence of 

stresses, displacements etc. and the necessity to include mass and damping effects 

make dynamic analysis more complex than its static counterpart. There are also 

practical difficulties; some dynamic loads, e.g. wind forces, and most damping 

forces can only be estimated. 

In addition to the possibility of elastic failure of a structure if dynamic effects 

are neglected, long-time repetition of dynamic stresses, whose magnitudes would be 

considered to be safe from static considerations, may lead to cumulative fatigue 

failures. 
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In this chapter the concepts that are relevant to vibration analysis of structures 

will be discussed briefly. Emphasis is on the response of structures to dynamic 

forces and how different types of force time variation influence the choice of 

method. Many of the concepts are introduced by considering the simplest vibrating 

structure; then, as this simple structure has limited practical applications, gen­

eral structures are discussed. For these the normal mode method of determining 

response is given particular attention, because it illustrates the physical behaviour 

of structures better than other methods. Lastly dynamic interaction problems are 

discussed; here interaction exists between the vibrations of a structure and those 

of the underlying soil or the surrounding fluid. Many current practical problems, 

and also much current research effort, involve interaction effects. 

Naturally in a single chapter the major topics of structural vibration can only be 

mentioned. Most of these topics will be studied in depth in subsequent chapters. 

It is hoped that their introduction here will illustrate their interrelationship and 

show how they contribute to the determination of stresses in complex structures 

caused by various types of dynamic excitation. 

2. Single Degree of Freedom Systems: Equation of Motion and Types of Problem 

Although the dynamic response of a practical structure will be complex, it is necess­

ary to begin our study by considering the fundamentals of vibration of simple systems. 

A rough guide to the complexity of a dynamical system is the number of degrees of 

freedom possessed by the system. This number is equal to the number of independent 

coordinates required to specify completely the displacement of the system. For 

instance, a rigid body constrained to move in the X Y plane requires three coord­

inates to specify its position completely - namely the linear displacements in the 

X- and Y-directions and the angular rotation about the Z-axis (perpendicular to the 

plane X Yl; thus this body has three degrees of freedom. The displacement of an 

elastic body, e.g. a beam, has to be specified at each point by using a continuous 

equation so that an elastic body has an infinite number of degrees of freedom. In 

a dynamical problem the number of modes of vibration in which a structure can respond 

is equal to the number of degrees of freedom, thus the simplest structure has only 

one degree of freedom. 

Figure 1 shows the conventional representation of a system with one degree of free­

dom; it consists of a mass m constrained to move in the X-direction by frictionless 

guides and restrained by the spring of stiffness k. It is assumed that the mass of 

the spring is negligible compared to m. Thus the displacement of the system is 

specified completely by x, the displacement of the mass, and the system has one 

degree of freedom. For the purpose of analysing their dynamic response it is 

possible to treat some simple structures as systems with one degree of freedom. 
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A 

Figure I Single degree of freedom system 
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Figure 3 Examples of transient force excitation 
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In the simple frame of Figure 2 it is assumed that the horizontal member BC is rigid, 

that the vertical members AB and CD have negligible mass compared to that of BC, and 

that in any swaying motion BC remains horizontal. Then the motion of the system is 

given by the horizontal displacement of BC, x, and the frame can be treated as a 

system with one degree of freedom. Equations and results derived for the system of 

Figure 1 will be applicable to that of Figure 2. 

The general equation of motion is derived by considering the forces acting on the 

mass m of Figure 1 at any time t. If the displacement of the mass, x, is measured 

from the position of static equilibrium, the gravity force mg need not be included 

in the equation as it is balanced by the restoring force in the spring kxs where Xs 

is the static deflection of m and k is the stiffness of the spring or the force 

required to produce unit deflection in the spring; it is assumed that the spring 

is linear, i.e. k is a constant. 

In any real system there will be some damping; this may take various forms, but here 

viscous damping will be assumed, and thus the damping force is proportional to the 

velocity x and opposes the motion. (A dot over a symbol indicates differentiation 

with respect to time; thus velocity dx/dt = x and acceleration d 2 x/dt 2 =x.) 
Conventionally viscous damping is represented by the dashpot, shown in parallel 

with the spring in Figure 1; in practice the damping force is caused by internal 

friction in the spring etc. and thus is collinear with the spring force. 

Newton's second law of motion is applied to the system; this can be expressed as 

the product of the mass and the resulting acceleration in the X-direction is equal 

to the net applied force in the X-direction. For this system the latter has three 

components, namely the applied force P(t), the restoring or spring force (-kx) and 

the damping force (-cx). Thus the equation of motion is 

mx P(t) - kx - cx 

or 

mx + cx + kx P(t) (1) 

The solution of equation (1) gives the response of the mass to the applied force p(t) 

Equation (1) represents also the motion of the member BC of the frame of Figure 2, 

if m is the mass of BC, k is the combined stiffness of the stanchions AB and DC, 

and it is assumed that a viscous damping force cx opposes the motion of BC. The 

equations of motion for various single degree of freedom systems are derived in 

Chapter 2. 
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Vibrations may be excited by impressed motion at the support. Considering Figure 

2, to ~epresent a simple structure, its response to vibrations transmitted through 

the ground by earthquakes, traffic, pile-drivers, hammers, explosions etc. is 

important in practice. Suppose that the support A in Figure 1 is given a vertical 

displacement xo(t) or the foundation AD in Figure 2 is given a horizontal displace­

ment xo(t). In both cases the restoring force on the mass due to deformation of 

the spring or stanchions is k(x-xo ). The damping force is proportional to the rel­

ative velocity across the dashpot (Figure 1) and is c(x - xo ). If the force P(t), 

shown in Figure 1 and 2, is no longer acting, the equation of motion is: 

m x - k(x - x ) - c(x - x ) 
o 0 

i.e. m x + c X + k x kx + cx 
o 0 

Writing equation (2) in terms of the displacement of the mass relative to the 

support (i.e. the deformation of the spring or stanchions), xr = x - xo ' 

m x + C X + k x 
r r r 

- m x 
o 

(2) 

(3) 

The solution of equation (3) yields the relative displacement, which is proportional 

to the stress in the elastic member. This solution can be obtained when the base 

acceleration xo is specified. In practical problems relating to excitation due to 

imposed motion of the base, the acceleration is usually known, rather than the dis­

placement and velocity, although the latter can be found by integration. 

Equations (1), (2) and (3) are mathematically similar. Thus discussion of the 

different types of excitation, i.e. how the applied force or base motion varies with 

time, applies to all three equations. Solutions obtained from one equation can be 

used to infer solutions for either of the others. Only a change of nomenclature is 

required to interchange solutions between equations (1) and (3). 

Considering the force P(t), shown in Figures 1 and 2, there are three main types of 

excitation: (i) Harmonic forces, such as P(t) = Po sin wt or P(t) = Cw 2 sin wt, 

(the latter is typical of a component of the force produced by out of balance in a 

rotating machine). A force which is periodic but not harmonic can be expressed as 

a sum of harmonic terms, using Fourier series, and for a linear system the total 

response can be obtained by superposing the individual response from each harmonic 

component of the force. Thus forces which are periodic but not harmonic will not 

be considered further. (ii) Transient or aperiodic forces: usually these are 

forces which are applied suddenly or for a short interval of time; simple examples, 

illustrating the two types, are shown in Figure 3(a) and (b). (iii) Random forces: 
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the force P(t) cannot be specified as a known function of time, but can be des­

cribed only in statistical terms; forces due to gusts of wind form an example of 

this type of excitation. 

For (i) the steady-state response of the mass to the harmonic force is required. 

For (ii) the transient response is required, usually the maximum displacement of 

the mass or the maximum extension of the spring (the stress in the elastic member 

of the system is proportional to this extension), occurring during the period of 

application of the force or in the motion immediately following this period, will 

be of greatest interest. For (iii) the response can only be determined statistically. 

Mathematically, the solution of equation (1) consists of two parts: the complement­

ary function, which is obtained by solving the equation with the right hand side 

equal to zero, i.e. p(t) = 0, and the particular integral which depends on the 

form of P(t). Physically, the complementary function represents free damped 

vibrations, i.e. the vibrations that occur if the mass is given an initial displace­

ment or velocity and released. The solution for free vibrations can be written 

x 

where Wd 

kim, y clc and c 
c c 

2k/w 
n 

2mw 
n 

(4) 

(5) 

(6) 

In equation (4) the constants A and B are chosen to satisfy the initial conditions, 

i.e. the values of x and x at time t = 0. Equation (4) represents a damped 

oscillation: x'" ° as t.,. 00 It has been assumed that the damping ratio y < 1. 

In practice, Y «1; thus from equation (5) wd ~ wn . Now wn is the (circular or 

radian) natural frequency of the system and is of great importance in vibration 

analysis. If an initial displacement is given to the mass in Figure 1 or 2, the 

frequency of the ensuing vibrations is strictly wd ' but provided that Y « 1 it 

can be assumed that the natural frequency wn has been measured. The assumption that 

y« 1 can be checked by determining y from the rate of decay of successive oscil­

lations. (See Chapter 2 for further details). 

3. Response 

The response of systems with one degree of freedom (Figures 1 and 2) to the various 

types of excitation force will be summarised. 
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Considering a harmonic applied force, i.e. P(t) = Po cos wt, where Po is a constant 

and w is the (radian) frequency of the force, equation (1) becomes 

m x + c X + kx P cos wt 
o 

(7) 

The complete solution consists of free damped vibrations [equation (4)] and a 

particular integral. However, the former dies out and thus the steady state solution 

is given by the particular integral, which can be shown to be 

with tan S 
cw 

x 
P cos(wt - s) 

o (8) 

Using definitions (6) and putting r = w/wn' i.e. r is the ratio of the excitation 

frequency to the natural frequency, the steady state amplitude X from equation (8) 

is 

kX 
P 

o 

I (9) 

Now Polk is the static deflection of the mass due to a static force Po' so kX/Po is 

the dynamic magnification factor. Equation (9) introduces the phenomenon of reson­

ance. The dynamic magnification factor is a function of the frequency ratio rand 

the damping ratio y. For y small it has a sharp peak when r = I and this peak 

value, obtained by putting r = 1 in equation (9), is 1/2y. Thus for practical sys­

tems with low damping the dynamic magnification factor is very large when the 

excitation and natural frequencies coincide. However, well away from resonance the 

dynamic magnification factor is not large. (See Chapter 2 for further details). 

Looking ahead to more complex structures, the viscous damping mechanism, shown in 

Figure 1 and used in the above equations, causes the response at higher frequencies 

(strictly higher resonances) to be underestimated. To overcome this difficulty 

viscous damping is replaced by hysteretic damping, i.e. the damping term c x in 

equation (1) is replaced by hx/w, where h is the hysteretic damping constant and w 

is the excitation frequency. With the viscous damper the energy dissipated per 

cycle increases linearly with the frequency, although the amplitude of vibration is 

kept constant. For a hysteretic damper the energy dissipated per cycle is independ­

ent of the frequency. For hysteretic damping equation (7) is replaced by 

m x + h x/w + kx P cos wt 
o 

(10) 



If h/k 

8 

~, the steady state amplitude is 

kX 
P 

o 

1 
(11) 

The maximum value of the dynamic magnification factor is 1/~ and occurs when r 1. 

For a genepaL tpansient [opee P(t) the solution of equation (1) is given by the 

Duhamel integral, which is derived in Chapter 2, or by the convolution integral 

using Laplace transforms, and is 

x It 
P(,) exp [- YWn (t - ,)] 

o 

(12) 

In equation (12) it is assumed that at t ~ ° the displacement and velocity of the 

mass are zero. If these conditions are not satisfied, free vibrations, equation (4) 

must be added with A and B determined from the non-zero conditions. [Equation (12) 

could be used to determine the complete response to a harmonic applied force, but 

other methods of solution are simpler.] Considering the step function force of 

Figure 3a, P(t) 

kx 
P 

o 

Po' t > 0, equation (12) is integrated and the response 

1 - exp(-ywnt) [ COS wdt + y , sin wdt ] 
(1 _y') Y, 

This gives damped oscillations about the new mean position, given by kx/Po 1. 

The maximum response occurs when wdt ~ n and is given by 

[ - ny 
1 + exp 

(1 _ y.)l:; 

(13) 

(14) 

The variation of the dynamic magnification factor from equation (14) with the damping 

factor y is shown in Table 1. For small damping the factor is relatively insensitive 

to y. For comparison the maximum dynamic magnification factor associated with a 

harmonic force, namely 1/2y for r ~ 1, is also given in the table. 

Next consider the response of the system of Figure 1 to a sinusoidal force of finite 

duration, i.e. 

P(t) P sin 
nt 

° t Nt (15) 
0 t ~ ~ 0 

0 

P(t) 0, t > Nt 
0 

where N is an integer. [ The force P(t) is shown in Figure 3(b) for N 1 ]. 
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The response for t .~ Nt 0 is obtained by substi tuting equation (15) in (12). For t 

> Nto free damped vibrations occur and are given by equation (4) with A and B chosen 

to give appropriate continuity conditions at t = Nto. Figure 4 shows the dynamic 

magnification factor, i.e. the maximum value of kx/Po with respect to time, plotted 

against to/T for zero damping (y = 0) and n = 1, 2 and 4; T(=2nlwn) is the period 

of the system. Outside the range of values of t IT for ~hich (kx/P) has been o 0 max 
plotted for N = 2 and 4, its behaviour is more complicated but values are signif-

icantly less than the peak values shown. When to/T = 0.5, (kx/Po)max = Nn12. Thus 

for an excitation force of two complete waves (N = 4) the dynamic magnification 

factor can be as large as 6.3, For the plotted ranges the maximum displacement 

occurs in the residual or free vibration era (i.e. t > Nt ) 
0 

if t IT 
0 

< 0.5 and occurs 

in the forced vibration era (i.e. t < Nto) if t IT > 
0 

0.5. 

For a random variabLe the spectral density shows the distribution of the harmonic 

content of the variable over the frequency range from zero to infinity. If the 

spectral density is specified, the mean value of the square of the variable can be 

obtained. For stationary ergodic random processes with Gaussian or normal probab­

ility distributions (these standard assumptions for random vibration theory are 

described in Chapter 14), if S (w) and S (w) are the spectral densities of the in-
p x 

put force and response respectively for the system of Fig. 1, the mean square values 

are given by 

< p 2 (t) > 1 r S (w) dw 
2n p 

0 

and 
1 r < x 2 (t) > 2n Sx(w) dw 

0 

It can be shown (Chapter 14) that the spectral densities are related by 

S (w) 
x 

S (w) 
p 

(16) 

(17) 

(18) 

[If hysteretic damping replaces viscous damping in Fig. 1, 2yr in equation (18) is 

replaced by ~l. If the spectral density of the force is known, the mean square 

value of the response is obtained from equations (17) and (18). The simplest force 

spectrum is: Sp(w) = So' a constant; i.e. the spectrum is uniform over the com­

plete frequency r.ange and is called white noise. The corresponding mean response 

is, from the calculus of residues, 

< x 2 (t) > 
S w 

o n 
8y k 2 

(19) 



(kx) 
P 

0 

A 

10 

7 

6 

max 5 

4 

3 

2 

o 0.2 0.8 1.0 1.2 

Figure 4 Dynamic magnification factor for a single 
degree of freedom sYltem, subjected to a 
transient force: 

P(t) Po sin nt/to' 

o 
o < t < Nt 

- - 0 

t > Nt 
o 

1.4 

P. (t) 
J 

P. I (t) 
J+ 

Figure 5 Multi degree of freedom system 
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Although useful for analytical purposes, white noise predicts an infinite mean 

square value for p(t) [see equation (16)]. A more practical assumption is that S (w) p 
is uniform and equal to So up to a cut-off frequency wc ' which is well above the 

natural frequency w , and S (w) ; 0 for w > w. Provided that w /w > 2 and y < 0.1 
n p C c n 

the mean square response is given to 1 per cent accuracy by equation (19). For com-

parison with the dynamic magnification factors for harmonic and transient excitation, 

values of 3k a /0 are given in Table 1 for a spectrum Sp(w) that is flat up to 
x p 

w ; wc' and wc/wn ; 2; ax and 0p are the root mean square values of response and 

force from equations (16) and (19), i.e. a [< x 2 (t) > ]y,. An absolute maximum 
x 

value for x for a random process cannot be specified; the factor 3 has been intro-

duced because for a Gaussian distribution the probability of Ixl exceeding 30x is 

only 0.3 per cent. 

In this section the dynamic response of single degree of freedom systems to the 

three major types of excitation, harmonic, transient and random, has been outlined. 

Although equations have been given in terms of force excitation, corresponding 

equations for excitation by support or foundation motion can easily be formulated. 

The possible existence of large dynamic magnification factors in unfavourable cir­

cumstances has been demonstrated by the simple examples for which results are given 

in Table 1 and Figure 4. 

TABLE 1. 

Dynamic Magnification Factors for Single Degree of 

Freedom Systems with Different Types of Excitation 

Excitation Tabulated Damping Factor Y 
value 0 0.01 0.02 0.05 

Step function (kx/P ) 2 1.969 1.939 1.854 
of Fig. 3a 

o max 

Harmonic (kX/P ) 
0 

for r;1 50 25 10 

Random, S (w) 
P 

= S 
0 

with cut-off at 3k a /0 
x P 

18.8 13.3 8.41 

w = 2w 
c n 

4. General Structures: Equations of Motion 

0.1 

1.729 

5 

5.95 

The concepts, developed for single degree of freedom systems, assist in the under­

standing of the dynamic behaviour of general structures. Figure 5 shows the con­

ventional representation of a system with several degrees of freedom. Each mass is 
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constrained to move only in the X-direction. Thus the displacement x. (measured 
J 

from the position of static equilibrium) defines the instantaneous position of mass 

mj . Figure 6 represents a shear building with n storeys; the assumptions are the 

same as those used to describe the structure of Figure 2. If k. is the combined 
th J 

stiffness in flexure of the pair of stanchions below the j floor, Xj is the hori-

zontal displacement of the jth floor of mass mj , and it is assumed that relative 

motion between adjacent floors is resisted by viscous damping forces in the stanchions 

between these floors, the equation of motion for mass mj in either Figures 5 or 6 is 

P .(t) 
J 

(20) 

There are n equations similar to equation (20). (See Chapter 3 for futher details). 

Obviously other multi degree of freedom systems can be defined. In order to accom­

modate different types of structure the following general matrix equation will be 

considered. 

M x + C X + K x P(t) (21) 

In equation (21) x is a vector (or column matrix) of the independent coordinates, 

i.e. x 

x 
n 

(22) 

x and x are the corresponding velocity and acceleration vectors. The vector x may 

contain linear and angular displacements. The vector P(t) lists the applied forces. 

i.e. P(t) (23) 

P (t) 
n 



k. 
J 

1 

13 

m 
n 

~ 

I==========::::! - Xj+1 
mj +1 

c~========~ ~x j m. 
J 

~===========~ ~X At- B j I mj _1 

rigure 6 Frame with n degrees of freedom. ,the only 
permitted deformation is flexure of the 
light vertical members in the plane of the 
frame. 
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A component of the force vector, Pj(t), is the resultant applied force on a mass 

and acts in the direction of the displacement Xj of that mass. The mass matrix M, 

the damping matrix C and the stiffness matrix K are square and symmetric; K is 

defined as 

where k. 
JS 

K 

k 13 .......... kin 

k23 .•...•.•.. k2n 

k 
nn 

k .' This symmetry follows from the reciprocal theorem. For the 
SJ 

(24) 

systems and coordinates defined in Figures 5 and 6 the mass matrices are diagonal 

(i.e. mjs = 0 for j ~ s and there is a single inertia term, typically mjj Xj , in 

each equation). 

The significance of equation (21) must be stressed. Engineering structures are 

usually complex and their response to specified inputs can be determined only by 

approximate methods. Three general approximate methods are Rayleigh-Ritz, finite 

elements and finite differences. 

In these methods the actual structures are replaced by 

approximate mathematical models, which are represented by equation (21). The mass, 

stiffness and damping matrices are symmetric for models: from the Rayleigh-Ritz 

method; from the finite element displacement method; and from the finite difference 

method, if the recent energy formulation is used instead of conventional differences 

based on the equations of motion. Thus solutions of equation (21) are applicable 

to all linear, elastic structures. 

Putting ~ = 0 and P 

vibration is: 

o in equation (21), the general equation for free undamped 

M x + K x o (25) 

For harmonic motion, x. = ~. sin(wt + S), j = 1,2, ... n where w is a natural 
J J 

frequency and ~. is the amplitude of vibration at the point where the displacement 
J 

Xj is measured. This leads to the frequency determinant 

det [ K - w2 M o (26) 

In general, equation (26) gives n positive real roots for w2 , say wi 2, w2 2 , w3 2 , ••• 

W 2 

n 
with < w 2. 

n 
Then w 

n 
are the natural 
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frequencies of the system. Corresponding to a frequency wr there is a set of values 

of the amplitudes $. If $rj is the amplitude at the jth coordinate in the rth 

mode, substitution of Wr 2 in the equations yields only relative, rather than absolute, 

values of $rj; e.g. we can find $r2/$r1' $r3/$rl' .•• ,$rn/$rl' This indeter­

minacy can be removed by introducing the vector 

z 
-r 

where ar is a scalar, such that 

Then the ~ectors z are normalized. 
-r 

(1:....) $ 
a -r 

r 

1 (27) 

Standard computer programs give the eigenvalues wr from equation (26) and also the 

corresponding eigenvectors, ~r or ~r' If equation (21) represents an approximate 

mathematical model of a complex structure, then only the lower natural frequencies 

from equation (26) will approximate reasonably the natural frequencies of the 

structure. If the size of the matrix equation (21) is too large, the technique of 

eigenvalue economisers or reduction can be used to reduce the order of the equations 

without introducing serious errors into the values of the lower natural frequencies 

determined from the reduced equations [1][2]. (See Chapters 3 and 4 for further 

details) • 

5. Response 

In this section we discuss some methods of determining the response of general 

structures, defined by equation (21), to excitation. This discussion is in terms 

of exciting forces, i.e. the vector P(t), but the methods can be adapted to yield 

the response when support or foundation motion provides the excitation. The types 

of excitation, i.e. harmonic, transient or random, to which the methods are 

applicable, and the limitations of the methods will be summarised. 

First we consider the normaL mode method; this requires the natural frequencies wr 

and the normalized eigenvectors z to be known. The original matrix equation (21) _r 
is transformed into a set of uncoupled equations by the change of variables 

where 
T 

q 

x Z q (28) 

are principal coordinates and the normalized vector 
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z , defined by equation (27), forms the rth column of Z. Provided that the damping 
-r 
matrix C satisfies the relation 

C 

where Am and Ak are constants, substituting equation (28) into (21) leads to 

uncoupled equations in qr (Chapter 9) of the form: 

n 

I 
j=l 

z . P .(t) 
rJ J 

(29) 

(30) 

The solution of equation (30) can be found by analogy with the Duhamel integral (12) 

for a general transient excitation and by simpler means for harmonic excitation. 

In the general case 

1 t f (T) [- yrwr(t - T)] sin W (t - T)dor (31) qr exp rd wrd r 
0 

where W (1 2 )y. 2w Y ), + Ak w 2 Wrd r - Yr ' r r m r 

n 
and f (t) I Zrj Pj(t) , r j=l 

provided that the initial conditions are zero. Evaluation of the principal coord­

inate qr from equation (31) and use of the transformation (28) gives the response 

Xs at any coordinate. In practice, numerical integration of equation (31) will 

usually be necessary. In general, the response from the higher modes (larger values 

of r) is insignificant, and it is necessary to compute qr only for a limited range 

of values of r, r = 1, 2, 3, •.• n1 with n1 < n. Unfortunately, no general rules 

can be given for deciding upon n1 ; engineering judgement and trial computer runs 

are required to establish n1 for a specific problem. Improved convergence can be 

obtained, i.e. the number of significant terms n1 reduced, by the moda~ acce~eration 

technique, originally devised by Williams for structures such as beams. Applied 

to equations (28) and (31), the response at coordinate s is 

n 
I asj Pj(t) n z r j=l I rs f (T) [- yrwr(t - T)] x ~ exp 

s det I!S I 
r 

r=l r 
0 

[ COS w (t - T) + Y (1 Y 2)-Y. sin wrd(t - T)] dT rd r - r 

where asj is a term in A, the adjoint matrix of K, fr(t) 

assumed that Pj(O) = 0, j = 1,2, ... n. 

df 
r 

dt 

(32) 

and it has been 
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If the applied forces are harmonic, typically P. (t) = P. ·cos (wt + a.) at coordinate 
J J J 

j where Pj is a constant, the steady state response at coordinate s is found from 

equation (28) and the direct solution of equation (30) as 

x 
s 

n 

Re I 
r=l (w 2 _ W 2 )2 + 4 y 2W 2W 2 

r r r 

exp(iwt) 1 

where i = (_1)Y. and Re signifies that the real part of the complete complex 

(33) 

solution is taken. For light damping there will be successive resonances when the 

excitation frequency w equals wl ' w2 ' w3 ' ••• ; in these circumstances the resonant 

response for the lower modes is usually determined by the resonant term in series 

(33) and depends upon frequency and damping as 1/2Yrwr2. (It depends also upon the 

terms in z etc.) 
r 

For harmonic excitation hysteretic damping can be considered instead of viscous 

damping. ~~/w replaces Cx in equation (21) where H is a symmetric matrix of hyster­

etic damping constants and must satisfy the condition 

H (34) 

where am and ak are constants, in order that transformation (28) yields uncoupled 

equations. The response can be obtained from equation (33), if 2yrw is replaced by 

~rwr' where ~r = ak + am/wr 2. The resonant response now depends upon frequency and 

damping as 1/~rwr2. In mathematical models of elastic structures internal damping 

is often approximated by C = Am ~ for viscous damping or H = ak ~ for hysteretic 

damping. Then, as 2Yr = Akwr and ~r = ak , and Ak and ak are constants, the frequency 

dependence of the resonant response varies as w -3 for viscous damping and w -2 for 
r r 

hysteretic damping. Experimental evidence suggests that the latter behaviour is a 

better approximation to real structures. 

The uncoupling conditions, equations (29) and (34) for viscous and hysteretic damping 

respectively, restrict the applications of the normal mode method. As discussed 

later, methods exist which avoid this restriction. Some recent numerical evidence 

[3] suggests that the restriction can be ignored. Mathematically, the equations in 

g are uncoupled if ~T ~~ (or ~T ~~) is a diagonal matrix. Response curves for sys­

tems which do not satisfy condition (29), i.e. systems for which ~T Q~ is not diag­

onal, agree very closely with approximate curves, obtained by the normal mode method 

with the non-diagonal terms in ZTQ~ neglected. 

The normal mode method may be used to determine the response to random excitation. 
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rhe spectral densities of response S (w) and force S (w) are related by 
x p 

S (w) = 1 H .(W)12 S (w) 
x sJ P 

(35) 

~here H .(w) is the complex frequency response or receptance, i.e. H .(w) exp(iwt) 
sJ sJ 

is the response at coordinate s to a force exp(iwt) at coordinate j. [Equation 

(18) for a single degree of freedom system is a special case of equation (35).] 

"rom equation (33) 

H .(w) 
sJ 

n 

L 
r=l 

[
z z. (w ' - W 2 - 2i Y w w) ] 
rs r J r r r 

(w 2 _ w') 2 + 4y 2W 2 W 2 
r r r 

(36) 

for viscous damping and ~ w replaces 2y w to obtain H .(w) for hysteretic damping. 
r r r sJ 

From equations (17) and (35) the mean square value of the response is given by 

<x'(t» 
s 

1 
211 foo 1 H . (w) I' S (w) dw 

sJ p 
o 

(37) 

Approximations are often made when evaluating equation (37). If (A + iB ) is a 
r r 

typical complex term in the series (36) for H .(w), products A A and B B r t q, 
sJ r q r q' 

are neglected in comparison with A~ and B~ respectively. Then 

1 H . (w) I' 
sJ 

n z 2 Z ,2 

r~l [-(-w-,-_-,,:..o:'-)-,--,:,-,J'-4-y--, w--,-w~ 
r r r 

If S (w) varies slowly, it is replaced by the value S (w ) when the rth term is 
p p r 

(38) 

considered. Then, from equations (37) and (38), and by analogy with equations (17) 

to (19), 

<x'(t» 
s 

n 

L 
r=l 

(
S(W)Z 'Z~] P r rs rJ 

8 y w' 
r r 

(39) 

[For hysteretic damping ~r replaces 2 yr .] Equation (39) is a reasonable approxi­

mation, provided that damping is light, S (w) varies slowly in the vicinity of each 
p 

resonant frequency and the natural frequencies wr are not too close together. For 

large structures the last condition will usually be the most difficult to satisfy. 

The essence of the normal mode method is that it gives the response in terms of 

contributions from the undamped normal modes. There exist also methods, which avoid 

restriction (29) on the damping matrix and give the response in terms of damped 

modes. These methods are more complicated, algebraically and in concept, than the 

standard normal mode method and will not be considered here. 
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The frequency response method can be used to determine the steady state response 

to harmonic excitation; it imposes no restriction on the damping matrix, gives the 

response in closed form, instead of a series, but requires the inversion of a com­

plex matrix of order n x n at each frequency for which the response is required. If 

the force at j is Pj cos(wt + a j ), the excitation vector, P(t) in equation (21), is 

written P exp(iwt), where a typical term in P is P. exp(ia.), x iwx and x _w 2 x 
- J J 

are used in equation (21), and the response is given by 

where 

and 

J 

J 

x Re J-1 P exp(iwt)] 

K - w2M + iw C for viscous damping 

K - w2M + i H for hysteretic damping. 

(40) 

Many methods exist for the numerical integration of the general dynamic equation (21) 

(Chapter 9). In these, assumptions are made about the variation of either the dis­

placements or accelerations during small time intervals; e.g. it may be assumed 

that during a small interval the displacement is a cubic function of time or that 

the acceleration varies linearly with time. With these assumptions the set of n 

second order differential equations (21) is replaced, in general by n simultaneous 

equations. The solution of the latter gives the displacements at the end of the 

short time step for known conditions at the beginning. Successive applications of 

this procedure give the response of the structure. Numerical stability of the comp­

utations and accuracy have to be considered. For some of the methods the time inter­

val must be less than a certain value, given in terms of the period of the nth or 

highest mode of the system, if numerical stability is to be achieved. A criterion 

for accuracy is usually formulated in terms of 6t/T., where 6t is the time step and 
J 

Tj is the period of the highest mode making a significant contribution to the response 

For example, from the survey of numerical integration methods by Bathe and Wilson[4] 

engineering accuracy is achieved with the Newmark a method if 6t/Tj < 0.1. The 

methods can be used with any prescribed excitation vector P(t) and there is no 

restriction on the form of the damping matrix. 

Equation (21) is limited to elastic structures, where linear relations between 

forces and displacements exist. The normal mode method uses the principle of super­

position and is applicable only to linear systems. In practice, the response of 

structures, when some components are stressed beyond the elastic range, is of 

interest, e.g. the response to earthquakes. Methods of numerical integration can 

be used to predict the response of non-linear systems, although the criteria for 

numerical stability and accuracy become more stringent. 
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5. Dynamic Interaction Problems 

In the previous section methods of determining the response of structures have been 

outlined. These methods are satisfactory, if the exciting forces are known, and can 

be extended to deal with the excitation by known displacements or accelerations of 

the foundation. The excitation may be transient or aperiodic, harmonic or random. 

However, there exists a growing class of important dynamic problems, where the 

excitation mechanism is affected by the properties of the surrounding or underlying 

medium. Thus a proper determination of structural response requires some dynamic 

analysis of the medium. Broadly there are two types, interaction between ground 

and structure and between fluid and structure. The former occurs when determining 

the response of structures to earthquakes, as the known input may be the acceler­

ation of the underlying bedrock or of the free surface of the ground, i.e. without 

the structure present. It occurs also when the source of excitation is located in 

one structure and the response of neighbouring structures is required. The latter 

occurs when the coupled vibrations of water and dams, piers or off-shore structures 

are considered. Indeed, both types of interaction may have to be considered, if, 

for example, the response of a dam to an earthquake is required. When aerodynamic 

effects are included, wind-induced oscillations of structures exhibit interaction 

effects. 

Considering an elastic structure mounted on a rigid foundation, which is supported 

by soil, we require the structural response when the free-field acceleration at the 

ground surface is prescribed. Let ~s be the vector of displacements of the con­

strained structure, i.e. the structure with the foundation clamped. [ For example, 

for the shear building of Figure 6 ~s consists of the horizontal displacements 

xl' x2 ' ... xn of the masses m1 , m2 , ... mn ·) Let ~s' ~s and ~s be the mass, 

damping, and stiffness matrices of the constrained structure. Vector ~F lists the 

displacements of the foundation; [if the foundation EF in Figure 6 undergoes hori­

zontal translation Xo and rocking e, ~F consists of Xo and e); vector x lists the 

displacements of the structure foundation system, 

i.e. x [--~;----l (41) 

Using matrices with subscripts F for the foundation and with no subscripts for the 

complete system, equation (21) represents the complete system and can be partitioned 

as 
M ~sF 

[~ 
C ~sF 

j [ 
x _s _s _s 

------,------ + 
, 

-------)-----
MT 

I 

CT 
-sF ~F ~F _sF ~F ~F 
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K ~sF X 

--;F- j 
-s -s 

-------------- (42) 

KT 
~F !SF -sF 

assuming that there are no applied forces on the structure and excitation is caused 

by the forces ~F on the foundation due to the ground. If the free field displacement 

of the ground is ~, the interaction (or dynamic magnification) vector for the found­

ation, (~F - ~), is related to the interaction forces, or forces on the ground due 

to the foundation, - ~F by 

- P 
-F 

(43) 

The matrices ~G and ~G can be found analytically for simple geometries, or by the 

finite element method or experimentally. Equation (43) refers to steady state 

vibrations of frequency W; in general ~G and ~G are dependent upon w. [The analyt­

ical solutions and approximate forms of ~G and ~G/w, which are independent of w, are 

discussed by Richart, Hall and Woods [5].] Substituting from equation (43) in (42) 

and rearranging terms, 

M x + C* X + K* x 

where C* 

o 

p* 

p* 

K* :;---+-f::--j 
-sF I -F-G 

I 

(44) 

If ~G and ~G/w can be treated as independent of frequency, the response x can be 

found by solving equation (44) by standard methods for any freee-field motion. If 

~G and ~G/w depend upon w, Fourier transforms are used to obtain a solution. For 

p*(t) known, its Fourier transform P*(w) is given by 

fm p*(t) exp(- iwt) dt 

o 

Similarly, the Fourier transform of x(t) is defined as 

(45) 
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f= 
x(t) exp(- ioot) dt 

Thus, taking the Fourier transform of equation (44), 

(- oo' M + ioo C* + K*) x(oo) 

Equation (47) is solved for x(oo) and the inverse transform used to determine the 

response x(t), 

i.e. x(t) 1 
2n 

f= 
x(oo) exp(ioot) doo 

(46) 

(47) 

(48) 

In practice, the response vector x(t) is obtained from x(oo), and also p*(oo) from 

~*(t), using the fast Fourier transform (FFT) algorithm. The latter is highly 

efficient [6], but requires x(oo) to be evaluated from equation (47) for a large 

number of discrete frequencies. This requires considerable computation for a com­

plex structure for which the order of the matrices in equation (47) is high. For 

earthquakes and other practical excitations the response is usually confined to the 

first few modes. Methods of economizing in computation by taking advantage of the 

low-frequency nature of this response have been developed [7][8]. 

Neglecting the dynamic interaction effects would cause considerable simplification. 

Then the foundation is assumed to have the prescribed free-field motion, i.e. ~F = 
y. Using this in equation (42), expanding that equation above the partition and re­

arranging terms, an equation of the standard form of equation (21), i.e. with matrices 

independent of frequency, is obtained. However, for multi-storey structures and 

certain values of the parameters this assumption leads to gross underestimates of 

the foundation vibrations [7]. 

The vector ~s in equation (41) consists of absolute displacements. However, for 

particular systems the equations are often formulated in terms of relative displace­

ments (e.g. if the foundation EF in Figure 6 has displacements Xo and e , the rela­

tive displacement of mass mj at heigqt~ is Zj = Xj - Xo - hje). In this case the 

excitation vector p* in equation (44) is conveniently expressed in terms of y, the 

free-field acceleration vector, instead of in terms of ~ and t. 

Consider a dam subjected to a prescribed horizontal acceleration of its base cr (t) 
g 

as an example of fluid-structure interaction. If this interaction is neglected, it 

is assumed that the face of the dam has the acceleration a (t) when determining the 
g 

dynamic pressure distribution on the dam due to the water; then the vibrations of 
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the dam are determined for the combined loading of base acceleration and dynamic 

pressure distribution. If, further, the water is assumed to be incompressible, the 

dynamic pressure distribution is determined directly in terms of u (t) and analysis 
g 

leads to the standard matrix equation (21). If the water is considered to be 

compressible, the analysis of the pressure distribution is in terms of an excitation 

frequency w. Thus, using equations similar to (45) to (48), x(w) can be found for 

an excitation Ug(w) and the response of the dam ~(t) found by the inverse Fourier 

transform. Allowing for fluid-structure interaction results in a modified mass 

matrix, where the additional terms are frequency dependent (unless the water is 

assumed to be incompressible). For a dam-reservoir system subjected to a specific 

earthquake acceleration Chopra ["9][10] showed that significant errors in the maxi­

mum dynamic response can be caused by neglecting dynamic interaction ££ by assuming 

water to be incompressible; these errors depend upon the fundamental periods of 

the dam and reservoir, TD1 and TRI respectively, and are small for TD1/TR1 > 1.4. 

(Other fluid-structure interaction problems are considered in Chapters 13 and 17). 

For the problems of this section and for similar problems the structure and ground 

or fluid are treated as separate sub-structures and appropriate continuity conditions 

at the interface imposed to obtain the response of the complete system. This allows 

different methods of analysis to be. used for the two parts of the system, e.g. the 

finite element method for the structure and an analytical solution for the ground 

or fluid. Even if the finite element method is used for both parts, the use of the 

sub-structure approach has computational advantages. 
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CHAPTER 2 

FREE VIBRATION, RESONANCE AND DAMPING 

by 

R.R. Wilsen 

1. Intreductien 

In this chapter we shall examine the dynamic behavieur ef a ene degree ef freedem 

system, intreducing the terms and techniques which will be used in the later 

chapters. The equatiens ef metien fer a number ef systems are derived. Then the 

behavieur ef an undamped and a damped system are censidered. Free vibratien, 

res pense to. sinuseida1 fercing and finally the transient behavieur in respense to. 

general fercing are calculated. 

First ef all, what is a ene degree ef freedem system? At its simplest, it is a 

system as shewn in Fig. 1 censisting ef a mass m suspended frem a spring k. If 

the weight ef the spring can be neglected then the system is cemplete1y determined 

by the pesi tien of the mass. 

In general a ene degree o.f freedem system can be specified by giving the value at 

every instant ef time ef enly ene ceerdinate. This ceerdinate eften is a displace­

ment, as in the spring-mass system, but it can equally well be the angle threugh 

which the beb ef a pendulum swings er a shaft retates as it undergees tersienal 

vibratien. 

Fer cemplicated systems, many ceerdinates are required to. give an adequate rep­

resentatien. Hewever, as will be discussed in Chapter 3, it is pessible to. intro.­

duce a set ef generalized ceerdinates which are unceupled. The behavieur ef each 

co.erdinate can then be examined in turn using the metho.ds described in the present 

chapter. 

In the next six sectiens the equatiens ef metien ef different systems will be 

fermulated. It will be shewn that all the equatio.ns are o.f the same ferm, and 

thus it is necessary to. censider the selutien ef enly ene equatio.n when examining 

the vibratien o.f any ene degree ef freedem system. 

2. Spring-Mass System 

Censider the system shewn in Fig. 2 censisting ef a mass m hanging en a spring k. 

When the mass is at rest, the system is in equilibrium, and the ferce in the spring 

is equal to. the weight ef the mass. The spring ferce is given by the pro.duct o.f 
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Figure 1. Spring-Mass System 

(a) initial position 

Figure 2 

(b) equilibrium 
position (c) displaced 

position 

Displacement of a Mass on Spring 

Fil!:ure 3 Simple Pendulum 
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the spring stiffness k and the static deflection xs. Thus, taking the positive 

direction as downwards, we have 

- k xs + mg o (1) 

If the mass is now displaced a further distance x then the spring force increases 

and there will be a net restoring force given by 

P - k(xs + x) + mg 

and hence from equation (1), 

P - kx 

By Newton's 3rd Law, this will produce an acceleration given by 

x 
P 
m 

where a dot over the x denotes differentiation with respect to time. 

Combining equations (3) and (4), 

x -kx 
m 

and the equation of motion of the system is given by 

m x + kx o 

3. Simple Pendulum 

(2) 

(3) 

(4) 

(5) 

(6) 

When the pendulum of length ~ as shown in Figure 3 is displaced through an angle 

e, a component of the weight of the mass m will act so as to restore the pendulum 

to its equilibrium position. This force is given by 

P - mg cos(n/2 - e) 

i.e. P - mg sin (7) 

For small angles, sin e e and so the restoring force is given approximately by 

P - mg e (8) 

Applying Newton's 3rd Law again, we have the equation or motion 
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i. e. J!, li + ge o 

4. Beam with Central Load 

If a force P is applied at the centre of a simply supported beam then, if the 

weight of the beam is neglected, the static deflection is given by 

x 
s 

P J!,3 

48EI 

(9) 

(10) 

where J!, is the length of the beam, I is its second moment of area and E is Young's 

modulus. Thus the effective stiffness of the beam is given by 

k 
p 

x 
s 

48EI 
~ 

(11) 

When a mass m is placed at the centre of the beam, then the resulting deflection 

is given by equation (10) with P = mg. If the mass is now displaced a further 

distance x then a restoring force - 48EI x will be produced causing the mass to 
J!,3 

accelerate towards its equilibrium position. Thus the equation of motion is 

48EI 
x/m x ~ 

i.e. 
48EI 

0 (12) m x + ~ x 

5. Rolling of a Ship 

When a ship is floating in still water, the weight mg and the buoyancy force Bare 

equal and both act through the centre of gravity of the ship, point G. When the 

ship is displaced slightly, the buoyancy force no longer acts through G but through 

M, the metacentre. The position of M is determined by the geometry of the ship. 

If M lies below G then a couple will result which will act so as to increase the 

displacement, capsizing the ship. Let us assume that M is a distance h above G 

(h is termed the metacentric height). Then a restoring couple -mg h sin e is 

produced, and for small angles, this couple has the approximate value -mg h e. 
Thus the equation of motion of the ship is given by 

II 1i - mg he, 

i.e. II li + mg h e o 

where II is the moment of inertia of the ship about its longitudinal axis. 

(13) 
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Figure 4 Beam with Central Load 

(a) equilibrium position (h) displaced position 

fB _-

Figure 5 Rolling of a Ship 

x 

Figure 6 Springs in Parallel 
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6. Springs in Parallel 

In the system shown in Figure 6, the weight of mass m is balanced by the force in 

two springs ka and kb . Thus if the mass is displaced a distance x from its 

equilibrium position we have that a restoring force P is produced given by 

P 

i.e. P (14) 

Thus the equation of motion of th.e system is given by 

x: 
m 

o (15) 

This equation may be written in the same form as the equation of the simple spring 

-mass system, 

mx·+k x 
eq 0, (16) 

where the two springs have been replaced by a single spring with equivalent stiff­

ness keq given by 

7. Springs in Series 

k eq (17) 

In the system shown in Figure 7 the force in each of the two springs is equal, and 

if xa and xb are extensions of the two springs then the restoring force is given 

by 

P - k x 
a a 

Thus the displacement of the mass m is given by 

x 

i. e. x P 
k 

a 

The equation of motion can be written as 

m x + k x 
eq 

where the equivalent stiffness is given by 

o 

(18) 

(19) 

(20) 
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p 1 ~ k or 
eq x k P 

eq 

1 1 1 
k k + 

kb eq a 

3. Free Vibration 

Cor all the systems considered, the form of the equation of motion is the same as 

~or the simple spring-mass system, 

m x + k x o (22) 

The solution of this equation can be used to predict the behaviour of any of the 

3ystems considered. Equation (22) represents simple harmonic motion and thus its 

30lution may be written in the form 

x A cos w t + B sin w t 
n n 

substituting in equation (22) we have that 

m(_w 2 A cos w t - W 2 B sin w t) + k(A cos w t + B sin w t) 0 
n n n n n n 

i.e. - w 2 m + k 0 

w 
n 

n 

(23) 

(24) 

This constant wn (rad/sec) is the naturaL frequency of the system. The displace­

ment is the sum of two sinusoidal functions which vary at a frequency wn . The 

amplitudes of these functions are determined by the initial conditions. If at 

time t = 0, the mass has displacement Xi and velocity Xi then 

A x. 
1 

and B 

and the displacement at any time is given by 

X. 

X. 
1 

w 
n 

x x. cos w t + 1 sin w t 
1. n w n 

n 

This may be written in terms of a single sinusoidal function 

x A' ~in (w t + a) 

(25) 
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Figure 7 Springs in Series 

displacement 

time 

Figure 8 Sinusoidal Vibration 

x 

Figure 9 Spring-Mass System with Dashpot 



where A' 

and tan a 
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x. W 
~ n 

x. 
~ 

A' is the ampLitude of the vibration and a the phase angLe. The displacement of 

the mass will vary as shown in Figure 8. It can be seen from equation (25) that 

the time between successive peaks is given by 

W T 211 
n 

i.e. T 
211 (26) 
W 

n 

T represents the pe~iod of the vibrations, and the number of periods per second 

is called the f~equenay f in hertz or cycles per second. Thus 

1 
W 

1 If f n (27) 
T 211 211 

9. Energy of Vibrating System 

Consider the mass to be given an initial displacement Xi and released so that its 

initial velocity is zero, then from equation (25), 

X x. cos w t 
~ n 

and - w x. sin w t 
n ~ n 

(28) 

Thus the maximum displacement is Xi and the maximum velocity wnxi ' When the mass 

is at its position of maximum displacement the potential energy V of the spring is 

given by 

V (29) 

As the mass moves from its position of maximum displacement to its equilibrium 

position, the potential energy stored in the spring decreases and the kinetic 

energy of the mass increases. At the equilibrium position the potential energy 

of the spring is zero and the kinetic energy of the mass is given by 

T Yo m(x. )' , ~ max 

i.e. T (30) 



Thus, by conservation of energy, 

i.e. 

agreeing with equation (24). 

w 
n 

34 

The vibration of the system corresponds to a repeated transfer from potential 

energy of the spring to kinetic energy of the mass. In practice this process 

(31) 

would not continue indefinitely - energy would be lost from the system, dissipated 

in the form of heat in the spring, transferred to the supporting structure or lost 

by friction of the air. These losses of energy are collectively termed the damping 

of the system. 

10. Damped Free Vibration 

As mentioned in the previous section, a system may lose energy by many mechanisms. 

In the present chapter we shall consider only the situation in which motion is 

resisted by a force proportional to velocity. This is viscous damping and may be 

represented by the motion of a piston in the dashpot with the motion resisted by 

the viscosity of the oil, as shown in Figure 9. An additional restoring force 

- c x is introduced. The equation of motion is given by 

m x - k x - c X 

i.e. m x + C X + kx o 

For an equation of this type a solution of the form x 

Substituting in equation (32) gives 

i.e. m ~ + CA + k 0 

The general solution is given by 

x 

C 

2m 
k 
m 

(32) 

eAt can be used. 

(33) 

(34) 
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where the values of Al and A2 are found by taking the positive and negative signs 

in expression (33). A and B are constants whose values are determined by the 

initial conditions. 

It is useful to consider separately the situations arising when the expression 

under the root sign in equation (33) is positive, zero or negative. When (~m)2> 
k the expression under the root sign is positive and the system is said to be 
m 
overdamped . The displacement decays from: its initial value towards zero without 

any vibrations; the motion is the sum of two exponential decays as given in 

equation (34), both values of A being negative. 

The value of the damping constant c which corresponds to the expression under the 

root sign being zero is called the criticaL damping and is given by 

[~~r k 
m 

i.-e. c 2m /[ 2& 2 mw (35) 
c n 

For this value of damping, the two roots of equation (33) are equal and the dis­

placement decays exponentially. 

When (~) 2 <~ , the system is underdamped. 
2m m 

form 
c 
2m ± i wd 

where i 7-l and wd is the damped natural 

wd 

i.e. wd 

The general solution is given by 

i.e. x 

This can be rewritten in the form 

x e 
- ~ t 

2m 

/; - (~) 
2m 

W / I -n 

Equation (33) can be rewritten in the 

(36) 

frequency given by 

(37) 

c' 
4mk 

(38) 

(38a) 
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displacement 

time 

Figure 10 Displacement of an Overdamped System. 

displacement 

time 

Figure II Displacement of Underdamped System 

Figure 12 Undamped System with Sinusoidal Forcing 
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Figure 14 Damped System with Sinusoidal Forcing 
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or evaluating A' and B' in terms of the initial conditions 

x e 
x. + 

1 

c x. 
1 

2m 
sin (39) 

The displacement varies as shown in Figure 11 in the form of a damped sine wave. 

The time between successive maxima is determined by the period of the system 2TI/wd . 

The ratio of the height of successive maxima is given by 

e 

c t 
2m / e 

c (t + 2TI) 
2m wd e 

This ratio represents how quickly the vibration dies away and the logarithm of 

this quantity, the Logarithmic decrement 0 is often used as a measure of the 

damping of the system. It is given by 

11. Undamped Forced Response 

(40) 

All the systems considered so far have been undergoing free vibration. There have 

been no external forces applied. We shall now examine the behaviour of a mass­

spring system which has a sinusoidally varying force applied to the mass as shown 

in Figure 12. The equation of motion is 

m x + kx P sin wt (41) 

where P is the amplitude of the force and w is the frequency at which it varies. 

The solution of this equation is the sum of two parts, the particular integral and 

the complementary function. The complementary function represents the general 

solution of the corresponding equation with the right hand side set to zero. In 

this case this is equation (22). The particular integral is any function satisfying 

the complete equation. It is reasonable to try a solution of the form 

x A sin wt (42) 

- m w2 A sin wt + kA sin wt P sin wt 

i.e. A 
P 

k - ~ 

Thus, a particular integral of the equation is 
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x 
P sin wt , (43) 

k - mw' 

and the complete solution is obtained by adding this to the general solution of 

equation (22) giving 

x sin wt (44) 

If initially the mass is at rest at its equilibrium position then xi = xi 

the solution is given by equation (43). This can be written in the form 

0, and 

x ~~ sin wt 
1 - !!'. w' 

k 

i.e. x P/k sin wt (45) 

1 - (~)' 
w 

n 

Now P/k represents the static deflection x 
1 s 

of the mass. Thus the system undergoes 

vibrations with amplitude x 
s 1 _ (~)' 

w 
n 

The factor 
1 is called the dynamic magnification factor and its value 

1 _ (~)' 
w 

n 
depends on how near the frequency of the applied force is to the 

natural frequency of the system. As the ratio w/wn approaches unity the vibration 

amplitude increases and the system is said to be at resonance. 

12. Damped Force Response 

In practice the amplitude of the vibration of a forced system is determined at 

resonance by the damping of the system. It is thus necessary to consider the 

system as shown in Figure 14. The equation of motion is 

m x + c X + kx P sin wt (46) 

Again the complete solution consists of a particular integral and a complementary 

function. The complementary function corresponds to the general solution of 

equation (32). For a particular integral let us try a solution of the form 

x A sin wt + B cos wt (47) 

substituting in equation (46) gives 
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mA w2 sin wt - mB w2 cos wt + cA w cos wt 

wBc sin wt + Ak sin wt + Bk cos wt P sin wt 

Equating coefficients of sin wt and cos wt we have 

mA w2 - w cB + kA P 

and - mB w2 + cA w + kB o 

These equations can be solved to give 

A 
P(k - mw 2) 

(k _ mw2) 2 + W2 C 2 

(48) 

and B 
- Pwc 

(k _ mw 2)2 + W2C 2 

The particular integral given by substituting equations (48) into (47) can be 

combined with the complementary function as given in equation (38a) to give the 

general solution 

x e 

+ 
P(k - mw 2 ) 

sin wt -
(k - mw 2)2 + W2C2 

c t 
2m 

(A' cos wdt + B' sin 

Pwc 
cos wt 

(k - mw 2)2 + W2C2 
(49) 

where A' and B' are evaluated from the initial conditions. Because of the factor 
-c/2m t e the first term, called the transient component , will die away, and the 

displacement will be determined after a sufficiently long time by the second and 

third terms, the steady state components 

by 

The steady state displacement is given 

x P (k - mw 2 ) . t ..,.,-__ P_w..,c;-;-;;--_--;;--;;- t 
(k _ mw 2)2 + W2C2 Sln w - (k _ mw2)2 + W2C2 cos W 

i.e. x 
P 

sin(wt - a) (50) 

I(k - mw 2)2 + W2C2 

where tan a 
wc 

(51) 
k - mw 2 

The amplitude of the steady state response can be written in the form 
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Variation of Dynamic Magnification Factor for 
Damped System 

force f(t) 

Figure 16 Time-varying Force 
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P/k • 1 

The static deflection P/k is multiplied by the dynamic magnificatimn factor 

1 

This factor varies with the ratio of w/wn and the value of damping, as shown in 

Figure 15. The frequency for which the value of the dynamic magnification factor 

is largest, corresponding to the maximum steady state vibration amplitude, is 

given by 

W max 

13. Undamped Transient Vibration 

(52) 

Consider the situation when the applied force varies arbitrarily with time as 

shown in Figure 16. The force is applied at time t = 0 and we wish to calculate 

the displacement at time t = t 1 • The equation of motion is given by 

m x + kx f(t) 

In a small time interval dt, the mass receives an impulse fdt. Because of this 

impulse the mass gains momentum given by 

m dx fdt 

(53) 

(54) 

From equation (25), the displacement at a time t after an initial velocity of xl 

has been given to a mass is 
ie. 

x 1. sin ()J t 
W n 

n 

Thus, the contribution to the displacement of the mass at a time T after it has 

been given a velocity die is 

dx die sin W T 
W n n 

i.e. dx 
fdt 

sin W T mw n n 
(55) 

The total displacement of the mass at time t1 due to application of the force is 

the sum of all the contributions during time intervals dt at times T(= t1 -t) 
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for all values of t < t 1 . Hence 

\ 
f f(t) sin w (t t)dt 

mw n 1-
n 

(56) 

If at t 0, the mass has displacement xi and velocity xi then the displacement is 

(57) 

As an example of an application of this equation, consider the situation when a 

constant force P is suddenly applied to the mass which is initially at rest in its 

equilibrium position then 

i.e. 
P 

mw 2 
n 

The maximum displacement is 

x max 
2P 

mw 2 
n 

P 
mw 

n 
sin 

2P 
k 

Hence the maximum displacement produced when the force is applied suddenly is 

twice the static displacement caused by the same force. 

14. Damped Transient Vibration 

(58) 

(59) 

The case of time varying force applied to a damped system can be treated as in the 

previous section. The equation of motion is 

m x + cx + kx f(t) (60) 

From equation (39), an initial velocity of xi results in a displacement given by 

x e 

Ct' 
2m xi 

Hence the contribution to the displacement after a time T, given by the application 

of the force during the interval dt, is 

dx e 
c 
2m T fdt 

sin wd 'T, 
mWd 

(61) 
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and the total contribution to the displacement at time tl from the appliei force 

is 

(62) 

The complete displacement is 
cx. 

c 
t x. 1 

2m + 2m 
x(tl ) (xl cos wdtl + 

1 
sin wd\) e 

wd 

tl 
f(t) 

c 
(tl-t) 

+ f e 2m sin wd (t1-t)dt 
mWd 

15. Summary of Results 

Undamped natural frequency W A n 

Damped natural frequency /1 
c 2 

W W 
4mk n n 

Frequency of maximum response for forced vibration W 
max 

Critical damping 

Logarithmic decrement 
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1. Introduction 

CHAPTER 3 

VIBRATIONS OF MULTI-DEGREE OF FREEDOM SYSTEMS 

by 

J. Wilson 

In Chapter 2, the vibration of a single degree of freedom system was studied. This 

is the simplest structural system. Actual structures are, of course, not as simple 

as this. They behave as lightly damped multi-degree of freedom systems. However, 

we can apply much from our study of single-degree of freedom systems to multi­

degree of freedom systems (or real structures). 

For instance a single degree of freedom system has a single natural frequency. 

(Real structures have many, only a few of which are important in general). A single 

degree of freedom system resonates when excited by a sinusoidal, time varying force 

having a frequency near the natural frequency of the system. The effect of light 

damping is to reduce the amplitude of the resonance at the natural frequency from 

infinity to a large but finite value. (Real structures resonate near each of their 

natural frequencies, the magnitude of the resonant oscillation depending on the 

amount of damping present in the structure). Thus in order to study the behaviour 

of real structures we must first look at multi-degree of freedom systems. 

The simplest multi-degree of freedom system is the 2-degree of freedom system. We 

shall find that this system has two natural frequencies and associated with each 

natural frequency a mode shape defining the relative amplitudes of vibration of the 

two masses which constitute the system. Then we shall go on to a multi-degree of 

freedom system with n degrees of freedom. We shall find that there exist n natural 

frequencies each associated with its own mode shape. So in order to define the 

vibrations we must specify not only the natural frequency but also the mode shape. 

We also find that the mode shapes exhibit a property known as orthogonaLity. This 

property enables us to simplify the analysis of the behaviour of multi-degree 

freedom systems which are representative of our real structures. If we express 

the displacements of a multi-degree structural system in terms of the mode shapes 

as coordinates, then we can transform a set of n coupled equations into a set of n 

uncoupled equations each of which can be solved independently of the other. 
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2. Free Vibrations of 2-degree of Freedom System 

A two-degree-of-freedom system is represented as shown in Figure I by two masses 

and two springs. It is assumed that the masses can only move in the x direction. 

We denote the displacement of the first mass, ml , from its static equilibrium 

position by ul and similarly for m2 and u2 . These two displacements completely 

define the state (or position) of the system. 

We write down the equations of motion for ml for any displaced position ul and u2 ; 

(la) 

Similarly for m2 ; 

(lb) 

Rearranging equations (la) and (lb) we obtain 

o (2a) 

o (2b) 

We can write equations (2a) and (2b) in matrix form as 

ml 0 ul + r k,'k2 
-k2 

1 l :: j = 

[ : 1 0 ml U2 -k2 k2 (2c) 

or M U + K U 0 

(2x2) (2xl) (2x2) (2xl) (2xl) (2d) 

where K is the stiffness matrix 

(2x2) 

M is the mass matrix 

(2x2) 

U is the vector of displacements 

(2xl) 

Note that this is similar to the equation for a single degree of freedom system 

m u + k u o (2e) 
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Let us assume that a solution to equations (2a) and (2b) is of the form 

iwt 
a l e 

iwt 
a 2 e 

where a l and a 2 are constants and w is the natural frequency. 

expression 

e iwt cos wt + i sin wt 

(By using the 

(3a) 

(3b) 

we can represent any sinusoidal wave composed of cosines or sines by separating 

real and imaginary parts). On substitution of equations (3) in (2a) and (2b) we 

obtain 

On simplifying these become 

iwt 
e 

iwt 
e o 

o 

(4) 

the solution to which must be true for arbitrary values of a l and a 2 . (Obviously 

one possible solution is that a l = a 2 = 0 but this would give no motion at all). 

If we divide through by a l we obtain equations in terms of the ratio a 2/al and w2 • 

(kl +k2 ) - w2 ml } - k2 
a2 

0 
al 

- k2 + (k2-w 2 m2 ) 
a2 

a l 0 (5) 

We can eliminate a2/al between these equations and obtain, 

or multiplying out 

o (6) 

This type of equation always has two solutions wl 2 and w2 2 which are positive and 

such that wI and w2 are the two natural frequencies of the system. If we now go 

back to equations (5) and substitute for w2 by wI 2 or w2 2 we will find two 
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Figure 1 Two Degree of Freedom System 
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Figure 2 Multi-degree of Freedom System 

Figure 3 Mode Shapes of a Cantilever Beam 



49 

different ratios for a 2/a1 corresponding to each natural frequency. 

are the mode shapes. 

These ratios 

Example 1 

Suppose m1 1 and k1 = k2 = 1 in consistent units. Equation (6) gives 

w' - 300 2 + 1 0 

3 ± 19=4 
2 

3 ± /5 
2 

001 0.618 rad/sec; 002 = 1.62 rad/sec. 

001 is known as the fundamental (lowest) natural frequency. 

Substituting for 00 by 

expressions (5) gives 

00 0.618 and 

3 - /5 
2 - ----

2 

2_3+"€ 
2 

00 1.62 in either of the 

1.62 

-0.62 

What does all this algebra mean? It shows that for a two-degree of freedom system 

there exist two natural modes of vibration (not necessarily distinct) such that for 

each frequency the displacements u1 and u2 are in phase and there is a constant 

ratio between the displacements. The ratio of these displacements is the mode 

shape. 

We can write the equations (4) in matrix form as 

or 

or K _ 00 2 

(2x2l 

M 

(2x2) 

A 

(2x1) 

o 
(2x1) 

[ : 1 
(7) 
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where K is the stiffness matrix 

(2x2) 

M is the mass matrix 

(2x2) 

A is a vector of amplitudes 

(2xl) 

Notice the similarity between (7), a set of equations in matrix form, and the 

frequency equation for a single degree of freedom system, 

(k - wn 2m)a 0 

w 2 
k 

n m giving 

or w If n 

3. Free Vibrations of a Multi-Degree of Freedom System 

Consider now a multi-degree of freedom system consisting of n discrete masses 

constrained to move only in the x direction and connected by elastic springs 

(Fig. 2). 

If we write down the equations of motion for the n masses, we end up with n-2 

equations of the type, 

m.il. kj+l(uj +l - u j ) kj(uj - u. 1)' j 2, n-l 
J J J-

mlill k2 (u2- ul ) - klul 

and m il n n 
-k (u - u ) 

n n n-l 

We can rearrange these equations in the form 

o 

mil +ku -ku 0 n n n n n n-l 

(8a) 

(8b) 

(8c) 

(9) 

As before we assume a solution of the type u. = a.eiwt where a. are constants. 
J J J 

Note that wand the phase is the same for all displacements. The equations (9) 

can then be written in matrix form as 



K 

(nxn) 

w2 M 

(nxn) 
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A 

(nx1) 

o 
(nx1) 

(10) 

where K is the stiffness matrix, M is the mass matrix and A 

(nx1) 

is 

(nxn) (nxn) 

the vector of displacement amplitudes. For example, when n 5, the stiffness 

matrix, K 

(5x5) 

becomes 

k1+k2 -k2 0 

-k2 k2+k3 -k3 

0 -k3 k3+k4 

0 0 -k4 

0 0 0 

and the mass matrix, M 

(5x5) 

m1 0 0 0 

0 m2 0 0 

0 0 m3 0 

0 0 0 m4 

0 0 0 0 

0 0 

0 0 

-k4 0 

k4+k5 -k5 

-k5 k5 

0 

0 

0 

0 

m5 

Equation (10) is of the same general form as equation (7) except that the matrices 

are of order n instead of 2. It is known as the eigenvalue equation. It turns out 

that n values of w2 (w1 2 , w2 2 , ••• 

ponding to n natural frequencies. 

and real. 

wr 2 ••• wn 2 ) will satisfy this equation corres­

The roots wr 2 always turn out to be positive 

Note that the matrix K 

(nxn) 

is always square (order n) and is symmetric, i.e. if 

we swap rows and columns the matrix is unchanged. This is true for all linear 

elastic structural systems. The mass matrix is also square (order n) and symmetric, 

but need not necessarily be diagonal as shown in this case. 

Corresponding to each of the n values of wr we find on substituting in each of 

equations (10) that we can obtain a set of simultaneous equations from which it is 

possible to find the ratios This set of ratios represents 
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the mode shape associated with the rth frequency. 

Thus from equation (10) we can find the natural frequencies and mode shapes of a 

discrete multi-degree of freedom elastic structural system. You might well ask 

what is the use of this if our structure is continuous, as say a uniform canti­

lever beam. For such a simple structure, analytical methods of determining the 

natural frequencies may be used. However, in general, it will not be possible to 

find an analytical solution for a continuous structure of rather more complex 

nature. Thus what we do is idealize the structure in some way by a discretization 

process, reducing the number of degrees of freedom from infinity to n where n is as 

large a number as we like. 

Let us consider the case of the mode shapes of a uniform cantilever beam (Fig. 3). 

If we replaced the cantilever by 4 masses, connected by four light beams, we might 

find the mode shapes as in Figure 4. These are fairly close to ·the actual 

mode shapes and we can make good approximations by drawing a curve between the 

discrete values. Obviously for higher frequencies it becomes much more difficult 

to define mode shapes unless we increase the number of points which we take to 

define the mode shapes (i.e. increase the number of degrees of freedom). 

4. Orthogonality of Mode Shapes 

Let us take a discretized structure vibrating in its rth mode shape 

q, 
-r 

(nxl) 

and put this in place of A in equation (10). (Since A is arbitrary we can do this). 

The frequency of vibration will of course be wr ' so that equation (10) becomes 

K - W 2 M 
r 

(nxn) (nxn) 

which we can write as 

K q, 
-r 

(nxn) (nxl) 

q, 
-r 

(nxl) 

o 
(nxl) 

W 2 M q, 
r -r 

(mxn) (nxl) 

For the same system vibrating in any other mode shape, 

(where Ws ~ wr ) we obtain a similar expression 

q, 
-s 

(nxl) 

at frequency 

(lla) 

W 
S 



~s 
(nx1) 

III 2 
S 
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M 

(nxn) 
~s 

(nxl) 

tUb) 

Both sides of equation (lla) can be transposed without altering the equation to 

give 

lS 
<I> )T III 2 ( 

M <I> )T (12a) -r r -r 
(nxn) (nx1) (nxn) (nx1) 

or 
<I> T lST III 2 <I> T MT 
-r r -r 

(lxn) (nxn) (lxn) (nxn) 

where T denotes the transpose of a matrix or vector and the rule for reversing the 

order of multiplication of transposed matrices has been used. 

But matrices lS 
(nxn) 

and 

lST 

(nxn) 

~ 
(nxn) 

are symmetric so that 

lS 
(nxn) 

and ~T 

(nxn) 

Hence equation (12a) becomes 

<I> T 
-r 

(lxn) 

Now let us post-multiply 

<I> T 
-r 

lS 
(nxn) 

III 2 <I> T 
r -r 

(lxn) 

equation (12b) by <I> 
-s 

lS <I> III 2 
<I> 

-s r -r 

~ 
(nxn) 

to give 

T 
~ 

(lxn) (nxn) (nxl) (lxn) (nxn) 

where crs is a scalar quantity as yet unknown. 

~ 

(nxn) 

<I> 
-s 

(nx1) 

c rs 

<I> T 
-r 

to give Now let us take equation (llb) and pre-multiply by 

<I> T 
-r 

(lxn) (nxn) (nx1) 

Clearly by subtracting (13) from (14) 

III 2 

S 

(lxn) 

~r T M ~s 
(lxn) (nxn) (nxl) 

C rs 

(12b) 

(13) 

(14) 
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o (w 2 _ W 2) q, T M q, 
s r -r -s 

(15) 

(lxn) (nxn) (nxl) 

Now we said earlier that w ~ w. The only possible explanation for equation (15) 
s r 

is that 
q, T M <1> 0 for r"s. -r -s 

(16a) 

(lxn) (nxn) (nx1) 

Thus c 0 and also from (13) or (14) 
rs 

<1> T K <1> 0 
-r -s 

(16b) 

(lxn) (nxn) (nx1) 

Equations (16) are true for any pair of mode shapes we care to choose. This 

property exhibited by the mode shapes is known as orthogonality and it has con­

siderable importance. The reason for this terminology may not seem obvious. 

However it can be demonstrated by a simple example. Suppose we have the system 

shown in Figure 5 which has two degrees of freedom. Then the vibration in the x 

direction is completely independent of the motion in the y direction because the 

system is physically orthogonal. The mode shape vectors for the vibration in the 

x and y directions will be 

[ : 1 
and 

[ : 1 
where a and bare 

respectively amplitudes in the x and y directions. Thus if we take the product 

corresponding to 
T 

~r M 

o ] 

~s 

[: :] [:] 
it will give zero. This property of orthogonality 

of the modes shapes is important because it means that we can always choose our 

degrees of freedom, which define the motion of the structure, such that the 

equations of motion are in terms of independent variables. 

5. Modal Decomposition 

Let us choose a normalizing vector, ~r' for the mode shape, ~r' which is defined 

by , 



z 
-r 

(nx1) 

1 
c 

r 
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<I> -r 
(nx1) 

where c is the scalar constant such that for each value of r 
r 

z 
-r 

T 

(lxn) 

M z 1 
-r 

(nxn) (nxl) 

(17) 

(18) 

Now we make up a modal matrix Z 

(nxn) 

consisting of n normalizing vectors as columns 

z 
(nxn) 

~1 ~2 
(nx1) (nx1) 

z _r 
(nx1) 

~n-1 
(nx1) 

z 
-n 

(nx1) 

From the orthogonality condition (16a) and equation (18) 

T 
M 0 if r~s for r 1,n; z z s 

-r -s 

T 
M 1 if 1,n z z r 

-r -r 

Hence ~ 
T 

M Z I 

where I is the unit matrix. Furthermore from expressions 

and (11b) 
T 

K 2 T 
M 0 z z w z z 

-r -s r -r -s 
and 

T 
K 2 T 

M 2 
Z Z W Z Z w 
-r -r r -r -r r 

Hence if we take the matrix K , pre-multiply it by ZT 

(nxn) (nxn) 

1,n. (19a) 

(19b) 

(19c) 

like equations (11a) 

r ~ s 

(20) 

and post-multiply it 

by Z 

(nxn) 

we shall obtain a diagonal matrix Q 

(nxn) 

containing n elements which are 

the squares of the n natural frequencies. 



or 

T 
~1 

(lxn) 

T 
~2 

(lxn) 

z 
-r 

T 

(lxn) 

T 
~n-1 

(lxn) 

z 
-n 

T 

(lxn) 

K 

W 2 
1 

o 

z 
(nxn) (nxn) (nxn) 

K 

(nxn) 

W 2 
2 

n 

(nxn) 

W 2 
r 

since the rth diagonal element is 

Thus 

K z 
(nxn) (nxn) (nxn) 
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~2 
(nx1) 

o 

W 2 
n-1 

W 2 
n 

z 
-r 

(nxl) 
~n-1 ~n 

(nx1) (nxl) 

W 2 
r and all other elements are zero. 

n 

(nxn) 

M z 
(nxn) (nxn) (nxn) (nxn) 

(21) 
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is the matrix of the squares of the natural frequencies. 

If we return to the original equations of motion (equation (10» and pre-multiply 

these by zT we obtain 

(nxn) 

K 

(nxn) 

_ w' M A 

(nxn) (nx1) 

We can now carry out a coordinate transformation and put 

A 

(nxl) 

z 
(nxn) (nxl) 

o 
(nx1) 

(22) 

(23) 

where 2 
(nx1) 

is a vector of normal coordinates. This is a change of coordinates 

from the original set to a new set which represents each degree of freedom of the 

original set by a combination of proportions of each of the normalized mode shapes. 

Substituting equation (23) in (22) we have 

ZT K _ w' M ) z Q 0 

(nxn) (nxn) (nxn) (nxn) (nxl) (nx1) 

which on expanding gives 

ZT K Z Q _ w' ZT M Z Q 0 (24) 

(nxn) (nxn) (nxn) (nx1) (nxn) (nxn) (nxn) (nxl) (nx1) 

Making use of the relationships expressed in equations (19) and (21), equation 

(24) reduces to 

1'2 Q _ w' Q 0 

(nxn) (nx1) (nx1) (nx1) 

or 

[ 1'2 _ w' I 

1 
Q 0 

(nxn) (nxn) (nx1) (nx1) 

This corresponds to an original set of equations 

q 

(nxl) 

+ 1'2 

(nxn) 
~ 

(nx1) 

o 
(nxl) 

(25) 

(26) 



where 2 
(nx1) 

Q 

(nx1) 

iwt 
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(27) 

Equations (26) represent a set of n independent differential equations, each of 

which can be written in the form 

o (28) 

Thus by use of normal coordinates we can reduce the coupled equations of free 

vibration of a multi-degree of freedom system to a set of uncoupled equations, 

each involving just a single degree of freedom. For free vibration a multi­

degree of freedom system behaves in exactly the same way as a set of independent 

single degree of freedom systems if we express the physical displacements in terms 

of a normal coordinate system. 

Example 2 

Let us go back tb the 2-degree of freedom example. The mass matrix is 

[ : o 

1 

and the mode shapes are 

[ :.62] 
and 

[ -:.62] 
They can be normalized as shown in equations (17) and (18). For the first mode 

shape, 

<1> T 
-1 

(lx2) 

the product 

M ~1 
(2x2) (2x1) 

gives 1.62] [: :] [:J 
Hence the constant c 1 in equation (17) is given by 

1.90 

Thus the normalized mode shape, z is 

~1 
(2x1) 

By a similar procedure, 

(2x1) 
1 

~1 
(2x1) 

1.90 

/ l' + 0.62' 

given by 

[ 0.526] 
0.851 

11.384 1.18 

l' + 1. 62' 

3.62 
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and ~2 [ 0.851 1 
(2x1) -0.526 

Thus the matrix Z becomes [ 0.~6 0.851 1 
(2x2) 0.851 -0.526 

Now we can carry out a coordinate transformation to represent the vector 

corresponding to unit displacement u1 and zero displacement u2 in terms of the 

generalized coordinates and the matrix Z It will be seen that 

[ : 1 [ 
0.526 

0.851 

(2x2) 

0.851 

1 [ 0.526] 

0.851 -0.526 

Thus the normal coordinates corresponding to a displacements 

1 I are 0.526 x first normalized mode shape 

o 0.851 x second 

Similarly the vector corresponding to u2 1 and u1 o can be transformed as 

[ : ] [ 
0.526 

0.851 

0.851 

1 [~::: 1 -0.526 

The normal coordinates corresponding to these displacements 

1 I are 0.851 x first normalized mode shape o 

-0.526 x second 

6. Damped Free Vibrations of Multi-Degree of Freedom Systems 

Real structures behave as lightly damped multi-degree of freedom systems. (The 

nature of damping and the means of representing damping in structures are discussed 

more fully in Chapter 9). Damping is observed as a result of energy being 

dissipated in a structural system. We can in general represent this dissipation 

of energy by an extra set of forces acting on the structural system. Thus the 

equations of motion in matrix form (2d) become 



01 

M U + K U - P -d 
(29) 

(nxn) (nx1) (nxn) (nxl) (nxl) 

dhere ~d is a vector of damping forces which is time dependent. The minus sign 

(nxl) 

indicates that damping tends to reduce the magnitude of the motion. 

Conventionally, the vector ~d 

(nx1) 

C U 

is represented as 

~d 
(nxl) (nxn) (nx1) 

where C is the damping matrix which is square and symmetric and U 

(nxn) (nx1) 

velocity vector. Equation (29) can then be written as 

M U + C U + K U 

(nxn) (nxl) (nxn) (nx1) (nxn) (nx1) 

o 
(nx1) 

(30) 

is the 

(31) 

Equation (31) is the equation of motion of a free -damped multi-degree of freedom 

system. Under certain circumstances, it is possible to make use of the orthogonal 

properties of the mode shapes to simplify the solution of equation (31). (See 

Chapter 9). In general a solution to equation (31) can be found by assuming the 

form 

where A 

(nx1) 

U 

(nx1) 

A 

(nx1) 

Hlt 
e (32) 

is a vector of complex elements, a + ib, and n is a complex frequency. 

The real and imaginary parts of n are the damped natural frequency, wd ' and a 

quantity, ~, which is the decay constant of the oscillation. Thus 

(33) 

The real and imaginary parts of the amplitude vector represent the phase relation­

ships between the amplitudes of vibration of different parts of the structure (See 

reference [1]). Substituting equations (32) in (31) and dividing by eint we 

obtain 



11 2 M 

(nxn) 

+ ill C 

(nxn) 
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+ K 

(nxn) 

A 

(nx1) 

o 
(nx1) 

The solution to equation (34) is obtained by finding the complex roots, Ilr' 

(34) 

which make the determinant of - 11 2 M + ill C + ~] zero. This may 

(nxn) (nxn) (nxn) 

be done using standard algorithms such as the method developed by NeIder and Mead 

[2] or modifications of it. 

Equation (33) may then be used to obtain the damped natural frequencies wdr and 

associated logarithmic decrements, or' for the rth mode of vibration, using 

Il = W + it> By definition r dr r 

2116 2116 

° 
r r 

r wdr W nr 

for light damping, where w is the rth natural frequency. nr 

7. Forced Vibration of Multi-Degree of Freedom Systems 

(35) 

Structures vibrate when they are subject to time varying forces. These forces may 

be of a periodic nature or continuously variable and random depending on the source 

of loading. We will confine the analysis in this section to periodic forces only 

and leave the analysis of transient responses till later (Chapter 9). 

Any periodic non-harmonic function can be expressed in terms of a series of sine 

and cosine terms. Thus a periodic non-harmonic force can be expressed as a set of 

harmonic forces of constant amplitude (See reference [1]). If the amplitude is 

made complex, then sine and cosine terms can be collected together. The equations 

of motion for a lightly damped structure vibrating under a variable set of forces, 

expressed by the vector 

M 

P(t) become 

(nx1) 

u + C u 

(nxn) (nx1) (nxn) (nxl) 

+ K u 

(nxn) (nxl) 

P(t) 

(nxl) 

(36) 

If each of the forces making up the vector P(t) is periodic with period, T, then 

(nxl) 

P(t) may be written as 

(nxl) M i 211j 
t 

P(t) P I P. e T 
(37) + 

_0 -J 
j=l 
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where P. 
-J 

is a vector of complex force amplitudes. The total response of 

(nx1) 

the system can be found by summing the responses due to each of the sets of harmonic 

forces acting separately. Let us consider the jth set and put Wj 2;j The 

equations of motion (36) become 

M U. + 
-J 

(nxn) (nxl) 

Assume a solution of the form 

U. 
-J 

A. 
-J 

CU. 
-J 

(nxn) (nx1) 

e 
iw.t 

J 

(nxl) (nxl) 

+ K U. 
-J 

(nxn) (nxl) 

P. 
-J 

(nxl) 

e 
iw.t 

J (38) 

(39) 

By substituting (39) in (38), cancelling e 
iw.t 

J and collecting real and imaginary 

parts, we obtain 

K 

(nxn) 

_ W 2 

j 
M 

(nxn) 

+ iw. C 1 J -
(nxn) 

A. 
-J 

(nxl) 

P. 
-J 

(nxl) 

(40) 

Equation (40) can be solved for A. 
-J 

by Gaussian elimination using a complex 

(nxl) 

version of any standard method. The vector ~j will be complex. 

(nx1) 

The modulus of 

each vector component will correspond to the amplitude of vibration and the 

argument will give the phase angle. In general the phase angle of the components 

of the vector A. 
-J 

(nxl) 

will be different from those of force vector P. 
-J 

(nxl) 

depending on the amount of damping. 

Under certain circumstances, (see reference [3] and Chapter 9), equations (38) can 

be uncoupled by using the orthogonal property of the mode shapes to give a set of 

n independent single degree of freedom systems which can be solved by the methods 

given in Chapter 2. 
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1. Introduction 

CHAPTER 4 

EIGENVALUE-EIGENVECTOR SOLUTION 

by 

R.R. Wilson 

In this chapter, methods are presented for solving the free vibration equation for 

a multi-degree of freedom system. This equation is called the eigenvalue equation. 

Its solution not only gives the natural frequencies and mode shapes but also allows 

the set of coupled equations representing the dynamic response of a system to be 

uncoupled and hence solved. Thus the technique is at the heart of any general 

solution procedure for vibration problems. 

Firstly, why is it necessary to consider sophisticated solution techniques for 

vibration problems? Many standard subroutine packages contain eigenvalue solutions 

but unfortunately these are quite unsuitable for large structural vibration problems. 

Unlike static problems it is not possible to use a method, such as Gaussian elimin­

ation, in which only a small part of the system of equations needs to be in the 

computer at the one time. Care has to be taken to ensure that as large a problem 

as possible can be solved in the computer store available without at the same time 

requiring excessive computer time. 

A three degree of freedom system is considered to introduce the terms used. This 

example is then used to illustrate solution by the evaluation of the zeros of a 

determinant. Three other methods for large systems are presented. The first, 

reduction of the equation to standard form and solution using a Sturm sequence 

technique, is considered in some detail and the other two, simultaneous iteration 

and the application of the Sturm sequence technique to the unreduced equations, are 

introduced briefly. 

Two methods for reducing the total number of unknowns in a problem are considered, 

node condensation and substructure analysis. Finally, it is shown how, once the 

solution for a particular system has been found, it is possible to estimate the 

effect of a small change without having to solve an eigenvalue equation for the 

modified system. 

2. Three Degree of Freedom System 

The system shown in Figure 1 can be fully described by the three coordinates u1 ,u2 , 
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Figure I. Three Degree of Freedom System. 

Figure 2 Mode Shape for 1st Natural Frequency 
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u3 , if it is assumed that the motion is only in the vertical direction. Applying 

Newton's Law, we have 

(1) 

i.e. M U + K U o (2) 

M 

[: 

0 0 §.k %k _~kj 4 

m 0 K %k §.k -l,;k 
4 

0 m -l,;k -l,;k k 

where 

u, 1 
U 2 

U 3 

and U 

If we assume a solution of the form U = ~ sin wt, where ~ gives the amplitude of 

vibration of each coordinate, then equation (2) becomes 

(K - w2 M)~ o 

Substituting w2 , we have the eigenvalue equation, 

(K - A M)~ o 

In order that this set of equations has a non-trivial solution (i.e. a solution 

for which ~ ~ 0), we must have the determinant, 

K - A M I~ 0 

i.e. 
'i 
"4k - Am %k -l,;k 0 

%k §.k - Am -l,;k 
4 

-l,;k -l,;k k - Am 

Expanding the determinant, we have 

7 
+ znA - k o 

(3) 

(4) 

(5) 

(6) 
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Figure 4 Mode Shape for 3rd Natural Frequency 
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This is a cubic equation with three distinct roots. Thus equation (4) has three 

non-trivial solutions given by 

k 
2m 

k 
m 

and 
2k 
m 

These are the eigenvalues (or latent poots) of the equation and correspond to 

natural frequencies of the system 

= If. and 

(7) 

(8) 

Substituting each of the eigenvalues in turn into equation (4), the corresponding 

k 
~ may be found. 

2m ~1 

k 
m ~2 (9) 

2k 
m ~3 

The vectors ~i are called the eigenvectops (or latent vectops ) of the equation. 

They describe the relative magnitudes of the amplitude of vibration of each degree 

of freedom giving the (normal) mo~e shapes of the system when vibrating at each of 

its natural frequencies as shown in Figures 2, 3 and 4. 

The eigenvectors give the ratios between the different components; the absolute 

value of the displacements is determined by the magnitude of the applied forces. 

It is often useful to express the eigenvectors as nopmalized vectops by scaling 

them so that, for each eigenvector, the sum of the squares of its components is 1. 

The normalized eigenvectors for the present system are 

~ln 1/ 

1/ 

2/ 

/6 

/6 
~2n 

r 
1/ 121 

-1/ 012 

~3n 

It should be noted that the eigenvectors are mutually orthogonal 

i. e. o , i 10 j 

!3 

/3 

/3 (10) 

(11) 
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0.5 1.0 

Figure 5. Zeros of the Determinant for 3 Degree of Freedom 

system. 

Value 
of 

determinant 

Figure 6 Determinant for System with Two Close Eigenvalues. 
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Four Degree of Freedom System. 

, , 
8 11 '812 8 13 ' 8 15 '816 , , 
~21 _ ~2~ ~ 8 23 , 8 24 , 8 25 

~31 _ ~3~ _ ~3~ , 8 34 '835 

8 41 _ ~4~ _ ~4~ _ ~4! J a4S 
a SI aS2 aS3 aS4 aSS 

Successive Minors of a Matrix. 

The successive minors 

are the determinants 

of the series of 

submatrices shown. 
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and thus for normalized eigenvectors we have 

~.T ~. 6 .. (12) 
-In -In lJ 

where 6 .. {~ i j 
lJ 

i ~ j 

3. Zeros of Determinants 

For the three degree of freedom system discussed in the previous section it was 

possible to determine the zeros of the determinant directly, by solving the cubic 

equation (6). For larger systems other techniques have to be used. By plotting 

the value of the determinant against A, the eigenvalues may be found graphically. 

This is illustrated in Figure 3. Where it is not practical to evaluate the deter­

minant by hand, root search techniques can be used on the computer [1]. 

One such procedure consists of evaluating the determinant for a range of values of 

A. When there is a change of sign between successive evaluations, there must be a 

root lying in this interval. This root can be found to any required degree of 

accuracy by successively bisecting the interval containing the change of sign. 

This process can be made more efficient by using the magnitude of the determinant 

to predict a root by interpolation. However this method has two major drawbacks. 

Firstly, when there are two identical or nearly identical roots, it is possible 

that the technique will fail to find either of them. Consider a system in which 

the plot of determinant against A has the form shown in Figure 6. 

If for example, the determinant is evaluated at the points shown, then there will 

be no change of sign between the values at nand n+1. Hence, the two roots between 

these points will not be found. To ensure that this situation does not arise it 

is necessary to use very small intervals, resulting in excessive computing times. 

A second difficulty is caused by the fact that, for large systems, the absolute 

value of the determinant can become either very small or very large. Sophisticated 

scaling procedures are required to prevent overflow or underflow occurring during 

the computation. 

4. Banded and Symmetric Matrices 

Consider the system shown in ¥igure 7. The equation of motion for free vibration 

is given by 

[ K - A M ]~ o (13) 
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where M ml 0 0 0 ~d K kl+k2 -k2 0 0 

0 m2 0 0 -k2 k2+k3 -k3 0 

0 0 m3 0 0 -k3 k3+k4 -k4 

0 0 0 m4 0 0 -k4 k4 

It can be seen that the mass matrix is a diagonaL matrix; only those terms on the 

leading diagonal are non-zero. This reflects the fact that the system has lumped 

masses. In the finite element method discussed later, the mass matrices have non­

zero off-diagonal entries. However, this reduces the size of the problem that can 

be considered and, for many applications, it is doubtful if the additional accuracy 

of representation gained by introducing these off-diagonal terms always justifies 

the increased complexity of solution. 

In all the examples considered and in general for all structural problems, the 

mass and stiffness matrices are symmetric; the (i,j)th entry is equal to the 

(j,i)th entry. It is important that solution procedures take advantage of this. 

For an n x n symmetric matrix, it is only necessary to store n(n+1)/2 numbers. 

The stiffness matrix K is banded with a semi-b~dwidth of b = 1. It has non-zero 

terms only on the main diagonal and on b diagonal rows on either side of it. This 

reflects the fact that there is no interaction between for example, degrees of 

freedom 1 and 4. This situation often arises in practice - in a structure a degree 

of freedom interacts only with those freedoms in the adjacent parts of the structure. 

It is frequently useful to remember the degrees of freedom so that all the non-zero 

terms are grouped near the main diagonal and automatic schemes have been formulated 

for carrying this out [2,3]. For a symmetric b~ded matrix it is necessary to 

store only (b+1) n numbers. 

5. Reduction of Eigenvalue Equation to Standard Form 

Instead of directly solving the eigenvalue equation, 

(K - A M)$ o (14) 

it is often preferable to reduce it first to a simpler form. 

Let (15) 

i.e. (16) 
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Then equation (14) can be written in the form 

(A - A I) ~ 0 (17) 

where I is 

and A 

the identity matrix 1 

0 

0 

o 
o 

0 

1 

0 

o 

o 

0 

0 

1 

o 
o 

0 

0 

0 

1 

o 

0 

0 

0 

o 
1 

The solution of equation (17) may be regarded as finding the eigenvalues of the 

matrix A. 

Because of the need to invert a matrix, this method is only suitable for small 

systems. In addition matrix A is not symmetric and so the full matrix would 

require to be stored. 

If matrix M is positive definite (this corresponds to the requirement that the 

kinetic energy of the system is always positive) then, by using a technique called 

Cho1eski decomposition [4,5), a matrix L can be found such that 

M 

where L is lower triangular i.e. it has non-zero entries only on and below the 

main diagonal. 

Thus equation (14) can be written 

K <I> 

Now L-T LT I, and so 

Premultiplying by L-1 we have 

This can be written as 

(B - A 1) Z o 

(18) 

(19) 

(20) 

(21) 

(22) 
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where B (22a) 

Thus we now have a new eigenvalue equation in standard form, which has the same 

eigenvalues A as equation (14). The matrix B is symmetric and so it is possible 

to use solution techniques which take advantage of this. 

6. Solution of Standard Eigenvalue Equation by Sturm Sequence Technique 

It would be possible to calculate the eigenvalues of the matrix B directly but 

since unlike M and K it is not banded, considerable calculation would be required. 

It is preferable to find a matrix which has the same eigenvalues as B but which is 

of simpler form. Householder's method [6] provides a means for doing this. Matrix 

B can be reduced to a tridiagonal matrix which has the same eigenvalues as B (a 

tridiagonal matrix is n one which has non-zero entries only on the main diagonal 

and the two adjacent rows). 

A series of mutually orthogonal matrices ~i can be found, defining a series ~i with 

where ~l B 

The ~i are chosen to make zero certain entries of ~i+1. Equation (22) can be 

written as 

~1 Z A Z 

Now ~1 
P T I, and so 
-1 

p T P T 
~1 ~l -1 

Z A ~1 _1 Z 

p T T 
_1 ~1 ~1(~1 Z) A p T 

-1 
Z 

i.e. (B -_2 A ~)(~1T Z) 0 

T 
Hence the eigenvalues are unchanged but we have new eigenvectors ~1 Z. This 

(23) 

(24) 

(25) 

(26) 

(27) 

process can be repeated until a tri-diagonal matrix is obtained. This will still 

have the same eigenvalues as our original equation but eigenvectors 

p T P T P T P T Z. 
_n-2 -n-3 _2 -1 

The eigenvalues of this tridiagonal matrix can be found by bisection [7] using a 

result from the theory of polynomials that the successive minors of the matrix 

(see Figure 8) form what is called a Sturm sequence. The number of roots (i.e. 
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eigenvalues) greater than Aa is given by the number of changes in sign in the 

sequence when the minors are evaluated with A = Aa' By calculating the number of 

eigenvalues greater than Aa for a range of values of Aa and bisecting any interval 

contain~ng more than one eigenvalue, it is possible to isolate each of the required 

roots. These may then be determined to any required accuracy by successively bi­

secting each interval containing a root. This method allows all the eigenvalues 

in a given range to be found or, for example, the ten lowest eigenvalues. 

(1) all a12 a13 a15 a16 
- - -, 

(2) a21 a22 a23 a24 a25 The successive 

- I minors are the 
(3) a31 a 32 a33 a 34 a35 

- - - - • I determinants of 
(4) a41 a42 a43 a44 a45 the series of 

- - - -
(5) a 51 a52 a53 a54 a 55 submatrices shown. 

Figure 8 Successive Minors of a Matrix. 

Once the eigenvalues have been found the corresponding eigenvectors of ' the tri­

diagonal matrix can be found by inverse iteration (Wielandt iteration) [8). Two 

iterations are usually sufficient. The eigenvectors of the standard equation (22) 

are then calculated by premultiplying the eigenvectors of the tridiagonal matrix 

by the ~i' Finally the eigenvectors of the original system (14) are determined by 

equation (22a). 

7. Solution of the Original Equations using Sturm Sequence Technique 

It can be shown that the sign of each of the tridiagonal matrix is the same as the 

sign of the corresponding minor of (K - A ~) [9, 10). Thus instead of reducing 

the equations to standard form and then finding the equivalent tridiagonal matrix, 

it is possible to use the Sturm sequence property of the minors of the original 

matrices. 

However, unless the bandwidth of the matrices is very small, this process can 

require excessive computer time. To overcome this, it is possible to use the 

Sturm sequence method applied to the original matrices Simply to find a series of 

intervals each containing only one eigenvalue. This avoids the possibility that,a 

root might be missed. The roots are then determined accurately by evaluating the 

numerical value of the complete determinant and using interpolation techniques to 

accelerate the process of searching for a zero. 
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8. Simultaneous Iteration 

The method of simultaneous iteration (or direct iteration) [11] is a method of 

finding the roots of the standard eigenvalue equation (22). A set of mutually 

orthogonal trial vectors are selected. If possible these should be realistic 

estimates of the eigenvectors corresponding to the lowest eigenvalues but in a 

general scheme may be, for instance, the columns of the identity matri~. Let us 

assume we have chosen 3 mutually orthogonal vectors ~i. These may be written as 

linear combinations of the (unknown) eigenvectors of the matrix B. 

Now if the Cij are less than 1 then, since the ~i are mutually orthogonal, we 

have that the equations can approximately be written as 

A new set of vectors Yi' can be defined by 

where VI 

Now since 

VI 

[V I V I V I] 
-1 _2 -3 

B Z. _ _l. 

V I 

-1 

VI 
_2 

V I 

-3 

B V 

and V 

Al~l + 

-AlC12~1 

-AlC13~1 

We can now define the matrix ~ by D 

Thus D 

[ 
Al -C12 (Al -A2 ) 

-C12 (A l -A 2 ) A2 

-C13 (Al -A3 ) -C23 (A2-A3 ) 

A2C12~2 + A3C13~3 + 

+ A2~2 + A3C23~3 + 

- A2C23~2 + A3~3 + 

VTV ' VT B V 

-C13 (A l--A3 ) 

-C23 (A 2-A3 ) 

A3 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 
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If the trial vectors we selected had been the true eigenvectors then D would be a 

diagonal matrix with the entries on the diagonal equal to the eigenvalues. In 

general the off-diagonal terms will be non-zero because of the coupling between 

the trial vectors. The entries of D can then be used to suggest a second trial 

set of vectors. After they have been made mutually orthogonal, this second set of 

vectors can be used to repeat the cycle. This process is continued until the 

required accuracy is obtained. 

9. Comparison of Eigenvalue Solution Methods 

We have now considered four methods of solution and it is useful to compare the 

different approaches. The methods were 

1) direct evaluation of the zeros of the determinant 

2) application of Sturm sequence technique to the original equations perhaps 

using determinant evaluation for final root determination 

3) reduction to tridiagonal form and then application of Sturm sequence 

technique. 

4) simultaneous iterations. 

The first two methods are applied to the original system of equations, the second 

two to the equation after it has been reduced to standard form. As mentioned 

previously, direct evaluation of the determinant can fail to find close or 

identical roots. Because of this, determinant evaluation on its own is not suit­

able for a general solution scheme. Simultaneous iteration suffers from the dis­

advantage that its rate of convergence is dependent on the problem and in particular 

on how well separated the roots are. Both the methods using a Sturm sequence 

technique have no difficulty in finding pairs of identical eigenvalues. It should 

be noted however that they do not produce the correct eigenvectors in this case. 

The storage required and the number of operations performed during the calculations 

by each of the methods is very much dependent on the type and size of problem. 

Estimated formula for these computational parameters based on references [12] and 

[1] are given in Table 1. For the simultaneous iteration method, estimates have 

been made of the number of iterations and number of trial vectors required. 

Figures 9 and 10 show plots based on these formulae for the storage required and 

the number of operations for a typical problem. It has been assumed that 10 eigen­

values are required and that the semi-bandwidth of the matrices is 20. In general 

there is no real best buy. All the methods discussed (and others [1,4]) are used. 

Perhaps method 3, the reduction to tridiagonal form and application of the StUrm 

sequence technique is the most widely used in this country. Because of this, it 
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Method Storage required Number of operations 

1 determinant 2n(b+l) + 9n (3nb' + 39nb + 114n)m 

evaluation 

2 Sturm sequence 5nb 25nb'm 

on original system 

3 Sturm sequence Y,n' + 2nb 3/2n' + 
2 3 
3n + mn2 

on tridiagonal 

4 simultaneous 2nb + 3n(m+3) + Y,nb' + (m+3)3 + 

iteration Y,(m+3)' +15n(m+3) + l8nb(m+3) 

n = number of degrees of freedom; b 

eigenvalues required. 

semi-bandwidth; m number of 

Table 1 Storage and Number of Operations for Eigenvalue 

Solution 
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has the advantage that there is a number of well tried algorithms available which 

are based on it. 

10. Node Condensation 

For large systems, the size of the matrices is such that it may not be possible to 

solve the eigenvalue equation in the computer store available. One technique 

which is used widely to overcome this difficulty in the finite element method is 

node condensation [13, 14] . Consider a structure which is represented by n 

degrees of freedom but with forces applied only to the first r of them. The 

resulting deflections are given by 

[ :' 1 
= 

[ 
~11 ~12 

1 [ :: 1 T 
~22 ~12 

(35) 

i.e. ~1 ~11':1 + ~12':2 (36) 

and 0 
T 

~12':1 + ~22':2 (37) 

Substituting for ':2 from (37) into equation (36) gives 

~1 (38) 

Thus the system is described by the equation 

~1 k* ':1 (39) 

where k* 

This is equivalent to a coordinate transformation from the original coordinates u 

to a new coordinate system r(= ':1)' The transformation matrix A is given by 

u (40) 

Since 

u 

[ ~: 1 [ I 

1 
[ ':1] 

T 
-~22 ~12 

(41) 

we have A 

[ \;2] -~22 

(42) 
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The potential,energy of the system is given in the or:Lginal coordinate system by 

v (43) 

v T 
~(A~) ~(~~) 1~ .. ? (AT K A) /2J_ __~ 

v (44) 

where k* 

The stiffness matrix calculated in this way is identical to that given by equation 

(39) • 

In a similar manner we can introduce a mass matrix defined by 

m* 

These reduced matrices can now form an eigenvalue equation which is able to be 

solved in the available computer store. 

(45) 

For the vibration of a practical structure, there will be forces applied at every 

degree of freedom having a mass associated with it. (By D'Alembert's principle 

equivalent force = -m u.) However we can decide to retain only the more important 

freedoms, the master degrees of freedom, and condense out the others, the sLave 

degrees of freedom. The eigenvalue equation can then be solved in terms of the 

masters. The complete mode shape can be found by substituting in equation (40) 

for the slave freedoms. 

The choice of master freedoms is largely a matter of experience. It is relatively 

simple if one already knows roughly what the mode shapes will be. Perhaps the only 

general guideline is that it is usually better to eliminate rotational freedoms and 

retain only translation freedoms. This method does however allow reasonably 

accurate predictions to be made of the vibrational behaviour of very large systems. 

11. Substructure Analysis 

The technique of substructure analysis [15] can be used to reduce the size of 

eigenvalue equations instead of node condensation. For a very complicated structure 

rather than solving in terms of all the freedoms, only those freedoms which couple 

the main sections of the structure are used. For example, an aeroplane could be 

considered as an assemblage of fuselage, wings and tail. The effect of each sub­

structure is represented in terms of its normal modes calculated with constraints 
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applied to the coupling freedoms. Modes of the complete structure are represented 

as a synthesis of the modes of the substructures. 

This method has two advantages over node condensation. Firstly it is often 

important to know the local resonances of a structure and this information is 

given directly by a substructure analysis. Secondly, substructure analysis allows 

a great reduction in computation where the structure is repetitive, having a 

number of identical components. On the other hand, it is not as suitable as node 

condensation for use in a general solution scheme. 

12. Rate of Change of Eigenvalues 

For large systems, it requires a great deal of computer time to solve the eigen­

value equation. It is not feasible to solve for many design variations. One way 

round this is to calculate the rate of change of the eigenvalues [16, 17] with 

change in design parameter. 

When a structure is vibrating in its ith mode, the maximum potential and kinetic 

energies are equal. 

i.e. (46) 

If we now consider a small change in design, then there will be new stiffness and 

mass matrices K + ~K and M + ~M. Thus if the corresponding changes to the ith 

eigenvector and eigenvalue are ~~i and ~~i' we have 

(47) 

Expanding and retaining only the first order terms we have, 

(48) 

Thus once an eigenvalue equation has been solved, an estimate of the effect of a 

small change can be made without having to solve a new set of equations. 
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CHAPTER 5 

APPROXIMATE METHODS FOR CALCULATING NATURAL FREQUENCIES 

AND DYNAMIC RESPONSE OF ELASTIC SYSTEMS 

by 

H. Tottenham 

Since the dynamic analysis of any but the simplest structure is a complicated 

business it is useful to have some approximate methods which will at least indicate 

whether a more detailed analysis is necessary. The purpose of this chapter is to 

outline a few simple devices which can, in many cases, help us to determine the 

natural frequencies and dynamic response of elastic structures. 

1. Equivalent One Degree of Freedom Systems 

The equation of motion of a single degree of freedom system is 

d 2w 
M dt 2 - kw + p(t) (1) 

where M is the mass of the system, k the elastic stiffness, w(t) the displacement 

of the mass and p(t) is the applied load. 

w n 
1 
211 

The natural frequency is given by 

(2) 

and thus depends only upon the ratio kiM. The actual response however depends upon 

both quantities separately, or what is equivalent, upon one of these and upon the 

ratio. If then we wish to replace some system by an equivalent one degree of free­

dom system we must make sure that we have appropriate values for both k and M. 

In passing we note a useful result. If the mass M is acting under the influence of 

gravity as a static load Mg the displacement ws would be 

w 
s 

or 

Substituting this into (2) gives 

w A= n 
s 

If w is measured in mm, we have g s 

w 99/~ s 

k 

1 
211 

9810 

~ 
w 

s 

A= s 

and hence 

(3) 
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or if Ws is measured in cm, g = 981 (cms-2 ) and 

n 

Simple Beams 

We consider 

w 
s 

1 ~ ~ 411 2 W 211 
s s 

now a simply supported 

5 L' 
384 mgL . EI w 

5 

Iw (cm) 
s 

beam for which 

112 lEI 
!ffii> 

we know 

The total mass is M mL and the 'stiffness' is thus 

k 

(3a) 

We wish to replace the beam by an equivalent one degree of freedom system, with 

some mass Ml and spring stiffness k1 . If we consider the beam as a weightless 

elastic spring we have 

w 
1 
48 

L' 
P EI 

1 

and its stiffness k1 is 
48El1 
--L-'- For the same deflection we must have 

5 PL' 
384 EI 

and hence k1 ~ k 

We put 

1 PL' 
48 Ell 

5 
8 

To get the correct natural frequency we must have 

and hence 

384 
811' 

EI 
ML' 

0.493 0.5 

If for a central load P(t) the amplitication factor is n then 

w 
max n 

(4) 

(5) 

(6) 

and the moments and shear forces can be estimated by the usual methods of structural 

mechanics. A distributed load p(x) must be replaced by a concentrated equivalent 
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force and for a uniform load Peff 

get 

a2P (x)L. Considering other cases similarly we 

Beam a 1 a 2 

.5 .625 

.4 .57 

.40 .53 

.24 .25 

Beams with concentrated masses 

Although Durkerly's formula is intended to be applied to the coupling of elastic 

systems we can also use it for superposition in one system. For example if we 

have a concentrated mass M at midspan in a beam whose mass is m per unit length we 

have 

2 m 
/ ;[;4 

and can estimate the natural frequency from 

1 
;;;Z 

1 
;;;--z 

1 
+ 

1 
;;;--z 

2 

4/48EI 
mL 3 

(7) 

The graph (Fig. 1) shows the accurate values of w for a simply supported beam and 

a cantilever loaded at the tip. For convenience the factor plotted is y which is 

such that 

w (8) 

2. Continuous Beams 

If we have two separate lumped mass systems with natural frequencies wI and w2 then 

the natural frequencies of these when they are coupled, wI and w2 are such that 

(9) 

However when we have continuous systems this is not so. The fundamental frequency 

of a coupled system is between the fundamental frequencies of the separate systems. 

This arises from the fact that we have two degrees of freedom, rotation and dis­

placement, in the continuous system. A good first estimate of the natural frequency 

can be found from 
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(10) 

where wi are the natural frequencies of the i separate spans, provided that the 

values are not too disparate, i.e. all the values are in the range wmax ' 2wmin . 

Figure 2 shows values of Y for two and three span beams of different effective 

spans the effective span being the actual span mUltiplied by k1 

(11) 

where the suffix s denotes the quantities of the span taken as the standard. 

3. Distribution Methods 

If we have a continuous beam, each span of uniform section and mass, we can derive 

dynamic "three moment" equations 

where M are now moments 

Cl 
n 

L 
n 

E I 
n n 

L n 

[ sinh Yn 
2sinh Yn 

Yn 

- sin Y n 
sin Yn 

sin Yn - sinh Yn cos 
8 

n E 

( cosh 
I 

n n 2 sinh Yn sin Yn 

and 

Y " n 

w2m L " 
n n 

E I 
n n 

We can approximate to these coefficients by 

E I Yn " Y " n n 
/ (1_-.!2) 

6L (1 + 20 ) 98 n 

E I Yn " Y " n n 
(1 - 210) / (1 - 9~ ) 

3L 
n 

o (12) 

(13a) 

Yn 
(13b) 

(14) 

We first of all take a value for wand evaluate the coefficients. Starting at one 

end of the continuous beam we can take Ml = 1, say, and calculate M2 , M3 , etc. 

until we reach the other end of the beam, and find Mm' say. We then use the last 

equation to find Mm_l from Mm' it will generally differ from that obtained initially. 
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We then take a different value for wand repeat the process. Plotting the 

difference in value found for Mm_1 in each case against w will generally lead to 

a value of w sufficiently accurate for general use after two such calculations. 

Nowadays with calculators which readily produce hyperbolic functions the more 

accurate formulae may be used. The quantities (13) are also readily tabulated 

against Yn . 

4. Multi-storey Frames 

Let us now consider rigid jointed frameworks consisting of uniform beams and columns. 

The two limiting cases for the natural frequencies are (a) the beams are very stiff 

compared with the columns and (b) the columns are very stiff compared with the beams. 

For the first case let us look at a frame of r columns each having storey heights 

h. The stiffness of a single storey against lateral motion is 

k 
12rEI 
--h-'-

and hence if the mass of each floor is M we have for a single storey 

2/3 

For a two storey building we can easily find the lowest frequency as 

and for n storeys (n large) 

w 
n 

1T 

2n+l 
2/3 

(16) 

(17) 

(18) 

It will be seen that even with n 2 we have factors 0.618 and 0.626 from (17) and 

(18) . 

At the other extreme the system acts as a cantilever with lumped masses. The single 

storey system gives 

/3.~ (19) 

For a large number of storeys we can take a uniform mass/unit height M/h, and thus 

find 
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~ w 3.516 Mh'n 4 n 

3.516 An¥ 
w1 

n-z- 2n2 

Using formula (20) gives an error of only 4% when n 

values of n. 

(20) 

2 and less than 1% for higher 

Since the frequency (19) for the 'rigid columns' case is one half of that given 

for the 'rigid beam case' we can write 

W. 
1 

11 

2i+1 
w* , (a) or 

1 
4i 2 

w* , (b) (21) 

or the two cases, w* being given by (6). If the 'dynamic' stiffness y of the 

floor beam is more than three times that of the column the formula (21a) may be 

used. 



CHAPTER 6 

DETERMINATION OF RESPONSE 

by 

G.B. Warburton 
1. Introductory Remarks 

In addition to the outline in the introduction, methods of determining response have 

been given in Chapter 5. The purpose of this chapter is not to give further methods, 

but to consider in greater depth the normal mode method. It will be recalled that 

there are three main types of excitation, namely harmonic, transient and random. 

It has been shown that the normal mode method can be used to determine the response 

to harmonic and transient excitations; also this method yields the complex frequency 

response function, which is required in the determination of random response. For 

comparison the frequency response method yields directly steady-state solutions for 

harmonic problems and has similar applicability to the determination of random 

response as the normal mode method. The direct or numerical integration methods 

are applied in practice only to transient problems, but have added importance 

because of their applicability to non-linear problems. Thus the normal mode method 

is considered in greater depth here because of its versatility, but it is also the 

method which provides some physical understanding of the vibration of complex 

structures. 

The linear vibrations of any structure can be represented by the matrix equation 

. 
M U + C U + K U P (t) (1) 

where M, C and K are the symmetric mass, damping and stiffness matrices of order . 
n x n; U, U and a are the vectors containing the displacements, velocities and 

accelerations respectively, and P(t) is the vector of excitation forces. Consistent 

definitions must be used for U and P(t); thus if u. is the displacement at 
J 

coordinate j, p.(t) is the force applied at j and acts in the direction of u. where 
J J 

u. and p.(t) are the jth entries in the column matrices U and P(t) respectively. 
J J 

As engineering structures are usually complex, their response to specified 

excitations can be determined only by approximate methods. The finite element 

method is the most general and powerful method available; when it is applied to a 

structure, the resulting approximate mathematical model is a multi degree-of_ 

freedom system, which can be represented by equation (1). In some examples in 

earlier chapters that related to equation (1) a diagonal mass matrix was obtained 

for multi degree-of-freedom systems,which consist of a chain of springs and masses. 

In conventional applications of the finite element method consistent mass matrices, 

which are symmetric, are generated; thus ~ in equation (1) is assumed to be 
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symmetric. Equation (1) is obtained also if the variational form of the finite 

difference method or the Rayleigh-Ritz method is used to generate the approximate 

model of the structure. 

As has been shown in the chapter on transient response, a transformation from the 

original displacement vector ~ to the generalized or normal coordinate vector ~ 

is made through the relation 

u 

where the modal matrix Z consists of the normalized modal vectors :1' :2' ... :n 

with the rth vector z in the rth column of Z. This leads to the matrix 
-r 

equation 

(2) 

(3) 

where Q is a diagonal matrix, containing the squares of the natural frequencies, 

i.e. w1 2 , w2 2 , ••• wn 2 , and 

B (4) 

If we have proportional damping (also known as classical or Rayleigh damping), i.e. 

c (5) 

the matrix B is diagonal and equation (3) consists of a set of uncoupled equations; 

a typical equation can be written 

f r ( t) , r=1 ,2, ••• n (6 ) 

where 2y w 
r r 

for mode r, and 

W 2 
r 

and Yr is the non-dimensional modal damping parameter 

1: Zjr Pj(t). 
j=1 

Equation (6) is of similar form to that for a single degree-of-freedom system and 

can be solved by identical methods; when the coordinates qr have been determined, 

the displacement can be obtained from equation (2). 

2.Steady-state Response 

The particular case, when the excitation is a harmonic function of time and the 

steady-state response is required, will be discussed in more detail. The 

excitation force at coordinate j is assumed to be Pj sin (wt + Sj)' where Pj 

is not a function of time; inertial loading can be allowed for by taking 
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Pj = d j WZ -where d j is a constant, As shown in a previous chapter, we consider 

a force component Pjelwt e iSj , put qr = iwqr and qr = - WZqr' obtain a complex 

expression for qr and take the imaginary part of the complete' solution, as sin 

(wt + S-) is the imaginary part of e iwt e iSj , Thus from equation (6) the complex 
J 

form of is 

qr 

iwt 
e 

w Z 
r 

iwt 
e 

n 

L e iSj z. Pj j=l Jr 

- WZ + 2iyr wr w 

Using equation (2) to determine a typical displacement 

part of the complete complex expression 

u 
s 

and taking the imaginary 

iwt 
n 

is· 

[ 
z e {z jrP je J} ,. '- .' - 2i, •• , ] sr r r r 

n 
j=l 

u 1m L s 
r=l 

(w Z _ WZ) Z + 4YrZwrZ WZ 
r 

Thus for Yr small qr is large when w ~ wr ; if in addition wr is well separated 

from the adjacent natural frequencies wr _1 and wr+l' qk with k ~ r is not 

large when w ~ wr ' Considering the displacement Us (and assuming that zsr is 

not small), we have the rth resonant peak at an excitation frequency in the 

vicinity of w = wr and the magnitude of this peak is dominated by the contribution 

from mode r, i,e. by qr' Thus for a single excitation Pj sin wt the resonant 

amplitude may be approximated (provided that the above conditions hold) as 

Considering this single excitation the response at any excitation frequency w can 

be written in complex form as 

u 
s 

H . (w) iwt 
SJ p je 

where the complex frequency response function (or receptance) 

n 

I 
r=l 

[ 

Z z. (w z_ WZ - 2i Yr w w) 1 sr Jr r r 
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rhe response function H .(w) 
sJ 

is required when evaluating the response of a multi-

jegree-of-freedom system to a random excitation. 

Damping 

The following points will be discussed: the significance of equation (5); more 

general conditions than equation (5) for which B is diagonal; and procedures when 

B is not diagonal. 

Equation (5) is important and not as restrictive as it appears. In order to allow 

for internal damping in the members of a structure it is conventional to replace 

Hooke's law, i.e. 

cr E € 
X X 

where cr and 
x 

€ 
X 

are the stress and strain in the X-direction and E is Young's 

modulus, by 

cr x 
E(€ 

X 

The change in relationship implies replacing K U for an undamped system by K U 

for the damped system; thus we have satisfied equation (5) and A o. 
m 

This assumes that is a constant for the whole structure. From the general 

relation 

it follows that for this special case 

W 2 
r 

i.e. the modal damping parameter Yr increases as the mode number increases. 

Available experimental evidence suggests that this relation may overestimate the 

damping in higher modes. 

If the damping in two modes is prescribed, for example and 

(7) 

can be found to satisfy equation (5), but the damping of the higher modes, y with 
r 

r ) 3, will have to satisfy equation (7). If the damping in more than two modes is 

prescribed, it will be impossible, in general, to satisfy equation (5). However, 

additional terms can be added to the right-hand side of equation (5); for example, 

Al ~ ~-1 ~ and A2 ~ ~-1 ~ are allowable additional terms. With four terms the 

coefficients A can be selected to satisfy four modal damping parameters Y r 

Further terms can be added if required; the uncoupling condition is that each term 

~.i (j =1, 2, ... ) on the right-hand side of equation (5) must satisfy 
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If all modal damping parameters Yr can be estimated, it is not necessary to form 

the damping matrix C, but merely add the appropriate term, 2Yr wr qr' in each 

uncoupled equation (6) at the last stage of the modal analysis. 

There are problems for which proportional damping does not exist; for instance, in 

most soil-structure interaction problems the level of damping in the soil, which is 

mainly due to radiation, is higher than that in the structure. Then for a system 

with n degrees of freedom equation (3) consists of n equations, which are coupled 

through their damping terms. These equations can be solved by one of the methods 

of numerical integration. At first sight this procedure is not advantageous, as the 

original n coupled equations in the physical coordinates, equation (I), have been 

exchanged for n coupled equations in terms of qr' However, as only i modes make 

a significant contribution to the response and i < < n, working in terms of the 

normal coordinates qr requires numerical integration of significantly smaller 

matrix equations. This procedure is advocated and illustrated by Clough and 

Mojtahedi [1]. 

Approximations that allow the normal mode method to be used when the matrix B is 

not diagonal are important in practice. Thomson et al [2] suggest that the non­

diagonal matrix B should be replaced by a diagonal matrix with the same diagonal 

terms as the original matrix, (i.e. the off-diagonal terms of B are replaced by 

zeros); then the standard normal mode procedure is followed. Although the literature 

contains some conflicting numerical evidence, it appears that, provided damping is 

light and natural frequencies are reasonably well spaced, this approximation intro­

duces acceptable errors allowing for the uncertainties regarding damping values in 

real structures. The author [3] has given a criterion, which should be satisfied 

in order that neglecting the off-diagonal terms in B does not lead to excessive 

errors in major response quantities. The criterion is: 

0.05 I 
where Yr is the damping ratio for the 

frequencies, b and b are elements rr rs 
the expression 1 .... ·1 with respect to 

b W 2 
rr s 

2b W 2 
rs r min s 

th mode, and natural r W W are r S 

from the matrix B and the minimum of 

s is taken; s may take any integer 

(8) 

value between land n other than r. In practice, equation (8) is applied only to 

the lower values of r, where significant resonant response may occur. For each of 

these values of r the right-hand side is obtained by considering a few values of 

s on either side of r. Although the criterion was developed from a study of test 

problems, further numerical evidence, which relates to large practical systems, would 
be beneficial. 
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Uncoupled equations can be obtained for any damping distribution by working in terms 

of damped normal modes (instead of the classical undamped modes), but the n second 

order differential equations (1) have to be replaced by 2n first order equations 

and analysis is in terms of complex eigenvalues and eigenvectors. Traill-Nash [4] 
has contributed recently to this method and also surveyed earlier applications by 

others. 

43runcation of Series Solution 

Considering the determination of maximum response (displacement, acceleration, 

stress etc) from equations (2) and (3), only a fraction i of the total modes n, 

where in general i < < n, will make a significant contribution. These i modes 

must be identified; i, or the ratio i/n, depends upon the response quantity of 

interest and the time history of the excitation, as well as .on the system, and 

general rules cannot be formulated, although previous experience of similar 

situations is valuable. Assuming that equation (1) represents a finite element 

idealization of an elastic structure, it should be checked that these i modes are 

reasonable approximations to modes of the true structure. This can be achieved by 

varying the idealization and demonstrating that these modes are unchanged within a 

specified error criterion. 

The effect of the time history of the excitation and the response quantity of 

interest on convergence will be illustrated by a simple example. We consider the 

two-storey frame of Fig. 1; the base EF is subjected to a horizontal displacement 

where (i) t = 0.2s and 
o 

and w2 = 51.17 rad/s. 

For response 

x 
0 

x 
0 

(ii) t 
0 

The modal 

z 

x 

0.01 sin 

0 

= 0.075s. 

matrix 

[ 

0.5257 

0.8506 

nt/to (m) o , t , t 
0 

t ~ t 
0 

For free vibrations w1 

0.8506 1 x 10-2 

-0.5257 

19.54 rad/s 

The response is determined for the excitation era, 0, t , to' and for the ensuing 

free vibrations (t ~ to)' For simplicity damping is neglected. For brevity 

expressions for qr will be given only for 

the free vibration era are greater if t o 

t > to' as maximum displacements in 

0.075s and comparable to maxima in 
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Xo 

2 DOF frame. Excitation - base displacement 

0.01 

o 

Excitation 

Fig. 1 



the excitation era if t 
o 

For (i) 

for (ii) 

t 
o 

t 
o 

0.2s, 

0.075s, 

q1 

q2 

q1 

q2 
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0.2s. (Further details are given in Reference [5]). 

2.339 sin (w1 t + (Xl) 

0.0866 sin (w2t + (X2) 

1.220 sin (w1 t + (Xl) 

0.550 sin (w2t + (X2) 

For case (i) the response is dominated by the first modal contribution q1 and only 

a small error will occur if the contribution from to and is.neglected. 

For case (ii) the contributions from the two modes are of comparable magnitude. If 

now the accelerations of the two masses, xl and x2 ' are required, then from 

x Z q 

and 

we have for case (i) 

q1 - 893.1 sin (w1t + (Xl) 

q2 226.7 sin (w2t + (X2) 

Thus the contribution of the second mode to the acceleration response is now 

significant. 

When truncation is applied, the response is found by summing contributions from i 

modes with i < < n. Thus, instead of using equation (2), we evaluate 

u Z* q* 

where Z* 

z . 
n~ 

and 

(9) 

q* 

An improvement in the accuracy of this evaluation can be obtained by adding the 

'static' solutions, which correspond to modes i + 1, i + 2,---- n. Alternatively, 

for given accuracy a smaller number of modes i has to be retained in the above 

equation if the 'static' contributions from the higher modes are included. In 

theory 'static' contributions are determined by solving equation (6) for r = i + 1, 
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i + 2, ---- with the inertia and damping terms neglected: In practice, after some 

matrix manipulation the improved solution can be expressed as 

U 

o 

where o 

o o 

0-- - 0 

o o 

o - - -1/w. 2 
l 

(10) 

The second and third terms in equation (10) represent the 'static' contributions 

from modes 1, 2, --- n and from modes 1, 2, --- i respectively. The expression 

requires that only the natural frequencies and mode shapes for modes 1, 2, --- i 

are evaluated. It has been known for many years that inclusion of the 'static' 

contributions associated with higher modes improved accuracy, but this modern form 

is based on the work of Hansteen and Bell [6]. 

In an earlier chapter the frequency response method of determining the steady-state 

response to harmonic excitation has been given. If the excitation vector is P sin 

wt [replacing P(t) on the right-hand side of equation (1)], the response is given by 

where J K - w2 M + iw C 

This method can be used whether or not the modal method gives uncoupled equations, 

but requires the inversion of the complex matrix J at each excitation frequency w 

of interest. In practical problems the order of this matrix n may be large, so 

that considerable computation is required. If the modal method gives uncoupled 

equations series expressions can be used to determine steady-state response; in 

practice, considerable truncation of the response should be possible. If the modal 

method gives coupled equations, i.e. B is non-diagonal, a combination of modal 

truncation and the frequency response method requires the inversion of a complex 

matrix of order j, where j is the number of retained modes and in general j « n, 

but it may be difficult to decide upon an optimum value of j. Using the truncation 

defined by equation (9), the truncated form of equation (3) is 
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where B* = Z*T C Z* and 0* is the diagonal matrix containing w1 2 , w2 2 , •••• 

W.2. From the frequency response method 
J 

where N = 0* - w2 I + iw B*, I is the identity matrix and N, 0* and B* are 

of order j x j. 

5.Response Spectrum Methods 

The displacement at degree of freedom s is [from equation (2)). 

u 
s 

(11) 

As each coordinate is a different function of time, determination of the 

maximum value of u 
s 

requires evaluation of each significant coordinate "qr for 

a large number of values of t. Now 

Us (max) ;;; I I zsr qr (max) I 
r 

(12) 

where qr(max) is the maximum value of qr(t). A simple upper bound is obtained if 

the equals sign in equation (12) is used. The value of 

from a response spectrum For a single applied force 

j, the equation for the rth mode is 

qr(max) can be determined 

p.(t) applied at coordinate 
J 

Z. p .(t) 
Jr J 

(13) 

The equation of motion for a single-degree-of-freedom system of mass m, which is 

subjected to a force Pof(t), is 

x + 2ywn x + W 2X 
n 

P f(t)/m 
o (14) 

A response spectrum shows the variation of the dynamic magnification factor (DMF) , 

k x(max)/Po ' where x(max) is the maximum displacement of the mass m, P is the 
0 

maximum value of the force Pof(t) , k is the stiffness and w 2 = kim, with a n 
period or frequency ratio, e.g. the ratio of some characteristic time (duration or 

rise time) of f(t), To' to the period Tn (= 2nlwn ) for a specified value of the 

damping ratio y. Comparing equations (13) and (14) and assuming that Pj(t) = 
Pof(t), qr(max) can be found from the response spectrum, associated with f(t) and 

Yr , by multiplying the DMF, corresponding to To/Tr' where Tr = 2nlwr, by 

Thus using the upper bound as an approximation, 

P z. /w 2. 
o Jr r 
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u (max) 
s p I I z z. 

sr Jr 
w 2 

r 
(DMF) 

r 
(15) 

o 
r 

where (DMF}r is obtained from a response spectrum for force f(t) and damping ratio 

"Yr at T/Tr • 

The upper bound approximation may seriously overestimate the maximum response for 

complex excitations, particularly earthquakes, as the underlying assumption - that 

all ooordinates reach their maximum at the same time - is not true. An 

alternative, empirical expression, which is based on the square root of the sum of 

the squares (SRSS), is 

[I {zsr qr(max}}2 ]y. 
r 

Equation (16) is not a bound and thus may underestimate the maximum response. 

(16) 

Other approximations are based on combinations of the upper bound expression (12) 

and the SRSS value (16). When two natural frequencies of a structure are close 

together, the response may exhibit beating phenomena; in such cases maxima are very 

sensitive to the level of damping and use of equations (12) or (16) seriously over­

estimates the combined response from these two closely coupled modes. Expressions 

exist which allow for modal damping values when combining contributions from two 

closely spaced modes and can be used in conjunction with equation (16) for the 

remaining modes [7,8]. Anagnostopoulos [9] has tested the various methods of 

combining response spectrum values. He subjected finite element models of three 

offshore platforms to each of thirty earthquake acceleration records and determined 

various response quantities. For each method he obtained mean errors in maximum 

response and their standard deviations (these are means of several hundred values). 

For horizontal excitations for which the natural frequencies of the responding modes 

are well separated the SRSS method, equation (16), gives the best results, but for 

vertical excitations some closely spaced frequencies exist and this should be 

allowed, for by using a modified form to combine response spectrum values. 
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1. Introduction 

CHAPTER 7 

THE FINITE ELEMENT TECHNIQUE 

by 

C.A. Brebbia 

The finite element method is an approximate method of analysis which can be used 

to solve complex structural problems. 

In the analysis of structures the method can be applied in terms of displacements, 

forces or both. In what follows we will only refer to the displacement finite 

element technique which is the most popular for dynamic problems. 

The method consists in taking the displacement measures at discrete points in the 

body as the unknowns and defining the displacement field in terms of these discrete 

variables. Once the discrete displacements are known, the strains are evaluated 

from the strain-displacement relations and, finally, the stresses are determined 

from the stress-strain relations. 

Contrary to Rayleigh-Ritz and similar methods where the expressions for displace­

ment are applicable to the complete domain, finite element expressions only apply 

on a part of the domain or 'element'. 

In the displacement method, the application of the principle of virtual displace­

ments results in a set of simultaneous algebraic equations for the unknown nodal 

displacements. Because of the large number of variables, the analysis is most 

conveniently formulated in terms of matrix algebra. 

The selected displacement fields satisfy the admissibility and completeness 

conditions for the problem. As the number of elements increases we can obtain 

convergence of certain parameters. 

The stiffness and mass matrices for the structure are obtained by superposing the 

contribution of the element stiffness and mass matrices at each node and the system 

load vector is generated in a similar way, i.e. by superposing the element force 

vectors. The displacement boundary conditions are then enforced. These steps 

result in a set of algebraic equations relating the displacement measures. 
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The various phases of the method are 

1. Discretization of the body, i.e. selection of elements interconnected at 

certain nodal points. 

2. Evaluation of the element stiffness, mass and force matrices. 

3. Assemblage of the stiffness mass and force matrices for the system of elements 

and nodes (system equations) and introduction of displacement boundary 

conditions. 

4. Solution of the resulting system equations and calculation of strains and 

stresses based on the nodal displacements. 

2. The Principle of Virtual Displacements 

Consider a body in equiLibrium under loading bx ' ... Pz and internal forces ax' 

'zx Now, visualize the body displaced from the equilibrium position and let 

ou, ov, ow define the virtuaL displacements. 

If the initial position is an equiLibrium position, the first-order-work oWE done 

by the external forces, is equal to the first order work oWD done by the internal 

forces (stresses) during the virtual displacement: 

for arbitrary ou, ov, ow. (1 ) 

This equation is called the Principle of Virtual Displacement. It is an alternate 

statement of the equilibrium conditions and it is independent of material behaviour 

and magnitude of displacement, i.e. it is valid for non linear geometry and arbit­

rary material behaviour. 

The three-dimensional form of (1) is, 

f J f 
volume 

volume S 
a 

(2) 

where Sa is the part of the boundary where forces are prescribed and Su where dis­

placements are given. (S = Su + Sa)' We will assume that the displacements 

identically satisfy the conditions on Su hence OU = ov = ow = O. OE and or are 

the first-order strain increments due to the virtual displacements. They reduce 

to, 



x 

ey 
xy 

eE 
y 

aeu aev 
ay + ax ey 

yz 

107 

eE 
z 

a ev 
az 

aew 
aZ 

aew 
+ ay 

ey 
zx 

a eu 
az + 

(3) 

aew 
ax 

for the geometrically linear case. We allow for dynamic behaviour by expressing 

the body forces as 

b + b - pu 
x y 

b + b - pv 
y y 

b + b - pw 
z z 

where bx ' by'" are prescribed, p is the mass density and the dot notation 

indicates differentiation with respect to time, 

( ) 

Equation (4) expresses D'Alembert's principle. 

The Principle of Virtual Displacements now takes the form, 

f f J (b eu + ••• ) d(vol.) + 
x 

and is valid for a given time 't'. 

The principle takes a compact form when matrix notation is utilized. We let 

a {a 
x' a "{ } 

y zx 

eE {eE .... eyzx } 
x 

eu { eu, ev, ew} , u {u, v, w} 

{px' 
- } b {bx ' b b } ~ Py' Pz y' z 

This reduces equation (6) to, 

f aTeE d(vol.) f 
.. T 

eu devol. ) f bT d(vol.) J 
T 

+ p u eu + ~ eu dS 

S 
a 

(4) 

(5) 

(6) 

(7) 

(8) 

To show that the principle of virtual displacements is equivalent to the equilibrium 

equations, we integrate the 1st term on the left hand side of (6) using Gauss theorem. 
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Typical terms are (figure 2), 

f a OE d(vol.) 
y y 

f T oy d(vol.) 
xy xy 

aa 
dx dz - f ov ~ d(vol.) ay 

aa 1 ay ov cos(n,y) dS - f ov ayy d(vol.) 

J T (ov cos(n,x) + au cos(n,y))dS 'f xy 

- f 
aT h 
(~ ov + ~ au) d(vol.) 

ax ay 

Repeating for the other terms we obtain 

f (a oE + .•. + T oy ) d(vol.) 
x x zx zx 

f [ (a R, + 
x 

T m + 
xy 

T n)ou + (T R, + a m +T n)ov 
zx xy y yz 

f [ r::x 
aT 

aT J ( aT aa aT ) ~ zx au + ~ ~ ~ + +-- + + 
ay az ax ay az 

[ h 
aT aa ] 

] d(vol.) zx ~ + ~ oW + -- + 
ax ay az 

Finally, after substituting (10) into (6) we obtain 

f [ [ aax + aTxy + aT zx + bx _ pu )ou + ( .•• )ov + ( •.• )ow ] d(vol.) 
ax ay az J 

oV 

f [ (a R, + 
x T m + T n - ~x) au + ( ••• ) oV + ( .•• ) ow] dS xy zx 

S 
a 

(9) 

(10) 

(11) 

The terms on the left hand side are the equilibrium equations for a three dimensional 

body and those on the right the stress boundary conditions on Sa (on Su part of the 

boundary we do not apply forces). 

In this proof it was required that the displacements and stresses are continuous 

and that the stresses are in equiLibrium in the interior and on the surface of the 

body. 
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Figure 3 Plate divided into 6 elements 
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Note that when the strain-displacement relations and geometrical boundary conditions 

are specified, the equations of equilibrium and the mechanical boundary conditions 

can be deduced from (6). Conversely when the stress field equations are defined 

we can deduce the geometric boundary conditions and strain-displacement equations 

starting with (11). 

3. Finite Element Discretization and Element Matrices 

In the finite element method we consider the body to be divided into volume ele­

ments having finite dimensions and we select certain points on the interior and 

exterior boundary surfaces. The volume elements are referred to as 'finite' ele­

ments since their dimensions are finite: the boundary points are called nodal points 

or nodes. We number the elements and nodes and specify the element-node connect­

ivity by listing, for each element, the nodes associated with that element. A 

typical discretization for a flat plate, either in plane stress or bending is shown 

in Figure 3. We take the nodes at the corner of the elements on the middle surface 

of the plate. One could also select additional nodes along the element boundaries. 

The element connectivity table is shown in Figure 3. Note that the nodes have to 

be listed in the same direction (clockwise or anticlockwise). - It is irrelevant 

which is the starting node. 

The subdivision of the continuum into elements is the most critical step of the 

method. A general procedure for sub-dividing the continuum does not exist. How-

ever, there are some guidelines which have evolved from experience with the method. 

The most important are: 

a) - Irregularly shaped elements, such as long thin rectangular and flat 

triangles, should be avoided. Equilateral triangles and 'square' rectangles 

give the most accurate results. 

b) - More nodes are required for stress concentration zones (high stress 

gradients) than for regions where the stresses vary smoothly). 

c) - To evaluate the accuracy of the results it is advisable to solve the 

same example with a finer grid. This will provide a measure of convergence. 

In addition, one should always check statics. 

Next, we define nodal displacement quantities. The number and choice of displace­

ment quantities is problem-dependent but they have to be at least the displacements 

which satisfy the boundary conditions on Suo For plane stress we take the two in­

plane displacement components. In plate bending, we can work with the transverse 

displacement and the two rotations of the normal to middle surface. For three 

dimensional analysis we take as nodal displacement quantities the three displacement 
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We will use two reference systems. When discussing a single element we express 

nodal variables with ~eference to a local numbering system but when discussing 

the assembly of elements we shall express them with reference to a global system. 

For a triangular element as in figure 4, the numbers 1,2,3 refer to the local 

system; n1 n2 n3 instead refer to the global one (e.g. n1 = 94, n2 = 96, n3 = 92). 

The variable vector for a node i can then be written as 

or 

local 

U _no 
1 

global 

The elements of U. or U in (12) are the nodal unknowns. 
-l -no 

1 

(12) 

The vector formed by the vectors of unknowns at the elements nodes will be called 

or 

U 
_s 

u1 

vl 

w1 

u2 

v2 

w2 

u 
s 

v 
s 

w 
S 

(13) 

The superscript n denotes that the vector extends over all nodes of the element, 

s is the number of nodes in the elements, ~e is called the element nOdal unknowns 

vector. 

Now we introduce expansions for the displacement over the element domain in terms 

of a set of parameters, 

u A a (14) 

where A contains prescribed functions (of x,y,z) and a contains the displacement 

parameters for the element. ~ and ~e are related by evaluating (14) at the nodes 

for the element. This leads to, 

U C a (15) 
e 
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The order of ~ must be equal to or greater than the order of ~e. This discussion 

is restricted to the case where C is square and non singular. Finally, inverting 

(15) and substituting in (14) we obtain, 

u G U _ _e (16) 

Instead of starting with (14), one could establish (16) directly by using inter-

polation functions. The procedure outlined above is the 'original' approach. 

Employing interpolation functions is a subsequent innovation and is much more 

convenient. 

We now introduce the displacement expansions in the Principle of Virtual Displace­

ments (equation (8)), and obtain a set of algebraic equations relating the nodal 

displacements and generalized nodal forces. In what follows, the steps are out­

lined and the expressions for the various element matrices are developed. 

Let us restrict this discussion to linear elastic behaviour for which the stress-

strain relations can be expressed as, 

cr D £ ( 17) 

where D is a matrix of elastic constants. D is symmetric and positive definite for 

a real material (D degenerates to a positive semi-definite matrix if the material 

is assumed to be incompressible). The form of D depends on the material, i.e., 

whether it is isotropic, orthotropic or anisotropic. Substituting for cr, into (8) 

we obtain 

f o£T D £ d(vol.) + f pouT u d(vol.) 

f ouT b d(vol.) + 

Since we are expanding the displacements only over one element domain, we must 

write the Principle of Virtual displacements for the whole structure as, 

I {f o£T D £ d(vol.) + f p o~? u d(vol.) } element n 
n 

e 

OUT b d(vol.) + 

n denotes the total number of elements. 
e 

f 
T -

oU P dS }element n 

Consider now the strains. Applying the strain-displacement relations to (16) 

results in 

(18) 

(19) 
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B U (20) 
- -e 

where B contains prescribed functions of the position coordinates. The stresses 

are given by 

cr D B U (21) _ _ _e 

Since B is independent of displacements, 

o€: B OU _e 

Substituting the above relationships into (18) we obtain for an element 

OUT 
-e 

or, 

where 

k 

m 

f 

f ~T ~ ~ d(vol.) U + f .p GT G d(vol.) U _e e 

OUT { I GT b d(vol. ) + f GT P dS } 
-e S cr 

OUT 
-e 

k U + m U } _ -e __e OU T f 
-e 

stiffness matrix I BT D B d(vol.) 

mass matrix I GT p G d(vol.) 

consistent element force matrix f GT b d(vol.) + Is GT E dS 

cr 

(22) 

(23) 

(24) 

Note that p contains the prescribed external surface forces. Hence the area 

integral involves only the exterior position of the surface area for the element, 

i.e. t~e interior surface area which is common for adjacent elements is not 

considered. 

With this notation the Principle of Virtual displacements takes the following 

discretized form, 

n 
e 

OU T (k U + m U ) 
-e - -e --e 

n 
e 

ou T f 
-e 

The critical step in the finite element displacement method is the selection of 

displacement expansions, i.e., the form of G. If the displacement expansion 

(25) 

includes all possible rigid body displacements, all uniform strain states and if 

displacement compatibility along the boundaries between elements is satisfied. 

The finite element solution represents an upper bound on the total potential energy 

and the solution will converge to the true solution as the mesh size is decreased. 
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Inter-element compatibility requires that the assumed displacement field be con­

tinuous up to the derivative of one order lower than the highest derivative 

appearing in the strain-displacement relations. For example for plane stress 

plane stress the strain displacements relations involves first order derivatives, 

hence the functions themselves must be continuous on the inter-element boundaries. 

For plate bending instead, the strain-displacement equations are second order, 

therefore the first derivatives as well as the functions must be continuous 

between element. 

Most of the element formulations that have been developed are based on polynomial 

expansions. To satisfy the requirements of rigid modes and constant strain states, 

the expansion must be at least a complete polynomial of order equal to the highest 

derivative occurring in the strain-displacement relations. For plane stress this 

requires a first-order polynomial, for beam or plate bending, a complete second­

order polynomial is required. Additional terms are included to complete the 

expansion, i.e. to obtain the necessary number of displacement parameters. 

Convergence of certain parameters (for instance potential energy to static cases, 

eigenvalues in free vibration) can be ensured when inter-element compatibility is 

satisfied. As the discretization is refined the parameter (potential energy or 

eigenvalue) will converge to the true solution, provided that all uniform strain 

states can be represented by the expansion. However, the convergence will be mono­

tonic only if the discretization comprises a minimising sequence. This means that 

by suitably specializing the nodal displacements for the n'th discretization we 

must be able to reproduce the displacement patterns corresponding to the n-l 

previous discretization. In order to satisfy this requirement, the n'th discret­

ization must contain all the previous nodes and element sides and the element dis­

placement expansions must be invariant (i.e. their form must not depend on the 

orientation or dimensions of the element). As an illustration consider figure 5. 

Patterns 1 and 2 comprise one minimising sequence while 3 and 4 comprise another 

minimising sequence since they contain a different set of nodes. 

In some cases, particularly for plate bending and shell elements, it is quite 

difficult to satisfy inter-element compatibility without resorting to rather complex 

displacement expansions. Formulations which violate inter-element compatibility 

are used and they exhibit good convergence in comparison with compatible models. A 

non-compatible element may converge to the true solution if all the body modes and 

uniform strain states are included. However, non-compatible elements do not provide 

bounds, i.e. we do not know whether the potential energy is below or above. 
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Example 1 

To illustrate the generation of the displacement expansion and element matrices 

consider the prismatic beam element shown in Figure 6. The choice of nodal 

variables is v and 9, and it follows that ~e is at least 1 x 4. 

U 
-e 

This discussion is restricted to negligible transverse shear deformation. The 

extensional strain varies linearly through the depth and 9 is equal to the 

rotation of the tangent. 

d 2w 
- Z dx 2 9 

dw 
dx 

(a) 

(b) 

Since £ involves the second derivative, the displacement expansion must contain a 

complete quadratic in order to be able to represent rigid body motion and constant 

strain, We write 

[1 X x 2 A a (c) 

The a may be expressed in function of the generalized displacements vi' Thus, 

vI 1 0 0 0 

91 0 1 0 0 

v2 1 9, 9,2 9,3 

92 0 1 29, 39,2 (d) 

of U C a Next we invert (d) 
-e 

a C-l U _e 
(e) 

1 0 0 0 

0 1 0 0 

3 2 3 1 
9,2 9, 9,2 9, 

2 1 2 1 

.10 3 .10 2 .10' .10 2 



117 

Substituting a in (c) we obtain the final result. 

v G U 
- -e 

[ 3(~) 2 +2(~)'], where gl 1 - 9-

g3 [ 3(~)' - 2(~)'l 
1, 9- , 

g. are the interpolation functions. 
1 

g2 [ x - 2 

[ 
x' 

g4 -
9-

x 2 x' 
9-

+ "i2 

x' 
+ 

9-' 

The strain expansion is obtained by substituting for w in (b). 

d'v d 2 
(G) U B U Y dx' - z dx' -e - -e 

6 12x 4 6x 6 12x 2 6 
B - z {- "i2 + i' + "i2 , "i2 i' + "i2 9- 9-

(g) 

Considering only normal stresses, the stress-strain relations a D E, reduce to, 

a E E (h) 

We can now generate the element matrices. 

(i) Stiffness Matrix 

k J BT D B d(vol.) 
EI 

12 i' 69- -12 (i) 

-69-

12 -69-

This result is the 'exact' stiffness matrix for a prismatic beam. The agreement 

is due to the expansion employed. One can readily show that the exact homogeneous 

solution of the governing equations for a prismatic element is a cubic polynomial. 

(ii) Mass Matrix 

m f p GT G d(vol. ) 
pA9-

156 229- 54 -139-
420 

49-' 139- _39-' 

156 -229- (j) 

sym. 49- 2 
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(iii) Consistent Element Nodal Force Matrix for the case of only distributed 

transverse loading p(x) is 

I/, 

f f GT p(x) dx 

0 

or P1v p(1-3x 2 + 2x') 

I/, 
pl/,(1-2x 2 + x') PH 

I/, f dx 

P2v 0 
p(3x 2 _ 2x') 

P29 pl/,(_X2 + x') 

where x x/I/,. 

(k) 

The form of f will depend on how p(x) varies. If p is constant we obtain, after 

integration, 

f 
I 
2 

pI/, 

1 
121/, 

1 
2" 
1 

- 12 I/, 

Application Let us consider a simply supported beam represented by only one 

element. Hence vI = v2 = 0 are the displacement boundary conditions to be satis­

fied and the element matrices in the absence of external forces become, 

or, 

EI 
I/, 

4 

2 

KU+MU 0 

: 1 [::1 
pAl/,' 

+ 420 

The solution of an homogeneous second order system of equations as this is 

9 . 9 . 
iwt 

e 
J J 

where w is the circular frequency and i .G. Hence (1/,) becomes, 

t 
EI [ 4 : ]- pAw 21/,' 

[-: 
-3 

l} [ ::} [:1 I/, 420 
2 4 

(m) 
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and defining A 
PAQ,"w 2 

420 EI 
the system of equation (m). has a solution if the 

determinant is zero, i.e. 

Thus A = 2 
7 

4-3A 

or 6 and the value of 

2+3A I 
4-4A 

pAQ,"w 2 

EI 

o (n) 

120 or 2520, which compare reason-

ably well with the exact values of 97.41 and 1559. In order to improve on our 

approximation we can take two elements and assemble them together. This is done 

in the next example to give some background of how to obtain the system equations 

of a structure. 

Example 2. 

Consider now the beam represented by two elements of equal length (Figure 7). 

For element ~ we have 

(a) 

and for element ® 

(b) 

These equations can be assembled by using the compatibility (local node 2 of beam 

G) is the same as node 1 of beam ® and equilibrium conditions, 

MCD 
1 

MCD 
2 

M® 
2 

(c) 

The above relationships imply that the coefficients of the mass and stiffness 

element matrices can now be written as, 

equilibrium equation 

which corresponds to Ql + 

Ml + 

Q2 + 

M2 + 

Q3 + 

M3 + 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

mul tiplied 
by 

or their 
acceler­
ation (d) 
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rhis gives, 

EI 12 6R. -12 6R. 0 0 v1 
R:' 

4R. 2 -6R. 2R.2 0 0 81 + 

24 0 -12 6R. v2 

SR. 2 -6R. 2R. 2 82 

sym. 12 -6R. v3 (e) 

4R. 2 83 

pAR. 156 22R. 54 -13R. 0 0 v1 Q1 
420 

4R. 2 13 _3R. 2 0 0 61 M1 

312 0 54 -13R. v2 Q2 

SR. 2 13R. _3R. 2 li2 M2 

156 -22R- v3 Q3 

4R. 2 11'3 M3 

Finally we can impose the displacement boundary conditions v1 = v3 = 0 and assume 

the right hand side of (e) is zero, Le. the vibrations are free. We obtain the 

following system of equations 

(4_4~)R.2 (-6-12A)R. (2+3A)R. 2 0 81 0 

(24-312A)R. 0 (6+13A)R. v2 0 

(8-8A)R. 2 (2+3A)R. 2 82 0 

sym. (4-4A)R. 2 83 0 (f) 

where A 
pAR."w 2 

420 EI 

The solution of the system of equations (f) gives the following eigenvalues, 

pAL"w 2 

EI 
98.18, 1920, 12130, 40320 

(L 2R., total length of the beam). The exact solution for the beam gives, 

~ 97.41, 1559, 7890, 24940. 
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4. System Equations 

In order to obtain the global equilibrium equations for a body formed by different 

elements we have to assemble the element matrices and apply the boundary conditions. 

One first expands the element nodal unknowns vector ~e in terms of the vector of 

nodal displacements ~n.' now deferred to the global numbering 
1 

U 
-e 

u } 
-no 

1 

(26) 

i 1,2, ... s 

where s is the number of nodes in the element and n. their number referred to the 
1 

complete system. We partition k, m and f for the element consistently with the 

partitioning of ~e. they are understood to be resulting from a derivation based 

on several unknowns for node, i.e. based on ~e. 

k k .. } 
1J 

m m .. } 
1J 

f f. i,j 1,2 ... 5 
1 

With this notation the terms in (25) take the form 

T 
s 

UT 
s 

au k U L 1\ { L k .. U 
-e - -e i=1 -no j=1 -1J -no 

1 J 

T 
s 

UT 
s 

au m U I 1\ { I" U L m .. -e - -e i=l -no j=1 -1J -n. 
1 J 

T 
s 

UT au f I 1\ f. 
-e i=1 -no -1 

1 

If, in the derivation of the element matrices, the unknowns are referred to the 

local frame rather than the basic frame, it is necessary to transform the nodal 

(27) 

(28) 

unknowns, U I\U in (28) from the element frame to the basic frame. We use -no -no 
1 1 

an asterisk to indicate the global frame and obtain 

U R U* n. n. 
1 1 

I\U R I\U* (29) 
-no -no 

1 1 



123 

where R contains the direction cosines for the local direction with respect to 

the global matrices. Equation (28) can now be written, 

s s 
OU T 

k U L oU*,T ~ k~. u* L -e - -e i=l -no j=l -lJ -nJ 
1 

T 
s s 

OU u L oU*,T { ~ m~. U* . 
-e ~ -e -no L -lJ -nJ i=l 1 j=l 

T 
s 

oU*,T OU f L f. 
-e i=l -no -1 

1 

where 

k~ . RT k. R 
-lJ -lj -
m~. RT m. R 
-lJ -lj -
f* RT f. 
-1 -1 

The governing equations for the whoLe body can be written as, 

n 
e 

ou T (k U 
-e -e 

+ m U ) 
-e I 

n 
e 

ou T f 
-e 

(30) 

(31) 

(32) 

If N denotes the total number of nodes we can define a system nodal unknown vector. 

(In what follows we assume ~n. are referred to the global frame, that is we drop 

the asterisk for simplicity).l 

U {~1' ~2 ... ~N } (33) 

Expanding (32) by summing the contribution of the elements incident on each node, 

we have, 

oUT K U + M U OUT F (34) 

or for arbitrary o~, 

K U + M U F (35) 

The partitioned form of (35) is 

~11~12 ~lN ~1 + ~11~12 ~lN ~1 ~1 

~21~22 ~2N ~3 ~21~22 ~2N ~2 ~2 

~Nl~N2 . . . ~NN ~Nl~N2 ... ~NN (36) 
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We assemble ~,~ and ~ in partitioned form working with successive elements. The 

contribution for an element is listed below~ 

In F 

f. in row i 
~l. 

i 1,2 . .. s . 

In K (37) 

k. 
~l.j 

in row i, column j 

i,j = 1,2 ... s. 

In M 

m. 
~l.j 

in row i, column j 

i,j = 1,2 ... s. 

These operations are carried out for all the elements. Since m and k are 

symmetrical for our example, the M and K matrices of (35) are going to be 

symmetrical and only the coefficients on and above the diagonal need to be stored. 

Example 3 

Let us consider a body composed of only 4 triangular elements (Figure 8). We 

assume to know the element matrices k, m, f. 

the matrices can be written 

For instance for the element (2) 

Element Nodes 
n1 n2 n3 

1 1 4 2 

2 3 4 1 

3 3 6 4 

0XJ~6 ® @ 
y 

I ~ 3 5 4 5 6 3 
L- x +j 

Figure 8 Four Elements Body 

@@@ 
~11 ~12 ~13 

®@@ 
~21 ~22 ~23 (a) 

@@® 
~31 ~32 ~33 

f for element 2, where k and m are symmetric. 

The unknowns in the above equation are referred to the local numbering system. For 

the gLobaL nodal unknowns numbering system we can write, 



125 

k@ k® k@ 
\ ~3 + ®®® ~3 = f® 

-11 -12 -13 ~11 ~12 ~13 -1 

k® k® k@ ® ® ® f® 

l~ ~ (b) 
-21 -22 -23 ~21 ~22 ~23 -2 

@®@ 
~1 

@ @ @ 
~1 f® ~31 ~32 ~33 ~31 ~32 ~33 -3 

We are interested in superimposing the effects of all the elements in order to 

form the system matrices for the whole body. If the structure has 6 nodes we will 

finally obtain a (6d x 6d) matrix where d are the number of degrees of freedom per 

node. A typical element like @ will have the k ij , mij coefficients plus the 3 

right hand side terms distributed in the global matrix, as follows. 

k® k@ k® · . 
-33 -31 -32 

f® 
-3 

· · 
K k® · k® k~ · -13 -11 -1 

and F f@ 
-1 

(c) 

k@ 
-23 · k@ 

-21 
k® 
-22 

f® 
-2 

· · . 

· · · · . 

and similarly for ~ij coefficients. 

Once all the elements have been superimposed we will find that the global matrices 

for M and K look like 

I f RANn • I 
- -
• I • • • I 

- - I • • ~ • · · 
• · .~l • • • 

I 
I -, (d) 

• • • • I · • 
1- - -. • · • I • 

.- - -j . . • • • • I 
.-- diagonal 
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where • represents a filled store area and . an empty one. This matrix is 

symmetric and banded, .the band equal to 4 x '. Note that the band is proportional 

to the largest difference between nodes in the same element. Because of symmetry 

one needs only to store the diagonal and upper diagonal elements. 

5. Solution 

The governing equations for the unrestrained case are given by 

M U + K U F (38) 

The system mass matrix M is positive definite but K is singular due to the rigid 

body terms. If rigid body motion of the system is suppressed, K becomes positive 

definite. In what follows we consider only the restrained case and rewrite the 

modified (i.e. with the displacement boundary conditions imposed) equations in the 

same way as (38)* to avoid proliferati.on of notation. 

Let us first consider the free vibration problems, i.e. when F O. Equation (38) 

reduces to, 

M U + K U o (39) 

The form of this equation suggests that we express the solutions 

U 
iwt 

e z (39) 

where w is the circular frequency and z defines the displacement pattern. Sub­

stituting for U transforms (39) to 

(K - A M) z o (41) 
A = w 2 

The determination of the values of A gives the eigenvalues of the system. In 

general, there are n values of A which satisfy (41). Also, all n values are positive 

when both K and M are positive definite, which is the case here. 

Let Ai wi 2 denote an eigenvalue of (41) and 

solution. By definition, 

K z. __ 1 A. M Z. 1 _ _1 

Z. 
_1 

the corresponding non-trivial 

(42) 

* although their dimensions are now different as the number of degrees of freedom 
has been reduced after applying the known displacement boundary conditions. 
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Each eigenvector contains an arbitrary constant which is generally evaluated by 

normalizing ~ with respect to M, i.e. by requiring 

Z.T M z. 1 _1 __ 1 

where ~i is the normalized value of ~i. 

Premultiplying the normalized version of (42) by z.T we have, 
_1 

Due to orthogonality we have 

z.T M z. -J __ 1 o for i " j 

z.T K z. -J __ 1 o for i " j 

Equations (45) express the orthogonality relationship among the natural modes. 

(43) 

(44) 

(45) 

The results for the free vibration case are utilised to generate the solution for 

applied loading. We express the solution as a linear combination of s eigenvectors. 

s 
u r 

i=l 

where s ~ nand qi = qi(t) can be interpreted as generalized coordinates. 

substituting U into (38) we have, 

s 

i!l (qi ~ ~i + qi ~ ~i) F 

Premultiplying (50) by T 
z. 
-J 

and noting the orthogonality relations gives s 

uncoupled differential equations 

F. 
J 

z.T F 
-J 

F. 
J 

j 1,2 ... s 

(46) 

(47) 

(48) 

One can interpret Fj as the generalized force corresponding to qj' i.e. to the j'th 

mode. the static solution is 

1 
"j;)Y 

j 
(F .) 

J static 
(49) 
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We number the eigenvalues according to the increase magnitude w1 ~ w2 ~ ... ~ wn 2 • 

Equation (49) shows that the contribution of the higher modes decreases with 

increasing mode number, assuming the generalized modal forces are of the same order 

of magnitude. 

the j'th mode. 

The ratio (F.) /w 2 

~J static 
is called the 'participation factor' for 

The results for the static case suggest that we express qj and F j as, 

F. F. (m) f(t) 
J J 

F .(m) 
(50) 

qj 
_J __ 

qj w 2 

J 

where F. (m) 
J 

represents the maximum values of F and F (m)/w 2 
j j 

can be interpreted 

as a 'quasi-static' participation factor. We can now write (48) as 

d 2 
(Cij ) 

dt 2 

and the general solution is 

I w.t qj q·1 cos 
J t=o J 

t 

+ w. 
J f 

o 

2- W 2 f(t) + Wj qj 
J 

1 
+ w. 

J 

f(~) 

Id
qj I 

dt t=o 
sin w.t 

sin w. (t - 0 d~ 
J 

J 
+ 

(51) 

(52) 

where ~ is a dummy integration variable. The first two terms, which vanish if the 

system is initially at rest, represent the free vibration solution. 

We can now evaluate U for any given time from (46) which gives 

U(t) 
s 
I 

j=l 
[FCl z. Ci .(t) 

~J J 
(53) 

The essential difficulty with model superposition is the decision of how many 

generalized coordinates - s - one should take. The computation required for s = n 

is usually prohibitive when n is large and the interpretation of the higher modes 

is difficult since the higher freqencies tend to be closely spaced. In selecting 

which modes to include for a particular loading, one should compare the modal 

participation factors. 
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CHAPTER 8 

TWO DIMENSIONAL AND PLATE BENDING APPLICATIONS 

by 

R.R. Wilson 

1. Introduction 

In the previous chapter the principles of the finite element displacement method 

as applied to vibration problems were presented. This discussion is now extended 

to an examination of the factors which influence the choice of a displacement 

function for an element, with the particular cases of in-plane and transverse 

vibration of plates being considered. Different displacement functions are used 

to derive a number of elements, and the results which these different elements 

give when applied to sample problems compared. Finally, it is shown how in-plane 

plate elements, transverse plate elements and beam elements can be combined 

together to analyse a composite beam and plate structure. 

The basis of the finite element displacement method is the representation of the 

displacement field throughout an element in terms of the value of the displacement 

at a discrete number of nodal points. The number of parameters used in specifying 

the displacement field must equal the total number of nodal variables. 

Consider the situation where, because of limited computer storage, a fixed number 

of degrees of freedom is available for an analysis. We are then faced with the 

choice of using a large number of elements each with a displacement field based on 

a small number of parameters, or using a smaller number of elements each with dis­

placement fields involving more unknowns. It is usually desirable to select a 

compromise between the two extremes of a very few high order elements and a large 

number of low order elements. 

When very high order elements are used some of the advantages of the finite element 

method are lost. For a complex structure a large number of elements is required 

to represent the geometry, with the different structural components represented by 

elements with different lengths, thicknesses, material properties etc. It can 

often be the need to represent the geometry of a structure accurately that deter­

mines the number of elements used rather than a requirement for a high order dis­

placement field to match the stress variation. In these cases when high order 

elements are used, some of the degrees of freedom are "wasted". 
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On the other hand, if the displacement field is represented by a very low order 

function, then the conditions required for convergence to the true solution as the 

mesh is refined may not be satisfied. Possibly the most suitable elements for 

inclusion in a general analysis package are those which have displacement functions 

which just satisfy the convergence criteria. 

Once the displacement field for an element has been selected, there is a further 

choice. The unknowns determining the displacement function can be evaluated in 

terms of a large number of variables at each of a small number of nodes, or more 

nodes can be used, each with fewer freedoms. 

A difficulty can arise when a high order displacement function is used with a 

small number of nodes. In order that the parameters defining the displacement 

fields can be evaluated, high order derivatives of the displacement are used as 

nodal variables. 

This situation occurs most frequently in the analysis of shells, but consider for 

example a beam element, in which the second derivative of the transverse dis­

placement is used as a nodal variable. If we use this element to analyse a stepped 

beam then the second derivative nodal variable will enforce continuity of the 

bending stress across the change in section. This imposes a theoretical constraint 

on the beam which is not there in practice. 

To overcome this it is possible to uncoupLe this freedom and solve for the two 

values of the derivative on either side of the discontinuity. However this comp­

licates the analysis and it is pro~3bly preferable to avoid the difficulty by 

forming an element with additional nodes when a high order displacement function 

is to be used. 

The shape of an element also determines the number of nodes. With 3 nodes for a 

triangular element and 4 nodes for a rectangular element, the element shape can be 

defined in terms of the nodal coordinates. Similarly, curved elements are more 

easily defined when they have at least one node in the middle of each side of the 

element in addition to the corner nodes. 

The shape of a structure often determines the elements to be used. If an irregu­

larly shaped plate is to be analysed, it is probably easiest to use triangular 

plate elements, but if a rectangular plate is being considered the data prep­

aration is simplest if rectangular elements are used. In the following sections 

different formulations for rectangular plate elements will be examined. 
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2. In-plane Plate Elements 

The strains E produced by in-plane stretching of a plate are given by 

E 

EX 1 = I au/ax 1 
E av/ay 
y 

au av 
E - +-
xy ay ax 

(1) 

where u and v are the displacements parallel to the x- and y-axes respectively. 

The corresponding stresses (J are given by 

(J D E (2) 

where D 
E 

1 0 (3) 1_\J 2 
\J 

\J 1 0 

0 0 
1-\J 

2 

where E is Young I S modulus and \J is Poisson I s ratio. 

Since the strains consist only of the first order derivatives, to ensure inter­

element compatibility it is necessary only that the displacements u and v are 

continuous between elements. We can define a possible displacement field through­

out an element by the expression 

u 

[: 1 
(4) 

where 

u a 1 + a 2x + a 3y + a 4xy 

(5) 

and v a 5 + a 6x + a 7y + a 8xy 

i.e. u A a (6) 

where [ 1 x Y xy 0 0 0 0 

0 0 0 0 1 x Y xy 

A 

(7) 

and 

a 

[U 
(8) 
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If we consider a four noded rectangular element as shown in Figure 1, then the 

eight parameters ". can be evaluated in terms of the value of the two displacements 
1 

u and v at each of the four nodes. 

We have U u1 1 0 0 0 0 0 0 0 "1 -e 

v1 0 0 0 0 1 0 0 0 "2 

u2 1 0 b 0 0 0 0 0 "3 

v2 0 0 0 0 1 0 b 0 "4 

u3 1 a 0 0 0 0 0 0 "5 

v3 0 0 0 0 1 a 0 0 "6 

u4 1 a b ab 0 0 0 0 "7 

v4 0 0 0 0 1 a b ab "S 

(9) 

where a and b are the length and breadth of the plate element. 

i.e. U C " _e (10) 

" 
C-1 U _e (ll) 

Substituting in equation (6) gives 

u G U - _e 

where G A C-1 (13) 

Writing equation (12) in full, 

u (1-x)(1-y)u1 + (1-X)YU2 + x(1-y)u3 + xyu4 (14) 

v (l-x) (1-y)v1 + (1-X)YV2 + X(1-y)v3 + xyv4 (15) 

where x ~ and y Y.. 
a b 

If we number the nodes as shown in Figure 2, then equation (14) may be written as 

u (16) 
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2 2 
Le. u I I Hi (X)Hj<Y)Uij 

i=l j=l 

where H1 (X) 1-x and H2 (X) x 

The H1 (X), H2 (X) are examples of interpolation polynomials. They have the 

properties that 

1 

and o 

(17) 

(18) 

(19) 

(20) 

Once equation (12) has been formed the matrix B can be calculated as described in 

the previous chapter from 

k f BT D B d(vol) (21) 

m f GT p G d(vol) (22) 

The resultant element matrices are given in Appendix 1. 

We shall now consider a second element, based on a higher order displacement 

function. If we have nodal variables, u, au au v av av then there are a 
ax ' ay' 'ax' ay 

total of 24 nodal variables in the element. The displacement field throughout 

the element could be defined in terms of polynomials as in equation (5) but with 

24 parameters a i . Instead of this, let us express the displacement throughout the 

element directly in terms of the nodal variables by using a new set of interpol­

ation polynomials. 

2 
We have u I (23) 

i=l 

+ 

and similarly for v, 

with H01 (X) 1 (a' - 3ax 2 + 2x') aa 

H02 (X) 1 (3ax' - 2x') aa 

Hll (x) 
1 (a 2x _ 2ax 2 + x') 
a 2 
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1 
a 2 (-ax 2 + x') 

The properties possessed by these polynomials are summarized in Table 1. 

- - - -
x = a x = 1 x = a x = 1 

Ha1 (X) 1 a 
aHa1 _ 
--(x) ax a a 

Ha2 (X) 
aHa2 _ 

a a a 1 --(x) 
ax 

Hll (x) 
aHll _ 

a a a --(x) 1 
ax 

aH 
H12 (x) a a ~(x) a 1 

ax 

Table 1 Interpolation Polynomials 

The element matrices can now be calculated as before. 

3. In-plane Vibration of Plates 

We have derived two finite elements for the in-plane vibration of plates; the 

first has 2 variables at each node and element matrices of order 8 x 8. and the 

second has 6 variables at each node and element matrices of order 24 x 24. 

The equations of motion are (1). 

a2u + 7,;(1-\1) a'u + 7,;(1+\1) a 2v (1_\12) a 2u 
a? a? axay 

p --E- at" (24) 

7,;( 1-\1) a'v a2v + 7,;(1+\1) a 2u (1_\12) a2v 
a? + ay2 axay 

p --E- at" 

For the boundary conditions that u a on the sides parallel to the x-axis and 

v = a on the sides parallel to the y-axis. the equations are satisfied by 

u A cos mn x sin nn y e iwt 
c d 
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v (25) 

where c and d are the length and breadth of the plate and m and n are integers. 

The value of w is found by equating the determinant of the coefficients A and B to 

zero and is given by 

4p(1-v 2 ) 
(26) 

Because it has many fewer variables at each node, it is possible to use a much 

finer mesh with the element based on the 1st order polynomial than with the element 

based on the second order polynomial. 

The problem was solved with the 1st element using meshes a - f, as shown in Figure 

3, and using meshes a - c with the 2nd element. Figure 4 shows a comparison of 

the values calculated for the lowest five natural frequencies of a plate using each 

of the elements. The values are plotted against the final number of degrees of 

freedom since this is equal to the size of the system matrices and determines the 

time taken to solve the equations. 

It can be seen that both elements give results which converge towards the exact 

solution from above. This is to be expected since they both satisfy the criteria 

for uniform convergence. It should be noted however that although the convergence 

was monotonic we were not guaranteed this since, for example, mesh b is not a 

refinement of mesh a. The element with the higher order displacement function 

gives more accurate answers for a given number of degrees of freedom. Thus if we 

have a simple in-plane plate vibration problem, this would appear to be the better 

element to use. 

4. Plate Bending Elements 

We shall now look at some of the elements which have been derived for the analysis 

of transverse vibration of plates. A total of seven elements will be introduced 

to show the range of formulations possible. 

The first element (element a) we shall consider is based on a 12 term polynomial 

2 for the transverse displacement 

w (27) 

The terms included in this expression are 
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1 

x y 

X 2 xy y2 

x' x 2y xy2 y' 

x'y xy' 

The 12 unknowns are evaluated in terms of three nodal variables 

each of the four nodes at the corners of the rectangle. 

(28) 

w, aw and aw 
ax ay· 

at 

Table 2 summarizes the number of elements, number of nodes and number of degrees 

of freedom for each mesh. The initial and final degrees of freedom refer to the 

number of degrees of freedom before and after the boundary conditions are applied 

Mesh Number of Number of Initial no. Final number 
elements nodes of degrees of degrees 

of freedom of freedom 

First a 4 9 18 6 
element b 9 16 32 16 

c 16 25 50 30 
d 25 36 72 48 
e 36 49 98 70 
f 49 64 128 96 

Second a 4 9 54 30 
element b 9 16 96 64 

c 16 25 150 110 

Table 2 Finite Element Meshes 

It is possible to formulate an element with w, :: and :; as nodal variables by 

using interpolation polynomials, as in equation (23). The displacement function 

for this element, however, does not include the term xy, and so the element is not 
a2 w able to represent a state of constant twist 
axay 

It thus does not satisfy the 

conditions required to ensure convergence as the mesh is refined. 

An element (element b) which does satisfy the convergence criteria can be derived 
a2 w by introducing an additional nodal variable [3] • The displacement function axay 

can be written in terms of the interpolation polynomials, 
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w(x,y) 

[ a'w 1 
axay . ] 

. lJ 
(29) 

This element has 4 nodal variables at each of the 4 nodes, and the displacement 

function can be written as a polynomial with the following 16 terms 

1 

x y 

x' xy y' 

x' x'y xy' y' (30) 

x'y x'y' xy' 

x'y' x'y' 

x'y' 

1 

x Y 

x 2 xy y2 

x' x 2y xy2 y' 

x' x'y xy' y' 

x' x'y x'y' x 2y' xy' y' 

x 6 x'y X'y2 x 2y' xy' y6 

x 7 x'y' x'y' y7 

x'y' x'y' 

x 6y' x'y6 

Finally it is possible to derive an element based on smooth surface interpolation 

rather than the linear interpolation polynomials. This element [5] has the nodal 

variables w, ~ and aw giving a total of 12 variables in the displacement 
ax ay 

function. The displacement field is obtained by dividing the rectangle into four 

triangular areas and using a separate expansion for each. 

It will have become apparent that there are many ways of deriving a rectangular 

plate element. We have considered seven and have by no means exhausted the 

possibilities. Four of the elements we have mentioned have nodal variable w, aw 
ax 

and :~ and a 12 term displacement expansion. These all give different results 
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for the same mesh and one of the elements does not even converge to the true 

solution as the mesh is refined. Clearly, therefore, the choice of a displacement 

function for an element requires some care. 

5. Transverse Vibration of Plates 

We shall use three of the elements to calculate the natural frequencies of two 

plates, a Simply supported square plate and a rectangular clamped plate. The 

elements used are element a which is based on the simple 12 term polynomial, 

element b which has the 16 term displacement field and element c which is 

based on an approximation to the 16 term polynomial. 

A variation of this element (element c) can be obtained by expressing the twist 
a2w 

variable axay at each node in terms of the slopes at the adjacent nodes. This 

gives 4 constraint equations reducing the original 16 degrees of freedom to 12. It 

is not possible to write the displacement field explicitly as a simple polynomial 

but it does include the term xy and so the element still can represent constant 

twist conditions. The nodal variables in this simplified element are w, ::' :; 

a2 w A fourth element can be obtained by including the additional nodal variables ax> 
a2 w a2 w 

and ay> as well as axay and using higher order interpolation polynomials [3]. 

We now have 6 variables at each node and the equivalent of a 24 degree of freedom 

polynomial. 

Instead of increasing the number of nodal variables, the number of nodes can be 

increased to allow higher order displacement functions to be used [4], with the 
. aw aw 

nodal var1ables, w, ax and ay' The first of these elements has one mid-side node 

giving a total of 24 degrees of freedom with a polynomial expansion having the 

terms 

1 

x y 

x 2 xy y2 

x' x 2y xy2 y' 

x' x'y xy' y' 

x' x'y x'y2 x 2y' xy' y' 

x'y X'y2 x 2y' xy' 

(31) 

With 2 additional nodes on each side, the element has 36 degrees of freedom. In 

this case the terms in the polynomial are obtained from element b by removing the 

twist term. 
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All three elements satisfy the conditions which ensure convergence as the mesh is 

refined. Only element b however satisfies the additional condition which ensures 

that the convergence is uniform; it is the only element of the three for which 

the normal slope between elements is continuous. 

Figure 5 shows the results obtained for the natural frequencies of a simply 

supported plate using the different elements. It can be seen that for all three 

elements, the results tend to converge towards the exact values [6] as the mesh is 

refined. 

Figure 6 shows the results obtained for the natural frequencies of a clamped rect­

angular plate. These are compared with the values obtained using a Rayleigh-Ritz 

solution [7] as described in Chapter 6. 

In both examples all the elements converge as the mesh is refined. However only 

the fully-conforming element, element b converges monotonically, consistently 

giving an upper bound to the frequencies. It can be seen that, although they have 

the same order of displacement function, element a and element c give different 

answers for the same mesh. 

6. Combination of Plate and Beam Elements 

When it is necessary to select elements for the analysis of a complex structure, 

then considerations other than the behaviour in test examples such as those dis­

cussed in the previous sections are important. 

For instance even though it has a better rate of convergence in the examples 

considered, the in-plane element based on the 2nd order interpolation polynomial 

is not suitable for most applications. It can represent a rapid variation of the 

in-plane displacement accurately with few degrees of freedom. However in practice 

the in-plane displacements do not usually vary in this complex way. 

The in-plane element based on the 1st order interpolation polynomial will usually 

give satisfactory answers for the type of problem encountered. In addition since 

it is possible to use very many more elements, cut-outs and projections in the 

plates can be more accurately represented with this element. 

Similar considerations favour choice of one of the lower order plate bending ele­

ments. Thus if we wish a plate element for combined bending and stretching then 

one possibility would be to have 20 x 20 'element matrices with nodal variables u, 
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aw and aw d b b d th v, w, ax ay The in-plane components of the elements coul ease on e 

1st order interpolation polynomial with the transverse components corresponding 

to element a, element c or the element based on smooth surface interpolation. 

This element has no coupling between the in-plane and transverse displacements 

and the corresponding portion of the element matrices is filled with zeros. Where 

there is coupling, for example in a curved plate, then the process can be repeated 

as before but with the assumed fields for the two displacements being used together 

in deriving the element matrices. 

A suitable beam element for use with the above plate element as described can be 

obtained by assuming the following displacement functions for an element parallel 

to the x-axis. 

w Ct 1 + Ct 2 X + Ct 3 X2 + Ct4X' 

v Ct 5 + Ct 6 X + Ct 7 X 2 + CtsX' (33) 

u Ct g + Ct 10X 

e Ctll + Ct 12X 

We have 12 parameters which can be evaluated in terms of the six nodal variables, 
aw av 

w, ax ' v, a; , u, e at each end of the element. Cubic displacement functions 

are used for the two transverse displacements. These parts of the element matrices 

are derived as described in Chapter 7. Linear functions are used to represent the 

extension and twisting of the beams. The strain energy expression corresponding 

to each of these two displacements involves only the first order derivatives and 

so a linear displacement function is sufficient to give convergen~e. 

The complete element mass and stiffness matrices for this beam element are given 

in Appendix 2. The transverse displacement part of the matrices is based on Euler 

beam theory. If the beams being considered were deep, Timoshenko beam theory could 

be used [S]. 

Similarly if in a particular problem it was important to represent accurately the 

taper of a beam then a special element could be formulated. Expressions for say 

the variation of the cross-sectional area and the second moment of area along the 

length of an element would be assumed. The element matrices would be derived as 

before but with these expressions included under the integration. The formulation 

of plate and beam elements described can be varied to include additional effects 

as a particular problem demands. 
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Appendix 1 

In-plane Plate Element 

The degrees of freedom are in the order (u1,v1,u2,v2,u3,v3,u4,v4)' where the nodes 

are numbered as shown in Figure 1. 

mass matrix 

pabh 4 36 
0 4 

2 0 4 

0 2 0 4 

2 0 1 0 4 

0 2 0 1 0 4 

1 0 2 0 2 0 4 

0 1 0 2 0 2 0 4 

stiffness matrix 

Eh 
2a1 lS0(1-v 2 ) 

a4 2a2 

a 5 -a3 2a1 

a3 a7 -a4 2a2 

as a3 -a1 a4 2a1 

-a3 a6 a4 -a2 -a4 2a2 

-a1 -a4 as -a3 a 5 a3 2a1 

-a4 -a2 a3 a6 -a3 a7 a4 2a2 

60b 30(1-v)a 60a 30(1-v)b 45(1-3v) 
a1 -+ 

b 
a2 b 

+ a3 2 a a 

45(1+v) 30b 30(1-v)a 30a 30(1-v)b 
a4 2 a 5 a b a6 b- a 

-60a 15(1-v)b -60b 15(1-v)a 
a7 b 

+ as + b a a 

where E is Young's modulus 

p is density 

v is Poisson's ratio 

a and b are element length and breadth 

h is thickness. 
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Appendix 2 

Beam Element 

The degrees of freedom are in the order 

{ w1 , (dw) 
dx ' 

1 
v1 , (dv) , 

dx 1 
U 1 , 8 

1 ' 
w2 , (dw) 

dx 2' 
v 2 , (dv) 

dx 2' u2 ' 82 } 

Mass matrix 

pAa 
156 

420 
22a 4a' 

0 0 156 

0 0 22a 4a' 

0 0 0 0 140 
140I 

0 0 0 0 0 --p 
A 

54 13a 0 0 0 0 156 

-13a -3a' 0 0 0 0 22a 4a' 

0 0 54 13a 0 0 0 0 156 

0 0 -13a -3a' 0 0 0 0 22a 4a 2 

0 0 0 70 70 0 0 0 0 0 140 
70I 140I 

0 0 0 0 0 --p 0 0 0 0 0 --p 
A A 

where I is the polar moment of inertia p 
A is cross-sectional area 

p is density 

a is element length 
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Stiffness matrix 

E 121 
7 z 

6a1 4a'1 
z z 

0 0 121 
y 

0 0 6a1 4a'1 
y y 

0 0 0 0 a'A 

0 0 0 0 0 
a'GJ 

E 

-121 -6a1 0 0 0 0 121 z z z 

6a1 2a'1 0 0 0 0 6a1 4a'1 z z z z 
0 0 -121 -6a1 0 0 0 0 y y 

0 0 6a1 2a'1 0 0 0 0 y y 

0 0 0 0 -a'A 0 0 0 

0 0 0 0 0 
-a'GJ 

0 0 
E 

where E is Young's modulus 

G is the shear modulus 

A is cross-sectional area 

a is element length 

J is polar 2nd moment of area 

I ,I are the 2nd moments of area about the relevant axes. z y 

1 
I 

I 

I 

I 

I 

I 

121 
I y 

6a1 4a'1 

I 
y y 

0 0 a'A 

a'GJI 0 0 0 ~j 



1. Introduction 

CHAPTER 9 

TRANSIENT RESPONSE OF STRUCTURES 

by 

J. Wilson 

A structural system undergoes transient vibration when the system is subject to a 

change from one steady state of vibration to another. Strictly speaking, the term 

'transient' should be applied to changes lasting a brief time only. However, it is 

often applied to a continuous changing situation for an indefinite period of time. 

It has been demonstrated earlier that a structure will settle down to a steady 

state of vibration, when under the action of a constant amplitude harmonic force 

(or set of forces, each of which is characterised by the same frequency), such that 

all particles in the structure have the same frequency of vibration and a phase 

angle which depends on the nature of the damping. When the frequency of the harmonic 

force coincides with a natural frequency of the structure (or closely approaches it), 

then resonance occurs and the amplitude of vibration may become very large. 

When the force is not steady-state harmonic but is repetitive, the force can be 

split into component steady state forces with different frequencies by means of a 

Fourier series. Each component is treated separately as a steady state force, 

giving rise to a steady state response. The total response can be obtained by 

summing all the response components. An example of a repetitive force would be 

found in the forces on the rubber mounting of a motor car engine running at constant 

speed. In certain cases, the vibration resulting from a transient force may be 

much more severe than that occurring at steady state. If we return to the motor 

car example and take our foot off the accelerator so that the engine slows down 

suddenly to idling speed, the engine may undergo large vibrations on its mountings 

if it comes near to stalling. 

2. Transient Response Without Damping 

Consider a multi-degree of freedom system under the action of a set of forces 

varying continuously with time and of an irregular nature. For the general case 

we may take the discrete model shown in Figure 1. 

The equations of motion may be written as 

(la) 
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Figure I. 
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m u + k u - k u 
n n n n n n-I 

They may also be expressed in matrix form as 

M u + K u 

(nxn) (nxl) (nxn) (nxl) 

p. (t) 
J 

p (t) 
n 

p (t) 

(nxl) 

(j 2,n-l) (lb) 

(Ic) 

where K, M and ~ are respectively the stiffness matrix, mass matrix and displace-

ment vector. P (t) is the force vector 

(nxl) 

p .(t) 
J 

In general the actual loading on the structure will not be concentrated at discrete 

points. However if we know the actual distributed loading we can always find a 

statically equivalent loading system which is discrete. 

As in Chapter 3, we can carry out a coordinate transformation from the original 

displacement vector, U to a normal coordinate vector q using equation 

(23) of Chapter 3 (n;;:l) 

U 

(nxl) 

(nxl) 

z q (2) 

(nxn) (nxl) 

where Z is the model matrix formed by the n normalized mode shape vectors, ~r . 

(nxn) (nxl) 

Thus M z + K z q 

(nxn) (nxn) (nxl) (nxn) (nxn) (nxl) 

If we premultiply equation (3) by we find 

(ZT M Z) q + (ZT K Z) q 

p (t) 

(nxl) 

(3) 

(4) 

Again from Chapter 3, ZT M Z is the unit matrix (by definition of' Z) and ZT K Z 

is the matrix of natural frequencies Q. Thus equati~n (1) can be uncoupled into 

a set of independent equations of the type 

(5) 

by use of the transformation of coordinates given in equation (2). 
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The solution of equations (5) for qr(t) can be carried out by any suitable method 

given for a one-degree of freedom system (e.g. Duhamel integral), and the dynamic 

response of the whole system in terms of the original coordinates by using the 

transformation, ~ = ~ g again. Alternatively a numerical method of solution may 

be employed. These methods will be discussed later. 

3. Damping 

3.1 Introduction 

So far we have not considered the effect of the amount or nature of damping on the 

response of the structure. If we keep to the strict definition of transient, i.e. 

very brief changes, and if we assume that the damping is small, there is little 

difference between the undamped transient response and the damped transient response. 

However if we consider the term transient in the broadest sense of a continuously 

changing irregular force and response then it may become necessary to introduce the 

effects of damping. We have seen previously how the steady state behaviour of a 

one-degree-of-freedom structural system may be considerably modified by the presence 

of damping. The amount of modification depends upon the extent and type of damping 

present. 

Damping always exists in any structure although it is generally slight when compared 

to the levels of damping found in mechanical systems. It may be so slight as to 

render the response of the structure scarcely different from that predicted for 

the undamped system. If we look at Figure 2 which shows the response of a 

viscously damped one-degree-of-freedom system to a constant forcing function with 

varying amounts of damping, we find that away from the natural frequency of the 

system, there is very little difference in response for a large range of damping 

factors. The same will be true of a multi-degree of freedom system, although of 

course there is much more chance of encroaching on a natural frequency in this case. 

In fact it is only when the exciting force has a frequency close to a natural 

frequency that we need to take notice of damping. 

3.2 Nature of Damping 

Damping is basically a dissipation of energy which occurs in vibrating systems. 

How can energy be dissipated in structures? There are three ways in which energy 

is dissipated. 

(i) Energy dissipated within the materials of construction. We will call this 

material damping. This varies from material to material. It can be small for most 

structural steels and some reinforced concrete, although materials like timber 

laminates may possess high damping. 



Figure 3a 
Viscous dallping 

Figure 3b 
Hysteretic 

k 

Figure 3c 
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(ii) Energy dissipated at structural discontinuities, e.g. bolted and riveted 

connections, construction joints in reinforced concrete structures. This we will 

term discontinuity damping. Whereas material damping can be measured and predicted 

by testing, it is much more difficult to predict the level of discontinuity damping. 

It may vary greatly even for structures which are nominally identical. 

(iii) Energy dissipated by the structures'S environment e.g. air and water 

resistance, and foundations. Again this is difficult to predict. Dissipation of 

energy in the foundations occurs even when the foundation material is linear 

elastic because of the propagation of stress waves through the foundation. 

3.3 Representation of Damping 

Damping from all these sources is conventionally represented in three ways, not 

necessarily specifically related to a particular method of energy dissipation 

listed above. 

(a) Viscous damping 

(b) Coulomb damping 

(c) Hysteretic damping 

It must be stressed that these are only ways of representing damping. They do not 

imply a mechanism for damping. 

(a) Viscous damping, analogous to the damping produced by motion of fluids, is 

defined such that the damping force is proportional to a velocity. In the 

viscously damped system shown in Figure 3a, 

where c is the viscous constant 

u is the velocity of mass 

fd is the damping 

- c U (6) 

The minus sign shows that the force on the mass acts in the opposite direction to 

the velocity of the body. 

For a freely vibrating single degree of freedom system damped viscously as rep­

resented by Figure 3a~ the equation of motion for this case becomes 

(a) m u + c u + k u o (7) 
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We have already seen the solution for equation (7) is 

u Ae 

c 
2m t 

sin(wdt + a) (8a) 

where /~ the damped natural frequency. 

By writing where is the natural frequency 

t 
u Ae sin (8b) 

where A and a are constants depending on the initial conditions. The logarithmic 

decrement, 0, for the free vibration is defined by 

·a 
loge (_n_) 

an +l 

cTd 
(-) 

2m 

where Td is the damped natural period. 

(9) 

If we plot the form of the above curve we find that the motion is oscillatory with 

exponentially decreasing amplitude such that logarithm of the ratio between any two 

successive amplitudes is constant. 

In general it can be shown that the energy dissipated per cycle when the system is 

steadily excited by imposed forcing function of frequency Q such that the amplitude 

is a, is given by 

11 C Q a 2 

Hence energy loss increases as square of amplitude and is proportional to the 

exciting frequency and the dashpot constant. 

(10) 

(b) Coulomb or frictional damping can be regarded as existing when the damping 

force is a constant (depending only on the normal reaction) and opposes the motion 

of the body 

f; (sign ti) 
u 

(lla) 

where f; is a constant. 

Thus the equation of free vibration for a single degree of freedom becomes 

mu + f; + ku o (llb) 
lui 
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In the third case the solution for the free vibration for equation (7c) is 

(C + ~) sin (w t + y) ~ with du positive (l2a) u -k n k dt 

(C - f) sin (w t + y) ~ with du negative (12b) u + 
k n k dt 

If we assume that our system starts off displaced from the equilibrium position by 

an amount C with zero initial velocity, the displacement will look like that shown 

in Figure 6. The envelope of successive amplitudes is a straight line and the 

motion does cease after a finite time. The frequency of the damped motion is not 

altered by the presence of frictional damping as in the previous case. 

(c) Hysteretic Damping. This is sometimes called 'structural' damping in some 

text books. It was noticed that for some structures when excited by steady 

amplitude forces, the measured energy dissipated per cycle (or the work done by 

the applied forces) was independent of the frequency of the exciting force. 

(Compare the case of viscous damping when t.u = lfcna' ) . 

In order to model this behaviour the term hysteretic damping (reference [1]) was 

invented such that 

t.U IT h a' (l3) 

where h is the hysteretic damping constant, and a is the amplitude of motion. 

Now this definition of hysteretic damping happens to coincide with the definition 

of 'structural' damping as stated by Clough and Penzien [2] for steady state 

excitation. 

Clough and Penzien [2] define structural damping for a single degree of freedom 

system as being such that the damping force is proportional to displacement and 

opposes the motion: 

i.e. 
u hlul 

lui 
(14) 

Under any conditions other than steady state excitation, this definition is some­

what dubious. At steady state, it gives the same result as hysteretic damping, 

namely, 

t. U IT h a' 

The problem with this definition of hysteretic damping is that it can be shown to 

flout the fundamental rule of causality, (see reference [3]), i.e; hysteretic 
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damping implies that the present state of system depends not only on all its past 

states but also on all future states. Some interesting philosophical problems 

then arise. However, for steady state vibration, the state of the system is steady 

for all time and hence present, future and past states are all known. Hence this 

definition can be used for this one condition. 

4. Damped Transient Response 

4.1 Uncoupling the Equations of Motion 

We will now consider the equations of motion for a discrete n-degree of freedom 

system when viscous damping is present. (See Figure 6). 

These may be written 

(j 2,n-l) 

m u + c U - c u + k u - k u 
n n n n n n-l n n n n-l p (t) 

n 
(15) 

The equations can be written in matrix form 

. 
M U + C U + K U p (16) 

where U is the velocity vector 

u. U 
J n 

and C is the damping matrix (which in this case has a similar form to the stiffness 

matrix). Moreover if each damping constant has the form 

c. Ak k. + A m. (j 1,n) (17a) 
J J m J 

then the damping matrix can be written as 

C Ak K + A M (17b) m _ 

and the damping is said to be proportional. Substituting (17b) in (16) we obtain 
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p (18) 

Again a coordinate transformation can be introduced such that 

u z q u Z q u Z q 

By pre-multiplying equation (18) by ZT throughout and using the transformations we 

have 

leading to 

q + (~k Q + A I)~ + Q 
3 

zT p - m- - - F(t) 

The equations are again uncoupled so that 

qr + (Ak w 2 + A )q + W 2 
qr r m r r 

f (t) 
r 

Again we can solve each equation for qr by a suitable method and obtain the 

solution in terms of the original coordinate system by writing 

(19) 

(20) 

(21) 

Thus if we have a structure for which the damping is viscous and the matrix of 

damping constants is proportional to the stiffness matrix and/or mass matrix, the 

equations of motion can be uncoupled in terms of the normal mode shapes. 

When the damping is not proportional the equations do not uncouple in terms of the 

normal modes. However the equations of motion can be uncoupled by use of a complex 

transformation matrix 

u Z* 3* 

where Z* is a complex matrix and q* is a complex vector: (See reference [2]). 

4.2 Free Damped Vibrations 

For free damped vibrations we may use equation (21) with fr(t) 

of r. 

W 2 
r 

+ A )q 
m r 

o 

o for all values 

(22) 
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Let us take 

(a constant), then equation (22) becomes 
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A 
r 

o 

(23) 

(24) 

The solution to this is given by equations (8). The logarithmic decrement for 

free vibration in the rth mode is given by 

6 
r 

n A 00 
r r 
00 

r 
(25) 

assuming 6r « 1 

An interesting feature emerges from this equation. If the damping is assumed to 

be proportional to the stiffness only (i.e. Am = 0 in equation (23)), then 

A 
r 

00 
r 

and 6 
r 

(26) 

This form of damping results when the material behaviour can be represented by a 

Kelvin model consisting of a spring and a dashpot in parallel (see Figure 8a) and 

the logarithmic decrements are proportional to frequency. 

If logarithmic decrements for different modes of vibration are found to lie on a 

straight line when plotted against the frequencies, we can say that the material of 

which the structure is made is Kelvin. The damping may not be actuaLLy attributable 

to the material source, but if it behaves so it can be treated in this manner. 

Suppose now that a structure builb of a Kelvin material has natural frequencies 

001 , 002 , 003 etc. and two or more of these natural frequencies coincide. Then the 

logarithmic decrements for the modes of vibration associated with these frequencies 

will be the same. Also if two different structures composed of the same material, 

happen to have a mutual natural frequency, then the logarithmic decrements will be 

equal. (This statement assumes that only material damping is present). Further­

more, for any structure composed of the same Kelvin material, the logarithmic 

decrement can always be found from one curve, (See Figure 8). 

If we take the Kelvin model of Figure 7a and add sets of springs and dashpots in 

series as indicated in Figure 7b, we obtain a general Maxwell model. This model 

may be regarded as approximatjng, in the limit, the behaviour of a general linear 

viscoelastic material. 

For this type of model it can again be shown that the equations of motion will 

uncouple. As a consequence of this, for a given material model we can plot 6 
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against w and obtain a curve of the type shown in Figure 9. We can again say 

that if several different structures have a common natural frequency, then the 

logarithmic decrements for free vibration in the modes associated with that 

frequency will be equal. 

This fact may be used to predict logarithmic decrements of structures, built in 

reinforced concrete, or any material which behaves in a viscoelastic manner. 

(Note that concrete may be regarded as a hard viscoelastic material because it 

creeps). The assumption inherent in this argument is that material damping is 

the predominant source of damping. In practice what it means is that we can 

measure the logarithmic decrements of one structure, plot a graph and predict 

logarithmic decrements for other structures composed of the same material provided 

we take account of natural frequencies. 

4.3 Example 

Logarithmic decrements of large reinforced chimneys 

Figure 10 shows a plot of 0 against w for several large reinforced concrete multi­

flue chimneys constructed at power stations throughout England and Wales. The data 

is obtained from reference [4) . You will see from the graph that a straight line 

has been drawn in through the points. (Note that the abscissae are plotted on a 

log scale). Not all of the points fallon this line, but remember that in each 

case the concrete mix was different. Moreover the Drax chimney has an artificial 

source of damping introduced by supporting the chimney floors on rubber bearings. 

If we neglect the results for the Drax chimney there remains only one point which 

is remote from the line. This line could be used as a basis for predicting log­

arithmic decrements of similar chimneys, although it might be risky to extrapolate 

from the line outside the range of information given. 

5. Numerical Methods 

It has been demonstrated that for undamped (or proportionally damped) structural 

systems, the equations of motion governing the structural behaviour can be 

uncoupled by a coordinate transformation involving the modal matrix ~. Thus we 

can treat each uncoupled equation as a single degree of freedom system. In many 

cases, the nature of the transient force is so complex that we cannot arrive at an 

analytical solution and must resort to numerical methods of solution. 

These can in general be applied to the original coupled equations as they stand or 

the uncoupled set of equations. To illustrate some numerical methods, a single 

degree of freedom sy~tem will be considered since this is representative of the 

uncoupled equations arising from a multi-degree of freedom system. 
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3.1 Finite Difference Method 

Let us take first as an example the differential equation for a single degree of 

freedom undamped vibration excited by a transient (irregular) force, p(t); 

m u + k u p(t) where U 0, u o at t o 

and write as ku p(t) 

Let us consider how p and u might vary at fixed steps in time, h, as shown in 

Figure 11. 

(27) 

Suppose that we wish to approximate the velocity of the body in any interval h, 

we would have (referring to Figure 12) that 

Similarly 

Now if we want the acceleration at time t = jh 

u. 
J 

U(j+Y,)h- u(j_Y,)h 
h 

u j +1 - 2uj + uj _1 
h 

Substituting this in equation (27) for the 
.th 

time step we have J 

Multiply by u.: 
m 

But 
k 

W 2 
m n 

[ uj +l - 2u. + uj _1 
m J 

h 2 

+[k_2m] 
h 2 

gives 

) + k u. 
J 

h 2 

m 

Pj 

where wn is the natural frequency of the system. 

equation (29) becomes 

U (h 2w 2 - 2)u. j+1 + n J + uj _l 

(28) 

(29) 

Therefore 

(30) 
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Example 

Let us take the simple case when m 

values in equation (30) we obtain 

We can rewrite this as 

169 

1, IIln 1 and h ='1. Substituting these 

Let us assume that the force, p, is zero for t < 0 and has a constant value of 3 

for t > O. Thus P2 = etc. = 3. 

Thus equation (31) for t < 0 becomes 

We start at the first step with j O. At this point in time u j = 0 and u j _1 
Thus u1 = 3. We can then go on one step in time and put j = 1. This gives 

6 

(32) 

O. 

So we can go on marching forward in tilue to obtain the response of our system 

numerically. For the first thirteen time steps, the values of u are given by 

applying equation (32) successively. They are listed in the following table and 

plotted in Figure 13. 

u o 

o 3 6 6 3 o o 3 6 6 3 o o 

The periodicity is thus 6h = 6 sec. Since the natural frequency is 1 rad/sec 

i.e. ~ cycles/sec. the period of vibration is 2n secs = 6.28 sec. Our 2n 
numerical calculation gives 6 sec. Thus the numerical analysis distorts the 

natural frequency. We also see that the vibration takes place about a displaced 

position given by u = 3 corresponding to the static displaced position, since the 

static displacement, xs ' is given by 

x 
s 

3 
1 

3 

The amplitude of the motion is seen to be slightly greater than 6 if we draw in a 

curve. The computed maximum displacement is thus twice the static displacement. 
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Now let us take a time step of Yz second. Our numerical formula becomes 

(33) 

Rearranging equation (33) gives 

0.75 + 1.75u j - u j _ 1 (34) 

since 3 for j > 1 

Uo 0 

u1 0.75 + 0 - 0 = 0.75 

u 2 0.75 + 1. 75 x 0.75 - o = 2.06 

u3 0.75 + 1. 75 x 2.06 0.75 3.60 

u4 0.75 + 1. 75 x 3.60 2.06 4.98 

u 5 0.75 + 1.75 x 4.98 3.60 5.88 

u 6 0.75 + 1. 75 x 5.88 4.98 6.07 

u 7 0.75 + 1. 75 x 6.07 5.88 5.50 

u 8 0.75 + 1. 75 x 5.50 6.07 4.31 

u 9 0.75 + 1. 75 x 4.31 5.50 2.79 

u10 0.75 + 1. 75 x 2.79 4.31 1. 32 

un 0.75 + 1.75 x 1.32 2.79 0.27 

u 12 0.75 + 1.75 x 0.27 1.32 - 0.10 

u 13 0.75 1.75 x 0.10 0.27 0.30 

u 14 0.75 + 1. 75 x 0.30 + 0.10 1.38 

As we take our time step smaller and smaller, so our results become more accurate. 

When the step is small enough we cannot distinguish between the exact solution for 

the problem 

u(t) 3(1 - cos t) (35) 

and the approximate numerical solution. 

If too large a time step is chosen, the process becomes unstable. Numerical 

processes do not always give solutions which agree closely with analytical. The 

reasons for this can be several. Sometimes if the process used is a marching one, 

where we know all quantities from the previous steps and need to know the current 

values, it may become unstable. By this we mean that any numerical error introduced 

in the calculation increases in magnitude until it swamps the actual solution. 

Sometimes an iterative process is used when the solution is expressed in the form 

x f(x) 
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We guess an initial value of x, xo ' substitute it in f(x) and work out xl = f(xo)' 

We then take the new value of x, xl' and work out x2 = f(xl ) until xn+1 = xn+ E 

where E is an acceptable error. In this sort of process we need convergence. 

Sometimes this does not happen. Fortunately in most cases by looking at the 

equations we can establish convergency and stability limits. 

A great advantage of numerical methods is that we can easily use digital computers 

to work out solutions for us. 

5.2 Newmark a Method 

There are other numerical methods which may be used. One fairly accurate and 

simple method is the Newmark a method [5]. In this method we assume variations 

for the velocity, U, and displacement, u, in the time interval h to be such that 

the values at beginning and end of the time step (subscripts 0 and I respectively) 

are related by equations of the form 

(36a) 

(36b) 

where a and yare constants. It has been shown that unless y =~, an error is 

introduced. a can have any desired value. Certain values of a and y have physical 

significance, but in general this is not so. For instance a ~ and a = ~ 
corresponds to constant accelerations in the time interval and a = 1/6 to linear 

acceleration. y = ~ corresponds to linear acceleration variation in the time 

interval. 

If we apply the Newmark a method to the previous problem we have 

m u + k u p(t) where p(t) 

p(t) 

o for t < 0 

for t > 0 

u = 0, U = 0 at t 0 

Then we have at the beginning of the time step 

m u + k u Po 0 0 

and at the end 

m u1 + k u l PI 

Substituting for u and ul from equations (36) we obtain 
0 
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1\ U (1 - Y)h 
Po k 

u ) + (-
0 m m 0 

+ yh 
P1 
(- k u1 ) (37a) 
m m 

+ hu (Y, - 8)h 2 
Po 

- ~ u ) + 8h 2 
P1 ~ u ) (37b) u1 u + (- (-

0 0 m m 0 m m 1 

Expressing the unknown quantities at the end of the time interval in terms of the 
k 

known quantities at the beginning we have (putting 
m 

U (1+8h 2w 2) [ 1 - (Y,-8)h 2wn 2 ] + u h + (Y,-8) h 2 
u Po 1 n 0 0 m 

u1 + yh w 2U u (l-y)hw 2U (l-y) h h 
+ iii Po + Yiii P1 n 1 0 n 0 

Thus we have 

1 
{[1 - (Y,-8)h 2wn 2) + hu (Y,-B) h 2 

u1 1+8h 2w 2 u + 
0 0 m 

n 

u1 {- Yhwn 2U1 + u (l-y) hw 2U (l-y) 
h - + iii Po + y 

0 n 0 

W 2) 
n 

8h2 
+ m 

P + 
0 

h 
iii P1 

P1 

8h 2 
P1 } m 

As stated previ0.us1y, unless y = Y, extraneous damping is introduced into the 

equations. Putting y = Y, in equation (39b) leads to 

Let us now carry out the calculations of the previous example with B ~, h 

w 
n = 1, m = 1. Equations (39a) and (40) give 

3 4 
u 

1 1 
u1 5 u + 5 + "5 Po + "5 P1 0 0 

u1 
1 

+ u 1 1 1 
2 u - 2 u1 + "2 Po + 2 P1 0 0 

and the values of u and u for the first nine time steps (j o to j 8) are 

in the following table. 

Step 
Number 0 1 2 3 4 5 6 7 8 

u 0 1.2 3.84 5.82 5.51 3.20 0.73 0.07 1.76 

u 0 2.4 2.88 1.03 -1.63 -2.98 -1.95 0.65 

(38a) 

(38b) 

(39a) 

(39b) 

(40) 

1, 

(41a) 

(41b) 

given 
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Figure 14 shows a comparison between the results obtained for the displacement, u, 

in the problem by four methods, 

(i) Finite difference method, h 1 sec. 

(ii) Finite difference method, h 0.5 sec. 

(iii) Newmark S method, h = 1 sec. 

(iv) Exact solution. 

In addition to these methods illustrated there are many more numerical methods of 

solving the general differential equation of damped force vibration 

m u + c U + k u p(t) 

These include Runge-Kutta, Galerkin etc. All these methods will be prone to 

numerical instabilities etc. but by choice of a suitable time interval they can be 

overcome. In general the shorter the time interval the more accurate is the 

solution and the less likelihood there is of instability. Of course the penalty 

is longer time for computation. 

Numerical methods have all been developed for single degree of freedom systems. 

They can easily (from a computer viewpoint) be modified to suit a multi-degree of 

freedom system. However in this case the time interval will have to be very small 

in order to avoid numerical difficulties with some of the higher frequency 

components of the vibrations. Accuracy will of course improve but the law of 

diminishing returns will apply in most cases. 

For a structure which has proportional damping, we may uncouple the equations in 

terms of the normal modes and solve each equation of the type 

p (t) 
r 

as was demonstrated previously. Finally the solutions can be recombined. The 

advantages of this method are that different time intervals can be used. However 

modern computers are so big and fast that there is really no need to uncouple the 

equations. It is just as easy to manipulate the matrices. For non-proportional 

damping this method would have to be used in any case. 
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CHAPTER 10 

MACHINE FOUNDATIONS 

by 

R.R. Wilson 

1. Introduction 

Many factors have to be taken into account when a foundation is designed for a 

machine. In particular for rotating machinery, such as pumps, blowers or turbines, 

a knowledge of the vibrational characteristics of a foundation is of great import­

ance [1],[2]. In this chapter, the principles of the design of a foundation 

subject to dynamic loading are introduced and discussed with reference to simple 

mass-spring systems. The use of undamped and damped dynamic absorbers is con­

sidered and finally an analysis is described in which the finite element method 

is used to predict the dynamic behaviour of turbine foundations. 

Three separate but closely related vibration problems can occur in the design of 

a machine foundation. Firstly there is the question of insulation of a machine 

from its surroundings. It is often important to ensure that only a small fraction 

of the force caused by the operation of ~he machine is transmitted through the 

foundation to the surrounding structure. For example in a hospital it is desirable 

that little vibration should be transmitted to the building from a compressor. 

The opposite situation also occurs; it may be necessary to design a foundation 

to protect a machine from vibrations occurring in the surroundings. 

The second consideration in the design of a foundation is that the structure of 

the foundation must be able to withstand the amplitudes of vibration induced by 

the forcing from the machine. The vibration amplitudes may also be important if 

auxiliary equipment is mounted on the foundation or pipes supported on the 

structure. 

Finally the influence the foundation has on the operation of the machine must be 

considered. The critical speeds of a machine on a flexible foundation are much 

lower than the critical speeds of the same machine rigidly supported. 

2. Transmissibility of a Foundation on a Rigid Base 

A single degree of freedom can be used to represent a machine and foundation on a 

rigid base as shown in Figure 1. The foundation is considered as a spring k and 

a dashpot c connecting a machine of mass m to a rigid base. Any parts of the 

foundation moving with the machine are included in the mass m. The operation of 
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Figure I Machine with Foundation on Rigid Base 

y=O.25 

r 

Figure 2 Transmissibility of a Foundation on a Rigid Base. 
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the machine gives rise to a sinusoidally varying force P sin wt. The equation of 

motion of this system is 

m u + c U + k u P sin wt (1) 

After sufficient time has elapsed for the transient component to die away, we are 

left with the steady state solution (as given by equation 50 in Chapter 2), 

P 
sin (wt - ex) (2) u 

/(k-mw2) 2 + W 2 C 2 

where tan ex 
wc 

(3) 
k-mw 2 

The force transferred to the supporting structure is the sum of the force in the 

spring (ku) and the force in the dashpot (cu). Thus the amplitude of the force is 

given by 

/(ku) 2 + (cu) 2 

Substituting for u and u from equation (2) 

/(k_mw 2)2 + W2C 2 

The tpansmissibi~ity of a foundation is defined by 

transmissibility transmitted force 
impressed force 

/(k_m 2 )2 + w2 c 2 

The natural frequency of the system is wn =~, and the critical damping 

c = 2 Ikm . 
c 

11 ~) 
2 

+ (2 
c w 

Thus TR 
c n 

1(1 _ (~)2)2 + (2 
cw ) 2 

II + 4y2 r2 

/O-r2) 2 + 4y2r2 
W C W n c n 

where y c/c and r w/w 
c n 

(4) 

(5) 

(6) 

(7) 

(8) 
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The transmissibility is a function of the ratios rand y as shown in Figure 2. It 

can be seen that for the force transmitted by the foundation to be small, r should 

be large, i.e. the foundation should have a natural frequency much less than the 

operating speed of the machine it supports. 

When w < /2 wn then TR > 1, and the force transmitted by the foundation is 

greater than the force applied by the machine. In this range of operating speeds 

an increase in damping reduces the force transmitted. However, for operating 

speeds where w > /2 w then the higher the damping, the higher the force trans-
n 

mitted. This suggests that the damping in a machine foundation should be as low 

as possible to reduce the force transmitted. In practice, however, a foundation 

has higher resonances in addition to the fundamental resonance considered above. 

If the machine is operating near one of these higher resonances then it is the 

damping in the foundation that prevents very large forces being transmitted. 

Thus, despite the result of the above analysis, it is probably not desirable to 

reduce the damping of a foundation in order to lower forces transmitted. Con­

versely, this analysis does suggest why, when faced with excessive forces being 

transmitted, it is often preferable to vary the stiffness of the foundation or 

mass of the machine rather than to attempt to increase the damping of the system. 

3. Transmissibility of a Foundation on a Flexible Base 

In the previous section it was assumed that the structure to which the foundation 

was connected did not move. In many situations this is not a realistic assumption. 

For example, with an aircraft engine mounted on the wing of the aeroplane or a 

turbine supported on the hull of a ship, the area surrounding the point of support 

will move the base of the foundation. This can be represented by the two degree 

of freedom system shown in Figure 3, where m2 represents the mass of the supporting 

structure which moves with the foundation. To simplify the analysis, the damping 

of the system has been neglected. 

The equations of motion are 

Assuming solutions of the form 

A1 sin wt 

A2 sin wt 

P sih wt 

o 

(9) 

(10) 

(11) 

(12) 
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then P 

o 

The natural frequencies of the system are given by the zeros of the. equation 

This gives two solutions, 

w • 1 
o and w • 2 

o 

(13) 

(14) 

(15) 

(16) 

The zero natural frequency arises because, since the system is not constrained, it 

can execute rigid body motion. 

The amplitude of the steady state response is calculated by solving equations (13) 

and (14). Expressing A1 in terms of A2 from equation (14), gives 

substituting into equation (13), 

Le. 
kP 

(k-m2w' ) 

A2 k (17) 

P (18) 

(19) 

The force transmitted to the supporting structure is m2u2 and hence the magnitude 

of this transmitted force is 

_ w' (20) 

Le. (21) 

The transmissibility of the foundation is given as 

(22) 

Thus from equation (19), 

(23) 
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i.e. 
1 

m1+m2 m1 w2 
(24) 

m2 km2 

m2 

[ 1 

1 

1 
m1+m2 w2 

;;;---> 
n 

(25) 

Hence, as was shown previously for a foundation on a rigid base, we have the 

result that the lower the natural frequency of the system, the smaller the force 

transmitted. 

If we now extend the analysis to the rather more realistic situation shown in 

Figure 4 where, instead of being completely free to move, the base of the found­

ation offers resistance to motion. The mechanicaL impedance Z(w) of the base 

structure can be defined as the force at frequency w required to produce a unit 

displacement. 

i.e. Z(w) applied force 
displacement 

The motion of the system is described by the equations 

If the base could be represented as an unconstrained mass m2 , as considered 

previously, then Z(w) = m2w2 , and equation (28) reduces to equation (10). 

Equations (27) and (28) can be solved as before to give 

Pk 

The magnitude of the transmitted force is given by 

and so the transmissibility is 

T 
R 

A2 Z(w) 

P 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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Z(w) k 
(32) 

The mechanical impedance depends on the nature of the base. For example, if the 

foundation rests on a concrete raft on soil then the mechanical impedance can be 

determined in terms of a spring, mass and dashpot model of the soil, with, in 

general, each of the constants frequency dependent. It is also possible to find 

Z(w) experimentally. The displacement produced by a vibrator applying a harmonic 

force can be measured as a function of the applied force. 

4. Low Tuned and High Tuned Foundations 

If a machine is flexibly mounted on its foundation through, for example, bearings, 

and the foundation is connected to a rigid base, then the system may be idealized 

as the two degree of freedom system shown in Figure 5. 

The equation of motion of the system is 

P sin wt (33) 

o (34) 

Assuming once again solutions of the form 

ul Al sin wt and u2 A2 sin wt (35) 

and substituting into equations (33) and (34) gives 

AI (kl -ml w2) - A2kl P (36) 

- Alkl + A2(kl+k2-m2w2) 0 (37) 

Substituting for A2 from equation (36) into (37), 

[ kl -

k 2 

] Al ml w2 - 1 
P (kl +k2-m2w2) 

(38) 

Thus 

(39) 
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and 

(40) 

The force transmitted to the base is PT k2A2 and the transmissibility TR is 

given by 

TR 

PT k2A2 
(41) 

P P 

(42) 

The variation of the transmissibility with the frequency of the applied force is 

shown in Figure 6. 

In designing a fixed speed machine there are two basic decisions. Firstly should 

the machine run above or below the first critical speed of the shaft? (lk1 /m1 in 

the system considered above). Secondly should the foundation be Low tuned or 

high tuned? i.e. should the first natural frequency of the foundation on its 

own (/k2/m2) be below or above the running speed of the machine? [3], [4]. 

Table 1 summarizes the four possibilities. 

Low tuned foundations, High tuned foundations 
low critical speed of low critical speed of 

shaft shaft 

Low tuned foundations, High tuned foundations 
high critical speed of high critical speed of 

shaft shaft 

Table 1 Design Possibilities for Fixed Speed Machine 

The possibility of having a low critical speed is really only applicable to larger 

machines with long flexible shafts. For a particular fixed speed machine having 

its first critical above running speed [3], Figures 7 and 8 shows the variation of 

foundation and shaft amplitude with frequency for a low tuned and a high tuned 

foundation. 

5. Dynamic Absorber 

When a machine on a foundation is operating near its resonance, it is possible to 

reduce the vibration amplitudes by attaching a dynamic absorber. This can be 

represented by an additional mass and spring as shown in Figure 9. The equation 
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of motion of this system is 

P sin wt (43) 

o (44) 

These equations can be solved as before to give the steady state amplitudes, 

k 2 
2 

k 2 
2 

(45) 

(46) 

We are interested primarily in the response of the machine at the resonant 

frequency of the original system, i.e. before the addition of the dynamic absorber. 

Substituting this frequency, w = 1k1/m1 , into equation (45) gives 

(47) 

(48) 

If the dynamic absorber is designed so that 

(49) 

then from equation (48) the amplitude of the machine at the original resonant 

frequency will be zero. Figure 10 shows the variation of the amplitude of vibration 

of the machine with and without the dynamic absorber. 

6. Damped Dynamic Absorber 

The dynamic absorber described in the previous section removes the original res­

onance peak in the response curve for the machine but introduces two new peaks. 

If it is necessary to reduce the amplitude of vibration over a range of frequencies 

then a damped dynamic absorber as shown in Figure 11 can be used. The equations 

of motion are 

P sin wt (50) 



" 

Figure II 

189 

", 

" 

Damped Dyn«mic. Absorber 

, , 

• , , , 

, 

" 

, . 
~lthoUl 
\",-bsorber 

, , , , , 
with 

bsorber 

--
~chine speed , ~ 

Figure 12 Effect of • Damped Dyn~c Absorber on t he 
Respon6e of a Machine 



190 

o (51) 

These equations can be solved by the substitution 

Al sin wt + B1 cos wt (52) 

A2 sin wt + B2 cos wt (53) 

This leads to the following result for the amplitude of vibration of the machine 

[ 5], 

U 2 
1 

(54) 

The values of m2 , k2 and c can be chosen so that the response of the machine is 

reduced over a wide range of frequencies as shown in Figure 12. 

7. Design Codes 

The design of a machine foundation should ideally be considered as part of the 

process of designing the machine itself. Often this is not what happens contract­

ually. The foundation designer is presented with a specification which the found­

ation should meet. It is probably in these situations that the machine foundation 

standards are most widely used. 

The German standard DIN 4024 [6), issued in 1955, contains recommendations on the 

type of vibrational analysis that should be carried out when designing a machine 

foundation. It is suggested that all the natural frequencies of a foundation 

should differ from the running speed of the machine by at least 20%. In calculating 

the forces to which the machine is subjected, it is to be assumed that the struct­

ure behaves as an undamped single degree of freedom with a natural frequency equal 

to the natural frequency of the foundation which is closest to the running speed 

of the machine. 

In 1971, a British standard (B.S. 4675:1971) [7) for the evaluation of mechanical 

vibration in machines was introduced. It is based on the German standard VOl 2056 

[8). Eight types of machine and foundation combinations are considered. For 

example, type IV is large turbines on flexible foundations. The code recommends 

that, as part of the acceptance procedure for a machine, vibration measurements 

should be made at a number of points on the supporting structure (e.g. at the foot 

of each bearing pedestal). 
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Although the standard does not specify general levels of acceptable vibration 

since these will vary with design, it is suggested that the customer and supplier 

should agree on the maximum allowable velocity levels. For each type of machine, 

performance classifications are defined in terms of a range of velocity levels. 

Table 2 shows these classifications for machine type IV. 

Performance classification 

Velocity (mm/sec) 

A 

< 2.8 

B C 

2.8-7.1 7.1-18 

Table 2 Classification of Velocity Severity 

8. Steel Foundations for Turbo-alternators 

D 

> 18 

In the U.K., turbo-alternators have traditionally been mounted on large concrete 

blocks. however, with the increasing size of modern turbines this means of 

support presented several difficulties. Time and ease of erection, the possibility 

of off-site prefabrication and the need to place auxiliary equipment close to the 

main machine have led to the introduction of steel frame foundations. 

Because of the flexible nature of these structures, it is important to be able to 

predict their vibrational behaviour at the design stage. A study of the use of 

finite elements for the dynamic analysis of steel foundations was carried out, and 

the results compared with experimental measurements made on foundations in operation 

[9]. 

A steel foundation is made up of box-section beams, columns and plates. It was 

idealized using beam and plate elements to represent each of the components, as 

shown in Figure 13. 

As an initial step the natural frequencies and mode shapes were calculated. The 

mass and stiffness matrices were formed for each element and combined to give 

system matrices for the complete structure. The boundary conditions were then 

applied and the resulting eigenvalue equation solved. (The method used was to 

combine the system matrices, reduce the resultant motion to tridiagonal form and 

apply the Styrm sequence technique). A number of different idealizations of the 

foundation were used to establish the coarsest (and hence most efficient) mesh 

which gave acceptable results. 

For particular foundations being analysed, measurements had been made of the dis­

placements at a number of points on the foundation as the turbine was run up to 

speed. Figure 14 shows the experimental results for one position together with 

some of the calculated natural frequencies. It can be seen that the natural 
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frequencies correspond to peaks in the measured response. 

To develop a method of estimating the amplitude of vibration to be expected, a 

response analysis was carried out. The damping was estimated from measurements 

taken when the foundations were shaken at varying frequencies using an actuator. 

For the response analysis, the same mass and stiffness system matrices were used 

as for the free vibration case. It was found that a satisfactory agreement between 

theory and experiment was obtained by using a damping matrix proportional to the 

stiffness matrix with a constant of proportionality of 0.0002. 

The response when the turbine was running was estimated by assuming that the 

forcing was caused by eccentricity of the shaft. The magnitude of the forces 

were taken as being proportional to the rotating masses. The results obtained in 

this way gave reasonable estimates of the variation of the general levels of 

vibration with frequency. 

The detailed analysis of the two foundations in this study resulted in the develop­

ment of guidelines for use in the analysis of similar structures. By doing this, 

it was then possible to carry out analyses of other foundations and have some con­

fidence that the results were reasonably realistic. 

9. Conclusions 

The discussions in Sections 2 to 6 of this chapter are meant merely to indicate 

the main features of the vibrational behaviour of a machine foundation. When it 

is necessary to study the behaviour of a foundation in practice, it is not realis­

tic to expect that much useful information can be obtained by cousidering the 

structure as a one or two degree of freedom system. For most machines, especially 

the larger ones, the supporting structure is quite complex and requires many 

degrees of freedom to give an adequate representation. Clearly it is not always 

possible to perform as detailed an analysis as outlined in the previous section. 

However, it is desirable that all the resonances of a foundation in the range of 

frequencies in which the machine is operating should be known. The representation 

of the foundation should be such that the frequencies of modes which correspond to 

swaying, bending or torsion of the structure can be calculated in addition to those 

consisting of the simple vertical motion. If possible any analysis should examine 

the behaviour of the combined machine-bearing-foundation system. 



194 

References 

1. Barkan, D. Dynamics and Bases of Foundations, MCGraw-Hill, 1962. 

2. Major, A. 
Turbines, 

Vibration AnaLysis and Design of Foundation for Machines and 
Collets, 1962. 

3. Flint, I.J. Plant aspects of turbine generator foundations, Proceedings 
of the Institution of MechanicaL Engineers, Vol.181, Part 1, No.22, 567-578, 
1967. 

4. Wilson, R.R. Flexible supports for rotating machinery, Shock and Vibration 
Digest, Vol.6, No.6, 1-5, 1974. 

5. Den Hartog, J.P. MechanicaL Vibrations, McGraw-Hill, New York, 1956. 

6. D.I.N. 4024, Supporting structures for rotating machinery, particularly 
table-type foundations for steam turbines, German standard, 1955. 
(Translation I.B. 1751). 

7. B.S. 4675:1971, Recommendations for a basis for comparative evaluation of 
vibration in machinery, British Standard Institution, London, 1971. 

8. V.D.I. 2056, Evaluation criteria for mechanical vibrations in machines, 
German standard, 1964. (English Electric translation, May 1968). 

9. Wilson, R.R. and C.A. Brebbia Dynamic behaviour of steel foundations for 
turbo-alternators, JournaL of Sound and Vibration, Vol.18, No.3, 405-416. 
1971. 



CHAPTER 11 

VIBRATION OF AXISYMMETRIC SHELLS 

by 

J. Wilson 

1. Introduction 

Axisymmetric shells, also termed shells of revolution, form an important class of 

shell structures used in a variety of engineering applications. Examples of their 

use are cooling towers at power stations, industrial chimneys and containment 

vessels. 

A shell of revolution is defined as the shell formed by complete or partial rotation 

of a generator about an arbitrary axis of symmetry. We will consider shells of 

revolution formed by the complete rotation of a generator and bounded by planes 

perpendicular to the axis of rotation. 

In this Chapter, equations governing the elastic deformation of a shell of revolution 

are derived from the thin shell theory of Novozhilov [8] and the assumptions under­

lying Novozhilov's theory are outlined. 

2. Novozhilov's Thin Shell Theory 

2.1 Assumptions 

Shells of revolution have been studied extensively and numerous theories have been 

proposed. The books of Novozhilov [8] and Kraus [7] between them give a good 

historical account of the development of these theories. The basis of all current 

shell theories are the Kirchoff-Love hypotheses. These assume: 

(i) a thin shell. 

If the ratio of the shell thickness, h, to the smaller principle radius of curvature, 

r o ' is small, the shell is termed thin and its geometry may be defined by the shape 

of its mid-surface and its thickness normal to the mid-surface. The errors incurred 

by this assumption are of the order of h/ro. Novozhilov has suggested that this 

ratio should be less than 0.05 to justify the use of thin shell theory. The 

accuracy of structural calculations could thus be contained within an acceptable 

error. 

(ii) small deformations. 

Linear theory may be used if the deformations are small compared with the shell 

thickness. 

(iii) lines normal to the mid-surface before deformation remain so after 

deformation and do not change their length. 
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(iv) normal stresses acting on planes parallel to the mid-surface are 

negligible compared with other stresses. 

Assumptions (iii) and (iv) are similar to the assumptions made in simple beam theory 

and they imply that transverse shear stresses are negligible. The following 

assumptions, additional to the Kirchoff-Love hypotheses are made: 

(v) uniform boundary conditions. For many structures such boundary 

conditions approximately hold. 

(vi) the shell materials are isotropic, homogeneous and linear elastic and 

each portion of shell composed of a single material is itself a complete shell of 

revolution. 

(vii) for dynamic behaviour of shells, it is assumed that the contribution 

of the rotatory inertia terms to the kinetic energy is negligible. 

More refined theories may be obtained by removing or delaying one or more of these 

assumptions in the derivation of the equations of motion for a shell of revolution. 

(See Kraus [7], Chapter 3). 

For practical structures, a simple theory based on the Kirchoff-Love hypotheses 

will be sufficiently accurate. 

2.2 Equilibrium Equations 

To obtain the equilibrium equations for a shell of revolution we consider a portion 

which has been cut from the shell. The shell portion is bounded by two generators 

and two arcs which lie in parallel planes perpendicular to the shell axis. The 

applied external forces consist of body forces acting on the portion and surface 

forces acting on both inner and outer faces of the portion. Internal stresses act 

on the surfaces exposed by the cuts. 

The Kirchoff-Love assumptions enable the thin shell to be replaced by its mid­

surface. Thus the shell portion is replaced by a portion of the shell mid-surface 

defined by the coordinates r, sand 6, and having meridional sides of length os 

and parallel arcs of length r 06 and (r+or) 06. (See Figure 1). 

r is the perpendicular radial distance from the axis of symmetry to the shell mid-

surface. s is the distance measured along the meridian or generator. 

longitudinal angular coordinate of the meridian. 

is the 

The applied external forces are replaced by equivalent uniformly distributed stresses 

qn' qs and q6 acting on the surface of the mid-surface portion in the normal, 
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meridional and longitudinal directions respectively. (Moments due to external 

forces are neglected). The internal stresses are replaced by stress resuZtants 

acting along the boundaries of the mid-surface portion. Stress resultants are 

expressed in terms of forces or moments per unit length of boundary. 

Figures 2a and 2b show the stresses and stress resultants acting on the portion of 

the shell mid-surface. Ns and Ne are the direct stress resultants, Nse and Nes are 

the in-plane shear stress resultants, Qs and Qe are the transverse shear stress 

resultants, Ms and Me are the bending stress resultants and Mse and Mes are the 

torsional stress resultants. (N.B. The total forces acting on the mid-surface 

portion are obtained by multiplying the ~tress or stress resultants by the area or 

arc lengths of mid-surface portion respectively.) 

The equilibrium equations for a portion of a shell of revolution may be derived 

from Novozhilov's general theory of shells. They are 

(rNS ) 
aNes 

- N r sin ~ - rQs + r 0 r ~ + r ae r s qs s s e s 

(rNse ) 
aNe 

+ Nesrs r as + r ae sin ~ - rsQ e cos $ + r r s qe 0 s s 

(rQs ) 
aQe 

+ rN + rsNe cos $ + r r as + r ae r ~ 0 s s s s 

(rM ) 
aMes 

- M r sin $ + r rsQs 0 r as + r ae s s s e s 

(rMse ) 
aMe 

Mesrs r as + r ae + sin $ - r r Qe 0 s s s 

Mes cos $ Mse 
N - Nes + 0 se r r s 

(la) 

(lb) 

(lc) 

(ld) 

(le) 

(If) 

where rs is the radius of curvature of the meridian at distance s. The curvature 

is defined as positive if the axis of the shell and the centre of curvature lie on 

the same side of the meridian (see Figure 1). 

to the meridian and the axis of symmetry. 

2.3 Strain-displacement Relations 

$ is the angle between the tangent 

The strain-displacement equations of Novozhilov may be written for a shell of 

revolution in terms of the r, e, s coordinate system illustrated in Figure 1 as 



E 
S 

E 
sS 

K 
S 

au w 
as + r 

s 

sin ¢> 

r 

1 
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2 

r 
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rr 
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cos ¢> 
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ds 
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sin ¢> aw 
r as 

1 au + cos <1> [av _ sin <1> v ] + 
rr as r as r 

s 

sin ¢> aw 
--;z as 

1 a2 w 
r asas 

where s is the meridional coordinate 

S is the longitudinal coordinate 

ES,ES are the direct strains in the sand S directions 

ESS is the 'mathematical' shear strain (= Y, 'engineering' shear strain) 

KS,KS are the changes of curvature of the shell mid-surface in the sand 

directions 

KSS is the change in twist of the surface 

u, v and ware the shell mid-surface displacements in the meridional, 

longi tudinal and normal directions respectively (see Figure 3). 

(2) 

¢> is the angle between the tangent to the meridian and the axis of the shell. 

The equations (2) are such that, if u, v and w represent rigid body displacements 

given by Dawe [2J, the strains and curvature changes are zero. 

2.4 Stress Strain Relationships 

For a thin shell of revolution, the stress-strain relationships may be written for 

an isotropic material as 

N C ( E + VES) S s 
Ns C (ES + VE ) 

s 

N N Eh (3) 
se es (l+v) Ese 

M D (K + VKe) s s 

Me D (KS + VKs) 

MsS Mss 
Eh3 

KSS 
l2(1+v) 
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NOTE: The rotation a is clockwise about the direction of 
the double arrow. 

Figure 3 Displacements of an Element of a Shell of Revolution 
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Figure 4 Mode Shapes for Shells of Revolution 
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where C 
Eh 

1_\1 2 

D 
Eh' 

12(1-\1 2 ) 

E is the Young's modulus 

\I is the Poisson's ratio 

and h is the shell thickness. 

The above expression is given by Novozhilov [8] who derives it from a more complex 

expression by assuming that the shell is thin. This approximation does lead to 

inconsistencies in the theory of shells, because it assumes that 

N 
s8 

M 
s8 

N 
8s 

M 
8s 

(4a) 

(4b) 

Equations (4) are thus incompatible with the identity (If). Flugge [4] shows that 

this identity is not required in solving the shell equations. 

2.5 Form of General Solution 

For shells of revolution having simple geometries and loading distributions, 

analytical solutions to equations (1), (2) and (3) may be found (Flugge, [4]; 

Novozhilov, [8]; Kraus, [7]). Indeed even for shells having complex geometries and 

loading patterns, the solution for any linear structural property, X, (i.e. dis­

placements, strains, stresses etc.) may be expressed as a Fourier series as in the 

equation, 

x(s,t) l aj(s,t) cos j8 + 
j=O j=l 

b .(s,t) sin j8 
J 

(5) 

where t is time, and a and b are functions (not necessarily analytic) of sand t, 

j is an integer which has significance in vibration analysis. It is termed the 

circumferential mode number and is used to define mode shapes in which a shell of 

revolution vibrates. These modes of vibration are often termed 'classical'. Figure 

4 shows the mode shape for each component of displacement at every cross section of 

a vibrating shell of revolution for j = 0, 1 and 2. The value, j = 0, corresponds 

to a breathing mode (or torsional mode) of vibration; j = 1 to a sway type of mode 

of vibration; j = 1 to a sway type of mode and j = 2 or more to 

an ovalling mode of vibration. 

The classical mode shapes of a thin shell of revolution have the following form: 
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u f1 (s) cos je 

v f 2 (s) sin je (6a) 

w f 3 (s) cos je 

where f l , f 2 , f3 are functions of s. 

When the quantity, X, is associated with steady state vibration, a j and b j become 

separable in sand t and equation (5) may be written 

X(s,t) X(s) 
iSlt 

e + I 
j=l 

b .(s) 
J 

sin (6) 

When a closed form solution for the quantities a. and b. of equations (5) and (6) 
J J 

cannot be obtained, a numerical method of solution must be used. One very important 

class of numerical methods which may be used to obtain a solution to the shell 

equations (1), (2) and (3) is the finite element method. In the finite element 

displacement method, which is described nex~ it is not necessary to satisfy the 

equilibrium equations. 

3. Finite Element Displacement Method Applied to Axisymmetric Shells 

3.1 Axisymmetric Shell Finite Element 

Figure 5 shows the axisymmetric shell finite element with generally curved meridian 

and varying shell thickness. It is bounded by two parallel planes perpendicular to 

the axis of rotation which intersect the element at nodal circles. 

3.2 Displacement Functions 

The displacement functions chosen to describe the displacement of an axisymmetric 

shell element are given in equation (7) for jth harmonic number. 

u. 
J 

(U5j + 
, 

USjS' ) sin je + u6j s u7j s + (7) v. 
J 

+ ( S5j + S6j s + S7js 
, 

+ SSjS' ) cos je 

w. 
J 

(ugj + 
, 

+ u12js' ) cos je ulOjs + ulljs 

+ (8gj + 8l0j S + SlljS' + 812j S' ) sin je 

These displacement functions are of the same form as equation (6). 
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Figure 5 Local and Global Degrees of Freedom at Nodal Circles 
of a Shell of Revolution Element 

732 in. (18.59 m) 
a 

3236 in. (82.19 m) 

Note The meridian is defined by the hyperbola 
2 2 r x :;-;; 

where a = 1008 in. (25.60 m) 

b = 2516 in. (63.91 m) 

Meridional thickness 5 in. (0.127 m) 
Young's modulus 3 x 106 lbf in-2 (2.069 x 10 10 Nm-2) 
Density 150.111 Ibft-3 (2405 kgm-3) 
Poissons ratio 0.) 5 

Dimensions and Material Properties of Hypothetical 
Cooling Tower. 
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The a and B . . terms in equations (7) are separable and their form is such that 
ij ~J 

any operation on one set of terms may be derived from the same operation on the 

other set by replacing j by -j (Percy et al. [9]). In the subsequent treatment, 

the Bij terms are ignored except where otherwise stated. 

3.3 The Degrees of Freedom of the Axisymmetric Element 

The displacement functions can be represented in terms of certain degrees of free­

dom existing at the nodal circle boundaries of the element. The only degrees of 

freedom which must be continuous across the element interface are u, v, wand the 

meridional rotation, b, where b is defined by equation (8) 

b 
aw 
as 

u 
r 

s 
(8) 

Then senses of these degrees of freedom are shown in Figure 4 where the subscripts 

1 and 2 refer to the first and second nodal circles respectively. If these degrees 

of freedom are selected as the nodal variables then the total number of degrees of 

freedom per element is therefore eight. 

Because in equation (7) there are 12 a coefficients for each harmonic number, four 

extra degrees of freedom must be introduced into the element. This is done by the 

introduction of two internal nodes, and corresponding extra degrees of freedom, 

internal displacements u I and VI (Figure 5). 

3.4 Derivation of Stiffness and Mass Matrices for the Axisymmetric Shell Element 

The stiffness and mass matrices of the axisymmetric shell element are derived as 

shown below for the jth harmonic number. The subscript e denotes an element. 

By substituting equations (7) in 

Ej 
-e 

where Ej is the strain vector 
-e 

a j is the vector {al -e 
a2 

Matrices ej and Bj =e given 
-e 

The nodal displacement vector, 

ment coefficients a j 
-e 

in 

J 
-e 

(2) we obtain in matrix form 

ej Bj a j (9) 
-e -e 

{E Ee E K Ke K }j 
s se s se e 

j 
a 3 ....... a9 a lO all a12 }e 

the Appendix. 

can now be expressed in terms of the displace-

(10) 
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where u j is the vector {,-u1 vI wI b1 u v u v w b u v }j and L is 
-e Il Il 2 2 2 2 12 I2 e -e 

obtained by putting s 0, ~/3, 2~/3 or ~ in equations (7). ~ is the length of 

the element meridian. 

The matrix ~e is given in the Appendix. 

Hence we have a j L-l u j 
-e -e -e 

or £j e j Bj L-1) 
-e -e -e -e 

For a thin shell, the strain energy stored in each element can be written as 

1 
2 

o 0 r de ds 

(11) 

(12) 

(13) 

By substituting from equations (3) in equation (13) and expressing this in matrix 

form,we have 

f~ J2TI . T . !.. [ £ J 1 E £ J r de ds 
2 -e -e-e 

o 0 

The matrix E is given in the Appendix. 

On substituting equation (12) in (14), equation (15) is obtained 

E e. de Bj ds L-1 u 
-e -J -e -e-e 

o o 

Equation (15) can be simplified because all the integrals involving the 

circumferential coordinate, e, are either of the form 

or J
2TI 

sin 2 j e de 

o 

(14) 

(15) 

(16) 

These expressions have the value nTI where n takes the value 2 for j 

j ~ 1. Thus equation (15) may be written 

° and 1 for 

where 

1 
2 

k j the element stiffness matrix for the jth circumferential mode of 
-e' 

vibration,is defined by 

o 

(17) 

(18) 
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The kinetic energy of the element may be expressed as 

1 
2 

o 0 

(19) 

where p is the density of the material forming the shell element and rotary inertia 

terms are neglected. By substituting equation (7) and (11) in (19) and making use 

of the integrals of equation (16), equation (19) becomes 

ri 
e 

1 
2 

where mj is the element mass matrix which is defined by 
-e 

ft prh X 
-e 

ds L-1 
-e 

o 

(20) 

(21) 

The matrix ~e is given in the Appendix. It is seen that ~e is independent of j. 

Note that the mj is independent of the circumferential mode number except for the 
-<3 

value of the constant n. The inversion of the matrix ~e and the integration of 

the equations (18) and (21) is carried out numerically by computer. 

3.5 Reduction of Mass and Stiffness Matrices 

In Section 3.2 it was stated that only four degrees of freedom at each boundary 

node must remain continuous to preserve the integrity of the shell, and therefore 

the element stiffness and mass matrices need only have dimensions 8 x 8 instead of 

12 x 12. The use of smaller matrices would enable larger numbers of elements to be 

used and hence more complex problems to be solved. 

The size of the structural stiffness and mass matrices may be reduced by a technique 

due to Guyan [5] & subsequently Henshell et al.[ 6] applied this method to element 

matrices. The methods require that the element mass and stiffness matrices be 

partitioned so that the strain and kinetic energies of the element for the jth 

harmonic may be written in terms of vectors involving only the external boundary 

degrees of freedom uj 
-B e 

l[T'T]' 'u J 2' '::B'-I , e 

1 
2 

.T 
~B 

• T ] j 
~I 

e 

(22) 

(23) 
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where uj 
-B 

is the vector {u1 VI WI b1 u2 v2 w2 b2}~ 
.e 

}j uJ is the vector {un vn u12 v12 -I e 
e 

The reduced element stiffness and mass matrices may then be written as 

[~r Jj [ ~BB - ~B1 
-1 ~1BJj (24) ~II 

e e 

[m ]j 
[ ~BB -1 -1 -1 

-1 r (25) = - ~B1 ~II ~1B - ~B1 ~II ~1B + ~B1 ~II ~II ~II ~1B e -r e 

Henshell et al. point out that there will be errors in the mass matrix but these 

are assumed negligible. 

3.6 Transformation from Local to Global Coordinates 

Transformation from local nodal displacements to global nodal displacements, Uj , -e 
is carried out as in equations (26) and (27) to give the global element stiffness 

and mass matrices Kj and Mj 
-e -e 

RT [~rP R 
-e -e e 

(26) 

RT 
hrP 

R 
-e -e e 

(27) 

where Uj = {u* v* w*l b*l u* v* w* b*}j and the transformation matrix R is -e 1 1 2 2 2 2 e -e 
given in the Appendix. The asterisks denote global quantities in the directions 

x, e and r as shown in Figure 5. 

4. Vibration Applications 

The adequacy of the curved axisymmetric shell element described in this section was 

assessed by comparing the accuracy of computed natural frequencies of several shells 

of revolution and the convergence of the computed values to exact or established 

values of frequencies. 

The vibration equation for each value of j may be written 

where 

[K. - w2 M.l Uj 
-J -J-o 

o 

~j is the global structural stiffness matrix formed by assembling the 

element matrices. 

(28) 

~j is the global structural mass matrix formed by assembling the element 

mass matrices. 

Uj is a vector of the global nodal displacement amplitudes for the whole 
-0 

structure. 
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5. Example 

To show how effective a finite element analysis can be, the natural frequencies of 

a notional cooling tower have been computed. The dimensions of the tower and 

material properties of the concrete are shown in Figure 6. 

The tower was first analysed by Carter, Robinson and Schnobrich [1]. Their results 

are given in Table 1 which shows the first four natural frequencies for values of 

circumferential mode number j ranging from 0 to 4. The results B were obtained 

using the finite element analysis described in the previous section. The number 

after B shows the numbers of finite element used in the analysis. Results C were 

obtained by Debnath [3] using another shell finite element. 

The results of Table 2 demonstrate the convergence of the natural frequencies 

computed by the finite element method to the established solution. An error of 

less than 1% is obtained using only eight elements to represent the whole shell 

for each of the frequencies shown. 
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Table 1 The Natural Frequencies of a Hypothetical Cooling Tower 

Axial Method Circumferential Mode Number 
Mode of 

Number Solution 0 1 2 3 4 

A - 3.290 1.765 1.375 1.181 

B 1 7.005 3.328 1.871 1.576 1.667 
2 6.476 3.305 1. 774 1.402 1.254 

1 4 6.298 3.296 1.768 1.377 1.184 
8 6.251 3.292 1. 767 1.377 1.181 

16 6.238 3.291 1. 767 1.376 1.181 

C 6.233 3.290 1.766 1.376 1.181 

A 7.752 6.793 3.695 1.991 1.448 

B 1 8.550 8.081 5.112 3.567 3.009 
2 2 7.964 6.965 3.765 2.051 1.538 

4 7.809 6.832 3.704 2.001 1.455 
8 7.769 6.803 3.693 1.995 1.450 

16 7.758 6.797 3.691 1.994 1.449 

C 7.752 6.793 3.689 1.994 1.448 

A 11.42 10.52 6.959 4.327 2.778 
3 

B 1 16.64 17.90 28.55 40.55 52.57 
2 14.13 11.83 7.642 4.826 3.182 
4 12.35 10.73 7.028 4.386 2.809 
8 11.59 10.55 6.968 4.346 2.783 

16 11.43 10.53 6.960 4.340 2.780 

C 11.43 10.52 6.956 4.337 2.778 

A 11.91 - - - -

B 1 17.82 29.37 45.14 60.19 75.33 
2 16.89 15.04 12.82 9.920 7.642 

4 4 13.76 12.44 9.676 6.855 4.768 
8 12.26 11.55 9.467 6.736 4.692 

16 11.95 11.38 9.447 6.722 4.680 

A Established Solution (Carter et al. [1]). 

B Finite Element Solution. The following number indicates the number of elements 
used in the idealization. 

C Finite Element Solution (Deb Nath [3]). 
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APPENDIX 

Matrices used in the Text 

Matrix ej 

cos je 

cos je o 

sin je 

cos je 

o cos je 

sin je 

e is the tangential coordinate. 

Matrix E 

Eh vEh 
I_v' 1-v' 

vEh Eh 
1-v' I_v' 

o 

2 Eh 
1+v' 

Eh' 

vEh' 
12{I-v') 

o 

vEh' 
12{1-v') 

Eh' 
12{1-v') 
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Matrix L 
e 

1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 

1 
0 0 0 0 0 r s1 

0 0 0 1 0 0 

1 ~ ~2 ~, 0 0 0 0 0 0 0 0 

0 0 0 0 1 ~ ~2 ~3 0 0 0 0 

0 0 0 0 0 0 0 0 1 ~ ~2 ~, 

1 ~ ~2 ~, 

0 0 0 0 0 2~ ~2 1 
rs2 r s2 rs2 r s2 

1 
~ ~2 ~, 

0 0 0 0 0 0 0 0 3 9 27 
~ ~2 ~, 

0 0 0 0 1 
3 9 27 0 0 0 0 

2~ 4~2 8~' 
0 1 

3 9 27 0 0 0 0 0 0 0 

0 0 0 1 
2~ 4~2 8~' 

0 0 0 0 0 
3 9 27 

~ is the length of the curved meridian for the element. 

Matrix X 
-e 

X x 0 

j 
-e -e 

x 
-e 

0 x 
-e 

where 

x 1 
-e 

s S2 s' 

s S2 S' s· 

S2 S' S' s' 

s' s' s' s· 
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Matrix R 
-e 

cos ~l - sin ~l 

1 0 

sin ~l cos ~l 

1 

cos ~2 - sin ~2 

1 

sin ~2 cos ~2 

o 1 
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CHAPTER 12 

SOME RECENT ADVANCES IN STRUCTURAL VIBRATION 

by 

G.B. Warburton 
1. Introductory Remarks 

In recent years the finite element method has been developed to the state where 

approximate mathematical models can be formulated for complex practical structures. 

These models have to represent the actual geometry and take into account the types 

of deformation which the structure will undergo in practice. Large versatile and 

efficient computer programs, which are based on the finite element method, exist 

for stress analysis; a general program will include the capability of determining 

response to dynamic loads. Research work on the finite element method continues, 

but new elements, which are economical, accurate and conform with existing elements 

for ,the other types of deformation and thus are worthy of inclusion in general 

programs, are of less frequent occurrence. Developments continue in elastic­

plastic problems, which occur for large deformations, for example in earthquake 

engineering. 

A modelling problem occurs when finite elements are used to idealise either the soil 

underlying a structure or the fluid surrounding a structure in dynamic interaction 

problems. The former occurs whenever vibrations are transmitted to a structure 

through the ground, for example by traffic, explosions, machines in the vicinity 

and earthquakes. It will occur also for other problems, such as the wind-induced 

response of a structure, unless it is assumed that the foundation is immovable. The 

latter problem exists for dams and offshore structures. The use of a very large 

number of three-dimensional elements to simulate the ground or surrounding fluid 

leads to excessive computation. Although considerable work has been done with two­

dimensional models, either by using a plane strain idealisation (e.g. dam problems) 

or using an axisymmetric representation (suitable for geometrically symmetric 

structures), there remain many problems which have to be treated three-dimensionally 

in order to determine response. Artificial boundaries have to be provided for the 

finite element mesh representing the soil; these should not allow any reflected 

waves to return to the structure whose behaviour is of prime importance. (A 

similar problem concerning artificial boundaries arises when designing an experi­

mental idealisation of interaction problems.) Progress has been made with the 

generation of satisfactory artificial boundaries, which allow a conventional finite 

element approach, but other methods have been developed: analytical solutions for 

the soil or fluid, which are combined with a finite element analysis of the structure 

(analytical solutions are limited to relatively simple geometries); representation 

of the outer domain by infinite elements; and combinations of finite element and 
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boundary solution procedures. It is not proposed to attempt to summarise the 

extensive recent and current work in these areas, but instead recent advances in 

methods of determining response, which is the basic problem of structural dynamics 

and is a major subject of study in this book, will be outlined. 

Although the principles of determining the response are well established, oonsid­

erable research effort is being expended in order to develop satisfactory approx­

imations, which are accurate and efficient. A realistic finite element model of 

any large structure leads to matrix equations of large order; allowance for inter­

action effects makes the order considerably larger. Displacements are often of 

such a magnitude that non-linear behaviour of some parts of the structure must be 

considered. Excitations may be simulated deterministically or stochastically. 

These three features have influenced developments in structural dynamics. 

Recent advances for the normal mode method, namely the treatment of the damping 

matrix, truncation of the series solution and use of response spectrum techniques, 

have been described in the chapter on the determination of response, so emphasis 

here will be on the direct integration methods, which are the subject of consider­

able current research. However, before doing this some comparative comments on the 

two methods may be useful. In direct integration methods the full set of equations 

must be used; matrix algebra, at which modern computers are very efficient, forms 

the basis of the numerical procedure, but the sequence of calculations must be 

repeated many times, i.e. small time steps must be used, to obtain response 

accurately. There is no necessity to determine any natural frequencies or mode 

shapes. In the normal mode method the natural frequencies wr and associated 

normalized modal vectors ~r must be determined for all modes which make a signifi­

cant contribution to response. Thus for a large system only a fraction of the 

frequencies and modal vectors are required in principle; in practice, it is likely 

that the number of modes which are retained in the summations exceeds the optimum 

minimum in order to ensure that no significant modes are omitted. It must be 

stressed that while a change in the time-history of the excitation or in the response 

quantity of interest has no effect on the natural frequencies and modal vectors, it 

can affect substantially the number of terms that must be retained in the series 

for response. If a response spectrum method is used and the relevant spectra are 

available, the determination of maximum response is a relatively simple task. 

Spectra have been obtained for most simple excitation - time histories and for many 

well-documented earthquake records. If the spectra have to be generated, the 

advantages of this procedure over a conventional time-history approach are less, 

but still significant. 
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2.Direct Integration Methods 

In these methods assumptions are made about the variation of the displacements or 

accelerations during small time intervals; e.g. it may be assumed that during a 

small time interval the displacement is a cubic function of time or the acceler­

ation varies linearly or is constant. With such assumptions the set of n second 

order differential equations is replaced, in general, by n simultaneous equations. 

The solution of the latter gives the displacements at the end of the short time 

step for known conditions at the beginning. Successive applications of this proc­

edure give the response. 

Many methods exist; the established methods, which have been incorporated in 

computer codes (finite element or finite difference) for determining the response 

of large structures, include the Newmark e, Houbolt, Wilson e and central differ­

ence methods. Methods which exhibit improved characteristics for test problems 

have been proposed by several authors, including Park [1] and Hilber et al [2,3]. 

Recent comparisons of some of the methods in current use are given in References 

[2-4.] 

If ~s+l' ~s and ~s-l are the values of U at times ts+l' ts and t s _1 
respectively, where t s +1- ts=ts-tS_1 ~t, a s~all time interval, and velocity, 

acceleration and force vectors at time ts are ~s' ~s and ~s respectively, the 

matrix equation for time t 
s 

is 

. 
M U + C U + K U 
- -s - -s -s 

P 
-s 

(1) 

If the solution at time ts+1 is determined by considering the equilibrium con­

dition at time ts' i.e. equation (1), we have an explicit integration method. The 

central difference method is one of the best known methods in this class. 

Substituting the difference formulae 

. 
U 
-s (2) 

U 
-s (3) 

in equation (1) and rearranging terms 

[~ + y.~t ~] ~s+l (4) 

In many applications damping is neglected. In order to preserve the explicit form 

of equation (4), i.e. give explicit expressions for U U t to l' 2' ..• a 1me t, 
s+l 
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rather than a set of simultaneous equations, M must be diagonal. This is a 

characteristic of the finite difference method, but not of the consistent mass 

matrix in the finite element method. However, lumped mass approximations can be 

used with the latter methods; also improved diagonal mass matrices have been 

developed for several popular elements in order to preserve the computational 

advantages of explicit expressions for U .. 
J 

These advantages are particularly 

important when the matrices are of large order. Damping may be included and the 

explicit form preserved (provided M is diagonal), if the backward, rather than 

central, difference approximation is used for u . 
s' i.e. equation (2) is replaced 

by 

The modified form of equation (4) can be written 

~s+l (5) 

The disadvantage of the central difference method (and all other explicit methods 

[5]) is its conditional stability, i.e., if too large a time step is used, the 

computations become numerically unstable. The stability criterion is 

where Tn is the period of the nth or highest mode of the system. 

~t/T 'lin, 
n 

If the solution at time ts+1 requires consideration of the equilibrium condition 

at time ts+1' the method is implicit and requires the solution of a set of simul­

taneous equations at each time step. With certain provisos these methods are 

unconditionally stable, at least for linear systems. In the Newmark method the 

assumptions are [6] 

~s+l 

U 
-s+l 

~s + ~t ~s + (Y,-8)(~t)2 ~s + 8(~t)2 ~s+l 

(6) 

Effectively this is a family of methods, as equations (6) contain two adjustable 

parameters 8 and y. If y < Y" negative damping is introduced by the algorithm, 

leading eventually to an unbounded response; if y > Y" positive damping is 

introduced. Thus in most applications y = Y,. The general expression for uncon­

ditional stability is [7] 

s ) ~ (y + Y,)2 (7) 

The parameter 8 is often taken to be ~; then the physical interpretation of 

assumptions (6) is that the acceleration vector is constant during the time interval 
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ts to ts+1 and is equal to the mean of ~s and ~s+l - hence the name 'average 

acceleration method'. It is noted that the case 8 = 1/6 and y = Yz (the 'linear 

acceleration method', as U varies linearly from ~s to ~s+l over the time 

interval) is an implicit method, which is only conditionally stable, as condition 

(7) is not satisfied. (~t/T ~ 0.551 is the stability criterion). 
n 

Putting Y = Y" but leaving 8 as an adjustable parameter, using assumptions (6) 

in equation (1) and two similar equations for times and ts+1' the following 

set of simultaneous equations is obtained after eliminating terms in U and U 

(~t)2[8 ~s+l + (1-28) ~s + 8 ~s_11 
(8) 

+ [2~ - (~t)2(1-28) ~] ~s - [~-Y, ~t C + 8(~t)2 ~] ~s-l 

3.Accuracy 

With a stable implicit method, e.g. Newmark with condition (7) satisfied or Wilson 

with e > 1.37, considerations of accuracy govern the choice of time step ~t. 

Considering the response to comprise contributions from normal modes, the approx­

imations in direct integration methods usually cause artificial attenuation of the 

response and some error in the period of the mode predicted by the numerical 

solution. These two effects increase as ~t/Tr increases, where T 
r 

is the period 

of the mode whose contribution is being considered. Errors from the above methods 

are compared in References [2-4] and [~. For the Newmark method with 8 = ~ and y = Yz 

the error in the predicted modal period Tr is less than 10 per cent, if 

'0.19. The other methods give a lower value of ~t for the same error. 

~t/T 
r 

Unlike other methods, the Newmark average acceleration method does not cause any 

artificial attenuation of the modal contributions to response. However, this is 

not necessarily the best algorithm, as the period errors cause the contributions to 

be combined with incorrect relative phase angles, and thus the maximum response may 

be in error. In practice, computational economies or lack of knowledge may cause 

the higher significant modes to be modelled inaccurately. This leads to the 

recommendation [2, 3, 8] that an algorithm should possess some artificial attenuation 

or numerical dissipation in order that the spurious response from higher modes is 

damped out. Controllable dissipation is included, together with unconditional 

stability and second order accuracy, in the desirable attributes of any direct 

integration method by Hilber and Hughes [3]. They propose a family of algorithms, 

the a method, in which the parameter a controls the numerical dissipation. 

Assumption (6) is used, but in the equilibrium condition for ts+1 [see equation 

(1) 1 ~ ~s+l is replaced by (l+a) ~ ~+1 - a~ ~s' Thus, when a = 0, it is 
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identical to the Newmark average acceleration method. The relations between the 

parameters are a = (1-a)2/4 and y = Y,-a. The range of practical interest is 

- Y" a ,0, for which the required numerical dissipation is obtained. However, 

as expected there is some degradation in accuracy as a departs from zero. 

Accepting their criteria, the a methods are demonstrated to be superior to the 

Wilson e, Houbolt and Park methods. However, their comprehensive study is based 

on matrix equation (1) without the damping term C U. 

In one test, which has been applied to many integration methods [2, 3, 8), a 1 DOF 

system, which can represent one modal contribution of a multi-degree-of-freedom 

system, is given an initial displacement and the algorithmic damping or decrease in 

amplitude at the end of one period is plotted against ~t/Tr' For undamped systems 

the amplitude decay increases as ~t/Tr and lal increase. For damped systems, 

using the Newmark method (a=O), the amplitude error is positive and increases as 

~t/Tr and the damping ratio increase. Thus, applying the a method to damped 

systems, increasing lal and the damping ratio causes errors of opposite sign in the 

amplitude and leads to a pattern of results of moderate complexity. For practical 

problems, where ~t/Tr' and possibly also the modal damping ratio, will vary with 

mode number, the determination of optimum integration conditions appears to require 

further study. 

For a stable implicit method an error criterion will be an upper bound on ~t/Ti' 

where ~Ti is the period of the highest mode which makes a significant contribution 

to the response. For an explicit method the stability criterion is an upper bound 

on ~t/Tn' In seismic problems only a small fraction of the modes makes a signifi­

cant contribution, i.e. i « n, and hence the maximum value of ~t to give accept­

able accuracy with an implicit method will usually be much larger than the maximum 

value of ~t for stability with an explicit method. Key [4) compares methods for 

application to different types of problem and recommends matching of methods, i.e. 

the errors due to the spatial and temporal approximations should be of opposite 

signs. In particular, lumped (diagonal) mass matrices, which predict low values 

of natural frequency, should be used in conjunction with the central difference 

method, which distorts frequencies upward; conversely consistent mass matrices, 

which predict high values of natural frequency, should be used in conjunction with 

a stable implicit integration procedure, which depresses the frequencies. For 

linear seismic problems he recommends the Hilber-Hughes-Taylor a method with a 

consistent mass discretisation. For impact problems he recommends the central 

difference method with a lumped mass discretisation. 
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4.Non-linear Problems 

In non-linear problems the restoring force vector K U in equation (1) is replaced 

by !(~,t), i.e. . 
M U + C U + F (~,t) P(t) (9) 

Applying the central difference method to equation (9), equation (5) is replaced by 

~s+l (10) 

where F is the value of F at time t • 
-s s 

Thus all terms on the right-hand side 

of equation (10) have been determined from previous iterations and ~s+1 is given 

explicitly by equation (10). 

If the Newmark method is applied to equation (9), ~ ~s+1 on the left-hand side of 

equation (8) is replaced by ~s+I' which depends on the unknown vector ~s+l. Thus 

an alternative procedure is necessary. We assume that 

~s+1 F + K OU -s -s 
(11) 

where ~s is the tangential stiffness matrix evaluated from the conditions at time 

t and 
s 

U - U 
-s+1 -s (12) 

Using equations (11) and (12) in the non-linear form of equation (8) and re-arranging 

terms 

[M + Y. 6t C + a(6t)2 ~sl aU 

(13) 

The solution of equation (13) gives aU and an approximation for ~s+l is obtained 

from equation (12). After obtaining the corresponding velocity and acceleration 

vectors, ~s+1 and ~s+l' from equations (6) it is necessary for accuracy and 

stability to determine the error vector :s+1 from the equilibrium equation • 

. 
:s+1 ~s+1 - ~s+1 - ~ ~s+l - ~ ~s+l 

Using (6t)2 :s+1 

a new iterated value of ~s+l is formed by adding 6U to the original value. This 

iterative procedure is repeated until 6U is sufficiently small; then the compu­

tation advances to the next time step. 
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Comparing the above approaches, the computational advantages of the central 

difference method are apparent. 

Owen [9) describes the application to non-linear problems of some major implicit 

algorithms, but concludes that explicit methods are considered to be more economical. 

The small time steps that are required to follow path-dependent stress histories 

may be of the same order as those imposed by stability considerations. Thus, as in 

linear wave propagation problems, where accuracy requires very small time steps, 

the disadvantage of the explicit formulation vanishes, but the computational advan­

tages remain. Comparative studies and surveys of earlier work are given in 

References[lO)and[ll). 

5.Partitioning 

If an explicit scheme is applied to a soil-structure interaction problem, the maxi­

mum time step to preserve stability is controlled by the maximum frequency for the 

idealization of the relatively stiff structure. A considerably larger critical 

time step would be predicted for an idealization of the flexible soil alone, but in 

a conventional approach to the complete system the lower critical time step must be 

used. As a major contribution to computational efficiency recent work has developed 

mesh partitioning, in which different integration schemes, or at least different 

time steps, are used for the various partitions. References ~)and U2)contain surveys. 

Explicit-explicit partitions with different time steps, explicit-implicit and 

implicit-implicit partitions have been developed. (Explicit-explicit partitions 

with the same time step, but with different computer programs for the two media, 

have applications in interaction problems). Explicit-implicit partitions are useful 

for soil-structure interaction problems; implicit integration is used only for the 

structural mesh, making possible the use of consistent mass matrices. The advantage 

over an implicit formulation for the complete system is the resulting smaller band­

width of the implicit part of the mesh, and the consequential diminished computational 

effort, particularly for non-linear problems. 

Emphasis has been on recent advances in the determination of response. However, 

this should not be interpreted as implying that advances are not occurring in other 

areas of structural vibration. For instance, reduction of vibration is of continuing 

interest. When calculations predict, or more likely measurements show, that un­

acceptable vibration levels will occur in components, there are various possible 

remedies. First, the source of excitation should be studied and its magnitude 

reduced if possible. Materials with higher damping, which could be achieved by the 

introduction of visco-elastic layers, or of high-damping joints or connections 

between sub-structures, will reduce response levels. If a particular component, 



223 

such as a sensitive instrument, may be subjected to excessive vibrations, it can 

be isolated from the source of vibrations by a resilient mounting. Similarly, if 

excessive vibrations are being transmitted from a machine to its surroundings, 

vibration isolation of the machine will be effective. If other methods of vibration 

reduction are unsuitable or impossible, the addition of a properly designed absorber 

system - in effect a damped single degree-of-freedom system - can achieve large 

reductions in vibration levels when the initial dynamic magnification factor is 

large. Reference 13 gives a survey of vibration reduction; the author [14] has 

described how to determine absorber parameters in order to provide the optimum 

reduction of response of vibrating systems. 
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1. Introduction 

CHAPTER 13 

FLUID STRUCTURE INTERACTION PROBLEMS 

by 

C.A. Brebbia 

In this chapter we will review those fluid-structure interaction problems which due 

to their dynamic effects are important in the design of off-shore structures. These 

effects can then be introduced into the equations of motion of the system, whose 

solution gives the response (deterministic or probabilistic) of the structure. 

In the past most off-shore structures were built in relatively shallow waters and 

had fundamental periods of less than one second. For these periods the sea spectrum 

does not present a significant energy content and the structures could be designed 

using equivalent static loads. In recent years off-shore structures have started 

to be built in deep waters and their fundamental periods have increased considerably. 

These periods may be in the order of 4 to 8 seconds for structures in between 100 

to 200 m. of depth. For these structures the equivalent static approach is not 

sufficient and a fully dynamic analysis is required. This analysis is necessary 

because their dynamic loads effects can be magnified by the response of the 

structure. A dynamic analysis can also provide an idea of fatigue damage. 

Two different methods of dynamic analysis are currently used for off-shore structures. 

The first is the design wave approach and consists of assuming a wave of a given 

period and height which represents the maximum wave occurring for certain environ­

mental conditions. The second approach is to work with the wave energy spectrum 

using probabilistic theory, which allows to obtain maximum results for stresses, 

displacements, etc. of the structure within a known confidence level. The latter 

approach is to be preferred since the design wave does not generally give the max­

imum response of the structure, which depends on how the structure reacts to the 

loading (e.g. a wave of the same or smaller height as the design wave but of longer 

period could produce a larger response if its period is nearest to the resonance 

one than the period of the design wave). One will generally expect the response 

from a spectral analysis to be larger than the one obtained by the design wave, as 

the former will take into consideration all the periods. 

Different environmental phenomenon contribute to the dynamic loading of off-shore 

structures, the most important of which is the wave loading. Wind blowing on the 

superstructure only represents a 5% to 10% of the total side loading. Currents due 
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to tides, winds, etc. are important because they produce significant drag forces 

and vortex shedding in structural members. Prediction of currents due to surges 

imply the simultaneous study of tidal, storm surges and currents due to wind and 

may be attempted using a numerical model which can correlate those different 

phenomena. In addition to these effects the designer should also consider the 

effect of water temperature variation on the structure and the foundation problems, 

including sco~ring. Consideration of the latter problems is beyond the scope of 

this chapter. 

Let us first discuss wave effects which produce the major loading forces in the 

system and can be introduced in the analysis using the design wave or the wave 

spectrum approach. In both cases the basic information about the waves is height 

and period which have to be converted into forces by applying in the first place, 

a wave theory. In this way velocities and accelerations are obtained from the wave 

height and period data. Wave theories range from the simplest linear theory to 

rather complex non-linear ones. The differences to be expected by using linear or 

non-linear theories are reported to be small [11], except for waves near breaking 

point. As the spectral analysis also requires a linear theory, in what follows we 

will use this. Once the velocities and accelerations are expressed in function of 

the wave height we can compute the forces produced by them on the members. Dis­

regarding for the moment lift forces produced by the phenomenon of vortex shedding, 

those forces are of two types, drag and inertia. For members for which the sig­

nificant length (e.g. such as diameter in a cylinder) to wave length ratio is small, 

one can use a Morrison's type formula to obtain the forces. This formula gives 

inertia and drag forces without considering any modification in the shape of the 

wave and is generally accepted to be valid for diameter to wave length ratio of 

less than 0.2. Structures of large diameter such as some of the gravity structures 

being built, are outside this range. In this case we have to take into consideration 

the change in the shape of the waves due to diffraction effects. For these struct­

ures the drag components are very much less important than the inertia ones, which 

tend to be large. It is the inertia effects the ones that the diffraction theory 

which is valid for inviscid fluids (i.e. drag), is able to calculate. 

Viscous effects around the member produce in addition to drag, a shedding of 

vortices in the wake. These vortices occur alternatively in one or the other side 

of the wake behind the obstruction (Figure 1). The succession of them is called a 

vortex street and has a frequency which is given by a dimensionless number called 

Strouhal number. If the shedding frequency of the vortices is similar to the 

frequency of the structure lift forces which are several times larger than the 

drag forces and also oscillatory, will occur. In many cases the natural frequencies 

of the structure are above the wave spectrum significant frequencies but within the 
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shedding frequency of the vortices and resonance occurs. The designer ought to be 

aware of this phenomenon as several failures of this type have been registered. 

When using the probabilistic approach, it is essential to determine carefully the 

wave spectrum. The form of this spectrum is of primary importance for the response 

and experiments should be carried out to find the spectra for different environ­

mental conditions. Unfortunately in most cases the designer will not have full 

experimental results. If this is so, one can use an empirical developed expression 

for the wave spectrum. One of the most commonly used is the Pierson and Moskowitz 

[19] spectrum, which gives the following expression for the wave elevation, 

~2 [ 
005 exp - Il (L)' ] 

ooW 
(1) 

where g is the acceleration due to gravity, 00 the frequency and W the wind speed at 

20 metres above the sea surface. a and Il are dimensionless constants. They can be 

taken as a = 8.1 x 10-3 and Il = 0.74 for the North Sea [14]. In Figure 2, equation 

(1) has been plotted for wind speeds of 10, 15 and 30 metres per second. Sometimes 

the designer is given the significant wave height, Hs' and the mean wave period, 

Tm. The a and Il constants can then be obtained using the following relationships 

presented by Scott [20], 

H s 

T 
m 

2 W2 
g 

(2) 

In what follows we will discuss in more detail the environmental effects mentioned, 

and how they contribute to the loading of the structure. The governing equations 

of a multi-degree of freedom system are written in terms of mass, -inertia and 

stiffness matrices plus any forces acting on the system, i.e. 

F(t) (3) 

where U are the structure displacements and interaction effects will be included in 

the F(t) term. 

2. The Mechanics of Drag, Inertia and Lift 

We will now study how drag, inertia and lift forces are created by looking at the 

case of a circular cylinder in steady and unsteady flow. The case of the cylinder 

is interesting because of its many structural applications and also is the best 

documented structural section. 
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Consider the cylinder in a uniform flow for which vortex shedding has not yet 

occurred. Typical streamlines around the section are shown in Figure 3, though 

the figure only shows a low Reynolds number which are the best documented ones; 

high Re numbers will give similar results. The shear (T) and pressure stresses (p) 

produced by the fluid are distributed around the body as shown in Figure 4 [1]. 
The components of these stresses in the direction of flow produce a force on the 

cylinder. Note that the hydrostatic pressure does not produce any net force on 

the cylinder. It is important to take it into account when designing the cylinder 

itself in order to prevent buckling. 

The momentum equations for the two dimensional incompressible viscous fluid 

surrounding the cylinder are, 

b l !~ + p V' vI p aXI 

b2 
!~ + p V' v2 p aX2 

(4a) 

where vI' v 2 are the velocities of the fluid, b l , b2 the body forces, p the pressure 

and p the dynamic viscosity. ~t is the particle derivative and is equal to a local 

time derivative part plus a convective part, i.e. 

D 
Dt 

a 
at 

This derivative is used when working in an Eulerian system of coordinates, for which 

the variables are referred to fixed cartesian axis. In solid mechanics instead, the 

variables are normally referred to a Lagrangian system for which accelerations are 

only function of the local time derivative, i.e. no convective part is required. 

In addition to equations (4a), the velocities have to satisfy the incompressibility 

condition, 

+ o 

The stresses are usually given by the following relationship, 

T 
12 + 

- p + 2p 

(4b) 
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Figure 3 Streamlines (Re = 40) 
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The numerical solution of equations (4a) and (4b) has been satisfactorily achieved 

for a reduced number of cases, all of them at low Reynolds numbers (Reynolds number 

is Re = vdjv, where v is the kinematic viscosity) and using numerical techniques 

the distribution of shear and pressure stresses around the obstruction are determined 

at any time free of experimental errors. However, even if such solutions were 

possible for high Re numbers, those distributions would be too complex to be used 

in the practice. Hence the designer usually represents their effects as a drag 

force and in addition, if the fluid or the obstruction accelerates, as an inertia 

force. The inertia component for high Re number is mainly due to the potential 

behaviour of the flow (i.e. as if there was no viscosity) the drag component is due 

to the viscous components (if the viscosity is zero, the drag disappears). Drag 

forces are function of the velocity field around the obstruction and inertia forces 

of the accelerations. For steady flow inertia will disappear. 

We will soon see an expression for these forces valid for slender member. In order 

to compute them we start by defining the velocities and accelerations in function 

of the wave height and period, using the following wave theory. 

Linear Wave Theory 

Consider a wave incident on a cylinder (Figure 5) and defined by the wave height 

H = 2a and the wave length A, D is the diameter of the member and d the depth, c 

is the velocity or celerity of the wave. 

We will review the linear solution for these periodic waves which has the advantage 

that can be applied in spectral super-position analysis. The equations governing 

the problem can be deduced from equations (4a) and (4b) after neglecting viscosity, 

i.e. 

DV2 
b2 - !~ (5) Dt p aX2 

a' aV2 vI 

° aXI 
+ aX2 

Note that we are again considering the two dimensional case for simplicity. The 

final results can easily be generalized for three dimensional problems. 

Assume that the only body force acting on the system is gravity. Hence, 

0, - g 



232 

TABLE I 

INERTIA CONSTANTS (Ref. 7) 

CM 
Cross section Added Mass per unit length 

1 O]D Cin
" 

P1fD2 
-4-

1 OJ 
Ellipse 

p1fD2 
-4-

Rectangle 

0:1 
DIB = 1 1.51 x p1fD2/4 

! DIB = 1/2 1.7 " 
D/B = 115 1.98 " 
DiB = 1/10 2.23 " 
DIB = 2 1.36 " 
D/B = 5 1.21 " 

~ D/B = 10 1.14 " 

!Et=tE E/D = 0.05 1.61 x p1fD2/4 

~ 

I. D .i 

E/D = 0.1 1.72 
E/D = 0.25 2.19 

P1fD2 
-4-

" 
" 

Direction of Motion 
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Taking into account that the flow is irrotational and substituting vI' v2 in 

function of a velocity potential (-1\ -~ v2 
a41 the equations of motions - aX1 

, = ax ), 

will give the following condition 

a41 1(.2 .2) P 
at + 2 v1 + v 2 + p 

2 

o (6) 

Small waves theory assumes that all motions are small which allows to neglect the 

velocity squared components. Hence equation (6) becomes, 

~ + ~ - g(d - x ) at p 2 o (7) 

The differential equation to be solved is the continuity condition which can now 

be written in function of 41 as, 

o (8) 

where V2 is the Laplacian operator. 

The boundary conditions to be satisfied are, 

o o (bottom) (8a) 

and from (7) we obtain on the surface, 

(8b) 

where n is the wave elevation. 

The solution of this system which can be seen in detail in reference (4) is 

periodic in time and space, and can be written for a right going wave as the one 

depicted in Figure 5. 

cosh KX2 
Potential a& sin(Kx1 - lilt) 41 

III sinh Kd 
(9) 

Wave amplitude n a cos(Kx1 - lilt) at the surface x2 d 

sinh KX2 
Velocity in x2 direction v2 K ~ sin(Kx1 - lilt) 

III sinh Kd 

cosh KX2 
Velocity in xl direction \ K~ 

sinh cos(Kx1 - lilt) 
III Kd 
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Figure 5 Small Amplitudes Waves 
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Figure 6 Drag Coefficien:s for a :ircular Cylinder 
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Jhere w is the angular frequency of the wave, W 

K = 211/1... (See Figure 5). 

211/T and K is the wave number, 

From the condition that v2 

write, 

d and n as given by equation (Bb), one can 

1 a2 cp 
gat> d 

Substituting the first of equations (9) into (10) we obtain, 

g K tanh(Kd) 

(10) 

(11) 

which relates the wave number to the depth and the angular frequency of the wave. 

The celerity of the wave is, 

c 2 ~ tanh(Kd) 
K 

If the waves are short, i.e. the depth divided by the length A, is greater or equal 

to Y" one has that Kd > 11. Hence tanh Kd ~ 1 and equation (11) becomes, 

W (12) 

Having defined the relationships (9) we can relate the wave amplitude spectrum Snn 

to the horizontal water-particle velocity and accelerations spectra. This gives, 

S. (w) 
v 

cosh 2 Kx2 
sinh 2 Kd 

S (w) 
nn (13) 

where v and v are the horizontal water particle velocity and acceleratibn respectively 

Drag and Inertia Forces for Slender Members 

If the characteristic dimension D (e.g. diameter) of the structural member is small 

compared with the wave length, the incident wave can be considered undisturbed by 

the member for all practical purposes. This approximation is valid for D/1.. <0.20 

ratios. The drag and inertia forces per unit length for the case of rigid slender 

members in unsteady flow fields are given by, 

p(x,t) ..... cI ;;(x,~ + fD v(x, t) v I v(x, t) (14) 

inertia drag 
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ground acceleration 

(a) Dam moving horizontally in a reservoir 
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- "/// 

b) Wall moving inside the water 

Figure 7 Fluid Structure Systems 
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CI is a constant due to inertia and consisting of two terms, one due to the 'hydro­

dynamic' mass contribution and the other to the variation of the pressure gradient 

within the accelerating fluid 

(14a) 

cm inertia coefficient for the section, A is the cross sectional area. 

The first term in equation (14a) can be explained by considering a body moving 

within a perfect fluid at rest. The acceleration of the body produces a series of 

pressure stresses at the interface between solid and fluid. Once the stresses are 

integrated we can find a force acting in the opposite direction to the body move­

ment and proportional to the acceleration. This force is called added or hydro­

dynamic mass force and is written as, 

Consider now instead the case of having the cylinder rigid and the fluid being 

accelerated. For this case, and in addition to the inertia or added mass forces 

which depend only in the relative motion between fluid and structure, we have a 

force due to the variation of the pressure gradient within the accelerating fluid. 

This force is always independent of the structure acceleration. 

In order to compute this force one can analyse how the case of a uniformly 

accelerating fluid can be transformed to the case of a stationary fluid but 

accelerating cylinder. For the case of the accelerating fluid we can select a 

Newtonian moving frame, such that the velocity of the fluid far from the body is 

always zero. This is done by assuming that the frame is moving with a v.(x,t) 

acceleration. Hence all the fluid in the new frame has a fictitious uniform body 

force - v(x,t) per unit mass. The system can now be transformed to a similar case 

as the one accelerating cylinder - stationary water. The cylinder will have a - v 

acceleration with respect to the 'stationary' fluid which has now a body force term 

due to the change of reference frame. Note that the additional contribution will 

be pAv, where A is the cross sectional area of the member and is analogous to the 

body forces in a member due to gravity action (i.e. buoyance forces). Hence the 

inertia force on the body per unit length can be written 

PllD 2 
(c - V + pAv) m 4 

In Table I inertia coefficients for some sections are presented in relation to the 

coefficient for an infinite cylinder in ~ infinite medium, cm = 1. Drag 
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coefficients are more difficult to find in the references but those for a circular 

cylinder are shown in Figure 6 in function of He numbers. The relationship between 

cd and CD coefficients is given by 

If the member is flexible and moving with u, U velocity and acceleration, equation 

(14) can be generalized to take interaction into account as, 

p (15) 

Note that this formula is different from the one used in references [5] and [6] 

where the term CAY has been left out. We think that formula (15) ,is correct. One 

can also write (15) as 

p (16) 

where r v - u and r - v - u. 

The drag term in equation (16) is non-linear and a linearization is now necessary 

to solve the problem. If we assume that a linearized damping coefficient C exists 

[6], we can write, 

E can be interpreted as an error function that we try to make zero. We can minimize 

E using the least square technique. 

< > 

< aE2 > = 
ac 

- 2 If I - Cr)r > 

denotes time average. From (17) we obtain 

For a Gaussian process with a zero mean one has [5] 

< f2 > 0. 2 
r 

< It I > 

o (17) 

(18) 

(19) 
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0. 3 
r 

(19) 

Hence we obtain, 

(20) 

This coefficient can be obtained for each of the degrees of freedom of a system and 

put into a diagonal matrix form. Note that to obtain (20) we need to know the 

distribution of r which is unknown at the beginning of the process. We can start 

the problem with the 0y corresponding to the velocities for a rigid pile and use a 

cyclic procedure to obtain or. Using this procedure convergence of the solution 

can be assured [5). It is important to note that the use of the initial 0y in the 

calculations without any cyclic improvement to obtain or ' can give place to errors 

in off-shore frame structures for which the drag effects are not negligible when 

compared against the inertia ones. The inertial drag effects ratio for these 

structures will also depend on the wind velocities (which determines the wave spec­

trum). The inertial effects for them may dominate at lower wind velocities but at 

higher velocities, the drag contributes significantly to the total hydrodynamic 

forces acting on the structures. 

Drag forces coefficients calculations are not yet as accurate as those for the 

inertia forces, which can be reasonably well computed as potential effects using 

numerical. methods. 

Computation of Inertia Coefficients using Potential Theory 

Let us now deduce the mass coefficients for the inertia forces acting on an 

arbitrary structure. These coefficients are then arranged in a matrix which is 

sometimes called hydrodynamic mass matrix. 

The first study of this topic is due to Westergaard [23) who determined the hydro­

dynamic forces on dams during earthquakes. He made two main hypotheses, a) incom­

pressibility of the water and b) that there were no surface waves. The reservoir 

was considered tp be infinite. Westergaard solved the problem by using an analytical 

solution for the pressure distribution over a rigid wall subjected to harmonic 

ground motion. The hydrodynamic forces produced are opposite in direction to the 

ground motion and are proportional to the acceleration. Hence they can be represen­

ted as an equivalent mass added to the mass of the dam. 

More recently there have been a series of experimental and numerical studies to 

determine equivalent masses for dams. 
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The equations governing the problem for a two dimensional case such as the one in 

Figure 7a) can be obtained by introducing the following assumptions in equations (4a). 

a) The convective terms can be neglected for this type of motion. 

b) The fluid is inviscid, as well as incompressible. 

c) The only body force acting on the system is gravity. 

Hence we have the two momentum equations, 

a· vI 
~ p 

at ax! 
(21) 

aV2 
~ p 

at aX2 
- g 

The continuity equation (4b) can be derivated with respect to time, which gives, 

o (22) 

Substituting (21) into (22) we obtain the following Laplacian 

V2 P 
a 2p a 2p 
~2 + ijX"2 

1 2 
o (23) 

where P is the total pressure and equal to, 

p (24) 

pgx2 represents the hydrostatic pressure and p the pressure due to motion. 

The boundary conditions corresponding to equation (23) are, 

i) We assume that there is no separation between fluid and structure. Hence on 

the face of the structure in contact with the fluid we have, 

ap 
an - p u 

n 

where un is the normal component of acceleration at the interface. 

(25) 

ii) The surface waves are assumed to be of small amplitude and such that their 

effect on pressure can be neglected. Thus, 

p o on free surface (26) 
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iii) At the bottom of the reservoir and sides other than the structure face the 

boundary condition is 

Numerical solution 

ap 
an o (27) 

The numerical solution of the problem indicated in Figure 7 can be attempted using 

finite difference, finite elements or boundary elements (References [4] and [5U). 
Boundary elements are nowadays usually preferred because they do not require the 

discretization of the internal domain as is the case with finite elements (see 

Figure 7b». 

Once the numerical method has been chosen one can study the motion of each of the 

points 1 to 5 on the solid (see Figure 7b» by assuming a unit acceleration for 

each of the hi segments (i = 1,5). Then we determine the pressures at any of the 

points of the grid from the solution of Laplace's equation with boundary conditions 

(25) to (27). This can be done by using a finite differences, finite elements or 

boundary elements code. 

The forces at nodes 1 to 5 due to the pressures obtained after applying the unit 

accelerations can be interpreted as the coefficients of a ~H square matrix such that, 

~H ~H U (28) 

where U is a vector of accelerations and ~n is a vector of nodal forces, both for 

nodes 1 to 5. 

In principle the hydrodynamic mass matrix can be obtained for any type of structures. 

In the practice the limitations are the computer time and storage necessary for the 

solution of complex structures. When using a numerical technique one generally 

approximates the infinite domain by a finite one, although this does not need to be 

always the case for boundary elements. This requires accepting that at certain 

distance from the body we can assume that a solid boundary with boundary conditions 

of the type !! = 0 exists. As an indication of the necessary length for this an 
finite domain we quote that results for the problems shown in Figure 7a) and for 

a ratio tid 4 are in fair agreement with those obtained for tid = = Hence a 

ratio tid = 4 in the numerical solution may be taken to represent tid + 

A note of caution shoul9"be given about the theoretical inertia coefficients deduced 

by using potential theory. These coefficients are not strictly valid as the viscous 

effects are not taken into account. Specially the wake behind the obstruction may 
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Figure 8 Vortex street development for Re = 100 showing 
stationary streamlines (stationary streaplines 
are obtained by sub tracting to the streamlines 
those corresponding to flow without the above motion). 
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significantly alter the results. The only practical solution in many cases is to 

use experimental coefficients when available. 

Wave Diffraction 

If the size of the body is such that D/A > 0.2 one can not any longer assume that 

the incident waves are undisturbed. The body will now diffract the waves which 

will change in shape. The inertia forces cannot be obtained using the previous 

potential theory, but it is necessary to apply diffraction theories which take into 

account the scattering of the wave energy due to the body shape. 

The diffraction analyses still involve the assumption of irrotationality, i.e. the 

fluid is inviscid, which means that drag forces or vortex shedding cannot in 

principle occur. This is not as bad a supposition as it may seem because drag 

forces can be neglected for large bodies, i.e. those with a ratio D/H > 0.2. This 

is due to the fact that for these structures the drag effects are negligible by 

comparison with the inertia ones. 

For the diffraction analysis one assumes that, 

i) The fluid is irrotational and incompressible. 

ii) The motions are small. 

iii) At infinity the wave follows an undisturbed harmonic motion but its shape is 

disturbed in the Vicinity of the body. 

The problem can be expressed in terms of ~(xit) the velocity potential by equations 

(7) and (8), that is, 

o 

o 

For the solution of (30) one can propose a harmonic function with a 

that, 

which gives 

The boundary conditions are, 

iwt 
~ e 

o 

i) At the free surface one has (see equation (8a)) 

(29) 

(30) 

frequency such 

(31) 

(32) 
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Hence v2 
1 a2 1j> 

gat"" 

ii) At the bottom, 

1 alj> 
g at and 
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aT) 

at 

which gives in terms of ~, 

a~ (02 

aX2 g 

wall or body surface one has 

a~ 

an 
0 

at d 

(33) 

(34) 

Far away from the body the incident waves are assumed to be described by the linear 

wave theory already seen. The solution of the above system of equations can be 

attempted in different ways. Boreel [2] has presented results obtained by super­

imposing the known solution for the incident wave to a solution obtained from a 

series of sources distributed over the body. The potentials of the latter are 

described using Green's functions selected in such a way that at infinity, they 

satisfy the radiation condition corresponding to a radially outgoing progressive 

wave. Once the potentials are known the pressure distribution can be found through 

equations (29). Nowadays many authors use boundary elements to solve this type of 

problem (see reference [5] ). 

Vortex Shedding 

We have already mentioned that there is a region of low pressure behind the body, 

which account for most of the drag force. Up to certain velocity this wake region 

is symmetric and does not produce any lift forces. When the velocity of the fluid 

increases, asymmetric eddies can be produced behind the obstruction which are 

alternatively shed. For a few cases (low Re numbers) this phenomenon has been 

numerically computed and the shedding frequencies have been found. For steady flow 

the frequency of these vortices and hence the frequency of the lift forces, is 

defined by the Strouhal number (S = Df/v , where f is the frequency, D the diameter 

or representative length and v the velocity of the fluid). 

In Figure 8 the vortices produced behind a rectangular obstruction for a Re = 100 

are shown. This figure shows numerical results obtained using finite elements and 

the method of solution is discussed in detail in reference [22]. The Strouhal 

number calculated from these results is approximately 0.12, which is in agreement 

with other known results and similar to those plotted in Figure 9 for a circular 

cylinder. 
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Once vortex shedding occurs one has to take the lift forces into consideration. 

They are usually defined in a similar way as the drag forces, i.e. 

per unit length 

c L will vary according with the shape of the body. 

(35) 

The flexibility of the body is also important for calculating the lift forces. 

Harleman in reference [13] mentions that experiments carried out on flexible cylin­

ders have produced lift forces of up to four times the corresponding drag forces 

for vortex shedding frequencies near the cylinder frequencies. If the natural 

frequencies of the cylinder were instead between 10% to 60% of the vortex shedding 

frequencies the lift forces were of the order of the drag forces. The increase for 

vortex shedding frequencies near the cylinder frequencies is apparently due to the 

eddies and cylinder systems becoming coupled, i.e. the cylinder triggers the 

shedding of the vortices. 

The designer has also to be aware that the system can start shedding vortices at a 

range of frequencies in the vicinity of Strouhal number. For instance vortices can 

start to be shed at the natural frequency of the structure even if the frequency 

is not in full agreement with the Strouhal frequency [24]. 

In Conclusion 

The ratio between drag and inertia forces depends on the dimensions of the structural 

component and the wave properties. The drag forces are important for values of 

D/H < 0.2, otherwise the inertia forces are of much more importance. Drag forces 

also decrease with depth more rapidly than the inertia forces. In general inertia 

forces are decisive in off-shore structures, specially if the diameter of the 

members is large. 

Example 

Consider a circular wooden pile which has been driven into a river bed. The length 

of the pile and depth of the river is 20 metres, the diameter 0.40 m. Compute the 

drag forces in the pile assuming the velocity of the water v is constant and 

determine the value of v for which vortex shedding occurs. The following values 

apply, 

E modulus of elasticity of wood 1010 Nm -2 

density of timber 0.8 x 103 K -3 
p m 

Pw density of water 103 K m-3 

I moment of inertia nR 4 /4 (R radius D/2). 
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rhe drag forces can be computed using the following formulae, (cD 1 from Fig. 6). 

2 • 102 V Ivl (a) 

rhe fundamental frequency of the pile can be obtained using Rayleigh's quotient, 

D2pW1T 

where CM = cm • ---4--

hydrodynamic mass. 

2 

wn 

and c 
m 

R, 

EI f 
0 

2 

[::~1 dx 

R, 

P A f f2dx 
0 

1 from Table 1. This term in CM is due to the 

In order to solve (b) let us assume that the shape of the pile can be given as 

f = x2 , where x = x/R,. Hence, 

Thus, 

f 
n 

4EI 

2 R,' 
wn 

eA& 
D2pW1T R, 

+ c -4-"5 5 m 

10 sec-1 

circular frequency ~ 3.16 sec-1 

frequency ~ 0.5 sec-1 • 

The strouhal number for the cylinder at high Re numbers is 

f D 
S 

s 0.2 
v 

f 
0.2 v 

s D 

Note that in order for f to equal f we need a velocity of s n 

f D 
v n 1 m/sec. 0.2 

(b) 

(c) 

(ct) 

(e) 

There is a danger that the pile will break due to vortex shedding. The calculation 

is approximate due to the modal shape we have assumed. It can be improved by 

taking a better shape or by dividing the pile into a number of beam elements. 
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3. Total Hydrodynamic Forces 

For a given location xi we can write the total hydrodynamic forces as, 

where C = CD 

linearize the 

The term -CM 

dynamic drag 

u. gives 
1 

force. 

P. 
1 

(36) 

and as a first approximation we take 0r.~ 0v. in order to 

Equation (36) can also be written as, 1 1 

(- - ~.) + C (Vi - ~.) (37) P. CM v. + CA v. 
1 1 1 1 1 

origin to the hydrodynamic matrix and -C ~. is the hydro-
1 

Both terms are passed to the left hand side of the equilibrium 

equations of the system (equations (3)). On the right hand side we are left with 

(CM + CAlvi + C vi terms. 

Knowing (37) we can now calculate the F vector of equation (3). This will be seen 

in Chapter 17. 

4. Final Remarks 

There is a need for further information about many different aspects of fluid­

structure interaction problems. First the designer ought to have more data 

concerning wave spectra and in particular directional wave spectra. Prediction of 

the worst possible situations should also be attempted by correlating wind, waves, 

currents, etc. with probabilistic criterion. 

Another research area is to investigate how valid are the water velocity and 

acceleration fields obtained from the wave elevation observations by using waves 

theories. 

The scatter and scarcity of drag and lift coefficients indicate that more funda­

mental research (experimental and theoretical) is required in these fields. 

A better understanding of the behaviour of the foundations is essential. Small 

relaxation of the support conditions of an off-shore structure (e.g. considering 

them as elastically supported) can greatly alter the frequencies of the structure 

and produce a different response. 
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CHAPTER 14 

INTRODUCTION TO RANDOM VIBRATIONS 

by 

H. Tottenham 

When we consider the effects of winds or earthquakes on buildings or the passage of 

vehicles over bridge decks we cannot say precisely how the load will vary with time. 

We can, however, frequently give a statisticaL description of the loads in such a 

form that it is possible to derive a statisticaL description of the response of 

the structure. We are, then, concerned with 

a) the probabilistic description of the loads, 

b) the effects of these loads on the structure, and 

c) the meaning of the probabilistic description of the response. 

Before considering these topics, however, we will establish some of the basic ideas 

of random processes. 

1. Random Processes 

Let us consider the time-wise variation of some factor xl (t) such as is shown in 

Figure 1. We call this a continuous random sequence if the factor x1 (t) varies 

continuously with t and if it is not possible to predict precisely what will happen 

at time t + at from the record of events up to time t. We call a collection of 

such sequences a process and write this as 

{ x(t) 

Naturally we will consider only collections of records of similar factors, e.g. 

pressure due to wind on a particular part of similar buildings in similar locations. 

Under these circumstances we would expect the individual sequences to have some 

properties in common. Thus we would expect the mean values of the pressures, 

averaged over a relatively long time to be equal to one another, i.e. 

1 
T 

JT 

o 

xl (t)dt 
1 
T 

o 

1 
T 

JT 

o 

x (t)dt 
n 

(1) 

If, over a fairly long time interval, we measured the proportion of the total time 

that the value of xl (t) did not,exceed some value, a, say, we would expect that over 

any other suitably long time the value of x1 (t) would be less than a for the same 

proportion of the time. We call this proportion of the time the "probability" that 

x1 (t) < a, and denote this by px (a). The suffix ~ denotes the particular sequence 

being considered. By taking difTerent values of a we could construct a graph 
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showing how px (a) varied with a, such a graph we call the probabiLity distributed 

function; it 1 will be of a form similar to that shown in Figure 2. Obviously 

p (-=) = 0 and p (~) = 1, and the curve is always ascending. 
xl xl 

The probability that the value of xl (t) lies between a and (a+oa) is 

We now define a new function P (a) such that 
xl 

P (a)oa 
xl 

6p ( a) 
xl 

and hence dp (a) 

P (a) 
xl 

xl da 
(2) 

We call this function the probabiLity density of the sequence xl (t). We will also 

have 

and note that P (a) is always positive. 
xl 

(3) 

A process x(t) is said to be stationary if the probability distribution functions 

px (a) of each of the sequences xn(t) do not depend upon the actual instant chosen 

n as the origin of time, t = 0, i.e. 

(n 1,2, ... ) (4) 

where t1 t+t* and t* can take any value. 

The process is said to be ergodic if the probability distribution function for the 

process is the same as that for each of the individual sequences, 

p (a) 
x = ... px (a) 

n 

We will be considering only stationary ergodic random processes. 

( 5) 

We now introduce the notation < y > to denote the time averaged value of y, taken 

over a sufficiently long time period: 

< y > 1 
T r y(t)dt (T large) (6) 



253 

x 

Figure I 

a 
Figure 2a 

p 

- - -- - :=-:;..----

6a 

a=========---------------L-----~~--------------a 
Figure 2b 

Figure 3 



254 

The time averaged value of y can also be found from the probability density function. 

Since the proportion of time that y(t) lies between a and (a+oa) is P (a)oa the 
y 

time average value is 

< Y > r y P (a)da 
y 

(7) 

This integral is the first moment of area of the probability density curve about 

the origin, y = 0, and is thus equal to Ay, where A is the area of the curve and y 

is the coordinate of the centroid of the area under the curve. Since A = 1 we have 

< y > = y. We will consider y(t) as being the sum of a constant value y plus a 

fluctuating component where time average is zero. The constant part is a 'static' 

event and does not concern use here. We consider therefore events for which 

< Y > = 0. 

A useful means of describing the probability density curve is by means of its mean 

square value or va~iance, cr'. We will see that this enables us to evaluate the 

probability of an event. 

cr' < l> 1 r y'(t)dt 
T 

0 

r y' P (y)dy (8) 
y 

Thus the variance is the second moment of area of the probability density curve. 

Since the area of this curve is always unity the value of cr' gives a measure of 

the "peakiness" of the curve. A low value of cr' means a low value of second 

moment and hence the area must be concentrated near the origin, whilst a large 

value of cr' means a high value of second moment and hence there will be a sig­

nificant part of the area not near the origin (Figure 3). A particular form of the 

probability density function is the GAUSSIAN distribution: 

giving 

P (y) 
y 

P (y) 
y 

1 

/2"0 

1 

/2"0 

-x'/20' 
e dx 

e-y '/2cr' 

We can normalize these by putting y y/o, to get 

P G) 
y 

-x'/2 
e dx 

(9a) 

(9b) 
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;ince this quantity contains only the variable y we can tabulate it and p(y), 

:ables of this distribution are given in most standard text books on statistics. 

'or the tables we would find, for example that p(3) = 0.9985, and hence the prob­

~bility that y > 30 is 1 - 0.9985 = 0.0015 or 0.15%. 

~ very useful property of the Gaussian distribution is that if a process has a 

}aussian distribution so also will any process which is linearly related to it. 

Since we are dealing with linear elastic structures we can thus say that if the 

loading has a Gaussian distribution so also will the response. There are other 

distributions which are, for example, skew or have a definite cut-off point, but 

we will assume that in the range of probability in which we are interested our 

process may be considered to have a Gaussian distribution. 

Before leaving the general properties of a random process we should define the 

auto-corre~ation functions, which we denote by R(T). This is defined as 

R(T) < y(t) y(t+T» (10) 

That is, we find the time average of the product two events which occur at a 

distance apart in time T. The value of R(T) at T = 0 is obviously the mean square 

value < y' > and as T gets longer we would expect positive and negative products 

to cancel one another out, and hence R(T) to decrease. The more rapid the decrease 

in R(T) the more sudden and disconnected the process. 

2. Spectral Density Function 

A periodic function can be represented by a Fourier series: 

y(t) a 
o 

+ I 
n=l 

a cos nwt + 
n I 

n=l 
b 

n 
sin nwt (11) 

where w = 2n/T and T is the period of the function. We could write the above using 

complex notation as 

y(t) I inwt 
c e n 

n=-~ 

where 
fT/2 

Y,(an-ibn ) 
1 

y(t) 
-inwt 

dt c 
T e n 

-T/2 
(12) 

Substituting this back into (11) gives 
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n=- ro 

J
T/ 2 

y(t) e-inwtdt) e inwt 

-T/2 

y(t) { (~ 
211 

w I F(nw) say. (13) 

Let us now plot a "histogram" of F(nw) using values w, 2w, ... nw along the base, 

the ordinate of the histogram from iw to (i+1)w being F(iw), as in Figure 4, we 

can see that since the width of each block is w the total area of the histogram is 

in fact y(t) , Le. the area = I w x F(nw) . We now let w become very small so that 

the interval becomes ow in place of w. The succession of points w, 2w, 3w etc. 

become the succession of points ow, 2ow, 30w ... or in other words the continuous 

variable w as OW + O. If then we let ow + 0 we get an integral in place of the 

summation, and hence 

y(t) r 1 
211 

[ fT/2 . t 
y(t)e-1W iwt 

e dw 

-T/2 

But as the circular frequency w in the original expression becomes very small the 

period T becomes very large and the limits on the inner integral become ± 00 For 

convenience we replace the circular frequency w by the frequency f, and since 

w = 211f, dw = 211df, and hence 

y(t) (14) 

The inner integral will be a function of f and not of t and we denote it by A(if) 

and hence get 

y(t) f y i211f 
df e (15a) 

and 

y f y(t) e- i211ftdt (l5b) 

We say that Y is the Fourier transform of y(t) and the two quantities y(t) and Y 
form a Fourie~ T~ansfo~m pai~. We will see that Fourier transform pairs play an 

important role in the analysis of the response of elastic structures to random 

loads. We now look to the mean square value of a process x(t), we have 

< x 2 > lim 1 (/2 x 2 (t)dt T+oo T 
-T/2 

lim 1 (/2 x(t).x(t)dt T+oo T 
-T/2 
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Expressing one of the factors x(t) from the transform pair this gives 

< X 2 > lim 1 
T+oo T 

JT/ 2 
x(t) 

-T/2 

Changing the order of integration this gives 

When T + 00 the inner integral is the Fourier transform of x(t) with -i in place 
~ 

of i, that is it is the complex conjugate of X which we denote by X. We cannot 

evaluate this quantity as it stands as we will be dividing an infinite quantity by 

another infinite quantity, T. We can however take xT(t) as being zero for t < -T/2 

and for t > T/2 and equal to x(t) in between these values, then putting 

X r xT(t) 
-i211ft 

dt e 

we get r < x 2 > lim 1 X X df T+oo T 

lim 2 r IX(w) 12df T+oo T 
0 

r S( f) df (16) 

0 

where 
lim 2 S(f) T+oo T 

IX(w) 12 (17) 

We call the quantity S(f) the spectral density function of the process x(t). The 

spectral density function gives a measure of the amount of <x'> is associated with 

the frequency f. It is equivalent to a continuous variation of coefficient in the 

Fourier series taking the whole of time as the basic period. 

3. The Weiner-Khinchin Relationship 

Let us now look at the autocorrelation function of the random process x(t), 

R ( -r) < x ( t) x ( t+< ) > 

We redefine this as the limit as T+oo of the autocorrelation function of the 

modified process xT(t), 



R(T) 
lim 
T+oo 
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e can form this over longer time intervals until a steady value is reached. 

orming the Fourier transform pair of X(t+T) we have 

;ince the time taken as t o is immaterial for a stationary process. We now have 

R(T) 
lim 1 ( xT(t) r X i27Tf(t+T) 

df dt 
2T 

e T+oo 
-T 

1 ( lim 1 
xT(t) r lim X i27Tft i27TfT 

dLdt 
2 T+oo T T+oo e e 

-T 

we now change the order of integration to get 

R(T) 1 r lim X (lim ( 1 
xT(t) e i27Tftdt) ei27Tftdt)ei27TfTdf 

2 T+oo T+oo T 
-T 

1 r lim X X 
i27TfT 

df 
2 T+oo e 

1 r S (f) e i27TfT df (18) 
2 x 

Thus 2R(T) is the Fourier transform of the spectral density function of the process 

x, its pair is 

S (f) 
x 

(19) 

That is the spectral density function and twice the autocorrelation function form 

a Fourier transform pair. Given either f of these we can form the other. Equations 

(18) and (19) are known as the WEINER-KHINCHIN relationships. 

Since S (f) is an even function of f, i.e. S (f) S .. (-f), we have 
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R(T) r S (f) 
x cos 211fT df 

0 

S (f) 4 J R( T) cos 211fT dT 
X 

o 

4. Response of a Simple Spring System to Random Load 

Consider a simple spring loaded by a force, P(t), as shown in Figure 5. The 

equation of motion is 

m x + c X + kx P(t) 

where dots denote derivatives with respect to time. If P(t) is of the form 

P(t) 
iwt 

P e 

we can find x(t) as X e iwt 

X 
P 

P 1 

k {(I _ ~)2)2+ 4(~)2 y2}Y. 
wI wI 

where 

W 2 
1 

k 
m 

y c 

(20) 

That is wI is the naturaL frequency of the undamped system and y is the criticaL 

damping ratio. 

The factor P/k represents the "static" deflection of the system and the remainder 

shows the influence of the dynamic nature of P, the part is called the admittance 

function of the system and is denoted by IH(w) I. We put 

a( iW) 1 
k - mw 2 + iwc 

or 
1 a(if) 

k - 411 2 mf2 + 2i1lfc 
(21) 

We call this the receptance of the system 

la( if) 1 

The response of the system can also be found by means of the impulse response 

function. If we give the system, which is initially at rest an impulsive load I 

the subsequent motion will be defined by 



261 

m X + c X + kx 0 

with initial conditions x = 0, x 11m at t o. The solution is 

I -St sin wdt x e I W(t) (22) 
m W 

2 k (.£....) 2 s c 
wd m 2m 2m 

w1 2 (1-y2) 

A load p(t) can be considered as a series of impulses I = p(t)ot and the response 

at time t will be the sum of the responses of all the impulses up to the time t. 

The response at time t to the impulse P(T)OT applied at time T is 

and hence the total response for the impulses up to time t is 

t 

x(t) f W(t-T) P(T)dT (23) 

This is known as DUHAMEL's integral or the convoLution integral. By changing the 

dummy variable to T' = t-T, and then since T' is a dummy variable replacing it by 

T we get 

If now we put P 

x(t) r wIT) P(t-T)dT 

0 

P 
iwt 

= P 
i21Tft 

e e we get 

x(t) foo W(T) P e i21Tf (t-T)dT 

o 

o 

But we know that x(t) a(H) P 
i21Tft 

e and hence 

a(if) fOOW(T) e-i21TfTdT 

o 

This is the Fourier transform of W(T) if we assume that W(T) 

thus see that W(T) and a(if) form a Fourier transform pair. 

(24) 

(25) 

o for T < O. We 
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We now let the load be a random load which has spectral density function S (t) and 
p 

autocorrelation function R (,). We want to find the spectral density function 
p 

Sx(f) and the autocorrelation function Rx (') of the response x(t). 

Considering first the autocorrelation function Rx (') 

We have 

x(t) 

X(tH) 

R (,) = < x(t) x(t+,» 
x 

r W( '1) P(t-'l) d'l 

0 

r W('2) P(t+'-'2) d'2 

0 

The two dummy variables '1' '2 and the variable, must be kept distinct as we must 

integrate the product of x(t) and x(t+,) over all values of '1 and '2 and still have 

, as the variable in R (,). 

R (,) 
x 

o 

x 

o 

since the time averaging is over t. For a stationary process the origin of time is 

immaterial and we can take our time from t-'l giving t+'l in place of " thus we 

find 

o o 

f~ W('l) f~ W('2) Rp ('1-'2+') d'2 d'l (26) 

o o 

From this it is, in principle, possible to evaluate R (.) but such an evaluation 
x 

would be very tedious. If we go on now to look at the spectral density function 

S (f) 
x 

we will see that a much simpler method can be used. 

Since 
S (f) 

x 

we have 

S (f} 
x 

o o 

Changing the order of integration we can write this as 
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i2nf1 
Je now multiply and divide by e 1 and to get 

o o o 

In this we have used the fact that in the innermost integral 11 and '2 are treated 

as constants so that d1 = d('1-12+1). Each of the variables '1,12 and ('1-12+1) 

= 1* now separate out to give 

s (f) 
x 

o o 

2a(if)*. a(if) . Y,S (f) 
P 

la(if) 12 S (f) 
p 

(27) 

We thus find that there is a very simple relationship between the spectral density 

functions of the applied load and the response. The autocorrelation function of 

the response can then be found, if required from Sx(f). 

For our simple one mass system 

a(if) 2 

and hence 

S (f) 
x 

1 

(k_4n 2mf2)2 + 4n 2f 2c 2 

S (f) 
p 

(k_4'JT 2mf2)2 + 4n 2f 2c 2 

If the load has Gaussian properties so also will the response and hence 

< x 2 > r S (f) 
x df 

0 

r S (f) 
P df 

(k-4n2mf2) 2 + 4n 2fc 2 
0 

(28) 

(29) 

(30) 

If we consider the spectral density of the applied load as "white" or uniform over 

the range of frequencies when la(if) 1 is large we have 



< x' > 

o 
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df 
(k-41T'mt" )' + 4,,' fc' 

S 
---L 
4ck 

If the damping is hysteretic, c iyk, and 

< x' > 
S 

P 

4 k ,/km 

For small damping, such as usually occurs, then two results are equal. 

Since the response curve is usually very "peaky" we can generally take the spectral 

density S (t) as constant near tne peak values of la(if) I'. 
p 

5. More Complex Systems with a Single Random Load 

In the previous section the receptance a(if) and the impulse function W(T) were 

given for a simple single spring system. Using classical methods we can evaluate 

these for more complex systems. The relationship between Rp' Sp' Rx and Sx did 

not involve the form of the structure but merely the fact that there was a single 

load. We can thus use the same expressions for systems with several degrees of 

freedom provided that there is only one applied load which varies in a random manner. 
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1. INTRODUCTION 

CHAPTER 15 

EARTHQUAKE RESPONSE OF STRUCTURES 

by 

H. Tottenham 

The design of structures in earthquake regions has been based upon the 

assumption of a lateral load proportional to the mass of the building. For example 

in many areas the structure is designed to carry a "horizontal gravity" force of 

0.2 g. Such designs are based upon the assumption that the period of natural 

vibration of the structure is large compared with the typical period of the ground 

motion. For many modern structures this is not so and although such simple design 

rules may be "conservative" they in fact lead to structures where the strength is 

not properly distributed. That is to say for the same expenditure a safer structure 

could be bui! t. 

Earthquakes are unpredictable both as to when they will occur and the exact form 

the ground movement will take. However experience has shown that in various areas 

the ground motions, or accelerations, have definite statistical properties. Such 

properties are common to both major and minor seismic movements. It is now becoming 

usual in the design of important structures in seismic regions to investigate the 

response of a proposed structure to an expected earthquake in two ways. The first 

response calculation is to check the motion of the structure to the onset of the 

motion, such a calculation is performed by integrating the equations of motion in 

time. The second response calculation is to estimate the probable maximum response 

during the life of the building. It is in this calculation that the theory of 

random vibrations is used. 

Although the theory of non-stationary random processes is being developed as yet 

the stage has not been reached where it can be used in design. The best we can do 

is to treat the ground motion as random during the whole of the earthquake. This 

implies that the auto-correlation function of the ground acceleration must reduce 

effectively to zero in a time less that the duration of any ground movement. This 

is in fact true for most ground tremors. 

The data available for use in earthquake analysis of structures takes one of the 

following forms 

i) the ground acceleration-time curve 

ii) the ground acceleration response spectrum 
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iii) the ground velocity response spectrum 

iv) the ground acceleration spectrum 

v) the ground velocity spectrum 

The first of these is the quantity that is actually recorded, the instruments at 

various sites being used to measure the component of the ground accelerations in 

two directions. 

The second form in which data may be presented, also known as the Displacement 

Response Spectrum, is a plot of the maximum displacement that a single degree of 

freedom system, whose natural frequency is W and damping coefficient n, would 

suffer when the support is given the recorded ground movement, this displacement 

being plotted against W. The third form is of a similar nature but uses velocities 

rather than displacements of the system. 

The fourth form, the ground acceleration spectrum is the one usually employed in 

random vibration analysis of seismic response. Many researchers have studied the 

spectral density function of various major earthquake records and proposed formulae 

which may be used to give the expected spectral density functions of ground motions 

in the area. The most frequently used is of the form proposed by Houssner, Tajimi, 

Jennings and others, this can be written as 

W S •• (w) 
x 

4 b A 
11 (1+4b 2 ) 

a 2 
g 

(1) 

where A = w/Wg ' Wg being a ground dominant frequency, and b is a constant 

depending on the ground surface layer. Typically Wg 15 to 25 radians/sec and b 

varies from 0.3 for soft ground to 0.7 for fairly hard ground. a is the earth-
g 

quake tntensity factor, generally expressed in terms of g. It will be seen that 

this form of spectral density functions can be considered as describing the response 

of the surface to a base rock movement of the "white noise" type, the surface layer 

acting as a single degree of freedom system whose natural frequency is wand whose 
g 

damping coefficient is b. 

2. BEAM ANALYSIS 

We will now consider the structural response to such ground movements and take as 

a particular case in the analytical work a cantilever structure. 

We let the ground movement be denoted by y and the elastic displacement in the 

structure be denoted by w. The total movement of any point is thus w + y. The 

equation of motion of an elem~ntary part of the beam is now 



EI 
a"w 
~ 

aw a 2W 

+ C at + m a:t"2 
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a 2 y 
- m a:t"2 (2) 

where the symbols have their usual meaning. The free vibration of the structure 

can be written as 

w(x,t) (3) 

r 

when wr(x) is the 
th 

mode shape defined by r 

dOw 
EI r w2 w ° CIT - m r 

(4) 

and the appropriate boundary conditions. These modes are "weighted orthogonal" 

in that L 

f 0, r " s 
o r s (5) 

We take a similar form for the response of the structure and make the assumption 

that the damping is proportional to the mass, so that we can re-write the equation 

of motion as 

- my (6) 

Multiplying by wr(x) and integrating over the length of the beam reduces the above 

to 

M qr + C w qr + w2 M qr - F (t) r r r r r r 
(7) 

where: 

M t w2 dx is the th generalized mass m r r r 
0 

C t w2 dx is the th 
generalized damping constant c r r r (8) 

0 

F (t) t w (x) dx is the th 
generalized force. my r r r 

0 

We put C 2 1) M where 
r r r 

21) qr w2 
Fr(t) 

qr + w + qr M r r r (9) 
r 

If we take a point load poeiwt at some point xl then 

F (t) 
r 

and the function qr will be 
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where 

>. wlw 
r r 

For all the modes 

w(X,t) 

1->.2~2i1l >. ] r r r 

The receptance at x due to loads at xl is thus 

a(x,x1 ,w) 
wr(X) wr (x1 ) 

I M w2 
r r r 

3. SPECTRAL DENSITY OF RESPONSE 

1 
1->.2+2i1l >. 

r r 

P e iwt 
o 

(10) 

(11) 

(12) 

For many loads at xi' Xj ••. one can write a spectral density function such as, 

where Sp(xi,xj ,) is the cross spectral density of the loads at xi and xj . 

If all the loads have the same timewise variation, i.e. 

P(X,t) P(X) f(t) 

we can find the cross correlation R(x. ,x.,w) since 
1 J 

R(x.,x.,rl 
1 J 

< P(xi)f(t) P(xj)f(t-T) > 

P(xi ) P(xj ) < f(t) f(t-T) > 

P(x.) P(x.) Rf 1 J 

(13) 

(14) 

(15) 

It follows then that the cross spectral density with p related to the spectral 

density of the variation f by 

(16) 



If now we put 

and 

we find 

Sw(x,w) 

P(x. ) 
1 

f(t) - my 

L L 

J f a(x,xi,w) 

o 0 

{ ta(X,Xi,w) 

0 
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a(x,x. ,w) m(x.) m(x.) S .. dx. dx. 
J 1 J Y 1 J 

m(x. ) 
1 

dXJ fta(X'Xj'W) m(xj ) dXJ 
0 

and since xi and Xj are both "dummy" variables we can write this as 

S (x,w) 
w 

L 

1 f (x,xi,w) M(X i )dX i I2 Sy 

o 

Using the value we had earlier for (x,xi,w) this gives 

w (x) 
l r 

w2 M r r r 

L 

P 
r 

wr (x)wr (x1 )m(x1 ) 

M w2(1-X2+2in X ) 
r r r r 

112 S .. 
(1-X2+2n X ) Y r r r 

where P f m(x) w (x) dx is the 
th 

generalized load. r r r 
0 

The mean square response <w 2> is given by 

< w2(x» f Sw(x,w) dw 

0 

J 1 

w (x) P 
1 12 l r r 

S .. dw w 2 M (1-X2+2in X ) Y r r r r r r 
0 

(17) 

(18) 

S·. 
Y 

(19) 

(20) 

(21) 

(22) 

When, as is usually the case with cantilever structures, the natural frequencies 

wr are well separated and the damping is small we can neglect the cross product 

terms in the above and write 

< w 2 (x» 
= J 1 ~ 

w2(x) p 2 
r r 
w· M 

r r 

1 
(1-x2)2+2n2X2 

r r r 
S .. dw 

Y 
(23) 

Also when the damping is small the frequency dependent term 1/ I (1_A~)2 +2n~,A~ I is 
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very peaky, and if S·· only varies slowly with 
Y 

we can consider that for any 

term in the summation S •• is constant at the value S .. (Ol ) we can then carry out the 
y y r 

integrations to give 

< w2 (x» 

w2(x) p2 
r r 
Ol' M:2 

r r 
(24) 

It will generally be found that one term dominates - almost always the first - so 

we can put 

< w2 (x» ~ 
4 

The root mean square value is the "standard deviation" of the response 

a 
w 

I < w (x) > 
'IT S (Ol l ) 

y 

This enables us to estimate the maximum value of w(x). 

(25) 

(26) 

In design it is usual to allow a ten per cent increase in a to allow for the higher 

modes and take the estimated maximum response as 3.5 times the result so obtained, 

i.e. 

w(x) max 2.85 a 
w 

(27) 

For some structures the modes have near equal frequencies and the above simplif­

ications cannot be used. It is then necessary to use numerical integration, 

including all the modes that make a significant contribution. Simpsons rule 

integration can be used if the interval in Ol is small, of the order of 0.02 Ol l . 

In the above we have seen how the displacements may be estimated. We can use 

exactly the same method to estimate the magnitudes of the internal forces and 

bending moments. Associated with each mode shape then will be a bending moment 

and shear force distribution which we can denote by Mr and Qr. These will vary 

in the time dimension in exactly the same manner as does wr(x). The mean squared 

value will thus be given by formulae analogous to those for the mean square dis­

placement but with Mr(x) and Qr(x) substituted in place of wr(x). 

For a uniform cantilever the first mode is given by 

(sinh AL + sin AL)(cosh AX - cos AX) - (cosh AL + cos AL)(sinh AX - sin AX) 
2(tanh AL - tan AL) 

(28) 
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1.8751. The shear force Q1(x) is given by 

d'w1 (x) 

EI dx' (29) 

EI" {(Sinh AL+sin AL)(sinh Ax-sin Ax)-(cosh AL+cos AL)(cosh AX+COS AX)} 
A 2(tanh AL _ tan AL) Wtip 

At the base, x 

and using A' 

o this reduces to 

_ En' 

mOl 2 /EI, ).L 

{ COSh AL + cos AL} wtip 
tanh AL - tan AL 

1.8751, this gives 

0.3914 mOl 2 L wtip 

Example: Consider a cooling tower shell with the following characteris~ics. 

Dimensions Height 

Throat height 

Base radius 

Throat radius 

Thickness 

Density 

Young's Modulus 

Poisson's Ratio 

Natural Frequency 

Generalized mass (x10') 

Generalized load (x10') 

1st Mode 

20.76 

1.494 

2.318 

100.78 m 

82.19 m 

41. 71 m 

25.60 m 

0.127 m 

2400 Kg/m3 

2.11 x 10SKg/m2 

0.15 

2nd Mode 

42.72 

2.469 

-1.923 

3rd Mode 

65.99 

5.250 

1.564 

Taking internal damping as 0.05 and the ground characteristics b 

a = 0.2 g, we find peak response (at 3.5 x standard deviation) 

1st mode only 

1st & 2nd modes 

67.21 mm 

67.34 mm 

1st, 2nd & 3rd modes 67.34 mm 

(30) 

(31) 

15.7, 
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CHAPTER 16 

RESPONSE OF STRUCTURES TO WIND LOADING 

by 

H. Tottenham 

1. INTRODUCTION 

Our knowledge of the general structure of the wind and the loads it imposes on 

buildings is still somewhat limited. However, a few general comments may be made. 

On the large scale we can consider the wind as the steady movement of air from 

region to region, the speed of the wind depending on the distribution of atmos­

pheric pressure over the surface of the world. In the lower levels of the atmos­

phere this flow is retarded by friction with the ground, the extent to which this 

retardation affects the air flow depends upon the surface roughness. We can assume 

that the mean wind speed will be about zero at the actual ground surface, rapidly 

increasing with height in the lower regions then more slowly increasing with height 

until a fairly constant speed is reached. This constant speed is known as the 

Gradient Velocity and the height at which it occurs is called the Gradient Height. 

The gradient height depends upon the ground roughness and is about 500 m in very 

rough terrain, for example built up city centres, 400 m in ordinary landscape with 

houses and trees, and about 300 m in flat open country. The basic wind velocity 

profile can be written in the form 

where Vg and hg are the gradient velocity and height, a is a constant depending 

upon terrain. For the three types mentioned above Davenport gives a the values 

0.4, 0.28 and 0.16 respectively. 

This large scale pattern is not uniform in time. The timewise variation can be 

best illustrated by the spectral density of the velocity made up from very long 

time records. Van der Hoven gives the results shown in figure 1. There is a long 

flat part in this curve between about 0.5 cycles per hour and 10 cycles per hour. 

This gap is used to separate, in meteorological terms, the large scale on "weather 

map" wind speeds from those due to guests or turbulence. Wind variation with a 

period of less than, say, 0.1 hour we consider as gusts. 

The mean wind speed is calculated on an hourly basis. From the records it is 

possible to estimate the likely maximum wind velocity in any length of time. This 
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maximum (for the required length of time) is used as a steady wind and its effect 

on the structure assessed using a static pressure. 

To the steady wind velocity we must add the effects of turbulence. It is this 

aspect of the wind velocity which may call for dynamical analysis of the structure. 

Although turbulence decreases with height on the large scale measurements indicate 

that it is practically constant up to the height of all but the very tallest of 

buildings. According to Davenport we can assume that the standard deviation of the 

wind velocity is about 0.1 of the gradient velocity. This includes all directional 

components of the turbulent wind: the vertical component is small and the component 

in the direction of the mean wind speed predominates. In terms of the standard 

10 m level wind velocity VIO we would have 

cr 
v 

(2) 

where k = 0.58, 0.32, 0.18 according to the ground being rough, normal or smooth 

as described earlier. 

The spectrum of the turbulent air has been investigated by many research workers 

and various formulae have been proposed. The two most frequently quoted are due to 

Davenport and Harris. Thus Davenport has suggested 

s (w) 
v 

kL 2 w 
4/3 

(0 < w < ~ ) (3) 

7f2[1 + (~)] 
27fV10 

when k is the roughness parameter, varying from 0.0015 to 0.15 according to the 

terrain 

cr 2 
V 

The formula suggested by Harris does not have zero value when 

similar form to the above: 

with 

s (w) 
v 

cr 2 
V 

(4) 

w o and has a 

(5) 

The pressure on a building is closely proportional to the square of the velocity 

and Handa proposes a spectrum of the squared velocity of the form 
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a 2 a 

Sv 2 (w) 
V 

n(w 2 + a 2) 
(6) 

where 
V10 

a 2 !3n 
L 

and (40 k V 10) 2 a 
v 2 6 

(7) 

This form of the power spectrum is the most useful for design, not only because it 

deals with velocity squared which can be converted directly to pressure, i.e. it 

can be used as the pressure spectrum, but also because it has a simple form leading 

to the autocorrelation function 

In order to procede with a dynamical analysis using available wind data it is 

necessary to make a set of assumptions. 

(8) 

a) the wind speed variations and the pressure variations may be treated as a 

random process 

b) the wind pressure is normal to the surface; drag could be included but there 

is no data on the effect of turbulence on drag 

c) the pressure field is homogeneous. That is to say the mean squared wind 

pressure and the spectrum is the same for all points on the surface. This 

in turn implies that the dimensions of the structure are small compared with 

those of a "gust". This is in fact not true for larger structures. 

d) a suitable spectral density function and cross correlation function is known. 

In practice there is not enough information on the cross correlation of wind 

velocities at points separated hori~ontally, cross correlation of wind velocity in 

the vertical direction although not adequately established has been investigated by 

many workers. At present there are several experiments which should help to produce 

the necessary data. 

Shimizu has proposed, for rotational shells such as wind shields and cooling towers, 

etc. cross spectrum in the form 

S (w) 
p 

where xl' x2 are points on the shell surface, Z and e are dimensionless 

(9) 
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separation distances z2 - zl and 92 - 91 , and the quantities A1 and A2 are 

parameters which will vary according to the structure. Using results of measure­

ments<of pressure and wind velocities on cooling towers in Germany and Japan he 

suggests 

S (w) 
p 

2C 
----E 

" 

" 
a 

w2 +a 2 

a (10) 

Cp being the mean squared pressure, and a, the exponential decay factor in the 

autocorrelation function has a value of approximately 0.3. 

2. RESPONSE OF SHELLS 

The equations of equilibrium of a thin elastic shell can be written in the form 

(11) 

Here u, v, ware displacements in two directions on the shell surface and the 

normal direction to the surface, Pu' Pv' pw are the loads applied in these 

directions and Ll , L2 , L3 are some differential expressions. We can use these 

equations to derive the equations of motion 

L1 (u,v,w) + ph u + c U pu 

L2 (U,v,w) + ph v + c V Pv (12) 

L3 (u,v,w) + ph w + c W pw 

where h is the thickness of the shell and p is its density. For free vibrations 

L1 (u,v,w) - ph w2 u 0 

L2 (U,v,w) - ph w2 v 0 (13) 

L3 (U,v,w) - ph w2 w 0 

Let the natural frequencies be wr and the corresponding mode shapes ur ' vr ' wr ' so 

that, for example 

ph w 2 u 
r r 

o (14) 
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Now let the response be written in the form 

u v w (15) 

when qr is the time dependent function defining the amplitude of the mode at any 

instant. Substituting these expressions in the equation of motion and using the 

relationships such as (13) above we get 

L ph u qr + L c u qr + Iph w2 u qr pu r r r r 

\' ph v qr + L c v qr + LPh w2 v qr pv L r r r r 
(16) 

L ph w qr + c w qr + LPh w2 w qr pw r r r r 

The orthogonality of the normal modes has the form 

f ph(u u + v v + w w r s r s r s 
) dA 0 r " s (17) 

M r s 
r 

the integration being over the whole surface of the shell. 

If then we multiply the first of the above equations by ur ' the second by vr ' the 

third by wr ' add them together and integrate over the shell surface we will obtain 

F 
r 

M 
r 

(18) 

Here again we have assumed that the damping constant is proportional to ph, and 

F 
r 

We have thus separated the modes and can carryon the analysis as before. 

(19) 

Particularizing for rotational shells, taking u in the meridional direction, v in 

the circumferential direction and w in the outward normal direction, and denoting 

the angle between the normal and the axis of rotation by ~, using z to denote the 

coordinate along this axis we have 

dA 
r 

sin e de dz (20) 

The various modes will have terms such as cos e, cos 2e, ... , and for each of these 
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there will be a series of longitudinal modes, we therefore write 

mn 
(z) ne u u u cos 

r mn 
mn 

v (z) sin ne v v 
r mn 

(21) 

mn 
(z) ne w w w cos 

r mn 

In wind analysis we can take Pu = Pv = 0, since the wind will apply only normal 

pressure to the shell surface. Very many modes may contribute to the overall 

response. 

A horizontal displacement y of the shell gives 

u - cos e cos ~ u, 

v sin y (22) 

w cos e sin ~ y 

so that the loads in the equation of motion have the form Pu = - ph cos e cos ~ y 

etc. This means that all the generalized loads with n ~ 1 will be zero, and hence 

only modes with n = 1 will be excited by the ground movement. 

Example 1 

Considering the same hyperbolic cooling tower, and wind factors c p 

a = 0.3, and using material damping 0.02 we find 

Mode Natural 
w' (cm' ) 

n m Frequency 

1 1 20.76 0.058 
2 42.72 0.002 
3 65.99 0.000 

2 1 11.12 0.358 
2 23.24 0.022 
3 43.73 0.002 

3 1 8.64 0.088 
2 12.60 0.079 
3 27.32 0.006 

4 1 7.45 0.317 
2 9.12 0.039 
3 17.52 0.026 

5 1 6.53 0.110 
2 9.03 0.031 
3 12.92 0.053 

6 1 7.24 0.000 
2 8.36 0.022 
3 12.67 0.003 

7 1 8.21 0.031 
2 9.57 0.002 
3 12.16 0.026 

L 1.276 

(100 kg/m' )' , 

a 1.13 cm", 



279 

Bibliography 

General Reading 

1. Robson, J.D. An Introduction to Random Vibration, Edinburgh, 1963. 

2. Crandall, S.H. (Editor) Random Vibration, Wiley, 1958. 

3. Thomson, W.T. Vibration Theory and AppLication, Chap. 10, London, 1971. 

4. Davenport, W.B. ProbabiLity and random processes, McGraw-Hill Book Co. 1970. 

Wind Response 

5. Van Der Hoven, I. "Power spectrum of horizontal wind speed in the frequency 
range from 0.0007 to 900 cycles per hour", JournaL of MeteoroLogy, 1957, 
vol. 14, pp. 160-164. 

6. Davenport, A.G. The spectrum of horizontal gustiness near the ground in high 
winds, J. RoyaL MeteoroLogicaL Soc., 87(1961), pp. 194-211. 

7. Davenport, A.G. 
of structures. 

The application of statistical concepts to the wind loading 
Proc. I.C.E., Vol. 19, 1961. 

8. InternationaL Conference on Wind Effects on BuiLdings and Structures, 
Teddington, 1963. 

9. Davenport, A.G. "The buffeting of large superficial structures by atmospheric 
turbulence", AnnaLs of the New York Academy of Sciences, Volume 116, pp 135-
160, June 1964. 

10. Symposium 16 Wind Effects on BuiLdings and structures, 
1965. 

H.M.S.O., London, 

ll. Harris, R.I. 
high winds, 

On the spectrum and auto correlation function of gustiness in 
ERA Report 5273, October 1968. 

12. Modern Design of Wind-Sensitive Structures, C.I.R.I.A., London, 1971. 

13. Kaimal, J.C. Spectral characteristics of surface-layer turbulence. 
J. RoyaL MeteoroLogicaL Soc. 98 (1972) pp. 563-589. 

14. Macdonald, A.J. Wind Loading on BuiLdings, Applied Science, London, 1975. 

15. Houghton, E.L. and Carruthers, N.B. Wind Forces on BuiLdings and Structures, 
Arnold, London, 1976. 

16. Saul, W.E. and Jayachandran, P. and Peyrot, A.H. Response to stochastic wind 
of n-degree tall buildings. JournaL Struct.Div. ASCE, May 1976. 

17. Simiu, E. and Scanlon, R.U. Wind Effects on Structures, Wiley, New York, 1978. 

18. "Wind Engineering in the Eighties" 
on 12/13 November 1980. 

Proc. of the C.I.R.I.A. Conference held 

19. Lawson, T.V. Wind Effects on BuiLding, 
London, 1981. 

Vols. 1 and 2, Applied Science, 

20. Abu Sitta and Gould, J. Dynamic Response of structures to Wind 
and Earthquake Loading, Pentech Press, London, 1980. 



CHAPTER 17 

RANDOM RESPONSE ANALYSIS OF OFF-SHORE STRUCTURES 

by 

C.A. Brebbia 

1. Introduction 

In this chapter the dynamic response of off-shore structures in deep water under 

random waves forces will be analysed. The structures will be considered to be such 

that they do not substantially change the motion of the waves, and that this motion 

can be represented by linear gravity theory. In this theory horizontal velocities 

and accelerations are linearly related to the wave heights, which are represented 

by a spectrum and assumed to be a zero-mean Gaussian process. Once the velocities 

and accelerations are known we can compute the forces on the structure. During 

this process drag forces coefficients are linearized in the form described in 

chapter 13. To obtain a better estimate of the drag, the designer could correct 

the linearized values during a second cycle and run the problem again. This is 

not important however in many practical cases where the inertia forces tend to be 

very much larger than the drag components. 

The forces acting on the system can be defined in terms of spectrum density 

functions. The product of these by the transfer functions gives the spectral 

density of the response. This process is explained in detail for a one degree of 

freedom and then generalized for multi-degree of freedom systems, under the 

following assumptions, 

a) The damping modal coefficients are uncoupled. 

b) The lower natural frequencies which are taken to be the only significant 

ones, are well separated. 

c) Damping is low. 

Under these assumptions the now uncoupled system of equations is thought to be such 

that the cross spectral density terms do not contribute to the response of the 

system. 

Finally the spectral density response of the system can be used to find the variance 

of displacements, stresses or other parameters of interest. Once the variance is 

known the probability of any such parameters to exceed a given value can be calcul­

ated. 
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Figure I Typical Oil Rig Structure 

Figure 2 One Degree of Freedom Idealization 



282 

2. One Degree of Freedom System 

Consider now that the structure can be idealized as a one degree of freedom system. 

The complexity of a typical off-shore rig (Figure 1) is such that this idealization 

as depicted in Figure 2 may be suspected. However the response of these structures 

tends to occur predominantly in the first mode, which indicates that a one degree 

of freedom idealization may be useful as a preliminary design tool. Later on the 

analysis will be extended to multi-degree of freedom systems. 

For the one degree of freedom system one can compute equivalent values which can 

be written as, 

EI 

A c 

[Nm 2], 

[m 2 ] , 

In addition we define, 

Vw [m'/m] , 

Mc [K] 

p [Kim'] , 

equivalent stiffness of the column 

equivalent area of the column. 

volume of water displaced per unit length 

mass of the platform 

density of the water. 

We can also calculate the following drag and inertia coefficients, 

cd p D 
[K m-2 ] CD --2-

CM c p V [K m-1 ] 
m w 

CA P V w 
[K m-1 ] 

where cd is a drag coefficient (1.0 for cylinders) and cm is inertia coefficient 

(also 1.0 for cylinder). 

The equilibrium equation of the system can be written as, 

F(t) (2) 

where u is the displacement at the top of the structure (x = ~). The term C 

includes the structural and hydrodynamic damping. M is obtained by addition of 

the mass of the column, the mass of the platform and the hydrodynamic mass. Note 

that the CA term does not enter into M be.cause CA only affects the water particles 
accelerations. 
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:1' the shape of the column is assumed to be 

~quation (2) is 

t M [K) t p A [f(z) )2 dZ + CMt c c 
0 

rhe inertia term for the column is 

K [Nm 2 ) 
EI 
"i' 

f(z), where 

d/t 

f [f(z) )2 

0 

If we now write the deflection of the column as, 

we have 

iwt 
u q e 

u _ w2 iwt 
q e 

z zit, 

dZ + M c 

The natural frequency of the system is given by the solution of, 

(K - w2M)q 

w2 
n 

K 
M 

o 

w 
n 

Equation of motion (2) can now be written, 

M u + C U + W 2 M u 
n 

F(t) 

the M term in 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

In order to write the C term (where C = Cs + Ch ) in its usual form C = 2M Y wn ' 

let us consider its two components, the structural Cs and hydrodynamic Ch damping 

terms. The component C of the last term was written (see chapter 13 formula (20» 

as 

(9) 

where CD is given in equations (1). For a column the hydrodynamic damping can be 

written, 
1 

~1l f = { CD /-; 
o 

We can compute the velocity variance 0v which is a function of the velocity 

spectrum as 

0. 2 
V 

foo 

o 

s .. (w) dw 
vv 

(10) 
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r W2 
cosh2 ICZ 

S (W) dw sinh 2 ICd nn 
(11) 

0 

CT. FcJ:2 m2/sec. v v 

Note that for deep waters IC w2 /g. 

Once the Ch term has been computed we can write 

y (12) 

Ys is the structural damping. 

The equation of motion (8) can now be written as, 

F(t) (13) 

Let us now compute the F(t) term. The hydrodynamic forces due to the water velocity 

were given by (Chapter 13), 

p v + C ~ 
D /-:;; CT. V 

v 

(CM+CA)w 2 
cosh ICZ 

n + CD A cosh ICZ 
sinh ICd 

CT. w sinh ICd v 

where n is the wave height. 

The generalized force for the column is now given by 

d 

F J p f(z) dz 

o 

or, 

F(t) cosh ICZ f(z) dz 

o 

d 

n' 

r 
CD A w 

J cosh ICZ f(z) + n sinh ICd CT. v 
0 

where n' a sin (lCx1-wt). 

Taking the Fourier transform of equation (8) we can write, 

F(w) 

(14) 

(15) 

dz 

(16) 
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where u(w) is the Fourier transform of u(t) and F(w) the transform of F(t). 

We can write (16) as, 

a(w) F(w) u(w) (17) 

where 

The complex conjugate of (17) is obtained by taking the complex conjugate of the 

Fourier transform (that is with -w instead of w) on equation (8). This gives, 

a*(w) F(w) u(w) 

where 

a*(w) 

We multiply each side of (17) by its complex conjugate (18) and divide by the 

period T multiplied by n, which can be written, 

F(w) F(w) a(w) nT a*(w) u(w) u(w) 
nT 

When T + = we can write formulae (19) in terms of the spectral densities as, 

where, 

la(w) 12 a(w) a*(w) 

S (w) 
uu 

1 

w ~ 2 

(w-)) + 
n 

(18) 

(19) 

(20) 

SFF and Suu are the power spectral densities of responseand excitation respectively. 

The above transformation for the forces gives, 

S (w) 
nn 

(CM+CA) 2W' 

sinh2 Kd 

w2 

sinh 2 Kd 

d 

d 

f cosh KZ f(z)dz)2 + 

o 

(f cosh KZ crv(Z) f(z)dz)2} 

o 

(21) 

Hence we can now find the spectral density for the generalized coordinate u using 

formula (20). Once Suu(w) is known we can calculate the variance of u by integrating, 

a 2 
U f 

o 

S (w) dw. 
uu 

(22) 



286 

O. + 
v 

0.5 
75 fIn] 

67.5 t 
60 

52.5 

45 

37.5 

30 

22.5 

15 

7.5 

0 0.5 1.0 1.5 

o. ems -IJ ~ 
v 

Figure 3 Variation of 0v with depth 
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cM I (c p V ) 78000 K/m (b) 
i m w 

i 

CA ( P V ) 78000 K/m . 
i w 

i 

I indicates summation over all the structural elements, D is the diameter of each 
i 
cylindrical member (cm = cd = I in all the cases). The wave spectrum used is the 

one given by Pierson and Moskowitz (equation (1) of chapter 13) for a wind velocity 

W = 200 ms-1 , and is plotted in Figure 4a. 

The deflected shape of the structure will be approximated by f(z) 

z/~. Hence the mass of the system can be written, 

M ~ p A ( Z4 dz + CM ~ 
f% Z4 dz + MC 3860 X 10' K 

c c 
0 0 

and the stiffness is, 

1 

[a;f)' dz K 
EI 

f 9000 x 10' N/m i' 
0 

We can now find the natural frequency of the system, wn ' 

W 2 
n 

K 
M 

9000 X 10' 
3860 X 10' 

W 1.54 
n 

2.334 

Z2, where z 

(c) 

(d) 

(e) 

In order to calculate the damping constant y we compute the hydrodynamic damping 

constant Ch from formula (11), having first found the variance cry at different 

heights using Pierson-Moskowitz spectrum for a wind speed 20 ms-1 . The variation 

of cry is shown in Figure 3 and was obtained integrating numerically equation (11). 

Now we can compute Ch u using equation (10), which gives, 

113000 u 

The damping constant can now be calculated 

y 113000 x 10-2 
ys + 118900 

For the structural damping we take ys 0.05. Hence y 

(f) 

(g) 

0.06 for this case. 
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Next we evaluate the force spectrum given by equation (21) using numerical 

integration. They are shown in Figure 4a where the part corresponding to drag 

and inertia can be seen. 

The transfer function for a one degree of freedom system can be computed using 

formulae (20), and the results are plotted in Figure 4b. Next we can multiply 

the transfer functions values by the spectral density SFF to obtain the response 

spectrum 

S uu lex(w) 12 SFF 
1 

1 ex I ( w) 1 2 M 2 W 4 SFF 
n 

The response spectrum is shown in Figure 4b. Integrating this spectrum the 

variance of the generalized displacement can be obtained, 

a 2 r S (w) dw 
u uu 

0 

It gives, 
a 2 0.092 m2 

u 

a 0.304 m. 
u 

The probability of the u value being within ± 3au ± 0.912 m is 99.7%. 

3. Multi-degree of Freedom System 

(h) 

(i) 

For a multi-degree of freedom system we have structural stiffness damping mass and 

force matrices of the type 

F (24) 

where the matrix C is proportional to K or M or linear combination of both. 

These matrices can be formed by conSidering the individual element matrices, i.e. 

k Un + ·n c u + 
'n m U f (25) 

Matrix k, m and f are given by, 

k I BT D B d(vol) 

m I GT p G d(vol) 

f 

Is 
GT 

~ dS 

a 
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Figure 4a Spectral Density of Waves and Generalized Force. 
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If we are working with a Gaussian distribution process with zero mean, the prob­

ability of the value of u being within a ± AO U value is given in the following 

table. 

Probabili ty of Probability of 
A 

AO lui > AO -AO < u < - -

1 68.3% 31.7% 

2 95.4% 4.6% 

3 99.7% 0.3% 

It is usual to take a value of A 3 in structural applications such as the one 

discussed here. 

In addition to 0u we can calculate the variance of any other quantities such as 

stresses. Assume for instance that the bending moment at the base is related to 

q by a B function such that 

M B u 

The spectral density of this function is 

and 

Example 

B2 S 
uu 

B 2 fOO S dw 
uu 

o 

(23) 

Assume that we have an off-shore structure that can be made equivalent to the one 

degree of freedom structure shown in Figure 2 which has the following characteristics, 

d 75 m, JI, 100 m 

Me 2 x 106K, EI 2250 x 109 Nm 2 

(a) 

Ac 28 2m (cross sectional area of concrete) 

Vw 78 m'lm (total volume of water displaced ~er unit length) 

P 10' Kim' (density of water) 

Pc 2.5 x 10' Kim' (density of concrete). 

The drag and inertia coefficients for the equivalent column are, 

5000 K/m 2 
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We substitute the p force vector by the vector of hydrodynamic forces, whose 

components have been discussed in chapter 13. This vector can be written as, 

(26) 

For instance for a beam element perpendicular to the flow and with three degrees 

of freedom u1 u2 91 this vector becomes, 

o 
+ (27) 

o 

o o 

o o 

where P1 is the component in xl direction and P2 in x2 . For an inclined element 

one has to decompose the forces in P1P2 directions according with the angle of 

inclination. 

The element velocities and accelerations can be written in terms of interpolation 

functions G such that 

G 0 u G U 
- -e - -e 

We can assume the same variation applies for v, v velocities. This gives the 

following expression for f. 

f 

where, 

~A J GT EA dS : added mass 

~H f GT 
EM G dS hydrodynamic mass 

~D f GT 
'2.D G dS hydrodynamic damping 

(28) 

(29) 

Note that the ~D terms are function of 0v. To represent the variation of 0v we 

can assume that this is a linear function over the element. Hence ED is also a 

linear function of the spatial coordinates. 
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Equation (25) can now be written as, 

(30) 

In order to avoid proliferation of notation this equation will be written in the 

same form as (25), i.e. 

m U + c U + k U 
- -e - -e --e 

f{V , if ) 
- -e _e 

For the complete structure we can write 

I (m U + c U + k U ) I f 
- -e - -e -e n n e e 

or more simply, 

M U + C U + K U F 

If we take the Fourier transform and its complex conjugate of this equation we 

obtain 

(_w 2 M + i w C + K)V 

and 

(_w 2 M i w C + K)V 

Equations (33) can be written, 

H{w)V F 

H*{w)U 
A 

F 

(31) 

(32) 

(33) 

(34) 

We can now multiply each side of these equations between themselves and divide by 

n and the period T. This gives, 

When T + 00 we can write (35) in terms of spectral densities, 

H{w) S H*{w) 
-u - ~F 

where the matrix ~u is the spectral density of the response and ~F the spectral 

density of the applied forces. They are both square matrices. 

(35) 

(36) 

In principle we could solve equations (36) for a series of w values and in this 

way find Su density for any given point. The variance au 2 can then be obtained by 

integration 
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fOO S dw 
u. 

l 
o 

(37) 

In order to simplify the problem and economize computer time, let us use a modal 

decomposition technique. Starting with equation (32) we can first find the eigen­

values and eigenvectors of the system by solving the homogeneous equation, 

M U + K U o (38) 

which gives 

(K - w 2 M)Z 0 

The response of the structure can be written, 

U Z q (39) 

in which Z is the modal matrix and q are the generalized coordinates. Normally 

it is only necessary to consider the first two or three generalized coordinates and 

modes, i.e. s = 2 or 3. 

In this process we have assumed that the matrix C is orthogonal with respect to 

the z modes. This is unfortunately not so because of the ~D contribution. Note 

that ~D is a diagonal matrix whose coefficients were obtained by least square mini­

mization of an error function. 

In what follows we will first assume that the C matrix can be orthogonalized and 

then try to minimize the error made in this way. Hence we can multiply and pre­

multiply (32) by the eigenvector matrix Z, (see (39)), which gives, 

{ZT M Z} q + {ZT C Z} q + {ZT K Z} q (40) 

or 

M' q + C' q + K' q F' 

where ~'t ~' and ~' are now diagonal matrices. This system of equations can also 

be written as S uncoupled second order differential equations, 

where i 1, S. 

F ' 
i 

(41) 
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rhe elements of the matrix C' can be obtained by minimizing the error vector E 

[7] where 

E ~o § - C I 3 (42) 

~o is the actual (uncoupled) damping matrix obtained after multiplying by Z and C' 

a diagonal matrix we want to obtain with the least possible error. 

The mean error can be minimized by doing, 

< 
aE 2 

> < 
[jL 

C qj c. I 

qJqi > 0 ac. I o .. l 
l Jl 

C <q. qj > 
S 0.. l 

c. I C + I lJ 

l o .. j=l <. > II qj 
HI 

For a first approximation the supposi. tion that C i I = Co .. appears to be reasonable. 

The designer can check this hypothesis once the qi val~~s have been obtained. 

After the system of equations has been uncoupled one can apply Fourier transforms 

and conjugate to obtain, 

(_W 2 M. I 

l 

(_w 2 M. 
J 

I 

Remembering that, 

+ 

-

W 2 
i 

C. I 

l 

iwC. 
l 

iwC. 
J 

I + 

I + 

K I 

i 
M I 

i 

Ki I )Qi 

K/ )Qj 

K. I 

2y. l 
l w. 

l 

w. 2 

J 

C. I 

J 

F I 

i 

F. I 
J 

K. I 

_J_ 
M I 

j 

K. I 

_J_ 
2y j w. 

J 

we can define two transfer functions, 

Ct. (w) 
l 

{(_w 2 + 2iy wwl. + w. 2)M. I }-l 
l l 

{ (-w 2 _ 2i y w w. + w. 2 ) M . I }-l 
J J J 

Hence equations (44) can be written as, 

(45) 
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Qi a. F. , 
1 1 

* A 

Qj a. F. , 
1 J 

Multiplying these equations and dividing by T (t + ~) we obtain, 

for i,j 1,S 

This can be written in matrix form as, 

= 

a ~F a* 

a* 
2 

(46) 

(47) 

(48) 

The force spectral density matrix can be found by transforming the original spectral 

density matrix which can be easily deduced. This gives, 

S ' -F 
(49) 

Once the generalized coordinates spectral density has been deduced we can obtain 

the spectral density of the displacements in the original system by a linear trans­

formation, 

S (50) _u 

The spectral density of any other parameters related to u such as the stresses can 

now be obtained. Assume that for an element the stresses can be written in matrix 

form as 

(51) 

where e refers to the element. The spectrum for M stresses is, 

(52) 

The above theory can be simplified considerably if we neglect the cross-spectral 

density terms. Following references [4] we will assume that terms of the type 



a. S' a * 
~ F ij j 
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(i " j) (53) 

can be neglected if the lower natural frequencies are well separated and if the 

damping is fairly low. In this way the product ai aj is very small (see Figure 5). 

The diagonal terms of (48) are the oniy to remain, hence we can write, 

(54) 

where i l,S. 

Once these densities are known we can find the spectral density of the displacements 

~ by transforming, 

S 
-u 

where ~Q is now a diagonal matrix with SQ .. elements. 
~~ 

Let us now write the expression for the force spectral density. We have, 

~I V + £D V 

Water particles velocities and accelerations can be written in function of two 

transfer expressions which give them in terms of wave height n. 

V 

~v n' (t) 

where A are transfer function vectors with elements, 

cosh ~z. 
(AV) . w2 ~ 

sinh ~d cos ~x. 
~ 

~ 

cosh ~z. 
(A. ) ~ w 

sinh ~d cos KX. 
V i ~ 

(55) 

(56) 

(57) 

(58) 

z is the distance from the bottom and cos ~xi takes into account the horizontal 

distance between nodes. The amplitude of the wave and hence the spectrum is given 

for x. 
~ 

o position. 
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Figure 5 Power Spectral Density and Transfer Functions 
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The E vector now becomes, 

F 

The Fourier transform of F and its conjugate give 

F 
A 

A n 

Multiplying the F's and dividing by T we have 

~F 

The force spectrum for the generalized coordinates is given by 

S I 

-F 

(59) 

(60) 

(61) 

This theory can be easily implemented in a computer program. In reference [3] 

results for some frame structures are presented. It is interesting to note that 

if the wave energy is at low frequencies compared with the structural frequencies, 

the response is practically all in the first mode. This seems to indicate that 

for these cases a one degree of freedom system may give a good approximate value. 

4. Closing Remarks 

The random response analysis described in this chapter was based on a series of 

assumptions necessary to linearize the problem and to facilitate its solution. In 

spite of this the method is a powerful design tool when compared against other 

experimental or analytical techniques. By contrast with the design wave approach 

it takes into consideration the way in which the wave energy of the sea is distri­

buted. Reduced model studies of these structures are practically impossible due 

to the number and complexity of the phenomena involved. Thus, with all its 

limitations, random analysis appears to be the only feasible method of analysing 

them. 

The main drawback of the theory is that, being a linear superposition technique, 

it does n~t take into account neither geometrical and material nonlinearities nor 

nonlinear waves. Waves which appear in high seas and those distorted due to wind 

are not well represented by linear waves theories. 

Possible future extensions of the method of immediate interest are to consider the 

soil structure interaction and to analyse the fatigue in the structural joints. 
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Both analyses can be attempted with random vibrations, but they are beyond the 

scope of this chapter. Interested readers are referred to 
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