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Feodor Lynen (1911-1979) 

Nur wenige Wochen nach seiner Wahl zum Pr/isidenten der International 
Union of Biochemistry, am 6. August 1979, verschied Feodor Lynen an 
den Komplikationen eines operativen Eingriffs. Es war ihm nicht verg6nnt, 
die Plgne zu verwirklichen, die ihm seine ungebrochene wissenschaftliche 
Dynamik und seine jugendliche Lebensfreude ft~r die Zeit nach seiner 
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Emeritierung vorgaben. Am 29. Februar 1980 versammelten sich weit fiber 
tausend Schiller, Freunde und Kollegen aus aller Welt im M~inchener 
Herkulessaal, um in Anwesenheit des Bundesprfisidenten in einer Akade- 
mischen Feier yon diesem grot~en Forscher, begeisternden Lehrer und 
liebenswerten Freund Abschied zu nehmen. Mit ihnen betrauerte die inter- 
nationale biochemische Gemeinde den Verlust eines ihrer bedeutendsten 
und produktivsten Mitgtieder. In einem kleinen Friedhof, auf einem Hagel 
nahe des Starnberger Sees gelegen, der an sch6nen Tagen einen eindrucks- 
vollen Blick auf die von ihm so sehr geliebten Alpen bietet, tiegt Feodor 
Lynen zur letzten Ruhe gebettet. 

Feodor Lynen entstammt einem seit Jahrhunderten im Raum Stolberg 
(Rheinland) ans~issigen, erfolgreichen Fabrikantengeschlecht, in dem das 
Streben nach Pflichterffillung und Leistung ein beherrschender Zug war. 
Sein Vater, Wilhelm Lynen, wurde im Jahr 1901 als Ordinarius ffir Maschi- 
nenbau an die Technische Hochschute M~inchen berufen und lebte dort bis 
zu seinem Tod im Jahre 1920. Seine Frau Frieda, geb. Prym, schenkte ihm 
neun Kinder, yon denen Feodor als siebentes am 6.4.1911 zur Welt kam. 
Die Stadt Manchen und ihr oberbayerisches Umland wurden ihm zur ech- 
ten Heimat, die er nie ffir lfingere Zeit verlassen sollte. Sie hat mit ihrem 
lebensfrohen, barocken Wesen nachhaltig seinen Lebensstil gepr~igt. Seine 
Liebe zu den Bergen und dem Skisport bescherte Feodor nicht nur viele, 
in vollen Ztigen genossene Stunden der Entspannung und Erholung; sie hat 
auch den Verlauf seines Lebens nachhaltig beeinflut~t. Denn eine schwere 
Knieverletzung, die er sich bei einem Skirennen in Kitzbiihel zuzog, und 
die ihn kurz nach Studienbeginn ffir mehrere Monate ans Bett fesselte, be- 
wahrte ihn vor milit~rischer Ausbildung und dem Dienst in einer NS-Orga- 
nisation und lieg ihn den 2. Weltkrieg in der Heimat fiberstehen. Selbst ein 
erneuter Skiunfall im Jahr 1952, der das bereits angeschlagene Knie voll- 
ends versteifte, hinderte ihn nicht daran, auf Kurzskiern seinen Mitarbei- 
tern bei hochalpinen Skitouren rasant voranzufahren. Die unnachgiebige 
Beharrtichkeit, die er in der Ausfahrung seines geliebten Skisports zeigte, 
spiegelte sich auch in seinem wissenschaRlichen Arbeitsstil wider. 

Feodor Lynen war, in den Worten Konrad Blochs, einer der grogen 
Architekten der klassischen Biochemie. Er vereinigte das Gef~ihl des Che- 
mikers fur die Substanz und ihre Reaktionsweisen mit dem Verst~indnis 
des Biologen filr die besonderen Bedingungen und MOglichkeiten des zellu- 
l~ren Stoffwechsel. In dieser glticklichen Verbindung erwies er sich als war- 
diger Schiller seines akademischen Lehrers Heinrich Wieland und des von 
ihm hochverehrten Altmeisters der Biochemie, Otto Warburg. Daswissen- 
schaftliche Werk Feodor Lynens, seine Zielsetzungen und sein methodi- 
sches Vorgehen spiegeln deutlich die Einfl~isse seiner Lehrzeit als Student 
und Doktorand wider. Er hatte das Gltick, in einer Zeit an der Universit~t 
Mfinchen Chemie zu studieren, in der die Naturwissenschaftliche Fakult~it 
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mit hervorragenden Wissenschaftlern besetzt war. So geh6rten der Physiker 
Walter Gerlach, der Physikochemiker Kasimir Fajans, der Botaniker Karl 
yon Goebel, der Anorganiker Otto H6nigschmid und der Organiker Hein- 
rich Wieland zu seinen Lehrern. Bei Geheimrat H. Wieland, dem Nobel- 
preistrfiger far Chemie des Jahres 1927, fertigte er eine Dissertation ,,Ober 
die toxischen Inhaltsstoffe des Knollenbl~itterpilzes" an und kam so mit 
einem stark biochemisch orientierten Arbeitskreis in engste Berfihrung. 
Nach seiner Promotion im Jahr 1937 heiratete er Eva, die Tochter seines 
Doktorvaters. 

Frau Eva Lynen hat das Forscherleben ihres Mannes tatkr~iftig unter- 
stfitzt. Sehr oft unter  Zurackstellung eigener Interessen und Plane wut~te 
sie sich ganz auf ihren ,,Fitzi" einzustellen. In den schwierigen Kriegs- und 
Nachkriegsjahren, in denen ihre ffinf Kinder der Betreuung bedurften, hielt 
sie ihm den Rficken frei ffir den vollen Einsatz in seiner Wissenschaft. 
Durch ihre offene und humorvolle Art trug sie wesentlich zur Festigung 
vieler Freundschaften mit in- und ausl~indischen Kollegen bei und ver- 
mochte ihr Haus in Starnberg zu einer vielgeNhmten St~itte entspannter 
Geselligkeit zu gestalten. 

Lynens Wirken als Forscher fiel in die Periode, in der die Biochemie 
aus dem deskriptiven Stadium heraustrat und in die Phase der exponentiel- 
len Zunahme yon Erkenntnissen und Methoden fiber den Zellstoffwechsel 
fiberging. Sein Hauptinteresse galt zeit seines Lebens den enzymatischen 
Reaktionsmechanismen. Als er Ende der dreit~iger Jahre seine wissenschaft- 
liche Laufbahn mit den Studien fiber die Pasteur-Reaktion in Hefezellen 
begann, entwickelte F. Lipmann das ~iuf~erst fruchtbare Konzept der ,,ener- 
giereichen Verbindungen" und stellte die yon K. Lohmann 10 Jahre zuvor 
entdeckte Adenosintriphosphors~iure in den Mittelpunkt des zellul~ren 
Energiestoffwechsels. O. Warburg hatte, nach der Entdeckung des sauer- 
stoffaktivierenden Atmungsferments (Zytochromoxidase), in den Pyridin- 
nukleotiden die prim~iren Wasserstoff- und Elektronenfibertr~ger gefunden 
und damit die Voraussetzung dafi~r geschaffen, dab die yon H. Wieland 
und T. Thunberg entwickelte Dehydrierungstheorie mit der Sauerstoff- 
aktivierung zu einem einheitlichen Konzept der Zellatmung verschmolzen 
werden konnte. Die oxidative Phosphorylierung begann durch die Arbeiten 
yon V. Belitzer, A. Lehninger und H. Kalckar Gestalt anzunehmen; H.A. 
Krebs erkannte, dag der Vorgang der biologischen Endoxidation der Nah- 
rungsstoffe in einer zyklischen Reaktionsfolge (Zitratzyktus) ablfiuft. 

Als Stipendiat der Deutschen Forschungsgemeinschaft (1937-1942)  
wandte sich F. Lynen dem Problem des Energiestoffwechsels von Tumor- 
zellen und, beeinflufst yon den Arbeiten Warburgs fiber die aerobe Glyko- 
lyse der Tumoren, der Pasteur-Reaktion zu. Diese besagt, dat~ Zellen unter 
aeroben Bedingungen weniger Zucker verbrauchen als in Abwesenheit von 
Sauerstoff. Die Arbeiten, die bereits unter den erschwerenden Bedingungen 
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des Kriegszustands durchgefuhrt wurden, bescherten Lynen einen ersten 
grof~en Erfolg, den Nachweis der regulatorischen Rolle des anorganischen 
Phosphats tar den Zuckerabbau und die Formulierung unterschiedlicher 
Phosphatkreisl~iufe in atmenden und g~irenden Zellen. In einem 1969 ver- 
fat~ten R~ickblick auf sein wissenschafttiches Leben bekannte sich Lynen 
mit Stolz zu diesen Frt~hwerken, die auch der Gegenstand seiner Habilita- 
tionsschrift (1941) waren. Daf6 sie ihm zunfichst nicht die gebfihrende 
internationale Anerkennung brachten und im Jahr 1944 vollends ft~r meh- 
rere Jahre unterbrochen werden mut~ten, ist eine unmittelbare Folge des 
2. Weltkriegs. Nach tier Zerst6mng des Chemischen Staatslaboratoriums in 
Mt~nchen (Frfihjahr 1944) versuchte Lynen in einem Behelfslabor in Schon- 
dorf am Ammersee und, nach dem Kriegsende, als Gast im Botanischen 
Institut, seine Forschungen fortzusetzen. Jeder, der die damaligen Schwie- 
rigkeiten der Materialbeschaffung, des Verkehrs innerhatb einer weitgehend 
zerst6rten Grol~stadt und die Vielfalt der Sorgen urn das t~igliche Leben 
kennenlernte, kann die Probleme ermessen, vor die der junge Chemiedo- 
zent gestellt war. Immerhin erhielt er, dank seiner unzweideutigen Haltung 
w~ihrend des Dritten Reichs, sehr bald die Erlaubnis der amerikanischen 
Milit~rregierung, als Dozent ftir Biochemie an der Naturwissenschaftlich- 
Mathematischen Fakult~t t~itig zu sein; 1947 erfolgte seine Ernennung zum 
apl. Professor. Im Jahre 1949 konnte er im 5. Stock des Zoologischen In- 
s t ruts  in der Luisenstrat~e 14 einige leidlich hergestellte Laborrfiume be- 
ziehen. Einem Biochemiker yon heute wfirde es allerdings schwerfalten, 
die dort vorhandene Einrichtung als die eines Biochemischen Laboratori- 
urns zu erkennen. 

Die Entdeckung des Kofaktors ft~r ATP-abhfingige Azetylierungsreak- 
tionen (Coenzym A) durch F. Lipmann und D. Nachmansohn sowie die 
Arbeiten yon E. Stadtman, A. Lehninger und F. Hunter tiber den Fett- 
s~iurestoffwechsel best~trkten Lynen in der Existenz einer von ibm schon 
1942 postulierten ,,aktivierten Essigs~iure". Er berichtete, dat~ ibm der ent- 
scheidende Gedanke aber die chemische Natur dieser Verbindung bei einem 
n~ichtlichen Nachhauseweg yon einer angeregten Diskussion mit seinem 
Schwager Theodor Wieland gekommen sei; er vermutete in der noch nicht 
einmal mit Sicherheit identifizierten Thiolgruppe das mechanistische Zen- 
trum des Coenzyms A und sah die aktivierte Essigsfiure als Thiolester des 
Coenzyms mit Essigs~iure (Acetyl-S-CoA). Innerhalb kurzer Zeit gelang es 
ibm, diese Verbindung aus Hefezellen anzureichem und ihre chemische 
Natur sowie ihre enzymatische Wirksamkeit sicherzustellen. Diese Entdek- 
kung, Anfang 1951 in einer Kurzmitteilung an die Angewandte Chemie 
ver6ffentlicht, verfehlte ihre Wirkung auf die internationale Biochemie 
nicht und begrandete Lynens Weltruf. 

Von diesem Zeitpunkt an konzentrierten sich die Forschungen seines 
Labors ganz auf die Ergrtindung Coenzym-A-abh~ngiger Prozesse. Mit S. 
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Ochoa zusammen bewies er den Mechanismus der Zitratsynthese aus Oxal- 
azetat und Acetyl-CoA, des noch fehlenden Gliedes in dem yon H.A. Krebs 
formulierten Zitratzyklus. Die ATP-abh~ingige Bildung yon Acetyl-CoA aus 
Essigs~iure und Coenzym A untersuchte er gemeinsam mit dem Labor F. 
Lipmanns. Die Aufkl~irung der bereits 1907 yon F. Knoop in ihren Grund- 
ztigen erkannten /3-Oxidation der Fettsfiuren gelang durch die Isolierung 
der daran beteiligten Enzyme und Zwischenprodukte. An diesem, gegen 
eine starke amerikanische Konkurrenz erzielten Erfolg stand wiederum die 
Denkweise des Chemikers in Lynen Pate. Da es zu dieser Zeit nicht m6g- 
lich war, ausreichende Mengen des Coenzyms A in der n6tigen Reinheit 
herzustetlen, versuchte Lynen es mit sehr einfach gebauten Analogen, den 
S-Acylderivaten des N-Acetylcysteamins. Entgegen allgemeiner Erwartung 
erwiesen sich diese leicht darstellbaren Modellsubstanzen als reaktions- 
f~hige Substrate; dadurch konnte im Mtinchener Laboratorium der kriti- 
sche Engpal3 im Fortschritt der Forschungen durchbrochen werden. 

Es war charakteristisch ftir Lynens Arbeits- und Denkweise und nicht 
zuletzt ein Schlassel zu seinem Erfolg, daf~ er seine experimentellen Beob- 
achtungen und Erfahrungen, negative wie positive, bewugt zu registrieren 
und intellektuell zu verarbeiten verstand. Hatte ihn ein Mit~erfolg bei seiner 
Doktorarbeit bereits gelehrt, Ausdauer und Z~ihigkeit bei der Verfolgung 
schwieriger wissenschaftlicher Fragestellungen zum Leitmotiv zu machen, 
so zog er aus dem erfolgreichen Einsatz der N-Acetylcysteaminderivate in 
den Studien fiber die Teilreaktionen der/3-Oxidation der Fettsfiuren eine 
ftir ihn typische Schlugfolgerung: ,,Dabei erhiett ich als Wissenschaftler 
eine neue Lektion: Sei naiv und versuche ein Experiment, selbst wenn die 
Aussichten auf Erfolg gering sind. Ich habe den Eindruck, dat~ viele meiner 
biochemischen Kollegen - und das mag auch ftir andere Wissenschaften 
gelten - mehr Zeit damit verbringen, das Ftir und Wider eines Experiments 
zu diskutieren als n6tig ist, um es durchzuftihren. Ich glaube, dat~ viele Ge- 
legenheiten ftir neue Entdeckungen auf diese Weise vers~iumt werden. Die 
Natur ist immer unvorhersehbar und die einzige Methode, ein biochemi- 
sches Problem aufzugreifen ist, Experimente zu machen". 

Es gibt keine Patentl6sung ftir das Angehen eines wissenschaftlichen 
Problems. Die Art der Bearbeitung h~ingt nicht nur yon der jeweiligen 
Fragestellung und den methodischen L6sungsm6glichkeiten, sondern auch 
yon der intellektuellen Struktur des Forschers selbst ab. Aus manchen 
seiner )~ugerungen konnte man den Eindruck gewinnen, als ob Lynen den 
rein experimentellen Ansatz nach dem Prinzip "trial and error" als die ihm 
gemfilSe Methode ansah. Sicher ist richtig, daf~ er dem Experiment die letzt- 
lich entscheidende Funkt ion zuerkannte und dat~ er mehr als mancher 
andere dazu neigte, lange theoretische Obertegungen, Diskussionen und 
Literaturrecherchen durch den Versuchsansatz kurzzuschliet~en. Dennoch 
wird schon aus der Art und Weise, wie er zu den gezielten Versuchen tiber 
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die Natur der ,,aktivierten Essigsgure" gelangte, klar, dat~ seinen Experi- 
menten eine betrfichtliche geistige Vorarbeit voranging und dat~ seine Ar- 
beitshypothesen auf dem Boden eines umfangreichen Wissens und einer 
besonderen F~ihigkeit zur Kombinatorik standen. Wenn dieser intellektu- 
elle ProzeI5 seiner Umgebung nicht immer deutlich wurde, so mag dies an 
seiner besonderen Fghigkeit liegen, sehr schnell aus einer Ffille yon Tat- 
sachen die entscheidenden, weiterffihrenden Inhalte herauszufiltern und 
sie mit scheinbar nicht im Zusammenhang stehenden Informationen zu 
kombinieren. Auch yon seinen Mitarbeitern erwartete er, dat~ sie fiberlegt 
handelten und experimentierten; nicht unbedingt, dafS sie ihn mit langat- 
migen Spekulationen aufhielten. 

Durch seine Studien fiber den Abbau tier Fetts~uren wurde Lynen fast 
zwangslfiufig auch mit dem physiologisch so wichtigen Problem der Keton- 
k6rperbildung konfrontiert. Die yon anderer Seite vertretene Ansicht, daf5 
Acetessigs~iure durch Hydrolyse yon Acetacetyl-CoA entstehe, konnte den 
Chemiker Lynen nicht befriedigen. Durch eine sehr sorgffiltige Analyse 
dieses Vorgangs entdeckte er, dat~ an der Oberffihrung yon Acetacetyl-CoA 
in freie Acetessigs~iure zwei Enzyme beteiligt sind und dieser Prozet~ fiber 
/~-Hydroxy-~-methyl-glutaryl-CoA als Zwischenprodukt verl~iuft (HMG- 
CoA-Zyklus). 

Mit den Steroiden war Lynen bereits im Institut seines Lehrers H. Wie- 
land bestens vertraut geworden u n d e r  hatte die Arbeiten H. Sonderhoffs 
miteflebt, in denen dieser ihren Aufbau aus Essigs~iureeinheiten wahr- 
scheinlich machte. Die yon L. Ruzicka formulierte ,,Isoprenregel" und die 
Entdeckung der Mevalons~iure durch K. Fotkers wiesen Lynen den Weg, 
auf dem er die Biosynthese der Terpene in Angfiff nehmen wollte. Die 
Entdeckung des Isopentenylpyrophosphats und des Dimethylallylpyro- 
phosphats als den biologisch wirksamen Formen des Isoprengerfists sowie 
die Aufkl~mng des Mechanismus der Kondensationen, die zu der grot~en 
Zahl der Terpene und der Sterine ffihren, waren die brillanten Ergebnisse 
einer ungeheuer intensiven und fruchtbaren Forschungstgtigkeit in der 
zweiten H~ilfte der Ffinfzigerjahre. Auch das ZytohSmin, die zentrale 
Komponente des von O. Warburg entdeckten Atmungsferments (Zyto- 
chromoxidase) erwies sich als Isoprenabk6mmling, ein Farnesylderivat des 
Protoh~imins. Es bereitete Lynen eine gro~e Freude und Genugtuung, die 
Strukturaufkl~imng seinem verehrten Mentor zum 80. Geburtstag auf den 
Gabentisch legen zu k6nnen. Die Ergebnisse des Lynen-Arbeitskreises zu- 
sammen mit den Entdeckungen K. Blochs, f~hrten in kurzer Zeit zum Ver- 
st~indnis des Weges, auf dem die Zellen Cholesterin aus Acetyl-CoA syn- 
thetisieren. Diese grofSartige wissenschaftliche Leistung wurde 1964 durch 
die Verleihung des Nobelpreises ffir Physiologie oder Medizin an Feodor 
Lynen und Konrad Bloch in gebfihrender Weise gewfirdigt. 
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Parallel zu den Untersuchungen der Terpenbiosynthese befaf~te sich 
Lynen mit dem Mechanismus der Karboxylierung der &Methylcrotons~iure, 
in der zun~ichst eine Zwischenstufe auf dem Weg zum biologisch aktiven 
Isopren vernmtet worden war. Dieser Prozef5 erwies sich als ATP-abhfingig 
und wurde durch ein biotinhaltiges Enzym katalysiert. An diesem Enzym 
konnte in iiberzeugenden Experimenten erstmals die Rolle des Vitamins 
Biotin bei der biologischen Karboxylierung im Detail aufgekl~irt und die 
N-1-Karboxybiotinylgruppe als die ,,aktivierte Kohtens~iure" identifiziert 
werden. Diese Versuche, die sich durch grot~e experimentelle Eleganz aus- 
zeichneten, wurden auch durch das Glfick des Tachtigen unterstfitzt: Als 
bisher einziges bekanntes Biotinylenzym ist die Methylcrotonyl-CoA-Kar- 
boxylase in der Lage, freies Biotin zu karboxylieren. Der an diesem Enzym 
entdeckte Mechanismus erwies sich als allgemein gfiltig ffir die zahlreichen 
biotinabh~ingigen CO2-Assimilationsprozesse der Zellen; er ordnete das 
yon Fritz K6gl 1934 entdeckte Vitamin in die Reihe der Coenzymvorstu- 
fen ein. 

Nachdem der Vorgang der ~-Oxidation der Fetts~uren in seinen wesent- 
lichen Zfigen aufgekl~rt war, wurde Lynens Interesse naturgem~it~ auf die 
Frage gelenkt, wie die Fetts~iuren in der Zelle synthetisiert werden. Seine 
eigenen Untersuchungen und zahlreiche Beobachtungen anderer Arbeits- 
kreise, vor allem fiber die andersartige subzellulare Lokalisation sowie fiber 
den ATP-, Biotin- und Bikarbonatbedarf, zwangen dazu, die Vorstellung 
yon der physiologischen Umkehrbarkeit der ~-Oxidation aufzugeben. )~hn- 
lich wie bei der Entdeckung der aktivierten Essigs~ure kam der entschei- 
dende Gedanke im Gefolge einer Diskussion: Im Anschluf5 an einen Vor- 
trag anl~iNich einer Gordon Conference fiber Lipide im Jahre 1958, in dem 
fiber die CQ-Abh~ingigkeit der Fetts~iuresynthese berichtet wurde, ent- 
wickelte Lynen die Vorstellung, dab der Prozeg der Fettsfiuresynthese 
durch eine biotinabh~ingige Karboxylierung yon Acetyl-CoA zu Malonyl- 
CoA eingeleitet werden und dieses, unter Abspaltung yon CO2, die Ketten- 
verl~ingemng der Fettsguren bewerkstelligen k/Snne. Sicherlich stand 
Lynens einschl~igige Erfahrung mit der Karboxylierung des Methylcrotonyl- 
CoA bei dieser Idee Pate. Sie erwies sich, wie S. Wakil und R. Brady an tie- 
rischen Zellen und sein eigener Arbeitskreis an Hefezellen zeigen konnten, 
als die richtige. Nach diesem Durchbruch gelang es innerhalb weniger Jah- 
re, den Vorgang der an einem komplizierten Multienzymkomplex ablau- 
fenden Synthese langkettiger Fetts~uren aus Acetyl- und Malonyl-CoA in 
seinen Einzelheiten zu eruieren und die Architektur und den Funktions- 
zyklus der Fettsfiuresynthetase in allen Einzelheiten zu beschreiben. Die 
Kristallisation des Multienzymkomplexes mit einer Molmasse yon 2,3 Mill. 
Daltons, die Entdeckung ihres Aufbaus aus zwei Arten yon Untereinheiten 
und damit der erstmalige Nachweis eines multifunktionellen Polypeptids 
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sind die H6hepunkte dieser Arbeitsrichtung, die ihn bis zu seinem Tode 
intensiv besch~ftigte. 

Mit diesen Untersuchungen in engstem Zusammenhang stehen die Ar- 
beiten fiber die Methylsalizyls~iuresynthese durch einen Multienzymkom- 
plex aus Penicillium patulum. Sie lieferten einen Einblick in den Vorgang 
der biologischen Bildung yon Polyketoverbindungen und eine glfinzende 
experimentelle Best~itigung der yon A. Birch aufgestellten Polyacetatregel. 

Bereits diese gedrfingte Darstellung seiner wichtigsten Entdeckungen 
macht verst~ndlich, dat~ Feodor Lynen als einer der gr6t~ten und brillante- 
sten Biochemiker seiner Zeit angesehen wird. Er gab dieser Wissenschaft 
entscheidende Impulse und war an ihrer spektakulgren Entwicklung mat~- 
gebend beteiligt. Ca. 350 Publikationen tragen seinen Namen und zeugen 
von der Produktivit~t seines Forscherlebens. Die Bedeutung seiner Ergeb- 
nisse war unmittelbar und in ihrer vollen Tragweite erkannt worden; es 
fehlte deshalb auch nicht an/iut~eren Anerkennungen seiner Leistung, die 
in der Verteihung des Nobelpreises gipfelten. Schon 1953 wurde ihm alas 
erste Ordinariat f~ir Biochemie an einer deutschen naturwissenschaftlichen 
Fakultfit fibertragen. Berufungen an die Universit~ten Bern, Zfirich, Harvard 
und Frankfurt konnten durch die Schaffung eines Max-Planck-Instituts ffir 
Zellchemie in Mt~nchen abgewendet werden. Der Ehrendoktorwfirde der 
Medizinischen Fakult~it Freiburg im Jahr 1960 folgten noch sechs weitere, 
femer die Verleihung der ersten Warburg-Medaille durch die Gesellschaft 
ft~r Biologische Chemie (1963) und zahlreiche Ehrenmitgliedschaften bei 
Akademien sowie in- und ausl~indischen wissenschaftlichen Gesellschaften. 
Von zahlreichen 6ffentlichen Ehrungen sollen die Verleihung des Grogen 
Verdienstkreuzes mit Stern und Schulterband des Verdienstordens der 
Bundesrepublik Deutschland (1965) und die Mitgliedschaft des Ordens 
Pour le M6rite (1971) erw~ihnt werden. Als Prfisident der Gesellschaft 
Deutscher Chemiker ( 1971-1973) ,  der Alexander-von-Humboldt-Stiftung 
(1975-1979)  und als ausw~rtiger Vizepr~isident der Deutschen Akademie 
der Naturforscher Leopoldina (1971-1979)  stetlte Lynen seine F~ihigkei- 
ten auch in den Dienst der deutschen Wissenschaft und ihrer Belange. 

Es ist ein bleibendes Verdienst Lynens, nach dem Zusammenbruch, 
den das Dritte Reich und der Zweite Weltkrieg ffir die deutsche Biochemie 
bedeutet hatten, in Mt~nchen einen der ersten Kristallisationskeime ftir die 
Entwicktung einer modemen Biochemie in Deutschland geschaffen zu 
haben. Dank seines Ansehens als Forscher und seines integren, offenen 
Wesens gelang es ibm, zerrissene Bande zu den Fachkollegen im Ausland 
und besonders zu den zahlreichen deutschen Emigranten wieder herzu- 
stellen und neue zu knt~pfen. Er erfiJllte in den schwierigen Jahren des 
Wiederaufbaus mit grofSem Erfolg die Aufgabe eines Botschafters der Wis- 
senschaft und des guten Willens. 



FeodorLynen(1911-1979) 9 

Man wird vielleicht einmal feststellen, dais die nachhaltigste Wirkung, 
die yon Lynens Lebensarbeit ausging, diejenige auf seine Schiller war. Es 
war nicht so sehr sein wissenschaftlicher Status, sondern vor allem die 
gliJckliche Paarung yon wissenschaftlicher Dynamik mit menschlicher W~ir- 
me und einem ausgepr~tgten Sinn ftir Fr6hlichkeit und Lebensfreude, die 
stets hochmotivierte junge Leute aus dem In- und Ausland um ihn versam- 
melte. Durch die Ausstrahlungskraft seiner Pers6nlichkeit und durch die 
unerbittliche Leistungsforderung und kritische Sachlichkeit, die er selbst 
vorlebte und auf seine Mitarbeiter zu ilbertragen verstand, spornte er seine 
Schtiler zur vollen Entfaltung ihrer F/ihigkeiten an. In den 37 Jahren seiner 
akademischen Lehrt~itigkeit arbeiteten 88 Diplomanden und Doktoranden 
unter seiner Leitung, daneben suchten 25 deutsche und 80 ausl~indische, 
meist amerikanische und japanische Gastprofessoren und Postdoktoranden 
den Weg nach Milnchen, um sich in Lynens Arbeitskreis einer starken inte- 
lektuellen Herausforderung zu stellen und gleichzeitig auch eine anregende, 
entspannte und an Geselligkeit reiche Atmosph~tre zu erleben. In einer 
Festschrift zu Lynens 65. Geburtstag, in der die ehemaligen Mitarbeiter 
ihre Eindracke und Erlebnisse im Milnchener Laboratorium schilderten, 
setzten seine Schiller und Kollegen dem wissenschaftlichen Lehrmeister 
ein sprechendes Denkmal. 

Seine Funkt ion als Direktor eines Max-Planck-Instituts, sein intensives 
Interesse an der Forschung im Labor und seine weltweite Anerkennung, 
die ihn w~ihrend eines erheblichen Teils seiner Zeit auf Reisen sah, hinder- 
ten Lynen nicht, seiner Verantwortung als akademischer Lehrer gerecht zu 
werden. Seine Vorlesungen und Praktika waren yon h6chster Aktualit~it 
und Anschaulichkeit; er verstand es, auf seine Studenten die Faszination 
der biochemischen Wissenschaft zu [ibertragen. 

Die Entwicklung der Biochemie geht mit  ungebrochener Dynamik wei- 
ter; die Schwerpunkte und die Methoden der Forschung ~indern sich rasch 
und schon zu Lynens Lebenszeiten war ,,seine" Biochemie der Intermedi~ir- 
produkte des Stoffwechsels und der Mechanismen der Enzymreaktionen 
gegenilber dem Interesse an Regulationsph~nomenen, der Biochemie der 
Zellstrukturen und der Molekularbiologie scheinbar in den Hintergrund ge- 
treten. Vielleicht werden in 50 Jahren nur noch wenige Biochemiker mit 
der aktivierten Essigs~iure, der aktivierten Kohlens~iure und dem biologisch- 
reaktiven Isopren automatisch den Namen Lynen verbinden. (Wieviele der 
heutigen jilngeren Forscher k6nnten wohl auf Anhieb den Entdecker des 
ATP nennen?) Die grotSen Entdeckungen der Vorfahren werden zu den 
Selbstverst~indlichkeiten der Nachkommen. Bleiben aber wird Lynens 
Ruhm, zu den grofSen Baumeistem der modernen Biochemie zu geh6ren, 
ein Vorbild an experimenteller Pr~izision und an Originalit~it des Denkens 
gewesen zu sein. Bleiben wird vor allem sein Stil und seine Haltung als 
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insp i r ie render  Lehre r  und als l ebens f rohe r  F r eund  seiner  Schtiler und  Kol-  
legen. Dieses Erbe  eines g rogen  Forschers  we i te rzugeben  geb ie te t  die 

D a n k b a r k e i t  und  die H o c h a c h t u n g ,  die wir  F e o d o r  L y n e n  schulden.  
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The first encounter was inauspicious. But the serendipity of the artifact 
did not escape Ringer's attention. He wrote (Ringer 1883): "After the 
publication of a paper in the Journal of  Physiology, Vol. III, no. 5, entit- 
led 'Concerning the Influence exerted by each of the Constituents of the 
Blood on the Contraction of the Ventricles', I discovered that the saline 
solution which I had used had not been prepared with distilled water, but 
with pipe water supplied by the New River Water Company. As this water 
contains minute traces of various inorganic substances, I at once tested the 
action of  saline solution made with distilled water and I found that I did 
not get the effects described in the paper referred to. It is obvious there- 
fore that the effects I had obtained are due to some inorganic constituents 
of the pipe w a t e r . . .  Calcium chloride solution added to the saline, sodium 
bicarbonate and potassium chloride solution, after the ventricle has lost 
contractility, restores good spontaneous beats which will continue for a 
long t ime . . .  I conclude therefore that a lime salt is necessary for the 
maintenance of muscular contractility." Later, Locke (1894) and Overton 
(t 904) showed that the excitation of a frog skeletal muscle by stimulation 
of the motor nerve was blocked if the medium calcium concentration was 
too high or too low, suggesting that calcium must be maintained within a 
narrow range for proper cell function. 

The importance of calcium in maintaining membrane stability and in- 
tegrity was demonstrated by Heitbrun (1943), who reported thatArbacia 
egg membranes disrupted by needle puncture were repaired only when cal- 
cium was present in the suspending medium. Heilbrun and Wiereinski 
(1947) also discovered that intraceUular calcium is the trigger for muscle 
contraction. Since then, the list of cellular functions triggered or regulated 
by intracellular calcium has expanded and is becoming longer. 

Since the concentration of ionized calcium in various cell compartments 
plays an important role in regulating many functions, intracellular calcium 
must in turn be controlled and regulated. Its concentration must be kept 
at appropriately low levels, presumably between 10 -7 and 10 -6 M, because 
higher concentrations of free calcium are known to inhibit many impor- 
tant physiologic processes. In addition, cell calcium must be regulated and 
allowed to rise and to fall in order to play its role as an intracellular signal 
and to trigger or modulate specific functions of the cell. There are thus 
two distinct aspects to cell calcium metabolism that can be represented as 
shown in Fig. 1: (a) the control, modulation, and regulation of cytosolic 
free calcium and (b) the regulation of cell functions by cytosolic free cal- 
cium. In the scheme shown in Fig. 1, a controller is a mechanism that, 
alone or in concert with others, maintains the intracellular free calcium 
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REGULATORS 
1. Membrane depolarization 
2. Hormones 
3. Cyclic nucleotides 
4. Catmodulin 

1 
CONTROLLERS 
1. Plasma membrane 
2. Mitochondria 
3. Endoplasmic reticulum 

MODULATORS 
Ionic composition: 
Phosphate, Nao, Na i 
PHo, PHi 

-~ - - -~ [Cy toso l i c  free c a l c i u m ] - - - ~  l 

CELL FUNCTION 
I, Contraction 
2, Secretion 
3. Metabolism 
4. Ca transport etc. 

Fig. 1. Control, modulation, and regulation of cytosolic free calcium 

far from its thermodynamic equilibrium; the controller determines the 
set point. A regulator, on the other hand, is any agent, electrophysiologic, 
endocrine or intracellular, that alters the set point, increasing or decreas- 
ing the intracetlular free calcium above or below its resting or unstimulat- 
ed level. Finally, a modulator  is an agent that influences the level o f  the 
set point without  being a part o f  the s t imulus-signal-response system or 
of  a negative feedback loop; it has a nonspecific influence on the level o f  
free calcium in either the resting or the stimulated state, and may poten- 
tiate or inhibit the effects o f  the regulators. 

This review will address itself primarily to the control, regulation, and 
modulation of  cell calcium. Although our understanding of  cellular calci- 
um metabolism is still fragmented, we know enough to state that no single 
scheme can be applied to all types of  cells comprising the mammalian or- 
ganism. It is evident, for instance, that an erythrocyte ,  being devoid o f  a 
nucleus, o f  mitochondria,  and o f  endoplasmic reticulum, has to rely exclu- 
sively on calcium transport across its plasma membrane to control and 
regulate its intracellular calcium. On the other  hand, a skeletal muscle fiber 
that can contract  and relax in the total absence of  extracetlular calcium 
must rely entirely on an intracellular redistribution o f  calcium between 
sarcoplasmic reticulum and sarcoplasm to alter its free calcium concentra- 
tion. In other  cells, the control of  cytosolic free calcium must lie between 
these two extremes. But the relative importance of  the various transport 
systems in the control and regulation of  cytosolic calcium in any given cell 
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is still very difficult to assess. From the outset, it must be recognized that 
no single scheme of cellular calcium metabolism will be valid for all pos- 
sible tissues. 

2 Technical Considerations 

Because cellular calcium metabolism is complex, no single method can 
provide a comprehensive picture of all its aspects. There are many methods 
of studying cell calcium, and each has its flaws. Obviously, our understand- 
ing of the literature must rest on a good grasp of the difficulties and the 
limitations of the methods used. 

Chemical measurement of stable calcium poses no great problem. 
Atomic absorption spectrophotometry or fluorometric methods (Borle 
and Briggs 1968) are sufficiently sensitive, specific, and free from inter- 
ference to provide reliable data. However, the measurements of total calci- 
um in tissues or isolated cells are not good indicators of cellular calcium 
metabolism because 90%-95% of the cell calcium is bound to extrace!lu- 
lar ligands (Borle 1968a, c, 1969a, 1975b; Van Breemen andMcNaughton 
1970; Van Breemen et al. 1977). Furthermore, measurements of stable 
calcium in subcellular fractions after homogenization of the tissue and 
ultracentrifugation may suffer from the fact that calcium redistribution 
among the various fractions may occur during their preparation. Recently, 
several quenching methods using ruthenium red and EGTA have reduced 
that possibility (Reed and Bygrave 1975a;McDonaM et al. 1976b). 

To eliminate the extracellular calcium bound to the cells, two methods 
have been used: the incubation of cells with trypsin EDTA (Borle 1968) 
and the lanthanum method (Weiss and Goodman 1969; Van Breemen and 
McNaughton 1970). The latter, used by many investigators, involves in- 
cubation of cells or tissues with 4s Ca;at the end of the 4s Ca uptake period, 
the tracer is displaced and washed out by lanthanum from the extracellular 
binding sites. The membrane-bound lanthanum is assumed to block calci- 
um entry and the loss of 4SCa from the cell. The method suffers, however, 
from several limitations (Daniel and Janis 1975; Van Breemen et al. 1977). 
It precludes the use of physiologic buffers containing bicarbonate and 
phosphate. These two ions precipitate with lanthanum, which may result 
in variable calcium trapping (Van Breemen et al. 1977), and even if amine 
buffers are used, there may be some leaching of phosphate from the cells. 
Also, since the extracellular phosphate concentration greatly influences 
the intracellular calcium content (Bode 1971a, 1972a) the data obtained 
by the lanthanum method will always be biased by the absence of phos- 
phate in the incubating medium. In some cases, lanthanum does not com- 
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pletely inhibit calcium efflux (Katzung et al. 1973;Deth 1978;Batra and 
Bengtsson 1978) and may allow a 36% loss of intraceUular calcium in 1 h 
and a 50% loss in 1-3 h (Freeman and Daniel 1973; Van Breemen et al. 
1977). Lanthanum may even enter certain cells and mitochondria (Hodg- 
son et at. 1972; Reed and Bygrave 1974c). In any case, the 4SCa uptake 
measured by this method can only measure a pool of exchangeable calci- 
um, and then only if isotopic steady state is reached. It does not provide 
any information on calcium influx, as is often claimed, unless some kind 
of kinetic analysis is performed. 

Another method of circumventing the presence of the large extracellu- 
lar calcium pool is the kinetic analysis of 4SCa uptake or desaturation 
curves (Borle 1969a, 1972a, 1975b; Uchikawa and Borle 1978a, b;Borle 
and Uchikawa 1979). Since the exchange rate of 45Ca with extracellular 
ligands is more than one order of magnitude faster than calcium transport 
across the plasma membrane, this extracellular pool can be kinetically de- 
termined. In addition, two distinct kinetic pools of intracellular calcium 
can be distinguished. However, the tracer method also has several limita- 
tions. Like most methods, it does not provide any information on a phys- 
iologically important quantity: the concentration of free calcium in any 
compartment. It only measures exchangeable pools. Each compartment 
may comprise several subpools that behave identically. The identification 
of the pools with anatomically distinct cellular compartments is difficult 
and is only supported by very indirect evidence. With three kinetic phases 
several possible models can be chosen, mammillary, mammillocatenary, 
and purely catenary. This choice is sometimes arbitrary but it can influ- 
ence the absolute values of the calculated data. Finally, kinetic studies 
must be performed at steady state; the sequence of events leading from 
one steady state to another cannot always be determined. 

The effects of various stimuli on cell calcium can be studied by measur- 
ing the fractional efflux of 4SCa from prelabeted cells or tissues. While this 
technique can detect qualitative changes, such as gross stimulations or in- 
hibitions of 4SCa efflux, it is normally impossible to quantify the results, 
because the specific activity of the cells is usually unknown and decreases 
constantly. The interpretation derived from these experiments is often un- 
warranted. For instance, a sharp stimulation followed by an immediate re- 
turn of fractional 4SCa efflux toward baseline (spike pattern) is sometimes 
interpreted as a transient stimulation. This is not necessarily so because 
the specific activity of the compartment from which the 4SCa originates 
may fall rapidly. Since the fractional efflux is a function of both calcium 
efflux and of the cell-specific activity, the fall in 4SCa flux of the spike 
pattern may be due to a sharp drop in specific activity of the cell and not 
to transient nature of  the stimulation of efflux. On the other hand, a pro- 
gressive rise in fractional efftux produced by a stimulus and eventually 
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reaching a plateau does not  necessarily represent a delayed or slow stimula- 
tion o f  calcium efflux. Such a pattern would be expected from an immedi- 
ate release of  calcium from an internal cell compartment  slowly raising 
the specific activity o f  a cellular pool  interposed between it and the exter- 
nal medium. 

Until recently, the intracellular concentration of  ionized calcium could 
not  be measured directly. Several methods are being developed in various 
laboratories to measure the cellular free calcium with aequorin, with 
metallochromic dyes or with pCa-sensitive microetectrodes. For  the mo- 
ment,  these techniques are still restricted to giant cells that allow micro- 
punctures and intracellutar microinjection of  the dyes and they all present 
serious problems of  calibration. Nevertheless, useful information has al- 
ready been obtained. 

3 Total Calcium 

The total calcium of  cells or tissues can be measured by atomic absorption 
flame photometry  or  by fluorometric titrations. Considering the differ- 
ences in isolation techniques and in analytic methods the range of  the total 
cell calcium as published in the literature is fairly narrow (Table 1). It is 
slightly but  consistently higher than 1.3 mmol/kg cell water, the physiol- 
ogic concentration o f  calcium in mammalian interstitial fluids 1 . The total 
calcium of  liver, muscle, and nerve is about  2.2 mmol/kg wet weight; it is 
slightly higher in kidney, 2.4 mmol/kg wet  weight. Other tissues may have 
higher total calcium content  (Table 1), but  more measurements are need- 
ed to firmly establish this point. 

In tumor  cells, however,  it seems that the total calcium is consistently 
greater; the average o f  5.5 mmol/kg wet  weight is more than twice that o f  
normal liver, kidney, muscle or  nerve. The major fraction of  the total cell 
calcium is extracellular, presumably bound to the glycoprotein coat called 
glycocalyx or  to other extracellular binding sites on the lipid plasma mem- 
brane. This fraction can be displaced by lanthanum or removed with 
EDTA, EGTA or trypsin. In HeLa cells and in monkey kidney and pitui- 
tary cells, 90% of  this extracellularly bound calcium can be removed with 

The calcium concentration of mammalian plasma is around 2.5 mM; however, al- 
most half is bound to plasma proteins and, therefore, nondiffusible. Consequently 
the concentration of calcium in the interstitial fluids bathing the cells is close to 
1.3 mM. It is unfortunate that the classic reference for the preparation of suspend- 
ing media to be used for the incubation of tissues in vitro (Umbreit et al. 1964) 
gives a calcium concentration of 2.5 mM. Many published experiments have been 
performed in buffers containing 2.5 mM calcium, which is twice the physiologic 
concentration. 
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Table 1. Total calcium of cells and tissues a 

A.B. Borle 

Cells or tissue 
conditions Total calcium 

nmol/mg t~mol/g mmol/kg 
prot dry wt wet wt 

Reference 

Liver (rat) 
Fresh (12) 4.1 1.8 
Incubated (10.8) 8.1 (3.6) 
Perfused (8.3) (6.3) 1.25 
Fresh slices (10.6) (7.9) 1.3-1.9 
Slices, incubated (18.3) ( 13.8) 2.0-3.5 
Fresh slices (2.4) 1.7 0.34 
Slices, incubated (5.4) 4.05 0.81 
Slices 18.0 ( 13.5) 3.26 
Slices ( 11.6) 8.7 ( 1.74) 
Perfused ( 11.3) (8.5) 1.70 
Hepatocytes 11.3 7.9 2.0 
Hepatocytes 15.5 11.7 2.33 

Mean 11.3 8.0 2.2 

Kidney 
Rabbit, slices (14.6) 5 -17  (2.2) 
Rabbit, slices 20 (15) 3.0 
Monkey, cells 17.8 (8.2) 1.63 
Rabbit, tubules (14.0) 10.5 (2.10) 
Rat, tubules 15.2 (11.4) 1.17 
Rat, tubules 21.1 (15.9) (3.2) 
Rat, slices 13.5 (10.1) 2.25 
Monkey, cells 20.3 ( 15.2) (3.0) 

Mean 17.1 12.2 2.3 

Muscle 
Frog, skeletal (16.1) ( t  1.2) 2.4t 
Frog, skeletal ( 16.9) (12.7) 2.54 
Frog, skeletal (13.8) (10.4) 2.07 
Frog, skeletal (9.7) (7.3) 1.45 
Guinea pig, atrium (11.3) (8.5) 1.69 
Guinea pig, atrium (20.1) (15.1) 3.02 
Turtle, atrium (18.2) (13.2) 2.73 
Turtle, ventricle (18.1) (13.6) 2.71 
Human, heart (7.6) (5.7) 1.14 
Calf, heart (8.8) (6.6) 1.32 
Guinea pig, smooth (12) (9) 1.8 
Rat, uterus (15) (11.3) 2.25 

Mean 13.1 10.4 2.1 

Neural Tissues 
Rat brain, slices (10) (7.5) 2.87 
Guinea pig cortex, slice (16.3) (12.3) 2.45 
Guinea pig cortex, slice (23.4) (17.5) 3.5) 

Van Rossum 1970 
Dawkins et al. 1959 
Dawkins et al. 1959 
Wallach et al. 1966 
Wallach et al. 1966 
Judah and Ahmed  1963 
Judah and Ahmed  1963 
Borle and Studer 1978 
Cittadini and Van Rossum 1978 
Claret-Berthon et al. 1977 
Foden and Randle 1978 
Assimacopoulos-Jeannet et al. 

1977 

Hrfer  and KleinzelIer 1963a 
Janda 1969 
Borle 1968b 
Rorive and Kleinzeller 1972 
Borle and Studer 1978 
Studer 1978 
Borle and Studer 1978 
Borle 1975 

Gibert and Fenn 1957 
Isaaeson 1969 
Isaacson and Sandow 1967 
Cosmos and Harris 1961 
Winegrad and Shanes 1962 
Morgenstern et al. 1972 
Gorier and Holland 1964 
Gorier and Holland 1964 
Wester 1965 
Wester 1965 
Grosse and Lullmann 1972 
Van Breemen and Daniel 1966 

Cooke and Robinson 1971 
Tower 1968 
Stahl and Swanson 1971 
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Table 1 (continued) 
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Ceils or tissue 
conditions Total calcium 

nmol/mg umol/g mmol/kg 
prot dry wt wet wt 

Reference 

Guinea pig cortex, slice (14.5) (10.9) 2.17 
Rabbit vagus nerve (19.1) (14.4) 2.87 
Crab nerve (10.3) (7.7) 1.54 

Neuroblasts, culture 28.7 (21.5) 3.22 
Astroblasts, culture 22.2 (16.7) 3.33 

Mean 18.1 13.6 2.7 

Tumors 
Ehrlich ascites, cells 35 (26) 5.0 
Ehrlich ascites, cells (21.3) 16 (3.2) 
Ehrlich ascites, cells 37.1 (27.8) (5.6) 
HeLa cells 43.5 (25.2) 5.04 
Hepatoma slices (31) 23.3 (4.7) 
Mammary tumor, slices (47.4) 35.6 (7.1) 
Glioma cells 43 (32) (6.5) 
Neuroblastoma 43 (32) (6.5) 

Mean 37.7 27.2 5.5 

Miscellaneous cells 
Rabbit pancreas, cells 14 (10.5) (2.1) 
Rat pancreas, islets 61 (46) 9.4 
Rat parotid, cells 23 (17.3) 3.45 
Rat pituitary, cells 60 (45) 9.00 
Frog aorta (26) (19) 3.89 
Frog skin (16.7) (12.5) 2.5 
Rat bone, cells (112) (84) 16.8 
Rabbit, blastocyst (16.3) (12.3) 2.45 

'Naked' cells 
HeLa cells 

(trypsin -EDTA) 5.74 (2.4) 0.48 
Kidney cells 

(trypsin-EDTA) 3.0 (2.3) 0.45 
Fibroblasts (trypsinized) 6.0 (4.5) (0.90) 
P!tuitary cells 

(trypsin-EDTA) 3.7 (2.8) (0.55) 
Rat brain 

(trypsin-EOTA) 3.6 (2.7) (0.54) 
Mouse 3T3 cells (EGTA) 5.14 (3.8) (0.92) 
Mouse SV40-3T3 

(EGTA) 3.03 (2.3) (0.45) 

Mean 4.3 3.0 0.6 

LoUey 1963 
Kalix 1971 
Bianehi and 

Lakshminarayanaiah 1978 
Borg et at. 1979 
Borg et al. 1979 

Levinson 1967 
Levinson and Blumenson 1970 
Cittadini et al. 1977 
Borte 1968a 
VanRossum et al. 1971 
Van Rossum et al. t971 
Lazarewicz et al. 1977 
Lazarewiez et al. 1977 

Renekens et al. 1978 
Kondo and Sehulz 1976a 
Miller and Nelson 1977 
Moriarty 1977 
Godfraind and Kaba 1972 
Zadunaisky and Lande 1972 
Dziak and Brand 1974a 
Lutwak-Mann and MeIntosh 

1971 

Borle 1968a 

Borle 1968c 
Perdue 1971 

Moriarty 1977 

Moriarty 1977 
Hazelton and Tupper 1979 

Hazelton and Tupper 1979 
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Table 1 (continued) 

A.B. Borle 

Cells or tissue conditions Total calcium Reference 

nmol/mg umol/g mmol/kg 
prot dry wt wet wt 

Extruded axoplasm 
Squid (0.3) (0.3) 0.05 Requena et al. 1977 
Squid (0.42) (0.32) 0.063 Requena et al. 1977 

Mean 0.36 0.31 0.06 

Chemical measurements of 4°Ca at physiologic extracellular calcium concentrations 
( I .0-1.5  raM, except for squid axon). Numbers in parentheses are recalculafed assuming 
ratios of wet weight/dry weight/protein concentration = 100/20/15. 

t rypsin-EDTA (Borle 1968a, c;Moriarty 1977). In liver, EGTA or EDTA 
can remove 60%-70% of  the total calcium (Van Rossum 1970; Claret- 
Berthon et al. 1977), while in mouse 3T3 cells, EGTA reduces it by 50% 
(Tupper and Zorgniotti 1977). Displacement of  this extracellular calcium 
by lanthanum is the basis of  the lanthanum method (Weiss and Goodman 
1969; Van Breemen and McNaughton 1970). In pancreatic islets for in- 
stance lanthanum can displace 90% of  total calcium of  the tissue (Hellman 
et al. 1976a). The calcium concentration of  'naked' cells, stripped of their 
glycocalyx by trypsin or by EDTA, ranges from 0.45 mmol/kg cell water 
for HeLa and kidney cells (Borle 1968a, c) and 0.55 mmol/kg cell water 
for pituitary cells and brain cortex (Moriarty 1977) to 0.9 mmol/kg wet 
weight for fibroblasts (Perdue 1971). Axoplasm extruded from fresh squid 
axon contains still less calcium, about 0.05 mmol/kg wet weight (Requena 
et al. 1977). 

Evidently, the chemical measurements of  total tissue calcium can only 
provide a gross estimate of  the changes in calcium content occurring in the 
cells. However, since cellular calcium is markedly affected by numerous 
factors in the extracellular milieu, total tissue calcium is a good index of  
the cells' viability and of  the normal or steady state of  the tissue. 

Raising the extracellular calcium concentration above physiological 
levels increases total cell calcium in liver (Wallach et al. 1966), HeLa cells 
(Borle 1968a, 1971a, b), kidney cells (Borle 1970a, 1972a), squid axons 
(Requena et al. 1977, 1979), and muscle (Gilbert and Fenn 1957). Raising 
the extracellular concentration of phosphate also increases the total cell 
calcium or its 45Ca uptake. This has been observed in kidney, liver, pan- 
creas, HeLa, bone, and ascites cells, and in adipocytes (Janda 1969; Van 
Rossum 1970;Borle 1971a, b, 1972;Dz/ak and Brand 1974b;Martin et al. 
1975;Hines and Wenner 1977; Charlton and Wenner 1978; Hellman and 
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Anderson 1978). There is an interaction between the calcium and the 
phosphate concentrations of the external milieu: the higher the phosphate 
concentration, the greater the gain in cell calcium with increasing extra- 
cellular calcium concentration (Borle 1971). 

The temperature and the method of tissue preparation have important 
effects on tissue calcium. In Fig. 2 it is shown that incubating kidney cells 
at 0°C in calcium-free media rapidly depletes them of calcium. These cells 
may lose more than 50% of  their calcium in 30 rain and 95% after 2 h. 
Kidney slices lose 33% of  their calcium (Hdfer and Kleinzeller 1963a) and 
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Fig. 2, Temporal relationship of the total calcium loss in calcium-free medium of 0°C 
and of the reaccumulation of calcium in 1 mM external calcium at 37°C. Experiments 
performed with cultured monkey kidney cells (LLC-MK~) in Krebs-Henseleit bicar- 
bonate buffer. Reproduced from Borle (1981), with permission from Cell Calcium 

rat uterus 75% (Van Breemen et al. 1966) at 0°C in the absence of extra- 
cellular calcium. These observations may be relevant to the role of extra- 
cellular calcium and calcium influx in cell activation. Indeed, one cannot 
be absolutely certain that the lack of effect of a stimulus in the absence of 
extracellular calcium can be attributed to the lack of calcium entry into 
the cells, since it might be due as well to a depletion of intracetlular calci- 
um (Borle 1978). On the other hand, when the extracellular calcium is 
normal (1.3 raM) or higher, tissue calcium may increase from two- to 
fourfold at low temperature. This has been shown in kidney slices (H6fer 
and KleinzeUer 1963b), liver (Van Rossurn 1970), hepatomas, mammary 
tumors (Van Rossum et al. 1971), and in Ehrlich ascites cells (Cittadini 
et al. 1977). 

The pH of the incubating medium also affects the cell calcium: a low 
pH decreases while a high pH increases the total cell calcium in liver and in 
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kidney (Wallach et al. 1966; Studer and Borle 1979). The metabolic state 
of the cell or tissue influences the total calcium of the preparations. Pro- 
longed incubation tends to increase the tissue calcium content in muscle, 
in liver, and in nerve (Gilbert and Fenn 1957;Dawkins et al. 1959; Cosmos 
and Harris 1961 ;Requena et al. 1977). This may be related to a decline in 
oxidative phosphorylation (Dawkins et at. 1959; Wallaeh et al. 1966); an- 
aerobiosis also induces a net entry of calcium in the tissue (Cittadini and 
Van Rossum 1978). 

In certain tissues, nerve, muscle, and pancreas, substitution of extra- 
cellular Na with choline or lithium results in a net gain of tissue calcium 
(Judah and Ahmed 1963; Reuter 1973; Gardner and Hahne 1977; Requena 
et al. 1977). Other tissues, such as kidney, do not gain calcium in Na-free 
media (Borle 1979). In the endocrine pancreas, a rise in glucose concen- 
tration of the incubating medium from 3 to 20 mM increases the tissue 
calcium 20%-50% (Hellman et al. 1976a, b; Hellman and Anderson 1978). 
Amine buffers, on the other hand, cause a lower total cell calcium than 
physiologic bicarbonate buffers, at least in kidney cells (BorIe and Uchi- 
kawa 1978). Finally, in cell cultures, the total cell calcium may be differ- 
ent at different stages of growth (Tupper and Zorgniotti 1977). It is im- 
portant to recognize that the total cell or tissue calcium is very labile and 
depends to a great extent on the conditions of tissue preparation and of in- 
cubation. The interpretation of many experimental results rests on the 
recognition of this fact. 

4 Exchangeable Calcium (4SCa Uptake) 

Incubation of cells or tissues in the presence of a radiotracer, usually 4s Ca 
o r  47Ca, can give an estimate of their exchangeable calcium fraction. For a 
4SCa uptake value to be meaningful, the cells must be at steady state, i.e., 
they should not gain or lose calcium during the isotope uptake, and in 
theory the measurement must be made at isotopic equilibrium when the 
specific activity of the exchangeable fraction is maximal and equal to the 
specific activity of the incubating medium. In practice, it is assumed that 
in most tissues an incubation of 2 -3  h is sufficient to reach 90% of the 
isotopic equilibrium, although the radioactivity of the cells may continue 
to increase very slowly for many hours. The exchangeable calcium fraction 
of various tissues slices and cells is shown in Table 2. It is severalfold higher 
in slices or islets than in isolated cells or in cultured cells. The average for 
liver, kidney, brain slices, and pancreatic islets is 17.5 + 3.7 nmol/mg tis- 
sue protein. In freshly isolated or cultured cells there is an average of 5.0 
+- 0.7 nmol exchangeable calcium/rag cell protein. Clearly, most of  the dif- 
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Table 2. Exchangeable calcium measured by 4s Ca uptake at isotopic equilibrium 
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Tissue Uptake time Cao Exchangeable Ca Reference 
(min) (raM) (nmol]mg cell prot)  

Kidney 
Kidney slices a 120 2.5 17 c 
Kidney slicesa 60 2.5 22.6c 
Kidney slice 120 1.3 16.5 
Kidney tubules 180 1.3 7.24 
Kidney cells 120 1.3 5.11 
Kidney cells 120 1.3 5.01 
Kidney cells 180 1.3 4.50 

Liver 
Liver slices 120 1.3 18.0 
Liver perfused 180 2.16 8.2 c 
Liver cells 100 1.0 2.6 

Pancreas 
Pancreas islets 75 2.5 40 c 
Pancreas islets - 2.5 7.6 
Pancreas cells 120 1.25 3.16 
Pancreas ceils 120 1.30 3.00 
Pancreas cells 90 1.50 2.50 c 

Miscellaneous 
Brain slices 30 0.75 10.1 c 
Aorta b 30 1.5 6.67 c 
Intestinal cells 120 1.3 9.34 
Heart cells 30 2.5 4.7 c 
Uterus b 180 2.5 2.0c 
Bone cells 60 1.3 8.0c 
Crab nerve 200 1.0 4.2c 

3T3 ceils (growth 
phase) 50 2.0 0.70 

3T3 cells 
(quiescent) 50 2.0 3.38 

SV40-3T3 cells 
(low density) 50 2.0 2.20 

SV40-3T3 cells 
(high density) 50 2.0 3.08 

HOfer and Kleinzetter 1963a 
Janda 1969 
Borle and Studer 1978 
Borte and Studer 1978 
Borle 1970a 
Borle 1975a 
Borte and Uchikawa 1979 

Borle and Studer 1978 
Claret-Berthon et al. 1977 
Chen et al. 1978 

HelIman et al. 197t 
Hellman et al. 1976 
Kondo and Schulz 1976 
Ga~'dner and Hahne 1977 
Renkens et al. 1978 

Stahl and Swanson 1971 
Deth 1978 
Borte 1974a 
Lamb and McCall 1972 
Batra and Bengtsson 1978 
Dziak and Brand 1974a 
Bianehi and 

Lakshminarayanaiah 1978 

Hazelton and Tupper 1979 

Hazelton and Tupper 1979 

Hazelton and Tupper I979 

Hazelton and Tupper 1979 

a 25oc. 
b La +÷÷ method.  
c Recalculated on a protein basis; see footnote to Table 1. 

f e r e n c e  c o m e s  f r o m  a m u c h  l a r g e r  e x t r a c e l l u l a r  o r  i n t e r s t i t i a l  c a l c i u m  p o o l  

in t h e  s l ices .  V a r i o u s  m e t h o d s  have  b e e n  u s e d  t o  e l i m i n a t e  t h i s  e x t r a c e l l u -  

l a r  p o o l  a f t e r  an  u p t a k e  o f  4SCa: t h e  cel ls  can  b e  w a s h e d  w i t h  a m e d i u m  

c o n t a i n i n g  l a n t h a n u m  (Weiss a n d  Goodman  1 9 6 9 ;  Van B r e e m e n  a n d  
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M c N a u g h t o n  1970),  the  cells can be exposed  to t ryps in  (Borle 1968a;  
Moriar ty  1977) o r  the  4SCa u p t a k e  curve can be divided in to  several  c o m -  

p o n e n t s  b y  k ine t ic  analysis,  an o p e r a t i o n  t ha t  can be v iewed as a k ine t ic  

'pee l ing '  o f  the ext race l lu lar  f rac t ion  (Borle 1969a;  Borle  and Uchikawa 

1979).  When the  equi l ib r ium 4s Ca u p t a k e  and  the  to ta l  ca lc ium c o n t e n t  o f  

the  tissues are measured  s imul taneous ly ,  the  n o n e x c h a n g e a b l e  f rac t ion  o f  

the  cell ca lc ium can be calculated.  Tab le  3 shows tha t  in m o s t  t issues in 

Table 3. Nonexchangeable fraction of cell calcium 

Nonexchange- % 
Equilibrium Total able Exchange- 

Tissue ~s Ca uptake 4 o Ca fraction able Reference 

nmol/mg cell protein 

Liver perfused 8.2 a 14.7 a 6.5 56 Claret-Berthon et a1.1977 
Liver slices 18.6 24.1 5.5 77 Borle (unpublished) 
Kidney slices 11.6 16.5 4.9 70 Borle and Studer 1978 
Kidney tubules 7.24 15.2 8.0 48 Borle and Studer 1978 
Kidney ceils 4.5 8.0 3.5 56 Borle and Uehikawa 1979 
Kidney ceils 5.1 9.8 4.7 52 Borle 1970a 
HeLa cells 3.75 5.75 2.0 65 Borle 1969a 
Aorta 17 a 26 a 9.0 65 Godfraind andKaba 1972 
Skeletal muscle 5.9 a 11.9 a 6.0 50 Isaaeson and Sandow 

1967 
Uterus 11.1 a 14.7 a 3.6 76 Van Breemen and Daniel 

1966 
Cerebral cortex 8.9 a 21.3 a 12.4 40 Stahl and Swanson 1971 
Pancreas cells 2.5 14 11.5 18 Renckens et al. 1978 
Erythrocytes (0.013) 9.62 (9.6) (0.02) Borle and Studer 1978 
3T3 cells 0.70 5.27 4.57 13 Hazelton and Tupper 

(growth phase) 1979 
3T3 cells 3.38 5.14 1.32 66 Hazelton and Tupper 

(quiescent) 1979 
SV40-3T3 cells 2.20 2.03 - 100 Hazelton and Tupper 

(low density) 1979 
SV40-3T3 cells 3.08 3.03 - t00 Hazelton and Tupper 

(high density) 1979 

a Recalculated on a protein basis; see footnote to Table 1. 

which  this i n f o r m a t i o n  is available,  the n o n e x c h a n g e a b l e  f rac t ion  aver- 
ages 6.5 ± 0.9 n m o l / m g  cell p ro te in .  Since it is no t  s ignif icant ly larger in 
slices than  in i so la ted  cells it is p robab l e  t ha t  this n o n e x c h a n g e a b l e  frac- 
t ion is m o s t l y  intracel lular .  The  exchangeab le  ca lc ium f rac t ion  expressed  
as a pe rcen tage  o f  the  to ta l  tissue ca lc ium is slightly larger in slices and 
whole  tissues than  in isola ted cells. On average the  exchangeab le  cell calci- 
um measu red  b y  4SCa u p t a k e  is a b o u t  60%. The  on ly  no tab l e  e x c e p t i o n  is 
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found in erythrocytes,  which are known to have an extremely low perme- 
ability to calcium. 

The measurement o f  4s Ca uptake is easy and is used extensively. How- 
ever, the interpretation o f  such data is not  as simple as it appears. A4SCa 
uptake value obtained before the isotopic equilibrium is reached does not  
represent the exchangeable cell calcium or an influx of  calcium, as often 
stated. It merely reflects the fraction of  the total tissue calcium that has 
exchanged with the extracellular fluid calcium at that  particular time. It is 
often claimed that an increased 4s Ca uptake indicates a higher rate of  cal- 
cium exchange or an increased calcium transport. Conversely, a depressed 
45Ca uptake is sometimes interpreted as a decreased calcium influx. Al- 
though these conclusions may be correct in some cases, the fact is that,  in 
steady-state conditions, the uptake o f  an isotope by a tissue is a function 
of  two independent variables: (a) the size of  the compartments with which 
the isotope exchanges, and (b) the rate of  exchange. Consequently it is 
possible to observe an increased 45Ca uptake when calcium transport, ex- 
change or influx is actually depressed (Borte 1975a). Conversely, it is also 
possible to obtain a depressed 4SCa uptake when calcium exchange or 
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Fig. 3. Theoretical 4sCa uptake curves in a two- 
compartment system generated by computer. Re- 
produced from Borle (1981), with permission 
from Cell Calcium 
Curve A: (dR 2/dt) = 0.1 exp (-0.025)t 

03 ~ = 100 nmol (mg prot) -1 min -~ 
S 2 = 4 nmot/rag prot)-3 ; 

Curve B: (dR~/dt) = 0.1 exp (-0.05)t 
012 = 100 nmot/mg prot) -1 min -a 
S 2 = 2 nmol (mg prot) =3 ; 

Curve C: (dR,/dt) = 0.05 exp (-0.0125)t 
01~ = 50 nmol/rag prot) -~ min -~ 
S~ = 4 nmol (mg prot)-L 
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transport is stimulated. Therefore, any interpretation simply based on an 
increase or decrease in 4SCa uptake or on the visual interpretation of an 
uptake curve should not be accepted without reservation, unless the data 
are kinetically analyzed. 

To illustrate this crucial point, Fig. 3 shows three theoretical uptake 
curves generated by computer, representing tracer exchange between two 
compartments (an incubation medium in which the tracer is added and 
one cellular compartment). In curve A the cellular exchangeable pool is 
4 nmol/mg protein and the exchange rate is 100 pmol (mg prot) -1 min -1 . 
In curve B the exchangeable pool is reduced by half, 2 nmol/mg protein, 
but the exchange rate is the same, 100 pmol (mg prot) -1 min -1. In curve C, 
on the other hand, the cellular exchangeable pool is the same as in curve A, 
4 nmol/mg protein, but the exchange rate is reduced in half, 50 pmol (rag 
prot) -~ min -t. A comparison of curve B and curve C illustrates the diffi- 
culty of  interpreting 4SCa uptake curves by visual observation alone with- 
out kinetic analysis. If B were a control and C an experimental curve, one 
could easily conclude that since calcium uptake is increased in C compared 
with B, the experimental curve C reflects a stimulation of calcium trans- 
port into the cellular compartment. The fact is that calcium influx and 
exchange in C is only half that of curve B. The increased uptake is due ex- 
clusively to an enlarged exchangeable pool. 

Another pitfall is the unrecognized nonsteady state. Very often, tissues 
or cells are prepared or isolated in buffers and in conditions that will lower 
the calcium content of  the cells, for instance at 0°C and in a calcium-free 
medium. When the cells are placed again in a physiologic environment, in 
an incubating medium containing 1.3 mM calcium at 37°C, there is a net 
shift of  calcium into the cell (Fig. 2). If a 4s Ca uptake experiment is per- 
formed in these conditions, one obtains spurious results which may lead 
to an. erroneous interpretation of  the data: the initial isotope uptake will 
be 4 - 5  times larger than that observed at steady state, then the radioactiv- 
ity will drop as the cells unload some of the accumulated calcium. Indeed, 
in a 4SCa uptake experiment, a drop in the cell or tissue radioactivity can 
only reflect a net shift of total calcium (4°Ca and 4SCa) out of the cells. 
This proves that the system is not at steady state. As an example, Fig. 4 
shows two uptake curves obtained with the same cell preparation: one was 
performed at steady state, the other when the cells were reaccumulating 
calcium after an incubation in a Ca-free medium at 0°C. At 20 min, calci- 
um uptake is 5 times greater in a nonsteady state than at steady state. The 
drop in cellular 4SCa observed in the upper curve after 20 min is the best 
evidence that the system is not at steady state. The cells initially depleted 
of calcium reaccumulate it in large excess when incubated later in a calci- 
um-containing buffer; and they cannot be considered normal; they may 
require much more than 3 h to unload the calcium they accumulated. If 
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• STEADY STATE (n=4} 
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Fig. 4. 4s Ca uptake curves obtained at steady state and at nonsteady state. Experi- 
ments performed with cultured monkey kidney cells (LLC-MK 2) in 1 mM Ca Krebs- 
Henseleit bicarbonate buffer at 37°C. Nonsteady state conditions were obtained by 
preincubating the cells at 0°C in a calcium-free medium before the uptake incubation 
performed at 37°C, with 1 mM Ca and 4~Ca. Steady-state uptake was performed by 
preincubating the ceils in 1 mM Ca at 37°C for 1 h before introduction of 45Ca. Re- 
produced from Borle (1981), with permission from Cell Calcium 

the 10 min uptake point  was taken as representing calcium influx [ 15 nmol 
(mg prot)  -1 10 min -1 ] one would conclude that its magnitude is 1.5 nmol 
(rag prot) -1 min -I.  This is 20 times greater than the calcium exchange 
measured between intra- and extracellular pools in steady-state conditions 
[0.08 nmol  (mg prot)  -1 min -~ ]. The interpretation of  all published results 
showing these deviations from steady state is thus exceedingly difficult, 
if  not  impossible. 

5 Cellular Distribution of  Calcium 

Cellular calcium is distributed among several extracellular and intracellular 
compartments.  Most cells are surrounded by an extracellular coat o f  pro- 
teins and mucopolysaccharides called the glycocalyx, which can bind large 
amounts o f  calcium (Chambers 1940; Burgos 1960; Brandt 1962; Gasic and 
Gasic 1962; Bennet 1963; Cook et al. 1965; Rambourg and Leblond 1967; 
Borle 1968a; Howell and Tyhurst 1976). Calcium is also bound to the 
phospholipids and to the structural proteins of  the cell plasma membrane 
(Tobias et al. 1962; Carvalho et al. 1963;Koketsu et al. 1964;Palmeretal. 
1970; Quinn and Dawson 1972; Dully and Schwarz 1973). As stated pre- 
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viously, from 50% to 90% of  the cell calcium is bound extracellularly, de- 
pending on the tissue (Borle 1968a, c; Van Rossum 1970; Claret-Berthon 
et al. 1977;Moriarty 1977; Tupper and Zorgniotti 1977). Within the cells, 
four main compartments contain widely different amounts of  calcium: 
the cytosol, the nucleus, the mitochondria,  and the endoplasmic reticulum. 
Table 4 presents the distribution of  calcium in these various cell fractions. 

Table 4. Percent distribution of calcium among various cell fractions isolated by ultracentri- 
fugation 

Tissue Nucleus 
and Debris 

Liver 
(, 0 Ca) 15.5 

Mitochondria Microsomes Supernatant Reference 

47.7 

(4 o Ca) 45 28.2  
(, o Ca) 14 48 .0  
(, s Ca) 23 46.7 

(4°Ca) 23.9 30.9 
(4 s Ca) 22.6 44.4 

23.7 13.1 Griswold and Pace 
1956 

11.9 1 0 . 7  Thiersand ValIee 1957 
20.0 17.0 Thiers et al. 1960 
15.5 14.2 Hohman and Schraer 

1966 
26.7 11.2 Carafoli 1967 
15.3 2.5 Carafoli t967 

Mean (liver) 24 -+ 4.5 42.8 ± 4.4 t8.8 ± 2.3 11.5 ± 2.0 

Other cells 
Kidney (40 Ca)40 42 4 3 H6fer and Kleinzeller 

1963a 
Kidney (4o Ca) 55 30 10 5 Borle (unpublished) 
Muscle (45 Ca) 26 65 7 2 Cosmos 1964 
Ascites cells 
(4s Ca) 30.1 43.9 12.8 1 3 . 8  Anghileri 1972 

Shell gland 49 34 9.7 6.9 Hohman and Schraer 
(4 s Ca) 1966 

Chorio- 31 16 3 50 Crooks et al. 1976 
allantois (4s Ca) 

Mean (liver and 
other cells) 31.3-+4.2 43±3.5 14.2±2.1 9.0± 1.6 

In liver, the largest calcium compartment  is found in mitochondria 
(42.8%); the nucleus and heavy cell membrane debris contain 24%, the 
microsomes 18.8%, and only t 1.5% is left in the cytosol (supernatant). In 
other tissues, the calcium distribution appears to be qualitatively the same 
as in liver. Thus the distribution of  calcium measured by cell fractionation 
and ultracentrifugation reveals that  the mitochondria contain 3 times as 
much calcium as the microsomes derived from endoplasmic reticulum. 
About  60% of  the intracellular calcium is sequestered in these two sub- 
cellular organeUes while only 10% is left in the supernatant or cytosolic 

fraction. 
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If the calcium present in the 100 000 g supernatant after cell homo- 
genization and ultracentrifugation (10% of  total homogenate  calcium) is 
an indication of  the bound  and free calcium of  the cytosol it should 
amount  to 0.220 mmol/kg wet  weight, since the average cell calcium is 
about  2.2 nmol/kg wet  tissue. This is 4 times higher than the calcium con- 
centration o f  5 0 - 6 0  t~mol/kg wet weight measured in axoplasm extruded 
from the squid giant axon, which contains very few mitochondria and 
little endoplasmic reticulum (Brinley et al. 1977; R e q u e n a  et al. 1979) 
(Table 1). This suggests that cell fractionation techniques overestimate 
this fraction or that the calcium in the squid axoplasm is unusually low. 
On the other  hand, in kidney, liver, pancreas, muscle, and pituitary cells, 
the exchangeable cytosolic calcium pool  measured by kinetic analysis o f  
4SCa desaturation curves averages 0.36 mmol/kg wet  tissue (Table 5), 
which fits in well with the value calculated from cell fractionation. 

Table 5. Cytosolic and mitochondrial exchangeable calcium pools measured by kinetic analysis 
of 4~Ca desaturation curves [extracellular (Ca ++) = 1 rnM] 

Tissue Cytosolic pool Mitochondrial Reference 
pool 

(mmol/kg wet weight) 

Kidney 
Cultured cells (LLC-MK 2 ) 0.27 
Cultured cells (LLC-MK 2 ) 0.30 
Cultured cells (LLC-MK:) 0.20 
Cultured cells (LLC-MK 2 ) 0.33 
Slices (rat) 0.57 
Tubules (rat) 0.56 

Liver 
Perfused (rat) 0.39 
Slices (rat) 0.43 

Pancreas 
Cells 0.20 
Cells 0.20 

Muscle 
Cells 0.31 
Heart 0.56 

Pituitary 
Slices 0.43 
Slices 0.26 

Mean 0.36 -+ 0.04 

0.38 
0.38 
0.35 
0.23 
0.50 
0.38 

0.12 
0.14 

0.17 
0.17 

0.32 
0.30 

0,41 
0.30 

0.30 +- 0.03 

Borle 1972a 
Borle 1972b 
Uchikawa and Borle 1978a 
Borle and Uchikawa 1979 
Uchikawa and Borle 1978b 
Stucler and Borle 1979 

Claret-Berthon et al. 1977 
Borle (unpublished) 

Konclo and Schulz 1967b 
Schulz et al. 1977 

Sehudt et al. 1976 
Klaus and Krebs t974 

Moriarty 1980 
Borle and Zahnd 

(unpublished) 
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Table 6. Chemical measurements of 40 Ca in isolated mitochondria 

A.B. Borle 

Tissue Mitochondrial Ca Reference 

(umol/kg wet weight) 

Liver 
Rat 500-700 a 
Perfused (rat) 655 
- 400-720 
Slices (rat) 750 
Rat 865 
Rat 1080 

Mean 750 _+ 79 

Kidney 
Cultured cells (LLC-MK~) 280 
Isolated tubules (rat) 640 
Slices (rat, Sprague Dawley) 1430 
Slices (rat, Holzman) 720 

Mean 768 -+ 240 

Muscle 
Heart 1600-2500 
Myometrium 800-2600 
Myometrium 1400 

Mean 1750 -+ 190 

CarafoIi and Lehninger 1971 
Claret-Berthon et al. 1977 
Carafoli et al. 1977 
Borte and Studer 1978 
Hughes and Barritt 1978 
Nieholls 1978b 

BorIe and Uchikawa 1978 
Borle and Studer 1978 
Borle and Studer 1978 
Borle and Clark (unpublished) 

Carafoli et al. 1977 
Carafoli et al. 1977 
Malmstr6rn and Carafoli 1977 

a Recalculated, assuming 50 mg mitochondrial protein/g liver (Carafoli and Crompton 
1977). 

From the percentage of  calcium present in the mitochondrial fraction 
after ultracentrifugation (43%) one can calculate that  the amount  of  calci- 
um in mitochondria should be around 0.95 mmol/kg wet tissue. The 
chemical measurements o f  the 4°Ca content  o f  mitochondria isolated from 
three tissues are shown in Table 6. Kidney mitochondria contain 0.77 and 
liver mitochondria 0.75 mmol/kg wet tissue, both in the right order of  
magnitude. In muscle with 65% of  the calcium in the mitochondrial frac- 
tion, the calculated value of  1.37 (65% of  2.1 mmol/kg wet weight, Tables 
1 and 4) fits in well with the average chemical measurement of  1.75 mmol/  
kg wet tissue. From the kinetic measurements shown in Table 5, the ex- 
changeable mitochondrial pool ranges between 0.12 for liver to an average 
of  0.37 mmol/kg wet tissue for kidney. This indicates that  50% or less of  
the mitochondrial calcium is exchangeable. The unexchangeable fraction 
could possibly reflect the sequestration of  calcium in mitochondria as cal- 
cium phosphate precipitates (Peachey 1964; Greenawatt et al. 1964; Wein- 
bach and Von Brand 1968; Zadunaisky et al. 1968; Lehninger 1970; 
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Matthews et al. 1970; Martin and Matthews 1970; Sutfin et al. 1971; 
Ruigrok and Elbers 1972; Sayegh et al. 1974) or as organic-inorganic 
complexes (Barnard and Afzelius 1972;Bonucci et al. 1973). 

There are few data available on the calcium content of endoplasmic 
reticulum isolated from intact cells. The microsomal fraction obtained 
from the fractionation of various tissues is about 14% of the total homo- 
genate calcium (Table 4). One can calculate that for most tissues with total 
calcium ranging between 2.1 and 2.5 mmol/kg wet weight the endoplasmic 
reticulum may contain between 0.29 and 0.35 mmol/kg wet tissue. 

6 Cytosolic Ionized Calcium 

The cytosolic calcium activity is the most important quantity in the me- 
tabolism of  cellular calcium. It is the ionized calcium that regulates the cell 
functions sensitive to calcium. It is also one of the parameters that deter- 
mine the thermodynamic calcium gradient between the extraceUular fluids 
and the cytosol and between the cytosol and the mitochondrial matrix or 
the endoplasmic reticulum. Despite its importance, the magnitude of the 
cytosolic ionized calcium cannot yet be determined in mammalian cells. 
However, several attempts have been made in giant cells from invertebrates 
and estimates have been made by indirect methods in various other cells 
(Table 7). The best estimates have been obtained with the photoprotein 
aequorin or with the metallochromic indicators arsenazo III or antipyry- 
lazo III. The advantages or disadvantages of these chemical probes With re- 
gard to selectivity, sensitivity, and possible artifacts have been reviewed 
elsewhere (DiPolo et al. 1976;Blinks et al. 1976; Searpa et al. 1978a, b; 
Blinks 1978). In the squid axon, estimates of the axoplasmic ionized cal- 
cium made with the aid of aequorin ranges between 20 nM (DiPolo et al. 
1976) and 350 nM (Baker et al. 1971). With arsenazo III, DiPolo et al. 
(1976) obtained a value of 130 nM, but assuming a free magnesium con- 
centration of 3 mM (Brinley and Scarpa 1975) they estimate that the free 
calcium concentration may be as low as 50 nM. Katz and Miledi (1967) 
estimated the ionized calcium of the squid axon synapse from null point 
potential measurements: they measured the membrane potential at which 
no inward movement of calcium occurred. They found an EGa +* of+130 
mV with an extracellular calcium concentration of 11 raM, and calculated 
the intracellular ionized calcium to be 400 nM. With similar voltage clamp 
techniques, Meech and Standen (1975) estimated the cytosolic free calci- 
um of snail neurons to range between 50 and 200 riM. Using a pCa micro- 
electrode, Christoffersen and Simonsen (1977) found a calcium activity of 
450 nM in snail neurons. 
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Table 7. Estimates of cytosolic ionized calcium in various cells 

A.B. Borle 

Cell Method Ca ++ Reference 
(uM) 

Muscle fibers 
Maia squinado 

Balanus nubilus 

Maia squinado 

Neurons 
Squid axon 
Squid axon 
Squid axon 
Squid axon 
Squid synapse 
Helix aspersa 

Helix aspersa 

Helix pomatia 

Helix pomatia 

Helix pomatia 

ApIysia neuron 
Aplysia neuron 

Ca-EGTA, contraction 0.3- t.6 
threshold 

Ca-EGTA, contraction 0.4-0.8 
threshold 

Ca efflux, aequorin 0.05-0.12 

Portzehl et al. 1964 

Hagiwara and Naka]ima 1966 

Caldwell 1971 

Aequorin 0.35 Baker et al. t971 
Aequorin 0.1-0.35 Baker 1972 
Aequorin 0.02 DiPolo et al. 1976 
Arsenazo III 0.05-0.13 DiPolo et al. 1976 
Suppression potential 0.4 Katz and Miledi 1967 
Ca-EGTA, membrane 0.9 Meech 1974 

resistance 
Ca-EGTA, null point 0.05-0.2 Meech and Standen 1975 

potential 
pCa electrode 0.45 Christoffersen and Simonsen 

1977 
pCa electrode 0.1 Simonsen and Christoffersen 

at 2 uM Cao 1979 
pCa electrode 0.4 Simonsen and Christoffersen 

at 21 mM Cao 1979 
Suppression potential 0.1 Stinnakre and Tauc 1973 
pCa electrode 0.7 Owen et al. 1977 

Oocytes 
Ly techynus pictus Aequorin 2.5-4.5 
Asterias amurensis Aequorin 1.7 
Asterina Aequorin 0.25 

peetinifera 

Steinhardt et al. 1977 
Hamaguchi and Mabuchi 1978 
Hamaguchi and Mabuchi 1978 

In the giant muscle fiber o f  the barnacle, the resting level of  cytosolic 

free calcium has been estimated by injecting C a - E D T A  buffers and mea- 

suring the contract ion threshold. Values ranging between 0.3 and 0.7 uM 
(Portzehl et al. 1964) or between 0.4 and 0.8/~M (Hagiwara and Naka]ima 
1966) were obtained, and these investigators estimated that the resting free 
calcium concentrat ion o f  the sarcoptasm may be as low as 8 0 - 1 0 0  nM. 

In sea urchin or  starfish eggs the intracellular free calcium has also been 
estimated with aequorin. Values as low as 0.25 and as high as 1.7/~M were 
found (Steinhardt et al. 1977;Hamaguchi  and Mabuchi 1978), and during 
fertilization the cytosolic ionized calcium may rise to higher levels, 2 . 5 -4 .5  
laM (Steinhardt et al. 1977). In cultured kidney cells, calcium fluxes were 
measured at different intracellular free calcium concentrations,  when re- 
versible hypo-osmotic shock was used to introduce C a - E G T A  buffers 
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(Bode and Anderson 1976). When the fluxes observed are compared with 
those measured in normal conditions it can be estimated that the free cal- 
cium in kidney cells is around 0.3 uM. 

From these observations one can conclude that the resting level of 
ionized calcium in most cells lies between 50 and 300 nM. It may even be 
lower (20 nM) in the axoplasm of invertebrates. The question of the abso- 
lute level of free cytosolic calcium is not academic. It will eventually estab- 
lish the relative importance of the various calcium transport processes 
across the plasma membrane, the mitochondrial membrane or the endo- 
plasmic reticulum membrane, and of  calcium binding to specific ligands in 
the control and regulation of the cytosolic calcium activity. It will also de- 
termine whether the enzymatic processes, which have been reported to be 
stimulated or inhibited by calcium ion in cell-free systems, are actually 
modulated by cytosolic calcium in the intact cell. Only those enzymes 
whose K i or K a lie within a single order of magnitude of actual free calci- 
um would be expected to be regulated by small fluctuations in cytosolic 
calcium activity. 

7 Thermodynamic Conditions 

The transmembrane potential difference (E m) varies from cell, to cell 
(Table 8). Excitable cells have membrane potentials ranging between - 6 0  
and -90  mV, while nonexcitable cells have lower potentials averaging 
about -45  mV (Williams 1970). Single cells and cultured cells have still 
lower potentials, - 20  mV or less, probably because of their high cation 
permeability ratio PNa/PK (Borte and Loveday 1968; Williams 1970). 
Nevertheless, all cells exhibit an electrical potential difference across their 
plasma membrane, the inside of the cell being negative with reference to 
the extracellular fluids. With an average membrane potential of - 6 0  mV 
and an extracellular free calcium concentration for mammalian cells of 1.3 
raM, the Nernst equilibrium potential equation would predict intracellular 
ionized calcium in excess of 100 mM at 37°C. This is 5 -7  orders of magni- 
tude larger than the cytosolic free calcium measured or estimated in most 
ceils. Since the intracellular free calcium is in the range of 10 -7 M, and the 
extracellular calcium 1.3 raM, the Nernst equilibrium potentiaI for Ca, 
Eca can be calculated to be around +126 mV 2. 

This is in good agreement with the null point potential of  +130 mV 
measured in invertebrate neurons (Katz and Miledi 1967), taking into ac- 

2 ECa = -(RT/zF) In Cai/Cao; R = gas constant, 83 116 volt-coulomb/degree-mole; 
T = absolute temperature, 310 ° (37°C); F = Faraday, 95 520 coulomb/equivalent; 
z = valence (2 for calcium ion). 
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Table 8. Transmembrane potential  of excitable and nonexcitable cells 

A.B. Bofle 

Cell type P.D. Reference 
(mV) 

Excitable cells 

Nerves 
Squid axon in vivo - 7 7  
Squid axon in vitro - 6 6  
Frog myelinated nerve - 6 8  

Muscles 
Frog sartorius - 9 2  
Rat skeletal muscle - 7 2  
Rabbit  atrium - 8 2  
Rat myometf ium 

(nonpregnant) - 3 9  
Rat myometr ium 

(pregnant) - 5 8  

Nonexcitable cells 
Liver 

Renal tubule 

Adrenal cortex 
Adrenal medulla 
Salivary duct cells 

Salivary acinar cells 

Thyroid gland 

Adipose tissue 

Osteoclasts 

Single ceils 
Red blood cells 

Leukocytes 
Ehrlich ascites cells 

Cultured cells 
Fibroblasts 

Kidney cells 
HeLa cells 

KB ceils 
FL cells 

- 4 0  to - 5 0  

- 7 0  to - 7 5  

- 6 6  to - 7 1  
- 2 0  to - 3 2  
- 3 5  to - 8 0  

- 2 0  to - 4 0  

- 4 0  to - 5 0  

- 2 0  to - 7 0  

- 1 0  to - 2 3  

- 6 to - 1 0  

- 5  
- 1 1  to - 2 3  

- 2 2  to - 7 5  

- 1 2  
- 1 6  to - 4 8  

- 1 3  
- 1 4  

Moore and Cole 1960 
Frankenhauser and Hodgkin 1956 
Huxley and Stiimpfli 1951 

Adrian 1956 
Li et aL 1957 
Vaughan-WilIiams 1959 

Casteels and Kuriyama 1965 

Casteels and Kuriyama 1965 

Coraboeuf et al. 1964; Sehanne and 
Coraboeuf 1966; Biederman 1968; 
Williams 1970 

Giebisch 1958, 1961; Whittembury 
and Windhager 1961; Wright 1971; 
Sullivan 1968 

Matthews 1967 
Matthews 1967;Douglas et al. 1967 
Lundberg 1958; Schneyer and 

Schneyer 1965 
Lundberg 1958; Sehneyer and 
Schneyer 1965 

Woodbury and Woodbury 1963 ; 
Williams 1966 

Beigelman and Hollander 1962; 
Girardier et al. 1968 

Mears 1971 

Lassen and Sten-Knudsen 1968 ; 
Jay and Burton 1969 

Beckmann et al. 1970 
Sekiya 1962; Bernhardt and Pauty 

1967;Aull 1967;Smith et al. 1972; 
Lassen et al. 1971 

Swift and Todaro 1968; Redman 
I971 

Redman 1971 
Borle and Loveday 1968; Okada 

et al. 1973 
Redman et al. 1967 
Redman 1971 
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count the slight differences in temperature and in extra-and intracellular 
calcium of the preparation. Evidently, calcium is not distributed passively 
across the cell membrane and a large chemical and electrical potential 
gradient exists between the exterior and interior of  the cell. This gradient 
favors the entry of calcium into the cell and one has to postulate an active, 
energy-dependent transport mechanism to account for any efflux of calci- 
um out of  the cell. The driving force E, allowing the passive penetration of 
calcium into the cell, can be calculated from the electric field equation: 
E = Em - ECa. E will depend on the particular transmembrane potential 
difference and the cytosolic calcium of each cell. It will range from a low 
140 mV for nonexcitabte cells with an E m of - 2 0  mV and a cytosolic cal- 
cium of 10 -7 M to a high 240 mV for excitable cells with an E m of -90  
mV and a cytosolic free calcium of 10 -8 M. The work required to main- 
tain the cell in steady state has been calculated for skeletal muscle by 
Bianchi (1968). It was found to be only 0.6% of the total resting energy 
output of muscle. In rat kidney, assuming a cytosolic free calcium of 3 • 
10 -7 M and a E m of - 7 0  mV (Wright 1971) the electric field would be 
180 mV. The steady-state calcium efflux from rat kidney cells has been 
found to be 112 pmol (mg prot) -1 min -1 or 1.0 mmol kg -1 h -1 (Uchikawa 
and Borle 1978a; Studer and Borte 1979). The work necessary to drive 
calcium transport out of  kidney cells can be calculated to be 16 cal kg -1 3 
This is only 0.24% of a total basal energy output AH based on the resting 
oxygen consumption of kidney of 6720 cal kg -1 h -1 (Cohen and Barac- 
Nieto 1973). Compared with a free energy expenditure 2xF' based on basal 
ATP utilization of 3600 cal kg -a h -~ (Cohen and Barac-Nieto 1973), it 
would represent only 0.44%. Even if one assumes only 50% efficiency in 
energy utilization, active calcium transport in kidney cells would require 
less than t % of the energy available in basal conditions. 

In conclusion, despite uncertainties concerning the absolute levels of  
free calcium in most cells, calcium is not distributed passively across the 
plasma membrane. There is a large electrochemical gradient between the 
exterior and interior of  the cell. An active transport mechanism must be 
postulated to account for the efflux of calcium out of  the cells. On the 
other hand, calcium influx can be assumed to be passive on purely thermo- 
dynamic grounds. The energy necessary to maintain the cell in the steady 
state is 0.5%-1% of the total cellular energy output. 

3 ~xw = ( Z E F )  • ( s t eady-s ta te  ca lc ium ef f lux) ;  z = valence,  2; e lectr ic  field,  E = E M - 
ECa [ - 7 0  m V  - (+110  m V )  = 0 .180  VI ;  F = 95 520  c o u l o m b / e q u i v a l e n t ;  4 .2  
v o l t - c o u l o m b / c a l o r i e ; C a  ef f lux  = 0.001 m o l / k g  we t  we igh t /h .  
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8 Calcium Transport Across the Plasma Membrane 

8.1 Magnitude o f  Calcium Fluxes 

The published rates of  calcium transport  across the plasma membrane of  
various cells are listed in Tables 9 - 1 1 .  The overall magnitude of  these 
fluxes is remarkably similar, when one takes into account  the differences 
in tissues, in species, and in extra- or intracellular calcium concentrat ion.  
In mammalian cells calcium influx ranges between 15 and 90 fmol cm -2 
s -1 (f/cs), while in squid axon it varies between 60 and 150 f/cs. Since it 
has been shown that the calcium concentrat ion of  squid hemolymph is 
7 mM, o f  which only about  4 mM is ionized (Blaustein 1974), the actual 

calcium influx in a normal fiber should be about  28 f/cs (DiPolo 1979). 
Thus the three- to fourfold difference in influx observed between mam- 

malian cells and the squid axon may be due only to  the high extracellular 

calcium concentrat ion used in most  experiments.  In frog muscle calcium 
influx is 94 f/cs, but  this value would be around 16 f/cs if corrected for 

Table 9. Calcium influx in invertebrate and vertebrate cells 

Tissue Cao Ca influx Reference 
(mM) (f/cs) 

Nerves 
Squid axon 10.4 76 
Squid axon 11 150 
Squid axon t 0 16 
Squid axon 10 64 
Squid axon 10 40-100 

Muscles 
Barnacle 25 250 
Lobster O. 1 190 
Lobster 4.0 1740 
Lobster 24 8550 
Frog skeletal muscle 2.0 94 
Cat smooth muscle 1.8 89 

Mammalian cells 
Rabbit vagus nerve 2.3 25 
Guinea pig atrium 1.25 16 
Guinea pig atrium 2.50 29 
Guinea pig atrium 3.75 48 
Human HeLa 1.3 30 
Monkey kidney 1.3 43 
Mouse Ehrlich ascites 0.5 14 
Rat anterior pituitary t .0 77 

Mean a 35±7.3 

Hodgkin and Keynes 
Baker et at. 1969 
Rojas and Taylor 1975 
Requena et al. 1977 
DiPolo 1979 

1957 

DiPolo 1973b 
Gainer 1968 
Gainer 1968 
Gainer 1968 
Bianchi and Shanes 1959 
Sperelakis 1962 

Kalix 1971 
Winegrad and Shanes 1962 
Winegrad and Shanes 1962 
Winegrad and Shanes 1962 
Borle 1969a 
Borle 1970a 
Levinson and Blumenson 1970 
Moriarty (pers. communication) 

a Omittinglobster muscle. 
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Table 10. Calcium efflux in invertebrate and vertebrate cells 
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Tissue Ca i Ca efflux Reference 
(nM) (f/cs) 

Nerves 
Squid axon a _ 8 0 - 3  t 0 Blaustein and Hodgkin 1969 
Squid axon 300 260 DiPolo 1973a 
Squid axon 300 240 DiPolo 1974 
Squid axon 100 100 Blaustein 1977a 
Squid axon 60 2 0 - 5 0  DiPolo 1977 
Squid axon 150 100 DiPolo 1977 
Squid axon 230 320 DiPolo 1977 
Squid axon 10 -50  10-110  Multins and Brinley 1975 
Squid axon 100 2 2 - 3 8  Requena I978 

Muscles 
Crab 20 1000-2000 Ashley et al. 1972 
Barnacle 20 400 Ashley et al. 1972 
Barnacle 500 1000-2000  Russell andBlaustein i974 

Mammalian cells 
Monkey kidney - 47 
Rat anterior pituitary - 77 

Borle 1972 
Moriarty (pers. communica- 

tion) 

a All values for calcium efflux from squid axon listed were obtained in artificial sea- 
water with normal extracellular concentration of calcium and sodium and in the 
presence of ATP. 

the surface area of  the transverse tubular system. On the other hand, calci- 
um influx in invertebrate muscle is much higher and this may not  be due 
exclusively to the very high extracellular calcium used in some experiments 
(24 mM); even at 0.1 mM Cao calcium influx in lobster muscle can be as 
high as 190 f/cs. 

The magnitude of  calcium efflux in perfused squid axons and in kidney 
cells is the same as their calcium influx (Table 10). Indeed, since the ion- 
ized calcium of  the squid axoplasm has been shown to lie between 20 and 
100 nM (DiPolo et al. 1976), the values for calcium efflux obtained at 
these intracellular free calcium concentrations range between 10 and 100 
f/cs. Calcium efflux from invertebrate muscle is again much higher, 4 0 0 -  
2000 f/cs even at low Cal. 

Several attempts have been made to measure calcium transport across 
mammalian cell plasma membrane by kinetic analyses of  45 Ca uptake or 
desaturation curves. The validity of  these studies rests on the assumption 
that the initial, very fast exchange of  tracer represents calcium binding to 
an extracellular calcium compartment  and that the second, slower kinetic 
phase represents calcium transport across the plasma membrane (Borle 
1969a, 1970a, 1972a, 1975b; Uchikawa and Borle 1978a, b). The values 
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Table 11. Calcium influx and efflux in 
4 s Ca movements 

A.B. Borle 

vertebrate cells measured by kinetic analysis of 

Cells Ca fluxes 
(pmol mg -1 
protein min -1) 

Reference 

Calcium influx 
HeLa cells 60 
Monkey kidney cells 96 
Monkey kidney cells 85 
Monkey kidney cells 41 
Dog kidney cells 118 
Human intestinal cells 82 
Chicken intestinal cells 144 
Rat pancreatic cells 70 
Mouse 3T3 cells (growth phase) 40 
Mouse 3T3 cells (quiescent) 130 
SV-40 3T3 (low and high density) 120 

Mean 90 +- 11 

Calcium efflux 
Monkey kidney ceils 83 
Monkey kidney ceils 53.2 
Monkey kidney cells 67.4 
Monkey kidney cells 39.3 
Rat kidney cells 135 
Rat kidney slices 112 
Chicken intestinal cells 177 
Perfused liver t 87 
Pancreatic cells 81 
Chick embryonic muscle 117 
Pituitary cells 163 

Mean 110 -+ 15 

Borle 1969a 
Borle 1970a 
Borle 1975a 
Borle and Uchikawa 1979 
BorIe 1971b 
Borle 1971b 
Borle 1974a 
Kondo and Schulz 1976a 
Hazelton and Tupper 1979 
Hazelton and Tupper 1979 
Hazelton and Tupper 1979 

BorIe 1972a 
Uchikawa and Borle 1978a 
Borle and Uchikawa 1978 
Borle and Uchikawa 1979 
Studer and Borle 1979 
Uchikawa and Borle 1978b 
Borle 1974 
Claret-Berthon et al. 1976 
Kondo and Schutz 1976b 
Schudt et al. 1976 
Moriarty (pers. communica- 

tion) 

ob ta ined  wi th  this m e t h o d  are l isted in Table  11. T h e y  range be tween  40 
and 140 pmoles  (mg pro te in )  -1 min -1 for  calcium inf lux  and be tween  40  

and 190 pmoles  (mg pro te in )  -1 min -a for  calcium eff lux.  In mos t  cases, 

the surface area o f  these cells has no t  been de te rmined .  However ,  in two 
cell types,  HeLa  cells and m o n k e y  k idney  cells (LLC-MK2),  the surface 
area has been r epo r t ed  to  be 36.7 and 33.5 c m : / m g  prote in ,  respect ively  
(Borle 1969, 1970),  so tha t  the  calcium fluxes can be conver t ed  to  f/cs. I f  
one  assumes tha t  the  surface area o f  the  mammal ian  cells l isted in Table  11 
is app rox ima te ly  in the same o rde r  o f  magni tude ,  thei r  calcium inf lux  and 
ef f lux  would range be tween  20 and 80 f/cs, which is ident ical  with the 

f luxes o f  cells shown in Tables  9 and 10. 
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8.2 Mechanisms of  Calcium Transport 

Several mechanisms for the active transport of calcium out of  the cell, 
across the plasma membrane, have been described: (a) an ATP-dependent 
calcium efflux mediated by a calcium-sensitive, magnesium-dependent 
ATPase (CaMgATPase) that derives its energy from the hydrolysis of ATP; 
(b) an efflux of  calcium in exchange for extracellular sodium ions (Na-Ca 
exchange) that derives its energy from the sodium electrochemical gradient 
established across the plasma membrane by the enzyme Na-K-ATPase; 
(c) an efflux of  calcium in exchange for an extracellular calcium ion (Ca-  
Ca exchange) that derives its energy from the calcium electrochemical 
gradient. Calcium influx, on the other hand, may be (a) a facilitated diffu- 
sion, on a uniporter or on an antiporter; or (b) a voltage-dependent influx 
through a calcium channel. 

8.3 Calcium Efflux 

8.3.1 A TP-Dependent Calcium E fflux and CaMgA TPase 

ATP-dependent calcium effiux and its relation to the enzyme CaMgATPase 
(EC 3.6, 1.3) have been extensively studied in erythrocytes. However, 
most other cells or tissues, kidney (Parkinson and Radde 1971; Kinne- 
Saffran and Kinne 1974;Moore et al. 1974; Gma] et al. 1979), intestine 
(Kurebe 1978, 1979; Ghijsen and Van Os 1979), brain (Ohashi et al. 1970; 
Blitz et al. 1977; Rahamimoff and Abramovitz 1978), nerves (DiPolo 
1976, 1977; Baker 1976), skeletal muscle (Sulakhe et al. 1973; Casteels et 
al. 1973), smooth muscle (Thorens 1979), fibroblasts (Lamb and Lindsay 
1971), and lymphocytes (Pau et al. 1976), exhibit some kind of  ATP- 
dependent calcium transport across their plasma membrane or some 
CaMgATPase activity. In addition, evidence for an energy-dependent calci- 
um efflux has been offered in liver (Wallach 1966; Van Rossum 1970; 
Cittadini and Van Rossum 1978) and HeLa cells (Borle 1969b), although 
one group of  investigators failed to detect any CaMgATPase activity in the 
plasma membrane of  rat liver (Chambaut et al. 1974). 

In erythrocytes, the CaMgATPase has a high affinity for calcium with 
a Kca of about 2 gM (Tables 12 and 13) and a V m of  10 nmol (mg 
protein)-1 min-1 (Schatzmann and Rossi 1971 ; Scharf and Foder 1978). 
The K m for ATP is 40 #M but if free ATP instead of  Mg-ATP is assumed 
to be the substrate, the KAT P can be calculated to be 1 -2  t~M (Schatzmann 
1977). The reaction has a Q~o ranging between 3.0 and 3.5 (Lee and Shin 
1969; Schatzmann and Vincenzi 1969;Schatzmann 1970; Vincenzi 1971), 
an energy of activation of  13-15 kcal/mol (Lee and Shin 1969; Schatz- 
mann 1973; Quist and Roufogalis 1975; Sarkadi et al. 1977), and a 
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Table 12. Kinetic parameters of Ca-ATPases in different cells or tissues 

A.B. Borle 

C e l l s  High-affinity Low-affinity Reference 

KCa KCa KATP 
(uM) (/~M) (uM) 

Erythrocytes 2.7 - 40 W o l f  1970 
4.1 1 O0 - S c h a t z m a n n  and R o s s  1971 
6 - - Dav i s  and V i n c e n z i  1971 

- 30 - B o n d  and Green  1971 
0.92 - - W o l f  1972 
1 - 4  - - S c h a t z m a n n  1973, 1975 
1.6 400 - Q u i s t  a n d  R o u f o g a I i s  1975 
1 - 4  - - S c h a r f  1976 
- - 1-2 S e h a t z m a n n  1977 

1 . 8  1 7  - G o p i n a t h  and V i n e e n z i  1977 
0.45 100 - Q u i s t  and R o u f o g a l i s  1977 
0.9 - - H a n a h a n  et al. 1978 
1.0 30 - S c h a r f  and  F o d e r  1978 

Kidney - 1500 - P a r k i n s o n  and R a d d e  1971 
- 1000-2000 - K i n n e - S a f f r a n  and K i n n e  

1974 
< 20 . . . . . .  M o o r e  et al. 1974 

Intestine - 92 - K u r e b e  1979 
0.5 50 - Ghi]sen and Van  Os 1979 

Lymphocytes 22 - - Pau et al. 1976 

stoichiometry o f  1 Ca/ATP according to some workers ( S c h a t z m a n n  and 
V i n c e n z i  1969; S c h a t z m a n n  1970; V i n c e n z i  1971; S c h a t z m a n n  1975) or 
2 Ca/ATP according to others ( Q u i s t  and R o u f o g a l i s  1975, 1977; F e r r e i r a  

and L e w  1976; S a r k a d i  et al. 1 9 7 7 ; S c h a r f a n d F o d e r  1978). The enzyme 
is inhibited by lanthanum, ethacrynic acid, mersalyl, chlorpromazine, and 
ruthenium red; it is not inhibited by ouabain, oligomycin, sodium azide, 
fluoride or caffeine (see refs., Table 13). Like other enzymes, CaMgATP- 
ase of  erythrocytes requires the presence o f  phospholipids. The enzyme 
activity is reduced or lost after treatment with phospholipase A and C 
( C h a  et al. 1971; Q u i s t  and R o u f o g a l i s  1975; L u t h r a  et al. 1976a, b; 
R o n n e r  et al. 1977). The enzyme can be reactivated by addition of  phos- 
phatidyl serine or oleate ( R o n n e r  et al. 1977). Phospholipase D, however, 
does not  reduce the ATPase activity ( C h a  et al. 1971). The enzyme is pre- 
sumed to be embedded in an ring of  phospholipids whose fluidity influ- 
ences ATPase activity ( G a l o  et al. 1975;Ronner  et al. 1977;Str i t tmatter  
et al. 1979). 

Finally, many investigators have found that an activator protein cal- 
modulin stimulates the CaMgATPase activity from two- to fourfold. The 
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Table 13. Properties of erythrocyte CaMgATPase 
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Parameter Reference 

High-affinity site KCa 

Low-affinity site KCa 

Vm 

2.0 uM See Table 12 

% 100 ~M See Table 12 

10 nmol(mg prot)-I min-1 

Affinity ofATP KAT P 40 #M 

Q1 o 3.0-3.5 

Energy of activation 13-15 kcal/mol 

Stoichiometry a) t Ca/ATP 

Inhibitors 

Not inhibited by 

Depends on phospholipids 

Stimulated by calmodulin 

b) 2 Ca/ATP 

Lanthanum, ethacrynic 
acid, mersalyl, chlor- 
promazine, ruthenium 
red, tetracaine, dibucaine 

Ouabain, oligomycin, 
NaN~, fluoride, caffeine 

Schatzmann and Rossi 197 t ; 
Scharf and Foder 1978 

Wolf 1970; Sehatzmann 1975 

Lee and Shin 1969; Sehatzmann 
and Vineenzi t969 ;Schatzmann 
1970; Vineenzi 1971 

Lee and Shin 1969; Schatzmann 
1973 ; Quist and Roufogalis 
1975; Sarkadi 1977 

Schatzmann and Vineenzi 1969; 
Sehatzmann 1970; Vineenzi 
1971 ; Sehatzmann 1975 

Quist and Roufogalis 1975, 1977; 
Ferreira and Lew 1976; Sarkadi 
1977; Scharf and Foder 1978 

Sehatzmann and Vincenzi 1969; 
Vincenzi 1971 ; Weiner and Lee 
1972; Schatzmann 1975 ; Quist 
and Roufogalis 1975 ; Hinds et 
al. 1978 

Lee and Shin 1969; Schatzmann 
and Vineenzi 1969;Schatzmann 
1970, 1975;Sarkadi 1977 

Cha et al. 1971;Quist and 
Roufogalis 1975 ; Luthra et al. 
1976a, b;Ronner et al. 1977 

Bond and Clough 1973 ; Vincenzi 
and Farrance 1977; Jarrett and 
Penniston 1977; Quist and 
Roufogalis 1977; Gopinath and 
Vineenzi 1977; Hanahan et al. 
1978;Hinds et al. 1978; 
Sarkadi 1978 
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concentration of  this activator in intact erythrocytes is about 8 times that 
necessary to saturate the enzyme (Luthra et al. 1976a). It is nondialyzable 
and it is destroyed by trypsin although it is not degraded when intact ery- 
throcytes are exposed to trypsin (Bond and Clough 1973; Vincenzi and 
Farrance 1977). This suggests that the activator is located in the cell and 
acts by binding to the inner membrane surface (Vincenzi and Farrance 
1977). It is closely related to other activator proteins such as the calcium- 
dependent regulator of  cyclic nucleotide phosphodiesterase and skeletal 
muscle troponin-C (Jarrett and Penniston 1977; Gopinath and Vincenzi 
1977; Hinds et al. 1978; Schulman and Greengard 1978). These other 
modulator  proteins also activate the CaMgATPase activity of  erythrocytes 
(Gopinath and Vincenzi 1977) and the ATP-dependent calcium transport 
(Hinds et al. 1978). 

The ATP-dependent calcium transport and CaMgATPase of  erythro- 
cytes share many characteristics: (a) they have similar dissociation con- 
stants for calcium; (b) both require magnesium; (c) both are insensitive to 
ouabain; (d) both accept strontium instead of  calcium; (e) both are inhib- 
ited by the same concentration of  lanthanides; (f) they have the same opti- 
mal temperature; and (g) their nucleotide requirements are the same (Cha 
et al. 1971; Weiner and Lee 1972;Porzig 1972; Quist and Roufogalis 1977; 
Scharf and Foder 1978). For instance, phospholipase A and C inhibit both 
calcium transport and ATPase activity, while phospholipase D affects 
neither (Cha et al. 1971). Sodium and potassium stimulate a fraction of 
CaMgATPase in the presence of ouabain (Schatzmann and Rossi 1971; 
Bond and Green 1971;Bond and Clough 1973); however, calcium trans- 
port is not affected by the presence or absence of  sodium or the sodium 
concentration ratio across the plasma membrane (Schatzmann 1966, 1970; 
Schatzmann and Vincenzi 1969; Lee and Shin 1969; Schatzmann and 
Rossi 1971; Vincenzi 1971;Porzig 1972). There appears to be no Na-Ca 
exchange.in erythrocytes and the stimulation of CaATPase by sodium af- 
fects probably another enzyme that does not  pertain to calcium transport 
(Schatzmann and Rossi 1971;Schatzrnann 1975). Calcium transport in 
erythrocyte membrane vesicles has a KCa of  0.18 taM, a Vm of  0.9 nmol 
(mg protein) < min -1 , and a KAT P of  30--60 taM, and reconstituted vesic- 
les require the incorporation of  tipids (Ting et al. t 979; Yeung et al. t 979). 

Several investigators detected a low- and a high-affinity site of  the Ca- 
MgATPase for calcium (Schatzrnann and Rossi 1971 ; Quist and Roufogalis 
1975, 1977; Gopinath and Vincenzi 1977; Scharf and Foder 1978). Scharf 
and Foder (1978) presented evidence that the enzyme exists in two differ- 
ent and reversible states: (a) a resting state with low affinity for calcium 
(KCa = 30 taM), a Hill coefficient of  1, a low maximum velocity, and (b) 
an active state with high affinity for calcium (Kca = 1 taM), a Hill coeffi- 
cient greater than 1, suggesting a positive cooperativity of  calcium activa- 
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tion, and a high maximum velocity. The resting state corresponds to the 
enzyme free of the activator protein calmodulin, whereas the activator 
would be bound to the enzyme in the active state. Scharfand Foder  (1978). 
also showed that the shift from resting to active state occurs when the en- 
zyme is exposed to increasing calcium concentrations in the presence of 
the activator and the shift reaches 50% at 30/aM calcium. Conversely, the 
shift from active to resting state occurs at low calcium concentrations 
(50% shift at 0.5 /aM calcium) when the activator is released from the 
membrane. They propose that these two states of the enzyme represent a 
resting and an active state of the calcium pump actively extruding calcium 
from the interior of  the erythrocyte. A similar model has also been pro- 
posed by Lynch  and Cheung (1979). 

In other tissues, information concerning CaMgATPase-as related to 
ATP-supported calcium transport--is much more fragmentary (Table 14). 

Table 14. Kinetic parameters of ATP-dependent calcium transport  in cells and tissues 

KCa V m Reference 

(uM) nmol (mg prot)  -1 min -1 

Erythrocytes 2-3 - Schatzmann 1973 
1 - Ferreira and Lew 1976 

10 - Sarkadi 1978 
0.18 0.9 Ting et al. 1979; Yeung 

et al. 1979 

Kidney 19.4 
0.5 

Intestine 38 

Skeletal muscle 20 

1.2 Moore et al. 1974 
1.0 Gmaj et al. 1979 

2.7 Kurebe 1978 

Sulakhe et al. 1973 

Several Ca-activated ATPases described in kidney and intestine may be en- 
zymes different from the Ca-activated Mg-dependent ATPase of erythro- 
cytes that is characterized by its requirement for magnesium as well as for 
calcium. For instance Parkinson and Radde (1971) and Kinne-Saffran and 
Kinne (1974) described a CaATPase in kidney with a KCa greater than 
1 mM that is inhibited by magnesium or depressed by high concentrations 
of magnesium. Schatzrnann (1975) has suggested that such CaATPases 
could be identical with the protein spectrin adhering to the inner surface 
of some membranes and would not be related to calcium transport. Never- 
theless, several investigators have described enzymes or transport processes 
consistent with a CaMgATPase-driven calcium pump in kidney (Moore et 
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al. 1974; Gma] et al. 1979), intestine (Kurebe 1978; Ghi]sen and Van Os 
1979), brain or nervous tissues (Ohashi et al. 1970; Blitz et al. 1977; 
Rahamimoff and Abramovitz 1978), and lymphocytes (Pau et al. 1976). 
In brain and kidney they are not inhibited by ouabain and oligomycin 
(Blitz et al. 1977; Gma] et al. 1979); in muscle and kidney they are inhib- 
ited by lanthanum and butacaine (Sulakhe et al. 1973; Gma]et al. 1979); 
in kidney, muscle, and lymphocytes they have a KCa ranging between 0.5 
and 20 uM (Sulakhe 1973; Moore et al. 1974;Pau et al. 1976; Gma] et al. 
1979); in intestine, delipidation decreases their activity (Kurebe 1979) 
and in synaptosomes there is a parallelism between calcium transport and 
the enzyme activity (Rahamimoff and A bramovitz 1977, 1978). In vesicles 
prepared from renal plasma membrane, sodium inhibits the ATP-dependent 
calcium uptake (Moore et al. 1974; Gma] et al. 1979). Gma] et al. (1979) 
have proposed that sodium increases the backleak of  calcium from the 
vesicles through a Na-Ca exchange system, rather than inhibiting the ATP- 
dependent calcium transport directly. However, more evidence will be re- 
quired to firmly establish the existence of  a calcium pump dependent on a 
CaMgATPase similar to that of  erythrocytes in most of  these tissues. 

8.3.2 Nao-Activated Calcium Efflux in Squid Axons 

In 1958, Liittgau and Niedergerke (1958) reported that frog hearts de- 
polarized in high-KC1 media can be made to contract or to relax, respec- 
tively, by reducing or increasing the proportion of  Na in the surrounding 
fluids. In 1968,Reuter and Seitz (1968) observed that calcium effiux from 
heart muscle decreases 30% in Cao-free solutions, 35% in Nao-free solu- 
tions, and 80% in the absence of  Ca and Na in the incubation medium. 
Moreover, the calcium content  of  heart muscle increases in Nao-poor solu- 
tions and decreases again when Na is reintroduced in the extracellular 
fluids. Reuter and Seitz (1968) were the first to suggest a modified ex- 
change diffusion countertransport by which calcium could be transported 
out of  the cells in exchange for Nao against a large electrochemical gradi- 
ent without direct metabolic energy coupling. 

Similar observations were made in squid axons (Blaustein and Hodgkin 
1969). The giant axon of  the squid has been used extensively to study 
Na-Ca countertransport, and several reviews on the subject have been 
published (Baker 1972, 1978;Blaustein 1974;Brinley 1976;McNaughton 
1978; Requena and Mutlins 1979). These investigations have been perform- 
ed in a wide variety of  experimental conditions: (a) in intact axons and in 
axons poisoned with CN or other metabolic inhibitors; (b) in axons into 
which 4s Ca has been injected or in internally perfused axons; (c) with very 
high (> 1 gM), intermediate (0 .1-1 .0  t~M) or low intracellular free calci- 
um concentrations (< 0.1 t~M). The results obtained differ both quantita- 
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tively and qualitatively, depending on these conditions. The early investi- 
gations were usually done at very high Ca i and in axons poisoned with cy- 
anide (Blaustein and Hodgkin 1969;Blaustein 1974, 1976a, b; Blaustein 
et al. 1974; Blaustein and Russell 1975; DiPolo 1973 a, Mullins and Brinley 
1975). In these conditions, calcium efflux is extremely high and may ex- 
ceed the physiologic rates by one to two orders of  magnitude. In most con- 
ditions, however, three components o f  calcium efflux can be detected: (a) 
a Nao-activated calcium efflux, (b) a Cao-activated calcium efflux, and (c) 
a residual calcium efflux insensitive to the presence or the absence of cal- 
cium or sodium in the extracellular fluids. 

The Nao-activated calcium efflux has several characteristics, which are 
summarized in Table 15. At very high Cai (> 1/~M) calcium efflux is very 
high, up to 6 p/cs, and 60%-80% is Nao-dependent (Blaustein et al. 1974; 
Blaustein and Russel 1975;Blaustein 1977). The high rates observed are 
also due to the abnormally low concentrations of  Nai (5 raM) used in 
these experiments. At intermediate Cai (0 .1-1 .0  /~M) and with physiol- 
ogic Nai of  6 0 - 9 0  mM (Hinke 1961 ; Definer 1961 ; Brinley and Mullins 
1967), calcium efflux is much lower (< t p/cs) and much less dependent 
on Nao (DiPolo 1974, 1977, 1979;Blaustein andRussell 1975;Brinley et 
al. 1975; Requena 1978). At physiologically low Cai (< 0.1/~M), calcium 
efflux is practically insensitive to changes in Nao (Brinley et al. 1975; 
Mullins and Brinley 1975;DiPolo 1976, 1977, 1979). ATP increases the 
sensitivity of  the transport system to Nao; it decreases the apparent activa- 
tion constant KNa o from 150-300 mM (without ATP) to 4 0 - 8 0  mM 

(with ATP) (see Table 15 for references). In addition, ATP changes the 
shape of  the curve relating the Nao-dependent calcium efflux to the con- 
centration of  extracellular sodium: without ATP the activation curve is 
sigmoid with a Hill coefficient of  2 - 3 ,  while in the presence of ATP it ap- 
proximates a section of  a rectangular hyperbola (Blaustein 1974, 1977; 
DiPolo 1974;Baker and McNaughton 1976a; Baker 1978). 

Calcium efflux is also dependent on the concentration of free calcium 
in the axon. At low and intermediate Cai, calcium efflux is directly pro- 
portional to the Cai concentration and the slope of  the curve relating ef- 
flux and Cai is about 1 on a double logarithmic scale (DiPolo 1973a; 
Brinley et al. 1975). This relation and the absolute rates are the same 
wether ATP is present (DiPolo 1973a) or absent (Brinley et al. 1975). 
Calcium efflux ranges from 5 f/cs at 5 nM Cai to about 1 p/cs at Cai con- 
centrations close to 1 tsM. At high internal calcium concentrations, the 
slope relating calcium efflux and Cai is less than 1, and suggests the initial 
portion of  a saturation curve (DiPolo 1973a;Brinley et al. 1975). And in- 
deed, at high Cai, calcium efflux appears to plateau to a maximal velocity 
of about 2 p/cs (Blaustein 1977a). The KCai in these conditions depends 
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Table 15. Nao-dependent calcium efflux in squid axon 

A.B. Borle 

Reference 

Range of Ca efflux 0.005-5.0 p/cs 

Activated by Na o 
KNao(with ATP) 40-80  mM 

KNao (no ATP) 150-300 mM 

Stoichiometry 3 Nao/1 Ca i 
(no ATP) 

Activated by Ca i 

At high Ca i 
KCa i (with ATP) 0.75 uM 
KCa i (no ATP) 8 uM 

At intermediate and. 
low Cai 

Inhibited by Na i 
K I Na i (with or 

without ATP) 
ATP relieves Na i 
inhibition 

Activated by ATP 

Linear relationship 

30 mM 

KATP i 

Sensitive to the 
membrane 
PD (without ATP) 

0.3-0.5 mM 

Q10 2.3 -3  

Inhibited by lanthanum 

Not inhibited by ouabain 

DiPolo 1973; Blaustein and Russell 
1975; Brinley et al. 1975; Blaustein 
1977a 

DiPolo 1974; Baker and McNaugh ton 
1976a; Blaustein 1977; Baker 1978 ; 
Requena 1978 

Blaustein 1974; DiPolo 1974; Baker 
and McNaughton 1976a; Blaustein 
1977;Baker 1978 

Blaustein 1974, 1976;Requena 1978 

Blaustein 1976, 1977 
Blaustein and Russell 1975 ; Blaustein 

1976, 1977 

DiPolo 1973 ;Brinley et al. 1975 

Blaustein and Russell 1975 ; Blaustein 
1977;Requena 1978 

Requena 1978 

Baker and Glitch 1973;DiPolo 1974, 
1976, 1977; MuUins and Brinley 
1975 ; Baker and McNaughton 1976a; 
Blaustein 1977a;Requena 1978 

DiPolo 1974, 1976, 1977 

Brinley and Mullins 1974 ;Blaustein et 
al. 1974;Mullins and Brinley 1975; 
Blaustein and Russell 1975 ; Baker 
and McNaugh ton 1976a, b; Blaustein 
1976 

Luxoro and Yanez 1968;Blaustein 
and Hodgkin 1969;Baker 1972 

Baker 1972; Brinley et al. 1975 ; Baker 
and McNaugh ton 1978 

Blaustein and Hodgkin 1969; Baker 
1972; Blaustein 1974 
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on ATP. Without ATP, KCa i is about 8 pM (Blaustein and Russell 1975; 

Blaustein 1976, 1977) while in the presence of  ATP it drops to 0.75 t~M 
(BIaustein 1976, 1977). These two values should be regarded with caution, 
however, since all rates exceeding 2 p/cs have been ignored in the calcula- 
tions. Indeed, calcium efflux as high as 3 - 6  p/cs has been frequently re- 
ported, but discarded in the determination of  the kinetic parameters 
(Blaustein et al. 1974;Blaustein and Russell 1975;Blaustein 1977a). 

Calcium efflux is inhibited by internal sodium. At very high Cai, the 
inhibition by Nai is not  affected by ATP: the KI Nai is 30 mM with ATP 

(Blaustein 1977) or without ATP (Blaustein and Russell 1975). Blaustein 
(1977) proposed a competitive inhibition of  2 Nai and 1 Cai for a carrier 
site with two negative charges. However, at intermediate and low Cai, 
ATP relieves the inhibition produced by Nai (Requena 1978). Further- 
more, there is no significant difference between the extent of  the inhibi- 
tion produced by Na i at high or low concentrations of  intracellular ionized 
calcium (Requena 1978; Brinley et al. 1975). The fact that Cai does not  
affect K I Na i suggests a noncompetitive interaction in which a specific site 

on the carrier binds exclusively internal sodium, resulting in an inhibition 
of  calcium efflux (Requena 1978). Since the K of  activation by Nao is 
practically equal to the K of  inhibition by Nai, it appears that the postu- 
lated carrier has the same affinity for Na on either side of  the membrane, 
and Requena (1978) proposed that if one assumes a single carrier for cal- 
cium translocation, Na will activate calcium transport when bound to the 
opposite side o f  the membrane, while Na inhibits calcium transport when 
bound to the same side. 

ATP stimulates the Nao-activated calcium efflux (Baker and Glitch 
1973; DiPolo 1974, 1976, 1977; Mullins and Brinley 1975; Baker and 
McNaughton 1976a; Blaustein 1977; Baker 1978; Requena 1978). How- 
ever, if the intracellular sodium concentration is very low, ATP has no 
effect on the activation produced by Nao (Btaustein 1974;Requena 1978). 
As mentioned before, ATP shifts the curve relating the Nao-activated cal- 
cium efflux to Nao from a sigmoid shape to a simple Michaelis-Menten 
relationship (DiPolo 1974; Baker and McNaughton 1976a). The apparent 
activation constant of  ATP, KATPi , lies between 0.3 and 0.5 mM (DiPolo 
1974, 1976, 1977). At physiologically low Cai (< 0.1 pM) more than 95% 
of  the calcium efflux depends on ATP, while at high Cai only 50%-60% 
of the calcium efflux depends on ATP (DiPolo 1977). The ATP-dependent 
stimulation has an absolute requirement for intracellular Mg. Other high- 
energy phosphate compounds (UTP, GTP, CTP, UDP, ADP, AMP, cyclic 
AMP, and acetyl phosphate) are ineffective in supporting calcium efflux 
(Baker and McNaughton 1976a; DiPolo 1977). The compounds 2'deoxy- 
ATP and the hydrolyzable analog, ~,~-methylene ATP are able to activate 
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calcium efflux, while the nonhydrolyzable analog ~-methylene ATP com- 
petes with ATP for the activating site but is unable to activate calcium ef- 
flux (DiPolo 1977). From these data, one may conclude that ATP hydrol- 
ysis could be involved in calcium transport or at least that a phosphorylat- 
ing step in the activation of calcium efflux by ATP cannot be ruled out 
(Baker andMcNaughton 1976a;Baker 1976, 1978;DiPolo 1977). 

The Nao-activated calcium efflux is sensitive to the membrane poten- 
tial difference (Brinley and Mutlins t974; Blaustein et al. 1974; Mullins 
and Brinley 1975; Blaustein and Russell 1975; Baker and McNaughton 
t 976a, b ;Blaustein 1976). This could be expected in poisoned axons where 
the observed stoichiometry suggests an exchange of 3 Nao for 1 Cai, leav- 
ing one negative charge. Nao-activated calcium effiux should therefore be 
electrogenic (Brinley and Muttins 1974; Multins and Brinley 1975; Baker 
and MeNaughton 1976a, b). And indeed, a membrane depolarization in- 
hibits while a hyperpolarization stimulates calcium efflux in poisoned 
axons. The maximum sensitivity of calcium efflux to membrane potential 
is in the order of an e-fold increase in efflux for a 25 mV increase in mem- 
brane potential (Mullins and Brinley 1975). In the presence of ATP, how- 
ever, the stoichiometry is not 3/1 as indicated previously, and alterations 
in membrane potential have little effect on the Nao-dependent calcium ef- 
flux (Baker andMcNaughton 1976a, b;Baker 1976). 

Finally, calcium efflux from squid axons has been shown to have a Q10 
ranging from 2.3 to 3 (Luxoro and Yanez 1978;Blaustein and Hodgkin 
1969; Baker 1972). It is not inhibited by ouabain (Blaustein and Hodgkin 
1969;Baker 1972; Blaustein 1974) but it is inhibited by high concentra- 
tions of lanthanum (Blaustein and Hodgkin 1969; Baker 1972, 1976; 
Brinley 1975 ;Baker and MeNaughton 1978). 

The idea that the Nao-dependent calcium efflux was only one aspect of 
a more general scheme of a Na-Ca exchange is supported by the following 
observations reported in squid axons: (a) there is a Nao-dependent calcium 
influx since calcium influx is increased when the extracellular sodium con- 
centration is reduced (Baker et al. 1969; DiPolo 1979); (b) calcium influx 
also depends on the intracellular concentration of sodium since a rise in Nai 
stimulates calcium influx (Baker et al. 1969; DiPolo 1979); (c) there is a 
Cao-dependent sodium effiux since a fraction of sodium efflux is ouabain- 
insensitive and increases when Nao is replaced by lithium but only in the 
presence of extrace-tlular calcium (Baker et al. t979). This led to the pro- 
posal already considered by Reuter and Seitz (1968), that there is a com- 
mon carrier for sodium and calcium ions and that calcium can be trans- 
ported out of  the axon against a large electrochemical gradient by a mech- 
anism in which external sodium exchanges for internal calcium. In such a 
system, sodium ions would be moving downhill and would provide the 
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energy needed to extrude calcium (Baker et al. 1969; Blaustein and Hodg- 
kin 1979). 

Several models of  Na-Ca exchange have been offered. Blaustein (1976) 
proposed the model shown in Fig. 5. A carrier in the Y conformation is 
oriented with its Na-binding sites facing externally and Ca-binding site 
facing the axoplasm. In the Z form, the orientation of  the sites is reversed. 

Fig. 5. Calcium---sodium exchange model 
proposed by Blaustein for the squid axon 
(Blaustein 1976). Y is the carrier oriented 
with its Na-binding sites facing externally 
and Ca-binding sites facing the axoptasm. 
The Z form represents the carrier with the 
sites reversed. Both unloaded and fully 
loaded carriers (but not partially loaded 
ones) may be capable of undergoing site 
translocation. Reprinted with permission 
from Federation Proceedings 35:2574-  
2578 (1976) 
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Both unloaded and fully loaded carriers (but not  the partially loaded ones) 
are capable of  undergoing site translocation. This model fits the 3 Na ÷ for 
1 Ca ++ stoichiometry reported by Blaustein. Theoretically, if the calcium 
and sodium fluxes were tightly coupled, and  assuming 100% efficiency the 
energy dissipated in moving sodium into the cell could maintain the intra- 
cellular ionized calcium at around 300 nM. The exchange would be electro- 
genic and sensitive to the membrane potential. ATP would increase the 
affinity of  the carrier to Ca~ ÷, without affecting the maximal rate of  calci- 
um efflux, and would catalyze rather than energize the transport mechan- 
ism (Blaustein 1976). It should be noted that the model proposed by 
Blaustein demands 100% efficiency for the energy exchange process and 
that it is based on data obtained almost exclusively from perfused poison- 
ed axons with extremely high Cai and very low Nai. 

Mullins (1977) proposed another model based on more recent observa- 
tions obtained at intermediate or low intracellular free calcium concentra- 
tions, normal concentrations of  intracellular sodium, and with or without 
ATP (DiPolo t974, 1976, 1977;Requena et al. 1977;Brinley et al. 1975). 
The model shown in Fig. 6 also provides a coupling of  the electrochemical 
sodium gradient that energizes the efflux of  calcium. The carrier is assumed 
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to bind and to move simultaneously 4 Na ÷ inward and 1 Ca ++ outward. 
The binding of 4 Na to the carrier induces a calcium binding site on the 
opposite side of the membrane. The high affinity of the induced site for 
calcium would disappear upon dissociation of Na from the carrier. Trans- 
location requires that both sodium and calcium binding sites be fully oc- 
cupied. The exchange of 4 Na + for 1 Ca ++ would of course be electrogenic 
and sensitive to the membrane potential, as observed by several investiga- 
tors (Blaustein 1974; Brinley and Multins 1974; Mullins and Brintey 1975). 
ATP would increase the affinity of the carrier to sodium, reducing the 
KNao from 140 to 30 raM, as suggested by others (Blaustein 1977;Baker 
and MeNaughton 1976a). At equilibrium, the intracellular free calcium Cai 
could be brought as low as 1.5 nM. In these conditions the rate of calcium 
efflux would be 1/20th that of calcium influx, 1.5 vs 40 f/cs. Thus Cai 
would increase to achieve the steady-state value of 30 -50  nM, at which 
concentration calcium efflux would be equal to influx at a rate of about 
30 -40  f/cs (Mullins 1977). 

Oufside 
+4 Na +Ca +* 
• . N,.N~ N. Na N~N.~. No No N ,?~  No No 

+Co ++ N. Na / \ "No " '~4Na"  

Ins ide  

Fig. 6. Calc ium-sodium exchange model proposed by Mullins for the squid axon 
(Mullins 1977), showing the sequence of Na binding to the carrier, the induction of a 
Ca-binding site {2), the translocation (4), and the dissociation of Ca (6). As drawn, the 
scheme represents Ca efflux; on interchange of the labels 'outside'  and 'inside, '  it re- 
presents Ca influx. Reprinted with permission from the Journal o f  General Physiology 
70:687 (1977) 

In these two models the sodium electrochemical gradient provides the 
energy for calcium efflux, while ATP is assumed to catalzye the transport 
process by increasing the affinity of the carrier to sodium. However, the 
data are not unequivocal. Baker and his collaborators have reported that 
in intact, nonperfused, and unpoisoned axons calcium efflux was only 
reduced 25%-30% in calcium- and sodium-free seawater, whereas in a 
poisoned axon the residual efflux is a very much smaller percentage of the 
total efflux, and in absolute terms is usually smaller than the residual ef- 
flux from unpoisoned axons (Baker 1976;Baker and McNaughton 1976a). 
The residual efflux does not seem to be coupled to the movement of an- 
other ion but can be stimulated by ATP or inhibited by lanthanum and by 
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metabolic poisons (Baker and McNaughton 1978). Furthermore, in un- 
poisoned axons, alterations in membrane potential have little effect on the 
Nao-dependent calcium efflux (Baker and McNaughton 1976b). The po- 
tential sensitivity of both the Nao-dependent Ca efflux and the Cao-de- 
pendent Na efflux are found to be inuch too small to fit the 4 Na ÷ to 1 
Ca ÷+ exchange model (McNaughton 1978). Similar results have been ob- 
tained in perfused axons in which the intracellular free calcium concentra- 
tion is maintained at physiologic levels (< 100 riM). Even at intermediate 
Cai (--- 230 nM), Nao-dependent calcium efflux is only 6% of the control 
flux and in calcium- and sodium-free water, calcium efflux drops by only 
37% (Blaustein and Russell 1975).Mullins and Brinley (1975) also report- 
ed that in poisoned axons with internal ionized calcium of 10---70 riM, the 
removal of sodium or of both sodium and calcium from the extracellular 
fluids hardly affects calcium efflux. In these axons perfused with Ca-  
EGTA, part of  the calcium efflux could be due to leakage of the Ca-EGTA 
complex. However, when the values are corrected for leakage, calcium ef- 
flux is not depressed by Na-free or Na- and Ca-free external solutions, at 
physiologically low intracellular free calcium; in many cases, calcium ef- 
flux may even be higher, especially when lithium is substituted for Na 
(Mullins and Brinley 1975; Brinley et al. 1975). Comparable results were 
obtained by DiPoto (1977). 

Furthermore, in intact axons, ATP enhances calcium efflux four- to  
fivefold in sodium- and calcium-free seawater (Baker and McNaughton 
1976a), and in axons perfused with physiologically low free calcium solu- 
tions (60 nM) more than 95% of the calcium efflux depends on ATP (Di- 
Polo t 977). ATP is able to stimulate calcium efflux only in the presence 
of internal magnesium and only hydrolyzable analogs of ATP can support 
it; nonhydrolyzable analogs cannot activate calcium efflux (Baker and 
McNaughton 1976a;DiPolo 1977). 

On this basis, Baker et al. proposed that in intact unpoisoned axons, 
50%-90% of calcium efflux can proceed in the absence of external calci- 
um, sodium, and magnesium and may reflect an uncoupled extrusion of 
calcium (Baker 1976, 1978; Baker and McNaughton 1976a, 1978; 
McNaughton 1978). The remaining efflux is dependent on extracellular 
sodium. Whether ATP is metabolized is not established and there is no 
conclusive evidence yet that would permit us to decide whether in physiol- 
ogic conditions calcium efflux from squid axons derives its energy from 
ATP hydrolysis or from the sodium electrochemical gradient. The choice 
still exists between a model where the uphill transport of calcium is fueled 
by ATP and activated by Na binding to the carrier or a model where calci- 
um transport is energized by the sodium gradient and activated by ATP. It 
should be pointed out also that the Qlo of the process has been found to 
be high, between 2 and 3 (Luxora and Yanez 1968;Blaustein and Hodgkin 
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1969; Baker 1972; Btaustein and Oborn 1975), and that the metabolic 
energy necessary to maintain a very low intracellular free calcium is less 
than 1% of  the total energy output  of  the cell (see Sect. 7). Finally, DiPolo 
reported the possible existence of  a sodium-stimulated, ouabain-insensitive, 
magnesium-dependent ATPase, activated by calcium ions in the micromo- 
lar range in a highly purified membrane fraction of  lobster nerves (DiPolo 
1976, 1977). 

8.3.3 Cao-Activated Calcium Efflux in Squid Axons 

A Cao-dependent calcium effiux has been reported by many investigators 
(Blaustein and Hodgkin 1969; DiPolo 1974;Blaustein 1974, 1977a;Blau- 
stein et al. 1974; Blaustein and Russell 1975; Baker and McNaughton 
1976a, 1978; Baker 1978). In poisoned axons it represents about half the 
total calcium efflux (Blaustein and Hodgkin 1969;Blaustein and Russell 
1975 ;Baker and MeNaughton 1976a). In the presence of ATP, however, it 
is less than 10% of  the total efflux (Baker andMcNaughton 1978). Since 
calcium influx is also stimulated by raising intracellular calcium (Blaustein 
and Russell 1975;DiPolo 1979), Blaustein proposed that this represents a 
Ca-Ca exchange mediated by the same carrier as.the Nao-dependent calci- 
um effiux, sodium and calcium competing for the same carrier site: both 
have the same KCa i of 3 - 8  taM, both are stimulated by ATP, and both are 

inhibited by intracellular sodium or extracellular magnesium and strontium 
(Blaustein 1977). 

But this hypothesis is open to question, because Requena (1978) has 
conclusively shown that there is no significant difference between the de- 
gree of  inhibition produced by internal sodium at high or low concentra- 
tions of  intracellular free calcium. This suggests a noncompetitive interac- 
tion in which a specific site on the carrier binds exclusively to internal 
sodium and leads to an inhibition of  calcium efflux. Furthermore, DiPolo 
(1979) showed that in the absence of  intracellutar sodium there is no Cai- 
dependent calcium influx but there is a Cao-dependent calcium efflux, 
thus making a Ca-Ca exchange quite improbable. Finally, Baker and 
McNaughton (1978) showed that a large fraction of  the Cao-dependent 
calcium effiux in unpoisoned axons is transient and probably does not  re- 
flect calcium transport out of  the cell but rather a release of  calcium from 
binding sites external to the plasma membrane. The transient nature of  
this efflux and the fact that EGTA added to calcium-free media also pro- 
duces a transient rise in calcium effiux were already noticed by Blaustein 
(1977a). Baker and McNaughton (1978) conclude that three components 
of calcium effiux exist in squid axons: (a) an uncoupled extrusion of cal- 
cium, (b) an Nao-activated calcium efflux, and (c) a Cao-activated calcium 
efflux. In unpoisoned axons uncoupled extrusion of  calcium may predom- 
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inate and there is very little Cao-activated calcium efflux. In fully poisoned 
axons, uncoupled extrusion disappears and calcium effiux is activated 
either by external sodium or external calcium. 

8.3.4 Nao-Activated Calcium Efflux in Other Excitable Tissues 

Evidence for a Nao-activated calcium efflux is found in many other excit- 
able tissues (Table 16). The principal observation is that calcium effiux is 
depressed when extracellular sodium is replaced by substituting ions such 
as lithium or choline. But even in the total absence of extracellular sodium 
and calcium, there is still a significant residual calcium effiux, which may 
vary from 20% of the total efflux in cardiac muscle (Reuter and Seitz 
1968; Reuter 1974a), through 30%-60% in barnacle and in frog striated 
muscle (Russell and Blaustein 1974; Caputo and Bolafios 1978), to 70% in 
rabbit vagus nerve (Kalix 1971). Incubation in sodium-free media leads to 
an increased tissue calcium or an increased uptake of 4s Ca by brain tissue 
(Stahl and Swanson 1969, 1971, 1972; Cooke and Robinson 1971 ; Swan- 
son et al. 1974) or by cardiac muscle (Reuter et al. 1973;Reuter 1974a; 
Wendt and Langer 1977). In pinched-off presynaptic nerve terminals (syn- 
aptosomes) calcium influx is stimulated by reducing Nao and by increasing 
intracellular sodium (Nai); however, in the absence of Nai there is no stim- 
ulation of calcium influx by reducing Nao (Blaustein and Oborn 1975). 
These results suggest a competitive inhibition between Nao and Cao and 
the possible existence of a Ca-Na exchange. The relation between calcium 
efflux and Nao is sigmoid and may have a stoichiometry of 3 Na + for 1 
Ca ++ (Blaustein and Oborn 1975; Blaustein et al. 1977). A stimulation of 
calcium influx by a reduction in Nao or a rise in Nai is also observed in 
barnacle muscle (DiPolo 1973b) and in cardiac muscle (Reuter 1970; 
Glitsch et al. 1970). 

Furthermore, ouabain, which increases Nai, has been shown to increase 
cellular calcium in brain tissue (Stahl and Swanson 1969, 1971) and in 
cardiac muscle (Gorier and Holland 1964; Reuter 1974a; Wood and 
Schwartz 1978). Nao-activated calcium efflux may be important to main- 
tain a low cytosolic free calcium in cardiac muscle when calcium is releas- 
ed from intracellular stores. In this tissue, contraction is a good indication 
of a rise in calcium activity, and both caffeine and cyanide increase calci- 
um efflux without inducing contraction in the presence of a normal con- 
centration of Nao. Without Nao, however, calcium efflux is not increased 
and a contraction occurs (Jundt et al. 1975). In cardiac muscle contrac- 
tion may be a function of Cao/[Nao] 2 (Liittgau and Niedergerke 1958; 
Niedergerke 1963; Reuter and Seitz 1968; Reuter 1970; Reuter et al. 
1973). However, Miller and Moiescu (1976) showed that the relation does 
not hold true at very low Nao concentrations when contraction is simply a 
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Table 16. Nao-dependent calcium efflux reported in excitable tissues 

A.B. Bofle 

Tissues Reference 

Neural tissues 
Squid axons 

Crab nerve 

Rabbit vagus nerve 

Brain slices 

Nerve cells 

Synaptosomes 

See Table 15 

Baker and Blaustein 1968 

Kalix 1969, 1971 

Stahl and Swanson 1961, 1971, 1972; Tower 1968; Cooke 
andRobinson 1971 

Stallcup 1979 

Blaustein and Weismann 1970;Swanson et al. 1974; 
Blaustein and Oborn 1975 ; Blaustein and Ector 1976; 
Blaustein et al. 1977 

Muscles 
Barnacle muscle 

Skeletal muscle 

Cardiac muscle 

Ashley et al. 1972;DiPolo 1973b;Russetl and BIaustein 
1974, 1975;DiPolo and Caputo 1977;Ashley and Lea 
1978 

Cosmos and Harris 1961 ; Caputo and Bolanos 1978 

Liittgau and Niedergerke 1958; Niedergerke 1963; R euter 
and Seitz 1968; Gtitseh et al. 1970;Reuter 1970, 1974; 
Kutzung et at. 1973;Reuter et al. 1973;Fundt et al. 
1975 ; Miller and Moieseu 1976; Fundt and Reuter 1977; 
Wendt and Langer 1977; Wood and Schwartz 1978 

Arterial smooth muscle Reu ter et al. 1973 ; Brading 1973 ; Raeymaekers et al. 1973 ; 
Van Breemen et al. 1973, 1978; Burton and Godfraind 
1974 ;Droogmans and Casteels 1979 

Uterine muscle Van Breemen et al. 1966, 1978 

+ 

function of  Cao, and they propose a competit ion between 4 Nao and 2 
Ca*o + to account for those results. There is also some evidence for a Nao- 
activated calcium efflux in smooth muscle (Brading 1973: Reuter  et al. 
1973; Van Breemen et al. 1973;Burton and Godfraind 1974): in sodium- 
free media, tissue calcium increases, calcium influx rises while calcium ef- 
flux falls (Reuter et al. 1973). When intracellular sodium is raised, tissue 
calcium also increases. These changes are not observed, however, if  the 
lanthanum method is used to displace extracellulary bound calcium (Van 
Breemen et al. 1973; Burton and Godfraind 1974). And indeed, Raey- 

maekers et al. (1973) showed that  much,  if not all, of  the N a - C a  exchange 
could be explained by an exchange with extracellular binding sites of  
smooth muscle. Furthermore,  in aorta smooth muscle the calcium gained 
by the tissue is not  extruded when the sodium gradient is restored (Van 
Breemen et al. 1973). Van Breernen et al. (1973, 1978) conclude that  in 
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this tissue at least the calcium gradient does not depend on the sodium 
gradient. 

Droogmans and Casteels (1979) also dispute the existence of a Na-Ca 
exchange in the rabbit ear artery smooth muscle. Their data indicate that: 
(a) the contraction induced by Nao-free solution is due to an increased 
calcium influx that is not mediated by a carrier mechanism exchanging 
internal sodium for external calcium; (b) the relaxation observed when 
extracellular calcium is reduced cannot be powered by the sodium gradient 
since it occurs in Nao-free media; (c) reducing Nao to zero during 45Ca ef- 
flux in Cao-free, EGTA-containing solutions does not affect the rate of 
calcium efflux; (d) if calcium is present in the extracellular fluids, lowering 
Nao increases calcium efflux; (e) calcium efflux is not sensitive to large 
changes in the membrane potential difference; and (f) the extrusion of 
45 Ca after its release from intracellular stores by histamine or FCCP is not 
inhibited in tissues in which the Na gradient is reduced or eliminated by 
exposure to Nao-free solutions (Droogmans and Casteels 1979). In uterine 
muscle, tissue calcium is not increased by ouabain or by decreasing exter- 
nal sodium to 10 mM, and there is no evidence that sodium competes 
with calcium for inward transport (Van Breemen et al. 1966, 1978). How- 
ever, since metabolic inhibitors significantly increase uterine muscle calci- 
um, Van Breemen et al. (1966) conclude that calcium efflux is probably a 
metabolically dependent, active transport process. Simonsen and Christof- 
fersen (1979) report also that in Helix pomatia neurons there is no signif- 
icant Na-Ca exchange: substitution of sodium by lithium, choline or Tris 
causes no change in intracellular free calcium as measured by a pCa elec- 
trode; furthermore, the rate of rise in cytosolic free calcium induced by a 
mitochondrial inhibitor such as azide is not affected by the external sodi- 
um concentration. Finally, it has been shown that, as in squid axon, ATP 
stimulates calcium efflux in sodium- and calcium-free media both in barn- 
acle muscle (DiPolo and Caputo 1977) and in cardiac muscle (Jundt and 
Reuter 1977). Whether ATP increases the affinity of the postulated carrier 
to calcium or to Nao or whether it provides energy to the system is un- 
known. 

8.3.5 Nao-Activated Calcium Efflux in Nonexcitable Tissues 

Early investigations on liver had shown that slices incubated in choline 
chloride have a higher calcium content and that calcium extrusion is inhib- 
ited in low sodium media (Judah andAhmed 1963, 1964; Wallach 1966). 
However, Van Rossum (1970) showed that net extrusion of calcium from 
liver is not inhibited by high intracellular sodium and is not affected by 
the sodium gradient. Furthermore, ouabain has no effect on liver calcium 
content or fluxes (Van Rossum 1970; Van Rossum et al. 1971). The uni- 
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directional effiux of 4SCa and the net extrusion of calcium from liver cells 
are not prevented by ouabain or by a sodium-free medium but they are 
reversibly inhibited by anaerobiosis and by respiratory inhibitors, and 
they depend on external magnesium, suggesting that calcium extrusion is 
metabolically driven and independent of sodium (Cittadini and Van Ros- 
sum 1978). 

Similarly, in kidney slices, early results from H6fer and Kleinzeller 
(1963c) indicated that the tissue calcium barely rises in sodium-free media. 
Later work showed that decreasing extracellular sodium from 145 mM to 
100, 50 or 0 mM (with the substituting ions being either choline or TEA) 
does not affect at all the total slice calcium, the total exchangeable calci- 
um or the calcium content of isolated renal mitochondria, and ouabain is 
also without effect (Borle 1979). However, the steady-state exchange of 
calcium across the plasma membrane is depressed in low-Nao or in sodium- 
free media (Borle t979); these results suggest a possible activation of the 
calcium carrier by sodium but do not indicate the presence of a Na-Ca 
exchange. In Ehrlich ascites tumor cells, there is no increase in calcium up- 
take if extracellular sodium is replaced by lithium, and calcium loaded 
cells can extrude all their accumulated calcium in sodium-free media 
(Cittadini et al. 1973, 1977). In fibroblasts, variations in extracellular or 
intracellular sodium do not affect the calcium fluxes and the calcium con- 
centrations of the cells (Lamb and Lindsay 1971). In the adrenal medulla 
calcium efflux drops 80% on sodium- and calcium-free media, but in the 
presence of extracellular calcium the substitution of Nao by lithium, chol- 
ine or sucrose actually stimulates calcium effiux (Rink 1977 ;Aguirre et al. 
1977). There is an increased 4SCa uptake in Nao-free media, but only at 
extracellular calcium concentration 3 times the normal (3.6 mM Cao) and 
the actual net gain of tissue calcium is very small; ouabain is without effect 
(Rink 1977). Thus, in adrenal medulla there may be a Ca-Ca exchange 
but the Nao-activated calcium efflux is not dependent on the sodium grad- 
ient; it is presumably fueled by ATP (Rink 1977). In the pancreas, 4SCa 
uptake is stimulated in sodium-free media (Hettman et al. 1971;Case and 
Clausen 1973; Schulz et al. 1977). Nevertheless, calcium efflux increases 
rather than decreases in the absence of extracellular sodium, even at very 
low extracellular calcium (Case and Clausen 1973). Similarly in the salivary 
gland, acetylcholine can stimulate calcium efflux to its full extent, even in 
sodium- and calcium-free media (Pors Nielsen and Petersen 1972). These 
results preclude the existence of a Na-Ca exchange mechanism in this 
tissue. In mammary tumor cells, ouabain has no effect on their calcium 
content (Van Rossum et al. 1971) and in platelets there is no increase in 
4SCa uptake if extracellular sodium is reduced from 150 to 15 mM (Steiner 
and Tateishi 1974). Finally, it is well documented that there is no Na-Ca 
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exchange in erythrocytes (Schatzmann 1966, 1970;Lee and Shin 1969; 
Sehatzmann and Vincenzi 1969; Schatzmann and Rossi 1971 ). 

In conclusion, a Nao-dependent calcium efflux is observed in many dif- 
ferent tissues. A broad distinction can perhaps be made between excitable 
(muscle and nerves) and nonexcitable tissues. In the former group a N a -  
Ca exchange mechanism is theoretically possible and if the stoichiometry 

÷ 

was 4 Nao to 1 Ca~ ÷ this exchange could maintain a very low intracellular 
free calcium. However, such a stoichiometry has never been observed ex- 
perimentally. In the squid axon the cytosolic free calcium is very low 
( 3 0 - 5 0  riM) and the calcium influx and efflux are very small, in the range 
of  40 f/cs (DiPolo 1977, 1979;Requena et al. 1977;Mullins 1977;Requena 
1978). In these conditions, calcium effiux is not  depressed but sometimes 
increased by sodium- and calcium-free media (see above). On the other 
hand, when cytosolic free calcium rises by two orders of  magnitude, as in 
muscle, a Na-Ca exchange may contribute a significant fraction of  calcium 
efflux. In nonexcitable cells a Nao-dependent calcium effiux is often ob- 
served, but the consensus is that it is not  a Na-Ca exchange mechanism 
and the calcium gradient across the plasma membrane is not  dependent on 
the sodium gradient. Calcium efflux is probably activated by extracellular 
sodium but energized by ATP. 

8.4 Calcium Influx 

8.4.1 Calcium Uptake and Metabolic Inhibitors 

In all cells the thermodynamic conditions are such that calcium influx 
across the cell plasma membrane occurs down a steep electrochemical 
gradient and does not  require metabolic energy. Nevertheless, in several 
early papers Hdfer and Kleinzeller (1963 a-c)  and Janda (1969) concluded 
that calcium influx into kidney cells requires metabolic energy. Their con- 
clusions were based on the facts that (a) the calcium concentration of  kid- 
ney slices was higher than the incubating medium calcium concentration 
and (b) metabolic inhibitors such as DNP and oligomycin markedly de- 
press the uptake of  calcium or 4s Ca by the slices. 

However, these authors ignored several facts. First, it is now clear that 
the measurements of  cellular calcium by chemical analysis or by kinetic 
analysis of  tracer movements do not  measure the actual ionized cytosolic 
calcium, which is definitely not  higher than the extracellular free calcium 
concentration. Second, in their experiments with metabolic inhibitors 
they were misled by their experimental design: indeed they first 'leached' 
tissue slices at 0°C and in Ca-free media, depleting the cells and their intra- 
cellular organelles (mitochondria and endoplasmic reticulum) of  calcium. 
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Then they incubated these calcium-depleted slices at 25°C in a medium 
with a calcium concentration of  2.4 mM which is twice the physiologic 
concentration. In these conditions there is a net shift of  calcium into the 
slices and the system is not  at steady state since the cells, the endoplasmic 
reticulum, and the mitochondria reaccumulate calcium. In nonsteady state 
and with cells accumulating calcium the uptake of  4°Ca or 4SCa reflects 
not  only calcium influx across the plasma membrane but  also calcium up- 
take by endoplasmic reticulum and mitochondria, which is metabolically 
depen2ent. Thus, when 4SCa uptake is measured in a nonsteady state, 
when there is a net accumulation of  calcium by the cells or by the tissues, 
the inhibition of  calcium uptake observed with various metabolic inhibitors 
is most likely due to a depressed calcium accumulation in intracellular 
organelles that requires metabolic energy and not  to an inhibition of calci- 
um influx into the cell. 

To illustrate this important point, Figs. 7 and 8 show the effects of  
metabolic inhibitors on 4s Ca uptake by kidney cells in steady state (no net 
gain of  calcium) and nonsteady state (net gain of  calcium). It is clear that 
in the former case metabolic inhibition does not  depress calcium uptake, 
in fact isotopic equilibrium is reached more quickly, while in the latter 
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Fig. 7. Effect of a metabolic inhibitor, 10 -4 M, DNP, on 4sCa uptake in steady-state 
conditions. Experiments performed with cultured monkey kidney ceils in conditions 
described in Fig. 4. Note the stimulation of calcium uptake by DNP, at steady state. 
Reproduced from Borle (1981), with permission from Cell Calcium 
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case there is a marked inhibition of uptake. Most of the time, when meta- 
bolic inhibitors (DNP, IAA) are reported to depress calcium uptake, the 
experimental design indicates that the cells were not at steady state (Table 
17): they were preincubated at low temperature or in calcium-free media 
or uptake was measured in media containing unphysiologically high calci- 
um or phosphate concentrations leading to a net shift of calcium into the 
cells (Hdfer and Kleinzeller 1963a-c, Janda 1969; Terepka et al. 1969; 
Papworth and Patrick 1970; Cittadini et al. 1971 ; Whitney and Sutherland 
1972; Ewe 1972;Swanson et al. 1974;Dziak and Brand 1974a, b; Charlton 
and Wenner 1978). However, when the cells are preincubated in physiol- 
ogic media before the 4SCa uptake determination, or when they are at 
steady state, DNP, IAA or other metabolic inhibitors do not affect calci- 
um uptake (Table 17) (Hdfer and Kleinzeller 1963a; Levinson 1967;Borle 
1969a; Levinson and Blumenson 1970; Stahl and Swanson 1971;Lamb 
and Lindsay 1971; Whitney and Sutherland 1972; Miller and Nelson 1977). 
In some cases, metabolic inhibitors stimulate 4SCa uptake (Wallach 1966; 
Van Rossum 1970; Hetlman et al. 1971; Stahl and Swanson 1971; Swanson 
et al. 1974; Borle, unpublished). A possible explanation could be that in 
certain conditions these inhibitors increase the cytosolic free calcium by 
depressing the metabolically dependent transport of calcium into intra- 
cellular organelles (most likely mitochondria). Since a rise in cytosolic free 
calcium has been shown to stimulate calcium influx in several cell systems 
(see below), calcium uptake could thus be enhanced. 
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Fig. 8. Effect of a metabolic inhibitor, 10 -4 M, DNP, on 4SCa uptake in nonsteady- 
state conditions. Experiments performed with cultured monkey kidney cells in the 
conditions described in Fig. 4. Note the inhibition of calcium uptake by DNP at non- 
steady state. Reproduced from Borle (1981), with permission from Cell Calcium 
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Table 17. Effects of metabolic inhibitors on 4 s Ca uptake 

A.B. Borle 

Tissue Inhibitor Reference 

Inhibition of 4 s Ca uptake (nonsteady state) 
Kidney DNP, oligomycin 

Ehrlich ascites cells 
Brain synaptosomes 
Lymphocytes 
Chorioallantoic membrane 
Bone cells 

Intestine 

TTFB 
DNP, antimycin A 
DNP, IAA 
DNP, oligomycin 
DNP, IAA, oligomycin, 

antimycin A 
DNP, IAA, CN 

No inhibition (steady state) 
Kidney DNP 
Ehrlich ascites cells DNP 
Brain slices DNP 
Fibrobtasts DNP, IAA 
HeLa cells DNP 
Parotid gland CN 

Stimulation 
Kidney cells 

Liver slices 

DNP, oligomycin, 
warfarin 

CN, IAA 

Pancreatic islets DNP 
Brain slices IAA, CN 
Brain synaptosomes Oligomycin 

Hdfer and Kleinzeller 1963 a, b; 
Janda 1969; Borle, unpublished 

Cittadini et al. 1971 
Swanson et al. 1974 
Whitney and Sutherland 1972 
Terepka et al. 1969 
Dziak and Brandt 1974 

Papworth and Patrick 1970; 
Ewe 1972 

Hdfer and KIeinzeIter t 963a 
Levinson and BIumenson 1970 
Stahl and Swanson t 970 
Lamb and Lindsay 1971 
Borle 1969 
Miller and Nelson 1977 

Borle, unpublished 

WaUach et at. 1966; Van Rossum 
1970 

Hellman et al. 1971 
Stahl and Swanson 1971 
Swanson et al. 1974 

Two main mechanisms for calcium influx into cells have been postulat- 
ed (a) a voltage-independent transport and (b) voltage-dependent calcium 
influx through 'calcium channels.' 

8.4.2 Voltage-Independent Carrier-Mediated Calcium Influx 

The steady-state calcium uptake or influx is a function of  the extracetlular 
calcium concentration and in nonexcitable tissues it is a saturable process, 
indicating that calcium transport into the cell is a carrier-mediated mecha- 
nism. Table 18 presents the KCao and the Vm obtained in eight different 

cell types. Excluding the values published by Janda (1969), which are 1 -2  
orders of  magnitude larger than all others, the average Kea is about 0.5 mM 
and the Vm 170 pmol mg -1 protein min -1. In squid axons, however, cal- 
cium influx is linear up to an external calcium concentration of 20 mM 
(Hodgkin and Keynes 1957; Rojas and Taylor 1975;Baker andMcNaugh- 
ton 1976a; DiPolo 1979). Nevertheless, the magnitude of  calcium influx 
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Table 18. Kinetic parameters of calcium influx in different cells 
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Tissue KCa Vm Reference 

(raM) [pmol (rag prot) -1 min -1 t 

Kidney slices 3.2 10-400 
Kidney slices 0.4 190 
Kidney cells 0.37 130 
Pancreas 0.55 91 
Bone cells 0.4 a _ 
Parotid gland 0.5 a 
Intestine 1.00 - 
Intestine 0.59 - 
Intestine 1.15 190 a 
Fibroblasts 0.3 
Synaptosomes 0.2 250 a 
Synaptosomes 0.8 
Lymphocytes 0.4-1.0 - 

Mean 0.8 +, 0.22 175 +- 23 

Janda 1969 
Uehikawa and Borte, unpublished 
Borte 1970 
Kondo and Sehulz 1976b 
Dziak and Brand 1974b 
Miller and Nelson 1977 
Walling and Rothman 1969 
Walling and Rothman 1970 
Papworth and Patrick 1970 
Lamb and Lindsay 1971 
Blaustein and Oborn t975 
Blaustein 1975 
Whitney and Sutherland 1973 

a Estimated from published data. 

in mammalian cells and in squid axons is practically identical, 3 0 - 4 0  f/cs, 
when they are incubated in their respective physiologic extracellular calci- 
um concentrations (Requena et al. 1977;Requena 1978;DiPolo 1979; see 
also Table 9). The characteristics of  calcium influx are not strikingly dif- 
ferent in excitable and nonexcitable tissues, as shown in Table 19. 

In excitable tissues calcium influx is dependent on the extracellular 
sodium concentration. Lowering Na o stimulates calcium influx in squid 
axons (Baker et al. 1969; Baker 1972; Blaustein 1974; Blaustein et al. 
1974; Blaustein and Russell 1975;DiPolo 1979). It stimulates 4S Ca uptake 
in synaptosomes and in other neural tissues (Baker and Blaustein 1968; 
Blaustein and Wiesman 1970;Stahl and Swanson 1969, 1971, 1972; Cooke 
and Robinson 1971; Swanson et al. 1974; Blaustein and Oborn 1975), 
barnacle, cardiac and smooth muscle (Reuter t970; Glitsch et al. 1970; 
Reuter et al. 1973;DiPolo 1973b; Van Breemen et al. 1973; Droogmans 
and Casteels 1979). Low Nao also stimulates 4SCa uptake in adrenal 
medulla (Rink 1977; Aguirre et al. 1977) and pancreas (Case and Clausen 
1973 ; Sehulz et al. 1977). The stimulation of  calcium influx is particularly 
evident when Li is substituted for Na, and Li itself may promote calcium 
entry into the celt (Baker et al. 1969; Baker t972;  Van Breernen et al. 
1973; Blaustein and Russell 1975; Brinley 1968). The relation between 
Nao and calcium influx is not  a simple one. Indeed, in squid axons, increas- 
ing Nao from 0 to 100 mM activates calcium influx and only higher con- 
centrations o f  Nao inhibit it (Baker et al. 1969;Baker 1972). This has also 
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Table 19. Characteristics of  calcium influx in excitable and nonexcitable cells 

Reference 

Squid axons and other excitable tissues 
Resting influx: 3 0 - 4 0  f/cs Requena et al. 1977;Requena 1978; 

DiPolo 1979 

Cao-dependent: influx linearly related 
to Ca o 

Hodgkin and Keynes 1959;Ro]as and 
Taylor 1975; Baker and MeNaugh ton 
1976a; DiPoto 1979 

Nao-dependent:  low Na o stimulates 
In squid axon 

In synaptosomes and brain tissue 

In muscle 

Baker et al. 1969; Baker 1972; Blaustein 
1974 ;Blaustein et al. 1974 ;Blaustein 
and Russell 1975 

Baker and Blaustein 1968; Blaustein and 
Wiesman 1970; Stahl and Swanson 1969, 
1971, 1972; Cooke and Robinson 1971 ; 
Swanson et al. 1974; Btaustein and 
Oborn 1975 

Reuter 1970; Glitsch et al. 1970;Reuter 
et al. 1973;DiPolo t973b;  Van Breemen 
et al. 1973;Droogmans and Casteels 1979 

Lio-dependent: Li stimulates Baker et al. 1969;Baker 1972; Van 
Breemen et al. 1973 ; Blaustein and 
Russell 1975 ; Brinley 1978 

Ko-dependent:  high K stimulates Hodgkin and Keynes 1957;Baker 1972; 
Blaustein et al. 1972, 1977; Van 
Breemen et aL 1973 ; Blaustein and 
Ector 1975 

pH-dependent:  low pH inhibits, high 
pH stimulates 

Morgenstern et al. 1972; Van Breemen et 
al. 1972, 1973 ; Blaustein and Oborn 
1975 

Nai-dependent: high Na i stimulates 
KNa i = 5 0 - 6 0  mM 

Baker et al. 1969;Baker 1972;Blaustein 
et al. 1974;Blaustein and Russell 1975; 
DiPolo 1973a, 1979;Blaustein and 
Wiesman 1970 

ATPi-dependent: ATP stimulates 
KATPi = 0.2 mM 

Cai-dependent: high Ca i stimulates 

DiPoto 1979 

Blaustein and Russell 1975 ; DiPolo 1979 

Nonexcitable tissues 
Resting influx: 14 -77  f/cs or 

4 0 - 1 4 4  pmot 
(mg prot)  -~ min -~ 

See Table 9 

See Table 11 

Cao-dependent: Michaetis-Menten kinetics 
KCa o = 0 . 2 - 1 . 0  mM 
V m = 91 - 250 f/cs 

See Table 17 
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Table 19 (continued) 
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Reference 

Nao-dependent: possible (pancreas, 
adrenals) 

doubtful (kidney, 
cells, platelets, 
erythrocytes, 
fibroblasts) 

pH-dependent: tow pH inhibits 
high pH stimulates 

Cai-dependent: high Ca i stimulates 

Hellman et al. 1971;Case and Clausen 
1973;Sehulz et al. 1977;Rink 1977; 
Aguirre et al. 1977 

H6 fer and Kleinzelter 1963c; Sehatzmann 
1966, 1970; Schatzmann and Rossi 
1971 ; Lamb and Lindsay 1971 ; 
Cittadini et al. 1973, 1977; Steiner and 
Tateishi 1974 ;Borle 1979 

Wallaeh et al. 1966; Lamb and Lindsay 
1971 ; Rorive and KleinzelIer 1972; 
Whitney and Su therland 1973; Steiner 
and Tateishi 1974;Forman et al. 1977; 
Studer and Borle 1979 

Borle and Anderson 1976 

been observed in kidney cells, where lowering Nao from 140 to 0 mM de- 
creases the steady-state exchange of calcium across the plasma membrane 
without increasing the calcium concentration of the tissue (Borle 1979). 

Increasing the extracellular K concentration, which depolarizes the 
membrane, stimulates calcium influx in squid axons, crab nerves, synapto- 
somes, and smooth muscle (Hodgkin and Keynes 1957;Baker 1972;Blau- 
stein et al. 1972, 1977; Van Breemen et al. 1973; Blaustein and Ector 
1975). This increased calcium influx could very well occur through the 
calcium channels that are postulated to exist in excitable tissues (see be- 
low), although no clues are given in these published reports. 

Calcium influx is also influenced by ionic composition of the intra- 
cellular phase. An increased intraceUular sodium stimulates calcium influx 
in squid axons (Baker et al. 1969; Baker 1972; Blaustein et al. 1974; 
Blaustein 1974; Blaustein and Russell  1975; DiPolo 1979), in synapto- 
somes (Blaustein and Wiesmann 1970), and in barnacle muscles (DiPolo 
1973b). DiPolo (1979) found that, in squid axons, the constant of activa- 
tion KNai is 50-60  mM, but the sensitivity of calcium influx to Nai is 
greatest when Cai is elevated and is practically nil at very low Cal. Calcium 
influx is also dependent on the intracellular concentration of ATP (KATPi 

= 0.2 raM) and on calcium KCai = 0.6 pM). DiPolo (1979) proposed that 

calcium influx into squid axon may consist of two separate components: 
one is dependent on Nai, on ATP, and activated by Cai, and the other per- 
sisting in the absence of Nai, Cai, and ATPi. The former could be part of a 
Na-Ca exchange while the other would be an uncoupled passive pathway. 
DiPolo points out that under physiologic conditions (Cai = 60 nM, Nai = 
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30 mM), calcium influx into squid axons occurs mostly through the un- 
coupled passive mechanism and not through a Na-Ca exchange. His con- 
clusions are supported by Droogmans and Casteels (1979), who state that 
the results they obtained in smooth muscle, as already mentioned above, 
do not fit ha with the Na-Ca exchange hypothesis but are consistent, 
nevertheless, with an effect of  the Na gradient on the passive calcium in- 
flux. There is little direct evidence of the role of Nai in nonexcitable tis- 
sues; however, the fact that ouabain does not increase calcium influx or 
4SCa uptake in liver (Van Rossum 1970), in kidney (Borle 1979), and in 
adrenal medulla (Rink 1977) suggests that the modulation of calcium 
fluxes by Nao or Nai does not represent a Na-Ca exchange mechanism in 
these tissues. 
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Fig. 9. Activating effect of internal calcium on the Nai-dependent Ca influx in the 
squid axon. Ordinate: mean Nai-dependent Ca influx in p/cs. Abscissa: internal ionized 
calcium in micromolar. All the axons were dialyzed with an internal medium contain- 
ing 1 mM ATP and 70 mM Na i. Extracetlular calcium Ca o = 10 mM; total EGTA = 
0 .5-1  mM. Reproduced from DiPoto (1979), with permission from the Journal o f  
General Physiology 

One of the most intriguing aspects of calcium influx is its activation by 
intracellular calcium (Fig. 9). A Cai-activated calcium influx has been re- 
ported in excitable tissues such as the squid axons (Blaustein and Russell 
1975 ; DiPolo 1979) and in nonexcitable tissue such as kidney (Borle and 
Anderson 1976). A more indirect evidence of such an activation is the in- 
creased calcium influx observed when inhibitors of calcium uptake into 
mitochondria or uncouplers are present in liver (Wallach 1966; Van Ros- 
sum 1970), kidney (Borle, unpublished), pancreas (Hellman et al. 1971), 
and neural tissues (Stahl and Swanson 197t;Swanson et al. 1974), where 
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the cytosolic free calcium can be assumed to be elevated. DiPolo (1979) 
reported that, in squid axons dialyzed without internal sodium, the Cai 
activation of  calcium is abolished, whereas Cao-activated calcium effiux is 
still present; he concludes that since there is no clear correlation between 
the inward and outward movements of  calcium this stimulation of  calcium 
influx does not  represent a Ca-Ca exchange. DiPolo postulates that Cai 
activates the influx of  calcium rather than exchanges with Cao. 

Finally, the extracellular pH also markedly affects calcium influx, the 
4SCa uptake and, consequently, the calcium content  of  tissues. A low pH 
depresses calcium uptake and the total cell calcium while a high pH does 
the reverse. This effect has been observed in liver (Wallach et al. 1966), 
kidney (Rorive and Kleinzeller 1972; Studer and Borle 1979), fibroblasts 
(Lamb and Lindsay 1971), mast cells (Foreman et al. 1977), lymphocytes 
(Whitney and Sutherland 1973), platelets (Steiner and Tateishi 1974), 
cardiac muscle (Morgenstern et al. 1972), smooth muscle (Van Breemen et 
al. 1972, 1973), and synaptosomes (BIaustein and Oborn 1975). No direct 
measurement o f  a pH effect on calcium influx in squid axon has been pub- 
lished, but Baker and McNaughton (1977) reported that a low pH de- 
presses the Cao-dependent Na efflux linked to calcium influx. The extra- 
cellular pH (pH e) may not  be the primary factor, but rather the shift in 
intracellular pH (pHi) induced by a change in pHe. Indeed, in kidney cells, 
low pH i inhibits and high pHi stimulates calcium influx and uptake even 
when the extracellular pH is maintained at the normal value of  7.4 (Studer 
andBorle 1979). 

8.4.3 Calcium Channels and Calcium Currents 

Calcium influx can take place through postulated channels in nerves and 
muscles of  many invertebrates and vertebrates (Table 20). Several recent 
reviews have been published on the subject (Hagiwara 1973;Reuter 1973, 
1979; Trautwein 1975; Vassalle 1979). This type of  calcium influx 
through the plasma membrane has been called calcium current, calcium 
spike, late current, slow inward current, slow channel or calcium channel. 
It is voltage-dependent, and by definition electrogenic. This inward cur- 
rent is largely carried by calcium ions but the calcium channel is not  spe- 
cific and can also carry sodium and potassium ions (Hagiwara 1973; Traut- 
wein 1975; Sperelakis and Schneider 1976; Reuter 1979; Vassalle 1979). 
However, the permeability of  the calcium channel to sodium and to potas- 
sium is 100 times smaller than its permeability to calcium (Reuter and 
Scholz 1977a; Reuter 1979). The evidence supporting the idea that the 
slow inward current is carried by calcium ions is persuasive; it persists in 
the total absence of  extracellular sodium and is not  inhibited by tetrodo- 
toxin (TTX) (Reuter 1967, 1979; Geduldig and Junge 1968; Katz and 
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Table 20. Characteristics of the slow calcium current 

Reference 

Magnitude 

Specificity of the 
calcium channel 

Voltage-dependent 

Cao-dependent 

C~-dependent 

Nao-independent and 
TTX-independent 

100 fmol cm -2 impulse -~ 

Admits Na, K, Sr, Ba 

PCa/PNa = 1/0.01 

PCa/PK = 1/0.01 

Follows Nemst or constant 
field equations 

Reuter 1973;Matthews 1975 

Hagiwara 1973 ; Trautwein 1975 ; 
Sperelakis and Schneider 1976; 
Reuter 1979; Vassalle 1979 

Reuter and Schulz 1977a; Reuter 
1979 

All authors 

Hagiwara et al. 1964;Reuter 1967; 
Geduldig and Yunge 1968; Katz 
and Miledi 1969; Hag~wara 1973 ; 
Reuter 1973 ;Reuter and Scholz 
1977a 

Hagiwara and Naka 1964; Hagiwara 
and Naka]ima 1966; Kostyuk and 
Krish tal 1977b; Brehm and Ecker 
1978 

Reuter 1967, 1979; Geduldig and 
Junge 1968 ; Katz and Miledi 1969; 
Reuter and Seholz t973, 1977b; 
Baker and Glitseh 1975 ; Matthews 
1975 ; Sperelakis and Schneider 
1975;Kostyuk and Krishtal 1977a; 
Vassalle 1979 

Inhibited by 

Inhibited by 
metabolic inhibitors 

Stimulated by 

Depressed by 

Verapamil, D-600 
La, Co, Mn, Mg 

IAA, CN, anoxia 

cAMP, dbcAMP, catechol- 
amines, histamine 

Acetylcholine a 

Katz and Miledi t 969; Kohlhart et al. 
1972;Hagiwara 1973;Reuter 1973, 
1979 ;Baker and Glitseh 1975 ; 
Matthews 1975; Sperelakis and 
Schneider 1976;Newrath et al. 
1977 ; Kostyuk and Krish tal 1977a; 
Brehm and Ecker 1978 ; Vasalle 
1979 

Dean et at. t975;Kohlhart andKiibler 
1975; Sperelakis and Schneider 
1976;Kohlhart et al. 1977 

Reuter 1967, 1973, 1974b, 1979; 
Vassort et al. 1969;Brown et al. 
1975; Sperelakis and Schneider 
1976;Reuter and Scholz 1977b; 
Tsien 1977 

Giles and Noble 1976; Ten-Eick et 
al. 1976 

a In voltage-clamped myocardium. 
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Miledi 1969; Reuter and Scholz 1973, 1977b; Baker and Glitsch 1975; 
Sperelakis and Schneider 1976; Kostyuk and Krishtat 1977a; Vassalle 
1979); it varies with extracellular calcium (Reuter 1967; GeduMig and 
Junge 1968; Katz and Miledi 1969); in sodium-free media, the overshoot 
sensitivity of  the action potential of  invertebrate neurons and muscles is 
29 mV per tenfold change in extracellular calcium according to the Nernst 
relation (Hagiwara et al. 1964; Geduldig and Junge 1968; Hagiwara 1973; 
Reuter 1973); and in the vertebrate heart, the reversal potential of  the 
slow inward current can be fitted by the constant field equation when Cao 
is varied (Reuter and Scholz 1977a) although the membrane does not  be- 
have as a perfect calcium electrode. The magnitude of  the calcium influx 
through the calcium channels in the heart has been estimated to be about 
100 fmol cm -2 impulse -1 (Reuter 1973). 

In invertebrate nerves and muscle the calcium inward current is sensi- 
tive to the intracellular free calcium. In mollusc neurons a Cai concentra- 
tion of  5.8 • 10 -8 M completely blocks the slow inward current (Kostyuk 
and Krishtal 1977b). Similar effects have been reported in barnacle muscle 
and in Paramecium (Hagiwara and Naka 1964; Hagiwara and Naka]ima 
1966;Brehm and Eckert 1978). 

The calcium inward current can be blocked by verapamil, by its meth- 
oxy derivative D-600, and by many ions: lanthanum, cobalt, manganese, 
magnesium (Katz and Miledi 1969; Kohlhart et al. 1972;Hagiwara 1973; 
Reuter 1973, 1979; Baker and Glitsch 1975; Sperelakis and Schneider 
1976; Nawrath et al. 1977; Kostyuk and Krishtal 1977a; Brehm and 
Eckert 1978; Vassalle 1979). In the mammalian heart, acidosis and meta- 
bolic inhibitors also depress the inward calcium current (Kohlhart and 
Kiibler 1975; Sperelakis and Schneider 1976; Kohlhart et al. 1977). The 
specificity o f  verapamil, D-600, and lanthanum for inhibiting the slow in- 
ward current is not  absolute, however: they also affect the fast inward 
sodium current and the late outward current (Bayer et al. 1975; Kass and 
Tsien 1975). 

In the heart, beta-adrenergic drugs stimulate the stow inward current, 
by increasing the conductance of  the calcium channel (Reuter 1967,1973, 
1974b, 1979; Vassort et al. 1969; Brown et al. 1975; Sperelakis and 
Schneider 1976; Reuter and Scholz 1977b). This has been interpreted as 
an increase in the number of  functional conductance channels (Reuter and 
Scholz 1977b; Reuter 1979). The effects of  catecholamines on the calcium 
current are probably mediated by an increase in intracellular cAMP (Reuter 
1974b; Brown et al. 1975; Sperelakis and Schneider 1976; Tsien 1977) 
and indeed cAMP, db-cAMP, and agents that increase cellular cAMP, hist- 
amine, methylxantines and papaverine, also enhance the slow inward cur- 
rent (Reuter 1974b; Sperelakis and Schneider 1976; Tsien 1977). On the 
other hand, acetylcholine depresses the slow calcium current (Giles and 



70 A.B. Borle 

Noble 1976; Ten-Eick et al. 1976). Reuter (1979) proposed a hypothetical 
scheme (Fig. 10) involving cell metabolism for the regulation of  the avail- 
ability of  calcium channels in cardiac muscle (Kohlhart and Kiibler 1975; 
Reuter and Scholz 1977b; Sperelakis and Schneider 1976). In this model, 
the calcium channel consists of  one filter determining its calcium selectiv- 
ity and of  two gating mechanisms: one would be the voltage-dependent 
gate and the other a phosphorylation-dependent gate. The latter would be 
regulated by catecholamines that would increase the number of  available 
channels by a cAMP-dependent phosphorylation reaction, while acetyl- 
choline would reduce their availability by dephosphorylation of  the chan- 
nel. 

A out B C 

; ~  membrane ~gs ...... ~(~)# 
P-9 \ \ 

in 

state of chonnel: 

non- phosphorylated phosphoryioted phosphor ylated 
not available available conducting 

(resting potential) (depolarisation) 

Fig. 10 A - C .  Hypothetical scheme for the regulation of Ca channels in cardiac muscle 
proposed by Reuter (1979). Channel contains a filter {s) determining its Ca selectivity 
and two gates (g and g'). g is the voltage-dependent gate; g' is a phosphorylation-de- 
pendent, voltage-independent gate. Phosphorylation of g' may be due to a cAMP-de- 
pendent protein kinase reaction; dephosphorylation may depend on a phosphatase. 
A Without phosphorylation g' is closed and hence channels are not  available; B chan- 
nels are available but nonconducting when g' is phosphorylated (Pug') but g is closed; 
C phosphorylated channels conduct when g opens upon depolarization of the mem- 
brane. Reproduced, with permission, from the Annual Review of Physiology, Vol. 41, 
1979 by Annual Reviews, Inc. 

Besides muscles and nerves, other cells may be electrically excitable. 
Secretory cells from the adrenal medulla and adrenal cortex, from the 
exocrine and endocrine pancreas, from salivary glands, and others can be 
depolarized by various agents and transmitters (Matthews 1967; Matthews 
and Saffran 1967; Douglas et al. 1967a, b; Dean and Matthews 1970a, b; 
Matthews and Petersen 1973; Rubin 1974). Except for the pancreatic islet 
cells, there is too little information to decide whether an inward calcium 
current through calcium channels exists in these secretory cells. But in 
pancreatic beta-cells the evidence is very compelling: action potentials can 
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be elicited by increasing the glucose concentration above 4 mM (Dean and 
Matthews 1970a); the spikes can be maintained even in the absence of 
extracellular sodium (Dean and Matthews 1970b; Matthews 1975; Mat- 
thews and Sakarnoto 1975b); they are not  blocked by TTX (Matthews 
1975); the evoked spikes are blocked in calcium-free media, in the presence 
of  D-600 (Matthews 1975 ;Matthews and Sakamoto 1975a) or by mangan- 
ese (Dean and Matthews 1970b); a metabolic control of  the calcium chan- 
nel may exist, as in the myocardium, since anoxia and the metabolic in- 
hibitor IAA block the glucose-induced action potential (Dean et al. 1975); 
the magnitude of  the calcium influx calculated from the measured currents 
is in the same order of  magnitude as in the heart, 100 fmol cm -2 impulse -1 
(Matthews 1975). 

Whether calcium channels exist in nonexcitable cells is unknown. The 
fact that D-600 does not inhibit calcium fluxes in liver cells, kidney cells, 
and lymphocytes argues against such channels in these tissues (Blaekmore 
et al. 1979c; Borle unpublished; Jan Fischer 1976, pers. communication). 

9 Mitochondrial Calcium Transport 

More than 40% of  the total cell calcium is sequestered in mitochondria 
(Table 4), constituting the largest calcium compartment  of the cell. In an 
intact cell at steady state, a cycling of  calcium in and out of mitochondria 
occurs by two separate influx and effiux pathways. Several recent reviews 
have been written on this very complex problem (Mela 1977; Bygrave 
1977, 1978; Carafoli and Crompton 1978b; Lehninger et al. 1978a). I 
shall present only a broad outline of the subject. 

9.1 Calcium Influx into Mitochondria 

9.1.1 The Driving Force 

For the last 2 decades it has been recognized that the accumulation of  cal- 
cium by mitochondria can be supported by ATP hydrolysis or by the 
oxidation of  respiratory substrates (Lehninger 1964; Chance t965;  Ras- 
mussen 1966) and that the uptake of  calcium by mitochondria takes pre- 
cedence over ADP phosphorylation (Rossi and Lehninger 1964; Reyna- 
far]e and Lehninger 1973; Jacobus et al. 1975). The driving force for cal- 
cium influx was first throught to involve the formation of  a high-energy 
intermediate of  oxidative phosphorylation that could energize either cal- 
cium transport or ATP synthesis. However, Scarpa and Azzone (1970) 
showed that, in the absence of  ATP and of  respiratory substrate, calcium 
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can be accumulated against a concentration gradient in response to a mem- 
brane potential. Following the chemiosmotic theory of Mitchell (1966), 
the current view is that an outward-directed proton pump, driven either 
by ATP hydrolysis or by respiration, creates a proton electrochemical po- 
tential dx~-H, which is composed of a membrane potential, zX ~, and a pro- 
ton concentration gradient, &pH: ~ - H  = &~ - 59 dxpH (Mitchell and 
Moyle 1969; Nicholls 1974). The relative contribution of the membrane 
potential and of the proton gradient to &gH depends on the presence of 
dissociable anions. Indeed, driven by the proton gradient, an inward trans- 
port of weak acids anions (such as acetate, phosphate, and even CO2, which 
can donate a proton to the matrix) can convert most of the pH gradient 
into a membrane potential (Elder and Lehninger 1973a, b; Lehninger 
1974a; Gunter and Puskin 1975). Ultimately, the potential difference 
across the mitochondria inner membrane is the driving force for calcium 
influx into the mitochondrial matrix that is electrically negative (Scarpa 
and Azzone 1970;Rottenberg and Scarpa 1974; Scarpa 197 5 ; Heaton and 
Nicholls 1976; Akerman 1978b). Mitochondrial transmembrane potential 
differences ranging from -120 to -200 mV have been reported (Mitchell 
and Moyle 1969; Rottenberg 1973; Nicholls 1974; Gunter and Puskin 
1975;Azzone et al. 1977). The relation among energy transduction, pro- 
ton electrochemical potential (PMF = proton motive force in the figure), 
calcium transport, and the site of action of inhibitors is illustrated in Fig. 
11, which is taken from Bygrave (1977). 

Investigators still disagree about whether the influx of calcium driven 
by the membrane potential involves a net charge transfer of 1 or 2. Some 
find that calcium is transferred with 1 positive charge and propose the 
existence of a calcium-phosphate symporter rather than a Ca2+/H + anti- 

Generation of 

Respiration .. "~ PMF across i n n e r .  ". ATP synthesis 

membrane, 

negative inside 

CALCtUM TRANSPORT 

Electron transport ATP synthetase 

chain inhibitors Uncouplers inhibitors 

Site of action of 

Fig. 1 l. Chemiosmotic model of mitochondrial energy transduction and its relation to 
calcium transport. PMF is the proton motive force (ABH = zx7; - 5 9  ApH). Site of ac- 
tion of  inhibitors is also shown. Adapted from Bygrave (1977) 
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porter (Moyle and Mitchell 1977a, b; Akerman 1978b). Others, finding a 
net charge transfer of  2 and a linear relation between 2x~ and the calcium 
distribution ratio with a slope fitting the Nernst equation, propose the 
existence of  a Ca 2+ uniporter (Rottenberg and Searpa 1974; Scarpa 1975; 
Brand et al. 1976;Nicholls 1978b; Lehninger et al. 1978a). 

9.1.2 The Carrier 

Whether symporter, antiporter or uniporter, the existence of a specific 
cartier for calcium transport into mitochondria seems to be well establish- 
ed (Mela 1977; Bygrave 1978; Lehninger et al. 1978a). First, it had been 
proposed that the high-affinity calcium-binding sites of  mitochondria re- 
flect the active site of  the cartier molecule with an affinity constant Kca 
of  0.025 t~M (Reynafar]e and Lehninger 1969; Lehninger et al. 1978a). 
This has been challenged by Reed and Bygrave (1974b), who showed that 
the high-affinity binding is in reality the manifestation of  the energy re- 
serve of  inhibited mitochondria, because the so-called bound calcium is 
inaccessible to EGTA chelation and thus located inside the inner mem- 
brane. In fact, the kinetic properties of the carrier are of  such a kind that 
the measurement of the carrier specific binding properties is impossible 
with current techniques (Bygrave 1977). Lanthanum is a competitive in- 
hibitor of calcium transport into mitochondria, presumably competing 
with calcium for the same site of  the carrier molecule (Mela 1968, 1969, 
1977; Mela and Chance 1969; Reed and Bygrave 1974a). From lanthanum 
competitive inhibition data, the number of can~er-specific binding sites 
has been estimated to be around 0.07 nmol/mg mitochondrial protein 
(Mela 1968, 1969, 1977;Mela and Chance 1969; Reed and Bygrave 1974a). 
Ruthenium red, a noncompetitive inhibitor of calcium transport into mi- 
tochondria, provides further evidence for the existence of a carrier and 
perhaps for its glycoprotein nature (Moore 1971; Vasington et al. 1972; 
Reed and Bygrave 1974a). And indeed several investigators have isolated 
from mitochondria a glycoprotein with a high affinity for calcium (Sotto- 
casa et al. 1971, 1972; Gomez-Puyou et al. 1972; Kimura et al. 1972; 
Tashmukharnedov et al. 1972). The gtycoprotein monomer  has a molecu- 
lar weight of 33 000, contains about 10% carbohydrate and up to 33% 
phospholipids, and has 2 - 3  high-affinity calcium binding sites per mole 
with a KCa of  0.1 /~M (Carafoli 1976; Carafoli et al. 1978). Anti-Ca bind- 
ing glycoprotein antibodies specifically inhibit calcium transport in mito- 
chondria and the glycoprotein has been proposed to be part of  a mobile 
carrier (Sandri et al. 1976; Panfiti et al. 1976). However, it is currently 
postulated to be a recognition factor and not  the cartier per se because 
(a) it is located in the inner and outermembrane and as well as in the inter- 
membrane space, and (b) although the electrical conductance of  phospho- 
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lipid bilayers is increased by the glycoprotein in the presence of calcium, 
it does not induce a measurable efflux of  calcium from these liposomes 
(Carafoli et al. t 976). 

9.1.3 Kinetic Parameters 

The kinetic characteristics of  calcium influx into mitochondria have been 
studied in liver, kidney, heart, smooth muscle, and brain and they are 
shown in Table 21. In the absence of Mg the KCa of influx lies between 2 
and 4 taM, except in heart and kidney where the range reported is much 
wider, 0 .4-6 .5  /~M. The relation between the free calcium outside the 
mitochondria and calcium influx is not hyperbolic but sigmoidal, except 
in myometr ium and in brain. The Hill coefficient ranges from 1.3 to 2.0 
with an average of  1.68, suggesting cooperativity of 2 calcium per trans- 
port  site. The maximal velocity varies considerably depending on the ex- 
perimental conditions, especially on the concentration of permeable an- 
ions. Vm ranges from 100 to 1000 nmol mg -1 protein rain -1 , with an 
average of  470 nmol mg -a protein rain -~ . Magnesium is a well-recognized 
inhibitor of  calcium influx (Table 21) with a KIMg of 20 raM. And indeed, 

with Mg concentrations of  5 mM, the KCa of  influx increases 10 -20  times 
and ranges from 50 to 100 #M (Vinogradov and Scarpa 1973; Scarpa and 
Graziotti 1973; Kimura and Rasmussen 1977). However, although the 
total Mg in liver, kidney, and brain tissue ranges between 7 and 10 mmol/  
kg wet tissue, the free Mg is between 0.6 and 1.3 mmol/kg wet tissue 
(Veloso et al. 1973). In liver, the free Mg may be even less, between 0.55 
and 0.93 mmol/kg wet tissue (Veloso et al. 1973). With these physiologic 
concentrations of magnesium, the KCa of influx in liver, heart and ascites 
cells is about 10 laM (Table 21). Other factors influence the affinity of  the 
transport system for calcium: the temperature, the nature of  the respira- 
tory substrate, and the potassium concentration (Hutson et al. 1976; 
Hutson 1977; .Williams and Barrie 1978). All the kinetic studies published 
have been conducted at 25°C or less, and Hutson ( t977)  has shown that 
increasing the temperature from 25°C to 35°C reduces the KCa of influx 
40%. Furthermore, potassium antagonizes the Mg inhibition and the K0.5 
of  calcium influx decreases 50% if the potassium concentration is raised to 
its physiologic value of  100 mM (Hutson et al. 1976;Hutson 1977). From 
the data available, one can conclude first, that the kinetic properties of  
calcium influx are very similar among all tissues studied; second, in phys- 
iologic conditions T = 37°C, K concentration 100 mM, Mg concentration 

1 mM) the KCa of  influx, is probably significantly less than 10/~M and 
close to 5 t~M, and the Vm is around 400 nmol mg -1 protein min -I . 
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9.1.4 Capacity of  Mitochondria to Accumulate Calcium 

In the absence of permeant anions, energized mitochondria can accumulate 
100 nmol calcium/rag protein and this has been called 'limited' loading 
(Lehninger et al. 1967). With permeant anions such as phosphate and ace- 
tate, up to 2 -3  umol calcium/mg protein can be accumulated (Lehninger 
et al. 1967). This 'massive' loading is accompanied by mitochondrial swell- 
ing and leads to mitochondrial disruption unless ATP and Mg are present 
thus leading to a precipitation of calcium and phosphate in the mitochon- 
drial matrix (Lehninger 1970). Although phosphate markedly increases 
the maximal velocity of calcium influx, it does not change the calcium af- 
finity KCa or the Hill coefficient of the sigmoid curve relating calcium up- 
take and free calcium (Spencer and Bygrave 1973; Crompton et al. 1978). 
Accordingly, Bygrave (1977) concludes that permeant anions do not inter- 
act with the calcium cartier, but allow the dissociation of calcium from 
anionic sites inside the mitochondria inner membrane. According to this 
scheme the rate-limiting step in calcium influx is not the energy source 
but the dissociation of the calcium from the cartier in the internal face of 
the inner membrane. 

The external pH or the pH gradient also affects the capacity of mito- 
chondria to accumulate calcium. A low pH increases the KCa of influx 
without affecting the Hill coefficient, decreases the Vm, induces an efflux 
of calcium from mitochondria, and lowers the calcium content of mito- 
chondria (Spencer and Bygrave 1973 ;Reed and Bygrave 1975b;Akerman 
1978a; Studer and Borle 1979, 1980). Conversely a high external pH de- 
creases the KCa and increases the mitochondrial calcium content and ex- 
change rate (Spencer and Bygrave 1973 ; Studer and Bode 1980). 

9.2 Mitochondrial Calcium Efflux and Cycling 

Drahota et al. (1965) recognized that at steady state (state 4), calcium 
transport by mitochondria is a dynamic process in which there is a contin- 
uous efflux of accumulated calcium counterbalanced by an energized in- 
flux of calcium. Whether calcium efflux is an active or a passive process is 
unknown. Theoretically, since the driving force for calcium influx is the 
potential difference 2x ~ across the mitochondrial inner membrane it should 
be possible to decide whether the calcium distribution ratio between the 
matrix and the extramitochondrial space reflects an equilibrium governed 
by the Nernst relation (Gunter and Puskin 1975;Puskin et al. 1976). Un- 
fortunately, too many uncertainties make such calculations difficult: (a) 
the 2x~ may vary from -120  to -200 mV; (b) there is no agreement 
about whether calcium influx occurs on a uniporter with a charge transfer 
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of  2 or a symporter  with a charge transfer of  1 ; (c) the actual distribution 
ratio of free calcium is not  known. With a A~ of  - 1 2 0  mV and assuming 
a symporter,  the Nernst equilibrium distribution ratio of  calcium should 
be 102, which is quite small. However, if one assumes a 2x~ o f  - 1 8 0  mV 
and a uniporter, the same distribution ratio should be 106 , which is highly 
improbable. Consequently it is too early to predict whether  calcium efflux 
from mitochondria represents a passive leak or an active process. At ste~/dy 
state the calcium distribution ratio has been shown to vary between 2000 
and 7000 (Drahota et al. 1965;Pozzan et al. 1977) and since it is much 
greater than the Mn 2+ distribution ratio, Pozzan et al. (1977) conclude 
that it is doubtful  that these ratios depend on 2x ~. Rather, the calcium dis- 
tribution between the mitochondrial  matrix and the cytosol may be deter- 
mined at steady state by the difference between the rates of  calcium influx 
and effiux or by the ratio of  their rate constants (Borle 1973a;Pozzan et 
al. 1977; Nicholls 1978b). At steady state, rat liver and heart mitochondria 
in vitro can maintain an extramitochondrial  free calcium concentration o f  
0 .3 -0 .8  gM (Solaro 1972; Nicholls 1978b), while myometr ium mitochon- 
dria can lower it to 0.1 gM (Batra 1973a). 

Stucki and Ineichen (1974) estimated that calcium efflux from liver 
mitochondria in state 4 amounts to 3.5 nmol mg -1 protein rain -1 . Others 
estimated that steady-state fluxes range between 1 and 5 nmol mg -1 pro- 
tein rain -1 with a liver mitochondrial membrane potential difference of  
- 2 0 0  mV (Azzone et al. 1977; Pozzan et al. 1977; Nicholls 1978b). In 
kidney mitochondria,  with an external free calcium concentration buffer- 
ed at 0.7 t~M, and a pH of  7.4, steady-state calcium exchange (efflux = 
influx) across the mitochondrial  inner membrane is 1.1 nmol mg -1 protein 
rain -a (Studer and Bode 1980). 

Several physiologic factors influence calcium efflux from mitochondria.  
Sodium stimulates calcium efflux from mitochondria isolated from heart, 
cerebral cortex, adrenal cortex, parotid glands, and skeletal muscle (Cara- 
foli et al. 1974; Crompton et al. 1976b, 1978; Nicholls 1978a). The rela- 
tion between calcium effiux and the extramitochondrial  sodium concen- 
tration is sigmoidal with a Hill coefficient of  3, suggeesting a stoichiometry 
of 3 Na for 1 ca.  The half-maximal activation constant KNa is 8 mM and 
the maximum velocity of  calcium release is 14 nmol mg -~ protein rain -1 
(Crompton et al. 1976b). These authors calculated a steady-state calcium 
efflux o f  4 nmol  mg -~ protein rain -1 with a cytosolic sodium concentra- 
tion o f  6 raM, and they postulate the existence of  a N a - C a  antiporter 
(Crornpton et al. 1977; Crompton and Heid 1978). 

Phosphoenylpyruvate also stimulates calcium efflux from heart and 
liver mitochondria (Chudapongse and Haugaard 1973; Peug et al. 1974; 
Chudapongse 1976; Roos et al. 1978). This effect of  phosphoenolpyruvate 
requires phosphate and is antagonized by ATP; the release of  calcium is 
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accompanied by an uptake of H ÷ by the mitochondria (Chudapongse 
1976). 

Calcium efflux also depends upon the oxidation-reduction state of the 
mitochondrial pyridine nucleotides and the ATP/ADP ratio of the cytosol: 
a low cytosolic ATP/ADP ratio accompanied by an oxidized state of mito- 
chondrial NAD favors calcium efflux, while a high ATP/ADP ratio with a 
reduced state of pyridine nucleotide would promote calcium influx (Leh- 
ninger et al. 1978b; Fiskum and Lehninger 1979). These authors postulate 
that this calcium efflux from liver mitochondria occurs through an electri- 
cally neutral Ca 2+/2H + antiporter. 

Although it has been suggested that calcium efflux occurs through a 
reversal of the influx mechanism (Pozzan et al. 1977;Roos et al. 1978), a 
majority of investigators accept the idea of a separate efflux pathway 
(Gunter and Puskin 1975; Puskin et al. 1976; Crompton et al. 1976b, 
1978; Crompton and Heid 1978;Bygrave 1978;Nicholls 1978a, b; Caroni 
et al. 1978;Lehninger et al. 1978b;Fiskum and Lehninger 1979). 

In summary, calcium influx is believed to be an electrophoretic uniport 
process driven by the potential difference established across the mitochon- 
drial inner membrane by a proton pump energized by respiration or ATP 
hydrolysis. Calcium efflux may utilize different pathways, either a Ca/Na 
antiporter or a Ca/H antiporter system. It is likely that mitochondrial cal- 
cium influx and efflux are independently regulated. 

10 Calcium Transport by Endoplasmic Reticulum 

10.1 Muscle 

Calcium transport in reticulum has been studied in great detail in muscle 
using the reconstituted vesicles or microsomes from fragmented sarco- 
plasmic reticulum (SR), and many recent reviews on this subject have 
been published (McLennan and Holland 1975; Martonosi 1975; Ebashi 
1976; Martonosi et al. 1978; Tada et al. 1978). In muscle microsomes, cal- 
cium transport is stoichiometrically coupled to ATP hydrolysis: for each 
ATP hydrolyzed, 2 calcium atoms are carried across the membrane in a 
process that is Mg-dependent. The active transport mechanism is the Mg- 
dependent Ca-activated ATPase that catalyzes the formation of a phospho- 
protein intermediate. The enzyme phosphorylation dependence on calci- 
um appears cooperative with a Hill coefficient greater than 2. The process 
is reversible because a calcium gradient across the microsomal membrane 
allows the synthesis of  1 mole of ATP from ADP and phosphate for each 
2 calcium released from the SR vesicles. 
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The kinetic characteristics of  calcium uptake by SR vesicles from skele- 
tal and cardiac muscles are shown in Table 22. The KCa for both types o f  
muscle varies between 0.1 and 12/~M with an average of  about 2/aM. The 
maximal capacity ranges between 40 and 200 nmol/mg protein. Oxalate, 
however, which allows the precipitation o f  calcium inside the vesicles, en- 
hances 100-fold the maximal capacity o f  microsomes, up to 2 -10 /~mol /  
mg protein (Harigaya and Schwartz 1969; WorsfoM and Peter 1970;Repke 
and Katz 1972). Phosphate, on the other hand, stimulates calcium uptake 
by SR only very slightly and at rather unphysiologically high concentra- 
tions (Halqgaya and Schwartz 1969; WorsfoM and Peter 1970). 

Table 22. Kinetic parameters of calcium uptake by sarcoplasmic reticulum vesicles 
(microsomes) of skeletal and heart muscle 

KCa Vm Maximal capacity 

(uM) [umol ( rag [pmol (mg prot) -11 
prot)-I min-I ] 

Without With 
oxalate oxalate 

Reference 

Skeletal muscle 
0.1-1.0 t -3 0.1-0.2 8-10 
3 -5 - 0.16 -0.2 - 

12 a 2.8 - - 
3 b 0.28 - - 

- - 0 . 0 8 - 0 . 1 6  2 - 4 . 8  

Cardiac muscle 
2 0.04 0.04-0.08 2-3 
1.2-2.3 - no uptake 2.5 
1 . 9  1 . 5 4  - 5 . 6  

Weber 1966 
Ogawa 1970 
Worsfold and Peter 1970 
WorsfoId and Peter 1970 
Harigaya and Schwartz 1969 

Harigaya and Schwartz 1969 
Repke and Katz 1972 
Solaro and Briggs 1974 

a Rat. 
b Human. 

The maximal velocity of  calcium uptake by SR vesicles varies between 
0.3 and 3 /amol mg -1 protein rain -1 (Table 22). However, in the presence 
of  oxalate, the relation between the extravesicular calcium and the rate of  
calcium uptake is often linear: velocities of  3 0 - 4 0  nmol mg -1 protein 
min -1 tam -1 Ca have been reported (Repke and Katz 1972). 
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10.2 Tissues Other than Muscle 

In tissues other than muscle, calcium uptake by endoplasmic reticulum 
vesicles (ER microsomes) is very much slower and the capacity of the 
microsomes is very much less than that of sarcoptasmic reticulum (Table 
23). The affinity of the transport system for calcium varies from tissue to 
tissue: in liver, fibroblasts, and adipocytes the KCa is about the same as in 
muscle, ranging from 1 to 5 taM; in kidney, brain, salivary glands, and 
platelets the affinity is much less and the KCa ranges from 25 to 100 taM 
(Tables 23 and 24). In all tissues studied, the maximal velocity is about 
100 times less than in muscle, even in the presence of oxalate: it varies 
from 1.5 to 44 nmol mg -1 protein rain -I with an average of less than 
10 nmol mg -1 protein min -1 . 

Table  23.  Kine t ic  pa rame te r s  o f  ca lc ium u p t a k e  by  endop l a smic  r e t i cu lum vesicles (micro-  
somes)  isola ted f rom tissues o t h e r  t han  muscle  

Tissue KCa Vm a KATP Maximal  Refe rence  
capac i ty  a 

( ~ M )  [ n m o l  ( m g  ( m M )  [ n m o l  ( m g  

p r o t )  -1 ra in  -11 p ro t )  -1 ] 

Liver 
4.6 b 11 1.8 400  
2.4 b 1.5 - 74 
1 - 2  - 0 . 5  - 

K i d n e y  

25 5.4 0.3 1 0 - 3 0  

Brain  
5 0 - 1 0 0  - - 65 
67  4 4  - - 

- - - 78 
- - 0.01 4 0 - 8 0  
- - - 50 

F ib rob la s t s  
2.6 b 7 - - 

- - - l 0  

Salivary g lands  
> 1 0 0  1.5 1.0 150 

Pla te le ts  
100 -- - 3 5 0  

Ad ipocy te s  
3.6 b 4.8 - 60  

Moore et  al. 1975 
Farber et  al. 1977 
Bygrave 1978 

Moore et al. 1974 

De Meis et  al. 1970 
Trotta and  De Meis 1975 
Otsuka et  al. 1965 
Ohtsuki 1969 
Robinson and Lust 1968 

Moore and Pastan 1977a 
Moore and  Pastan 1978 

Alonso et  al. 1971 

Robblee et  al. 1973 

Bruns et  al. 1976 

a In p resence  of  oxala te .  

b Calcu la ted .  
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Table 24. Properties of calcium uptake by microsomes (SR excluded) 

A.B. Borle 

Rate [nmol (mg prot) -I min -11 
Ca ++ of 20-100 t~M 

Without oxalate < t 
With oxatate 1 - 15 

Capacity [nmol (mg prot)-I l 
Without oxalate 

With oxalate 

0 - 1 0  

10-400 

KCa (uM) Measured (total Ca) 15-100 

Calculated (free Ca) 2-5  

V m [nmol (mg prot)-I min-1 l 
With oxalate 1-40 

Stimulated by oxalate 

Inhibited by Na, Li, sucrose, 
salyrgan, amytal, 
mersalyl, tetracaine, 
valinomycin, CCCP 

Not inhibited by DNP, CN, NAN,, 
antimycin A, FCCP, 
oligomycin, ouabain, 
ruthenium red 

Little or no effect of phosphate 

Moore et al. 1974, 1975;Selingeret al. t970 
Oh tsuki 1969; DeMeis et al. 1970; Selinger et al. 

1970;Alonso et al. 1971 ;Moore et al. 1974; 
Baumrucker and Keenan 1975;Moore and Pastan 
1977a, 1978;Farber et at. 1977; Watson and Siegel 
1978 

Moore et al. 1974, 1975;Moore and Pastan 1978; 
AIonso et al. 1971 

Otsuka et al. 1965;Robinson and Lust 1968; 
Ohtsuki 1969; DeMeis et al. 1970; AIonso et al. 
1971 ;Robblee et al.1973;Moore et al. 1974, 1975; 
Moore and Pastan 1977a;Bruns et al. 1976;Farber 
et al. 1977 

DeMeis et al. 1970;Alonso et al. 1971 ;Robblee et 
al. 1973;Moore et al. 1974, 1975;Moore and 
Pastan 1977a; Trotta and DeMeis 1975 ; Farber et 
al. 1977 

Moore et al. 1975;Bruns et at. 1976;Moore and 
Pastan 1977a;Farber et al. 1977;Bygrave 1978 

Alonso et al. 1971;Moore et al. 1974, 1975; Trotta 
and DeMeis 1971 ; Brans et al. 1976; Moore and 
Pastan 1977a;Farber et al. 1977 

Selinger et al. 1970;Moore et al. 1974, 1975;Moore 
and Pastan 1977a, b, 1978;Blaustein et al. 1978c 

Robinson and Lust 1968; Selinger et al. 1970; 
Robblee et al. 1973;Moore et al. 1974, 1975; 
Blaustein et al. 1978c;Bygrave 1978 

Otsuka et al. 1965; Ohtsuki 1969;Selinger et al. 
1970;Moore et al. 1974, 1975; Trotta and DeMeis 
1975;Farber et al. 1977;Ash and Bygrave 1977; 
Moore and Pastan 1977b ; Bygrave 1978 ; Blaustein 
et al. 1978c 

Otsuka et al. 1965; Ohtsuki 1969;DeMeis et al. 
1970;Selinger et al. 1970;AIonso et al. 1971 

As in muscle,  oxalate increases the capaci ty  o f  ER  vesicles to accumu-  

late calcium, bu t  even with oxalate  the maximal  capaci ty  is very limited. 
In liver, k idney,  brain, f ibroblasts,  and ad ipocytes  the maximal  capaci ty  
ranges be tween  10 and 80 n m o l / m g  pro te in  (Tables 23 and 24.). Two  re- 
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ports give values as high as 3 5 0 - 4 0 0  nmol/mg protein (Robbtee et al. 
1973; Moore et al. 1975). In liver and kidney there is no measurable 
microsomal calcium uptake in the absence of  oxalate (.Moore et al. 1974, 
1975). Phosphate may stimulate calcium uptake slightly, but unphysiol- 
ogically high concentrations, 4 0 - 8 0  raM, are needed for any significant 
effect (Selinger et al. 1970; Alonso et al. 1971 ; Trotta and DeMeis 1975). 
In brain microsomes, however, oxalate does not  stimulate calcium uptake 
(Otsuka et al. 1965; Ohtsuki 1969;Robinson and Lust 1968). 

Calcium uptake by ER vesicles has been shown to be inhibited in vari- 
ous tissues by salygran, amytal, mersalyl, tetracaine, valinomycin, CCCP, 
Na, Li, and sucrose (Table 24). On the other hand, it is not  inhibited by 
DNP, CN, NAN3, antimycin A, FCCP, oligomycin, ouabain or ruthenium 
red (Table 24). 

There is no doubt that the cells' endoplasmic reticulum is capable of  
accumulating calcium by an active process requiring ATP and Mg. But, ex- 
cept for muscle, the capacity of  ER in physiologic conditions (no oxalate, 
presence of  phosphate, Mg ~ 1 mM) appears very limited and the rate of  
uptake is very slow. Even with extremely high extravesicular free calcium 
concentrations of 20-500/~M, calcium uptake is less than 1 nmol mg -1 
protein min -1 in the absence of oxalate; with oxalate it never exceeds 
15-20  nmol mg -~ protein min -~ (Table 24). 

11 Control of the Cytosolic Free Calcium Concentration 

One or several energy requiring transport processes must intervene directly 
or indirectly to maintain the cytosolic concentration of  ionized calcium 
several orders of  magnitude below its thermodynamic equilibrium (cf. 
Sect. 7). Calcium-binding proteins, prosthetic groups with high affinity for 
calcium, and all the passive calcium-buffering systems, which are present 
in the cell (Brink 1954;Nanninga 1961a, b; Kretsinger 1979;Dedman et 
al. 1979), cannot determine the level of cytosolic calcium activity (con- 
trol of  the set point) since they cannot passively displace the calcium activ- 
ity of  the cytosol from its thermodynamic equilibrium. These passive cal- 
cium buffer systems, however, do determine the ratio of free calcium to 
bound calcium within the cell. Mela (1977)listed several criteria required 
for a cellular calcium controller to function adequately: (a) the rate of  cal- 
cium transfer must be adequate for fast removal calcium from the cytosol; 
(b) the affinity o f  the transport process must be high to function at low 
cytosolic calcium concentration; (c) the capacity for calcium uptake and 
sequestration must be adequate to remove appropriate calcium loads; and 
(4) calcium release to the cytoplasm must be quantitatively adequate and 
fast enough to meet particular requirements of  the cell. 
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Each parameter (rate, affinity, capacity) must be related to the charac- 
teristics of each particular cell: rates of calcium transfer appropriate for 
the slow contraction and relaxation of a smooth muscle cell may not be 
adequate for the fast contraction-relaxation cycle of a fast skeletal muscle 
fiber. The affinity for calcium of a particular controller system must also 
be compared to the resting level of cytosolic free calcium, which it regu- 
lates and which may vary from 5 • 10 -8 to 10 -6 M, depending on the cell 
(cf. Table 7). 

In addition, the relative role of the various transport processes as po- 
tential controllers can only be assessed when their relative mass and sur- 
face area are taken into consideration. 

l 1.1 The Plasma Membrane as the Main Controller 

In erythrocytes, the only possible controller of the intracellular free calci- 
um concentration is the ATP-dependent calcium transport across the plas- 
ma membrane, which is catalyzed by the Mg-dependent Ca-sensitive 
ATPase. Erythrocytes are unique because they do not possess any other 
active calcium transport process and because their passive membrane per- 
meability to calcium is much lower than that of any other cells. Calcium 
influx into erythrocytes is at least 2 orders of magnitude smaller than in 
other tissues (Szasz et al. 1977, 1978;Borle and Studer 1978). 

Mullins (1977) has proposed on purely theoretical grounds that Na/Ca 
exchange across the squid axon plasma membrane could control the cyto- 
solic free calcium and lower it below 10 -s M, if one assumes a stoichio- 
metry of 4 Na for 1 Ca. However, a 4-to-1 stoichiometry has never been 
observed and the quantitative importance of the Na-dependent calcium 
efflux in unpoisoned axon is still debated (see Sect. 8.2.2). 

Table 25 presents a comparison of the kinetic properties of the calcium 
pumps in sarcoplasmic reticulum, endoplasmic reticulum, mitochondria, 
and plasma membrane from different tissues. Although the affinities for 
calcium, KCa, are not very different, the velocity of the plasma membrane 
transport system is smaller than in microsomes and several orders of mag- 
nitude less than in mitochondria and sarcoplasmic reticulum, suggesting 
that calcium transport across the plasma membrane may be comparatively 
ill-suited to control the set point of the cytosolic calcium activity. This is 
supported by the results of  Simonsen and Christofferson (1979) showing 
that the cytosolic free calcium of Helix neurons was hardly affected by 
changes in extracellular concentrations: an average ratio between changes 
of intracellular and extracellular pCa (ApCao/ApCai) of 7.1 was observed, 
suggesting that the stability of intracellular calcium activity cannot be 
determined by the transport capacity of the plasma membrane alone but 
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Table 25. Comparison of  the kinetic parameters of calcium uptake (KCa , and Vm)by 
membranes in physiologic conditions a 

KCa V m Hill coefficient 

(uM) [nmol (mg prot) -I min -11 

Sarcoplasmic 1 - 12 100 -3000  2 
reticulum 

Endoplasmic 2-- 5 < 1 2 
reticulum 

Mit ochondria 1 -15  100-1000  2 

Plasma membrane 1 - 2 0  1 - 3  2 

a From Tables 13, 21, 22, 23, and 24. 

rather by intracellular mechanisms. Since the mitochondrial inhibitor 
azide causes a rapid rise in intracellular free calcium it is likely that, in 
these neurons, mitochondria play an important role as a controller o f  
cytosolic calcium. Similar results were obtained in rat kidney cells (Uchi- 
kawa and Borle, unpublished). The cytosolic exchangeable calcium pool 
changes little when the extracellular calcium concentration is altered be- 
tween 0.7 and 2.5 mM (see Fig. 12); most o f  the gain or loss in cell cal- 
cium is seen in the mitochondrial calcium pool. 

IO 

"6 

"6 

v 5 

0 
0 C~ 

~E 

._I 

0 

O~;;::21°ndria 

I I I I I 

0 t 2 
EXTRACELLULAR CALCIUM (raM) 

Fig. 12. Relation between the extracellular calcium concentration (Cao) and the size 
of the cytosolic and mitochondriat  exchangeable calcium pools in cultured monkey 
kidney cells. Between a Ca o of  0 .7 -2 .5  mM the cytosolic pool  changes relatively little 
compared with the loss (Ca o < 1.2 mM) or the gain (Ca o > 1.2 mM) in exchangeable 
calcium observed in the mitochondrial  pool.  Uchikawa and Borle (unpublished) 
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11.2 The Endoplasmic Reticulum as the Main Controller 

In skeletal muscle, the sarcoplasmic reticulum is recognized to be the prin- 
cipal if not  the only controller of  the fiber cytosolic calcium. A detailed 
review of  this well-known process is beyond the scope of this review. One 
should remember, however, that the sarcoplasmic reticulum affinity for 
calcium is in the same order of  magnitude as the KCa of the plasma mem- 
brane, endoplasmic reticulum, and mitochondria. What distinguishes its 
kinetic properties is the great velocity of the transport process reflected 
by a Vm that may exceed 1 t~mol mg -1 prot rain -1 (Table 25). Thus, it is 
accepted that skeletal muscle sarcoplasmic reticulum can lower the cyto- 
solic calcium activity below 10 -8 M. 

In heart muscle, the sarcoplasmic reticulum is probably not the only 
controller of  cytosolic calcium activity. The existence of  calcium channels 
makes this tissue more dependent on the extracellular calcium concentra- 
tion and on calcium influx through the plasma membrane (see Sect. 8.4.3). 
In addition, many investigators have suggested that mitochondria may 
play a role in the control o f  free calcium in heart muscle (Chance 1965; 
Patriarca and Carafoli 1968; Harigaya and Schwartz 1969; Carafoti and 
Azzi 1972; Carafoli et al. 1972; Lehninger 1974b;Affolter et al. 1976; 
Carafoli and Crompton 1978a; Lentz et al. 1978; Nayler et al. 1979). 
Others doubt it because of the mitochondrial high KCa and their slow 
transport velocity compared with that in sarcoplasmic reticulum (Solaro 
1972; Scarpa and Graziotti 1973;Scarpa 1975, 1978b; Tsokos et al. 1978); 
however, kinetic studies have often been performed at optimal conditions 
for calcium uptake by sarcoplasmic reticulum (presence of  oxalate and 
high magnesium concentrations) but not for calcium uptake by mitochon- 
dria. Further physiologic conditions (i.e., presence of  phosphate, absence 
of oxalate, free magnesium concentration of  1 raM) would undoubtedly 
improve the calcium transport capacity of mitochondria compared with 
that of sarcoplasmic reticulum. Tsokos et al. (1977) suggested that, al- 
though mitochondria may not  play a significant role in the rapid uptake 
of  calcium promoting relaxation of  myofibrils, the possibility still remains 
that they participate in regulating the steady-state calcium levels and the 
resting tension of  the myofibrils. 

In uterine smooth muscle, the rate of  calcium uptake is much slower in 
microsomes than in mitochondria; on a protein basis, the calcium capacity 
of  microsomes is only 17% of  that of mitochondria (Batra and Daniel 
1971). Furthermore, while mitochondria are capable of  lowering the free 
calcium of  their incubating medium below 10 -7 M and even down to 10 -8 
M, microsomes can only lower it slightly below 10 -6 M (Batra 1973a). 
Batra (1973b, 1974) also showed that hormones and drugs that influence 
muscle tension of skeletal and uterine muscle, and presumably their cyto- 
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solic free calcium affected mostly calcium uptake or release in mitochon- 
dria and not  in microsomes. 

In nerve terminals, Blaustein et al. (1978a, b) have described a nonmito- 
chondriat ATP-dependent sequestration mechanism that they proposed to 
be the smooth endoplasmic reticulum. The calcium affinity of  this intra- 
cellular calcium transport appears to be greater than that of  mitochondria. 
However, even in these nerve terminals mitochondria have a rate of  calci- 
um uptake and a capacity to sequester calcium that is one order of  magni- 
tude larger and, after loading, most of  the calcium is found in mitochon- 
dria (Blaustein et al. t978a, b). It is, therefore, difficult to evaluate the 
respective contribution of  each mechanism to the control of  cytosolic 
calcium in nerves. 

In parenchymal and epithelial cells, calcium uptake by the endoplas- 
mic reticulum has long been overlooked. Only recently, the properties of  
calcium transport in microsomes have been studied in liver, kidney, brain, 
and a few other tissues (cf. Table 23). It is increasingly evident that drugs 
and hormones do influence calcium transport and its sequestration by 
endoplasmic reitculum vesicles. Nevertheless it is still difficult to make a 
convincing case for the postulate that the endoplasmic reticulum is rela- 
tively more important  than mitochondria in the control of  cytosolic calci- 
um. Tables 22, 24, and 25 show that even if the affinity of  endoptasmic 
reticulum vesicles for calcium is slightly higher than that of  mitochondria 
the velocity of  transport and the capacity for calcium sequestration are 
lower by 1 - 2  orders of  magnitude. Ash and Bygrave (1977) used concen- 
trations of  ruthenium red, which totally inhibit calcium uptake by mito- 
chondria without affecting calcium transport in microsomes or plasma 
membrane vesicles, to assesss the potential of  endoplasmic reticulum to 
control intraceltular calcium in liver homogenate. They found that mito- 
chondrial calcium uptake exceeds by severalfold, in terms of  both initial 
rate and of  capacity, the ruthenium red insensitive component  reflecting 
microsomal transport. In rat liver, microsomal calcium sequestration is 1 
order of  magnitude smaller than mitochondrial uptake even in the presence 
of  oxalate (Father et al. 1977;Ash and Bygrave 1977; Bygrave and Trauter 
1978). Moore et al. (1974) and Bruns et al. (1976) made the same observa- 
tions in kidney and in adipocytes. 

1 1.3 The Mitochondria as the Main Controller 

Many investigators have proposed that except in erythrocytes and in skel- 
etal and cardiac muscle fibers, mitochondria are the main controllers of  
the cytosolic calcium activity (Lehninger 1964; Bygrave 1967, 1978; Borle 
1973; Mela 1977; Carafoli and Crornpton 1978b). However, several others 
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have expressed serious doubt  that mitochondria have a high enough affin- 
ity for calcium and high enough rates of calcium uptake at physiologically 
low cytosolic free calcium concentrations to play a significant role as con- 
trollers (Searpa 1975; Scarpa et al. 1978b; Brinley 1978; Brinley et al. 
1978). 

Several lines of evidence suggest that mitochondria do play an impor- 
tant role in cellular calcium metabolism. First, the major part of  the cell 
calcium is found in mitochondria (Table 4). Second, when a cell is taking 
up calcium (during calcium loading or in tracer experiments) the major 
part of  the load is taken up by the mitochondria in liver (Thiers et al. 
1960; Farber 1977), kidney (Borle 1972, 1978, 1979), muscle (Carafoli et 
al. 1969), salivary glands (Berridge et al. 1975), synaptosomes (Blaustein 
et al. 1978a-c) ,  and in the squid axon (DiPolo et al. 1976;Requena et al. 
1977; Brinley et al. 1977, 1978). Nevertheless, these observations only 
show that mitochondria can effectively buffer a net cellular uptake of  cal- 
cium; they do not prove that mitochondria can significantly lower the 
cytosolic calcium or play a role as a calcium controller. On the other hand, 
other experiments do suggest such a role. Rose and Lowenstein (1975) 
showed that intracellular microinjections of calcium in the giant salivary 
gland cells o f  Chironomus were rapidly buffered by an energy-dependent 
process and did not  increase the cytosolic ionized calcium monitored with 
aequorin. However, when cyanide or ruthenium red were injected before 
calcium, there was a large and diffuse increase in aequorin luminescence, 
indicating a large rise in cytosolic free calcium. Since ruthenium red inhib- 
its mitochondrial calcium uptake without affecting calcium transport by 
microsomes or by the plasma membrane (Ash and Bygrave 1977; Blaustein 
et al. 1978c) these experiments suggest that mitochondria are the principal 
controllers of  cytosolic free calcium in these salivary gland giant cells. In 
the squid axon mitochondria can accumulate great calcium loads (Brinley 
et al. 1977, 1978; Brinley 1978) and can rapidly release the accumulated 
calcium into the axoplasm if cyanide or the mitochondrial uncoupler 
FCCP are added (DiPolo et al. 1976;Requena et al. 1977;Brinley etal .  
1977, 1978). More importantly, DiPolo et al. (1976), Requena et al. 
(1977), and Brinley et al. (1977) have shown that in squid axon an intra- 
cellular mechanism can rapidly lower the cytosolic free calcium to its rest- 
ing levels of  3 0 - 6 0  nM (Figs. 13 and 14). In most of  these experiments, 
calcium transport across the plasma membrane or into the endoplasmic 
reticulum is inhibited by apyrase or by a sodium-free and calcium-free 
external medium, leaving the substrate supported calcium uptake by 
mitochondria as the only explanation for the lowering of  the cytosotic 
calcium to its resting level. Mullins and Requena (1979) also showed that 
after being 'primed' or initially loaded squid axon mitochondria were able 
to lower the cytosolic calcium below 10 -7 M. When the calcium concen- 
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Fig. 13. Increase in cytosolic free calcium measured with arsenazo III in the squid 
axon, induced by cyanide and its reversal upon removal of cyanide from the solution. 
Fiber was initially loaded with calcium by a 10 rain soak in a solution containing 10 
mM Ca and 0 Na, which produced a slight rise in ionized calcium. Ionized calcium fell 
back to b~aseline after the return of the fiber to a sodium- and calcium-free solution. 
The fiber was maintained in 0 Ca, 0 Na solution during the entire experiment to stab- 
ilize the internal calcium content. The dotted line indicates the period of immersion in 
2 mM CN, 0 Ca, 0 Na, artificial seawater. Approximately 2 h after the cyanide treat- 
ment there is a rise in ionized calcium to about 1.5 uM, immediately reversed back to 
baseline upon removal of the CN solution. Brinley et al. (1977). Figure reproduced with 
permission from the Journal of General Physiology 

tration of the external medium is increased from 3 raM, which is the phys- 
iologic free calcium concentration of squid hemolymph (Blaustein 1974), 
to 10 mM or 112 mM and when the axon is stimulated, it appears that the 
mitochondria are no longer able to lower the cytosolic calcium below 0.3 
-0.5/~M (Scarpa et al. 1978b; Brinley et al. 1978). In these extreme con- 
ditions, the plasma membrane calcium transport in the presence of exter- 
nal calcium and sodium or other intracellutar buffer systems are equally 
unable to lower the cytosolic calcium. Brinley et al. (1978) calculated that 
squid axon mitochondria could buffer only 5% of an imposed calcium 
load; however, their conclusions should be regarded with caution since 
their own data suggest that they overestimated the loads by a factor of 
ten 4. If one uses the corrected value for these calcium loads, squid axon 

Brinley et al. (1977) measured the effects of stimulation at t 00 imputses/s on calci- 
um entry in squid axons bathed in 112 mM Ca seawater. They found a net entry of 
0.014 pmol cm -2 impulse -1 (see Fig. 5, Brinley et al. 1977) or 1.4 p/cs. In their 
calculations and in subsequent papers, however, they use the value of 14 p/cs or 
140 fmol/cm -2 imp (Brinley et al. 1977; Requena and Brinley 1979), 10 times 
their measured influx. One can calculate that for a axon of 500 gm diameter (see 
Table 28) the correct calcium load during stimulation would be at most 7 gmol/kg 
axoplasm/min and not  50 umol/kg axoplasm/min as used by Brinley in this and 
subsequent papers (Brinley et al. 1977, t978;  Scarpa et at. 1978; Brinley 1978). 
Recently, Requena et al. (1979) found by direct analytical measurements that the 
net gain of calcium of a squid axon stimulated for 10 min at 100 impulses/s in 100 
mM Ca o was 0.25 p/cs, 40 times tess than the value used by Brinley et al. (1977) 
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Fig. 14. Measurement of ionized calcium in the squid axon with aequorin. The axon 
was preinjected with apyrase and shows approximate increases in resting glow in 37 
mM seawater, and recovery after its return to 3 mM Ca seawater. At about 2.2 h, when 
CN was applied, there was a large and virtually immediate increase in glow. The CN 
effect was fully reversible and the axon recovered its resting glow. Requena et al. 1977; 
reproduced with permission from the Journal of General Physiology 

mitochondria appear to buffer 40%-50% of a calcium load, as observed in 
all other cell systems. 

Mitochondria isolated from most tissues are capable of  lowering the 
calcium concentration of  their environment much below 10 -6 M: mito- 
chondria isolated from human myometr ium,  rat liver, and helix neurons 
can lower the calcium activity of  their incubating media below 10 -T M 
(Batra 1973a; Nicholls 1978b; Simonsen and Christoffersen 1979). Finally, 
in liver, kidney, adipocytes, nerve terminals, and smooth muscle the rate 
of  calcium uptake and the capacity of  calcium sequestration of  mitochon- 
dria exceed by at least one order of  magnitude those of  endoplasmic reti- 
culum and of  plasma membrane (Carafoli and Tiozzo 1967; Batra and 
Daniel 1971; Batra 1973a, 1974;Moore et al. 1974;Bruns et al. 1976; 
Ash andBygrave 1977;Farber et al. 1977;Bygrave and Trauter 1978). 
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11.4 Theoretical Considerations 

Experimental evidence suggests that, except in erythrocytes and in striated 
muscle, mitochondria play a major role in controlling cytosolic free calci- 
um, but it is far f rom conclusive. The objections to this view are: (a) the 
affinity of mitochondria for calcium is simply too low (KCa > 1 •M); 

(b) the Hill coefficient close to 2 implies cooperativity; (c) calcium cycling 
across the inner mitochondrial membrane appears to be negligible at the 
physiologic cytosolic free calcium concentration (0.5-3 • 10 -7 M). It is 
obviously true that, compared with the rate of calcium uptake by isolated 
mitochondria usually measured in vitro at free calcium concentrations ex- 
ceeding 1 ~M, calcium cycling at low calcium concentrations is very slight. 
However, these low rates are still faster than the calcium fluxes measured 
across the plasma membrane or across the endoplasmic reticulum mem- 
branes in similar physiologic conditions. 

Table 25 compares the calcium affinity of various calcium-transporting 
systems and shows that they are all in the same order of magnitude. All 
have Hilt coefficients close to 2. If the objections listed above were valid, 
one should conclude that the sarcoplasmic reticulum of skeletal muscle 
cannot control the free calcium of muscle fibers and cannot lower it to 
10 -8 M, the level of  ionized calcium in resting muscle. What distinguishes 
the sarcoplasmic reticulum and the mitochondria from the other transport 
systems is their high maximal velocity and their capacity to sequester cal- 
cium. In spite of a KCa that is one order of magnitude larger than the 
cytosolic calcium activity the rates of calcium transport of sarcoplasmic 
reticulum and of  mitochondria are so high that even at physiologically low 
calcium concentrations, their transport capacity or rate of cycling is signif- 
icant and predominates over the other transport systems. For instance, 
taking an average mitochondrial KCa of 5 t~M, a Vm of 400 nmol mg -1 
(mito protein) rain -a , a Hill coefficient of  2, and assuming a cytosolic free 
calcium of 10-TM, calcium cycling across the mitochondria inner mem- 
brane can be calculated (from the equation v = V m/(1 + (KCa/[Ca2+ ]2 )) to 
be 800 pmol nag -1 (mito protein) min -'1, one order of magnitude larger than 
steady-state calcium transport across the plasma membrane (Table 11). 

Another important consideration is the relative mass and the relative 
surface area of each transport system. Obviously these will differ from cell 
to cell. I shall consider two cell types for which much quantitative infor- 
mation is available: the liver cell and the squid axon. 

Liver cells contain between 700 and 2500 mitochondria per cell (Allard 
et al. 1952; Striebich et al. 1953;Schneider et al. 1953;Lowe et al. 1955; 
Lehninger 1964; Weibel et al. 1969). They occupy 18%-22% of the cell 
volume (Loud 1962; Weibel et al. 1969) and their protein content accounts 
for 33% of the cell protein concentration (Price et al. 1948, 1949; 
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Table 26. Dimensions and mass of  a single liver cell 

A.B. Borle 

Diameter a (urn) 

Volume a (um 3 ) 

Surface a (urn ~ ) 

Surface ratio 

Mass (ng) 

Cell 

Cell 
Cytoplasm 
Mitochondria 
Smooth endoplasmic reticulum (SER) 

Cell 
Mitochondria (inner membrane) 
SER 

Mitochondria/cell  membrane 
SER/cell membrane 

Cell wet weight (4940 ~m 3) 
Cell protein (20% wet weight) b 
Mitochondrial protein (33% cell prot) c 
SER protein (10% cell prot) d 

17 

4 940 
4 640 
1 170 

467 

1 680 
34 800 
25 t00 

21 
15 

Surface/mass ratio Mitochondria (6 m ~/ml fresh tissue) a 900 
[cm ~ (mg prot ) - I  1 SER (3.67 m s /ml  fresh tissue) a 1 800 

5 
t 
0.33 
0.1 

a Weibelet al. 1969 
b Mitchell 1966;Foden andRandle 1978 
c Price et al. 1948, 1949; Schneider and IIogeboom 1951;Hogeboom et al. t953;  

Lowe and Lehninger 1955 ; Mitchell 1966 
d Price et al, 1948, 1949;Lowe andLehninger 1955 

Schneider and Hogeboom 1951; Hogeboorn et al. 1953; Lowe and Leh- 
ninger 1955;Mitchell 1966). Table 26, based on the work of Weibel et al. 
(1969) shows that the surface of the inner mitochondrial membrane is 21 
times greater than the plasma membrane surface. The specific surface of 
6 m2/ml fresh liver can be calculated to be 900 cm2/mg mitochondrial 
protein. This is about twice the value of 400 cm2/mg mitochondrial pro- 
tein calculated by Mitchell (1966). 

The protein mass of the endoplasmic reticulum of liver cells is about 
10% of the total cell protein (Price et al. 1949; Lowe and Lehninger 1955). 
The surface of the smooth endoplasmic reticulum (SER) is 15 times larger 
than the plasma membrane surface (Weibet et al. 1969); its specific surface 
(3.67 m 2/fresh tissue) can be calculated to be 1800 cm 2/mg SER protein. 
Consequently the surface ratio of plasma membrane/smooth endoplasmic 
reticulum/mitochondria is 1/15/21. Even if the kinetic parameters of cal- 
cium transport (KCa, Vm) among the three transport systems were identi- 
cal, the plasma membrane would contribute 2.7%, the endoplasmic reti- 
culum 40%, and mitochondria 57% to the control of cytosolic calcium. But, 
of course, the calcium transport velocity and capacity of both the plasma 
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m e m b r a n e  and the  endoplasmic  re t i cu lum are very  m u c h  smaller  than  those  

o f  m i toch on d r i a  so tha t  the i r  con t r i bu t i on  is p r o p o r t i o n a t e l y  m u c h  less. 

Table  27 presents  a quant i ta t ive  es t imate  o f  the  calcium metabo l i sm o f  

a single liver cell based on  all the  available i n fo rma t i o n  shown in Tables  25 
and 26. With a cytosol ic  free calcium o f  10 -7 M, calcium cycling is 6.6 
t imes faster  in m i tochond r i a  than across the  plasma m e m b r a n e  and 800 
t imes grea ter  than  SER calc ium t ranspor t .  As one  would  predic t ,  the  rela- 
tive impor t ance  o f  mi tochondr i a l  calcium cycl ing increases wi th  increasing 
cytosol ic  free calcium. The  re la t ion o f  the  rates o f  calcium t ranspor t  o f  
mi tochondr i a ,  plasma membrane ,  and endoplasmic  re t icu lum as a func t ion  
o f  the  cytosol ic  free calcium is shown in Fig. 15. 

Table 27. Calcium metabolism of a single liver cell 

Calcium compartments (fm ol/single cell) 
Total calcium (2.2 mmol/kg wet wt) a 
Exchangeable cytosolic Ca (0.36 mmol/kg wet wt) b 
Ionized cytosolic Ca (10 -7 M) c 
Mitochondrial Ca ( 10 nmol]mg mitro protein) d 
SER Ca (21.6 nmol/mg SER prot) e 

Steady state calcium exchange (10 -18 mol rain -1 cell -I ) 
Plasma membrane (40 f/cs) f 
Mitochondria [0.8 nmol (mg mito prot) -~ rain -~ 1 g 
SER [3.3 pmol (mg SER prot) -~ min-ll h 

11.0 
1.8 
0.00046 
3.3 
2.1 

40 
266 

0.33 

a From Table 1. 
b From Table 5. 
c From Table 7. 
d From Table 6 and Carafoli andLehninger 1971. 
e Carafoli 1967. 
f From Tables 9-11.  
g From Tables 21 and 25. Assumptions: Free cytosolic Ca = 10 -7 M, KCa = 5 uM; 

V m = 400 nmol (mg mito prot) -1 min-~; Hill coefficient = 2; v = Vm/(1 + (KCa / 
[Ca2+] 2)). 

h From Tables 23-25.  Assumptions: Free cytosolic Ca = 10 -7 M; KCa = 3 ~M; V m = 
1 nmol (rag SER prot) -~ rain-a; Hilt coefficient 2; v = Vm/( l  + (KCa/[Ca2+]2)). 

The  giant squid axon  is a cell tha t  has been  extensively  s tudied wi th  re- 
gard to  calcium t ranspor t  and metabol i sm.  Table  28 shows the dimensions  
o f  an ax on  o f  500  t~m d iame te r  wi th  a plasma m e m b r a n e  surface area o f  
1 cm 2 (uni t  axon) .  Table  29 presents  the  calc ium dis t r ibut ion  and calc ium 
t ranspor t  in this uni t  axon .  Several assumpt ions  have been  made  here:  (a) 
the  p ro te in  mass o f  endoplasmic  re t i cu lum in re la t ion to  the p ro te in  mass 
o f  m i to cho nd r i a  is the  same as in o t h e r  cells; (b) the  calcium c o n t e n t  o f  
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Table 28. Dimension of a squid axon with a membrane surface 
of 1 cm ~ (unit axon) 

A.B. Borle 

Diameter 500 um 
Length 6 cm 
Surface 1 cm 2 
Volume 12 #1 
Wet weight (density -~ 1) 12 mg 
Mitochondria wet weight ( 10% of axoplasm) a 0.12 mg 
Mitochondria protein (0.29% of wet weight) a 35 ug 
Smooth ER protein (50% mito prot) b 17.5 gg 

a Brinley et al. t 977. 
b Assumption based on Price et al. 1948, 1949; Lowe and Leh- 

ninger 1955; CarafoIi 1967. 

Table 29. Calcium metabolism of a unit axon ( 1 cm 2 ) 

Calcium compartments (pmol/unit axon) 
Axoplasm total calcium (50 uM) a 
Ionized cytosolic Ca (50 nM) b 
Mitochondria Ca (10 nmol/mg mito prot) c 
SER Ca (20 nmol/mg SER prot) d 

Steady-state calcium exchange [fmol (unit axon) -1 sec-ll 
Plasma membrane (40 f/cs) e 
Mitochondria [0.2 nmoI (rag mito prot)-I rain-11 f 
SER [ 1.7 pmol (rag SER prot)-I min-1 ] g 

600 
0.6 

84 
84 

40 
120 

0.5 

a Requena et al. 1977;Brinley 1978. 
b DiPolo et al. 1976. 
c Carafoli and Lehninger 1971 
d Carafoli 1967 
e Mullins 1977;DiPolo 1978 
f Calculated assuming KCa = 5 ~M; V m = 400 nmol (mg mito prot)-I min-1 ; Hilt co- 

efficient = 2; cytosolic free Ca2+ = 50 nM; v = Vm/(1 + (KCa/[Ca2+]2)). 
g Calculated from Blaustein et al. 1978b; KCa = 0.4 uM; Vm = 275 pmol (rag SER 

prot) -x min-1; Hill coefficient = 2; cytosolic free Ca2+ = 50 nM; v = Vm/(1 + (KCa / 
[Ca2+]2)). 

axon  mi tochondr i a  and their  kinetic parameters  are in the same order  o f  
magni tude  as in o the r  cells; (c) the  kinet ic  parameters  o f  calcium t ranspor t  
measured  in mic rosomes  f rom nerve terminals  are applicable for  the squid 

axon.  Table 29 shows tha t  even in the squid axon,  which  has far  fewer  

mi tochondr i a  than fiver cells and a lower  cytosol ic  free calcium (5 • 10 -8 M), 

calcium cycl ing in mi tochondr i a  is 4 t imes greater  than  the s teady-state  

calcium t ranspor t  across the p lasmalemma.  Endoplasmic  re t icu lum calcium 

t ranspor t ,  despite a more  favorable KCa o f  0.4 t~M, is only  1.3% o f  plasma- 
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lemmal transport and 0.5% of  mitochondrial cycling. As Fig. 16 shows, at 
higher cytosolic free calcium concentrations, this relation remains true and 
mitochondrial calcium transport becomes more and more predominant. 

These are, of  course, theoretical considerations that cannot conclusively 
prove anything. They do show that mitochondrial calcium transport can- 
not be dismissed as unimportant  controllers of  cell calcium. On the con- 
trary, they suggest that mitochondria are the best candidates for this role. 
However, mitochondria are not  the only controllers of cell calcium and 
the relative importance of  the three control systems, mitochondria, plasma 
membrane, and endoplasmic reticulum, may change under the influence 
of  ionic or hormonal regulators. Nevertheless, when one compares the 
four criteria required for a cellular calcium controller with Tables 27 and 
29 describing the calcium metabolism of  a liver cell and of  an axon, one 
cannot escape the conclusion that mitochondria probably play the prin- 
cipal role in controlling the cytosolic free calcium. 

12 Modulation of  the Cytosolic Free Calcium 

Several ions have been shown to influence cellular calcium metabolism at 
the cellular and subcellular level. The effects of  phosphate, sodium, and 
hydrogen ions are best documented.  Although magnesium influences calci- 
um uptake by endoplasmic reticulum and mitochondria, there is little in- 
formation about its possible role in modulating calcium metabolism in an 
intact cell. Glucose, other substrates, and amine buffers have also been re- 
ported to affect cellular calcium transport but the information available 
is extremely fragmentary. 

12.1 The Role of  Phosphate 

The effect of  phosphate on mitochondrial calcium transport was reported 
early in the literature on mitochondria (Lehninger et al. 1963, 1967; Leh- 
ninger 1974a; Brierley et al. 1964; Vasington and Greenawalt 1964). First 
and foremost, inorganic phosphate increases the uptake of calcium by 
mitochondria (Lehninger 1970; Izzard and Tedeschi 1973; Schuster and 
Olson 1974; Lehninger 1974; Reed and Bygrave 1975b; Bygrave 1976, 
1976; Bygrave et al. 1977; Crompton et al. 1978). The capacity of  mito- 
chondria to sequester calcium is also increased by phosphate (Lehninger 
1974; Crompton et al. 1978). Phosphate does not  stimulate the initial rate 
of  calcium uptake and does not increase the KCa (Reed and Bygrave 
1975b; Thorne and Bygrave 1975; Bygrave 1976; Crompton et al. 1978). 
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However, the maximal velocity of calcium transport into mitochondria 
(Vrn) is markedly enhanced (Thorne and Bygrave 1975; Bygrave 1976, 
1977, 1978). Since phosphate is not  co-transported with calcium, it is 
likely that its effect occurs through its action on the mitochondrial trans- 
membrane potential A~. As reported above, the relative contribution of 
the membrane potential 2x ~ and of  the proton gradient ApH to the proton 
electrochemical potential A~-H ÷ depends on the presence of  dissociable 
anions, primarily phosphate. The inward transport of weak acid anions, 
driven by the proton gradient, can convert most of  the pH gradient into a 
membrane potential by releasing a proton to the mitochondrial matrix 
and lowering its pH (Lehninger 1974; Gunter andPuskin 1975;Reed and 
Bygrave 1975b; Bygrave 1977, 1978; Crompton et al. 1978). The increas- 
ed potential difference across the mitochondrial inner membrane could be 
the ultimate cause of  the greater calcium uptake and sequestration. In iso- 
lated mitochondria an increased phosphate concentration produces swell- 
ing but in the presence of  ATP and magnesium no mRochondrial swelling 
occurs and, instead, calcium and phosphate precipitate in the matrix (Leh- 
ninger 1970;Crompton et al. 1978). 

Phosphate has verb, little effect on calcium transport or exchange in 
endoplasmic and sarcoplasmic reticulum (Otsuka et al. 1965; Ohtsuki 
1969; DeMeis et al. 1970), although very high concentrations may stimu- 
late transport slightly (Selinger et al. 1970;Alonso et al. 1971 ; Trotta and 
DeMeis 1975). 

No information is available on the effect of  phosphate on the different 
calcium transport processes across the cell plasma membrane (CaMgATPase- 
dependent transport, Nao- or Cao-dependent calcium transport, and calci- 
um channels). 

Phosphate has a marked influence on the calcium metabolism of intact 
cells. A rise in extracellular phosphate concentration increases the total 
cell calcium and the cellular exchangeable calcium (4SCa uptake) in kidney, 
liver, and bone cells, in pancreatic beta-celts, adipocytes, neuroblasts, astro- 
blasts, and in HeLa and ascites cells (Janda 1969; Borle 1970b, 1971a, 
1972a, 1973a, 1975a; Van Rossurn 1970;Dziak andBrand 1974b;Martin 
et al. 1975; Hines and Wenner 1977; Borle and Uchikawa 1978;Hellman 
and Andersson 1978; Charlton and Wenner 1978;Borg et al. 1979). There 
is an interaction between the external calcium and phosphate concentra- 
tions (shown in Fig. 17): the higher the phosphate concentration, the 
greater the gain in cell calcium with increasing extracellular calcium con- 
centrations (Borle t971a). In kidney cells, the increased calcium uptake 
produced by phosphate is abolished by inhibitors of  mitochondrial calci- 
um transport (Borle 1972a) and kinetic analyses of  4SCa desaturation 
curves suggest that most of  the phosphate-induced cellular uptake of  calci- 
um is found in mitochondria (Borle 1972a;Borle and Uchikawa 1978). 
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This is supported by the finding that in Ehrlich ascites cells the uptake of  
calcium, which is stimulated by increasing extracellular phosphate, is sen- 
sitive to mitochondrial uncouplers (Chartton and I4/enner 1978;Hinnen et 
al. 1979). The increased 4SCa uptake produced by phosphate reflects an 
enlarged intracellular exchangeable pool and not  an increased calcium in- 
flux, because at steady state the exchange of  calcium across the plasma 
membrane is reduced by phosphate (Bode and Uchikawa 1978). In non- 
steady state 4SCa desaturation experiments, increasing the extracellular 
phosphate concentration also reduces the efflux of 4s Ca in kidney, pan- 
creatic beta-cells and Ehrlich cells (Bode 1972a; Hellman and Andersson 
1978; Charlton and Wenner 1978). Conversely, lowering the phosphate 
concentration stimulates the tracer efftux(Borle 1972a). 

The role of phosphate as a modulator of cellular calcium metabolism 
can best be seen in conjunction with hormones and other stimulators of  
calcium transport. Increasing extracellular phosphate reduces the stimula- 
tion produced by parathyroid hormone on cellular calcium transport in 
kidney cells and in HeLa cells (Borle 1970b;Borle and Uchikawa 1978). 
The glucose-stimulated 4s Ca and insulin release from beta-cells is inhibited 
by phosphate (Hellman and Andersson 1978). On the other hand, the ef- 
fects of  calcitonin on kidney cell calcium are enhanced by phosphate and 
are abolished in phosphate-free media (Borle 1978a). It has been proposed 
that the actions of  parathyroid hormone on the calcium transport of kid- 
ney cells and the effects o f  glucose on the insulin release from beta-cells 
are mediated by a rise in cytosolic free calcium (Nagata and Rasmussen 
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1970; Rasmussen 1971 ;Borle 1972b, 1973a, 1974b, 1975c, 1976;Malaisse 
et al. 1978; Kikuchi et al. 1979). Therefore, the inhibition of  these effects 
by phosphate suggests that increasing phosphate depresses the concentra- 
tion of  free calcium in the cytosol. Since other results suggest that calcito- 
nin lowers the cytosolic free calcium (MacManus and Whitfield 1970;Ras- 
mussen 1971; Borle 1974, 1975a, c), the enhancement of  the effects of 
calcitonin by phosphate also supports this interpretation. 

Based on the results obtained in isolated mitochondria and in intact 
cells, Borle (1973a, 1975c) has proposed that phosphate, by stimulating 
the uptake and sequestration of calcium into mitochondria, would shift 
calcium from the cytosol to the mitochondrial matrix, thereby increasing 
the total cellular calcium content while decreasing the cytosolic concen- 
trat ion of  ionized calcium. Consequently, a rise in cellular phosphate in- 
duced by increasing its extracellular concentration will depress all cellular 
processes that are Stimulated or triggered by a rise in cytosolic free calci- 
um, but it will enhance the effects of  regulators that tend to depress cyto- 
solic calcium. 

12.2 The Role of  Sodium 

The influence of  sodium on ceUutar calcium metabolism varies greatly from 
tissue to tissue. Two broad categories can be distinguished: (a) tissues in 
which a Na-Ca  exchange across the plasmalemma or across the mitochon- 
drial membrane can be identified, such as muscle, nerve, and some secre- 
tory cells, and (b) tissues in which such exchange cannot be demonstrated, 
such as liver, kidney, adrenal medulla, fibroblasts, Ehrlich ascites cells, and 
erythrocytes. But, even in the latter group, sodium may influence some 
aspects of  cellular calcium transport and distribution. 

Sodium induces a release of  calcium from mitochondria isolated from 
heart, skeletal muscle, brain, parotid gland, and adrenal cortex; but is has 
no effect on calcium released from mitochondria isolated from liver, kid- 
ney, lung, uterus, and ileum muscle (Crompton et al. 1978; Nicholls 
1978a). The effects of  sodium on mitochondrial calcium release have been 
best studied in heart mitochondria (Carafoli et al. 1974; Carafoli and 
Crompton 1976, 1978b; Crompton et al. 1976b, 1977, 1978; Crompton 
and Held 1978; Harris 1977, t979).  The curve relating the efflux of  calci- 
um from heart mitochondria to the extramitochondrial sodium concentra- 
tion is sigmoid with a Hill coefficient ranging between 2 and 3. This would 
suggest an exchange of  1 calcium for 2 or 3 sodium ions. The KNa is 8 mM 
and the Vrn of  calcium release is 14 nmol (mg protein) -1 rain -a . With an 
assumed cytosolic sodium concentration of  6 mM, the rate of sodium-de- 
pendent  calcium efftux would be in the range of  4 nmol (mg protein) -1 
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min -1 . Sodium may not  only stimulate calcium effiux from mitochondria, 
but it may also inhibit calcium uptake (Carafoli and Crompton 1976; 
Harris 1979). Sodium also enhances calcium release from mitochondria 
isolated from nerve terminals (Silbergeld 1977). In liver mitochondria, so- 
dium does not  stimulate calciam effiux (Crompton et at. 1978) but it still 
influences mitochondrial calcium transport by reducing the inhibition pro- 
duced by magnesium since the Kca of  mitochondrial uptake may be re- 
duced 50% (Hutson et al. 1976). 

An effect of  sodium on calcium transfer across the sarcoplasmic reti- 
culum membrane has not  been conclusive documented.  Sodium inhibits 
calcium uptake by skeletal muscle SR when acetyl phosphate or very low 
concentrations of  ATP are used as substrate, but no inhibition occurs at 
ATP concentrations higher than 10 -4 M (DeMeis 1969a,.b, 1971 ;DeMeis 
and Hasselbach 1971). In heart muscle, in spite of  the suggestion that a 
rise in intracellular sodium may increase the release of  calcium from the 
sarcoplasmic reticulum (Busselen and Carmeliet 1973), no such effect is 
observed in isolated SR vesicles (Katz et al. 1977). 

The effects of  sodium on calcium transport across the plasma membrane 
have already been reviewed above (cf. Sect. 8 .3.2-5) .  Two issues must be 
clearly distinguished: (a) whether sodium influences calcium fluxes in and 
out of  cells, which it does in a wide variety of  tissues, and (b) whether 
these effects represent a Na-Ca exchange mechanism responsible for the 
uphill transport of  calcium out o f  the cell. It is clear that in muscle and 
nerve a significant fraction of  calcium effiux depends on a Na-Ca exchange 
or at least on a Nao-activated calcium efflux, and that changes in extra- 
cellular sodium may influence the cytosolic free calcium concentration 
(Blaustein 1977b; Roulet et al. 1979). The active calcium transport across 
the cell membrane, which is catalzyed by the Ca-sensitive Mg-dependent 
ATPase, is not  influenced by sodium (Sehatzmann 1966, 1970; Schatz- 
mann and Vincenzi 1969; Schatzmann and Rossi 1971, Porzig 1972). So- 
dium may affect other Ca-ATPases but these have different functions un- 
related to calcium transport (Schatzmann and Vincenzi 1969; Bond and 
Green 1971; Moore et al. 1974). Nevertheless, sodium could still influ- 
ence the actions of  calmodulin on the CaMgATPase (Au 1979). 

Sodium is also a modulator  o f  calcium metabolism in intact cells. The 
extracellular sodium concentrations influences the total calcium content 
of  tissues in which a Na-Ca exchange has been demonstrated. A low 
extracellular sodium increases tissue calcium in heart muscle (Reuter and 
Seitz 1968; Reuter 1970, 1974a; Reuter et al. 1973; Wendt and Langer 
1977), squid axon (Requena et al. 1977, 1979), and brain tissue (Stahl 
and Swanson 1969, 1971, 1972;Swanson et al. 1974). Ouabain also in- 
creases tissue calcium in the myocardium (Gorier and Holland 1964; 
Reuter 1974a; Wood and Schwartz 1978) and brain tissue (Stahl and 
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Swanson 1969, 1971; Cooke and Robinson 1971). In Helix pomatia 
neurons, on the other hand, changes in extracellular sodium do not  af- 
fect the cytosolic free calcium and there is no evidence of a Na-Ca ex- 
change (Christoffersen and Simonsen 1977). 

In nonexcitable tissues the results are more fragmentary and some- 
times conflicting. Early data show that a decrease in extracellular sodium 
increases the total calcium of  kidney and liver slices (H6fer and Kleinzeller 
1963c; Judah and Ahmed 1963). Later results show no such increases in 
kidney slices and Ehrlich ascites cells (Bode 1979; Cittadini et al. t973, 
1977). In fact, progressive lowering of  extracellular sodium slightly lowers 
the total calcium mitochondrial calcium, and the exchangeable calcium 
pools measured by tracer kinetics (Bode 1979). Calcium efflux has been 
shown to be totally independent of  extra- or intracellular sodium in kid- 
ney (Matsushima and Gemba 1979), adrenal medulla (Rink 1977), liver 
(Cittadini and Van Rossum 1978), Ehrlich ascites cells (Cittadini et al. 
1973, 1977), and fibroblasts (Lamb and Lindsay 1971). In these tissues, 
ouabain has no effect on cell calcium or on calcium transport (Lamb and 
Lindsay 1971;Rink 1977; Cittadini and Van Rossum 1978; Borle 1979; 
Matsushima and Gemba 1979). In some instances calcium effiux from 
adrenal medulla is actually increased when extracellular sodium is substi- 
tuted by sucrose or choline (Aguirre et al. 1977). On the other hand, in 
kidney slices the steady-state calcium exchange across the plasma mem- 
brane is depressed at low extracellular sodium concentrations but, since 
the total cell calcium and the mitochondrial calcium are also depressed in 
these conditions, one must conclude that both influx and effiux of  calci- 
um are inhibited (Borle 1979). Although there appears to be some cooper- 
ativity between sodium and calcium at the plasma membrane, there is no 
evidence of  Na-Ca  exchange in any of  these tissues (Cittadini et al. 1977; 
Rink 1977; Cittadini and Van Rossum 1978;Boric 1979;Matsushima and 
Gemba 1979). 

12.3 The Role o f p H  

Cellular calcium distribution and transport is markedly affected by fluctu- 
ations in pH. Even when the extracellular pH is normal, cell calcium me- 
tabolism may be altered by changes in intracellular pH (Studer and Borle 
1979). Isolated subcellular organelles, mitochondria,  endoplasmic reticut- 
um vesicles, and plasma membranes are also influenced by the concentra- 
tion of  hydrogen ions. 

In isolated mitochondria calcium binding is increased at high pH 
(Searpa andAzzi 1968;Rossi et al. 1967), The number of  low-affinity sites 
appears to increase when the pH is raised, while the calcium affinity of  the 
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high-affinity site appears to decrease when the pH is lowered (Reynafar]e 
and Lehninger 1969). The stoichiometry of calcium ions accumulated per 
pair of electrons passing through the respiratory chain is increased at high 
pH, but only in the presence of impermeant anions; the stoichiometry re- 
mains 2 in the presence of permeant anions (Carafoli et al. 1967). Several 
investigators found that pH affects the KCa of calcium uptake by mito- 
chondria isolated from liver or from kidney: Kca is increased at low pH 
and decreased at high pH (Spencer and Bygrave 1973; Reed and Bygrave 
1975b; Studer and Borle t980). Vm is not affected by pH in liver mito- 
chondria (Spencer and Bygrave 1973;Reed and Bygrave 1975b) but it is 
depressed at low pH in kidney mitochondria (Studer and Borle 1980); 
pH does not affect the Hill coefficient of calcium uptake (Spencer and 
Bygrave 1973; Studer and Borle 1980). Calcium efflux from liver mito- 
chondria is fast at low pH and decreases with increasing pH (Rossi et al. 
1966). A sudden drop in pH will also trigger a release of accumulated cal- 
cium from liver mitochondria (Akerman 1978a). The steady-state fluxes 
of calcium across the inner mitochondrial membrane or calcium cycling 
are increased at high pH and depressed at low pH (Studer and Borle 1980). 
The total calcium content of kidney mitochondria and the exchangeable 
mitochondrial calcium pool are both increased at high pH and decreased 
at low pH (Studer and Borle 1980). Finally, the capacity of isolated liver 
mitochondria to lower the free calcium concentration of the extramito- 
chondrial medium is enhanced at high pH (Nicholls 1978b). In spite of 
some conflicting data (Schraer et al. 1973; Hutson 1977), these results are 
consistent with the idea that H + is a competitive inhibitor of calcium up- 
take by mitochondria: a high pH increases the affinity of the transport 
system for calcium and enhances calcium transport and its sequestration 
while a low pH does the reverse. 

In sarcoplasmic or endoplasmic reticulum vesicles, the effects of pH are 
exactly the opposite of those observed in mitochondria: a high pH de- 
presses calcium binding (Sulakhe et al. 1973;Huxtable and Bressler 1974; 
but see conflicting results of Carvatho and Leo 1967) as well as calcium 
uptake by the vesicles isolated from skeletal and heart muscle (Weber et al. 
1966; Carvalho and Leo 1967; Streter 1969; Nakamura and Schwartz 
1970, 1972; Lacourt 1971; Sulakhe et al. 1973; Huxtable and Bressler 
1974; Sorenson and DeMeis 1977; Dunnet and Naylor 1979) and from 
kidney, liver, and nerve (Moore et al. 1974, 1975;Eroglu and Keen 1977). 
The optimal pH for calcium uptake varies between 6.0 and 7.0 with an 
average optimal pH of 6.6 (Carvalho and Leo 1967; Streter 1969; Lacourt 
1970; Sulakhe et al. 1973;Huxtable andBressler 1974;Moore et al. 1974; 
Eroglu and Keen 1977). Finally, a rise in pH will induce a release of ac- 
cumulated calcium from sarcoplasmic reticulum vesicles (Nakamura and 
Schwartz 1970, 1972;Dunnet andNayler 1979). 
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Plasma membrane vesicles are affected by pH in the same fashion as SR 
or ER vesicles: calcium binding is depressed (Sulakhe et al. 1973) and cal- 
cium uptake is inhibited by raising pH (Sulakhe et al. 1973; Moore et al. 
1974). In erythrocytes, on the other hand, there is no effect of pH on the 
active extrusion of calcium (Romero and Whittam 197 t; Plishker and 
Gitelman 1976). 

The calcium metabolism of intact cells is also influenced by fluctua- 
tions in extra- and intracellular pH. In liver, kidney, and smooth muscle a 
rise in pH increases, while a low pH decreases, the total cell calcium (Wal- 
lach et al. 1966;Rorive and Kleinzeller 1972; Van Breemen et al. 1973; 
Studer and Borle 1979). The intracellular exchangeable calcium measured 
by 4s Ca uptake is also elevated by high pH and depressed at low pH in 
fibroblasts, lymphocytes, mast cells, smooth muscle, kidney, and Ehrlich 
ascites cells (Lamb and Lindsay 1971; Whitney and Sutherland 1973; 
Morgenstern 1972; Foreman et al. 1977; Studer and Borle 1979; Hinnen 
et al. 1979). In kidney cells, while acidosis depresses both total calcium 
and exchangeable calcium proportionately, alkalosis enhances the total 
calcium much more than the exchangeable calcium and most of the calci- 
um gain is found in an unexchangeable pool, presumably in mitochondria 
(Studer and Bode 1979). Calcium influx and efflux across the plasma 
membrane of  nerve terminals, squid axons, myocardial fibers, and kidney 
cells are also depressed at low pH (Blaustein and Oborn 1975 ;Baker and 
McNaughton 1977; Langer and Pool-Wilson 1977; Studer and Borle 1979). 
On the other hand, high pH does not affect calcium exchange across the 
plasma membrane of  kidney cells (Studer and Bode 1979). Studer and 
Borle (1979) studied the calcium transport and distribution among intra- 
cellular pools in isolated kidney cells and found that both cytosolic and 
mitochondfial calcium pools are depressed in acidosis as well as calcium 
exchange across plasma membrane and mitochondrial membrane; in alkal- 
osis, on the other hand, only the mitochondrial pool and transport are en- 
hanced while the cytosofic pool and plasma membrane exchange are un- 
affected. 

The influence of pH on the cytosofic free calcium concentrations has 
been studied with aequorin in the squid axon and in the barnacle muscle 
fiber (Baker and Honer]ager 1978; Lea and Ashley 1978). Increasing the 
CO2 tension decreases the intracellular pH in both tissues but has an op- 
posite effect on the aequorin glow in each tissue. In the squid axon, an 
increased CO~ decreases the aequorin glow, suggesting a lowering of the 
cytosolic free calcium (Baker and Honer]ager 1978). In contrast, a rise in 
CO2 appears to increase the glow and the free calcium of barnacle muscle 
(Lea and Ashley 1978). Since changes in pH have opposite effects on cal- 
cium uptake by mitochondria and by sarcoplasmic reticulum, it may not 
be surprising to observe different effects in different cells, depending on 
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the predominant controller of their cytosolic calcium. The information 
available is still too fragmentary to propose a coherent model for pH action 
in specific cells or tissues. Nevertheless, an important conclusion supported 
by all these studies is that the intracellular H ÷ concentration is a major 
modulator ofintracellular calcium metabolism. 

13 Regulation o f  Cellular Calcium 

Many cellular functions are mediated by intracellular calcium. Calcium is a 
transducing coupler between electrical or hormonal stimuli and cellular re- 
sponses. Usually, the signal is a rise in the cytosolic concentration of  ion- 
ized cacium, but changes in the calcium activity of other intracellular com- 
partments, i.e., mitochondrial matrix, may also occur and regulate intra- 
mitochondrial enzyme activity. Although this general scheme is well recog- 
nized, the steps involved in the sequence of  events between the stimulus 
and the response and the source of  the calcium involved in the coupling 
are still controversial. Obviously, variations of  the general scheme occur 
from tissue to tissue and with different stimuli. For many years the evi- 
dence suggesting that calcium is implicated in a stimulus-response process 
was rather indirect without actual measurements of  cellular or subcellular 
calcium concentrations and fluxes. These reports relied on methods such 
as comparing the responses in the presence and absence of extracellular 
calcium and using more or less specific calcium ionophores (A23187 and 
X537A) or calcium channels blockers (verapamil, D-600). These experi- 
ments provided an impressive amount  of  useful information. Nevertheless, 
the interpretation of  these experiments is sometimes difficult. For in- 
stance, the specificity and the mode of action of  ionophores and ofvera- 
pamil, and the influence of  the extracellular calcium concentration on 
intracellular calcium stores are not well established (Borle and Studer 
1978; Borle 1978b; Blackmore et al. 1979c; Friedrnann et al. 1979). In 
recent years, many investigators have studied the effects of  various stimuli 
- mostly hormonal - on several aspects of cellular calcium metabolism 
(Table 30). In this review I will survey the latter, omitting a wealth of  ele- 
gant but indirect studies that did not  report any actual measurements of  
cellular calcium metabolism. Two important but highly specialized topics, 
excitat ion-contract ion coupling and stimulus-secretion coupling, which 
have been the subject of  many reviews, will not be covered here. 



Control, Modulation, and Regulation of Cell Calcium t 05 

Table 30. Hormones and other regulators affecting cell calcium metabolism 

Tissue Reference 

Peptide hormones and cyclic nucleotides 

Cyclic AMP and Liver Friedmann and Park 1968; Friedmann and Rasmus- 
dibutyryl cyclic AMP sen t 970; Wallach et at. 1971 ; Friedmann 1972; 
AMP Borte 1973b, 1974b, 1976;Foden and RandIe 

1978; A ndia-Watten baugh et al. 1978; Juzu and 
HoIdsworth 1980 

Kidney Borle 1972b, 1973b, 1974b, 1975b;Borle and 
Uchikawa 1979; Wrenn and Biddutph 1979a,b 

Heart En tman et al. 1969; Kirchberger et al. 1972; 
Meinert et al. 1973a, b; Tada et al. 1974;Borle 
1974b; Badysh tor and Seredenin 1977; Wetler 
and Laing 1979; Hicks et al. 1979 

Cheng and Chen 1975; Bornet et al. 1977 Skeletal 
muscle 

Smooth 
muscle 

Uterus 

Pancreas 

Salivary 
glands 

Bone 

Adipocytes 

Adrenals 

Platelets 

Anderson et al. 1975; Webb and Bhalla 1976; 
Thorens and Haeusler 1978;Bhalla et at. 1979 

Krall et al. 1976;Nishikori et al. 1977;Nishikori 
and Maero 1979 

Brisson et al. 1972; Brisson and Malaisse 1973; 
Howell et at. 1975 ; Sehlin 1976; Kondo and 
Schutz 1976;Singh 1979 

Prince et al. 1972; Prince and Berridge 1973 ; 
Kanagasuntheram and Randle 1976 ;Miller and 
Nelson 1977 

Vaes 1968;Klein and Raisz 1971;Herrman-Erlee 
and v.d. Meer 1974 

Hope-Gill et al. 1975 

Mattib and O'Brien 1974 

Kiiser-Glanzman 1977 

Parathyroid 
hormone 

Kidney 

Liver 

Bone 

Chondrocytes 

Frog skin 

Caulfield and Schrag 1964; Cohn et al. 1967; Borle 
t968a-c,  1970a, b, 1972b, 1973, 1975b, c; 
Nagata and Rasmussen 1968, 1970; Biddulph and 
Wrenn 1977a, b;Harada et al. 1978;BorIe and 
Uehikawa 1978; Wrenn and Biddulph 1979a, b; 
Biddulph et al. 1979 

Wallach et al. 1971; Chausmer et al. 1972 

Vaes 1968;Nichols and Rogers 1971;Klein and 
Raisz 1971;Herrman-Erlee and v.d. Meer 1974; 
Dziak and Stern 1975 

Deshmukh et al. 1977 

Wattington et al. 1968 
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Table 30 (continued) 

Tissue Reference 

Kidney 

Liver 

Bone 

Calcitonin 

Chondrocytes 

Heart 

Glucagon 

Catecholamines, 
-agonists 

Liver 

Heart 

Liver 

Heart 

Smooth muscle 

Parotid gland 

Angiotensin, 
vasopressin, 
oxytocin 

Liver 

Kidney 

Uterus 

Insulin Liver 

Muscle 

Adipocytes 

Others 

A.B. Borle 

BorIe 1969, 1973a, 1975a, c 

Yamaguchi et al. 1975 ; Yamaguchi 1979 

Harrell et al. 1973, 1976; Binderman et al. 1974; 
Eilam et al. 1980 

Deshmukh et al. 1977 

Hakim 1973 

Friedmann and Park 1968 ;Friedmann and Rasmus- 
sen 1970; Yamazaki 1975 ; Keppens et al. 1977; 
Assimacopoulos-Jeannet et al. 1977;Hughes and 
Barritt 1978, 1979; Barritt 1978; Foden and 
Randle 1978 ;Andia-Waltenbaugh et al. 1978; 
Andia-Waltenbaugh and Friedmann 1978; Chen 
et al. 1978;Bygrave and Trauter 1978;Blackmore 
et al. 1978, 1979a, b;Friedmann et al. 1979 

Entman et al. 1969; Visscher and Lee I972 

Friedmann and Park 1968 ;Assimacopoulos-Jeannet 
et al. 1977;Keppens et al. 1977;Foden and 
Randle 1978; Chen et al. 1978 Blackmore et al. 
1978, 1979a, b; Chanet al. 1979;Parker and 
Barritt 1979;Babcock et al. 1979; Garrison et al. 
1979;Exton 1980 

Entman et al. 1969 

Deth and Van Breemen 1977 

Miller and Nelson 1977 

De Wulf and Keppens 1976; Keppens et al. 1977; 
Chen et al. 1978; Chan et al. 1979; Blackmore et 
al. 1979b;Garrison et at. 1979 

Besley and Snart t971 

Akerman and Wikstr6m 1979; Carsten 1979 

Dorman et al. 1975 ;Andia-Waltenbaugh et al. 
1978 ;Andia-Waltenbaugh and Friedmann 1978; 
Blackmore et al. 1979a;B6mmery and Dargel 1979 

Clausen and Martin 1977;Schudt et al. 1976; 
Grinstein and Erlij 1976 ; Clausen 1977 

Hope-Gill et al. 1975, 1976;Kissebah et al. 1975; 
McDonald et al. 1976a, b, 1978; CIausen and 
Martin 1977 

Hales et al. 1977 
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Table 30 (continued) 

Tissue Reference 

Cholecystokinin, 
pancreozymin, 
and other 
secretagogues 

Thyroxine 

Pancreas 

Muscle 

Matthews et al. 1973; Case and Clausen 1973; 
lteisler and Grondin 1973;Chandler and Williams 
1974; Gardner et al. 1975 ; Clemen te and Meldo- 
lesi 1975 ; Christopher et al. 1976; Schreurs et al. 
t 976; Deschott-Lanckman et al. 1976 ; Kondo 
and Schulz 1976a, b; Schulz et al. 1977; Gardner 
and Hahne 1977; Mag et al. 1978 ; Renckens et al. 
1978; Lucas et al. 1978; Peterson and lwatsuki 
1978 ; Berridge and Fain 1979; Fain and Berridge 
1979;Singh 1979;Schulz and Stolze 1980 

Fanburg 1968;Suko 1971 ;Nayler et al. 1971; 
Harris et al. 1979 

Histamine 

Somatostatin 

Mast ceHs 

Pancreas 

Kidney 

Othe~  

Foreman et al. 1977 

Ishibashi et al. 1979;Bent-Hansen et al. 1979 

Lupianez et al. 1979 

Johansson and Yosefsson 1978; Hayasaki-Kimura 
and Takahashi 1979 

Steroid hormones 

Cholecalciferol 
and its metabo- 
lites 

Glucocorticoids 

Intestine 

Bone 

Liver 

Intestine 

Bone 

HaussIer et al. 1970;Kimberg et al. 1971 ; Carte et 
al. 1974;Borle 1974a, 1975c; Walling et al. 1976; 
Krawitt et al. 1976;Freedman et al. 1977;Baski 
and Kenny 1978;Fuehs and Peterlik 1979; 
Oswald and Binswanger 1979; Petith et al. 1979 ; 
Rasmussen et al. 1979 ;Feher and Wasserman 1979 

Raisz et al. 1972;Dziak 1978 

Kimura and Rasmussen 1977; Hughes 1979; 
tIughes and Barritt 1979 

Kimberg et al. 1971 ; Krawitt and Stubbert 1972; 
Carte et al, 1974;Feher and Wasserman 1979 

Stern 1969;Raisz et al. 1972; Yasumura 1976; 
Hahn and Halstead 1979 

Gonadal 
hormones 

Othem 

Uterus 

Others 

Batra and Bengtsson 1978; Carsten 1979; Calix to 
et al. 1979;Rubanyi and Kovach 1979 

Caputo et al. 1976;Baski and Kenny 1978;Braehet 
1978;Naviekis et al. 1979; Kahn 1979 

Prostaglandins Kidney 

Bone 

Biddutph et al. t979;  Wrenn and Biddutph 1979b 

Dziak et al. 1979 
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Table 30 (continued) 

A.B. Borle 

Tissue Reference 

Calmodulin 

Liver 

Platelets 

Others 

Erythrocytes, 
heart, 
intestine, etc. 

Glucose Pancreas 

Carafoli and Crovetti 1973 ; Malmstr6m and 
Carafoli 1975 

Rodan and Rodan 1976; Gerrard et al. 1977, 1979 

Rasmussen et al. 1975 ; Sehrier et al. 1975 ;Reed 
1977; Greenway and Himms-Hagen 1978; 
Yonaga and Morimoto 1979; Kahn and Braehet 
1979;Harris et al. 1979 

Gopinath and Vineenzi 1977; Katz and Rem tulla 
1978;LePeuch et al. 1979;Niggli et al. 1979; 
Sudden et al. 1979; Vineenzi 1979; Wang and 
Waisman 1979; llundain and Naftalin 1979 

Mataisse-Lagae and Malaisse 1971 ; Sehmidt et al. 
1976;Hettman et al. t 976a, b; Kikuehi et at. 
1978; Frankel et al. 1978; Hellman and Anderson 
1978; Wollheim et al. 1978; Gylfe et al. 1978; 
Tsumura et al. 1979;Hersdmetz et al. 1979, 
1980; Hersehnelz and Mataisse 1980 

13.1 Cyclic AMP 

Most peptide hormones bind to specific receptors on the membrane of  
their target cells, stimulate the enzyme adenylate cyclase, and increase the 
intracellular concentration of  cyclic AMP. Several other cyclic nucleotides 
such as cyclic GMP are also affected and there may be complex interac- 
tions among cyclic AMP, cyclic GMP, and calcium. These interactions are 
beyond  the scope of  this review and have been discussed elsewhere (Ras- 
mussen 1970; Rasmussen et al. 1975; Rasmussen and Goodman 1977; 
Berridge 1975, 1979). 

In 1970 Rasmussen proposed that some of  the actions of  the 'second 
messenger' cyclic AMP could be mediated by fluctuations in cytosolic cal- 
cium activity (Rasmussen 1970). This assertion has never been proven di- 
rectly because it is still technically impossible to measure cytosolic free 
calcium in small mammalian cells. Nevertheless, much evidence supports 
the hypothesis that cyclic AMP influences cellular calcium metabolism. 

13.1.1 Effects o f  Cyclic AMP or Dibutyryl  Cyclic AMP on Subcellular 

Organelles 

The effects o f  cyclic AMP have been studied in microsomes isolated from 
the sarcoplasmic or  endoplasmic reticulum of  several different tissues. In 
all cases cyclic AMP stimulates microsomal calcium uptake. This has been 
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shown in heart (Entman et al. 1969; Kirehberger et al. 1972; Tada et al. 
1974; Weller and Laing 1979;Hicks et al. 1979), in skeletal muscle (Bornet 
et al. 1977), in uterine muscle (Krall et al. 1976;Nishikori et al. 1977; 
Nishikori and Maeno 1979), in vascular smooth muscle (Webb and Bhalla 
1976; Thorens and Haeusler 1978; Bhatla et al. t979), in colon smooth 
muscle (Andersson et al. 1975), and in platelets (Kiiser and Glanzmann 
1977). In all these studies concentrations of cyclic AMP varying between 
10 -7 and 5 • 10 -6 M were used, and it has been shown that concentra- 
tions greater than I 0 -s M could inhibit microsomal calcium uptake (Tho- 
rens and Haeusler 1978). This may explain one negative report showing 
that 10 -s - 1 0  -4 M cyclic AMP inhibits calcium uptake in microsomes iso- 
lated from pancreatic islets (Sehlin 1976). In most cases the stimulation of  
microsomal calcium uptake by cyclic AMP requires the presence of pro- 
tein kinase (Kirchberger et al. 1972; Tada et al. 1974;Bornet et al. 1977; 
Kiiser and Glanzmann 1977; Thorens and Haeusler 1978; Bhalla et al. 
1979). However, two reports show that the presence of protein kinase is 
not necessary (Bhalla et al. 1979) or that the action of cyclic AMP does 
not  require protein phosphorylation (Weller and Laing 1979). Most of  
these studies have been conducted with cyclic AMP, although its dibutyryt 
derivative is also effective (Nishikori et al. 1977). 

The effects of  cyclic AMP on mitochondrial calcium transport are more 
controversial. In 1973 Bode reported that cyclic AMP triggered a release 
of  calcium from mitochondria isolated from liver, kidney or heart. Fur- 
ther studies showed that this release of mitochondrial calcium increases 
the concentration of  ionized calcium in the extramitochondrial medium 
and that increasing the phosphate concentration of  the medium could 
modulate the effects of  cyclic AMP (Bode 1974b, 1975d). The effective 
range of  cyclic AMP concentrations capable of releasing mitochondriat 
calcium was fairly narrow, from 5 • 10 -7 to 5 • 10 -6 M. These results 
were confirmed in mitochondria isolated from adrenal medullae (Matlib 
and O'Brien 1974). Furthermore, cyclic AMP inhibits calcium uptake by 
mitochondria isolated from liver, kidney, colon smooth muscle, uterus, 
and pancreatic islets (Borle 1974b; Andersson et al. 1975; Howell et at. 
1975; Nishikori et al. 1977). However, a majority of investigators have 
been unable to reproduce these results, specifically to obtain a release of  
mitochondrial calcium with low concentrations of cyclic AMP (Scarpa et 
al. 196; Bode 1976; Schotland and Mela 1977). In spite of  the importance 
of this problem, the physiologic implications of  these results obtained in 
vitro in isolated mitochondria should be kept  in abeyance until new and 
reproducible data are published. Recently two reports revived the issue by 
showing that cyclic AMP could induce a release of  calcium from mito- 
chondria isolated from heart and liver (Badyshov and Seredenin 1977; 
Juzu and HoMsworth 1980). 
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13.1.2 Effects of  Cyclic AMP or Dibutyryl Cyclic AMP in Intact Cells 

In liver, kidney, pancreas, adipocytes, barnacle muscle, bone, and salivary 
glands, cyclic AMP and its dibutyryl derivative stimulate the efflux of 
4SCa from labeled cells or tissues (Vaes 1968; Friedmann and Park 1968; 
Friedmann and Rasmussen 1970; Wallach et al. 1971; Klein and Raisz 
1971 ; Borle 1972b, 1975b; Prince et al. 1972; Prince and Berridge 1973 ; 
Herrman-Erlee and v.d. Meer 1974; Cheng and Chen 1975; Hope-Gill et al. 
1975 ; Kanagasuntheram and Randle 1976; Foden and Randle 1978; Borle 
and Uchikawa 1979; Wrenn and Biddulph 1979a, b; Singh 1979). More im- 
portantly, the increased effiux of 4s Ca induced by cyclic AMP from all 
these tissues occurs in the absence of extracellular calcium (Friedmann 
and Park 1968; Prince et al. 1972; Borle 1975b; Cheng and Chen 1975; 
Kanagasuntheram and Randle 1976;Singh 1979). This proves that cAMP 
mobilizes calcium from an intracellular compartment. In the presence of 
extracellular calcium, cyclic AMP and dibutyryl cAMP also stimulates the 
uptake of 4SCa by kidney, heart, pancreatic beta-cells, and parotid glands 
(Meinertz et al. 1973a, b; Miller and Nelson 1977; Borle and Uchikawa 
1979), indicating an increased exchangeable pool of calcium. The total 
calcium of kidney cells is also increased by cyclic AMP (Borte and Uchi- 
kawa 1979), although total calcium is unchanged in heart and parotid 
glands (Meinertz et al. 1973a, b; Miller and Nelson 1977). Kinetic analyses 
of 4SCa desaturation curves obtained in cultered kidney cells also show 
that the two main intracellular exchangeable calcium pools, the cytosolic 
pool and the mitochondrial pool, are increased by cyclic AMP. In addi- 
tion, cyclic AMP stimulates the steady-state calcium fluxes, i.e., the calci- 
um exchange across the plasma membrane and across the mitochondrial 
membrane (Borle 1972b; Borle and Uchikawa 1979). In pancreatic islets 
dibutyryl cyclic AMP also enhances 4SCa uptake while theophylline, which 
is assumed to increase the intracellular concentration of cyclic AMP, stim- 
ulates 45Ca efflux from prelabeled cells (Brisson et al. 1972; Brisson and 
Malaisse 1973). The intracellular compartment from which calcium is 
mobilized by cyclic AMP in the absence of extracellular calcium is not 
firmly identified. It could be a pool of calcium bound to specific or non- 
specific ligands in the cell cytosol or calcium stored in the endoplasmic 
reticulum or calcium sequestered in rnitochondria. There is no evidence 
that cyclic AMP alters calcium binding to nonspecific binding sites. On the 
other hand, cyclic AMP is known to enhance calcium uptake by micro- 
somes isolated from endoplasmic or sarcoplasmic reticulum (Entman et al. 
1969; Kirchberger et al. 1972; Tada et al. 1974;Andersson et al. 1975; 
Krall et al. 1976; Webb and Bhalla 1976;Bornet et al. 1977; Kiiser and 
Glanzrnann 1977; Nishikori et al. 1977; Thorens and Haeusler 1978;Bhalla 
et al. 1979; Hicks et al. 1979;Nishikori andMaeno 1979; Weller andLaing 
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1979), so that this compartment  is an improbable candidate. Thus, the 
only likely source of  calcium would be the mitochondria. And indeed, in 
parotid glands labeled with 4SCa and incubated in calcium-free media, 
cyclic AMP depresses the 4s Ca content  of  mitochondria isolated at the end 
of  the experiment compared to untreated controls (Kanagasuntherarn and 
Randle 1976). In addition, the several, although controversial, reports 
showing a release of  calcium from isolated mitochondria would also favor 
this hypothesis (Borle 1974b; Andersson et al. 1975; Howell et al. 1975; 
Nishikori et al. 1977). 

Regardless of  the intracellular source of  calcium mobilized by cyclic 
AMP, there is an apparent conflict between the results obtained in the 
presence and in the absence of  extracellular calcium: an increased calcium 
uptake in the first case and an increased efftux in the second. It is of  course 
possible that cyclic AMP acts at two different locations: at the intracellu- 
lar calcium compartment  and at the cell plasma membrane. Alternatively, 
we have proposed that the increased 4SCa uptake by the cells may be sec- 
ondary to an increased cytosolic free calcium concentration induced by 
the release of  calcium from the intracellular compartment  (Borle 1975c; 
Borle and Anderson 1976; DiPolo 1979). If the rise in cytosolic calcium 
activity stimulates the passive calcium influx more than it enhances the 
active efflux of  calcium from the cell, the increased 45Ca uptake and the 
enlarged exchangeable calcium pools in the presence of extracellular calci- 
um could be explained. 

13.2 Parathyroid Hormone 

Parathyroid hormone (PTH) regulates calcium metabolism of  bone and 
kidney cells, although other tissues, such as liver and cartilage, respond to 
PTH as well. PTH increases the cellular concentration of  cyclic AMP in 
bone (Chase et al. 1969; Chase and Aurbach 1970;Peck et al. 1973; Rodan 
and Rodan 1974; Kakuta et al. 1975; Wong et al. 1977) and in kidney 
(Melson et al. 1970; Borle 1972b; Chabardes et al. I975; Biddulph and 
Wrenn 1977a, b; Wrenn and Biddulph 1979a, b; Biddulph et al. 1979). 
There is, however, some doubt  as to whether the effects of  PTH on cell 
calcium metabolism are mediated by cyclic AMP. Some investigators 
doubt it (Butlen and Jard 1972; Agus et al. 1973; Kuntziger et al. 1974; 
Dziak and Stern 1975), but others have shown that cyclic AMP or its di- 
butyryl derivative mimic the effects of  PTH on calcium metabolism in 
bone (Vaes 1968; Klein and Raisz 1971; Hermann-Erlee and v.d. Meer 
1974) and in kidney (Burnatowska et al. 1977;Borle and Uchikawa 1979; 
Wrenn and Biddulph 1979a, b). 
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In kidney cells PTH increases the uptake of 45Ca (Borle 1968a-c ,  
1970b, 1975c; Borle and Uchikawa 1978). This rise in tracer uptake re- 
flects both an increased calcium influx and a greater exchangeable pool. 
The effect of  PTH occurs even in the absence of  extracellular phosphate 
(Borle 1970b). PTH also increases the total kidney celt calcium (Borle 
1968b, 1970b, 1975c;Borle and Uchikawa 1978). On the other hand, PTH 
stimulates 4s Ca efflux from prelabeled cells (Borle 1972b, 1975c;Biddulph 
and Wrenn 1977a, b; Borle and Uchikawa 1978; Biddulph et al. 1979; 
Wrenn t979a, b). This increased 4SCa efflux also occurs in the absence of 
extracellular calcium, indicating that PTH mobilizes calcium from an intra- 
cellular compartment.  Kinetic analyses of  steady-state 4SCa desaturation 
curves show that the two exchangeable calcium compartments,  cytosolic 
and mitochondrial, are increased by PTH and that calcium exchange across 
the mitochondrial membrane and the plasma membrane are both enhanced 
(Borle 1972b; Borle and Uehikawa 1978). Furthermore, the calcium con- 
tent of  mitochondria is increased after the administration of  PTH in vivo 
or after an endogenous rise in circulating hormone (Caulfield and Shrag 
1964; Cohn et al. 1967; Borle and Clark 1981). One report also shows 
that PTH administered to a perfused kidney stimulates calcium uptake 
by microsomes isolated from endoplasmic reticulum or sarcolemma 
(Harada et al. 1978). The concentration of  free calcium in the cytosol has 
never been measured directly, but indirect evidence suggests that it is ele- 
vated by PTH (Nagata and Rasmussen 1968, 1970). In bone cells, in cul- 
tured bone rudiments or in chondrocytes PTH has similar effects: it in- 
creases 4SCa uptake (Nichols and Rogers 1971; Dziak and Stern 1975; 
Deshmukh et al. 1977) but it also stimulates 4SCa effiux (Vaes 1968; 
Nichols and Rogers 1971 ; Klein and Raisz 1971; Hermann-Erlee and v.d. 
Meer 1974; Deshmukh et al. 1977). In liver PTH increases both the total 
calcium and the uptake of  4SCa (Wallaeh et al. 1971; Chausmer et al. 
1972). Finally, in frog skin PTH has been reported to stimulate calcium 
influx (Watlington et al. 1968). 

Phosphate appears to enhance the sequestration of  calcium induced by 
PTH in kidney and bone (Borle 1970b;Nichols and Rogers 1971), while it 
inhibits the hormone effect on calcium efflux (Nichols and Rogers 1971; 
Borle 1973a). 

The primary site of  action of  PTH and the sequence of  events leading 
to these oberved changes in cellular calcium metabolism are still uncertain. 
It was first proposed that PTH increases the permeability of  cell mem- 
branes or somehow stimulates calcium influx (Borle 1968b, c, 1970a, b). 
That would lead to an increased cytosolic calcium, an increased calcium 
efflux, and a sequestration of  calcium in all cellular compartments. How- 
ever, this interpretation cannot account for the mobilization and increased 
calcium efflux from the cell in the total absence of extracellular calcium. 
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Therefore, an alternative explanation was later advanced suggesting that, 
with a rise in cyclic AMP, PTH initially stimulates the release of calcium 
from an intracellular compartment,  presumably the mitochondria, and in- 
creases the cytosolic free calcium. The rise in cytosolic free calcium sec- 
ondarily enhances calcium efftux out  of the cell by stimulating the 'calci- 
um pump, '  which depends on the CaMgATPase. In addition, the increased 
cytosolic calcium also stimulates calcium influx by the mechanism de- 
scribed earlier. Since the total calcium increases and all intracellular calci- 
um compartments are larger, one can assume that the effect of  cytosolic 
calcium on influx is greater than the effect on efflux. The net gain of cel- 
lular calcium would be sequestered in mitochondria (Borle 1973a, 1975c). 
Although this hypothesis is far from proven, a computer model of  cellular 
calcium metabolism shows that the proposed sequence of events is pos- 
sible and kinetically sound (Borle 1975c; Borle and Anderson 1976). 

13.3 Calcitonin 

The physiologic effects of  calcitonin on bone, kidney, and plasma calcium 
are usually opposite to those of  PTH. Nevertheless, like PTH, calcitonin 
increases the cellular concentration of  cyclic AMP in bone and in kidney 
(Chase and Aurbach 1970;Melson et at. 1970;Heershe et al. 1974;Rodan 
and Rodan 1974; Wong et al. 1977). On a molar basis, calcitonin is about 
100 times less active than PTH (Rodan and Rodan 1974) and the effects 
of  calcitonin and PTH on cyclic AMP are additive (Heersche et al. 1974; 
Rodan and Rodan 1974). Whether the two hormones act on different cells 
(Wong et al. 1977) or on different cellular pools of  cyclic AMP in the same 
cell or whether calcitonin increases cyclic AMP by the derepression of  
adenyl cyclase induced by a lower cytosolic calcium is unknown (Rasmus- 
sen and Bordier 1974; Rasmussen et al. 1975). The issue is beyond the 
scope of  this review. 

Calcitonin increases the total cellular calcium in kidney cells (Borle 
1969, t 975a, c), in bone cells (Eilam et al. 1980), and in liver (Yamaguchi 
et al. 1975; Yamaguchi 1979). It also stimulates the uptake of  4SCa in kid- 
ney cells (Borle 1969c, 1975a, c), bone cells (Harell et al. 1973, 1975; 
Binderman et al. 1974; Eilam 1980), and chondrocytes (Deshmukh et al. 
1977). In kidney cells this increase in 4s Ca uptake reflects only an increas- 
ed intracellular exchangeable calcium pool and not  an increased influx 
because the steady-state calcium exchange across the plasma membrane 
is actually depressed by calcitonin (Borle 1975a). In agreement with 
this latter finding, 4s Ca efflux is depressed by calcitonin in kidney cells 
and in bone cells (Borle 1969c, 1975c;Harell et al. 1973;Eilam 1980). 
The increased cellular calcium appears to be  sequestered in a cellular 
pool identified with mitochondria (Borle 1973a, 1975a; Eilam 1980). 
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Calcitonin stimulates calcium uptake in isolated mitochondria and in heart 
sarcoptasmic reticulum, but the physiologic significance of  these results 
remains to be proven (Hakim 1973;Borle 1975a). On the other hand, cal- 
citonin has been reported to depress the CaATPase activity in rat liver 
plasma membrane (Yamaguchi 1979). The effects of calcitonin are en- 
hanced by phosphate and abolished by inhibitors of mitochondrial calci- 
um uptake both in kidney and in bone (Borle 1975a; Harell et al. 1976; 
Eilam 1980), suggesting that the hormone may act by stimulating the 
transport or the sequestration of calcium by mitochondria (Borle 1973a, 
1975a, c). Finally, although the effect of  calcitonin on the cytosol ionized 
calcium has never been measured directly, indirect evidence suggests that 
the hormone lowers it (MacManus and Whitfield 1970; Whitfield et al. 
1971 ; Rasmussen and Bordier 1974). 

In order to explain the increased cellular sequestration of  calcium, the 
depressed calcium efflux, and the assumed low cytosolic calcium activity 
induced by calcitonin, the following sequence of  events has been proposed: 
calcitonin acting through an unknown intracellular messenger would pri- 
marily stimulate the uptake or the sequestration of  calcium into mito- 
chondria. This would lower the cytosolic concentration of  free calcium 
and lead to a depression of  calcium efflux out  of  the cell and of  calcium 
transport in general (Borle 1973a, 1975c). Although this could explain 
most of  the experimental results obtained in many different cells, this 
hypothesis has yet  to be conclusively proven. 

13.4 Glucagon 

Glucagon increases cyclic AMP and also affects calcium metabolism in liver 
cells. But it is not  firmly established whether the change in liver cell calci- 
um is accidental or whether it is a necessary step in the sequence of  events 
from adenylate cydase activation to glucose formation. Calcium, for in- 
stance, activates phosphorylase b kinase, which catalyzes glycogen break- 
down and suppresses glycogen synthetase (Walsh et al. 1968, 1970; Soder- 
ling and Hickenbottom 1970; Exton et al. 1972; Exton and Park 1972; 
Hems and Whitton 1980). 

Glucagon appears to stimulate the uptake of  4s Ca by the liver (Assima- 
copoulos-Jeannet et al. 1977; Keppens et al. 1977). The total calcium, 
however, is unchanged (Blackmore et al. 1978) or slightly depressed (Chert 
et al. 1978) although high concentrations of  glucagon may be required for 
this effect to be observed (Blackmore et al. 1978). The most consistent 
finding is the stimulation of  4SCa. efflux induced by the hormone (Fried- 
mann and Park 1968; Friedmann and Rasmussen 1970; Assimaeopoulos- 
Jeannet et al. 1977; Chen et al. 1978; Foden and Randle 1978; Blackmore 
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et al. 1978, 1979a, b;Friedrnann et al. 1979). This stimulation of4SCa ef- 
flux from liver by glucagon occurs even in the absence of  extracellular cal- 
cium (Friedmann and Park 1968; Foden and Randle 1978) or with the 
very low medium calcium concentration of  2 • 10 -s M (Chen et al. t 978). 
The increased 45Ca effiux induced by glucagon is inhibited by prior treat- 
ment  with inhibitors of  mitochondrial calcium uptake, FCCP, DNP or KCN 
(Chen et al. 1978), suggesting that the source of  calcium mobilized by the 
hormone may be the mitochondria. 

Glucagon, administered in vivo, also affects calcium transport in isolated 
organelles. The results are not  always consisten, however. Some investiga- 
tors found that glucagon stimulates mitochondrial calcium uptake (Yama- 
zaki 1975; Andia-Waltenbaugh et al. 1978; Friedmann et al. 1979). The 
effect is observed when calcium uptake is supported by succinate oxida- 
tion with a concomitant  H + ejection from mitochondria, but not when 
ATP is used as substrate (Yarnazaki 1975). In other experiments, under 
somewhat unphysiologic conditions, glucagon also appears to increase the 
calcium retention time of  mitochondria, an effect that is enhanced by 
phosphate (Hughes and Barritt 1978, 1979; Barritt et al. 1978). On the 
other hand, other investigators have reported an inhibition of  mitochon- 
drial calcium uptake induced by glucagon (Foden and Randle 1978) or 
even an increased efflux (Blackmore et al. 1979b). 

Gtucagon has been reported to stimulate calcium uptake by liver micro- 
somal preparations (Andia-Waltenbaugh and Friedrnann 1978) or by a 
ruthenium red-insensitive fraction probably derived from endoplasmic 
reticulum (Bygrave and Trauter 1978). 

In heart muscle glucagon seems to have no effect on 45Ca uptake or ef- 
flux. But since it increases tension without stimulating calcium influx it 
has been proposed that the hormone induces a redistribution of intracellu- 
lar calcium (Visseher and Lee 1972). Another report shows an increased 
calcium uptake by cardiac microsomes induced by glucagon (Entman et 
al. 1969). 

Although all these reports suggest that glucagon influences intracellular 
calcium, the significance of  these findings and their relationship to the 
elevation in cellular cyclic AMP are still unclear. 

13.5 Catecholamines 

The effects of  catecholamines and of  other ~-adrenergic agonists on cell 
calcium have recently been reviewed by Exton (1980). It is likely that 
their action on cell intermediary metabolism is independent of  cyclic AMP 
and is mediated by calcium (Garrison et al. 1979;Exton 1980). Catechol- 
amines have been reported to decrease the total liver cell calcium (Chen et 
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et al. 1978;Blackmore et al. 1978, 1979a; Chan et al. 1979) although two 
reports claim the opposite (Foden and Randle 1978; Exton 1980). Cate- 
cholamines enhance the uptake of  4s Ca by liver cells (Keppens et al. 1977; 
Assimacopoulos-Jeannet et al. 1977; Foden and Randle 1978). These hor- 
mones also stimulate the efflux of  4SCa from prelabeled liver cells (Fried- 
mann and Park 1968; Assimacopoulos-Jeannet et al. 1977; Blackmore et 
at. 1978, 1979b) and from other tissues, aortic smooth muscle (Deth and 
Van Breemen 1977) and parotid gland (Miller and Nelson 1977). The rise 
in 4s Ca efflux can be observed even in the absence of  extracellular calci- 
um, suggesting a mobilization of  calcium from an intracellular pool (Fried- 
mann and Park 1968 ;Deth and Van Breemen 1977). The effect is blocked 
by inhibitors of  mitochondrial calcium uptake, which indicates that the 
source of  intracellular calcium is the mitochondria (Chen et al. 1978). On 
the other hand, two reports record a depression of  4s Ca efflux induced by 
catecholamines (Foden and Randle 1978; Chen et al. 1978). The reason 
for these conflicting results is unclear. Catecholamines stimulate the efflux 
of calcium from liver mitochondria and decrease their calcium content 
(Babcock et al. 1979;Blackmore et al. 1979a, b; Chan et al. 1979). Finally, 
catecholamines have been reported to stimulate 4s Ca uptake by cardiac 
sarcoplasmic reticulum vesicles, an action mimicked by glucagon and cyclic 
AMP (Entman et al. t969). 

It has been proposed that catecholamines, through the action of  an un- 
known intracellular messenger, mobilize calcium from the mitochondria 
and elevate the cytosotic free calcium; the rise in cytosolic calcium stimu- 
lates phosphorylase b kinase and other calcium-sensitive enzymes; at the 
same time, calcium efflux is increased (Blackmore et al. 1978, 1979b; 
Garrison et at. 1979). To explain the increased 4SCa uptake induced by 
these hormones, one has to invoke again a stimulation of  calcium influx 
induced by the rise in cytosolic calcium (see above). 

13.6 Other Hormones 

Table 30 lists several other peptide or steroid hormones that have been re- 
ported to affect cellular calcium in one way or another. Several hypotheses 
have been advanced for their mode of  action but the available data are still 
too fragmentary to be reviewed in detail and to conclusively prove or dis- 
prove the proposed mechanisms. 

In addition, metabolic substrates such as phosphoenolpyruvate or glu- 
cose and regulatory proteins such as calmodulin are likely candidates for 
the role of  regulators of  cell calcium metabolism. Much information may 
appear in the literature in the near future. 
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The importance of  cellular calcium metabolism in cell function need not 
be emphasized. The range of  cellular processes controlled, regulated or 
modulated by calcium is wide and still expanding. The best known are 
contraction, secretion, enzyme activation, and the regulation of metabo- 
lism, growth, motility, and ion transport. In most cases, calcium acts as a 
signal transducer. 

Once the importance of  cell calcium is recognized, it is imperative to 
understand the physiologic processes that control, modulate,  and regulate 
the activity of  calcium in all cellular compartments: cytosol, mitochondria, 
and endoplasmic (sarcoplasmic) reticulum. 

The information gathered in this review appears to support the view 
that, with the exception of  erythrocytes, the total cell calcium and its dis- 
tribution among various subcellular compartments are fairly similar in all 
cells and in most species. The magnitude of  the calcium fluxes across the 
plasmalemma are not  very different from cell to cell and from species to 
species although the mechanisms may vary greatly. There is a greater dif- 
ference in mitochondrial calcium transport; the number of  mitochondria 
per cell and their affinity for calcium may vary but their high maximal 
velocity is about the same. The greatest difference exists between the cal- 
cium uptake by sarcoplasmic reticulum of skeletal muscle and calcium 
transport by endoplasmic reticulum of  other cells; although their affinity 
for calcium may be similar, their maximal velocity differs by 2 - 3  orders 
of  magnitude. This has important  consequences when the relative role of  
each transport process (plasmalemmal, mitochondrial, SER) in the control 
of cytosolic free calcium is assessed. This is one of  the most important  
problems that has yet to be conclusively settled. Other questions remain 
unanswered: what is the role and importance of calcium binding to various 
ligands of the cells, intracellular membranes, calcium binding proteins, cal- 
sequestrin, parvalbumin, and other intracellular calcium 'buffers'? Do 
voltage-sensitive calcium channels exist in nonexcitable cells? Is the N a -  
Ca exchange described in nerves and muscle operative in other cells? What 
is the role of  calmodulin in the regulation of  cellular calcium metabolism? 
What are the cellular targets of  hormones that influence cell calcium me- 
tabolism? Besides the known cyclic nucleotides, what are the other intra- 
cellular messengers that may affect cell calcium? 

One of  the main obstacles to our full understanding of  cellular calcium 
metabolism is the technical difficulty (until recently the technical impos- 
sibility) of  measuring the concentration of  free calcium in the cell cytosol. 
Cytosolic free calcium is the most important  parameter of  cell calcium 
metabolism that has yet to be measured with confidence, if at all. Once 



1 t8 A.B. Bode 

pCa microelectrodes or techniques using ionized calcium-sensitive indica- 
tors are applied to the study of  small mammalian cells, a large gap will be 
filled in our understanding of  cellular calcium metabolism. Until then, the 
field still belongs to the realm of  hypothesis and controversy. 
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1 I n t r o d u c t i o n  

Ini t ia l  s tudies  o f  ca lc ium t r a n s p o r t  uti l izing c learance t echn iques  e m p h a -  

sized the  s t r ik ing s imilar i ty  b e t w e e n  the  u r ina ry  exc re t ion  o f  sod ium and 
tha t  o f  ca lc ium and  the  e f fec t s  o f  a var ie ty  o f  maneuve r s  on b o t h  (Walser 
1961).  Ear ly  resul ts  f r o m  m i c r o p u n c t u r e  s tudies  also suggested t h a t  calci- 

u m  was r eabso rbed  t h r o u g h o u t  the  n e p h r o n  in a p a t t e r n  very  s imilar  to  
t ha t  o f  sod ium t r a n s p o r t  (Lassiter et  al. 1963;  Duarte and Watson 1967).  

Since then  s tudies  ut i l izing m o r e  soph is t i ca ted  t echn iques  combin ing  pa-  
pi l lary t ip ,  superf ic ia l  p rox ima l ,  and  distal  m i c r o p u n c t u r e  and  the  r ecen t  

app l ica t ion  o f  the  t echn iques  o f  i so la ted  t ubu l a r  pe r fus ion  have m a r k e d l y  
re f ined  o u r  con cep t s  o f  renal  ca lc ium t ranspor t .  These  s tudies  have indica t -  
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ed that calcium transport occurs in most segments of the nephron in a 
manner similar to that of  sodium but can be dissociated from sodium 
transport in several segments beyond the proximal convoluted tubule. The 
principal factors influencing urinary calcium excretion that may be im- 
portant in calcium homeostasis include parathyroid hormone,  phosphate 
balance, acid-base balance, and the state of  the extracellular fluid volume. 
With the possible exception of  extracellular fluid volume contraction, all 
these factors affect urinary calcium excretion by altering transport in the 
distal portions of the nephron; thus the terminal nephron appears to be 
responsible for the regulation of  urinary calcium excretion. In this review, 
we will first consider the sites of calcium transport within the nephron 
and then discuss those factors that alter transport with emphasis on recent 
advances. 

2 Sites of Transport 

In normal man, the filtered load of calcium is slightly greater than 500 
mEq/day. As calcium excretion is normally 5 - 1 0  mEq/day during an aver- 
age calcium intake of  less than 50 mEq/day, the fraction of  filtered calci- 
um excreted is less than 1%. Approximately 50%-55% of the filtered load 
is reabsorbed in the proximal convoluted tubule, 20%-30% in the pars 
recta and loop of  Henle, 10%-15% in the distal convoluted tubule, and 
2%-8% in the terminal portions of  the nephron. 

2.1 Glomerular Filtration 

Calcium in plasma exists both in the free ionic form, bound to protein, 
and complexed with various ions such as phosphate and citrate. It has 
generally been assumed that calcium concentration in glomerular ultra- 
f l t rate can be estimated with laboratory methods of  ultrafiltration across 
artificial membranes. Micropuncture studies with direct measurements of  
fluid from surface glomeruli have verified that about 60% of  the total 
plasma calcium is ultrafiltered across the glomerulus. Thus Harris et al. 
(1974) found an ultrafiltration ratio of 0.63 +- 0.02. Le Grimellec et al. 
(1975) found similar values but with a marked scatter that they attributed 
to glomerular heterogeneity. 
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2.2 Proximal Convoluted Tubule 

A number of  micropuncture studies have revealed ratios of tubular fluid 
to ultrafilterable calcium consistenly greater than 1 (recently summarized 
by Suki 1979). This is consistent with a passive transport mechanism that 
could be dependent upon sodium and water reabsorption and many inves- 
tigators have documented a parallelism between sodium and water trans- 
port  in the proximal tubule. Ullrich et al. (1976), however, provided evi- 
dence for active calcium transport in addition to passive diffusion. Using 
tubular microperfusion in combination with simultaneous perfusion of  the 
peritubular capillaries, they demonstrated an active component  of approx- 
imately 20% of  the total reabsorptive rate. Removal of  sodium from the 
perfusion solution or inhibition of  sodium transport wi th  ouabain also in- 
hibited the active component  of  calcium transport. Thus both passive dif- 
fusion and active transport of  calcium appear to be dependent upon sodi- 
um transport. The mechanism for the linkage of  active transport with 
sodium transport is unclear. One possibility is via an ATPase system. An- 
other possibility is a sodium-calcium exchange system across the baso- 
lateral plasma membrane, a phenomenon described in a variety of  tissues 
(Taylor and Windhager 1979). According to this hypothesis, intracellular 
calcium activity is regulated by calcium extrusion in exchange for sodium 
diffusing into the cell down a concentration gradient. Inhibition of  the 
sodium pump and removal of peritubular sodium would reduce both the 
gradient for sodium entry into the cell across the basolateral membrane 
and calcium extrusion. The resultant increase in cytosolic calcium activity 
would serve to inhibit calcium transport across the luminal membrane. 
Recent studies in vesicles isolated from rat renal cortex have in fact de- 
monstrated both an ATP-driven calcium pump and a Na-Ca countertrans- 
port system in the basolateral plasma membrane but not  in brush border 
membranes (Gma] et al. 1979). 

The original interdependence between the handling of  sodium and cal- 
cium by the kidney, therefore, seems to be characteristic of  the proximal 
tubule, and with a few exceptions, multiple studies have been unable to 
dissociate the transport o f  these ions at this site. Some exceptions to this 
rule include calcium infusion (Edwards et al. 1976; Le Grirnellec et al. 
1974) and sulfate infusion (Le Chene et al. 1975) and possibly acute para- 
thyroidectomy (Kuntziger et al. 1974). The ratio of  calcium concentra- 
tion in tubular fluid to that in ultrafiltrate has been observed to increase 
with infusion of  calcium and sulfate, probably because of an increase in 
the complexed fraction that may not  be available for reabsorption. The 
changes in calcium concentration observed with acute parathyroidectomy 
have not  been uniformly observed in other laboratories, and current data 
suggest that the important  effect of  parathyroid hormone (PTH) on urinary 
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calcium excretion is due to an effect in distal portions of the nephron. As 
a general rule, therefore, it is still reasonable to consider that, under con- 
ventional conditions, sodium and calcium transport in the proximal con- 
voluted tubule are parallel. 

2.3 Pars Recta and Descending Limb of Henle's Loop 

Studies in the rat (Jamison et al. 1974) and Psammomys (De Rouffignac 
et al. 1973) have suggested that the transport of sodium and of calcium 
may not be parallel between the end of the proximal convoluted tubule 
and the ascending limb. Both groups of investigators found that the ratio 
of tubular fluid calcium to ultrafilterable calcium concentrations (TF/UF 
calcium) at the papillary tip was significantly lower than the ratio of tubu- 
lar fluid sodium to plasma sodium concentrations (TF/P sodium) in con- 
trast to the accessible proximal convoluted tubule, where the reverse is 
found. These data thus suggested a dissociation between calcium and sodi- 
um reabsorption in either the pars recta or the thin descending limb. Rocha 
et al. (1977), however, found no evidence for calcium reabsorption in the 
latter segment with isolated perfusion. When an osmotic gradient was im- 
posed to stimulate in vivo conditions of osmotic water extraction, the rise 
in concentration of the volume marker was associated with a parallel rise 
in 4SCa concentration, indicating the absence of calcium efflux despite 
water loss. More recently, Rouse et al. (1980) have provided direct evi- 
dence that the pars recta of superficial nephrons is a site of significant net 
calcium efflux in excess of water reabsorption. As efflux occurred against 
an electrochemical gradient, they suggested that this transport was active. 
It was not inhibited by ouabain but was dependent upon cellular metabo- 
lism, as transport was inhibited by cooling to room temperature. The trans- 
port process was not saturated and the transport rate increased with in- 
creasing load. The exact nature of this process, its physiological role, and 
the factors that regulate it remain to be determined. Whether or not this 
transport process also occurs in the pars recta ofjuxtamedullary nephrons 
remains to be evaluated. 

2.4 Ascending Limb of Henle's Loop 

As in the thin descending limb, there is no evidence of net calcium trans- 
port in the thin ascending limb (Rocha et al. 1977). In contrast, net calci- 
um reabsorption occurs in the isolated perfused thick ascending limb as 
originally demonstrated by Rocha et al. (1977) and confirmed in several 
laboratories (Shareghi and Stoner 1978; Irnai 1978; Bordeau and Burg 
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1979; Suki et al. 1977). The mechanism of  calcium transport in this seg- 
ment is controversial, however. Earlier micropuncture studies revealed 
that furosemide inhibited calcium reabsorption in the loop of Henle, sug- 
gesting a relationship between sodium and calcium transport. While it 
seems that passive forces could account for net reabsorption because of  
the lumen-positive potential difference that occurs in this segment, data 
have suggested that other factors must play a role. Thus, in two studies, 
alteration of  the potential difference (PD) by ouabain or furosemide was 
not  associated with parallel changes in calcium transport (Rocha et al. 
1977; Irnai 1978) and the flux ratio was higher than that predicted by 
simple diffusion. In fact, Irnai (1978) was able to demonstrate significant 
efflux despite reversal of the PD. Bordeau and Burg (1979) also found a 
flux ratio greater than that predicted by the positive potential, but were 
able to show that there was no net flux when the PD was zero. Shareghi 
and Stoner (1978) found that the observed PD more than adequately ac- 
counted for the calcium flux. It should be pointed out that deviations of  
flux ratios from values predicted by 'passive' forces is not  necessarily an 
index of  active transport. Thus a variety of  types of  flux coupling (single 
file diffusion, exchange diffusion, solvent drag) as well as heterogeneity in 
the membrane can alter the flux ratio. These explanations, however, would 
not  account for the persistence of  transport with marked alterations in the 
potential differences. It is not  clear why these discrepancies exist. All in- 
vestigators, however, agree that at least part of  calcium transport in this 
segment may be accounted for by passive forces. Some of  the discrepan- 
cies may relate to differences in experimental techniques. It is also possible 
that heterogeneity of  function between cortical and medullary segments 
may account for some of  these differences. Preliminary data seem to sug- 
gest that the medullary segment exhibits passive transport characteristics 
while persistent transport despite reduction of  the PD is characteristic of  
the cortical segment (Suki et al. 1977). 

2.5 Distal Convoluted Tubule 

The first micropuncture studies suggested that 10%-11% of  the filtered 
load of  calcium was reabsorbed in the distal tubule (Lassiter et al. 1963). 
More recent experiments utilizing measurements of distal tubule length 
have confirmed these data, revealing reabsorption of  9% of the filtered 
load or 89% of  the delivered load during free-flow micropuncture (Costan- 
zo and Windhager 1978b). The reabsorptive rate during in vivo microper- 
fusion increased linearly with increasing load and there was virtually no 
detectable 'backleak' of  calcium into the tubule lumen despite the impo- 
sition of  large concentration gradients (Costanzo and Windhager 1978). 
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These data suggest the presence of  active, load-dependent calcium trans- 
port  in the distal convoluted tubule. Similar evidence for calcium transport 
in this segment, and possibly later segments as well, has been obtained in 
4SCa microinjection experiments (Greger et al. 1978). Under normal con- 
ditions, calcium transport in the distal tubule seems to be parallel to sodi- 
um transport, as demonstrated by most in vivo micropuncture studies. As 
discussed subsequently, in vivo transport can be dissociated with thiazides 
(Costanzo and Windhager 1978b). In vitro, Shareghi and Stoner (1978) 
were able to inhibit the PD and reduce sodium reabsorption with furo- 
semide and amiloride, but these agents did not  alter calcium transport. As 
will be discussed below, the distal convoluted tubule may consist of  several 
morphologically distinct segments. Studies have not been performed to 
evaluate transport specifically in the bright segment of  the distal tubule, 
and thus the homogeneity of  the distal convoluted tubule with respect to 
calcium transport remains unclear. 

2.6 Collecting Duct System 

Comparison of  the amount  o f  calcium remaining at the end of  the protion 
of the distal tubule accessible to micropuncture with the final urine con- 
centration at the same time have been utilized to estimate calcium trans- 
port in the terminal portions of  the nephron. These estimates have ranged 
from 3% to 10% of  the filtered load (Agus et al. 1977; Lassiter et al. 1963). 
Additional evidence for transport beyond the late distal tubule, namely in 
the cortical collecting tubule, has been found with tracer microinjection 
studies (Greger et al. t 978). Recent studies utilizing in vitro microperfu- 
sion, however, have suggested heterogeneity of function in the collecting 
duct system with regard to calcium transport. Thus the early cortical col- 
lecting duct, which contains granular epithelium similar to that of  the late 
distal tubule, transports calcium and responds to PTH but there is no de- 
tectable transport in the later light segment (Sharegi and Stoner 1978). As 
the nephrons of  the mid-cortex and the deep cortex are characterized by 
longer granular segments (connecting tubule, arcade), these data have par- 
ticular relevance to the interpretation of  earlier micropuncture studies. It 
now seems likely that the calcium transport previously attributed to the 
terminal nephron as a whole may in fact be restricted to the granular seg- 
ment. Careful study of the medullary collecting duct system is required 
to complete our understanding of calcium transport beyond the distal 
tubule. 
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Many factors alter tubular calcium transport and thereby urinary calcium 
excretion. These factors can be grouped into those that primarily alter cal- 
cium transport and those that primarily alter sodium excretion and sec- 
ondarily affect calcium excretion by virtue of the transport relationship 
between these ions in certain segments of the nephron, principally the 
proximal convoluted tubule and the loop of Henle (possibly only the 
medullary segment of the thick ascending limb - Sects. 2.2 and 2.4). Thus, 
acute increase in glomerular filtration rate produce only slight changes in 
calcium and sodium excretion (Massry and Kleeman 1972), presumably 
because of the maintenance of glomerulotubular balance, a function pri- 
marily of  the proximal tubule. Infusion of renal vasodilators, saline infu- 
sion (Agus et al. 1977), acetazolamide (Beck and Goldberg 1973), para- 
thyroid hormone (Agus et al. 1973), dibutyryl cyclic AMP (Agus et al. 
1973), and mild hypercalcemia (Edwards et al. 1974), all of which inhibit 
proximal tubular sodium reabsorption, are associated with parallel changes 
in proximal tubular calcium reabsorption. Whether or not these events are 
associated with significant changes in urinary excretion depends upon 
their effects on sodium and calcium transport in more distal portions of 
the nephron where the handling of these ions may be dissociable. Thus 
extracellular fluid volume expansion produces natriuresis and calciuria as- 
sociated with inhibition of transport beyond the late distal tubule, while 
parathyroid hormone reduces urinary calcium excretion despite compar- 
able inhibition of proximal tubular reabsorption. Similarly, vasodilators 
increase urinary excretion of sodium and calcium, while acetazolamide 
produces a mild natriuresis and little change in calcium excretion (Massry 
and Kleeman 1972). While dissociation of tubular transport of sodium 
and calcium can be demonstrated in in vitro perfusion of the pars recta 
and the cortical thick ascending limb (see 2.4), the physiologic significance 
of these events has not been demonstrated. Thus inhibition of sodium 
transport in the loop of Henle with furosemide produces comparable 
changes in both TF/P sodium and calcium in the early distal tubule (Ed- 
wards et al. 1973). Factors that appear to selectively alter calcium trans- 
port and urinary excretion seem to exert this action in the distal convolut- 
ed tubule and early portions of the collecting duct system. These include 
changes in acid-base balance, phosphate balance, parathyroid hormone, 
and thiazides. One possible exception to this rule is the administration of 
calcitonin, as will be discussed below. 
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3.1 Parathyroid Hormone 

Parathyroid hormone (PTH) stimulates the net tubular reabsorption of 
calcium, presumably via the production of cyclic AMP. The intrarenal 
sites of PTH-sensitive adenylate cyclase activity have been elegantly detail- 
ed in the last few years by the application of enzymatic analysis to ana- 
tomic subsections of isolated, collagenase-treated rabbit tubules (Chabardes 
et al. 1975., 1980; Imbert et al. 1975; Morel et at. 1976). These studies 
identified the proximal convoluted tubule, pars recta, cortical thick ascend- 
ing limb, and granular segments of the distal nephron as the major sites of 
activity. The 'bright' and 'light' segments of the distal convoluted tubule 
were found to possess little activity, while the apparently granular epithe- 
lium of the arcade or connecting tubule segment of deeper cortical collect- 
ing tubules, as well as of late segments of the distal convoluted tubule, was 
highly responsive to PTH. It is also worth noting that differences in adeny- 
late cyclase sensitivity to PTH were found in the various segments. Thus 
much higher concentrations of PTH were required for stimulation of 
adenylate cyclase in the cortical thick ascending limb than in proximal or 
distal tubules, a difference that may have physiologic significance, as will 
be discussed below. 

The localization of  the effects of PTH upon renal tubular calcium trans- 
port correlates very well with the sites of adenylate cyclase activity. Initial 
stop-flow studies suggested that the site of the hypocalciuric effect of PTH 
was in the distal nephron (Widrow and Levinsky 1962). Micropuncture 
studies in the dog subsequently indicated that acute administration of 
parathyroid hormone inhibited proximal tubular calcium reabsorption, 
also suggesting a distal site for the hypocalciufic effect (Agus et al. 1973). 
Subsequent studies on the rat suggested that PTH enhanced calcium reab- 
sorption in the terminal portions of the nephron beyond the late distal 
puncture site (Agus et al. 1977). More recently, direct evidence has been 
obtained for an effect within the distal convoluted tubule with in vivo and 
in vitro studies. Costanzo and Windhager (1978a) found a twofold increase 
in distal tubule calcium transport with intravenous PTH infusion or intra- 
tubular cyclic AMP perfusion. As discussed above, however, the distal 
nephron is extremely heterogeneous as regards PTH-sensitive adenylate 
cyclase activity. Shareghi and Stoner (1978) demonstrated PTH-sensitive 
calcium transport in distal convoluted tubules containing granular-type 
epithelium and in cortical collecting tubules containing granular epitheli- 
um. PTH-sensitive calcium transport has also been recently found in corti- 
cal thick ascending limb segments. Absorption is stimulated, however, by 
high (Bordeau and Burg 1979; Shareghi and Agus 1979) but not by low 
levels of PTH in vitro (Shareghi and Stoner 1978), a finding that is com- 
patible with the reduced sensitivity of this segment demonstrated by 
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histochemicat techniques (Chabardes et al. 1975). Thus all the data taken 
together suggest that it is the granular segment that is the distal site of cal- 
cium transport previously demonstrated by other techniques. 

3.2 Other Hormones 

Remarkably inconsistent effects of  calcitonin on urinary calcium excre- 
tion have been reported in a number of  studies. The data suggest that if 
there is an effect it is principally to decrease calcium excretion, but in 
many studies it has not  been possible to distinguish the relative roles of  
changes in filtered load and direct tubular effects. Recent micropuncture 
studies in young, parathyroidectomized rats revealed that catcitonin re- 
duced calcium excretion, in association with increased reabsorption in the 
loop of  Henle. The enhanced reabsorption, however, was dependent upon 
hypocalcemia, and when this was prevented by calcium infusion there 
were no changes in calcium transport (Quarnrne 1980). This observation 
may explain the variable results in the literature, as the serum calcium re- 
sponse to calcitonin is also very variable. Calcitonin-sensitive adenylate 
cyclase activity has been described in the medullary thick ascending limb 
(Chabardes et al. 1976). Preliminary studies in perfused rabbit tubules are 
consistent with this observation and reveal enhanced calcium transport in 
the medullary portion of  the thick ascending limb (Suki and Rouse 1980). 
There are very marked species differences, however, in calcitonin-sensitive 
adenylate cyclase activity (Chabardes et al. 1980), and more definitive 
studies are needed to assess both the effects and physiologic importance 
of  catcitonin. 

Enhanced tubular calcium reabsorption has been shown in thyropara- 
thyroidectomized dogs and rats with acute administration of  vitamin D, 
25-hydroxy-cholecalciferol and 1,25-dihydroxycholecalciferol (Puschett et 
al. 1972a, b). Chronic administration of  physiologic doses of  1,25(OH)~D 
to TPTX rats, however, has no effect upon intrinsic renal calcium handling 
as assessed during calcium infusion, despite demonstrable alterations in 
intestinal calcium calcium absorption (Hugi et al. 1979). Thus it does not 
seem likely that 1,25(OH)~D plays an important  role in the homeostatic 
regulation of  urinary calcium excretion. 

Chronic administration of  growth hormone,  thyroid, hormone, and 
glucocorticoids is associated with increased urinary calcium excretion. The 
mechanisms for these alterations include increased 1,25(OH)2D produc- 
tion and/or enhanced bone resorption but there is little evidence for a 
direct renal tubular effect of  these hormones. 

The acute administration of  mineralocorticoids does not alter calcium 
excretion. Chronic administration, however, is associated with a progres- 
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sive increase in urinary calcium excretion. The calciuria can be prevented 
by restriction of  sodium intake implying that extracellular fluid (ECF) 
volume expansion is the mediator of  the reduced tubular reabsorption of  
calcium (Suki et al. 1968;Massry et al. 1968;Rastegar et al. 1972). 

Insulin infusion and oraal glucose ingestion are associated with an in- 
crease in calcium excretion that cannot be accounted for by alterations in 
renal hemodynamics and appear to be related to changes in tubular calci- 
um reabsorption (Lennon and Piering 1970; De Fronzo et al. 1975). The 
tubular site of  action is unclear; although inhibition of  proximal tubular 
reabsorption has been demonstrated with both insulin and glucose admin- 
istration in the dog, fractional calcium excretion did not increase in those 
studies (De Fronzo et al. 1976). 

3.3 Acid-Base Alterations 

A number of  studies utilizing clearance techniques have shown that me- 
tabolic acidosis increases and metabolic alkalosis decreases urinary calcium 
excretion. These effects occur in the absence of  parathyroid hormone and 
appear to be the result of  direct tubular effects. Micropuncture studies 
suggest a dual effect in the nephron, depending upon the duration of  the 
acid-base disturbance. Acute metabolic acidosis in the rat inhibited prox- 
imal tubular sodium and calcium transport (Dubb et al. 1977) but did not  
alter the final urine excretion or dissociate sodium and calcium. Chronic 
ammonium chloride loading in the dog produced a dissociation of  such a 
kind that, at any level of  sodium excretion, acidotic dogs exhibited a sig- 
nificantly higher level of  calcium excretion than normal dogs. Micropunc- 
ture studies revealed that the site of  inhibition was not  in the proximal 
tubule but was apparent in the distal tubule and beyond (Sutton et al. 
1979). These changes were reversed with bicarbonate correction of  the 
acidosis in both intact and parathyroidectomized dogs. 

3.4 Diuretics 

The effect of  a natriuretic agent upon calcium excretion is dependent 
upon its principal site of  action and the relationship between sodium and 
calcium transport at that site. Thus acetazolamide inhibits proximal reab- 
sorption but the augmented delivery is reabsorbed distally and there is 
little change in urinary calcium excretion. Osmotic diuretics that seem to 
inhibit sodium reabsorption in the loop of  Henle tend to produce parallel 
changes in urinary excretion of  sodium and calcium (Wesson 1962), pre- 
sumably reflecting the reabsorptive parallelism of these ions in the loop. 
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Loop-active diuretics such as ethacrynic acid and furosemide produce a 
marked calciuria that may be proportionately greater than the correspond- 
ing natriuresis. Micropuncture studies suggest that this dissociation is not 
apparent prior to the cortical portion of the distal tubule and reflects cal- 
cium-independent sodium reabsorption at more distal sites in the nephron 
(Edwards et al. 1973). 

Acute administration of  benzothiadiazides produces natriuresis and 
variable changes in calcium excretion. Chronic administration invariably 
reduces urinary calcium excretion. Part of  the hypocatciuria has been at- 
tributed to ECF volume contraction and enhanced proximal tubular reab- 
sorption of  sodium and calcium. Thus the hypocalciuria can be markedly 
attenuated if sodium losses are replaced concurrent with drug administra- 
tion (Brickman et al. 1972). Since the reduction in calcium excretion is 
less marked in patients with hypoparathyroidism it has also been suggested 
that thiazides potentiate the effects of  parathyroid hormofie in the distal 
nephron to enhance calcium reabsorption (Brickman et al. 1972). More 
recently, evidence has been obtained for a direct tubular effect of thiazides 
(Costanzo and Windhager 1978b). In microperfusion studies of  the distal 
convoluted tubule, these investigators were able to demonstrate enhance- 
ment  of absolute calcium reabsorption with increasing load compared with 
controls, despite simultaneous inhibition of  sodium transport. The observa- 
tion that thiazides were effective when present only in luminal perfusion 
fluid is consistent with a site of  action on the luminal side. As the distal 
convoluted tubule is a heterogeneous morphological structure, however, 
the exact cellular site of  action cannot be determined from these studies. 

3.5 Phosphate Depletion 

Phosphate depletion produces a rapid and marked increase in urinary cal- 
cium excretion (Coburn and Massry 1970). Several mechanisms have been 
proposed to account for this phenomenon.  Dissolution of bone and en- 
hanced intestinal absorption may tend to raise serum calcium. The combi- 
nation of  increased filtered load of  calcium and reduced levels of  PTH 
could combine to account for calciuria. Several laboratories, however, 
have shown that the hypercalciuria cannot be totally corrected with either 
intravenous (Coburn and Massry 1970) or chronically PTH administration 
(Grabie et al. 1978). Alternatively, phosphate depletion could directly 
alter tubular calcium transport, as suggested by Coburn and Massry (1970). 
Recent studies have corroborated the presence of  a tubular defect. Micro- 
puncture studies in the dog demonstrated inhibition of  proximal tubular 
calcium and sodium reabsorption (Goldfarb et al. 1977) Acute infusion 
with phosphate, however, to parathyroidectomized, phosphate-depleted 
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dogs reduced calcium excretion to normal levels, but the proximal tubular 
defect was unchanged, suggesting a more distal site of  action of  phosphate. 
Subsequent studies in the rat revealed that the site of the defect in calcium 
transport was beyond the late distal tubule puncture site and that this was 
the site where phosphate infusion acted to reduce calcium excretion (Lau 
et al. 1979). Thus the evidence currently strongly favors the presence of  
intrinsic renal tubular defects as the cause of  hypercalciuria in phosphate 
depletion. While the proximal tubule is the site of reduced transport of  
sodium and calcium, it is the distal nephron, specifically that portion of  
the nephron beyond the accessible portions of  the late distal tubule, that 
is responsible for the changes in the final urine. 

3.6 Effect of Filtered Load 

In contrast to increases in filtered load produced by a rise in glomerular 
filtration rate (GFR), calcium excretion increases markedly with calcium 
infusion. Recent studies in TPTX rats (Hugi et al. 1979) indicate that in 
the absence of  PTH urinary calcium excretion is a linear function of  filter- 
ed load with 35%,-50% of  the increases in filtered calcium appearing in 
the urine. With PTH infusion, the threshold is increased but the slope re- 
mains the same. In intact animals, a steeper slope is observed as PTH secre- 
tion falls, and both intact and TPTX animals reach a similar urinary calci- 
um excretion at a plasma calcium of  12-13 mg%. Micropuncture studies 
during mild hypercalcemia reveal little change in TF/UF calcium in the 
proximal tubule and suggest an important  role for the distal nephron. With 
more marked hypercalcemia,TF/UF calcium increases but this may reflect 
the presence of  filterable but nonreabsorbable calcium complexes rather 
than saturation of  proximal tubular reabsorption (Edwards et al. 1974). 

4 Summary 

Calcium is reabsorbed in most segments of  the mammalian nephron in a 
pattern generally similar to that of sodium reabsorption. Of the filtered 
load, 50%--60% is reabsorbed in the proximal convoluted tubule, where 
there appears to be a strong link between sodium and calcium transport. 
There is now evidence for active calcium reabsorption in the pars recta but 
there is virtually no transport in the thin descending or ascending limb of  
Henle's loop. A significant fraction of  the filtered load of calcium is trans- 
ported in the thick ascending limb but the mechanism of  transport remains 
controversial and the possibility of  heterogeneity between cortical and 
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medullary segments is being actively investigated. There is active calcium 
transport in the distal tubule and the granular segment of  the collecting 
duct with reabsorption of  up to 10% of the filtered load. 

The terminal nephron, i.e., the late distal tubule and early collecting 
duct, which are morphologically characterized as the granular segment, 
may be the majorsite for the final regulation of  urinary calcium excretion. 
Current data suggest that these segments are the major site of  action of 
parathyroid hormone and are responsible for the alterations in calcium ex- 
cretion observed with metabolic acidosis, volume expansion, and chronic 
phosphate depletion. 

References 

Agus ZS, Gardner LB, Beck LH, Goldberg M (1973) Effects of parathyroid hormone 
on renal tubular reabsorption of calcium, sodium and phosphate. Am J Physiol 
224:1143-1154 

Agus ZS, Chiu PJS, Goldberg M (1977) Regulation of urinary calcium excretion in the 
rat. Am J Physiol 232:F545-F549 

Beck LH, Goldberg M (1973) Effects of acetazolamide and parathyroidectomy on 
renal transport of sodium, calcium and phosphate. Am J Physiol 224:1136 

Bordeau JE, Burg M (1979) Voltage dependence of calcium transport in the thick as- 
cending limb of Henle's loop. Am J Physiol 236:F357-F364 

Brickman AS, Massry SG, Coburn JW (1972) Changes in serum and urinary' calcium 
during treatment with hydrochlorothiazide: studies on mechanisms. J Clin Invest 
51:945 -954  

Chabardes D, Imbert M, Clique A, Montegut M, Morel F (1975) PTH-sensitive adenyl 
cyctase in different segments of the rabbit nephron. Pfluegers Arch 354:229-239 

Chabardes D, Gagnan-Brunette M, Imbert-Teboul M, Gontcharevskaia O, Montegut M, 
Clique A, Morel F (1980) Adenylate cyclase responsiveness to hormones in various 
portions of the human nephron. J Clin Invest 65:439-448 

Coburn JW, Massry SG (1970) Changes in serum and urinary" calcium during phosphate 
depletion: Studies on mechanisms. J Clin Invest 49:1073 

Costanzo LS, Windhager EE (1978a) Effect of parathyroid hormone and cyclic AMP 
on calcium and sodium transport in the distal tubule. Kidney Int 14:638a 

Costanzo LS, Windhager EE (1978b) Calcium and sodium transport by the distal con- 
voluted tubule of the rat. Am J Physiol 235 :F492-F506 

De Fronzo RA, Cooke CR, Andres R, Faloona GR, Davis PJ (1975) The effect of insu- 
lin on renal handling of sodium, potassium, calcium and phosphate in man. J Clin 
Invest 55:845 -855 

De Fronzo RA, Goldberg M, Agus ZS (1976) The effects of glucose and insulin on 
renal electrolyte transport. J Clin Invest 58:83-90 

De Rouffignac C, Morel F, Moss N, Roinel N (1973) Micropuncture study of water 
and electrolyte movements along the loop of Henle in Psammomys with special 
reference to magnesium, calcium, and phosphorus. Pfluegers Arch 344: 309 -  326 

Duarte CG, Watson JF (1967) Calcium reabsorption in proximal tubule of the dog 
nephron. Am J Physiol 212:355-356 

Dubb J, Goldberg M, Agus ZS (1977) Tubular effects of acute metabolic acidosis in 
the rat. J Lab Clin Med 90:318-323 



168 Z.S. Agus et al. 

Edwards BR, Baer PG, Sutton RAL, Dirks JH (1973) Micropuncture study of diuretic 
effects on sodium and calcium reabsorption in the dog nephron. J Clin Invest 52: 
2418-2427 

Edwards BR, Sutton RAL, Dirks HJ (1974) Effect of calcium infusion on renal tubular 
reabsorpfion in the dog. Am J Physiol 227:13-18 

Goldfarb S, Westby GR, Goldberg M, Agus ZS (1977) Renal tubular effects of chronic 
phosphate depletion. J Clin Invest 59:770 

Gmaj P, Murer H, Kinne R (1979) Calcium ion transport across plasma membranes 
isolated from rat kidney cortex. Biochem J 178:549-557 

Grabie M, Lau YK, Agus ZS, Goldberg M, Goldfarb S (1978) Role of parathyroid hor- 
mone in the hypercalciuria of chronic phosphate depletion. Miner Electrolyte 
Metab 1:279 

Greger RF, Lang F, Oberleithner H (1978) Distal site of calcium reabsorption in the 
rat nephron. Pfluegers Arch 374:153-157 

Harris CA, Baer PG, Chirito E, Dirks HJ (1974) Composition of mammalian glomerular 
filtrate. Am J Physio1227:972-976 

Hugi K, Bonjour J-R, Fleisch H (1979) Renal handling of calcium: influences of para- 
thyroid hormone and 1,25-dihydroxyvitamin D. Am J Physiol 236:F349-F356 

Imai M (1978) Calcium transport across the rabbit thick ascending limb of Henle's 
loop perfused in vitro. Pfluegers Arch 374:255-263 

Imbert M, Chabardes D, Montegut M, Clique A, Morel F (1975) Adenylate cyclase 
along the rabbit nephron as measured in single isolated segments. Pfluegers Arch 
354:213-228 

Jamison RL, Frey N, Lacy FB (1974) Calcium reabsorption in the thin loop of Hente. 
Am J Physio1227:745--751 

Kuntziger H, Anfiel C, Roinel N, Morel F (1974) Effects of parathyroidectomy and 
cyclic AMP on renal transport of phosphate, calcium and magnesium. Am J Physiol 
227:905 -911 

Lassiter WE, Gottschalk CW, Mylle M (1963) Micropuncture study of renal tubular 
reabsorption of calcium in normal rodents. Am J Physio1204:77 t -775  

Lau YK, Agus ZS, Goldberg M, Goldfarb S (t979) Renal tubular sites of altered calci- 
um transport in phosphate depleted rats. J Clin Invest 64:1681 

Le Chene C, Abraham E, Warner R (1975) Effect of sulfate loading on ionic distribu- 
tion along the rat nephron. Clin Res 23:432A 

Le Grimellec C, Roinel N, Morel F (1974) Simultaneous Mg, Ca, P, K and C1 analysis in 
rat tubular fluid. III. During acute Ca plasma loading. Pfluegers Arch 346:171-188 

Le Grimellec C, Poujeol P, De Rouffignac C (t975)3 H-inulin and electrolyte concen- 
trantions in Bowman's capsule in rat kidney. Pfluegers Arch 354:117-131 

Lennon EJ, Piering WF (1970) A comparison of the effects of glucose ingestion and 
NH4CI acidosis on urinary calcium and magnesium excretion in man. J Clin Invest 
49:1458-1465 

Massry SG, Kleeman CR (1972) Calcium and magnesium excretion during acute rise 
in glomerular filtration rate. J Lab Clin Med 80:654-664 

Massry SG, Cobum JW, Chapman LW, Kleeman CR (1968) The effect of long term 
desoxycorticosterone acetate administration on the renal excretion of calcium and 
magnesium. J Lab Clin Med 7:212-219 

Morel F, Chabardes D, Imbert M (1976) Functional segmentation of the rabbit distal 
tubule by microdetermination of hormone dependent adenylate cyclase activity. 
Kidney Int 9:264-277 

Puschett JB, Moranz J, Kurnick WD (1972a) Evidence for a direct action of cholecalci- 
ferol and 25-hydroxycholecalciferol on the renal transport of phosphate, sodium 
and calcium. J Clin Invest 51:373-385 

Puschett JB, Fernandez PD, Boyle IT, Gray RW, Omdahl JL, De Luca HF (1972b) The 
actue renal tubular effects of 1,25 dihydroxycholecalciferol. Proc Soc Exp Biol 
Meal 141:379-390 



Calcium Transport in the Kidney 169 

Quamme GA (1980) Effect of calcitonin on calcium and magnesium transport in rat 
nephron. Am J Physiol 238:E573-578 

Rastegar A, Agus ZS, Connor TB, Goldberg M (1972) The renal handling of calcium 
and phosphate during mineralocorticoid escape in man. Kidney Int 2:279-286 

Rocha A, Magatdi JB, Kokko JP (1977) Calcium and phosphate transport in isolated 
segments of rabbit Henle's loop. J Clin Invest 59:975-983 

Rouse D, Ng RCK, Suki WN (1980) Calcium transport in the pars recta and thin de- 
scending limb of Henle of the rabbit, perfused in vitro. J Clin Invest 65:37-42 

Shareghi GR, Agus ZS (1979) Magnesium transport in the rabbit cortical thick ascend- 
ing limb. Clin Res 27:430A 

Shareghi GR, Stoner LC (1978) Calcium transport across segments of the rabbit distal 
nephron in vitro. Am J Physiol 4:F367-375 

Suki WN (1979) Calcium transport in the nephron. Am J Physiol 237:F1-F6 
Suki WN, Rouse D (1980) Heterogeneity of calcium transport in the medullary and 

cortical thick ascending limb of Henle: Effect of calcitonin. Clin Res 28:536A 
Suki WN, Schwettmann RS, Rector FC Jr, Seldin DW (1968) Effect of chronic minera- 

tocorticoid administration on calcium excretion in the rat. Am J Physiol 215: 
71-74 

Suki WN, Rouse D, Kokko JP (1979) Calcium transport in the thick ascending limb of 
Henle. Kidney Int 12:461a 

Sutton RAL, Wong NLM, Dirks JH (1979) Effects of metabolic acidosis and alkalosis 
on sodium and calcium transport in the dog kidney. Kidney Int 15:520-533 

Taylor A, Windhager EE (1979) PossibIe role of cytosolic calcium and Na-Ca exchange 
in regulation of transepithelial sodium transport. Am J Physiol 236:F505-F512 

Ullrich KJ, Rumrich G, Kloss S (1976) Active Ca2+ reabsorption in the proximal 
tubule of the rat kidney. Pfluegers Arch 364:223-228 

Walser M (i 961) Calcium clearance as a function of sodium clearance in the dog. Am J 
Physio1200:1099-1104 

Wesson LG Jr (1962) Magnesium, calcium and phosphate excretion during osmotic di- 
uresis in the dog. J Lab Clin Med 60:422-432 

Widrow SH, Levinsky NG (1962) The effect of parathyroid extract on renal tubular 
calcium reabsorption in the dog. J Clin Invest 41:2151-2159 



Rev. Physiol. Biochem. Pharmacol., Vol. 90 
@ by Springer-Verlag 198t 

Central Chemosensitivity: A Respiratory Drive 

M A R I A N N E  E .  S C H L A E F K E  * 

Dedica ted  to  Professor  Dr. Dr. h.c. Hans H. Loeschcke  
on  the  occas ion  of  his 6 8 t h  b i r t h d a y  

Contents 

1 I n t r o d u c t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172 
1.1 Cent ra l  Chemosens i t i v i t y  as Seen in T w o  Ear l ier  Ar t ic les  by  

Winters te in  and  Wyss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172 
1.2 Is Chemosens i t i v i t y  a Genera l  Charac te r i s t i c  o f  the  Resp i ra to ry  

Centers?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 7 3  

2 The  S t ruc tu r e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175 
2.1 The  Loca l i za t ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175 
2.2 The  Search  for  the  Recep to r :  W i t h o u t  Success . . . . . . . . . . . . . . . . .  180 
2.3 The  Ul t r a s t ruc tu re  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184 
2 .4  His tochemica l  Trac ing  of  Neurones  . . . . . . . . . . . . . . . . . . . . . . . . .  185 
2.5 Neurophys io log ica l  Trac ing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187 

3 The  Mechan i sm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I95  
3.1 Resp i ra tory  Effec ts  o f  Ions ,  Drugs, and Pu ta t ive  T ransmi t t e r s  . . . . . . .  195 
3.2 Neurona l  Effec ts  of  lons ,  Drugs, and  T r a n s m i t t e r  Subs tances  . . . . . . . .  196 
3.3 Cent ra l  Chemosens i t iv i ty :  U n s p e c i f i c - S p e c i f i c  . . . . . . . . . . . . . . . . .  198 
3.4 The  "Sense-Less"  Centers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204  
3.5 Some Rem ar ks  on  the  Role  of  t he  Ven t r a l  Medul lary  Surface  for  t he  

Cardiovascular  and  O t h e r  E f f e r en t  Sys tems . . . . . . . . . . . . . . . . . . .  208  
3.6 A Wanted  Model :  Or  a Model  of  h o w  I Wan t  i t  to  be  . . . . . . . . . . . . .  211 

4 Loss of  F u n c t i o n :  Loss o f  Acid Base Homeos tas i s  . . . . . . . . . . . . . . . . . . .  214  
4.1 Resp i r a to ry  Response  to CO2 A f t e r  E l imina t ion  o f  Cent ra l  

Chemosens i t i v i t y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214  
4.2 Brea th ing  A f t e r  Loss o f  Cent ra l  C hem os ens i t i v i t y  . . . . . . . . . . . . . . .  216  
4.3 Loss o f  Cent ra l  Chemosens i t i v i t y :  A Basic Model  for  Ond ine ' s  

Curse and S u d d e n  I n f a n t  Dea th  S y n d r o m e  . . . . . . . . . . . . . . . . . . . .  219 

5 Conc lus ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221 

References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222  

* Arbe i t sg ruppe  Physiologie  der  Regula t ion ,  I n s t i t u t  ffir Physiologie ,  Ruhr-Univers i t / i t  
B o c h u m ,  D - 4 6 3 0  B o c h u m / G F R  



172 M.E. Schlaefke 

1 Introduction 

1.1 Central Chemosensitivity as Seen in Two Earlier Articles by 
Winterstein and Wyss 

Two previous articles on the respiratory control system of  mammals in 
this review series form the basis for the following one, which deals with 
central respiratory chemosensitivity: One emphasizes the humoral homeo- 
static part (Winterstein 1958), the other the neural reflexogenic part 
(Wyss 1964). In ,,Die chemische Steuerung der Atmung" Winterstein dis- 
cussed the four forms of the "reaction theory" founded on the idea that 
lung ventilation is governed by the H ÷ ion concentration of  the body 
fluids. Lung ventilation should keep the pH constant by releasing more or 
less CO2. Winterstein believed that H + ions were also responsible for the 
respiratory drive produced by hypoxia. The mechanism he thought likely 
to exist was a possible influence of  H + ions on the cholinergic system of  
the peripheral chemoreceptors. In addition Winterstein at the same time 
speculated that the site of  H ÷ ion sensitivity behind the blood-brain barrier 
was located within the respiratory centers. Winterstein's concept of  chem- 
ical regulation fundamentally influenced the research on acid-base homeo- 
stasis as controlled by the respiratory system, up to the present time. 

Wyss (1964) in ,,Die nerv6se Steuerung der Atmung" described the 
neural mechanism of  peripheral and central reflexogenic nature. He dealt 
with the rhythmogenesis of  breathing and stated the basic role of  the vagal 
reflexes for the autonomy of  respiration, which, however, as was shown 
later, in the absence of  any chemosensitive input into the rhythm genera- 
tor, are unable to contribute to the generation of  respiration (See 1973). 
Wyss, in his contribution, did not  discuss the chemical reflexes in detail 
but evaluated their component  as incorporated within the "vegetative 
basic structure", the chemical reflexes thus being part of  the basic condi- 
tions for the autonomy of  bulbar activity. Wyss questioned the idea of  the 
respiratory center being sensitive to CO2 or H ÷ ions and, referring to the 
early experiments of  Loeschcke and co-workers (Loeschcke and Koepchen 
1958 a-c; Lo eschcke e t al. 1958), he concluded that asp  ecial chem osensi- 
tire apparatus existed in the brain outside the respiratory centers, this the- 
ory being later accepted by Winterstein (1960). 

This article is concerned with the central chemosensitive mechanism, 
its location, its morphological correlate, some basic functions, and some 
clinical aspects. The main aim is to describe the present opinions regarding 
central H ÷ ion sensitivity as a respiratory afferent system. 

Any references from the older literature may be obtained from the two 
quoted reviews. Previous reviews on central chemosensitivity have been 
published by Loeschcke (1974a) and Loesehcke and Schlaefl~e (1976). For 
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further reviews on the control of respiration and some special aspects see 
Berger et al. (1977a-c),  Cohen (1979), Cunningham (1973), Duffin (197 I), 
Guz (1975), Karczewski (1974), Heinemann and Goldring (1974), 
Loeschcke (1969, 1971, 1972, 1973a-c,  1977), and some recent symposia 
edited by Paintal and Gill-Kurnar (1977), v. Euler and Lagercrantz (1979), 
Fitzgerald et al. (1978), Duron (1976), Karczewski and Widdicombe 
(1973), Koepchen et al. (1980), Leusen (1972), Loeschcke (1976),Paintal 
(1976), Nell (1973), Umbach and Koepchen (1974), Sies/6 and Sg~rensen 
(1971), and the "Warsaw Symposium" on "CO2 and Breathing" (1976). 

1.2 Is Chemosensitivity a General Characteristic of the Respiratory 
Centers? 

Based on the essential discoveries in respiratory physiology by Pfliiger 
(1868), HaMane and Priestley (1905), and Fredericq (1901), Winterstein 
(1910, 1911, 1923) attributed the extent of lung ventilation to the H ÷ ion 
concentration within the respiratory centers. The H + ion concentration 
would depend upon the metabolism, the pH of the surrounding fluids, and 
upon the permeability of components determining the pH. Gesell (1923, 
1925) also saw the important contribution of the acidity within the fluid 
surrounding the respiratory centers to the regulation of respiration. In 
1908 Robertson had already reported experiments in which he could elicit 
respiratory responses by injecting acids into the respiratory center of the 
frog. In mammals, as is quoted later, accounts concerning stimulation of 
the respiratory center with drugs by different workers are rather contro- 
versial. Regarding this vagueness in the field of central chemosensitivity, 
Gesell (1939) praised Heymans and his co-workers for their discovery of 
the carotid and aortic chemoreceptors (Heymans and Heymans 1927; 
Heymans and Bouckaert 1930, 1939;Heyrnans et al. 1931) as it gave "a 
new outlook on respiration for which physiology is deeply i n d e b t e d . . .  
No one had actually demonstrated that either excess of carbon dioxide or 
lack of oxygen, restricted to the medulla, is capable of augmenting pul- 
monary ventilation". This statement held for the effect of hypoxia, as 
well as for CO2 when its action was restricted to the medullary respiratory 
centers. 

Following Heymans and Bouckaert (1939), Heymans (1951), Hesser 
(1949), and Gray (1950) there still remains an insufficient number of sci- 
entists who have studied chemical control of ventilation after peripheral 
chemoreceptor denervation. Depending on the species, the experimental 
conditions and purpose, it was more or less clearly shown that CO: or H + 
ions still influence respiration without peripheral chemoreceptors (Adolph 
et al. 1961; Anitschkow 1936; Banus et al. 1944; Belville et al. 1959; 
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Berger et al. 197t, 1973; Berndt et al. t972a-c;Bisgard and Vogel 1971; 
Borison and McCarthy 1973; Bouverot 1976;Bouverot and Bureau 1975 ; 
Bouverot et al. 1961, 1963, 1965; Deiours 1962; v. Euler and Lil]estrand 
1940; Florez and Borison 1971; Gautier 1976a, b; Guz et al. 1966; 
Heeringa 1979; Jones and Purves 1970; Katsaros 1965a, b; Kiwult et al. 
1972, 1976; Kiwull-Sehdne and Kiwull 1979; Kiwull-Schdne et al. 1976; 
Loeschcke 1960; Loesehcke et al. 1958, 1979; Mitchell et al. 1964; Neil 
and O'Regan 1969; Perkins 1968; Rosenstein et al. 1974; Rutherford et 
al. 1967; Schlaefke and Loeschcke 1967; Schlaefke et al. 1970; Schmidt 
and Comroe 1940; Sdrensen and Mines 1970; Wiemer et al. 1964; Winter- 
stein 1950; Winterstein and Gdkhan 1953). 

The chemosensitivity of the respiratory center was questioned by in- 
vestigators who had observed the selective decrease of the respiratory re- 
sponse to CO2 and not to hypoxia under anesthesia (Astrdm 1952; Ben- 
zinger et al. 1938; Dripps and Dumke 1943; Dripps and Severinghaus 
1955; Florez and Borison 1969; Hesser 1949; Marshall and Rosenfeld 
1936; Schmidt and Comroe 1940) or by sleep (Phillipson 1977, 1978a, b; 
Phillipson et al. 1978; Reed and Kellogg 1958, 1960). Selective loss or 
lowering of CO2 sensitivity has also been observed in patients with chronic 
lung emphysema (Alexander et al. 1955; Comroe et al. 1950; Prime and 
WestIake 1954; Scott 1920), or with local lesions (Richter et al. 1957), or 
in cases of primary" alveolar hypoventilation (Fruhmann et al. 1961; 
Chiesa et al. 1970). 

After Pitts (1940), Pitts et al. (1939a-c) and Stella (1938a, b)had de- 
tected the topographical location for where the respiratory rhythm should 
be generated and afferent input should be coordinated, Comroe (1943) 
and Lil]estrand (1953, 1958) compared effects produced by bicarbonate 
injections or electrical stimulation within the respiratory centers or in the 
medulla oblongata respectively, and obtained diverging results. Comroe 
observed coincidence of the chemically and electrically-elicited effects, 
while Lil]estrand discovered some incongruity. 

Von Euler and S6derberg (1952a, b) recorded the first chemically- 
evoked action potentials from the "completely denervated" rhombence- 
phalon in response to carbon dioxide. In addition they measured slow po- 
tential shifts in the medulla oblongata as a response to alterations in blood 
chemistry. The authors were also able to show that the neural response to 
CO~ was diminished by anesthesia without impediment of other peripheral 
respiratory reflexes. They drew the following conclusions: (1) The bulbar 
chemosensitive structures could not be involved in the respiratory reflex 
and coordinating pathways, but should be located as a special apparatus 
within the respiratory centers. (2) Differing from the ideas of Gesell (1940) 
and Pitts (1946) who believed that CO2 would modify a basic discharge 
activity of neurons due to metabolic gradients from the dendrites to the 
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axon hillock, yon Euler and SOderberg (1952a, b) proposed a mechanism 
of  impulse generation by CO2. 

Another approach was made by various authors applying substances 
which act on the peripheral chemoreceptors, to the floor of the fourth 
ventricle, or by suboccipitat injections, by perfusing the ventricular sys- 
tem, or by injection into the cisterna pontis. The observed respiratory re- 
sponses to nicotine, lobeline, cyanide, cocaine, acetylcholine, acids, or 
cooling were equivocal (Cornroe 1943; Gesell et al. 1943 ; Loesehcke and 
Koepchen 1958a-c;  Mitchell et al. 1960; Wiemer 1959; Winterstein and 
Gdkhan 1953; Winterstein and Wierner 1959). 

A new attempt to investigate central chemosensitivity was begun by 
Leusen (1954a, b). Acid solutions perfused through the ventricular spaces 
produced an increase in ventilation. Leusen showed that the relationship 
between H2COa and BHCO; was decisive for the effect on respiration, 
but he could not  prove that the true stimulus was provided by the H ÷ ions. 
Leusen believed like Winterstein (1955), Gesell (1940), and Cornroe 
(I 943), that the respiratory centers underlying the fourth ventricle would 
respond to the changes of  acidity directly. 

Considering Win terstein's concept regarding the predominant role of H ÷ 
ions on one hand and the equivocal findings on the questioned central site 
of chemical action, Loesehcke started his work on central chemosensitiv- 
ity and gave his first report in 1957, a paper which was later published, to- 
gether with Koepchen and Gertz (1958), and which may be regarded as 
the first one dealing with medullary surface pH sensitivity. 

2 The Structure 

2.1 The Localization 

The most important  step in the investigation of  central chemosensitivity 
was taken by Loeschcke et al. (1958) isolating the stimulus, to show 
whether it is CO2 or pH. Three types of  techniques were used in the series, 
from which decisive proposals could be made: 

1) A catheter was advanced 2 mm through the roof to the third ventricle. 
2) The catheter was pushed forward to the third ventricle, so that the 

injected solutions could run back along the catheter and reach the bulbar 
base through the foramina Luschkae. 

3) The cerebellum was removed by suction and test solutions were ap- 
plied to the floor of  the fourth ventricle by pledgets. 

The authors used BHCO;/H2CO3 buffers equilibrated with CO2 in air, 
in which BHCO; and NaC1 were exchanged equivalently. All solutions had 
the same K ÷ and Ca ÷+ ion concentration and were isotonic. These were the 
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results: An acid shift of  pH at constant PCO~ of the perfusate was follow- 
ed by an increase in tidal volume, and an alkaline shift by a decrease in 
tidal volume. An increase of PCO2 at constant pH was accompanied by a 
gentle diminution of tidal volume. The respiratory response could only be 
seen when the solutions reached the lateral recessus. Application of acid 
to the floor of the fourth ventricle produced no effect. With these results 
Winterstein's concept was proved for the first time, as the results showed 
that H ÷ ions, and not specifically CO2, influence the sensitive structure. In 
addition, the findings contradicted the idea of a general chemosensitivity 
of the respiratory centers. From the results of the experiments of Jacobs 
(1920a, b) and the theory of Winterstein (1910, 1911, 1923, 1955), and 
of Gesetl (1923, 1925, 1940), Loeschcke and his co-workers considered 
that an increase in CO2 at constant pH which did not stimulate breathing, 
indicated a very superficial location for the sensory structure. Deeper4ying 
sensor elements should have been reached by the easily penetrating CO2 
with the consequence of hyperpnea. This however, was not observed. The 
authors suspected free nerve endings within the lateral recessus and within 
the chorioid plexus of the fourth ventricle, as had been described by Clark 
(1934), to be possible candidates for a H ÷ ion sensitive structure. 

In two further experimental studies by Loeschcke and Koepchen 
( 1958a, c), procaine was applied using Leusen's method (1954a), by which 
the whole ventricular system of the cerebrum was reached, or by perfus- 
ing only the fourth and third ventricle as described before. Procaine (2%) 
was also applied locally to the floor of the fourth ventricle without effect, 
but a decrease in respiration and blood pressure was observed following 
the perfusion technique as well as the local application on the lateral re- 
cessus. Apnea of the chemodenervated cat could be interrupted by electri- 
cal stimulation of the inspiratory center. From these results the authors 
found support for their assumption that the centers, when deprived of 
peripheral chemoreceptors under resting conditions, are dependent upon 
H ÷ ion sensitive afferent impulses. They further concluded that the vaso- 
motor center may also receive afferent impulses, and that both afferent 
systems may be superficially located within the region of the lateral reces- 
sus and the medullary base. 

With these results Loeschcke joined Mitchell's group, which had also 
worked on chemically-induced effects on respiration obtained from the 
floor of the fourth ventricle in dogs (Mitchell et al. 1960). In 1963 to- 
gether they were able to confirm that the increase in respiration due to 
H ÷ ions and PCO2, nicotine and acetylcholine was obtained from the sub- 
arachnoid space on the ventrolateral surface of the medulla, whereas no 
effects or depressive ones were observed when the substances were applied 
to the fourth ventricle. Procaine, lobeline, NaCN, and cold CSF in the sub- 
arachnoid space on the lateral surface, depressed ventilation (Mitchell et al. 
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1963b) and in another paper (Mitchell 1965). Unfortunately the two draw- 
ings of  the medulla oblongata published in the two papers differ from each 
other and from the topographical anatomy of  the cat. The following de- 
scription was given: The chemosensitive area is bordered rostrally by the 
ports, extending 6 - 7  mm caudal, bounded laterally by the roots of  the 
7 th -1  l th  cranial nerves and medially by the pyramidal tract (Mitchell et 
al. 1963b). The authors attributed the superficial location of  the sensitive 
structure to the fast respiratory responses following local application of  
the chemical substances. In addition it was shown that apnea occurred 
with 1% procaine in the perfusate, and, using a staining method for pro- 
caine (Grodinski et al. 1933), it was shown not  to penetrate deeper than 
350/~m below the surface, after a contact time of  5 rain. 

Schwanghart et al. (1974) applied procaine to the ventral medullary 
surface and studied inspiratory and expiratory discharge as well as reticular 
neuronal discharge. Inspiratory discharge was abolished within a very short 
time, expiratory discharge became tonic, and reticular neurons were either 
activated or inhibited. Histochemical tests revealed that procaine h~td not  
penetrated deeper than 30-50/~m, which again provides evidence for a very 
superficial location of  the structure mediating afferent respiratory drive. 

The most intensive research conducted on central chemosensitivity 
during the past 20 years was done by the group led by Loeschcke. His co- 
worker Berndt tested a geometric localization (Berndt et al. 1972a-d).  
The authors experimentally established stationary gradients of the extra- 
cellular pH between the ventral surface and deeper parts of the medulla. 
They showed by calculation that ventilatory responses were correlated 
best with extracellular pH changes occurring at 250 -300  gm below the 
ventral medullary surface. Berndt et al. (1970) also showed that the respi- 
ratory center could still be activated by electrical stimulation when the 
ventral surface was superfused with either procaine or solutions of high 
potassium concentration, although K ÷ ions may rapidly diffuse through 
the extracellular spaces of  the medulla in contrast to procaine. 

Trouth et al (1973a) by systematic electrical stimulation with a uni- 
polar electrode elicited respiratory responses from the surface, and from 
different points at 0 .1-0 .2  mm up to a depth of  1 mm and from thereon 
at millimeter intervals up to a depth of 6 mm below the surface. The 
authors observed the strongest effects from the surface medial of  the 
hypoglossal root, still obtainable at 0.2 mm but not at about 0 .6 -0 .8  mm 
below the surface. Respiratory effects could again be evoked from 2 mm 
below the surface and deeper. From both studies the authors, using the 
two different experimental approaches, saw in their results further con- 
firmation of  the hypothesis that the sensitive system was located within 
the ventral medullary surface layer and therefore could not  be identical 
with the respiratory reflex and coordinating centers. 
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Three further studies were performed in order to obtain a more precise 
localization o f  the medullary surface area with respiratory effects, aiming 
at providing information for subsequent tissue withdrawals for morpholo- 
gical investigations (Loeschcke et al. 1970;Schlaeflce and Loeschcke 1967; 
Schlaeflce et al. 1970). The outcome was that not  one but  three areas on 
the ventral medullary surface were found to be involved in central chemo- 
sensitivity (Fig. 1). The first area was localized by cold block, cooling with 
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Fig. 1 . / , e f t  side: Scheme of ventral surface of  the medulla oblongata of  the cat. V I -  
XII cranial nerve roots. O, Foramen caecum (Fc). Projected on the surface: NTB, 
nucleus trapezoid body;  OS, superior olive;NPG, paragigantocellular nucleus; OI, infe- 
rior olive;NR/,, lateral reticular nucleus; VII, VIIth nerve nucleus. Right side: Strongest 
respiratory responses were eficited from 3 mm lateral of the midline and at points in 
different caudal distances from the foramen caecum. V for electrical stimulation; K for 
cold block; H* for local superfusion with artificial cerebrospinal fluid of varied pH. 
Arrows upward, increase; arrows downward, decrease of tidal volume. O, almost no 
change. Maximal responses to electrical stimulation: 0 and 11 mm caudal of  Fc. K.fat: 
largest effect of  cold block. The rostrocaudal extension from M, S, and L areas is given 

a thermode 1 mm in diameter to 8° -10°C or 2 8 1 - 2 8 3  K, respectively. 
The characteristic result was apnea, when the corresponding contralateral 
area was coagulated, and sinus nerves and vagi were cut (Schlaej?ce and 
Loeschcke 1967). Later, in different papers, the extension of  this area 
varied. For  this reason it was reinvestigated under the same conditions, the 
rostrocaudal boundary referring to the foramen caecum (Schlaefke et al. 
1970, Fig. 6 there): The maximal effect,  which was rapid apnea following 
the onset o f  cold block, was obtained from an area 5 .8 -7 .7  mm caudal o f  
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the foramen caecum (the border between pons and medulla, Fig. 1). 
Apnea, after a longer latency, was observed up to 4.3 and 9.2 mm caudal 
of  the foramen caecum. The lateral boundary was 2 .9-3.8  mm lateral 
from the midline. The area was at first named ,,Kfilte-empfindliches Feld", 
later it was called area S and finally intermediate area (IA). In two parallel 
studies electrical and chemical stimulation of  the ventral medullary surface 
was performed with the aim of  comparing respiratory effects (Loeschcke 
et al. 1970;Schlaefke et al. 1970). The conditions of  the two series varied, 
however. The electrical stimulation was done in intact cats; the chemical 
stimulation, namely superfusing 1 mm 2 areas with artificial CSF of vary- 
ing pH while keeping the surrounding area neutral, was performed in cats in 
which the contralateral intermediate area had been coagulated, and sinus 
nerves and vagi had been cut. 

For electrical stimulation a core electrode with 0.6 mm inner and 1.6 
mm outer diameter was used. The voltage used was 2/3 of that delivered 
to a point of  maximal respiratory response medial of  the hypoglossat root, 
for the individual cat. Electrical stimulation produced increases in tidal 
volume within areas 3 mm lateral to the midline, from 0 - 4  mm caudal, 
and from 6 - 1 4  mm caudal of  the foramen caecum with maxima at 0 and 
11 mm caudal of  the reference point. Between these limits there appeared 
to be a steep trough with its minimum at 5 mm caudal from the foramen 
caecum, showing either no increase, or only small increases in tidal volume. 
However, higher voltages at this point caused apneusis. Local chemical 
stimulation elicited only small responses regarding tidal volume in areas 
from 0 - 4  mm and from 8--12 mm caudal from the foramen caecum. A 
trough with significant inhibition of  tidal volume by acid buffer was 
found at 6 mm from the foramen caecum. The trough obtained by both 
types of  stimuli projected to the intermediate area, where cold block max- 
imally depressed ventilation. The profiles of  respiratory responses over 
various points o f  stimulation on the ventral medullary surface led to a 
working hypothesis which suggested that the sensory sites within the 
rostral area M (Mitchell et al. 1963a), and the caudal area with positive 
respiratory responses, which was called area L (Loeschcke et al. 1970) 
might converge within the intermediate area S (Schlaefl~e and Loeschcke 
1967), from where the "bundled" information should be linked with the 
respiratory centers. 

Central chemosensitivity of  respiration could be located also for the rat 
in an area corresponding to the area which has been described by Mitchell 
and co-workers. Mitchell's as welt as Loeschcke's results were obtained 
from the cat, and the effects were seen in principle in dogs as well (Loeseh- 
cke et al. 1958a;Mitchelt et al. 1963a). The evidence for central chemo- 
sensitive areas on the ventral medullary surface of  the rat's brain has been 
provided by Hori et al. (1970), Fukuda and Honda (1975), Fukuda and 
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Loeschcke (1977), and by Fukuda et al. (t978, 1979). Fukuda and co- 
workers observed H + ion sensitive neurons in brain slices of the rat in an 
area corresponding to the location of the intermediate area of the cat. 
However, nobody so far has shown that central chemosensitivity is re- 
presented by three different areas in the rat also. Since in rabbits bilateral 
cold block of an area corresponding to the intermediate area of the cat 
causes apnea, it is likely that the central chemosensitive apparatus may 
also be comparable to that of the cat (Katzorke and Schlaefke, unpub- 
lished data). Nothing is known so far about any H + ion sensitive character- 
istics of the ventral brainstem surface of man. 

However, recent histopathological findings in cases of sudden infant 
death syndrome give some hints that similarities to the cat's chemosensi- 
tive apparatus may exist (Schlaeflce et al. 1980a, b). 

2.2 The Search for the Receptor - Without Success 

The search for the responsible correlate of an H ÷ ion sensitive receptor 
initiated several histological studies. A first effort by Loeschcke (1965), 
who studied the superficial tissue of the lateral recessus of the fourth 
ventricle and the adjacent region around the tuberculum acusticum, led to 
the description of superficial nerve cells surrounded by fine axons. In 
addition he saw cell clusters of glial nature interwoven with a network of 
fine axons. Fleischhauer and PetrovickS (1968) within the superficial layer 
of the lateral recessus described the "nucleus z", neuronal elements sur- 
rounded by subependymal glia fibers. So far no one has studied the phys- 
iology of these neuronal or glial elements, which is not surprising, since in 
the meantime the site of  interest shifted to the ventral surface. 

Petrovickj (1968) was the first to compare the results of systematic 
histological studies on the marginal layer of the ventral brain stem with 
physiological data. He described, within a field corresponding to the 
intermediate area (Schlaeflce and Loeschcke 1967) a thin and spongy layer 
of glia fibers with two types of nerve cells; one, small, round, and pale, 
with diffusely scattered Nissl substance; and the other medium-sized and 
multipolar, with dense clusters of Nissl substance. Both types form a 
small nucleus (2 mm long, 1 mm wide, 1 mm deep), known as the lateral 
reticular nucleus Olszewski (Petrovick~ 1968). Rostrally, the nucelus turns 
away from the surface into the depth and contacts the paragigantocellular 
nucleus (NPG; Figs. 1, 2). Rostrally, within the superficial part, one finds 
the small pale type of cells; caudally, the larger, dark type. Some cells of 
the dark type accompar/y the hypoglossal fibers up to the region of the 
nucleus interfascicularis hypoglossi. 
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By systematic electrical stimulation of the medulla, and electrical mark- 
ing, Trouth et al. (1973b) identified 7 -26  characteristic cells. These he 
described to be 40 -70  um in diameter and situated at the site of maximal 
respiratory responses within the caudal area, at the level of the middle of 
the hypoglossal root fan. They are arranged as single cells or in groups of 
2 -8  between the ventral surface and the ventral side of the inferior olive. 
Their distance from the ventral surface varies from 50-450 ~m, but most- 
ly they are found between 150 and 200 t~m. A small number has been ob- 
served between 450 and 800 ~m below the surface. They are easily distin- 
guished by their long multipolar protoplasmic processes. The authors also 
observed some superficial and some deeper lying nerve cells, hardly distin- 
guishable from reticular neurons, within the rostral area. The authors also 
missed the grouping here which is characteristic for the caudal area. 

Schlaefke (1972), Kille and Schlaefke (1974), Schlaefke et al. (1974) 
and Loeschcke and Schlaefke (1976), systematically mapped neurons within 
the ventral medullary surface layer, extending from the surface to 300 tsm 
depth, up to 12 mm caudal from the foramen caecum and 2 - 4  mm lateral 
to the midline. The material was obtained after fixation of the medulla in 
glutaraldehyde and embedding it in Epon or paraffin from which trans- 
verse sections of 2 tsm or 8 tsm, respectively, as well as horizontal sections, 
were taken and stained either by silver impregnation or methylene blue. 
The upper part of  Fig. 2 shows the surface projection of the cells found in 
the different distances from the surface layer (lower part). The different 
symbols correspond to the different levels below the surface at which cells 
can be seen. Some neurons of the superficial layer form part of the nucleus 
reticularis lateralis (NRL, lateral to and underneath the caudal area), of 
the nucleus paragigantocellularis (NPG, underneath the most superficial 
cell layer in the intermediate area, and underneath the rostral area), and of 
the nucleus trapezoidalis (NTP, underneath the rostral area) (Berman 1968; 
Taber 1961). The cells first described byPetrovick~ (1968), and those de- 
scribed by Trouth et al. (1973b), are indicated by the author's initial. The 
superficial nerve cells within the intermediate area which have been de- 
scribed by Petrovick~ in 1968 have recently been rediscovered by Shahar 
and Eclery (1976) and byPeskov et al. (1980). The latter found the multi- 
polar neurons distributed within the intermediate area between 9 and 380 
~m below the surface. The authors also observed that the cell clusters are 
located near venules and that they branch out in the immediate vicinity 
of the microvessels. 

The blood supply to the medulla has recently been studied by Cragg et 
al. (1977), who injected indian ink into the vertebral arteries. They found 
the highest density of small arterioles and venules close to the hypoglossal 
root and on the ventrolateral surface, while the highest density of small 
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arterioles was found in a zone corresponding to the intermediate area. 
Fig. 3 shows a plasticized vessel preparation from the medullary base per- 
formed by Kille (1969), who used Plastogen G for the injection into the 
vertebral arteries. A very dense coil of vessels project onto the intermediate 
area. The cold block effect, by which this area is characterized, is only ob- 
tained if the thermode is placed between or caudal from the vessels, but 
never when actually on the vessels, as far as can be controlled using the 
operation microscope. For a discussion of the argument that the blood 
supply of deeper medullary structures from the ventral side of the medulla 
may mimic the ventral superficial location of central chemosensitivity see 
Sects. 2.5 and 3.4 (Cragg et al. 1977; Lipscomb and Boyarski 1972). 

Pons 
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6 4 2 0 2 4 6 m m  

Fig. 3. Medullary base vessels filled via the aorta with Plastogen G (Kitle 1969). Com- 
pare projections of areas M, S, L (Fig. 1). No or opposite respiratory effects elicited by 
chemical or electrical stimulation were obtained between 5 and 6 mm caudal from the 
Foramen caecum, an area with a dense coil of vessels. The thermode had to be placed 
caudally or between the vessels, not  on the vessels. Compare Cragg et al. (1977) 
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2.3 The Ultrastructure 

Electron micrograph studies (Ullah 1973; Brettschneider et al. 1974; 
Dermietzel et al. 1974, 1975; Leibstein et al. 1975; Leibstein 1979; Luber 
1976; Shahar and Edery 1976) were combined with scanning techniques, 
freeze-etching methods, and the local application of  horseradish peroxidase 
and lanthanhydroxide (Dermietzel 1976; Dermietzel et al. 1977, 1978; 
Leibstein 1979). The following description was given: The most superficial 
glia fibers run parallel to the surface and become vertical within the area 
medial and rostromedial of  the hypoglossal root. Fingerlike invaginations 
of  the brain surface with an entrance diameter of  0 .2 -5  tam extend to 
10 tam below the surface and show a labyrinthine formation. The glia fibers 
with microvillilike processes, border the invaginations which are complete- 
ly covered by the basal membrane. Wide intercellular spaces between the 
glia fibers contain unmyelinated axons and perikarya of  nerve cells. The 
authors call this configuration the basal membrane labyrinth (Derrnietzel 
1976), in accordance with Leonhardt (1967, 1970) who found similar 
structures on the surface of the rabbit brain ventricles. The invaginations 
can be clearly distinguished from perivascular spaces of  pial blood vessels 
which enter the marginal glia. Rostromediat of the hypoglossal root a 
dense population of  perikarya as well as dendritic and axonal profiles were 
described, with a maximum concentration 1 mm rostral from the rostral 
end of  the hypoglossal roots, which projects onto the intermediate area. 
Cells rich in mitochondria and surrounded by numerous large synaptic 
boutons have been described for the intermediate area by Shahar and 
Edery (1976). According to Dermietzel the number of  superficially sec- 
tioned axons and dendritic profiles increases from the caudal to the rostral 
part of the ventral medullary surface. In the intermediate (Shahar and 
Edery 1976; Peskow and Piatin 1980) and rostral (Derrnietzel 1976) area, 
cell groups are in close contact with capillaries and with the surrounding 
glia spongiosa. In the rostral area (Dermietzel 1976) the maximally en- 
larged spaces resemble lakes of  intercellular cerebral fluid and are typical 
for this area. The dendrites of  the cells form a large number of synaptic 
connections. The radially arranged axons form a rosette-like grouping 
around a central dendrite, the latter being characterized by aggregates of  
mitochondria. Dermietzel (1976) suggests that, according to Gray's cate- 
gorization (1959), the different synapses observed on the dendrites belong 
to the type I as well as type II, thus probably providing for an inhibitory 
as well as an excitatory action on the dendrites. 

Dermietzel (1976) also described wide spaces surrounding the capillaries 
of the chemosensitive zones. Horseradish peroxidase (HRP) administered 
in the subarachnoid region, accumulated in the perivascular space (Fig. 4). 
Freeze-etch studies revealed a high pinocytotic activity of the capillary 
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endothelium in contrast to typical cerebral capillaries. In general, Der- 
mietzel (1976) finds morphological evidence for a free exchange between 
the cerebrospinal and the interstitial cerebral compartment, a feature 
which was required for those ions determining the pH (Katzmann et al. 
1968;Pappenheimer 1967). 

Fig. 4. Electron micrograph from M area. pvs, perivascular space filled with subarach- 
noidally applied horseradish peroxidase, den, dendrite, axondendritic synapses. By 
courtesy of Rolf Dermietzel 

2.4 Histochemical Tracing of Neurons 

By labelling neuronal elements situated within the ventral medullary sur- 
face layer with topically applied horseradish peroxidase (HRP, 2%) and 
incubating for 4 hours Dermietzel et al. (1977, 1978) were able to recon- 
struct the three-dimensional formation of a neuronal complex underneath 
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the ventral surface, which probably was identical with the nucleus para- 
gigantocellularis (NPG). By shortening the exposure time to 30 min the 
authors were able to differentiate two classes of  neurons. The first group 
is represented by small-sized cells with a high peroxidase acitivity. Electron 
microscopical investigations showed that these cells and their dendritic 
processes show a diffuse HRP labelling of  their cytoplasma. The second 
group of  large-sized neurons revealed a less intensive labelling. They show- 
ed a vesicular incorporation and storage of  the HRP. In addition, within 
the intermediate area numerous superficially located processes could be 
observed by HRP labelling, as well as neurons 200 pm below the surface 
(Fig. 5a). 

Fig.5. a Nerve cell 250 um below the intermediate area, labelled by HRP applied on 
the ventral medullary surface. Bar indicates 10 um. b Acetylcholine esterase in neurons 
200 um below the intermediate area. By courtesy of Willenberg, Leibstein and Der- 
mietzel 

Errington and Dashwood (1979) used a 20% solution of  HRP and an 
incubation time of  0 .5 -5  hours. The HRP was applied bilaterally 8 . 5 -  
11.5 mm caudal of  the Horsley-Clark zero which corresponds to the loca- 
tion of  the intermediate area. The authors found numerous labelled cells 
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and fibers immediately below the surface. 4 0 - 4 0 0 / ~ m  below the surface 
multipolar neurons could be identified, some o f  their processes extending 
toward the ventral surface. In addition fibers were labelled passing dorsal- 
ly from the ventral surface and originating from two groups of  labelled 
cell bodies. One group was part o f  the nucleus tractus solitarii, the other  
group, which was less intensively stained, was situated within the dorsal 
nucleus of  the vagus. Cell bodies were also labelled within the nucleus 
cochlearis. 

Fig. 6. Acetylcholine esterase in 
neurons 400 um below the rostral 
area. Bar indicates i0 urn. By cour- 
tesy of Willenberg, Leibstein and 
Dermietzel 

Some recent data of Dermietzel and co-workers (unpublished) were ob- 
tained by the histochemical p roo f  of  specific acetytcholine esterase within 
all three areas (Figs. 5b, 6, 7). 

2.5 Neurophysiological Tracing 

The caudal area." Shirnada, Trouth and Loeschcke (1969) were the first to 
succeed in showing that neurons a little beneath the ventral surface of  the 
caudal area (Figs. 1, 2) were able to respond to pH changes induced by 
superfusing the ventral surface with artificial cerebrospinal fluid of  varied 
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Fig. 7. Acetylcholine esterase in neu- 
rons 800 jsm below the caudal area. 
Bar indicates 10 t~m. By courtesy of 
Willenberg, Leibstein and Dermietzel 

pH at constant PCO2. At a CSF pH of  7.8 they measured an impulse fre- 
quency of  less than 1 per sec. Within 3 - 4  min after the perfusate was 
changed to pH 7.0 the authors observed a rapid and thereafter a slower in- 
crease of  discharge frequency up to an average of  20 per sec. The time 
course of  the unit 's response corresponded to that o f  the phrenic nerve 
discharge. The authors regarded the discharge pattern of  the pH sensitive 
unit as similar to that o f  the peripheral chemoreceptors as recorded by 
Biscoe and Taylor ( t 963 )  and Eyzaguirre and Koyano (1965). Prill (Prilt 
et al. 1975;Prill 1977) recorded from 47 neurons located immediately be- 
low the surface of  the caudal area, at the level o f  the middle of  the hypo- 
glossal root, 3 .0 -4 .5  mm lateral to the midline. 16 of  these neurons re- 
sponded to changes in pH induced by intravenous injections of  either 0.1 n 
HC1 or 1 M NaHCO3. 

Prill distinguished between three types o f  chemosensitive neurons, fast- 
responding with a frequency response similar to that which was found by 
Shimada et al. (1969), and regularly firing neurons with a higher frequen- 
cy. The third type responded in a paradoxical way, showing an increase 
with bicarbonate  and a decrease of  discharge activity with HC1. Since 
Prill did not  measure pH locally he left it open, whether the paradoxical 
effect was truly paradoxical or whether it was the consequence o f  a para- 
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doxical behaviour of the cerebral extracellular pH following metabolic dis- 
turbances in the blood as long as peripheral chemoreceptors are intact 
(Loeschcke and Sugioka 1969;Loeschcke and Ahrnad 1980). There were 
two other remarkable observations on neurons underlying the caudal area. 
The first was the capability of the neurons to respond in an opposite man- 
ner to changes in pH and also to respond to passive movement of the 
contralateral foreleg. The second was a strong increase in the discharge fre- 
quency following HC1 injection together with a change of the interspike 
interval histogram from a unimodal to a trimodal one, which has been de- 
scribed as characteristic for reticular neurons by Segundo and Perkel 
(t969) and by Segundo et al. (1967). This same neuron turned out to be 
located 1750 t~m below the surface, namely within the lateral reticular 
nucleus. This is within a depth which is not thought to be the location of 
the chemosensitive structure (Trouth et al. 1973a, b). Prill's study demon- 
strated that the consideration of the change in frequency following changes 
in pH, as well as the discharge pattern of a neuron responding to pH 
changes, may be of help in deciding whether or not a neuron may belong 
to a specific H + ion sensitive apparatus. At this time however, nothing 
definite can be said regarding the specific sensor element lying within the 
surface layer. There is evidence, however, that neuronal activity can be 
increased by H ÷ ions within the structure of the caudal area. 

The rostral area: Cakar and Terzioglu (1976) located neurons which re- 
sponded to breathing of CO2 as well as to injections of CO2 equilibrated 
Ringer-Locke solutions into the vertebral artery, within 400-1400 ~m 
below the surface and most of them between 600-1000 gm below the 
surface of the caudal and of the rostral area. The corresponding nuclei 
were thought to be the nucleus preolivaris and the nucleus trapezoid body 
(Fig. 2). The authors are in doubt about the hypothetical superficial loca- 
tion of the central chemosensitive apparatus; however, they did not pub- 
lish any further details regarding frequency characteristics, and also the 
location of the neurons was given only approximately. 

Pokorski (Pokorski et al. 1975 ;Pokorski 1976) recorded from neurons 
located within the first 1 mm layer below the rostral area, most being be- 
tween 100 and 500 pm beneath the surface (Fig. 2). He found 12 neurons 
out of  44 to be chemosensitive with an irregular tonic firing pattern, simi- 
lar to that described for the neurons within the caudal area by Shirnada et 
al. (1969) and by Prill (1977). Pokorski found that neurons with such a 
firing pattern developed a grouped discharge upon HCt injection. He also 
saw inversely reacting neurons. He could show, however, by comparison 
of interspike interval histograms, that in both types of neurons, in those 
which increased their mean discharge frequency with HC1 and those which 
decreased it, there was an increased number of shorter interspike intervals 
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after HC1, which would indicate an acceleration in spike generation. The 
author also described neurons which responded to " touch"  of the contra- 
lateral limb, which was observed within the caudal area as well. Such neu- 
rons within the rostral area showed a tendency for increased activity fol- 
lowing intravenous injections of  either HC1 or NaHCO3. Since local pH 
was not measured, interpretations can only be speculative. For example 
Pokorski (1976) attributed very short "latencies" of chemosensitive neu- 
rons responding to intravenous injections of  either HC1 or NaHCQ within 
5 sec, to some unknown peripheral chemoreceptors, different from those 
of  tile carotid and aortic bodies. However, very rapid changes in pH in 
the brain extracellular fluid have been measured during intravenous injec- 
tions of  the above mentioned solutions (Ahmad 1976), which were ac- 
companied by changes in neuronal discharge (Schlaefke and See 1980; 
Schlaefke et al. 1979). One also has to consider the possibility that stimu- 
lation of  "unspecific" nature by the injections, e.g. pain, may increase the 
synaptic input into the central chemosensitive apparatus (Sehlaefke et al. 
1969; Spode 1980). For further discussion of  this concept see Sects. 3.3, 
3.6 and Figs. 10 and 11, pp. 199,201). 

The intermediate area: Chemical stimulation by either the ventral surface 
superfusion technique or intravenous injections of HC1 or NaHCO3 caused 
a response of  neuronal discharge also underneath the intermediate area 
(Schlaej~e 1976a;Schlaefke et al. 1974, 1975a, b). So the neurons behave 
according to the concept of  Larnbertsen et al. (1961), responding to 
changes in acid-base parameters in the blood as well as in the CSF. As in 
the caudal area non-chemosensitive neurons responding to " touch"  of  a 
contralateral limb were observed. Unlike the studies on the rostral and the 
caudal area, no "paradoxical" responses to pH changes were recorded. In 
more recent experiments the authors measured the pH on the ventral 
medullary surface simultaneously (which, with the method of  a floating 
flat surface pH electrode gives a pH reading between CSF and ECF pH) 
(Schlaefke 1967b; Sehlaefke et al. 1977a, b, 1978, 1979, Schlaefke and 
See 1978, 1979, 1980; See et al. 1977, 1978; See and Schlaefke 1978, 
1980). In these experiments it could be shown in a few cases that intra- 
venous injections of  HC1 may cause an increase in pH on the ventral me- 
dullary surface, which was accompanied by a decrease in the firing fre- 
quency of  single units. Using the same technique, further recordings re- 
vealed that only slight shifts of  pH to the acid side were necessary in order 
to obtain a remarkable increase in the firing frequency of  units. The alka- 
line or slight acid shifts of  the surface pH following HC1 injections are in 
accordance with observations of  Robin et al. (1958), Loeschcke and 
Sugioka (1969), Fencl et al. (1966, 1971), Pappenheimer (1967), and 
Mitchell et al. (1965), who found opposite or only small pH changes in 
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the cerebrospinal fluid following metabolic disturbances. This is also ex- 
pressed in a mathematical s tudy of  Middendorf and Loeschcke, demon- 
strating that in the transient phase of  nonrespiratory acidosis the peri- 
pheral chemoreceptors mediate the fast respiratory feed back (Middendorf 
and Loeschcke 1976a, b, 1978) and may be the cause of  the alakline shift 
in the extracellular pH of  the brain. In connection herewith and with the 
true pH change following HC1 injections, the "paradoxical" reaction of  
neurons recorded by Pokorski ( t 976 )  whithin the rostral and by Prill 
(1977) within the caudal area must be regarded with caution, because the 
pH was not  measured at the same time. There are however, criteria which 
would not  reject the possibility of  paradoxical pH responses within the 
chemosensitive zones (see Sect. 3.2, 33.). 

Neurons of  the intermediate area, the discharge frequency of  which 
increased following a fall in the surface pH and decreased following a rise 
in pH, have been picked up between the surface and 1600 ~m below, most- 
ly at 200 -300 /~m below the surface. Of  a total o f  92 units tested for their 
reaction to pH changes, 51 behaved in the described manner (Table 1). 

Table 1. Number of units recorded from the ventral layer underneath the caudal (L), 
intermediate (S), and rostral (M) areas in the cat. Percentage is given in addition of H ÷ 
ion modulated neurons from the totally recorded number of neurons in the corre- 
sponding field, as well as for the non-responsive neurons in relation to the total num- 
ber. The data refer to Pokorski (1976), Prill (1977) and Schtaefke (1976), Schlaefke 
et al. (1975, 1978). 

Caudal area (L) Intermediate area (S) Rostral area (M) 

Total no. of units 49 92 44 

H ÷ -responding 23 51 9 
(46.93%) (55.43%) (20.45%) 

Nonresponsive 26 (12 touch) 41 (14 touch) 35 (12 touch) 
(53.06%) (44.56%) 79.54%) 

The location was determined either by iontophoret ic  application of  pro- 
cion yellow through the recording electrode, or by histological verification 
of  the position o f  the electrode tip. Figs. 8 and 9 give examples of  cells 
located with both  techniques. Both neurons have been identified as "che- 
mosensitive" by superfusion of  the ventral surface with artificial cerebro- 
spinal fluid o f  varied pH according to the solutions used by Loeschcke et 
al. (1958). The figures also represent the two types of  neurons which have 
been described by  Petrovickf (1968) and by Derrnietzel et al. (1978),  
namely the larger one (Fig. 8) which belongs to the ventral part o f  the NPG, 
its topographical location being 8.24 mm caudal to the foramen caecum, 



192 M.E. Schlaefke 

I m p / s  

7- 

6- 

5-  

_ 

1 -  

Z25 Z27 Z29 Sur~ce pH 

Fig. 8. Procion yellow stained neuron within the ventral pole of the NPG, 1600 um 
below the intermediate area. Impulse frequency response per second to changes of pH 
on the surface, mean values of steady states. Compare Fig. t0 

2.80 mm lateral to the midline, 1600/~m below the surface. The group of  
the small-sized type (Fig. 9) was found at the tip of  the electrode 200 ~m 
below the surface and is typical for the intermediate area (Schlaefke et al. 
1979a). The coordinates were 6.7 mm caudal to the foramen caecum and 
3.6 mm lateral to the midline (Figs. 1, 2). The mean values for impulse 
frequency per second refer to steady state conditions. The units recorded 
from the intermediate area could be classified as fiber recordings and rec- 
ordings from close to the soma, using standard criteria given by Porter 
(1963), Nakayarna and Baumgarten (1964),  Bishop (1964) and Hukuhara 
jr. (personal communication).  It turned out  that neurons the discharge 
frequency of  which followed the pH variations were picked up close to 
the soma, whereas the nonchemosensitive units were from fiber recordings. 
Regarding the latencies between variations of  the pH, measured on the 
ventral medullary surface, and the neuronal responses, in the cases o f  
superfusion, the neuronal discharge changed simultaneously, with the pH 
electrode measurements having a response time of  about  one second. In 
some cases the chemosensitive neuron responded faster than the pH elec- 
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Fig. 9. Top: Mean values of impulse frequency per 
second during steady state of  various pH measured 
on the ventral medullary surface. The single unit 
was recorded as indicated by the elctrode channel 
200 ~m below the surface of the intermediate area 
(middle). Typical in this region small-sized cells as 
here at the tip of the electrode (bottom). 50 #m 
indicated by the bar 
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trode, especially when pH was varied by intravenous injections. This ob- 
servation however, may be due to methodical conditions and must not 
necessarily indicate any physiological significance. Latencies obtained by 
indirect criteria will be presented in connection with the discussion of the 
mechanism (see Sect. 3.3). 

pH sensitive neurons could be recorded also from brain slices of the 
rat and the cat (Fukuda and Honda 1975; Fukuda and Loeschcke 1977; 
Fukuda et al. 1978). From the rat ventral medullary surface within an area 
corresponding to the intermediate area of the cat, namely from the rostro- 
medial part of  the hypoglossal root to the trapezoid body (compare Fig. 1), 
Fukuda and Loeschcke (1977) recorded spontaneous unit activity. The 
authors compared this spontaneous unit activity with spontaneous activity 
recorded from slices taken from the floor of the fourth ventricle. The 
recording site from the ventral slice was 20-100 ~m below the ventral sur- 
face, the one from the dorsal slice between 20 and 200 ~m below the 
dorsal surface. The firing pattern was either random or regular. The mean 
frequency of firing in the ventral slice was 4.7 impulses per second and in 
the dorsal slice 13.0 impulses per second when the pH of the bathing solu- 
tion was 7.4. In the tissue slice from the ventral side, the authors found 31 
neurons out of  a total of 56 neurons which increased their discharge fre- 
quency when the pH was lowered, however, such a correlation between pH 
and neuronal discharge was limited to a range of pH 7.6-7".2. Beyond this 
range, the response to pH was reversed, which means that a further shift 
to the acid side caused an inhibition. Within the given range the excited 
neurons increased their firing frequency by 0.99 impulses per second per 
0.1 pH reduction. 23 neurons inhibited by pH reduction fired with 5.5 im- 
pulses per second at a pH of 7.4 and their rate was decreased by 1.22 im- 
pulses per second per 0.1 pH reduction. Two neurons were found which 
did not respond to pH changes. The units located within the dorsal slice 
fired with a higher frequency and reacted inversely to pH changes in 57% 
of the cases. Only 4 neurons out of  30 were excited by H ÷ ions. 

Fukuda et al. (1978) found some evidence that glia cells may be in- 
volved in the central chemosensitve mechanism. Again they compared the 
reaction of structures from ventral with those from dorsal slices. The 
authors measured a depolarization of silent cells induced by acid solutions, 
without significant changes in membrane resistance, in 44% of the cells 
from ventral slices. In the dorsal tissue they found 34% hyperpolarized 
under the same condition, whereas only a few were slightly depolarized. 
From both experimental series the authors concluded that the density of 
neurons and silent cells exhibiting an excitatory reaction is especially high 
within the ventral medullary surface layer. 

Lipscomb and Boyarski (1972) were unable to record from neurons 
within the ventral medullary surface layer responding to changes in pH on 
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the surface. They postulated the nonexistence of any acid-base dependent 
activity in ventral medullary structures. Their interpretation was recently 
supported by a study by Cragg et at. (1977). They concluded that due to 
the blood supply of the whole medulla, including the respiratory neurons 
of the solitary tract and the nucleus retroambigualis, stemming from the 
ventral side, the respiratory responses to chemical stimuli from the surface 
would be the consequence of direct action on deeper structures. The dif- 
ficulty in avoiding experimental errors due to changes in blood supply has 
been overcome by Fukuda's tissue slice techniques. Furthermore the slices 
did not contain the ventral respiratory nuclei, thus ruling out an effect on 
or from the respiratory "centers". 

3 The Mechanism 

3.1 Respiratory Effects of  Ions, Drugs, and Putative Transmitters 

Berndt et al. (1969) investigated the dependence of the respiratory re- 
sponse to pH changes on different concentrations of Ca ++ and Mg ÷÷ ions. 
Since the same respiratory effects were obtained when Ca ++ ions were 
partly replaced by Mg ++ ions, the authors believed more in an unspecific 
neuronal response to these ions, than in an effect from a cholinergic syn- 
aptic system. The latter would require a counteraction between the two 
types of ions if their action was comparable to that at the neuromuscular 
junction (Katz and Miledi 1963; Miledi and Slater 1966; Elmqvist and 
Feldman 1965 ;fIubbard et al. 1968). 

The effect of  increasing respiration by local application of acetylchol- 
ine, which had been observed by Mitchell et al. (1963a, b) was recently 
further elaborated by Dev and Loesehcke (1979a, b) and Loeschcke (1978, 
1979, 1980). Local application of 10 -4 g . m1-1 acetylcholine on the 
rostral and caudal chemosensitive field either by superfusion according to 
the method used by Schlaefke et al. (1970), or by using plexiglass rings as 
described by Guertzenstein (1973), caused an increase in ventilation, 
mainly due to an increase in tidal volume. When atropine at a concentra- 
tion of 10 -a g • m1-1 was applied 10 rain before the acetylcholine was 
given, the hyperventilatory effect was diminished or abolished. CO2 re- 
sponse curves were flattened and shifted to higher CO2 values when atro- 
pine was allowed to act on the rostrat and caudal chemosensitive fields. 
10 -s g • m1-1 nicotine affected respiration like acetylcholine and was in- 
hibited by intravenously injected hexamethonium (10 -3 g - ml -~ ). Physo- 
stigmine 10 -4 g • ml-1 in the same areas enhanced resting ventilation but 
did not affect the slope of the respiratory response curve to CO2 inhala- 
tion. The authors also observed that the hyperventilation caused by nico- 
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tine was remarkably inhibited by bilateral application of 10 -2 g - m1-1 
procaine on the intermediate area. This was considered to be further sup- 
port for the hypothetical convergence of chemosensitive elements from 
the rostral and caudal field within the intermediate area (Loeschcke et al. 
1970). Since there was a similarity between the site from which H ÷ ions 
elicited positive respiratory responses and the site from which acetylchol- 
ine acted, including the inhibition by atropine, and since a clear connec- 
tion between atropine and the respiratory response to CO2 could be 
found, the authors concluded that the H ÷ ion sensitive reactions were de- 
pendent upon a cholinergic transmission in the surface layer. 

3.2 Neuronal Effects of Ions, Drugs, and Transmitter Substances 

The excitatory effect of acetylcholine and its inhibition by atropine was 
also shown for ventral medullary neurons in spontaneously breathing or 
artificially ventilated cats, when the substances were applied locally to the 
ventral medullary surface by superfusion (SchlaeCTce et al. 1977, 1978; 
Schlaefke and See t978, 1980). Folgering et al. (1979) gave a report on 
the phrenic nerve activation by intravenous application, or by injection 
into the vertebral artery of an acetylcholine releasing drug (4-aminopyri- 
dine, 4-AP), and suggested its possible effect on central chemosensitive 
structures. This was examined by See et al. (1978) by local application of 
this substances to the ventral medullary surface. Indeed the authors ob- 
served a strong increase in ventral neuronal and phrenic nerve activity 
which was inhibited by atropine. However, it was still not possible to show 
that the effect of either acetylcholine or 4-AP acted by excitation of the 
H ÷ ion sensitive mechanism alone. The authors observed that neurons, 
which did not respond to CO2 or H ÷ ions but which are probably part of a 
descending pathway related to the sympathetic system, were excited also 
(Schlaefke and See 1978, 1980a, b;Schlaefke et al. 1977;See et al. 1978). 

In addition, reticular neurons, characterized by a change of their firing 
pattern from an irregular one to a grouped one when excited, did respond 
to both substances. Since acetylcholine seems to act also in the nucleus 
retroambigualis in a strong inhibitory way, cholinergic mechanisms may be 
involved in various systems within the ventral portion of the medulla ob- 
longata. As a result local superfusion of the medullary surface can only 
serve as a method for pioneer studies and should be followed by more pre- 
cise application techniques (Jordan and Spyer 1979; Kirsten et al. 1978). 
The involvement of a cholinergic mechanism in the role played by the 
ventral medullary surface for the cardiovascular system will be discussed 
(see Sect. 3.5). The critical arguments regarding the experimental difficul- 
ties encountered when working on the warmblooded animal, with the 
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intention of analyzing basic mechanisms situated within a small piece of 
the brain, were again overcome by Fukuda et al. (1978). Fukuda et al. 
incubated 400-600 t~m thick slices taken from the ventral medullary sur- 
face of the rat, and picked up action potentials, observing them for periods 
of 60-360 rain. Neurons were studied between the rostral part of the 
hypoglossal root and the trapezoid body within 20-100/~m from the ven- 
tral surface. The authors found that H ÷ ion sensitive neurons, responding 
with excitation, were also always excited by acetylcholine. Cholinergic 
blocking agents like atropine, hexamethonium and mecamylamine depress- 
ed the H ÷ ion elicited excitation of neurons. Eserine acted synergistically 
with H ÷ ions and strengthened the effect of pH, and also the excitatory 
effect of acetylcholine was prolonged and augmented by H ÷ ions. In most 
cases effects of noradrenaline and serotonine were opposite to those 
elicited by H ÷ ions. There was another surprising observation made regard- 
ing silent cells, which to a high percentage had been depolarized by H ÷ ions 
in slices from the ventral surface in contrast to those from the floor of the 
fourth ventricle. Silent cells were depolarized by acetylcholine and lost 
their ability to depolarize as a response to an increase in the H + ion con- 
centration when, following the method described by Del Castilto and 
Engbeak (1954), Hubbard et al. (1968), Hutter and Kostial (1954), and 
Richard and Sercombe (1970), the transmitter release in the slice was de- 
pressed by a simultaneous reduction in the Ca ÷+ ion concentration and an 
increase in the Mg ÷+ ion concentration. The authors concluded at first, 
that on the base of previous investigations of glia cells (Kelly and Van Essen 
1974; Krn]evid and Schwartz 1967; Ranson and Goldring 1973; Som]en 
1975), the potential shifts of  silent cells were recorded from glia cells. 

In contrast to the findings of Carpenter et al. (1974) who did not find 
any effect of  CO2 on the cortical neuroglia, Fukuda et al. (1978) directed 
the attention to the existence of glia cells which depolarize in the pres- 
ence of H + ions within the dorsal side of the medulla, although there is a 
strikingly high density of such a cell type within the ventral surface layer. 
The absence of any significant change in the membrane resistance during 
slow depolarization by H ÷ ions ted the authors to reject the possibility 
that the silent cells may constitute the true receptor correlate or deliver 
the receptor potential. They suggested therefore that the general character- 
istics of the neuroglia as had been described by Krn]eviO (1974), Kuffler 
and Nichols ( 1966, 1976), Grossman and Hampton (1968), Karahashi and 
Goldring (1966), and Ransom and Goldring (1973b), namely its protective 
role against disturbances of the environment of the neurons by ions and 
transmitters, may be involved specifically in the central chemosensitive 
mechanism, on behalf of the dense distribution of the cell type which can 
be depolarized by acetylcholine and H ÷ ions in the ventral surface layer. 
Since low Ca ÷+ and high Mg ÷÷ ion concentrations had depressed not only 
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the depolarizing effect of  H ÷ ions on silent cells but also the H ÷ ion in- 
duced stimulation of  neuronal activity, the authors concluded that the ef- 
fect of  H + ions on the ventral medullary structures is related to the release 
of  acetylcholine in the synaptic regions there. These assumptions are sup- 
ported by the presence of  a nonspecific cholinesterase on gliat membranes 
(Brightman and Albers 1959; Koelle 1954). 

3.3 Central Chemosensitivity: Unspecific-Specific 

Dev and Loeschcke (1979a) found a very remarkable effect on resting 
ventilation when they applied either physostigmine or atropine locally to 
the chemosensitive areas. This led them to the assumption that the respira- 
tory drive under resting conditions is continuously under the tonic influ- 
ence of a cholinergic input. The authors, on the b~ise of  their data, those 
of Fukuda and Loeschcke ( t979)  and Fukuda et al. (1978), as well as in 
the light of  what is known about the action of  H ÷ ions on the cholinergic 
mechanism (Augustinsson 1948;Macintosh and Perry 1950; Liillmann and 
Peters 1967; Cohen and Osterbaan 1963;Hubbard et al. t 968 ; Eyzaguirre 
and Zapata 1968), concluded that an increase in the H ÷ ion concentration 
in the extracellular fluid of  the brain might contribute to an increase in 
sensitivity of  cholinoceptive neurons to acetylcholine, and/or to an aug- 
mented release of  acetylcholine from presynaptic terminals due to a greater 
ionization of  calcium, and/or to an inhibition of  acetylcholine esterase 
activity. The possibility of  the latter effect being present is strongly sup- 
ported by a significant increase in the content  of acetylcholine, and a de- 
crease in acetylcholine esterase activity in the medulla oblongata of  dogs 
during hypercapnia or acidosis (Metz 1962, 1966). 

An involvement of  cholinergic substances in the respiratory system has 
been discussed for a long time (Comroe and Schmidt 1938;Dautrebande 
and Marechal 1933; Dikshit 1934; Eyzaguirre and Zapata 1968; Gesell 
1940; Gesell and Frey 1950; Gesell and Hansen 1945; Gesell et al. 1942; 
Heymans et al. 1936; Landgren et al. 1952; Lil]estrand and Zotterrnan 
1954;Mitchell et al. 1963a, b;Philipot 1937;Schweitzer and Wright 1938; 
Trzebski et al. 1980; Winder 1937; Winterstein 1955) and also in connec- 
tion with the peripheral chemoreceptor mechanism. Salrnoiraghi and 
Steiner (1963) stated that most of  the respiratory neurons in the medulla 
oblongata could not  be excited by acetylcholine; however, the cholinergic 
transmitter system is widely engaged in the brain and spinal cord (Hoover 
et al. 1978; Kirsten et al. 1978;McLennan and Hicks 1978) and even in 
the medulla oblongata as has been described recently by Jordan and Spyer 
( t979) for an expiratory population within the nucleus retroambigualis. 
This again raises the question why the specialization of central chemo- 
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sensitivity as a cholinergic apparatus is so much restricted to structures 
within the ventral medullary surface layer. This question is credited by 
further observations, e.g. that various unspecific stimuli with their effect  
on respiration seem to be dependent  upon ventral structures (Schlaefl~e 
et al. 1969; SchlaeJke 1973; Spode and Schlaefke 1975; Spode 1980). 
Gesell (1940),  in suggesting the involvement of  a cholinergic system in the 
neuronal mechanism of  respiration, advanced the opinion that CO2 would 
merely act on the interneurons of  the respiratory reflex and coordinating 
centers, at the same time allowing for an activation by afferent impulses. 
In addition, Gesell believed that CO2 would act by impulse discharge 
modulat ion which is evidently the hypothesis o f  Loeschcke and co-workers 
(Dev and Loeschcke 1979a, b;Fukuda and Loeschcke 1979). Some recent 
data (SchlaejTce and See 1978; Schlaefke et al. 1979c; See and Schlaeflce 
1980) may be interpreted partly in the sense of  Gesell's hypothesis.  The 
authors identified superficially located chemosensitive neurons within the 
ventral part o f  the NPG by  local changes in pH on the ventral medullary 
surface and electrically stimulated the ipsilateral tibial nerve. The same H ÷ 
ion sensitive neurons (Figs. 8, 9) changed their discharge frequency in re- 
sponse to stimulation in the same course as the phrenic nerve discharge. 

..... , , , , ,  30s } ,  , 
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Fig. 10. Same experiment and neuron as Fig. 8. The cut central end of the ipsilateral 
tibial nerve was electrically stimulated. Stimulation caused increase of neuronal dis- 
charge and phrenic nerve activity. From top to bottom: Arterial pressure, CO2 partial 
pressure (endtidal), pH measured on the surface, medullary neuron impulses per sec, 
phrenic nerve discharge, integrated phrenic nerve activity, electrical stimulus 
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Latencies from the onset of  a single electrical stimulus were 22 ms for the 
ventral medullary neurons, the response of  the phrenic nerve activity fol- 
lowing after another 22 ms (Fig. 10, same neuron as Fig. 8). From these 
experiments Schlaefke et al. (1979) and See and Schlaefke (1980) assumed 
a polysynaptic connection between the chemosensitive neurons within the 
ventral surface layer and the phrenic motoneurons.  In addition the authors 
interpreted their data in connection with previous findings obtained by bi- 
lateral cold block of  the intermediate area in peripherally chemodenervat- 
ed cats. When this is performed, any increase in ventilation induced by 
mechanical stimulation of  the cornea, or by electrical stimulation of  the fe- 
moral nerve, or by electrical stimulation of  cut ventral roots (the latter pro- 
ducing hindlimb movements), is abolished, and apnea is the consequence 
of  cooling even during continuous stimulation (Schlaefke 1973 ; Schlaefke 
et al. 1969; Spode 1980; Spode and Sehlaefke 1975). If however, instead 
of the "nonspecific" afferents, the central cut end of  the sinus nerve was 
electrically stimulated, respiration continued during cold block (Loeschcke 
et al. 1979; Schlaefke et al. 1969). The intactness of  the function of  peri- 
pheral chemoreceptors during bilateral cold block or coagulation of  the 
intermediate area has been shown already by Sehlaefke and Loeschcke 
(1967), Schlaeflce (1972, 1973, 1976), Schtaefke et al. (1970, 1974, 
1979a, b) and was recently confirmed by Cherniak et al. (1978, 1979a, b). 
From all these studies it seems very likely that the respiratory centers are 
principally intact during cold block of  the intermediate area. However, the 
influence on ventilation of  nonchemosensitive afferents is dependent upon 
the respiratory centers being sufficiently activated by the chemosensitive 
afferent system. This may include synaptic input from various "unspecific" 
afferent systems, and can be abolished with local cold block of  the inter- 
mediate area, under the condition that peripheral chemoreceptors are 
eliminated. These "unspecific" systems may include afferent signals origi- 
nating during muscular exercise. 

In case that this concept will hold true, previous arguments of Bisgard 
et al. (1978) and Kao et al. ( t965),  that due to CSF alkalosis during exer- 
cise the central chemosensitive apparatus may not be involved in exercise 
hyperpnoea, have to be reexamined. The afferent activation by muscular 
exercise may use the chemosensitive structures, e.g. by changing its thresh- 
old, a concept which was supported by Guenard et al. (1976). In a recent 
paper, Kao et al. (1979) support the idea of  an involvement of  C-fibre 
afferents in the hyperpnoea of  muscular exercise. The authors suggest the 
tractus spinothalamicus as a possible pathway. This is in accordance with 
the concept of  the spinothalamic tract being a likely candidate for the for- 
marion of  synaptic connections within the ventral medullary surface layer 
(Fig. 11). 
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Fig. 11. H ÷ ion sensitive cholinergic synapses formed by dendrites of nerve cells under- 
lying the intermediate area (including the NPG) with superficially located neurons 
within the caudal and rostral area, and with afferent and efferent pathways. The NPG 
also contains nerve cells (CVS, cardiovascular system) which project to the intermedio- 
lateral column and are supposed to inhibit sympathet ic  activity (Amendt 1978; 
Schlaefke and See 1980). T, nerve cells described by Trouth et al. (1973b). P, nerve 
ceils described by Petrovick~ (1968). Dendrites (de) are surrounded by axons [ax), a 
typical formation within the rostra3 area (Dermietzel 1976) 

The neurogenic component  in the respiratory drive during muscular 
exercise is a generally accepted concept (Asmussen and Nielsen 1948; 
Comroe and Schmidt 1943; Comroe 1944, 1974; Cunningham and Lloyd 
1963; Cunningham 1963; De]ours 1959, 1963, 1964;De]ours et al. 1955; 
Flandrois et al. 1974a; Kao 1965; Krogh and Lindhard 1913;McCtoskey 
and Mitchell 1972;Rodgers 1968; Whipp 1978). In the light of  the present 
view on central chemosensitivity and its mechanism, this neurogenic com- 
ponent  may at least partly arise from possible synaptic connections within 
the superficial structure, in which acetylcholine and H ÷ ions may act syn- 
ergistically. 

These observations on the behaviour of  ventral medullary structures in 
connection with "nonspecific" or nonfeedback afferents lead to an under- 
standing of  the central chemosensitive apparatus in the meaning portrayed 
by Gesell (1940), namely that afferent impulse transmission is modulated 
by H + ions. However, the recent observations differ from the opinion of  
Gesell in that this chemosensitive system is not  within the retais chain of  
the respiratory neural system. This argument has already been expressed 
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by v. Euler and SOderberg (1952a, b) and was substantiated by the verifi- 
cation of  the intactness o f  various other respiratory drives in the case of  
cold block or coagulation of  the superficial structure of  the intermediate 
area, e.g. as the peripheral chemoreceptors (Cherniak et al. 1979; Schlaefke 
et al. 1969, 1979b; See 1973), the vagal reflexes (Schlaefke and Loeschcke 
1967; Cherniak et at. 1979a; Purves and Schlaefke, unpublished; Schlaefke 
et at. 1979b), and hypothalamic drive, as produced during hyperthermia 
or by local hypothalamic warming (See 1976a, b). 

The specificity of  central respiratory response to CO2 was also ques- 
tioned on the grounds of  previous experiments of  Dell and Bonvallet 
(1954) who stated that CO2 would act directly on the ascending reticular 
activating system in contrast to hypoxia, the latter causing arousal mediat- 
ed by the peripheral chemoreceptors. In the event of  their elimination 
only the central depressant hypoxic effect would remain. The observa- 
tions of  Dell and Bonvallet have been supported by Hugelin and Cohen 
(1963) who considered the respiratory activation to be a component  of  
the generalized activating response. Cozine and Ngai (1967) believed the 
location of  the central respiratory sensor of  CO2 on the ventral medullary 
surface area to be an artefact of  anesthesia inhibiting structures sensitive 
to CO2 which should be elsewhere located. In the light of these arguments, 
Schlaefke et al. (1969) performed various studies on decerebrate unanes- 
thetized or awake cats in which the respiratory response to inhalation of  
CO2 was tested when the intermediate area was inhibited by cold block or 
when it was coagulated bilaterally. With such manipulations the respiratory 
response to COs would disappear completely, while in the case of  addi- 
tional peripheral chemodenervation, apnea ensued. In contrast to the loss 
of  a stimulating action on respiration, COs inhalation during cold block 
was accompanied by an arousal in the cortical EEG measured on the ante- 
rior sigmoid gyms and the medial ectosylvian gyrus although the apnea 
persisted (Hukuhara et al. 1976). Electrical stimulation of the femoral 
nerve, producing an increase in ventilation together with an arousal reac- 
tion, lost its augmenting effect on respiration, apnea occurring during cold 
block, the cortical arousal however following stimulation (Hukuhara et al. 
1976). These experiments demonstrated that the ability of  the respiratory 
system to respond to COs or unspecific stimuli after peripheral chemo- 
denervation, must be dependent on the intactness of  the ventral medullary 
surface structure. Any other CO2 sensitive structures, or the ascending 
activating system, or structures responsible for the EEG arousal, exhibit 
no effect on respiration in the absence of  peripheral chemoreceptors and 
the structure within the ventral medullary surface layer. 

The search for actions of  CO~ on the central nervous system in a variety 
of  studies revealed that its effect is not a generally activating one. Low 
concentrations of  CO2 caused desynchronisation of  EEG patterns in the 
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cortex and thalamic areas and slow wave activity in the medulla (Ivanov 
1963). Inhalation of 10% CO2 decreased the responsiveness of the specific 
sensory projection areas to auditory and visual stimuli but increased the 
reactivity of the hypothalamic cortical projections (Gellhorn 1953). In- 
halation of 6-20% CO2 was followed by shifts in the DC potential of the 
brain. With high CO2 concentrations the etectrocorticographic activity 
was found reduced (Woody et al. 1970). The excitability of some cortical 
cells to L-glutamate was increased by CO2, whereas in other cases it was 
reduced. Increases in membrane potential were found to be due to an in- 
crease in CO2 by Krn]evi6 et al. (1965). In general the excitability of 
neurons in the intact mammalian CNS is decreased by CO2. Even at rather 
low concentrations (e.g. 5%), it may act as an anesthetic for various re- 
flexes (Poutsen t952; Jurna and Sdderberg 1963) and 5%-10% CO2 may 
act as an analgesic in man (Dundee et al. 1962). A variety of investigators 
could demonstrate the predominantly depressive action of CO2 on spinal 
cord neurons (Brooks and Eceles 1947; Kirsten 1951), while in other ex- 
periments no effects at all were seen (Krn]evi( et at. 1965). Gill and Kuno 
(1963) found that the responsiveness of phrenic motor neurons was dra- 
matically decreased by 6% CO2. Washizu (1960)considered a hyperpolar- 
izing effect of  15% CO2 on the isolated toad spinal cord to be primarily a 
pH effect. Speckmann and Caspers (1969a, b) and Speckmann et al. (1970) 
saw 90% of spinal neurons hyperpolarized and 10% depolarized by an in- 
crease of PACO2. Cortical DC reactions were comparable with the mem- 
brane potential shifts in those spinal neurons which were inhibited by CO2. 

The mechanisms of COz effects on the nervous function have been 
comparatively studied in the giant cells of Aplysia which has been reviewed 
by Carpenter et al. (1974), Chalazonitis (1974), and Brown (1974). Brown 
and Berman (1970) found that H + ions could mediate the effect of CO2 
by increasing the C1- ion conductivity of the membrane. According to dif- 
ferences in the internal C1- ion activity of the neurons, both could occur, 
excitation by CO2 in cases of a C1- ion potential less than the resting po- 
tential, and inhibition when the C1- ion potential was more negative than 
the membrane potential. Chalazonitis (1974) and Carpenter et al. (1974) 
hesitated to ascribe all CO2 effects merely to the action of H + ions. The 
proof for this hypothesis is, however, still missing. 

Regardless of whether central chemosensitivity is constituted by a 
specific or an unspecific action of H + ions or whether a cholinergic mech- 
anism or direct action on the membrane or both may be involved, the de- 
scribed and discussed possibilities of an excitatory action of H + ions on 
the respiratory system, remain ineffective as long as the structure of the 
intermediate area is eliminated, in the absence of peripheral chemore- 
ceptors. 
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3.4 The "Sense-Less" Centers 

Our knowledge of  the respiratory rhythm generator changed from the be- 
ginning of respiratory physiology along with the methodological improve- 
ments by which respiratory neurons became more easily detectable (Cohen 
1979; Mitchell 1977;Mitchell andBerger 1975; Wyss 1964). Still, we seem 
to be far from an unanimous opinion (v. Euler und Trippenbach 1976; 
Hugelin 1977; Koepchen 1973, 1976; Koepchen et al. 1977). Regarding 
experimental conditions, two extremes of  a distribution of  active respira- 
tory neuron populations may be drawn, by comparing the results of  Sal- 
moiraghi and Burns (1960) from the study of  the completely isolated 
brainstem of  the cat with results from the study of  the intact brainstem of  
the cat when unanesthetized and paralyzed, as obtained by Hukuhara 
(1973) and Hukuhara et al. (1969, 1979). The first set of  workers found a 
fairly reduced activity in their preparation, while the latter found a wide 
representation of  respiratory related units. Hukuhara and his associates 
considered themselves able to recognize primary respiratory neurons or 
candidates for the rhythm generating population by injection of  pento- 
barbital. The primary type shows stability in phasic discharge and is rather 
unaffected by anesthesia in contrast to the other type. 

The classic fight of  physiologists believing in the reflexogenic driven re- 
spiratory centers (Hall 1837; Volkrnann 1841; Vierordt 1944; Schiff 
1858/59; Raeh 1963, Wittich 1866) with those believing in a primary 
central cause of  respiration (Miitler 1837) was neither decided beyond 
doubt by Salmoiraghi and Burns (1960) nor by further studies of  Hukuhara 
(1974, 1976) using a section technique in combination with single unit 
recording. As long as ventral medullary surface areas had been left intact, 
afferent drive was produced by acidity. 

Recently, Cohen (1979), presented in a review a picture of  the distribu- 
tion of  respiratory neurons and their position in the central organization 
of  respiratory neuron populations. Areas of high density in respiratory 
related neurons form a ventral respiratory group, located in the ventro- 
lateral region of  the brainstem, and extending from the level of  the first 
cervical roots to the level o f  the middle pons. This group includes the nu- 
cleus ambiguus and the nucleus retroambigualis. Inspiratory and expiratory 
neurons are intermingled in this group, but the I-type predominates. A 
dorsal respiratory group, mostly consisting of  inspiratory neurons, is situ- 
ated 1.5-2.5 mm ventrally from the dorsal medullary surface, and extends 
from the obex to 2 mm rostrally and 2 .0-2 .8  mm lateral to the midline. 
It includes the ventrolateral nucleus of  the solitary tract. Further areas of  
high density in respiratory activity are located within the ports, and include 
the nucleus parabrachialis, the K611iker Fuse nucleus, and areas near several 
cranial motor  nuclei such as the nucleus ambiguus and the retrofascial 
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nucleus, the hypoglossal, facial, and trigeminal nuclei. According to their 
change in discharge pattern following a change in CO2 from normocapnia 
to hypocapnia, Cohen (1968) classified three types of responses: Type I, 
comprising almost all inspiratory and inspiratory/expiratory neurons, and 
two thirds of the expiratory neurons, reduced its discharge frequency in 
all portions of the respiratory cycle or ceased firing entirely. Type II, com- 
prising about half of the medullary expiratory neurons, most expiratory/ 
inspiratory neurons and most expiratory motoneurons, increased its fre- 
quency in the low-frequency portion of the respiratory cycle and could be- 
come completely tonic. Type III, comprising neurons with tonic respira- 
tory modulated activity answered with a reduction of discharge in the 
high-frequency portion of the respiratory cycle, with relatively little change 
in the low-frequency portion. The neurons could lose their respiratory 
modulation but continued to fire tonically. Cohen concluded for type III, 
which was observed in 70% of tonically firing inspiratory- and expiratory 
modulated neurons, typical for the pons, that the respiratory modulated 
portion may arise from other CO2 sensitive respiratory neurons, and that 
the tonic portion may stem from sources outside the primary respiratory 
rhythm generating system. Nothing, however, could be said about the 
origin of the CO2 induced changes in discharge. 

A more recent major contribution to the problem of a self-exciting 
rhythm generator (Salmoiraghi and v. Baumgarten 1961) and to the ques- 
tion of whether CO~ would act on its neurons directly or through some 
synaptic input (Pappenheimer et al. 1965; Walker and Brown 1970) has 
been made by Mitchell and Herbert (1974a,b) using intracellular recording 
techniques. The authors recorded from the ventral respiratory group, in- 
cluding the nucleus retroambigualis and confined their findings to the in- 
spiratory and expiratory populations. CO2 induced two kinds of reactions: 
1. it hyperpolarized inspiratory neurons during expiration and 2. it caused 
an increase in the rhythmic slow depolarization potentials proportional to 
the level of CO2. The authors suggested that the hyperpolarization was 
due to the direct effect of CO2 on the cell, and that the increase in the 
slow depolarizing potential resulted from increased rhythmic excitatory 
synaptic input. Peripheral chemoreceptor stimulation acted on the slow 
depolarization potential similarly to COs but did not cause hyperpolariza- 
tion. No large differences in the inspiratory discharge pattern were record- 
ed from various parts, however, differences were seen in the expiratory 
populations. In the nucleus ambiguus CO2 hyperpolarized expiratory cells 
and low COs caused continuous firing with respiratory modulation. With 
an increase in CO2 the spike activity decreased and became rhythmic. 
High CO2 could lead to such a degree of hyperpolarization that the neuron 
stopped firing at any point of the respiratory cycle. Expiratory cells re- 
corded from the nucleus retroambigualis reacted similarly. The authors 
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concluded from their results that the respiratory neurons behave similarly 
to the cortical and spinal neurons as observed by Speckmann and Caspers 
(1969a, b), and Krn/evid et al. (1965). Mitchell andHerbert (1974b) con- 
cluded from their observations on inspiratory neurons, recorded in the nu- 
cleus ambiguus, the nucleus retroambigualis, and from the ventrolateral 
portion of the nucleus tractus solitarii, that these neurons receive a highly 
synchronized excitatory input, and that synchronized potentials in the ex- 
piratory cells arise from the medullary inspiratory cells via inhibtory inter- 
neurons. The magnitude of the synchronized synaptic input was decreased 
by hypocapnia and anesthesia. 

The studies of Mitchell and Herbert were followed by observations by 
Marino and Lamb (1975) made on the effect of iontophoretically applied 
H ÷ ions on respiratory neurons of peripherally chemodenervated cats. The 
authors used extracellular techniques. All respiratory neurons increased 
their firing during CO2 inhalation but not one responded to the extracellu- 
larly increased H ÷ ion concentration. The authors also recorded from 74 
neurons with nonphasic discharge patterns, 71 of these being insensitive to 
CO2 inhalation as well as to locally applied H ÷ ions. Only three neurons of 
this type were found in the depth of the medulla oblongata which respond- 
ed to CO2 inhalation and to an increase in H + ions. The data strongly indi- 
cate that respiratory populations being engaged in rhythmogenesis or in 
the coordinating function of the respiratory system are not specifically 
sensitive to their chemical surrounding, but are dependent on the input 
from some specialized mechanism mediating chemical drive. Kim and 
Carpenter (1961) observed respiratory neuron responses to direct chemical 
stimuli, and interpreted the reactions, as being not a consequence of pH 
changes but an unspecific response following changes of the dissociation 
of calcium due to higher or lower acidity. 

The aforementioned studies were performed with the ventral surface 
structure intact. Up to the present, only two research teams cooled or 
blocked the intermediate area during simultaneous recording from central 
respiratory neurons. Such studies have been presented by Schwanghart et 
al. (1974), Koepchen (1976), Koepchen et al. (1976a,b, 1977, 1979), and 
by Peskow and Piatin (1976), and Peskow et al. (1980). Koepchen and 
co-workers showed that 1%-5% procaine applied to the ventral medullary 
surface caused a decrease in the neuronal activity of inspiratory, expiratory 
and reticular neurons. With sinus nerves intact Schwanghart et al. (t974) 
found activation of nonrespiratory neurons in some cases. Peskow and 
Piatin (1976) found a complete cessation of inspiratory activity, brought 
about by cold block of the intermediate area. They observed the strongest 
inhibition in the discharge of early and late inspiratory neurons. In both 
studies it was found that expiratory units could become silent or contin- 
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ued to exhibit tonic firing and reduced impulse frequency during cessation 
of phrenic activity. 

Loeschcke et al. (1979) performed an indirect test to determine whether 
or not the respiratory rhythm generator is chemosensitive. The authors 
blocked or coagulated both intermediate areas with cut sinus and aortic 
nerves which produced apnea. Intermittant stimulation of the afferent 
sinus nerves provoked respiration. This however, was practically insensitive 
to an elevation of PCO2, on the contrary, CO2 rather led to a reduction in 
ventilation. In general it can be said that circumstantial evidence from ex- 
periments in which complete chemodenervation in spontaneously breath- 
ing cats was performed, corroborate these findings. In these cats PaCO2 
rose to values of about 9.31 kPa and pHa was 7.08 (See 1976a, b) which, 
if the "centers" were chemosensitive, whould have constituted a major 
drive for producing ventilation. 

The data provide substantial evidence for the fact that the CO2 induced 
discharge or changes in discharge of respiratory neurons is dependent upon 
influences mediated by the ventral medullary surface structures. However, 
there are only very preliminary data at hand giving evidence of neuronal 
connections. Davies and Loescheke (1977a) compared latencies of the 
phrenic nerve response to electrical stimulation of either the sinus nerve or 
the caudal or rostral medullary surface areas. The response to sinus nerve 
stimulation consisted of an initial excitation followed by a period of inhibi- 
tion and then a delayed excitation. Similar responses were observed when 
the caudal area was stimulated, although the latencies differed. The initial 
excitation appeared with a latency of 5 ms after sinus nerve stimulation and 
with only 2 -5  ms after stimulation of the caudal area, the delayed excita- 
tion following with a latency of 15-30 ms. Rostral area stimulation in- 
duced an initial inhibition and delayed excitation only. The authors con- 
sidered the initial fast response of the phrenic discharge to stimulation of 
the caudal area, to be a consequence of stimulating efferent fibers directly, 
whereas the later response might indicate a polysynaptic pathway from 
the ventral surface structures to the phrenic motoneurons. Cohen (1973) 
measured latencies between peak to peak activities from respiratory units 
and the phrenic nerve and found them to be 3 - 5  ms. Interpretation of 
short latencies when stimulating the chemosensitive areas should therefore 
be considered with caution. 

Davies and Loeschcke (1977b) first reported results from recordings 
within the nucleus of the solitary tract, where they found responses when 
electrically stimulating the caudal area with latencies of 5 -15  ms. When 
recording from a ventrolateral region, lateral to the hypoglossal root, prob- 
ably the lateral reticular nucleus, latencies to stimulation of the caudal or 
rostral areas were found between 2 -4  ms. Since the evoked potentials 
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could not  be seen when using frequencies higher than 100. s -1 the authors 
took this as circumstantial evidence for the involvement of  polysynaptic 
pathways. 

At present no definitive neurophysiological data are available on con- 
nections between the ventral medullary surface (the tonic afferent system 
located here), to the various parts of the medulla involved in respiratory 
reflexes, coordination and rhythm generation (Cohen 1979; v. Euler 1977). 
The most likely candidates for such connections might be the ventrolateral 
portion of  the nucleus tractus solitarii (Davies and Loeschcke 1977a, b), 
the infrasolitary nucleus (Koepchen et al. 1974), the nuclei ambiguus and 
retroambigualis (Mitchell and Herbert t974a, b) and pontine nuclei 
(Cohen 1971; Cohen and I-Iugelin 1965;Cohen et al. 1976;v. Euler 1979; 
v. Euler et al. 1976;Hugelin 1977a, b). 

3.5 Some Remarks on the Role of  the Ventral Medullary Surface for the 
Cardiovascular and Other Efferent Systems 

Contrary to FeMberg and his group who have rediscovered the ventral 
medullary surface areas for the purpose of cardiovascular responses (Bous- 
quet 1974;Bousquet et al. 1975 ;Edery and Guertzenstein 1974; Feldberg 
1976, 1980; Feldberg and Guertzenstein 1972, 1976; Feldberg and Wei 
1977; Feldberg et al. 1978; Guertzenstein 1973; Guertzenstein and Silver 
1974), Trzebski and his associates investigated correlations of  the H + ion 
sensitive apparatus of  the respiratory system with the sympathetic system 
as well as the ascending reticular system (Trzebski et al. 1971, 1972, 
1980). Furthermore Trzebski and his co-workers and also Willshaw de- 
scribed an excitatory influence on efferent connections to the carotid 
body from the ventral medullary surface, induced by an increase in the 
local pH by means of superfusion or artificial hyperventilation (Majcher- 
czyk and Willshaw 1973, 1977, 1980; Trzebski et al. 1974, 1976; Willshaw 
1975, t977.). Schlaefke et al. (1980), using bilateral cold block of the 
intermediate area, confirmed the activating effect on efferent pathways 
within the sinus nerve and the cervical sympathetic nerve, whereas an in- 
verse reaction in the splanchnic nerve activity was observed at the same 
time. A stimulating effect of  hypercapnia on efferent pathways to the 
carotid body had already been established by Biscoe and Sampson (1968). 
These findings indicate the involvement of  different systems in the efferent 
neuronal supply to the carotid body. Nothing can be said so far about the 
role of  such efferent pathways in the likely interaction between peripheral 
and central chemoreceptive systems. In this connection some preliminary 
data may be mentioned, indicating that ventral medullary neurons within 
the intermediate area are influenced by pH changes and also by electrical 
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stimulation of the afferent sinus nerve (See and Schlaeflce 1978). Such 
findings are contradicted by the data of Biscoe and Sampson (1970) and 
by Lipski et al. (1975). There is however, support from some recent data 
on the degeneration of a few fibers within the ventral medullary area after 
intracranial section of the ipsilateral glossopharyngeal nerve (Kitle and 
Schlaefke 1978). It should be worthwhile testing whether both the chemo- 
sensitive neuron responses to electrical stimulation of the sinus nerve as 
well as the fiber degeneration may be due to the involvement of efferent 
pathways. 

During investigations of the central chemosensitive mechanism of re- 
spiration, many simultaneous observations on the circulatory system led 
to the assumption that there also exists an influence from the ventral 
medullary surface structure on the cardiovascular system. There is con- 
siderable evidence, however, that the morphological correlates are not 
identical (Dev and Loeschcke 1979a, b; Loeschcke et al. 1958;Schlaefke 
and Loeschcke 1967; Schlaeflce et al. 1979b; Trouth et al. 1973c). Some 
more support for this view comes from recent recordings from ventral 
medullary neurons underlying the intermediate area, located within the 
ventral region of the NPG (Schlaefke and See 1978, 1980;Schlaefke et al. 
1977, 1980b, d). The neurons increased their firing frequency when an 
antihypertensive drug (imidazotidine derivative) or acetylcholine was 
applied locally to the intermediate area, but did not respond to either CO2 
inhalation or to local ventral medullary superfusion with solutions of varied 
pH. Since the simultaneously recorded splanchnic nerve and cervical sym- 
pathetic activity were depressed at the same time, the authors suggested 
that the statement of FeMberg (1976) and Shahar and Edery (1976), 
namely that the superficial nerve cells within the intermediate area would 
be responsible for both the chemosensitive respiratory as well as the "drug- 
sensitive" cardiovascular reactions, should be considered with caution. 
One has to be aware that besides the deeper lying drug-sensitive neurons in 
the NPG, the ventral part of  the lateral reticular nucleus is also superficial- 
ly located, a nucleus which has been shown by Coote and McLeod (1974) 
to be related to the cardiovascular system. 

Recent tracer studies with horseradish peroxidase (HRP) revealed mul- 
tiple connections from the ventral medullary surface travelling in different 
directions. Convincing evidence for a direct connection between the 
ventral surface and the intermediolateral column of the thoracic spinal 
cord was provided by the labelling of neurons within the NPG and very 
close to the ventral medullary surface of the intermediate and rostral area, 
when HRP was injected at the level of T 3 (Amendt et al. 1978). This path- 
way may be a potential candidate for a tonic inhibitory effect on the sym- 
pathetic system (Dembowski et al. 1980). Tracer studies of Loewy and 
McKellar (1980) show that central autonomic pathways with excitatory 
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effects on the cardiovascular system, pass through the ventral region of the 
medulla oblongata. They mediate interconnections from the catecholamine 
cell group of the A 5 region lateral to the superior olivary nucleus to the 
intermediolateral column, and from the raphe nuclei, the K611iker Fuse nu- 
cleus, and the hypothalamic paraventricular nucleus to the intermediolateral 
column. In addition the authors found multiple interconnections between 
the nucleus of the solitary tract, the parabrachial nucleus, the paraventri- 
cular nucleus of the hypothalamus, the central nucleus of the amygdala, 
and the bed nucleus of the stria terminatis. Their course runs very close to 
the ventral medullary surface. Ventral to the lateral reticular nucleus a 
pathway was traced by 3H labelled proteins, when injected into the hypo- 
thalamus (Saper et al. 1976). Errington and Dashwood (1979) found HRP 
labelled axons within the ventral medullary surface with somata in the nu- 
celus of the solitary tract and in the dorsal motor nucleus. The latter was 
shown to be involved in heart contractility (Geis and Wurster 1980). 

An example of the complexity of the neuronal network within the ven- 
tral medullary surface layer is given by the following: Cold block or pro- 
caine on the intermediate area causes a fall in blood pressure (Berndt et al. 
1970; Dev and Loeschcke 1979b; Peskow and Piatin 1976; Koepchen et al. 
1977; Schlaefke and Loeschcke 1967; Schlaefke et al. 1969). Recent histo- 
chemical and neurophysiological experiments (Arnendt et al. 1978; 
Schlaefke and See 1980; Seller et al. 1980) as have been discussed above, 
suggest the existence of neurons in the ventral part of the NPG with a 
tonic inhibitory function on the sympathetic system. Electrical microstim- 
ulation within the same area causes a decrease in splanchnic nerve activity 
and a fall in arterial blood pressure (Schlaefke et al. 1978). Thus one 
would expect cold block to provoke a rise in blood pressure. Simultaneous 
recordings from the splanchnic and the cervical sympathetic nerves during 
cold block show however, that excitatory as well as inhibitory pathways 
acting on the sympathetic system must be influenced through structures 
underlying the intermediate area. This leaves us with the proposal that 
cold block, reaching a larger substrate than microstimulation, and besides 
blocking central chemosensitivity of respiration, may affect neuron popu- 
lations with inhibitory and excitatory characteristics for the cardiovascular 
system. These may include descending pathways as described by Loewy 
and McKellar (1980). 

Another open question is the cause for the opposite effect on respira- 
tion of H ÷ ions when locally applied to a small spot within the intermediate 
area (Schlaeftce et al. 1970). This little spot projects to the area of highest 
density of small vessels (Cragg et al. 1977; Schlaefke 1972; Figs. 1, 3) 
which, with their accompanying sheaths could prevent the bicarbonate 
buffer solutions from reaching the underlying sensor elements. Instead, 
alkaline solutions, when only applied locally to this little spot may cause 
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vasoconstriction, which would mean that the sensor dements are exposed 
to a reduced tissue perfusion. Consequently they might increase their fir- 
ing frequency. The opposite reaction would follow local superfusion with 
acid buffer (Betz 1972, 1976a, b; Betz and Csornai 1978). This interpreta- 
tion of an opposite response of respiration is supported by the fact that no 
paradoxical response to H + ions recorded from neurons below the inter- 
mediate area have been found so far. On the contrary the highest density 
of neurons excited by pH changes, projects to this area. The neurons 
which responded to drugs affecting the cardiovascular system were found 
underneath the rostral part of the intermediate area (Fig. 1). These neu- 
rons did not show any response to either inhalation of CO2 nor to local 
changes in pH by superfusion. So there is no high probability that these 
same neurons, which are supposed to project to the intermediolateral col- 
umn, are also the substrate responsible for the inhibitory effect of H + ions 
on the sympathetic system, as far as can be seen from the few data avail- 
able at present. 

The findings demonstrate that the question of an interconnection be- 
tween H ÷ ion sensitive neurons presumed to belong to the respiratory sys- 
tem and neurons presumed to influence the cardiovascular system, both 
populations within the ventral medullary surface layer, is completely open. 

3.6 A Wanted Model: Or a Model of How I Want it to be 

Summarizing the symposium on "acid base homeostasis in the brain extra- 
cellular fluid" held in Bochum (1976) Dr. Cunningham unsuccessfully 
challenged some speakers to give a model of the pathways responsible for 
the various effects producible from the three areas on the ventral medul- 
lary surface by different experimental approaches. Considering the recent 
findings on the network mentioned above, one may feel even more dis- 
couraged than four years ago to continue building a model. Focusing on 
the neurophysiological data of Davies and Loeschcke (1977a, b), Davies 
(1980), Pokorski (1976), Prill (1977), Sehlaefke (1976a, b), Schlaefke et 
al. (1975, t979c), Sehlaefke and See (1980), and Shimada et al. (1969), 
the morphological data of Dermietzel (1976), Dermietzel et al. (1977, 
1978), Leibstein (1979), Luber (1976) the data on bicarbonate exchange 
mechanisms by Ahmad et al. (1976, 1978), Loesehcke and Ahrnad (I 980), 
and Loeschcke and Sugioka (1969), and finally the studies obtained by 
stimulation and elimination (Berndt et al. 1972a-d; Loeschcke et al. 1970, 
1979;Schlaeflce and Loeschcke 1967;Schlaefke et al. 1969, 1970, 1979a, b; 
See 1973, 1976a, b), one may venture to portray the following hypothe- 
tical picture: 
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There is the marginal glia, which contains a high internal concentration 
of  chloride (Reed et al. 1967), as well as carbonic anhydrase (Maren and 
Broder 1970; Wichser and Kazemi 1975). The glia is involved in acid base 
balance in the following way, as described byAhmad et al. (1978): Respi- 
ratory acidosis is reflected by an increase in the PCO2 in the brain extra- 
cellular fluid, a decrease in pH, and an increase in bicarbonate, all changing 
within about a minute. The increase in bicarbonate .in the extracellular 
fluid reflects the increase in local PCO2 according to Ahrnad (I 976), 
Ahrnad et al. (1976), Granhohn and Ponten (1969),Loeschcke and Ahmad 
(1980), Loeschcke and Sugioka (1969), and is the consequence of  a quick 
exchange of  bicarbonate between the extraceUular fluid and the glia cells 
in analogy to the Hamburger shift in the blood. This means that there is a 
rapid exchange of  bicarbonate and chloride between the extracellular fluid 
and the glia cells. In metabolic disturbances the following happens: When 
simulating a metabolic alkalosis by intravenous injection of  NaHCO3 at 
constant PCO2 a rapid migration of  bicarbonate ions occurs from the plas- 
ma to the brain extracellular fluid which was measured on the ventral 
medullary surface by Ahrnad et al. (1978). A rapid decrease in extracellu- 
lar chloride follows the injection within 3 0 - 4 0  sec. An intravenous injec- 
tion of  NaC1 results in a rapid increase in extracellular chloride concentra- 
tion, leading the authors to conclude that the blood/extracellular fluid 
barrier may be permeable to HCO3- and C1- ions. In their three compart- 
ment  model, Abroad et al. (1978) make evident the free permeability of  
CO2 through all three compartments: 1. blood, 2. extracellular fluid, and 
3. the brain cell compartment  and also the exchange of  bicarbonate against 
blood chloride as well as against the glia cell chloride. 

Coming back to our draft, we find within the superficial layer a large 
number of  synapses, central dendrites surrounded by axons like a rosette, 
or somata surrounded by dendrites (according to the various synaptic for- 
mations described by Dermietzel 1976; Shahar and Edery 1976; Luber 
1976). This neuronal formation is embedded in a large number of  capilla- 
ries. The subarachnoid space, the extracellular spaces (which are character- 
istically wide within the chemosensitive areas) and the capillaries, consti- 
tute almost no diffusion barrier for COs and bicarbonate. There is close 
contact between the cholinergic synapses in question and the glia forma- 
tion. Whether or not  this may be of  importance for the synaptic transmis- 
sion within the chemosensitive mechanism is not  yet clear. Nothing can be 
said beyond the fact that in the brain slice preparation (which may be 
more an artifical than a physiological preparation), the glia in this partic- 
ular area responds with a reduction of its membrane potential to acid 
shifts of  pH (Fukuda et al. 1978). The somata of  the dendrites forming 
synapses within the rostral, ttie caudal, and the intermediate area we ten- 
tatively allocate to the NPG, superficially underlying the intermediate area 
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(Fig. 11). The synaptic connections within the three areas may be of  af- 
ferent and efferent nature. One potential candidate forming synaptic input  
might be the spinothalamic afferent system, and could account for part of 
an "unspecific" synaptic activity, being modified by the actual acid base 
conditions. According to Saper et al. (1976), descending hypothalamic 
pathways reach the ventral medullary surface layer. Their possible contri- 
bution to an inhibitory modulation of  central chemosensitivity in the re- 
spiratory defense against high body temperature, as studied by See 
(1976a, b) may at least provide us with an attractive working hypothesis. 
This is supported by the fact that the drive mediated by the intermediate 
area produces mainly an increase in tidal volume but not in frequency 
(Cherniak et al. 1979a; Loeschcke et al. 1958; Schlaefke and Loeschcke 
1967; Schlaefke et al. 1979a, b). There may exist ascending as welt as 
descending pathways to and from pontine structures (v. Euler et al. 1970; 
St. John and Wang 1976, 1977), and these may be involved in the same 
mechanism of  frequency modulation. If now the various synaptic inputs 
are controlled by the H ÷ ion concentration, the signals will be integrated 
within the NPG and be relayed to the various respiratory neuron com- 
plexes, i.e. the CIA (centrally generated inspiratory activity) of  v. Euler 
(1976) and v. Euler et al. (1976), and the inspiratory and expiratory pop- 
ulations, as welt as other types of  respiratory neurons showing a character- 
istic response to CO2 (Cohen 1979; Koepchen 1976) mediated by synaptic 
input (Mitchell and Herbert 1974a, b). If this convergence of H + ion con- 
trolled input within the NPG, or whatever is cooled or blocked with the 
structure in the intermediate area, is facilitatorily linked to the process of  
synchronization of inspiratory neuron excitation (Mitchell and Herbert 
1974b), this may be considered as one possible explanation for the poorly 
understood phenomenon that respiratory sensitivity to acids or CO~ 
seems to be concentrated on "some kind of  a vital point". Since little or 
nothing is known about central connections of  ventral medullary H ÷ ion 
sensitive structures, the draft of  a model of  central chemosensitivity ends 
with the NPG. From here the big arrow to the rhythm generator may be 
taken as a symbol pointing to future research. The superficial cells within 
the three areas may or may not  be regarded as reticular neurons, mediators 
in the connection with various systems which constitute a disturbance for 
the homeostatic apparatus. Central chemosensitivity of  respiration acts as 
a stabilizer within the respiratory control system and through it for the 
brain extracellular fluid pH in the sense of  Winterstein (1911). 
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4 Loss of  Function - Loss of  Acid Base Homeostasis 

4.1 Respiratory Response to CO2 After Elimination of  Central 
Chemosensitivity 

The superficial position of the central chemosensitive structure and the 
observation that cold block or the relatively small intermediate area abol- 
ishes its function, may be considered as a chance to add some more respi- 
ratory response curves to the numerous others, which were measured 
under various conditions with intact and cut sinus and aortic nerves. They 
could display the ability of  peripheral chemosensors to signalize hyper- 
capnia and hypoxia without interaction with the central chemosensitive 
input to the respiratory rhythm generator. This has been tried by Cherniak 
et al. (1978a, 1979a, b) using bilateral cold block of  the intermediate area 
in the anesthetized cat and by Schlaefke (1972, 1976a, b) and Schlaefke 
et al. (1974, 1979a, b) in the awake cat, using coagulation techniques. The 
latter technique does not  produce a fall in blood pressure which usually 
occurs during cold block, or application of  procaine (Berndt et al. 1970; 
Koepchen et al. 1979; Peskow and Piatin 1976;Schlaefke and Loeschcke 
1967; Schlaefke et al. 1969). Such respiratory responses to CO2 may de- 
viate from controls dependent upon the completeness of  coagulation or 
the degree of  cold block. In the first case the focus can be evaluated after- 
wards by histological techniques. For comparison of  such curves, obtained 
from either peripherally or centrally chemodenervated preparations, one 
has to be aware that in the intact animal reticular neurons respond to an 
increase in peripheral chemoreceptor activity, as well as to central chemo- 
receptor stimulation (Hukuhara 1973, 1976;Hukuhara et al. t 969; Koep- 
chen et al. 1979; Schwanghart et al. 1974). Peripheral and central chemo- 
sensitive input increases the magnitude of  rhythmic depolarization and 
spike frequency of  inspiratory neurons (Mitchell and Herbert 1974a, b). 
The interruption from either the peripheral or the central chemosensor 
changes the level of  activity of  the whole respiratory system (Wiemer et al. 
1965). Furthermore, the type and stage of  anesthesia produces inhibition 
especially of  the central chemosensitive mechanism (Mitchell and Herbert 
1974b). The conditions become further complicated by the central de- 
pressant action of  hypoxia, or the stimulating action of hyperoxia 
(Cherniak et al. 1970/71;Miller and Tenney 1975) and the central de- 
pressant action of  COs, namely the unspecific component,  which in respi- 
ratory neurons causes hyperpolarization (Mitchell and Herbert 1974a). 
Data from both peripherally or centrally chemodenervated groups, under 
"comparable" conditons, are available from studies of  respiratory response 
to CO2 in hyperoxia in awake cats by Miller and Tenney (1975) and 
Schlaefke et al. (1979a, b) and are shown in Table 2. Under the condition 
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Table 2. Endtital  PCO~ (Torr), tidal volume (ml), ventilation (ml) and respiratory fre- 
quency (f • min -~) from six awake cats before and after coagulation of areas S in 
hyperoxia (Schlaefke et al. 1979b). The corresponding data from six awake cats before 
and after peripheral chemodenervation in hyperoxia  (Miller and Tenney 1975) 

Chemodenerv. PCO2 (Tort) V T (ml) V (mt) f - rain -1 

before after before after before after before after 

Central 27.0 43.0 26.0 18.0 847 428 36.4 24.6 

Peripheral 31.4 31.1 24.0 25.1 698 547 29.3 23.1 

of hyperoxia the two series seem to demonstrate a remarkably stronger 
toss of  respiratory drive after central than after peripheral chemodenvera- 
tion. However, the peripherally chemodenervated cats hyperventilate in 
hyperoxia. The data previously presented by Bouverot et al. (1965), 
Gautier (1976a,b), Miller and Tenney (1975),Mitchell (1965) and Mitchell 
et al. (I 964) make evident that ventilation after peripheral chemodener- 
vation decreases during air breathing. Thus cutting sinus and aortic nerves 
causes a loss of  a drive component which is strengthened during air breath- 
ing and reduced in hyperoxia. The respiratory depression elicited during 
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Fig. 12. Tidal volume response to hypercapnia and hypoxia  before and after cutting 
both sinus nerves and vagi (left), and before and after bilateral coagulation of the inter- 
mediate area. Mean values of steady states. Both cats anesthetized with ketamine 
hydrochloride and chloralose urethane 
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air breathing in peripherally chemodenervated cats, in principle has an 
analogy in the central respiratory depression by CO2 after central chemo- 
denervation (Loeschcke et al. 1979; Schlaefke et al. 1979a), although the 
mechanisms may be quite different. The main features resulting from peri- 
pheral and central chemodenervation may be demonstrated with two 
examples (Fig. 12), comparing respiratory responses from peripherally and 
centrally chemodenervated and anesthetized cats, with controls. Both cats 
were anesthetized with chloralose urethane and were under similar surgical 
and experimental conditons. In accordance with the results from anesthe- 
tized cats or rabbits obtained by Katsaros (1965), Kiwutl et al. (1972) and 
Borison and McCarthy (1973), respiratory response curves after peripheral 
chemodenervation (in the example of  Fig. 12 sinus nerves and vagi had 
been cut) are shifted to higher CO2 values but no change of  slope could 
be observed. Hypoxia caused a further shift to the right, indicating depres- 
sion of respiratory activity. Central chemodenervation goes along with a 
severe respiratory acidosis and strongly reduced or abolished response to 
inhalation of  COs (Cherniak et al. 1979a;Schlaefke 1972;SchlaejTce et al. 
1979a). Air breathing or hypoxia indicates an intact peripheral chemo- 
receptor response (Fig. 12), activation of  peripheral chemoreceptor drive 
diminishing the respiratory acidosis. After central chemodenervation the 
maintained ventilation in hyperoxia is completely dependent upon the 
intact sinus nerves, which may include a hypothetical unspecific drive 
component  (Katsaros 1965) as well as a CO2 dependent part (Fitzgerald 
and Parks 1971). Cutting of  sinus and aortic nerves causes respiratory ar- 
rest even when trying to produce respiratory drive by unspecific stimula- 
tion. However, by stimulation of  both sinus nerves sp'ontaneous breathing 
is induced. The respiratory response curve to COs of  such an evoked respi- 
ration is completely flat (Loeschcke et al. 1979). 

Cherniak et al. (1979a) applied local temperature changes to the inter- 
mediate area in the artificially or spontaneously breathing cat. Focal cool- 
ing of the intermediate area to 303-305  K caused a parallel shift in the 
COs response curves to the right, while cooling below 303 K caused a de- 
crease in slope and further shifts to the right. Additional hypoxia increased 
respiration in an additive manner, irrespective of  whether COs was changed 
or the intermediate area was cooled. Loescheke (1979), by local applica- 
tion of  atropine found resting ventilation and the slope of  the COs re- 
sponse curve diminished. 

4.2 Breathing After Loss of  Central Chemosensitivity 

Awake cats, surviving for days or weeks following bilateral coagulation of  
the intermediate area, showed the following respiratory characteristics, 
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which were observed during oxygen breathing: A great loss of resting re- 
spiratory drive and an ensuing severe respiratory acidosis were predomi- 
nantly due to a reduction in tidal volume (Fig. 13). The reduced ability to 
respond to a further increase in PCO2 has been demonstrated in Fig. t 2 
already. 
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Fig. 13. Means of respiratory values from three awake cats before and after central 
chemodenervation by bilateral coagulation of the intermediate area 

Periodic breathing occurred under the condition of hyperoxia. Cherniak 
et al. (1979b, c) found periodic breathing in anesthetized cats when graded 
cooling was applied to the intermediate area and when the "controller 
gain" was increased, e.g. by hypoxia or lung deflation. The effect of wake- 
fulness of the animal may be interpreted in the same sense (Schlaefke 
1972, 1976a; Sehlaefke et al. 1979a). The awake cats breathing without 
central chemosensitivity generally reacted with a surprisingly strong ven- 
tilatory response to unspecific stimuli. This phenomenon may or may not 
reflect an increase in reticular neuronal activity similar to that seen in cats 
with procaine block of the ventral medullary surface as long as the peri- 
pheral chemoreceptors were intact (Schwanghart et al. 1974). Apneic 
phases could be interrupted by waking the cats. In cases of artificial venti- 
lation, stimulation by pinching the paw produced an EEG arousal and on- 
set of spontaneous breathing (Schlaej~e et al. 1980a, b). Sullivan et al. 
(1978) give support to the idea that chemosensitive afferents are necessary 
for sufficient activation of the respiratory centers, and that in the event 
of them being insufficient, wakefulness is necessary for compensation. 
Peripheral chemoreceptors however, seem to be dependent on the coopera- 
tion with central chemosensitivity for the continuation of ventilation dur- 
ing sleep. The observations indicate that the stabilizing function of CO2, 



218 M.E. Schlaefke 

as considered by Loeschcke (1960), is closely associated with the function 
which can be eliminated by interference with the superficial layer of the 
intermediate area. 

After central chemodenervation the respiratory system of neither awake 
nor anesthetized cats was unable to respond to an additional charge with 
fixed acids induced by orally administered acetazolamide or by intravenous 
injections of HC1. The cats stopped breathing due to a further fall in arte- 
rial pH to values of about 6.96 (Schlaefke 1972; Schlaefke et al. 1974) 
which had not yet affected the arterial blood pressure. The strong reduc- 
tion in the respiratory response to inhaled CO2 and the inability to com- 
pensate metabolic disturbances by respiration, may be regarded as a con- 
firmation of former observations by Katsaros (1965). He described peri- 
pheral chemoreceptors as playing a minor role in the respiratory compen- 
sation of metabolic acidosis. In centrally chemodenervated cats one has to 
be aware however, that H + ions may directly inhibit respiratory neurons 
(Marino and Lamb 1975; Mitchell and Herbert 1974a), so that a strong 
acidosis may cause respiratory arrest after the loss of the central excitatory 
component of H + ions. 

Therefore any quantitative comparison with peripheral chemoreceptor 
sensitivity from these studies is questionable. 

In this situation the mathematical studies of Middendorf and Loeschcke 
(1976a, b; 1978) are valuable. Using the data of Loeschcke and Sugioka 
(1969), Kronenberg and Cain (1968), Fencl (1971) and Mitchell (1965), 
the authors calculated the quantitative contribution of the peripheral and 
the central chemosensitivity in nonrespiratory acidosis. They found an 
optimal agreement between calculated and experimental data when the 
central system was 25 times more sensitive than the peripheral system 
under steady state conditions and in normoxia. The authors attributed the 
reason for small deviations of ECF pH in non respiratory disturbances 
(Fencl et at. 1966;Fencl 1971;Pappenheimer 1967;Robin et al. 1958) to 
the cooperation of the two sensors in different locations, where the more 
sensitive one measures the controlled value (ECF pH) and the tess sensitive 
one measures the disturbance before it reaches the sensor of the controlled 
value. The precise control seems to be necessary for an equally precise co- 
ordination and function of the respiratory "centers". The studies in cen- 
trally chemodenervated cats show that the intact control function of peri- 
pheral chemoreceptors can not guarantee acid base homeostasis. 
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4.3 Loss of  Central Chemosensitivity: A Basic Model for Ondine's 
Curse and Sudden Infant Death Syndrome 

The centrally chemodenervated cats in the chronic experiment showed 
symptoms which are observed in patients whose disease is called Ondine's 
curse syndrome. Its manifestations are periodic breathing, alveolar hypo- 
ventilation, respiratory acidosis, and sleep apnea (Chiesa et al. 1970; 
Comroe 1975; Deonna et al. 1974; Fishman et al. 1965, 1966;Flandrois 
et al. 1974b; Fruhmann et al. 1961; Gerardy et al. 1960; Giroud et al. 
1974; Granholm 1973; Grant 1968; Guilleminault et al. 1974; Kafer and 
Leigh 1972; Rich ter et al. 1957; Severinghaus and Mitchell 1962). In com- 
bination with obesity the same symptoms are described as Pickwick syn- 
drome (Addington et al. 1969; Butwell et al. 1956; Doll 1968;Drachman 
and Gumnit, 1962; Geisler 1971; Geisler et al. 1967; Kaemmerer and 
Dolce 1967; Kuhlo 1968; Jung and Kuhlo 1965; Lugaresi et al. 1968, 
1972; Terzian 1966; Unterberg 1971; Ward and Kelsey 1962). Since there 
is a relationship between sleep phases and a higher or lower respiratory 
sensitivity to inhalation of  COs (Bertrand et al. 1967; Birchfield et al. 
1958; Billow 1963;Duron 1972; Guazzi 1969; Guazzi and Freis 1969; 
Ingvar and Biilow 1963 ; Jung 1965; Netick et at. 1977; Orem 1978; Orem 
et al. 1977;Phillipson 1977, 1978a, b;Phillipson et al. 1977), which in 
addition is different in the various stages of maturation (Bolton and 
Herman 1974; Bryan and Bryan 1979; Bryan et al. 1976; Carrol 1974; 
Daily et al. 1969; Fagenholtz et al. 1976; Fenner et al. 1973;Finer et al. 
1976;Frantz et al. 1976;Gabriel et al. 1976;Guthrie et al. 1980; IIaddad 
et al. 1979; Hathorn 1974; Krauss et al. 1975; Meier and Berger 1965; 
Reite et al. 1974; Rigatto 1979; Rigatto et al. 1975a-c;  Thach et al. 
1978; Wyszogrodski et al. 1978), the chemosensitive mechanism was con- 
sidered to be an important factor involved in the sudden infant death syn- 
drome (SIDS) (sudden death of  apparently healthy babies during sleep) by 
Gabriel and Albani (1976), Guilleminault et al. ( 1974, 1975), Hasselmeyer 
and Hunter (1975), Hunt et al. (1978), Krauss et al. (1977), Naeye (1978, 
1980), Rigatto and Brady (1972),Shannon and Kelly (1977), Shannon et 
al. (1977), Steinschneider (1972), and Wennergren and Wennergren 
(1980). 

The causes for the pathogenesis of  syndromes within the two groups 
(Ondine's curse and SIDS) may be apparently different for the individual, 
but under precisely determined conditions one should be able to discrimi- 
nate patients of  both groups in which a malfunction of  central chemosen- 
sitivity may be causally involved. 

The fault in the central chemosensitive mechanism may develop through 
various causes. In the adult and adolescent group, genetic factors, neurol- 
ogical diseases, cerebrovascular diseases, infections, neoplasms, and trauma 
are discussed. 
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Krieger (1973) described patients who suffer from respiratory failure dur- 
ing sleep, after high anterior spinal surgery. The respiratory response to in- 
haled CO2 in these patients is flattened. From the clinical impressions an 
interruption of ascending pathways was suggested. Sehlaefke et al. (1980a) 
studying a 12 year old girl found peripheral chemoreceptor reflexes intact 
as well as voluntary breathing, but a complete loss of respiratory response 
to CO2 after the patient had undergone surgergy for an anomaly of the 
first and second vertebra (os odontoideum). The girl was breathing period- 
ically and had long apneic phases. The values of arterial PCO2 varied be- 
tween 58 to 77 Torr (7.7 to 10.2 kPa). When the girl was pushed to wake 
up for breathing, the EEG showed arousal before the onset of breathing. 
An unexpected an inexplicable death of a 37 year old man was described 
by Zink et al. (1977). The authors verified an anomaly of the first and 
second vertebra as the only possible cause of death. The case reports 
indicate a ventral position at the lower part of the medulla oblongata for 
the defect, the involvement of an afferent pathway, and show analogies 
to the symptoms observed in centrally chemodenervated cats. 

Recent studies ofFolgering et al. (1979) and Schlaefke et al. (1980a-c) 
indicate that in cases of SIDS the ventral medullary surface layer shows 
the absence of  neurons medial to the rostral part of the hypoglossal root 
and rostromedial to it, which equals the topography of the intermediate 
area of the cat. Sleep apnea, no respiratory response to inhaled CO2 and 
intact peripheral chemoreflexes could be measured in a child before the 
absence of ventral medullary neurons was established (the child died with- 
in 9 months) (Folgering et al. 1979). Wells et al. (1980) reported the case 
of a 19 months old child which showed no response to inhaled CO~, whose 
ventilation increased however, with a reduction of PO2. The ventilatory 
response curves of this child are strikingly similar to those obtained from 
centrally chemodenervated cats. 

In some of  the cases of SIDS in which the absence of ventral medullary 
neurons was established, macrophages were found in peripheral lung alveo- 
li as well as an increased amount of muscles in the pulmonary arteries, 
both indicating chronic hypoventilation (Naeye et al. 1976). 

These first comparative studies indicate that a relevant experimental 
model for Ondine's curse syndrome and SIDS can be developed by the 
elimination of central chemosensitivity in the animal. Further basic re- 
search depends upon a close cooperation between clinicians, pathologists, 
and physiologists. It could lead a step forward in the understanding of 
central chemosensitivity and its interconnection with various other homeo- 
static mechanisms such as sleep and the cardiovascular system; but it 
would also help in the clarification of a poorly understood and often fatal 
disease. 
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5 Conclusion 

The H ÷ ion concentration of  the brain extracellular fluid is required to be 
precisely controlled in order to guarantee the basic functional conditions 
of  the central nervous system. This control is provided by a contribution 
of the brain buffer system and by the cooperation between peripheral and 
central chemosensitive mechanisms influencing the respiratory system by 
more or less afferent input. There is an almost free exchange of  C1- and 
HCO; between the three compartments,  blood/brain extracellular fluid/ 
brain (glia) cells. CO2 diffuses extremely rapidly through all compart- 
ments. Any change in pH, induced by metabolic or respiratory distur- 
bances is mirrored in the brain extracellular fluid pH. In contrast, however, 
to respiratory acidosis, in which the release of  CO2 is limited, in metabolic 
acidosis the extracellular pH of  the brain is maintained close to normal. 
This is due to the rapid response of  the peripheral chemoreceptors, con- 
trolling the pH value before the disturbance reaches the central sensor. 
The latter measures the controlled value and is 25 times more sensitive to 
pH deviations than the peripheral one. It is responsible for the precision of  
the H ÷ control mechanism. The morphological correlate is a structure, 
possibly involving cholinergic mechanisms, located within the ventral 
medullary surface layer in close contact with the marginal glia cells and a 
dense capillary network. The responsible structure is underlying three 
areas, which differ in nerve cell and synaptic formations as well as in their 
responses to drugs and H + ions. A simplified model has been proposed in 
order to summarize the as yet incomplete experimental results. 

The neuronal elements o f  central chemosensitivity discharge tonically. 
They display a characteristic response to small changes of  pH measured on 
the ventral medullary surface, either produced via the blood, or by super- 
fusing the medullary surface with mock CSF of  varied pH. There are only 
a few preliminary data indicating that the surface neurons may project 
to the nucleus of  the solitary tract via a potysynaptic pathway. 

Since the phasic respiratory neurons in deeper parts of the medulla are 
inhibited by acids or CO2, the elimination of  the central chemosensitive 
apparatus on the ventral medullary surface is accompanied by a strong de- 
pression of  respiratory drive; a loss of  brain acid base homeostasis, and a 
loss of  the normal breathing pattern. 

In SIDS, ventral medullary neurons were absent in an area correspond- 
ing to the intermediate area medial to the rostral part of  the hypoglossal 
root and rostromedial to it. Since the symptoms in awake cats after de- 
struction of  cells in the intermediate area equal those of  SIDS and Ondine's 
curse syndrome, one feels tempted to ascribe the human central chemo- 
sensitive system of  respiration to a morphological and functional correlate 
comparable to that described in the cat. 
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There is much evidence that another tonically firing system is located 
in the ventral medullary surface layer with an inhibitory action on the 
sympathetic system. However, its sensitivity to H ÷ ions has not yet been 
convincingly demonstrated. Nevertheless the ventral medullary surface 
also seems to be important for the control of sympathetic outflow. 

Studies on the structure and function of  central chemosensitivity have 
shown that it is not only a morphological structure different from the re- 
spiratory neuron populations and contributes to the respiratory drive to a 
large extent (in the sense of 14'yss 1964, as a neural input into the respira- 
tory centers), but is also a decisive component for the precise regulation 
of the environment of the brain cells in the sense of Winterstein (1955). 

This review does not give a complete account of all data obtained on 
central chemosensitivity up until now. In particular the interaction of 
central chemosensitivity with other respiratory drives received relatively 
little attention. The intention of this review was to demonstrate the prob- 
lems and limitations of interpretation, using more recent results. It should 
serve the purpose of stimulating further research in the field of central 
chemosensitivity. 
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- - total cell calcium 22 
- axoplasma, calcium in 31, 34 
- hemolymph, calcium concentration in 38 
steroid hormones 107 
strontium 44 
sudden infant death syndrome 219,220 
sympathetic system, H÷-effects on 209-211 
synaptosomes, Ca ~ influx in 55, 63-65,  67 

Terpenbiosynthese 6, 7 
tetrodotoxin 67, 71 
thiazides 160, 161,165 
thyroxine 107 
tidal volume response after chemodenervation 

214, 215 
tissue calcium content 19 
touch responding units 189, 190, 191 
transmitter release, increased 196,205 
troponin-C 44 
trypsin 19, 22 
tumor ceils, total calcium in 19, 21 

vagal reflexes 172 
vagus, dorsal nucleus 187 
- nerve, Ca++ efflux 55 
verapamil 69 

Zitratsynthese 5 
Zytochromoxidase 3, 6 


