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PREFACE

This book, Applied Mathematics for Science and Engineer-
ing, is the culmination of many years of experience prepar-
ing upper-division students in engineering and the physical 
sciences for graduate-level work (and particularly for sub-
jects such as advanced transport phenomena). We strive  
to acquire key competencies that can be utilized to solve 
important practical problems of the type found in advanced 
coursework as well as those that may arise in a student’s 
research program. The course is intended for engineers  
and scientists in the science/technology/engineering/math-
ematics (STEM) fields, and this book is my effort to fit  
the presentation of the material to the dominant learning 
styles of such students, many of whom are visual and tactile 
learners.

In the fall of 2013, the Programme for International 
Student Assessment (PISA) released its key findings from 
the 2012 examinations administered to 15-year-old students 
around the globe. The performance of students from the 
United States ranked about 26th in mathematics, far below 
the levels seen in Shanghai, Singapore, Hong Kong, Korea, 
Japan, and other countries. In the Country Notes, PISA 
observed that “students in the United States have particular 
weaknesses in performing mathematic tasks with higher 
cognitive demands, such as taking real-world situations, 
translating them into mathematical terms, and interpreting 
mathematical aspects in real-world problems.” This result 
has occurred despite the fact that the United States spends 
the most money per student on education according to a 
survey conducted by the Organization for Economic Coop-
eration and Development (OECD). There are a number of 
possible explanations.

The life experiences of contemporary adolescents are 
very different from those of previous generations. Educators 
in the STEM fields have found—and employers of young 
technical professionals confirm—that the disconnect 
between contemporary students and the physical world is 
staggering. Even when our domestic students have basic 
mathematical tools, rarely do they possess a frame of refer-

ence or necessary judgment that might allow them to criti-
cally evaluate a result obtained from solution of a model or 
from a computational simulation. For the applied sciences, 
this is a perilous situation.

It has also been suggested that a factor contributing to 
this crisis is the lack of integration between science and 
mathematics in secondary education. Focus in public educa-
tion in the United States is usually based on content cover-
age and not on contextual understanding. This is not a new 
problem; for generations, the lack of a demonstrable con-
nection between, say, algebra and the world (as perceived 
by a 15-year-old) has been an obstacle to learning. The 
author distinctly recalls his impression that trigonometry 
was the only important math subject in high school because 
we used it in physics to solve problems that looked like they 
might have bearing on something that actually mattered. 
The failure of typical secondary-school course structure to 
relate mathematical subjects to problems in context makes 
it extremely difficult for students to fully appreciate the 
significance of the material.

With these observations in mind, I have tried to present 
these topics as I do in class, with frequent attention paid to 
applications of obvious importance. An overarching goal is  
to demonstrate why a particular mathematical method is 
worthy of study, and we do this by relating it to things that the 
student of applied science can appreciate. Consequently, this 
book contains many examples of important applications in 
biology, chemistry, physics, and engineering, and most 
include graphical portrayals of model results and computa-
tions. This book also covers some topics rarely treated in 
similar texts; these include integro-differential equations, 
interpretation of time-series data, and an introduction to the 
calculus of variations. My hope is that students will find their 
interest piqued by the approach we have taken and the topics 
we have covered, and that they will turn to the literature of 
mathematics to learn more than we can possibly provide here.

L. A. G.

viii



1
PROBLEM FORMULATION AND MODEL DEVELOPMENT

INTRODUCTION

Our purpose in this course is to review some mathematical 
techniques that can be used to solve important problems in 
engineering and the applied sciences. We will focus on 
problem types that are crucial to the analysis and simulation 
of real, physical phenomena. Sometimes, our objective will 
be to predict the future behavior of a system and sometimes 
it will be to interpret behavior that has already occurred. We 
want to stress that the author and the readers are collabora-
tors in this effort, and whether this text is being used in a 
formal setting or for self-study, the ultimate goal is the  
same: We want to be able deal with problems that arise in 
the applied sciences and do so efficiently. And—this is 
important—we do not want to rely on calculation software 
unless we know something about the method(s) being 
employed. Too often, real problems can have multiple solu-
tions, so it is essential that the analyst be able to exercise 
some judgment based on understanding of the problem and 
of the algorithm that has been selected.

Many of the problems we will be solving will come from 
both transient and equilibrium balances, and they will 
involve forces, fluxes, and the couplings between driving 
force–flux pairs. Examples of the latter are Newton’s, Fou-
rier’s, and Fick’s laws:

τ µyx
x

y Az AB
Av

y
q k

T

y
N D

C

z
=−

∂
∂

=−
∂
∂

=−
∂
∂

, , ,and

		  (1.1)

where τyx is the shear stress (acting on a y-plane due to 
fluid motion in the x-direction), qy is the flux of thermal 
energy in the y-direction, and NAz is the molar flux of 
species “A” in the z-direction. Note that these three 
fluxes are linearly related to the velocity gradient, the 
temperature gradient, and the concentration gradient, 
respectively. Each driving force–flux pair has, under 
ideal conditions, a constant of proportionality (the vis-
cosity, μ; the thermal conductivity, k; and the diffusivity, 
DAB); these constants are molecular properties of the 
medium that can be determined from first principles if 
the right conditions are met. Unfortunately, it is also 
possible for viscosity to depend on velocity, for thermal 
conductivity to depend on temperature, and for diffusiv-
ity to depend on concentration. In such cases, the driving 
force–flux relationships are no longer linear as indicated 
by eq. (1.1).

The balances we speak of usually come from some 
statement of conservation; and this could be conservation 
of mass, energy, momentum, and so on. For an example, 
consider heat transfer occurring in an electrical conductor, 
perhaps a copper wire. The conductor is carrying an elec-
tric current so thermal energy will be produced in the 
interior by dissipation (I2R heating) and thermal energy 
will be lost to the surroundings at the wire’s surface. We 
will construct a thermal energy balance on a volume 
element, an annular region extracted from the wire of 
length L that extends from r to r + Δr; this is shown in 
Figure 1.1.

Applied Mathematics for Science and Engineering, First Edition. Larry A. Glasgow.
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2    Problem Formulation and Model Development

If T is finite at the center, then clearly, C1 =  0. One 
question that arises in such problems concerns the speed of 
approach to steady state: When might we use eq. (1.5) and 
when must we proceed with the solution for eq. (1.4)? We 
can illustrate this concern using 2 AWG bare copper wire 
(d = 0.6544 cm) with a constant surface temperature of 30°C 
(this is an example of a Dirichlet boundary condition). We 
set Pe/ρCp = 5950°C/s and let the wire have a uniform initial 
temperature of 30°C. Because copper has a very large 
thermal diffusivity, α = k/ρCp = 1.14 cm2/s, the approach to 
steady state should be quick:

t (s) 0.005 0.01 0.02 0.05 0.075 0.100 0.175
T center 
(°C)

59.67 86.87 124.51 162.43 168.01 169.20 169.52

As we anticipated, steady-state conditions are attained 
rapidly, suggesting that for many similar applications eq. 
(1.5) could be used to find T(r).

The previous example is a microscopic balance, that is, 
we are modeling a distributed parameter system. We will 
also have occasion to use macroscopic balances for lumped-
parameter systems in which the field (or dependent) vari-
able does not vary with position. For the electrical wire 
with dissipation discussed earlier, this would mean that the 
temperature would not vary in the r-direction. This is 
clearly not valid for the case we just examined where  
T(r = R) was forcibly maintained at 30°C by removing heat 
at the surface. We will discuss the circumstances under 
which the temperature might be (nearly) independent of 
position a little later.

In modern industrial production, applied scientists and 
engineers constantly struggle to meet product specifications, 
satisfy regulatory constraints, increase output, and maximize 
the return for investors and stakeholders. A reality of modern 
industrial operations is that economic survival is often predi-
cated on continuous process improvement. And because of 
the scale of industrial processes, even incremental improve-
ments can be very significant to the bottom line. In the early 
twentieth century, process tweaking was carried out empiri-
cally by trial and error; this usually worked since margins 
were wide, there was less global competition, and product 
specifications were often loose. Since there was little auto-
matic process control, skilled operators quickly learned 
through experience how to make adjustments to improve 
production. That era has passed, and now operational deci-
sions and control strategies are often based on models or 
process simulations. As Hanna and Sandall (1995) point out, 
contemporary economic reality dictates that modeling and 
simulation be favored over labor-intensive experimental 
investigations. In this introduction, we will examine a few 
of the possible ways models can be formulated, and we will 
look at some examples illustrating the underlying principles 
that are key to modeling and simulation.

We express the balance verbally in the form

{ } {

}

Rate of thermal energy in at Rate of thermal

energy out at

r

r r

−
+ +∆ {{

} { }.

Production of thermal energy

by dissipation Accumulation=		  (1.2)

Since the temperature in the conductor may vary continu-
ously with both position and time, the result of this balance 
will be a partial differential equation. We can rewrite the 
balance (eq. 1.2) introducing the appropriate symbols:

+ − + =
∂
∂

+( ) ( ) .2 2 2 2π π π π ρrLq rLq rL rP rL r C
T

t
r r r r r e p∆ ∆ ∆

		  (1.3)

Now we divide by 2πLΔr, take the limit as Δr → 0, apply 
the definition of the first derivative, and substitute Fourier’s 
law for qr (we also divide by r):

	 k
r r

r
T

r
P C

T

t
e p

1 ∂
∂

∂
∂




















+ =

∂
∂

ρ . 	 (1.4)

Note that we have assumed that the volumetric rate of 
thermal energy production, Pe, is a constant; this is not 
strictly correct since the resistance of copper wire (e.g., 
AWG 12) is 1.65 ohms/1000 ft at 25°C, but increases to 
3.08 ohms/1000 ft at 250°C. In our model, we neglected the 
temperature dependence of the conductor’s resistance; this 
would probably be acceptable if the temperature change in 
the wire is modest. For steady-state conditions, the solution 
for eq. (1.4) is simply

	 T
P

k
r C r Ce=− + +

4
2

1 2ln . 	 (1.5)

FIGURE 1.1.  Annular volume element extracted from conductor 
for the thermal energy balance. The thickness of the annular shell 
is Δr and the length is L.
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ALGEBRAIC EQUATIONS FROM VAPOR–LIQUID EQUILIBRIA (VLE)    3

control variables is less than or equal to four, then there are 
only seven elementary types of catastrophes. The beauty of 
catastrophe theory is that it makes it possible to predict the 
qualitative behavior of a system, even for cases in which 
underlying differential equations are unknown or hopelessly 
complicated. An excellent review of this field with numerous 
familiar examples (including biochemical reactions, popula-
tion dynamics, orbital stability, neural activity in the brain, 
the buckling of structures, and hydrodynamic instability)  
has been provided by Thompson (1982). His book is a  
wonderful starting point for students interested in system 
instabilities.

The principal fact we wish to emphasize as we conclude 
this introduction is that every model is an idealization and 
when we rely on a mathematical analysis (or a process simu-
lation), it is prudent to keep its limitations in mind. We 
would do well to remember the statistician George E. P. 
Box’s admonition, “essentially, all models are wrong but 
some are useful.” In the modern practice of applied science, 
we must add a corollary: Not only can models be useful, but 
sometimes they are also absolutely necessary even when 
they are wrong in some limited sense.

Let us now look at just a few examples of how problems 
of the types we wish to solve are actually developed. We 
will begin with a situation involving equilibrium between 
gas and liquid phases; this problem requires solution of a set 
of algebraic equations.

ALGEBRAIC EQUATIONS FROM VAPOR–LIQUID 
EQUILIBRIA (VLE)

Problems in VLE require solution of mass balances, but in 
cases where the temperature (T) is unknown (as in this 
instance), a trial-and-error process can be employed. We will 
assume that we have a vapor consisting of an equimolar 
mixture of light hydrocarbons, ethane (1), propylene (2), 
propane (3), and isobutane (4). The vapor phase mole frac-
tions are all ¼, that is, y1 = y2 = y3 = y4 = 0.25. The constant 
total pressure is 14.7 psia (1.013 bars), and the vapor phase 
is cooled slightly until the first drop of liquid is formed (this 
temperature is the dew point). Our objective is to find the 
temperature, T, at which this occurs, and the composition of 
the liquid that forms (in equilibrium with the vapor). We will 
solve this problem in two different ways and then compare 
the results.

First, we will use the Antoine equation to get the vapor 
pressures of all four species as functions of temperature:

	 log * .10 p A
B

C T
= −

+
	 (1.6)

The necessary constants will be obtained from Lange’s 
Handbook of Chemistry (1961).

Before we do that, however, we need to recognize that a 
model—however complex—is merely a representation of 
reality. Though we may understand the governing physical 
principles thoroughly, our mathematical formulation will 
never be in perfect fidelity with the “real” world. This is 
exactly what Himmelblau and Bischoff (1968) referred to 
when they noted, “the conceptual representation of a real 
process cannot completely encompass all of the details of 
the process.” Nearly always in real processes, there are 
random events, stochastic elements, or nonlinear couplings 
that simply cannot be anticipated. Nowhere does this become 
more apparent than in the examination of engineering or 
industrial catastrophes; the actual cause is almost always due 
to a chain or cascade of events many of which are quite 
improbable taken individually. In cases of this kind, the 
number of state variables may be very large such that no 
mathematical model—at least none that can be realistically 
solved—will account for every contingency. And even in 
relatively simple systems, quite unexpected behavior can 
occur, such as a sudden jump to a new state or the appear-
ance of an aperiodic oscillation. Examples of real systems 
where such behaviors are observed include the driven pen-
dulum, the Belousov–Zhabotinsky chemical reaction, and 
the Rayleigh–Bénard buoyancy-driven instability. Real 
systems are always dissipative; that is, they include “fric-
tional” processes that lead to decay. Where we get into 
trouble is in situations that include both dissipation and at 
least one mechanism that acts to sustain the dynamic behav-
ior. In such cases, the dynamic behavior of the system may 
evolve into something much more complicated, unexpected, 
and possibly even dangerous.

There is an area of mathematics that emerged in the 
twentieth century (the foundation was established by Henri 
Poincaré) that can provide some qualitative indications of 
system behavior in some of these cases; though what has 
become popularly known as catastrophe theory is beyond 
the scope of our discussions, it may be worthwhile to 
describe a few of its features. In catastrophe theory, we 
concern ourselves with systems whose normal behavior is 
smooth, that is, that possess a stable equilibrium, but that 
may exhibit abrupt discontinuities (become unstable) at 
instants in time. Saunders (1980) points out that catastrophe 
theory applies to systems governed by sets (even very large 
sets) of differential equations, to systems for which a varia-
tional principle exists, and to many situations described by 
partial differential equations. In typical applications, the 
number of state variables may indeed be very large, but the 
number of control variables may be quite small. Let us 
explain what we mean by control variable with an example: 
Suppose we wished to study the flow of water through a 
cylindrical tube. We impose a particular pressure gradient 
(or head, Δp) and then measure the resulting flow rate. The 
head is the control variable and the flow rate through the 
tube is established in response to Δp. If the number of 
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4    Problem Formulation and Model Development

MACROSCOPIC BALANCES: LUMPED-
PARAMETER MODELS

We observed at the beginning of this chapter that the tem-
perature of a copper conductor carrying electrical current 
might not vary with radial position. Such a situation could 
arise if there was large resistance to heat transfer at the 
surface; that is, if the heat generated by dissipation could 
not escape to the surrounding fluid phase. In the following 
example, we look at a case that might meet this stipulation, 
a hot metal casting that is being quenched in an oil bath. It 
is always good practice for the analyst to begin with a verbal 
statement of the balance:

{ } { }

{

Rate of thermal energy in Rate of thermal energy out

Accumula

−
= ttion}.

This is a macroscopic balance in which we assume that 
the temperature throughout the casting is the same (as we 
pointed out, this cannot be strictly correct, but under the 
right circumstances, it may be adequate). There is no {rate 
in} since the casting simply loses thermal energy to its sur-
roundings, and we will assume that this loss is approxi-
mately described by Newton’s law of cooling. Therefore,

	 − − =∞hA T T MC
dT

dt
p( ) . 	 (1.8)

This first-order, lumped-parameter model is readily sepa-
rated to yield:

	 − =
− ∞

hA

MC
dt

dT

T Tp ( )
. 	 (1.9)

We integrate and find

	 T T C
hA

MC
t

p

− = −








∞ 1 exp . 	 (1.10)

The casting has an initial temperature, Ti, at t =  0, and 
thus:

	
T T

T T

hA

MC
t

i p

−
−

= −










∞

∞

exp . 	 (1.11)

According to this first-order model, the temperature of 
the casting will follow an exponential decay, ultimately 
approaching the temperature of the oil bath. It is worth 
noting that the quotient, hA/(MCp), is an inverse time con-
stant for this system, 1/τ. When t = 1τ, about 63% of the 
ultimate change will have been accomplished; when t = 2τ, 
about 86%; and at t =  3τ, about 95%. Consequently, a 
common rule of thumb for simple first-order systems is that 
the dynamic behavior is nearly complete in 3τ.

A B C

Ethane 6.80266 656.4 256
Propylene 6.8196 785 247
Propane 6.82973 813.2 248
Isobutane 6.74808 882.8 240

Keep in mind that T must be in Celsius and p* is in mil-
limeters of mercury. We will assume that Raoult’s law is 
applicable such that

	 y P x p T1 1 1= *( ). 	 (1.7)

P is the total pressure and it is 760 mmHg. Therefore, 
the liquid-phase mole fractions are determined from xi = 
yiP/pi*(T ), and a solution will be found when Σxi = x1 + x2 + 
x3 + x4 = 1. Such problems are amenable to machine com-
putation and a simple strategy suggests itself: Estimate T, 
compute the vapor pressures with the Antoine equation, then 
calculate the liquid-phase mole fractions and check their 
sum. If the Σxi  ≠  1, adjust T and repeat. A very short 
program was written for this purpose, and it shows 
T = −34.2°C (−29.6°F), with

x x x x

xi

1 2 3 40 0273 0 1406 0 1789 0 6611

1 0079

= = = =
∑ =( )

. . . .

. .

Of course, VLE for light hydrocarbons are enormously 
important and have been intensively studied. For an alterna-
tive procedure, we can use data published by DePriester 
(1953) which are in the form of nomograms relating the 
distribution coefficients, Ks (K =  y/x), for light hydrocar-
bons to temperature and pressure. Again, we estimate T, then 
find the distribution coefficients and use them to calculate 
the liquid-phase mole fractions. By trial and error, we find 
for T = −30°F (with P = 14.7 psia):

K (y/x) x

Ethane 7.95 0.031
Propylene 1.92 0.130
Propane 1.43 0.175
Isobutane 0.37 0.672

In this case, the summation of the liquid-phase mole frac-
tions is 1.008, and the agreement with our first solution is 
reasonable (the worst case is ethane, with a difference 
between values of xi of about 13%).

This VLE example illustrates a possible outcome when 
two different solution procedures are available; the results, 
particularly for the volatile constituents, are slightly differ-
ent. It is important to note, however, that the results obtained 
from the two solution procedures for the major components 
of the liquid (propane and isobutane) are very close, differ-
ing only by about 2%.

http://c1-bib-0002
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this model type; consider a batch kinetic study of a second-
order chemical reaction in which the reactant species is 
consumed according to

	 r k CA A=− 2
2. 	 (1.15)

Since this is a batch process, there is no flow either into or 
out of the reactor volume, so the macroscopic mass balance 
yields

	
dC

dt
k CA

A=− 2
2. 	 (1.16)

Differential eq. (1.16) is nonlinear, but it is easily 
integrated:

	 − + =−
1

1 2
C

C k t
A

. 	 (1.17)

At t = 0, CA = CA0, so the dynamic behavior in the batch 
reactor is

	
1 1

0
2

C C
k t

A A

− =− . 	 (1.18)

If the initial concentration in the reactor is 1, then

	 C
k t

A =
+

1

1 2

; 	 (1.19)

we have an inverse relationship between concentration and 
time. If this batch process is carried out for a long period of 
time, the reactant species, “A,” will nearly disappear. Of 
course, the decay in an exponential process is more rapid; 
for example, taking kt =  3, we have exp(−3) =  0.0498, 
whereas 1/(1 + 3) = 0.25.

We conclude this section by noting the study of chemical 
kinetics in constant volume systems is fertile ground for the 
exploration of macroscopic balances with less familiar out-
comes (i.e., other solutions that are not exponential). For 
example, we could have parallel first- and second-order 
reactions yielding

	
dC

dt
k C k CA

A A=− −1 2
2. 	 (1.20)

This equation can also be integrated and the reader may want 
to show that

	
1

1

2

2 1
1

k

k C

k C k
t CA

A

ln .
+












=− + 	 (1.21)

Other possibilities include rate expressions with frac-
tional orders and Michaelis–Menten kinetics for certain 
catalyzed systems, where

We should wonder what to look for in more general 
applications that would indicate that a lumped-parameter 
model is acceptable. What are the conditions that might 
allow us to neglect the variation of the field (dependent) 
variable in the interior of the medium? We have pointed out 
that in a case like the metal casting considered earlier, we 
can answer this question by identifying where the main 
resistance to heat transfer is located. If the main resistance 
is in the fluid phase, then the temperature in the interior of 
the solid may be nearly uniform. But if the main resistance 
is in the solid material, then T may vary significantly with 
position. We can assess the location of the resistance to heat 
transfer through the use of the Biot modulus, Bi =  hR/k, 
where h is the heat transfer coefficient on the fluid side of 
the interface and k is the thermal conductivity of the solid 
medium. If Bi is very small, then the fluid side of the inter-
face offers the main resistance to heat transfer.

Let us look at a second macroscopic balance example that 
is slightly more complicated; we will model a perfectly 
mixed continuous stirred-tank reactor (CSTR) in which the 
reactant species, “A,” is consumed by a first-order chemical 
reaction. We will have flow into the tank, flow out of the 
tank, and depletion of “A” by chemical reaction. In this case, 
a verbal statement of the mass balance on “A” will appear: 
{Rate in} − {Rate out} − {Depletion by reaction} = {Accu-
mulation}. Symbolically, we write

	 � �vC vC k VC V
dC

dt
Ain A A

A− − =1 . 	 (1.12)

We will divide by the volumetric flow rate, �v , obtaining

	 C k C
dC

dt
A Ain

A( ) .1 1+ − =−τ τ 	 (1.13)

In this instance, the time constant for this system (τ) is 
merely the volume of the reactor, V, divided by volumetric 
flow rate (τ =V v/ � ); this is called the mean residence time 
of the reactor. For the initial condition, we take the concen-
tration of “A” in the tank to be zero (CA = 0 for t = 0), and 
once again the solution for this first-order model is 
elementary:

	 C
C

k
k

t
A

Ain=
+

− − +


















1

1 1
1

1τ
τ

τ
exp ( ) . 	 (1.14)

Note that under steady-state conditions, the concentra-
tion, CA, is attenuated from the inlet (feed) value by the 
factor, 1/(1 + k1τ). If the residence time, τ, in the reactor is 
large, and if the reaction rate constant, k1, is large, then 
the exiting concentration will be much smaller than the 
feed, CAin.

Both of the previous examples immediately led to expo-
nential solutions. This is not the only possible outcome for 
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which looks exactly like eq. (1.25). In fact, if we were to 
choose a large inductance and a small resistance, the circuit 
would be severely underdamped and oscillation in response 
to a forcing function would be guaranteed.

DISTRIBUTED PARAMETER MODELS: 
MICROSCOPIC BALANCES

We looked at some cases previously where lumped models 
were used to make difficult problems tractable; these 
included heat lost by a metal casting and the operation of 
stirred chemical reactors. We pointed out that in heat transfer 
we might be able to use the Biot modulus to assess the suit-
ability of the lumped approach. Let us provide a little elabo-
ration by way of additional examples. Consider a tray (plate 
or stage) in a distillation column; we often treat this type of 
separation as a cascade of equilibrium stages where the 
conditions over the entire tray are the same. This means that 
the temperature and the mole fractions in the liquid and 
vapor do not vary over the plate. This is incorrect as local 
fluid mechanics as well as spatially variable heat and mass 
transfer affect the approach to equilibrium for each stage. 
Sometimes, we can account for such variations with a stage 
efficiency, which is the fractional approach to equilibrium 
for that tray and often this approach works very well.

Similarly, in the case of a CSTR, we normally assume 
that the temperature and concentration are completely 
uniform throughout the reactor volume. This too cannot be 
correct as we know with certainty that there will be dead 
zones (in corners and perhaps near baffles) where little 

	 r
dC

dt

K C

K K C
A

A A

A

= =
−
+

1

2 3

. 	 (1.22)

If eq. (1.22) is integrated, we find that the sum of both 
K2ln(CA) and K3CA terms is proportional to time, −K1t (plus 
the constant of integration).

FORCE BALANCES: NEWTON’S SECOND  
LAW OF MOTION

Many problems in mechanics require us to set

	 Ma F=∑ . 	 (1.23)

For example, consider a mass, M, suspended vertically 
from the ceiling, through a spring (that exhibits Hookean 
behavior). We will take the positive z-direction to be down. 
The apparatus also has some kind of viscous damping pro-
vided by a dashpot or shock absorber:

	 M
d z

dt
Mg Kz A

dz

dt

2

2
= − − . 	 (1.24)

In this case, we obtain a second-order, ordinary differen
tial equation. We will divide by M and rewrite the 
equation:

	
d z

dt

A

M

dz

dt

K

M
z g

2

2
0+ + − = . 	 (1.25)

The response of this system to an initial perturbation can 
assume different forms depending on the values selected for 
the constants. Suppose, for example, that we let A/M =  3 
and K/M = 5 (g = 9.8 m/s2, of course). We will initiate the 
dynamic behavior of the system by pulling the mass down-
ward to a new, extended, position. The equilibrium position 
is z =  9.8/5 =  1.96 m, so we will start by extending the 
assembly to z =  5. We will then repeat the solution but 
decrease the damping coefficient, A/M, to 0.5. For this 
second case, the response will be much more oscillatory as 
shown in Figure 1.2.

We will explore options for the solution of differential 
equations similar to eq. (1.25) in Chapters 5 and 6.

It is worth pointing out that the form of differential eq. 
(1.25) can arise in other phenomena, quite unrelated to 
F = Ma. For example, if we place a resistance (R), an induc-
tance (L), and a capacitance (C) in series to form an RLC 
circuit, and if we supply sufficient energy to offset the dis-
sipative losses, we can see sustained oscillation. The govern-
ing equation in this case is

d I

dt

R

L

dI

dt LC
I a

2

2

1
+ + = ,

FIGURE 1.2.  Displacement of a suspended weight attached to the 
ceiling with a spring. Viscous damping is reflected by the magni-
tude of A/M. The mass is moved to an initial position of z = 5 and 
then released.
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Notice that we have purposefully chosen a negative 
constant—the necessity for this will become apparent in a 
moment. We have identified two ordinary differential equa-
tions (the second of the pair is a form of Bessel’s differential 
equation):

dg

dt
g

d f

dr r

df

dr
f=− + + =αλ λ2

2

2
21

0and ,   (1.31)

and the solutions are

g C t f AJ r BY r= − = +1
2

0 0exp( ) ( ) ( ).αλ λ λand   (1.32)

Therefore, according to our initial assumption regarding the 
form of the solution

	 T C t AJ r BY r= − +1
2

0 0exp( )[ ( ) ( )].αλ λ λ 	 (1.33)

However, Y0(0) = −∞, and since our temperature must be 
finite at the center of the cylindrical rod,

	 T A t J r= −exp( ) ( ).αλ λ2
0 	 (1.34)

Let us emphasize that, at this point, we merely have a 
solution for partial differential eq. (1.28)—to get the solu-
tion of interest, we must apply a boundary condition at 
r  =  R and an initial condition for t =  0. As we shall see 
later in the course, these final two steps often cause the 
analyst the most difficulty. It is entirely appropriate for us 
to wonder how well this model for transient heat transfer 
in a cylindrical rod represents physical reality. A compari-
son will be provided here in which an acrylic plastic rod 
was heated by immersion in a constant temperature bath; 
part of the discrepancy between the model and the experi-
ment is caused by the fact that the experimental rod was 
of finite length, whereas the model is for an infinitely long 
cylinder. The rod was chilled to 3°C then immersed in a 
heated water bath maintained at 69°C. A thermocouple, 
embedded at the center of the rod, was used to measure 
the cylinder’s (centerline) temperature as a function of 
time (Figure 1.3).

Of course, if the cylinder length-to-diameter ratio is not 
large, then axial (z-direction) transport would have to be 
included in the model; the term, ∂2T/∂z2, would be added to 
the right-hand side of eq. (1.28). This illustrates a case where 
the experience of the analyst comes into play. How might 
we determine if the axial transport term is required? Of 
course, we could solve the complete problem for a sequence 
of decreasing ratios (of L/d) until the solutions begin to show 
significant differences. We will actually try this later, but we 
also recognize that such an approach is time-consuming and 
computationally expensive, so we will seek another course 
of action as well. One possibility is to construct dimension-
ally correct representations for the second derivatives using 

mixing takes place. In some instances, the idealized treat-
ment of a chemical reactor will result in a suitable model. 
But what happens if fine-scale variations seriously impact 
process performance? In such cases, we must turn to distrib-
uted parameter models, and let us illustrate the process with 
an example from heat transfer.

Consider a long cylindrical rod, initially at some uniform 
temperature, T. At t = 0, the surface temperature of the rod 
is instantaneously changed to some new, elevated value. Our 
interest is the flow of heat into the interior of the rod. We 
will make a shell energy balance on an annular element of 
length, L, and thickness, Δr:

{ } { } {

}.

Rate in at Rate out at Accumulation

of thermal energy

r r r− + =∆

Thus,

+ − =
∂
∂

+( ) ( ) .2 2 2π π π ρrLq rLq rL r C
T

t
r r r r r p∆ ∆   (1.26)

We divide by 2πLΔr, take the limit as Δr → 0, and apply 
the definition of the first derivative:

	 −
∂
∂
( )=

∂
∂

1

r r
rq C

T

t
r pρ . 	 (1.27)

Since qr = −k(∂T/∂r), we can rewrite this partial differential 
equation in a more useful form:

	
∂
∂
=
∂
∂
+
∂
∂













T

t

T

r r

T

r
α

2

2

1
, 	 (1.28)

where α is the thermal diffusivity of the medium, α = k/ρCp. 
Equation (1.28) is a parabolic partial differential equation 
and it is a candidate for solution by a technique known as 
separation of variables. We will now illustrate some of the 
initial steps in this process, deferring the intricacies for 
Chapter 7. We take T = f(r)g(t) and introduce this product 
into eq. (1.28):

	 fg f g
r

f g′ = ′′ + ′











α
1

, 	 (1.29)

Dividing by the product, fg, we note that the left-hand side 
is a function of time and the right-hand side is a function 
only of r. The only way the two can be equal is if they are 
both equal to a constant:

	
′
=
′′+ ′

=−
g

g

f
r

f

fα
λ

1
2. 	 (1.30)
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able changes with position. Consider the case of an energy 
balance drawn on a fluid contained within parallel, planar 
walls; the space between the walls extends from y =  0 to 
y = B. The lower wall is heated, the upper wall is insulated, 
and the fluid moves in the z-direction (fully developed, 
laminar flow). The appropriate energy balance is

	 ρC
T

t
V

T

z
k

T

y

T

z
p z
∂
∂
+
∂
∂







=

∂
∂
+
∂
∂













2

2

2

2
. 	 (1.35)

In this case, the momentum balance can be solved separately 
to obtain Vz, and the velocity distribution for the fully devel-
oped laminar flow is

	 V
dp

dz
y Byz = −( )1

2
2

μ
. 	 (1.36)

Therefore, the temperature of the fluid between the parallel 
walls is governed by

∂
∂
=− −( )∂

∂
+
∂
∂
+
∂
∂













T

t

dp

dz
y By

T

z

T

y

T

z

1

2
2

2

2

2

2µ
α ,   (1.37)

assuming that the fluid properties are constant. Finding a 
solution for eq. (1.37) will be a more difficult proposition 
than in our previous examples. However, if we restrict  
our attention to steady state and neglect axial conduction 
(i.e., omit the ∂2T/∂z2 term), we can solve the problem easily 
by forward-marching in the z-direction using only values 
from the previous z-row; some computed results are pro-
vided in the following table. We will take water as the fluid 
(it enters at a uniform temperature of 4.44°C), assume the 
fluid properties are constant, and let the lower (heated) wall 
be maintained at 37.78°C. The maximum (centerline) fluid 
velocity will be 15 cm/s and we let B = 2 cm. There is an 
important observation to make with respect to these com-
puted results: Note how slowly thermal energy is transported 
in the transverse (y-) direction. This is characteristic of pro-
cesses in which we rely on molecular transport. We will see 
additional examples of this explicit computational process 
in Chapter 8.

y/B z/B = 10 z/B = 100 z/B = 1,000 z/B = 10,000

0.1 8.31 21.91 30.75 36.34
0.2 4.45 10.03 23.96 34.96
0.4 4.44 4.49 12.94 32.53
0.8 4.44 4.44 5.34 29.95

Using the Equations of Change Directly

In many of the previous examples, we formulated balances 
on, say, mass or thermal energy and then developed a gov-
erning equation from the balance statement. However, a 

appropriate temperature differences and suitable character-
istic lengths:

∂
∂
≈

∂
∂
≈

2

2 2

2

2 2

T

r

T T

z

T

L

∆ ∆
δ

and .

If δ2 << L2, then axial transport is almost certainly unim-
portant. Let us explore the effect of L/d in a concrete way 
by revisiting the previous example (transient heating of an 
acrylic plastic rod); we will solve eq. (1.28) numerically, but 
with the addition of the axial conduction term, ∂2T/∂z2.

Temperature at Center of Acrylic Plastic Rod of Finite Length

t (s) L/d = 10 L/d = 6 L/d = 4 L/d = 2

50 3.164 3.164 3.164 3.164
100 7.365 7.365 7.365 7.365
150 15.952 15.952 15.952 15.955
200 25.107 25.108 25.108 25.131
250 33.242 33.244 33.245 33.322
300 40.040 40.041 40.043 40.208
400 50.112 50.114 50.117 50.482
500 56.702 56.704 56.708 57.214

It is clear from these data that for cases in which molecu-
lar transport is dominant, the “tipping” point for the assump-
tion of infinite-length behavior occurs at about L/d = 4. In 
cylindrical geometries, if L/d ≤ 4, axial transport must gen-
erally be accounted for.

Of course we understand that we can have distributed 
parameter problems where more than one dependent vari-

FIGURE 1.3.  Comparison of a distributed parameter model (filled 
circles) with experimental data (solid curve) for transient heating 
of a cylindrical rod. The discrepancy between the two is mainly 
due to the fact that the experimental cylinder was not infinitely long 
(in fact, L/d = 6).
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	 V
dp

dz
r Rz = −

1

4
2 2

μ
( ). 	 (1.43)

In addition to the simplifications already made, we 
assume that the molecular transport (diffusion) of species 
“A” in the flow direction is negligibly small (this is often 
quite reasonable), and we make a rather severe assumption 
that the flux of “A” from the wall into the fluid is constant 
(we could provide experimental conditions to make this 
approximately true over a finite tube length). Therefore, 
∂CA/∂z = β, and for eq. (1.38), we are left with

	 V
C

z
V D

r

d

dr
r

dC

dr
z

A
z AB

A∂
∂
= =





















β
1

. 	 (1.44)

Since we have the parabolic velocity distribution given by 
eq. (1.43) for Vz, we can multiply by rdr and integrate the 
first time:

	 r
dC

dr D

dp

dz

r R r
CA

AB

= −






+

β
µ4 4 2

4 2 2

1. 	 (1.45)

CA must be finite at the center of the tube, so C1 = 0. We 
integrate a second time, noting that CA = CA0 at r = R. It is 
also helpful to introduce a new concentration variable by 
letting C = CA − CA0; the result is

	 C
D

dp

dz

r R r
R

AB

= − +








β
µ4 16 4

3

16

4 2 2
4 . 	 (1.46)

We can explore the general behavior of this result by 
making a few calculations as shown here:

r R
r R r

R/
4 2 2

4

16 4

3

16
− +









0 0.1875R4

0.1 0.1850R4

0.3 0.1655R4

0.5 0.1289R4

0.7 0.0800R4

0.9 0.0260R4

1 0

The reader may want to plot these data to get a better sense 
of the shape of the profile. Remember that we still have to 
multiply by

β
µ4 D

dp

dzAB








(which is negative) to get C = CA − CA0.

model can be formulated directly from the equations of 
change, that is, from the complete balances for momentum, 
thermal energy, or concentration (of species “A”). To illus-
trate this process, we will consider mass transfer occurring 
in laminar flow in a cylindrical tube (of radius R). We assume 
species “A” is transported from the tube wall to the fluid, 
which is in motion in the positive z-direction. We have a 
highly ordered (laminar) flow and we can obtain the needed 
equations from Bird et al. (2007) or from Glasgow (2010). 
We will need the continuity (mass balance) equation for 
species “A” in cylindrical coordinates:

∂
∂
+
∂
∂
+

∂
∂
+
∂
∂

=
∂
∂

∂
∂







+

C

t
V

C

r

V

r

C
V

C

z

D
r r

r
C

r r

A
r

A A
z

A

AB
A

θ

θ
1 1

22

2

2

2

2

∂
∂

+
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and we also need the z-component of the Navier–Stokes 
equation (momentum balance):
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The tube has a constant cross section, the flow is steady, 
and the fluid is incompressible. Therefore, Vr = Vθ = 0, and 
∇⋅ =V 0 so that ∂Vz/∂z = 0. Furthermore, ∂p/∂z is constant, 
and for eq. (1.39), we are left with

	 0
1

=−
∂
∂
+

∂
∂

∂
∂
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z r r
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zμ . 	 (1.40)

Integrating the first time,

	 r
dV

dr

dp

dz
r Cz = +

1

2
2

1μ
. 	 (1.41)

Of course, dVz/dr =  0 at r =  0, so C1 =  0. Integrating a 
second time, we find

	 V
dp

dz
r Cz = +

1

4
2

2μ
. 	 (1.42)

We apply the no-slip condition at the tube wall: Vz = 0 at 
r = R, so

C
dp

dz
R2

21

4
=−

μ
,

and
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Obviously this is not correct. In biological systems, an 
explosive growth of numbers leads to collapse—the avail-
able food supply simply cannot sustain too many animals. 
We might even see extinction. This is an important lesson: 
Certain types of systems exhibit variabilities that should not 
be represented in familiar deterministic form. Biological 
systems particularly are affected by behavioral drives—
greed, hunger, sex, and so on—that might be modeled deter-
ministically if the total numbers are very large, but more 
generally must be treated stochastically. It will be far more 
appropriate in such cases to base our modeling on the prob-
ability that the population may total N animals at some point 
in time. We will discuss this type of formulation in greater 
detail in Chapter 9.

EMPIRICISMS AND DATA INTERPRETATION

A system of interest to us can be so complex that even 
though we might be able to write down the underlying physi-
cal laws, there will be absolutely no thought of actually 
obtaining a solution. Alternatively, we might be given data 
with the requirement that a framework for interpretation be 
developed—what do the data mean, and can they be used to 
formulate a coherent picture of what has taken place? In 
either case, the conventional approach of writing out some 
model equation and then seeking a solution will not be 
applicable. We are forced to adopt different viewpoints and 
we will spend just a little time here considering some of the 
alternatives.

Let us begin by thinking about heat transfer in a tube  
with turbulent flow. Since turbulence is always three-
dimensional and time-dependent, we would need all three 

A CONTRAST: DETERMINISTIC MODELS AND 
STOCHASTIC PROCESSES

In much of the preceding discussion, we formulated (or 
simply selected) differential equations that expressed the 
continuous relationship between dependent and independent 
variables. The appeal of this approach is that given boundary 
conditions and the initial condition for the system, and the 
differential equation, the future behavior of the system is set 
for all time, t. This is what we mean when we say that a 
system is deterministic. Often in engineering and the applied 
sciences, systems of interest do behave exactly this way. But 
suppose, for example, that we have to concern ourselves 
with a population of animals. We know that the animals will 
reproduce and that some will die, whether it be from old age, 
disease, or predation. It is also possible that some animals 
will immigrate, and some may emigrate. Let N be the 
number (density) of animals, perhaps the number of animals 
per acre; a simplistic approach to the dynamic problem 
might be formulated:

	
dN

dt
cN bN a= + +2 , 	 (1.47)

with the initial condition, N = N0 at t =  0. Therefore, we 
have

	
dN

cN bN a
t C

2 1
+ +

= +∫ . 	 (1.48)

The solution for the integral will depend on our choices 
for a, b, and c. We will arbitrarily select c = 1/16, b = −1/4, 
and a = 1/2, and assume we have nine animals per acre at 
t = 0. We take

q ac b= − = − =4 4 1 2 1 16 1 16 0 06252 ( )( / )( / ) ( / ) . .

The left-hand side of eq. (1.48) can be found in any standard 
table of integrals, for example, Weast (1975), CRC Hand-
book of Tables for Mathematics; therefore,

	
2 21
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q
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= + 	 (1.49)

such that
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 −tan ( )

.
2

2

1

	 (1.50)

For the initial condition we have selected, C1 = 10.34, and 
the number of animals per acre, N, behaves as shown in 
Figure 1.4.

It is clear from these data that N(t) will grow without 
bound if we employ the deterministic model, eq. (1.50). 

FIGURE 1.4.  The growth of a population of animals (per acre) as 
described by eq. (1.50). The initial population was 9.
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remember that a correlation thus developed is valid only for 
the conditions covered by the experimental work. We cannot 
extrapolate these results to systems unlike the original 
experiments.

Unfortunately, there are cases where even the correlation 
approach may not be possible. Consider, for example, the 
frictional resistance experienced by a fluid flowing through 
a cylindrical tube. And furthermore, assume we are primar-
ily interested in the transition region, that is, that range of 
Reynolds numbers in which the flow ceases to be laminar 
and becomes highly disordered. Although hydrodynamicists 
have some understanding of the mechanism by which a flow 
becomes turbulent, no model has been developed that can 
fully describe what happens in this process. What we can 
do, however, is to measure the pressure drop for flow through 
a specified tube at a given flow rate. The friction factor, f, is 
related to the pressure drop over a length of tube, L:

	 f
P P

V

R

L
L=

−( )
.0

2ρ
	 (1.53)

In Figure 1.5 is a typical set of data obtained for flow 
through a polycarbonate plastic tube (which is hydraulically 
smooth) with a diameter of 0.375 in. (9.525 mm). The exper-
imental effort was concentrated on Reynolds numbers 
ranging from about 2000 to 5000; since the tested fluid was 
water and since d =  9.525 mm, the approximate range of 
velocities was about 21–52 cm/s.

For a nominal Re of 3000, the friction factor appears  
to vary from possibly 0.006 to nearly 0.0107, a value  
which is 70% larger than the low end. Figure 1.5 illustrates 

components of the Navier–Stokes equation, the continuity 
equation (conservation of mass), and the energy equation to 
completely describe the system. A solution—without any 
approximation—would therefore require that we handle all 
five of the listed partial differential equations simultane-
ously, including accurate boundary and initial conditions. 
This is an impossibility and it is likely to remain so for many 
decades to come, perhaps forever. Nevertheless, processes 
must be designed and their anticipated performance esti-
mated. An approach that has often been taken historically in 
such situations is the development of a correlation based on 
experimental data. In the case of heat transfer in tubes, the 
Dittus and Boelter (1930) correlation provides the Nusselt 
number in terms of the Reynolds and Prandtl numbers:

	 Nu=





=

hd

k
0 023 0 8 0 4. Re Pr ,. . 	 (1.51)

where

Re Pr .= = =
d V C

k
pρ

µ
µ ν

α
and

Equation (1.51) allows us to estimate the heat transfer 
coefficient, h, and then use that value to find the rate at which 
thermal energy is transferred to the fluid. For example, if 
Re =  50,000 and if Pr =  10, then the Nusselt number is 
about 332. We find a very similar situation for mass transfer 
occurring in wetted-wall towers; the Gilliland and Sherwood 
(1934) correlation is

	 Sh Sc=






=

Kd

DAB

0 023 0 83 0 44. Re .. . 	 (1.52)

In this case, the Sherwood number (Sh) is given as a 
function of the Reynolds and Schmidt numbers, and for the 
latter, Sc = ν/DAB. Equation (1.52) will allow us to obtain 
the mass transfer coefficient, K, and thereby to determine 
the rate of mass transfer. These two correlations illustrate a 
time-tested approach to the solution of extremely difficult 
problems in the applied sciences: Identify the pertinent 
dimensionless groups (either by dimensional analysis of the 
governing equations of change or by the use of a technique 
like the Buckingham pi method), use those dimensionless 
groups to form a correlation, and then use a statistical 
approach to select the “best” values for the coefficients and 
exponents using available experimental data. Please note 
that it is inappropriate for us to refer to such an exercise as 
modeling. What we are doing in such cases is fitting an 
empirical relationship (often a power law) to measured or 
observed data. There is nothing inherently wrong with this 
strategy and it has been used successfully in engineering 
practice for more than 100 years. But it is critical that we 

FIGURE 1.5.  Friction factors measured experimentally for flow 
through a polycarbonate tube with a diameter of 0.375 in. 
(9.525 mm). Note particularly the scatter of the data in the range 
2000 < Re < 4000. There is no discernible functional relationship 
for these data.
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which is a recording of a human voice speaking the word 
integration.

There are a few segments in these data where the signal 
is attractively simple. For example, the first phone (a 
single speech sound) appearing on the left-hand side of 
the figure is from the “in” part of the word (in’tə-grā’shən) 
and it exhibits a sharply defined frequency of about 
175 Hz. Note, however, that much of the balance of the 
recorded signal is more difficult to characterize in such a 
direct way. One of the features that does stand out is the 
high-frequency burst that accompanies the start of the shən 
sound of the last syllable. The frequency here is certainly 
much higher, with components that appear to be around 
1250 Hz. At the very end of the signal, the main oscilla-
tion returns to about 133 Hz with a small, higher-frequency 
component superimposed. The question we want to address 
is: Do these isolated features constitute a “model” or a 
“pattern” that would permit identification of the word inte-
gration? Probably not. We will need a better tool if we 
are to deal with this case successfully, and toward the end 
of this book (in Chapter 10), we will consider the treat-
ment and interpretation of time-series data and we will 
learn how useful harmonic analysis can be for this type 
of situation.

CONCLUSION

We have looked at a few examples in which some type of 
balance (typically from a conservation principle) was used 
to develop a model for a physical situation of interest. We 
saw cases in which this technique led to algebraic equations 
and also to differential equations. This is entirely appropriate 
since our focus in this course is on mathematical methods 
that engineers and scientists routinely use to solve the prob-
lems thus formulated. We have also introduced the notion 
that certain types of problems will not lend themselves to 
this type of analysis—in some cases, whether it be due to 
system complexity or the nature of the data that must be 
interpreted, we will have to employ a different process. 
Some options for these problem types will be discussed later 
in this text.

Regardless of the exact nature of the problem, however, 
there is an important aspect to the overall process that we 
have not mentioned at all. Model development, data inter-
pretation, and problem solution are merely elements of the 
larger decision-making process; we will conclude this intro-
duction with an illustration of this broader context using a 
situation that arises frequently in industrial practice.

Suppose we have a requirement for gas compression. 
We can assume that the intake and final pressures will be 
specified, and that the mass flow rate of the compressed 
gas is dictated by process throughput. What types of ques-
tions would we need to address in this situation? One 

a physically elementary situation for which there is no 
model nor is there a rational empirical correlation. Naturally, 
if we had a sufficiently large data set for a particular appa-
ratus, we might be able to say something about the probabil-
ity that f at Re =  3000 would be between, say, 0.008 and 
0.009. This example (merely water flowing through a cylin-
drical tube) underscores the difference between a determin-
istic process and one that should be characterized as 
stochastic. In the transition region, the extreme sensitivity to 
initial conditions (SIC) yields such large variability in 
outcome that two trials carried out at the same velocity will 
rarely produce identical results. Furthermore, when such 
experiments are carried out with viscoelastic fluids, the 
results may exhibit hysteresis—the results obtained for a 
sequence of experiments with increasing flow rate may not 
be the same as those obtained from a sequence with decreas-
ing flow rate. This is a consequence of molecular creep that 
may occur for certain non-Newtonian fluids.

We conclude that may be able to say something about the 
likely range for the friction factor, f, but we cannot say with 
certainty that f = 0.0085 at Re = 3000. Some physical phe-
nomena are not well enough understood (or the governing 
mathematics are so intractable) that the conventional pro-
cesses of model development and problem solution are 
simply inappropriate. Numerous examples—which we 
pointed out previously—originate from the large variability 
that is an inherent part of many biological processes.

Finally, we will think about a scenario in which some 
data are received by the analyst along with the requirement 
that an interpretation of those data be produced very rapidly. 
Speech recognition is a classic example of this problem  
type and we will examine the data shown in Figure 1.6, 

FIGURE 1.6.  A recording of a human voice speaking the word 
“integration.”
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result in a global answer for the questions being investigated. 
Most textbook problems and examples are far too “clean” 
in the sense that there is usually a narrow focus that will 
yield one correct solution. Real situations simply do not 
work out that way, and since models always entail idealiza-
tions, it is prudent to maintain a little skepticism until cor-
roboration is at hand. It is essential that we try to understand 
the limitations of both the model and the solution procedure 
and, at the same time, not lose sight of the complications 
that distinguish a real-world problem from an artificially 
constructed textbook example.

PROBLEMS

Investigate the following scenarios and either formulate or 
describe an appropriate modeling approach or data analysis 
strategy for each. Do not try to solve the problem unless 
directed to do so.

1.1.  A colony of prairie dogs numbers 47 individuals at time 
t. How many prairie dogs might there be at time t = t + 30 
days?

1.2.  A contaminant that is slightly soluble in water lies  
at the edge of a flowing stream. How might we predict  
the concentration distribution at a downstream distance of 
1000 m?

1.3.  How could we characterize the number of automobiles 
expected to arrive at a busy intersection over a 2-hour period 
during midday?

1.4.  Students drop a tennis ball from the top of a building 
375 ft high. What would the velocity of the tennis ball be at 
impact with the ground?

1.5.  A equimolar stream of liquid hydrocarbons containing 
C4s, C5s, C6s, and C7s is flashed (partially vaporized) to split 
off the butanes. If the temperature and pressure are 130°F 
and 19 psi, how much vapor will be produced and what will 
the composition be?

1.6.  An intravenous injection of a pharmacologically active 
agent gets distributed between plasma and tissue (and some 
is lost by elimination processes). How might we predict  
the concentrations in both plasma and tissue (as functions 
of time)?

1.7.  Water flowing in a network of pipes reaches a “T” 
fitting and is split into two streams. One of the lines leaving 
the “T” has a diameter of 5 cm and the other line’s diameter 
is 7.5 cm. What system of equations might be used to predict 
the distribution of flow at the “T” fitting?

might presume that the critical issues concern the type  
of compressor and the required power input. However, 
there are many choices for the compressor (single-stage, 
multistage, with intercooling or without, reciprocating, 
centrifugal, etc.). Furthermore, the estimated power 
requirement will depend on the assumed thermodynamic 
pathway (isothermal or isentropic). We will now give 
some definitive shape to this discussion; suppose we need 
to compress air from 14.7 psia to 10 atm or 147 psia at a 
rate of 1000 ft3/min (based on inlet conditions). For a 
single-stage isothermal compression, the power require-
ment can be estimated:

P= ×






=

−( . )( . )( )( ) ln
.
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		  (1.54)

or 110 kW. For a single-stage isentropic compression, we 
find
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or 156 kW. And for a three-stage isentropic compression 
with intercooling,
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  (1.56)

or 123 kW. What compressor power should we specify? We 
have three solutions for (one aspect of) the problem, but we 
may be only a little closer to producing an actual answer. 
Consider that

•	 the thermodynamic paths chosen are merely idealiza-
tions; the real compression process will be neither iso-
thermal nor isentropic

•	 since the estimates for required power are idealized, 
they do not account for any dissipative effects; the 
compressor efficiency may be much less than 100%

•	 other factors may weigh on the decision-making 
process, including capital cost, operating cost, reliabil-
ity and maintenance, labor requirements, and safety 
issues.

This example underscores the fact that while we may be 
able to select and employ models for a real process, and then 
find solutions using those models, rarely will that process 
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are they capable of assessing the probability of a catastrophic 
event? What appears to be the major deficiency of the 
Thompson–Thompson model?

1.14.  Uneven spots in the rails, or eccentricities in the 
wheels, can lead to side-to-side rocking of cars in normal 
railroad operations. Suppose you have been assigned the 
task of figuring out if such motions could ever be amplified, 
resulting in load-shifting, overstressing the car’s structure, 
derailment, and so on. What kind of model might be formu-
lated for this purpose, and what would its essential compo-
nents be?

1.15. R ecently, researchers from Haverford College (Penn-
sylvania) have successfully attached “head-cams” to falcons 
to study their hunting behavior. They have obtained video 
that reveals falcons carrying out attacks on flying crows. The 
video footage shows that falcons in pursuit of crows fly in 
such a way that the crow seems nearly stationary (and almost 
centered in the field of view). Can a mathematical model be 
formulated for a falcon’s flight during pursuit of a flying 
crow, and what would such a model look like? Hint: curve 
of pursuit.
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1.8.  A few data for ¼-mi acceleration times (drag racing) 
for stock cars and trucks are provided here. If a car weighs 
3000 lb, what horsepower might be required to provide an 
ET (elapsed time) of 11.75 seconds?

Weight Horsepower ET/Speed

5680 300 17.3/81.2
5440 367 16.2/84.6
3883 426 13.0/109.8
3300 460 12.0/119
3220 330 13.5/107
2880 173 15.7/91
2680 170 15.8/90

1.9. B lood flows through a major artery (d = 0.5 cm) at a 
mean velocity of about 40 cm/s. How might we estimate the 
shear stress at the artery wall? Is blood a Newtonian fluid?

1.10.  Air flows past a heated flat plate at 20 m/s. What data 
and equations should we employ to estimate the rate at 
which heat is transferred to the moving air stream? How 
might one determine whether or not the temperature depen-
dence of the fluid properties, that is, μ = μ(T) and ρ = ρ(T), 
should be taken into account?

1.11.  You have been directed to study neuron excitability 
and the generation of electric pulses (spikes) in nerve tissue. 
What characteristics must a model of this phenomenon have 
(you may want to start by looking at the FitzHugh–Nagumo 
model)?

1.12.  Atherosclerosis is a disease of the arteries in which 
lesions form on the artery walls (actually the arterial, or 
tunica, intima). The process is not well understood, but as 
these lesions develop, they begin to obstruct blood flow, lead 
to plaque formation, and ultimately result in death by heart 
attack or stroke. Because atherosclerosis is a leading cause 
of death in much of the developed world, there is great inter-
est in modeling lesion development. It is known that the 
lesions tend to form in curved arteries or near arterial 
branches, and it is also known that there is a strong correla-
tion between cholesterol levels and the likelihood of athero-
sclerosis. What might a model of lesion formation and 
plaque growth look like?

1.13.  It has been suggested oscillations might occur in the 
operation of nuclear reactor, perhaps when localized heating 
of a reactor component resulted in thermal expansion, 
changing the geometry of the reactor and thereby affecting 
reactivity. Critics of nuclear power have even suggested that 
a catastrophic event might be triggered by such a phenom-
enon. At least one model has been developed purporting to 
show this mathematically (see Thompson and Thompson, 
1988). What are the essential elements of such models, and 
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2
ALGEBRAIC EQUATIONS

INTRODUCTION

Algebraic equations are commonly encountered in science 
and engineering, and a few examples of where they originate 
include material balances for separation processes, force 
resolution in structures, flow in pipe networks, application 
of Kirchoff’s rules to electric circuits and networks, radiative 
exchange in enclosures, solution of discretized differential 
equations, and balances in chemical equilibria. Though such 
problems are often thought of as elementary, cases can arise 
that offer greater challenge than the analyst might expect.

It is impossible to know exactly when an algebraic equa-
tion was solved for the first time, but there is evidence 
indicating that quadratic equations were solved by the Baby-
lonians perhaps 3700 years ago. Heath (1964, reprinted from 
the 1910 Edition) notes that the “father” of algebra, Dio-
phantus of Alexandria, authored Arithmetica in 13 books in 
the third century AD. Six of the original 13 books still exist, 
and Heath produced English translations of them in 1885 
(with the second edition published in 1910). In the Arith-
metica, Diophantus solves determinate equations of the first 
and second degree; for quadratic equations he sought only 
rational, positive solutions in either integral or fractional 
form. For example, he gives

	 325 3 182x x= + 	 (2.1)

and concludes that x = 78/325 or 6/25. Given an equation 
of the form ax2 − bx + c = 0, Diophantus would multiply 

by a to obtain a2x2 −  abx +  ac =  0 and then write the 
solution as

	 ax b b ac= ± −1
2

1
4

2 . 	 (2.2)

In the twenty-first century, nearly any middle school 
student confronted by a quadratic equation such as

	 x x2 2 15 0+ − = 	 (2.3)

will immediately write the quadratic formula:

	 x
b b ac

a
=
− ± −2 4

2
. 	 (2.4)

Clearly,

x=
− ± +

=− ±
2 4 60

2
1 4;

that is, x = −5 and x = +3. As we noted earlier, some 
determinate equations of first and second degree have been 
successfully dealt with for several thousand years. However, 
according to Heath, only one cubic equation is solved in 
Arithmetica:

	 x x x x x2 3 22 3 3 3 1+ + = + − − , 	 (2.5)

Applied Mathematics for Science and Engineering, First Edition. Larry A. Glasgow.
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16    Algebraic Equations

in technological fields, sets of simultaneous equations—
both linear and nonlinear—are encountered regularly. Our 
purpose in this chapter is to review some useful techniques 
for solving problems of these types.

ELEMENTARY METHODS

Newton–Raphson (Newton’s Method of Tangents)

This technique was employed in the seventeenth century by 
Isaac Newton and Joseph Raphson, both of whom viewed it 
as an algebraic method to be applied to polynomials. The 
iterative form that is familiar to us, using derivatives of the 
function f(x), appears to have been used in the eighteenth 
century by Thomas Simpson. Newton–Raphson is a power-
ful tool that, when it works, can be used to solve a variety 
of nonlinear algebraic equations.

Let us return to eq. (2.9). We wish to find a solution for 
this equation and we proceed in the following manner: We 
select an estimate for x, then construct a line tangent to the 
curve at that point, and extrapolate it to the x-axis where 
f(x) = 0. We use that point as our new estimate and repeat 
the process. The algorithm for Newton’s method is easily 
obtained by fitting f(x) = mx + b to two points: xn, with f(xn), 
and xn+1, where f(xn+1) = 0. Of course, the slope, m, is simply 
f ′(xn) and the intercept b is eliminated by subtraction result-
ing in

	 x x
f x

f x
n n

n

n
+ = −

′1
( )

( )
. 	 (2.11)

We illustrate with eq. (2.9):

f x x x x x( ) . ,= − + − +4 3 23 2 5 9 76048

such that

′ = − + −f x x x x( ) .4 9 4 53 2

We choose 3 for an initial estimate for x, and the following 
sequence of values emerges:

3
2.62469
2.39536
2.27549
2.31760
2.22515
2.225001
2.225001

This seems reasonable, but the polynomial we are trying to 
solve is fourth degree. Might there be other real solutions as 

which is readily rewritten as

x x x x x x3 2 2 24 4 0 1 4 1− + − = + = +or ( ) ( ).   (2.6)

Diophantus notes that x = 4, but it appears that he knew 
of no general method of solution for cubic equations. Such 
third-degree equations are much less mysterious today; con-
sider the equation

	 x x x3 1
2

2 6
9

2
0− − − = , 	 (2.7)

which we will write as x3 + px2 + qx + r = 0. If we take 
x =  y −  p/3, where p = −1/2, the second-degree term is 
eliminated, resulting in the form

	 y ay b3 0+ + = . 	 (2.8)

The solution for the cubic equation can now be written 
in terms of a and b as described in any standard algebra 
reference book. For example, noting in eq. (2.7) that p, q, 
and r are −1/2, −6, and −9/2, respectively, then a = (1/3)
(3q − p2) and b =  (1/27)(2p3 − 9pq + 27r). A and B are 
now calculated from

A
b b a

B
b b a

= − + +














= − − +












2 4 27 2 4 27

2 3
1 3

2 3
1 3/ /

,and

and the solutions for eq. (2.8) are then y = A + B,

y
A B A B

=−
+
+
−

−
2 2

3,

and

y
A B A B

=−
+
−
−

−
2 2

3.

The reader may want to show that for our example,  
eq. (2.7), a = −6.08333 and b = −5.50926, resulting in 
x = −1, +3, and −3/2.

In the types of applications that are of interest to us, it is 
not much of a stretch to arrive at more “interesting” cases 
where we have polynomials of higher degree, or products of 
functions, such as

	 x x x x4 3 23 2 5 9 76048 0− + − + =. 	 (2.9)

or

	 x x4 4exp( ) .− = 	 (2.10)

Such problems arise in science and engineering all of  
the time; the solutions for eq. (2.10), by the way, are 
x = −1.07967, x = 2.975924, and x = 5.23573. Moreover, 
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Elementary Methods    17

we can then use the quadratic equation on the second-degree 
polynomial that remains (you may want to verify that 
x = 0.550175 ± 1.42705i). It is also possible to use a search 
procedure to identify complex zeros of functions and 
Hamming (1971) provides a useful discussion of this  
topic. We will illustrate a direct, brute force approach here 
using a real function of the complex variable, z (where 
z = x + iy). Let

w z e z e y i y x ixy yz x( ) [cos sin ] ( );= − = + − + −2 2 22
		  (2.12)

now we identify the real and imaginary parts, which are ex 
cos y − x2 + y2 and ex sin y − 2xy, respectively. We will use 
a preplanned search (a preplanned search is one in which 
the experiments or trials are set in advance of the calcula-
tions), looking over a range of x and y values: −π ≤ x ≤2π 
and 0 ≤ y ≤2π, and employing an interval of 0.2 in both 
directions. We let each (x, y) position be represented by 
discrete values for the indices j and k. Based on the signs of 
the computed real and imaginary parts, we assign the appro-
priate quadrant number for each (j, k) pair:

IF realp>0 AND imagp>0 THEN quadr(j,k)=1
IF realp<0 AND imagp>0 THEN quadr(j,k)=2
IF realp<0 AND imagp<0 THEN quadr(j,k)=3
IF realp>0 AND imagp<0 THEN quadr(j,k)=4

The result is a two-dimensional array of quadrant values that 
we can present as a contour plot, and this example is illus-
trated by the construction of Figure 2.1.

well? An obvious way to explore this is to start the Newton–
Raphson method at different values of x. If we try x = 4, we 
end up at the same place, but if we start the sequence at 2, 
we arrive at 1.875346 in five trials. For confirmation, we can 
use the program cSolve on a Texas Instruments™ TI-89 (or 
a comparable device) and obtain −0.550174 ±  1.42705i, 
1.87535, and 2.225.

Now let us suppose that the function of interest is 
f(x) = 2 + sin(2x). Of course, we see immediately that f(x) 
can never be smaller than 1.0; Newton–Raphson does not 
know this, and if we start with 2 as our initial estimate, we 
get the following sequence:

2.000000
2.950975
2.074051
3.153893
2.141288
3.450326
1.868810
2.738003
1.814223
2.681012
1.686051
2.595879
1.389607
2.648622
1.592425
2.571719
1.265582
2.835763
1.965004
2.880478
etc.

Obviously, the technique does not always converge! With 
more complicated algebraic equations, such behavior will 
not be easily anticipated (as it was here). We must exercise 
care that we do not ask Newton–Raphson to do something 
it cannot do. The method is best employed in situations 
where the behavior of the function is well understood (of 
course, this is a trite observation since the statement is valid 
for just about every numerical method).

Let us conclude this section by returning to eq. (2.9) for 
a moment. Recall that we identified two real roots; we also 
pointed out the existence of a second (complex conjugate) 
pair of roots. It is occasionally necessary to locate complex 
zeros for polynomials, and in the case of eq. (2.9), it is pos-
sible to accomplish this by polynomial deflation. If we 
divide eq. (2.9) by x2 − 4.10035x + 4.17265, we obtain

( . )

( . . )
.

x x x x

x x
x x

4 3 2

2
23 2 5 9 76048

4 10035 4 17265
1 10035 2

− + − +
− +

= + + .. ;33917

FIGURE 2.1.  Results of the preplanned search in which the 
appropriate quadrant designations have been determined. The 
complex zero is located at the locus where quadrants 1, 2, 3, and 
4 meet.
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18    Algebraic Equations

            GLOBAL x1,x2,y1,y2,x0,f0,fx,x,trial,ZZ AS 
SINGLE

FUNCTION PBMAIN
            x1=0:x2=5:trial=0
            OPEN “c:regulaF.dat” FOR OUTPUT AS #1
    100 REM *** continue
            x=x1
            GOSUB 300
            y1=fx
                x=x2
                GOSUB 300
                y2=fx
                    x0=x1-(x1-x2)/(y1-y2)*y1
                    x=x0
                    GOSUB 300
                    f0=fx
            IF f0*y2<0 THEN x1=x0 ELSE x2=x0
                    trial=trial+1
                        PRINT trial,x1,x2
                            WRITE#1,trial,x1,x2
                            IF trial>20 THEN 200 ELSE 100
    200 REM *** continue
                INPUT “Shall we continue?”;ZZ
                    IF ZZ>0 THEN CLOSE
                    END
                
    300 REM *** continue
            fx=1/4*x^3-x^2+3*x-6.50547
            RETURN

END FUNCTION   

This simple code produces the following results:

1,           1.53069877624512,         5
2,           2.17453002929688,         5
3,           2.53261733055115,         5
4,           2.72695684432983,         5
5,           2.82875323295593,         5
6,           2.88081741333008,         5
7,           2.90708756446838,         5
8,           2.92024779319763,         5
9,           2.92681646347046,         5
10,         2.93008899688721,         5
11,         2.93171787261963,         5
12,         2.93252825737,              5
13,         2.93293142318726,         5
14,         2.93313193321228,         5
15,         2.93323159217834,         5
16,         2.9332811832428,           5
17,         2.93330574035644,         5
18,         2.93331789970398,         5
19,         2.93332409858704,         5
20,         2.93332719802856,         5
21,         2.93332862854004,         5

The direct approach that we have employed here is 
extremely simple, although the actual execution is a bit 
cumbersome. Naturally, if we needed a more accurate esti-
mate for the complex zero, we would simply refine the 
search array. For example, in Figure 2.1, it is clear that 
1 ≤ x ≤2 and 1 ≤ y ≤2. The reader is encouraged to try this 
to pin down the location of the complex zero.

Regula Falsi (False Position Method)

Suppose we wish to find a solution for an equation of  
the type

	 f x x x x( ) . .= − + −1
4

3 2 3 6 50547 	 (2.13)

Furthermore, suppose we know that f(x =  0) is negative 
(actually, −6.50547) and that f(x = 5) is positive (actually, 
14.7445). Clearly, there must be a sign change in the interval 
(0, 5) that corresponds to a solution for this problem  
(we know that solution to be x = 2.93333). We could take 
these known endpoints, x1 and x2, and fit a straight line to 
them, since

	 f x y mx b( )1 1 1= = + 	 (2.14a)

and

	 f x y mx b( ) .2 2 2= = + 	 (2.14b)

By subtraction we find the slope of this line: m = (y1 − y2)/
(x1 − x2), and the intercept can then be written as

b y
y y

x x
x= −

−
−







1

1 2

1 2
1.

We are seeking the point where this straight-line approxi-
mation crosses the axis, that is, where f(x0) = y = 0. From 
our equation for the linear approximation,

	 x x
x x

y y
y0 1

1 2

1 2
1= −

−
−







 . 	 (2.15)

If the product of the functions is f(x0)f(x2) < 0, then the sign 
change we are trying to identify still lies to the right, which 
means that we move the left-hand endpoint from the original 
value, x1 to x0. If the product is positive, then we move the 
right-hand endpoint inward. Let us apply this method to our 
sample equation using the following logic:

#COMPILE EXE
#DIM ALL
        REM *** Application of regula falsi method to an 

algebraic equation
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                    xh=mp+delta
                    x=xl
                        GOSUB 300
                        FL=FX
                    x=xh
                        GOSUB 300
                        FH=FX
                    test=FH-FL
                IF test>0 THEN x1=xl ELSE x2=xh
                    PRINT x1,x2
                    WRITE#1,x1,x2
                        trial=trial+1
                            IF trial>25 THEN 200 ELSE 100
    200 REM *** continue
                    INPUT “Shall we continue?”;ZZ
                    IF ZZ>0 THEN CLOSE
                    END
    300 REM *** continue for function evaluation
                FX=1/(x^4-3*x^3+2*x^2-5*x+9.76048)^2
                RETURN

We will set δ = 0.001 and choose the initial search interval 
to be x = 0 to x = 22. The results are

0, 11.0010004043579
0, 5.50150012969971
0, 2.7517499923706
1.37487494945526,    2.7517499923706
2.06231260299683,    2.7517499923706
2.06231260299683,    2.40803122520447
2.06231260299683,    2.23617172241211
2.14824223518372,    2.23617172241211
2.19120693206787,    2.23617172241211
2.21268939971924,    2.23617172241211
2.22343063354492,    2.23617172241211
2.22343063354492,    2.23080110549927
2.22343063354492,    2.22811579704285
2.22343063354492,    2.22677326202392
2.22343063354492,    2.22610187530518
2.2237663269043,    2.22610187530518
2.22393417358398,    2.22610187530518
2.22393417358398,    2.22601795196533
2.22397613525391,    2.22601795196533
2.22399711608887,    2.22601795196533
2.22399711608887,    2.22600746154785
2.22399711608887,    2.22600221633911
2.22399711608887,    2.22599959373474
2.22399711608887,    2.22599840164184
2.2239978313446,    2.22599840164184
2.2239978313446,    2.22599792480469

We repeat, again with δ =  0.001, but select the initial 
interval to be x = 1 to x = 21.

Notice that we have moved the left-hand endpoint very 
close to the actual solution (x = 2.93333) in 21 trials. Regula 
falsi is closely related to another linear approximation tech-
nique known as the secant method. With the secant method, 
the initial endpoints do not have to bracket the zero (the 
solution). The principal advantage of regula falsi over 
Newton–Raphson is that the former requires no evaluation 
of derivatives. A disadvantage of straight-line approxima-
tions is their inability to follow curvature; therefore, we 
might improve this approach by adding one more function 
evaluation (use an additional point so that the total is three) 
and fitting a parabola to them. This variation of the technique 
is known as Müller’s method, and it can often provide a 
better first estimate for the root location. Müller’s method 
will be the focus of one of the exercises at the end of the 
chapter.

Dichotomous Search

Search procedures can often be used to advantage in the 
solution of nonlinear algebraic equations and this is particu-
larly evident for unimodal, one-dimensional problems. One 
of the simplest techniques available is the dichotomous 
search, and we will illustrate it by applying it to eq. (2.9). 
We are seeking an optimum, so we take eq. (2.9), square it, 
and invert it; that is, the merit function we wish to evaluate 
will be written as

	 f x
x x x x

( )
[ . ]

.=
− + − +

1

3 2 5 9 760484 3 2 2
	 (2.16)

If problems are created by division by zero, we simply add 
a small constant to the denominator. The basic idea is that 
we select an interval to search, find the midpoint (MP) of 
the interval, and perform two function evaluations located at 
MP + δ and MP − δ. We reject the “worst” side and move 
the interval endpoint to that location. The logic will look 
something like this:

#COMPILE EXE
#DIM ALL
    REM *** dichotomous search for solution of an 

algebraic equation
                GLOBAL delta,MP,x1,x2,xl,xh,x,FL,FH,test, 

trial,FX,ZZ AS SINGLE
FUNCTION PBMAIN
            INPUT “Specify delta:”;delta
            INPUT “Select x1:”;x1
            INPUT “Select x2:”;x2
                    OPEN “c:dichoto2.dat” FOR OUTPUT AS #1
    100 REM *** continue
                MP=(x1+x2)/2
                    xl=mp-delta
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20    Algebraic Equations

algebraic equation with far fewer numerical operations than 
the dichotomous procedure.

For eq. (2.9), which we used previously, with the initial 
search interval (0 < x < 20) we find

7.639319896698, 12.3606796264648
1.80339872837067,    2.22912335395813
2.22912335395813,    2.49223566055298
2.22912335395813,    2.32962322235107
2.22912335395813,    2.26751089096069
2.22912335395813,    2.24378609657288
2.22912335395813,    2.2347240447998
2.22566175460815,    2.22698402404785
2.22484469413757,    2.22515678405762
2.22484469413757,    2.22496390342712
2.22496390342712,    2.22503757476807

Once again, we discover that we must change the initial 
search interval if we wish to locate the other real-valued 
solution; setting (1 < x < 21) we end up with the final pair, 
1.875486 and 1.875679. Golden section searches are appeal-
ing because they are both efficient and easy to implement. 
But for very complex equations where execution time is 
critical, one can go one step farther and use the Fibonacci 
technique, which gives the most rapid reduction in the inter-
val of uncertainty. Fibonacci searches are described in both 
Beveridge and Schechter (1970) and Shoup and Mistree 
(1987); the technique differs from the golden section in that 
the number of merit function evaluations is selected in 
advance and the interval of uncertainty can be computed 
from the Fibonacci numbers (Fs), 1, 1, 2, 3, 5, 8, 13, 21, 
34, 55, 89, 144, 233, and so on. The very last evaluation uses 
the dichotomous technique since it cuts the final interval to 
50% rather than the 61.8+% possible with the golden 
section. The initial function evaluations are located a dis-
tance inside the starting interval endpoints corresponding to

F

F F
n

n

n

n

− +
−1 1( )

.δ

Thus, for n  =  20 with δ  =  0.001, this distance is 
(6765/10,946) +  (1/10,946)(0.001) = 0.618034. Using the 
same values for n and δ, we can estimate the final interval 
of uncertainty:

I
F

F

F
u

n

n

n

= + = + =−1 1

10 946

4181

10 946
0 001 0 0004732 δ

, ,
( . ) . .

SIMULTANEOUS LINEAR 
ALGEBRAIC EQUATIONS

Just about every student in science and engineering has seen 
a problem of this type:

1, 11.0010004043579
1, 6.00150012969971
1, 3.5017499923706
1, 2.25187492370605
1.62493741512298,    2.25187492370605
1.62493741512298,    1.93940627574921
1.78117179870605,    1.93940627574921
1.85928905010223,    1.93940627574921
1.85928905010223,    1.90034770965576
1.85928905010223,    1.88081848621368
1.86905372142792,    1.88081848621368
1.87393605709076,    1.88081848621368
1.87393605709076,    1.87837731838226
1.87393605709076,    1.87715673446655
1.87393605709076,    1.87654650211334
1.87424123287201,    1.87654650211334
1.87424123287201,    1.87639391422272
1.87431752681732,    1.87639391422272
1.87431752681732,    1.87635576725006
1.87433660030365,    1.87635576725006
1.87434613704681,    1.87635576725006
1.87434613704681,    1.87635099887848
1.87434613704681,    1.87634861469269
1.87434732913971,    1.87634861469269
1.87434792518616,    1.87634861469269
1.87434792518616,    1.87634837627411

Clearly, more numerical effort was required than needed 
with Newton–Raphson, but a search technique like this one 
can often be more revealing with regard to function behav-
ior. In addition, no differentiation is required and for very 
complicated functions that can be a significant advantage. 
One might wonder if this approach could be improved with 
respect to numerical efficiency. For example, what if some 
of the function evaluations from previous stages could be 
reused? You will note that in the dichotomous procedure 
described earlier, we establish a new MP requiring two new 
accompanying evaluations for every stage. If we use the 
golden section search, we will achieve greater efficiency.

Golden Section Search

The golden section technique is based on the golden ratio, 
and its advantages can be made very clear by a simple 
example. Suppose we wish to locate the maximum value  
for a function, f(x), over the interval (0 < x < 10). Consider 
the impact of placing our initial function evaluations at 
x = 6.18033989 and x = 3.81966011; assume that the right-
most portion of the interval is rejected—that the extremum 
we seek is located between 0 and 6.18033989. If we multiply 
6.18033989 by 0.618033989, we get 3.81966 . . . . This, of 
course, is the location of one of our initial trials, so we can 
reuse that existing function evaluation in the next stage. 
Thus, the golden section technique can be used to solve an 
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This direct elimination scheme is simple to understand and 
to execute, but there are several potentially serious prob-
lems. First, a machine computation will not produce the 
whole numbers and the fractions we see in the previous 
example. Each number will be represented only with the 
precision of the machine, which means that roundoff error 
will occur, and for large sets of equations, possibly accumu-
late. Second, if the system of equations is ill-conditioned, 
the number of simultaneous equations that can be solved 
will be quite limited. An ill-conditioned coefficient matrix 
is one in which small changes to a coefficient have enormous 
impact on the solution. Third, if a pivot element is zero and 
we do not interchange rows (employ partial pivoting), then 
division by zero occurs. Fourth, if a pivot element is very 
small relative to other coefficients in the matrix, the accuracy 
of the solution will be impaired. For these and other reasons, 
Gaussian elimination is not used to solve large sets of equa-
tions unless the coefficient matrix is sparse (contains many 
zeros). There are far better elimination methods available, 
and we will discuss one of those in the next section.

Crout’s (or Cholesky’s) Method

Crout’s method is perhaps the most powerful of the direct 
elimination schemes—it can be used to solve fairly large sets 
of simultaneous linear algebraic equations and it can do so 
efficiently. Let us use the following problem as an example:

	 2 1 26 1 34671 2 3 4x x x x+ − + =. . 	 (2.20)

	 − + + + =x x x x1 2 3 43 0 53 4 04. . 	 (2.21)

	 1 082 2 3 5 36071 2 3 4. .x x x x+ + − = 	 (2.22)

	 3 2 97 1 48 0 821 2 3 4x x x x+ − − =−. . . . 	 (2.23)

This set of equations can be written equivalently as

a11 a12 a13 a14 x1

=

c1

a21 a22 a23 a24 x2 c2

a31 a32 a33 a34 x3 c3

a41 a42 a43 a44 x4 c4

or more compactly as A{X} − {C} = 0. If we could get the 
coefficient matrix in the triangular form we discussed previ-
ously with “1s” on the diagonal and zeros below, we could 
find the xs by back substitution. With Crout’s method, a 
nonsingular n by n coefficient matrix is decomposed into 
lower (L) and upper (U) triangular matrices such that 
A = LU. U, of course, is exactly the form we seek, with 1s 
(ones) on the diagonal (a11, a22, a33, etc.) and zeroes below.

A typical structure for a Crout’s (Cholesky’s) procedure 
is shown as follows for the four-equation example. This 
routine has been adapted from one given by James et al. 
(1977):

	 2 3 91 2 3x x x+ − = 	 (2.17)

	 − + + =5 2 2 41 2 3x x x 	 (2.18)

	 x x x1 2 33 17+ + = . 	 (2.19)

Our goal, of course, is to find the correct values for the 
three variables, x1, x2, and x3. We will do this using a technique 
familiar to many students, Gaussian elimination. The objec-
tive of this procedure is to obtain a triangular form (with 1s 
starting in the upper left-hand corner and proceeding diago-
nally down through the matrix, with zeros in the triangle 
underneath) where the unknowns are determined by back 
substitution. We begin by noting that this set of equations can 
be written equivalently as the augmented coefficient matrix:

2 3 −1 9
−5 2 2 4

1 1 3 17

We divide the first row (equation) by 2:

1 3/2 −1/2 9/2
−5 2 2 4

1 1 3 17

Divide the second row by −5 and subtract the first row from 
the second:

1 3/2 −1/2 9/2
0 −19/10 1/10 −53/10
1 1 3 17

Subtract the first row from the third and divide the second 
row by −19/10:

1 3/2 −1/2 9/2
0 1 −1/19 53/19
0 −1/2 7/2 25/2

Divide the third row by −1/2 and then subtract the second 
row from it:

1 3/2 −1/2 9/2
0 1 −1/19 53/19
0 0 −132/19 −528/19

Divide the third row by −132/19:

1 3/2 −1/2 9/2
0 1 −1/19 53/19
0 0 1 4

This is the triangular form we were seeking: The coefficient 
matrix has “1s” on the diagonal and zeros beneath. There-
fore, x3 = 4, and by back substitution, x2 = 3 and x1 = 2. 
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#COMPILE EXE
#DIM ALL
     REM *** Crout’s method for solution of simultaneous algebraic equations
          GLOBAL M,NEQ,J,I,II,SUM,JM1,K,IP1,IM1,JJ,NN,L AS SINGLE

        FUNCTION PBMAIN
    DIM A(10,11) AS SINGLE
    DIM X(10) AS SINGLE
          PRINT “*********************************************************************”
          PRINT “       Crout’s method example with four equations:              ”
          PRINT “       2X1 +  X2 −  X3 + 1.26X4 = 1.3467”
          PRINT “       -X1 + 3X2  + X3 + 0.53X4 = 4.04”
          PRINT “      1.082X1 + 2X2 + 3X3 − X4 = 5.3607”
          PRINT “       3X1 + 2.97X2 − 1.48X3 − X4 = -0.82”
          PRINT “*********************************************************************”

     REM *** Here’s where you must input the coefficient matrix.
         A(1,1)=2:A(1,2)=1:A(1,3)=-1:A(1,4)=1.26:A(1,5)=1.3467
         A(2,1)=-1:A(2,2)=3:A(2,3)=1:A(2,4)=0.53:A(2,5)=4.04
         A(3,1)=1.082:A(3,2)=2:A(3,3)=3:A(3,4)=-1:A(3,5)=5.3607
         A(4,1)=3:A(4,2)=2.97:A(4,3)=-1.48:A(4,4)=-1:A(4,5)=-0.82

     REM *** Crout’s method of matrix decomposition
         INPUT “SPECIFY THE NUMBER OF SIMULTANEOUS EQUATIONS:”;NEQ
             M=NEQ+1
             FOR J=2 TO M
             A(1,J)=A(1,J)/A(1,1):NEXT J
         FOR I=2 TO NEQ
                 J=I
                 FOR II=J TO NEQ
                 SUM=0!
                 JM1=J-1
                     FOR K=1 TO JM1
                     SUM=SUM+A(II,K)*A(K,J):NEXT K
                 A(II,J)=A(II,J)-SUM:NEXT II
                 IP1=I+1
                     FOR JJ=IP1 TO M
                     SUM=0!
                     IM1=I-1
                         FOR K=1 TO IM1
                         SUM=SUM+A(I,K)*A(K,JJ):NEXT K
                 A(I,JJ)=(A(I,JJ)-SUM)/A(I,I):NEXT JJ
                 NEXT I
             X(NEQ)=A(NEQ,NEQ+1)
             L=NEQ-1
                 FOR NN=1 TO L
                 SUM=0!
                 I=NEQ-NN
                 IP1=I+1
                     FOR J=IP1 TO NEQ
                     SUM=SUM+A(I,J)*X(J)
                     NEXT J
                 X(I)=A(I,M)-SUM:NEXT NN
                     FOR J=1 TO NEQ
                     PRINT X(J)
                     NEXT J
            PRINT “Shall we continue with program?”
            INPUT “Respond with any positive number”;NN
                    IF NN>0 THEN 300
     300 REM *** continue
END FUNCTION
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1.497+, X2  =  0.381(8.98958)  +  0.084(0.65625)  − 
0.077(4.01042) − 0.077(2.14931) = 3.0059, and X3 and X4 
are, respectively, 0.4481 and 0.1579. Note that the effect of 
roundoff error is apparent here. Matrix inversion is generally 
not used if one is only interested in a single set of simultane-
ous equations. It may become practical for cases with 
numerous sets of simultaneous equations.

Iterative Methods of Solution

Iterative methods are often used to solve the types of simul-
taneous algebraic equations that arise in the numerical solu-
tion of elliptic partial differential equations (PDEs). We will 
introduce one technique for dealing with such equations here 
but will postpone a more extensive discussion until we treat 
PDEs later in the book in Chapter 8. The Gauss–Seidel (GS) 
iterative method is distinguished from the Jacobi method by 
the fact that the latest iterative values are used immediately 
in subsequent calculations. GS is easy to understand and 
easy to apply, and particularly so in cases where the coef-
ficient matrix is sparse. This is exactly what happens when 
we solve elliptic PDEs numerically. Let us look at an 
example and then reveal the required computational scheme 
in detail.

Suppose we have a square domain over which the 
equation

	 T T T T Ti j i j i j i j i j, , , , ,[ ]= + + ++ − + −
1
4 1 1 1 1 	 (2.28)

is to be applied at all interior points. This particular form 
has come about through discretization of the governing 
elliptic PDE and the isolation of the term with the largest 
numerical coefficient (which was 4). Let us assume that we 
have constant values for T on all four boundaries; in par-
ticular, let these edge values be (100, 200, 200, 300) for 
(L, R, T, B). In other words, along the left-hand side of the 
domain, the variable T has the value 100, and across 
the bottom, it is 300; the other two edges are maintained 
at 200.

This is a Dirichlet problem; we apply the computational 
algorithm (eq. 2.28) at each point across the bottom inte-
rior row successively, then we move up to the second row 
and repeat, and so on. We will assume that our discretiza-
tion has resulted in a total of 400 mesh points of which 
324 are interior points where eq. (2.28) is to be applied—
we are solving 324 simultaneous linear algebraic equa-
tions. We let these interior points be initialized with the 
default value of 0. Obviously we could hasten the con
vergence of the GS scheme by making a better initial 
guess at the distribution, but that is not of much conse-
quence here.

For the given example, the program produces the following 
results for x1 through x4: 0.3333475, 0.6666642, 1.66668, 
and 1.333349.

Matrix Inversion

Consider the following set of equations:

	 X X X X1 2 3 42 3 8 98958+ + + = . 	 (2.24)

	 X X X X1 2 3 49 0 65625+ − + = . 	 (2.25)

	 X X X1 3 46 4 01042+ − = . 	 (2.26)

	 5 2 7 2 149311 2 3 4X X X X− − + = . , 	 (2.27)

with the solution: 1.5, 3.0, 0.444444, and 0.15625 for X1 
through X4, respectively. As we noted previously, we can 
write this set of equations alternatively as AX = C. If the 
coefficient matrix, A, is nonsingular, then an inverse 
matrix exists such that A−1A = I. The right-hand side is the 
identity matrix which consists of 1s on the diagonal and 0s  
elsewhere. This suggests the following multiplication: 
A−1AX  =  A−1C. Consequently, X  =  A−1C, and the 
solution is at hand. So, how does one determine the inverse 
of A?

Since A−1A  =  I, we can obtain the result we seek 
by applying the Gauss–Jordan method (the forward and 
backward eliminations are combined into a single pro
cedure) to the augmented matrix (note the form of the 
right half):

1 2 3 1 1 0 0 0
1 1 −9 1 0 1 0 0
1 0 6 −1 0 0 1 0
5 −2 −1 7 0 0 0 1

The required steps are illustrated by James et al. (1977), 
but one can also use software tools like Mathcad™ for this 
purpose (matrix toolbar, M−1). The reader should verify that 
the inverse we are looking for is

−0.113 0.323 0.548 0.048
0.381 0.084 −0.077 −0.077
0.052 −0.090 0.00645 0.00645
0.197 −0.219 −0.413 0.087

Since X = A−1C, we find that X1 = −0.113(8.98958) + 
0.323(0.65625)  +  0.548(4.01042)  +  0.048(2.14931)  = 
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	 3 25 0321
2

2 3x x x+ = . 	 (2.29)

	 x x x1 3 2
1 5 2 1896/ .. = 	 (2.30)

	 x x x3 1
3

2 15 7171( ) . .+ = 	 (2.31)

In this particular case, we do know that all three unknowns 
are positive (all greater than 0). The “easiest” way to attempt 
solution is through successive substitution. We first estimate 
(guess, really) two of the unknowns. We then rearrange the 
set of equations to solve for the third value. We use that 
estimate plus one of our guesses to get the second unknown, 
then use the two revised values to obtain the third; the entire 
process is repeated successively. For example, we might try 
to write the equations above as

	 x x x1 2
3 2

32 1896= . // 	 (2.32)

	 x x x2 3 1
315 7171= −. / 	 (2.33)

	 x x x3 1
2

225 032 3= −. . 	 (2.34)

#COMPILE EXE
#DIM ALL
    REM *** solution of simultaneous algebraic equations 

by Gauss-Seidel iterative method
                GLOBAL i,j,iter,Told,eps AS SINGLE
FUNCTION PBMAIN
                DIM T(20,20) AS SINGLE
                    iter=0
    10 REM *** continue
            Told=T(10,10)
                        FOR j=1 TO 20
                            T(1,j)=100:T(20,j)=200
                            NEXT j
                        FOR i=1 TO 20
                            T(i,1)=300:T(i,20)=200
                            NEXT i
                    FOR j=2 TO 19
                        FOR i=2 TO 19
                            T(i,j)=1/4*(T(i+1,j)+

T(i-1,j)+T(i,j+1)+T(i,j-1))
                            NEXT i:NEXT j
                    iter=iter+1:eps=ABS(Told-T(10,10))
                        PRINT iter,T(10,10),eps
                    IF eps<1e-09 THEN 40 ELSE 10
    40 REM *** continue
            OPEN “C:gausseid.dat” FOR OUTPUT AS #1
                    FOR j=1 TO 20
                        FOR i=1 TO 20
                            WRITE#1,i,j,T(i,j)
                            NEXT i:NEXT j
                                WRITE#1,iter
            CLOSE:END
END FUNCTION

Notice that progress toward convergence is being 
assessed by determining the change in value for a single, 
central point by comparing old and new iterates. For this 
example, 249 iterations are required to reach ε (eps) = 0.01 
and 492 iterations are required to attain ε = 1 × 10−8. We 
can better examine the results of the computation by con-
structing an appropriate contour plot, which is provided in 
Figure 2.2.

The Gauss–Seidel iterative method provides a powerful 
tool for solving large sets of simultaneous linear algebraic 
equations, and we will have many opportunities to use the 
technique in our efforts to solve elliptic PDEs.

SIMULTANEOUS NONLINEAR 
ALGEBRAIC EQUATIONS

Unfortunately, we occasionally encounter problems such as 
the following set of equations:

FIGURE 2.2.  Contour plot of the results obtained through 
application of the Gauss–Seidel iterative method of solution for 
simultaneous linear algebraic equations. In this example, 324 
simultaneous equations (resulting from the discretization of an 
elliptic PDE) are being solved and a satisfactory solution is obtained 
with less than 500 iterations. The bottom is maintained at 300  
and the left-hand side at 100; the top and the right-hand side are 
set to 200.
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Fortunately, we have options. For the first of these, let us 
consider applying Newton’s method of tangents to problems 
of this type. We will need the Jacobian (the matrix of partial 
derivatives) for the system. Let eq. (2.29) through eq. (2.31) 
be rewritten as follows:

	 f x x x1 1
2

2 33 25 032= + − . 	 (2.35)

	 f x x x2 1 3 2
1 5 2 1896= −/ .. 	 (2.36)

	 f x x x3 3 1
3

2 15 7171= + −( ) . . 	 (2.37)

Therefore,
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		  (2.40 a,b,c)

We let the set of equations, f1, f2, and so on, be represented 
as F(x). The algorithm we want to use is simply

	 x x J x F xnew = − −1( ) ( ), 	 (2.41)

which you will recognize as the equivalent to eq. (2.11), 
which we used previously for the solution of a single equa-
tion. As Faucett (2002) points out, it is generally not practi-
cal to evaluate the inverse of the Jacobian, so as an alternative, 
we solve the system of linear equations to determine the 
corrections for x:

	 J x y F x( ) ( ).=− 	 (2.42)

The values for y are used to improve x: xnew = x + y. We 
choose our initial estimates for x1 through x3 to be 2, 2, and 
2, and then get the nine initial values for the Jacobian:

24 12 1
0.7071 −1.0607 0.7071

16.9706 1.4142 3.5355

This yields three simultaneous equations for the correction 
values (the ys):

	 24 12 0 9681 2 3y y y+ + = . 	 (2.43)

	 0 7071 1 0607 0 7071 0 77541 2 3. . . .y y y− + =− 	 (2.44)

	 16 971 1 4142 3 5355 1 5751 2 3. . . . .y y y+ + =− 	 (2.45)

We start by setting x2 and x3 equal to 2 and 2, say. The 
resulting sequence of computed values is

  1 3.096561909 −18.578321 559.4556274
  2 1.350865364 −1.8006176 34.88750458
  3 0.203487575 2.652528763 24.70049858
  4 0.382956296 3.106257439 23.66335106
  5 0.506576121 3.100982904 22.64268303
  6 0.528063238 3.155748367 22.3900528
  7 0.548230529 3.156806707 22.18360329
  8 0.553610981 3.167327881 22.1177845
  9 0.558036625 3.16818738 22.0702343
10 0.559466541 3.170446396 22.05292511
11 0.560504615 3.170782566 22.04154968
12 0.560883105 3.171288967 22.03703499
13 0.561132371 3.171396494 22.03427315
14 0.561231256 3.171513081 22.03310585
15 0.561291933 3.171544313 22.03242874
16 0.561317503 3.171571732 22.03212929
17 0.561332405 3.171580315 22.03196144
18 0.561338961 3.171586752 22.03188705
19 0.561342597 3.171589136 22.03184509
20 0.561344266 3.171590805 22.03182602
21 0.56134522 3.171591282 22.03181458
22 0.561345637 3.171591759 22.03181076
23 0.561345816 3.171591759 22.03180885
24 0.561345875 3.171591997 22.03180695
25 0.561345994 3.171591997 22.03180695

There are obvious problems with this technique, includ-
ing the following: (1) The arrangement of the equations is 
not unique; (2) successive substitution may converge slowly 
or not at all; (3) the values obtained in this calculation may 
be one solution, but not the one we were actually seeking; 
and (4) for many nonlinear problems, the analyst may have 
absolutely no prior knowledge of how the equations behave 
(what the initial estimates should be). We can underscore 
these points by noting that the “solution” we obtained previ-
ously by successive substitution is actually not a very good 
one. The reader may want to try a comparison with 1.473, 
2.784, and 6.903 for x1 through x3, respectively. Successive 
substitution is related to tearing systems of equations, and 
in recent years, much effort has been expended in the devel-
opment of tearing algorithms; some of these have been 
incorporated into commercial simulation software packages. 
Tearing is particularly useful in the analysis of process flow 
diagrams where material balances on process units may 
involve one or more unknown streams. In such cases, it is 
not possible to proceed sequentially through the process 
units because of the unknown streams (possibly including 
recycle streams). The reader interested in chemical engineer-
ing applications of tearing may want to consult Ramirez 
(1997); a more general discussion of issues in tearing has 
been provided by Elmqvist and Otter (1994).
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the other side. We evaluate F at the new vertex and repeat 
the process.

There are several observations we should make about this 
scheme. Obviously, if we use a fixed-size triangle that is not 
small, we will not get a very good estimate for the solution 
location, regardless of the number of cycles employed. At 
the same time, if we make the equilateral triangle very small, 
it may take a very long time to follow an elongated valley 
such as the one seen in Figure 2.3. Clearly, we must change 
the size and shape of the triangle dynamically through the 
course of the search. This is where the improvements offered 
by Nelder and Mead (1964) come into play. For example, if 
we identify a new vertex, and the function F is improved in 
that direction, then why not accelerate the movement by 
elongating (stretching) the triangle? In this two-dimensional 
case, there is no reason why we must maintain the equilat-
eral form. If we can both stretch and contract the simplex, 
as needed, we should be able to follow just about any ridge 
or valley and do so efficiently.

The Nelder–Mead modifications to sequential simplex 
produced a powerful tool to find minima of functions. 
Although Nelder–Mead codes are a bit more complicated 
than the search examples we have used previously in this 
chapter, a very effective version appears in detail in chapter 
6 in Shoup and Mistree (1987). The critical steps in the logic 
are as follows:

•	 The merit function F is constructed and the number of 
unknowns (dimensions) is specified.

•	 The initial length of a simplex side is specified and the 
estimates for the unknowns are provided.

•	 The vertices of the initial simplex are determined.

The reader may want to verify that the solution for these 
three equations is 0.6407, −0.9382, and −3.144 for y1, y2, 
and y3, respectively. Therefore, our revised estimates for the 
three unknown variables (the xis) are 2.641, 1.0618, and 
−1.1444. Of course, this changes the values in the Jacobian, 
so it must be recalculated then used to get improved values 
for the corrections (the yis). The entire process is repeated 
until the change in the xis is sufficiently small to indicate 
that a solution has been identified.

Often we can expect this to require four to six trials—and 
possibly more.

Pattern Search for Solution of Nonlinear  
Algebraic Equations

Sequential Simplex and the Rosenbrock Method  We 
noted previously that search techniques (optimization algo-
rithms) can be used to solve many types of algebraic equa-
tions and this author has found sequential simplex to be 
particularly useful for the exploration of nonlinear systems. 
The optimization method we first consider was devised by 
Spendley et al. (1962) and refined by Nelder and Mead 
(1964); it is most readily visualized in two dimensions. 
Suppose we are interested in the system of equations:

	 x x
x

x
1 2

2 1

2

61 4167+ = . 	 (2.46)

and

	 75
50

12 2302

1
3

1 2x

x

x x
− = . . 	 (2.47)

We disregard the fact that x1 can simply be factored out 
of the first equation, facilitating easy solution. Furthermore, 
we know that the values we seek for the unknowns lie 
between 0 and 10. We modify the problem to search for the 
minimum of the function, F:
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		  (2.48)

It is convenient—and conceptually useful—to think of F 
in terms of a contour plot in the x1 − x2 plane.

Our objective here is to use the simplex pattern search to 
identify the “valley” that is prominent in the left-center of 
Figure 2.3; that is where the minimum is located. We will 
do this in the following way: Place a small equilateral tri-
angle on Figure 2.3 and calculate the function F at each of 
the three vertices. We reject the “worst-valued” vertex and 
project the simplex away from it; that is, we form a new 
triangle using two of the original vertices with the third on 

FIGURE 2.3.  Contour plot for the function, F. The actual solution 
for this problem is x1 = 3 and x2 = 4.5.
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to it, of course). When successes are achieved, we increase 
the step size in that direction in the next cycle (Rosenbrock 
recommended a factor of 3). For a failure, the step size is 
contracted (and reversed) using 1/2. The appeal of Rosen-
brock’s approach is that the analyst obtains acceleration in 
both distance and direction. We will now use the previous 
example, illustrated by Figure 2.3, to reveal how Rosenbrock 
works in two dimensions. Our code is one that has been 
adapted from Shoup and Mistree (1987), and it requires 
specification of

ε (test value for minimum step size, 1 × 10−5)

α (scaling factor for step-size increase, 1.25)

β (scaling factor for step-size reduction, 0.85)

ST (initial step size, 0.01).

Please note that we have selected suboptimal values for 
both α and β; this has been done to better reveal the Rosen-
brock scheme’s progress toward finding the valley revealed 
in Figure 2.3. We are also going to start the search from  
the initial point, (7, 7), and attempt to minimize the func
tion given by eq. (2.48); we will illustrate the progress in 
Figure 2.4.

A problem that can be encountered with the Rosenbrock 
method and one that has been mentioned by Beveridge and 
Schechter (1970) is that it can be slow to start particularly 
if the initial step size must be reduced repeatedly. It is, 
however, a very powerful tool that can be used to advantage 

•	 The merit function, F, is evaluated at each vertex.

•	 The worst and best functional values are determined.

•	 The centroid of the simplex is evaluated and the posi-
tion of the reflected point is determined (projected 
away from the worst F, of course).

•	 F is determined at the new point; if it is better, expan-
sion is employed (factor of 2).

•	 If the reflected F is worse than the other vertices, con-
traction is implemented (factor of ½).

•	 A check for convergence (based on the change in F) is 
made by comparison to a set value, say, 1 × 10−6.

•	R esults are directed to output if convergence is  
attained.

Let us see exactly how this works by applying the tech-
nique to the two-dimensional problem we introduced earlier. 
Some of the pertinent information along with results and the 
final value of the function being minimized are presented in 
the following table. Note that the final value of the merit 
function F has been multiplied by 1 × 107.

Initial 
Length for 
Simplex

Starting Values Final F 
(×107)

Final Values

x1 x2 x1 x2

0.05 0.5 0.5 13.575 0.315976 0.0051447
0.10 1.0 1.0 2.574 0.315987 0.0051449
0.25 2.0 2.0 0.142 2.999995 4.500002
0.50 5.0 5.0 3.4615 2.99996 4.500026
0.75 7.0 1.0 4.7736 2.999953 4.500032
0.05 2.0 5.0 0.590 3.00001 4.499987
0.10 2.0 7.0 1.585 2.999982 4.500025
0.10 8.0 6.0 1.813 3.000005 4.499982
0.10 0.5 9.0 2.971 3.000031 4.499991

There are a couple of important characteristics of this 
technique that are revealed by this example: We must bear 
in mind that the starting point matters and that the initial size 
of the simplex leg can impact the results. Moreover, the 
elongated valley apparent in Figure 2.3 is typical of many 
engineering problems. Although the Nelder–Mead version 
of sequential simplex can usually adapt to such circum-
stances, there are specialized search methods designed spe-
cifically to follow ridges and valleys. One example is the 
Rosenbrock method in which the axis of the search is aligned 
with the orientation of the ridge, allowing rapid progress 
toward the location of the optimum. The basic idea is easy 
to visualize in two dimensions; suppose we have an optimi-
zation problem involving two variables, x1 and x2. We begin 
the search with trials in the x1-direction, identifying suc-
cesses and failures. Assume we obtain a success. Then we 
search the x2-direction, and if a success is achieved, we 
rotate the coordinate system such that one new axis is the 
vector sum of the two successes (and the other orthogonal 

FIGURE 2.4.  Progress of the Rosenbrock search method applied 
to the problem illustrated previously in Figure 2.3. Because of the 
very poor choices made for scaling factors and the starting point, 
535 steps were required to identify the endpoint, 2.999992 and 
4.500013. Nevertheless, the final value of the objective function 
was 4.511268 × 10−8. Notice how the search direction has changed 
to follow the valley shown in Figure 2.3.
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able to achieve only 6.25 knots.) One of the poorer results is 
the Edmund Fitzgerald for which the correlation yields 
12.83 knots (instead of 14). For the battleship Missouri (BB-
63), our equation indicates 34.1 knots, and for the Nimitz 
(CVN-68), it yields 31.1 knots. This is encouraging, and the 
correlation may be good enough to make some rough projec-
tions. Suppose, for example, we wanted a high-speed (50-
knot) hull that was 300 ft long; we choose a beam of 40 ft 
(though such a design will be prone to roll) because the 
importance of width to speed is clear. Our eq. (2.50) indi-
cates that about 56,445 hp will be required for this hull to 
make a speed of 50 knots; the fastest ship in the US Navy, 
the 45+-knot LCS-1 Freedom, is 324 ft long with a beam of 
43 ft and she has 96,000 hp. The correlation (2.50) suggests 
that the Freedom should be capable of about 57 knots; 
however, the Freedom uses water jet propulsion, which is 
known to be somewhat less efficient than a propeller. The 
Nelder–Mead version of sequential simplex is extremely 
useful for solving this and related types of nonlinear 
problems.

ALGEBRAIC EQUATIONS WITH CONSTRAINTS

Suppose we have the algebraic equation

	 2 8 1 01
2

2
2

1 2x x x x+ − + + = 	 (2.51)

accompanied by the constraint 2x1 − x2 = 0. We wish to find 
the stationary point (values of the independent variables that 
cause the derivatives to be zero) and we will do so by using 
two very well-known methods. First, we will make use of 
the Lagrange multiplier, λ. We write a combination of the 
equation and the constraint as follows:

F x x x x x x= + − + + + −2 8 1 21
2

2
2

1 2 1 2λ( ).   (2.52)

We now differentiate F with respect to all three variables:

	

∂
∂
= − + =

∂
∂
= + − =

∂
∂
= − =

F

x
x

F

x
x

F
x x

1
1

2
2

1 2

4 8 2 0

2 1 0

2 0

λ

λ

λ
.

	 (2.53a,b,c)

These three equations are solved yielding x1  =  1/2, 
x2 =  1, and λ =  3 (the reader may wish to verify this 
solution). Next, to provide a contrast, we will apply Cou-
rant’s penalty method to the very same problem; in Cou-
rant’s scheme, we seek a minimum for the augmented 
functional:

for certain problems involving nonlinear, algebraic equa-
tions, and more importantly, examples of programming logic 
for the Rosenbrock search can be found across the Web and 
throughout the literature.

An Example of a Pattern Search Application  Now let us 
look at a problem type that is quite different (in both intent 
and form) from the previous examples; we will use the 
sequential simplex method. We still wish to minimize a 
merit function developed from a set of simultaneous non-
linear algebraic equations, but our purpose is unlike previ-
ous examples in this chapter. Imagine we are seeking an 
approximate relationship (a correlation) that could be used 
to predict the likely attainable speed (S) achieved by a con-
ventional ship hull. It is apparent that some of the important 
factors are displacement, hull length (L), beam (B), avail-
able horsepower (P), and hull shape. Of course, we know 
that certain dimensionless ratios such as Reynolds number, 
Froude number, and Euler number are important, but we 
are going to try a minimalist approach and not worry 
overtly about hydrodynamic forces. We propose that the 
ship’s likely speed in knots can be determined in the fol-
lowing way:

	 S aL B Pb c d= . 	 (2.49)

We intend to attempt this by using some available data:

Length Beam P (hp) S (knots)

Titanic 883 92 46,000 21
Bismarck 793 118 150,170 30
Missouri 887 108 212,000 33
Nimitz 1,040 134 260,000 31.5
Edmund Fitzgerald 711 75 7,500 14
Elco PT boat 80 21 4,500 41
Monitor 172 41 320 7–8

Keep in mind that we are using data from ships designed 
in very different eras for very different purposes, so we 
expect this may not produce the cleanest result we could 
imagine. The minimum merit function (F) value was found 
to be 4.9339 (using all of the data included in the accompa-
nying table) and the correlation that emerged was

	 S L B P= − −34 9084 0 28125 0 5764 0 3738. .. . . 	 (2.50)

For the Titanic, the correlation yields 21.15 knots; for the 
Elco PT boat, 40.84 knots; and for the Monitor, 8.34 knots. 
(An aside: There are indications that Ericsson’s original 
plans called for the installation of two engines. However, 
one engine has been recovered from the site of the Monitor’s 
wreck and is now on display at the Mariners’ Museum in 
Newport News, Virginia. In trials in 1862, the Monitor was 
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Although we will encounter cases where, for example, we 
will know that the volume cannot be negative, or that the 
summation of the mole fractions must be 1, situations arise 
where we have no idea of the appropriate magnitude of the 
unknowns. Such instances are disconcerting since it is dif-
ficult to know whether or not the solution procedure is 
working properly. These comments are not meant to alarm 
the student; they are only intended to point out that circum-
spection is critical. For nonlinear algebraic equations, the 
analyst should consider the physical situation very carefully 
before initiating an attempt to find a solution.

We can underscore the preceding observations  
with a final example for which we will use a pair of widely 
available tools. Consider the set of nonlinear algebraic 
equations:

x
y

x
x xy x y2

3
2 21 84401 2 80076+ = + + =. . .and

		  (2.56)

Assume we know that both x and y are positive for the 
solution we seek (in fact, x = 1.275 and y = 0.653). We first 
use a scientific calculator from the TI-89, TI-92 family (TI 
is the abbreviation for Texas Instruments). From the MATH/
Algebra menu, we select solve( ), and enter our two equa-
tions as follows:

solve x y x

x x y x y x y

( ^ ^ / .

^ ^ . ,{ , .

2 3 1 84401

2 2 2 80076 2 0 8

+ =
+ ⋅ + ⋅ = = =

and

}})

and press ENTER. Using the guesses, x = 2 and y = 0.8, the 
TI-89 produces x = 1.275 and y = 0.653003. However, if 
we start with x = 1 and y = 1, we obtain x = 0.985357 and 
y = 0.951078. Naturally, a software package like Mathcad 
also has capabilities for problems of this type, using the 
Solve Block:

x

y

Given

x
y

x
x xy x y

xval

yval

:
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.

=
=

+ =

+ + =

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
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

2

2

1 8440

2 8007

2
3

2 2

 =

=
=

: ( , )

.

.

Find x y

xval

yval

1 275

0 653

Note that the initial estimates used at the top were x = 2 
and y =  2. Once again, however, if we select 1 and 1 we 
obtain x = 0.985 and y = 0.951; when we insert these values 
into the pair of eq. (2.56), we find 1.84341 (instead of 

F x x x x x x= + − + + + −( )2 8 1
2

21
2

2
2

1 2 1 2
2ε
.   (2.54)

Note that no additional variable has been introduced, 
only the penalty parameter, ε. Of course, this means that the 
penalty method is computationally simpler than the Lagrange 
multiplier used earlier. This time, we have two derivatives 
to set equal to zero:

	
∂
∂
= − + − =

F

x
x x x

1
1 1 24 8 2 2 0ε( ) 	 (2.55a)

and

	
∂
∂
= + − − =

F

x
x x x

2
2 1 22 1 2 0ε( ) . 	 (2.55b)

With a bit of effort, one can show that

x2
4 12

8 12

1 3

2 3
=
− +
+

=
− +
+

ε
ε

ε
ε

,

and this result can be used to find x1 = f(ε). As the penalty 
parameter, ε, becomes large, these expressions should con-
verge to the correct values for the two variables. We will 
explore this process with the following results:

ε x1(ε) x2(ε)

1, 1.10000002384186 .400000005960464
10, .59375 .90625
100, .509933769702911 .990066230297089
1,000, .500999331474304 .999000668525696
10,000, .500100016593933 .999899983406067
100,000, .500010013580322 .999989986419678

We see that Courant’s penalty method will approach the 
correct values for our two variables if the penalty parameter, 
ε, is sufficiently large.

CONCLUSION

One of the interesting aspects of the solution of algebraic 
equations is the spectrum of options available. In many 
cases, the analyst can choose from several solution tech-
niques, all capable of producing the desired result. At the 
same time, for some cases, no method will yield an appropri-
ate result. For students in the applied sciences, balancing the 
focus between procedure and result may improve the chance 
of success and lessen the chance of serious error. Obviously, 
for “real” problems, we may have little or no information 
available in advance and when these problems involve non-
linear algebraic equations, we may not have much insight 
into where the solution we are seeking may be found. 
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pressure drop is exactly the same, but we have an additional 
3” pipe over the last 600 ft. Find the new flow rate by writing 
the design equation three times, for the initial 380 ft of 3” 
pipe and then once for each of the two parallel legs extend-
ing from 380 to 980 ft.

2.4.  We will consider a problem in chemical equilibria in 
which a compound is put into water and dissociation occurs. 
Let us preface this problem with a little review.

Compounds like silver chloride (AgCl) are sparingly 
soluble in water; at 10°C, about 0.00089 g AgCl will dis-
solve in 1 L of water. An equilibrium will be established 
among the three species:

K =
+ −[ ][ ]

[ ]
,

Ag Cl

AgCl

where K is the equilibrium constant. Water itself is a weak 
electrolyte for which

H O H OH2 ⇔ ++ −.

At 25°C, Kw = [H+][OH−] = 1 × 10−14. In contrast, sodium 
hydroxide (NaOH) is a strong electrolyte that will almost 
completely dissociate in water. Therefore, if we add 
0.005 mol NaOH (about 0.2 g) to a liter of water,

1 10 14× =− + −[ ][ ],H OH

but with complete dissociation, [OH−] = 5 × 10−3, so

[ ] .H+
−

−
−=

×
×

= ×
1 10

5 10
2 10

14

3
12

Since pH = −log10[H+], pH = 11.7.
Now, suppose we place 0.0002 mol HCl in a liter of water 

at 25°C. We want to find the concentrations of all four 
species, as well as the pH of the resulting solution. There-
fore, we need

[ ] [ ] [ ] [ ].H Cl HCl and OH+ − −

The following relationships are available to us:

[ ][ ] ,
[ ][ ]

[ ]
H OH

H Cl

HCl
+ − −

+ −

= = × = = ×K Kw 1 10 1 1014 3

[ ] [ ] ( )HCl Cl total concentration+ = ×− −2 10 4

[ ] [ ] [ ] ( ).H Cl OH electroneutrality+ − −= +

2.5. U se the technique of your choice to find a solution for 
the following set of equations, given that all of the unknowns 
lie between zero and one:

1.84401) and 2.79921 (instead of 2.80076). Even a very 
simple nonlinear algebraic problem can produce undesired 
or incorrect results if a solution tool is used incautiously.

PROBLEMS

2.1. U se the Newton–Raphson method to find a solution for 
the equation

x x x5 32 6 0 851372 0− + − =. .

It is known that the solution we are seeking is between  
0 and 1.

2.2.  Solve the set of simultaneous, linear algebraic equa-
tions represented by the augmented coefficient matrix:

5 1 1 −1 −1 0.899171
1 2 1 −4 1 0.223846
2 −1 −1 −1 6 0.49982
3 3 −2 −3 −3 0.072511
−1 −1 −1 7 7 0.979619

2.3.  Consider a steel pipe with a nominal diameter of 3” 
(actually 3.068” ID). Water flows through the pipe (which 
is 980 ft long) at an average velocity of 8.75 ft/s. The Reyn-
olds number associated with this flow is

Re
( . / )( . )( . )

( )( . )
, .=

< >
=

×
=

−

d V ρ
µ

3 068 12 8 75 62 4

1 6 72 10
207 729

4

The friction factor for this flow is approximately given  
by f = 0.0791/(Re)1/4. Therefore, the value of f for the origi-
nal flow is about 0.0037. In an effort to increase the flow 
rate, a parallel (also nominal 3”) pipe is installed over the 
last 600 ft. Find the (increased) flow rate through the new 
arrangement. The design equation for flow through a hori-
zontal pipe is

∆ 1
2

2 2 1 1
2

2 0V
p p

V
L

R
f

h

+
−

+ =∑ρ
.

This allows us to calculate the pressure drop through the 
original 3” pipe; initially, there is no change in kinetic 
energy, so

p p1 2 2 21 2 8 75
980

0 0639
0 0037 2172 3

−
=







 =

ρ
( / )( . )

.
( . ) . ft /s22.

We now multiply by the fluid’s density and take care of the 
mass–force conversion problem using gc. The result is 
29.26 psi (p1 −  p2). In the revised installation, the overall 
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flight to accomplish its long-range surveillance missions. 
The very low weight of the X-15 was possible because it 
was air-launched (dropped from underneath a B-52). One 
factor we referred to previously that is not reflected here is 
the trouble caused by aerodynamic heating. For many super-
sonic aircraft, this was/is a serious limitation on the perfor-
mance envelope. The MiG 25, for example, could only be 
flown at high Mach for a few minutes before the structural 
components would attain unsafe temperatures. The X-15 
suffered serious thermal damage during its October 1967 
flight in which it achieved Mach 6.7. The tabulated data 
make it pretty obvious that to carry 100 passengers at the 
desired speeds, we will need a wing span of 90–100 ft and 
a take-off weight of least 200,000–300,000 lb.

2.8.  Find a solution for the following set of nonlinear alge-
braic equations:

x x x1
5

2 32 10 2 34284exp( ) / .− + =

x x x1 2
2

3
3 25 5966+ = .

x x

x
1 3

3

2

48 1033
+

= . .

2.9.  Müller’s method, a root finding technique in which a 
parabola is fit to three points, can be modified to find 
complex roots. Consider the fourth-degree polynomial:

x x x x4 3 217

2

353

18

17

2

185

18
0− + − − = .

Search for real roots using the method of your choice and 
then use polynomial deflation to locate the complex conju-
gate pair. Confirm your findings using a calculator (like a 
TI-89) or a suitable commercial software (you should get 
−1/2, +5, and +2 ± i/3). Then, repeat the analysis by con-
sulting the literature (e.g., section 7.4 in Chapra and Canale, 
2002) and developing a routine to use Müller’s method for 
the same purpose. The following discussion should help you 
get started.

We assume that the function can be approximated with 
the polynomial:

f x a x x b x x c( ) ( ) ( ) .= − + − +0
2

0

This choice ensures that f(x0) = c and thereby lessens our 
workload. We arbitrarily select 4, 6, and 8 for our three trial 
points; we find f(4)  =  −18.5, f(6)  =  104.714, and 
f(8) = 920.783. We choose x0 = 8 for our reference point, 
so c = 920.783. Our function values at x = 4 and x = 6 give 
us two simultaneous equations for a and b: a = 86.607 and 

x x x1
2

2 3 0 385028exp( ) .− + =

x

x x
1

2
2

3
2

2 20022
+

= .

x x x1 2 3
3 0 710317+ − = . .

2.6.  The equation, 0.5 + exp(−0.085t) sin(2t), has a finite 
number of zeros for positive values of t between 0 and 11. 
Devise a method that will locate and count all of them.

2.7.  Most airline travelers would prefer to spend less time 
in the air. Clearly, one way this could be accomplished is 
to increase the speed of aircraft. Presently, large passenger 
airplanes cruise at high-subsonic speeds, and at altitude, 
this means about 500–600 mph. If longer flights could 
cruise at Mach 2 or 3 (or more), travel times would be 
reduced significantly. The problem is twofold: We have the 
rise in drag accompanying supersonic flight (which dra-
matically increases fuel consumption) and we have aero-
dynamic heating. For example, if we look at the Concorde 
(now retired from service), we find fuel consumption at 
full power of 6180 gal (A1 jet fuel)/h; the Concorde was 
able to carry one passenger about 17 mi on a gallon of fuel. 
We can contrast this with a Boeing 747; with 500 pas-
sengers, a 747 can carry one passenger between 60 and 
100 mi on 1 gal of fuel. Of course, it will take two and a 
half times as long to reach the destination! So this raises 
an interesting question: What must the design characteris-
tics of an advanced aircraft resemble in order for the craft 
to carry a hundred or more passengers at a cruising speed 
of Mach 3 or 4? Here are some approximate data from 
open sources:

Aircraft Span
Gross 

Weight Thrust Cap
Max 

Speed

LH C-140 54 38,940 6,000 12 512
DH Comet 115 162,000 42,000 101 525
B 737-700 117 150,000 52,600 149 540
H FGA.9 34 18,000 10,050 1 627
NA F-100D 39 34,832 16,950 1 864
MD F-101B 40 52,400 33,800 2 1,130
Concorde 84 408,000 152,000 128 1,330
NA A3J-1 53 49,500 32,300 2 1,385
Con B-58A 57 160,000 62,500 3 1,385
LH F-104G 22 27,000 16,150 1 1,450
Con F-106A 38 35,000 24,500 1 1,525
MiG 25 46 80,950 49,400 1 1,900
LH SR-71 56 170,000 68,000 2 2,090
X-15 22 33,000 70,400 1 4,519

Some observations: Note the relatively high take-off 
weights for the Concorde and the SR-71; this is indicative 
of the fuel load required if one wants to cruise at high 
speeds. Even so, the SR-71 had to be refueled routinely in 
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and

x x
x x

x
1
2

2
1 1

2
2

77 4525+ =
tan( )

. .

We know that both unknowns are between 0 and 2.

2.14.  The first seven Chebyshev (or Tschebysheff) polyno-
mials of the first kind are:

T x T x x0 11( ) , ( )= =

T x x T x x x2
2

3
32 1 4 3( ) , ( )= − = −

T x x x T x x x x4
4 2

5
5 38 8 1 16 20 5( ) , ( )= − + = − +

T x x x x6
6 4 232 48 18 1( ) .= − + −

These polynomials are solutions for the Chebyshev differ-
ential equation (for Mathcad, see Tcheb(n, x)). Suppose we 
need to identify all of the zeros for T6(x) on the interval, 
−1 ≤ x ≤ +1. Prepare a plot of this polynomial and then 
use the method of your choice to find accurate values for the 
roots.

2.15.  A liquid-phase reaction was carried out in a batch 
reactor to study A + B → C + D. The experiment was con-
ducted for four different trials and stopped at different 
elapsed times. The data obtained consisted of the duration 
of the experiment and the concentration of species D:

Time (s) 780 2040 3540 7200
[D] (mol/L) 0.0112 0.0257 0.0367 0.0552

Two different rate expressions have been proposed for this 
reaction:

d A

dt
k A

d A

dt
k A B k A

[ ]
=− [ ]

[ ]
=− [ ][ ]=− [ ]1 2 2

2and ,

which, when integrated, yield ln[A]  =  −k1t  +  C1 and 
−(1/[A]) = −k2t + C2, respectively. Which rate expression 
is more nearly correct? There is no D present in the reactor 
initially, and the initial concentrations for A and B are 
both 0.1.
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b = 581.249. Of course, we want to identify the value for x 
where f = 0. Thus (after dividing by 86.607),

0 8 6 7113 8 10 6322= − + − +( ) . ( ) . .x x

Letting z  =  (x  −  8), we have the quadratic: 
z2 +  6.7113z +  10.632, with solutions at −4.14835 and 
−2.56295. Remembering to add 8, we get our improved 
estimates and the closest one is +5.43705. One advantage 
of Müller’s technique is the use of the quadratic equation—
we will be able to locate complex roots should they  
arise. We can also minimize our workload by reusing the 
trial points closest to the root estimate. In this case, we 
would discard x =  8, retaining 4, 5.43705, and 6 for our 
next cycle.

2.10.  The cargo ship MSC Fabiola is one of the largest 
container transports ever constructed. She is 366 m (1200 ft) 
long with a beam of 48 m; the gross tonnage is 140,259. This 
class of freighter will not fit through the Panama Canal 
(which is one of the reasons why the canal is being enlarged). 
Estimate the maximum speed of the MSC Fabiola given that 
her turbines produce 98,000 hp (single screw). It has been 
reported that she is capable of 19.5 knots. Is that speed real-
istic? Does it appear that the correlation given by eq. (2.50) 
is appropriate for the Fabiola?

2.11.  Solve the set of simultaneous algebraic equations:

( ) .X X X X X1 2
2

1 2 3 61 0229− + =

X X X1 2 3 15 8225+ + = .

X

X

X

X
2

3
2

1

2

11 366+ = . .

We know that for all three variables, 0 ≤ Xn ≤ 10. Use the 
method of your choice.

2.12.  The Lagrange multiplier (λ) is often used for con-
strained optimization problems. Consider the equation

2 3 5 5 12071
2

2
2

1 2x x x x− − + =− . ,

accompanied by the constraint, 2x1 − 3.066202x2 = 0. Use 
the Lagrange multiplier to solve this problem; that is, find 
the stationary point subject to the constraint.

2.13. U se your choice of methods to seek a solution for the 
two simultaneous equations:

x x

x
x1 1

2

2
2
3 1 42957

exp( )
.

−
+ =
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3
VECTORS AND TENSORS

INTRODUCTION

A significant area of interest in continuum mechanics is the 
application of forces to material objects and the response of 
those objects to the applied forces. Most of us tend to think 
of a force simply as a directed line segment (possessing 
magnitude and direction), but a little caution is in order here: 
We must remember that the effect of a force applied to a 
body depends on both its line of action and the point at 
which it is applied. For example, if one were using a lever 
to move a boulder, the distance between the point of applica-
tion and the fulcrum would have enormous impact on the 
effectiveness of the action. We also need to emphasize that 
our discussions here are concerned with continuum mechan-
ics in three-dimensional Euclidean space. Thus, when we 
speak of tensors, for example, we mean Cartesian tensors. 
Tensors do figure prominently in non-Euclidean spaces,  
but those applications are not relevant to our principal 
objectives.

We will begin by reviewing what we mean when we refer 
to scalars, vectors, and tensors. A scalar is a quantity that 
has magnitude only; for example, we might find that an 
enclosure has a volume of 1.2 m3 or that the fluid contained 
within has a temperature of 215°F (101.67°C). We also 
observe that a scalar is a zero-order tensor (we will use order 
and rank synonymously). In contrast, a vector has both 
magnitude and direction, and we can think of force and 
velocity as examples. A vector with three components is a 
first-order tensor. By tensor we merely mean an ordered set 

of numbers; second-order Cartesian tensors (with nine com-
ponents) are very important in the mechanics of materials 
and in hydrodynamics. The third-order alternating tensor, 
εijk, has 27 components and is equal to +1 if the subscripts 
are in cyclic order (e.g., 1, 2, 3 or 2, 3, 1), −1 for anticyclic 
order, and zero otherwise. The alternating tensor is particu-
larly useful for the cross product of certain vectors. You 
probably have detected a pattern:

Tensor Order Number of Components

0 1
1 3
2 9
3 27

To illustrate how second-order tensors come about, let us 
think about a force acting on a surface such that the dimen-
sions are F/L2 or M/(Lt2). Of course, pressure and shear 
stress are prime examples and we recognize that two direc-
tions are important for such quantities. Consider a fluid 
flowing in the x-direction past a fixed solid surface located 
at y = 0; because of the Newtonian no-slip condition (New-
ton’s law of viscosity), a shear stress will be created by the 
surface as shown in Figure 3.1.

We will interpret this shear stress, τyx, as a force acting 
on the y-plane (the fixed surface is located at y = 0) due to 
fluid motion in the x-direction. Since we have three principal 
directions, it is clear that each of the two indices on τ can 
assume one of three values, corresponding to x, y, and z in 
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rectangular coordinates. Thus, the stress tensor consists of 
the set of components:

	

τ τ τ
τ τ τ
τ τ τ

xx xy xz

yx yy yz

zx zy zz

	 (3.1)

You will see immediately that the subscripts are repeated 
on the diagonal; these are called normal stresses and their 
sum is called the trace of the tensor. The off-diagonal com-
ponents are shear stresses, and we should recognize that the 
corresponding off-diagonal stresses must be equal; that is, 
τyx = τxy. If this were not the case, then an infinitely small 
element of fluid could experience very large (infinite!) 
angular acceleration. This requirement means that the stress 
tensor is symmetric and that it contains just six independent 
quantities.

It is common practice to write second-order tensors using 
the Cartesian summation convention. For example, we might 
write Sij where the indices i and j can each assume the values 
1, 2, and 3. Consequently, if we write Sii (with repeated 
subscripts), we mean

	 S S S Sii = + +11 22 33, 	 (3.2)

which of course is the trace of the tensor as we observed 
previously.

MANIPULATION OF VECTORS

Let us review some vector algebra, noting that A, B, and C 
are vectors and that a and b are scalars:

FIGURE 3.1.  Shear stress created by fluid motion past a solid 
surface. For this illustration, νx = my and τyx = −μ(dνx/dy) = −μm. 
Momentum is transferred to the stationary surface (in the negative 
y-direction).

x

y

− =− − −R i j k14 23
2

A B B A+ = + commutative 	 (3.3)

A B C A B C+ + = + +( ) ( ) ( )associative addition   (3.4)

a b ab b a( ) ( ) ( ) ( )A A A= = associative multiplication
		  (3.5)

( )a b a b+ = +A A A distributive 	 (3.6)

a a a( ) .A B A B+ = + distributive 	 (3.7)

When we refer to unit vectors, we mean unit length. 
Therefore, for vector A with length a, unit length is otained 
simply by A/a. In rectangular coordinates, it is common 
practice to write the unit vectors as i, j, k, corresponding to 
the x-, y-, z-directions.

We will review these basic operations by looking at a few 
examples. Let the vectors A and B be given by

	 A i j k= − +4 3 2 	 (3.8)

	 B i j k= + +5 5 3 . 	 (3.9)

First, we look at the sum:

A B i j k i j k+ = + + − + + + = + +( ) ( ) ( ) .4 5 3 5 2 3 9 2 5
		  (3.10)

The magnitude of A is

A = + − +[ ] = =( ) ( ) ( ) . .
/

4 3 2 29 5 385162 2 2 1 2
  (3.11)

If we multiply B by a scalar, b, letting b = 3,

	 bB i j k i j k= + + = + +3 5 5 3 15 15 9( ) . 	 (3.12)

Now suppose a body, M, is being acted on by three dif-
ferent forces, F1, F2, and F3. Let

	 F i j k1 5 5 1= + − 	 (3.13)

	 F i j k2 6
1

2
1= − + 	 (3.14)

	 F i j k3 3 3 2= − + . 	 (3.15)

The resultant force is F1 + F2 + F3:

	 R F F F i j k= + + = + +1 2 3 14
3

2
2 . 	 (3.16)

If we wished to prevent movement of the body, M, 
we could apply a force corresponding to −R: − =− − −R i j k14 23

2

. This force would produce equilibrium and 
the body, M, would naturally remain at rest if it were initially 
stationary. Let us now assume that we would like to identify  
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Since F1 36 9 4 7= + + = , the three angles we are seeking 
are 0.5411, 1.1279, and 1.2810 rad, respectively. Please note 
that

	 cos cos cos .2
1

2
2

2
3 1θ θ θ+ + = 	 (3.27)

Now we will consider a force, F, applied at the origin 
in two-space (the x-y plane); we will illustrate this in 
Figure 3.2. We can resolve F into x- and y-components if 
we know the angle, θ. Suppose, for example, that F = 400 N 
and θ = 25°; then

	 F Fx = = =cos( ) ( )( . ) .θ 400 0 9063 362 5N 	 (3.28)

and

	 F Fy = = =sin( ) ( )( . ) .θ 400 0 4226 169N 	 (3.29)

Of course, the resultant of Fx and Fy can be found by rect-
angular resolution; that is,

	 F F Fx y= + =2 2 399 96. .N 	 (3.30)

The discrepancy is merely the result of roundoff error.
An illustration: Suppose a light aircraft flies due east with 

a ground speed of 120 mph; it is subjected to a constant wind 
from the south blowing at 14 mph, as shown in Figure 3.3. 
What is the effective ground speed of the airplane, and where 
will it be after 1 hour (if the pilot makes no corrections)?

In this case, tan(θ) = 14/120, so θ = 6.654°. After 1 hour, 
the aircraft will have traveled 120.81  mi and it will, of 
course, be 14  mi north of its intended destination. This 
elementary example underscores one of the difficulties of 
navigation prior to GPS. On a long flight, a small crosswind 
could result in a catastrophic error if not caught by the 
navigator. It is thus easy to understand how Amelia Earhart 
and Fred Noonan missed Howland Island in 1937 on their 
2500-mile flight from Lae (to Howland) when their radio 
direction finder (RDF) did not function properly.

the unit vector that is parallel to the resultant of two forces 
given by

	 F i j k1 3 2 2= + + 	 (3.17)

and

	 F i j k2 2 1 1= − + . 	 (3.18)

The resultant is

R F F i j k i j k i j k= + = + + + − + = + +1 2 3 2 2 2 1 1 5 1 3( ) ( ) .
		  (3.19)

The magnitude of the resultant is

R = + +[ ] = =( ) ( ) ( ) . .
/

5 1 3 35 5 916082 2 2 1 2
  (3.20)

So the unit vector we are seeking is

R

R

i j k
i j k=

+ +
= + +

5 1 3

5 91608
0 84515 0 16903 0 50709

.
. . . .

		  (3.21)

Often we are interested in the angle between a given 
vector and the coordinate axes. For transparency, we will 
start with a vector in the x-y plane and determine the angle 
(θ) between this vector and the x-axis. Let

	 F i j1 6 3= + . 	 (3.22)

It is apparent that tan θ  =  3/6 such that θ  =  0.4636 
rad or 26.57°. More generally, if a vector in three-space is 
given by

	 F i j k1 6 3 2= + + , 	 (3.23)

then the angles between this vector and the coordinate  
axes are

	 θ1
1

1

= −cos ,
x

F
	 (3.24)

	 θ2
1

1

= −cos ,
y

F
	 (3.25)

and

	 θ3
1

1

= −cos .
z

F
	 (3.26)

FIGURE 3.2.  A force of 400 N applied in the x-y plane at an angle 
of 25°.
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ground exerts a force on the bottom end of the beam indi-
cated by F2. We recognize that under the equilibrium condi-
tion, the summation of forces in the horizontal (x-) direction 
must be zero. Similarly, the summation of forces acting in 
the vertical (y-) direction must also be zero; therefore,

F F F W2 1 20 0cos( ) sin( ) .θ θ− = − =and   (3.33)

For us to solve these equations, we must determine the 
angle, θ: We do this by using two right triangles and the 
first of these is formed using the lower half of the beam such 
that the hypotenuse is 15 ft; the vertical leg is the distance 
from the midpoint of the beam to the ground. Therefore, 
x = 15 cos(50°) = 9.642 ft. Now we can determine θ (the 
angle between the line of action of F2 and the ground): 
tan(θ) =  22.98/9.642, so θ =  67.24°. Our horizontal and 
vertical force summations are now used to compute 
F2 = 867.56 lb and F1 = 335.64 lb. Of course, the very same 
problem can be worked more easily by noting that at equi-
librium, the summation of moments about the z-axis must 
be zero.

Equating Moments

Recall that the moment of a force is the measure of the 
torque introduced about a chosen point; the moment is the 
product of the magnitude of the force and the perpendicular 
distance between the selected origin and the line of action 
of the force. Furthermore, according to Varignon’s theorem, 
the moment of the resultant of two forces equals the sum of 

An important variation of such problems arises when the 
second vector is not perpendicular to the first. Now assume 
that the same aircraft, flying east at 120 mph, experiences a 
quartering wind blowing 22 mph at an angle 18° north of 
east as shown in Figure 3.4.

In this case, the plane’s speed to the east will be

	 120 22 18 140 92+ ° =cos( ) . .mph 	 (3.31)

However, its velocity to the north will be

	 22 18 6 80sin( ) . .° = mph 	 (3.32)

After 1 hour, the craft will have flown a distance of about 
141.08 mi and it will be 6.8 mi north of the intended point.

Force Equilibrium

Let us review a familiar type of problem in which we utilize 
equilibrium at a point. Imagine, for example, that during the 
erection of a building, a structural member (a beam 30  ft 
long) weighing 800 lb is temporarily leaned against a verti-
cal wall as illustrated in Figure 3.5 (the angle between the 
ground and the beam is 50°). At the upper end, the wall 
exerts a horizontal force on the beam indicated by F1. The 

FIGURE 3.3.  Effect of a crosswind on a light aircraft flying due 
east at 120 mph.

E

N

14

120

FIGURE 3.4.  Effect of a quartering wind on a light aircraft flying 
east at 120 mph. The wind is blowing to the ENE at 22 mph.

E
18°

N

22

120

FIGURE 3.5.  A structural member (or beam) lying against a verti-
cal wall. The beam is 30 ft long and weighs 800 lbf; the angle of 
inclination with respect to the ground is 50°.

F1

F2

W
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We begin by constructing auxiliary forces P1 and P2, 
which are equal in magnitude but opposite in direction. 
Then the lines of action for Q1 (the resultant of F1 and P1) 
and Q2 (the resultant of F2 and P2) are constructed and 
extended back to the point of intersection, B. The force 
transmitted to the solid body is R, which is the resultant of 
the pair, Q1 and Q2. Naturally, the magnitude of R is just 
the sum of F1 and F2; the line of action of the resultant is 
obtained by noting that we have similar triangles (created 
by extending Q1 and Q2 back to the point of intersection, 
B). The case of coplanar, nonparallel forces (applied to a 
rigid body) is simpler—it is only necessary to extend the 
lines of action to the point of intersection. Of course, it is 
entirely possible that a pair of parallel, coplanar forces act 
in opposite directions. If they have the same magnitude, the 
result will be a couple, and a couple acting on a rigid body 
will produce rotation.

Projectile Motion

Imagine a situation in which a projectile is launched in the 
x-y plane at an angle (relative to level ground) of θ with an 
initial velocity of V0. If we neglect drag (a potentially serious 
omission), then the initial horizontal and vertical velocity 
vector components are

	 V V V Vx y0 0 0 0= =cos sin .θ θand 	 (3.35)

Since gravity acts in the negative y-direction, we know

	 V V gty = −0 sin ;θ 	 (3.36)

the two moments of the two forces. Therefore, if an object 
is acted on by multiple forces—yet remains at equilibrium—
then the sum of the moments must be zero. Let us apply this 
result to an example.

We imagine a cylindrical object with radius, R, that has 
rolled up against a curb (or step) of height, h. We wish to 
apply a horizontal force, F, to get the cylinder to roll up over 
the curb. The force will be applied at the center of the cyl-
inder, although it is obvious that this is not optimal. The 
cylindrical object has weight, W, and the arrangement is 
illustrated in Figure 3.6.

The moment arm for the applied force, F, is R − h. The 
moment arm for the weight (due to gravity) is x, the hori-
zontal leg of the triangle. Therefore,

	 F R h Wx( ) ,− = 	 (3.34)

with x obtained as follows:

θ=
−−sin ,1 R h

R

and x = Rcos θ. We can examine this result quantitatively by 
setting R = 10 and h = 2 (a fairly small step). For this case, 
θ = 0.9273 rad (53.1°) and x = 6. Therefore, F = 0.75 W. 
This will, of course, change dramatically if the step height 
is greater; we can repeat the problem but with h = 7. The 
reader may wish to verify that F = 3.18 W in this case. We 
observe that the point of the step exerts a force on the cyl-
inder; at equilibrium, the x- (horizontal) component of that 
force must counter F and the y-component must balance W. 
For the case in which h = 7, this force will total 3.33 W and 
the angle between the line of action and the upper horizontal 
surface will be 17.46°.

A different situation can arise when coplanar forces act 
on a body at different locations. To illustrate, let us take the 
case where forces F1 and F2 are acting on a rigid body as 
depicted in Figure 3.7.

FIGURE 3.6.  A cylindrical object of radius, R, and weight, W, 
has rolled up against a step of height, h. A force is to be applied 
at the center with the intent of moving the cylinder to the top of 
the step.

F

h

FIGURE 3.7.  Coplanar forces acting on a rigid body at different 
locations.
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More generally, given two vectors A and B:

A A i A j A k B B i B j B k= + + = + +1 2 3 1 2 3and ,   (3.40)

then

	 A B A B A B A B⋅ = + +1 1 2 2 3 3. 	 (3.41)

Similarly, A  ·  A =  A1
2 +  A2

2 +  A3
2. If A  ·  B =  0, and 

neither is null, then A and B must be perpendicular. For 
example, suppose A = 2i + 3j, and further, that A is perpen-
dicular to vector B (and both in the x-y plane). We have 
A  ·  B  =  |A||B|cos θ and since θ  =  90°, we must have 
(2i  +  3j)  ·  (b1i  +b2j)  =  0, or 2b1  +  3b2  =  0. Thus, 
b1/b2 = −(3/2). We also make note of the following proper-
ties of dot products:

	 A B B A⋅ = ⋅ commutative 	 (3.42)

	 A B C A B A C⋅ + = ⋅ + ⋅( ) distributive 	 (3.43)

	 a A B aA B A aB( ) ( ) ( ).⋅ = ⋅ = ⋅ 	 (3.44)

The cross product of two vectors, indicated by A × B, is 
also a vector, C. Thus,

	 A B C× = , 	 (3.45)

where C is perpendicular to the plane of A and B. Further-
more, C follows the right-hand screw rule, so for the case 
in which A and B correspond to the x- and y-axes in the 
plane of the page, force C is directed out of the page toward 
the reader. We also have the following relations for the cross 
(or vector) product:

	 A B B A not× =− × commutative 	 (3.46)

	 Ax B C A B A C( )+ = × + × distributive 	 (3.47)

	 a A B aA B Ax aB( ) ( ) ( )× = × = 	 (3.48)

There are applications requiring triple products of the 
vectors, A, B, and C; the scalar triple product is

	 A B C B C A C A B⋅ × = ⋅ × = ⋅ ×( ) ( ) ( ). 	 (3.49)

This relation gives us the volume of a parallelepiped 
defined by the three vectors. Given A  =  2i  +  4j  +  k, 
B = 6i − j + k, and C = 0 + j + 3k, for example, we have

2 4 1

6 1 1

0 1 3

6 0 6 0 2 72 74− =− + + − − − =− .

the projectile will reach its apogee when Vy  =  0, or 
V0 sin θ = gt. During flight, the angle between the instanta-
neous trajectory and the ground is θ = tan−1(Vy/Vx). We can 
look at a simple example for illustration: Let V0 = 300 ft/s 
and θ = 35°. The initial horizontal velocity is 245.7 ft/s and 
the initial vertical velocity is 172.2 ft/s. The maximum verti-
cal height above ground will occur at

	 t = =
( )( . )

( . )
. ,

300 0 574

32 17
5 35 s 	 (3.37)

and that maximum height will be

	 y V t gt
t

max
.

( sin ) . ,= −












=
=

0
2

5 35

1

2
460 9θ ft 	 (3.38)

a number that is actually quite unrealistic. After 8 seconds, 
the angle between the ground and the projectile’s trajectory 
would be

θ=
−






=− °−tan

( )( . ) ( . )( )

( . )
;1 300 0 574 32 17 8

245 7
19   (3.39)

that is, 19° below horizontal. As we implied earlier, the 
effect of drag on the motion of projectiles is profound. For 
example, returning to the previous illustration, if the projec-
tile were a sphere launched in air (with R  =  1  in. and 
m = 1 lbm) the maximum height would be about 394 ft and 
that would be attained in about 4.83 seconds. A larger object 
of the same mass would experience greater drag, of course. 
If we let R =  2  in., then ymax =  288  ft and that height is 
achieved at t = 3.93 seconds.

Dot and Cross Products

In physics, we often think of the dot product in the context 
of work: Work is performed when a force is applied to a 
body, the body moves, and a component of the force vector 
is acting in the direction of the motion. Thus, W F ds= ∫ ⋅1

2
. 

The dot product of vectors A and B is written A·B and it is 
a scalar. For example, given the situation depicted in Figure 
3.8, then A·B = (100)(50)cos(θ). If the angle θ = 30°, then 
A  · B = 4330.13, but if θ were changed from 30° to 85°, 
then A · B = 435.78.

FIGURE 3.8.  Illustration of coplanar vectors A and B forming an 
angle of 30°.

B = 50

A = 100
30°
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and this quantity is a scalar. Therefore, in the case of the 
velocity vector, V, the divergence would be written as

	 ∇⋅ =
∂
∂
+
∂
∂
+
∂
∂

V
v

x

v

y

v

z
x y z . 	 (3.56)

For an incompressible fluid, the divergence of the veloc-
ity vector is a statement of conservation of mass, and since 
the fluid density (ρ) is constant, ∇  · V = 0. A vector field 
for which the divergence is zero is said to be solenoidal. In 
cylindrical coordinates,

	 ∇⋅ =
∂
∂

+
∂
∂
+
∂
∂

V
r r

rv
r

v v

z
r

z1 1
( ) .θ

θ
	 (3.57)

The curl of a vector, A, is written as ∇xA, and it is a 
vector. In much of the older (particularly German) literature, 
the curl of A is written rot(A). It is convenient for us to 
construct a determinant to help with our interpretation:

i j k

x y z

A A A

A

y

A

z
i

A

z

A

x

∂
∂

∂
∂

∂
∂

=
∂
∂
−
∂
∂







 +

∂
∂
−
∂
∂





1 2 3

3 2 1 3




 +

∂
∂
−
∂
∂







j

A

x

A

y
k2 1 .

  (3.58)

We also often need the curl of a vector in cylindrical 
coordinates as well so it is worthwhile to provide it here:

1 13 2 1 3
2

r

A A

z
i

A

z

A

r
j

r r
rA

∂
∂
−
∂
∂







 +

∂
∂
−
∂
∂







 +

∂
∂θ

( )−−
∂
∂









1 1

r

A

θ
.

		  (3.59)

In fluid mechanics, ∇xV is particularly significant—it is 
the vorticity vector, ωi.

	
∂
∂
−
∂
∂







 =

v

y

v

z
iz y

xω 	 (3.60a)

	
∂
∂
−
∂
∂







 =

v

z

v

x
jx z

yω 	 (3.60b)

	
∂
∂
−
∂
∂







 =

v

x

v

y
ky x

zω . 	 (3.60c)

The three components of the vorticity vector are directly 
related to the angular velocity of the fluid (rotation) about 
the three axes (in fact, each is exactly twice the rate of rota-
tion about that particular axis). A vector field is said to be 
irrotational if ∇xV = 0. Let us suppose, for example, that 

The vector triple product is

	 Ax B C B A C C A B( ) ( ) ( ).× = ⋅ − ⋅ 	 (3.50)

Equation (3.50) is often referred to as the “BAC − CAB” 
rule—a useful mnemonic device as long as one remembers 
the minus (−) sign.

Differentiation of Vectors

Let us suppose that a vector is a function of a scalar like 
time, t. In particular, let A = A1i + A2 j + A3k, where A1, A2, 
and A3 depend on t. Then

	
dA

dt

dA

dt
i

dA

dt
j

dA

dt
k= + +1 2 3 . 	 (3.51)

Naturally, dA/dt  =  0 if A is a constant vector. We 
also want to consider the case in which B =  B1(x,y,z)i + 
B2(x,y,z)j + B3(x,y,z)k, and spatial derivatives are required. 
Let B = 3xy2i − 4xyzj + 7y2z2k, then

	
∂
∂
= −

B

x
y i yzj3 42 , 	 (3.52a)

	
∂
∂
= − +

B

y
xyi xzj yz k6 4 14 2 , 	 (3.52b)

and

	
∂
∂
=− +

B

z
xyj y zk4 14 2 . 	 (3.52c)

Gradient, Divergence, and Curl

We define the del operator (∇) in rectangular coordinates 
in the following way:

	 ∇=
∂
∂
+
∂
∂
+
∂
∂

i
x

j
y

k
z

. 	 (3.53)

Now let us suppose that T is a scalar (perhaps tempera-
ture), then

	 ∇ =
∂
∂
+
∂
∂
+
∂
∂

T i
T

x
j

T

y
k

T

z
. 	 (3.54)

This is called the gradient of T and it is a vector. When 
we speak of the divergence of a vector (say, A), we mean

	 ∇⋅ =
∂
∂
+
∂
∂
+
∂
∂

A
A

x

A

y

A

z
1 2 3 , 	 (3.55)
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	 ∇⋅ × = ⋅ ∇× − ⋅ ∇×( ) ( ) ( )A B B A A B 	 (3.75)

∇ ⋅ = ⋅∇ + ⋅∇ + ∇× + ∇×( ) ( ) ( ) ( ) ( )A B B A A B Bx A Ax B
		  (3.76)

∇ × = ⋅∇ − ∇⋅ − ⋅∇ + ∇⋅x A B B A B A A B A B( ) ( ) ( ) ( ) ( )
		  (3.77)

∇⋅ ∇ =∇

=
∂
∂
+
∂
∂
+
∂
∂

( )

( )

a a

a

x

a

y

a

z

2

2

2

2

2

2

2
the Laplacian operator

		  (3.78)

	 ∇ ∇× =∇ ∇⋅ −∇x A A A( ) ( ) .2 	 (3.79)

Recall that we said previously that there are two types of 
vector fields: solenoidal, for which ∇  · A = 0, and irrota-
tional, for which ∇ × A = 0. In the case of the latter, if a 
vector field is irrotational, then a scalar function (φ) exists 
such that A = ∇φ. We refer to φ as a potential function; if 
we consider the x-component of the velocity vector in a 
potential flow problem, νx =  ∂φ/∂x. In an electric field, 
the component of (negative) electric intensity in a given 
direction is equal to the derivative of the potential in that 
direction. We also know by Stokes’ theorem that if 
∇ × A = 0, then

	 A dr A ndS
C S

⋅ = ∇× ⋅ =∫ ∫∫� ( ) .0 	 (3.80)

Let us spend a little time contemplating this statement 
prior to discussing Green’s and Stokes’ theorems. In physics, 
when we consider work (W), we mean that a force has been 
applied to a moving body in such a way that there is a non-
zero component of F in the direction of the motion. The 
work done in moving an object along the x-axis from posi-
tion x1 to x2 would be written as

	 W F dxx

x

x

=∫
1

2

. 	 (3.81)

More generally, we can write a line integral of the vector, 
F, from point 1 to point 2 (along a curve, C) as

F dr F dr F dx F dy F dz
P

P

C C

⋅ = ⋅ = + +∫ ∫ ∫
1

2

1 2 3 .   (3.82)

To illustrate, suppose we have a vector (force) in the  
x-y plane: F = −3x2i + 5xyj. This force is to be applied to 
an object moving along a path described by y  =  2x2. 
Therefore,

an incompressible fluid undergoes two-dimensional motion 
which occurs in the x-y plane such that

	 v xy y v yx y= + =−3 22 3and . 	 (3.61)

We observe immediately that ∇  ·  V  =  3y2  −  3y2  =  0 
and that

	
∂
∂
−
∂
∂
= − − =

v

x

v

y
xyy x

z0 6 2 ω . 	 (3.62)

Thus, there will be rotation about the z-axis unless the 
product xy = −1/3. Now, suppose that an arbitrary vector 
field is described by

	 A x yi xz j xyzk= + +2 2 . 	 (3.63)

We begin by finding the divergence, ∇ · A:

∂
∂

+
∂
∂

+
∂
∂

= +
x

x y
y

xz
z

xyz xy xy( ) ( ) ( ) .2 2 2   (3.64)

Therefore, at the point (1, 1, 1), we find ∇ · A = 2 + 1 = 3. 
We can also evaluate the curl of this vector field:

∂
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−
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∂



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
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∂
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x y
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∂
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∂


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





= − + − + −

x
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y
x y k

xz xz i yz j z x k

( ) ( )

( ) ( ) ( )

2 2

2 22 0 ..

  (3.65)

At the point (1, 1, 1) this yields −1i − 1j.
Let us summarize some of the common operations involv-

ing the del operator here:

	 ∇ + =∇ +∇( )a b a b 	 (3.66)

	 ∇ =∇⋅∇2a a 	 (3.67)

	 ∇ = ∇⋅∇2 A A( ) 	 (3.68)

	 ∇⋅ + =∇⋅ +∇⋅( )A B A B 	 (3.69)

	 ∇×∇ =a 0 	 (3.70)

	 ∇⋅∇× =A 0 	 (3.71)

	 ∇ + =∇× +∇×x A B A B( ) 	 (3.72)

	 ∇⋅ =∇ ⋅ + ∇⋅( )aA a A a A 	 (3.73)

	 ∇ =∇ × + ∇×x aA a A a A( ) ( ) 	 (3.74)
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side as we traverse the path. We also require that the func-
tions P and Q appearing in the theorem have continuous 
first-order partial derivatives over D:

	 Pdx Qdy
Q

x

P

y
dA

C D

+ =
∂
∂
−
∂
∂







∫ ∫∫� . 	 (3.87)

One of the difficulties posed by eq. (3.87) to students of 
engineering and the applied sciences is its apparent lack of 
connection to the physical world. However, there was a 
mechanical device constructed in the nineteenth century by 
Jakob Amsler-Laffon that makes the significance of eq. 
(3.87) very clear: The planimeter was used to compute the 
area of a region by tracing the enclosing curve (C). At one 
time, just about every draftsman had a planimeter, and many 
used the instrument routinely.

Let us now illustrate Green’s theorem with an example. 
Suppose the (enclosed) region under consideration is a  
triangle, and we wish to evaluate

	 xydx x y dy
C

+∫ 2 3 . 	 (3.88)

Let the triangular region be bounded by the x-axis from 
0 to 1, a vertical line extending from (1, 0) to (1, 2), and the 
hypotenuse, which returns from (1, 2) to the origin (0, 0). 
In this case, the hypotenuse is represented very simply as 
y = 2x and the x, y region of interest is enclosed by 0 ≤ x ≤ 1 
and 0 ≤ y ≤ 2x. We can see by inspection of eq. (3.87) and 
eq. (3.88) that P = xy and Q = x2y3. Therefore,

	
∂
∂
=

∂
∂
=

Q

x
xy

P

y
x2 3 and . 	 (3.89)

By virtue of Green’s theorem, we write

( ) ( ) .2 23 3

0

2

0

1

xy x dA xy x dydx
D

x

− = −∫∫ ∫∫   (3.90)

It is left to the reader to show that eq. (3.90) is equal to 
2/3. Aside from merely allowing us to rewrite some compli-
cated integrals in more tractable form, Green’s theorem can 
be thought of as providing us with the total flow (of, say, 
mass, momentum, or heat) out of region D.

Now suppose we have an annular region formed by two 
concentric circles located at the origin. We let the radius of 
the inner circle be 1 and the radius of the outer circle be 2. 
Since Green’s theorem does not apply to regions with holes, 
we must take a different approach and there are two possi-
bilities: We can take the annular region and break it into two 
halves by drawing a horizontal line just through the middle. 
We choose the orientation such that as we travel on the 
path(s) the two regions always lie to the left. But we could 

	 ( ).− +∫ 3 52x dx xydy
C

	 (3.83)

Since y = 2x2, dy = 4xdx; consequently, the integral of inter-
est is

− +[ ]= − +

=− + − =
=

=

∫ ∫3 5 2 4 3 40

1 8 0 7

2 2

0

1

2 4

0

1

x dx x x xdx x x dx
x

x

( ) ( )

.

  (3.84)

A line integral that is particularly important in fluid 
mechanics is the integral of the velocity vector around a 
closed path; it is called circulation, Γ= ⋅∫ V dr� . Of course, 
it is this circulation that is necessary for a wing (airfoil) to 
generate lift.

When we say that a force field is conservative, we 
mean that the work required to move an object, say, from 
point 1 to point 2, is independent of path. If the path is 
closed, that is, if we start from point 1 and return to 1, then 
the work is zero. This is where our result earlier, eq. (3.80), 
comes into play. Obviously, based on this discussion, the 
curl of a conservative force field must be zero—a conserva-
tive force field is always irrotational. We note that gravity 
is an example of a conservative force but friction is not.  
We will explore this a little further; suppose a force field is 
given by

F xz y i x yz j x z y k= + + − + −( ) ( ) ( ) .2 6 8 2 33 2 2 2   (3.85)

We would like to know if it is conservative:

∇ =
∂
∂

∂
∂

∂
∂

+ − −

xF

i j k

x y z

xz y x yz x z y2 6 8 2 33 2 2 2.

  (3.86)

Our result is (−2y +  2y)i +  (6xz2 −  6xz2)j +  (8 −  6)k 
≠  0; this force field is not conservative (but nearly so—it 
would be if (8x − 2yz)j were changed to (6x − 2yz)j).

GREEN’S THEOREM

Green’s theorem plays an important role in the solution of 
many problems in mathematical physics, and examples are 
found in areas such as electrostatics and hydrodynamics. 
Green’s theorem provides a relationship between line inte-
grals on closed paths (denoted by C) and double integrals 
over the region enclosed by C (which we denote by D). We 
stipulate that the path C has positive orientation, which 
means that the enclosed region, D, is always on the left-hand 
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For example, you may have seen the Maxwell–Faraday 
equation previously:

	 E dl
B

t
dS

C S

⋅ =−
∂
∂
⋅∫ ∫� . 	 (3.97)

A verbal statement will help our comprehension here and 
we cite the one provided by Sears and Zemansky (1964), 
“the line integral of an induced electric field around a closed 
path, or the electromotive force (ε) in the path, equals the 
time rate of change of magnetic flux across the area bounded 
by the path.”

Let us look at some examples to better reveal the utility 
of Stokes’ theorem. To begin, we assume we have a vector 
field, F = −yi + xj + x2k, with a surface corresponding to 
a right circular cylinder of height, h, and radius, R (with its 
bottom placed at the origin). For the right-hand side of eq. 
(3.96), we need the curl of F:

	

i j k

x y z

y x x

∂
∂

∂
∂

∂
∂

− 2

	 (3.98)

Therefore, ∇xF = −2xj + 2k. The surface integral will 
take into account the top (upper end) and the side of course. 
For example, for the top we have

( ) ( ) .∇× ⋅ = − + ⋅ =∫∫ ∫∫F nds xj k krdrd R
S

R

2 2 2
0

2

0

2

θ π
π

		  (3.99)

For the side of the cylinder, ds = Rdθdz, so in this case, we 
note x = R cos θ and y = R sin θ, to obtain

( ) sin cos .∇× ⋅ =− =∫∫ ∫∫F nds R Rd dz
S

h

2 0
0

2

0

θ θ θ
π

		  (3.100)

The two parts combined yield 2πR2.
Let us work through an example adapted from Spiegel 

(1971); in this case, the vector field, F, is 3yi − xzj + yz2k. 
The closed curve is a circle located at z = 2 and the surface 
is a paraboloid, given by 2z = x2 + y2. We can determine 
the curl:

∇× =
∂
∂

∂
∂

∂
∂

−

= + − +F

i j k

x y z

y xz yz

z x i z k

3 2

( ) ( )2 3   (3.101)

also look at the difference between the outer and inner 
circles; we will take this approach for illustration. By inspec-
tion, we see that

	 P y Q x= =−3 3and ; 	 (3.91)

therefore,

	
∂
∂
=

∂
∂
=−

P

y
y

Q

x
x3 32 2and . 	 (3.92)

Thus, we have

	 ( ) .− − =∫∫ 3 32 2x y dA dA rdrd
D

with θ 	 (3.93)

Since x2 + y2 = r2, we have

	 − =− =−∫∫3 12 243

0

2

0

2

0

2

r drdθ θ ππ
π

. 	 (3.94)

Now we apply the same technique to the inner circle (but 
with a radius of 1 rather than 2):

	 − =−∫∫3
3

2
3

0

1

0

2

r drdθ π
π

. 	 (3.95)

So for the integral of interest to us, −24π −  (−1.5π) =
 −22.5π.

STOKES’ THEOREM

Stokes’ theorem applies to a closed curve, C, in three-
dimensional space that bounds some surface, S. It reduces 
to Green’s theorem when the enclosing curve lies in a plane 
(is two-dimensional). It has been pointed out repeatedly that 
Stokes’ theorem was not actually developed by Sir G. G. 
Stokes; Lord Kelvin (William Thomson) is credited with 
having done so after he discovered George Green’s 1828 
essay. Neeley (2008) states that it became known as Stokes’ 
theorem due to the frequency with which Stokes placed it 
on the Cambridge prize examinations.

Given a vector field, F, where S is any surface bounded 
in three-dimensional space by closed curve, C,

	 F dr F nds
S

⋅ = ∇× ⋅∫ ∫∫� ( ) . 	 (3.96)

This is a powerful relationship that finds application in 
the connection between electric (E) and magnetic (B) fields. 
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PROBLEMS

3.1.  A commercial aircraft flying straight east with a ground 
speed of 495 mph encounters a jet stream flowing at 118 mph 
at 75° (15° north of east). If no corrective action is taken, 
what is the speed of the aircraft (relative to the ground) and 
what is the aircraft’s modified course?

3.2.  A ladder (24 ft long) leans against a house, forming an 
angle with the ground of 68°. A man stands midway on the 
ladder, and the ladder with the man weighs 219 lbf. Deter-
mine the forces transmitted to the ladder by the vertical wall 
and the ground. At what angle with respect to the ground 
does the bottom force act?

3.3.  Two vectors, A and B, are given by

A i j k B i j k= + + =− + −6 3 7 2 5 1and .

Are these two vectors perpendicular?

3.4.  Two vector fields are described by

A xy i xz j xyzk B x y i y z j y zk= + − = − +2 3 2 3 2 2 3and .

Is either vector field solenoidal? Irrotational? What simple 
change could be made to B to make it irrotational?

3.5.  Consider the three vectors:

A i j B i j C k= + = + =25 3 5 12 5, .and

The volume of the parallelepiped formed by these three 
vectors is 1636.66. Confirm that this is equivalent to

A B C⋅ ×( ) .

3.6.  An elementary—but quite interesting—demonstration 
that is frequently used in physics classrooms results in the 
collision of two spheres (when the experiment is successful). 
Sphere 1 is dropped vertically from some height, h, above a 
flat, planar surface. Sphere 2 is launched, at the exact instant 
that sphere 1 is released, from the flat surface some horizon-
tal distance away. Sphere 2 is aimed as precisely as possible 
at the initial vertical position of sphere 1. If gravity is the 
only significant force acting on the spheres, then they should 
collide, irrespective of the initial velocity of sphere 2. Now, 
suppose we wanted to attempt this experiment on a larger 
scale; in particular, assume that sphere 1 (S1) is raised to an 
initial position 100  ft above the ground surface. Sphere 2 
(S2) is to be launched at S1 from a (horizontal) distance 
275 ft away. We want the collision between the spheres to 
occur exactly 16 ft above the ground surface. What are the 
launch parameters for S2 that may achieve the desired 

We could set about computing ∫∫ ∇× ⋅S F nds( ) , but in 
this case, we note that the enclosing curve is a circle in the 
plane corresponding to z = 2; accordingly, 4 = x2 + y2. Since 
x = R cos θ and y = R sin θ, where R = 2, we write

	 3 2ydx xzdy yz dz
C

− +∫� . 	 (3.102)

We substitute for x and y and note that dz = 0:

	 − −∫ 3 22 2 2 2R d R d
C

sin cos .θ θ θ θ� 	 (3.103)

The reader may wish to verify

− + =− − =∫R d2 2 2

2

0

3 2 4 5 20( sin cos ) ( ) .θ θ θ π π
π

  (3.104)

It will be left as a student exercise to verify that the  
integral of the curl of F over the surface yields the same 
result (20π).

CONCLUSION

We have assumed that everyone who comes to this study of 
applied mathematics has exposure to basic physics and 
therefore has some familiarity with vectors and the resolu-
tion of forces. Accordingly, our purpose with this chapter is 
to provide a brief review of a few concepts that the student 
has seen previously. For the reader who needs more, an 
excellent treatment of vectors and vector manipulation has 
been provided by Spiegel et al. (2009). This book is espe-
cially useful for self-study because it contains numerous 
examples that are completely solved.

For the reader interested in the connection between 
vectors, tensors, and fluid mechanics, it would be difficult 
to find a better starting point than the book Vectors, Tensors, 
and the Basic Equations of Fluid Motion by Rutherford Aris 
(1962). This book is particularly important because it con-
sistently tries to reveal the connection between mathematics 
and the physical reality of fluid flow. For applied scientists 
and engineers—many of whom are mainly visual and tactile 
learners—this is critical. G. K. Batchelor pointed out about 
45 years ago that educators should always underscore the 
relation between “analysis and the behavior of real fluids; 
fluid dynamics is much less interesting if it is treated largely 
as an exercise in mathematics.” This observation applies to 
effective learning for students in all areas of applied science 
and engineering.
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B xzi y zj x y zk= + +2 3 2 2 ,

show that ∇x(A × B) = (B · ∇)A − B(∇ · A) − (A · ∇)B + 
A(∇ · B).

3.11.  Show that ∫∫ ∇× ⋅ =S F nds( ) 20π where F =  3yi − 
xzj + yz2k. See eq. (3.80) and the accompanying discussion 
for elaboration.

3.12.  On May 22, 1963, Mickey Mantle hit a fastball pitched 
by Bill Fischer of the Kansas City As that bounced off of 
the façade at the very top of old Yankee Stadium. In an 
interview after his retirement, Mantle stated that that 
homerun was the hardest he had ever struck a baseball. The 
straight-line distance from home plate to the façade was 
370 ft, and the point of impact was 118 ft above right field. 
One website has estimated that this ball would have traveled 
734  ft, making it the longest homerun ever hit in Major 
League baseball! This estimate is flawed for a number of 
reasons, although some witnesses did report that the ball was 
still rising when it struck the façade. Given that a baseball 
has a circumference of 9 in. and weighs 5 oz, estimate the 
distance this ball might have traveled taking drag into 
account:

F AKf R Vdrag = = ( )( )( . ).π ρ2 1
2

2 0 44

For point of reference, the initial velocity of a very well-
struck baseball is on the order of 45–50 m/s. At 47 m/s, the 
initial Reynolds number is

Re
( . )( )

( . )
, .= = =

d Vρ
µ

7 28 4700

0 151
226 489

In this region, the drag coefficient is approximately constant 
and therefore we will use 0.44 for f. Prove that this baseball 
could not have traveled 734 ft.

3.13.  Consider a vector with initial and final points (in terms 
of x, y, z values) of (5, 5, 5) and (3, 2, 2), respectively. Find 
the magnitude of this vector. Then, given the vector, 
A = 2i − 3j + k, demonstrate that ∇ · (∇ × A) = 0.

3.14.  The distribution of a two-dimensional scalar field in a 
rectangle with 0 ≤ x ≤ 10 and 0 ≤ y ≤ 5 is given by

50

8 14 36 3892 2 2 2y y x x x y xy− + − + − +
.

Find the maximum gradient at the point x = 7 and y = 3, 
and find the corresponding direction of this maximum gradi-
ent. Do your answers correspond with estimates made using 
Figure 3.9?

impact? In the classroom, drag and buoyancy can usually be 
neglected. Will drag affect the two spheres differently (the 
dropped sphere’s velocity is low relative to the launched 
projectile)? Explain the likely impact of drag on the large-
scale experiment.

3.7.  An archer releases an arrow at an angle (with respect 
to level ground) of 70°. If the arrow’s initial velocity is 
260  ft/s, how far will the arrow have traveled horizontally 
when it reaches its apogee? At t = 10.2 seconds, what is the 
angle between the arrow’s trajectory and the ground? 
Neglecting drag, what is the total distance traveled by the 
arrow after its return to level ground?

3.8.  A two-dimensional flow field has velocity vector com-
ponents (in the x-y plane) described by

v ay by v c xx y= − =exp( ) .and

Evaluate ∇xV at the points (x, y): (1, 1), (2, 2), (3, 3), and 
(4, 4), if a = b = c = ½.

3.9.  Elementary physics texts often cite 45° as the initial 
angle (of a projectile relative to the earth’s surface) that 
produces maximum range. This is incorrect for spheroidal 
or cylindrical objects that rotate during their translational 
motion. Obvious examples include golf balls, tennis balls, 
and baseballs. In golf, impact between the clubhead and the 
ball imparts reverse spin on the ball, generating a lift force 
due to the Magnus effect. This has the tendency to steepen 
the trajectory of the ball during ascent. If a golf ball leaves 
the clubhead at an initial angle of 16°, but with reverse spin 
of 900  rpm, what will the steepest angle achieved during 
ascent be? Assume the initial ball velocity is 145  mph, 
neglect drag, and assume the rotational motion does not 
decay. The lift force acts perpendicularly to the ball’s trajec-
tory, and we will estimate its magnitude with the following 
expression (actually valid for a right circular cylinder on a 
per-unit-length basis):

Lift air trans= 2π ρ θR V V .

We will take the density of the air to be 0.0012 g/cm3, 
the tangential velocity (ball’s surface) to be 188.4 cm/s, and 
the translational velocity to be 6482 cm/s. Assume the effec-
tive radius of the ball is 2 cm. Since the lift force is expressed 
on a per-unit-length basis, take the “length” of the golf ball 
to be 3 cm.

3.10.  Given

A x yi yzj xyzk= − +2 3

and

http://c3-disp-0086
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3.15.  A cardioid is a figure consisting of the locus of points 

given by x y Bx B x y2 2 2 2+ + = + . This shape bears some 
resemblance to a human heart, hence the name. Suppose 
B = 6 and assume we need to determine the area enclosed 
by the curve. We should be able to find the area of a plane 
region through the use of a line integral over the boundary 
according to Green’s theorem; specifically,

A dxdy xdy ydx
R C

= = −∫∫ ∫12 ( ).

Prove that the area of the cardioid is 108π/2. Hint: Try 
putting the problem in polar form.
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FIGURE 3.9.  Scalar field for Problem 3.14.
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4
NUMERICAL QUADRATURE

INTRODUCTION

Definite integrals must be evaluated routinely and for cases 
in which an antiderivative cannot be found, or for cases in 
which the analytic process is simply too difficult, a numeri-
cal scheme (numerical integration, or quadrature) may be 
our only recourse. Consider the integral

	 x x dx2 2

0

exp( ) ,−
∞

∫ 	 (4.1)

which we know to have the value π 4. Let us consider a 
plot of the integrand as a function of x, shown in Figure 4.1.

We will conduct an elementary experiment with the graph 
of this integrand: First, we will count the smaller rectangular 
regions under the curve and add their areas together to obtain 
(70)(0.25)(0.025) = 0.4375. Next, we will cut out the region 
under the curve and weigh it and compare that weight to the 
average weight per rectangle. For the paper under the curve, 
we find W = 0.5754 g, and for each box, 0.008003 g. There-
fore, the area under the curve is approximately 71.89 rect-
angular boxes or (71.89)(0.25)(0.025) =  0.4493. Our first 
estimate is in error by about 1.3% (under) and our second 
estimate by about 1.4% (over). For many applications, a 
rough evaluation like this would be acceptable, but suppose 
it was not. We might have a critically important problem 
where accuracy was paramount. Therefore, it will be produc-
tive for us to review some techniques that may be capable 
of producing significantly improved estimates.

TRAPEZOID RULE

One of the simpler schemes for making this evaluation is the 
trapezoid rule; we use a straight-line approximation for f(x) 
over a finite interval, Δx, and then multiply the average 
value for f(x) by the width. For example, let f1 =  f(x) and 
f2 = f(x + Δx). Our approximation, therefore, is

f x dx
f f

x
x

x x

( ) .

+

∫ =
+








∆

∆1 2

2

If Δx is sufficiently small, this may work well. We 
will apply it first to the previous example; notice in the fol-
lowing code that the upper limit for the integral has been  
set to 8. We conclude that this may be reasonable since 
(8)2exp(−8)2 ≅  1.03 ×  10−26. This is an example of limit 
truncation; we have changed the upper limit of the integral 
to 8 from ∞. One might want to assess this by using differ-
ent upper limits to better gauge the contribution of the right-
hand tail. Of course limit truncation may introduce error,  
but in this particular case, the behavior of the integrand is 
easily anticipated.

#COMPILE EXE
#DIM ALL
    REM *** Numerical integration by trapezoid rule
            GLOBAL x,dx,fx,f1,f2,a,b,fbar,sum,zz AS 

DOUBLE

Applied Mathematics for Science and Engineering, First Edition. Larry A. Glasgow.
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arithmetic. Again we will use the trapezoid rule to 
consider

	 sin ( ) . .2

0

3
2

1 570796327x dx

π
π

∫ = = 	 (4.2)

n Single Precision, I(x) Double Precision, I(x)

125 1.570797 1.5707963268
250 1.570800 1.5707874013
500 1.570789 1.5707952107
1000 1.570781 1.5707961870
2000 1.570817 1.5707963270
4000 1.570853 1.5707963250
8000 1.570871 1.5707963264

Notice that once we exceed n ≈  2000 with the single-
precision calculations, the result deviates increasingly  
from the correct value given in eq. (4.2). We will consider 
this unwelcome development—cumulative roundoff error—
more fully later in this chapter.

SIMPSON’S RULE

We saw that we could employ a linear approximation with 
the trapezoid rule and get satisfactory results for integrals 
that were not particularly “difficult.” An obvious extension 
that might yield better results could be obtained by merely 
increasing the degree of the polynomial. For example, we 
might let f(x) be approximated by

	 y f x ax bx c= = + +( ) .2 	 (4.3)

If we place the three necessary function evaluations  
(for y1, y2, and y3) at x = −Δx, x = 0, and x = +Δx, then 
we find

	 y a x b x c1
2= − +( )∆ ∆ 	 (4.4)

	 y c2 = 	 (4.5)

	 y a x b x c3
2= + +( ) .∆ ∆ 	 (4.6)

Now we will actually integrate the polynomial (eq. 4.3) 
from −Δx to +Δx:

( )

( )

ax bx c dx

a
x

b
x cx

a
x

x

x

x

x

2

3 2 3

3 2

2

3

+ +

= + +






 = +

−

+

−

+

∫
∆

∆

∆

∆

∆ 22c x∆ .

  (4.7)

FUNCTION PBMAIN
            a=0:b=8.0:x=a
            dx=(b-a)/1000
                GOSUB 300
                    f1=fx
    50 REM *** continue
                    x=x+dx
                        IF x>b THEN 200
                    GOSUB 300
                    f2=fx
                fbar=(f1+f2)/2
                    sum=sum+fbar*dx
                        f1=f2
                        GOTO 50
    200 REM *** continue
                    PRINT “Value of definite integral is: “;sum
                INPUT “Shall we continue?”;ZZ
                IF ZZ>0 THEN END
    300 REM *** function evaluation for integral
                    fx=x^2*EXP(-x^2)
                    RETURN

END FUNCTION

This trapezoid rule code produces a result of 0.4431135 
using 1000 intervals between 0 and 8. Despite the very small 
error produced in this case, one might wonder if a more 
demanding application could require a more accurate 
approximation. After all, there is nothing to prevent us from 
using a polynomial to approximate f(x), as opposed to a 
straight line. Before we attempt that, however, let us examine 
one other case where the value of the definite integral is 
known so we can explore the impact of increasing the 
number of intervals using both single- and double-precision 

FIGURE 4.1.  Behavior of x2 exp(−x2). The value of the integral, 
eq. (4.1), is known to be π 4 0 443113= . .
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    300 REM *** function evaluation
                        fx=1/x*EXP(2*x)
                        RETURN
 END FUNCTION

This simple code uses double-precision floating point 
numbers with about 15 or 16 digits of precision; the actual 
program output is 887.20056962. . . . 

So far, we have examined definite integrals that pose no 
particularly great challenge, but to see the benefits offered 
by increasing the order of the polynomial used for the 
approximation, we need something else. Consider the 
integral

	
dx

x( )
. .

.

3
99 6667

2

0

2 99

−
=∫ 	 (4.9)

We will apply Simpson’s rule to this problem, using single 
precision and starting with a very modest number of inter-
vals, successively doubling n.

n 100 200 400 800 1,600 3,200 6,400 12,800

Definite 
integral

140.82 109.82 1779.02 429.62 158.65 122.10 101.83 99.65

It is a worthwhile exercise for the reader to test Simpson’s 
rule on the integral in eq. (4.9) using other values for n, 
perhaps 600. The results we see here suggest that we might 
encounter cases for which Simpson’s rule will not really be 
adequate. What would happen if we increased the order of 
the polynomial approximation again?

NEWTON–COTES FORMULAE

We posed a question regarding the impact of increasing the 
order of the polynomial approximation used for numerical 
quadrature. After all, we used a straight line with the trap-
ezoid rule, and a quadratic approximation with Simpson’s 
rule. There is nothing to prevent us from adding more func-
tion evaluations in an effort to make our curve more accu-
rately reflect the behavior of the integrand. This succession 
of polynomials is often referred to collectively as the 
Newton–Cotes formulae. Let us tabulate these expressions 
for orders 1 through 5:

	
∆x

y y
2

1 2( )+ trapezoid rule 	 (4.10)

	
∆x

y y y
3

41 2 3( )+ + Simpson s rule’ 	 (4.11)

We use the above-mentioned three function evaluations 
to obtain a, b, and c. The resulting algorithm for Simpson’s 
rule is

∆ ∆x
f f f

x
y y y

3
4

3
41 2 3 1 2 3( ) ( ).+ + + +or   (4.8)

For an easy comparison, let us apply this method to the 
integral (eq. 4.2) examined previously, ∫ =0

2 3 2
π

πsin ( )x dx . 
Using 500 intervals and single precision, we obtain 1.570791, 
and with 500 intervals and double precision, 1.57079632679; 
note how these values compare to the appropriate entries in 
the table provided earlier.

An illustration of logic required for Simpson’s rule is 
shown as follows for the slightly more difficult definite 
integral:

exp( )
.

.

2
887 20057

4 75

5
x

x
dx∫ =

(numerical result from the code as it appears here). 
Mathcad™ produces 887.201 for this integral using its 
adaptive scheme, and you may want to contemplate this 
integrand to see if you can determine why we might need 
an adaptive algorithm. For transparency, we will make no 
effort to be computationally efficient.

#COMPILE EXE
#DIM ALL
    REM *** Integration by Simpson’s rule
            GLOBAL xi,xf,dx,x,y1,y2,y3,fx,sum,ZZ AS 

DOUBLE
FUNCTION PBMAIN
            xi=4.750:xf=5.0:sum=0
                dx=(xf-xi)/64
                      x=xi
    50 REM *** continue
                    GOSUB 300
                        y1=fx
                    x=x+dx
                    GOSUB 300
                        y2=fx
                    x=x+dx
                    GOSUB 300
                        y3=fx
                            sum=sum+dx/3*(y1+4*y2+y3)
                        IF x&#x003C;xf THEN 50 ELSE 100
    100 REM *** continue
                   PRINT sum
                    INPUT “Shall we continue?”;ZZ
                    IF ZZ>0 THEN END

http://c4-disp-0012
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Let us increase n by a factor of 10 successively to see 
what happens:

n I(x)

50 0.2617994
500 0.2617993

5,000 0.2619558
50,000 0.2615938

500,000 0.2633153
5,000,000 0.2490056

50,000,000 2.1934250

Our effort to get an extremely accurate value for the 
definite integral was misguided as we have discovered  
that roundoff error can corrupt even a very simple calcula-
tion. There are two important lessons here: Use double 
precision whenever possible, and do not blindly assume 
that decreasing the interval size (Δx) will produce a 
better result.

We now shift our focus to truncation errors that result 
from terminating an infinite series expression (this will 
occur anytime a continuous function is represented dis-
cretely). Numerical quadrature is susceptible to this problem 
too, and it would be extremely useful to be able to assess 
the size of this error. We will begin by using the trapezoid 
rule to illustrate this phenomenon. Let us contemplate the 
integral:

	 ( ) . .2 5 7 166672

3

4

+ − =∫ x x dx 	 (4.16)

We set Δx =  1 and we evaluate the integrand at both 
x = 3 and x = 4; let those values be represented by f ′(3) = 8 
and f ′(4) =  6. We also find the antiderivative of the inte-
grand and evaluate it at both x = 3 and x = 4: The values 
are f(3) = 19.5 and f(4) = 26.6667, respectively. Of course, 
if we subtract the former from the latter, we get the exact 
value provided in eq. (4.16), 7.16667. For the trapezoid rule, 
we would take [ f ′(3) + f ′(4)]/2 and multiply by Δx (which 
is 1); the result is 7, of course, which means that the absolute 
error is 0.16667 (or about 2.3%). Now let f(3) be represented 
by y(x) and f(4) be y(x + Δx)—we expand the latter in a 
Taylor series:

y x x y x
dy

dx
x

d y

dx

x

d

x x

( ) ( )
( )

+ = +





 +











+

∆ ∆
∆2 2

3

2 2

yy

dx

x

x
3

3

6








 +

( )
.

∆
�

  (4.17)

We subtract y(x) noting that the remainder on the right-hand 
side is approximately the area we seek:

3

8
3 31 2 3 4

∆x
y y y y( ) /+ + + Simpson s 3 8 rule’   (4.12)

	
2

45
7 32 12 32 71 2 3 4 5

∆x
y y y y y( )+ + + + 	 (4.13)

5

288
19 75 50 50 75 191 2 3 4 5 6

∆x
y y y y y y( ).+ + + + +   (4.14)

There is an obvious cost associated with this process: The 
number of function evaluations required per step for an nth 
order approximation will be n +  1. Will the extra effort 
required be worthwhile? We can illustrate the effectiveness 
of this approach by using the fourth-order Newton–Cotes 
algorithm on the integral,

	
dx

x x( sin cos )
. .

/

4 9
0 26179939

2 2

0

2

+
=∫

π

	 (4.15)

If we specify the number of intervals as 50, 100, and 200, 
successively, we obtain the results 0.2774816, 0.2617994, 
and 0.2617994. We have obtained a high-quality result using 
a limited number of intervals with single precision! Of 
course, this was not a very demanding example, so we may 
want to ask if the increased complexity of the algorithm will 
help us deal with the difficulty we encountered with eq. 
(4.9). The unfortunate answer is a qualified “no.” There are 
cases where merely increasing the order of the polynomial 
will not materially improve our estimate for the definite 
integral. We may occasionally need better tools, and in the 
following material, we will look at several candidates. 
Before we explore some alternatives, however, we should 
consider some of the consequences of the types of calcula-
tions we have proposed for numerical quadrature.

ROUNDOFF AND TRUNCATION ERRORS

Let us take Simpson’s algorithm (in single precision)  
and apply it to an elementary definite integral. We have an 
intuitive impression at this point that we can always improve 
our estimate by reducing the size of the interval (increasing 
the number of steps employed). But we also know that float-
ing point variables are only represented to the precision of 
the computing device we use. If the roundoff errors associ-
ated with that process accumulate, we might get results  
that are incorrect or unexpected. We will conduct this experi-
ment with

dx

x x4 9
0 26179939

2 2

0

2

sin cos
. .

/

+
=∫

π
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where x ≤ χ ≤ x + Δx (think of the mean value theorem 
from calculus). If we wish to employ our estimate of error 
for an arbitrary case with n-intervals,

e
x

f f f fn n∑ =− ′′′ + ′′′ + ′′′ + ′′′( )
[ ( ) ( ) ( ) ( )].

∆ 3

1 2 3
12

χ χ χ χ�

		  (4.28)

How useful this expression is depends entirely on how 
difficult it is to evaluate the second derivative of the inte-
grand, f‴. If one were integrating tabular data, for example, 
both f″ and f‴ would be unknown. There is a great deal of 
information available related to error estimation in numeri-
cal quadrature and the interested reader might begin by 
reviewing chapter 5 in James et al. (1977). We will also 
make error analysis the focus of one of the exercises at the 
end of this chapter.

ROMBERG INTEGRATION

The Romberg scheme utilizes an extremely powerful tech-
nique known as Richardson’s extrapolation. Suppose, for 
example, that we were able to estimate the error associated 
with one of our numerical quadrature procedures. Further-
more, suppose we then decreased the step size (increasing 
the number of intervals) and found the error associated with 
that estimate. If we extrapolated the diminishing error to 
zero, we might be able to obtain a high-quality estimate with 
far less numerical work than would need to be carried out 
otherwise. We will illustrate this concept with a simple 
example, using only the trapezoid rule to prepare our suc-
cessive estimates. Let us consider the integral,

x xdxln .
1

5

14 118∫ = (from the analytic solution).   (4.29)

We begin by using the trapezoid rule and we will start 
with just one interval (such that Δx = 4. We then cut Δx in 
half and evaluate the integral again. We repeat this process 
several times, resulting in a series of estimates that appear 
in the following table:

N Estimate for Integral, I(x)

1 16.094379
2 14.638863
4 14.250903
8 14.151423

16 14.126351
32 14.120069

In this procedure, we are cutting the interval in half, suc-
cessively. An improved estimate for the definite integral is 
obtained using pairs of values from the table according to

y x x y x f x f
x

f
x

x x x( ) ( )
( ) ( )

.+ − = ′ + ′′ + ′′′ +∆ ∆
∆ ∆2 3

2 6
�

		  (4.18)

For the trapezoid rule, we need both fx′ and ′+fx x∆ , so 
using the Taylor series expansion again,

	 ′ ≅ ′+ ′′ + ′′′ ++f f f x f
x

x x x x x∆ ∆
∆

( )
( )

.
2

2
� 	 (4.19)

Therefore,

′′ = ′ − ′− ′′′ −










+f

x x
f f f

x
x x x x x

( ) ( )
.

∆ ∆ ∆
∆

2 2

2 2 2
�   (4.20)

Now we take this result back to eq. (4.18):

y x x y x
f f

x f
xx x x

x( ) ( )
( )

.+ − =
′ + ′










− ′′′ −+∆ ∆

∆∆

2 12

3

…

		  (4.21)

Notice that the exact area is on the left-hand side, and the 
trapezoid rule approximation is the bracketed term on the 
right. Therefore, the error associated with this one interval 
example is on the order of

	 e f
x

x1

3

12
≅− ′′′

( )
.

∆
	 (4.22)

Remember, fx′′′ is the second derivative of the integrand, 
and it is constant in this case:

	 ′ = + −f x xx 2 5 2, 	 (4.23)

	 ′′= −f xx 5 2 , 	 (4.24)

and

	 ′′′=−fx 2. 	 (4.25)

Therefore, we have

	 ′′′ = =f
x

x
( ) ( )( )

( )
.

∆ 3 3

12

2 1

12

1

6
	 (4.26)

In this instance, the estimate of error is borne out exactly 
by our previous result. Generally, we will not be that fortu-
nate and ′′′fx  will vary over the range of the independent 
variable, x. We will rewrite the error so that

	 − ′′′ ≈− ′′′f
x

f
x

x
( ) ( )

,
∆ ∆3 3

12 12
χ 	 (4.27)
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significant, Romberg integration can be used to great 
advantage.

ADAPTIVE INTEGRATION SCHEMES

The “difficult” integral we have examined previously,

dx

x( )
. ,

.

3
99 6667

2

0

2 99

−
=∫

is one for which the integrand varies by four orders of mag-
nitude (1/3 to 10,000) as x varies from its lower limit (0) to 
the upper one (2.99). This kind of change in magnitude 
indicates that a different approach may be needed, namely, 
an adaptive algorithm. The underlying logic is straightfor-
ward: When we encounter a region in which the integrand 
begins to change dramatically, we decrease the interval size. 
There are many adaptive implementations available in com-
mercial software packages. Mathcad’s adaptive algorithm, 
for example, produces 99.667 for the integral in question.

Simpson’s Rule

It is reasonable for us to wonder if we could make a few 
simple changes to one of the elementary quadrature schemes 
and produce an adaptive scheme that is effective. We will try 
this using Simpson’s rule where we are using the variable, 
sum, to accumulate increments of area. We will look at the 
per-step change in sum; if it exceeds a set value, we will 
reduce Δx. In particular, we will set the threshold for change 
in sum at 10% initially, and if that size change occurs, we 
reduce the size of the interval by cutting it in half.

If Change  
Exceeds (%) Divide dx by

Result, I(x), Using 
Double Precision

10 2 109.9738
5 2 104.5676
2.5 2 99.66676
1.25 2 99.66676
0.625 2 99.66676

We quickly discover that our very crude modification to 
Simpson’s rule will work for this case, as long as we select 
the proper values. The reader is invited to explore other 
combinations. If we do not know a lot about our integral in 
advance, it may be difficult to get this to work as we antici-
pate. After all, we have used two arbitrary choices: the 
threshold change for the accumulating sum and the size of 
the reduction of Δx. We must have something more reliable 
and much more broadly applicable.

Fortunately, a number of options are available to us 
designed specifically to deal with this type of problem. 

	 I
I I

I Ix x
x ximproved =

−
−

= −( )
2

2 1

1

3
4

2
2

2 2
∆ ∆

∆ ∆
/

/ . 	 (4.30)

We will apply this procedure to the definite integral 
(4.29), using the subsequent pairs of values from our table.

Pair ID Iimproved

2–1 14.1537
4–2 13.4549
8–4 14.1183

16–8 14.1180
32–16 14.1180

Notice that by the time we get to the 8–4 pair, we have 
reduced the error of our estimate down to 0.002%. The 
attractive nature of the Romberg scheme is now apparent: 
We have dramatically improved the results of our numerical 
integration without much additional computational effort! 
You should be aware of the fact that if we simply apply  
the trapezoid rule with 32 intervals, our error is still  
about 0.015%. This example demonstrates the superiority  
of Romberg integration—at least for this case—very 
conclusively.

We would like to know if the outstanding results obtained 
in the preceding example can be expected more broadly 
(universally would be nice, but we will settle for less than 
that). Recall our exploration of the integral,

dx

x( )
. .

.

3
99 6667

2

0

2 99

−
=∫

Let us apply the Romberg scheme here to find out if  
it is comparably effective for this more difficult case. The 
integrations will be carried out with Simpson’s rule this 
time.

n I(x) Extrapolated Value

1 39,866.9658 –
2 4,984.2782 −6,643.28
4 2,493.8525 1,663.71
8 1,250.4297 835.95

16 632.0535 425.93
32 328.6733 227.55
64 185.9160 138.33

128 125.6151 105.52
256 105.2509 98.46
512 100.4610 98.86

1024 99.7431 99.50

By using the 1024–512 interval pair, we were able to  
use extrapolation to reduce the error of our estimate to  
just 0.17%. It should be apparent to you that for certain  
types of problems where the computational burden is really 
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adequate. We now subdivide the two quarters in the  
right half:

I I I1 495
1 86875

1 86875
2 2425

2 2425
2 61620 21959 0 43662.

.
.
.

.
.. , . ,= = 55

2 61625
2 99

1 29678

629 769

=

=

. ,

. ..
.I

		  (4.38)

The sum of the first pair is 0.6562, which is a bit of a change 
from 0.66153 (once more about 0.8%). To fit the space avail-
able, we will again assume this is sufficient and subdivide 
the two intervals of the right half:

I I I2 2425
2 42938

2 42938
2 61625

2 61625
2 80 43246 0 85425.

.
.
.

.
.. , . ,= = 00313

2 80313
2 99

2 49337

323 899

=

=

. ,

. ..
.I

		  (4.39)

The sum of the first pair is 1.28671 as opposed to 1.29678 
from eq. (4.38). Once again, we assume this meets our (very 
relaxed) criterion and subdivide the right-half intervals:

I I I2 61625
2 70969

2 70969
2 80313

2 80313
20 83894 1 63643.

.
.
.

.
.. , . ,= = 889657

2 89657
2 99

4 62063

176 537

=

=

. ,

. ..
.I

		  (4.40)

Compare the sum of the first pair (2.47537) with 2.49337 
from the above-mentioned equation (the difference is once 
again about 0.8%); we will subdivide the right-half intervals 
again:

I I I2 80313
2 84985

2 84985
2 89657

2 89657
21 58086 3 01076.

.
.
.

.
.. , . ,= = 994329

2 94329
2 99

8 00725

108 261

=

=

. ,

. ..
.I

		  (4.41)

We will repeat the process one more time, assuming that 
4.59162 is sufficiently “close” to 4.62063:

I I I2 89657
2 91993

2 91993
2 94329

2 94328
22 82120 5 14751.

.
.
.

.
.. , . ,= = 996665

2 96665
2 99

12 3914

75 550

=

=

. ,

. ..
.I

		  (4.42)

The sum of these four integrals is 95.9101 and we are 
rapidly closing in on a much better approximation for the 
definite integral (eq. 4.34). This detailed example reveals  
the power of the adaptive version of Simpson’s rule. Since 
we stop making calculations in intervals where our accuracy 
is sufficient, we can significantly reduce the total number of 
operations relative to cases where we merely continually 
reduce Δx over the entire interval (a, b).

Gaussian Quadrature and the  
Gauss–Kronrod Procedure

It is important that the reader be aware of other recent devel-
opments in adaptive numerical quadrature. The Gauss–
Kronrod (GK) procedure is a powerful method that can be 

Kuncir (1962) suggested a method using Simpson’s rule in 
which an interval would be subdivided if the estimated error 
exceeds some threshold value. Consider the integral

	 f x dx I a b
a

b

( ) ( , ).∫ = 	 (4.31)

The interval (a, b) has a midpoint, (a + b)/2; we rewrite the 
integral (eq. 4.31), splitting it into two pieces:

	 f x dx f x dx f x dx
a

b

a

a b

a b

b

( ) ( ) ( ) .∫ ∫ ∫= +

+

+

2

2

	 (4.32)

A strategy is now apparent: We compute the left-hand 
side of eq. (4.32) and compare it to the right-hand side, 
which was obtained by subdividing (a, b). If the estimates 
do not agree within a specified tolerance, further subdivision 
is required. We stop the successive subdividing process 
when the criterion suggested by Lyness (1969) is met:

	
I a

a b
I
a b

b I a b, , ( , )
.

+





+

+





−

<2 2
15

ε 	 (4.33)

We can easily anticipate how this will work for elemen-
tary functions, but we should apply it to an integral that we 
know to be problematic. Once again, we consider

	
dx

x( )
. ;

.

3
99 667

2

0

2 99

−
=∫ 	 (4.34)

we apply Simpson’s rule with just three function evaluations 
(the minimum). Then we will bisect the interval (midpoint 
1.495) and apply Simpson’s rule to each half. We will put 
the results in a “tree” structure to illustrate the progress of 
the calculations:

	 I0
2 99 4984 278. . ,= 	 (4.35)

	 I I0
1 495

1 495
2 990 33413 2493 518.
.
.. , . .= = 	 (4.36)

Of course, the sum in eq. (4.36) is very different from  
level 1 (2493.85 as opposed to 4984.28); subdivision is 
necessary:

I I I0
0 7475

0 7475
1 495

1 495
2 24250 11065 0 22074 0 66153.

.

.
.
.. , . , . ,= =

II2 2425
2 99 1249 437.
. . .=

		  (4.37)

Note that the sum of the first two is 0.33139—this is a 
change of 0.8% from level 2, that is, the first half of eq. 
(4.36), and we will assume for this illustration that this is 

http://c4-disp-0044
http://c4-disp-0040
http://c4-bib-0006
http://c4-disp-0037
http://c4-disp-0038
http://c4-bib-0008
http://c4-disp-0042
http://c4-disp-0042


54    Numerical Quadrature

The weight factors we are to employ are both equal to  
1, so our approximation for the definite integral is now 
written as

f x dx F t F F
a

b

j j

j

( ) ( ) ( ) ( )∫ ∑= = −






+ +







=

5

2

5

2
1

1

3
1

1

31

2

ω














.

		  (4.47)

The right-hand side is equal to 33.3333—one might ask, 
why does the method yield the exactly correct result? The 
answer is that an nth order Newton–Cotes formula will inte-
grate a polynomial of order n, or less, exactly. With Gaussian 
quadrature, the exactness of the result is extended to poly-
nomials of degree 2n + 1.

For more general cases, we can improve the quality of 
the approximation by simply increasing the order, and the 
reader interested in using Gaussian quadrature should 
consult the extensive table (table 25.4) in Abramowitz and 
Stegun (1964, pp. 916–919). For example, if we choose 
n = 6, then t-positions are found from the roots of the appro-
priate entry in the previous table; these positions (nodes) and 
the corresponding weight factors are as follows:

t-Positions Weight Factors

±0.238619186083 0.467913934573
±0.661209386466 0.360761573048
±0.932469514203 0.171324492379

To apply this to

dx

x( )
,

.

3 2

0

2 99

−∫

we would rewrite the integral as

1 495

2 26503 4 49995 2 23503 2

1

1
.

. . .

dt

t t− +
−

+

∫

and use the values in the previous table. This results  
in an estimate for the definite integral of 23.6594, which  
we know to be much too low (not at all surprising since  
n is only 6). Somewhat better results are obtained for 
∫ − =−0

1
1 3 4x x dxln( ) / , which we transform to

1

2

1

2

1

2

1

2

1

2
1

1

t t dt+






 − +








−

+

∫ ln .

In this case, Gaussian quadrature with n  =  6 yields 
−0.734846, which is only about 2% smaller (in magnitude) 
than the correct value. And remember, this is achieved with 
only six function evaluations!

used in this context; in fact, Kahaner et al. (1989) state that 
the GK algorithm “is currently one of the most effective 
methods for calculating general integrals.” To set the frame-
work for a useful description, we must begin with an n-point 
Gaussian quadrature, where a definite integral is approxi-
mated by the formula

	 f x dx f x
a

b

j j

j

n

( ) ( ).∫ ∑≅
=

ω
1

	 (4.43)

The ωjs are weight factors that are applied to specific 
x-positions. We can make Gaussian quadrature more trans-
parent with an illustrative example. Consider the definite 
integral

f x dx x x dx
a

b

( ) ( ) . .∫ ∫= + − =5 4 33 33332

0

5

  (4.44)

Our first task is to transform this integral to ∫ −
+

1

1
F t dt( ) ; we 

do this by setting x = mt + c. Therefore, we have the two 
equations, 0 = −m + c and 5 = m + c. By adding the equa-
tions together, we find c = 5/2 and m = 5/2; thus,

	 x t dx dt= + =
5

2

5

2

5

2
and . 	 (4.45)

Our definite integral is now written as

	
5

2

35

4

5

2

25

4
2

1

1

− −








−

+

∫ t t dt, 	 (4.46)

and the reader can easily verify that this is also equal to 
33.3333. Now we return to eq. (4.43) and fix n =  2. The 

specific t-positions are −1 3/ ( )  and +1 3/ ( ) , and these 
locations correspond to zeros of the Legendre polynomial, 
P2 (a limited table of Legendre polynomials is provided here 
for the reader’s reference). Remember, Legendre polynomi-
als are orthogonal on the interval (−1, +1).

n = 0 Legendre Polynomials, Pn

0 1
1 x
2 1

2
23 1( )x −

3 1
2

35 3( )x x−

4 1
8

4 235 30 3( )x x− +

5 1
8

5 363 70 15( )x x x− +

6 1
16

6 4 2231 315 105 5( )x x x− + −

7 1
16

7 5 3429 693 315 35( )x x x x− + −
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Left Half Right Half

G K G K

0.331620 0.331371 39.730679 27.053353

As you can see, the significant error is in the right half, 
so we repeat the process for (1.495-2.2425) and 
(2.2425-2.99):

Left Half Right Half

G K G K

0.656664 0.656175 71.875407 98.943049

Of course, we already know that the difficulty with this 
integral is a consequence of the upper limit, so the right half 
is divided into two once again (2.2425-2.61625) and 
(2.61625-2.99):

Left Half Right Half

G K G K

1.2876488 1.2867079 88.4937846 98.0094297

You will observe that we are very rapidly acquiring a 
much-improved estimate for this definite integral; in fact, if 
we take these last two Kronrod values and add to them the 
left halves that have been dropped; we will see that we are 
not that far from the correct value (99.6667). The GK 
embedded procedure is powerful indeed, and it automati-
cally provides us with a means to estimate our error. Con-
sequently, it lends itself very nicely to adaptive quadrature 
for “difficult” integrals.

INTEGRATING DISCRETE DATA

Suppose we have the following set of discrete data:

x y(x)

11 0.338
19 0.340
27 0.335
35 0.333
43 0.326

Our task is to produce an accurate integration of these data 
for 11 ≤  x ≤  43. We note immediately that the data are 
highly nonlinear as is evident in Figure 4.2.

We have several options for performing the necessary 
integration, including some crude methods discussed at the 
very beginning of the chapter. But because we have stipu-
lated that we need a very accurate value, we should look for 
a better technique.

Now that we have a little familiarity with Gaussian 
quadrature, we can proceed to our real objective, which is 
to modify the process in such a way that it can be effective 
for “difficult” integrals. One clever way to accomplish this 
goal is with an embedded algorithm for which error estima-
tion is automatically available (embedded schemes are also 
sometimes referred to as nested or progressive). Such an 
approach will be more efficient if we do not have to start 
over with respect to node placement; that is, we will make 
far fewer calculations if we can reuse some of the existing 
function evaluations. This is exactly what the GK procedure 
was designed to do. Each step requires (2n +  1) function 
values, so for this example, we will consider the (7-15) GK 
nodal placements. We begin with Gaussian quadrature for 
n = 7 (see the table of Legendre polynomials). The Gaussian 
placements and weights are

±0.9491079123 0.1294849662
±0.7415311856 0.2797053915
±0.4058451514 0.3818300505

0.0000000000 0.4179591837

Since we have seven nodes here, the Kronrod modifica-
tion will have (2n + 1) = 15, but seven of them are identi-
cally the Gaussian values. Note that the weight factors are 
different (they are about half of the Gaussian weights), 
however:

±0.9914553711 0.0229353220
±0.9491079123 0.0630920926
±0.8648644234 0.1047900103
±0.7415311856 0.1406532597
±0.5860872354 0.1690047266
±0.4058451514 0.1903505781
±0.2077849550 0.2044329401

0.0000000000 0.2094821411

We will explore the now familiar integral,

dx

x( )
,

.

3 2

0

2 99

−∫

one more time. First, we apply the (7-15) GK to the entire 
integral remembering that because of the change in limits, 
we must make a variable change as x = 1.495t + 1.495. The 
results are

G K

30.15765 84.13157

The discrepancy is enormous, so we cut the interval in half, 
applying the (7-15) GK to each (0-1.495) and (1.495-2.99). 
The results are as follows:

http://c4-fig-0002


56    Numerical Quadrature

and so on. A key feature of spline interpolation is that the 
first and second derivatives will be continuous from one 
interval to the next. Accordingly, we will write the cubic 
polynomial in generic form:

y a x x b x x c x x di i i i i i i= − + − + − +( ) ( ) ( ) .3 2   (4.50)

Therefore,

	 ′ = − + − +y a x x b x x ci i i i i3 22( ) ( ) 	 (4.51)

and

	 ′′ = − +y a x x bi i i6 2( ) . 	 (4.52)

It is apparent for our problem that we will have 
(3) × (4) = 12 unknown coefficients. Of course, the relation 
(eq. 4.50) provides four equations. We will also require that 
the first and second derivatives match at the interval bound-
aries; that provides six more equations through application 
of eq. (4.51) and eq. (4.52), but we are still two short! One 
way we can obtain the final two relations is to specify the 
second derivative at the ends of the interval (i.e., for x = 11 
and 43, in our case). If we just choose to set y″ = 0, we get 
what is referred to as a linear spline. Though this seems 
incredibly arbitrary, Hanna and Sandall (1995) note that it 
does not seem to lead to significant errors in actual applica-
tion. We will now look at the complete set of equations for 
our cubic spline curve fit:

	

512 8 0 002

512 64 8 0 005

512 64 8 0 002

5

1 1

2 2 2

3 3 3

a c

a b c

a b c

+ =
+ + =−
+ + =−

.

.

.

112 64 8 0 0074 4 4a b c+ + =− .

	 (4.53a,b,c,d)

	

192 0

192 16 0

192 16 0

1 1 2

2 2 2 3

3 3 3 4

a c c

a b c c

a b c c

+ − =
+ + − =
+ + − =

,

,

,

	 (4.54a,b,c)

	

48 2 0

48 2 2 0

48 2 2 0

1 2

2 2 3

3 3 4

a b

a b b

a b b

− =
+ − =
+ − = .

	 (4.55a,b,c)

And finally, by setting the second derivative equal to zero 
at the endpoints,

	 b a b1 4 40 48 2 0= + =, . 	 (4.56a,b)

Since b1 was eliminated, we have 11 equations and the 
same number of unknowns. The solution for this set of equa-
tions is

FIGURE 4.2.  Nonlinear discrete data for numerical quadrature. 
Note that the ordinate, y(x), has been greatly expanded and only a 
small segment of the axis has been plotted.
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0.340

0.335

0.330

0.325

One powerful method for dealing with such situations is 
through the integration of a cubic spline interpolation. 
Spline refers to a draftsman’s tool used to generate smooth 
curves connecting multiple points; for a picture of such a 
device, see Grandine (2005), who describes how extensively 
splines are being used at Boeing (to represent complicated 
geometries or geometric boundary conditions). The idea 
with spline interpolation is a very simple one: Polynomial 
pieces are fit together in such a way that the function is 
continuous and is continuously differentiable. Moreover, 
these pieces connect smoothly and the derivatives are con-
tinuous at the interval boundaries. The process employed is 
distinctly different from merely fitting a polynomial of 
higher degree to all of the available data—and if you have 
ever tried this, you already know that such curve fits are 
often unphysical. They usually show too much oscillation 
(curvature) for intermediate values and unbounded (nonas-
ymptotic) behavior at the extremes.

The data set of interest to us has five points (so four 
interior intervals) with each separated by a Δx, or h, of 8. 
We will use a cubic polynomial to represent the data in each 
interval, so for 11 ≤ x ≤ 19, we write

y a x b x c x d= − + − + − +1
3

1
2

1 111 11 11( ) ( ) ( ) .   (4.48)

Naturally, when x =  11, we see d1 =  0.338. You will 
notice immediately that we have four sets of constants, one 
set for each interior interval. In every case, d will be given 
by the left-hand endpoint value of y, so for the second 
interval,

y a x b x c x= − + − + − +2
3

2
2

219 19 19 0 340( ) ( ) ( ) . ,  (4.49)
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number of rectangles. For the case in which we use n rect-
angles (but allow n to become very large) and x  = 
a ≤ φ ≤ x = b,

	 f x dx f x
a

b

n
i

i

n

( ) lim ( ) .∫ ∑=










→∞

=

φ ∆
1

	 (4.58)

This process can also be extended to multiple integrals:

	 f x y dxdy f x y A
R

i i i

i

n

( , ) lim ( , ) .∫∫ ∑=










→

=
δ 0

1

∆ 	 (4.59)

Note that δ is the norm (diagonal) of the partition or 
rectangle; by allowing it to approach zero, we are employing 
an infinite number of rectangles. If a ≤  x ≤  b and if the 
limits for the variable y are set by two functions of x, say, 
g1(x) and g2(x), then for this type I region, we have the iter-
ated integral:

	 f x y dydx
g x

g x

a

b

( , ) .
( )

( )

1

2

∫∫ 	 (4.60)

For a type II region, the terminal values of y are constants, 
c ≤ y ≤ d, and the limits for the variable x are two functions 
of y. We can review the evaluation process for an iterated 
integral with a straightforward example:

( ) ( )

( )

4 10 4 5

4 5

2

2

3

5

2

3

5

3 4 2

3

5

x y dydx xy y dx

x x x dx

x

x

x

x
+ = +

= + −

=

−

−∫∫ ∫

∫
55 5 5 3 3 3

3393 33

4 5 1
3

3 4 5 1
3

3+ − − − +

= . .

	(4.61)

This was an extremely simple double integral that could 
be easily evaluated analytically. But our real interest here is 
to acquire some tools that might allow us to evaluate mul-
tiple integrals that defy elementary solution.

Multiple integrals can be handled, although somewhat 
inefficiently, using the one-dimensional numerical quadra-
ture techniques that we have discussed previously in this 
chapter. Let us illustrate with the generic double integral:

	 f x y dxdy
c

d

a

b

( , ) .∫∫ 	 (4.62)

Each Multiplied by 106

1 a1 −4.255
2 c1 522.32
3 a2 7.60323
4 b2 −102.12
5 c2 −294.643
6 a3 −6.62667
7 b3 80.3571
8 c3 −468.75
9 a4 3.27846

10 b4 −78.683
11 c4 −455.357

We can assess the quality of the representation in  
Figure 4.3.

Now let us see exactly how well this cubic spline curve 
fit performs. We can use eq. (4.48) as our example, integrat-
ing over interval 1:

y x dx
a c

1

11

19

1 4 1 2

4
8

2
8 0 338 8 2 71636( ) ( ) ( ) . ( ) . .∫ = + + =   (4.57)

Remember that b1 is zero! The values for the remaining 
three integrals are 2.70093, 2.66514, and 2.63936, respec-
tively, and the sum of all four is 10.7218. We have, through 
the use of cubic spline interpolation, obtained a very accu-
rate value for the integral of the original discrete data set.

MULTIPLE INTEGRALS (CUBATURE)

Recall that the definite integral, ∫ a

b
f x dx( ) , can be approxi-

mated by a Riemann sum, that is, the sum of areas of a 

FIGURE 4.3.  Cubic spline curve fit for the nonlinear data set. We 
now have a very nice spline-function representation of the original 
data, facilitating integration.
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Number of Intervals, n

Inner Outer ∫ ∫ =0

2

1

4 2 4 0 924196( / ) .x y dydx

10 10 1.3058895
20 10 1.2695594
40 10 1.2355796
80 10 1.2352861

160 10 1.2393796
100 100 0.92927096
200 100 0.92425417
400 100 0.92549427
800 100 0.92424318

1,600 100 0.92424263
1,000 1000 0.92419717
2,000 1000 0.92419682
4,000 1000 0.92419673
8,000 1000 0.92419671

16,000 1000 0.92419670

These data show that the accuracy of the estimate of the 
double integral improves (generally) as the number of inter-
vals for the inner integral is increased. But these calculations 
also reveal that the application of a one-dimensional scheme 
using the trapezoid rule is not very efficient. An extremely 
large number of calculations is required to obtain the correct 
sixth decimal place.

In recent years, the search for modern nonproduct 
methods for multidimensional integrals has been intensive. 
A nonproduct method is a quadrature (or more appropri-
ately, a cubature) rule that does not require us to apply a 
one-dimensional method successively to the different direc-
tions. As we stated earlier, it is computationally inefficient 
to apply a product rule to the evaluation of multiple inte-
grals. You may recall our discussion of Gaussian quadrature; 
with proper selection of the nodes (the t-positions) and 
weight factors, we can exactly integrate a polynomial of 
degree 2n  +  1. An obvious question is whether such a 
process could be extended to polynomials of two (or three 
or more) dimensions. If this were possible, multiple integra-
tion could be made much more efficient. Stroud (1971) notes 
that the principal problem is identification of formulae of the 
form

… … … …

…

w x x x f x x x dx dx

B f

n n n

i n

i

N

( , , ) ( , , )

( , , ).

1 2 1 2 1

1 2

1

∫∫

∑≅
=

φ φ φ
  (4.64)

The fifth-degree formula of Radon (1948) was one of the 
first results of this type, and Stroud (1971) developed Gauss–
Legendre formulae for iterated integrals of two and three 
dimensions. His book includes FORTRAN programs for 
both in chapter 10. Also, in one important success in efforts 

We will proceed in the following way:

1.	 Set increment value for y, for example, (b − a)/100.

2.	 Set the increment value for x, for example, (d − c)/100.

3.	 Let y assume its first value, y1.

4.	 Accumulate the incremental areas for f(x, y1) as x 
varies from c to d.

5.	 Set this sum equal to F(y1).

6.	 Increment y and repeat quadrature on x from c to d.

7.	 Continue the process until y = b, that is, until we find 
F(yn).

8.	 Perform quadrature on the complete set of F(yi)s.

The process sketched here is referred to as a product rule. 
To illustrate its application, we will consider the elementary 
example,

	 ( ) .x y dxdy+ =∫∫ 2 27
1

4

0

2

	 (4.63)

We will start with 50 intervals for both x and y and use 
the trapezoid rule for the quadratures. Using single preci-
sion, this direct approach yields 27.72359 (an error of 
about 2.7%). If we merely increase the number of inter-
vals in both the x- and y-directions to 100, the very same 
process yields 27.36090; with 200 intervals, the result is 
27.00002. Although the product procedure we have 
described here works (very well for this particular 
example), it requires many function evaluations. In fact, 
Smyth (1998) notes that the number of evaluations required 
for product rules grows with the number of dimensions 
exponentially. And you will also observe that in our 
example we used the same number of intervals in both 
directions, which is generally a mistake; Kahaner et al. 
(1989) suggest that a rule of thumb for the application of 
one-dimensional algorithms to double integrals is that the 
inner integral be computed such that its accuracy is about 
10 times better than the outer. We can demonstrate this 
using the trapezoid rule (with double precision) for another 
elementary double integral,

x

y
dydx

2

1

4

0

2

4
0 924196∫∫ = . .

We will increase the number of intervals for the inner 
integral while maintaining a constant number of evaluations 
for the outer integral. The results are summarized in the fol-
lowing table:
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Suppose we were interested in obtaining a value for

2
1

3
2

1

4

+ +






∫ x x dx

(we know this integral has the value, 20.5). We will conduct 
our trials on the rectangular area that is bounded by 
1 ≤ x ≤ 4 and 0 ≤ y = f(x) ≤ 20. We use random numbers 
to “shoot” at the box and just keep track of the number of 
“hits” that fall under f(x); our estimate then comes from eq. 
(4.62). Here is a typical sequence of results from such an 
experiment:

Number of Trials Estimate for I

100 16.2
1,000 20.7

10,000 20.676
100,000 20.4888

1,000,000 20.53326
10,000,000 20.51026

It is extremely easy to obtain a rough estimate in this 
fashion, but it is apparent that an accurate result will require 
many trials. The reader can obtain greater detail regarding 
the use of the Monte Carlo method in this context from 
Rubinstein (1981), for example.

Now let us focus on the use of the Monte Carlo technique 
for the evaluation of multiple integrals; we should emphasize 
the important difference between the “hit-or-miss” method 
used earlier and the approach employed here (we will be 
using the Monte Carlo method to place the function evalua-
tions). To illustrate, we use the simple double integral,

	 ( ) .x xy dxdy2 2

0

3

0

2

2 42+ =∫∫ 	 (4.68)

We proceed in the following way: We select the number 
of trials (n), then use random numbers to select the (x, y) 
location for integrand evaluation. This function evaluation, 
f(x, y), is multiplied by the area determined from the limits 
of the integration and the number of trials chosen, and the 
results are accumulated. For the double integral that we are 
using as our example, this accumulation will be performed 
n2 times. A simple code written for eq. (4.68) is provided as 
follows:

#COMPILE EXE
#DIM ALL
    REM *** Monte Carlo integration of double integral
   GLOBAL n,ntrial,dx,dy,rnx,rny,x,y,sum,fxy,xlimit, 

ylimit,ZZ AS SINGLE

to find efficient nonproduct methods, Laurie (1977) was able 
to extend the GK method to double integrals.

Monte Carlo Methods

Monte Carlo methods were first used extensively by John 
von Neumann and Stanislaw Ulam to estimate neutron dif-
fusion in connection with the Manhattan Project of World 
War II. This technique has been used by many investigators 
since to evaluate multiple integrals. It is attractive because 
of its stark simplicity; all one really needs is a mechanism 
for the generation of random numbers. Originally, random 
numbers were obtained from tables, and for an example, one 
may consult table 26.11 in Abramowitz and Stegun (1964) 
(which was reprinted from numbers compiled by the RAND 
Corporation). These days high-level language compilers 
have built-in capability for generating “random” numbers, 
but the reader should recognize that these numbers are being 
generated typically by a pseudorandom algorithm. This 
means that the same seed value will produce the exact same 
sequence of “random” numbers. Commercial software 
packages like Mathcad function similarly—the seed value 
must be changed if a different sequence of random numbers 
is desired.

We begin this discussion with a familiar example that will 
illustrate just how straightforward this technique really is; 
consider the one-dimensional integral,

	 I f x dx
a

b

=∫ ( ) . 	 (4.65)

Now envision a rectangle that extends from a to b on the 
x-axis, and from 0 to some value c on the y-axis; that is, we 
think of a box (an area) that corresponds to

a x b f x c≤ ≤ ≤ ≤and 0 ( ) .

The area of this box is of course merely (b − a)c. Suppose 
we begin selecting random locations inside the box—the 
probability that we pick a point under the curve, f(x), will 
be just

	 p
I

b a c
=
−( )

. 	 (4.66)

We obtain an estimate for p from the ratio of the number 
of successes divided by the number of trials, nhits/n. For 
obvious reasons, this approach is referred to as the “hit-or-
miss” method:

	 I b a c
n

n
≅ −( ) .hits 	 (4.67)
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lattice. Smyth (1998) notes that lattice methods function best 
when the integrand is transformed so that it is periodic over 
the cube. There is some evidence (including Sloan and Joe) 
indicating that lattice techniques may outperform other 
methods when the number of dimensions is large.

Should one have a critical need to evaluate multidimen-
sional integrals accurately (and particularly if this must be 
done often), the best starting point is the Cuba Library, 
which has been developed at the Max Planck Institut fur 
Physik (München, Germany). Cuba has four routines, Vegas, 
Suave, Divonne, and Cuhre, which provide the analyst  
with the choice between quasi- and pseudo-Monte Carlo 
methods as well as lattice and deterministic approaches too. 
Several interfaces are available (in FORTRAN, C/C++, and 
Mathematica), and the open-source package is available at 
http://www.feynarts.de/cuba. Because the algorithms are 
invoked similarly, the package can be used to very quickly 
compare methods and thereby assess likely error. The Cuba 
website is maintained by Thomas Hahn and it is updated 
frequently.

CONCLUSION

Our focus in this chapter was the numerical evaluation of 
definite integrals. We have not discussed cases in which the 
integrand is undefined at either one of the limits (a singular 
endpoint), nor have we given very much consideration to 
cases in which one of the limits is infinite.

A singular endpoint may sometimes be handled by using 
an open Newton–Cotes formula such as Milne’s rule. Recall 
that most of the simple quadrature techniques we discussed 

FUNCTION PBMAIN
            n=0:xlimit=3:ylimit=2
            ntrial=100
            dx=xlimit/ntrial:dy=ylimit/ntrial
            RANDOMIZE TIMER
    50 REM *** continue
                rnx=RND
                rny=RND
                    x=rnx*xlimit
                    y=rny*ylimit
                        GOSUB 200
                    sum=sum+fxy*dx*dy
                        n=n+1
                        PRINT n,sum
                        IF n>ntrial^2 THEN 100 ELSE 50
    100 REM *** continue
                INPUT “Shall we continue?”;ZZ
                        IF ZZ>0 THEN END
    200 REM *** subroutine for function evaluation
                    fxy=x^2+2*x*y^2
                    RETURN

END FUNCTION

Please make note of the ninth line down from the top, 
RANDOMIZE TIMER. This ensures that the random number 
generator obtains a different seed each time it is invoked. 
You will also observe that the number of trials, ntrial, is set 
to 100; this is a ridiculously small number for a Monte Carlo 
integration (just 104 function evaluations). To illustrate, we 
ran this program five times, just as it appears here, and we 
obtained the set of estimates: 41.95124, 41.96887, 42.31614, 
41.66427, and 42.33305. The average of the set is 42.0467, 
which again reveals the unpleasant truth that a Monte Carlo 
integration—if accuracy is required—is computationally 
expensive. In fact, we can monitor the results from a sequence 
of realizations in which we increase the number of trials 
each time. Such an experiment results in a graph similar  
to Figure 4.4.

It is known that the error for this method diminishes as 
≈1 ntrial ; if we need a high level of decimal precision, 
then many trials will be necessary. To illustrate, we can see 
from Figure 4.4 that 20002 = 4 × 106 function evaluations 
produce just 41.91697 for the double integral—an error of 
about 0.2%. Just as we observed previously, a rough result 
is often very easy to achieve with the Monte Carlo tech-
nique, but the computational burden may be prohibitive if 
we need an extremely accurate answer.

Lattice methods (sometimes referred to as number 
theoretic, or quasi-random) have been applied to multiple 
integration and a useful reference is Sloan and Joe (1994).

With a lattice method, the integration region is trans-
formed to a unit cube and a multiple sum yields an 
unweighted mean of the integrand evaluated over a regular 

FIGURE 4.4.  Progress of the Monte Carlo integration of the 
double integral, eq. (4.68), as a function of the number of trials. 
The result should be 42, of course.
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        REM *** refine estimate by splitting interval into 
n-pieces

                        n=8
                            del=(b-a)/n
                            b=a+del
    50 REM *** continue
                        FOR i=1 TO 3
                            x(i)=a+i*(b-a)/4
                            NEXT i
                    FOR i=1 TO 3
                        GOSUB 200
                        f(i)=fx
                        NEXT i
                    area=(b-a)/3*(2*f(1)-f(2)+2*f(3))
                        sum=sum+area
                    PRINT area,sum
                    a=b
                    b=a+del
                        IF b>bf THEN 100 ELSE 50
    100 REM *** continue
                        INPUT “Shall we continue?”;zz
                            IF zz>0 THEN END
    200 REM *** subroutine for function evaluation
                fx=x(i)*LOG(x(i))
                RETURN

END FUNCTION

This code produces a value for our example integral of 
14.117957. Now we can try Milne’s algorithm on an integral 
with a singular endpoint; consider

	
ln( )

. .
x

x
dx

1 12
0 822467

0

1
2

+
=− =−∫

π
	 (4.72)

We will apply Milne’s method in composite form to  
this integral by subdividing the interval (0, 1). We will begin 
with eight intervals and successively double n to gauge the 
approach to the correct value.

8 −0.8078678
16 −0.8152081
32 −0.8188470
64 −0.8206596

128 −0.8215639
256 −0.8220156
512 −0.8222414

1,024 −0.8223542
2,048 −0.8224106
4,096 −0.8224388
8,192 −0.8224529

16,384 −0.8224600
32,768 −0.8224635

previously made use of the interval endpoints for function 
evaluation; such quadrature procedures are said to be  
closed. An open algorithm such as the fourth-degree Milne 
rule does not require function evaluations at the interval 
endpoints, thereby avoiding the problem of an endpoint sin-
gularity. With Milne’s rule the function evaluations required 
for the integration of ∫ a

b
f x dx( )  are placed at locations 

denoted by

	 x a
i b a

n
i = +

−( )
, 	 (4.69)

where n = 4 and the index i assumes the values 1, 2, and 3. 
Therefore, if we wished to evaluate ∫ −1

5 2 2( )x x dx using 
Milne’s rule just once, we would place the integrand evalu-
ations at positions x = 2, 3, and 4, and “estimate” the definite 
integral with

b a
f f f

−
− + =

−
− + =

=
3

2 2
5 1

3
2 0 3 2 8

52

3
17 3333

1 2 3( ) [ ( ) ( )]

. .…
  (4.70)

Of course, this is precisely the value of the definite inte-
gral. Let us apply the technique to an integral we examined 
much earlier that does not have a singular endpoint, 
∫ =1

5
14 118x x dxln( ) . . This will provide us with a perfor-

mance comparison relative to conventional, closed methods. 
Since the interval is the same as that mentioned earlier  
(1, 5), the function evaluations are again placed at 2, 3, and 
4, resulting in

5 1

3
2 1 38629 3 29584 2 5 54518 14 0895

−
− + =[ ( . ) ( . ) ( . )] . ,

		  (4.71)

a surprisingly good result (0.2% low) obtained with only a 
single application of the rule. Obviously, we could subdivide 
the interval, applying Milne’s rule to each piece, then add 
the results together (this is called a composite rule) to 
improve our estimate. We will try this using eight pieces:

#COMPILE EXE
#DIM ALL
    REM *** Open Newton-Cotes for quadrature
    REM *** This is the 4th degree Milne’s rule for the 
interval (a,b)
                GLOBAL a,b,i,fx,del,n,area,zz,bf,sum AS 

DOUBLE
FUNCTION PBMAIN
                DIM x(3) AS DOUBLE
                DIM f(3) AS DOUBLE
                    a=1:bf=5
                    b=bf:sum=0
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4.3.  The moment of inertia about the y-axis for a continuous 
function, f(x), defined for a ≤ x ≤ b, is

MI x f x dxy

a

b

=∫ 2 ( ) .

Let f(x) =  1 +  x4 exp(−2x); find MIy for 0 ≤  x ≤  5 by 
numerical quadrature.

4.4.  We want to find the work required to compress  
nitrogen (N2) adiabatically from atmospheric conditions to 
a pressure of 8 atm, at a rate of 50 gmol/min. Assume that 
nitrogen behaves ideally such that PV = nRT. We know that 
W =  ∫PdV, and for an adiabatic process, PV γ = C1. Since 
the initial and terminal pressures are specified, we will rear-
range the latter equation to yield

dV
C

P

dP

P
=−








−

1 1

1

2γ

γ
γ

.

Find the work of compression by numerical quadrature 
using a normal ambient temperature.

4.5.  Evaluate the definite integral,

1

6 3

0

5 95
+
−∫

x

x
dx

( )
.

.

Mathcad’s adaptive algorithm yields 1380 and the TI-89™ 
produces 1380.07. These results are certainly very close, but 
which is more nearly correct?

4.6.  An initially empty 2000-gal tank is being filled by 
gravity; as the available head in the supply diminishes, the 
flow rate into the tank decreases. The flow rates were 
observed periodically resulting in the following table  
of data:

Time (min) Flow Rate (gpm)

1 348
3 195
5 117
7 72
9 49

11 36
13 26

If the filling process started at t =  0, when will the tank 
contain precisely 1515 gal?

Note that we obtain the first four correct decimal places 
with n  =  2048, and we get five decimal places with 
n = 16,384; the open Milne’s rule is able to cope with this 
much more difficult case. We should make one final observa-
tion in the context of this example: This integration would 
appear to be an ideal application for Richardson’s extrapola-
tion, where we would obtain improved accuracy with far 
fewer computations.

In the case of a definite integral with an infinite limit, you 
may recall that we used truncation (of the upper limit) for 
the very first example in this chapter:

x x dx2 2

0
4

exp( ) .− =
∞

∫
π

We will assess the error involved in a similar situation in 
one of the exercises at the end of the chapter. Occasionally, 
difficulties like this can be handled through transformation. 
Given ∫

∞
0 f x dx( ) , one might let x = t/(1 − t), or x = −ln(t). 

For the former, we would integrate from 0 to 1, and for the 
latter, from 1 to 0. Kahaner et al. (1989) point out that this 
kind of transformation may succeed in producing finite 
limits but may result in a significantly more difficult 
integrand.

PROBLEMS

4.1.  The volume of a solid of revolution (V) generated by 
rotation of a curve about the y-axis is given by

V xf x dx
a

b

= ∫2π ( ) .

Let f(x) be the continuous function of x, f(x)  =  10  − 
(1/4)x2, defined for 1  ≤  x  ≤  5. Find V by numerical 
quadrature.

4.2.  Consider a horizontal cylindrical tank with a capacity 
of 600 gal. The tank is 6 ft long with a radius of 2.065 ft 
(ID = 4.13 ft). Let h be the depth of liquid in the tank and 
R be the inside radius. We know that the (area of a) segment 
of a circle is

A R
R h

R
R h Rh hS =

−





− − −−2 1 22cos ( ) .

Therefore, when h = R, the occupied portion of the circle 
is πR2/2. If fluid enters the initially empty tank at a rate of 
�V h= −( )30 9 gpm through a small orifice at the bottom 

of one end, how long will it take for the tank to fill (within 
1 in. of the top)?
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an infinite upper limit. Use the open fourth-degree Newton–
Cotes formula (composite Milne’s rule) to evaluate the inte-
gral with an appropriately truncated upper limit. Can you 
actually obtain as answer close to π? If you cannot, what 
quadrature method would you recommend?

4.12.  Consider the definite integral

ln . .
1

2
0 8862269

0

1

x
dx






 = =∫

π
…

Use an open composite Newton–Cotes formula to eval
uate this integral. Employing the example at the end of  
the chapter as your guide, determine how many subdivi
sions will be necessary (using the fourth-degree Milne’s  
rule) to obtain the correct value for the seventh decimal  
place (9).

4.13.  We want to evaluate the double integral,

x y dxdy2 2

1

1

0

6 89028
−

+

∫∫ = . ,

π

using Simpson’s rule (one-dimensional quadrature applied 
sequentially in the two directions). Explore the accuracy of 
your technique by adjusting the number of intervals 
employed for both the inner and outer evaluations. Does 
Kahaner et al.’s (1989) observation that the accuracy of the 
inner integral is critical to the success of this approach seem 
to be upheld?

4.7.  The definition for the gamma function is

Γ( ) exp( ) .n x x dxn= −−

∞

∫ 1

0

Find Γ(1.525) and Γ(0.525) by numerical quadrature. The 
values you obtain should be related by the recurrence 
formula:

Γ Γ( ) ( ).n n n+ =1

Are they?

4.8.  Use Gaussian quadrature with n = 6 to find the approxi-
mate value for the definite integral,

x x dx2 25

0

4

2. exp( ) .−∫

4.9.  Use the Gauss–Kronrod (GK) (7-15) procedure to eval-
uate the definite integral,

100

2 5 12

0

10
dx

x( . )
.

− +∫

Will it be necessary in this case to use an adaptive modi
fication of GK (7-15)? You can see by inspection that the 
integrand will have a fairly strong peak centered about 
x = 2.5.

4.10.  Consider the definite integral,

exp cos( ) .−








∞

∫
1

4
3

0

x x dx

This integral has the value 0.027586 and the integrand 
behaves as illustrated in Figure 4.5.

We want to determine the error associated with truncating 
the upper limit of the integral; use the quadrature routine of 
your choice and prepare a plot that shows the absolute value 
of the error as a function of the finite upper limit.

4.11.  The definite integral

dx

x x( )
csc( ) .

1
3 1415926

0
+

= =
∞

∫ π π …

illustrates both of the difficulties we described at the very 
end of the chapter: We have a singular endpoint at x = 0 and 

FIGURE 4.5.  Plot of the function exp(−x/4)cos (3x).
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V y x dx
x

x

= [ ]∫π ( ) ,2

1

2

and furthermore, suppose we require that the function—
while still connecting the points (1, 1) and (6, 3)—be of the 
form y(x) = ax2 + bx + c. We would like to determine what 
function of this class yields the smallest volume, V, with the 
constraint that it passes through (x1, y1) and (x2, y2) while 
touching the x-axis at only one point (such that y(x) ≥  0 
of course). First, determine if there is more than one possi-
bility for f(x); for example, if y(x) is zero at x =  3, then 
y(x) =  0.3x2 −  1.7x +  2.4, but we see immediately that 
( / ) . .dy dx x= − ≠0 6 1 7 0 at x = 3 (as it should). Then find 
the swept volume, V, and the length, L, by numerical quadra-
ture. Repeat, but using the function type, y(x)  =  ax3  + 
bx2 + cx + d. With this problem type, we are anticipating 
one of the uses for the calculus of variations (COV) which 
will be introduced in Chapter 11.
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4.14.  Use the Monte Carlo “hit-or-miss” method to evaluate 
the integrals,

dx

x

x
dx

1
1
4

6 48925
3

1 5708
0

2

2

0+
=






 =∫ ∫

cos
. cos . .

π π

and

4.15.  Use the Monte Carlo method to confirm the given 
value for the double integral,

yx
x

y
dxdy1 2

2

0

1

1

2

1 23105/ . .+






 =∫∫

How many function evaluations are necessary to verify the 
second and third decimal places (3 and 1)? If you model 
your procedure on the sample code provided earlier, you 
must set ylimit  =  2, dy  =  (ylimit  −  1)/ntrial, and 
y =  rny*(ylimit −  1) +  1. A typical result obtained with 
these changes for ntrial = 400 is 1.230775.

4.16.  Consider the definite integral

dx

x x1 2
4 8411

0 01

9

+
=∫

.

. .

Our objective is to learn about the error produced with the 
estimation of this integral using different quadrature tech-
niques. First, solve the definite integral analytically, verify-
ing that 4.8411 is the correct value. Then, run through the 
list of Newton–Cotes formulae given by eq. (4.10), eq. 
(4.11), eq. (4.12), eq. (4.13), and eq. (4.14) generating five 
different approximations for the integral. Use the minimum 
number of function evaluations for each, that is, two for the 
trapezoid rule and three for Simpson’s rule. Assess the error 
for each approximation using eq. (4.28). Are these estimates 
in accord with your numerical experiments?

4.17.  We have two points in the x-y plane located at (1, 1) 
and (6, 3), and these two points are to be connected by a 
function, y(x). If we take this function to be a straight line, 
then y =  (2/5)x +  (3/5). From elementary calculus, the 
distance between these two points is given by

L
dy

dx
dx= +
















∫ 1

2 1 2

1

6 /

,

and we can easily verify that for this straight line, 
L = 5.38516. But now suppose we want to create a volume 
by rotating y(x) about the x-axis:
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5
ANALYTIC SOLUTION OF ORDINARY 
DIFFERENTIAL EQUATIONS

AN INTRODUCTORY EXAMPLE

Suppose we place about 500 mL of water in a beaker and 
heat the contents with a candle flame until the water begins 
to boil. We then remove the heat source and allow the con-
tents of the beaker to cool simply by exposure to the ambient 
air. An approximate energy balance for this situation (the 
cooling process) can be written as

{ } { },Accumulation Rate of loss to surroundings=−

or symbolically as

	 mC
dT

dt
hA T Tp =− − ∞( ). 	 (5.1)

In this first-order ordinary differential equation (ODE), 
m is the mass of heated water, Cp is the heat capacity of the 
water, h is the heat transfer coefficient, and A is the surface 
area for heat transfer. T∞, of course, is the temperature of 
the air surrounding the beaker. Actual experimental data for 
this process are shown in Figure 5.1.

We want to solve eq. (5.1) and then see if the result is 
capable of describing the cooling process shown in Figure 
5.1. It will be convenient to let θ = T − T∞, such that

	
d

dt

hA

mCp

θ
θ=− . 	 (5.2)

This equation is separable and easily integrated to yield

	 lnθ=− +
hA

mC
t C

p
1 	 (5.3)

or, more conveniently,

	 θ= −








C

hA

mC
t

p
1 exp . 	 (5.4)

We should make note of the fact that hA/mCp is the recip-
rocal time constant (1/τ) for this first-order system. More-
over, after an elapsed time of 1τ, about 63% of the change 
has been accomplished; after 2τ, about 86%; and after 3τ, 
about 95%. In our example, the cooling process was initiated 
at t = 865 s when the temperature of the water was 99.8+°C. 
Since the ambient temperature was 22°C, we have

	 T
hA

mC
t

p

= −








+77 8 22. exp . 	 (5.5)

We can use the experimental data shown in Figure 5.1 to 
estimate the unknown parameters in the quotient (hA/mCp); 
at t = 1200 s, the water temperature had fallen to 83.75°C. 
So when t = 335 s (1200 − 865), we find

	 ln
.

.
( ),

83 75 22

77 8
335

−





=−

hA

mCp

	 (5.6)
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66    Analytic Solution of Ordinary Differential Equations

Now suppose

	
dy

dx
f x y

y

x
= =

+
( , ) ,

2
2

	 (5.9)

which we rewrite as (y + 2)dx − x2dy = 0. Therefore,

	
∂
∂
=

∂
∂
=−

M

y

N

x
x1 2and ; 	 (5.10)

this equation is not exact. However, it is separable and we 
can easily show that

	 y C
x

= −





−1

1
2exp . 	 (5.11)

We contrast this case with the equation

	
dy

dx

x y xy

x y x
=−

+
+

3 2

2

2 2

3 2
; 	 (5.12)

this time, separation is not possible. We rewrite eq. (5.12) 
as (2x3y + x2)dy + (3x3y2 + 2xy)dx = 0, and observe

∂
∂
= +

∂
∂
= +

M

y
x y x

N

y
x y x6 2 6 22 2and .   (5.13)

We see that eq. (5.12) is exact and because we have an 
exact differential, Mdx + Ndy = dU, where

	
∂
∂
=

∂
∂
=

U

x
M

U

y
Nand . 	 (5.14)

Thus, ∂U/∂x =  3x2y2 +  2xy, and integrating with respect 
to x,

	 U x y x y F y= + +3 2 2 ( ), 	 (5.15)

since F cannot be a function of x. From the second part of 
eq. (5.14), we differentiate U with respect to y and set the 
result equal to N:

	 2 23 2 3 2x y x F y x y x+ + ′ = +( ) . 	 (5.16)

Clearly, F′(y) = 0, so F = C, and we note

	 x y x y C3 2 2+ = . 	 (5.17)

When a first-order ODE is not exact, we look for an 
integrating factor. For example, if

	

∂
∂
−
∂
∂ =

M

y

N

x
N

f x( ), 	 (5.18)

which produces a value for hA/mCp (0.00069 1/s). How good 
is our crude model? At t =  1050 s, the data in Figure 5.1 
indicate that T = 90.7°C; the model shows that at t = 185 s 
(1050 − 865), T = 90.5°C.

Let us make some concluding remarks about this example. 
The differential equation we formulated by energy balance, 
eq. (5.1), was an extremely simple first-order linear ODE. 
However, it was not homogeneous due to the presence of the 
constant, T∞. Notice that we eliminated the inhomogeneity 
by redefining the dependent variable: θ = T − T∞. Of course, 
this allowed us to follow the sequence: Separate the vari-
ables, integrate the equation, and evaluate the constant of 
integration, C1, through the use of the initial condition. The 
procedure worked well for us in this case, but we need a 
more general approach that will enable us to solve a broader 
array of problems.

FIRST-ORDER ORDINARY 
DIFFERENTIAL EQUATIONS

We begin by considering equations of the type

	
dy

dx
f x y= ( , ). 	 (5.7)

Let us assume that this equation can be written as 
Mdx + Ndy = 0. Such an equation is said to be exact if

	
∂
∂
=
∂
∂

M

y

N

x
. 	 (5.8)

FIGURE 5.1.  Cooling process for 500 mL water, initially heated 
to incipient boiling. The heat source (flame) was removed at 
t = 865 s.
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where f(x) is a function only of x, then an integrating factor 
(IF) is IF = e∫f(x)dx. Let us illustrate with an example; suppose 
we have

	
dy

dx x
y

x
x+ = +

1 2
. 	 (5.19)

Therefore,

dy
x

x
y

x
dx= + −









2
,

so that M = (2/x) + x − (y/x) and N = −1; the equation is 
not exact. By eq. (5.18), f(x) = 1/x, and e e xx dx x∫ = =( / ) ln1 . 
We multiply eq. (5.19) by the IF:

	 x
dy

dx

y

x
xy

x
x+







= ′ = +( ) .

2
	 (5.20)

We integrate and divide by x:

	 y
x

x
x C

x
= + +

2

2
1ln . 	 (5.21)

We need to see this process employed for something that 
is more characteristic of a real problem encountered in 
applied science. Suppose we have two identical stirred-tank 
reactors in series, each with a capacity of 100 gal. Both tanks 
are perfectly mixed, and tank 1 contains a solute at a con-
centration of 0.8 lb/gal, initially. Pure solvent flows into the 
first tank at a rate of 4 gal/min (gpm), then the discharge 
(overflow) from tank 1 flows into tank 2. Our interest is  
the concentration of solute in tank 2 as a function of time. 
The situation we are describing corresponds to two, non-
interacting first-order systems in series. By mass balance, 
we formulate two first-order ODEs: For tank 1,

	 � �VC VC V
dC

dt
in T− =1

1 , 	 (5.22)

and for tank 2,

	 � �VC VC V
dC

dt
T1 2

2− = . 	 (5.23)

Of course, Cin =  0 since pure solvent is being fed to 
the first tank. Also, if we divide both equations by the volu-
metric flow rate, �V , and note that the volume of each tank, 
VT, divided by the volumetric flow rate is the time constant, 
τ τ =( )V VT

� , then we can immediately find the solution for 
eq. (5.22):

	 C C
t

1 0= −





exp ,

τ
	 (5.24)

C C te t
2 0= −( / ) /τ τ

where C0 is the initial concentration in tank 1, 0.8 lb/gal. We 
take this result back to the ODE (eq. 5.23) and rearrange the 
equation so that

	
dC

dt
C

C t2
2

01
+ = −






τ τ τ

exp . 	 (5.25)

Now we recognize that eq. (5.25) is of the form y′  + 
a(x)y = b(x) so that the integrating factor (IF) can be deter-
mined from e∫a(x)dx, which in our case is e edt t∫ =( / ) /1 τ τ. 
Therefore,

	
d

dt
e C

C t tt / exp exp .τ

τ τ τ2
0( )= −












 	 (5.26)

The concentration in tank 2 then is simply C C te t
2 0= −( / ) /τ τ 

(remember, the concentration in tank 2 was zero 
at t = 0). So for this example, after 1 hour (t = 60 min), the 
concentration of solute in tank 2 will be 0.1742 lb/gal.

NONLINEAR FIRST-ORDER ORDINARY 
DIFFERENTIAL EQUATIONS

A nonlinear first-order ODE is one that has the form

	
dy

dx
f x y= ( , ), 	 (5.27)

where f(x, y) includes a term in which the dependent vari-
able, y, occurs to some power other than one. Examples 
could include

	
dy

dx
x y

dy

dx
xy y= + =2 2 or sin( ). 	 (5.28)

The second equation of this pair is particularly interesting 
and the reader may want to compare what happens when 
y(x = 0) = ¼ with the case where y(x = 0) = 4. Certain non-
linear first-order ODEs have seen a great deal of study. For 
example, Bernoulli’s equation, which is usually written as

	
dy

dx
p x y q x yn+ =( ) ( ) , 	 (5.29)

where n ≠ 0, 1, has attracted the attention of mathemati
cians for more than 300 years. One of the reasons this  
equation is interesting is because of the effect of the trans-
formation, z = y1−n; we will illustrate with an example. Let 
us consider

	
dy

dx

y

x
y+ = 3. 	 (5.30)
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68    Analytic Solution of Ordinary Differential Equations

The initial concentration of the reactant is zero, so C1 = 0. 
We assign the constants a and b the values 3 and 0.475, 
respectively, resulting in

	 C tA = 2 5131 1 19373. tanh( . ). 	 (5.39)

Thus, the concentration of A in the reactor, which will 
approach 2.52312 as t → ∞, behaves as shown in the fol-
lowing table:

Time 0 0.1 0.2 0.6 1.0 2.0
Concentration 0.00 0.2986 0.5888 1.5445 2.0902 2.4710

For our second example, suppose a pilot must leave an 
airplane at very high altitude. The pilot will begin to fall 
vertically under the influence of gravity, and that motion will 
be opposed by drag. We are interested in the pilot’s approach 
to terminal velocity, what that velocity will be, and how long 
it will take the pilot to attain that velocity. An approximate 
model for this free fall will be

	 m
dV

dt
mg KV= − 2. 	 (5.40)

m is the mass of the pilot (plus gear) and K is the product 
of the frontal area of the falling pilot, the fluid density, and 
the drag coefficient. Generally, the drag coefficient is a func-
tion of velocity, but we are taking it to be approximately 
constant. Dividing by the mass, we get

dV

dt
g

K

m
V

dy

dx
a by= − = −2 2or alternatively, , ,   (5.41)

which, conveniently, is the same form as the constant volume 
chemical reactor. Experiments conducted in the World War 
II era indicated that the terminal velocity of the falling pilot 
from high altitude would be roughly 250 ft/s (about 170 mph); 
therefore, a = 32.2 and b = 0.000515 (1/ft). The solution is 
exactly the same as given earlier by eq. (5.38), and the initial 
(vertical) velocity is zero.

Time (s) 0.5 1 5 10 20 50
Velocity 
(ft/s)

16.07 32.02 141.88 214.63 247.12 249.99+

Thus, the falling pilot attains terminal velocity in about  
50 s.

In addition to Bernoulli and Riccati equations, many 
other nonlinear ODEs have attracted attention. For example, 
in the first third of the twentieth century, there was great 
interest in predator–prey problems (populations in conflict). 
Generally, such problems were formulated in terms of two 
simultaneous ODEs, one for population “1” and one for 
population “2.” Nonlinear terms come about through inter-
action between the animals (or species). In some cases, the 

Applying the transformation (z = y−2), we find

− + =−
−

−1
2

3 2
1 2

3 2z
dz

dx

z

x
z/

/
/ ,

which leads directly to

	
dz

dx

z

x
− + =2 2 0. 	 (5.31)

This is a familiar form and we know that the integrating 
factor (IF) is just e e xx dx x∫ − −= =( / ) ln2 2 21 . It is straightfor-
ward to show that

	 z x C x= +2 1
2, 	 (5.32)

and therefore,

	 y
x C x

=
+

1

2 1
2

. 	 (5.33)

One of the best-known examples of a nonlinear first-order 
ODE is the Riccati equation, which is generally written as

	
dy

dx
a x y b x y c x+ + + =( ) ( ) ( ) .2 0 	 (5.34)

This equation is reducible to the form

	
dw

dx
c x w d x+ +( ) ( )2 	 (5.35)

by use of the transformation w e ya
x a x dx= ∫ ( ) . Riccati equa-

tions arise regularly in applied mathematics and we will look 
at two examples for illustration.

Consider a constant volume reactor in which the reactant 
species A is consumed by a second-order (bimolecular) 
process. The reactant is added to the process vessel continu-
ously but in a concentrated form such that the volume (V) is 
nearly unaffected. A mass balance on the reactant A yields

	 V
dC

dt
n Vk CA

A A= −� 2
2. 	 (5.36)

Therefore,

dC

dt

n

V
k C

dy

dx
a byA A

A= − = −
�

2
2 2or equivalently, , .

		  (5.37)

In this case, the solution can be found very easily using 
a table of integrals (see Selby, 1975, p. 546):

	 y
a

ab
ab x C= +



tanh ( ) .1 	 (5.38)
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We repeat this process for various starting positions and 
plot the results in Figure 5.2.

The reader is encouraged to apply this method in the first 
quadrant, but above y = 2; in fact, we will make it one of 
the exercises at the end of this chapter. We note from our 
original table of slopes that for large (x, y) pairs, the slopes 
are very large—the tangents are essentially vertical lines. 
Furthermore, for very small values of x (but y >  2), the 
slopes are very small (the tangents are nearly horizontal). 
Thus, the behavior of y(x) above y = 2 is very different from 
what we observe in Figure 5.2 for values of y < 2.

We should also point out that we can always differentiate 
our first-order nonlinear ODE and identify the locus of 
points of inflection by setting the second derivative equal to 
zero. Thus, a great deal of information regarding the behav-
ior of the nonlinear first-order ODE may be obtained rather 
easily even though we may not be able to find a solution for 
the equation itself.

Solutions with Elliptic Integrals and Elliptic Functions

We want to consider a class of nonlinear ODEs that can be 
initially represented by the equation

	
dy

dx
a a y a y a y a y






 = + + + +

2

0 1 2
2

3
3

4
4. 	 (5.45)

We now restrict our attention (for the right-hand side) to 
quartic polynomials that can be written in the form

	 1 1 2 2 2 4− + +( )k y k y 	 (5.46)

two equations could be combined to produce one nonlinear 
second-order ODE. In a typical formulation for populations 
in conflict, we might see

dN

dt
aN bN N

dN

dt
cN dN N1

1 1 2
2

2 1 2= − =− +and .   (5.42)

Of course, it is possible to rewrite the former as

N

dN

dt
aN

bN
2

1
1

1

=
−

−

and to use that to eliminate N2 from the second of the pair 
of ODEs. We note in passing that the model (eq. 5.42) for 
the predator–prey problem is not very realistic for reasons 
that will be made clear in Chapter 9.

Davis (1962) points out that it can often be exceedingly 
difficult to find an analytic solution for a nonlinear ODE. 
But the analyst may learn a great deal about the behavior of 
such an equation through simple graphical interpretation as 
follows. First, we recognize that given a nonlinear first-order 
ODE,

	
dy

dx
f x y= ( , ), 	 (5.43)

we have a means for finding the slope of tangents at any 
point(s) we wish. Let us examine the first quadrant (on the 
diagonal) for the equation,

	
dy

dx
xy y= −( ).2 	 (5.44)

x 0.125 0.250 0.500 1 1.95 2 3 4 5
y 0.125 0.250 0.500 1 1.95 2 3 4 5
Slope −0.0293 −0.1094 −0.375 −1 −0.190 0 9 32 75

It is a simple matter for us to construct line segments with 
the indicated slope at the points listed in the table. We extend 
those segments a short distance, estimate the new position 
(x, y), calculate a new slope, and repeat. To illustrate, we 
will take the point (1, 1) and try this.

x position y position Slope

1 1 −1
1.1 0.9 −1.089
1.2 0.791 −1.148
1.3 0.676 −1.164
1.4 0.560 −1.129
1.5 0.447 −1.041
1.6 0.343 −0.909
1.7 0.252 −0.749
1.8 0.177 −0.581
1.9 0.119 −0.425
2.0 0.076 −0.294

FIGURE 5.2.  Local behavior of y(x) for eq. (5.44) as estimated 
through the construction of tangents. Please note that the slope is 
always zero for y = 2; one of the loci is a horizontal line passing 
through y = 2. What would we see if we started at (x = 0, y = 1.99)?
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d

dt

g

L

2

2
0

θ
θ+ =sin . 	 (5.52)

L is the length of the pendulum and g is the acceleration of 
gravity. Let us suppose that θ(t = 0) = 90° and the dθ/dt = 0. 
We set g = 32.17 ft/s and take L = 3 ft. First, we will find 
the solution for this problem numerically, and the resulting 
behavior is shown in Figure 5.3.

Now we turn our attention back to eq. (5.52), noting that 
it can be integrated once to yield

	
1

2

2

1
d

dt

g

L
C

θ
θ






 − =cos . 	 (5.53)

Since dθ/dt|t=0 = 0, C1 = −(g/L) cos θ0 and therefore

	
d

dt

g

L

θ
θ θ= −

2
0(cos cos ). 	 (5.54)

If we now let cos θ = 1 − 2k2 sin2 φ and take k = sin (θ0/2), 
we find

	 dt
L

g

d

k
=

−

φ

φ1 2 2sin
. 	 (5.55)

Of course, when integrated, this is exactly the form of eq. 
(5.49). We can use this elliptic integral to find the period of 
the pendulum’s motion; we will integrate from the zero posi-
tion to our maximum angle of π/2 rad (which is one-quarter 
of a cycle) and then multiply by 4:

	 T
L

g

d

k
P =

−∫4
1 2 2

0

2
φ

φ

π

sin
.

/

	 (5.56)

such that a0 = 1, a2 = −(1 + k2), and a4 = k2 by comparison 
with eq. (5.45). We also limit consideration to values for k 
less than 1. By taking the square root of the modified ODE,

	
dy

dx
y k y= − −( )( ).1 12 2 2 	 (5.47)

It is a simple matter for us to rearrange this equation  
so that

	 x
dy

y k y
=

− −∫ ( )( )
.

1 12 2 2
0

β

	 (5.48)

This is an elliptic integral of the first kind (see Dwight, 1957, 
p. 170), which can be written equivalently as an inverse 
Jacobi elliptic sine, sn−1. If we now substitute y = sin φ, we 
obtain a more compact version of the right-hand side:

	 x
d

k
=

−∫
φ

φ

θ

1 2 2
0

sin
. 	 (5.49)

k is the modulus of the elliptic integral and θ is the ampli-
tude. Extensive tables of values for elliptic integrals are 
available; for example, if we set k = 1/4 and θ = π/4, we 
can find the value for the elliptic integral, 0.8044 (Davis, 
1962, has a small table and CRC Handbook of Tables for 
Mathematics a much larger one). The reader may want to 
confirm his or her facility with such tables by checking the 
following value:

F k F
d

( , ) ( , )
sin

. .

/

θ
φ

φ
π

π

= =
−

=∫1
4 6 1

16
2

0

6

1
0 525   (5.50)

At this point, you might be thinking that the scope of 
application is strictly limited to equations where the right-
hand side is similar to eq. (5.46). However, let us go back 
to eq. (5.45) and differentiate, obtaining

2 2 3 4
2

2 1 2 3
2

4
3dy

dx

d y

dx
a

dy

dx
a y

dy

dx
a y

dy

dx
a y

dy

dx
= + + + .   (5.51)

If we divide by 2dy/dx, we see a nonlinear second-order 
ODE of the type that may be solved using elliptic functions; 
Davis provides a number of examples and Milne-Thomson 
(1950) points out that application of elliptic functions for 
solution of nonlinear ODEs includes analysis of pendulum 
oscillations, capillary phenomena, bending of an elastic rod, 
viscous flow in a convergent channel, and the potential of 
an electrified ellipsoid, among others. We will look at an 
elementary example to illustrate this. Consider a simple, 
frictionless pendulum with oscillatory motion governed by

FIGURE 5.3.  Behavior of frictionless pendulum with a starting 
position of 90° (1.5708 rad) and L = 3 ft.
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where we see repeated roots. In a situation like this, the 
primitive is written as

	 y C x C x x= − + −1 22 2exp( ) exp( ). 	 (5.65)

For an equation of higher order, it is certainly possible to 
obtain

	 ( ) .D yn+ =α 0 	 (5.66)

The primitive in this case is written as

y C x C x x C x x

C x xn
n

= − + − + −

+ −−

1 2 3
2

1

exp( ) exp( ) exp( )

exp( ).

α α α

α�
  (5.67)

Equation (5.59) presents a different challenge; in linear 
differential operator notation, we find

	 ( ) .D D y2 3 4 0+ + = 	 (5.68)

When we look at b2 − 4ac for the quadratic formula, we see 
9 − 16 = −7. Consequently,

	 D i D i y+ +









+ −










=

3

2

7

2

3

2

7

2
0. 	 (5.69)

We can, of course, write down the primitive just as we 
have done for both eq. (5.57) and eq. (5.58). However, this 
is a case where Euler’s relation will be useful; you may 
recall

	 e e bx i bxa ib x ax( ) (cos sin ).+ = + 	 (5.70)

This will allow us to put our result into a more appropri-
ate form:

y C e x i x

C e x

t

x

= +










+ −









−

−

1

2

3
2

3
2

7

2

7

2

7

2

cos sin

cos 
+ −





















i xsin .
7

2

  (5.71)

Since cosine is an even function and sine is odd, we can 
write

	

y C e x i x

C e x i x

x

x

= +










+ −


−

−

1

2

3
2

3
2

7

2

7

2

7

2

7

2

cos sin

cos sin







.

	 (5.72)

For a real (physical) problem such as one arising through 
a force balance, the imaginary parts will cancel, leaving  
a real result. We can very conveniently confirm the result, 

Since the initial displacement (angle) is 90°, this means 
that our modulus is sin(45°) and our amplitude is π/2. Con-
sulting a table for elliptic integrals, we find a value of 1.8541 
and therefore,

TP = =( )( / . ) ( . ) . ./4 3 32 17 1 8541 2 2651 2

Please compare this value with the results presented in 
Figure 5.3; you will find that our analytic solution (2.265) 
corresponds exactly with the numerical calculation.

HIGHER-ORDER LINEAR ODEs WITH 
CONSTANT COEFFICIENTS

We want to examine some higher-order ODEs but initially 
with the stipulations that they be linear, homogeneous, and 
have constant coefficients. Let us begin with a set of three 
second-order equations:

	
d y

dx

dy

dx
y

2

2
3 2 0+ + = 	 (5.57)

	
d y

dx

dy

dx
y

2

2
4 4 0+ + = 	 (5.58)

	
d y

dx

dy

dx
y

2

2
3 4 0+ + = . 	 (5.59)

We rewrite eq. (5.57) using linear differential operator 
notation:

	 ( ) ,D D y2 3 2 0+ + = 	 (5.60)

which we can readily factor as

	 ( )( ) .D D y+ + =2 1 0 	 (5.61)

Anytime we can successfully factor the linear operator 
for an ODE in this manner, we can immediately write down 
the primitive:

	 y C x C x= − + −1 22exp( ) exp( ). 	 (5.62)

Values for the two constants of integration can be obtained 
from the initial (or boundary) conditions. For an equation 
such as eq. (5.57), these might take the form

	 y x a
dy

dx
b

x

( ) .= = =
=

0
0

and 	 (5.63)

In the case of ODE (eq. 5.58), we have

	 ( ) ( )( ) ,D D y D D y2 4 4 2 2 0+ + = + + = 	 (5.64)
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This guarantees that the dependent variable was zero at 
the instant the forcing function was applied. Consequently, 
we will now assume that the dependent variable was in fact 
written in this form, such that

	 y x
dy

dx x

( ) .= = =
=

0 0 0
0

and 	 (5.78)

Therefore,

	 C C C C1 2 2 1
5

2
0 2+ + = =−and . 	 (5.79)

For these conditions, the solution for our problem 
becomes

	 y x x= − − − +
5

2
2

10

2

5

2
exp( ) exp( ) . 	 (5.80)

Of course, the inhomogeneity does not have to be a 
simple constant as it was in the previous example. Let us 
examine a method that allows us to deal with cases in which 
the inhomogeneity is a function of x. For example,

	
d y

dx

dy

dx
y x

2

2
4 4+ + = . 	 (5.81)

Again, we find the complementary function from the  
homogeneous version of eq. (5.81) and add the particular 
integral:

	 y C x C x x PI= − + − +1 22 2exp( ) exp( ) . 	 (5.82)

The technique we will employ for the determination of 
the particular integral is called variation of parameters. We 
begin by rewriting the complementary function, but we 
insert unknown functions of x in place of the constants of 
integration that appear in eq. (5.82):

	 y L x x L x x x= − + −1 22 2( )exp( ) ( ) exp( ). 	 (5.83)

We now differentiate with respect to x, obtaining

Dy L x L x L x x

L x L x

= − − − + −
+ − −

1 1 2

2 2

2 2 2 2

2 2

′ ′exp( ) exp( ) exp( )

exp( ) exp(( ).−2x 	 (5.84)

The terms involving derivatives (of Ls) are set equal 
to zero:

	 L x L x x1 22 2 0′ ′exp( ) exp( ) .− + − = 	 (5.85)

Now we differentiate again, retaining only those terms 
involving derivatives of the Ls. But this time, the order of 

eq. (5.72), by using deSolve( . . . ) on the Texas Instruments 
TI-89™; we obtain

y C
x x

C
x x

= −






 + −







1 2

3

2

7

2

3

2

7

2
exp cos exp sin .

The procedure we have sketched previously is valid for 
comparable equations of any order. For example, consider

	
d y

dx

d y

dx

d y

dx

dy

dx
y

4

4

3

3

2

2
2 3 5 8 0+ + + + = . 	 (5.73)

In this case, we have two pairs of complex conjugates 
(roots), which are D  +  0.457547  ±  1.56529i and 
D − 1.45755 ± 0.940024i. And again we can immediately 
write down the primitive by inspection.

Unfortunately, not every ODE of higher order will be 
homogeneous; often, if the differential equation represents 
some dynamic process, a forcing function will be applied on 
the right-hand side to drive the model. For example, we 
might have

	
d y

dx

dy

dx
y

2

2
3 2 5+ + = . 	 (5.74)

In such cases, the solution is the sum of the primitive for 
the homogeneous equation—which we refer to as the com-
plementary function (CF )—plus a particular integral (PI). 
Thus, for eq. (5.74), we have

	 y C x C x PI= − + − +1 22exp( ) exp( ) . 	 (5.75)

Many times, the form of the particular integral can be 
determined by inspection. For example, for eq. (5.74), once 
the dynamic behavior is completed, the terms involving 
derivatives will be zero (for large x, the exponentials disap-
pear, leaving just the PI). Therefore, the PI must be 5/2, and 
the solution can be written as

	 y C x C x= − + − +1 22
5

2
exp( ) exp( ) . 	 (5.76)

We should actually complete this problem by including 
boundary (or initial) conditions. We assume that the physical 
process described by this model was drifting along at an 
equilibrium state until the independent variable, x, or very 
commonly time, t, was zero, when the forcing function (the 
constant 5) was applied. Of course, this means that both y 
and its derivative can be set to zero for x =  0—we can 
always do this for models of this type by using deviation 
variables. For example, if yeq is the equilibrium (or steady) 
value of the dependent variable, then we simply write

	 Y y y= − eq. 	 (5.77)
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We envision needing to find the transform for many dif-
ferent types of terms, and we will use the formal definition 
one more time, applying it to the independent variable, t:

	 f s te dt
e

s
st

s
st

st

( ) ( ) .= = − − =−

∞
−

∞∫
0

2 0 2
1

1
	 (5.91)

If our focus is the solution of ODEs, then we must also 
be able to transform derivatives of various orders. For 
example,

	 L
df t

dt
sf s f t

( )
( ) ( ),{ }= − = 0 	 (5.92)

L
d f t

dt
s f s sf t f t

2

2
2 0 0

( )
( ) ( ) ( ),










= − = − ′ =   (5.93)

and more generally,

L
d f t

dt
s f s s f t s f t

s

n

n
n n n

n

( )
( ) ( ) ( )










= − = − ′ =

−

− −

−

1 20 0

33 0′′ =f t( ) .…

The reader will observe that in the transformation of 
derivatives, differentiation is replaced by multiplication by 
s. However, we must also subtract off the initial conditions 
(in the time domain). This makes it clear why it is so impor-
tant (and convenient) to put problems into deviation form 
whenever possible. Of course, we do not actually use the 
formal definition of the Laplace transform, eq. (5.89), in 
practice since nearly every conceivable form of function has 
already been transformed. We merely need to look them up 
in a suitable reference; one very useful source is Abramowitz 
and Stegun (1972). Here is an abbreviated listing of some 
very common transforms.

f(t) L{f(t)}

1
1

s

t
1
2s

exp(–at)
1

s a+

tn exp(−at)
n

s a n

!

( )+ +1

exp(−at) sin(bt)
b

s a b( )+ +2 2

sin(at)
a

s a2 2+

cos(at)
s

s a2 2+

the derivative (2) matches the order of the ODE, so the sum 
is set equal to the inhomogeneity (which is x); thus,

− − + − − − =2 2 2 2 21 2 2L x L x L x x x′ ′ ′exp( ) exp( ) exp( ) .
		  (5.86)

By virtue of eq. (5.85), the sum of the first and third terms 
is zero, leaving us with two equations to solve:

L x x L x x2 1
22 2′ ′= + =− +exp( ) exp( ).and   (5.87)

These equations are integrated and taken back to eq. 
(5.83). The reader should show that the particular integral 
turns out to be PI = (x/4) − (1/4); therefore the solution we 
were seeking is written as

y C x C x x x= − + − + −1 22 2
1

4
1exp( ) exp( ) ( ).   (5.88)

Since y(x = 0) = 0, C1 = 1/4. The first derivative is also 
zero at x = 0, so it is easy to show that C2 = 1/4 as well. 
Problems of a type similar to the example immediately 
above are excellent candidates for solution through use of 
the Laplace transform, and it is worthwhile for us to spend 
a little effort reviewing that technique. But keep in mind that 
the procedure we are about to explore can only be used to 
solve a very limited class of ODEs—we are restricted to 
linear ODEs with constant coefficients.

Use of the Laplace Transform for Solution of ODEs

We normally think of the Laplace transform within the 
context of problems involving change or evolution in time. 
Accordingly, for decades, the Laplace transform was a staple 
of classical linear process control as it allowed the control 
engineer to explore the dynamic behavior of a system in the 
s-plane using only algebraic manipulations. With this per-
spective in mind, we will use t as our standard independent 
variable in this section. The formal definition of the Laplace 
transform of a function, f(t), follows:

	 f s f t e dtst( ) ( ) .= −

∞

∫
0

	 (5.89)

This transform is often written more compactly as f 
(s) = L{f (t)}. Notice that the transformation takes us from 
the time domain to the s-plane. Let us actually apply the 
definition to something—a numerical constant, for example: 
We let f(t) = 1, then

f s e dt
s

e
s s

st

o

st( ) ( ) ( ) .= =− =− − =−

∞

− ∞

∫ 1
1 1

0 1
1

0
  (5.90)
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C = 1/4 and D = 1/4. Therefore, we now know the right-
hand side of eq. (5.97):

	 y s
s s s s

( )
( )

.= − +
+

+
+

1
4

1
4

1
4

2

1
4

22 2
	 (5.98)

Our work is almost complete; we need only to consult 
the abbreviated list of transforms provided earlier so that we 
can write y(t):

	 y t t t t t( ) exp( ) exp( ).= − + − + −
1

4

1

4

1

4
2

1

4
2 	 (5.99)

Compare this result with eq. (5.88); you will see that  
they are identical (except for the change in independent 
variable). Our use of the Laplace transform has significantly 
reduced the work necessary to find the solution for the ODE 
(eq. 5.81).

We also want to illustrate the procedure with a variation 
that arises regularly with this type of ODE. Consider the 
second-order ODE:

	
d y

dt

dy

dt
y

2

2
3 5 2+ + = 	 (5.100)

with y(t = 0) = 0 and y′(t = 0) = 0. Proceeding as before,

	 s y s sy s y s
s

2 3 5
2

( ) ( ) ( )+ + = 	 (5.101)

and

y s
s s s

s s i s i

( )
( )

=
+ +

=
+ +









+ −










2

3 5

2

3
2

11
2

3
2

11
2

2



.

		  (5.102)

Just as we did previously, we expand the right-hand side:

y s
A

s

B

s i

C

s i

( ) .= +
+ +

+
+ −

3
2

11
2

3
2

11
2

  (5.103)

The reader may wish to verify that A  =  2/5, B  = 
–0.150943 − 0.068267i, and C = –0.150943 + 0.068267i. 
It remains for us to take the following three terms back to 
the time domain:

	

y s
s

i

s i

i

s

( )
. .

. .

= +
− −

+ +

+
− +

2
5 0 150943 0 068267

3
2

11
2

0 150943 0 068267

++ −
3
2

11
2

i

.

	 (5.104)

At this point, you should be able to identify the essentials 
of this system’s behavior in the time domain: We will obtain 

f(t) L{f(t)}

t cos(at)
s a

s a

2 2

2 2 2

−
+( )

exp(−at) cos(bt)
s a

s a b

+
+ +( )2 2

cosh(at)
s

s a2 2−
1

2 2a
at atsin( )sinh( )

s

s a4 44+
1

4
πt

ktcosh( ) 1

s

k

s
exp







J kt0 4( ) 1

s

k

s
exp −







erfc
k

t4









1
0

s
k s kexp( ),− ≥where

4

4 4

2t k

t
k erfc

k

tπ
exp ( )−






−









1
0

3 2s
k s k

/
exp( ),− ≥where

1

4

2

πt

k

t
exp −








1
0

s
k s kexp( ),− ≥where

We will illustrate the application of the Laplace transform 
to the solution of ODEs (with constant coefficients) by 
reconsidering the previous example, eq. (5.81). However,  
we will change the independent variable to t (from x) 
to be consistent with the previous table of transforms. 
Accordingly,

	
d y

dt

dy

dt
y t

2

2
4 4+ + = . 	 (5.94)

Applying the transform to each term, we get

	 y s s s
s

( )( ) ,2
2

4 4
1

+ + = 	 (5.95)

and therefore,

	 y s
s s s

( )
( )( )

.=
+ +

1

2 22
	 (5.96)

To solve such problems the old-fashioned way (manu-
ally), we use partial fraction expansion. There is a slight 
complication in this case since we have repeated roots that 
will require us to write

	
1

2 2 22 2 2 2s s

A

s

B

s

C

s

D

s( ) ( )
.

+
= + +

+
+
+

	 (5.97)

We begin by multiplying by s2 and setting s = 0; we find 
immediately that A = 1/4. To find B, we return to eq. (5.97) 
and multiply by s2 again. But this time, we differentiate with 
respect to s, which isolates B, and we find B = −1/4. We 
proceed analogously for the remaining two terms and find 
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This differential equation is linear, but the coefficients are 
not constant. We must preface this part of our discussion 
with a warning: There is no general procedure that will 
permit the analyst to solve every differential equation of this 
type. Ayres (1952) laid out a plan of attack for such equa-
tions that will sometimes yield success and we will use the 
strategy he recommends on the following example. Let us 
suppose the equation of interest is

	
d y

dx x

dy

dx x
y x

2

2 2

3 3
2 1− + = − . 	 (5.107)

Our plan is to render the equation homogeneous (remov-
ing the 2x − 1 from the right-hand side) and then to see if 
we identify a particular integral, which we will call u(x). 
Consider trying PI =  x; the second derivative is zero, the 
first derivative is 1, and we find (−3/x) + (3/x2)x = 0, so the 
function x is a particular integral for this equation. We now 
let y be rewritten as the product of the particular integral and 
a new dependent variable, v: y = xv. Therefore,

dy

dx
v x

dv

dx

d y

dx

dv

dx
x

d v

dx
= + = +and

2

2

2

2
2 .   (5.108)

Of course, this leads to

2
3 3

2 1
2

2 2

dv

dx
x

d v

dx x
v x

dv

dx x
xv x+ − +







+ = −( ) ,   (5.109)

which means that the terms in which v is divided by x cancel, 
leaving us with just

	 x
d v

dx

dv

dx
x

2

2
2 1− = − . 	 (5.110)

Anytime we are confronted by an ODE that includes only 
derivatives, we should immediately think about reducing the 
order. In this case, we achieve this by letting β =  dv/dx, 
resulting in

	
d

dx x x

β
β− = −

1
2

1
. 	 (5.111)

This first-order ODE is familiar—see eq. (5.31), for example. 
We know that an integrating factor for this equation is 
e e xx dx x∫ − −= =( / ) ln1 1 . Consequently,

	
d

dx x x x

1 2 1
2

β





= − , 	 (5.112)

and therefore,

	 β= = + +
dv

dx
x x C x2 11ln . 	 (5.113)

a constant (2/5) combined with an exponentially damped 
(exp( )− 3

2 t ) oscillatory response. Specifically, we find

	

y t t t

t

( ) . exp cos

. exp

= − −








− −







2

5
0 4

3

2

11

2

0 361814
3

2
sin .

11

2
t

	 (5.105)

The behavior produced by eq. (5.105) is illustrated in 
Figure 5.4.

To conclude this section, it is essential that we reiterate 
that the Laplace transform is a linear operator and it can only 
be used to solve linear ODEs with constant coefficients. 
Historically, this method was of enormous importance in the 
development of automatic process control because idealized 
models for the dynamic behavior of processes could be dealt 
with algebraically (and the computational solution of dif-
ferential equations could be avoided). But the restriction of 
the Laplace transform method to linear ODEs with constant 
coefficients is a significant one since so many of the equa-
tions of interest to us in applied mathematics have variable 
coefficients.

HIGHER-ORDER EQUATIONS WITH 
VARIABLE COEFFICIENTS

We want to focus on second-order ODEs of the form

	
d y

dx
P x

dy

dx
Q x y R x

2

2
+ + =( ) ( ) ( ). 	 (5.106)

FIGURE 5.4.  Characteristic behavior of a slightly underdamped 
second-order system as produced by the solution, eq. (5.105). Note 
the limited overshoot and the rapidly damped oscillation about the 
ultimate value for y(t) of 0.4.
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Of course, we must remember to multiply eq. (5.120)  
by exp(x2) to obtain our original dependent variable, y. 
We can also use the Euler relation to rewrite the solution  
in terms of cosine and sine, should we desire to do so; 
for example, since e(a+ib)t  =  eat (cosbt  +  isinbt), then 
exp( ) cos( ) sin( )− = −2 2 2ix x i x .

BESSEL’S EQUATION AND BESSEL FUNCTIONS

Among the more important second-order ODEs with  
variable coefficients appearing in applied mathematics is  
Bessel’s equation. The solution for Bessel-type ODEs can be 
written in terms of Bessel functions, and the definitive source 
of information regarding Bessel functions is A Treatise 
on Bessel Functions and Their Applications to Physics by 
Gray et al. (1931, reprinted 1966); Carslaw and Jaeger (1959) 
can also be very useful. The reader should be aware of the 
fact that Bessel functions are often referred to—quite 
appropriately—as “cylinder functions” in the older German 
literature. The form for Bessel’s ODE seen frequently 
throughout applied mathematics is

	 x
d y

dx
x

dy

dx
x n y2

2

2
2 2 0+ + − =( ) , 	 (5.121)

where n  ≥  0. The general solution for this particular 
form is

	 y C J x C Y xn n= +1 2( ) ( ), 	 (5.122)

where J is the Bessel function of the first kind and Y is 
Neumann’s Bessel function of the second kind (both of order 
n). However, the form of eq. (5.121) is quite restrictive and 
we should recognize that many ODEs with forms similar to 
eq. (5.121) have solutions that can be written in terms of 
Bessel functions. In fact, we need to make the following 
observation: Whenever we encounter a radially directed flux 
in cylindrical coordinates, the operator

1

r

d

dr
r

d

dr

φ







will arise. Depending on the exact nature of the problem, 
this can result in some form of Bessel’s differential equation, 
which, for the generalized case, can be written as shown by 
Mickley et al. (1957):

r
d

dr
r a br

d

dr

c dr b a v r b r

v

s v v

2
2

2

2 2 2

2

1 0

φ φ

φ

+ +

+ + − − − + =

( )

[ ( ) ] .

  (5.123)

For many real, physical problems in applied mathemat-
ics, we find that a = 1, b = 0, and c = 0. The nature of the 
solution is then determined by the sign of d. If the d  is 
real, then the solution is written in terms of Jn or Jn plus Yn. 

We integrate with respect to x:

	 v
x

x
x C

x x C= −











+ + +2

2 4 2

2 2
1 2

2ln , 	 (5.114)

and since y = xv,

	 y x x C x C x= + + +3
1

2
2[ln ] . 	 (5.115)

The procedure we sketched immediately above will only 
work if we can identify a particular integral for the homo-
geneous equation. Obviously, we might fail to find a PI, and 
in that case, Ayres suggests the following: Return to eq. 
(5.106) and compute Q −  (1/4) P2 −  (1/2) (dP/dx); if this 
difference is a constant or alternatively a constant divided 
by x, then the transformation

	 y v P x dx= −






∫exp ( )

1

2
	 (5.116)

will reduce the ODE to a linear equation with constant coef-
ficients (or to a Cauchy equation of the form

A x
d y

dx
A x

d y

dx
F xn

n
n

n n
n

n

n
+ + =−

−
−

−1
1

1

1
… ( ).

Let us see how this might work in practice using the fol-
lowing equation for our example:

	
d y

dx
x

dy

dx
x y x x

2

2
2 24 4− + = exp( ). 	 (5.117)

We see Q = 4x2 and P = −4x; therefore,

Q P
dP

dx
x x− −






 = − − − =

1

4

1

2
4

1

4
16

1

2
4 22 2 2( ) ( ) .

Accordingly, we let

y v Pdx v x= −






=∫exp exp( ).

1

2
2

Proceeding, we differentiate appropriately and substitute 
into eq. (5.117). All terms involving dv/dx cancel, as well as 
the terms that involve x2v, leaving us with

	
d v

dx
v x

2

2
2+ = . 	 (5.118)

By inspection, the PI is x/2, and from the homogeneous 
equation we observe

	 ( ) ( )( ) .D v D i D i v2 2 2 2 0+ = + − = 	 (5.119)

Thus, the solution for v is

v C ix C ix
x

= − + + +1 22 2
2

exp( ) exp( ) .   (5.120)
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Bessel’s Equation and Bessel Functions    77

Y0 nor K0 can be part of the solution for a problem in cylin-
drical coordinates if the field variable (V, T, or CA) is finite 
at the center (r = 0).

An Abbreviated Table of Zero-Order Bessel Functions

r J0(r) Y0(r) I0(r) K0(r)

0.0 1 −∞ 1 ∞
0.2 0.99 −1.0811 1.01 1.7527
0.4 0.9604 −0.606 1.0404 1.1145
0.6 0.912 −0.3085 1.092 0.7775
0.8 0.8463 −0.0868 1.1665 0.5653
1.0 0.7652 0.0883 1.2661 0.421
1.2 0.6711 0.2281 1.3937 0.3185
1.4 0.5669 0.3379 1.5534 0.2437
1.6 0.4554 0.4204 1.7500 0.188
1.8 0.34 0.4774 1.9896 0.1459
2.0 0.2239 0.5104 2.2796 0.1139
2.2 0.1104 0.5208 2.6291 0.0893
2.4 0.0025 0.5104 3.0493 0.0702
2.6 −0.0968 0.4813 3.5533 0.0554
2.8 −0.185 0.4359 4.1573 0.0438
3.0 −0.2601 0.3769 4.8808 0.0347
3.2 −0.3202 0.3071 5.7472 0.0276
3.4 −0.3643 0.2296 6.7848 0.022
3.6 −0.3918 0.1477 8.0277 0.0175
3.8 −0.4026 0.0645 9.5169 0.0139
4.0 −0.3971 −0.0169 11.302 0.0112
4.2 −0.3766 −0.0938 13.443 0.0089
4.4 −0.3423 −0.1633 16.010 0.0071
4.6 −0.2961 −0.2235 19.093 0.0057
4.8 −0.2404 −0.2723 22.794 0.0046
5.0 −0.1776 −0.3085 27.239 0.0037
5.2 −0.11029 −0.33125 32.584 0.00297
5.4 −0.04121 −0.34017 39.009 0.002385
5.6 0.02697 −0.33544 46.738 0.00192
5.8 0.0917 −0.317746 56.038 0.00154
6.0 0.15065 −0.28819 67.234 0.00124
6.2 0.20174 −0.24831 80.718 0.001
6.4 0.24331 −0.19995 96.962 0.00081
6.6 0.27404 −0.14523 116.54 0.00065
6.8 0.2931 −0.08643 140.14 0.00053
7.0 0.3001 −0.02595 168.59 0.00042
7.2 0.29507 0.03385 202.92 0.000343
7.4 0.2786 0.09068 244.34 0.000277
7.6 0.2516 0.1424 294.33 0.0002
7.8 0.2154 0.1872 354.69 0.000181
8.0 0.1717 0.2235 427.56 0.000146
8.2 0.1222 0.25012 515.59 0.000118
8.4 0.06916 0.26622 621.94 0.000096
8.6 0.01462 0.27146 750.5 0.000077
8.8 −0.0392 0.26587 905.8 0.000063
9.0 −0.0903 0.2498 1094 0.000051
9.2 −0.13675 0.22449 1321 0.000041
9.4 −0.17677 0.19074 1595 0.000033
9.6 −0.20898 0.15018 1927 0.0000271
9.8 −0.23277 0.10453 2329 0.0000219

10.0 −0.2459 0.05567 2816 0.0000178

If d  is imaginary, then the solution will be either In or In 
plus Kn. The order, n, is determined by

n
s

a
c=

−





 −

1 1

2

2

.

As an illustration, consider steady conduction of thermal 
energy in an infinitely long cylinder with a production term 
that is linear with respect to temperature. The governing 
differential equation has the form

	 r
d T

dr
r

dT

dr
r

T

k
2

2

2
2 0+ + =

γ
, 	 (5.124)

where γ is a positive constant. Note that a = 1, b = 0, c = 0, 
s = 1, and d = γ/k. In this case, the solution is

	 T AJ
k

r BY
k

r=









+









0 0

γ γ
. 	 (5.125)

For a solid cylindrical domain, T(r = 0) would have to 
be finite and therefore B = 0 (since Y0(0) = −∞). But of 
course, for an annular region, no boundary condition could 
be written for r = 0 and both terms (A and B) would remain 
in the solution. Note that if the production term in eq. (5.124) 
were replaced by a sink (disappearance) term, then γ/k 
would have been negative and the solution would have been 
written in terms of the modified Bessel functions, I0 and K0. 
To illustrate this, consider a catalytic reaction in a long, 
cylindrical pellet; the reactant species, A, is being consumed 
by a first-order reaction. A homogeneous model (for hetero-
geneous catalysis) results in the differential equation

	 r
d C

dr
r

dC

dr
r

k a

D
CA A

A
2

2

2
2 1 0+ − =

eff

, 	 (5.126)

with the solution

	 C AI
k a

D
r BK

k a

D
rA =










+









0

1
0

1

eff eff

. 	 (5.127)

Note that k1 is the rate constant and a is the specific surface 
area of the catalyst.

Let us apply eq. (5.127) to a situation where the concen-
tration of the reactant at the surface (r =  R) is 1 and the 
concentration at the center of the cylindrical catalyst pellet 

is finite. We will assume that k a D1 6( ) =eff  and that 
R = 1. Before we begin to work on the constants of integra-
tion, A and B, we ought to know a little about the behavior 
of these Bessel functions. Therefore, a short table of numeri-
cal values is provided as follows for zero-order Bessel func-
tion of the first and second kinds, as well as the modified 
Bessel functions, I0 and K0; more extensive tables are pro-
vided by Abramowitz and Stegun (1972). Note that neither 
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78    Analytic Solution of Ordinary Differential Equations

because of the greater surface area available to the reactant 
at the outer surface, r = 2.

The need to differentiate Bessel functions arises fre-
quently, particularly when a boundary condition involves a 
specified flux (e.g., Neumann or Robin’s type). For J, Y, and 
K, we have

	
d

dr
Z r Z r

p

r
Z rp p p( ) ( ) ( ).α α α α[ ]=− ++1 	 (5.129)

Accordingly, we note that

	
d

dr
J r J r p0 1 0( ) ( ), .β β β[ ]=− =since 	 (5.130)

For Ip, we have

	
d

dr
I r I r

p

r
I rp p p( ) ( ) ( ).α α α α[ ]= ++1 	 (5.131)

To illustrate, suppose we have to differentiate J0 (λr); by 
eq. (5.129), (d/dr) [J0 (λr)] = −λJ1 (λr). Now assume that 
λ = 1 and that r = 1.5; if we use Figure 5.5 for a graphical 
estimate, we get about −0.51. We can reassure ourselves by 
looking up the exact value too, it is −0.558. Next, suppose 
we wanted to identify the maximum value for Y0(λr); based 
on Figure 5.5, it appears to occur at about 2.1. We set

d

dr
Y r Y r0 1 0( )) ( )λ λ λ[ ]=− =

and find that λr = 2.19715. Let us look at one more example: 
We have an annular catalytic pellet in which CA  =  AI0 
(βr) + BK0 (βr), with inner and outer radii (R1 and R2) of 2 
and 4, respectively. We take β =  0.3 and assume that the 
concentration at both exposed surfaces will be 1. Our inter-
est is the driving force for diffusion in the interior of the 
annular solid: dCA/dr = AβI1 (βr) − BβK1 (βr). The bound-
ary conditions are used to show A = 0.7175 and B = 0.2784, 
and we can now evaluate the derivative at any r-location of 
interest. We are going to illustrate this at the annular mid-
point, r = 3, keeping in mind that the arithmetic center is 
not a surface of symmetry in this case; the result is 
dCA/dr = 0.0471 for r = 3 (small, but not zero). There are 
many useful sources of information for Bessel’s equation 
and Bessel functions, and a few of them are included in the 
references provided at the end of this chapter.

POWER SERIES SOLUTIONS OF ORDINARY 
DIFFERENTIAL EQUATIONS

We observed previously that for higher-order ODEs with 
variable coefficients, there is no guaranteed method of solu-
tion. In such cases, an approximate analytic solution may 

J0(r) and Y0(r) are also shown graphically in Figure 5.5.
Now we are ready to proceed with our example. Since 

K0(0) = ∞, we note B = 0. Using the surface concentration, 
CA (r = 1) = 1, we can compute A:

	 A

I
k a

D
R

=










1

0
1

eff

. 	 (5.128)

From the previous table, we find I0(6) = 67.234, and we can 
then calculate the following values for the concentration 
distribution in the interior of the catalyst pellet:

r 0.0 0.1 0.2 0.4 0.6 0.8 1.0
CA 0.01487 0.01624 0.02073 0.04535 0.1194 0.3390 1.000

Naturally, it would be more efficient in terms of reactant 
conversion to use an annular geometry for the pellet (provid-
ing increased surface area per unit volume) so we should 
also look at the case where the reactant can flow both through 
the center and past the outer surface. We let the two radii be 
denoted by the subscripts, 1 and 2, respectively, such that 
R1 ≤ r ≤ R2, and we set the concentrations at both (inner 
and outer) surfaces to 1. In this case, K0 must be retained in 

the solution. Again we let k a D1 6( ) =eff , just as before, 
and the constants of integration are found to be A = 801.011 
and B = 5.3 × 10−5.

r 1.0 1.2 1.4 1.5 1.6 1.8 2.0
CA 1.000 0.2856 0.1098 0.0987 0.1238 0.3254 1.000

Notice that we do not have symmetry about the midpoint 
of the annular region (r  =  1.5). This is to be expected 

FIGURE 5.5.  Bessel functions J0(r) and Y0(r) for r from 0 to 10.
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sometimes be useful, and we will review one approach here. 
The technique we describe in this section has been used by 
mathematicians for a very long time, and it has produced 
some important results. We will use the simple equation

	
d y

dx
y

2

2
0+ = , 	 (5.132)

with y(x = 0) = 0 and y′(x = 0) = 1, for our initial explora-
tion because we know the solution to be

	 y C x C x= +1 2sin cos . 	 (5.133)

To satisfy the two boundary conditions, it is necessary 
that y = sin x, of course. We are going to propose that the 
solution be represented by the series

a a x a x a x a xn
n

n

0 1 2
2

3
3

0

+ + + +
=

∞

∑� or .   (5.134)

We note immediately that to conform to the boundary 
conditions, a0 = 0 and a1 = 1. Let us differentiate the series 
once, ∑ −na xn

n 1, and then again to obtain ∑ − −( )( )n n a xn
n1 2. 

We take this last result back to our ODE, resulting in

	 ( )( ) .n n a x a xn
n

n

n
n

n

− + =−

=

∞

=

∞

∑ ∑1 02

0 0

	 (5.135)

We need to have the first summation written in terms of xn 
for consolidation; therefore,

	 [( )( ) ] .n n a a xn n
n

n

+ + + =+

=

∞

∑ 1 2 02

0

	 (5.136)

For this power series to be zero as indicated here, it is neces-
sary for the coefficients to be zero and, therefore,

	 ( )( ) .n n a an n+ + + =+1 2 02 	 (5.137)

However, the boundary conditions require that a0 = 0 and 
a1 = 1, as we observed earlier. The first of these also requires 
a2 = 0, and thus, all even ans must be zero. We now use eq. 
(5.137) to compute (by recursion) coefficients for n = 3, 5, 
7. The result is

a a a3 5 7
1

3 2

1

5 4 3 2

1

7 6 5 4 3 2
=− = =−

( )( )
,

( )( )( )( )
,

( )( )( )( )( )( )
.

		  (5.138)

Therefore, our series approximation for y(x) looks 
like this:

	 y x x
x x x

( )
! ! !

.≈ − + − +
3 5 7

3 5 7
� 	 (5.139)

How well can the truncated series represent the actual 
solution? If we limit n to values less than 27, we obtain the 
values shown in the following table:

x y(x) series y(x) = sin(x)

⅛ 0.1246747 0.1246747
¼ 0.2474039 0.24740396
½ 0.4794255 0.47942554
1 0.841471 0.84147098
2 0.9092975 0.90929743
4 −0.7568024 −0.756802495
8 0.9893362 0.98935825
9 0.4116477 0.41211848

10 −0.5542731 −0.54402111
11 −1.158563 −0.99999021
12 −2.469321 −0.53657292

These results make it clear that the truncated series does 
an excellent job of representing y(x) for small values of x, 
as expected. Discrepancies do begin to appear as x exceeds 
about 4.

Let us explore a second example that offers a slightly 
different wrinkle. Consider the ODE

dy

dx
x x y y x= − + + = =2 4 1 2 3with ( ) .   (5.140)

It is effective for us to define a new independent variable, 
z = x − 2; consequently, x2 = z2 + 4z + 4 and 4x = 4z + 8. 
We substitute into eq. (5.140) and obtain

	
dy

dz
z y= + −2 3. 	 (5.141)

Now it is apparent that y(z = 0) = 3. Let us assume that 
the solution can be written as a series of the form

	 y a a z a z a z= + + + +0 1 2
2

3
3 � , 	 (5.142)

and we see immediately that a0  =  3, allowing us to 
write y a zn n

n= +∑ =
∞3 1 . We differentiate, finding dy dz na zn

n=∑ −1

, and we take these expressions back to eq. (5.141) 
and consolidate:

	 ( ) .n a a z zn n
n+ −( )[ ]− =+∑ 1 01

2 	 (5.143)

We group like powers, noting that the coefficients must 
combine to produce zero. For n = 1, 2a2 − a1 = 0; for n = 2, 
3a3 − a2 − 1 = 0; for n = 3, 4a4 − a3 = 0, and so on. From 
eq. (5.141), we note that a1 =  0, and therefore a2 =  0 as 
well. It is apparent that a3 = 1/3, and by recursion, a4 = 1/12 
and a5 = 1/60, and so on. We are in position to write down 
our series solution:

	 y z z z= + + + +3 1
3

3 1
12

4 1
60

5 � , 	 (5.144)

dy dz na zn
n=∑ −1
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80    Analytic Solution of Ordinary Differential Equations

One thing that we notice immediately about eq. (5.148) 
is that if the parameter, b, is very small, then the two non-
linearities in the ODE are eliminated! We will assume that 
T can be represented as a sequence of unknown functions:

	 T T bT b T b T= + + + +0 1
2

2
3

3 �. 	 (5.149)

Our goal of course is to determine the unknown func-
tions, T0, T1, and so on. We begin by writing out the deriva-
tives we need:

	
dT

dy

dT

dy
b

dT

dy
b

dT

dy
= + + +0 1 2 2 �	 (5.150)

and

	
d T

dy

d T

dy
b

d T

dy
b

d T

dy

2

2

2
0

2

2
1

2
2

2
2

2
= + + +�. 	 (5.151)

We now take eq. (5.149), eq. (5.150), and eq. (5.151) and 
substitute into eq. (5.148):

[ ( )]a b T bT b T
d T

dy
b

d T

dy
b

d T
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+ + + + + + +
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dT
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b

dT
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0 1 2 2

2

0� .		  (5.152)

Now let us assume b can take on any value, including 
a very small one; if b is vanishingly small, then we are 
left with

a
d T

dy
T C y C

2
0

2 0 1 20= = +and consequently, , .   (5.153)

We treat the boundary conditions exactly the same way—
we have −200 at y = 0 and +700 at y = 1. Therefore,

	 T y0 900 200= − . 	 (5.154)

We differentiate eq. (5.154) as needed, and take those results 
back to eq. (5.152). Of course,

	
dT

dy

d T

dy
0

2
0

2
900 0= =and . 	 (5.155)

If we divide by b and again allow b to become very small, 
then

	 a
d T

dy

2
1

2
2900=−( ) . 	 (5.156)

keeping in mind that z = x − 2. How well does this series 
represent the actual solution? The reader is encouraged to 
use the integrating factor approach to show that the analytic 
solution for eq. (5.141) is

	 y z z z=− − + + +2 2 1 3 2( ) exp( ). 	 (5.145)

If we let z = 2, eq. (5.145) shows y = 7.778. If we truncate 
eq. (5.144) with the sixth-degree term, we get y(2) = 7.71. 
We can also solve this ODE numerically to confirm 
y(2) = 7.778.

The notion that we might want to seek power series solu-
tions for ODEs may seem quaint to you. However, it is 
important that we remember that many very significant 
problems have been solved in this manner. The reader is 
encouraged to look at the application of the method of 
Frobenius to Bessel’s differential equation and a useful 
description of the process is provided by Mickley et al. 
(1957) in Chapter 5.

REGULAR PERTURBATION

There are occasions when one simply must obtain an 
approximate analytic solution for a nonlinear ODE. In the 
previous section, we looked at the power series technique; 
now we turn our attention to regular perturbation. Perturba-
tion is a powerful method that is especially useful when a 
nonlinear problem contains a parameter that is in some 
sense small. Let us consider steady-state heat transfer (con-
duction) in a slab of pure iron. The thermal conductivity  
of pure iron between −200°C and +700°C varies approxi-
mately as

	 k a bT T≅ + = − °76 333 0 0633. . W/(m C).   (5.146)

Therefore, at −200°C, k = 89 W/(m°C), and at +700°C, 
k  =  32 W/(m°C); from high-to-low temperature then, k 
increases by a factor of about 2.78. Such a variation will 
have a profound impact on the temperature distribution as 
we shall now see. Assume we have a slab of pure iron that 
extends from y = 0 to y = 1 m. The temperature at y = 0 is 
maintained for all time t at −200°C, and at y =  1 m, the 
constant temperature is +700°C. Under these steady condi-
tions, the temperature distribution is governed by

	
d

dy
a bT

dT

dy
( )+











= 0 	 (5.147)

or

	 ( ) .a bT
d T

dy
b

dT

dy
+ +






 =

2

2

2

0 	 (5.148)
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ODE; for example, this author has found Finlayson (1980) 
to be quite useful.

LINEARIZATION

Often the removal of nonlinear terms in ODEs will yield an 
equation that can be solved analytically. Of course, the 
analyst must decide if the approximation is adequate for the 
intended purpose. We will look at a couple of alternatives 
here and we will try to give the reader a sense of when such 
an approach may work and when it may not. Let us begin 
with the simple first-order ODE:

	
dh

dt
h= 1

2
7 4/ , 	 (5.159)

with h(t = 0) = 1 and 0 ≤ t ≤ 2. Equation (5.159) is easy 
to solve as it stands, so it will provide a very nice means of 
comparison. The analytic solution, which we will make use 
of later, is

	 h t t( ) .
/

= −












−

1
3

8

4 3

	 (5.160)

Let us focus our attention on the right-hand side of eq. 
(5.159), and we will use a truncated Taylor series to approxi-
mate this function:

	 f h h f h f h h h( ) ( ) ( )( )./= ≅ + ′ −7 4
0 0 0 	 (5.161)

It is evident that our strategy is to place a tangent line  
on the h7/4 curve at a particular value, h0. It also seems 
likely that this will work well only if h does not deviate 
radically from h0—the further we are away from that point, 
the worse the approximation will be. Since f ′ =  (7/4)h3/4, 
we can select an appropriate point and find the slope; we 
know from the problem statement that h  ≥  1, so we 
will begin by trying h0 =  2 such that f ′(h0) =  2.9431 and 
f(h0)  =  3.3636 Our approximation is therefore h7/4  ≅ 
3.3636 +  2.9431(h −  2). First, we will see how well this 
linearized version of f(h) represents the original function by 
constructing a little table.

h 1 1.5 2 2.5 3 4
f(h) 1.0000 2.0331 3.3636 4.9704 6.8385 11.3137
f(h) 
linearized

0.4205 1.8921 3.3636 4.8352 6.3067 9.2498

The truncated Taylor series corresponds to the nonlinear 
function nicely near the selected point, h =  2; however, 
it begins to deviate dramatically for both smaller and  
larger values. These differences will impact the approximate  

Therefore,

	 T
a

y C y C1

2
2

1 2
900

2
=
−

+ +
( )

. 	 (5.157)

Now we return to eq. (5.149) to look at the boundary 
conditions, subtracting the results obtained with eq. (5.154) 
from T, and then dividing by b: Thus, C2  =  0 and 
C1 = (900)2/2a. At this point, our approximate solution has 
the form

T y b
a

y y≅ − + −900 200
900

2

2
2( )

( ),

and inserting the numerical values for a and b,

	 T y y≅ + −335 851 564 149 2002. . . 	 (5.158)

Our process guarantees that the boundary conditions are 
satisfied, but our real interest is whether or not this approxi-
mation will reproduce the expected curvature for intermedi-
ate values of y. Figure 5.6 provides a comparison of the exact 
solution with our truncated approximation.

Perturbation is a powerful technique that can produce 
very good approximate solutions under the right circum-
stances. Experience suggests, however, that if one must go 
past the third unknown function (past T2 for the previous 
example), then the time invested for the likely return will 
probably be excessive. There are very good sources of infor-
mation available for the applied scientist who must generate 
an analytic approximation to the solution of a nonlinear 

FIGURE 5.6.  Comparison of the approximate solution obtained 
with regular perturbation with the exact solution for steady conduc-
tion in an iron slab with variable conductivity. Even though the 
perturbative solution was truncated, the agreement between the two 
is good enough for many practical purposes.
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Now let u = x − x0 and v = y − y0 such that x = u + x0 
and y = v + y0. Our plan is to approximate the two nonlinear 
functions (just as we did for the first-order system in the 
initial example):

	 f x y f x y
f

x
u

f

y
v

x y x y

( , ) ( , )
, ,

≅ +
∂
∂

+
∂
∂

0 0

0 0 0 0

  (5.166)

and

g x y g x y
g

x
u

g

y
v

x y x y

( , ) ( , ) .
, ,

≅ +
∂
∂

+
∂
∂

0 0

0 0 0 0

  (5.167)

The necessary partial derivatives correspond to the Jaco-
bian matrix and the system can be represented in an alterna-
tive way:

	

du

dt
x y xy u

dv

dt
xy x y v

− − −
=
− − − −

3 1 2

1 2 3

2 2

2 2

	 (5.168)

The equilibrium point is (x0, y0) = (0, 0), so the Jacobian 
matrix is simply

0 1

1 0−

and consequently,

	
du

dt
v

dv

dt
u= =−and . 	 (5.169)

Equivalently, (d2u/dt2) + u = 0 such that u = C1 sint + C2 
cost (we obtain the identical result for v). This means that 

solution of eq. (5.159) in a very significant way as we shall 
now see. The linearized differential equation is

	
dh

dt
h= −1 4716 1 2613. . 	 (5.162)

and the solution is

	 h C t= +[ ]
1

1 4716
1 4716 1 26131

.
exp( . ) . . 	 (5.163)

The initial condition is h(0)  =  1, so accordingly, 
C1 = 0.2103. Now we can compare the two sets of results:

t h Actual h Linearized

0 1.00 1.00
0.25 1.1403 1.0636
0.5 1.3190 1.1554
0.75 1.5532 1.2880
1.0 1.8714 1.4796
1.25 2.3242 1.7565
1.5 3.0109 2.1564
1.75 4.1528 2.7342
2.0 6.3496 3.5689

What have we learned from this example? If the transient 
operation of the nonlinear system takes us far away from the 
expected value for h (which we decided might be 2), then 
we will have serious problems. On the other hand, if we are 
able to stay close to h0, the linearized ODE may be com-
pletely acceptable. In terms of the table shown earlier,  
this probably means that we would need to constrain the 
independent variable, t, to 1 ≤ t ≤ 1.5 if we wanted to get 
satisfactory results.

The ideas we employed in the previous example can be 
extended to higher-order problems too. Consider the nonlin-
ear second-order system,

	
dx

dt
y x y x= − +( )2 2 	 (5.164)

and

	
dy

dt
x x y y=− − +( ) .2 2 	 (5.165)

We will begin by letting xi = yi = 3/4, and solving the 
pair of equations, eq. (5.164) and eq. (5.165) numerically to 
obtain the system trajectory in the phase plane (merely a 
convenient way to visualize the system’s dynamic behavior 
by cross plotting pairs of values for x(t) and y(t)). The phase-
plane construction shows that the system is stable and that 
both x and y oscillate with decaying amplitude. This results 
in an inward-directed spiral that is ultimately centered about 
the equilibrium point, x = 0 and y = 0, and the trajectory is 
provided in Figure 5.7.

FIGURE 5.7.  Phase plane portrait of the nonlinear second-order 
system revealing stable behavior with an inward-directed spiral.
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Whether or not the examples of linearization applied to 
ODEs in this section will be satisfactory depends on the 
intended application. For cases requiring precision, these 
approaches will probably not be sufficient, but if we are 
merely interested in learning a little about the behavior of a 
difficult nonlinear problem (with a quick analytic approxi-
mation), then linearization may prove useful.

CONCLUSION

Toward the end of this chapter, we introduced a couple of 
techniques by which the analyst could obtain an approxi-
mate solution for an ODE, solution by power series and 
regular perturbation. Both can be used to advantage, but 
there are other more modern and perhaps more expedient 
ways to obtain analytic approximations. We will briefly 
introduce one such technique here, the variational iteration 
method (VIM), but we will defer a more complete discussion 
for Chapter 9, “Integro-Differential Equations,” where VIM 
will prove to be extraordinarily powerful.

Consider the linear first-order ODE,

	
dy

dx
xy x+ =2 4 , 	 (5.173)

with the analytic solution, y =  2 +  C1 exp(−x2). We will 
choose y(x =  0) =  4 such that C1 =  2 and assume we 
are interested in the behavior of y(x) for 0 ≤ x ≤ 1. To use 
VIM, we start with a simple estimate for y that satisfies the 
boundary condition and we will select y0 = x + 4. Though 
this is not an optimal choice, we will still get to an accept-
able approximation as we shall see. We now rearrange the 
ODE (eq. 5.173) and use it—integrated—to improve our 
initial guess:

	 y y y sy s dsn n n n

x

+ = − + −∫1

0

2 4[ ] .′ 	 (5.174)

Of course, y0 1′ = , and after we carry out the integration, 
we find

	 y x x1
3 22

3
2 4=− − + , 	 (5.175)

and then successively,

	 y x x x2
5 4 24

15
2 4= + − + 	 (5.176)

and

	 y x x x x3
7 6 4 28

105

1

3
2 4=− − + − + . 	 (5.177)

both u and v are purely periodic with constant amplitude. In 
the phase plane therefore, we will get a closed curve (a limit 
cycle) such that the system trajectory merely orbits around 
the equilibrium point. This is distinctly different from the 
nonlinear case where the oscillations exhibited decreasing 
amplitude, resulting in an inward-directed spiral as shown 
in Figure 5.7. Although the differences are worrisome in the 
absolute sense, it is important to note that, qualitatively, the 
original system and the linearized simplification exhibit 
similar oscillatory behaviors.

We conclude this discussion by looking at a different 
approach, one that has been used in fluid mechanics to 
eliminate nonlinear inertial terms from the Navier–Stokes 
equation (the interested reader should investigate Oseen’s 
correction). Suppose we have the following differential 
equation:

	
d y

dx
y

dy

dx

2

2
2− = , 	 (5.170)

with y(x = 0) = 1/2 and y′(x = 0) = 0 and let us assume we 
are interested in 0 ≤ x  ≤ 1.75. Our plan is too replace the 
y (dy/dx) term with y0 (dy/dx), where y0 is an appropriately 
chosen constant; therefore,

	
d y

dx
y

dy

dx

2

2 02= + . 	 (5.171)

Equation (5.171) can be conveniently solved by reducing 
the order; for example, let φ = dy/dx. The solution is (and 
the reader should verify this result)

	 y
y y

y x x C= −











+

2 1

0 0
0 2exp( ) . 	 (5.172)

Since y x( )= =0 1
2 , C y2

1
2 0

22= −( ). How well our 
approximate solution corresponds to the exact numerical 
results depends on our choice for y0, of course. The main 
difficulty is that with nonlinear differential equations we 
may not know much about y(x) over the complete range of 
x, thus making a good choice for y0 problematic. Here is a 
comparison of the actual computed and the linearized 
(approximate) results.

x y (Exact)
y (Linearized with 

y0 = 2)

0 0.5000 0.5000
0.3 0.5949 0.6111
0.5 0.7760 0.8591
0.7 1.0754 1.3276
0.9 1.5387 2.1248
1.2 2.8070 4.3116
1.5 6.3878 8.5428
1.75 40.8730 14.8077
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It may be obvious to you that the answers you obtained 
for the first part of this problem are quite unrealistic. Drag 
is very important! Fortunately, we have ballistic information 
available for the WIN 270 as follows:

Distance 
(yd)

0 100 200 300 400 500

Velocity 
(ft/s)

3060 2802 2559 2329 2110 1904

Notice that the rifle bullet loses about 38% of its initial 
velocity over the first 500 yd of travel. Devise a strategy to 
use these data to add drag force to your original differential 
equation and repeat your analysis. What is the maximum 
height achieved by the bullet under these more realistic 
conditions?

5.4.  The example that accompanied Figure 5.2 was based 
on the differential equation

dy

dx
xy y= −( ).2

We want to use the technique described in the text to 
explore the behavior of this nonlinear equation; connect a 
sequence of very short tangent lines obtained from the 
slope(s) at particular points (xi, yi) to develop a semiquantita-
tive picture for this ODE. We will focus upon the first quad-
rant but only look at values of y greater than 2.

5.5.  Consider the wheel–tire assembly on a vehicle equipped 
with IFS (independent front suspension). The assembly is 
subjected to a bump (perhaps a pothole) and the motion of 
the mass is constrained by a spring-shock absorber (or strut) 
combination. The resulting motion is described approxi-
mately by the second-order differential equation:

τ τζ2
2

2
2

d z

dt

dz

dt
z F t+ + = ( ).

z corresponds to the vertical position of the assembly, τ is 
the time constant, and ζ is the damping coefficient. The 
challenge in suspension design, of course, is to keep the tire 
in contact with the pavement (for consistent traction) yet 
provide a tolerably smooth ride for the occupants. Suppose 
the time constant has the value 0.125 second and that the 
damping coefficient is 0.55; we then find

d z

dt

dz

dt
z G

2

2
8 8 64+ + =. .

If F =  1 for t >  0 (thus G =  64), what is the ensuing 
motion of the assembly? If the shock absorber is completely 
worn out, the damping coefficient will be smaller, say, 0.15. 

Let us find out how well this sequence of approximations 
actually describes y(x).

x yanalytic y0 = x + 4 y1 y2 y3

0 4 4 4 4 4
¼ 3.8788 4.25 3.86458 3.87917 3.87882
½ 3.5576 4.50 3.41667 3.57083 3.5567
¾ 3.13957 4.75 2.59375 3.25469 3.12191
1 2.73576 5 1.33333 3.26667 2.59048

Even though we made a poor choice for our initial trial 
function, y0 = x + 4, we have rapidly closed in on the values 
provided by the analytic solution. With just a few more itera-
tions, we would have an exceptionally good match to y(x). 
The student may wish to repeat this example by setting 
y0 = 4 − x; how well do y2 and y3 agree with the analytic 
solution now? VIM is an incredibly useful tool for finding 
approximate solutions for difficult equations, and we will 
gain a much greater appreciation for its value in Chapter 9.

ODEs are common in applied mechanics as many force, 
mass, and energy balance problems lead to ODEs. The spec-
trum of application is broad, ranging from chemical kinetics 
to electronic circuits to mechanical flutter (aeroelasticity). It 
is obviously important that technical professionals be able 
to solve such problems with speed and accuracy. Our intent 
with this chapter is to provide the reader with a practical 
review of solution methods that have proven to be of value 
for frequently encountered ODEs.

PROBLEMS

5.1. U se the integrating factor approach to solve the follow-
ing ODEs:

dy

dx
xy x x

dy

dx
xy x+ = − = +3 2 42 3and .

5.2.  Check the following differential equations to see if they 
are exact. If they are not exact, solve using the integrating 
factor approach:

x
dy

dx
y x= − +2 1

xy
dy

dx
x y3 4 4= + .

5.3.  A rifle bullet (130 grain WIN 270) leaves the barrel 
with an initial (muzzle) velocity of 3060 ft/s. Suppose the 
rifle is fired at an angle of 45° over level ground and that the 
only force acting on the bullet in flight is gravity. Find the 
maximum elevation achieved by the bullet and its maximum 
horizontal travel.
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5.7.  A pipe carries a very hot fluid and circular fins (actually 
annular) are installed on the outer pipe wall to cast off 
unwanted thermal energy to the surroundings. Each fin 
extends from the outer pipe wall (at r =  R1) to the radial 
position, R2. By assuming that the fin is thin and that it is 
made from a material with high thermal conductivity, the 
principal variation in temperature will occur in the r-direction 
(i.e., the temperature is nearly uniform in the transverse, or 
z-, direction). Assuming that thermal energy is lost from the 
fin’s surface according to Newton’s law of cooling, an 
energy balance reveals

d

dr r

d

dr

h

wk

2

2

1 2
0

θ θ
θ+ − = ,

where h is the heat transfer coefficient, k is the thermal 
conductivity of the fin, and w is the width of the fin in the 
z-direction. θ =  (T − T∞), where T∞ is the temperature of 
the surrounding air. Solve this ODE and find the temperature 
distribution in the fin given the following parametric values:

T r R T( ) , ,= = ° = °∞1 500 0F 6 F

R R w1 0 25 0 0 0 0 0= = =. , . , . ,ft 5 ft 1 4 ft2

h k= ° = °7 5 302. /( ), /( ).Btu hr ft F Btu hr ft F

Assume that no thermal energy is lost through the end of the 
fin; that is,

− =
=

k
dT

dr r R2

0.

5.8.  A cylindrical tank with a diameter of 12 ft and a depth 
of 10 ft is initially filled with water. At t = 0, a circular hole 
with a diameter of 2 in. is opened in the side wall at the 
bottom. The velocity through this orifice is approximately 
given by Torricelli’s theorem, V gh0 2= ; therefore, the 

initial velocity will be V0 2 32 17 10 25 37= =( )( . )( ) . .ft/s  
Since the orifice diameter is 2 in., the initial volumetric flow 
rate will be about 0.55 ft3/s, or 248 gpm. Find out when the 
tank will be 90% empty (i.e., when h = 1 ft). Then, in the 
second part of this problem, the tank is drained from its 
initial depth of 10 ft just as before, but this time, water is 
also added continuously at a rate of 55 gpm. When will the 
depth of water in the tank get within 3% of its ultimate 
value?

5.9.  A particle with a diameter of 1 mm and a density of 
1.45 g/cm3 is released at the surface of a flowing stream of 
water. The velocity of water in the stream varies from 
130 cm/s at the surface (y =  0) to 0 cm/s at the bottom 
(y = 175 cm) according to V = 130 − 0.004245 y2 (cm/s). 
Assume the particle is perfectly entrained by the moving 
water (its velocity in the stream direction always corresponds 

What impact will that have upon the motion if the forcing 
function is exactly the same? Two examples are shown in 
Figure 5.8 to provide some guidance on what is expected 
from this ODE.

5.6.  We need to analyze the performance of two identical 
continuous stirred-tank reactors (CSTRs) in series; this 
arrangement is being used to carry out the first-order, irre-
versible decomposition of species A. Both reactors are per-
fectly mixed and each has a volume of 500 gal. Reactant is 
introduced into the first reactor (and the initial, steady-state 
feed concentration is 2 mol/gal) at a volumetric flow rate of 
25 gpm. The mass balance for species A in the first reactor 
takes the form

[ ] [ ] [ ] [ ]Rate in Rate out Rate consumed Accumulation− − =

� �VC VC V k C V
dC

dt
Ain A T A T

A− − =1 1 1
1 .

We divide by the volumetric flow rate, �V , and rewrite the 
equation:

C k C
dC

dt
Ain A

A− + =( ) .1 1 1
1τ τ

Let k1 =  0.033 min−1 and note that the mean residence 
time τ = 20 min (V VT / � ). At t = 0, the feed concentration 
to CSTR 1 doubles; it is instantaneously increased from 
2 mol/gal to 4 mol/gal. Find the analytic solution for CA1(t) 
and then use that result in the mass balance (for A) on reactor 
2. When will CA2(t) achieve 75% of its ultimate change?

FIGURE 5.8.  Suspension behavior for two cases, underdamped 
with ζ = 0.10 and critically damped with ζ = 1.0. The compromise 
inherent in suspension design is obvious: Very rapid response pro-
duces overshoot and oscillation.
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β
d y

dx
W y y dx

x

L
2

2
≅ ′− ′∫ ( ) .

Differentiate this equation with respect to x and set p = 
dy/dx:

d p

dx

W
L x p

2

2
0+ − =

β
( ) .

Now set L − x = r2/3 and take p = r1/3 z. Show that these 
substitutions result in

d z

dr r

dz

dr

W

r
z

2

2 2

1 4

9

1

9
0+ + −







 =β

,

which is a form of Bessel’s differential equation. At the top 
of the wire (the free end) where x = L (or r = 0), we must 
have dp/dx = 0 or r1/3 (dp/dr) = 0. Find the critical length 
of the vertical wire.

5.14.  The Leveque analysis applies to heat and mass trans-
fer near a surface where the velocity distribution can—at 
least locally—be described by vx =  ay. If we confine our 
attention to the region very close to the wall, this linear 
approximation should be valid. For steady-state conditions 
then, the mass transfer process will be governed by

ay
C

x
D

C

y

∂
∂
=
∂
∂

2

2
.

By appropriate scaling of the independent variables x and y, 
namely,

to the velocity of the water). If the only forces acting  
upon the particle in the y-direction are gravity and drag, 
determine how long it will take the particle to reach bottom 
and how far it will travel downstream during the settling 
process. The drag force is given by F = AKf, where A is the 
frontal area of the particle, K is the kinetic energy of the fluid 
(relative to the particle) per unit volume, and f is the drag 
coefficient:

A R K v fy= = ≈π ρ2 1
2

2 0 5, , . .and

5.10.  Consider the ODE

( ) , ( ) .1 2 0 2− = − = =x
dy

dx
x y y xwith

Find a power series solution for this ODE and compare  
your result to the solution you obtain using an integrating 
factor.

5.11. R osenhead (1940) and Landau and Lifshitz (1959) 
show how the radial component of the equation of fluid 
motion can be simplified for flow between converging walls. 
Provide a detailed outline of the process, showing how an 
elliptic integral of the first kind can be obtained from the 
analysis.

5.12.  We want to use regular perturbation to find an approxi-
mate analytic solution for the example we explored at the 
end of the chapter, where

( ) .a bT
d T

dy
b

dT

dy
+ +






 =

2

2

2

0

We will use the same terminal temperatures (−200° 
and +700°); however, in this case, we will take k  = 
87.7778 − 0.1111 T. This will cause a significant change in 
the profile, T(y), which is illustrated in Figure 5.9.

In this case, it will be necessary for us to find T0, T1, and 
T2. Is the resulting approximation an adequate representation 
for the profile, T(y), shown in Figure 5.9?

5.13.  Please note: This problem is more difficult! You may 
find section 2 of chapter 16 in Gray et al. (1966) to be 
helpful. Suppose we have a length of metal rod or wire 
positioned vertically. The bottom end is clamped in a vise; 
we want to determine the length of the wire segment that 
just results in instability (i.e., when the top of the wire is 
just ready to fall over). Let β be the rigidity of the wire or 
rod, and let W be the weight per unit length. The variable 
x is the vertical position above the clamped end and y is 
the lateral deviation from vertical (rigid) position. The total 
length of the wire is L. If the lateral deviation is not too 
large, then

FIGURE 5.9.  Exact solution for steady conduction in a slab of 
material for which k = 87.7778 − 0.1111T. The ends of the slab 
are maintained at −200° and +700° for all t.
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balance and solve the ODEs so we can predict both h1(t) and 
h2(t). We will assume that the velocity in the interconnecting 
pipe can be described by V2 = b(h1 − h2). The velocity of 
the water leaving tank 1 destined for the floor drain is given 
by V0 = ch1. Assume that b = c and that both are equal to 
0.027 ft3/s/ft. What would the maximum value of h2 be? It 
would be somewhat more realistic to assume that the veloci-
ties were proportional to the square root of the head, for 
example, V ch0 1= . If these changes are made, can the 
problem still be solved analytically?

5.16.  A horizontal beam is being designed to carry a 
“skywalk” from one side of a shopping mall to the other, 
a span of L ft. The intent is to allow shoppers easy passage 
across a large, open, common area. It is anticipated that 
the maximum load to be carried will be W lbf/ft (i.e., per 
foot of length, of course). We need to determine the 
maximum amount of deflection, and for the sake of cus-
tomer confidence, it is not to exceed 0.5 in. The beam is 
rigidly clamped at both ends (at both x =  0 and x =  L). 
The beam’s deflection—if any occurs—will be in the neg-
ative y-direction. Assume that the appropriate model has 
the form

EI
d y

dx
K WLx Wx

2

2
21

2

1

2
= + − ,

where E is the modulus of elasticity and I is the moment of 
inertia. What is the maximum value of y?

5.17.  The Chebyshev (Tschebysheff) differential equa
tion is

( ) .1 02
2

2
2− − + =x

d y

dx
x

dy

dx
n y

This ODE is of the Sturm–Liouville (SL) type and, of 
course, it does not have constant coefficients; problems of 
the SL type have the general form

d

dx
p x

dy

dx
q x r x y( ) ( ) ( ) ,












+ +[ ] =λ 0

with a ≤ x ≤ b, A1y (a) + A2y′ (a) = 0, and B1y (b) + B2y′ 
(b) = 0. Solutions for an SL problem can only be found for 
certain values of the parameter, λ; hence, they are termed 
eigenvalue problems. Solutions for the Chebyshev ODE are 
given by Chebyshev polynomials and are written as 
y  =  Tn(x). Consequently, if n  =  4, then y  =  T4 
(x) =  8x4 −  8x2 +  1. Set n =  4 such that n2 =  16 in the 
Chebyshev ODE and then verify that T4(x) is a solution. 
Then let n2 = 64 so that the solution is T8(x). Without looking 
up the T8 polynomial, try to determine the form of the solu-
tion for this case (it would be comprised of even powers of 
x added to the constant 1). We note that the Chebyshev 

η=






y

a

Dx9

1 3/

,

this partial differential equation can be transformed into a 
second-order ODE:

d C

d

dC

d

2

2
23 0

η
η

η
+ = .

Prove that this transformation yields the result shown 
here and solve this ODE by first reducing the order; that is, 
let φ = dC/dη. Then integrate twice to confirm that

C A d A= − +∫ 1
3

2

0

exp( ) .η η
η

Apply the appropriate boundary conditions: C = C0 at the 
wall, where both y and η = 0, and C = C∞ for both y and 
η = ∞, to show that C2 = C0 and

C
C C

1
0

4
3

=
−







∞

Γ
.

Please note that Γ is the gamma function defined by

Γ( ) exp( ) .n x x dxn= −−

∞

∫ 1

0

The recurrence formula is particularly useful, Г(n +  1) 
= nГ(n), and a short table of values for Γ(n) is provided here 
to assist you:

n Γ(n)

1.0 1.000
1.1 0.951
1.2 0.918
1.3 0.897
1.4 0.887
1.5 0.886
1.6 0.894
1.7 0.909
1.8 0.931
1.9 0.962
2.0 1.000

5.15.  Two identical vented tanks, each 10 ft high and 6 ft in 
diameter, are interconnected by a straight length of pipe 
(with a valve in the middle) at the bottom (i.e., at z = 0). 
Tank 1 also has an opening equipped with a valve at the 
bottom to permit discharge into a floor drain. Tank 1 is 
completely full of water initially, and tank 2 is completely 
empty. At t = 0, both valves are opened (wide) and water 
begins to flow. Develop a model for this system by mass 
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polynomials are orthogonal with respect to a weighting 
function,

T x T x
x

dxn m( ) ( ) ,
1

1
0

2
1

1

−
=

−

+

∫

if n ≠ m. Would you need additional information to arrive 
at a solution for the n = 8 case?

5.18.  Laguerre’s differential equation is

x
d y

dx
x

dy

dx
ny

2

2
1 0+ − + =( ) .

This ODE arises in the study of harmonic oscillators in 
quantum mechanics and solutions (for integer values of n) 
are the Laguerre polynomials: L0  =  1, L1  =  1  −  x, 
L2 = 1 − 2x + (1/2) x2, L3 = 1 − 3x + (3/2) x2 − (1/6) x3, 
and so on. Laguerre polynomials are orthogonal with respect 
to the weight function, exp(–x), on the interval, 0 ≤ x < ∞, 
so, for example,

e x x x dxx−

∞

− − +






 =∫ ( ) .1 1 2

1

2
02

0

Investigate the method of Frobenius (you might find 
Advanced Engineering Mathematics, by Kreyszig (1972), 
very useful) and see if you can use it to verify the solution 
for n = 2.
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6
NUMERICAL SOLUTION OF ORDINARY 
DIFFERENTIAL EQUATIONS

AN ILLUSTRATIVE EXAMPLE

In engineering and the applied sciences, transient mass and 
energy balances arise frequently, often leading to ordinary 
differential equations (ODEs). Suppose, for example, we 
have a jacketed process vessel in which an exothermic chem-
ical reaction may occur. The entering (feed) stream has a 
temperature, Tin; the well-mixed contents have temperature, 
T; and the steam used to heat the vessel has temperature, 
Ts. A verbal statement of the appropriate energy balance 
might appear:

Rate in Rate out Rate supplied

Rate of production

[ ]−[ ]+[ ]
+[ ]= AAccumulation[ ].

And written out symbolically, we would expect something 
like this:

� �M C T T M C T T UA T T

H r V VC

p p s

rxn A p

in in ref out ref( ) ( ) ( )

( )

− − − + −

+ − =∆ ρ
ddT

dt
.

  (6.1)

The rate at which the reactant species, A, is consumed is 
rA. We will let the mass flow rates in and out be the same, 
and we set the reference temperature equal to the inlet (feed) 
temperature and divide by �MCp:

− − + − + − =( ) ( ) ( ) .T T
UA

MC
T T

H V

MC
r

dT

dtp
s

rxn

p
Ain � �

∆
τ   (6.2)

Please note that every term in the equation has the dimen-
sion of temperature. The characteristic time, τ, that appears 
on the right-hand side is the total mass in the vessel divided 
by the mass flow rate, and it is the time constant for this 
system. This is a first-order ODE that will generally be 
coupled to a comparable mass balance on the reactant 
species, A. If the heat of reaction is negligibly small, then 
this equation may be written as

	 aT b
dT

dt
− =−τ . 	 (6.3)

The result is separable and easily integrated:

	 − =
−
→− + = −

dt dT

aT b

t
C

a
aT b

τ τ 1
1

ln( ). 	 (6.4)

Consequently, we find

	 T
C

a

at b

a
= −







+

1 exp .
τ

	 (6.5)

The constant of integration is determined from the initial 
condition: at t = 0, T = T0; therefore, C1 = aT0 − b. Let us 
now suppose that T0 = 100, τ = 4, a = 1, and b = 40:

	 T t= − +60 4 40exp( / ) . 	 (6.6)
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Next, let Δt = 1/2 and proceed:

Time, t Temperature, T

0 100
½ 92.5000
1 85.9375
2 75.1709
4 60.6165
8 47.0840

16 40.8364
32 40.0117

We should graphically compare these values computed 
with the Euler method to those obtained previously from the 
analytic solution; Figure 6.1 will illuminate the principal 
shortcoming of the technique.

Because the Euler method is a straight-line, piecewise 
approximation, it cannot accurately follow a function with 
curvature unless we make Δx (or Δt) very small. In some 
extreme cases, it might have to be prohibitively small, 
leading to cumulative roundoff error. Nevertheless, the Euler 
algorithm is often useful because it is easy to understand and 
easy to implement. We will illustrate this last point with a 
slightly more complicated example.

We applied the Euler method to a simple, first-order  
ODE and we obtained reasonable (though not perfect) 
results as evidenced by Figure 6.1. Suppose, however, we 
are interested in the second-order equation:

d y

dx

dy

dx
y y y

2

2
6 0 0 1 0 0+ − = = ′ =, ( ) ( ) .with and

		  (6.10)

We see an exponential decrease from the initial temperature 
(100) to the ultimate value of 40.

Time, t Temperature, T

0 100
½ 92.9498
1 86.7289
2 76.3918
4 62.0728
8 48.1201

16 41.0989
32 40.0201

While this particular differential equation was extremely 
simple to solve analytically, that will not always be the case. 
For example, we might have a set of simultaneous differen-
tial equations or a nonlinear ODE for which no analytic 
solution is known. Therefore, it is entirely appropriate for 
us to ask if a solution for our elementary example could also 
be obtained numerically. In the next section, we contemplate 
the simplest possible numerical approach and revisit the 
chemical reactor problem.

THE EULER METHOD

Recall that the definition of the first derivative is given by

	
dy

dx

y x x y x

xx
x

=
+ −

→
lim

( ) ( )
.

∆

∆
∆0

	 (6.7)

Suppose we render this definition discrete; that is, we let Δx 
assume some finite (but hopefully small) value and rearrange 
the result:

	 y x x x
dy

dx
y x

x

( ) ( ).+ ≅





 +∆ ∆ 	 (6.8)

Therefore, given an initial (or beginning) value for y(x) 
and an expression for dy/dx, we can simply forward march 
in the x-direction, computing new values for y as we go. Let 
us try this for the preceding energy balance example. We 
begin by isolating dT/dt:

	
dT

dt
aT b T=− − =− −

1 1

4
40

τ
( ) ( ). 	 (6.9)

FIGURE 6.1.  Comparison of the analytic and numerical (Euler 
method) solutions of the energy balance example. The discrepan-
cies between the two are particularly apparent at t = 2, 4, and 8.
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	 C x
y x P y

y x=
′ = + ′






+ =∆

( ) ( )
( ).

0

2
0 	 (6.13)

The corrected value for y (which is C) can be taken back 
to f(x, y) to get a better estimate of the new slope. This 
process can be repeated until a desired criterion is satisfied 
(until the change in y(x = x + Δx) is sufficiently small). We 
can illustrate this process with an example that is easily 
solved analytically; suppose

	
dy

dx
y y x= = =2 0 1, ( ) .with 	 (6.14)

Of course, the solution is just y = C1exp(2x) with C1 = 1. 
We set Δx = 1/4 and begin:

P= + =1
4 2 1 1 5( ) .

and, therefore,

P y( ) ( . ) .′ = =2 1 5 3

Accordingly,

	 C =
+






+ =

1

4

2 3

2
1 1 625. . 	 (6.15)

Note that the correct value for y(x = 1/4) is 1.64872. It 
is clear that our estimate for y has been improved signifi-
cantly by the addition of the corrector step! Even so, far 
better methods have been developed, and we turn our atten-
tion to a technique that was originally proposed by Carl 
Runge.

RUNGE–KUTTA METHODS

Once again let us consider the differential equation

	
dy

dx
f x y= ( , ). 	 (6.16)

For the sake of making things a little more compact, we 
let Δx = h. A Runge–Kutta (RK) method is one in which 
we employ a series of calculations (to advance from x to 
x + Δx) of the form

	 k hf x y0 = ( , ) 	 (6.17)

	 k hf x h y k1 02 2= + +( / , / ) 	 (6.18)

	 k hf x h y k2 12 2= + +( / , / ) 	 (6.19)

	 k hf x h y k3 2= + +( , ), 	 (6.20)

The corresponding analytic solution is y = C1exp(2x) + 
C2exp(−3x), where C1 = 3/5 and C2 = 2/5. Now, we will 
find a numerical solution for this differential equation for 
values of x ranging from 0 to 0.5 using the Euler method. 
Let y1 =  dy/dx; therefore, dy1/dx =  d2y/dx2 = −y1 +  6y. 
Of course, any nth order ODE can be written as n first-
order equations. The essential part of the algorithm appears 
simply as

                     x=0:dx=0.00390625:y=1:y1=0
20     REM *** find the new value for y
                                  y=dx*y1+y
         REM *** find the new value for y1
                                  y1=dx*(-y1+6*y)+y1
                                               x=x+dx
                                  PRINT x,y,y1

The initial values for x, y, and y′ (which is y1) allow us 
to find a new y that, in turn, is used to find a new y1. In this 
case, we will begin by letting Δx be 1/32 (0.03125); we will 
carry out the calculation from x = 0 to x = 1/4. The analytic 
solution indicates that y(x = 1/4) = 1.17818.

Δx y(x = 1/4)

1/32 1.158303
1/64 1.168356
1/128 1.173297
1/256 1.175746

These results show that by making Δx as small as 1/256 
(or 0.00390625), we can get within 0.21% of the correct 
answer. For many practical calculations, this might be ade-
quate; however, we can very easily encounter differential 
equations where the Euler scheme is not suitable. We will 
need a better tool, and one possibility is the modified Euler 
method (a self-starting, predictor–corrector approach).

Modified Euler Method

Let the differential equation of interest be

	
dy

dx
f x y= ( , ), 	 (6.11)

and we take y(x = 0) to be a known value. A predicted value 
for y(x = Δx) is found with the Euler method:

	 P xf x y y x= + =∆ ( , ) ( ).0 	 (6.12)

This estimate for y(x = Δx) is improved (corrected) by 
using the average slope:



92    Numerical Solution of Ordinary Differential Equations

FUNCTION PBMAIN
        H=0.10:XI=1:YI=1:XF=1.5
        X=XI:Y=YI
    80 REM *** CONTINUE
         GOSUB 200
             K1=H*FXY
             X=XI+H/2:Y=YI+K1/2
         GOSUB 200
             K2=H*FXY
             X=XI+H:Y=YI-K1+2*K2
         GOSUB 200
             K3=H*FXY
             YNEW=YI+1/6*(K1+4*K2+K3)
             XNEW=XI+H
                 PRINT XNEW,YNEW
                 XI=XNEW:YI=YNEW
             IF XI>XF THEN 190 ELSE 80
    190 REM *** CONTINUE
                INPUT “Shall we continue?”;XX
                    IF XX>0 THEN 195
    195 END
    200 REM *** here is the differential equation
             FXY=X∧2+Y
             RETURN
END FUNCTION        

Once again, we will integrate out to x = 1.5, but this time, 
we will start with a step size of 0.10 then cut h in half repeat-
edly to see the effect on the computation.

h y(x = 1.5)

0.10 2.644123
0.05 2.642912
0.025 2.642494
0.0125 2.642373
0.00625 2.642340

Note that the last value (using h = 0.00625) is essen
tially identical to the value obtained from the analytic  
solution. Of course, this third-order RK procedure requires 
only three k-function evaluations per step; if h is appro
priately small, we can get quite satisfactory results for  
many ODEs.

Now we will examine a second-order ODE using an 
elementary example from mechanics where we utilize a 
force balance, setting ma = ΣF. Suppose we have a mass 
(m) that is suspended from a horizontal surface; it is attached 
to the surface with a spring and a viscous dashpot (a shock 
absorber). Position is represented by the variable y. A simple 
model for this situation is

	 m
d y

dt
C

dy

dt
Ky F t

2

2
+ + = ( ). 	 (6.28)

with

	 y x h y x k k k k( ) ( ) ( ).+ = + + + +
1

6
2 20 1 2 3 	 (6.21)

The latter, in fact, is equivalent to a truncated Taylor 
series expansion for y(x); see chapter 6 in James et al. (1977) 
for elaboration. Note that four evaluations for the ks are 
necessary to compute the new value for y; this is an illustra-
tion of the fourth-order RK algorithm, which has long been 
a standard tool for science and engineering. It is a forward-
marching, self-starting technique that is easy to implement. 
All one needs is an initial value for y(x). We can explore this 
process with the following differential equation:

	
dy

dx
f x y x y y x= = + = =( , ) , ( ) .2 1 1with   (6.22)

We choose h = 1/2 and find

	 k0 0 5 2 1= =( . )( ) 	 (6.23)

	 k1 0 5 3 0625 1 53125= =( . )( . ) . 	 (6.24)

	 k2 0 5 3 3281 1 66406= =( . )( . ) . 	 (6.25)

	 k3 0 5 2 25 2 66406 2 45703= + =( . )( . . ) . . 	 (6.26)

Therefore, we find y(x =  1.5) =  2.6413. How does this 
compare with the analytic solution?

We can use the integrating factor technique to solve this 
equation, resulting in

	 y x x C e x=− − + + −2
12 1( ) / , 	 (6.27)

where C1 = 2.20728. Therefore, y(x = 1.5) = 2.64234; the 
RK approach with h = 1/2 (a single step) produced an error 
of about 0.039%.

The procedure we just examined is a standard fourth-
order RK method, and as we indicated, it is used extensively 
throughout the world for scientific calculations. Of course, 
one can construct and use RK routines of any order. We will 
demonstrate this by solving the same ODE using a third-
order RK procedure. The necessary steps are shown as 
follows:

           #COMPILE EXE
#DIM ALL
       REM *** Example of 3rd order Runge-Kutta  

solution of an ODE
       GLOBAL H,XI,YI,XF,X,Y,K1,K2,K3,YNEW,XNEW,

FXY,XX AS SINGLE
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         XI=X:YI=Y:Y1I=Y1
             IF X>XT THEN 380 ELSE 120
     380 REM *** continue
                INPUT “Shall we continue?”;CC
                IF cc>0 THEN 500
     500 REM *** continue
             CLOSE:END
     570 F=-2*D/tau*y1-y/tau∧2+Xforc/tau∧2
     580 RETURN

END FUNCTION   

Results obtained from this program are shown in Figure 
6.2 for some values of the damping coefficient ranging from 
0.3 to 0.9. Note how increasing the value for ζ makes the 
solution less oscillatory but more sluggish. This has impor-
tant implications in examples from mechanics (such as an 
automobile suspension), but it is also significant to many 
other fields like automatic process control where a decaying 
oscillatory response to a forcing function (like a step func-
tion or an impulse) is quite common.

RK methods have been used for a very long time, and it 
is important that the reader understand that newer, more 
powerful techniques have been developed for solving ODEs. 
Indeed, Press et al. (1989) have offered the slightly severe 
view that “Runge–Kutta is what you use when you don’t 
know any better . . . or you have a trivial problem where com-
putational efficiency is of no concern.”

They advocate strongly for the Bulirsch–Stoer method, 
which we will discuss later in this chapter.

We divide by Hooke’s constant (K), resulting in

	
m

K

d y

dt

C

K

dy

dt
y

F t

K

2

2
+ + =

( )
. 	 (6.29)

This equation is now in standard form, which can be written 
equivalently as

	 τ ζτ2
2

2
2

d y

dt

dy

dt
y X t+ + = ( ). 	 (6.30)

τ is the time constant for the system, ζ is the damping coef-
ficient, and X(t) is the forcing function. Let τ  =  1 and 
ζ = 0.3 (underdamped); we will drive the system by giving 
the mass some initial displacement, and we can expect oscil-
latory behavior to result. Please note the effect that the 
damping coefficient has on the solution of this differential 
equation; that is, look at b2 − 4ac, or 4τ2(ζ2 − 1) alterna-
tively. Typical program logic for a fourth-order RK proce-
dure is shown as follows:

            #COMPILE EXE
#DIM ALL
      REM ** 4th-order Runge-Kutta scheme for 2nd order 

ODE.
      GLOBAL xi,yi,y1i,h,xt,xbeg,pk1,x,y,y1,pk2,pk3,pk4,j,

f,D,tau,Xforc,cc AS SINGLE
FUNCTION PBMAIN
         XI=0:YI=1.00:Y1I=0.0:H=.1:XT=18:tau=

1:D=0.9
         OPEN “c:Dampp9.dat” FOR OUTPUT AS #1
         XBEG=XI:J=0:X=XI:Y=YI:Y1=Y1I
     120 REM *** continue
         GOSUB 570
             PK1=H*F
             X=XI+H/2
             Y=YI+H/2*Y1I
             Y1=Y1I+PK1/2
        GOSUB 570
             PK2=H*F
             Y=Y+H/4*PK1
             Y1=Y1I+PK2/2
        GOSUB 570
             PK3=H*F
             X=XI+H
             Y=YI+H*Y1I+H/2*PK2
             Y1=Y1I+PK3
        GOSUB 570
             PK4=H*F
             J=J+1
             Y=YI+H*Y1I+H/6*(PK1+PK2+PK3)
             Y1=Y1I+(PK1+2*PK2+2*PK3+PK4)/6
                 PRINT x,y,y1
                 WRITE#1,x,y,y1

FIGURE 6.2.  Effect of the damping coefficient, ζ, on the dynamic 
behavior of the initially displaced mass. Results are obtained from 
the fourth-order Runge–Kutta method with fixed step size. The 
significantly underdamped case, ζ = 0.3, exhibits a large overshoot 
and a very oscillatory response.
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Recent work published by Ferrell et al. (2011) sought to 
understand the dynamic behavior of cell cycles driven by a 
protein circuit in which the activation of cyclin-dependent 
protein kinase (CDK1, represented by C) drives a cell into 
mitosis and the activation of the anaphase-promoting 
complex (APC, represented by A) leads the cell back out. 
Ferrell et al. note that proteins such as polo-like kinase 1 
(Plk1, represented by P) may also play a role in the activa-
tion of A, and thus they directed their attention to a three-
component system governed by the ODEs:

	
dC

dt

CA

A
= −

( ) +
1

10

3 8

1
2

8 8
, 	 (6.35)

	
dP

dt
P

C

C
P= −
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−3 1

8

1
2

8 8
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and

	
dA

dt
A

P

P

A= −


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

 +

−3 1
1
2

8

8
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( ) . 	 (6.37)

These three ODEs are to be solved numerically with the 
initial conditions (for t = 0) C = P = A = 0. The problem 
is clearly nonlinear and if the analyst is unfamiliar with such 
systems, he/she may not have any idea what to expect. This 
is where the potential difficulty lies as we shall see. Suppose 
we decide to use the Euler method due to the ease with 
which it can be applied here. We start with a Δt of 0.0125 
time units and plot the results in Figure 6.4.

The sharp changes in slope produced by this model are 
cause for concern. Had we had selected a larger Δt, say, 
Δt  =  0.4 instead of 0.0125, the resulting activity of 

SIMULTANEOUS ORDINARY 
DIFFERENTIAL EQUATIONS

Often we must solve sets of simultaneous ODEs. This may 
come about from reducing an nth order ODE to an n first-
order ODEs as we pointed out previously, or it could result 
from a problem in which several related phenomena are 
occurring at the same time. As an example of the latter, 
consider a series of chemical reactions carried out in a batch 
reactor:

	 A B C→ → . 	 (6.31)

A situation can occur in series reactions in which we 
might wish to maximize production of the intermediate 
product, B. Naturally, if this reaction sequence is allowed to 
proceed for a long period of time, we will get mostly C. The 
mass balances for this system are written as

	
d A

dt
k A

[ ]
=− [ ]1 , 	 (6.32)

	
d B

dt
k A k B

[ ]
= [ ]− [ ]1 2 , 	 (6.33)

and

	
d C

dt
k B

[ ]
= [ ]2 . 	 (6.34)

We assume that we begin the process with only species 
A present in the reactor. Note that if the rate constants are 
such that k2 >> k1, it will be extremely difficult to obtain 
much B from the process. Consequently, we will focus our 
attention on the case in which the rate constants are compa-
rable. We employ a fourth-order RK scheme designed spe-
cifically to handle sets of simultaneous ODEs. We let the 
initial concentration of A be 1, and set the reaction rate 
constants k1 = 0.85 and k2 = 0.55 (both with dimensions of 
reciprocal time). The results are shown in Figure 6.3; note 
that the maximum concentration of the desirable intermedi-
ate, B, occurs at approximately t = 1.45.

Some Potential Difficulties Illustrated

The focus of this section is simultaneous ODEs, and in the 
preceding example, we saw computational results for a 
series of chemical reactions carried out in a batch process. 
The model was elementary and the dynamic response of the 
system was easy to anticipate even with no prior exposure 
to problems in chemical kinetics. However, we may be 
required to seek solutions for more difficult cases—for 
example, ones that exhibit sharp fluctuations. In the example 
we are about to explore, we will look at oscillatory behavior 
associated with cellular cycles.

FIGURE 6.3.  Concentrations of reactants for series reactions 
carried out in a batch reactor. The desirable intermediate, B, 
achieves a maximum concentration of about 0.45 at t ≈ 1.45.
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Schmitz and Amundson (1963). This chemical reactor 
problem bears some (dynamic) similarity to the previous 
cellular oscillation example.

LIMITATIONS OF FIXED 
STEP-SIZE ALGORITHMS

The methods we have discussed so far in this chapter have 
at least one feature in common: All employ a fixed step size, 
that is, a constant value for h. This can produce an incorrect 
result for certain equation types; more importantly, the dis-
crepancy can be very difficult to detect unless one has some 
prior knowledge of that particular problem. To illustrate this 
point, consider the elementary differential equation

	
dy

dx
xy y= =3 2 0 2/ , ( ) .with 	 (6.38)

Now suppose we want to compute the value of y for 
x = 1.65. The analytic solution for this problem can be found 
easily:

	 y
x

= − −


















−

1
2

2 2

2
1 41421. . 	 (6.39)

Consequently, y(x =  1.65) =  1426.15. Let us now use 
the third-order RK scheme described (and used) previously. 
We begin with h  =  0.05; the computation produces 
y(x =  1.65) =  1211.9, which corresponds to an error of 
about 15%. If we were to proceed without prior knowledge 
of the problem or without a computed error estimate, this 
discrepancy would almost certainly remain undetected. And 
if we were to base a system design or perhaps a complex 
system model on such a result, we might blunder into a 
disaster. Fortunately, there are very simple means we can 
use to avoid such errors, and we will first describe here an 
approach developed by Bailey (1969). The underlying idea 
is straightforward: If the change in y (for x =  x +  h) is 
“small,” we double the step size, and if the change in y is 
“large,” we cut h in half. Therefore, if we encounter a region 
in which y is growing very rapidly (which is exactly what 
happens in our example), h can (and will) become very 
small. Note that there is a certain arbitrariness in play here—
the analyst decides what changes are “large” or “small.” The 
logic to be inserted into the RK code is just

            REM *** BAILEY METHOD FOR VARIABLE 
STEP SIZE

                    DELY=ABS(YI-YOLD)
                        IF DELY<0.0005 THEN 180
                        TESTY=ABS(DELY/YI)
                            IF TESTY<0.002 THEN H=2*H
                            IF TESTY>0.02 THEN H=H/2
           REM *** CONTINUE

C (CDK1) would then have a negative (unphysical) value at 
t = 20 and the maximum value for A (APC) at t = 19.6 would 
be about 0.76. Neither is correct, of course. This example 
underscores the fact that we need to be vigilant when dealing 
with an unfamiliar system of nonlinear differential equations 
and that we should not be reluctant to employ a better solu-
tion technique for such problems even if the algorithm is a 
little more complicated. Indeed, if we selected the pedestrian 
fourth-order RK procedure, we could prepare a little com-
parison of the effect of step size on the calculations:

h C(t = 20) A(t = 19.6)

0.8 0.4402 0.019
0.4 0.2439 0.3021
0.2 0.2487 0.3004
0.1 0.2413 0.3174
0.01 0.2409 0.3186

Thus, it is clear that abrupt changes in activity produced 
by this model can be problematic for the numerical proce-
dures that we have discussed so far. In the material to follow, 
we will examine some better tools for problems of this type. 
However, we should also observe that the dynamic behavior 
of systems similar to (this example of) cellular oscillation 
can often be very effectively revealed with phase-space 
analysis. In phase space, an oscillatory signal of sustained 
amplitude produces a limit cycle (a closed-loop trajectory). 
We will explore this technique later in this chapter and dis-
cover its value, particularly in the investigation of nonlinear 
systems. We will also have an opportunity in a student exer-
cise at the end of the chapter to explore oscillating chemical 
reactions for the classic two-phase reactor problem of 

FIGURE 6.4.  Oscillations in the cellular activity of CDK1 (C), 
APC (A), and Plk1 (P). These results are in qualitative agreement 
with Ferrell et al.
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The fourth-order estimate is computed from

y y k k k k hi i+ = + + + +
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and the fifth-order estimate comes from

y y k k ki i+ = + + +
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We will now use this technique for our example equation 
using constant step-size (h =  0.05), determining the local 
error from the difference between the two estimates at each 
step. These computations reveal that the error begins to grow 
objectionably when x exceeds about 1.2 (see Figure 6.5).

Now that we understand how the estimated error is 
behaving in this problem, we can make suitable changes to 
h. One possibility, suggested by Press et al. and discussed 
by Chapra and Canale (2002), is

	 h hrevised
crit=

ε
ε

0 25.

, 	 (6.49)

where εcrit is the threshold (desired) accuracy level. Suppose 
we take ε∼ error, and further, assume “typical” values for 
both εs:

This simple change to the third-order RK procedure 
yields y(x = 1.65) = 1434.24, corresponding to an error of 
about 0.57%, which would often be tolerable for practical 
calculations. As an alternative, one might think that simply 
using a fixed step-size procedure would work if h were suit-
ably small. We can test this hypothesis on eq. (6.38) with 
the fourth-order RK algorithm. We will start with h = 0.05 
and use double precision:

h y(x = 1.65)

0.05 1222.466
0.01 1423.938
0.005 1425.794
0.001 1425.961
0.0005 1425.961+

This is an important lesson: For some types of ODEs, 
fixed step-size methods such as the RK scheme used here, 
or Mathcad’s rkfixed, will be at best computationally expen-
sive and possibly quite ineffective.

In addition to the step-halving approach utilized earlier, 
there are other strategies that can be employed when adap-
tive step-size control is required. One very appealing alterna-
tive is the Runge–Kutta–Fehlberg (RKF) scheme, which is 
sometimes referred to as an embedded RK procedure since 
both fourth- and fifth-order estimates come from the same 
sequence of calculations. The essential idea is to compute 
both fourth- and fifth-order estimates then compare them to 
obtain an estimate of the local error. That error is then used 
to make a step-size adjustment if needed. The particular 
algorithm we will employ comes from Cash and Karp 
(1990). Once again, we will take

	
dy

dx
xy y x= = =3 2 0 2/ , ( ) ,with 	 (6.40)

where we are interested in y(x = 1.65).
The required sequence of calculations follows:

k f x yi i1 = ( , ) 		  (6.41)
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FIGURE 6.5.  A measure of the local error for the equation 
dy/dx = xy3/2, obtained from the Runge–Kutta–Fehlberg computa-
tion (fourth and fifth orders) using a fixed step size with h = 0.05.
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We subtract the latter from the former:

f x h f x h hf x
h

f x( ) ( ) ( ) ( ) .+ − − = ′ + ′′′ +2
3

3

�   (6.53)

Now we rearrange the equation to solve for the derivative, 
f ′(x):

′ =
+ − −

− ′′′ − ′′′′′ −f x
f x h f x h

h

h
f x

h
f x( )

( ) ( )
( ) ( ) .

2 6 120

2 4

�

		  (6.54)

You may recognize that this expression—when 
truncated—is the second-order, central difference approxi-
mation for the first derivative. We rewrite this equation with 
a small modification, letting the difference approximation be 
represented by φ(h):

′ = − ′′′ − ′′′′′ −f x h
h

f x
h

f x( ) ( ) ( ) ( ) .φ
2 4

6 120
�   (6.55)

Now we cut the interval in half; that is, we replace h with 
h/2:

′ = − ′′′ − ′′′′′ −f x h
h

f x
h

f x( ) ( / ) ( ) ( ) .φ 2
24 1920

2 4

�   (6.56)

We multiply this equation by 4 and then subtract the  
previous expression from it, isolating f ′(x); the truncated 
result is

	 ′ ≅





−f x

h
h( ) ( ).
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3 2
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By adding one more function evaluation, we have signifi-
cantly improved the quality of our estimate of f ′(x). Instead 
of the neglected term being of the order of h2, it is now of 
order h4! Let us see how well this works with a simple 
example: Take f(x) = x2 sin x, such that f ′(x) = 2x sin x + x2 
cosx. We will use the latter to evaluate f ′(x = 1/2), which is 
0.698821. Now we take h = 1/8 and evaluate the derivative 
using the second-order central difference expression 
(f(5/8) − f(3/8))/(1/4); the result is 0.708188, which is about 
1.3% too large. We repeat but add the additional evaluation 
at h/2 (1/16), finding f ′(1/2) =  0.698828, which is about 
0.001% too large. At the cost of one additional function 
evaluation, we have dramatically reduced the error in our 
estimate of the derivative. This is an extremely powerful 
procedure: We made two calculations (one using h and one 
using h/2), and then extrapolated to h =  0, obtaining an 
extremely accurate estimate for the derivative at x =  1/2. 
This is an example of the Richardson extrapolation, and it 
has been characterized by Press et al. as “turning straw into 
gold.” It is so powerful that it has become a critical element 

FIGURE 6.6.  Behavior of the step size, h, using the Runge–
Kutta–Fehlberg scheme with step-size adaptation and an initial h 
value of 0.05. With this technique, the computed value for 
y(x = 1.65) is between 1426 and 1427, within about 0.03% of the 
correct value.
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Now we are in a position to return to our RKF routine 
with the addition of adaptive step-size control. We will track 
the impact of this modification on h as we approach x = 1.65 
and provide the result in Figure 6.6.

The RKF procedure offers us a very effective way to 
implement adaptive step-size control, and when applied  
to nonlinear systems where little is known about the behav-
ior of the dependent variable(s), it can save us a lot of  
grief. The principal advantage of RKF is that both fourth- 
and fifth-order estimates are obtained from the same 
sequence of calculations, providing us with a built-in esti-
mate of error.

RICHARDSON EXTRAPOLATION

Suppose we take the two Taylor series expansions:

f x h f x hf x
h
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and
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in some newer ODE solvers, and we will see an example 
later in this chapter.

MULTISTEP METHODS

You should recall that forward-marching techniques (like 
Euler’s method) take the slope of the function to be constant 
over some finite interval. We cannot expect this to work very 
well unless h is small—perhaps very small. But suppose we 
were able to evaluate the slope at multiple points; if we could 
fit a polynomial to these values, we could extrapolate this 
function. By accounting for the change in slope over the 
interval in this way, we might significantly improve our 
results. This is the idea behind the Adams’ four-point 
formula (also known as the Adams–Bashforth method). The 
algorithm for this technique is

y y
h

y y y yn n n n n n+ − − −= + ′ − ′ + ′ − ′( )1 1 2 3
24

55 59 37 9 .   (6.58)

In the notation being used here, y′n is simply y′(xn) or 
dy dx

x xn
( ) = . Note that three points (n − 1, n − 2, and n − 3) 
lie to the left of the interval; the Adams–Bashforth method 
is not self-starting, so another technique must be used to get 
under way. The reader interested in the derivation of this 
formula (which is obtained easily through use of the 
Gregory–Newton backward interpolation) may consult 
Southworth and Deleeuw (1965). Now, suppose we have the 
differential equation

	
dy

dx
x x y y= − =( ) , ( ) .2 0 2with 	 (6.59)

We wish to know the value of y(x = 1); we begin by using 
the Euler method with h = 0.2, which results in y(1) = 2.33944 
(the analytic result is 2.36272). Now let us apply the Adams–
Bashforth method using Euler’s technique to get started. But 
this time, we begin the calculation with h = 0.002 so that 
the initial values for the slopes (y′n) will be more accurate. 
In this case, the Adams–Bashforth method yields y(1) = 
2.36274, corresponding to an error of about 0.0008%. The 
technique can be further improved by the addition of a cor-
rector step (which can be applied repeatedly) to the predictor 
that we have used here. The corrector is

	 y y
h

y y y yn n n n n n+ + − −= + ′ + ′ − ′ + ′1 1 1 2
24

9 19 5( ). 	 (6.60)

SPLIT BOUNDARY CONDITIONS

A situation that occurs regularly in problems concerning 
momentum, heat, and mass transfer in boundary layers is 
split boundary conditions; for example, some variables (or 

FIGURE 6.7.  Solution of the Blasius equation for flow in the 
boundary layer on a flat plate. Note how f ′(η) approaches 1.0 
asymptotically as η becomes large.
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derivatives) might be known at x =  0 but others at some 
different value of the independent variable. Consider  
two-dimensional flow past a flat surface. The model devel-
oped by Prandtl and Blasius consists of the third-order non-
linear ODE:

	
d f

d
f

d f

d

3

3
1
2

2

2
0

η η
+ = , 	 (6.61)

where η  =  y(V/vx)1/2, vx  =  Vf′, and v V x f fy = ( )× ′−1 2 ν η( )
. The plate surface corresponds to η =  0, where 

both vx and vy must be zero. Consequently, both f(0) and 
f ′(0) = 0. However, the required third boundary condition 
comes from the fact that vx must correspond to the external 
potential flow outside the boundary layer (where the velocity 
is V): As η → ∞, vx → V; since f ′ = vx/V, it is clear that the 
needed condition is f ′(η → ∞) = 1. Now consider applica-
tion of the RK method to this equation. Because RK is self-
starting, we must have values for f(0), f ′(0), and f″(0) to 
solve the boundary-value problem, eq. (6.61). Of course, we 
can guess the value of the second derivative, integrate across 
the boundary layer, find the result for f ′, and then adjust f″(0) 
accordingly. And the reader may want to use this approach 
to find that f″(0) = 0.33206. The results for this problem are 
given in Figure 6.7 to facilitate verification. The inefficient 
process employed here is equivalent to converting a 
boundary-value problem into multiple initial value prob-
lems; the process will take some time, and naturally one 
might wonder if there is a line of attack that would diminish 
our workload.

Hamming (1973) provided a useful example that illus-
trates one possible approach for split boundary conditions 

v V x f fy = ( )× ′−1 2 ν η( )
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It is clear that we would find the solution we want for the 
boundary-value problem if we could identify a zero for the 
function:

	 F y b s yb= −( , ) . 	 (6.69)

Naturally, each value selected for s will yield a corre-
sponding F. Identifying the particular value we want can be 
done in many different ways including an iterative scheme 
using Newton’s method of tangents (or Newton–Raphson). 
The superscripts refer to the iterate number in eq. (6.70):

	 s s
F s

F s
n n

n

n
+ = −

′
1 ( )

( )
. 	 (6.70)

Stoer and Bulirsch (1993) point out that the derivative of 
F appearing in the denominator is often replaced by a first-
order forward difference approximation. They add that Δs 
must be chosen carefully—a value either too large or too 
small may either produce a derivative that is not sufficiently 
accurate or possibly lead to convergence problems. More-
over, as Hanna and Sandall (1995) note, it is clear that we 
now have two sources of error: We have error associated 
with the estimate of s and we have error associated with the 
numerical solution of the ODE itself.

We can better appreciate the shooting method through  
an example. Suppose we have the following second-order 
ODE:

	
d y

dx

dy

dx
y

2

2
0 06667 0 11111 0+ + =. . , 	 (6.71)

with y(0) =  2 and y(3) =  10/3. We plan to use an RK 
method, but we do not know (dy/dx)x=0. Let our initial guess 
for s be 0.4 (with Δs = 0.1) and proceed:

y′(0) y(3) F = y(3) − 10/3

0.4 2.05325 −1.28008
0.5 2.28208 −1.05125

These values allow us to obtain a new estimate for s:

	 sn+ = −
−

=1 0 4
1 28008

2 2883
0 959402.

.

.
. . 	 (6.72)

Now we return to our RK procedure but this time with 
y′(0) = 0.959402. The result is y(3) = 3.333318, which is 
pretty close to the correct value of 10/3. We could then refine 
our estimates if greater precision was required:

y′(0) y(3) F = y(3) − 10/3

0.959 3.332397 −0.000936
0.960 3.334686 +0.001353

using a finite-difference approximation for the second deriv-
ative. Suppose we have the following second-order ODE:

d y

dx
y x y y

2

2
0 0 1 1= + = =, ( ) ( ) .with and   (6.62)

We use the second-order central difference approximation 
for the left-hand side, resulting in

	
y y y

h
y xn n n

n n
+ −− +

≅ +1 1

2

2
. 	 (6.63)

Now suppose we break the interval (0–1) into four 
pieces—this gives us five nodal points with n = 0 and n = 4 
corresponding to the ends of the interval. We apply the 
approximation at the three interior nodes, obtaining

	
y y y

y2 1 0

2 1
2

1 4

1

4

− +
= +

( / )
	 (6.64)

	
y y y

y3 2 1

2 2
2

1 4

1

2

− +
= +

( / )
	 (6.65)

	
y y y

y4 3 2

2 3
2

1 4

3

4

− +
= +

( / )
. 	 (6.66)

Of course, y0 = 0 and y4 = 1; we have three equations 
and three unknown nodal values. It is easy to show that the 
interior nodal values (y1, y2, and y3) are 0.180229, 0.387348, 
and 0.649927, respectively. How do these compare with the 
analytic solution (which is y = 0.850918 (e+x − e−x) − x)? 
The three corresponding values for yn are 0.179905, 
0.386819, and 0.649448. The results are encouraging and 
even more accurate results could be obtained by simply 
increasing the number of interior nodal points. But the equa-
tion we used for this example (eq. 6.62) certainly lent itself 
to the process we carried out, so we might want to think 
about some alternatives that are more broadly applicable. To 
underscore the point, the reader may want to consider how 
“easily” a finite-difference technique could be applied to the 
Blasius equation (eq. 6.61).

Shooting methods have been developed precisely to deal 
with this situation; let us consider the more general differ-
ential equation,

	
d y

dx
f x y

dy

dx

2

2
=






, , , 	 (6.67)

along with the boundary values y(x  =  a)  =  ya and 
y(x = b) = yb. Now we contemplate the corresponding initial 
value problem:

	
d y

dx
f x y

dy

dx
y x a ya

dy dx s x a

2

2
=






 = =

= =

, , , ( )

/ .

with

and at

  (6.68)
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Please remember that the first column (n =  0) corre-
sponds to the left-hand boundary where the temperature is 
specified. We see that the coefficient matrix is sparse—it 
contains many zeroes. Furthermore, it follows the tridiago-
nal form; this structure arises so frequently in applied math-
ematics that very efficient procedures for solving such sets 
of equations have been developed.

Let us give our conduction problem some quantitative 
definition and apply this technique to its solution: We have 
a slab of material 10 cm wide, with one edge (x = 0) main-
tained at 100° and the other at 200°. Let β = 0.3 cm−2 and 
let h = 1 cm so we have nine interior nodes (we must solve 
a set of nine simultaneous algebraic equations). The analytic 
solution is just

T x x= − + +99 1655 0 3 0 8345 0 3. exp( . ) . exp( . ),   (6.75)

which allows for easy comparison. The results for the finite-
difference computation are provided in Figure 6.8, along 
with the analytic solution; the largest discrepancy between 
the two is a little worse than 3%. We could easily cut the 
interval in half (to 0.5 cm) if we wanted improved accuracy. 
Indeed, if we do this, the worst-case deviation is reduced to 
less than about 0.9%.

STIFF DIFFERENTIAL EQUATIONS

A serious complication can arise in the numerical solution 
of ODEs when the equation(s) is stiff. When we say that an 
ODE (or a system of ODEs) is stiff, we are recognizing that 

The improved estimate for s is 0.959409, which yields 
y(3) = 3.333333. We have now seen the ease with which a 
shooting method can be employed; this will be far more 
efficient than solving many initial value problems in an 
effort to identify y′(0) or y″(0).

FINITE-DIFFERENCE METHODS

We demonstrated in the previous section how finite-
difference approximations could be conveniently used to 
solve certain types of ODEs with split boundary conditions. 
We would like to further explore this topic, providing some 
amplification and treating a problem of some practical 
importance. Let us consider the steady-state conduction in a 
homogeneous medium in which thermal energy is absorbed 
(possibly by an endothermic chemical reaction). We will 
also assume that the energy absorption is directly propor-
tional to local temperature; therefore,

	
d T

dx
T

2

2
0− =β . 	 (6.73)

The ends of the material are maintained at different tem-
peratures: T(x = 0) = T0, and T(x = L) = TL. The continuum 
is discretized; that is, we place n equally spaced nodes in 
the interior, resulting in n +  1 intervals of length h (Δx), 
along with n +  2 nodes (including the boundaries). If we 
use a second-order central difference for the second deriva-
tive, our algebraic approximation for the differential equa-
tion appears as

	
T T T

h
Tn n n

n
+ −− +

≅1 1

2

2
β . 	 (6.74)

It is important to remember that we have introduced trun-
cation error with this approximation; the Taylor series 
expansions used to construct this finite difference have been 
truncated and, accordingly, we have introduced an error that 
is of the same order as the neglected terms. Note that the 
coefficients for the three nodal points are

n − 1 n n + 1

1 –h2β − 2 1

When we apply this pattern to all of the interior nodes 
(the interior nodes begin with n = 1), we find

n = 0 n = 1 n = 2 n = 3 n = 4 . . . 

1 –h2β − 2 1 0 0
0 1 –h2β − 2 1 0
0 0 1 –h2β − 2 1
0 0 0 1 –h2β − 2
0 0 0 0 1 . . . etc.

FIGURE 6.8.  Comparison of the analytic solution (solid curve) 
for steady-state conduction in a slab with absorption of thermal 
energy with the finite-difference computation (filled triangles) 
using just nine interior nodes.
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In this example, dy/dx =  50(x2 −  y) and for x =  2, 
y = 3.9208; thus,

	 λ≅
−

=
50 4 3 9208

3 9208
1 01

( . )

.
. , 	 (6.80)

resulting in S = 2. There are two important points to remem-
ber here: First, this is a very modest value for S, and second, 
for many nonlinear problems of interest, the value of S will 
vary considerably between the initial- and endpoints of the 
integration. In such cases, a single-point evaluation of S may 
not be very informative.

Gear’s method is one of the best-known techniques for 
dealing with systems of stiff differential equations. In fact, 
Gear devised an example problem (unsteady, batch, chemi-
cal kinetics) that has been used extensively to test ODE 
solvers; it consists of three simultaneous equations:

	
dy

dt
y y y1

1 1 30 013 1000=− −. 	 (6.81)

	
dy

dt
y y2

2 32500=− 	 (6.82)

	
dy

dt
y y y y y3

1 1 3 2 30 013 1000 2500=− − −. , 	 (6.83)

with y1(0) = 1, y2(0) = 1, and y3(0) = 0. The range of inte-
gration is from t =  0 to t =  50. Suppose we begin our 
exploration of this example using the fourth-order RK pro-
cedure that we described previously. We begin by setting 
h = 0.002; to reach t = 50, about 100,000 k-function evalu-
ations would be necessary. However, we never get to that 
point since the calculation self-destructs almost immedi-
ately. Even with h = 0.001, we find negative (unphysical) 
values for y3. For the fourth-order RK scheme (with fixed 
step size) to work, it is necessary that h be less than about 
0.0005. The results from such a computation are shown in 
Figure 6.9.

Gear (1971) developed a fourth-order backward differen-
tiation formula (BDF) method specifically to deal with stiff 
ODEs, and it has been widely applied in this context. BDF 
methods will be discussed in detail in the next section.

Backward Differentiation Formula (BDF) Methods

BDF methods have been widely used for the solution of stiff 
differential equations, particularly since the publication  
of Gear’s book in 1971. We begin our discussion of these 
techniques with an elementary illustration. Suppose that the 
differential equation to be solved is

	
dy

dx
f x y= ( , ). 	 (6.84)

the equations have widely varying characteristic values—
they may differ by several orders of magnitude. In such 
cases, the stability of the calculation may become an issue. 
To examine the full range of system behavior, we may be 
forced to use a very small step size, yet the important (ulti-
mate) outcome may take a very long time to develop. This 
is exactly the case for the following hypothetical system 
where the characteristic times differ by three orders of 
magnitude:

	
dy

dt
y

dy

dt
y1

1
2

21000=− =−and , 	 (6.76)

where both y1(0) = 1 and y2(0) = 1.
Of course, both have elementary exponential solutions, 

making the difficulty quite apparent. Such a parametric “dis-
parity” can be very difficult to reconcile. Furthermore, the 
techniques we have discussed so far in this chapter may not 
work very well or perhaps not at all. We will illustrate this 
point with the following example. Suppose we wish to solve 
the following test equation given by Hanna and Sandall 
(1995):

	
dy

dx
x y y= − =50 0 02( ), ( ) .with 	 (6.77)

Our objective is to find y for x = 2; we select the third-
order RK method we introduced previously and we will 
begin by using h = 0.1, and then successively halving h:

h y(x = 2)

0.1 −2.78 × 1027

0.05 −1.515 × 1035

0.025 −1.783 × 1033

0.0125 −1.601
0.00625 3.9208
0.003125 3.92075
0.0015625 3.92072
0.0010 3.9208+

The exact value for y(2) is 3.9208. Though we were able 
to obtain something very close to that value by making h 
sufficiently small, the behavior we discovered above is dis-
concerting! It would be nice to be able to anticipate this 
problem and to assess its severity. One way to approach this 
difficulty is to define a “stiffness ratio” as follows:

	 S x xf i= −λ ( ), 	 (6.78)

where xf and xi are the end and initial points of the integra-
tion, respectively. We can obtain a local estimate for λ from

	 λ=
dy dx

y

/
. 	 (6.79)

http://c6-fig-0009
http://c6-bib-0010
http://c6-bib-0013


102    Numerical Solution of Ordinary Differential Equations

h y(x = 8)

0.5 134.696
0.25 271.482
0.125 466.908
0.0625 431.449
0.03125 109.204
0.015625 69.176
0.007813 60.645
0.003906 57.370
0.001953 55.908
0.000977 55.211
0.000488 54.876
0.000244 54.652
0.000122 54.540

By making h sufficiently small, we were able to obtain a 
reasonable result. However, it is clear that a higher-order 
BDF method is needed here. The generalized algorithm for 
order n can be written as

	 a y a y a y hf x yi i n i n i i0 1 1 1 1 1+ − + + ++ + + =� ( , ).   (6.88)

The coefficients required for this equation have been 
compiled by Lee and Schiesser (2004), and their table is 
presented in modified form as follows:

n a0 a1 a2 a3 a4

1 1 −1
2 3/2 −2 1/2
3 11/6 −3 3/2 −1/3
4 25/12 −4 3 −4/3 1/4
5 137/60 −5 −10/3 5/4 −1/5

Therefore, if we wished to employ the third-order BDF 
method, we would use

11

6
3

3

2

1

3
1 1 2 1 1y y y y hf x yi i i i i i+ − − + +− + − = ( , ).   (6.89)

Since this algorithm requires two previous values for y, 
it is not self-starting and some initial calculations will have 
to be made with another method.

BULIRSCH–STOER METHOD

We previously introduced the Richardson extrapolation and 
we saw what a powerful tool it could be. Bulirsch and Stoer 
recognized that it might be used as the basis for an extremely 
efficient method for solving ODEs; the technique they devel-
oped has garnered some very enthusiastic advocates (see, 
e.g., Press et al., 1989, p. 563). For problems in which it  
is essential that the computational effort be minimized, 
Bulirsch–Stoer is definitely worth consideration.

We formulate an Euler algorithm (but one that is  
implicit):

	 y y h
dy

dx
y hf x yi i

i
i i i+

+
+ += + = +1

1
1 1( , ). 	 (6.85)

What distinguishes this technique from those we have 
seen previously is that the functional value that we wish to 
calculate (yi+1) appears on both sides of the equation. More-
over, many of the problems for which this method is appro-
priate will be nonlinear; therefore, we will almost certainly 
need to solve nonlinear algebraic equations. But the enhanced 
stability of such methods for stiff ODEs will make the extra 
pain worthwhile.

Let us apply this technique to a specific example. Suppose 
we have

	
dy

dx
xy y x= = =0 01 1 32. , ( ) .with 	 (6.86)

We want to know how y behaves as x → 8. The analytic 
solution is simply

	 y
x

=
−
1

0 338333 0 005 2. .
, 	 (6.87)

so y(x = 8) = 54.5464. We will now use the implicit Euler 
method starting with h = 1/2 to see how well the technique 
performs for this example (eq. 6.86); we must keep in mind, 
though, that this is a first-order algorithm and accuracy  
may be poor.

FIGURE 6.9.  Computed results for Gear’s example (chemical 
kinetics problem). The concentration for the third species, y3, is 
very small but not zero.
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54.36%, 33.39%, 14.64%, 4.14%,  
0.755%, 0.102%, and 0.012%.

The very last estimate is from the 512 and 1024 step pair. 
As you can see, this gets us within about 0.012% of the 
correct value. We would need about 2000 steps with a third-
order RK scheme to get within the same error window.

The Bulirsch–Stoer method is also available with 
Mathcad™ (bulstoer) and we illustrate its application using 
eq. (6.90). Note that there are seven parameters in the param-
eter list (unlike rkfixed which has only five).

Mathcad™ Implementation of Bulirsch–Stoer Method for 
eq. (6.90)

Solve withdy dx xy y x/ ( ) .= = =2 0 2

y0 2:=

D x y x y( , ) : ( )= 0
2

Z bulstoer y D: ( , , . , . , , , . )= 0 0 975 0 00001 10 0 000001

Z=

× −

0 2

9 75 10 2

0 107 2 023

0 61 3 183

0 705 3 973

0 817 6 006

0 927

3.

. .

. .

. .

. .

. 114 29

0 975 40 503

.

. .













The fourth parameter controls the accuracy of the solu-
tion, and in this case, we have set its value to 1 × 10−5; note 
that the value reported for y(x =  0.975) is 40.503, which 
corresponds to an error of about 0.008%.

PHASE SPACE

Among the problems that arise when an analyst must work 
with a nonlinear differential equation (or model) is the fact 
that he/she may not have any idea what form the dynamic 
behavior of the system will take. This makes it difficult to 
interpret a numerical result, and extremely difficult to detect 
errors when they occur. Furthermore, an output stream of 
numbers appearing on screen (or written to a file) does not 
provide much feedback—it might be nearly impossible to 
detect a periodicity, or a lack of periodic behavior from such 
output. This is exactly the kind of situation where a phase-
space analysis can be useful. Our strategy is to construct a 
system trajectory by cross plotting dependent variables and 

The principal idea is a simple one: Suppose we have a 
differential equation dy/dx = f(x, y) we wish to solve from 
some initial x =  0, to x = L. The function y is computed 
using a midpoint method across a large interval initially 
using two steps. The calculation is carried out again, but this 
time using four steps. We now have a function f(h) from the 
two different values of h that can be fit to an analytic form. 
An extrapolation is then attempted to h = 0 (corresponding 
to an infinite number of steps); if the estimated error is 
deemed satisfactory, we proceed. If not, we increase the 
number of steps (to 6, then 8, then 12, etc.), and after each 
increase, we try to the extrapolation to h =  0 again. The 
usual sequence of step number is 2, 4, 6, 8, 12, 16, 24, 32, 
48, 64, 96, and so on. Press et al. note that a more expected 
sequence where we double the number of steps with each 
trial will cause h to become too small too rapidly.

We will treat an elementary example to demonstrate the 
Bulirsch–Stoer method. Consider the differential equation

	
dy

dx
xy y x= = =2 0 2, ( ) .with 	 (6.90)

We are interested in y(x = 0.975); since the analytic solu-
tion is y = 2/(1 − x2), y(0.975) = 40.5063. Let us use the 
modified midpoint method (which is sometimes referred to 
as Gragg’s method) with h = H/ns, where H is the interval 
we wish to cover (which is 0.975) and ns is even (we start 
with ns = 4):

yep = 6 159404. .

We repeat the process, but with eight steps rather than 
four:

yep =10 258197. .

Now we use the two endpoint (ep) estimates for a poly-
nomial extrapolation:

	

y x
y y

( . )

( )( . ) ( . )
. .

= ≅
−

=
−

=

0 975
4

3
4 10 258197 6 159404

3
11 6245

8 4

		  (6.91)

It is clear that we are not there yet. We continue, but this 
time with 16, 32, 64, 128, . . . steps (we will double the 
number of steps each time to make use of the preceeding 
polynomial extrapolation). The resulting succession of esti-
mates takes the form

18.4863, 26.9801, 34.5736, 38.8291,  
40.2004, 40.4649, and 40.5014.

Now notice how the error for our estimate has diminished 
through this sequence:
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We will assume the following values for the parameters 
that appear in eq. (6.92a, b, c): Pr = 10, r = 28, and b = 8/3. 
For initial conditions (X, Y, Z), we select (0, 1, 0), then we 
will obtain the projected system trajectory (on the Y-Z plane) 
by numerical solution of the differential equations. The two-
dimensional cut (from the three-dimensional system) shown 
in Figure 6.11 is a “portrait” of a strange attractor. For a 
simple mechanical system that oscillates with decaying 
amplitude, the phase-space trajectory (two-dimensional) as 
we observed previously will be an inward spiral—this is 
characteristic of dissipative systems. The point in phase 
space to which the trajectory is drawn is called an “attractor.” 
If a frictionless system oscillates with constant amplitude, 
the phase-space portrait will be an ellipse (a limit cycle as 
we saw in Figure 6.10); such systems are said to be conser-
vative because the phase “volume” remains constant.

What the two-dimensional cut provided in Figure 6.11 
cannot reveal is that no point in phase space is ever revisited. 
Thus, the Lorenz model—though fully deterministic—is 
nonperiodic. The implications are staggering and it would 
be far more difficult to comprehend the behavior of this 
system if we were trying to do so from a table of numbers, 
say, Y(t). This is a case where phase-space analysis is 
invaluable.

We will conclude our discussion of the utility of phase 
space with a final example adopted from LaSalle’s contribu-
tion in Proceedings of Symposia in Applied Mathematics, 
Volume XIII, Hydrodynamic Instability (1962). Consider the 
deceptively simple (but nonlinear) ODE:

	
d y

dt
a

dy

dt
y y

2

2
22 3 0+ + + = , 	 (6.93)

removing time from the visualization of results. For systems 
of one, two, or three dimensions, this is straightforward as 
we shall see.

Consider the simple sinusoid y(t) =  A sin ωt, with the 
derivative y′(t) = ω A cos ωt. Of course, if we plot y(t), we 
know exactly what to expect. But suppose instead that we 
plot corresponding values of y(t) and the derivative y′(t) as 
time evolves; we will see a closed system trajectory in the 
form of what is called a limit cycle. We will select A = 5 
and ω = 1 for this illustration.

If the amplitude of the sinusoid was increasing with time 
(unstable behavior), then the form we would see in Figure 
6.10 would be an outward-directed spiral. If the sinusoid was 
decaying, for example, if y(t) = A exp(−βt) sin(ωt), then we 
would expect an inward-directed spiral that would approach 
0, 0 on the phase plane as time became large. Of course, 
what we really want to know is what phase-space analysis 
can do for us in the context of challenging nonlinear dif-
ferential equations.

In 1963, Edward Lorenz published an extremely impor-
tant paper entitled “Deterministic Nonperiodic Flow” in the 
Journal of Atmospheric Sciences. Lorenz set out to develop 
the simplest possible model for atmospheric phenomena, 
accounting for the intensity of convective motion (X), the 
temperature difference between rising and falling currents 
(Y), and deviation of the vertical temperature profile from 
linearity (Z). The resulting set of ODEs can be written as

dX

dt
Y X

dY

dt
XZ rX Y

dZ

dt
XY bZ

= − =− + −

= −

Pr( ), ,

.and
  (6.92a,b,c)

FIGURE 6.10.  The system trajectory for this sinusoid is a closed 
path or a limit cycle. The amplitude of the oscillation is neither 
increasing nor decreasing. Motion on this limit cycle is clockwise.
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FIGURE 6.11.  A two-dimensional (Y-Z plane) portrait of a 
strange attractor from the Lorenz model with r = 28.
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And there is another aspect to this discussion that is 
crucial: numerical stability (sometimes referred to as weak 
stability in the literature). We have primarily talked about 
choosing the step size in terms of the accuracy of the result-
ing solution. And often—particularly for nondemanding 
problems—that is entirely appropriate. In the case of certain 
ODEs, however, step size is chosen not for accuracy but to 
ensure stability of the computation. It is this feature of the 
numerical solution of ODEs that we wish to discuss briefly 
here. For additional detail, consult Lee and Schiesser (2004), 
and for greater mathematical rigor, see Hairer and Wanner 
(1996).

Consider the elementary differential equation:

	
dy

dx
y=−β . 	 (6.94)

Of course the solution has an exponential form, 
y/y0 = exp(−βx). Now suppose we wished to use the Euler 
method for this equation beginning from x = 0; the first step 
would look like this:

	 y x x y y y x( ) ( ) ( ) ( )( ),∆ ∆ ∆≅− + = −β β0 0 0 1 	 (6.95)

and the second step,

y x x y x y x y x x( ) ( ) ( ) ( )( ).2 1∆ ∆ ∆ ∆ ∆ ∆≅− + = −β β   (6.96)

Note that the right-hand side of the latter equation can be 
written equivalently as

	 y x y x( ) ( )( ) ,2 0 1 2∆ ∆= − β 	 (6.97)

and in general, for n-steps,

	 y n x y x n( ) ( )( ) .∆ ∆= −0 1 β 	 (6.98)

If Δx is selected such that the product, Δxβ =  2, then 
the procedure results in an oscillation between −y(0) and 
+y(0). Even worse, if Δxβ >  2, the oscillations grow in 
amplitude; for example, for Δxβ = 4, we get the sequence 
−3y(0), +9y(0), −27y(0), and so on. On the other hand, if 
Δxβ < 1, we at least get qualitatively correct behavior where 
successive steps reveal diminishing y, which is in accord 
with the decaying exponential solution. Setting Δxβ = 4/5 
produces the sequence 1/5, 1/25, 1/125, 1/625, . . . , each  
multiplied by y(0), of course. It is clear, therefore, that the 
explicit Euler method will require that |Δxβ| < 2, although 
for the sake of accuracy, the product Δxβ will usually be 
much smaller than this.

In the case of explicit RK methods, a stability assessment 
can be carried out in a similar manner. We take the model 
equation (sometimes referred to as the Dahlquist test 
equation):

with a = 1/2. We will solve this ODE numerically beginning 
with y(0) = −1/2 and y′(0) = 0. This system is stable and 
the phase-space portrait reveals an inward spiral as shown 
in Figure 6.12.

The LaSalle model (eq. 6.93) becomes especially inter-
esting when we change the initial condition to explore the 
threshold of instability; for example, suppose we first take 
y(0) = +0.562866 and then y(0) = +0.562867 (we maintain 
the zero initial value for the derivative both times) and solve 
eq. (6.90) for large values for t. In these cases, the phase-
plane portraits are very different from that depicted in Figure 
6.12; in fact, the dynamic behavior in the second case is 
unstable. We will explore this model further in a student 
exercise at the end of the chapter.

SUMMARY

We have said very little about the error inherent in the 
numerical solutions of differential equations. This is 
because the general topic is too broad and too complex for 
the space available here. But there are some elementary 
observations we should make. For example, we need to 
draw the reader’s attention to the difference between round-
off error and truncation error. Roundoff error is hardware-
dependent; that is, it is a consequence of the precision of 
the computing device being used. For example, a calculator 
might report 2/3 as 0.666667. Truncation error, on the other 
hand, is the result of neglected terms in the construction of 
the algorithm. For example, if we truncate a Taylor series 
expansion, the resulting error will be of the order of the 
first neglected term.

FIGURE 6.12.  Phase plane for the LaSalle model with y(0) = 
−1/2. Note that the system trajectory is approaching the equilib-
rium point located at y = 0.
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6.3.  A tank with a capacity of 1900 ga (the tank diameter is 
7 ft) is initially half-full. Water enters the tank at a constant 
rate of 85 gpm; it also drains from the bottom of the tank 
through a round orifice. The velocity through the orifice is 

given (approximately) by Torricelli’s theorem: V gh0 2= , 
where h is the depth of water above the hole. The area of 
that orifice is 0.01 ft. Will the tank overflow? Is so, when? 
If not, when will the maximum depth be attained?

6.4.  We want to examine the dynamic behavior of two popu-
lations in conflict, coyotes and rabbits (this is a subset of 
Volterra’s problem but with heredity neglected). We will 
initiate the calculation with 100 rabbits (n2) and three coyotes 
(n1). Assume the governing equations are

dn

dt
an n bn

dn

dt
cn dn n1

1 2 1
2

2
2

1 2= − = −and .

Solve the two simultaneous equations and prepare a 
phase-space portrait by cross plotting n1 and n2. The values 
for the constants a, b, c, and d are 0.3, 0.2, 0.25, and 0.7, 
respectively. Is extinction of a species possible in this 
problem? If heredity factors are added to this problem, 
exactly how will the nature of the problem be changed?

6.5.  In a misguided attempt to celebrate the New Year, Eric 
fires his 9-mm pistol vertically into the air. The 115-grain 
bullet leaves the barrel with an initial velocity of 1225 ft/s. 
Assume the drag acting on the projectile is given by F = AKf, 
where A = πR2, K = ½ρV2, and the drag coefficient, f, is 
assumed to be constant at 0.5. When will the bullet strike 
the ground, and what will the velocity be at impact? Is it 
possible that the returning projectile could be lethal?

6.6.  The driven pendulum has been the focus of intensive 
investigation because of the possibility of chaotic behavior. 
Begin your analysis with the elementary, linearized damped 
pendulum with the equation of motion:

d

dt

d

dt

2

2
0

θ θ
θ+ + = .

Solve this equation (giving the pendulum an initial dis-
turbance) and prepare a plot of the system trajectory by cross 
plotting θ with its derivative. How does this system behave 
dynamically? Now, assume the three governing equations 
for the driven pendulum have the form

d

dt q
g

ω ω
θ φ=− − +sin cos

d

dt

θ
ω=

	
dy

dt
y y y= =λ , ( ) ,with 0 0 	 (6.99)

and let z = hλ. The solution for the test equation is expo-
nential, and for a single step forward, we write it as 
exp(λt) = ez. Therefore, a stability function can be written 
(for the fourth-order RK procedure in this case) as

	 1
1 2 3 4

2 3 4

+ + + +
z z z z

! ! ! !
. 	 (6.100)

For stability of the numerical calculation, it is necessary 
that |yi+1/yi| ≤ 1, so the stability function given earlier is set 
equal to 1. This determines the limiting value for z (or hλ), 
which is −2.785 for the fourth-order RK. Lambert (1973) 
shows that, for the third-order RK procedure, the limiting 
value is −2.51. The implication, of course, is that the explicit 
RK methods are only slightly more stable than the Euler 
technique; that is, the limit for the magnitude of hλ is 
only a bit larger. Complete stability domains are given 
graphically in Hairer and Wanner (1996), which permit easy 
comparison of different solution techniques. Because the 
elementary explicit techniques have limited stability 
domains, they are not suitable for stiff problems; in these 
cases, one must turn to an implicit method (like BDF) as we 
noted previously.

Although BDF methods are not self-starting, their 
enhanced stability has made them very popular for the solu-
tion of stiff ODEs. Lee and Schiesser (2004) summarize the 
stability properties of BDF methods in chapter 1 of their 
book, and they note that BDF algorithms through the sixth 
order are unconditionally stable along the negative real 
axis—clearly superior in this regard to the Euler and RK 
techniques considered earlier. Lee and Schiesseer also point 
out that there are many very high-quality codes available for 
the solution of ODEs, both within commercial software 
packages and from the public domain. For the latter, a good 
starting point is the Netlib Repository at http://www.netlib 
.org/index.html.

PROBLEMS

6.1.  Show that the analytic solution for the ODE, dy/dx = 
x − (y/x) is y = (x2/3) + (C/x). Then, given that y(x = 2) = 2, 
use the modified Euler method and find y(x = 4).

6.2.  Consider the second-order differential equation,

16 5
2

2

d y

dt

dy

dt
y x t+ + = ( ).

Initially, both y and dy/dt are zero. If x(t) = 1/(1 + t), what 
is the maximum value attained by y, and when does that 
occur?
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the center and equal to a surface value (say, 1) at x = 1. Take 
k = 2.325.

6.10.  Consider the differential equation, dy/dx = 3x + y2. 
We know that y(x = 0) = 1, and we want to find an estimate 
of y(x = 0.1). In particular, Ayres (1952) gives a value for 
this problem of 1.12725, and we want to know how accurate 
this value is.

6.11.  A steel cable with a per-unit-length weight of W 
(pounds per foot) hangs between two supports. The deflec-
tion is described by the differential equation

d y

dx

W

h

dy

dx

2

2

2

1= +





 .

The shape assumed by a suspended cable is a catenary, 
which can be described with the hyperbolic cosine (cosh). 
At each support, of course, y(x = –L and x = L) = 0. Solve 
the differential equation numerically, assuming W/h = 2 and 
L = 10.

6.12.  The Leveque equation describes the temperature dis-
tribution for an inlet flow past a heated wall. The x-axis 
corresponds to the wall and the y-coordinate extends into the 
fluid phase. By assuming that the velocity distribution in 
proximity to the stationary wall is linear, vx = cy, the fol-
lowing differential equation can be developed:

d T

d

dT

d

2

2
23 0

η
η

η
+ = ,

where

η
α

=






y

c

x9

1 3/

.

Of course, α is the thermal diffusivity of the fluid (assume 
that it is water, α ≅ 0.00155 cm2/s). Given that T(η = 0) = Tw, 
the temperature of the heated wall, and that T(η → ∞) = T∞, 
solve this second-order equation numerically and compare 
your results with the analytic solution for η = 0.3, 0.5, 0.7, 
0.9, and 1.10. Let Tw = 50° and T∞ = 25°.

6.13.  The Rayleigh–Plesset equation describes the oscilla-
tory behavior of the interface of a disturbed spherical gas 
bubble immersed in a liquid:

P P
R

d R

dt

dR

dt R

dR

dt R
i− = +






 + +∞

ρ
ν σ

ρ

2

2

23

2

4 2
.

R, of course, is the bubble radius. This differential equation 
is notoriously stiff and the term that includes the kinematic 
viscosity (ν) is often small and therefore frequently neglected. 

d

dt
D

φ
ω= .

We want to solve this set of equations using q =  2, 
ωD =  2/3, and g =  1.0, and once again we would like to 
construct the system trajectory (using ω and θ) as we suspect 
that chaotic behavior may be possible. If you need further 
help with this problem, see Baker and Gollub (1990).

6.7.  Begin this problem by consulting the work of Durham 
et al. (1964) entitled Study of Methods for the Numerical 
Solution of ODEs. On page 104, they describe a model for 
a restricted three-body problem:

d x

dt
x

dy

dt

x

x y

x

x y

2

2 2 2 3 2 2 2 3 2
2= + − ′ +

+ +
−

− ′
− ′ +

μ
μ

μ
μ

μ
μ(( ) ) (( ) )/ /

and

d y

dt
y

dx

dt

y

x y

y

x y

2

2 2 2 3 2

2 2 3 2

2= − − ′
+ +

−
− ′ +

μ
μ

μ
μ

(( ) )

(( ) )
,

/

/

where μ′  =  1  −  μ. We want to solve this fourth-order 
system. The initial conditions are x(0) =  0.994, y(0) =  0, 
dx/dt = 0 for t = 0, and dy/dt = –2.03173262955733683566 
for t = 0. The parameter μ is 0.012277471. The period for 
the motion is 11.12434033726608513507, and the time step 
will need to be very small (and probably variable).

6.8. H iemenz stagnation flow is governed by the nonlinear 
third-order ODE:

ν ′′′ = ′ − ′′−f f ff a2 2,

where ν is the kinematic viscosity of the fluid and a is the 
strength of the potential flow approaching the flat surface. 
Assume the fluid is water and that a = 5. Find a solution for 
this problem given that f(0) = 0, f ′(0) = 0, and f ′(∞) = a.

6.9.  One form of Bessel’s differential equation is

d y

dx x

dy

dx
k y

2

2
21

0+ − = .

This might describe, for example, the disappearance of  
a reactant species in an infinitely long cylinder (catalyst 
pellet). It is obvious that there is a regular singular point at 
x = 0. The analytic solution for this problem is

y C I kx C K kx= +1 0 2 0( ) ( ).

We want to solve this equation numerically, integrating 
from x = 0 to x = 1 given that the concentration is finite at 
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6.16.  The Chebyshev ODE is

( ) .1 02
2

2
2− − + =x

d y

dx
x

dy

dx
n y

We are interested in the case where n = 5 such that the 
last term on the left-hand side is 25y. We know that 
y(x = −1) = −1 and y(x = +1) = +1. We want to solve 
this equation numerically on the interval −1 ≤ x ≤ +1 and 
we will pretend that we do not know that the analytic solu-
tion is T5(x). One of the requirements of this problem is that 
we need to obtain a very accurate estimate for dy/dx|x=−1. 
Use the method of your choice and prepare a plot of your 
results for y(x).

6.17.  Schmitz and Amundson (1963) studied the behavior 
of a reacting system consisting of two immiscible liquid 
phases (α and β) that are fed continuously to a stirred-tank 
reactor (CSTR). A first-order, irreversible chemical reaction 
occurs in both phases with the rate constants kα and kβ. The 
temperatures of the two phases are equal and the compo-
nents are distributed according to an equilibrium law. 
Because the heat generation function (for the exothermic 
case) is sigmoidal in shape with respect to temperature (T), 
and the heat removal rate is linear with T, it is possible that 
the two intersect three times (i.e., there could be a maximum 
of three “steady-state” temperatures). Naturally, this condi-
tion would only occur if the slope and intercept of the heat 
removal line were injudiciously chosen (a reactor designer 
would certainly try to avoid such a regime for safety reasons). 
Schmitz and Amundson solved three simultaneous (nonlin-
ear) ODEs that formed the model for this system (their 
equations 18, 19, and 20). The three equations describe the 
dynamic behavior of the reduced total concentration, the 
reduced temperature, and the volume fraction for the α-
phase. The parametric values of interest to us are provided 
as case d, table 1, page 280, in the Schmitz–Amundson 
paper; they are reproduced here:

k Tα = − ′exp( . . / )23 1 63 5

k Tβ = − ′exp( . . / )22 1 51 5

v v C Cβ α β α/ /= =1

KA = 0 2.

ε=1

A Aβ α0 0 0 2/ .=

Uv C Vα α/ .= × −6 37 10 3

τ = exp( )6

We are interested in the case in which the spherical gas bubble 
is subjected to an instantaneous increase in external pressure. 
This should result in compression and rebound—repeatedly. 
Use Borotnikova and Soloukhin (1964) as a guide and solve 
the Rayleigh–Plesset equation for this case.

6.14. U se the Bulirsch–Stoer method to solve the differen-
tial equation

dy

dx
x y= 2 3,

with y(x = 0) = 3, and find estimates for y(x = 0.5475).

6.15.  Phase-space analysis is a powerful tool for exploring 
the dynamic behavior of complex systems (with a limited 
number of dimensions). It will allow us to assess stability 
and to identify any attractors should they exist. We wish to 
consider the nonlinear LaSalle model:

d y

dt
a

dy

dt
y y

2

2
22 3 0+ + + = ,

with a = 1/2. There is an obvious equilibrium point at y = 0, 
obtained by setting the time derivatives equal to zero. There 
is another located at y = −2/3. Solve this equation numeri-
cally using different initial values for y(t  =  0), letting 
y′(t =  0) =  0 in every case. Draw a sufficient number of 
trajectories on the phase plane such that the delineation 
between stable and unstable regions is apparent. We are 
particularly interested in trajectories near the second equi-
librium point (at y = −2/3). Can you find any trajectory that 
actually terminates at y = −2/3? How would you describe 
that point? What is a saddle point? A composite example 
appears in Figure 6.13 to guide you in your work (y is plotted 
on the horizontal axis and y′ on the vertical axis).

FIGURE 6.13.  A few trajectories plotted for the LaSalle model.
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oscillation. We want to solve this equation numerically using 
two different starting points: (θ, θ′) = (−0.1, 0) and (−0.1, 
2.8). Determine the phase-plane portrait of the Van der Pol 
system by cross plotting θ with θ′, and use both ε =  0.4 
and ε = 0.1. Do all of the trajectories end up at the same 
limit cycle?
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Solve the Schmitz–Amundson model numerically,  
recognizing that the oscillatory behavior expected for this 
case may require a procedure with variable step size (at a 
minimum). Prepare a phase-space portrait of the system by 
cross plotting reduced mole fraction and reduced tempera-
ture. Verify the limit-cycle behavior presented in the original 
paper.

6.18.  In Chapter 1, we contemplated a problem in which a 
recently acquired video revealed the flight characteristics of 
a falcon stalking and attacking a flying crow. This is a classic 
curve of pursuit problem but in three dimensions, of course. 
In a planar (x, y) problem, if the prey travels a straight line 
in the y-direction, starting from x = a, then the trajectory of 
the pursuer is described by the differential equation

1
2

2 2
2

2

2

+





 = −









dy

dx
k a x

d y

dx
( ) ,

where k is the ratio of velocities (velocity of the pursuer)/
(velocity of the prey). Solve this equation numerically and 
plot the path taken by the pursuer given that k =  1.5 and 
a = 10. The prey starts from the x-axis and the pursuer starts 
from the origin. What happens to the solution if k = 1?

6.19.  Suppose an SR-71 (the Lockheed reconnaissance air-
craft that won the Collier Trophy in 1963) is flying a pho-
tographic intel mission over hostile territory. The “Blackbird” 
flies a straight course at 2045 mph at a constant altitude of 
89,500 ft. As the plane passes directly overhead, an antiair-
craft installation fires a ground-to-air missile that accelerates 
rapidly to Mach 5 (take this to be 3600 mph); the missile 
maintains that speed until its fuel is exhausted (after 38 
seconds). Can an intercept occur? If so, how far downrange 
does it occur? If not, how close does the missile get to the 
SR-71? This is another curve of pursuit problem (see 
Problem 6.18 and also Davis, 1962).

6.20.  Previously, we looked at the behavior of the driven 
pendulum modeled as a third-order system (Problem 6.6). 
One of the earliest studies of nonlinear oscillators was the 
work of Van der Pol (1926). In dimensionless form, Van der 
Pol’s model is

d

dt

d

dt

2

2
2 0

θ
ε θ

θ
θ− − + =( ) ,

and he arrived at this form by assuming that the dissipative 
(friction) term would be a function of the amplitude of the 
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7
ANALYTIC SOLUTION OF PARTIAL 
DIFFERENTIAL EQUATIONS

INTRODUCTION

Many of the phenomena that are of interest to us in engineer-
ing and the applied sciences are modeled with partial dif-
ferential equations (PDEs). Fluid flow, heat transfer, and 
mass transfer are prime examples, but problems in gravita-
tion, electrostatics, and quantum theory all give rise to 
similar equations. The purpose of this chapter is to provide 
the reader with some basic skills, enabling him/her to find 
analytic solutions for many commonly encountered PDEs.

Several valuable references will be provided as we move 
through this material, but at the outset, we want to point out 
that there are two uniquely important monographs devoted 
to the analytic solution of PDEs: The Mathematics of Diffu-
sion, Second Edition, by Crank (1975), and Conduction of 
Heat in Solids, Second Edition, by Carslaw and Jaeger 
(1959). These two books are known to nearly every worker 
in applied mathematics. Both are incredibly useful as guides 
to the solution of practical problems where diffusional 
(molecular) transport processes are dominant. Practitioners 
in this field are often heard to say, “I found a similar problem 
in Crank” or “I verified my solution with Carslaw and 
Jaeger.” Anyone wishing to become adept with the subject 
matter of this chapter simply must own both of these books.

CLASSIFICATION OF PARTIAL DIFFERENTIAL 
EQUATIONS AND BOUNDARY CONDITIONS

We have to be able to recognize and classify PDEs to attack 
them successfully; a book such as Powers (1979) can be a 

valuable ally in this effort. Consider the generalized second-
order PDE where φ is the dependent variable and x and y 
are arbitrary independent variables:

A
x

B
x y

C
y

D
x

E
y

F G
∂
∂
+
∂
∂ ∂

+
∂
∂
+
∂
∂
+
∂
∂
+ + =

2

2

2 2

2
0

φ φ φ φ φ
φ .

		  (7.1)

A, B, C, D, E, F, and G can be functions of x and y but 
not of φ. This linear PDE can be classified as follows:

B AC elliptic2 4 0− <

B AC parabolic2 4 0− =

B AC hyperbolic2 4 0− >

For illustration, we look at the “heat” equation (one-
dimensional transient conduction):

	
∂
∂
=
∂
∂

T

t

T

y
α

2

2
. 	 (7.2)

You can see that A = α, B =  0, and C =  0; the equation 
is parabolic. Compare this with the governing (Laplace) 
equation for two-dimensional potential flow (ψ is the stream 
function):

	
∂
∂
+
∂
∂
=

2

2

2

2
0

ψ ψ
x y

. 	 (7.3)
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112    Analytic Solution of Partial Differential Equations

An analogous relationship can be used for mass transfer  
at interfaces:

−
∂
∂









 = −
=

∞D
C

y
K C CAB

A

y

A A

0

0( ).

And again, the mass transfer coefficient, K, is unknown 
and would generally have to be estimated.

A critical observation with regard to these boundary con-
ditions is that all three kinds are linear with respect to the 
dependent variable.

FOURIER SERIES

In his prize-winning work submitted to the Paris Academy 
in 1811, and later published within Theorie Analytique de 
la Chaleur in 1822, Fourier claimed that an arbitrary func-
tion, f(x), could be represented by the trigonometric series,

f x a a x b x a x b x( ) ( cos sin ) ( cos sin ) .= + + + + +0 1 1 2 22 2 �
		  (7.6)

The constants that appear in this series are given by

	 a f x dx0
1

2
=

−

+

∫π
π

π

( ) , 	 (7.7)

	 a f x nxdxn =
−

+

∫
1

π
π

π

( )cos , 	 (7.8)

and

	 b f x nxdxn =
−

+

∫
1

π
π

π

( )sin . 	 (7.9)

The general idea had surfaced earlier; prior to Fourier’s 
work (in fact, in the eighteenth century) a number of promi-
nent mathematicians worked on the vibrating string problem. 
Carslaw (1950) records that Bernoulli obtained a solution 
(for a string starting from rest) in the form of a trigonometric 
series. Euler responded to this work by noting that if Ber-
noulli was correct, then an arbitrary function of a single 
variable could be represented by an infinite series of sines 
(of integer multiples of the independent variable). Euler did 
not believe this was possible; he observed that sine was both 
a periodic function and one that was odd. If the function that 
was being represented did not have the same characteristics, 
how could it be obtained from sine?

Let us assume we are interested in a function, f(x), for 
(−π ≤ x ≤ +π):

In this case, A = 1 and C = 1, while B = 0; the equation is 
elliptic. Next, we consider a vibrating string (the wave 
equation):

	
∂
∂
=
∂
∂

2

2
2

2

2

u

t
s

u

y
. 	 (7.4)

Note that A =  1 and C = −s2; therefore, −4AC >  0 
and eq. (7.4) is hyperbolic. In applied mathematics, tran-
sient problems with molecular transport only (heat or dif-
fusion equations) will have parabolic character. Equilibrium 
problems such as steady-state diffusion, conduction, or 
viscous flow in a duct will be elliptic in nature (phenom-
ena governed by Laplace- or Poisson-type PDEs). We will 
see numerous examples of both in this chapter. Hyperbolic 
equations are common in quantum mechanics and high-
speed, compressible flows; for example, inviscid super-
sonic flow about an airfoil. The Navier–Stokes equations 
that have been the focus of much attention by physicists 
and mathematicians over the last 160 years are of mixed 
character.

The three common types of boundary conditions used  
in applied mathematics are Dirichlet, Neumann, and Robin’s. 
For Dirichlet boundary conditions (or conditions of the first 
kind) the field variable is specified at the boundary. Two 
examples follow: In a conduction problem, the temperature 
at a surface might be fixed (at y = 0, T = T0); alternatively, 
in a viscous fluid-flow problem, the velocity at a stationary 
duct wall would be zero (for a Newtonian fluid). A condition 
of the first kind can also be written as a function of time, at 
y = 0, T = f(t).

For Neumann conditions (or boundary conditions of the 
second kind), the flux is specified; for example, for a con-
duction problem with an insulated wall located at y =  0, 
(∂T/∂y)y=0 = 0. Of course, this gradient could also be written 
as a function of time.

A Robin’s-type boundary condition (or condition of the 
third kind) results from equating the fluxes; for example, 
consider the solid–fluid interface in a heat transfer problem. 
On the solid side, heat is transferred by conduction (Fouri-
er’s law), but on the fluid side of the interface, we might 
have mixed heat transfer processes approximately described 
by Newton’s “law” of cooling:

	 −
∂
∂






 = −
=

k
T

y
h T T

y

f

0

0( ). 	 (7.5)

We hasten to add that the heat transfer coefficient, h, that 
appears in eq. (7.5) is an empirical quantity. The numerical 
value of h is known only for a small number of cases, usually 
those in which molecular transport is dominant. Thus, the 
use of a Robin’s-type boundary condition usually means that 
an additional unknown has been brought into the problem. 
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Consider a function, f(x), defined over an interval, −L < 
x < +L. The Fourier series corresponding to this function 
is, by definition,

	 f x
A

A
n x

L
B

n x

L
n

n

n( ) cos sin .= + +
=

∞

∑0

1
2

π π
	 (7.13)

One concern that students new to Fourier series typically 
have is exactly how this expression will prove to be of value. 
After all, if this equation is to be used to reconstruct the 
function, f(x), then we might need to know a very large 
number of Ans and Bns. The effort required appears 
formidable—until we think about orthogonality of the func-
tions sine and cosine. Specifically, consider that

	 sin nxdx
−
∫ =

π

π

0 	 (7.14)

	 sin cosnx mxdx
−
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0 	 (7.15)
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	 f x x x( ) / ,= + − ≤ ≤−
4

4 2
π

π πfor 	 (7.10)

	 f x x x( ) / / ,=− − ≤ ≤+
4

2 2
π

π πfor 	 (7.11)

and

	 f x x x( ) / .= − + ≤ ≤+
4

4 2
π

π πfor 	 (7.12)

The function’s behavior (a triangular wave) is illustrated 
in Figure 7.1.

We would like to know if this function can be represented 
in the manner suggested by Fourier, and if so, how do the 
coefficients actually behave? Figure 7.2 shows the approxi-
mations for f(x) using 3, 5, 10, 20, and 90 terms in the series. 
Though minor discrepancies are apparent, the results are 
similar to the function illustrated in Figure 7.1.

If this is your first exposure to Fourier series and their 
application to boundary-value problems, then Spiegel’s 
(1974) book can be an extremely useful tool and learning 
guide. The basic idea with Fourier series is that we use 
superposition to construct a representation of a periodic 
function using combinations of the oscillating functions, 
sine and cosine. Since many boundary-value problems 
require us to expand a function into trigonometric series, we 
can expect Fourier series to prove extremely useful. If you 
are skeptical about using sine and cosine in this way, you 
are in good company. Korner (1989) notes that both Laplace 
and Lagrange initially had doubts about Fourier’s develop-
ment; part of their concern was a consequence of Fourier’s 
lack of rigor.

FIGURE 7.1.  A triangular wave on the interval (−π ≤ x ≤ +π).
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FIGURE 7.2.  Representation of the triangular wave with Fouri-
er’s series technique. Many of the essential characteristics of f(x) 
are reproduced reasonably well with just three terms in the series.
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The necessary coefficients are determined directly from 
the integral(s):
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  (7.24)

We will compute the Bns and then see how well the series 
represents f(x) using 2, 5, 10, 20, and 40 terms successively 
The first seven Bns are 7.2951, −2.6408 × 10−5, −0.8106, 
2.3685 × 10−15, 0.2918, −8.8027 × 10−6, and −0.1489, and 
we see from the numerical computation that the even terms 
are actually zero.

As you can see from Figure 7.3, the approximation 
obtained with n = 40 is very good, with f(x = 3) only 1% 
below the correct value (8.9088 as opposed to f(3) = 9.0).

A Preview of the Utility of Fourier Series

We want to explore a problem that will make it very clear 
why Fourier’s work is so useful to us in our efforts to solve 
PDEs and we will preface this example with an observation 
made by Lord Kelvin: “Fourier’s theorem is not only one of 
the most beautiful results of modern analysis, but it is said 
to furnish an indispensable instrument in the treatment of 
nearly every recondite question in modern physics.” Let us 
see why Kelvin was so enthusiastic.

These relationships suggest the following approach:  
Multiply the expression for f(x) by sin(mx) dx and integrate 
from −π to +π, so that

	

f x mxdx
A

mxdx

A nx B nx mxdxn n
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π

π

π

π

π

0

2
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		  (7.18)

It follows immediately that for a function f(x) of period 2π,

	 B f x nxdxn =
−
∫

1

π
π

π

( )sin . 	 (7.19)

More generally, for a function f(x) defined over the 
interval, −L < x < +L, we have

	 B
L

f x
n x

L
dxn

L

L

=
−

+

∫
1

( )sin .
π

	 (7.20)

Of course, the Ans can be determined analogously.
In many of the problems of interest to us, the series solu-

tions we obtain may only involve either sine or cosine terms. 
We refer to such cases as half-range Fourier sine (or cosine) 
series, and often our attention in such problems is focused 
on just half of the interval, that is, from x = 0 to x = +L. 
In case of the half-range series,

	 Cosine: ( )cosA
L

f x
n x

L
dxn

L

= ∫
2

0

π
	 (7.21)

and

	 Sine: ( )sin .B
L

f x
n x

L
dxn

L

= ∫
2

0

π
	 (7.22)

An obvious question of concern to us is whether an arbi-
trary function that is piecewise continuous over some inter-
val 0 to L can be represented successfully in this way (by 
“successfully,” we mean that we can obtain sufficient accu-
racy using a reasonable number of terms). Recall that in 
Figure 7.2, we saw that a triangular waveform could be very 
easily represented with just a few Fourier series terms. Now 
let us consider a function formed by two straight lines, rep-
resented by f(x)  =  3x from x  =  0 to x  =  3, and then 
f(x) = 18 − 3x from x = 3 to x = 6. Since this function is 
defined only from x = 0 to x = L, and since the form requires 
an odd function representation,

FIGURE 7.3.  Reconstruction of a triangular function using 2, 5, 
10, 20, and 40 terms in the Fourier sine series. Please note that both 
axes have been abridged to better show the differences between the 
results.
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n An

1 −8.08812
3 −4.07208
5 −2.50927
7 −1.80530
9 −1.40824

11 −1.15388
13 −0.97716
15 −0.84729
17 −0.74784
19 −0.66925
21 −0.60559
23 −0.55296
25 −0.50874
27 −0.47106
29 −0.43856

We see immediately that these coefficients are diminish-
ing rather slowly—which is not a good sign for convergence 
of the infinite series. Since we have all of the pieces in place, 
we will compute the initial temperature distribution using 
increasing values of n (we start with n = 50 and go up to 
n = 700).

This example, illustrated in Figure 7.4, has taught us an 
important lesson: Convergence of the Fourier series to the 
initial temperature distribution is abysmally slow—we 
needed hundreds of terms to get a good approximation. 
However, we must remember that, for modestly larger times, 
the exponential damping in the infinite series will greatly 
improve convergence; so much so that for intermediate ts 
we might only need one or two terms to get satisfactory 

We will assume that we have a slab of homoge
neous material that extends in the x-direction such that 
0 ≤ x ≤ 3. This slab has an initial temperature distribution 
given by

	 T f x x x= = −( ) ,6 2 2 	 (7.25)

which yields a temperature of zero (°C) at both ends  
and 4.5° at the center (x = 1.5). At t = 0, the tempera
ture at both ends is instantaneously raised to 10°C. The 
evolution of temperature in the slab is governed by a para-
bolic PDE,

	
∂
∂
=
∂
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T

t

T

x
α

2

2
, 	 (7.26)

which we will modify by defining a new dependent variable, 
θ = T − 10. Of course, this means that θ will be zero at both 
ends, which proves to be very convenient. α that appears in 
eq. (7.26) is the thermal diffusivity, α = k/pCp. A solution 
for this problem has the form

	 θ αλ λ λ= − +[ ]C t A x B x1
2exp( ) sin cos . 	 (7.27)

It is easy to show that, to satisfy the boundary conditions, 
we must have B = 0 and λn = nπ/3. Consequently, the solu-
tion we seek has the form
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	 (7.28)

Our initial condition (t = 0) corresponds to
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	 (7.29)

Of course, this is a Fourier sine series and we know that the 
unknown coefficients are determined by integration:

	 A x x
n x

dxn = − −∫
2

3
6 2 10
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2

0

3

( )sin .
π

	 (7.30)

Notice that the solution that we developed, eq. (7.28), 
has a lot of exponential damping when t becomes large. 
This means that for very small times, we should anticipate 
that the infinite series may converge very slowly! To 
further explore this “worst-case” scenario, we will find  
a few Ans by integration (for even ns, the coefficients 
are zero).

FIGURE 7.4.  Computation of the initial temperature distribution 
in the slab using 50, 100, 200, and 700 terms. Both axes have been 
truncated to better reveal the behavior of the Fourier series (which 
is especially bad near the ends of the slab for small n).
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the constant can be removed through a change in the depen-
dent variable. We should also note that it is not necessary 
that an equation have constant coefficients. Consider the 
wave (hyperbolic) equation:

	
∂
∂
−

∂
∂
=

2

2
2

2

2
0

φ φ
t

s x
x

( ) . 	 (7.32)

We propose φ =  f(t)g(x), which results in f″g = s2fg″, and 
then f″/f = s2(g″/g)=−λ2.

So the two ODEs are simply

	 ′′+ = ′′+ =f f s x g gλ λ2 2 20 0and ( ) . 	 (7.33)

For the problem types discussed earlier, the boundary 
conditions must correspond to constant values of x and y. 
Thus, φ(x = 0) = φ0 or φ(y = B) = φB would be satisfactory, 
but φ = φ0 for y/x = 2 would not. Also, boundary conditions 
applied at, say, x = B, cannot include any partial derivatives 
involving y. Similarly, a boundary condition written for 
y = A cannot include partial derivatives with respect to x.

The preceding discussion may make it seem as though 
the applicability of the product method is severely limited, 
and it is certainly true that there are many PDEs of interest 
to us that cannot be solved with this technique. However, we 
should not be too hasty to discount separation. There are 
many important problems in applied mathematics that can 
be solved in this manner, and we will find examples in fluid 
flow, heat transfer, diffusion, and wave phenomena, among 
others. Moreover, we have more than two centuries of work 
in this branch of mathematics to draw on, so usefully com-
plete examples abound.

Before we begin to examine applications of this tech-
nique, a final word of caution: The solutions we are about 
to construct (and use) give the impression of being exact. As 
Weinberger (1965) notes, we truncate these infinite series 
solutions as a practical matter. This means that only a finite 
number of terms will be used to construct a Fourier series, 
for example, and therefore we will be generating an approxi-
mation to the solution. In many cases, it will be a very close 
approximation, but keep in mind that our results will not be 
exactly correct.

Parabolic Equations

The parabolic PDEs that we are most likely to see will 
involve transient molecular transport (by viscous friction, 
conduction, or diffusion) in one or more spatial directions. 
The general procedure we will employ will be similar in 
every case: We perform the separation, solve the resulting 
ODEs, use the boundary conditions to simplify the result 
and identify the constant of separation, and finally, use the 
initial condition (with Fourier theorem or orthogonality) to 
identify the proper values for the leading coefficient in the 

results. We will illustrate this behavior by using the solution 
(eq. 7.28) to calculate the temperature at the center (x = 1.5) 
for times ranging from 1/32 (0.03125) to 10. Recall that the 
initial temperature at x = 1.5 was 4.5 as given by eq. (7.25). 
We will arbitrarily choose a thermal diffusivity that corre-
sponds to a material such as lead, α = 1/5.

Time (s)
Temperature for 

x = 1.5
Number of Terms 
Required in Series

1/32 4.475 19
1/16 4.450 15
1/8 4.400 12
1/4 4.300 10
1/2 4.116 7
1 4.060 5
2 4.862 4
4 6.638 2
6 7.831 2
8 8.601 2

10 9.098 1

Note that the temperature in the center of the slab 
decreases at first; this is a consequence of the shape of the 
initial temperature distribution and the fact that thermal 
energy is transferred downhill, in the direction of decreasing 
temperature. These results show that by the time we get to 
t = 4 seconds, we only need two terms in the series to get 
an acceptable value for T.

THE PRODUCT METHOD 
(SEPARATION OF VARIABLES)

The product method is a technique by which certain PDEs 
can be solved analytically. As the name implies, the method 
is based on equating the dependent variable to a product of 
functions of the independent variables. If the separation is 
successful, the result will be ordinary differential equations 
(ODEs) for which familiar methods of solution may be 
employed. There are, however, important restrictions on the 
applicability of this technique with respect to the form of 
the differential equation, the shape of the boundary, and the 
nature of the boundary conditions.

It is obvious that the PDE itself must be separable; that 
is, it must be linear and it must not have any cross deriva-
tives. For example, the equation

	 A
x

B
x y

∂
∂





 +

∂
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+
φ φ2 2

� 	 (7.31)

would violate both of these restrictions. Furthermore, the 
equation must be homogeneous, or of a form that can be 
rendered homogeneous through suitable transformation. 
Thus, a Poisson-type PDE might be handled successfully if 
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a half-range Fourier sine series. By definition,

	 A
L

f y
n y

L
dyn

L

= ∫
2

0

( )sin ,
π

	 (7.38)

but for our case, L = 1, and the function, f(y), is also 1. The 
preceding integral is zero for even n and equal to 4/(nπ) for 
n = 1, 3, 5, . . . . With this example, we have a good oppor-
tunity to examine the convergence of the infinite series solu-
tion. Let y =  1/2, α =  0.1, and let t range from 0.001 to 
0.625 by repeated factors of 5. We shall examine the series 
for ns from 1 to 43 (see Table 7.1). Note that for small ts, 
the series does not converge quickly. However, for t = 0.125, 
we need only five terms, and at t = 0.625, only three. The 
results should not be surprising. For very small ts, the tem-
perature profile is virtually half a cycle of a square wave.

Now suppose we have a Neumann condition at one 
boundary; in particular, let us assume we have an insulated 
boundary located at y = L, such that (∂T/∂y)y=L =  0. The 
reader may wish to show, using eq. (7.36) as our starting 
point, that cos λnL = 0. Therefore, λn = π/2L, 3π/2L, 5π/2L, 
and so on. Once again, we have discovered a Fourier series 
problem since the separation constants are integer multiples 
of pi (π).

We also want to address the issues that arise when one 
of the boundary conditions for our slab of material is of  
the Robin’s type (the third kind). All of the initial steps in 
the problem are the same as in the previous case, but we 
make one adjustment by defining a new dependent variable, 

infinite series. The process is straightforward and usually 
quite transparent. There are, however, a few subtle issues 
that can complicate our analysis. We will try to illustrate 
some of these in the examples that follow.

Let us begin by examining transient conduction in a finite 
slab of material, for which ∂T/∂t  =  α(∂2T/∂y2); let this 
object extend from y =  0 to y =  1. We can have either a 
uniform initial temperature or a temperature distribution that 
can be written as a function of y. At t = 0, both faces are 
instantaneously heated to some new temperature, Ts. Define 
a dimensionless temperature, θ=(T−Ts)/(Ti−Ts), and let 
θ = f(y)g(t). The product method yields

	 ′ =− ′′+ =g g f fαλ λ2 2 0and . 	 (7.34)

As expected, we get

g C t f A y B y= − = +1
2exp( ) sin cos .αλ λ λand   (7.35)

Since B must be zero, and sin(λ) =  0, we very quickly 
find

θ αλ λ λ π= − =
=

∞

∑ A t y nn n n

n

nexp( )sin , .2

1

where   (7.36)

If we have a uniform initial temperature, Ti, then applica-
tion of the initial condition results in

	 1
1

=
=

∞

∑ A yn n

n

sin ,λ 	 (7.37)

TABLE 7.1.  Illustration of Infinite Series Convergence for Small ts

Term No. t = 0.001 t = 0.005 t = 0.025 t = 0.125 t = 0.625

1 1.271981 1.266969 1.242205 1.12546 0.6870893
3 0.851322 0.8609938 0.9023096 0.9856378 0.6854422
5 1.099763 1.086086 1.039727 0.9972914 0.6854423
7 0.926459 0.9432634 0.9854355 0.9968604 0.6854423
9 1.05706 1.038121 1.004608 0.9968669 0.6854423

11 0.954341 0.9744126 0.9987616 0.9968669 0.6854423
13 1.037236 1.01695 1.000275 0.9968669 0.6854423
15 0.969256 0.9889856 0.9999457 0.9968669 0.6854423
17 1.025566 1.006978 1.000006 0.9968669 0.6854423
19 0.97864 0.9956936 0.9999966 0.9968669 0.6854423
21 1.017874 1.002573 0.9999977 0.9968669 0.6854423
23 0.985031 0.9985044 0.9999976 0.9968669 0.6854423
25 1.012515 1.000835 0.9999976 0.9968669 0.6854423
27 0.98955 0.9995433 0.9999976 0.9968669 0.6854423
29 1.008694 1.000235 0.9999976 0.9968669 0.6854423
31 0.992785 0.9998772 0.9999976 0.9968669 0.6854423
33 1.005956 1.000056 0.9999976 0.9968669 0.6854423
35 0.995097 0.9999698 0.9999976 0.9968669 0.6854423
37 1.004008 1.00001 0.9999976 0.9968669 0.6854423
39 0.996732 0.9999919 0.9999976 0.9968669 0.6854423
41 1.002642 0.9999996 0.9999976 0.9968669 0.6854423
43 0.997868 0.9999964 0.9999976 0.9968669 0.6854423
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0.2 0.4 0.6 0.8 1.0 2.0

1.6887 1.7906 1.8798 1.9586 2.0288 2.2889
4.7544 4.7956 4.8358 4.8750 4.9132 5.0870
7.8794 7.9045 7.9295 7.9542 7.9787 8.0962

11.0137 11.0318 11.0498 11.0677 11.0855 11.1727
14.1513 14.1654 14.1795 14.1935 14.2074 14.2764
17.2903 17.3019 17.3134 17.3249 17.3364 17.3932
20.4301 20.4399 20.4497 20.4594 20.4692 20.5175
23.5704 23.5789 23.5874 23.5958 23.6043 23.6463

4 6 8 10 20 40

2.5704 2.7165 2.8044 2.8628 2.9930 3.0651
5.3540 5.5378 5.6669 5.7606 5.9921 6.1311
8.3029 8.4703 8.6031 8.7083 9.0018 9.1987

11.3348 11.4773 11.5993 11.7027 12.0250 12.2688
14.4080 14.5288 14.6374 14.7335 15.0625 15.3417
17.5034 17.6072 17.7032 17.7908 18.1136 18.4180
20.6120 20.7024 20.7877 20.8672 21.1772 21.4980
23.7289 23.8088 23.8851 23.9574 24.2516 24.5817

Now, suppose for our example hL/k = 1/2, the first eight 
values for the product λL are

1.8366, 4.8158, 7.9171, 11.0409, 14.1724,  
17.3076, 20.4448, and 23.5831.

Notice the spacing between the consecutive pairs: 2.9792, 
3.1013, 3.1238, 3.1315, and so on. It is now clear that values 
of the constant of separation, λ, are not integer multiples of 
pi, and this means that this case is not a Fourier series 
problem. So, although our solution has the form

	 θ αλ λ= −
=

∞

∑ A t yn n n

n

exp( )sin ,2

1

	 (7.43)

the coefficients (Ans) must be determined using orthogonal-
ity as we will now demonstrate. At t = 0, θ = θ0, so

	 θ λ0

1

=
=

∞

∑ A yn n

n

sin . 	 (7.44)

We multiply both sides of the equation by sin λmydy and 
integrate from y = 0 to y = L, making use of the fact that

	 sin sin .λ λn m

L

y ydy n m
0

0∫ = =unless 	 (7.45)

Therefore, the needed coefficients are obtained from the 
quotient of integrals:

	 A

ydy

ydy

L

L
L

n

n

L

n

L
n

n

n
n

= =
− −

−

∫

∫

θ λ

λ

θ
λ

λ

λ
λ

0

0

2

0

0 1

2
1

4
2

sin

sin

(cos )

sin
.. 	 (7.46)

θ = T − T∞, where T∞ is the temperature of the surroundings 
at a large distance. The situation we are describing would 
correspond to the case where one end of the slab (at y = L) 
loses heat to the surroundings, and we assume that this 
process can be described by Newton’s law of cooling. Since 
the first part of this problem is common to what we saw 
previously, we can start with

	 θ αλ λ= −A t yexp( )sin .2 	 (7.39)

But this time, at the end of the slab, where y =  L, we 
equate the fluxes:

	 −
∂
∂

= −
=

= ∞k
y

h T T
y L

y L
θ

( ). 	 (7.40)

Consequently, we find

− − = −kA t L hA t Lλ αλ λ αλ λexp( )cos exp( )sin ,2 2   (7.41)

and this is equivalent to

− =
k

hL
L Lλ λtan ,

which we write as

	 λ λL L
hL

k
cot .+ = 0 	 (7.42)

This transcendental equation arises frequently in applied 
mathematics, and you may recognize the dimensionless 
grouping, hL/k, as the Biot number (or modulus). We can 
find a few roots for this equation in Carslaw and Jaeger 
(1959) and a table of values (with eight roots) is provided 
here for convenience. Equation (7.42) has been rewritten as 
x cot(x) + C = 0, and the negative values of C come about 
for a sphere that loses heat to the surroundings through a 
Robin’s-type boundary condition.

C = −1 −0.8 −0.6 −0.4 −0.2 0

0.0000 0.7593 1.0528 1.2644 1.4320 1.5708
4.4934 4.5379 4.5822 4.6261 4.6696 4.7124
7.7253 7.7511 7.7770 7.8028 7.8284 7.8540

10.9041 10.9225 10.9408 10.9591 10.9774 10.9956
14.0662 14.0804 14.0946 14.1088 14.1230 14.1372
17.2208 17.2324 17.2440 17.2556 17.2672 17.2788
20.3713 20.3811 20.3909 20.4007 20.4106 20.4204
23.5195 23.5280 23.5365 23.5450 23.5535 23.5619
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	 θ λ0 0

1

=
=

∞

∑ A J rn n

n

( ), 	 (7.53)

and multiply both sides by rJ0(λmr)dr, then integrate from 
r = 0 to R. Please note the inclusion of the weighting func-
tion, r. Consequently,

	 A

rJ r dr

rJ r dr

n

n

R

n

R
=
∫

∫

θ λ

λ

0 0

0

0
2

0

( )

( )

. 	 (7.54)

The integral in the denominator is known to be (R2/2)J1
2(λnR), 

so therefore,

	 A
R J R

rJ r drn
n

n

R

= ∫
2 0

2
1
2 0

0

θ
λ

λ
( )

( ) . 	 (7.55)

Completing the problem, we find

	 θ
θ

αλ
λ

λ λ
= −

=

∞

∑2 0 2 0

11
R

t
J r

J R
n

n

n nn

exp( )
( )

( )
. 	 (7.56)

We should look at a specific example to better under-
stand how well this will work for us. Suppose we have a 
long acrylonitrile butadiene styrene (ABS) plastic rod 
exactly 2  cm in diameter. The thermal diffusivity (α) 
for ABS is about 0.00108  cm2/s, and we will assume our 
interest is for r =  1/2  cm and t =  50 seconds (we have 
purposefully selected a time that is neither short nor long). 
We obtain

θ
θ0

2
0 39267 0 017297 0 002659= + −

R
[ . . . ],�

and since R = 1, this corresponds to θ/θ0 ≅ 0.79. The reader 
should also be aware that the solution of this infinitely long 
cylinder problem is so important in practical situations that 
it has been presented graphically throughout the literature of 
heat and mass transfer, including Carslaw and Jaeger (1959) 
and Glasgow (2010). A similar graph is reproduced here as 
Figure 7.5, and this graph indicates that θ/θ0 ≅ 0.81 for the 
ABS rod example.

A related problem, but one that is a bit more difficult, 
arises when a boundary condition of the third kind must be 
used at the cylinder surface where r = R. Although the dis-
cussion that follows concerns heat transfer to a cylinder, 
keep in mind that the analysis is the same for the equivalent 
mass transfer problem. Suppose we have heat transfer from 

It is important that we be able to deal with analogous 
problems for “infinite” (L >> d) cylinders too. Suppose we 
begin with a cylinder that has some initial temperature (or 
initial temperature distribution). At t =  0, the surface at 
r = R is instantly cooled or heated; we wish to determine 
how the temperature of the medium for 0 < r < R responds 
to this change. For this case, the governing PDE is

	
∂
∂
=
∂
∂
+
∂
∂













T

t

T

r r

T

r
α

2

2

1
. 	 (7.47)

This fits the criteria that we had established for separa-
tion, so we propose T = f(r)g(t); this results in

	
′
=
′′+ ′

=−
g

g

f
r

f

fα
λ

1
2. 	 (7.48)

The two ODEs (the second one is a form of Bessel’s dif-
ferential equation) with their solutions are shown here:

	 ′ =− ′′+ ′+ =g g f
r

f fαλ λ2 21
0and , 	 (7.49)

resulting in

g C t f AJ r BY r= − = +1
2

0 0exp( ) ( ) ( ).αλ λ λand   (7.50)

For all problems of this type that involve a solid cylindri-
cal medium that extends from r = 0 to r = R, we can imme-
diately simplify (since T must be finite at the center and 
since Y0(0) = −∞ as we saw in Chapter 5, B = 0):

	 T A t J r= −exp( ) ( ).αλ λ2
0 	 (7.51)

As noted previously, we assume that the surface tempera-
ture is changed instantaneously to a new value, Ts. Further-
more, we define a new dependent variable, θ =  T −  Ts, 
which means that θ(r = R, t) = 0. This will be satisfied as 
long as J0(λR) = 0; this equation has an infinite number of 
roots and the first few λRs are 2.40483, 5.52008, 8.65373, 
11.79153, 14.93092, and so on. Therefore,

	 θ αλ λ= −
=

∞

∑ A t J rn n n

n

exp( ) ( ).2
0

1

	 (7.52)

We are ready to apply the initial condition for the interior 
of the cylinder; typically, that would be T(r, t = 0) = con-
stant, or T(r, t = 0) = f(r). We start with the constant case 
and utilize orthogonality (readers unfamiliar with this 
process for Bessel functions may find section 7.5 of Carslaw 
and Jaeger, or chapter 10 in Spiegel, 1971, to be quite 
helpful): We begin with the initial condition
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Biot, hR/k λ1R λ2R λ3R λ4R λ5R

0.01 0.1412 3.8343 7.0170 10.1745 13.3244
0.02 0.1995 3.8369 7.0184 10.1754 13.3252
0.05 0.3401 3.8443 7.0225 10.1784 13.3274
0.1 0.4417 3.8577 7.0298 10.1833 13.3312
0.2 0.6170 3.8835 7.0440 10.1931 13.3387
0.5 0.9408 3.9594 7.0864 10.2225 13.3611
1 1.2558 4.0795 7.1558 10.2710 13.3984
2 1.5994 4.2910 7.2884 10.3658 13.4719
5 1.9898 4.7131 7.6177 10.6223 13.6786

10 2.1795 5.0332 7.9569 10.9363 13.9580
20 2.2880 5.2568 8.2534 11.2677 14.2983

100 2.3809 5.4652 8.5678 11.6747 14.7834

Of course, we now know that the solution for the modi-
fied problem must be written as

	 θ αλ λ= −
=

∞

∑ A t J rn n n

n

exp( ) ( ),2
0

1

	 (7.60)

and the coefficients (Ans) are determined by orthogonality 
as before, with one important difference: The values for the 
separation constant come from the transcendental eq. (7.59) 
rather than from the zeros of J0, so the required integrations 
produce a different result. Again, this is described clearly in 
chapter 7 in Carslaw and Jaeger (1959) and also in chapter 
10 in Spiegel; the consequence for this case is

	 A
RJ R

h R

k
R J R

n
n n

n n

=
+









2 1
2 2

2
2 2

0
2

λ λ

λ λ

( )

( )
. 	 (7.61)

Let us take k =  0.09, R =  1.27, and h =  0.0496 (all 
centimeter-gram-second units), such that hR/k = 0.7. Then, 
using eq. (7.59), we find λ1 =  0.8561, and by eq. (7.61), 
A1 = 1.1522 and A2 = −0.21197.

To this point, we have said nothing about parabolic equa-
tions arising in spherical geometries. Let us now consider 
transient conduction in a spherical entity; thermal energy is 
transferred only in the r-direction:

	 ρC
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r r
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r
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2 . 	 (7.62)

We rewrite the equation as
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∂
∂
+
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, 	 (7.63)

and let T = θ/r. This variable change results in the familiar 
“slab” equation,

	
∂
∂
=
∂
∂

θ
α

θ
t r

2

2
, 	 (7.64)

the fluid phase to a long, solid cylinder with relatively large 
conductivity. Because k (or α) is large, much of the thermal 
energy that arrives at the interface will be conducted readily 
into the interior of the cylinder. Consequently, the surface 
temperature will not acquire the fluid temperature instanta-
neously. It is appropriate to think of this behavior in terms 
of the relative resistances: A small Biot number indicates 
that the bulk of the resistance to heat transfer lies in the fluid 
phase. The initial steps for this problem are the same as 
before, so

	 T A t J r= −exp( ) ( ).αλ λ2
0 	 (7.57)

However, at r = R, a Robin’s-type boundary condition must 
be used:

	 −
∂
∂

= −( )
=

= ∞k
T

r
h T T

r R
r R

. 	 (7.58)

It is convenient to define θ =  T −  T∞, so that when we 
introduce eq. (7.57) into eq. (7.58),

	 λ λ λRJ R
hR

k
J R1 0 0( ) ( ) .− = 	 (7.59)

Naturally, the roots of this transcendental equation depend 
on the value of the Biot number. In a typical application  
of the kind we are discussing, hR/k might be about 0.7 
for which the λnRs are 1.0873, 4.0085, 7.1143, 10.2419, 
13.3761, 16.5131, and so on. The roots for this transcenden-
tal eq. (7.59) are needed frequently in applied mathematics, 
so it may be useful to provide an abbreviated table here:

FIGURE 7.5.  Solution for heat transfer to a long, solid cylinder 
when the surface acquires a new temperature instantaneously. Note 
that the centerline temperature attains 50% of the total change 
when αt/R2 = 0.2.
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We also need to point out that Fourier series solutions can 
be extended to parabolic problems with multiple spatial vari-
ables. Suppose we have a slab of material that extends from 
x = 0 to x = L and from y = 0 to y = H that has some initial 
distribution of temperature in the interior, T(x, y). At t = 0, 
all four edges are instantaneously changed to a new tempera-
ture which we take to be zero for convenience. The govern-
ing equation is
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2
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2
, 	 (7.66)

and we let T = f(x)g(y)h(t). After dividing by α fgh, we find

	
′
=
′′
+
′′
=−

h

h

f

f

g

gα
λ2. 	 (7.67)

Of course, we immediately see that h  =  C1exp(−αλ2t), 
and that

	
′′
=− −

′′f

f

g

g
λ2 , 	 (7.68)

which gives us a function of x on the left and a function of 
y on the right. We use the familiar argument and conclude 
that both sides must be equal to a constant:

	
′′
=− −

′′
=−

f

f

g

g
λ η2 2. 	 (7.69)

for which we know

	 θ αλ λ λ= − +C t A r B r1
2exp( )[ sin cos ]. 	 (7.65a)

Naturally, we need only to divide by r to return to T(r, t). 
This means that a great many problems of this type in spheri-
cal coordinates can be solved by simply adapting appropri-
ate results from solutions worked out for slab problems.

We will illustrate a typical solution procedure for spheres 
with a detailed example: A solid sphere of radius 3 has a 
uniform initial temperature of 30°. At t = 0, the surface of 
the sphere is instantaneously heated to 80°. Of course, we 
already know that T = (C1/r)exp(−αλ2t)[Asin λr + Bcos λr]. 
Since T must be finite at the center, we require B = 0. If we 
now define a dimensionless temperature, θ =  (T −  80)/
(30 − 80), then θ = 0 for r = R, and

	 θ αλ λ= −( )
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∞

∑ A

r
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n n

n

exp sin .2

1

	 (7.65b)

The constants of separation are integer multiples of pi 
(π), λn =  nπ/R, and we use the initial condition to find 
1 1=∑ ( )=

∞
n n nA r rsinλ . This is a Fourier series problem, so 

we can determine the leading coefficients by
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We note that cos(nπ) will be −1 for odd n and +1 for 
even n. A complete solution is now at hand, and we will 
replace R with its value, 3:
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  (7.65c)

We will set α = 0.005, r = 1.5, vary t from 1 to 1000, 
and use 50 terms in the series:

t 1 10 100 400 1000

T(r/R = 0.5) 29.99999 30.00021 43.36091 72.89833 79.7354

Because this is such an important practical problem, the 
solution is often presented graphically in the form shown in 
Figure 7.6. Please observe that the dimensionless tempera-
ture used in the figure is different from the definition we 
used for eq. (7.65b); it is convenient to have θ →  0 as t 
becomes large in the analytic solution.

We can use this graphical presentation to confirm our 
analytic results. For t = 400, we find αt/R2 = 0.222, which 
means that (T − 30)/80 − 30 ≅ 0.855, yielding a tempera-
ture of 72.7° (very close to the result we obtained in the table 
above using the infinite series solution).

FIGURE 7.6.  Solution for a sphere, initially at a uniform tempera-
ture, Ti. At t = 0, the temperature at the surface of the sphere is 
instantaneously elevated to Tb. We have selected r/R = 0.5 for our 
example, which corresponds to the vertical line in the middle of 
the figure.
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A few of the computed coefficients are provided as 
follows to allow the student to further explore this 
situation:

Accordingly, we find

	
f A x B x

g C y D y

= +

= − + −

sin cos

sin cos .

η η

λ η λ η

and

2 2 22
	 (7.70)

We arrange the dependent variable, T, such that T = 0 for 
both x = 0 and y = 0; therefore, B = D = 0 leaving us with

	 T A t x y= − −exp( )sin sin .αλ η λ η2 2 2 	 (7.71)

When x =  L, T =  0, so sin(ηL) =  0, resulting in η = 

mπ/L. Similarly, when y = H, T = 0, so sin λ η2 2 0− =H , 

requiring that λ η π2 2− = n H . The solution for our 
problem can be written as

T A t x ymn

nm

= − −
=

∞

=

∞

∑∑ exp( )sin( )sin ,αλ η λ η2 2 2

11

  (7.72)

with λ and η determined as shown previously. Now we will 
assume that the slab has an initial distribution of tempera-
ture, T(x, y, t = 0) = T0xy (with T0 = 100), and let L = H = 1. 
This means that the maximum initial temperature is in the 
upper right-hand corner, and for small ts, we should see 
something similar to the contours shown in Figure 7.7.

The coefficients for our double Fourier series are deter-
mined from

	 A xy m x n ydxdymn = ∫∫400
0

1

0

1

sin sin .π π 	 (7.73)

FIGURE 7.7.  Typical temperature distribution in a slab at t = 0.10 
given an initial distribution of T(x, y, t = 0) = 100xy; at t = 0, all 
four edges are reduced to T = 0.
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(m, n) = 
(1, 1) 40.5283 (1, 2) −20.268 (1, 3) 13.5125

(2, 2) 10.1321 (2, 3) −6.7571 (2, 4) 5.0673
(3, 3) 4.5031 (3, 4) −3.3780

(4, 4) 2.5330 (4, 5) −2.0268
(5, 5) 1.6211 (5, 6) −1.3513

(6, 6) 1.1258

We want to offer a final word regarding the solution of 
parabolic PDEs: You may recall that, at the beginning of  
this chapter, we mentioned the possibility of time-varying 
boundary conditions. For example, we can envision a heat 
(or mass) transfer problem in which a surface condition (or 
flux) changes with time; as an illustration, we might think 
about the diurnal variation of solar radiation on an outside 
surface. Another possibility is that the concentration of 
solute in a solvent might increase from zero and approach 
some maximum value (maybe its solubility) asymptotically. 
Such problems, when posed correctly, can be solved with 
Duhamel’s theorem; the solution is constructed from the 
fundamental solution obtained for constant surface condi-
tions. An illustration for the interested reader will be pro-
vided (along with a numerical analysis) in the next chapter; 
a very useful discussion also appears in Carslaw and Jaeger 
(1959) in section 1.14.

Elliptic Equations

Elliptic (or often, potential) equations apply to equilibrium 
phenomena. Familiar situations include steady-state conduc-
tion (of thermal energy) in a slab and viscous flow in a 
duct—these are examples of the Laplace and Poisson equa-
tions, respectively. We should keep in mind, however, that 
there are many other applications for potential equations 
including gravitation, electrostatics, and ideal (inviscid) 
fluid flow. Let us illustrate some of the issues we will 
encounter while using molecular conduction as our example 
phenomenon.

We have a two-dimensional slab of material with three 
sides maintained at some fixed temperature and the upper 
(top) surface maintained at a different (elevated) temperature 
(this is exactly the same problem as slow viscous flow in a 
rectangular duct in which motion is driven by an upper 
surface sliding in the z-, or axial, direction). Since the depen-
dent variable (T) is specified everywhere on the boundary, 
this is an example of a Dirichlet problem. We will place the 
origin at the lower left-hand corner. The slab extends from 
x = 0 to x = L and from y = 0 to y = H. The governing 
equation in this case is

	
∂
∂
+
∂
∂
=

2

2

2

2
0

T

x

T

y
. 	 (7.74)
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Now, let us consider how the solution will be impacted 
if the right-hand boundary has a Neumann boundary condi-
tion; for example, it may be insulated such that (∂T/∂x)x=L = 0. 
The preliminary steps are exactly the same, up to the  
point where

	 T A x y= sin sinh .λ λ 	 (7.83)

The Neumann condition for the right-hand boundary will 
require that

	 0= A L yλ λ λcos sinh , 	 (7.84)

and therefore, λ =π/2L, 3π/2L, 5π/2L, and so on. Applying 
the condition at the top of the slab leads to a Fourier sine 
series just as before; the Ans are determined by definition 
and the integration results in

T

n x

L

n y

L

n
n H

L
n

=

+ +

+
+

=

400
1 2

2
1 2

2

1 2
1 2

2
0 1

π

π π

π

sin
( )

sinh
( )

( )sinh
( )

, ,, , ,

.
2 3 …

∞

∑   (7.85)

Of course, in this case, we have blocked heat transfer 
through the right-hand side, so we can expect the tempera-
ture contours to be perpendicular to that edge; this is illus-
trated in Figure 7.9.

In our previous examples of solutions for the Laplace 
equation for steady conduction in a two-dimensional slab, 
we placed the origin at the lower left-hand corner. However, 
there can be definite advantages to placing it at the center; 
for example, in cases with symmetry, the solution can be 
built from even functions. And it could also facilitate adapt-
ing a solution to a problem in a spherical geometry. Consider 
a slab extending from x = −L to x = +L, and from y = −H 

As has been our practice, we take T = f(x)g(y). This leads 
directly to two ODEs:

	 ′′+ = ′′− =f f g gλ λ2 20 0and . 	 (7.75)

The solutions for the two differential equations are

	 f A x B x= +sin cosλ λ 	 (7.76)

and

	 g C y D y= +sinh cosh .λ λ 	 (7.77)

We now define the dependent variable T as the difference 
between T and the temperature of the two sides and the 
bottom; this gives us T =  0 on the left, the right, and the 
bottom. Since we placed the origin in the lower-left corner, 
we can use odd functions to build our solution. Thus,

	 T A x y= sin sinh .λ λ 	 (7.78)

Note how the boundary conditions for x = 0 and y = 0 
are satisfied. Of course, T must also be zero when x = L; 
consequently, it is necessary for sin(λL) = 0, which means 
λ = nπ/L. The solution we seek is therefore

	 T A
n x

L

n y

L
n

n

=
=

∞

∑ sin sinh .
π π

1

	 (7.79)

It remains for us to identify the Ans, and we use the 
boundary condition at the top for this purpose. Let us assume 
that T = 100° for y = H; of course, this leads to the Fourier 
sine series:

	
100

1sinh
sin ,

n H

L

A
n x

L
n

n
π

π
=

=

∞

∑ 	 (7.80)

and by definition,

	 A
L

n H

L

n x

L
dxn

L

= ∫
200

0sinh
sin .

π
π

	 (7.81)

The integral is −2 for odd n (which must be multiplied by 
−L/nπ) and 0 for even n. Therefore,

	 T

n x

L

n y

L

n
n H

L
n

=
=

∞

∑400

1 3 5
π

π π

π

sin sinh

sinh
.

, , ,…

	 (7.82)

A contour plot of this result, given L = 10 and H = 10, 
follows in Figure 7.8.

FIGURE 7.8.  Temperature distribution in a two-dimensional slab 
with the top maintained at 100° and the other three sides at T = 0°.
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We want to illustrate another slab problem with several 
rather interesting features. Suppose we have steady conduc-
tion in a slab that extends from x = 0 to x = L, and from 
y = 0 to y = H. Once again, we place the origin in the lower 
left-hand corner. The left edge and the top surface are both 
insulated, so at x = 0, ∂T/∂x = 0, and at y = H, ∂T/∂y = 0. 
The right edge (x =  L) loses heat to the surroundings, so 
a Robin’s-type boundary condition will be applied. The 
bottom of the slab has a temperature distribution: At y = 0, 
T = f(x), and we will specify f(x) later.

As in our previous examples,

T A x B x C y D y= + +( sin cos )( sinh cosh ).λ λ λ λ   (7.91)

Because of the Neumann condition at the left edge of  
the slab, A =  0. Things appear a bit more difficult with 
respect to the y-surfaces (or edges), but there is an easy fix: 
We take

	 T B x H y= −cos cosh ( ).λ λ 	 (7.92)

Now we use the Robin’s-type condition at the right-hand  
edge and you may want to verify that it results in the tran-
scendental equation,

	 λ λL L
hL

k
tan .= 	 (7.93)

For our purposes, we will take the Biot modulus to be 1 
and also let H = L = 1. The first 10 roots are shown here 
along with the coefficients, Bn, which will be determined as 
follows using eq. (7.94):

to y = +H. We maintain constant temperature of 80° for the 
top and bottom, and 0° for the left- and right-hand sides. All 
of the initial steps in the solution procedure are the same as 
used previously except that the solution must be constructed 
using cos and cosh:

	 T B x y= cos cosh .λ λ 	 (7.86)

Since T = 0 for x = L, it is necessary that λL = π/2, 3π/2, 
5π/2, and so on. Therefore,

	 T B x yn n n

n

=
=

∞

∑ cos cosh ,λ λ
0

	 (7.87)

where

	 λ
π

n
n

L
=
+( )

.
1 2

2
	 (7.88)

Of course, for y = H, T = 80°, so

80
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1 2
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n H

L
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n
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( )
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( )
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π π

  (7.89)

The leading coefficients can now be determined using 
Fourier’s definition, resulting in

B
n

n H

L

n
n =

+
+

+320

1 2
1 2

2

1 2

2( ) cosh
( )

sin
( )

,
π

π
π

  (7.90)

and the distribution of T in the slab appears as shown in 
Figure 7.10.

FIGURE 7.10.  Temperature distribution in a slab with symmetric 
(left-right and top-bottom) Dirichlet boundary conditions: 80° top 
and bottom, and 0° for the left-hand and right-hand sides.
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FIGURE 7.9.  Temperature distribution in a two-dimensional slab 
with the right-hand side insulated and the top edge maintained at 
100°.
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C = 0.8 1 2 4 6 8 10

0.79103 0.86033 1.07687 1.26459 1.34955 1.39782 1.42887
3.37438 3.42562 3.64360 3.93516 4.11162 4.22636 4.30580
6.40740 6.43730 6.57833 6.81401 6.99236 7.12628 7.22811
9.50871 9.52933 9.62956 9.81188 9.96667 10.09492 10.20026

12.62963 12.64529 12.72230 12.86776 12.99881 13.11413 13.21419
15.75869 15.77129 15.83361 15.95363 16.06540 16.16746 16.25936
18.89188 18.90241 18.95468 19.05646 19.15314 19.24354 19.32703
22.02745 22.03650 22.08148 22.16965 22.25450 22.33509 22.41085
25.16452 25.17245 25.21190 25.28961 25.36502 25.43744 25.50638
28.30259 28.30964 28.34478 28.41419 28.48196 28.54756 28.61058

C = 20 40 60 80 100

1.49613 1.53250 1.54505 1.55141 1.55525
4.49148 4.59794 4.63529 4.65428 4.66577
7.49541 7.66466 7.72592 7.75732 7.77637

10.51167 10.73341 10.81720 10.86064 10.88713
13.54198 13.80484 13.90937 13.96435 13.99809
16.58640 16.87944 17.00262 17.06855 17.10931
19.64394 19.95755 20.09715 20.17334 20.22083
22.71311 23.03937 23.19308 23.27878 23.33272
25.79232 26.12497 26.29056 26.38496 26.44501
28.88002 29.21432 29.38965 29.49194 29.55774

We will conclude our discussion of elliptic equations 
in rectangular coordinates with a Poisson-type example; 
the solution procedure will lend itself to a variety of prob-
lems, including heat transfer with constant thermal energy 
production and pressure-driven viscous flow in a duct. 
Suppose we have slab of material that extends in the 
x-direction from x = −A to x = +A and in the y-direction 
from y  =  −B to y  =  +B. We have steady conduction 
accompanied by thermal energy production throughout  

n λ Bn

  1 0.8603 117.681
  2 3.4256 −3.9488
  3 6.4373 0.02904
  4 9.5293 −1.1756 × 10−3

  5 12.6453 +1.4677 × 10−5

  6 15.7713 −7.3618 × 10−7

  7 18.9024 +1.1305 × 10−8

  8 22.0365 −5.6184 × 10−10

  9 25.1725 +1.0054 × 10−11

10 28.3096 −4.033 × 10−13

Once again, we see a case where we must use 
orthogonality—this is not a Fourier series problem! We now 
select f(x) = 100 + 100x; therefore, the temperature across 
the bottom of the slab varies from 100° to 200°. Conse-
quently, we can determine the Bns from

	 B

x xdx

H xdx

n

n

n n

=

+∫

∫

( )cos

cosh cos

.

100 100
0

1

2

0

1

λ

λ λ

	 (7.94)

An immediate question is raised: Is it possible that the 
first 10 roots of the transcendental equation, along with the 
accompanying 10 values for Bn, accurately portray the solu-
tion? If so, then we should be able to extract f(x) for the 
bottom, where y =  0 using just B1 through B10. We will 
examine this behavior in Figure 7.11.

The transcendental eq. (7.93) occurs so regularly in applied 
mathematics that it is useful to have ready access to roots. The 
first 10 roots of x tan(x) = C have been computed for different 
values of C (ranging from 0.001 to 100) using Newton–
Raphson and these results are presented in tabular form:

C = 0.001 0.002 0.004 0.006 0.008 0.010 0.020

0.03162 0.04471 0.06320 0.07738 0.08932 0.09983 0.14095
3.14191 3.14223 3.14287 3.14350 3.14414 3.14477 3.14795
6.28334 6.28350 6.28382 6.28414 6.28446 6.28478 6.28637
9.42488 9.42499 9.42520 9.42541 9.42563 9.42584 9.42690

12.56645 12.56653 12.56669 12.56685 12.56701 12.56717 12.56796
15.70803 15.70809 15.70822 15.70835 15.70847 15.70860 15.70924
18.84961 18.84966 18.84977 18.84987 18.84998 18.85009 18.85062
21.99119 21.99124 21.99133 21.99142 21.99151 21.99160 21.99206
25.13278 25.13282 25.13290 25.13298 25.13306 25.13314 25.13354
28.27437 28.27440 28.27448 28.27455 28.27462 28.27469 28.27504

C = 0.040 0.060 0.080 0.1 0.2 0.4 0.6

0.19868 0.24253 0.27913 0.31105 0.43284 0.59324 0.70507
3.15427 3.16057 3.16685 3.17310 3.20393 3.26355 3.32037
6.28955 6.29272 6.29589 6.29906 6.31485 6.34613 6.37700
9.42902 9.43114 9.43326 9.43538 9.44595 9.46700 9.48793

12.56955 12.57114 12.57273 12.57432 12.58226 12.59811 12.61390
15.71051 15.71178 15.71305 15.71433 15.72069 15.73338 15.74605
18.85168 18.85274 18.85380 18.85486 18.86016 18.87075 18.88132
21.99297 21.99388 21.99479 21.99570 22.00024 22.00932 22.01839
25.13433 25.13513 25.13592 25.13672 25.14070 25.14865 25.15659
28.27575 28.27645 28.27716 28.27787 28.28141 28.28847 28.29554

FIGURE 7.11.  The temperature should vary across the bottom 
from 100° at x =  0 to 200° at x =  1. Therefore, at x =  0.3, 
T =  130°, and for x =  0.75, T =  175°, and so on. Clearly, the 
intermediate values are reasonably accurate, but the truncated 
series (with 10 terms) does not work so well at the ends. Additional 
terms will be necessary if we wish to improve our solution across 
the bottom.
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the interior. The production occurs at a constant rate 
such that

	 k
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0. 	 (7.95)

We will take the temperature at each edge of the slab to 
be zero. We referred earlier to the similarity to steady viscous 
flow in a duct which is governed by the equation
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z z . 	 (7.96)

Indeed, with the no-slip (zero velocity) condition at the 
walls, this is exactly the same problem. In either case, if we 
can eliminate the inhomogeneity, we may be able to solve 
this problem just as we have in previous examples in this 
section. Let us now look at the conduction problem with 
constant production of thermal energy. Consider the effect 
of adding −(P/2k)x2 to the usual product of functions of x 
and y; the result is that −P/k appears on both sides of the 
equation, eliminating the problem caused by the production 
term. Consequently,

	 T
P

k
x B x y=− +

2
2 cos cosh .λ λ 	 (7.97)

Since T = 0 for x = A, we conclude that the solution must 
be written as

	 T
P

k
A x B x yn n n

n

= − +
=

∞

∑2
2 2

1

( ) cos cosh ,λ λ 	 (7.98)

where the λns come from cos(λA) = 0, of course. We select 
P/k = 100 and let A = B = 1; therefore,

	 λ
π

=
+

=
( )

, , , , , .
2 1

2
0 1 2 3

n
nfor … 	 (7.99)

This is a Fourier series problem, and the coefficients, Bn, 
are determined from

	 B x xdxn
n

n=
−

−∫
100

1 2

0

1

cosh
( )cos .

λ
λ 	 (7.100)

Of course, the maximum temperature will occur in the 
center of the slab as shown in Figure 7.12.

The same procedures we employed for the elliptic equa-
tions previously can be used in cylindrical coordinates as 
well. For example, consider a solid cylinder with diameter 
2R, which extends from z = 0 to z = L. The curved surface 
and the flat, circular end at z = L are always maintained at 

FIGURE 7.12.  Temperature contours in a two-dimensional slab 
with constant production throughout the interior and the edges 
maintained at 0°, as computed from eq. (7.98), eq. (7.99), and eq. 
(7.100).
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T = 0. The end located at z = 0 is maintained at T = T0 for 
all time. The governing equation for this case is
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z
. 	 (7.101)

We take T = f(r)g(z), which results in two ODEs:

′′+ ′+ = ′′− =f f f g gr
1 2 20 0λ λand .   (7.102)

The solutions for these two equations are

f AJ r BY r g C z D z= + = +0 0( ) ( ) sinh cosh .λ λ λ λand
		  (7.103)

Since the temperature must be finite at the center, B = 0. We 
can accommodate the boundary condition at the end of the 
cylinder at z = L by taking

	 T AJ r L z= −0 ( )sinh ( ).λ λ 	 (7.104)

Furthermore, since T(r = R) = 0, J0(λR) = 0, and

	 T A J r L zn n n

n

= −
=

∞

∑ 0

1

( )sinh ( ).λ λ 	 (7.105)

We must get T = T0 for z = 0, so utilizing orthogonality,
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For t  =  0, the string has some initial displacement, 
φ(x, t = 0) = f(x), and consequently,

	 f x D xn n

n

( ) sin .=
=

∞

∑ λ
1

	 (7.113)

This is merely a Fourier sine series, so

	 D
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( )sin .
π

	 (7.114)

We can also accommodate a distribution of initial veloc-
ity by differentiating, ∂φ/∂t. Of course, if the initial velocity 
is zero, then Cn = 0, and the solution can be written as

φ
π π π

= ⋅∫∑
=

∞ 2

01
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f x
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L
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n x

L

cn t

L

L

n

( )sin sin cos .   (7.115)

To illustrate what this solution will produce, we take 
L = 10, c = 1, and f(x) = 10x − x2; some results are shown 
in Figure 7.13.

Now suppose we have a rectangular membrane that spans 
the gap between fixed supports located at x = 0 and x = L 
and also at y = 0 and y = H. The appropriate equation is
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We are interested in the response of the membrane to 
some initial displacement, which may be a function of  
both x and y, but the initial velocity of the membrane, 

The coefficients are therefore given by

	 A
T

RJ R L
n

n n n

=
2 0

1λ λ λ( )sinh
. 	 (7.107)

We will choose R = 1, L = 2, and T0 = 200°, so we can 
examine the behavior of this solution; we fix r =  1/2 and 
use increasing values for z, beginning with z = 1/16:

z 1/16 1/8 1/4 1/2 1 3/2
T° 184.7 158.9 117.6 64.4 19.2 5.3

Application to Hyperbolic Equations

We pointed out at the beginning of this chapter that hyper-
bolic equations are usually associated with wave-type phe-
nomena. Separation of variables can be applied to many of 
these problems, and we can illustrate this with the vibrating 
“string.” It is a fascinating sidelight to note that vibrating 
string problems were solved by Euler and Bernoulli, among 
others, in the middle of the eighteenth century. Thus, we 
have 260 years’ worth of experience with elementary hyper-
bolic problems to draw on.

Assume our string extends from x = 0 to x = L and that 
both ends are fixed such that φ(x = 0) = 0 and φ(x = L) = 0 
for all t. The string is given an initial displacement, 
φ(x, t =  0) =  s(x), where the function s(x) is specified. 
It may also have a distribution of initial velocity,  
(∂φ/∂t)(x, t = 0) = v(x). The equation of interest is

	
∂
∂
=

∂
∂

2

2 2

2

2

1φ φ
x c t

, 	 (7.108)

As usual, we take φ = f(x)g(t), and of course, this hyper-
bolic PDE meets all of the criteria for separation. Substitu-
tion and division by the product, fg, results in

	
′′ = ′′f g

c
fg

fg

1
2

. 	 (7.109)

Consequently, we find two second-order ODEs:

	 ′′+ = ′′+ =f f g c gλ λ2 2 20 0and . 	 (7.110)

Of course, f = Asin λx + Bcos λx, and since f must vanish 
for both x = 0 and x = L, we note B = 0 and λ = nπ/L. We 
can also see by inspection that

	 g C c t D c t= +sin cos .λ λ 	 (7.111)

Therefore,

φ λ λ λ= +[ ]
=

∞

∑sin sin cos .n n n n n

n

x C c t D c t
1

  (7.112)
FIGURE 7.13.  String displacement for ts of 1, 2, 3, 4, 5, and 6 
from the solution of the hyperbolic PDE, eq. (7.95). The initial 
displacement was f(x) = 10x − x2.
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The membrane has some initial displacement, so for 
t = 0, φ = φ0(x, y):

φ π π0

11

( , ) sin( )sin( ),x y B m x n ymn

nm

=
=

∞

=

∞

∑∑   (7.125)

which allows us to determine the needed coefficients:

B x y m x n y dxdymn = ∫∫4 0

0

1

0

1

φ π π( , )sin( )sin( ) .   (7.126)

Depending on the form of the function, φ0(x, y), it 
may be easier to evaluate the double integral, eq. (7.126), 
numerically. Algorithms for this purpose are discussed in 
Chapter 4.

The Schrödinger Equation  Before we leave our discus-
sion of hyperbolic PDEs, we want to consider one of the 
most important developments of twentieth century physics. 
Erwin Schrödinger (1926) developed the equation that bears 
his name that, assuming it can be solved, yields the wave 
function for a system of interest. The Schrödinger equation 
revolutionized our thinking about particles and waves at 
small scales, and it made it very clear that classical Newto-
nian mechanics was wrong—only very slightly wrong at 
macroscopic scales to be sure—but very wrong at atomic 
scales. When Schrödinger was able to demonstrate that his 
model confirmed the discrete electron energy levels for 
hydrogen atoms that Niels Bohr had predicted more than a 
decade earlier, the proof was at hand. From that point on, 
quantum mechanics rapidly expanded our understanding of 
how atoms and particles behave.

Waves or particles or both? Thomas Young’s dual-slit 
experiment with light 200 years ago revealed interference 
patterns, a sure sign that light was wavelike in its behavior 
(contrary to Newton’s corpuscular theory, the idea that light 
consisted of small particles). By the late nineteenth and early 
twentieth centuries, evidence had begun to accumulate, sug-
gesting that there were serious problems with classical 
mechanics. Atkins (1978) reviews how quantum mechanics 
resolved some of the phenomena known to be problematic, 
including the thermal properties of solids at low tempera-
tures, the UV catastrophe, the photoelectric effect, and 
atomic and molecular spectra. The latter are particularly 
persuasive since the spectra reveal that a molecule can only 
absorb and emit light at specific, discrete frequencies. Then, 
in the 1920s, Louis de Broglie suggested that in addition to 
light (photons), other types of particles (like neutrons and 
electrons) would have a wavelength related to their momen-
tum. And sure enough, it was discovered that interference 
patterns were generated by those particles as well; wavelike 
behavior was demonstrated in a variety of classic experi-
ments, including the dual slit mentioned earlier and the 

∂φ/∂t, is zero. We begin by letting φ = f(x)g(y)h(t), and this 
results in

	
′′
=
′′
+
′′
=−

h

s h

f

f

g

g2
2λ . 	 (7.117)

Consequently, h″ + s2λ2h = 0 and h = Asin sλt + Bcos sλt. 
The balance of the equation is rewritten so that

	
′′
=−

′′
−

f

f

g

g
λ2, 	 (7.118)

and we note that the left-hand side is a function of x only. 
Therefore, a second constant, η, is introduced such that

	
′′+ =

′′
+ =

′′+ − =

f f
g

g

g g

η λ η

λ η

2 2 2

2 2

0

0

and

or ( ) .

	 (7.119)

The solutions for the two additional equations are

	 f C x D x= +sin cosη η 	 (7.120)

and

	 g E y F y= − + −sin cos .λ η λ η2 2 2 2 	 (7.121)

We now have

φ λ λ η η

λ η λ η

= + +

× − + −

( sin cos )( sin cos )

( sin cos )

A s t B s t C x D x

E y F y2 2 2 2 ,,
  (7.122)

but because the membrane is anchored at the edges, we must 
have φ = 0 for both x = 0 and y = 0. This will require that 
D =  F =  0. We also know that the initial velocity of the 
membrane is zero, that is, ∂φ/∂t =  0 for t =  0; therefore, 
A = 0 as well. What is left is a bit more tractable:

	 φ λ η λ η= −B s t x ycos sin sin .2 2 	 (7.123)

Now we have to ensure that the other two (supported) 
edges are fixed, so φ = 0 for both x = L and y = H. For 
the former, sin(ηL) =  0, so η =  mπ/L, and for the latter, 

λ η π2 2− = n H . Therefore,

λ
π π2

2 2

2

2 2

2
= +

n

H

m

L
,

and if we take L = H = 1, then

φ π π π= +
=

∞

=

∞

∑∑ B s n m t m x n ymn

nm

cos( )sin( )sin( ).2 2

11

		  (7.124)
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diffraction of electrons from a crystal lattice (the Davisson–
Germer experiment was a definitive moment in twentieth 
century physics).

If a particle such as an electron exhibits wavelike behav-
ior, then it would seem that the simple wave (eq. 7.108) we 
considered previously might have an important connection 
to quantum mechanics. We will begin our exploration of this 
topic by rewriting eq. (7.108):

	
∂
∂
=

∂
∂

2

2 2

2

2

1φ φ
x c t

. 	 (7.108)

and then setting φ = ψ(x)g(t) but with g =  sin(2πft). The 
result, after we divide by the product of ψ(x)g(t), is

	
′′
=− + =

ψ
ψ

π
ψ

ψ π
ψ

4 4
0

2 2

2

2

2

2 2

2

f

c

d

dx

f

c
or .   (7.127)

We will refer to ψ as the wave function. Now we assume 
that the total energy (E) of a particle is the sum of kinetic 
and potential (U) contributions: E = (1/2)mv2 + U. We will 
let the momentum (p) of a particle be represented by p = mv, 
so that v2 = p2/m2, and thus, E = (1/2m)p2 + U. The wave-
length, λ, is related to the momentum by Planck’s constant: 
λ = h/p (this is known as de Broglie’s relationship). Since 
velocity can be written as the product of frequency and 
wavelength, v = fλ, we find

	 f m E U
v

h
2

2

2
2= −( ) . 	 (7.128)

The characteristic velocity in eq. (7.108), c, is replaced by 
v, so we obtain

	
d

dx

m

h
E U

2

2

2

2

8
0

ψ π
ψ+ − =( ) . 	 (7.129)

This is the time-independent Schrödinger equation 
for one spatial dimension. We can generalize for three-
dimensional problems:

	 ∇ + − =2
2

2

8
0ψ

π
ψ

m

h
E U( ) . 	 (7.130)

It is common practice in quantum mechanics to replace 
h with ћ; we note that ћ = h/2π, such that h2 = 4π2ћ2. We 
will restrict our attention momentarily to the one-dimensional 
case for which E is a positive constant, but U = 0. Let us 
assume that this one-dimensional “box” extends from x = 0 
to x = L, and at these ends, an infinite potential barrier is in 
place. Accordingly, we have

	
d

dx

mE

h

2

2

2

2
0

8ψ
βψ β

π
+ = =, .where 	 (7.131)

Therefore, (D2 + β)ψ = 0 such that ( )( )D i D i+ − =β β 0
, and consequently,

	 ψ β β= +A x B xsin cos . 	 (7.132)

We require that ψ = 0 at both x = 0 and x = L; from the 
former, B = 0, and from the latter,

	 sin .βL= 0 	 (7.133)

Thus, β πL n=  and En =  (n2h2)/(8mL2). n is a quantum 
number, and the expression for En gives us the discrete, 
allowable energy states. This, in turn, means that the behav-
ior of the wave function is described by sin(nπx/L); when 
n = 1, we get a half-wave over the interval 0 ≤ x ≤ L, when 
n = 2, we get a complete cycle, and for n = 3, 1½ cycles, 
and so on.

Before we leave our example of the one-dimensional box, 
we should make note of an important consequence of 
quantum mechanics. Let us rewrite the solution for this case 
in a fully equivalent form:

	 ψ
π

= −






C

ix

h
m E U1

2
2exp ( ) . 	 (7.134)

We now imagine that our particle exits the one-
dimensional box and enters the region where the potential 
barrier is very large (but not infinite). Under these condi-
tions, U > E and 2m(E − U) is negative. If we factor out 

the i resulting from the ( )−1 , we find

	 ψ
π

= − −






C

x

h
m U E1

2
2exp ( ) . 	 (7.135)

This is a representation of the wave function inside the 
potential barrier, and it is important because Max Born rec-
ognized that the probability of finding the particle of interest 
at a particular position, x, was |ψ(x)|2. This means that, based 
on eq. (7.135), there would be a small but finite probability 
that the particle in question could be found outside the box. 
This is called tunneling, and while it clearly does not apply 
to a marble sealed in a tin can, it does apply to electrons if 
they are confined by a finite potential barrier.

Now we turn our attention to the particle in a two-
dimensional enclosure, but we let the potential well be cir-
cular such that U = 0 for 0 ≤ r ≤ R, but U = ∞ for r > R. 
For this case,

	
1 1 8

0
2

2

2

2

2r r
r

r r

m

h
E

∂
∂

∂
∂







+

∂
∂
+ =

ψ ψ
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ψ . 	 (7.136)

Let us again try the product method, setting ψ = f(r)g(θ); 
the result is

( )( )D i D i+ − =β β 0
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height in the z-direction. Wolfram™ has a very nice demon-
stration project that illustrates the behavior of the wave func-
tion for this case.

In the two previous examples, we employed infinitely 
deep potential wells for elementary one- and two-dimensional 
problems. We now move to a more realistic particle-in-a-box 
scenario in three dimensions; we want to develop a model 
for the hydrogen atom with one electron (or a hydrogen-like 
atom), so our “box” will actually be a spherical shell. But 
in this case, the potential energy of the electron will be 
U = −(e2/r), such that U(r = 0) = −∞ and U(r → ∞) = 0. 
The PDE for the wave function will be
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  (7.145)

Note that this is a linear PDE and once again we have a 
candidate for separation; we will apply the product method 
and see if we can obtain radial and angular components. We 
will let ψ(r, θ, φ) = β(r) · γ(θ, φ) to begin. After a little work, 
we divide by the product of βγ to obtain
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  (7.146)

The radial and angular portions can be taken to opposite 
sides and set equal to a constant of separation, say, −η2. The 
β(r) result is
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It is standard procedure to replace the constant of separa-
tion (η2) in eq. (7.140) with ℓ(ℓ + 1); this is done for reasons 
that have been explained by Wieder (1973, p. 135) and the 
rationale will become apparent shortly. Now we can also 
separate the remaining equation for γ(θ, φ) by setting 
γ =  C(θ)D(φ). Of course, another constant of separation 
arises and we let it be −α2. The polar (θ) part produces
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		  (7.148)

and the azimuth (φ) part yields

	
d D

d
D

2

2
2 0

φ
α+ = . 	 (7.149)

− ′′+ ′





− =

′′
=−

r

f
f

r
f

mE

h
r

g

g

2 2

2
2 21 8π

η .   (7.137)

And in the familiar pattern, we obtain two ODEs:

	 ′′+ =g gη2 0 	 (7.138)

with
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The solution for the first member of this pair is 
g = Asin ηθ + Bcos ηθ. We simply choose to have g = 0 at 
θ = 0 (think of the prime meridian at Greenwich) such that 
B = 0. And since g(0°) must be the same as g(360°), it is 
clear that we can have only integers for η (integer multiples 
of π). Now we rewrite eq. (7.139) in a more useful form 
(standard form for Bessel’s differential equation):
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The solution for eq. (7.140) can be written as
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However, the wave function must be finite at the center 
(at r = 0) so C2 = 0; furthermore, the wave function must 
be zero at r = R, and consequently,
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This constrains E to a series of distinct values (as 
expected), and we illustrate with the case for which η = 1. 
Since the zeros for J1 occur at 3.83171, 7.01559, 10.17347, 
13.32369, 16.47063, and so on, we find
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We have a complete description of the behavior of the 
wave function inside the circular potential well. An obvious 
extension of this problem is to make the box three-
dimensional by allowing the cylinder to have some finite 
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Obviously, we also need to know how the wave func
tion behaves nearer to the nucleus. We can achieve a little  
simplification of eq. (7.147) by setting β  =  Ω/r, which 
results in
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This equation can be solved for certain cases, for example, 
for the infinite spherical potential well, for which one obtains 
spherical Bessel and Neumann functions. However, in the 
instance of the hydrogen atom with its Coulomb potential, 
the equation is solved by expansion in a power series. This 
is made a little easier by the fact that we know something 
about the asymptotic radial behavior of the wave function. 
In principle at least, we can obtain an analytic solution for 
a particle in a spherical “box” which is the product of the 
three solutions, subject to any simplifying restrictions 
imposed, for example, eq. (7.153). You should make note of 
the fact that three quantum numbers have appeared quite 
naturally in the solution procedure; they are referred to as 
the principal, azimuthal (often called orbital), and magnetic 
quantum numbers.

APPLICATIONS OF THE LAPLACE TRANSFORM

You may recall from our previous discussion in Chapter 5 
that the formal definition of the Laplace transform of a func-
tion of time, f(t), is

	 L f t F s e f t dtst( ) ( ) ( ) .{ }= = −

∞

∫
0

	 (7.156)

The effect, of course, is that a continuous function of time 
is transformed to the s-plane. In our present context, the 
characteristic of the Laplace transform that is most impor-
tant concerns time derivatives. Let df/dt = f ′(t):

	 L f t sL f t f t{ ( )} ( ) ( ).′ = { }− = 0 	 (7.157)

In other words, we replace the derivative with multiplica-
tion by s, and subtract off the initial condition. It is obviously 
advantageous to formulate the problem in terms of “devia-
tion” variables such that the initial value of f (for t = 0) is 
zero. Let us now see exactly what this will accomplish for 
us when applied to a parabolic PDE.

Assume we have a transient problem with molecular 
transport in one spatial direction in a semi-infinite medium 
such that
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It is clear that eq. (7.149) is the easiest of the trio and we 
recognize

	 D a i a i= − + +1 2exp( ) exp( ).αφ αφ 	 (7.150)

Let us turn our attention to eq. (7.148); we let z = cos θ 
such that dC/dθ =  (dC/dx)(dx/dθ), where dx/dθ = −sin θ; 
we also replace C(θ) with U(z). The result is
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which is an associated Legendre differential equation, with 
a solution that can be written in terms of Legendre polyno-
mials. The product of the solutions for eq. (7.148) and eq. 
(7.149) is central to quantum mechanics, and it is referred 
to as a spherical harmonic (presented in normalized form):
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where ε = (−1)α for α ≥ 0. The P�
αs are associated Legendre 

functions obtained by differentiation of the Legendre poly-
nomials; for example,

P z
d P

dz
�

�α α
α

α
= −( ) ./1 2 2

Legendre polynomials were introduced in Chapter 4 in 
our discussion of numerical quadrature and the first five 
Legendre polynomials are provided for the reader near the 
end of this chapter. For the constants of separation appearing 
in eq. (7.152), ℓ = 0, 1, 2, . . .  and α = 0, ±1, ±2, . . . , ±ℓ. 
Lastly, we consider the equation for the radial portion of the 
solution, eq. (7.147). If we divide by r2 and restrict our atten-
tion to “large” values of r, then we get an equation that will 
be valid asymptotically (with the electron moved very far 
from the nucleus):
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Using differential operator notation again,
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The subsidiary equation is precisely the same as before:
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( ) ,− =

α
	 (7.166)

so

	 T s C
s

x( ) exp .= −








1 α

	 (7.167)

Of course, C2  =  0 since the transform must remain 
bounded. We differentiate T(s) with respect to x and set 
x = 0; the transformed boundary condition is then used to 
find C1:
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hT
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1

1
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∞
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. 	 (7.168)

Therefore,
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		  (7.169)

where H = h/k and Q s= α . Once again, this is a form 
that we can find in a suitable table of Laplace transforms, 
and returning to the time domain, we can write

T

T
erfc

x

t

hx

k

h t

k
erfc

x

t

h

k
t

∞

= − +






 +









4 4

2

2α
α

α
αexp .

		  (7.170)

The utility of the Laplace transform for these transient 
conduction–diffusion problems in semi-infinite slabs is 
apparent. But can the technique also be applied to more dif-
ficult problems? The answer is a qualified yes, and we dem-
onstrate this with a problem in which heat is transferred in 
the z-direction in a cylindrical rod with loss to a fluid sur-
rounding the rod’s surface. Heat flow is initiated by raising 
the temperature of the end of the rod at z = 0. The conduc-
tivity of the metal rod is large, so that the bulk of the resis-
tance to heat flow is on the fluid side of the interface; 
therefore, we assume that the temperature of the solid rod 
does not vary (much) in the transverse or r-direction. An 
approximate model for this process is

	 ρC
T

t
k

T

z

h

R
T Tp

∂
∂
=
∂
∂
− − ∞

2

2

2
( ), 	 (7.171)

Our boundary conditions will have the form φ(x = 0, t) 
=  2 and φ(x → ∞, t)  =  0, with the initial condition 
φ(x, t = 0) = 0. Naturally, this means that for positive t, φ 
(whatever that is) will flow—actually diffuse—into the 
medium from the left-hand boundary, where x =  0. Rear-
ranging the equation and applying the Laplace transform 
yields the subsidiary equation:

	
d s

dx
s s

2

2

1
0

φ
κ

φ
( )

( ) .− = 	 (7.159)

If this ODE can be solved (with the corresponding bound-
ary condtions), then we will obtain the Laplace transform 
of the solution of the PDE. If we can successfully invert that 
transform, we will find the solution we seek. An exponential 
solution is found for the ODE:

	 φ
κ κ

( ) exp exp .s C
s

x C
s

x= −








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+ +









1 2 	 (7.160)

Of course, this result cannot be unbounded in the x-
direction, so C2  =  0. We also transform the boundary 
condition:

For x = 0, φ(s) = 2/s, and therefore,

	 φ
κ

( ) exp .s
s

s
x= −











2
	 (7.161)

In this case, we can turn immediately to a table of Laplace 
transforms (e.g., see the table in chapter 5 or section 29 in 
Abramowitz and Stegun, 1965), finding the pair

	
1

2s
k s erfc
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t
exp .−( ) 
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

 	 (7.162)

Accordingly, the solution we seek is

	 φ
κ

=






2

4
erfc

x

t
. 	 (7.163)

Let us illustrate this process again using the very same 
PDE (applied to the molecular transport of thermal energy) 
but with a more difficult boundary condition; our semi-infinite 
slab extends in the x-direction away from the interface located 
at x = 0. This time, the end of the slab at x = 0 is exposed to 
a fluid maintained at some elevated temperature, so we write

	 −
∂
∂

= −( )
=

∞ =k
T

x
h T T

x
x

0
0 . 	 (7.164)

We divide by −k and transform the boundary condition at 
x = 0:

	
∂
∂
− =− ∞T s

x

h

k
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hT

k s

( )
( ) .

1
	 (7.165)

http://urn:x-wiley:9781118749920:xml-component:w9781118749920c5
http://c7-bib-0001


Approximate Solution Techniques    133

APPROXIMATE SOLUTION TECHNIQUES

Occasionally, we will encounter a problem for which the 
techniques described earlier will not work, and an alternative 
numerical solution is either undesirable or simply not useful 
for the analyst’s purpose. In such cases, we may be forced 
to seek an approximate analytic solution. We do have options 
in these circumstances and we will describe a couple of 
useful approaches here. For the reader unfamiliar with the 
approximate solution of PDEs, Villadsen and Michelsen 
(1978) is a good starting point.

Many of the methods that are available to us for this 
purpose have the same underlying theme: We choose a suit-
able polynomial that either automatically satisfies the bound-
ary conditions or can easily be made to satisfy them. We 
then “adjust” the polynomial by determining values for the 
coefficients that—in some sense—give us the best possible 
performance. We can begin to think about this in the follow-
ing way: Suppose we have a differential equation,

D f y a y b( ) , ( ) .φ φ= = ≤ ≤0 where and   (7.175)

We propose a trial function:

	 φ φ φtrial = +
=
∑0

1

c yi i

i

n

( ). 	 (7.176)

We define the residual, R, as

	 R D= ( ).φtrial 	 (7.177)

If we could somehow force R =  0 for all y between a 
and b, we would have the solution! Of course, that really is 
not the objective; our aim is to find an analytic approxima-
tion that is reasonably accurate and cost-effective from  
the standpoint of time invested. Thus, we will settle for a 
compromise.

We can illustrate some of the principal ideas with a 
simple steady-state example from conduction. Imagine a 
slab of type 347 stainless steel for which one face is main-
tained at 0°F and the other at 1000°F. Over this temperature 
range, the thermal conductivity of 347 increases (almost 
linearly) by more than 60%. We let k = a + bT and note 
that in rectangular coordinates,

	
d
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k T

dT
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( ) .




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




= 0 	 (7.178)

Therefore, the nonlinear differential equation of interest is
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0 	 (7.179)

where (2h/R)(T − T∞) accounts for loss at the surface of the 
rod. We define a new dependent variable, θ = T − T∞, and 
divide by ρCp, obtaining

	
∂
∂
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∂
∂
−

θ
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θ
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θ
t z

h

C Rp

2

2

2
, 	 (7.172)

with the following boundary and initial conditions:

θ θ θ θ( , ) , ( , ) , ( , ) .z t z t z t= = →∞ = = =0 0 0 00 and

Note that the second boundary condition given here is  
an idealization; for physically real situations, the medium 
that extends in the z-direction will certainly be of finite 
extent. However, if t is small, the medium may effectively 
appear to be very “deep” in the z-direction. The subsidiary 
equation is
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Once again, the solution for this equation can be found 
in a suitable table of Laplace transforms, allowing us to 
return directly to the time domain:
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	 (7.174)

The reader may recognize that this is exactly the same 
problem as absorption into a quiescent liquid accompanied 
by a first-order, irreversible chemical reaction.

Now, suppose the solution of the subsidiary equation 
cannot be found in a table of transforms; is there any 
recourse? One possibility is through the application of the 
inversion theorem, which requires contour integration. The 
procedure is described by Carslaw and Jaeger (1959) in 
chapter 12, and they provide an illustrative example in section 
12.6. In some cases, it is also possible that the solution of 
the subsidiary equation can be expanded into a series whose 
individual terms can be found in the table of transforms. For 
example, consider the quotient, cos h(bx)/cos h(bL); we 
rewrite the hyperbolic functions so that

cosh( ) / cosh( )
( )

,bx bL
e e

e e

e e

e e

bx bx

bL bL

bx bx

bL bL
=

+
+

=
+
+

−

−

−

−1 2

then use the binomial theorem to expand this into the series: 
( ) ( )( ) ( )e e eb L x b L x

n
n nbL− − − +

=
∞ −+ ∑ −0

21 . This technique can be 
useful if the resulting series converges rapidly enough.
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It is essential that we note exactly what occurred here: 
We set the residual, R, to zero only at the endpoints of the 
interval, and this was done strictly for convenience. We 
cannot generally expect to obtain useful results this way.

Galerkin MWR Applied to a PDE

Let us look at an improved variant of the process described 
previously and apply it to a transient conduction (or diffu-
sion) problem with a temperature- or concentration-
dependent diffusivity. Such an equation might appear as
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∂
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∂
∂
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∂
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φ
t y y

( ) . 	 (7.186)

We take κ = 1 + φ for simplicity, which results in the non-
linear PDE,
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Our boundary and initial conditions are φ(y = 0, t) = 1, 
φ(y = 1, t) = 0, and φ(y, t = 0) = 0. In other words, we 
have a medium that initially has uniform (or zero) concentra-
tion or temperature; we elevate the concentration (or tem-
perature) at the front face (y =  0), and diffusion into the 
medium commences. Finlayson (1980) points out that the 
MWR is well suited to this type of problem. We will use  
the Galerkin technique (named after the Russian mathemati-
cian Boris G. Galerkin) and begin by taking

	 φ= + +1 2b t y c t y( ) ( ) . 	 (7.188)

Our boundary conditions for this problem are the 
following:

At F andy T= = °0 0, ,

at Fy h T= = °, .1000

For convenience, we set h  =  1  ft, and we arbitrarily 
propose

T C yn
n=∑ , such that

	 T C C y C y C y= + + + +0 1 2
2

3
3 � . 	 (7.180)

If we set C0 = 0, the boundary condition at y = 0 is auto-
matically satisfied. We form the residual (R) by truncating 
eq. (7.180) and substituting the result into eq. (7.179):

[ ( )]( )

( ) .

a b C y C y C y C C y

b C C y C y R

+ + + +

+ + + =
1 2

2
3

3
2 3

1 2 3
2 2

2 6

2 3
  (7.181)

Our task now is to choose values for C1, C2, and C3 that 
result in the smallest possible value for R. This minimization 
of R can take several different forms; for example, if we 
employ a weighting function, W(y), and write

	 W y Rdy

h

( ) ,
0

0∫ = 	 (7.182)

we have the method of weighted residuals (MWR). Finlay-
son (1980) points out that if we use the Dirac delta function 
for W(y), then we are employing a simple collocation scheme 
where the residual will be zero at a few select points.

If we force the residual to be zero at the endpoints and 
also require eq. (7.180) to satisfy the boundary condition at 
y  =  h, then we have the three simultaneous algebraic 
equations:

	 2 02 1
2aC bC+ = , 	 (7.183)

[ ( )]( ) ( ) ,a b C C C C C b C C C+ + + + + + + =1 2 3 2 3 1 2 3
22 6 0

		  (7.184)

and

	 1000 01 2 3− − − =C C C . 	 (7.185)

A solution is found by successive substitution:

C C C1 2 31641 434 920 838 279 40= =− =. , . , . .and

We will also use a fourth-order Runge–Kutta scheme to 
solve eq. (7.179) numerically for comparison, and both solu-
tions are shown in Figure 7.14.

FIGURE 7.14.  Comparison of the exact numerical solution with 
the collocation result (upper curve), which was obtained by requir-
ing that R = 0 at both y = 0 and y = h. Although the approximate 
solution exhibits some similar behavior, it is very rough 
quantitatively.
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on the minimization of certain integrals. This technique, 
commonly referred to as the Rayleigh–Ritz method, can be 
used to solve boundary-value problems governed by elliptic 
PDEs. The core of the procedure involves application of the 
Dirichlet principle, which concerns identification of a func-
tion that minimizes the integral:

	 I dxdydzx y z= + +∫∫∫ ( ) .φ φ φ2 2 2 	 (7.194)

It can be written for two dimensions (which will be of direct 
use to us) as

	 I grad dxdy=∫∫ φ 2 . 	 (7.195)

Let us illustrate how this method works with an example 
adapted from chapter 12 in Weinberger (1965).

Consider the elliptic PDE,

	
∂
∂
+
∂
∂
=

2

2

2

2
0

φ φ
x y

, 	 (7.196)

defined over a triangular region for which x > 0, y > 0, and 
x + 2y < 2. For the bottom of the triangle,

	 φ( , ) ( ),x y x x= = −0 2 	 (7.197)

which means that the maximum value at the bottom bound-
ary occurs at x = 1: φ(x = 1, y = 0) = 1. For the left-hand 
edge,

Of course, the boundary condition at the far face (y =  1) 
must be satisfied, so

	 − = + =− −1 1b t c t c t b t( ) ( ) ( ) ( ).or 	 (7.189)

We use this to eliminate c(t) from eq. (7.188), resulting in 
the trial function,

	 φ= − + −1 12y b t y y( ) ( ). 	 (7.190)

Now we take the original PDE and multiply by the weight-
ing function (which in the Galerkin MWR is taken from the 
basis, or trial, functions) and integrate from y = 0 to y = 1. 
The left-hand side becomes

	 y y
t

dy( ) ,1
0

1

−
∂
∂∫
φ

	 (7.191)

where ∂φ/∂t = b′y(1 − y). Therefore, this integral is simply
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dt
y y dy
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2 2

0

1

1
1

30
( ) .− =∫ 	 (7.192)

For the right-hand side of the equation, we differentiate 
the trial function as indicated in eq. (7.192), multiply by 
y(1 − y)dy, and obtain

2 2 2 2 1 12 2 2

0

1

− + −( ) − − + − +( ){ } −∫ y b y y b b y b y y dy( ) ( ) ( ) ( ) .

		  (7.193)

Equating the results of this integration with eq. (7.192) 
yields a first-order ODE for b(t): db/dt = −11 − 17b − b2. 
Although this equation could be integrated to produce an 
analytic solution, it is certainly easier to evaluate b(t) numeri-
cally. Finlayson (1980) used the initial value (for b) of −2; 
however, advance knowledge of the numerical solution makes 
it possible to choose a “better” value in terms of the quality of 
the approximation at advanced times: We will employ 
b(t = 0) = −3.325. This results in b(t = 0.10) = −1.3125, 
and a comparison of the results from the Galerkin method 
with the actual numerical solution is shown in Figure 7.15.

This relatively simple approach to the solution of a non-
linear PDE has yielded acceptable results requiring determi-
nation of only one unknown function of time, b(t). Naturally, 
the approximation could be improved by simply continuing 
the expansion (eq. 7.188), but at the risk of defeating the 
whole purpose; remember, our objective is to quickly find a 
suitable analytic approximation for φ(y).

The Rayleigh–Ritz Method

At the beginning of the twentieth century, Walther Ritz 
devised a method for approximating eigenfunctions based 

FIGURE 7.15.  Comparison of the numerical solution (solid 
curve) of the nonlinear PDE for t = 0.10 with the approximation 
obtained from the Galerkin MWR.
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The trial functions must satisfy the boundary conditions, 
and we will first try φ0  =  x(2  −  x  −  2y) and φ1  = 
xy(2 − x − 2y). Therefore, we will differentiate with respect 
to x, then y, for the numerator:

	
∂
∂
= − −

∂
∂
=−

φ φ0 02 1 2
x

x y
y

x( ) ,and 	 (7.204)

and
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The double integral in the numerator is then
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and the form for the denominator is
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The resulting quotient is −3/5, resulting in

φ≅ − − − − − = −
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 − −x x y xy x y x y x y( ) ( ) ( ).2 2

3

5
2 2 1

3

5
2 2

		  (7.208)

The elliptic PDE given by eq. (7.196) was also solved 
numerically so that the quality of the Rayleigh–Ritz approxi-
mation could be better assessed, and these numerical results 
are shown in Figure 7.16.

Now we will compute several values from the approxi-
mate solution (eq. 7.208) for comparison:

	 φ( , ) .x y= =0 0 	 (7.198)

For the hypotenuse,

	 φ( , ) .x y y= − =2 2 0 	 (7.199)

Our plan is to select trial functions that satisfy the bound-
ary conditions such that

	 φ φ φ φ≅ + + +0 1 1 2 2a a � . 	 (7.200)

We hope to identify the constants, a1, a2, a3, and so on, 
that give us the best possible approximation. This is to be 
achieved by finding values that give

	 grad dxdy( ) ,φ φtrial−∫∫ 2 	 (7.201)

the smallest obtainable value. We will now truncate our 
approximation, eq. (7.200), and demonstrate how this actu-
ally works. We use Dirichlet’s principle to formulate an 
algebraic equation in a1 (a quadratic in a1) that can be dif-
ferentiated and set equal to zero (please keep in mind that if 
we retained additional trial functions, we would obtain a set 
of equations for a1, a2, and so on, by setting the partial 
derivatives equal to zero):

grad a dxdy grad dxdy

a grad grad dxdy

φ φ φ

φ φ

0 1 1
2

0
2
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+ ⋅ +

∫∫ ∫∫
∫∫ aa grad dxdy1

2
1

2φ∫∫ .

		  (7.202)

Consequently, the optimal value for the coefficient, a1, is

	 a
grad grad dxdy

grad dxdy
1

0 1

1
2

=
⋅∫∫

∫∫

φ φ

φ
. 	 (7.203)

FIGURE 7.16.  Numerical solution for the elliptic partial differential equation used for the Rayleigh–Ritz example.
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v c y y c y y c y yx = − + − + − +1
2

2
2 2

3
2 3( ) ( ) ( ) .�   (7.210)

The conditions at y =  0 and y =  1/2 are automatically 
satisfied. We will select C0 = −20 and find the exact numeri-
cal solution (provided in Figure 7.17) so we have a basis for 
comparison.

The reader should complete this example and compare 
his or her result with the previously computed profile. Note 
that it is necessary for c1 =  24.91347 (the reader should 
confirm this); this value results in an excellent approxima-
tion. How many terms must one retain in the assumed poly-
nomial to get accurate results? If we terminate the polynomial 
with the c2-term, and require the residual to be zero only at 
y = 1/4, we actually find that

c c1 246 52397 21 68451= =−. . .and

Although the resulting shape is correct, this solution is 
unacceptable because the centerline velocity is roughly 
twice the correct value. It is clear that we should contemplate 
further improvements for this technique.

Polynomials are said to be orthogonal on the interval (a, 
b) with respect to the weighting function, W(x), if

	 W x P x P x dx n mn m

a

b

( ) ( ) ( ) , .∫ = ≠0 where   (7.211)

Let us consider the first few Legendre polynomials on  
the interval (−1, 1) for problems that lack symmetry. We 
want to explore how orthogonality may work to our 
advantage.

x y φ(x, y)

0.1 0.8 0.0156
0.4 0.6 0.1024
0.6 0.3 0.3936
0.8 0.2 0.5632
1.0 0.2 0.5280
1.2 0.2 0.4224
1.4 0.1 0.5264
1.7 0.06 0.2950

You will immediately note that the Rayleigh–Ritz 
approximation has produced reasonable results; for most of 
the points provided above, the error is less than 10%, and in 
many cases, it is only about 2%. In particular, if we look at 
(x, y) = (0.6, 0.3), the numerical solution yields about 0.4, 
and for (x, y)  =  (1.0, 0.2), it produces about 0.53 (the 
approximate solution has an error that is less than 0.4%).

Collocation

You may have noticed that in the introductory example for 
this section—the solution of eq. (7.179)—a number of quite 
arbitrary choices were made; these include the polynomial 
itself and the location of the points where we forced the 
residual to be zero. A critical question concerns the place-
ment of the collocation points—an equidistant or haphazard 
siting is likely to be less than optimal. Therefore, we should 
contemplate changes to the procedure that may improve the 
outcome. Suppose we begin by selecting a polynomial that 
automatically satisfies the boundary conditions. In addition, 
if we use orthogonal polynomials, and place the collocation 
points at the roots of one or more of the terms, we will 
significantly decrease the burden placed on the analyst. We 
are now describing what Villadsen and Stewart (1967) called 
interior collocation.

We can illustrate our first improvement with a nonlinear 
ODE example from fluid mechanics. Suppose we have a 
non-Newtonian fluid in a rectangular duct, subjected to a 
constant pressure gradient. If the fluid exhibits power-law 
behavior, then one of the possibilities is

	
d v

dy
C

dv

dy
x x

2

2 0=− . 	 (7.209)

The boundary conditions are the following:

At andy vx= =0 0,

at y vx= =1 0, .

We can avoid any difficulties caused by the sign change 
on the velocity gradient by noting that at y = 1/2, dvx/dy = 0. 
For this example, we choose the polynomial

FIGURE 7.17.  Exact numerical solution for non-Newtonian flow 
through a rectangular duct with C0 = −20.
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138    Analytic Solution of Partial Differential Equations

n = 0 1
n = 1 (7.1 − 5x2) ±0.447214
n = 2 (7.1 − 14x2 + 21x4) ±0.2852315, 

±0.7650555
n = 3 (7.1 − 27x2 + 99x4 − 85.8x6) ±0.209299, 

±0.5917, 
±0.87174

At this point, eq. (7.214) is substituted into eq. (7.213) to 
form the residual. We can solve this set of equations for the 
coefficients (the Cns) or we can develop an alternative set of 
equations written in terms of the function values (φns) at the 
collocation points. The reader is encouraged to try both 
approaches for this example.

Orthogonal Collocation for Partial  
Differential Equations

Orthogonal collocation has also been used to solve elliptic 
PDEs of the form

	
∂
∂
+
∂
∂
=

2

2

2

2

φ φ
x y

f x y( , ), 	 (7.215)

on the unit square, x(0, 1) and y(0, 1). Examples of the 
method’s application are provided by Houstis (1978), Prenter 
and Russell (1976), and Villadsen and Stewart (1967). Please 
note that an elliptic equation for any rectangular region  
x(a, b) and y(c, d), can be mapped into the unit square by 
employing the transformation,

x
x a

b a
y

y c

d c
→
−
−

→
−
−

and .

This broadens the applicability of the technique consider-
ably. Now, let us suppose for illustration that eq. (7.215) has 
a solution given by

	 φ= − −3 2 2e e x x y yx y ( )( ), 	 (7.216)

which can be plotted to yield the results shown in Figure 
7.19:

Prenter and Russell (1976) solved this problem using 
bicubic Hermite polynomials, and their results indicate very 
favorable performance relative to the Ritz–Galerkin method. 
Furthermore, in some cases, the use of collocation with 
Hermite polynomials has outperformed solution of elliptic 
equations by the finite-difference method. Section 22 in 
Abramowitz and Stegun is a good starting point for the 
reader interested in the use of Hermite polynomials.

In an example provided by Villadsen and Stewart (1967), 
the Poisson equation,

	
∂
∂
+
∂
∂
=−

2

2

2

2
1

φ φ
x y

, 	 (7.217)

P P xP x P x x

P x x
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You may want to confirm, for example, that

	 P x P x dx x x1 2
4 2

1

1

1

1
1

2

3

4

1

2
0( ) ( ) .= −












=

−

+

−

+

∫ 	 (7.212)

The first five Legendre polynomials are shown in Figure 
7.18.

Note that if we were to locate collocation points at 
x=±1 3/ , then P2 = 0. Similarly, for x P=± =( / ),3 5 03  
A further improvement can be obtained by making the 
dependent variables the function values at the collocation 
points rather than the coefficients appearing in the polyno-
mial representation. This modified procedure was described 
by Villadsen and Stewart (1967) and also explained very 
clearly by Finlayson (1980, pp. 73–74).

Let us now suppose that we have a boundary-value 
problem with symmetry about the centerline where

	
d

dx
f x

2

2
0

φ
φ+ =( , ) . 	 (7.213)

The independent variable, x, extends from −1 to 1, and 
the field variable, φ, has a set value (say, 1) at the endpoints. 
Naturally, at the centerline, dφ/dx =  0. Accordingly, we 
propose

	 φ φ= ± + − ∑( ) ( ) ( ),1 1 2 2x C P xn n 	 (7.214)

where the Pns are Jacobi polynomials for a slab:

FIGURE 7.18.  Legendre polynomials, P0 through P4, on the inter-
val −1 to 1.
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Villadsen and Stewart refined this rough solution by 
including P2 = (1 − 14x2 + 21x4) in the expansion with the 
three collocations points located at (x, y) →  (0.2852315, 
0.2852315), (0.7650555, 0.2852315), and (0.7650555, 
0.7650555). The improved result was

	

φ ≅ − − − − + −[
+ −

( )( ) . . ( )

. (

1 1 0 31625 0 013125 1 5 1 5

0 00492 1 5

2 2 2 2

2

x y x y

x ))( ) .1 5 2− ]y

(7.220)

Several collocation schemes for elliptic PDEs are avail-
able through a FORTRAN-based system called ELLPACK. 
The development of this software was initiated in 1976 and 
the effort was coordinated by John Rice of Purdue. Support 
for the project came from the National Science Foundation, 
the Department of Energy, and the Office of Naval Research; 
collocation modules include COLLOCATION, HERMITE 
COLLOCATION, and INTERIOR COLLOCATION. See 
the ELLPACK home page for recent developments of this 
software. ELLPACK allows a user with a minimal knowl-
edge of FORTRAN to solve elliptic PDEs rapidly; even 
more importantly, the analyst can compare different solution 
techniques for accuracy and computational speed. Rice and 
Boisvert (1985) is an excellent starting point for the analyst 
interested in ELLPACK.

THE CAUCHY–RIEMANN EQUATIONS, 
CONFORMAL MAPPING, AND SOLUTIONS FOR 
THE LAPLACE EQUATION

Earlier in this chapter, we discussed the solution of elliptic 
PDEs using separation of variables. We now want to illus-
trate a very different approach that can be applied to a 

(for Poiseuille flow through a duct) was solved on the square 
(−1 < x < +1), (−1 < y < +1) by taking

φ= − − ∑∑( )( ) ( ) ( ).1 12 2 2 2x y A P x P yij i j   (7.218)

If the expansion is limited to the Jacobi polynomial, 
P1 =  (1 −  5x2), and the collocation point is placed at (x1, 
y1) = (0.447214, 0.447214), then

	 φ≅ − −5
16

2 21 1( )( ).x y 	 (7.219)

This solution is plotted in Figure 7.20 along with the 
correct numerical solution for easy comparison. Note that 
the truncated approximation is surprisingly good.

FIGURE 7.19.  Solution for the elliptic partial differential equa-
tion, (∂2φ/∂x2) + (∂2φ/∂y2) = 6xyexey(xy + x + y − 3).
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FIGURE 7.20.  Comparison of the approximate solution (left) with the correct numerical solution (right).
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able, z, where z = x + iy, is the solution for some potential 
flow problem; that is, given a function of the complex vari-
able, z, which we will write as w = f(z), we have a mapping 
between the x-y plane and the φ − ψ plane; we need only 
to equate the real and imaginary parts:

	 φ ψ+ =i f z( ). 	 (7.225)

This branch of mathematics is known as conformal 
mapping due to the fact that angles are preserved; in the φ − ψ 
plane, velocity potential lines and streamlines intersect at 
right angles, just as lines of constant x and y do in the x-y 
plane. We specified an incompressible fluid for which 
∇ · v = 0, so if we differentiate eq. (7.222) appropriately, then

	
∂
∂
+
∂
∂
=

2

2

2

2
0

φ φ
x y

. 	 (7.226)

We also indicated that the flow was to be irrotational, 
which means that ∇ ×  v =  0, and if we differentiate eq. 
(7.223) accordingly, then

	
∂
∂
+
∂
∂
=

2

2

2

2
0

ψ ψ
x y

. 	 (7.227)

Thus, both the velocity potential and the stream func
tion are governed by the Laplace equation and—most 
importantly—if w(z) is a single-valued function of z over the 
region, R, and if it is differentiable at every point in that 
region, then every analytic w(z) gives us a solution for the 
Laplace equation. But it is critical for us to emphasize that 
had we included fluid friction (a dissipative process) in 
this study of moving fluids, then the Laplace equation would 
no longer be applicable since we would not have a conserva-
tive field.

Let us illustrate the process we have in mind with an 
elementary example. We set

w f z z
z

x iy
x iy

x y

x x y y

xyi

x x

= = + = + +
+

=
−

+ +
−

+

( ) ( )
( )

2
2

2
2

2 2

4 2 2 4 4 2

1 1

2

2

2 yy y2 4+
.

		  (7.228)

The function is clearly not analytic at z  =  0, so we 
exclude that point from the region of interest. Therefore,

φ= − +
+ +













( )x y
x x y y

2 2
4 2 2 4

1
1

2

and

	 ψ= −
+ +













2 1
1

24 2 2 4
xy

x x y y
. 	 (7.229)

limited class of elliptic PDEs; we will restrict our attention 
to the two-dimensional Laplace equation. Functions that 
satisfy this PDE are said to be harmonic, and it is important 
for us to remember that only conservative fields can be 
represented by the two-dimensional Laplace equation.

Our initial focus in this section is the function

	 w f z x y i x y= = +( ) ( , ) ( , ).φ ψ 	 (7.221)

If w is analytic in a region denoted by R, and if φ and ψ 
are related by the Cauchy–Riemann equations (see eq. 
7.224), then the real and imaginary parts are solutions for 
the two-dimensional Laplace equation. Indeed, if these con-
ditions are met, then any analytic function f(z) is the solution 
for some problem governed by the Laplace equation. Under 
these circumstances, we refer to the f(z)s as solutions 
for potential problems, and we will explore this technique 
using a topic familiar to students of hydrodynamics, ideal 
fluid flow.

Although we are using ideal potential flow as the frame-
work for our discussion, the technique we present here will 
be applicable to other types of problems as well including 
electrostatics, steady two-dimensional diffusion and heat 
conduction, as well as two-dimensional scattering of elec-
tromagnetic waves. Let us begin by clarifying exactly what 
we mean by an ideal flow: We stipulate that the fluid is 
inviscid and incompressible, and that the flow is irrotational; 
a useful mnemonic device in this context is to think of the 
three Is (inviscid, incompressible, irrotational). For a two-
dimensional ideal flow, the velocity vector components can 
be obtained by differentiation of the velocity potential, φ, in 
the corresponding directions:

	 v
x

v
y

x y=
∂
∂

=
∂
∂

φ φ
and . 	 (7.222)

Next we define the stream function, ψ, such that

	 v
y

v
x

x y=−
∂
∂

=
∂
∂

ψ ψ
and . 	 (7.223)

We think of a streamline (a curve of constant ψ) as the 
path followed by a fluid particle. If streamlines are converg-
ing locally, then the flow is accelerating in that region; if the 
streamlines are diverging, the fluid velocity is decreasing. 
Evidently, the velocity potential and the stream function are 
related:

	
∂
∂
=−
∂
∂

∂
∂
=
∂
∂

φ ψ φ ψ
x y y x

and . 	 (7.224)

These are the Cauchy–Riemann equations, and they 
guarantee that any analytic function of the complex vari-
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ψ θ= −








∞V r

R

r
sin ,

2

and add to that the vortex, ψ = Klnr. This combination will 
produce flow about a right circular cylinder with rotation 
and will result in a vertical lift being generated (the Magnus 
effect). If we combine a source with a uniform flow (both in 
polar form for convenience) we get

ψ
π

θ θ=− +
K

Vr
2

sin ,

which is flow about a half-body. As you can see, one can 
obtain the velocity potential and the stream function for 
many situations of interest by merely combining elementary 
solutions.

The methodology employed in the earlier example and 
additionally recommended for a student exercise will cer-
tainly work, but it is not very useful when we are seeking a 
solution for the Laplace equation for a particular problem. 
Moreover, in many cases, this backward or indirect process 
would just be a needless duplication of effort. Many confor-
mal mappings are known and compilations exist that we can 
consult directly. One example is the book Dictionary of 
Conformal Representations by Kober (1952). We can find, 
for example, an extensive collection of functions of the type 
w = f(z) = za, where a is real, in part two of Kober’s book. 
Part three is devoted to exponential (and related) functions, 
for example,w = ez.

Let us explore the use of such a dictionary with an 
example: We will consider ideal flow into a channel, or 
alternatively, the potential field (actually equipotential lines) 
accompanying two charged plates of finite size separated by 
a distance, 2b. This problem appears in Kober (1952, section 
11.5, pp. 116 and 117), from which we find

z w w x iy i i= + + = + + +exp( ) exp( ).or φ ψ φ ψ
		  (7.231)

Since eiψ = cos ψ + isin ψ, it is easy to show that

	 x
y y

=
−






+

−





ln

sin tan
.

ψ
ψ

ψ
ψ

	 (7.232)

The form of this equation suggests that we select a con-
stant value for ψ, allow y to range through a plausible 
sequence of values, and compute the corresponding 
x-positions. This process will allow us to prepare an appro-
priate plot, which is provided here as Figure 7.22.

We can conclude that conformal mapping is an easy 
approach to the solution of a limited class of problems 
described by the Laplace equation. But as we pointed out 

So we have identified the velocity potential and the 
stream function for some potential flow, but we are faced 
with the immediate question: Exactly what problem gov-
erned by the Laplace equation is this a solution for? We will 
find out by plotting values of ψ for (x, y) pairs in the first 
quadrant, then we construct appropriate contours. The result 
is shown in Figure 7.21.

Notice that according to the definition of the stream func-
tion given by eq. (7.223), the flow in this case is right to left 
(the fluid enters the figure at the right-hand boundary and 
leaves through the upper surface).

We have found a solution for the Laplace equation by a 
backward process that is easy enough to execute but might 
not be very useful under more general circumstances. We 
can, of course, simply write down more functions of z: 
w  =  f(z), and identify the results by plotting ψ(x, y). 
The reader is encouraged to explore this approach and an 
interesting case (flow over a circular obstruction, or log) is 
given by

	 w f z RU
R

z
= =






( ) coth ,π

π
	 (7.230)

where R is the radius of the obstruction and U is the intensity 
of the approaching flow. Should you wish to try this, start 
by writing coth(x) = (ex + e−x)/(ex − e−x), and note that the 
polar form for a complex number is x + iy = r(cos θ + isin θ). 

Of course, r x y= +2 2 .
Because the Laplace equation is linear, we can also use 

superposition to combine individual solutions, building 
complex potentials (or stream functions) for more compli-
cated problems. For example, we could take a horizontal 
potential flow around a cylinder, for which

FIGURE 7.21.  Plot of the stream function for the complex poten-
tial given by eq. (7.228).
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where all of the αs are greater than zero and their sum, 
a1 + a2 + a3 = 2. a1, a2, and so on, are the vertices mapped 
onto the real axis of the z-plane. We can look at an elemen-
tary case given by Lamb (1945) for which two finite points 
are chosen on the real axis at ±1:

	 w A
dt

t
A t B=

−
= +∫ −

2

1

1
cosh ( ) . 	 (7.237)

Lamb shows how this method can be used to model a 
Borda entrance (in two dimensions) and he provides several 
other interesting results obtained with the Schwarz–
Christoffel formula in chapter 4 of Hydrodynamics.

CONCLUSION

Many important problems involving molecular (or diffusive) 
transport arising in engineering and the applied sciences can 
be solved using the product method or separation of vari-
ables. Moreover, extensive collections of these solutions 
exist (e.g., Crank and Carslaw and Jaeger); frequently, an 
analyst can consult such resources and directly adapt an 
existing solution to their needs. This does not mean that 
every problem that can be solved using the product method 
has already been solved. There will always be variations that 
present a new challenge. But, once a student understands the 
technique, he/she will be much better able to assess what is 
possible and what is prohibitively difficult. In the more 
general case of nonlinear PDEs, one must either accept the 
limitations of an approximate analytic solution or proceed 
to a numerical simulation. The importance of the latter has 
grown rapidly—and pretty much in step with the expanding 
availability of computing power. The numerical solution of 
PDEs is the subject of the next chapter.

previously, the indirect approach of writing down an analytic 
complex potential and then determining what problem is 
solved by it is not very practical. There are a couple of 
techniques that can be applied more broadly. For example, 
let us consider the case in which we have a constant potential 
along some parametrically defined curve. Specifically, 
suppose we know that the potential is constant over an 
ellipse for which x = Acos t and y = Bsin t; therefore,

	 z x iy A w iB w= + = +cos sin , 	 (7.233)

where w = φ + iψ. With a bit of work, we can show that

A
x

B

A
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B
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2
2

2

2

2
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+












+
− +












cosh sinh sinh cosh

.

ψ ψ ψ ψ

		  (7.234)

Thus, the “streamlines” or equipotential lines are confo-
cal ellipses, as expected. Another approach that can be quite 
useful when the potential is known on a polygonal boundary 
is the Schwarz–Christoffel formula; Smith (1953) provides 
several examples of its application and Bieberbach’s (1953) 
discussion is helpful as well. The SC formula is

	 w
dt

t ak

z

k
k

=
−

=∫ Π Σ
( )

, .
α

α
0

2with 	 (7.235)

Thus, if the half-plane were to be mapped onto the inte-
rior of a triangle with exterior angles α1π, α2π, and α3π, then

	 w
dt

t a t a t a

z

=
− − −∫ ( ) ( ) ( )

,
1 2 3

0

1 2 3α α α 	 (7.236)

FIGURE 7.22.  A partial construction of streamlines for a potential flow entering a channel or a canal. This view shows just the upper 
right-hand corner of the field.
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Suppose φ(x, y)  =  a0  +  a1x  +  a2y  +  a3x2  +  a4xy  + 
a5y2. Find the relationships between coefficients in this 
polynomial.

7.7.  The Laplace equation is applied to a rectangular  
region that extends from x = 0 to x = L and from y = 0 to 
y = H:

∂
∂
+
∂
∂
=

2

2

2

2
0

U

x

U

y
.

For the left and right sides (x = 0 and x = L), U = 1. For 
the top and bottom edges (y = 0 and y = H), the flux is zero, 
∂U/∂y = 0 at the bottom, and ∂U/∂y = 1 at the top. Find the 
distribution, U(x, y).

7.8.  Find the distribution of temperature in a slab of material 
that extends in the x-direction: 0 ≤ x ≤ L. The governing 
equation is

∂
∂
=
∂
∂

T

t

T

x
α

2

2
,

given that T(x = 0, t) = T0, (∂T/∂x)(x = L, t) = 0, and T(x, 
t = 0) = Ti.

7.9.  Find the solution for

∂
∂
=
∂
∂
+
∂
∂












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for the annular region, R1 ≤  r ≤  R2, where R1 =  1 and 
R2 = 4. We know that φ(r = R1, t) = 200, φ(r, t = 0) = 10, 
and

−
∂
∂
= =α

φ
βφ

r
r R( ).2

7.10.  Steady viscous flow in a duct is driven by a sliding 
upper surface, moving with constant velocity in the z-direction. 
By Newton’s law of friction, the velocity at the other three 
walls will be zero, of course. The governing equation is

0 0 0
2

2

2

2
=
∂
∂
+
∂
∂

≤ ≤ ≤ ≤
V

x

V

y
x L y Hz z , .for and

For x = 0, V = 0, for y = 0, V = 0, for x = L, V = 0, and 
for y = H, V = 10. Let H = L = 1, and find V (x, y).

7.11.  Find T(x, y) in a two-dimensional slab with the origin 
placed in the lower left-hand corner. The top, the right edge, 
and the left edge are all maintained at 50°. For the bottom 
(y = 0),

T f x= ( )=100.

PROBLEMS

7.1.  Solve the boundary-value problem

∂
∂
=
∂
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≤ ≤
T

t

T

y
yα

2

2
0 10, ,for

given α = 1 and T(y = 0, t) = 0, T(y = 10, t) = 45, and 
T(y, t = 0) = 20.

7.2.  Solve the boundary-value problem

∂
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=
∂
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≤ ≤
T

t

T

y
yα

2

2
0 10, ,for

given α = 2 and T(y = 0, t) = 20, T(y = 10, t) = 10, and 
T(y, t = 0) = 5 + 5y.

7.3.  Solve the boundary-value problem

∂
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≤ ≤
T

t

T

y
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2

2
0 10, ,for

given α = 1/4 and T(y = 0, t) = 10, and for y = 10:
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The initial condition is T(y, t = 0) = 30 and the Biot number, 
hL/k = 1/4.

7.4.  Find the distribution of S over the annular region 
R1  ≤  r  ≤  R2, where S is governed by the potential 
equation:

∂
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+
∂
∂
+

∂
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2

2 2

2

2

1 1
0
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r r

S

r r

S

θ
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The constant values ot the edges are S(r = R1) = 100 and 
S(r = R2) = 10.

7.5. R epeat Problem 7.4 but with R1  =  1, R2  =  3, 
S(r = R1) = 100, and

−
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= −
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=κ β
S

r
S

r R
r R

2
2 10( ).

We know that β/κ = 1/4.

7.6.  We are investigating a problem governed by the Poisson 
equation:

∂
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∂
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2

2

2

2
1

φ φ
x y

.
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The governing equation is
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2
.

Find C(x, t), and then find an expression for the total amount 
of solvent lost from the slab over a time, t. Remember: The 
slab loses solvent from both surfaces.

7.18.  A taut string is secured (fixed and stationary) at y = 0 
and y = 9. At a point corresponding to y = 3, the string is 
displaced ½ unit in the transverse direction and then released. 
Find u(y, t) using the product method given:
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2

2 2

2

2

1u

y c
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t
.

7.19.  A drum head is a membrane (or skin) stretched over 
a circular mounting rim of radius, R. The displacement of 
the membrane in response to an initial forcing function is 
governed by
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Use the product method to find a solution for this problem 
given that

φ θ
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7.20.  A solid sphere of radius, R =  3  cm, has an initial 
temperature of 45°C. At t = 0, the sphere is plunged into a 
large, cooled bath maintained at 0°C. If the heat transfer 
coefficient between the fluid phase and the surface of the 
sphere is 0.02 cal/(cm2 s °C), and if the thermal diffusivity, 
α, is 0.9 cm2/s, find T(r, t) and plot the temperature distribu-
tions at t = 1/2, 1, 2, and 4 seconds. The density and heat 
capacity of the material are 1.74 and 0.24, respectively (cgs 
units). The governing equation for this problem is
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7.21.  A circular disk of radius, R, is well insulated on the 
flat, circular faces (top and bottom sides). At t = 0, the edge 
of the disk is rapidly cooled to 0° and heat flows in the 
r-direction toward the rim:
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Find T(r, t) given T(r, t = 0) = T0(1 − r2) and R = 1.

For the two-dimensional slab, H = 2 and L = 1.

7.12.  A long cylinder has a uniform initial temperature, 
Ti = 75°. At t = 0, the surface (at r = R) is rapidly cooled 
to 0°. Find T(r, t):
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The thermal diffusivity, α, is 2, and the cylinder radius 
is 2.

7.13.  A long hollow cylinder has an initial temperature dis-
tribution of T = f(r) for R1 ≤ r ≤ R2. For all positive ts, the 
surfaces at R1 and R2 are maintained at 0°. Find T(r, t) for 
two different cases:

f r T f r
r R

R R
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10 10and then

7.14.  Consider a diffusion tube that extends from z = −L 
to z = +L. The concentration of the species of interest is 
governed by

∂
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t
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2
.

Of course, the ends are impermeable, so for z  =  ±L, 
∂C/∂z = 0. For the initial condition, −L ≤ z ≤ 0, C = 1 and 
0 ≤ z ≤ +L, C = 0. Find C(z, t).

7.15.  Given

k
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find T(x, y) given P/k =  200. The origin is placed at the 
center, and all four edges are maintained at 50°. The slab is 
square with L = H = 2.

7.16.  Find the distribution of the variable, φ, in a circular 
disk given

φ θ π φ π θ( , ) ( , ) .r R r R= < < = = − < < =0 1 0 0and

The governing equation is
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7.17.  A porous slab, with surfaces located at x = ±b, is 
initially saturated with solvent. We wish to model the diffu-
sion process within the slab for a drying problem where the 
loss of solvent at the surface(s) is described by
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Now complete your solution and check your result with 
section 7.9 in Carslaw and Jaeger (1959).

7.24.  Consider a solid sphere with a radius of 1, in which 
thermal energy production occurs at a constant rate:
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The source term, S0, will have units of calorie per cubic 
centimeter second. We want to solve this problem analyti-
cally (and later numerically) and then plot our solutions. 
Two substitutions are required to find a solution by separa-
tion of variables. The first, which is already familiar to us, 
is T =  θ/r. However, this step leaves the inhomogeneity, 
which must be dealt with by setting

θ φ= −
S r

k
0

3

6
.

The parametric values we will employ are

k R S= = = =0 025 0 075 1 2 6750. , . , , . .α and

We are particularly interested in values of the parameter, 
αt/R2  =  0.05, 0.1, and 0.25. Find the temperature 
profiles for each and plot them on the same figure. Use the 

dimensionless group for the dependent variable, 
6

0
2

k

S

T

R
. 

Assume that that the initial temperature of the sphere is 0 
and that the surface is maintained at zero for all time.

7.25.  Suppose we have a finite cylinder (of length, L) that 
is at some initial temperature, Ti. At t =  0, the end of the 
cylinder (at z = 0) is instantaneously heated to T0. The gov-
erning equation is
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The surface of the cylinder, at r = R, loses heat to the sur-
roundings such that
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and we will assume that T∞ = 0. The far end of the cylinder, 
at z = L, is maintained at T = 0 for all time. Begin by finding 
the steady-state temperature distribution in the cylinder and 
check your result with section 8.3 in Carslaw and Jaeger 
(1959). Then, explore the transient problem and find an 
analytic solution if you can.

7.22. U se the Galerkin MWR technique to find an approxi-
mate solution for

∂
∂
=
∂
∂

∂
∂













≤ ≤
φ

κ
φ

t y y
y, ,for 0 1

given κ = (φ0 + 4φ)−1. The boundary and initial conditions 
are φ(y = 0, t) = 1, φ(y = 1, t) = 0, and φ(y, t = 0) = 0. 
Figure 7.23 contains some numerical results for this prob
lem and it is provided as follows to assist students with  
their work.

7.23.  We have a long, solid cylinder in which thermal 
energy is produced at a uniform rate (per unit volume) cor-
responding to S. The surface of the cylindrical solid will be 
maintained at T = 0 for all time, t. The governing equation 
has the form
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We want to find the analytic solution for this problem.  
Begin by verifying that the steady-state solution for this situ-
ation is

T
S

k
R rss = −

4
2 2( ).

Then, let the dependent variable, T, be written as the 
sum of steady-state and transient parts: T  =  Tss  +  T1. 
Use this sum to eliminate the inhomogeneity and demon-
strate that

FIGURE 7.23.  Computed numerical solutions for ts of 0.02. 0.05, 
0.08, and 0.11. Note that the horizontal axis has been truncated to 
better show the time evolution.
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7.26.  A viscous fluid, which is initially at rest, lies on a 
planar surface corresponding to the x-axis. The fluid extends 
very far in the vertical (or y−) direction. At t = 0, the planar 
wall begins to oscillate such that Vx(y =0) = V0cos(ωt). Find 
the velocity distribution in the fluid assuming that the flow 
is governed by
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2
.

This scenario is referred to as Stokes’ second problem and 
you may want to consider using the Laplace transform.

7.27.  We have a potential field in spherical coordinates with 
φ symmetry such that
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We want to find an analytic solution for this problem. Begin 
by proposing ψ = f(r)g(θ) and carry out the separation. The 
equation for f will be of the Cauchy type and the equation 
for g can be transformed into Legendre’s differential equa-
tion such that the solution can be written in terms of Legen-
dre polynomials. This process is not trivial, and you may 
want to consult chapter 12 in Spiegel (1971) for assistance. 
Express the solution as the product of f and g, but do not 
worry about boundary conditions.
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8
NUMERICAL SOLUTION OF PARTIAL 
DIFFERENTIAL EQUATIONS

INTRODUCTION

Our usual approach will involve discretization of partial dif-
ferential equations (PDEs), followed by solution of the 
resulting algebraic equations. Discretization is key to  
both finite-difference methods (FDMs) and finite-element 
methods (FEMs). The two approaches require the same level 
of numerical effort, but the latter is particularly useful for 
problems involving irregular shapes and boundaries (an 
introduction to FEM will be provided in Chapter 11). On the 
other hand, FDMs are much less software-dependent, and 
for simple problems, FDM solutions can be obtained with a 
broad spectrum of hardware–software combinations, even 
through the use of commonplace tools like spreadsheet pro-
grams. Thus, the analyst can solve many important practical 
problems without commercial modeling software, without 
high-level language proficiency, without compiler experi-
ence, and without mesh generation and refinement.

We should anticipate that when we solve a PDE numeri-
cally, we may not obtain a completely accurate solution. Of 
course, we expect discrepancies arising from both roundoff 
and truncation, and a common view is that we are solving 
the given PDE with some acceptable level of error. There is 
a second viewpoint that is useful in the context of certain 
computations, and it reveals a more insidious problem that 
we need to recognize: When we discretize a PDE, we are 
actually creating a PDE that may have additional terms; 
that is, we end up with an equation that is not the original 
model for the phenomenon of interest. Clearly, we need to 
understand how those additional terms affect the solution. 

We will give a very brief introduction to this topic here, but 
the interested reader should consult Chapter 6 in Anderson 
(1995) for detail. Consider the fragmentary equation for a 
transient problem with convective transport:
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One possible discretization can be written as
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where the index j + 1 refers to the new time step, t + Δt. 
Please note that the x-direction gradient of φ is written in 
the upwind (backward) form; the need for this particular 
difference will be explained later. If we now expand φi, j+1 
and φi−1, j in Taylor series,
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This second-order, central difference approximation for 
the second derivative has a leading error on the order of h2. 
If h is small, this approximation should be good. For 
example, let y =  xsin x thus, dy/dx =  sin x +  xcos x and 
(d2y)/(dx2) = 2cos x − xsin x.

Now let x = 0.3: y = 0.088656, dy/dx = 0.582121, and 
(d2y)/(dx2) = 1.822017; then choose h = 0.01:

d y

dx

2

2 2

0 094568 2 0 088656 0 082926

0 01
1 820≅

− +
=

. ( . ) .

( . )
. .

This is about 0.11% less than the analytic value for the 
second derivative. By simply combining Taylor series expan-
sions, we can build any number of approximations and for 
derivatives of any order. Furthermore, these approximations 
can be forward, backward, centered, or skewed. Some of the 
more useful forms are compiled for you as follows. Note 
that F ⇒  forward, C ⇒  central, B ⇒  backward, and h is 
convenient shorthand for Δx:
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and then substitute the results into the original eq. (8.1), we 
recover the original terms but with the addition of new ones. 
Anderson shows through a process of differentiation and 
subtraction that the time derivatives that appear in “new” 
terms in the equation can be replaced by derivatives with 
respect to x, ultimately resulting in
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The original equation is recovered on the left-hand side, 
but new derivatives appear on the right. The even derivatives 
are dissipative, and in computational fluid dynamics (CFD), 
they are referred to as artificial viscosity; they exert a stabi-
lizing influence on the computation. The odd derivatives are 
dispersive, and they can create distortions and in some cases 
destabilize a computation. Let us emphasize the essential 
point of this discussion: The discretization process we 
employ can produce additional terms in the PDE. We may, 
in fact, be solving a PDE that differs from the actual model 
(1) of the phenomenon of interest. Though this sounds 
ominous, it may be beneficial in particular circumstances; 
artificial viscosity, for example, can be used intentionally to 
make an unstable computational scheme stable. But to be 
absolutely clear, if we pursue this course (rendering an 
unstable computation stable by adding artificial viscosity), 
we are adopting the viewpoint that finding some kind of 
numerical solution is better than not finding one at all.

Finite-Difference Approximations for Derivatives

Finite-difference approximations allow us to develop alge-
braic representations for differential equations. Consider the 
following Taylor series expansions:

y x h y x hy x
h

y x
h

y x( ) ( ) ( ) ( ) ( )+ = + ′ + ′′ + ′′′ +
2 3

2 6
�

		  (8.6)

and

y x h y x hy x
h

y x
h

y x( ) ( ) ( ) ( ) ( ) .− = − ′ + ′′ − ′′′ +
2 3

2 6
�

		  (8.7)

When we add the two equations together, we obtain

y x h y x h y x h y x f h( ) ( ) ( ) ( ) ( ) .+ + − = + ′′ + +2 2 4 �

If we discard all of the terms involving h4 (and up), 
we get

	 ′′ ≅
+ − + −

y x
y x h y x y x h

h
( )

( ) ( ) ( )
.

2
2

	 (8.8)
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Boundaries with Specified Flux

Consider a conduction problem in a slab for which the right-
hand boundary is insulated; thus, qx = 0; this is an example 
of a Neumann boundary condition (∂T/∂x =  0). Let the 
nodal point on the boundary be represented by the index, n, 
and let the temperatures for n − 2 and n − 1 be 50° and 45°, 
respectively. We can determine the temperature at the bound-
ary by setting the derivative equal to zero. However, if we 
use a first-order, backward difference in this situation:

n − 2 n − 1 n

50° 45° ?°

then Tn = 45°, a result that is clearly unphysical because the 
temperature “profile” on this row has a discontinuity in 
slope. One alternative is to employ eq. (8.15):

	 Tn = − + = °
1

3
50 4 45 43 333( ( )) . . 	 (8.35)

Of course, a third- or fourth-order backward difference 
could be used as well; if we go with third-order and set the 
temperature at n − 3 to 56°, we find Tn = 42.909°.

We should also examine the use of a Robin’s-type bound-
ary condition (a boundary condition of the third kind) for a 
solid–fluid interface:

	 −
∂
∂
= − ∞k

T

x
h T Ts f n( ). 	 (8.36)

Let the Biot modulus, Bi = Δxhf/ks; then, one possible 
expression for Tn is

	 T
BiT T T

Bi
n

n n=
+ −
+

∞ − −2 4

3 2
1 2 . 	 (8.37)

If we select Bi = 1 and T∞ = 20° and use the temperatures 
given earlier for the n − 1 and n − 2 positions, then

	 Tn =
+ −

= °
2 20 4 45 50

5
34

( ) ( )
. 	 (8.38)

Note how eq. (8.37) is affected when Bi is very low—the 
result is exactly the same as eq. (8.35)!

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Our main focus in this section is on Laplace- and Poisson-
type elliptic PDEs that apply to equilibrium phenomena. 
Examples include steady-state conduction in a slab:
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Fourth order:
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below this point to get a clearer picture of the overall quality 
of the solution. One node above the center the analytic solu-
tion produces 262.158° (as opposed to 258°) and one node 
below, we find 128.624° (as opposed to 129.5°). Our numer-
ical solution is surprisingly close considering the coarse 
discretization that was employed.

Many elliptic PDEs can be solved in this manner, and 
since the coefficient matrix is usually sparse, such problems 
can be solved very efficiently. Although our slab example 
used only nine interior nodes, much larger problems can be 
solved in the same way. Some care must be exercised in such 
cases, however, because roundoff error can accumulate and 
corrupt the solution. If very large sets of simultaneous equa-
tions are to be solved using an elimination method, it may 
be necessary to either use greater precision in the calcula-
tions or, alternatively, to incorporate error equations into the 
procedure. We will give a brief sketch of this process here, 
but the interested reader may want to consult chapter 3 in 
James et al. (1977).

Suppose we have a set of simultaneous equations:

a X a X a X C11 1 12 2 13 3 1+ + + =�

a X a X21 1 22 2+ +� , .etc

When we solve these equations, we obtain a set of 
approximate values for the Xns that we will represent like 
this: Y1, Y2, and so on. We take these approximate values 
back to the set of equations and compute the new constants; 
that is,

	 a Y a Y a Y D11 1 12 2 13 3 1+ + + =� . 	 (8.43)

If roundoff errors have been generated, then D1 ≠  C1, 
D2 ≠ C2, and so on. Now we presume that the desired values 
for the Xns can be obtained by adding a correction to the 
approximate solution: X1 = Y1 + ΔX1, X2 = Y2 + ΔX2, and 
so on. The correction expressions are substituted into the 
original algebraic equations, replacing the unknown Xns:

a Y X a Y X a Y X C11 1 1 12 2 2 13 3 3 1( ) ( ) ( ) .+ + + + + + =∆ ∆ ∆ …
		  (8.44)

Next, we subtract the set of equations obtained with the 
initial estimates, resulting in

a X a X a X C D11 1 12 2 13 3 1 1∆ ∆ ∆+ + + = −�

a X a X a X C D21 1 22 2 23 3 2 2∆ ∆ ∆+ + + = −� , .etc   (8.45)

The solution of this set of equations produces the correc-
tions that are added to the original estimates: X1 = Y1 + ΔX1, 
X2 = Y2 + ΔX2, . . . This process can be repeated any number 
of times should that prove necessary.

steady viscous flow in a two-dimensional duct,
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and the Laplacian of the stream function for two-dimensional 
potential flow:

	
∂
∂
+
∂
∂
=

2

2

2

2
0

ψ ψ
x y

. 	 (8.41)

We should begin this part of our discussion by looking at 
a solution procedure for eq. (8.39). Suppose we have a 
square slab of material with prescribed temperatures on all 
four edges (400° across the top and 100° for both sides and 
the bottom); we wish to find the interior temperature distri-
bution, T(x, y). We discretize the slab using Δx = Δy (a 
square mesh) with five nodes in each direction. Since the 
boundary temperatures are known, we have nine interior 
nodes where the temperature must determined:

400 400 400 400 400
100 100
100 100
100 100
100 100 100 100 100

If we approximate eq. (8.39) with second-order central 
differences, we find

	 T T T T Ti j i j i j i j i j+ − + −+ + + − =1 1 1 1 4 0, , , , , . 	 (8.42)

Thus, we have an elementary problem in which we must 
find the solution for nine simultaneous, linear algebraic 
equations. This can be accomplished in many different ways, 
and we choose to employ Crout’s (also known as Cho-
lesky’s) method. The reader may wish to verify that the 
solution for the given problem is the following:

400 400 400 400 400
100 228.6 258 228.6 100
100 156.3 175 156.3 100
100 121.4 129.5 121.4 100
100 100 100 100 100

This raises an interesting question: How accurate is this 
solution? For example, is the temperature at the center of 
the slab really 175°? Since this is a problem for which the 
analytic solution is known (see eq. 8.82 in Chapter 7), we 
can test the given result using the infinite series very easily. 
To four decimal places, the center temperature from the 
analytic solution is 174.9995°. This shows that our approxi-
mate solution for the center (175°) is unusually accurate; we 
can also find the actual temperatures immediately above and 
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In a computation of this type, a key issue is the number 
of iterations required to attain convergence. For the example 
shown here, we can monitor the evolution of centerline 
velocity during the calculations; this is illustrated in Figure 
8.2. Keep in mind that we initialized all of the interior  
nodes at zero velocity. We could certainly enhance the prog-
ress toward convergence by starting the computation with a 
better initial estimate, that is, providing a more suitable 
distribution for Vi, j.

Note that a reasonably accurate value is obtained with 
about 1000 iterations, and after 3000 iterations, the third 
decimal place is essentially fixed.

An Iterative Numerical Procedure: Gauss–Seidel

There are alternative solution techniques that can be applied 
to elliptic PDEs and we will now examine a straightforward 
iterative scheme; let us consider laminar flow in a rectangu-
lar duct for this example. By using the second-order central 
difference approximations for the second derivatives (where 
the i and j indices represent the x- and y-directions, respec-
tively), eq. (8.40) can be written as

1 2 21 1

2

1 1

2μ
dp

dz

V V V

x

V V V

y
i j i j i j i j i j i j≅
− +

+
− ++ − + −, , , , , ,

( ) ( )
.

∆ ∆
  (8.46)

If the discretization employs a square mesh (Δx = Δy), 
then we can isolate the term with the largest numerical coef-
ficient, with the convenient result:

V V V V V
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μ

  (8.47)

Please note that the z-direction subscript has been dropped 
from velocity to minimize clutter. This approximation is the 
basis for a simple Gauss–Seidel iterative computational 
scheme for the solution of such problems. In this case, of 
course, the velocity is zero on the boundaries, so we merely 
apply the algorithm to all of the interior points, row by row. 
The newly computed values are employed as soon as they 
become available (which distinguishes Gauss–Seidel from 
the Jacobi iterative method). As an example, consider the 
case of laminar flow in a rectangular duct 8  cm wide and 
4 cm high; the pressure gradient is −3 dyne/cm2/cm and the 
viscosity is 0.04 g/(cm s). All of the nodal velocities will be 
initialized to zero to start the computation.

For the specified pressure gradient, the centerline 
(maximum) velocity will be about 139 cm/s. The computed 
velocity distribution is shown in Figure 8.1 as a contour plot.

FIGURE 8.1.  Velocity distribution in a rectangular duct computed with the Gauss–Seidel iterative method. The duct measures 8 × 4 cm 
with dp/dz = −3 dyne/cm2/cm.
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FIGURE 8.2.  Centerline velocity as a function of the number of 
iterations for the solution of the Poisson equation for laminar flow 
in a rectangular duct as approximated by eq. (8.47).

10 100 1000
Number of iterations

C
en

te
rl

in
e 

ve
lo

ci
ty

 (
cm

/s
)

140

120

100

80

60

40

20

0

http://c8-fig-0002
http://c8-disp-0042
http://c8-fig-0001
http://c8-disp-0052


152    Numerical Solution of Partial Differential Equations

This is a steady-state problem so the temperature in the 
interior of the slab is governed by
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Results obtained from a typical program structure are 
shown in the contour plot provided in Figure 8.4.

Improving the Rate of Convergence with Successive 
Over-Relaxation (SOR)

The rate of convergence of iterative solutions can be  
accelerated significantly through use of the extrapolated 
Liebmann method (also known as successive over-relaxation, 
or SOR). In this technique, the change that would have 
been produced by a single Gauss–Seidel iteration is in
creased through the use of an accelerating factor, which  
is usually denoted by ω. SOR can be implemented easily 
in the previous example by a slight modification of  
eq. (8.47):
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The Vi, js appearing on the right-hand side of eq. (8.48) 
are from the latest available calculations, of course. You can 
see immediately that if ω = 1, this is identically the Gauss–
Seidel algorithm. For over-relaxation, ω will have a value 
between 1 and 2; the rate of convergence is very sensitive 
to the value of the acceleration parameter. Please see Smith 
(1965) for additional discussion. Frankel (1950) has shown 
that, for large rectangular domains such as that used in our 
example,

	 ω πopt ≈ − +
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


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1 1
2 2

1 2

p q

/

, 	 (8.49)

where p and q are the number of nodal points used in the 
x- and y-directions, respectively. For our case, p = 65 and 
q = 33, so ωopt ≈ 1.85. The consequences of a poor choice 
are shown clearly in Figure 8.3, where the number of itera-
tions required to achieve a desired degree of convergence 
is reported. While it is apparent that SOR can significantly 
reduce the computational effort required to solve elliptic 
PDEs, the acceleration parameter, ω, must be chosen care-
fully to obtain the greatest possible benefit. We should 
make one other observation regarding ω: In the iterative 
solution of nonlinear PDEs, stability can sometimes be 
maintained by using under-relaxation, that is, by setting 
ω < 1.

We will now illustrate the application of SOR with a very 
detailed example. Assume we have a mild steel slab; the 
left-hand side is maintained at 1000°, the bottom at 500°, 
and the top is insulated. The right-hand side loses heat to the 
surroundings according to

	 −
∂
∂

= −
=

= ∞k
T

x
h T T

x L
x L

( ). 	 (8.50)

FIGURE 8.3.  Number of iterations required to achieve ε  = 
2 × 10−7 as a function of ω. A Poisson-type equation for laminar 
flow in a rectangular duct is being solved and the minimum is 
located at about ω ≈ 1.86.
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          #COMPILE EXE
#DIM ALL
              REM *** Illustration of SOR computation for heat transfer in a steel slab
              REM *** Left-hand boundary maintained at 1000, bottom at 500, top is insulated, and right side loses heat
                  GLOBAL L,HT,h,k,dx,dy,iter,w,Tsur,i,j AS SINGLE
FUNCTION PBMAIN
                  DIM T(251,201) AS SINGLE
                  dx=0.1:dy=0.1:k=0.108:h=0.0203:Tsur=100:w=1.98
              REM *** initialize temperature
                      FOR j=1 TO 201
                             T(1,j)=1000
                             NEXT j
                      FOR i=2 TO 251
                             T(i,1)=500
                             NEXT i
                      iter=0
          50 REM *** continue
                  FOR j=2 TO 200
                      FOR i=2 TO 250
                             T(i,j)=T(i,j)+w/4*(T(i+1,j)+T(i-1,j)+T(i,j+1)+T(i,j-1)-4*T(i,j))
                                    NEXT i:NEXT j
              REM *** top boundary (insulated)
                             FOR i=2 TO 250
                                    T(i,201)=(4*T(i,200)-T(i,199))/3
                                    NEXT i
              REM *** right-hand boundary–Robin’s type BC
                             FOR j=2 TO 200
                                    T(251,j)=(-h*Tsur+k/(2*dx)*(-4*T(250,j)+T(249,j)))/(-3*k/(2*dx)-h)
                                    NEXT j
                                          iter=iter+1
                                              PRINT iter,T(150,100)
                                          IF iter>6000 THEN 200 ELSE 50
        200 REM *** continue
                      OPEN “c:STslab1.dat” FOR OUTPUT AS #1
                                    FOR j=1 TO 201
                                           FOR i=1 TO 251
                                                   WRITE#1,i,j,T(i,j)
                                                           NEXT i:NEXT j
                      CLOSE:END

As we indicated previously, the progress of such a compu-
tation (i.e., the rate at which one obtains a satisfactory solu-
tion) is very sensitive to the value selected for the relaxation 
parameter, ω. We will illustrate this by changing ω and moni-
toring the value of T(150,100) at exactly 500 iterations:

ω T(150, 100)

1.0 0.0122
1.1 0.0672
1.2 0.2837
1.3 0.9799

ω T(150, 100)

1.4 2.912
1.5 7.774
1.6 19.39
1.7 46.86
1.8 112.55
1.85 174.57
1.90 270.81
1.95 418.41
1.98 513.84
1.99 523.79
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single precision), and reporting only every other node  
for ease of comparison with the preceding results, we  
obtain

200 200 200 200 200 200 200
50 123.77609 153.79272 168.72809 179.47177 189.59695 200
50 91.29428 120.20753 140.88583 159.26443 178.76828 200
50 73.57849 94.815605 114.99994 137.57727 165.87845 200
50 58.76750 70.73545 86.72105 109.79236 146.24150 200
50 40.40302 42.99232 51.81481 68.67136 106.22386 200
50 10 10 10 10 10 200

These data indicate that the Mathcad solution obtained 
with relax is reasonably accurate, even with the coarse dis-
cretization we employed. The largest discrepancies between 
the two sets of results are on the order of 1.5%, and those 
errors appear on the bottom interior row. Of course, we can 
use exactly the same discretization (employing 13 ×  13 
matrices) in Mathcad, and when we do so, we get the  
following results on the diagonal (starting in the lower  
left-hand corner and proceeding toward the upper right):  
50, 40.403, 70.737, 115.002, 159.266, 189.597, and 200. 
These numbers are virtually identical with our do-it- 
yourself computation—the largest discrepancy is smaller 
than 0.002%.

PARABOLIC PARTIAL 
DIFFERENTIAL EQUATIONS

An Elementary, Explicit Numerical Procedure

Suppose we have viscous fluid that extends far in the 
y-direction, initially at rest near a plane wall that is set in 
motion with velocity, V0, at time, t =  0; thus, Vx(y =  0, 
t) = V0. Letting V = Vx/V0,

	
∂
∂
=
∂
∂

V

t

V

y
ν

2

2
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This scenario is known as Stokes’ first problem, and the 
analytic solution is just
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η 0 0.1 0.2 0.4 0.8 1.6 3.2
erf(η) 0.00 0.1125 0.2227 0.4284 0.7421 0.9764 1.0000

An explicit algorithm is easily developed for eq. (8.52); 
using a first-order forward difference for the time derivative 
followed by isolation of the V value on the new time step 
results in

The initial value for all of the interior nodes was 0°. Note 
that the correct temperature at this location, T(150, 100), 
is 523.8°.

Although we have purposefully tried to minimize con-
necting our discussions to specific computational software, 
the student needs to be aware that there are many commer-
cial packages that have capabilities for elementary PDEs. 
We will illustrate one such option here, using Mathcad™. 
Suppose we have a two-dimensional (square) slab of mate-
rial with the edges (T, B, L, R) maintained at the following 
temperatures: 200°, 10°, 50°, and 200°. The temperature in 
the slab will be governed by the Laplace equation, that is, 
eq. (8.48):
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Our discretization for this PDE is exactly the same as eq. 
(8.42), of course:

T T T T Ti j i j i j i j i j+ − + −+ + + − =1 1 1 1 4 0, , , , , .

The Mathcad function we will employ is relax(a, b, c, d, 
e, f, u, rjac). Note that a is the matrix of coefficients on 
(i + 1, j), and all of them are 1s. b is the matrix of coeffi-
cients for (i − 1, j), and again, these values are all 1s. c is 
the matrix of coefficients on (i, j + 1), all 1s, and d is the 
matrix of coefficients for (i, j − 1), also 1s. The matrix of 
coefficients for the central temperature (i, j) in the pattern is 
e, and of course, those values are all −4. f would correspond 
to the source term, if one were present. In our case, all of 
the fs are zero. The matrix u contains the constant boundary 
temperatures, and estimates for the interior nodes. rjac is a 
constant between 0 and 1 that affects the rate of convergence 
of the relaxation algorithm. For the simple problem we are 
considering here, the Mathcad procedure is not much 
affected by the choice of rjac. Using 25 interior nodes (so 
the coefficient matrices are all 7 × 7), we obtain the follow-
ing result:

relax( , , , , , , , . )

.

a b c d e f u 0 5

200 200 200 200 200 200 200

50 123 747 153

=

.. . . .

. . . .

013 168 152 179 073 189 353 200

50 91 977 120 151 140 523 158 788 1178 341 200

50 74 009 95 093 115 137 214 165 221 200

50 58 967 71 21

.

. . . .

. . 22 87 169 109 848 145 33 200

50 40 646 43 619 52 617 69 679 106 252 2

. . .

. . . . . 000

50 10 10 10 10 10 200













.

Naturally, the first question one should ask concerns the 
reliability of this computation: How accurate is it? To address 
this, we will refine the mesh and compute the interior tem-
peratures ourselves using one of the algorithms we have 
already discussed. Using 13 nodes in each direction (and 
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the analytic solution for this particular point is 1  − 
erf(0.8964) =  0.205, so the discrepancy produced by the 
explicit computation amounts to a little less than 7%. Though 
larger than we would like, this would still be satisfactory for 
many applications.

The Crank–Nicolson Method

Consider a transient diffusion problem in two spatial 
dimensions:
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, 	 (8.55)

where C is the molar concentration of the species of interest 
and D is the diffusivity.

If we were to solve this problem using the explicit 
approach described in the previous section, we would have 
to choose Δt such that

	 ∆
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≤ 	 (8.56)

If the problem required enhanced spatial resolution, 
then the time-step size, Δt, would need to be very small, 
and the required computational effort might be excessive 
(particularly in view of the large time required for the 
concentration field in many diffusion problems to develop, 
for example, in liquids, D  ≈  10−5  cm2/s). To illustrate, 
suppose that Δx = Δy =  1/20 and D =  1/10; then, 80 
Δt ≤  1/2 and Δt must be less than 0.00625. Fortunately, 
there are alternatives and the Crank–Nicolson method is 
one option.

In the Crank–Nicolson approach, a first-order forward 
difference is used for the time derivative, and the second 
derivatives (the molecular transport terms) are written twice, 
once on the present time-step row, t, and once for t + Δt. 
The arithmetic average of the two values is used in the 
computation. Let the i, j, and k indices correspond to x, y, 
and t, respectively. The scheme can be written out as

	 V
t

y
V V V Vi j i j i j i j i j, , , , ,

( )
.+ + −= − +[ ]+1 2 1 12

∆
∆

ν
	 (8.53)

Equation (8.53) is attractive because of its simplicity; it 
is easy to understand and easy to execute, but it poses a 
potential problem. To ensure stability, it is necessary that

	
∆
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ν
( )

.
2

1

2
≤ 	 (8.54)

We will illustrate this using eq. (8.53) by choosing 
ν =  0.05 cm2/s, Δy =  0.1  cm, and Δt =  0.12 second; of 
course, this guarantees that we are over the limit of ½ (actu-
ally 0.6). We can put the calculation into Table 8.1 and 
monitor the evolution of the nodal velocities, which will 
reveal the consequence of our choices. Since the analytic 
solution for this problem is known, we have a convenient 
comparison available.

The problem revealed by Table 8.1 is easy to resolve. We 
change our parametric choices to yield Δtv/(Δy)2 = 0.4 and 
repeat the calculation.

This is an important lesson. If we need good spatial reso-
lution, Δy will be small and Δt will need to be very small, 
perhaps prohibitively small. Fortunately, we do have options 
that will work well for this type of problem. Before we 
consider them, however, we will look specifically at the 
entry in Table 8.2 for i = 4 and t = 7Δt (which is 0.2190); 

TABLE 8.1.  Explicit Computation with Unstable Parametric Choice(s)

t i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

0 1 0 0 0 0 0 0
Δt 1 0.6 0 0 0 0 0

2Δt 1 0.48 0.36 0 0 0 0
3Δt 1 0.72 0.216 0.216 0 0 0
3Δt 1 0.5856 0.5184 0.0864 0.1296 0 0
4Δt 1 0.7939 0.2995 0.3715 0.0259 0.0777 0
5Δt 1 0.6209 0.6394 0.1210 0.2644 0 0.0467
6Δt 1 0.8594 0.3173 0.5181 0.0197 0.1866 −0.0093
7Δt 1 0.6185 0.7630 0.0986 0.4189 −0.0311 0.1306

TABLE 8.2.  Explicit Computation with Stable Parametric 
Choice(s)

t i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

0 1 0 0 0 0 0 0
Δt 1 0.4 0 0 0 0 0

2Δt 1 0.48 0.16 0 0 0 0
3Δt 1 0.56 0.224 0.064 0 0 0
4Δt 1 0.6016 0.2944 0.1024 0.0256 0 0
5Δt 1 0.6381 0.3405 0.1485 0.0461 0.0102 0
6Δt 1 0.6638 0.3872 0.1843 0.0727 0.0205 0.0041
7Δt 1 0.6859 0.4158 0.2190 0.0965 0.0348 0.0090
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of 0°. At t =  0, the temperature of the left-hand side is 
instantaneously raised to 1000° and the top edge to 600°. 
The other two edges are maintained at 0° for all time. In this 
case, of course, the governing equation is
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which is completely analogous to eq. (8.55). We are inter-
ested in the temperature distribution in the slab at t =  50 
seconds. We first compute the result explicitly, using 
Δt = 0.01 second, which corresponds to 5000 time steps. 
The results are shown in the following array:

600 600 600 600 600 600 600
1000 644.62 461.64 374.39 324.39 245.17 0
1000 607.64 348.74 217.09 153.31 96.47 0
1000 570.37 280.35 133.69 70.72 36.25 0
1000 525.29 231.49 91.31 36.06 14.12 0
1000 404.95 154.94 53.92 17.69 5.51 0
1000 0 0 0 0 0 0

Now we carry out the computation a second time, but we 
use Crank–Nicolson with Δt  =  50 seconds; that is, we 
employ just one time step! We should not expect the two sets 
of results to compare favorably:

600 600 600 600 600 600 600
1000 831.73 520.05 430.11 389.99 314.98 0
1000 715.85 311.76 183.87 134.90 89.89 0
1000 674.36 242.93 103.88 55.70 29.52 0
1000 637.82 205.64 71.53 28.78 11.86 0
1000 521.68 144.47 43.21 14.42 4.92 0
1000 0 0 0 0 0 0

By no means is this acceptable. But remember that we 
have replaced 5000 time steps (explicit) with just one 
(Crank–Nicolson). If we reduce the total time by a factor of 
10, that is, we carry out the calculations to t = 5 seconds 
using both the explicit technique with Δt = 0.01 second and 
a single 5 s step with Crank–Nicolson, the typical discrep-
ancy is just a few percent. And, if we drop down to 2 seconds 
to compare 200 time steps (explicit) with just one (Crank–
Nicolson), we find that the typical difference for values in 
the first interior column (at t = 2 seconds) is less than 0.5%; 
this is illustrated as follows:

Explicit Crank–Nicolson

88.39 88.21
57.79 57.52
56.87 56.67
56.82 56.61
55.25 55.13
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	 (8.57)

Of course, this algorithm is implicit, which means that a 
set of simultaneous algebraic equations must be solved to 
advance to the new time-step row, k +  1, that is, t + Δt. 
Note that the computational pattern involves five points: the 
central node, i, j, then left and right, and up and down. The 
Crank–Nicolson method is stable for any value of Δt. We 
employ a square mesh so that Δx = Δy and isolate the k + 1 
values on the left-hand side of the equation:
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An attractive feature of this approach is that the coeffi-
cients for the computational pattern on the new time-step 
row are simply
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Let us illustrate the advantages offered by Crank–
Nicolson with an example. Suppose we have a slab of mate-
rial with a thermal diffusivity (α) of 0.03  cm2/s, which is 
roughly characteristic of minerals like fluorite and quartz. 
The slab measures 6 × 6 cm and it has an initial temperature 
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material is at a uniform initial temperature of 100°. At t = 0, 
one face (the bottom) is instantaneously heated to 400°. Let 
Δx = Δy = 1, as well as α = 1 and Δt = 1/8. We rewrite 
eq. (8.60a) isolating the k + 1 terms on the right-hand side:

− + −








 −

= −

+ −

+ +

T
x

t
T T

T

i j k i j k i j k

i j k

, , , , , ,

, ,

( )
1

2

1

1 1

2
∆
∆α

22
2

1 1 1+








 ++ − +

( )
., , , ,

∆
∆
x

t
T Ti j k i j k

α

  (8.61)

Now we will illustrate the process with a simple square 
slab; the top, left, and right sides are all maintained at 100°. 
The bottom will be set to 400°. The nine interior nodes are 
initialized at 100°.

(1, 5) (5, 5)

(1, 1) (5, 1)

We apply eq. (8.61) at the interior points, row by row; 
the first horizontal sweep results in

100 100 100
100 100 100
133.67 136.73 133.67

for the nine interior points. Now we recast eq. (8.60b) for 
application to the columns to advance to the k + 2 time step:
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We solve the simultaneous equations that result from 
applying this algorithm to the columns and obtain

100.55 100.6 100.55
105.5 106 105.5
154.42 159.37 154.42

If the total number of equations is modest, then a direct 
elimination scheme can be used for solution. The coefficient 

Because Crank–Nicolson is so easy to use in one spatial 
dimension, the reader is encouraged to try applying the 
method to the following slab example. The initial tempera-
ture of the semi-infinite slab is zero; at t = 0, the temperature 
of the front face is elevated to 500°. Given a thermal diffu-
sivity of 0.12 cm2/s, we compute the temperature distribu-
tion in the slab using both the analytic solution,

θ
α

=






erfc

y

t4
,

and Crank–Nicolson with a single time step. After 16 
seconds, the temperature profiles appear as shown here:

y (cm) 0 1 2 3 4 5 6 7
T, analytic 500 303.5 154.2 65.9 23.9 7.5 2.1 0.5
T, CN 500 375 140.6 52.7 19.8 7.4 2.8 1.0

Again, the reader should note that the Crank–Nicolson 
calculation employed just one 16-second time step; he/she 
might also consider repeating the calculation but with 
Δt = 1 s.

Alternating-Direction Implicit (ADI) Method

The Peaceman and Rachford (1955) or ADI method can be 
particularly useful for the types of parabolic PDEs we have 
been discussing, and it is more efficient than Crank–
Nicolson. Let the indices i, j, and k represent x, y, and t, 
respectively. We will use transient conduction in two spatial 
dimensions for our example:
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The first half of the ADI algorithm is used to advance to 
the k + 1 time step:
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and the second half takes us to k + 2:
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Note that neither step can be repeated unilaterally. Let us 
examine a simple application. A two-dimensional slab of 
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We will take the thermal conductivity of the medium  
to be 0.075 cal/(cm s °C) and discretize the equation letting 
Δx, Δy, and Δz all be 0.16667 cm. Accordingly, the number 
of interior mesh points will be 205,379. We will use a first-
order forward difference for the time derivative and second-
order central differences for the conduction terms:

T T

t x
T T Ti j k i j k

i j k i j k i j k
, , , , , ,

, , , , , , , , ,
( )

2 1

2 1 1 1 1 1 1

−
≅ + ++ − +

∆ ∆
α

++[

+ + − ]

−

+ −

T

T T T

i j k

i j k i j k i j k

, , ,

, , , , , , , , ,

1 1

1 1 1 1 16
		  (8.64)

Our intent is to solve the equation explicitly by forward-
marching in time. We will employ just two values for the 
time index, 1 and 2, corresponding to the old and new time 
steps (this is done to minimize storage requirements). We 
will take the thermal diffusivity, α, to be 0.088 cm2/s and 
the time step, Δt, to be 0.01 second, resulting in

	 ∆
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which is much less than the limit for stability (recall that  
the limit is 1/2). We can get a sense of how T(x, y, z, t) 
develops by looking at the top surface of the cube at t = 
7.5, 15, 30, and 60 seconds; these results are shown in  
Figure 8.6.

The sequence of contour plots shown in Figure 8.6  
reveals the speed with which thermal energy is conveyed 
throughout the cube. Although the explicit method was used 
to solve this problem, the execution time was not prohibi-
tively long, despite the fact that each time step required 
approximately 212,000 calculations. Since Δt was 0.01 
second, about 1.27 × 109 calculations were required to reach 
t =  60 seconds. The ease with which this problem was 
solved suggests that many heat and mass transfer problems 
involving three spatial dimensions can be handled exactly 
this way.

HYPERBOLIC PARTIAL 
DIFFERENTIAL EQUATIONS

Perhaps the best-known example of a hyperbolic PDE is  
the “wave” equation; for one spatial dimension, it can be 
written as
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Of course, our immediate thought with respect to a physi-
cal interpretation might center on a vibrating string. But 

matrix follows the tridiagonal pattern (with 1, −10, 1 for the 
selected parameters), so the process is easy to automate. 
Smith (1965) states that for rectangular regions the ADI 
method requires about 25 times less work than an explicit 
computation. Carrying out the procedure to t = 1.75 yields

114.91 120.25 114.91
146.35 161.01 146.35
221.06 247.42 221.06

for the interior nodes. Chung (2002) notes that this scheme 
is unconditionally stable, which makes it very attractive for 
problems in which the time evolution is slow; that is, we can 
employ a very large Δt relative to the elementary explicit 
technique and still obtain acceptable accuracy.

Three Spatial Dimensions

Naturally, the solution techniques for parabolic PDEs that 
we have discussed in this section can be extended to three 
dimensions as we shall now demonstrate. Consider a cube 
of solid material, measuring 10 cm on each side, initially at 
some uniform temperature, Ti. At t = 0, the temperatures of 
the four vertical faces are instantaneously changed to ele-
vated values. In particular, the front face will be 400°, the 
right-hand face 200°, the left-hand face 1000°, and the back 
600°. The bottom of the cube is insulated and the top hori-
zontal surface will lose thermal energy to the surroundings 
by Newton’s law of cooling. A sketch of the arrangement 
appears in Figure 8.5.

The governing equation for this case is just
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FIGURE 8.5.  Cube of material with four vertical sides maintained 
at different temperatures for all t > 0.
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wavelike behavior can be found for many different phenom-
ena, including electrical and magnetic fields and even nerve 
impulses (for the latter, the interested reader should explore 
the FitzHugh–Nagumo model).

Because the wave equation has been around since the 
middle of the eighteenth century, much is known about its 
solutions. In fact, the reader is encouraged to apply the vari-
able transformation,

	 r x ct s x ct= + = −and , 	 (8.67)

to eq. (8.66) to reproduce d’Alembert’s solution process 
from 1747. This approach is of particular interest to us 
because it represents a special case of the technique we wish 
to discuss, the method of characteristics. The name of this 
technique arises from the fact that, at every point in the x-t 
plane, two characteristic directions can be identified for 
which ordinary differential equations can be used to “solve” 
eq. (8.66) in a stepwise process.

Before we begin that discussion, we will illustrate several 
important points using an extremely simple first-order  
“constant coefficient advection” (first-order wave equation) 
model:
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3 0. 	 (8.68)

We let φ(x, t =  0) =  0 and introduce the disturbance 
(at x =  0) that will propagate in the x-direction. We can 
use this particular model to underscore some of the prob-
lems that one may encounter with hyperbolic PDEs. First, 
we will introduce a finite-duration impulse (with finite 
amplitude) and solve eq. (8.68) numerically using an 
explicit approach. Since the “velocity” in the x-direction 
is “3,” we will solve the equation for specific times of 1/3, 
2/3, . . . , 5/3; thus, the advected disturbance should be cen-
tered at 1, 2, . . . , 5.

The result depicted in Figure 8.7 is probably not what 
you expected. We can make the nature of the problem even 
clearer by inputting a unit step change at x =  0, letting 
the “sharp-edged” step be carried along in the positive 
x-direction; this is illustrated in Figure 8.8.

It may be apparent to you that this result also fails to meet 
expectations; for a homogeneous wave equation in one 
dimension, the shape of the traveling wave should not 
change! We will now demonstrate what should have 
transpired. We first do this using a familiar technique, the 
Laplace transform, which will eliminate the time derivative. 
Applying the transform and solving the subsidiary equation 
results in

	 φ( ) exp .s C
sx
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3
	 (8.69)

FIGURE 8.6.  Evolution of the temperature distribution on the top 
surface of the cube; the four contour plots correspond to 7.5, 15, 
30, and 60  s (top to bottom). For the two-dimensional top view 
shown here, the right-hand edge is maintained at 200°, the left-hand 
side at 1000°, the bottom at 400°, and the top at 600°.
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In other words, the unit step disturbance propagates 
downstream unchanged according to the analytic solution—
exactly like the behavior of an idealized plug-flow tubular 
reactor! It is apparent that we need a more accurate solu-
tion technique than the explicit procedure and one that has 
been much used in the solution of hyperbolic PDEs is the 
method of characteristics. The reader may find additional 
detail helpful; consultation with Smith (1965) or Sarra 
(2003) is recommended.

The Method of Characteristics

We direct our attention toward a particular curve given by 
(x(s), t(s)). We let the derivatives dt/ds and dx/ds be equated 
to the coefficients on the ∂φ/∂t and ∂φ/∂x terms in eq. 
(8.68). Please note what the consequence of this action is! 
Therefore,

	
dt

ds

dx

ds
= =1 3and . 	 (8.71)

For the latter, we find x = 3s + C1; for s = 0, we have x = x0, 
and thus, x0 = x − 3s. From the former of this pair, we find 
t = s + C2, where C2 = 0; that is, for this type of problem, 
there is only one characteristic equation to solve. Therefore, 
x0 = x − 3t and φ = f(x − 3t); we have identified the trans-
formation from (x, t) to (x0, s).

We will now look at an example that permits us to more 
fully gauge the usefulness of the method of characteristics. 
Consider the behavior of an ideal string suspended between 
supports located at x =  0 and x =  L, where L =  2. The 
velocity of propagation will be taken as 1 (i.e., c =  1); 
therefore,
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. 	 (8.72)

The initial shape of the string is specified, f(x, 0) = sin(πx), 
and the initial velocity is zero. The analytic solution for this 
case is known and we will want to make use of it:
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  (8.73)

Some results from this equation are presented graphically 
in Figure 8.9 for specific x positions corresponding to 
x = 1/16, 1/8, 1/4, 1/2.

We begin with values taken from a “curve” along which 
the u(x, t)s are known.

The unit step is put in at the left-hand boundary; that is, 
at x = 0, φ(s) = 1/s. Therefore,

	 φ( ) exp .s
s

sx
= −









1

3
	 (8.70)

We can invert directly by consulting a table of transforms. 
Letting k = x/3, we find

φ φ= < < = >0 0 1, , .for and ift k t k

FIGURE 8.7.  Propagation of a finite impulse in the x-direction 
due to a constant velocity of 3.
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FIGURE 8.8.  Advection of a unit step in the x-direction due to 
the constant velocity, 3.
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which yields uR = 0.3371. The reader should turn immedi-
ately to the results presented in Figure 8.9 and estimate the 
value of u at this new point, R—the value is approximately 
0.34. In this case, the linear extrapolation combined with  
the use of the average slopes has produced a very good 
estimate.

Smith (1965) shows how this estimate for the dependent 
variable u can be subsequently refined by using the average 
slopes to improve the coordinates of the projected position—
which are, in turn, used to get improved slopes. In this 
manner, very accurate solutions for hyperbolic PDEs can be 
obtained through iteration; however, the technique is not the 
easiest to automate and for that reason is probably not used 
as commonly as it once was. There is an FDM for solution 
of some hyperbolic PDEs that is extremely easy to imple-
ment and it is described in the next section.

The Leapfrog Method

Let us now return to the familiar wave equation with one 
spatial dimension,
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x
, 	 (8.76)

and formulate one possible finite-difference approximation 
for it:
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We now isolate the value on the new time-step row:

u
c t

x
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Since c has dimensions of velocity, l/t, it is clear that the 
quotient,

c t

x

2 2

2

( )

( )
,

Δ
Δ

is dimensionless. In fact, it is the Courant number, Co, 
squared of course. Notice what happens if we select Co = 1; 
the finite-difference approximation is now simply

	 u u u ui j i j i j i j, , , , .+ + − −≅ + −1 1 1 1 	 (8.79)

This very compact expression forms the basis for what is 
called the “leapfrog” method and it will allow us to solve 
certain wave-equation problems. You may notice, however, 
that the algorithm requires values for two previous time 
steps; that is, it is not self-starting.

The slopes of the “characteristic” directions are obtained 
from the roots of the quadratic equation:
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1 0, 	 (8.74)

and of course, these values are +1 and −1. We use these 
slopes to extrapolate from known positions, P and Q, to a 
new position, R. The initial points for this example are 
selected from Figure 8.9: Let (xP, tP) =  (1/8, 0.2) and (xQ, 
tQ) = (1/4, 0.2). The new point is identified from the linear 
approximations,

t t x x t t x xR P R P R Q R Q− =+ − − =− −1 1( ) ( ).and
		  (8.75)

The solutions for the simultaneous eq. (8.75) are 
xR =  3/16 and tR =  0.2625. We now use the differential 
relationships along the characteristics to obtain new esti-
mates for p = ∂u/∂x and q = ∂u/∂t. These slopes (for posi-
tions P and Q), in turn, allow us to estimate the change in 
the dependent variable, u; we use the average of the initial 
and projected slopes to compute this change (and hence, the 
new value for the displacement, u). It is easy to show that

q p p q qR Q P P Q= − + +
1

2
[ ].

For the points selected from Figure 8.9, pP  =  2.12, 
pQ  =  0.9, qP  =  −0.714, and qQ  =  −1.438. Therefore, 
qR = −1.686 and pR = 1.148. Since the change in the depen-
dent variable, u, is just du = pdx + qdt, we find that

u u p p x x q q t tR P P R R P P R R P− = + − + + −
1

2

1

2
( )( ) ( )( ),

FIGURE 8.9.  Analytic solution for the wave (eq. 8.72) for specific 
x positions, 1/16, 1/8, 1/4, and 1/2.
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Inclusion of such terms in a model represents a serious 
escalation in difficulty as we shall see. However, a limited 
class of such problems can be solved readily using tech-
niques that are already familiar to us.

Imagine a situation in which a chemical species with 
concentration C is carried in the z-direction by fluid motion. 
Furthermore, assume that any mixing that occurs—possibly 
as a result of turbulence—can be represented as though it 
were diffusive in character. One model for this phenomenon 
can be written as
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. 	 (8.85)

This is an axial dispersion model in which the velocity 
in the z-direction is taken to be constant. Let the index i 
represent z position and j represent time; one possible dis-
cretization for this equation is
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		  (8.86)

Now let us suppose that we have initial values for both 
position and velocity such that
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if we set j = 1, then this derivative is just
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We take this result back to the leapfrog algorithm and (letting 
j = 1) isolate ui,2. Therefore,

	 u f f tgi i i i, .2 1 1
1

2
2= + +[ ]+ − ∆ 	 (8.82)

This allows us to get the computation started.
We will now illustrate how this works with a typical 

example. Suppose we have a “string” stretched between 
supports located at x = 0 and x = L. The “string” is perfectly 
elastic and is under great tension such that the gravitational 
force is unimportant. The displacement (deflection) of the 
string is described by the wave equation:
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. 	 (8.83)

The string has an initial displacement and an initial veloc-
ity given by u(x, 0) = f(x) and (∂u/∂t)|t=0 = g(x), respectively. 
We will take L = 10, an initial velocity of zero, but an initial 
deflection described by u = x for 0 < x < 1 and u = 1 − 
(x − 1)/9 for 1 < x < 10. We will use the leapfrog method 
to compute the string’s displacement as a function of time. 
Note that the initial deflection propagates to the right (and 
down) as illustrated in Figure 8.10.

ELEMENTARY PROBLEMS WITH 
CONVECTIVE TRANSPORT

Our focus in this section concerns problems in which con-
vection is important; that is, problems where momentum, 
heat, mass, and so on, are transported by virtue of a nonzero 
velocity vector component. Examples of the terms of  
interest are
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FIGURE 8.10.  Computed string displacement for times of 0.06, 
0.36, 0.72, 1.08, and 1.44; we can render these ts dimensionless 
using ct/L and the corresponding values are 0.03, 0.18, 0.36, 0.54, 
and 0.72. The position index of 200 corresponds to L = 10.
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expected conversion). The model itself, eq. (8.85), can be 
augmented to account for radial dispersion by incorporating 
two dispersion coefficients:
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We turn now to an example of convective heat transport. 
Consider laminar flow in a duct (formed by parallel walls); 
the lower wall is located at y =  0 and the upper wall at 
y = B. The flow is fully developed and the fluid enters at a 
uniform (low) temperature. The heated walls are maintained 
at a higher temperature and heat transfer to the fluid occurs 
as the fluid moves in the x-direction. This is a steady-state 
problem with the velocity distribution given by

	 v
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The appropriate energy equation for this case is
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Note that conduction terms in both the transverse and 
flow directions have been included. The latter can be 
neglected if the product of the Reynolds and Prandtl numbers 
(RePr) is greater than about 100, and for many liquids, this 
is likely to be the case. Therefore,
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Please note that an upwind difference has been used in 
the convective transport term. The significance of this choice 
will be discussed in the next section—for now, we will 
simply operate on the assumption that this is appropriate. If 
we multiply by Δt and add Ci,j to both sides of the equation, 
we obtain an elementary explicit algorithm:
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The reader might wonder why we have not chosen a 
“better” approximation for the first derivative, ∂C/∂z. For 
example, we could select a second-order central difference 
where
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Please consider trying this change yourself; it is worth 
taking a little time to discover that it will not work! The 
result of the computation is unphysical.

Now assume that some finite pulse is put into the flow 
at the entrance where z =  0; our intent is to model the 
behavior of this pulse as it is carried downstream by the 
flow. However, there is an obvious limitation to our mod-
eling approach: If the length of the test section is L, then 
at a time corresponding to L/V (actually a little before), 
the tracer pulse will reach the outflow boundary. Naturally, 
an outflow boundary condition of C(z =  L, t) =  0 would 
be violated. This a common, recurring problem in the 
computational solution of transport problems—an outflow 
condition is necessary, but specification of the wrong one 
will constrain the solution and produce an incorrect result. 
An obvious “remedy” is to stop the computation before 
the tracer pulse arrives at the far end of the computational 
domain. Let us explore how this very simple computa-
tional model performs; we set V = 2, D = 1/4, Δz = 0.2, 
and Δt =  0.005. The inlet concentration is set to 2 for 
0 <  t <  0.4, and then it reverts to zero. The evolution of 
the input pulse is illustrated in Figure 8.11.

Since the fluid velocity is 2, the successive peaks are 
centered at axial positions corresponding to 2t, of course. 
The dispersion is causing the attenuation of the initial pulse 
height and the broadening of the distributions; note that by 
t = 50, the tracer is covering axial positions from 80 to 120, 
which is double the width seen at t = 10. The significance 
of the dispersion model illustrated in this example is that eq. 
(8.85) allows us to characterize the performance of a flow 
reactor. By monitoring an inert tracer injected into the 
reactor, we can evaluate V and D (and thus the Peclet 
number). These results can be used in turn through the inclu-
sion of chemical kinetics to predict performance (i.e., 

FIGURE 8.11.  Dispersion model results for a flow reactor with 
Pe = VL/D = 6400 at times corresponding to 10, 20, 30, 40, and 
50. Note that Pe is a kind of Peclet number for mass transfer.
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material is transported as the velocity distribution develops. 
The two governing equations are
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and
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Notice that we have omitted molecular (diffusional) 
transport in the θ-direction as it should be small relative to 
convective transport once the velocity distribution begins to 
develop. Our solution strategy is as follows: We will solve 
the discretized version of eq. (8.94) explicitly by forward-
marching in time. Each time we compute a new velocity 
distribution, we will use vθ(r, t) in the discretized version of 
eq. (8.95) to calculate C over the entire array of r and θ 
positions: R1 ≤ r ≤ R2 and 0 ≤ θ ≤ 2π. Of course, we must 
use upwind differencing for the convective transport term

v

r

Cθ

θ
∂
∂









since we are using the explicit technique. A complete pass 
through both equations corresponds to a time step. We 
merely repeat the process until the desired final time is 
attained. An elementary code for the computational process 
is included here:

#COMPILE EXE
#DIM ALL
    REM *** Convective transport example
        GLOBAL i,j,dt,dth,dr,R1,R2,kvis,D,w,d2vdr2,dvdr,r

pos AS SINGLE
        GLOBAL tt,zz,d2cdr2,dcdr,dcdth AS SINGLE
FUNCTION PBMAIN
        DIM v(91,2) AS SINGLE
        DIM C(91,91,2) AS SINGLE
            dr=0.03333:dth=0.069813:kvis=0.02:D=0.001:

w=3:R1=5:R2=8
            dt=0.001
    REM *** initialize velocity and cencentration fields
            FOR i=1 TO 90
               v(i,1)=0
               NEXT i
                  v(91,1)=w*R2
               FOR i=1 TO 90
                  FOR j=1 TO 90
                    c(i,j,1)=0
                    NEXT j:NEXT i
                      FOR i=1 TO 5
                        FOR j=1 TO 5

where A = (1/2μ)(dp/dx). Such problems provide us with an 
opportunity for simple solution by forward-marching in the 
x-direction; we discretize the equation so that
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We now have an algorithm that allows us to march down-
stream, computing new temperatures as we go, given the 
initial uniform inlet temperature distribution. Let us illus-
trate how this is going to work with an example; we select 
an inlet temperature of 10°C and maintain the parallel walls 
at 50°C. We take the fluid to be water with α = 0.00147 cm2/s 
and Pr = 6.8. The pressure gradient, dp/dx, is set to −0.1778 
dyne/cm2/cm. We expect the temperature distribution to 
evolve slowly—after all, we are relying on molecular con-
duction to carry the thermal energy into the interior of the 
fluid. In fact, Figure 8.12 shows that the bulk fluid tempera-
ture is only 21.2°C at x = 160 cm; even by x = 400 cm, the 
bulk fluid temperature is only 29.94°C.

In the last example of this section, we would like to treat 
the case of mass transfer in the annular space between con-
centric cylinders. The fluid contained within is initially at 
rest, but at t = 0, the outer cylinder (located at r = R2) begins 
to rotate with constant angular velocity, ω. Of course, this 
means that the tangential velocity vector component at the 
wall is vθ(r = R2) = ωR2. We place a small spot of inert tracer 
adjacent to the inner wall; we are interested in how this 

FIGURE 8.12.  Heat transfer to fully developed laminar flow 
between parallel walls, 1.5 cm apart. Temperature distributions are 
shown for x positions of 20, 40, 80, and 160  cm. The walls are 
maintained at 50°C and the fluid (water) enters the heated section 
with a uniform temperature of 10°C. The fluid properties are taken 
as constant, although that is a bit of a stretch since the viscosity of 
water at 50°C is only about 0.55 cp.
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                          c(i,j,1)=1
                          NEXT j:NEXT i
               tt=0
    100 REM *** continue
    REM *** compute revised velocities
        FOR i=2 TO 90
           rpos=R1+(i-1)*dr
           d2vdr2=(v(i+1,1)-2*v(i,1)+v(i-1,1))/dr∧2
           dvdr=(v(i+1,1)-v(i-1,1))/(2*dr)
           v(i,2)=dt*kvis*(d2vdr2+1/rpos*dvdr-v(i,1)/

rpos∧2)+v(i,1)
           NEXT i
           FOR i=2 TO 90
             v(i,1)=v(i,2)
             NEXT i
    REM *** begin computation for concentration field
        FOR j=2 TO 90
          FOR i=2 TO 90
             d2cdr2=(c(i+1,j,1)-2*c(i,j,1)+c(i-1,j,1))/dr∧2
             dcdr=(c(i+1,j,1)-c(i-1,j,1))/(2*dr)
             dcdth=(c(i,j,1)-c(i,j-1,1))/dth
                rpos=R1+(i-1)*dr
       c(i,j,2)=dt*D*(d2cdr2+1/rpos*dcdr)-v(i,1)/

rpos*dcdth*dt+c(i,j,1)
                   NEXT i:NEXT j
                     FOR j=2 TO 90
                       FOR i=2 TO 90
                         c(i,j,1)=c(i,j,2)
                         NEXT i:NEXT j
                         FOR i=2 TO 90
                            c(i,91,1)=c(i,90,1)
                            c(i,1,1)=c(i,91,1)
                            NEXT i
       tt=tt+dt
               PRINT c(6,6,1),c(7,7,1),c(8,8,1),c(9,9,1)
                    IF tt<55 THEN 100 ELSE 300
300 REM *** continue
      OPEN “c:MTcylind.dat” FOR OUTPUT AS #1
         FOR j=1 TO 91
            FOR i=1 TO 91
               WRITE#1,i,j,c(i,j,1)
               NEXT i:NEXT j
            CLOSE:END

Figure 8.13 illustrates the progress of the tracer (contami-
nant) plume as the velocity distribution develops. Remem-
ber, the outer cylinder is put in motion at t  =  0 with 
vθ(r = R2) = ωR2. The inner cylinder is fixed (stationary) so 
at very small t, mass transfer occurs mainly by molecular 
diffusion.

In the three examples of convective transport provided 
earlier, we were able to find solutions with familiar, elemen-
tary numerical procedures. Of course, in all cases, we had 
only one nonzero component of the velocity vector. The 

situation for transport involving two-dimensional flows is 
more difficult, but a very useful procedure for such problems 
is described in the next section.

A NUMERICAL PROCEDURE FOR TWO-
DIMENSIONAL VISCOUS FLOW PROBLEMS

We now will describe a very powerful technique that can be 
used to solve a host of important flow and transport problems 
in two dimensions. We begin by writing down the governing 
equations for the motion of an incompressible fluid:
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and
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These three equations must be solved simultaneously for 
the general problem we are contemplating. The main diffi-
culty in such cases—and one that plagues CFD—is the 
determination of p(x, y, t). As the flow field evolves, p(x, y, 
t) must change to ensure that continuity is satisfied (i.e., 
∇  ∙ v = 0). In the approach we are about to describe, the 
problem of p(x, y, t) is circumvented.

We now cross differentiate eq. (8.96) and eq. (8.97), 
resulting in
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The vorticity vector component, which for two-
dimensional flow in the x-y plane is a measure of rotation 
about the z-axis, is defined by

	 ωz
y xv

x

v

y
=
∂
∂
−
∂
∂







. 	 (8.101)

http://c8-fig-0013
http://c8-disp-0118
http://c8-disp-0119


166    Numerical Solution of Partial Differential Equations

FIGURE 8.13.  Transport of the tracer plume between concentric cylinders. The inner cylinder is at rest and the outer cylinder begins to 
rotate with constant angular velocity at t = 0.
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presence of the convective transport terms. Consider the case 
of the x-direction transport of thermal energy; for explicit 
solution, the convective transport term, vx(∂T/∂x), is taken to 
the right-hand side and the equation is discretized. We mul-
tiply by Δt and observe that a dimensionless quotient has 
now appeared: Δtvx/Δx. This is the Courant number, Co 
(that we saw in the previous section), and its value must be 
between 0 and 1 if the elementary explicit scheme is to work 
successfully. Furthermore, the temperature gradient or deriv-
ative, ∂T/∂x, must be written in the “upwind” form so that 
a disturbance is only advected in the direction of the fluid 
motion (by the term “advection,” we mean transport by fluid 
motion in a particular direction). Let us illustrate by assum-
ing that the velocity in the x-direction can be taken to be a 
positive constant, V, then the first two terms in eq. (8.105) 
are written as
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and therefore,

	 T Co T CoTi j i j i j, . ,( ) .+ −≅ − +1 11 � 	 (8.107)

We will now explore the application of this technique to 
flow resulting from natural convection in enclosures (a Ray-
leigh–Bénard problem). A viscous fluid, initially at rest and 
at uniform temperature, is contained within a rectangular 
enclosure. At t = 0, the temperature of the bottom surface 
is elevated and buoyancy-driven fluid motion ensues. The 
warmer fluid will rise and the cooler fluid will fall, setting 
up a pattern of recirculation. We assume that the rectangular 
vessel is two-dimensional and that the Boussinesq approxi-
mation is adequate for a description of the buoyancy effect 
(this means that the fluid density is actually treated as con-
stant in the equations of motion, but a buoyancy force term 
is appended). Buoyancy affects the vertical (or y-component) 
of the Navier–Stokes equation, which must be modified by 
the addition of ρgβΔT, where β is the coefficient of volu-
metric expansion (e.g., for an ideal gas, this is merely 1/T, 
so at 300 K, β = 0.0033). For these example calculations, 
the Prandtl and Grashof numbers are Pr  =  6.75 and 
Gr =  1000, respectively. The width-to-height ratio for the 
rectangular duct is 2.47, and the size of this ratio determines 
the number of convection rolls that will ultimately appear in 
the enclosure.

Of course, it is entirely appropriate to question the accu-
racy of this computation: Do the results realistically portray 
buoyancy-driven flows in two-dimensional enclosures? We 
can obtain comparisons from the literature for confirmation; 
see the interferogram (figure 139, p. 82) in Van Dyke (1982), 
taken from the work of Oertel and Kirchartz (1979). The 

Note what happens when we subtract eq. (8.99) from eq. 
(8.100), employing the vorticity definition:
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This is the vorticity transport equation. We have elimi-
nated pressure, and if we now introduce the stream 
function,
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we can guarantee that continuity will automatically be satis-
fied and we can use the vorticity definition, eq. (8.101), to 
obtain the relationship between ω and ψ:
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One of the reasons that the vorticity approach is so pow-
erful is that vorticity is only created at the boundaries of the 
flow—not in the interior! A solution procedure suggests 
itself: We use the vorticity distribution to get the stream 
function, use the stream function to get the velocity vector 
components, and then use the new velocities to get an 
updated vorticity distribution, and repeat. We now illustrate 
the use of this method for the computation of the transient 
flow of a confined viscous fluid off of a step. In this situation, 
the available flow area doubles and the motion of the fluid 
(which is initially at rest) is driven by the lateral or sliding 
motion of the upper surface. The ultimate Reynolds number 
at the entrance is 75, although the computation is not allowed 
to proceed that long since the vortex generated on the face 
of the step continues to grow, eventually reaching the outflow 
boundary. Typical results from a sequence of calculations as 
described earlier are shown in Figure 8.14.

An attractive feature of the vorticity approach is that only 
elementary solution procedures are required; we solve eq. 
(8.102) explicitly and we solve eq. (8.104) iteratively using 
SOR. Furthermore, this technique can be easily extended to 
include heat or mass transfer. For example, suppose we 
wanted to model nonisothermal conditions combined with a 
two-dimensional flow:
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Note the similarity between this eq. (8.105) and the vor-
ticity transport equation. That suggests that the solution pro-
cedure used for eq. (8.102) could be used here as well. In 
fact, both equations can be solved using the elementary 
explicit technique if we are appropriately careful with 
respect to numerical stability issues that arise due to the 
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FIGURE 8.14.  Transient viscous flow off of a step with an ultimate Reynolds number of 75 (based on the mean inflow velocity). The fluid 
is confined and is initially at rest, and the motion is being driven by a sliding upper surface. The velocity of the upper surface increases 
linearly with time until it reaches the predetermined value.
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for an observation we made previously: When we discretize 
a PDE, we are, in fact, making changes to the model itself. 
The gross results may be realistic, but the effects of altering 
the PDE, coupled with the particular pattern of the compu-
tational procedure, may mask (or even obliterate) some of 
the nuances seen in the actual physical phenomenon.

The power of the vorticity transport technique for two-
dimensional problems with fluid motion may now be appar-
ent to you, but let us extend it for final emphasis. Consider 
the transport of a chemical species in two dimensions gov-
erned by the continuity equation:

similarity between these experimental results and our com-
putations as reflected by Figure 8.15 is reassuring. However, 
please note that an elementary model of the Rayleigh–
Bénard phenomenon as depicted here cannot reproduce 
certain aspects of the transient behavior seen in real 
buoyancy-driven flows. In particular, we observe that the 
sense of the initial rotation is always the same in the com-
putational procedure employed in this example. This will not 
necessarily be the case in an experiment, where localized 
heating may result in either clockwise or counterclockwise 
rotation of the first convection roll. This provides emphasis 

FIGURE 8.15.  Development of convection rolls in an enclosure with heating at the bottom surface. The three plots correspond to dimen-
sionless times (t* = v0t/h2, where h is the vertical height of the enclosure) of 0.05, 0.25, and 1.25.
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and
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An equation of state is used to relate pressure (p) to the 
fluid density (ρ) in compressible flow problems, closing the 
system of equations. MacCormack’s approach is a predictor–
corrector scheme in which the first estimates for the time 
derivatives are obtained with forward differences for the 
inertial terms and central differences for the viscous terms. 
We let U = vx and V = vy to reduce clutter, and we take the 
i and j indices to represent the x- and y-directions, respec-
tively. Thus, using the x-component as our example and 
omitting pressure,
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The computed values for the time derivatives are used to 
predict new values for all of the dependent variables; we 
illustrate this with U:
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The new (predicted) values for the dependent variables 
are used to find a revised estimate for the time derivatives. 
But in this second step, backward differences are used for 
the inertial terms:
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Now the two computed time derivatives are averaged:
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and this average value is used to compute the corrected value 
(for each dependent variable, of course):
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You will see immediately that this equation is of exactly 
the same form as the vorticity transport equation and the 
two-dimensional energy equation. Thus, the explicit proce-
dure we used previously will work here as well. We now 
have the capability for solving two-dimensional problems 
involving the transport of momentum, heat, and mass, even 
when all three are occurring simultaneously. The only 
restrictive requirement is that the Reynolds number be low 
enough to guarantee that we have a highly ordered (laminar) 
flow. In a recent paper, Nikbakhti and Rahimi (2012) have 
solved eq. (8.102), eq. (8.105), and eq. (8.108) simultane-
ously for double-diffusive natural convection in a rectangu-
lar cavity; the convective circulation was driven by a 
thermally active wall combined with a patch of elevated 
concentration. This means that the local fluid density was 
affected by both thermal expansion and by variations in 
solute concentration, and both are accounted for by using 
the Boussinesq approximation: ρ =  ρ0[1 −  βT(T −  Tc) + 
βs(C − C1)]. Note that the effects of heat and mass transfer 
are opposed. The authors have presented streamlines, iso-
therms, and concentration contours for different locations 
of the thermally active surface and some of the resulting 
circulation patterns are fascinating. For example, when the 
heated sections are placed at the top and bottom of the 
cavity, two strong (convection) cells arise, in the upper left 
and the lower right, with an offset horizontally. Under these 
conditions, the local velocity near the horizontal centerline 
is very low.

MacCORMACK’S METHOD

MacCormack’s method (1969) for transient phenomena 
allows the analyst to solve time-dependent PDEs explicitly 
and for a couple of decades, it was one of the most popular 
techniques for the solution of high-speed compressible  
flow problems. For simplicity, let us contemplate a two-
dimensional flow in which the density varies (i.e., we have 
a compressible fluid). We have two components of the 
Navier–Stokes equation and continuity (conservation of 
mass). The reader may note an inconsistency here: We said 
the fluid density would vary, yet we are using the constant-
density Navier–Stokes equation. We will resolve this 
momentarily. For now, let us arrange the equations to isolate 
the time derivatives:
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0 0 1≤ ≤ ≤ ≤η φx and .

Now we will examine a fragment of the x-component of 
the Navier–Stokes equation:
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What we have done in this case is fit the coordinate 
system to the boundary, and for some simple problems in 
which a duct wall does not correspond to our x-y grid, this 
can be used effectively.

Now suppose we have a transport process occurring 
where the size or shape of the domain changes—perhaps 
repeatedly. If the field variable has specified values on the 
boundaries, then an elliptic PDE will yield contours that will 
conform to the objects or intrusions. For example, consider 
the Laplace equation:
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Let us examine the situation where a simple 2/3-cut step 
is placed in a rectangular domain. We will assign constant 
values to ψ at both the top and bottom, and vary ψ appro-
priately at the left and right boundaries (these might be 

You can see immediately why this scheme became so 
popular—this explicit algorithm is simple enough that the 
required programming logic is fairly easy to implement. 
However, it cannot be applied to incompressible flow prob-
lems without modification since for incompressible fluid 
continuity simplifies to ∇  ∙  v =  0; (no time derivative). 
Fortunately, MacCormack’s method has been adapted for 
such problems by Bernard (1986, 1989). In this variation, 
the changes in velocity are determined exactly as shown 
previously omitting pressure. Then the pressure gradient is 
determined by the solution of a Poisson equation:

	 ∇ = ∇⋅ ∇ −












2 2p U
dU

dt
ρ ν . 	 (8.117)

Bernard (1989) developed a code (STREMR) for two-
dimensional flows of incompressible fluids using this 
approach. This scheme was later extended to three-
dimensional flows (MAC3D) with the ultimate intended 
application to turbulent flow problems.

MacCormack’s method is an extremely powerful way to 
solve certain PDEs with time dependence. And although the 
technique has been around for more than four decades, it is 
still being applied to important practical problems and it has 
been focus of continued development efforts. The interested 
reader should see the article by Selle et al. (2008), “An 
Unconditionally Stable MacCormack Method.”

ADAPTIVE GRIDS

At the beginning of this chapter, we noted that many prob-
lems of significance could be solved without mesh (or grid) 
generation. Consequently, in our preceding discussion of the 
numerical solution of PDEs, we normally used a square grid 
in which Δx = Δy. This meant that, in most of the examples 
we considered, the domain of interest was either rectangular 
or regular is some way such that a square array of nodal 
points would coincide with the important boundaries of the 
problem. Obviously that will not always be the case and we 
should expect to encounter problems involving objects 
placed in the field or walls or boundaries that exhibit curva-
ture. In some cases, such problems can be handled rather 
easily. Let us illustrate with an elementary two-dimensional 
case; we will assume that we have flow in a divergent duct 
as illustrated in Figure 8.16.

We will let

	 η φ= =
+

x
y

b cx
and

( )
.

1 2
	 (8.118)

Obviously, whenever y coincides with the upper surface 
of the duct, y = ys and φ = 1. This transformation yields a 
rectangular grid in the computational plane since

FIGURE 8.16.  Half of a duct with increasing flow area. Fluid 
enters at the left and the origin has been placed on the centerline 
(the x-axis). The position of the upper surface is described by 
ys = b(1 + cx2), so b is the half-width of the duct at the origin.
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Unfortunately, we must solve the inverse problem; we 
need to solve for the x-y positions corresponding to φ − η 
positions in the computational plane. When x and y are the 
dependent variables, we find

	 A
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x
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x∂
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−
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and
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The parameters A, B, and C are
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and
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In principle, if we know x and y on all four boundaries, 
we can use eq. (8.123) and eq. (8.124) to determine the 
location of a mesh point in the physical (x-y) plane relative 
to a location in the computational (φ, η) field. However, if 
we base the mesh generation on the pair of elliptic eq. 
(8.122), we often do not obtain sufficient computational 

inflow and outflow boundaries, respectively). We solve  
eq. (8.121) iteratively and plot the resulting contours in 
Figure 8.17.

Note how the contours conform smoothly to the intrusion 
projecting from the bottom boundary. This suggests that we 
might be able to obtain a coordinate system adapted to an 
arbitrary shape through the solution of a Dirichlet problem. 
This is what we mean when we speak of elliptic grid 
generation.

A recurring scenario in fluid flow involves the situation 
where we have flow around an object—we can think of an 
airfoil, a bridge pier, or a heat exchanger tube. A hypotheti-
cal case in illustrated in Figure 8.18.

Of course, we could employ a square mesh and just 
interpolate near the boundaries, but if strong gradients exist 
near these surfaces (which is entirely likely), interpolation 
may lead to significant error. This is our motivation for 
finding a transformation that will yield coordinates that 
conform to the surface of the immersed object, correspond-
ing to a rectangular grid in the computational plane. We will 
think of this process in the following way: Let the surface 
of the object correspond to the inner boundary—we know 
pairs of (x, y) values that correspond to this surface. For 
examples, if x  =  3/2, y  =  ±1.28906, and if x  =  9/4, 
y = ±1.53809. We take the outer surface be some kind of 
enclosing curve where once again the (x, y) values are 
known. If the “ends” were also known, we would have a 
Dirichlet problem and the connection between the x-y (phys-
ical) field and the computational plane would be governed 
by two elliptic PDEs:
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FIGURE 8.17.  Contours plotted for ψ(x, y) obtained from the 
solution of eq. (8.121).
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FIGURE 8.18.  An object placed in a two-dimensional flow field. 
This is an instance where elliptic grid generation would be ideal. 
The upper and lower surfaces of the immersed object are given by 
y = ±(x − [x3/16]).
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will require numerical solution. Consider, for example, a 
simple case of heat transfer in a finite cylinder for which 
L/d = 3. Thermal energy is produced throughout the interior 
of the cylinder, the ends are maintained at 100° (which is 
also the initial temperature of the object), and the curved 
surface loses heat to the surroundings (with T∞  =  70°) 
according to Newton’s law of cooling. Suppose the govern-
ing equation is determined to be
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where β has dimensions of (energy)/[(volume)(time)(T3/2)]. 
The equation is nonlinear by virtue of the production term, 
making analytic solution improbable. Yet the equation is 
very easily discretized to yield
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We can solve this problem rapidly using the explicit tech-
nique described previously in this chapter; with the Biot 
modulus (hR/k) set equal to 0.596, we obtain the sequence 
shown in Figure 8.19.

The solution for this problem required just 35 lines of 
code (with no particular effort to be efficiently compact) and 
the programming logic was devised in less than 15 minutes. 
What this example reveals is that even some rather formi-
dable nonlinear PDEs can be solved by elementary means 
with no more computing power than that provided by ordi-
nary personal computers. The range of problems that the 
analyst can solve in this way is broad, and the transformative 
power the computer has exerted on routine solution of PDEs 
is obvious.

To provide emphasis for this last point, we want to 
provide the reader with an illustrative construction of a gen-
eralized elliptic PDE solver that uses SOR to handle Poisson 
and Laplace problems in rectangular coordinates. The code 
was written by the author, and it is designed to provide 
capability for fluid flow, heat transfer, and mass transfer with 
Dirichlet, Neumann, and Robin’s-type boundary conditions. 
The governing equation has the form
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The user is queried for the length (L) and height (H) of 
the rectangular region and the source term, P, can be zero, 
a constant, or spatially variable; for example,

points in regions where there are large gradients. Note in 
Figure 8.17, for example, how the contours are clustered 
near the step point (a convex region) but are sparsely dis-
tributed at the bottom of the step (a concave region). For this 
reason, production (or source) terms are often added with 
the purpose of adjusting the shape of the computational 
mesh; for example
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P( , ).

Now we will examine a discretization for eq. (8.123)—
for simplicity, we will omit the source term and we will take 
Δφ = Δη = 1:
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with
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and
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The equation for y, eq. (8.124) would be handled simi-
larly, of course. Functional forms for the source terms have 
been put forward in the literature, and Thompson et  al. 
(1974) suggested that P(φ, η) might be expressed such that 
it was dependent on velocity gradient or vorticity. The coor-
dinate system would be accordingly time dependent, and the 
generated mesh would automatically concentrate in regions 
where sharp changes in the field variables were occurring. 
Elliptic mesh generation is an important topic in modern 
computational fluid mechanics, and software designed spe-
cifically for this purpose has been incorporated into many 
commercial CFD packages. Anderson (1995) provides a 
nice introduction to this mesh generation and Chung (2002) 
offers more detail. The reader with greater interest in body-
fitted coordinate systems may also find Thompson et  al. 
(1974) useful.

CONCLUSION

Many problems of interest in engineering and the applied 
sciences are governed by PDEs and only a very small 
number of these problems can be solved analytically. Most 
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FIGURE 8.19.  Results from the numerical solution of transient heat transfer in a finite cylinder with production. For these calculations, 
L/d = 3, Bi = 0.596, and T∞ = 70°. The sequence shown is for times of 1, 2, 4, and 8 (top to bottom).
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algorithm is not constrained to a square mesh, calculations 
can be made for a rectangular region of any aspect ratio.

Finally, we do want to point out the existence of other 
useful numerical procedures for CFD that have not been 
described here. The first of these is the explicit Lax–Wendroff 
technique, which is appropriate for forward-marching in 
time. For the two-dimensional flow of an inviscid fluid, we 
would write
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In discretized form, eq. (8.134), appropriately cast for 
iterative solution, appears as
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where

β= +
2 2

2 2( ) ( )
.

∆ ∆x y

The rectangular region is divided into 101 nodes in each 
direction, resulting in 9801 interior mesh points. The accel-
eration parameter for SOR, ω, is taken to be 1.85. An arbi-
trary measure of convergence is employed to terminate the 
computation (when the change in the sixth decimal place is 
less than 1). First, we will apply the program to flow of an 
aqueous fluid in a square microchannel, 18 μm on each side. 
The applied pressure gradient will be (−)5300 dyne/cm2/cm.

Next, we will apply the very same code to conduction of 
thermal energy in a slab with spatially variable production. 
In this case, we choose L  =  10  cm, H  =  4  cm, and 
k = 0.01 cal/(cm s °C). The slab’s bottom and left-hand side 
will be insulated, but the top and the right-hand side will 
lose thermal energy to the surroundings. The production 
function has its maximum value in the center of the slab.

The examples shown in Figure 8.20 and Figure 8.21 are 
simply intended to illustrate how easy it is to solve a broad 
variety of elliptic PDEs using one basic code structure. The 
user merely selects the size of the rectangular domain, the 
numerical value of the transport coefficient, the boundary 
conditions, and the nature of the source term. Since the 

FIGURE 8.20.  Velocity distribution in a square microchannel 
(18 μm on each side) resulting from a pressure gradient of 
−5300 dyne/cm2/cm. The average velocity is a little less than 
0.07 cm/s.
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FIGURE 8.21.  Temperature distribution in a two-dimensional slab with a spatially variable production of thermal energy (with maximum 
at the center). The bottom and left-hand side are insulated and the top and right-hand side lose thermal energy to the surroundings by 
Newton’s law of cooling.
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serves as the initial estimate and the entire process is repeated 
until convergence is obtained. Since its development in the 
1970s, SIMPLE has been used by many fluid dynamicists 
and it has been incorporated into a number of commercial 
CFD codes for both two- and three-dimensional flows. It has 
been found to be divergent in some applications, and under-
relaxation has been used to cure that problem. Patankar’s 
book is recommended reading for the student wishing to 
know more about SIMPLE.

We have shown in this chapter that a wide variety of 
phenomena governed by PDEs can be modeled successfully 
and the solutions can be computed with relative ease. In 
many cases, even nonlinear phenomena can be dealt with 
using nothing more sophisticated than a personal computing 
device coupled with a spreadsheet. Most importantly, it only 
takes a little practice to become proficient at solving a broad 
spectrum of important practical problems.

PROBLEMS

8.1.  Consider a slab of steel measuring 20 ×  20  cm. The 
left-hand edge (x = 0) is maintained at 1000° for all time 
and the top surface (y =  20  cm) is insulated. The bottom 
and the right-hand side lose thermal energy to the surround-
ings according to Newton’s law of cooling. Using the right-
hand side as an example, therefore, we write
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Find (and prepare a contour plot illustrating) the equilibrium 
temperature distribution in the slab by solving
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.

The thermal conductivity of mild steel is about 0.1  cal/
(g cm °C) and the heat transfer coefficient (h) may be taken 
as 0.033 cal/(cm2 s °C).

8.2.  A solid copper cylinder with a radius of 6 cm (with very 
large L/d) has the upper half of its (curved) surface main-
tained at 300°C. The lower half of the cylinder is embedded 
in a medium maintained at T = 100°C. Find the steady-state 
temperature distribution in the copper cylinder. The thermal 
conductivity of copper is 0.93 cal/(g cm °C) and the govern-
ing equation is
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8.3.  A slab of anisotropic material measuring 10 × 10 cm 
lies in the x-y plane. The thermal conductivity in the 

and
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Next, each of the dependent variables is expanded in a 
Taylor series to give the value of that quantity on the new 
time-step row; for example,
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Note that the derivatives in eq. (8.140) are on the previous 
time-step row; if we could obtain values for these time 
derivatives, we could calculate ρi, j on the new time-step row 
explicitly. The first derivative with respect to time is obtained 
directly from eq. (8.137) but with the spatial derivatives on 
the right-hand side rewritten as second-order central differ-
ences (all those quantities are known because they are from 
the previous time-step row). The estimate for the second 
derivative,
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is obtained by differentiating eq. (8.137) with respect to 
time. Of course, this process generates mixed derivatives, 
such as

∂
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which are approximated by differentiating eq. (8.138) with 
respect to x; other mixed derivatives are handled similarly. 
Once again, all of the spatial derivatives are written as 
second-order, central differences. Although the algebra asso-
ciated with Lax–Wendroff is complicated, the method is 
fully explicit (just like the related technique, MacCormack’s 
method, discussed previously). For this reason, it has been 
popular among practitioners of CFD. Both Anderson  
(1995) and Chung (2002) provide additional detail for the 
interested reader.

The final approach we want to mention is known  
as the semi-implicit method for pressure-linked equations 
(SIMPLE), and it was devised by Patankar and Spalding and 
is very nicely explained by Patankar (1980). You may recall 
that we indicated previously that the major problem in CFD 
was computation of the pressure field (and you may also 
remember that we used the vorticity transport equation to 
circumvent this difficulty in two dimensions). In the SIMPLE 
procedure, the pressure field is estimated, the momentum 
equations are then solved to obtain the velocity vector com-
ponents, the pressure field is corrected, and revised estimates 
are obtained for the velocities. The corrected pressure then 
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those obtained from the previous analytic solution. The 
thermal diffusivity, α, has a value of 0.4. The governing 
PDE is
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8.7.  An annular fin is placed on a pipe to help dissipate heat. 
The fin is constructed of mild steel and it extends from 
R1 =  4  cm to R2 =  8  cm, with a thickness of 4  mm. At 
r = R1, the pipe wall has a temperature of 200°C for all time. 
The temperature in the steel fin is governed by
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and the flat annular surfaces (denoted by s) lose heat to the 
surroundings according to
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We can assume that (nearly) no heat is lost through the 
outer cylindrical edge of the fin (at r = R2). We are given 
that h, ρ, Cp, and α (all in centimeter-gram-second units) are 
0.00678, 7.85, 0.118, and 0.12, respectively. We want to 
investigate the dynamic behavior of the temperature distri-
bution in the fin if the temperature of the surroundings (T∞) 
suddenly drops from 45 to 0°C. Assume that this tempera-
ture had been 45°C long enough that equilibrium had been 
established prior to the change.

8.8.  Find the distribution of S over the annular region, 
R1 ≤ r ≤ R2, where S is governed by the equation
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Let S(r = R1) = 100, but S(r = R2) = 50 + 30 sin(θ), where 
θ varies from 0 to 2π. The inner and outer radii are 1 and 
10, respectively.

8.9.  A solid cylindrical rod of radius, R, is immersed in a 
liquid such that the surface temperature of the rod is main-
tained constantly at 50°. The rod has an initial uniform 
temperature of 50°, but at t = 0, thermal energy begins to 
be produced inside the rod by a source term, S:
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The production of thermal energy in the interior follows:

S
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x-direction is 0.000834 cal/(cm s °C), but in the y-direction, 
it is only 0.000361 cal/(cm s °C). If the left edge is main-
tained at 170°C, and the right-hand side at 25°C, find the 
temperature distribution in the slab. The top and bottom 
edges loose heat to the surroundings according to Newton’s 
law of cooling; therefore, using the top for our example,  
we have
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The temperature of the surrounding air is 35°C, and the heat 
transfer coefficient, h, is 0.0001 cal/(cm2 s °C).

The governing equation for the interior of the slab is
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8.4.  A viscous fluid is at rest in a square duct measuring 
3 × 3 cm. At t = 0, a pressure gradient of 0.7 dyne/cm2/cm 
is applied in the z-direction and the fluid begins to move 
down the duct. The fluid’s viscosity and density (μ and ρ) 
are 0.03 g/(cm s) and 1 g/cm3, respectively. Solve the gov-
erning equation,
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and find the velocity at the duct’s center at 1, 10, and 100 
seconds. Find the ultimate centerline velocity and the 
expected Reynolds number.

8.5.  Consider the parabolic PDE given by
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φ φ
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2
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2
.

Compute and plot a series of φ(x, t) curves such that 
the full range of dynamic behavior of this system is 
illuminated.

We are given the following: 0 ≤ x ≤ 4, φ(0, t) = 0, and 
φ(4, t) = 0, with the initial condition φ(x, 0) = 25x.

8.6.  A long cylindrical rod with R = 1 (and d = 2) is at an 
initial (uniform) temperature of zero. At t = 0, the surface 
of the rod is instantaneously heated to a constant 100°. 
Spiegel (1971) provides the analytic solution for this 
problem:
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The values for λn come from the roots of J0, of course. 
Compute the numerical solution for this problem and 
compare your results at t = 0.5, 1.0, and 2.0 seconds with 
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How long must the apparatus be if the bulk fluid temperature 
is to be 60, 70, 80, and 90°F? Show that the bulk fluid tem-
perature at z = 600 cm is 24.77 °C. Remember that the bulk 
fluid temperature must be determined by integration of the 
product, Vz(y)T(y), over the flow area.

8.13.  The FitzHugh–Nagumo model describes wavelike 
phenomena associated with nerve axons and it consists of 
the pair of equations
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23
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( ).

and

V is the membrane potential (output of the neuron), R is a 
restoring effect, and I(t) is the input or forcing function. For 
certain parametric choices (a, b, k), this model can exhibit 
chaotic behavior. One variant of the model that appears 
frequently consists of the equations

dV

dt
c R V V I t

dR

dt
V bR a= − + − + = − +( ( )) .1

3
3 and

Begin by solving this pair of ordinary differential equa-
tions with a = 0.7, b = 0.8, and c = 10, and let I(t) be a 
simple periodic (sinsusoidal) input with an amplitude of 1. 
Prepare a plot of V(t) and R(t) to reveal the phase-plane 
dynamics of this simplified system. What will the impact of 
the term ∂2V/∂x2 be on the solution of this system? Demon-
strate the difference between the alternative models by 
solving the initial set of equations.

8.14.  Solve the wave equation
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x

numerically over the range −10 <  x < +10. The initial 
distribution of displacement, u(x, 0), is u = exp(−x2), with 
zero initial velocity. Set the Courant number equal to 1 and 
use the results shown in Figure 8.22 as a solution guide.

8.15. U se the vorticity transport equation to compute tran-
sient two-dimensional flow over a rectangular box placed on 
the bottom surface between parallel walls. The height of the 
box corresponds to 1/2 of the vertical channel size. The fluid 
is initially at rest, and motion is started by sliding the upper 
surface at constant velocity in the x-direction. Focus initially 
on Reynolds numbers (using the height of the box for the 
characteristic length) of 15 and 25. A typical result from 
such a computation is shown in Figure 8.23 for the case in 
which Re = 15.

8.16.  We have a two-dimensional slab that extends from 
x = 0 to x = L and from y = 0 to y = H. Three sides of the 

The rod is 50 cm long with 0 ≤ r ≤ 10 cm. We know 
β = 40 and a = 2. The properties of the material (ρ, Cp, and 
k) are 7, 0.22, and 0.19, respectively. Explore the dynamic 
behavior of T(r, t) over a time period sufficient to establish 
the full range of thermal behavior.

8.10.  The thermal conductivity of chrome steel varies with 
temperature between 0 and 500°C, the relationship is 
approximately linear: k = 62 − 0.049T, W/(m°C). A slab of 
chrome steel 40 cm thick is at a uniform initial temperature 
of 500°C. At t = 0, the front face is quickly cooled to 0°C. 
The back face is insulated. Find the evolution of the tem-
perature distribution in the slab by solving the equation:
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The density of chrome steel is about 488 lbm/ft3 and the heat 
capacity is about 0.11 Btu/(lbm °F).

8.11.  A viscous fluid in an annulus (with R1 =  3  cm and 
R2 = 5 cm) is moving in the positive z-direction under the 
influence of a pressure gradient. The average velocity is 
4 cm/s. At t = 0, the inner surface (which was stationary) 
begins moving (in the z-direction) at a constant velocity of 
−10 cm/s. When will the net flow be exactly zero? The fluid 
motion is governed by
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8.12.  Consider water, initially at a uniform temperature, 
flowing in the z-direction between parallel plates; for z > 0, 
both the upper and lower plates are maintained at a constant 
elevated temperature. The lower planar surface is located at 
y = 0 and the upper at y = B. For steady-state conditions, 
the governing equation is
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We will assume that the fluid properties are constant, the 
flow is fully developed, and that the centerline (maximum) 
velocity is Vmax. We want to find the bulk fluid temperature 
and the Nusselt number as functions of the z position. Before 
we begin, we should carefully consider the axial conduction 
term, ∂2T/∂z2. Under what circumstances can we expect this 
term to be negligible?

We will use the following specific values for our problem: 
B =  3  cm, Vmax =  5  cm/s, TS =  150°F, and Tin =  50 °F. 
Assume that the fluid properties (for water) are constant, and 
use values corresponding to a temperature of 80°F. Prepare 
a figure that shows both the bulk fluid temperature and the 
Nusselt number (Nu = hd/k) as functions of the z position. 

http://c8-fig-0022
http://c8-fig-0023


PROBLEMS    179

Problems with Convective Transport, pages 164 and 165, but 
allow the tangential component of velocity to oscillate such 
that

v r R t tθ = = =





( , ) sin .2 24

1

9

How much impact does the oscillation of the outer cylinder 
have on the radial development of the concentration plume?

8.18.  Consider a cavity filled with a viscous fluid initially 
at rest. At t = 0, the upper surface of the cavity (a flat plate) 
begins to slide in the positive x-direction with constant 
velocity, V. Use the following equations to model the result-
ing flow:
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Solve this problem for a square cavity with unit width 
and depth and let V = 1. Place the origin in the lower left-
hand corner and take the kinematic viscosity to be 0.10. The 
Reynolds number for this flow, therefore, will ultimately be 
Re =  Vh/v =  10. Prepare a series of plots of the stream 
function that illustrate the evolution of the flow. The student 
should note that if the Reynolds number is sufficiently small, 
this problem would simply require solution of the bihar-
monic equation, ∇4ψ =  0; that is, one could ignore the 
convective transport of vorticity. Chow (1979) provides an 
example of the solution procedure for this creeping flow 
problem in chapter 3 of his book, An Introduction to Com-
putational Fluid Mechanics. If the upper surface is started 

slab are maintained at 100° and the bottom edge is insulated. 
Thermal energy is produced in the interior of the slab and 
the maximum rate of production occurs at the exact center. 
The governing equation is
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Compute the temperature distribution in the slab, T(x, y), and 
plot the isotherms. You should see something like the result 
shown in Figure 8.24.

Also, evaluate the rate of heat loss from the top edge of 
the slab. We know L = H = 8, A = 0.085, and k = 0.005.

8.17. R epeat the analysis of mass transport between  
concentric cylinders illustrated in the section on Elementary 

FIGURE 8.22.  Note that the initial exponential distribution of 
displacement results in the formation of two peaks traveling in 
opposite directions. An x index of 101 corresponds to the center of 
the interval (i.e., x =  0). Curves shown are for times of 0.015 
(solid), 0.03 (dash), and 0.06 (dot) second.
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8.20.  We want to examine a solid-state device with three 
layers with production of thermal energy occurring in the 
intermediate layer (layer 2). Each layer will have a differ-
ent conductivity, but all three have the same thickness 
(0.667 cm). The device is 3 cm long (horizontally) and 
2 cm high. The general form of the equation we must 
solve is
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and the three thermal conductivities are 124/100, 52/100, 
and 130/100 for k1 through k3, respectively. We are dividing 
by 100 to convert from W/(mK) to W/(cmK). The produc-
tion term for layer 2 has the constant value, 25 W per  
unit volume. A crude picture of the device is provided in 
Figure 8.26.

Assume that the bottom surface (the bottom of layer 1) 
is insulated, as is the left-hand side (vertical edge). The top 
loses thermal energy to the surroundings according to New-
ton’s law of cooling: htop(Ttop −  Tair). The right-hand edge 
also loses thermal energy to the surroundings, but the actual 
BC will vary with layer:
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We are going to assume that htop  =  0.75 and that 
hedge = 1.5htop = 1.125. The air temperature will be taken as 
25°C. Find the temperature distribution in the interior of the 
device (temperature contours). Will this arrangement meet 
operating requirements if the thermal limit for the device  
is 60°C? The results of a calculation for the case in which 
both vertical sides and the bottom are insulated is shown in 
Figure 8.27 as a guide.

impulsively at t = 0 with a velocity of 1, then at very small 
times, the analyst should obtain streamlines similar to those 
shown in Figure 8.25.

8.19.  An interesting variation of Problem 8.18 (see Figure 
8.25) is posed by a square cavity in which the top is a free 
surface (nearly zero momentum flux) and the bottom surface 
slides with constant velocity, V. Solve this modified problem 
with the same parameters employed in Figure 8.25.

FIGURE 8.24.  Temperature distribution in a slab with the produc-
tion function centered.
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FIGURE 8.25.  Streamlines in the square cavity 0.01 second after 
motion of the upper surface (at V = 1) is initiated. Note that the 
velocity (in the x-direction) near the bottom streamline is only 
about −0.0159 cm/s.
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take D = 2 × 10−3 cm2/s (a very large value, but this will 
shorten the computational time considerably). It takes almost 
1 hour for the contaminant plume to reach the leading edge 
of the block and about 5 or 6 hours for it to reach the trailing 
edge. Compare the rate at which the contaminant migrates 
past the block at z = 6  in. with the rate of transport past 
that plane with the obstruction removed.

8.22.  Consider a porous, sorbent sphere placed in a well-
agitated solution of limited volume, for example, an acti-
vated carbon “particle” immersed in a beaker of water 
containing an organic contaminant. The contaminant (or 
solute) species (A) is taken up by the sphere and the concen-
tration of A in the liquid phase is depleted. The governing 
equation for transport in the sphere’s interior is
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As we have seen previously, this equation can be trans-
formed into an equivalent problem in a “slab” by setting 
φ = CAr. The total amount of A in solution initially is VCA0, 
and the rate at which A is removed from solution can be 
described by

4 2πR D
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Therefore, the total amount removed over a time, t, can 
be obtained by integration of this equation. The limiting case 
is readily solved through the use of the product method and 
the transformation of our equation leads to
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8.21.  Transport processes in porous media are sometimes 
simulated by placing impermeable obstructions in the migra-
tion pathway. Consider the situation illustrated in Figure 
8.28, where an impermeable block has been placed in the 
center of the channel. The height of the block is 2 in., so it 
provides 33% occlusion of the pathway.

The contaminant, at a concentration of 1, enters the 
region from the left where z =  0. The lower boundary is 
impermeable and the upper boundary is absorbing; that is, 
the contaminant is instantaneously removed such that C = 0 
for all t at the surface indicated by y = B. We assume that 
the mass transfer process is governed by
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Our interest is the total flow of contaminant past the trail-
ing edge of the block where z = 6 in. or 15.24 cm. We will 

FIGURE 8.27.  Temperature distribution in the three-layer device when the bottom and both sides are insulated.
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•	 Heat flows through a medium in which a phase change 
occurs at a specific temperature (the latent heat effect 
may either produce or absorb thermal energy).

Suppose we have a medium in which the diffusivity is 
10−3  cm2/s if the dimensionless concentration is above 0.5 
but is four orders of magnitude smaller (10−7) for concen-
trations below 0.5. At t = 0, the concentration at the front 
face where x =  0 is instantaneously elevated to 1; there 
is initially none of the diffusing species in the medium. 
Compute the migration of this species into the medium 
and plot the resulting concentration as a function of 

x D t4 1 , where D1 is the elevated diffusivity (10−3) so 
that the evolution of the concentration profile is evident. 
You can compare your results with Figure 13.7 in Crank 
(1975).

8.24. R efer to Figure 8.17 (regarding elliptic grid genera-
tion). Suppose that the paucity of contours at the base of the 
intrusion was preventing the analyst from accurately solving 
a particular problem. Develop and add an appropriate source 
or production term to eq. (8.121) to rectify this difficulty  
and then demonstrate its effectiveness by computing the 
solution of the modified equation numerically and replotting 
the ψ(x, y) contours.

8.25.  A concrete drainage ditch is constructed in the form 
of a 90° “V” and it is to be used to carry 5500  gpm of 
wastewater away from a plant. Assume that the flow is gov-
erned by
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The slope is 1  ft/1000  ft such that sin θ =  0.001. By 
computation, determine the depth of water in the channel. 
Then, repeat the analysis, but assume that the channel is a 
60° “V.” One concern with an open channel of this type is 
the possibility of particle deposition in the bottom of the “V,” 
and if sedimentation occurs, the carrying capacity of the 
ditch could be reduced. Consequently, particle “scour” is 
extremely important; make sure that your calculations also 
provide an estimate of the shear stress at the bottom of the 
channel.

8.26.  Water flows through a partially filled large pipe, 1 m 
in diameter, under the influence of gravity. The depth of 
water in the pipe (measured vertically from the bottom) is 
d/3 or 0.667R. The velocity distribution is (approximately) 
governed by

0
1 1

2

2

2
=

∂
∂

∂
∂







+

∂
∂












+µ

θ
ρ φ

r r
r

V

r r

V
gz z sin .

which is a (familiar) candidate for separation of variables:

C
A

r
D t rA = −exp( )sin .λ λ2

The cosine term has disappeared because the concentra-
tion of solute at the sphere’s center must be finite, of course. 
It is convenient to switch to dimensionless concentration, 
where

C
C C

C C
A Ai

As Ai

=
−
−

.

It is likely that the sphere contains no solute initially, so 
CAi = 0. When the solution volume is unlimited, then we write

C
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r
D t rn

n n

n

= + −
=

∞

∑1 2

1

exp( )sin ,λ λ

where λn = nπ/R.
Complete the analytic solution started previously for the 

limiting case and prepare a figure that shows Mt/M∞ as a 
function of Dt/R2. Note that Mt is the amount of solute taken 
up by the sphere through time, t. M∞ is the amount taken up 
by the sphere after infinite time.

Solve the “limited solution” problem numerically and 
prepare similar curves for three cases: the portion of solute 
ultimately removed from solution (and taken up by the 
sphere) is 20%, 50%, and 80%.

Suppose spherical sorbent particles with d = 4.8 mm are 
used to remove benzyl alcohol from an initially saturated 
aqueous solution maintained at 17°C (the solubility is 
4 g/100 g water). It is known that D = 0.82 × 10−6 cm2/s. 
The number of particles employed is such that each is effec-
tively surrounded by volume of liquid corresponding to 
100 mm3. Prepare a figure that shows the concentration of 
benzyl alcohol remaining in solution as a function of time, 
assuming the liquid phase is energetically stirred. Then, 
repeat this final part of the problem using a Robin’s-type 
boundary condition at the surface with KR/D = 0.2.

8.23.  Circumstances can arise in mass and heat transfer in 
which a concentration or temperature front can propagate 
through a medium. Such cases are referred to as moving-
boundary problems and examples of how they can occur 
include the following:

•	 The diffusivity experiences a sharp, discontinuous 
change at a particular concentration.

•	 The diffusing species is immobilized at a limited 
number of available sites.

•	 A chemical reaction occurs at a reactant interface and 
one or more product species migrate through the 
medium.

http://c8-bib-0006
http://c8-fig-0017
http://c8-disp-0144


REFERENCES    183

James, M. L., Smith, G. M., and J. C. Wolford. Applied Numerical 
Methods for Digital Computation (with FORTRAN and CSMP), 
2nd edition, Harper and Row, New York (1977).

MacCormack, R. W. The Effect of Viscosity in Hypervelocity 
Impact Cratering. AIAA paper 69–354 (1969).

Nikbakhti, R. and A. B. Rahimi. Double-Diffusive Natural Convec-
tion in a Rectangular Cavity with Partially Thermally Active 
Side Walls. Journal of the Taiwan Institute of Chemical Engi-
neers, 43:535 (2012).

Oertel, H. and K. R. Kirchartz. In: Recent Developments in Theo-
retical and Experimental Fluid Mechanics (U. Muller, K. G. 
Roesner, and B. Schmidt, editors), Springer-Verlag, Berlin 
(1979).

Patankar, S. V. Numerical Heat Transfer and Fluid Flow, Hemi-
sphere Publishing, Washington, DC (1980).

Peaceman, D. W. and H. H. Rachford. The Numerical Solution of 
Parabolic and Elliptic Partial Differential Equations. Journal 
of the Society for Industrial and Applied Mathematics, 3:28 
(1955).

Sarra, S. A. The Method of Characteristics and Conservation Laws. 
The Journal of Online Mathematics and Its Applications, Math-
ematical Association of America, www.maa.org (2003).

Selle, A., Fedkiw, R., Kim, B. M., Liu, Y., and J. Rossignac. An 
Unconditionally Stable MacCormack Method. Journal of Sci-
entific Computing, 35:350 (2008).

Smith, G. D. Numerical Solution of Partial Differential Equations, 
Oxford University Press, Oxford (1965).

Spiegel, M. R. Advanced Mathematics for Engineers and Scien-
tists, McGraw-Hill, New York (1971).

Thompson, J. F., Thames, F. C., and C. W. Mastin. Automatic 
Numerical Generation of Body-Fitted Curvilinear Coordinate 
Systems for Fields Contining Any Number of Arbitrary Two-
Dimensional Bodies. Journal of Computational Physics, 15:299 
(1974).

Van Dyke, M. An Album of Fluid Motion, Parabolic Press, Stan-
ford, CA (1982).

The angle of declination is small, so we will take 
sin φ = 0.0002. The fluid flows over a section of coated pipe 
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The coated section of wall is 1  m long and D  = 
0.0002 cm2/s. Find the concentration distributions 200, 400, 
and 800 m downstream. Any contaminant that finds its way 
to the free surface disappears immediately (is volatilized).

REFERENCES

Anderson, J. D. Computational Fluid Dynamics: The Basics with 
Applications, McGraw-Hill, New York (1995).

Bernard, R. S. Discrete Solution of the Anelastic Equations for 
Mesoscale Modeling. Report 86/E/51, GKSS Forschungszen-
trum, Geesthacht (1986).

Bernard, R. S. Explicit Numerical Algorithm for Modeling Incom-
pressible Approach Flow. Technical Report REMR-HY-5, US 
Army Engineer Waterways Experiment Station, Vicksburg 
(1989).

Chow, C. Y. An Introduction to Computational Fluid Mechanics, 
John Wiley & Sons, New York (1979).

Chung, T. J. Computational Fluid Dynamics, Cambridge Univer-
sity Press, Cambridge (2002).

Crank, J. The Mathematics of Diffusion, second Edition, Clarendon 
Press, Oxford (1975).

Frankel, S. P. Convergence Rates of Iterative Treatments of Partial 
Differential Equations. Mathematical Tables and Other Aids to 
Computation, 4:65 (1950).

http://www.maa.org


9
INTEGRO-DIFFERENTIAL EQUATIONS

INTRODUCTION

Integro-differential equations (IDEs) arise in a variety of 
contexts; there are applications to process control and to 
diffusion along grain boundaries (Antipov and Gao, 2000), 
as well as modeling for neural networks (Jackiewicz et al., 
2008), option prices (Cont and Voltchkova, 2005), and the 
spread of infectious diseases (Medlock and Kot, 2003). Only 
rarely can analytic solutions be found for such problems,  
so frequently, the analyst must resort to numerical methods. 
Note that IDEs also figure prominently in the analysis of 
multiphase processes where countable entities such as 
bubbles, drops, and particles are borne by a fluid phase. 
Examples include solvent extraction/emulsification, floccu-
lation, crystallization, sedimentation, and the operation of 
biochemical reactors. Because so many industrial processes 
involve countable entities, the importance of IDEs to process 
engineering and the applied sciences cannot be overstated.

To provide a historical framework for our consideration 
of IDEs, we will explore their role in the early twentieth-
century study of biological systems. Vito Volterra was an 
eminent Italian mathematician (1860–1940) whose career 
was effectively ended by his refusal to sign the oath of alle-
giance to the Fascist government in 1931. It is worth noting 
that only 12 Italian university professors refused to sign, a 
small number but one that is understandable given the con-
sequences (essentially exclusion from the Italian intellectual 
and scientific communities). One of Volterra’s principal 
interests was mathematical biology, particularly, the dynamic 

behavior of populations in conflict, which is frequently 
referred to as the predator–prey problem. Let us preface this 
part of our discussion by considering a simple system con-
sisting of (initially) known populations of foxes (F) and 
rabbits (R).

Prey species usually reproduce rapidly since interactions 
with predators will invariably diminish their numbers.  
A very simple model for the prey population might be 
written as

	
dR

dt
a R a RF= −1 2 . 	 (9.1)

In contrast, predators do not usually prosper by excessive 
breeding since they will suffer from too much competition 
for available prey:

	
dF

dt
b F b RF=− +1 2 . 	 (9.2)

You will notice the similarity between the two differential 
equations, but with a reversal of signs, of course. This ele-
mentary model is deterministic; given values for the con-
stants and the initial populations, the future numbers of 
foxes and rabbits are set for all time, t. We recognize that 
this cannot be correct. One obvious but trivial objection is 
that a fractional rabbit is not physically realizable. More 
importantly, there are aspects of animal behavior that are not 
reflected by these first-order ordinary differential equations 
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1

1 2

0
y

dy

dt
a a y K t y d

t

t

= + +∫ ( , ) ( ) .φ φ φ 	 (9.3)

The difficulty posed by the integro-differential eq. (9.3) 
depends mainly on the nature of the kernel, that is, the func-
tional form of K(t, φ). Before we reexamine our predator–
prey (populations in conflict) problem, we can carry out a 
small exploration of some of the effects of the addition of a 
simple history term. We will do this by examining an ele-
mentary control strategy that is familiar to many engineers, 
where part of the control action is determined by the past 
behavior of the system.

AN EXAMPLE OF THREE-MODE CONTROL

We now look at an example from process control that will 
allow us to better appreciate the significance of the addition 
of the integral, as illustrated by eq. (9.3); we will do so for 
a problem that is linear with respect to the variable that 
drives the controller (the error, ε). One tried and proven 
strategy for automatic process control is found in the 
proportional-integral-derivative (PID) algorithm. Let ε rep-
resent the error detected in an output variable (perhaps tem-
perature, pressure, concentration, pH, etc.). P is the controller 
output (pressure in the case of pneumatic controllers); please 
note that P is in deviation form—the equilibrium value has 
been subtracted such that the initial (undisturbed) value for 
P is zero. In the time domain, our PID algorithm appears as

	 P K dt
d

dt
C

I
D

t

= + +










∫ε
τ

ε τ
ε1

0

. 	 (9.4)

KC is the controller gain, τI is the integral time, τD is the 
derivative time, and ε is the measured error. We have three 
parameters that will affect the behavior of this system. The 
corrective action taken is dependent on the instantaneous 
error, the history (time integral) of the error, and the deriva-
tive of the error. It should be clear that the integral action 
will take into account the past behavior of the system and 
the derivative action will anticipate what is about to happen 
at an instant in time. For this reason, KCτD(dε/dt) is often 
referred to as anticipatory control. It is convenient to formu-
late a transfer function for eq. (9.4) using the Laplace 
transform—this takes us from the time domain to the 
s-plane:

	
P s

s
K

s
sC

I
D

( )

( )
.

ε τ
τ= + +







1

1
	 (9.5)

You will observe that integration with respect to time has 
been replaced by division by s, and that differentiation with 
respect to time has been replaced by multiplication by s. 

(ODEs); that is, some behavioral phenomena are not deter-
ministic. At the same time, we may be able to learn some-
thing useful about the dynamic behavior of such simple 
systems that will benefit us later. We will use eq. (9.1) and 
eq. (9.2) to compute R(t) and F(t), and then we will cross 
plot the dependent variables to produce the phase-space 
trajectory.

The data provided in Figure 9.1 illustrate that an increase 
in the number of rabbits results in growth of the predator 
(fox) population. Of course, this increase in predators dimin-
ishes the number of prey animals, lack of food causes the 
number of predators to decrease, the prey species recovers, 
and so on. As we pointed out previously, the model employed 
is not entirely realistic. Volterra recognized that it was unrea-
sonable to assume that the dynamic behavior of a biological 
system should depend solely on its present state. Indeed, 
many common physical systems exhibit dependence on past 
events—what Volterra referred to as “hereditary influences.” 
An engineer might be more likely to think of a cylindrical 
rod repeatedly subjected to torsion, or an airliner cabin  
that has experienced thousands of pressurization cycles; at 
some point, the materials may fail due to cumulative effects 
of stress.

One approach to such problems is to add a time integral 
to the model—in essence, a term that will reflect historical 
influences on system behavior. We will start with the case 
of a single population, where an appropriate model might be 
written:

FIGURE 9.1.  Phase-space portrait of the dynamic behavior of the 
predator–prey problem for foxes and rabbits. Motion on this limit 
cycle is clockwise and the parametric values employed were 
a1 = 1/2, b1 = 1/4, a2 = 1/3, and b2 = 1/12. The initial populations 
were nine rabbits and one fox. The closed cycle means that this 
system’s behavior is periodic.
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is enhanced and the phase lag (shift of the peaks to the right) 
is increased. In fact, one of the more interesting features of 
PID control is that just about any system can be destabilized 
if enough integral action is added, that is, if τI is made small 
enough! As a practical matter, we note that the large response, 
P(t), seen in Figure 9.2 would almost certainly saturate the 
final control element (typically a control valve). Saturation 
can also result from a prolonged history of error (a persistent 
error condition) which will cause the integral, ∫ 0

t
dtε , to 

continue to accumulate, resulting in what is referred to in 
the control literature as integral “windup.” This condition is 
usually avoided in practice by switching from the position 
form to the velocity form (of the PID algorithm).

POPULATION PROBLEMS WITH 
HEREDITARY INFLUENCES

It will prove advantageous to return to eq. (9.3), with a slight 
modification, such that we have (initially) a one-variable 
problem:

	
dy

dt
a y a y y K t y d

t

= + + −∫1 2
2

0

( ) ( ) .φ φ φ 	 (9.7)

You will observe that a specific form has been chosen for 
the kernel in this case—this is the kernel that Volterra 
referred to as belonging to the closed-cycle class. Following 
Davis (1962), we approximate the kernel by writing

	 K z K K z K z( ) ,= + + +0 1 2
21

2
� 	 (9.8)

then we assume that the only K that is nonzero is K0 (we 
are truncating our approximation of the kernel). We sub
stitute into eq. (9.7), divide by y, and then differentiate, 
resulting in

	 y
d y

dt

dy

dt
a y

dy

dt
K y

2

2

2

2
2

0
3=






 + + . 	 (9.9)

It proves convenient to let

y
a u

a
t

a

K

a a
=− = =

−
1

2 2

0

1 2

, , ,
τ

λand

which yields

	 u
d u

d

du

dt
u u

2

2

2
2 3

τ
λ=






 − + . 	 (9.10)

Davis notes that no closed-form solution is known for  
this ODE, so a numerical solution is required. The intrigu
ing feature of eq. (9.10) is the profound impact that the 

Now let us assume a particular functional form for the error; 
we will start with a sinusoidal error such that ε(t) = Asin (ωt) 
and ε(s) = Aω/(s2 + ω2). Therefore,

	 P s

A K
s s

s s

C

I
I D I

( )
( )

( )
.=

+ +

+

ω
τ

τ τ τ

ω

2

2 2

1
	 (9.6)

Here is where the effect of adding integral control 
becomes really apparent; the order of the polynomial (in s) 
in the denominator has been increased by 1. This also means 
that in the complex plane, a pole has been placed at the 
origin; you may recall that a complex root with a positive 
real part implies unstable oscillatory behavior. In the control 
literature, root locus is a graphical technique used to identify 
roots of the characteristic equation (a polynomial in s). 
When complex roots exist, parts of the dynamic response of 
the system will be governed by terms of the form e(a+ib)t = 
eat(cos bt +  isin bt). Thus, when a is positive, the system 
response will be oscillatory with increasing amplitude 
(unstable).

We can invert eq. (9.6) by partial fraction expansion, or 
choose to work strictly in the time domain so that our results 
will be immediately transparent. Our particular interest is to 
explore the impact of the system’s history (manifested in the 
integral control) on its behavior. We will achieve this by 
varying the value of τI from 10 to 1 (remember, τI has an 
inverse impact on the integral term).

Our objective with Figure 9.2 is to learn a little bit about 
how the “history” term affects the solution of eq. (9.4). We 
see that as the importance of the time integral is increased 
(τI varies from 10 → 1), the oscillatory nature of the response 

FIGURE 9.2.  Illustration of the response of eq. (9.4) to sinusoidal 
error (the error is the heavy curve at the bottom that oscillates 
between −1 and +1). Results for four different values of τI are 
shown, 1, 3, 6, and 10.
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The initial values for X and Y will be taken as 1 and 2, 
respectively. Of course, since we are now solving second-
order ODEs, we need a second initial condition; we can 
obtain values for the first derivatives directly from eq. (9.11) 
and eq. (9.12) by noting that, for t = 0, the integrals disap-
pear. Therefore, the initial values for X and Y can be used to 
obtain (dX/dt)t=0 and (dY/dt)t=0. We discover that the solution 
for this system is very different from the case reviewed in 
the introduction where hereditary influences were neglected. 
It is evident from Figure 9.4 that the phase-plane trajectory 
has an evolving shape and the populations are unstable.

There are several important lessons to be drawn from this 
study of populations in conflict. Foremost, the addition of 
hereditary influences can render the populations nonperiodic 
and unstable. Moreover, by making one of the Ks positive 
and one negative, we can also obtain extinction of one 
species and proliferation of the other. The reader may wish 
to investigate the possibilities by setting K1 = −0.05 and 
K2 = +0.05, which results in a trajectory that collapses 
along the y-axis with very small values for X occurring 
intermittently. The effects obtained with various combina-
tions of Ks will form the basis of a student exercise at the 
end of the chapter.

AN ELEMENTARY SOLUTION STRATEGY

In the previous section, we converted our IDEs into second-
order ODEs that we solved by methods already familiar  
to us. We now want to look at an IDE example to illustrate 
how such problems might be solved when we retain the 

parameter, λ, has on the solution. We will explore the solu-
tion of this ODE with increasing λs in Figure 9.3.

The principal task of interest to us now is to assess what 
happens when hereditary influences are added to the case of 
two populations in conflict. It is likely that some profound 
changes—relative to the results shown in Figure 9.1 for 
foxes and rabbits—will occur. The model we will consider 
takes the form

	
dX

dt
aX bXY K X Y d

t

= − − ∫1

0

( )φ φ 	 (9.11)

and

	
dY

dt
Y XY K Y X d

t

=− + + ∫α β φ φ2

0

( ) . 	 (9.12)

Using the approach described previously for the single-
population example, we obtain the system of ODEs:

	
d X
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and

	
d Y

dt Y

dY

dt
Y

dX

dt
K XY
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

 + +
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β . 	 (9.14)

We will confine our attention to the case for which 
a = b = 2, K1 = −0.05, and α = β = 1 with K2 = −0.05. 

FIGURE 9.3.  Solutions of the ordinary differential eq. (9.10), 
with increasing values of the parameter, λ. The solution in the 
“middle” that approaches a horizontal asymptote is often referred 
to as the growth, or logistic, curve.
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We isolate u(s):

	 u s
s s

( ) ,=
+ +

1

2 52
	 (9.19)

then by partial fraction expansion:

1

1 2 1 2 1 2 1 2( )( )
,

s i s i
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s i+ + + −
=
+ +

+
+ −

  (9.20)

and we find that A = (1/4)i and B = −(1/4)i. Thus, we can 
now invert our transform:

u x i i x i i x

x x

( ) exp(( ) ) exp(( ) )

exp( )sin( ).

= − − − − +

= −

1

4
1 2

1

4
1 2

1

2
2

  (9.21)

To provide a comparison, we will employ the very same 
discretization scheme we used for the first (nonlinear) 
example in this section, using a step size (Δx) of 0.005. Both 
solutions are provided in Figure 9.5. The analytic case is 
shown as the solid (black) curve and the approximate com-
puted values are represented by the small filled circles. The 
typical discrepancy between the two solutions is on the order 
of about 0.4%. For all but the most exacting applications, 
this would be completely satisfactory.

VIM: THE VARIATIONAL ITERATION METHOD

Previously in this section, we cited some results obtained 
using VIM. Pioneering work by He (1999, 2000, 2007) led 

integral but employ a simple discretization. Consider the 
nonlinear IDE:

	
du

dx
u d

x

=− +∫1 2

0

( ) ,φ φ 	 (9.15)

for which u(x = 0) = 0 and 0 ≤ x ≤ 1. This equation has 
been solved by Batiha et al. (2008) using the variational 
iteration method (VIM), so we will have a convenient com-
parison. We replace the derivative, du/dx, with the first-order 
forward difference:

	
du

dx

u x x u x

x
≅

+ −( ) ( )
,

∆
∆

	 (9.16)

and the integral is approximated by the summation of rect-
angles each of width, Δx. We choose Δx  =  0.001 and 
proceed from x =  0 to x =  1. Let us compare our results 
with those provided by Batiha et al.

x
VIM (Batiha et al., 

2008)
Approximate 
Discretization

0.0000 0.000000 0.000
0.0938 −0.0937935 −0.094
0.2188 −0.2186091 −0.218
0.3125 −0.3117064 −0.311
0.4062 −0.4039385 −0.404
0.5000 −0.4948226 −0.495
0.6250 −0.6124315 −0.612
0.7188 −0.6969446 −0.697
0.8125 −0.7771007 −0.777
0.9062 −0.8519654 −0.852
1.0000 −0.9205578 −0.921

We can see from the tabulated results that this elementary 
discretization has produced a quite acceptable agreement 
with the published solution for this IDE. We would do well 
to wonder how the results of such a simple procedure would 
compare with a case for which the analytic solution can be 
easily determined, resulting in a more definitive test. We will 
do this by looking at the linear IDE,

du

dx
u u d x u

x

+ + = ≥ =∫2 5 1 0 0 0
0

( ) , ( ) .φ φ with and

		  (9.17)

We observed previously that a linear equation of this type 
can be solved readily through the use of the Laplace trans-
form, and we now illustrate this process. We begin by taking 
the Laplace transform of each term in the equation (noting 
that u(x = 0) = 0):

	 su s u s
u s

s s
( ) ( )

( )
.+ + =2 5

1
	 (9.18)

FIGURE 9.5.  Comparison of the analytic solution (solid curve) 
of the integro-differential eq. (9.17) with the approximate solution 
obtained by discretization (filled circles).
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x u(x)

0 0.25
0.13495 0.50
0.29129 0.75
0.496899 1.00
0.85885 1.25

Now we are set; let our ODE, eq. (9.27), be rewritten as 
u uu n′+ −2 2. The successive iterations are determined from

	 u u u u dsn n n n

x

+ = + + −∫1
2

0

2λ( ) .′ 	 (9.29)

The Lagrange multiplier, λ, can be identified from the 
stationary condition(s), and for linear ODEs, λ can be deter-
mined exactly. For the nonlinear eq. (9.27), we will presume 
λ = −1 and proceed. We take u0 = 1/4 (satisfying the initial 
condition) and find by integration u x1 1 4 31 16= +( / ) ( / ) . 
Therefore,

	 u x s s ds

x

2
2

0

1

4

31

16

31

32

961

256
= + − +







∫ , 	 (9.30)

which yields

	 u x x x2
2 31

4

31

16

31

64

961

768
= + − − . 	 (9.31)

If we let x =  0.29129, we find u ≈  0.74235; setting 
x =  0.4969 produces u ≈  0.9396. These two results have 
corresponding errors of about 1% and 6%. For many appli-
cations, this level of error would be tolerable, but additional 
iterations will be necessary if we require improved 
accuracy.

Let us consider one more example to ensure our familiar-
ity with this very powerful technique. Suppose we have the 
ODE,

	
du

dx

x

u
u x=−

+
= =

3

21
0 1

( )
, ( ) .with 	 (9.32)

The analytic solution is known:
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		  (9.33)

Our succession of estimates is obtained from

	 u u u
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′
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. 	 (9.34)

to rapid exploitation of the technique, and the efforts of 
Batiha et al. (2008), He and Wu (2007), and many others 
indicated that VIM might be especially well suited to the 
solution of IDEs. It is, therefore, appropriate that we deviate 
from our course a little to provide a discussion of VIM. So 
that we better understand the technique, we must spend a 
few moments discussing Lagrange’s multiplier method, 
which we saw for the first time in Chapter 2.

Let us suppose that we have two variables that are to be 
combined such that

	 x x1
2

2
32 30+ = . 	 (9.22)

We are seeking values for the two variables that cause the 
product (x1x2) to be a maximum, subject to the constraint, 
eq. (9.22). These values can be identified through use of the 
Lagrange multiplier, λ. We write

	 F x x x x= + + −1 2 1
2

2
32 30λ( ). 	 (9.23)

This expression is differentiated with respect to each of 
the three variables, and the partial derivatives are set equal 
to zero:

	
∂
∂
= + =

F

x
x x

1
2 12 0λ 	 (9.24)

	
∂
∂
= + =

F

x
x x

2
1 2

26 0λ 	 (9.25)

	
∂
∂
= + − =

F
x x

λ 1
2

2
32 30 0. 	 (9.26)

These three equations are solved, and the reader may 
wish to show that x1  =  4.24264, x2  =  1.81712, and 
λ = −0.21415; accordingly, the maximum product subject 
to the constraint is x1x2 = 7.70939. Next, we examine how 
the Lagrange multiplier technique is modified for applica-
tion to an ODE. Suppose we have the ODE,

	
du

dx
u+ =2 2, 	 (9.27)

with u(0) = 1/4 and 0 ≤ x ≤ 1. In this case, the ODE can 
be solved yielding

	
2

2
2 2 0 126326

+
−
= +( )u

u
xexp ( . ) . 	 (9.28)

We will calculate a few values to have a comparison 
readily available:
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δ δ δ λ φ φ φ φu x u x Lu Nu g dn n n n

x

+ = + + −∫1

0

( ) ( ) [ ( ) ( ) ( )]�

		  (9.39)

and make the correction functional stationary. We can illus-
trate the process with an example (the Lienard equation) 
provided by Matinfar et al. (2008). Suppose we have the 
nonlinear ODE,

	
d u

dt
au bu cu

2

2
3 5 0+ + + = , 	 (9.40)

where a, b, and c are real constants. We now write the cor-
rection functional as before:

u t u t

u au bu cu d

n n

n n n n

t

+ =

+ + + +[ ]∫

1

3 5

0

( ) ( )

( ) ( ) ( ) ( ) .λ φ φ φ φ φ″ � �

		  (9.41)

The restricted variations are used on the nonlinear terms 
so they can be eliminated, resulting in

δ δ δ λ φ φ φu t u t u au dn n n n

t

+ = + +[ ]∫1

0

( ) ( ) ( ) ( ) .″   (9.42)

The integral is handled by integration by parts, which 
yields three stationary conditions for identification of the 
optimal λs:

	 λ φ= − t, 	 (9.43)

	 λ φ=
−

− −
1

a
a tsinh( ( )), 	 (9.44)

and

	 λ φ= −sin( ).t 	 (9.45)

Any one of the three choices will work—they will only 
differ by the speed of convergence of the correction formula. 
If we choose the first of the trio of λs, our iterative process 
will be based on:

u t u t t u au bu cu dn n n n n n

t

+ = + − + + +∫1
3 5

0

( ) ( ) ( )[ ] .φ φ″

		  (9.46)

An initial approximation for un=0 is all that is required to 
get started with the iterative process. Matinfar et al. used 

If we start with u0  =  1, we can very easily find 
u1 = 1 − (x4/16). Therefore,

	 u
x s s

s
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and

	 u
x

2 4
3

64

32
= +

−
. 	 (9.36)

We can compare these estimates with the analytic solu-
tion in the following table:

x= 0.50 1.00 1.25 1.50 1.75

u(x) analytic 0.996086 0.935438 0.834018 0.613829 −0.011526
u1 (x) 0.996094 0.93750 0.847412 0.683594 0.413818
u2 (x) 0.996086 0.935484 0.834809 0.624130 0.170782

Except for higher values of x, the second iteration 
does a remarkable job of representing the solution of this 
ODE.

We want to facilitate the application of VIM more 
broadly and this will require that we make use of some 
elements from the calculus of variations. Because our goal 
is to use VIM as a tool, we will pursue the approach 
described by Ji-Huan He in his interview in ScienceWatch, 
July 2008: We want to present the technique in such a 
way that “anyone who knows nothing of variational theory 
in mathematics can apply the method.” For the reader who 
is curious about other applications of the calculus of varia-
tions, an introduction is provided at the end of this text in 
Chapter 11. In addition, Robert Weinstock’s (1974) book 
is very useful and there are very good online primers 
available including James Nearing’s (University of Miami) 
work, for example. There is also a nice appendix in 
Kenneth Huebner’s (1975) book that was specifically 
written for engineers.

We generalize this part of our discussion by rewriting the 
ODE we wish to consider as

	 Lu Nu g x+ = ( ), 	 (9.37)

where L and N are linear and nonlinear operators, respec-
tively. Now we construct a correction functional:

u x u x Lu Nu g dn n n n

x

+ = + + −∫1

0

( ) ( ) [ ( ) ( ) ( )] .λ φ φ φ φ�   (9.38)

The nonlinear terms are to be removed by substituting �u, 
a restricted variation such that δ( )�u = 0, and the Lagrange 
multiplier, λ, is identified using variational theory. To find 
the optimal value for λ, we write
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We will now apply this technique to a nonlinear problem 
considered by Batiha et al. (2008):

	
du

dx
u

du

d
d

x

= +∫1
0

( ) ,φ
φ

φ 	 (9.51)

given that (0 ≤ x ≤ 1) and u(x = 0) = 0. Remember that 
we select a trial function such that the boundary conditions 
are satisfied, and in this case, an obvious function is u0(x) = x. 
Once again, λ = −1, so the iteration formula is
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Batiha et al. reported an incorrect sequence of results in 
the original paper, and the errors have been corrected here:

	 u x x x1
31

6
( )= + 	 (9.53)

and

	 u x x x x2
3 5 71

6

1

30

1

504
= + + + . 	 (9.54)

We will also employ discretization with eq. (9.51) to 
provide a comparison:

x u(x) Discretized u(x) VIM Approx.

0 0.0000 0.0000
0.0938 0.0940 0.09394
0.2188 0.2207 0.22056
0.3125 0.3178 0.31769
0.4062 0.4178 0.41774
0.5000 0.5220 0.52189
0.6250 0.6693 0.66894
0.7188 0.7879 0.78729
0.8125 0.9156 0.91416
0.9062 1.0548 1.05159
1.0000 1.2086 1.20198

In this example, Batiha et al. (2008) used three VIM 
iterations, but the values reported in their original table are 
incorrect. The corrected values for the second iteration are 
shown in the preceeding table, and you will immediately 
note that these values are in remarkable agreement with the 
results computed using discretization.

We now look at an example with a higher-order derivative 
provided by He and Wu (2007), a fourth-order IDE:

	
d y

dx
x e e y x y s dsx x

x
4

4

0

1 3= + + + −∫( ) ( ) ( ) . 	 (9.55)

MATLAB for their computations with a, b, and c set equal 
to −1, 4, and −3, respectively. For the initial (trial) function, 
they used

u u t
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t
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=

( ) ( ),

and their results were in excellent accord with the closed-
form solution. It should be noted that there are many exam-
ples of the application of He’s method in the recent 
literature; just a few of the differential equations that have 
been solved this way include the Kawahara equation by 
Ganji et al. (2007), the Laplace equation by Jassim (2012), 
the nonlinear oscillator by He and Wu (2007), and Sturm–
Liouville equations by Altintan and Ugur (2012). VIM has 
even been applied to model contamination (the spread of 
pollution) in a system of interconnected lakes (see Merdan, 
2009).

Of course, our real objective in this chapter is the solution 
of IDEs. The procedure is wholly analogous to our treatment 
of ODEs earlier, and to begin, let us take
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f x g u u d
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where f(x) is the source term. We build a correction func-
tional just as before:
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Our task now is to choose the optimal Lagrange multi-
plier, λ. Remember that the tilde in eq. (9.48) denotes a 
restricted variation; therefore,
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The integration is performed and the stationary condi-
tions are used to identify λ, which in this case is −1. There-
fore, the iteration formula is
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x 1 + x exp(x) Approximation, y1(x)

0.0 1.00000 1.0000
0.2 1.24428 1.2390
0.4 1.59673 1.5891
0.6 2.09327 2.0867
0.8 2.78043 2.7770
1.0 3.71828 3.7183

VIM provides us with an extraordinarily powerful tool 
for the solution of both ODEs and IDEs.

INTEGRO-DIFFERENTIAL EQUATIONS AND THE 
SPREAD OF INFECTIOUS DISEASE

IDEs figure prominently in deterministic models of epidem-
ics. Let us begin by considering a simple model for a popula-
tion consisting of two types of individuals: those who are 
susceptible to infection (S) and those already infected (I). 
We assume the disease is not fatal, so there is no death rate, 
and we exclude birth during the time period of interest for 
simplicity. An elementary model for this situation might 
consist of two ODEs:

	
dS

dt
SI=−β 	 (9.62)

and

	
dI

dt
SI=+β . 	 (9.63)

The meaning of this model construct is that the number 
of susceptibles decreases as a result of interaction with 
infected individuals, and the number of infectives increases 
due to interaction. For this example, we will take the rate 
constant, β, to be positive. Since there is neither birth nor 
death, the total population size is constant; that is, S + I = C1. 
Therefore,

	
dI

dt
I C I= −β ( ).1 	 (9.64)

We will take the total population to be 100 individuals 
and the initial number of infected to be 3; we will use dif-
ferent values for the rate constant to carry out a numerical 
exploration of eq. (9.64). The results we obtain are predict-
able: No matter what positive value is selected for the 
parameter, β, the infection will spread to the entire popula-
tion and the total number of infectives will rapidly approach 
100. This behavior is revealed in Figure 9.6.

These data reveal that the model given by eq. (9.64) does 
not produce very realistic results; for one thing, the infection 
spread throughout the population because the interaction 

We are given that y(0) =  1, y(1) =  1 +  e =  3.71828, 
y″(0) = 2, and y″(1) = 3e = 8.15485. Of course, we might 
think about discretizing this equation and trying to solve it 
just as we did in some of the previous examples. However, 
the combination of the fourth derivative and the split bound-
ary conditions renders this approach quite unappealing. We 
will be better served by applying VIM to this IDE.

For this linear case, the exact solution is known, y = 1 + x 
exp(x), facilitating comparison. He and Wu suggest a trial 
function,

	 y x x a bx cx dx0
2 31( ) exp( )[ ],= + + + + 	 (9.56)

and clearly a = 0 so that y(0) = 1. One of the most important 
contributions of the He and Wu (2007) paper is that appro-
priate iteration formulae are given for a wide variety of 
problems, including this one. For example, given the 
equation

	
d u

dx
f u u u

2

2
0+ ′ ′′ =( , , ) , 	 (9.57)

the first-order approximation is given by
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We can simplify matters for our example by letting
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The iteration formula can now be written more compactly 
and applied to obtain y1:

	 y x y x s x f s ds

x

1 0

0

( ) ( ) ( ) ( ) .= + −∫ 	 (9.60)

He and Wu found that

y x x x e x

x

x
1

3 2 4

3

0 0803 0 2113 2 302 6 9014 0 0164

0 7162 2

= − + − +

+ +

( . . . . ) .

. .. . . .3418 5 5516 7 90142x x+ +
	
(9.61)

Please be advised that the first-order approximation as 
given by He and Wu contains an error (their equation number 
37); the coefficient provided for x2 is not 10.3418 (it should 
be 2.3418 as indicated previously). In this case, we can 
easily compare the analytic solution with the first-order 
approximation; some values are provided in the following 
table and the agreement is excellent—generally within  
about 0.5%.
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correct scaling for a propagating front (in our case, the 
interface between infectives and susceptibles) must be 
hyperbolic. Thus, a different modeling approach is required.

We will take M(x) to be the rate at which infected indi-
viduals leave position x and travel to a new location in the 
spatial domain. We will also assume that M is a positive 
constant. Our model now has the form

∂
∂
= − − + ∫

I

t
I C I MI M K x y I y t dyβ ( ) ( , ) ( , ) .1   (9.66)

K(x, y) is the kernel; it is a density function for the fraction 
of infected individuals who leave position y destined for x. 
This density function has the characteristics

	 K x y K x y dx( , ) ( , ) .≥ =∫0 1and 	 (9.67)

Medlock and Kot (2003) assumed that the kernel was of 
the convolution type

	 K x y k x y k u
u

( , ) ( ) ( ) exp ,= − = = −








1

2α α
	 (9.68)

where u is the separation between the x and y positions. They 
set M = 1, β = 1, and α = 0.7698; I, the fraction of infected 
individuals, was taken to be 1 in the center of the domain. 
The problem thus posed by eq. (9.66) is formidable. The 
repeated evaluation of the integral is computationally expen-
sive, so Medlock and Kot used a Runge–Kutta scheme for 
the time derivative and then the fast Fourier transform (FFT) 
for the integral. The solution of this problem takes the form 
of a traveling wave as illustrated in Figure 9.8. At small ts, 

between susceptibles and infectives was mandated by the 
differential equation. It completely failed to account for one 
of the conditions of modern life that has significantly affected 
the transmission of disease: ease of travel. The very simple 
model we described earlier does not take into account the 
movement of infected individuals—and the intercontinental 
spread of AIDS revealed how very important this factor  
is. So, what might we do to incorporate the movement of 
infected individuals into the modeling?

“Diffusion” approximations have been used to try to 
model the spread of epidemics through what is often referred 
to as the Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) 
equation:

	
∂
∂
=
∂
∂
+ −

I

t
D

I

x
KI I

2

2
1( ). 	 (9.65)

We will think of I in this case as the fraction of infected 
individuals. D is a kind of diffusion coefficient and K is a 
rate constant. The FKPP model is tractable, but it displays 
an unphysical characteristic that we will now demonstrate. 
Suppose we have an initial cluster (spike) of infectives at a 
particular spatial location. Our plan is to solve eq. (9.65) 
employing different values for K to explore the effect of the 
rate constant on the solution. All other parameters are fixed.

The data in Figure 9.7 reveal the failure of the FKPP 
model as applied to epidemics; the speed of propagation 
increases as the rate constant, K, increases. In fact, the dif-
fusion model suggests that the rate of spread of disease will 
become infinite if K is allowed to increase without bound. 
Fedotov (2001) points out that this behavior is unphysical 
and that the origin of this problem is due to the parabolic 
scaling associated with the FKPP equation. He notes that the 

FIGURE 9.6.  Increase in the number of infected individuals for 
βs of 0.00625, 0.125, and 0.025. As β increases, we see an increas-
ingly rapid approach to a population that is 100% infected.
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FIGURE 9.7.  Solutions of eq. (9.60) for a fixed time using values 
for K ranging from 0.1 to 10 (specifically 0.1, 1, 2, 4, 8, and 10).
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very small (colloidal) clay particles are aggregating in a 
concentric-cylinder Couette device to form very large flocs 
(agglomerates). There is particle growth in this system, but 
little or no breakage due to the highly ordered nature of the 
hydrodynamic environment. One of the interesting features 
of this particular system is that elements of the fluid phase 
become trapped in the interstices of the aggregate such that 
the apparent volume of the dispersed phase increases sig-
nificantly during aggregation. Thus, neither volume nor 
mass would be conserved in a system such as that illustrated 
in Figure 9.9.

One of the formidable challenges offered by problems of 
this type is the incredible range seen in property values (such 
as entity size). When colloidal clay particles are flocculated 
in a more typical environment (inhomogeneous turbulence), 
we find entity sizes ranging all the way from about 1 μm to 
several millimeters (the difference, therefore, is three or even 
four orders of magnitude). To compound the problem, the 
number densities for very small particles can be 5–10 orders 
of magnitude larger than those for very large aggregates 
formed in the coagulation. This is exactly the situation illus-
trated by the comparison shown in Figure 9.10.

It will be useful for us to preface our continuing discus-
sion of the application of population balances to multiphase 
processes by spending a little time considering entity birth 
and death. Often when we have a population of individuals 
(countable entities), the appearance of new individuals 
(birth) may occur. In biological systems, this might be by 
reproduction, cell division, and so on. In crystallization, 
new entities—though very small ones—appear by nucle-
ation. But at a finite specified size, crystals are actually 
born by the breakage of larger parents. Of course, at any 

the traveling wave emerges from the original block of  
infectives and then moves to the right (positive x-direction) 
with increasing time. The results shown in this figure were 
obtained using a Euler scheme on the time derivative (with 
a small time step) and the trapezoidal rule for the integral. 
This numerical procedure is inefficient computationally, but 
very simple to apply and execute.

The behavior we see in Figure 9.8 is very different from 
the FKPP model we discussed previously. The transmission 
of disease with the movement of infected individuals is 
much more wavelike; the boundary between infectives and 
susceptibles travels in the x-direction, but the characteristics 
of the wave are essentially unchanged as it emerges from 
the initial block of infectives.

EXAMPLES DRAWN FROM 
POPULATION BALANCES

We observed at the beginning of the chapter that many 
important industrial processes are multiphase, often consist-
ing of a continuous fluid phase carrying countable entities. 
These dispersed objects may be particles, droplets, bubbles, 
cellular entities, or possibly some combination of several of 
these. Furthermore, these countable entities are commonly 
experiencing birth, death, growth (aggregation), breakage 
(or comminution), interphase transport, and so on. These 
processes may result in changes to extensive variables such 
as number, mass, or volume, and such changes are often 
crucial with respect to process performance and control. An 
illustration of such a process is shown in Figure 9.9; here, 

FIGURE 9.8.  Emergence of the traveling wave from the initial 
block of infectives. The wave continues to move to the right with 
increasing time. This model is far more realistic than the one posed 
by the FKPP equation.
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FIGURE 9.9.  Floc formation in Couette device in which the outer 
cylinder is rotating (inner cylinder at rest). The large aggregates 
seen in this image consist of clay (kaolin) particles, polymer floc-
culant, and water trapped in the interstitial spaces. Measurements 
of the density of these aggregates reveal that the overwhelmingly 
dominant component is the trapped water.
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The model described earlier is often referred to as the 
Yule–Furry birth process. We say that such a birth process 
is homogeneous because the transition probability is 
constant—it does not depend on time. We might ask our-
selves how birth processes are changed if the rate of birth 
depends on the population to the second power, that is, when 
the birth rate per individual depends on population size (we 
are requiring interaction between individuals). Under these 
circumstances, the total population grows according to

	
dn

dt
n=λ 2, 	 (9.72)

resulting in

	 n

n
t

=
−

1
1

0

λ
. 	 (9.73)

The consequence of this model is divergent (explosive) 
growth, where n → ∞ as λt → 1/n0. Of course, neither the 
Yule–Furry process nor the explosive growth scenario 
accounts for the disappearance of individuals (death). 
Suppose we now add the assumption that individuals die at 
a rate that is proportional to their number—let the probabil-
ity that an individual will die during a time interval, Δt, be 
μΔt. Once again, we think about how we can get to the n-
state (i.e., where we have n individuals). This could occur 
due to a birth (coming from n − 1) or a death (coming from 
n + 1), or by having no births or deaths over the time inter-
val, Δt (and thus remaining at n). Just as before, this model 
leads to a differential-difference equation:

instant in time, some existing individuals may disappear 
(death). Generally, both birth and death may depend in 
some manner on the size of the existing population—large 
numbers may lead to many births and deaths. The reader 
may find chapter 8 in Bailey (1964) to be a valuable intro-
duction to this topic, should he/she wish to know more. Let 
us suppose that the probability that a population of indi-
viduals will total n at time t is pn(t). And we will assume 
that the probability that a given entity will produce a new 
one in the time interval, Δt, is λΔt. Now, how could we 
arrive at a population of n entities at time t + Δt taking 
only birth processes into account? We could come from the 
n −  1 state by a birth, or we could simply remain at the 
n-state if no births occurred over the time interval. Let us 
write this down:

p t t p t n t p t n tn n n( ) ( ) ( ) ( )( ).+ = − + −−∆ ∆ ∆1 1 1λ λ   (9.69)

We subtract pn(t) and divide by Δt, taking the limit as 
Δt → 0; the result is a differential-difference equation,

	
dp

dt
n p npn

n n= − −−λ λ( ) .1 1 	 (9.70)

Since we start with a nonzero population, say, n0, at t = 0, 
the initial condition for eq. (9.70) is p tn0 0 1( ) .= =  This 
gives us a set of equations that we can solve in succession, 
beginning with

	
dp

dt
n pn

n
0

00=−λ . 	 (9.71)

FIGURE 9.10  (a,b) Batch flocculation of colloidal kaolin in a stirred 1-L reactor. The disparity in entity size is revealed by this comparison; 
we see mainly primary clay particles in the dispersion shown on the left, and mostly large aggregates on the right. The number density for 
the small particles on the left is on the order of 1 × 107 per cm3, while for the case on the right, one might find only 1–10 large aggregates 
per cubic centimeter.

(a) (b)
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This dynamic balance is equivalent to

	
∂
∂

+
∂
∂
  =

f x t

t x
X x t f x t1

1 0
( , )

( , ) ( , ) .� 	 (9.77)

We will take the number density function to be (initially)

	 f x x1 = −exp( ), 	 (9.78)

and we will assume that the growth rate is described by

	 �X
C

C x
=

+
1

2
2

. 	 (9.79)

Of course, the latter eq. (9.79) means that the growth rate 
is strongly damped by large particle size. We will make a 
sequence of calculations to see how the number density 
function will evolve with time under these conditions.

The data provided in Figure 9.11 show how the growth 
rate limitation at larger entity size is constraining the move-
ment of the number density with respect to larger x. The 
population is becoming increasingly concentrated at inter-
mediate sizes. If we lessen the impact of the size-limited 
growth rate (e.g., let �X C C x= +( )1 2 ), we obtain more 
rapid movement of the number density function toward 
larger sizes; this is illustrated in Figure 9.12.

Of course, the model we have been considering is unre-
alistic in that it only describes entity growth. In many 
systems, breakage is a real possibility, and this leads us to 
rewrite eq. (9.77) with the addition of a combined birth and 

dp

dt
n p np n pn

n n n= − − + + +− +λ λ µ µ( ) ( ) ( ) .1 11 1   (9.74)

The initial condition is that n =  n0 at t =  0, such that 
p tn0 0 1( ) .= =  Note that if the death rate exceeds the birth 
rate in the combined model, extinction is guaranteed. Among 
other possibilities in population problems are immigration 
and emigration. In the case of the latter, the effects of exiting 
individuals can be handled by simply adjusting the death rate 
upward. For immigration, the simplest possibility is that the 
rate of influx is independent of the present population, n(t), 
and therefore, the likelihood of a new individual appearing 
over the time interval, Δt, will be written as νΔt. Thus, the 
probability that the total number of individuals will increase 
by one over Δt is

	 ( ( ) ) .λ νn t t+ ∆ 	 (9.75)

Once again, we consider how a population can arrive at 
the n-state over a time interval, Δt, now taking into account 
birth, death, and immigration: Of course, we can grow from 
n − 1 by birth or immigration, we could remain at n, or we 
could decline in number from n + 1. And, just as we saw 
previously, the result is a (set of) differential-difference 
equation(s); we should point out that Ji-Huan He has 
observed that the VIM, as described previously in this 
chapter, can also be used to advantage for this problem type.

In the preceding discussion of birth and death processes, 
our objective was the determination of probability that a 
population would total n individuals. But in the process 
industries, our concern is more likely to be centered on the 
distribution of entity volume, size, age, and so on, and how 
those distributions evolve with time in different physico-
chemical environments. Thus, we seek a framework that we 
might employ to model such phenomena in view of their 
enormous practical importance. The reader with interest in 
this area is urged to consult the book Population Balances: 
Theory and Applications to Particulate Systems in Engineer-
ing by Ramkrishna (2000). We will begin with the simplest 
possible one-dimensional problem type, and we will adopt 
Ramkrishna’s notation.

Suppose we have an initial population of particles that 
are distributed homogeneously in space. Furthermore, let us 
assume that we have only particle growth occurring and that 
the growth rate at a given size, x, is �X x t( , ). Our focus is the 
particular size range, a ≤ x ≤ b; if the number density func-
tion, f1(x, t), changes in this size interval, then it will be due 
to either growth into (a, b) from below or growth out of (a, 
b) at the upper end. We can write a description for the 
dynamic behavior of this growth process:

d

dt
f x t dx X a t f a t X b t f b t

a

b

1 1 1( , ) ( , ) ( , ) ( , ) ( , ).∫ = −� �   (9.76)

FIGURE 9.11.  Change in the number density function for the 
growth-only case. The heavy black curve is for t = 1/4. Note how 
the small sizes are disappearing as the density function becomes 
increasingly narrow.
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entities disappear by breakage, then h(x, t) is a “sink” term 
consisting of a breakage rate, b(x, t), multiplied by the 
density function: b(x, t)f1(x, t). We will replace the right-
hand side of eq. (9.80) with this product and impose a size 
threshold where the breakage rate becomes large, thereby 
limiting the movement of the density function to the right 
(toward larger sizes). Some computed results are provided 
in Figure 9.13.

Normally, when breakage is occurring, larger entities are 
increasingly likely to break and some of those events will 
generate new entities at size x. This phenomenon represents 
a “source” of particles at size x. Now things are a good deal 
more complicated. When one of these larger entities breaks, 
some number of daughter particles will be formed, and we 
will represent the average number of fragments with v(x′, t), 
where x′ > x, of course. Clearly, ν must be at least 2 (this 
is what we call binary breakage), but under sufficiently 
energetic circumstances, it could be much larger. Obviously, 
this also means that we must know where in x-space these 
fragments will be distributed. We will let P(x|x′) be the prob-
ability that a larger entity at size x′ creates a fragment at size 
x. The disintegration of any larger entity might produce a 
fragment (or daughter particle) at size x, so we must take all 
larger particles into account:

∂
∂

+
∂
∂
 

= ′ ′ ′ ′

f x t

t x
X x t f x t

x b x P x x f x t d

1
1

1

( , )
( , ) ( , )

( ) ( ) ( ) ( , )

�

ν xx b x f x t
x

−
∞

∫ ( ) ( , ).1

  (9.81)

death term to account for the net generation of particles in 
the size range of interest:

	
∂
∂

+
∂
∂
  =

f x t

t x
X x t f x t h x t1

1
( , )

( , ) ( , ) ( , ).� 	 (9.80)

Let us spend a moment thinking about particle breakage. 
If the breakage rate is dependent on hydrodynamic condi-
tions, then there may exist a size threshold below which no 
breakage occurs. For example, in turbulent flows, we can use 
the dissipation rate per unit mass, ε, to assess the strain rate 
at different eddy scales (sizes). We usually argue that a dis-
ruptive eddy must have a scale comparable to the particle or 
entity size (much larger eddies simply entrain the particle, 
and very small eddies do not affect it at all). Naturally, larger 
eddies carry more energy, but they occur at a fixed location 
less frequently. One way to establish a breakage condition 
is to propose a balance between disruptive hydrodynamic 
energy and the restoring force (this could be surface tension, 
e.g., in the case of a suspended droplet). It may now be 
apparent to you how difficult the characterization of h(x, t) 
really is: We will need a breakage criterion that takes into 
account the energetics, we will need a rate at which these 
energetic events occur, and we will need to know the number 
and sizes of the fragments produced by the disintegration. 
Since we are talking about process elements that are almost 
always both nonlinear and stochastic, these characterizations 
will not be easy. A major challenge in the construction of 
population balance models is to produce a result that works 
and is actually grounded in sound physics.

Let us explicitly describe some of the difficulties that 
arise in the characterization of h(x, t). If, at a given size, x, 

FIGURE 9.12.  Change in the number density function (growth 
only) using a growth rate expression with less large-size 
attenuation.
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•	 production in (a, b) by the growth of smaller entities

•	 depletion in (a, b) by growth of entities in the interval 
(beyond b)

•	 production of fragments in (a, b) by breakage of larger 
entities

•	 depletion in (a, b) by breakage of entities from the 
interval.

Remember that these terms are specific to flocculating 
systems of the type we cited earlier. In more general situa-
tions, particle growth could occur by surface reaction, 
coating, deposition, and so on. We observed previously that 
birth in crystallization processes might appear to be the 
result of nucleation; however, we must remember that when 
saturation is exceeded, the nuclei that are formed initially 
are extraordinarily small. Thus, entity birth at a finite size in 
crystallization may actually be the result of breakage of 
larger particles.

Continuous crystallizers, flocculators, and so on, may 
operate at steady state such that the number density of enti-
ties is virtually constant. A batch process, in contrast, may 
yield a significant change in number density. For example, 
in the batch coagulation of colloidal clay particles, the 
number density may begin at 107 or 108 per cm3 (for primary 
particles), and then decline by several orders of magnitude 
during the flocculation process. This is exactly what Figure 
9.10 reveals.

If particle growth occurs solely by aggregation, then 
particle–particle contact will be necessary and a mechanistic 
description will require a model for the collision rate between 
entities. For fluid-borne particles, collision can result from 
Brownian motion, laminar or turbulent shear, particle inertia, 
and differential sedimentation. The functional forms for 
these collision rates are

β
µi j

i j
i j

kT

V V
V V, / /

/ /= +










 +( )2

3

1 1
1 3 1 3

1 3 1 3 Brownian motion

		  (9.84)

βi j i jR R
dU

dy
, = +( )4

3
3 Laminar shear 	 (9.85)

β
ε
νi j i jR R,

/

.=





 +( )1 3

1 2
3 Isotropic turbulence 	 (9.86)

β τ τ
ε
νi j i j i jR R,

/

/
. ( )= + −5 7 3 3

3 4

1 4
Turbulent inertia 	 (9.87)

β παi j i j Si SjR R V V, ( ) ( ) .= + −2 Differential sedimentation
		  (9.88)

In these rate expressions, R is entity radius and V is 
volume. We observe that the last two collision rates (eq. 9.87 

There are some clear restrictions placed on the condi-
tional probability, P(x|x′), including P(x|x′)  ≥  0 and 
P(x|x′) =  0 if x >  x′. In models of this type where both 
growth and breakage are taken into account, an important 
concern is that eq. (9.81) is consistent with an appropriate 
conservation principle. For example, if the total mass in the 
system is constant, then the first moment of the density func-
tion cannot vary; that is,

	 μ1 1

0

=
∞

∫ xf x t dx( , ) 	 (9.82)

must not be a function of time. Let us use a very simple 
illustration to highlight some of the problems encountered 
with conservation. Suppose we are using mass to character-
ize entity size and that we have two particles, each of mass 
M1, that combine to form a single new particle. Then, 
M1 + M1 = M2 and, of course, M2 = 2M1.

Now suppose we have a liquid–liquid system where the 
coalescence of two identical droplets occurs; we also assume 
we are vitally interested in droplet size and volume: 
V1 + V1 = V2. Of course, R R R2

3
1
3

1
3= +[ ], which implies 

d2 = 1.26d1.
Next, assume two small aggregates formed by floccula-

tion in an aqueous system collide and affiliate. These flocs 
are typically very irregular, and each structure contains a 
significant amount of interstitial water; moreover, when they 
combine, even more fluid will be trapped in the porous 
spaces between the contacting aggregates, and neither  
mass nor volume will be conserved. Let us assume that the 
additional fluid volume amounts to 75% of the volume  
of the colliding flocs (this percentage is actually on the  
small side):

	 V V V V2 1 1 11 75 1 75 3 5= + =( . . ) . . 	 (9.83)

Under this scenario, we find d2 ≅ 1.52d1. Naturally, when 
breakage of such an entity occurs, some of that trapped, 
interstitial fluid is released, so both volume and mass will 
be lost. It is effectively impossible to enforce a conservation 
principle in a system of this type, so there is little benefit to 
working with mass or volume. Therefore, in the following 
discussion, we will turn our attention to a straight number 
balance.

Particle Size in Coagulating Systems

Let us begin by providing a general verbal description of the 
balance we wish to formulate, and we will consider systems 
of the types illustrated by Figure 9.9 and Figure 9.10. We 
will develop a number balance and let (a, b) be the particular 
size range of interest.

The rate of change of population in the interval (a, b) will 
be determined by
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Solutions for eq. (9.91) are often sought through discreti-
zation; for example, Farley and Morel (1986) used the fol-
lowing set of equations:

dn

dt
i j i j n n n i k i k ni

i j k i

i

m

i j k

= −
=+ =
∑∑1

2 1

α β α β( , ) ( , ) ( , ) ( , ) ,

		  (9.92)

where α(i, j) =  1 if i ≠  j, but 2 if i =  j. Discretization 
of a population balance in which growth and breakage are 
occurring raises an obvious question: How many partitions 
should be used and how wide should they be? A popular 
choice is geometric spacing (multiples of 2); if aggrega-
tion is occurring and mass is conserved, then the affiliation 
of two particles of class 1 will result in an entity with 
mass doubled: M1 + M1 = 2M1 = M2. Ramkrishna (2000) 
points out that a coarse discretization makes it impossible 
for the model to be internally consistent. In other words, 
a collision event will not necessarily produce an entity in 
the next larger class or bin. One method that has been 
used to accommodate this problem is to employ weighting 
fractions so that only a portion of i-j affiliations produce 
an entity in the next larger bin. Therefore, we should prob-
ably regard a set of discrete balances (eq. 9.92) as semi-
quantitative; the problem thus posed is more easily solved 
as it involves merely a set of simultaneous ODEs, but 
compromises have been made. We will illustrate this by 
simulating an aerosol system.

Let us assume we have an aerosol for which particle 
growth occurs solely by Brownian motion, but particles are 
lost from the control volume due to sedimentation. We will 
use eight particle classes with bins centered about the diam-
eters 0.375, 0.75, 1.5, 3, 6, 12, 24, and 48 μm. We will solve 
eight simultaneous ODEs of the form given by eq. (9.92) but 
with the addition of a loss term based on the settling velocity 
(which is size-dependent). The collision rate will be 
described by eq. (9.84). For case 1, we will initially populate 
the first four (smallest) bins with 1 × 107 particles per unit 
volume each. For case 2, we will heavily populate the small-
est (0.375) bin, but the others will have much smaller number 
densities. This will cause a profound change in the dynamic 
behavior of the numbers of small particles. In Figure 9.14a,b, 
the number density in the smallest (0.375) bin is shown with 
a heavy black curve.

Application of the Population Balance to a  
Continuous Crystallizer

In this section, we look at a continuous crystallizer operated 
at steady state. Liquor containing the solute is fed to a well-
mixed vessel and the suspension containing crystals is with-
drawn from the apparatus at the same rate. We write the 
balance for crystals of size s:

and eq. 9.88) require disparity in particle size to be impor-
tant. For turbulent inertia, there must be a difference in 
characteristic times for the participating particles, where 
τ =  (mass of particle)/(6πμR). For differential sedimenta-
tion, there must be a difference in settling velocities, 
VSi − VSj. In a batch process where we start with all primary 
particles (monodisperse conditions), these two collision 
mechanisms will not be important at small times.

Note that in eq. (9.85), dU/dy is the velocity gradient 
(strain rate) associated with a highly ordered laminar flow; 
in eq. (9.86), ε is the dissipation rate per unit mass and ν is 
the kinematic viscosity of the fluid phase. Each of these 
collision rates has the dimensions L3/t. Thus, when the 
expressions are multiplied by the number densities of the 
participating particles, ni and nj, we obtain the number of 
collisions per unit volume per unit time. We will look at an 
example for particle collisions in isotropic turbulence: 
Suppose we have two classes of spherical particles, 
di =  5  μm and dj =  6  μm, and each class has a number 
density of 105 particles per cubic centimeter. We let the dis-
sipation rate per unit mass be 400  cm2/s3 and the fluid 
medium be water (ν = 0.01 cm2/s). We want to calculate the 
collision rate produced by isotropic turbulence:

βi j i jn n,

/
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5

= collisions/(cm s).3		  (9.89)

Now we will compare with the rate produced by laminar 
shear with dU/dy = 400 1/s:

βi j i jn n, ( . . ) ( )( )( )=





 × + ×

=

− −4
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2 5 10 3 0 10 400 10 10

8

4 4 3 5 5

887 33. collisions/(cm s).3		  (9.90)

One of the characteristics of the highly ordered shear field 
created by the Couette device depicted in Figure 9.9 is that 
there is virtually no breakage of aggregates. In such cases, 
we only need to model particle growth. Therefore, an appro-
priate balance can be written:
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V u u n V u n u du

n V V u n u du
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0

β

β

	 (9.91)

where u < V. The first term on the right-hand side accounts 
for production by collision of particles smaller than V; the 
second term on the right accounts for a loss of entities of 
size V due to additional growth by contact with other 
particles.
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on supersaturation than on crystal size. Randolph and Larson 
(1988) note that this is often observed to be true. The birth 
and death functions can be inserted into eq. (9.93), and once 
a functional form for P(ε) is chosen, a solution may be 
sought. The simplest case, P(ε) = 1, corresponds to uniform 
binary breakage, and it is convenient to recast the model in 
dimensionless form by setting

	 x
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L
y

n s

n
k k L m= = =

θ
θ θ,

( )

( )
, ( ) .

0
1and 	 (9.96)

The result is the IDE:
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Of course, x is the dimensionless crystal size and y is the 
dimensionless crystal population density; since y has been 
normalized with n(0), y(x = 0) = 1. This formidable problem 
has been solved by Singh and Ramkrishna (1977) using the 
method of weighted residuals (MWR). They constructed 
their trial functions with Laguerre polynomials. We can gain 
some limited appreciation for the behavior of y(x) by assum-
ing that the birth rate is zero. Then, with the right-hand side 
of eq. (9.97) gone,

	
dy

dx
k x ym=− +( ) ,1 1 	 (9.98)

	
d

ds
Ln

n
B D( ) ,=− + −

θ
	 (9.93)

where B and D are birth and death functions, respectively. n 
is the number density of crystals, θ is the average holding 
time, and L is the linear crystal growth rate. Death (disap-
pearance of crystals of a given size) is the result of breakage, 
and D is assumed to have the functional form

	 D s kn s sm( ) ( ) ,= 	 (9.94)

where k and m are empirical constants. The “birth” of crys-
tals of a given size is assumed to occur by breakage of larger 
entities, and it is convenient to assume that the breakage 
process is binary (i.e., the breakage of a parent particle 
results in the production of two daughter particles). The birth 
function is written as
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P(ε) is a probability density and P(ε)dε is the likelihood that 
the breakage of a crystal of size s will produce a crystal in 
the size range, εs to (ε + dε)s. Obviously, ε is a fractional 
quantity ranging from zero to 1. Among the idealizations 
used in developing this model are the assumption that the 
breakage process is strictly binary (a bit of a stretch) and 
that the linear growth rate (L) is a constant. The latter 
assumption is referred to as McCabe’s law, and it is based 
on the idea that crystal growth is more likely to be dependent 

FIGURE 9.14.  (a) Case 1: dynamic behavior from the discretized model with the first four (smallest) bins initially populated at 1 × 107 
particles/cm3. Because of the increased opportunity for small particle collisions, the 0.375 class decreases rapidly. (b) Case 2: dynamic 
behavior from the discretized model with only the 0.375 bin heavily populated. The opportunity for small particle collisions has been severely 
reduced.
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However, by no means is VIM the only viable alternative; 
for example, for nonlinear Fredholm IDEs of the form

	
dy

dt
f t k t s F y t ds= +∫( ) ( , ) ( ( )) ,

0

1

	 (9.99)

with 0 ≤  t ≤  1 and y(t =  0) =  y0, a few of the solution 
methods that have appeared in the literature are homotopy 
perturbation, rationalized Haar functions, hybrid functions 
and collocation, and the Tau method with Chebyshev and 
Legendre bases. For an example of application of the latter, 
see Pour-Mahmoud et al. (2005).

There are other prominent IDEs that have been inten-
sively studied; two examples where several alternative solu-
tion procedures have been devised include the neutron 
transport equation and the equation for radiative heat trans-
fer. In the case of the latter, for a medium that absorbs, emits, 
and scatters (anisotropically),

dI

ds
I I I s da b

s+ = + ′ ′ ′∫β κ
κ
π

φ
π

4
4

( , ) ( , ) .Ω Ω Ω Ω   (9.100)

I is the intensity of the radiation and Ω is the radiation 
(vector) direction, and for eq. (9.100), 0 ≤ s ≤ L and I = I0 
for s =  0. Zhao and Liu (2007) investigated this IDE and 
reported that many numerical methods exhibit unphysical 
oscillations in this particular application. They transformed 
eq. (9.95) to obtain a second-order differential equation that 
was of the diffusion type (with predictable behavior when 
solved numerically). You will observe that this is an approach 
that we have illustrated several times in this chapter; where 
feasible, this practice can often make the solution of such 
problems a good deal easier.

PROBLEMS

9.1.  We want to solve the IDE,

du

dt
u u d t

x

− + =∫3 6
0

( ) ,φ φ

with u(t = 0) = 0. Find solutions by both the approximate 
discretization technique and the method of Laplace trans-
form. Verify that your results correspond to the behavior 
shown in Figure 9.15 for (0 ≤ t ≤ 4).

9.2.  Find the solution for the IDE,

dy

dt
t u y u du

t

+ − =∫5 2 10
0

cos[ ( )] ( ) ,

and a solution is easily found:

y C x
k

m
xm= − +

+




















+
1

1 1

1
exp .

Singh and Ramkrishna used this result (with C1 = 1) as 
the weight function for their solution by MWR, and they 
obtained the numerical results shown in the following table. 
The values selected for the parameters were m =  4 and 
k1 = 0.006173.

x Y

0.0 1.0000
0.2 0.8191
0.5 0.6085
1.0 0.3743
1.5 0.2332
2.0 0.1461
2.5 0.8972 × 10−1

3.0 0.5141 × 10−1

3.5 0.2545 × 10−1

4.0 0.9701 × 10−2

4.5 0.2529 × 10−2

5.0 0.3700 × 10−3

5.4 0.4565 × 10−4

6.0 0.5746 × 10−6

Ramkrishna (2000) reviews the use of MWR as a solution 
technique for population balance equations in chapter 4 of 
his book.

CONCLUSION

IDEs appear in many important problems in the applied sci-
ences, ranging from biology to separation processes. For 
linear IDEs, the Laplace transform can be extremely useful 
and it can produce exact solutions. However, many of the 
IDEs of interest to us are nonlinear, and rarely can these 
equations be solved analytically. Our purpose in this chapter 
was to provide some alternative solution techniques so that 
students confronted by an IDE have options. In this vein, the 
VIM developed by He and coworkers is especially useful 
and highly recommended. The reader interested in applying 
VIM may find the recent article by Prajapati et al. (2012) 
very useful. They solved Abel’s integral equation using four 
different initial guesses for the trial function, y0(x), and they 
were able to show that all four produced convergent series 
solutions with small absolute errors. Their paper contains 
sufficient detail to be a valuable aid to the analyst who is 
new to VIM.
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x Approximate y(x)

0.05 0.95333
0.10 0.91019
0.15 0.87116
0.20 0.83585
0.25 0.80390
0.30 0.77499
0.40 0.72517
0.50 0.68438
0.60 0.65099
0.70 0.62366
0.75 0.61192
0.80 0.60129
0.85 0.59167
0.90 0.58298
0.95 0.57511
1.00 0.56799

Determine how accurate these results are.

9.6.  One of the examples worked in the text as part of the 
discussion of VIM was the ODE,

du

dx

x

u
u x=−

+
= =

3

21
0

( )
, ( ) .with 1

The analytic solution is known,

3 4 1 32
32 3

4
14 3

4 1 3

x u u
x

+ + = =
−










−( ) , , .

/

or alternatively

With VIM, the succession of estimates is obtained from

u u u
s

u
dsn n n

n

x

+ = − +
+







∫1

3

2

0
1

′
( )

.

Since u0 =  1, we can very easily find: u1 =  1 −  (x4/16). 
Therefore,

u
x s s

s

ds

x

2

4 3 3

4
2

0

1
16 4

2
1

16

= − − − +
−































∫

and

u
x

2 4
3

64

32
= +

−
.

Find u3 for this problem and compare its performance with 
the table of values that accompanied the example.

given that y(t = 0) = 2. Compare your result with

y t t t t( ) cos( ) sin( ) .= + + +( )
1

27
24 120 30 3 50 3

9.3.  Find the solution for the IDE,

dy

dx
x y x x s x s y s ds

x

= + − + + −∫1 2 1 2
0

( )exp[ ( )] ( ) ,

given that y(x = 0) = 1. Verify that y(1.75) = 21.3809.

9.4. U sing two methods, find the solution of the IDE,

dy

dt
y s ds

t

= −∫1
0

( ) ,

given that y(0) = 0 and 0 ≤ t ≤ 1. We are particularly inter-
ested in obtaining an accurate value for y(0.5555).

9.5.  The IDE,

dy

dx
y s x y s ds

x

+ = −∫ exp( ) ( ) ,
0

has been solved for 0 ≤ x ≤ 1 with y(0) = 1.
Some of the results obtained are given in the following 

table:

FIGURE 9.15.  Behavior of u(t) for the IDE in Problem 9.1.
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domain. Use the Medlock–Kot parameters and compute  
the evolution of the “infected” wave. How long will it take 
the center portion of the wave to travel five times the width 
of the initial block of infectives?

9.9.  In an emulsification process, data show that the droplet 
(number) density function is approximately described by

f d d d( ) exp( / ).= −
1

16
22

Therefore, when d = 4 μm, f(d) = 0.1353; for d = 11 μm, 
f(d) = 0.0309. The probability density is shown as a function 
of droplet size in Figure 9.16.

Measurements show that the total number density is 
1 × 107 droplets per cubic centimeter. Therefore, for drop-
lets with diameters between 8 and 12 μm, the cumulative 
probability is about 17%; that is, there are about 1.7 × 106 
droplets in this size range per cubic centimeter. For many 
applications, the probability distribution for volume is more 
useful than f(d) given in Figure 9.16. Convert the data shown 
previously to f(V). Where (at what volume) is the maximum 
in the distribution now located?

9.10.  Solve the dynamic balance for a pure growth process,

∂
∂

+
∂
∂











=

⋅f x t

t x
X x t f x t1

1 0
( , )

( , ) ( , ) ,

assuming that the initial density function is f1 = xexp(−x), 
but that the growth rate is given by

�X
C

C x
=

+
1

2
3

.

Let C1 = 0.75 and C2 = 2.0. Prepare a figure that illustrates 
the evolution of the number density function.

9.7.  Let us repeat the approximate analysis of two popula-
tions in conflict by solving the simultaneous second-order 
ODEs:

d X

dt X

dX

dt
bX

dY

dt
K X Y

2

2

2
2

1
21

=





 − −











and

d Y

dt Y

dY

dt
Y

dX

dt
K XY

2

2

2
2

2
21

=





 + +











β .

Set a = b = 2 and α = β = 1, and take K1 = −0.05 and 
K2 = +0.05. Use the same initial point that we employed 
previously, (X, Y) =  (1, 2). Remember, we can obtain the 
correct initial values for the first derivatives from the undif-
ferentiated equations by setting t = 0. How does the phase-
plane trajectory behave in this case? How will it differ if 
both Ks are positive, +0.05?

9.8.  We saw that the FKPP equation was an unrealistic dif-
fusion model for the influence of travel on the spread of 
infectious disease. An alternative is the model proposed by 
Medlock and Kot (2003) in which M(x) is the rate at which 
infected individuals leave position x and travel to a new 
location in the spatial domain. We take M to be a positive 
constant. The model has the form

∂
∂
= − − + ∫

I

t
I C I MI M K x y I y t dyβ ( ) ( , ) ( , ) .1

K(x, y) is the kernel; it is a density function for the fraction 
of infected individuals who leave position y destined for x. 
This density function has the characteristics

K x y K x y dx( , ) ( , ) .≥ =∫0 1and

Medlock and Kot (2003) assumed that the kernel was of 
the convolution type,

K x y k x y k u
u

( , ) ( ) ( ) exp ,= − = = −








1

2α α

where u is the separation between the x and y positions. They 
set M = 1, β = 1, and α = 0.7698; I, the fraction of infected 
individuals, was taken to be 1 in the center of the domain. 
The problem thus posed by this model is formidable. The 
repeated evaluation of the integral is computationally expen-
sive, so Medlock and Kot used a Runge–Kutta scheme for 
the time derivative and the FFT for the integral. We will let 
our domain extend from x = 0 to some very large x, and we 
will place a block of infected individuals at the origin. Our 
goal is to explore the propagation of the “wave front” of 
infected people. Let the initial block for I occupy 5% of the 

FIGURE 9.16.  Droplet (number) density function for Prob
lem 9.8.
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divide L into 40 pieces, and then solve the set of ODEs to 
find the time evolution of the nonlinear system. It has been 
reported that this problem exhibits diffusive behavior. Is that 
borne out by your results?
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9.11.  Solve the discretized model, eq. (9.87), for an aerosol 
with eight particle classes using the example in the text as 
your guide. Center the size bins on 0.375, 0.75, 1.5, 3, 6, 12, 
24, and 48  μm. Neglect sedimentation, but compare the 
results obtained with three different collision mechanisms: 
Brownian motion (as illustrated in Figure 9.14a), laminar 
shear with dU/dy = 300 s−1, and isotropic turbulence with 
ε = 1000 cm2/s3. Which mechanism results in the most rapid 
reduction in number density of small particles? Let the 
initial concentrations be 1 × 107 particles per cubic centi-
meter in each of the three smallest classes (let ni for the five 
larger classes be zero initially).

9.12.  Yüzbasi and Sezer (2012) studied a linear Volterra IDE 
with a weakly singular kernel:
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where y(0) = 1, y′(0) = 0, with 0 ≤ x and t ≤ 1. They note 
that the exact solution for this problem is y(x) =  x3 +  1. 
Solve this Volterra IDE using the method of your choice and 
compare your solution with the exact result.

9.13.  Consider the IDE

dy

dt
y u t u du

t

= −∫ ( )cos( ) ,
0

with y(0) = 1. Your colleague has developed his own method 
for solving such equations, and he reports that 
y(t = 1.5) = 2.135 and that y(t = 3) = 4.499. Use the method 
of your choice to confirm or refute the results of your 
colleague.

9.14.  In 2013, an online discussion occurred in which solu-
tion strategies were sought for the partial IDE,
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,

given that L =  4, B =  10, and u0 = ½. For this problem, 
0 ≤ x ≤ 4 and the initial distribution of u consists of a block 
centered at x = 2 with a width of ½ and an amplitude of 1; 
u is 0 elsewhere. Try the following approach: Discretize the 
equation (with respect to x) to get a system of n-ODEs of 
the form

du

dt

u u u

x
u u B u

L
u xn n n
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10
TIME-SERIES DATA AND THE FOURIER TRANSFORM

INTRODUCTION

At the very beginning of this book, we pointed out that some 
problems are not deterministic. Many real processes include 
nonlinear, stochastic components that defy conventional 
modeling efforts. And yet, it is essential that scientists and 
engineers be able to interpret and analyze such phenomena 
so that some level of confidence with respect to outcomes 
can be achieved. The purpose of this chapter is to provide a 
few tools that can be used in such scenarios.

In the applied sciences, it is common to record experi-
mental observations as a function of time, and we refer to 
such a sequence of data as a time series. We might collect 
these data to support a model or a hypothesis, or we might 
obtain them with the hope that a suitable model could be 
identified later. It is possible that such data might reveal 
particular functional behavior that could be periodic. Alter-
natively, the data might contain multiple periodicities or, in 
the worst case, exhibit fluctuations without a discernible 
period; that is, the phenomenon under study might be 
chaotic. Let us examine some meteorological data from the 
Bradford Station (United Kingdom) in Figure 10.1.

In the form shown in this illustration, these data are not very 
revealing. However, if we change to a line plot and expand the 
horizontal (time) axis, a very different picture emerges.

Of course, we see the expected behavior in Figure 10.2; 
over a time period of 100 months, there are about 8+ cycles 
in the data set; the annual variation is now completely 
obvious. The peak (and trough) temperatures occur at 
12-month intervals.

Annual (local) climate variations are simple enough 
that no tools are necessary to see and comprehend periodic 
behavior of the kind shown in Figure 10.2. We do not have 
to look far, however, to find greater challenges. Let us 
consider the Dow Jones Industrial Average (DJIA) and 
focus on the 22-year span from 1960 to 1982. The DJIA 
entered the 1960s over 600 and during 1982 was as low 
as about 770. If those numbers are indicative of the stock 
prices of interest to us (assuming we were long in our 
positions), then we were certain to be disappointed since 
the annual increase in value was only about 1.3%! If we 
look more closely at the data, however, we find quite a 
different picture. For example, in late 1974, the DJIA was 
as low as 577, but in 1976 and 1977, it reached 1000, a 
73% increase. We will look at the monthly averages over 
this two-decade plus span of time to get a visual under-
standing of the dynamic behavior.

Fluctuations in the DJIA are apparent in Figure 10.3, 
but there does not seem to be any obvious regular, peri-
odic behavior. This is important because, if we were able 
to identify a periodicity (or periodicities) in these data, we 
could anticipate the peaks and valleys and become very, 
very rich. What we need is a tool, or a method, by which 
we could identify periodicities in time-series data when 
they exist. Harmonic (or Fourier) analysis provides us 
with a means to do this—we can assess fluctuations in a 
time series by comparison with sinusoids. Even more 
useful is spectrum analysis, which allows us to identify 
the tendency for oscillations of a given frequency to 
appear.
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some of them—such as earthquakes—might occur periodi-
cally. Knott (1897), for example, concluded that there was 
probably a connection between lunar tides and earthquakes 
by means of a Fourier series. Schuster (1897), however, 
argued that one should consider the relative magnitudes of 
the Fourier coefficients compared with those obtained if the 
events in question were perfectly random.

Schuster proposed the following assessment: Suppose 
one has a time series, y(t), and computes the integrals,

A y tdt B y tdt
t

t T

t

t T

= =
+ +

∫ ∫cos sin ,κ κand   (10.1)

where T is a given time interval. We now define R as

	 R A B= +2 2 . 	 (10.2)

If y ≈  cos κt, then R will increase as the time interval, T, 
increases. However, if y ≈ cos λt, where λ ≠ κ, then R will 
fluctuate about some constant value as T increases. We will 
explore this proposal using a function, y(t), that consists of 
a limited number of sinusoids (Figure 10.4).

Our plan is to fix the time interval, T, and then to compute 
R for five different frequencies with 34π in the center of the 
range tested. We can then increase T and repeat the calcula-
tion as many times as we wish.

We find through the curves shown in Figure 10.5 that the 
test recommended by Schuster is capable of identifying peri-
odicities in a given data set. As a practical tool, however, it 
is severely limited; it would be computationally expensive 

FIGURE 10.1.  A scatter plot of the minimum and maximum 
(average) temperatures recorded at the Bradford Station (United 
Kingdom) for every month since 1908. The maximum tempera-
tures are the filled black squares and the minimum temperatures 
are the filled circles. These data were obtained from www.metof-
fice.gov.uk.
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FIGURE 10.2.  Line plot of temperature data from the Bradford 
Station with an expanded time axis. The black curve represents the 
average maximum temperatures, and the lighter curve the average 
minimum temperatures.
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FIGURE 10.3.  The Dow Jones Industrial Average (mid-month) 
from 1960 through 1982. These data were obtained from www.
davemanuel.com. These are closing values for the middle of each 
month.
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A NINETEENTH-CENTURY IDEA

The detection of solar and lunar periodicities by man dates 
back many thousands of years. But during the eighteenth 
and nineteenth centuries, scientists and mathematicians 
began to look at many other phenomena with the idea that 

http://c10-bib-0010
http://c10-bib-0015
http://c10-fig-0004
http://c10-fig-0005
http://www.metoffice.gov.uk
http://www.metoffice.gov.uk
http://www.davemanuel.com
http://www.davemanuel.com


208    Time-Series Data and the Fourier Transform

drove an intensified interest in the Fourier transform. This 
culminated in the Cooley–Tukey algorithm and variants, 
which are broadly known as the fast Fourier transform 
(FFT). James Cooley (1987) provided a wonderful first-
hand account of the development of the FFT and he pointed 
out that Gauss had grasped the essential ideas in the nine-
teenth century. Of course, the pace at which the use of the 
discrete Fourier transform (DFT) has expanded was driven 
by the development and widespread use of digital comput-
ers in the twentieth century. Before we discuss the FFT, 
however, we need to explore some other aspects of fluctuat-
ing signals.

THE AUTOCORRELATION COEFFICIENT

Suppose we observe a signal, y(t), that fluctuates about some 
constant mean value (such a process is said to be statistically 
stationary). For the synthetic data shown in Figure 10.4, it 
is clear that the mean is approximately zero. We let these 
observations be represented by

	 y t y y( ) ,= + ′ 	 (10.3)

where y  is the mean and y′ is the fluctuation. We will define 
an autocorrelation coefficient in the following way:

	 ρ τ
τ

( )
( ) ( )

.=
′ ′ +
′

y t y t

y 2
	 (10.4)

The quantity in the denominator is referred to as the 
mean-square fluctuation; naturally, the square root of this 
quantity is the rms fluctuation. If the time offset, τ, is 0, then 
the autocorrelation coefficient is equal to 1: ρ(τ = 0) = 1. 
How ρ(τ) behaves depends for larger τ, of course, on the 
nature of y(t). If y is periodic (or consists of a set of periodic 
functions), then ρ(τ) will show strong correlation at distinct 
values of τ; in such a situation, the oscillatory correlation is 
said to be ringing. If, on the other hand, the signal under 
observation is random or chaotic, then the fluctuations 
should become uncorrelated as the offset (or time delay) 
becomes large and ρ(τ → ∞) = 0.

Historically, the correlation coefficient has been used 
extensively in fluid mechanics and especially in the study of 
turbulence. The development of the hot-wire anemometer in 
the twentieth century produced large sets of time-series data 
that were observed in real time with oscilloscopes and pro-
cessed by analog instruments such as spectrum analyzers. It 
is important, though, that we recognize that the autocorrela-
tion has a significant limitation: It is not reversible; that is, 
since one cannot retrieve the original data from the autocor-
relation, the process of obtaining ρ(τ) automatically entails 
a loss of information. Consequently, the autocorrelation is 

to test a time series for every possible frequency and in the 
Victorian age—when the test was devised—it would have 
been utterly impossible.

In the middle of the twentieth century, the importance 
of spectrum estimation in electrical engineering applica-
tions (such as radio, radar, and electronic communications) 

FIGURE 10.5.  Application of Schuster’s test to the data shown in 
Figure 10.4. The calculations were made for a single value of T 
using five radian frequencies: 29π, 31.5π, 34π, 36.5π, and 39π. 
One of the characteristic frequencies of the data set shown in 
Figure 10.4 has been clearly identified; the curve for 34π is growing 
without limit.
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and setting the derivatives equal to zero:

	
∂
∂
=

∂
∂
=

F

A

F

B
0 0and . 	 (10.7)

Therefore, we could use our data to seek solutions for the 
following equations:

− − − =∑2 0( sin( ) cos( ))sin( )y A t B t tω ω ω   (10.8)

and

− − − =∑2 0( sin( ) cos( ))cos( ) .y A t B t tω ω ω   (10.9)

This least-squares estimation technique is fine, as long as 
we have a sharply defined periodic behavior where the 
radian frequency (or a very small number of radian frequen-
cies) is obvious. In such cases, we are merely trying to 
identify the amplitude and the phase. Of course, we could 
add the radian frequency to the determination if necessary. 
For many problems of interest to us, however, the observed 
behavior will be altogether too complicated to let direct 
model development be a realistic alternative.

A FOURIER TRANSFORM PAIR

We saw previously that the autocorrelation coefficient, ρ(τ), 
though not reversible, could reveal much information about 
the time-series data under study. In fact, the autocorrelation 
and the power spectral density (or spectrum), S(ω), contain 
the same information and they are related through the 
Fourier transform pair:

	

ρ τ ωτ ω ω

ω
π

ωτ ρ τ τ

( ) exp( ) ( )

( ) exp( ) ( ) .

=

= −

−∞

+∞

−∞

+∞

∫

∫

i S d

S i d

and

1

2

	 (10.10)

Since the autocorrelation coefficient is an even function,  
and since negative frequencies do not hold any physical 
meaning for us, it is standard practice to write the one-sided 
spectrum:

	 S d1

0

1
( ) cos( ) ( ) .ω

π
ωτ ρ τ τ=

∞

∫ 	 (10.11)

We have already computed ρ(τ) for the data shown in 
Figure 10.4, so why not take this result and use it to evaluate 

of little value for tasks associated with signal processing and 
image manipulation.

Nevertheless, we will begin exploration of the data set 
shown in Figure 10.4 by computing the autocorrelation coef-
ficient. Since these data were constructed from a limited set 
of sinusoids, we should expect an oscillatory ρ(τ).

The data we used to compute the autocorrelation coef-
ficient shown in Figure 10.6 were constructed from four 
periodic functions added together and previously illus-
trated in Figure 10.4. The computation of ρ(τ) reveals that 
there were regular fluctuations in the time-series data; note 
the strong recurring peaks in the correlation at (number of 
time intervals) 19, 28, 38, 48, 57, 67, and so on. This 
suggests that something with a period of about 9 to 10Δt 
was present in the time series, corresponding to a fre-
quency range of about 250–279 rad/s. Of course, we know 
that there was a very strong sinusoidal component present 
at 263.9 (84π)  rad/s—right in the middle of the indicated 
band of frequencies!

In simple cases of this type (where a regular oscillation 
in the time series is obvious), one might consider developing 
a model by fitting a periodic function(s) to the data directly. 
For example, suppose through our examination of the data 
we concluded that a function of the type

	 y t A t B t( ) sin( ) cos( )= +ω ω 	 (10.5)

might adequately represent the behavior. Assuming we were 
able to estimate the radian frequency directly, we could then 
minimize the sum of the squares of the deviations by setting

	 F y A t B t= − −∑( sin( ) cos( ))ω ω 2 	 (10.6)

FIGURE 10.6.  Autocorrelation coefficient for synthetic signal 
composed of four sinusoids. The expected ringing behavior is 
apparent.
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210    Time-Series Data and the Fourier Transform

THE FAST FOURIER TRANSFORM

Brigham (1988) describes the FFT as ubiquitous, and indeed, 
he provides a list of about 75 applications (many of which 
appear to be quite unrelated). To highlight just a few, con-
sider that the FFT has been used for studies of aircraft wing 
flutter, acoustic imaging, diagnosis of airway obstruction, 
echo or reverberation elimination, speech recognition, chro-
matography, phased-array antenna analysis, video band-
width compression, and image restoration. Quite recently, 
the FFT has been used in the study of microseismic events 
triggered by hydraulic fracturing in gas-bearing shales; see 
Warpinski et al. (2012) for example spectra.

We mentioned previously that the rapid growth of appli-
cations for the FFT was driven by the digital computer and 
by the paper published by Cooley and Tukey (1965). Their 
algorithm is widely used around the world and is referred to 
colloquially by a variety of names including the cool-turkey 
FFT. Bingham et al. (1967) helped to introduce the tech-
nique to a broader audience, and since the 1960s, many 
versions of the algorithm have been developed for specific 
applications. Several contributors to the literature have 
pointed out that Gauss actually originated the idea in the 
early years of the nineteenth century. However, the reality  
is that James Cooley, Richard Garwin, and IBM (their 
employer) were mainly responsible (assisted by the concur-
rent development of fast analog-to-digital converters) for the 
explosive growth in the number of applications of the FFT. 
Cooley (1987) and Rockmore (1999) have also noted that 
some of the initial urgency was driven by the Cold War due 
to the need for seismic monitoring (the detection of nuclear 
explosions) and acoustic detection and identification of 
submarines.

If we have N observations of a fluctuating signal, y(t), 
then we can think of the Fourier transform as an interpreta-
tion of that signal in terms of sinusoids of different frequen-
cies. Specifically, as Bloomfield (1976) points out, we can 
write

	 A
N

y yn

n

N

0

0

11
= =

=

−

∑ , 	 (10.13)

	 A
N

y tj n j

n

N

=
=

−

∑2

0

1

cos ,ω 	 (10.14)

and

	 B
N

y tj n j

n

N

=
=

−

∑2

0

1

sin .ω 	 (10.15)

If the sequence of observations consists of an even 
number, then

the spectrum using eq. (10.11)? We will do this, but we must 
keep in mind two important limitations:

1.	 We will not be able to learn anything about fluctua-
tions occurring more rapidly than the Nyquist cutoff 
frequency. For a sample interval of Δt,

	 f
t

Nyq =
1

2∆
. 	 (10.12)

For the data shown in Figure 10.4, Δt  =  0.0025 
second, so fNyq = 200 Hz or 1256 rad/s.

2.	 We cannot find out anything about fluctuations that 
occur so slowly that one cycle does not fit within our 
total time of observation. For infrequent (very long-
period) oscillations, we must acquire a very lengthy 
set of time-series data.

The spectrum shown in Figure 10.7 was computed by 
repeated integration of the estimated autocorrelation coef-
ficient, after ρ(τ) had been obtained from the experimental 
data by calculation of the mean, the fluctuation for each 
observation, and the mean-square fluctuation. Although this 
example demonstrates that such a procedure will work, it is 
computationally expensive and for many applications, 
simply too time-consuming. We need a process that will 
allow us to obtain the spectrum more rapidly, and the 
approach we will employ is the FFT.

FIGURE 10.7.  Computed spectrum for data of Figure 10.4. The 
important radian frequencies in the data set were approximately 
94.2, 106.8, 182.2, and 263.9  rad/s. All four appear as dominant 
features in the spectrum shown here. The oscillation at 263.9 rad/s 
had the largest amplitude of the four sinusoids. Make particular 
note of the broadening apparent at the sides of the spectral peaks; 
we will discuss that further a little later in this chapter.
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and C. For convenient working examples, see chapter 8 in 
Brigham (1988). There are also numerous websites devoted 
to the Fourier transform. Moreover, many commercial soft-
ware packages have FFT capabilities including Mathcad™, 
MATLAB™, MS-Excel™, and Origin™. Thus, just about 
any collection of time-series data can be analyzed and the 
signal content in frequency space can be determined.

We should look at an illustration to underscore this point. 
Suppose we have a signal consisting of four sinusoids added 
together with a random fluctuation (z):

x t
t t t t

z( ) sin sin sin sin .= + + + +
π π π π
2 10 5

2

3
  (10.19)

Take note of the radian frequencies employed here: π/10, 
π/5, π/2, and 2π/3. We will allow t to assume integer values 
from 0 to 1023 such that we have 210 samples; then we will 
determine the Fourier transform, first by using Mathcad. We 
will use the fast DFT function, fft(v). This is a radix-2 trans-
form program; by radix-2, we mean that the number of data 
points, N, can be written as N = 2m data points (where m is 
an integer).

Implementation of Mathcad fft(v):
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The time-series data can now be represented, if N is even, 
with

y A A t B t An j j j j
n

N

j N

= + + + −
<
∑0 2

2

1cos( ) sin( ) ( ) ./

/

ω ω

		  (10.17)

A compact, shorthand representation of the DFT for 
sampled data (in the form of X(j), a complex vector of length 
N) can be written as

S k X j W W
i

N
N
jk

j

N

N( ) ( ) , exp .= =







=

−

∑
0

1 2
where

π
  (10.18)

The main problem here is that the number of arithmetic 
operations for a time series with N observations scales as N2. 
Thus, if one had 512,000 data points (the reason for choos-
ing this number will be made clear in a moment), about 
2.6214 ×  1011 operations would be required. Modern PC 
processors are capable of about 5 × 109 to 1 × 1010 flops 
(floating point operations per second); thus, very roughly, 
(2.6214 ×  1011)/(7 ×  109) ≈  37.5 seconds. While not a 
ridiculous amount of time, this is far too long for processes 
requiring near-instantaneous feedback.

However, John Tukey had shown that if the N observa-
tions can be written as a product, N = ab, then the Fourier 
series could be written as an a-term series of b-term (each) 
subseries. This meant that the scaling for the required 
number of computations would change from N2 to (a + b)N. 
Richard Garwin relayed this information to James Cooley 
and persuaded him to work on algorithm development and 
programming. The result, now known as the Cooley–Tukey 
algorithm for the FFT, actually reduces the scope of the 
computations to N log(N); if N is 512,000, then the compu-
tational effort is reduced to 2.92  ×  106 operations. The 
comparison is striking; for a modern PC, we would now 
have about (2.92 × 106)/(7 × 109) ≈ 0.0004 second for the 
required processing time. As Cooley (1987) later described, 
the development of the FFT algorithm meant that the Fourier 
transform could now be extended to very large problems. An 
additional motivation for his work was the interferometer 
data brought to Cooley by Janine Connes; her husband, the 
astronomer Pierre Connes, had constructed an interferome-
ter that could produce a time series (a data record) consisting 
of (the then incredibly large number) 512,000 points. The 
power of the Cooley–Tukey algorithm was such that it made 
the processing of lengthy time series of this type of routine.

For the analyst who must perform FFTs on time-series 
data, the options are many. There are literally hundreds of 
FFT codes available in the public domain, written in high-
level languages including FORTRAN, BASIC, PASCAL, 
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complicated signal (one with 11 distinct frequencies) that 
also includes a random contribution. To further complicate 
things, we will truncate the time series at 2800 and append 
1296 zeros to reach 212 samples when we compute the spec-
trum. The raw data appear as shown in Figure 10.10.

Now we will compute the Fourier transform to see if all 
of the different elements of this signal have been captured. 
Keep in mind that we have added a random component and 
filled out the data set (to reach 4096, or 212, observations) 

corresponding radian frequencies are determined from 
jπ/512.

Now we repeat the analysis of the time series, computing 
the Fourier transform by integration of the autocorrelation 
coefficient, using eq. (10.11) as illustrated previously. You 
will note that the two spectra shown (one above and one 
below) are essentially identical, differing mainly due to the 
normalization employed. Although the results are the same, 
the processing speed was radically different; the computa-
tional result shown in Figure 10.8 required several seconds, 
while the execution of the fft function in Mathcad appeared 
to be almost instantaneous. This is the reason the FFT has 
become so important—it is now possible to compute Fourier 
transforms for large time-series data sets and to do so almost 
in real time. Of course, this speed is crucial to signal pro-
cessing applications.

Finally, we will also test a modified version of the BASIC 
DFT code provided by Brigham (1988) on the very same 
data sequence and present the result in Figure 10.9.

In the preceding example, the spectra were determined in 
three ways: using the built-in capability, fft(v), in Mathcad, 
by computing the autocorrelation coefficient, ρ(τ), directly 
from the time-series data and then integrating the results, 
and by using a radix-2 DFT code that was modified from a 
version of the program supplied by Brigham (1988). The 
resulting spectra are very nearly identical and all three pro-
cedures have clearly identified the four dominant frequen-
cies present in the time-series data.

The example that we just explored did not present much 
challenge for the FFT/DFT procedure. Let us look at a more 

FIGURE 10.8.  Power spectrum for the signal produced by four 
sinusoids (eq. 10.19). In this case, the autocorrelation coefficient, 
ρ(τ), was computed directly from the data and the Fourier trans-
form was found by integration. Note that π/10 = 0.314, π/5 = 0.628, 
π/2 = 1.571, and 2π/3 = 2.094.
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FIGURE 10.9.  Spectrum from a modified version of Brigham’s 
BASIC DFT (radix-2) program. Frequency is determined from the 
position index by jπ/v. Therefore, the second spectral spike in 
Figure 10.9 corresponds to about 405π/2048 or roughly 0.2π rad/t. 
Recall that the signal that was transformed consisted of four sinu-
soids with radian frequencies of 0.1π, 0.2π, 0.5π, and 0.667π.
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a random contribution added.
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with zeros. We know that the kinds of abrupt changes in the 
data that are generated by adding a random contribution and 
by appending zeros to obtain 2m total samples will produce 
additional contributions in the spectrum that may complicate 
identification of the crucial periodicities.

The computed transform shown in Figure 10.11 reveals 
how powerful the DFT really is; we constructed a synthetic 
signal that was an absolute mess, and the algorithm has suc-
cessfully identified all 11 of the contributing sinusoids. And 
this is despite the facts that the data series was truncated 
(filled out with zeros) and that a strong random contribution 
was added to the signal.

ALIASING AND LEAKAGE

We described the Nyquist cutoff frequency previously, 
noting that if the sample interval, Δt, was too large, we 
would not be able to obtain any useful information about a 
high-frequency (oscillating) waveform. More generally, too 
large a Δt produces aliasing, which yields a distorted spec-
trum. Suppose we were interested in the sum of the two 
sinusoids shown in Figure 10.12.

If we had the poor judgment to begin sampling at π/2, 
and then further to employ an interval of 2π, the sampling 
of the sum of the two waveforms would consist only of the 
sequence 1.75, 1.75, 1.75, and so on, and absolutely none 
of the important dynamic behavior would be revealed. It is 
critical that we pick a sampling Δt that can capture any 
oscillating behavior that may be occurring. Naturally, if we 
compute a DFT for time-series data sampled too infre-

FIGURE 10.11.  The computed spectrum has captured all 11 sinu-
soidal contributions; the original frequencies were 119.38, 175.93, 
207.3, 245, 301.59, 326.73, 383.28, 452.4, 584.34, 640.89, and 
710 rad/s.

Radian frequency

Po
w

er
 s

pe
ct

ru
m

0 100

1100

1000

900

800

700

600

500

400

300

200

100

0
200 300 400 500 600 700 800 900
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quently, we will not get the correct spectrum. Suppose, for 
example, that we sampled the sum of the two waveforms 
illustrated in Figure 10.12 using a time interval of π/4; we 
would see the sequence, 0.75, −0.0429, 1.75, −0.0429, 
0.75, −1.457, −0.25, −1.457, 0.75, −0.0429, 1.75, −0.0429, 
0.75, and so on. These equally spaced samples could be 
represented by several sinusoids; the consequence is that 
the spectrum folds, or overlaps. If aliasing is suspected, the 
easiest fix is to halve the sample interval, to compute  
the spectrum, and to note any changes, and then to repeat 
the process until the spectrum does not change.

Leakage appears in a DFT spectrum in the form of what 
are called “sidelobes.” This feature of computed spectra 
results when a particular harmonic component leads to 
nonzero transform values at other frequencies. It can be 
exacerbated by the fairly common practice of filling out an 
incomplete data set with zeros to execute a radix-2 DFT; that 
is, if we had 1750 observations, we might add 298 zeros to 
get to 2048 (211). Any phenomenon that produces sharp 
(abrupt) changes in the time domain will result in additional 
spectral components in the frequency domain. Let us illus-
trate this point by generating time-series data with the simple 
function

	 y t t t( ) sin( ) . cos( ).= +120 0 85 180 	 (10.20)

We apply the DFT with the result shown in Figure 
10.13a. Next, we truncate the time series and append 1320 
zeros to provide a total sample of 4096 for Figure 10.13b. 
Finally, we add a strong contribution to the time series 
utilizing the random number generator and include the 
1320 zeros at the end to generate the spectrum shown in 
Figure 10.13c.
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FIGURE 10.13.  (a–c) Comparison of spectra obtained by DFT for 
time-series data generated by modifications to sin(120t) +  0.85 
cos (180t). The frequencies are obtained from j(500π)/2048, such 
that j = 155 corresponds to 120 and j = 235 corresponds to 180.
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The first thing we should note about Figure 10.13a is that, 
although the time-series data were generated with the sum 
of sine and cosine terms (only), the resulting spectrum is not 
exactly what we would expect had we obtained a continuous 
transform. A pure sinusoid in time should yield a δ function 
in frequency space. Next, when we truncated the time series 
by taking 2776 sampled values with 1320 zeros appended, 
we produced sharp oscillations on the shoulders of the two 
main peaks (Figure 10.13b). And finally, in Figure 10.13c, 
we have used the random number generator to create dis-
continuities in the time domain which have, in turn, pro-
duced many additional frequency components in the 
spectrum. The important conclusion that we should take 
from this example is that discrete sampling in the time 
domain can yield discontinuities that, upon DFT, yield other 
contributions in frequency space. These contributions appear 
as additional peaks or sidelobes in the spectra that are com-
puted. One remedy, which is pretty obvious but usually 
impractical, is to eliminate all of the abrupt changes that may 
appear in the time domain.

Another common source of difficulty is time-domain 
truncation, which occurs when the number of discrete 
sample data points is limited. In some cases, our ability to 
obtain time-series data may be constrained (perhaps the 
hardware has limited storage capacity). This can adversely 
affect the accuracy of the DFT, and we will illustrate this 
problem using a signal composed of two clean sinusoids:

	 y t t t( ) cos
.

sin
.

.=






+









2

5 99

2

2 88

π π
	 (10.21)

We will sample this function using integer spacing 
(Δt =  1) and we will begin with a data record length of 
1024. We will then compute the DFT for N = 64 and repeat 
using N = 16.

The spectrum shown in Figure 10.14a (N =  1024) is a 
close approximation of the (continuous) Fourier transform. 
In this case, the spectral peaks are located at j index values 
of 172 and 357, corresponding to frequencies of 
(172/512)π  =  0.336π and (357/512)π  =  0.697π; these 
values are very close to the actual frequencies employed, 
0.334π and 0.694π. But as we decrease the number of 
samples (time-domain truncation), we get an increasingly 
poor representation of the two δ functions we expected to 
see. Note how the spectra are broadened and the peak ampli-
tudes diminished. In the case of Figure 10.14c (N = 16), we 
have connected the discrete points with spline fitting, but 
even so, our estimate of the spectrum is of little value. 
Although the best remedy for time-domain truncation is to 
increase N, there are alternatives for leakage control and we 
will discuss one of them next.

In the preceding examples, we saw that abrupt, or sharp, 
changes in the time domain, or time-domain truncation, 
might produce unwanted features in the computed spectra. 

http://c10-fig-0013
http://c10-fig-0013
http://c10-fig-0013
http://c10-fig-0014
http://c10-fig-0014


Aliasing and Leakage    215

If we could use a data window (sometimes referred to as a 
fader) to smooth out the shoulders, we might be able to 
eliminate some undesirable features from computed spectra. 
One possibility is to use a taper on the time-series data and 
then to transform the tapered data. An example given by 
Bloomfield (1976) is the window

	 W
t

n
t = −

+



















1

2
1

2 1
2cos

( )
,

π
	 (10.22)

where t corresponds to the discrete times in the sampled data 
(consisting of n points), t = 0, . . . , n − 1. Please note that in 
this context, when we speak of n points, we actually mean 
nΔt. Suppose, for example, that our original time-series data 
form a step with an amplitude of 1. When we apply the 
cosine window to the data, we get a smooth transition that 
is “bell” shaped, as shown in Figure 10.15.

It is clear from inspection of Figure 10.15 that the win-
dowed (or tapered) data are significantly different from the 
original step. In many cases, we would rather limit the influ-
ence of the taper so as to preserve most of the character of 
the original data. Tukey (1967) suggested a modification of 
the data window to
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Remember that m and n are to be interpreted as mΔt and 
nΔt. With this approach, the fraction of the data that will be 

FIGURE 10.14.  (a–c) Comparison of spectra computed by DFT 
for record lengths of 1024, 64, and 16 samples. The test signal was
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FIGURE 10.15.  Application of the cosine window to a step 
change in the time-series data.
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	 y t y y( ) .= + ′ 	 (10.26)

Since the mean y  is nearly constant (or at least varies only 
very slowly), we could run a moving, three-point average 
through the data set, replacing y(t) with z:

	 z t y t y t y t( ) ( ) ( ) ( ) .= − + + +[ ]
1

3
1 1 	 (10.27)

tapered is 2m/n; a smaller fraction of windowed data will 
naturally yield less improvement in leakage control. Tukey 
recommended that m be chosen such that 2m/n ≈ 20%.

We want to look at a detailed example that will first 
demonstrate the problems created by leakage and then reveal 
how we might diminish them using tapering. Suppose, first, 
that we have time-series data in the form of a square wave 
(a rectangular window) with a maximum amplitude of 1. We 
will then apply a sinusoidal taper to remove both sharp 
edges, but leave the center intact. Specifically, we will shave 
off one-third of the rectangular window at both shoulders 
and leave the center third intact with its original value of 1. 
A comparison of the original rectangular window with the 
modified shape (where the sharp edges have been removed) 
is shown in Figure 10.16.

Our plan is to apply the DFT to both the original square 
wave and the tapered wave form so we can see the differ-
ences in the spectra; the results appear in Figure 10.17.

The leakage produced by the original square wave is 
significant; however, we immediately see that trimming  
one-third of the pulse off (at each shoulder) results in far 
less leakage while preserving the really important character-
istics of the spectrum. It will be left as a student exercise to 
explore the effects of more aggressive tapers on the results.

SMOOTHING DATA BY FILTERING

We saw previously how time-series data could be windowed 
(or tapered) to minimize the impact of sharp irregularities. 
We can also use digital filtering to smooth very irregular 
(noisy) data. Let us return to eq. (10.3) and let

FIGURE 10.16.  The initial square wave (rectangular window) is 
shown and the tapered waveform is in black. The tapered edges 
correspond to one-third (at each top edge) of the original rectangle. 
The center third is left alone with an amplitude of 1.
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FIGURE 10.17.  Spectra obtained from the original time-series data (a) and from the tapered data set in which the sharp-edged shoulders 
have been trimmed off (b).
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from the original noisy data and then from the filtered data. 
There is another very convenient approach to assessing the 
effects of filter application. Suppose we have a simple signal 
in the form of a sinusoid, which we write as

	 y t A t( ) cos( ),= +ω φ 	 (10.29)

which is the real part of Aexp[i(ωt + φ)]. For the linear filter 
(the three-point moving average), we have

Naturally, we cannot apply this to the endpoints of the 
data. Let us construct a synthetic data set to see how well 
this works; we will use a random number generator to 
produce noise, which we superimpose on a single sinusoid. 
We will also filter the data with the moving, three-point 
average to gauge its impact on the noisy data; the process is 
illustrated in Figure 10.18.

Our main interest, of course, is how the filtering affects 
the computed spectrum. Figure 10.19a shows the spectrum 
for the unfiltered (noisy) data and Figure 10.19b shows the 
effects of two passes of the linear filter (the moving, three-
point average) on the computed spectrum.

The filter that was employed to produce the results seen 
in Figure 10.19b was the simple moving average. There are 
many other and probably better options. One that is quite 
effective at attenuating noise but preserving the essential 
character of the oscillations is the digital triangular filter. 
The idea is to place the greatest weight on the central point 
and to decrease weight on more distant data points; one 
example of a triangular filter is

z t y t y t y t y t y t( ) ( ) ( ) ( ) ( ) ( ) .= − + − + + + + +[ ]
1

9
2 2 1 3 2 1 2

		  (10.28)

Note that the area of the triangle is 1
2

1
2

3
96 1bh= =( )( )( ) . 

Of course, other weighting schemes—and a commonly used 
one is exponential—can be employed as well. We can get a 
better sense of how effectively eq. (10.28) works by apply-
ing it to a test set of data (Figure 10.20).

In the preceding example, we looked at the effects of data 
filtering in a practical way by examining spectra computed 

FIGURE 10.18.  Original noisy data (dotted), filtered once (con-
tinuous), and filtered twice (heavy continuous black). The time 
index has been expanded to better reveal the behavior of y(t).
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FIGURE 10.19.  Comparison of the spectra for the original, noisy data (a) and then computed for the data set after two applications of the 
linear filter (b). Many of the additional frequency components that were introduced by the abrupt fluctuations have been attenuated or even 
eliminated.
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Notice that the two pairs of radian frequencies are close 
together. If we compute the DFT for these data, we see four 
concentrated peaks in the spectrum, just as expected.

Now we will carry out the DFT computation again, but 
this time, we use the product of the two cosine contributions 
added to the product of the sine contributions. Notice in 
Figure 10.21 that the pair of cosine contributions is sepa-
rated by 7 rad/s and the sine contributions are separated by 
11.3 rad/s. This will prove to be very significant.

When the DFT is applied to the sum of the cosine–cosine 
product and the sine–sine product, new spectral components 
appear at about 7 and 12 rad/s. These are beat frequencies 
that arise from amplitude modulation. If we multiply cos (ω1t)
cos (ω2t), where the two radian frequencies ω1 and ω2 are 
fairly close together, then we produce a modulated wave 
with fluctuating amplitude—notice the peak in Figure 10.22 
located at 7  rad/s. You will also notice that the spectral 
content at 82–89  rad/s has disappeared entirely. Clearly, 
harmonic analysis (the DFT) has failed to reveal all of the 
periodicities of the original data. What is needed is what is 
called complex demodulation, and we will illustrate it with 
an elementary example. Let us assume we have a function 
described by

	 y t A t t t( ) ( )cos( ( )).= +ω φ 	 (10.34)

We will allow both the amplitude function, A(t), and the 
phase, φ(t), to vary but at frequencies significantly lower 
than ω, in particular,

A t t t t( ) sin ( ) sin .=





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ω
φ

ω
and   (10.35)

FIGURE 10.20.  Effects of a single application of the digital tri-
angular filter to a noisy data set. For severely noisy signals, the 
triangular filter (eq. 10.28) can be run through the data set 
repeatedly.

50

3.5

3.0

2.5

2.0

1.5

1.0

0.5
100 150 200 250 300 400 450 500350

Time index

Filtered data

Original data

Si
gn

al
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This expression can be written more compactly as

= +[ ] − + +[ ]1
3 1A i t i iexp ( ) exp( ) exp( ) .ω φ ω ω   (10.31)

Of course, cos is an even function, so we can write the real 
part of eq. (10.31) as

	 = + +1
3 1 2A tcos( )( cos ).ω φ ω 	 (10.32)

When we compare this output with the original signal, 
eq. (10.29), it is clear that we are modifying it with the 
factor, 1/3(1 +  2cos ω). We see immediately that a signal 
component with ω =  2π/3 =  2.0944 will be completely 
removed by the filter (since cos (2π/3) = −1/2).

MODULATION (BEATS)

We have now seen on numerous occasions that the FFT/DFT 
is capable of revealing periodicities in time-series data. Let 
us begin this part of our discussion by considering a syn-
thetic signal consisting of

y t z t t t t( ) cos( ) cos( ) sin( ) sin( . ).= + + + +82 89 196 207 3
		  (10.33)
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the result is

z t A t i i t( ) ( ) exp( ) exp( ( )) .= + − +[ ]1
2 2φ ω φ   (10.37)

Note that the first term on the right-hand side varies 
slowly—remember that

φ ω( ) sin .t t=






4

1

6

The frequency for the second term in eq. (10.37) is 2ω, 
so it varies rapidly. If we apply a low-pass filter to the signal 
to remove all content with frequencies larger than ω, we are 
left with

	 z t A t i tf f
( ) ( )exp( ( )) .=[ ]1

2 φ 	 (10.38)

The subscript f indicates that the signal has been smoothed 
by application of the filter.

Now the amplitude is just the magnitude of zf, and we 
merely divide eq. (10.38) by A(t) to isolate φ(t).

SOME FAMILIAR EXAMPLES

Turbulent Flow in a Deflected Air Jet

Previously, we alluded to the fact that time-series data are 
generated frequently in engineering and scientific investiga-
tions. One area where this is particularly important is the 
study of turbulent flows, where a number of instruments 
have been developed that can monitor fluid velocities at a 
point in space. Examples include laser Doppler velocimetry 
(LDV) and hot-wire anemometry (HWA). These devices 
produce signals as functions of time, and in the case of 
HWA, the signal is usually voltage. The response time for a 
hot-wire anemometer is short, so high-frequency fluctua-
tions can be observed without difficulty. Figure 10.24 shows 
the output from a hot-wire anemometer used to measure 
point velocity in a high-speed deflected air jet. The volumet-
ric flow rate of air was 200  L/min, and the round jet was 
deflected off of a concave surface producing a very thin 
shear layer. This arrangement yields velocities mainly 
between 10 and 100 m/s. The measurement point for the data 
shown in Figure 10.24 was near the centerline (axis) of the 
deflected jet, so the velocities are relatively large.

The approximate range of velocities illustrated by the 
data in Figure 10.24 is about 10 to well over 100 m/s, and 
the data were recorded for a duration of about 1/8 second. 
Thus, the minimum frequency that can be observed would 
be about 50 rad/s or 8 Hz. A digital storage oscilloscope was 
used to record these data, and the device had a built-in capa-
bility for computing power spectra for time-series data. The 

The resulting signal is illustrated in Figure 10.23. If we 
perform a harmonic analysis on these data, what would  
we see?

We will take eq. (10.34) and rewrite it as

y t A t i t i t( ) ( ) exp( ( )) exp( ( )) .= + + − +[ ]1
2 ω φ ω φ   (10.36)

Now suppose we form a new signal from y(t) by writing

z t y t i t( ) ( )exp( );= − ω

FIGURE 10.22.  DFT computed for two products added together, 
the cosine pair and the sine pair. The frequency axis has been 
changed to a log scale to better reveal the two low-frequency 
components.
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FIGURE 10.23.  An oscillating function with frequency, ω, for 
which both the amplitude and the phase vary sinusoidally but at 
much lower frequencies.
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Bubbles and the Gas–Liquid Interface

When gas is introduced into a liquid, whether it be through a 
plain orifice, by jet aeration, or by liquid drops impacting the 
surface, a number of processes are set in motion that are 
capable of producing acoustic noise. Examples of these phe-
nomena include detachment from the orifice, followed by 
oscillations about spherical shape, then bubble breakage and 
coalescence, and finally bubble disengagement at the free 
surface. Small bubbles are generally spherical, but other 
shapes are also common, depending on size, which affects 
buoyancy and drag forces, and so on. An image of air bubbles 
(Figure 10.27) produced by jet aeration in water illustrates the 
variety of shapes seen in two-phase (gas–liquid) processes.

Notice how the small bubbles shown in Figure 10.27 are 
spherical, while larger bubbles tend to be ellipsoidal. The 
spherical bubbles oscillate with a characteristic frequency 
determined by surface tension (τ), the density of the sur-
rounding liquid (ρ1), and bubble size (R):

	 s
R

2

1
3

12
=

τ
ρ

. 	 (10.39)

Thus, for a 0.5-mm air bubble in water,

s2
3

7 2 212 72

1 0 025
5 53 10 1183= = ×

( )( )

( )( . )
. , .rad /s or Hz

Of course, this frequency is in the acoustic range and these 
oscillations can produce detectable sound.

A number of experiments were carried out in which air 
was introduced through a sieve plate into column of a 

spectrum provided by the recording device is shown imme-
diately as follows.

The spectra shown in Figure 10.25 and Figure 10.26 are 
certainly not identical nor would we expect them to be. As 
we discussed previously, appending zeros to a time series to 
use a radix-2 DFT algorithm will result in a sharp disconti-
nuity and the result will be additional spectral components 
in frequency space.

FIGURE 10.24.  Data obtained from HWA in a deflected, high-
speed air jet. The sampling interval was Δt =  0.0001  s, so the 
Nyquist frequency is 5000 Hz. The mean voltage is approximately 
2.36 V, which corresponds to an air velocity of about 55 m/s.
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FIGURE 10.25.  Power spectrum for the HWA data shown in 
Figure 10.24. The Fluke™ DSO computed values between 8 Hz 
and 5 kHz.
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the record, so 848 zeros were appended to reach 2048 (or 211 
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tributed with respect to frequency at modest gas (air) rates 
as detected at the top of the column. Figure 10.29 shows 
the distribution of signal energy at the bottom of the column 
adjacent to the sieve plate sparger.

The spectrum for disengagement processes at the top of 
the column (Figure 10.28) shows significant signal energy 
at 60, 70, 115, 220, 300–500, 1100, 1750, and 2020 Hz. In 
contrast, the spectrum shown for the bottom of the column 
(Figure 10.29) indicates a broad band of important frequen-
cies between 300 and 600  Hz, with a very sharp, narrow 
contribution centered at 1605  Hz. Clearly, these detected 
acoustic signals do not merely represent spherical bubble 
oscillations; after all, we know that 400  Hz would corre-
spond to the fundamental oscillation of a spherical bubble 
with R = 0.0515 cm. Most of the bubbles formed at the sieve 
plate in this aqueous glycerol solution were much larger than 

liquid medium consisting of water and glycerol. The objec-
tive was to learn more about energetic phenomena associ-
ated with bubbles in aqueous media of higher viscosities 
and the possible impact of those energetic motions on 
entrained entities (perhaps cells, or cells being grown on 
microcarriers). A microphone was used to monitor sounds 
produced both at the top of the column (above the inter-
face) and at the bottom at the same level as the sieve plate 
sparger. Glycerol slightly decreases the surface tension 
when added to aqueous solutions, but the effect is small. 
At the top of the column, the sounds produced are mainly 
associated with disengagement processes (coalescence, 
bubble breakage, cavity collapse, and droplet ejection and 
impact). At the bottom of the column, the noises mainly 
come from bubble formation, detachment, and shape oscil-
lations. Figure 10.28 shows how the signal energy was dis-

FIGURE 10.27.  Characteristic shapes of air bubbles in water produced by jet aeration. The very large population of bubbles at the top of 
the image at the gas–liquid interface affords many opportunities for coalescence to occur prior to bubble rupture.

FIGURE 10.28.  Spectrum for the recorded acoustic noise at the 
top of the column where bubble disengagement processes are the 
dominant sound producers.
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FIGURE 10.29.  Spectrum for the recorded acoustic noise associ-
ated with bubble formation, detachment, and oscillation at the 
bottom of the column.
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accelerations occur at about 18 Hz where the maximum is 
nearly 10 gs.

Time-series data collected in rail transport scenarios 
reveal that large strains (and perhaps very large accelera-
tions) are especially likely to be generated by shock events 
such as coupling or, even worse, derailment. In some cases, 
the accelerations may exceed design specifications for the 
vehicle or car. This can pose a serious problem when hazard-
ous materials are being transported; a ruptured tank car, for 

that. Furthermore, when bubbles arrive at the free surface, 
some may coalesce before film thinning produces an unsta-
ble interface followed by rupture. When large bubbles break, 
they typically throw small liquid “film droplets” laterally. 
When small bubbles break, the cavity created at the liquid 
surface due to the higher pressure in the bubble’s interior 
will collapse; this collapse can eject larger “jet” droplets 
usually with a nearly vertical trajectory. And often, these 
breakage processes at the free surface subsequently produce 
much smaller bubbles capable of generating higher-
frequency sounds (the next time you pour a soft drink onto 
ice, listen carefully at the top of the glass).

Shock and Vibration Events in Transportation

When cargo is moved by ship, rail, or truck, it is subjected 
to shock and vibration. If that cargo is delicate, such phe-
nomena may lead to damage and loss; consequently, much 
effort has been expended in measuring strains and accelera-
tions in transport environments. For example, in the case of 
railroad transport, low-frequency motions arise from irregu-
lar track surfaces; a low spot opposite a high spot will lead 
to rail car rocking. Shust (2007) found that rocking and 
vertical bounce from spring deflection occurred at frequen-
cies mainly under 4 Hz. On the other hand, vibrations mea-
sured in a locomotive bearing box revealed important energy 
content at 440, 500–540, 607, and 978  Hz. A source of 
violently abrupt motions in railroad transport is car cou-
pling. Magnuson and Wilson (1977) measured acceleration 
spectra for coupling events occurring at an impact velocity 
of 5.25 mph (about 99% of car coupling impacts occur at 
speeds less than 11 mph). One of the more interesting fea-
tures of the coupling shock event is that accelerations of 
significant energy are produced at higher frequency. Figure 
10.30 illustrates a spectrum redrawn from data presented by 
Magnuson and Wilson.

Shust (2007) notes that a common railroad car design 
specification (the ability to withstand 4 g accelerations) is 
frequently violated by the accelerations produced at higher 
frequencies generated by coupling events.

Truck transport also results in shock events that occur 
through travel over pavement irregularities, potholes, rail-
road crossings, and so on. Magnuson and Wilson (1977) 
reported spectra from over-the-road tests performed with 
seven different tractor–trailer combinations. They included 
measurements for all three axes (vertical, transverse, and 
longitudinal) in their study and, as one might expect, vertical 
accelerations were the largest by a significant margin. 
Spectra that have been transcribed and redrawn from their 
report are shown in Figure 10.31.

Large vertical accelerations are evident in Figure 10.31, 
but unlike shocks experienced by railcars during coupling 
events, these data do not show the same degree of transfer 
of energy to higher frequencies. In fact, the peak vertical 

FIGURE 10.30.  Spectrum of measured accelerations resulting 
from car coupling at 5.25 mph. Note the large measured accelera-
tions occurring at about 100 Hz.
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FIGURE 10.31.  Spectra for vertical and longitudinal accelera-
tions measured in trucks traveling over irregular surfaces (redrawn 
because of the poor quality of the original figure).
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were operating at maximum power. Furthermore, since the 
study focused on horizontally opposed reciprocating engines, 
the largest amplitude vibrations were lateral (the direction 
of both piston travel and valve motion). The data revealed 
that the largest lateral accelerations (at high speed, 2331 rpm) 
were about ±20 gs, and many of the spectra showed impor-
tant signal contributions at 1500–2000  Hz. Slusher noted 
that the time-series data (engine vibration waveforms) were 
periodic but consisted of a complex and continuous fre-
quency spectrum with some very energetic content in certain 
frequency ranges. The study demonstrated that the materials 
that were being used for exhaust systems on general aviation 
aircraft in the 1960s (often types 321 and 347 stainless 
steels) were not ideal for the application. Though prosaic, 
this is just one more example of how the Fourier transform 
has been used in engineering practice to enhance public 
safety.

In recent years, the Fourier transform (and specifically 
the FFT) has become enormously important to modern life 
through signal processing, communications, analytic chem-
istry, seismic event detection and interpretation, collision 
warning systems for automobiles, process control, and so 
on. The list of applications of the FFT/DFT is incredibly 
long, and many of the technological marvels we take for 
granted depend on very fast determination of the Fourier 
transform of time-series data. Let us think a little bit about 
the future with a final example we had previously mentioned 
in passing: speech recognition. Two sets of time-series data 
are compared in Figure 10.32a,b, obtained from the record-
ings of a human voice saying “yes” and “no.”

Figure 10.32a shows that the “y” in “yes” is nearly a 
distinct frequency, but the “e” in the middle and the “s” at 

example, might disrupt revenue service and even lead to 
evacuations (and liability) in populated areas. Recent tragic 
accidents in Casselton, North Dakota, where 400,000 gal of 
crude oil were spilled, and the devastating explosion and fire 
in Lac-Megantic, Quebec, resulting from tank car brake 
failure have highlighted the need for reexamination of tank 
car design. The FFT/DFT is absolutely indispensible in 
investigations of this type, where improved car design crite-
ria can be developed to improve transportation safety.

CONCLUSION AND SOME FINAL THOUGHTS

Harmonic analysis has been a standard tool in engineering 
practice for decades, but it may be difficult for the student 
new to this area to appreciate the significance. For final 
emphasis, let us consider an engineering study in aviation 
that gives us one more example of what the role of the 
Fourier transform is in the context of public safety. In 1968, 
Slusher authored FAA Report NA-68-27, “Reciprocating 
Engine and Exhaust Vibration and Temperature Levels in 
General Aviation Aircraft.” Safety, of course, is a critical 
concern in general aviation and one problem area—known 
to have caused fatal accidents—is the failure of exhaust 
system integrity. The environment for exhaust systems on 
reciprocating aircraft engines is incredibly hostile due to the 
combination of thermal stresses, engine vibration, and 
chemical attack by combustion products. A mechanical 
failure of the exhaust system could result in engine fires or 
carbon monoxide infiltration into the passenger cabin (both 
have occurred). Slusher found, and not surprisingly, that 
vibration levels were highest during takeoff when the engines 

FIGURE 10.32.  Recordings of a human voice speaking the words “yes” (a) and “no” (b). These data make it very clear how difficult 
speech recognition really is due to the fact that so many sounds involve combinations of frequencies.
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the end are significantly different. It is clear the “s” portion 
of “yes” has much smaller amplitude but much higher fre-
quency. In fact, the “s” is one unambiguous characteristic 
that distinguishes Figure 10.32a from Figure 10.32b. In the 
case of the spoken “no” (Figure 10.32b), the “n” sound 
(about the first eight cycles) is sharply defined at about 
127 Hz. In contrast, it is apparent that the “o” sound involves 
several frequencies. Now imagine that we wished to  
issue instructions to a computer verbally and have those 
instructions—in near real time—be translated into execut-
able code. It will be necessary for the machine to recognize 
the individual phones (a phone is a single speech sound) and 
to assemble them into an intelligible instruction. If you think 
about how people actually speak, often running words 
together, failing to enunciate certain letter combinations 
clearly, and so on, you can understand what an incredibly 
difficult problem speech recognition really is; and to make 
it worse, in critical applications, the system would have to 
be 100% reliable. The data in Figure 10.32 suggest that 
distinguishing between a spoken “yes” and a spoken “no” 
would be easy, but interpreting an entire sentence flawlessly 
would be far more difficult! We will have an opportunity to 
explore the use of the FFT in the detection of speech patterns 
in a student exercise where we will examine four words, all 
with at least some similar sounds.

PROBLEMS

10.1.  Apply Schuster’s test to the oscillating function

y t t t t t( ) sin( ) sin( ) sin( ) sin( ).= + + +39 51 59 79π π π π

Examine the discrete frequencies 57, 58, 59, 60, and 61π 
and prepare a plot similar to Figure 10.5.

10.2.  Consider a set of sampled values consisting of 1024 
observations. These data are uniformly zero until n =  85, 
where a ramp occurs with amplitude increasing at a rate 
corresponding to 0.05 per sample. This “waveform” then has 
an amplitude of 1 until n = 175; for n > 175, y(t) = 0, that 
is, the amplitude reverts to zero. Compute the DFT for this 
waveform without tapering. How severe is the leakage?

10.3.  Apply the DFT to a square wave (a rectangular 
window) with an amplitude of 1, then apply a split cosine 
(bell-shaped) window to the data, leaving the center 80%  
of the data unaffected. Finally, allow the window to shrink 
so that the center amplitude falls below 1.0 to 0.75. What 
impact does this have on the DFT? Is leakage completely 
eliminated?

10.4.  By an inviscid analysis (see Lamb, 1945), it can be 
shown that bubbles and (immiscible) droplets immersed in 

liquids have a characteristic frequency of oscillation that is 
given by
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For a 0.2-cm diameter water droplet surrounded by air, τ 
(the surface tension) is about 72 dyne/cm, ρ = 1 g/cm and 
ρ1 ≈ 0. If the most important mode of vibration is that for 
which n = 2, then
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If, on the other hand, an air bubble of the same size is 
surrounded by water, the frequency of vibration is 
approximately
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If bubbles were formed at a single orifice at a rate of 79 
per minute and if their sizes ranged from 0.9 mm (diameter) 
to 2.39 mm, which dominant frequencies would you expect 
to see in a computed spectrum (data obtained from a hydro-
phone or a sensitive pressure transducer)?

10.5.  Dodge (1971) carried out a study of slosh suppression 
in LOX tanks; of course, sloshing is critical to stability and 
control of rockets using cryogenic liquids (oxygen and 
hydrogen) for propulsion. The work focused on the use of 
lightweight, flexible plastic baffles for dampening of the 
periodic forces created by the moving liquid. In the experi-
mental work, a shake table was used to oscillate a 76-cm 
diameter tank containing liquid nitrogen. The natural slosh 
frequency in this tank was cited as 1.05 Hz, and the ampli-
tude obtained was a little less than 4  cm. A load cell was 
used to record the decay of the liquid motion within the tank. 
Suppose the data record obtained from such an experiment 
appeared as shown in Figure 10.33.

Use the DFT to see if you can identify all of the frequen-
cies appearing in this data set. The data will be provided to 
you separately in electronic format. Does the rapid attenua-
tion cause any significant problems? The sample interval, 
Δt, is 0.02 second.

10.6.  Baseball bats, golf clubs, tennis racquets, and the like 
vibrate on impact with a ball. In some cases, the resulting 
stinging sensation (transmitted to the hands) can be severe, 
and in baseball, the amplitude of the vibration can be such 
that the batter’s hand(s) may even lose contact with the bat 
handle. This is a phenomenon that has seen much study by 
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separately in electronic format. The sample interval in this 
case was 0.0005 second (0.5 ms).

10.7.  Miles et al. (1999) studied both bending and tor-
sional vibrations occurring in the crankshaft of a 2-L 
diesel engine (with four cylinders) running under load at 
both 600 and 750  rpm. They used laser light scattered off 
of the face end of the crankshaft pulley to detect the 
motion at the end of the crankshaft. Because of the prox-
imity of the measurement point to the number one cylin-
der, one could expect firing in that cylinder to have a 
major impact on the motion. Each segment of piston travel 
corresponds to 180° of rotation on the crankshaft, so the 
power pulses on the number one cylinder are separated by 
(4)(180)  =  720°. Therefore, if the engine is running at 
600  rpm (10 revolutions per second), power pulses on the 
number one cylinder should occur about every 0.2 second. 
This is the pattern revealed by figure 17 of the Miles et 
al. paper. Their computed spectrum is shown in figure 18 
and it exhibits important signal content at many discrete 
frequencies including 9, 32, 42, 55, 87, 211, 300, 352, 
367, 413, 432, 454, 471, and 644 Hz, among others. Con-
struct a set of sinusoids with appropriate amplitudes and 
frequencies such that the DFT produces a spectrum com-
parable to figure 18 of Miles et al. Which components of 
the oscillating signal must have the largest amplitudes for 
the two spectra to be comparable?

10.8.  Shust (2007) studied shock and vibration in railroad 
operations. In one part of the study, vibrations in an operat-
ing locomotive bearing box were measured. Some simulated 
data with similar periodicities are reported in Figure 10.35. 
Perform a DFT on these data (supplied separately) and  

physicists including Brody (1986) at the University of Penn-
sylvania and Cross (1998) at the University of Sydney. It 
turns out that wooden baseball bats typically have a couple 
of fundamental frequencies of about 500–600 Hz and about 
150–200  Hz. Naturally, the precise vibration frequencies 
depend on where the ball is contacted on the bat, how the 
bat is secured, and where the piezoelectric vibration sensors 
are mounted. Suppose a ball impact test on a wooden 
Louisville Slugger™ produced the data set illustrated in 
Figure 10.34.

Perform a harmonic analysis of these data and determine 
the fundamental frequencies produced by the impact of a 
ball on the wooden bat. The data will be supplied to you 

FIGURE 10.33.  Slosh amplitude for cryogenic liquids in tanks.
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FIGURE 10.34.  Data of the type obtained from a piezoelectric 
sensor mounted on the barrel of a wooden baseball bat.
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this spectrum. Use a random number generator to produce 
some fine-scale structure in the spectrum and compare your 
results with Figure 10.36.

10.10. R ecordings of a human voice speaking the words 
“example,” “execution,” “expansion,” and “exponent” will 
be provided to you separately (and illustrated in Figure 
10.37). Apply the FFT to all four data sets. Are the spectral 
characteristics different enough to allow you to distinguish 
between the words? What are the essential differences, and 
are you confident that, based on your spectra, you could 
identify all four words without error?

10.11.  In recent years, the problem of concussions resulting 
from collisions in dynamic sports like football has been 
revealed to be a much more serious problem than most 
observers thought. It has become all too evident that even 
mild traumatic brain injuries (TBIs) may have cumulative 
effects leading to chronic traumatic encephalopathy (CTE), 
which may manifest itself years later in memory loss, behav-
ioral changes, and even suicide. For many years, the stan-
dard mechanism for assessment of head trauma has been the 
Gadd severity index (GSI), which is determined from the 
linear acceleration (at the headform center of gravity) and 
the duration of the event:

GSI=∫ a dt

T

5 2

0

/ .

Throughout the literature of head trauma, the threshold 
value for the severity index has been cited as 1000, with a 
typical event duration of about 15  ms (0.015 second). An 
alternative, but closely related, measure is the head injury 
criterion (HIC):
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Studies have shown that concussions in professional foot-
ball (the National Football League) typically result from 
impact velocities on the order of 9.3 ±  1.9 m/s (note that 
this corresponds to about 20.8 mph!). This raises an interest-
ing question: Is it possible that significant energy is being 
produced at higher frequencies as a result of football-related 
collisions? You may recall that, near the end of this chapter 
(see Figure 10.30), we saw exactly that phenomenon occur-
ring in railroad car-coupling events, where measured spectra 
revealed large accelerations at much higher frequencies 
(e.g., close to 100 Hz). This transfer of energy was obtained 
at much lower velocities (about 5.25 mph) and Shust (2007) 
further noted that energy transfer in car-coupling events 
routinely resulted in the 4  g design specification being 

identify the important contributions to the spectrum. What 
are the most significant frequencies in the data set?

10.9.  The failure of the Tacoma Narrows (TN) bridge in 
November 1940 led to multidisciplinary efforts to better 
understand oscillations occurring in suspended structures 
and how those vibrations might lead to structural failures. 
Although vortex shedding has frequently been identified as 
the cause of the TN bridge deck’s oscillations, this explana-
tion is incorrect. At the time of the failure, Professor Farqu-
harson (of the University of Washington) observed that the 
destructive torsional oscillation was occurring at 0.12 Hz—a 
frequency much lower than that arising from vortex shed-
ding from a suitably sized bluff body (with a wind speed of 
42 mph). The aeroelastic torsion that doomed the bridge was 
nothing at all like the benign vertical “galloping” that was 
observed even while the bridge was still under construction. 
The failure of the TN bridge had an important positive result, 
however; it forced bridge designers and engineers to better 
understand (and design for) aeroelastic oscillations.

Abdel-Ghaffar and Scanlan (1985) studied vertical, tor-
sional, lateral, and longitudinal motions of the center span 
of the Golden Gate bridge in response to normal excitations 
(wind, vehicular traffic, and wave action). In Figure 10.36, 
a spectrum obtained from span station 3 has been recon-
structed from the published paper (the quality of the original 
figure was poor).

Construct a set of sinusoids that, when Fourier-
transformed, will reproduce the essential characteristics of 

FIGURE 10.36.  Spectrum for torsional motions of the center 
span. The frequency scale is arithmetic (hertz), and the two highest 
peaks in the right-half of the spectrum occur at 3.1 and 4.18 Hz. 
The major contribution at the left edge is centered at approximately 
0.225 Hz.
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exceeded. As of this writing (the end of 2013), the are few 
such (spectral) data available for helmet impacts, although 
this area is seeing very intensive work with the objective that 
CTE might be minimized or even eliminated. Search the 
latest literature to see what spectral data have appeared for 
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the accelerometer data?
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FIGURE 10.37.   Time-series data for four spoken words: (a) “example” and (b) “execution,” followed by (c) “expansion” and (d) 
“exponent.”
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11
AN INTRODUCTION TO THE CALCULUS OF VARIATIONS 
AND THE FINITE-ELEMENT METHOD

SOME PRELIMINARIES

You may recall that we previously made use of some con-
cepts from the calculus of variations (COV) in our discus-
sion of the variational iteration method (VIM). We will now 
expand on that very brief treatment to illustrate some other 
applications of COV. We will mainly follow the conventions 
employed by Spiegel (1971) and Weinstock (1974). It is 
important to note that our approach will focus on conserva-
tive fields for which the force, F, is related to a potential 
energy function, φ, such that F = −∇φ.

Consider a function, y = f(x), in the x-y plane that joins 
the two points, (x1, y1) and (x2, y2), together. We recall from 
elementary calculus that the length of the pathway connect-
ing these two points is

	 L
dy

dx
dx

x

x

= +





∫ 1

2

1

2

. 	 (11.1)

To reveal the nature of the problem we wish to contem-
plate more clearly, let us select two specific points:

( , ) ( , ) ( , ) ( , ).x y x y1 1 2 21 4 4 9= =and

Now suppose the function, f(x), connecting these two points 
is a straight line:

	 y x= +
5

3

7

3
. 	 (11.2)

We want to evaluate L from eq. (11.1), recognizing, of 
course, that the value produced by eq. (11.2) will be the 
minimum possible length. But we also want to have a couple 
of comparisons available, so in addition, we will let y(x) be 
given by the two equations:

y x y
x

x x= + = − +
1

3

11

3

7 797

240

77

240
2 3and .   (11.3a,b)

Now we will compute the arc length from point 1 to point 
2 using eq. (11.1) for all three cases; the results are 5.83, 
5.91, and 8.98, respectively. The straight line provided  
the minimum length as we expected. The second-degree 
equation exhibits a little curvature, so its value for L is a 
bit longer, and the third-degree equation—which is a good 
deal more complicated—provides a significantly longer L as 
we would expect. Imagine now a situation in which we 
wanted to identify the minimum value of the integral (eq. 
11.1) but had no idea of the form of the function, y(x). This 
certainly sounds like a much more difficult task and we have 
an additional complication: In technical problems, our 
objective will almost certainly be far more complicated than 
the mere distance between two points in the x-y plane as 
given by eq. (11.1).

As we suggested previously, our real interest is the more 
general case where we need to identify some function, y(x), 
where y1 = y(x1) and y2 = y(x2), but with the stipulation that 
the integral
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230    An Introduction to the Calculus of Variations and the Finite-Element Method

By integrating by parts and noting that the result must be 
valid for all φ, Weinstock (1974) shows that the function we 
are seeking must satisfy the Euler–Lagrange differential 
equation:

	
d

dx

F

y

F

y

∂
∂ ′





−
∂
∂
= 0, 	 (11.8)

which was derived by Euler in the eighteenth century. We 
can perform the indicated differentiation to see the equation 
in its entirety:

d y

dx

F

y

dy

dx

F

y y

F

y x

F

y

2

2

2

2

2 2

0
∂
∂ ′
+

∂
∂ ′∂

+
∂
∂ ′∂

−
∂
∂
= .

The Euler–Lagrange equation is a necessary—but not 
sufficient—condition for y(x) to be an extremal; at this stage, 
we do not know if we have found a minimum, a maximum, 
or a stationary point (at a stationary point, the derivatives of 
the function vanish). For a simple example of a stationary 
point, consider the behavior of f(x) = x3 with f ′(x) =  3x2; 
clearly, at x = 0, f ′ = 0, but this point does not correspond 
to an extremum. The differential equation (eq. 11.8) may be 
written in an equivalent form that is often useful:

	
d

dx
F y

F

y

F

x
− ′
∂
∂ ′












=
∂
∂

. 	 (11.9)

Should x not appear in F explicitly, then

	 F y
F

y
C− ′

∂
∂ ′
= . 	 (11.10)

Equation (11.10) is known as the Beltrami identity 
(named for Eugenio Beltrami, an Italian mathematician of 
the nineteenth century). And should y not appear explicitly, 
then ∂F/∂y = 0, and eq. (11.7) is simply (d/dx)(∂F/∂y′) = 0, 
such that

	
∂
∂ ′
=

F

y
C. 	 (11.11)

NOTATION FOR THE CALCULUS OF VARIATIONS

Let us return to eq. (11.4) to retrieve the function F(x, y, y′), 
but now we take the independent variable, x, to be constant. 
We define the variation of F as

	 ∆F F x y y F x y y= + ′+ ′ − ′( , , ) ( , , ).εφ εφ 	 (11.12)

We can employ a truncated Taylor series expansion for 
F(x, y + εφ, y′ + εφ′):

	 I F x y y dx
x

x

= ′∫ ( , , )

1

2

	 (11.4)

be a minimum or a maximum. The function y(x) that meets 
this requirement is called an extremal, and the integral (eq. 
11.4) is referred to as a functional with one independent 
variable, x. We will proceed in the following way: We 
form a family of comparison functions using a single param-
eter, ε:

	 Y x y x x( ) ( ) ( ).= +εφ 	 (11.5)

We require that φ(x) be a differentiable function that 
disappears at the endpoints x1 and x2 so that φ(x1) = 0 and 
φ(x2) = 0. Now we rewrite eq. (11.4) as

	 I F x Y Y dx
x

x

( ) ( , , )ε = ′∫
1

2

	 (11.6)

and note that by Y′(x), we mean Y′(x) = y′(x) + εφ′(x). Of 
course, if ε = 0 everywhere, then eq. (11.6) is exactly the 
same as eq. (11.4). The essential point here is that no matter 
what form φ(x) has, the extremizing function, y(x), will be 
a member of the comparison function family. Let us illus-
trate this scenario with a graph (Figure 11.1).

If we differentiate eq. (11.6) with respect to ε and set 
ε = 0, then dI/dε = 0. Thus,

	 ′ =
∂
∂

+
∂
∂ ′

′






∫I

F

y

F

y
dx

x

x

( ) .0

1

2

φ φ 	 (11.7)

FIGURE 11.1.  Illustration of the “family” of comparison func-
tions. If ε = 0, then we get the behavior shown by y(x).
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The physical picture for the brachistochrone problem is 
as follows: We consider two points in a vertical plane con-
nected by a ribbon or wire that can assume any shape desired. 
An object of mass, m, slides down the wire under the influ-
ence of gravity. The process is frictionless so that at any 
point in time, the sum of potential and kinetic energies is 
constant; there are no dissipative forces in play, only gravity. 
The question to be addressed is what shape should the wire 
have such that the sliding mass reaches the bottom position 
in the least possible time?

Let the initial point be the origin and the lower point be 
P corresponding to position (x2, y2). Since there are no dis-
sipative forces in this process, we note by energy balance, 
PE0 +  KE0 =  PE2 +  KE2. We assume that the mass was 
initially at rest, so the kinetic energy term on the left-hand 
side is zero:

	 mgy mg y y m
ds

dt
0 0

1
2

2

= − +





( ) , 	 (11.17)

and therefore, ds dt gy= 2 . Of course, s is the length of 
the arc connecting the initial and final points. The total time 
required for the mass to slide from the origin to its final 
position can be obtained from the quotient of the path length 
and the object’s velocity (keep in mind that we are starting 
at the origin, so x = 0):

	 T
ds

gy
x

x x

req =
=

=

∫ 2
0

2

. 	 (11.18)

We already know that the length of an arc is given by eq. 
(11.1); therefore,

	 T
g

y

y
dx

x

req =
+ ′

∫
1

2

1 2

0

2

. 	 (11.19)

The objective is to find the function y(x) that minimizes 
this integral, recognizing that this is exactly the type of COV 
problem we described previously. One could propose differ-
ent functions and calculate the total time for each case (as 
we did in the example at the beginning of this chapter), but 
we would not know whether the y(x) so identified was really 
the extremal we are seeking. By comparison with the form 
for eq. (11.4), we see

F
y

y
=

+ ′1 2

,

and thus F does not explicitly depend on x. Consequently, 
we can make use of eq. (11.10):

	
1

1

2

2

+ ′
− ′

′

+ ′












=

y

y
y

y

y y
C, 	 (11.20)

	 ≅ ′ +
∂
∂

+
∂
∂ ′

′+F x y y
F

y

F

y
( , , ) .εφ εφ � 	 (11.13)

This means that the variation of F is

	 ∆F
F

y

F

y
≅
∂
∂

+
∂
∂ ′

′+εφ εφ neglected terms. 	 (11.14)

In the literature of the COV, this variation of F is 
written as

	 δ εφ εφF
F

y

F

y
=
∂
∂

+
∂
∂ ′

′. 	 (11.15)

The reason this is important is because a necessary condi
tion for the integral of the function, F(x, y, y′), to be an 
extremum is

	 δ F x y y dx
x

x

( , , ) ;′ =∫
1

2

0 	 (11.16)

that is, the first variation of the integral must vanish. Though 
conceptually attractive, we bear in mind an observation 
made by Courant and Hilbert (1989): “in the calculus of 
variations the existence of an extremum for a particular 
problem cannot be taken for granted. A special existence 
proof is needed for the solution of each problem or class of 
problems.” Courant and Hilbert provide examples of COV 
problems that, while appropriately developed, do not have 
solutions.

BRACHISTOCHRONE PROBLEM

The utility of the COV is often demonstrated with the “bra-
chistochrone” problem, which was posed by Johann Ber-
noulli as a challenge to European mathematicians in 1696. 
This example serves another purpose as well since it conveys 
a clearer picture of Sir Isaac Newton’s formidable powers; 
it is extremely difficult three centuries later to grasp how far 
Newton had surpassed his contemporaries in mathematics 
and physics. It was reported by Newton’s biographers (much 
of what we know about Newton has come down to us from 
John Conduitt and William Stukeley) that Newton received 
the brachistochrone problem in the evening after returning 
from work at the Royal Mint (Newton served as Master of 
the Mint for 10 years); Newton developed concepts for the 
COV and solved the brachistichrone problem, completing 
his work at 4 a.m. the next morning. He insisted that the 
solution be published anonymously (and it was, by the Royal 
Society in January 1697), but it has been reported that when 
Bernoulli saw it, he remarked that “we recognize the lion by 
his claw.”
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232    An Introduction to the Calculus of Variations and the Finite-Element Method

Observe once again that the integrand does not depend 
explicitly on x; thus, we can turn immediately to eq. (11.9), 
F − y′(∂F/∂y′) = C:

	 y y
yy

y
C1

1
2

2

2
+ ′ −

′

+ ′
= . 	 (11.25)

Now we isolate dy/dx to show

	
dy

y

C

x B
2

2
1−

= +∫ . 	 (11.26)

We substitute z = y/C to find

C
dz

z
x B

2 1−
= +∫ ,

and we notice that the denominator of the integral is a qua-
dratic irrationality that would normally call for trigonomet-
ric substitution. However, in this case, we might recognize 
the appropriate antiderivative since the integral is one that 
appears in every elementary calculus book, and therefore,

cosh ( ) , cosh .− = + = +












1
1 1z

x

C
B y C

x

C
Bresulting in

		  (11.27)

The intriguing feature of this catenary is that, if we 
force the curve through the initial point, (x1, y1), we might 
not be able to pass through the endpoint, (x2, y2); that is, 
the endpoint might lie outside the envelope of this cate-
nary family. Weinstock discusses this particular case which 
reveals a limitation of the theory we have employed 
earlier. Though it is beyond the scope of our discussion, 
the actual minimum surface area for this situation is given 
by the Goldschmidt discontinuous solution—the catenary 
family will provide relative or absolute minima for surface 
area only if the endpoint is sited appropriately (in general, 
the endpoint must be above or to the left of the catenary 
envelope).

Before we leave this discussion of the catenary, we should 
make note of the fact that the COV can be used to show that 
an inverted catenary (the catenary arch) has the lowest pos-
sible internal stress. Of course, catenary arches have been 
used in buildings for centuries and a modern example is the 
Sheffield Winter Garden in South Yorkshire. The very well-
known Gateway Arch in St. Louis, Missouri, is an example 
of a flattened catenary.

Systems of Particles

We are concerned here with a collection of n-particles in a 
conservative system for which the potential energy function, 

and accordingly,

	 ′ = =
−

y
dy

dx

C y

y

1 /
. 	 (11.21)

We set A = 1/C and change the y variable: y = Asin2 θ. 
The reader may wish to show that

	 x A= −[ ]θ θ1
2 2sin . 	 (11.22)

The constant of integration that should appear here is  
equal to zero since the curve must go through the origin 
(where x = y = 0). The expressions for x and y give us the 
parametric equations for a cycloid; for example, when 
θ = π/6, x = 0.0906A and y = 0.25A, and when θ = π/4, 
x =  0.2854A and y =  0.5A. The value for A is selected 
to ensure that the curve passes through the desired point,  
(x2, y2).

OTHER EXAMPLES

Minimum Surface Area

Again we assume that we have some curve in the x-y plane 
that connects the two pairs of points, (x1, y1) and (x2, y2). If 
we rotate this curve about the x-axis, then a surface is gener-
ated that has some particular surface area, as well as some 
enclosed volume. We know from elementary calculus that 
this generated surface has an area given by

	 A y x
dy

dx
dx

x

x

= +





∫ 2 1

2

1

2

π ( ) . 	 (11.23)

Therefore, if a straight line extended from the origin to the 
point (4, 5), then y(x) =  (5/4)x, and if we rotate this line 
around the x-axis we find

A
x

=





 =2

5

4

41

16 2
100 58

2

0

4

π . .

Of course, we could confirm this number by use of the 
mensuration formula for the lateral surface area of a cone. 
But our goal in this section goes beyond a determination of 
surface area; we want to determine the minimum surface 
area formed by the revolution of y(x) about the x-axis. 
Therefore, we need to identify the minimum value of the 
integral,

	 I y y dx
x

x

= + ′∫2 1 2

1

2

π . 	 (11.24)
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differential equations whose solutions reveal the generalized 
coordinates as functions of time. The solution, of course, 
requires that the initial values for both q and �q be known.

Vibrating String

In the previous section, we considered a situation in which 
points of mass (particles) were distributed in space. However, 
Hamilton’s principle can also be applied to cases in which 
mass is continuously distributed. To illustrate, let us consider 
a string anchored at positions x = 0 and x = L. The string 
is flexible, and if it is physically perturbed, it can oscillate 
normal to its equilibrium (or undisturbed) axis. We will let 
the string’s displacement be φ and its mass per unit length 
be m. The total kinetic energy of this string of length L 
is then

	 T m
t

dx

L

=
∂
∂





∫

1

2

2

0

φ
. 	 (11.32)

The string is perfectly elastic, so any disturbance will 
result in an increase in length. We will assume that the 
potential energy of the string is directly related to its elonga-
tion, and therefore by eq. (11.1), this change in length is 
given by

	 1
2

0

+
∂
∂





 −∫

φ
x

dx L

L

. 	 (11.33)

If the increase in string length caused by the displacement 
is sufficiently small, then
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,

and therefore,
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k
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By the principle of least action, the first variation of I should 
be zero:
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V, can be used to obtain the three force components; for the 
nth particle (located at positions x, y, and z), we would have

F
V

x
F
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y
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z
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n

n
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n
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=−
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∂
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∂
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, , .and   (11.28)

The total kinetic energy, T, for this system can be obtained 
from

	 T m
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In classical mechanics, we would describe the behavior 
of a particle with Newton’s law, F = ma = m(d2s/dt2). We 
imagine that at two different times, say, t1 and t2, we have 
two different configurations—the particles have moved 
around subject to F =  ma. The principle of least action* 
states that the integral of the Lagrangian function over this 
time interval must have a minimum value. Since the Lagrang-
ian function for this system is merely the difference between 
kinetic and potential energies, we require that

	 I T V dt Ldt
t

t

t

t

= − =∫ ∫( )

1

2

1

2

	 (11.30)

be an extremum (minimum). The problem thus posed is one 
of determining the paths traveled by the particles that make 
this integral a minimum. We let the particle velocities be 
represented by � � … �q q qn1 2, ,  and the coordinate locations be 
given by q1, q2, . . . qn. Naturally, the kinetic energy of the 
system is a function of the velocities, the positions, and time, 
while the potential energy is a function of the coordinates 
and time. The requirement that the integral (eq. 11.30) be a 
minimum is often referred to as Hamilton’s principle, which 
is applicable to the motion of any conservative system. This 
principle leads to Lagrange’s general equations of motion, 
which we write as
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dt
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0 0or

for 1,, , , ),2 … n 	 (11.31)

where the qis are generalized coordinates. These equations 
(eq. 11.31) constitute a set of simultaneous second-order 

*The philosophical underpinning of the principle of least action 
was given by Euler: “As the construction of the universe is the most 
perfect possible, being the handiwork of an all-wise Maker, nothing 
can be met with in the world in which some maximal or minimal 
property is not displayed. There is, consequently, no doubt but that 
all of the effects of the world can be derived by the method of 
maxima and minima from their final causes as well as from their 
efficient ones.”
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Boundary-Value Problems

In a typical variational problem, we try to identify a func-
tion, y(x), that leads to a minimum value of the integral just 
as we saw at the beginning of this chapter:

	 I y F x y y dx
x

x

( ) ( , , ) .= ′∫
1

2

	 (11.4)

A direct approach to this problem involves the construction 
of a sequence of functions, y1, y2, y3, . . . , yn such that as 
n → ∞, we obtain an extremum for I. The set of functions 
that achieves this objective is called a minimal (or minimiz-
ing) sequence. There is a powerful technique that can be 
used for this purpose and we will look at a detailed example 
later. However, as Smith (1953) indicates, we need to keep 
two very important points in mind: First, the function 
sequence must be selected with care to obtain a suitably 
rapid rate of convergence, and second, the minimal 
sequence—even as n becomes very large—may not neces-
sarily converge to the actual solution of the variational 
problem.

The COV can be used to solved certain boundary-value 
problems through the use of a technique we discussed previ-
ously in this course, the Rayleigh–Ritz (or simply Ritz) 
method. We can best illustrate this with a simple example 
for which the analytic solution is easily determined. Suppose 
we have a differential equation,

	
d

dx
f x a bx

2

2

φ
=− = +( ) , 	 (11.41)

with f(x = 0) = 0 and f(x = 1) = 7; and further, we presume 
a form for the solution, φ = 11x − 17x2 + 13x3. This means 
that a + bx = −34 + 78x. The behavior of the function φ(x) 
is illustrated in Figure 11.2.

In the application of the Ritz method to this boundary-
value problem, we set out to find a function that minimizes 
the integral:
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We proceed with the understanding that our objective is to 
identify an analytic approximation for φ(x) as quickly and 
easily as possible. We let the trial function be

	 φ ≅ + − + − + − +[ ]x C C x C x C x1 2 3
2

4
31 1 1( ) ( ) ( ) .�

		  (11.43)

The boundary conditions are automatically satisfied if we 
take C1 = 7. The trial function is substituted into eq. (11.42) 
and the integration is carried out to obtain I, which depends 

Note that the functional depends only on the two deriva-
tives (with respect to t and x); it does not involve x or t or 
even φ explicitly. The Euler–Lagrange equation for this case 
(we will use subscripts to indicate derivatives with respect 
to x and t) is
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which means that the function φ, which makes the first varia-
tion of I disappear, must be governed by

	
∂
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φ φ
t

c
x

, 	 (11.37)

where the characteristic velocity, c, is obtained from the 
quotient of k/m. Equation (11.37) tells us that the string’s 
displacement must follow the one-dimensional wave equa-
tion, exactly as we expected.

Laplace’s Equation

We have seen previously that problems concerned with con-
servative fields (no dissipative effects) can often be described 
with Laplace’s equation, for example, in two dimensions:

	 ∇ =
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=2

2

2

2

2
0 0φ

φ φ
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x y
. 	 (11.38)

We may also remember that eq. (11.38) has a broad range 
of applications in electrostatics, heat transfer, gravitation, 
and hydrodynamics. For cases in which the field variable is 
specified around the boundary, we have what is known as a 
Dirichlet problem. Such problems can be expressed alterna-
tively in variational form:

	 I F x y dxdyx y( ) ( , , , , ) ,φ φ φ φ=∫∫ 	 (11.39)

and for the two-dimensional Laplace equation, the varia-
tional principle is known:
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Our goal in this case is to identify the potential function that 
causes the first variation of I to disappear. The solution 
procedure is analogous to the Ritz method, which is dis-
cussed in the next section. The main problem with this 
approach is that the required workload is significant; thus, 
we would normally use this technique for the solution of the 
Laplace equation only when a closed-form solution cannot 
be found, but we absolutely must obtain an analytic 
approximation.
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This direct approach to the solution of variational prob-
lems can be applied to more difficult cases if we use a little 
ingenuity, and we will illustrate this using an example devel-
oped by Ritz and discussed in detail by Smith (1953). 
Suppose we are interested in a problem of the type

	 I p y p yy p y dx
x

x

= ′ + ′+( )∫ 1
2

2 3
22

1

2

. 	 (11.45)

Our objective, of course, is to find y(x) that makes I(y) an 
extremum (a minimum); we stipulate that p1, p2, and p3 be 
either constants or functions of x (but they do not depend on 
y). We also require that y′ be finite and continuous for the 
interval x1 ≤ x ≤ x2, and we are given that y(x1) = β1 and 
y(x2) = β2. It is quite useful in a case like this to employ a 
transformation that simplifies the boundary conditions. Con-
sider the function

	 y x
x x

x x

x x

x x
x( ) ( )=
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1 2
1

1

2 1
2β β φ 	 (11.46)

and observe that φ(x) must disappear (be equal to zero) at 
both endpoints. This is extremely convenient and the required 
behavior suggests a function type that is suitable for the 
minimizing sequence; for example, let the approximations 
for φ(x) have the form

	 φ
π

1 1
1

2 1

=
−
−

C
x x

x x
sin

( )
. 	 (11.47)

on the undetermined constants, C2 through Cn. Values are 
obtained for these Cs by differentiating I and setting the 
derivatives equal to zero:
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Naturally, the more terms that are retained in the trial 
function, the better the result is likely to be. This example 
provides a terrific opportunity for the reader to explore the 
Ritz method without expending too much time or effort,  
as we shall now see. We will begin by truncating our ap
proximation (we know the result will not meet critical 
inspection, but it will be simple enough to be executed 
rapidly): φ ≈ x[7 + C2(1 − x)]. Of course, this quadratic 
form cannot duplicate the point of inflection we see in Figure 
11.2, but it will reveal the essence of the technique. Now we 
compute the value of the integral (eq. 11.42) using plausible 
values for the parameter, C2. The results are illustrated in 
Figure 11.3.

Using φ = x[7 − 2.25(1 − x)], we obtain

x 0.0 0.2 0.4 0.6 0.8 1.0
φ(x) 0 1.04 2.26 3.66 5.24 7

We can compare the results in this abbreviated table with 
the behavior of the function illustrated in Figure 11.2. For 
examples, at x = 0.4, the correct value is about 2.5, while 
at x =  0.8, we should have gotten about 4.5 or 4.6. The 
reader is urged to verify this result and then to add the C3 
term and repeat! How much better is the approximation 
when the polynomial is third degree?

FIGURE 11.2.  φ(x) for illustration of the Ritz method. The reader 
should integrate eq. (11.41) and verify the solution.
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FIGURE 11.3.  Calculated values for the integral (eq. 11.42); the 
minimum occurs when C2 is approximately equal to −2.25.
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where J is the moment of inertia. Thus, by Hamilton’s prin-
ciple, we have
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The task confronting us is to choose the function u(x, t) 
that yields the extremum of I and at the same time satisfies 
the conditions imposed at the ends of the rod. For a structural 
member (like our strand of spaghetti), the ends can be free, 
hinged, or clamped. By free, we mean that neither u nor the 
slope, (∂u/∂x), is constrained to a particular value at x = 0 
(or x = L). For the hinged condition, u is fixed, but the slope 
is arbitrary (this is the likely situation when we load the 
pasta strand by pressing down), and for the clamped condi-
tion, both the displacement, u, and the slope have particular 
values. The integral is extremized by creating a set of com-
parison functions such as U =  u(x, t) +  εφ(x, t) and it is 
necessary that the function φ(x, t) be zero at both times, t1 
and t2 (you should recognize that this is exactly the process 
that is illustrated in Figure 11.1). If the rod is hinged at the 
ends, it is necessary that φ(x = 0, x = L) be zero, but the 
slope, ∂φ/∂x, is arbitrary. Our interest is the case where 
ε = 0 and, thus, I′(0) = 0. For the sake of compactness, we 
will let the integrand in eq. (11.51) be represented by F 
(which includes the prefactor of ½), and therefore,
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Weinstock (1974) shows that, through repeated integra-
tion by parts, one can obtain the differential equation that 
governs the displacement of the rod (you may recall the 
analogous development of the Euler–Lagrange differential 
equation at the beginning of this chapter):
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This is the equation of motion for transverse motions of the 
thin rod. If the ends of the rod are hinged, then it is necessary 
that u = 0 and ∂2u/∂x2 = 0. We can use the product method 
to seek a solution for eq. (11.53) as we will now demonstrate 
by proposing that u =  f(x)g(t); this results in two ordinary 
differential equations:
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Therefore,
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Of course, the final step is to determine the constants C1, 
C2, and so on, that make I(y) a minimum. The precise forms 
for p1, p2, and p3 would have to be known before this process 
could be carried out.

There is another direct method for determining the mini-
mizing sequence that is described in chapter IV of Courant 
and Hilbert (1989). It involves discretizing the integral as 
given by eq. (11.4) using finite-difference approximations 
and dividing the interval (x1, x2) into m pieces such that
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y y
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This is now simply an ordinary minimum problem handled 
in piecewise fashion. Should higher derivatives appear in the 
integral, they would be replaced by forward difference 
approximations.

A CONTEMPORARY COV ANALYSIS OF AN OLD 
STRUCTURAL PROBLEM

Flexing of a Rod of Small Cross Section

We will begin this part of our discussion by considering 
a thin rod with a length that extends from x = 0 to x = L; 
this rod will be subject to flexing (transverse vibrations). 
It is easy enough to visualize this situation—imagine a 
strand of uncooked spaghetti, for example, that is oriented 
vertically between your fingertip and a tabletop. By press-
ing down on the end of the pasta, you can observe the 
lateral deformation and, ultimately, failure as the load is 
increased. It is this transverse flexing that we wish to con-
sider. We will let u(x, t) represent transverse displacement 
such that the transverse velocity is ∂u/∂t, and we will take 
the mass of the rod per unit length to be m. Therefore, 
the total kinetic energy of the transverse motions can be 
written as
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The total potential energy due to strain is determined 
from the second derivative (with respect to x) of the 
displacement:
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words, we want to evaluate columns where the cross-
sectional area, A, can vary with length but with the require-
ment that V A x dx

L
= ∫ 0 ( ) . We should think of this enterprise 

as finding the A(x) that meets this volume requirement and 
maximizes the smallest eigenvalue of F.

In the eighteenth century, Euler worked on the problem 
of finding the form of y(x) that would lead to minimum 
stored energy. With the assumption that E and J were con-
stant, Euler was able to minimize

	
EJ y

y
dx y dx

L L
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01
1
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The second part of this expression is the length constraint 
with the Lagrange multiplier, λ. Cox (1992) notes that Euler 
was also able to determine the critical load for certain non-
uniform columns for which J(x) =  (a + bx/L)q. The expo-
nent, q = 2, corresponds to cylindrical columns for which 
A varies linearly over the length, L (a tapered cylinder).

It turns out that the question of the strongest column 
shape (for fixed volume and length) has been revisited 
repeatedly over the 200 years that have passed since 
Lagrange “proved” that the answer was a right-circular 
cylinder. Many have suspected that Lagrange’s cylinder 
was incorrect; Cox makes the very practical observation 
that an optimal column shape should have large A, where 
bending might be expected, and reduced A, where little 
bending would occur. Keller (1960) revisited the problem 
and found that if both ends of the column were hinged, 
the optimal shape is actually a “stunted” cycloid (a bit like 
a sausage that is overly plump in the middle). Because the 
column is hinged at the ends, A at both x =  0 and x = L 
is reduced; that is, the column does not have to resist 
bending at the ends. This profile is illustrated in Figure 
11.4 and Cox notes that this shape is stronger than a cyl-
inder of the same length and volume by more than 30%. 
But what about a column that is clamped at both ends? 
Tadjbakhsh and Keller (1962) examined that case and 
found a solution for which A(x) →  0 at two interior loca-
tions, x = ¼ and x = ¾. Of course, this means that y″(x) 
has two singularities and these two points can be thought 

FIGURE 11.4.  Optimal column shape if both ends are hinged 
(profile shown in horizontal orientation) as determined by Keller 
(1960).
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The solution for the first of this pair is just: g  = 
Asin λt +  Bcos λt, and we should recognize that what we 
have here is an eigenvalue-eigenfunction problem. Further-
more, to obtain this result, we have assumed that there can 
be no negative values for λ. To solve this problem, we would 
need to find the eigenfunctions (the fs) for the sequence of 
identified λs that satisfy the necessary conditions at the ends 
of the rod. We will leave this problem for the end of the 
chapter as a student exercise. What we want to do now, 
though, is to transition from the transverse displacement of 
a loaded strand of spaghetti to a much more fundamental 
question. If we need to use a column as a building support, 
what kind of column will give us the maximum strength 
while minimizing the amount of material required? In other 
words, is there an optimal column shape?

The Optimal Column Shape

Let us consider the design of a supporting column subjected 
to a vertical (axial) load; such columns were a staple of 
classical architecture (think of the Parthenon in Athens). If 
such a column is subjected to an extreme compressive load, 
it will fail or buckle. Structural engineers use Euler’s formula 
to estimate the critical buckling load,

	 F
EJ

L
c =

π2

2
, 	 (11.55)

where E is Young’s modulus of elasticity, J is the moment 
of inertia of the cross section, and L is the column length. 
Typically, the modulus of elasticity for carbon steel is about 
30 × 106 psi; for concrete, it is about 3 × 106 psi; and for 
Teflon™, about 75,000 psi. The second moment of an area 
A (moment of inertia) about the x-axis is J y dAA= ∫ 2 . The 
load that a column can carry also depends on how it is 
secured at the ends (at x = 0 and x = L); as we noted earlier, 
columns are commonly free, hinged, or clamped at the ends. 
These boundary conditions play a critical role in determin-
ing the form of the first buckling mode. Letting y represent 
the transverse displacement, the simple linear model for the 
buckling of a long, straight column is

	
d y

dx

F

EJ
y

2

2
0+ = , 	 (11.56)

and the solution for eq. (11.56) is just y A x B x= +sin cos ,β β
 where β =  F/EJ. If y =  0 at both ends, then 

B =  0 and β π= n L; that is, the shape of the buckling 
mode is revealed and the eigenvalues yield F = EJ(n2π2/L2). 
Such an analysis works well enough for slender columns 
(for steel columns, slender means L/R ≥ 140), but it fails to 
address the more complete design question, namely: If the 
total volume of material and the column length are fixed, 
what shape or profile can support the greatest load? In other 

y A x B x= +sin cos ,β β
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Suppose we take two circular loops of wire, separated by 
a distance, 2h, but fixed so that the two circles are parallel. 
We let the circles be located at x = ±h with y2 + z2 = R2. 
Now, we dip this wire framework into a basin of soapy water 
and then remove it. What shape will the resulting film have? 
The surface we are describing is a surface of revolution 
created by rotating a curve, f(x), about the x-axis such that 
f(−h) = R and f(+h) = R. For this case,

	 I f f dx
h

h

= + ′
−

+

∫2 1 2π , 	 (11.58)

and our task is to minimize I. This is equivalent to solving 
the Beltrami identity:
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or consolidating,

−

+ ′
=

f

f
C

1 2
.

We can do a little rearranging and then integrate, yielding
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You will see immediately that this is the catenary dis-
cussed previously (eq. 11.27). The validity of this result is 
demonstrated beautifully in the little book of interfacial 
experiments by Boys (1959; see figure 27, p. 55, of the 
Dover reprint of the “new and enlarged” edition of 1911). 
Boys used two large glass rings to draw out the soap film, 
and he notes that “the film is so far curved as to have a most 
elegant waist.” He also points out that the surface thus 
formed is a catenoid—just as we demonstrated earlier.

THE CONNECTION BETWEEN COV AND THE 
FINITE-ELEMENT METHOD (FEM)

The finite-element method (FEM) as it is used in engineer-
ing applications had its origin in the analysis of structures. 
In particular, FEM developed in response to structural prob-
lems that involved a continuum (as opposed to those, e.g., 

of as interior hinges. For a time, it was generally accepted 
that the strongest clamped-clamped column would have 
two interior locations where the cross-sectional area would 
vanish; however, Olhoff and Rasmussen (1977) discovered 
that the Tadjbakhsh–Keller solution was incorrect. In the 
earlier work y′(x) was assumed to be continuous (it does 
not need to be). Moreover, when Olhoff and Rasmussen 
used the A(x) profile from the 1962 paper in the conven-
tional eigenvalue formulation, they discovered that the 
critical compressive load was actually less than that for a 
uniform column.

Olhoff and Rasmussen (1977) developed the appropriate 
equations, recognizing that a bimodal formulation was nec-
essary, and solved the problem numerically. They point out 
that the equation set provides a coupled, nonlinear, integro-
differential eigenvalue problem. Their results showed that a 
column with clamped end conditions would have two inte-
rior regions where the cross section would diminish signifi-
cantly but A(x) would not approach zero; these contractions 
occur at fractional length positions of ¼ and ¾ (an excellent 
illustration is provided by Cox, 1992 as his figure 5). Olhoff 
and Rasmussen found that a column thus designed is almost 
33% stronger than a uniform (cylindrical) column of the 
same height and volume. Cox and Overton (1992) used 
nonsmooth analysis to prove that A need not be continuous 
in the sup-norm topology but that it would have a lower (and 
nonzero) bound. Their results, which are also summarized 
by Cox, confirmed the numerical calculations of Olhoff and 
Rasmussen: The strongest clamped-clamped columns have 
two contractions where A is reduced significantly relative to 
a uniform cylindrical column.

SYSTEMS WITH SURFACE TENSION

Surface tension, σ, is a property of interfaces; it acts as a 
negative pressure in such a way as to minimize interfacial 
area. Work must be performed against surface tension to 
expand the interface and if the area is increased by an 
amount, dA, then the required work is dW = σdA. Values for 
σ are usually reported as force per unit length, typically dyne 
per centimeter, and for the air–water interface, σ = 72 dyne/
cm. As we noted earlier, surface tension creates a pressure 
difference across a curved interface, and we can think of this 
in the following way: The tendency for a bubble to contract, 
that is, to decrease its surface area, must be countered at 
equilibrium by an increase in pressure on the concave (inte-
rior) side. For a spherical bubble, the pressure difference is 
given by Δp = 2σ/r such that for a 0.5-mm diameter bubble 
in water, Δp = (2)(72)/(0.025) = 5760 dyne/cm2 (576 Pa), 
or 5.76 × 10−3 bar. Since the action of surface tension is to 
minimize surface area, it is clear that the situation is very 
similar to that posed by eq. (11.23) and eq. (11.24). Let us 
illustrate this point.
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lar element? Our approximation is ψ ≅ −14 + 3x + 12y, 
so obtaining a comparison should be easy:

x y ψestimated ψactual

1.5 1.0 2.5 2.25
1.5 1.25 5.5 3.5156
1.5 1.5 8.5 5.0625
1.75 1.0 3.25 3.0625
1.75 1.25 6.25 4.7852
1.75 1.5 9.25 6.8906
2.0 1.5 10.0 9.0
2.0 1.75 13.0 12.25

Although the values for ψ are correct at the vertices, 
some of the estimated values in the interior of the trian-
gular element are in error by as much as 60% (the average 
error for the points tested in the previous table is 27.6%). 
This performance is not acceptable, and we have two 
options: We could increase the degree of the trial function 
polynomial (e.g., we could make it quadratic with respect 
to x and y) or we could refine (subdivide) the triangular 
element. In the case of the latter and continuing with this 
example, we simply draw a line from (1, 2) to (1.5, 1.5), 
producing two triangles of equal size. Naturally, we have 
doubled our workload as we must now determine values 
for two sets of parameters, but this is of little consequence 
for an automated calculation. If necessary, we can con-
tinue subdividing the element until the linear trial (or 
interpolation) function gives satisfactory agreement over 
each element. When we are solving elliptic partial differ-
ential equations (PDEs), it is usually obvious where the 
steepest gradients will be located, so the analyst often has 
a very good idea where the element size might need to be 
reduced.

We determined the three needed parameters (the Cns) 
from eq. (11.62), eq. (11.63), and eq. (11.64) by Gaussian 
elimination, but equivalently,

C
x y y x x y x y x y x y

A
1

1 2 3 2 3 2 3 1 1 3 3 1 2 2 1

2
=

− + − + −ψ ψ ψ( ) ( ) ( )
,

		  (11.65)

C
y y y y y y

A
2

1 2 3 2 3 1 3 1 2

2
=

− + − + −ψ ψ ψ( ) ( ) ( )
, 	 (11.66)

and

C
x x x x x x

A
3

1 3 2 2 1 3 3 2 1

2
=

− + − + −ψ ψ ψ( ) ( ) ( )
. 	 (11.67)

The subscripts 1, 2, and 3 refer to the three vertices and 
we are proceeding from the (1, 1) vertex in the counterclock-
wise sense; therefore, vertex 2 is located at (2, 1) and vertex 
3 is at point (2, 2). A is the area of the triangular element, 

that concerned a truss with a finite number of beams and 
connecting points). Hrenikoff (1941) proposed discretizing 
the continuum by dividing it into a finite number of ele-
ments. Initially, many applications of FEM were focused on 
structures, but now the technique is employed by virtually 
all branches of science working with continuum mechanics. 
The COMSOL™ website is an ideal place for the reader to 
get a sense of the breadth of these uses.

Previously in this chapter, we used the Ritz method to 
find an approximate solution for a boundary-value problem 
and you will recall that the trial function was valid over the 
entire domain (from x = 0 to x = 1). This is a distinguishing 
characteristic with regard to the FEM where the trial func-
tions (or interpolating functions) are valid only in a piece-
wise manner. Our intent with FEM is to break the domain 
into a collection of pieces and then use the trial function(s) 
to represent the solution over each piece separately. So an 
important difference between the Ritz method and FEM is 
now clear—in FEM, the trial function does not have to 
satisfy the boundary conditions.

Suppose, for example, that we have a continuous function 
in the x-y plane: ψ =  f(x, y). Our goal is to represent this 
function in an approximate fashion over the entire domain 
but to do so with a collection of small pieces. We will use 
triangular elements and, for the moment, assume that the 
field variable is known at the three vertices, which we will 
label 1, 2, and 3. The simplest feasible representation (sim-
plest in the sense that it allows for the linear variation of ψ 
with changes in the two independent variables) for ψ will be 
taken as

	 ψ≅ + +C C x C y1 2 3 . 	 (11.61)

You can see immediately that the problem confronting us 
is one of choosing the “best” values for C1 through C3 for 
our small triangular piece. We will place the vertices at (1, 
1), (2, 1), and (2, 2), and we observe that the area of this 
triangle is ½. We will also arbitrarily take ψ = x2y2 such the 
node values for the dependent variable will be 1, 4, and 16, 
respectively. Since we know that value of the field variable 
at each of the vertices (or nodes), we write

	 ψ1 1 2 31 1 1= = + +C C C( ) ( ), 	 (11.62)

	 ψ2 1 2 34 2 1= = + +C C C( ) ( ), 	 (11.63)

and

	 ψ3 1 2 316 2 2= = + +C C C( ) ( ). 	 (11.64)

We use these three equations, solving them simultane-
ously, to determine the unknown parameters. The result is 
C1 = −14, C2 = 3, and C3 = 12; these choices provide the 
correct values at the vertices (or nodes) as we required. But 
what about the value of ψ at other points within the triangu-
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Now we will explore the use of this method for an ele-
mentary problem in steady-state heat conduction in two 
dimensions, where the governing equation is

	
∂
∂
+
∂
∂
=

2

2

2

2
0

T

x

T

y
. 	 (11.75)

We will use a single triangular element so that the process 
is completely transparent with a linear (with respect to x and 
y) trial function. Let the vertices of the triangle be located 
at (x, y) positions, (0, 0), (2, 1), and (1, 2). We let the top 
correspond to vertex 1 where the temperature is 100°, so 
T(x = 1, y = 2) = 100. Both bottom vertices, and the bottom 
edge, are maintained at 50°. Now we proceed in clockwise 
fashion from vertex 1, writing the three equations:

a b c a b a1 1 1 1 1 11 2 1 2 0 0+ + = + = =( ) ( ) ( ) .   (11.76)

For vertex 2,

a b a b c2 2 2 2 22 0 1 0 2 0+ + = = + =( ) .   (11.77)

And for vertex 3,

a a b c a b3 3 3 3 3 31 2 0 2 0= + + = + =( ) ( ) .   (11.78)

In each case, you will note that the equation for the 
“home” vertex is set equal to one, and it is zero at the other 
two vertices. Thus, for the first set of equations where 
(x = 1, y = 2), we find c1 = 1/2; for the second set, (x = 2, 
y = 0), we find b2 = 1/2 and c2 = −(1/4). The reader should 
verify that for vertex 3, a3 = 1, b3 = −(1/2), and c3 = −(1/4). 
We can now write out our approximation:

T y x y x y≈





+ −







+ − −







100

1

2
50

1

2

1

4
50 1

1

2

1

4
.  (11.79)

Looking at a few selected points, we obtain T(x  =  1, 
y =  1) =  75°, T(x =  1/2, y =  1/2) =  62.5°, T(x =  2/3, 
y =  4/3) =  83.33°, T(x =  5/3, y =  2/3) =  66.67°, and 
T(0 ≤ x ≤ 2, y = 0) = 50°. Should we wish to improve the 
quality of our estimated solution, we could place an inverted 
triangle inside the original domain with vertices at (1, 0), 
(1.5, 1), and (0.5, 1); the result is four equal-sized triangles 
inside the original figure. If we subsequently divided each 
of those four triangles into four equal pieces using the same 
procedure, we would end up with 16 elements—all identical 
triangles. By refining the mesh, we can improve the quality 
of the solution at the cost of additional simultaneous equa-
tions (to be solved).

There are many examples in the literature in which the 
FEM is applied to elliptic PDEs; de Vries and Norrie 
(1971) is especially useful as they illustrate how the varia-
tional problem is posed for the Laplace equation (with 

(1/2)bh  =  (1/2)(1)(1)  =  1/2, so the denominator in eq. 
(11.65), eq. (11.66), and eq. (11.67) is 1. We will introduce 
eq. (11.65), eq. (11.66), and eq. (11.67) into eq. (11.61) and 
write the result in general form:

ψ ψ ψ

ψ

( , )

,

x y
a b x c y

A

a b x c y

A
a b x c y

A

i i i
i

j j j
j

k k k
k

=
+ +

+
+ +

+
+ +
2 2

2

  (11.68)

where

a x y x y b y y c x xi j k k j i j k i k j= − = − = −, , .and
		  (11.69)

Following Huebner (1975), we define the linear shape 
functions as

	 N
a b x c y

A
n

n n n=
+ +

2
. 	 (11.70)

Therefore, for each triangular element, we have three vertex 
values and three shape functions:

	 ψ
ψ
ψ
ψ
= =[ ]

i

j

k

i j kN N N Nand , , , 	 (11.71)

and thus, ψ(x, y) = Niψi + Njψj + Nkψk. Our approximation 
for the variation of the field variable over the complete 
domain is then

	 ψ ψ( , ) ,( ) ( )x y N s s

s

M

= [ ]{ }
=
∑

1

	 (11.72)

where M is the total number of triangular elements. The 
remaining task is to identify the nodal (vertex) values of the 
dependent (or field) variable, ψ, so that the functional I(ψ) 
is an extremum, where

	 I I e e

s

M

( ) .( ) ( )ψ ψ=
=
∑

1

	 (11.73)

The first variation of the functional, I, must be zero, and 
therefore for each element, e, we have

	
∂
∂
=

I e

j

( )

,
ψ

0 	 (11.74)

and the j index refers to the nodes (or vertices) of each 
element. Equation (11.74) provides a set of simultaneous 
equations that, when solved, yield the problem’s solution in 
terms of the nodal values of ψ.
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CONCLUSION

The COV is extremely useful for problems in which an 
extremal is being sought and the functional is simple enough 
to be dealt with analytically. Unfortunately, in practice, this 
often turns out to be quite restrictive because, for a problem 
of interest, (1) the variational principle may not be known, 
(2) the existence of an extremum may not be guaranteed, (3) 
solution for a properly posed problem may not even be pos-
sible, and (4) the problem may be highly nonlinear such that 
identifying the minimizing sequence requires solution of 
large sets of nonlinear algebraic equations. To illustrate 
these points, consider the integral

	 I x
dy

dx
dx=








−

+

∫ 4
2

1

1

. 	 (11.80)

Now suppose we wanted to identify a continuous func-
tion, y(x), with a piecewise continuous derivative that would 

emphasis on potential flow) for different types of boundary 
conditions. There are also many examples of simple FEM 
codes for readers wishing to start from the ground up; 
examples are included in Huebner (1975) and Reddy and 
Gartling (1994). For complex problems requiring FEM—
particularly if the analyst has time constraints—commercial 
codes are probably worth the cost of acquisition. One such 
program that is very well known is COMSOL, which was 
originally marketed as FEMLAB™. This software was 
designed to find solutions for “multiphysics” problems such 
as buoyancy-driven flows arising in free convection. The 
user interface allows one to rapidly explore the effects of 
changing the boundary conditions, refining the mesh, and 
so on. Such programs can be used to solve quite difficult 
problems with complicated boundaries; an example (viscous 
flow around a rectangular obstruction) computed with 
COMSOL is shown in Figure 11.5a,b. Please keep in mind 
that one should fully test some benchmark cases related to 
any problem of interest before relying on a solution pro-
duced by such software.

FIGURE 11.5.  Flow around a rectangular obstruction at low Reynolds number: (a) discretization (triangular elements) and (b) streamlines. 
The inflow boundary condition (left edge) was set to constant velocity and the horizontal boundaries had the slip/symmetry condition applied. 
Notice how the element size was reduced near the obstruction. These results were obtained with the finite-element method using COMSOL.

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1
–1–1.6 –0.6 0 0.4 1 21.4–2

(a)

(b)
1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1
–1–1.6 –0.6 0 0.4 1 21.4–2

http://c11-bib-0008
http://c11-bib-0011
http://c11-fig-0005


242    An Introduction to the Calculus of Variations and the Finite-Element Method

wanted to explore the finite-element solution of a two-
dimensional, steady conduction problem in an anisotropic 
medium that includes a thermal energy source term; that is,

∂
∂

∂
∂







+
∂
∂

∂
∂







+ =

x
k

T

x y
k

T

y
Sx y 0,

where S might be a function of position, S =  f(x, y). We 
approximate the dependence of T on position with

T x y T x yj
e

j
e

j

n

( , ) ( , ),≈
=
∑ φ

1

where the Tj
es are the node values of T and the φ j

es are the 
approximating functions for each finite element. For a 
weighted-residual approach to this problem, we could write

0=
∂
∂

∂
∂







+
∂
∂

∂
∂







+













W
x

k
T

x y
k

T

y
f x yx y ( , ) ddxdy∫∫ .

The Ts that appear here are the approximations, of 
course. Our intent is to use this weighted-residual form to 
generate a set of simultaneous algebraic equations that, 
when solved, will yield the approximate nodal values for T. 
You will notice, however, that we have said nothing about 
the boundary conditions that must accompany the original 
PDE. Investigate how both Dirichlet and Robin’s-type 
boundary conditions are implemented in this weighted-
residual treatment of this conduction problem. You will find 
chapter 2 in Reddy and Gartling (1994) to be helpful in this 
exercise.

11.4.  Courant and Hilbert (1989) describe other direct 
means by which a minimizing sequence might be deter-
mined. Suppose we have

I
x y

dxdy

ab

=
∂
∂





 +

∂
∂




















∫∫

φ φ2 2

00

,

which is to be minimized subject to the following 
condition:

1 2

00

= ∫∫ φ dxdy

ab

.

The allowable comparison functions must disappear on the 
rectangular boundary, of course. Suppose we represent φ 
using a Fourier series:

φ
π π

≅
=

∞

∑ B
m x

a

n y

b
mn

m n

sin sin .
, 1

minimize eq. (11.80); we require that y(−1) = −1 and that 
y(+1)  =  +1. Courant and Hilbert (1989) indicate that, 
although the integral can be made small, no appropriate 
function y(x) can be identified that would cause the variation 
of eq. (11.80) to vanish.

Nevertheless, COV is an important tool of historical sig-
nificance that can be quite valuable in the right context; as 
we have seen, for example, COV ideas are used routinely in 
the application of the FEM to the solution of PDEs. And 
FEM has emerged as an invaluable asset for the analysis of 
problems in acoustics, electromagnetics, fluid dynamics, 
geophysics, heat transfer, mass transfer, optics, quantum 
mechanics, structural mechanics, wave propagation, and so 
on. The interested reader can get a sense of the breadth of 
possibilities by reviewing the proceedings from any of the 
recent COMSOL conferences.

PROBLEMS

11.1.  In “Variational Methods for the Solution of Problems 
of Equilibrium and Vibration,” Courant (1943) points out 
that the equivalence between boundary-value problems 
involving PDEs and COV has been studied for a very long 
time. He notes that both Lord Rayleigh and Walther Ritz 
suggested the variational approach to such problems might 
be reduced to a much simpler extremum problem in which 
the number of undetermined parameters would be manage-
ably finite. In part II of his paper, Courant describes how 
one goes about solving a variational problem numerically by 
constructing a minimizing sequence (this is what is often 
referred to as the Rayleigh–Ritz method, as we described 
previously). He points out that the convergence of this 
process can be improved by adding a “sensitizing” func-
tional to I. Read Courant’s paper and determine how the 
addition of the “sensitizing” term will impact the nature of 
the simultaneous equations that must be solved. Courant 
suggests that an important objection to the Rayleigh–Ritz 
method is the difficulty the analyst has in assessing the 
accuracy of the approximation. Explore this topic and deter-
mine if substantive progress has been made in the years that 
have passed since Courant’s original presentation in Wash-
ington in the spring of 1941.

11.2.  Examine the eigenvalue-eigenfunction problem 
described in our discussion in “Flexing of a Rod of Small 
Cross Section.” What determines the values assumed by λ? 
What boundary conditions would be applied for the solution 
of the fourth-order ordinary differential equation, 
f ″″ − (λ2/β)f = 0? Solve this fourth-order equation numeri-
cally using the first two appropriate values for λ.

11.3.  The variational principle for the Laplace equation was 
given earlier in this chapter as eq. (11.40). Suppose we 
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Smith (1953) shows that, to make the first variation of I* 
disappear, it is necessary that

d

dx

y

y

′

+ ′












=

1 2
λ.

Determine the exact nature of the curve connecting (0, 0) 
with (5, 3) that yields an integration an area of 15. What is 
the numerical value of λ?

11.6.  Isoperimetric problems appear frequently in the litera-
ture of COV. The origin is found in the tale of Dido (who 
may or may not have been an actual historical figure). By 
legend, Dido fled to North Africa to escape her brother, 
Pygmalion. On arrival, she asked the Berber Iarbas for a 
spot of land for her party. They agreed that she could claim 
whatever land might be encircled by a single oxhide, which 
she cut into very thin strips as to make a very long cord, 
hence the phrases “cut a dido” or “cutting didoes.” In this 
manner, she was able to claim a small hill that, according to 
legend, became Carthage. For the Dido problem, we wish to 
maximize the area given by I ydxa

b
= ∫ , while the total 

length, L y dxa

b
= ∫ + ′1 2 , must equal some particular value. 

Of course, the function y(x) must produce a closed path that 

contains the desired area. Let H y y= + + ′λ 1 2  and use the 
Euler equation, (∂H/∂y) −  (d/dx)(∂H/∂y′) =  0 to find the 
solution for this problem (we should get the equation for a 
circle, of course).
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The task now is to identify the coefficients, Bmns, that produce 
the minimum of I. Show that
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then use the condition that 1 0 0
2= ∫ ∫

b a
dxdyφ  to show that the 

only nonzero Bmn is B11, which is equal to 2 ab . Finally, 
show that the minimum value of the integral is
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11.5.  In the previous exercise, we explored a direct solution 
technique for a problem that included an auxiliary condition. 
We will now examine a very specific case with an appended 
condition. Suppose we need an extremum for the integral

I F x y y dx
x

x

= ′∫ ( , , )

1

2

but subject to the condition that

G x y y dx C
x

x

( , , ) .′ =∫
1

2

The variational problem described previously is equiva-
lent to finding the extremum for

I F x y y G x y y dx
x

x

* ( , , ) ( , , ) ,= ′ + ′[ ]∫ λ
1

2

where λ must be determined from the auxiliary condition. 
Now let us focus on the x-y plane, where we seek the minimum 
length curve between points (x1, y1) and (x2, y2) that yields a 
specific area under the curve represented by A. We already 
know that the length of the curve was given at the beginning 

of this chapter by eq. (11.1): L y dxx

x
= ∫ + ′

1

2
1 2 . The area 

under the curve (that we seek) is, of course, ∫ =x

x
ydx A

1

2
. 

Suppose that the specific points of interest to us are (0, 0) and 
(5, 3); if we connect these points with a straight line, we form 
a triangle with an area of 15/2. But for our problem, we will 
require that A = 15, and this makes it apparent that the curve 
we seek must be convex up. It is also clear from the preceding 
description that we need to identify the extremum for

I y y dx* .= + ′ +



∫ 1 2
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λ
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Rayleigh-Ritz method,  234
surface tension,  238

Cartesian tensors,  34
Catenary,  107, 232, 238
Catastrophe theory,  3
Cauchy-Riemann equations,  140
Cell cycle,  94

Cellular oscillation,  94–95
Chebyshev ordinary differential equation,  87,  

108
Chebyshev polynomials,  32
Chemical kinetics, and equilibria,  30, 94
Coagulating systems,  198
Column (structural),  236
Complex zeros,  17
COMSOL™,  241
Conformal mapping,  140–141
Control variables,  3
Convective transport,  162
Correlation,  208
Courant number,  161, 167
Courant’s penalty method,  28–29
Crank-Nicolson method,  155
Crout’s (Cholesky’s) method,  21–22
CSTR (and STR),  6, 67
Cubature (multiple integrals),  57

Cuba library,  60
Monte Carlo methods,  59
Nonproduct methods,  58

Cubic equation,  15–16
Cubic spline interpolation,  56
Curve of pursuit,  14, 109

Dahlquist test equation,  105–106
Data interpretation,  10
Definite integrals,  47

adaptive integration,  52
embedded algorithm,  55
Gauss-Kronrod procedure,  53–55
Newton-Cotes formulae,  49
Romberg integration,  51
roundoff and truncation errors,  50
Simpson’s rule,  48
Trapezoid rule,  47
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Del-operator,  40–42
curl,  40
divergence,  40

DePriester chart (distribution coefficients),  4
Deterministic model,  10
Dichotomous search,  19
Dido,  243
Digital filter,  216–217
Diophantus of Alexandria,  15
Dirichlet boundary condition,  112
Discretization for PDE’s,  147

approximations for derivatives,  148–149
dispersive terms,  148
dissipative terms,  148
errors,  147–148

Distributed parameter,  2

Eigenvalue problem,  87, 237, 242
Elimination methods,  21–23

error equations,  150
Elliptic integrals,  69–70
Embedded algorithm,  96
Epidemics (infectious disease),  192
Equations of change,  8–9
Error function, erf(η),  154
Euler-Lagrange differential equation,  230
Extrapolated Liebmann (or SOR) method,   

152

Fibonacci numbers,  20
Finite difference approximations,  148–149
Finite difference method (FDM),  147
Finite element method (FEM),  238

COMSOL™,  241
FKPP model,  193
Fluxes,  1
Force balances,  6
Force equilibrium,  37–38

equating moments,  37
Fourier coefficients,  207
Fourier series,  112–117
Fourier transform (FFT),  210

aliasing,  213
Cooley-Tukey algorithm,  210–211
engine vibration,  225
leakage,  213
Mathcad™ fft(v),  211
Modulation,  218
Nyquist frequency,  210
power spectral density,  209
speech recognition,  223, 226
tapered data,  216

Fourier transform pair,  209

Gadd severity index,  226
Galerkin MWR,  134
Gamma function,  63
Gaussian quadrature,  54
Gauss-Kronrod,  53–55

Golden section search,  20
Green’s theorem,  42

Planimeter,  42

Hamilton’s principle,  233
Hyperbolic PDE’s (wave equation),  127, 158

d’Alembert’s solution,  159
leapfrog method,  161
method of characteristics,  160

Integrating discrete data,  55–57
Integro-differential equations,  184

continuous crystallizers,  199–210
hereditary influences,  186
infectious disease and FKPP model,  193
population balances,  194
predator-prey problems,  184–185
three-mode control,  185
VIM (variational iteration method),  188–192
Volterra,  184
Yule-Furry birth process,  195

Irrotational vector field,  40
Isoperimetric,  243

Jacobian matrix,  25

Kernel,  185

LaGrange multiplier,  28, 189
Laguerre differential equation,  88
Laplace equation,  149–150
Laplace transform,  73, 131
Lax-Wendroff technique,  175–176
Legendre polynomial,  54
Lorenz model,  104
Lumped parameter,  4

MacCormack’s method,  170
Macroscopic balance,  4–6
Mathcad™

bulstoer,  103
fft(v),  211
Relax,  154
Rkfixed,  96
Solve Block,  29
Tcheb(n,x),  32

Matrices
augmented,  21
coefficient,  21
Jacobian,  25

Mean residence time,  85
Mean-square fluctuation,  208
Milne’s rule,  60–61
Müller’s method,  31–32

Newton-Raphson,  16–17
Newton’s second law,  6
Nonlinear algebraic equations,  24
Nyquist frequency,  210
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Open Newton-Cotes,  60–61
Ordinary differential equations,  65

Bessel’s equation,  76
Bessel functions,  77
boundary conditions,  77–78

exact,  66
higher order constant coefficients,  71
higher order with variable coefficients,  75
homogeneous,  72
integrating factor for,  67
Laplace transform,  73–74

partial fraction expansion,  74
linearization,  81
nonlinear,  67–71

Bernoulli equation,  67
elliptic integrals,  69
predator-prey problems,  106
Riccati equation,  68

numerical solution of,  89
Bulirsch-Stoer method,  102
Dahlquist test equation,  105–106
Euler method,  90
Euler method, predictor-corrector,  91
finite difference methods,  99–100
multistep methods, Adams-Bashforth,  98
phase space,  103
phase space, limit cycle,  104
phase space, strange attractor,  104
Richardson extrapolation,  97
Runge-Kutta methods,  91
split boundary conditions,  98
split boundary conditions, shooting methods,  99
stiff differential equations,  100–102
stiff differential equations, backwards differentiation 

formula,  101
power series solutions,  78
regular perturbation,  80
separable,  65
variation of parameters,  72
VIM applied to,  83

Orthogonality,  118, 125, 126
Bessel functions,  119
Chebyshev polynomials,  88
Legendre polynomials,  138
sine and cosine,  113

Oscillations in suspended structures,  226

Parabolic partial differential equations,  116, 154
explicit procedure and stability,  154–155

Partial differential equations (PDE’s), analytic solution of,   
111

application of the Laplace transform,  131
approximate solutions

collocation,  137
orthogonal collocation,  138
method of weighted residuals (MWR),  133–134
Rayleigh-Ritz method,  135

Cauchy-Riemann equations and conformal mapping,  139–140
classification,  111

Fourier series,  112–114
convergence,  113–114

product method (separation of variables),  116
boundary conditions and transcendental equations,  118, 

120, 124
orthogonality,  118

Schrödinger equation,  128–131
hydrogen atom,  130
Legendre polynomials,  131

Pattern search,  26
application of,  28
sequential simplex,  26–27
Rosenbrock method,  27

Peaceman-Rachford method,  157
Phase plane,  82, 103–104
Phone,  12
PID control,  185
Poisson PDE’s,  112, 125, 173
Populations in conflict,  106
Prandtl number (Pr),  104
Predator-prey problem,  184–185
Principle of least action,  233
Product method,  116
Projectile motion,  38

Quadrature (definite integrals),  47

Radix-2, 211
Railroad car coupling,  222
Raoult’s law,  4
Rayleigh-Bénard problem,  167

buoyancy, and Grashof number,  167
Regula falsi,  18
Reynolds number,  11–12
Riccati equation,  68
Richardson’s extrapolation,  51
Ringing correlation,  209
RLC circuit,  6
rms fluctuation,  208
Robin’s type boundary condition,  112
Runge-Kutta,  91
Runge-Kutta-Fehlberg,  96

Schrödinger equation,  128–131
Shear stress,  1
Simultaneous algebraic equations,  20, 24

Crout’s method,  21
Gaussian elimination,  20
iterative methods,  23
matrix inversion,  23

Separation of variables,  116
Solenoidal vector field,  40
SOR. See Successive over-relaxation
Sparse matrix,  150
Speech recognition,  12, 223, 226
SR-71 “Blackbird,”  109
Stationary point,  28
Stochastic process,  10
Stokes’ second problem,  146
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Stokes’ theorem,  43
Strange attractor,  104
Subsidiary equation,  132
Successive substitution,  24
Successive over-relaxation (SOR),  152

convergence,  152
Surface tension,  220

Tacoma Narrows bridge,  226
Taper,  215
Taylor series,  50, 147, 148
Tearing,  25
Tensor,  34

summation convention,  35
symmetric,  35

Thermodynamic path,  13
TI-89™,  17, 29, 31, 72
Time constant,  67, 84, 93
Time-series data,  206

autocorrelation coefficient,  208
data filtering,  216
Fourier transform,  211
ringing correlation,  209
Schuster’s test,  207–208
spectrum analysis,  206

Transcendental equations
x cot(x) + C = 0,  118
x tan(x) = C,  124
xJ1(x) − CJ0(x) = 0,  120

Tridiagonal pattern,  100
Traumatic encephalopathy,  226
Tunneling,  129
Two-dimensional viscous flow,   

165–169

Upwind difference,  147

Van der Pol equation,  109
Vapor-liquid equilibria (VLE),  3
Variational iteration method (VIM),   

188–192
Vectors,  34

differentiation of,  40
dot and cross products,  39
triple products,  39–40

Volterra, Vito,  184
Vorticity,  40

transport equation,  165–167

Wolfram™,  130


