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Preface to the Third Edition

The third edition of Vibrations of Shells and Plates contains a significant
amount of new material, in part fundamental type, and in part it consists of
important application examples. Several of the added topics were suggested
by readers of the earlier editions.

In Chapter 2, on deep shell equations, Section 2.12 describes how to
obtain radii of curvature for any shell geometry analytically if they cannot
easily be determined by inspection. To Section 3.5, Other Geometries, an
example of a parabolic cylindrical shell has been added. To Chapter 4, on
nonshell structures, Section 4.5 was added to show that Love’s equations
can also be reduced to the special case of a circular cylindrical tube that
oscillates in torsional motion. This equation is further reduced to the
classical torsion shaft. The reduction is not obvious because transverse
shear deformation is assumed to be small in the standard Love’s theory. It
is therefore illustrative from an educational viewpoint that this reduction is
possible without resorting to the material of Chapter 12, where transverse
shear deformation is considered.

A significant amount of new material has been added to Chapter 5, on
natural frequencies and modes. Section 5.14 describes the in-plane vibration
of rectangular plates and 5.15 discusses a case of in-plane vibration of
circular plates, because of the importance of this type of vibration to
piezoelectric crystals and spur gears, for example. The new Section 5.16
describes the closed-form solution of the natural frequencies and modes
of a circular cylindrical shell segment, which supplements Section 5.5,
which examines the closed cylindrical shell. Finally, a relatively substantial
Section 5.17 has been added on natural frequency and mode solutions

v
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by power series because of the importance of this approach to solving
differential vibration equations where the solutions cannot be expressed in
terms of trigonometric, hyperbolic, Bessel, Legendre, or other functions.
This approach is usually not discussed in typical standard textbooks on
vibration, despite its potential usefulness and historical importance.

Three more cases of technical significance were added to Chapter 6,
on simplified shell equations. Section 6.16 was added to present the case of
a closed-form solution of a special type of toroidal shell, which is limited
in its application but useful from a theoretical viewpoint. While the barrel-
shaped shell is discussed in Section 6.13 using a Donnell-Mushtari-Vlasov
simplification, a more exact solution is now also given in the new Section
6.17, where the importance of avoiding shells of zero Gaussian curvature,
if higher natural frequencies are desired, is now clearly illustrated. Finally,
an example of a doubly curved plate solution based on the Donnell-
Mushtari-Vlasov theory is now given in Section 6.18. Again, all new cases
are significant from an applications viewpoint and should be helpful to
researchers and practicing engineers.

While the first and second editions identify strain energy expressions
in a general way, and can be worked out for any case, the new edition
includes explicit strain energy equations for a variety of standard cases,
for the purpose of quick reference. These expressions, now given in the
new Section 7.7, are typically used in energy methods of vibration analysis,
notably in the Rayleigh-Ritz method.

In forced vibrations, an initial value example has been added as
Section 8.17 that shows the response of a plate to an initial displacement
that is equal to static sag due to the weight of the plate. The concept of
modal mass, stiffness, damping, and forcing is now introduced in Section
8.18. Explicitly introduced in Section 8.19 is the response of shells to
periodic forcing. The general solution for shells is illustrated by the special
case of a plate in Section 8.20. Finally, in Section 8.21, the phenomenon of
beating is discussed by way of an example.

In Section 9.9, plate examples illustrating the application of the
dynamic Green’s function have been added. Also solved by way of the
dynamic Green’s function is the case of a ring that is impacted by a point
mass.

The response of a ring on an elastic foundation to a harmonic point
moment excitation is solved in Section 10.6. Following this, for the first time
a moment loading dynamic Green’s function is formulated for shells and
plates in general in Section 10.7 and illustrated by an example.

Added to the subchapter on complex receptance is a description of
how to express such complex receptances in terms of magnitudes and phase
angles. The new Section 13.12 shows how one can subtract systems from
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each other, which is more subtle than reversing additions by changing plus
signs to minus signs in the receptance expressions. The receptance treatment
of three or more systems connected by one displacement each was added in
Section 13.13 and illustrated on hand of connected plates in Section 13.14.
Also in this chapter is the solution of a continuous plate on two interior
knife edges by way of a receptance formulation of three plates connected
by moments.

While Chapter 14 in the first edition pointed out that the complex
modulus model of hysteretic damping is valid for harmonic forcing,
Section 14.4 now describes how it is also used for steady-state periodic
response calculations.

Added as Section 15.9 is the analysis of shells composed of
homogeneous and isotropic lamina (so-called sandwich shells), because of
their technical importance, and examples are presented in Section 15.10.

Also, because of their general technical importance as a class of cases,
the equations or motion of shells of revolution that spin about their axes are
now derived explicitly in Section 16.7 and a reduced example, the spinning
disk, is discussed in Section 16.8.

A significant amount of important new material has been added to
the chapter on elastic foundations. The force transmission into the base of
the elastic foundation is analyzed in Section 18.6, and a special illustration
taken from simplified tire analysis—namely, the vertical force transmission
through a rigid wheel that supports by way of an elastic foundation an
elastic ring—was added in Section 18.7. This case has implications beyond
the tire application, however. The general response of shells on elastic
foundations on base excitations is now presented in Section 18.8 and plate
examples are given in Section 18.9. As stimulated by tire applications,
Section 18.10 shows how natural frequencies and modes of a ring on
an elastic foundation in point ground contact may be obtained from the
natural frequencies and rings not in ground contact. This leads indirectly
to the results of Section 18.11 in which the ground contact motion creates
a harmonic point excitation. Important resonance effects are discussed.

In closing, the goals of the first and second editions are preserved
by the additions made in this third edition, namely: (1) to present the
foundation of the theory of vibration of shells and other structures, (2)
to present analytical solutions that illustrate the behavior of vibrating
shells and other structures and to give important general information to
designers of such structures, (3) to present basic information needed for
the development of finite element and finite difference programs (see also
Chapter 21), and (4) to allow such programs to be checked out against some
of the exact results collected in this book.

The remarks in the Preface to the Second Edition on how to use this
book in teaching are still valid. The book contains too much material to be
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covered in a standard three-credit course. Chapters 2 to 8 should be treated
in depth, comprising a major part of the 45 lectures per semester that are
typically available. Then, approximately six chapters can typically be added,
with the topics to be treated a function of the interests of the graduate
students and/or lecturer. The new material that has been added to the third
edition contributes to the range of choices, and certain new examples will
enrich the fundamental lectures. The book may, of course, also be used in
a mode of self-study.

I am indebted to Prof. J. Kim of the University of Cincinnati
and his students, who scrutinized the second edition carefully and gave
me a list of (fortunately minor) transcription, typing, and typesetting
corrections (which were corrected in the second printing without thanking
them in print). I am also grateful for contributions by D. T. Soedel,
F. P. Soedel, and S. M. Soedel and by various students of my graduate
course ME 664, “Vibrations of Continuous Systems,” who either checked
many of the new additions by way of independent assignments, made
suggestions, or found a small remnant of typesetting errors. In my 2003
class, they were: S. Basak, N. Bilal, R. Deng, M. R. Duncan, J. C. Huang,
R. J. Hundhausen, J. W. Kim, U. J. Kim, A. A. Kulkarni, A. Kumar,
T. Puri, L. B. Sharos, T. S. Slack, M. C. Strus, D. N. Vanderlugt, A. Vyas,
F. X. Wang, C. L. Yang, and K. H. Yum. Also contributing, from the
2001 class, were: H. V. Chowdhari, R. S. Grinnip III, Y. J. Kim, Y. Pu,
B. H. Song, S. J. Thorpe, and M. R. Tiller. Earlier classes contributed
also, directly or indirectly, and I regret that the names of these individuals
have not been recorded by me. Finally, general assistance in preparing
lecture notes and generating from them this third edition was provided by
D. K. Cackley, M. F. Schaaf-Soedel, and A. S. Greiber-Soedel.

Werner Soedel



Preface to the Second Edition

The second edition of Vibration of Shells and Plates contains some revisions
and a significant amount of new material. The new material reflects the
latest developments in this field and meets the need of graduate students
and practicing engineers to become acquainted with additional topics such
as traveling modes in rotating shells, thermal effects, and fluid loading.

Love’s theory remains the fundamental theory for deep shell
equations (Chapter 2) since it can be shown that all the other linear
thin shell theories (Flügge’s, Novozhilov’s, etc.) are based on relatively
minor—in a practical sense, most likely unimportant—extensions. This
edition includes a new section on other deep shell theories and another
section shows that the derived equations are also valid for shells of
nonuniform thickness, except where bending and membrane stiffnesses
become functions of the surface coordinates. Because Hamilton’s principle
is used for derivations throughout the book, a discussion of it and a simple
example are now included in Chapter 2.

While there are obviously a very large number of potential shell
geometries, two more have been added to the chapter on equations of
motion for commonly occurring geometries (Chapter 3). Torodial shells
occur in engineering as aircraft and automobile tires, space station designs,
and segments of such shells from impellers of pumps and fluid couplings.
The equations for a cylindrical shell of noncircular cross section have been
added in order to have one example of a shell that is not a shell of
revolution, and also because it occurs quite commonly in pressure vessels.

In Chapter 5, where natural frequencies and modes are discussed,
a formal separation of space and time variables has been added based

ix
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on the observations that the common way of arguing that the motion
in time is obviously harmonic at a natural frequency is not necessarily
accepted by new students of shell behavior. For optimal learning, frequent
detailed explanations are provided. Also included now is a section on how
simultaneous partial differential equations of the type treated here can be
uncoupled.

Because inextensional approximation is particularly useful for rings, a
section on this topic has been added to Chapter 6 on simplified equations.

Chapter 7 covers approximate solution techniques. The discussion of
the Galerkin technique, which in the first edition had been condensed to a
point where clarity suffered, is now significantly expanded in Chapter 7.

Again based on teaching experiences, it has become desirable to
discuss more extensively the use of the Dirac delta function when describing
point forces in space and impulses in time. Also added to Chapter 8
is a discussion of the necessary two orthogonal sets of natural modes
for shells of revolution, described by two different phase angles. Finally,
two relatively detailed examples for a circular cylindrical shell have been
included, one dealing with a harmonic response, the other with an initial
value problem.

Chapter 9 has been expanded to include the harmonic Green’s
function as an introduction to transfer function techniques such as the
receptance method.

A significant amount of new material can be found in Chapter
13, on combinations of structures, because of a strong interest in modal
synthesis by industry. Sections added show the forced response of combined
structures—how to treat systems joined by springs (important from a
vibration isolation point of view) and how to approach displacement
excitations—and discuss receptances that are complex numbers. The section
on dynamic absorbers is now expanded to include the forced behavior.

As additional examples of composite structures, two examples on the
vibration of net or textile sheets have been added to Chapter 15.

Because Coriolis effects in spinning shells of revolution create the
phenomenon of traveling modes, Chapter 16, on rotating structures, has
been added to develop the theory and give several illustrative examples
of significance. The subject is introduced by way of spinning strings and
beams, and the rotating ring is discussed extensively because of its many
practical applications. Also given is an example of a rotating circular
cylindrical shell.

Heating can influence or excite vibrations; thus the new Chapter 17
extends the basic theory to include thermal effects.

At times, one encounters shells or plates that are supported by
an elastic medium. Often, the elastic medium can be modeled as an
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elastic foundation consisting of linear springs, as presented in Chapter 18.
This chapter introduces similitude arguments and is therefore also an
introduction to Chapter 19.

In Chapter 19, because of the importance of scaling to practical
engineers who often study small models of structures, and because of its
importance to rules of design, specialized similitudes for various structural
elements are presented. Exact and approximate scaling relationships are
derived. Also, the proper way of nondimensionalizing results is discussed.

Shell and plate structures often contain or are in contact with liquids
or gases. The equations of motion of liquids or gases are derived by
reduction from the equations of motion of three-dimensional elastic solids,
and the necessary boundary conditions are discussed. One section gives an
introduction to noise radiation from a shell by way of an example. The
study of engineering acoustics is closely related to the vibration of shell
structures, and Chapter 20 is a natural lead-in to this tropic. Also discussed
by way of an example is the topic of the interaction of structures with
incompressible liquids having free surfaces.

A new Chapter 21, on discretizing approaches, discusses finite
difference and finite element techniques for obtaining natural modes
and frequencies and also the forced response from the resulting matrix
equations. Also included is an example of a finite element for shells of
revolution.

At this point it is appropriate to suggest how the second edition is
best used for teaching. The prerequisites remain: an introductory vibration
course and some knowledge of boundary value problem mathematics. Also,
it is still true that Chapters 2 through 8 should be treated in depth. My
usual way of operating, considering a full semester of 45 lectures, is to
accomplish this in approximately half of the available time. Then I select
approximately six chapters of additional material from the remaining 13
chapters, with the topics changing from year to year (depending to some
extent on the interest areas of the students). I treat these in relative depth
and then allow myself three lectures at the end of the semester to survey the
rest of the chapters.

Paradoxically, the material presented in this edition has also been used
by me several times in two- and three-day courses for practicing engineers
in industry, without requiring an appreciable amount of mathematics. In
this case I use the book to outline the mathematical developments but dwell
extensively on the physical principles and on the practical implications of
the results. I have found that this is very useful to engineers who work
mainly with ready-made finite element codes, work purely experimentally,
or are designers of shell structures, and even to engineering managers who
need an overview of the subject. Those who have the proper background,
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and are so inclined, seem able to use the book later in a program of
self-study.

Several persons need to be mentioned for their direct or indirect help
on this second edition. They are, in no particular order, S. M. Soedel, F. P.
Soedel, D. T. Soedel, J. Alfred, R. Zadoks, Y. Chang, L. E. Kung, J. Blinka,
D. Allaei, J. S. Kim, J. Kim, H. W. Kim, S. Saigal, S. C. Huang, J. L. Lin,
M. P. Hsu, R. M. V. Pidaparti, D. S. Stutts, D. Huang, D. C. Conrad, H.
J. Kim, S. H. Kim, Z. Liu and G. P. Adams. I apologize if I have forgotten
someone. I would also like to express my appreciation to former students
in my graduate course who were able to detect nagging small errors (all
of them, I hope) that occurred in the writing and proofreading stages of
the original notes used in my lectures and on which the new material in
this second edition is based. I also thank those whose persistent questions
helped me determine how the material should be organized and presented.

Just as the first edition did, the second edition attempts to provide
information that is useful to the practicing engineer without losing sight of
the fact that the primary purpose is graduate education. Its usefulness as a
reference book has also been enhanced.

Werner Soedel



Preface to the First Edition

This book attempts to give engineering graduate students and practicing
engineers an introduction to the vibration behavior of shells and plates. It
is also hoped that it will prove to be a useful reference to the vibration
specialist. It fills a need in the present literature on this subject, since it is
the current practice to either discuss shell vibrations in a few chapters at
the end of texts on shell statics that may be well written but are too limited
in the selection of material, or to ignore shells entirely in favor of plates
and membranes, as in some of the better known vibration books. There
are a few excellent monographs on very specialized topics, for instance,
on natural frequencies and modes of cylindrical and conical shells. But a
unified presentation of shell and plate vibration, both free and forced, and
with complicating effects as they are encountered in engineering practice, is
still missing. This collection attempts to fill the gap.

The state of the art modern engineering demands that engineers have
a good knowledge of the vibration behavior of structures beyond the usual
beam and rod vibration examples. Vibrating shell and plate structures are
not only encountered by the civil, aeronautical, and astronautical engineer,
but also by the mechanical, nuclear, chemical, and industrial engineer. Parts
or devices such as engine liners, compressor shells, tanks, heat exchangers,
life support ducts, boilers, automotive tires, vehicle bodies, valve read
plates, and saw disks, are all composed of structural elements that cannot
be approximated as vibrating beams. Shells especially exhibit certain effects
that are not present in beams or even plates and cannot be interpreted by
engineers who are only familiar with beam-type vibration theory. Therefore,
this book stresses the understanding of basic phenomena in shell and plate
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vibrations and it is hoped that the material covered will be useful in
explaining experimental measurements or the results of the ever-increasing
number of finite element programs. While it is the goal of every engineering
manager that these programs will eventually be used as black boxes, with
input provided and output obtained by relatively untrained technicians,
reality shows that the interpretation of results of these programs requires a
good background in finite element theory and, in the case of shell and plate
vibrations, in vibration theory of greater depth and breadth than usually
provided in standard texts.

It is hoped that the book will be of interest to both the stress analyst
whose task it is to prevent failure and to the acoustician whose task it
is to control noise. The treatment is fairly complete as far as the needs
of the stress analysts go. For acousticians, this collection stresses those
applications in which boundary conditions cannot be ignored.

The note collection begins with a historical discussion of vibration
analysis and culminates in the development of Love’s equations of shells.
These equations are derived in Chapter 2 in curvilinear coordinates.
Curvilinear coordinates are used throughout as much as possible, because
of the loss of generality that occurs when specific geometries are singled
out. For instance, the effect of the second curvature cannot be recovered
from a specialized treatment of cylindrical shells. Chapter 3 shows the
derivation by reduction of the equations of some standard shell geometries
that have a tendency to occur in standard engineering practice, like the
circular cylindrical shell, the spherical shell, the conical shell, and so on.
In Chapter 4 the equations of motion of plates, arches, rings, beams, and
rods are obtained. Beams and rings are sometimes used as supplementary
examples in order to tie in the knowledge of beams that the reader may
have with the approaches and results of shell and plate analysis.

Chapter 5 discusses natural frequencies and modes. It starts with the
transversely vibrating beam, followed by the ring and plate. Finally, the
exact solution of the simply supported circular cylindrical shell is derived.
The examples are chosen in such a way that the essential behavior of these
structures is unfolded with the help of each previous example; the intent
is not to exhaust the number of possible analytical solutions. For instance,
in order to explain why there are three natural frequencies for any mode
number combination of the cylindrical shell, the previously given case of
the vibrating ring is used to illustrate modes in which either transverse or
circumferential motions dominate.

In the same chapter, the important property of orthogonality of
natural modes is derived and discussed. It is pointed out that when two or
more different modes occur at the same natural frequency, a superposition
mode may be created that may not be orthogonal, yet is measured by
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the experimenter as the governing mode shape. Ways of dealing with this
phenomenon are also pointed out.

For some important applications, it is possible to simplify the
equations of motion. Rayleigh’s simplification, in which either the bending
stiffness or the membrane stiffness is ignored, is presented. However, the
main thrust of Chapter 6 is the derivation and use of the Donnell-Mushtari-
Vlasov equations.

While the emphasis of Chapter 5 was on so-called exact solutions
(series solutions are considered exact solutions), Chapter 7 presents
some of the more common approximate techniques to obtain solutions
for geometrical shapes and boundary condition combinations that do
not lend themselves to exact analytical treatment. First, the variational
techniques known as the Rayleigh-Ritz technique and Galerkin’s method
and variational method are presented. Next, the purely mathematical
technique of finite differences is outlined, with examples. The finite element
method follows. Southwell’s and Dunkerley’s principles conclude the
chapter.

The forced behavior of shells and plates is presented in Chapters 8,
9, and 10. In Chapter 8, the model analysis approach is used to arrive
at the general solution for distributed dynamic loads in transverse and
two orthogonal in-plane directions. The Dirac delta function is then used
to obtain the solutions for point and line loads. Chapter 9 discusses
the dynamic Green’s functions approach and applies it to traveling load
problems. An interesting resonance condition that occurs when a load
travels along the great circles of closed shells of revolution is shown.
Chapter 10 extends the types of possible loading to the technically
significant set of dynamic moment loading, and illustrates it by investigating
the action of a rotation point moment as it may occur when rotating
unbalanced machinery is acting on a shell structure.

The influence of large initial stress fields on the response of shells and
plates is discussed in Chapter 11. First, Love’s equations are extended to
take this effort into account. It is then demonstrated that the equations
of motion of pure membranes and strings are a subset of these extended
equations. The effect of initial stress fields on the natural frequencies of
structures is then illustrated by examples.

In the original derivation of Love’s equations, transverse shear strains,
and therefore shear deflections, were neglected. This becomes less and less
permissible as the average distance between node lines associated with the
highest frequency of interest approaches the thickness of the structure. In
Chapter 12, the shear deformations are included in the shell equations. It is
shown that these equations reduce in the case of a rectangular plate and the
case of a uniform beam to equations that are well known in the vibration
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literature. Sample cases are solved to illustrate the effect shear deformation
has on natural frequencies.

Rarely are practical engineering structures simple geometric shapes. In
most cases the shapes are so complicated that finite element or difference
methods have to be used for accurate numerical results. However, there is
a category of cases in which the engineering structures can be interpreted
as being assembled of two or more classic shapes or parts. In Chapter 13,
the method of receptance is presented and used to obtain, for instance, very
general design rules for stiffening panels by ring- or beam-type stiffeners.
It is also shown that the receptance method gives elegant and easily
interpretable results for cases in which springs or masses are added to the
basic structure.

The formulation and use of equivalent viscous damping was
advocated in the forced vibration chapters. For steady-state harmonic
response problems a complex modulus is often used. In Chapter 14, this
type of structural damping, also called hystereses damping, is presented and
tied in with the viscous damping formulation.

Because of the increasing importance of composite material structures,
the equations of motion of laminated shells are presented and discussed in
Chapter 15, along with some simple examples.

This book evolved over a period of almost ten years from lecture
notes on the vibration of shells and plates. To present the subject in a
unified fashion made it necessary to do some original work in areas where
the available literature did not provide complete information. Some of
it was done with the help of graduate students attending my lectures,
for instance, R. G. Jacquot, U. R. Kristiansen, J. D. Wilken, M. Dhar,
U. Bolleter, and D. P. Powder. Especially talented in detecting errors were
M. G. Prasad, F. D. Wilken, M. Dhar, S. Azimi, and D. P. Egolf. Realizing
that I have probably forgotten some significant contributions, I would
like to single out in addition O. B. Dale, J. A. Adams, D. D. Reynolds,
M. Moaveni, R. Shashaani, R. Singh, J. R. Friley, J. DeEskinazi, F. Laville,
E. T. Buehlmann, N. Kaemmer, C. Hunckler, and J. Thompson, and extend
my appreciation to all my former students.

I would also like to thank my colleagues on the Purdue University
faculty for their direct or indirect advice.

If this book is used for an advanced course in structural vibrations of
about forty-five lectures, it is recommended that Chapters 2 through 8 be
treated in depth. If there is time remaining, highlights of the other chapters
can be presented. Recommend prerequisites are a first course in mechanical
vibrations and knowledge of boundary value problem mathematics.

Werner Soedel



Contents

1 Historical Development of Vibration Analysis
of Continuous Structural Elements 1

References 4

2 Deep Shell Equations 7

2.1 Shell Coordinates and Infinitesimal Distances
in Shell Layers 8

2.2 Stress–Strain Relationships 13
2.3 Strain–Displacement Relationships 15
2.4 Love Simplifications 22
2.5 Membrane Forces and Bending Moments 24
2.6 Energy Expressions 28
2.7 Love’s Equations by Way of Hamilton’s Principle 30
2.8 Boundary Conditions 35
2.9 Hamilton’s Principle 39
2.10 Other Deep Shell Theories 43
2.11 Shells of Nonuniform Thickness References 46
2.12 Radii of Curvature 47

References 50

3 Equations of Motion for Commonly Occurring Geometries 51

3.1 Shells of Revolution 51
3.2 Circular Conical Shell 54
3.3 Circular Cylindrical Shell 56
3.4 Spherical Shell 57

xvii



xviii Contents

3.5 Other Geometries 59
References 63

4 Nonshell Structures 64

4.1 Arch 64
4.2 Beam and Rod 67
4.3 Circular Ring 68
4.4 Plate 69
4.5 Torsional Vibration of Circular Cylindrical Shell

and Reduction to a Torsion Bar 72
References 74

5 Natural Frequencies and Modes 75

5.1 General Approach 75
5.2 Transversely Vibrating Beams 77
5.3 Circular Ring 82
5.4 Rectangular Plates that are Simply supported Along

Two Opposing Edges 86
5.5 Circular Cylindrical Shell Simply Supported 93
5.6 Circular Plates Vibrating Transversely 102
5.7 Example: Plate Clamped at Boundary 103
5.8 Orthogonality Property of Natural Modes 106
5.9 Superposition Modes 109
5.10 Orthogonal Modes from Nonorthogonal

Superposition Modes 113
5.11 Distortion of Experimental Modes Because of Damping 117
5.12 Separating Time Formally 120
5.13 Uncoupling of Equations of Motion 122
5.14 In-Plane Vibrations of Rectangular Plates 124
5.15 In-Plane Vibration of Circular Plates 128
5.16 Deep Circular Cylindrical Panel Simply Supported

at All Edges 131
5.17 Natural Mode Solutions by Power Series 133
5.18 On Regularities Concerning Nodelines 142

References 143

6 Simplified Shell Equations 145

6.1 Membrane Approximation 145
6.2 Axisymmetric Eigenvalues of a Spherical Shell 146
6.3 Bending Approximation 151
6.4 Circular Cylindrical Shell 152



Contents xix

6.5 Zero In-Plane Deflection Approximation 153
6.6 Example: Curved Fan Blade 154
6.7 Donnell-Mushtari-Vlasov Equations 154
6.8 Natural Frequencies and Modes 157
6.9 Circular Cylindrical Shell 157
6.10 Circular Duct Clamped at Both Ends 159
6.11 Vibrations of a Freestanding Smokestack 161
6.12 Special Cases of the Simply Supported Closed Shell

and Curved Panel 162
6.13 Barrel-Shaped Shell 163
6.14 Spherical Cap 165
6.15 Inextensional Approximation: Ring 167
6.16 Toroidal Shell 168
6.17 The Barrel-Shaped Shell Using Modified Love Equations 170
6.18 Doubly Curved Rectangular Plate 174

References 176

7 Approximate Solution Techniques 178

7.1 Approximate Solutions by Way of the Variational Integral 179
7.2 Use of Beam Functions 181
7.3 Galerkin’s Method Applied to Shell Equations 184
7.4 Rayleigh-Ritz Method 191
7.5 Southwell’s Principle 196
7.6 Dunkerley’s Principle 199
7.7 Strain Energy Expressions 201

References 206

8 Forced Vibrations of Shells by Modal Expansion 207

8.1 Model Participation Factor 207
8.2 Initial Conditions 210
8.3 Solution of the Modal Participation Factor Equation 211
8.4 Reduced Systems 214
8.5 Steady-State Harmonic Response 215
8.6 Step and Impulse Response 216
8.7 Influence of Load Distribution 217
8.8 Point Loads 220
8.9 Line Loads 225
8.10 Point Impact 227
8.11 Impulsive Forces and Point Forces Described

by Dirac Delta Functions 230
8.12 Definitions and Integration Property of

the Dirac Delta Function 232



xx Contents

8.13 Selection of Mode Phase Angles for Shells of Revolution 233
8.14 Steady-State Circular Cylindrical Shell Response

to Harmonic Point Load with All Mode Components
Considered 236

8.15 Initial Velocity Excitation of a Simply Supported
Cylindrical Shell 240

8.16 Static Deflections 243
8.17 Rectangular Plate Response to Initial Displacement

Caused by Static Sag 243
8.18 The Concept of Modal Mass, Stiffness Damping

and Forcing 246
8.19 Steady State Response of Shells to Periodic Forcing 248
8.20 Plate Response to a Periodic Square Wave Forcing 251
8.21 Beating Response to Steady state Harmonic Forcing 253

References 255

9 Dynamic Influence (Green’s) Function 256

9.1 Formulation of the Influence Function 257
9.2 Solution to General Forcing Using the Dynamic

Influence Function 259
9.3 Reduced Systems 260
9.4 Dynamic Influence Function for the Simply

Supported Shell 261
9.5 Dynamic Influence Function for the Closed Circular Ring 263
9.6 Traveling Point Load on Simply Supported

Cylindrical Shell 264
9.7 Point Load Traveling Around a Closed Circular

Cylindrical Shell in Circumferential Direction 267
9.8 Steady-State Harmonic Green’s Function 271
9.9 Rectangular Plate Examples 272
9.10 Floating Ring Impacted by a Point Mass 277

References 279

10 Moment Loading 281

10.1 Formulation of Shell Equations That Include
Moment Loading 282

10.2 Modal Expansion Solution 284
10.3 Rotating Point Moment on a Plate 285
10.4 Rotating Point Moment on a Shell 287
10.5 Rectangular Plate Excited by a Line Moment 289
10.6 Response of a Ring on an Elastic Foundation

to a Harmonic Point Moment 291



Contents xxi

10.7 Moment Green’s Function 295
References 300

11 Vibration of Shells and Membranes Under the Influence
of Initial Stresses 301

11.1 Strain-Displacement Relationships 302
11.2 Equations of Motion 305
11.3 Pure Membranes 309
11.4 Example: The Circular Membrane 311
11.5 Spinning Saw Blade 315
11.6 Donnell-Mushtari-Vlasov Equations Extended

to Include Initial Stresses 318
References 320

12 Shell Equations with Shear Deformation and Rotatory Inertia 322

12.1 Equations of Motion 322
12.2 Beams with Shear Deflection and Rotatory Inertia 325
12.3 Plates with Transverse Shear Deflection and

Rotatory Inertia 329
12.4 Circular Cylindrical Shells with Transverse Shear

Deflection and Rotatory Inertia 333
References 336

13 Combinations of Structures 337

13.1 Receptance Method 338
13.2 Mass Attached to Cylindrical Panel 339
13.3 Spring Attached to Shallow Cylindrical Panel 342
13.4 Harmonic Response of a System in Terms of

Its Component Receptances 344
13.5 Dynamic Absorber 347
13.6 Harmonic Force Applied Though a Spring 350
13.7 Steady-State Response to Harmonic Displacement

Excitation 353
13.8 Complex Receptances 354
13.9 Stiffening of Shells 356
13.10 Two Systems Joined by Two or More Displacement 360
13.11 Suspension of an Instrument Package in a Shell 362
13.12 Subtracting Structural Subsystems 365
13.13 Three and More Systems Connected 370



xxii Contents

13.14 Examples of Three Systems Connected to Each Other 374
References 378

14 Hysteresis Damping 380

14.1 Equivalent Viscous Damping Coefficient 381
14.2 Hysteresis Damping 381
14.3 Direct Utilization of Hysteresis Model in Analysis 384
14.4 Hysteretically Damped Plate Excited by Shaker 386
14.5 Steady State Response to Periodic Forcing 388

References 390

15 Shells Made of Composite Material 391

15.1 Nature of Composites 391
15.2 Lamina-Constitutive Relationship 392
15.3 Laminated Composite 397
15.4 Equation of Motion 399
15.5 Orthotropic Plate 400
15.6 Circular Cylindrical Shell 402
15.7 Orthotropic Nets or Textiles Under Tension 406
15.8 Hanging Net or Curtain 408
15.9 Shells Made of Homogeneous and Isotropic Lamina 410
15.10 Simply Supported Sandwich Plates and Beams

Composed of Three Homogeneous and
Isotropic Lamina 412
References 414

16 Rotating Structures 415

16.1 String Parallel to Axis of Rotation 415
16.2 Beam Parallel to Axis of Rotation 422
16.3 Rotating Ring 425
16.4 Rotating Ring Using Inextensional Approximation 428
16.5 Cylindrical Shell Rotating with Constant Spin

About Its Axis 431
16.6 General Rotations of Elastic Systems 432
16.7 Shells of Revolution with Constant Spin About their

Axes of Revolution 433
16.8 Spinning Disk 436

References 436



Contents xxiii

17 Thermal Effects 438

17.1 Stress Resultants 438
17.2 Equations of Motion 440
17.3 Plate 443
17.4 Arch, Ring, Beam, and Rod 443
17.5 Limitations 444

References 445

18 Elastic Foundations 446

18.1 Equations of Motion for Shells on Elastic Foundations 447
18.2 Natural Frequencies and Modes 447
18.3 Plates on Elastic Foundations 448
18.4 Ring on Elastic Foundation 449
18.5 Donnell-Mushtari-Vlasov Equations with Transverse

Elastic Foundation 451
18.6 Forces Transmitted into the Base of the

Elastic Foundation 451
18.7 Vertical Force Transmission Through the Elastic

Foundation of a Ring on a Rigid Wheel 453
18.8 Response of a Shell on an Elastic Foundation to

Base Excitation 458
18.9 Plate Examples of Base Excitation and Force

Transmission 460
18.10 Natural Frequencies and Modes of a Ring on an

Elastic Foundation in Ground Contact at a Point 462
18.11 Response of a Ring on an Elastic Foundation

to a Harmonic Point Displacement 464
References 468

19 Similitude 469

19.1 General Similitude 469
19.2 Derivation of Exact Similitude Relationships for

Natural Frequencies of Thin Shells 471
19.3 Plates 472
19.4 Shallow Spherical Panels of Arbitrary Contours

(Influence of Curvature) 474
19.5 Forced Response 476
19.6 Approximate Scaling of Shells Controlled by

Membrane Stiffness 477



xxiv Contents

19.7 Approximate Scaling of Shells Controlled by
Bending Stiffness 478
References 479

20 Interactions with Liquids and Gases 480

20.1 Fundamental Form in Three-Dimensional Curvilinear
Coordinates 480

20.2 Stress-Strain-Displacement Relationships 482
20.3 Energy Expressions 486
20.4 Equations of Motion of Vibroelasticity with Shear 487
20.5 Example: Cylindrical Coordinates 492
20.6 Example: Cartesian Coordinates 493
20.7 One-Dimensional Wave Equations for Solids 495
20.8 Three-Dimensional Wave Equations for Solids 496
20.9 Three-Dimensional Wave Equations for Inviscid

Compressible Liquids and Gases (Acoustics) 498
20.10 Interface Boundary Conditions 502
20.11 Example: Acoustic Radiation 502
20.12 Incompressible Liquids 505
20.13 Example: Liquid on Plate 506
20.14 Orthogonality of Natural Modes for Three-Dimensional

Solids, Liquids, and Gases 511
References 513

21 Discretizing Approaches 515

21.1 Finite Differences 515
21.2 Finite Elements 520
21.3 Free and Forced Vibration Solutions 533

References 538

Index 539



1

Historical Development
of Vibration Analysis
of Continuous
Structural Elements

Vibration analysis has its beginnings with Galilei (1564–1642), who solved
by geometrical means the dependence of the natural frequency of a simple
pendulum on the pendulum length (Galilei, 1939). He proceeded to make
experimental observations on the vibration behavior of strings and plates,
but could not offer any analytical treatment. He was partially anticipated
in his observations of strings by his contemporary Mersenne (1588–
1648), a French priest. Mersenne (1635) recognized that the frequency of
vibration is inversely proportional to the length of the string and directly
proportional to the square root of the cross-sectional area. This line of
approach found its culmination in Sauveur (1653–1716), who coined the
terminology “nodes” for zero-displacement points on a string vibrating at
its natural frequency and also actually calculated an approximate value
for the fundamental frequency as a function of the measured sag at its
center, similar to the way the natural frequency of a single-degree-of-
freedom spring–mass system can be calculated from its static deflection
(Sauveur, 1701).

The foundation for a more precise treatment of the vibration of
continuous systems was laid by Robert Hooke (1635–1703) when he
established the basic law of elasticity, by Newton (1642–1727) when he
established that force was equal to mass times acceleration, and by Leibnitz
(1646–1716) when he established differential calculus. An approach
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2 Chapter 1

similar to differential calculus called fluxions was developed by Newton
independently at the same time. In 1713 the English mathematician Taylor
(1685–1731) actually used the fluxion approach, together with Newton’s
second law applied to an element of the continuous string, to calculate
the true value of the first natural frequency of a string (Taylor, 1713). The
approach was based on an assumed first mode shape. This is where work
in vibration analysis stagnated in England, since the fluxion method and
especially its notation proved to be too clumsy to allow anything but the
attack of simple problems. Because of the controversy between followers
of Newton and Leibnitz as to the origin of differential calculus, patriotic
Englishmen refused to use anything but fluxions and left the fruitful use
of the Leibnitz notation and approach to investigators on the continent.
There the mathematics of differential calculus prospered and paved the
way for Le Rond d’Alembert (1717–1783), who derived in 1747 the partial
differential equation which today is referred to as the wave equation and
who found the wave travel solution (Le Rond d’Alembert, 1747). He was
ably assisted in this by Bernoulli (1700–1782) and Euler (1707–1783), both
German-speaking Swiss and friends, but did not give them due credit. It
is still a controversial subject to decide who did actually what, especially
since the participants were not too bashful to insult each other and claim
credit right and left. However, it seems fairly clear that the principle of
superposition of modes was first noted in 1747 by Bernoulli (1755) and
proven by Euler (1753). These two must, therefore, be credited as being
the fathers of the modal expansion technique or of eigenvalue expansion
in general. The technique did not find immediate general acceptance.
Fourier (1768–1830) used it to solve certain problems in the theory of heat
(Fourier, 1822). The resulting Fourier series can be viewed as a special
case of the use of orthogonal functions and might as well carry the name
of Bernoulli. However, it is almost a rule in the history of science that
people who are credited with an achievement do not completely deserve
it. Progress moves in small steps and it is often the person who publishes
at the right developmental step and at the right time who gets the public
acclaim.

The longitudinal vibration of rods was investigated experimentally
by Chladni (1787) and Biot (1816). However, not until 1824 do we find
the published analytical equation and solutions, done by Navier. This is
interesting since the analogous problem of the longitudinal vibration of air
columns was already done in 1727 by Euler (1727).

The equation for the transverse vibration of flexible thin beams was
derived by Bernoulli (1735), and the first solutions for simply supported
ends, clamped ends, and free ends were found by Euler (1744).
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The first torsional vibration solution, but not in a continuous sense,
was given by Coulomb (1784). But not until 1827 do we find an attempt
to derive the continuous torsional equation (Cauchy, 1827). This was done
by Cauchy (1789–1857) in an approximate fashion. Poisson (1781–1840) is
generally credited with having derived the one-dimensional torsional wave
equation in 1827 (Poisson, 1829). The credit for deriving the complete
torsional wave equation and giving some rigorous results belongs to Saint-
Venant (1797–1886), who published on this subject (de Saint-Venant,
1849).

In the field of membrane vibrations, Euler (1766a) published
equations for a rectangular membrane that were incorrect for the general
case but reduce to the correct equation for the uniform tension case. It
is interesting to note that the first membrane vibration case investigated
analytically was not that dealing with the circular membrane, even though
the latter, in the form of a drumhead, would have been the more obvious
shape. The reason is that Euler was able to picture the rectangular
membrane as a superposition of a number of crossing strings. In 1828,
Poisson read a paper to the French Academy of Science on the special
case of uniform tension. Poisson (1829) showed the circular membrane
equation and solved it for the special case of axisymmetric vibration.
One year later, Pagani (1829) furnished a nonaxisymmetric solution. Lamé
(1795–1870) published lectures that gave a summary of the work on
rectangular and circular membranes and contained an investigation of
triangular membranes (Lamé, 1852).

Work on plate vibration analysis went on in parallel. Influenced by
Euler’s success in deriving the membrane equation by considering the
superposition of strings, James Bernoulli, a nephew of Daniel Bernoulli,
attempted to derive the plate equation by considering the superposition
of beams. The resulting equation was wrong. In his 1788 presentation
to the St. Petersburg Academy, Bernoulli (1789) acknowledged that he
was stimulated in his attempt by the German experimentalist Chladni
(1787), who demonstrated the beautiful node lines of vibrating plates at
the courts of Europe. A presentation by Chladni before emperor Napoleon,
who was a trained military engineer and very interested in technology and
science, caused the latter to transfer money to the French Academy of
Sciences for a prize to the person who could best explain the vibration
behavior of plates. The prize was won, after several attempts, by a woman,
Germaine (1776–1831), in 1815. Germaine (1821) gave an almost correct
form of the plate equation. The bending stiffness and density constants
were not defined. Neither were the boundary conditions stated correctly.
These errors are the reason that her name is not associated today with the
equation, despite the brilliance or her approach. Contributing to this was
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Todhunter (1886), who compiled a fine history of the theory of elasticity,
published posthumously, in which he is unreasonably critical of her work,
demanding a standard of perfection that he does not apply to the works
of the Bernoullis, Euler, Lagrange, and others, where he is quite willing
to accept partial results. Also, Lagrange (1736–1813) entered into the act
by correcting errors that Germaine made when competing for the prize
in 1811. Thus, indeed, we find the equation first stated in its modern
form by Lagrange (1811) in response to Germaine’s submittal of her first
competition paper.

What is even more interesting is that, Germaine (1821) published
a very simplified equation for the vibration of a cylindrical shell.
Unfortunately, again it contained mistakes. This equation can be reduced
to the current rectangular plate equation, but when it is reduced to the ring
equation, a sign error is passed on. But for the sign difference in one of its
terms, the ring equation is identical to one given by Euler (1766b).

The correct bending stiffness was first identified by Poisson (1829).
Consistent boundary conditions were not developed until 1850 by
Kirchhoff (1824–1887), who also gave the correct solution for a circular
plate example (Kirchhoff, 1850).

The problem of shell vibrations was first attacked by Germaine before
1821, as already pointed out. She assumed that the in-plane deflection
of the neutral surface of a cylindrical shell was negligible. Her result
contained errors. Aron (1874) derived a set of five equations, which
he shows to reduce to the plate equation when curvatures are set to
zero. The equations are complicated because of his reluctance to employ
simplifications. They are in curvilinear coordinate form and apply in
general. The simplifications that are logical extensions of the beam and
plate equations for both transverse and in-plane motion were introduced
by Love (1863–1940) in 1888 (Love, 1888). Between Aron and Love,
Lord Rayleigh (1842–1919) proposed various simplifications that viewed
the shell neutral surface as either extensional or inextensional (Lord
Rayleigh, 1882). His simplified solutions are special cases of Love’s general
theory. Love’s equations brought the basic development of the theory
of vibration of continuous structures which have a thickness that is
much less than any length or surface dimensions to a satisfying end.
Subsequent development, concerned with higher-order or complicating
effects, is discussed in this book when appropriate.
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beliebig gekrūmmten elastischen Schale. J. Math. (Crelle) 78.



Historical Development of Vibration Analysis 5

Bernoulli, D. (1735). Letters to Euler. Basel.
Bernoulli, D. (1755). Réflexions et éclaircissements sur les nouvelles vibrations des

cordes. Berlin. Royal Academy (presented 1747).
Bernoulli, J. (1789). Essai théorique sur les vibrations des plaques élastiques

rectangularies et libres. Nova Acta Academiae Scientiarum Petropolitanae.
St. Petersburg.

Biot, J. B. (1816). Traité de physique expérimentale et mathématique. Paris:
Deterville.

Cauchy, A. (1827). Exercices de mathématiques. Paris.
Chladni, E. F. F. (1787). Entdeckungen ūber die Theorie des Klanges. Leipzig:

Weidmann und Reich.
Coulomb, C. A. (1784). Recherches théoriques et expérimentales sur la force de

torsion et sur l’élasticité des fils de métal. Memoirs of the Paris Academy. Paris.
de Saint-Venant, B. (1849). Mémoire sur les vibrations tournantes des verges

élastiques. Comp. Rend. 28.
Euler, L. (1727). Dissertatio Physica de Sono, Basel.
Euler, L. (1744). Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate

Gaudentes, Berlin.
Euler, L. (1753). Remarques sur les mémoires précédents de M. Bernoulli. Berlin:

Royal Academy.
Euler, L. (1766a). De motu vibratorio tympanorum. Novi Commentarii.

St. Petersburg: St. Petersburg Academy.
Euler, L. (1766b). Tentamen de sono campanarum. Novi Commentarri.

St. Petersburg: St. Petersburg Academy.
Fourier, J. B. J. (1822). La théorie analytique de la chaleur. Paris: Didot.
Galilei, G. (1939). Dialogue Concerning Two New Sciences (1638). Evanston, Ill:

North-Western University Press.
Germaine, S. (1821). Recherches sur la théorie des surfaces élastiques. Paris.
Kirchhoff, G. R. (1850). Ūber das Gleichgewicht und die Bewegung einer

elastischen Scheibe. J. Math. (Crelle) 40.
Lagrange, J. L. (1811). Note communiquée aux commissaires pour le prix de la surface

élastique. Paris.
Lamé, G. (1852). Leçons sur la théorie mathématique de I’élasticité des corps solides.

Paris: Bachelier.
Le Rond d’Alembert, J. (1747). Recherches sur la courbe que forme une corde tendue

mise en vibration. Berlin: Royal Academy.
Lord Rayleigh, J. W. S. (1882). On the infinitesimal bending of surfaces of

revolution. London Math. Soc. Proc. 13.
Love, A. E. H. (1888). On the small free vibrations and deformations of thin elastic

shells. Philos. Trans. Roy. soc. London 179A.
Mersenne, M. (1635). Harmonicorum Libri XII. Paris.
Pagani, M. (1829). Note sur le mouvement vibratoire d’une membrane élastique de

forme circulaire. Brussels: Royal Academy of Science at Brussels.
Poisson, S. D. (1829). Sur l’équilibre et le mouvement des corps élastiques.

Memoirs of the Paris Academy. Paris.



6 Chapter 1

Sauveur, J. (1701). Système général des intervalles des sons, Paris: L’Academie
Royale des Sciences.

Taylor, B. (1713). De Motu Nervi Tensi. Philos. Trans. Roy. Soc. London 28.
Todhunter, L. (1886). A History of the Theory of Elasticity. Vol. I. New York:

Cambridge University Press.



2

Deep Shell Equations

The term deep is used to distinguish the set of equations used in this
chapter from the “shallow” shell equations discussed later. The equations
are based on the assumptions that the shells are thin with respect to their
radii of curvature and that deflections are reasonably small. On these two
basic assumptions secondary assumptions rest. They are discussed as the
development warrants it.

The basic theoretical approach is due to Love (1888), who published
the equations in their essential form toward the end of the 19th
century. Essentially, he extended work on shell vibrations by Rayleigh,
who divided shells into two classes: one where the middle surface
does not stretch and bending effects are the only important ones,
and one where only the stretching of the middle surface is important
and the bending stiffness can be neglected (Rayleigh, 1945). Love
allowed the coexistence of these two classes. He used the principle
of virtual work to derive his equations, following Kirchhoff (1850),
who had used it when deriving the plate equation. The derivation
given here uses Hamilton’s principle, following Reissner’s derivation
(Reissner, 1941; Kraus, 1967).

7



8 Chapter 2

2.1. SHELL COORDINATES AND INFINITESIMAL
DISTANCES IN SHELL LAYERS

We assume that thin, isotropic, and homogeneous shells of constant
thickness have neutral surfaces, just as beams in transverse deflection
have neutral fibers. That this is true will become evident later. Stresses
in such a neutral surface can be of the membrane type but cannot
be bending stresses. Locations on the neutral surface, placed into a
three-dimensional Cartesian coordinate system, can also be defined by
two-dimensional curvilinear surface coordinates �1 and �2. The location of
point P on the neutral surface (Fig. 1) in Cartesian coordinates is related
to the location of the point in surface coordinates by

x1=f1��1��2�� x2=f2��1��2�� x3=f3��1��2� (2.1.1)

The location of P on the neutral surface can also be expressed by a vector:
for example,

r̄ ��1��2�=f1��1��2�ē1+f2��1��2�ē2+f3��1��2�ē3 (2.1.2)

FIG. 1 Reference surface.
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Now let us define the infinitesimal distance between points P and P ′

on the neutral surface. The differential change dr̄ of the vector r̄ as we
move from P to P ′ is

dr̄= �r̄

��1

d�1+
�r̄

��2

d�2 (2.1.3)

The magnitude ds of dr̄ is obtained by

�ds�2=dr̄ ·dr̄ (2.1.4)

or

�ds�2= �r̄

��1

· �r̄

��1

�d�1�
2+ �r̄

��2

· �r̄

��2

�d�2�
2+2

�r̄

��1

· �r̄

��2

d�1d�2 (2.1.5)

In the following, we limit ourselves to orthogonal curvilinear coordinates
which coincide with the lines of principal curvature of the neutral surface.

The third term in Eq. (2.1.5) thus becomes

2
�r̄

��1

· �r̄

��2

d�1d�2=2

∣∣∣∣ �r̄��1

∣∣∣∣
∣∣∣∣ �r̄��2

∣∣∣∣cos�2 d�1d�2=0 (2.1.6)

When we define

�r̄

��1

· �r̄

��1

=
∣∣∣∣ �r̄��1

∣∣∣∣
2

=A2
1

�r̄

��2

· �r̄

��2

=
∣∣∣∣ �r̄��2

∣∣∣∣
2

=A2
2 (2.1.7)

Equation (2.1.5) becomes

�ds�2=A2
1�d�1�

2+A2
2�d�2�

2 (2.1.8)

This equation is called the fundamental form and A1 and A2 are the
fundamental form parameters or Lamé parameters.

As an example, let us look at the circular cylindrical shell shown in
Fig. 2. The lines of principal curvature (for each shell surface point there
exists a maximum and a minimum radius of curvature, whose directions are
at an angle of �/2) are in this case parallel to the axis of revolution, where
the radius of curvature Rx=� or the curvature 1/Rx=0, and along circles,
where the radius of curvature R�=a or the curvature 1/R�=1/a. We then
proceed to obtain the fundamental form parameters from definition (2.1.7).
The curvilinear coordinates are

�1=x� �2=� (2.1.9)

and Eq. (2.1.2) becomes

r̄=xē1+acos�ē2+asin�ē3 (2.1.10)
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FIG. 2 Obtaining the Lamé parameters for a circular cylindrical shell.

Thus
�r̄

��1

= �r̄

�x
= ē1 (2.1.11)

or ∣∣∣∣ �r̄��1

∣∣∣∣=A1=1 (2.1.12)

and
�r̄

��2

= �r̄

��
=−asin�ē2+acos�ē3 (2.1.13)

or ∣∣∣∣ �r̄��
∣∣∣∣=A2=a

√
sin2�+cos2�=a (2.1.14)

The fundamental form is therefore

�ds�2=�dx�2+a2�d��2 (2.1.15)

Recognizing that the fundamental form can be interpreted as defining the
hypotenuse ds of a right triangle whose sides are infinitesimal distances
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FIG. 3 Distance between two points removed from the reference surface.

along the surface coordinates of the shell, we may obtain A1 and A2 in a
simpler fashion by expressing ds directly using inspection:

�ds�2=�dx�2+a2�d��2

By comparison with Eq. (2.1.8), we obtain A1=1 and A2=a.
For the general case, let us now define the infinitesimal distance

between a point P1 that is normal to P and a point P ′
1 which is normal to

P ′ (see Fig. 3). P1 is located at a distance �3 from the neutral surface (�3

is defined to be along a normal straight line to the neutral surface). P ′
1 is

located at a distance �3+d�3 from the neutral surface. We may therefore
express the location of P1 as

�R��1��2��3�= r̄ ��1��2�+�3n̄��1��2� (2.1.16)

where n̄ is a unit vector normal to the neutral surface. The differential
change d�R, as we move from P1 to P ′

1, is

d�R=dr̄+�3dn̄+ n̄d�3 (2.1.17)

where

dn̄= �n̄

��1

d�1+
�n̄

��2

d�2 (2.1.18)
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The magnitude ds of d�R is obtained by

�ds�2=d�R·d�R (2.1.19)

or

�ds�2 = dr̄ ·dr̄+�2
3dn̄·dn̄+ n̄· n̄�d�3�

2+2�3dr̄ ·dn̄
+2d�3dr̄ · n̄+2�3d�3dn̄· n̄=dr̄ ·dr̄
+�2

3dn̄·dn̄+�d�3�
2+2�3dr̄ ·dn̄ (2.1.20)

We have already seen that

dr̄ ·dr̄=A2
1�d�1�

2+A2
2�d�2�

2 (2.1.21)

Next,

�2
3dn̄·dn̄=�2

3

[
�n̄

��1

· �n̄
��1

�d�1�
2+ �n̄

��2

· �n̄
��2

�d�2�
2+2

�n̄

��1

· �n̄
��2

d�1d�2

]
(2.1.22)

The third term of this expression is 0 because of orthogonality (see also
Fig. 3). The second term may be written

�2
3

�n̄

��2

· �n̄
��2

�d�2�
2=

∣∣∣∣�3

�n

��2

∣∣∣∣
2

�d�2�
2 (2.1.23)

From Fig. 3 we recognize the following relationship to the radius of
curvature R2:

��r̄/��2�
R2

= ��3��n̄/��2��
�3

(2.1.24)

Since∣∣∣∣ �r̄��2

∣∣∣∣=A2 (2.1.25)

we get∣∣∣∣�3

�n̄

��2

∣∣∣∣= �3A2

R2

(2.1.26)

and therefore

�2
3

�n̄

��2

· �n̄
��2

�d�2�
2=�2

3

A2
2

R2
2

�d�2�
2 (2.1.27)

Similarly, the first term becomes

�2
3

�n̄

��1

· �n̄
��1

�d�1�
2=�2

3

A2
1

R2
1

�d�1�
2 (2.1.28)
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and expression (2.1.22) becomes

�2
3dn̄·dn̄=�2

3

[
A2

1

R2
1

�d�1�
2+A2

2

R2
2

�d�2�
2

]
(2.1.29)

Finally, the last expression of Eq. (2.1.20) becomes

2�3dr̄ ·dn̄ = 2�3

[
�r̄

��1

· �n̄
��1

�d�1�
2+ �r̄

��2

· �n̄
��2

�d�2�
2

+ �r̄

��1

· �n̄
��2

d�1d�2+
�r̄

��2

· �n̄
��1

d�1d�2

]
(2.1.30)

The last two terms are 0 because of orthogonality. The first term may be
written

�r̄

��1

· �n̄
��1

�d�1�
2=

∣∣∣∣ �r̄��1

∣∣∣∣
∣∣∣∣ �n̄��1

∣∣∣∣�d�1�
2= A2

1

R1

�d�1�
2 (2.1.31)

Similarly,

�r̄

��2

· �n̄
��2

�d�2�
2= A2

2

R2

�d�2�
2 (2.1.32)

Expression (2.1.30) therefore becomes

2�3dr̄ ·dn̄=2�3

[
A2

1

R1

�d�1�
2+A2

2

R2

�d�2�
2

]
(2.1.33)

Substituting expressions (2.1.33), (2.1.29), and (2.1.21) in Eq. (2.1.20) gives

�ds�2=A2
1

(
1+ �3

R1

)2

�d�1�
2+A2

2

(
1+ �3

R2

)2

�d�2�
2+�d�3�

2 (2.1.34)

2.2. STRESS–STRAIN RELATIONSHIPS

Having chosen the mutually perpendicular lines of principal curvature
as coordinates, plus the normal to the neutral surface as the third
coordinate, we have three mutually perpendicular planes of strain and three
shear strains. Assuming that Hooke’s law applies, we have for a three-
dimensional element

�11 =
1

E
	
11−��
22+
33�� (2.2.1)

�22 =
1

E
	
22−��
11+
33�� (2.2.2)
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�33 =
1

E
	
33−��
11+
22�� (2.2.3)

�12 =

12

G
(2.2.4)

�13 =

13

G
(2.2.5)

�23 =

23

G
(2.2.6)

where 
11�
22, and 
33 are normal stresses and 
12�
13, and 
23 are shear
stresses as shown in Fig. 4. Note that


12=
21� 
13=
31� 
23=
32 (2.2.7)

We will later assume that transverse shear deflections can be neglected.
This implies that

�13=0� �23=0 (2.2.8)

However, we will not neglect the integrated effect of the transverse shear
stresses 
13 and 
23. This is discussed later.

The normal stress 
33, which acts in the normal direction to the
neutral surface, will be neglected:


33=0 (2.2.9)

This is based on the argument that on an unloaded outer shell surface it is
0, or if a load acts on the shell, it is equivalent in magnitude to the external

FIG. 4 Stresses acting on an element.
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load on the shell, which is a relatively small value in most cases. Only in the
close vicinity of a concentrated load do we reach magnitudes that would
make the consideration of 
33 worthwhile. Our equation system therefore
reduces to

�11 =
1

E
�
11−�
22� (2.2.10)

�22 =
1

E
�
22−�
11� (2.2.11)

�12 =

12

G
(2.2.12)

and

�33=−�

E
�
11+
22� (2.2.13)

Only the first three relationships will be of importance in the following.
Equation (2.2.13) can later be used to calculate the constriction of the
shell thickness during vibration, which is of some interest to acousticians
since it is an additional noise generating mechanism, along with transverse
deflection.

2.3. STRAIN–DISPLACEMENT RELATIONSHIPS

We have seen that the infinitesimal distance between two points P1 and P ′
1

of an undeflected shell is given by Eq. (2.1.34). Defining, for the purpose
of a short notation,

A2
1

(
1+ �3

R1

)2

=g11��1��2��3� (2.3.1)

A2
2

(
1+ �3

R2

)2

=g22��1��2��3� (2.3.2)

1=g33��1��2��3� (2.3.3)

We may write Eq. (2.1.34) as

�ds�2=
3∑

i=1

gii��1��2��3��d�i�
2 (2.3.4)

If point P1, originally located at ��1��2��3�, is deflected in the �1

direction by U1, in the �2 direction by U2, and in the �3 (normal) direction
by U3, it will be located at ��1+
1��2+
2��3+
3�. Deflections U1 and
coordinate changes 
i are related by

Ui=
√
gii��1��2��3�
i (2.3.5)
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FIG. 5 Two infinitesimally close points before and after deflection.

Point P ′
1, originally at ��1+d�1��2+d�2��3+d�3�, will be located at

��1+d�1+
1+d
1��2+d�2+
2+d
2��3+d�3+
3+d
3� after deflection
(Fig. 5). The distance ds′ between P1 and P ′

1 in the deflected state will
therefore be

�ds′�2=
3∑

i=1

gii��1+
1��2+
2��3+
3��d�i+d
i�
2 (2.3.6)

Since gii��1��2��3� varies in a continuous fashion as �1��2 and �3 change,
we may utilize as an approximation the first few terms of a Taylor series
expansion of gii��1+
1��2+
2��3+
3� about the point ��1��2��3�:

gii��1+
1��2+
2��3+
3�

=gii��1��2��3�+
3∑

j=1

�gii��1��2��3�

��j


j+··· (2.3.7)

For the special case of an arch that deflects only in the plane of its
curvature, the Taylor series expansion is illustrated in Fig. 6. In this
example, g22��1��2��3�=0, g33��1��2��3�=0, and g11��1��2��3�=g11��1�.
Equation (2.3.7) becomes

g11��1+
1�=g11��1�+
�g11��1�

��1


1 (2.3.8)

Continuing with the general case, we may write

�d�i+d
i�
2=�d�i�

2+2d�id
1+�d
i�
2 (2.3.9)
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FIG. 6 Illustration of the Taylor Series expansion.

In the order of approximation consistent with linear theory, �d
i�
2 can be

neglected. Thus

�d�i+d
i�
2=�d�i�

2+2d�id
i (2.3.10)

The differential d
i is

d
i=
3∑

j=1

�
i
��j

d�j (2.3.11)

Therefore,

�d�i+d
i�
2=�d�i�

2+2d�i

3∑
j=1

�
i
��j

d�j (2.3.12)

Substituting Eqs. (2.3.12) and (2.3.7) in Eq. (2.3.6) gives

�ds′�2 =
3∑

i=1

[
gii��1��2��3�+

3∑
j=1

�gii��1��2��3�

��j


j

]

×
[
�d�i�

2+2d�i

3∑
j=1

�
j

��j

d�j

]
(2.3.13)

Expanding this equation and writing

gii��1��2��3�=gii (2.3.14)
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gives

�ds′�2 =
3∑

i=1

[(
gii+

3∑
j=1

�gii
��j


j

)
�d�j�

2+2d�igii

3∑
j=1

�
j

��j

d�j

+ 2d�i

3∑
j=1

�gii
��j


j

3∑
j=1

�
j

��j

d�j

]
(2.3.15)

The last term is negligible except for cases where high initial stresses exist
in the shell. We have, therefore, replacing j by k in the first term,

�ds′�2 =
3∑

i=1

(
gii+

3∑
k=1

�gii
��k


k

)
�d�i�

2

+
3∑

i=1

3∑
j=1

gii
�
j

��j

d�jd�i+
3∑

i=1

3∑
j=1

gii
�
j

��j

d�jd�i (2.3.16)

Utilizing the Kronecker delta notation

�ij=
{
1� i=j
0� i �=j

(2.3.17)

we may write the first term of Eq. (2.3.16) as

3∑
i=1

3∑
j=1

(
gii+

3∑
k=1

�gii
��k


k

)
�ijd�id�j (2.3.18)

The last two terms of Eq. (2.3.16) we may write in symmetric fashion by
noting that

3∑
i=1

3∑
j=1

gii
�
i
��j

d�jd�i=
3∑

i=1

3∑
j=1

gjj
�
j

��i

d�id�j (2.3.19)

Thus

�ds′�2=
3∑

i=1

3∑
j=1

[(
gii+

3∑
k=1

�gii
��k


k

)
�ij+gii

�
i
��j

+gjj
�
j

��i

]
d�id�j (2.3.20)

Denoting

Gij=
(
gii+

3∑
k=1

�gii
��k


k

)
�ij+gii

�
i
��j

+gjj
�
j

��i

(2.3.21)

gives

�ds′�2=
3∑

i=1

3∑
j=1

Gijd�id�j (2.3.22)
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Note that

Gij=Gji (2.3.23)

Equation (2.3.22) defines the distance between two points P and P ′ after
deflection, where point P was originally located at ��1��2��3� and point P ′

at ��1+d�1��2+d�2��3+d�3�. For example, if P ′ was originally located
at ��1+d�1��2��3�, that is, d�2=0 and d�3=0,

�ds�2 = g11�d�1�
2=�ds�211 (2.3.24)

�ds′�2 = G11�d�1�
2=�ds′�211 (2.3.25)

If point P ′ was originally located at ��1��2+d�2��3�, that is, d�1=0 and
d�3=0,

�ds�2 = g22�d�2�
2=�ds�222 (2.3.26)

�ds′�2 = G22�d�2�
2=�ds′�222 (2.3.27)

Now let us investigate the case shown in Fig. 7, where P was
originally located at ��1+d�1��2��3� and P ′ was originally located at
��1��2+d�2��3�. This is equivalent to saying that P was originally located
at ��1��2��3� and P ′ at ��1−d�1��2+d�2��3�. We then get

�ds�2 = g11�d�1�
2+g22�d�2�

2=�ds�212 (2.3.28)

�ds′�2 = G11�d�1�
2+G22�d�2�

2−2G12d�1d�2=�ds′�212 (2.3.29)

FIG. 7 Shear deformation in the plane of the reference surface.
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In general,

�ds�2ii = gii�d�i�
2 (2.3.30)

�ds′�2ii = Gii�d�i�
2 (2.3.31)

and

�ds�2ij = gii�d�i�
2+gjj�d�j�

2 (2.3.32)

�ds′�2ij = Gii�d�i�
2+Gjj�d�j�

2−2Gijd�id�j (2.3.33)

We are ready now to formulate strains. The normal strains are

�ii=
�ds′�ii−�ds�ii

�ds�ii
=
√
Gii

gii
−1=

√
1+Gii−gii

gii
−1 (2.3.34)

Noting that since

Gii−gii
gii

�1 (2.3.35)

we have the expansion√
1+Gii−gii

gii
=1+ 1

2

Gii−gii
gii

−··· (2.3.36)

Thus

�ii=
1

2

Gii−gii
gii

(2.3.37)

Shear strains �ij�i �=j� are defined as the angular change of an
infinitesimal element:

�ij=
�

2
−�ij (2.3.38)

�ij for i=1 and j=2 is shown in Fig. 7. Utilizing the cosine law, we may
compute this angle

�ds′�2ij=�ds′�2ii+�ds′�2jj−2�ds′�ii�ds
′�jj cos�ij (2.3.39)

Substituting Eqs. (2.3.31) and (2.3.33) and solving for cos�ij gives

cos�ij=
Gij√
GiiGjj

(2.3.40)

Substituting Eq. (2.3.38) results in

cos
(�
2
−�ij

)
=sin�ij=

Gij√
GiiGjj

(2.3.41)
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and since for reasonable shear strain magnitudes

sin�ij��ij (2.3.42)

and

Gij√
GiiGjj

� Gij√
giigjj

(2.3.43)

we may express the shear strain as

�ij=
Gij√
giigjj

(2.3.44)

Substituting Eqs. (2.3.21), (2.3.5), and (2.3.1) to (2.3.3) in Eq. (2.3.37)
gives, for instance for i=1,

�11 =
1

2A2
1�1+�3/R1�

2

{
�	A2

1�1+�3/R1�
2�

��1

U1

A1�1+�3/R1�

+�	A2
1�1+�3/R1�

2�

��2

U2

A2�1+�3/R2�
+ �	A2

1�1+�3/R1�
2�

��3

U3

}

+ �

��1

U1

A1�1+�3/R1�

= 1

A1�1+�3/R1�

{
�	A1�1+�3/R1��

��1

U1

A1�1+�3/R1�

+�	A1�1+�3/R1��

��2

U2

A2�1+�3/R2�
+A1

R1

U3

}
+ 1

A1�1+�3/R1�

�U1

��1

−�	A1�1+�3/R1��

��1

U1

A2
1�1+�3/R1�

2
(2.3.45)

Next, we will utilize the equalities

�	A1�1+�3/R1��

��2

=
(
1+ �3

R2

)
�A1

��2

(2.3.46)

and

�	A2�1+�3/R2��

��1

=
(
1+ �3

R1

)
�A2

��1

(2.3.47)

These relations are named after Codazzi (see Ref. Kraus, 1967)
Substituting them in Eq. (2.3.45), we get

�11=
1

A1�1+�3/R1�

(
�U1

��1

+ U2

A2

�A1

��2

+U3

A1

R1

)
(2.3.48)
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Similarly,

�22 =
1

A2�1+�3/R2�

(
�U2

��2

+ U1

A1

�A2

��1

+U3

A2

R2

)
(2.3.49)

�33 =
�U3

��3

(2.3.50)

Substituting Eqs. (2.3.21), (2.3.5), and (2.3.1) to (2.3.3) in Eq. (2.3.44)
gives, for instance for i=1, j=2,

�12 =
A1�1+�3/R1�

A2�1+�3/R2�

�

��2

(
U1

A1�1+�3/R1�

)

+A2�1+�3/R2�

A1�1+�3/R1�

�

��1

(
U2

A2�1+�3/R2�

)
(2.3.51)

Similarly,

�13 = A1

(
1+ �3

R1

)
�

��3

(
U1

A1�1+�3/R1�

)
+ 1

A1�1+�3/R1�

�U3

��1

(2.3.52)

�23 = A2

(
1+ �3

R2

)
�

��3

(
U2

A2�1+�3/R2�

)
+ 1

A2�1+�3/R2�

�U3

��2

(2.3.53)

2.4. LOVE SIMPLIFICATIONS

If the shell is thin, we may assume that the displacements in the �1 and �2

directions vary linearly through the shell thickness, whereas displacements
in the �3 direction are independent of �3:

U1��1��2��3� = u1��1��2�+�3�1��1��2� (2.4.1)

U2��1��2��3� = u2��1��2�+�3�2��1��2� (2.4.2)

U3��1��2��3� = u3��1��2� (2.4.3)

where �1 and �2 represents angles. If we assume that we may neglect shear
deflection, which implies that the normal shear strains are 0,

�13 = 0 (2.4.4)

�23 = 0 (2.4.5)
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we obtain, for example, a definition of �1 from Eq. (2.3.52),

0 = A1

(
1+ �3

R1

)
�

��3

(
u1+�3�1

A1�1+�3/R1�

)
+ 1

A1�1+�3/R1�

�u3

��1

= �1−
u1

R1

+ 1

A1

�u3

��1

(2.4.6)

or

�1=
u1

R1

− 1

A1

�u3

��1

(2.4.7)

Similarly, we get

�2=
u2

R2

− 1

A2

�u3

��2

(2.4.8)

Substituting Eqs. (2.4.1)–(2.4.3) into Eqs. (2.3.48)–(2.3.51), and
recognizing that

�3

R1

�1�
�3

R2

�1 (2.4.9)

we get

�11 =
1

A1

�

��1

�u1+�3�1�+
1

A1A2

�A1

��2

�u2+�3�2�+
u3

R1

(2.4.10)

�22 =
1

A2

�

��2

�u2+�3�2�+
1

A1A2

�A2

��1

�u1+�3�1�+
u3

R2

(2.4.11)

�33 = 0 (2.4.12)

�13 = 0 (2.4.13)

�23 = 0 (2.4.14)

�12 =
A2

A1

�

��1

(
u2+�3�2

A2

)
+A1

A2

�

��2

(
u1+�3�1

A1

)
(2.4.15)

It is convenient to express Eqs. (2.4.10)–(2.4.15) in a form where
membrane strains (independent of �3) and bending strains (proportional
to �3) are separated:

�11 = �0
11+�3k11 (2.4.16)

�22 = �0
22+�3k22 (2.4.17)

�12 = �0
12+�3k12 (2.4.18)

where the membrane strains are

�0
11 =

1

A 1

�u1

��1

+ u2

A1A2

�A1

��2

+ u3

R1

(2.4.19)
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FIG. 8 Illustration of the Love assumption.

�0
22 =

1

A 2

�u2

��2

+ u1

A1A2

�A2

��1

+ u3

R2

(2.4.20)

�0
12 =

A2

A1

�

��1

(
u2

A2

)
+A1

A2

�

��2

(
u1

A1

)
(2.4.21)

and where the change-in-curvature terms (bending strains) are

k11 =
1

A1

��1

��1

+ �2

A1A2

�A1

��2

(2.4.22)

k22 =
1

A2

��2

��2

+ �1

A1A2

�A2

��1

(2.4.23)

k12 =
A2

A1

�

��1

(
�2

A2

)
+A1

A2

�

��2

(
�1

A1

)
(2.4.24)

The displacement relations of Eqs. (2.4.1) and (2.4.7) are illustrated in
Fig. 8.

2.5. MEMBRANE FORCES AND BENDING MOMENTS

In the following, we integrate all stresses acting on a shell element whose
dimensions are infinitesimal in the �1 and �2 directions and equal to the
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FIG. 9 An element cut from a shell that is of infinitesimal crossectional dimensions,
but extends through the entire thickness of the shell.

shell thickness in the normal direction. Solving Eqs. (2.2.10)–(2.2.12) for
stresses yields


11 =
E

1−�2
��11+��22� (2.5.1)


22 =
E

1−�2
��22+��11� (2.5.2)


12 = �12G (2.5.3)

Substituting Eqs. (2.4.16)–(2.4.18) gives


11 =
E

1−�2
	�0

11+��0
22+�3�k11+�k22�� (2.5.4)


22 =
E

1−�2
	�0

22+��0
11+�3�k22+�k11�� (2.5.5)


12 = G��0
12+�3k12� (2.5.6)

For instance, referring to Fig. 9, the force in the �1 direction acting on a
strip of the element face of height d�3 and width A2�1+�3/R2�d�2 is


11A2

(
1+ �3

R2

)
d�2d�3
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Thus the total force acting on the element in the �1 direction is

�3=h/2∫
�3=−h/2


11A2

(
1+ �3

R2

)
d�2d�3

and the force per unit length of neutral surface A2d�2 is

N11=
h/2∫
−h/2


11

(
1+ �3

R2

)
d�3 (2.5.7)

Neglecting the second term in parentheses, we obtain

N11=
h/2∫
−h/2


11d�3 (2.5.8)

Substituting Eq. (2.5.4) results in

N11=K��0
11+��0

22� (2.5.9)

where

K= Eh

1−�2
(2.5.10)

K is called the membrane stiffness. Similarly, integrating 
22 on the �2 face
of the element with the shear stresses 
12=
21 gives

N22 = K��0
22+��0

11� (2.5.11)

N12 = N21=
K�1−��

2
�0
12 (2.5.12)

To obtain bending moments, we first express the bending moment about
the neutral surface due to the element strip A2�1+�3/R2�d�2d�3:


11�3A2

(
1+ �3

R2

)
d�2d�3

Thus the total bending moment acting on the element in the �1 direction
is

�3=h/2∫
�3=−h/2


11�3A2

(
1+ �3

R2

)
d�2d�3

and the bending moment per unit length of neutral surface is

M11=
h/2∫
−h/2


11�3

(
1+ �3

R2

)
d�3 (2.5.13)
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Neglecting the second term in parentheses, we have

M11=
h/2∫
−h/2


11�3d�3 (2.5.14)

Substituting Eq. (2.5.4) results in

M11=D�k11+�k22� (2.5.15)

where

D= Eh3

12�1−�2�
(2.5.16)

D is called the bending stiffness. Similarly, integrating 
22 and 
12=
21

gives

M22 = D�k22+�k11� (2.5.17)

M12 = M21=
D�1−��

2
k12 (2.5.18)

While we have assumed that strains �13 and �23 due to transverse shear
stresses 
13 and 
23 are negligible, we will by no means neglect the
transverse shear forces in the following:

Q13=
h/2∫
−h/2


13d�3 (2.5.19)

and

Q23=
h/2∫
−h/2


23d�3 (2.5.20)

These forces will be defined by the resulting equations themselves.
Finally, if we solve Eqs. (2.5.9), (2.5.11), (2.5.12), (2.5.15), (2.5.17),

and (2.5.18) for the strains, we may write Eqs. (2.5.4)–(2.5.6) as


11=
N11

h
+ 12M11

h3
�3 (2.5.21)


22=
N22

h
+ 12M22

h3
�3 (2.5.22)


12=
N12

h
+ 12M12

h3
�3 (2.5.23)

It was assumed in this section that the reference surface is halfway between
the inner and outer surfaces of the shell. If this is not the case, see
Sec. 2.11.
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2.6. ENERGY EXPRESSIONS

The strain energy stored in one infinitesimal element that is acted on by
stresses 
ij is

dU = 1

2
�
11�11+
22�22+
12�12+
13�13+
23�23+
33�33�dV (2.6.1)

The last term is neglected in line with assumption (2.4.3). We do, however,
have to keep the transverse shear terms, even though we have previously
assumed �13 and �23 to be negligible, to obtain expressions for �1 and �2.
The infinitesimal volume is given by

dV =A1A2

(
1+ �3

R1

)(
1+ �3

R2

)
d�1d�2d�3 (2.6.2)

Integrating Eq. (2.6.1) over the volume of the shell gives

U =
∫
�1

∫
�2

∫
�3

F dV (2.6.3)

where

F = 1

2
�
11�11+
22�22+
12�12+
13�13+
23�23� (2.6.4)

The Kinetic energy of one infinitesimal element is given by

dK= 1

2
��U̇ 2

1 +U̇ 2
2 +U̇ 2

3 �dV (2.6.5)

The dot indicates a time derivative.
Substituting Eqs. (2.4.1)–(2.4.3) and considering all the elements of

the shell gives

K = �

2

∫
�1

∫
�2

∫
�3

[
u̇2
1+ u̇2

2+ u̇2
3+�2

3��̇
2
1+�̇2

2�

+2�3�u̇1�̇1+ u̇2�̇2�
]
A1A2

(
1+ �3

R1

)(
1+ �3

R2

)
d�1d�2d�3 (2.6.6)

Neglecting the �3/R1 and �3/R2 terms, we integrate over the thickness of
the shell ��3=−h/2 to �3=h/2�. This gives

K= �h

2

∫
�1

∫
�2

[
u̇2
1+ u̇2

2+ u̇2
3+

h2

12
��̇2

1+�̇2
2�

]
A1A2d�1d�2 (2.6.7)

The variation of energy put into the shell by possible applied
boundary force resultants and moment resultants is, along typical
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�2= constant and �1= constant lines,

�EB =
∫
�1

��u2N
∗
22+�u1N

∗
21+�u3Q

∗
23+��2M

∗
22+��1M

∗
21�A1d�1

+
∫
�2

��u1N
∗
11+�u2N

∗
12+�u3Q

∗
13+��1M

∗
11+��2M

∗
12�A2d�2

(2.6.8)

Taking, for example, the �2 = constant edge, N ∗
22 is the boundary force

normal to the boundary in the tangent plane to the neutral surface. The
units are newtons per meter. Q∗

23 is a shear force acting on the boundary
normal to the shell surface, and N ∗

21 is a shear force acting along the
boundary in the tangent plane. M∗

22 is a moment in the �2 direction, and
M∗

21 is a twisting moment in the �1 direction. Figure 10 illustrates this.
The variation of energy introduced into the shell by distributed load

components in the �1��2, and �3 directions, namely q1, q2, and q3�N/m2�,
is

�EL=
∫
�1

∫
�2

�q1�u1+q2�u2+q3�u3�A1A2d�1d�2 (2.6.9)

All loads are assumed to act on the neutral surface of the shell. The
components are shown in Fig. 11.

FIG. 10 Boundary force and moment resultants.
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FIG. 11 Distributed loading on the reference surface.

2.7. LOVE’S EQUATIONS BY WAY OF
HAMILTON’S PRINCIPLE

Hamilton’s principle is given as [note the discussion in Sec. 2.9 and that
Eq. (2.9.13) is multiplied here by −1 for convenience]

�

t1∫
t0

�U−K−Wln�dt=0 (2.7.1)

where Wln is the total input energy. In our case

Wln=EB+EL (2.7.2)

The times t1 and t0 are arbitrary, except that at t= t1 and t= t0, all
variations are 0. The symbol � is the variational symbol and is treated
mathematically like a differential symbol. Variational displacements are
arbitrary.

Substituting Eq. (2.7.2) for Eq. (2.7.1) and taking the variational
operator inside the integral, we obtain

t1∫
t0

��U−�EB−�EL−�K�dt=0 (2.7.3)

Let us examine these variations one by one. First, from Eq. (2.6.7),
t1∫
t0

�Kdt = �h

t1∫
t0

∫
�1

∫
�2

[
u̇1�u̇1+ u̇2�u̇2+ u̇3�u̇3

+h2

12
��̇1��̇1+�̇2��̇2�

]
A1A2d�1d�2dt (2.7.4)



Deep Shell Equations 31

Integrating by parts, for instance, the first term becomes

t1∫
t0

u̇1�u̇1dt= 	u̇1�u̇1�
t1
t0
−

t1∫
t0

ü1�u1dt (2.7.5)

Since the virtual displacement is 0 at t= t0 and t= t1, we are left with

t1∫
t0

u̇1�u̇1dt=−
t1∫
t0

ü1�u1dt (2.7.6)

Proceeding similarly with the other terms in the integral, we get

t1∫
t0

�Kdt = −�h

t1∫
t0

∫
�1

∫
�2

[
ü1�u1+ ü2�u2+ ü3�u3

+h2

12
��̈1��1+�̈2��2�

]
A1A2d�1d�2dt (2.7.7)

As in the classical Bernoulli–Euler beam theory, we neglect the
influence of rotatory inertia, which we recognize as the terms involving �̈1

and �̈2. It will be shown later that rotatory inertia has to be considered only
for very short wavelengths of vibration, and even then shear deformation is
a more important effect.

t1∫
t0

�Kdt=−�h

t1∫
t0

∫
�1

∫
�2

�ü1�u1+ ü2�u2+ ü3�u3�A1A2d�1d�2dt (2.7.8)

Next, let us evaluate the variation of the energy due to the load. From
Eq. (2.6.9),

t1∫
t0

�ELdt=
t1∫
t0

∫
�1

∫
�2

�q1�u1+q2�u2+q3�u3�A1A2d�1d�2dt (2.7.9)

The integral of the variation of boundary energy is, using Eq. (2.6.8),

t1∫
t0

�EBdt =
t1∫
t0

∫
�1

�N ∗
22�u2+N ∗

21�u1+Q∗
23�u3+M∗

22��2+M∗
21��1�A1d�1dt

+
t1∫
t0

∫
�2

�N ∗
11�u1+N ∗

12�u2+Q∗
13�u3+M∗

11��1

+M∗
12��2�A2d�2dt (2.7.10)
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It is more complicated to evaluate the integral of the variation in
strain energy. Starting with Eq. (2.6.3), we have

t1∫
t0

�U dt=
t1∫
t0

∫
�1

∫
�2

∫
�3

�F dV dt (2.7.11)

where

�F = �F

��11

��11+
�F

��22

��22+
�F

��12

��12+
�F

��13

��13+
�F

��23

��23 (2.7.12)

Examining the first term of this equation, we see that

�F

��11

��11=
1

2

(
�
11

��11

�11+
11+�22

�
22

��11

)
��11 (2.7.13)

Substituting Eqs. (2.5.1) and (2.5.2) gives

�F

��11

��11=
11��11 (2.7.14)

Thus we can show that
t1∫
t0

�U dt =
t1∫
t0

∫
�1

∫
�2

∫
�3

�
11��11+
22��22+
12��12

+
13��13+
23��23�A1A2

(
1+ �3

R1

)(
1+ �3

R2

)
d�1d�2d�3dt

(2.7.15)

We neglect the �3/R1 and �3/R2 terms as small. Substituting Eqs.
(2.4.10)–(2.4.15) allows us to express the strain variations in terms of
displacement variations. Integration with respect to �3 allows us to
introduce force resultants and moment resultants. Integration by parts will
put the integral into a manageable form. Let us illustrate all this on the first
term of Eq. (2.7.15):

t1∫
t0

∫
�1

∫
�2

∫
�3


11��11A1A2d�1d�2d�3dt

=
t1∫
t0

∫
�1

∫
�2

∫
�3

[

11

(
A2

���u1�

��1

+�u2

�A1

��2

+A1A2

R1

�u3

)

+�3
11

(
A2

����1�

��1

+��2

�A1

��2

)]
d�1d�2d�3dt
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=
t1∫
t0

∫
�1

∫
�2

[
N11

(
A2

���u1�

��1

+�u2

�A1

��2

+A1A2

R1

�u3

)

+M11

(
A2

����1�

��1

+��2

�A1

��2

)]
d�1d�2dt (2.7.16)

Now we illustrate the integration by parts on the first term of
Eq. (2.7.16):∫

�2

∫
�1

N11A2

���u1�

��1

d�1d�2

=
∫
�2

N11A2�u1d�2−
∫
�1

∫
�2

��N11A2�

��1

�u1d�1d�2 (2.7.17)

Proceeding with all terms of Eq. (2.7.15) in this fashion, we get
t1∫
t0

�U dt =
t1∫
t0

∫
�1

∫
�2

[(
− ��N11A2�

��1

− ��N21A1�

��2

−N12

�A1

��2

+N22

�A2

��1

−Q13

A1A2

R1

)
�u1+

(
− ��N12A2�

��1

− ��N22A1�

��2

+N11

�A1

��2

−N21

�A2

��1

−Q23

A1A2

R2

)
�u2

+
(
N11

A1A2

R1

+N22

A1A2

R2

− ��Q13A2�

��1

− ��Q23A1�

��2

)
�u3

+
(
− ��M21A1�

��2

−M12

�A1

��2

+M22

�A2

��1

− ��M11A2�

��1

+Q13A1A2

)
��1+

(
− ��M12A2�

��1

− ��M22A1�

��2

−M21

�A2

��1

+M11

�A1

��2

+Q23A1A2

)
��2

]
d�1d�2dt

+
t1∫
t0

∫
�2

�N11�u1+M11��1+N12�u2+M12��2+Q13�u3�A2d�2dt

+
t1∫
t0

∫
�1

�N22�u2+M22��2+N21�u1+M21��1

+Q23�u3�A1d�1dt (2.7.18)
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We are now ready to substitute Eqs. (2.7.18), (2.7.10), (2.7.9), and
(2.7.8) in Eq. (2.7.3). This gives

t1∫
t0

∫
�1

∫
�2

{[
��N11A2�

��1

+ ��N21A1�

��2

+N12

�A1

��2

−N22

�A2

��1

+Q13

A1A2

R1

+�q1−�hü1�A1A2

]
�u1

+
[
��N12A2�

��1

+ ��N22A1�

��2

+N21

�A2

��1

−N11

�A1

��2

+Q23

A1A2

R2

+�q2−�hü2�A1A2

]
�u2+

[
��Q13A2�

��1

+ ��Q23A1�

��2

−
(
N11

R1

+N22

R2

)
A1A2+�q3−�hü3�A1A2

]
�u3

+
(
��M11A2�

��1

+ ��M21A1�

��2

+M12

�A1

��1

−M22

�A2

��1

−Q13A1A2

)
��1

+
(
��M12A2�

��1

+��M22A1�

��2

+M21

�A2

��1

−M11

�A1

��2

−Q23A1A2

)
��2

}

×d�1d�2dt+
t1∫
t0

∫
�1

	�N ∗
22−N22��u2+�N ∗

21−N21��u1+�Q∗
23−Q23��u3

+�M∗
22−M22���2+�M∗

21−M21���1�A1d�1dt

+
t1∫
t0

∫
�2

	�N ∗
11−N11��u1+�N ∗

12−N12��u2+�Q∗
13−Q13��u3

+�M∗
11−M11���1+�M∗

12−M12���2�A2d�2dt=0 (2.7.19)

The equation can be satisfied only if each of the triple and double integral
parts is 0 individually. Moreover, since the variational displacements are
arbitrary, each integral equation can be satisfied only if the coefficients
of the variational displacement are 0. Thus the coefficients of the triple
integral set to zero give the following five equations:

−��N11A2�

��1

− ��N21A1�

��2

−N12

�A1

��2

+N22

�A2

��1

−A1A2

Q13

R1

+A1A2�hü1=A1A2q1 (2.7.20)
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−��N12A2�

��1

− ��N22A1�

��2

−N21

�A2

��1

+N11

�A1

��2

−A1A2

Q23

R2

+A1A2�hü2=A1A2q2 (2.7.21)

−��Q13A2�

��1

− ��Q23A1�

��2

+A1A2

(
N11

R1

+N22

R2

)
+A1A2�hü3=A1A2q3 (2.7.22)

where Q13 and Q23 are defined by
��M11A2�

��1

+ ��M21A1�

��2

+M12

�A1

��2

−M22

�A2

��1

−Q13A1A2 = 0 (2.7.23)

��M12A2�

��1

+ ��M22A1�

��2

+M21

�A2

��1

−M11

�A1

��2

−Q23A1A2 = 0 (2.7.24)

These five equations are known as Love’s equations. They define the motion
(or static deflection, for all it matters) due to any type of pressure load.
Shear deflection and rotatory inertia are not included.

2.8. BOUNDARY CONDITIONS

Examining Love’s equations, the stress–strain and strain–displacement
relations, we see that the equations are eighth-order partial differential
equations in space. This means that we can accommodate at most four
boundary conditions on each edge.

However, when set to 0, the two line integrals of Eq. (2.7.19)
are satisfied only if the five coefficients in each are 0 or if the virtual
displacements are 0. This would define, as necessary, five boundary
conditions. A similar problem was encountered by Kirchhoff (1850) in the
19th century, when he investigated the boundary conditions of a plate.
It appeared as if three conditions at each edge were needed, but the
fourth order equation would allow only two. Kirchhoff combined the three
conditions into two by noting that the twisting moment and shear boundary
conditions were related.

Following Kirchhoff ’s lead, the two line integrals are rewritten
utilizing the definitions of Eqs. (2.4.7) and (2.4.8). For instance, for the first
line integral equation, we get

t1∫
t0

∫
�1

{
�N ∗

22−N22��u2+�N ∗
21−N21��u1+�Q∗

23−Q23��u3+�M∗
22−M22���2

+�M∗
21−M21�

[
�u1

R1

− 1

A1

�

��1

��u3�

]}
A1d�1dt=0 (2.8.1)
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Before collecting coefficients of �u3, we have to perform an integration by
parts:

t1∫
t0

∫
�1

�M∗
21−M21�

�

��1

��u3�d�1dt

=
∣∣∣∣∣∣
t1∫
t0

�M∗
21−M21��u3dt

∣∣∣∣∣∣
�1

−
t1∫
t0

∫
�1

�

��1

�M∗
21−M21�d�1�u3dt (2.8.2)

Since M21=M∗
21 along the entire edge, the term in parentheses is 0. Thus

substituting Eq. (2.8.2) in Eq. (2.8.1) and collecting coefficients of virtual
displacements yields

t1∫
t0

∫
�1

{
�N ∗

22−N22��u2+
[(

N ∗
21+

M∗
21

R1

)
−
(
N21+

M21

R1

)]
�u1

+�M∗
22−M22���2+

[(
Q∗

23+
1

A1

�M∗
21

��1

)
−
(
Q23+

1

A1

�M21

��1

)]
�u3

}
×A1d�1dt=0 (2.8.3)

Similarly, for the second line integral, we get
t1∫
t0

∫
�1

{
�N ∗

11−N11��u1+
[(

N ∗
12+

M∗
12

R2

)
−
(
N12+

M12

R2

)]
�u2

+�M∗
11−M11���1+

[(
Q∗

13+
1

A2

�M∗
12

��2

)
−
(
Q13+

1

A2

�M12

��2

)]
�u3

}
×A2d�2dt=0 (2.8.4)

These equations are satisfied if either the virtual displacements vanish or
the coefficients of the virtual displacements vanish. Defining, in memory of
Kirchhoff, the Kirchhoff effective shear stress resultants of the first kind

V13=Q13+
1

A2

�M12

��2

(2.8.5)

and

V23=Q23+
1

A1

�M21

��1

(2.8.6)

and as the Kirchhoff effective shear stress resultants of the second kind

T12=N12+
M12

R2

(2.8.7)
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and

T21=N21+
M21

R1

(2.8.8)

we may write the integrals as
t1∫
t0

∫
�1

	�N ∗
22−N22��u2+�T ∗

21−T21��u1+�M∗
22−M22���2

+�V ∗
23−V23��u3�A1d�1dt=0 (2.8.9)

and
t1∫
t0

∫
�2

	�N ∗
11−N11��u1+�T ∗

12−T12��u2+�M∗
11−M11���1

+�V ∗
13−V13��u3�A2d�2dt=0 (2.8.10)

Now we may argue that each of these integrals can be satisfied only
if the coefficients of the virtual displacements, the virtual displacements,
or one of the two for each term are 0. Since virtual displacements are
0 only when the boundary displacements are prescribed, this translates
into the following possible boundary conditions for an �1 = constant edge
[Eq. (2.8.10)]:

N11=N ∗
11 or u1=u∗

1 (2.8.11)

M11=M∗
11 or �1=�∗

1 (2.8.12)

V13=V ∗
13 or u3=u∗

3 (2.8.13)

T12=T ∗
12 or u2=u∗

2 (2.8.14)

This states the intuitively obvious fact that we have to prescribe
at a boundary either forces (moments) or displacements (angular
displacements). However, four conditions have to be identified per edge. In
a later chapter, we see that under certain simplifying assumptions, we may
reduce this number even further. Similarly, examining Eq. (2.8.9), which
describes an �2 = constant edge, the four boundary conditions have to be

N22=N ∗
22 or u2=u∗

2 (2.8.15)

M22=M∗
22 or �2=�∗

2 (2.8.16)

V23=V ∗
23 or u3=u∗

3 (2.8.17)

T21=T ∗
21 or u1=u∗

1 (2.8.18)

We can therefore state in general that if n denotes the subscript that
defines the normal direction to the edge and if t denotes the subscript
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that defines the tangential direction to the edge, the necessary boundary
conditions are

Nnn=N ∗
nn or un=u∗

n (2.8.19)

Mnn=M∗
nn or �n=�∗

n (2.8.20)

Vn3=V ∗
n3 or u3=u∗

3 (2.8.21)

Tnt=T ∗
nt or u̇t=u∗

t (2.8.22)

Let us consider a few examples. First there is the case where the edge is
completely free. This means that no forces or moments act on this edge:

Nnn = 0 (2.8.23)

Mnn = 0 (2.8.24)

Vn3 = 0 (2.8.25)

Tnt = 0 (2.8.26)

The other extreme is the case where the edge is completely prevented from
deflecting by being clamped:

un = 0 (2.8.27)

ut = 0 (2.8.28)

u3 = 0 (2.8.29)

�n = 0 (2.8.30)

If the edge is supported on knife edges such that it is free to rotate in
normal direction but is prevented from having any transverse deflection,
clearly the two conditions

u3 = 0 (2.8.31)

Mnn = 0 (2.8.32)

apply. If the knife edges are such that the shell is free to slide between
them, the other two conditions are

Nnn = 0 (2.8.33)

Tnt = 0 (2.8.34)

If the shell is somehow prevented from sliding, the conditions

un = 0 (2.8.35)

ut = 0 (2.8.36)

should be used.
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2.9. HAMILTON’S PRINCIPLE

Hamilton’s principle is a minimization principle that seems to apply to all
of mechanics and most classical physics. It is the end of a development that
started in the second century B.C. with Hero of Alexandria, who stated that
light always takes the shortest path. This indeed governs reflections, but
the minimum principle that includes refraction was not found until Fermat
in 1657 postulated that light travels from point to point in the shortest
time. On theological grounds, Maupertius in 1747 asserted that dynamical
motion takes place with minimum action, where action is defined as
the product of distance and momentum, or energy and time. Lagrange
formulated the mathematical foundation of this principle in 1760. In 1828,
Gauss formulated the principle of least constraint, which was extended
later by Hertz when formulating the principle of least curvature. Finally,
in 1834, Hamilton announced his general principle, which included all the
others. He postulated that while there are usually several possible paths
along which a dynamic system may move from one point to another in
space and time, the path actually followed is the one that minimizes the
time integral of the difference between the kinetic and potential energies.
In terms of the calculus of variations, developed primarily by Euler and
Bernoulli in the 18th century, it is usually stated is

�

t2∫
t1

�K−U+Wnc�dt=0� �r̄i=0� t= t1�t2 (2.9.1)

where �r̄i are the variations of displacements (virtual displacements), T
the kinetic energy, U the strain energy, Wnc any additional energy input
to the system, and � is the variation, operationally equivalent to a total
differential. In general, Hamilton’s principle can be viewed as an axiom,
replacing the axiom of Newton’s second law for dynamic problems. With
other words, we either accept Newton’s second law as an axiom and
derive Hamilton’s principle from it for dynamic problems, or we accept
Hamilton’s principle as an axiom and derive Newton’s second law from
it. In the following, let us derive Hamilton’s principle from the axiom of
Newton’s second law, utilizing D’Alembert’s principle for the restricted
case of interest here, namely, the motion of masses under constraints.
Let the virtual displacements �x1��y1��z1������xn��yn��zn, be infinitesimal,
arbitrary changes in the displacement coordinates of a system. They must
be compatible with the constraints of the system. If each mass particle i=
1�����n, is acted on by forces with the resultant �Fi, it must be that

n∑
i=1

��Fi− ˙̄pi�·�r̄i=0 (2.9.2)
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where ˙̄pi is the rate of change of the linear momentum vector p̄i and
�r̄i=�xiī+�yij̄+�zik̄. Since

˙̄pi=mi
¨̄r i (2.9.3)

Equation (2.9.2) may be written as
n∑

i=1

mi
¨̄r i�r̄i=�W (2.9.4)

where

�W =
n∑

i=1

�Fi ·�r̄i (2.9.5)

and represents the virtual work due to the applied forces alone. Using the
mathematical identity

¨̄ri ·�r̄i=
d

dt
� ˙̄ri ·�r̄i�−�

(
1

2
˙̄ri · ˙̄ri

)
(2.9.6)

gives, after multiplying it by mi and summing over all particles,
n∑

i=1

mi
¨̄ri ·�r̄i=

n∑
i=1

mi

d

dt
� ˙̄ri ·�r̄i�−�

n∑
i=1

1

2
mi

˙̄ri · ˙̄ri (2.9.7)

Recognizing that the kinetic energy is

K=
n∑

i=1

1

2
mi

˙̄ri · ˙̄ri (2.9.8)

and that work done by the applied forces is equal to the input work minus
what is stored in terms of strain energy,

W =Wln−U (2.9.9)

we obtain, utilizing Eq. (2.9.4),

��K−U+Wln�=
n∑

i=1

mi

d

dt
� ˙̄ri ·�r̄i� (2.9.10)

Integrating between two points in time, t1 and t2, where the virtual
displacements or variations are 0, we obtain

�

t2∫
t1

�K−U+Wln�dt =
n∑

i=1

t2∫
t1

mi

d

dt
� ˙̄ri ·�r̄i�dt=

n∑
i=1

mi
˙̄ri ·�r̄i�t2t1 (2.9.11)

If we select �r̄1 such that

�r̄i=0� t= t1�t2 (2.9.12)



Deep Shell Equations 41

the final result is

�

t2∫
t1

�K−U+Wln�dt=0 (2.9.13)

Equation (2.9.12) is part of Hamilton’s principle.

2.9.1. Example: Longitudinally Vibrating Rod

For a rod, it can be shown that the strain energy and the kinetic energy as
a function of longitudinal displacement ux are

U = 1

2

L∫
0

EA

(
�ux

�x

)2

dx (2.9.14)

and

K= 1

2

L∫
0

�A

(
�ux

�t

)2

dx (2.9.15)

where

E=Young’s modulus �N/m2�� A=cross-sectional area �m2��

�=mass density �Ns2/m4��

t= time �s�� x=coordinate �m�� and

L= length �m��

We assume that Wln=0.
Applying Hamilton’s principle gives

�

t2∫
t1


1

2

L∫
0

�A

(
�ux

�t

)2

dx− 1

2

L∫
0

EA

(
�ux

�x

)2

dx


dt=0 (2.9.16)

or
t2∫
t1

L∫
0

�A
�ux

�t
�

(
�ux

�t

)
dxdt−

t2∫
t1

L∫
0

EA
�ux

�x
�

(
�ux

�x

)
dxdt=0 (2.9.17)

Examining the first double integral, we my integrate by parts:
t2∫
t1

�A
�ux

�t
�

(
�ux

�t

)
dt =

t2∫
t1

�A
�ux

�t

�

�t
��ux�dt (2.9.18)

=
[
�A

�ux

�t
�ux

]t2
t1

−
t2∫
t1

�A
�2ux

�t2
�uxdt (2.9.19)
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Evaluating the bracketed expression at the limits t1 and t2 gives 0 because
by definition �u=0 at t1 and t2. This leaves the integral in a form where
the integrant is the product of �u and a coefficient.

With the same objective in mind, we examine the second double
integral of Eq. (2.9.17) and integrate by parts:

L∫
0

EA
�ux

�x
�

(
�ux

�x

)
dx =

L∫
0

EA
�ux

�x

�

�x
��ux�dx

=
[
EA

�ux

�x
�ux

]L
0

−
L∫
0

�

�x

(
EA

�ux

�x

)
�uxdx

(2.9.20)

Evaluating the bracketed quantity, it is 0 if at x=0 or x=L

EA
�ux

�x
= 0 or 
xxA=0 (2.9.21)

ux = 0 (2.9.22)

The first expression describes a free boundary and the second expression a
clamped boundary. Equation (2.9.17) therefore becomes

t2∫
t1

L∫
0

[
�

�x

(
EA

�ux

�x

)
−�A

�2ux

�t2

]
�uxdxdt=0 (2.9.23)

Since �ux is arbitrary, this equation can be satisfied only if the coefficient
of �ux is 0. Therefore,

�

�x

(
EA

�ux

�x

)
−�A

�2ux

�t2
=0 (2.9.24)

is the equation of motion.
We could have been more general if we had allowed for the possibility

of boundary forces F0 and FL . Hamilton’s principle becomes

�

t2∫
t1

�K−U+EB�dt=0 (2.9.25)

where Wln=EB is the boundary energy input. In our example, the variation
�EB is

�EB=F0�ux�x=0�+FL�ux�x=L� (2.9.26)



Deep Shell Equations 43

In this case, we substitute Eqs. (2.9.19), (2.9.20), and (2.9.26) in Eq.
(2.9.25) and obtain

t2∫
t1

{ L∫
0

[
�

�x

(
EA

�ux

�x

)
−�A

�2ux

�t2

]
�uxdx

+
[
F0+EA

�ux

�x
�x=0�

]
�ux�x=0�

+
[
FL−EA

�ux

�x
�x=L�

]
�ux�x=L�

}
dt=0 (2.9.27)

Because �ux is arbitrary and independent, the equation of motion of
Eq. (2.9.24) follows. In addition, it must be that at x=0,

EA
�ux

�x
=−F0 or ux=u0 (2.9.28)

and at x=L,

EA
�ux

�x
=FL or ux=uL (2.9.29)

Equations (2.9.28) and (2.9.29) indicate that permissible boundary
conditions for this problem are either to specify the force at a boundary
or to specify a boundary displacement. These specified forces can, for
example, be 0 (free boundary), they can be equal to F0=ku0�FL=−kuL

(linear grounded springs of rate k at each boundary), or the displacements
can be specified; for example, they can be 0 (clamped boundary).

2.10. OTHER DEEP SHELL THEORIES

After Love’s basic development, several investigators tried to improve
on his theory. If we restrict ourselves to linear theories for thin shells,
I confess to some prejudice in preferring, based on my experience,
Love’s theory to all others. The Timoshenko–Mindlin shear deformation
approach for beams and plates, as extended to shells in Ref. Soedel
(1982) for moderately thick shells, thick being a relative term as related
to the characteristic “wave-length” of mode shapes, is discussed in a later
chapter. The approximate differences between the various theories are
discussed below [Leissa (1973)].
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2.10.1. Strain–Displacement Considerations

In the theories of Novozhilov (1964); Flügge (1934); Byrne (1944), and
Goldenveizer (1961), the simplification of Eq. (2.4.9) that �3/R1�1 and
�3/R2�1 is not made. The strain–displacement relationships become

�11 =
1

1+�3/R1

��0
11+�3k11� (2.10.1)

�22 =
1

1+�3/R2

��0
22+�3k22� (2.10.2)

�12 =
1

�1+�3/R1��1+�3/R2�

×
[(

1− �2
3

R1R2

)
�0
12+�3

(
1+ �3

2R1

+ �3

2R2

)
k12

]
(2.10.3)

where �0
11��

0
22��

0
12�k11 and k22 are the same as for the Love theory, but k12

is

k12 =
A1

A2

�

��2

(
�1

A1

)
+A2

A1

�

��1

(
�2

A2

)
+ 1

R1

(
1

A2

�u1

��2

− u2

A1A2

�A2

��1

)

+ 1

R2

(
1

A1

�u2

��1

− u1

A1A2

�A1

��2

)
(2.10.4)

The theories of Reissner (1941) and Naghdi and Berry (1964) are
essentially equal to Love’s original theory. Love originally expressed k12
as in Eq. (2.10.4). It was recognized by these investigators that the
assumptions �3/R1�1 and �3/R2�1, consequentially applied, lead to

k12=
A1

A2

�

��2

(
�1

A1

)
+A2

A1

�

��1

(
�2

A2

)
(2.10.5)

since the last two terms of Eq. (2.10.4), when substituted in Eq. (2.4.18),
lead to terms of the �3/R1 and �3/R2 type.

2.10.2. Force and Moment Resultant Considerations

Love’s theory (1888) and theories of Reissner (1941); Naghdi and Berry
(1964); Sanders (1959) utilize the relationships of Eqs. (2.5.9)–(2.5.12) and
Eqs. (2.5.15)–(2.5.18). In the theories by Flügge (1934), Byrne (1944),
and Lur’ye (1940), quotients of the type 1/�1+�3/Ri�, i=1�2� are replaced
by a truncated geometric series. This gives

N11 = K

[
�0
11+��0

22−
h2

12

(
1

R1

− 1

R2

)(
k11−

�0
11

R1

)]
(2.10.6)
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N22 = K

[
�0
11+��0

22−
h2

12

(
1

R2

− 1

R1

)(
k22−

�0
22

R2

)]
(2.10.7)

N12 =
K�1−��

2

[
�0
12−

h2

12

(
1

R1

− 1

R2

)(
k12
2

− �0
12

R1

)]
(2.10.8)

N21 =
K�1−��

2

[
�0
12−

h2

12

(
1

R2

− 1

R1

)(
k12
2

− �0
12

R2

)]
(2.10.9)

M11 = D

[
k11+�k22−

(
1

R1

− 1

R2

)
�0
11

]
(2.10.10)

M22 = D

[
k22+�k11−

(
1

R2

− 1

R1

)
�0
22

]
(2.10.11)

M12 =
D�1−��

2

(
k12−

�0
12

R1

)
(2.10.12)

M21 =
D�1−��

2

(
k12−

�0
12

R2

)
(2.10.13)

A theory by Vlasov (1964) uses similar idea, except that he also
expanded the quotients 1/�1+�3/Ri� in terms of truncated geometric
series for strain–displacement relationships. Basically, he obtained the
same results as above, except for some difference in Eqs. (2.10.8), (2.10.9),
(2.10.12), and (2.10.13):

N12 =
K�1−��

2

[
�0
12−

h2

24

(
1

R1

− 1

R2

)
k12

]
(2.10.14)

N21 =
K�1−��

2

[
�0
12−

h2

24

(
1

R2

− 1

R1

)
k12

]
(2.10.15)

M12 =
D�1−��

2

(
k12+

�0
12

R2

)
(2.10.16)

M21 =
D�1−��

2

(
k12+

�0
12

R1

)
(2.10.17)

Utilizing strain energy expressions and arguing about the
permissibility of neglecting terms from the energy viewpoint, again
employing truncated geometric expansions of quotients of the 1/�1+�3/Ri�
type, Goldenveizer (1961), and Novozhilov (1964) obtain

N11 = K��0
11+��0

22� (2.10.18)

N22 = K��0
22+��0

11� (2.10.19)
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N12 =
K�1−��

2

(
�0
12+

h2

12R2

k12

)
(2.10.20)

N21 =
K�1−��

2

(
�0
12+

h2

12R1

k12

)
(2.10.21)

M11 = D�k11+�k22� (2.10.22)

M22 = D�k22+�k11� (2.10.23)

M12 = M21=
D�1−��

2
k12 (2.10.24)

In conclusion, the thin shell theories discussed here are basically
all of the Love type. The basic differences are how the approximation is
handled that �3/R1 and �3/R2 are small.

2.11. SHELLS OF NONUNIFORM THICKNESS

Equation (2.7.20)–(2.7.24) are also valid for shells of nonuniform thickness
if the nonuniform thickness h��1��2� is always halved by the reference
surface. In this case, the membrane and bending stiffnesses become simply
functions of location and we replace Eqs. (2.5.10) and (2.5.16) by

D = D��1��2�=
Eh3��1��2�

12�1−�2�
(2.11.1)

K = K��1��2�=
Eh��1��2�

1−�2
(2.11.2)

Membrane force and moment resultants are now

M11 = D��1��2��k11+�k22� (2.11.3)

M22 = D��1��2��k22+�k11� (2.11.4)

M12 =
D��1��2��1−��

2
k12 (2.11.5)

N11 = K��1��2���
0
11+��0

22� (2.11.6)

N22 = K��1��2���
0
22+��0

11� (2.11.7)

N12 =
K��1��2��1−��

2
�0
12 (2.11.8)

and can be substituted into Eqs. (2.7.20)–(2.7.24) and boundary conditions
(2.8.19)–(2.8.22).

If the nonuniform thickness is not symmetric with respect to the
reference surface, the reference surface must either be redefined to satisfy
the symmetry condition (which is often not feasible), or the development
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of Sec. 2.5 will have to be extended to the more general case where force
and moment resultants are obtained by an unsymmetrical integration. For
example, Eq. (2.5.8) would become, after substitution of Eq. (2.5.4),

N11=
E

1−�2

�3=h2��1��2�∫
�3=−h1��1��2�

	�0
11+��0

22+�3�k11+�k22��d�3 (2.11.9)

where

h1��1��2�+h2��1��2�=h��1��2� (2.11.10)

This results in

N11=
E�h1+h2�

1−�2
��0

11+��0
22�+

E�h2
2−h2

1�

2�1−�2�
�k11+�k22� (2.11.11)

The other relationships are derived similarly:

N22 =
E�h2+h1�

1−�2
��0

22+��0
11�+

E�h2
2−h2

1�

2�1−�2�
�k22+�k11� (2.11.12)

N12 =
E�h1+h2�

2�1+��
�0
12+

E�h2
2−h2

1�

4�1+��
k12 (2.11.13)

M11 =
E�h2

2−h2
1�

2�1−�2�
��0

11+��0
22�+

E�h3
2+h3

1�

3�1−�2�
�k11+�k22� (2.11.14)

M22 =
E�h2

2−h2
1�

2�1−�2�
��0

22+��0
11�+

E�h3
2+h3

1�

3�1−�2�
�k22+�k11� (2.11.15)

M12 =
E�h2

2−h2
1�

4�1+��
�0
12+

E�h3
2+h3

1�

6�1+��
k12 (2.11.16)

Therefore, if the reference surface is not halfway between the inner and
outer surfaces of the shell, there will be coupling between membrane force
resultants and bending strains, or between bending moment resultants and
membrane strains. However, Eqs. (2.7.20)–(2.7.24) will continue to be
valid as long as the new definitions are used.

2.12. RADII OF CURVATURE

The radii of curvature can either be obtained by inspection or from
identities (2.1.31) and (2.1.32), which give

R1 =
A2

1
�r̄
��1

· �n̄
��1

(2.12.1)

R2 =
A2

2
�r̄
��2

· �n̄
��2

(2.12.2)
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FIG. 12 The toroidal shell.

For example, for the circular cylindrical shell of Fig. 2 �1=x and �2=�,
and we obtain

n̄=sin�ē3+cos�ē2 (2.12.3)

Thus,

�n̄

��
=cos�ē3−sin�ē2 (2.12.4)

�̇n̄

�x
=0 (2.12.5)

We obtain

�r̄

��
· �n̄
��

=�−asin�ē2+acos�ē2�·�cos�ē3−asin�ē2� (2.12.6)

Since A2=a, Eq. (2.12.2) gives

R�=a (2.12.7)
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Next, since

�r̄

�x
· �n̄
�x

=0 (2.12.8)

and A1=1, Eq. (2.12.1) gives

Rx=� (2.12.9)

Let us take as second example the toroidal shell. We have

r̄=�R+asin��cos�ē1+�R+asin��sin�ē2+acos�ē3 (2.12.10)

Thus

�r̄

��
=−�R+asin��sin�ē1+�R+asin��cos�ē2 (2.12.11)

and ∣∣∣∣ �r̄��
∣∣∣∣=
√
�r̄

��
· �r̄
��

=�R+asin��
√
sin2 �+cos2 �=A1=A� (2.12.12)

or

A�=R+asin� (2.12.13)

Next,

�r̄

��
=acos�cos�ē1+acos�sin�ē2−asin�ē3 (2.12.14)

∣∣∣∣ �r̄��
∣∣∣∣=
√

�r̄

��
· �r̄
��

=
√
a2 cos2��cos2 �+sin2 ��+a2sin2�=a (2.12.15)

Thus,

A�=a (2.12.16)

Next, we formulate n̄:

n̄=sin�cos�ē1+sin�sin�ē2+cos�ē3 (2.12.17)

Thus,

�n̄

��
=−sin�sin�ē1+sin�cos�ē2 (2.12.18)

and Eq. (2.12.1) gives

R�=
�R+asin��2

�R+asin���sin�sin2�+sin�cos2��
= R

sin�
+a (2.12.19)
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Next, since

�n̄

��
=cos�cos�ē1+cos�sin�ē2−sin�ē3 (2.12.20)

Equation (2.12.2) gives

R�=
a2

acos2�cos2 �+acos2�sin2 �+asin2�
=a (2.12.21)
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3

Equations of Motion
for Commonly
Occurring Geometries

In the following we derive the general shell-of-revolution equations
by reduction from the general Love equations. The shell-of-revolution
equations are then further reduced to specific cases, such as the conical
shell and the circular cylindrical shell. Note that one can obtain the specific
cases directly, without going through the general shell-of-revolution case,
by direct substitution into Love’s equations of the proper values for �1,
�2, A1, A2, R1, and R2. For literature that uses reduction, see Kraus
(1967), Nowacki (1963), Vlasov (1964), Novozhilov (1965) and Kilchevskiy
(1965). For literature where equations for specific geometries are derived
directly, see Flūgge (1932), Timoshenko and Woinowsky-Krieger (1959),
and Donnell (1976).

3.1. SHELLS OF REVOLUTION

Consider a shell whose neutral surface is a surface of revolution. For such
a shell, the lines of principal curvature are its meridians and its parallel
circles, as shown in Fig. 1. Thus

�1 = � (3.1.1)

�2 = � (3.1.2)

51
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FIG. 1 Obtaining the Lamé parameters for a shell of revolution.

R1 = R� (3.1.3)

R2 = R� (3.1.4)

The infinitesimal distances BA and BF are

BA = R�d� (3.1.5)

BF = R� sin�d� (3.1.6)

The fundamental form is therefore

�ds�2=R2
��d��

2+R2
� sin

2��d��2 (3.1.7)

and therefore

A1 = R� (3.1.8)

A2 = R� sin� (3.1.9)

Inserting Eqs. (3.1.1)–(3.1.4) and Eqs. (3.1.8) and (3.1.9) in Eqs. (2.7.20)
to (2.7.24) gives, with subscripts 1 and 2 changed to � and �, and with R�

cos�d�=d�R� sin�� from Fig. 1,

�

��
�N��R� sin��+R�

�N��

��
−N��R�cos�+R�R� sin�

(
Q�3

R�

+q�

)

=R�R� sin��h
�2u�

�t2
(3.1.10)
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�

��
�N��R� sin��+R�

�N��

��
+N��R�cos�

+R�R� sin�

(
Q�3

R�

+q�

)
=R�R� sin��h

�2u�

�t2
(3.1.11)

�

��
�Q�3R� sin��+R�

�Q�3

��
−
(
N��

R�

+N��

R�

)
R�R� sin�

+q3R�R� sin�=R�R� sin��h
�2u3

�t2
(3.1.12)

where

Q�3=
1

R�R� sin�

[
�

��
�M��R� sin��+R�

�M��

��
−M��R�cos�

]
(3.1.13)

Q�3=
1

R�R� sin�

[
�

��
�M��R� sin��+R�

M��

��
+M��R�cos�

]
(3.1.14)

The strain–displacement relations (2.4.19)–(2.4.24) become

�0
�� = 1

R�

(
�u�

��
+u3

)
(3.1.15)

�0
�� =

1

R� sin�

(
�u�

��
+u�cos�+u3sin�

)
(3.1.16)

�0
�� =

R�

R�

sin�
�

��

(
u�

R� sin�

)
+ 1

R� sin�

�u�

��
(3.1.17)

k�� = 1

R�

�	�

��
(3.1.18)

k�� =
1

R� sin�

(
�	�

��
+	�cos�

)
(3.1.19)

k�� =
R�

R�

sin�
�

��

(
	�

R� sin�

)
+ 1

R� sin�

�	�

��
(3.1.20)

and 	� and 	� are, from Eqs. (2.4.7) and (2.4.8),

	� = 1

R�

(
u�−

�u3

��

)
(3.1.21)

	� =
1

R� sin�

(
u� sin�− �u3

��

)
(3.1.22)
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The relations between the force and moment resultants and the
strains are given by Eqs. (2.5.9), (2.5.11), (2.5.12), (2.5.15), (2.5.17), and
(2.5.18):

N�� = K��0
��+
�0

��� (3.1.23)

N�� = K��0
��+
�0

��� (3.1.24)

N�� = N��=
K�1−
�

2
�0
�� (3.1.25)

M�� = D�k��+
k��� (3.1.26)

M�� = D�k��+
k��� (3.1.27)

M�� = M��=
D�1−
�

2
k�� (3.1.28)

3.2. CIRCULAR CONICAL SHELL

For the case of a circular conical shell, as shown in Fig. 2, we see that

1

R�

= 0 (3.2.1)

R� = xtan� (3.2.2)

FIG. 2 Coordinate definitions for a conical shell.
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and since

�= �

2
−� (3.2.3)

we get

sin�=cos� (3.2.4)

cos�=sin� (3.2.5)

Furthermore, the fundamental form is now

�ds�2=�dx�2+x2sin2��d��2 (3.2.6)

Comparing this to Eq. (3.1.7), we obtain

R�d�=dx (3.2.7)

and

R� sin�=xsin� (3.2.8)

The subscript � is replaced by x and Eqs. (3.1.10)–(3.1.14) read

�Nxx

�x
+ 1

xsin�

�N�x

��
+ 1

x
�Nxx−N���+qx = �h

�2ux

�t2
(3.2.9)

�Nx�

�x
+ 2

x
N�x+

1

xsin�

�N��

��
+ 1

xtan�
Q�3+q� = �h

�2u�

�t2
(3.2.10)

�Qx3

�x
+ 1

x
Qx3+

1

xsin�

�Q�3

��
− 1

xtan�
N��+q3 = �h

�2u3

�t2
(3.2.11)

where

Qx3 =
�Mxx

�x
+Mxx

x
+ 1

xsin�

�M�x

��
−M��

x
(3.2.12)

Q�3 =
�Mx�

�x
+ 2

x
M�x+

1

xsin�

�M��

��
(3.2.13)

The strain–displacement relations become

�0
xx =

�ux

�x
(3.2.14)

�0
�� =

1

xsin�

�u�

��
+ 1

x
ux+

1

xtan�
u3 (3.2.15)

�0
x� =

�u�

�x
− 1

x
u�+

1

xsin�

�ux

��
(3.2.16)

kxx =
�	x

�x
(3.2.17)

k�� =
1

xsin�

�	�

��
+ 1

x
	x (3.2.18)
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kx� = x
�

�x

(
	�

x

)
+ 1

xsin�

�	x

��
(3.2.19)

and 	1 and 	2 become

	x = −�u3

�x
(3.2.20)

	� =
1

xtan�
u�−

1

xsin�

�u3

��
(3.2.21)

Note that as �→0, a circular cylindrical shell results, with

xtan�→a� sin�→0� cos�→1

As �→�/2, we approach the circular plate equations.

3.3. CIRCULAR CYLINDRICAL SHELL

An important subcase of the circular conical shell is the circular cylindrical
shell (Fig. 3), which has the fundamental form

�ds�2=�dx�2+a2�d��2 (3.3.1)

Letting � approach zero with xsin� and xtan� approaching a and 1/x
approaching zero, from Eqs. (3.2.9)–(3.2.13) we have

�Nxx

�x
+ 1

a

�N�x

��
+qx = �h

�2ux

�t2
(3.3.2)

�Nx�

�x
+ 1

a

�N��

��
+Q�3

a
+q� = �h

�2u�

�t2
(3.3.3)

�Qx3

�x
+ 1

a

�Q�3

��
−N��

a
+q3 = �h

�2u3

�t2
(3.3.4)

FIG. 3 Coordinate definitions for a circular cylindrical shell.
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where

Qx3 =
�Mxx

�x
+ 1

a

�M�x

��
(3.3.5)

Q�3 =
�Mx�

�x
+ 1

a

�M��

��
(3.3.6)

The strain–displacement relations become

�0
xx =

�ux

�x
(3.3.7)

�0
�� =

1

a

�u�

��
+ u3

a
(3.3.8)

�0
x� =

�u�

�x
+ 1

a

�ux

��
(3.3.9)

kxx =
�	x

�x
(3.3.10)

k�� =
1

a

�	�

��
(3.3.11)

kx� =
�	�

�x
+ 1

a

�	x

��
(3.3.12)

and 	1 and 	2 become

	x = −�u3

�x
(3.3.13)

	� =
u�

a
− 1

a

�u3

��
(3.3.14)

3.4. SPHERICAL SHELL

In this particular case, from Fig. 4,

R� = a (3.4.1)

R� = a (3.4.2)

and the fundamental form becomes

�ds�2=a2�d��2+a2sin2��d��2 (3.4.3)
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FIG. 4 Coordinate definitions for a spherical shell.

From Eqs. (3.1.10)–(3.1.14) we get

�

��
�N��sin��+

�N��

��
−N��cos�+Q�3sin�+aq�sin�

=asin��h
�2u�

�t2
(3.4.4)

�

��
�N�� sin��+

�N��

��
+N��cos�+Q�3sin�+aq� sin�

=asin��h
�2u�

�t2
(3.4.5)

�

��
�Q�3sin��+

�Q�3

��
−�N��+N���sin�+aq3sin�

=asin��h
�2u3

�t2
(3.4.6)

and

Q�3 =
1

asin�

[
�

��
�M��sin��+

�M��

��
−M��cos�

]
(3.4.7)

Q�3 =
1

asin�

[
�

��
�M�� sin��+

�M��

��
+M��cos�

]
(3.4.8)

The strain–displacement relations become

�0
�� = 1

a

(
�u�

��
+u3

)
(3.4.9)

�0
�� =

1

asin�

(
�u�

��
+u�cos�+u3sin�

)
(3.4.10)
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�0
�� =

1

a

(
�u�

��
−u�cot�+ 1

sin�

�u�

��

)
(3.4.11)

k�� = 1

a

�	�

��
(3.4.12)

k�� =
1

a

(
1

sin�

�	�

��
+	� cot�

)
(3.4.13)

k�� =
1

a

(
�	�

��
−	� cot�+ 1

sin�

�	�

��

)
(3.4.14)

and where

	� = 1

a

(
u�−

�u3

��

)
(3.4.15)

	� =
1

a

(
u�−

1

sin�

�u3

��

)
(3.4.16)

3.5. OTHER GEOMETRIES

3.5.1. Toroidal Shell of Circular Cross-Section

Toroidal shells of noncircular cross-section are described by Eqs. (3.1.10)–
(3.1.22), because toroidal shells are shells of revolution. For the special
case of a circular cross-section, we may simplify the equations. Using �1=
� and �2=�, as shown in Fig. 5, results in the fundamental form

�ds�2=�R+asin��2�d��2+a2�d��2 (3.5.1)

Therefore,

A1=A�=R+asin�� A2=A�=a (3.5.2)

FIG. 5 Coordinate definitions for a toroidal shell.
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The radii of curvature are

R1 = R�=
R

sin�
+a (3.5.3)

R2 = R�=a (3.5.4)

These values may now be substituted into Eqs. (2.7.20)–(2.7.24) and the
associated strain–displacement relationships (2.4.19)–(2.4.24). Or, we may
utilize Eqs. (3.1.10)–(3.1.22) directly, in which case we need to substitute
only Eqs. (3.5.3) and (3.5.4).

3.5.2. Cylindrical Shells of Noncircular Cross-Section

For cylindrical shells of noncircular cross-section, the set of orthogonal
coordinates consists of straight axial lines ��1=x� and lines normal to them
��2=s�, as shown in Fig. 6. We establish the origin of s at a convenient
point and define distances from it. Designating the fundamental form
diagonal as ds′, we have

�ds′�2=�dx�2+�ds�2 (3.5.5)

and therefore

A1=Ax=1� A2=As=1 (3.5.6)

The radii of curvature are

R1=Rx=�� R2=Rs (3.5.7)

where Rs is defined by the geometry of the noncircular cross-section.

FIG. 6 Coordinate definitions for a cylindrical shell of noncircular cross-section.
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FIG. 7 Case where the base of a cylindrical shell is defined by the circumferential
radius of curvature.

For example, let us consider a parabolic cylindrical shell as in Fig. 7.
The surface coordinate s is measured from the apex of the parabola, which
lies on the x-axis. The radius of curvature, and thus the parabola, is defined
by

Rs=a+bs2 (3.5.8)

where a is the radius at the apex of the parabola and b is a constant that
has to be fitted to the design of interest. Therefore, �1=x, �2=s, A1=1,
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A2=1, R1=� and R2=Rs=a+bs2. Substituting this into Eqs. (2.7.20)–
(2.7.24) gives

�Nxx

�x
+ �Nsx

�s
+qx=�h

�2ux

�t2
(3.5.9)

�Nxs

�x
+ �Nss

�s
+ Qs3

a+bs2
+qs=�h

�2us

�t2
(3.5.10)

�Qx3

�x
+ �Qs3

�s
− Nss

a+bs2
+q3=�h

�2u3

�t2
(3.5.11)

Qx3=
�Mxx

�x
+ �Msx

�s
(3.5.12)

Qs3=
�Mxs

�x
+ �Mss

�s
(3.5.13)

Equations (2.4.19)–(2.4.24) become

�0
xx=

�ux

�x
(3.5.14)

�0
ss=

�us

�s
+ u3

a+bs2
(3.5.15)

�0
xs=

�us

�x
+ �ux

�s
(3.5.16)

kxx=
�	x

�x
(3.5.17)

kss=
�	s

�s
(3.5.18)

kxs=
�	s

�s
+ �	x

�x
(3.5.19)

where, from Eqs. (2.4.7) and (2.4.8),

	x=−�u3

�x
(3.5.20)

	s=
us

a+bs2
− �u3

�s
(3.5.21)

Note that if we set b=0, and s=a�, Eqs. (3.5.9)–(3.5.21) reduce to Eqs.
(3.3.2)–(3.3.14), the equations for a circular, cylindrical shell, as one would
expect from the definition (3.5.3) of Rs.
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3.5.3. Remarks on Curvature

The definition of what a positive radius of curvature is (Chapter 2) must
be retained. This means that after the direction of positive transverse
displacement has been selected, an observer viewing the geometry of the
undeflected shell in direction of the positive transverse displacement will
perceive the shell along a given coordinate line as concave if it has a
positive radius of curvature at this point. A good illustration is the example
above of the toroidal shell of circular cross-section. As described by Eq.
(3.5.3), R� will be positive for �=0 to � and negative for �=� to 2�.
This agrees with the definition, because an observer stationed at the center
of the circle of radius a in Fig. 5 will perceive the shell in the direction of
the � coordinate as concave between �=0 and � and as convex between
�=� and 2�. (This is not to be confused with the curvature in the �
coordinate direction, which will always appear concave to the observer,
as Eq. (3.5.4) indicates.) When trying to visualize this, it helps to imagine
spheres of radius R�, as described by Eq. (3.5.3), touching the toroidal shell
at the � lines of interest.

It will be shown in later chapters that the natural frequencies
of shells are highly sensitive to curvature. Therefore, in the opinion
of this author, the frequently reported practical problems with finite
element programs giving unsatisfactory predictions are often related to an
inaccurate determination of the radii of curvature. This is especially true
if the radii of curvature are obtained by numerical differentiation of the
reference surface if the references surface is given by discrete points. Small
errors, magnified by the differentiation, will in effect create corrugated
surfaces. Thus spline fits should be used whenever possible.
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4

Nonshell Structures

In the following discussion, we treat rings and beams as special cases of
arches. The arch equation is derived by reduction from Love’s equations
for shells. Also by direct reduction from Love’s equation, we obtain
the plate equation. In literature, reduction is usually not used for these
relatively simple structures, and each special case is derived from basic
principles (Timoshenko, 1955; Biezeno and Grammel, 1954; Thomson,
1972; Meirovitch, 1972)

4.1. ARCH

The arch is a curved beam where all curvature is in one plane only, as
shown in Fig. 1. Vibratory motion is assumed to occur only in that plane.
Designating s as the coordinate along the neutral axis of the arch and y

as the coordinate perpendicular to the neutral axis, the fundamental form
becomes

�ds′�2=�ds�2+�dy�2 (4.1.1)

where �ds′� is the fundamental form diagonal to avoid confusion with �ds�.

64



Nonshell Structures 65

FIG. 1 Coordinate definitions for an arch.

Thus A1=1�A2=1�d�1=ds, and d�2=dy. Furthermore,

R1 = Rs (4.1.2)

1

R2

= 1

Ry

=0 (4.1.3)

and
��·�
��2

= ��·�
�y

=0 (4.1.4)

Also, stresses on the arch in the y direction can be assumed to be 0. From
the fact that there are no deflections in the y direction, shear stresses are 0

Nyy = 0� Myy=0

Nys = Nsy=0� Mys=Msy=0 (4.1.5)

Love’s equations become

�Nss

�s
+Qs3

Rs

+qs = �h
�2us

�t2
(4.1.6)

�Qs3

�s
−Nss

Rs

+q3 = �h
�2u3

�t2
(4.1.7)

where

Qs3=
�Mss

�s
(4.1.8)

The strain–displacement equations become

e0ss =
�us

�s
+ u3

Rs

(4.1.9)
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kss =
��s

�s
(4.1.10)

where

�s=
us

Rs

− �u3

�s
(4.1.11)

While in an approximate sense we could proceed using Eqs. (2.5.9)
and (2.5.15), it is more appropriate to start with the basic fact that �yy=0,
and thus

	ss=
1

E
��ss−
�yy�=

�ss

E
(4.1.12)

Also utilizing Eq. (2.5.21), we obtain

	ss=
�ss

E
= Nss

Eh
+ 12

Eh3
Mss�3 (4.1.13)

Therefore,

	0
ss=

Nss

Eh
� Nss=Eh	0

ss (4.1.14)

and

kss=
12

Eh3
Mss� Mss=

Eh3

12
kss (4.1.15)

The membrane stiffness K=Eh/�1−
2� reduces, therefore, to Eh, and the
bending stiffness D=Eh3/�12�1−
2�� reduces to Eh3/12. The reason is
that by isolating an arch strip from the adjoining material of a cylindrical
shell, we have removed the restraining effect caused by Poisson’s ratio.

Proceeding with the definition of Nss and Mss, we obtain

Nss = Eh

(
�us

�s
+ u3

Rs

)
(4.1.16)

Mss =
Eh3

12

�

�s

(
us

Rs

− �u3

�s

)
(4.1.17)

Inserting this in Eqs. (4.1.6)–(4.1.8) and multiplying through by the width
b gives

EI

Rs

[
�2

�s2

(
us

Rs

)
− �3u3

�s3

]
+EA

[
�2us

�s2
+ �

�s

(
u3

Rs

)]
+q′

s=�A
�2us

�t2

(4.1.18)

EI

[
�3

�s3

(
us

Rs

)
− �4u3

�s4

]
− EA

Rs

(
�us

�s
+ u3

Rs

)
+q′

3=�A
�2u3

�t2
(4.1.19)

where, strictly speaking, the area moment I=bh3/12 and the cross-
sectional area A=hb apply to a rectangular cross-section. At least, this is
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the cross-section we obtain when we isolate an arch strip from a cylindrical
shell of the same shape as the arch. It can be shown, however, that any
cross-sectional shape where the shear center coincides with the area center
is described by these two equations as long as the appropriate I and A
values are introduced. The values q′

s=qsb and q′
3=q3b, by the way, are now

forces per unit length (N/m).
Instead of four boundary conditions, we now need only three at each

edge. Examining Eqs. (2.8.11)–(2.8.14), we obtain the following necessary
boundary conditions that are to be specified at each end of the arch:

Nss = N ∗
ss or us=u∗

s (4.1.20)

Mss = M∗
ss or �s=�∗

s (4.1.21)

Qs3 = Q∗
s3 or u3=u∗

3 (4.1.22)

4.2. BEAM AND ROD

For a thin straight beam
1

Rs

=0 (4.2.1)

Therefore, Eqs. (4.1.18) and (4.1.19) reduce to

EA
�2ux

�x2
+q′

x=�A
�2ux

�t2
(4.2.2)

−EI
�4u3

�x4
+q′

3=�A
�2u3

�t2
(4.2.3)

Note that Eqs. (4.2.2) and (4.2.3) are independent of each other.
Equation (4.2.2) describes longitudinal vibrations along the axis
(commonly called rod vibrations), and Eq. (4.2.3) describes vibrations
transverse to the beam neutral axis. For the rod vibration of Eq. (4.2.2),
we have to specify one boundary condition at each end of the rod:

Nss=N ∗
ss or u3=u∗

s (4.2.4)

For the transverse vibration equation of the beam, we must specify
two boundary conditions at each end:

Mss = M∗
ss or

�u3

�s
=
(
�u3

�s

)∗
(4.2.5)

Qs3 = Q∗
s3 or u3=u∗

3 (4.2.6)

More specifically, the boundary conditions become for the longitudinal
case

EA
�ux

�x
=N ∗

x or ux=u∗
x (4.2.7)
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where N ∗
x =bN ∗

xx(N). For the transverse vibration case, we have

−EI
�2u3

�x2
= M∗

x or
�u3

�x
=
(
�u3

�x

)∗
(4.2.8)

−EI
�3u3

�x3
= Q∗

x or u3=u∗
3 (4.2.9)

where M∗
x =bM∗

xx (Nm) and Q∗
x=bQ∗

x3(N).

4.3. CIRCULAR RING

For a circular ring, the radius of arch curvature is constant (Fig. 2),

Rs=a (4.3.1)

and the coordinate s is commonly expressed as

s=a
 (4.3.2)

Therefore, Eqs. (4.1.18) and (4.1.19) reduce to

EI

a4

(
�2u


�
2
− �3u3

�
3

)
+ EA

a2

(
�2u


�
2
+ �u3

�


)
+q′


=�A
�2u


�t2
(4.3.3)

EI

a4

(
�3u


�
3
− �4u3

�
4

)
− EA

a2

(
�u


�

+u3

)
+q′

3=�A
�2u3

�t2
(4.3.4)

If there is no circumferential forcing and if the circumferential inertia term
can be assumed to be negligible, it is possible to eliminate u
 and obtain
Prescott’s equation (1924):

EI

a4

(
�4u3

�
4
+2

�2u3

�
2
+u3

)
+�A

�2u3

�t2
=q3 (4.3.5)

FIG. 2 Circular ring.
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4.4. PLATE

A plate is a shell of zero curvatures. Thus

1

R1

=0 (4.4.1)

1

R2

=0 (4.4.2)

Love’s equations become, after substituting Eqs. (4.4.1) and (4.4.2),

−��N11A2�

��1

− ��N21A1�

��2

−N12

�A1

��2

+N22

�A2

��1

+A1A2�hü1

=A1A2ql (4.4.3)

−��N12A2�

��1

− ��N22A1�

��2

−N21

�A2

��1

+N11

�A1

��2

+A1A2�hü2

=A1A2q2 (4.4.4)

and uncoupled from these two equations,

−��Q13A2�

��1

− ��Q23A1�

��2

+A1A2�hü3=A1A2q3 (4.4.5)

where

Q13=
1

A1A2

[
��M11A2�

��1

+ ��M21A1�

��2

+M12

�A1

��2

−M22

�A2

��1

]
(4.4.6)

Q23=
1

A1A2

[
��M12A2�

��1

+ ��M22A1�

��2

+M21

�A2

��1

−M11

�A1

��2

]
(4.4.7)

Equation (4.4.5) describes the transverse vibrations of plates.
Equations (4.4.3) and (4.4.4) describe the in-plane oscillations. For small
amplitudes of vibration, these oscillations are independent from each other.

The strain-displacement relationships of Eqs. (2.4.19)–(2.4.21)
become

	0
11 =

1

A1

�u1

��1

+ u2

A1A2

�A1

��2

(4.4.8)

	0
22 =

1

A2

�u2

��2

+ u1

A1A2

�A2

��1

(4.4.9)

	0
12 =

A2

A1

�

��1

(
u2

A2

)
+A1

A2

�

��2

(
u1

A1

)
(4.4.10)



70 Chapter 4

Since

�1=− 1

A1

�u3

��1

(4.4.11)

�2=− 1

A2

�u3

��2

(4.4.12)

we get for Eqs. (2.4.22)–(2.4.24),

k11 = − 1

A1

�

��1

(
1

A1

�u3

��1

)
− 1

A1A
2
2

�u3

��2

�A1

��2

(4.4.13)

k22 = − 1

A2

�

��2

(
1

A2

�u3

��2

)
− 1

A2
1A2

�u3

��1

�A2

��1

(4.4.14)

k12 =
A2

A1

�

��1

(
1

A2
2

�u3

��2

)
−A1

A2

�

��2

(
1

A2
1

�u3

��1

)
(4.4.15)

Inserting Eqs. (4.4.13)–(4.4.15) in Eqs. (2.5.15), (2.5.17) and (2.5.18) yields

M11 =−D

{
1

A1

�

��1

(
1

A1

�u3

��1

)
+ 1

A1A
2
2

�u3

��2

�A1

��2

+


[
1

A2

�

��2

(
1

A2

�u3

��2

)
+ 1

A2
1A2

�u3

��1

�A2

��1

]}
(4.4.16)

M22 =−D

{
1

A2

�

��2

(
1

A2

�u3

��2

)
+ 1

A2
1A2

�u3

��1

�A2

��1

+


[
1

A1

�

��1

(
1

A1

�u3

��1

)
+ 1

A1A
2
2

�u3

��2

�A1

��2

]}
(4.4.17)

M12 =M21=−D�1−
�

2

×
[
A2

A1

�

��1

(
1

A2
2

�u3

��2

)
+ A1

A2

�

��2

(
1

A2
1

�u3

��1

)]
(4.4.18)

Inserting Eqs. (4.4.16)–(4.4.18) in Eqs. (4.4.6) and (4.4.7) and then the
resulting expressions in Eq. (4.4.5) gives

D� 4u3+�hü3=q3 (4.4.19)

where

� 4�·� = � 2� 2�·� (4.4.20)

� 2�·� = 1

A1A2

[
�

��1

(
A2

A1

��·�
��1

)
+ �

��2

(
A1

A2

��·�
��2

)]
(4.4.21)

The operator � 2 is the Laplacian operator. Since it is expressed in
curvilinear coordinates, it is now very easy to express it in the coordinate
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system of our choice. For instance, for Cartesian coordinates, A1=1�d�1=
dx�A2=1�d�2=dy� Thus

� 2�·�= �2�·�
�x2

+ �2�·�
�y2

(4.4.22)

and therefore

� 4�·�= �4�·�
�x4

+2
�4�·�

�x2 �y2
+ �4�·�

�y4
(4.4.23)

Thus Eq. (4.4.19) becomes

D

(
�4u3

�x4
+2

�4u3

�x2 �y2
+ �4u3

�y4

)
+�hü3=q3 (4.4.24)

For circular plates it is of advantage to employ polar coordinates. In
this cases, A1=1�d�1=dr�A2=r�d�2=d
� and

� 2�·�= �2�·�
�r2

+ 1

r

��·�
�r

+ 1

r2
�2�·�
�
2

(4.4.25)

Elliptical plates are defined by elliptical coordinates: A1=A2=
�a2−b2��sin2v+sinh2u��d�1=du�d�2=dv� where a and b are the major
half-axes of the ellipse. The Laplacian operator becomes

� 2�·�= 1

��a2−b2��sin2v+sinh2u��2

(
�2�·�
�u2

+ �2�·�
�v2

)
(4.4.26)

In general, there are two boundary conditions that are required on
each edge. They are, by reduction from Eqs. (2.8.20) and (2.8.21),

Mnn=M∗
nn or �n=�∗

n (4.4.27)

Vn3=V ∗
n3 or u3=u∗

3 (4.4.28)

For example, for Cartesian coordinates these boundary conditions are, at
an x= constant edge,

−D

(
�2u3

�x2
+


�2u3

�y2

)
=M∗

xx or
�u3

�x
=
(
�u3

�x

)∗
(4.4.29)

−D

[
�3u3

�x3
+�2−
�

�3u3

�y2�x

]
=V ∗

x3 or u3=u∗
3 (4.4.30)
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4.5. TORSIONAL VIBRATION OF CIRCULAR
CYLINDRICAL SHELL AND REDUCTION
TO A TORSION BAR

Assuming that a circular cylindrical shell vibrates in torsion only, such that
the cross-section is not elastically deformed, we set (see Fig. 3)

u3=0 (4.5.1)

u
=a� (4.5.2)

ux=0 (4.5.3)

where � is the torsional deflection angle

�=��x�t� (4.5.4)

It also follows that
��·�
�


=0 (4.5.5)

FIG. 3 Circular cylindrical shell vibrating in torsion.
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From Eq. (3.3.3), we obtain

�Nx


�x
+Q
3

a
+q
=�hü
 (4.5.6)

where from Eq. (3.3.6),

Q
3=
�Mx


�x
(4.5.7)

Further, 	0
xx=	0



=0, and

	0
x
=

�u


�x
(4.5.8)

Also, �x=0� and

�
=
u


a
(4.5.9)

Therefore, kxx=k

=0� and

kx
=
1

a

�u


�x
(4.5.10)

This gives

Mx
=
D�1−
�

2a

�u


�x
(4.5.11)

Nx
=
K�1−
�

2

�u


�x
(4.5.12)

Q
3=
D�1−
�

2a

�2u


�x2
(4.5.13)

Thus, the equation of motion becomes

�1−
�

2

(
K+ D

2a2

)
�2u


�x2
+q
=�hü
 (4.5.14)

or

− Eh

2�1+
�

(
1+ h2

12a2

)
�2u


�x2
+�hü
=q
 (4.5.15)

Since the shear modulus is G=E/2�1+
�, utilizing Eq. (4.5.2) gives

−G

(
1+ h2

12a2

)
�2�

�x2
+��̈= q


ah
(4.5.16)

Since we may assume that h2/12a2�1, and introducing the shear speed of
sound

c=
√
G

�
(4.5.17)
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we obtain

�̈−c2
�2�

�x2
= q


ah�
(4.5.18)

Since torque per unit length, T , is related to q
 by

T =2�a2q
 (4.5.19)

and the polar area moment of a thin circular cylindrical shell is

J=2�a3h� (4.5.20)

we may write

q

ah�

= T

J�
(4.5.21)

or

�̈−c2
�2�

�x2
= T

J�
(4.5.22)

This is the equation of motion of the circular cylindrical shell in torsion
and it is also the equation of motion of uniform torsion bars for cross-
sections of any kind if we take a leap of faith by arguing that any polar
area moment can be substituted (but strictly speaking, we have proved this
equation only for the thin walled circular tube or pipe). This reduction
has proven that in the limit Love’s equations are consistent with torsion
bars (just as it was shown earlier that they are consistent with the plate,
beam, and rod vibration equations). Finally, it should be noted that it is
impossible to obtain Eq. (4.5.22) by cutting mathematically a strip from
a rectangular plate since in Love’s equation transverse shear deformations
are neglected. The reason that the reduction shown in this section works
is that the in-plane shear deformation is included in the Love theory.
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5

Natural Frequencies and Modes

Not only is knowledge of natural frequencies and modes important from
a design viewpoint (to avoid resonance conditions, for instance), but it is
also the foundation for forced response calculations. In the following, first
some generalities are outlined and then specific examples are given.

5.1. GENERAL APPROACH

Love’s equations can be written, after substitution of the strain–
displacement relations, as

L1�u1�u2�u3�+q1=�h
�2u1

�t2
(5.1.1)

L2�u1�u2�u3�+q2=�h
�2u2

�t2
(5.1.2)

L3�u1�u2�u3�+q3=�h
�2u3

�t2
(5.1.3)

or in short,

Li�u1�u2�u3�+qi=�h
�2ui

�t2
(5.1.4)
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Setting qi=0 �i=1�2�3� and recognizing that at a natural frequency every
point in the elastic system moves harmonically, we may assume that (see
also Sec. 5.12)

u1��1��2�t�=U1��1��2�e
j	t (5.1.5)

u2��1��2�t�=U2��1��2�e
j	t (5.1.6)

u3��1��2�t�=U3��1��2�e
j	t (5.1.7)

or, in short,

ui��1��2�t�=Ui��1��2�e
j	t (5.1.8)

All three of the Ui��1��2� functions together constitute a natural
mode. Substituting (5.1.8) in (5.1.4) gives, with qi=0,

Li�U1�U2�U3�+�h	2Ui=0 (5.1.9)

Boundary conditions can in general be written

Bk�u1�u2�u3�=0 (5.1.10)

where K=1�2�


�N and where N is the total number of boundary
conditions. In the general case of a four-sided shell segment, we have N =
16. For a beam, N =4. For a rectangular plate, N =8.

After the substitution of (5.1.8), Eq. (5.1.10) becomes

Bk�U1�U2�U3�=0 (5.1.11)

The next step is to try separation of variables on Eqs. (5.1.9) and (5.1.11):

Ui��1��2�=Ri��1�Si��2� (5.1.12)

If this is possible, a set of ordinary differential equations results. Solutions
of these equations have N unknown coefficients. Substitution of these
solutions into the separated boundary conditions will give a homogeneous
set of N equations. The determinant of these equations will furnish the
characteristic equation. The roots of this equation will give the natural
frequencies.

Often, it is not possible to obtain a general solution that is valid for
all boundary condition combinations, but solutions for certain boundary
conditions can be guessed. Obviously, if the guess satisfies the equations of
motion and the particular set of boundary conditions, it is a valid solution
even though we cannot be sure that it is the complete solution. However,
experimental evidence usually takes care of this objection.
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5.2. TRANSVERSELY VIBRATING BEAMS

The equation of motion is

EI
�4u3

�x4
+�′ �

2u3

�t2
=0 (5.2.1)

where I is the area moment and �′ is the mass per unit length, having
multiplied Eq. (4.2.3) by the width of the beam. Substituting

u3�x�t�=U3�x�e
j	t (5.2.2)

gives

d4U3

dx4
−�4U3=0 (5.2.3)

where

�4= 	2�′

EI
(5.2.4)

We approach the solution utilizing the Laplace transform. We get

�s4−�4�U3�s�−s3U3�0�−s2
dU3

dx
�0�−s

d2U3

dx2
�0�− d3U3

dx3
�0�=0 (5.2.5)

Thus

U3�s�=
1

s4−�4

[
s3U3�0�+s2

dU3

dx
�0�+s

d2U3

dx2
�0�+ d3U3

dx3
�0�

]
(5.2.6)

Taking the inverse transformation yields

U3�x� =U3�0�A��x�+
1

�

dU3

dx
�0�B��x�+ 1

�2

d2U3

dx2
�0�C��x�

+ 1

�3

d3U3

dx3
�0�D��x� (5.2.7)

where

A��x�= 1
2 �cosh�x+cos�x� (5.2.8)

B��x�= 1
2 �sinh�x+sin�x� (5.2.9)

C��x�= 1
2 �cosh�x−cos�x� (5.2.10)

D��x�= 1
2 �sinh�x−sin�x� (5.2.11)

Note that A�0�=1� B�0�=0� C�0�=0, and D�0�=0. Since we will
need, for application to specific boundary conditions, the derivatives of
Eq. (5.2.7), they are given in the following:

dU3

dx
�x� =�U3�0�D��x�+ dU3

dx
�0�A��x�+ 1

�

d2U3

dx2
�0�B��x�

+ 1

�2

d3U3

dx3
�0�C��x� (5.2.12)
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d2U3

dx2
�x� = �2U3�0�C��x�+�

dU3

dx
�0�D��x�+ d2U3

dx2
�0�A��x�

+1

�

d3U3

dx3
�0�B��x� (5.2.13)

d3U3

dx3
�x� = �3U3�0�B��x�+�2 dU3

dx
�0�C��x�+�

d2U3

dx2
�0�D��x�

+d3U3

dx3
�0�A��x� (5.2.14)

Let us treat the clamped-free beam as an example. From Eqs. (4.2.5)
and (4.2.6), we formulate the boundary conditions for the clamped end at
x=0 as

u3�x=0�t�=0 (5.2.15)

�u3

�x
�x=0�t�=0 (5.2.16)

and at the free end �x=L� as

Mxx�x=L�t�=0 (5.2.17)

Qx3�x=L�t�=0 (5.2.18)

Substituting the strain–displacement relations and substituting Eq. (5.2.2)
gives

U3�x=0�=0 (5.2.19)

dU3

dx
�x=0�=0 (5.2.20)

d2U3

dx2
�x=L�=0 (5.2.21)

d3U3

dx3
�x=L�=0 (5.2.22)

Substituting Eqs. (5.2.7) and (5.2.12) to (5.2.14) in these conditions gives

0= d2U3

dx2
�0�A��L�+ 1

�

d3U3

dx3
�0�B��L� (5.2.23)

0=�
d2U3

dx2
�0�D��L�+ d3U3

dx3
�0�A��L� (5.2.24)

or

[
A��L� 1

�
B��L�

�D��L� A��L�

]

d2U3

dx2
�0�

d3U3

dx3
�0�


=0 (5.2.25)
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Since

d2U3

dx2
�0�

d3U3

dx3
�0�


 �=0 (5.2.26)

it must be that∣∣∣∣A��L� 1
�
B��L�

�D��L� A��L�

∣∣∣∣=0 (5.2.27)

or

A2��L�−D��L�B��L�=0 (5.2.28)

Substituting Eqs. (5.2.8) to (5.2.11) gives

cosh�Lcos�L+1=0 (5.2.29)

The roots of this equation are

�1L=1
875� �2L=4
694� �3L=7
855� �4L=10
996�

�5L=14
137�


 etc
 (5.2.30)

From Eq. (5.2.4)

	m=
��mL�

2

L2

√
EI

�′ (5.2.31)

The natural mode is given by Eq. (5.2.7):

U3m�x�=
1

�2
m

d2U3m

dx2
�0�


C��mx�+

1

�m

d3U3m

dx3
�0�

d2U3m

dx2
�0�

D��mx�


 (5.2.32)

From Eq. (5.2.25), we get

d3U3m

dx3
�0�

d2U3m

dx2
�0�

=−�mD��mL�

A��mL�
=−�mA��mL�

B��mL�
(5.2.33)

Thus

U3m�x�=
1

�2
m

d2U3m

dx2
�0�

[
C��mx�−

A��mL�

B��mL�
D��mx�

]
(5.2.34)

The mode shape is determined by the bracketed quantity. The magnitude
of the coefficient

1

�2
m

d2U3m

dx2
�0� (5.2.35)
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is arbitrary as far as the mode shape is concerned and is a function of the
excitation.

As a final example, let us look at the simply supported beam. The
boundary conditions are

u3�x=0�=0 (5.2.36)

u3�x=L�=0 (5.2.37)

Mxx�x=0�=0 (5.2.38)

Mxx�x=L�=0 (5.2.39)

Substituting the strain–displacement relations and substituting Eq. (5.2.2)
in Eqs. (5.2.36) to (5.2.39) gives

U3�x=0�=0 (5.2.40)

U3�x=L�=0 (5.2.41)

d2U3

dx2
�x=0�=0 (5.2.42)

d2U3

dx2
�x=L�=0 (5.2.43)

Substituting Eqs. (5.2.7) and (5.2.13) in these relations gives

0= 1

�

dU3

dx
�0�B��L�+ 1

�3

d3U3

dx3
�0�D��L� (5.2.44)

0=�
dU3

dx
�0�D��L�+ 1

�

d3U3

dx3
�0�B��L� (5.2.45)

or 


1

�
B��L�

1

�3
D��L�

�D��L�
1

�
B��L�






dU3

dx
�0�

d3U3

dx3
�0�


=0 (5.2.46)

and therefore, following the same argument as before,

1

�2

�B2��L�−D2��L�
=0 (5.2.47)

or

sinh�Lsin�L=0 (5.2.48)

Since

� �=0 (5.2.49)
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this equation reduces to

sin�L=0 (5.2.50)

or

�mL=m� �m=1�2�


� (5.2.51)

and

	m=
m2�2

L2

√
EI

�′ (5.2.52)

The natural mode is, from Eq. (5.2.7),

U3m�x�=
1

�m

dU3m

dx
�0�


B��mx�+

1

�2
m

d3U3m

dx3
�0�

dU3m

dx
�0�

D��mx�


 (5.2.53)

From Eq. (5.2.46),

d3U3m

dx3
�0�

dU3m

dx
�0�

=−�2
m

B��mL�

D��mL�
=−�2

m

D��mL�

B��mL�
=−�2

m

sinhm�

sinhm�
=−�2

m

(5.2.54)

and Eq. (4.2.53) becomes

U3m�x�=
1

�m

dU3m

dx
�0�sin�mx (5.2.55)

The modes consist of sine waves, as shown in Fig. 1. Note for later
reference that we could have guessed the modes for this particular case
and by substituting the guess in Eq. (5.2.3) could have found the natural
frequencies.

FIG. 1 Natural modes of a simply supported beam.
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5.3. CIRCULAR RING

Equations governing the vibrations of a circular ring in its plane of
curvature are given in Sec. 4.3. For no load, substituting

u����t�=U�n���e
j	nt (5.3.1)

u3���t�=U3n���e
j	nt (5.3.2)

gives

D

a4

(
d2U�n

d�2
− d3U3n

d�3

)
+ K

a2

(
d2U�n

d�2
+ dU3n

d�

)
+�h	2

nU�n=0 (5.3.3)

D

a4

(
d3U�n

d�3
− d4U3n

d�4

)
− K

a2

(
dU�n

d�
+U3n

)
+�h	2

nU3n=0 (5.3.4)

It is possible to approach the solution using the Laplace
transformation in a manner similar to that in Sec. 5.2. However, in certain
cases, it is possible to take a shortcut. The approach in these cases is an
inspired guess. Let us take, for example, the free-floating closed ring:

U3n���=An cosn��−�� (5.3.5)

U�n���=Bn sinn��−�� (5.3.6)

(See Fig. 2 for a physical interpretation of the following assumption.) We
assume that � is an arbitrary phase angle that must be included since
the ring does not show a preference for the orientation of its modes;
rather, the orientation is determined later by the distribution of the external
forces. In Fig. 2 we have sketched the n=2 mode, setting �=0. Note that
physical intuition confirms Eqs. (5.3.5) and (5.3.6) since obviously point
A will move along the x axis to point A′ �U32�0�=A2�U�2�0�=0
, point
B will move along the y axis to point B′ �U32��/2�=−A2�U�2��/2�=0
,
and point C will not move in the normal direction but rather will move in

FIG. 2 Explanation of the phasing between transverse motion and circumferential
motion using the example of a ring.
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the circumferential direction �U32��/4�=−��U�2��/4�=B2
. Substituting
Eqs. (5.3.5) and (5.3.6) in Eqs. (5.3.3) and (5.3.4) gives

�h	2
n−

n4D

a4
− K

a2
−n3D

a4
− nK

a2

−n3D

a4
− nK

a2
�h	2

n−
n2D

a4
− n2K

a2


{An

Bn

}
=0 (5.3.7)

Since, in general,{
An

Bn

}
�=0 (5.3.8)

it must be that the determinant is 0. Thus

	4
n−K1	

2
n+K2=0 (5.3.9)

where

K1=
n2+1

a2�h

(
n2D

a2
+K

)
(5.3.10)

K2=
n2�n2−1�2

a6��h�2
DK (5.3.11)

so

	2
n=

K1

2

(
1±

√
1−4

K2

K2
1

)
(5.3.12)

Therefore, for each value of n, we encounter a frequency

	2
n1=

K1

2

(
1−

√
1−4

K2

K2
1

)
(5.3.13)

and a frequency

	2
n2=

K1

2

(
1+

√
1−4

K2

K2
1

)
(5.3.14)

As it turns out, for typical rings,

	n2�	n1 (5.3.15)

From Eqs. (5.3.7), we get

Ani

Bni

= �n/a2���n2/a2�D+K


�h	2
ni−�1/a2���n4D/a2�+K


= �h	2
ni−�n2/a2���D/a2�+K


�n/a2���n2D/a2�+K


(5.3.16)
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where i=1�2. To gain an intuitive feeling of this ratio, let us look at lower
n numbers, where

n2D

a2
�K (5.3.17)

We get

�h	2
n1�

K

a2
(5.3.18)

	2
n2�K1�

n2+1

a2�h
K (5.3.19)

Thus
An1

Bn1

�−n (5.3.20)

and
An2

Bn2

� 1

n
(5.3.21)

The conclusion is that at 	n1 frequencies, transverse deflections dominate:
The ring is essentially vibrating in bending, analogous to the transverse
bending vibration of a beam. At the 	n2 frequencies, circumferential
deflections dominate, analogous to the longitudinal vibrations of a beam.

Now let us look at some specific values of n. At n=0,

K1=
K

a2�h
(5.3.22)

K2=0 (5.3.23)

and therefore

	2
01=0 (5.3.24)

FIG. 3 Natural modes of a closed ring.
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	2
02=K1=

K

a2�h
(5.3.25)

and
A01

B01

=0�
B02

A02

=0 (5.3.26)

The mode shape is shown in Fig. 3 and is sometimes called the breathing
mode of the ring. At n=1, we get

K1=
2

a2�h

(
D

a2
+K

)
(5.3.27)

K2=0 (5.3.28)

and therefore

	2
11=0 (5.3.29)

Thus a bending vibration still does not exist; we have to think of the ring as
simply being displaced in a rigid-body motion as shown in Fig. 3. However,
a 	n2 frequency does occur and the mode is one compression and one
tension region around the ring.

Starting with n=2, two nonzero sets of natural frequencies and
modes exist. Frequencies as a function of n value are plotted in Fig. 4 �E=
20
6×104N/mm2��=7
85×10−9Ns2/mm4��=0
3�h=2mm�a=100mm�.

FIG. 4 Natural frequencies of a ring.
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5.4. RECTANGULAR PLATES THAT ARE SIMPLY
SUPPORTED ALONG TWO OPPOSING EDGES

Let us suppose that the simply supported edges occur always along the x=
0 and x=a edges as shown in Fig. 5. The boundary conditions on these
edges are therefore

u3�0�y�t�=0 (5.4.1)

u3�a�y�t�=0 (5.4.2)

Mxx�0�y�t�=0 (5.4.3)

Mxx�a�y�t�=0 (5.4.4)

The equation of motion is, from Eq. (4.4.24),

D

(
�4u3

�x4
+2

�4u3

�x2�y2
+ �4u3

�y4

)
+�h

�2u3

�t2
=0 (5.4.5)

Substituting

u3�x�y�t�=U3�x�y�e
j	t (5.4.6)

gives

D

(
�4U3

�x4
+2

�4U3

�x2�y2
+ �4U3

�y4

)
−�h	2U3=0 (5.4.7)

Substituting the strain–displacement relations and Eq. (5.4.6) in
Eqs. (5.4.1)–(5.4.4) gives

U3�0�y�=0 (5.4.8)

U3�a�y�=0 (5.4.9)

�2U3

�x2
�0�y�=0 (5.4.10)

FIG. 5 Rectangular plate simply supported along two opposing edges.
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�2U3

�x2
�a�y�=0 (5.4.11)

Variables become separated and the boundary conditions (5.4.8–
5.4.11) are satisfied if we assume as solution of the form

U3�x�y�=Y �y�sin
m�x

a
(5.4.12)

Substituting Eq. (5.4.12) in Eq. (5.4.7) gives

d4Y

dy4
−2

(m�

a

)2 d2Y

dy2
+
[(m�

a

)4− �h

D
	2

]
Y =0 (5.4.13)

The solution to this ordinary fourth-order differential equation must satisfy
four boundary conditions. Substituting

Y �y�=
4∑

i=1

Cie
�i�y/b� (5.4.14)

gives (
�i

b

)4

−2
(m�

a

)2(�i

b

)2

+
[(m�

a

)4− �h

D
	2

]
=0 (5.4.15)

or

�i=±b

a
m�

√
1±K (5.4.16)

where

K= 	

�m2�2/a2�
√
D/�h

(5.4.17)

Since the frequency of a simple supported beam of length a is

	b=
m2�2

a2

√
D

�h
(5.4.18)

we get

K= 	

	b

(5.4.19)

Thus

K>1 (5.4.20)

and thus

�1=+�1� �2=−�1� �3=+j�2� �4=−j�2 (5.4.21)

where

�1=
b

a
m�

√
K+1� �2=

b

a
m�

√
K−1 (5.4.22)
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and solution (5.4.14) reads

Y �y�=C1e
p1�y/b�+C2e

−p1�y/b�+C3e
jp2�y/b�+C4e

−jp2�y/b� (5.4.23)

Now let

C1=
A+B

2
� C2=

A−B

2
� C3=

C+D

2j
� C4=

C−D

2j
(5.4.24)

and we get

Y �y� = A
ep1�y/b�+e−p1�y/b�

2
+B

ep1�y/b�−e−p1�y/b�

2

+C
ejp2�y/b�+e−jp2�y/b�

2j
+D

ejp2�y/b�−e−jp2�y/b�

2j
(5.4.25)

or

Y �y�=Acosh�1

y

b
+B sinh�1

y

b
+C cos�2

y

b
+D sin�2

y

b
(5.4.26)

where we have set C ′ =C/j and then dropped the prime. Let us now
consider a few examples.

5.4.1. Two Other Edges Clamped

When the two other edges of the rectangular plate are clamped, the
additional four boundary conditions are

u3�x�0�t�=0 (5.4.27)

u3�x�b�t�=0 (5.4.28)

�u3

�y
�x�0�t�=0 (5.4.29)

�u3

�y
�x�b�t�=0 (5.4.30)

and substituting Eqs. (5.4.6) and (5.4.12) yields

Y �0�=0 (5.4.31)

Y �b�=0 (5.4.32)

dY

dy
�0�=0 (5.4.33)

dY

dy
�b�=0 (5.4.34)

Substituting Eq. (5.4.26) in Eqs. (5.4.31)–(5.4.34) gives

0=A+C (5.4.35)
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0=Acosh�1+B sinh�1+C cos�2+D sin�2 (5.4.36)

0=B
�1

b
+D

�2

b
(5.4.37)

0=A
�1

b
sinh�1+B

�1

b
cosh�1−C

�2

b
sin�2+D

�2

b
cos�2 (5.4.38)

or 

1 0 1 0
cosh�1 sinh�1 cos�2 sin�2

0 �1 0 �2

�1 sinh�1 �1cosh�1 −�2sin�2 �2 cos�2





A
B
C
D


=0

(5.4.39)

This equation is satisfied if the determinant is 0. Expanding the
determinant, we obtain

2�1�2�cosh�1cos�2−1�+��2
2−�2

1�sinh�1 sin�2=0 (5.4.40)

Solving this equation for its roots Kn�n=1�2�


� and substituting them into
Eq. (5.4.17) gives

	mna
2

√
�h

D
=m2�2Kn (5.4.41)

For example, for a square plate where a/b=1
0, for m2�2Kn, we get the
values

n

m 1 2 3

1 28.9 69.2 129.1
2 54.8 94.6 154.8
3 102.2 140.2 199.9

The mode shape is obtained by letting

�1n = b

a
m�

√
Kn+1 (5.4.42)

�2n = b

a
m�

√
Kn−1 (5.4.43)

and by solving for three of the four coefficients of Eq. (5.4.39) in terms of
the fourth. Thus

 0 1 0
sinh�1n cos�2n sin�2n

�1n 0 �2n





B
C
D


=−A




1
cosh�1n

0


 (5.4.44)
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Thus

B

A
= −

∣∣∣∣∣∣
1 1 0

cosh�1n cos�2n sin�2n

0 0 �2n

∣∣∣∣∣∣
D′ (5.4.45)

C

A
= −

∣∣∣∣∣∣
0 1 0

sinh�1n cos�1n sin�2n

�1n 0 �2n

∣∣∣∣∣∣
D′ (5.4.46)

D

A
= −

∣∣∣∣∣∣
0 1 1

sinh�1n cos�2n cosh�1n

�1n 0 0

∣∣∣∣∣∣
D′ (5.4.47)

D′ =
∣∣∣∣∣∣

0 1 0
sinh�1n cos�2n sin�2n

�1n 0 �2n

∣∣∣∣∣∣=�1n sin�2n−�2n sinh�1n (5.4.48)

or
B

A
= − �2n�cos�2n−cosh�1n�

�1n sin�2n−�2n sinh�1n

(5.4.49)

C

A
= −�1n sin�2n−�2n sinh�1n

�1n sin�2n−�2n sinh�1n

=−1 (5.4.50)

D

A
= − �1n�cosh�1n−cos�2n�

�1n sin�2n−�2n sinh�1n

=−�1n

�2n

B

A
(5.4.51)

and from Eqs. (5.4.26) and (5.4.12) we have

U3mn�x�y� = A

[(
cosh�1n

y

b
−cos�2n

y

b

)
− �2n�cos�2n−cosh�1n�

�1nsin�2n−�2nsinh�1n

×
(
sinh�1n

y

b
− �1n

�2n

sin�2n

y

b

)]
sin

m�x

a
(5.4.52)

Lines where

U3mn�x�y�=0 (5.4.53)

are node lines and can be obtained by searching for the x�y points that
satisfy Eq. (5.4.53). Node lines for a square plate are shown in Fig. 6.

The Levy-type solution schema presented here has been extended to
other combinations of boundary conditions for the rectangular plate by
a superposition approach. For this technique Gorman (1982) should be
consulted.
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FIG. 6 Node lines of a simply supported plate.

5.4.2. Two Other Edges Simply Supported

When the two other edges are also simply supported, the additional four
boundary conditions are

u3�x�0�t�=0 (5.4.54)

u3�x�b�t�=0 (5.4.55)

Myy�x�0�t�=0 (5.4.56)

Myy�x�b�t�=0 (5.4.57)

Substituting the strain–displacement relations and Eqs. (5.4.6) and (5.4.12)
results in

Y �0�=0 (5.4.58)

Y �b�=0 (5.4.59)

d2Y

dy2
�0�=0 (5.4.60)

d2Y

dy2
�b�=0 (5.4.61)

Substituting Eq. (5.4.26) gives

0=A+C (5.4.62)

0=Acosh�1+B sinh�1+C cos�2+D sin�2 (5.4.63)

0=A�2
1−C�2

2 (5.4.64)

0=A�2
1 cosh�1+B�2

1 sinh�1−C�2
2 cos�2−D�2

2 sin�2 (5.4.65)
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or 


1 0 1 0
cosh�1 sinh�1 cos�2 sin�2

�2
1 0 −�2

2 0
�2
1 cosh�1 �

2
1 sinh�1 −�2

2 cos�2 −�2
2 sin�2





A
B
C
D


=0 (5.4.66)

This equation is satisfied if the determinant is 0. Expanding the
determinant gives

��2
1+�2

2�
2 sinh�1 sin�2=0 (5.4.67)

Since neither ��2
1+�2

2�
2 nor sinh�1 are 0 for nontrivial solutions,

sin�2=0 (5.4.68)

or
�2=n� �n=1�2�


� (5.4.69)

or
K=

( n
m

)2(a
b

)2+1 (5.4.70)

and therefore

	mn=�2

[(m
a

)2+(n
b

)2]√ D

�h
(5.4.71)

For example, for a square plate where a/b=1
0, for 	mna
2
√
�h/D we get

the values

n

m 1 2 3

1 19.72 49.30 98.60
2 49.30 78.88 128.17
3 98.60 128.17 177.47

To obtain the natural modes, we solve for three of the four coefficient of
Eq. (5.4.66):

 1 0 1
cosh�1 sinh�1 cos�2

�2
1 0 −�2

2





A
B
C


=−D




0
sin�2

0


 (5.4.72)

This gives
A

D
=0 (5.4.73)

B

D
=0 (5.4.74)
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C

D
=0 (5.4.75)

and we get

Y �y�=D sin
n�y

b
(5.4.76)

or

U3mn�x�y�=Dsin
n�y

b
sin

m�x

a
(5.4.77)

This is an example of a result that could have been guessed.

5.5. Circular Cylindrical Shell Simply Supported

A circular cylindrical shell simply supported is shown in Fig. 7. It is
assumed that the boundaries are such that

u3�0���t�=0 (5.5.1)

u��0���t�=0 (5.5.2)

Mxx�0���t�=0 (5.5.3)

Nxx�0���t�=0 (5.5.4)

and

u3�L���t�=0 (5.5.5)

u��L���t�=0 (5.5.6)

Mxx�L���t�=0 (5.5.7)

Nxx�L���t�=0 (5.5.8)

the equations of motion are, from Eqs. (3.3.2) to (3.3.4),

�Nxx

�x
+ 1

a

�Nx�

��
−�h

�2ux

�t2
=0 (5.5.9)

FIG. 7 Simply supported, closed circular cylindrical plate.
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�Nx�

�x
+ 1

a

�N��

��
+Q�3

a
−�h

�2u�

�t2
=0 (5.5.10)

�Qx3

�x
+ 1

a

�Q�3

��
−N��

a
−�h

�2u3

�t2
=0 (5.5.11)

with all terms defined by Eqs. (3.3.5) to (3.3.14). At a natural frequency

ux�x���t�=Ux�x���e
j	t (5.5.12)

u��x���t�=U��x���e
j	t (5.5.13)

u3�x���t�=U3�x���e
j	t (5.5.14)

This gives

�N ′
xx

�x
+ 1

a

�N ′
x�

��
+�h	2Ux=0 (5.5.15)

�N ′
x�

�x
+ 1

a

�N ′
��

��
+ 1

a
Q′

�3+�h	2U�=0 (5.5.16)

�Q′
x3

�x
+ 1

a

�Q′
�3

��
−N ′

��

a
+�h	2U3=0 (5.5.17)

where

Q′
x3=

�M ′
xx

�x
+ 1

a

�M ′
x�

��
(5.5.18)

Q′
�3=

�M ′
x�

�x
+ 1

a

�M ′
��

��
(5.5.19)

N ′
xx=K��

′0
xx+��

′0
��� (5.5.20)

N ′
��=K��

′0
��+��

′0
xx� (5.5.21)

N ′
x�=

K�1−��

2
�

′0
x� (5.5.22)

M ′
xx=D�k′xx+�k′��� (5.5.23)

M ′
��=D�k′��+�k′xx� (5.5.24)

M ′
x�=

D�1−��

2
k′x� (5.5.25)

�
′0
xx=

�Ux

�x
(5.5.26)

�
′0
��=

1

a

�U�

��
+ U3

a
(5.5.27)

�
′0
x�=

�U�

�x
+ 1

a

�Ux

��
(5.5.28)
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k′xx=
��′

x

�x
(5.5.29)

k′��=
1

a

��′
�

��
(5.5.30)

k′x�=
��′

�

�x
+ 1

a

��′
x

��
(5.5.31)

�′
x=−�U3

�x
(5.5.32)

�′
�=

U�

a
− 1

a

�U3

��
(5.5.33)

The boundary conditions become

U3�0���=0 (5.5.34)

U��0���=0 (5.5.35)

M ′
xx�0���=0 (5.5.36)

N ′
xx�0���=0 (5.5.37)

U3�L���=0 (5.5.38)

U��L���=0 (5.5.39)

M ′
xx�L���=0 (5.5.40)

N ′
xx�L���=0 (5.5.41)

Based on our experience with the ring and the simply supported
beam, we assume the following solution:

Ux�x���=Acos
m�x

L
cosn��−�� (5.5.42)

U��x���=B sin
m�x

L
sinn��−�� (5.5.43)

U3�x���=C sin
m�x

L
cosn��−�� (5.5.44)

While the assumptions for U��x��� and U3�x
�� are fairly obvious,
the assumption for Ux�x��� needs some explanation. First, the term
cosn��−�� was chosen since it is to expected that a longitudinal node
line will not experience deflections in the x direction. Next, the term
cos(m�x/L) is based on the boundary condition requirement that

N ′
xx�0���=0 (5.5.45)

N ′
xx�L���=0 (5.5.46)
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Substituting Eqs. (5.5.42)–(5.5.44) in all boundary conditions shows that
all are satisfied.

Next, we substitute these assumed solutions into Eqs. (5.5.15)–
(5.5.33), starting with Eq. (5.5.33) and working backward. We get

�′
�=

1

a
�B+nC�sin

m�x

L
sinn��−�� (5.5.47)

�′
x=−m�

L
C cos

m�x

L
cosn��−�� (5.5.48)

k′x�=
m�

La
�B+2nC�cos

m�x

L
sinn��−�� (5.5.49)

k′0�=
n

a2
�B+nC�sin

m�x

L
cosn��−�� (5.5.50)

k′xx=
(m�

L

)2
C sin

m�x

L
cosn��−�� (5.5.51)

�
′0
x�=

(m�

L
B− n

a
A
)
cos

m�x

L
sinn��−�� (5.5.52)

�
′0
��=

1

a
�Bn+C�sin

m�x

L
cosn��−�� (5.5.53)

�
′0
xx=−A

m�

L
sin

m�x

L
cosn��−�� (5.5.54)

M ′
x�=

D�1−��

2

m�

La
�B+2nC�cos

m�x

L
sinn��−�� (5.5.55)

M ′
��=D

{
n

a2
B+

[
n2

a2
+�

(m�

L

)2]
C

}
sin

m�x

L
cosn��−�� (5.5.56)

M ′
xx=D

{
�n

a2
B+

[
�
n2

a2
+
(m�

L

)2]
C

}
sin

m�x

L
cosn��−�� (5.5.57)

N ′
x�=

K�1−��

2

(m�

L
B− n

a
A
)
cos

m�x

L
sinn��−�� (5.5.58)

N ′
��=K

(
n

a
B+ 1

a
C−�

m�

L
A

)
sin

m�x

L
cosn��−�� (5.5.59)

N ′
xx=K

(�n
a

B+�

a
C−m�

L
A
)
sin

m�x

L
cosn��−�� (5.5.60)

Q′
x3=D

m�

L

{
n

a2

1+�

2
B+

[(n
a

)2+(m�

L

)2]
C

}
cos

m�x

L
cosn��−��

(5.5.61)

Q′
�3=−D

a

{[
1−�

2

(m�

L

)2+(n
a

)2]
B+n

[(m�

L

)2+(n
a

)2]
C

}

×sin
m�x

L
sinn��−�� (5.5.62)
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Thus Eqs. (5.5.15)–(5.5.17) become{
�h	2−K

[(m�

L

)2+ 1−�

2

(n
a

)2]}
A+

(
K
1+�

2

n

a

m�

L

)
B

+
(
K
�

a

m�

L

)
C=0 (5.5.63)

(
K
1+�

2

m�

L

n

a

)
A+

{
�h	2−

(
K+ D

a2

)[
1−�

2

(m�

L

)2+(n
a

)2]}
B

+
{
−K

a

n

a
−D

a

n

a

[(m�

L

)2+(n
a

)2]}
C=0 (5.5.64)

(
�K

a

m�

L

)
A+

{
−K

a

n

a
−D

a

n

a

[(m�

L

)2+(n
a

)2]}
B

+
{
�h	2−D

[(m�

L

)2+(n
a

)2]2− K

a2

}
C=0 (5.5.65)

or 
�h	2−k11 k12 k13

k21 �h	2−k22 k23
k31 k32 �h	2−k33





A
B
C


=0 (5.5.66)

where

k11 = K

[(m�

L

)2+ 1−�

2

(n
a

)2]
(5.5.67)

k12 = k21=K
1+�

2

m�

L

n

a
(5.5.68)

k13 = k31=
�K

a

m�

L
(5.5.69)

k22 =
(
K+ D

a2

)[
1−�

2

(m�

L

)2+(n
a

)2]
(5.5.70)

k23 = k32=−K

a

n

a
−D

a

n

a

[(m�

L

)2+(n
a

)2]
(5.5.71)

k33 = D

[(m�

L

)2+(n
a

)2]2+ K

a2
(5.5.72)

For a nontrivial solution, the determinant of Eq. (5.5.66) has to be 0.
Expanding the determinant gives

	6+a1	
4+a2	

2+a3=0 (5.5.73)
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where

a1 = − 1

�h
�k11+k22+k33� (5.5.74)

a2 =
1

��h�2
�k11k33+k22k33+k11k22−k223−k212−k213� (5.5.75)

a3 =
1

��h�3
�k11k

2
23+k22k

2
13+k33k

2
12+2k12k23k13−k11k22k33� (5.5.76)

The solutions of this equation are

	2
1mm = −2

3

√
a2
1−3a2 cos

�

3
− a1

3
(5.5.77)

	2
2mn = −2

3

√
a2
1−3a2 cos

�+2�

3
− a1

3
(5.5.78)

	2
3mn = −2

3

√
a2
1−3a2 cos

�+4�

3
− a1

3
(5.5.79)

where

�=cos−1 27a3+2a3
1−9a1a2

2
√
�a2

1−3a2�
3

(5.5.80)

For every m�n combination, we thus have three frequencies. The lowest
is associated with the mode where the transverse component dominates,
while the other two are usually higher by an order of magnitude and are
associated with the mode where the displacements in the tangent plane
dominate. For every m�n combination, we therefore have three different
combinations of A�B, and C. Solving A and B in terms of C, we have[

�h	2
imn−k11 k12
k21 �h	2

imn−k22

]{
Ai

Bi

}
=−Ci

{
k13
k23

}
(5.5.81)

where i=1�2�3. Thus

Ai

Ci

= −

∣∣∣∣k13 k12
k23 �h	

2
imn−k22

∣∣∣∣
D

(5.5.82)

Bi

Ci

= −

∣∣∣∣�h	2
imn−k11 k13
k21 k23

∣∣∣∣
D

(5.5.83)

where

D=
∣∣∣∣�h	2

imn−k11 k12
k21 �h	2

imn−k22

∣∣∣∣ (5.5.84)



Natural Frequencies and Modes 99

or

Ai

Ci

=− k13��h	
2
imn−k22�−k12k23

��h	2
imn−k11���h	

2
imn−k22�−k212

(5.5.85)

Bi

Ci

=− k23��h	
2
imn−k11�−k21k13

��h	2
imn−k11���h	

2
imn−k22�−k212

(5.5.86)

Thus, in summary, the three natural modes that are associated with the
three natural frequencies 	imn at each m�n combination are



Ux

U�

U3




i

=Ci




Ai

Ci

cos
m�x

L
cosn��−��

Bi

Ci

sin
m�x

L
sinn��−��

sin
m�x

L
cosn��−��




(5.5.87)

where the Ci are arbitrary constants.
Let us assume that we have a steel shell (E=20
6×104 N/mm2, �=

7
85×10−9 Ns2/mm4, �=0
3) of thickness h=2mm, radius a=100mm,
and length L=200mm. The three frequencies 	imn and the ratios Ai/Ci and
Bi/Ci are plotted in Figs. 8–12.

For further examples of shell solutions, see Leissa (1973) and Flügge
(1957).

FIG. 8 Natural frequencies of a simply supported cylindrical shell.
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FIG. 9 Same as Fig. 8, but at a different frequency scale.

FIG. 10 Natural mode component amplitude ratios for m=1�i=1.
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FIG. 11 Natural mode component amplitude ratios for m=1�i=2.

FIG. 12 Natural mode component amplitude ratios for m=1�i=3.
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5.6. CIRCULAR PLATES VIBRATING
TRANSVERSELY

Another category for which exact solutions are available (if series solutions
can be termed exact) is that of circular plates. Circular plates are common
structural elements in engineering. The first circular plate solution is due
to Kirchhoff (1850).

The equation of motion for free vibration is

D� 4u3+�h
�2u3

�t2
=0 (5.6.1)

where

� 2�·�= �2�·�
�r2

+ 1

r

��·�
�r

+ 1

r2
�2�·�
��2

(5.6.2)

At a natural frequency

u3�r���t�=U3�r���e
j	t (5.6.3)

If we substitute this into Eq. (5.6.1), we obtain

D� 4U3−�h	2U3=0 (5.6.4)

Let

�4= �h	2

D
(5.6.5)

Equation (5.6.4) can then be written

�� 2+�2��� 2−�2�U3=0 (5.6.6)

This equation is satisfied by every solution of

�� 2±�2�U3=0 (5.6.7)

It is possible to separate variables by substituting

U3�r���=R�r����� (5.6.8)

This gives

r2
[(

d2R

dr2
+ 1

r

dR

dr

)
1

R
±�2

]
=− 1

�
d2�
d�2

(5.6.9)

This equation can be satisfied only if each expression is equal to the same
constant k2. This allows us to write

d2�
d�2

+k2�=0 (5.6.10)

and
d2R

dr2
+ 1

r

dR

dr
+
(
±�2− k2

r2

)
R=0 (5.6.11)
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The solution of Eq. (5.6.10) is

�=A′ cosk�+B sink� (5.6.12)

or

�=Acosk��−�� (5.6.13)

where � is a constant. In general, k can be a fractional number. But for
plates that are closed in � direction, � must be a function of period 2�. In
this case. k becomes an integer,

k=n=0�1�2�3�


 (5.6.14)

Let us now introduce a new variable

�=
{
�r for+�2

j�r for−�2 (5.6.15)

Equation (5.6.11) becomes

d2R

d�2
+ 1

�

dR

d�
+
(
1− k2

�2

)
R=0 (5.6.16)

This is Bessel’s equation of fractional order. The solutions are in the form
of series. They are classified in terms of Bessel functions. For �=�r ,
the solution is in terms of Bessel functions of the first and second kind,
Jk��r� and Yk��r�. For �= j�r , the solution is in terms of modified Bessel
functions of the first and second kind, Ik��r� and Kk��r�.

For the special category of circular plates that are closed in the �
direction so that k=n, the solution R is therefore

R=CJn��r�+DIn��r�+EYn��r�+FKn��r� (5.6.17)

Both Yn��r� and Kn��r� are singular at �r=0. Thus for a plate with no
central hole, we set E=F =0. Typical plots of the Bessel functions are
shown in Figs. 13 and 14. The general solution was first given by Kirchhoff
(1850). Numerous examples are collected in Leissa (1969).

5.7. EXAMPLE: PLATE CLAMPED AT BOUNDARY

If a circular plate has no central hole,

E=F =0 (5.7.1)

The boundary conditions are, at the boundary radius r=a,

u3�a���t�=0 (5.7.2)

�u3

�r
�a���t�=0 (5.7.3)
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FIG. 13 Illustration of Bessel functions of the first and second kind.

This translates into

R�a�=0 (5.7.4)

dR

dr
�a�=0 (5.7.5)

Substituting Eq. (5.6.17) in these conditions gives[
Jn��a� In��a�
dJn
dr ��a�

dIn
dr ��a�

]{
C
D

}
=0 (5.7.6)

FIG. 14 Illustration of modified Bessel functions of the first and second kind.
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This equation is satisfied in a meaningful way only if the determinant is 0.
This gives the frequency equation

Jn��a�
dIn
dr

��a�− dJn
dr

��a�In��a�=0 (5.7.7)

Searching this equation for its roots �a, labeled successively m=0�1�2�



for each n=0�1�2�


, gives the natural frequencies. Values of the roots �a
are collected in Table 1. The natural frequencies are related to these roots
by

	mn=
��a�2mn

a2

√
D

�h
(5.7.8)

Equation (5.7.7) can be simplified by using the identities

a
dJn
dr

��a�=nJn��a�−�aJn+1��a� (5.7.9)

a
dIn
dr

��a�=nIn��a�+�aIn+1��a� (5.7.10)

Equation (5.7.7) is then replaced by

Jn��a�In+1��a�+In��a�Jn+1��a�=0 (5.7.11)

To find the mode shapes, we formulate from Eq. (5.7.6):

D

C
=−Jn��a�

In��a�
(5.7.12)

This then gives the mode-shape expression

U3�r���=A

[
Jn��r�−

Jn��a�

In��a�
In��r�

]
cosn��−�� (5.7.13)

Setting this expression equal to 0 defines the node lines. It turns out
that there will be concentric circles and diametral lines. The number of
concentric circles will be m and the number of diametral lines will be n.
Examples are shown in Fig. 15. The values of the ratio of the nodal circles
are shown in Table 2, in terms of the ratios r/a.

TABLE 1 Values for (�a�mn

n

m 0 1 2 3

0 3
196 4
611 5
906 7
143
1 6
306 7
799 9
197 10
537
2 9
440 10
958 12
402 13
795
3 12
577 14
108 15
579 17
005
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FIG. 15 Node lines for a clamped circular plate.

5.8. ORTHOGONALITY PROPERTY OF
NATURAL MODES

Natural modes have the same property that is utilized in Fourier series
formulations where sine and cosine functions are used. This property is
orthogonality.

Let us start with Hamilton’s principle,

�
∫ t1

t0

��−K�dt=0 (5.8.1)

Because natural modes satisfy all boundary conditions, the energy put into
a shell by boundary force resultants and moment resultants expressed by

TABLE 2 Nodal Radii in Terms of r/a

n

m 0 1 2 3

0 1.00 1.00 1.00 1.00
1 1.00 1.00 1.00 1.00

0.38 0.49 0.56 0.61
2 1.00 1.00 1.00 1.00

0.58 0.64 0.68 0.71
0.26 0.35 0.41 0.46

3 1.00 1.00 1.00 1.00
0.69 0.72 0.75 0.77
0.44 0.50 0.54 0.57
0.19 0.27 0.33 0.38
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Eq. (2.6.8) is 0

EB=0 (5.8.2)

Because in the eigenvalue problem forcing is not considered,

EL=0 (5.8.3)

Therefore, as the shell vibrates in a natural mode, the potential energy is
equal to the strain energy

�=U (5.8.4)

Hamilton’s principle becomes, for this case,∫ t1

t0

�Udt−
∫ t1

t0

�Kdt=0 (5.8.5)

where, from Eq. (2.7.15),∫ t1

t0

�Udt =
∫ t1

t0

∫
�1

∫
�2

∫
�3

��11��11+�22��22+�12��12

+�13��13+�23��23�A1A2d�1d�2d�3dt (5.8.6)

and where, from Eq. (2.7.8),∫ t1

t0

�Kdt=−�h
∫ t1

t0

∫
�1

∫
�2

�ü1�u1+ ü2�U2+ ü3�U3�A1A2d�1d�2dt

(5.8.7)

The displacements when the shell is vibrating with mode k are

ui��1��2�t�=Uik��1��2�e
j	kt (5.8.8)

We substitute this in Eqs. (5.8.6) and (5.8.7). Since the virtual
displacements have to satisfy the boundary conditions also, but are in
any other respect arbitrary, let us select mode p to represent the virtual
displacement

�ui��1��2�t�=Uipe
j	pt (5.8.9)

Substituting this also gives∫
�1

∫
�2

∫
�3

��
�k�
11 ��

�p�
11 +�

�k�
22 ��

�p�
22 +�

�k�
12 ��

�p�
12 +�

�k�
13 ��

�p�
13 +�

�k�
23 ��

�p�
23 �

×A1A2d�1d�2d�3

=	2
k�h

∫
�1

∫
�2

�U1kU1p+U2kU2p+U3kU3p�A1A2d�1d�2

(5.8.10)

We note that the time integrals have canceled out. The superscripts on
the stresses and variations of strain signify the modes with which they are
associated.
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Let us now go through the same procedure, except that we assign the
mode p to the deflection description

ui��1��2�t�=Uip��1�2�e
j	pt (5.8.11)

and the mode k to the virtual displacements

�ui=Uike
j	kt (5.8.12)

We then obtain∫
�1

∫
�2

∫
�3

��
�p�
11 ��

�k�
11 +�

�p�
22 ��

�k�
22 +�

�p�
12 ��

�k�
12 +�

�p�
13 ��

�k�
13 +�

�p�
23 ��

�k�
23 �

×A1A2d�1d�2d�3=	2
pph

∫
a1

∫
a2

�U1pU1k+U2pU2k+U3pU3k�

×A1A2d�1d�2 (5.8.13)

Let us now examine the first two terms of the left space integral of
Eq. (5.8.10) Since

�
�p�
11 = 1

E
��

�p�
11 −��

�p�
22 �� �

�p�
22 = 1

E
��

�p�
22 −��

�p�
11 � (5.8.14)

we obtain

�
�k�
11 ��

�p�
11 +�

�k�
22 ��

�p�
22 = 1

E
���

�k�
11 �

�p�
11 +�

�k�
22 �

�p�
22 −��

�k�
11 �

�p�
22 −��

�k�
22 �

�p�
11 �

(5.8.15)

Similarly, if we examine the first two terms of Eq. (5.8.13), we obtain

�
�p�
11 ��

�k�
11 +�

�p�
22 ��

�k�
22 =

1

E
���

�p�
11 �

�k�
11 +�

�p�
22 �

�k�
22 −��

�p�
11 �

�k�
22 −��

�p�
22 �

�k�
11 �

(5.8.16)

Therefore, subtracting Eq. (5.8.16) from Eq. (5.8.15) gives

�
�k�
11 ��

�p�
11 −�

�p�
11 ��

�k�
11 +�

�k�
22 ��

�p�
22 −�

�p�
22 ��

�k�
22 =0 (5.8.17)

Since the shear terms subtract out to 0 also, we may subtract Eq. (5.8.13)
from Eq. (5.8.10) and obtain

�h�	2
k−	2

��
∫
a1

∫
a2

�U1kU1p+U2kU2p+U3kU3p�A1A2d�1d�2=0 (5.8.18)

This equation is satisfied whenever p=k since

	2
k−	2

k=0 (5.8.19)

In this case, the integral has a numerical value which we designate as Nk:

Nk=
∫
a1

∫
a2

�U 2
1k+U 2

2k+U 2
3k�A1A2d�1d�2 (5.8.20)
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Whenever k �=p, the only way that Eq. (5.8.18) can be satisfied is when∫
a1

∫
a1

�U1kU1p+U2kU2p+U3kU3p�A1A2d�1d�2=0 (5.8.21)

We may summarize this by using the Kronecker delta symbol,∫
a1

∫
a2

�U1kU1p+U2kU2p+U3kU3p�A1A2d�1d�2=�pkNk (5.8.22)

where

�pk=
{
1� p=k
0� p �=k

(5.8.23)

It is important to recognize the generality of this relationship. Any
two modes of any system of uniform thickness, when multiplied with each
other in the prescribed way, will integrate out to 0. This fact can, for
instance, be used to check the accuracy of experimentally determined
modes. But most important, it allows us to express a general solution of the
forced equation in terms of an infinite series of modes. For shells and plates
of non-uniform thickness and non-homogeneous mass density, ph has to be
taken inside the integral (5.8.18). This will modify Eqs. (5.8.20) –(5.8.22).

5.9. SUPERPOSITION MODES

A standard procedure in structural vibrations is to determine natural
frequencies and mode shapes experimentally. To find the natural
frequencies and modes, the structural system is excited by a shaker, a
magnetic driver, a periodic airblast, and so on. One natural frequency
after the other is identified and the characteristic shape of vibration (mode
shape) at each of these natural frequencies is recorded. As long as the
natural frequencies are spaced apart as in beam or rod applications, no
experimental difficulty is encountered. But in plate and shell structures,
it is possible that two or more entirely different mode shapes occur at
the same frequency. These mode shapes superimpose in a ratio that is
dependent on the location of the exciter. An infinite variety of shapes can
thus be created. Experimenters, however, do not usually become aware of
this if they go about their task with the standard procedures, which do not
necessarily require them to move their excitation location, and will possibly
record only a single mode shape at such a superposition frequency where
they should have measured a complete set. Proof that this actually happens
can be found in the experimental literature. There is extensive published
material on experimental mode shapes that form incomplete sets.

The fact that modal superposition can occur in membrane, plate
and shell structures has been known for a long time. One of the earliest
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published discussions of it dates back to Byerly (1959) in 1893. There it is
shown for the examples of a rectangular membrane how the superposition
of two modes can produce an infinite variety of Chladni figures at the same
natural frequency. However, what has to be shown also is the procedure
to extract from superposition modes information that is useful for further
study of the system (Soedel and Dhar, 1978).

The classical superposition of modes occurs when two distinct modes
are associated with the same natural frequency. Let us look, as an example,
at a simply supported square plate. This is a case that has a particularly
large number of superposition mode possibilities. The natural frequencies
are given by

	mn=
(�
a

)2
�m2+n2�

√
D

�h
(5.9.1)

where m and n can be any combination of integers �m�n=1�2�3�


� The
mode shapes are given by

U3mn=Amnsin
m�x

a
sin

n�y

a
(5.9.2)

It is clear that superposition modes occur for those combinations of m and
n for which m2+n2 is the same. This is shown in Table 3. We see that any
combination �m�n�=�i�j� and �j�i� has the identical natural frequency. In
one case, namely �m�n�=�1�7���7�1� and �5�5�, we find that three distinct
mode shapes are associated with the same natural frequency. Such triple
occurrences happen more often as we increase the values of �m�n�. In
general, as m2+n2 becomes large, the number of modes that have the
identical natural frequency also becomes large.

Let us consider as an example the mode �m�n�=�1�2�. Thus

U312=A12 sin
�x

a
sin

2�y

a
(5.9.3)

TABLE 3 Numerical Values of m2+n2

m

n 1 2 3 4 5 6 7

1 2 5 10 17 26 37 50
2 5 8 13 20 29 40 53
3 10 13 18 25 34 45 58
4 17 20 25 32 41 52 65
5 26 29 34 41 50 61 74
6 37 40 45 52 61 72 85
7 50 53 58 65 74 85 98
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The associated natural frequency is

	12=5
(�
a

)2√ D

�h
(5.9.4)

At the same natural frequency, the mode �m�n�=�2�1� exists, and

U321=A21sin
2�x

a
sin

�y

a
(5.9.5)

The two modes are distinctly different, as shown in Fig. 16, where the
Chladni figures (node lines) are given. Node lines define locations of zero
transverse displacement. Let us now suppose that the experimenter does
not know in advance what mode pattern to expect. If he happens to excite
the plate with a harmonically varying point force at the node line of the
�m�n�=�1�2� mode, he will find the �m�n�=�2�1� mode excited. If he does
not move his excitation point, he will never be aware of the existence of
the (1,2) mode. The reason for this is, of course, that any transverse plate
mode has an infinite transverse impedance along its node lines. This can
easily be shown theoretically or verified by experiment.

If the experimenter happens to locate his excitation force at any place
of the plate that is not a node line of the (1,2) and (2,1) mode, he will excite
both modes. A superposition mode will be generated of the form

�=U312+hU321 (5.9.6)

where h is a number that depends on the exciter location.

FIG. 16 Two different natural modes that have the same natural frequency.
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Let us suppose that his exciter location is along the line y=x but not
at y=x=0�a/2�a. In this case, he will excite each of the two fundamental
modes equally strongly:

A12=A21 (5.9.7)

This gives h=1 or

�1=A12

(
sin

�x

a
sin

2�y

a
+sin

2�x

a
sin

�y

a

)
(5.9.8)

Let us find the configuration of the resulting new node line. From the
requirement that �1=0 along a node line, we find the new node line
equation to be

y=a−x (5.9.9)

This is illustrated in Fig. 17 where the new node line is shown. This mode
shape is a superposition mode, and by itself, it is not able to replace the
two fundamental modes in information content. At least a second mode
shape has to be found. For instance, if we locate the exciter such that

A21=2A12 (5.9.10)

we get as the superposition mode �h=2�

�2=A12

(
sin

�x

a
sin

2�y

a
+2sin

2�x

x
sin

�y

a

)
(5.9.11)

and the resulting node line is a wavy line, as shown in Fig. 18. By moving
the excitation location around, a theoretically infinite number of super
position mode shapes can be found.

Note that the two superposition modes that were generated are not
necessarily orthogonal to each other:∫

A

∫
�1�2dA �=0 (5.9.12)

FIG. 17 A natural mode formed by superposition from the two modes of Fig. 16.
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FIG. 18 A different superposition mode formed by the same two modes of Fig. 16.

To prove this in general, let

�1 = U3�1�+a1U3�2� (5.9.13)

�2 = U3�1�+a2U3�2� (5.9.14)

where U3�1� and U3�2� are two basic modes that are orthogonal and have the
same natural frequency. Formulation of the integral gives∫

A

∫
�U 2

3�1�+a1a2U
2
3�2�+�a1+a2�U3�1�U3�2��dA �=0 (5.9.15)

Since, by definition, the two basic modes U3�1� and U3�2� are orthogonal,
the third term disappears, but the other terms will not be in general 0.
Thus it is necessary to go through an orthogonalization process to make the
information useful for forced vibration prediction. The experimenter may
argue that this is not his affair as long as he produces two superposition
modes for two basic modes. This is certainly true, but how does the ex-
perimenter know that there were only two basic modes and not three
or more? Only by performing the orthogonalization process before the
experimental setup is removed can he be certain that he has measured
enough superposition modes to give all the information that is needed.
This is discussed next.

5.10. ORTHOGONAL MODES FROM
NONORTHOGONAL SUPERPOSITION MODES

In this section, the Schmidt orthogonalization (Hadley, 1961) procedure
for vectors is adapted to the superposition mode problem [Soedel and Dhar
(1978)]. Let us assume that we have found two superposition modes, �1

and �2, of the many possible ones. These two modes are in general not
orthogonal. To make them useful experimental information, one has to go
through an orthogonalization process. We select one of the modes as a base
mode. Let us choose �1. To obtain a second mode, �′

2, that is orthogonal
to �1, we subtract from �2 a scalar multiple of �1 (Fig. 19):

�′
2=�2−a1�1 (5.10.1)
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FIG. 19 Illustration of the generation of a natural mode from nonorthogonal
superposition modes that is orthogonal to one of the superposition modes.

The requirement is that∫
A

∫
�′
2�1dA=0 (5.10.2)

Multiplying Eq. (5.10.1) by �1, and integrating, we obtain∫
A

∫
�′
2�1dA=

∫
A

∫
�2�1dA−a1

∫
A

∫
��1�

2dA (5.10.3)

This gives

a1=
∫
A

∫
�2�1dA∫

A

∫
��1�

2dA
(5.10.4)

In the case of our example of a square plate, let us use

�1 = A12

(
sin

�x

a
sin

2�y

a
+sin

2�x

a
sin

�y

a

)
(5.10.5)

�2 = A12

(
sin

�x

a
sin

2�y

a
+2sin

2�x

a
sin

�y

a

)
(5.10.6)

These modes are not orthogonal. They are shown in Figs. 17 and 18. Let
us now use �1 as the base mode and construct a mode orthogonal to it.
Since∫

A

∫
��1�

2dA =
∫ a

0

∫ a

0

(
sin

�x

a
sin

2�y

a
+sin

2�x

a
sin

�y

a

)2

dxdy

= a2

2
(5.10.7)

∫
A

∫
�1�2dA =

∫ a

0

∫ a

0

(
sin

�x

a
sin

2�y

a
+sin

2�x

a
sin

�y

a

)

×
(
sin

�x

a
sin

2�y

a
+2sin

2�x

a
sin

�y

a

)
dxdy= 3a2

4

(5.10.8)
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we get a1= 3
2 and

�′
2=A′

12

(
sin

�x

a
sin

2�y

a
−sin

2�x

a
sin

�y

a

)
(5.10.9)

where A′
12 is again an arbitrary constant. This mode is now indeed

orthogonal to �1, as a check will easily reveal. The mode, in terms of its
node line, is sketched in Fig. 19.

If there are three or more basic modes that superimpose, we proceed
in a similar manner, except that we now have to measure n superposition
modes �1��2�


��n, where n is the number of base modes that are
superimposed. We choose one of these as the base mode, let us say �1.
The procedure is then, as before, except that we have to go through the
orthogonalization process n−1 times. Let us illustrate this for the case
of superposition of three modes �1��2, and �3. We choose �1 as the
base mode. Next, we obtain a mode �′

2 that is orthogonal to �1, utilizing
information from �2

�′
2=�2−a12�1 (5.10.10)

As before, we obtain from the requirement that∫
A

∫
�′
2�1dA=0 (5.10.11)

the value for a12:

a12=
∫
A

∫
�1�2dA∫

A

∫
��1�

2dA
(5.10.12)

Next, we obtain the mode �′
3 that is orthogonal to both �2 and �′

2, utilizing
�2 and �3 information

�′
3=�3−a13�1−a23�

′
2 (5.10.13)

This time we have two requirements, namely that �′
3 be orthogonal to both

�1 and �′
2∫

A

∫
�′
3�1dA=0 (5.10.14)∫

A

∫
�′
3�

′
2dA=0 (5.10.15)

Multiplying Eq. (5.10.13) by �1 and integrating, then repeating the process
by multiplying by �′

2 and integrating, we have

a13=
∫
A

∫
�3�1dA∫

A

∫
�2
1 dA

(5.10.16)

a23=
∫
A

∫
�3�

′
2dA∫

a

∫
�′2
2 dA

(5.10.17)
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Note that all integrations have to be performed numerically since
experimental mode data are almost never available in functional form but
rather in the form of numerical arrays.

In general, if there is a superposition of n modes, the rth orthogonal
mode is

�′
1=�r−

r−1∑
i=1

air�
′
i �r=2�3�


�n� (5.10.18)

where

�′
1 = �1 (5.10.19)

air =
∫
A

∫
�r�idA∫

A

∫
�2
i dA

(5.10.20)

Returning to the square plate as an example, we get at an excitation
frequency that is equivalent to m2+n2=50 a superposition of three modes:
�m�n�=�1�7���7�1���5�5�. Let us assume that we have found by experiment
the following three superposition modes:

�1=sin
�x

a
sin

7�y

a
+sin

7�x

a
sin

�y

a
+sin

5�x

a
sin

5�y

a
(5.10.21)

�2=2sin
�x

a
sin

7�y

a
+sin

7�x

a
sin

�y

a
+ 3

2
sin

5�x

a
sin

5�y

a
(5.10.22)

�3=
1

2
sin

�x

a
+sin

7�y

a
+ 3

2
sin

7�x

a
sin

�y

a
+2sin

5�x

a
sin

5�y

a

(5.10.23)

We obtain a12= 3
2 and therefore

�′
2=sin

�x

a
sin

7�y

a
−sin

7�x

a
sin

�y

a
(5.10.24)

Next, we obtain a13= 4
3 �a23=−1, and

�′
3=−sin

�x

a
sin

7�y

a
−sin

7�x

a
sin

�y

a
+2sin

5�x

a
sin

5�y

a
(5.10.25)

When we check for orthogonality, we find indeed that we now have∫ a

0

∫ a

0
�1�

′
2dxdy = 0 (5.10.26)

∫ a

0

∫ a

0
�1�

′
3dxdy = 0 (5.10.27)

∫ a

0

∫ a

0
�′
2�

′
3dxdy = 0 (5.10.28)
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This example also illustrates the point that it is not necessary for an
orthogonalized superposition mode to be composed of all basic modes. In
our case, �′

2 is composed of only two instead of all three. The same applies
for the measured modes also, since it is always possible that the exciter
is located at the node line of one of the basic modes. This will not affect
the method. After all, there is a minute probability that the experimenter
becomes lucky and chooses his exciter location such that he excites modes
that are already orthogonal and, even more improbable, that they are equal
to the mathematically generated basic modes.

We have now seen how we can construct orthogonal modes from the
superposition information. Let us now ask some very practical questions.
First, how does the experimenter know that he has a superposition effect?
Answer: when the experimenter produces an apparently different mode
shape at the same natural frequency as he moves the exciter to a different
location. Second, how does the experimenter know how many basic modes
are contributing to the superposition? Answer: he does not. What one has
to do is to go through the orthogonalization procedure, assuming the worst,
namely many contributing modes. To this end one should obtain three or
four superposition modes. One is to select the base mode �1 and then
take one of the measured superposition modes, �2, and generate a mode
�′
2 that is orthogonal to �1. Next, take the third measured superposition

mode, �3, and try to generate �′
3. If there were only two basic modes, �′

3

will come out to be 0, subject to the limits of experimental error. If there
were more than two basic modes contributing to the superposition, �′

3 will
turn out to be an orthogonal mode and the experimenter should try to
generate a �′

4, and so on.
The procedure will suggest how many superposition modes have to

be measured. Deciding if one has obtained a bonafide orthogonal mode or
if resulting shapes are due only to experimental error may turn out to be
tricky in some cases, but with some experience it should usually be possible
to tell the difference because the quasimode resulting from experimental
error should have a rather random distribution of numerous node lines.
Also, any contributions from nonsuperposition modes because of coupling
effects (which will be discussed next) should be recognizable. As long as
one remembers that mathematical procedures alone cannot replace good
judgment, reasonably good experimental results should be possible.

5.11. DISTORTION OF EXPERIMENTAL
MODES BECAUSE OF DAMPING

Damping is always present, but usually in such small amounts that
experimental modes approximate undamped natural modes quite well
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inside usual limits of experimental accuracy. One exception is the
phenomenon of noncrossing node lines. This will be discussed using the
example of a plate.

When a plate is excited harmonically, it will respond with a vibration
that consists of a superposition of all of its natural modes. This will
be discussed in a later chapter. Each mode participates with different
intensity. Mathematically, this can be expressed as

u3��1��2�t�=q1�t�U31��1��2�+q2�t�U32��1��2�+··· (5.11.1)

where qi is the modal participation factor and u3 is the transverse
deflection. If the system damping is negligible and if the excitation
frequency is equal to the jth natural frequency, all ratios q1/qj�q2
qj�


�
approach 0 except for qj/qj , which, of course, approaches unity. This
means that at a natural frequency 	j ,

u3=qjU3j (5.11.2)

This is the reason why we are able experimentally to isolate one mode after
the other.

Things become different if there is damping, either of a structural or
air resistance nature. If we express the damping in terms of an equivalent
viscous damping coefficient, the modal participation factors are of the form

qi=
Fi

	2
i

√
�1−�	/	i�

2
2+4�2
i �	/	i�

2
(5.11.3)

where Fi, parameter dependent on mode shape, excitation force location,
and distribution; �i, damping factor; 	, excitation frequency; 	i ith natural
frequency.

We can now easily see that the presence of damping will tend to make
the ratios qi/qj approach a small amount of �i instead of 0. It turns out
that in the case of plates, the largest �i will be most likely �1 since 	1 is
smaller than 	2�	3�


 Thus we will often see an experimental mode shape
that approaches a superposition of the resonant mode plus a small amount
of the first mode:

�j=U3j+�1U31 (5.11.4)

where �j , superposition mode at the jth natural frequency; U3j , jth natural
mode; U31, first natural mode.

Typically, the presence of this type of superposition will tend to
prevent crossing of node lines. For a square plate with the �m�n�=�2�2�
mode for which no superposition modes of the first kind exist, a small
amount of damping will produce a superposition mode

�32=U322+�11U311 (5.11.5)



Natural Frequencies and Modes 119

where

U322 = sin
2�x

a
sin

2�y

a
(5.11.6)

U311 = sin
�x

a
sin

�y

a
(5.11.7)

Superposition modes for various values of �11 are shown in Fig. 20. The
larger the damping effect, the larger the distance between the noncrossing
lines. It is also possible that �11 is a negative number. This depends on
the location of the exciter. However, all that the negative sign does is to
exchange the quadrants where the node line does not cross over.

This noncrossing behavior is also well known in shell structures. A
typical case is shown in Fig. 21. However, due to the special frequency
characteristic of shells, several damping coupled modes may participate to
produce the experimental mode shape.

Let us now ask the question: What should the experimenter do when
he encounters mode shapes that look like damping superpositions? On a
first-order approximation level, it is recommended to him that he should
simply indicate in his result report that the true node lines most likely do
cross and offer as a choice corrected experimental data using his intuition.
On a higher level of experimental fidelity, he should assume that the
damping couples primarily the fundamental mode and use this idea to
reconstruct the true mode. Let the superposition mode be

FIG. 20 Noncrossing of node lines because of modal superposition caused by
damping.
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FIG. 21 A cylindrical shell example.

�j=U3j+�1U31 (5.11.8)

He does not know U3j and �1, but he has measured U31 and, or course,
�j . Let us multiply the equation by U31 and integrate over the plate area.
Utilizing the fact that∫

A

∫
U3jU31dA=0 �j �=1� (5.11.9)

gives

�1=
∫
A

∫
�jU31dA∫

A

∫
U 2

31dA
(5.11.10)

Thus the true mode shape is

U3j=�j−�1U31 (5.11.11)

Note again that all integration will have to be done numerically because
mode shape data will not be available as a function but as an array.

5.12. SEPARATING TIME FORMALLY

Natural frequencies and modes are obtained from Eqs. (5.1.1) to (5.1.3),
with qi=0:

L1�u1�u2�u3� = �h
�2u1

�t2
(5.12.1)

L2�u1�u2�u3� = �h
�2u2

�t2
(5.12.2)

L3�u1�u2�u3� = �h
�2u3

�t2
(5.12.3)

To separate time, we try

u1��1��2�t� = U1��1��2�T �t� (5.12.4)

u2��1��2�t� = U2��1��2�T �t� (5.12.5)
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u3��1��2�t� = U3��1��2�T �t� (5.12.6)

Substituting Eqs. (5.12.4)–(5.12.6) into Eqs. (5.12.1)–(5.12.3) gives

TL1�U1�U2�U3� = �hU1

d2T

dt2
(5.12.7)

TL2�U1�U2�U3� = �hU2

d2T

dt2
(5.12.8)

TL3�U1�U2�U3� = �hU3

d2T

dt2
(5.12.9)

Dividing the first equation by �hU1T , the second by �hU2T , and the third
by �hU3T gives

L1�U1�U2�U3�

�hU1

= 1

T

d2T

dt2
=−	2 (5.12.10)

L2�U1�U2�U3�

�hU2

= 1

T

d2T

dt2
=−	2 (5.12.11)

L3�U1�U2�U3�

�hU3

= 1

T

d2T

dt2
=−	2 (5.12.12)

Because the left sides of the equation are functions, of space and the right
sides are functions of time, each side of each equation must be equal to
the same common constant. Common, because the right sides of all three
equations are the same. By foresight, we may name this constant −	2. We
obtain, therefore the following equations:

L1�U1�U2�U3�+�h	2U1=0 (5.12.13)

L2�U1�U2�U3�+�h	2U2=0 (5.12.14)

L3�U1�U2�U3�+�h	2U3=0 (5.12.15)

and
d2T

dt2
+	2T =0 (5.12.16)

This last equation has solutions of the following forms:

T =Asin	t+Bcos	t (5.12.17)

or
T =C sin�	t−�� (5.12.18)

or
T =Dej	t (5.12.19)

The meaning of the constant 	 is therefore that it is a frequency in radians
per second at which the system wants to vibrate, namely, one of the natural
frequencies in Sec. 5.1.
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5.13. UNCOUPLING OF EQUATIONS OF MOTION

5.13.1. Ring

It is often possible to uncouple simultaneous equations of motion (Lang,
1962). For example, starting with the ring equations (4.3.3) and (4.3.4),
and multiplying through by the ring width so that D�EI�K=EA, where
I=bh3/12 and A=bh, we obtain for zero forcing

L1u� − L2u3=0 (5.13.1)

L2u� − L3u3=0 (5.13.2)

where

L1 = �1+p�
�2

��2
− 1

	2
0

�2

�t2
(5.13.3)

L2 = p
�3

��3
− �

��
(5.13.4)

L3 = 1+p
�4

��4
+ 1

	2
0

�2

�t2
(5.13.5)

and where

	2
0 =

E

�a2
(5.13.6)

p = I

Aa2
(5.13.7)

These equations are identical to those of Lang (1962) if we take into
account that the transverse deflection is defined in opposite direction.

Multiplying Eq. (5.13.1) by L2 and Eq. (5.13.2) by L1 and subtracting
one from the other results in

�L1L3−L2
2�u3=0 (5.13.8)

Multiplying Eq. (5.13.1) by L3 and Eq. (5.13.2) by L2 gives, after
subtraction,

�L1L3−L2
2�u�=0 (5.13.9)

Expanding the operator gives

L1L3−L2
2=p

(
�6

��6
+2

�4

��4
+ �2

��2
− 1

	2
0

�6

��4�t2
+ 1+p

p	2
0

�4

��2�t2

− 1

p	2
0

�2

�t2
− 1

p	4
0

�4

�t4

)
(5.13.10)
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We may now solve either Eq. (5.13.8) or Eq. (5.13.9). To solve
Eq. (5.13.8) for eigenvalues, we set

u3���t�=U3���e
j	t (5.13.11)

Equation (5.13.8) becomes

�6U3

��6
+
(
2+	2

	2
0

)
�4U3

��4
+
(
1−	2

	2
0

− 	2

p	2
0

)
�2U3

��2
+ 	2

p	2
0

(
1−	2

	2
0

)
U3=0

(5.13.12)

Substituting

u����t�=U�e
j	t (5.13.13)

in Eq. (5.13.9) gives a similar expression, with U3 replaced by U�.
Equation (5.13.13) may be solved in general. For the special case of

a closed circular ring, we set by inspection

U3���=An cos�n�−�� (5.13.14)

where n=0�1�2�


 and An and � are arbitrary constants, except that
orthogonality requirements for forced solutions suggest that �=0��/2.
Equation (5.13.13) becomes

	4−	2�	2
0�1+n2��1+pn2�
+n2�n2−1�2p	4

0=0 (5.13.15)

or

	2
�1�2=

	2
0�1+n2��1+pn2�

2


1±

√
1−

(
n2−1

n2+1

)2 4n2p

�1+pn2�2


 (5.13.16)

As expected, this result can be shown to be identical to Eq. (5.3.12). The
general solution of Eq. (5.13.12) is approached by setting

U3���=
6∑

i=1

Anie
�ni� (5.13.17)

5.13.2. General Uncoupling of the Equations of Motion

In general, all shell equations may be written in operator form. If the
variables are u1�u2� and u3,

 L11 L12 L13

L21 L22 L23

L31 L32 L33






u1

u2

u3


=0 (5.13.18)
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Operating on the first row with L21�L31, the second row with L11L31, and
the third row with L11L21 gives

 L21L31L11 L21L31L12 L21L31L13

L11L31L21 L11L31L22 L11L31L23

L11L21L31 L11L21L32 L11L21L32






u1

u2

u3


=0 (5.13.19)

Subtracting the second row from the first and the third row from the first
eliminates ui and gives[

L21L31L12−L11L31L22 L21L31L13−L11L31L23

L21L31L12−L11L21L32 L21L31L13−L11L21L33

]{
u2

u3

}
=0 (5.13.20)

One may now operate on the first row with L21L31L11−L11L21L31 and
on the second row with L21L31L12−L11L31L22 and subtract the rows from
each other, eliminating u2

��L21L31L12−L11L21L32��L21L31L13−L11L31L23�

−�L21L31L12−L11L31L22��L21L31L13−L11L21L33�
u3=0 (5.13.21)

For shell theories where Lij=Lji, which some investigators feel is a
requirement for a good theory, Eq. (5.13.21) reduces to

L12L13��L12L13−L11L23�
2−�L2

12−L11L22��L
2
13−L11L33�
u3=0

(5.13.22)

5.14. IN-PLANE VIBRATIONS
OF RECTANGULAR PLATE

For �1=x��2=y�A1=1andA2=1, Eqs.(4.4.3) and (4.4.4) become

−�Nxx

�x
− �Nxy

�y
+�hüx=qx (5.14.1)

−�Nxy

�x
− �Nyy

�y
+�hüy=qy (5.14.2)

Equations (4.4.8)–(4.4.10) become

�0
xx=

�ux

�x
(5.14.3)

�0
yy=

�uy

�y
(5.14.4)

�0
xy=

�uy

�x
+ �ux

�y
(5.14.5)
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Substituting Eqs. (5.14.3)–(5.14.5) into Eqs. (2.5.9), (2.5.11) and (2.5.12)

Nxx = K��0
xx+��0

yy�=K

(
�ux

�x
+�

�uy

�y

)
(5.14.6)

Nyy = K��0
yy+��0

xx�=K

(
�uy

�y
+�

�ux

�x

)
(5.14.7)

Nxy = K
�1−��

2
�0
xy=K

�1−��

2

(
�uy

�x
+ �ux

�y

)
(5.14.8)

Finally, Eqs. (5.14.1) and (5.14.2) become

−K

[
�2ux

�x2
+ �1−��

2

�2ux

�y2
+ �1+��

2

�2uy

�x�y

]
+�hüx=qx (5.14.9)

−K

[
�2uy

�y2
+ �1−��

2

�2uy

�x2
+ �1+��

2

�2ux

�x�y

]
+�hüy=qy (5.14.10)

These are the general equations of in-plane motion of plates in Cartesian
coordinates. See also Bardell, Langley and Dunsdon (1996).

To obtain the natural frequencies and modes, we set qx=0 and qy=0,
and eliminate time by substituting the fact that at natural frequencies the
free vibration is harmonic:

ux�x�y�t�=Ux�x�y�e
j	t (5.14.11)

uy�x�y�t�=Uy�x�y�e
j	t (5.14.12)

Equations (5.14.9) and (5.14.10) become

�2Ux

�x2
+
(
1−�

2

)
�2Ux

�y2
+
(
1+�

2

)
�2Uy

�x�y
+ �h

K
	2Ux=0 (5.14.13)

�2Uy

�y2
+
(
1−�

2

)
�2Uy

�x2
+
(
1+�

2

)
�2Ux

�x�y
+ �h

K
	2Uy=0 (5.14.14)

To obtain a general solution of these equations is not a realistic
option. However, it is possible to obtain analytical, closed form solutions
for certain sets of boundary conditions, for example, for the case of a
rectangular plate whose edges are composed of rectangular teeth that fit
into boundary receptacles in such a way that deflections normal to the
edges are possible, but deflections tangential to the edges are not. This case
occurs in engineering praxis only very infrequently. As a matter of fact, it
may be even difficult to reproduce in an experimental setting. But the case
does serve as an example that illustrates in-plane vibration behavior and
it can also serve as a test case for checking finite element programs.
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The boundary conditions for this case that the solutions must satisfy
are:

ux�x�0�t� = Ux�x�0�=0 (5.14.15)

ux�x�b�t� = Ux�x�b�=0 (5.14.16)

uy�0�y�t� = Uy�0�y�=0 (5.14.17)

uy�a�y�t� = Uy�a�y�=0 (5.14.18)

Nxx�0�y�t� =
(
�Ux

�x
+�

�Uy

�y

)
�0�y�=0 (5.14.19)

Nxx�a�y�t� =
(
�Ux

�x
+�

�Uy

�y

)
�a�y�=0 (5.14.20)

Nyy�x�0�t� =
(
�Uy

�y
+�

�Ux

�x

)
�x�0�=0 (5.14.21)

Nyy�x�b�t� =
(
�Uy

�y
+�

�Ux

�x

)
�x�b�=0 (5.14.22)

The natural mode components can be obtained by inspection:

Ux�x�y� = Acos
m�x

a
sin

n�y

b
(5.14.23)

Uy�x�y� = B sin
m�x

a
cos

n�y

b
(5.14.24)

Equations (5.14.23) and (5.14.24) satisfy all boundary conditions.
Substituting them into Eqs. (5.14.13) and (5.14.14) gives∣∣∣∣∣k11−

	2�h

K
k12

k21 k22− 	2�h

K

∣∣∣∣∣


A

B


=



0

0


 (5.14.25)

where

k11=
(m�

a

)2+ �1−��

2

(n�
b

)2
(5.14.26)

k12=k21=
�1+��

2

(m�

a
· n�
b

)
(5.14.27)

k22=
(n�

b

)2+ �1−��

2

(m�

a

)2
(5.14.28)

This proves that Eqs. (5.14.23) and (5.14.24) are a valid set of
solutions. If they were not, Eqs. (5.14.13) and (5.14.14) could not be
converted to a set of algebraic equations. The drawback of the inspection
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approach is, however, that completeness is not assured; it has to be proven
experimentally.

To satisfy Eq. (5.14.25) in a nontrivial way, the determinant of its
matrix has to be 0. Expanding the determinant gives(

k11−
	2�h

K

)(
k22−

	2�h

K

)
−k212=0 (5.14.29)

or

	4−C1	
2+C2=0 (5.14.30)

where

C1=
K�k11+k22�

�h
(5.14.31)

C2=
K2�k11k22−k212�

��h�2
(5.14.32)

Solving Eq. (5.14.30), we obtain for every �m�n� combination two natural
frequencies, given by (C1 and C2 are functions of �m�n�)

	mn1 =
√
C1

2
− 1

2

√
C2

1 −4C2 (5.14.33)

	mn2 =
√
C1

2
+ 1

2

√
C2

1 −4C2 (5.14.34)

The natural mode component amplitudes are obtained by substituting
in turn Eqs. (5.14.33) and (5.14.34) into Eq. (5.14.25).

This gives for 	mni, where i=1�2,

Amni

(
k11−

	2
mni�h

K

)
+Bmnik12=0 (5.14.35)

where the mode component amplitudes A and B of Eqs. (5.14.20) and
(5.14.21) have now the subscript �mni� to signify that the ratio of these
amplitudes is different depending if i=1 or 2, and that this ratio is, of
course, also a function of �m�n�. We obtain

Bmni

Amni

= 	2
mni�h/K−k11

k12
(5.14.36)

Substituting this into the mode Eq. (5.14.23) and (5.14.24) gives the
natural modes

Uxmni = Amni cos
m�x

a
sin

n�y

b
(5.14.37)

Uymni = Amni

(
	2

mni�h/K−k11
k12

)
sin

m�x

a
cos

n�y

b
(5.14.38)

where Amni is an arbitrary constant and can be set to unity.
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5.15. IN-PLANE VIBRATION OF CIRCULAR PLATES

Using polar coordinates �1=r��2=� with A1=1�A2=r , Eqs. (4.4.3) and
(4.4.4) become, in general,

−��Nrr r�

�r
− ��N�r�

��
+N��+r�hür = 0 (5.15.1)

−��Nr�r�

�r
− ��N���

��
−N�r+r�hü� = 0 (5.15.2)

The membrane strain expressions of Eqs. (4.4.8)–(4.4.10) become

�0
rr =

�ur

�r
(5.15.3)

�0
��=

1

r

�u�

��
+ ur

r
(5.15.4)

�0
r�=

�u�

�r
+ 1

r

�ur

��
(5.15.5)

Equations (5.15.1)–(5.15.5) define the general in-plane, free vibration of
circular plates.

If we confine ourselves in the following to the axisymmetric vibrations
of circular plates, we set u�=0 and ��·�/��=0. This results in

Nr�=N�r =0� ü�=0� �N��/��=0 (5.15.6)

Equation (5.15.2) disappears and Eq. (5.15.1) becomes

−��Nrr r�

�r
+N��+r�hür =0 (5.15.7)

where

Nrr = K

(
�ur

�r
+�

ur

r

)
(5.15.8)

N�� = K

(
ur

r
+�

�ur

�r

)
(5.15.9)

Combining all equations gives the equation of motion in radial
displacement form:

�2ur

�r2
+ 1

r

�ur

�r
− 1

r2
ur−

�h

K
ür =0 (5.15.10)

To solve this equation for the natural frequencies and modes, we
separate time by setting

ur�r�t�=Ur�r�e
j	t (5.15.11)
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and obtain
d2Ur

dr2
+ 1

r

dUr

dr
− 1

r2
Ur+

�h	2

K
Ur =0 (5.15.12)

Substituting a new variable

�=�r (5.15.13)

where

�2= �h	2

K
(5.15.14)

and rearranging gives

d2Ur

d�2
+ 1

�

dUr

d�
+
(
1− 1

�2

)
Ur =0 (5.15.15)

This is Bessel’s equation of first order and has as solution

Ur =AJ1���+BY1��� (5.15.16)

or

Ur =AJ1��r�+BY1��r� (5.15.17)

In the following, let us consider first the example of a circular plate
without annulus that is constraint at the boundary so that

ur�a�t�=0 (5.15.18)

or

Ur�a�=0 (5.15.19)

where r=a is the radius of the plate at the boundary. The other boundary
condition is the fact that the plate has no central annular boundary and
deflection at r=0 has to be finite. This eliminates the Y1��r� function:

B=0 (5.15.20)

Substituting Eq. (5.15.17) into Eq. (5.15.19) and applying Eq. (5.15.20)
gives

J1��a�=0 (5.15.21)

The ��a� values that satisfy this equation are listed in Table 4 for the
first four roots, numbered m=0�1�2�3. The physical meaning of m is that
it represents the number of interior node circles.

The associated natural frequencies are obtained from Eq. (5.15.14):

	m=
��a�m
a

√
K

�h
= ��a�m

a

√
E

�1−�2��
(5.15.22)
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TABLE 4 Values for ��a�m for
Fixed Edge

m ��a�m

0 2.404
1 3.832
2 5.135
3 6.379

We note again as for the rectangular plate, that thickness changes of the
plate will not, within the basic assumptions, change the natural frequencies
associated with the in-plane portion of the plate. This result can be
generalized for all plates; see Sec. (19.3).

The natural modes are, from Eq. (5.15.17),

Urm�r�=AmJ1��mr� (5.15.23)

where �m=��a�m/a and Am is an arbitrary constant.
If the circular plate is again without central hole, but is free to move

radially at r=a, the boundary condition (5.25.18) is replaced by

Nrr�a�t�=0 (5.15.24)

or (
�ur

�r
+�

ur

r

)
�a�t�=0 (5.15.25)

Applying Eq. (5.15.11), this condition becomes in terms of the mode Ur ,
dUr

dr
�a�+�

a
Ur�a�=0 (5.15.26)

Substituting the general solution (5.15.17) into this equation gives
dJ1
dr

��a�+�

a
J1��a�=0 (5.15.27)

Since, from identity (5.7.9), we obtain

a
dJ1
dr

��a�=J1��a�−��a�J2��a� (5.15.28)

Equation (5.15.27) becomes

�1+��J1��a�−��a�J2��a�=0 (5.15.29)

The ��a� that satisfy this equation are listed in Table 5 for the first four
roots, labeled m=0�1�2�3. The physical meaning of m is again that it
represents the number of interior nodal circles.

The associated natural frequencies are given by Eq. (5.15.22) with
the ��a�m values given by Table 5. The natural modes are again given by
Eq. (5.15.23).
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TABLE 5 Values for ��a�m for
Free Edge

m ��a�m

0 2.049
1 5.389
2 8.572
3 11.732

5.16. DEEP CIRCULAR CYLINDRICAL PANEL
SIMPLY SUPPORTED AT ALL EDGES

In this case, the circular clyindrical shell has the same boundary conditions
at x=0 and x=L as Eqs. (5.5.1)–(5.5.8), but is open in the � direction;
see Fig. 22. Therefore, the continuity conditions of Sec. 5.5 in � direction,
which expressed themselves in a solution selection of sine and cosine
functions in �-direction, do not any longer apply. They are now replaced
by boundary conditions at �=0 and �=�, for which an exact, closed form
solution can be found. They are

u3�x�0�t�=0 (5.16.1)

ux�x�0�t�=0 (5.16.2)

M���x�0�t�=0 (5.16.3)

FIG. 22 Simply supported, circular cylindrical shell segment.
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N���x�0�t�=0 (5.16.4)

u3�x���t�=0 (5.16.5)

ux�x���t�=0 (5.16.6)

M���x���t�=0 (5.16.7)

N���x���t�=0 (5.16.8)

The governing Eqs. (5.5.9)–(5.5.11) apply, and the solution process follows
Eqs. (5.5.12)–(5.5.33).

With time separated by Eqs. (5.5.12)–(5.5.14), the boundary
conditions of Eqs. (5.16.1)–(5.16.8) become

U3�x�0�=0 (5.16.9)

Ux�x�0�=0 (5.16.10)

M ′
���x�0�=0 (5.16.11)

N ′
���x�0�=0 (5.16.12)

U3�x���=0 (5.16.13)

Ux�x���=0 (5.16.14)

M ′
���x���=0 (5.16.15)

N ′
���x���=0 (5.16.16)

By inspection, the following solution will satisfy Eqs. (5.5.15)–(5.5.17), and
all boundary conditions (5.5.34)–(5.5.41) and (5.16.9)–(5.16.16):

Ux�x���=Acos
m�x

L
sin

n��

�
(5.16.17)

U��x���=B sin
m�x

L
cos

n��

�
(5.16.18)

U3�x���=C sin
m�x

L
sin

n��

�
(5.16.19)

Substituting the equations into Eqs. (5.5.15–(5.5.17) gives again an
algebraic matrix equation of the form of Eq. (5.5.66), namely

�h	2−k11 k12 k13
k21 �h	2−k22 k23
k31 k32 �h	2−k33





A
B
C


=0 (5.16.20)

where

k11 = K

[(m�

L

)2+ �1−��

2

(
n�

a�

)2
]

(5.16.21)
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k12 = −K

[(
n�

a�

)(m�

L

) �1+��

2

]
=k21 (5.16.22)

k13 =
�K

a

(m�

L

)
(5.16.23)

k22 =
(
K+ D

a2

)(
�1−��

2

(m�

L

)2+(n�
a�

)2
)

(5.16.24)

k23 =
(
K

a

)(
n�

a�

)

+
(
D

a

)(
n�

a�

)[(m�

L

)2+(n�
a�

)2
]
=k32 (5.16.25)

k31 =
(
�K

a

)(m�

L

)
=k13 (5.16.26)

k33 =

D

[(m�

L

)2+(n�
a�

)2
]2

+ K

a2


 (5.16.27)

Setting the determinant to 0 and expanding it gives Eqs. (5.5.73)–
(5.5.80) and then the natural frequencies. Again, for every �m�n�
combination there will be three natural frequencies.

The natural modes are given by Eqs. (5.5.85)–(5.5.87), as before, but
with the modified kij values of Eqs. (5.16.21)–(5.16.27).

5.17. NATURAL MODE SOLUTIONS
BY POWER SERIES

From a historical perspective, power series solutions to eigenvalue
problems of strings, beams, membranes, plates, rings, and shells were early
choices of approach. For example, Bessel solved the equation named after
him, Eq. (5.6.16), by the power series method. Recurring series expressions
he defined as functions which were later named Bessel functions. All
common functions that appear in this text were originally obtained by
power series approaches, such as Legendre functions, a power series
solution to Legendre’s equation (6.2.20), hyperbolic functions, and sin and
cos functions. Even the basic approach of using the e�x solution assumption
for solving ordinary differential equations in space is indirectly a power
series approach and e�x is defined in terms of a power series.

Even today, the power series method, while rarely used in its
pure form, remains attractive. Since the power series approach is not
typically taught in introductory vibration courses, it is illustrated in the
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following by examples in a rather slow and pedestrian fashion, for ease of
understanding.

5.17.1. Vibrating Rod

As a first example, we consider a vibrating rod. The equation of motion is

−EA
�2ux

�x2
+�A

�2ux

�t2
=0 (5.17.1)

At a natural frequency,

ux�x�t�=Ux�x�e
j	t (5.17.2)

We obtain upon substitution

d2Ux

dx2
+�2Ux=0 (5.17.3)

where

�2= �	2

E
(5.17.4)

We introduce the power series

Ux�x�=c0+c1x+c2x
2+c3x

3+···=
�∑
i=0

cix
i (5.17.5)

and its derivatives

dUx

dx
=

�∑
i=0

icix
i−1 (5.17.6)

d2Ux

dx2
=

�∑
i=0

i�i−1�cix
i−2 (5.17.7)

Note that we may write the second derivative in a more convenient for by
replacing i by i+2

d2Ux

dx2
=

�∑
i=0

�i+2��i+1�ci+2x
i (5.17.8)

Substituting these expressions into the differential equation, we obtain
�∑
i=0

[
�i+2��i+1�ci+2+�2ci

]
xi=0 (5.17.9)

This equation can only be satisfied if the coefficients of the xi are 0:

�i+2��i+1�ci+2+�2ci=0 �i=0�1�2�


� (5.17.10)
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This gives

ci+2=− �2ci
�i+2��i+1�

(5.17.11)

or

i=0� c2=−�2c0
1·2 =−�2c0

2! (5.17.12)

i=1� c3=− �2c1
1·2·3=−�2c1

3! (5.17.13)

i=2� c4=−�2c2
3·4 = �4c0

1·2·3·4= �4c0
4! (5.17.14)

i=3� c5=−�2c3
4·5 = �4c1

1·2·3·4·5= �4c1
5! (5.17.15)

i=4� c6=−�2c4
5·6 = −�6c0

1·2·3·4·5·6=−�6c0
6! (5.17.16)

etc


Thus

Ux�x� = c0

[
1− ��x�2

2! + ��x�4

4! − ��x�6

6! +···
]

+c1
�

[
��x�− ��x�3

3! + ��x�5

5! −···
]

(5.17.17)

We may now evaluate the solution for a particular boundary
condition, or we can replace the two series by their functional names,
namely sin��x� for the first series in brackets and cos��x� for the second
series in brackets:

Ux�x�=Asin��x�+B cos��x� (5.17.18)

where

A = c1
�

(5.17.19)

B = c0 (5.17.20)

and proceed in this form.

5.17.2. Transversely Vibrating Beam

Next, let us find the general natural mode expression for the transversely
vibrating beam. The equation of motion is

EI
�4u3

�x4
+�A

�2u3

�t2
=0 (5.17.21)
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Substituting, for the vibration at a natural frequency,

u3�x�t�=U3�x�e
j	t (5.17.22)

gives

d4U3

dx4
−�4U3=0 (5.17.23)

where

�4= �A	2

EI
(5.17.24)

As before, we use the series

Ux�x�=
�∑
i=0

cix
i (5.17.25)

Its derivatives are
dUx

dx
=

�∑
i=0

icix
i−1 (5.17.26)

d2Ux

dx2
=

�∑
i=0

i�i−1�cix
i−2=

�∑
i=0

�i+2��i+1�ci+2x
i (5.17.27)

d3Ux

dx3
=

�∑
i=0

i�i−1��i−2�cix
i−3

=
�∑
i=0

�i+3��i+2��i+1�ci+3x
i (5.17.28)

d4Ux

dx4
=

�∑
i=0

i�i−1��i−2��i−3�cix
i−4

=
�∑
i=0

�i+4��i+3��i+2��i+1�ci+4x
i (5.17.29)

Substituting this into the differential equation gives
�∑
i=0

[
�i+4��i+3��i+2��i+1�ci+4−�4ci

]
xi=0 (5.17.30)

Again, this equation can only be satisfied if all coefficients of the xi are 0.
This gives

ci+4=
�4ci

�i+1��i+2��i+3��i+4�
(5.17.31)

or

i=0� c4=
�4c0

1·2·3·4= �4c0
4! (5.17.32)
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i=1� c5=
�4c1

2·3·4·5= �4c1
5! (5.17.33)

i=2� c6=
�4c2

3·4·5·6 (5.17.34)

i=3� c7=
�4c3

4·5·6·7 (5.17.35)

i=4� c8=
�4c4

5·6·7·8= �8c0
1·2·3·4·5·6·7·8= �8c0

8! (5.17.36)

i=5� c9=
�4c5

6·7·8·9= �8c1
9! (5.17.37)

i=6� c10=
�4c6

7·8·9·10= �8c21·2
1·2·3·4·5·6·7·8·9·10= 2�8c2

10! (5.17.38)

i=7� c11=
�4c7

8·9·10·11= �8c31·2·3
11! (5.17.39)

etc.

Thus, the series solution becomes

U3�x� = c0

[
1+ ��x�4

4! + ��x�8

8! + ��x�12

12! +···
]

+c1
�

[
��x�+ ��x�5

5! + ��x�9

9! +···
]

+2
c2
�2

[
��x�2

2! + ��x�6

6! + ��x�10

10! +···
]

+6
c3
�3

[
��x�3

3! + ��x�7

7! + ��x�11

11! +···
]

(5.17.40)

While this is a perfectly fine solution, we recognize that we can bring
it into the more conventional form by utilizing the power series definitions
of sin��x��cos��x��sinh��x�, and cosh��x� �

1

2
�cosh�x+cos�x�=1+ ��x�4

4! + ��x�8

8! +··· (5.17.41)

1

2
�sinh�x+sin�x�=��x�+ ��x�5

5! + ��x�9

9! +··· (5.17.42)
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1

2
�cosh�x−cos�x�= ��x�2

2! + ��x�6

6! + ��x�10

10! +··· (5.17.43)

1

2
�sinh�x−sin�x�= ��x�3

3! + ��x�7

7! + ��x�11

11! +··· (5.17.44)

This result can be brought into the form

U3�x�=Asin�x+B cos�x+C sinh�x+Dcosh�x (5.17.45)

Another way of solving this problem is to note that we may write the
equation of motion as(

d2

dx2
+�2

)(
d2

dx2
−�2

)
U3=0 (5.17.46)

Solutions of(
d2

dx2
±�2

)
U3=0 (5.17.47)

are solutions of the total problem. Thus, we get

�∑
i=0

[
�i+2��i+1�ci+2±�2ci

]
xi=0 (5.17.48)

or

ci+2=
±�2ci

�i+2��i+1�
(5.17.49)

Taking the �+� sign first, or

c+i+2=
�2c+i

�i+2��i+1�
(5.17.50)

we get

c+2 =
�2c+0
2! (5.17.51)

c+3 =
�2c+1
3! (5.17.52)

c+4 =
�4c+0
4! (5.17.53)

c+5 =
�4c+1
4! (5.17.54)

etc.
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For the (−) sign, we obtain

c−2 =−�2c−0
2! (5.17.55)

c−3 =−�2c−1
3! (5.17.56)

c−4 =
�2c−0
4! (5.17.57)

c−5 =
�4c−1
5! (5.17.58)

c−6 =−�6c−0
6! (5.17.59)

etc.

Thus, we get

U3 =c+0

[
1+ ��x�2

2! + ��x�4

4! +···
]

+c+1
�

[
��x�+ ��x�3

3! + ��x�5

5! +···
]

+c−0

[
1− ��x�2

2! + ��x�4

4! − ��x�6

6! +···
]

+c−1
�

[
��x�− ��x�3

3! + ��x�5

5! −···
]

(5.17.60)

Letting A=c−1 /��B=c−0 �C=c+1 /��D=c+0 , we may write this as

U3�x�=Asin�x+B cos�x+C sinh�x+Dcosh�x (5.17.61)

This solution is identical to the previous solution.

5.17.3. Vibrating Ring Described
by Prescott’s Equation

As a next example, let us obtain the solution to Prescott’s ring equation
(4.3.5). Prescott’s equation is not particularly recommended, but it serves
as a vehicle for illustrating the power series approved on a less familiar
equation:

EI

a4

(
�4u3

��4
+2

�2u3

��2
+u3

)
+�A

�2u3

�t2
=0 (5.17.62)
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At a natural frequency,

u3���t�=U3���e
j	t (5.17.63)

This gives, upon substitution,

d4U3

d�4
+2

d2U3

d�2
+(1−�4

)
U3=0 (5.17.64)

where

�4=�A
	2a4

EI
(5.17.65)

We may write the equation also as(
d2

d�2
+1+�2

)(
d2

d�2
+1−�2

)
U3=0 (5.17.66)

Thus, we have to obtain solutions to

d2U3

d�2
+(1±�2

)
U3=0 (5.17.67)

Inserting the series

U3���=
�∑
i=0

ci�
i (5.17.68)

we obtain
�∑
i=0

[
�i+2��i+1�ci+2+�1±�2�ci

]
�i=0 (5.17.69)

or

ci+2=
�1±�2�ci

�i+1��i+2�
(5.17.70)

Taking the (+) sign first, we obtain

c+2 =
�1+�2�c+0

2! (5.17.71)

c+3 =
�1+�2�c+1

3! (5.17.72)

c+4 =
�1+�2�2c+0

4! (5.17.73)

c+5 =
�1+�2�2c+1

5! (5.17.74)

c+6 =
�1+�2�4c+0

6! (5.17.75)

etc.
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For the �−� sign, we obtain

c−2 =
�1−�2�c−0

2! (5.17.76)

c−3 =
�1−�2�c−1

3! (5.17.77)

c−4 =
�1−�2�2c−0

4! (5.17.78)

c−5 =
�1−�2�2c−1

5! (5.17.79)

c−6 =
�1−�2�4c−0

6! (5.17.80)

etc.

Thus, we obtain

U3��� = c+0

[
1+ �1+�2��2

2! + �1+�2�2�4

4! + �1+�2�3�6

6! + 




]

+c+1

[
x+ �1+�2��3

3! + �1+�2�2�5

5! + �1+�2�3�7

7! + 




]

+c−0

[
1− ��2−1��2

2! + ��2−1�2�4

4! − ��2−1�3�6

6! + 




]

+c−1

[
�− ��2−1��3

3! + ��2−1�2�5

5! − ��2−1�3�7

7! + 




]
(5.17.81)

Since �2>1, we let

�2+1=�2 (5.17.82)

�2−1=�2 (5.17.83)

Then,

U3��� =c+0

[
1+ ����2

2! + ����4

4! + ����6

6! + 




]

+c+1
�

[
����+ ����3

3! + ����5

5! + ����7

7! + 




]

+c−0

[
1− ����2

2! + ����4

4! − ����6

6! + 




]

+c1
�

[
����− ����3

3! + ����5

5! − ����7

7! + 




]
(5.17.84)
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Again, while this is a perfectly fine solution (the four arbitrary constants
are obtained from the four boundary conditions that Prescott’s equation
admits), it is instructive to bring it into a form that employs more familiar
functions.

If we let A=c−1 /��B=c−0 �C=c+1 /��D=c+0 , we may write this as

U3���=Asin��+B cos��+C sinh��+Dcosh�� (5.17.85)

Note that in the foregoing examples, it was always possible to identify
the solution in terms of sin, cos, sinh, and cosh functions. This is not
necessarily always the case. In such an event, the series solutions may
have to be tested for convergence. Certain recurring series expressions
could be given a name, and properties of their functions could be
derived.

Examples of other equations for which the power series approach
may yield useful results are Eq. (6.15.10) for the inextensional ring, the
more exact Eq. (5.13.12) for the ring, and the Donnell–Mushtari–Vlasov
Eq. (6.9.4) for the cylindrical shell.

5.17.4. ON REGULARITIES CONCERNING
NODE LINES

Because of recurring needs to sketch expected node lines, attempts have
been made, from time to time, to investigate if there is any physical
significance to node lines, say for plates, beyond that they are lines
of zero transverse deflection. It seems that no useful, general physical
significance has been found so far which could aid the estimation of natural
mode shapes. The obvious speculation that node lines perhaps divide free
vibration kinetic energy into equal parts is not true. Neither do lines of
inflection (lines where the curvature of deflection is 0) divide strain energy
equally. Some regularities were found for special cases such as beams, and
plates that are simply supported along two opposing edges (Soedel and
Soedel, 1989).

For example, for such a beam or Section 5.4 plate with a clamped and
a free edge, the distances from node points to the free edge are equal to the
distances of inflection points to the clamped edge. Or, when plotting the
accumulated, nondimensional kinetic and strain energies against distance
for beams in general, the former plots average to lines of unity slope while
the latter average to lines of slope �4

n=�AL4	2
n/�EI�, relating these plots

to Rayleigh’s principle. But this is neither here nor there as far as universal
significance is concerned.
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What is left is that when sketching expected node lines, or when
assessing possible errors in the numerical prediction or measurements of
natural modes of plates, it is of some use to keep in mind that node lines
divide regions of positive and negative deflections. For example, this is
why closed circular plates cannot have node lines that are odd numbers of
radial lines. It is not possible to have a node line arrangement of 1, 3, 5,



radial lines, The requirement is 2,4,6,


 radial lines (or in terms of nodal
diameters, it is required that the node lines be represented by 1, 2, 3, 



diametral lines). As another example, experimentally obtained, noncrossing
diametral lines of superposition modes, as discussed in Sec. 5.9, can
easily be checked if they are valid by dividing the areas formed by
the dividing node lines into positive and negative regions. Because of
resolution problems when using experimental techniques, one encounters
from time to time, in engineering practice, experimental mode plots that
violate this principle of positive and negative division across node lines; an
application of the described simple checking procedure would have pointed
out immediately the error.

For shells, things are more complicated because of the coupling
of transverse and in-plane motion. One still speaks of node lines of the
transverse motion components, but these node lines are not lines of zero
motion in general because where transverse motion is 0, usually the in-
plane motion components are at their maximum; see Sec. 5.3 and 5.5
However, the concept that transverse motion node lines must divide
positive and negative areas of transverse deflection is applicable.
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6

Simplified Shell Equations

Except for a few special cases, many of which were discussed in
Chapter 5, explicit solutions are not available for Love’s equations. Thus
the investigator often has no choice but to use approximate solution
approaches. The approximate methods are discussed in later chapters. In
this chapter, we offer the alternative of using simplified versions of Love’s
equations.

6.1. MEMBRANE APPROXIMATION

A common approximation in statics of shells, but also used in the analysis
of shell vibrations, is to assume that the bending stiffness in Love’s
equations can be neglected. Obviously, this assumption leads to disaster for
transversely vibrating plates and beams but has some justification for shells
and arches vibrating in shapes where the stretching of the neutral surface
is a dominating contributor to the motion resistance. The approximation
is also called the extensional approximation and Lord Rayleigh (1889) is
commonly credited with it.

Setting

D=0 (6.1.1)

145
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implies that

M11=M22=M12=Q13=Q23=0 (6.1.2)

The equations of motion are therefore

��N11A2�

��1

+ ��N12A1�

��2

+N12

�A1

��2

−N22

�A2

��1

+A1A2q1=A1A2�ü1�

(6.1.3)

��N12A2�

��1

+ ��N22A1�

��2

+N12

�A2

��1

−N11

�A1

��2

+A1A2q2=A1A2�hü2

(6.1.4)

−A1A2

(
N11

R1

+N22

R2

)
+A1A2q3=A1A2�hü3 (6.1.5)

Boundary conditions reduce to the type

Nnn=N ∗
nn or un=u∗

n (6.1.6)

and

u3=u∗
3 (6.1.7)

Note that in general only two boundary conditions can now be satisfied at
each edge, as compared to four for the general case.

6.2. AXISYMMETRIC EIGENVALUES
OF A SPHERICAL SHELL

Axisymmetric eigenvalues of a spherical shell were first treated by Lamb
(1882) by reduction from the solution for a vibrating solid sphere.
Here we start with the simplified Love equations (6.1.3)–(6.1.5). We are
only interested in axisymmetric vibrations. All derivatives with respect
to � vanish. Since �1=�, �2=�, A1=a, A2=asin�, and R1=R2=a�
Eqs. (6.1.3)–(6.1.5) become

�

��
�N�� sin��−N�� cos�+aq� sin�=a�h

�2u�

�t2
sin� (6.2.1)

−�N��+N���+aq3=a�h
�2u3

�t2
(6.2.2)

The strain–displacement relations become

	0
��=

1

a

(
�u�

��
+u3

)
(6.2.3)

	0
��=

1

asin�
�u� cos�+u3 sin�� (6.2.4)
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This gives

N��=
K

a

[
�u�

��
+
u� cot�+�1+
�u3

]
(6.2.5)

N��=
K

a

[
u� cot�+


�u�

��
+�1+
�u3

]
(6.2.6)

We therefore get

�2u�

��2
+ �

��
�u� cot��+�1+
�

�u3

��
+ a2q�

K
= a2�h

K

�2u�

�t2
(6.2.7)

−�u�

��
−u� cot�−2u3+

a2

K�1+
�
q3=

a2�h

K�1+
�

�2u3

�t2
(6.2.8)

To find the eigenvalues, we set q�=0 and q3=0 and substitute:{
u����t�
u3���t�

}
=
{
U����
U3���

}
ej�t (6.2.9)

We obtain

d2U�

d�2
+ d

d�
�U� cot��+�1+
�

dU3

d�
+�1−
2��2U�=0 (6.2.10)

dU�

d�
+U� cot�+2U3−�1−
��2U3=0 (6.2.11)

where

�2= a2��2

E
(6.2.12)

and solving Eq. (6.2.11) for U3 and differentiating with respect to � gives

dU3

d�
= 1

�1−
��2−2

[
d2U�

d�2
+ d

d�
�U� cot��

]
(6.2.13)

Substituting this equation in Eq. (6.2.10) gives

d2U�

d�2
+ d

d�
�U� cot��+
�
+1�U�=0 (6.2.14)

where


�
+1�=2+ �1+
��2�3−�1−
��2�

1−�2
(6.2.15)

Let us now define a function � such that

U�=
d�

d�
(6.2.16)
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Substituting this in Eq. (6.2.14) gives

d

d�

[
d2�

d�2
+cot�

d�

d�
+
�
+1��

]
=0 (6.2.17)

or, integrating,

d2�

d�2
+cot�

d�

d�
+
�
+1��=C (6.2.18)

where C is an integration constant. This equation has a homogeneous
solution and a particular solution. The latter is

�= C


�
+1�
(6.2.19)

and does not contribute anything to U� according to Eq. (6.2.16). The
homogeneous solution is obtained from

d2�

d�2
+cot�

d�

d�
+
�
+1��=0 (6.2.20)

We recognize this equation to be Legendre’s differential equation. Its
general solution is

�=AP
�cos��+BQ
�cos�� (6.2.21)

or

U�=
d�

d�
=A

dP
�cos��

d�
+B

dQ
�cos��

d�
(6.2.22)

To obtain the solution for U3, we substitute Eq. (6.2.16) in Eq. (6.2.11):

−U3�2−�1−
��2�= d2�

d�2
+cot�

d�

d�
(6.2.23)

Substituting this in Eq. (6.2.20) and utilizing Eq. (6.2.15) gives

U3=
1+�1+
��2

1−�2
� (6.2.24)

The functions P
�cos�� and Q
�cos�� are the Legendre function of
the first and second kind and of fractional order 
. The Legendre function
Q
�cos�� is singular at �=0. Thus, whenever we have a spherical shell
that is closed at the apex �=0, we set B=0 in Eqs. (6.2.21) and (6.2.22).
The Legendre function P
�cos�� is singular at �=� unless


=n �n=0�1�2����� (6.2.25)

In this case the P
�cos�� reduces to Pn�cos��, called Legendre polynomials.
This fact provides us with a very simple solution for the special case
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of a closed spherical shell since Eq. (6.2.25) allows us an immediate
formulation of the natural frequencies, using definition (6.2.15). We get

�4�1−
2�−�2�n�n+1�+1+3
�+�n�n+1�−2�=0 (6.2.26)

or

�2
n1�2 =

1

2�1−
2�
�n�n+1�+1+3


±√�n�n+1�+1+3
�2−4�1−
2��n�n+1�−2�� (6.2.27)

The natural modes are

U�=A
dPn�cos��

d�
(6.2.28)

U3=A
1+�1+
��2

1−�2
Pn�cos�� (6.2.29)

For instance, at n=0, which is the breathing mode,

�2
01=

2

1−

(6.2.30)

�2
02 is negative, giving rise to an imaginary frequency and is therefore

physically meaningless. Since P0�cos��=1, we get

U3=
1+�1+
��2

01

1−�2
01

(6.2.31)

and

U�=0 (6.2.32)

The natural frequency in radians per second is obtained from Eq. (6.2.12)
to be

�2
01=

E

a2�
�2

01 (6.2.33)

We recognize this case as the “breathing” mode of the sphere. The
calculated frequency agrees well with experimental reality.

Natural frequencies for other n values are plotted in Fig. 1. The �n1

branch is dominated by in-plane motion and agrees well with reality for
all thickness-to-radius ratios. The �n2 branch is dominated by transverse
motion. The zero value for n=1 defines a rigid-body motion. For
thickness-to-radius ratios up to approximately h/a=0�01, the membrane
approximation gives very good results, as shown in Fig. 1, where the results
for the full theory are superimposed. Only when the shell starts to become
a “thick” shell do we see a pronounced effect of bending on the transverse
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FIG. 1 Natural frequencies of an axisymmetrically vibrating spherical shell.

natural frequencies. This is shown for h/a=0�1. The results for the full
theory where bending is considered are given by Kraus (1967)

�2
n1�2=

1

2�1−
2�
�A±√

A2−4mB� (6.2.34)

where

A=3�1+
�+m+ 1

12

(
h

a

)2

�m+3��m+1+
� (6.2.35)

B=1−
2+ 1

12

(
h

a

)2

��m+1�2−
2� (6.2.36)

m=n�n+1�−2 �n=0�1�2����� (6.2.37)

When h/a is set to 0, this equation reduces to Eq. (6.2.27).
An interesting fact is that if the spherical shell is very thin, all

transverse frequencies above approximately n=4 exist in a very narrow
frequency band.

To aid in the plotting of mode shapes, the following identities
are useful: P0�cos��=1�P1�cos��=cos��P2�cos��=�3cos2�+1�/4�
P3�cos��=�5cos3�+3cos��/8� A few transverse mode shapes are shown
in Fig. 2. For more work on spherical shell vibrations, see Kalnins (1964);
Naghdi (1962); Wilkinson (1965); Kalnins and Kraus (1966).
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FIG. 2 A few axisymmetrical natural modes of a spherical shell.

6.3. BENDING APPROXIMATION

In one of its versions, the bending approximation is called the inextensional
approximation. It was first employed by Lord Rayleigh (1881). The
simplification sometimes applies to shells that have developable surfaces,
but mainly to any shell with transverse modes of a wavelength one
order of magnitude smaller than the smallest shell surface dimension. The
assumption is that

	0
11=	0

22=	0
12=0 (6.3.1)

Thus all membrane force resultants are 0. The equivalent effect is
sometimes reached if we set K=0. In the latter case, we obtain

��Q13A2�

��1

+ ��Q23A1�

��2

+A1A2q3=A1A2�ū3 (6.3.2)

where

Q13=
1

A1A2

[
��M11A2�

��1

+ ��M12A1�

��2

+M12

�A1

��2

−M22

�A2

��1

]
(6.3.3)

Q23=
1

A1A2

[
��M12A2�

��1

+ ��M22A1�

��2

+M12

�A2

��1

−M11

�A1

��2

]
(6.3.4)

Note that u1 and u2 are not 0 but are related to the transverse displacement
by two of the three member strain equations:

1

A1

�u1

��1

+ u2

A1A2

�A1

��2

=− u3

R1

(6.3.5)

1

A2

�u2

��2

+ u1

A1A2

�A2

��1

=− u3

R2

(6.3.6)

A2

A1

�

��1

(
u2

A2

)
+A1

A2

�

��2

(
u1

A1

)
=0 (6.3.7)
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The bending strain expressions are the same as in Eqs. (2.4.22)–(2.4.24),
with �1 and �2 given by Eqs. (2.4.7) and (2.4.8).

6.4. CIRCULAR CYLINDRICAL SHELL

For the circular cylindrical shell, A1=1�d�1=dx�A2=a�d�2=d��R1=�,
and R2=a. This gives the following relationships between transverse and
in-plane displacements:

�ux

�x
=0 (6.4.1)

�u�

��
=−u3 (6.4.2)

�u�

�x
+ 1

a

�ux

��
=0 (6.4.3)

For instance, for the simply supported shell vibrating at a natural frequency

u3=Asin
m�x

L
cosn��−��ej�t (6.4.4)

Thus, from Eq. (6.4.2),

u�=−
∫
u3d�+C1=−A

n
sin

m�x

L
sinn��−��ej�t (6.4.5)

Selecting (6.4.3) as our second equation gives

ux=−a
∫ �u�

�x
d�+C2 (6.4.6)

or

ux=−Aa

n2

m�

L
cos

m�x

L
cosn��−��ej�t (6.4.7)

Note that the three displacement mode components are in functional
character identical to the exact solution, but they are no longer
independent of each other. Thus constants A�B�C of Sec. 5.5 are now
replaced by Ama�/Ln2�−A/n, and A. Substituting Eqs. (6.4.4), (6.4.5), and
(6.4.7) in the bending strain expressions and these in Eqs. (6.3.2)–(6.3.4)
gives

�2
mn=

E

12��1−
2�

(
h

a

)2 1

a2

[(m�a

L

)2+n2

][(m�a

L

)2+n2−1

]
(6.4.8)

This equation is of special interest to the acoustical engineer since in
the higher-mode-number range, the influence of the boundary conditions
disappears and any closed circular cylindrical shell will be governed by it.
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As a matter of fact, the –1 in the second set of brackets is negligible for
higher m and n combinations and the equation simplifies to

�2
mn=

E

12��1−
�2

(
h

a

)2 1

a2

[(m�a

L

)2+n2

]2
(6.4.9)

6.5. ZERO IN-PLANE DEFLECTION APPROXIMATION

For modes associated primarily with transverse motion, the contributions
of u1 and u2 on strain are assumed to be negligible. This seems to work
for very shallow shells and bending-dominated modes. The shell equation
derived by Sophie Germaine (see Chapter 1) seems to have used this
assumption.

The strain–displacement relationships become

	0
11 =

u3

R1

(6.5.1)

	0
22 =

u3

R2

(6.5.2)

	0
12 = 0 (6.5.3)

k11 = − 1
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��1
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1

A1

�u3

��1

)
− 1

A1A
2
2

�u3

��2

�A1

��2

(6.5.4)

k22 = − 1
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��2
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1

A2

�u3

��2

)
− 1

A2A
2
1

�u3

��1

�A2

��1

(6.5.5)

k12 = −A2

A1

�

��1

(
1

A2
1

�u3

��2

)
−A1

A2

�

��2

(
1

A2
2

�u3

��1

)
(6.5.6)

Substituting these relationships into Love’s equations gives

D� 4u3+Ku3

(
1

R2
1

+ 1

R2
2

+ 2


R1R2

)
+�h

�2u3

�t2
=q3 (6.5.7)

where

� 2�·�= 1

A1A2

[
�

��1

(
A2

A1

��·�
��1

)
+ �

��2

(
A1

A2

��·�
��2

)]
(6.5.8)

Equation (6.5.7) can be used to estimate quickly effects of curvature in
relatively shallow shells. However, the accuracy of prediction leaves a lot
to be desired.
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FIG. 3 Simplified curved fan blade.

6.6. EXAMPLE: CURVED FAN BLADE

For some low-speed fan blades, where the centrifugal stiffening effect can
be neglected, we have Rt=� and R2=a (see Fig. 3) Let us use a Cartesian
coordinate system in the plane of projection. At a natural frequency,

u3�x�y�t�=U3�x�y�e
j�t (6.6.1)

we get

D� 4U3�x�y�+
(
K

a2
−�h�2

)
U3�x�y�=0 (6.6.2)

We therefore notice immediately that

�2
2=�2

1+
K

a2�h
(6.6.3)

where �2 is the natural frequencies of the curved blade and �1 is the
natural frequencies of the flat blade. The formula will apply approximately
only to the first few beam-type modes but allows quick estimates of the
curvature effect.

We may now generalize this finding. According to Eq. (6.5.7),
whenever the shell is so shallow that we may use plate coordinates as an
approximation,

�2
2=�2

1+
K

�h

(
1

R2
1

+ 1

R2
2

+ 2


R1R2

)
(6.6.4)

It is implied that both curvatures are constant over the surface.

6.7. DONNELL–MUSTHTARI–VLASOV EQUATIONS

Of all the simplifications presented, that of Donnell, Mushtari, and Vlasov
is used most widely in shell vibrations. It neglects neither bending nor
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membrane effects. It applies to shells that are loaded normal to their
surface and concentrates on transverse deflection behaviour. The approach
was developed, apparently independently, by Donnell (1933, 1938) and
Mushtari (1938). Donnell derived it for the circular cylindrical shell. The
approach was generalized for any geometry by Vlasov (1951). Because
Vlasov pointed out that the approach gives particularly good results
for shallow shells, the equations are often referred to as shallow shell
equations. This is, however, an unnecessarily severe restriction, as we will
see when we develop the equations.

The first basic assumption is that contributions of in-plane deflections
can be neglected in the bending strain expressions but not in the membrane
strain expressions. The bending strains are therefore

k11 = − 1

A1

�

��1

(
1

A1

�u3

��1

)
− 1

A1A
2
2

�u3

��2

�A1

��2

(6.7.1)

k22 =
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A2
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��2
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1

A2

�u3

��2

)
− 1

A2A
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1

�u3

��1

�A2

��1

(6.7.2)

k12 = −A2
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�

��1

(
1

A2
2

�u3

��2

)
−A1

A2

�

��2

(
1

A2
1

�u3

��1

)
(6.7.3)

The membrane strain expressions remain the same. The next assumption is
that the influence of inertia in the in-plane direction is neglected. Needless
to say, the theory is restricted to normal loading. Finally, we neglect the
shear terms Q31/R1 and Q32/R2. The equations of motion are, therefore,

��A2N11�

��1

+ ��A1N12�

��2

+ �A1

��2

N12−
�A2

��1

N22=0 (6.7.4)
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��1

+ ��A1N22�

��2

+ �A2

��1
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�A1

��2

N11=0 (6.7.5)

D� 4u3+
N11

R1

+N22

R2

+�h
�2u3

�t2
=q3 (6.7.6)

Let us now introduce a function � that we define as

N11 =
1

A2

�

��2
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1

A2
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��2

)
+ 1

A2
1A2

�A2

��1
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If we substitute these definitions into Eqs. (6.7.4)–(6.7.6), we find that the
first two equations are satisfied and the third equation becomes

D� 4u3+� 2
k �+�h

�2u3

�t2
=q3 (6.7.10)

where

� 2
k �·�=

1

A1A2

{
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��1

[
1

R2

A2

A1

��·�
��1

]
+ �

��2

[
1

R1

A1

A2

��·�
��2

]}
(6.7.11)

This type of function was first introduced by Airy (1863) for the
two-dimensional treatment of a beam in bending and is in general known
as Airy’s stress function. With it we have in effect eliminated u1 and u2

but still have � and u3 to contend with. To obtain a second equation,
we follow the standard procedure with Airy’s stress function, namely
to generate the compatibility equation. The way to do this is to take
the six strain displacement relationships and eliminate from them the
displacement by substitutions, additions, and subtraction. This is shown in
detail in Novozhilov (1964) and Nowacki (1963). The result is

k11
R1

+ k22
R2

+ 1

A1A2

{
�

��1

1

A1

[
A2

�	0
22

��1

+ �A2

��1

�	0
22−	0

11�−
A1

2

�	0
12

��2

− �A1

��2

	0
12

]

+ �

��2

1

A2

[
A1

�	0
11

��2

+ �A1

��2

�	0
11−	0

22�−
A2

2

�	0
12

��1

− �A2

��1

	0
12

]}
=0 (6.7.12)

We now substitute the fact that

	0
11 =

1

Eh
�N11−
N22� (6.7.13)

	0
22 =

1

Eh
�N22−
N11� (6.7.14)

	0
12 =

2�1+
�

Eh
N12 (6.7.15)

where N11�N22, and N12 are replaced by the stress function definitions of
Eqs. (6.7.7)–(6.7.9). This gives us

Eh� 2
k u3−� 4�=0 (6.7.16)

Thus Eqs. (6.7.10) and (6.7.16) are the equations of motion.
There are four necessary boundary conditions at each edge, two in

terms of u3 and two in terms of �. The � conditions pose a problem if they
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are given in terms of u1 or u2, since we then have to solve Eqs. (6.7.7)–
(6.7.9) for � However, boundary conditions where N11�N12� or N22 are
specified directly are easier to handle.

6.8. NATURAL FREQUENCIES AND MODES

To obtain the eigenvalues of Eqs. (6.7.10) and (6.7.16), We substitute

q3=0 (6.8.1)

u3��1��2�t�=U3��1��2�e
j�t (6.8.2)

���1��2�t�=���1��2�e
j�t (6.8.3)

and get

D� 4U3+� 2
k �−�h�2U3=0 (6.8.4)

Eh� 2
k U3−� 4�=0 (6.8.5)

Defining a function F��1��2� such that

U3=� 4F (6.8.6)

�=Eh� 2
k F (6.8.7)

we obtain, by proper substitution into Eqs. (6.8.4) and (6.8.5),

D� 8F+Eh� 4
k F−�h�2� 4F =0 (6.8.8)

The alternative choice is to operate on Eq. (6.8.4) with � 4 and on
Eq. (6.8.5) with � 2

k . Combining the two equations then gives

D� 8U3+Eh� 4
k U3−�h�2� 4U3=0 (6.8.9)

This form is probably preferable.

6.9. CIRCULAR CYLINDRICAL SHELL

For a circular cylindrical shell, A1=1��1=x�A2=a� and �2=�. This gives

� 4�·�= 1

a4

�4�·�
��4

+ �4�·�
�x4

+ 2

a2

�4�·�
�x2��2

(6.9.1)

� 4
k �·�=

1

a2

�4�·�
�x4

(6.9.2)

For the special category where the shell is closed in � direction, the
solution will be of the form

U3�x���=U3n�x�cosn��−�� (6.9.3)
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where � is an arbitrary angle accounting for the fact that there is no
preferential direction of the mode shape in circumferential direction. The
equation of motion becomes

D

(
n2

a2
− d2

dx2

)4

U3n�x�+
Eh

a2

d4U3n�x�

dx4
−�h�2

(
n2

a2
− d2

dx2

)2

U3n�x�=0

(6.9.4)

Solutions must be of the form

U3n�x�=e
�x/L� (6.9.5)

This gives

D

[
n2

a2
−
(



L

)2
]4

+ Eh

a2

(



L

)4

−�h�2

[
n2

a2
−
(



L

)2
]2

=0 (6.9.6)

This equation has the following roots: 
i=±�1, ±j�2, ±��3+j�4�,
±��3−j�4�. The general solution must be of the form

U3n�x� =A1sinh�1

x

L
+A2cos�1

x

L
+A3sin�2

x

L
+A4cos�2

x

L

+A5e
�3�x/L�cos�4

x

L
+A6e

�3�x/L�sin�4

x

L

+A7e
−�3�x/L�
3 cos�4

x

L
+A8e

�3�x/L�sin�4

x

L
(6.9.7)

We have to enforce four boundary conditions on each edge. However,
to enforce boundary conditions involving Nxx�Nx��ux, or u�� we have to
translate these conditions into a condition of the stress function �. This is
quite complicated and the advantage of a presumably simple theory is lost.
Let us therefore follow at first a simplification introduced by Yu (1955).
He argued that for shells and modes where

n2

a2
�
(



L

)2

(6.9.8)

we may simplify the characteristic equation to

D
(n
a

)8+ Eh

a2

(



L

)4

−�h�2
(n
a

)4=0 (6.9.9)

This gives


i=
nL

a
4

√
a2

Eh

[
�h�2−D

(n
a

)4]
(6.9.10)



Simplified Shell Equations 159

The roots are therefore 
i=±��±j�, where

�= nL

a
4

√
a2

Eh

∣∣∣∣�h�2−D
(n
a

)4∣∣∣∣ (6.9.11)

Thus the general solution for this case is

U3n�x�=A1sin�
x

L
+A2cos�

x

L
+A3sinh�

x

L
+A4cosh�

x

L
(6.9.12)

The admissible boundary conditions are

Mxx=M∗
xx or �x=�∗

x (6.9.13)

Vx3=V ∗
x3 or u3=u∗

3 (6.9.14)

Equation (6.9.12) is applied to the two appropriate boundary
conditions at each end. The determinant of the resulting 4×4 matrix
equations will give the roots �m. The natural frequencies are then obtained
from Eq. (6.9.11) as

�mn=
√

1

�h

[
Eha2

L4n4
�4
m+D

(n
a

)4]
(6.9.15)

Note that this equation is definitely not valid for n=0. It improves in
accuracy as n increases. Note also that the roots �m will be equal to the
roots of the analogous beam case since Eq. (6.9.12) is of the same form as
the general beam solution. This implies, of course, that the moment and
shear boundary conditions of Eqs. (6.9.13) and (6.9.14) are simplified to
be functions of U3n�x� only.

6.10. CIRCULAR DUCT CLAMPED AT BOTH ENDS

For a circular duct clamped at both ends, we do not use the analogy to
beams directly, but work with Eq. (6.9.12). The duct is shown in Fig. 4.
The boundary conditions are that at x=0,

�x = 0 (6.10.1)

u3 = 0 (6.10.2)

and at x=L,

�x = 0 (6.10.3)

u3 = 0 (6.10.4)
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FIG. 4 Clamped circular cylindrical shell.

This translates to
dU3n�0�

dx
=0 (6.10.5)

U3n�0�=0 (6.10.6)

dU3n

dx
�L�=0 (6.10.7)

U3n�L�=0 (6.10.8)

Substituting Eq. (6.9.12) in these conditions gives


� 0 � 0
0 1 0 1

�cos� −� sin� �cosh� sinh�
sin� cos� sinh� cosh�





A1

A2

A3

A4


=0 (6.10.9)

Setting the determinant of this equation to 0 gives

cos�cosh�−1=0 (6.10.10)

The roots of this equation are �1=4�730��2=7�853��3=10�996��4=
14�137, and so on.

Substituting the roots �m in Eq. (6.10.9) allows us to evaluate A2�A3,
and A4 in terms of A1. Utilizing Eqs. (6.9.12) and (6.9.3) gives

U3mn�x���=
[
H
(
cosh�m

x

L
−cos�m

x

L

)
−J
(
sinh�m

x

L
−sin�m

x

L

)]
cosn��−�� (6.10.11)

where

H = sinh�m−sin�m (6.10.12)

J = cosh�m−cos�m (6.10.13)

The solutions given here are best for pipes whose length is large
as compared to their diameter. But even for short and stubby pipes, the
solution agrees well with experimental evidence in the higher-n range
(Koval and Cranch, 1962). Natural frequencies are given by Eq. (6.9.15).
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6.11. VIBRATIONS OF A FREESTANDING
SMOKESTACK

Let us assume that a smokestack can be approximated as a clamped-free
cylindrical shell, as shown in Fig. 5. Initial stresses introduced by its own
weight are neglected. The boundary conditions are

�x�0�=0 (6.11.1)

u3�0�=0 (6.11.2)

Mxx�L�=0 (6.11.3)

V3x�L�=0 (6.11.4)

Let us now utilize the analogy to beams. From Flugge (1962), we find
that the characteristic equation is

cos�cosh�+1=0 (6.11.5)

The first few roots of this equation are �1=1�875, �2=4�694, �3=7�855,

FIG. 5 Slender circular cylindrical shell clamped at one end and free at the other.
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�4=10�996, and so on. The mode shape becomes

U3n��x�0� =
[
F
(
cosh�m

x

L
−cos�m

x

L

)
−G
(
sinh�m

x

L
−sin�m

x

L

)]
cosn��−�� (6.11.6)

where

F = sinh�m+sin�m (6.11.7)

G = cosh�m+cos�m (6.11.8)

6.12. SPECIAL CASES OF THE SIMPLY
SUPPORTED CLOSED SHELL
AND CURVED PANEL

Cases involving a simply supported closed shell and curved panel are
special because we do not need to submit to the approximation of
Eq. (6.9.8). It is possible to guess the solution to Eq. (6.9.4) directly. We
let the mode shapes be

U3mn�x���=sin
m�x

L
cosn��−�� (6.12.1)

for the simply supported circular cylindrical shell shown in Fig. 6. Upon
substitution in Eq. (6.9.4), we obtain

D

[(n
a

)2+(m�

L

)2]4+ Eh

a2

(m�

L

)4−�h�2

[(n
a

)2+(m�

L

)2]2=0

(6.12.2)

We may solve this equation directly for the natural frequencies.
Writing �mn instead of � to indicate the dependency on m and n, we get

�mn=
1

a

√
�m�a/L�4

��m�a/L�2+n2�2
+ �h/a�2

12�1−
2�
��
m�a

L
�2+n2�2

√
E

�

(6.12.3)

FIG. 6 Simply supported circular cylindrical shell.
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FIG. 7 Simply supported, circular cylindrical shell panel.

Let us now treat a cylindrical panel as shown in Fig. 7. It is simply
supported on all four sides and could represent an engine cover, airplane
door, and so on. The boundary conditions are simple support on all four
edges. We guess the mode shape to be

U3mn�x���=sin
m�x

L
sin

n��

�
(6.12.4)

It satisfies all boundary conditions. Substituting it in Eq. (6.9.4) gives

�mn = 1

a

√
�m�a/L�4

��m�a/L�2+�n�/��2�2
+ �h/a�2

12�1−
2�

[(m�a

L

)2+(n�
�

)2]2

×
√
E

�
(6.12.5)

These two cases illustrate well the influence of the bending and
membrane stiffness. The first term under the square root of Eqs. (6.12.3)
and (6.12.5) is due to membrane stiffness and reduces to 0 as n increases.
The second term is due to the bending stiffness and increases in relative
importance as n increases (Soedel, 1971).

6.13. BARREL-SHAPED SHELL

A barrel shape is a very common form, found in shells that seal hermetic
refrigeration compressors, pump housings, and so on. It is sketched in
Fig. 8. If the curvature is not too pronounced, we may use cylindrical
coordinates as an approximation:

�ds�2��dx�2+a2�d��2 (6.13.1)

This gives A1=1�A2=a��1=x� and �2=�� Also, we get R1=R and R2�a.
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FIG. 8 Barrel shell.

Thus we have

� 2�·�= 1

a2

�2�·�
��2

+ �2�·�
�x2

(6.13.2)

� 2
k �·�=

1

a

�2�·�
�x2

+ 1

Ra2

�2�·�
��2

(6.13.3)

Boundary conditions are similar to those for cylindrical shells.
For the special case of simple supports on both ends of the barrel

shell, we find that the mode function

U3�x���=Asin
m�x

L
cosn��−�� (6.13.4)

satisfies the boundary condition and Eq. (6.8.9). We obtain

�2
Bmn=�2

Cmn+
n2�n2�a/R�2+2�a/R��m�a/L�2�

a2��m�a/L�2+n2�2
E

�
(6.13.5)

where �Cmn is the natural frequency of the cylindrical shell of radius a given
by Eq. (6.12.3) and �Bmn is the natural frequency of the barrel shell. Note
that a negative value of R has a stiffening effect only if

n2
( a
R

)2
>2

a

�R�
(m�a

L

)2
(6.13.6)

where �R� denote the magnitude of the radius of curvature in the x
direction. Otherwise, a negative value of R will reduce the natural
frequency. Barrel shells of negative R occur, for instance, as cooling towers
and appear as shown in (Fig. 9).
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FIG. 9 Hourglass shell which is a barrel shell with negative axial curvature.

6.14. SPHERICAL CAP

If a spherical shell is shallow, it can be interpreted as a circular plate panel
with spherical curvature. This allows us to formulate as an approximate
fundamental form (Fig. 10)

�ds�2��dr�2+r2�d��2 (6.14.1)

FIG. 10 Shallow spherical cap.
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which gives A1=1�A2=r��1=r� and �2=�. Furthermore, R1=R2=R.
This gives

� 2�·�= 1

r

�

�r

(
r
��·�
�r

)
+ 1

r

�

��

(
1

r

��·�
��

)
(6.14.2)

and

� 2
k �·�=

1

R
� 2�·� (6.14.3)

Substituting this into Eq. (6.8.9) gives

� 4

[
D� 4+

(
Eh

R2
−�h�2

)]
U3=0 (6.14.4)

Solutions of

� 4U3=0 (6.14.5)

and

D� 4U3+
(
Eh

R2
−�h�2

)
U3=0 (6.14.6)

are solutions to the problem posed. The first equation has little physical
significance. The second equation is recognized as being similar to the
equation for the circular plate. The solution must be of the form of the
circular plate solution,

U3= �AJn�
r�+BKn�
r�+CYn�
r�+DIn�
r��cosn��−�� (6.14.7)

where


4= 1

D

(
�h�2− Eh

R2

)
(6.14.8)

The possible boundary conditions are identical to that of a flat plate.
Therefore, all circular plate solutions apply to the spherical cap as long as
the boundary conditions are the same. Therefore,

�2
smn=�2

pmn+
E

�R2
(6.14.9)

where �pmn is the natural frequency of the circular plate and �smn is the
natural frequency of the spherical cap. It has been shown in Soedel (1973)
that this formula also applies to spherical caps of any shape of boundary,
not only to the circular shape. Any boundary is permissible: triangular,
square, and so on. �pwn is the natural frequency of a plate of the same
boundary shape and conditions.
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6.15. INEXTENSIONAL APPROXIMATION: RING

The inextensional approximation is related to the bending approximation
in that we again argue that the extension of the reference surface is
negligible:

	0
11=	0

22=	0
12=0 (6.15.1)

However, since a consequence of this, namely that membrane force
resultants vanish, is in most cases inadmissible, we try to eliminate the
membrane force resultants from the equations of motion before applying
Eq. (6.15.1). This is best illustrated by way of a ring. From 	0

��=0, we
obtain

�u�

��
=−u3 (6.15.2)

utilizing Eq. (4.1.9) with s=a�� Since a consequential application would
mean that N��=0, which, as mentioned earlier, cannot be tolerated, we
start with the ring equations in force and moment resultant form in order
to eliminate N��� From Eqs. (4.1.6)–(4.1.8)

1

a

�N��

��
+ 1

a2

�M��

��
−�A

�2u�

�t2
=−q′

� (6.15.3)

1

a2

�2M��

��2
−N��

a
−�A

�2u3

�t2
=−q′

3 (6.15.4)

where q′
3 and q′

� are forces per unit length (N/m). From Eq. (6.15.4),

N��=
1

a

�2M��

��2
−�Aa

�2u3

�t2
+q′

3a (6.15.5)

Substituting this expression into Eq. (6.15.3) gives

1

a2

�3M��

��3
+ 1

a2

�M��

��
−�A

�2u�

�t2
−�A

�3u3

���t2
=−q′

�−
�q′

3

��
(6.15.6)

Now the inextensional assumptions may be applied. From Eq. (4.1.17),

M��=
EI

a2

(
�u�

��
− �2u3

��2

)
=−EI

a2

(
u3+

�2u3

��2

)
(6.15.7)

Substituting this into Eq. (6.15.6) gives �p= I/�Aa2���2
0=E/��a2��

�6u3

��6
+2

�4u3

��4
+ �2u3

��2
+ 1

p�2
0

�4u3

��2�t2
− 1

p�2
0

�2u3

�t2
= a4

EI

�

��

(
q′
�+

�q′
3

��

)
(6.15.8)

This is the governing equation of motion for the ring. To obtain the natural
frequencies, one substitutes in the homogeneous equation

u3���t�=U3���e
j�t (6.15.9)
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which results in
d6U3

d�6
+2

d4U3

d�4
+ d2U3

d�2

(
1− �2

p�2
0

)
+ �2

p�2
0

U3=0 (6.15.10)

This equation may be solved in a general way. Selecting as an example the
closed ring,

U3���=Ancos�n�−�� (6.15.11)

is substituted, giving

−n6+2n4−n2+�2�n2+1�
1

p�2
0

=0 (6.15.12)

Solving for � gives the natural frequency for the nth mode, �n:

�2
n=

n2�n2−1�2

n2+1
p�2

0 (6.15.13)

This solution was first obtained by Love (1927). It is a good approximation
for natural modes where the transverse motion is dominant. It does not
give hoop modes since the elasticity in circumferential direction was
removed by the inextensional assumption.

6.16. Toroidal Shell

To apply the Donnell–Mushtari–Vlasov equations to the toroidal shell
means pushing the boundary of what is permissible, since the toroidal shell
is not a developable shell. Still, something can be learned from it.

If the toroidal shell of Fig. 5 of Chapter 3 is such that a/R�1� we
may simplify the fundamental form of Eq. (3.5.1) to

�ds�2=R2�d��2+a2�d��2 (6.16.1)

This gives A1=A�=R and A2=A�=a for �1=� and �2=�� The radii of
curvature are R2=R�=a, and the curvature 1/R1=1/R� can be averaged
utilizing Eq. (3.5.3):(

1

R1

)
av

=
(

1

R�

)
av

= 1

2�

2�∫
�=0

1

R1

d�= 1

2�

2�∫
�=0

sin�

R+asin�
d�

� 1

2�

2�∫
�=0

sin�

R
d� (6.16.2)

because of our assumption that R�asin� The integral gives(
1

R1

)
av

=0 (6.16.3)
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Equation (6.16.3) is a severe approximation but not entirely without logic.
Equation (6.16.3) becomes

� 2
k �·�=

1

aR2

�2�·�
��2

(6.16.4)

and Eq. (6.5.8) becomes

� 2�·�= 1

a2

�2

��2
+ 1

R2

�2�·�
��2

(6.16.5)

and thus,

� 4
k �·�=

1

a2R4

�4�·�
��4

(6.16.6)

� 4�·�= 1

a4

�4�·�
��4

+ 1

R4

�4�·�
��4

+ 2

a2R2

�4�·�
��2��2

(6.16.7)

Substituting this into Eq. (6.8.9) gives

D

(
1

a4

�4

��4
+ 1

R4

�4

��4
+ 2

a2R2

�4

��2��2

)

×
(

1

a4

�4U3

��4
+ 1

R4

�4U3

��4
+ 2

a2R2

�4U3

��2��2

)
+ Eh

a2R4

�4U3

��4

−�h�2

(
1

a4

�4U3

��4
+ 1

R4

�4U3

��4
+ 2

a2R2

�4U3

��2��2

)
=0 (6.16.8)

For the closed toroidal shell, we find by inspection a solution which
satisfies Eq. (6.16.8) and the continuity conditions, namely:

U3�����=cosn�cosm��−�� (6.16.9)

where � is an arbitrary phase angle that takes care of the non-preferential
direction of the mode in � direction. Because of the severe simplification,
there is no apparent preferential direction in the � direction either since
sinn� is also a solution. (This is not quite true if a more precise analysis
of a torodial shell is performed.) This means that if this simplified solution
is to be used in a forced vibration analysis, we have to remember that we
have to account for four modes of the type

U3�����=cosn��−��cosm��−�� (6.16.10)

where for both � and � two values leading to orthogonal modes have to be
picked, usually �=0 and �= �

2m , and we have to pick also �=0 and �= �
2n

(see the discussions in Chapter 8).
Substituting Eq. (6.16.9) or Eq. (6.16.10) into Eq. (6.16.8) gives

D

[(n
a

)2+(m
R

)2]4+ Eh

a2

(m
R

)4−�h�2

[(n
a

)2+(m
R

)2]2=0 (6.16.11)
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or

�mn=
1

a

√√√√√
(
ma
R

)4
[
n2+(ma

R

)2]2 +
(
h
a

)2
12�1−
2�

[
n2+
(ma

R

)2]2√E

�
(6.16.12)

Equation (6.16.12) looks similar to Eq. (6.12.3). If we substitute
L=2�R in Eq. (6.12.3) we obtain Eq. (6.16.12). The reason is that
assumptions (6.16.1) and (6.16.3) amount to assuming that we can think of
the toroidal shell as being a circular cylindrical shell (tube) that is bent into
a ring. This model, of course, makes only sense if the radius of the tube,
a� is significantly less than the radius R of the ring formed by the tube.

This means that this chapter is only applicable to toroidal shells that
have the approximate proportions of an inner tube for a bicycle tire. The
results of this chapter should not be used unless a/R�1!

Still, the model is valuable in a general sense because it illustrates
at least approximately the parameters that are important to the natural
frequencies at a toroidal shell. It even illustrates that we have to expect,
for a general, closed toroidal shell, four sets of natural modes that are
either identical (the natural frequencies for �=0 and �= �

2m are identical),
or relatively close pairs (in our simplified example, the natural frequencies
for �=0 and 
= �

2n are the same, but in a “real” toroidal shell they are
different, with the mode component shapes in the � direction deviating
from cosn� and sinn� but maintaining the same approximate character).

6.17. THE BARREL-SHAPED SHELL USING
MODIFIED LOVE EQUATIONS

An argument can be made in many applications that it is desirable to
raise the minimum natural frequency of a circular cylindrical shell above a
certain critical value which is to be avoided for one reason or the other.

The solution of a circular, cylindrical shell case in Sec. 5.5 shows
that thickness changes will raise the natural frequencies of the i=1 set
(dominant transverse mode components) for n values well to the right of
the minimum natural frequency where bending strain effects dominate, but
will not change the natural frequencies for modes appreciably where the
membrane strain effects are dominant, namely to the left of the minimum
natural frequency. In other words, natural frequencies are proportional to
shell thickness changes for high n values as in plates, but are virtually
unaffected by a thickness change for low n values. The minimum natural
frequency is, approximately, only proportional to the square root of the
ratio of the increased thickness to the original thickness. Even doubling the
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thickness will raise the minimum natural frequency of the i=1�m=1 curve
only by about 40%. See also Secs. 19.6 and 19.7.

A more effective way, if feasible from a design viewpoint, is to avoid
pure cylindrical shells but to introduce at least a slight curvature in the
direction of the cylinder axis. A circular cylindrical shell, if feasible, should
take on the shape of a barrel. This will lift the minimum natural frequencies
more effectively than a thickness change, without an appreciable increase
in weight.

While the beneficial influence of barreling was already shown by the
results of Sec. 6.13, it is here investigated again using a more complete
equation set. This case is used to illustrate that one can, with judicious
assumptions, generate from case to case approximate Love equations
which are tailor-made for only one set of problems. Also, the more
complete analysis will demonstrate that the higher natural frequency
branches of the i=1 and 2 type are virtually unaffected by barreling. This
time, we do not start with the Donnell–Mushtari–Vlasov simplifications as
in Secs. 6.7–6.16, but utilize Love’s equations (2.7.20)–(2.7.24). The only
assumption will be the one of Eq. (6.13.1).

Therefore, selecting an approximate base cylinder for the coordinate
system, as shown in Fig. 8, with �1=x��2=��A1=1�A2=a�R1=R and
R2=a, Love’s equations (2.7.20)–(2.7.24) become

�Nxx

�x
+ 1

a

�N�x

��
+Qx3

R
−�hüx=0 (6.17.1)

�Nx�

�x
+ 1

a

�N��

��
+Q�3

a
−�hü�=0 (6.17.2)

�Qx3

�x
+ 1

a

�Q�3

��
−N��

a
−Nxx

R
−�hü3=0 (6.17.3)

and

Qx3 =
�Mxx

�x
+ 1

a

�M�x

��
(6.17.4)

Q�3 =
�Mx�

�x
+ 1

a

�M��

��
(6.17.5)

The only difference between Love’s equations for the true circular
cylindrical shell and these equations is that the third term in Eq. (6.17.1)
and the fourth term in Eq. (6.17.3) are now present.

The strain–displacement relationships are

	0
xx =

�ux

�x
+ u3

R
(6.17.6)

	0
�� =

1

a

�u�

��
+ u3

a
(6.17.7)
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	0
x� =

�u�

�x
+ 1

a

�ux

��
(6.17.8)

kxx =
��x

�x
(6.17.9)

k�� =
1

a

���

��
(6.17.10)

kx� =
���

�x
+ 1

a

��x

��
(6.17.11)

where

�x = −�u3

�x
+ ux

R
(6.17.12)

�� = −1

a

�u3

��
+ u�

a
(6.17.13)

The only difference between the equations for the true circular
cylindrical shell and these equations is that Eqs. (6.17.6) and (6.17.12) are
different. Equations (6.17.1)–(6.17.13) are satisfied by solutions (5.5.42)–
(5.5.44) and if the same simply supported boundary conditions of the
circular cylindrical shell example of Sec. 5.5 are considered, they also
satisfy Eqs. (5.5.1)–(5.5.8), having separated time:

Ux�x��� = Acos
m�x

L
cosn��−�� (6.17.14)

U��x��� = Bsin
m�x

L
sinn��−�� (6.17.15)

U3�x��� = C sin
m�x

L
cosn��−�� (6.17.16)

Proceeding as in Sec. 5.5, we obtain again the matrix equation
�h�2−k11 k12 k13

k21 �h�2−k22 k23
k31 k32 �h�2−k33





A
B
C


=0 (6.17.17)

except that the kij terms contain now terms involving the radius R

k11 = K

[(m�

L

)2+ 1−


2

(n
a

)2]+(n
a

)2 D�1−
�

2R2
(6.17.18)

k12 =
(n
a

)(m�

L

)[K�1+
�

2
+D�1−
�

2aR

]
(6.17.19)

k13 =
(m�

L

)[
K

(
1

R
+


a

)
+
(n
a

)2 D�1−
�

R

]
(6.17.20)
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FIG. 11 The stiffening effect of introducing axial curvature in a circular cylindrical
shell (dashed lines define the circular cylindrical shell natural frequencies, solid lines
define the natural frequencies after axial curvature has been introduced).

k21 =
(m�

L

)(n
a

)(1+


2

)[
K+ D

aR

]
(6.17.21)

k22 =
(
K+ D

a2

)[(
1−


2

)(m�

L

)2+(n
a

)2]
(6.17.22)

k23 = −n

a

(
K

a
+K


R

)
−
(n
a

)(D
a

)[(m�

L

)2+(n
a

)2]
(6.17.23)

k31 =
(m�

L

){K

a

+K

R
+D

R

[(m�

L

)2+(n
a

)2]}
(6.17.24)

k32 =
(n
a

){K

R

−K

a
−
(
D

a

)[(m�

L

)2+(n
a

)2]}
(6.17.25)

k33 = K

(
1

a2
− 1

R2

)
+D

[(m�

L

)2+(n
a

)2]2
(6.17.26)
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The resulting frequency equation is that of Eq. (5.5.73), and
all subsequent Eqs. (5.5.74)–(5.5.87) apply, with the kij values of
Eqs. (6.17.18)–(6.17.26), of course.

The same example as in Sec. 5.5, but with a radius R=500mm,
is illustrated in Fig. 11. The effectiveness of the barreling of raising the
minimum values of the natural frequency curves for the set i=1 are
demonstrated. The solid lines represent the barreled shell, the dashed lines
duplicate the original cylindrical shell results of Fig. 5.5.2 As one would
expect, the barreling does not appreciably affect the i=1 and i=2 branches
of the natural frequency curves.

6.18. DOUBLY CURVED RECTANGULAR PLATE

A simply supported rectangular plate is slightly curved in order to increase
its natural frequencies over what they would have been for a flat plate.
This was investigated in Sec. 6.14 for a circular plate having spherical,
constant curvature, and generalized to all plates having spherical curvature
in Eq. (6.14.9).

Here, the plate has a constant radius of curvature Rx in the x
direction, and a constant radius of curvature Ry in the y direction,
see Fig. 12. Similar to before, we select as coordinate system the x�y
coordinates of the flat base plate, assuming that the fundamental form is
approximately

�ds�2��dx�2+�dy�2 (6.18.1)

Therefore, for �1=x and �2=y, we obtain A1=1 and A2=1, and R1=
Rx= constant and R2=Ry= constant. Using the Donnell–Mushtari–Vlasor
simplification, we obtain

� 2�·�= �2�·�
�x2

+ �2�·�
�y2

(6.18.2)

and from Eq. (6.7.11),

� 2
k �·�=

1

Ry

�2�·�
�x2

+ 1

Rx

�2�·�
�y2

(6.18.3)

Substituting this into Eq. (6.8.9),

D� 8U3+Eh� 4
k U3−�h�2� 4U3=0 (6.18.4)

allows us to obtain the natural frequencies and modes. Note that a general
formula for the natural frequencies that is valid for all boundary conditions,
as obtained in Eq. (6.14.9) for all spherically curved plates, is not possible.
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FIG. 12 Doubly curved rectangular plate.

For example, let us analyze the doubly curved, simply supported
rectangular plate. By inspection, the boundary conditions (taken to be
approximately the same as for the equivalent flat plate) and Eq. (6.18.4)
are satisfied by

U3=Amnsin
m�x

a
sin

n�y

b
(6.18.5)

Substituting this into Eq. (6.18.4) gives

D

[(m�

a

)2+(n�
b

)2]4+Eh

[
1

Ry

(m�

a

)2]+ 1

Rx

(n�
b

)2]2

−�h�2

[(m�

a

)2+(n�
b

)2]2=0 (6.18.6)

or, solving for the square of the natural frequencies �2
mnc of the curved

plate,

�2
mnc=�2

mnf +
[

1
Ry

(
m�
a

)2+ 1
Rx

(
n�
b

)2]2
[(

m�
a

)2+( n�
b

)2]2
(
E

�

)
(6.18.7)
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where �mnf is the equivalent frequency for the flat plate, given by
Eq. (5.4.71), namely

�mnf =�2

[(m
a

)2+(n
b

)2]√ D

�h
(6.18.8)

Note that if we make the radii of curvature equal, Rx=Ry=R, we recover
the case of the spherically curved rectangular plate since Eq. (6.18.7)
reduces to Eq. (6.14.9), namely

�2
mnc=�2

mnf +
E

�R2
(6.18.9)

It must be noted that we have obtained an approximate solution to the
Donnell–Mushtari–Vlasov equations which are themselves approximate
equations. Therefore, while the results can be used with great benefit to
establish trends when parameters are to be changed, solutions to the full
theory have to be obtained if results are required that have to be relatively
exact.

Equation (6.18.7) is, however, an improvement over Eq. (6.5.7) which
was based on a simplification that is not recommended.

If we set Rx=�, we obtain an approximate version of the solution for
the simply supported, cylindrical panel treated in Sec. 6.12, Eq. (6.12.5).
This approximate version is

�2
mnc=�2

mnf +
E

�R2
y

(
m�
a

)4
[(

m�
a

)2+( n�
b

)2]2 (6.18.10)

and is only valid for a very shallow, simply supported cylindrical panel
while Eq. (6.12.5) is valid also for deep cylindrical panels that are simply
supported cylindrical shells.
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7

Approximate Solution
Techniques

Compared to the large number of possible shell configurations, very few
exact solutions of plate and shell eigenvalue problems are possible. A
representative sample was presented in earlier chapters. Included in this
sample were exact solutions to the simplified equations of motion. The
exact solutions are very valuable because they are the measure with which
the accuracy of the approximation approaches is evaluated. They also allow
an accurate and usually elegant and conclusive investigation of the various
fundamental phenomena in shell vibrations. However, it is important for
engineering applications to have approaches available that give numerical
solutions for cases that cannot be solved exactly. To discuss these cases is
the purpose of this chapter.

The approximate approaches divide roughly into two categories.
In the first category, a minimization of energy approach is used. The
variational integral method, the Galerkin method, and the Rayleigh–Ritz
method are of this type. They are discussed in this chapter. In the second
category we find the finite difference and the finite element method. They
are outlined in a later chapter.

178
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7.1. APPROXIMATE SOLUTIONS BY WAY
OF THE VARIATIONAL INTEGRAL

Let us start with Eq. (2.7.19). For q1=q2=q3=0 and

ui��1��2�t�=Ui��1��2�e
j�t (7.1.1)

it becomes, with time now removed from consideration and all boundary
conditions assumed to be satisfied,∫

�1

∫
�2

��L1�U1�U2�U3�+	h�2U1
�U1+�L2�U1�U2�U3�+	h�2U2
�U2

+�L3�U1�U2�U3�+	h�2U3
�U3�A1A2 d�1d�2=0 (7.1.2)

or, in short,∫
�1

∫
�2

3∑
i=1

�Li�U1�U2�U3�+	h�2Ui
�UiA1A2 d�1d�2=0 (7.1.3)

where i=1�2�3 and where

L1�U1�U2�U3�=
1

A1A2

[
��N11A2�

��1

+ ��N21A1�

��2

+N12

�A1

��2

−N22

�A2

��1

]
+Q13

R1

(7.1.4)

L2�U1�U2�U3�=
1

A1A2

[
��N12A2�

��1

+ ��N22A1�

��2

+N21

�A2

��1

−N11

�A1

��2

]
+Q23

R2

(7.1.5)

L3�U1�U2�U3�=
1

A1A2

[
��Q13A2�

��1

+ ��Q23A1�

��2

]
−
(
N11

R1

+N22

R2

)
(7.1.6)

We now assume functions fij��1��2� that satisfy the boundary
conditions and can represent a reasonable-looking mode shape. There may
be one function �j=1� or many �j=1�2�


�n�. In general,

U1 = a11f11+a12f12+··· (7.1.7)

U2 = a21f21+a22f22+··· (7.1.8)

U3 = a31f31+a32f32+··· (7.1.9)

or, in short,

Ui=
n∑

j=1

aijfij (7.1.10)
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and also

�Ui=
n∑

j=1

fij�aij (7.1.11)

Note that the aij are coefficients that have to be determined.
Upon the substitution, the integral becomes∫
a1

∫
a2

3∑
i=1

[
Li

{
n∑

j=1

a1jf1j �
n∑

j=1

a2jf2j �
n∑

j=1

a3jf3j

}
+	h�2

n∑
j=1

aijfij

]

×
n∑

j=1

fij�aijA1A2 d�1d�2=0 (7.1.12)

where i=1�2�3 and j=1�2�


�n. Next, we collect coefficients of �aij . Since
each �aij is independent and arbitrary, the equation can only be satisfied if
each coefficient is equal to zero.∫

a1

∫
a2

[
Li

{
n∑

j=1

a1jf1j �
n∑

j=1

a2jf2j �
n∑

j=1

a3jf3j

}

+	h�2
n∑

j=1

aijfij

]
fijA1A2d�1d�2=0 (7.1.13)

where i=1�2�3 and j=1�2�


�n. The approach is now to carry out the
integration and to bring the result into the form

�A
�aij�=0 (7.1.14)

where

�aij
= �a11�a12�


�a1n�a21�a22�


�a2n�a31�a32�


�a3n
 (7.1.15)

Setting the determinant of A equal to zero,

�A�=0 (7.1.16)

gives a characteristic equation for �2. There will be 3n roots. These are
the natural frequencies. Resubstituting a natural frequency into the matrix
equation allows us to solve for 3n−1 values of aij in terms of one arbitrary
aij . This establishes the mode shape that is associated with this natural
frequency. This method works well, provided that the assumed functions
are of sufficient variety to give good mode approximations. If n=1 only,
the mode shape is fixed by the assumption.

It can be shown that natural frequencies will always be of larger
value than obtained from exact solutions, provided that the mode functions
satisfy all boundary conditions. This is not necessarily true if moment
and shear conditions are not satisfied, which is a common approach.
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The rule of thumb is that the primary boundary conditions, the deflection
and slope conditions, should always be satisfied, but that is possible to
ignore the secondary boundary conditions, the shear and moment conditions,
provided that one is interested only in natural frequency predictions. If
stress calculations are the objective, ignoring moment and shear boundary
conditions may not be permissible, depending on the circumstances and
the accuracy requirement.

7.2. USE OF BEAM FUNCTIONS

A common selection of functions for rectangular plates and cylindrical
and conical shells are beam mode shapes, also called beam functions. The
boundary conditions of the beam and the shell have to be of the same
type. The argument is that, for example, the behavior of an axial strip of
cylindrical shell should be similar to that of a beam of the same type of
boundary conditions.

Since the beam function has the higher mode shapes already built in,
it is often sufficient to use n=1. The matrix�A
 is then a 3×3 matrix only.
The characteristics equation is a cubic equation in �2. The advantage of
using orthogonal beam functions is that the shell or plate mode shapes are
orthogonal also.

For plates, the variational integral uncouples into one integral for
transverse deflections,

∫
�1

∫
�2

[
L3

{
n∑

j=1

a3jf3j

}
+	h�2

n∑
j=1

a3jf3j

]
f3jA1A2d�1d�2=0 (7.2.1)

where

L3�·�=−D� 4�·� (7.2.2)

and two integrals that govern in-plane deflections:

∫
�1

∫
�2

[
Li

{
n∑

j=1

a1jf1j �
n∑

j=1

a2jf2j

}
+	h�2

n∑
j=1

aijfij

]
fijA1A2d�1d�2=0

(7.2.3)

where i=1�2.
Let us now examine further the integral for transverse motion. If

n=1, we get∫
�1

∫
�2

�L3�a31f31�f31+	h�2a31f
2
31
A1A2d�1d�2=0 (7.2.4)



182 Chapter 7

FIG. 1 Rectangular plate.

or

�2=− 1

	h

∫
�1

∫
�2
L3�f31�f31A1A2d�1d�2∫

�1

∫
�2
f 2
31A1A2d�1d�2

(7.2.5)

For the case of a rectangular plate as sketched in Fig. 1, this becomes

�2= D

	h

∫ a

0

∫ b

0 ��
4f31/�x

4+2�4f31/�x
2�y2+�4f31/�y

4�f31dxdy∫ a

0

∫ b

0 f
2
31dxdy

(7.2.6)

Furthermore, if we use beam functions,

f31�x�y�=��x���y� (7.2.7)

where ��x� is the beam function in the x direction and ��y� is the beam
function in the y direction. Thus Eq. (7.2.6) becomes

�2 = �D/	h�∫ a

0 �
2dx
∫ b

0 �
2dy

[∫ a

0
���4�/�x4�dx

∫ b

0
�2dy+

∫ a

0
�2dx

×
∫ b

0
���4�/�y4�dy+2

∫ a

0
���2�/�x2�dx

∫ b

0
���2�/�y2�dy

]
(7.2.8)

For beam functions in general,

�4�

�x4
= �4

m� (7.2.9)

�4�

�y4
= �4

n� (7.2.10)

where � was defined when the beam solution was discussed in Sec. 5.2.
After substitution we obtain

�2= D

	h

[
�4
m+�4

n+2

∫ a

0 ���
2�/�x2�dx

∫ b

0 ���
2�/�y2�dy∫ a

0 �
2dx
∫ b

0 �
2dy

]
(7.2.11)
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Let us, for instance, obtain the natural frequencies of a rectangular
plate clamped on all four edges. From Sec. 5.2 the mode shape of a
clamped–clamped beam is

��x�=C��mx�−
C��ma�

D��ma�
D��mx� (7.2.12)

where

C��mx� = cosh�mx−cos�mx (7.2.13)

D��mx� = sinh�mx−sin�mx (7.2.14)

and where �1a=4
73��2a=7
85��3a=11
00��4a=14
14, and so on. Also,

��y�=C��ny�−
C��nb�

D��nb�
D��ny� (7.2.15)

where

C��ny� = cosh�ny−cos�ny (7.2.16)

D��ny� = sinh�ny−sin�ny (7.2.17)

and where �1b=4
73��2b=7
85��3b=11
00��4b=14
14, and so on.
The function f31�x�y� now satisfies all boundary conditions for the

clamped–clamped plate:

u3�0�y�t�=u3�a�y�t�=u3�x�0�t�=u3�x�b�t�=0 (7.2.18)

�u3

�x
�0�y�t�= �u3

�x
�a�y�t�= �u3

�y
�x�0�t�= �u3

�y
�x�b�t�=0 (7.2.19)

The results of Eq. (7.2.11) are provided in Table 1 in terms of �a2
√
	h/D

values.

TABLE 1 Natural Frequencies for Clamped Square Plate

m

n 1 2 3

1 36
1 73
7 132
0
2 73
7 108
9 165
8
3 132
0 165
8 221
4
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7.3. GALERKIN’S METHOD APPLIED
TO SHELL EQUATIONS

Restarting the result of Eq. (7.1.13) in terms of a Galerkin algorithm, we
assume as solutions

U1 =
n∑

j=1

a1jf1j (7.3.1)

U2 =
n∑

j=1

a2jf2j (7.3.2)

U3 =
n∑

j=1

a3jf3j (7.3.3)

where the fij functions satisfy at least the geometric boundary conditions,
and substitute this into the equations of motion,

L1�U1�U2�U3�+	h�2U1=0 (7.3.4)

L2�U1�U2�U3�+	h�2U2=0 (7.3.5)

L3�U1�U2�U3�+	h�2U3=0 (7.3.6)

Then we multiply the first equation by U1, the second by U2, and the
third by U3, where the Ui serve as weighting functions, and integrate the
equations over the domain, to arrive at∫

�1

∫
�2

�L1�U1�U2�U3�+	h�2U1
U1A1A2d�1d�2=0 (7.3.7)

∫
�1

∫
�2

�L2�U1�U2�U3�+	h�2U2
U2A1A2d�1d�2=0 (7.3.8)

∫
�1

∫
�2

�L3�U1�U2�U3�+	h�2U3
U3A1A2d�1d�2=0 (7.3.9)

Performing the integration, we obtain a matrix equation

�A
�aij�=0� i=1�2�3� j=1�2�


�n (7.3.10)

The roots of its determinant will furnish the natural frequencies, which in
turn, after resubstitution into the matrix equation, will allow determination
of all the aij but one.

It is useful to consider the special case where we approximate the
solution by three functions only:

U1 = a11f11 (7.3.11)

U2 = a21f21 (7.3.12)

U3 = a31f31 (7.3.13)
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Since all linear equations can be divided such that

L1�U1�U2�U3� = L11�U1�+L12�U2�+L13�U3� (7.3.14)

L2�U1�U2�U3� = L21�U1�+L22�U2�+L23�U3� (7.3.15)

L3�U1�U2�U3� = L31�U1�+L32�U2�+L33�U3� (7.3.16)

we obtain the matrix equation
	h�2+k11 k12 k13

k21 	h�2+k22 k23
k31 k32 	h�2+k33





a11

a21

a31


=0 (7.3.17)

where

k11 =
∫
�1

∫
�2
L11�U1�f11A1A2d�1d�2∫

�1

∫
�2
f 2
11A1A2d�1d�2

(7.3.18)

k12 =
∫
�1

∫
�2
L12�U2�f11A1A2d�1d�2∫

�1

∫
�2
f 2
11A1A2d�1d�2

(7.3.19)






or, in general,

krs=
∫
�1

∫
�2
Lrs�Ur�fr1A1A2d�1d�2∫

�1

∫
�2
f 2
r1A1A2d�1d�2

(7.3.20)

The determinant becomes

�6+a1�
4+a2�

2+a3=0 (7.3.21)

where

a1 =
1

	h
�k11+k22+k33� (7.3.22)

a2 =
1

�	h�2
�k11k22+k11k33+k22k33−k223−k212−k213� (7.3.23)

a3 = − 1

�	h�3
�k11k

2
23−k11k22k33+k22k

2
13+k33k

2
12−2k12k23k13�

(7.3.24)

Thus we obtain three natural frequencies that correspond, if f11, f21, and
f31 were selected properly, to the three frequency branch values.
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For example, if we would perform the required integrations using the
exact solution for the simply supported shell of Sec. 5.5, so that a11=A,
a21=B, a31=C and

f11=cos
m�x

L
cosn��−�� (7.3.25)

f21=sin
m�x

L
sinn��−�� (7.3.26)

f31=sin
m�x

L
cosn��−�� (7.3.27)

the results of Sec. 5.5, would be obtained. For other boundary conditions,
a good approximation for a cylindrical shell closed in the � direction would
be

f11=��x�cosn��−�� (7.3.28)

f12=��x�sinn��−�� (7.3.29)

f31=��x�cosn��−�� (7.3.30)

where ��x� is the mode shape of a transversely vibrating beam of the
same boundary conditions and ��x� is the mode shape of a longitudinally
vibrating rod of the same boundary conditions. The function ��x� has to
be chosen on the basis of the boundary conditions in the � direction. This
will not satisfy all terms of the real boundary conditions but will still give
reasonable approximations.

In conclusion, Galerkin’s method is an algorithmic statement of
the variational approach, as summarized for shells in Eq. (7.1.13). The
algorithm is that the functions fij that satisfy the boundary conditions are
substituted into the equations of motion and the resulting expressions are
multiplied by their respective fij as weighing functions. Finally, the product
is integrated over the domain. This is exactly what Eq. (7.1.13) does. The
Galerkin approach has become a general algorithm for solving a variety of
equations and problems and its variational birthmark has disappeared.

7.3.1. Galerkin’s Method Applied to
Donnell–Mushtari–Vlasov Equation

Let us solve an example of the Donnell–Mushtari–Vlasov equation for
closed circular cylindrical shells directly (Soedel, 1980) without the Yu
simplification. In this case we need to consider only the transverse
deflections. The Galerkin algorithm demands that we assume a function
U3m�x� that satisfies the boundary conditions, multiply the equation with
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the same function as a weighing function, and integrate over the shell
length. Starting with Eq. (6.9.4), this gives∫ L

0

[
D

(
n2

a2
− d2

dx2

)4

U3m�x�+
Eh

a2

d4

dx4
U3m�x�

− 	h�2

(
n2

a2
− d2

dx2

)2

U3m�x�

]
U3m�x�dx=0 (7.3.31)

Making use of the fact that for beam functions

d4

dx4
U3m�x�=�4

mU3m�x� (7.3.32)

where �m are the roots of the beam eigenvalue problem, we get

�2
mn=

�Eh/a2��4
m+D��n/a�8−4�n/a�6Rm+6�n/a�4�4

m

−4�n/a�2�4
mRm+�8

m


	h��n/a�4−2�n/a�2Rm+�4
m


(7.3.33)

where

Rm=
∫ L

0 �d
2U3m/dx

2�U3mdx∫ L

0 U 2
3mdx

(7.3.34)

This result can now be applied to various boundary conditions. However,
a further simplification is often possible. Since

U3m=U3m��mx� (7.3.35)

we get

Rm=�2
m

∫ L

0 �d
2U3m/d��mx�

2
U3mdx∫ L

0 U 2
3mdx

(7.3.36)

The ratio of the integrals is close to −1 for many sets of boundary
conditions. For the simply supported beam function and some other cases,
it is exactly equal to −1. Thus as an approximation, we may set

Rm�−�2
m (7.3.37)

This results in

�2
mn=

1

	h

{
Eh�4

m

a2��n/a�2+�2
m


2
+D

[(n
a

)2+�2
m

]2}
(7.3.38)

For the simply supported case, �m=m�/L� and Eq. (7.3.38) is exact.
Equations (7.3.33) and (7.3.38) are compared in Fig. 2 for the clamped-
clamped circular cylindrical shell for E=20
6×104N/mm2� 	=7
85×
10−9 N ·s2/mm4, �=0
3�h=2mm� a=100mm� and L=200mm. We see
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FIG. 2 Natural frequencies of a clamped–clamped circular cylindrical shell.

FIG. 3 Typical comparison of an approximate natural frequency solution with
experimental data.
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that agreement is excellent. Equation (7.3.38) is very easy to use since
�mL values for the majority of the conceivable boundary conditions are
available in handbooks (Flügge, 1962). To illustrate how this theory agrees
typically with reality, results for a clamped–clamped circular cylindrical
shell are compared in Fig. 3 with experimental data collected by Koval
and Cranch (1962). The parameters are E=20
6×104N/mm2� 	=7
85×
10−9N ·s2/mm4, �=0
3, h=0
254mm, a=76
2mm� and L=304
8mm. The
reason that the experimental frequencies are in general lower than the
theoretical frequencies is that (1) the Galerkin method gives upper bound
results and (2) it is virtually impossible to have a truly clamped boundary.
The elasticity of the clamping device will tend to lower the experimental
frequencies.

7.3.2. Approximate Lower Natural Frequencies
of Inextensional Ring Segments of Arbitrary
Boundary Conditions

Of interest are cases where the inextensional simplification of the ring
theory is applicable, which is whenever the ring segments are not restrained
in tangential direction. For example, ring-shaped flapper valves in rotary
vane compressors are mounted in cantilever fashion, and it is of interest
to determine the fundamental natural frequency, since it was found
experimentally to be significantly lower than in the equivalent cantilever
beam case.

We start with the inextensional equation of the form of Eq. (6.15.10)
which is

d6U3

d�6
+2

d4U3

d�4
+ d2U3

d�2

(
1− �2

p�2
0

)
+ �2

p�2
0

U3=0 (7.3.39)

where

p= 1

Aa2
(7.3.40)

�2
0=

E

	a2
(7.3.41)

The ring segment of radius a has length a�, where � is the enclosing angle.
Assuming beam modes U3m��mx�, as for the case of the circular cylindrical
shell treated in Sec. 7.3.1, they become U3m��ma��. Applying Galerkin’s
method to Eq. (7.3.39) gives∫ �

�=0

[
d6U3m

d�6
+2

d4U3m

d�4
+ d2U3m

d�2
+ �2

p�2
0

(
U3m−

d2U3m

d�2

)]
U3md�=0

(7.3.42)
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Solving this equation for the natural frequencies and recognizing that beam
modes satisfy

d4U3m��ma��

d�4
=��ma�

4U3m��ma�� (7.3.43)

we obtain

�2

p�2
0

=
∫ �

0 ��1+��ma�
4
�d2U3m/d�

2�+2��ma�
4U3m
U3md�∫ L

0 ��d
2U3m/d�2�−U3m
U3md�

(7.3.44)

This can also be written as

�2

p�2
0

= �1+��ma�
4
Rm+2��ma�

4

Rm−1
(7.3.45)

where

Rm=
∫ �

0 �d
2U3m/d�

2�U3md�∫ �

0 U
2
3md�

(7.3.46)

Since

d2U3m��ma��

d�2
=��ma�

2 d
2U3m��ma��

d��ma��
2

(7.3.47)

we obtain

Rm�−��ma�
2 (7.3.48)

since the integral ratio∫ �

0 �dU3m��ma��/d��ma��
2
U3m��ma��d�∫ �

0 U
2
3m��ma��d�

�−1 (7.3.49)

for most beam modes, as discussed in Sec. 7.3.1. Labelling � as �m�
Eq. (7.3.45) thus becomes

�2
m=

��ma�
2���ma�

2−1
2

1+��ma�
2

p�2
0 (7.3.50)

where the �m are obtained from the roots of the frequency equation of the
equivalent beam, �mL� where L=a�
 Since

�ma�=�mL=km (7.3.51)

we obtain

�ma=
km
�

(7.3.52)

Therefore,

�2
m=

�km/��
2��km/��

2−1
2

1+�km/��
2

p�2
0 (7.3.53)
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For example, for the simply supported ring segment, km=m��m=1�2�



Thus

�2
m=

�m�/��2��m�/��2−1
2

1+�m�/��2
p�2

0 (7.3.54)

For the cantilever circular flapper valve, k1=1
875, k2=4
694, k3=7
855�
and so on. Thus the fundamental frequency for the case where �=� is

�2
1=0
113p�2

0=0
113
EI

a4	A
(7.3.55)

For a straight beam of length L=a��

�2
1=

�1
875�4

�4

EI

a4	A
=0
127

EI

a4	A
(7.3.56)

That the beam of the same equivalent length has a higher natural frequency
is a expected, since the ring segment has more inertia to overcome
because there is also tangential displacement. The tangential motion can
be calculated from Eq. (6.15.2). At a natural frequency,

dU�m

d�
=−U3m (7.3.57)

or

U�m=−
∫
U3md� (7.3.58)

7.4. RAYLEIGH–RITZ METHOD

Rayleigh used the argument that an undamped linear structure, vibrating
at its natural frequency, interchanges its vibratory energy from a purely
potential state at its maximum amplitude to a purely kinetic state when all
vibration amplitudes are zero. At a natural frequency, we have

ui=Uie
j�t (7.4.1)

Substituting this in the strain energy expression of Eq. (2.6.3), we get the
expression for maximum potential energy Umax upon taking for ej�t the
maximum, namely unity:

Umax =
∫
�1

∫
�2

∫
�3

[
E

2�1−�2�
��∗2

11+�∗2
22+2��∗

11�
∗
22�+

G

2
�∗2
12

]
×A1A2d�1d�2d�3 (7.4.2)
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where

�∗
11 =

1

A1

�

��1

�U1+�3�
∗
1�+

U2+�3�
∗
2

A1A2

�A1

��2

+ U3

R1

(7.4.3)

�∗
22 =

1

A2

�

��2

�U2+�3�
∗
2�+

U1+�3�
∗
1

A1A2

�A2

��1

+ U3

R2

(7.4.4)

�∗
12 =

A2

A1

�

��1

(
U2+�3�

∗
2

A2

)
+A1

A2

�

��2

(
U1+�3�

∗
1

A1

)
(7.4.5)

and where

�∗
1=

U1

R1

− 1

A1

�U3

��1

(7.4.6)

�∗
2=

U2

R2

− 1

A2

�U3

��2

(7.4.7)

Substituting Eqs. (7.4.3)–(7.4.5) in the kinetic energy expression and
selecting the maximum value gives

Kmax=
�2	h

2

∫
�1

∫
�2

�U 2
1 +U 2

2 +U 2
3 �A1A2d�1d�2 (7.4.8)

Equating (7.4.8) and (7.4.2) gives

�2=
∫
�1

∫
�2

∫
�3

[
E

�1−�2�
��∗2

11+�∗2
22+2��∗2

11�
∗2
22�+G�∗2

12

]
A1A2d�1d�2d�3

	h
∫
a1

∫
a2
�U 2

1 +U 2
2 +U 2

3 �A1A2 d�1d�2

(7.4.9)

This formula is exact if the exact mode-shape expression is
substituted. However, the same formula results if we argue with Rayleigh
that instead of using the unknown exact mode shape, an approximate
mode-shape expression with not more than one arbitrary constant can be
used that satisfies the boundary conditions and resembles to a reasonable
degree the actual mode shape. In this case we try to minimize the difference
between the maximum potential energy and the maximum kinetic energy
since only in the exact case will it be zero as required. If the assumed mode
shape contains only one constant C that can be minimized,

d

dC
�Umax−Kmax�=0 (7.4.10)

also results in Eq. (7.4.9). This equation is also called Rayleigh’s quotient.
If the assumed mode shapes satisfy all boundary conditions, it can be
shown that Eq. (7.4.9) results in an upper bound approximation. If �R is
Rayleigh’s frequency and � is the exact frequency, then

�≤�R (7.4.11)
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The reason for this that any deviation from the true mode shape is
equivalent to an additional constraint, resulting in a higher value for
potential energy.

It was later established by various investigators that it is possible
to relax the requirement that all boundary conditions have to be satisfied
by the assumed mode shape. Most of the time it is sufficient to satisfy
deflection and slope conditions and to neglect moment and shear boundary
conditions, and still achieve acceptable approximations of the natural
frequency.

Rayleigh’s quotient can be used to investigate all natural frequencies
of a plate or shell but works best for the determination of the fundamental
frequency in case of plates. For higher frequencies even small deviations
between the true and assumed mode shape can easily cause large errors
in the calculated results. For shells, Rayleigh’s quotient is not particularly
useful because of the complexity of the modes. An extension is needed that
improves accuracy.

This extension was provided by Ritz (1908). The contribution of Ritz
was to allow estimated mode shapes of more than one arbitrary constant.
In the Rayleigh–Ritz method we minimize with respect to each of the
constants C1�C2�


�Cr .

�

�C1

�Umax−Kmax�=0

�

�C2

�Umax−Kmax�=0






�

�Cr

�Umax−Kmax�=0 (7.4.12)

If we have r constants Cr , we obtain r homogeneous equations:
r−1 equations can be solved to express r−1 constants in terms of one
arbitrarily selected constant. The requirement that the boundary conditions
have to be satisfied is the same as before.

Let us illustrate all this on the example of a clamped circular plate
(Volterra and Zachmanoglou, 1965). First, let us use the Rayleigh quotient
to find the first natural frequency. We assume as a fundamental mode shape

U3=C1

[
1−
( r
a

)2]2
(7.4.13)

This satisfies the two boundary conditions

U3�a���=0 (7.4.14)
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dU3

dr
�a���=0 (7.4.15)

Setting U1=U2=0�A1=1�A2=r��1=r��2=�, and d�·�/d�=0, the
Rayleigh quotient expression becomes

�2
R=

D

	h

∫ a

0 f �r�rdr∫ a

0 U
2
3 rdr

(7.4.16)

where

f �r�=
(
�2U3

�r2
+ 1

r

�U3

�r

)2

−2�1−��
�2U3

�r2
1

r

�U3

�r
(7.4.17)

The result is

�R=
��a�2

a2

√
D

	h
(7.4.18)

where �a=3
214. This compares fairly well with the exact value of �a=
3
196.

Next, let us assume that

U3=C1

[
1−
( r
a

)2]2+C2

[
1−
( r
a

)2]3
(7.4.19)

which we expect will furnish us a better approximation of the first mode
and also an approximation of the second axisymmetric mode. In this case
we have to use the Rayleigh–Ritz method. We get, on substitution in
Eqs. (7.4.2) and (7.4.8),

Umax−Kmax = �D
32

3a2

(
C2

1 +
3

2
C1C2+

9

10
C2

2

)

−�	h�2 a
2

10

(
C2

1 +
5

3
C1C2+

5

7
C2

2

)
(7.4.20)

To minimize this expression with respect to C1 and C2, we formulate

�

�C1

�Umax−Kmax�=0 (7.4.21)

�

�C2

�Umax−Kmax�=0 (7.4.22)

or 

64

3
−a4�2 	h

5D

64

3
−a4�2 	h

6D
64

3
−a4�2 	h

6D

96

5
−a4�2 	h

7D


{C1

C2

}
=0 (7.4.23)
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Setting the determinant equal to zero and solving for � gives two solutions:

�R1=
��a�21
a2

√
D

	h
(7.4.24)

�R2=
��a�22
a2

√
D

	h
(7.4.25)

where ��a�1=3
197 and ��a�2=6
565. This compares to the exact values
of ��a�1=3
196, which is very close, and ��a�2=6
306, which is not an
entirely unacceptable agreement as far as the second axisymmetric natural
frequency is concerned.

The mode shapes are obtained with the help of Eq. (7.4.24), from
which we get

C2=−C1

64/3−a4�2�	h/5D�

64/3−a4�2�	h/6D�
(7.4.26)

or

C2=−C1

64/3−��a�4/5

64/3−��a4�/6
(7.4.27)

Substituting ��a�1=3
197 gives C2=−0
112C1. Thus

U31=C1

{[
1−
( r
a

)2]2−0
112

[
1−
( r
a

)2]3}
(7.4.28)

Substituting ��a�2=6
565 gives C2=−1
215C1, and therefore

U32=C1

{[
1−
( r
a

)2]2−1
215

[
1−
( r
a

)2]3}
(7.4.29)

We could keep adding terms to the series describing U3 and get better
and better agreement, describing more and more axisymmetric natural
frequencies. We could also add the � dependency into our approximate
mode shape and proceed with

U3=
p∑

i=1

Ci

[
1−
( r
a

)2]i+1

cosn� (7.4.30)

For a good example of the Rayleigh–Ritz application, see a paper by Ritz
(1909), where he obtains the natural frequencies and modes of a square
plate with free edges. Young (1950) applied the method to the square plate
clamped on all edges.

There are many applications of the Rayleigh–Ritz method to shells.
Let us select as example the paper by Federhofer (1938), who solved the
completely clamped conical shell case by this method. As shown in Fig. 4,
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FIG. 4 Clamped conical shell.

the cone is clamped at its base and at its apex. The assumed solution is

U1=As2�s−L�2 cosn��−��

U2=Bs2�s−L�2 sinn��−��

U3=Cs2�s−L�2 cosn��−��

It satisfies all boundary conditions but is limited to the equivalent of the
first beam mode in the axial direction.

The Rayleigh–Ritz procedure results in a cubic equation whose three
roots for each value of n define the three natural frequencies. As �
approaches �/2, the results approach those of a clamped plate that is
also clamped at the center. As � approaches zero and n=1, the result
approaches that of a clamped–clamped beam of tubular cross-section.

An example of a rectangular plate with cut-outs can be found in
Kristiansen and Soedel (1971).

7.5. SOUTHWELL’S PRINCIPLE

Southwell is credited with a formula (Southwell, 1922; Collatz, 1948) that
can be applied to the problem of finding natural frequencies of shells
and other structures whose stiffness is controlled by several superimposed
effects with benefit. Consider the eigenvalue problem

L�U�−�2N�U�=0 (7.5.1)

If it is possible to separate the operator L�U� into

L�U�=
n∑

r=1

Lr�U� (7.5.2)
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and if solutions exist for each partial problem

Lr�U�−�2
rN �U�=0 (7.5.3)

we obtain for the fundamental frequency the fact that

�2
s ≤�2

1 (7.5.4)

where �s is Southwell’s frequency and is given by

�2
s =

n∑
r=1

�2
1r (7.5.5)

The symbol �1 designates the true fundamental frequency of the total
problem. The symbol �1r designates the true fundamental frequency of the
rth partial problem.

We prove this by applying Galerkin’s approach to Eq. (7.5.1). If U1

is the true fundamental mode of the total problem, the true fundamental
frequency is

�2
1=
∫
A

∫
U1L�U1�dA∫

A

∫
U1N�U1�dA

(7.5.6)

Let us now apply Galerkin’s approach to the partial problem. If U1 is
the true mode for the total problem, we obtain the inequality

�2
1r ≤
∫
A

∫
U1Lr�U1�dA∫

A

∫
U1N�U1�dA

(7.5.7)

If it happens that U1 is also the true mode for the partial problem, the
equality applies. However, in general, it cannot be expected that U1 is the
true mode for the partial problem.

Let us now sum both sides of the equation from r=1 to n. This gives
n∑

r=1

�2
1r ≤
∫
A

∫
U1

∑n
r=1Lr�U1�dA∫

A

∫
U1N�U1�dA

(7.5.8)

The left side is �2
s by definition of Eq. (7.5.5) and the right side is �2

1

because of Eq. (7.5.6). Thus

�2
s ≤�2

1 (7.5.9)

and the proof is completed.
Let us illustrate this for the closed circular cylindrical shell, as

described by Eq. (6.9.4). By Southwell’s principle, we may formulate two
partial problems:

D

(
n2

a2
− d2

dx2

)4

U3n�x�−	h�2
1

(
n2

a2
− d2

dx2

)2

U3n�x�=0 (7.5.10)
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and

Eh

a2

d4U3n�x�

dx4
−	h�2

2

(
n2

a2
− d2

dx2

)2

U3n�x�=0 (7.5.11)

If the shell is simply supported, all boundary conditions and both equations
are satisfied by

U3n�x�=sin
m�x

L
(7.5.12)

This gives, upon substitution in Eq. (7.5.10),

D

[(n
a

)2+(m�

L

)2]4−	h�2
1

[(n
a

)2+(m�

L

)2]2=0 (7.5.13)

or

�2
1=

D

	h

[(n
a

)2+(m�

L

)2]2
(7.5.14)

This equation defines the natural frequencies due to the bending effect
only. Substituting Eq. (7.5.12) in Eq. (7.5.11) gives

Eh

a2

(m�

L

)4−	h�2
2

[(n
a

)2+(�
L

)2]2=0 (7.5.15)

or

�2
2=

E

	a2

�m�/L�4

��n/a�2+�m�/L2�
2
(7.5.16)

This equation defines the natural frequencies due to the membrane effect
only. Thus, according to Southwell’s principle, we obtain

�2≥�2
1+�2

2 (7.5.17)

or

�2≥ 1

a2

{
�m�a/L�4

�n2+�m�a/L�2
2
+ 1

12�1−�2�

(
h

a

)2[
n2+

(m�a

L

)2]2}E

	

(7.5.18)

In this case, Southwell’s principle gives the exact result. The reason
is that for the case chosen, the fundamental mode of the total problem
is equal to the fundamental mode for both partial problems. However,
in general, exact results cannot be expected. Note also that we have
obtained a result that can be applied for all m, n combinations, yet
only for the fundamental mode is the inequality of Eq. (7.5.9) valid. For
frequencies, other than the lowest, nothing can be said in general about
boundedness, and the quality of the prediction will have to be verified from
case to case.
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7.6. DUNKERLEY’S PRINCIPLE

Dunkerley (1894) discovered a method that would allow him to estimate
the fundamental frequency of a multidegree-of-freedom system. In the
following, a development of Dunkerley’s method is shown following
essentially Collatz (1948). Consider again the eigenvalue problem

L�U�−�2N�U�=0 (7.6.1)

If it is possible to separate the operator N�U�, which describes the mass
effect, into

N�U�=
n∑

r=1

Nr�U� (7.6.2)

and if we know the fundamental frequency of the partial problem, the
partial problem having to be self-adjoint and fully defined,

L�U�−�2
rNr�U�=0 (7.6.3)

we obtain

�2
D≤�2

1 (7.6.4)

where �D is Dunkerley’s frequency, given by

1

�2
D

=
n∑

r=1

1

�2
1r

(7.6.5)

and where �1 is the actual fundamental frequency of the total problem and
the �1r are the fundamental frequencies of the n partial problems.

To prove Eq. (7.6.4), we again use Galerkin’s method. If U1 is the
true fundamental mode, the true fundamental frequency is

�2
1=
∫
A

∫
U1L�U1�dA∫

A

∫
U1N�U1�dA

(7.6.6)

Let us now apply Galerkin’s approach to the partial problem. If U1 is the
true mode for the total problem, we obtain

�2
1r ≤

∫
A

∫
U1L�U1�dA∫

A

∫
U1Nr�U1�dA

(7.6.7)

or

1

�2
1r

≥
∫
A

∫
U1Nr�U1�dA∫

A

∫
U1L�U1�dA

(7.6.8)

Let us sum both sides from r=1 to n. This gives
n∑

r=1

= 1

�2
1r

≥
∫
A

∫
U1

∑n
r=1Nr�U1�dA∫

A

∫
U1L�U1�dA

(7.6.9)
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But because of Eq. (7.6.2), the right side of the equation is equal to 1/�2
1.

The left side is 1/�2
D according to Eq. (7.6.5). Therefore,

�2
D≤�2

1 (7.6.10)

This completes the proof. The right side is the square of the true first
natural frequency. The square root of the left side is also called Dunkerley’s
frequency and given the symbol �D.

As example, let us consider a simply supported plate with an
attached mass at location x∗�y∗, as shown in Fig. 5. We may express the
distributed mass of the plate as 	h+M��x−x∗���y−y∗�. The equation for
free transverse motion may therefore be written as

D� 4u3+�	h+M��x−x∗���y−y∗�

�2u3

�t2
=0 (7.6.11)

Arguing that at a natural frequency

u3�x�y�t�=U3�x�y�e
j�t (7.6.12)

we obtain upon substitution

D� 4U3−�	h+M��x−x∗���y−y∗�
�2U3=0 (7.6.13)

Let us now split this problem into two partial problems,

D� 4U3−	h�2U3=0 (7.6.14)

and

D� 4U3−M�2U3��x−x∗���y−y∗�=0 (7.6.15)

For the simply supported plate, the solution of Eq. (7.6.14) is �r=1�

U3=sin
m�x

a
sin

n�y

b
(7.6.16)

�2
mn1=�4

[(m
a

)2+(n
b

)2]2 D

	h
(7.6.17)

FIG. 5 Rectangular plate with attached point mass.
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To solve the second equation, we use Galerkin’s method as shown
in Eq. (7.5.6), with Eq. (7.6.16) as the approximate mode expression. We
obtain �r=2�

D�4

[(m
a

)2+(n
b

)2]2∫ b

0

∫ a

0
sin2 m�x

a
sin2 m�y

b
dxdy

−M�2
mn2 sin

2 m�x∗

a
sin2 n�y

∗

b
=0 (7.6.18)

This gives

�2
mn2=

D�4��m/a�2+�n/b�2
2ab

4M sin2�m�x∗/a�sin2�n�y∗/b�
(7.6.19)

Thus according to Dunkerley’s formula, Eq. (7.6.5),

�2
D=

1

1/�2
mn1+1/�2

mn2

= �2
mn1

1+�2
mn1/�

2
mn2

(7.6.20)

Therefore (Soedel, 1976),

�2
D=

�4��m/a�2+�n/b�2
2�D/	h�

1+4�M/Mp�sin
2�m�x∗/a�sin2�n�y∗/b�

(7.6.21)

where Mp is the mass of the total plate,

Mp=	hab (7.6.22)

This result is identical to the result of Eq. (13.2.8) when curvature in
Eq. (13.2.8) is set to zero. Note that we obtain frequency results for all
m�n combinations, except that only for �m�n� = (1,1) is the inequality of
Eq. (7.6.10) valid. Also, the accuracy of prediction suffers as m�n increase.
A similar, yet somewhat different result was obtained in Soedel (1976),
where the static Green’s function of the simply supported plate was used
to obtain �2

mn2.

7.7. STRAIN ENERGY EXPRESSIONS

Because of the importance of strain energy expressions to the variational
and Rayleigh–Ritz methods, and therefore the finite element method, a
few are derived in the following starting from the general relationship in
Chapter 2.

Introducing assumptions (2.2.8) and (2.2.9) into Eqs. (2.6.3) and
(2.6.4), the strain energy expression for any thin shell is (if we neglect �33

and also set �13=�23=0�:

U = 1

2

∫
�1

∫
�2

∫
�3

��11�11+�22�22+�12�12�A1A2d�3d�2d�1 (7.7.1)
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Note that it was assumed that �3/R1�1 and �3/R2�1. Utilizing
Eqs. (2.2.10)–(2.2.12), respectively, their inverses

�11 =
E

1−�2
��11+��22� (7.7.2)

�22 =
E

1−�2
��22+��11� (7.7.3)

�12 = G�12 (7.7.4)

we obtain

U = 1

2

∫
�1

∫
�2

∫
�3

[
E

1−�2

(
�2
11+�2

22+2��11�22

)+G�2
12

]
A1A2d�3d�2d�1

(7.7.5)

Next, we substitute

�11=�0
11+�3k11 (7.7.6)

�22=�0
22+�3k22 (7.7.7)

�12=�0
12+�3k12 (7.7.8)

and G=E/2�1+��, and integrate over the shell thickness from �3=−h/2
to �3=h/2.

This gives

U = 1

2

∫
�1

∫
�2

[
K

{
�02

11+2��0
11�

0
22+�02

22+
(
1−�

2

)
�02

12

}

+D

{
k211+2�k11k22+k222+

(
1−�

2

)
k212

}]
A1A2d�1d�2

(7.7.9)

where

K= Eh

1−�2
(7.7.10)

D= Eh3

12�1−�2�
(7.7.11)

Equation (7.7.9) can be further specialized. For example, for the circular
cylindrical shell, we substitute Eqs. (3.3.7)–(3.3.14) into Eq. (7.7.9) and
obtain

U = a

2

∫
x

∫
�

[
K

{(
�ux

�x

)2

+2�

(
�ux

�x

)
1

a

(
�u�

��
+u3

)
+ 1

a2

(
�u�

��
+u3

)2

+ 1−�

2

(
�u�

�x
+ 1

a

�ux

��

)2
}
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+D

{(
�2u3

�x2

)2

−2�

(
�2u3

�x2

)
1

a2

(
�u�

��
− �2u3

��2

)
+ 1

a4

(
�u�

��
− �2u3

��2

)2

+
(
1−�

2

)
1

a2

(
�u�

�x
−2

�2u3

�x��

)2
}]

d� dx (7.7.12)

For transversely vibrating plates, there is no membrane strain energy and
Eq. (7.7.9) reduces to

U = D

2

∫
�1

∫
�2

[
k211+2�k11k22+k222+

(
1−�

2

)
k212

]
A1A2 d�1d�2

(7.7.13)

Therefore, for Cartesian coordinates, as for example used for rectangular
plates, we substitute A1=1, A2=1, �1=x, �2=y and obtain from
Eqs. (4.4.13) to (4.4.15)

k11 = kxx=−�2u3

�x2
(7.7.14)

k22 = kyy=−�2u3

�y2
(7.7.15)

k12 = kxy=−2
�2u3

�x �y
(7.7.16)

Equation (7.7.13) becomes

U = D

2

∫
x

∫
y

[(
�2u3

�x2

)2

+
(
�2u3

�y2

)2

+2�

(
�2u3

�x2

)(
�2u3

�y2

)

+2�1−��

(
�2u3

�x �y

)2
]
dx dy (7.7.17)

For polar coordinates as used for example for circular plates, we
substitute A1=1�A2=r��1=r��2=� and obtain from Eqs. (4.4.13)–
(4.4.15),

k11=krr =−�2u3

�r2
(7.7.18)

k22=k��=−1

r

(
�u3

�r
+ 1

r

�2u3

��2

)
(7.7.19)

k12=kr�=−r
�

�r

(
1

r2
�u3

��

)
− 1

r

�2u3

�r ��
(7.7.20)
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Equation (7.7.13) becomes

U = D

2

∫
r

∫
�

[(
�2u3

�r2
+ 1

r

�u3

�r
+ 1

r2
�2u3

��2

)2

−2�1−��

(
�2u3

�r2

)(
1

r

�u3

�r
+ 1

r2
�2u3

��2

)

+2�1−��

(
1

r

�2u3

�r ��
− 1

r2
�u3

��

)2
]
rdrd� (7.7.21)

Next, we consider a circular ring of radius a. If the ring vibrates in
its plane without twisting, we may set �0

12=0��0
22=0�k12=0�k22=0
 If the

width of the ring is b and the thickness is h� Eq. (7.7.9) becomes

U = b

2

∫
�

(
K�02

��+Dk2��

)
ad� (7.7.22)

Substituting Rs=a and s=a� into Eqs. (4.1.9)–(4.1.11) gives

�0
��=

1

a

(
�u�

��
+u3

)
(7.7.23)

k��=
1

a2

(
�u�

��
− �2u3

��2

)
(7.7.24)

We obtain, therefore,

U = b

2

∫
�

[
K

a

(
�u�

��
+u3

)2

+ D

a3

(
�u�

��
− �2u3

��2

)2
]
d� (7.7.25)

Recognizing that for rings of relatively narrow with b the Poisson effect
disappears �1−�2�→1� and generalizing Eq. (7.7.25) to any planar
symmetric cross-section of area A and area moment I�Kb becomes EA and
Db becomes EI
 Equation (7.7.25) becomes

U = E

2

∫
�

[
A

a

(
�u�

��
+u3

)2

+ I

a3

(
�u�

��
− �2u3

��2

)2
]
d� (7.7.26)

For transversely vibrating beams, we may set �0
11=0��0

22=0��0
12=

0�k22=0�k12=0, and

k11=kxx=−�2u3

�x2
(7.7.27)

If the beam is of rectangular cross-section of width b and height, h,
Eq. (7.7.9) becomes

U = bD

2

∫
x
k211dx (7.7.28)
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with D→Eh3/12 because cutting a strip from a shell eliminates the Poisson
effect in the denominator, �1−�2�→1
 Thus, we obtain

U = EI

2

∫
x

(
�2u3

�x2

)2

dx (7.7.29)

where I=bh3/12
 For other cross-sections that are planar symmetric (we
do not allow twisting of the beam), the respective I is used.

Finally, we may just as well obtain also strain energy for a
longitudinally vibrating rod by setting �0

22=0��0
12=0�k11=0�k22=0�k12=0,

and

�0
11=�0

xx=
�ux

�x
(7.7.30)

Equation (7.7.9) becomes

U = bK

2

∫
x

(
�ux

�x

)2

dx (7.7.31)

with bK→EA
 Thus,

U = EA

2

∫
x

(
�ux

�x

)2

dx (7.7.32)

The strain energy expression for plates that vibrate in-plane is
obtained by setting k11=k22=k12=0 and thus, for all plates of uniform
thickness:

U = K

2

∫
�1

∫
�2

[
�02

11+2��0
11�

0
22+�02

22+
(
1−�

2

)
�02

12

]
A1A2d�ad�2 (7.7.33)

Specializing this expression to Cartesian coordinates with �1=x��2=
y�A1=A2=1, using

�0
xx=

�ux

�x
(7.7.34)

�0
yy=

�uy

�y
(7.7.35)

�0
xy=

�uy

�x
+ �ux

�y
(7.7.36)

gives the strain energy expression for the in-plane vibration of rectangular
plates:

U = K

2

∫
y

∫
x

[(
�ux

�x

)2

+2�

(
�ux

�x

)(
�uy

�y

)
+
(
�uy

�y

)2

+ �1−��

2

(
�uy

�x
+ �ux

�y

)2
]
dxdy (7.7.37)
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8

Forced Vibrations of Shells
by Modal Expansion

So far we have been concerned with the natural frequencies of shells and
plates. For the engineer, the ultimate reason for this preoccupation is found
in the study of the forced response of shells. For instance, knowing the
eigenvalues makes it possible to obtain the forced solution in terms of
these eigenvalues. This approach is called spectral representation or modal
expansion and dates back to Bernoulli’s work (Bernoulli, 1755). It will be
the major point of discussion in this chapter.

Forces will be assumed to be independent of the motion of the
shell. This is an admissible approximation for most engineering shell
vibration cases. For instance, a fluid impinging on a shell can be thought
to be not affected by the relatively small vibration response amplitudes.
Thermodynamic forces on the cylinder liner of a combustion engine can be
thought to be independent of the motion of this liner. Many other examples
can be listed (Timoshenko, 1955; Meirovitch, 1967; Nowacki, 1963).

8.1. MODAL PARTICIPATION FACTOR

A disturbance will excite the various natural modes of a shell in various
amounts. The amount of participation of each mode in the total dynamic
response is defined by the modal participation factor. This factor may turn

207
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out to be 0 for certain modes and may approach large values for others,
depending on the nature of the excitation.

In a mathematical sense, the natural modes of a shell structure
represent orthogonal vectors that satisfy the boundary conditions of the
structure. This vector space can be used to represent any response of the
structure. In cases of finite-degree-of-freedom systems, the vector space is
of finite dimension and the number of vectors or natural modes is equal to
the number of degrees of freedom. For continuous systems, such as shells,
the number of degrees of freedom is infinite. This means that the general
solution will be an infinite series:

ui��1��2�t�=
�∑
k=1

�k�
∫
�Uik��1��2� (8.1.1)

where i=1�2�3. The Uik are the natural mode components in the three
principal directions. The modal participation factors �k are unknown and
have to be determined in the following.

The Love equations are of the form

Li�u1�u2�u3�−�u̇i−	hüi=−qi (8.1.2)

where � is an equivalent viscous damping factor. The viscous damping
term was introduced through the forcing term, replacing the original qi
by qi−�u̇i. Also note that the damping factor is assumed to be the same
in all three principal directions. This is not necessarily true, but since
damping values are notoriously difficult to determine theoretically, and
thus have more qualitative than quantitative value, and since a uniform
damping factor offers computational advantages, it was decided to adopt
the uniform factor here. How this factor relates to the structural damping
description in the literature that uses a complex modulus will be discussed
later.

The operators Li are defined, from Love’s equation, as

L1�u1�u2�u3� =
1

A1A2

[

�N11A2�


�1

+ 
�N21A1�


�2

+N12


A1


�2

−N22


A2


�1

+A1A2

Q13

R1

]
(8.1.3)

L2�u1�u2�u3� =
1

A1A2

[

�N12A2�


�1

+ 
�N22A1�


�2

+N21


A2


�1

−N11


A1


�2

+A1A2

Q23

R2

]
(8.1.4)
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L3�u1�u2�u3� =
1

A1A2

[

�Q13A2�


�1

+ 
�Q23A1�


�2

−A1A2

(
N11

R1

+N22

R2

)]
(8.1.5)

Of course, any of the simplifications discussed previously can be
applied. The important point is that Eq. (8.1.2) is general and will apply
for all geometries and simplifications. Substituting Eq. (8.1.1) in Eq. (8.1.2)
gives

�∑
k=1

��kLi�U1k�U2k�U3k�−��̇kUik−	h�̈kUik�=−qi (8.1.6)

However, from our eigenvalue analysis, we know that

Li�U1k�U2k�U3k�=−	h
2
kUik (8.1.7)

Substituting this in Eq. (8.1.6) gives
�∑
k=1

�	h�̈k+��̇k+	h
2
k�k�Uik=qi (8.1.8)

Since we know that the natural modes Uik are orthogonal, we may proceed
as in a Fourier analysis, where we take advantage of the orthogonality of
the sine and cosine functions. We multiply the equation on both sides by
a mode Uip where p, in general, is either equal to k or not equal:

�∑
k=1

�	h�̈k+��̇k+	h
2
k�k�UikUip=qiUip (8.1.9)

In expanded form this is
�∑
k=1

�	h�̈k+��̇k+	h
2
k�k�U1kU1p=q1U1p (8.1.10)

�∑
k=1

�	h�̈k+��̇k+	h
2
k�k�U2kU2p=q2U2p (8.1.11)

�∑
k=1

�	h�̈k+��̇k+	h
2
k�k�U3kU3p=q3U3p (8.1.12)

Adding Eqs. (8.1.10) to (8.1.12) and integrating over the shell surface gives
�∑
k=1

�	h�̈k+��̇k+	h
2
k�k�

∫
�2

∫
�1

�U1kU1p+U2kU2p�

+U3kU3p�A1A2d�1d�2=
∫
�2

∫
�1

�q1U1p+q2U2p+q3U3p�A1A2d�1d�2

(8.1.13)
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Using the orthogonality conditions as defined by Eq. (5.8.22) we are able
to remove the summation by realizing that all terms but the term for which
p=k vanish. We get

�̈k+
�

	h
�̇k+
2

k�k=Fk (8.1.14)

where

Fk =
1

	hNk

∫
�2

∫
�1

�q1U1k+q2U2k+q3U3k�A1A2d�1d�2

Nk =
∫
�2

∫
�1

�U 2
1k+U 2

2k+U 2
3k�A1A2d�1d�2 (8.1.15)

Thus, if we take k terms of the modal expansion series as
approximation to an infinite number, we have to solve the equation
defining the modal participation factors k times. There is no principal
difficulty connected with this. The forcing functions q1�q2, and q3 have
to be given and the mode components U1k�U2k, and U3k and the natural
frequencies 
k have to be known, either as direct functional or numerical
theoretical solutions of the eigenvalue problem or as experimental data in
functional or numerical form. The mass density per unit shell surface 	h is
obviously also known and the damping factor � has to be given or has to
be estimated. For shells of nonuniform thickness, h has to be moved inside
the integrals.

8.2. INITIAL CONDITIONS

For the complete solution of Eq. (8.1.14), two initial conditions for each
modal participation factor are required. They are the initial displacements
ui��1��2�0� and the initial velocities u̇i��1��2�0�. They must be specified
for every point of the shell. Initial velocities are in many practical
cases zero, except for problems where a periodic switch of boundary
conditions occurs. Transient responses to initial conditions die down as
time progresses because of damping, as will be shown. Therefore, when the
steady-state solution alone is important, the initial conditions are set to 0.

When knowledge of the transient response is required and initial
conditions are specified, we have to convert these initial conditions into
initial conditions of the modal participation factor, which are �k and �̇k at
t=0. Because of Eq. (8.1.1), we may write

ui��1��2�0�=
�∑
k=1

��0�Uik��1��2� (8.2.1)

u̇i��1��2�0�=
�∑
k=1

�̇k�0�Uik��1��2� (8.2.2)
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These equations have to be solved for �k(0) and �̇k�0�. For instance, let
us multiply Eq. (8.2.1) by Uip��1��2�, where p �=k or p=k. We get

ui��1��2�0�Uip=
�∑
k=1

�k�0�UikUip (8.2.3)

In expanded form, for i=1�2 and 3, this equation becomes

u1��1��2�0�U1p =
�∑
k=1

�k�0�U1kU1p (8.2.4)

u2��1��2�0�U2p =
�∑
k=1

�k�0�U2kU2p (8.2.5)

u3��1��2�0�U3p =
�∑
k=1

�k�0�U3kU3p (8.2.6)

Summing these equations and integrating over the shell surface gives∫
�2

∫
�1

�u1��1��2�0�U1p+u2��1��2�0�U2p+u3��1��2�0�U3p�A1A2d�1d�2

=
�∑
k=1

�k�0�
∫
�2

∫
�1

�U1kU1p+U2kU2p+U3kU3p�A1A2d�1d�2 (8.2.7)

Evoking the orthogonality condition of Eq. (5.8.22) eliminates the
summation since the right side of the equation is 0 for any p except p=k.
We obtain

�k�0� =
1

NK

∫
�2

∫
�1

�u1��1��2�0�U1k+u2��1�2�0�U2k+u3��1��2�0�U3k�

×A1A2d�1d�2 (8.2.8)

where Nk is given by Eq. (8.1.15).
Following the same procedure, we solve Eq. (8.2.2) for the second

initial condition:

�̇k�0� =
1

Nk

∫
�2

∫
�1

�u̇1��1��2�0�U1k+ u̇��1��2�0�U2k+ u̇3��1��2�0�U3k�

×A1A2d�1d�2 (8.2.9)

8.3. SOLUTION OF THE MODAL PARTICIPATION
FACTOR EQUATION

The modal participation factor equation is a simple oscillator equation.
Thus we may interpret the forced vibration of shells by considering the
shell as composed of simple oscillators, where each oscillator consists
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of the shell restricted to vibrate in one of its natural modes. All these
oscillators respond simultaneously, and the total shell vibration is simply
the result of addition (superposition) of all the individual vibrations.

The simple oscillator equation is solved in the following by the
Laplace transformation technique. We derive the solution for subcritical,
critical, and supercritical damping, even though only the first case is of
real importance in shell vibration applications.

The modal participation factor equation can be written as

�̇k+2�k
k�̇k+
2
k�k=Fk�t� (8.3.1)

where

Fk�t�=
∫
�2

∫
�1
�q1U1k+q2U2k+q3U3k�A1A2d�1d�2

	hNk

(8.3.2)

�k=
�

2	h
k

(8.3.3)

Note that �k is called the modal damping coefficient. It is analogous to the
damping coefficient in the simple oscillator problem.

Taking the Laplace transformation of Eq. (8.3.1) allows us to solve
for the modal participation factor in the Laplace domain:

�k�s�=
Fk�s�+�k�0��s+2�k
k�+�̇k�0�

�s+�k
k�
2+
2

k�1−�2
k �

(8.3.4)

The inverse transformation depends on whether the term 1−�2
k is

positive, zero, or negative. The positive case, when �k<1� is the most
common since it is very difficult to dampen shells more than that. It is
called the subcritical case. The critical case occurs when �k=1 and has no
practical significance other than that it defines the damping that causes an
initial modal displacement to decay in the fastest possible time without an
oscillation. Supercritical damping ��k>1� occurs only if a shell has such
a high damping that it creeps back from an initial modal displacement
without overshooting the equilibrium position.

For the subcritical case ��k<1�, we define a real and positive number
�k:

�k=
k

√
1−�2

k (8.3.5)

The inverse Laplace transformation of Eq. (8.3.4) then gives

�k�t� = e−�k
kt

{
�k�0�cos�kt+��k�0��k
k+�̇k�0��

sin�kt

�k

}

+ 1

�k

∫ 1

0
Fk���e

−�k
k�t−��sin�k�t−��d� (8.3.6)
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The solution is given in the form of the convolution integral since the
forcing function Fk�t� is at this point arbitrary. Once it is known, the
convolution integral can be evaluated. It is also possible to take the inverse
Laplace transformation of Eq. (8.3.4) with a known forcing function
directly.

We note that vibrations caused by initial conditions will be oscillatory
but will decay exponentially with time. The convolution integral, when
evaluated for a specific forcing, will divide into a transient part and possibly
a steady-state part if the forcing is periodic. The transient part will decay
exponentially with time.

A special case of considerable technical interest is when damping
is 0. The solution reduces to

�k�t� = �k�0�cos
kt+�̇k�0�
sin
kt


k

+ 1


k

∫ t

0
Fk���sin
k�t−��d� (8.3.7)

Since most structures are very lightly damped, Eq. (8.3.7) in often used to
get an approximate response since it is much simpler to use.

Next, let us investigate the supercritical case ��k>1�. In this case, the
value of 1−�2

k is negative. Defining a real and positive number �k,

�k=
k

√
�2
k −1 (8.3.8)

we obtain, taking the inverse Laplace transformation,

�k�t� = e−�k
kt

{
�k�0�cosh�kt+��k�0��k
k+�̇k�0��

sinh�kt

�k

}

+ 1

�k

∫ t

0
Fk���e

−�k
k�t−�� sinh�k�t−��d� (8.3.9)

The vibrations caused by initial conditions are now nonoscillatory,
however, if the forcing is periodic, an oscillatory steady-state solution will
still result.

As a special case, we obtain the critical damping solution ��k=1� by
reduction:

�k�t� = e−
kt��k�0�+��k�0�
k+�̇k�0��t�

+
∫ t

0
Fk���e

−
k�t−���t−��d� (8.3.10)
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8.4. REDUCED SYSTEMS

In the special case of a plate, the problem simplifies to a transverse solution
with

Fk=
1

	hNk

∫
�2

∫
�1

q3U3kA1A2d�1d�2 (8.4.1)

where

Nk=
∫
�2

∫
�1

U 2
3kA1A2d�1d�2 (8.4.2)

and an in-plane solution with

Fk=
1

	hNk

∫
�2

∫
�1

�q1U1k+q2U2k�A1A2d�1d�2 (8.4.3)

where

Nk=
∫
�2

∫
�1

�U 2
1k+U 2

2k�A1A2d�1d�2 (8.4.4)

In the special case of a ring, we get

Fk=
1

	hNk

∫
�2

∫
�1

�q1U1k+q3U3k�A1A2d�1d�2 (8.4.5)

where

Nk=
∫
�2

∫
�1

�U 2
1k+U 2

3k�A1A2d�1d�2 (8.4.6)

For shell approximations, where only the transverse modes are
considered, Eqs. (8.4.1) and (8.4.2) apply. Note that this is a good
approximation since �U3k���U1k���U2k� for transverse motion-dominated
modes. For the transversely vibrating beam

Fk=
1

	′Nk

∫ L

0
q′
3U3kdx (8.4.7)

where

Nk=
∫ L

0
U 2

3kdx (8.4.8)

For the longitudinal vibration of a rod,

Fk=
1

	′Nk

∫ L

0
q′
1U1kdx (8.4.9)

where

Nk=
∫ L

0
U 2

1kdx (8.4.10)



Forced Vibrations of Shells by Modal Expansion 215

8.5. STEADY-STATE HARMONIC RESPONSE

A technically important case occurs when the load on the shell varies
harmonically with time and when the onset of vibrations (the transient
part) is of no interest. Using a complex notation to get the response to both
sine and cosine loading, we may write the load as �j=√−1�

qi��1��2�t�=q∗
i ��1��2�e

−j
t (8.5.1)

We could utilize the convolution integral, but in this case it is simpler to
use Eq. (8.3.1) directly. It becomes

�̈k+2�k
k�̇k+
2
k�k=F ∗

k e
j
t (8.5.2)

where

F ∗
k =

1

	hNk

∫
�2

∫
�1

�q∗
1U1k+q∗

2U2k+q∗
3U3k�A1A2d�1d�2 (8.5.3)

At steady state, the response will be harmonic also but lagging behind by
a phase angle �k:

�k=�ke
j�
t−�k� (8.5.4)

Substituting this gives

�ke
−j�k = F ∗

k

�
2
k−
2�+2j�k
k


(8.5.5)

The magnitude of the response is, therefore,

�k=
F ∗
k


2
k

√
�1−�
/
k�

2�2+4�2
k �
/
k�

2
(8.5.6)

The phase lag is

�k= tan−1 2�k�
/
k�

1−�
/
k�
2

(8.5.7)

As expected, a shell will behave similarly to a collection of simple
oscillators. Whenever the excitation frequency coincides with one of the
natural frequencies, a peak in the response curve will occur.

It has to be noted that the harmonic response solution is the same
for subcritical and supercritical damping, except that for equal forcing,
the response amplitudes at resonance become less and less pronounced
as damping is increased until they are indistinguishable from the
off-resonance response.
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8.6. STEP AND IMPULSE RESPONSE

Often there is a sudden onset at time t= t1 of an otherwise purely static
load. This can be expressed by

qi��1��2�t�=q∗
i ��1��2�U�t−t1� (8.6.1)

where

U�t−t1�=
{
0� t<t1
1� t≥ t1

(8.6.2)

and where F ∗
k is given by Eq. (8.5.3).

Neglecting the initial conditions by setting them equal to 0 gives for
the subcritical damping case,

�k�t�=
F ∗
k

�k

∫ t

0
U��−t1�e

−�k
k�t−�� sin�k�t−��d� (8.6.3)

Integrating this gives for t≥ t1,

�k�t�=
F ∗
k

�2
k

{
1−�2

k −
√
1−�2

k e
−�k
k�t−t1� cos��k�t−t1�−�k�

}
(8.6.4)

where

�k= tan−1 �k√
1−�2

k

(8.6.5)

We see that the step response decays exponentially until a static value
of F ∗

k /

2
k is reached (see also Sec. 8.16). It can also be seen that the

maximum step response approaches, as damping decreases, twice the static
value. From this, it follows that the sudden application of a static load
will produce in the limit twice the stress magnitude that a slow, careful
application of the load will produce. This was first established by Krylov
in 1898 during his investigations of the bursting strength of canons.

An impulse response occurs when the shell is impacted by a mass.
Piston slap on the cylinder liner of a diesel engine is a representative
problem of this kind. Impulse loading is a conversion of momentum
process. The forcing can be expressed as (see also Sec. 8.11)

qi��1��2�t�=M∗
i ��1��2���t−t1� (8.6.6)

where M∗
i is a distributed momentum change per unit area, with the units

newton-second per square meter. ��t−t1� is the Dirac delta function which
defines the occurrence of impact at time t= t1. Its definitions are

��t−t1�=0 if t �= t1 (8.6.7)∫ t=�

t=−�
��t−t1�dt=1 (8.6.8)
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From these equations, we obtain the following integration rule (Sec. 8.12):∫ t=�

t=−�
F�t���t−t1�dt=F�t1� (8.6.9)

The unit of ��t−t1� is second
−t.

The value of F ∗
k is

F ∗
k =

1

	hNk

∫
�2

∫
�1

�M∗
1U1k+M∗

2U2k+M∗
3U3k�A1A2d�1d�2 (8.6.10)

Substituting this in Eq. (8.3.6) gives for subcritical damping and zero initial
conditions,

�k�t�=
F ∗
k

�k

∫ t

0
���−t1�e

−�k
k�t−��sin�k�t−��d� (8.6.11)

Applying the integration rule of Eq. (8.6.9) gives for t≥ t1,

�k�t�=
F ∗
k

�k

e−�k
k�t−t1�sin�k�t−t1� (8.6.12)

This result shows that no matter what the spatial distribution of the
impulsive load, the response for each mode decays exponentially to 0 and
the oscillation is sinusoidal at the associated natural frequency.

8.7. INFLUENCE OF LOAD DISTRIBUTION

Among the many possible load distributions, there are a few that occur
frequently in engineering applications. It is worthwhile to single out these
for a detailed discussion. The most common is a spatially uniform pressure
load normal to the surface

q∗
1 =0� q∗

2 =0� q∗
3 =p3 (8.7.1)

where p3 is the uniform pressure amplitude. In this case F ∗
k of Eq. (8.5.3)

becomes

F ∗
k =

p3

	hNk

∫
�1

∫
�2

U3kA1A2d�1d�2 (8.7.2)

The interesting feature is that, if the shell, plate, ring, beam, and so on,
have modes that are symmetric or skew-symmetric about a line or lines
of symmetry, none of the skew-symmetric modes are excited because they
integrate out. For example, for a simply supported rectangular plate as
shown in Fig. 1, we get

F ∗
k =

4p3

	hmn�2
�1−cosm���1−cosn�� (8.7.3)
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FIG. 1 Uniformly distributed pressure loading on a rectangular plate.

For instance, for the special case where the plate is loaded in time by a
step function, the solution is

u3�x�y�t�=
�∑

m=1

�∑
n=1

�mnU3mn (8.7.4)

where

U3mn=sin
m�x

a
sin

n�y

b
(8.7.5)

and where �mn=�k is given by Eq. (8.6.4).
In this case, only modes that are combinations of m=1�3�5���� and

n=1�3�5���� participate in the response. Similarly, we can show that for a
uniformly loaded axisymmetric circular plate, only the axisymmetric modes
are excited (the n=0 modes).

Next, let us look at loads that are uniform along one coordinate only,
let us say �2 for the purpose of this discussion:

q∗
3 =p3��1� (8.7.6)

In this case, we get

F ∗
k =

1

	hNk

∫
�1

p3��1�
∫
�2

U3kA1A2d�1d�2 (8.7.7)

For example, for the simply supported plate that has a pressure amplitude
distribution as shown in Fig. 2, we have �1=x��2=y, and

P3=P
x

a
(8.7.8)

This gives

F ∗
k =− 4P

	hmn�2
cosm��1−cosn�� (8.7.9)

which shows that modes that have n=2�4�6���� do not participate in the
solution. But any m number will.
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FIG. 2 Pressure loading that is uniform only in the y-direction.

Another example is the cylindrical duct shown in Fig. 3. Let the
pressure distribution be axisymmetric and linearly varying with x:

q∗
3 =P

x

L
(8.7.10)

and the duct be a simply supported cylindrical shell of a transverse mode
shape:

U3k=sin
m�x

L
cosn��−�� (8.7.11)

We obtain, with �1=x�A1=1��2=��A2=a, for n=0,

F ∗
k =− 2P

	hm�
cosm� (8.7.12)

FIG. 3 Pressure loading on a circular cylindrical shell that is uniform in circumferential
direction.
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None of the modes n=1�2�3���� exist in the response. Let us take the
example where the pressure distribution varies harmonically in time. The
solution is then, in steady state,

u3�x���t�=
�∑

m=1

�m0 sin
m�x

L
(8.7.13)

where �m0=�k is given by Eq. (8.5.4).
It is not necessary to recognize the elimination of certain modes in

advance. Including all the modes in a computer program will certainly
give the correct response because the program will automatically integrate
out the nonparticipating modes. The value of considering symmetry
conditions in advance is more an economical one. If modes have to be
generated experimentally, for instance, it will save experimental time if
it is recognized that only the symmetric modes have to be excited and
measured. There is a corollary to this since we can show equally well that
skew-symmetric load distributions will not excite symmetric modes. Again,
this is useful for the experimenter to know.

All of this assumes, of course, that the plate or shell is perfect in its
symmetry and that the load does not deviate from symmetry. Since this
is never exactly true for engineering applications, we find that in actual
engineering, systems, modes other than the theoretically predicted ones will
also be present, but with much reduced magnitudes. Such a tendency for
modes to be present when they should not be is especially pronounced in
cylindrical ducts, where the excitation pressure may be axisymmetric for
all practical purposes yet other than n=0 modes are excited. The reason
here is that, much less energy is required to excite to an equal amplitude,
modes with higher n numbers than the n=0 modes because the lowest
natural frequencies occur at the higher n numbers, as we have seen in
Chapter 5. Thus a slight imperfection in either pressure distribution or
shell construction will be enough to bring the n=1�2���� modes into the
measured response. All that the analyst can do is to allow for a small
deviation of axisymmetry in the model to allow for the imperfections of
manufacturing.

8.8. POINT LOADS

A type of load that is very common in engineering applications is the
point load. In the immediate vicinity of the point load, some of the basic
assumptions of thin shell theory are violated (e.g., that �33=0). However,
outside the immediate vicinity of the point load, the assumptions are not
affected and overall vibration responses can be calculated with excellent
accuracy.
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Since we do not expect to acquire exact results right under the
point load anyway, keeping in mind that these results would require
three-dimensional elasticity and possibly plasticity analysis and a detailed
knowledge of the load application mechanism, it seems reasonable to use
the Dirac delta function (Dirac, 1926; Schwartz, 1950, 1951) to define
the point load. This function locates the load at the desired point and
assures that it is of the desired magnitude, but does not define the actual
mechanism and microdistribution of application.

The point load PiS�t� in newtons can be expressed as a distributed
load qi in newtons per square meter by

qi=Pi

1

A1A2

���1−�∗
1����2−�∗

2�S�t� (8.8.1)

where �∗
1 and �∗

2 define the location of the point force. This is discussed in
Sec. 8.11. The function S�t� represents the time dependency. For harmonic
forcing, it is ej
t, and for a step loading, U�t−t1�.

This allows us to write Eq. (8.3.1) as

�̈k+2�k
k�̇k+
2
k�k=F ∗

k S�t� (8.8.2)

where

F ∗
k = 1

	hNk

∫
�2

∫
�1

�P1U1k��1��2�+P2U2k��1��2�+P3U3k��1��2��

×���1−�∗
1����2−�∗

2�d�1d�2 (8.8.3)

Applying the integration rule gives

F ∗
k =

1

	hNk

�P1U1k��
∗
1��

∗
2�+P2U2k��

∗
1��

∗
2�+P3U3k��

∗
1��

∗
2�� (8.8.4)

This can now, for instance, be substituted in the specific modal
participation factor solutions such as Eq. (8.5.4) or (8.6.4). It points out
that if the point force is located on a node line of a mode component, this
particular mode component will not participate in the response because
Uik��

∗
1��

∗
2� is 0 if ��∗

1��
∗
2� is on a node line.

Let us take as an example a harmonically varying point force acting
on a circular cylindrical shell panel as shown in Fig. 4. In this case

P1=0� P2=0� P3=F (8.8.5)

and

U3mn=sin
m�x

L
sin

n��

�
(8.8.6)

Thus

F ∗
k =

4F

	hLa�
sin

m�x∗

L
sin

n��∗

�
(8.8.7)
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FIG. 4 Point force on a simply supported cylindrical panel.

The value of �k=�mn is given by Eq. (8.5.4) and the transverse deflection
solution is

u3=
�∑

m=1

�∑
n=1

�mnsin
m�x

L
sin

n��

�
(8.8.8)

An interesting special case occurs when a point load acts on a
shell of revolution that is closed in the � direction. The transverse mode
components, for example, are of the general form

U3mn�����=H3m���cosn��−�� (8.8.9)

where � is an arbitrary angle. We have chosen � instead of the customary
� of Chapter 5 because � is already used as a coordinate. To express any
shape in the � direction, we need two orthogonal components. These we
get if one time we let �=0 and the other, �=�/2n. This gives a set of
modes

U3mn1�����=H3m���sinn� (8.8.10)

and a second set at

U3mn2�����=H3m���cosn� (8.8.11)

A discussion is given in Sec. 8.13.
For a point load acting at ��∗��∗�, as shown in Fig. 5, we obtain from

Eq. (8.8.4) for the first set

Fmn1=F ∗
mn1S�t� (8.8.12)

where

F ∗
mn1=Cm��

∗�sinn�∗ (8.8.13)

and where for transverse loading only,

Cm��
∗�= 1

	hNmn

P3H3m��
∗� (8.8.14)
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FIG. 5 Point loads on a shell of revolution.

and where for dominating transverse mode components,

Nmn=�
∫
�
H2

3m���A�A�d� (8.8.15)

For the second set, we get

Fmn2=F ∗
mn2S�t� (8.8.16)

where

F ∗
mn2=Cm��

∗�cosn�∗ (8.8.17)

The modal participation factor solutions are therefore

�mn1=Tmn��
∗�t�sinn�∗ (8.8.18)

�mn2=Tmn��
∗�t�cosn�∗ (8.8.19)

where

Tmn��
∗�t�= Cm��

∗�
�mn

∫ 1

0
S���e−�mn
mn�t−�� sin�mn�t−��d� (8.8.20)

The total solution is, therefore, by superposition,

u3�����t�=
�∑

m=1

�∑
n=0

Tmn��
∗�t�H3m����sinn�sinn�

∗+cosn�cosn�∗�

(8.8.21)

However, since the bracketed quantity is equal to cosn��−�∗�, we get

u3�����t�=
�∑

m=1

�∑
n=0

Tmn��
∗�t�H3m���cosn��−�∗� (8.8.22)

This is an interesting result since it proves that each mode will orient
itself such that its maximum deflection occurs at �=�∗. This example also
illustrates that for closed shells of revolution the cosn��−�� term has to
be thought of as representing the two orthogonal terms sinn� and cosn�.
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FIG. 6 Point load on a circular cylindrical shell.

When all mode components are considered, the approach is similar, as
illustrated in the examples of Secs. 8.13–8.15.

Let us take as specific example, the simply supported cylindrical
shell, with loading as shown in Fig. 6, again in the transverse mode
approximation. We let A�d�=dx�A�=a. Since

H3m�x�=sin
m�x

L
(8.8.23)

we obtain

Nmn=
�aL�n

2
(8.8.24)

where

�n=
{
1� n �=0
2� n=0

and thus

Cm�x
∗�= 2P3

	haL��n

sin
m�x∗

L
(8.8.25)

Since in this example

S�t�=sin
t (8.8.26)

we get for steady state,

Tmn�t�x
∗�= Cm�x

∗�sin�
t−�mn�


2
mn

√
�1−�
/
mn�

2�2+4�2
mn�
/
mn�

2
(8.8.27)

where

�mn= tan−1 2�mn�
/
mn�

1−�
/
mn�
2

(8.8.28)
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The total solution is, therefore,

u3�x���t� = 2P3

	haL�

�∑
m=1

�∑
n=0

sin�m�x∗/L�sin�m�x/L�cosn��−�∗�

�n

2
mn

√
�1−�
/
mn�

2�2+4�2
mn�
/
mn�

2
·

×sin�
t−�mn� (8.8.29)

8.9. LINE LOADS

Another type of loading that is relatively important in engineering is the
line load. In the general discussion, we confine ourselves to line loads that
occur along coordinate lines. This restriction allows us to utilize the Dirac
delta function. If there is a line load along the �1 coordinate at �2=�∗

2 of
amplitude Q∗

1��1� in newtons per meter, as shown in Fig. 7, we may express
it as

q1=q∗
1S�t� (8.9.1)

where

q∗
1 =Q∗

1

1

A2

���2−�∗
2� (8.9.2)

Therefore, Eq. (8.5.3) becomes

F ∗
k = 1

	hNk

∫
�1

�Q∗
1��1�U1k��1��

∗
2�+Q∗

2��1�U2k��1��
∗
2�

+Q∗
3��1�U3k��1��

∗
2��A1d�1 (8.9.3)

Similarly, a line load along an �2 coordinate can be treated.

FIG. 7 Three directional line loading on the reference surface of a shell.
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FIG. 8 Line load on a circular cylindrical panel that is uniformly distributed in the
axial direction.

As an example, let us investigate a line load on a circular cylindrical
panel as shown in Fig. 8. In this case

Q∗
1��1�=0� Q∗

2��1�=0� Q∗
3��1�=Q (8.9.4)

and

U3k=sin
m�x

L
sin

n��

�
(8.9.5)

This gives

Nk=
�aL

4
(8.9.6)

where we have again neglected the U1k and U2k contributions to Nk since
they are small. This therefore, gives

F ∗
k =

4Q

	h�m�a
�1−cosm��sin

n��∗

�
(8.9.7)

and the rest of the solution follows.
To illustrate why we have restricted the line load discussion to loads

that are distributed along coordinate lines, let us look at the example of a
simply supported rectangular plate with a transverse diagonal line load of
constant magnitude as shown in Fig. 9. The load expression is in this case,
Stanisic (1977),

q3=q∗
3S�t� (8.9.8)

where

q∗
3 =

Q∗
3

cos�
�

(
y− b

a
x

)
(8.9.9)

and where

cos�= a√
a2+b2

(8.9.10)
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FIG. 9 Uniformly distributed line load that acts diagonally on a rectangular plate.

The reason for the cos� term is that the line load Q∗
3 is not distributed over

a strip of width 	y, with 	y→0, but over a narrower strip 	y cos�, with
	y→0. This means that

q∗
3 = lim

�y→0

Q∗
3

�y cos�

[
U

(
y− b

a
x

)
−U

(
y− b

a
x−�y

)]
(8.9.11)

From this, Eq. (8.9.9) results. A more general description for loads that act
along curved lines can be found in Soedel and Powder (1979).

To finish this particular individual case, let us substitute the load
description into the expression for F ∗

k . This gives

F ∗
k =

Q∗
3

	hNk

√
a2+b2

a

∫ a

0

∫ b

0
sin

m�x

a
sin

n�y

b
�

(
y− b

a
x

)
dxdy (8.9.12)

or

F ∗
k =

Q∗
3

2	hNk

√
a2+b2�mn (8.9.13)

where

�mn=
{
0 if m �=n
1 if m=n

(8.9.14)

This indicates that in this special case only the modes where m=n are
excited.

8.10. POINT IMPACT

Another problem of general engineering interest is the point impact. In
contrast to the distributed impulse load treated in general in Sec. 8.6, point
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impact can be described by an impulse concentrated at a point, as occurs,
for example, when a shell is struck by a projectile or hammer. Piston slap
in combustion engines is of this type.

The description of Eq. (8.6.6) suffices, which is

qi��1��2�t�=M∗
i ��1��2���t−t1� (8.10.1)

except that we write in this case

M∗
i ��1��2�=

Mi

A1A2

���1−�∗
1����2−�∗

2� (8.10.2)

where Mi is the momentum that is transferred to the shell by the impact.
In this case Eq. (8.6.11) becomes

F ∗
k =

1

	hNk

�M1U1k��
∗
1��

∗
2�+M2U2k��

∗
1��

∗
2�+M3U3k��

∗
1��

∗
2�� (8.10.3)

As an example, let us solve the problem where a mass m of velocity
v impacts a spherical shell as shown in Fig 10. In this case �1=�,
A1=a��2=��A2=asin���∗

1=�∗
1=0. The mode shapes that have to be

considered are given in Sec. 6.2.

U�n=
d

d�
Pn�cos�� (8.10.4)

U3n=
1+�1+���2

n

1−�2
n

Pn�cos�� (8.10.5)

We assume that the momentum of the projectile

M3=−mv� M1=M2=0 (8.10.6)

FIG. 10 Point mass impacting a free floating spherical shell.
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is completely transferred to the shell in such a brief time span that the
process can be described by the Dirac delta function. Equation (8.10.3)
applies, therefore, and we get �k=n�

F ∗
n =

−mv

	hNn

1+�1+���2
n

1−�2
n

Pn�1� (8.10.7)

where

Nn=2a2�
∫ �

0

{[
d

d�
Pn�cos��

]2

+
[
1+�1+���2

n

1−�2
n

Pn�cos��

]2
}
sin�d�

(8.10.8)

From Eq. (8.6.12), we obtain �n and the total solution is, since Pn�1�=1,{
u������t�
u3�����t�

}
= −

�∑
n=0

1+�1+���2
n

1−�2
n

mv

	h�nNn

e−�x
kt

×sin�nt




d

d�
Pn�cos��

1+�1+���2
n

1−�2
n

Pn�cos��


 (8.10.9)

Note that the n=1 term describes a rigid-body translation. Since 
1=�1=
�1=0 for the transversely dominated mode and since

lim
�1→0

sin�1t

�1

= t (8.10.10)

we obtain, at �=0 and for n=1,

u3�0���t�=− mv

	hN1

t (8.10.11)

Furthermore, for n=1,

N1=2�a2
∫ �

0
�sin2�+cos2��sin�d�=4�a2 (8.10.12)

This gives, taking the time derivative,

u̇3�0���t�=− mv

4�	ha2
(8.10.13)

This is the velocity with which the spherical shell as a whole moves away
from the impact. The minus sign gives the direction of the motion at �=0,
namely downward in Fig. 10.

Note that if the spherical shell would be treated as an elastic body
undergoing impact by the classical impact theory, we obtain the same result
as given by Eq. (8.10.13), but are unable, of course, to say anything about
the resulting vibration.
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8.11. IMPULSIVE FORCES AND POINT FORCES
DESCRIBED BY DIRAC DELTA FUNCTIONS

Let us assume that a point mass m impacts a shell with velocity v̄a. After
impact, it has a velocity v̄b. Writing the linear momentum–impulse law for
this mass, we obtain

��mv̄�=mv̄a−mv̄b=
∫ tb

ta

F̄ dt (8.11.1)

This may be written as

��mv1�=
∫ tb

ta

F1dt� ��mv2�=
∫ tb

ta

F2dt� ��mv3�=
∫ tb

ta

F3dt (8.11.2)

For example, Fig. 11 (a) shows a typical impulse in the �3 direction. If the
impulse duration is much less than the period of the highest frequency of
interest, impulses of the same magnitude ��mv3� excite approximately the
same dynamic response, even if the shapes differ. Thus we may replace the
actual impulse by a rectangular shape, as shown in Fig. 11 (b). The width
is 	t and the height is ��mv3�/�t, so the area is ��mv3�. We may describe
this impulse by

F3=
��mv3�

�t
�U�t−t∗�−U�t−t∗−�t�� (8.11.3)

Allowing �t to approach 0, which increases the height of the impulse, we
obtain in the limit

F3= lim
�t→0

��mv3�

�t
�U�t−t∗�−U�t−t∗−�t�� (8.11.4)

or
F3=��mv3���t−t∗� (8.11.5)

FIG. 11 Illustration of an impulse.
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In general, the three components Fi of the force vector are

Fi=��mvi���t−t∗� (8.11.6)

It should be noted that this force description cannot be used to obtain
the actual magnitude of the force. At best, we can determine an average
force if the actual impact duration is known. In this case Fi���mvi�/�t.
It should also be noted that the change in momentum expressions cannot
easily be determined precisely. While the mass and velocity v̄a are usually
well definable, the exit velocity v̄b is influenced by the local response of
the structure and cannot be calculated without solving a contact problem.
However, in many practical cases, we can make approximations based
on observation. Often, v̄b � 0, for example if no significant rebound is
observed.

A special situation occurs if the impacting mass lodges in the
structure. In this case, it is often permissable to set v̄b=0, but if the mass
is relatively large, the subsequent structural response problem has to be
solved with the lodged mass as part of the structure.

A point force on the shell can always be approximated as a pressure
load by dividing F by a small area. If the dimensions of the small area
are less than approximately a quarter of the “wavelength" of the shortest
wavelength of the mode of interest, the precise size of the distribution area
does not matter as long as the load adds up to the same force. Since mode
shapes are only approximately sinusoidal, wavelength has to be understood
as the average distance between two node lines.

For example, a transverse point force can be approximated by a
cylinder of cross-section A1A2�d�1�d�2 and height F3/A1A2d�1d�2, as
illustrated in Fig. 12. We may write

q3��1��2�t�=
F3�U ��1−�∗

1�−U��1−�∗
1−��1��

×�U ��2−�∗
2�−U��2−�∗

2−��2��

A1A2��1��2

(8.11.7)

Taking the limit as ��1���2→0 gives

q3��1��2�t�=
F3

A1A2

���1−�∗
1����2−�∗

2� (8.11.8)

A general point load consisting of three components may be described as

q1��1��2�t�=
F1

A1A2

���1−�∗
1����2−�∗

2� (8.11.9)

Note that F1 may or may not be impulsive. Thus a sinusoidal point force is
described by Fi=F0i sin
t, a step point force by Fi=F0iU �t−t1�, and the
force due to an impacting mass by Fi=��mvi���t−t1�.
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FIG. 12 Approximation of a point load as a column of rectangular cross-section.

8.12. DEFINITIONS AND INTEGRATION
PROPERTY OF THE DIRAC
DELTA FUNCTION

The definition of the Dirac delta function is based on the concept that one
wishes to have a function that locates an event in time or space and has
an integral of unity. The obvious way to accomplish this is to create a gate
function of width ��, where, depending on the application, � may be a time
or space variable, and height 1/��, so that the integrated area under this
gate function is unity and dimensionless. Mathematically, the gate function
can be expressed as

F���= 1

��
�U��−�∗�−U��−�∗−���� (8.12.1)

For most practical problems, we can stop at this point, but it will be
observed that as �� becomes very small it no longer matters what the
�� magnitude is. It can also be shown that the shape, which we have
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assumed to be a rectangular gate, does not matter and could be triangular,
semicircular, or whatever, as long as the enclosed area (the integral of the
function) remains unity. Therefore, it can be argued, why not take the limit
allowing �� to approach zero? This limiting case of the function F��� is
the Dirac delta function ���−�∗� and is defined mathematically as

���−�∗�= lim
��→0

1

��
�U��−�∗�−U��−�∗−���� (8.12.2)

Because of this, we may now state that

���−�∗�=0� � �=�∗ (8.12.3)

and because the original concept of a unit area has not changed,∫ +�

−�
���−�∗�d�=1 (8.12.4)

It has to be noted that ���−�∗� by itself remains undefined at �=�∗, since
to maintain an integral of unity it obviously had to approach infinity as
�� approached 0.

The mathematical power of the use of the Dirac delta function is
largely due to the integration property:∫ +�

−�
f ������−�∗�d�=f ��∗� (8.12.5)

This can be proven with the visual help of Fig. 13. The Dirac delta function
is shown in its gate function form before letting ��→0. Multiplying the
gate function with an arbitrary function f ��� whose value at �∗ is f ��∗� and
at �∗+�� is f ��∗+���, one obtains a trapezoid whose area is the desired
integral as �� is allowed to approach 0.∫ �

0
f ������−�∗���= lim

��→0

f ��∗�+f ��∗+���

2
(8.12.6)

Taking the limit results in Eq. (8.12.5).

8.13. SELECTION OF MODE PHASE ANGLES
FOR SHELLS OF REVOLUTION

The selection rational is illustrated by the example of a closed ring. The
natural modes are given in Sec. 5.3 as

{
U3n

U�n

}
i

=Ani




cosn��−��
Bni

Ani

sinn��−��


 (8.13.1)
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FIG. 13 Illustration of the derivation of the integration property of the Dirac delta
function.

Since i=1�2, we actually have two sets of mode shapes. We have to select
two phase angles � in such a way that the mode shapes for each � are
orthogonal to each other. The requirement is that

∫ 2�

0

[
cosn��−�1�cosn��−�2�+

(
Bni

Ani

)2

×sinn��−�1�sinn��−�2�

]
d�=0 (8.13.2)
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From this, we see that if we select �1��2 must be such that the integral is
satisfied. Thus, it must be that

�2=�1+
�

2n
(8.13.3)

This will make

cosn��−�2�=cos
[
n��−�1�−

�

2

]
=sinn��−�1� (8.13.4)

and

sinn��−�2�=sin
[
n��−�1�−

�

2

]
=−cosn��−�1� (8.13.5)

The orthogonality integral then becomes

∫ 2�

0

[
cosn��−�1�sinn��−�1�−

(
Bni

Ani

)2

sinn��−�1�

×cosn��−�1�

]
d�=0 (8.13.6)

which is indeed satisfied because of the orthogonality properties of the sin
and cos functions.

Note that �1, can still be arbitrarily selected, but �2 must satisfy
Eq. (8.13.3). It is of advantage to use

�1=0 (8.13.7)

so that

�2=
�

2n
(8.13.8)

For our example, we have to consider all together four sets of modes when
formulating the modal series solution:


cosn�

Bn1

An1

sinn�


�




cosn�

Bn2

An2

sinn�


�




sinn�

−Bn1

An1

cosn�


�




sinn�

−Bn2

An2

cosn�




(8.13.9)

The example of the ring can easily be generalized to any closed shell
of revolution.
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8.14. STEADY-STATE CIRCULAR CYLINDRICAL
SHELL RESPONSE TO HARMONIC POINT
LOAD WITH ALL MODE COMPONENTS
CONSIDERED

For simply supported boundary conditions of the type of Sec. 5.5, we
have the following two sets of natural modes to consider: For �=0�n=
0�1�2�����m=1�2�3����� we have

Uxmni�1� =
Amni

Cmni

cos
m�x

L
cosn� (8.14.1)

U�mni�1� =
Bmni

Cmni

sin
m�x

L
sinn� (8.14.2)

U3mni�1� = sin
m�x

L
cosn� (8.14.3)

and for �=�/�2n�, the set of natural modes, which is orthogonal to the
modes of Eqs. (8.14.1)–(8.14.3), is

Uxmni�2� =
Amni

Cmni

cos
m�x

L
sinn� (8.14.4)

U�mni�2� = −Bmni

Cmni

sin
m�x

L
cosn� (8.14.5)

U3mni�2� = sin
m�x

L
sinn� (8.14.6)

Note that i=1�2�3, corresponding to each of the natural frequencies for
a given (m,n) combination. In most engineering applications, the natural
frequencies associated with i=2 and 3 are so high that the contribution of
these modes can be neglected. But we consider them here.

The force shown in Fig. 14 results in the loading description

qx�x���t� = 0 (8.14.7)

q��x���t� = 0 (8.14.8)

q3�x���t� = F3e
j
t 1

a
���−�∗���x−x∗� (8.14.9)

where the imaginary part of ej
t represents sin
t.
Let us solve the problem for the first set of modes. Equation (8.1.15)

becomes

Nk =
∫ 2�

�=0

∫ L

x=0

[(
Amni

Cmni

)2

cos2
m�x

L
cos2n�+

(
Bmni

Cmni

)2

×sin2 m�x

L
sin2n�+sin2 m�x

L
cos2n�

]
adxd�

(8.14.10)
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FIG. 14 Circular cylindrical shell acted on by a point force.

This becomes for n �=0 and m �=0,

Nk=
[(

Amni

Cmni

)2

+
(
Bmni

Cmni

)2

+1

]
La�

2
=Nmni�1� (8.14.11)

For n=0�m �=0,

Nk=
[(

Amni

Cmni

)2

+1

]
La�=Nm0i�1� (8.14.12)

No other cases exist since m �=0. Therefore, for n �=0,

Fmni�1� = 1

	hNmni�1�

∫ 2�

0

∫ L

0
F3e

j
t 1

a
���−�∗���x−x∗�

·sin m�x

L
cosn�adxd�

or

Fmni�1�=
F3e

j
t

	hNmni�1�

sin
m�x∗

L
cosn�∗ (8.14.13)

For n=0,

Fm0i�1� =
1

	hNm0i�1�

∫ 2�

0

∫ L

0
F3e

j
t 1

a
���−�∗���x−x∗�sin

m�x

L
adxd�

= F3e
j
t

	hNm0i�1�

sin
m�x∗

L
(8.14.14)
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Therefore,

F ∗
k =F ∗

mni�1�=
F3

	hNmni�1�

sin
m�x∗

L
cosn�∗ (8.14.15)

where we remember that for n=0, the definition of Nm0i�1� is given by
Eq. (8.14.12), while for n �=0, the definition of Nnmi�1� is given by
Eq. (8.14.11). Utilizing Sec. 8.5, the steady-state response is

ux�1� =
3∑

i=1

�∑
m=1

�∑
n=0

F3sin�m�x∗/L�cosn�∗�Amni/Cmni�cos�m�x/L�
×cosn�sin�
t−�mni�

	hNmni�1�f �
�

(8.14.16)

u��1� =
3∑

i=1

�∑
m=1

�∑
n=0

F3sin�m�x∗/L�cosn�∗�Bmni/Cmni�sin�m�x/L�
×sinn� sin�
t−�mni�

	hNmni�1�f �
�

(8.14.17)

u3�1� =
3∑

i=1

�∑
m=1

�∑
n=0

F3sin�m�x∗/L�cosn�∗sin�m�x/L�cosn�
×sin�
t−�mni�

	hNmni�1�f �
�

(8.14.18)

where

f �
�=
2
mni

√√√√[
1−

(




mni

)2
]2

+4�2
mni

(




mni

)2

The next step is to obtain the solution for the second set of modes.
In this case

Nk =
∫ 2�

0

∫ L

0

[(
Amni

Cmni

)2

cos2
m�x

L
sin2n�+

(
Bmni

Cmni

)2

sin2 m�x

L
cos2n�

+sin2 m�x

L
sin2n�

]
adxd� (8.14.19)

which becomes, for n �=0,

Nk=
[(

Amni

Cmni

)2

+
(
Bmni

Cmni

)2

+1

]
La�

2
=Nmni�2� (8.14.20)

and for n=0,

Nk=
(
Bmni

Cmni

)2

La�=Nm0i�2� (8.14.21)
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Therefore,

Fmni�2� =
1

	hNmni�2�

∫ 2�

0

∫ L

0
F2e

j
t 1

a
���−�∗���x−x∗�·sinm�x

L

×sinn�adxd�= F3e
j
t

	hNmni�2�

sin
m�x∗

L
sinn�∗ (8.14.22)

which also covers the n=0 case, which results in Fm0i�2�=0. The steady-
state response solution is, therefore,

ux�2� =
3∑

i=1

�∑
m=1

�∑
n=0

·
F3sin�m�x∗/L�sinn�∗�Amni/Cmni�cos�m�x/L�

×sinn�sin�
t−�mni�

	hNmni�2�f �
�

(8.14.23)

u��2� = −
3∑

i=1

�∑
m=1

�∑
n=0

·
F3sin�m�x∗/L�sinn�∗�Bmni/Cmni�sin�m�x/L�

×cosn�sin�
t−�mni�

	hNmni�2�f �
�

(8.14.24)

u3�2� =
3∑

i=1

�∑
m=1

�∑
n=0

·
F3sin�m�x∗/L�sinn�∗ sin�m�x/L�sinn�

×sin�
t−�mni�

	hNmni�2�f �
�

(8.14.25)

The total solution is the addition of the two sets of solutions. Note that for
n �=0� Nmni�1�=Nmni�2�=Nmni. Needless to state that the 
mnl are the same
for the two solutions. Since

cosn�∗ sinn�−sinn�∗ cosn�=sinn��−�∗�

sinn�∗ sinn�+cosn�∗ cosn�=cosn��−�∗� (8.14.26)

we obtain, combining the solutions for all n,

ux =
3∑

i=1

�∑
m=1

�∑
n=0

·
F3�Amni/Cmni�sin�m�x∗/L�cos�m�x/L�cosn��−�∗�

×sin�
t−�mni�

	hNmnif �
�

(8.14.27)

u� =
3∑

i=1

�∑
m=1

�∑
n=0

·
F3�Bmni/Cmni�sin�m�x∗/L�sin�m�x/L�sinn��−�∗�

×sin�
t−�mni�

	hNmnif �
�

(8.14.28)
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u3 =
3∑

i=1

�∑
m=1

�∑
n=0

·
F3sin�m�x∗/L�sin�m�x/L�cosn��−�∗�

×sin�
t−�mni�

	hNmnif �
�
(8.14.29)

where

Nmni=




[(
Amni

Cmni

)2

+
(
Bmni

Cmni

)2

+1

]
La�

2
if n �=0

[(
Amni

Cmni

)2

+1

]
La� if n=0

(8.14.30)

8.15. INITIAL VELOCITY EXCITATION OF A SIMPLY
SUPPORTED CYLINDRICAL SHELL

A circular cylindrical shell structure (Fig. 15) attached to a stiff shaft
by simple supports of a kind that permits axial deflections but does not
permit tangential deflections at the supports (slot and key arrangement)
experiences an initial velocity because the entire system moves with a
velocity ẏ=−V when the shaft comes suddenly to rest. Measuring time
from this moment and neglecting gravitational sag (if the shell is in a
position other than vertical), the initial conditions become

ux�x���0� = 0� u̇x�x���0�=0 (8.15.1)

u��x���0� = 0� u̇��x���0�=−V cos� (8.15.2)

u3�x���0� = 0� u̇3�x���0�=−V sin� (8.15.3)

The boundary conditions are those of Sec.5.5; therefore, the natural
modes are gives by Eq. (5.5.87). Selecting �=0 and �=�/2n, we obtain

FIG. 15 Simply supported circular cylindrical shell that moves initially with a uniform
downward velocity.
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two sets of orthogonal modes:

Uxmni�1�=
Amni

Cmni

cos
m�x

L
cosn� (8.15.4)

U�mni�1�=
Bmni

Cmni

sin
m�x

L
sinn� (8.15.5)

U3mni�1�=sin
m�x

L
cosn� (8.15.6)

and

Uxmni�2� =
Amni

Cmni

cos
m�x

L
sinn� (8.15.7)

U�mni�2� = −Bmni

Cmni

sin
m�x

L
cosn� (8.15.8)

U3mni�2� = sin
m�x

L
sinn� (8.15.9)

From Eq. (8.2.8), we obtain for the first set of modes,

�k�0�=0 (8.15.10)

and

�̇k�0� = 1

Nk

∫ L

0

∫ 2�

0

[
�−V cos��

Bmni

Cmni

sin
m�x

L
sinn�

+�−V sin��sin
m�x

L
cosn�

]
ad�dx (8.15.11)

Because of the orthogonality of the integrals of cos� sinn� and sin�cosn�
for n≥1, and because for n=0 the integral of sinn� is 0, we obtain

�̇k�0�=0 (8.15.12)

This partial result simply indicates that modes not symmetric to the yx
plane cannot be excited.

For the second set of modes, again

�k�0� =0 (8.15.13)

�̇k�0� = 1

Nk

∫ L

k

∫ 2�

0

[
−�−V cos��

Bmni

Cmni

sin
m�x

L
cosn�

+�−V sin��sin
m�x

L
sinn�

]
ad�dx (8.15.14)
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This integral is 0 for n>1 and n=0, but for n=1, we obtain

�̇k�0� =−VL

m
�cosm�−1�

(
Bm1i

Cm1i

−1

)
1

Nk

= �̇m1i�0�

=


2VL

m

(
Bm1i

Cm1i

−1

)
1

Nk

� m=1�3�5����

0� m=0�2�4����
(8.15.15)

To evaluate N�, we only need to evaluate Eq. (8.1.15) for n=1 and
the second set of modes:

Nk =
∫ L

0

∫ 2�

0

[(
Am1i

Cm1i

)2

cos2
m�x

L
sin2�+

(
Bm1i

Cm1i

)2

sin2 m�x

L
cos2�

+sin2 m�x

L
sin2�

]
ad�dx

= aL�

2

[(
Am1i

Cm1i

)2

+
(
Bm1i

Cm1i

)2

+1

]
(8.15.16)

Normally, we would add the solutions due to the first set of modes to those
of the second set of modes. But it is 0 for the former and therefore we
obtain, utilizing Eq. (8.3.6) for subcritical damping, with zero forcing, and
Eq. (8.1.1)

ux�x���t� =
3∑

i=1

�∑
m=1�3�5�···

4Vfm1i

m�
e−�m1i
m1i t

sin�m1it

�m1i

Am1i

Cm1i

cos
m�x

L
sin�

(8.15.17)

u��x���t� =
3∑

i=1

�∑
m=1�3�5�···

4Vfm1i

m�
e−�m1i
m1i t

sin�m1it

�m1i

Bm1i

Cm1i

sin
m�x

L
cos�

(8.15.18)

u3�x���t� =
3∑

i=1

�∑
m=1�3�5�···

4Vfm1i

m�
e−�m1i
m1i t

sin�m1it

�m1i

sin
m�x

L
sin�

(8.15.19)

where

fm1i=
�Bm1i/Cm1i�−1

�Am1i/Cm1i�
2+�Bm1i/Cm1i�

2+1
(8.15.20)

In conclusion, we see that due to the symmetry of the problem about the
yx plane, only modes symmetric to this plane are excited, and of those only
the n=1 modes. That this is so can be explained by physical intuition if
one considers how the inertial effect would tend to deflect the shell.
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8.16. STATIC DEFLECTIONS

The static deflection is obtained from the step response of Eq. (8.6.4). It
may be written as

�k�t�=
F ∗
K


2
k

{
1− e−�1
k�t−t1�√

1−�2
k

cos��k�t−t1�−�k�

}
(8.16.1)

In steady state, oscillations will have decayed to

�k�t�=
F ∗
k


2
k

(8.16.2)

Thus the deflections due to static loading are, in general,

ui��1��2�=
�∑
k=1

F ∗
k


2
k

Uik��1��2� (8.16.3)

where

F ∗
k = 1

	hNk

∫
�2

∫
�1

�q1sU1k+q2sU2k+q3sU3k�A1A2d�1d�2 (8.16.4)

Nk =
∫
�2

∫
�1

�U 2
1k+U 2

2k+U 2
3k�A1A2d�1d�2 (8.16.5)

The static loads in the three directions are q1s�q2s, and q3s.

8.17. RECTANGULAR PLATE RESPONSE
TO INITIAL DISPLACEMENT CAUSED
BY STATIC SAG

A rectangular plate is held in an exactly horizontal position on simple
supports. The plate is then released, at t=0, with zero velocity. Since the
static equilibrium position is the static deflection caused by the weight of
the plate, the plate is initially displaced equal to the static deflection. What
is the subsequent oscillation about the static equilibrium position? The
positive direction is taken to be upward.

8.17.1. Static equilibrium position

At static equilibrium, Eq. (8.1.14) becomes


2
k�k=Fk (8.17.1)
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where, for the transverse deflection of a simply supported rectangular plate,

Nk =
∫ b

y=0

∫ a

x=0
U 2

3kdxdy=
∫ b

y=0

∫ a

x=0
sin2

(m�x

a

)
sin2

(n�y
b

)
dxdy= ab

4

(8.17.2)

Fk = 1

	hNk

∫ b

y=0

∫ a

x=0
q3U3kdxdy (8.17.3)

Since q3 is the distributed weight of the plate

q3=−	hg (8.17.4)

Thus

Fk = −4g

ab

∫ b

y=0

∫ a

x=0
sin

(m�x

a

)
sin

(n�y
b

)
dxdy

= − 4g

mn�2
�1−cosm���1−cosn�� (8.17.5)

Therefore,

�k=�mn=− 4g

mn�2
2
mn

�1−cosm���1−cosn�� (8.17.6)

and the static deflection is

u3s=− 4g

�2

�∑
m=1

�∑
n=1

�1−cosm���1−cosn��

mn 
2
mn

sin
(m�x

a

)
sin

(n�y
b

)
(8.17.7)

where 
nn=�2
[(

m
a

)2+(
n
b

)2]√ D
	h

8.17.2. Initial conditions with respect
to the static equilibrium position

The initial conditions are therefore (measured from the static equilibrium
u3s)

u3�x�y�0�=
4g

�2

�∑
m=1

�∑
n=1

�1−cosm���1−cosn��

mn 
2
mn

sin
(m�x

a

)
sin

(n�y
b

)
(8.17.8)

u̇3�x�y�0�=0 (8.17.9)
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This is converted into initial conditions of the modal participation factors
by eqs. (8.2.8) and (8.2.9):

�k�0� = �mn�0�=
1

Nmn

∫ b

y=0

∫ a

x=0
u3�x�y�0�sin

(m�x

a

)
sin

(n�y
b

)
dxdy

= 1

Nmn

(
4g

�2

)
�1−cosm���1−cosn��

mn 
2
mn

∫ b

y=0

∫ a

x=0
sin2

(m�x

a

)

×sin2
(n�y

b

)
dxdy (8.17.10)

or

��0�
mn=

4g

mn�2
2
mn

�1−cosm���1−cosn�� (8.17.11)

Also, we obtain

�̇k�0�= �̇mn�0�=0 (8.17.12)

8.17.3. Vibration response about the static equilibrium
condition

Assuming a subcritically damped plate, the modal participation factors
become, from eq. (8.3.6)

�k�t�=e−�k
kt

[
�k�0�cos�kt+�k�0��k
k

sin�kt

�k

]
(8.17.13)

or

�mn�t�=e−�mn
mnt�mn�0�

(
cos�mnt+

�mn√
1−�2

mn

sin�mnt

)
(8.17.14)

The solution is, therefore,

u3�x�y�t� =
�∑

m=1

�∑
n=1

�mn�t�U3mn�x�y�

= 4g

�2

�∑
m=1

�∑
n=1

�1−cosm���1−cosn��

mn 
2
mn

×e−�mn
mnt

(
cos�mnt+

�mn√
1−�2

mn

sin�mnt

)
sin

(m�x

a

)

×sin
(n�y

b

)
(8.17.15)

Note that for m�n = 2, 4, 6, ���.

�1−cosm���1−cosn��=0 (8.17.16)
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This means that only the symmetric modes (combinations of m�n = 1, 3,
5, ���) will participate in the solution, as one would expect because of the
symmetry of the initial condition.

8.18. THE CONCEPTS OF MODAL MASS,
STIFFNESS, DAMPING AND FORCING

We may write Eq. (8.1.14) in the form

	hNk�̈k+�Nk�̇k+
2
k	hNk�k=fk (8.18.1)

where Nk is defined by Eq. (8.1.15), and fk is

fk=
∫
�2

∫
�1

�q1U1k+q2U2k+q3U3k�A1A2d�1d�2 (8.18.2)

Since Eq. (8.18.1) is of the form of a one degree of freedom oscillator
equation, it has become customary to view this equation in terms of
modal mass, stiffness, damping, and forcing. Therefore, the so-called modal
mass is

Mk=	hNk (8.18.3)

the modal stiffness (spring rate) is

Kk=
2
k	hNk=
2

kMk (8.18.4)

and the modal forcing is defined by Eq. (8.18.2).
We may also think of a modal damping constant

Ck=�Nk (8.18.5)

If we define the mode components U1k�U2k�U3k as dimensionless ratios (we
have a choice—they can also be defined as displacements having units of
[m] as long as we are consistent), the unit of the modal mass is [kg], the
unit of the modal stiffness is [N/m] and the unit of the modal damping
constant is [Ns/m]. The modal forcing term is fk. The unit of the modal
forcing term is [N]. Therefore, Eq. (8.18.1) can be written as

Mk�̈k+Ck�̇k+Kk�k=fk (8.18.6)

Thus, the interpretation of the modal mass is that of an adjusted or
corrected mass of the structure for a particular mode, or an “equivalent"
mass. The same is true for the modal stiffness. It is an “equivalent" spring
rate.

Note again that here we have taken U1k�U2k�U3k as dimensionless
ratios; this means that �k has the dimension [m], even while the preference
of this author is to take U1k�U2k�U3k as having dimension [m], which will
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make �k dimensionless. (The product �kUik always has the dimension of
[m]).

It can be concluded that for structures with curvature, a correct
description of

Nk=
∫
�2

∫
�1

(
U 2

1k+U 2
2k+U 2

3k

)
A1A2d�1d�2 (8.18.7)

is important. One should not be tempted to ignore the contribution of U2k

and U1k when evaluating the transverse vibration response u3��1��2�t� for
example, unless they are truly negligible:

U2k�U3k and U1k�U3k (8.18.8)

Let us analyze the error that may be caused if we ignore the U1k and U2k

contributions. If, for a particular mode k,∫
�2

∫
�1

(
U 2

1k+U 2
2k

)
A1A2d�1d�2∫

�2

∫
�1
U 2

3kA1A2d�1d�2

=�k � (8.18.9)

we get

Nk=�1+�k�
∫
�2

∫
�1

U 2
3kA1A2d�1d�2 (8.18.10)

Equation (8.18.1) becomes

�̈k+
�

	h
�̇k+
2

k�k=
fk

	hNk

= fk
�1+�k�	h

∫
�2

∫
�1
U 2

3kA1A2d�1d�2

(8.18.11)

Thus, we can see that our calculated modal participation factor �k is
inversely proportional to �1+�k�:

�k∝
1

1+�k
(8.18.12)

For example, if �k �=0, but we take it as 0, our response will be larger by
the ratio �1+�k� to (1). For example, if �k=0�2, our error for the kth mode
participation will be 20%.

This type of error sometimes occurs, for example, when experiment-
ally obtained natural modes of structures with curvatures are to be used
in forced response calculations. Frequently, only the transverse mode
components are measured, and the tangential mode components are
ignored (either because they are very difficult to measure, or because they
are assumed away). The forced response calculations will than be based on
reduced modal masses.
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8.19. STEADY-STATE RESPONSE OF SHELLS
TO PERIODIC FORCING

The forcing is assumed here to be such that the spatial distribution does
not change in time, but its amplitude is periodic in time. While this covers
a large number of practical situations, it excludes cases where the spatial
distribution itself changes periodically with time. Here, it is assumed that
we may write

q1��1��2�t� = q∗
1��1��2�f �t� (8.19.1)

q2��1��2�t� = q∗
2��1��2�f �t� (8.19.2)

q3��1��2�t� = q∗
3��1��2�f �t� (8.19.3)

or in short

qi��1��2�t�=q∗
i ��1��2�f �t� (8.19.4)

where f �t� is a function that is periodic in time; see Fig. 16. The period T
of this periodic function is related to the frequency at which the function
repeats, �, by

T = 2�

�
(8.19.5)

Expressing the function f �t� as a Fourier series gives

f �t�=a0+
�∑
n=1

�an cosn�t+bn sinn�t� (8.19.6)

FIG. 16 Periodic forcing.
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where

a0 =
1

T

∫ T

0
f �t�dt (8.19.7)

an = 2

T

∫ T

0
f �t�cosn�tdt (8.19.8)

bn = 2

T

∫ T

0
f �t�sinn�tdt (8.19.9)

This allows us to write

qi��1��2�t�=q∗
i ��1��2�

[
a0+

�∑
n=1

�an cosn�t+bn sinn�t�

]
(8.19.10)

The solution due to the a0 constant is a constant static deflection about
which the oscillatory response takes place and is given by Eq. (8.16.3):

ui��1��2�=
�∑
k=1

F ∗
k a0


2
k

Uik��1��2� (8.19.11)

where from Eq. (8.16.4)

F ∗
k = 1

	hNk

∫
�2

∫
�1

�q∗
1��1��2�U1k+q∗

2��1��2�U2k+q∗
3��1��2�U3k�

×A1A2d�1d�2 (8.19.12)

and where Nk is given by Eq. (8.16.5). Also note that the F ∗
k term in

Eq. (8.16.4) is here replaced by F ∗
k a0, for convenience. The meaning is the

same.
The solution to each an cosn�t term is

ua
i ��1��2�t�=

�∑
k=1

�a
kn�t�Uik��1��2� (8.19.13)

and where, from Sec. 8.5, assuming subcritical damping for all modes,

�a
kn=�a

kn cos�n�t−�kn� (8.19.14)

Similarly, the solution to each bn sinn�t term is

ub
i ��1��2�t�=

�∑
k=1

�b
kn�t�Uik��1��2� (8.19.15)

where

�b
kn=�b

kn sin�n�t−�kn� (8.19.16)

The superscripts a and b define the solutions to the an cosn�t and
bn sinn�t terms.
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The amplitudes and phase lags of the model participation factors are,
for the �a

kn set,

�a
kn = F ∗

k an


2
k

√[
1−

(
n�

k

)2
]2

+4�2
k

(
n�

k

)2

(8.19.17)

�kn = tan−1
2�k

(
n�

k

)
1−

(
n�

k

)2
(8.19.18)

and for the �b
kn set,

�b
kn=

F ∗
k bn


2
k

√[
1−

(
n�

k

)2
]2

+4�2
k

(
n�

k

)2

(8.19.19)

with �kn of Eq. (8.19.18) being the same for both sets.
Thus, the total solution is

ui��1��2�t�=
�∑
k=1

F ∗
k a0


2
k

Uik��1��2�+
�∑
k=1

�∑
n=1

(
�a
kn�t�+�b

kn�t�
)
Uik��1��2�

(8.19.20)

or, in expanded form,

ui��1��2�t� =
�∑
k=1

F ∗
k a0


2
k

Uik��1��2�+
�∑
k=1

�∑
n=1

×F ∗
k �an cos�n�t−�kn�+bn sin�n�t−�kn��Uik��1��2�


2
k

√[
1−

(
n�

k

)2
]2

+4�2
k

(
n�

k

)2

(8.19.21)

where �kn is given by Eq. (8.19.18) and F ∗
k is given by Eq. (8.19.12).

Resonance occurs whenever

n�=
k (8.19.22)

where u=1�2�3������. This is the reason that for many types of
rotating machinery, for example, reciprocating piston machines such as
compressors that have a shaft speed of � [rad/sec], with most higher
harmonics present in the periodic, mechanical excitation due to the
kinematics, resonance in shell-like housings or other structural elements
are often difficult to avoid.
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8.20. PLATE RESPONSE TO A PERODIC
SQUARE WAVE FORCING

As an example that illustrates the reduction of the general shell response
to periodic forcing described in Sec. 8.19 to the special case of plates,
we consider a uniformly distributed pressure load on a simply supported,
rectangular plate that varies in time according to Fig. 17, A being the
amplitude of the square wave:

q3�x�y�t�=q∗
3�x�y�f �t� (8.20.1)

where q∗
3�x�y�=I and where

f �t�=a0+
�∑

p=1

�ap cosp�t+bp sinp�t� (8.20.2)

In the Fourier series of Eq. (8.19.6), n is here replaced by p in order to
avoid confusion with the mode identification number n�k=mn�. For the
square wave shown in Fig. 17,

a0=
1

T

∫ T

0
f �t�dt= 1

T

∫ T1

0
Adt=A

T1

T
= A�T1

2�
(8.20.3)

ap=
2

T

∫ T

0
f �t�cos�p�t�dt= 2

T

∫ T1

0
Acos�p�t�dt= A

�p
sinp�T1

(8.20.4)

bp=
2

T

∫ T

0
f �t�sin�p�t�dt= 2

T

∫ T1

0
Asin�p�t�dt= A

�p
�1−cosp�t�

(8.20.5)

FIG. 17 Example of Periodic forcing.
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For a simply supported plate,

U3k=U3mn=sin
m�x

a
sin

n�y

b
(8.20.6)

and


k=
mn=�2

[(m
a

)2+
(n
b

)2
]√

D

	h
(8.20.7)

Furthermore,

F ∗
k =F ∗

mn=
1

	hNmn

∫ a

0

∫ b

0
sin

(m�x

a

)
sin

(n�y
b

)
dxdy (8.20.8)

where

Nmn=
∫ a

0

∫ b

0
sin2

(m�x

a

)
sin2

(n�y
b

)
= ab

4
(8.20.9)

so that

F ∗
k =F ∗

mn=
4

	hmn�2
�1−cosm���1−cosn�� (8.20.10)

Therefore, Eq. (8.19.21) becomes, for i=3:

u3�x�y�t�

= 4A

	h�2




�∑
m=1

�∑
n=1

�1−cosm���1−cosn��

mn
sin

m�x

a
sin

n�y

b




�T1

2�
2
mn

+
�∑

p=1

sinp�T1

�p
cos�p�t−�mnp�+

�1−cosp�t�

�p
sin�p�t−�mnp�


2
mn

√[
1−

(
p�


mn

)2
]2

+4�2
mn

(
p�


mn

)2







(8.20.11)

where

�mnp= tan−1
2�mn

(
p�


mn

)
1−

(
p�


mn

)2
(8.20.12)

Because of the uniform load distribution, only modes where m=1�3�5����
and n=1�3�5���� participate in the solution.
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8.21. BEATING RESPONSE TO STEADY STATE
HARMONIC FORCING

To illustrate beating, the example of a rectangular, undamped, simply
supported plate is used. Let the plate be excited by two harmonic point
forces as shown in Fig. 18. The excitation frequencies 
1 and 
2 are
relatively close to each other.

Solving the problem one force at a time, the response to point force
F1 sin
1t is

u3�x�y�t�=A1�x�y�sin
1t (8.21.1)

where

A1�x�y�=
4F1

	hab

�∑
m=1

�∑
n=1

sin
m�x

a
sin

n�y

b
sin

m�x1
a

sin
n�y1
b


2
mn−
2

1

(8.21.2)

The steady-state response to point force F2sin
2t is

u3�x�y�t�=A2�x�y�sin
2t (8.21.3)

where

A2�x�y�=
4F2

	hab

�∑
m=1

�∑
n=1

sin
m�x

a
sin

n�y

b
sin

m�x2
a

sin
n�y2
b


2
mn−
2

2

(8.21.4)

FIG. 18 Steady state forcing of a rectangular plate that will produce beating.
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The total solution to both forces is, therefore,

u3�x�y�t�=A1 sin
1t+A2 sin
2t (8.21.5)

This equation can also be written as (using 
1 as carrier frequency)

u3�x�y�t�=U3�x�y�sin�
1t+�� (8.21.6)

where

U3�x�y�=
√
A2

1+A2
2+2A1A2 cos�
2−
1�t (8.21.7)

� = tan−1

[
A2sin�
2−
1�t

A1+A2 cos�
2−
1�t

]
(8.21.8)

Equation (8.21.6) is a beating response. The amplitude of the sine wave
of frequency 
1 is modulated according to Eq. (8.21.7). The maximum
modulation amplitude occurs when

cos�
2−
1�t=1 (8.21.9)

or when

t= 2n�


2−
1

� n=1�2���� (8.21.10)

In this case,

U3�x�y�max=A2+A1 (8.21.11)

The minimal modulation amplitude occurs when

cos�
2−
1�t=−1 (8.21.12)

or when

t= �2n+1��


2−
1

� n=1�2���� (8.21.13)

In this case,

U3�x�y�min=A2−A1 (8.21.14)

The period of the beat frequency (from maximum modulation amplitude to
the next maximum modulation amplitude) is

TBeat=
2�


2−
1

(8.21.15)

or the beat (modulation) frequency in [rad/sec] is

�Beat=
2−
1 (8.21.16)

The closer the two excitation frequencies 
2 and 
1 are to each other, the
lower is the frequency of beating. Of course, when 
1=
2, then �Beat=0.
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When 
2 and 
1 are not close to each other, the beat frequency becomes
unrecognizable and is just a part of the regular response.

Beating can be relatively annoying from an acoustic viewpoint, and
occurs, for example, if structures support two or more pieces of rotating
machinery whose rotation speeds are not quite synchronized (for example,
in aircraft).

The most severe beating in terms of modulation amplitude change
occurs when

A1=A2=A (8.21.17)

which gives

U3�x�y�max=2A (8.21.18)

and

U3�x�y�min=0 (8.21.19)

Beating can also occur after impact on a structure when exciting pairs
of natural modes whose natural frequencies are close to each other.
It is interesting to note that ancient oriental bells (Korea, China, etc.)
were designed to have a beating response, either because of aesthetic or
signaling reasons; see Kim et al. (1994).
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9

Dynamic Influence
(Green’s) Function

The dynamic influence function of a shell describes the response of each
point of the shell to a unit impulse applied at some other point. For simple
structures, such as transversely vibrating beams, the influence function may
be unidirectional. That is, the unit impulse is applied in the transverse
direction and the response is in the transverse direction. Also for plates,
where the in-plane response is uncoupled from the transverse response for
small oscillations, a unidirectional dynamic influence function is applicable
to the transverse vibration problem. However, in shell dynamics, coupling
between the transverse response and the response in planes tangential
to the shell surface has to be considered. Thus a unit impulse applied
transversely at a point produces a response in two principal tangential
directions as well as in the transverse direction at any point of the shell.
The same is true for unit impulses applied tangentially to the shell in
the two principal directions. Thus, to be complete, the dynamic influence
function for the general shell case has to have nine components. It can be
viewed as a field of response vectors due to unit impulse vectors applied at
each point of the shell.

Note that the dynamic influence function is a Green’s function and
is often referred to as the dynamic Green’s function of the shell. The
following development follows the approach taken in Wilken and Soedel
(1971).

256
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9.1. FORMULATION OF THE INFLUENCE FUNCTION

A unit impulse applied at location ��∗
1��

∗
2� at time t∗ in the direction of �1

may be expressed as

q1��1��2�t� =
1

A1A2

���1−�∗
1����2−�∗

2���t−t∗� (9.1.1)

q2��1��2�t� = 0 (9.1.2)

q3��1��2�t� = 0 (9.1.3)

This will produce a displacement response of the shell with the three
components

u1��1��2�t� = G11��1��2�t��
∗
1��

∗
2�t

∗� (9.1.4)

u2��1��2�t� = G21��1��2�t��
∗
1��

∗
2�t

∗� (9.1.5)

u3��1��2�t� = G31��1��2�t��
∗
1��

∗
2�t

∗� (9.1.6)

The symbol Gij signifies Green’s function and represents the response in
the i direction at �1��2�t to a unit impulse in the j direction at �∗

1��
∗
2�t

∗.
Equations (8.1.2)–(8.1.5) become

L1�G11�G21�G31�−�Ġ11−�hG̈11

=− 1

A1A2

���1−�∗
1����2−�∗

2���t−t∗� (9.1.7)

L2�G11�G21�G31�−�Ġ21−�hG̈21=0 (9.1.8)

L3�G11�G21�G31�−�Ġ31−�hG̈31=0 (9.1.9)

Next, applying a unit impulse to the shell at location ��∗
1��

∗
2� at time

t∗ in the �2 direction, we obtain G12�G22�G32 from the equations

L1�G11�G22�G32�−�Ġ12−�hG̈12=0 (9.1.10)

L2�G12�G22�G32�−�Ġ22−�hG̈22

=− 1

A1A2

���1−�∗
1����2−�∗

2���t−t∗� (9.1.11)

L3�G12�G22�G32�−�Ġ32−�hG̈32=0 (9.1.12)

We may formulate the equations for G13�G23�G33 similarly. All nine
equations may be written in short notation:

Li�G1j �G2j �G3j�−�Ġij−�hG̈ij

=− �ij

A1A2

���1−�∗
1����2−�∗

2���t−t∗� (9.1.13)
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where i�j=1�2�3 and where

�ij=
{
1� i=j
0� i �=j

(9.1.14)

Assuming that it is always possible to obtain the natural frequencies
and modes of any shell, plate, and so on, we may use modal expansion
analysis to find the Gij components. For instance, the solution of
Eqs. (9.1.7)–(9.1.9)

Gi1��1��2�t��
∗
1��

∗
2�t

∗�=
�∑
k=1

	1k�t��
∗
1��

∗
2�t

∗�Uik��1��2� (9.1.15)

We formulate Gi2 and Gi3 similarly. In general, the solution to Eq. (9.1.13)
is

Gij��1��2�t��
∗
1��

∗
2�t

∗�=
�∑
k=1

	jk�t��
∗
1��

∗
2�t

∗�Uik��1��2� (9.1.16)

where i�j=1�2�3. The term 	jk is the modal participation factor of the
kth mode due to a unit impulse in the j direction. Note that all influence
function components will automatically satisfy all boundary conditions that
the natural modes satisfy.

Substituting Eq. (9.1.16) in Eq. (9.1.13) and proceeding in the usual
way gives

	̈jk+2
k�k	̇jk+�2
k	jk=Fjk�t��

∗
1��

∗
2�t

∗� (9.1.17)

where

Fjk�t��
∗
1��

∗
2�t

∗�= 1

�hNk

Ujk��
∗
1��

∗
2���t−t∗� (9.1.18)

and where Nk is given by Eq. (8.1.15). Confining ourselves to the subcritical
damping case in the following, we solve for 	jk and obtain, for t≥ t∗,

	jk=
U�t−t∗�
�hNk�k

Ujk��
∗
1��

∗
2�e

−
k�k�t−t∗�sin�k�t−t∗� (9.1.19)

Note that 	jk=0 when t<t∗. To keep track of this causality the unit
step function U�t−t∗� was introduced. The dynamic influence function is
obtained by substituting Eq. (9.1.19) in Eq. (9.1.16):

Gij��1��2�t��
∗
1��

∗
2�t

∗�= 1

�h

�∑
k=1

Uik��1��2�Ujk��
∗
1��

∗
2�S�t−t∗�

Nk

(9.1.20)

where for subcritical damping,

S�t−t∗�= 1

�k

e−
k�k�t−t∗�sin�k�t−t∗�U�t−t∗� (9.1.21)
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Equation (9.1.20) is also valid for the other damping cases. For critical
damping, it is

S�t−t∗�=�t−t∗�e−�k�t−t∗�U �t−t∗� (9.1.22)

For supercritical damping, it is

S�t−t∗�= 1


k

e−
k�k�t−t∗�sinh
kU�t−t∗� (9.1.23)

Note that in Eq. (9.1.20), we may interchange �∗
1 and �∗

2 and �1 and �2

and prove that

Gij��1��2�t��
∗
1��

∗
2�t

∗�=Gji��
∗
1��

∗
2�t��1��2�t

∗� (9.1.24)

This also follows, of course, from the Maxwell reciprocity theorem.

9.2. SOLUTION TO GENERAL FORCING USING
THE DYNAMIC INFLUENCE FUNCTION

From physical reasoning, the response in the i direction has to be equal to
the summation in space and time of all loads in the �1 direction multiplied
by Gi1, plus all loads in the �2 direction multiplied by Gi2, plus all loads in
the normal direction multiplied by Gi3. This superposition reasoning leads
immediately to the solution integral

ui��1��2�t� =
∫ t

0

∫
�2

∫
�1

3∑
j=1

Gij��1��2�t��
∗
1��

∗
2�t

∗�qj��
∗
1��

∗
2�t

∗�

×A∗
1A

∗
2d�

∗
1d�

∗
2dt

∗ (9.2.1)

Let us prove that this is true. Let us substitute Eq. (9.1.20) in
Eq. (9.2.1). This gives

ui��1��2�t� =
�∑
k=1

Uik��1��2�

�hNk

∫ t

0

∫
�1

∫
�2

3∑
j=1

Ujk��
∗
1��

∗
2�

×qj��
∗
1��

∗
2�t

∗�S�t−t∗�·A∗
1A

∗
2d�

∗
1d�

∗
2dt

∗ (9.2.2)

This expression is identical to the general modal expansion solution for
zero initial conditions. From Eqs. (8.1.1),(8.3.2), and (8.3.6), we get

ui��1��2�t� =
�∑
k=1

Uik��1��2�

�hNk

∫ t

0

∫
�1

∫
�2

3∑
j=1

Ujk��1��2�qj��1��2���

×S�t−��A1A2d�1d�2d� (9.2.3)

where S�t−�� is identical to S�t−t∗�except that t∗ is replaced by � .
However, we recognize that the integration variables are interchangeable.
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We may set �1=�∗
1, �2=�∗

2, �= t∗ without changing the result of the
integration. This proves that Eqs. (9.2.2) and (9.2.3) are identical and
that Eq. (9.2.1) is the general solution in terms of the dynamic influence
function.

9.3. REDUCED SYSTEMS

The total definition of the dynamic influence function for a shell requires
in general nine components. For reduced systems, we do not need as many
because of the uncoupling of the governing equations. For the in-plane
vibration of a plate, we need only

�Gij�=

G11 G12 0
G21 G22 0
0 0 0


 (9.3.1)

and for the transverse vibration of a plate

�Gij�=

0 0 0
0 0 0
0 0 G33


 (9.3.2)

The components G13, G23, G31, G32 do not exist because an excitation
in the �1 or �2 direction does not produce a response in the transverse
direction, and vice versa, at least according to the linear approximation.

This means that for in-plane vibration,

Gij=
1

�h

�∑
k=1

1

N12k

Ujk��
∗
1��

∗
2�Ujk��1��2�S�t−t∗� (9.3.3)

where i�j=1�2 and

N12k=
∫
�2

∫
�1

�U 2
1k+U 2

2k�A1A2d�1d�2 (9.3.4)

The solution for a general load is

ui =
∫ t

0

∫
�2

∫
�1

�Gi1q1��
∗
1��

∗
2�t

∗�

+Gi2q2��
∗
1��

∗
2�t

∗��A∗
1A

∗
2d�

∗
1d�

∗
2dt

∗ (9.3.5)

For transverse vibrations

G33=
1

�h

�∑
k=1

1

N3k

U3k��
∗
1��

∗
2�U3k��1��2�S�t−t∗� (9.3.6)

where

N3k=
∫
�2

∫
�1

U 2
3kA1A2d�1d�2 (9.3.7)
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The solution for general transverse loads is

u3=
∫ t

0

∫
�2

∫
�1

G33q3��
∗
1��

∗
2�t

∗�A∗
1A

∗
2d�

∗
1d�

∗
2dt

∗ (9.3.8)

Another interesting case is the ring, where we have

�Gij�=

G11 0 G13

0 0 0
G31 0 G33


 (9.3.9)

where

Gij =
1

�h

�∑
k=1

1

Nk

Ujk��
∗�Uik���S�t−t∗� (9.3.10)

Nk = ba
∫ �

0
�U 2

1k+U 2
3k�d� (9.3.11)

and where b is the width of the ring, a is the radius, and � defines the size
of the segment. The general solution is

ui=ba
∫ t

0

∫ �

0
�Gi1q1��

∗�t∗�+Gi3q3��
∗�t∗��d�∗dt∗ (9.3.12)

9.4. DYNAMIC INFLUENCE FUNCTION FOR
THE SIMPLY SUPPORTED SHELL

For the case treated in Chapter 5 that has simply supported ends and no
axial end restraints the natural modes are ��1=x, �2=��

U1k�x��� = Amnpcos
m�x

L
cosn��−�� (9.4.1)

U2k�x��� = Bmnpsin
m�x

L
sinn��−�� (9.4.2)

U3k�x��� = Cmnpsin
m�x

L
cosn��−�� (9.4.3)

where m=1�2����, n=0�1�2����, and p=1�2�3. The index k implies again
a certain combination of m�n� and p. We remember from Sec. 5.5 that
for any m�n combination there are three natural frequencies and mode
combinations.

The angle � is again arbitrary and indicates the nonpreferential
nature of the modes of free vibration of the closed axisymmetric shell. For
the sake of identifying orthogonal modes that can be used to define the
response as function of �, one set of modes may be formed by letting �=0
and a second set by letting n�=�/2.
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The n=0 modes are axisymmetric. For n=0 and �=0, only the
mode components that have axial and transverse motion exist, namely U1k

and U3k. For n=0 and n�=�/2, this is reversed and only U2k exists. The
value of Nk becomes

Nk=Nmnp=




aL�

2
�A2

mn�+B2
mnp+C2

mnp�� n �=0

aL��A2
m0p+C2

m0p�� n=0� �=0
aL�B2

m0p� n=0� �=�/2n

(9.4.4)

Components of the influence function may be found simply by substituting
in Eq. (9.1.20). For example, the component describing the transverse
response to a transverse impulse is

G33�x���t�x
∗��∗�t∗�

= 1

�h

�∑
m=1

�∑
n=0

3∑
p=1

∑
n�=0��/2

1

Nmnp

C2
mnpsin

m�x

L
sin

m�x∗

L

×cosn��−��cosn��∗−��S�t−t∗� (9.4.5)

The angle � and its associated summation may be eliminated from
Eq. (9.4.5) and from the other components of this influence function by
noting that each component contains the sum of two products of sine or
cosine functions when the summation over � is written out. For example,
G33 contains the term

cosn�cosn�∗+cos
(
n�−�

2

)
cos

(
n�∗−�

2

)
(9.4.6)

This term may be reduced by trigonometric identities to cosn��−�∗�. For
G32, for instance, the corresponding term (and its reduction) is

cosn�sinn�∗+cos
(
n�−�

2

)
sin

(
n�∗−�

2

)
=sinn��∗−�� (9.4.7)

On the other hand, for G23, the corresponding term is

sinn�cosn�∗+sin
(
n�−�

2

)
cos

(
n�∗−�

2

)
=−sinn��∗−�� (9.4.8)

The three-directional dynamic influence function for a thin cylindrical
shell with simply supported ends is then

Gij=
1

�h

�∑
m=1

�∑
n=0

3∑
p=1

1

Nmnp

AijS�t−t∗� (9.4.9)

where

A11 = A2
mnpcos

m�x

L
cos

m�x∗

L
cosn��−�∗�

A12 = AmnpBmnpcos
m�x

L
sin

m�x∗

L
sinn��∗−��
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A13 = AmnpCmnpcos
m�x

L
sin

m�x∗

L
cosn��−�∗�

A21 = BmnpAmnpsin
m�x

L
cos

m�x∗

L
sinn��−�∗�

A22 = B2
mnpsin

m�x

L
sin

m�x∗

L
cosn��−�∗�

A23 = BmnpCmnpsin
m�x

L
sin

m�x∗

L
sinn��−�∗�

A31 = CmnpAmnpsin
m�x

L
cos

m�x∗

L
cosn��−�∗�

A32 = CmnpBmnpsin
m�x

L
sin

m�x∗

L
sin��∗−��

A33 = C2
mnpsin

m�x

L
sin

m�x∗

L
cosn��−�∗�

(9.4.10)

and where for subcritical damping, for instance, S�t−t∗� is given by Eq.
(9.1.21). The solution to any other type of loading is now given by the
integral of Eq. (9.2.1). Note that

Aij�x���x
∗��∗�=Aji�x

∗��∗�x��� (9.4.11)

This verifies Eq. (9.1.24).

9.5. DYNAMIC INFLUENCE FUNCTION
FOR THE CLOSED CIRCULAR RING

If we assume that the ring deforms only in its plane, the modes obtained
in Sec. 5.3 apply. They are ��1=��A1=a�k=n�

U1k��� = Vnpsinn��−�� (9.5.1)

U3k��� = Wnpcosn��−�� (9.5.2)

where n=0�1�2���� and p=1�2� and where k implies a combination of n
and p. As seen in Sec. 5.3, for any n number, there exist two separate
natural frequencies and mode combinations. In one case, the motion is
primarily circumferential and in the other case primarily transversal.

According to Eq. (9.3.11), we obtain

Nk=Nnp=



ab��V 2

np+W 2
np�� n �=0

2ab�W 2
0p� n=0� �=0

2ab�V 2
0p� n=0� �=�/2n

(9.5.3)
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The four components of the dynamic influence function become
�i�j=1�3�

Gij=
1

�h

�∑
n=0

2∑
p=1

1

Nnp

AijS�t−t∗� (9.5.4)

where
A11 = V 2

npcosn��−�∗�

A13 = VnpWnpsinn��−�∗�

A31 = VnpWnpsinn��
∗−��

A33 = W 2
npcosn��−�∗�

(9.5.5)

This dynamic influence function automatically includes the rigid rotating
mode, which is described by n=0 and n�=�/2 and also the rigid
translating mode, which is described by n=1 and n�=0.

9.6. TRAVELING POINT LOAD ON SIMPLY
SUPPORTED CYLINDRICAL SHELL

In general, the advantage of the dynamic influence function in the analysis
of structures is that once the function is known, the structure is defined and
an infinite variety of loading combinations can be treated by a relatively
simply integration process.

One application for which the dynamic influence function is
particularly useful is the traveling load. Early investigations of traveling
loads were made by Krylov and Timoshenko, see Timoshenko (1953),
who were concerned with the response of railroad bridges to traveling
locomotives. The problem surfaced in Russia before World War I when
trains started to travel with high speeds over bridges that were designed
for static loads only. Kryloff and Timoshenko used modal expansion
without using an influence function approach, but the formulation of such
a problem in terms of the dynamic influence function is particularly simple.
One of the first to use this technique was Cottis (1965), who calculated the
response of a shell to a traveling pressure wave.

Let us as example assume that a force of constant magnitude travels
along a �=� line in the positive x direction with constant velocity v,
touching the shell surface at �x���=�0��� at t=0 and leaving it at �x���=
�L��� at t=L/v. This is sketched in Fig. 1 Physically, this is a very rough
approximation of the action of a piston on a cylinder liner.

Since this example falls into the category of loads moving along a
coordinate line, we may express the load as

q1=q2=0 (9.6.1)
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FIG. 1 Circular cylindrical shell with a constant force F that travels in axial direction.

q3�x���t�=
F

a
���−����x−vt��1−U�vt−L�� (9.6.2)

since the instantaneous position is x=vt in this case. The solution is given
by Eq. (9.2.1), with Gij for the simply supported shell given by Eq. (9.4.9).
For zero initial conditions, this results in

ui�x���t� =
F

�h

�∑
k=1

∫ t

0

∫ L

0

∫ 2�

0

1

Nk

Ai3S�t−t∗����∗−����x∗−vt∗�

×�1−U�vt∗−L��d�∗dx∗dt∗ (9.6.3)

This gives



u1

u2

u3


 = F

�h

�∑
k=1

1

�kNk




AkCk cos
m�x

L

BkCk sin
m�x

L

C2
k sin

m�x

L



∫ 2�

0



cosn��−�∗�
sinn��−�∗�
cosn��−�∗�




×���∗−��d�∗
∫ t

0
�1−U�vt∗−L��e−
k�k�t−t∗�

×sin�k�t−t∗�
∫ L

0
sin

m�x∗

L
��x∗−vt∗�dx∗dt∗ (9.6.4)

Evaluating the integrals one by one results in

∫ 2�

0



cosn��−�∗�
sinn��−�∗�
cosn��−�∗�


���∗−��d�∗=



cosn��−��
sinn��−��
cosn��−��


 (9.6.5)

∫ L

0
sin

m�x∗

L
��x∗−vt∗�dx∗=sin

m�vt∗

L
(9.6.6)
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Let us now solve the time integral. If 0≤vt<L, the gate function is
�1−U�vt−L��=1 and the integral becomes∫ t

t∗=0
F�t∗�t��1−U�vt∗−L��dt∗=

∫ t

t∗=0
F�t∗�t�dt∗ (9.6.7)

If vt≥L, the gate function is 0 and the integral becomes∫ t

t∗=0
F�t∗�t��1−U�vt∗−L��dt∗=

∫ L/v

t∗=0
F�t∗�t�dt∗ (9.6.8)

Thus, we get, for the time the load is on the shell,

Ik�t� =
∫ t

0
e−ak�t−t∗� sin�k�t−t∗�sin�t∗dt∗

= 1

2�a4
k+2a2

k��
2+�2

k�+��2−�2
k�

2�

×��e−�kt��k sin�kt+ak cos�kt�−ak cos�t−�k sin�t��a
2
k+	2

k�

+�0e−�kt�	k sin�kt−ak cos�kt�+ak cos�t+	k sin�t��a
2
k+�2

k ��

(9.6.9)

where

�=m�v

L
(9.6.10)

ak=
k�k (9.6.11)

�k=�−�k (9.6.12)

	k=�+�k (9.6.13)

During the time the load is traveling on the shell �0≤vt<L�, the response
of the shell is



u1

u2

u3


= F

�h

�∑
k=1

1

�kNk




AkCk cos
m�x

L
cosn��−��

BkCk sin
m�x

L
sinn��−��

C2
k sin

m�x

L
cosn��−��



Ik�t� (9.6.14)

When the load has left the shell �L≤vt��Ik�t� is replaced by Ik�L/v�t�

Ik�L/v�t�=
∫ L/v

t∗=0
e−ak�t−t∗� sin�k�t−t∗�sin�t∗dt∗ (9.6.15)

This integral will give a decaying motion of the shell and will not be
evaluated here, since it is of no particular interest.
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What is of more interest is what happens as the load is traversing the
shell. We see from the denominator of Ik�t� that we will have a developing
resonance whenever

�=�k (9.6.16)

which means that all traversing velocities, setting �k≈�k for small
damping,

v= L�k

m�
(9.6.17)

have to be avoided.
Another way of looking at it is to recognize that the time it takes for

the moving load to traverse the shell is

T = L

v
(9.6.18)

and that � can be looked upon as an excitation frequency. Thus the period
of excitation is

T�=
2

m
T (9.6.19)

This means that if it takes the load T seconds to traverse the shell, the
periods of possible resonance are 2T�T �2/3T�2/4T , and so on, provided
that any of the resonance periods

Tk=
2�

�k

(9.6.20)

agree with these values.

9.7. POINT LOAD TRAVELING AROUND A
CLOSED CIRCULAR CYLINDRICAL SHELL
IN CIRCUMFERENTIAL DIRECTION

This case will demonstrate another interesting resonance phenomenon.
The traveling load is described in this case by

q1=q2=o (9.7.1)

q3�x���t�=
F

a
��x−�����−�t� (9.7.2)

where � is the angular velocity of load travel. The load travels continuously
around the shell as shown in Fig. 2. For zero initial conditions, we obtain

ui�x���t� =
F

ph

�∑
k=1

∫ t

0

∫ L

o

∫ 2�

0

1

Nmnp

Ai3S�t−t∗���x∗−��

×���∗−�t∗�d�∗dx∗dt∗ (9.7.3)
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FIG. 2 Circular cylindrical shell with a constant force F that travels in circumferential
direction.

This gives, with A13�A23, and A33 given by Eq. (9.4.10),



u1

u2

u3


= F

�h

�∑
k=1

1

�kNk




AkCk cos
m�x

L

BkCk sin
m�x

L

C2
k sin

m�x

L


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sin

m��

L

∫ t

0
e−ak�t−t∗� sin�k�t−t∗�



cosn��−�t∗�
sinn��−�t∗�
cosn��−�t∗�


dt∗ (9.7.4)

Let us single out for further discussion the transverse response u3. The
integral becomes

Jk�t� =
∫ t

0
e−ak�t−t∗� sin�k�t−t∗�cosn��−�t∗�dt∗

= Yk cos�n��−�t�−�k�+e−aktTk�t� (9.7.5)

where

Yk=
√
a2
k��

2
k−	2

k�
2+�	k�a

2
k+�2

k �−�k�a
2
k+	2

k��
2

2�a4
k+2a2

k�n
2�2+�2

k�+�n2�2−�2
k�

2�
(9.7.6)

�k= tan−1 ak��
2
k−	2

k�

	k�a
2
k+�2

k �−�k�a
2
k+	2

k�
(9.7.7)

Tk�t�=
ak sin�n�−�kt�+�k cos�n�−�kt�

2�a2
k+�2

k �

− ak sin�n�+�kt�+	k cos�n�+�kt�

2�a2
k+	2

k�
(9.7.8)
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and where

�k=n�−�k (9.7.9)

	k=n�+�k (9.7.10)

ak=�k�k (9.7.11)

The transient term due to the sudden onset of travel at t=0 disappears with
time. Of primary interest is the steady-state part of the solution. Examining
the denominator of the response amplitude Yk, we observe a resonance
condition that exists whenever

�= �k

n
(9.7.12)

For small damping, �k≈�k. Therefore, the first critical speed �c occurs
when

�c=
(�k

n

)
min

(9.7.13)

This can be illustrated, for example, by the shell described in Sec. 5.5,
for which natural frequencies were obtained. The lowest set of �k occurs
when m=1. Thus we plot �ln/n as a function of n in Fig. 3 and obtain, as
the minimum value, �c=1800 rad/s at n=5. This is the rotational speed at
which the first resonance occurs. Below this speed, we have no resonance.
Above this speed, other resonances occur.

FIG. 3 Illustration of the critical speed of a constant force that travels with constant
velocity in circumferential direction.
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Another interesting result is indicated by Eq. (9.7.5). An observer
who travels alongside the traveling load will, in steady state, see standing
wave forms only and will not see an oscillation. These waves are quasi-
static with respect to the load, but an observer located on the shell surface
will experience oscillations.

These results can be shown to be true for all closed shells of
revolution when loads travel in a circumferential direction. In Soedel
(1975) these effects were shown to exist for an automobile tire rolling
on a smooth surface. The tire was treated as a shell of revolution,
nonhomogeneous and nonisentropic. The contact-region pressure resultant
was in this case the traveling load. Critical rolling speeds for typical
passenger car tires were predicted to occur at about 140km/h, which
agreed well with experimental observation.

Note also that when the critical speed is reached, the mode that
dominates the response is not the simplest mode (by simplest the n=0 or
n=1 mode is meant), but for the example treated here, is the n=5 mode,
in combination with neighboring modes. The wave crest is not necessarily
directly under the traveling load but may lag or lead the load depending on
the damping and the modal participation.

A physical interpretation of the critical speed formula is given by
Fig. 4. If we consider as an example the n=3 mode, we sense intuitively
that the shell will go into resonance if the load can travel from point A to
point B (the distance AB is the wavelength �) in the same time that it takes
the mode to go through one oscillation. The time of travel from A to B is

T = �

�a
(9.7.14)

However, the wavelength is given by

�= 2�a

n
(9.7.15)

FIG. 4 Physical interpretation of the critical speed resonance.
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Thus

T = 2�

n�
(9.7.16)

Equating this with the period of oscillation,

T = 2�

�k

(9.7.17)

gives as the resonance condition

�= �k

n
(9.7.18)

9.8. STEADY-STATE HARMONIC
GREEN’S FUNCTION

In many applications, it is an advantage to formulate the steady-state
response at one point due to a harmonic point load at another. This
concept is similar to that of the true Green’s or influence function, except
that one is dealing now with a harmonic influence function. The loading
due to a harmonic unit point force in the j direction can in general be
described by use of the Kronecker delta:

qi��1��2�t�=
�ij

A1A2

���1−�∗
1����2−�∗

2�e
j�t (9.8.1)

This will produce a steady-state harmonic displacement response of the
shell that can be written

ui��1��2�t�=Tij��1��2��
∗
1��

∗
2���e

j�t (9.8.2)

where Tij will be a complex number if damping is present in the shell
because of the expected phase lag. The symbol Tij��1��2��

∗
1��

∗
2��� signifies

a steady-state harmonic response function and represents the complex
response amplitude in the i direction at location �1��2 due to a harmonic
unit point load at frequency � in the j direction at locations �∗

1 and �∗
2.

By modal expansion, the solution is given by

ui��1��2�t�=
�∑
k=1

	ik�t�Uik��1��2� (9.8.3)

where, from Sec. 8.5,

	ik=�ke
j��t−�k� (9.8.4)

and where

�k=
F ∗
k

�2
k

√
�1−��/�k�

2�2+4
2
n ��/�k�

2
(9.8.5)
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�k= tan−1 2
k��/�k�

1−��/�k�
2

(9.8.6)

F ∗
k =

1

�hNk

Ujk��
∗
1��

∗
2� (9.8.7)

This means that

Tij��1��2��
∗
1��

∗
2���=

1

�h

�∑
k=1

Uik��1��2�Ujk��
∗
1��

∗
2�e

−j�k

Nk�
2
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√
�1−��/�k�

2�2+4
2
k ��/�k�
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(9.8.8)

It is sometimes of advantage to plot the amplitude of Tij as a function of
the excitation frequency �, thus obtaining the transfer function response
spectrum.

The steady-state harmonic Green’s function of a shell has in general
nine components, just as does the true dynamic Green’s function. To utilize
the harmonic Green’s function for general distributed harmonic forcing,
the harmonic Green’s function is multiplied by the loading and the result
is integrated in space. Specifically, since the load is (note that the j in j�t
is not the same as the subscript j)

qj��1��2�t�=q∗
j ��1��2�e

j�t� j=1�2�3 (9.8.9)

and the harmonic transfer function (harmonic Green’s function) is known,
the steady-state solution is

ui��1��2�t�

=
[∫

�1

∫
�1

3∑
j=1

Tij��1��2��
∗
1��

∗
2���qj��

∗
1��

∗
2�A

∗
1A

∗
2d�

∗
1d�

∗
2

]
ej�t

(9.8.10)

The steady-state harmonic Green’s function will appear again in Chapter
13, under the name receptance. For other applications of Green’s functions,
see also Greenberg (1971).

9.9. RECTANGULAR PLATE EXAMPLES

9.9.1. Dynamic Green’s Function of a
Simply Supported Plate

For the simply supported plate, the dynamic Green’s function is given by
Eq. (9.3.6):

G33�x�y�t�x
∗�y∗�t∗�= 1

�h

�∑
m=1

�∑
n=1

1

Nmn

U3mn�x
∗�y∗�U3mn�x�y�S�t−t∗�

(9.9.1)
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where

U3mn�x�y�=Amnsin
m�x

a
sin

n�y

b
(9.9.2)

U3mn�x
∗�y∗�=Amnsin

m�x∗

a
sin

m�y∗

b
(9.9.3)

Nmn=
∫ b

y=0

∫ a

x=0
A2

mnsin
2
(m�x

a

)
sin2

(n�y
b

)
dxdy= ab

4
A2

mn (9.9.4)

and where, for subcritical damping, Eq. (9.1.21) applies:

S�t−t∗�= 1

�mn

e−
mn�mn�t−t∗�sin�mn�t−t∗�� t≥ t∗1 (9.9.5)

The natural frequencies are, from Eq. (5.4.71),

�mn=�2

[(m
a

)2+
(n
b

)2
]√

D

�h
(9.9.6)

and, from Eq. (8.3.5),

�mn=�mn

√
1−
2

mn (9.9.7)

where


mn=
�

2�h�mn

(9.9.8)

Equation (9.9.1) becomes

G33�x�y�t�x
∗�y∗�t∗�= 4

�hab

�∑
m=1

�∑
n=1

sin
m�x∗

a
sin

n�y∗

b

×sin
m�x

a
sin

n�y

b

e−
mn�mn�t−t∗�

�mn

sin�mn�t−t∗�U�t−t∗� (9.9.9)

The arbitrary modal amplitudes Amn have canceled as expected.

9.9.2. Response to an Impacting Mass

If a mass strikes the plate at time t1 at x1�y1 with a velocity v1 and rebounds
in opposite direction with a velocity v2 (assuming that this was measured),
then the change of momentum is

��mv�=mv1−m�−v2�=m�v1+v2� (9.9.10)

Therefore, the loading is

q3�x�y�t�=m�v1+v2���x−x1���y−y1���t−t1� (9.9.11)
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Equation (9.3.8) becomes

u3�x�y�t� =
∫ t

t∗=0

∫ a

x∗=0

∫ b

y∗=0
G33�x�y�t�x

∗�y∗�t∗�m�v1+v2�

×��x∗−x1���y
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∗−t1�dx
∗dy∗dt∗ (9.9.12)

or

u3�x�y�t�=m�v1+v2�G33�x�y�t�x1�y1�t1� (9.9.13)

or finally

u3�x�y�t� = 4m�v1+v2�
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9.9.3. Response to a Uniformly Distributed
Pressure that is Suddenly Applied

In this example, the uniform pressure loading Q
(
N/m2

)
that is suddenly

applied at t= t1 is described by

q3�x�y�t�=QU�t−t1� (9.9.15)

Equation (9.3.8) becomes
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∫ t

t∗=0

∫ a

x∗=0

∫ b

y∗=0
G33�x�y�t�x

∗�y∗�t∗�QU�t∗−t1�dx
∗dy∗dt∗

= 4Q

�hab

�∑
m=1

�∑
n=1

sin
m�x

a
sin

n�y

b


 a∫
x∗=0

sin
m�x∗

a
dx∗




×

 b∫
y∗=0

sin
n�y∗

b
dy∗


 1

�mn

t∫
t∗=0

U�t∗−t1�e
−
mn�mn�t−t∗�

×sin�mn�t−t∗�dt∗� t≥ t1 (9.9.16)

The product of the spatial integrals becomes[∫ a

x∗=0
sin

m�x∗

a
dx∗

][∫ b

y∗=0
sin

n�y∗

b
dy∗

]

= ab

mn�2
�1−cosm���1−cosn�� (9.9.17)
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which means that only symmetric modes participate in the solution.
�m=1�3�5����and n=1�3�5�����.

The time integral becomes∫ t
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U�t∗−t1�e
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where

�′
mn= tan−1 
mn√
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(9.9.19)

Therefore, the solution becomes

u3�x�y�t� = 4Q
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9.9.4. Steady-State Harmonic Green’s Function

For the simply supported plate, the steady-state harmonic Green’s function
is, from Eq. (9.8.8)

T33�x�y�x
∗�y∗���= 1

�h

�∑
m=1

�∑
n=1

U3mn�x�y�U3mn�x
∗�y∗�e−j�mn

Nmn�
2
mn

√√√√[
1−

(
�

�mn

)2
]2

+4
2mn

(
�

�mn

)2

(9.9.21)

where U3mn�x�y��U3mn�x
∗�y∗� are given by Eqs. (9.9.2) and (9.9.3) and

where Nmn is given by Eq. (9.9.4); �mn is given by Eq. (9.9.6) and 
mn by
Eq. (9.9.8). The phase angle �mn is given by Eq. (9.8.6) and is

�mn= tan−1 2
mn��/�mn�

1−��/�mn�
2

(9.9.22)
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Thus, Eq. (9.9.21) becomes

T33�x�y�x
∗�y∗���

= 4

�hab

�∑
m=1

�∑
n=1

sin
m�x∗

a
sin

n�y∗

b
sin

m�x

a
sin

n�y

b
e−j�mn

�2
mn

√√√√[
1−

(
�

�mn

)2
]2

+4
2
mn

(
�

�mn

)2

(9.9.23)

Note again that the arbitrary modal amplitudes Amn have canceled.

9.9.5. Response to a Harmonic Point Load

In this case, the pressure distribution to a harmonic point force applied at
�x1�y1� is

q∗
3�x�y�t�=q∗

3�x�y�e
j�t (9.9.24)

where

q∗
3�x�y�=F��x−x1���y−y1� (9.9.25)

The solution is given by Eq. (9.8.10) and is for this case

u3�x�y�t�=Fej�t
a∫

x∗=0

a∫
y∗=0

T33�x�y�x
∗�y∗�����x∗−x1���y

∗−y1�dx
∗dy∗

(9.9.26)

or

u3�x�y�t�=Fej�tT33�x�y�x1�y1��� (9.9.27)

or, finally

u3�x�y�t�

= 4F

�hab

�∑
m=1

�∑
n=1

sin m�x1
a

sin n�y1
b

sin m�x
a

sin n�y

b
ej��t−�mn�

�2
mn

√[
1−

(
�

�mn

)2
]2

+4
2
mn

(
�

�mn

)2

(9.9.28)
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9.9.6. Response to a Uniformity Distributed
Harmonic Pressure

Here, we have

q∗
3 =Q (9.9.29)

where Q is the amplitude of the uniformly distributed pressure acting on
the plate. The solution is again given by Eq. (9.8.10) and is

u3�x�y�t�=Q

a∫
x∗=0

b∫
y∗=0

T33�x�y�x
∗�y∗���dx∗dy∗ (9.9.30)

or

u3�x�y�t�=
4Q

�hab

�∑
m=1

�∑
n=1

×
sin m�x

a
sin n�y

b

[
a∫

x∗=0

sin m�x∗
a

dx∗
][

b∫
y∗=0

sin n�y∗
b

dy∗
]
e−j�mn

�2
mn

√[
1−

(
�

�mn

)2
]2

+4
2
mn

(
�

�mn

)2

(9.9.31)

Utilizing Eq. (9.9.17) gives

u3�x�y�t�=
4Q

�h�2

�∑
m=1

�∑
n=1

×
�1−cosm���1−cosn��sin

m�x

a
sin

n�y

b
ej��t−�mn�

mn�2
mn

√√√√[
1−

(
�

�mn

)2
]2

+4
2
mn

(
�

�mn

)2

(9.9.32)

Again, because of the symmetry of the loading, only symmetric modes
participate in the solution �m=1�3�5���� and n=1�3�5����).

9.10. FLOATING RING IMPACTED
BY A POINT MASS

Let us consider a free floating ring that is impacted at �=0 and time t= t1
by a mass m travelling at velocity v in such a way that the mass after impact
neither sticks to the ring nor rebounds, but has a rebound velocity of 0 and
falls off. Thus, the loading functions in terms of force per unit length are
q�=0 and

q3���t�=−mv

a
���−�1���t−t1� (9.10.1)
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where �1=0 for this case. The Green’s function components for a floating
ring are, from Eq. (9.5.4),

G�����t��
∗�t∗�= 1

�h

�∑
n=0

2∑
p=1

1

Nnp

V 2
npcosn��−�∗�S�t−t∗� (9.10.2)

G�3���t��
∗�t∗�= 1

�h

�∑
n=0

2∑
p=1

1

Nnp

VnpWnp sinn��−�∗�S�t−t∗� (9.10.3)

G3����t��
∗�t∗�= 1

�h

�∑
n=0

2∑
p=1

1

Nnp

VnpWnp sinn��
∗−��S�t−t∗� (9.10.4)

G33���t��
∗�t∗�= 1

�h

�∑
n=0

2∑
p=1

1

Nnp

W 2
npcosn��−�∗�S�t−t∗� (9.10.5)

The response to the impact described by Eq. (9.10.1) is

u3���t�=
∫ t

t∗=0

∫ 2�

�∗=0
G33���t��

∗�t∗�q3��
∗�t∗�ad�∗dt∗ (9.10.6)

u����t�=
∫ t

t∗=0

∫ 2�

�∗=0
G�3���t��

∗�t∗�q3��
∗�t∗�ad�∗dt∗ (9.10.7)

Since q�=0, components G�� and G3� do not enter the results integrals.
Substituting Eqs. (9.10.3) and (9.10.5) in Eqs. (9.10.6) and (9.10.7) gives

u3���t� =−mv

�h

t∫
t∗=0

2�∫
�∗=0

�∑
n=0

2∑
p=1

1

Nnp

W 2
np

×cosn��−�∗�S�t−t∗����∗−�1���t
∗−t1�d�

∗dt∗

=−mv

�h

�∑
n=0

2∑
p=1

1

Nnp

W 2
np cosn��−�1�

1

�np

e−
np�np�t−t1�

×sin�np�t−t1�� t≥ t1 (9.10.8)

and

u����t� = −mv

�h

t∫
t∗=0

2�∫
�∗=0

�∑
n=0

�∑
p=1

VnpWnp

Nnp

sinn��−�∗�S�t−t∗����∗−�1�

×��t∗−t1�d�
∗dt∗

= −mv

�h

�∑
n=1

�∑
p=1

VnpWnp

Nnp

sinn��−�1�
1

�np

e−
np�np�t−t1�

×sin�np�t−t1�� t≥ t1 (9.10.9)
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Note that the n=0 mode does not participate in the solution for u�. Nnp is
given by Eq. (9.5.3).

Now, at �=0 and �1=0, Eq. (9.10.9) gives

u��0�t�=0 (9.10.10)

and Eq. (9.10.8) gives

u3�0�t�=−mv

�h

�∑
n=0

�∑
p=1

W 2
np

Nnp

1

�np

e−
np�np�t−t1� sin�np�t−t1� (9.10.11)

For p=1 and n=1, this equation describes the rigid body motion of the
ring away from the impact. Since �1=0,

u3�0�t�=−mv

�h

W 2
11

N11

lim
�11→0

[
sin�11�t−t1�

�11

]
(9.10.12)

Since N11=ab��V 2
11+W 2

11�, where b is the width of the ring, we obtain

u3�0�t�=− mv

�gab�

1[(
V11
W11

)2+1

] t (9.10.13)

From Sec. 5.3, V11/W11=1, and thus

u3�0�t�=−m

M
vt (9.10.14)

where M=2�hab�, which is the total mass of the ring. Thus, the velocity
u̇3�0�t� with which the ring moves away from impact is

u̇3�0�t�=−m

M
v (9.10.15)

which agrees with the conservation of momentum result for impact of two
bodies: −mv=Mu̇3�0�t�.

Equations (9.10.8) and (9.10.9) therefore predict the vibratory
response of the ring to impact which includes the average (rigid body)
motion away from the impact. This is similar to the result of Sec. 8.10 for
impact applied to a spherical shell.
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10

Moment Loading

Let us now consider the response of shells to the excitation by moments.
The formulation presented so far allows only treatment of cases where the
excitation can be expressed in terms of pressure loadings q1�q2, and q3. By
use of the Dirac delta function, we were also able to treat line and point
loads. However, in engineering practice, we often meet problems where the
excitation is a moment. For instance, consider rotating machinery with an
imbalance whose plane is parallel to the surface of the shell on which the
machinery is mounted. Obviously, in addition to the in-plane forces, we
have also a force couple. Any type of connection to a shell that is acted on
by forces not transverse to the shell surface will produce a moment.

One approach to this problem is to consider, for instance, two
transverse point forces equal in magnitude but opposed in direction, a
small distance apart. They form a moment. As we let the distance approach
0 in the limit, we have created a true point moment. For example, Bolleter
and Soedel (1971) indicate that this approach has been used with great
success in special cases, but it is difficult to formulate the general case
without rather complicated notation.

In this chapter, an approach is followed that is taken from Soedel
(1976). The idea of a distributed moment is used (moment per unit area).
Line and point moments, the usual engineering cases, are then formulated
using the Dirac delta function.

281
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10.1. FORMULATION OF SHELL EQUATIONS
THAT INCLUDE MOMENT LOADING

Let us consider three distributed moment components, T1 in the �1

direction, T2, in the �2 direction, and a twisting moment about the normal,
as shown in Fig. 1. The units are newton-meters per square meter.

To consider moment loading in addition to the classical pressure
loading in the three orthogonal directions, one has to add the virtual work
due to the applied moments. It is

�Em=
∫
�1

∫
�2

�T1��1+T2��2+Tn��n�A1A2d�1d�2 (10.1.1)

where �1 and �2 are defined by Eqs. (2.4.7) and (2.4.8) and where

�n=
1

2A1A2

[
��A2u2�

��1

− ��A1u1�

��2

]
(10.1.2)

This is the expression for a twisting angle. Let us derive it for Cartesian
coordinates by considering Fig. 2. First, the rotation of the diagonal of the
infinitesimal element is �n. It is

�n=
1

2

(�
2
−	2−	1

)
+	2−

�

4
= 	2−	1

2
(10.1.3)

But since

	2 =
du2

dx
(10.1.4)

	1 =
du1

dy
(10.1.5)

FIG. 1 Moments per unit area acting on the reference surface of a shell.
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FIG. 2 Twist of an element of a rectangular plate.

we obtain

�n=
1

2

(
du2

dx
− du1

dy

)
(10.1.6)

If we set A1=A2=1 and �1=x, �2=y in Eq. (10.1.2), we obtain the same
result.

Therefore, in general, we have

�Em=
∫
�1

∫
�1

�T1��1+T2��2+Tn��n�A1A2d�1d�2 (10.1.7)

where, from Eq. (10.1.2),

��n=
1

2A1A2

[
��A2�u2�

��1

− ��A1�u1�

��2

]
(10.1.8)

Let us integrate the third term, as an example:∫
�1

∫
�2

Tn��nA1A2d�2d�1 =
∫
�2

[∫
�1

Tn

2A1A2

��A2�u2�

��1

A1d�1

]
A2d�2

−
∫
�1

[∫
�2

Tn

2A1A2

��A1�u1�

��2

A2d�2

]
A1d�1

(10.1.9)

Integrating by parts gives∫
�1

∫
�2

Tn��nA1A2d�2d�1 (10.1.10)

= 1

2

∫
�1

∫
�2

[
A1

A2

�

��2

(
Tn

A1

)
�u1−

A2

A1

�

��1

(
Tn

A2

)
�u2

]
A1A2d�1d�2

(10.1.11)
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since the resulting line integrals also vanish at the boundary. Substituting
Eq. (10.1.10) in Eq. (10.1.7) and this equation, in turn, in the development
of Sec. 2.7, we obtain as equations of motion

−��N11A2�

��1

− ��N12A1�

��2

−N12

�A1

��2

+N22

�A2

��1

−A1A2

Q13

R1

+A1A2
hü1=A1A2

(
q1+

1

2A2

�Tn

��2

)
(10.1.12)

−��N12A2�

��1

− ��N22A1�

��2

−N21

�A2

��1

+N11

�A1

��2

−A1A2

Q23

R2

+A1A2
hü2=A1A2

(
q2−

1

2A1

�Tn

��1

)
(10.1.13)

−��Q13A2�

��1

− ��Q23A1�

��2

+A1A1

(
N11

R1

+N22

R2

)
+A1A2
hü3

=A1A2

{
q3+

1

A1A2

[
��T1A2�

��1

+ ��T2A1�

��2

]}
(10.1.14)

where Q13 and Q23 are defined by Eqs. (2.7.23) and (2.7.24). The admissible
boundary conditions are the same.

10.2. MODAL EXPANSION SOLUTION

The modal expansion equations may be written in terms of displacement
ui as

L1�u1�u2�u3�−
u̇1−
hü1 = −q1−
1

2A2

�Tn

��2

(10.2.1)

L2�u1�u2�u3�−
u̇2−
hü2 = −q2+
1

2A1

�Tn

��1

(10.2.2)

L3�u1�u2�u3�−
u̇3−
hü3 = −q3−
1

A1A2

·
[
��T1A2�

��1

+ ��T2A1�

��2

]
(10.2.3)

The modal expansion series solution is

ui=
�∑
k=1

�kUik (10.2.4)

This gives, after the usual operations,

�̈k+2�k�k�̇k+�2
k�k=Fk (10.2.5)
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where

Fk =
1


hNk

∫
�2

∫
�1

{
q1U1k+q2U2k+q3U3k+

U1k

2A2

�Tn

��2

− U2k

2A1

�Tn

��1

+ U3k

A1A2

[
��T1A2�

��1

+ ��T2A1�

��2

]}
A1A2d�1d�2 (10.2.6)

�k =



2
h�k

(10.2.7)

Nk =
∫
�2

∫
�1

�U 2
1k+U 2

2k+U 2
3k�A1A2d�1d�2 (10.2.8)

Solutions of Eq. (10.2.5) are given in Sec. 8.3.

10.3. ROTATING POINT MOMENT ON A PLATE

For the transverse motion of a plate, the solution to Eq. (10.2.3) reduces
to

u3=
�∑
k=1

�kU3k (10.3.1)

where �k is given by Eq. (10.2.5) and where

Fk=
1


hNk

∫
�1

∫
�2

U3k

{
q3+

1

A1A2

[
��T1A2�

��1

+ ��T2A1�

��2

]}
A1A2d�1d�2

(10.3.2)

and

Nk=
∫
�2

∫
�1

U 2
3kA1A2d�1d�2 (10.3.3)

Let us take as an example a simply supported rectangular plate on
which a point moment of magnitude M0, acting normal to the plate surface,
rotates with a constant velocity �0 (rad/sec). This is shown in Fig. 3. In
this case �1=x, �2=y, A1=A2=1, and therefore,

T1 = Tx=M0cos�0t��x−x∗���y−y∗� (10.3.4)

T2 = Ty=M0sin�0t��x−x∗���y−y∗� (10.3.5)

Tn = 0 (10.3.6)

Also, let us assume that q3=0. Since the mode shape is given by

U3k=U3mn=sin
m�x

a
sin

n�y

b
(10.3.7)
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FIG. 3 Rotating point moment acting on a rectangular plate.

we obtain

Fk =
M0


hNk


cos�0tsin

n�y∗

b

a∫
0

sin
m�x

a

�

�x
��x−x∗�dx

+sin�0tsin
m�x∗

a

b∫
0

sin
n�y

b

�

�y
��y−y∗�dy


 (10.3.8)

Since it can be shown, using integration by parts, that∫
�i

F ��i�
�

��i

[
1

Ai

���i−�∗
i �

]
d�i=− 1

Ai

�F��i�

��i

∣∣∣
�i=�∗

i

(10.3.9)

we get

Fk=− M0


hNk

(
cos�0t

m�

a
sin

n�y∗

b
cos

m�x∗

a

+sin�0t
n�

b
sin

m�x∗

a
cos

n�y∗

b

)
(10.3.10)

where

Nk=
ab

4
(10.3.11)

Following Sec. 8.5, we obtain as a steady-state solution

u3=− 4M0

ab
h

�∑
m=1

�∑
n=1

·f �m�n�sin�m�x/a�sin�n�y/b�sin��0t+	1−	2�

�2
mn

√
�1−��/�mn�

2�2+4�2
mn��/�mn�

2

(10.3.12)
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where

f �m�n� =
√(m�

a

)2
sin2 n�y

∗

b
cos2

m�x∗

a
+
(n�

b

)2
sin2 m�x∗

a
cos2

n�y∗

b

(10.3.13)

	1 = tan−1

[
m

n

b

a

tan�n�y∗/b�
tan�m�x∗/a�

]
(10.3.14)

	2 = tan−1 2�mn��/�mn�

1−��/�mn�
2

(10.3.15)

We see that to minimize the response of a plate to a rotating moment,
one ought to avoid having a natural frequency coincide with the rotational
speed, �mn �=�0. Also, to minimize the response of that mode, the location
of the rotating moment should be on an antinode point of the plate. By
antinode points, we mean those points where the mode has zero slope in
all directions. Location of the rotating moment at a point where two node
lines cross maximizes the response of that mode.

At the location of the point moment application, certain assumptions
of our theory are again violated, and solutions that consider details of the
actual hardware have to be found (Dyer, 1960). At a distance removed
from the application point by more than twice the thickness, our solution
is excellent.

10.4. ROTATING POINT MOMENT ON A SHELL

Let us now consider the case where a point moment M0 acting normal to
the shell surface rotates with a rotational velocity �0 as shown in Fig. 4.
For cylindrical coordinates, R1=�, R2=a, A1=1, A2=a, �1=x, and �2=�.
Thus the moment distribution is given by

T1 = Tx=
M0

a
cos�0t��x−x∗����−�∗� (10.4.1)

T2 = T�=
M0

a
sin�0t��x−x∗����−�∗� (10.4.2)

Again, q1=q2=q3=0. The natural modes for the simply supported circular
cylindrical shell treated in Chapter 5 are

U1k�x��� = Amnpcos
m�x

L
cosn��−	� (10.4.3)

U2k�x��� = Bmnpsin
m�x

L
sinn��−	� (10.4.4)

U3k�x��� = Cmnpsin
m�x

L
cosn��−	� (10.4.5)
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FIG. 4 Rotating point moment acting on a circular cylindrical shell.

where m=1�2����� n=0�1�2����� and p=1�2�3. The natural frequencies
�mnp are given in chapter 5. For Eq. (10.4.1), we obtain

Fk=−Cmnp

M0cos�0t


hNk

m�

L
cos

m�x∗

L
(10.4.6)

Since

Nk=Nmnp=
aL�

2
C2

mnpkmnp (10.4.7)

where

kmnp=



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)2
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)2

+1� n �=0

2

(
Amop
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)2

+2� n=0

(10.4.8)

we obtain as the solution for the steady-state response

u1

u2

u3


 = − 2M0

aL�
h

3∑
p=1

�∑
m=1

�∑
n=1

f �m�

kmnp�
2
mnp�1−��0/�mnp�

2�

×




Amnp

Cmnp

cos
m�x

L
cosn��−�∗�

Bmnp

Cmnp

sin
m�x

L
sinn��−�∗�

sin
m�x

L
cosn��−�∗�



cos�0t (10.4.9)

where

f �m�=m�

L
cos

m�x∗

L
(10.4.10)
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Similarly, Eq. (10.4.2) has to be considered. In general, the function f
is now dependent only on m. The reason is that the response will orient
itself on the location of the rotating moment no matter where it is located
in the circumferential direction. It is, in general, not possible to have
a true antinode at the point of moment application for closed shells
of revolution. The modes have no preference as far as circumferential
direction is concerned and orient themselves such that they present the
least resistance to the action of a rotating moment. However, for selective
removal of certain modes from the response, it is possible to locate the
moment such that

f �m�=0 (10.4.11)

In the example case, we have to make

m�x∗

L
= �

2
�
3�

2
�
5�

2
�··· (10.4.12)

10.5. RECTANGULAR PLATE EXCITED
BY A LINE MOMENT

Let us consider the case where a line moment varying sinusoidally
with time and of uniform magnitude M ′

0 in newton-meters per meter is
distributed across a simply supported rectangular plate along the line x=x∗

as shown in Fig. 5. Letting �1=x, A1=1, �2=y, A2=1, we express the
distributed moments as

Tx = M1
0��x−x∗�sin�t (10.5.1)

Ty = 0 (10.5.2)

FIG. 5 Rectangular plate excited by a line moment.
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This gives

Fk=
4M ′

0

ab
h

a∫
0

b∫
0

sin
m�x

a
sin

n�y

b

�

�x
��x−x∗�dxdysin�t (10.5.3)

or

Fk=
−4M ′

0m

a2
hn
�1−cosn��cos

m�x∗

a
sin�t (10.5.4)

This means that only the modes where n=1�3�5���� are excited. For
instance, the steady-state response becomes, using Eqs. (8.5.4)–(8.5.7)

u3�x�y�t� = − 8M ′
0

a2
h

�∑
n=1�3����

�∑
m=1

· �m/n�cos�m�x∗/a�sin�n�y/b�sin�m�x/a�

�2
mn

√
�1−��/�mn�

2�2+4�2
mn��/�mn�

2
·sin��t−	mn�

(10.5.5)

where

	mn= tan−1 2�mn��/�mn�

1−��/�mn�
2

(10.5.6)

Note that if we let x∗=0 or x∗=a, we obtain the solutions for harmonic
edge moments.

Solutions to harmonic edge moments are important when
investigating composite structures such as two plates joined together at
one edge, except that for this type of application we have to evaluate
the solution for a line distribution where the moment magnitude varies
sinusoidally along the line

Tx = M ′
0sin

p�y

b
��x−x∗�sin�t (10.5.7)

Ty = 0 (10.5.8)

We obtain

Fk=−4M ′
0�m

a2b
h


 b∫

0

sin
n�y

b
sin

p�y

b
dy


cos

m�x∗

a
sin�t (10.5.9)

Since this expression is 0 if p �=n, we obtain for n=p,

Fk=Fmp=−2M ′
0�m

a2
h
cos

m�x∗

a
sin�t (10.5.10)
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and the steady-state solution is then

u3�x�y�t� = −2M ′
0�

a2
h

�∑
m=1

mcos�m�x∗/a�sin�p�y/b�sin�m�x/a�

�2
mp

√
�1−��/�mp�

2�2+4�2
mn��/�mp�

2

·sin��t−	mp� (10.5.11)

This is an interesting result since it shows that a sinusoidally
distributed line moment will only excite the modes that have shapes that
match the distribution shape of the line moment. Using a Fourier sine
series description, we can use this solution to generate the solutions for all
other line distribution shapes. Such an approach can, of course, also be
used for line force distributions.

10.6. RESPONSE OF A RING ON
AN ELASTIC FOUNDATION TO
A HARMONIC POINT MOMENT

The point moment of magnitude M�Nm� is applied at location �=�∗ of
the reference line, as shown in Fig. 6. Using the Dirac-delta function, the
distributed moment per unit area is (b is the width of the ring):

T�=
M

ab
���−�∗�ej�t (10.6.1)

From Sec. 18.4, the natural modes of a ring on an elastic foundation are,
for 	=0,

U3ni�1����=Anicosn� (10.6.2)

U�ni�1����=Bnisinn� (10.6.3)

and for 	=�/2n,

U3ni�2���� = Anisinn� (10.6.4)

U�ni�2���� = −Bnicosn� (10.6.5)

where i=1�2. The natural frequencies are given by Eqs. (18.4.15) and
(18.4.16), and the mode component amplitude ratios are given by
Eq. (18.4.19).

In the following, the harmonic response solutions will be obtained
for the first set of natural modes (10.6.2) and (10.6.3). Next, they will be
obtained for the second set of natural modes (10.6.4) and (10.6.5), and then
the total solution set will be the addition of the two subsolution sets.
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FIG. 6 Harmonic point moment acting on a ring on an elastic foundation.

For the first set of natural modes,

Nk�1�=Nni�1�=b
∫ 2�

�=0

(
B2
nisin

2n�+A2
nicos

2n�
)
ad� (10.6.6)

or

Nni�1�=
{
ab��B2

ni+A2
ni�� n �=0

2ab�A2
oi� n=0

(10.6.7)

The modal force Fk, as given by Eq. (10.2.6), becomes (see also Section 18)

Fk�1�=Fni�1�=
AniMej�t

�
h+1/3
FhF �Nni�1�a

∫ 2�

�=0
cosn�

�

��
����−�∗��d�

(10.6.8)

Utiling Eq. (10.3.9), we obtain∫ 2�

�=0
cosn�

�

��
����−�∗��d�=− �

��
�cosn��

∣∣∣∣
�=�∗

=nsinn�∗ (10.6.9)
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Therefore,

Fni�1�=
[

MnAni sinn�
∗

�
h+1/3
FhF �Nni�1�a

]
ej�t=F ∗

k�1�e
j�t (10.6.10)

Utilizing Sec. 8.5, we obtain for the modal participation coefficients, in
steady state,

�k�1�=�ni�1�=�ni�1�e
j��t−	ni�1�� (10.6.11)

where

�ni�1� =
Fni�1�

�2
ni

√
�1−��/�ni�

2�2+4�2
ni��/�ni�

2
(10.6.12)

	ni�1� = tan−1 2�ni��/�ni�

1−��/�ni�
2
=	ni�2�=	ni (10.6.13)

Note again that the natural frequencies for the two sets of modes are the
same: �ni�1� = �ni�2� = �ni.

The steady-state harmonic response considering the first set of
natural modes only is, therefore,

u3�1����t� =
M

�
h+1/3
FhF �a

2∑
i=1

�∑
n=0

× nA2
nisinn�

∗cosn�ej��t−	ni�

Nni�1��
2
ni

√
�1−��/�ni�

2�
2+4�2

ni��/�ni�
2

(10.6.14)

u��1����t� =
M

�
h+1/3
FhF �a

2∑
i=1

�∑
n=0

× nAniBnisinn�
∗sinn�ej��t−	ni�

Nni�1��
2
ni

√
�1−��/�ni�

2�
2+4�2

ni��/�ni�
2

(10.6.15)

Note that the n=0 term is 0 because of the n in the numerator.
For the second set of natural modes (10.6.4) and (10.6.5), we repeat

the process.

Nk�2�=Nni�2�=b
∫ 2�

�=0
�B2

nicos
2n�+A2

nisin
2n��ad� (10.6.16)

or

Nni�2�=
{
ab��A2

ni+B2
ni�� n �=0

2ab�B2
oi� n=0

(10.6.17)
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The modal force given by Eq. (10.2.6) becomes

Fk�2�=Fni�2�=
AniMej�t

�
h+1/3
FhF �Nni�2�a

∫ 2�

�=0
sinn�

�

��
����−�∗��d�

(10.6.18)

Utilizing Eq. (10.3.9),∫ 2�

�=0
sinn�

�

��
����−�∗��d�=− �

��
�sinn��

∣∣∣∣
�=�∗

=−nsinn�∗ (10.6.19)

Therefore,

Fni�2�=−
[

MnAnicosn�
∗

�
h+1/3
FhF �Nni�2�a

]
ej�t=F ∗

k�2�e
j�t (10.6.20)

From Sec. 8.5, the modal participation coefficients in steady state are

�k�2�=�ni�2�=�ni�2�e
j��t−	ni�2�� (10.6.21)

where

�ni�2�=
Fni�2�

�2
ni

√
�1−��/�ni�

2�2+4�2
ni��/�ni�

2
(10.6.22)

and where 	ni�2�=	ni�1�=	ni, given by Eq. (10.6.13).
The steady-state harmonic response considering the second set of

natural modes only is, therefore,

u3�2����t� =
M

�
h+1/3
FhF �a

2∑
i=1

�∑
n=0

× nA2
ni�−cosn�∗sinn��ej��t−	ni�

Nni�2��
2
ni

√
�1−��/�ni�

2�2+4�2
ni��/�ni�

2
(10.6.23)

u��2����t� =
M

�
h+1/3
FhF �a

2∑
i=1

�∑
n=0

× nAniBnicosn�
∗cosn�ej��t−	ni�

Nni�1��
2
ni

√
�1−��/�ni�

2�2+4�2
ni��/�ni�

2
(10.6.24)

Note that because n is in the numerator of each series term, modes of the
n=0 type do not participate in the solutions for both mode sets and we
need only sum from n=1 to �. Also, from Eqs. (10.6.7) and (10.6.17), for
n �=0 �

Nni�1�=Nni�2�=ab��B2
ni+A2

ni� (10.6.25)
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Thus, adding Eqs. (10.6.14) and (10.6.23) results in the addition

sinn�∗cosn�−cosn�∗sinn�=−sinn��−�∗� (10.6.26)

Adding Eq. (10.6.15) and (10.6.24) gives the addition

sinn�∗sinn�+cosn�∗cosn�=cosn��−�∗� (10.6.27)

The total steady state response solution to a harmonic point moment is,
therefore,

u3���t� =
−M

�
h+1/3
FhF �a
2b�

×
2∑

i=1

�∑
n=1

nA2
nisinn��−�∗�ej��t−	ni�

�A2
ni+B2

ni��
2
ni

√
�1−��/�ni�

2�2+4�2
ni��/�ni�

2

(10.6.28)

u����t� =
M

�
h+1/3
FhF �a
2b�

×
2∑

i=1

�∑
n=1

nAniBnicosn��−�∗�ej��t−	ni�

�A2
ni+B2

ni��ni

√
�1−��/�ni�

2�2+4�ni��/�ni�
2

(10.6.29)

From this result, we see that the natural modes will orient themselves in
such a way that they present their transverse nodes to the point moment.
(This is opposite to the case where a transverse point force excites the ring
where the modes present their transverse anti-nodes to the point force.)
The tangential motion will be a maximum at the point moment location
because cosn��−�∗�=1 when �=�∗, while the transverse motion will be
0 because sinn��−�∗�=0 when �=�∗. Again, as for shells of revolution in
general, shifting a single point force or point moment in �-direction will
not improve the averaged response amplitudes because the modes follow
the forcing because of the nonpreferential direction behavior of the mode
components in �-direction.

10.7. MOMENT GREEN’S FUNCTION

As in Chapter 9, a set of Green’s function components can be formulated
for moment loading. It requires us to solve the equations of motion
(10.2.1)–(10.2.3) for q1=q2=q3=0 and unit angular impulse loading
applied at location ��∗

1��
∗
2� at time t∗, first for T1, then for T2, and finally

for Tn.
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For the first case, T2=Tn=0 and

T1=
1

A1A2

���1−�∗
1����2−�∗

2���t−t∗� (10.7.1)

Note that the dimension of the unit angular impulse is �Nms�. The unit
angular impulse corresponds to a unit angular momentum change of

��J��=1 (10.7.2)

where J is a mass moment of inertia �Nms2� and � is an angular velocity
�rad/sec�.

Therefore, Eq. (10.2.6) becomes

Fk=
1


hNk

∫
�2

∫
�1

U3k

��T1A2�

��1

d�1d�2 (10.7.3)

Where Nk is given by Eq. (10.2.8). Substituting Eq. (10.7.1) gives

Fk=
1


hNk

∫
�2

∫
�1

U3k

�

��1

[
1

A1

���1−�∗
1�

]
���2−�∗

2���t−t∗�d�1d�2

(10.7.4)

Applying the integration properties (10.3.9) and (8.12.5) gives

Fk=
−1


hNk

[
1

A1

�U3k��1��2�

��1

]
�1=�∗

1
�2=�∗

2

��t−t∗� (10.7.5)

For zero initial conditions, the modal expansion coefficient becomes,
therefore,

�k�t�=− 1


h�kNk

[
1

A1

�U3k��1��2�

��1

]
�1=�∗

1
�2=�∗

2

e−�k�k�t−t∗�sin�k�t−t∗�

(10.7.6)

and the displacement solutions in �1��2 and �3 directions are the
displacement Green’s function components for a unit impulse moment
loading T1:


u1

u2

u3




1

=



GMd

11 ��1��2�t��
∗
1��

∗
2�t

∗�

GMd
21 ��1��2�t��

∗
1��

∗
2�t

∗�

GMd
31 ��1��2�t��

∗
1��

∗
2�t

∗�




=− 1


h

�∑
k=1

1

�kNk

[
1

A1

�U3k��1��2�

��1

]
�1=�∗

1
�2=�∗

2



U1k��1��2�
U2k��1��2�
U3k��1��2�


S�t−t∗�

(10.7.7)
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where for subcritical damping,

S�t−t∗�=e−�k�k�t−t∗�sin�k�t−t∗� (10.7.8)

The superscript Md means that it is a displacement response to moment
loading.

In a similar way, we evaluate the response to a moment loading T1=
Tn=0 and

T2=
1

A1A2

���1−�∗
1����2−�∗

2���t−t∗� (10.7.9)

The result is

u1

u2

u3




2

=



GMd

12 ��1��2�t��
∗
1��

∗
2�t

∗�

GMd
22 ��1��2�t��

∗
1��

∗
2�t

∗�

GMd
32 ��1��2�t��

∗
1��

∗
2�t

∗�




=− 1


h

�∑
k=1

1

�kNk

[
1

A2

�U3k��1��2�

��2

]
�1=�∗

1
�2=�∗

2



U1k��1��2�
U2k��1��2�
U3k��1��2�


S�t−t∗�

(10.7.10)

Finally, we evaluate the displacement response to a moment loading
T1=T2=0 and

Tn=
1

A1A2

���1−�∗
1����2−�∗

2���t−t∗� (10.7.11)

For this case,

Fk =
1


hNk

∫
�2

∫
�1

(
U1k

2A2

�Tn

��2

− U2k

2A1

�Tn

��1

)
A1A2d�1d�2

= 1

2
hNk

∫
�2

∫
�1

U1k

A2

���1−�∗
1�

�

��2

[
1

A1A2

���2−�∗
2�

]

×��t−t∗�A1A2d�1d�2

− 1

2
hNk

∫
�2

∫
�1

U2k

A1

�

��1

[
1

A1A2

���1−�∗
1�

]
���2−�∗

2���t−t∗�

×A1A2d�1d�2 (10.7.12)

Integrating by parts∫
�1

F��1��2�
�

��1

[
1

A1A2

���1−�∗
1�

]
d�1=−

[
1

A1A2

�F��1��2�

��1

]
�1=�∗

1

(10.7.13)
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and ∫
�2

F��1��2�
�

��2

[
1

A1A2

���2−�∗
2�

]
d�2

=−
[

1

A1A2

�F��1��2�

��2

]
�2=�∗

2

(10.7.14)

Equation (10.7.12) becomes

Fk = − 1

2
hNk



[

1

A1A2

�U2k��1��2�

��2

]
�1=�∗

1
�2=�∗

2

−
[

1

A1A2

�U1k��1��2�

��1

]
�1=�∗

1
�2=�∗

2


��t−t∗� (10.7.15)

For zero initial condition, the modal expansion coefficient becomes,
therefore,

�k = − 1

2
h�kNk



[

1

A1A2

�U2k��1��2�

��2

]
�1=�∗

1
�2=�∗

2

−
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1
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��1

]
�1=�∗

1
�2=�∗

2


e−�k�k�t−t∗�sin�k�t−t∗�

(10.7.16)

and the displacement solutions u1,u2 and u3 are the displacement Green’s
function components for a unit impulse moment loading Tn:


u1

u2

u3




n

=



GMd
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∗
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∗
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GMd
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∗
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∗
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∗�

GMd
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= 1

2
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1
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
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[

1
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�U2k��1��2�

��2

]
�1=�∗

1
�2=�∗

2

−
[

1

A1A2

�U1k��1��2�

��1
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�1=�∗

1
�2=�∗

2





U1k��1��2�
U2k��1��2�
U3k��1��2�


S�t−t∗�

(10.7.17)

where S�t−t∗� is given by Eq. (10.7.8). Thus, to describe a shell in general
by a moment Green’s function, the nine components of Eqs. (10.7.7),
(10.7.10) and (10.7.17) have to be obtained. Usually, it suffices, however,
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to work with Eqs. (10.7.7) and (10.7.10) since structures loaded by twisting
moments acting in the tangent plane, Tn, are relatively rare.

The response to a general moment loading can now be obtained by
integration. For example, for the case of a point moment that is suddenly
applied at x=x1�y=y1 and t= t1 to a rectangular, simply supported plate,

T1=M1��x−x1���y−y1�U�t−t1� (10.7.18)

where M1 has the units �Nm�, so that T1 has the units �Nm/m2�. We may
write

u3�x�y�t�=
∫ t

0

∫ a

x=0

∫ b

y=0
GMd

31 �x�y�t�x∗�y∗�t∗�T1�x
∗�y∗�t∗�dx∗dy∗dt∗

(10.7.19)

where, from Eq. (10.7.7) for �k�=�m�n�,

GMd
31 �x�y�t�x∗�y∗�t∗� = 1


h

�∑
m=1

�∑
n=1

1

�mnNmn

[
�U3mn�x�y�

�x

]
x=x∗
y=y∗

×U3mn�x�y�S�t−t∗� (10.7.20)

where

U3mn�x�y�=sin
m�x

a
sin

n�y

b
(10.7.21)

�U3mn�x�y�

�x
=m�

a
cos

m�x

a
sin

n�y

b
(10.7.22)

Nmn=
∫ a

x=0

∫ b

y=0
U3mn�x�y�dxdy=

ab

4
(10.7.23)

and where S�t−t∗� is given by Eq. (10.7.8).
The moment Green’s function of Eq. (10.7.20) becomes

GMd
31 �x�y�t�x∗�y∗�t∗� = 4�


ha2b

�∑
m=1

�∑
n=1

m

�mn

cos
m�x∗

a

×sin
n�y∗

b
sin

m�x

a
sin

n�y

b
S�t−t∗� (10.7.24)

Therefore, Eq. (10.7.19) becomes

u3�x�y�t� =
4�M1


ha3b

t∫
t∗=0

a∫
x∗=0

b∫
y∗=0

�∑
m=1

�∑
n=1

m

�mn

cos
m�x∗

a

×sin
n�y∗

b
sin

m�x

a
sin

n�y

b

×��x∗−x1���y
∗−y1�U�t−t1�e

−�mn�mn�t−t∗�

×sin�mn�t−t∗�dx∗dy∗dt∗ (10.7.25)
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The step function in time simply changes the integration limit from t1 to t
and we obtain from Eq. (9.9.18)∫ t

t∗=t1

e−�mn�mn�t−t∗�sin�mn�t−t∗�dt∗

= 1

�mn

{
�1−�2

mn�−
√
1−�2

mne
−�mn�t−t1�cos��mn�t−t1�−	′

mn�

}
� t≥ t1

(10.7.26)

where 	′
mn is given by Eq. (9.9.19).

The surface integrals become∫ a

x∗=0

∫ b

y∗=0
cos

m�x∗

a
sin

n�y∗

b
sin

m�x

a
sin

n�y

b
��x∗−x1�

��y∗−y1�dx
∗dy∗=cos
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a

sin
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b
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a
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n�y

b
(10.7.27)

Therefore, the final result is

u3�x�y�t�=
4�M1


ha2b

�∑
m=1

�∑
n=1

m

�2
mn

cos
m�x1
a

sin
n�y1
b

sin
m�x

a
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n�y

b

×
{
�1−�2

mn�−
√
1−�2

mne
−�mn�t−t1�cos��mn�t−t1�−	′

mn�

}
� t≥ t1

(10.7.28)

This result shows again that for a particular plate mode �m�n� to
vanish from the response series, the point moment has to be applied at an
antinode of this mode so that cos�m�x1/a�=0.

Finally, the relatively slow convergence of the moment Green’s
function needs to be mentioned because of the m number in the numerator
of Eq. (10.7.28).
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11

Vibration of Shells and
Membranes Under the
Influence of Initial Stresses

All cases treated so far were bending resistant structures which, when in
their equilibrium position, have a 0 or negligible stress level. In a very
different category are skin structures, where the forces that restore the
displaced skin to its equilibrium position are caused by stresses initially
present that can be assumed to be independent of motion. Such skin
structures are referred to as membranes. They can be flat, such as classical
membranes, stretched over three-dimensional frames, or supported in
shape and tension by internal air pressure, such as tires (Kung et al., 1985;
Saigal et al., 1986). Tension may also be provided by gravity, as in hanging
curtains or nets (see Sec. 15.8). Note that the restoring effect is entirely
different from the membrane approximation for shells discussed earlier,
where the restoring forces are caused by the changing membrane stresses
as the deflection occurs. There is a slight problem in semantics, of course,
since the word membrane is used in the context of both categories.

A third possibility and a very likely one in engineering is that a
combination of the two restoring effects has to be accounted for. Every
time a structure is spinning like a turbine blade, a circular saw, and so
on, the centrifugal forces will introduce an initial stress field that is always
present, vibration or no vibration, and which acts as an additional restoring
mechanism. Shells loaded by high static pressures have a static or initial
stress field that resists or aids deflection. For instance, a spherical shell
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loaded internally by static pressure, such as a boiler, will experience a
gain in effective stiffness that will increase natural frequencies, whereas a
spherical shell that is loaded externally by static pressure, such as a diving
vessel, will experience a decrease of effective stiffness, lowering the natural
frequencies. Shells that were fabricated by deep drawing or welding and
were not annealed afterward can have large equilibrium stresses that are
referred to as residual stresses. These stresses can often be so high that
pronounced static buckling or warping occurs. In the following, Love’s
equation is extended to account for the initial stress effect, then reduced to
the category of pure membrane or skin structures.

Note that the earliest theoretical investigation of the initial stress
influence, going beyond that of a string or pure membrane, is probably due
to Lamb (1921) for a circular plate under initial tension. One of the first
shell solutions of this type was given by Federhofer (1936) for the axially
compressed circular cylindrical shell. A good discussion of more recent
work on initial stress problems is given by Leissa (1973).

11.1. STRAIN–DISPLACEMENT RELATIONSHIPS

To investigate how shells vibrate under the influence of initial stresses, we
have to include some terms in the strain–displacement equation that were
neglected in Sec. 2.3. In Eq. (2.3.9) we retain all terms:

�d�i+d�i�
2=�d�i�

2+2d�id�i+�d�i�
2 (11.1.1)

Thus, instead of Eq. (2.3.12), we obtain
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2=�d�i�

2+2d�i

3∑
j=1

��i
��j

d�j+
(

3∑
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This means that Eq. (2.3.15) becomes
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Neglecting, as before, the third term, and of the two new terms the last
one, gives, after introducing the Kronecker delta notation,
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This equation replaces Eq. (2.3.20). We see that our new Gij is
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From here on, the derivation proceeds as outlined in Sec. 2.3. We get
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Note that U3 is not a function of �3 and each last term in Eqs. (11.1.10)
and (11.1.11) is therefore 0. We simplify further by neglecting all square
terms involving U1 and U2 since it is reasonable to be expected that they
will always be small compared to the transverse deflections U3. Equations
(11.1.6)–(11.1.11) thus become
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�33 = 0 (11.1.14)
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Next, if we follow Sec. 2.4, where we have introduced the
assumptions that displacements U1 and U2 are a linear function of �3, we
obtain
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where the membrane strains become
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The bending strains are the same as given by Eqs. (2.4.22)–(2.4.24). The
definitions of �1 and �2 remain the same also.

11.2. EQUATIONS OF MOTION

While the general expression for strain energy given in Eq. (2.6.3) is still
true, the value of F now becomes (the superscript r stands for “residual”)
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FIG. 1 Illustration of the residual strain energy in a shell.

F = 1
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22�22
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12�12+	r

13�13+	r
23�23 (11.2.1)

This is illustrated in Fig. 1. The residual stress 	r is constant, independent
of the vibration-induced strain �, but energy is stored by the deflection and
is proportional to the rectangular area 	r�. The variation �F is therefore

�F = �	11+	r
11���11+�	22+	r

22���22+�	12+	r
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Recognizing the fact that the integration over the shell thickness of the
residual stresses gives rise to force and moment resultants
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and so on, for N r
12
N

r
22
M

r
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M

r
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r
13
 and Qr

23, we obtain the equations of
motion in a way similar to that described in Sec. 2.7. Let us consider, for
instance, the first term in the strain energy expression. Since
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Integrating over the thickness gives
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The notation �···� indicates that all other terms are the same as those in
Chapter 2.

If we integrate by parts with respect to �1, we get
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Proceeding similarly with the other new terms and collecting coefficients
of the virtual displacements gives the new set of equations of motion.

− �

��1

��N11+N r
11�A2�−

�

��2

��N21+N r
21�A1�−�N12+N r

12�
�A1

��2

+�N22+N r
22�

�A2

��1

−�Q13+Qr
13�

A1A2

R1

+A1A2
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where
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We recognize that the equations divide into a set that defines initial
stresses as function of static loads qr

1
q
r
2
q

r
3 and a set that defines the

vibration behavior as a function of dynamic loads q1
q2
q3. The first set
becomes
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This set is usually solved by way of stress functions for the unknown
residual stresses. Once these are known, the following vibration equations
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are solved:
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and where
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Note that in the fourth to seventh terms of Eq. (11.2.22), we have neglected
N11
N22, and N12 since they are small when compared to N r

11
N
r
22, and

N r
12. Not only is this a good assumption for most engineering problems of

this type, but also a necessary one if we wish to preserve the linearity of
our equations. If this assumption is not possible, for instance, in dynamic
buckling problems, a nonlinear set of equations results.

11.3. PURE MEMBRANES

Equations (11.2.10)–(11.2.12) give us the opportunity to obtain the
equations of motion of pure membranes. By pure membrane, we mean that
the structure is a skin stretched over a frame under initial tension N r

11
N
r
22,

and N r
12. There is a school of thought that holds that pure membranes

are not able to support shear forces �N r
12=0�, but this is technically not
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supportable. That shear can exist without buckling the membrane can be
shown by stretching a rubber skin over a rectangular frame and stretching
it at different nonuniform amounts. In special cases such as a uniformly
stretched drumhead (circular membrane), shear is 0. The only restriction
on a pure membrane is that it cannot support compressive membrane
stresses.

A membrane skin has negligible bending resistance �D=0�. This
implies that all bending moments are 0. Equations (11.2.20) and (11.2.21)
become
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These equations describe the motion of the membrane material in the
tangent plane. This motion is independent of the initial stress state.
Equation (11.2.22) becomes
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This is the membrane equation for transverse vibration. For membranes
that are curved surface, the three equations of motion are coupled. For flat
membranes, Eq. (11.3.3) is independent of Eqs. (11.3.1) and (11.3.2).

The initial stresses in the membrane are calculated from Eqs.
(11.2.15)–(11.2.17), which become (qr

1, q
r
2, and qr

3 are in this case static
loads)

− �

��1

�N r
11A2�−

�

��2

�N r
21A1�−N r

12

�A1

��2

+N r
22

�A2

��1

=A1A2q
r
1 (11.3.4)

− �

��1

�N r
12A2�−

�

��2

�N r
22A1�−N r

21

�A2

��1

+N r
11

�A1

��2

=A1A2q
r
2 (11.3.5)

A1A2

(
N r

11

R1

+N r
22

R2

)
=A1A2q

r
3 (11.3.6)
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11.4. EXAMPLE: THE CIRCULAR MEMBRANE

Let us look at the classical membrane problem. It is the case of a drum
skin shown in Fig. 2, stretched uniformly around the periphery such that it
creates a uniform boundary tension:

N r
rr =N ∗

rr (11.4.1)

At this point, we could state that the resulting tension is uniform through
the entire membrane and proceed to the vibration problem, but let us prove
this using the static equations.

The fundamental form is

�ds�2=�dr�2+r2�d��2 (11.4.2)

Thus A1=1, A2=r , d�1=dr , and d�2=d�. Let us now calculate the initial
stress distribution in the interior of the membrane. Equations (11.3.4) and
(11.3.5) become [Eq. (11.3.6) is inapplicable since a flat membrane has no
curvature]

− �

�r
�N r

rr r�−
�

��
�N r

�r �+N r
�� = 0 (11.4.3)

− �

�r
�N r

r�r�−
�

��
�N r

���−N r
�r = 0 (11.4.4)

with the boundary condition, at r=a,

N r
rr =N ∗

rr (11.4.5)

Since the loading is axisymmetric, the stress state has to be axisymmetric.
Thus

��·�
��

=0 (11.4.6)

and

N r
r�=0 (11.4.7)

FIG. 2 Circular membrane.
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This gives

− �

�r
�N r

rr r�+N r
��=0 (11.4.8)

This equation is satisfied if

F =N r
rr r (11.4.9)

dF

dr
=N r

�� (11.4.10)

Since

�r
rr =

dur

dr
(11.4.11)

and

�r
��=

ur

r
(11.4.12)

or

d

dr
�r�r

���=
dur

dr
(11.4.13)

equating Eqs. (11.4.13) and (11.4.11) gives

d

dr
�r�r

���−�r
rr =0 (11.4.14)

This equation is known as the compatibility equation. Furthermore, from

N r
rr = K��r

rr+��r
��� (11.4.15)

N r
�� = K��r

��+��r
rr � (11.4.16)

we get

�r
rr =

1

K
�N r

rr+�N r
���=

1

K

(
F

r
+�

dF

dr

)
(11.4.17)

and

�r
��=

1

K
�N r

��+�N r
rr �=

1

K

(
dF

dr
+�

F

r

)
(11.4.18)

Equation (11.4.14) thus becomes

d2F

dr2
+ 1

r

dF

dr
− F

r2
=0 (11.4.19)

or

d

dr

[
1

r

d�Fr�

dr

]
=0 (11.4.20)
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Integrating gives

F =C1r+C2

1

r
(11.4.21)

We have, at r=a,

F =N ∗
rra (11.4.22)

Also, at r=0, a singularity cannot exist, which implies that C2=0� Thus

C1=N ∗
rr (11.4.23)

Therefore,

F =N ∗
rr r (11.4.24)

or

N r
rr =

F

r
=N ∗

rr (11.4.25)

N r
��=

dF

dr
=N ∗

rr (11.4.26)

This result implies that a circular membrane under uniform boundary
tension has equal and constant stress resultants in the radial and
circumferential directions at any point in its interior:

N r
rr =N r

��=N ∗
rr (11.4.27)

Note that this is the case only for uniform boundary tension. If the
boundary tension is nonuniform, nonuniform interior membrane forces
result that include shear forces.

We may now proceed to Eq. (11.3.3), which describes the transverse
vibration of the membrane. It becomes, for our example,

−N ∗
rr

(
�2u3

�r2
+ 1

r

�u3

�r
+ 1

r2
�2u3

��2

)
+
hü3=q3 (11.4.28)

To solve the eigenvalue problem, we set q3=0 and write

u3�r
�
t�=U3ke
j�kt (11.4.29)

Substituting this in the equation of motion gives

−N ∗
rr

(
�2U3k

�r2
+ 1

r

�U3k

�r
+ 1

r2
�2U3k

��2

)
−
h�2

kU3k=0 (11.4.30)

Suspecting that we may be able to separate variables, we write

U3k�r
��=R�r����� (11.4.31)
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Substituting this gives

r2

R

d2R

dr2
+ r

R

dR

dr
+r2

�2
k
h

N ∗
rr

=− 1

�

d2�

d�2
(11.4.32)

The left and right sides of Eq. (11.4.32) must be equal to the same
constant, which we call p2. This gives

d2�

d�2
+p2�=0 (11.4.33)

and

r2
d2R

dr2
+r

dR

dr
+
(
�2

k
h

N ∗
rr

r2−
2

)
R=0 (11.4.34)

The solution of Eq. (11.4.33) is

�=Acosp��−�� (11.4.35)

where � is an arbitrary angle and A is an arbitrary constant. However,
for the closed drumhead, � must be a periodic function of period 2� to
preserve continuity of deflection. Thus

p=n �n=0
1
2
���� (11.4.36)

Defining

�2= �2
k
h

N ∗
rr

(11.4.37)

and a new variable

�2=�2r2 (11.4.38)

we may write Eq. (11.4.34) as

d2R

d�2
+ 1

�

dR

d�
+
(
1− n2

�2

)
R=0 (11.4.39)

This type of equation is called Bessel’s differential equation of integer
order n, as we saw in Chapter 5 for the circular plate. It can be solved
using a power series, which can be formulated into what are known as
Bessel functions. For each value of the integer n there are two linearly
independent solutions of Bessel’s equation. One of them is the Bessel
function of the first kind of order n, denoted as Jn���. The other is the
Bessel function of the second kind of order n, denoted Yn���. Thus the
solution of Eq. (11.4.39) is, for each n,

Rn=BnJn���+CnYn��� (11.4.40)

Note that

Yn�0�=� (11.4.41)
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TABLE 1 Values for ��a�mn

n

m 0 1 2 3

0 2.404 5.520 8.654 11.792
1 3.832 7.016 10.173 13.323
2 5.135 8.417 11.620 14.796
3 6.379 9.760 13.017 16.224

Thus, since it is physically impossible for the drumhead to have an infinite
deflection at its center, it follows that

Cn=0 (11.4.42)

The other condition that has to be satisfied is that at r=a,

u3=0 (11.4.43)

which implies that

R��=�a�=0 (11.4.44)

or that

Jn��a�=0 (11.4.45)

For a given n, this equation has an infinite number of roots ��a�mn,
identified by m=0
1
2
��� in ascending order. A few of these are listed in
Table 1. The natural frequencies of the membrane are therefore given by

�k=�mn=
��a�mn

a

√
N ∗

rr


h
(11.4.46)

To obtain the natural mode, we substitute in turn each natural
frequency back into Eq. (11.4.31) and get, utilizing Eqs. (11.4.35) and
(11.4.40),

Uk=Umn=Jn��mnr�cosn��−�� (11.4.47)

This problem was first solved by Pagani (1829).

11.5. SPINNING SAW BLADE

When a circular saw blade (Fig. 3) is spinning with a constant rotational
speed � in radians per second, centrifugal forces create a stress field
that acts like an initial stress in raising natural frequencies. The first
treatment of a saw-blade-like case was given by Southwell (1922) . Other
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FIG. 3 Spinning saw blade.

variations include the effect of temperature distribution and purposely
induced residual stresses, as typically studied by Mote (1965, 1966).

Let us first obtain the centrifugal stresses. Since we have in this case an
axisymmetric situation, all derivations with respect to � vanish. For �1=r ,
A1=1, �2=�, A2=r , Eq. (11.2.15) becomes

− d

dr
�rN r

rr �+N r
��=rqr (11.5.1)

where the load qr is the centrifugal force created by a mass element as it is
spinning at radius r divided by the area rd�dr :

qr =
h�2r (11.5.2)

Since the membrane strains are

�0
rr =

dur
r

dr
(11.5.3)

�0
�� =

ur
r

r
(11.5.4)

where the superscript r indicates again residual, we obtain

r
d2ur

r

dr2
+ dur

r

dr
− ur

r

r
=−
h�2r2

K
(11.5.5)

This can be written as

r
d

dr

[
1

r

d

dr
�rur

r �

]
=−
h�2r2

K
(11.5.6)

Integrating this gives the radial displacement due to the centrifugal force
as

ur
r =−
h�2r3

8K
+C1r+

C2

r
(11.5.7)
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The integration constants have to be evaluated from the boundary
conditions. In case of the freely spinning saw blade, these boundary
conditions are

ur
r �r=b�=0 (11.5.8)

N r
rr �r=a�=K

(
dur

r

dr
+�

ur
r

r

)
r=a

=0 (11.5.9)

Since

N r
rr =�1+��KC1−

�1−��K

r2
C2−


h�2�3+��

8
r2 (11.5.10)

we obtain[
�1+��a2 �−1

b2 1

]{
C1

C2

}
= 
h�2

8K

{
a4�3+��

b4

}
(11.5.11)

From this, we find that

C1 =

h�2

8K

a4�3+��+�1−��b4

�1+��a2+�1−��b2
(11.5.12)

C2 =

h�2

8K

�1+��a2b4−�3+��a4b2

�1+��a2+�1−��b2
(11.5.13)

The membrane stress resultant N t
rr is therefore defined. The membrane

stress resultant N r
�� is given by

N r
��=�1+��KC1+

�1−��K

r2
C2−


h�2�3�+1�

8
r2 (11.5.14)

The equation of motion is defined by Eq. (11.2.22). From it, we obtain as
the equation of motion of the spinning saw blade,

D� 4u3−
1

r

�

�r

(
N r

rr r
�u3

�r

)
− 1

r

�

��

(
N r

��

1

r

�u3

��

)
+
hü3=q3 (11.5.15)

To obtain the natural frequencies, we set q3=0 and let

u3=U3e
j�t (11.5.16)

This gives

D� 4U3−
1

r

�

�r

(
N r

rr r
�U3

�r

)
− 1

r

�

��

(
N r

��

1

r

�U3

��

)
−
h�2U3=0 (11.5.17)

A general exact solution in closed form has not yet been found for the
spinning saw problem. Both Southwell (1922) and Mote (1965) approached
it with variational methods. Mote used the Raleigh–Ritz technique with the
function

U3�r
��=�r−b�
i=k∑
i=0

ai�r−b�icosn� (11.5.18)
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FIG. 4 Change in natural frequencies of a spinning saw blade as function of spin
speed.

Numerical values for the case where a=80mm, b=20mm, h=1mm,
the material is carbon steel, and the rotational speed is in rotations per
minute are shown in Fig. 4. All results are for modes that have no nodal
circles, only nodal diameters. Nodal circles occur only at still higher
frequencies for this case. It is interesting to note that the influence of
the centrifugal force can be ignored at two-pole-induction-motor speed
�3600rpm�. This seems also to be the general finding for saw blades of
other normally used dimensions. However, as the speed increases beyond
that, the centrifugal effect gains importance because its influence grows
with the square of the rotational speed.

Treatment of other membrane stress-producing effects, such as
heating (thermal stresses) or “tensioning” (a process where beneficial
residual stresses are hammered into the blade), can be found in Mote
(1966).

11.6. DONNELL–MUSHTARI–VLASOV EQUATIONS
EXTENDED TO INCLUDE INITIAL STRESSES

Since we have already seen that the Donnell–Mushtari–Vlasov equations
are a useful simplification of Love’s equations, let us proceed through an
identical simplification process with Eqs. (11.2.20)–(11.2.24). We obtain

D� 4u3+� 2
k �−� 2

r u3+
hü3=q3 (11.6.1)
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and

Eh� 2
k u3−� 4�=0 (11.6.2)

where

� 2
r �·� =

1

A1A2

[
�

��1

(
N r

11

A2

A1

��·�
��1

)
+ �

��2

(
N r

22

A1

A2

��·�
��2

)
+ �

��1

(
N r

21

��·�
��2

)

+ �

��2

(
N r

12

��·�
��1

)]
(11.6.3)

and where � 2
k �·� is defined by Eq. (6.7.11) and � 2�·� by Eq. (4.4.21).

To find the natural frequencies and modes, we set q3=0 and

u3��1
�2
t� = U3��1
�2�e
j�t (11.6.4)

���1
�2
t� = ���1
�2�e
j�t (11.6.5)

This gives

D� 4U3+� 2
k �−� 2

r U3−
h�2U3=0 (11.6.6)

and

Eh� 2
k U3−� 4�=0 (11.6.7)

Operating with � 4 and � 2
k on these equations again allows a combination

D� 8U3+Eh� 4
k U3−� 4� 2

r U3−
h�2� 4U3=0 (11.6.8)

Let us now investigate, as an example, a closed circular cylindrical
shell that is under a uniform boundary tension T in newtons per meter as
shown in Fig. 5. By solving the static set of equations, it can be shown that
in this case we have throughout the shell, N r

xx=T and N r
��=N r

x�=0.

FIG. 5 Circular cylindrical shell under a constant axial tension.
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Let us first evaluate the operators. They become

� 2
r �·� = T

�2�·�
�x2

(11.6.9)

� 2�·� = 1

a2

�2�·�
��2

+ �2�·�
�x2

(11.6.10)

� 2
k �·� =

1

a2

�2�·�
�x2

(11.6.11)

If the shell is simply supported at both ends, we find that the mode shape

U3�x
��=sin
m�x

L
cosn��−�� (11.6.12)

satisfies both the boundary conditions and Eq. (11.6.8). This equation
becomes

D

[(m�

L

)2+(n
a

)2]4+ Eh

a2

(m�

L

)4

+
[
T
(m�

L

)2−
h�2

][(m�

L

)2+(n
a

)2]2=0 (11.6.13)

Solving for �, we may write the result as

�2
mnT =�2

mn0+
T


h

(m�

L

)2
(11.6.14)

where �mn0 is the natural frequency of the shell when there is no boundary
tension, as given by Eq. (6.12.3), and �mnT is the natural frequency when
tension or compression (since T could be negative) is present. Note that
the natural frequency increases as the tension T is increased. If there is
compression, T <0, the natural frequency is decreased from that of the
compression-free shell. As a matter of fact, when

T =−
(

L

m�

)2

�2
mn0
h (11.6.15)

we reach a point where the natural frequency for a particular m
n mode
becomes 0. This is because at that value of T , the critical buckling load for
a buckling mode identical in shape to this particular m
n mode has been
reached and the shell has zero stiffness for this particular mode.
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12

Shell Equations with
Shear Deformation
and Rotatory Inertia

In all previous developments, we have taken the shear deformation to
be 0. This assumption allowed us to obtain �1 and �2 as functions of
the displacements u1, u2, and u3. However, for shells where the thickness
is large as compared to either the overall dimension or to the modal
wavelength of the highest frequency of interest, shear deformation can no
longer be neglected. We must allow for the fact that �13 �=0 and �23 �=0.
This means that we will have two additional unknowns, �1 and �2.

12.1. EQUATIONS OF MOTION

From Eqs. (2.3.52) and (2.3.53), we have

�13=A1

�

��3

(
U1

A1

)
+ 1

A1

�U3

��1

(12.1.1)

�23=A2

�

��3

(
U2

A2

)
+ 1

A2

�U3

��2

(12.1.2)

Substituting Eqs. (2.4.1) to (2.4.3) gives

�13=�1−
u1

R1

+ 1

A1

�u3

��1

(12.1.3)

322
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�23=�2−
u2

R2

+ 1

A2

�u3

��2

(12.1.4)

In Sec. 2.4, we were able to solve these two equations for �1 and �2. This
is now not possible. �1 and �2 have to be treated as unknowns.

All this implies, of course, that we should now use the definitions of
shear stress in a more direct way:

�13=G�13 (12.1.5)

�23=G�23 (12.1.6)

We have to consider �13 and �23, and therefore �13 and �23, to be the
values at the neutral surface. Since the free surfaces of the shell can clearly
not support a shear stress, the average values of �13 and �23 are less. If �a

13

and �a
23 are the average shear stress, then

�a
13=k′�13 (12.1.7)

�a
23=k′�23 (12.1.8)

The factor k′ depends on the actual distribution of shear stress in the �3

direction. If the distribution is parabolic as sketched in Fig. 1, k′ = 2
3 .

Summing up over the shell thickness, we obtain the shear force
resultants Q13 and Q23:

Q13=
h/2∫
−h/2

�a
13

(
1+ �3

R2

)
d�3 (12.1.9)

or

Q13=k′�13h=k′�13Gh (12.1.10)

Similarly,

Q23=k′�23Gh (12.1.11)

Since rotatory inertia effects become noticeable at frequencies where
shear deflections have to be considered, it is advisable to include rotatory

FIG. 1 Shear stress distribution.
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inertia at this point. For this purpose, we use as kinetic energy expression
Eq. (2.6.7), with the �̇1 and �̇2 terms not neglected. The equations of
motion (Soedel, 1982) thus become

−��N11A2�

��2

− ��N21A1�

��2

−N12

�A1

��2

+N22

�A2

��1

−A1A2

k′�13Gh

R1

+A1A2�hü1=A1A2q1 (12.1.12)

−��N12A2�

��1

− ��N22A1�

��2

−N21

�A2

��1

+N11

�A1

��2

−A1A2

k′�23Gh

R2

+A1A2�hü2=A1A2q2 (12.1.13)

−k′Gh
���13A2�

��1

−k′Gh
���23A1�

��2

+A1A2

(
N11

R1

+N22

R2

)
+A1A2�hü3=A1A2q3 (12.1.14)

��M11A2�

��1

+ ��M21A1�

��2

+M12

�A1

��2

−M22

�A2

��1

−Ghk′�13A1A2−A1A2

�h3

12
�̈1=0 (12.1.15)

��M12A2�

��1

+ ��M22A1�

��2

+M21

�A2

��1

−M11

�A1

��2

−Ghk′�23A1A2−A1A2

�h3

12
�̈2=0 (12.1.16)

We have five equations and five unknowns: u1	u2	u3	�1, and �2.
Summarizing the strain–displacement relationships, we have now

�0
11=

1

A1

�u1

��1

+ u2

A1A2

�A1

��2

+ u3

R1

(12.1.17)

�0
22=

1

A2

�u2

��2

+ u1

A1A2

�A2

��1

+ u3

R2

(12.1.18)

�0
12=

A2

A1

�

��1

(
u2

A2

)
+A1

A2

�

��2

(
u1

A1

)
(12.1.19)

k11=
1

A1

��1

��1

+ �2

A1A2

�A1

��2

(12.1.20)
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k22=
1

A2

��2

��2

+ �1

A1A2

�A2

��1

(12.1.21)

k12=
A2

A1

�

��1

(
�2

A2

)
+A1

A2

�

��2

(
�1

A1

)
(12.1.22)

�13=
1

A1

�u3

��1

− u1

R1

+�1 (12.1.23)

�23=
1

A2

�u3

��2

− u2

R2

+�2 (12.1.24)

The necessary boundary conditions become (the subscripts n and t
denote normal to boundary and tangential to the boundary, respectively)

Nnn=N ∗
nn or un=u∗

n

Nnt=N ∗
nt or ut=u∗

t

Qn3=Q∗
n3 or u3=u∗

3 (12.1.25)

Mnn=M∗
nn or �n=�∗

n

Mnt=M∗
nt or �t=�∗

t

12.2. BEAMS WITH SHEAR DEFLECTION
AND ROTATORY INERITA

As our first reduction, let us derive the equation of motion of a transversely
vibrating beam, commonly known as the Timoshenko beam equation
(Timoshenko, 1921). We set �1=x, A1=1, �2=y, A2=1, ��·�/��2=0. The
equations of motion then reduce to

−Ghk′
��x3

�x
+�hü3=q3 (12.2.1)

�Mxx

�x
−Ghk′�x3−

�h3

12
�̈x=0 (12.2.2)

Stress–displacement relationships reduce to

kxx=
��x

�x
(12.2.3)

�x3=
�u3

�x
+�x (12.2.4)

Since the equation for Mxx becomes

Mxx=D
��x

�x
(12.2.5)
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Eqs. (12.2.1) and (12.2.2) become

−Ghk′
�2u3

�x2
−Ghk′

��x

�x
+�hü3=q3 (12.2.6)

D
�2�x

�x2
−Ghk′�x−Ghk′

�u3

�x
− �h3

12
�̈x=0 (12.2.7)

Differentiating Eq. (12.2.7) with respect to x gives

D
�3�x

�x3
−Ghk′

��x

�x
−Ghk′

�2u3

�x2
− �h3

12

���̈x�

�x
=0 (12.2.8)

From Eq. (12.2.6), we obtain

��x

�x
= �

Gk′
ü3−

�2u3

�x2
− q3
Ghk′

(12.2.9)

Substituting this into Eq. (12.2.8) gives

D
�4u3

�x4
+�h

�2u3

�t2
−
(
D�

Gk′
+ �h3

12

)
�4u3

�x2�t2
+ �2h3

12Gk′
�4u3

�t4

=q3+
�h2

12Gk′
�2q3
�t2

− D

Ghk′
�2q3
�x2

(12.2.10)

Multiplying the equation by the width of the beam, we recognize that

Db=EI (12.2.11)

�hb=�A (12.2.12)

q3b=p (12.2.13)

where I is the area moment of inertia, A the cross-sectional area, and p is
the force per unit length. Therefore, Eq. (12.2.10) becomes

EI
�4u3

�x4
+�A

�2u3

�t2
−
(
EI�

Gk′
+�I

)
�4u3

�x2�t2
+ �2I

Gk′
�4u3

�t4

=p+ �I

Ghk′
�2p

�t2
− EI

Ghk′
�2p

�x2
(12.2.14)

This is Timoshenko’s beam equation (Timoshenko, 1921).
However, it is probably better to work directly with Eqs. (12.2.6) and

(12.2.7), which become

−GAk′
(
�2u3

�x2
+ ��x

�x

)
+�Aü3=p (12.2.15)

EI
�2�x

�x2
−GAk′

(
�u3

�x
+�x

)
− �Ah2

12
�̈x=0 (12.2.16)
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For example, let us solve this equation for its natural frequencies and
modes for the simply supported beam. Setting p=0 and

u3�x	t�=U3�x�e
j
t (12.2.17)

�x�x	t�=Bx�x�e
j
t (12.2.18)

where

U3=Asin
m�x

L
(12.2.19)

Bx=Bcos
m�x

L
(12.2.20)

satisfy the boundary conditions, which are at x=0 and L,

U3=0 (12.2.21)

Mxx=0 (12.2.22)

Substituting this in Eqs. (12.2.15) and (12.2.16) gives[
a11−�A
2 a12

a21 a22− �Ah2

12 
2

]{
A
B

}
=0 (12.2.23)

where

a11=GAk′
(m�

L

)2
(12.2.24)

a12=a21=GAk′
(m�

L

)
(12.2.25)

a22=GAk′ +EI
(m�

L

)2
(12.2.26)

Since A and B cannot be equal to 0, the determinant has to be 0 to
satisfy the equation. This gives a second-order algebraic equation in 
2:

A1

4+A2


2+A3=0 (12.2.27)

where

A1=��A�2
h2

12
(12.2.28)

A2=−�A

(
a11

h2

12
+a22

)
(12.2.29)

A3=a11a22−a12a21 (12.2.30)

and thus we obtain two natural frequencies for every value of m. The lower
one is associated with a mode that is dominated by transverse deflection
and can be compared to the natural frequency obtained from the classical
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beam equation without shear deflection. The higher one is associated with
a shear vibration and is of much lesser technical interest.

Let us define


ms=�
m (12.2.31)

where 
m is the mth natural frequency when shear and rotatory inertia
are not considered and 
ms is the mth natural frequency when they are
considered. � is a correction factor. It turns out that �<1
0 since the
addition of a shear deflection makes the system behave as if it were less
stiff and the addition of a rotatory inertia increases the mass effect. Both
tend to decrease the calculated natural frequency.

Utilizing our solution, we may plot the correction factor � as shown
in Fig. 2. It shows that the error that is introduced when we neglect
shear and rotatory inertia is sizable for low values of L/h and for high
values of m. In summary, what is required is that the thickness h be small
compared to the length between nodes of the highest mode of interest.
The length between nodes is, exactly for the simply supported case and
approximately for other case, �=L/m
 Thus only if

h� L

m
(12.2.32)

can we ignore shear and rotatory inertia safely. For instance, if h is 10%
of L/m, the frequency error is approximately 2% for m=1. In Kristiansen
et al. (1972), this question is discussed at length for both beams and plates.

FIG. 2 Correction factor plotted as function of slenderness ratio and mode number.
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12.3. PLATES WITH TRANSVERSE SHEAR
DEFLECTION AND ROTATORY INERTIA

For plates, we set 1/R1=1/R2=0. Equations (12.1.12) and (12.1.13)
uncouple from the other equations. They are of little interest in this
chapter. Equation (12.1.14) becomes

−k′Gh
���13A2�

��1

−k′Gh
���23A1�

��2

+A1A2�hü3=A1A2q3 (12.3.1)

and Eqs. (12.1.15) and (12.1.16) remain the same. The strain–displacement
relations needed are Eqs. (12.1.20)–(12.1.22) and Eqs. (12.1.23) and
(12.1.24), which become

�13=
1

A1

�u3

��1

+�1 (12.3.2)

�23=
1

A2

�u3

��2

+�2 (12.3.3)

Substituting these in Eqs. (12.3.1), (12.1.15), and (12.1.16) gives

−k′Gh

[
�

��1

(
A2

A1

�u3

��1

)
+ �

��2

(
A1

A2

�u3

��2

)
+ �

��1

�A2�1+A1�2�

]

+A1A2�hü3=A1A2q3 (12.3.4)

D�1−��

[
�k11−k22�

�A2

��1

+k12
�A1

��2

+A1

2

�k21
��2

+ A2

1−�

(
�k11
��1

+�
�k12
��1

)]

−k′GhA1A2

(
1

A1

�u3

��1

+�1

)
−A1A2

�h3

12
�̈1=0 (12.3.5)

D�1−��

[
�k22−k11�

�A1

��2

+k21
�A2

��1

+A2

2

�k12
��1

+ A1

1−�

(
�k22
��2

+�
�k11
��2

)]

−k′GhA1A2

(
1

A2

�u3

��2

+�2

)
−A1A2

�h3

12
�̈2=0 (12.3.6)

where

k11=
1

A1

��1

��1

+ �2

A1A2

�A1

��2

(12.3.7)
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k22=
1

A2

��2

��2

+ �1

A1A2

�A2

��1

(12.3.8)

k12=
A2

A1

�

��1

(
�2

A2

)
+A1

A2

�

��2

(
�1

A1

)
(12.3.9)

These are three equations and three unknowns: �1	�2	 and u3. The
necessary boundary conditions are

Qn3=Q∗
n3 or u3=u∗

3 (12.3.10)

Mnn=M∗
nn or �n=�∗

n (12.3.11)

Mnt=M∗
nt or �t=�∗

t (12.3.12)

Let us now look at the special case of a rectangular plate. Since
A1=1	A2=1	d�1=dx, and d�2=dy, we obtain

−k′Gh

(
�2u3

�x2
+ �2u3

�y2
+ ��x

�x
+ ��y

�y

)
+�hü3=q3 (12.3.13)

D�1−��

[
1

2

�k21
�y

+ 1

1−�

(
�k11
�x

+�
�k22
�x

)]

−k′Gh

(
�u3

�x
+�x

)
− �h3

12
�̈x=0 (12.3.14)

D�1−��

[
1

2

�k12
�x

+ 1

1−�

(
�k22
�y

+�
�k11
�y

)]

−k′Gh

(
�u3

�y
+�y

)
− �h3

12
�̈y=0 (12.3.15)

k11=
��x

�x
(12.3.16)

k22=
��y

�y
(12.3.17)

k12=
��y

�x
+ ��x

�y
(12.3.18)

This gives

−k′Gh

(
�2u3

�x2
+ �2u3

�y2
+ ��x

�x
+ ��y

�y

)
+�hü3=q3 (12.3.19)



Shear Deformation and Rotatory Inertia 331

D

(
1+�

2

�2�y

�x�y
+ 1−�

2

�2�x

�y2
+ �2�x

�x2

)
−k′Gh

(
�u3

�x
+�x

)

−�h3

12
�̈x=0 (12.3.20)

D

(
1+�

2

�2�x

�x�y
+ 1−�

2

�2�y

�x2
+ �2�y

�y2

)
−k′Gh

(
�u3

�y
+�y

)

−�h3

12
�̈y=0 (12.3.21)

These equations are consistent with the Timoshenko beam equation since
they reduce to it if we set ��·�/y=0 and �y=0.

By introducing the Laplacian operator

� 2�·�= ��·�
�x2

+ ��·�
�y2

(12.3.22)

we may also write these equations as

−k′Gh

(
� 2u3+

��x

�x
+ ��y

�y

)
+�hü3=q3 (12.3.23)

D

2

[
�1−��� 2�x+�1+��

�

�x

(
��x

�x
+ ��y

�y

)]

−k′Gh

(
�u3

�x
+�x

)
− �h3

12
�̈x=0 (12.3.24)

D

2

[
�1−��� 2�y+�1+��

�

�y

(
��x

�x
+ ��y

�y

)]

−k′Gh

(
�u3

�y
+�y

)
− �h3

12
�̈y=0 (12.3.25)

Equations (12.3.23)–(12.3.25) are the equations of motion for the plate in
Cartesian coordinates. They were first derived by Mindlin (1951).

Let us, for example, investigate the natural frequencies of a simply
supported plate. We let

u3=U3e
j
t (12.3.26)

�x=Bxe
j
t (12.3.27)

�y=Bye
j
t (12.3.28)
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where, by inspection, we find that

U3=Asin
m�x

a
sin

n�y

b
(12.3.29)

Bx=B cos
m�x

a
sin

n�y

b
(12.3.30)

By=C sin
m�x

a
cos

n�y

b
(12.3.31)

satisfy the boundary conditions that at x=0 and a,

U3=0 (12.3.32)

By=0 (12.3.33)

Mxx=0 (12.3.34)

and at y=0 and b,

U3=0 (12.3.35)

Bx=0 (12.3.36)

Myy=0 (12.3.37)

Substituting this in Eqs. (12.3.23)–(12.3.25) gives

a11−�h
2 a12 a13

a21 a22− �h3

12 

2 a23

a31 a32 a33− �h3

12 

2





A
B
C


=0 (12.3.38)

where

a11=k′Gh

[(m�

a

)2+(n�
b

)2]
(12.3.39)

a22=D

[(m�

a

)2+ 1−�

2

(n�
b

)2]+k′Gh (12.3.40)

a33=D

[
1−�

2

(m�

a

)2+(n�
b

)2]+k′Gh (12.3.41)

a12=a21=k′Gh
m�

a
(12.3.42)

a13=a31=k′Gh
n�

b
(12.3.43)

a23=a32=D
1+�

2

m�

a

n�

b
(12.3.44)

Setting the determinant to 0 will give us a cubic equation in 
2
 For
each m	n combination, we obtain three natural frequencies. The lowest of
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these is the one of most interest since it corresponds to the mode where
the transverse deflection dominates. The other two frequencies are much
higher and correspond to shear modes.

The error that is introduced by neglecting shear and rotatory inertia
is again a function of the thickness and the distance between nodal lines.
It is similar in magnitude to the beam analysis error (Kristiansen et al.,
1972).

12.4. CIRCULAR CYLINDRICAL SHELLS WITH
TRANSVERSE SHEAR DEFLECTION AND
ROTATORY INERTIA

In this case A1=1	A2=a	d�1=dx	d�2=d�	1/R1=0, and R2=a. The
equations of motion thus become

−a
�Nxx

�x
− �N�x

��
+a�hüx=aqx (12.4.1)

−a
�Nx�

�x
− �N��

��
−k′Gh��3+a�hü�=aq� (12.4.2)

−ak′Gh
��x3
�x

−k′Gh
���3
��

+N��+a�hü3=aq3 (12.4.3)

a
�Mxx

�x
+ �M�x

��
−k′Gha�x3−

a�h3

12
�̈x=0 (12.4.4)

a
�Mx�

�x
+ �M��

��
−k′Gha��3−

a�h3

12
�̈�=0 (12.4.5)

where

�x3=
�u3

�x
+�x (12.4.6)

��3=
1

a

�u3

��
− u�

a
+�� (12.4.7)

�0xx=
�ux

�x
(12.4.8)

�0��=
1

a

�u�

��
+ u3

a
(12.4.9)

�0x�=
�u�

�x
+ 1

a

�ux

��
(12.4.10)

kxx=
��x

�x
(12.4.11)

K��=
1

a

���

��
(12.4.12)
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kx�=
���

�x
+ 1

a

��x

��
(12.4.13)

Let us examine the simply supported shell. We assume the following
solution for the vibration at a natural frequency:

ux�x	�	t�=Ux�x	��e
j
t (12.4.14)

u��x	�	t�=U��x	��e
j
t (12.4.15)

u3�x	�	t�=U3�x	��e
j
t (12.4.16)

�x�x	�	t�=Bx�x	��e
j
t (12.4.17)

���x	�	t�=B��x	��e
j
t (12.4.18)

where

Ux�x	��=Acos
m�x

L
cosn��−�� (12.4.19)

U��x	��=Bsin
m�x

L
sinn��−�� (12.4.20)

U3�x	��=C sin
m�x

L
cosn��−�� (12.4.21)

Bx�x	��=F cos
m�x

L
cosn��−�� (12.4.22)

B��x	��=Gsin
m�x

L
sinn��−�� (12.4.23)

These equations satisfy the 10 boundary conditions

u3�0	�	t�=0 (12.4.24)

u��0	�	t�=0 (12.4.25)

Mxx�0	�	t�=0 (12.4.26)

Nxx�0	�	t�=0 (12.4.27)

���0	�	t�=0 (12.4.28)

and

u3�L	�	t�=0 (12.4.29)

u��L	�	t�=0 (12.4.30)

Mxx�L	�	t�=0 (12.4.31)

Nxx�L	�	t�=0 (12.4.32)

���L	�	t�=0 (12.4.33)
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Substituting these equations in Eqs. (12.4.1)–(12.4.5) gives



a11−�h
2 a12 a13 0 0

a21 a22−�h
2 a23 0 a25

a31 a32 a33−�h
2 a34 a35

0 0 a43 a44− �h3

12 

2 a45

0 a52 a53 a54 a55− �h3

12 

2







A
B
C
F
G



=0

(12.4.34)

where

a11=K

[(m�

L

)2+ 1−�

2

(n
a

)2]
(12.4.35)

a12=a21=−K
1+�

2

n

a

m�

L
(12.4.36)

a13=a31=−K
�

a

m�

L
(12.4.37)

a22=K

[
1−�

2

(m�

L

)2+(n
a

)2]+k′
Gh

a2
(12.4.38)

a23=a32=
K

a

n

a
+ n

a

k′Gh

a
(12.4.39)

a25=a52=−k′Gh

a
(12.4.40)

a33=k′Gh

[(m�

L

)2+(n
a

)2]+ K

a2
(12.4.41)

a34=a43=k′Gh
m�

L
(12.4.42)

a35=a53=−k′Gh
n

a
(12.4.43)

a44=k′Gh+D

[
1−�

2

(n
a

)2+(m�

L

)2]
(12.4.44)

a45=a54=−D
1−�

2

n

a

m�

L
(12.4.45)

a55=k′Gh+D

[
1−�

2

(m�

L

)2+(n
a

)2]
(12.4.46)

Since the matrix equation is, in general, satisfied only if the determinant
of the matrix is 0, we obtain a fifth-order algebraic equation in 
2. The
roots of this equation are the natural frequencies. There will be five distinct
frequencies for every m and n combination. The mode shapes are obtained
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by substituting each root back into the matrix equations and by solving
for four of the constants in terms of the fifth. For instance, we may solve
for A/C	B/C	F/C	 and G/C. We find, as before for the cylindrical shell
in Chapter 5, that we have modes where transverse deflections dominate
and modes where in-plane deflections dominate. In addition, there will
now be two modes where shear deflections dominate. The influence of the
inclusion of shear deformation and rotatory inertia on natural frequencies
for modes where transverse motion dominates is similar to that discussed
for the rectangular plate and the beam.

Other shell geometries have been analyzed for the influence of
rotatory inertia and shear, and conclusions are similar. For conical shells,
see for instance, Garnet and Kempner (1964) and Naghdi (1957); for
spherical shells see, for instance, Kalnins and Kraus (1966). Summarizing
discussions are given by Leissa (1969, 1973).
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13

Combinations of Structures

Most shell structures are combinations of basic shell elements such as
cylindrical and conical shells, spherical caps, shells that carry stiffeners,
lumped masses, and so on. This has prompted the development of several
methods of calculating the eigenvalues of such combinations. One way is,
of course, the finite element method. See also Jaquot and Soedel (1970).

A useful approach, discussed for cases other than plates and shells
by Bishop and Johnson (1960), is the receptance method. With the
receptance method, vibrational characteristics of a combined system, for
instance, a shell stiffened by a rib, are calculated from characteristics of
the component systems, in this case the shell and the stiffening rib. The
number of variables is minimized, since only the displacements at the
points of interaction of the subsystems are part of the solution.

A feature of the receptance method of practical value to the
design process is that the receptances of the component systems may be
determined by any method that is sufficiently accurate. In the following,
the receptances are, when appropriate, written in terms of the natural
frequencies and modes. These can be obtained experimentally, from finite
element programs, and so on.

Even in finite element programming, the receptance method opens
a way to reduce program size since each component can be evaluated
by itself for its eigenvalues. The eigenvalues of the combined structure

337
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are given by the receptance method. For example, a rectangular box can
be thought of as being assembled from six rectangular plates. A missile
structure can be thought of as being composed of a circular cylindrical
shell, a circular conical shell, and a spherical cap.

13.1. RECEPTANCE METHOD

Basically, a receptance is defined as the ratio of a deflection response at
a certain point to a harmonic force or moment input at the same or at a
different point:

�ij=
deflection response of system A at location i

harmonic force or moment input to system A at location j

The response may be either a line deflection or a slope. Usually, the
subsystems are labeled A�B�C, and so on, and the receptances are labeled
�����, and so on.

Note that it follows from Maxwell’s reciprocity theorem that �ij=�ji.
Note also that a receptance can be interpreted as the inverse of a mobility.
The method could be set up in terms of such mobilities, which is especially
interesting to acousticians since they are used to working with mobilities,
but there is an advantage in using the receptance notation since it makes
some of the operations simpler to describe.

Let us now take the simplest conceivable case of two systems being
joined through a single displacement. This is shown schematically in Fig. 1.
For instance, a spring attached to a shell panel falls into this category. The
receptance of system A at the attachment point is �11 and is evaluated first.
The input is a harmonic force of amplitude FA1.

fA1=FA1e
j�t (13.1.1)

FIG. 1 Two systems connected by one displacement.
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The output of the undamped system is

xA1=XA1e
j�t (13.1.2)

Note that it is essential that we treat the undamped system in order to
obtain the undamped eigenvalues of the combined system.

The receptance is

�11=
xA1
fA1

= XA1

FA1

(13.1.3)

The receptance of system B at the point of attachment, by similar
reasoning, is

�11=
xB1
fB1

= XB1

FB1

(13.1.4)

Now if we join system A and system B, we obtain the condition that

XA1=XB1 (13.1.5)

and

FA1+FB1=0 (13.1.6)

Combining these equations and applying the definitions of the receptances
gives

�11+�11=0 (13.1.7)

Frequencies at which this equation is satisfied are natural frequencies of
the combined system.

13.2. MASS ATTACHED TO CYLINDRICAL PANEL

The receptance of a mass is found by finding the steady-state response of
a mass to a harmonic force input. From Fig. 2 we obtain

MẍA1=FA1e
j�t (13.2.1)

or

−M�2XA1=FA1 (13.2.2)

or

�11=− 1

M�2
(13.2.3)

The harmonic response at point �x∗��∗� due to a point force on the
panel is given by Eq. (8.8.8) and is �	k=0�

u3�x
∗��∗�t�= 4FB1e

j�t


hLa�

�∑
m=1

�∑
n=1

1

��2
mn−�2�

sin2 m�x∗

L
sin2 n��∗

�
(13.2.4)
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FIG. 2 Point mass connected transversely to a cylindrical panel.

where �mn is given by Eq. (6.12.5). Thus the receptance is

�11=
4


hLa�

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin2 m�x∗

L
sin2 n��∗

�
(13.2.5)

The characteristic equation for the total system is, according to
Eq. (13.1.7).

4


hLa�

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin2 m�x∗

L
sin2 n��∗

�
− 1

M�2
=0 (13.2.6)

This equation has to be solved for its roots, �=�k, by a numerical
procedure.

We can also do it graphically. We plot �11 as a function of � and
then �11 as a function of �. According to Eq. (13.1.7), it is required that
�11=−�11. A typical plot is shown in Fig. 3. As expected, the natural
frequencies are in general lowered by the attached mass.

To discuss the characteristic behavior of such an equation, let us
assume the special case where the influence of the mass is such that the
new natural frequencies �k are not too different from the original natural
frequencies �mn. In this case, we will find that for a particular root �k, one
term in the series dominates all the others, so that the equation can be
written approximately

4


hLa���2
mn−�2

k�
sin2 m�x∗

L
sin2 n��∗

�
− 1

M�2
k

=0 (13.2.7)
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FIG. 3 Illustration of the influence of the receptances of the point mass and the panel
on the natural frequencies of the combined system.

or, solving for �k,

�2
k=

�2
mn

�4M/Ms�sin
2�m�x∗/L�sin2�n��∗/��+1

(13.2.8)

where Ms is the mass of the entire panel:

Ms=
hLa� (13.2.9)

First we notice the obvious, namely that if we set M=0, nothing changes.
Second, if the mass happens to be attached to what is a node line of the
panel, the mass has no influence on that particular frequency. Finally, if
the mass is located on an antinode, we have

�2
k=

�2
mn

1+4�M/Ms�
(13.2.10)

This would be the largest influence the mass can have on a particular mode,
subject to the restrictions imposed by the simplifying assumption.

What does the new mode shape look like? Obviously, the mode shape
of the panel with a mass attached must be different from that of the panel
without mass. The solution is found by arguing that the response of the
plate to a harmonic point input of frequency �k is given by

u3�x���t�=
4FB1e

j�t


hLa�

�∑
m=1

�∑
n=1

sin�m�x∗/L�sin�n��∗/��
�2

mn−�2
k

sin
m�x

L
sin

n��

�

(13.2.11)
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Since �k is the natural frequency of the combined system, this equation
must describe the new mode shape. Since the amplitude is arbitrary, we
obtain

U3k�x���=
�∑

m=1

�∑
n=1

sin�m�x∗/L�sin�n��∗/��
�2

mn−�2
k

sin
m�x

L
sin

n��

�

(13.2.12)

We see that the more different �k is from the original �mn, the
more the new mode shape is a distortion of the original mode shape. We
also recognize that if the mass is attached to a node line of an original
mode shape m�n, this particular shape is preserved intact in its original
form, since in this case the double series becomes dominated by the one
particular m�n combination as �k→�mn. The foregoing approach was
applied to rings and tires in Allaei et al. (1986, 1988).

13.3. SPRING ATTACHED TO SHALLOW
CYLINDRICAL PANEL

The receptance of a spring attached to ground is obtained from (Fig. 4)

KxA1=FA1e
j�t (13.3.1)

or
KXA1=FA1 (13.3.2)

FIG. 4 Transversely grounded spring connected to a cylindrical panel.
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This gives

�11=
1

K
(13.3.3)

Using the receptance �11 of Eq. (13.2.5) for a simply supported circular
cylindrical panel gives

4

Ms

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin2 m�x∗

L
sin2 n��∗

�
+ 1

K
=0 (13.3.4)

where Ms is the mass of the panel and is given by Eq. (13.2.9). The
expected solution of this equation is illustrated graphically in Fig. 5,
where the solution �11=−�11 is shown. As expected, we observe that
the presence of a grounded spring will in general increase all natural
frequencies, provided that the spring can be approximated as massless.

If we make the same assumption as in Sec. 13.2—that for small
deviations the series is dominated by the term for which �2

mn−�2 is a
minimum—we obtain approximately

4

Ms��
2
mn−�2�

sin2 m�x∗

L
sin2 n��∗

�
+ 1

K
=0 (13.3.5)

or
�2

k=�2
mn+

4K

Ms

sin2 m�x∗

L
sin2 n��∗

�
(13.3.6)

Note that this case allows us to solve the problem of finding the
natural frequencies and modes of a simply supported panel that has a
point support at �x∗��∗�, as shown in Fig. 6. All that we have to do is let

FIG. 5 Illustration of the influence of the receptances of the transverse spring and the
panel on the natural frequencies of the combined system.
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FIG. 6 Simply supported, circular cylindrical panel with a grounded point support.

K approach infinity. The single-term solution cannot any longer be used;
rather, we have to solve Eq. (13.3.4) for its roots with 1/K=0

4

Ms

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin2 m�x∗

L
sin2 n��∗

�
=0 (13.3.7)

The solutions are given by the points where curve �11 in Fig. 5 crosses the
abscissa. As excepted, we notice in general a substantial increase in natural
frequency, except for cases where the point support location coincides with
a nodal line of one of the original modes. This method was applied to tires
in Soedel and Prasad (1980) and Allaei et al. (1987).

13.4. HARMONIC RESPONSE OF A SYSTEM IN
TERMS OF ITS COMPONENT RECEPTANCES

Let us take the simplest conceivable case: that of two systems joined
through a single displacement, as shown in Fig. 7. The receptance of
system A at the attachment point is �11 and is evaluated, as described in
Sec. 13.1, by considering a force

fA1=FA1e
j�t (13.4.1)

FIG. 7 Harmonic forcing applied to two systems at the displacement location where
they are joined.
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This causes a vibration response, in steady state, of

xA1=XA1e
j�t (13.4.2)

XA1 is real if the system is undamped and is a complex number if it is
damped. The receptance is

�11=
xA1
fA1

= XA1

FA1

(13.4.3)

Similarly, the receptance of system B at the point of attachment is

�11=
xB1
fB1

= XB1

FB1

(13.4.4)

If system A and system B are joined, it must be true that

XA1=XB1=XC1 (13.4.5)

where XC1 is the amplitude of the motion of the combined system.
Assuming the possibility that an external force fC1=FC1e

j�t acts on
the combined system at junction 1, we must also enforce the force balance

FA1+FB1=FC1 (13.4.6)

Dividing this equation by the displacement gives

1

�11

+ 1

�11

= 1

�11

(13.4.7)

or
�11=

�11�11

�11+�11

(13.4.8)

where �11=XC1/FC1. The harmonic response of the system to a force
FC1e

j�t at coordinate 1 is

XC1=�11FC1e
j�t= �11�11

�11+�11

FC1e
j�t (13.4.9)

Let us next consider the case of Fig. 8, where a force FC1e
j�t is

applied to the system at location 1, which is not at the junction of the two
subsystems. In this case

XA1=XC1=�11FA1+�12FA2 (13.4.10)

XA2=XC2=�21FA1+�22FA2 (13.4.11)

Since

FA2=−FB2 (13.4.12)

XC2=XB2=�22FB2 (13.4.13)
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FIG. 8 Harmonic forcing applied to a system to which a second system is attached
through one displacement.

We obtain

FA2=−XC2

�22

(13.4.14)

Since

FA1=FC1 (13.4.15)

Equations (13.4.10) and (13.4.11) become

XC1=�11FC1−
�12

�22

XC2 (13.4.16)

XC2=�21FC1−
�22

�22

XC2 (13.4.17)

Solving these two equations results in

XC1=
(
�11−

�21�12

�22+�22

)
FC1 (13.4.18)

XC2=
�22�21

�22+�22

FC1 (13.4.19)

or

�11=�11−
�21�12

�22+�22

(13.4.20)

�21=
�22�21

�22+�22

(13.4.21)

so that, recognizing that �21=�12,

xC1=�11FC1e
j�t=

(
�11−

�2
21

�22+�22

)
FC1e

j�t (13.4.22)

xC2=�21FC1e
j�t= �22�21

�22+�22

FC1e
j�t (13.4.23)

This approach was applied to the forced response of tires and suspension
systems in Kung et al. (1987).
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13.5. DYNAMIC ABSORBER

Let us now examine the case where a spring–mass system is attached to
a panel as shown in Fig. 9. To formulate the receptance �11, we write the
equations of motion of system B (the absorber):

Mÿ+Ky=KxB2 (13.5.1)

and
�y−xB2�K+FB2e

j�t=0 (13.5.2)

Since

y=Y ej�t (13.5.3)

and

xB2=XB2e
j�t (13.5.4)

We obtain[
�K−M�2� −K

−K K

]{
Y
XB2

}
=
{

0
FB2

}
(13.5.5)

or

XB2=
FB2�K−M�2�

−KM�2
(13.5.6)

FIG. 9 A transversely vibrating dynamic absorber that is attached to a circular
cylindrical shell.
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Thus the receptance �22 is

�22=− 1

M�2

[
1−

(
�

�1

)2
]

(13.5.7)

where �2
1=K/M . The receptance of the shell �22 is given by Eq. (13.2.5).

Note here that the shell is system A, the dynamic absorber is attached
at point 2�x2��2� in the transverse direction, and the excitation force is
located at point 1�x1��1�. The frequency equation thus becomes

4

Ms

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin2 m�x2
L

sin2 n��2
�

−�2
1−�2

M�2�2
1

=0 (13.5.8)

Let us again examine the approximate case where the roots of this
equation are perturbations of the original �2

mn values. We obtain

4

Ms

1

�2
mn−�2

sin2 m�x2
L

sin2 n��2
�

−�2
1−�2

M�2�2
1

=0 (13.5.9)

The new natural frequencies �=�k are therefore

�2
k=

�2
mn

2

[(
�1

�mn

)2

�1+A�+1

]
�1±√1−�mn� (13.5.10)

where

�mn=
4��1/�mn�

2


��1/�mn�
2�1+A�+1�2

(13.5.11)

A= 4M

Ms

sin2 m�x2
L

sin2 n��2
�

(13.5.12)

As a check, when �1=0, which means that K=0 and thus that there is no
attachment, the equation gives �2

k=�2
mn, 0, as expected. In this case the

zero has no physical meaning. When K→�, which implies that �1→�,
we obtain from Eq. (13.5.9) the result of Eq. (13.2.8). When A=0, which
means that either M=0 or the spring–mass system is attached to a node
line for the particular m�n mode, we obtain �2

k=�2
mn��

2
1. This is correct

because in this case the two subsystems uncouple.
In the general case, we get for every m�n combination two natural

frequencies. Let us, for instance, take the case where �1=�mn. We get

�2
k=�2

mn


(1+A

2

)
±
√(

A

2

)2

+A


 (13.5.13)

This relationship is plotted in Fig. 10. It can be shown that in general
the higher-frequency branch will correspond to a mode where the motion
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FIG. 10 Splitting of the shell natural frequencies as function of the dynamic absorber
mass.

of the mass will be out of phase with the motion of the panel and that
the lower-frequency branch will correspond to a system mode where the
motion of the mass will be in phase with the motion of the panel. This is
sketched in Fig. 11.

Next, we examine the forced response of the dynamic absorber. First,
we obtain the other necessary receptances, �11 and �21. They are, from
Eq. (8.8.8),

�11=
4

Ms

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin2 m�x1
L

sin2 n��1
�

(13.5.14)

FIG. 11 Typical in-phase and out-of-phase absorber motion at a split natural frequency
pair.
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�21=�12=
4

Ms

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin
m�x2
L

sin
n��2
�

sin
m�x1
L

sin
n��1
L

(13.5.15)

Equation (13.4.23) gives, at the point of absorber attachment,

xC2=
�22�21

�22+�22

FC1e
j�t (13.5.16)

This response can now be evaluated as a function of excitation frequency
�. It becomes 0 if

�22=0 (13.5.17)

which is satisfied if �=�1=
√
k/M . This is the tuning requirement for

the one-degree-of-freedom absorber of this example. However, the result
of Eq. (13.5.17) is much more general. Any attached multidegree-of-
freedom system can act as a dynamic absorber at the absorber resonance
frequencies.

13.6. HARMONIC FORCE APPLIED
THROUGH A SPRING

It is not possible to define and obtain useful receptances for a single spring
that is not grounded. By itself, a spring has no inertia; a harmonic force
will therefore produce harmonic motion of infinite amplitude. Thus it is
necessary to consider together the spring and the system to which the
spring it attached, as shown in Fig. 12.

F0e
j�t=k�x0−x1� (13.6.1)

However, since

x1=�11F1e
j�t (13.6.2)

FIG. 12 Harmonic force applied through a spring.
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and since

F0=F1 (13.6.3)

we obtain by substitution

x0=
1

k
�1+k�11�F0e

j�t (13.6.4)

and therefore,

�00=
1

k
+�11 (13.6.5)

Consider, for example, the simply supported cylindrical panel of Fig. 13,
which is excited through a linear spring. The shell is system A and its point
receptance �11 is [Eq. (13.2.5)]

�11=
4


hLa�

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin2 m�x∗

L
sin2 n��∗

�
(13.6.6)

Therefore,

�00=
1

k
+ 4


hLa�

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin2 m�x∗

L
sin2 n��∗

�
(13.6.7)

Note that from this, we may obtain the characteristic equation for a
grounded spring on a panel as discussed in Sec. 13.3 and given in
Eq. (13.3.4) by realizing that for this case �00=0.

FIG. 13 Example where the spring is transverse to the surface of a circular cylindrical
shell.
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FIG. 14 The two systems are connected through a spring.

We may now use �00 to attach a system B to a system A with a spring,
as shown in Fig. 14, since the characteristic equation is now simply

�00+�00=0 (13.6.8)

For example, we may consider the case of two cylindrical panels attached
through a spring as shown in Fig. 15. Note that in all this discussion, it
is assumed that the spring is acting normal to the panel surface. This is
not a required restriction, but it allows us, for reasons of simplicity, to
consider only transverse deflection receptances. Since �00 is also given by
Eq. (13.2.5), we obtain the characteristic equation

1

k
+ 4


1h1L1a1�1

�∑
m=1

�∑
n=1

1

�2
mn1−�2

sin2 m�x∗
1

L1

sin2 n��∗
1

�1

+ 4


2h2L2a2�2

�∑
m=1

�∑
n=1

1

�2
mn2−�2

sin2 m�x∗
2

L2

sin2 n��∗
2

�2

=0 (13.6.9)

FIG. 15 Two circular cylindrical panels connected by a spring.
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13.7. STEADY-STATE RESPONSE TO HARMONIC
DISPLACEMENT EXCITATION

System A in Fig. 16 is excited by a displacement

x1=X1e
j�t (13.7.1)

The force at the point of excitation, in steady state, is therefore

F1=
X1

�11

(13.7.2)

If the input at point 1 is considered the force F1, the response at point 2 is

X2=�21F1 (13.7.3)

Substituting Eq. (13.7.2) gives

X2=
�21

�11

X1 (13.7.4)

Equation (13.7.4) illustrates clearly that if point 2 approaches point 1, the
response approaches X1, as one would expect for a displacement input of
fixed amplitude. For a force excitation, as point 2 approaches point 1, we
approach X1=�11F1, which means that point 1 can respond to resonances
contained in �11. This difference becomes important, for example, in the
response of aircraft or automotive tires, which may experience either
displacement or force inputs.

Let us next consider two displacement inputs, one at location 1, the
other at location 2, with the response location now designated at 3. In this
case {

X1

X2

}
=
[
�11 �12

�21 �22

]{
F1

F2

}
(13.7.5)

or {
F1

F2

}
=
[
�11 �12

�21 �22

]−1{
X1

X2

}
(13.7.6)

FIG. 16 Displacement excitation at a point.
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Because the response at location 3 is given as

X3=�31F1+�32F2=
{
�31

�32

}T {
F1

F2

}
(13.7.7)

we obtain

X3=
{
�31

�32

}T [
�11 �12

�21 �22

]−1{
X1

X2

}
(13.7.8)

This can easily be generalized to N displacement inputs.

13.8. COMPLEX RECEPTANCES

None of the receptance relationships derived are restricted to zero damping
except those used in obtaining the natural frequencies for a combined
system. Therefore, receptances may be viewed as having both a magnitude
and a phase angle. For a simply supported cylindrical panel, for example,
which is viscously damped,

�11=
u3�x1��1�t�

F1ej�t
= 4


hLa�

�∑
m=1

�∑
n=1

sin2�m�x1/L�sin
2�n��1/��e

−j�mn√
��2

mn−�2�2+4	2
mn�

2�2
mn

(13.8.1)

where

�mn= tan−1 2	mn��/�mn�

1−��/�mn�
2

(13.8.2)

We may, of course, also combine complex receptances with undamped
receptances. Let us, for example, consider an undamped, simply supported
cylindrical panel to which is attached a grounded, viscous damper of
coefficient C. Designating the plate as system A, the damper as system B,
and applying the force input at x1�y1 (location 1), the response at location
1 is given by Eq. (13.4.22):

xC1=
(
�11−

�2
21

�22+�22

)
F1e

j�t (13.8.3)

where

�22=
1

jC�
= 1

C�
e−j�/2 (13.8.4)

�11=
4


hLa�

�∑
m=1

�∑
n=1

sin2�m�x1/L�sin
2�n��1/��

�2
mn−�2

(13.8.5)

�22=
4


hLa�

�∑
m=1

�∑
n=1

sin2�m�x2/L�sin
2�n��2/��

�2
mn−�2

(13.8.6)
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�21=
4


hLa�

�∑
m=1

�∑
n=1

×sin�m�x2/L�sin�m�x1/L�sin�n��2/��sin�n��1/��

�2
mn−�2

(13.8.7)

The result xC1 can easily be converted into magnitude and a phase angle.
Sometimes, it is desirable to represent a complex receptance in terms

of a magnitude and a single phase angle. First, for ease of derivation, we
replace m�n by k. Equation (13.8.1) can be written

�11=
4


hLa�

�∑
k=1

Ak�x1��1�e
−j�k (13.8.8)

where

Ak�x1��1�=
U 2

3k�x1��1�√
��2

k−�2�2+4	2
k�

2�2
k

(13.8.9)

and where

U3k�x1��1�=sin�m�x1/L�sin�n��1/�� (13.8.10)

Since

e−j�k =cos�k−jsin�k (13.8.11)

we may write

�11=
4


hLa�

[ �∑
k=1

Ak�x1��1�cos�k−j
�∑
k=1

Ak�x1��1�sin�k

]
(13.8.12)

or, in terms of a magnitude A11 and a single-phase angle �11,

�11=A11e
−�11 (13.8.13)

where

A11 = 4


hLa�

√√√√[ �∑
k=1

Ak�x1��1�cos�k

]2

+
[ �∑
k=1

Ak�x1��1�sin�k

]2

(13.8.14)

�11 = tan−1

[∑�
k=1Ak�x1��1�sin�k∑�
k=1Ak�x1��1�cos�k

]
(13.8.15)
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13.9. STIFFENING OF SHELLS

Let us now investigate requirements for stiffening a shell on the example
of a simply supported circular cylindrical panel as shown in Fig. 17.

We are faced here with the requirement that we have to join system
A, the panel, to system B, the ring, along a continuous line. A way to do
this and still utilize Eq. (13.1.7) was worked out by Sakharov (1962) for the
case of a closed circular cylindrical shell with stiffening rings at both ends.
It requires that the two systems have the same mode shapes along the line
at which they are joined. In our case the mode shape of the panel is

U3�x���=sin
m�x

L
sin

n��

�
(13.9.1)

while the mode shape of the stiffening ring is

U3���=sin
n��

�
(13.9.2)

This allows us to formulate a line receptance that is defined as the response
along the line to a harmonic line load that is distributed sinusoidally along
the line

q3�x���t�=P sin
r��

�
��x−x∗�ej�t (13.9.3)

where P is the line load amplitude in newtons per meter.

FIG. 17 Simply supported circular cylindrical panel reinforced by a ring stiffener.
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Taking advantage of the work described in Sec. 8.9, we note that
Q∗

3=P sin�r��/���Q∗
1=0�Q∗

2=0. Thus

F ∗
k =F ∗

mn=
P


hNk

sin
m�x∗

L

∫ �

0
sin

r��

�
sin

n��

�
a d� (13.9.4)

where

Nk=
a�L

4
(13.9.5)

Evaluating the integral gives 0 unless n=r . In that case, we obtain

F ∗
mn=




2P


hL
sin

m�x∗

L
� n=r

0� n �=r

(13.9.6)

Since in this case

S�t�=ej�t (13.9.7)

we obtain the steady-state solution of the modal participation factor from
Eq. (8.5.4) as

�k=
F ∗
mn

�2
mn−�2

ej�t (13.9.8)

and therefore

u3�x���t�=
2Pej�t


hL

�∑
m=1

sin�m�x∗/L�sin�m�x/L�sin�r��/��

�2
mn−�2

(13.9.9)

and at x=x∗,

u3�x
∗���t�= 2Pej�t


hL

�∑
m=1

1

�2
mn−�2

sin2 m�x∗

L
sin

r��

�
(13.9.10)

Formulating as receptance

�11=
u3�x

∗���t�
P sin�r��/��ej�t

(13.9.11)

gives

�11=
2


hL

�∑
m=1

1

�2
mn−�2

sin2 m�x∗

L
(13.9.12)

Next, to obtain the receptance �11 for the ring, we have to solve for
the response of a simply supported ring segment to a load

q′
3���t�=P sin

r��

�
ej�t (13.9.13)

where q′
3 and P both have the unit newtons per meter. Note that we assume

that the systems are joined along their midsurfaces. In reality, the ring may
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be joined to the panel either above or below. This influence is generally
small but was investigated in Wilken and Soedel (1976a).

The transverse mode-shape expression is

U3n=sin
n��

�
(13.9.14)

The associated natural frequencies �n were obtained in Sec. 5.4.
Multiplying and dividing Eq. (8.4.5) by the width b of the ring

segment and performing the indicated integration with respect to the width,
we obtain

Fk=
2Pej�t


sA�

∫ �

0
sin

r��

�
sin

n��

�
d� (13.9.15)

where A is the cross-sectional area of the ring and 
s is the mass density
of the ring material. Evaluating the integral, we obtain

Fk=Fn=



Pej�t


sA
� n=r

0� n �=r

(13.9.16)

The response is, therefore,

u3���t�=
Pej�t


sA��
2
n−�2�

sin
r��

�
(13.9.17)

and the receptance, defined as

�11=
u3���t�

P sin�r��/��ej�t
(13.9.18)

becomes

�11=
1


sA��
2
n−�2�

(13.9.19)

Note that the receptances �11 and �11 are compatible. Both describe the
same displacement divided by the same input. Thus the characteristic
equation whose roots furnish the combined system natural frequencies
becomes

2


hL

�∑
m=1

1

�2
mn−�2

sin2 m�x∗

L
+ 1


sA��
2
n−�2�

=0 (13.9.20)

The graphical solution is shown in Fig. 18 for a stiffener whose
natural frequency corresponding to the nth mode, �n, is lower than
the panel natural frequencies �3n��4n���� corresponding to the same
circumferential mode shape but higher than �1n and �2n. We see that
the natural frequencies of the combined system �III��IV����, are lower
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FIG. 18 Illustration of the law of stiffening described by Eqs. (13.9.25) and (13.9.26).

than the corresponding unstiffened panel frequencies �3n��4n����, while the
frequencies �I and �II are higher than the corresponding frequencies �1n

and �2n. This allows us to formulate the rule that for a circumferential
mode shape corresponding to n, all panel frequencies that are lower than
the stiffener frequency are raised and all panel frequencies that are higher
than the stiffener frequency are lowered.

We can show this by again assuming that the system frequency is
only a small perturbation of the original frequency. In this case, we obtain
approximately

2


hL��2
mn−�2�

sin2 m�x∗

L
+ 1


sA��
2
n−�2�

=0 (13.9.21)

The solutions of this equation are �=�k and are given by

�2
k=�2

mn

1+�2Ms/M���n/�mn�
2sin2�m�x∗/L�

1+�2Ms/M�sin2�m�x∗/L�
(13.9.22)

where Ms is the mass of the stiffener,

Ms=
sAa� (13.9.23)

and where M is the mass of the panel,

M=
hLa� (13.9.24)

The approximate solution shows immediately that

�k>�mn if �n>�mn (13.9.25)
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and

�k<�mn if �n<�mn (13.9.26)

Based on experimental evidence, these results are generally valid for any
kind of shell or plate and any kind of stiffener. We also notice the expected
result that the stiffener will have no effect on modes whose node lines
coincide with the stiffener location.

Similar results where obtained in Wilken and Soedel (1976b) and
Weissenburger (1968), where the eigenvalues of circular cylindrical shells
with multiring stiffeners are explored. Stiffening with stringers follows the
same rules. Other examples of line receptance applications can be found in
Azimi et al. (1984, 1986).

13.10. TWO SYSTEMS JOINED BY TWO
OR MORE DISPLACEMENTS

If we want to join a beam to a beam, we need as a maximum to enforce
continuity of transverse deflection and slope (two displacements). In cases
where axial vibration in each beam member is also of concern, we need to
enforce continuity for three displacements. Two shells may be attached to
each other at n points; in the case, we will have to enforce n displacements.

In the following, let us take the two-displacement case as a specific
example, shown in Fig. 19, but generalize immediately after each step for
the case where two components are joined by n coordinates. From the
basic definition of a receptance, which is like an influence function, we

FIG. 19 Two systems joined through two displacements.
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obtain the displacement amplitudes of system A as a function of harmonic
force inputs at these locations as

XA1=�11FA1+�12FA2 (13.10.1)

XA2=�21FA1+�22FA2 (13.10.2)

In general, for n displacements,

�XA�= 
���FA� (13.10.3)

Note that we now require that the cross receptances �ij , where i �=j, also
have to be known. Similarly, for system B,

XB1=�11FB1+�12FB2 (13.10.4)

XB2=�21FB1+�22FB2 (13.10.5)

In general,

�XB�= 
���FB� (13.10.6)

When the two systems are joined, the forces at each displacement junction
have to add up to 0, or

FA1=−FB1 (13.10.7)

FA2=−FB2 (13.10.8)

In general,

�FA�=−�FB� (13.10.9)

Also, the displacements have to be equal because of continuity,

XA1=XB1 (13.10.10)

XA2=XB2 (13.10.11)

or, in general,

�XA�=�XB� (13.10.12)

We may now combine the equation and obtain

��11+�11�FA1+��12+�12�FA2=0 (13.10.13)

��21+�21�FA1+��22+�22�FA2=0 (13.10.14)

In general, this can be written



��+
����FA�=0 (13.10.15)
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Since FA1=FA2=0 would be the trivial solution, it must be that

�11+�11 �12+�12

�21+�21 �22+�22
=0 (13.10.16)

In general, this can be written as

�
��+
���=0 (13.10.17)

In expanded form, the two-displacement case becomes

��11+�11���22+�22�−��12+�12�
2=0 (13.10.18)

13.11. SUSPENSION OF AN INSTRUMENT
PACKAGE IN A SHELL

To illustrate the case of two systems joined by two displacements, let us
treat a circular cylindrical shell inside of which an instrument package is
supported by way of two equal springs as shown in Fig. 20. Let us take the
case where the springs are attached at opposite points at locations �x∗��∗�
and �x∗��∗+��.

The receptances of system B are obtained by first considering the
force FB1, with FB2=0, Fig. 20 and evaluating XB1 and XB2. This gives,

FIG. 20 A mass-spring system joined transversely at two locations to a circular
cylindrical shell.
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utilizing Eq. (13.10.5),

�11 =
1

k
− 1

M�2
(13.11.1)

�21 =
1

M�2
(13.11.2)

Next, we consider FB2, with FB1=0, and evaluate XB1 and XB2. As expected
because of symmetry, �22=�11 and �12=�21.

The receptances for the shell are obtained from the solution for a
harmonic point force acting on a circular cylindrical shell as obtained in
Eq. (8.8.29). We evaluate u3 at �x∗��∗� and let P3=FA1. This gives

�11=
4

Ms

�∑
m=1

�∑
n=0

sin2�m�x∗/L�
�n��

2
mn−�2�

(13.11.3)

and evaluating u3 at �x∗��∗+��, we obtain

�21=
4

Ms

�∑
m=1

�∑
n=0

sin2�m�x∗/L�cosn�
�n��

2
mn−�2�

(13.11.4)

where

Ms=2�
haL (13.11.5)

Next, applying the load P3=FA2 at x∗��∗+� and evaluating u3 at
�x∗��∗+�� gives

�22=
4

Ms

�∑
m=1

�∑
n=0

sin2�m�x∗/L�
�n��

2
mn−�2�

(13.11.6)

and evaluating u3 at �x∗��∗�, we obtain, as expected,

�12=
4

Ms

�∑
m=1

�∑
n=0

sin2�m�x∗/L�cosn�
�n��

2
mn−�2�

(13.11.7)

Since in this case �11=�22 and �11=�22, the characteristic equation is

��11+�11�
2−��12+�12�

2=0 (13.11.8)

or
�11+�11=±��12+�12� (13.11.9)

This gives

4

Ms

�∑
m=1

�∑
n=0

sin2�m�x∗/L�
�n��

2
mn−�2�

�1∓cosn��+ 1

k
− 1

M�2
�1±1�=0

(13.11.10)
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and may be written in terms of two equations. The first is

4

Ms

�∑
m=1

�∑
n=0

sin2�m�x∗/L�
�n��

2
mn−�2�

�1−cosn��+ 1

k
− 2

M�2
=0 (13.11.11)

and the second is
4

Ms

�∑
m=1

�∑
n=0

sin2�m�x∗/L�
�n��

2
mn−�2�

�1+cosn��+ 1

k
=0 (13.11.12)

The roots �=�k of these equations will be the natural frequencies of the
system. Substitution of these into the displacement solution of the shell will
give the new mode shapes.

Equation (13.11.11), for n=1�3�5����, gives two sets of natural
frequencies and modes. The in-phase motion of center mass with the shell
is shown in Fig. 21. The other set describes the out-of-phase motion.

In addition, for n=0�2�4����, Eq. (13.11.11) will give the natural
frequency of the mass on its two springs when the springs are attached to
node points.

Let us next assume that the influence of the spring is small, so that
we can utilize a one-term solution. This gives, for Eq. (13.11.12),

�2
k=�2

mn+
4k

Ms�n

sin2 m�x∗

L
�1+cosn�� (13.11.13)

If n=1�3�5����, this equation gives

�2
k=�2

mn (13.11.14)

FIG. 21 In-phase motion of the mass-spring system with the shell motion at the
attachment points.
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FIG. 22 Natural modes of the combined system where the center mass is motionless
because the attachment locations and node line locations coincide.

It means that the spring is not active for n=1�3�5���� since the
displacement at each end of the spring is 0, as illustrated in Fig. 22 (see also
Soedel, 1987). For n=0�2�4����, Eq. (13.11.13) gives

�2
k=�2

mn+
8k

Ms�n

sin2 m�x∗

L
(13.11.15)

In this case, the springs are compressed equally from both ends, as shown
in Fig. 23. In neither case does the center mass experience motion.

13.12. SUBTRACTING STRUCTURAL SUBSYSTEMS

In the foregoing, we have treated the addition of structural subsystems
such as masses, springs, dampers, stiffeners, etc., to structural systems
by the receptance technique. But at times, it becomes necessary to
subtract systems. For example, we may want to make transfer function
measurements on a shell structure alone, which for one reason or another,
has masses, springs or other systems attached to it which we are unable
to remove during the measurement. If the receptances of the attachments
are known, is it possible to mathematically subtract the influence of the
attachments from the data for the shell with attachments to obtain the
transfer function of the shell alone?

Let us first pretend that we would like to add systems A and B.
For the case of Fig. 24, where a force F1e

j�t is applied to the system at
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FIG. 23 The center mass is motionless for the set of natural modes that is symmetric
with respect to the center mass.

location 1,

XA1=XC1=�11FA1+�12FA2 (13.12.1)

XA2=XC2=�21FA1+�22FA2 (13.12.2)

where the �ij can be complex numbers. Since

FA2=−FB2 (13.12.3)

FIG. 24 Illustrative example of subtracting a subsystem.
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and

XC2=XB2=�22FB2 (13.12.4)

we obtain

FA2=−XC2/�22 (13.12.5)

Since

FA1=F1 (13.12.6)

Equations. (13.12.1) and (13.12.2) become

XC1=�11F1−
�12

�22

XC2 (13.12.7)

and

XC2=�21F1−
�22

�22

XC2 (13.12.8)

Solving these equations for the total system receptances �11 and �21 gives

�11=
XC1

F1

=�11−
�21�12

�22+�22

(13.12.9)

and

�21=
XC2

F1

= �22�21

�22+�22

(13.12.10)

Here, � designates receptances of the total system C(A and B added),
� designates receptances of the original system A and � designates
receptances of the attached system B.

Next, we assume that we know all � receptances of system C, and
we know the �22 receptance of the attached system B. This leaves us with
three unknowns: �11��12=�21, and �22. This means that in addition of
Eqs. (13.12.9) and (13.12.10) we need to generate a third equation.

This third equation is found by placing a force at the point of system
C where subsystem B is attached to the original system A. Similar to the
above analysis, we find

�22=
�22�22

�22+�22

(13.12.11)

Note that Eq. (13.12.11) can be obtained by replacing �12 by �22 in
Eq. (13.12.10), but if �22 is to be obtained experimentally, it means that a
shaker will have to be attached at point 2 of system C.
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Solving Eqs. (13.12.9) to (13.12.11) for �11��12=�21, and �22 gives

�11 = �11��22−�22�−�2
21

�22−�22

(13.12.12)

�21 = −�21�22

�22−�22

(13.12.13)

�22 = −�22�22

�22−�22

(13.12.14)

where the � receptances are the transfer function of the original system
without the attached system B. The response of the original systems A at
forcing point 1 is, therefore:

x1=�11FA1e
j�t (13.12.15)

13.12.1. Natural Frequencies and Modes of the
Original System A

From Eqs. (13.12.12) to (13.12.14), we see that for zero damping, the �
receptances approach infinity whenever

�22−�22=0 (13.12.16)

Values of � which satisfy Eq. (13.12.16) are the natural frequencies �k of
the original, or “reduced" system A.

Intuitively, it seems possible to think of the system B subtraction
in terms of adding a “negative receptance" �−�22� to the total system
receptance �22, very much like the standard frequency equation for the
total system C which is, from Eqs. (13.12.9) or (13.12.10), �22+�22=0.
This is not unreasonable for simple systems B, such as a mass or a spring.
However, for more complicated systems B interpretation difficulties are
encountered. Also, it is not possible to obtain the natural modes of the
original system A by such an intuitive approach.

To find the natural modes of the original system A, it is necessary to
formulate the response at an arbitrary point 3 on system A, which requires
auxiliary measurement or calculations of receptances �31 and �32. In terms
of the subsystem receptances,

�31 = �31−
�32�21

�22+�22

(13.12.17)

�32 =
�32�22

�22+�22

(13.12.18)
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These equations are solved for �31 and �32:

�31 =�31−
�32�21

�22−�22

(13.12.19)

�32 =− �32�22

�22−�22

(13.12.20)

Here, �31 defines the natural modes of the original system A whenever
�=�k in the equation. Thus, �31 is evaluated at various points 3 for each
natural frequency �k obtained from Eq. (13.12.16). In practice, this must
be done for damping small enough to allow the kth mode to dominate the
response, but large enough to avoid the potential singularity at �=�k.

Note that the foregoing is also applicable to discrete systems. Soedel
and Soedel (1994) derived the general approach discussed here, but applied
it to a measurement problem involving an automotive suspension modeled
by lumped parameters.

13.12.2. Natural Frequencies, Modes, and Receptances
of a Rectangular Plate with a Small Mass Void

The plate in this case is a rectangular, simply supported plate. A relatively
concentrated amount of mass, M , is missing. The mass void is located
at �x2�y2�. We assume that the mass void is not accompanied by a loss
of stiffness because either the void (hole) is small and located near the
reference plane without an appreciable loss of stiffness, or the plate is
reinforced there to compensate for the loss of stiffness due to the mass
void.

In this case, the plate with the mass void is system A, the full plate
is the total system C, and the point mass which is missing is system B.
Subtracting system B from the total system C gives system A.

In this case, the receptances of the full plate of system C are

�11 = 4


hab

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin2 m�x1
a

sin2 n�y1
b

(13.12.21)

�21 =�12=
4


hab

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin
m�x2
a

sin
n�y2
b

sin
m�x1
a

sin
n�y1
b

(13.12.22)

�22 = 4


hab

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin2 m�x2
a

sin2 n�y2
b

(13.12.23)



370 Chapter 13

The receptance �22 of the mass is

�22=− 1

M�2
(13.12.24)

The natural frequencies are obtained from Eq. (13.12.16)

�22−�22=0 (13.12.25)

or

4


hab

�∑
m=1

�∑
n=1

1

�2
mn−�2

sin2 m�x2
a

sin2 n�y2
b

+ 1

M�2
=0 (13.12.26)

The values of � that satisfy this equation are the natural frequencies �k of
the plate with the mass void. Or approximately, following a similar thought
process that lead to Eq. (13.2.8),

�2
k=

�2
mn

1−
(

4m
Ms

)
sin2 m�x2

a
sin2 n�y2

b

(13.12.27)

where Ms=
hab, the mass of the plate without mass void. Thus, the
subtraction of a point mass without loss of stiffness leads to an increase of
the natural frequencies of the plate as expected.

The natural modes can be obtained either from Eq. (13.12.19) or, in
this simple case, by substituting �k for � in the undamped displacement
response u3�x�y�t� of the full plate, similar to the panel example in
Eqs. (13.2.11) and (13.2.12). This gives

U3k�x�y�=
�∑

m=1

�∑
n=1

sin��m�x2�/a�sin��n�y2�/b�

�2
mn−�2

k

sin
m�x

a
sin

n�y

b

(13.12.28)

The receptances of the plate with mass void, �11��21=�12 and
�22, are given by Eqs. (13.12.12)–(13.12.14), with �11��21=�12��22 and �22

defined by Eqs. (13.12.21)–(13.12.24).

13.13. THREE AND MORE SYSTEMS CONNECTED

As another example of system connections, we consider systems A,B, and
C joined as shown in Fig. 25. A and B, and B and C are joined by
one displacement each. The derivation below can easily be extended to
multi-displacement connections.
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FIG. 25 Three systems connected to each other by one displacement.

13.13.1. Natural Frequencies of the Joined System

The displacement amplitude XA1 of system A at location 1 as a function of
a harmonic force FA, is

XA1=�11FA1 (13.13.1)

For system B, the displacement amplitudes at locations 1 and 2 as
functions of the harmonic force amplitudes FB1 and FB2 are

XB1=�11FB1+�12FB2 (13.13.2)

XB2=�22FB2+�21FB1 (13.13.3)

Finally, the displacement amplitude of system C at location 2 is, as
function of a harmonic force amplitude at location 2,

XC2=�22FC2 (13.13.4)

Joining systems A,B, and C, the continuity conditions are

XA1=XB1 (13.13.5)

XB2=XC2 (13.13.6)

and force equilibrium demands that

FA1+FB1=0 (13.13.7)

FB2+FC2=0 (13.13.8)

Combining Eqs. (13.12.1)–(13.12.8) gives[
�11+�11 −�12

−�21 �22+�22

]{
FB1

FB2

}
=0 (13.13.9)

Unless the systems are connect at node points, in general{
FB1

FB2

}
�=0 (13.13.10)
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Therefore, it must be that

�11+�11 −�12

−�21 �22+�22
=0 (13.13.11)

or in expanded form, setting �12=�21,

��11+�11���22+�22�−�2
12=0 (13.13.12)

The values of �, which satisfy this equation, are the natural frequencies of
the system, �k.

13.13.2. The Steady State Response of a
Point on System C to a Harmonic Force
Input to System A

The example solved here is shown in Fig. 26. In this case, the force acts
at point 0 of system A and the response will be obtained at point 3 located
on system C.

For system A, we may write

XA0=�00FA0+�01FA1 (13.13.13)

XA1=�10FA0+�11FA1 (13.13.14)

For system B, the displacement amplitudes are given by Eqs. (13.13.2) and
(13.13.3) and the displacement amplitude for system C at point 2 is given
by Eq. (13.13.4). The new equation needed is the displacement response at
point 3 of system C:

XC3=�32FC2 (13.13.15)

The continuity equations (13.13.5) and (13.13.6) still apply, as do the force
equilibrium relationships (13.13.7) and (13.13.8). Combining all of these
equations and solving for XC3 gives

XC3=
�01�12�23

��11+�11���22+�22�−�2
12

FA0 (13.13.16)

FIG. 26 The connected three systems are forced at system A.
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Therefore, the response to FA0e
j�t is

xC3=XC3e
j�t (13.13.17)

Note that XC3 is a complex number, as are all or some of the ���, and �
receptances, if there is damping in the system.

13.13.3. Natural Frequencies if Systems A�B and C are
Connected by Springs

If the connections are springs as shown in Fig. 27, we may either redefine
the receptances as in Sec. 13.6, or follow a more direct approach by
redefining FB1 and FC2 (this assumes that the left spring of rate k1 is
considered to be part of system B and the right spring of rate k2 is
considered to be part of system C):

FB1=k1�XA1−XB1� (13.13.18)

FC2=k2�XB2−XC2� (13.13.19)

These equations replace the continuity conditions, since now XA1 �=XB1

and XB2 �=XC2! Equation (13.13.1)–(13.13.4) still apply. Utilizing the force
equilibrium conditions (13.13.7) and (13.13.8) and combining all equations
give [


1+k1��11+�11�� −k1�12

−k2�21 
1+k2��22+�22��

]{
FB1

FB2

}
=0 (13.13.20)

Again, the argument that leads to Eq. (13.13.11) applies[

1+k1��11+�11�� −k1�12

−k2�21 
1+k2��22+�22��

]
=0 (13.13.21)

or in expanded form, since �12=�21,


1+k1��11+�11��
1+k2��22+�22��−k1k2�
2
12=0 (13.13.22)

The values of � that satisfy this equation are the natural frequencies �k of
the system.

FIG. 27 Three systems connected to each other by springs.
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Note that if we factor out k1k2, we may write[
1

k1
+��11+�11�

][
1

k2
+��22+�22�

]
−�2

12=0 (13.13.23)

and if we simulate stiff connections by letting k1→� and k2→�, we
obtain Eq. (13.13.12) as expected.

13.13.4. Extension to Multiple System Connections

For example, the frequency equation (13.13.11) in determinant form can
easily be extrapolated to connected systems A�B�C�D�E� etc. Designating
the receptances as ���������� etc., we obtain

�11+�11 −�12 0 0 ·
−�21 �22+�22 −�12 0 ·
0 −�21 �33+�33 −�12 ·
0 0 −�21 �44+�44 ·
· · · · ·

=0 (13.13.24)

13.14. EXAMPLES OF THREE SYSTEMS
CONNECTED TO EACH OTHER

13.14.1. Three Plates Connected to Each Other
by Transverse Point Connections

Three identical, simply supported rectangular plates are connected to each
other by mass less, rigid links as shown in Fig. 28.

From Eq. (9.9.28), the steady state, harmonic response of a simply
supported plate at a location �xi�yi� to a harmonic point force at location
�xj�yj� is, for zero damping (the j in the exponential term is

√−1),

u3�xi�yi�t�=
4F


hab

�∑
m=1

�∑
n=1

sin m�xi
a

sin n�yi
b

sin
m�xj
a

sin
n�yj
b

�2
mn−�2

ej�t (13.14.1)

Thus, for the identical plates A,B, and C, we obtain from this equation the
receptances

�11 =�11=
4


hab

�∑
m=1

�∑
n=1

sin2 m�x1
a

sin2 n�y1
b

�2
mn−�2

(13.14.2)

�12 =�21=
4


hab

�∑
m=1

�∑
n=1

sin m�x1
a

sin n�y1
b

sin m�x2
a

sin n�y2
b

�2
mn−�2

(13.14.3)
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FIG. 28 Three plates connected to each other by transverse connections.

�22 =�22=
4


hab

�∑
m=1

�∑
n=1

sin2 m�x2
a

sin2 n�y2
b

�2
mn−�2

(13.14.4)

The frequency equation (13.13.12) becomes, therefore

4

[ �∑
m=1

�∑
n=1

sin2 m�x1
a

sin2 n�y1
b

�2
mn−�2

][ �∑
m=1

�∑
n=1

sin2 m�x2
a

sin2 n�y2
b

�2
mn−�2

]

−
[ �∑
m=1

�∑
n=1

sin m�x1
a

sin n�y1
b

sin m�x2
a

sin n�y2
b

�2
mn−�2

]2

=0 (13.14.5)

The � that satisfy this equation are the natural frequencies of the system
that are affected by the connection.
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For the special case that the connectors are in line so that
�x1�y1�=�x2�y2�, we obtain

4

[ �∑
m=1

�∑
n=1

sin2 m�x1
a

sin2 n�y1
b

�2
mn−�2

]2

−
[ �∑
m=1

�∑
n=1

sin2 m�x1
a

sin2 n�y1
b

�2
mn−�2

]2

=0

(13.14.6)

or
�∑

m=1

�∑
n=1

sin2 m�x1
a

sin2 n�y1
b

�2
mn−�2

=0 (13.14.7)

The � that satisfy this equation are the natural frequencies of the
combined system. This can also be shown from Eq. (13.13.12) directly. For
this special case where �x1�y1�=�x2�y2�, we obtain from Eqs. (13.14.2)–
(13.14.4) that

�11=�11=�22=�22=�12 (13.14.8)

Substituting this in Eq. (13.12.12) gives

4�2
11−�2

11=0 (13.14.9)

or

�11=0 (13.14.10)

Please note that it is possible, especially since we have here identical
plates, that the connection locations �x1�y1� may fall on node lines of the
unconnected plates. In this case, there is a set of modes such that

FA1=FB1=FB2=FC2=0 (13.14.11)

In this case, we obtain from Eq. (13.13.1) that

1

�11

=0 (13.14.12)

so, from Eq. (13.14.2), the system frequencies include also

�=�mn (13.14.13)

which are the natural frequencies of the plates as if there is no coupling
between them. This argument also holds for the general solution of
Eq. (13.14.5) since it is possible that both �x1�y1� and �x2�y2� could be
located on node lines of the individual, unconnected plates.

This example shows that one cannot rely on Eq. (13.14.5) to
necessarily give all of the system natural frequencies, but that node line
connections have to be explored also. This holds for all systems: beams,
plates, shell, etc.
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Note also that Eqs. (13.14.11)–(13.14.13) also apply if the identical
plates move in unison, since in this case the connection forces would also
be conceivably 0.

13.14.2. Three Plates Connected to Each Other
Through Moment Coupling

In this example, three identical, simply supported rectangular plates are
connected to each other at their boundaries as shown in Fig. 29, forming
a continuous single plate. Rewriting Eq. (10.5.11) for zero damping (and
switching L=a) gives

u3�x�y�t�=−2M
′
0�

a2
h
sin


�y

b

�∑
m=1

mcos m�x∗
a

sin m�x
a

�2
m
−�2

sin�t (13.14.14)

which is the response of the plate to a line moment M
′
0 sin


�y

b
sin�t located

at x∗.
The derivative with respect to x is

�U3

�x
�x�y�t�=−2M

′
0�

2

a3
h
sin


�y

b

�∑
m=1

m2 cos m�x∗
a

cos m�x
a

�2
m
−�2

sin�t (13.14.15)

This gives a line receptance (see also Sec. 13.9) for plate A at connection
1�x=x∗=a� of

�11=− 2�2

a3
h

�∑
m=I

m2 cos2m�

�2
mp−�2

=− 2�2

a3
h

�∑
m=1

m2

�2
mp−�2

(13.14.16)

FIG. 29 A continuous plate example (or three plates connected to each other by
rotational displacements).



378 Chapter 13

For plate B, we obtain at x=x∗=0,

�11=−−2�2

a3
h

�∑
m=1

m2

�2
mn−�2

(13.14.17)

which is the same as Eq. (13.14.16), and at x=x∗=a the same again as
Eq. (13.14.16), thus

�11=�22=�11 (13.14.18)

The line receptance �12 is obtained by evaluating Eq. (13.14.15) at x=0
and x∗=a:

�12=− 2�2

a3
h

�∑
m=1

m2 cosm�

�2
mp−�2

=�21 (13.14.19)

Finally, for plate C, the line receptance at location 2 is the same as �11:

�22=�11=�22=�11 (13.14.20)

Equation (13.13.12) becomes

4�2
11−�2

12=0 (13.14.21)

Substituting Eqs.(13.14.16) and (13.14.19) gives

4

[ �∑
m=1

m2

�2
m
−�2

]
−
[ �∑
m=1

m2 cosm�

�2
m
−�2

]2

=0 (13.14.22)

The values of � that satisfy this equation are natural frequencies of the
system of three identical plates. Again, it is conceivable that in this special
case connecting moments could be 0 if the three identical plates vibrate
with mode shapes for unconnected plates, and thus

1

�11

=0 (13.14.23)

or

�=�mp (13.14.24)

may also be a solution set. Note the slow convergence of Eq. (13.14.22)
because of m2 in the numerators.

Examples of circular plates connected to circular cylindrical shells
can be found in Huang and Soedel (1993a,b,c).
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14

Hysteresis Damping

The equivalent viscous damping coefficient that was used in the chapters
on the forced response of shell structures is a function of several effects.
While there may truly be a motion-resisting force proportional to velocity,
we may also have turbulent damping proportional to velocity squared
caused by the surrounding media; boundary damping either because of
friction in the boundary joints themselves (rivets, clamps, etc.) or because
of the elasticity of the boundary (we have to allow for a certain amount
of energy to be converted to wave action of the boundary material which
is lost to the system that is being investigated); and internal damping of
the material. Internal damping is characterized by a hysteresis loop. There
is also the possibility that damping is introduced by friction between two
shell surfaces. For example, to dampen the hermetically sealed shells of
refrigeration machinery, a ring of the same sheet material is loosely pressed
inside the main shell so that the two surfaces can work against each other
when vibrating.

Historically, internal damping was first investigated in 1784 by
Coulomb (1784). Using his torsional pendulum, he showed experimentally
that damping was also caused by a microstructural mechanism and not
only by air friction. He recognized that this internal damping, or hysteresis
damping, as it is often termed, was a function of vibration amplitude. Many
investigations of this topic have been carried out since.

380
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14.1. EQUIVALENT VISCOUS
DAMPING COEFFICIENT

When equivalent viscous damping is assumed, the forces per unit surface
area in the three different directions are given by (i=1�2�3)

qi=�u̇i (14.1.1)

and if the motion is harmonic,

ui=Uisin�t (14.1.2)

we get

qi=�Ui�cos�t (14.1.3)

The average dissipated energy per unit surface area and per cycle of
harmonic motion is

Ed=
1

A

∫ ∫
A

3∑
i=1

∫ 2�/�

0
�U 2

i �
2cos2�tdtdA (14.1.4)

where A is the surface area of the shell. We get

Ed=���
1

A

∫ ∫
A
�U 2

1 +U 2
2 +U 2

3 �dA (14.1.5)

Thus, if we can identify by theoretical models or by experiment what the
energy dissipated per cycle and unit area is, we may solve for � and obtain

�= EdA

��
∫ ∫

A
�U 2

1 +U 2
2 +U 2

3 �dA
(14.1.6)

When transverse motion is dominant, the most common case, U 2
1 +U 2

2 �
U 2

3 , and we may set

�= EdA

��
∫ ∫

A
U 2

3 dA
(14.1.7)

14.2. HYSTERESIS DAMPING

Structural damping is characterized by the fact that if we cycle a tensile test
specimen, we obtain a hysteresis loop as shown in Fig. 1. The shaded area
of the loop is the total energy dissipated per cycle. If we divide the force
by the cross-section of the specimen and the displacement by the length
of the specimen, we get a stress–strain plot of the same phenomenon. The
area is now equal to the energy dissipated per cycle and volume.
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FIG. 1 Typical measured hysteresis loop.

Unfortunately, no generally acceptable way has been found to utilize
this information directly. An approximation is the complex modulus. We
have Hooke’s law,

�=E� (14.2.1)

Substitution gives us

�=�maxsin�t (14.2.2)

where

�max=
F0

A
(14.2.3)

This gives

�= �max

E
sin�t (14.2.4)

Plotting � as a function of � gives, as expected, a straight line. For the line
to acquire width so that we obtain a resemblance to a hysteresis loop, we
have to replace E by E�1+j	�, where 	 is called the hysteresis loss factor.
In this case, we obtain

�= �max

E�1+j	�
sin�t (14.2.5)

This can be written as

�= �max

E
√
1+	2

sin��t−
� (14.2.6)

where


= tan−1	 (14.2.7)
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For typically small values of 	, we obtain


�	 (14.2.8)

and √
1+	2�1 (14.2.9)

Thus

�= �max

E
sin��t−	� (14.2.10)

Plotting � as a function of � in Fig. 2 gives an ellipse with the approximate
half-axes

a = �max

cos�
(14.2.11)

b = �max

E
	cos� (14.2.12)

Since the energy dissipated per cycle and volume is equal to the area of the
ellipse, we obtain

E1=
�

E
�2
max	=�E�2

max	 (14.2.13)

The total dissipated energy in the specimen is

ET =Lbh�E�2
max	 (14.2.14)

Since the maximum strain energy in the test specimen is

Umax=
Lbh

2
�max�max=

Lbh

2
E�2

max (14.2.15)

we find that [Ross, Ungar, and Kerwin (1959)]

	= 1

2�

ET

Umax

(14.2.16)

FIG. 2 Hysteresis loop approximated by an ellipse.
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This means that 2�	 defines the ratio of dissipated energy per cycle to the
strain energy at peak amplitude. Thus, in the case of a shell, we can argue
that

ET =2�	Umax (14.2.17)

where Umax is the strain energy of the shell at peak amplitude. The energy
dissipated per cycle and unit surface is then

Ed=
2�	

A
Umax (14.2.18)

where A is the reference surface area of the shell, plate, or beam. Thus the
equivalent viscous damping coefficient � is

�= 2Umax

�
∫ ∫

A
�U 2

1 +U 2
2 +U 2

3 �dA
	 (14.2.19)

Remembering the discussion of Rayleigh’s method in Sec.7.4, where
it was shown that

�2
k=

2Umax

�h
∫ ∫

A
�U 2

1 +U 2
2 +U 2

3 �dA
(14.2.20)

we may write the equivalent viscous damping coefficient as

�=�h�k

�k

�
	 (14.2.21)

It may be used directly when the forcing is harmonic. For nonharmonic
forcing, some choice about a mean value of �2

k/� will have to be made.

14.3. DIRECT UTILIZATION OF HYSTERESIS
MODEL IN ANALYSIS

For the technically significant class of cases where the steady-state
response to harmonic excitation is to be obtained, one can work directly
with the hysteresis model. Introducing the complex modulus into Love’s
equation gives

�1+j	�Li
u1�u2�u3�−�hüi=−q∗
i e

j�t (14.3.1)

where Li
u1�u2�u3� represents the same operators as given in Eqs. (8.1.3)–
(8.1.5). The general forcing terms in Love’s equation are now restricted to
harmonic excitation, with q∗

i representing the pressure load distribution.
The modal expansion solution is

ui��1��2�t�=
�∑
k=1

	k�t�Uik��1��2� (14.3.2)
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One should take note that the 	k are the modal participation factors and
that 	 without a subscript is the traditional notation for the hysteresis loss
factor. Substitution into Eq. (14.3.1) gives

�∑
k=1

��1+j	�	kLi
U1k�U2k�U3k�−�h	̈kUik�=−q∗
i e

j�t (14.3.3)

From the eigenvalue analysis, where 	=0 and qi=0, we obtain the identity

Li
U1k�U2k�U3k�=−�h�2
kUik (14.3.4)

This gives
�∑
k=i

��h	̈k+�h�1+j	��2
k	k�Uik=q∗

i e
j�t (14.3.5)

Multiplying both sides by a mode Uip, where p may be either equal to k or
unequal, and writing the relationship for every value of i=1�2�3, gives

�∑
k=1

��h	̈k+�h�1+j	��2
k	k�U1kU1p = q∗

1U1pe
j�t (14.3.6)

�∑
k=1

��h	̈k+�h�1+j	��2
k	k�U2kU2p = q∗

2U2pe
j�t (14.3.7)

�∑
k=1

��h	̈k+�h�1+j	��2
k	k�U3kU3p = q∗

3U3pe
j�t (14.3.8)

Adding Eqs. (14.3.6)–(14.3.8) and integrating over the reference surface of
the shell gives

�∑
k=1

��h	̈k+�h�1+j	��2
k	k�

∫
�2

∫
�1

�U1kU1p+U2kU2p+U3kU3p�

×A1A2d�1d�2=
∫
�2

∫
�1

�q∗
1U1p+q∗

2U2p+q∗
3U3p�A1A2d�1d�2

(14.3.9)

Utilizing the orthogonality property of natural modes gives

	̈k+�1+j	��2
k	k=F ∗

k e
j�t (14.3.10)

where

F ∗
k = 1

�hNk

∫
�2

∫
�1

�q∗
1U1k+q∗

2U2k+q∗
3U3k�A1A2d�1d�2 (14.3.11)

Nk =
∫
�2

∫
�1

�U 2
1k+U 2

2k+U 2
3k�A1A2d�1d�2 (14.3.12)

This result is comparable to the one given by Eqs. (8.5.2) and (8.5.3).
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The steady-state solution will be

	k=�ke
j��t−
k� (14.3.13)

Substitution in Eq. (14.3.10) gives

�ke
−j
k = F ∗

k

��2
k−�2�+j	�2

k

(14.3.14)

The magnitude of the response is therefore

�k=
F ∗
k

�2
k

√
�1−��/�k�

2�2+	2
(14.3.15)

The phase angle is


k= tan−1 	

1−��/�k�
2

(14.3.16)

An interesting by-product of this analysis is the relationship between the
modal damping coefficient and the hysteresis loss factor. It must be that

2�k�k�=	�2
k (14.3.17)

Thus the equivalent modal damping coefficient becomes

�k=
1

2

�k

�
	 (14.3.18)

The equivalent viscous damping coefficient is therefore

�=�h�k

�k

�
	 (14.3.19)

This agrees, as expected, with Eq. (14.2.21).

14.4. HYSTERETICALLY DAMPED PLATE
EXCITED BY SHAKER

The following illustrates how the hysteresis loss factor can be obtained
from a measurement, using as an example the simply supported plate
(Fig. 3).

For transverse loading of a simply supported rectangular plate,
q∗
1 =q∗

2 =0. The harmonically varying point load of amplitude F in
newtons, representing the harmonic input from a shaker, is described by

q∗
3 =F��x−x∗���y−y∗� (14.4.1)

The eigenvalues are

U3k=U3mn=sin
m�x

a
sin

n�y

b
(14.4.2)
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FIG. 3 Hysteretically damped rectangular plate excited by a shaker.

�k=�mn=�2

[(m
a

)2+(n
b

)2]√ D

�h
(14.4.3)

Equation (14.3.11) becomes

F ∗
k =

4F

�hab
sin

m�x∗

a
sin

n�y∗

b
(14.4.4)

Thus the solution is

u3�x�y�t�=
4F

�hab

�∑
m=1

�∑
n=1

sin�m�x∗/a�sin�m�x/a�sin�n�y∗/b�sin�n�y/b�

�2
mn

√
�1−��/�mn�

2�2+	2
ej��t−
mn� (14.4.5)

where


mn= tan−1 	

1−��/�mn�
2

(14.4.6)

Let us now assume that the acceleration response is measured at
the point of attachment of the shaker; also, that the force amplitude is
monitored. Furthermore, the measurement is made at each of the natural
frequencies �mn. We have in this case

u3�x
∗�y∗�t�= 4F

�2�hab	
sin2 m�x∗

a
sin2 n�y

∗

b
ej��t−�/2� (14.4.7)

or the acceleration is

ü3�x
∗�y∗�t�=− 4F

�hab	
sin2 m�x∗

a
sin2 n�y

∗

b
ej��t−�/2� (14.4.8)
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Solving for 	 in terms of the measured acceleration amplitude �ü3� and
force amplitude F yields

	= 4

�hab
sin2 m�x∗

a
sin2 n�y

∗

b

F

�ü3�
(14.4.9)

In Plunkett (1959), several other methods of defining 	 are discussed.
Typically, 	 is not constant with frequency.

14.5. STEADY-STATE RESPONSE
TO PERIODIC FORCING

As in Sec. 8.19, the forcing is assumed to be such that the spatial
distribution does not change with time, but that its amplitude is periodic
in time. We may write

qi��1��2�t�=q∗
i ��1��2�f �t� (14.5.1)

where, see Sec. 8.19,

f �t�=a0+
�∑
n=1

�ancosn�t+bnsinn�t� (14.5.2)

and where

a0=
1

T

∫ T

0
f �t�dt (14.5.3)

an=
2

T

∫ T

0
f �t�cosn�tdt (14.5.4)

bn=
2

T

∫ T

0
f �t�sinn�tdt (14.5.5)

Proceeding as in Sec. 8.19, where we obtained the steady-state harmonic
response to each term in the Fourier series for f �t� and then summed
to obtain the total response, we obtain here, for the hysteresis damping
model:

ui��1��2�t�=
�∑
k=1

F ∗
k a0

�2
k

Uik��1��2�

+
�∑
k=1

�∑
n=1

F ∗
k �ancos�n�t−
kn�+bnsin�n�t−
kn��Uik��1��2�

�2
k

√[
1−�n�/�k�

2
]2+	2

(14.5.6)
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where

F ∗
k = 1

�hNk

∫
�2

∫
�1

�q∗
1��1��2�U1k+q∗

2��1��2�U2k+q∗
3��1��2�U3k�

×A1A2d�1d�2 (14.5.7)

and


kn= tan−1 	

1−�n�/�k�
2

(14.5.8)

Comparing this to the result of Sec. 8.19, the character of the solution is
similar. Resonance still occurs whenever n�=�k. The difference is that the
influence of damping is not anymore proportional to the ratio n�/�k for 	
= constant. But it should be noted that for most materials, average 	 values
have to be used depending on the frequency bands of interest, because 	
is typically a function of frequency, and often even of response amplitude;
see Ross, Ungar, and Kerwin (1959).

As an example, we evaluate the steady-state response of a
hysteretically damped simply supported plate to a periodic, saw tooth type
force variation in time, as shown in Fig. 4. In this case, we have

F�t�= F0

T
t (14.5.9)

for the interval 0≤ t≤T , with �=2�/T . From Eqs. (14.5.3)–(14.5.5), we
obtain

a0=
1

T

∫ T

0

F0

T
tdt= F0

2
(14.5.10)

ap=
2

T

∫ T

0

F0

T
tcos

(
2p�t

T

)
dt=0 (14.5.11)

FIG. 4 Example of periodic forcing on a hysteretically clamped plate.
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bp=
2

T

∫ T

0

F0

T
tsin

(
2p�t

T

)
dt=− F0

p�
(14.5.12)

where the n numbers in Eqs. (14.5.3)–(14.5.5) were replaced by
p�=1�2����� since n will, in this example, be part of the mode description.

For the simply supported, rectangular plate,

U3mn=sin
m�x

a
sin

n�y

b
(14.5.13)

�mn=�2

[(m
a

)2+(n
b

)2]√ D

�h
(14.5.14)

Nk=Nmn=
ab

4
(14.5.15)


mnp= tan−1 	

1−�p�/�mn�
2

(14.5.16)

and, from Eq. (14.5.7),

F ∗
k =F ∗

mn=
4

�hab
sin

m�x1
a

sin
n�y1
b

(14.5.17)

Therefore, Eq. (14.5.6) becomes

u3�x�y�t� =
4F0

�hab




�∑
m=1

�∑
k=1

sin
m�x1
a

sin
n�y1
b

sin
m�x

b
sin

n�y

b


 1

2�2
mn

−
�∑

p=1

sin�n�t−
mnp�

p��2
mn

√[
1−�p�/�mn�

2
]2+	2






(14.5.18)

REFERENCES

Coulomb, C. A. (1784). Recherches théoriques et expérimentales sur la force de
torsion et sur l’élasticité des fils de métal. Mem. Paris Academy. Paris.

Plunkett, R. (1959). Measurement of damping. In: Ruzicka, J. E., ed. Structural
Damping. New York: American Society of Mechanical Engineers, pp. 117–131.

Ross, D., Ungar, E. E., Kerwin, E. M. Jr. (1959). Damping of plate flexural
vibrations by means of viscoelastic laminae. In: Ruzicka, J. E., ed. Structural
Damping. New York: American Society of Mechanical Engineers, pp. 49–88.



15

Shells Made of
Composite Material

In all of the preceding chapters, the shell material was assumed to be
homogeneous and isotropic. Because of the need for lightweight designs
(e.g., in space applications) composite shell materials have become more
and more common. One of the advantages of composite materials is that
one can design directional properties into them almost on demand. The
disadvantage is that structures built with composite materials are more
difficult to analyze and even to understand in their idiosyncracies of
behavior and failure.

15.1. NATURE OF COMPOSITES

In the following, we concentrate on the most common composite
arrangement that one finds in thin-walled structures: namely, laminated
composite. The composite is in this case built up of sheets (laminae)
of uniform thickness. Each lamina may be isotropic, orthotropic,
or anisotropic. From a materials composition viewpoint, it may be
homogeneous or heterogeneous. Once the lamina are joined to each other,
the most general case is what is called coupled anisotropic. Some of this is
illustrated in Fig. 1.

Usually, a lamina or ply is composed of reinforcing material, most
commonly fibers, in a supporting matrix. The fibers usually carry the load.

391
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FIG. 1 Distortions of various composite material strips when loaded axially.

The matrix material usually holds the fibers in place so that they are
properly spaced, protects them against corrosion, and seals the structure
against the escape of gases and liquids. Each lamina usually consists of
a set of parallel fibers embedded into the matrix material. The laminae
can then be assembled with the fibers of each lamina pointing in different
directions such that the desired stiffness properties are obtained.

Most engineering materials are isotropic. This means that the
properties are not a function of direction. All planes that pass through a
point in the material are planes of material property symmetry. To define
the material, we need only two elastic constants: Young’s modulus and
Poisson’s ratio. An axially loaded rectangular strip will remain rectangular
as it is distorted, as shown in Fig. 1.

An orthotropic material has three planes of material symmetry. We
will see that we need four material constants to describe the plane stress
state.

15.2. LAMINA–CONSTITUTIVE RELATIONSHIP

Let us assume that each lamina is in a state of plane stress. For material
that is homogeneous and isotropic, we have relations (2.2.10)–(2.2.12).
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They may be written as

�xx

�yy

�xy


= �Q�



�xx

�yy

�xy


 (15.2.1)

where

�Q�=

Q11 Q12 0
Q21 Q22 0
0 0 Q33


 (15.2.2)

and where

Q11=Q22=
E

1−�2
(15.2.3)

Q12=Q21=
�E

1−�2
(15.2.4)

Q33=G= E

2�1+��
(15.2.5)

The constitutive relationship for a homogeneous orthotropic lamina in a
state of plane stress as shown in Fig. 2 is also given by Eq. (15.2.1), except
that now (the filament direction is the x direction)

Q11=
Exx

1−�xy�yx

(15.2.6)

Q22=
Eyy

1−�xy�yx

(15.2.7)

Q12=
�yxExx

1−�xy�yx

(15.2.8)

FIG. 2 Orthotropic strip.
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Q21=
�yxEyy

1−�xy�yx

(15.2.9)

Q33=Gxy (15.2.10)

Because of the requirement that

Q12=Q21 (15.2.11)

we obtain

�yxExx=�xyEyy (15.2.12)

We note that we have four material constants: Exx�Eyy��xy�andGxy. For
filamentary lamina as shown in Fig. 2, Halpin and Tsai, see Ashton et al.
(1969), suggested the following interpolation, based on the volume ratio of
filament to matrix material:

Exx=EfVf +EmVm (15.2.13)

Eyy=Em

1+	
Vf

1−	Vf

(15.2.14)

�xy=�fVf +�mVm (15.2.15)

Gxy=Gm

1+	�Vf

1−	Vf

(15.2.16)

where


= Ef/Em−1

Ef /Em+	
(15.2.17)

�= Gf/Gm−1

Gf /Gm+	
(15.2.18)

and where: Ef , modulus of elasticity of fiber �N/m2�; Em, modulus of
elasticity of matrix �N/m2�; �f , Poisson’s ratio of fiber; �m, Poisson’s ratio
of matrix; Vf , volume fraction of fiber; Vm, volume fraction of material
�note� Vf +Vm=1�; Gf , sher modulus of fiber �N/m2�; Gm, shear modulus
of matrix �N/m2�.

The factor 	 is an adjustment factor that depends to some extent on
the boundary conditions. It can be taken as 	=1 for a first approximation.

A special case occurs when very stiff fibers are embedded in a
relatively soft matrix. For instance, if we take pneumatic tires as an
example, typically Ef �EmandGf �Gm,

Exx�EfVf (15.2.19)

Eyy�Em (15.2.20)

�xy��mVm (15.2.21)

Gxy�Gm (15.2.22)
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FIG. 3 Orthotropic strip rotated in its plane.

since 
=�� 1.
Since the lamina may not always be oriented so that its principal

stiffness direction coincides with the coordinates, relation (15.2.1) has to
be transformed to account for a possible 
 rotation, as shown in Fig. 3. By
analyzing the equilibrium of an infinitesimal element as shown in Fig. 4,
we obtain


�xx

�yy

�xy


= �T1�



�11

�22

�12


 (15.2.23)

FIG. 4 Equilibrium of an infinitesimal element.
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where

�T1�=

 cos2 
 sin2 
 2sin
 cos


sin2 
 cos2
 −2sin
cos

−sin
 cos
 sin
 cos
 cos2
−sin2



 (15.2.24)

Similarly, we obtain for strain

�xx

�yy

�xy


= �T2�



�11

�22

�12


 (15.2.25)

where

�T2�=

 cos2 
 sin2 
 sin
 cos


sin2 
 cos2
 −sin
cos

−2sin
 cos
 2sin
 cos
 cos2
−sin2



 (15.2.26)

Substitution gives

�11

�22

�12


= ��Q�



�11

�22

�12


 (15.2.27)

where

��Q�= �T1�
−1�Q��T2� (15.2.28)

The coefficients �Qij of this matrix are

�Q11=U1+U2 cos2
+U3 cos4
 (15.2.29)

�Q22=U1−U2 cos2
+U3 cos4
 (15.2.30)

�Q12=U4−U3 cos4
= �Q21 (15.2.31)

�Q33=U5−U3 cos4
 (15.2.32)

�Q13=− 1
2U2sin2
−U3 sin4
= �Q31 (15.2.33)

�Q23=− 1
2U2sin2
+U3 sin4
= �Q32 (15.2.34)

where

U1= 1
8 �3Q11+3Q22+2Q12+4Q33� (15.2.35)

U2= 1
2 �Q11−Q22� (15.2.36)

U3= 1
8 �Q11+Q22−2Q12−4Q33� (15.2.37)

U4= 1
8 �Q11+Q22+6Q12−4Q33� (15.2.38)

U5= 1
8 �Q11+Q22−2Q12−4Q33� (15.2.39)



Shells Made of Composite Material 397

15.3. LAMINATED COMPOSITE

Let us assume again that the shell is thin, even if it is composed of
n laminations. Furthermore, we assume again that displacements vary
linearly through the shell thickness. This implies that all relationships of
Sec. 2.4 hold. Thus


�11

�22

�12


=



�0
11

�0
22

�0
12


+
3



k11
k22
k12


 (15.3.1)

Introducing the subscript k to denote the kth lamina, we may express the
stress in the kth lamina by combining Eqs. (15.3.1) and (15.2.27).


�11

�22

�12




k

= ��Q�k



�0
11

�0
22

�0
12


+
3��Q�k



k11
k22
k12


 (15.3.2)

The stress resultants are

N11

N22

N12


=

∫

3



�11

�22

�12


d
3 (15.3.3)

or since we have n laminae, as shown in Fig. 5,

N11

N22

N12


=

n∑
k=1

∫ hk+1

hk



�11

�22

�12


d
3 (15.3.4)

FIG. 5 Laminated shell element.
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The subscript k is used here such that hk defines the distance from the
reference surface to the bottom surface of the kth lamina. Substituting
Eq. (15.3.2) gives


N11

N22

N12


=

n∑
k=1


��Q�k



�0
11

�0
22

�0
12



∫ hk+1

hk

d
3+��Q�k



k11
k22
k12



∫ hk+1

hk


3d
3



(15.3.5)

This allows us to write

N11

N22

N12


= �A�



�0
11

�0
22

�0
12


+�B�



k11
k22
k12


 (15.3.6)

where

�A�=
n∑

k=1

��Q�k�hk+1−hk� (15.3.7)

�B�= 1

2

n∑
k=1

��Q�k�h
2
k+1−h2

k� (15.3.8)

Each term is therefore given by

Aij=
n∑

k=1

��Qij�k�hk+1−hk� (15.3.9)

Bij=
1

2

n∑
k=1

��Qij�k�h
2
k+1−h2

k� (15.3.10)

An interesting result, different from that for the isotropic material
equations of Sec. 2.5, is that the stress resultants are in general also a
function of the bending strains. Only if it is possible to select the reference
plane such that

n∑
k=1

��Qij�k�h
2
k+1−h2

k�=0 (15.3.11)

do we have uncoupling. For a single lamina homogeneous and isotropic
material (our classical shell case), n=1, and thus we have to satisfy only

��Qij�k�h
2
2−h2

1�=0 (15.3.12)

This is done by selecting h2=−h1, which means that the reference surface
is halfway between the inner and outer surfaces, which implies that all Bij

are 0.
In general, any composite material whose laminae are homogeneous

and isotropic can be made to have a zero [B] matrix. Also, composite
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materials that are arranged such that each lamina’s orthotropic principal
directions coincide with the composite material’s principal directions can
be made to have a zero [B] matrix. In most other cases, we will find that
it is impossible to find a location for the reference surface that satisfies
this condition. In other words, a neutral surface does not exist for many
composites.

The moment resultants are

M11

M22

M12


=

∫

3



�11

�22

�12



3d
3

n∑
k=1

∫ hk+1

hk



�11

�22

�12


d
3 (15.3.13)

Substituting Eq. (15.3.2) gives

M11

M22

M12


= �B�



�0
11

�0
22

�0
12


+�D�



k11
k22
k12


 (15.3.14)

where each term in the two matrices is given by

Bij= 1
2

n∑
k=1

��Qij�k�h
2
k+1−h2

k� (15.3.15)

Dij= 1
3

n∑
k=1

��Qij�k�h
3
k+1−h3

k� (15.3.16)

As expected, the coupling matrix [B] is the same as before and all
comments concerning its vanishing apply as before.

It is customary to combine the expressions for force and moment
resultants:



N11

N22

N12

M11

M22

M12



=




A11 A12 A13

A21 A22 A23

A31 A32 A33
----------------------
B11 B12 B13

B21 B22 B23

B31 B32 B33 --
--
--
--
--
--
--
--
--
--
-- B11 B12 B13

B21 B22 B23

B31 B32 B33
---------------------
D11 D12 D13

D21 D22 D23

D31 D32 D33







��
11

��
22

��
12

k11
k22
k12




(15.3.17)

Because of the symmetry of the �Qij terms, we also have that

Aij=Aji

Bij=Bji

Dij=Dji

(15.3.18)

15.4. EQUATION OF MOTION

If we examine the development described in Chapter 2, we note that it is
not influenced at all by the fact that we now have a much more complicated
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relationship between strains and the force and moment resultants. Thus
Love’s equations [(2.7.20)–(2.7.24)] and boundary condition expressions
in force and moment resultant forms are still valid. Mass densities are
averaged over the thickness of the shell.

However, as soon as the equations are expressed in terms of
displacements, the added complexity becomes apparent. So far, only
a few special cases of composite material plate or shell eigenvalues
have been obtained analytically. They are almost invariably orthotropic
material structures.

15.5. ORTHOTROPIC PLATE

Let us, for instance, find the eigenvalues of a rectangular simply supported
orthotropic plate. In this case 
1=x, 
2=y, A1=1, A2=1, 1/R1=0,
1/R2=0. This gives, for transverse deflection, the equations

−�Qx3

�x
− �Qy3

�y
+�hü3=q3 (15.5.1)

where

Qx3=
�Mxx

�x
+ �Mxy

�y
(15.5.2)

Qy3=
�Mxy

�x
+ �Myy

�y
(15.5.3)

Setting q3=0 and substituting gives

−�2Mxx

�x2
−2

�2Mxy

�x�y
− �2Myy

�y2
+�hü3=q3 (15.5.4)

For orthotropic material, with the reference plane coinciding with the
neutral plane, we obtain, from Eq. (15.3.17),



Nxx

Nyy

Nxy

Mxx

Myy

Mxy



=




A11 A12 0
A12 A22 0
0 0 A33
----------------------
0 0 0
0 0 0
0 0 0 --

--
--
--
--
--
--
--
--
--
-- 0 0 0
0 0 0
0 0 0
-------------------
D11 D12 0
D12 D22 0
0 0 D33







�0
xx

�0
yy

�0
xy

kxx
kyy
kxy




(15.5.5)

Thus, for our purpose here,

Mxx=D11kxx+D12kyy (15.5.6)

Myy=D12kxx+D22kyy (15.5.7)

Mxy=D33kxy (15.5.8)
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Substituting this in Eq. (15.5.4) gives

−
(
D11

�2kxx
�x2

+D12

�2kyy

�x2

)
−2D33

�2kxy

�x�y

−
(
D12

�2kxx
�y2

+D22

�2kyy

�y2

)
+�hü3=q3 (15.5.9)

Since

kxx=−�2u3

�x2
(15.5.10)

kyy=−�2u3

�y2
(15.5.11)

kxy=−2
�2u3

�x �y
(15.5.12)

we obtain

D11

�4u3

�x4
+2�D12+2D33�

�4u3

�x2�y2
+D22

�4u3

�y4
+�hū3=q3 (15.5.13)

For a simply supported plate, the boundary conditions are

u3�0�y�t�=u3�a�y�t�=u3�x�0�t�=u3�x�b�t�=0 (15.5.14)

Mxx�0�y�t�=Mxx�a�y�t�=0 (15.5.15)

Myy�x�0�t�=Myy�x�b�t�=0 (15.5.16)

To solve for the eigenvalues, we set q3=0, and

u3�x�y�t�=U3�x�y�e
j�t (15.5.17)

where the mode shape U3�x�y� is assumed to be

U3�x�y�=sin
m�x

a
sin

n�y

b
(15.5.18)

This satisfies the partial differential equation and the boundary
conditions. The natural frequencies turn out to be (Hearmon, 1959)

�mn=�2

√
D11

(m
a

)4+2�D12+2D33�
(m
a

)2(n
b

)2+D22

(n
b

)4√ 1

�h

(15.5.19)

Let us reduce this formula to that for a homogeneous and isotropic plate.
In this case D11=D22=D�D12=�D�D33=�1−��D/2, and the result agrees
with that of Sec. (5.4.2).

For a discussion of anisotropic plate vibration, see, for example,
Jones (1975). Analytical solutions in this area are primarily iterative in
nature.
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15.6. CIRCULAR CYLINDRICAL SHELL

Let us utilize the Donnell–Mushtari–Vlasov approximations. In this case,
we follow the procedure outlined in Sec. 6.7. After neglecting the influence
of inertia in the in-plane direction and the shear term Q3
/a, we obtain
�A1=1�A1d
1=dx�1/R1=0�A2=a�d
2=d
�R2=a�

a
�Nxx

�x
+ �Nx


�

=0 (15.6.1)

a
�Nx


�x
+ �N



�

=0 (15.6.2)

−a
�Qx3

�x
− �Q
3

�

+N

+a�hü3=aq3 (15.6.3)

where

Qx3=
�Mxx

�x
+ 1

a

�Mx


�

(15.6.4)

Q
3=
�Mx


�x
+ 1

a

�M



�

(15.6.5)

Equations (15.6.1) and (15.6.2) are satisfied by introducing the same stress
function as in Sec. 6.7:

Nxx=
1

a2

�2�

�
2
(15.6.6)

N

=
�2�

�x2
(15.6.7)

Nx
=−1

a

�2�

�x�

(15.6.8)

Substituting Eqs. (15.6.4), (15.6.5), and (15.6.7) in Eq. (15.6.3) gives

−a
�2Mxx

�x2
−2

�2Mxx

�x�

− 1

a

�2M



�
2
+ �2�

�x2
+a�hü3=aq3 (15.6.9)

Substituting

Mxx=D11kxx+D12k

 (15.6.10)

M

=D22k

+D12kxx (15.6.11)

Mx
=D33kx
 (15.6.12)
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gives

−
(
D11

�2kxx
�x2

+D12

�2k


�x2

)
− 2D33

a

�2kxy

�x�


− 1

a2

(
D12

�2kxx
�
2

+D22

�2k


�
2

)
+ 1

a

�2�

�x2
+�hü3=q3 (15.6.13)

A final substitution,

kxx=−�2u3

�x2
(15.6.14)

k

=− 1

a2

�2u3

�
2
(15.6.15)

kx
=−2

a

�2u3

�x�

(15.6.16)

results in the equation

D11

�4u3

�x4
+2�D12+2D33�

1

a2

�4u3

�x2�
2
+D22

1

a4

�4u3

�
4
+ 1

a

�2�

�x2
+�hü3=q3

(15.6.17)

Examining as a check the homogeneous and isotropic case, where

D11=D22=D (15.6.18)

D12=�D (15.6.19)

D33=
�1−��D

2
(15.6.20)

and where D=Eh3/12�1−�2�, we obtain the first Donnell–Mushtari–
Vlasov equation:

D� 4u3+
1

a2

�2�

�x2
+�hü3=q3 (15.6.21)

Next, we start with the compatibility equation (6.7.12):

kxx
a

+ �2�0




�x2
− 1

a

�2�0
x


�
�x
+ 1

a2

�2�0
xx

�
2
=0 (15.6.22)

Since

Nxx=A11�
0
xx+A12�

0


 (15.6.23)

N

=A12�
0
xx+A22�

0


 (15.6.24)

Nx
=A33�
0
x
 (15.6.25)
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we obtain

�0
xx=P11Nxx−P12N

 (15.6.26)

�0


=P22N

−P12Nxx (15.6.27)

�0
x
=P33Nx
 (15.6.28)

where

P11=
A22



(15.6.29)

P22=
A11



(15.6.30)

P12=
A12



(15.6.31)


=A11A22−A2
12 (15.6.32)

P33=
1

A33

(15.6.33)

Substitution gives

kxx
a

+P22

�2N



�x2
−P12

�2Nxx

�x2
− 1

a
P33

�2Nx


�
�x

+ 1

a2
P11

�2Nxx

�
2
− 1

a2
P12

�2N



�
2
=0 (15.6.34)

Next, we substitute Eqs. (15.6.6)–(15.6.8) and Eq. (15.6.14) and obtain

−1

a

�2u3

�x2
+P22

�4�

�x4
+P11

1

a4

�4�

�
4
+ 1

a2
�P33−2P12�

�4�

�x2�
2
=0

(15.6.35)

This may also be written as

A2
12−A11A22

a

�2u3

�x2
+A11

�4�

�x4
+A22

a4

�4�

�
4

+A11A22−A2
12−2A12A33

A33a
2

�4�

�x2�
2
=0 (15.6.36)

To check this equation, we again examine the isotropic case:

A11=A22=K (15.6.37)

A12=�K (15.6.38)

A33=
�1−��K

2
(15.6.39)
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where K=Eh/�1−�2�. This gives

Eh

a

�2u3

�x2
−� 4�=0 (15.6.40)

As expected, this is the second Donnell–Mushtari–Vlasov equation.
Let us now find the natural frequencies and modes of a closed circular

shell simply supported at both ends. The boundary conditions are

u3�0�
�t�=u3�L�
�t�=0 (15.6.41)

Mxx�0�
�t�=Mxx�L�
�t�=0 (15.6.42)

We are able to satisfy both of these boundary conditions and the two
governing equations, Eqs. (15.6.17) and (15.6.36), by

u3�x�
�t�=U3�x�
�e
j�t (15.6.43)

��x�
�t�=��x�
�ej�t (15.6.44)

where

U3�x�
�=Umn sin
m�x

L
cosn�
−�� (15.6.45)

��x�
�=�mn sin
m�x

L
cosn�
−�� (15.6.46)

Equation (15.6.17) becomes[
D11

(m�

L

)4+2�D12+2D33�
(n
a

)2(m�

L

)2+D22

(n
a

)4−�h�2

]
Umn

− 1

a

(m�

L

)2
�mn=0 (15.6.47)

and Eq. (15.6.36) becomes

A11A22−A2
12

a

(m�

L

)2
Umn+

[
A11

(m�

L

)4+A22

(n
a

)4

+ A11A22−A2
12−2A12A33

A33

(n
a

)2(m�

L

)2]
�mn=0 (15.6.48)

For these two equations to be satisfied meaningfully, the determinant has
to be equal to 0. This gives us the natural frequencies of the orthotropic
shell for those modes where transverse deflection components dominate
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(Soedel, 1983):

�2=�2
mn=

1

�h



[
D11

(m�

L

)4+2�D12+2D33�
(n
a

)2(m�

L

)2+D22

(n
a

)4]

+ �A11A22−A2
12��m�/L�4

a2�A11�m�/L�4+A22�n/a�
4+��A11A22−A2

12

−2A12A33�/A33��n/a�
2�m�/L�2�




(15.6.49)

The result shows that the circumferential bending stiffness component
D22 gains influence with increasing values of n while the axial bending
stiffness component D11 increases its influence as m increases. A similar
influence division exists for the membrane stiffness terms A11 and A22. The
structure of the formula shows clearly that if it is desired to raise the natural
frequencies of the shell in general, both stringer and ring stiffeners have
to be employed, since it is permissible to think of stiffeners as making an
isotropic shell orthotropic. Neither stringers nor rings alone can raise the
natural frequencies for all m�n combinations.

Let us check Eq. (15.6.49) against the isotropic case treated in
Sec. 6.12. Substituting Eqs. (15.6.17)–(15.6.19) and (15.6.37)–(15.6.39)
gives, as expected,

�2
mn=

E

�a2

{
�m�a/L�4

��m�a/L�2+n2�2
+ �h/a�2

12�1−�2�

[(m�a

L

)2+n2

]2}

(15.6.50)

A treatment of an orthotropic circular cylindrical shell that does not
utilize the foregoing simplifications is given in Dong (1968). A literature
review of orthotropic cylindrical and conical shell eigenvalue solutions can
be found in Leissa (1973).

15.7. ORTHOTROPIC NETS OR TEXTILES
UNDER TENSION

Netlike structures, usually with a fine mesh like a textile, are used in
engineering because of their high stiffness-to-weight ratio. Net structures
derive their stiffness from pretension, since they are usually stretched
across frames. It can be assumed that the load is carried entirely by the
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fiber network, with any possible supporting matrix (whose purpose may
also be that of sealing) adding only mass.

In the following, a flat rectangular net under tension is viewed as
an equivalent membrane whose motion is defined by Eq. (11.3.3), with
A1=A2=1 and 
1=x and 
2=y. The averaged mass per unit surface area,
�′, is given by

�′ = 1

ab
��′′

xanx+�′′
ybny�+� (15.7.1)

It is assumed that all fibers or cables oriented parallel to the x-axis of a
Cartesian coordinate system have the same uniform mass per unit length of
fiber or cable, �′′

x , and all fibers or cables oriented parallel to the y axis have
the same uniform mass per unit length, �′′

y . The number of fibres that run
parallel to the x axis is nx, and the number running parallel to the y axis is
ny. The dimensions of the rectangular net are a in the x direction and b in
the y direction. The average mass per unit surface area of the supporting
matrix (if there is any) is �.

Each fiber parallel to x is subjected to the same pretension T ′
x, and

each fiber parallel to y is subjected to the same pretension T ′
y. For the

equivalent membrane, the averaged pretensions in the x and y directions
per unit length are, respectively,

Tx=
T ′
xnx

b
� Ty=

T ′
yny

a
(15.7.2)

The equation of motion (11.3.3) then becomes

−Tx

�2w

�x2
−Ty

�2w

�y2
+�′ẅ=q (15.7.3)

where q represents a distributed transverse loading on the net. This
equation describes the transverse vibration of the net about its static
deflection as equilibrium position. This implies, of course, that the static
sag is small, which is the case if the tensions are reasonably large. Another
assumption is, of course, that any bending stiffness of the fibres can be
neglected.

If the net is stretched over a rigid frame, the boundary conditions are

w�0�y�t�=w�a�y�t�=w�x�0�t�=w�x�b�t�=0 (15.7.4)

For free vibrations �q=0�, Eqs. (15.7.3) and (15.7.4) are satisfied by
�m�n=1�2�����

w�x�y�t�=W�x�y�ej�t� W�x�y�=sin
m�x

a
sin

n�y

b
(15.7.5)

Substitution in Eq. (15.7.3) gives the natural frequencies, �mn, as

�2
mn=

1

�′

[
Tx

(m�

a

)2+Ty

(n�
b

)2]
� (15.7.6)
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or

�2
mn=

�2nxT
′
x

a2b�′

(
m2+ T ′

y

T ′
x

ny

nx

a

b
n2

)
(15.7.7)

Equation (15.7.7) gives good results as long as the net is “dense” with
respect to the smallest modal “wavelength” of interest.

15.8. HANGING NET OR CURTAIN

It is assumed that a rectangular hanging net or curtain (Fig. 6) is so
constructed that all horizontal fibers are under a constant pretension T ′

x,
while the vertical (hanging) fibers have a tension that is a function of the
gravitational pull. If one assumes that the hanging net is assembled in
its vertical frame in such a way that the horizontal fibers or cables are
connected to the frame after the vertical fibers or cables were allowed to
elongate due to gravity, the vertical tension correction due to the sag of the
horizontal fibers is negligible. The tension in each of the vertical fibers is
then proportional to y (measured from the bottom of the curtain):

T ′
y=

�′ag
ny

y (15.8.1)

FIG. 6 Hanging net.



Shells Made of Composite Material 409

The tension in the vertical direction per unit length is, therefore,

Ty= tyy� ty=�′g (15.8.2)

In the horizontal direction, as in Eq. (15.7.2),

Tx=
T ′
xnx

b
(15.8.3)

Thus the equation of motion (11.3.3) becomes (Soedel et al., 1985)

−Tx

�2w

�x2
−ty

�

�y

(
y
�w

�y

)
�′ẅ=q (15.8.4)

where q is a distributed force transverse to the plane of the handing
curtain. It can be seen that as the horizontal fiber tension approaches 0,
the equation of motion becomes that of a hanging cable.

The natural frequencies and modes are obtained by setting q=0 and
using the solution form

w�x�y�t�=W�x�y�ej�t� W�x�y�=Y �y�sin
m�x

a
(15.8.5)

This satisfies two of the four boundary conditions of the hanging net or
curtain problem:

w�0�y�t�=w�a�y�t�=0 (15.8.6)

Substituting Eq. (15.8.5) in Eq.(15.8.4) gives

d2Y

dy2
+ 1

y

dY

dy
+ 1

ty

[
�′�2−Tx

(m�

a

)2] Y
y
=0 (15.8.7)

Changing the independent variable y to � according to the transformation

y=
{
ty

4

[
�′�2−Tx

(m�

a

)2]}
�2 (15.8.8)

gives

d2Y

d�2
+ 1

�

dY

d�
+Y =0 (15.8.9)

This is Bessel’s equation of zero order. Its solution is

Y =AJ0���+BY0��� (15.8.10)

The boundary conditions at the top and bottom of the curtain are

w�x�b�t�=0� w�x�0�t�=finite (15.8.11)

This may be transformed into

Y

{
2

√[
�′�2−Tx

(m�

a

)2] b

ty

}
=0� Y �0�=finite (15.8.12)
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Because Y0�0�→�, it must be that B=0 in order for Eq. (15.8.12) to be
satisfied. Substituting Eq. (15.8.10) gives

J0

{
2

√
�′�2−Tx

(m�

a

)2] b

ty

}
=0 (15.8.13)

The roots of this equation are k1=2�404�k2=5�520�k3=8�654�k4=11�792,
and so on. Labeling these roots kn�n=1�2����� and replacing � by �mn to
signify the dependency on m and n gives (Soedel et al., 1985)

�mn=
√

1

�′

[
k2nty

4b
+Tx

(m�

a

)2]
(15.8.14)

or, upon substituting Eqs. (15.8.2) and (15.8.3) into this expression, the
natural frequencies of the hanging net or curtain are

�mn=
√
k2ng

4b
+ nx

b

(m�

a

)2 T ′
x

�′ (15.8.15)

As the horizontal fiber or cable tension is decreased, the solution
approaches that of the hanging cable. If the vertical fibres or cables are
removed, the solution reduces to that of a string in tension.

To obtain the natural modes, one substitutes �mn of Eq. (15.8.14) for
� in Eq. (15.8.8) and solves for �:

�=2

√[
�′�2

mn−Tx

(m�

a

)2] y

ty
=kn

√
y

b
(15.8.16)

Substituting this Eq. (15.8.10) with B=0, and substituting this in
Eq. (15.8.5), gives the expression for the natural modes (Soedel et al., 1985)

Wmn�x�y�=J0

(
kn

√
y

b

)
sin

m�x

a
(15.8.17)

15.9. SHELLS MADE OF HOMOGENEOUS
AND ISOTROPIC LAMINA

The constitutive relationships are given by Eqs. (15.2.1)–(15.2.5). Since, for
homogeneous and isotropic lamina,

�T1�=
1 0 0
0 1 0
0 0 1

(15.9.1)

Equation (15.2.28) becomes

�Q̄�=�Q�=

Q11 Q12 0
Q21 Q22 0
0 0 Q33


 (15.9.2)



Shells Made of Composite Material 411

for a laminated composite consisting of n isotropic and homogeneous
individual lamina made of different materials, Eqs. (15.3.9), (15.3.10),
(15.3.15) and (15.3.16) become

Aij=
n∑

k=1

�Qij�k�hk+1−hk� (15.9.3)

Bij=
1

2

n∑
k=1

�Qij�k�h
2
k+1−h2

k� (15.9.4)

Dij=
1

3

n∑
k=1

�Qij�k�h
3
k+1−h3

k� (15.9.5)

The force and moment resultant are given by Eq. (15.3.17) where
�Q13�k=�Q31�k=0, �Q23�k=�Q32�k=0, and

�Q11�k=�Q22�k=
Ek

1−�2
k

(15.9.6)

�Q12�k=�Q21�k=
�kEk

1−�2
k

(15.9.7)

�Q33�k=Gk=
Ek

2�1+�k�
(15.9.8)

The force and moment resultants are from Eq. (15.3.17),


N11

N22

N12

M11

M22

M12



=




A11 A12 0 B11 B12 0
A21 A22 0 B21 B22 0
0 0 A33 0 0 B33

B11 B12 0 D11 D12 0
B21 B22 0 D21 D22 0
0 0 B33 0 0 D33




(15.9.9)

For a laminated composite, where the reference plane is selected to
coincide with the neutral plane, this reduces further to


N11

N22

N12


=


A11 A12 0
A21 A22 0
0 0 A33





�0
11

�0
22

�0
12


 (15.9.10)

and 

M11

M22

M12


=


D11 D12 0
D21 D22 0
0 0 D33





k11
k22
k12


 (15.9.11)

The effective mass per unit length �h is given by

�h=
n∑

k=1

�khk (15.9.12)
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15.10. SIMPLY SUPPORTED SANDWICH PLATES
AND BEAMS COMPOSED OF THREE
HOMOGENEOUS AND ISOTROPIC LAMINA

The foregoing results apply, of course, also to cases where the lamina
are neither anisotropic nor orthotropic, but simply homogeneous and
isotropic.

For the arrangement of Fig. 7, the reference plane is selected to
coincide with the neutral plane which results in

Bij=0 (15.10.1)

The upper and lower layers, each of thickness hL, are made of the same
material, characterized by �EL��L�, and the core layer is of a different
material, �Ec��c�. The Aij and Dij are given by Eq. (15.9.3) and
Eq. (15.9.5). In the following, only the transverse vibrations of the
sandwich plate will be investigated; therefore, only the Dij need to be
obtained.

We obtain from Eq. (15.9.5)

D11 =
1

3

{
EL

1−�2
L

[(
−hc

2

)3

−
(
−hc

2
−hL

)3
]

+ Ec

1−�2
c

[(
hc

2

)3

−
(
−hc

2

)3
]
+ EL

1−�2
L

[(
hc

2
+hL

)3

−
(
hc

2

)3
]}

(15.10.2)

where hc is the core thickness. This simplifies to

D11=
EL

12�1−�2
L�

[
�hc+2hL�

3−h3
c

]+ Ec

12�1−�2
c�
h3
c (15.10.3)

Similarly, we find that

D22=D11 (15.10.4)

FIG. 7 Sandwich plate or beam.
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and

D12=D21=
�LEL

12�1−�2
L�

[
�hc+2hL�

3−h3
c

]+ �cEc

12�1−�2
c�
h3
c (15.10.5)

Finally,

D33=
EL

24�1+�L�

[
�hc+2hL�

3−h3
c

]+ Ec

24�1+�c�
h3
c (15.10.6)

Substituting this in Eq. (15.5.19) gives the natural frequencies for this
case of a rectangular sandwich plate when all four edges are simply
supported. Note again that the product �h in Eq. (15.5.19) is the mass
per unit area of the laminated plate and is

�h=2�LhL+�chc (15.10.7)

Again, note that if the outer layers are removed �hL=0�, we obtain

D11=D22=
Ech

3
c

12�1−�2
c�

=D� D12=D21 = �cD�

and

D33 =
1

2
�1−�c�D

and the natural frequencies for the homogeneous and isotropic, single layer
plate result.

For a simply supported beam with the same arrangement of three
lamina, we obtain when multiplying D11 by the width of the beam b and
removing the Poisson effect,

EI= ELb

12

[
�hc+2hL�

3−h3
c

]+ Ecbh
3
c

12
(15.10.8)

The natural frequencies are then given by

�m=
m2�2

L2

√
EI

��′ (15.10.9)

where the mass per unit length of the beam is given by

��′ =2�′
L+�′

c (15.10.10)

where �′
L is the mass per unit length of each of the outer layers and �′

c is
the mass per unit length of the core layer.



414 Chapter 15

REFERENCES

Ashton, T. E., Halpin, T. C., Petit, P. H. (1969). Primer on Composite Materials
Analysis. Stamford, Conn., Technomic.

Dong, S. B. (1968). Free vibration of laminated orthotropic cylindrical shells.
J Acoust. Soc. Amer. 44(6):1628–1635.

Hearmon, R. F. S. (1959). The frequency of flexural vibration of rectangular
orthotropic plates with clamped or supported edges. J. Appl. Mech.
26 (3–4):537–540.

Jones, R. M. (1975). Mechanics of Composite Materials. New York: McGraw-Hill.
Leissa, A. W. (1973). Vibration of Shells. NASA SP-288. Washington, D.C.:

U.S. Government Printing Office.
Soedel, W. (1983). Simplified equations and solutions for the vibration of

orthotropic cylindrical shells. J. Sound Vibration. 87(4):555–566.
Soedel, W., Zadoks, R. I., Alfred, J. R. (1985). Natural frequencies and modes of

hanging nets or curtains. J. Sound Vibration. 103(4):499–507.



16

Rotating Structures

Rotating structures range from space stations, turbines, and tires to
washing machine baskets. When utilizing Hamilton’s principle, the effect
of rotation is introduced through the kinetic energy expressions. In the
following, relatively simple cases are discussed first, working up to shells.

16.1. STRING PARALLEL TO AXIS OF ROTATION

This case is illustrated in Fig. 1. The string is under constant tension T .
The rotation is at a constant rotational speed �. The string is parallel to
the axis of rotation and a distance R removed from it. The radial vibration
displacement is u3 and the vibration displacement tangential to the rotation
is u1. Gravitational influences are neglected.

The kinetic energy of a slice of string of infinitesimal length dx is

dK= 1

2
�Adz�̄ · �̄ (16.1.1)

where A is the cross-section. The velocity vector is given by the standard
formula found in basic texts on dynamics (Ginsberg and Genin, 1984):

�̄= �̄O′ +��̄P/O′�rel+�̄× r̄P/O′ (16.1.2)
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FIG. 1 String mounted on a rotating cylinder.

Since the moving coordinate system is xyz, we have

�̄O′ =R�j̄ (16.1.3)

�̄=�k̄ (16.1.4)

��̄P/O′�rel= u̇3 ī+ u̇1j̄ (16.1.5)

r̄P/O′ =u3 ī+u1j̄+zk̄ (16.1.6)

We obtain

�̄× r̄P/O′ =−u1�ī+u3�j̄ (16.1.7)



Rotating Structures 417

Thus

�̄=�u̇3−u1��ī+�u̇1+u3�+R��j̄ (16.1.8)

and

�̄ · �̄=�u̇3−u1��2+�u̇1+u3�+R��2 (16.1.9)

The kinetic energy of the complete string is

K= �A

2

∫ L

z=0
��u̇3−u1��2+�u̇1+u3�+R��2�dz (16.1.10)

Evaluating the integral of the variation of K gives∫ t1

t0

	Kdt =�A
∫ t1

t0

∫ L

z=0
��u̇3−u1��	u̇3+�u̇1�+u3�

2+R�2�	u3

+�u̇1+u3�+R��	u̇1−�u̇3�−u1�
2�	u1�dzdt

(16.1.11)

Integrating some of the terms by parts gives, finally,∫ t1

t0

	Kdt =−�A
∫ t1

t0

∫ L

z=0
��ü1+2�u̇3−u1�

2�	u1

+�ü3−2�u̇1−�u3+R��2�	u3�dzdt

(16.1.12)

The potential energy is (see Chapter 11)

V = T

2

∫ L

0

[(

u1


z

)2

+
(

u3


z

)2
]
dz (16.1.13)

Thus ∫ t1

t0

	V dt=−T
∫ t1

t0

∫ L

z=0

(

2u1


z2
	u1+


2u3


z2
	u3

)
dzdt (16.1.14)

The load energy is, in terms of a variational integral,∫ t1

t0

	ELdt=
∫ t1

t0

∫ L

z=0
�q′

1	u1+q′
3	u3�dzdt (16.1.15)

where q′
1 and q′

3 are forces per unit string length.
Applying Hamilton’s principle, which is in this case∫ t1

t0

	�V−EL−K�dt=0 (16.1.16)
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gives, after collecting coefficients of 	u1 and 	u2 and equating them to 0 in
order to satisfy the equation,

T

2u1


z2
−�A�ü1+2�u̇3−u1�

2�=−q′
1 (16.1.17)

T

2u3


z2
−�A�ü3−2�u̇1−u3�

2�=−q′
3−�A�2R (16.1.18)

The forcing term �A�2R causes a static deflection due to centrifugal
effects. Taking this static deflection as the equilibrium position, the free
vibration of the string about this equilibrium position is described by

T

2u1


z2
−�A�ü1+2�u̇3−u1�

2�=0 (16.1.19)

T

2u3


z2
−�A�ü3+2�u̇1−u3�

2�=0 (16.1.20)

It should be noted that the radius R has no influence on the vibration
response. It influences only the equilibrium position about which this
vibration takes place.

If the string vibrates at one of its natural frequencies, the solution
must be of the form

u1=U1e
j�t (16.1.21)

u3=U3e
j�t (16.1.22)

This gives

T

2U1


z2
+�A��2+�2�U1−2j���AU3=0 (16.1.23)

T

2U3


z2
+�A��2+�2�U3+2j���AU1=0 (16.1.24)

For a string supported at both ends, the boundary conditions of zero
deflection and the two differential equations are satisfied by

U1=A1sin
m�z

L
(16.1.25)

U3=A3sin
m�z

L
(16.1.26)

This gives[
−T

(
m�
L

)2+�A��2+�2� −2j���A

2j���A −T
(
m�
L

)2+�A��2+�2�

]{
A1
A3

}
=0

(16.1.27)
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Discarding the trivial solution A1=A3=0, this equation is satisfied if the
determinant is 0. This gives

�4−2�2��2
0m+�2�+��2

0m−�2�2=0 (16.1.28)

where

�2
0m=

T

�A

(m�

L

)2
(16.1.29)

which are the natural frequencies of the string when �=0.
Equation (16.1.28) may be written

��2−��0m−��2���2−��0m+��2�=0 (16.1.30)

Therefore, for every value of m, there are two types of natural frequencies,

�1=�0m−� (16.1.31)

�2=�0m+� (16.1.32)

From Eq. (16.1.27), the corresponding amplitude ratios are

A11

A31

= −j (16.1.33)

A12

A32

= j (16.1.34)

Therefore, the mode shape corresponding to the first type of natural
frequency is, normalized with respect to A31,

U11 = −j sin
m�x

L
(16.1.35)

U31 = sin
m�x

L
(16.1.36)

The mode shape corresponding to the second type of natural frequency is

U12=j sin
m�x

L
(16.1.37)

U31=sin
m�x

L
(16.1.38)

The motion of the string when vibrating at a natural frequency of the first
type is

u11 = sin
m�x

L
ej���0m−��t−�/2� (16.1.39)

u31 = sin
m�x

L
ej��0m−��t (16.1.40)
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When vibrating at a natural frequency of the second type, the motion is

u12 = sin
m�x

L
ej���0m+��t+�/2� (16.1.41)

u32 = sin
m�x

L
ej��0m+��t (16.1.42)

Plotting the motion of the string at any point of the string as viewed axially
results in a clockwise circular motion for vibration at a natural frequency
of the first type as shown in Fig. 2(a), and in a counterclockwise circular
motion for vibration at a natural frequency of the second type, as shown in
Fig. 2(b).

The forced solution is obtained in terms of an infinite series of all
natural modes,

u1 =
�∑

m=1

(
−�m1j sin

m�z

L
+�m2j sin

m�z

L

)
=j

�∑
m=1


m1 sin
m�z

L
(16.1.43)

FIG. 2 Motion of the rotating string at a natural frequency pair: (a) clockwise circular,
and (b) counter-clockwise circular.
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u3 =
�∑

m=1

(
�m1 sin

m�z

L
+�m2 sin

m�z

L

)
=

�∑
m=1


m3 sin
m�z

L
(16.1.44)

where


m1 = −�m1+�m2 (16.1.45)


m3 = �m1+�m2 (16.1.46)

Substituting this in Eqs. (16.1.17) and (16.1.18), with equivalent viscous
damping added and with the static deflection due to the centrifugal effect
subtracted, so that

T

2u1


z2
−�A�ü1+2�u̇3−u1�

2�−cu̇1=−q′
1 (16.1.47)

T

2u3


z2
−�A�ü3−2�u̇1−u3�

2�−cu̇3=−q′
3 (16.1.48)

gives
�∑

m=1

��−
̈m1−�
̇m1−��2
0m−�2�
m1�j−2�
̇m3�sin

m�z

L

=− q′
1

�A
(16.1.49)

�∑
m=1

��−
̈m3−�
̇m3−��2
0m−�2�
m3�+2�
̇m1j�sin

m�z

L

=− q′
3

�A
(16.1.50)

where

�= c

�A
(16.1.51)

Multiplying Eqs. (16.1.49) and (16.1.50) by sin�p�z/L�, where p=1�2�����
integrating from z=0 to z=L, and utilizing the orthogonality of the sine
function eliminates all terms for which p �=m and results in

�
̈m1+�
̇m1+��2
0m−�2�
m1�j+2�
̇m3=F1�z�t� (16.1.52)

�
̈m3+�
̇m3+��2
0m−�2�
m3�−2�
̇m1j=F3�z�t� (16.1.53)

where

F1�z�t�=
2

�AL

∫ L

z=0
q′
1 sin

m�z

L
dz (16.1.54)

F3�z�t�=
2

�AL

∫ L

z=0
q′
3 sin

m�z

L
dz (16.1.55)
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These equations may now be solved for 
m1 and 
m2 in general. But instead
of pursuing the general line of investigation, let us treat the special case of
steady-state harmonic response. Let us assume that

F1�z�t� = 0 (16.1.56)

F3�z�t� = F ∗
3 �z�e

j�t (16.1.57)

This case represents a distributed load on the string in the direction of u3,
varying harmonically in time. The steady-state response is expected to be
of the type


m1=�̃1e
j�t (16.1.58)


m3=�̃3e
j�t (16.1.59)

where

�̃1=�1e
−j�1 (16.1.60)

�̃3=�3e
−j�1 (16.1.61)

Substituting this in Eqs. (16.1.52) and (16.1.53) gives[
��2

0m−�2−�2�j−�� 2��j
2�� ��2

0m−�2−�2�+j��

]{
�̃1

�̃3

}

=
{

0
F ∗
3 �z�

}
(16.1.62)

From these expressions, the magnitudes and phase angles of the
response can be obtained easily. It is clearly seen that as the rotational
speed �→0, the solution consists only of motion in the xz plane of Fig. 1
and is identical to the modal expansion solution for harmonic vibration of a
stationary string. The rotational speed is the coupling factor that will result
in an ovaling motion. The ovaling is proportional to �. The ovaling motion
response will be clockwise as the excitation frequency increases from 0
and passes through the natural frequency of the first type. Before reaching
the natural frequency of the second type, where the motion is counter-
clockwise, there will be a transition motion where the oval collapses into
motion in a plane, inclined from both the vertical and horizontal. This is
discussed in Soedel and Soedel (1989) and illustrated in Fig. 3.

16.2. BEAM PARALLEL TO AXIS OF ROTATION

Let us investigate a beam with coordinates as in Fig. 1. The kinetic
energy expression is the same as for the string. Thus the development
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FIG. 3 Transitions of the forced response of a rotating string.

of Eqs. (16.1.1)–(16.1.12) for the string is the same for the beam. The
potential energy is, on the other hand,

V = EIxx
2

∫ L

0

(

2u1


z2

)2

dz+ EIyy

2

∫ L

0

(

2u3


z2

)2

dz (16.2.1)
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when gravitational influences are neglected (the rotation axis is vertical).
Therefore, the equations of motion become

EIxx

4u1


z4
+�A�ü1+2�u̇3−u1�

2� = q′
1 (16.2.2)

EIyy

4u3


z4
+�A�ü3−2�u̇1−u3�

2� = q′
3+�A�2R (16.2.3)

It is, of course, assumed that the shear center and load application center
coincide with the center of gravity of the prismatic beam.

The forcing term �A�2R causes a static deflection in the u3 direction
due to the centrifugal effect. The free vibration of the beam about this
equilibrium position is described by

EIxx

4u1


z4
+�A�ü1+2�u̇3−u1�

2� = 0 (16.2.4)

EIyy

4u3


z4
+�A�ü3−2�u̇1−u3�

2� = 0 (16.2.5)

At a natural frequency,

u1=U1e
j�t (16.2.6)

u3=U3e
j�t (16.2.7)

Substitution gives

EIxx
d4U1

dz4
−�A��2+�2�U1+2j���AU3=0 (16.2.8)

EIyy
d4U3

dz4
−�A��2+�2�U3−2j���AU1=0 (16.2.9)

Let us now assume that the beam is supported by a shear diaphragm
(simply supported in the x and y directions). For this case, the boundary
conditions of zero moments and zero transverse deflections are satisfied by

U1=A1 sin
m�z

L
(16.2.10)

U3=A3 sin
m�z

L
(16.2.11)

Substituting this gives[
−EIxx

(
m�
L

)4+�A��2+�2� −2j���A

2j���A −EIyy
(
m�
L

)4+�A��2+�2�

]{
A1

A3

}
=0

(16.2.12)
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This equation is satisfied in a nontrivial fashion if the determinant is 0. This
gives.

�4−2�2��2
1+�2�+��2

1−�2�2−�2
2=0 (16.2.13)

where

�2
1=

1

2
��2

0mx+�2
0my� (16.2.14)

�2
2=

1

2
��2

0mx−�2
0my� (16.2.15)

and where

�2
0mx=

(m�

L

)4 EIxx
�A

(16.2.16)

�2
0my=

(m�

L

)4 EIyy
�A

(16.2.17)

The two natural frequencies are, therefore,

�2
1=�2

1+�2−2�1�

√
1−

(
�2

2�1�

)2

(16.2.18)

�2
2=�2

1+�2+2�1�

√
1−

(
�2

2�1�

)2

(16.2.19)

For the special case of a square or circular cross-section of the beam, so
that Ixx= Iyy, one obtains �2=0 since �0mx=�0my=�0m. For this case

�1=�0m−� (16.2.20)

�2=�0m+� (16.2.21)

where

�0m=
(m�

L

)2√EI

�A
(16.2.22)

and similar to the case of the string, A11/A31=−j and A12/A32=j.

16.3. ROTATING RING

The ring rotates with constant angular velocity �̇=�, as shown in Fig. 4.
For a mass element of length ad�, the kinetic energy is

dK= 1

2
�Aad��̄ · �̄ (16.3.1)
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FIG. 4 Rotating ring.

where A is the cross-section of the ring. The velocity vector is given by the
standard formula (Ginsberg and Genin, 1984)

�̄= �̄O′ +��̄P/O′�rel+�̄× r̄P/O′ (16.3.2)

where

�̄O′ =a�j̄ (16.3.3)

�̄=�k̄ (16.3.4)

��̄P/O′�rel= u̇3 ī+ u̇�j̄ (16.3.5)

r̄P/O′ =u3 ī+u�j̄ (16.3.6)

This gives

�̄× r̄P/O′ =−u��ī+u3�j̄ (16.3.7)

and therefore,

�̄=�u̇3−u���ī+�u̇�+u3�+a��j̄ (16.3.8)

Thus the kinetic energy of the ring is

K= �Aa

2

∫ 2�

�=0
��u̇3−u���2+�u̇�+u3�+a��2�d� (16.3.9)
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Forming the variation of K and integrating in time from t0 to t1 gives∫ t1

t0

	Kdt=�Aa
∫ t1

t0

∫ 2�

0
��u̇3−u����	u̇3−�	u��

+�u̇�+u3�+a���	u�+�	u3��d�dt (16.3.10)

Integrating by parts in time gives∫ t1

t0

	Kdt=�Aa
∫ t1

t0

∫ 2�

0
��−ü3−2u̇��+u3�

2+a�2�	u3

+�−ü�−2u̇3�+u��
2�	u��d�dt (16.3.11)

The strain energy is given by Eq. (2.6.3), after introducing the constraints
for a ring as discussed in Chapter 4. The variation of strain energy
becomes, integrated in time from t0 to t1,∫ t1

t0

	U dt=a
∫ t1

t0

∫ 2�

0

{[
EI

a4

(

3u�


�3
− 
4u3


�4

)
− EA

a2

(

u�


�
+u3

)]
	u3

+
[
EI

a4

(

2u�


�2
− 
3u3


�3

)
+ EA

a2

(

2u�


�2
+ 
u3


�

)]
	u�

}
d�dt

(16.3.12)

Applying Hamilton’s principle, with the energy input due to a load
considered as in Eq. (2.6.9), gives the following equations of motion:

EI

a4

(

3u3


�3
− 
2u�


�2

)
− EA

a2

(

2u�


�2
+ 
u3


�

)
+�A�ü�+2u̇3�−u��

2�=q′
�

(16.3.13)

EI

a4

(

4u3


�4
− 
3u�


�3

)
+ EA

a2

(

u�


�
+u3

)
+�A�ü3−2u̇��−�a+u3��

2�=q′
3

(16.3.14)

To obtain natural frequencies and modes, we set q′
3=q′

�=0 and redefine u�

and u3 to be the displacements from the equilibrium position determined
by the centrifugal pressure term �Aa�2. We set

u3���t�=U3���e
j�t (16.3.15)

u����t�=U����e
j�t (16.3.16)

This gives

EI

a4

(
d2U�

d�2
− d3U3

d�3

)
+ EA

a2

(
d2U�

d�2
+ dU3

d�

)

+�A��2+�2�U�−2j���AU3=0 (16.3.17)
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EI

a4

(
d3U�

d�3
− d4U3

d�4

)
− EA

a2

(
dU�

d�
+U3

)

+�A��2+�2�U3+2j���AU�=0 (16.3.18)

If the spin velocity � is reduced to 0, this equation reduces to Eqs. (5.3.3)
and (5.3.4).

For a closed ring, we expect solutions of the form

U3=A3ne
j�� (16.3.19)

U�=A�ne
j�� (16.3.20)

This gives[
�A��2+�2�−n4 EI

a4
− EA

a2
j
(
2���A−n3 EI

a4
−nEA

a2

)
j
(−2���A+n3 EI

a4
+nEA

a2

)
�A��2+�2�−n2

(
EI
a4
+ EA

a2

)
]{

A3n

A�n

}
=0

(16.3.21)

For nontrivial solutions, the determinant has to be equal to 0. This results
in a fourth-order equation in �, which is expected since there should
be four distinct natural frequencies for every value of n, as opposed to
the nonrotating ring, which has only two natural frequencies for every n
number. See also Huang and Soedel (1987a,b), and Lin and Soedel (1987,
1988, 1989).

The natural modes can be shown either to rotate in the same
direction as the spinning ring or in the opposite direction. This is explained
next, using the inextensional approximation.

16.4. ROTATING RING USING
INEXTENSIONAL APPROXIMATION

Starting with Eqs. (16.3.13) and (16.3.14) in the force and moment
resultant form (see also Sec.6.15), we have

1

a


N��


�
+ 1

a2


M��


�
−�A�ü�+2u̇3�−u��

2�=−q′
� (16.4.1)

1

a2


2M��


�2
−N��

a
−�A�ü3−2u̇��−�a+u3��

2�=−q′
3 (16.4.2)

We solve Eq. (16.4.2) for N��:

N��=
1

a


2M��


�2
−�Aa�ü3−2u̇��−�a+u3��

2�+q′
3a (16.4.3)
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and substitute it in Eq. (16.4.1):

1

a2


3M��


�3
+ 1

a2


M��


�
−�A�ü�+2u̇3�−u��

2�

−�A




�
�ü3−2u̇��−�a+u3��

2�=−q′
�−


q′
3


�
(16.4.4)

Applying the inextensional assumption,


u�


�
=−u3 (16.4.5)

to the expression for the moment resultant [Eq. (4.1.17)],

M��=
EI

a2

(

u�


�
− 
2u3


�2

)
(16.4.6)

gives

M��=−EI

a2

(
u3+


2u3


�2

)
(16.4.7)

Substituting Eqs. (16.4.5) and (16.4.7) in Eq. (16.4.4) results in �p=
I/Aa2��2

0=E/�a2�


6u3


�6
+2


4u3


�4
+ 
2u3


�2
+ 1

p�2
0

[

4u3


�2
t2
− 
2u3


t2
+4�


2u3


�
t
+�2

(
u3−


2u3


�2

)]

= a4

EI





�

(
q′
�+


q′
3


�

)
(16.4.8)

For the closed ring, we may assume a solution of the form

u3���t�=A3e
j�n�+�t� (16.4.9)

for the eigenvalue solution. Equation (16.4.8), with q′
�=q′

3=0, becomes

�2�1+n2�−4�n�+�2�1+n2�−p�2
0�n

2−1�2n2=0 (16.4.10)

Solving for � gives

�n1�2=
2�n

n2+1
±
√(

2�n

n2+1

)2

+p�2
0��n

2−1�2n2/�n2+1��−�2 (16.4.11)

Note that when �=0, this solution reduces to the result given by
Eq. (6.15.13). Note that this solution is not valid for n=0, because of the
inextensional approximation.

While Eq. (16.4.9) defines the natural mode, it is instructive to use
the absolute coordinate

� =�t+� (16.4.12)
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instead of �. This gives

u3i�� �t�=A3ie
j�n�+��ni−n��t� (16.4.13)

The motion becomes stationary if

�= �ni

n
(16.4.14)

This means that if the relationship is satisfied, the mode does not rotate
with the rotating ring but appears as a stationary distortion of the ring to an
observer who is not rotating with the ring. For modes where � �=�ni/n, we
may ask at what speeds the mode antinodes rotate (Bryan, 1880). For this
purpose, we take the real part of Eq. (16.4.13) and set it to its maximum
possible value, unity.

cos�n�max+��ni−n��t�=1 (16.4.15)

or

n�max+��ni−n��t=0�2��4������=p� (16.4.16)

This gives

�max=
p�−��ni−n��t

n
(16.4.17)

or

�̇max=�−�ni

n
(16.4.18)

Thus we see that the antinode lags behind the rotational speed � if

�>
�ni

n
(16.4.19)

For modes where

�<
�ni

n
(16.4.20)

the mode antinodes rotate in the direction opposite that of the rotational
speed. For the case for which Eq. (16.4.14) is satisfied, the rotational speed
of the antinode is O, �max=0; that is, the mode is stationary. Note that
the stationary-mode condition corresponds to the resonance condition for
a traveling load on a circular cylindrical shell in circumferential direction,
as given by Eq. (9.7.13). A rotating circular string can be found in Stutts
and Soedel (1992).
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16.5. CYLINDRICAL SHELL ROTATING WITH
CONSTANT SPIN ABOUT ITS AXIS

The case of a cylindrical shell rotating with constant spin about its axis is
shown in Fig. 5. The triad ē1�ē2�ē3 of each element rotates with

�̄=−�ē1 (16.5.1)

Thus �1=−���2=�3=0. The cross product Eq. (16.1.7) therefore
reduces to

�̄× r̄p/o′ = −�1u3ē2+�1u2ē3=u3�ē2−u2�ē3 (16.5.2)

The velocity of the origin O
′
is, everywhere on the shell,

v̄o′ =a�ē2 (16.5.3)

Thus we have

v̄= u̇1ē1+�u̇2+a�+u3��ē2+�u̇3−u2��ē3 (16.5.4)

The total kinetic energy of the cylindrical shell is, therefore,

K= �h

2

∫
�1

∫
�2

�u̇2
1+�u̇2+a�+u3��2+�u̇3−u2��2�A1A2d�1d�2

(16.5.5)

FIG. 5 Circular cylindrical shell rotating about its axis of revolution.
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Next, we formulate∫ t1

t0

	Kdt= �h

2

∫ t1

t0

∫
�1

∫
�2

�2u̇1	u̇1+2�u̇2+��+u3���	u̇2+�	u3�

+2�u̇3−u2���	u̇3−�	u2��A1A2d�1d�2dt (16.5.6)

Integrating by parts gives∫ t1

t0

	Kdt=�h
∫ t1

t0

∫
�1

∫
�2

��−ü1�	u1+�−ü2−2u̇3�+�2u2�	u2

+�−ü3+2�u̇2+�2u3+a�2�	u3�A1A2d�1d�2dt (16.5.7)

Thus we replace �hü2 by �h�ü2+2�u̇3−�2u2� and �hü3 by �h�ü3−2u̇2�−
u3�

2−a�2� in the equation for the cylindrical shell. Recognizing that the
term �ha�2 causes a static deflection of the shell about which the vibration
takes place, this effect can be subtracted and the dynamic equations left
are

L1�u1�u2�u3�+�hü1=q1 (16.5.8)

L2�u1�u2�u3�+�h�ü2+2�u̇3−�2u2�=q2 (16.5.9)

L3�u1�u2�u3�+�h�ü3−2�u̇2−�2u3�=q3 (16.5.10)

The operators L1�L2 and L3 for the circular cylindrical shell can be
obtained from Sec. 3.3. The solutions for free and forced vibrations
proceed as in Sec. 16.3 for the rotating ring. As a matter of fact,
the basic behavior is very similar except that there will be six distinct
natural frequencies. The forced solution is developed in Huang and Soedel
(1988a).

16.6. GENERAL ROTATIONS OF ELASTIC SYSTEMS

The cases discussed in the previous sections had in common that
the rotational axes coincided or were always parallel to the axes of
axisymmetry of the structures. While these are arrangements of much
practical interest, it is of course possible that shell structures have much
more general motion (Fig. 6). The approach in such a case is similar. The
kinetic energy has to be formulated:

K= �h

2

∫
�1

∫
�2

v̄ · v̄A1A2d�1d�2 (16.6.1)

where, as in the previous cases,

v̄= v̄O′ +�v̄P ′/O′ �rel+�̄× r̄P ′/O′ (16.6.2)



Rotating Structures 433

FIG. 6 Coordinate definitions for a general rotating shell.

and where, in general,
�̄=�1ē1+�2ē2+�3ē3 (16.6.3)

Equation (16.6.2) has to be specialized to the situation at hand. There is
little advantage to continuing beyond this point in a general way. For cases
where the spin velocities are not constant, care has to be taken to do the
variational operations properly.

16.7. SHELLS OF REVOLUTION WITH CONSTANT
SPIN ABOUT THEIR AXES OF REVOLUTION

While rings and circular cylindrical shells belong to the category of shells
of revolution and were discussed already, it is of interest to develop the
equations of motion for general shells of revolution that spin about their
axis with constant speed � because this problem is relatively common in
engineering.

In Fig. 7, the point of interest on the undeformed shell serves as the
origin of a moving, right handed coordinate system defined by the unit
vectors ē1�ē2 and ē3 (ē2 is into the paper). The particle velocity is, therefore,
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FIG. 7 Coordinate definitions for a general rotating shell.

v̄= v̄O′ +(v̄P/O′
)
rel
+�̄× r̄P/O′ (16.7.1)

where

v̄O′ =�R� sin�ē2 (16.7.2)

�̄=�K̄=�cos�ē3−�sin�ē1 (16.7.3)(
v̄P/0′

)
rel
= u̇1ē1+ u̇2ē2+ u̇3ē3 (16.7.4)

r̄P/O′ =uē1+u2ē2+u3ē3 (16.7.5)

Substituting Eqs. (16.7.2)–(16.7.5) into Eq. (16.7.1) gives

v̄=�u̇1−u2�cos��ē1+��R� sin�+ u̇2+u1�cos�+u3�sin��ē2

+�u̇3−u2�sin��ē3 (16.7.6)
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The kinetic energy is, therefore,

K= �h

2

∫
�1

∫
�2
�v̄ · v̄�A1A2d�1d�2

= �h

2

∫
�1

∫
�2

��u̇1−u2�cos��2+��R� sin�+ u̇2+u1�cos�+u3R� sin��
2

+�u̇3−u2�sin��2�A1A2d�1d�2 (16.7.7)

The integral of the variation of the kinetic energy becomes, therefore,

∫ t2

t1

	Kdt = �h
∫ t1

to

∫
�1

∫
�2

��−ü1+2u̇2�cos�+�2�R�+u3�sin�cos�

+u1�
2cos2��	u1+�−ü2−2u̇1�cos�−2u̇3�sin�+u2�

2�	u2

+�−ü3+2u̇2�sin�+�2�R�+u3�sin
2�+u1�

2sin�cos��	u3�
2�

×A1A2d�1d�2 (16.7.8)

Proceeding as in Chapter 2, we finally obtain the equations of motion
for shells of revolution that spin about their axes with a constant angular
velocity �:

L1�u1�u2�u3� �h�ü1−2u̇2�cos�−�R�+u3��
2sin�cos�

−u1�
2cos2��=−q1 (16.7.9)

L2�u1�u2�u3� −�h�ü2+2u̇1�cos�+2u̇3sin�−u2�
2�

=−q2 (16.7.10)

L3�u1�u2�u3� −�h�ü3−2u̇2�sin�−�R�+u3��
2sin2�

−u1�
2sin�cos��=−q3 (16.7.11)

where the L1�u1�u2�u3��L2�u1�u2�u3�, and L3�u1�u2�u3� terms are given
by Eqs. (8.1.3)–(8.1.5) with A1=R��A2=R� sin��R1=R� and R2=R�.
Note that the terms R��

2sin�cos� in Eq. (16.7.9) and R��
2sin2� in

Eq. (16.7.11) cause a static deflection because of the centrifugal effect and
can be subtracted from the equations. What is left describes the vibratory
deflections about static equilibrium.

For example, for the a circular, cyclindrical shell spinning about
its axis of revolution with a constant angular velocity �, we have �=
�
2 = constant �sin�=1�cos�=0� and R�=a, and Eqs. (16.7.9)–(16.7.11)
reduce to Eqs. (16.5.8)–(16.5.10)
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16.8. SPINNING DISK

For a disk spinning about its axis with a constant angular velocity �, we let
�=0 in Eqs. (16.7.9) and (16.7.10), which describe the inplane vibrations
of the disk. They become

L1�ur �u��−�h�ür−2u̇��−ur�
2� = −q1 (16.8.1)

L2�ur �u��−�h�ü�−2u̇r�−u��
2� = −q2 (16.8.2)

and Eq. (16.7.11), which describes the transverse vibration of the disk,
becomes the standard plate equation (4.4.19).

L3�u3�−�hü3=−q3 (16.8.3)

The operators L1 and L2 are, because �1=r , �2=�, A1=1, A2=r , R1=
R2=�,

L1�ur �u��=
1

r

[

�rNrr �


r
+ 
Nr�


�
−N��

]
(16.8.4)

L2�ur �u��=
1

r

[

�rNr��


r
+ 
N��


�
+Nr�

]
(16.8.5)

with Nrr , N�� and Nr� given by Eqs. (2.5.9), (2.5.11) and (2.5.12).
The operator L3 is

L3�u3�=−D

(

2


r2
+ 1

r





r
+ 1

r2

2


�2

)(

2u3


r2
+ 1

r


u3


r
+ 1

r2

2u3


�2

)
(16.8.6)

The reason that Eq. (16.8.3) is independent of � is (unless � is so large
that centrifugally caused tensions N r

rr and N r
�� cannot be neglected; see

Chapter 11) that transverse velocities u̇3 do not contribute to a change
in radius, which means there is no Coriola’s acceleration due to u̇3. The
in-plane vibrations, on the other hand, create Coriola’s accelerations.
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Thermal Effects

Of interest are two basic effects. First, a static, or quasistatic temperature
field will cause a static or quasi-static initial stress field. For example, a
local hot spot may introduce static compressive stresses in a shell that
will lower natural frequencies. Second, time-varying temperatures act as
vibration excitation mechanisms. A sudden heating or cooling (thermal
shock) will produce an effect similar to a step load. Feedback between
motion and heat transfer my cause oscillations of relatively high frequency,
as in the classical case of Chladni figure experimentation, where glass
plates are excited by an application of dry ice. Additional information can
be obtained, for example, from Johns (1965), Boley and Weiner (1960),
Jadeja and Loo (1974), Huang and Tauchert (1992).

17.1. STRESS RESULTANTS

Temperature effects are introduced through the stress–strain relationships.
Since thermal expansion produces a strain “growth,” we have

�11 =
1

E
��11−��22�+�T (17.1.1)

�22 =
1

E
��22−��11�+�T (17.1.2)

438
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�12 =
1

G
�12 (17.1.3)

where � is the coefficient of expansion �m/m�C�. For example, for steel
it is approximately 11�5×10−6 and for aluminum, it is approximately
24×10−6. The temperature distribution

T =T��1��2��3�t� (17.1.4)

with respect to a reference temperature at which the system is free of
temperature effects is assumed to be known at this point. Solving for the
stresses, we obtain

�11 =
E

1−�2
��11+��22�−

E�T

1−�
(17.1.5)

�22 =
E

1−�2
��22+��11�−

E�T

1−�
(17.1.6)

�12 = G�12 (17.1.7)

The strain–displacement relationships are the same. Also, we still
may assume a linear variation of U1 and U2 displacements across the thick-
ness. Thus

�11 =
E

1−�2
	�0

11+��0
22+�3�k11+�k22�
−

E�T

1−�
(17.1.8)

�22 =
E

1−�2
	�0

22+��0
11+�3�k22+�k11�
−

E�T

1−�
(17.1.9)

�12 = G��0
12+�3k12� (17.1.10)

Using a tilde notation for the force and moment resultants, which now
include temperature effects, integrating over the thickness gives

Ñ11 = N11−
NT

1−�
(17.1.11)

Ñ22 = N22−
NT

1−�
(17.1.12)

Ñ12 = Ñ21=N12=N21 (17.1.13)

M̃11 = M11−
MT

1−�
(17.1.14)

M̃22 = M22−
MT

1−�
(17.1.15)

M̃12 = M̃21=M12=M21 (17.1.16)
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where

N11 = K��0
11+��0

22� (17.1.17)

N22 = K��0
22+��0

11� (17.1.18)

N12 = N21=K
1−�

2
�0
12 (17.1.19)

M11 = D�k11+�k22� (17.1.20)

M22 = D�k22+�k11� (17.1.21)

M12 = M21=D
1−�

2
k12 (17.1.22)

and where

NT = E�
∫ h/2

−h/2
T d�3 (17.1.23)

MT = E�
∫ h/2

−h/2
T�3d�3 (17.1.24)

For the very common assumption of linear temperature distribution, we
may set

T��1��2��3�t�=T0��1��2�t�+�3���1��2�t� (17.1.25)

where T0 is the temperature distribution at the neutral surface ��C� and � is
the rate of temperature change normal to the neutral surface ��C/m�. Thus
at �3=h/2�T =T0+h�/2, and at �3=−h/2�T =T0−h�/2. In this case

NT =E�hT0 (17.1.26)

MT =
E�h3�

12
(17.1.27)

17.2. EQUATIONS OF MOTION

Here Love’s equations of Chapter 2 are extended to include thermal
forcing. The strain energy is

U =
∫
�1

∫
�2

∫
�3

F dV (17.2.1)

where

F = 1

2
	�11��11−�T�+�22��22−�T�+�12�12+�13�13+�23�23
 (17.2.2)
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and

dV =A1A2

(
1+ �3

R1

)(
1+ �3

R2

)
d�1d�2d�3 (17.2.3)

The expression for the variation of strain energy is

�U =
∫
�1

∫
�2

∫
�3

�F dV (17.2.4)

where

�F = 
F


�11

��11+

F


�22

��22+

F


�12

��12+

F


�13

��13+

F


�23

��23 (17.2.5)

Taking the first term, we obtain


F


�11

= 1

2

[

�11


�11

��11−�T�+�11+

�22


�11

��22−�T�

]
(17.2.6)

but since

�11


�11

= E

1−�2
(17.2.7)


�22


�11

= �E

1−�2
(17.2.8)

we obtain

F


�11

=�11 (17.2.9)

Thus, in general

�F =�11��11+�22��22+�12��12+�13��13+�23��23 (17.2.10)

From here on, the derivation is identical to the derivation of Love’s
equations, except that the Nij and Mij resultants are now replaced by the
Ñij and M̃ij resultants, as they are defined by Eqs. (17.1.11)–(17.1.16). This
gives

−
�N11A2�


�1

− 
�N21A1�


�2

−N12


A1


�2

+N22


A2


�1

−A1A2

Q13

R1

+A1A2�hü1

=A1A2q1−
A2

1−�


NT


�1

(17.2.11)

−
�N12A2�


�1

− 
�N22A1�


�2

−N21


A2


�1

+N11


A1


�2

−A1A2

Q23

R2

+A1A2�hü2

=A1A2q1−
A1

1−�


NT


�2

(17.2.12)
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−
�Q13A2�


�1

− 
�Q23A1�


�2

+A1A2

(
N11

R1

+N22

R2

)
+A1A2�hü3

=A1A2q3+
NT

1−�

(
1

R1

+ 1

R2

)
A1A2 (17.2.13)

where Q13 and Q23 are defined by


�M11A2�


�1

+ 
�M21A1�


�2

+M12


A1


�2

−M22


A2


�1

−A1A2Q13=
A2

1−�


MT


�1

(17.2.14)


�M12A2�


�1

+ 
�M22A1�


�2

+M21


A2


�1

−M11


A1


�2

−A1A2Q23=
A1

1−�


MT


�2

(17.2.15)

The necessary boundary conditions have not changed in number or type.
Once the Nij and Mij values are known, stresses may be obtained from

�11 =
N11

h
+ 12

h3
�3M11−

E�T

1−�
(17.2.16)

�22 =
N22

h
+ 12

h3
�3M22−

E�T

1−�
(17.2.17)

�12 =
N12

h
+ 12

h3
�3M12 (17.2.18)

Note that Eqs. (17.2.11)–(17.2.15) can be combined. We obtain, from
Eqs. (17.2.13) and (17.2.14),

−
�Q13A2�


�1

= 1

1−�





�1

(
A2

A1


MT


�1

)

− 1

A1

[

�M11A2�


�1

+ 
�M21A1�


�2

+M12


A1


�2

−M22


A2


�1

]
(17.2.19)

−
�Q23A1�


�2

= 1

1−�





�2

(
A1

A2


MT


�2

)

− 1

A2

[

�M12A2�


�1

+ 
�M22A1�


�2

+M21


A2


�1

−M11


A1


�2

]
(17.2.20)
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Substituting this into Eq. (17.2.13), for example, gives

− 1

A1

[

�M11A2�


�1

+ 
�M21A1�


�2

+M12


A1


�2

−M22


A2


�1

]

− 1

A2

[

�M22A1�


�2

+ 
�M12A2�


�1

+M21


A2


�1

−M11


A1


�2

]

+A1A2

(
N11

R1

+N22

R2

)
+A1A2�hü3

=A1A2q3+
NT

1−�

(
1

R1

+ 1

R2

)
A1A2−

A1A2

1−�
� 2MT (17.2.21)

17.3. PLATE

In this case, the radii of curvature are 0 and only transverse motion is of
interest. The equation of motion becomes, from Eq. (17.2.21),

D� 4u3+�hū3=A1A2q3−
A1A2

1−�
� 2MT (17.3.1)

where

� 2= 1

A1A2

{




�1

[
A2

A1





�1

]
+ 



�2

[
A1

A2





�2

]}
(17.3.2)

Thus we see that NT effects do not enter the plate directly. The exception
is if the NT effects are so large that they produce large in-plane stresses in
the plate. These stresses have to be treated like initial stresses, as discussed
in Chapter 11.

17.4. ARCH, RING, BEAM, AND ROD

In this case, A1=1�A2=1�d�1=ds�d�2=dy�R1=Rs�1/R2=0, and

�·�/
�2=0. We obtain, from Eqs. (17.2.11) and (17.2.13),

−
Nss


s
−Qs3

Rs

+�hüs = qs−
1

1−�


NT


s
(17.4.1)

−
Qs3


s
+Nss

Rs

+�hü3 = q3+
NT

�1−��Rs

(17.4.2)

where

Qs3=

Mss


s
− 1

1−�


MT


s
(17.4.3)
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Introducing the strain–displacement relationships, multiplying through by
the width b, and eliminating the Poisson effect (see Chapter 4), we obtain

−EI

Rs

[

2


s2

(
us

Rs

)
− 
3u3


s3

]
−EA

[

2u3


s2
+ 



s

(
us

Rs

)]

+�Aüs=q′
s−


N ′
T


s
− 1

Rs


MT


s
(17.4.4)

−EI

[

3


s3

(
us

Rs

)
− 
4u3


s4

]
+ EA

Rs

[

us


s
+ u3

Rs

]

+�Aü3=q′
3+

N ′
T

Rs

− 
2M ′
T


s2
(17.4.5)

where A=bh�I=bh3/12�q′
3�=bq3�q

′
s=bqs�N

′
T =bNT , and M ′

T =bMT .
For the ring, Rs=a. Furthermore, we replace s by a�.

−EI

a4

(

2u�


�2
− 
3u3


�3

)
− EA

a2

(

2u�


�2
+ 
u3


�

)
+�Aü�

=q′
�−

1

a


N ′
T


�
− 1

a2


M ′
T


�
(17.4.6)

−EI

a4

(

3u�


�3
− 
4u3


�4

)
+ EA

a2

(

u�


�
+u3

)
+�Aü3

=q′
3+

N ′
T

a
− 1

a2


2M ′
T


�2
(17.4.7)

For the beam and rod, let s=x and 1/Rs=0 in Eqs. (17.4.4) and (17.4.5).
We obtain

−EA

2ux


x2
+�Aüx=q′

x−

N ′

T


x
(17.4.8)

EI

4u3


x4
+qAü3=q′

3−

2M ′

T


x2
(17.4.9)

17.5. LIMITATIONS

The developed equations are valid only if the thermal stresses do not have
a large static component which would introduce “initial stresses” of a type
that have to be treated by the equations in Chapter 11. The effect of large
static thermal stress components is to raise or lower the natural frequencies
of the structures. Second, dynamic components (NT for “flat” structures)
have to be small enough so that no dynamic buckling is created.

The analytical treatment of problems of thermal excitation is
complicated by the need for a temperature model. A heat transfer solution
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has to be obtained first. Once the temperature distribution is known, the
forced solutions follow the same modal series approach as discussed in
Chapter 8.
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18

Elastic Foundations

A shell resting on an elastic foundation can in certain cases be viewed
as resting on distributed elastic springs that have spring rates k1, k2, and
k3�N/m3� and act in �1, �2, and �3 directions. If the foundation is a
homogeneous material of uniform thickness hF �m� that is defined by a
modulus of elasticity E�N/m2� and Poisson’s ratio �, a very approximate
first-order estimate is k1=k2=G/hF , and k3=E/hF , where G is the
shear modulus of the foundation. Usually, the spring rates are identified
experimentally. It should be remembered that the concept of an elastic
foundation is an approximation by itself. In cases where a high degree
of accuracy is required, or where Young’s modulus of the foundation
approaches that of the shell, the foundation will have to be modeled as an
elastic continuum (see Chapter 20).

The mass effect is taken into account by defining �′
F , which is the

mass of the foundation per unit area, or in terms of the mass density
�F �kg/m

3� and the thickness of the foundation hF , it becomes �′
F =

�FhF . From kinetic energy considerations, assuming no surges in the
homogeneous foundation itself, one-third of its mass per unit area has to
be added to the �h of the shell. Defining viscous damping coefficients c1,
c2, and c3�Ns/m3� rounds off the basic model.

446
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18.1. EQUATIONS OF MOTION FOR
SHELLS ON ELASTIC FOUNDATIONS

The elastic foundation is included in Love’s or any other shell theory
through the load terms q1, q2, and q3 by redefining them as

q1=−k1u1−c1u̇1− 1
3�FhF ü1+q∗

1 (18.1.1)

q2=−k2u2−c2u̇2− 1
3�FhF ü2+q∗

2 (18.1.2)

q3=−k3u3−c3u̇3− 1
3�FhF ü3+q∗

3 (18.1.3)

and dropping the ∗ superscript gives

L1�u1�u2�u3�−k1u1−�	1+c1�u̇1−��h+ 1
3�FhF �ü1=−q1 (18.1.4)

L2�u1�u2�u3�−k2u2−�	2+c2�u̇2−��h+ 1
3�FhF �ü2=−q2 (18.1.5)

L3�u1�u2�u3�−k3u3−�	3+c3�u̇3−��h+ 1
3�FhF �ü3=−q3 (18.1.6)

Note that this formulation assumes that the forces from the elastic
foundation act at the neutral plane of the shell. This is a fair assumption
as far as the transverse motion u3 is concerned but is strictly speaking in
error for u1 and u2, which should be replaced by u1+�h
u3/
�1�/2A1 and
u2+�h
u3/
�2�/2A2. The reason that this is usually not done is that this
would create an illusion of accuracy that is not warranted by the elastic
foundation concept as a whole. The operators L1, L2, and L3 are defined
by Eqs. (8.1.3)–(8.1.5).

18.2. NATURAL FREQUENCIES AND MODES

To solve

L1�u1�u2�u3�−k1u1−��h+ 1
3�FhF �ü1=0 (18.2.1)

L2�u1�u2�u3�−k2u2−��h+ 1
3�FhF �ü2=0 (18.2.2)

L3�u1�u2�u3�−k3u3−��h+ 1
3�FhF �ü3=0 (18.2.3)

for natural frequencies and modes, we set

ui��1��2�t�=Ui��1��2�e
j�t (18.2.4)

This gives

Li�U1�U2�U3�−kiUi+�2��h+ 1
3�FhF �Ui=0 (18.2.5)

and the solution proceeds by whatever method is appropriate for the
problem.
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For the special situation where k1=k2=k3=k, which is not an
unreasonable approximation, if one wishes simply to explore the overall
influence of an elastic foundation on a shell, the equations simplify to

L1�U1�U2�U3�+��2��h+ 1
3�FhF �−k
U1=0 (18.2.6)

L2�U1�U2�U3�+��2��h+ 1
3�FhF �−k
U2=0 (18.2.7)

L3�U1�U2�U3�+��2��h+ 1
3�FhF �−k
U3=0 (18.2.8)

Comparing this with the standard form of a shell not on an elastic
foundation, we recognize that for identical boundary conditions the
following similitude condition holds:

�2
F =

�2
0�h+k

�h+ 1
3�FhF

(18.2.9)

where �F are the natural frequencies of the shell on an elastic foundation
and �0 are the natural frequencies of the same shell without the elastic
foundation. Thus, as expected, the natural frequencies increase with k, with
the larger percentual increase for the lower natural frequencies. The mass
of the elastic foundation tends to lower all natural frequencies, but not
enough for a typical foundation that it would override the stiffness effect.

18.3. PLATES ON ELASTIC FOUNDATIONS

The equation of motion for transversely vibrating uniform thickness plates
on uniform elastic foundations is

D� 4u3+k3u3+�	3+c3�u̇3+��h+ 1
3�FhF �ü3=q3 (18.3.1)

where

� 2�·�= 1

A1A2

[




�1

(
A2

A1


�·�

�1

)
+ 



�2

(
A1

A2


�·�

�2

)]
(18.3.2)

For natural frequencies, the similitude of Eq. (18.2.9) holds exactly:

�2
F =

�2
0�h+k3

�h+ 1
3�FhF

(18.3.3)

where the �0 are now the natural frequencies of the plate not on an elastic
foundation and the �F are the natural frequencies of the plate on an elastic
foundation.
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18.4. RING ON ELASTIC FOUNDATION

Reducing the operators of Eqs. (18.1.4)–(18.1.6) to the case of an elastic
ring as discussed in Chapter 4 gives, for zero damping and zero forcing,

−EI

a4

(

2u�


�2
− 
3u3


�3

)
− EA

a2

(

2u�


�2
+ 
u3


�

)
+k′�u�+mü�=0 (18.4.1)

−EI

a4

(

3u�


�3
+ 
4u3


�4

)
+ EA

a2

(

u�


�
+u3

)
+k′3u3+mü3=0 (18.4.2)

where

k′�=k�b (18.4.3)

k′3=k3b (18.4.4)

m=�A+ 1
3�FhFb (18.4.5)

and where b is the width of a ring of rectangular cross-section. The area
moment of inertia is I=bh3/12. The cross-sectional area is A=bh. The
elastic foundation is sketched in Fig. 1.

For the case of a closed ring, the solution will be of the form
(compare with Sec. 5.3)

u3���t�=An cosn��−��ej�t (18.4.6)

u����t�=Bn sinn��−��ej�t (18.4.7)

Substituting this into Eqs. (18.4.1) and (18.4.2) gives[
�11−m�2

n �12

�21 �22−m�2
n

]{
An

Bn

}
=0 (18.4.8)

FIG. 1 Ring on an elastic foundation.
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where

�11=
n4EI

a4
+ EA

a2
+k′3 (18.4.9)

�12=�21=
n3EI

a4
+ nEA

a2
(18.4.10)

�22=
n2EI

a4
+ n2EA

a2
+k′� (18.4.11)

For a nontrivial solution, the determinant must be 0. This gives

�4
n−K1�

2
n+K2=0 (18.4.12)

where

K1 =
n2+1

a2m

(
n2EI

a2
+EA

)
+ k′3+k′�

m
(18.4.13)

K2 =
n2�n2−1�2

a6m2
E2IA

+ k′3k
′
�+k′3�n

2E/a2���I/a2�+A
+k′��E/a
2���n4I/a2�+A


m2

(18.4.14)

Again, there will be two natural frequencies for every value of n:

�2
n1=

K1

2

(
1−
√
1−4

K2

K2
1

)
(18.4.15)

�2
n2=

K1

2

(
1+
√
1−4

K2

K2
1

)
(18.4.16)

The lower natural frequency set �n1 belongs in general to ring modes,
where transverse motion dominates. The higher natural frequency set �n2

corresponds in general to ring modes where tangential motion dominates.
Exceptions are the n=0 and n=1 cases. Note that the zero natural
frequencies of Sec. 5.3 do not any longer exist, as one would expect.

The mode shapes become�i=1�2�

U3ni���=Ani cosn��−�� (18.4.17)

U�ni���=Bni sinn��−�� (18.4.18)

where
Bni

Ani

= m�2
ni−k′3−n4EI/a4−EA/a2

n3EI/a4+nEA/a2

= n3EI/a4+nEA/a2

m�2
ni−k′�−n2EI/a4−n2EA/a2

(18.4.19)
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For i=1 and n>1, this ratio is less than unity in magnitude, indicating
dominance of transverse motion as discussed in Sec. 5.3. For i=2 and
n>1, it is larger than unity in magnitude, which means that tangential
motion is dominant.

If the foundation is such that k′3=k′�=k′, the result of Eq. (18.2.9)
applies, which is, when modified for the ring,

�2
n1F =

�2
n10�A+k′

m
(18.4.20)

�2
n2F =

�2
n20�A+k′

m
(18.4.21)

where �2
n10 and �2

n20 are the values for the ring not on an elastic foundation,
as given by Eqs. (5.3.13) and (5.3.14).

As to applications, tires are frequently modeled as rings on elastic
foundations (Clark, 1975; Kung et al., 1986a, 1986b and 1987). In this
treatment, the elastic foundation spring rate is a function of the geometric
deformation of the sidewalls and the inflation pressure of the tire. Rails
may be viewed as beams on elastic foundations. Soil or liquids supporting
plate structures are often simplified in this way.

18.5. DONNELL–MUSHTARI–VLASOV EQUATIONS
WITH TRANSVERSE ELASTIC FOUNDATION

Assuming that k1 and k2 are 0 and only k3 exists, the Donnell–Mushtari–
Vlasov equations become

D� 4u3+� 2
k �+k3u3+��h+ 1

3�FhF �ü3=q3 (18.5.1)

Eh� 2
k u3−� 4�=0 (18.5.2)

Thus the natural frequencies are again related to the natural frequencies of
a shell of the same boundary conditions but not on an elastic foundation
by

�2
F =

�2
0�h+k3

�h+ 1
3�FhF

(18.5.3)

These frequencies correspond to mode shapes where the transverse motion
is dominant, since this is a restriction of this theory.

18.6. FORCES TRANSMITTED INTO THE
BASE OF THE ELASTIC FOUNDATION

In the following, it is assumed that the elastic foundation is a relatively
thin layer of material that acts directly on the reference surface of the shell.
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In this case, the transmitted force per unit area at the base of the
foundation is

q1T =k1u1+c1u̇1 (18.6.1)

q2T =k2u2+c2u̇2 (18.6.2)

q3T =k3u3+c3u̇3 (18.6.3)

or, in short,

qiT =kiui+ciu̇i (18.6.4)

In the following, we will investigate the set of cases where the forcing
on the shell is harmonic and confine ourselves to investigate the steady-
state transmitted forces. We set

qi��1��2�t�=q∗
i ��1��2�e

j�t (18.6.5)

and 	i=	 and ci=c in Eqs. (18.1.4)–(18.1.6). Utilizing Sec. 8.5, the
solution is

ui��1��2�t�=
�∑
k=1

�k�t�Uik��1��2� (18.6.6)

where

�k�t�=�ke
j��t−�k� (18.6.7)

and where

�k=
F ∗
k

�2
k

√
�1−��/�k�

2

2+4�2

k ��/�k�
2

(18.6.8)

F ∗
k =

1

��h+1/3�FhF �Nk

∫
�2

∫
�1

�q∗
1U1k+q∗

2U2k+q∗
3U3k�A1A2d�1d�2

(18.6.9)

Nk=
∫
�2

∫
�1

(
U 2

1k+U 2
2k+U 2

3k

)
A1A2d�1d�2 (18.6.10)

�k= tan−1 2�k��/�k�

1−��/�k�
2

(18.6.11)

�k=
�	+c�

2��h+1/3�FhF ��k

(18.6.12)

Equation (18.6.6) can be written as

ui��1��2�t�=
[ �∑
k=1

�ke
−j�kUik��1��2�

]
ej�t (18.6.13)
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Note that the natural frequencies �k and natural mode components
Uik��1��2� have to be obtained from Eqs. (18.1.4)–(18.1.6), with 	i=ci=0
and qi=0

Li�u1�u2�u3�−kiui+
(
�h+ 1

3
�FhF

)
üi=0 (18.6.14)

The transmitted, steady-state forces per unit area into the elastic
foundation are, therefore, from Eq. (18.6.4),

qiT =�ki+j�ci�

[ �∑
k=1

�ke
−j�kUik��1��2�

]
ej�t (18.6.15)

Here, it is argued that even while the results for �k and �k

were obtained using average, equivalent damping 	i=	 and ci=c, it is
from a practical viewpoint less approximate to use the individual ci in
formulation (18.6.15).

Since we may write

ki+j�ci=
√
k2i +�2c2i e

j� (18.6.16)

where

�i= tan−1

(
�ci
ki

)
(18.6.17)

Equation (18.6.15) becomes

qiT =
√
k2i +�2c2i

�∑
k=1

�kUik��1��2�e
j��t+�i−�k� (18.6.18)

This result shows that in general, transmitted forces per unit area tend
to increase with increasing foundation stiffnesses ki and damping ci, even
while in specific cases the response may be reduced because of the elastic
foundation damping, or changed because the foundation stiffnesses ki will
change the natural frequencies and, thus, tune or detune the response.

18.7. VERTICAL FORCE TRANSMISSION
THROUGH THE ELASTIC FOUNDATION
OF A RING ON A RIGID WHEEL

A ring on an elastic foundation is harmonically excited by a point force
in vertical direction, as shown in Fig. 2. Damping in the foundation is
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FIG. 2 Ring on an elastic foundation excited by a harmonic point force.

negligible, as is the spring rate in � direction, k′�=0. Only the spring rate
per unit length, k′3�N/m2
, is present. The base of the elastic foundation is
a rigid cylinder.

This arrangement is the simplest model of a tire which is mounted
on a rigid wheel–axle assembly which we consider to be ground in this
problem. The tire is not rotating and is excited by a shaker at a point.
The elastic foundation is provided by the air spring effect of the flexing
sidewalls. The tread band of the tire is modeled as the ring. The added
stiffness of the “ring” due to the tensile stresses caused by the inflation
pressure is neglected (for their effect, see Chapter 11).

In the following, it will be shown that the integrated vertical force
components of the transmitted force distribution acting on the rigid wheel
will be a function of only the rigid body mode of the ring, namely n=1.
All other modes integrate to 0. They are filtered out by the rigid whell–axle
assembly.

The natural frequencies are given by Eqs. (18.4.15) and (18.4.16),
and the natural modes are obtained from Eqs. (18.4.17) and (18.4.18), with
k′�=0:

U3ni���=Anicosn� (18.7.1)
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U�ni���=Bnisinn� (18.7.2)

where i=1�2 and where we have selected only the set corresponding to
�=0 because of symmetry (the point force Fej�t is located at �=0). The
nonsymmetrical set of modes corresponding to �=�/2n in Eqs. (18.4.17)
and (18.4.18) will integrate from the solution anyway.

The mode component amplitude ratios Bni/Ani are given by
Eq. (18.4.19). The steady-state harmonic response of the ring on its elastic
foundation is

u3���t�=
2∑

i=1

�∑
n=0

�ni�t�U3ni��� (18.7.3)

u����t�=
2∑

i=1

�∑
n=0

�ni�t�U�ni��� (18.7.4)

where

�ni�t�=�nie
j��t−�ni� (18.7.5)

and where

�ni=
F ∗
ni

�2
ni

√[
1−��/�ni�

2
]2+4�ni ��/�ni�

2

(18.7.6)

�ni= tan−1 2�ni ��/�ni�

1−��/�ni�
2

(18.7.7)

�ni=
	

2��h+�1/3��FhF ��ni

(18.7.8)

From Eq. (8.5.3), we obtain

F ∗
ni=

1

��h+�1/3��FhF �Nni

∫ 2�

�=0
q3U3niad� (18.7.9)

where

Nni=b
∫ 2�

�=0

(
U 2

�ni+U 2
3ni

)
ad�=�n�ba�A2

ni+B2
ni� (18.7.10)

and where �n=1 if n �=0, and �n=2 if n=0. Since the force per unit length
of ring is, in terms of the point force,

q ′
3���t�=

F

a
ej�t���−0� (18.7.11)

we obtain

F ∗
ni=

F

��h+�1/3��FhF �Nni

∫ 2�

�=0
���−0�Ani cosn�d� (18.7.12)
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or

F ∗
ni=

FAni

��h+�1/3��FhF �ab�
(
A2

ni+B2
ni

)
�n

(18.7.13)

Substituting Eqs. (18.7.13) into Eq. (18.7.6) and (18.7.5), and finally
into Eqs. (18.7.3) and (18.7.4) gives

u3���t�

=
2∑

i=1

�∑
n=0

FA2
nie

j��t−�ni� cosn�

�n���h+�1/3��F hF �ab
(
A2

ni+B2
ni

)
�2

ni

√(
1−��/�ni�

2
)2+4�ni ��/�ni�

2

(18.7.14)

u����t�

=
2∑

i=1

�∑
n=1

FAniBnie
j��t−�ni� sinn�

�n���h+�1/3��F hF �ab
(
A2

ni+B2
ni

)
�2

ni

√(
1−��/�ni�

2
)2+4�ni ��/�ni�

2

(18.7.15)

Note that the modal amplitude term can be re-written in terms of the
amplitude ratios Bni/Ani which are given by Eq. (18.4.19):

A2
ni

A2
ni+B2

ni

= 1

1+(B2
ni/A

2
ni

)2 (18.7.16)

and

AniBni

A2
ni+B2

ni

= �Bni/Ani�

1+�Bni/Ani�
2

(18.7.17)

The summation over i=1 and 2 is necessary if we wish to include in the
response both the i=1 and i=2 natural frequencies and modes. If as
an approximation only the lower natural frequency and mode set i=1
is deemed important, this summation can be dispensed with. Note that
B0i/A0i=0 according to Eq. (18.4.19).

The distributed normal loading that is transmitted into the foundation
consisting of the rigid wheel is

q3T =k′3u3���t� (18.7.18)

or

q3T =
k′3F

���h+�1/3��FhF �ab

3∑
i=1

�∑
n=1

Pni��t�cosn� (18.7.19)
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where

Pni���=
ej��t−�ni�

�n

[
1+�Bni/Ani�

2
]
�2

ni

√(
1−��/�ni�

2
)2+4�ni ��/�ni�

2

(18.7.20)

The force component in vertical direction, dFy, of the transmitted
pressure load q3T acting on an infinitesimal area abd� is given by

dFy=�q3Tabd��cos� (18.7.21)

The resultant transmitted force in vertical direction is

Fy=
∫ 2�

�=0

k′3F
���h+�1/3��FhF �

3∑
i=1

�∑
n=1

Pni��t�cosn�cos�d� (18.7.22)

Since∫ 2�

�=0
cosn�cos�d�=

{
0 if n �=1
� if n=1

(18.7.23)

All n terms except n=1 in the series expressions are 0.
Therefore

Fy =
k′3F

��h+�1/3��FhF �

×
2∑

i=1

ej��t−�1i�[
1+�B1i/A1i�

2
]2
�2

1i

√(
1−��/�1i�

2
)2+4�1i ��/�1i�

2

(18.7.24)

Summing up the transmitted forces in horizontal direction gives, because
of the axial symmetry of q3T , a zero resultant in horizontal direction.
In conclusion, this example illustrates how a rigid wheel body can filter
all mode components except for the n=1 mode from the transmitted
vertical force response. For a real tire, not using this simplified model,
the wheel assembly is, of course, not rigid. Also, the real tire resembles
a toroidal form and has mode components other than (ni) which are
usually designated (mni) where m defines mode component shapes in a
direction that is transverse to the rolling direction. But the filtering effect
of a relatively stiff wheel assembly is still present. Only the mni=m1i mode
components will be present in the vertical force transmission solutions
since it will still turn out that n=1.
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18.8. RESPONSE OF A SHELL ON AN ELASTIC
FOUNDATION TO BASE EXCITATION

If a shell is mounted on an elastic foundation whose base is vibrating with
uBi��1��2�t�, the forces per unit area of Eqs. (18.1.1) become

qi=−ki�ui−uBi�−ci�u̇i− u̇Bi�−
1

3
�FhF üi (18.8.1)

and Eqs. (18.1.4)–(18.1.6) become

Li�u1�u2�u3�−kiui−�	i+ci�u̇i−
(
�h+ 1

3
�FhF

)
üi=−kiuBi−ciu̇Bi

(18.8.2)

The implied assumption is here that base motion in one direction, say
in the transverse direction, will only generate forces on the shell in the
transverse direction. A more complete model of base excitation would have
to model the detailed behavior of the elastic foundation material itself
since it is conceivable that transverse base motion may also cause forces
tangential to the place of the shell surface.

Note that Eq. (18.8.2) reduces to Eqs. (18.1.1)–(18.1.3) if uBi and u̇Bi

are 0.
In the following, we will investigate the case where the base excitation

is harmonic:

uBi��1��2�t�=UBi��1��2�e
j�t (18.8.3)

This gives, for the right side of Eq. (18.8.2),

−kiuBi−ciu̇Bi=−�kiUBi+�cijUBi�e
j�t=−

√
k2i +�2c2i UBie

j��t+�i�

(18.8.4)

where

�i= tan−1

(
ci�

ki

)
(18.8.5)

The natural frequencies �k and mode components Uik are obtained
from Eq. (18.8.2) by setting 	i=ci=0, and the right hand side is also taken
as 0:

Li�u1�u2�u3�−kiui−
(
�h+ 1

3
�FhF

)
üi=0 (18.8.6)

Having done this, we proceed to the steady-state harmonic response
solution:

ui��1��2�t�=
�∑
k=1

�k�t�Uik��1��2� (18.8.7)
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where

�k�t�=�ke
j��t+�i−�k� (18.8.8)

and where

�k=
F ∗
k

�2
k

√[
1−��/�k�

2
]2+4�2

k ��/�k�
2

(18.8.9)

�k= tan−1 2�k��/�k�

1−��/�k�
2

(18.8.10)

Note that we have set 	i=	 and ci=c, which gives

�k=
	+c

2��h+�1/3��FhF ��k

(18.8.11)

From Eq. (8.5.3), we obtain approximately (note the inconsistency
that we used average values of 	i and ci to obtain an averaged �k, but that
on the forcing side of the equation we keep the individual 	i and ci.)

F ∗
k = 1

��h+ 1
3�FhF �Nk

∫
�2

∫
�1

(√
k21+�2c21UB1U1k+

√
k22+�2c22UB2U2k

+
√
k23+�2c23UB3U3k

)
A1A2d�1d�2 (18.8.12)

If we wish to be consistent with our assumption that we may set
	1=	2=	3=	 and c1=c2=c3=c, then this equation reduces to

F ∗
k =

√
k2+�2c2

��h+�1/3��FhF �Nk

∫
�2

∫
�1

[
UB1��1��2�U1k��1��2�

+UB2��1��2�U2k��1��2�+UB3��1��2�U3k��1��2�
]
A1A2d�1d�2

(18.8.13)

Note again that this solution is only valid if the entire surface of the shell
is supported by a uniform elastic foundation. Elastic foundations that are
only patches have to be approached differently.

The result shows again in general that in order to keep the vibration
response low, the formulation stiffnesses and damping, ki and ci, should
be kept low, keeping in mind of course that the elastic foundation stiffness
may tune or detune the resonances which may make the response for a
lower ki actually higher.
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18.9. PLATE EXAMPLES OF BASE EXCITATION
AND FORCE TRANSMISSION

In the following, the rectangular plate is used to illustrate base excitation
and force transmission calculations. For Cartesian coordinates �1=x�
�2=y, the Lamé parameters are A1=A2=1.

18.9.1. Uniformly Distributed Harmonic Base
Excitation of a Simply Supported Plate

The equation of motion to be solved is, by reduction from Eq. (18.8.2),

D� 4u3+k3u3+�	3+c3�u̇3+
(
�h+ 1

3
�FhF

)
ü3=k3uB3+c3u̇B3 (18.9.1)

where the elastic foundation base motion is taken as being uniformly
distributed (for example, the entire base of the elastic foundation is
attached to a shaker platform), vibrating harmonically with amplitude UB3:

uB3�x�y�t�=UB3�x�y�e
j�t (18.9.2)

where, for a uniform distribution,

UB3�x�y�=UB3=const� (18.9.3)

The natural frequencies and modes are obtained from

D� 4u3+k3u3+
(
�h+ 1

3
�FhF

)
ü3=0 (18.9.4)

For a simply supported plate, the natural modes are

U3mn�x�y�=Amn sin
m�x

a
sin

n�y

b
(18.9.5)

and the natural frequencies are, from Eq. (18.3.3),

�Fmn=
√

�2
mn�h+k3

�h+�1/3��FhF

(18.9.6)

and where

�mn=�2

[(m
a

)2+(n
b

)2]√ D

�h
(18.9.7)

The amplitudes of the natural modes, Amn, are arbitrary and could be
taken as unity. They will cancel during the subsequent development.

Since

Nk=Nmn=
∫ b

y=0

∫ a

x=0
A2

mn sin
2 m�x

a
sin2 n�y

b
dxdy= ab

4
A2

mn (18.9.8)
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we obtain from Eq. (18.8.12),

F ∗
k =F ∗

mn=
4
√
k23+�2c23�1−cosm���1−cosn��

��h+�1/3��FhF �Amnmn�2
(18.9.9)

Utilizing Eqs. (18.8.7)–(18.8.11) gives

u3�x�y�t� =
4
√
k23+�2c23UB3

��h+�1/3��FhF ��
2

×
�∑

m=1

�∑
n=1

�1−cosm���1−cosn��sin m�x
a

sin n�y

b
ej��t+�3−�Fmn�

mn�2
Fmn

√[
1−��/�Fmn�

2
]2+4�2

Fmn��/�Fmn�
2

(18.9.10)

where

�3= tan−1

(
c3�

k3

)
(18.9.11)

�Fmn= tan−1 2�mn��/�Fmn�

1−��/�Fmn�
2

(18.9.12)

�Fmn=
	3+c3

2��h+�1/3��FhF ��Fmn

(18.9.13)

As one would expect, because of the symmetry, only natural modes of
m�n combinations where m=1�3�5��� and n=1�3�5���� participate in the
response.

18.9.2. Pressure Transmission into the
Base of the Elastic Foundation

A simply supported plate on an elastic foundation is acted on by a
uniformly distributed, harmonically varying pressure:

q3�x�y�t�=q∗
3�x�y�e

j�t (18.9.14)

where

q∗
3�x�y�=Q3= const� (18.9.15)

The pressure that is transmitted into the foundation is

q3T �x�y�t�=k3u3�x�y�t�+c3u̇3�x�y�t� (18.9.16)

Since we expect, in steady state (see Sec. 8.5), that

u3�x�y�t�=
�∑
k=1

�kU3k�x�y�e
j��t−�k� (18.9.17)
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we obtain

q3T �x�y�t� = �k3+j�c3�
�∑
k=1

�kU3k�x�y�e
j��t−�k�

=
√
k23+�2c23

�∑
k=1

�kU3k�x�y�e
j��t+�3−�k� (18.9.18)

where

�3= tan−1

(
c3�

k3

)
(18.9.19)

In order to obtain the response u3�x�y�t�, the following equation has
to be solved:

D� 4u3+k3u3+�	3+c3�u̇3+
(
�h+ 1

3
�FhF

)
ü3=q3=Q3e

j�t (18.9.20)

For a simply supported plate, Eqs. (18.9.5) and (18.9.6) apply again as
before. Nmn is given by Eq. (18.9.8). Equation (18.6.9) becomes

F ∗
k =F ∗

mn=
4Q3�1−cosm���1−cosn��

��h+�1/3��FhF �Amnmn�2
(18.9.21)

Utilizing Eqs. (18.6.8), Eq. (18.9.18) becomes

q3T �x�y�t� =
4
√
k23+�2c23Q3

��h+�1/3��FhF ��
2

×
�∑

m=1

�∑
n=1

�1−cosm���1−cosn��sin m�x
a

sin n�y

b
ej��t+�3−�Fmn�

mn�2
Fmn

√
�1−��/�Fmn�

2
2+4�2
Fmn��/�Fmn�

2

(18.9.22)

where �mn and �Fmn are given by Eqs. (18.9.12) and (18.9.13). Note that
u3�x�y�t� and UB3, and q3T �x�y�t� and Q3, are related by the same transfer
function.

18.10. NATURAL FREQUENCIES AND MODES
OF A RING ON AN ELASTIC FOUNDATION
IN GROUND CONTACT AT A POINT

The natural frequencies of a ring on an elastic foundation are given
by Eqs. (18.4.15) and (18.4.16). The natural modes are given by
Eqs. (18.4.17)–(18.4.19).

Let us suppose that the ring is brought into point contact at �=0,
so that motion in radial direction is 0, but motion in tangential direction
is not restricted. In the following, it is shown how the natural frequencies
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and modes are obtained for the point contact case in terms of the natural
frequencies and modes of the noncontacting ring. The ability to do this
is, for example, important in the tire industry, where natural frequencies
and modes of a free (noncontacting) tire can be relatively easily measured
or calculated, and where it is at times of interest to predict from this
information the natural frequencies and modes of the same tire in road
contact where radial deflection is 0, but for wet roads tangential motion is
allowed.

First, we calculate the steady state, undamped harmonic response of
the ring at location �=0 due to a harmonic point at �=0. This was done
in Sec. 18.7. Equation (18.7.14) becomes

u3�0�t�=
2∑

i=1

�∑
n=1

FA2
nie

j�t

�n���h+�1/3��FhF �ab�A
2
ni+B2

ni���
2
ni−�2�

(18.10.1)

This allows us to formulate the point receptance at the point of contact,
�=0, labeled here point 1:

�11=
u3�0�t�

Fej�t
=

2∑
i=1

�∑
n=1

A2
ni

�n���h+�1/2��FhF �ab�A
2
ni+B2

ni���
2
ni−�2�

(18.10.2)

Because of the radial restriction of zero motion, the frequency equation is
(see also Chapter 13)

�11=0 (18.10.3)

or
2∑

i=1

�∑
n=1

A2
ni

�n

[
1+�Bni/Ani�

2
](
�2

ni−�2
)=0 (18.10.4)

The values of �=�k which satisfy this equation are the natural frequency
of the ring on an elastic foundation in point contact with ground. Again,
the �ni are given by Eqs. (18.4.15) and (18.4.16). The ratios (Bni/Ani) are
given by Eqs. (18.4.19).

To obtain the natural modes, we write Eqs. (18.7.14) and (18.7.15)
for a general location � and zero damping:

U3ni���=A
2∑

i=1

�∑
n=1

cosn�

�n

[
1+�Bni/Ani�

2
](
�2

ni−�2
k

) (18.10.5)

U�ni=A
2∑

i=1

�∑
n=1

�Bni/Ani�sinn�

�n

[
1+�Bni/Ani�

2
](
�2

ni−�2
k

) (18.10.6)
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where

A= F

���h+�1/3��FhF �ab
(18.10.7)

and can be viewed as an arbitrary constant which we may take as A=1,
for example.

As a partial check, Eqs. (18.10.5) and (18.10.6) can be evaluated at
the ground contact point �=0. We get

U3ni���=A
2∑

i=1

�∑
n=1

1

�n

[
1+�Bni/Ani�

2
](
�2

ni−�2
k

) (18.10.8)

Because Eq. (18.10.4) is satisfied by �=�k, Eq. (18.10.8) gives

U3ni��=0�=0 (18.10.9)

and Eq. (18.10.6) gives directly

U�ni��=0�=0 (18.10.10)

as one would expect.
Note that here we have only considered the natural modes of

the ring not in point contact because of the symmetry of the problem
(all summations over n involve only the symmetric modes ��=0�).
Unsymmetrical modes have a transverse deflection node at the contact
point and are not affected. Therefore, beside the new �k obtained
from Eq. (18.10.4), the �ni corresponding to natural frequencies of the
unsymmetrical modes about �=0 are also natural frequencies of the ring
in contact.

18.11. RESPONSE OF A RING ON AN
ELASTIC FOUNDATION TO A HARMONIC
POINT DISPLACEMENT

In Sec. 13.7, the steady-state harmonic response amplitude at location 2 of
system A, due to a harmonic displacement input at location 1 is given by
Eq. (13.7.4) as

X2=
�21

�11

X1 (18.11.1)

The ring is not restrained in tangential direction at location 1.
In our case, as illustrated in Fig. 3, we take X2=U3��� to be the

transverse displacement amplitude at location 2, and of course X1 is a
given displacement input at �=0, namely X1=U3��=0�. For this case, the
receptance �11 is defined as the ratio of the transverse response amplitude
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FIG. 3 Ring on an elastic foundation excited by a harmonic point displacement.

at �=0 to a transverse harmonic force amplitude at location �=0:

�11=
U3��=0�

F3��=0�
(18.11.2)

which is, from Eq. (18.7.14) where the summation over n involves only
modes that are symmetric about the �=0 axis,

�11 =
1

���h+�1/3��FhF �ab

×
2∑

i=1

�∑
n=0

e−j�ni

�n �1+�Bni/Ani�
2
�2

ni

√
�1−��/�ni�

2

2+4�ni��/�ni�

2

(18.11.3)

The receptance �21 is defined as the ratio of the transverse response
amplitude at a general location � to a transverse force amplitude at location
�=0:

�21=
U3���

F3��=0�
(18.11.4)
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which is, from Eq. (18.7.14),

�21 =
1

���h+�1/3��FhF �ab

×
2∑

i=1

�∑
n=0

e−j�ni cosn�

�n�1+�Bni/Ani�
2
�2

ni

√
�1−��/�ni�

2

2+4�ni��/�ni�

2

(18.11.5)

and, therefore,

U3���=
�21

�11

X1 (18.11.6)

or

U3���

=X1

2∑
i=1

�∑
n=0




e−j�ni cosn�

�n�1+�Bni/Ani�
2
�2

ni

√
�1−��/�ni�

2

2+4�ni��/�ni�

2




2∑
i=1

�∑
n=0




e−j�ni

�n �1+�Bni/Ani�
2
�2

ni

√
�1−��/�ni�

2

2+4�ni��/�ni�

2




(18.11.7)

which is the complex response amplitude, which can be rewritten in terms
of a magnitude and a phase angle.

As a partial check, when �=0, Eq. (18.11.7) gives U3��=0�=X1 as
expected.
The transverse response displacement u3���t� is then

u3���t�=U3���e
j�t (18.11.8)

We may now do the same thing for U����, which is now the X2 of
Eq. (18.11.1). In this case, we may write

U����=
�′
21

�′
11

X1 (18.11.9)

where we define the receptance �′
11 still as the ratio of the transverse

response amplitude at �=0 to a transverse harmonic force at location �=0,
as required by the derivation in Sec. 18.7:

�′
11=�11 (18.11.10)
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but the receptance �′
21 is now defined as the ratio of the tangential response

at a general location � to a harmonic transverse force at location �=0:

�′
21=

U����

F3��=0�
(18.11.11)

which is, from Eq. (18.7.15),

�′
21 =

1

���h+�1/3��FhF �ab

×
2∑

i=1

�∑
n=1

�Bni/Ani�e
−j�ni sinn�

�n

[
1+�Bni/Ani�

2
]
�2

ni

√[
1−��/�ni�

2
]2+4�ni ��/�ni�

2

(18.11.12)

Therefore, the tangential response amplitude (18.11.9) becomes

U����

=X1

2∑
i=1

�∑
n=1




�Bni/Ani�e
−j�ni sinn�

�n�1+�Bni/Ani�
2
�2

ni

√
�1−��/�ni�

2

2+4�ni��/�ni�

2




2∑
i=1

�∑
n=0


 e−j�ni

�n

[
1+�Bni/Ani�

2
]
�2

ni

√
�1−��/�ni�

2

2+4�ni��/�ni�

2




(18.11.13)

Again as a partial check, when �=0, Eq. (18.11.13) reduces to
U���=0�=0, as expected. The tangential response displacement is

u����t�=U����e
j�t (18.11.14)

We see that resonances will occur if the denominator in Eqs. (18.11.7)
and (18.11.13) is minimized. For zero damping, this denominator, when set
equal to 0, gives the frequency equation of Sec. 18.10 for a ring in point
ground contact ��11=0�, as one would expect. The natural frequencies
�k obtained in Sec. 18.10 cause the resonances of the point displacement
excitation. This is entirely different from the force excitation case, where
resonances occur in the vicinity of �=�ni. All of this is similar to the well-
known case where a longitudinally vibrating free–free rod when excited at
x=0 by a harmonic force has resonance frequencies which are its free–free
natural frequencies, but when being forced by a displacement excitation at
x=0, its resonance frequencies are the clamped-free natural frequencies.
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Again, note that the summations over n in the solution include only
the natural modes that are symmetric about �=0��=0�� the �=�/2n
modes cancel); see also Sec. 18.10.
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Similitude

It is possible to draw conclusions about the general behavior of structures,
without solving specific boundary value problems, by establishing exact
or approximate similitude relationships. A second motivation is that in
cases of large shells of complicated geometry, vibration analysts have been
turning to the use of experimental models. Finally, it allows us to understand
how results should be presented in nondimensional form. Similitude
arguments were used in Chapter 18 when discussing elastic foundations.

19.1. GENERAL SIMILITUDE

The accepted way of scaling is to scale the shell model faithfully in
every respect, shape, and thickness, all as shown in Fig. 1, employing the
classical scaling law. This law is usually derived in textbooks by employing
the method of dimensional analysis (Focken, 1953), and states that all
dimensions have to be scaled in proportion: for example,

h2

h1

= a2

a1

= R2

R1

(19.1.1)

where the subscripts 1 and 2 designate two similar structures, h a typical
thickness, a a typical length or width dimension, and R a typical radius of

469
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FIG. 1 Similar shells.

curvature. It is also, strictly speaking, required that the Poisson ratios be
the same if two different materials are being used:

�2=�1 (19.1.2)

But this condition is, in experimental model work, often relaxed as
long as Poisson’s ratios are approximately equal. The natural frequencies
of structure 2 are then related to the natural frequencies of structure 1 by

�k2=�k1

a1

a2

√
�1E2

�2E1

=�k1

a1

a2

c2
c1

(19.1.3)

where � is the mass density, E is Young’s modulus, and c is the speed of
sound. This scaling law, however, proves to be sometimes too restrictive
since it is not always convenient, for instance, to scale the thickness of the
shell in proportion to typical surface dimensions. Also, important insights
into the influence of shell thickness on the frequency spectrum cannot
be obtained. Similar restrictions apply, of course, to all types of elastic
structures, not only shells.
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19.2. DERIVATION OF EXACT SIMILITUDE
RELATIONSHIPS FOR NATURAL
FREQUENCIES OF THIN SHELLS

Starting with the equations of motion and boundary conditions given in
Chapter 2, the following nondimensional expressions are introduced:

u∗
1=

u1

a
� u∗

2=
u2

a
� u∗

3=
u3

a
� t∗=�kt

A∗
1d�

∗
1=

A2d�1

a
� A∗

2d�
∗
2=

A2d�2

a
(19.2.1)

The quantity a is a typical shell dimension on the �1��2 surface. From this,
it follows that

N ∗
ij =

Nij

K
�i�j=1�2�� M∗

ij=
Mija

D

Q∗
i3=

Qi3a
2

D
� R∗

i =
Ri

a
� q∗

i =
qia

3

D
(19.2.2)

Substituting these quantities into the equations of motion (2.7.20)–(2.7.22)
gives

12
(a
h

)2(�N ∗
11A

∗
2

��∗
1

+ �N ∗
12A

∗
1

��∗
2

+N ∗
12

�A∗
1

��∗
2

−N ∗
22

�A∗
2

��∗
1

)
+A∗

1A
∗
2

(
Q∗

13

R∗
1

+q∗
1

)

= �

E
�k

a4

h2
12�1−�2�A∗

1A
∗
2

�2u∗
1

�t∗2
(19.2.3)
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h
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��∗
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2

��∗
1
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��∗
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2
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E
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k
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2

�2u∗
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The typical boundary conditions become [since we use the symbol ∗ to
designate nondimensional quantities, we use an overbar to replace the
asterisk in Eqs. (2.8.11)–(2.8.14)]

N ∗
11 =N

∗
11� T ∗

12=T
∗
12� V ∗

13=V
∗
13� M ∗

11=M
∗
11 (19.2.6)

u∗
1 =u∗

1 � u∗
2 =u∗

2 � u∗
3 =u∗

3 � 	
∗
1 =	

∗
1 (19.2.7)
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The typical nondimensionalized Kirchhoff effective shear values become

T ∗
12=12

(a
h

)2
N ∗

12+
M∗

12

R∗
2

(19.2.8)

V ∗
13=Q∗

13+
1

A∗
2

�M∗
12

��∗
2

(19.2.9)

For the scaling of eigenvalues, we set q∗
k �k=1�2�3�=0� which results in the

free oscillation form of Eqs. (19.2.3)–(l9.2.5). Examining these equations
and typical boundary conditions, we see that we can get identical solutions
for two similar shells only if the following conditions are satisfied:

a1

h1

= a2

h2

(19.2.10)

�1

E1

�2
k1

a4
1

h2
1

�1−�2
1�=

�2

E2

�2
k2

a4
2

h2
2

�1−�2
2� (19.2.11)

From this, it follows that a total geometric scaling is required, as stated in
Eq. (19.1.1), and that the scaling law is (�1=�2 is still required, however,
because the force and moment resultants contain �)

�k2=�k1

a1

a2

√
�1

�2

E2

E1

(19.2.12)

Again, note that c=√
E/p is the speed of sound. This equation is the same

result as the general similitude of Eq. (19.1.3).
Equations (19.2.3)–(19.2.5) also indicate that nondimensional

analytical or experimental results have to be plotted in terms of the two
nondimensional numbers Z1 and Z2:

Z1=
a

h
(19.2.13)

Z2=
�

E
�2

k

a4

h2
(19.2.14)

assuming that � is constant.

19.3. PLATES

For plates, the thickness is separable. Letting the curvatures 1/R∗
1 and 1/R∗

2

approach 0 results in an uncoupling of in-plane vibrations and transverse
vibrations. The in-plane oscillations are described by

�N ∗
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∗
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∗
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�2u∗
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�t∗2

(19.3.1)
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The transverse oscillations are given by

�Q∗
13A

∗
2
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k
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∗
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�2u∗
3

�t∗2
(19.3.3)

Boundary conditions in terms of the Kirchhoff effective shear resultant of
the second kind are now in terms of N

∗
ij and are applicable to in plane

oscillations, while V ∗
i3 is associated with the transverse oscillations.

Two exact but different scaling laws can be defined for the plate,
depending if transverse oscillations or in-plane oscillations are to be scaled.
The scaling law associated with free in-plane oscillations is

�1

E1

�2
k1a

2
1�1−�2

1�=
�2

E2

�2
k2a

2
2�1−�2

2� (19.3.4)

based again on the argument that we will only have identical solutions
for two similar plates if this relationship is satisfied, which translates into
��1=�2�

�k2=�k1

a1

a2

√
�1

�2

E2

E2

(19.3.5)

This appears to be the same as Eq. (19.2.12) but with the important
difference that the plate thickness does not enter the derivation of the
similitude relationship anywhere. Therefore, the condition (19.2.10) is
not required. This means that in-plane natural frequencies of plates are
independent of thickness. Thickness changes will not affect the in-plane
natural frequency spectrum of a plate. The reason is, of course, that
increasing a plate’s thickness adds, for in-plane motion, the same stiffness-
to-mass ratio.

For transverse vibration, we obtain identical results for two plates
similar in shape and boundary conditions if (Kristiansen et al., 1972)

�1
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�2
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a4
1

h2
1
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2� (19.3.6)

or ��1=�2�

�k2=�k1

h2

h1

(
a1

a2

)2
√
�1

�2

E2

E1

(19.3.7)

It follows that if one doubles the thickness of any thin plate, all natural
frequencies for transverse motion double in magnitude. Increasing the
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surface dimension of any thin plate (keeping its shape and boundary
conditions similar) will change the natural frequencies by the square of this
change.

It should be noted that for transversely vibrating plates whose
boundary conditions are not of the bending moment or Kirchhoff shear
type, Poisson’s ratio is not required to be constant, so that Eq. (19.3.7)
becomes

�k2=�k1

h2

h1

(
a1

a2

)2
√
�1

�2

E2

E1

1−�2
1

1−�2
2

(19.3.8)

This can be shown by converting Eq. (19.3.3) into the displacement form.

19.4. SHALLOW SPHERICAL PANELS
OF ARBITRARY CONTOURS
(INFLUENCE OF CURVATURE)

Specializing Eq. (6.8.9) to R1=R2=R gives


 4

[
D
 4U3+

(
Eh

R2
−�h�2

k

)
U3

]
=0 (19.4.1)

or, without loss of generality,

D
 4U3+
(
Eh

R2
−�h�2

k

)
U3=0 (19.4.2)

The coordinates �2 and �2 are commonly selected to follow the plane
projection of the panel and are therefore not spherical coordinates. For
example, in the case of a circular or annular contour, one uses polar
coordinates; for rectangular or triangular contours, Cartesian coordinates;
for elliptical boundary contours, elliptical coordinates; and so on.
Upon introduction of the nondimensional expressions

A∗
1d�

∗
1=

A1d�1

a
(19.4.3)

A∗
2d�

∗
2=

A2d�2

a
(19.4.4)

U ∗
3 =

U3

a
(19.4.5)

where a is a typical panel projection dimension (Fig. 2), Eq. (19.4.2)
becomes


 4
∗U

∗
3 −

a4

D

(
�h�2

k−
Eh

R2

)
U ∗

3 =0 (19.4.6)
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FIG. 2 Similar shallow spherical shells.

where
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Examining Eq. (19.4.6) reveals that all spherically curved panels of similar
boundary shape and boundary condition distribution (Fig. 2) will have the
same solution in u∗

3, provided that they all have the same numerical value
of the factor

a4

D

(
�h�2

k−
Eh

R2

)
(19.4.8)

and for cases where moments of Kirchhoff shear conditions exist, of �.
With the subscript 1 assigned to all parameters of spherically curved

panel 1 and the subscript 2 to all parameters of spherically curved panel 2,
it is required that

a4
1

D1

(
�1h1�

2
k1−

E1h1

R2
1

)
= a4

2

D2

(
�2h2�

2
k2−

E2h2

R2
2

)
(19.4.9)

Similarly to the transversely vibrating plate, only if there are boundary
conditions of the bending moment or Kirchhoff shear type is it also
required that

�1=�2 (19.4.10)
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Assuming this to be the case, Eq. (19.4.9) can also be written as
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(19.4.11)

Since the plate equation is a subcase of Eq. (19.4.2), Eq. (19.4.11) may be
written such that panel 1 is a flat plate �1/R1=0�:
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)4
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E2
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(19.4.12)

The effect of curvature may be isolated by taking the plate and the
spherically curved panel 2 to be of the same material, the same thickness,
and the same projection dimensions. Equation (19.4.12) then reduces to

�k2=
√
�2

k1+
E

�R2
(19.4.13)

Therefore, if the natural frequencies �k1 of some plate are known,
immediately the solutions for the similar spherically curved panel are
also known. For example, if a spherically curved panel whose contour is
rectangular and whose boundary conditions are of the simply supported
type is considered, then since the natural frequencies for the simply
supported rectangular plate are known to be ���q=1�2�����

�2
k1=�2

pq1=�4

(
p2

a2
+ q2

b2

)2
D

�h
(19.4.14)

the solutions for the curved panel are (Soedel, 1973)

�k2=�pq2 =
√
�4

(
p2

a2
+ q2

b2

)2
D

�h
+ E

�R2
(19.4.15)

19.5. FORCED RESPONSE

Examining Eqs. (19.2.1)–(19.2.5) shows that we obtain similar solutions
for similar excitations in space and time if in addition to satisfying
Eqs. (19.2.10), (19.2.11) and (19.2.13), we also scale excitation in
amplitude according to

qi2=qi1
E2

E1

(19.5.1)
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in time according to

t2= t1
�k1

�k2

(19.5.2)

and in space according to the ratio a2/a1.
Satisfying these relationships means that the response will be similar.

This is of interest in experimental work. The response is then

ui2=ui1

a2

a1

(19.5.3)

at the time scale

t2= t1
�k1

�k2

(19.5.4)

Special relationships for special cases (e.g., plates) can be developed that
allow the inclusions of other parameters into the scaling relationships
(Soedel, 1964).

19.6. APPROXIMATE SCALING OF SHELLS
CONTROLLED BY MEMBRANE STIFFNESS

The plate and shallow shell similitude relationships realize what one would
like to accomplish for shells in general: namely, to introduce the thickness
dependency into the scaling law. This can be done by following the lead
of the shell membrane theory where it is assumed that for certain classes
of shells and frequencies (or certain frequency bands), it is permissible to
neglect the influence of bending resistance on shell oscillations.

For the cases where membrane influences are dominant,
Eqs. (19.2.3)–(19.2.5) become
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For free vibration, q∗
1 =q∗

2 =q∗
3 =0, and the equations will have the same

solutions for two similar shells if
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or (�1=�2)
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(19.6.5)

There is no requirement, for the free-vibrant case, that h1/a1=h2/a2. This
means that in the region where this scaling law is applicable, thickness
changes will have no appreciable effects on natural frequencies. This was
shown, by a circular cylindrical shell example, in Chapter 5.

19.7. APPROXIMATE SCALING OF SHELLS
CONTROLLED BY BENDING STIFFNESS

With increasing mode number, bending influences will eventually start to
dominate in most shells. Equations (19.2.3)–(19.2.5) will approach the
forms
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The scaling law for eigenvalues (q∗
1 =q∗

2 =q∗
3 =0) for this class of cases is,

therefore,
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or (�1=�2)
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(19.7.5)

Whenever this scaling law is applicable, natural frequencies increase in
proportion to thickness changes.

Fig. 3 shows for a typical simply supported circular cylindrical
shell, the frequency regions for dominant transverse motion divided into
membrane stiffness and bending stiffness controlled regions. Unfortunately,
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FIG. 3 Membrane and bending effect dominated regions of the natural frequencies of
a simply supported, circular cylindrical shell.

the most interesting natural frequencies are usually the very lowest, which
are influenced by both membrane and bending effects. Neither one of the
two approximate scaling laws applies, except that one may state that in this
region, for h2>h1,
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(19.7.6)
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20

Interactions with
Liquids and Gases

In the following, derivation of the vibroelastic equations of motion of
three-dimensional solids is presented, utilizing curvilinear coordinates and
Hamilton’s principle. Similarities to the derivation of Love’s equations in
Chapter 2 are emphasized for educational purposes. The wave equation
forms are also developed. Then shear stresses are eliminated and the
three-dimensional wave equation for an inviscid stationary acoustic
medium is obtained by reduction. Finally, to describe the behavior of free
surface liquids, compressibility is eliminated. Necessary interface boundary
conditions are discussed and two examples are given.

20.1. FUNDAMENTAL FORM IN
THREE-DIMENSIONAL
CURVILINEAR COORDINATES

Obviously, it is now necessary to use

x1=f1��1��2��3�� x2=f2��1��2��3�� x3=f3��1��2��3� (20.1.1)

instead of Eq. (2.1.1). The location of a point P can be expressed as (Fig. 1)

r̄ ��1��2��3�=f1��1��2��3�ē1+f2��1��2��3�ē3+f3��1��2��3�ē3

(20.1.2)

480
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FIG. 1 Curvilinear coordinate definitions for finding Lame parameters for three
dimensional solids.

The differential change dr̄ is

dr̄= �r̄

��1

d�1+
�r̄

��2

d�2+
�r̄

��3

d�3 (20.1.3)

The magnitude ds of dr̄ is

�ds�2=dr̄ ·dr̄= �r̄
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(20.1.4)

if we specify that the coordinates �1��2 and �3 are orthogonal. Defining

�r̄

��1

· �r̄

��1

=
∣∣∣∣ �r̄��1
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1 (20.1.5)
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· �r̄

��2

=
∣∣∣∣ �r̄��2

∣∣∣∣
2

=A2
2 (20.1.6)

�r̄
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· �r̄
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∣∣∣∣ �r̄��3
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=A2
3 (20.1.7)

we obtain the fundamental form equation

�ds�2=A2
1�d�1�

2+A2
2�d�2�

2+A2
3�d�3�

2 (20.1.8)
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Again, as in Chapter 2, we may obtain the Lamé parameters A1�A2 and A3

either by way of the mathematical definitions (20.1.5)–(20.1.7) or by direct
inspection. For instance, in Cartesian coordinates,

�1=x� �2=y� �3=z� A1=A2=A3=1 (20.1.9)

For cylindrical coordinates

�1=r� �2=�� �3=x� A1=1� A2=r� A3=1 (20.1.10)

For spherical coordinates

�1=r� �2=�� �3=0� A1=1� A2=r� A3=r sin� (20.1.11)

20.2. STRESS-STRAIN-DISPLACEMENT
RELATIONSHIPS

The strain-stress relationships are, as in Chapter 2,
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33�� (20.2.1)
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33�� (20.2.2)
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�12=
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G
=�21 (20.2.4)

�13=

13

G
=�31 (20.2.5)

�23=

23

G
=�32 (20.2.6)

where


12=
21� 
13=
31� 
13=
32 (20.2.7)

This may be inverted to give


11=2G�11+
��11+�22+�33� (20.2.8)


22=2G�22+
��11+�22+�33� (20.2.9)


33=2G�33+
��11+�22+�33� (20.2.10)


12=G�12=
21 (20.2.11)


13=G�13=
31 (20.2.12)


23=G�23=
32 (20.2.13)
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where


= �E

�1+���1−2��

and

�12=�21� �13=�31� �23=�32 (20.2.14)

It should be noted that shear strain is defined here to be the total strain
angle. Let us now consider the fundamental form. It may be written as

�ds�2=
3∑

i=1

A2
i ��1��2��3��d�i�

2 (20.2.15)

If point P, originally located at ��1��2��3�, is deflected in the �1 direction
by u1, in the �2 direction by u2, and in the �3 direction by u3, it will be
located at ��1+�1��2+�2��3+�3�. Deflections ui and coordinate changes
�i and related by

ui=Ai��1��2��3��i (20.2.16)

A point P ′, located an infinitesimal distance from point P at ��1+d�1�
�2+d�2��3+d�3� will be located, after deflection, at ��1+d�1+�1+
d�1��2+d�2+�2+d�2��3+d�3+�3+d�3�. The distance ds′ between P
and P ′ in the deflected state will be

�ds′�2=
3∑

i=1
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i ��1+�1��2+�2��3+�3��d�i+d�i�

2 (20.2.17)

Since Ai��1��2��3� varies in a continuous fashion as �1��2, and �3 change,
a Taylor series expansion of A2

i ��1+�1��2+�2��3+�3� about the point
��1��2��3� is in order:
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One may also expand

�d�i+d�i�
2=�d�i�

2+2d�id�i (20.2.19)

neglecting the �d�i�
2 term. The differential d�i may be written as

d�i=
3∑

j=1

��i
��j

d�j (20.2.20)
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Substituting all this in Eq. (20.2.17) gives, dropping the notation
Ai��1��2��3� in favor simply of Ai.
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(20.2.21)

The last term is negligible except for cases where high initial stresses exist
in the solid. Thus

2d�i
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d�j�0 (20.2.22)

Utilizing the Kronecker delta notation, �ij=1�i=j� and �ij=0�i �=j, the
first term may be written

3∑
i=1

(
A2

i +
3∑

j=1

�A2
i

��j

�j

)
�d�i�

2=
3∑

i=1

3∑
j=1

(
A2

i +
3∑

k=1

�A2
i

��k

�k

)
�ijd�id�j

(20.2.23)

The second term of Eq. (20.2.21) may be written
3∑

i=1

2d�iA
2
i

3∑
j=1

��i
��j

d�j=
3∑

i=1

3∑
j=1

A2
i

��i
��j

d�jd�i+
3∑

i=1

3∑
j=1

A2
j

��j

��i

d�id�j

(20.2.24)

Therefore, Eq. (20.2.21) may be written as

�ds′�2=
3∑

i=1

3∑
j=1

B2
ijd�id�j (20.2.25)

where

B2
ij=

(
A2

i +
3∑

k=1

�A2
i

��k

�k

)
�ij+A2

i

��i
��j

+A2
j

��j

��i

(20.2.26)

The normal strains �ii are

�ii=
�ds′�ii−�ds�ii

�dsii�
(20.2.27)

where

�ds�2ii=A2
i �d�i�

2 (20.2.28)

�ds′�2ii=B2
ii�d�i�

2 (20.2.29)
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Therefore,

�ii=
√
B2
ii

A2
i

−1=
√
1+ B2

ii−A2
i

A2
i

−1 (20.2.30)

and nothing that

B2
ii−A2

i

A2
i

�1 (20.2.31)

one obtains after expanding the square root and neglecting higher-order
terms of the series,

�ii=
1

2

B2
ii−A2

i

A2
i

(20.2.32)

Thus, we obtain, substituting Eqs.(20.2.16) and (20.2.26) in Eq.(20.2.32),

�11 =
1

A1

(
�A1

��1

u1

A1

+ �A1

��2

u2

A2

+ �A1

��3

u3

A3

)
+ �

��1

(
u1

A1

)
(20.2.33)

�22 =
1

A2

(
�A2

��1

u1

A1

+ �A2

��2

u2

A2

+ �A2

��3

u3

A3

)
+ �

��2

(
u2

A2

)
(20.2.34)

�33 =
1

A3

(
�A3

��1

u1

A1

+ �A3

��2

u2

A2

+ �A3

��3

u3

A3

)
+ �

��3

(
u3

A3

)
(20.2.35)

Shear strains are defined as the angular change of an infinitesimal element,

�ij=
�

2
−�ij (20.2.36)

where i �=j and �ij is the angle between element surfaces normal to the i
and j directions after deflection. The angle �ij may be obtained by applying
the cosine formula

�ds′�2ij=�ds′�2ii+�ds′�2jj−2�ds′�ii�ds
′�jj cos�ij (20.2.37)

Since from Eq.(20.2.25),

�ds′�2ij=B2
ii�d�i�

2+B2
jj�d�j�

2−2B2
ijd�id�j (20.2.38)

where i �=j, we obtain from Eq.(20.2.37),

cos�ij=
B2
ij

BiiBjj

=sin�ij (20.2.39)

Since for reasonably small shear strain magnitudes,

sin�ij=�ij (20.2.40)

and
B2
ij

BiiBjj

� B2
ij

AiAj

(20.2.41)
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the shear stain is

�ij=
B2
ij

AiAj

(20.2.42)

Therefore,

�12=
A1

A2

�

��2

(
u1

A1

)
+A2

A1

�

��1

(
u2

A2

)
(20.2.43)

�13=
A1

A3

�

��3

(
u1

A1

)
+A3

A1

�

��1

(
u3

A3

)
(20.2.44)

�23=
A2

A3

�

��3

(
u2

A2

)
+A3

A2

�

��2

(
u3

A3

)
(20.2.45)

20.3. ENERGY EXPRESSIONS

The strain energy stored in an elastic body is

U = 1

2

∫
�1

∫
�2

∫
�3

�
11�11+
22�22+
33�33+
12�12+
13�13+
23�23�

×A1A2A3d�1d�2d�3 (20.3.1)

The kinetic energy is

K= 1

2

∫
�1

∫
�2

∫
�3

��u̇2
1+ u̇2

2+ u̇3
3�A1A2A3d�1d�2d�3 (20.3.2)

The variation of energy input to the elastic body by boundary stresses is,
on typical surfaces,

�EB =
∫
�1

∫
�2

�
∗
13�u

∗
1+
∗

23�u
∗
2+
∗

33�u
∗
3�A1A2d�1d�2

+
∫
�1

∫
�3

�
∗
12�u

∗
1+
∗

22�u
∗
2+
∗

23�u
∗
3�A1A3d�1d�3

+
∫
�2

∫
�3

�
∗
11�u

∗
1+
∗

12�u
∗
2+
∗

13�u
∗
3�A2A3d�2d�3 (20.3.3)

The variation of energy introduced by body forces is

�EL=
∫
�1

∫
�2

∫
�3

�q1�u1+q2�u2+q3�u3�A1A2A3d�1d�2d�3 (20.3.4)

where qi is a force per unit volume in �i direction.
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20.4. EQUATIONS OF MOTION OF
VIBROELASTICITY WITH SHEAR

Hamilton’s principle may be written as

∫ t1

t0

��U−�K−�EB−�EL�dt=0 (20.4.1)

The times t1 and t0 are arbitrary, except that at t= t1 and t= t0, all
variations are 0. The variational symbol � is treated mathematically
as a differential symbol. Variational displacements are arbitrary and
independent.

In the following, the various terms are examined one by one. The
strain energy variation becomes

�U =
∫
�1

∫
�2

∫
�3

(
�F

��11

��11+
�F

��22

��22+
�F

��33

��33+
�F

��12

��12+
�F

��13

��13

+ �F

��23

��23

)
A1A2A3d�1d�2d�3 (20.4.2)

where

F = 1

2
�
11�11+
22�22+
33�33+
12�12+
13�13+
23�23� (20.4.3)

Examining the first term of Eq. (20.4.2) gives

�F

��11

��11=
1

2

(

11+

�
11

��11

�11+
�
22

��11

�22+
�
33

��11

�33

)
��11=
11��11

(20.4.4)

Thus

�U =
∫
�1

∫
�2

∫
�3

�
11��11+
22��22+
33��33+
12��12+
13��13+
23��23�

×A1A2A3d�1d�2d�3 (20.4.5)

Let us again examine the first term as a typical normal stress term. Since,
from Eq.(20.2.33),

��11=
1

A1

(
�A1

��1

�u1

A1

+ �A1

��2

�u2

A2

+ �A1

��3

�u3

A3

)
+ �

��1

(
�u1

A1

)
(20.4.6)
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the first term of Eq.(20.4.5) becomes∫
�1

∫
�2

∫
�3


11��11A1A2A3d�1d�2d�3

=
∫
�1

∫
�2

∫
�3


11

A1

(
�A1

��1

�u1

A1

+ �A1

��2

�u2

A2

+ �A1

��3

�u3

A3

)

×A1A2A3d�1d�2d�3+
∫
�1

∫
�2

∫
�3


11

�

��1

(
�u1

A1

)
A1A2A3d�1d�2d�3

(20.4.7)

Integrating the second integral by parts gives∫
�1


11

�

��1

(
�u1

A1

)
A1A2A3d�1=
11�u1A2A3−

∫
�1

�u1

A1

��
11A1A2A3�

��1

d�1

Therefore,∫
�1

∫
�2

∫
�3


11��11A1A2A3d�1d�2d�3

=
∫
�1

∫
�2

∫
�3

{[

11

A1

�A1

��1

A2A3−
1

A1

��
11A1A2A3�

��1

]
�u1

+
(

11

�A1

��2

A3

)
�u2+

(

11

�A1

��3

A2

)
�u3

}
d�1d�2d�3

+
∫
�2

∫
�3


11�u1A2A3d�2d�3 (20.4.8)

Next, let us examine a typical shear term. Since, from Eq. (20.2.43),

��12=
A1

A2

�

��2

(
�u1

A1

)
+A2

A1

�

��1

(
�u2

A2

)
(20.4.9)

the fourth term in Eq. (20.4.5) becomes∫
�1

∫
�2

∫
�3


12��12A1A2A3d�1 d�2 d�3

=
∫
�1

∫
�2

∫
�3


12A
2
1A3

�

��2

(
�u1

A1

)
d�1d�2d�3

+
∫
�1

∫
�2

∫
�3


12A
2
2A3

�

��1

(
�u2

A2

)
d�1d�2d�3 (20.4.10)

Integrating the first integral by parts gives∫
�2


12A
2
1A3

�

��2

(
�u1

A1

)
d�2=
12A1A3�u1−

∫
�2

�u1

A1

�

��2

�
12A
2
1A3�d�2
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For the second integral, one obtains

∫
�1


12A
2
2A3

�

��1

(
�u2

A2

)
d�1=
12A2A3�u2−

∫
�1

�u2

A2

�

��1

�
12A
2
2A3�d�1

Therefore,

∫
�1

∫
�2

∫
�3


12��11A1A2A3d�1 d�2 d�3

=−
∫
�1

∫
�2

∫
�3

{[
1

A1

�

��2

�
12A
2
1A3�

]
�u1

+
[
1

A2

�

��1

�
12A
2
2A3�

]
�u2

}
d�1d�2d�3

+
∫
�1

∫
�3


12A1A3�u1d�1d�3

+
∫
�2

∫
�3


12A2A3�u2d�2d�3 (20.4.11)

All other normal stress and shear terms can be treated similarly. Finally,
Eq. (20.4.5) becomes

�U =
∫
�1

∫
�1

∫
�3

{[(

11

A2
1

�A1

��1

+ 
22

A1A2

�A2

��1

+ 
33

A1A3

�A3

��1

)

− 1

A2
1A2A3

�

��1

�
11A1A2A3�

]
�u1

+
[(


11

A1A2

�A1

��2

+ 
22

A2
2

�A2

��2

+ 
33

A2A3

�A3

��2

)

− 1

A2
2A1A3

��
22A1A2A3�

��2

]
�u2

+
[(


11

A1A3

�A1

��3

+ 
22

A2A3

�A2

��3

+ 
33

A2
3

�A3

��3

)

− 1

A2
3A1A2

��
33A1A2A3�

��3

]
�u3

−
[

1

A2
1A2A3

�

��2

�
12A
2
1A3�+

1

A2
1A2A3

�

��3

�
13A
2
1A2�

]
�u1

−
[

1

A2
2A1A3

�

��1

�
12A
2
2A3�+

1

A2
2A1A3

��
23A
2
2A1�

��3

]
�u2



490 Chapter 20

−
[

1

A2
3A1A2

�

��1

�
13A
2
3A2�+

1

A2
3A1A2

��
23A
2
3A1�

��2

]
�u3

}
×A1A2A3d�1d�2d�3

+
∫
�2

∫
�3

�
11�u1+
12�u2+
13�u3�A2A3d�2d�3

+
∫
�1

∫
�3

�
22�u2+
12�u1+
23�u3�A1A3d�1d�3

+
∫
�1

∫
�2

�
33�u3+
13�u1+
23�u2�A1A2d�1d�2 (20.4.12)

Next, we evaluate �K, from Eq. (20.3.2),

�K=�
∫
�1

∫
�2

∫
�3

�u̇1�u̇1+ u̇2�u̇2+ u̇3�u̇3�A1A2A3d�1d�2d�3 (20.4.13)

To separate coefficients of �u1��u2��u3, we integrate by parts, in
anticipation of the application of Hamilton’s principle, the time integral∫ t1

t0

�Kdt = �
∫
�1

∫
�2

∫
�3

∫ t1

t0

[
u̇1

���u1�

�t
+ u̇2

���u2�

�t
+ u̇3

���u3�

�t

]
×dtA1A2A3d�1d�2d�3 (20.4.14)

For example, the first term becomes∫ t1

t0

u̇1

���u1�

�t
dt=

[
�u1

�t
�u1

]t1
t0

−
∫ t1

t0

�2u1

�t2
�u1dt (20.4.15)

Since the virtual displacement is defined to be 0 at t= t0 and t1 according
to Hamilton’s principle, the bracketed quantity disappears and we obtain∫ t1

t0

u̇1

���u1�

�t
dt=−

∫ t1

t0

ü1�u1dt (20.4.16)

Proceeding similarly with the other two terms in Eq. (20.4.14), we obtain∫ t1

t0

�Kdt = −�
∫ t1

t0

∫
�1

∫
�2

∫
�3

�ü1�u1+ ü2�u2+ ü3�u3�

×A1A2A3d�1d�2d�3 (20.4.17)

Now applying Hamilton’s principle as stated in Eq. (20.4.1), one obtains∫ t1

t0

∫
�1

∫
�2

∫
�3

{[
�1ü1+q1−

(

11

A2
1

�A1

��1

+ 
22

A1A2

�A2

��1

+ 
33

A1A2

�A2

��1

)

+ 1

A2
1A2A3

�

��1

�
11A1A2A3�+
1

A2
1A2A3

�

��2

�
12A
2
1A3�

+ 1

A2
1A2A3

�

��3

�
13A
2
1A2�

]
�u1
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+
[
�ü2+q2−

(

11

A1A2

�A1

��2

+ 
22

A2
2

�A2

��2

+ 
33

A2A3

�A3

��2

)

+ 1

A2
2A1A3

�

��2

�
22A1A2A3�

+ 1

A2
2A1A3

�

��1

�
12A
2
2A3�+

1

A2
2A1A3

�

��3

�
23A
2
2A1�

]
�u2

+
[
�ü3+q3−

(

11

A1A3

�A1

��3

+ 
22

A2A3

�A2

��3

+ 
33

A2
3

�A3

��3

)

+ 1

A2
3A1A2

�

��3

�
33A1A2A3�

+ 1

A2
3A1A2

�

��1

�
13A
2
3A2�+

1

A2
3A1A2

�

��2

�
23A
2
3A1�

]
�u3

}
×A1A2A3d�1d�2d�3dt

+
∫ t1

t0

∫
�2

∫
�3

	�
∗
11−
11��u1+�
∗

12−
12��u2+�
∗
13−
13��u3�

×A2A3d�2d�3dt

+
∫ t1

t0

∫
�1

∫
�3

	�
∗
22−
22��u2+�
∗

21−
21��u1+�
∗
23−
23��u3�

×A1A3d�1d�2dt

+
∫ t1

t0

∫
�1

∫
�2

	�
∗
33−
33��u3+�
∗

31−
31��u1+�
∗
32−
32��u2�

×A1A2d�1d�2dt=0 (20.4.18)

Employing the argument that this equation can only be satisfied if the
volume integral and the surface integrals are 0 individually and that
the coefficients of the variational displacements must be 0 because of the
independence and arbitrariness of the latter, the equations of motion are
obtained as

1

A2
1A2A3

[
�

��1

�
11A1A2A3�+
�

��2

�
12A
2
1A3�+

�

��3

�
13A
2
1A2�

]

−
(

11

A2
1

�A1

��1

+ 
22

A1A2

�A2

��1

+ 
33

A1A3

�A3

��1

)
−�ü1=−q1 (20.4.19)

1

A2
2A1A3

[
�

��2

�
22A1A2A3�+
�

��1

�
12A
2
2A3�+

�

��3

�
23A
2
2A1�

]

−
(


11

A1A2

�A1

��2

+ 
22

A2
2

�A2

��2

+ 
33

A2A3

�A3

��2

)
−�ü2=−q2 (20.4.20)
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1

A2
3A1A2

[
�

��3

�
33A1A2A3�+
�

��1

�
13A
2
3A2�+

�

��2

�
23A
2
3A1�

]

−
(


11

A1A3

�A1

��3

+ 
22

A2A3

�A2

��3

+ 
33

A2
3

�A3

��3

)
−�ü3=−q3 (20.4.21)

Admissible boundary conditions are, on a typical �1–�2 surface,


33=
∗
33 or u3=u∗

3


31=
∗
31 or u1=u∗

1


32=
∗
32 or u2=u∗

2 (20.4.22)

on a typical �1–�3 surface,


22=
∗
22 or u2=u∗

2


21=
∗
21 or u1=u∗

1


23=
∗
23 or u3=u∗

3 (20.4.23)

and on a typical �2–�3 surface,


11=
∗
11 or u1=u∗

1


12=
∗
12 or u2=u∗

2


13=
∗
13 or u3=u∗

3 (20.4.24)

Equations (20.4.19)–(20.4.21) are given elsewhere (Love, 1944,
Sokolnikoff, 1946) in slightly different form.

20.5. EXAMPLE: CYLINDRICAL COORDINATES

The Lamé parameters are, for cylindrical coordinates,

�1=z� A1=1

�2=r� A2=1

�3=�� A3=r (20.5.1)

Therefore, Eqs. (20.4.19)–(20.4.21) become

1

r

[
�

�z
�
zzr�+

1

�r
�
zr r�+

�

��
�
z��

]
−�üz=−qz (20.5.2)

1

r

[
�

�r
�
rr r�+

�

�z
�
zr r�+

�

��
�
r��

]
− 
��

r
−�ür =−qr (20.5.3)

1

r2

[
�

��
�
��r�+

�

�z
�
z�r

2�+ �

�r
�
r�r

2�

]
−�ü�=−q� (20.5.4)
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or
�
zz

�z
+ �
zr

�r
+ 1

r

�
z�

��
+ 
zr

r
−�üz=−qz (20.5.5)

�
rr

�r
+ �
zr

�z
+ 1

r

�
r�

��
+ 
rr−
��

r
−�ür =−qr (20.5.6)

1

r

�
��

��
+ �
z�

�z
+ �
r�

�r
+ 2

r

r�−�ü�=−q� (20.5.7)

The strain–displacement relationships (20.2.33)–(20.2.35) become

�zz =
�uz

�z
(20.5.8)

��� =
�ur

�r
(20.5.9)

�rr =
1

r

(
ur+

�u�

��

)
(20.5.10)

�zr = �rz=
�uz

�r
+ �ur

�z
(20.5.11)

�z� = ��z=
1

r

�uz

��
+ �u�

�z
(20.5.12)

�r� = ��r =
1

r

�ur

��
+ �u�

�r
− u�

r
(20.5.13)

This allows a conversion of Eqs. (20.5.5)–(20.5.7) into a displacement
form, if desired.

20.6. EXAMPLE: CARTESIAN COORDINATES

In Cartesian coordinates, the Lamé parameters are

A1=1� �1=x

A2=1� �2=y

A3=1� �3=z (20.6.1)

and Eqs. (20.4.15) and (20.4.16) become

�
xx

�x
+ �
xy

�y
+ �
xz

�z
−�üx=−qx (20.6.2)

�
yy

�y
+ �
xy

�x
+ �
yz

�z
−�üy=−qy (20.6.3)

�
zz

�z
+ �
xz

�x
+ �
yz

�y
−�üz=−qz (20.6.4)
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The strain–displacement relations are, from Eqs. (20.2.33) to (20.2.35),

�xx =
�ux

�x
(20.6.5)

�yy =
�uy

�y
(20.6.6)

�zz =
�uz

�z
(20.6.7)

�xy =
�ux

�y
+ �uy

�x
(20.6.8)

�xz =
�ux

�z
+ �uz

�x
(20.6.9)

�yz =
�uy

�z
+ �uz

�y
(20.6.10)

Because of the simplicity of these expressions, it is customary to write
Eqs. (20.6.2)–(20.6.4) in displacement form. Substituting Eqs. (20.6.5)–
(20.6.10) into Eqs. (20.2.8)–(20.2.13) and these in turn into Eqs. (20.6.2)–
(20.6.4) gives

G

(
�2ux

�x2
+ �2ux

�y2
+ �2ux

�z2

)
+�
+G�

(
�2ux

�x2
+ �2uy

�y�x
+ �2uz

�z�x

)

−�üx=−qx (20.6.11)

G

(
�2uy

�x2
+ �2uy

�y2
+ �2uy

�z2

)
+�
+G�

(
�2ux

�x�y
+ �2uy

�y2
+ �2uz

�z�y

)

−�üy=−qy (20.6.12)

G

(
�2uz

�x2
+ �2uz

�y2
+ �2uz

�z2

)
+�
+G�

(
�2ux

�x�z
+ �2uy

�y�z
+ �2uz

�z2

)

−�üz=−qz (20.6.13)

where G is the shear modulus,

G= E

2�1+��
(20.6.14)

and 
 is the bulk modulus,


= �E

�1+���1−2��
(20.6.15)
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In abbreviated form, using tensor notation, this may be expressed as

Gui·jj+�
+G�uj·ji−�üi=qi (20.6.16)

where i�j=x�y�z.

20.7. ONE-DIMENSIONAL WAVE
EQUATIONS FOR SOLIDS

If we set qx=qy=qz=0 and assume that ux�uy�uz are only functions of x,
we obtain from Eq. (20.6.11)

G
�2ux

�x2
+�
+G�

�2ux

�x2
=�üx (20.7.1)

or

�2ux

�x2
− 1

C2
1

üx=0 (20.7.2)

where

C2
1 =


+2G

�
= E�1−��

��1+���1−2��
(20.7.3)

The physical meaning of C1 is that it is the compression wave velocity.
Also, from Eq. (20.6.12),

G
�2uy

�x2
=�üy (20.7.4)

or

�2uy

�x2
− 1

C2
2

üy=0 (20.7.5)

where C2 is the shear velocity,

C2
2 =

G

�
(20.7.6)

Similarly, from Eq. (20.6.13),

�2uz

�x2
− 1

C2
2

üz=0 (20.7.7)
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20.8. THREE-DIMENSIONAL WAVE
EQUATIONS FOR SOLIDS

Let us now investigate the three-dimensional model. First, we may write
Eqs. (20.6.11)–(20.6.13) as �qx=qy=qz=0�

G� 2ū+�
+G�grad�div ū�=� ¨̄u (20.8.1)

where

ū=


ux

uy

uz


 (20.8.2)

div ū= �ux

�x
+ �uy

�y
+ �uz

�z
(20.8.3)

grad�div ū�=




�

�x
�divū�

�

�y
�divū�

�

�z
�divū�

(20.8.4)

Since

C2
2 =

G

�
(20.8.5)

and

C2
1 −C2

2 =

+G

�
(20.8.6)

we obtain

C2
2�

2ū+�C2
1 −C2

2 �grad�divū�= ¨̄u (20.8.7)

Let us now divide the response ū into two parts,

ū= ū′ + ū′′ (20.8.8)

This gives

C2
2�

2�ū′ + ū′′�+�C2
1 −C2

2 �grad�div ū
′ +divū′′�= ¨̄u′ + ¨̄u′′ (20.8.9)

Now let us designate ū′ as the compressive component and ū′′ as the shear
component, postulating that there is no compressibility due to shear,

div ū′′ =0 (20.8.10)
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and that there is no rotation for the compressive wave components;
therefore,

curlū′ =

∣∣∣∣∣∣∣∣∣

l̄x l̄y l̄z

�

�x

�

�y

�

�z

ut
x ut

y ut
z

∣∣∣∣∣∣∣∣∣
=0 (20.8.11)

This gives, applying Eq. (20.8.10) to Eq. (20.8.9),

C2
2�

2�ū′ + ū′′�+�C2
1 −C2

2 �grad�div ū
′�= ¨̄u′ + ¨̄u′′ (20.8.12)

Let us now take the divergence of Eq. (20.8.12):

C2
2div�

2�ū′ + ū′′�+�C2
1 −C2

2 �divgrad�div ū
′�=div ¨̄u′ +div ¨̄u′′ (20.8.13)

The second term on the right is 0 and the second term in the first set
of parentheses on the left is 0. Since div�� 2�=� 2�div�, this gives

C2
2div�

2ū′ +�C2
1 −C2

2 �div�
2ū′ =div ¨̄u′ (20.8.14)

or

div�C2
1�

2ū′ − ¨̄u′�=0 (20.8.15)

Taking the curl of vector C2
1�

2ū′ − ¨̄u′, which is 0 according to Eq. (20.8.11),
we argue that if both the divergence and the curl of a vector vanish, the
vector must be 0. Thus

� 2ū′ − 1

C2
1

¨̄u′ =0 (20.8.16)

This is the compressive wave equation. Next, we take the curl of
Eq. (20.8.12):

C2
2 curl�

2�ū′ + ū′′�+�C2
1 −C2

2 �curlgrad�divū
′�=curl ¨̄u′ +curl ¨̄u′′

(20.8.17)

Applying Eq. (20.8.11) gives

curl�C2
2�

2ū′′ − ¨̄u′′�=0 (20.8.18)

Again, since the divergence of this vector vanishes according to
Eq. (20.8.10), we obtain

�2ū
′′ − 1

C2
2

¨̄u′′ =0 (20.8.19)

This is the shear wave equation.
Wave solutions of Eqs. (20.8.16) and (20.8.19) for three-dimensional

solids are not the subject of this discussion. For further study, consult,
for example, Kolsky (1953), or for an application, Kim and Soedel (1988).
Rather, it will be shown that Eq. (20.8.16) is related to the wave equation
governing the acoustics of liquids and gases.
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20.9. THREE-DIMENSIONAL WAVE EQUATION
FOR INVISCID COMPRESSIBLE LIQUIDS AND
GASES (ACOUSTICS)

We can derive the governing equations of an acoustic medium in Cartesian
coordinates, without loss of generality. We assume that the gas of fluid is
inviscid, so that


xy=
xz=
yz=0 (20.9.1)

and


xx=
yy=
zz=−p (20.9.2)

where p is a small pressure rise above the static pressure. Note that the

 values are positive for tension, while p is understood to be positive for
compression. We obtain (for qx=qy=qz=0)

−�p

�x
−�üx=0 (20.9.3)

−�p

�y
−�üy=0 (20.9.4)

−�p

�z
−�üz=0 (20.9.5)

This can also be written

−�2p

�x2
−�

�2

�t2

(
�ux

�x

)
= 0 (20.9.6)

−�2p

�y2
−�

�2

�t2

(
�uy

�y

)
= 0 (20.9.7)

−�2p

�y2
−�

�2

�t2

(
�uz

�z

)
= 0 (20.9.8)

Adding gives

−� 2p−�
�2

�t2

(
�ux

�x
+ �uy

�y
+ �uz

�z

)
=0 (20.9.9)

From Eqs. (20.2.8) to (20.2.11), we obtain (with G=0)

−p=


(
�ux

�x
+ �uy

�y
+ �uz

�z

)
(20.9.10)

Thus Eq. (20.9.10) becomes

� 2p− �




�2p

�t2
=0 (20.9.11)
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 is the bulk modulus. Definition (20.6.15) cannot be used here
because defining Poisson’s ratio for a compressible gas or fluid is
rather meaningless. It has to be rederived based on the thermodynamic
assumption that compression (or expansion) is adiabatic. The derivation
of the bulk modulus is as follows. We assume that in the linear range, the
pressure change of a gas is proportional to its density change,

dp=−K
dV

V
(20.9.12)

where K is liquid or gas bulk modulus. If we argue that in a small control
volume, the mass is constant,

V�=C (20.9.13)

and differentiate with respect to pressure, we obtain

V
d�

d�
+�

dV

dp
=0 (20.9.14)

or

dp=−
(
�
dp

d�

)
dV

V
(20.9.15)

Therefore,

K=�
dp

d�
=�C2 (20.9.16)

where C=√dp/dp is the instantaneous speed of sound, which can,
however, be taken as an average value, as is �. Equation (20.9.11) therefore
becomes

� 2p− 1

C2

�2p

�t2
=0 (20.9.17)

Equation (20.9.17) can also be derived from Eq. (20.8.16). For either
an inviscid liquid or gas, we may assume that no shear stresses exist.
Therefore, Eq. (20.8.8) becomes

ū= ū′ (20.9.18)

and the governing equation is Eq. (20.8.16)

� 2ū− 1

C2
1

¨̄u=0 (20.9.19)

where because assuming no shear stresses amounts to setting G=0�C2
1 =


/�. The bulk modulus 
 for a solid has to be replaced by the bulk modulus



500 Chapter 20

K for a liquid or gas, and therefore the speed of sound is (the subscript 1
is now dropped)

C2= K

�
(20.9.20)

Equation (20.9.19) becomes

� 2ū− 1

C2
¨̄u=0 (20.9.21)

In expanded form, it may be written

� 2ux−
1

C2
üx = 0 (20.9.22)

� 2uy−
1

C2
üy = 0 (20.9.23)

� 2ux−
1

C2
üz=0 (20.9.24)

or

� 2 �ux

�x
− 1

C2

�2

�t2

(
�ux

�x

)
= 0 (20.9.25)

� 2 �uy

�y
− 1

C2

�2

�t2

(
�uy

�y

)
= 0 (20.9.26)

� 2 �uz

�z
− 1

C2

�2

�t2

(
�uz

�z

)
= 0 (20.9.27)

Adding gives(
� 2− 1

C2

�2

�t2

)(
�ux

�x
+ �uy

�y
+ �uz

�z

)
=0 (20.9.28)

Since

−p=K

(
�ux

�x
+ �uy

�y
+ �uz

�z

)
(20.9.29)

one obtains Eq. (20.9.17).
Note that Eq. (20.9.21) can also be written in form of particle

velocities by differentiating it with respect to time. In expanded form,

� 2�x−
1

C2
�̈x = 0 (20.9.30)

� 2�y−
1

C2
�̈y = 0 (20.9.31)

� 2�z−
1

C2
�̈z = 0 (20.9.32)
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It is often convenient to introduce a potential function � such that

vx=−��

�x
� vy=−��

�y
� vz=−��

�z
(20.9.33)

Substituting this gives

� 2

(
��

�x

)
− 1

C2

�2

�t2

(
��

�x

)
= 0

� 2

(
��

�y

)
− 1

C2

�2

�t2

(
��

�y

)
= 0

� 2

(
��

�z

)
− 1

C2

�2

�t2

(
��

�z

)
= 0 (20.9.34)

Adding this results in(
�

�x
+ �

�y
+ �

�z

)(
� 2�− 1

C2

�2�

�t2

)
=0 (20.9.35)

or, without loss of generality,

� 2�− 1

C2

�2�

�t2
=0 (20.9.36)

The potential function � is related to pressure through Eq. (20.9.29).
If we differentiate with respect to time

−�p

�t
=K

(
�vx
�x

+ �vy

�y
+ �vz

�z

)
(20.9.37)

and utilizing Eqs. (20.9.33), we obtain

�p

�t
=K� 2� (20.9.38)

We may replace � 2�, using Eq. (20.9.36), and obtain

p=�
��

�t
(20.9.39)

In general, using curvilinear coordinates,

� 2= 1

A1A2A3

[
�

��1

(
A2A3

A1

�

��1

)
+ �

��2

(
A3A1

A2

�

��2

)

+ �

��3

(
A1A2

A3

�

��3

)]
(20.9.40)
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20.10. INTERFACE BOUNDARY CONDITIONS

The interface conditions for a shell joined to an acoustic medium, be it
liquid or gas, are that the normal pressure load q3 on the shell has to be
equal to the boundary pressure p of the acoustic medium,

q3=p (20.10.1)

and that the normal velocity of the shell surface, u̇3, has to be equal to the
normal velocity component vn of the acoustic medium boundary,

u̇3=vn (20.10.2)

For example, for a cylindrical shell filled with liquid, using cylindrical
coordinates,

q3�x���t�=p�x���a�t� (20.10.3)

u̇3�x���t�=�r�x���a�t� (20.10.4)

These conditions can be translated into displacement or potential function
conditions, depending on the preferred form of the wave equation.

Other boundary conditions of the acoustic medium are of a similar
type in that one has to interpret the physical situation in terms of pressure
or velocity conditions. Because of the second-order nature of the wave
equation, only one condition will be required at boundaries other than the
interface.

If interaction calculations are not required at the interface, that is, if
it is assumed that the back reaction of the acoustic medium is negligible
(which is typically the case when one studies acoustic radiation from
surfaces), only condition (20.10.2) is required at the interface, with u̇3

being a given quantity because the shell and acoustic medium equations
are solved separately. First, the forced response of the shell is evaluated,
which gives u̇3; then the wave equation is solved.

20.11. EXAMPLE: ACOUSTIC RADIATION

In this example, we assume that the transverse vibration of a slider-
clamped circular cylindrical shell is given as

u3�x���t�=Amn cos
m�x

L
cosn�ej�t (20.11.1)

The transverse velocity is therefore

u̇3�x���t�=Amnj�cos
m�x

L
cosn�ej�t (20.11.2)

The implication here is that the shell surface velocity can be specified
and is not altered by reaction to the acoustic pressure. This is a very
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FIG. 2 Acoustic radiation from a circular cylindrical shell.

practical situation if the radiation is to air. Hydroacoustic radiation usually
requires that the shell response and the acoustic radiation be investigated
as a coupled phenomenon.

In this example, the airspace is confined between two parallel baffles,
extending into infinity as shown in Fig. 2. The boundary conditions are,
therefore, for the acoustic medium,

vr�r=a�x���t�= u̇3�x���t� (20.11.3)

vr�r=��x���t�=0 (20.11.4)

vx�r�x=0���t�=0 (20.11.5)

vx�r�x=L���t�=0 (20.11.6)

The equation of motion, Eq. (20.9.36), is

� 2�− 1

C2

�2�

�t2
=0 (20.11.7)

where � 2 is, from Eq. (20.9.40), since �1=r��2=���3=x�A1=1�A2=r�
and A3=1,

� 2= 1

r

[
�

�r

(
r
�

�r

)
+ �

��

(
1

r

�

��

)
+ �

�x

(
r
�

�x

)]
(20.11.8)
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By inspection, we set

��r���x�t�=R�r�cos
m�x

L
cosn�ej�t (20.11.9)

Substituting this into Eq. (20.11.7) gives

r2
d2R

dr2
+r

dR

dr
+
[(

k2−m2�2

L2

)
r2−n2

]
R=0 (20.11.10)

where

k= �

C
(20.11.11)

Whenever k>m�/L, the solution is

R�r�=AnJn��r�+BnYn��r� (20.11.12)

where

�=k2−m2�2

L2
(20.11.13)

and Jn and Yn are Bessel functions of the first and second kind.
A second type of solution exists if k<m�/L:

R�r�=AnIn��r�+BnKn��r� (20.11.14)

where

�2=m2�2

L2
−k2 (20.11.15)

and In and Kn are modified Bessel functions of the first and second kind.
Practically, the case of Eq. (20.11.12) is more important. For

example, if L=1�0m, C=330m/s, and m=1, this solution applies for
all frequencies above 165 Hz. Because of boundary condition (20.11.4),
it is convenient to write Eq. (20.11.12) in terms of Hankel functions
(Watson, 1948):

R�r�=GnH
�1�
n ��r�+DnH

�2�
n ��r� (20.11.16)

where

H�1�
n ��r� = Jn��r�+jYn��r� (20.11.17)

H�2�
n ��r� = Jn��r�−jYn��r� (20.11.18)

Because H�1�
n ��r� will not approach 0 as r→�, it must be that Gn=0.

Therefore,

R�r�=DnH
�2�
n ��r� (20.11.19)
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Boundary condition (20.11.3) can be written

vr�r=a���x�t�=− ��

�r

∣∣∣∣
r=a

=jAmn�cos
m�x

L
cosn�ej�t (20.11.20)

or, after substituting Eq. (20.11.9),

dR

dr
�r=a�=−jAmn� (20.11.21)

Substituting Eq. (20.11.19) gives

Dn=− jAmn�

H
�2�′
n

��a� (20.11.22)

where

H�2�′
n ��a�= dH�2�

n ��r�

dr

∣∣∣∣
r=a

(20.11.23)

Therefore,

��r���x�t�=−jAmn�
H�2�

n ��r�

H
�2�′
n ��a�

cos
m�x

L
cosn�ej�t (20.11.24)

The acoustic radiation pressure is, from Eq. (20.9.39),

p=Amn��
2 H

�2�
n ��r�

H
�2�′
n ��a�

cos
m�x

L
cosn�ej�t (20.11.25)

A similar solution can be obtained for a cylindrical shell of infinite length
(Reynolds, 1981).

20.12. INCOMPRESSIBLE LIQUIDS

If a structure is in contact with a liquid that has a free surface, one may
assume that the liquid will act as if it cannot be compressed, generating in
the process waves at the free surface. For example, many liquid containers,
such as oil pans and liquid storage tanks, are structures interacting with
free surface liquids.

A secondary category occurs when the liquid fills the entire space
of a flexible shell such that during oscillations of the system, the liquid
volume can be assumed to be constant. Typically, this assumption works
best for lower natural frequencies and modes; compressibility will become
increasingly more important as the frequency of interest increases.

For an incompressible liquid, 1/C=0, and the wave equation [usually
one uses the potential function version, Eq. (20.9.36)] reduces to

� 2�=0 (20.12.1)
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The interface conditions (20.10.1) and (20.10.2) become

q3 = �
��

�t
(20.12.2)

u̇3 = −��

�n
(20.12.3)

where n indicates a normal coordinate to the shell surface.
In case of free surfaces, gravity is considered, so that Eq. (20.9.39)

has to be extended to

p=�

(
��

�t
−�

)
(20.12.4)

where � is a body force potential, related to body forces per unit mass by
(in Cartesian coordinates, without loss of generality)

Fx=−��

�x
� Fy=−��

�y
� Fz=−��

�z
(20.12.5)

If gravity acts in the z direction, we have

Fx=0� Fy=0� Fz=−g (20.12.6)

where g=9�806m/s at sea level, and as a consequence one obtains

�=−
∫
Fxdz=gz+C1 (20.12.7)

where C1 is a constant. The boundary condition at the free surface of a
liquid is developed next by way of an example. Some references of interest
are Lamb (1945), Rapoport (1968), Soedel (1982), Soedel and Soedel
(1994), Kito (1970), Rayleigh (1896), Junger (1978), Crighton (1980).

20.13. EXAMPLE: LIQUID ON PLATE

The liquid is on top of a rectangular simply supported plate. It has a
uniform average depth h, as shown in Fig. 3, and its top surface is free
to form waves. Apart from motion introduced by small oscillations, there
is no average overall velocity of the liquid. The liquid is assumed to be
incompressible and must satisfy Eq. (20.12.1):

� 2�=0 (20.13.1)

For small oscillations, the pressure p�x�y�z�t� is given by [Eq. (20.12.4)]

p

�
= ��

�t
−� (20.13.2)

when � is the body force potential of Eq. (20.12.7):

�=gz+C1 (20.13.3)
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FIG. 3 Liquid on top of a simply supported plate.

where C1 is a constant. Since at z=h+�, which describes the free surface
of the liquid where � is the oscillatory liquid displacement at the surface,
the body force potential must be 0,

��z=h+��=0 (20.13.4)

we obtain C1=−g�h+�� and therefore

�=−g�h+�−z� (20.13.5)

This results in

p=�
��

�t
+�g�h+�−z� (20.13.6)

The boundary condition at the free surface of the liquid is that the
pressure must be 0. Utilizing Eq. (20.13.6), this gives the relationship

��x�y�t�= 1

g

��

�t
�x�y�h�t� (20.13.7)

From the definition of the velocity potential, vz=−��/�z, it must be
that at the free liquid surface, ��/�t=−���x�y�h�t�/�z. Equation (20.13.7)
becomes

1

g

�2�

�t2
�x�y�h�t�+ ��

�z
�x�y�h�t�=0 (20.13.8)

The other boundary condition is at the liquid interface with the plate,

vz�x�y�0�t�= ẇ�x�y�t� (20.13.9)

where w=u3�x�y�t� is the transverse displacement of the plate. This may
be written as

−��

�z
�x�y�0�t�= ẇ�x�y�t� (20.13.10)

The equation of motion of the plate is, from Eq. (11.2.22)

D� 4w−� 2
Tw+�phpẅ=−p�x�y�0�t�+q�x�y�t� (20.13.11)
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where � 2
T =N r

xx��
2/�x2�+N r

yy��
2/�y2�+2N r

xy��
2/�x�y��p�x�y�0�t� is the total

pressure exerted by the liquid on the plate, q�x�y�t� is a general
forcing function, w�x�y�t�=u3�x�y�t� is the transverse displacement of the
plate from the undeflected position, D=Eh3

p/12�l−�2�, �p is the mass
density of the plate material, and hp is the plate thickness. Nxx, Nyy, and
Nxy are constant normal and shear tensions per unit length in the plane of
the plate. Utilizing Eq. (20.13.6), Eq. (20.13.11) becomes

D� 4w−� 2
Tw+�phpẅ=−�

��

�t
�x�y�0�t�−�gh+q�x�y�t� (20.13.12)

The static component of the liquid loading may be subtracting by setting
w�x�y�t�=ws�x�y�+��x�y�t�, where ��x�y�t� is the dynamic transverse
displacement, measured from the static equilibrium position, resulting in

D� 4�−� 2
T �+�php�̈=−�

��

�t
�x�y�0�t�+q�x�y�t� (20.13.13)

The equations defining the eigenvalue problem are Eqs. (20.13.1)
and (20.13.13), for zero forcing,

� 2��x�y�z�t�=0 (20.13.14)

D� 4��x�y�t�−� 2
T ��x�y�t�+�php�̈�x�y�t�=−�

��

�t
�x�y�0�t�

(20.13.15)

A case that can be solved in closed form is the simply supported
rectangular plate loaded by a free surface liquid which is connected to a
large reservoir of liquid at the four plate edges. This means that the time
derivatives of the velocity potential at the four plate edges x=0�a and
y=0�b are 0:(

��

�t

)
�x�y�z�t�=0 �x=0�a� y=0�b� (20.13.16)

The plate boundary conditions are for a simply supported plate,

��x�y�t�=0 �x=0�a� y=0�b�(
�2�

�x2

)
�x�y�t�=0 �x=0�a�

(
�2�

�y2

)
�x�y�t�=0 �x=0�b� (20.13.17)

At a natural frequency

��x�y�z�t�= �̄�x�y�z�ej�mnt (20.13.18)

��x�y�t�= �̄�x�y�ej�mnt (20.13.19)
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Substituting this into Eqs. (20.13.14) and (20.13.15) gives

� 2�̄=0 (20.13.20)

D� 4�̄−� 2
T �̄−�php�

2
mn�̄=−j��mn�̄�x�y�0� (20.13.21)

Boundary conditions (20.13.16) and (20.13.17) are satisfied by

�̄=jZmn�z�sin
m�x

a
sin

n�y

b
(20.13.22)

�̄=Amnsin
m�x

a
sin

n�y

b
(20.13.23)

where Amn is a constant and Zmn�z� is an as yet unknown function
describing the dependency of �̄ on z. Substituting Eqs. (20.13.22) and
(20.13.23) into Eqs. (20.13.20) and (20.13.21) results in

d2Zmn

dz2
−k2mnZmn=0 (20.13.24)

Amn�Dk4mn+t2mn−�php�
2
mn�=��mnZmn�0� (20.13.25)

where k2mn=�m�/a�2+�n�/b�2 and t2mn=N r
xx�m�/a�2+N r

yy�n�/b�2+
2N r

xy�m�/a��n�/b�� The solution of Eq. (20.13.24) is

Zmn=Bsinhkmnz+Ccoshkmnz (20.13.26)

The integration constants have to be evaluated using Eqs. (20.13.8) and
(20.13.10), which become after eliminating time:

−�2
mn

g
�̄�x�y�h�+ ��̄

�z
�x�y�h�=0 (20.13.27)

−��

�z
�x�y�0�=j�mn�̄�x�y� (20.13.28)

the latter because we have subtracted from the plate displacement the
equilibrium position and therefore w was displaced by �.

Substituting Eqs. (20.13.22) and (20.13.23) gives

−�2
mn

g
Zmn�h�+

dZmn

dz
�h�=0 (20.13.29)

dZmn

dz
�0�=−�mnAmn (20.13.30)

Substituting Eq. (20.13.26) and solving for B and C in terms of the
unspecified plate amplitude Amn results in

B=−�mn

kmn

Amn (20.13.31)

C= �mn

kmn

Amn

kmngcoshkmnh−�2
mnsinhkmnh

kmngsinhkmnh−�2
mncoshkmnh

(20.13.32)
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Because Zmn�0�=C� Eq. (20.13.25) becomes

A1�
4
mn−A2�

2
mn+A3=0 (20.13.33)

where

A1=�ph�coshkmnh+
�

kmn

sinhkmnh

A2=��g+Dk4mn+t2mn�coshkmnh+�phpgkmnsinhkmnh

A3=�Dk4mn+t2mn�kmngsinhkmnh (20.13.34)

From this, it follows that there are two natural frequencies for every m�n
combination:

�2
mn12=

c1
2
±
√(c1

2

)2−c2 (20.13.35)

where

c1=
�2

pmn+�g/h�	��/�p�+�kmnh�tanhkmnh�

amn

c2=
�2

pmn�g/h��kmnh�tanhkmnh

amn

amn=1+ ��/�p��h/hp�tanhkmnh

kmnh

�2
pmn=

k4mnD+t2mn

�php

(20.13.36)

Here the �pmn are the natural frequencies of the plate if the liquid is entirely
removed.

The natural modes in terms of the potential function and the plate
motion are �i=1�2�

�i�x�y�z�=jAmni

�mni

kmn

	f1�m�n�coshkmnz−sinhkmnz�sin
m�x

a
sin

n�y

b

(20.13.37)

�̄i�x�y�=Amnisin
m�x

a
sin

n�y

b
(20.13.38)

where

fi�m�n�= kmngcoshkmnh−�2
mnisinhkmnh

kmngsinhkmnh−�2
mnicoshkmnh

(20.13.39)

For every m�n combination, there are two natural system frequencies.
The higher set of natural frequencies, designated �mn1 and given by
Eq. (20.13.35), corresponds to plate-dominated motion. It can be seen that
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�mn1 decreases with liquid depth, more so for higher than for lower modes.
At h=0, the natural frequencies are those of the liquid-free plate. As can
be shown from Eq. (20.13.35), for small liquid depth, the results can be
approximated by considering the liquid to act simply as a mass loading on
the plate, so that the natural frequencies become

�mn1=�pmn

√
�php

�php+�h
(20.13.40)

That thin sheets of liquid can be approximated in terms of mass loading
is well known. However, this approximation will not work for larger liquid
depth.

When one obtains natural mode ratios of maximum normal liquid
surface amplitude to plate amplitude, one finds that at very low liquid depth
the liquid surface amplitudes are more or less equal to the plate amplitude,
but diminish as depth increases. The liquid surface amplitudes are in phase
with the plate amplitudes.

The second set of natural frequencies, �mn2, and modes correspond
to liquid-dominated motion (wave action of the liquid on the plate). The
natural frequencies approach zero with zero depth and tend to approach
asymptotically certain constant values as the depth increases. This second
set of natural frequencies is much lower than the plate-dominated set. The
dominant surface amplitudes are out of phase with the plate amplitudes
and tend to increase in magnitude relative to the plate amplitudes as liquid
depth increases. As the liquid depth h increases, the liquid starts to slosh
as if the plate is motionless.

20.14. ORTHOGONALITY OF NATURAL MODES
FOR THREE-DIMENSIONAL SOLIDS,
LIQUIDS, AND GASES

The natural modes satisfy all boundary conditions. Thus, following Sec.
5.8, EB=0. Also setting EL=0 gives

�
∫ t1

t0

�U−K�dt=0 (20.14.1)

or, utilizing Eqs. (20.3.1) and (20.3.2), we have∫ t1

t0

∫
�3

∫
�2

∫
�1

�
11��11+
22��22+
33��33+
12��12+
13��13+
23��23�

×A1A2A3d�1d�2d�3dt=−
∫ t1

t0

∫
�3

∫
�2

∫
�1

��ü1�u1+ ü2�u2+ ü3�u3�

×A1A2A3d�1d�2d�3dt (20.14.2)
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where u1�u2, and u3 are the deflections at location ��1��2��3�. When the
solid is vibrating in its kth mode, displacements are

ui��1��2��3�t�=Uik��1��2��3�e
j�kt (20.14.3)

and stresses are


ij��1��2��3�t�=

�k�
ij ��1��2��3�e

j�kt (20.14.4)

For the virtual displacements, since they are arbitrary but must satisfy
boundary conditions, let us select the pth mode. Thus

�ui��1��2��3�t�=Uip��1��2��3�e
j�pt (20.14.5)

from which it follows that

��ij��1��2��3�t�=�
�p�
ij ��1��2��3�e

j�pt (20.14.6)

Substitution gives∫
�3

∫
�2

∫
�1

�

�k�
11 �

���
11 +


�k�
22 �

���
22 +


�k�
33 �

���
33 +


�k�
12 �

���
12 +


�k�
13 �

���
13 +


�k�
23 �

���
23 �

×A1A2A3d�1d�2d�3=�2
k

∫
�3

∫
�2

∫
�1

��U1kU1p+U2kU2p+U3kU3p�

×A1A2A3d�1d�2d�3 (20.14.7)

Next, we repeat the procedure but assign the pth mode to the
displacements and thus stresses

ui��1��2��3�t�=Uip��1��2��3�e
j�pt (20.14.8)


ij�
1��2��3�t�=

�p�
ij ��1��2��3�e

j�pt (20.14.9)

and the kth mode to the virtual displacements

�ui��1��2��3�t�=Uik��1��2��3�e
j�kt (20.14.10)

so that

��ij��1��2��3�t�=�
�k�
ij ��1��2��3�e

j�kt (20.14.11)

This gives∫
�3

∫
�2

∫
�1

�

�p�
11 �

�k�
11 +


�p�
22 �

�k�
22 +


�p�
33 �

�k�
33 +


�p�
12 �

�k�
12 +


�p�
13 �

�k�
13 +


�p�
23 �

�k�
23 �

×A1A2A3d�1d�2d�3=�2
�

∫
�3

∫
�2

∫
�1

��U1kU1p+U2kU2p+U3kU3p�

×A1A2A3d�1d�2d�3 (20.14.12)
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Subtracting the two equations from each other gives

��2
k−�2

p�
∫
�3

∫
�2

∫
�1

��U1kU1p+U2kU2p

+U3kU3p�A1A2A3d�1d�2d�3=0 (20.14.13)

The equation is satisfied whenever p=k since

�2
k−�2

p=0� p=k (20.14.14)

In this case, the integral is expected to have some numerical value, which
we designate as Nk:

Nk=
∫
�3

∫
�2

∫
�1

��U 2
1k+U 2

2k+U 3
3k�A1A2A3d�1d�2d�3 (20.14.15)

When p �=k, we expect

�2
k−�2

p �=0� p �=k (20.14.16)

unless there are repeated roots (see Sec. 5.9). Thus it must be that the
integral is 0. This may all be summarized as∫

�3

∫
�2

∫
�1

��U1kU1p+U2kU2p+U3kU3p�A1A2A3d�1d�2d�3

=
{
0 if p �=k
Nk if p=k

(20.14.17)

This is the orthogonality condition for a three-dimensional elastic medium,
be it solid, liquid, or gas.
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Discretizing Approaches

Two approaches that discretize shell structures are discussed: the finite
difference and the finite element techniques (Fenves, 1973; Wah and
Calcote, 1970; Yang, 1986). Both result in multidegree-of-freedom matrix
equations. How these matrix equations can be solved by the modal series
approach is also presented.

21.1. FINITE DIFFERENCES

Then finite differences approach is a purely mathematical technique. The
equations of motion have to be known for the structure that is to be
investigated. By contrast, the finite element approach will not require
knowledge of the differential equations of motion once the element stiffness
and mass matrices are defined.

The finite difference approach is based on the argument that a
derivative can be approximately replaced by a difference. Let us illustrate
this by the plate equation using Cartesian coordinates. Since, at a natural
frequency,

u3=U3e
j�t (21.1.1)

the plate equation becomes

D� 4U3−�h�2U3=0 (21.1.2)

515
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where

� 4= �4U3

�x4
+2

�4U3

�x2�y2
+ �4U3

�y4
(21.1.3)

The plate is divided into grids. The grids can be of unequal size, but in this
discussion, a square grid is used. Labeling the point at which the equation
is to be evaluated the i�j point and counting forward and backward from
there as shown in Fig. 1 gives, dropping the subscript 3 to make the
notation easier,(

�U

�x

)
i�j

= Ui+1�j−U1−i�j

2�
(21.1.4)

and (
�U

�y

)
i�j

= Ui�j+1−Ui�j−1

2�
(21.1.5)

where � is the grid dimension. The second derivative is obtained from(
�2U

�x2

)
i�j

= ��U/�x�i+1�j−��U/�x�i−1�j

2�
(21.1.6)

or, after substitution of Eq. (21.1.4), and using half-steps,(
�2U

�x2

)
i�j

= Ui+1�j−2Ui�j+Ui−1�j

�2
(21.1.7)

FIG. 1 Illustration of the required grid points spread to evaluate the finite difference
form of the plate equation at one location.



Discretizing Approaches 517

We proceed in a similar fashion to define third, fourth, and mixed
derivatives. Substitution in the equation of motion gives the equation of
motion in finite difference form:

D

�4

[
�Ui+2�j+Ui�j+2+Ui−2�j+Ui�j−2�

+2�Ui+1�j+1+Ui−1�j+1+Ui−1�j−1+Ui+1�j−1�

−8�Ui�j+1+Ui−1�j+Ui�j−1+Ui+1�j�+20Ui�j

]−�h�2Ui�j=0

(21.1.8)

Thus if there are N grid points, we obtain N simultaneous equations.
There are more than N unknowns, since as we evaluate the equation of
motion along the boundary, points outside the plate boundary will appear
in the equation systems. The equations for these additional unknowns are
provided by the boundary conditions. For instance, at a clamped edge, the
boundary conditions

U3=0 (21.1.9)

�U3

�x
=0 (21.1.10)

become

Ui�j=0 (21.1.11)

Ui+1�j−Ui−1�j=0 (21.1.12)

At a free edge, the boundary conditions

�2U3

�x2
+	

�2U3

�y2
=0 (21.1.13)

and

�3U3

�x3
+�2−	�

�3U3

�x�y2
=0 (21.1.14)

become

Ui+1�j−2Ui�j+Ui−1�j+	�Ui�j+1−2Ui�j+Ui�j−1�=0 (21.1.15)

Ui+2�j−2Ui+1�j+2Ui−1�j−Ui−2�j+�2−	�

×�Ui+1�j+1+Ui+1�j−1−Ui−1�j−1−Ui−1�j+1+2Ui−1�j−2Ui+1�j�=0

(21.1.16)

Let us illustrate this by the example of a simply supported square
plate with only four interior grid points as shown in Fig. 2. Because of the
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FIG. 2 Illustrative example of a square plate with only four interior grid points.

information requirement that the finite difference form of the plate
equation imposes on us, we also have to consider the points at the
boundary and dummy points outside the boundary.

From the boundary conditions

U3=0 (21.1.17)

for �x�y�=�0�y���a�y���x�0���x�a� and

�2U3

�x2
=0 (21.1.18)

for �x�y�=�0�y���a�y� and

�2U3

�y2
=0 (21.1.19)

for �x�y�=�x�0���x�a�, we obtain

U2�2=U3�2=U4�2=U5�2=U5�3=U5�4=U5�5=U4�5=U3�5

=U2�5=U2�4=U2�3=0 (21.1.20)

and

U1�3=U3�1=−U3�3� U1�4=U3�6=−U3�4�

U4�1=U6�3=−U4�3� U6�4=U4�6=−U4�4 (21.1.21)

Next, evaluating the finite difference form of the plate equation at the
four interior points, we get, for instance, for point (3,3), making use of the
boundary conditions,(

18−�4 �h�
2

D

)
U3�3−8U4�3−8U3�4+2U4�4=0 (21.1.22)
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where �=a/3. Proceeding in a similar manner for points (4,3), (3,4), and
(4,4), we have, in matrix form,


A��Ui�j
=0 (21.1.23)

where


A�=




18−R�2 −8 −8 2
−8 18−R�2 2 −8
−8 2 18−R�2 −8
2 −8 −8 18−R�2


 (21.1.24)

R= �h�4

D
(21.1.25)


Ui�j �= 
U3�3�U4�3�U3�4�U4�4� (21.1.26)

The natural frequencies are obtained by setting the determinant of the
matrix to 0,

�A�=0 (21.1.27)

In this particular case, we obtain approximations to the first four natural
frequencies. They are

�n=
�n

a2

√
D

�h
(21.1.28)

where �1=18, �2=�3=36, and �4=54. The exact values are �1=2�2,
�2=�3=5�2, and �4=8�2. We see that even with only four interior
grid points, the first natural frequency is approximated well. For higher
mode calculation, we need obviously a finer grid. But this is no difficulty
for a computer application.

The mode shapes are obtained by substituting each natural frequency
back in Eq. (21.1.23) and solving for three of the four grid points in terms
of, say, U3�3. This gives the four modes, for U3�3=1, as


Ui�j �1= 
1�1�1�1�� 
Ui�j �2= 
1�−1�1�−1��


Ui�j �3= 
1�1�−1�−1�� 
Ui�j �4= 
1�−1�−1�1� (21.1.29)

Note that for free edges, the equation of motion has to be evaluated at the
edge points since these points are not motionless.

For more background on finite difference applications, see, for
example, Wah and Calcote (1970). The approach has been used primarily
for plate problems. For shells, the equations of motion are of eighth order
and many more grid points are involved at every equation evaluation. That
makes use of finite differences more involved. For an example, see Fenves
(1973).
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21.2. FINITE ELEMENTS

The finite element approach is a physical approach. Knowing a solution of
a simple element, a shell or plate can be thought to be assembled of these
elements. This assembling is done by mathematically enforced continuity
and equilibrium conditions at the element node points (points where the
elements are joined to each other or to a boundary).

To illustrate the approach, let us select as examples first, a simple
beam-bending element, and second, a simple plate-bending element. Steps
that have to be taken in deriving the element properties apply essentially
to all elements, including curved-shell elements (third example).

There are various ways that can be used to derive the element
properties. Here we use Hamilton’s principle. For this purpose, we have
to generate expressions for strain and kinetic energy in terms of the node
displacements.

21.2.1. Beam Elements

First let us obtain the expression for strain energy. From Eq. (2.6.3) it is,
for a beam under transverse deflection,

U = EI

2

∫ L

0

(
�2u3

�x2

)2

dx (21.2.1)

Next, we have to assume a deflection function that allows enforcement of
a transverse deflection condition and a slope condition on each end of
the beam element. The four conditions require four constants. We choose

u3�x�t�=a0+a1x+a2x
2+a3x

3 (21.2.2)

This may also be written

u3�x�t�=�A
T�Z
 (21.2.3)

where the superscript T means transpose and where

�A
T = �a0�a1�a2�a3� (21.2.4)

�Z
T = �1�x�x2�x3� (21.2.5)

Therefore,

�2u3

�x2
=�A
T

{
�2Z

�x2

}
=
{
�2Z

�x2

}T

�A
 (21.2.6)

and therefore,(
�2u3

�x2

)2

=�A
T
D�x���A
 (21.2.7)



Discretizing Approaches 521

where


D�x��=
{
�2Z

�x2

}{
�2Z

�x2

}T

(21.2.8)

Substituting Eq. (21.2.5) in Eq. (21.2.8) gives


D�x��=




0 0 0 0
0 0 0 0
0 0 4 12x
0 0 12x 36x2


 (21.2.9)

The strain energy is therefore

U = EI

2
�A
T

∫ L

0

D�x��dx�A
 (21.2.10)

Next, let us define the nodal displacements (slopes are also referred
to as displacements. At the x=0 end of the element designated as location
k in Fig. 3, we get from Eq. (21.2.2)

u3�0�t�=u3k=a0 (21.2.11)

�u3

�x
�0�t�=�xk=a1 (21.2.12)

and on the x=L end of the element designated as location l we obtain

u3�L�t�=u3l=a0+a1L+a2L
2+a3L

3 (21.2.13)

�u3

�x
�L�t�=�xl=a1+2a2L+3a3L

2 (21.2.14)

This may be written in the form

�u3
i= 
B��A
 (21.2.15)

where

�u3

T
i =�u3k��xk�u3l��xl� (21.2.16)

FIG. 3 Finite element for transversely vibrating beams.
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and

B=




1 0 0 0
0 1 0 0
1 L L2 L3

0 1 2L 3L2


 (21.2.17)

Solving for �A
 gives

�A
= 
B�−1�u3
i (21.2.18)

Redefining


B�−1= 
c� (21.2.19)

allows us to write the strain energy equation as

U = EI

2
�u3


T
i 
c�

T
∫ L

0

D�x��dx
c��u3
i (21.2.20)

The variation of U in terms of variations in the node displacement is

�U =EI��u3

T
i 
c�

T
∫ L

0

D�x��dx
c��u3
i (21.2.21)

Next, let us obtain the kinetic energy of the beam element. It is

K= �A

2

∫ L

0
u̇2
3dx (21.2.22)

From Eq. (21.2.3), we get

u̇2
3=�Ȧ
T�Z
�Z
T�Ȧ
 (21.2.23)

Substituting Eqs. (21.2.18) and (21.2.19) gives

u̇2
3=�u̇3


T
i 
c�

T
F �x��
c��u̇3
i (21.2.24)

where


F �x��=�Z
�Z
T=




1 x x2 x3

x x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6


 (21.2.25)

The kinetic energy expression is therefore

K= �A

2
�u̇3


T
i 
c�

T
∫ L

0

F �x��dx
c��u̇3
i (21.2.26)

The variation in K is

�K=�A��u̇3

T
i 
c�

T
∫ L

0

F �x��dx
c��u̇3
i (21.2.27)

We also have to consider the virtual work due to boundary forces. At x=0,
we have a shear force Fk and a bending moment Mk acting on the element.
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At x=L, the shear force is Fl and the moment is Ml. The virtual work is
therefore

�W =�F
Ti ��u3
i=��u3

T
i �F
i (21.2.28)

where

�F
Ti =�Fk�Mk�Fl�Ml� (21.2.29)

We are now ready to apply Hamilton’s principle, which in this case, with
boundary forces and moments, becomes∫ t1

t0

��K−�U+�W�dt=0 (21.2.30)

Let us examine the kinetic energy part of the integral∫ t1

t0

�Kdt=�A
∫ t1

t0

��u̇3

T
i 
c�

T
∫ L

0

F �x��dx
c��u̇3
idt (21.2.31)

We have to integrate by parts in order to separate the node displacement
variations from the time derivative. Since∫

udv=uv−
∫
vdu (21.2.32)

we let

dv=��u̇3

T
i dt (21.2.33)

u= 
c�T
∫ L

0

F �x��dx
c��u̇3
i (21.2.34)

This gives∫ t1

t0

�Kdt=�A��u3

T
i 
c�

T
∫ L

0

F �x��dx
c��u̇3
i

∣∣∣∣
t1

t0

−�A
∫ t1

t0

��u3

T
i 
c�

T
∫ L

0

F �x��dx
c��ü3
idt (21.2.35)

The first term is 0 because at t0 and t1 the variational displacements
are 0 by definition of Hamilton’s principle. Substituting this expression and
Eqs. (21.2.21) and (21.2.28) in Eq. (21.2.30) gives∫ t1

t0

��u3

T
i

[
A�
c�T

∫ L

0

F �x��dx
c��ü3
i

+EI
c�T
∫ L

0

D�x��dx
c��u3
i−�F
i

]
dt=0 (21.2.36)

Because the variational displacements are independent and arbitrary,
the equation can be satisfied only if the bracketed quantity is 0. This gives
the equation of motion of the element


m��ü3
i+
K��u3
i=�F
i (21.2.37)
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where


m�=A�
c�T
∫ L

0

F �x��dx
c� (21.2.38)


k�=EI
c�T
∫ L

0

D�x��dx
c� (21.2.39)

The matrix 
m� is the mass matrix and the matrix 
k� is the stiffness matrix.
We will see that for the plate element, the definition will be similar. The
indicated integrations and matrix manipulations can be executed as part of
the finite element computer program. However, the beam case is so simple
that we can easily do the integration and matrix manipulations by hand.
Using Eqs. (21.2.9), (21.2.17), and (21.2.25), we obtain


m�= �AL

420




156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2


 (21.2.40)


k�= EI

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2


 (21.2.41)

21.2.2. Plate Elements

Now let us do not derivation of a rectangular plate element, following the
identical procedure. The strain energy for a transversely deflected plate is,
from Eq. (2.6.3),

U = D

2

∫ b

0

∫ a

0

{(
�2u3

�x2
+ �2u3

�y2

)2

−2�1−	�

[
�2u3

�x2

�2u3

�y2
−
(
�2u3

�x�y

)2
]}

dxdy (21.2.42)

In case of the plate element, we have to be able to enforce as a
minimum continuity of deflection at each of the four corners and continuity
of slope in two orthogonal directions at each corner. It is also actually
better to enforce continuity of twisting, but for simplicity’s sake the easier
example is used. Let us label the four corners k�l�m, and n as shown
in Fig. 4.
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FIG. 4 Finite element for transversely vibrating rectangular plates.

Let us again use the symbol � to designate slopes. For instance, at
the corner l,

�xl=
�u3l

�x
(21.2.43)

�yl=
�u3l

�y
(21.2.44)

To be able to enforce 12 continuity conditions, the deflection
function has to have 12 constants. We choose

u3�x�y�t� = a1+a2x+a3y+a4x
2+a5xy+a6y

2+a7x
3

+a8x
2y+a9xy

2+a10y
3+a11x

3y+a12xy
3 (21.2.45)

This may also be written as

u3�x�y�t�=�A
T�Z
 (21.2.46)

where

�A
T = �a1�a2�����a12� (21.2.47)

�Z
T = �1�x�y�x2�xy�y2�x3�x2y�xy2�y3�x3y�xy3� (21.2.48)

The strain energy expression becomes, after substitution,

U = D

2
�A
T

∫ b

0

∫ a

0

D�x�y��dxdy�A
 (21.2.49)

where


D�x�y�� =
{
�2Z

�x2

}{
�2Z

�x2

}T

+
{
�2Z

�y2

}{
�2Z

�y2

}T

+	

{
�2Z

�x2

}{
�2Z

�y2

}T

+	

{
�2Z

�y2

}{
�2Z

�x2

}T

+2�1−	�

{
�2Z

�x�y

}{
�2Z

�x�y

}T

(21.2.50)
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Next, we formulate the nodal displacements by evaluating Eq. (21.2.45)
and its derivatives at the node points, enforcing the conditions that

u3�0�0�t�=u3k�
�u3

�x
�0�0�t�=�xk�

�u3

�y
�0�0�t�=�yk

u3�a�0�t�=u3l�
�u3

�x
�a�0�t�=�xl�

�u3

�y
�a�0�t�=�yl

u3�a�b�t�=u3m�
�u3

�x
�a�b�t�=�xm�

�u3

�y
�a�b�t�=�ym

u3�0�b�t�=u3n�
�u3

�x
�0�b�t�=�xn�

�u3

�y
�0�b�t�=�yn

(21.2.51)

This can be written as

�u3
i= 
B��A
 (21.2.52)

where

�u3

T
i =�u3k��xk��yk�u3l��xl��yl�u3m��xm��ym�u3n��xn��yn� (21.2.53)

and where


B�=




1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 a 0 a2 0 0 a3 0 0 0 0 0
0 1 0 2a 0 0 3a2 0 0 0 0 0
0 0 1 0 a 0 0 a2 0 0 a3 0
1 a b a2 ab b2 a3 a2b ab2 b3 a3b ab3

0 1 0 2a b 0 3a2 2ab b2 0 3a2b b3

0 0 1 0 a 2b 0 a2 2ab 3b2 a3 3ab2

1 0 b 0 0 b2 0 0 0 b3 0 0
0 1 0 0 b 0 0 0 b2 0 0 b3

0 0 1 0 0 2b 0 0 0 3b2 0 0




(21.2.54)

Solving for �A
 gives

�A
= 
c��u3
i (21.2.55)

where


c�= 
B�−1 (21.2.56)

The strain energy expression therefore becomes

U = Di

2
�u3


T
i 
c�

T
∫ b

0

∫ a

0

D�x�y��dxdy
c��u3
i (21.2.57)
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The kinetic energy of the element is

K= �h

2

∫ b

0

∫ a

0
u̇2
3dxdy (21.2.58)

From Eq. (21.2.46), we obtain

u̇2
3=�Ȧ
T�Z
�Z
T�Ȧ
 (21.2.59)

and substituting Eq. (21.2.55) gives

u̇2
3=�u̇3


T
i �c


T
F �x�y��
c��u̇3
i (21.2.60)

where


F �x�y��=�Z
�Z
T (21.2.61)

The kinetic energy expression therefore becomes

K= �h

2
�u̇3


T
i 
c�

T
∫ b

0

∫ a

0

F �x�y��dxdy
c��u̇3
i (21.2.62)

The virtual work due to the nodal forces and moments is

�W =�F
Ti ��u3
i=��u3
i=��u3
i�F
i (21.2.63)

where

�F
Ti =�Fk�Mxk�Myk�Fl�Mxl�Myl�Fm�Mxm�Mym�Fn�Mxn�Myn� (21.2.64)

Both the potential and the kinetic energy expressions are similar to the
expressions for the beam element. Thus, applying Hamilton’s principle,
following identical steps, we obtain the equation of motion of the element


m��ü3
i+
k��u3
i=�F
i (21.2.65)

where


m� =�h
c�T
∫ b

0

∫ a

0

F �x�y��dxdy
c� (21.2.66)


k� =D
c�T
∫ b

0

∫ a

0

D�x�y��dxdy
c� (21.2.67)

The stiffness matrix 
k� and the mass matrix 
m� are usually not given in
explicit form but are generated on the computer when needed.
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21.2.3. Assembly of Elements into a
Global Equation of Motion

The remaining question is how the various elements are joined together.
Let us illustrate this on the example of a clamped–clamped uniform beam
that is approximated by only two beam elements of the same length L=a/2
as shown in Fig. 5. Using the subscript 1 for element 1 and the subscript
2 for element 2, we obtain from the continuity condition

u3l1=u3k2 (21.2.68)

�xl1=�xk2 (21.2.69)

The forces and moments at the junction have to add up to 0:

Fl1+Fk2=0 (21.2.70)

Ml1+Mk2=0 (21.2.71)

This allows us to formulate the global equation of motion from the element
equations of motion by a simple addition process. We obtain


M��ü3
+
K��u3
=�Q
 (21.2.72)

where the global matrix is


M�= �AL

420




156 22L 54 −13L 0 0
22L 4L2 13L −3L2 0 0

-----------------------------------------
54 13L 312 0 54 −13L

−13L −3L2 0 8L2

--
--
--
--
--
--
--
--

13L −3L2

-----------------------------------------
0 0 54 13L 156 −22L
0 0 --

--
--
--
--
--
--
--

−13L −3L2 −22L 4L2



(21.2.73)

FIG. 5 Illustrative example of a transversely vibrating, clamped–clamped beam
described by only two finite elements.
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and where the global stiffness matrix is


K�= EI

L3




12 6L −12 6L 0 0
6L 4L2 −6L 2L2 0 0

----------------------------------−12 −6L 24 0 −12 6L
6L 2L2 0 8L2

--
--
--
--
--
--
--
--

−6L 2L2

-----------------------------------
0 0 −12 −6L 12 −6L
0 0 --

--
--
--
--
--
--
--

6L 2L2 −6L 4L2




(21.2.74)

The nodal force vector becomes

�Q
T=�Fk1�MkI �0�0�Fl2�Ml2� (21.2.75)

The nodal displacement vector becomes

�u3

T=�u3k1��xk1�u3k2��xk2�u3l2��xl2� (21.2.76)

So far, the boundary conditions at the clamped locations have not been
applied yet. If we do so, the displacement vector reduces to

�u3

T=�0�0�u3k2��xk2�0�0� (21.2.77)

this means that the equation of motion reduces to

�AL

420

[
312 0
0 8L2

]{
ū3k2

�̈xk2

}
+ EI

L3

[
24 0
0 8L2

]{
u3k2

�xk2

}
=
{
0
0

}
(21.2.78)

This equation can be solved in the usual way for the first two natural
frequencies and modes. The natural frequencies are given by

�I =
�1

a2

√
EI

�A
(21.2.79)

where �1=22�72 and �2=82�0. This compares to the exact values of �1=
22�3 and �2=61�67 and illustrates the need for a larger number of elements
if higher modes are to be investigated. The solution of plate and shell
problems follows a similar assembly procedure.

21.2.4. Shell Elements

For a shell, the strain energy is given by Eq. (2.6.3), which can be shown
after substitution of Eqs. (2.6.16)–(2.4.18) and Eqs. (2.5.4)–(2.5.6), and
integration over the shell thickness to reduce to

U = 1

2

∫
�1

∫
�1

[
K

{
�02

11+2	�0
11�

0
22+�02

22+
1−	

2
�02

12

}

+D

{
k211+2	k11k22+k222+

1−	

2
k212

}]
A1A2d�1d�2

(21.2.80)



530 Chapter 21

where �0
11��

0
22��

0
12�k11�k22, and k12 are defined in terms of displacements by

Eqs. (2.4.19)–(2.4.24).
Deflection functions have to be assumed which, as a minimum, allow

enforcement of continuity in u1�u2�u3��1, and �2. The element shapes,
orientation, and its curvatures have to be chosen such that there is a
continuity in undeflected curvature. This is not easily achieved, but it
has to be avoided that the finite element shell has discontinuous original
curvatures because it may then behave like a corrugated shell.

As an example, let us discuss a special ring element for free vibrations
that is used for structurally axisymmetric shells of revolution such as tires
(Chang et al., 1983 and 1984; Hunckler et al., 1983; Kung et al., 1985 and
1986). In this case, one is able analytically to subtract out the � dependency
(the element is shown in Fig. 6). Another advantage is that the lines of
principal curvatures of the element coincide with the lines of principal
curvature of the shell of revolution. The radius of curvature Rs for each
element has to be matched at each element location to the radius Rs of the
shell of revolution. Designating �1=s and �2=�, with A1=1 and Az=r , a
workable set of deflection functions is

u3�s���t� = �a1+a2s+a3s
2+a4s

3�cosn��−�� (21.2.81)

u��s���t� = �a5+a6s+a7s
2+a8s

3�sinn��−�� (21.2.82)

FIG. 6 Circumferential strip element for a vibrating shell of revolution.
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us�s���t� = �a9+a10s+a11s
2+a12s

3�cosn��−�� (21.2.83)

where n=0�1�2���� and �=0��/2n (the reason for the phase angle � is
discussed in Chapters 5 and 8). However, to find natural frequencies, only
�=0 needs to be used. They will be the same for �=�/2n. Eqs. (21.2.81)–
(21.2.83) will allow us to satisfy at each ring element edge continuity in
u3�u��us��s��u�/�s, and �us/�s.

The derivation of the element properties by Hamilton’s principle
follows the steps of the two previous derivations. Equations (21.2.81)–
(21.2.83) can be written

u3�s���t� = �A1−4

T�Z
cosn��−�� (21.2.84)

u��s���t� = �A5−�

T�Z
sinn��−�� (21.2.85)

us�s���t� = �A9−12

T�Z
cosn��−�� (21.2.86)

where

�A1−4

T= 
a1�a2�a3�a4� (21.2.87)

�A5−�

T= 
a5�a6�a7�a8� (21.2.88)

�A9−12

T= 
a9�a10�a11�a12� (21.2.89)

�Z
T= 
1�s�s2�s3� (21.2.90)

Substituting these equations into Eq. (21.2.80) and integrating with respect
to �2=� will eliminate � from Eq. (21.2.80) but will make it a function of n
(where 2n is the number of vibration node lines that one encounters when
moving in circumferential direction). Equation (21.2.80) will be of the form

U =�A
T
∫ L

s=0

D�s�n��ds�A
 (21.2.91)

where

�A
=




A1−4

���
A5−8

���
A9−12




(21.2.92)

and L is the meridional length of the ring element.
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Next, we formulate the boundary displacements and their derivatives
by enforcing the conditions

u3�0�t�=u30� �s�0�t�=�sv

u3�L�t�=u3L� �s�L�t�=�sL

us�0�t�=us0�
�us

�s
�0�t�=u′

s0

us�L�t�=uL0�
�us

�s
�L�t�=u′

sL

u��0�t�=u�0�
�u�

�s
�0�t�=u′

�0

u��L�t�=u�L�
�u�

�s
�L�t�=u′

�L

(21.2.93)

This can be written as

�u
i= 
B��A
 (21.2.94)

where

�u
i= 
u30��s0�u3L��sL����� (21.2.95)

Solving for �A
 gives

�A
= 
C��u
i (21.2.96)

where


C�= 
B�−1 (21.2.97)

Thus the strain energy becomes

U = 1

2
�u
Ti 
C�

T
∫ L

s=0

D�s�n��ds
C��u
i (21.2.98)

Proceeding similarly, we obtain the kinetic energy in the form

K= �h

2
�u̇
Ti 
C�

T
∫ L

s=0

F �s�n��ds
C��u̇
i (21.2.99)

and applying Hamilton’s principle, we obtain


m��ü
i+
k��u
i=0 (21.2.100)

where the element stiffness and mass matrices are


k�= 
C�T
∫ L

s=0

D�s�n��ds
C� (21.2.101)


m�=�h
C�T
∫ L

s=0

F �s�n��ds
C� (21.2.102)

These local matrices are then assembled into global matrices and the
equations are solved for each value of n. For each value of n, there will be
a finite number of roots (natural frequencies).



Discretizing Approaches 533

21.3. FREE AND FORCED VIBRATION SOLUTIONS

Both the finite difference and the finite element method result in a
multi-degree-of- freedom global matrix equation


M��ü
+
C��u̇
+
K��u
=�Q
 (21.3.1)

where u, in general for shells, includes all the u1�u2 and u3 components.
Here we have also inserted a damping term, based on the equivalently
viscous damping concept. The approach to the solution of this equation as
taken here parallels the approach taken in Chapter 8.

We assume that the forced solution can be expressed in terms of a
natural mode series. The approach requires that we first find the natural
frequencies and modes, impose some restrictive conditions on the form of
the damping matrix, and then find the modal participation factors for the
forced solution.

21.3.1. Natural Frequencies and Modes

Eliminating [C] and �Q
 from consideration, we need to solve


M��ü
+
K��u
=�0
 (21.3.2)

Time separates out (see Chapter 5), which is equivalent to assuming that

�u
=�U
ej�t (21.3.3)

As it will turn out, �U
 is a mode of vibration and � is the associated
natural frequency. Substitution gives



K�−
M��2��U
=0 (21.3.4)

This equation has �U
=0 as a solution, which means that zero motion is
a solution. When �U
 �=0� the only way this equation can have a solution
is if the determinant is 0:

�
K�−
M��2�=0 (21.3.5)

The roots of this equation are the natural frequencies �i, We obtain the
associated natural modes by substituting each �i, back into Eq. (21.3.4)
and solving for �U
i.

21.3.2. Orthogonality of Natural Modes

Because the �i and �U
i satisfy Eq. (21.3.4) we may write


K��U
r−�2
r 
N ��U
r =0 (21.3.6)
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where i=r corresponds to a particular pair of natural frequencies and
modes. However, Eq. (21.3.4) may also be written


K��U
s−�2
s 
M��U
s=0 (21.3.7)

where s corresponds to another pair. The number s may be equal or not
equal to r .

Premultiplying Eq. (21.3.6) by the transpose of �U
s, and Eq. (21.3.7)
by the transpose of �U
r , gives

�U
Ts 
K��U
r−�2
r �U
Ts 
M��U
r =0 (21.3.8)

�U
Tr 
K��U
s−�2
s �U
Tr 
M��U
s=0 (21.3.9)

Since the stiffness matrix and the mass matrix are, as a rule, symmetrical,

�U
Ts 
K��U
r−�U
Tr 
K��U
s=0 (21.3.10)

�U
Ts 
M��U
r−�U
Tr 
M��U
s=0 (21.3.11)

we obtain, subtracting Eq. (21.3.9) from Eq. (21.3.8),

��2
s −�2

r ��U
Tr 
M��U
s=0 (21.3.12)

Unless we have repeated roots, �s �=�r if r �=s. Therefore, Eq. (21.3.12) is
satisfied only if

�U
Tr 
M��U
s=0 (21.3.13)

This can be summarized as

�U
Tr 
M��U
s=
{
0� r �=s
Mr� r=s

(21.3.14)

where

Mr =�U
Tr 
M��U
r (21.3.15)

From Eq.(21.3.9),

�U
Tr 
M��U
s=
1

�2
s

�U
Tr 
L��U
s (21.3.16)

Substituting this into Eq. (21.3.14) gives

�U
Tr 
K��U
s=
{
0� r �=s
Kr� r=s

(21.3.17)

where

Kr =�U
Tr 
K��U
r (21.3.18)
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21.3.3. Forced Vibration by Modal
Series Expansion

In the following, the solution to Eq. (21.3.1) will be expanded in terms of
the undamped modes, as in Chapter 8. We make the Ansatz that

�u
=
n∑

i=1

�U
ihi�t� (21.3.19)

where the hi�t� are unknown modal participation coefficients and the �U
i
are the natural modes. Substituting Eq. (21.3.19) into (21.3.1) gives

n∑
i=1

�
M��U
iḧi�t�+
C��U
iḣi�t�+
K��U
ihi�t�
=�Q
 (21.3.20)

Substituting relationship (21.3.4) gives
n∑

i=1

�
M��U
iḧi�t�+
C��U
iḣi�t�+
M��U
i�
2
i hi�t�
=�Q
 (21.3.21)

Planing to utilize the orthogonality property to dispose of the summation
operation, we premultiply both sides by �U
Tj :

n∑
i=1

�ḧi�t�+�2
i hi�t���U
Tj 
M��U
i+�U
Tj 
C��U
iḣi�t��

2
i =�U
Tj �Q


(21.3.22)

and realize that we cannot succeed in general except for special cases
where

�U
Tj 
C��U
i=
{
0� ifi �=j
�U
Ti 
C��U
i ifi=j

}
(21.3.23)

This condition is satisfied either


C�=CM
M� (21.3.24)

or


C�=CK
K� (21.3.25)

or


C�=CM
M�+CK
K� (21.3.26)

where CM and CK are proportionality factors. Case (21.3.24) is obvious
since

�U
Ti 
C��U
i=CM�U
Ti 
M��U
i (21.3.27)

Case (21.3.25) follows from

�U
Ti 
C��U
i=CK�U
Ti 
K��U
i=�2
i CK�U
Ti 
M��U
i (21.3.28)
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and case (21.3.26) is simply a linear combination

�U
Ti 
C��U
i=�CM+�2
i CK��U
Ti 
M��U
i (21.3.29)

Let us therefore assume that condition (21.3.23) can be satisfied in
engineering practice. This gives

n∑
i=1

[
ḧi�t�+�CM+�2

i Ck�ḣi�t�+�2
i hi�t�

]
�U
Tj 
M��U
i=�U
Tj �Q


(21.3.30)

and applying the orthogonality condition (21.3.14) results in

ḧi�t�+�CM+�2
i CK�ḣi�t�+�2

i hi�t�=
�U
Ti �Q


�U
Ti 
M��U
 i

(21.3.31)

Defining a modal damping factor

�i=
CM+�2

i CK

2�i

(21.3.32)

allows us to write Eq. (21.3.31) as

ḧi�t�+2�i�iḣi�t�+�2
i hi�t�=Ni�t� (21.3.33)

where

Ni�t�=
�U
Ti �Q�t�


�U
Ti 
M��U
i
(21.3.34)

Laplace transforming Eq. (21.3.33) and solving for the modal participation
coefficients in the Laplace domain gives

hi�s�=
�s+2�i�i�hi�0�

s2+2�i�is+�2
i

+ ḣi�0�

s2+2�i�is+�2
i

+ Ni�s�

s2+2�i�is+�2
i

(21.3.35)

The denominator can be written as

s2+2�i�is+�2
i =�s+�i�i�

2+�2
i �1−�2

i � (21.3.36)

and defining

ai=�i�i (21.3.37)

�2
i =�2

i �1−�2
i �=�2

i −a2
i (21.3.38)

Equation (21.3.35) takes on the form

hi�s�=
�s+2ai�hi�0�

�s+ai�
2+�2

i

+ ḣi�0�

�s+ai�
2+�2

i

+ Ni�s�

�s+ai�
2+�2

i

(21.3.39)
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Taking the inverse Laplace transformation, we have to take into account
two basic cases: the under-damped case, where �i <1, so that �2

i is real and
positive, which gives

hi�t�= e−ait

[
hi�0�cos�it+

1

�i

�hi�0�ai+ḣi�0��sin�it

]

+ 1

�i

∫ t

0
Ni���e

−ai�t−�� sin�i�t−��d� (21.3.40)

and the overdamped case, where �i >1, so that

�2
i =k2i (21.3.41)

where k2i is real and positive and defined as

k2i =a2
i −�2

i (21.3.42)

Equation (21.3.35) then reads

hi�s�=
�s+2ai�hi�0�

�s+ai�
2−k2i

+ ḣi�0�

�s+ai�
2−k2i

+ Ni�s�

�s+ai�
2−k2i

(21.3.43)

and the inverse transformation results in

hi�t� = e−ait

[
hl�0�coshkit+

1

kt
�hi�0�ai+hi�0��sinhkit

]

+ 1

ki

t∫
0

Ni���e
−ai�t−�� sinhki�t−��d� (21.3.44)

The critically damped case �i=1 can be evaluated using either
Eq. (21.3.40) or (21.3.44) by taking the limit of hi�t� as �i→0�ki→0�.
This gives

hi�t�=e−ait
hi�0�+�hi�0�ai+ḣi�0��t�+
∫ t

0
Ni���e

−ai�t−���t−��d�

(21.3.45)

Note that the possibility exists that in the same modal expansion
solution some of the participation factors hi�t� have to be determined
by Eq. (21.3.40) and some by Eq. (21.3.44) since �i, is a function of �i

according to the definition of Eq. (21.3.32). In engineering practice, it
is usually sufficient to work with the subcritical solution (21.3.40) because
of typically very low damping.

The forced solutions given here include the initial value solutions. As
in Chapter 8, the initial conditions given in terms of displacements �u0

and velocities �u̇0
 have to be translated into initial conditions in terms of
the modal participation factors, hi�0� and ḣi�0�.
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Starting with Eq. (21.3.19), we take its time derivative and then
evaluate both equations at t=0:

�u0
 =
�∑
i=1

�U
ihi�0� (21.3.46)

�u̇0
 =
�∑
i=1

�U
iḣi�0� (21.3.47)

Taking Eq. (21.3.46), as an example, we premultiply both sides of the
equation by �U
Tj 
M�:

�U
Tj 
M��u0
=
�∑
i=1

�U
Tj 
M��U
ihi�0� (21.3.48)

Utilizing the orthogonality condition (21.3.14) removes the summation and
allows us to solve for hi�0�:

hi�0�=
�U
Ti 
M��u0


�U
Ti 
M��U
i
(21.3.49)

Proceeding similarly with Eq. (21.3.47) results in

ḣi�0�=
�U
Ti 
M��u̇0


�U
Ti 
M��U
i
(21.3.50)
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Dunkerley’s method, 199
elastic foundation, 460
Green’s function, 260, 272, 275
finite difference, 519
in-plane, 124, 128, 260
liquid on, 510
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mass on, 200
mass void, 369
orthotropic, 401
rectangular, 86, 89, 92, 110,

124, 272, 274, 283, 285, 329
rotatory inertia, 329
sandwich, 413
shear deformation, 329
strain energy, 203, 205
three connected, 374

Rayleigh-Ritz method, 191
receptance equation, 339, 362,

367, 372
ring, 82, 123, 168, 191, 450, 463
rotating
beam, 425
inextensional ring, 428
ring, 428
string, 419

saw blade, 315
sensitivity to curvature, 63
similitude, 469–479
approximate, 477–479
general, 469, 471
plate, 472
spherical panels, 474

shallow shell, 163, 174
fan blade, 154
spherical cap, 165

shell on elastic foundation, 447
Southwell’s principle, 198
spherical shell, 149
Timoshenko beam, 327
toroidal shell, 170
system subtracted, 368
variational method, 182

Natural modes, 75
antinodes, 300
axisymmetric, 151
base, 113
beam, 77
breathing, 149

conical shell, 196
cylindrical shell, 95, 98
damping influence, 117
experimental, 117
liquid on plate, 510
membrane, 315
nonpreferential orientation, 233
orthogonality, 106, 109, 234
orthogonalization, 113
panel, 131
with mass, 340

plate, 333
circular, 105, 128
in-plane, 126
rectangular, 86, 89, 92, 126
square, 89, 92, 110

Rayleigh-Ritz, 192–196
rigid body, 149, 229
ring, 82, 123, 450
rotating,
beam, 425
ring, 429
string, 419

saw blade, 317
selective excitation, 217–220
series expansion, 133–143
spherical cap, 166
spherical shell, 149
stiffening ring, 356
superposition, 109
Timoshenko beam, 327
variational method, 179, 181
Yu’s approximation, 159

Navier, C. L., 2
Negative curvature, 165
Nets, 408
Neutral surface, 411, 412
Newton, I., 1, 2, 39
Nodal
circle, 105
displacement, 521
force vector, 523
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lines, 119
Node line interpretation, 119
Noncrossing node lines, 119
Nondimensional form, 471
Nonuniform thickness, 46
Normal
coordinates, 506
shear strains, 322
strains, 15, 21
stress, 15
velocity, 502

Novozhilov, V. V., 44, 45, 51, 156
Nowacki, W., 51, 156, 207
Numerical differentiation, 63

Off-resonance response, 215
Orthogonal coordinates, 9
Orthogonality, 106, 210, 211
condition, 109, 210, 211, 511,

536
integral, 109, 210, 211
matrix equation, 533

Orthogonalization process, 113
Orthogonal modes, 2, 533
Orthotropic
cylindrical shell, 402
lamina, 393
material, 392
net, 406
plate, 400
strip, 393, 395

Ovaling motion, 422
Overdamped, 537

Pagani, M., 3, 315
Panel, 162, 221, 354, 476
point support, 343
with mass, 339
with spring, 338, 342

Parallel fibers, 392
Particle velocity, 500
Pendulum, 1

Periodic forcing
response, 250
formulation, 248
shells, 248
plates, 248, 388

Phase angle, 215
Piston slap, 216
Plane stress, 392
Plate, 3, 4, 69
attached mass, 200
boundary conditions, 71, 88
circular, 71, 102
continuous, 377
elastic foundation, 448
element, 524
finite differences, 516
forcing function, 214
elliptical, 71
equation, 3, 69
hysteretically damped, 386
in-plane vibration, 124, 128
liquid on, 506
moment forcing, 286
rectangular, 86, 89, 182, 200,

217, 243, 251, 253, 386
rotatory inertia, 331
shear deformation, 331
similitude, 472
square, 89
strain-displacement, 69, 70
strain energy, 203
thermal effects, 443
thickness effect, 473
three connected, 376
transverse vibration, 86, 102

Plunkett, R., 388
Ply, 391
Point
force, 220, 231, 236, 267, 276
impact, 227, 231
mass impact, 277
moment, 285
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support, 343, 462
Poisson, S. D., 3, 4
effect, 444
ratio, 474

Polar coordinates, 71
Potential
energy, 417, 423
function, 501, 510

Power series solutions, 133–142
rod, 134
beam, 135
Prescott’s equation, 139

Powder, D. P., 227
Prasad, M. G., 344
Principal
curvature, 8
directions, 399

Prescott, J., 68
Prescott’s equation, 68, 139
Pretension, 406

Rails, 451
Radius of curvature, 9, 47, 61
Rapoport, I. M., 506
Rayleigh, J. W. S., 4, 7, 145, 151,

191, 506
frequency, 194
quotient, 191, 192, 193, 194
method, 191, 195, 384

Rayleigh-Ritz method, 178, 191,
193, 194, 201, 317

Robound, 231
Receptance
complex, 354
continuous plate, 377
cross, 346
graphical representation, 341
harmonic response, 344, 346
line, 356
magnitude, 355
method, 337–379
moment coupling, 377

multiple connections, 360, 374
phase, 355
point, 363, 462
ring, 357
three systems, 370, 372, 373, 374
two systems, 338, 344, 346, 347,

352, 360, 366
Rectangular
box, 337
contour, 476
membrane, 110
plate, 86, 89, 92, 110, 124, 272,

274, 283, 285, 329
strip, 392

Reduced systems, 214, 260
Reference
surface, 8, 27, 46, 47
temperature, 439

Reinforcing material, 392
Response, 215
harmonic, 215
impulse, 216
magnitude, 215
phase lag, 215
step, 216

Reissner, E., 7, 44
Repeated roots, 534
Residual
stress, 302
strain energy, 302

Resonant modes, 118
Response
curve, 215
magnitude, 215
phase, 215

Restoring mechanism, 301
Reynolds, D. D., 505
Rigid body
mode, 454
motion, 85
rotation, 264
translation, 229
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Rigid wheel, 453
Ring, 4, 68, 82, 122, 454
closed, 123
elastic foundation, 449
element, 530
floating, 82
Green’s function, 261, 263
impact, 277
orthogonal modes, 235
point contact, 462
segment, 189
stiffening, 356
strain energy, 204
thermal effect, 443

Ritz, W., 193, 195
Rod, 2, 41, 67, 205, 214, 443
Rolling tire, 270
Ross, D., 383, 389
Rotating
beam, 422
circular cylindrical shell, 431
disk, 436
machinery, 415
point moment,
plate, 285
cylindrical shell, 287

ring, 425
shells of revolution, 433
string, 415, 423
structures, 415–436

Rotational speed, 415
Rotatory inertia, 31, 322

Saigal, S., 301
Saint-Venant, 3
Sandwich
shells, 410
plates, 412
beams, 412

Sakharov, I. E., 356
Sanders, J. L., 44

Sauveur, J., 1
Saw blade, 301, 315
Scaling
approximate, 478
law, 470

Schmidt orthogonalization, 113
Schwartz, L., 221
Separation of variables, 120
Shaker, 386
Shallow
panel, 474
shell, 165

Shear
center, 424
deformation, 19, 322
force, 27
modulus
elastic foundation, 446
fiber, 394
matrix, 394

resultant, 323
strain, 13, 20, 21
stress, 15
velocity, 495
vibration, 328

Shell
barrel-shaped, 170
closed, 149
conical, 54
composite material, 400, 402
cylindrical, 10, 56, 152, 161, 202,

236, 240, 287, 402
elastic foundation, 447
element, 529–532
imperfection, 220
noncircular, 60
parabolic, 61
revolution, 233, 235, 435
thick, 43, 149
toroidal, 48, 59, 168
shallow, 153
simplified equations, 145–176
spherical, 57, 146, 165, 228, 301
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stiffening, 356
rule, 359

Similtude, 469–479
approximate, 478
exact, 448, 451, 469, 472, 473,

474
forced response, 476
shell, 470, 471

Simple oscillator, 215
Skew-symmetric, 220
load, 220

Soedel, D. T., 369
Soedel, F. P., 142
Soedel, S. M., 422, 506
Soedel, W., 43, 110, 113, 142, 166,

196, 201, 227, 255, 256, 270,
281, 301, 324, 328, 337, 342,
344, 358, 360, 369, 378, 406,
409, 410, 430, 451, 473, 476,
477, 497, 506, 530

Sokolnikoff, I. S. 492
Speed of sound, 472, 499
Smokestack, 161
Southwell, R. V. 196, 315, 317
principle, 196, 197

Spherical cap, 165
Spring Connections, 350, 373
Spin speed, 318, 418
Static
deflection, 1, 243
equilibrium, 243, 244, 245
initial condition, 243
sag, 1, 243

Stationary motion, 430
Steady state, 215
Steel, 99
Step
function, 216
response, 216, 274

Stiffener, 356, 359
Stiffening rule, 359
Stiffness

matrix, 524, 527
principle direction, 395
superposition, 196

Strain,
arch, 65
barrel, 171
bending, 23
conical shell, 55
cylindrical shell, 57
displacement, 15, 44, 302, 324,

439, 482
energy, 191, 201–205, 306, 427,

440
membrane, 23
parabolic shell, 62
plates, 69, 124
shells of revolution, 53
spherical shell, 58

String, 1, 3, 415
Stringer, 360, 406
Strip element, 530
Stress
functions, 402
resultants, 313, 397, 438

Stress-strain, 13, 439, 482
Structural combinations, 337–378
Structurally axisymmetric, 220
Stutts, D. S., 430
Subcritical
damping, 212
solution, 212

Superposition modes, 109, 110
Supporting matrix, 392
Suspension system, 346
Symmetry, 220, 242, 455, 461, 464

Tangential motion, 467
Tauchert, T. R., 438
Taylor, B., 1
Taylor series, 16, 17
Temperature
distribution, 439
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field, 438
model, 444

Tensile test, 381
Tension, 319, 407
Tensioning, 318
Textiles, 406
Thermal
coefficient of expansion, 439
dynamic stress, 439
effects, 438–444
expansion, 438
shock, 438
static stress, 444
strain, 439
strain energy, 440
stresses, 318, 438, 439

Time, separation of, 120
Timoshenko, S., 43, 51, 64, 207,

264, 325, 326
beam equation, 325

Tires, 301, 346, 353, 394, 454
Todhunter, L., 4
Toroidal shell, 48, 59
Torsional
circular cylindrical shell, 72
pendulum, 3
vibration, 3

Torsion bar, 72
Transfer function, 272
Transverse
deflection, 84
impulse, 262
motion, 4
response, 218
shear
deflection, 22
forces, 27

vibration, 328
Traveling
load, 264, 267
resonance, 267, 270
pressure wave, 264

Travel solution, 2, 264, 267

Triad, 431
Tsai, S. W. 394
Turbine blades, 301
Turbulent damping, 380
Twisting angle, 282, 283

Uncoupling, 122, 398
Underdamped, 212
Ungar, E. E., 383, 389
Uniform pressure, 218
Unit impulse, 257

Variational
displacements, 30, 37
integral method, 179, 201, 317
symbol, 39

Vector space, 208
Velocity
potential, 507
vector, 415, 426

Vibroelasticity, 487
Virtual
displacement, 31, 40
work, 7, 40, 282, 527

Viscoelasticity, 487
Viscous
damping, 208
damping coefficient, 208
damping factor, 208

Vlasov, V. Z., 45, 51, 155
Volterra, E., 193
Volume fraction, 394

Wah, T., 519
Wash machine basket, 45
Watson, G. N., 504
Wave equation
acoustic, 498
liquid, 511
one-dimensional, 2, 495
three-dimensional, 496, 498
torsional, 3
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