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PREFACE

This book, Applied Mathematics for Science and Engineer-
ing, is the culmination of many years of experience prepar-
ing upper-division students in engineering and the physical
sciences for graduate-level work (and particularly for sub-
jects such as advanced transport phenomena). We strive
to acquire key competencies that can be utilized to solve
important practical problems of the type found in advanced
coursework as well as those that may arise in a student’s
research program. The course is intended for engineers
and scientists in the science/technology/engineering/math-
ematics (STEM) fields, and this book is my effort to fit
the presentation of the material to the dominant learning
styles of such students, many of whom are visual and tactile
learners.

In the fall of 2013, the Programme for International
Student Assessment (PISA) released its key findings from
the 2012 examinations administered to 15-year-old students
around the globe. The performance of students from the
United States ranked about 26th in mathematics, far below
the levels seen in Shanghai, Singapore, Hong Kong, Korea,
Japan, and other countries. In the Country Notes, PISA
observed that “students in the United States have particular
weaknesses in performing mathematic tasks with higher
cognitive demands, such as taking real-world situations,
translating them into mathematical terms, and interpreting
mathematical aspects in real-world problems.” This result
has occurred despite the fact that the United States spends
the most money per student on education according to a
survey conducted by the Organization for Economic Coop-
eration and Development (OECD). There are a number of
possible explanations.

The life experiences of contemporary adolescents are
very different from those of previous generations. Educators
in the STEM fields have found—and employers of young
technical professionals confirm—that the disconnect
between contemporary students and the physical world is
staggering. Even when our domestic students have basic
mathematical tools, rarely do they possess a frame of refer-

viii

ence or necessary judgment that might allow them to criti-
cally evaluate a result obtained from solution of a model or
from a computational simulation. For the applied sciences,
this is a perilous situation.

It has also been suggested that a factor contributing to
this crisis is the lack of integration between science and
mathematics in secondary education. Focus in public educa-
tion in the United States is usually based on content cover-
age and not on contextual understanding. This is not a new
problem; for generations, the lack of a demonstrable con-
nection between, say, algebra and the world (as perceived
by a 15-year-old) has been an obstacle to learning. The
author distinctly recalls his impression that trigonometry
was the only important math subject in high school because
we used it in physics to solve problems that looked like they
might have bearing on something that actually mattered.
The failure of typical secondary-school course structure to
relate mathematical subjects to problems in context makes
it extremely difficult for students to fully appreciate the
significance of the material.

With these observations in mind, I have tried to present
these topics as I do in class, with frequent attention paid to
applications of obvious importance. An overarching goal is
to demonstrate why a particular mathematical method is
worthy of study, and we do this by relating it to things that the
student of applied science can appreciate. Consequently, this
book contains many examples of important applications in
biology, chemistry, physics, and engineering, and most
include graphical portrayals of model results and computa-
tions. This book also covers some topics rarely treated in
similar texts; these include integro-differential equations,
interpretation of time-series data, and an introduction to the
calculus of variations. My hope is that students will find their
interest piqued by the approach we have taken and the topics
we have covered, and that they will turn to the literature of
mathematics to learn more than we can possibly provide here.

L. A G



PROBLEM FORMULATION AND MODEL DEVELOPMENT

INTRODUCTION

Our purpose in this course is to review some mathematical
techniques that can be used to solve important problems in
engineering and the applied sciences. We will focus on
problem types that are crucial to the analysis and simulation
of real, physical phenomena. Sometimes, our objective will
be to predict the future behavior of a system and sometimes
it will be to interpret behavior that has already occurred. We
want to stress that the author and the readers are collabora-
tors in this effort, and whether this text is being used in a
formal setting or for self-study, the ultimate goal is the
same: We want to be able deal with problems that arise in
the applied sciences and do so efficiently. And—this is
important—we do not want to rely on calculation software
unless we know something about the method(s) being
employed. Too often, real problems can have multiple solu-
tions, so it is essential that the analyst be able to exercise
some judgment based on understanding of the problem and
of the algorithm that has been selected.

Many of the problems we will be solving will come from
both transient and equilibrium balances, and they will
involve forces, fluxes, and the couplings between driving
force—flux pairs. Examples of the latter are Newton’s, Fou-
rier’s, and Fick’s laws:

Ty =— %a qy = _ka_T’ and NAZ = _DAB 8CA ’
(1.1)

where 7, is the shear stress (acting on a y-plane due to
fluid motion in the x-direction), g, is the flux of thermal
energy in the y-direction, and N,, is the molar flux of
species “A” in the z-direction. Note that these three
fluxes are linearly related to the velocity gradient, the
temperature gradient, and the concentration gradient,
respectively. Each driving force—flux pair has, under
ideal conditions, a constant of proportionality (the vis-
cosity, u; the thermal conductivity, k; and the diffusivity,
D,p); these constants are molecular properties of the
medium that can be determined from first principles if
the right conditions are met. Unfortunately, it is also
possible for viscosity to depend on velocity, for thermal
conductivity to depend on temperature, and for diffusiv-
ity to depend on concentration. In such cases, the driving
force—flux relationships are no longer linear as indicated
by eq. (1.1).

The balances we speak of usually come from some
statement of conservation; and this could be conservation
of mass, energy, momentum, and so on. For an example,
consider heat transfer occurring in an electrical conductor,
perhaps a copper wire. The conductor is carrying an elec-
tric current so thermal energy will be produced in the
interior by dissipation (I’R heating) and thermal energy
will be lost to the surroundings at the wire’s surface. We
will construct a thermal energy balance on a volume
element, an annular region extracted from the wire of
length L that extends from r to r + Ar; this is shown in
Figure 1.1.

Applied Mathematics for Science and Engineering, First Edition. Larry A. Glasgow.

© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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r+ Ar

FIGURE 1.1. Annular volume element extracted from conductor
for the thermal energy balance. The thickness of the annular shell
is Ar and the length is L.

We express the balance verbally in the form

{Rate of thermal energy in at r} —{Rate of thermal
energy out at » + Ar} + {Production of thermal energy
by dissipation} = { Accumulation}. (1.2)

Since the temperature in the conductor may vary continu-
ously with both position and time, the result of this balance
will be a partial differential equation. We can rewrite the
balance (eq. 1.2) introducing the appropriate symbols:

+(@2nrLq,), —(27rLq, ), a, +27rLArP, = 21rLArpC, %—7;
(1.3)
Now we divide by 2mLAr, take the limit as Ar — 0, apply

the definition of the first derivative, and substitute Fourier’s
law for ¢, (we also divide by r):

k

12/om)

P2
ror

or

orT
+Pe :pCpE (14)

Note that we have assumed that the volumetric rate of
thermal energy production, P, is a constant; this is not
strictly correct since the resistance of copper wire (e.g.,
AWG 12) is 1.650hms/1000ft at 25°C, but increases to
3.08 ohms/1000ft at 250°C. In our model, we neglected the
temperature dependence of the conductor’s resistance; this
would probably be acceptable if the temperature change in
the wire is modest. For steady-state conditions, the solution
for eq. (1.4) is simply

P
T=—=%r*4+C/Inr+C, 1.5
ik | 2 (1.5)

If T is finite at the center, then clearly, C; = 0. One
question that arises in such problems concerns the speed of
approach to steady state: When might we use eq. (1.5) and
when must we proceed with the solution for eq. (1.4)? We
can illustrate this concern using 2AWG bare copper wire
(d = 0.6544 cm) with a constant surface temperature of 30°C
(this is an example of a Dirichlet boundary condition). We
set P./pC, = 5950°C/s and let the wire have a uniform initial
temperature of 30°C. Because copper has a very large
thermal diffusivity, a = k/pC, = 1.14cm?s, the approach to
steady state should be quick:

t(s) 0.005 0.01 0.02 005 0.075 0.100 0.175
T center 59.67 86.87 124.51 162.43 168.01 169.20 169.52
O

As we anticipated, steady-state conditions are attained
rapidly, suggesting that for many similar applications eq.
(1.5) could be used to find 7(r).

The previous example is a microscopic balance, that is,
we are modeling a distributed parameter system. We will
also have occasion to use macroscopic balances for lumped-
parameter systems in which the field (or dependent) vari-
able does not vary with position. For the electrical wire
with dissipation discussed earlier, this would mean that the
temperature would not vary in the r-direction. This is
clearly not valid for the case we just examined where
T(r = R) was forcibly maintained at 30°C by removing heat
at the surface. We will discuss the circumstances under
which the temperature might be (nearly) independent of
position a little later.

In modern industrial production, applied scientists and
engineers constantly struggle to meet product specifications,
satisfy regulatory constraints, increase output, and maximize
the return for investors and stakeholders. A reality of modern
industrial operations is that economic survival is often predi-
cated on continuous process improvement. And because of
the scale of industrial processes, even incremental improve-
ments can be very significant to the bottom line. In the early
twentieth century, process tweaking was carried out empiri-
cally by trial and error; this usually worked since margins
were wide, there was less global competition, and product
specifications were often loose. Since there was little auto-
matic process control, skilled operators quickly learned
through experience how to make adjustments to improve
production. That era has passed, and now operational deci-
sions and control strategies are often based on models or
process simulations. As Hanna and Sandall (1995) point out,
contemporary economic reality dictates that modeling and
simulation be favored over labor-intensive experimental
investigations. In this introduction, we will examine a few
of the possible ways models can be formulated, and we will
look at some examples illustrating the underlying principles
that are key to modeling and simulation.
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Before we do that, however, we need to recognize that a
model—however complex—is merely a representation of
reality. Though we may understand the governing physical
principles thoroughly, our mathematical formulation will
never be in perfect fidelity with the “real” world. This is
exactly what Himmelblau and Bischoff (1968) referred to
when they noted, “the conceptual representation of a real
process cannot completely encompass all of the details of
the process.” Nearly always in real processes, there are
random events, stochastic elements, or nonlinear couplings
that simply cannot be anticipated. Nowhere does this become
more apparent than in the examination of engineering or
industrial catastrophes; the actual cause is almost always due
to a chain or cascade of events many of which are quite
improbable taken individually. In cases of this kind, the
number of state variables may be very large such that no
mathematical model—at least none that can be realistically
solved—will account for every contingency. And even in
relatively simple systems, quite unexpected behavior can
occur, such as a sudden jump to a new state or the appear-
ance of an aperiodic oscillation. Examples of real systems
where such behaviors are observed include the driven pen-
dulum, the Belousov—Zhabotinsky chemical reaction, and
the Rayleigh—Bénard buoyancy-driven instability. Real
systems are always dissipative; that is, they include “fric-
tional” processes that lead to decay. Where we get into
trouble is in situations that include both dissipation and at
least one mechanism that acts to sustain the dynamic behav-
ior. In such cases, the dynamic behavior of the system may
evolve into something much more complicated, unexpected,
and possibly even dangerous.

There is an area of mathematics that emerged in the
twentieth century (the foundation was established by Henri
Poincaré) that can provide some qualitative indications of
system behavior in some of these cases; though what has
become popularly known as catastrophe theory is beyond
the scope of our discussions, it may be worthwhile to
describe a few of its features. In catastrophe theory, we
concern ourselves with systems whose normal behavior is
smooth, that is, that possess a stable equilibrium, but that
may exhibit abrupt discontinuities (become unstable) at
instants in time. Saunders (1980) points out that catastrophe
theory applies to systems governed by sets (even very large
sets) of differential equations, to systems for which a varia-
tional principle exists, and to many situations described by
partial differential equations. In typical applications, the
number of state variables may indeed be very large, but the
number of control variables may be quite small. Let us
explain what we mean by control variable with an example:
Suppose we wished to study the flow of water through a
cylindrical tube. We impose a particular pressure gradient
(or head, Ap) and then measure the resulting flow rate. The
head is the control variable and the flow rate through the
tube is established in response to Ap. If the number of

control variables is less than or equal to four, then there are
only seven elementary types of catastrophes. The beauty of
catastrophe theory is that it makes it possible to predict the
qualitative behavior of a system, even for cases in which
underlying differential equations are unknown or hopelessly
complicated. An excellent review of this field with numerous
familiar examples (including biochemical reactions, popula-
tion dynamics, orbital stability, neural activity in the brain,
the buckling of structures, and hydrodynamic instability)
has been provided by Thompson (1982). His book is a
wonderful starting point for students interested in system
instabilities.

The principal fact we wish to emphasize as we conclude
this introduction is that every model is an idealization and
when we rely on a mathematical analysis (or a process simu-
lation), it is prudent to keep its limitations in mind. We
would do well to remember the statistician George E. P.
Box’s admonition, “essentially, all models are wrong but
some are useful.” In the modern practice of applied science,
we must add a corollary: Not only can models be useful, but
sometimes they are also absolutely necessary even when
they are wrong in some limited sense.

Let us now look at just a few examples of how problems
of the types we wish to solve are actually developed. We
will begin with a situation involving equilibrium between
gas and liquid phases; this problem requires solution of a set
of algebraic equations.

ALGEBRAIC EQUATIONS FROM VAPOR-LIQUID
EQUILIBRIA (VLE)

Problems in VLE require solution of mass balances, but in
cases where the temperature (7)) is unknown (as in this
instance), a trial-and-error process can be employed. We will
assume that we have a vapor consisting of an equimolar
mixture of light hydrocarbons, ethane (1), propylene (2),
propane (3), and isobutane (4). The vapor phase mole frac-
tions are all %4, that is, y; = y, = y; = y, = 0.25. The constant
total pressure is 14.7 psia (1.013 bars), and the vapor phase
is cooled slightly until the first drop of liquid is formed (this
temperature is the dew point). Our objective is to find the
temperature, 7, at which this occurs, and the composition of
the liquid that forms (in equilibrium with the vapor). We will
solve this problem in two different ways and then compare
the results.

First, we will use the Antoine equation to get the vapor
pressures of all four species as functions of temperature:

B
lo F—A———. 1.6
gio P CHT (1.6)

The necessary constants will be obtained from Lange’s
Handbook of Chemistry (1961).


http://c1-bib-0010
http://c1-bib-0008
http://c1-bib-0007
http://c1-bib-0009
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A B C
Ethane 6.80266 656.4 256
Propylene 6.8196 785 247
Propane 6.82973 813.2 248
Isobutane 6.74808 882.8 240

Keep in mind that 7 must be in Celsius and p* is in mil-
limeters of mercury. We will assume that Raoult’s law is
applicable such that

P = x;p *(T). (1.7

P is the total pressure and it is 760mmHg. Therefore,
the liquid-phase mole fractions are determined from x; =
v;P/p;*(T), and a solution will be found when >x; = x; 4+ x, +
X3 + x4 = 1. Such problems are amenable to machine com-
putation and a simple strategy suggests itself: Estimate 7,
compute the vapor pressures with the Antoine equation, then
calculate the liquid-phase mole fractions and check their
sum. If the Xx; = 1, adjust T and repeat. A very short
program was written for this purpose, and it shows
T = —34.2°C (—29.6°F), with

X, =0.0273 x, =0.1406 x; =0.1789 x, =0.6611
(X x =1.0079).

Of course, VLE for light hydrocarbons are enormously
important and have been intensively studied. For an alterna-
tive procedure, we can use data published by DePriester
(1953) which are in the form of nomograms relating the
distribution coefficients, Ks (K = y/x), for light hydrocar-
bons to temperature and pressure. Again, we estimate 7, then
find the distribution coefficients and use them to calculate
the liquid-phase mole fractions. By trial and error, we find
for T = —30°F (with P = 14.7 psia):

K (y/x) X
Ethane 7.95 0.031
Propylene 1.92 0.130
Propane 1.43 0.175
Isobutane 0.37 0.672

In this case, the summation of the liquid-phase mole frac-
tions is 1.008, and the agreement with our first solution is
reasonable (the worst case is ethane, with a difference
between values of x; of about 13%).

This VLE example illustrates a possible outcome when
two different solution procedures are available; the results,
particularly for the volatile constituents, are slightly differ-
ent. It is important to note, however, that the results obtained
from the two solution procedures for the major components
of the liquid (propane and isobutane) are very close, differ-
ing only by about 2%.

MACROSCOPIC BALANCES: LUMPED-
PARAMETER MODELS

We observed at the beginning of this chapter that the tem-
perature of a copper conductor carrying electrical current
might not vary with radial position. Such a situation could
arise if there was large resistance to heat transfer at the
surface; that is, if the heat generated by dissipation could
not escape to the surrounding fluid phase. In the following
example, we look at a case that might meet this stipulation,
a hot metal casting that is being quenched in an oil bath. It
is always good practice for the analyst to begin with a verbal
statement of the balance:

{Rate of thermal energy in} — {Rate of thermal energy out}

= {Accumulation}.

This is a macroscopic balance in which we assume that
the temperature throughout the casting is the same (as we
pointed out, this cannot be strictly correct, but under the
right circumstances, it may be adequate). There is no {rate
in} since the casting simply loses thermal energy to its sur-
roundings, and we will assume that this loss is approxi-
mately described by Newton’s law of cooling. Therefore,

—hA(T—Tw):Mcp%. (1.8)

This first-order, lumped-parameter model is readily sepa-
rated to yield:

_ dt = dr . (1.9)
MC, (T-T,)
We integrate and find
T-T,=Cexp|— hA t|. (1.10)
McC,

The casting has an initial temperature, 7, at + = 0, and
thus:

T-T,.
T,—T

o}

—exp[ﬁ/}[lg t]. (1.11)

p

According to this first-order model, the temperature of
the casting will follow an exponential decay, ultimately
approaching the temperature of the oil bath. It is worth
noting that the quotient, hA/(MC,), is an inverse time con-
stant for this system, 1/7. When ¢ = 17, about 63% of the
ultimate change will have been accomplished; when r = 27,
about 86%; and at r+ = 37, about 95%. Consequently, a
common rule of thumb for simple first-order systems is that
the dynamic behavior is nearly complete in 37.
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We should wonder what to look for in more general
applications that would indicate that a lumped-parameter
model is acceptable. What are the conditions that might
allow us to neglect the variation of the field (dependent)
variable in the interior of the medium? We have pointed out
that in a case like the metal casting considered earlier, we
can answer this question by identifying where the main
resistance to heat transfer is located. If the main resistance
is in the fluid phase, then the temperature in the interior of
the solid may be nearly uniform. But if the main resistance
is in the solid material, then 7" may vary significantly with
position. We can assess the location of the resistance to heat
transfer through the use of the Biot modulus, Bi = hR/k,
where £ is the heat transfer coefficient on the fluid side of
the interface and k is the thermal conductivity of the solid
medium. If Bi is very small, then the fluid side of the inter-
face offers the main resistance to heat transfer.

Let us look at a second macroscopic balance example that
is slightly more complicated; we will model a perfectly
mixed continuous stirred-tank reactor (CSTR) in which the
reactant species, “A,” is consumed by a first-order chemical
reaction. We will have flow into the tank, flow out of the
tank, and depletion of “A” by chemical reaction. In this case,
a verbal statement of the mass balance on “A” will appear:
{Ratein} — {Rate out} — {Depletion by reaction} = { Accu-
mulation}. Symbolically, we write

")CAin - ‘.}CA - k]VCA = V ddC‘A .
t

(1.12)

We will divide by the volumetric flow rate, v, obtaining

Ci(l+k1)—Cyypy =7 dC4 .
dt

(1.13)

In this instance, the time constant for this system (7) is
merely the volume of the reactor, V, divided by volumetric
flow rate (7 =V /v); this is called the mean residence time
of the reactor. For the initial condition, we take the concen-
tration of “A” in the tank to be zero (C4, = 0 for t = 0), and
once again the solution for this first-order model is
elementary:

CA _ CAin

= 1.14

1— exp[—(l + kﬂ')i]].
T

Note that under steady-state conditions, the concentra-
tion, C,, is attenuated from the inlet (feed) value by the
factor, 1/(1 4 k7). If the residence time, 7, in the reactor is
large, and if the reaction rate constant, kj, is large, then
the exiting concentration will be much smaller than the
feed, Cy;,.

Both of the previous examples immediately led to expo-
nential solutions. This is not the only possible outcome for
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this model type; consider a batch kinetic study of a second-
order chemical reaction in which the reactant species is
consumed according to

r=—kC,’. (1.15)

Since this is a batch process, there is no flow either into or
out of the reactor volume, so the macroscopic mass balance
yields

dc,
dt

=—k,C,°. (1.16)

Differential eq. (1.16) is nonlinear, but it is easily
integrated:

1
_C_+C1 - —kzt

A

(1.17)

At t = 0, C4 = Cy, so the dynamic behavior in the batch
reactor is

L—L:—kzt. (1.18)
CAO CA
If the initial concentration in the reactor is 1, then
C,= L. (1.19)
ATt kyt” '

we have an inverse relationship between concentration and
time. If this batch process is carried out for a long period of
time, the reactant species, “A,” will nearly disappear. Of
course, the decay in an exponential process is more rapid;
for example, taking kt = 3, we have exp(—3) = 0.0498,
whereas 1/(1 4+ 3) = 0.25.

We conclude this section by noting the study of chemical
kinetics in constant volume systems is fertile ground for the
exploration of macroscopic balances with less familiar out-
comes (i.e., other solutions that are not exponential). For
example, we could have parallel first- and second-order
reactions yielding

dc,
dt

= 7k1CA - szAz. (1 .20)

This equation can also be integrated and the reader may want
to show that

= —t +C1.

! n[ ks (1.21)

k| kCy 4k

Other possibilities include rate expressions with frac-
tional orders and Michaelis—Menten kinetics for certain
catalyzed systems, where
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dc,  —KC,
dt K, +K,C,

(1.22)

Fy =

If eq. (1.22) is integrated, we find that the sum of both
K>In(C,) and K;C, terms is proportional to time, —K,z (plus
the constant of integration).

FORCE BALANCES: NEWTON’S SECOND
LAW OF MOTION

Many problems in mechanics require us to set
Ma=3%F. (1.23)

For example, consider a mass, M, suspended vertically
from the ceiling, through a spring (that exhibits Hookean
behavior). We will take the positive z-direction to be down.
The apparatus also has some kind of viscous damping pro-
vided by a dashpot or shock absorber:

d*z dz
M 7 =Mg—Kz Adt' (1.24)

In this case, we obtain a second-order, ordinary differen-
tial equation. We will divide by M and rewrite the
equation:

Zr2z-g=0. (1.25)

The response of this system to an initial perturbation can
assume different forms depending on the values selected for
the constants. Suppose, for example, that we let A/M = 3
and K/M = 5 (g = 9.8 m/s?, of course). We will initiate the
dynamic behavior of the system by pulling the mass down-
ward to a new, extended, position. The equilibrium position
is z = 9.8/5 = 1.96m, so we will start by extending the
assembly to z = 5. We will then repeat the solution but
decrease the damping coefficient, A/M, to 0.5. For this
second case, the response will be much more oscillatory as
shown in Figure 1.2.

We will explore options for the solution of differential
equations similar to eq. (1.25) in Chapters 5 and 6.

It is worth pointing out that the form of differential eq.
(1.25) can arise in other phenomena, quite unrelated to
F = Ma. For example, if we place a resistance (R), an induc-
tance (L), and a capacitance (C) in series to form an RLC
circuit, and if we supply sufficient energy to offset the dis-
sipative losses, we can see sustained oscillation. The govern-
ing equation in this case is

d*I Rdl 1
dt Ld LC

7a’

Position

FIGURE 1.2. Displacement of a suspended weight attached to the
ceiling with a spring. Viscous damping is reflected by the magni-
tude of A/M. The mass is moved to an initial position of z = 5 and
then released.

which looks exactly like eq. (1.25). In fact, if we were to
choose a large inductance and a small resistance, the circuit
would be severely underdamped and oscillation in response
to a forcing function would be guaranteed.

DISTRIBUTED PARAMETER MODELS:
MICROSCOPIC BALANCES

We looked at some cases previously where lumped models
were used to make difficult problems tractable; these
included heat lost by a metal casting and the operation of
stirred chemical reactors. We pointed out that in heat transfer
we might be able to use the Biot modulus to assess the suit-
ability of the lumped approach. Let us provide a little elabo-
ration by way of additional examples. Consider a tray (plate
or stage) in a distillation column; we often treat this type of
separation as a cascade of equilibrium stages where the
conditions over the entire tray are the same. This means that
the temperature and the mole fractions in the liquid and
vapor do not vary over the plate. This is incorrect as local
fluid mechanics as well as spatially variable heat and mass
transfer affect the approach to equilibrium for each stage.
Sometimes, we can account for such variations with a stage
efficiency, which is the fractional approach to equilibrium
for that tray and often this approach works very well.
Similarly, in the case of a CSTR, we normally assume
that the temperature and concentration are completely
uniform throughout the reactor volume. This too cannot be
correct as we know with certainty that there will be dead
zones (in corners and perhaps near baffles) where little
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mixing takes place. In some instances, the idealized treat-
ment of a chemical reactor will result in a suitable model.
But what happens if fine-scale variations seriously impact
process performance? In such cases, we must turn to distrib-
uted parameter models, and let us illustrate the process with
an example from heat transfer.

Consider a long cylindrical rod, initially at some uniform
temperature, 7. At t = 0, the surface temperature of the rod
is instantaneously changed to some new, elevated value. Our
interest is the flow of heat into the interior of the rod. We
will make a shell energy balance on an annular element of
length, L, and thickness, Ar:

{Rate in at r} — {Rate out at r + Ar} = {Accumulation
of thermal energy}.

Thus,

oT

+(2nrLq,), —(2wrLq, ), a, = 27rLArpC, o (1.26)

We divide by 2wLAr, take the limit as Ar — 0, and apply
the definition of the first derivative:

10 oT
___(rQr) = pC A

. 1.27
ror P ot ( )

Since q, = —k(0T/0r), we can rewrite this partial differential
equation in a more useful form:

or

or o’T l oT
ot

o Trar

> (1.28)

where «is the thermal diffusivity of the medium, o« = k/pC,.
Equation (1.28) is a parabolic partial differential equation
and it is a candidate for solution by a technique known as
separation of variables. We will now illustrate some of the
initial steps in this process, deferring the intricacies for
Chapter 7. We take T = f(r)g(¢) and introduce this product
into eq. (1.28):

=« (1.29)

1
f”g+;f’g],

Dividing by the product, fg, we note that the left-hand side
is a function of time and the right-hand side is a function
only of r. The only way the two can be equal is if they are
both equal to a constant:

1
, f”'i_ff/
:—r:

g 2
S —\% (1.30)
ag S
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Notice that we have purposefully chosen a negative
constant—the necessity for this will become apparent in a
moment. We have identified two ordinary differential equa-
tions (the second of the pair is a form of Bessel’s differential
equation):

2
d—g:—a/\2g and ﬂ+l£+/\2f:0,

1.31
dt dr* rdr (1.31)

and the solutions are
g=Crexp(—aN*t) and f=AJ,(\r)+BY,(\r). (1.32)

Therefore, according to our initial assumption regarding the
form of the solution

T = Cyexp(—a N )[AJy(\) + BY,(\r)].  (1.33)

However, Y,(0) = —oo, and since our temperature must be
finite at the center of the cylindrical rod,

T = Aexp(—aX’t)Jo(\r). (1.34)

Let us emphasize that, at this point, we merely have a
solution for partial differential eq. (1.28)—to get the solu-
tion of interest, we must apply a boundary condition at
r = R and an initial condition for t = 0. As we shall see
later in the course, these final two steps often cause the
analyst the most difficulty. It is entirely appropriate for us
to wonder how well this model for transient heat transfer
in a cylindrical rod represents physical reality. A compari-
son will be provided here in which an acrylic plastic rod
was heated by immersion in a constant temperature bath;
part of the discrepancy between the model and the experi-
ment is caused by the fact that the experimental rod was
of finite length, whereas the model is for an infinitely long
cylinder. The rod was chilled to 3°C then immersed in a
heated water bath maintained at 69°C. A thermocouple,
embedded at the center of the rod, was used to measure
the cylinder’s (centerline) temperature as a function of
time (Figure 1.3).

Of course, if the cylinder length-to-diameter ratio is not
large, then axial (z-direction) transport would have to be
included in the model; the term, 0*7/07%, would be added to
the right-hand side of eq. (1.28). This illustrates a case where
the experience of the analyst comes into play. How might
we determine if the axial transport term is required? Of
course, we could solve the complete problem for a sequence
of decreasing ratios (of L/d) until the solutions begin to show
significant differences. We will actually try this later, but we
also recognize that such an approach is time-consuming and
computationally expensive, so we will seek another course
of action as well. One possibility is to construct dimension-
ally correct representations for the second derivatives using
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Heating an acrylic plastic rod
60 - by immersion in heated bath
50

Model

A
[e]
1

Center temperature (°C)

Experimental data
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Time (s)
FIGURE 1.3. Comparison of a distributed parameter model (filled
circles) with experimental data (solid curve) for transient heating
of a cylindrical rod. The discrepancy between the two is mainly

due to the fact that the experimental cylinder was not infinitely long
(in fact, L/d = 6).
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appropriate temperature differences and suitable character-
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If & << [?, then axial transport is almost certainly unim-
portant. Let us explore the effect of L/d in a concrete way
by revisiting the previous example (transient heating of an
acrylic plastic rod); we will solve eq. (1.28) numerically, but
with the addition of the axial conduction term, &*T/9z>.

Temperature at Center of Acrylic Plastic Rod of Finite Length

t(s) Lid =10 Lid =6 Lid =4 Lid=?2

50 3.164 3.164 3.164 3.164
100 7.365 7.365 7.365 7.365
150 15.952 15.952 15.952 15.955
200 25.107 25.108 25.108 25.131
250 33.242 33.244 33.245 33.322
300 40.040 40.041 40.043 40.208
400 50.112 50.114 50.117 50.482
500 56.702 56.704 56.708 57.214

It is clear from these data that for cases in which molecu-
lar transport is dominant, the “tipping” point for the assump-
tion of infinite-length behavior occurs at about L/d = 4. In
cylindrical geometries, if L/d < 4, axial transport must gen-
erally be accounted for.

Of course we understand that we can have distributed
parameter problems where more than one dependent vari-

able changes with position. Consider the case of an energy
balance drawn on a fluid contained within parallel, planar
walls; the space between the walls extends from y = 0 to
y = B. The lower wall is heated, the upper wall is insulated,
and the fluid moves in the z-direction (fully developed,
laminar flow). The appropriate energy balance is

oy 97

+V,

c[a—T 8_T]:kl82T BZT] (1.35)
lor 7oz ' '

In this case, the momentum balance can be solved separately
to obtain V,, and the velocity distribution for the fully devel-
oped laminar flow is

V, =—=—(y" - By). (1.36)

Therefore, the temperature of the fluid between the parallel
walls is governed by

oT _ 1dp(2_ )8T 0*T O°T
o opdz"

By)—+a|—+—|, 1.37
y@z a@yz az] (1.37)

assuming that the fluid properties are constant. Finding a
solution for eq. (1.37) will be a more difficult proposition
than in our previous examples. However, if we restrict
our attention to steady state and neglect axial conduction
(i.e., omit the &*T/0z* term), we can solve the problem easily
by forward-marching in the z-direction using only values
from the previous z-row; some computed results are pro-
vided in the following table. We will take water as the fluid
(it enters at a uniform temperature of 4.44°C), assume the
fluid properties are constant, and let the lower (heated) wall
be maintained at 37.78°C. The maximum (centerline) fluid
velocity will be 15cm/s and we let B = 2cm. There is an
important observation to make with respect to these com-
puted results: Note how slowly thermal energy is transported
in the transverse (y-) direction. This is characteristic of pro-
cesses in which we rely on molecular transport. We will see
additional examples of this explicit computational process
in Chapter 8.

yiB  zZZB=10 zB=100 z/B=1,000 z/B= 10,000
0.1 8.31 21.91 30.75 36.34
0.2 4.45 10.03 23.96 34.96
0.4 4.44 4.49 12.94 32.53
0.8 4.44 4.44 5.34 29.95

Using the Equations of Change Directly

In many of the previous examples, we formulated balances
on, say, mass or thermal energy and then developed a gov-
erning equation from the balance statement. However, a
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model can be formulated directly from the equations of
change, that is, from the complete balances for momentum,
thermal energy, or concentration (of species “A”). To illus-
trate this process, we will consider mass transfer occurring
in laminar flow in a cylindrical tube (of radius R). We assume
species “A” is transported from the tube wall to the fluid,
which is in motion in the positive z-direction. We have a
highly ordered (laminar) flow and we can obtain the needed
equations from Bird et al. (2007) or from Glasgow (2010).
We will need the continuity (mass balance) equation for
species “A” in cylindrical coordinates:

oc, ac, Vv, oC, aC,
VA Ay,
ot or r 00 0z (1.38)
B lg[racA] 1.9, +a2cA R '
lrorl or ) 0* ' o w

and we also need the z-component of the Navier—Stokes
equation (momentum balance):

V. oV, 'V, V. 8Vz]
[ ot or r 00 0z (139)
R TN AR
0z a rorl 9r ) 90> 87|

The tube has a constant cross section, the flow is steady,
and the fluid is incompressible. Therefore, V, = V, = 0, and
V-V =0 so that 9V./0z = 0. Furthermore, Op/0z is constant,
and for eq. (1.39), we are left with

op

10( 0V,
0=— ——|r—=|| 1.40
0z K r é)r[ or ] (140)
Integrating the first time,
.1
rdv‘ :—d—prz—l—Cl. (1.41)
dr  2updz

Of course, dV /dr = 0 at r = 0, so C; = 0. Integrating a
second time, we find

_ L,

= r-+C,. 1.42
e e (1.42)

z

We apply the no-slip condition at the tube wall: V, = 0 at
r =R, so

_Ld_pR{
4 dz

) =

and
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_ L

= 2 —R%).
4 dz(r )

(1.43)

Z

In addition to the simplifications already made, we
assume that the molecular transport (diffusion) of species
“A” in the flow direction is negligibly small (this is often
quite reasonable), and we make a rather severe assumption
that the flux of “A” from the wall into the fluid is constant
(we could provide experimental conditions to make this
approximately true over a finite tube length). Therefore,
0C,4/0z = (3, and for eq. (1.38), we are left with

Vza&:Vzﬂ:DAB
0z

(1.44)

L4,y
rdr\ dr )|

Since we have the parabolic velocity distribution given by
eq. (1.43) for V,, we can multiply by rdr and integrate the
first time:

dCy B dp
dr  4uD,, dz

r

4 2

4 2.2
dp[r R’]+c]. (1.45)

C, must be finite at the center of the tube, so C, = 0. We
integrate a second time, noting that C, = C,, at r = R. It is
also helpful to introduce a new concentration variable by
letting C = C, — C,; the result is
4 2.2
:Ld—p[r——R—r+iR4]. (1.46)
4uD,p dz 16 4 16

We can explore the general behavior of this result by
making a few calculations as shown here:

4 2.2
r/R [r— R 3 R“]
16 4 16

0 0.1875R*

0.1 0.1850R*

0.3 0.1655R*

0.5 0.1289R*

0.7 0.0800R*

0.9 0.0260R*

1 0

The reader may want to plot these data to get a better sense
of the shape of the profile. Remember that we still have to
multiply by

5l
4‘LLDAB dZ

(which is negative) to get C = Cp — Cao.
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A CONTRAST: DETERMINISTIC MODELS AND
STOCHASTIC PROCESSES

In much of the preceding discussion, we formulated (or
simply selected) differential equations that expressed the
continuous relationship between dependent and independent
variables. The appeal of this approach is that given boundary
conditions and the initial condition for the system, and the
differential equation, the future behavior of the system is set
for all time, t. This is what we mean when we say that a
system is deterministic. Often in engineering and the applied
sciences, systems of interest do behave exactly this way. But
suppose, for example, that we have to concern ourselves
with a population of animals. We know that the animals will
reproduce and that some will die, whether it be from old age,
disease, or predation. It is also possible that some animals
will immigrate, and some may emigrate. Let N be the
number (density) of animals, perhaps the number of animals
per acre; a simplistic approach to the dynamic problem
might be formulated:

d—N:cN2+bN+a,
dt

(1.47)

with the initial condition, N = N, at t = 0. Therefore, we
have

dN
— =—1t+C,. 1.48
ch2+bN+a 1 (148)

The solution for the integral will depend on our choices
for a, b, and c. We will arbitrarily select c = 1/16, b = —1/4,

and a = 1/2, and assume we have nine animals per acre at
t = 0. We take

g =4ac—b* = (4)(1/2)(1/16)—(1/16) = 0.0625.

The left-hand side of eq. (1.48) can be found in any standard
table of integrals, for example, Weast (1975), CRC Hand-
book of Tables for Mathematics; therefore,

2 tan-! {M] —14C, (1.49)
Ja Ja
such that
Ja
Jgtan 2(t+C1)]b
N = 1.50
% (1.50)

For the initial condition we have selected, C; = 10.34, and
the number of animals per acre, N, behaves as shown in
Figure 1.4.

It is clear from these data that N(r) will grow without
bound if we employ the deterministic model, eq. (1.50).

N
[N (98 (9% P P wn w
W (e} wn o W (=) W
1 1 1 | TR T E—— |

Population,

(3]
(=]
1

15 1

10

5

T T T T T T T T T T T T T T T T T T T 1
00 02 04 06 08 10 12 14 16 18 20
Time
FIGURE 1.4. The growth of a population of animals (per acre) as
described by eq. (1.50). The initial population was 9.

Obviously this is not correct. In biological systems, an
explosive growth of numbers leads to collapse—the avail-
able food supply simply cannot sustain too many animals.
We might even see extinction. This is an important lesson:
Certain types of systems exhibit variabilities that should not
be represented in familiar deterministic form. Biological
systems particularly are affected by behavioral drives—
greed, hunger, sex, and so on—that might be modeled deter-
ministically if the total numbers are very large, but more
generally must be treated stochastically. It will be far more
appropriate in such cases to base our modeling on the prob-
ability that the population may total N animals at some point
in time. We will discuss this type of formulation in greater
detail in Chapter 9.

EMPIRICISMS AND DATA INTERPRETATION

A system of interest to us can be so complex that even
though we might be able to write down the underlying physi-
cal laws, there will be absolutely no thought of actually
obtaining a solution. Alternatively, we might be given data
with the requirement that a framework for interpretation be
developed—what do the data mean, and can they be used to
formulate a coherent picture of what has taken place? In
either case, the conventional approach of writing out some
model equation and then seeking a solution will not be
applicable. We are forced to adopt different viewpoints and
we will spend just a little time here considering some of the
alternatives.

Let us begin by thinking about heat transfer in a tube
with turbulent flow. Since turbulence is always three-
dimensional and time-dependent, we would need all three
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components of the Navier—Stokes equation, the continuity
equation (conservation of mass), and the energy equation to
completely describe the system. A solution—without any
approximation—would therefore require that we handle all
five of the listed partial differential equations simultane-
ously, including accurate boundary and initial conditions.
This is an impossibility and it is likely to remain so for many
decades to come, perhaps forever. Nevertheless, processes
must be designed and their anticipated performance esti-
mated. An approach that has often been taken historically in
such situations is the development of a correlation based on
experimental data. In the case of heat transfer in tubes, the
Dittus and Boelter (1930) correlation provides the Nusselt
number in terms of the Reynolds and Prandtl numbers:

Nu = [%] = 0.023Re"® Pr, (1.51)
where
d
Re = Vde and Pr= HCy -
N k «

Equation (1.51) allows us to estimate the heat transfer
coefficient, &, and then use that value to find the rate at which
thermal energy is transferred to the fluid. For example, if
Re = 50,000 and if Pr = 10, then the Nusselt number is
about 332. We find a very similar situation for mass transfer
occurring in wetted-wall towers; the Gilliland and Sherwood
(1934) correlation is

Kd

AB

Sh= [ ] =0.023Re™* Sc*, (1.52)

In this case, the Sherwood number (Sh) is given as a
function of the Reynolds and Schmidt numbers, and for the
latter, Sc = v/D,. Equation (1.52) will allow us to obtain
the mass transfer coefficient, K, and thereby to determine
the rate of mass transfer. These two correlations illustrate a
time-tested approach to the solution of extremely difficult
problems in the applied sciences: Identify the pertinent
dimensionless groups (either by dimensional analysis of the
governing equations of change or by the use of a technique
like the Buckingham pi method), use those dimensionless
groups to form a correlation, and then use a statistical
approach to select the “best” values for the coefficients and
exponents using available experimental data. Please note
that it is inappropriate for us to refer to such an exercise as
modeling. What we are doing in such cases is fitting an
empirical relationship (often a power law) to measured or
observed data. There is nothing inherently wrong with this
strategy and it has been used successfully in engineering
practice for more than 100 years. But it is critical that we
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remember that a correlation thus developed is valid only for
the conditions covered by the experimental work. We cannot
extrapolate these results to systems unlike the original
experiments.

Unfortunately, there are cases where even the correlation
approach may not be possible. Consider, for example, the
frictional resistance experienced by a fluid flowing through
a cylindrical tube. And furthermore, assume we are primar-
ily interested in the transition region, that is, that range of
Reynolds numbers in which the flow ceases to be laminar
and becomes highly disordered. Although hydrodynamicists
have some understanding of the mechanism by which a flow
becomes turbulent, no model has been developed that can
fully describe what happens in this process. What we can
do, however, is to measure the pressure drop for flow through
a specified tube at a given flow rate. The friction factor, f, is
related to the pressure drop over a length of tube, L:

(R—P)R

1.53
. (1.53)

f=

In Figure 1.5 is a typical set of data obtained for flow
through a polycarbonate plastic tube (which is hydraulically
smooth) with a diameter of 0.375in. (9.525 mm). The exper-
imental effort was concentrated on Reynolds numbers
ranging from about 2000 to 5000; since the tested fluid was
water and since d = 9.525mm, the approximate range of
velocities was about 21-52 cm/s.

For a nominal Re of 3000, the friction factor appears
to vary from possibly 0.006 to nearly 0.0107, a value
which is 70% larger than the low end. Figure 1.5 illustrates

3/8” polycarbonate tube
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FIGURE 1.5. Friction factors measured experimentally for flow
through a polycarbonate tube with a diameter of 0.375in.
(9.525mm). Note particularly the scatter of the data in the range
2000 < Re < 4000. There is no discernible functional relationship
for these data.


http://c1-fig-0005
http://c1-fig-0005
http://c1-bib-0003
http://c1-disp-0060
http://c1-bib-0004
http://c1-disp-0062

12 PROBLEM FORMULATION AND MODEL DEVELOPMENT

a physically elementary situation for which there is no
model nor is there a rational empirical correlation. Naturally,
if we had a sufficiently large data set for a particular appa-
ratus, we might be able to say something about the probabil-
ity that f at Re = 3000 would be between, say, 0.008 and
0.009. This example (merely water flowing through a cylin-
drical tube) underscores the difference between a determin-
istic process and one that should be characterized as
stochastic. In the transition region, the extreme sensitivity to
initial conditions (SIC) yields such large variability in
outcome that two trials carried out at the same velocity will
rarely produce identical results. Furthermore, when such
experiments are carried out with viscoelastic fluids, the
results may exhibit hysteresis—the results obtained for a
sequence of experiments with increasing flow rate may not
be the same as those obtained from a sequence with decreas-
ing flow rate. This is a consequence of molecular creep that
may occur for certain non-Newtonian fluids.

We conclude that may be able to say something about the
likely range for the friction factor, f, but we cannot say with
certainty that f = 0.0085 at Re = 3000. Some physical phe-
nomena are not well enough understood (or the governing
mathematics are so intractable) that the conventional pro-
cesses of model development and problem solution are
simply inappropriate. Numerous examples—which we
pointed out previously—originate from the large variability
that is an inherent part of many biological processes.

Finally, we will think about a scenario in which some
data are received by the analyst along with the requirement
that an interpretation of those data be produced very rapidly.
Speech recognition is a classic example of this problem
type and we will examine the data shown in Figure 1.6,

0.05 4 ‘ | ‘
E o A ‘( M e

T L T . T v T
0.3964 0.5964 0.7964 0.9964
Time (s)

FIGURE 1.6. A recording of a human voice speaking the word
“integration.”

which is a recording of a human voice speaking the word
integration.

There are a few segments in these data where the signal
is attractively simple. For example, the first phone (a
single speech sound) appearing on the left-hand side of
the figure is from the “in” part of the word (in’to-gra’shon)
and it exhibits a sharply defined frequency of about
175Hz. Note, however, that much of the balance of the
recorded signal is more difficult to characterize in such a
direct way. One of the features that does stand out is the
high-frequency burst that accompanies the start of the shon
sound of the last syllable. The frequency here is certainly
much higher, with components that appear to be around
1250Hz. At the very end of the signal, the main oscilla-
tion returns to about 133 Hz with a small, higher-frequency
component superimposed. The question we want to address
is: Do these isolated features constitute a “model” or a
“pattern” that would permit identification of the word inte-
gration? Probably not. We will need a better tool if we
are to deal with this case successfully, and toward the end
of this book (in Chapter 10), we will consider the treat-
ment and interpretation of time-series data and we will
learn how useful harmonic analysis can be for this type
of situation.

CONCLUSION

We have looked at a few examples in which some type of
balance (typically from a conservation principle) was used
to develop a model for a physical situation of interest. We
saw cases in which this technique led to algebraic equations
and also to differential equations. This is entirely appropriate
since our focus in this course is on mathematical methods
that engineers and scientists routinely use to solve the prob-
lems thus formulated. We have also introduced the notion
that certain types of problems will not lend themselves to
this type of analysis—in some cases, whether it be due to
system complexity or the nature of the data that must be
interpreted, we will have to employ a different process.
Some options for these problem types will be discussed later
in this text.

Regardless of the exact nature of the problem, however,
there is an important aspect to the overall process that we
have not mentioned at all. Model development, data inter-
pretation, and problem solution are merely elements of the
larger decision-making process; we will conclude this intro-
duction with an illustration of this broader context using a
situation that arises frequently in industrial practice.

Suppose we have a requirement for gas compression.
We can assume that the intake and final pressures will be
specified, and that the mass flow rate of the compressed
gas is dictated by process throughput. What types of ques-
tions would we need to address in this situation? One
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might presume that the critical issues concern the type
of compressor and the required power input. However,
there are many choices for the compressor (single-stage,
multistage, with intercooling or without, reciprocating,
centrifugal, etc.). Furthermore, the estimated power
requirement will depend on the assumed thermodynamic
pathway (isothermal or isentropic). We will now give
some definitive shape to this discussion; suppose we need
to compress air from 14.7psia to 10atm or 147 psia at a
rate of 1000ft’/min (based on inlet conditions). For a
single-stage isothermal compression, the power require-
ment can be estimated:

147

_ -5 3 Aar
P =(3.03x107%)(14.7)(144)(10 )ln[14'7

]: 147.7 hp

(1.54)

or 110kW. For a single-stage isentropic compression, we
find

_ 00310 °)14) e
P= d4-1) (14.7)(144)(10 )\ e 1
=208.9 hp (1.55)

or 156kW. And for a three-stage isentropic compression
with intercooling,

p_ (3:03x107)(1.4)3)
B (1.4—1)

0.4/(1.4)(3)
\[112—77] - 1] =165.1hp

(14.7)(144)(1000)

(1.56)

or 123kW. What compressor power should we specify? We
have three solutions for (one aspect of) the problem, but we
may be only a little closer to producing an actual answer.
Consider that

¢ the thermodynamic paths chosen are merely idealiza-
tions; the real compression process will be neither iso-
thermal nor isentropic

* since the estimates for required power are idealized,
they do not account for any dissipative effects; the
compressor efficiency may be much less than 100%

e other factors may weigh on the decision-making
process, including capital cost, operating cost, reliabil-
ity and maintenance, labor requirements, and safety
issues.

This example underscores the fact that while we may be
able to select and employ models for a real process, and then
find solutions using those models, rarely will that process
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result in a global answer for the questions being investigated.
Most textbook problems and examples are far too “clean”
in the sense that there is usually a narrow focus that will
yield one correct solution. Real situations simply do not
work out that way, and since models always entail idealiza-
tions, it is prudent to maintain a little skepticism until cor-
roboration is at hand. It is essential that we try to understand
the limitations of both the model and the solution procedure
and, at the same time, not lose sight of the complications
that distinguish a real-world problem from an artificially
constructed textbook example.

PROBLEMS

Investigate the following scenarios and either formulate or
describe an appropriate modeling approach or data analysis
strategy for each. Do not try to solve the problem unless
directed to do so.

1.1. A colony of prairie dogs numbers 47 individuals at time
t. How many prairie dogs might there be at time t =t + 30
days?

1.2. A contaminant that is slightly soluble in water lies
at the edge of a flowing stream. How might we predict
the concentration distribution at a downstream distance of
1000m?

1.3. How could we characterize the number of automobiles
expected to arrive at a busy intersection over a 2-hour period
during midday?

1.4. Students drop a tennis ball from the top of a building
375 ft high. What would the velocity of the tennis ball be at
impact with the ground?

1.5. A equimolar stream of liquid hydrocarbons containing
Cys, Css, Cgs, and Css is flashed (partially vaporized) to split
off the butanes. If the temperature and pressure are 130°F
and 19 psi, how much vapor will be produced and what will
the composition be?

1.6. An intravenous injection of a pharmacologically active
agent gets distributed between plasma and tissue (and some
is lost by elimination processes). How might we predict
the concentrations in both plasma and tissue (as functions
of time)?

1.7. Water flowing in a network of pipes reaches a “T”
fitting and is split into two streams. One of the lines leaving
the “T” has a diameter of 5cm and the other line’s diameter
is 7.5 cm. What system of equations might be used to predict
the distribution of flow at the “T” fitting?
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1.8. A few data for Y4-mi acceleration times (drag racing)
for stock cars and trucks are provided here. If a car weighs
30001b, what horsepower might be required to provide an
ET (elapsed time) of 11.75seconds?

Weight Horsepower ET/Speed
5680 300 17.3/81.2
5440 367 16.2/84.6
3883 426 13.0/109.8
3300 460 12.0/119
3220 330 13.5/107
2880 173 15.7/91
2680 170 15.8/90

1.9. Blood flows through a major artery (d = 0.5cm) at a
mean velocity of about 40 cm/s. How might we estimate the
shear stress at the artery wall? Is blood a Newtonian fluid?

1.10. Air flows past a heated flat plate at 20 m/s. What data
and equations should we employ to estimate the rate at
which heat is transferred to the moving air stream? How
might one determine whether or not the temperature depen-
dence of the fluid properties, that is, u = w(7T) and p = p(T),
should be taken into account?

1.11. You have been directed to study neuron excitability
and the generation of electric pulses (spikes) in nerve tissue.
What characteristics must a model of this phenomenon have
(you may want to start by looking at the FitzZHugh—Nagumo
model)?

1.12. Atherosclerosis is a disease of the arteries in which
lesions form on the artery walls (actually the arterial, or
tunica, intima). The process is not well understood, but as
these lesions develop, they begin to obstruct blood flow, lead
to plaque formation, and ultimately result in death by heart
attack or stroke. Because atherosclerosis is a leading cause
of death in much of the developed world, there is great inter-
est in modeling lesion development. It is known that the
lesions tend to form in curved arteries or near arterial
branches, and it is also known that there is a strong correla-
tion between cholesterol levels and the likelihood of athero-
sclerosis. What might a model of lesion formation and
plaque growth look like?

1.13. It has been suggested oscillations might occur in the
operation of nuclear reactor, perhaps when localized heating
of a reactor component resulted in thermal expansion,
changing the geometry of the reactor and thereby affecting
reactivity. Critics of nuclear power have even suggested that
a catastrophic event might be triggered by such a phenom-
enon. At least one model has been developed purporting to
show this mathematically (see Thompson and Thompson,
1988). What are the essential elements of such models, and

are they capable of assessing the probability of a catastrophic
event? What appears to be the major deficiency of the
Thompson-Thompson model?

1.14. Uneven spots in the rails, or eccentricities in the
wheels, can lead to side-to-side rocking of cars in normal
railroad operations. Suppose you have been assigned the
task of figuring out if such motions could ever be amplified,
resulting in load-shifting, overstressing the car’s structure,
derailment, and so on. What kind of model might be formu-
lated for this purpose, and what would its essential compo-
nents be?

1.15. Recently, researchers from Haverford College (Penn-
sylvania) have successfully attached “head-cams” to falcons
to study their hunting behavior. They have obtained video
that reveals falcons carrying out attacks on flying crows. The
video footage shows that falcons in pursuit of crows fly in
such a way that the crow seems nearly stationary (and almost
centered in the field of view). Can a mathematical model be
formulated for a falcon’s flight during pursuit of a flying
crow, and what would such a model look like? Hint: curve
of pursuit.

REFERENCES

Bird, R. B., Stewart W. E., and E. N. Lightfoot. Transport Phenom-
ena, revised 2nd edition, John Wiley & Sons, New York (2007).

DePriester, C. L. Light-Hydrocarbon Vapor-Liquid Distribution
Coefficients. Chemical Engineering Progress, Symposium
Series, 49:1 (1953).

Dittus, F. W. and L. M. K. Boelter. Heat Transfer in Automobile
Radiators of the Tubular Type. University of California Publica-
tions, Engineering (Berkeley), 2:443 (1930).

Gilliland, E. R. and T. K. Sherwood. Diffusion of Vapors into Air
Streams. Industrial and Engineering Chemistry, 26:516 (1934).

Glasgow, L. A. Transport Phenomena: An Introduction to Advanced
Topics, John Wiley & Sons, New York (2010).

Hanna, O. T. and O. C. Sandall. Computational Methods in Chemi-
cal Engineering, Prentice Hall, Upper Saddle River, NJ (1995).

Himmelblau, D. M. and K. B. Bischoff. Process Analysis and
Simulation: Deterministic Systems, John Wiley & Sons, New
York (1968).

Lange, N. A., editor. Handbook of Chemistry, revised 10th edition,
McGraw-Hill, New York (1961).

Saunders, P. T. An Introduction to Catastrophe Theory, Cambridge
University Press, Cambridge (1980).

Thompson, A. S. and B. R. Thompson. A Model of Reactor Kinet-
ics. Nuclear Science and Engineering, 100:83 (1988).

Thompson, J. M. T. Instabilities and Catastrophes in Science and
Engineering, John Wiley & Sons, Chichester (1982).

Weast, R. C., editor. CRC Handbook of Tables for Mathematics,
revised 4th edition, CRC Press, Cleveland, OH (1975).


http://c1-bib-0011

2

ALGEBRAIC EQUATIONS

INTRODUCTION

Algebraic equations are commonly encountered in science
and engineering, and a few examples of where they originate
include material balances for separation processes, force
resolution in structures, flow in pipe networks, application
of Kirchoff’s rules to electric circuits and networks, radiative
exchange in enclosures, solution of discretized differential
equations, and balances in chemical equilibria. Though such
problems are often thought of as elementary, cases can arise
that offer greater challenge than the analyst might expect.

It is impossible to know exactly when an algebraic equa-
tion was solved for the first time, but there is evidence
indicating that quadratic equations were solved by the Baby-
lonians perhaps 3700 years ago. Heath (1964, reprinted from
the 1910 Edition) notes that the “father” of algebra, Dio-
phantus of Alexandria, authored Arithmetica in 13 books in
the third century AD. Six of the original 13 books still exist,
and Heath produced English translations of them in 1885
(with the second edition published in 1910). In the Arith-
metica, Diophantus solves determinate equations of the first
and second degree; for quadratic equations he sought only
rational, positive solutions in either integral or fractional
form. For example, he gives

325x2 =3x+18 @.1)

and concludes that x = 78/325 or 6/25. Given an equation
of the form ax* — bx + ¢ = 0, Diophantus would multiply

by a to obtain a’x*> — abx + ac = 0 and then write the
solution as

ax=1bt1b> —ac. (2.2)

In the twenty-first century, nearly any middle school
student confronted by a quadratic equation such as

X +2x—15=0 2.3)

will immediately write the quadratic formula:

. —b+~Nb*—4ac

2.4
2a 24)
Clearly,
X = —2+V4+60 — 144
2
that is, x = —5 and x = +3. As we noted earlier, some

determinate equations of first and second degree have been
successfully dealt with for several thousand years. However,
according to Heath, only one cubic equation is solved in
Arithmetica:

X2 4+2x+3=x4+3x-3x* -1, (2.5)
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which is readily rewritten as
X —4x’+x—-4=0 or x(x*+1D=4x*+1. (2.6)

Diophantus notes that x = 4, but it appears that he knew
of no general method of solution for cubic equations. Such
third-degree equations are much less mysterious today; con-
sider the equation

x3—%x2—6x—§=0, 2.7)

which we will write as x* + px* + gx + r = 0. If we take
x =y — p/3, where p = —1/2, the second-degree term is
eliminated, resulting in the form

Y +ay+b=0. (2.8)

The solution for the cubic equation can now be written
in terms of a and b as described in any standard algebra
reference book. For example, noting in eq. (2.7) that p, g,
and r are —1/2, —6, and —9/2, respectively, then a = (1/3)
Bg — pH) and b = (127)(2p° — 9pg + 27r). A and B are
now calculated from

1/3
b [V &
2o+ L
2 4 27

b »¥ a
2 4 27

A= and B=

and the solutions for eq. (2.8) are then y = A + B,

y:_#+A—ngl_3’

and

The reader may want to show that for our example,
eq. (2.7), a = —6.08333 and b = —5.50926, resulting in
x=—1,+3, and —3/2.

In the types of applications that are of interest to us, it is
not much of a stretch to arrive at more “interesting” cases
where we have polynomials of higher degree, or products of
functions, such as

x*t=3x +2x* —5x+9.76048 = 0 2.9)
or
x*exp(—x)=4.

(2.10)

Such problems arise in science and engineering all of
the time; the solutions for eq. (2.10), by the way, are
x = —1.07967, x = 2.975924, and x = 5.23573. Moreover,

in technological fields, sets of simultaneous equations—
both linear and nonlinear—are encountered regularly. Our
purpose in this chapter is to review some useful techniques
for solving problems of these types.

ELEMENTARY METHODS

Newton—Raphson (Newton’s Method of Tangents)

This technique was employed in the seventeenth century by
Isaac Newton and Joseph Raphson, both of whom viewed it
as an algebraic method to be applied to polynomials. The
iterative form that is familiar to us, using derivatives of the
function f{x), appears to have been used in the eighteenth
century by Thomas Simpson. Newton—Raphson is a power-
ful tool that, when it works, can be used to solve a variety
of nonlinear algebraic equations.

Let us return to eq. (2.9). We wish to find a solution for
this equation and we proceed in the following manner: We
select an estimate for x, then construct a line tangent to the
curve at that point, and extrapolate it to the x-axis where
Jfix) = 0. We use that point as our new estimate and repeat
the process. The algorithm for Newton’s method is easily
obtained by fitting f{x) = mx + b to two points: x,, with f(x,),
and x,,,;, where f(x,, ;) = 0. Of course, the slope, m, is simply
f'(x,) and the intercept b is eliminated by subtraction result-
ing in

_ f('xﬂ) X
JAEH)

-xn+l =X,

@2.11)

We illustrate with eq. (2.9):
Fx)=x*=3x> +2x* —5x+9.76048,
such that
fl(x)=4x* —9x* +4x-5.

We choose 3 for an initial estimate for x, and the following
sequence of values emerges:

3
2.62469
2.39536
2.27549
2.31760
2.22515
2.225001
2.225001

This seems reasonable, but the polynomial we are trying to
solve is fourth degree. Might there be other real solutions as
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well? An obvious way to explore this is to start the Newton—
Raphson method at different values of x. If we try x = 4, we
end up at the same place, but if we start the sequence at 2,
we arrive at 1.875346 in five trials. For confirmation, we can
use the program cSolve on a Texas Instruments™ TI-89 (or
a comparable device) and obtain —0.550174 + 1.42705i,
1.87535, and 2.225.

Now let us suppose that the function of interest is
fix) = 2 + sin(2x). Of course, we see immediately that f{x)
can never be smaller than 1.0; Newton—Raphson does not
know this, and if we start with 2 as our initial estimate, we
get the following sequence:

2.000000
2.950975
2.074051
3.153893
2.141288
3.450326
1.868810
2.738003
1.814223
2.681012
1.686051
2.595879
1.389607
2.648622
1.592425
2.571719
1.265582
2.835763
1.965004
2.880478
etc.

Obviously, the technique does not always converge! With
more complicated algebraic equations, such behavior will
not be easily anticipated (as it was here). We must exercise
care that we do not ask Newton—Raphson to do something
it cannot do. The method is best employed in situations
where the behavior of the function is well understood (of
course, this is a trite observation since the statement is valid
for just about every numerical method).

Let us conclude this section by returning to eq. (2.9) for
a moment. Recall that we identified two real roots; we also
pointed out the existence of a second (complex conjugate)
pair of roots. It is occasionally necessary to locate complex
zeros for polynomials, and in the case of eq. (2.9), it is pos-
sible to accomplish this by polynomial deflation. If we
divide eq. (2.9) by x> — 4.10035x + 4.17265, we obtain

(x* —3x7 +2x> —5x+9.76048)

7 —210035x 1 A17265) ¥ 1110035233917,
X" — 4. X i
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we can then use the quadratic equation on the second-degree
polynomial that remains (you may want to verify that
x = 0.550175 £ 1.42705i). It is also possible to use a search
procedure to identify complex zeros of functions and
Hamming (1971) provides a useful discussion of this
topic. We will illustrate a direct, brute force approach here
using a real function of the complex variable, z (where
z=x+ iy). Let

w(z) = e — 7> = e*[cos y +isin y] — (x* + 2ixy — y*);
2.12)

now we identify the real and imaginary parts, which are ¢*
cosy — x> + y* and €' siny — 2xy, respectively. We will use
a preplanned search (a preplanned search is one in which
the experiments or trials are set in advance of the calcula-
tions), looking over a range of x and y values: —m < x <27
and 0 < y <2, and employing an interval of 0.2 in both
directions. We let each (x, y) position be represented by
discrete values for the indices j and k. Based on the signs of
the computed real and imaginary parts, we assign the appro-
priate quadrant number for each (j, k) pair:

IF realp>0 AND imagp>0 THEN quadr(j.k)=1
IF realp<0 AND imagp>0 THEN quadr(j,k)=2
IF realp<0 AND imagp<0 THEN quadr(j,k)=3
IF realp>0 AND imagp<0 THEN quadr(j,k)=4

The result is a two-dimensional array of quadrant values that
we can present as a contour plot, and this example is illus-
trated by the construction of Figure 2.1.

Imaginary, iY

Complex zero

4 6

o -

2
Real axis, X

FIGURE 2.1. Results of the preplanned search in which the
appropriate quadrant designations have been determined. The
complex zero is located at the locus where quadrants 1, 2, 3, and
4 meet.
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The direct approach that we have employed here is
extremely simple, although the actual execution is a bit
cumbersome. Naturally, if we needed a more accurate esti-
mate for the complex zero, we would simply refine the
search array. For example, in Figure 2.1, it is clear that
1 <x<2and 1 <y <2. The reader is encouraged to try this
to pin down the location of the complex zero.

Regula Falsi (False Position Method)

Suppose we wish to find a solution for an equation of
the type

f()=1x" — x> +3x—6.50547. (2.13)
Furthermore, suppose we know that fix = 0) is negative
(actually, —6.50547) and that fix = 5) is positive (actually,
14.7445). Clearly, there must be a sign change in the interval
(0, 5) that corresponds to a solution for this problem
(we know that solution to be x = 2.93333). We could take
these known endpoints, x; and x,, and fit a straight line to
them, since

fx)=y =mx; +b (2.14a)

and
S(x) =y, =mx, +b. (2.14b)

By subtraction we find the slope of this line: m = (y; — y,)/
(x; — x), and the intercept can then be written as

b=y, _[u]xl'

X — X2

We are seeking the point where this straight-line approxi-
mation crosses the axis, that is, where f(x,) = y = 0. From
our equation for the linear approximation,

Xo =X [x1 _xz]yh
=

(2.15)

If the product of the functions is f{xy)f(x,) < 0, then the sign
change we are trying to identify still lies to the right, which
means that we move the left-hand endpoint from the original
value, x; to x,. If the product is positive, then we move the
right-hand endpoint inward. Let us apply this method to our
sample equation using the following logic:

#COMPILE EXE
#DIM ALL
REM *** Application of regula falsi method to an
algebraic equation

GLOBAL x1,x2,y1,y2,x0,0,fx,x,trial,ZZ AS
SINGLE
FUNCTION PBMAIN
x1=0:x2=5:trial=0
OPEN “c:regulaF.dat” FOR OUTPUT AS #1
100 REM *** continue
x=x1
GOSUB 300
yl1=fx
X=x2
GOSUB 300
y2=fx
x0=x1-(x1-x2)/(y1-y2)*y1
x=x0
GOSUB 300
fO=fx
IF f0*y2<0 THEN x1=x0 ELSE x2=x0
trial=trial+1
PRINT trial,x1,x2
WRITE#]1,trial,x1,x2
IF trial>20 THEN 200 ELSE 100
200 REM *** continue
INPUT “Shall we continue?”’;Z7Z
IF ZZ>0 THEN CLOSE
END

300 REM *** continue
fx=1/4*x"3-x"2+43%x-6.50547
RETURN

END FUNCTION

This simple code produces the following results:

1, 1.53069877624512, 5
2, 2.17453002929688, 5
3, 2.53261733055115, 5
4, 2.72695684432983, 5
5, 2.82875323295593, 5
6, 2.88081741333008, 5
7, 2.90708756446838, 5
8, 2.92024779319763, 5
9, 2.92681646347046, 5
10, 2.93008899688721, 5
11, 2.93171787261963, 5
12, 2.93252825737, 5
13, 2.93293142318726, 5
14, 2.93313193321228, 5
15, 2.93323159217834, 5
16, 2.9332811832428, 5
17, 2.93330574035644, 5
18, 2.93331789970398, 5
19, 2.93332409858704, 5
20, 2.93332719802856, 5
21, 2.93332862854004, 5
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Notice that we have moved the left-hand endpoint very
close to the actual solution (x = 2.93333) in 21 trials. Regula
falsi is closely related to another linear approximation tech-
nique known as the secant method. With the secant method,
the initial endpoints do not have to bracket the zero (the
solution). The principal advantage of regula falsi over
Newton—Raphson is that the former requires no evaluation
of derivatives. A disadvantage of straight-line approxima-
tions is their inability to follow curvature; therefore, we
might improve this approach by adding one more function
evaluation (use an additional point so that the total is three)
and fitting a parabola to them. This variation of the technique
is known as Miiller’s method, and it can often provide a
better first estimate for the root location. Miiller’s method
will be the focus of one of the exercises at the end of the
chapter.

Dichotomous Search

Search procedures can often be used to advantage in the
solution of nonlinear algebraic equations and this is particu-
larly evident for unimodal, one-dimensional problems. One
of the simplest techniques available is the dichotomous
search, and we will illustrate it by applying it to eq. (2.9).
We are seeking an optimum, so we take eq. (2.9), square it,
and invert it; that is, the merit function we wish to evaluate
will be written as

1
xt=3x* +2x* —5x+9.76048]*

f)= [ (2.16)

If problems are created by division by zero, we simply add
a small constant to the denominator. The basic idea is that
we select an interval to search, find the midpoint (MP) of
the interval, and perform two function evaluations located at
MP + 6 and MP — 6. We reject the “worst” side and move
the interval endpoint to that location. The logic will look
something like this:

#COMPILE EXE
#DIM ALL
REM *** dichotomous search for solution of an
algebraic equation
GLOBAL delta,MP,x1,x2,x1,xh,x,FL,FH,test,
trial, FX,ZZ AS SINGLE
FUNCTION PBMAIN
INPUT “Specify delta:”;delta
INPUT “Select x1:7;x1
INPUT “Select x2:;x2
OPEN “c:dichoto2.dat” FOR OUTPUT AS #1
100 REM *** continue
MP=(x1+x2)/2
xl=mp-delta
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xh=mp-delta
x=xI
GOSUB 300
FL=FX
x=xh
GOSUB 300
FH=FX
test=FH-FL
IF test>0 THEN x1=x1 ELSE x2=xh
PRINT x1,x2
WRITE#1,x1,x2
trial=trial+1
IF trial>25 THEN 200 ELSE 100
200 REM *** continue
INPUT “Shall we continue?”;ZZ
IF ZZ>0 THEN CLOSE
END
300 REM *** continue for function evaluation
FX=1/(x"4-3%x"342%*x"2-5%x+9.76048)"2
RETURN

We will set § = 0.001 and choose the initial search interval
to be x = 0 to x = 22. The results are

0, 11.0010004043579
0, 5.50150012969971
0, 2.7517499923706

1.37487494945526, 2.7517499923706

2.06231260299683, 2.7517499923706

2.06231260299683, 2.40803122520447
2.06231260299683, 2.23617172241211
2.14824223518372, 2.23617172241211
2.19120693206787, 2.23617172241211
2.21268939971924, 2.23617172241211
2.22343063354492, 2.23617172241211
2.22343063354492, 2.23080110549927
2.22343063354492, 2.22811579704285
2.22343063354492, 2.22677326202392
2.22343063354492, 2.22610187530518
2.2237663269043, 2.22610187530518
2.22393417358398, 2.22610187530518
2.22393417358398, 2.22601795196533
2.22397613525391, 2.22601795196533
2.22399711608887, 2.22601795196533
2.22399711608887, 2.22600746154785
2.22399711608887, 2.22600221633911
2.22399711608887, 2.22599959373474
2.22399711608887, 2.22599840164184
2.2239978313446, 2.22599840164184
2.2239978313446, 2.22599792480469

We repeat, again with 6 = 0.001, but select the initial
interval to be x = 1 to x = 21.
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1,
1,

1,

1,

1.62493741512298,
1.62493741512298,
1.78117179870605,
1.85928905010223,
1.85928905010223,
1.85928905010223,
1.86905372142792,
1.87393605709076,
1.87393605709076,
1.87393605709076,
1.87393605709076,
1.87424123287201,
1.87424123287201,
1.87431752681732,
1.87431752681732,
1.87433660030365,
1.87434613704681,
1.87434613704681,
1.87434613704681,
1.87434732913971,
1.87434792518616,
1.87434792518616,

11.0010004043579
6.00150012969971
3.5017499923706

2.25187492370605
2.25187492370605
1.93940627574921
1.93940627574921
1.93940627574921
1.90034770965576
1.88081848621368
1.88081848621368
1.88081848621368
1.87837731838226
1.87715673446655
1.87654650211334
1.87654650211334
1.87639391422272
1.87639391422272
1.87635576725006
1.87635576725006
1.87635576725006
1.87635099887848
1.87634861469269
1.87634861469269
1.87634861469269
1.87634837627411

algebraic equation with far fewer numerical operations than
the dichotomous procedure.

For eq. (2.9), which we used previously, with the initial
search interval (0 < x < 20) we find

7.639319896698, 12.3606796264648
1.80339872837067, 2.22912335395813
2.22912335395813, 2.49223566055298
2.22912335395813, 2.32962322235107
2.22912335395813, 2.26751089096069
2.22912335395813, 2.24378609657288
2.22912335395813, 2.2347240447998

2.22566175460815, 2.22698402404785
2.22484469413757, 2.22515678405762
2.22484469413757, 2.22496390342712
2.22496390342712, 2.22503757476807

Clearly, more numerical effort was required than needed
with Newton—Raphson, but a search technique like this one
can often be more revealing with regard to function behav-
ior. In addition, no differentiation is required and for very
complicated functions that can be a significant advantage.
One might wonder if this approach could be improved with
respect to numerical efficiency. For example, what if some
of the function evaluations from previous stages could be
reused? You will note that in the dichotomous procedure
described earlier, we establish a new MP requiring two new
accompanying evaluations for every stage. If we use the
golden section search, we will achieve greater efficiency.

Golden Section Search

The golden section technique is based on the golden ratio,
and its advantages can be made very clear by a simple
example. Suppose we wish to locate the maximum value
for a function, f(x), over the interval (0 < x < 10). Consider
the impact of placing our initial function evaluations at
x = 6.18033989 and x = 3.81966011; assume that the right-
most portion of the interval is rejected—that the extremum
we seek is located between 0 and 6.18033989. If we multiply
6.18033989 by 0.618033989, we get 3.81966.... This, of
course, is the location of one of our initial trials, so we can
reuse that existing function evaluation in the next stage.
Thus, the golden section technique can be used to solve an

Once again, we discover that we must change the initial
search interval if we wish to locate the other real-valued
solution; setting (1 < x < 21) we end up with the final pair,
1.875486 and 1.875679. Golden section searches are appeal-
ing because they are both efficient and easy to implement.
But for very complex equations where execution time is
critical, one can go one step farther and use the Fibonacci
technique, which gives the most rapid reduction in the inter-
val of uncertainty. Fibonacci searches are described in both
Beveridge and Schechter (1970) and Shoup and Mistree
(1987); the technique differs from the golden section in that
the number of merit function evaluations is selected in
advance and the interval of uncertainty can be computed
from the Fibonacci numbers (Fs), 1, 1, 2, 3, 5, 8, 13, 21,
34,55, 89, 144, 233, and so on. The very last evaluation uses
the dichotomous technique since it cuts the final interval to
50% rather than the 61.84-% possible with the golden
section. The initial function evaluations are located a dis-
tance inside the starting interval endpoints corresponding to

By, 0,
F;‘l F;l

Thus, for n = 20 with 6 = 0.001, this distance is
(6765/10,946) + (1/10,946)(0.001) = 0.618034. Using the
same values for n and 6, we can estimate the final interval
of uncertainty:

LiBag L 8L 6001y — 0000473,
F, F, 10,946 10,946

SIMULTANEOUS LINEAR
ALGEBRAIC EQUATIONS

Just about every student in science and engineering has seen
a problem of this type:
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le +3X2 — X3 = 9 (217)
—5x+2x, +2x; =4 (2.18)
X+ X +3x =17. (2.19)

Our goal, of course, is to find the correct values for the
three variables, x;, x,, and x;. We will do this using a technique
familiar to many students, Gaussian elimination. The objec-
tive of this procedure is to obtain a triangular form (with 1s
starting in the upper left-hand corner and proceeding diago-
nally down through the matrix, with zeros in the triangle
underneath) where the unknowns are determined by back
substitution. We begin by noting that this set of equations can
be written equivalently as the augmented coefficient matrix:

2 3 -1 9
-5 2 2 4
1 1 3 17

We divide the first row (equation) by 2:

1 372 —1/2 972
-5 2 2 4
1 1 3 17

Divide the second row by —5 and subtract the first row from
the second:

1 32 =172 972
0 —-19/10 1/10 —=53/10
1 1 3 17

Subtract the first row from the third and divide the second
row by —19/10:

1 32 —172 972
0 1 —1/19  53/19
0 -12 772 2572

Divide the third row by —1/2 and then subtract the second
row from it:

1 372 —1/2 972
0 1 —1/19 53/19
0 0 —132/19 —528/19

Divide the third row by —132/19:

372 —1/2 912
0 1 —1/19  53/19
0 o0 1 4

This is the triangular form we were seeking: The coefficient
matrix has “1s” on the diagonal and zeros beneath. There-
fore, x; = 4, and by back substitution, x, = 3 and x; = 2.
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This direct elimination scheme is simple to understand and
to execute, but there are several potentially serious prob-
lems. First, a machine computation will not produce the
whole numbers and the fractions we see in the previous
example. Each number will be represented only with the
precision of the machine, which means that roundoff error
will occur, and for large sets of equations, possibly accumu-
late. Second, if the system of equations is ill-conditioned,
the number of simultaneous equations that can be solved
will be quite limited. An ill-conditioned coefficient matrix
is one in which small changes to a coefficient have enormous
impact on the solution. Third, if a pivot element is zero and
we do not interchange rows (employ partial pivoting), then
division by zero occurs. Fourth, if a pivot element is very
small relative to other coefficients in the matrix, the accuracy
of the solution will be impaired. For these and other reasons,
Gaussian elimination is not used to solve large sets of equa-
tions unless the coefficient matrix is sparse (contains many
zeros). There are far better elimination methods available,
and we will discuss one of those in the next section.

Crout’s (or Cholesky’s) Method

Crout’s method is perhaps the most powerful of the direct
elimination schemes—it can be used to solve fairly large sets
of simultaneous linear algebraic equations and it can do so
efficiently. Let us use the following problem as an example:

2%, 4+ x, — x3 +1.26x, =1.3467 (2.20)
=X +3x, +x; +0.53x, = 4.04 (2.21)
1.082x, +2x, +3x; — x, =5.3607 (2.22)
3x, +2.97x, —1.48x; —x, =—0.82. (2.23)

This set of equations can be written equivalently as

an apn a3 iy X1 Ci
a ax (%} (252) X2 _ C
as as; as;3 34 X3 B C3
Ay (2%} ay3 Ayy Xy Cy

or more compactly as A{X} — {C} = 0. If we could get the
coefficient matrix in the triangular form we discussed previ-
ously with “1s” on the diagonal and zeros below, we could
find the xs by back substitution. With Crout’s method, a
nonsingular n by n coefficient matrix is decomposed into
lower (L) and upper (U) triangular matrices such that
A = LU. U, of course, is exactly the form we seek, with 1s
(ones) on the diagonal (a,,, ax, ass, etc.) and zeroes below.

A typical structure for a Crout’s (Cholesky’s) procedure
is shown as follows for the four-equation example. This
routine has been adapted from one given by James et al.
(1977):
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#COMPILE EXE

#DIM ALL
REM *** Crout’s method for solution of simultaneous algebraic equations

GLOBAL M,NEQ.J,LLILSUM,JM1,K,IP1,IM1,JJNN,L. AS SINGLE

FUNCTION PBMAIN
DIM A(10,11) AS SINGLE
DIM X(10) AS SINGLE

PRINT €€ttt sestestesteshe s e ste st s s e she st s s she sheste s s s sheshestesie s e sheste st s s shesteste s st sfestestese e stesteste stk sfeste st sieoslosdofostoioloskosdolotork?

PRINT * Crout’s method example with four equations: ”
PRINT * 2X1 + X2 — X3 4 1.26X4 = 1.3467”

PRINT * -X1 + 3X2 + X3 + 0.53X4 = 4.04”

PRINT * 1.082X1 + 2X2 4 3X3 — X4 = 5.3607”

PRINT * 3X1 4+ 2.97X2 — 1.48X3 — X4 = -0.82”

PRINT € sfe sfe st sfe she sfe sfesfe she sfe sfe s she sfe sfe sk sk she sfe sk sk she sfe st sk she sfe sfesie sk sfe sfesieske sfe sfesieske sk siesie sk sk stttk skttt skotolokokoioloekokoioislokoloiskokeR?

REM *#** Here’s where you must input the coefficient matrix.
A(1,1)=2:A(1,2)=1:A(1,3)=-1:A(1,4)=1.26:A(1,5)=1.3467
AQ2,1)=-1:A(2,2)=3:A(2,3)=1:A(2,4)=0.53:A(2,5)=4.04
A(3,1)=1.082:A(3,2)=2:A(3,3)=3:A(3,4)=-1:A(3,5)=5.3607
AM4,1)=3:A(4,2)=2.97:A(4,3)=-1.48:A(4,4)=-1:A(4,5)=-0.82

REM *** Crout’s method of matrix decomposition
INPUT “SPECIFY THE NUMBER OF SIMULTANEOUS EQUATIONS:”;NEQ
M=NEQ+1
FOR J=2TOM
A(LDH=A(1,J)/A(1,1):NEXT J
FOR I=2 TO NEQ
J=I
FOR II=J TO NEQ
SUM=0!
IM1=J-1
FOR K=1 TO IM1
SUM=SUM+AILK)*A(K,J):NEXT K
A(L))=A(LJ)-SUM:NEXT I
IP1=I+1
FOR JJ=IP1 TO M
SUM=0!
MI1=I-1
FOR K=1 TO IM1
SUM=SUM+A(K)*A(K,JJ):NEXT K
A@LIN=(AII])-SUM)/A(LI):NEXT JJ
NEXT I
X(NEQ)=A(NEQ,NEQ+1)
L=NEQ-1
FOR NN=1TOL
SUM=0!
I=NEQ-NN
IP1=I+1
FOR J=IP1 TO NEQ
SUM=SUM+A(J])*X(J)
NEXT J
X(M=AIM)-SUM:NEXT NN
FOR J=1 TO NEQ
PRINT X(J)
NEXT J
PRINT “Shall we continue with program?”
INPUT “Respond with any positive number’”’; NN
IF NN>0 THEN 300
300 REM **#%* continue
END FUNCTION



For the given example, the program produces the following
results for x; through x,: 0.3333475, 0.6666642, 1.66668,
and 1.333349.

Matrix Inversion

Consider the following set of equations:

X, +2X, +3X; + X, =8.98958 (2.24)
X, + X, —9X; + X, = 0.65625 (2.25)
X, +6X, — X, =4.01042 (2.26)

5X, —2X, — X; +7X, =2.14931, (2.27)

with the solution: 1.5, 3.0, 0.444444, and 0.15625 for X,
through X,, respectively. As we noted previously, we can
write this set of equations alternatively as AX = C. If the
coefficient matrix, A, is nonsingular, then an inverse
matrix exists such that A~'A = L. The right-hand side is the
identity matrix which consists of 1s on the diagonal and Os
elsewhere. This suggests the following multiplication:
A7'AX = A7'C. Consequently, X = A7'C, and the
solution is at hand. So, how does one determine the inverse
of A?

Since A™'A = I, we can obtain the result we seek
by applying the Gauss—Jordan method (the forward and
backward eliminations are combined into a single pro-
cedure) to the augmented matrix (note the form of the
right half):

1 2 3 1 1 0 0 0
1 1 -9 1 0 1 0 0
1 0 6 —1 0 0 1 0
5 -2 —1 7 0 0 0 1

The required steps are illustrated by James et al. (1977),
but one can also use software tools like Mathcad™ for this
purpose (matrix toolbar, M~"). The reader should verify that
the inverse we are looking for is

—0.113 0.323 0.548 0.048
0.381 0.084 —-0.077 —0.077
0.052 —0.090 0.00645 0.00645
0.197 —0.219 —0.413 0.087

Since X = A~'C, we find that X; = —0.113(8.98958) +
0.323(0.65625) + 0.548(4.01042) + 0.048(2.14931) —
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1.4974+, X, = 0.381(8.98958) + 0.084(0.65625) —
0.077(4.01042) — 0.077(2.14931) = 3.0059, and X; and X,
are, respectively, 0.4481 and 0.1579. Note that the effect of
roundoff error is apparent here. Matrix inversion is generally
not used if one is only interested in a single set of simultane-
ous equations. It may become practical for cases with
numerous sets of simultaneous equations.

Iterative Methods of Solution

Iterative methods are often used to solve the types of simul-
taneous algebraic equations that arise in the numerical solu-
tion of elliptic partial differential equations (PDEs). We will
introduce one technique for dealing with such equations here
but will postpone a more extensive discussion until we treat
PDE:s later in the book in Chapter 8. The Gauss—Seidel (GS)
iterative method is distinguished from the Jacobi method by
the fact that the latest iterative values are used immediately
in subsequent calculations. GS is easy to understand and
easy to apply, and particularly so in cases where the coef-
ficient matrix is sparse. This is exactly what happens when
we solve elliptic PDEs numerically. Let us look at an
example and then reveal the required computational scheme
in detail.

Suppose we have a square domain over which the
equation

Ti,j = %[Tiﬂ,j + Ti—l,j + Ti,_i+l + Ti,j—l] (2-28)

is to be applied at all interior points. This particular form
has come about through discretization of the governing
elliptic PDE and the isolation of the term with the largest
numerical coefficient (which was 4). Let us assume that we
have constant values for 7 on all four boundaries; in par-
ticular, let these edge values be (100, 200, 200, 300) for
(L, R, T, B). In other words, along the left-hand side of the
domain, the variable T has the value 100, and across
the bottom, it is 300; the other two edges are maintained
at 200.

This is a Dirichlet problem; we apply the computational
algorithm (eq. 2.28) at each point across the bottom inte-
rior row successively, then we move up to the second row
and repeat, and so on. We will assume that our discretiza-
tion has resulted in a total of 400 mesh points of which
324 are interior points where eq. (2.28) is to be applied—
we are solving 324 simultaneous linear algebraic equa-
tions. We let these interior points be initialized with the
default value of 0. Obviously we could hasten the con-
vergence of the GS scheme by making a better initial
guess at the distribution, but that is not of much conse-
quence here.
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#COMPILE EXE
#DIM ALL
REM *#* golution of simultaneous algebraic equations
by Gauss-Seidel iterative method
GLOBAL i,j,iter,Told,eps AS SINGLE
FUNCTION PBMAIN
DIM T(20,20) AS SINGLE
iter=0
10 REM *#* continue
Told=T(10,10)
FOR j=1 TO 20
T(1,j)=100:T(20,j)=200
NEXT j
FOR i=1 TO 20
T(1,1)=300:T(i,20)=200
NEXT i
FOR j=2TO 19
FOR i=2 TO 19
T(G,j)=1/4*%(T{+1,)+
T@G-1,j)+TaA,j+1)+T30,j-1))
NEXT i:NEXT j
iter=iter+1:eps=ABS(Told-T(10,10))
PRINT iter,T(10,10),eps
IF eps<1e-09 THEN 40 ELSE 10
40 REM *#** continue
OPEN “C:gausseid.dat” FOR OUTPUT AS #1
FOR j=1 TO 20
FOR i=1 TO 20
WRITE#1,1,j,T(1,j)
NEXT i:NEXT j
WRITE#1, iter
CLOSE:END
END FUNCTION

Notice that progress toward convergence is being
assessed by determining the change in value for a single,
central point by comparing old and new iterates. For this
example, 249 iterations are required to reach € (eps) = 0.01
and 492 iterations are required to attain ¢ = 1 x 107%. We
can better examine the results of the computation by con-
structing an appropriate contour plot, which is provided in
Figure 2.2.

The Gauss—Seidel iterative method provides a powerful
tool for solving large sets of simultaneous linear algebraic
equations, and we will have many opportunities to use the
technique in our efforts to solve elliptic PDEs.

SIMULTANEOUS NONLINEAR
ALGEBRAIC EQUATIONS

Unfortunately, we occasionally encounter problems such as
the following set of equations:

Vertical axis

290 S
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FIGURE 2.2. Contour plot of the results obtained through
application of the Gauss—Seidel iterative method of solution for
simultaneous linear algebraic equations. In this example, 324
simultaneous equations (resulting from the discretization of an
elliptic PDE) are being solved and a satisfactory solution is obtained
with less than 500 iterations. The bottom is maintained at 300
and the left-hand side at 100; the top and the right-hand side are
set to 200.

3.xl2.X2 + .X3 = 25032 (2.29)
XX /%, =2.1896 (2.30)
Vo (6 +x,) = 15.7171. (2.31)

In this particular case, we do know that all three unknowns
are positive (all greater than 0). The “easiest” way to attempt
solution is through successive substitution. We first estimate
(guess, really) two of the unknowns. We then rearrange the
set of equations to solve for the third value. We use that
estimate plus one of our guesses to get the second unknown,
then use the two revised values to obtain the third; the entire
process is repeated successively. For example, we might try
to write the equations above as

X = 2.1896)623/2 /.X3 (2.32)
X, =15.7171/Jx; — x° (2.33)
X3 = 25.032 — 3%, (2.34)
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We start by setting x, and x; equal to 2 and 2, say. The
resulting sequence of computed values is

1 3.096561909 —18.578321 559.4556274
2 1.350865364 —1.8006176 34.88750458
3 0.203487575 2.652528763 24.70049858
4 0.382956296 3.106257439 23.66335106
5 0.506576121 3.100982904 22.64268303
6 0.528063238 3.155748367 22.3900528
7 0.548230529 3.156806707 22.18360329
8 0.553610981 3.167327881 22.1177845
9 0.558036625 3.16818738 22.0702343
10 0.559466541 3.170446396 22.05292511
11 0.560504615 3.170782566 22.04154968
12 0.560883105 3.171288967 22.03703499
13 0.561132371 3.171396494 22.03427315
14 0.561231256 3.171513081 22.03310585
15 0.561291933 3.171544313 22.03242874
16 0.561317503 3.171571732 22.03212929
17 0.561332405 3.171580315 22.03196144
18 0.561338961 3.171586752 22.03188705
19 0.561342597 3.171589136 22.03184509
20 0.561344266 3.171590805 22.03182602
21 0.56134522 3.171591282 22.03181458
22 0.561345637 3.171591759 22.03181076
23 0.561345816 3.171591759 22.03180885
24 0.561345875 3.171591997 22.03180695
25 0.561345994 3.171591997 22.03180695

There are obvious problems with this technique, includ-
ing the following: (1) The arrangement of the equations is
not unique; (2) successive substitution may converge slowly
or not at all; (3) the values obtained in this calculation may
be one solution, but not the one we were actually seeking;
and (4) for many nonlinear problems, the analyst may have
absolutely no prior knowledge of how the equations behave
(what the initial estimates should be). We can underscore
these points by noting that the “solution” we obtained previ-
ously by successive substitution is actually not a very good
one. The reader may want to try a comparison with 1.473,
2.784, and 6.903 for x; through x;, respectively. Successive
substitution is related to tearing systems of equations, and
in recent years, much effort has been expended in the devel-
opment of tearing algorithms; some of these have been
incorporated into commercial simulation software packages.
Tearing is particularly useful in the analysis of process flow
diagrams where material balances on process units may
involve one or more unknown streams. In such cases, it is
not possible to proceed sequentially through the process
units because of the unknown streams (possibly including
recycle streams). The reader interested in chemical engineer-
ing applications of tearing may want to consult Ramirez
(1997); a more general discussion of issues in tearing has
been provided by Elmqvist and Otter (1994).
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Fortunately, we have options. For the first of these, let us
consider applying Newton’s method of tangents to problems
of this type. We will need the Jacobian (the matrix of partial
derivatives) for the system. Let eq. (2.29) through eq. (2.31)
be rewritten as follows:

fi =3x72x, +x; —25.032 (2.35)
f2 == xl.X3 /leAS - 2.1896 (2.36)
fy=x (1 + x,) —15.7171. (2.37)
Therefore,
%:6XI.XZ, %:3)612, %: 1
ox, X, Ox3
(2.38 a,b,c)
of _ s Of _ 3 xix; of X
o= nlnT, = o, =g
axl 3)62 2 Xy aX3 Xy
(2.39 a,b,c)
3
W 5. Yo O _lxtxn
0x; 0x, ox; 2 \/Z
(2.40 a,b,c)

We let the set of equations, f;, f>, and so on, be represented
as F(x). The algorithm we want to use is simply

Xpew = X —J 1(X)F (), (2.41)
which you will recognize as the equivalent to eq. (2.11),
which we used previously for the solution of a single equa-
tion. As Faucett (2002) points out, it is generally not practi-
cal to evaluate the inverse of the Jacobian, so as an alternative,
we solve the system of linear equations to determine the
corrections for x:

J(x)y =—F(x). (2.42)

The values for y are used to improve x: X,., = x + y. We
choose our initial estimates for x; through x; to be 2, 2, and
2, and then get the nine initial values for the Jacobian:

24 12 1
0.7071 —1.0607 0.7071
16.9706 1.4142 3.5355

This yields three simultaneous equations for the correction
values (the ys):

24y, +12y, + y; = 0.968 (2.43)
0.7071y, —1.0607y, +0.7071y; = —0.7754 (2.44)

16.971y, +1.4142y, +3.5355y, = —1.575. (2.45)
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The reader may want to verify that the solution for these
three equations is 0.6407, —0.9382, and —3.144 for y,, y,,
and ys, respectively. Therefore, our revised estimates for the
three unknown variables (the x;s) are 2.641, 1.0618, and
—1.1444. Of course, this changes the values in the Jacobian,
so it must be recalculated then used to get improved values
for the corrections (the y;s). The entire process is repeated
until the change in the x;s is sufficiently small to indicate
that a solution has been identified.

Often we can expect this to require four to six trials—and
possibly more.

Pattern Search for Solution of Nonlinear
Algebraic Equations

Sequential Simplex and the Rosenbrock Method We
noted previously that search techniques (optimization algo-
rithms) can be used to solve many types of algebraic equa-
tions and this author has found sequential simplex to be
particularly useful for the exploration of nonlinear systems.
The optimization method we first consider was devised by
Spendley et al. (1962) and refined by Nelder and Mead
(1964); it is most readily visualized in two dimensions.
Suppose we are interested in the system of equations:

6t + 2 = 61.4167 (2.46)
X
and
752 %2 12230, (2.47)
X1 0

We disregard the fact that x; can simply be factored out
of the first equation, facilitating easy solution. Furthermore,
we know that the values we seek for the unknowns lie
between 0 and 10. We modify the problem to search for the
minimum of the function, F:

2

752 -T2 12930
50

2
F = xx,2 +ﬁ—61.4167] +
X

X2

(2.48)

It is convenient—and conceptually useful—to think of F'
in terms of a contour plot in the x; — x, plane.

Our objective here is to use the simplex pattern search to
identify the “valley” that is prominent in the left-center of
Figure 2.3; that is where the minimum is located. We will
do this in the following way: Place a small equilateral tri-
angle on Figure 2.3 and calculate the function F at each of
the three vertices. We reject the “worst-valued” vertex and
project the simplex away from it; that is, we form a new
triangle using two of the original vertices with the third on

1 + T . T . T y T . T . T .
1 2 3 4 5 6 7 8
X1

FIGURE 2.3. Contour plot for the function, F. The actual solution
for this problem is x; = 3 and x, = 4.5.

the other side. We evaluate F at the new vertex and repeat
the process.

There are several observations we should make about this
scheme. Obviously, if we use a fixed-size triangle that is not
small, we will not get a very good estimate for the solution
location, regardless of the number of cycles employed. At
the same time, if we make the equilateral triangle very small,
it may take a very long time to follow an elongated valley
such as the one seen in Figure 2.3. Clearly, we must change
the size and shape of the triangle dynamically through the
course of the search. This is where the improvements offered
by Nelder and Mead (1964) come into play. For example, if
we identify a new vertex, and the function F is improved in
that direction, then why not accelerate the movement by
elongating (stretching) the triangle? In this two-dimensional
case, there is no reason why we must maintain the equilat-
eral form. If we can both stretch and contract the simplex,
as needed, we should be able to follow just about any ridge
or valley and do so efficiently.

The Nelder—-Mead modifications to sequential simplex
produced a powerful tool to find minima of functions.
Although Nelder—-Mead codes are a bit more complicated
than the search examples we have used previously in this
chapter, a very effective version appears in detail in chapter
6 in Shoup and Mistree (1987). The critical steps in the logic
are as follows:

e The merit function F is constructed and the number of
unknowns (dimensions) is specified.

* The initial length of a simplex side is specified and the
estimates for the unknowns are provided.

* The vertices of the initial simplex are determined.
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e The merit function, F, is evaluated at each vertex.
e The worst and best functional values are determined.

* The centroid of the simplex is evaluated and the posi-
tion of the reflected point is determined (projected
away from the worst F, of course).

e Fis determined at the new point; if it is better, expan-
sion is employed (factor of 2).

e If the reflected F is worse than the other vertices, con-
traction is implemented (factor of ¥2).

* A check for convergence (based on the change in F) is
made by comparison to a set value, say, 1 x 107°

e Results are directed to output if convergence is
attained.

Let us see exactly how this works by applying the tech-
nique to the two-dimensional problem we introduced earlier.
Some of the pertinent information along with results and the
final value of the function being minimized are presented in
the following table. Note that the final value of the merit
function F has been multiplied by 1 x 10’.

Ele;rt:;:h for Starting Values Final F Final Values
Simplex X X (x107) X X
0.05 0.5 0.5 13.575  0.315976 0.0051447
0.10 1.0 1.0 2.574  0.315987 0.0051449
0.25 2.0 2.0 0.142  2.999995 4.500002
0.50 5.0 5.0 3.4615 2.99996  4.500026
0.75 7.0 1.0 47736  2.999953 4.500032
0.05 2.0 5.0 0.590  3.00001 4.499987
0.10 2.0 7.0 1.585  2.999982 4.500025
0.10 8.0 6.0 1.813  3.000005 4.499982
0.10 0.5 9.0 2.971  3.000031 4.499991

There are a couple of important characteristics of this
technique that are revealed by this example: We must bear
in mind that the starting point matters and that the initial size
of the simplex leg can impact the results. Moreover, the
elongated valley apparent in Figure 2.3 is typical of many
engineering problems. Although the Nelder—Mead version
of sequential simplex can usually adapt to such circum-
stances, there are specialized search methods designed spe-
cifically to follow ridges and valleys. One example is the
Rosenbrock method in which the axis of the search is aligned
with the orientation of the ridge, allowing rapid progress
toward the location of the optimum. The basic idea is easy
to visualize in two dimensions; suppose we have an optimi-
zation problem involving two variables, x; and x,. We begin
the search with trials in the x;-direction, identifying suc-
cesses and failures. Assume we obtain a success. Then we
search the x,-direction, and if a success is achieved, we
rotate the coordinate system such that one new axis is the
vector sum of the two successes (and the other orthogonal
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Starting point: 7, 7
74

“| Endpoint: 2.999992, 4.500013

x(2)

Final F value: 4.511268 x 1078
1 T T T T T T T T

1 2 3

5
x (1)

FIGURE 2.4. Progress of the Rosenbrock search method applied
to the problem illustrated previously in Figure 2.3. Because of the
very poor choices made for scaling factors and the starting point,
535 steps were required to identify the endpoint, 2.999992 and
4.500013. Nevertheless, the final value of the objective function
was 4.511268 x 107®. Notice how the search direction has changed
to follow the valley shown in Figure 2.3.

to it, of course). When successes are achieved, we increase
the step size in that direction in the next cycle (Rosenbrock
recommended a factor of 3). For a failure, the step size is
contracted (and reversed) using 1/2. The appeal of Rosen-
brock’s approach is that the analyst obtains acceleration in
both distance and direction. We will now use the previous
example, illustrated by Figure 2.3, to reveal how Rosenbrock
works in two dimensions. Our code is one that has been
adapted from Shoup and Mistree (1987), and it requires
specification of

¢ (test value for minimum step size, 1 x 107°)
« (scaling factor for step-size increase, 1.25)
0 (scaling factor for step-size reduction, 0.85)
ST (initial step size, 0.01).

Please note that we have selected suboptimal values for
both « and (3; this has been done to better reveal the Rosen-
brock scheme’s progress toward finding the valley revealed
in Figure 2.3. We are also going to start the search from
the initial point, (7, 7), and attempt to minimize the func-
tion given by eq. (2.48); we will illustrate the progress in
Figure 2.4.

A problem that can be encountered with the Rosenbrock
method and one that has been mentioned by Beveridge and
Schechter (1970) is that it can be slow to start particularly
if the initial step size must be reduced repeatedly. It is,
however, a very powerful tool that can be used to advantage
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for certain problems involving nonlinear, algebraic equa-
tions, and more importantly, examples of programming logic
for the Rosenbrock search can be found across the Web and
throughout the literature.

An Example of a Pattern Search Application Now let us
look at a problem type that is quite different (in both intent
and form) from the previous examples; we will use the
sequential simplex method. We still wish to minimize a
merit function developed from a set of simultaneous non-
linear algebraic equations, but our purpose is unlike previ-
ous examples in this chapter. Imagine we are seeking an
approximate relationship (a correlation) that could be used
to predict the likely attainable speed (S) achieved by a con-
ventional ship hull. It is apparent that some of the important
factors are displacement, hull length (L), beam (B), avail-
able horsepower (P), and hull shape. Of course, we know
that certain dimensionless ratios such as Reynolds number,
Froude number, and Euler number are important, but we
are going to try a minimalist approach and not worry
overtly about hydrodynamic forces. We propose that the
ship’s likely speed in knots can be determined in the fol-
lowing way:

S=al’B°P’. (2.49)

We intend to attempt this by using some available data:

Length Beam P (hp) S (knots)
Titanic 883 92 46,000 21
Bismarck 793 118 150,170 30
Missouri 887 108 212,000 33
Nimitz 1,040 134 260,000 31.5
Edmund Fitzgerald 711 75 7,500 14
Elco PT boat 80 21 4,500 41
Monitor 172 41 320 7-8

Keep in mind that we are using data from ships designed
in very different eras for very different purposes, so we
expect this may not produce the cleanest result we could
imagine. The minimum merit function (F) value was found
to be 4.9339 (using all of the data included in the accompa-
nying table) and the correlation that emerged was

S _ 34.90841470‘28125370‘5764P0‘3738. (250)

For the Titanic, the correlation yields 21.15 knots; for the
Elco PT boat, 40.84 knots; and for the Monitor, 8.34 knots.
(An aside: There are indications that Ericsson’s original
plans called for the installation of two engines. However,
one engine has been recovered from the site of the Monitor’s
wreck and is now on display at the Mariners’ Museum in
Newport News, Virginia. In trials in 1862, the Monitor was

able to achieve only 6.25knots.) One of the poorer results is
the Edmund Fitzgerald for which the correlation yields
12.83 knots (instead of 14). For the battleship Missouri (BB-
63), our equation indicates 34.1knots, and for the Nimitz
(CVN-68), it yields 31.1knots. This is encouraging, and the
correlation may be good enough to make some rough projec-
tions. Suppose, for example, we wanted a high-speed (50-
knot) hull that was 300ft long; we choose a beam of 40ft
(though such a design will be prone to roll) because the
importance of width to speed is clear. Our eq. (2.50) indi-
cates that about 56,445hp will be required for this hull to
make a speed of 50knots; the fastest ship in the US Navy,
the 45+-knot LCS-1 Freedom, is 324 ft long with a beam of
43 ft and she has 96,000 hp. The correlation (2.50) suggests
that the Freedom should be capable of about 57knots;
however, the Freedom uses water jet propulsion, which is
known to be somewhat less efficient than a propeller. The
Nelder—-Mead version of sequential simplex is extremely
useful for solving this and related types of nonlinear
problems.

ALGEBRAIC EQUATIONS WITH CONSTRAINTS
Suppose we have the algebraic equation

2x° 4+ x> —8x 4+ x, +1=0 (2.51)
accompanied by the constraint 2x; — x, = 0. We wish to find
the stationary point (values of the independent variables that
cause the derivatives to be zero) and we will do so by using
two very well-known methods. First, we will make use of
the Lagrange multiplier, \. We write a combination of the
equation and the constraint as follows:

F = 2.X12 +XZ2 _le +XZ + 1 -I—)\(le — .xZ). (2.52)

We now differentiate F with respect to all three variables:

OF

—=4x-8+2\=0
X
F
ST =2x+1-A=0 (2.53a,b,c)
2
g_i - 2x1 - X2 - 0.
These three equations are solved yielding x; = 1/2,

x, = 1, and A = 3 (the reader may wish to verify this
solution). Next, to provide a contrast, we will apply Cou-
rant’s penalty method to the very same problem; in Cou-
rant’s scheme, we seek a minimum for the augmented
functional:
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F=2x24x>—8x +x +1+ g(le —xn) (2.54)

Note that no additional variable has been introduced,
only the penalty parameter, €. Of course, this means that the
penalty method is computationally simpler than the Lagrange
multiplier used earlier. This time, we have two derivatives
to set equal to zero:

8—F =4x —8+2e(2x;, —x,)=0 (2.55a)
axl

and
8—F =2x,+1—e(2x; —x,)=0. (2.55b)
0x,

With a bit of effort, one can show that

L TAt12e 143
784128 243¢]

and this result can be used to find x; = f(¢). As the penalty
parameter, €, becomes large, these expressions should con-
verge to the correct values for the two variables. We will
explore this process with the following results:

€ x(e) X(€)

1, 1.10000002384186 .400000005960464
10, .59375 90625

100, .509933769702911 .990066230297089
1,000, .500999331474304 .999000668525696
10,000, .500100016593933 .999899983406067
100,000, .500010013580322 .999989986419678

We see that Courant’s penalty method will approach the
correct values for our two variables if the penalty parameter,
€, is sufficiently large.

CONCLUSION

One of the interesting aspects of the solution of algebraic
equations is the spectrum of options available. In many
cases, the analyst can choose from several solution tech-
niques, all capable of producing the desired result. At the
same time, for some cases, no method will yield an appropri-
ate result. For students in the applied sciences, balancing the
focus between procedure and result may improve the chance
of success and lessen the chance of serious error. Obviously,
for “real” problems, we may have little or no information
available in advance and when these problems involve non-
linear algebraic equations, we may not have much insight
into where the solution we are seeking may be found.
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Although we will encounter cases where, for example, we
will know that the volume cannot be negative, or that the
summation of the mole fractions must be 1, situations arise
where we have no idea of the appropriate magnitude of the
unknowns. Such instances are disconcerting since it is dif-
ficult to know whether or not the solution procedure is
working properly. These comments are not meant to alarm
the student; they are only intended to point out that circum-
spection is critical. For nonlinear algebraic equations, the
analyst should consider the physical situation very carefully
before initiating an attempt to find a solution.

We can wunderscore the preceding observations
with a final example for which we will use a pair of widely
available tools. Consider the set of nonlinear algebraic
equations:

3

42184401 and x+xy+ x*y* = 2.80076.
X

(2.56)

Assume we know that both x and y are positive for the
solution we seek (in fact, x = 1.275 and y = 0.653). We first
use a scientific calculator from the TI-89, TI-92 family (TI
is the abbreviation for Texas Instruments). From the MATH/
Algebra menu, we select solve( ), and enter our two equa-
tions as follows:

solve(x"2+y~3/x=1.84401 and
X+x-y+x72-yr2=2.80076,{x=2,y=0.8})

and press ENTER. Using the guesses, x = 2 and y = 0.8, the
TI-89 produces x = 1.275 and y = 0.653003. However, if
we start with x = 1 and y = 1, we obtain x = 0.985357 and
y = 0.951078. Naturally, a software package like Mathcad
also has capabilities for problems of this type, using the
Solve Block:

yi=2
Given
3
x> + L =1.8440
X
x +xy + x?y? =2.8007

[ial] = Find(x, y)
yval
xval =1.275
yval = 0.653

Note that the initial estimates used at the top were x = 2
and y = 2. Once again, however, if we select 1 and 1 we
obtain x = 0.985 and y = 0.951; when we insert these values
into the pair of eq. (2.56), we find 1.84341 (instead of
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1.84401) and 2.79921 (instead of 2.80076). Even a very
simple nonlinear algebraic problem can produce undesired
or incorrect results if a solution tool is used incautiously.

PROBLEMS

2.1. Use the Newton—Raphson method to find a solution for
the equation

x*—2x° +6x—0.851372 =0.

It is known that the solution we are seeking is between
0 and 1.

2.2. Solve the set of simultaneous, linear algebraic equa-
tions represented by the augmented coefficient matrix:

5 1 1 -1 —1 0.899171
1 2 1 —4 0.223846
2 —1 —1 -1 0.49982
3 3 -2 -3 -3 0.072511
-1 —1 —1 7 7 0.979619

2.3. Consider a steel pipe with a nominal diameter of 3”
(actually 3.068” ID). Water flows through the pipe (which
is 980 ft long) at an average velocity of 8.75ft/s. The Reyn-
olds number associated with this flow is

_d<V>p (3.068/12)(8.75)(62.4)
o ()6.T72%x107Y)

Re =207,729.

The friction factor for this flow is approximately given
by f= 0.0791/(Re)"*. Therefore, the value of f for the origi-
nal flow is about 0.0037. In an effort to increase the flow
rate, a parallel (also nominal 3”) pipe is installed over the
last 600ft. Find the (increased) flow rate through the new
arrangement. The design equation for flow through a hori-
zontal pipe is

— L
AL(VY +%+Z;<V)2 =0
h

This allows us to calculate the pressure drop through the
original 3” pipe; initially, there is no change in kinetic
energy, so

980
0.0639

PLZP2 _ (172)@8.75) [ ](0.0037) =2172.3 ft* /s>,
P

We now multiply by the fluid’s density and take care of the
mass—force conversion problem using g.. The result is
29.26psi (p; — p»). In the revised installation, the overall

pressure drop is exactly the same, but we have an additional
3” pipe over the last 600 ft. Find the new flow rate by writing
the design equation three times, for the initial 380 ft of 3”
pipe and then once for each of the two parallel legs extend-
ing from 380 to 980 ft.

2.4. We will consider a problem in chemical equilibria in
which a compound is put into water and dissociation occurs.
Let us preface this problem with a little review.

Compounds like silver chloride (AgCl) are sparingly
soluble in water; at 10°C, about 0.00089g AgCl will dis-
solve in 1L of water. An equilibrium will be established
among the three species:

x _ [AgIICI ]
[AgCl]

where K is the equilibrium constant. Water itself is a weak
electrolyte for which

H,0 < H* +OH".

At 25°C, K, = [H*][OH ] =1 x 107" In contrast, sodium
hydroxide (NaOH) is a strong electrolyte that will almost
completely dissociate in water. Therefore, if we add
0.005 mol NaOH (about 0.2 g) to a liter of water,

1x107* =[H"][OH ],
but with complete dissociation, [OH™] = 5 x 1073, so

_1x107"

T 2x107"2
X

[H']

Since pH = —log;o[H'], pH = 11.7.

Now, suppose we place 0.0002 mol HCl in a liter of water
at 25°C. We want to find the concentrations of all four
species, as well as the pH of the resulting solution. There-
fore, we need

[H"] [ClI"] [HCI] and [OHT].
The following relationships are available to us:

[H][CI"]
[HCI]

[HY][OH =K, =1x107", =K=1x10’

[HC1]+[Cl"]=2x10"* (total concentration)
[H*]1=[CI"]+[OH"] (electroneutrality).
2.5. Use the technique of your choice to find a solution for

the following set of equations, given that all of the unknowns
lie between zero and one:



X2 exp(—x,) + x; = 0.385028

— T —220022
X"+ X3

X +x, —x;° =0.710317.

2.6. The equation, 0.5 + exp(—0.085¢) sin(2¢), has a finite
number of zeros for positive values of ¢ between 0 and 11.
Devise a method that will locate and count all of them.

2.7. Most airline travelers would prefer to spend less time
in the air. Clearly, one way this could be accomplished is
to increase the speed of aircraft. Presently, large passenger
airplanes cruise at high-subsonic speeds, and at altitude,
this means about 500-600mph. If longer flights could
cruise at Mach 2 or 3 (or more), travel times would be
reduced significantly. The problem is twofold: We have the
rise in drag accompanying supersonic flight (which dra-
matically increases fuel consumption) and we have aero-
dynamic heating. For example, if we look at the Concorde
(now retired from service), we find fuel consumption at
full power of 6180gal (Al jet fuel)/h; the Concorde was
able to carry one passenger about 17 mi on a gallon of fuel.
We can contrast this with a Boeing 747; with 500 pas-
sengers, a 747 can carry one passenger between 60 and
100mi on 1gal of fuel. Of course, it will take two and a
half times as long to reach the destination! So this raises
an interesting question: What must the design characteris-
tics of an advanced aircraft resemble in order for the craft
to carry a hundred or more passengers at a cruising speed
of Mach 3 or 4? Here are some approximate data from
open sources:

Gross Max
Aircraft Span Weight Thrust Cap  Speed
LH C-140 54 38,940 6,000 12 512
DH Comet 115 162,000 42,000 101 525
B 737-700 117 150,000 52,600 149 540
H FGA.9 34 18,000 10,050 1 627
NA F-100D 39 34,832 16,950 1 864
MD F-101B 40 52,400 33,800 2 1,130
Concorde 84 408,000 152,000 128 1,330
NA A3J-1 53 49,500 32,300 2 1,385
Con B-58A 57 160,000 62,500 3 1,385
LH F-104G 22 27,000 16,150 1 1,450
Con F-106A 38 35,000 24,500 1 1,525
MiG 25 46 80,950 49,400 1 1,900
LH SR-71 56 170,000 68,000 2 2,090
X-15 22 33,000 70,400 1 4,519

Some observations: Note the relatively high take-off
weights for the Concorde and the SR-71; this is indicative
of the fuel load required if one wants to cruise at high
speeds. Even so, the SR-71 had to be refueled routinely in
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flight to accomplish its long-range surveillance missions.
The very low weight of the X-15 was possible because it
was air-launched (dropped from underneath a B-52). One
factor we referred to previously that is not reflected here is
the trouble caused by aerodynamic heating. For many super-
sonic aircraft, this was/is a serious limitation on the perfor-
mance envelope. The MiG 25, for example, could only be
flown at high Mach for a few minutes before the structural
components would attain unsafe temperatures. The X-15
suffered serious thermal damage during its October 1967
flight in which it achieved Mach 6.7. The tabulated data
make it pretty obvious that to carry 100 passengers at the
desired speeds, we will need a wing span of 90-100ft and
a take-off weight of least 200,000-300,0001b.

2.8. Find a solution for the following set of nonlinear alge-
braic equations:

X7 exp(—2x,) +10/ x; = 2.34284
x,x,2 4+ 3x; =25.5966

3
X; + X3

Jx

2.9. Miiller’s method, a root finding technique in which a
parabola is fit to three points, can be modified to find
complex roots. Consider the fourth-degree polynomial:

=48.1033.

L 17 4 353, 17 185
X——x+—x" ——x——=0.
2 18 2 18

Search for real roots using the method of your choice and
then use polynomial deflation to locate the complex conju-
gate pair. Confirm your findings using a calculator (like a
TI-89) or a suitable commercial software (you should get
—1/2, +5, and 42 = i/3). Then, repeat the analysis by con-
sulting the literature (e.g., section 7.4 in Chapra and Canale,
2002) and developing a routine to use Miiller’s method for
the same purpose. The following discussion should help you
get started.

We assume that the function can be approximated with
the polynomial:

Jx)= a(x—x,)* +b(x—xo)+c.

This choice ensures that f{x,) = ¢ and thereby lessens our
workload. We arbitrarily select 4, 6, and 8 for our three trial
points; we find fi4) = —18.5, fi6) = 104.714, and
f(8) = 920.783. We choose x, = 8 for our reference point,
so ¢ = 920.783. Our function values at x = 4 and x = 6 give
us two simultaneous equations for a and b: a = 86.607 and


http://urn:x-wiley:9781118749920:xml-component:w9781118749920c7:c7-sec-0000
http://c2-bib-0002

32 ALGEBRAIC EQUATIONS

b = 581.249. Of course, we want to identify the value for x
where f = 0. Thus (after dividing by 86.607),

0=(x—8) +6.7113(x —8)+10.632.

Letting z = (x — 8), we have the quadratic:
72 + 6.7113z + 10.632, with solutions at —4.14835 and
—2.56295. Remembering to add 8, we get our improved
estimates and the closest one is +5.43705. One advantage
of Miiller’s technique is the use of the quadratic equation—
we will be able to locate complex roots should they
arise. We can also minimize our workload by reusing the
trial points closest to the root estimate. In this case, we
would discard x = 8, retaining 4, 5.43705, and 6 for our
next cycle.

2.10. The cargo ship MSC Fabiola is one of the largest
container transports ever constructed. She is 366 m (1200 ft)
long with a beam of 48 m; the gross tonnage is 140,259. This
class of freighter will not fit through the Panama Canal
(which is one of the reasons why the canal is being enlarged).
Estimate the maximum speed of the MSC Fabiola given that
her turbines produce 98,000hp (single screw). It has been
reported that she is capable of 19.5knots. Is that speed real-
istic? Does it appear that the correlation given by eq. (2.50)
is appropriate for the Fabiola?

2.11. Solve the set of simultaneous algebraic equations:
(Xl — X2)2 + X1X2X3 - 61.0229
X] +X2 +X3 - 15.8225

X X 1366,
X' X,

‘We know that for all three variables, 0 < X, < 10. Use the
method of your choice.

2.12. The Lagrange multiplier (\) is often used for con-
strained optimization problems. Consider the equation

2x12 —3x22 _le + x2 == _5.1207,

accompanied by the constraint, 2x; — 3.066202x, = 0. Use
the Lagrange multiplier to solve this problem; that is, find
the stationary point subject to the constraint.

2.13. Use your choice of methods to seek a solution for the
two simultaneous equations:

BEXPCAT) 3 4057
X

and

x, tan(x,)

xix, + =77.4525.

X2
‘We know that both unknowns are between 0 and 2.

2.14. The first seven Chebyshev (or Tschebysheff) polyno-
mials of the first kind are:

Ty(x)=1, Ti(x)=x

T (x)=2x>—1, T,(x)=4x* —3x

T, (x)=8x* —8x* +1, Ts(x)=16x>—20x> +5x
T (x) =32x° —48x* +18x> —1.

These polynomials are solutions for the Chebyshev differ-
ential equation (for Mathcad, see Tcheb(n, x)). Suppose we
need to identify all of the zeros for 7¢(x) on the interval,
—1 < x < +1. Prepare a plot of this polynomial and then
use the method of your choice to find accurate values for the
roots.

2.15. A liquid-phase reaction was carried out in a batch
reactor to study A + B — C + D. The experiment was con-
ducted for four different trials and stopped at different
elapsed times. The data obtained consisted of the duration
of the experiment and the concentration of species D:

Time (s) 780 2040 3540 7200
[D] (mol/L) 0.0112 0.0257 0.0367 0.0552

Two different rate expressions have been proposed for this
reaction:

d[A] d[A] 2

——=—-k|A] and ——=—-k,|A|B|=—k,|Al,

4] and S [A]B] = k[
which, when integrated, yield In[A] = —ki + C; and

—(1/[A]) = —kyt + C,, respectively. Which rate expression
is more nearly correct? There is no D present in the reactor
initially, and the initial concentrations for A and B are
both 0.1.
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VECTORS AND TENSORS

INTRODUCTION

A significant area of interest in continuum mechanics is the
application of forces to material objects and the response of
those objects to the applied forces. Most of us tend to think
of a force simply as a directed line segment (possessing
magnitude and direction), but a little caution is in order here:
We must remember that the effect of a force applied to a
body depends on both its line of action and the point at
which it is applied. For example, if one were using a lever
to move a boulder, the distance between the point of applica-
tion and the fulcrum would have enormous impact on the
effectiveness of the action. We also need to emphasize that
our discussions here are concerned with continuum mechan-
ics in three-dimensional Euclidean space. Thus, when we
speak of tensors, for example, we mean Cartesian tensors.
Tensors do figure prominently in non-Euclidean spaces,
but those applications are not relevant to our principal
objectives.

We will begin by reviewing what we mean when we refer
to scalars, vectors, and tensors. A scalar is a quantity that
has magnitude only; for example, we might find that an
enclosure has a volume of 1.2 m* or that the fluid contained
within has a temperature of 215°F (101.67°C). We also
observe that a scalar is a zero-order tensor (we will use order
and rank synonymously). In contrast, a vector has both
magnitude and direction, and we can think of force and
velocity as examples. A vector with three components is a
first-order tensor. By tensor we merely mean an ordered set

of numbers; second-order Cartesian tensors (with nine com-
ponents) are very important in the mechanics of materials
and in hydrodynamics. The third-order alternating tensor,
€;it» has 27 components and is equal to +1 if the subscripts
are in cyclic order (e.g., 1, 2, 3 or 2, 3, 1), —1 for anticyclic
order, and zero otherwise. The alternating tensor is particu-
larly useful for the cross product of certain vectors. You
probably have detected a pattern:

Tensor Order

0

Number of Components

O W =

1
2
3 27

To illustrate how second-order tensors come about, let us
think about a force acting on a surface such that the dimen-
sions are F/L* or M/(Lf*). Of course, pressure and shear
stress are prime examples and we recognize that two direc-
tions are important for such quantities. Consider a fluid
flowing in the x-direction past a fixed solid surface located
at y = 0; because of the Newtonian no-slip condition (New-
ton’s law of viscosity), a shear stress will be created by the
surface as shown in Figure 3.1.

We will interpret this shear stress, T,,, as a force acting
on the y-plane (the fixed surface is located at y = 0) due to
fluid motion in the x-direction. Since we have three principal
directions, it is clear that each of the two indices on 7 can
assume one of three values, corresponding to x, y, and z in
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FIGURE 3.1. Shear stress created by fluid motion past a solid
surface. For this illustration, v, = my and 7,, = —u(dv,/dy) = —pum.
Momentum is transferred to the stationary surface (in the negative
y-direction).

rectangular coordinates. Thus, the stress tensor consists of
the set of components:

xx xy Tz
Ty Ty Ty (3.1
T sz Tz

You will see immediately that the subscripts are repeated
on the diagonal; these are called normal stresses and their
sum is called the frace of the tensor. The off-diagonal com-
ponents are shear stresses, and we should recognize that the
corresponding off-diagonal stresses must be equal; that is,
Ty = Ty 1f this were not the case, then an infinitely small
element of fluid could experience very large (infinite!)
angular acceleration. This requirement means that the stress
tensor is symmetric and that it contains just six independent
quantities.

It is common practice to write second-order tensors using
the Cartesian summation convention. For example, we might
write S; where the indices i and j can each assume the values
1, 2, and 3. Consequently, if we write S; (with repeated
subscripts), we mean

Sii = Sn +522 +Ss3, (3~2)

which of course is the trace of the tensor as we observed
previously.

MANIPULATION OF VECTORS

Let us review some vector algebra, noting that A, B, and C
are vectors and that ¢ and b are scalars:
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A+B=B+A commutative 3.3)
A+B+C)=(A+B)+C associative (addition) (3.4)

a(bA) = (ab)A = b(aA) associative (multiplication)

(3.5)
(a+b)A=aA+bA distributive 3.6)
a(A+B)=aA +aB distributive. (3.7

When we refer to unit vectors, we mean unit length.
Therefore, for vector A with length a, unit length is otained
simply by A/a. In rectangular coordinates, it is common
practice to write the unit vectors as i, j, k, corresponding to
the x-, y-, z-directions.

We will review these basic operations by looking at a few
examples. Let the vectors A and B be given by

A=4i-3j+2k (3.8)
B=5i+5j+3k. (3.9
First, we look at the sum:

A+ B=(4+5)i+(—=3+5)j+(2+3)k =9+ 2 +5k.
(3.10)

The magnitude of A is
|A|=[(47 + (=37 +(2)*]” =29 =5.38516.  (3.11)
If we multiply B by a scalar, b, letting b = 3,
bB=3(5i+5j+3k)=15i+15j + k. (3.12)

Now suppose a body, M, is being acted on by three dif-
ferent forces, F,, F,, and F;. Let

F=5i+5j—1k (3.13)
1.

Fr=6i— j+1k (3.14)

F=3i—3j+2k (3.15)

The resultant force is F, + F, + F:
.3
R:Fl+F2+F3=14l+E]+2k. (3.16)

If we wished to prevent movement of the body, M,
we could apply a force corresponding to —R: —R=
—14i—3 j—2k. This force would produce equilibrium and
the body, M, would naturally remain at rest if it were initially
stationary. Let us now assume that we would like to identify
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the unit vector that is parallel to the resultant of two forces
given by

F=3i+2j+2k (3.17)
and

F,=2i—1j+1k. (3.18)
The resultant is

R=F +F =Gi+2j+2k)+2i—1j+1k)=5i +1j+ 3k.
(3.19)

The magnitude of the resultant is
IR|=[(57 +(1)* +(3)*]” =35 =5.91608. (3.20)
So the unit vector we are seeking is

R _SiH1H3K () 945151 +0.16903 ) +0.50709%.
IR 5.91608

(3.21)

Often we are interested in the angle between a given
vector and the coordinate axes. For transparency, we will
start with a vector in the x-y plane and determine the angle
(0) between this vector and the x-axis. Let

F, =6i+3j. (3.22)

It is apparent that tanf = 3/6 such that 6 = 0.4636

rad or 26.57°. More generally, if a vector in three-space is
given by

F =6i+3j+2k, (3.23)

then the angles between this vector and the coordinate
axes are

0, =cos™! ﬁ, (3.24)
1
0, = cos™ ﬁ, (3.25)
1
and
0, = cos ™! ﬁ (3.26)
1

F=400N

25°

X

FIGURE 3.2. A force of 400 N applied in the x-y plane at an angle
of 25°.

Since |[F|=~/3649+4 =7, the three angles we are seeking
are 0.5411, 1.1279, and 1.2810 rad, respectively. Please note
that

cos’ 0, 4 cos> 0, +cos’ 6, =1. (3.27)

Now we will consider a force, F, applied at the origin
in two-space (the x-y plane); we will illustrate this in
Figure 3.2. We can resolve F into x- and y-components if
we know the angle, 0. Suppose, for example, that F = 400N
and 0 = 25°; then

F. = Fcos(0) = (400)(0.9063) = 362.5N  (3.28)
and
F, = F'sin(0) = (400)(0.4226) = 169 N. (3.29)

Of course, the resultant of F, and F, can be found by rect-
angular resolution; that is,

F=.JF2+F? =399.96N. (3.30)

The discrepancy is merely the result of roundoff error.

An illustration: Suppose a light aircraft flies due east with
a ground speed of 120 mph; it is subjected to a constant wind
from the south blowing at 14 mph, as shown in Figure 3.3.
What is the effective ground speed of the airplane, and where
will it be after 1 hour (if the pilot makes no corrections)?

In this case, tan(f) = 14/120, so 0 = 6.654°. After 1 hour,
the aircraft will have traveled 120.81 mi and it will, of
course, be 14 mi north of its intended destination. This
elementary example underscores one of the difficulties of
navigation prior to GPS. On a long flight, a small crosswind
could result in a catastrophic error if not caught by the
navigator. It is thus easy to understand how Amelia Earhart
and Fred Noonan missed Howland Island in 1937 on their
2500-mile flight from Lae (to Howland) when their radio
direction finder (RDF) did not function properly.
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FIGURE 3.3. Effect of a crosswind on a light aircraft flying due
east at 120 mph.

22

18° 120 bir

FIGURE 3.4. Effect of a quartering wind on a light aircraft flying
east at 120 mph. The wind is blowing to the ENE at 22 mph.

An important variation of such problems arises when the
second vector is not perpendicular to the first. Now assume
that the same aircraft, flying east at 120 mph, experiences a
quartering wind blowing 22 mph at an angle 18° north of
east as shown in Figure 3.4.

In this case, the plane’s speed to the east will be

120+ 22 cos(18°) = 140.92 mph. (3.31)
However, its velocity to the north will be
225sin(18°) = 6.80 mph. (3.32)

After 1 hour, the craft will have flown a distance of about
141.08 mi and it will be 6.8 mi north of the intended point.

Force Equilibrium

Let us review a familiar type of problem in which we utilize
equilibrium at a point. Imagine, for example, that during the
erection of a building, a structural member (a beam 30 ft
long) weighing 800 1b is temporarily leaned against a verti-
cal wall as illustrated in Figure 3.5 (the angle between the
ground and the beam is 50°). At the upper end, the wall
exerts a horizontal force on the beam indicated by F,. The
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F
-—

F>

50°

FIGURE 3.5. A structural member (or beam) lying against a verti-
cal wall. The beam is 30 ft long and weighs 800 lbg; the angle of
inclination with respect to the ground is 50°.

ground exerts a force on the bottom end of the beam indi-
cated by F,. We recognize that under the equilibrium condi-
tion, the summation of forces in the horizontal (x-) direction
must be zero. Similarly, the summation of forces acting in
the vertical (y-) direction must also be zero; therefore,
Focos(@)—F =0 and Fsin(d)—W =0. (3.33)
For us to solve these equations, we must determine the
angle, 6: We do this by using two right triangles and the
first of these is formed using the lower half of the beam such
that the hypotenuse is 15 ft; the vertical leg is the distance
from the midpoint of the beam to the ground. Therefore,
x = 15 cos(50°) = 9.642 ft. Now we can determine 6 (the
angle between the line of action of F, and the ground):
tan(0) = 22.98/9.642, so 6 = 67.24°. Our horizontal and
vertical force summations are now used to compute
F, =867.56 b and F;, = 335.64 1b. Of course, the very same
problem can be worked more easily by noting that at equi-
librium, the summation of moments about the z-axis must
be zero.

Equating Moments

Recall that the moment of a force is the measure of the
torque introduced about a chosen point; the moment is the
product of the magnitude of the force and the perpendicular
distance between the selected origin and the line of action
of the force. Furthermore, according to Varignon’s theorem,
the moment of the resultant of two forces equals the sum of
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FIGURE 3.6. A cylindrical object of radius, R, and weight, W,
has rolled up against a step of height, 4. A force is to be applied
at the center with the intent of moving the cylinder to the top of
the step.

the two moments of the two forces. Therefore, if an object
is acted on by multiple forces—yet remains at equilibrium—
then the sum of the moments must be zero. Let us apply this
result to an example.

We imagine a cylindrical object with radius, R, that has
rolled up against a curb (or step) of height, &. We wish to
apply a horizontal force, F, to get the cylinder to roll up over
the curb. The force will be applied at the center of the cyl-
inder, although it is obvious that this is not optimal. The
cylindrical object has weight, W, and the arrangement is
illustrated in Figure 3.6.

The moment arm for the applied force, F, is R — h. The
moment arm for the weight (due to gravity) is x, the hori-
zontal leg of the triangle. Therefore,

F(R—h)=Wx, (3.34)
with x obtained as follows:

9=sin’1Rih,
R

and x = Rcos . We can examine this result quantitatively by
setting R = 10 and 7 = 2 (a fairly small step). For this case,
f = 0.9273 rad (53.1°) and x = 6. Therefore, F = 0.75 W.
This will, of course, change dramatically if the step height
is greater; we can repeat the problem but with 7 = 7. The
reader may wish to verify that ' = 3.18 W in this case. We
observe that the point of the step exerts a force on the cyl-
inder; at equilibrium, the x- (horizontal) component of that
force must counter F and the y-component must balance W.
For the case in which & = 7, this force will total 3.33 W and
the angle between the line of action and the upper horizontal
surface will be 17.46°.

A different situation can arise when coplanar forces act
on a body at different locations. To illustrate, let us take the
case where forces F, and F, are acting on a rigid body as
depicted in Figure 3.7.

Py 01

F

F

Py 0>

FIGURE 3.7. Coplanar forces acting on a rigid body at different
locations.

We begin by constructing auxiliary forces P, and P,,
which are equal in magnitude but opposite in direction.
Then the lines of action for Q,; (the resultant of F, and P,)
and Q, (the resultant of F, and P,) are constructed and
extended back to the point of intersection, B. The force
transmitted to the solid body is R, which is the resultant of
the pair, Q; and Q,. Naturally, the magnitude of R is just
the sum of F, and F»; the line of action of the resultant is
obtained by noting that we have similar triangles (created
by extending Q, and Q, back to the point of intersection,
B). The case of coplanar, nonparallel forces (applied to a
rigid body) is simpler—it is only necessary to extend the
lines of action to the point of intersection. Of course, it is
entirely possible that a pair of parallel, coplanar forces act
in opposite directions. If they have the same magnitude, the
result will be a couple, and a couple acting on a rigid body
will produce rotation.

Projectile Motion

Imagine a situation in which a projectile is launched in the
x-y plane at an angle (relative to level ground) of 6 with an
initial velocity of V. If we neglect drag (a potentially serious
omission), then the initial horizontal and vertical velocity
vector components are

Vio=Vycosf and V,, =V;sind. (3.35)
Since gravity acts in the negative y-direction, we know

V, =V, sinf— gr; (3.36)
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the projectile will reach its apogee when V, = 0, or
Vosinf = gt. During flight, the angle between the instanta-
neous trajectory and the ground is 6 = tan~'(V,/V,). We can
look at a simple example for illustration: Let V, = 300 ft/s
and 0 = 35°. The initial horizontal velocity is 245.7 ft/s and
the initial vertical velocity is 172.2 ft/s. The maximum verti-
cal height above ground will occur at

. (300)0574) _

5.35s, (3.37)
(32.17)

and that maximum height will be

=4609ft, (3.38)

t=535

Ymax = [(VO Sil’le)l _%gtzl

a number that is actually quite unrealistic. After 8 seconds,
the angle between the ground and the projectile’s trajectory
would be

(300)(0.574) — (32.17)(8)
(245.7)

9:tan1[ ]:—19°; (3.39)

that is, 19° below horizontal. As we implied earlier, the
effect of drag on the motion of projectiles is profound. For
example, returning to the previous illustration, if the projec-
tile were a sphere launched in air (with R = 1 in. and
m = 1 lb,,) the maximum height would be about 394 ft and
that would be attained in about 4.83 seconds. A larger object
of the same mass would experience greater drag, of course.
If we let R = 2 in., then y,,x = 288 ft and that height is
achieved at t = 3.93 seconds.

Dot and Cross Products

In physics, we often think of the dot product in the context
of work: Work is performed when a force is applied to a
body, the body moves, and a component of the force vector
is acting in the direction of the motion. Thus, W = f ]2 F-ds.
The dot product of vectors A and B is written A-B and it is
a scalar. For example, given the situation depicted in Figure
3.8, then A-B = (100)(50)cos(8). If the angle 6 = 30°, then
A - B = 4330.13, but if § were changed from 30° to 85°,
then A - B = 435.78.

30°

P A =100

FIGURE 3.8. Illustration of coplanar vectors A and B forming an
angle of 30°.
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More generally, given two vectors A and B:
A=Ai+Aj+Ak and B=Bji+B,j+ Bk, (3.40)

then

A . B = AlBl +Asz + A3B3. (3.41)
Similarly, A - A = A + A> + A2 If A - B =0, and
neither is null, then A and B must be perpendicular. For
example, suppose A = 2i + 3/, and further, that A is perpen-
dicular to vector B (and both in the x-y plane). We have
A - B = |AlIBlcosf and since 8 = 90°, we must have
2i 4+ 3j) - (bii +by) = 0, or 2b; + 3b, = 0. Thus,

b\/b, = —(3/2). We also make note of the following proper-
ties of dot products:

A-B=B-A commutative (3.42)
A-(B+C)=A-B+A-C distributive (3.43)
a(A-B)=(aA)-B= A-(aB). (3.44)

The cross product of two vectors, indicated by A X B, is
also a vector, C. Thus,

AxB=C, (3.45)

where C is perpendicular to the plane of A and B. Further-
more, C follows the right-hand screw rule, so for the case
in which A and B correspond to the x- and y-axes in the
plane of the page, force C is directed out of the page toward
the reader. We also have the following relations for the cross
(or vector) product:

AXxB=—BxA notcommutative (3.46)
Ax(B+C)=AxB+AxC distributive (3.47)
a(Ax B)=(aA)x B= Ax(aB) (3.48)

There are applications requiring triple products of the
vectors, A, B, and C; the scalar triple product is

A-(BXxC)=B-(CxA)=C-(AXB). (3.49)
This relation gives us the volume of a parallelepiped

defined by the three vectors. Given A = 2i + 4j + k,
B=6i —j+ k,and C = 0 4 j + 3k, for example, we have

2 4 1
6 -1 1=—6+0+6-0-2-72=-74.
0 1 3
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The vector triple product is
Ax(BxC)=B(A-C)—C(A-B). (3.50)

Equation (3.50) is often referred to as the “BAC — CAB”
rule—a useful mnemonic device as long as one remembers
the minus (—) sign.

Differentiation of Vectors

Let us suppose that a vector is a function of a scalar like
time, ¢. In particular, let A = A;i + A,j + Ak, where A}, A,,
and A; depend on ¢. Then

dA dA, . dA, . dA
—=—it+—j+—k 3.51
dt dt ' dt J dt ( )

Naturally, dA/dt = 0 if A is a constant vector. We
also want to consider the case in which B = B,(x,y,2)i +
B,(x,y,2)] + B;s(x,y,2)k, and spatial derivatives are required.
Let B = 3xy%i — 4xyzj + Ty’z’k, then

9B 324y, (3.52a)
ox
98 _ 6xyi —4xzj +14yz%k, (3.52b)
dy
and
Z_B — dyj +14y22k. (3.52¢)
Z

Gradient, Divergence, and Curl

We define the del operator (V) in rectangular coordinates
in the following way:

0 0 0
V=i—+j—+k—. 3.53
laerJ@er 0z 633

Now let us suppose that 7 is a scalar (perhaps tempera-
ture), then

or .oT ,oT
VI=i—+j—+k—. 3.54
lax / Oy 0z G59

This is called the gradient of T and it is a vector. When
we speak of the divergence of a vector (say, A), we mean

oA oA oh

V-A= ,
ox Oy 0Oz

(3.55)

and this quantity is a scalar. Therefore, in the case of the
velocity vector, V, the divergence would be written as

ov,  Ov, Ov,

V-v= .
ox Oy 0z

(3.56)

For an incompressible fluid, the divergence of the veloc-
ity vector is a statement of conservation of mass, and since
the fluid density (p) is constant, V - V = 0. A vector field
for which the divergence is zero is said to be solenoidal. In
cylindrical coordinates,

10 10vy,  Ov
V-V=-"o@v)+——+—=.
rar(rv H—r 00 * 0z

(3.57)
The curl of a vector, A, is written as VxA, and it is a
vector. In much of the older (particularly German) literature,
the curl of A is written rot(A). It is convenient for us to
construct a determinant to help with our interpretation:

i J k
9 9 9
a.x 8)7 8Z
(3.58)
Al A2 A3
(o) (o om), (00 oA,
dy 0z dJz Ox Oox Oy

We also often need the curl of a vector in cylindrical
coordinates as well so it is worthwhile to provide it here:

1 0A; aAz]. [3A1 5A3]. [15 18A1]

Rt i PO e R N T A I W N

[r o0 o) e o T ar ™ T e
(3.59)

In fluid mechanics, VxV is particularly significant—it is
the vorticity vector, w.

[% _%}i —w, (3.60a)
dy Oz

ov, Ov

— = uw, 3.60b
[ 0z Ox ]] “ ( )
[% — %]k —w. (3.60¢)
Ox Oy

The three components of the vorticity vector are directly
related to the angular velocity of the fluid (rotation) about
the three axes (in fact, each is exactly twice the rate of rota-
tion about that particular axis). A vector field is said to be
irrotational if VxV = 0. Let us suppose, for example, that
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an incompressible fluid undergoes two-dimensional motion
which occurs in the x-y plane such that

v, =3xy*+2y and v,=-—y. (3.61)

We observe immediately that V - V = 3y* — 3y = 0
and that

Py vy

—0—6xy—2=0w.. 3.62
ax  ay Xy w, (3.62)

Thus, there will be rotation about the z-axis unless the
product xy = —1/3. Now, suppose that an arbitrary vector
field is described by

A= x*yi+ xz*j + xyzk. (3.63)

We begin by finding the divergence, V - A:
0 0 0
—(x*y)+—(xz2?)+ —(xyz) =2xy +xy. (3.64)
Ox Jy 0z

Therefore, at the point (1, 1, 1), wefind V-A =2+ 1=3.
We can also evaluate the curl of this vector field:
0 a . L. [ a,, 0 .
— ——(x I+ —xy)——
[ay (xyz2) 8z( 74 )] 81( ») Ew (xyz) |Jj
o s d . 5 (3.65)
+ | — (27 )—— "y |k
[ ax( ) ay( y)]
= (xz—2x2)i +(0—y2)j +(z* — x*)k.
At the point (1, 1, 1) this yields —1i — 1.

Let us summarize some of the common operations involv-
ing the del operator here:

V(a+b)=Va+Vb (3.66)
V’a=V-Va (3.67)
V2A=(V-V)A (3.68)
V-(A+B)=V-A+V-B (3.69)
VxVa=0 (3.70)
V-VxA=0 (3.71)
Vx(A+B)=VxA+VxB (3.72)
V-(@aA)=Va-A+aV-A (3.73)

Vx(aA)=VaxA+a(VxA) (3.74)
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V-(AxB)=B-(VxA)—A-(VxB)  (3.75)

V(A -B)=(B-V)A+(A-V)B+ Bx(VxA)+ Ax(V xB)

(3.76)
Vx(AxB)=(B-V)A—B(V-A)—(A-V)B+ A(V-B)
(3.77)
V-(Va)=V?a
2 2 2
= % + g—y? + ?976; (the Laplacian operator)
(3.78)
Vx(VxA)=V(V-A)— VA (3.79)

Recall that we said previously that there are two types of
vector fields: solenoidal, for which V - A = 0, and irrota-
tional, for which V x A = 0. In the case of the latter, if a
vector field is irrotational, then a scalar function (¢) exists
such that A = V¢. We refer to ¢ as a potential function; if
we consider the x-component of the velocity vector in a
potential flow problem, v, = 0¢/Ox. In an electric field,
the component of (negative) electric intensity in a given
direction is equal to the derivative of the potential in that
direction. We also know by Stokes’ theorem that if
V x A =0, then

§A-dr:ff(V><A)-ndS=O. (3.80)
C N

Let us spend a little time contemplating this statement
prior to discussing Green’s and Stokes’ theorems. In physics,
when we consider work (W), we mean that a force has been
applied to a moving body in such a way that there is a non-
zero component of F in the direction of the motion. The
work done in moving an object along the x-axis from posi-
tion x; to x, would be written as

W:fodx. (3.81)

X1

More generally, we can write a line integral of the vector,
F, from point 1 to point 2 (along a curve, C) as

P

fF-dr:fF-dr:fﬁdx+dey+F3dz. (3.82)

A c c

To illustrate, suppose we have a vector (force) in the
x-y plane: F = —3x% + 5xyj. This force is to be applied to
an object moving along a path described by y = 2x°
Therefore,
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f (=3x2dx + Sxydy). (3.83)

Since y = 2x%, dy = 4xdx; consequently, the integral of inter-
est is

x=1 1
f [—3x%dx + 5x(2x7 Y4 xdx| = f (—3x% +40x*)dx
A (3.84)

x=0

——1+8-0="7.

A line integral that is particularly important in fluid
mechanics is the integral of the velocity vector around a
closed path; it is called circulation, I' = f V -dr. Of course,
it is this circulation that is necessary for a wing (airfoil) to
generate lift.

When we say that a force field is conservative, we
mean that the work required to move an object, say, from
point 1 to point 2, is independent of path. If the path is
closed, that is, if we start from point 1 and return to 1, then
the work is zero. This is where our result earlier, eq. (3.80),
comes into play. Obviously, based on this discussion, the
curl of a conservative force field must be zero—a conserva-
tive force field is always irrotational. We note that gravity
is an example of a conservative force but friction is not.
We will explore this a little further; suppose a force field is
given by

F =(2xz’ +6y)i +(8x—2yz)j +(3x*2> —y k. (3.85)
We would like to know if it is conservative:
i j k
VxF = % (% g (3.86)

2xz° +6y 8x—2yz 3x*z>—y%

Our result is (—2y + 2y)i + (6xz> — 6x70)j + (8 — 6)k
= 0; this force field is not conservative (but nearly so—it
would be if (8x — 2yz)j were changed to (6x — 2yz)j).

GREEN’S THEOREM

Green’s theorem plays an important role in the solution of
many problems in mathematical physics, and examples are
found in areas such as electrostatics and hydrodynamics.
Green’s theorem provides a relationship between line inte-
grals on closed paths (denoted by C) and double integrals
over the region enclosed by C (which we denote by D). We
stipulate that the path C has positive orientation, which
means that the enclosed region, D, is always on the left-hand

side as we traverse the path. We also require that the func-
tions P and Q appearing in the theorem have continuous
first-order partial derivatives over D:

9§de+Qdy ff[aQ aP]dA

One of the difficulties posed by eq. (3.87) to students of
engineering and the applied sciences is its apparent lack of
connection to the physical world. However, there was a
mechanical device constructed in the nineteenth century by
Jakob Amsler-Laffon that makes the significance of eq.
(3.87) very clear: The planimeter was used to compute the
area of a region by tracing the enclosing curve (C). At one
time, just about every draftsman had a planimeter, and many
used the instrument routinely.

Let us now illustrate Green’s theorem with an example.
Suppose the (enclosed) region under consideration is a
triangle, and we wish to evaluate

(3.87)

fxydx + x*y’dy. (3.88)

C

Let the triangular region be bounded by the x-axis from
0 to 1, a vertical line extending from (1, 0) to (1, 2), and the
hypotenuse, which returns from (1, 2) to the origin (0, 0).
In this case, the hypotenuse is represented very simply as
y = 2x and the x, y region of interest is enclosed by 0 < x < 1
and 0 <y < 2x. We can see by inspection of eq. (3.87) and
eq. (3.88) that P = xy and Q = x*y". Therefore,

20
ox

=2xy° and op (3.89)
dy

By virtue of Green’s theorem, we write

1 2x

f f (2xy* — x)dA = f f (2xy* — x)dydx.  (3.90)
D 0 0

It is left to the reader to show that eq. (3.90) is equal to
2/3. Aside from merely allowing us to rewrite some compli-
cated integrals in more tractable form, Green’s theorem can
be thought of as providing us with the total flow (of, say,
mass, momentum, or heat) out of region D.

Now suppose we have an annular region formed by two
concentric circles located at the origin. We let the radius of
the inner circle be 1 and the radius of the outer circle be 2.
Since Green’s theorem does not apply to regions with holes,
we must take a different approach and there are two possi-
bilities: We can take the annular region and break it into two
halves by drawing a horizontal line just through the middle.
We choose the orientation such that as we travel on the
path(s) the two regions always lie to the left. But we could
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also look at the difference between the outer and inner
circles; we will take this approach for illustration. By inspec-
tion, we see that

P=y' and Q=-x% (3.91)
therefore,
B—P =3y* and B_Q =-3x2% (3.92)
Jdy Ox

Thus, we have

f (—3x> —3y*)dA with dA=rdrdd. (3.93)

D

Since x* + y* = 1%, we have
27 2
73ffr3drd9 =—1260]" = —24n. (3.94)
0 0

Now we apply the same technique to the inner circle (but
with a radius of 1 rather than 2):

27 1
-3 f f r3drd9:—%7r. (3.95)
0 0

So for the integral of interest to us, —247m — (—1.57) =
—22.5m.

STOKES’ THEOREM

Stokes’ theorem applies to a closed curve, C, in three-
dimensional space that bounds some surface, S. It reduces
to Green’s theorem when the enclosing curve lies in a plane
(is two-dimensional). It has been pointed out repeatedly that
Stokes’ theorem was not actually developed by Sir G. G.
Stokes; Lord Kelvin (William Thomson) is credited with
having done so after he discovered George Green’s 1828
essay. Neeley (2008) states that it became known as Stokes’
theorem due to the frequency with which Stokes placed it
on the Cambridge prize examinations.

Given a vector field, F, where S is any surface bounded
in three-dimensional space by closed curve, C,

§F~drj;f(V><F)~nds. (3.96)

This is a powerful relationship that finds application in
the connection between electric (E) and magnetic (B) fields.

STOKES’ THEOREM 43

For example, you may have seen the Maxwell-Faraday
equation previously:

fﬁE-dl:—fa—B-ds. (3.97)
ot
C S

A verbal statement will help our comprehension here and
we cite the one provided by Sears and Zemansky (1964),
“the line integral of an induced electric field around a closed
path, or the electromotive force (¢) in the path, equals the
time rate of change of magnetic flux across the area bounded
by the path.”

Let us look at some examples to better reveal the utility
of Stokes’ theorem. To begin, we assume we have a vector
field, F = —yi + xj + x’k, with a surface corresponding to
a right circular cylinder of height, A, and radius, R (with its
bottom placed at the origin). For the right-hand side of eq.
(3.96), we need the curl of F:

ik

o o 0
—_— = — 3.98
Ox 0Oy 0z (3.98)
-y x X

Therefore, VxF = —2xj + 2k. The surface integral will
take into account the top (upper end) and the side of course.
For example, for the top we have

27 R
f f (VX F)-nds = f f (=22 +2K) - krdrd0 = 27 R
S 0 0

(3.99)

For the side of the cylinder, ds = Rdfdz, so in this case, we
note x = R cosf and y = R sin#, to obtain

h 2w
f f (VX F)-nds = —2R f sinfcosORdOdz — 0.
S 0 0

(3.100)

The two parts combined yield 27R>.

Let us work through an example adapted from Spiegel
(1971); in this case, the vector field, F, is 3yi — xzgj + yz’k.
The closed curve is a circle located at z = 2 and the surface
is a paraboloid, given by 2z = x* + y*. We can determine
the curl:

ik
0 0 0
VxF=— — —=(7 | — 3)k 3.101
X ox Oy o @ +x)i—(z+3)k ( )
3y —xz yZ©


http://c3-bib-0003
http://c3-disp-0102
http://c3-bib-0004
http://c3-bib-0002

44 VECTORS AND TENSORS

We could set about computing f f s(VxF)-nds, but in
this case, we note that the enclosing curve is a circle in the
plane corresponding to z = 2; accordingly, 4 = x* + y*. Since
x = Rcosf and y = Rsin6, where R = 2, we write

L(ﬁ3ydx — xzdy + yz*dz. (3.102)
c
We substitute for x and y and note that dz = 0:
i‘—SR2 sin” 0df — 2 R* cos* Od0. (3.103)

C

The reader may wish to verify
0
—sz(3 sin* 0 +2cos’ 0)d0 = —4(—57) =207,  (3.104)
27

It will be left as a student exercise to verify that the
integral of the curl of F over the surface yields the same
result (207).

CONCLUSION

We have assumed that everyone who comes to this study of
applied mathematics has exposure to basic physics and
therefore has some familiarity with vectors and the resolu-
tion of forces. Accordingly, our purpose with this chapter is
to provide a brief review of a few concepts that the student
has seen previously. For the reader who needs more, an
excellent treatment of vectors and vector manipulation has
been provided by Spiegel et al. (2009). This book is espe-
cially useful for self-study because it contains numerous
examples that are completely solved.

For the reader interested in the connection between
vectors, tensors, and fluid mechanics, it would be difficult
to find a better starting point than the book Vectors, Tensors,
and the Basic Equations of Fluid Motion by Rutherford Aris
(1962). This book is particularly important because it con-
sistently tries to reveal the connection between mathematics
and the physical reality of fluid flow. For applied scientists
and engineers—many of whom are mainly visual and tactile
learners—this is critical. G. K. Batchelor pointed out about
45 years ago that educators should always underscore the
relation between “analysis and the behavior of real fluids;
fluid dynamics is much less interesting if it is treated largely
as an exercise in mathematics.” This observation applies to
effective learning for students in all areas of applied science
and engineering.

PROBLEMS

3.1. A commercial aircraft flying straight east with a ground
speed of 495 mph encounters a jet stream flowing at 118 mph
at 75° (15° north of east). If no corrective action is taken,
what is the speed of the aircraft (relative to the ground) and
what is the aircraft’s modified course?

3.2. A ladder (24 ft long) leans against a house, forming an
angle with the ground of 68°. A man stands midway on the
ladder, and the ladder with the man weighs 219 1b;. Deter-
mine the forces transmitted to the ladder by the vertical wall
and the ground. At what angle with respect to the ground
does the bottom force act?

3.3. Two vectors, A and B, are given by
A=6i+3j+7k and B=-2i+5j—1k.
Are these two vectors perpendicular?
3.4. Two vector fields are described by
A=xy’i+xz°j—xyzk and B=x*y%i—y*z%j+ y’zk.

Is either vector field solenoidal? Irrotational? What simple
change could be made to B to make it irrotational?

3.5. Consider the three vectors:
A=25+3j B=5i+12j, and C = 5k.

The volume of the parallelepiped formed by these three
vectors is 1636.66. Confirm that this is equivalent to

|A-(BxC)|.

3.6. An elementary—but quite interesting—demonstration
that is frequently used in physics classrooms results in the
collision of two spheres (when the experiment is successful).
Sphere 1 is dropped vertically from some height, 4, above a
flat, planar surface. Sphere 2 is launched, at the exact instant
that sphere 1 is released, from the flat surface some horizon-
tal distance away. Sphere 2 is aimed as precisely as possible
at the initial vertical position of sphere 1. If gravity is the
only significant force acting on the spheres, then they should
collide, irrespective of the initial velocity of sphere 2. Now,
suppose we wanted to attempt this experiment on a larger
scale; in particular, assume that sphere 1 (S1) is raised to an
initial position 100 ft above the ground surface. Sphere 2
(S2) is to be launched at S1 from a (horizontal) distance
275 ft away. We want the collision between the spheres to
occur exactly 16 ft above the ground surface. What are the
launch parameters for S2 that may achieve the desired
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impact? In the classroom, drag and buoyancy can usually be
neglected. Will drag affect the two spheres differently (the
dropped sphere’s velocity is low relative to the launched
projectile)? Explain the likely impact of drag on the large-
scale experiment.

3.7. An archer releases an arrow at an angle (with respect
to level ground) of 70°. If the arrow’s initial velocity is
260 ft/s, how far will the arrow have traveled horizontally
when it reaches its apogee? At t = 10.2 seconds, what is the
angle between the arrow’s trajectory and the ground?
Neglecting drag, what is the fotal distance traveled by the
arrow after its return to level ground?

3.8. A two-dimensional flow field has velocity vector com-
ponents (in the x-y plane) described by

v, =ayexp(—by) and v, = eVx.

Evaluate VxV at the points (x, y): (1, 1), (2, 2), (3, 3), and
4, 4),ifa=b=c="V.

3.9. Elementary physics texts often cite 45° as the initial
angle (of a projectile relative to the earth’s surface) that
produces maximum range. This is incorrect for spheroidal
or cylindrical objects that rotate during their translational
motion. Obvious examples include golf balls, tennis balls,
and baseballs. In golf, impact between the clubhead and the
ball imparts reverse spin on the ball, generating a lift force
due to the Magnus effect. This has the tendency to steepen
the trajectory of the ball during ascent. If a golf ball leaves
the clubhead at an initial angle of 16°, but with reverse spin
of 900 rpm, what will the steepest angle achieved during
ascent be? Assume the initial ball velocity is 145 mph,
neglect drag, and assume the rotational motion does not
decay. The lift force acts perpendicularly to the ball’s trajec-
tory, and we will estimate its magnitude with the following
expression (actually valid for a right circular cylinder on a
per-unit-length basis):

Lift = 2R Vi Vieane

We will take the density of the air to be 0.0012 g/cm’,
the tangential velocity (ball’s surface) to be 188.4 cm/s, and
the translational velocity to be 6482 cm/s. Assume the effec-
tive radius of the ball is 2 cm. Since the lift force is expressed
on a per-unit-length basis, take the “length” of the golf ball
to be 3 cm.

3.10. Given
A= x*yi —3yzj + xyzk

and
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B=2xzi+y’zj +x"y’zk,

show that Vx(A x B) = (B - V)A — B(V - A) — (A - V)B +
AV - B).

3.11. Show that [[(V x F)-nds =20m where F = 3yi —
xzj + yz’k. See eq. (3.80) and the accompanying discussion
for elaboration.

3.12. On May 22, 1963, Mickey Mantle hit a fastball pitched
by Bill Fischer of the Kansas City As that bounced off of
the facade at the very top of old Yankee Stadium. In an
interview after his retirement, Mantle stated that that
homerun was the hardest he had ever struck a baseball. The
straight-line distance from home plate to the facade was
370 ft, and the point of impact was 118 ft above right field.
One website has estimated that this ball would have traveled
734 ft, making it the longest homerun ever hit in Major
League baseball! This estimate is flawed for a number of
reasons, although some witnesses did report that the ball was
still rising when it struck the fagcade. Given that a baseball
has a circumference of 9 in. and weighs 5 oz, estimate the
distance this ball might have traveled taking drag into
account:

Fie = AKf = (TR*)(4 pV?)(0.44).
For point of reference, the initial velocity of a very well-

struck baseball is on the order of 45-50 m/s. At 47 m/s, the
initial Reynolds number is

_dpV _ (7.28)(4700)
u (0151

Re =226,489.

In this region, the drag coefficient is approximately constant
and therefore we will use 0.44 for f. Prove that this baseball
could not have traveled 734 ft.

3.13. Consider a vector with initial and final points (in terms
of x, y, z values) of (5, 5, 5) and (3, 2, 2), respectively. Find
the magnitude of this vector. Then, given the vector,
A = 2i — 3j + k, demonstrate that V - (V x A) = 0.

3.14. The distribution of a two-dimensional scalar field in a
rectangle with 0 < x < 10 and 0 <y < 5 is given by

50
y? —8y+ x> —14x+ x?y? —36xy+389

Find the maximum gradient at the point x = 7 and y = 3,
and find the corresponding direction of this maximum gradi-
ent. Do your answers correspond with estimates made using
Figure 3.9?
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FIGURE 3.9. Scalar field for Problem 3.14.

3.15. A cardioid is a figure consisting of the locus of points
given by x” 4+ y* 4+ Bx = By/x> + y*. This shape bears some
resemblance to a human heart, hence the name. Suppose
B = 6 and assume we need to determine the area enclosed
by the curve. We should be able to find the area of a plane
region through the use of a line integral over the boundary
according to Green’s theorem; specifically,

A:ffdxdy:%f(xdy—ydx).
R C

Prove that the area of the cardioid is 108w/2. Hint: Try
putting the problem in polar form.
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NUMERICAL QUADRATURE

INTRODUCTION

Definite integrals must be evaluated routinely and for cases
in which an antiderivative cannot be found, or for cases in
which the analytic process is simply too difficult, a numeri-
cal scheme (numerical integration, or quadrature) may be
our only recourse. Consider the integral

o0

f x* exp(—x?)dx,

0

4.1

which we know to have the value \/;/ 4. Let us consider a
plot of the integrand as a function of x, shown in Figure 4.1.

We will conduct an elementary experiment with the graph
of this integrand: First, we will count the smaller rectangular
regions under the curve and add their areas together to obtain
(70)(0.25)(0.025) = 0.4375. Next, we will cut out the region
under the curve and weigh it and compare that weight to the
average weight per rectangle. For the paper under the curve,
we find W= 0.5754 g, and for each box, 0.008003 g. There-
fore, the area under the curve is approximately 71.89 rect-
angular boxes or (71.89)(0.25)(0.025) = 0.4493. Our first
estimate is in error by about 1.3% (under) and our second
estimate by about 1.4% (over). For many applications, a
rough evaluation like this would be acceptable, but suppose
it was not. We might have a critically important problem
where accuracy was paramount. Therefore, it will be produc-
tive for us to review some techniques that may be capable
of producing significantly improved estimates.

TRAPEZOID RULE

One of the simpler schemes for making this evaluation is the
trapezoid rule; we use a straight-line approximation for f(x)
over a finite interval, Ax, and then multiply the average
value for f(x) by the width. For example, let f; = f(x) and
/> = fix + Ax). Our approximation, therefore, is

x+Ax

f Fx)dx [ﬁ +fz]

If Ax is sufficiently small, this may work well. We
will apply it first to the previous example; notice in the fol-
lowing code that the upper limit for the integral has been
set to 8. We conclude that this may be reasonable since
(8)%exp(—8)* = 1.03 x 107%. This is an example of limit
truncation; we have changed the upper limit of the integral
to 8 from oco. One might want to assess this by using differ-
ent upper limits to better gauge the contribution of the right-
hand tail. Of course limit truncation may introduce error,
but in this particular case, the behavior of the integrand is
easily anticipated.

#COMPILE EXE
#DIM ALL
REM *#** Numerical integration by trapezoid rule
GLOBAL x,dx,fx,f1,f2,a,b,fbar,sum,zz AS
DOUBLE
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FIGURE 4.1. Behavior of x* exp(—x?). The value of the integral,
eq. (4.1), is known to be v /4 =0.443113.

FUNCTION PBMAIN
a=0:b=8.0:x=a
dx=(b-a)/1000
GOSUB 300
fl1=fx
50 REM *** continue
x=x-+dx
IF x>b THEN 200
GOSUB 300
f2=fx
fbar=(f14-12)/2
sum=sum-+fbar*dx
f1=f2
GOTO 50
200 REM *** continue
PRINT *“Value of definite integral is: *“;sum
INPUT “Shall we continue?”;ZZ
IF Z7Z>0 THEN END
300 REM *** function evaluation for integral
fx=x"2*EXP(-x"2)
RETURN

END FUNCTION

This trapezoid rule code produces a result of 0.4431135
using 1000 intervals between 0 and 8. Despite the very small
error produced in this case, one might wonder if a more
demanding application could require a more accurate
approximation. After all, there is nothing to prevent us from
using a polynomial to approximate f{x), as opposed to a
straight line. Before we attempt that, however, let us examine
one other case where the value of the definite integral is
known so we can explore the impact of increasing the
number of intervals using both single- and double-precision

arithmetic. Again we will use the trapezoid rule to
consider

™

fsin2(3x)dx = g =1.570796327. “4.2)

0
n Single Precision, /(x) Double Precision, (x)
125 1.570797 1.5707963268
250 1.570800 1.5707874013
500 1.570789 1.5707952107
1000 1.570781 1.5707961870
2000 1.570817 1.5707963270
4000 1.570853 1.5707963250
8000 1.570871 1.5707963264

Notice that once we exceed n ~ 2000 with the single-
precision calculations, the result deviates increasingly
from the correct value given in eq. (4.2). We will consider
this unwelcome development—cumulative roundoff error—
more fully later in this chapter.

SIMPSON’S RULE

We saw that we could employ a linear approximation with
the trapezoid rule and get satisfactory results for integrals
that were not particularly “difficult.”” An obvious extension
that might yield better results could be obtained by merely
increasing the degree of the polynomial. For example, we
might let f{x) be approximated by

y= f(x)=ax* +bx +c. 4.3)
If we place the three necessary function evaluations

(for yy, y,, and y3) at x = —Ax, x = 0, and x = +Ax, then
we find

yi = a(Ax)* —bAx+c 4.4)
»n=c 4.5)
v; = a(Ax)> +bAx+c. (4.6)

Now we will actually integrate the polynomial (eq. 4.3)
from —Ax to +Aux:

+Ax
f (ax® +bx +c)dx
S @.7)

+Ax

3 v3 e
==X +—x"+cx
3 2

= 2?61 (Ax)® +2cAx.

—Ax
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We use the above-mentioned three function evaluations
to obtain a, b, and c. The resulting algorithm for Simpson’s
rule is

%<ﬁ+4fz+fa> or %y]+4yz+y3>. 4.8)

For an easy comparison, let us apply this method to the
integral (eq. 4.2) examined previously, J o sin>Bx)dx = /2.
Using 500 intervals and single precision, we obtain 1.570791,
and with 500 intervals and double precision, 1.57079632679;
note how these values compare to the appropriate entries in
the table provided earlier.

An illustration of logic required for Simpson’s rule is
shown as follows for the slightly more difficult definite
integral:

f EXPCY) 1 88720057
X

5
4.75

(numerical result from the code as it appears here).
Mathcad™ produces 887.201 for this integral using its
adaptive scheme, and you may want to contemplate this
integrand to see if you can determine why we might need
an adaptive algorithm. For transparency, we will make no
effort to be computationally efficient.

#COMPILE EXE
#DIM ALL
REM *** Integration by Simpson’s rule
GLOBAL xi,xf,dx,x,y1,y2,y3,fx,sum,ZZ AS
DOUBLE
FUNCTION PBMAIN
xi=4.750:xf=5.0:sum=0
dx=(xf-x1)/64
X=XIi
50 REM *** continue
GOSUB 300
yl=fx
x=x-+dx
GOSUB 300
y2=fx
x=x-+dx
GOSUB 300
y3=fx
sum=sum-+dx/3*(y1+4*y2+y3)
IF x&#x003C;xf THEN 50 ELSE 100
100 REM *** continue
PRINT sum
INPUT “Shall we continue?”;ZZ
IF ZZ>0 THEN END

NEWTON-COTES FORMULAE 49

300 REM *** function evaluation
fx=1/x*EXP(2*x)
RETURN
END FUNCTION

This simple code uses double-precision floating point
numbers with about 15 or 16 digits of precision; the actual
program output is 887.20056962....

So far, we have examined definite integrals that pose no
particularly great challenge, but to see the benefits offered
by increasing the order of the polynomial used for the
approximation, we need something else. Consider the
integral

2.99

0

We will apply Simpson’s rule to this problem, using single
precision and starting with a very modest number of inter-
vals, successively doubling 7.

n 100 200 400 800 1,600 3,200 6,400 12,800

Definite 140.82 109.82 1779.02 429.62 158.65 122.10 101.83 99.65
integral

It is a worthwhile exercise for the reader to test Simpson’s
rule on the integral in eq. (4.9) using other values for n,
perhaps 600. The results we see here suggest that we might
encounter cases for which Simpson’s rule will not really be
adequate. What would happen if we increased the order of
the polynomial approximation again?

NEWTON-COTES FORMULAE

We posed a question regarding the impact of increasing the
order of the polynomial approximation used for numerical
quadrature. After all, we used a straight line with the trap-
ezoid rule, and a quadratic approximation with Simpson’s
rule. There is nothing to prevent us from adding more func-
tion evaluations in an effort to make our curve more accu-
rately reflect the behavior of the integrand. This succession
of polynomials is often referred to collectively as the
Newton—Cotes formulae. Let us tabulate these expressions
for orders 1 through 5:

%()’1 +y,) trapezoid rule (4.10)

%(yl +4y,+y;) Simpson’s rule 4.11)
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%(yl +3y, +3y;+y,) Simpson’s3/8rule (4.12)

2Ax

5A
Kg(wyl 75y, 4+ 505 4+ 50y, -+ 75ys -+ 19y,).

(4.14)

There is an obvious cost associated with this process: The
number of function evaluations required per step for an nth
order approximation will be n + 1. Will the extra effort
required be worthwhile? We can illustrate the effectiveness
of this approach by using the fourth-order Newton—Cotes
algorithm on the integral,

/2

=0.26179939. (4.15)

f dx
) (4sin® x +9cos” x)

If we specify the number of intervals as 50, 100, and 200,
successively, we obtain the results 0.2774816, 0.2617994,
and 0.2617994. We have obtained a high-quality result using
a limited number of intervals with single precision! Of
course, this was not a very demanding example, so we may
want to ask if the increased complexity of the algorithm will
help us deal with the difficulty we encountered with eq.
(4.9). The unfortunate answer is a qualified “no.” There are
cases where merely increasing the order of the polynomial
will not materially improve our estimate for the definite
integral. We may occasionally need better tools, and in the
following material, we will look at several candidates.
Before we explore some alternatives, however, we should
consider some of the consequences of the types of calcula-
tions we have proposed for numerical quadrature.

ROUNDOFF AND TRUNCATION ERRORS

Let us take Simpson’s algorithm (in single precision)
and apply it to an elementary definite integral. We have an
intuitive impression at this point that we can always improve
our estimate by reducing the size of the interval (increasing
the number of steps employed). But we also know that float-
ing point variables are only represented to the precision of
the computing device we use. If the roundoff errors associ-
ated with that process accumulate, we might get results
that are incorrect or unexpected. We will conduct this experi-
ment with

dx

——— =0.26179939.
) 4sin? x +9cos? x

Let us increase n by a factor of 10 successively to see
what happens:

n I(x)
50 0.2617994
500 0.2617993
5,000 0.2619558
50,000 0.2615938
500,000 0.2633153
5,000,000 0.2490056
50,000,000 2.1934250

Our effort to get an extremely accurate value for the
definite integral was misguided as we have discovered
that roundoff error can corrupt even a very simple calcula-
tion. There are two important lessons here: Use double
precision whenever possible, and do not blindly assume
that decreasing the interval size (Ax) will produce a
better result.

We now shift our focus to truncation errors that result
from terminating an infinite series expression (this will
occur anytime a continuous function is represented dis-
cretely). Numerical quadrature is susceptible to this problem
too, and it would be extremely useful to be able to assess
the size of this error. We will begin by using the trapezoid
rule to illustrate this phenomenon. Let us contemplate the
integral:

4
f(Z +5x—x*)dx =7.16667.

3

(4.16)

We set Ax = 1 and we evaluate the integrand at both
x = 3 and x = 4; let those values be represented by f'(3) = 8
and f'(4) = 6. We also find the antiderivative of the inte-
grand and evaluate it at both x = 3 and x = 4: The values
are f(3) = 19.5 and f(4) = 26.6667, respectively. Of course,
if we subtract the former from the latter, we get the exact
value provided in eq. (4.16), 7.16667. For the trapezoid rule,
we would take [f'(3) + f7(4)]/2 and multiply by Ax (which
is 1); the result is 7, of course, which means that the absolute
error is 0.16667 (or about 2.3%). Now let f(3) be represented
by y(x) and f(4) be y(x + Ax)—we expand the latter in a
Taylor series:

2 2
y(x+Ax)y(x)+[ﬂ] Ax+[d f] @)
dx x dx 5

4.17)
[Q] Ao’

dax® 6

We subtract y(x) noting that the remainder on the right-hand
side is approximately the area we seek:
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2 3
o+ A=) = i (A B

2

(4.18)

For the trapezoid rule, we need both £’ and flae SO
using the Taylor series expansion again,

2
flac= ffran+ S @)
Therefore,
//(A)C)2 Ax| , / ///(A)C)2
x = \Jx+Ax T Jx T Jx T - 420
f ) ) f +A f ) ( )
Now we take this result back to eq. (4.18):
/ !/ 3
y(x + Ax) — y(x) = Josae + fe ]Ax - fx”’—(Ax) —
2 12
(4.21)

Notice that the exact area is on the left-hand side, and the
trapezoid rule approximation is the bracketed term on the
right. Therefore, the error associated with this one interval
example is on the order of

(B0

e =—f 2 (4.22)

Remember, f,” is the second derivative of the integrand,

and it is constant in this case:

fl=245x—x, (4.23)
fl'=5-2x, (4.24)

and
fr=—2. (4.25)

Therefore, we have

///(Ax)3 o (2)(1)3 o l
fe T " a2 & (4.26)

In this instance, the estimate of error is borne out exactly

by our previous result. Generally, we will not be that fortu-
nate and f,” will vary over the range of the independent

variable, x. We will rewrite the error so that

m(Ax)’ ~_

_ " (Ax)3
5 12

4.2
A o (4.27)
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where x < y < x + Ax (think of the mean value theorem
from calculus). If we wish to employ our estimate of error
for an arbitrary case with n-intervals,

A } n n n n
S en =00+ 106 + 06+ Ol

(4.28)

How useful this expression is depends entirely on how
difficult it is to evaluate the second derivative of the inte-
grand, ™. If one were integrating tabular data, for example,
both f” and f” would be unknown. There is a great deal of
information available related to error estimation in numeri-
cal quadrature and the interested reader might begin by
reviewing chapter 5 in James et al. (1977). We will also
make error analysis the focus of one of the exercises at the
end of this chapter.

ROMBERG INTEGRATION

The Romberg scheme utilizes an extremely powerful tech-
nique known as Richardson’s extrapolation. Suppose, for
example, that we were able to estimate the error associated
with one of our numerical quadrature procedures. Further-
more, suppose we then decreased the step size (increasing
the number of intervals) and found the error associated with
that estimate. If we extrapolated the diminishing error to
zero, we might be able to obtain a high-quality estimate with
far less numerical work than would need to be carried out
otherwise. We will illustrate this concept with a simple
example, using only the trapezoid rule to prepare our suc-
cessive estimates. Let us consider the integral,

5
f x1In xdx =14.118 (from the analytic solution).  (4.29)

1

We begin by using the trapezoid rule and we will start
with just one interval (such that Ax = 4. We then cut Ax in
half and evaluate the integral again. We repeat this process
several times, resulting in a series of estimates that appear
in the following table:

N Estimate for Integral, I(x)

16.094379
14.638863
14.250903
14.151423
14.126351
14.120069

NS I e S S R

In this procedure, we are cutting the interval in half, suc-
cessively. An improved estimate for the definite integral is
obtained using pairs of values from the table according to
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_221Ax/2_IAx 1

Iimproved - 22 1 = 5(41Ax/2 - IAx) (430)

We will apply this procedure to the definite integral
(4.29), using the subsequent pairs of values from our table.

Pair ID Linproved
2-1 14.1537
4-2 13.4549
84 14.1183

16-8 14.1180

32-16 14.1180

Notice that by the time we get to the 8—4 pair, we have
reduced the error of our estimate down to 0.002%. The
attractive nature of the Romberg scheme is now apparent:
We have dramatically improved the results of our numerical
integration without much additional computational effort!
You should be aware of the fact that if we simply apply
the trapezoid rule with 32 intervals, our error is still
about 0.015%. This example demonstrates the superiority
of Romberg integration—at least for this case—very
conclusively.

We would like to know if the outstanding results obtained
in the preceding example can be expected more broadly
(universally would be nice, but we will settle for less than
that). Recall our exploration of the integral,

299

f 996667,
(3—x)

0

Let us apply the Romberg scheme here to find out if
it is comparably effective for this more difficult case. The
integrations will be carried out with Simpson’s rule this
time.

n 1(x) Extrapolated Value
1 39,866.9658 -

2 4,984.2782 —6,643.28
4 2,493.8525 1,663.71
8 1,250.4297 835.95
16 632.0535 425.93
32 328.6733 227.55
64 185.9160 138.33
128 125.6151 105.52
256 105.2509 98.46
512 100.4610 98.86
1024 99.7431 99.50

By using the 1024-512 interval pair, we were able to
use extrapolation to reduce the error of our estimate to
just 0.17%. It should be apparent to you that for certain
types of problems where the computational burden is really

significant, Romberg integration can be used to great
advantage.

ADAPTIVE INTEGRATION SCHEMES

The “difficult” integral we have examined previously,

2.99

f A 99,6667,
4 (3—x)’

is one for which the integrand varies by four orders of mag-
nitude (1/3 to 10,000) as x varies from its lower limit (0) to
the upper one (2.99). This kind of change in magnitude
indicates that a different approach may be needed, namely,
an adaptive algorithm. The underlying logic is straightfor-
ward: When we encounter a region in which the integrand
begins to change dramatically, we decrease the interval size.
There are many adaptive implementations available in com-
mercial software packages. Mathcad’s adaptive algorithm,
for example, produces 99.667 for the integral in question.

Simpson’s Rule

It is reasonable for us to wonder if we could make a few
simple changes to one of the elementary quadrature schemes
and produce an adaptive scheme that is effective. We will try
this using Simpson’s rule where we are using the variable,
sum, to accumulate increments of area. We will look at the
per-step change in sum; if it exceeds a set value, we will
reduce Ax. In particular, we will set the threshold for change
in sum at 10% initially, and if that size change occurs, we
reduce the size of the interval by cutting it in half.

If Change Result, /(x), Using
Exceeds (%) Divide dx by Double Precision
10 2 109.9738
5 2 104.5676
2.5 2 99.66676
1.25 2 99.66676
0.625 2 99.66676

We quickly discover that our very crude modification to
Simpson’s rule will work for this case, as long as we select
the proper values. The reader is invited to explore other
combinations. If we do not know a lot about our integral in
advance, it may be difficult to get this to work as we antici-
pate. After all, we have used two arbitrary choices: the
threshold change for the accumulating sum and the size of
the reduction of Ax. We must have something more reliable
and much more broadly applicable.

Fortunately, a number of options are available to us
designed specifically to deal with this type of problem.



Kuncir (1962) suggested a method using Simpson’s rule in
which an interval would be subdivided if the estimated error
exceeds some threshold value. Consider the integral

b
f Fodx = I(a, b). @31)

The interval (a, b) has a midpoint, (a + b)/2; we rewrite the
integral (eq. 4.31), splitting it into two pieces:

a+b
b 2 b
f F(x)dx = f Fx)dx + f fOde. (432

a+b
2

A strategy is now apparent: We compute the left-hand
side of eq. (4.32) and compare it to the right-hand side,
which was obtained by subdividing (a, b). If the estimates
do not agree within a specified tolerance, further subdivision
is required. We stop the successive subdividing process
when the criterion suggested by Lyness (1969) is met:

‘[ a+b a+b
I|a,

2

+1[ ,b]—l(a,b)‘
<eg

= (4.33)

We can easily anticipate how this will work for elemen-
tary functions, but we should apply it to an integral that we
know to be problematic. Once again, we consider

2.99

f 99667
B—x)

0

(4.34)

we apply Simpson’s rule with just three function evaluations
(the minimum). Then we will bisect the interval (midpoint
1.495) and apply Simpson’s rule to each half. We will put
the results in a “tree” structure to illustrate the progress of
the calculations:

129 = 4984.278, (4.35)

1049 = 033413, I =2493.518. (4.36)

Of course, the sum in eq. (4.36) is very different from
level 1 (2493.85 as opposed to 4984.28); subdivision is
necessary:

197475 — 011065, 1143 = 0.22074, 173230.66153,
122:29225 = 1249.437.
(4.37)

Note that the sum of the first two is 0.33139—this is a
change of 0.8% from level 2, that is, the first half of eq.
(4.36), and we will assume for this illustration that this is
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adequate. We now subdivide the two quarters in the
right half:

136575 = 021959, 2245 = 0.43662, 251925 = 129678,
1225 = 629.769.
(4.38)

The sum of the first pair is 0.6562, which is a bit of a change
from 0.66153 (once more about 0.8%). To fit the space avail-
able, we will again assume this is sufficient and subdivide
the two intervals of the right half:

39538 =0.43246, 13082 =0.85425, 138813 =2.49337,
123, = 323.899.
(4.39)

The sum of the first pair is 1.28671 as opposed to 1.29678
from eq. (4.38). Once again, we assume this meets our (very
relaxed) criterion and subdivide the right-half intervals:

2008 = 0.83894, I23505 =1.63643, 13597 = 4.62063,
355y = 176.537.
(4.40)

Compare the sum of the first pair (2.47537) with 2.49337
from the above-mentioned equation (the difference is once
again about 0.8%); we will subdivide the right-half intervals
again:

I35 =1.58086, Igiss =3.01076, Iigess =8.00725,
122:992329 = 108.261 .
(4.41)

We will repeat the process one more time, assuming that
4.59162 is sufficiently “close” to 4.62063:

Igoes; =2.82120, I3oi05 = 5.14751, I3955% =12.3914,
(4.42)

The sum of these four integrals is 95.9101 and we are
rapidly closing in on a much better approximation for the
definite integral (eq. 4.34). This detailed example reveals
the power of the adaptive version of Simpson’s rule. Since
we stop making calculations in intervals where our accuracy
is sufficient, we can significantly reduce the total number of
operations relative to cases where we merely continually
reduce Ax over the entire interval (a, b).

Gaussian Quadrature and the
Gauss—Kronrod Procedure

It is important that the reader be aware of other recent devel-
opments in adaptive numerical quadrature. The Gauss—
Kronrod (GK) procedure is a powerful method that can be
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used in this context; in fact, Kahaner et al. (1989) state that
the GK algorithm “is currently one of the most effective
methods for calculating general integrals.” To set the frame-
work for a useful description, we must begin with an n-point
Gaussian quadrature, where a definite integral is approxi-
mated by the formula

ff(x)dxgzn:wjf(xj). (4.43)

The w;s are weight factors that are applied to specific
x-positions. We can make Gaussian quadrature more trans-
parent with an illustrative example. Consider the definite
integral

b 5
ff(x)dx:f(5+4x—x2)dx:33.3333. (4.44)
a 0

Our first task is to transform this integral to f fi F(t)dt; we
do this by setting x = mt + c. Therefore, we have the two
equations, 0 = —m + c and 5 = m + c. By adding the equa-
tions together, we find ¢ = 5/2 and m = 5/2; thus,

5 5 5
=—t+— d dx=—dt. 4.45
X 5 > an x > ( )

Our definite integral is now written as

+1
éf[ﬁ—ét—éﬁ]dt, (4.46)
2J (472"

and the reader can easily verify that this is also equal to
33.3333. Now we return to eq. (4.43) and fix n = 2. The

specific #-positions are —1/ \/6 and +1/ \/6 , and these
locations correspond to zeros of the Legendre polynomial,
P, (alimited table of Legendre polynomials is provided here
for the reader’s reference). Remember, Legendre polynomi-
als are orthogonal on the interval (—1, +1).

=0 Legendre Polynomials, P,
1
X
132 -1
1(5x% =3x)

1(35x* —302% 43)

1(63x° —70x* +15x)

=23 1x° —315x* +105x% —5)
L(429x7 —693x° +315x° —35x)

~N O LR W N —= O

The weight factors we are to employ are both equal to
1, so our approximation for the definite integral is now
written as

b 2
5 5 1 1
[f(x)dx = E;WjF(tj) = El(l)F[_ﬁ] + (1)F[+ﬁ]l.
(4.47)

The right-hand side is equal to 33.3333—one might ask,
why does the method yield the exactly correct result? The
answer is that an nth order Newton—Cotes formula will inte-
grate a polynomial of order n, or less, exactly. With Gaussian
quadrature, the exactness of the result is extended to poly-
nomials of degree 2n + 1.

For more general cases, we can improve the quality of
the approximation by simply increasing the order, and the
reader interested in using Gaussian quadrature should
consult the extensive table (table 25.4) in Abramowitz and
Stegun (1964, pp. 916-919). For example, if we choose
n = 6, then t-positions are found from the roots of the appro-
priate entry in the previous table; these positions (nodes) and
the corresponding weight factors are as follows:

t-Positions Weight Factors

+0.238619186083 0.467913934573
+0.661209386466 0.360761573048
+0.932469514203 0.171324492379

To apply this to

2.99

dx
29
3=

we would rewrite the integral as

+1

1.495dt
J. 2.26503 —4.49995¢ + 2.23503¢

and use the values in the previous table. This results
in an estimate for the definite integral of 23.6594, which
we know to be much too low (not at all surprising since
n is only 6). Somewhat better results are obtained for
foxln(l — x)dx = —3/4, which we transform to

+1

1 11 11
—f[—t+—]1n[——t+—]dt.
2J 2 2 2 2

-1

In this case, Gaussian quadrature with n = 6 yields
—0.734846, which is only about 2% smaller (in magnitude)
than the correct value. And remember, this is achieved with
only six function evaluations!
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Now that we have a little familiarity with Gaussian
quadrature, we can proceed to our real objective, which is
to modify the process in such a way that it can be effective
for “difficult” integrals. One clever way to accomplish this
goal is with an embedded algorithm for which error estima-
tion is automatically available (embedded schemes are also
sometimes referred to as nested or progressive). Such an
approach will be more efficient if we do not have to start
over with respect to node placement; that is, we will make
far fewer calculations if we can reuse some of the existing
function evaluations. This is exactly what the GK procedure
was designed to do. Each step requires (2n + 1) function
values, so for this example, we will consider the (7-15) GK
nodal placements. We begin with Gaussian quadrature for
n =17 (see the table of Legendre polynomials). The Gaussian
placements and weights are

+0.9491079123 0.1294849662
+0.7415311856 0.2797053915
+0.4058451514 0.3818300505

0.0000000000 0.4179591837

Since we have seven nodes here, the Kronrod modifica-
tion will have (2n + 1) = 15, but seven of them are identi-
cally the Gaussian values. Note that the weight factors are
different (they are about half of the Gaussian weights),
however:

+0.9914553711 0.0229353220
+0.9491079123 0.0630920926
+0.8648644234 0.1047900103
+0.7415311856 0.1406532597
+0.5860872354 0.1690047266
+0.4058451514 0.1903505781
+0.2077849550 0.2044329401

0.0000000000 0.2094821411

We will explore the now familiar integral,

2.99

[ 3 ilxx)z ’

one more time. First, we apply the (7-15) GK to the entire
integral remembering that because of the change in limits,
we must make a variable change as x = 1.495¢ + 1.495. The
results are

G K
30.15765 84.13157

The discrepancy is enormous, so we cut the interval in half,
applying the (7-15) GK to each (0-1.495) and (1.495-2.99).
The results are as follows:
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Left Half Right Half
G K G K
0.331620 0.331371 39.730679 27.053353

As you can see, the significant error is in the right half,
so we repeat the process for (1.495-2.2425) and
(2.2425-2.99):

Left Half Right Half
G K G K
0.656664 0.656175 71.875407 98.943049

Of course, we already know that the difficulty with this
integral is a consequence of the upper limit, so the right half
is divided into two once again (2.2425-2.61625) and
(2.61625-2.99):

Left Half Right Half
G K G K
1.2876488 1.2867079 88.4937846 98.0094297

You will observe that we are very rapidly acquiring a
much-improved estimate for this definite integral; in fact, if
we take these last two Kronrod values and add to them the
left halves that have been dropped; we will see that we are
not that far from the correct value (99.6667). The GK
embedded procedure is powerful indeed, and it automati-
cally provides us with a means to estimate our error. Con-
sequently, it lends itself very nicely to adaptive quadrature
for “difficult” integrals.

INTEGRATING DISCRETE DATA

Suppose we have the following set of discrete data:

x y(x)

11 0.338
19 0.340
27 0.335
35 0.333
43 0.326

Our task is to produce an accurate integration of these data
for 11 < x < 43. We note immediately that the data are
highly nonlinear as is evident in Figure 4.2.

We have several options for performing the necessary
integration, including some crude methods discussed at the
very beginning of the chapter. But because we have stipu-
lated that we need a very accurate value, we should look for
a better technique.
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0.340 + m (19,0.340)
[ ]
(11,0.338)
0.335 1 m (27,0.335)
= m (35,0.333)
=
0.330
m (43,0.326)
0.325
T g T g T y T T 1
10 20 30 40 50

X

FIGURE 4.2. Nonlinear discrete data for numerical quadrature.
Note that the ordinate, y(x), has been greatly expanded and only a
small segment of the axis has been plotted.

One powerful method for dealing with such situations is
through the integration of a cubic spline interpolation.
Spline refers to a draftsman’s tool used to generate smooth
curves connecting multiple points; for a picture of such a
device, see Grandine (2005), who describes how extensively
splines are being used at Boeing (to represent complicated
geometries or geometric boundary conditions). The idea
with spline interpolation is a very simple one: Polynomial
pieces are fit together in such a way that the function is
continuous and is continuously differentiable. Moreover,
these pieces connect smoothly and the derivatives are con-
tinuous at the interval boundaries. The process employed is
distinctly different from merely fitting a polynomial of
higher degree to all of the available data—and if you have
ever tried this, you already know that such curve fits are
often unphysical. They usually show too much oscillation
(curvature) for intermediate values and unbounded (nonas-
ymptotic) behavior at the extremes.

The data set of interest to us has five points (so four
interior intervals) with each separated by a Ax, or A, of 8.
We will use a cubic polynomial to represent the data in each
interval, so for 11 < x < 19, we write

y=a;(x—11)° +b(x—11)?> +c(x—11)+d,. (4.48)

Naturally, when x = 11, we see d; = 0.338. You will
notice immediately that we have four sets of constants, one
set for each interior interval. In every case, d will be given
by the left-hand endpoint value of y, so for the second
interval,

y=a,(x—19) +b,(x —19)2 +¢,(x —19)+0.340, (4.49)

and so on. A key feature of spline interpolation is that the
first and second derivatives will be continuous from one
interval to the next. Accordingly, we will write the cubic
polynomial in generic form:

y=a;(x—x;) +b(x—x)? +c;(x—x;)+d.. (4.50)
Therefore,
y =3a;(x —x,)* +2b;,(x — x;) + ¢ (4.51)
and
y" =6a;(x — x;) +2b,. (4.52)

It is apparent for our problem that we will have
(3) x (4) = 12 unknown coefficients. Of course, the relation
(eq. 4.50) provides four equations. We will also require that
the first and second derivatives match at the interval bound-
aries; that provides six more equations through application
of eq. (4.51) and eq. (4.52), but we are still rwo short! One
way we can obtain the final two relations is to specify the
second derivative at the ends of the interval (i.e., for x = 11
and 43, in our case). If we just choose to set y”= 0, we get
what is referred to as a linear spline. Though this seems
incredibly arbitrary, Hanna and Sandall (1995) note that it
does not seem to lead to significant errors in actual applica-
tion. We will now look at the complete set of equations for
our cubic spline curve fit:

512a, +8¢, = 0.002
512a, +64b, + 8¢, = —0.005

(4.53a,b,c,d)
51245 + 64b; +8¢; = —0.002
512a, 4 64b, +8c4 = —0.007
19201 +Cl _02 == O,
19202 + 16b2 + Cy —C3 = 0, (4.54a,b,c)
19203 + 16b3 +C3 — C4 == O,
48(11 - 2b2 =0
48a, +2by —2b; = 0 (4.552,b.¢)

48(13 + 2b3 — 2b4 = 0.

And finally, by setting the second derivative equal to zero

at the endpoints,
b =0, 48a,+2b, =0. (4.56a,b)
Since b; was eliminated, we have 11 equations and the

same number of unknowns. The solution for this set of equa-
tions is
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Each Multiplied by 10°

1 a, —4.255

2 C 522.32

3 a, 7.60323
4 b, —102.12

5 C —294.643

6 as —6.62667
7 by 80.3571
8 s —468.75

9 ay 3.27846
10 b, —78.683
11 Cy —455.357

We can assess the quality of the representation in
Figure 4.3.

Now let us see exactly how well this cubic spline curve
fit performs. We can use eq. (4.48) as our example, integrat-
ing over interval 1:

19
f Y (xX)dx = %(8)4 —|—%(8)2 1+0.338(8)=2.71636. (4.57)

11

Remember that b, is zero! The values for the remaining
three integrals are 2.70093, 2.66514, and 2.63936, respec-
tively, and the sum of all four is 10.7218. We have, through
the use of cubic spline interpolation, obtained a very accu-
rate value for the integral of the original discrete data set.

MULTIPLE INTEGRALS (CUBATURE)

Recall that the definite integral, f I; f(x)dx, can be approxi-
mated by a Riemann sum, that is, the sum of areas of a

0.340

0.335 1

()

0.330

0.325

T N I ' T N T N 1 N I ! I ! I
10 15 20 25 30 35 40 45

X
FIGURE 4.3. Cubic spline curve fit for the nonlinear data set. We
now have a very nice spline-function representation of the original
data, facilitating integration.
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number of rectangles. For the case in which we use n rect-

angles (but allow n to become very large) and x =
a< p<x=0b,

. (4.58)

b n
[ Fendr=tim [wa,-mx
a i=1

This process can also be extended to multiple integrals:

] s vyaxdy = lgnlz f, y,->AA,~|. (459
R i=l1

Note that ¢ is the norm (diagonal) of the partition or
rectangle; by allowing it to approach zero, we are employing
an infinite number of rectangles. If ¢ < x < b and if the
limits for the variable y are set by two functions of x, say,
g1(x) and g,(x), then for this type I region, we have the ifer-
ated integral:

b g (x)
f f(x, y)dydx. (4.60)

a gi(x)

For a type II region, the terminal values of y are constants,
¢ <y < d, and the limits for the variable x are two functions
of y. We can review the evaluation process for an iterated
integral with a straightforward example:

5

X2 5
f f (4x+10y)dydx = f (xy+ 5y dx

3 —x 3
5

= f (4x° 4 5x* — x*)dx (4.61)
3

:54_’_55_%53_34_35_’_%33
=3393.33.

This was an extremely simple double integral that could
be easily evaluated analytically. But our real interest here is
to acquire some tools that might allow us to evaluate mul-
tiple integrals that defy elementary solution.

Multiple integrals can be handled, although somewhat
inefficiently, using the one-dimensional numerical quadra-
ture techniques that we have discussed previously in this
chapter. Let us illustrate with the generic double integral:

b d

f f(x, y)dxdy. (4.62)
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We will proceed in the following way:
. Set increment value for y, for example, (b — a)/100.

. Set the increment value for x, for example, (d — ¢)/100.
. Let y assume its first value, y;.

A W N =

. Accumulate the incremental areas for flx, y;) as x
varies from c to d.

. Set this sum equal to F(y,).
. Increment y and repeat quadrature on x from c to d.

AN W

7. Continue the process until y = b, that is, until we find
E(y).

8. Perform quadrature on the complete set of F(y;)s.

The process sketched here is referred to as a product rule.
To illustrate its application, we will consider the elementary
example,

2 4
f f (x +2y)dxdy = 27. (4.63)
0 1

We will start with 50 intervals for both x and y and use
the trapezoid rule for the quadratures. Using single preci-
sion, this direct approach yields 27.72359 (an error of
about 2.7%). If we merely increase the number of inter-
vals in both the x- and y-directions to 100, the very same
process yields 27.36090; with 200 intervals, the result is
27.00002. Although the product procedure we have
described here works (very well for this particular
example), it requires many function evaluations. In fact,
Smyth (1998) notes that the number of evaluations required
for product rules grows with the number of dimensions
exponentially. And you will also observe that in our
example we used the same number of intervals in both
directions, which is generally a mistake; Kahaner et al.
(1989) suggest that a rule of thumb for the application of
one-dimensional algorithms to double integrals is that the
inner integral be computed such that its accuracy is about
10 times better than the outer. We can demonstrate this
using the trapezoid rule (with double precision) for another
elementary double integral,

2 4
x2

f f X dydx = 0924196,
0 1 4y

We will increase the number of intervals for the inner
integral while maintaining a constant number of evaluations
for the outer integral. The results are summarized in the fol-
lowing table:

Number of Intervals, n

Inner Outer Jo J1(x14y)dydx = 0.924196

10 10 1.3058895

20 10 1.2695594

40 10 1.2355796

80 10 1.2352861

160 10 1.2393796
100 100 0.92927096
200 100 0.92425417
400 100 0.92549427
800 100 0.92424318
1,600 100 0.92424263
1,000 1000 0.92419717
2,000 1000 0.92419682
4,000 1000 0.92419673
8,000 1000 0.92419671
16,000 1000 0.92419670

These data show that the accuracy of the estimate of the
double integral improves (generally) as the number of inter-
vals for the inner integral is increased. But these calculations
also reveal that the application of a one-dimensional scheme
using the trapezoid rule is not very efficient. An extremely
large number of calculations is required to obtain the correct
sixth decimal place.

In recent years, the search for modern nonproduct
methods for multidimensional integrals has been intensive.
A nonproduct method is a quadrature (or more appropri-
ately, a cubature) rule that does not require us to apply a
one-dimensional method successively to the different direc-
tions. As we stated earlier, it is computationally inefficient
to apply a product rule to the evaluation of multiple inte-
grals. You may recall our discussion of Gaussian quadrature;
with proper selection of the nodes (the #-positions) and
weight factors, we can exactly integrate a polynomial of
degree 2n 4 1. An obvious question is whether such a
process could be extended to polynomials of two (or three
or more) dimensions. If this were possible, multiple integra-
tion could be made much more efficient. Stroud (1971) notes
that the principal problem is identification of formulae of the
form

f...fw(xl, Xoy oo X)) [ (X1, Xay oo X, )X - d,
N (4.64)
= Bif (6 b 6
i=1

The fifth-degree formula of Radon (1948) was one of the
first results of this type, and Stroud (1971) developed Gauss—
Legendre formulae for iterated integrals of two and three
dimensions. His book includes FORTRAN programs for
both in chapter 10. Also, in one important success in efforts
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to find efficient nonproduct methods, Laurie (1977) was able
to extend the GK method to double integrals.

Monte Carlo Methods

Monte Carlo methods were first used extensively by John
von Neumann and Stanislaw Ulam to estimate neutron dif-
fusion in connection with the Manhattan Project of World
War II. This technique has been used by many investigators
since to evaluate multiple integrals. It is attractive because
of its stark simplicity; all one really needs is a mechanism
for the generation of random numbers. Originally, random
numbers were obtained from tables, and for an example, one
may consult table 26.11 in Abramowitz and Stegun (1964)
(which was reprinted from numbers compiled by the RAND
Corporation). These days high-level language compilers
have built-in capability for generating “random” numbers,
but the reader should recognize that these numbers are being
generated typically by a pseudorandom algorithm. This
means that the same seed value will produce the exact same
sequence of “random” numbers. Commercial software
packages like Mathcad function similarly—the seed value
must be changed if a different sequence of random numbers
is desired.

We begin this discussion with a familiar example that will
illustrate just how straightforward this technique really is;
consider the one-dimensional integral,

b
- f F(x)dx. (4.65)

Now envision a rectangle that extends from a to b on the
x-axis, and from 0 to some value ¢ on the y-axis; that is, we
think of a box (an area) that corresponds to

a<x<b and 0<f(x)<c.

The area of this box is of course merely (b — a)c. Suppose
we begin selecting random locations inside the box—the
probability that we pick a point under the curve, f(x), will
be just

I
 (b—a)

p (4.66)

We obtain an estimate for p from the ratio of the number
of successes divided by the number of trials, n/n. For
obvious reasons, this approach is referred to as the “hit-or-
miss” method:

12 (b—a)c i (4.67)
n
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Suppose we were interested in obtaining a value for
4
[
(we know this integral has the value, 20.5). We will conduct
our trials on the rectangular area that is bounded by
1 <x<4and 0 <y =fix) <20. We use random numbers
to “shoot” at the box and just keep track of the number of
“hits” that fall under f(x); our estimate then comes from eq.

(4.62). Here is a typical sequence of results from such an
experiment:

2+x+%x2]dx

Number of Trials Estimate for /

100 16.2
1,000 20.7
10,000 20.676
100,000 20.4888
1,000,000 20.53326
10,000,000 20.51026

It is extremely easy to obtain a rough estimate in this
fashion, but it is apparent that an accurate result will require
many trials. The reader can obtain greater detail regarding
the use of the Monte Carlo method in this context from
Rubinstein (1981), for example.

Now let us focus on the use of the Monte Carlo technique
for the evaluation of multiple integrals; we should emphasize
the important difference between the “hit-or-miss” method
used earlier and the approach employed here (we will be
using the Monte Carlo method to place the function evalua-
tions). To illustrate, we use the simple double integral,

2 3
f f (2 +2x9% )dxdy = 42. (4.68)
0 0

We proceed in the following way: We select the number
of trials (n), then use random numbers to select the (x, y)
location for integrand evaluation. This function evaluation,
fx, v), is multiplied by the area determined from the limits
of the integration and the number of trials chosen, and the
results are accumulated. For the double integral that we are
using as our example, this accumulation will be performed
n’* times. A simple code written for eq. (4.68) is provided as
follows:

#COMPILE EXE
#DIM ALL
REM *** Monte Carlo integration of double integral
GLOBAL n,ntrial,dx,dy,rnx,rny,x,y,sum,fxy,xlimit,
ylimit,ZZ AS SINGLE
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FUNCTION PBMAIN
n=0:xlimit=3:ylimit=2
ntrial=100
dx=xlimit/ntrial:dy=ylimit/ntrial
RANDOMIZE TIMER
50 REM *** continue
mx=RND
my=RND
x=rnx*xlimit
y=rny*ylimit
GOSUB 200
sum=sum-+fxy*dx*dy
n=n+1
PRINT n,sum
IF n>ntrial*2 THEN 100 ELSE 50
100 REM *** continue
INPUT “Shall we continue?”’;Z7Z
IF Z7Z>0 THEN END
200 REM *** gubroutine for function evaluation
fxy=x"2+42%x*y 2
RETURN

END FUNCTION

Please make note of the ninth line down from the top,
RANDOMIZE TIMER. This ensures that the random number
generator obtains a different seed each time it is invoked.
You will also observe that the number of trials, ntrial, is set
to 100; this is a ridiculously small number for a Monte Carlo
integration (just 10* function evaluations). To illustrate, we
ran this program five times, just as it appears here, and we
obtained the set of estimates: 41.95124,41.96887,42.31614,
41.66427, and 42.33305. The average of the set is 42.0467,
which again reveals the unpleasant truth that a Monte Carlo
integration—if accuracy is required—is computationally
expensive. In fact, we can monitor the results from a sequence
of realizations in which we increase the number of trials
each time. Such an experiment results in a graph similar
to Figure 4.4.

It is known that the error for this method diminishes as
A 1/ vntrial ; if we need a high level of decimal precision,
then many trials will be necessary. To illustrate, we can see
from Figure 4.4 that 2000° = 4 x 10° function evaluations
produce just 41.91697 for the double integral—an error of
about 0.2%. Just as we observed previously, a rough result
is often very easy to achieve with the Monte Carlo tech-
nique, but the computational burden may be prohibitive if
we need an extremely accurate answer.

Lattice methods (sometimes referred to as number
theoretic, or quasi-random) have been applied to multiple
integration and a useful reference is Sloan and Joe (1994).

With a lattice method, the integration region is trans-
formed to a unit cube and a multiple sum yields an
unweighted mean of the integrand evaluated over a regular
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FIGURE 4.4. Progress of the Monte Carlo integration of the
double integral, eq. (4.68), as a function of the number of trials.
The result should be 42, of course.

lattice. Smyth (1998) notes that lattice methods function best
when the integrand is transformed so that it is periodic over
the cube. There is some evidence (including Sloan and Joe)
indicating that lattice techniques may outperform other
methods when the number of dimensions is large.

Should one have a critical need to evaluate multidimen-
sional integrals accurately (and particularly if this must be
done often), the best starting point is the Cuba Library,
which has been developed at the Max Planck Institut fur
Physik (Miinchen, Germany). Cuba has four routines, Vegas,
Suave, Divonne, and Cuhre, which provide the analyst
with the choice between quasi- and pseudo-Monte Carlo
methods as well as lattice and deterministic approaches too.
Several interfaces are available (in FORTRAN, C/C++, and
Mathematica), and the open-source package is available at
http://www.feynarts.de/cuba. Because the algorithms are
invoked similarly, the package can be used to very quickly
compare methods and thereby assess likely error. The Cuba
website is maintained by Thomas Hahn and it is updated
frequently.

CONCLUSION

Our focus in this chapter was the numerical evaluation of
definite integrals. We have not discussed cases in which the
integrand is undefined at either one of the limits (a singular
endpoint), nor have we given very much consideration to
cases in which one of the limits is infinite.

A singular endpoint may sometimes be handled by using
an open Newton—Cotes formula such as Milne’s rule. Recall
that most of the simple quadrature techniques we discussed
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previously made use of the interval endpoints for function
evaluation; such quadrature procedures are said to be
closed. An open algorithm such as the fourth-degree Milne
rule does not require function evaluations at the interval
endpoints, thereby avoiding the problem of an endpoint sin-
gularity. With Milne’s rule the function evaluations required
for the integration of J I; f(x)dx are placed at locations
denoted by

v —at b9 (4.69)

n

where n = 4 and the index i assumes the values 1, 2, and 3.
Therefore, if we wished to evaluate f ls(x2 —2x)dx using
Milne’s rule just once, we would place the integrand evalu-
ations at positions x = 2, 3, and 4, and “estimate” the definite
integral with

b—a
3

5-1 52
@fi—fo+2£)="3"2O)-3+201="7F

=17.3333....

Of course, this is precisely the value of the definite inte-
gral. Let us apply the technique to an integral we examined
much earlier that does not have a singular endpoint,
f lsxln(x)dx =14.118. This will provide us with a perfor-
mance comparison relative to conventional, closed methods.
Since the interval is the same as that mentioned earlier
(1, 5), the function evaluations are again placed at 2, 3, and
4, resulting in

?[2(1 38629) — (3.29584) + 2(5.54518)] = 14.0895,

@71

a surprisingly good result (0.2% low) obtained with only a
single application of the rule. Obviously, we could subdivide
the interval, applying Milne’s rule to each piece, then add
the results together (this is called a composite rule) to
improve our estimate. We will try this using eight pieces:

#COMPILE EXE
#DIM ALL
REM *** Open Newton-Cotes for quadrature
REM *** This is the 4th degree Milne’s rule for the
interval (a,b)
GLOBAL a,b,i,fx,del,n,area,zz,bf,sum AS
DOUBLE
FUNCTION PBMAIN
DIM x(3) AS DOUBLE
DIM {(3) AS DOUBLE
a=1:bf=5
b=bf:sum=0
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REM *** refine estimate by splitting interval into
n-pieces
n==_§
del=(b-a)/n
b=a+del
50 REM *** continue
FOR i=1TO 3
x(i)=a-+i*(b-a)/4
NEXT i
FOR i=1TO 3
GOSUB 200
f(i)=fx
NEXT i
area=(b-a)/3*(2*f(1)-f(2)+2*f(3))
sum=sum-area
PRINT area,sum
a=b
b=a+del
IF b>bf THEN 100 ELSE 50
100 REM *** continue
INPUT “Shall we continue?”’;zz
IF zz>0 THEN END
200 REM *** gubroutine for function evaluation
fx=x(1)*LOG(x(1))
RETURN

END FUNCTION
This code produces a value for our example integral of

14.117957. Now we can try Milne’s algorithm on an integral
with a singular endpoint; consider

1
2
() e T 0.822467. (4.72)
J 14 x 12

We will apply Milne’s method in composite form to
this integral by subdividing the interval (0, 1). We will begin
with eight intervals and successively double n to gauge the
approach to the correct value.

8 —0.8078678

16 —0.8152081

32 —0.8188470

64 —0.8206596

128 —0.8215639
256 —0.8220156
512 —0.8222414
1,024 —0.8223542
2,048 —0.8224106
4,096 —0.8224388
8,192 —0.8224529
16,384 —0.8224600
32,768 —0.8224635
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Note that we obtain the first four correct decimal places
with n = 2048, and we get five decimal places with
n = 16,384; the open Milne’s rule is able to cope with this
much more difficult case. We should make one final observa-
tion in the context of this example: This integration would
appear to be an ideal application for Richardson’s extrapola-
tion, where we would obtain improved accuracy with far
fewer computations.

In the case of a definite integral with an infinite limit, you
may recall that we used truncation (of the upper limit) for
the very first example in this chapter:

fxz exp(—x?)dx = %
0

We will assess the error involved in a similar situation in
one of the exercises at the end of the chapter. Occasionally,
difficulties like this can be handled through transformation.
Given [ f(x)dx, one might let x = #/(1 — 1), or x = —In(%).
For the former, we would integrate from O to 1, and for the
latter, from 1 to 0. Kahaner et al. (1989) point out that this
kind of transformation may succeed in producing finite
limits but may result in a significantly more difficult
integrand.

PROBLEMS

4.1. The volume of a solid of revolution (V) generated by
rotation of a curve about the y-axis is given by

b

V= 27Tf xf(x)dx.

a

Let fix) be the continuous function of x, fix) = 10 —
(1/4)x*, defined for 1 < x < 5. Find V by numerical
quadrature.

4.2. Consider a horizontal cylindrical tank with a capacity
of 600gal. The tank is 6ft long with a radius of 2.065 ft
(ID = 4.13ft). Let h be the depth of liquid in the tank and
R be the inside radius. We know that the (area of a) segment
of a circle is

Ay = R?cos™! [%] —(R—h)N2Rh—i*.

Therefore, when & = R, the occupied portion of the circle
is 7R*/2. If fluid enters the initially empty tank at a rate of
V= (30—9\/5) gpm through a small orifice at the bottom
of one end, how long will it take for the tank to fill (within
1 in. of the top)?

4.3. The moment of inertia about the y-axis for a continuous
function, f(x), defined for a < x < b, is

b

MI, = fxzf(x)dx.

a

Let flx) = 1 4+ x* exp(—2x); find MI, for 0 < x < 5 by
numerical quadrature.

4.4. We want to find the work required to compress
nitrogen (N,) adiabatically from atmospheric conditions to
a pressure of 8atm, at a rate of 50 gmol/min. Assume that
nitrogen behaves ideally such that PV = nRT. We know that
W= deV, and for an adiabatic process, PV" = C,. Since
the initial and terminal pressures are specified, we will rear-
range the latter equation to yield
1—y
w=-L(G)
Y\ P P

Find the work of compression by numerical quadrature
using a normal ambient temperature.

4.5. Evaluate the definite integral,
5.95

f 14+x dx
(6—x)’

0

Mathcad’s adaptive algorithm yields 1380 and the TI-89™
produces 1380.07. These results are certainly very close, but
which is more nearly correct?

4.6. An initially empty 2000-gal tank is being filled by
gravity; as the available head in the supply diminishes, the
flow rate into the tank decreases. The flow rates were
observed periodically resulting in the following table
of data:

Time (min) Flow Rate (gpm)

348
195
117
72
49
36
26

W= O 3 W W=

—_

If the filling process started at + = 0, when will the tank
contain precisely 1515 gal?
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4.7. The definition for the gamma function is

00

['(n)= f X" exp(—x)dx.

0

Find T'(1.525) and I'(0.525) by numerical quadrature. The
values you obtain should be related by the recurrence
formula:

I'(n+1)=nl'(n).
Are they?

4.8. Use Gaussian quadrature with n = 6 to find the approxi-
mate value for the definite integral,

4

f x> exp(—2x)dx.

0

4.9. Use the Gauss—Kronrod (GK) (7-15) procedure to eval-
uate the definite integral,

100dx
0 (x=2572+1

Will it be necessary in this case to use an adaptive modi-
fication of GK (7-15)? You can see by inspection that the
integrand will have a fairly strong peak centered about
x =2.5.

4.10. Consider the definite integral,

f exp [ix]cos(Sx)dx.
0

This integral has the value 0.027586 and the integrand
behaves as illustrated in Figure 4.5.

We want to determine the error associated with truncating
the upper limit of the integral; use the quadrature routine of
your choice and prepare a plot that shows the absolute value
of the error as a function of the finite upper limit.

4.11. The definite integral

o]

dx
———— =mcsc(m) =3.1415926. ..
f A+ x)Vx

0

illustrates both of the difficulties we described at the very
end of the chapter: We have a singular endpoint at x = 0 and
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FIGURE 4.5. Plot of the function exp(—x/4)cos (3x).

an infinite upper limit. Use the open fourth-degree Newton—
Cotes formula (composite Milne’s rule) to evaluate the inte-
gral with an appropriately truncated upper limit. Can you
actually obtain as answer close to 7? If you cannot, what
quadrature method would you recommend?

4.12. Consider the definite integral

| 1
f ln[—
X

0

Use an open composite Newton—Cotes formula to eval-
uate this integral. Employing the example at the end of
the chapter as your guide, determine how many subdivi-
sions will be necessary (using the fourth-degree Milne’s
rule) to obtain the correct value for the seventh decimal
place (9).

dx = % =0.8862269....

4.13. We want to evaluate the double integral,

T+l

ffxzyzdxdy=6.89028,
0 T

using Simpson’s rule (one-dimensional quadrature applied
sequentially in the two directions). Explore the accuracy of
your technique by adjusting the number of intervals
employed for both the inner and outer evaluations. Does
Kahaner et al.’s (1989) observation that the accuracy of the
inner integral is critical to the success of this approach seem
to be upheld?
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4.14. Use the Monte Carlo “hit-or-miss” method to evaluate
the integrals,

27

f dx
1

— 648925 and f cos? [f]dx=1.5708.
0 1+Zcosx 3

4.15. Use the Monte Carlo method to confirm the given
value for the double integral,

2 1
f f[yxm e
1 0

How many function evaluations are necessary to verify the
second and third decimal places (3 and 1)? If you model
your procedure on the sample code provided earlier, you
must set ylimit = 2, dy = limit — 1)/ntrial, and
y = rny*(ylimit — 1) + 1. A typical result obtained with
these changes for ntrial = 400 is 1.230775.

dedy =1.23105.

4.16. Consider the definite integral

9
IL:4.8411.
xvV1+2x

0.01

Our objective is to learn about the error produced with the
estimation of this integral using different quadrature tech-
niques. First, solve the definite integral analytically, verify-
ing that 4.8411 is the correct value. Then, run through the
list of Newton—Cotes formulae given by eq. (4.10), eq.
(4.11), eq. (4.12), eq. (4.13), and eq. (4.14) generating five
different approximations for the integral. Use the minimum
number of function evaluations for each, that is, two for the
trapezoid rule and three for Simpson’s rule. Assess the error
for each approximation using eq. (4.28). Are these estimates
in accord with your numerical experiments?

4.17. We have two points in the x-y plane located at (1, 1)
and (6, 3), and these two points are to be connected by a
function, y(x). If we take this function to be a straight line,
then y = (2/5)x + (3/5). From elementary calculus, the
distance between these two points is given by

6

= J(2 ]

1
and we can easily verify that for this straight line,

L = 5.38516. But now suppose we want to create a volume
by rotating y(x) about the x-axis:

X2

V= Wf[y(x)]z dx

X1

and furthermore, suppose we require that the function—
while still connecting the points (1, 1) and (6, 3)—be of the
form y(x) = ax* + bx + ¢. We would like to determine what
function of this class yields the smallest volume, V, with the
constraint that it passes through (x;, y;) and (x,, y,) while
touching the x-axis at only one point (such that y(x) > 0
of course). First, determine if there is more than one possi-
bility for f{x); for example, if y(x) is zero at x = 3, then
y(@x) = 0.3x* — 1.7x + 2.4, but we see immediately that
(dyldx)=0.6x—1.7=0 at x = 3 (as it should). Then find
the swept volume, V, and the length, L, by numerical quadra-
ture. Repeat, but using the function type, y(x) = ax’ +
bx* + cx + d. With this problem type, we are anticipating
one of the uses for the calculus of variations (COV) which
will be introduced in Chapter 11.
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S

ANALYTIC SOLUTION OF ORDINARY

DIFFERENTIAL EQUATIONS

AN INTRODUCTORY EXAMPLE

Suppose we place about 5S00mL of water in a beaker and
heat the contents with a candle flame until the water begins
to boil. We then remove the heat source and allow the con-
tents of the beaker to cool simply by exposure to the ambient
air. An approximate energy balance for this situation (the
cooling process) can be written as

{Accumulation} = —{Rate of loss to surroundings},

or symbolically as

mc,,‘;—f:—hA(T—Tm). 5.1

In this first-order ordinary differential equation (ODE),
m is the mass of heated water, C, is the heat capacity of the
water, & is the heat transfer coefficient, and A is the surface
area for heat transfer. 7., of course, is the temperature of
the air surrounding the beaker. Actual experimental data for
this process are shown in Figure 5.1.

We want to solve eq. (5.1) and then see if the result is
capable of describing the cooling process shown in Figure
5.1. It will be convenient to let @ = T — T, such that

4 = —ﬁﬁ. (5.2)
dt mC

p

This equation is separable and easily integrated to yield

Inf =— hA t+C, (5.3)
me,
or, more conveniently,
0=C exp|— A t|. 5.4)
mC,

We should make note of the fact that hA/mC, is the recip-
rocal time constant (1/7) for this first-order system. More-
over, after an elapsed time of 17, about 63% of the change
has been accomplished; after 27, about 86%; and after 37,
about 95%. In our example, the cooling process was initiated
att = 865 s when the temperature of the water was 99.8+°C.
Since the ambient temperature was 22°C, we have

T= 77.8€xp[— hA

P

t]+22. (5.5)

We can use the experimental data shown in Figure 5.1 to
estimate the unknown parameters in the quotient (hA/mC,);
at + = 1200s, the water temperature had fallen to 83.75°C.
So when t = 3355 (1200 — 865), we find

[83.75 —-22
In

hA
77.8 ] "~ mC, (333), ©.6)
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FIGURE 5.1. Cooling process for 500 mL water, initially heated
to incipient boiling. The heat source (flame) was removed at
t = 865s.

which produces a value for hA/mC, (0.00069 1/s). How good
is our crude model? At = 1050s, the data in Figure 5.1
indicate that 7' = 90.7°C; the model shows that at t = 185s
(1050 — 865), T = 90.5°C.

Let us make some concluding remarks about this example.
The differential equation we formulated by energy balance,
eq. (5.1), was an extremely simple first-order linear ODE.
However, it was not homogeneous due to the presence of the
constant, 7. Notice that we eliminated the inhomogeneity
by redefining the dependent variable: 0 =T — T... Of course,
this allowed us to follow the sequence: Separate the vari-
ables, integrate the equation, and evaluate the constant of
integration, Cy, through the use of the initial condition. The
procedure worked well for us in this case, but we need a
more general approach that will enable us to solve a broader
array of problems.

FIRST-ORDER ORDINARY
DIFFERENTIAL EQUATIONS

We begin by considering equations of the type
d
= fxy). 57
dx

Let us assume that this equation can be written as
Mdx 4+ Ndy = 0. Such an equation is said to be exact if

OM _ON

—_— = 5.8
dy  Ox -8

Now suppose

d +2
= fa =227, (5.9)
dx X

which we rewrite as (y + 2)dx — x’dy = 0. Therefore,

a_le and a—N:—ZX; (5.10)
Oy ox

this equation is not exact. However, it is separable and we
can easily show that

1
y—Clexp[—]Z. (5.11)
X
We contrast this case with the equation
d 3x%y* +2
& YTy, (5.12)

dx 2%y +x%

this time, separation is not possible. We rewrite eq. (5.12)
as (2x'y + x)dy + (3x’y* + 2xy)dx = 0, and observe

a—M:6x2y+2x and ?9—N:6x2y+2x. (5.13)
y

Oy

We see that eq. (5.12) is exact and because we have an
exact differential, Mdx + Ndy = dU, where

U _m ana Yo, (5.14)
Ox Oy

Thus, OU/Ox = 3x*y* + 2xy, and integrating with respect
to x,

U=xy?+x*y+F(®), (5.15)
since F cannot be a function of x. From the second part of
eq. (5.14), we differentiate U with respect to y and set the
result equal to NV:

23y + X2+ F'(y) =2x3y + x% (5.16)
Clearly, F'(y) = 0, so F = C, and we note
X*y*+x’y=C. (5.17)

When a first-order ODE is not exact, we look for an
integrating factor. For example, if

OM ON

8y ox

N f(x),

(5.18)
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where f(x) is a function only of x, then an integrating factor
(IF) is IF = ™% Let us illustrate with an example; suppose
we have

dy 1 2
Dy y=4x (5.19)
dx x X

Therefore,

dy—[g+x2]dx,
X x

so that M = (2/x) + x — (y/x) and N = —1; the equation is
not exact. By eq. (5.18), fix) = 1/x, and /9% = ¢ = .
We multiply eq. (5.19) by the IF:

x[ﬂ N z] ) =24x (520
dx x X

We integrate and divide by x:

y=2mx4Xs G (5.21)
X 2 x

We need to see this process employed for something that
is more characteristic of a real problem encountered in
applied science. Suppose we have two identical stirred-tank
reactors in series, each with a capacity of 100 gal. Both tanks
are perfectly mixed, and tank 1 contains a solute at a con-
centration of 0.81b/gal, initially. Pure solvent flows into the
first tank at a rate of 4gal/min (gpm), then the discharge
(overflow) from tank 1 flows into tank 2. Our interest is
the concentration of solute in tank 2 as a function of time.
The situation we are describing corresponds to two, non-
interacting first-order systems in series. By mass balance,
we formulate two first-order ODEs: For tank 1,

Ve, —VC, =V; d; , (5.22)

and for tank 2,

VC,—VC, =V, (5.23)
dt

Of course, C;,, = 0 since pure solvent is being fed to
the first tank. Also, if we divide both equations by the volu-
metric flow rate, V, and note that the volume of each tank,
Vr, divided by the volumetric flow rate is the time constant,
T (T =V / V), then we can immediately find the solution for
eq. (5.22):

C =G, exp[_i], (5.24)
T

where C, is the initial concentration in tank 1, 0.81b/gal. We
take this result back to the ODE (eq. 5.23) and rearrange the
equation so that

dc, —|—lC2 _ &exp
dt T T

—1]. (5.25)
.

Now we recognize that eq. (5.25) is of the form y’ +
a(x)y = b(x) so that the integrating factor (/F) can be deter-

mined from €““ which in our case is eV = ¢!/,
Therefore,
d, , Cy [ t] [t]
—(e""Cy ) = —exp|——|exp|—|. 5.26)
dt( 2) T P T P T (

The concentration in tank 2 then is simply C, =
(Cy/7)te™"™ (remember, the concentration in tank 2 was zero
at r = 0). So for this example, after 1 hour (r = 60 min), the
concentration of solute in tank 2 will be 0.17421b/gal.

NONLINEAR FIRST-ORDER ORDINARY
DIFFERENTIAL EQUATIONS

A nonlinear first-order ODE is one that has the form

% — F(x ). (527)

where f(x, y) includes a term in which the dependent vari-
able, y, occurs to some power other than one. Examples
could include

@ _ x*+y* or b xysin(y). (5.28)
dx dx

The second equation of this pair is particularly interesting
and the reader may want to compare what happens when
y(x = 0) = V4 with the case where y(x = 0) = 4. Certain non-
linear first-order ODEs have seen a great deal of study. For
example, Bernoulli’s equation, which is usually written as

% 4 )y = g(x)y", (5.29)

where n = 0, 1, has attracted the attention of mathemati-
cians for more than 300 years. One of the reasons this
equation is interesting is because of the effect of the trans-
formation, z = y'™; we will illustrate with an example. Let
us consider

Dy (5.30)
dx x
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Applying the transformation (z = y~?), we find

apdz 7V
—1z 2 42 =7
dx X

which leads directly to

LSNPS ) (5.31)
dx X

This is a familiar form and we know that the integrating

factor (IF) is just e/ V% = ¢=2v —1/x 1t is straightfor-
ward to show that

1=2x+Cx%, (5.32)

1
=, |—. 5.33
Y \ 2x + C,x? >-33)

One of the best-known examples of a nonlinear first-order
ODE is the Riccati equation, which is generally written as

and therefore,

d
d—y—l—a(x)y+b(x)y2 T e(x)=0. (5.34)
X
This equation is reducible to the form
dw )
— 4 (X)W +d(x) (5.35)
dx

by use of the transformation w = e/#*®%y Riccati equa-
tions arise regularly in applied mathematics and we will look
at two examples for illustration.

Consider a constant volume reactor in which the reactant
species A is consumed by a second-order (bimolecular)
process. The reactant is added to the process vessel continu-
ously but in a concentrated form such that the volume (V) is
nearly unaffected. A mass balance on the reactant A yields

dc,

|% =n, —Vk,C,2. (5.36)
dt
Therefore,
dCA }"lA 2 . dy 2
=—=-kC or, equivalently, — =a—by".
r v 2Ca q Yy dx y

(5.37)

In this case, the solution can be found very easily using
a table of integrals (see Selby, 1975, p. 546):

y = tanh[Vab(x + )] (5.38)

The initial concentration of the reactant is zero, so C, = 0.
We assign the constants @ and b the values 3 and 0.475,
respectively, resulting in

C, =2.5131tanh(1.19373s). (5.39)

Thus, the concentration of A in the reactor, which will
approach 2.52312 as t — oo, behaves as shown in the fol-
lowing table:

Time 0 0.1 0.2 0.6 1.0 2.0
Concentration 0.00 0.2986 0.5888 1.5445 2.0902 2.4710

For our second example, suppose a pilot must leave an
airplane at very high altitude. The pilot will begin to fall
vertically under the influence of gravity, and that motion will
be opposed by drag. We are interested in the pilot’s approach
to terminal velocity, what that velocity will be, and how long
it will take the pilot to attain that velocity. An approximate
model for this free fall will be

mcjl_‘t/ =mg—KV> (5.40)

m 1is the mass of the pilot (plus gear) and K is the product
of the frontal area of the falling pilot, the fluid density, and
the drag coefficient. Generally, the drag coefficient is a func-
tion of velocity, but we are taking it to be approximately
constant. Dividing by the mass, we get

av _ g— EVZ or, alternatively, dy_ a—by’, (541)
dt m dx

which, conveniently, is the same form as the constant volume
chemical reactor. Experiments conducted in the World War
IT era indicated that the terminal velocity of the falling pilot
from high altitude would be roughly 250 ft/s (about 170 mph);
therefore, a = 32.2 and b = 0.000515 (1/ft). The solution is
exactly the same as given earlier by eq. (5.38), and the initial
(vertical) velocity is zero.

Time (s) 0.5 1 5 10 20 50
Velocity 16.07 32.02 141.88 214.63 247.12 249.99+
(ft/s)

Thus, the falling pilot attains terminal velocity in about
50s.

In addition to Bernoulli and Riccati equations, many
other nonlinear ODEs have attracted attention. For example,
in the first third of the twentieth century, there was great
interest in predator—prey problems (populations in conflict).
Generally, such problems were formulated in terms of two
simultaneous ODEs, one for population “1” and one for
population “2.” Nonlinear terms come about through inter-
action between the animals (or species). In some cases, the
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two equations could be combined to produce one nonlinear
second-order ODE. In a typical formulation for populations
in conflict, we might see

% == aNl _leNz and dZZ = _CN2 +leN2. (5.42)
t

Of course, it is possible to rewrite the former as

and to use that to eliminate N, from the second of the pair
of ODEs. We note in passing that the model (eq. 5.42) for
the predator—prey problem is not very realistic for reasons
that will be made clear in Chapter 9.

Davis (1962) points out that it can often be exceedingly
difficult to find an analytic solution for a nonlinear ODE.
But the analyst may learn a great deal about the behavior of
such an equation through simple graphical interpretation as
follows. First, we recognize that given a nonlinear first-order
ODE,

D _ iy, (5.43)
dx

we have a means for finding the slope of tangents at any
point(s) we wish. Let us examine the first quadrant (on the
diagonal) for the equation,

dy

—=xy(y—2). (5.44)

dx
X 0.125 0.250 0.500 1 195 2 3 4 5
y 0.125 0.250 0.500 1 195 2 3 4 5
Slope —0.0293 —0.1094 —0.375 -1 —-0.190 0 9 32 75

It is a simple matter for us to construct line segments with
the indicated slope at the points listed in the table. We extend
those segments a short distance, estimate the new position
(x, y), calculate a new slope, and repeat. To illustrate, we
will take the point (1, 1) and try this.

X position y position Slope
1 1 -1

1.1 0.9 —1.089
1.2 0.791 —1.148
1.3 0.676 —1.164
1.4 0.560 —1.129
1.5 0.447 —1.041
1.6 0.343 —0.909
1.7 0.252 —0.749
1.8 0.177 —0.581
1.9 0.119 —0.425
2.0 0.076 —0.294

2.0+
1.54
>
1.0+
054
0.0 T T T T T T T T T T T 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

X

FIGURE 5.2. Local behavior of y(x) for eq. (5.44) as estimated
through the construction of tangents. Please note that the slope is
always zero for y = 2; one of the loci is a horizontal line passing
through y = 2. What would we see if we started at (x =0, y = 1.99)?

We repeat this process for various starting positions and
plot the results in Figure 5.2.

The reader is encouraged to apply this method in the first
quadrant, but above y = 2; in fact, we will make it one of
the exercises at the end of this chapter. We note from our
original table of slopes that for large (x, y) pairs, the slopes
are very large—the tangents are essentially vertical lines.
Furthermore, for very small values of x (but y > 2), the
slopes are very small (the tangents are nearly horizontal).
Thus, the behavior of y(x) above y = 2 is very different from
what we observe in Figure 5.2 for values of y < 2.

We should also point out that we can always differentiate
our first-order nonlinear ODE and identify the locus of
points of inflection by setting the second derivative equal to
zero. Thus, a great deal of information regarding the behav-
ior of the nonlinear first-order ODE may be obtained rather
easily even though we may not be able to find a solution for
the equation itself.

Solutions with Elliptic Integrals and Elliptic Functions

We want to consider a class of nonlinear ODEs that can be
initially represented by the equation

v
[d_y] =ay+ay+ay’ +ay’ +ayt (5.45)
/x

We now restrict our attention (for the right-hand side) to
quartic polynomials that can be written in the form

1=(1+k)y* +k°y* (5.40)
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such that ay = 1, a, = —(1 + k%), and a, = k* by comparison
with eq. (5.45). We also limit consideration to values for k
less than 1. By taking the square root of the modified ODE,

D Ja= ey,
dx

(5.47)

It is a simple matter for us to rearrange this equation
so that

(5.48)

B8
dy
X = .
:[ Ja—y)H(1—ky)

This is an elliptic integral of the first kind (see Dwight, 1957,
p- 170), which can be written equivalently as an inverse
Jacobi elliptic sine, sn™". If we now substitute y = sin ¢, we
obtain a more compact version of the right-hand side:

=
AR & sm2¢

k is the modulus of the elliptic integral and 6 is the ampli-
tude. Extensive tables of values for elliptic integrals are
available; for example, if we set k = 1/4 and 6 = 7/4, we
can find the value for the elliptic integral, 0.8044 (Davis,
1962, has a small table and CRC Handbook of Tables for
Mathematics a much larger one). The reader may want to
confirm his or her facility with such tables by checking the
following value:

(5.49)

/6

F(k.0)=F(L, = f %:0.525. (5.50)
— —=S1n

At this point, you might be thinking that the scope of
application is strictly limited to equations where the right-
hand side is similar to eq. (5.46). However, let us go back
to eq. (5.45) and differentiate, obtaining

dy d’ dy _ dy
dx dx* d

dy

dy , dy
+2a +3a +4a 3L 5.51
zyd 5yt — I 4y I (5.51)

If we divide by 2dy/dx, we see a nonlinear second-order
ODE of the type that may be solved using elliptic functions;
Davis provides a number of examples and Milne-Thomson
(1950) points out that application of elliptic functions for
solution of nonlinear ODEs includes analysis of pendulum
oscillations, capillary phenomena, bending of an elastic rod,
viscous flow in a convergent channel, and the potential of
an electrified ellipsoid, among others. We will look at an
elementary example to illustrate this. Consider a simple,
frictionless pendulum with oscillatory motion governed by

Pendulum angle (rad)
T

-2 ———————7——7—— r v
0 1 2 3 4 5 6 7
Time (s)

FIGURE 5.3. Behavior of frictionless pendulum with a starting
position of 90° (1.5708rad) and L = 3 ft.

2
Z—f—i——sm& 0. (5.52)
L is the length of the pendulum and g is the acceleration of
gravity. Let us suppose that (t = 0) = 90° and the df/dt = 0
We set g = 32.17ft/s and take L = 3ft. First, we will find
the solution for this problem numerically, and the resulting
behavior is shown in Figure 5.3.

Now we turn our attention back to eq. (5.52), noting that
it can be integrated once to yield

2
%[d_@] — & cosh = C,.

5.53
dt L ( )

Since df/dil,_, = 0, C, = —(g/L) cos 6, and therefore

db /2g
— =, = 0 —cosb,).
& 7 (cos@ —cosby)

If we now let cos @ = 1 — 2k? sin” ¢ and take k = sin (6,/2),
we find

(5.54)

L do
dt =, |— ——. 5.55
\/;\II—kzsinqu 623
Of course, when integrated, this is exactly the form of eq.
(5.49). We can use this elliptic integral to find the period of
the pendulum’s motion; we will integrate from the zero posi-
tion to our maximum angle of 7/2 rad (which is one-quarter
of a cycle) and then multiply by 4:

T, =4 (5.56)

e
8+ V1—k*sin’¢
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Since the initial displacement (angle) is 90°, this means
that our modulus is sin(45°) and our amplitude is 7/2. Con-
sulting a table for elliptic integrals, we find a value of 1.8541
and therefore,

T, = (4)(3/32.17)"*(1.8541) = 2.265.

Please compare this value with the results presented in
Figure 5.3; you will find that our analytic solution (2.265)
corresponds exactly with the numerical calculation.

HIGHER-ORDER LINEAR ODEs WITH
CONSTANT COEFFICIENTS

We want to examine some higher-order ODEs but initially
with the stipulations that they be linear, homogeneous, and
have constant coefficients. Let us begin with a set of three
second-order equations:

P L P (5.57)
d T dx
d’y dy

4D 4y—p 5.58
dx? dx Y (5.38)
d’y |, dy
23 pay=o. 5.59
dx? dx Y (5.59)

We rewrite eq. (5.57) using linear differential operator
notation:

(D*+3D+2)y=0, (5.60)
which we can readily factor as
(D+2)(D+1y=0. (5.61)

Anytime we can successfully factor the linear operator
for an ODE in this manner, we can immediately write down
the primitive:

y = C,exp(—2x) + C, exp(—x). (5.62)

Values for the two constants of integration can be obtained
from the initial (or boundary) conditions. For an equation
such as eq. (5.57), these might take the form

y(x=0)=a and ﬂ =b. (5.63)

X x=0
In the case of ODE (eq. 5.58), we have

(D +4D+4)y=(D+2)(D+2)y=0, (5.64)

where we see repeated roots. In a situation like this, the
primitive is written as

y=C,exp(—2x)+ C,xexp(—2x). (5.65)

For an equation of higher order, it is certainly possible to
obtain

(D+a)'y=0. (5.66)
The primitive in this case is written as

y = C, exp(—ax) + C,xexp(—ax) + C;x* exp(—ax)

5.67)
+ - C,x"exp(—ax). (

Equation (5.59) presents a different challenge; in linear
differential operator notation, we find

(D> +3D+4)y=0. (5.63)

When we look at b* — 4ac for the quadratic formula, we see
9 — 16 = —7. Consequently,

[D+%+?][D+3 \/—] =0.  (5.69)

We can, of course, write down the primitive just as we
have done for both eq. (5.57) and eq. (5.58). However, this
is a case where Euler’s relation will be useful; you may
recall

Y = ¢ (cosbx 4 isin bx). (5.70)
This will allow us to put our result into a more appropri-
ate form:

N Y
y=Cie ? |[cos—x+isin—x
2 2
3 N I G
+ C,e 27| cos _TX +isin —Tx .

Since cosine is an even function and sine is odd, we can
write

(5.71)

N N
y=Cie > |cos—x+isin—x
2 2 (5.72)

3, J7 .. NT .
+ Cre 2 COSTJC—ISIHTX .

For a real (physical) problem such as one arising through
a force balance, the imaginary parts will cancel, leaving
a real result. We can very conveniently confirm the result,
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eq. (5.72), by using deSolve(..
TI-89™; we obtain

.) on the Texas Instruments

3x V7x 3x) . N7x
y=C, exp 5 cosT—i—Czexp 5 sin—.

The procedure we have sketched previously is valid for
comparable equations of any order. For example, consider

4 3 2
d—+2d—+3d—+53y

T2t +8y=0.  (573)

In this case, we have two pairs of complex conjugates
(roots), which are D + 0457547 + 1.56529i and
D — 1.45755 4 0.940024i. And again we can immediately
write down the primitive by inspection.

Unfortunately, not every ODE of higher order will be
homogeneous; often, if the differential equation represents
some dynamic process, a forcing function will be applied on
the right-hand side to drive the model. For example, we
might have

&y | L dy

—=+3—42y=>5. 5.74

o g TR (5.74)

In such cases, the solution is the sum of the primitive for

the homogeneous equation—which we refer to as the com-

plementary function (CF)—plus a particular integral (PI).
Thus, for eq. (5.74), we have

y=C,exp(—2x)+ C, exp(—x)+ PI. (5.75)

Many times, the form of the particular integral can be
determined by inspection. For example, for eq. (5.74), once
the dynamic behavior is completed, the terms involving
derivatives will be zero (for large x, the exponentials disap-
pear, leaving just the PI). Therefore, the PI must be 5/2, and
the solution can be written as

5
y=C, exp(—2x)+ C, exp(—x) + > (5.76)

We should actually complete this problem by including
boundary (or initial) conditions. We assume that the physical
process described by this model was drifting along at an
equilibrium state until the independent variable, x, or very
commonly time, f, was zero, when the forcing function (the
constant 5) was applied. Of course, this means that both y
and its derivative can be set to zero for x = 0—we can
always do this for models of this type by using deviation
variables. For example, if y., is the equilibrium (or steady)
value of the dependent variable, then we simply write

Y=y Y (5.77)

This guarantees that the dependent variable was zero at
the instant the forcing function was applied. Consequently,
we will now assume that the dependent variable was in fact
written in this form, such that

y(x=0)=0 and ﬂ =0. (5.78)

X lx=0

Therefore,
5
C +C, —1—5 =0 and C,=-2C,. (5.79)

For these conditions, the solution for our problem
becomes

5 10 5
= Zexp(—=2x) — —exp(—x) +—. 5.80
y 2e><p( x) 5 exp(—x) 5 (5.80)

Of course, the inhomogeneity does not have to be a
simple constant as it was in the previous example. Let us
examine a method that allows us to deal with cases in which
the inhomogeneity is a function of x. For example,

&y

I I +4y=ux. (5.81)

Again, we find the complementary function from the
homogeneous version of eq. (5.81) and add the particular
integral:

y=C,exp(—2x)+ C,xexp(—2x)+ PI. (5.82)

The technique we will employ for the determination of
the particular integral is called variation of parameters. We
begin by rewriting the complementary function, but we

insert unknown functions of x in place of the constants of
integration that appear in eq. (5.82):

y=Li(x)exp(—2x) + L, (x)xexp(—2x). (5.83)
We now differentiate with respect to x, obtaining

Dy=L,"exp(—2x)—2L,exp(—2x) + L, xexp(—2x)
+ L, exp(—2x) — 2L, xexp(—2x). (5.84)

The terms involving derivatives (of Ls) are set equal
to zero:

L/’ exp(—2x)+ L,"xexp(—2x) = 0. (5.85)

Now we differentiate again, retaining only those terms
involving derivatives of the Ls. But this time, the order of
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the derivative (2) matches the order of the ODE, so the sum
is set equal to the inhomogeneity (which is x); thus,

—2L, exp(—2x)+ L, exp(—2x) — 2L, xexp(—2x) = x.
(5.86)

By virtue of eq. (5.85), the sum of the first and third terms
is zero, leaving us with two equations to solve:
L, =xexp(+2x) and L,’=—x"exp(+2x). (5.87)
These equations are integrated and taken back to eq.
(5.83). The reader should show that the particular integral

turns out to be PI = (x/4) — (1/4); therefore the solution we
were seeking is written as

y=Cyexp(—2x)+ C,xexp(—2x) + %(x —1). (5.88)

Since y(x = 0) = 0, C; = 1/4. The first derivative is also
zero at x = 0, so it is easy to show that C, = 1/4 as well.
Problems of a type similar to the example immediately
above are excellent candidates for solution through use of
the Laplace transform, and it is worthwhile for us to spend
a little effort reviewing that technique. But keep in mind that
the procedure we are about to explore can only be used to
solve a very limited class of ODEs—we are restricted to
linear ODEs with constant coefficients.

Use of the Laplace Transform for Solution of ODEs

We normally think of the Laplace transform within the
context of problems involving change or evolution in time.
Accordingly, for decades, the Laplace transform was a staple
of classical linear process control as it allowed the control
engineer to explore the dynamic behavior of a system in the
s-plane using only algebraic manipulations. With this per-
spective in mind, we will use ¢ as our standard independent
variable in this section. The formal definition of the Laplace
transform of a function, f{(7), follows:

00

Fls)= f F(edr.

0

(5.89)

This transform is often written more compactly as f
(s) = L{f (©)}. Notice that the transformation takes us from
the time domain to the s-plane. Let us actually apply the
definition to something—a numerical constant, for example:
We let f(t) = 1, then

00

fls)= f(l)e’“dt - _iefst

o

.= Lo-n=L 90
N N

We envision needing to find the transform for many dif-
ferent types of terms, and we will use the formal definition
one more time, applying it to the independent variable, f:

o0

f(s)= fte‘”dt =

0

—St

e

(—st—D|* = siz (5.91)

s2

If our focus is the solution of ODEs, then we must also
be able to transform derivatives of various orders. For
example,

L{m} — 5f(s)— f(t =),

.92
7t (5.92)

L{d;];(t)} =S f(6)=sf 1 =0)= f1=0), (5.93)

and more generally,

L {d"f(t)

- } =5"f(s)—s""ft=0)—s""f(t=0)
dt

—s"3f(t=0)....

The reader will observe that in the transformation of
derivatives, differentiation is replaced by multiplication by
s. However, we must also subtract off the initial conditions
(in the time domain). This makes it clear why it is so impor-
tant (and convenient) to put problems into deviation form
whenever possible. Of course, we do not actually use the
formal definition of the Laplace transform, eq. (5.89), in
practice since nearly every conceivable form of function has
already been transformed. We merely need to look them up
in a suitable reference; one very useful source is Abramowitz
and Stegun (1972). Here is an abbreviated listing of some
very common transforms.

§(0) L{fin}
. 1
s
1
f e
1
exp(—at) sta
n!
' exp(—at) m
. b
exp(—at) sin(br) (s+a) +b°
sin(at) 2 j_ a2
s
cos(at)

s +a®
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fit) L{fin}
52— a2
t cos(at) m
s+a
exp(—ar) cos(br) m
cosh(at) &2 jaz
%{fsin(m)sinh(m) - _: ia
1 1 k
ook et
Jo (Vakr 1eXp[—ﬁ]
s

~exp(—k+s), where k>0
s
1
chp(fk\/g), where k >0

1 kz] 1
—_exp|l—— —ex (—k\/;), where k >0
N p[ 41 N

We will illustrate the application of the Laplace transform
to the solution of ODEs (with constant coefficients) by
reconsidering the previous example, eq. (5.81). However,
we will change the independent variable to 7 (from x)
to be consistent with the previous table of transforms.
Accordingly,

Ay gD

ATy =1 (5.94)

Applying the transform to each term, we get

1

Y(s)(s* +4s+4)=—, (5.95)
s
and therefore,
[ I S— (5.96)
Y SP(s+2)(s+2) ’

To solve such problems the old-fashioned way (manu-
ally), we use partial fraction expansion. There is a slight
complication in this case since we have repeated roots that
will require us to write

s2(s+2)° 2 s

! 4B, € 1P 5o
(s+2)y s+2

We begin by multiplying by s* and setting s = 0; we find
immediately that A = 1/4. To find B, we return to eq. (5.97)
and multiply by s? again. But this time, we differentiate with
respect to s, which isolates B, and we find B = —1/4. We
proceed analogously for the remaining two terms and find

C = 1/4 and D = 1/4. Therefore, we now know the right-
hand side of eq. (5.97):

11 1 1

4_4. 4 4
§)=———= . 5.98
Y) s s ( +2)° s—|—2 (>:9%)

Our work is almost complete; we need only to consult
the abbreviated list of transforms provided earlier so that we
can write y(7):

1.1 1 1
1)=—t——+—texp(—2t)+—exp(—2f). (5.99
Y()444p()4p()()

Compare this result with eq. (5.88); you will see that
they are identical (except for the change in independent
variable). Our use of the Laplace transform has significantly
reduced the work necessary to find the solution for the ODE
(eq. 5.81).

We also want to illustrate the procedure with a variation
that arises regularly with this type of ODE. Consider the
second-order ODE:

d*y .d

2 +3 2

dt dt

with y(r = 0) = 0 and y'(r = 0) = 0. Proceeding as before,

+5y=2 (5.100)

szy(s)JrB'sy(s)Jr5y(s):z (5.101)
s
and
(s): 2 =
Y 35 +5) [ 3 Jﬁ][ 3 Jﬁ}
S|s+—+— +———1
2 2 2 2
(5.102)

Just as we did previously, we expand the right-hand side:

A B C
ys)=—+ + . (5.103)
U [ E PR BT
2 2 2 2
The reader may wish to verify that A = 2/5, B =

—0.150943 — 0.068267i, and C = -0.150943 + 0.068267i.
It remains for us to take the following three terms back to
the time domain:

2
K5y 5 —0150943 - 0.068267i
s 3 1 .
Syt (5.104)
| 0150943+ 0.068267i
+§_£
2

At this point, you should be able to identify the essentials
of this system’s behavior in the time domain: We will obtain
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FIGURE 5.4. Characteristic behavior of a slightly underdamped
second-order system as produced by the solution, eq. (5.105). Note

the limited overshoot and the rapidly damped oscillation about the
ultimate value for y(7) of 0.4.

a constant (2/5) combined with an exponentially damped
(exp(—31)) oscillatory response. Specifically, we find

3 V11
t ———04e ——t|cos—t
Y=3 Xp[ 2] 2

(5.105)
—0.361814exp[—§t]sin£t.
2 2

The behavior produced by eq. (5.105) is illustrated in
Figure 5.4.

To conclude this section, it is essential that we reiterate
that the Laplace transform is a linear operator and it can only
be used to solve linear ODEs with constant coefficients.
Historically, this method was of enormous importance in the
development of automatic process control because idealized
models for the dynamic behavior of processes could be dealt
with algebraically (and the computational solution of dif-
ferential equations could be avoided). But the restriction of
the Laplace transform method to linear ODEs with constant
coefficients is a significant one since so many of the equa-
tions of interest to us in applied mathematics have variable
coefficients.

HIGHER-ORDER EQUATIONS WITH
VARIABLE COEFFICIENTS

We want to focus on second-order ODEs of the form

d2
£y, P(x)— +0(x)y = R(x).

= (5.106)
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This differential equation is linear, but the coefficients are
not constant. We must preface this part of our discussion
with a warning: There is no general procedure that will
permit the analyst to solve every differential equation of this
type. Ayres (1952) laid out a plan of attack for such equa-
tions that will sometimes yield success and we will use the
strategy he recommends on the following example. Let us
suppose the equation of interest is

5.107
d xde ¥ ( )

Our plan is to render the equation homogeneous (remov-
ing the 2x — 1 from the right-hand side) and then to see if
we identify a particular integral, which we will call u(x).
Consider trying PI = x; the second derivative is zero, the
first derivative is 1, and we find (—3/x) + (3/x*)x = 0, so the
function x is a particular integral for this equation. We now
let y be rewritten as the product of the particular integral and
a new dependent variable, v: y = xv. Therefore,

2 2
By ang DY AV (5 0g)
dx dx dx? dx dx
Of course, this leads to
2
pXaa ﬂé[v+x@]+i(xv)2x1, (5.109)
dx dx®  x dx) x*

which means that the terms in which v is divided by x cancel,
leaving us with just

d>v dv

x———=2x—-1.
dx*  dx

(5.110)

Anytime we are confronted by an ODE that includes only
derivatives, we should immediately think about reducing the
order. In this case, we achieve this by letting 3 = dv/dx,
resulting in

B _1g_p 1 5.111)
dx x X
This first-order ODE is familiar—see eq. (5.31), for example.

We know that an integrating factor for this equation is

e/ ~W0dr — o=inx —1/x Consequently,
d(1 2 1
4llgl=2-2, 5.112
dx\x ﬂ] x x° ( )
and therefore,
dv
ﬂ:d—:lenx—i—Clx—i—l. (5.113)
X
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We integrate with respect to x:

2 2
v T+ S e ke, G148
2 4 2
and since y = xv,
y=x[Inx+C ]+ x* +Cox. (5.115)

The procedure we sketched immediately above will only
work if we can identify a particular integral for the homo-
geneous equation. Obviously, we might fail to find a P/, and
in that case, Ayres suggests the following: Return to eq.
(5.106) and compute Q — (1/4) P* — (1/2) (dP/dx); if this
difference is a constant or alternatively a constant divided
by x, then the transformation

y:vexp[—%fP(x)dx]

will reduce the ODE to a linear equation with constant coef-
ficients (or to a Cauchy equation of the form

(5.116)

d"y n—1 d"*ly
-t A”’lx dxn—l

A, x" +...=F(x).

n

Let us see how this might work in practice using the fol-
lowing equation for our example:

——4x?—|—4x2y:xexp(x2). (5.117)
X

We see Q = 4x* and P = —4ux; therefore,

1 1\dP 1 1
P || = d® —— (1627 — —(—4) =2.
2=y [Z]dx ¥y Ao =)

Accordingly, we let
1 2
y =vexp —Edex = vexp(x?).

Proceeding, we differentiate appropriately and substitute
into eq. (5.117). All terms involving dv/dx cancel, as well as
the terms that involve x%v, leaving us with

d*

F'FZV:)C. (5118)
X

By inspection, the PI is x/2, and from the homogeneous
equation we observe
(D> +2)v = (D +2i)D—2iyy=0. (5.119)

Thus, the solution for v is

v = C, exp(—/2ix) + C, exp(++/2ix) +§. (5.120)

Of course, we must remember to multiply eq. (5.120)
by exp(x?) to obtain our original dependent variable, y.
We can also use the Euler relation to rewrite the solution
in terms of cosine and sine, should we desire to do so;
for example, since e“"" = ¢“ (coshbt + isinbf), then

exp(—\/zix) = cos(\/zx) —1i sin(\/Ex).

BESSEL’S EQUATION AND BESSEL FUNCTIONS

Among the more important second-order ODEs with
variable coefficients appearing in applied mathematics is
Bessel’s equation. The solution for Bessel-type ODEs can be
written in terms of Bessel functions, and the definitive source
of information regarding Bessel functions is A Treatise
on Bessel Functions and Their Applications to Physics by
Gray etal. (1931, reprinted 1966); Carslaw and Jaeger (1959)
can also be very useful. The reader should be aware of the
fact that Bessel functions are often referred to—quite
appropriately—as “cylinder functions” in the older German
literature. The form for Bessel’s ODE seen frequently
throughout applied mathematics is
&’y dy

XS x— 4 (2 —n?)y =0,

5.121
dx? dx ( )

where n > 0. The general solution for this particular
form is

y=CJ,(x)+CY,(x), (5.122)

where J is the Bessel function of the first kind and Y is
Neumann’s Bessel function of the second kind (both of order
n). However, the form of eq. (5.121) is quite restrictive and
we should recognize that many ODEs with forms similar to
eq. (5.121) have solutions that can be written in terms of
Bessel functions. In fact, we need to make the following
observation: Whenever we encounter a radially directed flux
in cylindrical coordinates, the operator

will arise. Depending on the exact nature of the problem,
this can result in some form of Bessel’s differential equation,
which, for the generalized case, can be written as shown by
Mickley et al. (1957):

do

4

2

2 i ra+20r) =2
dr* ( ) dr

+[c+dr* —b(l—a—v)r' +b*r*]p =0.

r

(5.123)

For many real, physical problems in applied mathemat-
ics, we find that a = 1, b = 0, and ¢ = 0. The nature of the
solution is then determined by the sign of d. If the Jd is
real, then the solution is written in terms of J, or J, plus Y,.
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If Vd is imaginary, then the solution will be either 7, or I,
plus K,. The order, n, is determined by

1 [1—(1]2
n—-— —C.
Ky 2

As an illustration, consider steady conduction of thermal
energy in an infinitely long cylinder with a production term
that is linear with respect to temperature. The governing
differential equation has the form

,d*T  dT

pdT 4t 20T, (5.124)
dr? dr k

where + is a positive constant. Note thata =1,b=0,c =0,
s = 1, and d = ~/k. In this case, the solution is

T = A, \ﬁr + BY, \ﬁr
k k

For a solid cylindrical domain, 7(r = 0) would have to
be finite and therefore B = 0 (since Y,(0) = —o0). But of
course, for an annular region, no boundary condition could
be written for » = 0 and both terms (A and B) would remain
in the solution. Note that if the production term in eq. (5.124)
were replaced by a sink (disappearance) term, then ~/k
would have been negative and the solution would have been
written in terms of the modified Bessel functions, 7, and K.
To illustrate this, consider a catalytic reaction in a long,
cylindrical pellet; the reactant species, A, is being consumed
by a first-order reaction. A homogeneous model (for hetero-
geneous catalysis) results in the differential equation

. (5.125)

}"2 d2CA dCA kla

+r—%=—r*——C, =0,
with the solution

dr’ dr D,
C, _AIO[ /k‘—“r /k‘—“r] (5.127)
Deff Deff

Note that k, is the rate constant and a is the specific surface
area of the catalyst.

Let us apply eq. (5.127) to a situation where the concen-
tration of the reactant at the surface (r = R) is 1 and the
concentration at the center of the cylindrical catalyst pellet

is finite. We will assume that /(k,a)/Dg =6 and that
R = 1. Before we begin to work on the constants of integra-
tion, A and B, we ought to know a little about the behavior
of these Bessel functions. Therefore, a short table of numeri-
cal values is provided as follows for zero-order Bessel func-
tion of the first and second kinds, as well as the modified
Bessel functions, I, and K,; more extensive tables are pro-
vided by Abramowitz and Stegun (1972). Note that neither

(5.126)

+ BK,
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Y nor Ky can be part of the solution for a problem in cylin-
drical coordinates if the field variable (V, T, or C,) is finite
at the center (r = 0).

An Abbreviated Table of Zero-Order Bessel Functions

r Jo(r) Yo(r) 1y(r) Ki(r)
0.0 1 —00 1 00
0.2 0.99 —1.0811 1.01 1.7527
0.4 0.9604 —0.606 1.0404 1.1145
0.6 0.912 —0.3085 1.092 0.7775
0.8 0.8463 —0.0868 1.1665 0.5653
1.0 0.7652 0.0883 1.2661 0.421
1.2 0.6711 0.2281 1.3937 0.3185
1.4 0.5669 0.3379 1.5534 0.2437
1.6 0.4554 0.4204 1.7500 0.188
1.8 0.34 0.4774 1.9896 0.1459
2.0 0.2239 0.5104 2.2796 0.1139
22 0.1104 0.5208 2.6291 0.0893
24 0.0025 0.5104 3.0493 0.0702
2.6 —0.0968 0.4813 3.5533 0.0554
2.8 —0.185 0.4359 4.1573 0.0438
3.0 —0.2601 0.3769 4.8808 0.0347
32 —0.3202 0.3071 5.7472 0.0276
34 —0.3643 0.2296 6.7848 0.022
3.6 —0.3918 0.1477 8.0277 0.0175
3.8 —0.4026 0.0645 9.5169 0.0139
4.0 —0.3971 —0.0169 11.302 0.0112
4.2 —0.3766 —0.0938 13.443 0.0089
4.4 —0.3423 —0.1633 16.010 0.0071
4.6 —0.2961 —0.2235 19.093 0.0057
4.8 —0.2404 —0.2723 22.794 0.0046
5.0 —0.1776 —0.3085 27.239 0.0037
52 —0.11029 —0.33125 32.584 0.00297
54 —0.04121 —0.34017 39.009 0.002385
5.6 0.02697 —0.33544 46.738 0.00192
5.8 0.0917 —0.317746 56.038 0.00154
6.0 0.15065 —0.28819 67.234 0.00124
6.2 0.20174 —0.24831 80.718 0.001
6.4 0.24331 —0.19995 96.962 0.00081
6.6 0.27404 —0.14523 116.54 0.00065
6.8 0.2931 —0.08643 140.14 0.00053
7.0 0.3001 —0.02595 168.59 0.00042
72 0.29507 0.03385 202.92 0.000343
7.4 0.2786 0.09068 244.34 0.000277
7.6 0.2516 0.1424 294.33 0.0002
7.8 0.2154 0.1872 354.69 0.000181
8.0 0.1717 0.2235 427.56 0.000146
8.2 0.1222 0.25012 515.59 0.000118
8.4 0.06916 0.26622 621.94 0.000096
8.6 0.01462 0.27146 750.5 0.000077
8.8 —0.0392 0.26587 905.8 0.000063
9.0 —0.0903 0.2498 1094 0.000051
9.2 —0.13675 0.22449 1321 0.000041
9.4 —0.17677 0.19074 1595 0.000033
9.6 —0.20898 0.15018 1927 0.0000271
9.8 —0.23277 0.10453 2329 0.0000219

10.0 —0.2459 0.05567 2816 0.0000178
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FIGURE 5.5. Bessel functions Jy(r) and Yy(r) for r from 0 to 10.

Jo(r) and Y,(r) are also shown graphically in Figure 5.5.

Now we are ready to proceed with our example. Since
Ky(0) = oo, we note B = 0. Using the surface concentration,
C, (r =1) =1, we can compute A:

1

AL
D eff

A= (5.128)

From the previous table, we find 1,(6) = 67.234, and we can
then calculate the following values for the concentration
distribution in the interior of the catalyst pellet:

r 00 0.1 0.2 0.4 0.6 0.8 1.0
C, 0.01487 0.01624 0.02073 0.04535 0.1194 0.3390 1.000

Naturally, it would be more efficient in terms of reactant
conversion to use an annular geometry for the pellet (provid-
ing increased surface area per unit volume) so we should
also look at the case where the reactant can flow both through
the center and past the outer surface. We let the two radii be
denoted by the subscripts, 1 and 2, respectively, such that
R, < r < R,, and we set the concentrations at both (inner
and outer) surfaces to 1. In this case, K, must be retained in

the solution. Again we let /(kia)/Dy; =6, just as before,
and the constants of integration are found to be A = 801.011

and B=5.3 x 107,

r 1.0 1.2 1.4 1.5 1.6 1.8 2.0
C, 1.000 0.2856 0.1098 0.0987 0.1238 0.3254 1.000

Notice that we do not have symmetry about the midpoint
of the annular region (r = 1.5). This is to be expected

because of the greater surface area available to the reactant
at the outer surface, r = 2.

The need to differentiate Bessel functions arises fre-
quently, particularly when a boundary condition involves a
specified flux (e.g., Neumann or Robin’s type). For J, ¥, and
K, we have

417 (an]=—az, @)+ L2 ).  (5.129)
dr r

Accordingly, we note that

d .

—\Jo r)l=— 1 r), p=V. .

0 [Jo(Br)]=—BJ,(Br), since 0. (5.130)
For I,, we have

; [1,(ar)]=al, (r)+L1,@r).  (5.131)
r

B
To illustrate, suppose we have to differentiate J, (\r); by
eq. (5.129), (d/dr) [Jy (A\r)] = —AJ; (A\r). Now assume that
A =1 and that r = 1.5; if we use Figure 5.5 for a graphical
estimate, we get about —0.51. We can reassure ourselves by
looking up the exact value too, it is —0.558. Next, suppose
we wanted to identify the maximum value for Yy(\r); based
on Figure 5.5, it appears to occur at about 2.1. We set

L] = -AK0n) =0

dr

and find that A\r =2.19715. Let us look at one more example:
We have an annular catalytic pellet in which C, = Al
(Br) + BK, (Br), with inner and outer radii (R, and R,) of 2
and 4, respectively. We take 3 = 0.3 and assume that the
concentration at both exposed surfaces will be 1. Our inter-
est is the driving force for diffusion in the interior of the
annular solid: dC4/dr = ABI, (Br) — BGK, (6r). The bound-
ary conditions are used to show A = 0.7175 and B = 0.2784,
and we can now evaluate the derivative at any r-location of
interest. We are going to illustrate this at the annular mid-
point, » = 3, keeping in mind that the arithmetic center is
not a surface of symmetry in this case; the result is
dC,/dr = 0.0471 for r = 3 (small, but not zero). There are
many useful sources of information for Bessel’s equation
and Bessel functions, and a few of them are included in the
references provided at the end of this chapter.

POWER SERIES SOLUTIONS OF ORDINARY
DIFFERENTIAL EQUATIONS

We observed previously that for higher-order ODEs with
variable coefficients, there is no guaranteed method of solu-
tion. In such cases, an approximate analytic solution may
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sometimes be useful, and we will review one approach here.
The technique we describe in this section has been used by
mathematicians for a very long time, and it has produced
some important results. We will use the simple equation

d2

£ry y=0,

o (5.132)

with y(x = 0) = 0 and y'(x = 0) = 1, for our initial explora-
tion because we know the solution to be

y=C,;sinx+ C, cosx. (5.133)
To satisfy the two boundary conditions, it is necessary

that y = sin x, of course. We are going to propose that the
solution be represented by the series

ay +ajx +ax* +az x> +--- or Zanx”. (5.134)

n=0

We note immediately that to conform to the boundary
conditions, a, = 0 and a, = 1. Let us differentiate the series
once, >_na,x"", and then again to obtain >_(n — 1)(n)a,x">.
We take this last result back to our ODE, resulting in

Z(n ~D(n)a,x" + Za,,x" =0. (5.135)
n=0 n=0

We need to have the first summation written in terms of x"
for consolidation; therefore,

> [+ D(n+2)a,., +a,1x" =0.

n=0

(5.136)

For this power series to be zero as indicated here, it is neces-
sary for the coefficients to be zero and, therefore,

(n+1)(n+2)a,., +a, =0. (5.137)

However, the boundary conditions require that a, = 0 and
a, = 1, as we observed earlier. The first of these also requires
a, = 0, and thus, all even a,s must be zero. We now use eq.
(5.137) to compute (by recursion) coefficients for n = 3, 5,
7. The result is

1 1 1
- , s = , a7 =
3?2 B)HB)2)

a; =

(5.138)

Therefore, our series approximation for y(x) looks
like this:

3 xS X7

TRATICT (5.139)

C(DOGHRQ)

How well can the truncated series represent the actual
solution? If we limit n to values less than 27, we obtain the
values shown in the following table:

X y(x) series y(x) = sin(x)
% 0.1246747 0.1246747
Y4 0.2474039 0.24740396
2 0.4794255 0.47942554
1 0.841471 0.84147098
2 0.9092975 0.90929743
4 —0.7568024 —0.756802495
8 0.9893362 0.98935825
9 0.4116477 0.41211848
10 —0.5542731 —0.54402111
11 —1.158563 —0.99999021
12 —2.469321 —0.53657292

These results make it clear that the truncated series does
an excellent job of representing y(x) for small values of x,
as expected. Discrepancies do begin to appear as x exceeds
about 4.

Let us explore a second example that offers a slightly
different wrinkle. Consider the ODE

?:x2—4x+y—|—l with y(x=2)=3. (5.140)
X

It is effective for us to define a new independent variable,
7z = x — 2; consequently, x* = 7> + 4z + 4 and 4x = 4z + 8.
We substitute into eq. (5.140) and obtain

dy 2
—=z"+y-3.
dz Y

(5.141)

Now it is apparent that y(z = 0) = 3. Let us assume that
the solution can be written as a series of the form

y=ay+az+az* +a;z’ +---, (5.142)
and we see immediately that @, = 3, allowing us to
write y=3+> a,7". We differentiate, finding dy/dz =
> na,z"", and we take these expressions back to eq. (5.141)
and consolidate:

S+ Da, —a,)2"] 22 =0.

We group like powers, noting that the coefficients must
combine to produce zero. Forn =1, 2a, — a; = 0; forn =2,
3a; —a, — 1 =0; forn = 3, 4a, — a; = 0, and so on. From
eq. (5.141), we note that a; = 0, and therefore a, = 0 as
well. It is apparent that a; = 1/3, and by recursion, a, = 1/12
and as = 1/60, and so on. We are in position to write down
our series solution:

(5.143)

y=3+1i7+5 4457+, (5.144)
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keeping in mind that z = x — 2. How well does this series
represent the actual solution? The reader is encouraged to
use the integrating factor approach to show that the analytic
solution for eq. (5.141) is

y=—2"—2(z+1)+3+2exp(2). (5.145)
If we let z = 2, eq. (5.145) shows y = 7.778. If we truncate
eq. (5.144) with the sixth-degree term, we get y(2) = 7.71.
We can also solve this ODE numerically to confirm
¥(2) =7.778.

The notion that we might want to seek power series solu-
tions for ODEs may seem quaint to you. However, it is
important that we remember that many very significant
problems have been solved in this manner. The reader is
encouraged to look at the application of the method of
Frobenius to Bessel’s differential equation and a useful

description of the process is provided by Mickley et al.
(1957) in Chapter 5.

REGULAR PERTURBATION

There are occasions when one simply must obtain an
approximate analytic solution for a nonlinear ODE. In the
previous section, we looked at the power series technique;
now we turn our attention to regular perturbation. Perturba-
tion is a powerful method that is especially useful when a
nonlinear problem contains a parameter that is in some
sense small. Let us consider steady-state heat transfer (con-
duction) in a slab of pure iron. The thermal conductivity
of pure iron between —200°C and 4-700°C varies approxi-
mately as
k~a+bT =76.333-0.0633T W/(m°C). (5.146)
Therefore, at —200°C, k = 89 W/(m°C), and at +700°C,
k = 32W/(m°C); from high-to-low temperature then, k
increases by a factor of about 2.78. Such a variation will
have a profound impact on the temperature distribution as
we shall now see. Assume we have a slab of pure iron that
extends from y = 0 to y = 1 m. The temperature at y = 0 is
maintained for all time ¢ at —200°C, and at y = 1m, the
constant temperature is +-700°C. Under these steady condi-
tions, the temperature distribution is governed by

i[(aanT)d—T}—O (5.147)
dy dy
or
2 2
(a+bT)d—{+b[d—T] =0. (5.148)
dy dy

One thing that we notice immediately about eq. (5.148)
is that if the parameter, b, is very small, then the two non-
linearities in the ODE are eliminated! We will assume that
T can be represented as a sequence of unknown functions:

T =T, +bT, +b*T, +b’T; +---. (5.149)
Our goal of course is to determine the unknown func-

tions, Ty, T}, and so on. We begin by writing out the deriva-
tives we need:

dT _dT,  dT,

—=— b—+b2d£+--- (5.150)
dy dy dy dy
and
2 2 2 2
d—f:d€°+bd? bz‘”f+-~ (5.151)
dy dy dy dy

We now take eq. (5.149), eq. (5.150), and eq. (5.151) and
substitute into eq. (5.148):

d*T, d*T, d°’T.
[a+b(T, + bT, +b2T2+---)][ 2°+b 21+b2 22 e
dy dy dy
2
+b %+bﬁ+b2dﬁ+m] =0. (5.152)

dy dy dy

Now let us assume b can take on any value, including
a very small one; if b is vanishingly small, then we are
left with

d*T,

dy’

=0 and,consequently, T, =C;y+C,. (5.153)

We treat the boundary conditions exactly the same way—
we have —200 at y = 0 and +700 at y = 1. Therefore,
T, =900y — 200. (5.154)

We differentiate eq. (5.154) as needed, and take those results
back to eq. (5.152). Of course,

2
ﬂ =900 and 4T,
dy dy’

=0. (5.155)

If we divide by b and again allow b to become very small,
then

d’T,

a
dy’

= —(900)".

(5.156)
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Therefore,

_ —(900y’

T;
2a

V' +Cy+C,. (5.157)

Now we return to eq. (5.149) to look at the boundary
conditions, subtracting the results obtained with eq. (5.154)
from 7, and then dividing by b: Thus, C, = 0 and
C; = (900)*/2a. At this point, our approximate solution has
the form

(9002

T ~900y—200+b
2a

Y=y

and inserting the numerical values for a and b,

T =335.851y> +564.149y —200.  (5.158)

Our process guarantees that the boundary conditions are
satisfied, but our real interest is whether or not this approxi-
mation will reproduce the expected curvature for intermedi-
ate values of y. Figure 5.6 provides a comparison of the exact
solution with our truncated approximation.

Perturbation is a powerful technique that can produce
very good approximate solutions under the right circum-
stances. Experience suggests, however, that if one must go
past the third unknown function (past 7, for the previous
example), then the time invested for the likely return will
probably be excessive. There are very good sources of infor-
mation available for the applied scientist who must generate
an analytic approximation to the solution of a nonlinear

700
600

1 Perturbation
500 \

~ 400+ )/

Temperature (°C
- oW
s o &
s 3 3

1 1 1

0—

_100: Exact solution
=200 — T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10

y position

FIGURE 5.6. Comparison of the approximate solution obtained
with regular perturbation with the exact solution for steady conduc-
tion in an iron slab with variable conductivity. Even though the
perturbative solution was truncated, the agreement between the two
is good enough for many practical purposes.
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ODE; for example, this author has found Finlayson (1980)
to be quite useful.

LINEARIZATION

Often the removal of nonlinear terms in ODEs will yield an
equation that can be solved analytically. Of course, the
analyst must decide if the approximation is adequate for the
intended purpose. We will look at a couple of alternatives
here and we will try to give the reader a sense of when such
an approach may work and when it may not. Let us begin
with the simple first-order ODE:

dh

— =1p7 5.159
ik ( )
with A(f = 0) = 1 and 0 < ¢ < 2. Equation (5.159) is easy
to solve as it stands, so it will provide a very nice means of
comparison. The analytic solution, which we will make use
of later, is

—4/3
h(t) = [lgt] . (5.160)

Let us focus our attention on the right-hand side of eq.
(5.159), and we will use a truncated Taylor series to approxi-
mate this function:

fy=h" = f(ho)+ f'(ho)(h—hy). ~ (5.161)

It is evident that our strategy is to place a tangent line
on the h" curve at a particular value, hy. It also seems
likely that this will work well only if & does not deviate
radically from hy—the further we are away from that point,
the worse the approximation will be. Since f' = (7/4)h*",
we can select an appropriate point and find the slope; we
know from the problem statement that 4 > 1, so we
will begin by trying hy = 2 such that f’(h,) = 2.9431 and
fihy) = 3.3636 Our approximation is therefore h"* =~
3.3636 + 2.9431(h — 2). First, we will see how well this
linearized version of f{h) represents the original function by
constructing a little table.

h 1 1.5 2 2.5 3 4

flh) 1.0000 2.0331 3.3636 4.9704 6.8385 11.3137
flh) 0.4205 1.8921 3.3636 4.8352 6.3067 9.2498
linearized

The truncated Taylor series corresponds to the nonlinear
function nicely near the selected point, 1 = 2; however,
it begins to deviate dramatically for both smaller and
larger values. These differences will impact the approximate
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solution of eq. (5.159) in a very significant way as we shall
now see. The linearized differential equation is

@:1.4716h—1.2613 (5.162)
dt
and the solution is
1
h=———|C,exp(1.4716t)+1.2613|. 5.163
a7 1Crexp( ) . (5.163)
The initial condition is A(0) = 1, so accordingly,

C,; = 0.2103. Now we can compare the two sets of results:

t h Actual h Linearized
0 1.00 1.00

0.25 1.1403 1.0636
0.5 1.3190 1.1554
0.75 1.5532 1.2880
1.0 1.8714 1.4796
1.25 2.3242 1.7565
1.5 3.0109 2.1564
1.75 4.1528 2.7342
2.0 6.3496 3.5689

What have we learned from this example? If the transient
operation of the nonlinear system takes us far away from the
expected value for 4 (which we decided might be 2), then
we will have serious problems. On the other hand, if we are
able to stay close to A, the linearized ODE may be com-
pletely acceptable. In terms of the table shown earlier,
this probably means that we would need to constrain the
independent variable, ¢, to 1 < ¢ < 1.5 if we wanted to get
satisfactory results.

The ideas we employed in the previous example can be
extended to higher-order problems too. Consider the nonlin-
ear second-order system,

dx

— =y +y)x (5.164)
dt
and
% ——x— (7). (5.165)

We will begin by letting x; = y; = 3/4, and solving the
pair of equations, eq. (5.164) and eq. (5.165) numerically to
obtain the system trajectory in the phase plane (merely a
convenient way to visualize the system’s dynamic behavior
by cross plotting pairs of values for x(7) and y(¢)). The phase-
plane construction shows that the system is stable and that
both x and y oscillate with decaying amplitude. This results
in an inward-directed spiral that is ultimately centered about
the equilibrium point, x = 0 and y = 0, and the trajectory is
provided in Figure 5.7.

1.00
dx/dt =y — (x* + yHx and dy/dt = —x — (x* + y?)y
0.754
0.50+
0.25+
. |
0.00+

—0.25

-0.50

-0.75 i T i T . T T T " T T 1
—-0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X

FIGURE 5.7. Phase plane portrait of the nonlinear second-order
system revealing stable behavior with an inward-directed spiral.

Now let u = x — xp and v =y — y, such that x = u + x,
and y = v + y,. Our plan is to approximate the two nonlinear
functions (just as we did for the first-order system in the
initial example):

) 0
Flx, ) = f(x, yo)+—f u+—f (5.166)
8)C X0.Y0 ay X0,Y0
and
) )
g V) =g )+ 28wt 2Bl 4 (5.167)
Oxlyy, Oy

X0,Y0

The necessary partial derivatives correspond to the Jaco-
bian matrix and the system can be represented in an alterna-
tive way:

du s s

— —3x"—y 1-2xy u

;” _ (5.168)
i —1-2xy —x*=3y* v

dt

The equilibrium point is (xy, yo) = (0, 0), so the Jacobian
matrix is simply

0 1
-1 0

and consequently,
(5.169)

Equivalently, (d*u/df*) 4+ u = 0 such that u = C, sint + C,
cost (we obtain the identical result for v). This means that
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both u and v are purely periodic with constant amplitude. In
the phase plane therefore, we will get a closed curve (a limit
cycle) such that the system trajectory merely orbits around
the equilibrium point. This is distinctly different from the
nonlinear case where the oscillations exhibited decreasing
amplitude, resulting in an inward-directed spiral as shown
in Figure 5.7. Although the differences are worrisome in the
absolute sense, it is important to note that, qualitatively, the
original system and the linearized simplification exhibit
similar oscillatory behaviors.

We conclude this discussion by looking at a different
approach, one that has been used in fluid mechanics to
eliminate nonlinear inertial terms from the Navier—Stokes
equation (the interested reader should investigate Oseen’s
correction). Suppose we have the following differential
equation:

d’y dy

=2 yZE =2 5.170
ydx ( )

dx?

with y(x = 0) = 1/2 and y’(x = 0) = 0 and let us assume we
are interested in 0 < x < 1.75. Our plan is too replace the
y (dyldx) term with y, (dy/dx), where y, is an appropriately
chosen constant; therefore,

d’y dy
—=2+y,—. 5.171
i Yo dx ( )

Equation (5.171) can be conveniently solved by reducing
the order; for example, let ¢ = dy/dx. The solution is (and
the reader should verify this result)

Lexp(yox)—x +C.. (5.172)

Yo

y=-

Since y(x=0)=1, C,=1—(2/y,*). How well our
approximate solution corresponds to the exact numerical
results depends on our choice for y,, of course. The main
difficulty is that with nonlinear differential equations we
may not know much about y(x) over the complete range of
x, thus making a good choice for y, problematic. Here is a
comparison of the actual computed and the linearized
(approximate) results.

y (Linearized with

X y (Exact) Yo =2)
0 0.5000 0.5000
0.3 0.5949 0.6111
0.5 0.7760 0.8591
0.7 1.0754 1.3276
0.9 1.5387 2.1248
1.2 2.8070 4.3116
1.5 6.3878 8.5428
1.75 40.8730 14.8077
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Whether or not the examples of linearization applied to
ODEs in this section will be satisfactory depends on the
intended application. For cases requiring precision, these
approaches will probably not be sufficient, but if we are
merely interested in learning a little about the behavior of a
difficult nonlinear problem (with a quick analytic approxi-
mation), then linearization may prove useful.

CONCLUSION

Toward the end of this chapter, we introduced a couple of
techniques by which the analyst could obtain an approxi-
mate solution for an ODE, solution by power series and
regular perturbation. Both can be used to advantage, but
there are other more modern and perhaps more expedient
ways to obtain analytic approximations. We will briefly
introduce one such technique here, the variational iteration
method (VIM), but we will defer a more complete discussion
for Chapter 9, “Integro-Differential Equations,” where VIM
will prove to be extraordinarily powerful.
Consider the linear first-order ODE,

dy

—+2xy =4x,
dx Y

(5.173)

with the analytic solution, y = 2 + C; exp(—x%). We will
choose y(x = 0) = 4 such that C; = 2 and assume we
are interested in the behavior of y(x) for 0 < x < 1. To use
VIM, we start with a simple estimate for y that satisfies the
boundary condition and we will select y, = x + 4. Though
this is not an optimal choice, we will still get to an accept-
able approximation as we shall see. We now rearrange the
ODE (eq. 5.173) and use it—integrated—to improve our
initial guess:

Yus1 = Yn —f[y,/ +2sy, —4s]ds. (5.174)
0

Of course, y,’ =1, and after we carry out the integration,
we find

v :—§x3 —2x> +4, (5.175)
and then successively,
v, =%x5+x4—2x2+4 (5.176)
and
y3:—ix7—lx6—|—x4—2x2+4. (5.177)
105 3
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Let us find out how well this sequence of approximations
actually describes y(x).

X Yanalytic Yo=x+4 » b2 Y3

0 4 4 4 4 4

Ya 3.8788 4.25 3.86458 3.87917 3.87882
Vs 3.5576 4.50 3.41667 3.57083 3.5567
3% 3.13957 4.75 2.59375 3.25469 3.12191
1 2.73576 5 1.33333 3.26667 2.59048

Even though we made a poor choice for our initial trial
function, y, = x + 4, we have rapidly closed in on the values
provided by the analytic solution. With just a few more itera-
tions, we would have an exceptionally good match to y(x).
The student may wish to repeat this example by setting
yo = 4 — x; how well do y, and y; agree with the analytic
solution now? VIM is an incredibly useful tool for finding
approximate solutions for difficult equations, and we will
gain a much greater appreciation for its value in Chapter 9.

ODEs are common in applied mechanics as many force,
mass, and energy balance problems lead to ODEs. The spec-
trum of application is broad, ranging from chemical kinetics
to electronic circuits to mechanical flutter (aeroelasticity). It
is obviously important that technical professionals be able
to solve such problems with speed and accuracy. Our intent
with this chapter is to provide the reader with a practical
review of solution methods that have proven to be of value
for frequently encountered ODE:s.

PROBLEMS

5.1. Use the integrating factor approach to solve the follow-
ing ODE:s:

Q+3xy:2x and xzﬂ—xy:x3+4.
dx dx

5.2. Check the following differential equations to see if they
are exact. If they are not exact, solve using the integrating
factor approach:

xﬂ—y x*+1
dx
xy3ﬂ—x4+y4
dx

5.3. A rifle bullet (130 grain WIN 270) leaves the barrel
with an initial (muzzle) velocity of 3060ft/s. Suppose the
rifle is fired at an angle of 45° over level ground and that the
only force acting on the bullet in flight is gravity. Find the
maximum elevation achieved by the bullet and its maximum
horizontal travel.

It may be obvious to you that the answers you obtained
for the first part of this problem are quite unrealistic. Drag
is very important! Fortunately, we have ballistic information
available for the WIN 270 as follows:

Distance 0 100 200 300 400 500
(yd)
Velocity 3060 2802 2559 2329 2110 1904
(ft/s)

Notice that the rifle bullet loses about 38% of its initial
velocity over the first 500yd of travel. Devise a strategy to
use these data to add drag force to your original differential
equation and repeat your analysis. What is the maximum
height achieved by the bullet under these more realistic
conditions?

5.4. The example that accompanied Figure 5.2 was based
on the differential equation

dy
— = —2).
dx wh=2)

We want to use the technique described in the text to
explore the behavior of this nonlinear equation; connect a
sequence of very short tangent lines obtained from the
slope(s) at particular points (x;, y;) to develop a semiquantita-
tive picture for this ODE. We will focus upon the first quad-
rant but only look at values of y greater than 2.

5.5. Consider the wheel-tire assembly on a vehicle equipped
with IFS (independent front suspension). The assembly is
subjected to a bump (perhaps a pothole) and the motion of
the mass is constrained by a spring-shock absorber (or strut)
combination. The resulting motion is described approxi-
mately by the second-order differential equation:

d? d.
72ﬁ+27C£+z:F(t).

z corresponds to the vertical position of the assembly, 7 is
the time constant, and ( is the damping coefficient. The
challenge in suspension design, of course, is to keep the tire
in contact with the pavement (for consistent traction) yet
provide a tolerably smooth ride for the occupants. Suppose
the time constant has the value 0.125 second and that the
damping coefficient is 0.55; we then find

2
4z 58%  6a:=c.
dt dt

If F=1fort > 0 (thus G = 64), what is the ensuing
motion of the assembly? If the shock absorber is completely
worn out, the damping coefficient will be smaller, say, 0.15.
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FIGURE 5.8. Suspension behavior for two cases, underdamped
with ¢ = 0.10 and critically damped with ( = 1.0. The compromise
inherent in suspension design is obvious: Very rapid response pro-

duces overshoot and oscillation.

What impact will that have upon the motion if the forcing
function is exactly the same? Two examples are shown in
Figure 5.8 to provide some guidance on what is expected
from this ODE.

5.6. We need to analyze the performance of two identical
continuous stirred-tank reactors (CSTRs) in series; this
arrangement is being used to carry out the first-order, irre-
versible decomposition of species A. Both reactors are per-
fectly mixed and each has a volume of 500 gal. Reactant is
introduced into the first reactor (and the initial, steady-state
feed concentration is 2mol/gal) at a volumetric flow rate of
25 gpm. The mass balance for species A in the first reactor
takes the form

[Rate in] —[Rate out] —[Rate consumed] = [ Accumulation ]

. . dc
VCAin - VCAI - VTleAl =V - .

We divide by the volumetric flow rate, V, and rewrite the
equation:

Chin —(1+Kk7)Ch = T&-
dt

Let k&, = 0.033min "' and note that the mean residence
time 7 = 20min (V; / V). At ¢ = 0, the feed concentration
to CSTR 1 doubles; it is instantaneously increased from
2mol/gal to 4mol/gal. Find the analytic solution for Cy(?)
and then use that result in the mass balance (for A) on reactor
2. When will Cy,(f) achieve 75% of its ultimate change?
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5.7. A pipe carries a very hot fluid and circular fins (actually
annular) are installed on the outer pipe wall to cast off
unwanted thermal energy to the surroundings. Each fin
extends from the outer pipe wall (at r = R;) to the radial
position, R,. By assuming that the fin is thin and that it is
made from a material with high thermal conductivity, the
principal variation in temperature will occur in the r-direction
(i.e., the temperature is nearly uniform in the transverse, or
z-, direction). Assuming that thermal energy is lost from the
fin’s surface according to Newton’s law of cooling, an
energy balance reveals

2

a0 1do 2,

dr* rdr wk
where h is the heat transfer coefficient, k is the thermal
conductivity of the fin, and w is the width of the fin in the
z-direction. § = (T — T.,,), where T, is the temperature of
the surrounding air. Solve this ODE and find the temperature
distribution in the fin given the following parametric values:

T(r=R,)=500°F, T, =60°F,
R =025ft, R, =050ft, w=0.0104ft,
h=17.5Btu/(hr ft2 °F), k = 30 Btu/(hr ft°F).

Assume that no thermal energy is lost through the end of the
fin; that is,

PLEL

dr r=R»

5.8. A cylindrical tank with a diameter of 12ft and a depth
of 10ft is initially filled with water. At t = 0, a circular hole
with a diameter of 2in. is opened in the side wall at the
bottom. The velocity through this orifice is approximately
given by Torricelli’s theorem, V, :@; therefore, the

initial velocity will be Vj = +/(2)(32.17)(10) = 25.37 ft/s.

Since the orifice diameter is 21in., the initial volumetric flow
rate will be about 0.55ft*/s, or 248 gpm. Find out when the
tank will be 90% empty (i.e., when & = 1ft). Then, in the
second part of this problem, the tank is drained from its
initial depth of 10ft just as before, but this time, water is
also added continuously at a rate of 55 gpm. When will the
depth of water in the tank get within 3% of its ultimate
value?

5.9. A particle with a diameter of I mm and a density of
1.45 g/cm® is released at the surface of a flowing stream of
water. The velocity of water in the stream varies from
130cm/s at the surface (y = 0) to Ocm/s at the bottom
(y = 175cm) according to V = 130 — 0.004245 y* (cm/s).
Assume the particle is perfectly entrained by the moving
water (its velocity in the stream direction always corresponds
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to the velocity of the water). If the only forces acting
upon the particle in the y-direction are gravity and drag,
determine how long it will take the particle to reach bottom
and how far it will travel downstream during the settling
process. The drag force is given by F = AKf, where A is the
frontal area of the particle, K is the kinetic energy of the fluid
(relative to the particle) per unit volume, and f is the drag
coefficient:

A=7R’, K=1pv? and f=05.

5.10. Consider the ODE

d .
Q=02 —2x—y, with yx=0)=2.
dx
Find a power series solution for this ODE and compare

your result to the solution you obtain using an integrating
factor.

5.11. Rosenhead (1940) and Landau and Lifshitz (1959)
show how the radial component of the equation of fluid
motion can be simplified for flow between converging walls.
Provide a detailed outline of the process, showing how an
elliptic integral of the first kind can be obtained from the
analysis.

5.12. We want to use regular perturbation to find an approxi-
mate analytic solution for the example we explored at the
end of the chapter, where

2
(a+bT)d—~|—b[dT] =0.
dy

We will use the same terminal temperatures (—200°
and +700°); however, in this case, we will take k =
87.7778 — 0.1111 T. This will cause a significant change in
the profile, 7(y), which is illustrated in Figure 5.9.

In this case, it will be necessary for us to find Ty, T}, and
T.. Is the resulting approximation an adequate representation
for the profile, 7(y), shown in Figure 5.9?

5.13. Please note: This problem is more difficult! You may
find section 2 of chapter 16 in Gray et al. (1966) to be
helpful. Suppose we have a length of metal rod or wire
positioned vertically. The bottom end is clamped in a vise;
we want to determine the length of the wire segment that
just results in instability (i.e., when the top of the wire is
just ready to fall over). Let (3 be the rigidity of the wire or
rod, and let W be the weight per unit length. The variable
x is the vertical position above the clamped end and y is
the lateral deviation from vertical (rigid) position. The total
length of the wire is L. If the lateral deviation is not too
large, then

7004
600
k=a+bT=87.7778 - 0.1111T
5004
400+
3004

200

Temperature (°C)

1004
04

—1004

—200 T T T T T T T T T T T T T
0. 0 01 02 03 04 05 06 07 08 09 10
y position

FIGURE 5.9. Exact solution for steady conduction in a slab of
material for which k = 87.7778 — 0.11117. The ends of the slab
are maintained at —200° and +700° for all ¢.

ﬁdfszw ).

Differentiate this equation with respect to x and set p =

dy/dx:

d* p w

dx* ﬁ
Now set L — x = r*” and take p = r'”* z. Show that these
substitutions result in

—(L—x)p=0.

e
dr* rdr |95 9r?

which is a form of Bessel’s differential equation. At the top
of the wire (the free end) where x = L (or » = 0), we must
have dp/dx = 0 or r'* (dp/dr) = 0. Find the critical length
of the vertical wire.

5.14. The Leveque analysis applies to heat and mass trans-
fer near a surface where the velocity distribution can—at
least locally—be described by v, = ay. If we confine our
attention to the region very close to the wall, this linear
approximation should be valid. For steady-state conditions
then, the mass transfer process will be governed by

€ _ p0iC
Ox oy’
By appropriate scaling of the independent variables x and y,
namely,
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this partial differential equation can be transformed into a
second-order ODE:

&C 5,0 dC

=0.
dn? dn

Prove that this transformation yields the result shown
here and solve this ODE by first reducing the order; that is,
let ¢ = dC/dn. Then integrate twice to confirm that

n
C= fAl exp(—n*)dn + A,.
0

Apply the appropriate boundary conditions: C = Cj at the
wall, where both y and n = 0, and C = C,, for both y and
1 = o0, to show that C, = C, and

C.—GC
{5
3

Please note that I' is the gamma function defined by

Clz

00

I'(n)= f X" exp(—x)dx.

0

The recurrence formula is particularly useful, I'(n + 1)
= nl'(n), and a short table of values for I'(n) is provided here
to assist you:

n I'(n)
1.0 1.000
1.1 0.951
1.2 0.918
1.3 0.897
1.4 0.887
1.5 0.886
1.6 0.894
1.7 0.909
1.8 0.931
1.9 0.962
2.0 1.000

5.15. Two identical vented tanks, each 10ft high and 6ft in
diameter, are interconnected by a straight length of pipe
(with a valve in the middle) at the bottom (i.e., at z = 0).
Tank 1 also has an opening equipped with a valve at the
bottom to permit discharge into a floor drain. Tank 1 is
completely full of water initially, and tank 2 is completely
empty. At t = 0, both valves are opened (wide) and water
begins to flow. Develop a model for this system by mass
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balance and solve the ODEs so we can predict both /,(¢) and
hy(t). We will assume that the velocity in the interconnecting
pipe can be described by V, = b(h; — h,). The velocity of
the water leaving tank 1 destined for the floor drain is given
by Vi, = chy. Assume that b = ¢ and that both are equal to
0.027 ft¥/s/ft. What would the maximum value of h, be? It
would be somewhat more realistic to assume that the veloci-
ties were proportional to the square root of the head, for
example, V, :M . If these changes are made, can the
problem still be solved analytically?

5.16. A horizontal beam is being designed to carry a
“skywalk” from one side of a shopping mall to the other,
a span of L ft. The intent is to allow shoppers easy passage
across a large, open, common area. It is anticipated that
the maximum load to be carried will be W 1by/ft (i.e., per
foot of length, of course). We need to determine the
maximum amount of deflection, and for the sake of cus-
tomer confidence, it is not to exceed 0.5in. The beam is
rigidly clamped at both ends (at both x = 0 and x = L).
The beam’s deflection—if any occurs—will be in the neg-
ative y-direction. Assume that the appropriate model has
the form

2
Y ki Ly Lwe,
dx? 2 2

where E is the modulus of elasticity and / is the moment of
inertia. What is the maximum value of y?

5.17. The Chebyshev (Tschebysheff) differential equa-
tion is
&y dy

1—x? x—+n*y=0.
R e M

This ODE is of the Sturm-Liouville (SL) type and, of
course, it does not have constant coefficients; problems of

the SL type have the general form

d

+[g(x)+ Ar(x)]y =0,
dx

dy
p(x) o

witha < x < b, Ay (a) + Ay’ (a) = 0, and B,y (b) + B,y’
(b) = 0. Solutions for an SL problem can only be found for
certain values of the parameter, \; hence, they are termed
eigenvalue problems. Solutions for the Chebyshev ODE are
given by Chebyshev polynomials and are written as
y = T,x). Consequently, if n = 4, then y = T,
(x) = 8x* — 8x* + 1. Set n = 4 such that n* = 16 in the
Chebyshev ODE and then verify that 7,(x) is a solution.
Then let n* = 64 so that the solution is Tg(x). Without looking
up the T polynomial, try to determine the form of the solu-
tion for this case (it would be comprised of even powers of
x added to the constant 1). We note that the Chebyshev
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polynomials are orthogonal with respect to a weighting
function,
+1 1
T, (0T, (x)—=—=dx =0,
j; V1—x?

if n = m. Would you need additional information to arrive
at a solution for the n = 8 case?

5.18. Laguerre’s differential equation is

d’y dy
-2 pny=o.
xdx2 (1= dx Y

This ODE arises in the study of harmonic oscillators in
quantum mechanics and solutions (for integer values of n)
are the Laguerre polynomials: L, = 1, L; = 1 — «x,
Li=1—-2x+(1/2)x* Ly =1 —3x + (3/2) x* — (1/6) x°,
and so on. Laguerre polynomials are orthogonal with respect
to the weight function, exp(—x), on the interval, 0 < x < oo,
so, for example,

00

fe*‘(l —x)[l —2x—|—%x2]dx20.

0

Investigate the method of Frobenius (you might find
Advanced Engineering Mathematics, by Kreyszig (1972),
very useful) and see if you can use it to verify the solution
forn = 2.
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6

NUMERICAL SOLUTION OF ORDINARY

DIFFERENTIAL EQUATIONS

AN ILLUSTRATIVE EXAMPLE

In engineering and the applied sciences, transient mass and
energy balances arise frequently, often leading to ordinary
differential equations (ODEs). Suppose, for example, we
have a jacketed process vessel in which an exothermic chem-
ical reaction may occur. The entering (feed) stream has a
temperature, T;,; the well-mixed contents have temperature,
T; and the steam used to heat the vessel has temperature,
T,. A verbal statement of the appropriate energy balance
might appear:

[Rate in]—[Rate out]+[Rate supplied]

+ [Rate of production| = [Accumulation]|.

And written out symbolically, we would expect something
like this:

M;,C (T, —Treg) = Mo C, (T =Tt )+ UA(T, —T)
dar (6.1)
+ |Aern | (7rA )V = pVCp -
dt
The rate at which the reactant species, A, is consumed is
r4. We will let the mass flow rates in and out be the same,
and we set the reference temperature equal to the inlet (feed)

temperature and divide by MC I

UA

Aernlv
—(T-Tw)+—=
MC

(I, -1+ l—
MC,

dT
(—ry) = TE. (6.2)

p

Please note that every term in the equation has the dimen-
sion of temperature. The characteristic time, 7, that appears
on the right-hand side is the total mass in the vessel divided
by the mass flow rate, and it is the time constant for this
system. This is a first-order ODE that will generally be
coupled to a comparable mass balance on the reactant
species, A. If the heat of reaction is negligibly small, then
this equation may be written as

al —b= —Td—T.
dt

(6.3)
The result is separable and easily integrated:

i ar
T al—b

Lt = n@r—p). 64
T a

Consequently, we find

(6.5)

The constant of integration is determined from the initial
condition: at t = 0, T = T,; therefore, C, = al, — b. Let us
now suppose that 7, = 100, 7 =4, a = 1, and b = 40:

T = 60exp(—t / 4)+ 40, (6.6)
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We see an exponential decrease from the initial temperature
(100) to the ultimate value of 40.

Time, ¢t Temperature, T
0 100
%] 92.9498
1 86.7289
2 76.3918
4 62.0728
8 48.1201
16 41.0989
32 40.0201

While this particular differential equation was extremely
simple to solve analytically, that will not always be the case.
For example, we might have a set of simultaneous differen-
tial equations or a nonlinear ODE for which no analytic
solution is known. Therefore, it is entirely appropriate for
us to ask if a solution for our elementary example could also
be obtained numerically. In the next section, we contemplate
the simplest possible numerical approach and revisit the
chemical reactor problem.

THE EULER METHOD

Recall that the definition of the first derivative is given by

6.7
dx|, A0 Ax 67

Suppose we render this definition discrete; that is, we let Ax
assume some finite (but hopefully small) value and rearrange
the result:

y(x+ Ax) = Ax[ﬂ] + y(x). (6.8)
dx),

Therefore, given an initial (or beginning) value for y(x)
and an expression for dy/dx, we can simply forward march
in the x-direction, computing new values for y as we go. Let
us try this for the preceding energy balance example. We
begin by isolating d7/dt:

ar 1 1
= —(aT —b)=——(T —40). 6.9
" T(a ) 4( ) (6.9)

Next, let At = 1/2 and proceed:

Time, ¢ Temperature, T
0 100
%3 92.5000
1 85.9375
75.1709
4 60.6165
8 47.0840
16 40.8364
32 40.0117

We should graphically compare these values computed
with the Euler method to those obtained previously from the
analytic solution; Figure 6.1 will illuminate the principal
shortcoming of the technique.

Because the Euler method is a straight-line, piecewise
approximation, it cannot accurately follow a function with
curvature unless we make Ax (or Ar) very small. In some
extreme cases, it might have to be prohibitively small,
leading to cumulative roundoff error. Nevertheless, the Euler
algorithm is often useful because it is easy to understand and
easy to implement. We will illustrate this last point with a
slightly more complicated example.

We applied the Euler method to a simple, first-order
ODE and we obtained reasonable (though not perfect)
results as evidenced by Figure 6.1. Suppose, however, we
are interested in the second-order equation:

d? d .
CX LY _6y—0, withy(0)=1and y'(0)=0.
dx dx
(6.10)
100 4
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FIGURE 6.1. Comparison of the analytic and numerical (Euler
method) solutions of the energy balance example. The discrepan-
cies between the two are particularly apparent at t = 2, 4, and 8.
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The corresponding analytic solution is y = C,exp(2x) +
Crexp(—3x), where C; = 3/5 and C, = 2/5. Now, we will
find a numerical solution for this differential equation for
values of x ranging from O to 0.5 using the Euler method.
Let y, = dyldx; therefore, dy/dx = d*vldx* = —y, + 6y.
Of course, any nth order ODE can be written as n first-
order equations. The essential part of the algorithm appears
simply as

x=0:dx=0.00390625:y=1:y1=0
20  REM *** find the new value for y
y=dx*yl+y
REM *** find the new value for y1
yl=dx*(-yl1+6%y)+yl
Xx=x+dx
PRINT x,y,yl

The initial values for x, y, and y’ (which is y,) allow us
to find a new y that, in turn, is used to find a new y,. In this
case, we will begin by letting Ax be 1/32 (0.03125); we will
carry out the calculation from x = 0 to x = 1/4. The analytic
solution indicates that y(x = 1/4) = 1.17818.

Ax yx = 1/4)
1/32 1.158303
1/64 1.168356
1/128 1.173297
1/256 1.175746

These results show that by making Ax as small as 1/256
(or 0.00390625), we can get within 0.21% of the correct
answer. For many practical calculations, this might be ade-
quate; however, we can very easily encounter differential
equations where the Euler scheme is not suitable. We will
need a better tool, and one possibility is the modified Euler
method (a self-starting, predictor—corrector approach).

Modified Euler Method

Let the differential equation of interest be

D _ iy, ©.11)
dx

and we take y(x = 0) to be a known value. A predicted value
for y(x = Ax) is found with the Euler method:

P = Axf(x,y)+ y(x =0). (6.12)

This estimate for y(x = Ax) is improved (corrected) by
using the average slope:
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y'(x=0)+P(y")
2

C=Ax +y(x=0). (6.13)

The corrected value for y (which is C) can be taken back
to flx, y) to get a better estimate of the new slope. This
process can be repeated until a desired criterion is satisfied
(until the change in y(x = x + Ax) is sufficiently small). We
can illustrate this process with an example that is easily
solved analytically; suppose

ﬂ:Zy, with y(x =0)=1. (6.14)
dx

Of course, the solution is just y = Ciexp(2x) with C; = 1.
We set Ax = 1/4 and begin:

P=1(2)+1=15
and, therefore,

P(y')=2(1.5)=3.
Accordingly,

C—l[?]+l—l.625. (6.15)

Note that the correct value for y(x = 1/4) is 1.64872. It
is clear that our estimate for y has been improved signifi-
cantly by the addition of the corrector step! Even so, far
better methods have been developed, and we turn our atten-
tion to a technique that was originally proposed by Carl
Runge.

RUNGE-KUTTA METHODS

Once again let us consider the differential equation

D _ fay. 6.16)
dx

For the sake of making things a little more compact, we
let Ax = h. A Runge-Kutta (RK) method is one in which
we employ a series of calculations (to advance from x to
x + Ax) of the form

ko =hf(x,y) (6.17)
ki=hf(x+h/2,y+ky/2) (6.18)
ky=hf(x+h/2,y+k/2) (6.19)
ky=hf(x+h,y+k), (6.20)
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with
1
y(x+h)=y(x)+ g(ko +2k + 2k, +k3).  (6.21)

The latter, in fact, is equivalent to a truncated Taylor
series expansion for y(x); see chapter 6 in James et al. (1977)
for elaboration. Note that four evaluations for the ks are
necessary to compute the new value for y; this is an illustra-
tion of the fourth-order RK algorithm, which has long been
a standard tool for science and engineering. It is a forward-
marching, self-starting technique that is easy to implement.
All one needs is an initial value for y(x). We can explore this
process with the following differential equation:

% =f(x,y)=x>+y, withy(x=1)=1. (6.22)
x

We choose 4 = 1/2 and find

ko =(0.5)(2) =1 (6.23)
ki = (0.5)(3.0625) = 1.53125 (6.24)
k, = (0.5)(3.3281) = 1.66406 (6.25)

ky = (0.5)(2.25+2.664006) = 2.45703. (6.26)

Therefore, we find y(x = 1.5) = 2.6413. How does this
compare with the analytic solution?

We can use the integrating factor technique to solve this
equation, resulting in

y=—x*=2(x+1)+C /e, (6.27)

where C; = 2.20728. Therefore, y(x = 1.5) = 2.64234; the
RK approach with & = 1/2 (a single step) produced an error
of about 0.039%.

The procedure we just examined is a standard fourth-
order RK method, and as we indicated, it is used extensively
throughout the world for scientific calculations. Of course,
one can construct and use RK routines of any order. We will
demonstrate this by solving the same ODE using a third-
order RK procedure. The necessary steps are shown as
follows:

#COMPILE EXE
#DIM ALL
REM *##** Example of 3rd order Runge-Kutta
solution of an ODE
GLOBAL H.XLYLXEX,Y,K1,K2,K3,YNEW,XNEW,
FXY,XX AS SINGLE

FUNCTION PBMAIN
H=0.10:XI=1:YI=1:XF=1.5
X=XI.Y=YI

80 REM *** CONTINUE
GOSUB 200
K1=H*FXY
X=XI+H/2:Y=YI+K1/2
GOSUB 200
K2=H*FXY
X=XI+H:Y=YI-K1+42*%K2
GOSUB 200
K3=H*FXY
YNEW=YI+1/6*(K1+4*K2+K3)
XNEW=XI+H
PRINT XNEW,YNEW
XI=XNEW:YI=YNEW
IF XI>XF THEN 190 ELSE 80
190 REM *** CONTINUE
INPUT “Shall we continue?”’; XX
IF XX>0 THEN 195
195 END
200 REM *#** here is the differential equation
FXY=XA2+4+Y
RETURN
END FUNCTION

Once again, we will integrate out to x = 1.5, but this time,
we will start with a step size of 0.10 then cut % in half repeat-
edly to see the effect on the computation.

h yx = 1.5)
0.10 2.644123
0.05 2.642912
0.025 2.642494
0.0125 2.642373
0.00625 2.642340

Note that the last value (using 4 = 0.00625) is essen-
tially identical to the value obtained from the analytic
solution. Of course, this third-order RK procedure requires
only three k-function evaluations per step; if & is appro-
priately small, we can get quite satisfactory results for
many ODEs.

Now we will examine a second-order ODE using an
elementary example from mechanics where we utilize a
force balance, setting ma = XF. Suppose we have a mass
(m) that is suspended from a horizontal surface; it is attached
to the surface with a spring and a viscous dashpot (a shock
absorber). Position is represented by the variable y. A simple
model for this situation is

d’y  .dy

—+C—+Ky=F(). 6.28
ms+ C Ky =F(1) (6.28)
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We divide by Hooke’s constant (K), resulting in

dy Cd F(t
mdy Cdv,, IO (6.29)
K dt K dt K

This equation is now in standard form, which can be written
equivalently as

2
7 % + 2@% Ly=X(@). (6.30)

T is the time constant for the system, ( is the damping coef-
ficient, and X(¢) is the forcing function. Let 7 = 1 and
¢ = 0.3 (underdamped); we will drive the system by giving
the mass some initial displacement, and we can expect oscil-
latory behavior to result. Please note the effect that the
damping coefficient has on the solution of this differential
equation; that is, look at b — 4ac, or 47%((> — 1) alterna-
tively. Typical program logic for a fourth-order RK proce-
dure is shown as follows:

#COMPILE EXE
#DIM ALL
REM *#%* 4th-order Runge-Kutta scheme for 2nd order
ODE.
GLOBAL xi,yi,yli,h,xt,xbeg,pkl,x,y,y1,pk2,pk3,pk4,j,
f,D,tau,Xforc,cc AS SINGLE
FUNCTION PBMAIN
XI=0:YI=1.00:Y1I=0.0:H=.1:XT=18:tau=
1:D=0.9
OPEN “c:Dampp9.dat” FOR OUTPUT AS #1
XBEG=XL:J=0:X=XL.Y=YLY1=YI1I
120 REM *** continue
GOSUB 570
PK1=H*F
X=XI+H/2
Y=YI+H/2*Y1I
Y1=Y1I+PK1/2
GOSUB 570
PK2=H*F
Y=Y+H/4*PK1
Y1=Y1I+PK2/2
GOSUB 570
PK3=H*F
X=XI+H
Y=YI-+H*Y11+H/2*PK2
Y1=Y1I+PK3
GOSUB 570
PK4=H*F
J=J+1
Y=YI-+H*Y11+H/6*(PK1+PK2+PK3)
Y1=Y1I+(PK1+4+2*PK2+2*PK3+PK4)/6
PRINT x,y,y1
WRITE#1,x,y,y1
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FIGURE 6.2. Effect of the damping coefficient, (, on the dynamic
behavior of the initially displaced mass. Results are obtained from
the fourth-order Runge—Kutta method with fixed step size. The
significantly underdamped case, ¢ = 0.3, exhibits a large overshoot
and a very oscillatory response.

XI=X:YI=Y:Y1I=Y1
IF X>XT THEN 380 ELSE 120
380 REM *** continue
INPUT “Shall we continue?”’;CC
IF cc>0 THEN 500
500 REM *** continue
CLOSE:END
570 F=-2*D/tau*y1-y/taun2+Xforc/taun2
580 RETURN

END FUNCTION

Results obtained from this program are shown in Figure
6.2 for some values of the damping coefficient ranging from
0.3 to 0.9. Note how increasing the value for ¢ makes the
solution less oscillatory but more sluggish. This has impor-
tant implications in examples from mechanics (such as an
automobile suspension), but it is also significant to many
other fields like automatic process control where a decaying
oscillatory response to a forcing function (like a step func-
tion or an impulse) is quite common.

RK methods have been used for a very long time, and it
is important that the reader understand that newer, more
powerful techniques have been developed for solving ODEs.
Indeed, Press et al. (1989) have offered the slightly severe
view that “Runge—Kutta is what you use when you don’t
know any better...or you have a trivial problem where com-
putational efficiency is of no concern.”

They advocate strongly for the Bulirsch—Stoer method,
which we will discuss later in this chapter.


http://c6-fig-0002
http://c6-bib-0019

94 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

SIMULTANEOUS ORDINARY
DIFFERENTIAL EQUATIONS

Often we must solve sets of simultaneous ODEs. This may
come about from reducing an nth order ODE to an n first-
order ODEs as we pointed out previously, or it could result
from a problem in which several related phenomena are
occurring at the same time. As an example of the latter,
consider a series of chemical reactions carried out in a batch
reactor:

A— B—C. (6.31)

A situation can occur in series reactions in which we
might wish to maximize production of the intermediate
product, B. Naturally, if this reaction sequence is allowed to
proceed for a long period of time, we will get mostly C. The
mass balances for this system are written as

da]__
= k4], (6.32)
A _ 4] s3], (633)
and
] _
o [B] (6.34)

We assume that we begin the process with only species
A present in the reactor. Note that if the rate constants are
such that k, >> ki, it will be extremely difficult to obtain
much B from the process. Consequently, we will focus our
attention on the case in which the rate constants are compa-
rable. We employ a fourth-order RK scheme designed spe-
cifically to handle sets of simultaneous ODEs. We let the
initial concentration of A be 1, and set the reaction rate
constants k; = 0.85 and k, = 0.55 (both with dimensions of
reciprocal time). The results are shown in Figure 6.3; note
that the maximum concentration of the desirable intermedi-
ate, B, occurs at approximately t = 1.45.

Some Potential Difficulties Illustrated

The focus of this section is simultaneous ODEs, and in the
preceding example, we saw computational results for a
series of chemical reactions carried out in a batch process.
The model was elementary and the dynamic response of the
system was easy to anticipate even with no prior exposure
to problems in chemical kinetics. However, we may be
required to seek solutions for more difficult cases—for
example, ones that exhibit sharp fluctuations. In the example
we are about to explore, we will look at oscillatory behavior
associated with cellular cycles.
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Time
FIGURE 6.3. Concentrations of reactants for series reactions
carried out in a batch reactor. The desirable intermediate, B,
achieves a maximum concentration of about 0.45 at r ~ 1.45.

Recent work published by Ferrell et al. (2011) sought to
understand the dynamic behavior of cell cycles driven by a
protein circuit in which the activation of cyclin-dependent
protein kinase (CDK1, represented by C) drives a cell into
mitosis and the activation of the anaphase-promoting
complex (APC, represented by A) leads the cell back out.
Ferrell et al. note that proteins such as polo-like kinase 1
(Plk1, represented by P) may also play a role in the activa-
tion of A, and thus they directed their attention to a three-
component system governed by the ODEs:

dc 1 3cA®

= 6.35
di 10 (1)° 4+ A (3
8
P _30-p—C p (6.36)
di (1) +c
and
8
aa _ 3(1— A)SP— —A. (6.37)
dt [1] "
~| +P
2

These three ODEs are to be solved numerically with the
initial conditions (for t = 0) C = P = A = 0. The problem
is clearly nonlinear and if the analyst is unfamiliar with such
systems, he/she may not have any idea what to expect. This
is where the potential difficulty lies as we shall see. Suppose
we decide to use the Euler method due to the ease with
which it can be applied here. We start with a At of 0.0125
time units and plot the results in Figure 6.4.

The sharp changes in slope produced by this model are
cause for concern. Had we had selected a larger At, say,
Ar = 0.4 instead of 0.0125, the resulting activity of
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FIGURE 6.4. Oscillations in the cellular activity of CDK1 (C),

APC (A), and PIk1 (P). These results are in qualitative agreement
with Ferrell et al.

C (CDK1) would then have a negative (unphysical) value at
t = 20 and the maximum value for A (APC) at = 19.6 would
be about 0.76. Neither is correct, of course. This example
underscores the fact that we need to be vigilant when dealing
with an unfamiliar system of nonlinear differential equations
and that we should not be reluctant to employ a better solu-
tion technique for such problems even if the algorithm is a
little more complicated. Indeed, if we selected the pedestrian
fourth-order RK procedure, we could prepare a little com-
parison of the effect of step size on the calculations:

h C(t = 20) A(t = 19.6)
0.8 0.4402 0.019
0.4 0.2439 0.3021
0.2 0.2487 0.3004
0.1 0.2413 0.3174
0.01 0.2409 0.3186

Thus, it is clear that abrupt changes in activity produced
by this model can be problematic for the numerical proce-
dures that we have discussed so far. In the material to follow,
we will examine some better tools for problems of this type.
However, we should also observe that the dynamic behavior
of systems similar to (this example of) cellular oscillation
can often be very effectively revealed with phase-space
analysis. In phase space, an oscillatory signal of sustained
amplitude produces a limit cycle (a closed-loop trajectory).
We will explore this technique later in this chapter and dis-
cover its value, particularly in the investigation of nonlinear
systems. We will also have an opportunity in a student exer-
cise at the end of the chapter to explore oscillating chemical
reactions for the classic two-phase reactor problem of
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Schmitz and Amundson (1963). This chemical reactor
problem bears some (dynamic) similarity to the previous
cellular oscillation example.

LIMITATIONS OF FIXED
STEP-SIZE ALGORITHMS

The methods we have discussed so far in this chapter have
at least one feature in common: All employ a fixed step size,
that is, a constant value for 4. This can produce an incorrect
result for certain equation types; more importantly, the dis-
crepancy can be very difficult to detect unless one has some
prior knowledge of that particular problem. To illustrate this
point, consider the elementary differential equation

L xy*"%, with y(0) = 2.
dx

(6.38)

Now suppose we want to compute the value of y for
x = 1.65. The analytic solution for this problem can be found

easily:
2 -2
y= {-%[%-1.41421}} .

Consequently, y(x = 1.65) = 1426.15. Let us now use
the third-order RK scheme described (and used) previously.
We begin with & = 0.05; the computation produces
y(x = 1.65) = 1211.9, which corresponds to an error of
about 15%. If we were to proceed without prior knowledge
of the problem or without a computed error estimate, this
discrepancy would almost certainly remain undetected. And
if we were to base a system design or perhaps a complex
system model on such a result, we might blunder into a
disaster. Fortunately, there are very simple means we can
use to avoid such errors, and we will first describe here an
approach developed by Bailey (1969). The underlying idea
is straightforward: If the change in y (for x = x + h) is
“small,” we double the step size, and if the change in y is
“large,” we cut £ in half. Therefore, if we encounter a region
in which y is growing very rapidly (which is exactly what
happens in our example), & can (and will) become very
small. Note that there is a certain arbitrariness in play here—
the analyst decides what changes are “large” or “small.” The
logic to be inserted into the RK code is just

(6.39)

REM *** BAILEY METHOD FOR VARIABLE
STEP SIZE
DELY=ABS(YI-YOLD)
IF DELY <0.0005 THEN 180
TESTY=ABS(DELY/YI)
IF TESTY <0.002 THEN H=2*H
IF TESTY >0.02 THEN H=H/2
REM *** CONTINUE
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This simple change to the third-order RK procedure
yields y(x = 1.65) = 1434.24, corresponding to an error of
about 0.57%, which would often be tolerable for practical
calculations. As an alternative, one might think that simply
using a fixed step-size procedure would work if # were suit-
ably small. We can test this hypothesis on eq. (6.38) with
the fourth-order RK algorithm. We will start with & = 0.05
and use double precision:

h y(x = 1.65)
0.05 1222.466
0.01 1423.938
0.005 1425.794
0.001 1425.961
0.0005 1425.961+

This is an important lesson: For some types of ODE:s,
fixed step-size methods such as the RK scheme used here,
or Mathcad’s rkfixed, will be at best computationally expen-
sive and possibly quite ineffective.

In addition to the step-halving approach utilized earlier,
there are other strategies that can be employed when adap-
tive step-size control is required. One very appealing alterna-
tive is the Runge—Kutta—Fehlberg (RKF) scheme, which is
sometimes referred to as an embedded RK procedure since
both fourth- and fifth-order estimates come from the same
sequence of calculations. The essential idea is to compute
both fourth- and fifth-order estimates then compare them to
obtain an estimate of the local error. That error is then used
to make a step-size adjustment if needed. The particular
algorithm we will employ comes from Cash and Karp
(1990). Once again, we will take

& =xy¥?, with y(x=0)=2, (6.40)
dx

where we are interested in y(x = 1.65).

The required sequence of calculations follows:

ki = f(xi, yi) (6.41)
1 1

k2 —f X; +gh, Vi +gk1h] (642)
3 3 9

ky = i+ —h,y +—kh+—kh 6.43

s=f|x 10 Y 40 1 20 2 ] ( )
3 3 9 6

ky = i+ =h,y +—kh——kh+—=kh 6.44

=[x 3 y 10 1 10 2 5 3 ] ( )

11 5 70 35
ks = +hy ——kh+=kh——kh+—kh| (645
sfx+y541+22 273+274]( )

7 1631 175
ke = £l +2hy + kh+ 2 kn
° f[x 8 55206 " 512

n 575 ks + 44,275 ko + 253 ksh].
13,824 110,592 4096

(6.46)

The fourth-order estimate is computed from

k1+_k3+ k4 +_k6

37,250, 125, 512 ]h (6.47)
3787 621 5941771

Yie1 = Vi +(

and the fifth-order estimate comes from

- +[ 2825 |, 18575,
Y =T 7 6ag ' 48,384

277 1
2 ks +—k |h
14,336~ 4 6]

13,525
55,296

(6.48)

We will now use this technique for our example equation
using constant step-size (h = 0.05), determining the local
error from the difference between the two estimates at each
step. These computations reveal that the error begins to grow
objectionably when x exceeds about 1.2 (see Figure 6.5).

Now that we understand how the estimated error is
behaving in this problem, we can make suitable changes to
h. One possibility, suggested by Press et al. and discussed
by Chapra and Canale (2002), is

0.25

, (6.49)

Eerit

3

hrevised = h

where €. is the threshold (desired) accuracy level. Suppose
we take e~ error, and further, assume “typical” values for
both es:
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FIGURE 6.5. A measure of the local error for the equation
dyldx = xy*, obtained from the Runge—Kutta—Fehlberg computa-
tion (fourth and fifth orders) using a fixed step size with 2 = 0.05.
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FIGURE 6.6. Behavior of the step size, h, using the Runge—
Kutta—Fehlberg scheme with step-size adaptation and an initial &
value of 0.05. With this technique, the computed value for
y(x = 1.65) is between 1426 and 1427, within about 0.03% of the
correct value.
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10°°

Now we are in a position to return to our RKF routine
with the addition of adaptive step-size control. We will track
the impact of this modification on % as we approach x = 1.65
and provide the result in Figure 6.6.

The RKF procedure offers us a very effective way to
implement adaptive step-size control, and when applied
to nonlinear systems where little is known about the behav-
ior of the dependent variable(s), it can save us a lot of
grief. The principal advantage of RKF is that both fourth-
and fifth-order estimates are obtained from the same
sequence of calculations, providing us with a built-in esti-
mate of error.

RICHARDSON EXTRAPOLATION
Suppose we take the two Taylor series expansions:
n? n
fx+h)= f(X)+hf'(X)+?f”(X)+€f”'(X)+
(6.51)

and

n i
fx—h)= f(x)—hf'(X)+7f”(x)—gf’"(X)+
(6.52)
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We subtract the latter from the former:
h3
fx+h)—f(x—h)= 2hf’(x)+?f"’(x)+ -, (6.53)

Now we rearrange the equation to solve for the derivative,

f):

h4

fath—fa—h) B L, K
120

= - f”'”(x)—

(6.54)

[l = "0

You may recognize that this expression—when
truncated—is the second-order, central difference approxi-
mation for the first derivative. We rewrite this equation with
a small modification, letting the difference approximation be
represented by ¢(h):

h? h*

") = d(h) — 2 My — L 111y 6.55
f()¢()6f()120f (x) (6.55)
Now we cut the interval in half; that is, we replace h with
hi2:

h4

g N
o207 W

2
£ = h12)— %f’”(x) - 6.56)

We multiply this equation by 4 and then subtract the
previous expression from it, isolating f’(x); the truncated
result is

L4 (k)1

fn= 3 ¢[2] 3¢(h)- (6.57)

By adding one more function evaluation, we have signifi-
cantly improved the quality of our estimate of f/(x). Instead
of the neglected term being of the order of 42 it is now of
order #*! Let us see how well this works with a simple
example: Take f(x) = x? sin x, such that f’(x) = 2x sin x + x*
cosx. We will use the latter to evaluate f'(x = 1/2), which is
0.698821. Now we take i = 1/8 and evaluate the derivative
using the second-order central difference expression
(f(5/8) — f(3/8))/(1/4); the result is 0.708188, which is about
1.3% too large. We repeat but add the additional evaluation
at h/2 (1/16), finding f'(1/2) = 0.698828, which is about
0.001% too large. At the cost of one additional function
evaluation, we have dramatically reduced the error in our
estimate of the derivative. This is an extremely powerful
procedure: We made two calculations (one using . and one
using //2), and then extrapolated to 2 = 0, obtaining an
extremely accurate estimate for the derivative at x = 1/2.
This is an example of the Richardson extrapolation, and it
has been characterized by Press et al. as “turning straw into
gold.” It is so powerful that it has become a critical element
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in some newer ODE solvers, and we will see an example
later in this chapter.

MULTISTEP METHODS

You should recall that forward-marching techniques (like
Euler’s method) take the slope of the function to be constant
over some finite interval. We cannot expect this to work very
well unless £ is small—perhaps very small. But suppose we
were able to evaluate the slope at multiple points; if we could
fit a polynomial to these values, we could extrapolate this
function. By accounting for the change in slope over the
interval in this way, we might significantly improve our
results. This is the idea behind the Adams’ four-point
formula (also known as the Adams—Bashforth method). The
algorithm for this technique is

h
Yar1 = Yo + Q(SS%’, =59y, +37y, 2 —9y5).  (6.58)

In the notation being used here, y’, is simply y'(x,) or
(dy/dx) __ . Note that three points (n — 1,n — 2, and n — 3)
lie to the l"eft of the interval; the Adams—Bashforth method
is not self-starting, so another technique must be used to get
under way. The reader interested in the derivation of this
formula (which is obtained easily through use of the
Gregory—Newton backward interpolation) may consult
Southworth and Deleeuw (1965). Now, suppose we have the
differential equation

dy

— = (x—x%)y, with y(0)=2.

6.59
= (6.59)

We wish to know the value of y(x = 1); we begin by using
the Euler method with #=0.2, whichresultsin y(1) =2.33944
(the analytic result is 2.36272). Now let us apply the Adams—
Bashforth method using Euler’s technique to get started. But
this time, we begin the calculation with 7 = 0.002 so that
the initial values for the slopes (y’,) will be more accurate.
In this case, the Adams—Bashforth method yields y(1) =
2.36274, corresponding to an error of about 0.0008%. The
technique can be further improved by the addition of a cor-
rector step (which can be applied repeatedly) to the predictor
that we have used here. The corrector is

h
Yar1 = Yo + a(%fl“ +19y, —5y01 4 ya2). (6.60)

SPLIT BOUNDARY CONDITIONS

A situation that occurs regularly in problems concerning
momentum, heat, and mass transfer in boundary layers is
split boundary conditions; for example, some variables (or

derivatives) might be known at x = O but others at some
different value of the independent variable. Consider
two-dimensional flow past a flat surface. The model devel-
oped by Prandtl and Blasius consists of the third-order non-
linear ODE:
3
SLtif

dzf
dn’ 0.

e (6.61)
where 7 = y(Vivx)", v, = Vf’, and v, =1/2/(vV/x)x
(nf'— f). The plate surface corresponds to i = 0, where
both v, and v, must be zero. Consequently, both f{0) and
f'(0) = 0. However, the required third boundary condition
comes from the fact that v, must correspond to the external
potential flow outside the boundary layer (where the velocity
is V): As n — oo, v, — V; since f/ = v,/V, it is clear that the
needed condition is f'(n — oc) = 1. Now consider applica-
tion of the RK method to this equation. Because RK is self-
starting, we must have values for f{0), f/(0), and f”(0) to
solve the boundary-value problem, eq. (6.61). Of course, we
can guess the value of the second derivative, integrate across
the boundary layer, find the result for f’, and then adjust /(0)
accordingly. And the reader may want to use this approach
to find that f”(0) = 0.33206. The results for this problem are
given in Figure 6.7 to facilitate verification. The inefficient
process employed here is equivalent to converting a
boundary-value problem into multiple initial value prob-
lems; the process will take some time, and naturally one
might wonder if there is a line of attack that would diminish
our workload.

Hamming (1973) provided a useful example that illus-
trates one possible approach for split boundary conditions

3.0 5

2.5
S

— g
()} o
1 1

ftn) and ()

—_
(=)
1

f
0.5

0.0 v T T T v T T T v T

FIGURE 6.7. Solution of the Blasius equation for flow in the
boundary layer on a flat plate. Note how f/(n) approaches 1.0
asymptotically as 7 becomes large.
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using a finite-difference approximation for the second deriv-
ative. Suppose we have the following second-order ODE:

2

d’y

5= y+x, with y(0)=0and y(1)=1.
X

(6.62)

We use the second-order central difference approximation
for the left-hand side, resulting in

Yn 72yn +yn— ~
% >y, + X,

(6.63)
Now suppose we break the interval (0-1) into four
pieces—this gives us five nodal points withn =0 andn =4
corresponding to the ends of the interval. We apply the
approximation at the three interior nodes, obtaining

w =y + 1 (6.64)
(1/4) 4

Vi =2y +n 1

BEERTEN 4o 6.65
(1/4) 2T (665)

)H# =y, + E (6.66)
(1/4) 4

Of course, yo = 0 and y, = 1; we have three equations
and three unknown nodal values. It is easy to show that the
interior nodal values (y;, y,, and y;) are 0.180229, 0.387348,
and 0.649927, respectively. How do these compare with the
analytic solution (which is y = 0.850918 (e™ — ¢™*) — x)?
The three corresponding values for y, are 0.179905,
0.386819, and 0.649448. The results are encouraging and
even more accurate results could be obtained by simply
increasing the number of interior nodal points. But the equa-
tion we used for this example (eq. 6.62) certainly lent itself
to the process we carried out, so we might want to think
about some alternatives that are more broadly applicable. To
underscore the point, the reader may want to consider how
“easily” a finite-difference technique could be applied to the
Blasius equation (eq. 6.61).

Shooting methods have been developed precisely to deal
with this situation; let us consider the more general differ-
ential equation,

&y _
dx?

f[x, v, ﬂ],

6.67
I (6.67)

along with the boundary values y(x = a) = y, and
y(x = b) = y,. Now we contemplate the corresponding initial
value problem:

d*y [ dy] )
—=flx,y,—|, withy(x=a)=ya
et s yar=a)=y (6.68)

anddy/dx=satx=a.
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It is clear that we would find the solution we want for the
boundary-value problem if we could identify a zero for the
function:

F=y(b,s)—y, (6.69)

Naturally, each value selected for s will yield a corre-
sponding F. Identifying the particular value we want can be
done in many different ways including an iterative scheme
using Newton’s method of tangents (or Newton—Raphson).
The superscripts refer to the iterate number in eq. (6.70):

_F(s")
F'(s")

n+l __ n

. (6.70)

Stoer and Bulirsch (1993) point out that the derivative of
F appearing in the denominator is often replaced by a first-
order forward difference approximation. They add that As
must be chosen carefully—a value either too large or too
small may either produce a derivative that is not sufficiently
accurate or possibly lead to convergence problems. More-
over, as Hanna and Sandall (1995) note, it is clear that we
now have two sources of error: We have error associated
with the estimate of s and we have error associated with the
numerical solution of the ODE itself.

We can better appreciate the shooting method through
an example. Suppose we have the following second-order
ODE:

d*y

W+O.O6667%+0.11111y:0, (6.71)

with y(0) = 2 and y(3) = 10/3. We plan to use an RK
method, but we do not know (dy/dx),_,. Let our initial guess
for s be 0.4 (with As = 0.1) and proceed:

y'(0) y3) F=y3)—10/3
0.4 2.05325 —1.28008
0.5 2.28208 —1.05125

These values allow us to obtain a new estimate for s:

—1.28008
2.2883

s =04-— =0.959402. (6.72)

Now we return to our RK procedure but this time with
¥(0) = 0.959402. The result is y(3) = 3.333318, which is
pretty close to the correct value of 10/3. We could then refine
our estimates if greater precision was required:

Y(0) »3) F=y(3) - 1073
0.959 3.332397 —0.000936
0.960 3.334686 +0.001353
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The improved estimate for s is 0.959409, which yields
v(3) = 3.333333. We have now seen the ease with which a
shooting method can be employed; this will be far more
efficient than solving many initial value problems in an
effort to identify y'(0) or y”(0).

FINITE-DIFFERENCE METHODS

We demonstrated in the previous section how finite-
difference approximations could be conveniently used to
solve certain types of ODEs with split boundary conditions.
We would like to further explore this topic, providing some
amplification and treating a problem of some practical
importance. Let us consider the steady-state conduction in a
homogeneous medium in which thermal energy is absorbed
(possibly by an endothermic chemical reaction). We will
also assume that the energy absorption is directly propor-
tional to local temperature; therefore,

dZ—T —pBT =0 (6.73)

dx* ) ’

The ends of the material are maintained at different tem-
peratures: T(x = 0) = T, and T(x = L) = T,. The continuum
is discretized; that is, we place n equally spaced nodes in
the interior, resulting in n + 1 intervals of length i (Ax),
along with n + 2 nodes (including the boundaries). If we
use a second-order central difference for the second deriva-
tive, our algebraic approximation for the differential equa-
tion appears as

T,.,—2T, +T
il Ton el 2"+ v~ 3T, (6.74)

h

It is important to remember that we have introduced trun-
cation error with this approximation; the Taylor series
expansions used to construct this finite difference have been
truncated and, accordingly, we have introduced an error that
is of the same order as the neglected terms. Note that the
coefficients for the three nodal points are

n—1 n n+1
1 -hp -2 1

When we apply this pattern to all of the interior nodes
(the interior nodes begin with n = 1), we find

n=20 n=1 n=2 n=3 n=4...
1 -np -2 1 0 0
0 1 ) 1 0
0 0 1 -np -2 1
0 0 0 1 "B -2
0 0 0 0 1...etc.

200 -
180 4
160 -
140
120 4

100 +

Temperature

80 -
60 -
40

20

o Fr————T 7T T T 1T
X position

FIGURE 6.8. Comparison of the analytic solution (solid curve)
for steady-state conduction in a slab with absorption of thermal
energy with the finite-difference computation (filled triangles)
using just nine interior nodes.

Please remember that the first column (n = 0) corre-
sponds to the left-hand boundary where the temperature is
specified. We see that the coefficient matrix is sparse—it
contains many zeroes. Furthermore, it follows the fridiago-
nal form; this structure arises so frequently in applied math-
ematics that very efficient procedures for solving such sets
of equations have been developed.

Let us give our conduction problem some quantitative
definition and apply this technique to its solution: We have
a slab of material 10cm wide, with one edge (x = 0) main-
tained at 100° and the other at 200°. Let 3 = 0.3cm™> and
let h = 1cm so we have nine interior nodes (we must solve
a set of nine simultaneous algebraic equations). The analytic
solution is just

T =99.1655exp(—v/0.3x) +0.8345exp(+v0.3x),  (6.75)

which allows for easy comparison. The results for the finite-
difference computation are provided in Figure 6.8, along
with the analytic solution; the largest discrepancy between
the two is a little worse than 3%. We could easily cut the
interval in half (to 0.5 cm) if we wanted improved accuracy.
Indeed, if we do this, the worst-case deviation is reduced to
less than about 0.9%.

STIFF DIFFERENTIAL EQUATIONS

A serious complication can arise in the numerical solution
of ODEs when the equation(s) is stiff. When we say that an
ODE (or a system of ODE'y) is stiff, we are recognizing that


http://c6-fig-0008

the equations have widely varying characteristic values—
they may differ by several orders of magnitude. In such
cases, the stability of the calculation may become an issue.
To examine the full range of system behavior, we may be
forced to use a very small step size, yet the important (ulti-
mate) outcome may take a very long time to develop. This
is exactly the case for the following hypothetical system
where the characteristic times differ by three orders of
magnitude:

7Y

6.76
0 (6.76)

——y, and P2 — 1000y,
dt

where both y,(0) = 1 and y,(0) = 1.

Of course, both have elementary exponential solutions,
making the difficulty quite apparent. Such a parametric “dis-
parity” can be very difficult to reconcile. Furthermore, the
techniques we have discussed so far in this chapter may not
work very well or perhaps not at all. We will illustrate this
point with the following example. Suppose we wish to solve
the following test equation given by Hanna and Sandall
(1995):

dy

o= 50(x* —y), with y(0)=0. (6.77)
X

Our objective is to find y for x = 2; we select the third-
order RK method we introduced previously and we will
begin by using 7 = 0.1, and then successively halving A:

h yx =2)
0.1 —2.78 x 107
0.05 —1.515 x 10%
0.025 —1.783 x 10%
0.0125 —1.601
0.00625 3.9208
0.003125 3.92075
0.0015625 3.92072
0.0010 3.9208+

The exact value for y(2) is 3.9208. Though we were able
to obtain something very close to that value by making &
sufficiently small, the behavior we discovered above is dis-
concerting! It would be nice to be able to anticipate this
problem and to assess its severity. One way to approach this
difficulty is to define a “stiffness ratio” as follows:

S =\(x; —x), (6.78)
where x; and x; are the end and initial points of the integra-
tion, respectively. We can obtain a local estimate for A from

_dyldx
y

A (6.79)
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In this example, dy/dx = 50(x> — y) and for x = 2,
y = 3.9208; thus,

50(4 —3.9208)
3.9208

A =1.01, (6.80)

resulting in § = 2. There are two important points to remem-
ber here: First, this is a very modest value for S, and second,
for many nonlinear problems of interest, the value of S will
vary considerably between the initial- and endpoints of the
integration. In such cases, a single-point evaluation of § may
not be very informative.

Gear’s method is one of the best-known techniques for
dealing with systems of stiff differential equations. In fact,
Gear devised an example problem (unsteady, batch, chemi-
cal kinetics) that has been used extensively to test ODE
solvers; it consists of three simultaneous equations:

% = —0.013y, — 1000y, y; (6.81)
D2 9500y, y, (6.82)
dt

dy; o

“ = 0,013y, ~1000y,y, ~2500yy,,  (6.83)

with y1(0) = 1, y,(0) = 1, and y;(0) = 0. The range of inte-
gration is from ¢ = 0 to ¢ = 50. Suppose we begin our
exploration of this example using the fourth-order RK pro-
cedure that we described previously. We begin by setting
h = 0.002; to reach t = 50, about 100,000 k-function evalu-
ations would be necessary. However, we never get to that
point since the calculation self-destructs almost immedi-
ately. Even with 2 = 0.001, we find negative (unphysical)
values for y;. For the fourth-order RK scheme (with fixed
step size) to work, it is necessary that & be less than about
0.0005. The results from such a computation are shown in
Figure 6.9.

Gear (1971) developed a fourth-order backward differen-
tiation formula (BDF) method specifically to deal with stiff
ODE:s, and it has been widely applied in this context. BDF
methods will be discussed in detail in the next section.

Backward Differentiation Formula (BDF) Methods

BDF methods have been widely used for the solution of stiff
differential equations, particularly since the publication
of Gear’s book in 1971. We begin our discussion of these
techniques with an elementary illustration. Suppose that the
differential equation to be solved is

B finy. 6.84)
dx
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FIGURE 6.9. Computed results for Gear’s example (chemical
kinetics problem). The concentration for the third species, ys, is
very small but not zero.

We formulate an Euler algorithm (but one that is
implicit):

dy;
Vi1 = )i +h% =y; +hf (X5 Yigr)- (6.85)

What distinguishes this technique from those we have
seen previously is that the functional value that we wish to
calculate (y;. ;) appears on both sides of the equation. More-
over, many of the problems for which this method is appro-
priate will be nonlinear; therefore, we will almost certainly
need to solve nonlinear algebraic equations. But the enhanced
stability of such methods for stiff ODEs will make the extra
pain worthwhile.

Let us apply this technique to a specific example. Suppose
we have

% =0.01xy*, with y(x=1)=3. (6.86)
by

We want to know how y behaves as x — 8. The analytic
solution is simply

1
0.338333—0.005x2"

y (6.87)

s0 y(x = 8) = 54.5464. We will now use the implicit Euler
method starting with 2 = 1/2 to see how well the technique
performs for this example (eq. 6.86); we must keep in mind,
though, that this is a first-order algorithm and accuracy
may be poor.

h y(x = 8)
0.5 134.696
0.25 271.482
0.125 466.908
0.0625 431.449
0.03125 109.204
0.015625 69.176
0.007813 60.645
0.003906 57.370
0.001953 55.908
0.000977 55.211
0.000488 54.876
0.000244 54.652
0.000122 54.540

By making /4 sufficiently small, we were able to obtain a
reasonable result. However, it is clear that a higher-order
BDF method is needed here. The generalized algorithm for
order n can be written as

pYie1 +ay; + o+ @, Yisws = b (Xiy1, Yipr). (6.88)

The coefficients required for this equation have been
compiled by Lee and Schiesser (2004), and their table is
presented in modified form as follows:

n a, a, a, a; a,
1 1 —1

2 3/2 -2 1/2

3 11/6 -3 372 —1/3

4 25/12 —4 3 —4/3 1/4
5 137/60 -5 —10/3 5/4 —1/5

Therefore, if we wished to employ the third-order BDF
method, we would use

11 3 1
g)’m =3y + E}’H —g)’ifz =hf (X1, yir1)- (6.89)

Since this algorithm requires two previous values for y,
it is not self-starting and some initial calculations will have
to be made with another method.

BULIRSCH-STOER METHOD

We previously introduced the Richardson extrapolation and
we saw what a powerful tool it could be. Bulirsch and Stoer
recognized that it might be used as the basis for an extremely
efficient method for solving ODEs; the technique they devel-
oped has garnered some very enthusiastic advocates (see,
e.g., Press et al., 1989, p. 563). For problems in which it
is essential that the computational effort be minimized,
Bulirsch—Stoer is definitely worth consideration.
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The principal idea is a simple one: Suppose we have a
differential equation dy/dx = f(x, y) we wish to solve from
some initial x = 0, to x = L. The function y is computed
using a midpoint method across a large interval initially
using two steps. The calculation is carried out again, but this
time using four steps. We now have a function f{() from the
two different values of £ that can be fit to an analytic form.
An extrapolation is then attempted to 7 = O (corresponding
to an infinite number of steps); if the estimated error is
deemed satisfactory, we proceed. If not, we increase the
number of steps (to 6, then 8, then 12, etc.), and after each
increase, we try to the extrapolation to # = 0 again. The
usual sequence of step number is 2, 4, 6, 8, 12, 16, 24, 32,
48, 64, 96, and so on. Press et al. note that a more expected
sequence where we double the number of steps with each
trial will cause & to become too small too rapidly.

We will treat an elementary example to demonstrate the
Bulirsch—Stoer method. Consider the differential equation

v _ xy*,  with y(x=0)=2. (6.90)
dx

We are interested in y(x = 0.975); since the analytic solu-
tion is y = 2/(1 — x%), y(0.975) = 40.5063. Let us use the
modified midpoint method (which is sometimes referred to
as Gragg’s method) with 7 = H/n,, where H is the interval
we wish to cover (which is 0.975) and n, is even (we start
with n, = 4):

Yep = 6.159404.

We repeat the process, but with eight steps rather than
four:

vep =10.258197.

Now we use the two endpoint (ep) estimates for a poly-
nomial extrapolation:

y(x = 0.975) = %T_y“

_ (4)(10.258197) — (6.159404)
3

=11.6245.

6.91)

It is clear that we are not there yet. We continue, but this
time with 16, 32, 64, 128,... steps (we will double the
number of steps each time to make use of the preceeding
polynomial extrapolation). The resulting succession of esti-
mates takes the form

18.4863, 26.9801, 34.5736, 38.8291,
40.2004, 40.4649, and 40.5014.

Now notice how the error for our estimate has diminished
through this sequence:
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54.36%, 33.39%, 14.64%, 4.14%,
0.755%, 0.102%, and 0.012%.

The very last estimate is from the 512 and 1024 step pair.
As you can see, this gets us within about 0.012% of the
correct value. We would need about 2000 steps with a third-
order RK scheme to get within the same error window.

The Bulirsch—Stoer method is also available with
Mathcad™ (bulstoer) and we illustrate its application using
eg. (6.90). Note that there are seven parameters in the param-
eter list (unlike rkfixed which has only five).

Mathcad™ Implementation of Bulirsch—Stoer Method for
eq. (6.90)

Solve dy / dx = xy* with y(x =0) = 2.
Yo = 2
D(x, Y) = X(Y0)2

Z = bulstoer (y, 0,0.975, 0.00001, D, 10, 0.000001)

0 2
9.75x10°* 2
0.107 2.023
7 0.61 3.183
0.705 3.973
0.817 6.006
0.927 14.29
0.975 40.503

The fourth parameter controls the accuracy of the solu-
tion, and in this case, we have set its value to 1 x 107>; note
that the value reported for y(x = 0.975) is 40.503, which
corresponds to an error of about 0.008%.

PHASE SPACE

Among the problems that arise when an analyst must work
with a nonlinear differential equation (or model) is the fact
that he/she may not have any idea what form the dynamic
behavior of the system will take. This makes it difficult to
interpret a numerical result, and extremely difficult to detect
errors when they occur. Furthermore, an output stream of
numbers appearing on screen (or written to a file) does not
provide much feedback—it might be nearly impossible to
detect a periodicity, or a lack of periodic behavior from such
output. This is exactly the kind of situation where a phase-
space analysis can be useful. Our strategy is to construct a
system trajectory by cross plotting dependent variables and
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FIGURE 6.10. The system trajectory for this sinusoid is a closed
path or a limit cycle. The amplitude of the oscillation is neither
increasing nor decreasing. Motion on this limit cycle is clockwise.

removing time from the visualization of results. For systems
of one, two, or three dimensions, this is straightforward as
we shall see.

Consider the simple sinusoid y(f) = A sinwt, with the
derivative y'(f) = w A coswt. Of course, if we plot y(r), we
know exactly what to expect. But suppose instead that we
plot corresponding values of y(f) and the derivative y/(¢) as
time evolves; we will see a closed system trajectory in the
form of what is called a limit cycle. We will select A = 5
and w = 1 for this illustration.

If the amplitude of the sinusoid was increasing with time
(unstable behavior), then the form we would see in Figure
6.10 would be an outward-directed spiral. If the sinusoid was
decaying, for example, if y(rf) = A exp(—0f) sin(wt), then we
would expect an inward-directed spiral that would approach
0, 0 on the phase plane as time became large. Of course,
what we really want to know is what phase-space analysis
can do for us in the context of challenging nonlinear dif-
ferential equations.

In 1963, Edward Lorenz published an extremely impor-
tant paper entitled “Deterministic Nonperiodic Flow” in the
Journal of Atmospheric Sciences. Lorenz set out to develop
the simplest possible model for atmospheric phenomena,
accounting for the intensity of convective motion (X), the
temperature difference between rising and falling currents
(Y), and deviation of the vertical temperature profile from
linearity (Z). The resulting set of ODEs can be written as

d—X:Pr(Y—X), d—Y: —XZ+rX-Y,
de de (6.92a.b.¢)
and az = XY —bZ.
dt
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FIGURE 6.11. A two-dimensional (Y-Z plane) portrait of a
strange attractor from the Lorenz model with r = 28.

We will assume the following values for the parameters
that appear in eq. (6.92a, b, ¢): Pr = 10, r = 28, and b = 8/3.
For initial conditions (X, Y, Z), we select (0, 1, 0), then we
will obtain the projected system trajectory (on the Y-Z plane)
by numerical solution of the differential equations. The two-
dimensional cut (from the three-dimensional system) shown
in Figure 6.11 is a “portrait” of a strange attractor. For a
simple mechanical system that oscillates with decaying
amplitude, the phase-space trajectory (two-dimensional) as
we observed previously will be an inward spiral—this is
characteristic of dissipative systems. The point in phase
space to which the trajectory is drawn is called an “attractor.”
If a frictionless system oscillates with constant amplitude,
the phase-space portrait will be an ellipse (a limit cycle as
we saw in Figure 6.10); such systems are said to be conser-
vative because the phase “volume” remains constant.

What the two-dimensional cut provided in Figure 6.11
cannot reveal is that no point in phase space is ever revisited.
Thus, the Lorenz model—though fully deterministic—is
nonperiodic. The implications are staggering and it would
be far more difficult to comprehend the behavior of this
system if we were trying to do so from a table of numbers,
say, Y(f). This is a case where phase-space analysis is
invaluable.

We will conclude our discussion of the utility of phase
space with a final example adopted from LaSalle’s contribu-
tion in Proceedings of Symposia in Applied Mathematics,
Volume XIII, Hydrodynamic Instability (1962). Consider the
deceptively simple (but nonlinear) ODE:

d’y | dy

W+a5+2y+3y2 =0, (6.93)
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FIGURE 6.12. Phase plane for the LaSalle model with y(0) =
—1/2. Note that the system trajectory is approaching the equilib-
rium point located at y = 0.

with a = 1/2. We will solve this ODE numerically beginning
with y(0) = —1/2 and y’(0) = 0. This system is stable and
the phase-space portrait reveals an inward spiral as shown
in Figure 6.12.

The LaSalle model (eq. 6.93) becomes especially inter-
esting when we change the initial condition to explore the
threshold of instability; for example, suppose we first take
¥(0) = +0.562866 and then y(0) = +0.562867 (we maintain
the zero initial value for the derivative both times) and solve
eq. (6.90) for large values for z. In these cases, the phase-
plane portraits are very different from that depicted in Figure
6.12; in fact, the dynamic behavior in the second case is
unstable. We will explore this model further in a student
exercise at the end of the chapter.

SUMMARY

We have said very little about the error inherent in the
numerical solutions of differential equations. This is
because the general topic is too broad and too complex for
the space available here. But there are some elementary
observations we should make. For example, we need to
draw the reader’s attention to the difference between round-
off error and truncation error. Roundoff error is hardware-
dependent; that is, it is a consequence of the precision of
the computing device being used. For example, a calculator
might report 2/3 as 0.666667. Truncation error, on the other
hand, is the result of neglected terms in the construction of
the algorithm. For example, if we truncate a Taylor series
expansion, the resulting error will be of the order of the
first neglected term.
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And there is another aspect to this discussion that is
crucial: numerical stability (sometimes referred to as weak
stability in the literature). We have primarily talked about
choosing the step size in terms of the accuracy of the result-
ing solution. And often—particularly for nondemanding
problems—that is entirely appropriate. In the case of certain
ODEs, however, step size is chosen not for accuracy but to
ensure stability of the computation. It is this feature of the
numerical solution of ODEs that we wish to discuss briefly
here. For additional detail, consult Lee and Schiesser (2004),
and for greater mathematical rigor, see Hairer and Wanner
(1996).

Consider the elementary differential equation:

b

—=hy. (6.94)

Of course the solution has an exponential form,
yly, = exp(—(x). Now suppose we wished to use the Euler
method for this equation beginning from x = 0; the first step
would look like this:

y(Ax) = —AxBy(0) + y(0) = y(0)(1 - Axf), (6.95)
and the second step,
Y(2Ax) = —AxBy(Ax) + y(Ax) = y(Ax)(1— AxB).  (6.96)

Note that the right-hand side of the latter equation can be
written equivalently as

y(2Ax) = y(0)(1— AxpB)’, (6.97)
and in general, for n-steps,
y(nAx) = y(0)1— AxB)". (6.98)

If Ax is selected such that the product, Ax3 = 2, then
the procedure results in an oscillation between —y(0) and
+y(0). Even worse, if Ax > 2, the oscillations grow in
amplitude; for example, for Ax3 = 4, we get the sequence
—3y(0), +9y(0), —27y(0), and so on. On the other hand, if
Ax( < 1, we at least get qualitatively correct behavior where
successive steps reveal diminishing y, which is in accord
with the decaying exponential solution. Setting Ax(3 = 4/5
produces the sequence 1/5, 1/25, 1/125, 1/625,..., each
multiplied by y(0), of course. It is clear, therefore, that the
explicit Euler method will require that IAxGl < 2, although
for the sake of accuracy, the product Ax( will usually be
much smaller than this.

In the case of explicit RK methods, a stability assessment
can be carried out in a similar manner. We take the model
equation (sometimes referred to as the Dahlquist test
equation):
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? =y, with y(0)=y,, (6.99)
t

and let z = h\. The solution for the test equation is expo-
nential, and for a single step forward, we write it as
exp(Af) = €. Therefore, a stability function can be written
(for the fourth-order RK procedure in this case) as

2 3 4
+24E 42 2

120 3140 (6.100)

For stability of the numerical calculation, it is necessary
that ly;.1/y,l < 1, so the stability function given earlier is set
equal to 1. This determines the limiting value for z (or h\),
which is —2.785 for the fourth-order RK. Lambert (1973)
shows that, for the third-order RK procedure, the limiting
value is —2.51. The implication, of course, is that the explicit
RK methods are only slightly more stable than the Euler
technique; that is, the limit for the magnitude of A\ is
only a bit larger. Complete stability domains are given
graphically in Hairer and Wanner (1996), which permit easy
comparison of different solution techniques. Because the
elementary explicit techniques have limited stability
domains, they are not suitable for stiff problems; in these
cases, one must turn to an implicit method (like BDF) as we
noted previously.

Although BDF methods are not self-starting, their
enhanced stability has made them very popular for the solu-
tion of stiff ODEs. Lee and Schiesser (2004) summarize the
stability properties of BDF methods in chapter 1 of their
book, and they note that BDF algorithms through the sixth
order are unconditionally stable along the negative real
axis—clearly superior in this regard to the Euler and RK
techniques considered earlier. Lee and Schiesseer also point
out that there are many very high-quality codes available for
the solution of ODEs, both within commercial software
packages and from the public domain. For the latter, a good
starting point is the Netlib Repository at http://www.netlib
.org/index.html.

PROBLEMS

6.1. Show that the analytic solution for the ODE, dy/dx =
x — (y/x)is y = (x*/3) + (C/x). Then, given that y(x = 2) = 2,
use the modified Euler method and find y(x = 4).

6.2. Consider the second-order differential equation,

d’y | dy
16— +5—+y=x(1).
a ar ©
Initially, both y and dy/dt are zero. If x(f) = 1/(1 + ¢), what
is the maximum value attained by y, and when does that
occur?

6.3. A tank with a capacity of 1900 ga (the tank diameter is
71t) is initially half-full. Water enters the tank at a constant
rate of 85gpm; it also drains from the bottom of the tank
through a round orifice. The velocity through the orifice is
given (approximately) by Torricelli’s theorem: V, = \/@,
where & is the depth of water above the hole. The area of
that orifice is 0.01 ft. Will the tank overflow? Is so, when?
If not, when will the maximum depth be attained?

6.4. We want to examine the dynamic behavior of two popu-
lations in conflict, coyotes and rabbits (this is a subset of
Volterra’s problem but with heredity neglected). We will
initiate the calculation with 100 rabbits (,) and three coyotes
(n;). Assume the governing equations are

dn dn
L —ann,—bn, and —2==cn,> —dnn,.
dt dt

Solve the two simultaneous equations and prepare a
phase-space portrait by cross plotting n; and n,. The values
for the constants a, b, ¢, and d are 0.3, 0.2, 0.25, and 0.7,
respectively. Is extinction of a species possible in this
problem? If heredity factors are added to this problem,
exactly how will the nature of the problem be changed?

6.5. In a misguided attempt to celebrate the New Year, Eric
fires his 9-mm pistol vertically into the air. The 115-grain
bullet leaves the barrel with an initial velocity of 1225ft/s.
Assume the drag acting on the projectile is given by F' = AKf,
where A = 7R*, K = YpV?, and the drag coefficient, £, is
assumed to be constant at 0.5. When will the bullet strike
the ground, and what will the velocity be at impact? Is it
possible that the returning projectile could be lethal?

6.6. The driven pendulum has been the focus of intensive
investigation because of the possibility of chaotic behavior.
Begin your analysis with the elementary, linearized damped
pendulum with the equation of motion:

d*0  db
4+ 40=0.
dr*  dt

Solve this equation (giving the pendulum an initial dis-
turbance) and prepare a plot of the system trajectory by cross
plotting @ with its derivative. How does this system behave
dynamically? Now, assume the three governing equations
for the driven pendulum have the form

d_w: —g—sinO—l—gcosd)
dt q

do

Y _w

dt
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d¢
dt

= Wp.

We want to solve this set of equations using g = 2,
wp = 2/3, and g = 1.0, and once again we would like to
construct the system trajectory (using w and ) as we suspect
that chaotic behavior may be possible. If you need further
help with this problem, see Baker and Gollub (1990).

6.7. Begin this problem by consulting the work of Durham
et al. (1964) entitled Study of Methods for the Numerical
Solution of ODEs. On page 104, they describe a model for
a restricted three-body problem:

x—pu

d*x dy X+
CX_ 2 ® -
dr’ dt ((x+ p)?* +y»H)*" a (x— 'y +y»)*?
and

d*y dx y

“r_y o=
a7 Gy )"
Y

—u ,
(x—p) +y*)"

where ¢/ = 1 — p. We want to solve this fourth-order
system. The initial conditions are x(0) = 0.994, y(0) = 0,
dx/dt = 0 for t = 0, and dy/dt = -2.03173262955733683566
for t = 0. The parameter p is 0.012277471. The period for
the motion is 11.12434033726608513507, and the time step
will need to be very small (and probably variable).

6.8. Hiemenz stagnation flow is governed by the nonlinear
third-order ODE:

Vf/” _ flz _ﬁ//_az,

where v is the kinematic viscosity of the fluid and a is the
strength of the potential flow approaching the flat surface.
Assume the fluid is water and that @ = 5. Find a solution for
this problem given that f{0) = 0, f’(0) = 0, and f’(c0) = a.

6.9. One form of Bessel’s differential equation is

d’y 1dy
—+———k’y=0.
a xdx O
This might describe, for example, the disappearance of
a reactant species in an infinitely long cylinder (catalyst
pellet). It is obvious that there is a regular singular point at
x = 0. The analytic solution for this problem is

y = Cily(kx) + C, K, (kx).

We want to solve this equation numerically, integrating
from x = 0 to x = 1 given that the concentration is finite at
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the center and equal to a surface value (say, 1) at x = 1. Take
k = 2.325.

6.10. Consider the differential equation, dy/dx = 3x + Y~
We know that y(x = 0) = 1, and we want to find an estimate
of y(x = 0.1). In particular, Ayres (1952) gives a value for
this problem of 1.12725, and we want to know how accurate
this value is.

6.11. A steel cable with a per-unit-length weight of W
(pounds per foot) hangs between two supports. The deflec-
tion is described by the differential equation

2 2
o= 2.
dx* h dx
The shape assumed by a suspended cable is a catenary,
which can be described with the hyperbolic cosine (cosh).
At each support, of course, y(x = —L and x = L) = 0. Solve
the differential equation numerically, assuming W/h = 2 and
L = 10.

6.12. The Leveque equation describes the temperature dis-
tribution for an inlet flow past a heated wall. The x-axis
corresponds to the wall and the y-coordinate extends into the
fluid phase. By assuming that the velocity distribution in
proximity to the stationary wall is linear, v, = cy, the fol-
lowing differential equation can be developed:

2
d_T + 37’]2 d_T — O’
dn? dn
where
1/3
N
K y[9ax] '

Of course, « is the thermal diffusivity of the fluid (assume
that it is water, o = 0.00155 cm?/s). Given that T(n = 0) = T,,,
the temperature of the heated wall, and that 7(n — co) = T,
solve this second-order equation numerically and compare
your results with the analytic solution for = 0.3, 0.5, 0.7,
0.9, and 1.10. Let 7,, = 50° and T, = 25°.

6.13. The Rayleigh—Plesset equation describes the oscilla-
tory behavior of the interface of a disturbed spherical gas
bubble immersed in a liquid:

dvdR | 20
R dt  pR

dt

P-P, _.dR 3 [dR]2
p e 2

R, of course, is the bubble radius. This differential equation

is notoriously stiff and the term that includes the kinematic

viscosity (v) is often small and therefore frequently neglected.


http://c6-bib-0001
http://c6-bib-0003
http://c6-bib-0008

108 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

We are interested in the case in which the spherical gas bubble
is subjected to an instantaneous increase in external pressure.
This should result in compression and rebound—repeatedly.
Use Borotnikova and Soloukhin (1964) as a guide and solve
the Rayleigh—Plesset equation for this case.

6.14. Use the Bulirsch—Stoer method to solve the differen-
tial equation

dy 2.3
== 2%y,
dx Y

with y(x = 0) = 3, and find estimates for y(x = 0.5475).

6.15. Phase-space analysis is a powerful tool for exploring
the dynamic behavior of complex systems (with a limited
number of dimensions). It will allow us to assess stability
and to identify any attractors should they exist. We wish to
consider the nonlinear LaSalle model:

d’ d

ﬁ+a%+2y+3y2 =0,
with a = 1/2. There is an obvious equilibrium point aty = 0,
obtained by setting the time derivatives equal to zero. There
is another located at y = —2/3. Solve this equation numeri-
cally using different initial values for y(r = 0), letting
y'(t = 0) = 0 in every case. Draw a sufficient number of
trajectories on the phase plane such that the delineation
between stable and unstable regions is apparent. We are
particularly interested in trajectories near the second equi-
librium point (at y = —2/3). Can you find any trajectory that
actually terminates at y = —2/3? How would you describe
that point? What is a saddle point? A composite example
appears in Figure 6.13 to guide you in your work (y is plotted
on the horizontal axis and y’ on the vertical axis).

0.4+
0.3
0.2
0.1
0.0 Q
_O. 1 .
_0'2_

—0.3

_0.4 T T T T T T T T T T 1
-0.7 -06 -05 -04 -03 -02 -0.1 0.0 0.1 02 03 04

FIGURE 6.13. A few trajectories plotted for the LaSalle model.

6.16. The Chebyshev ODE is

d’ d
(l—xz)d—xz—xd—i—&—nz)/:O.

We are interested in the case where n = 5 such that the
last term on the left-hand side is 25y. We know that
yx = —1) = —1 and y(x = +1) = +1. We want to solve
this equation numerically on the interval —1 < x < +1 and
we will pretend that we do not know that the analytic solu-
tion is Ts5(x). One of the requirements of this problem is that
we need to obtain a very accurate estimate for dy/dxl._ ;.
Use the method of your choice and prepare a plot of your
results for y(x).

6.17. Schmitz and Amundson (1963) studied the behavior
of a reacting system consisting of two immiscible liquid
phases (« and [3) that are fed continuously to a stirred-tank
reactor (CSTR). A first-order, irreversible chemical reaction
occurs in both phases with the rate constants k, and k. The
temperatures of the two phases are equal and the compo-
nents are distributed according to an equilibrium law.
Because the heat generation function (for the exothermic
case) is sigmoidal in shape with respect to temperature (7)),
and the heat removal rate is linear with 7, it is possible that
the two intersect three times (i.e., there could be a maximum
of three “steady-state” temperatures). Naturally, this condi-
tion would only occur if the slope and intercept of the heat
removal line were injudiciously chosen (a reactor designer
would certainly try to avoid such a regime for safety reasons).
Schmitz and Amundson solved three simultaneous (nonlin-
ear) ODEs that formed the model for this system (their
equations 18, 19, and 20). The three equations describe the
dynamic behavior of the reduced total concentration, the
reduced temperature, and the volume fraction for the a-
phase. The parametric values of interest to us are provided
as case d, table 1, page 280, in the Schmitz—Amundson
paper; they are reproduced here:

k, =exp(23.1—63.5/T")
ks =exp(22.1-51.5/T")

V/_';/Va:c'g/cazl

K,=02
e=1
AﬂO /Ary() - 0.2

Uv, 1C,V=637x10"

T =exp(6)
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T),=Tj, =1.85
ps =1L

Solve the Schmitz—Amundson model numerically,
recognizing that the oscillatory behavior expected for this
case may require a procedure with variable step size (at a
minimum). Prepare a phase-space portrait of the system by
cross plotting reduced mole fraction and reduced tempera-
ture. Verify the limit-cycle behavior presented in the original

paper.

6.18. In Chapter 1, we contemplated a problem in which a
recently acquired video revealed the flight characteristics of
a falcon stalking and attacking a flying crow. This is a classic
curve of pursuit problem but in three dimensions, of course.
In a planar (x, y) problem, if the prey travels a straight line
in the y-direction, starting from x = a, then the trajectory of
the pursuer is described by the differential equation

2 2 \2
1+[@] — x| 2],
dx dx?

where k is the ratio of velocities (velocity of the pursuer)/
(velocity of the prey). Solve this equation numerically and
plot the path taken by the pursuer given that k = 1.5 and
a = 10. The prey starts from the x-axis and the pursuer starts
from the origin. What happens to the solution if k = 1?

6.19. Suppose an SR-71 (the Lockheed reconnaissance air-
craft that won the Collier Trophy in 1963) is flying a pho-
tographic intel mission over hostile territory. The “Blackbird”
flies a straight course at 2045 mph at a constant altitude of
89,500 ft. As the plane passes directly overhead, an antiair-
craft installation fires a ground-to-air missile that accelerates
rapidly to Mach 5 (take this to be 3600 mph); the missile
maintains that speed until its fuel is exhausted (after 38
seconds). Can an intercept occur? If so, how far downrange
does it occur? If not, how close does the missile get to the
SR-71? This is another curve of pursuit problem (see
Problem 6.18 and also Davis, 1962).

6.20. Previously, we looked at the behavior of the driven
pendulum modeled as a third-order system (Problem 6.6).
One of the earliest studies of nonlinear oscillators was the
work of Van der Pol (1926). In dimensionless form, Van der
Pol’s model is

d*0 do
£ - +0=0,
dt* e )dt

and he arrived at this form by assuming that the dissipative
(friction) term would be a function of the amplitude of the
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oscillation. We want to solve this equation numerically using
two different starting points: (6, #”) = (—0.1, 0) and (0.1,
2.8). Determine the phase-plane portrait of the Van der Pol
system by cross plotting € with ¢, and use both ¢ = 0.4
and € = 0.1. Do all of the trajectories end up at the same
limit cycle?
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7

ANALYTIC SOLUTION OF PARTIAL

DIFFERENTIAL EQUATIONS

INTRODUCTION

Many of the phenomena that are of interest to us in engineer-
ing and the applied sciences are modeled with partial dif-
ferential equations (PDEs). Fluid flow, heat transfer, and
mass transfer are prime examples, but problems in gravita-
tion, electrostatics, and quantum theory all give rise to
similar equations. The purpose of this chapter is to provide
the reader with some basic skills, enabling him/her to find
analytic solutions for many commonly encountered PDEs.
Several valuable references will be provided as we move
through this material, but at the outset, we want to point out
that there are two uniquely important monographs devoted
to the analytic solution of PDEs: The Mathematics of Diffu-
sion, Second Edition, by Crank (1975), and Conduction of
Heat in Solids, Second Edition, by Carslaw and Jaeger
(1959). These two books are known to nearly every worker
in applied mathematics. Both are incredibly useful as guides
to the solution of practical problems where diffusional
(molecular) transport processes are dominant. Practitioners
in this field are often heard to say, “I found a similar problem
in Crank” or “I verified my solution with Carslaw and
Jaeger.” Anyone wishing to become adept with the subject
matter of this chapter simply must own both of these books.

CLASSIFICATION OF PARTIAL DIFFERENTIAL
EQUATIONS AND BOUNDARY CONDITIONS

We have to be able to recognize and classify PDEs to attack
them successfully; a book such as Powers (1979) can be a

valuable ally in this effort. Consider the generalized second-
order PDE where ¢ is the dependent variable and x and y
are arbitrary independent variables:

d%¢ d%¢ ¢ L 0p 09
A—+B——+C—+D—+E—+F¢$p+G=0.
Ox? 0xQy Oy? Ox dy ¢

(7.1)

A, B, C, D, E, F, and G can be functions of x and y but
not of ¢. This linear PDE can be classified as follows:

B?> —4AC <0 elliptic
B> —4AC =0 parabolic
B> —4AC >0 hyperbolic

For illustration, we look at the “heat” equation (one-
dimensional transient conduction):
oT o’T
—=a_—.
ot Jy

(7.2)

You can see that A = o, B = 0, and C = 0; the equation
is parabolic. Compare this with the governing (Laplace)
equation for two-dimensional potential flow (¢ is the stream
function):

oy &
a;f + ay‘f =0. (7.3)
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In this case, A = 1 and C = 1, while B = 0; the equation is
elliptic. Next, we consider a vibrating string (the wave
equation):

2 2
ou =5’ Q (7.4)
or? Oy?

Note that A = 1 and C = —s?; therefore, —4AC > 0
and eq. (7.4) is hyperbolic. In applied mathematics, tran-
sient problems with molecular transport only (heat or dif-
fusion equations) will have parabolic character. Equilibrium
problems such as steady-state diffusion, conduction, or
viscous flow in a duct will be elliptic in nature (phenom-
ena governed by Laplace- or Poisson-type PDEs). We will
see numerous examples of both in this chapter. Hyperbolic
equations are common in quantum mechanics and high-
speed, compressible flows; for example, inviscid super-
sonic flow about an airfoil. The Navier—Stokes equations
that have been the focus of much attention by physicists
and mathematicians over the last 160 years are of mixed
character.

The three common types of boundary conditions used
in applied mathematics are Dirichlet, Neumann, and Robin’s.
For Dirichlet boundary conditions (or conditions of the first
kind) the field variable is specified at the boundary. Two
examples follow: In a conduction problem, the temperature
at a surface might be fixed (at y = 0, T = T)); alternatively,
in a viscous fluid-flow problem, the velocity at a stationary
duct wall would be zero (for a Newtonian fluid). A condition
of the first kind can also be written as a function of time, at
y=0,T=f1).

For Neumann conditions (or boundary conditions of the
second kind), the flux is specified; for example, for a con-
duction problem with an insulated wall located at y = 0,
(0T/9y),—o = 0. Of course, this gradient could also be written
as a function of time.

A Robin’s-type boundary condition (or condition of the
third kind) results from equating the fluxes; for example,
consider the solid—fluid interface in a heat transfer problem.
On the solid side, heat is transferred by conduction (Fouri-
er’s law), but on the fluid side of the interface, we might
have mixed heat transfer processes approximately described
by Newton’s “law” of cooling:

—k[a—T] = h(T, —T). (7.5)
9y ),

We hasten to add that the heat transfer coefficient, 4, that
appears in eq. (7.5) is an empirical quantity. The numerical
value of / is known only for a small number of cases, usually
those in which molecular transport is dominant. Thus, the
use of a Robin’s-type boundary condition usually means that
an additional unknown has been brought into the problem.

An analogous relationship can be used for mass transfer
at interfaces:

—Dyp [ ] = K(Cyp — Cpx).
y=0

And again, the mass transfer coefficient, K, is unknown
and would generally have to be estimated.

A critical observation with regard to these boundary con-
ditions is that all three kinds are linear with respect to the
dependent variable.

FOURIER SERIES

In his prize-winning work submitted to the Paris Academy
in 1811, and later published within Theorie Analytique de
la Chaleur in 1822, Fourier claimed that an arbitrary func-

tion, f(x), could be represented by the trigonometric series,

f(x)=ay +(a, cos x + b, sin x) + (a, cos2x + b, sin2x) + ---.

(7.6)
The constants that appear in this series are given by
1 +7
ar=o— [ feox (7.7)
2 J
1 +7
a, :—ff(x)cosnxdx, (7.8)
™
and
1 +7
b, :—ff(x)sinnxdx. (7.9)
7r

The general idea had surfaced earlier; prior to Fourier’s
work (in fact, in the eighteenth century) a number of promi-
nent mathematicians worked on the vibrating string problem.
Carslaw (1950) records that Bernoulli obtained a solution
(for a string starting from rest) in the form of a trigonometric
series. Euler responded to this work by noting that if Ber-
noulli was correct, then an arbitrary function of a single
variable could be represented by an infinite series of sines
(of integer multiples of the independent variable). Euler did
not believe this was possible; he observed that sine was both
a periodic function and one that was odd. If the function that
was being represented did not have the same characteristics,
how could it be obtained from sine?

Let us assume we are interested in a function, f(x), for
(—m < x < +m):
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FIGURE 7.1. A triangular wave on the interval (—m < x < +m).

f(x):ix+4 for —m <x<-—-m/2, (7.10)
71'

f(x):—ix for—m/2<x<+4mw/2, (7.11)
T

and
4
f(x)=—x—4 for+7n/2<x<+4m. (7.12)
T

The function’s behavior (a triangular wave) is illustrated
in Figure 7.1.

We would like to know if this function can be represented
in the manner suggested by Fourier, and if so, how do the
coefficients actually behave? Figure 7.2 shows the approxi-
mations for f(x) using 3, 5, 10, 20, and 90 terms in the series.
Though minor discrepancies are apparent, the results are
similar to the function illustrated in Figure 7.1.

If this is your first exposure to Fourier series and their
application to boundary-value problems, then Spiegel’s
(1974) book can be an extremely useful tool and learning
guide. The basic idea with Fourier series is that we use
superposition to construct a representation of a periodic
function using combinations of the oscillating functions,
sine and cosine. Since many boundary-value problems
require us to expand a function into trigonometric series, we
can expect Fourier series to prove extremely useful. If you
are skeptical about using sine and cosine in this way, you
are in good company. Korner (1989) notes that both Laplace
and Lagrange initially had doubts about Fourier’s develop-
ment; part of their concern was a consequence of Fourier’s
lack of rigor.
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—2.0 T ' 1 > T L T $ T ¥
-3 -2 -1 0 1 2 3

FIGURE 7.2. Representation of the triangular wave with Fouri-
er’s series technique. Many of the essential characteristics of f(x)
are reproduced reasonably well with just three terms in the series.

Consider a function, f(x), defined over an interval, —L <
x < +L. The Fourier series corresponding to this function
is, by definition,

A nmwx . nTX
xX)=—+ A, cos——+ B, sin——.  (7.13
F(x) > ni] 3 3 (7.13)

One concern that students new to Fourier series typically
have is exactly how this expression will prove to be of value.
After all, if this equation is to be used to reconstruct the
function, f(x), then we might need to know a very large
number of A,s and B,s. The effort required appears
formidable—until we think about orthogonality of the func-
tions sine and cosine. Specifically, consider that

fsin nxdx =0 (7.14)

-7

f sin nx cos mxdx — 0 (7.15)

-7

fcosnxcosmxdxzoifnzm, andrwifn=m (7.16)

-

™
fcosnxcosmxdx:mfnzm, andTif n=m=0.

-7

(7.17)
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These relationships suggest the following approach:
Multiply the expression for f{(x) by sin(mx) dx and integrate
from —7 to -+, so that

f F(x)sinmxdx = f %sinmxdx

+ f (A, cosnx + B, sin nx)sin mxdx.

(7.18)

It follows immediately that for a function f{x) of period 2,

B, :lff(x)sinnxdx. (7.19)
T

More generally, for a function f(x) defined over the
interval, —L < x < +L, we have

+L

1 nmwx
B, =— in 2% gy 7.20
Lj:f(x)sm s (7.20)

Of course, the A,s can be determined analogously.

In many of the problems of interest to us, the series solu-
tions we obtain may only involve either sine or cosine terms.
We refer to such cases as half-range Fourier sine (or cosine)
series, and often our attention in such problems is focused
on just half of the interval, that is, from x = 0 to x = +L.
In case of the half-range series,

L
Cosine: A, :%ff(x)cosmdx (7.21)
L L
0
and
2 L
Sine: B, :—ff(x)sin@dx. (7.22)
L | L

An obvious question of concern to us is whether an arbi-
trary function that is piecewise continuous over some inter-
val 0 to L can be represented successfully in this way (by
“successfully,” we mean that we can obtain sufficient accu-
racy using a reasonable number of terms). Recall that in
Figure 7.2, we saw that a triangular waveform could be very
easily represented with just a few Fourier series terms. Now
let us consider a function formed by two straight lines, rep-
resented by fix) = 3x from x = 0 to x = 3, and then
fix) = 18 — 3x from x = 3 to x = 6. Since this function is
defined only from x = 0 to x = L, and since the form requires
an odd function representation,

9.0
8.5—.
8.0—.
7.5—-
7.0-.

6.5

F(x) from series

6.0

5.5

5.0

1.5 2.0 25 3.0 35 4.0 4.5

FIGURE 7.3. Reconstruction of a triangular function using 2, 5,
10, 20, and 40 terms in the Fourier sine series. Please note that both
axes have been abridged to better show the differences between the
results.

f)=>"B,sin ’”Z—x (7.23)
n=l1

The necessary coefficients are determined directly from
the integral(s):

2
B, == . (724
7 (7.24)

3 6
f3xsin@dx+f(18—3x)sin@dx
0 L 3 L

We will compute the B,s and then see how well the series
represents f{x) using 2, 5, 10, 20, and 40 terms successively
The first seven B,s are 7.2951, —2.6408 x 1073, —0.8106,
2.3685 x 107", 0.2918, —8.8027 x 107, and —0.1489, and
we see from the numerical computation that the even terms
are actually zero.

As you can see from Figure 7.3, the approximation
obtained with n = 40 is very good, with fix = 3) only 1%
below the correct value (8.9088 as opposed to f(3) = 9.0).

A Preview of the Utility of Fourier Series

We want to explore a problem that will make it very clear
why Fourier’s work is so useful to us in our efforts to solve
PDEs and we will preface this example with an observation
made by Lord Kelvin: “Fourier’s theorem is not only one of
the most beautiful results of modern analysis, but it is said
to furnish an indispensable instrument in the treatment of
nearly every recondite question in modern physics.” Let us
see why Kelvin was so enthusiastic.
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We will assume that we have a slab of homoge-
neous material that extends in the x-direction such that
0 < x < 3. This slab has an initial temperature distribution
given by

T = f(x)=6x—2x% (7.25)

which yields a temperature of zero (°C) at both ends
and 4.5° at the center (x = 1.5). At t =0, the tempera-
ture at both ends is instantaneously raised to 10°C. The
evolution of temperature in the slab is governed by a para-
bolic PDE,

or _ 0T

which we will modify by defining a new dependent variable,
0 = T — 10. Of course, this means that & will be zero at both
ends, which proves to be very convenient. « that appears in
eq. (7.26) is the thermal diffusivity, o = k/pC,. A solution
for this problem has the form

0= C exp(—aN’t)[Asin Ax + BcosAx].  (7.27)

It is easy to show that, to satisfy the boundary conditions,
we must have B = 0 and \, = n7r/3. Consequently, the solu-
tion we seek has the form

- n’m? nmx
0= A, exp|—«a t|sin——. (7.28)
> son|-o s
Our initial condition (¢ = 0) corresponds to

nmx

6x—2x2—10= ZA,I sin=—=~. (7.29)
n=1

Of course, this is a Fourier sine series and we know that the
unknown coefficients are determined by integration:

3
A, :% f (6r—2+° ~10)sin" T2 dv. (7.30)

0

Notice that the solution that we developed, eq. (7.28),
has a lot of exponential damping when ¢ becomes large.
This means that for very small times, we should anticipate
that the infinite series may converge very slowly! To
further explore this “worst-case” scenario, we will find
a few A,s by integration (for even ns, the coefficients
are zero).
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n A,
1 —8.08812
3 —4.07208
5 —2.50927
7 —1.80530
9 —1.40824
11 —1.15388
13 —0.97716
15 —0.84729
17 —0.74784
19 —0.66925
21 —0.60559
23 —0.55296
25 —0.50874
27 —0.47106
29 —0.43856

We see immediately that these coefficients are diminish-
ing rather slowly—which is not a good sign for convergence
of the infinite series. Since we have all of the pieces in place,
we will compute the initial temperature distribution using
increasing values of n (we start with n = 50 and go up to
n = 700).

This example, illustrated in Figure 7.4, has taught us an
important lesson: Convergence of the Fourier series to the
initial temperature distribution is abysmally slow—we
needed hundreds of terms to get a good approximation.
However, we must remember that, for modestly larger times,
the exponential damping in the infinite series will greatly
improve convergence; so much so that for intermediate s
we might only need one or two terms to get satisfactory

&
W
1

b
o
I

et
n
1

g
(=)
]

Initial temperature

50, 100, 200, and 700 terms

- . r - - .
0.25 0.50 0.75 1.00 1.25 1.50
X position

FIGURE 7.4. Computation of the initial temperature distribution
in the slab using 50, 100, 200, and 700 terms. Both axes have been
truncated to better reveal the behavior of the Fourier series (which
is especially bad near the ends of the slab for small n).
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results. We will illustrate this behavior by using the solution
(eq. 7.28) to calculate the temperature at the center (x = 1.5)
for times ranging from 1/32 (0.03125) to 10. Recall that the
initial temperature at x = 1.5 was 4.5 as given by eq. (7.25).
We will arbitrarily choose a thermal diffusivity that corre-
sponds to a material such as lead, o = 1/5.

Temperature for Number of Terms

Time (s) x=15 Required in Series
1/32 4.475 19
1/16 4.450 15
1/8 4.400 12
1/4 4.300 10
12 4.116 7
1 4.060 5
2 4.862 4
4 6.638 2
6 7.831 2
8 8.601 2

10 9.098 1

Note that the temperature in the center of the slab
decreases at first; this is a consequence of the shape of the
initial temperature distribution and the fact that thermal
energy is transferred downhill, in the direction of decreasing
temperature. These results show that by the time we get to
t = 4 seconds, we only need two terms in the series to get
an acceptable value for 7.

THE PRODUCT METHOD
(SEPARATION OF VARIABLES)

The product method is a technique by which certain PDEs
can be solved analytically. As the name implies, the method
is based on equating the dependent variable to a product of
functions of the independent variables. If the separation is
successful, the result will be ordinary differential equations
(ODEs) for which familiar methods of solution may be
employed. There are, however, important restrictions on the
applicability of this technique with respect to the form of
the differential equation, the shape of the boundary, and the
nature of the boundary conditions.

It is obvious that the PDE itself must be separable; that
is, it must be linear and it must not have any cross deriva-
tives. For example, the equation

2
A[@] g To (7.31)

Ox 0x0y

would violate both of these restrictions. Furthermore, the
equation must be homogeneous, or of a form that can be
rendered homogeneous through suitable transformation.
Thus, a Poisson-type PDE might be handled successfully if

the constant can be removed through a change in the depen-
dent variable. We should also note that it is not necessary
that an equation have constant coefficients. Consider the
wave (hyperbolic) equation:

0? 0?

a—;f—sz(x)a—xfzo. (7.32)
We propose ¢ = f(H)g(x), which results in g = s*fg”, and
then f7f = s*(g”1g)=—\".

So the two ODEs are simply

F 42 f=0 and s*(x)g”" +Xg=0. (7.33)

For the problem types discussed earlier, the boundary
conditions must correspond to constant values of x and y.
Thus, ¢(x = 0) = ¢, or ¢(y = B) = ¢ would be satisfactory,
but ¢ = ¢, for y/x = 2 would not. Also, boundary conditions
applied at, say, x = B, cannot include any partial derivatives
involving y. Similarly, a boundary condition written for
y = A cannot include partial derivatives with respect to x.

The preceding discussion may make it seem as though
the applicability of the product method is severely limited,
and it is certainly true that there are many PDEs of interest
to us that cannot be solved with this technique. However, we
should not be too hasty to discount separation. There are
many important problems in applied mathematics that can
be solved in this manner, and we will find examples in fluid
flow, heat transfer, diffusion, and wave phenomena, among
others. Moreover, we have more than two centuries of work
in this branch of mathematics to draw on, so usefully com-
plete examples abound.

Before we begin to examine applications of this tech-
nique, a final word of caution: The solutions we are about
to construct (and use) give the impression of being exact. As
Weinberger (1965) notes, we truncate these infinite series
solutions as a practical matter. This means that only a finite
number of terms will be used to construct a Fourier series,
for example, and therefore we will be generating an approxi-
mation to the solution. In many cases, it will be a very close
approximation, but keep in mind that our results will not be
exactly correct.

Parabolic Equations

The parabolic PDEs that we are most likely to see will
involve transient molecular transport (by viscous friction,
conduction, or diffusion) in one or more spatial directions.
The general procedure we will employ will be similar in
every case: We perform the separation, solve the resulting
ODEs, use the boundary conditions to simplify the result
and identify the constant of separation, and finally, use the
initial condition (with Fourier theorem or orthogonality) to
identify the proper values for the leading coefficient in the
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TABLE 7.1. Illustration of Infinite Series Convergence for Small #s

Term No. t = 0.001 t = 0.005 t = 0.025 t=0.125 t = 0.625
1 1.271981 1.266969 1.242205 1.12546 0.6870893
3 0.851322 0.8609938 0.9023096 0.9856378 0.6854422
5 1.099763 1.086086 1.039727 0.9972914 0.6854423
7 0.926459 0.9432634 0.9854355 0.9968604 0.6854423
9 1.05706 1.038121 1.004608 0.9968669 0.6854423

11 0.954341 0.9744126 0.9987616 0.9968669 0.6854423

13 1.037236 1.01695 1.000275 0.9968669 0.6854423

15 0.969256 0.9889856 0.9999457 0.9968669 0.6854423

17 1.025566 1.006978 1.000006 0.9968669 0.6854423

19 0.97864 0.9956936 0.9999966 0.9968669 0.6854423

21 1.017874 1.002573 0.9999977 0.9968669 0.6854423

23 0.985031 0.9985044 0.9999976 0.9968669 0.6854423

25 1.012515 1.000835 0.9999976 0.9968669 0.6854423

27 0.98955 0.9995433 0.9999976 0.9968669 0.6854423

29 1.008694 1.000235 0.9999976 0.9968669 0.6854423

31 0.992785 0.9998772 0.9999976 0.9968669 0.6854423

33 1.005956 1.000056 0.9999976 0.9968669 0.6854423

35 0.995097 0.9999698 0.9999976 0.9968669 0.6854423

37 1.004008 1.00001 0.9999976 0.9968669 0.6854423

39 0.996732 0.9999919 0.9999976 0.9968669 0.6854423

41 1.002642 0.9999996 0.9999976 0.9968669 0.6854423

43 0.997868 0.9999964 0.9999976 0.9968669 0.6854423

infinite series. The process is straightforward and usually
quite transparent. There are, however, a few subtle issues
that can complicate our analysis. We will try to illustrate
some of these in the examples that follow.

Let us begin by examining transient conduction in a finite
slab of material, for which 0T/0t = a(8*T/dy?); let this
object extend from y = 0 to y = 1. We can have either a
uniform initial temperature or a temperature distribution that
can be written as a function of y. At t = 0, both faces are
instantaneously heated to some new temperature, 7,. Define
a dimensionless temperature, 0=(T—T,)/(T—T,), and let
0 = f(y)g(?). The product method yields

g =—aXg and f"+Nf=0. (7.34)
As expected, we get
g=Crexp(—aX’t) and f=Asin\y+ Bcos)\y. (7.35)

Since B must be zero, and sin(\) = 0, we very quickly
find

0= ZA,, exp(—a\2f)sin),y, where \, =nm.  (7.36)

n=1

If we have a uniform initial temperature, T}, then applica-
tion of the initial condition results in

1= ZA,, sin\,y, (7.37)
n=l1

a half-range Fourier sine series. By definition,

L

2 . nmy
A, :—f sin—=dy,
3 f» 7w

0

(7.38)

but for our case, L = 1, and the function, f(y), is also 1. The
preceding integral is zero for even n and equal to 4/(n7) for
n=1,3,5,.... With this example, we have a good oppor-
tunity to examine the convergence of the infinite series solu-
tion. Let y = 1/2, @ = 0.1, and let ¢ range from 0.001 to
0.625 by repeated factors of 5. We shall examine the series
for ns from 1 to 43 (see Table 7.1). Note that for small s,
the series does not converge quickly. However, for t = 0.125,
we need only five terms, and at ¢ = 0.625, only three. The
results should not be surprising. For very small zs, the tem-
perature profile is virtually half a cycle of a square wave.

Now suppose we have a Neumann condition at one
boundary; in particular, let us assume we have an insulated
boundary located at y = L, such that (07/0y),—, = 0. The
reader may wish to show, using eq. (7.36) as our starting
point, that cos \,L = 0. Therefore, A\, = /2L, 37/2L, 57/2L,
and so on. Once again, we have discovered a Fourier series
problem since the separation constants are integer multiples
of pi (m).

We also want to address the issues that arise when one
of the boundary conditions for our slab of material is of
the Robin’s type (the third kind). All of the initial steps in
the problem are the same as in the previous case, but we
make one adjustment by defining a new dependent variable,
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0 =T — T., where T, is the temperature of the surroundings
at a large distance. The situation we are describing would
correspond to the case where one end of the slab (at y = L)
loses heat to the surroundings, and we assume that this
process can be described by Newton’s law of cooling. Since
the first part of this problem is common to what we saw
previously, we can start with

0 = Aexp(—a\*t)sin \y. (7.39)

But this time, at the end of the slab, where y = L, we
equate the fluxes:

00

—k—| =hT_, -T,). (7.40)
Oyl,_,
Consequently, we find
—kAXexp(—a\’t)cos AL = hAexp(—aX’t)sin AL, (7.41)
and this is equivalent to
,i AL =tan \L,
hL
which we write as
ALcot \L + % =0. (7.42)

This transcendental equation arises frequently in applied
mathematics, and you may recognize the dimensionless
grouping, hL/k, as the Biot number (or modulus). We can
find a few roots for this equation in Carslaw and Jaeger
(1959) and a table of values (with eight roots) is provided
here for convenience. Equation (7.42) has been rewritten as
x cot(x) + C = 0, and the negative values of C come about
for a sphere that loses heat to the surroundings through a
Robin’s-type boundary condition.

C=-1 —0.8 —0.6 —0.4 —-0.2 0
0.0000 0.7593 1.0528 1.2644 1.4320 1.5708
4.4934 4.5379 4.5822 4.6261 4.6696 4.7124
7.7253 7.7511 7.7770 7.8028 7.8284 7.8540

10.9041 109225 10.9408 10.9591 10.9774  10.9956

14.0662  14.0804 14.0946  14.1088  14.1230 14.1372

17.2208  17.2324  17.2440  17.2556  17.2672  17.2788

20.3713 203811  20.3909  20.4007 20.4106  20.4204

235195 23.5280 23.5365 23.5450 23.5535 23.5619

0.2 0.4 0.6 0.8 1.0 2.0
1.6887 1.7906 1.8798 1.9586 2.0288  2.2889
4.7544  4.7956 4.8358 4.8750 49132  5.0870
7.8794  7.9045 7.9295 7.9542 7.9787  8.0962

11.0137 11.0318  11.0498  11.0677  11.0855 11.1727

14.1513  14.1654  14.1795 14.1935 142074 14.2764

17.2903  17.3019  17.3134  17.3249  17.3364 17.3932

20.4301 20.4399  20.4497  20.4594  20.4692 20.5175

23.5704 23.5789  23.5874  23.5958  23.6043 23.6463

4 6 8 10 20 40
25704  2.7165 2.8044 2.8628 29930  3.0651
5.3540  5.5378 5.6669 5.7606 59921  6.1311
8.3029  8.4703 8.6031 8.7083 9.0018  9.1987

11.3348 11.4773  11.5993  11.7027  12.0250 12.2688

14.4080 14.5288  14.6374  14.7335  15.0625 15.3417

17.5034 17.6072  17.7032  17.7908  18.1136 18.4180

20.6120 20.7024  20.7877  20.8672  21.1772 21.4980

23.7289 23.8088  23.8851  23.9574 242516 24.5817

Now, suppose for our example hL/k = 1/2, the first eight
values for the product AL are

1.8366, 4.8158, 7.9171, 11.0409, 14.1724,
17.3076, 20.4448, and 23.5831.

Notice the spacing between the consecutive pairs: 2.9792,
3.1013, 3.1238, 3.1315, and so on. It is now clear that values
of the constant of separation, A, are not integer multiples of
pi, and this means that this case is not a Fourier series
problem. So, although our solution has the form

0= ZA,, exp(—a)\2t)sin\, y, (7.43)

n=1

the coefficients (A,s) must be determined using orthogonal-
ity as we will now demonstrate. At t = 0, 0 = 0,, so

0, = ZA,, sin \, y.
n=1

We multiply both sides of the equation by sin \,ydy and
integrate from y = 0 to y = L, making use of the fact that

(7.44)

L
fsin Aysin\,ydy=0 unlessn=m.  (7.45)
0

Therefore, the needed coefficients are obtained from the
quotient of integrals:

L
f 0o sin \, ydy
_ 0

—z—o(cos NL—1)
A, =

] T (7.46)
fsinzx\nydy E—4—)\ﬂsm "

0
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It is important that we be able to deal with analogous
problems for “infinite” (L >> d) cylinders too. Suppose we
begin with a cylinder that has some initial temperature (or
initial temperature distribution). At ¢+ = 0, the surface at
r = R is instantly cooled or heated; we wish to determine
how the temperature of the medium for 0 < r < R responds
to this change. For this case, the governing PDE is

or _ [or 1ot

= — . 7.47
ot @ or? * r Or (7.47)

This fits the criteria that we had established for separa-
tion, so we propose T = f(r)g(?); this results in

n 1 /
P ff+=f
s _ T rt _ (7.48)
ag f

The two ODEs (the second one is a form of Bessel’s dif-
ferential equation) with their solutions are shown here:

g '=—a)g and f'/Jrlf/Jr)\zf:O, (7.49)
r

resulting in
g=Crexp(—aX’t) and f=AJ,(\r)+BYy(\r). (7.50)

For all problems of this type that involve a solid cylindri-
cal medium that extends from r = 0 to r = R, we can imme-
diately simplify (since 7 must be finite at the center and
since Yy(0) = —oo as we saw in Chapter 5, B = 0):

T = Aexp(—aN*t)Jo(Ar). (7.51)

As noted previously, we assume that the surface tempera-
ture is changed instantaneously to a new value, 7,. Further-
more, we define a new dependent variable, § = T — T,
which means that 0(r = R, t) = 0. This will be satisfied as
long as Jy(AR) = 0; this equation has an infinite number of
roots and the first few ARs are 2.40483, 5.52008, 8.65373,
11.79153, 14.93092, and so on. Therefore,

0= ZA,, exp(—a\20)Jo(A\r). (7.52)

n=1

We are ready to apply the initial condition for the interior
of the cylinder; typically, that would be 7(r, t = 0) = con-
stant, or 7(r, t = 0) = f(r). We start with the constant case
and utilize orthogonality (readers unfamiliar with this
process for Bessel functions may find section 7.5 of Carslaw
and Jaeger, or chapter 10 in Spiegel, 1971, to be quite
helpful): We begin with the initial condition

THE PRODUCT METHOD (SEPARATION OF VARIABLES) 119
b= Ado\r). (7.53)
n=1

and multiply both sides by rJo(\,r)dr, then integrate from
r = 0 to R. Please note the inclusion of the weighting func-
tion, r. Consequently,

R

f@orJO()\,,r)dr
A, = OR—.
frJoz(/\,,r)dr

0

(7.54)

The integral in the denominator is known to be (R%/2)J,;%(\,R),
so therefore,

R
A, =——"— | rly(\r)dr. 7.55
RIE0R)) rJo(Ar)dr (7.55)

Completing the problem, we find

:—Zexp( a),? )AJ;((AA I)e) (7.56)
1

We should look at a specific example to better under-
stand how well this will work for us. Suppose we have a
long acrylonitrile butadiene styrene (ABS) plastic rod
exactly 2 cm in diameter. The thermal diffusivity («)
for ABS is about 0.00108 cm?s, and we will assume our
interest is for » = 1/2 cm and ¢t = 50 seconds (we have
purposefully selected a time that is neither short nor long).
We obtain

— = %[0.39267 +0.017297 —-0.002659 --- ],

0

and since R = 1, this corresponds to 6/6, = 0.79. The reader
should also be aware that the solution of this infinitely long
cylinder problem is so important in practical situations that
it has been presented graphically throughout the literature of
heat and mass transfer, including Carslaw and Jaeger (1959)
and Glasgow (2010). A similar graph is reproduced here as
Figure 7.5, and this graph indicates that /6, =~ 0.81 for the
ABS rod example.

A related problem, but one that is a bit more difficult,
arises when a boundary condition of the third kind must be
used at the cylinder surface where » = R. Although the dis-
cussion that follows concerns heat transfer to a cylinder,
keep in mind that the analysis is the same for the equivalent
mass transfer problem. Suppose we have heat transfer from
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FIGURE 7.5. Solution for heat transfer to a long, solid cylinder
when the surface acquires a new temperature instantaneously. Note
that the centerline temperature attains 50% of the total change
when at/R* = 0.2.

the fluid phase to a long, solid cylinder with relatively large
conductivity. Because k (or «) is large, much of the thermal
energy that arrives at the interface will be conducted readily
into the interior of the cylinder. Consequently, the surface
temperature will not acquire the fluid temperature instanta-
neously. It is appropriate to think of this behavior in terms
of the relative resistances: A small Biot number indicates
that the bulk of the resistance to heat transfer lies in the fluid
phase. The initial steps for this problem are the same as
before, so

T = Aexp(—a\’t)Jo(\r). (7.57)
However, at r = R, a Robin’s-type boundary condition must
be used:

T

7.58
orl_, (7.58)

= h(Tlr:R _TOO)

It is convenient to define 6 = T — T, so that when we
introduce eq. (7.57) into eq. (7.58),

ARJ,(AR) — %RJO(AR) =0. (7.59)

Naturally, the roots of this transcendental equation depend
on the value of the Biot number. In a typical application
of the kind we are discussing, hR/k might be about 0.7
for which the A\,Rs are 1.0873, 4.0085, 7.1143, 10.2419,
13.3761, 16.5131, and so on. The roots for this transcenden-
tal eq. (7.59) are needed frequently in applied mathematics,
so it may be useful to provide an abbreviated table here:

Biot, hR/k AR AR AR AR AsR
0.01 0.1412  3.8343 7.0170 10.1745 13.3244
0.02 0.1995 3.8369 7.0184 10.1754  13.3252
0.05 0.3401  3.8443  7.0225 10.1784  13.3274
0.1 0.4417  3.8577 7.0298  10.1833  13.3312
0.2 0.6170  3.8835 7.0440  10.1931  13.3387
0.5 0.9408 3.9594 7.0864 10.2225 13.3611
1 1.2558  4.0795  7.1558  10.2710  13.3984
2 1.5994 42910 7.2884 103658  13.4719
5 1.9898 47131 7.6177 10.6223  13.6786

10 2.1795  5.0332 79569 10.9363  13.9580
20 22880 5.2568  8.2534  11.2677  14.2983
100 23809 54652 85678  11.6747  14.7834

Of course, we now know that the solution for the modi-
fied problem must be written as

0= A,exp(—a) NJy(\r),

n=1

(7.60)

and the coefficients (A,s) are determined by orthogonality
as before, with one important difference: The values for the
separation constant come from the transcendental eq. (7.59)
rather than from the zeros of J,, so the required integrations
produce a different result. Again, this is described clearly in
chapter 7 in Carslaw and Jaeger (1959) and also in chapter
10 in Spiegel; the consequence for this case is

2\ RJ,(\,R) 7.61)

n 2 p2
[hkf +/\n2R2]J02(AnR)

Let us take kK = 0.09, R = 1.27, and h = 0.0496 (all
centimeter-gram-second units), such that AR/k = 0.7. Then,
using eq. (7.59), we find A\, = 0.8561, and by eq. (7.61),
A, =1.1522 and A, = —0.21197.

To this point, we have said nothing about parabolic equa-
tions arising in spherical geometries. Let us now consider
transient conduction in a spherical entity; thermal energy is
transferred only in the r-direction:

oT 1 0(,0T
C,—=k|—— 2—]. 7.62
e ot r? Or [r or (7.62)
We rewrite the equation as
2
8_T =« 8_721 %8_T , (7.63)
ot or*  r Or

and let 7= 6/r. This variable change results in the familiar
“slab” equation,

00 0%0
—_— a _’
or?

= (7.64)
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for which we know

0 = Cyexp(—aX*t)[Asin \r + Bcos\r].  (7.65a)

Naturally, we need only to divide by r to return to 7(r, ?).
This means that a great many problems of this type in spheri-
cal coordinates can be solved by simply adapting appropri-
ate results from solutions worked out for slab problems.

We will illustrate a typical solution procedure for spheres
with a detailed example: A solid sphere of radius 3 has a
uniform initial temperature of 30°. At t = 0, the surface of
the sphere is instantaneously heated to 80°. Of course, we
already know that T = (C\/r)exp(—a\*f)[Asin \r + Bcos Ar].
Since T must be finite at the center, we require B = 0. If we
now define a dimensionless temperature, 8 = (T — 80)/
(30 — 80), then § = O for r = R, and

OO

0= Z%exp(—a)\nzt)sin AT

n=l1

(7.65b)

The constants of separation are integer multiples of pi
(m), A\, = nn/R, and we use the initial condition to find
1=322,(A,/r)sin\,r. This is a Fourier series problem, so
we can determine the leading coefficients by

R
A, = 2frsin)\,,rdr = —2—Rc0sn7r.
R nmw
0
We note that cos(nm) will be —1 for odd n and +1 for
even n. A complete solution is now at hand, and we will
replace R with its value, 3:

sjn nmr
T —80 >~ cosnT n’r? 3
=—6 exp|—« t .
) D p[ 9 ] ,

n=1

(7.65c¢)

We will set a = 0.005, r = 1.5, vary ¢ from 1 to 1000,
and use 50 terms in the series:

t 1 10 100 400 1000

T(r/R = 0.5) 29.99999 30.00021 43.36091 72.89833  79.7354

Because this is such an important practical problem, the
solution is often presented graphically in the form shown in
Figure 7.6. Please observe that the dimensionless tempera-
ture used in the figure is different from the definition we
used for eq. (7.65b); it is convenient to have § — 0 as ¢
becomes large in the analytic solution.

We can use this graphical presentation to confirm our
analytic results. For = 400, we find at/R? = 0.222, which
means that (7 — 30)/80 — 30 = 0.855, yielding a tempera-
ture of 72.7° (very close to the result we obtained in the table
above using the infinite series solution).

THE PRODUCT METHOD (SEPARATION OF VARIABLES) 121

1.0 q
1 0.30

1 0.25
0.8 4

0.9

0.20
0.7

0.6- 0.15
0.5

0.4 - 0.10

(T-THIT,-T)

037 ‘ 0.05
0.2 ‘ 0.03

0.02

ar/R*=0.01

1 . T ¥ T ¥ T X T * 1

02 03 04 05 06 07 08 09 1.0
r/IR

0.1

0.0
0.0 0.1

FIGURE 7.6. Solution for a sphere, initially at a uniform tempera-
ture, 7. At t = 0, the temperature at the surface of the sphere is
instantaneously elevated to 7,. We have selected /R = 0.5 for our
example, which corresponds to the vertical line in the middle of
the figure.

We also need to point out that Fourier series solutions can
be extended to parabolic problems with multiple spatial vari-
ables. Suppose we have a slab of material that extends from
x=0tox = Land from y = 0 to y = H that has some initial
distribution of temperature in the interior, 7(x, y). At t = 0,
all four edges are instantaneously changed to a new tempera-
ture which we take to be zero for convenience. The govern-
ing equation is

or

R — 7.66
o o (7.66)

or ot
ox* |

and we let T = f(x)g(y)h(f). After dividing by « fgh, we find

A _J 8 (7.67)
g

Of course, we immediately see that & = Ciexp(—a)),
and that

" "
S e 8 (7.68)

which gives us a function of x on the left and a function of
y on the right. We use the familiar argument and conclude
that both sides must be equal to a constant:

n n
LA I S (7.69)
S g
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FIGURE 7.7. Typical temperature distribution in a slab at # = 0.10
given an initial distribution of 7T(x, y, t = 0) = 100xy; at t = 0, all
four edges are reduced to 7 = 0.

Accordingly, we find
f=Asinnx+ Bcosnx and
g=CsinyA\2 —n?y+Dcosy A" —ny.

We arrange the dependent variable, 7, such that T = 0 for
both x = 0 and y = 0; therefore, B = D = 0 leaving us with

(7.70)

T = Aexp(—aX’t)sinnxsiny \> —n?y.  (7.71)
When x = L, T = 0, so sin(nL) = 0, resulting in n =
mm/L. Similarly, when y = H, T = 0, so sin\/\> —n*H =0,
requiring that /A> —n* =nn/H. The solution for our
problem can be written as

T=Y "% Auexp(—aXsin(mx)siny\* —n’y, (7.72)

m=1 n=1

with A and 7 determined as shown previously. Now we will
assume that the slab has an initial distribution of tempera-
ture, T(x, y, t = 0) = Toxy (with T, = 100), and let L= H = 1.
This means that the maximum initial temperature is in the
upper right-hand corner, and for small #s, we should see
something similar to the contours shown in Figure 7.7.

The coefficients for our double Fourier series are deter-
mined from

1 1
A,,, =400 f f xysinmmxsinnmydxdy. (7.73)
0 0

A few of the computed coefficients are provided as
follows to allow the student to further explore this
situation:

(m, n) =
1,1) 405283 1,2) —20.268 1,3) 135125
2,2)  10.1321 2,3 67571 (2,4)  5.0673
(3,3) 45031 3,4 33780
4,4 25330 4,5 —2.0268
(5,5 16211 (5,6) —1.3513
6,6) 1.1258

We want to offer a final word regarding the solution of
parabolic PDEs: You may recall that, at the beginning of
this chapter, we mentioned the possibility of time-varying
boundary conditions. For example, we can envision a heat
(or mass) transfer problem in which a surface condition (or
flux) changes with time; as an illustration, we might think
about the diurnal variation of solar radiation on an outside
surface. Another possibility is that the concentration of
solute in a solvent might increase from zero and approach
some maximum value (maybe its solubility) asymptotically.
Such problems, when posed correctly, can be solved with
Duhamel’s theorem; the solution is constructed from the
fundamental solution obtained for constant surface condi-
tions. An illustration for the interested reader will be pro-
vided (along with a numerical analysis) in the next chapter;
a very useful discussion also appears in Carslaw and Jaeger
(1959) in section 1.14.

Elliptic Equations

Elliptic (or often, potential) equations apply to equilibrium
phenomena. Familiar situations include steady-state conduc-
tion (of thermal energy) in a slab and viscous flow in a
duct—these are examples of the Laplace and Poisson equa-
tions, respectively. We should keep in mind, however, that
there are many other applications for potential equations
including gravitation, electrostatics, and ideal (inviscid)
fluid flow. Let us illustrate some of the issues we will
encounter while using molecular conduction as our example
phenomenon.

We have a two-dimensional slab of material with three
sides maintained at some fixed temperature and the upper
(top) surface maintained at a different (elevated) temperature
(this is exactly the same problem as slow viscous flow in a
rectangular duct in which motion is driven by an upper
surface sliding in the z-, or axial, direction). Since the depen-
dent variable (7) is specified everywhere on the boundary,
this is an example of a Dirichlet problem. We will place the
origin at the lower left-hand corner. The slab extends from
x=0tox =L and fromy = 0 to y = H. The governing
equation in this case is

2 2
o°T (9T:O

—_—t— 7.74
ox*> 0y’ (7.74)
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As has been our practice, we take T = f(x)g(y). This leads
directly to two ODEs:

f"+XNf=0 and g"—Ng=0. (7.75)
The solutions for the two differential equations are
f = AsinAx + Bcos\x (7.76)
and
g = Csinh \y+ Dcosh\y. (1.77)

We now define the dependent variable T as the difference
between T and the temperature of the two sides and the
bottom; this gives us 7 = 0 on the left, the right, and the
bottom. Since we placed the origin in the lower-left corner,
we can use odd functions to build our solution. Thus,

T = Asin Axsinh \y. (7.78)

Note how the boundary conditions for x = 0 and y = 0
are satisfied. Of course, T must also be zero when x = L;
consequently, it is necessary for sin(AL) = 0, which means
A = n7/L. The solution we seek is therefore

= nwx
T = A, sin——sinh——, 7.79
E I (7.79)

n=l1

It remains for us to identify the A,s, and we use the
boundary condition at the top for this purpose. Let us assume
that 7 = 100° for y = H; of course, this leads to the Fourier
sine series:

100 = . nmx
m = ZA,, SIHT, (780)
sinh n=1
and by definition,
200 |
A=—— sin 27X gy, (7.81)
Lsinh nn 0 L

The integral is —2 for odd n (which must be multiplied by
—L/nm) and O for even n. Therefore,

. NTX . Ty
400 & sin——sinh—=
_ L

., nmtH
T w135 psinh

T (7.82)

A contour plot of this result, given L = 10 and H = 10,
follows in Figure 7.8.
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FIGURE 7.8. Temperature distribution in a two-dimensional slab
with the top maintained at 100° and the other three sides at 7= 0°.

Now, let us consider how the solution will be impacted
if the right-hand boundary has a Neumann boundary condi-
tion; for example, it may be insulated such that (07/0x),_, = 0.
The preliminary steps are exactly the same, up to the
point where

T = Asin Axsinh \y. (7.83)

The Neumann condition for the right-hand boundary will
require that

0= AXcosALsinh Ay, (7.84)

and therefore, A =n/2L, 3w/2L, 57/2L, and so on. Applying
the condition at the top of the slab leads to a Fourier sine
series just as before; the A,s are determined by definition
and the integration results in

. (A+2n)7mx . (14+2m)7y
0o sin sinh
_ 400 2L 2L
(142n)rH
2L

(7.85)
n=0,1.23,.. (14 2n)sinh

Of course, in this case, we have blocked heat transfer
through the right-hand side, so we can expect the tempera-
ture contours to be perpendicular to that edge; this is illus-
trated in Figure 7.9.

In our previous examples of solutions for the Laplace
equation for steady conduction in a two-dimensional slab,
we placed the origin at the lower left-hand corner. However,
there can be definite advantages to placing it at the center;
for example, in cases with symmetry, the solution can be
built from even functions. And it could also facilitate adapt-
ing a solution to a problem in a spherical geometry. Consider
a slab extending from x = —L to x = +L, and fromy = —H
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FIGURE 7.9. Temperature distribution in a two-dimensional slab
with the right-hand side insulated and the top edge maintained at
100°.

to y = +H. We maintain constant temperature of 80° for the
top and bottom, and 0° for the left- and right-hand sides. All
of the initial steps in the solution procedure are the same as
used previously except that the solution must be constructed
using cos and cosh:

T = Bcos\xcosh \y. (7.86)

Since T = 0 for x = L, it is necessary that AL = 7/2, 37/2,
57/2, and so on. Therefore,

T= Z B, cos \,xcosh \,y, (7.87)
n=0
where
A= M (7.88)
2L

Of course, for y = H, T = 80°, so

80 = ZB,, cos d +22£)7Tx cosh a+ ;Z)WH. (7.89)

n=0

The leading coefficients can now be determined using
Fourier’s definition, resulting in

320 G (12
(+2n)7H 2
2L

B_

= (7.90)
(1+2n)mcosh

and the distribution of 7 in the slab appears as shown in
Figure 7.10.

Left edge of slab

Bottom of slab

FIGURE 7.10. Temperature distribution in a slab with symmetric
(left-right and top-bottom) Dirichlet boundary conditions: 80° top
and bottom, and 0° for the left-hand and right-hand sides.

We want to illustrate another slab problem with several
rather interesting features. Suppose we have steady conduc-
tion in a slab that extends from x = 0 to x = L, and from
y =0toy = H. Once again, we place the origin in the lower
left-hand corner. The left edge and the top surface are both
insulated, so at x = 0, 0T/0x = 0, and at y = H, 9T/Jy = 0.
The right edge (x = L) loses heat to the surroundings, so
a Robin’s-type boundary condition will be applied. The
bottom of the slab has a temperature distribution: At y = 0,
T = fix), and we will specify f{x) later.

As in our previous examples,

T = (Asin Ax + Bcos Ax)(Csinh \y + Dcosh Ay). (7.91)

Because of the Neumann condition at the left edge of
the slab, A = 0. Things appear a bit more difficult with
respect to the y-surfaces (or edges), but there is an easy fix:
We take

T = BcosAxcosh \(H — ). (7.92)

Now we use the Robin’s-type condition at the right-hand
edge and you may want to verify that it results in the tran-
scendental equation,

ALtan \L = % (7.93)

For our purposes, we will take the Biot modulus to be 1
and also let H = L = 1. The first 10 roots are shown here
along with the coefficients, B,, which will be determined as
follows using eq. (7.94):
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n A B,
1 0.8603 117.681
2 3.4256 —3.9488
3 6.4373 0.02904
4 9.5293 —1.1756 x 1073
5 12.6453 +1.4677 x 1073
6 15.7713 —7.3618 x 1077
7 18.9024 +1.1305 x 10°®
8 22.0365 —5.6184 x 1071°
9 25.1725 +1.0054 x 107"
10 28.3096 —4.033 x 107

Once again, we see a case where we must use
orthogonality—this is not a Fourier series problem! We now
select fix) = 100 + 100x; therefore, the temperature across
the bottom of the slab varies from 100° to 200°. Conse-
quently, we can determine the B,s from

1
f(lOO +100x)cos \, xdx
0

B, = (7.94)

1
cosh \,H f cos’ \,xdx
0

An immediate question is raised: Is it possible that the
first 10 roots of the transcendental equation, along with the
accompanying 10 values for B,, accurately portray the solu-
tion? If so, then we should be able to extract f{x) for the
bottom, where y = 0 using just B, through B;,. We will
examine this behavior in Figure 7.11.

The transcendental eq. (7.93) occurs soregularly in applied
mathematics that it is useful to have ready access to roots. The
first 10 roots of x tan(x) = C have been computed for different
values of C (ranging from 0.001 to 100) using Newton—
Raphson and these results are presented in tabular form:

C = 0.001 0.002 0.004 0.006 0.008 0.010 0.020

0.03162 0.04471 0.06320  0.07738  0.08932  0.09983  0.14095
3.14191 3.14223 3.14287  3.14350  3.14414  3.14477  3.14795
6.28334 6.28350  6.28382  6.28414  6.28446  6.28478  6.28637
9.42488 9.42499  9.42520  9.42541 9.42563  9.42584  9.42690

12.56645 12.56653 12.56669 12.56685 12.56701 12.56717 12.56796
15.70803 15.70809 1570822 15.70835 15.70847 15.70860 15.70924
18.84961 18.84966 18.84977 18.84987 18.84998 18.85009 18.85062
21.99119  21.99124  21.99133 21.99142 21.99151 21.99160 21.99206
25.13278  25.13282  25.13290 25.13298 25.13306 25.13314  25.13354
28.27437 2827440 28.27448 28.27455 28.27462 28.27469  28.27504
C = 0.040 0.060 0.080 0.1 0.2 0.4 0.6

0.19868 0.24253 027913 031105  0.43284  0.59324  0.70507
3.15427 3.16057  3.16685  3.17310  3.20393  3.26355 3.32037
6.28955 6.29272  6.29589  6.29906  6.31485  6.34613  6.37700
9.42902 9.43114 943326  9.43538  9.44595  9.46700  9.48793

12.56955 1257114 1257273  12.57432 12.58226 12.59811 12.61390
15.71051 15.71178 15.71305  15.71433  15.72069  15.73338  15.74605
18.85168 18.85274  18.85380 18.85486 18.86016 18.87075 18.88132
21.99297  21.99388 21.99479 21.99570 22.00024 22.00932 22.01839
25.13433  25.13513  25.13592  25.13672 25.14070  25.14865 25.15659
28.27575 2827645 2827716 2827787 2828141 28.28847 28.29554
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FIGURE 7.11. The temperature should vary across the bottom
from 100° at x = 0 to 200° at x = 1. Therefore, at x = 0.3,
T = 130°, and for x = 0.75, T = 175°, and so on. Clearly, the
intermediate values are reasonably accurate, but the truncated
series (with 10 terms) does not work so well at the ends. Additional
terms will be necessary if we wish to improve our solution across
the bottom.

C=038 1 2 4 6 8 10

0.79103 0.86033 1.07687 1.26459 1.34955 1.39782 1.42887
3.37438 342562  3.64360 393516  4.11162  4.22636  4.30580
6.40740 6.43730  6.57833  6.81401 6.99236  7.12628  7.22811
9.50871 9.52933  9.62956  9.81188  9.96667 10.09492  10.20026

12.62963  12.64529 1272230 12.86776 12.99881 13.11413 13.21419
1575869 1577129 15.83361 15.95363 16.06540 16.16746 16.25936
18.80188  18.90241 18.95468 19.05646 19.15314 19.24354 19.32703
2202745  22.03650 22.08148 22.16965 22.25450 22.33509 22.41085
2516452 25.17245 2521190 2528961 25.36502 25.43744 2550638
2830259 2830964 28.34478 28.41419 28.48196 28.54756 28.61058
C=20 40 60 80 100
1.49613 153250 1.54505 155141  1.55525
449148 459794 463529  4.65428  4.66577
749541 7.66466  7.72592 775732 71.77637
10.51167 1073341  10.81720 10.86064 10.88713
13.54198  13.80484 13.90937 13.96435 13.99809
16.58640  16.87944 17.00262 17.06855 17.10931
19.64394  19.95755 20.09715 20.17334  20.22083
2271311 23.03937 23.19308 2327878 23.33272
2579232 26.12497 2629056 2638496  26.44501
28.88002  29.21432 2938965 29.49194  29.55774

We will conclude our discussion of elliptic equations
in rectangular coordinates with a Poisson-type example;
the solution procedure will lend itself to a variety of prob-
lems, including heat transfer with constant thermal energy
production and pressure-driven viscous flow in a duct.
Suppose we have slab of material that extends in the
x-direction from x = —A to x = 4+A and in the y-direction
from y = —B to y = +B. We have steady conduction
accompanied by thermal energy production throughout


http://c7-fig-0011
http://c7-disp-0102

126 ANALYTIC SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

the interior. The production occurs at a constant rate
such that

2 2
[a—TJra—}JrP 0. (7.95)

We will take the temperature at each edge of the slab to
be zero. We referred earlier to the similarity to steady viscous
flow in a duct which is governed by the equation

82 2y 0%,

dp
——=0. 7.96
Hlox 0y? (7.96)

dz

Indeed, with the no-slip (zero velocity) condition at the
walls, this is exactly the same problem. In either case, if we
can eliminate the inhomogeneity, we may be able to solve
this problem just as we have in previous examples in this
section. Let us now look at the conduction problem with
constant production of thermal energy. Consider the effect
of adding —(P/2k)x* to the usual product of functions of x
and y; the result is that —P/k appears on both sides of the
equation, eliminating the problem caused by the production
term. Consequently,

T= —Z—sz + BcosAxcosh \y. (7.97)

Since T = 0 for x = A, we conclude that the solution must
be written as

—x})+ Z B, cos\,xcosh)\,y, (7.98)

T = £(A2

2k —

where the \,s come from cos(M) = 0, of course. We select
P/k = 100 and let A = B = 1; therefore,

Cn+Dr

A= n=0,1,2,3,.... (7.99)

This is a Fourier series problem, and the coefficients, B,,
are determined from

1
B, = —100 f(l—xz)cos)\,,xdx.

7.100
cosh A, ( )

Of course, the maximum temperature will occur in the
center of the slab as shown in Figure 7.12.

The same procedures we employed for the elliptic equa-
tions previously can be used in cylindrical coordinates as
well. For example, consider a solid cylinder with diameter
2R, which extends from z = 0 to z = L. The curved surface
and the flat, circular end at z = L are always maintained at

Left edge of duct

3.0,

— .
-08 -06 -04 -02 00 02 04 06 038
Bottom of slab

FIGURE 7.12. Temperature contours in a two-dimensional slab
with constant production throughout the interior and the edges
maintained at 0°, as computed from eq. (7.98), eq. (7.99), and eq.
(7.100).

T = 0. The end located at z = 0 is maintained at T = T, for

all time. The governing equation for this case is
o*T 10T , O°T
—+-——+—=0. 7.101

ot ror 9z ( )

We take T = f(r)g(z), which results in two ODEs:

f/l+%f/+>\2f:0 and g//f)\zg:(). (7.102)

The solutions for these two equations are

f=AJ,(\r)+BY,(\r) and g=Csinh\z+ Dcosh)z.
(7.103)

Since the temperature must be finite at the center, B = 0. We
can accommodate the boundary condition at the end of the
cylinder at z = L by taking

T = AJy(Ar)sinh A(L — 2). (7.104)
Furthermore, since 7(r = R) = 0, Jo(AR) = 0, and
T= ZA,,JO(/\nr)sinh M(L—7). (7.105)

n=1
We must get T = T, for z = 0, so utilizing orthogonality,

R

To f O rydr = A, f rI AN Fdr.  (1.106)

sinh \,L



http://c7-fig-0012
http://c7-disp-0107
http://c7-disp-0108
http://c7-disp-0109

The coefficients are therefore given by

M\ RJ,(\,R)sinh \,L"

(7.107)

n

We will choose R =1, L = 2, and T, = 200°, so we can
examine the behavior of this solution; we fix r = 1/2 and
use increasing values for z, beginning with z = 1/16:

z 1/16 1/8 1/4 12 1 3/2
T° 184.7 158.9 117.6 64.4 19.2 53

Application to Hyperbolic Equations

We pointed out at the beginning of this chapter that hyper-
bolic equations are usually associated with wave-type phe-
nomena. Separation of variables can be applied to many of
these problems, and we can illustrate this with the vibrating
“string.” It is a fascinating sidelight to note that vibrating
string problems were solved by Euler and Bernoulli, among
others, in the middle of the eighteenth century. Thus, we
have 260 years’ worth of experience with elementary hyper-
bolic problems to draw on.

Assume our string extends from x = 0 to x = L and that
both ends are fixed such that ¢(x =0) =0 and p(x =L) =0
for all ¢. The string is given an initial displacement,
¢(x, t = 0) = s(x), where the function s(x) is specified.
It may also have a distribution of initial velocity,

(0plOt)(x, t = 0) = v(x). The equation of interest is
0*¢ 1 0%
— =, 7.108
ox* ¢ or? ( )

As usual, we take ¢ = f{x)g(f), and of course, this hyper-
bolic PDE meets all of the criteria for separation. Substitu-
tion and division by the product, fg, results in

1
f”g=07fg"

(7.109)
18
Consequently, we find two second-order ODE:s:
f"+XNf=0 and g"+c*Ng=0. (7.110)

Of course, f = Asin A\x + Bcos \x, and since f must vanish
for both x = 0 and x = L, we note B = 0 and A\ = n7w/L. We
can also see by inspection that

g =CsincAt+ DcoscAt. (7.111)

Therefore,

o= Zsin Ax[C,sine)t + D, cosc,t].

n=1

(7.112)
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For t+ = 0, the string has some initial displacement,
o(x, t = 0) = fix), and consequently,

Flx)= ZD,, sin )\, x. (7.113)
n=l
This is merely a Fourier sine series, so
2 L
nwx
D, :—f x)sin——dx. 7.114
LJ S 3 ( )

We can also accommodate a distribution of initial veloc-
ity by differentiating, d¢/0t. Of course, if the initial velocity
is zero, then C, = 0, and the solution can be written as

L
=<2 . nmX . nmx  cnmt
= — x)sin——dx - sin——cos . (7.115
¢ Z - f fsin™ Foos I (115)

To illustrate what this solution will produce, we take
L =10, ¢ =1, and f(x) = 10x — x* some results are shown
in Figure 7.13.

Now suppose we have a rectangular membrane that spans
the gap between fixed supports located at x = 0 and x = L
and also at y = 0 and y = H. The appropriate equation is

2 2 2
2o _ o070, 0%

. 7.116
or ox* 0y’ ( )

We are interested in the response of the membrane to
some initial displacement, which may be a function of
both x and y, but the initial velocity of the membrane,

String displacement

X position

FIGURE 7.13. String displacement for s of 1, 2, 3, 4, 5, and 6
from the solution of the hyperbolic PDE, eq. (7.95). The initial
displacement was fix) = 10x — x*.
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0¢lor, is zero. We begin by letting ¢ = fix)g(y)h(f), and this
results in

" " "
T
sh f g
Consequently, 7”7 + s> *h = 0 and h = Asins\t + Bcoss\t.
The balance of the equation is rewritten so that

(7.117)

LA S

(7.118)
S g

and we note that the left-hand side is a function of x only.
Therefore, a second constant, 7, is introduced such that

"
g 2 2

f”—i— 2f:0 and =—+)\" =
" g 1 (7.119)

or g"+(\—n’)g=0.

The solutions for the two additional equations are

f =Csinnx+ Dcosnx (7.120)
and
¢=Esiny\ — 1y + Feosy\2 — %y, (7.121)
We now have
¢ = (Asins\t + BcossAt)(Csinnx + Dcosnx)
(7.122)

X (ESinyA* =0y + Fcosy \> =1 y),

but because the membrane is anchored at the edges, we must
have ¢ = 0 for both x = 0 and y = 0. This will require that
D = F = 0. We also know that the initial velocity of the
membrane is zero, that is, 0¢/0t = 0 for t = 0; therefore,
A = 0 as well. What is left is a bit more tractable:

¢ = BcossAtsinnxsin m y.

Now we have to ensure that the other two (supported)
edges are fixed, so ¢ = 0 for both x = L and y = H. For
the former, sin(nL) = 0, so n = mn/L, and for the latter,

A —n? =nw/H. Therefore,

(7.123)

and if we take L = H = 1, then

o= ii B, cos(smNn* +m*t)sin(mmx)sin(nmy).

m=1 n=1

(7.124)

The membrane has some initial displacement, so for

= O’ ¢ = ¢0(—x7 )’)

do(x, y) = ZZBW, sin(mrx)sin(nmy),  (7.125)

m=1 n=l1

which allows us to determine the needed coefficients:

1 1
B, —4 f f o (x, y)sin(mmx)sin(nry)dedy.  (7.126)
0 0

Depending on the form of the function, ¢y(x, y), it
may be easier to evaluate the double integral, eq. (7.126),
numerically. Algorithms for this purpose are discussed in
Chapter 4.

The Schrodinger Equation Before we leave our discus-
sion of hyperbolic PDEs, we want to consider one of the
most important developments of twentieth century physics.
Erwin Schrodinger (1926) developed the equation that bears
his name that, assuming it can be solved, yields the wave
function for a system of interest. The Schrodinger equation
revolutionized our thinking about particles and waves at
small scales, and it made it very clear that classical Newto-
nian mechanics was wrong—only very slightly wrong at
macroscopic scales to be sure—but very wrong at atomic
scales. When Schrodinger was able to demonstrate that his
model confirmed the discrete electron energy levels for
hydrogen atoms that Niels Bohr had predicted more than a
decade earlier, the proof was at hand. From that point on,
quantum mechanics rapidly expanded our understanding of
how atoms and particles behave.

Waves or particles or both? Thomas Young’s dual-slit
experiment with light 200 years ago revealed interference
patterns, a sure sign that light was wavelike in its behavior
(contrary to Newton’s corpuscular theory, the idea that light
consisted of small particles). By the late nineteenth and early
twentieth centuries, evidence had begun to accumulate, sug-
gesting that there were serious problems with classical
mechanics. Atkins (1978) reviews how quantum mechanics
resolved some of the phenomena known to be problematic,
including the thermal properties of solids at low tempera-
tures, the UV catastrophe, the photoelectric effect, and
atomic and molecular spectra. The latter are particularly
persuasive since the spectra reveal that a molecule can only
absorb and emit light at specific, discrete frequencies. Then,
in the 1920s, Louis de Broglie suggested that in addition to
light (photons), other types of particles (like neutrons and
electrons) would have a wavelength related to their momen-
tum. And sure enough, it was discovered that interference
patterns were generated by those particles as well; wavelike
behavior was demonstrated in a variety of classic experi-
ments, including the dual slit mentioned earlier and the
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diffraction of electrons from a crystal lattice (the Davisson—
Germer experiment was a definitive moment in twentieth
century physics).

If a particle such as an electron exhibits wavelike behav-
ior, then it would seem that the simple wave (eq. 7.108) we
considered previously might have an important connection
to quantum mechanics. We will begin our exploration of this
topic by rewriting eq. (7.108):

Po_ 10

7.108
ox*  c? or? ( )

and then setting ¢ = 1(x)g(¢) but with g = sin(27ft). The
result, after we divide by the product of 1(x)g(?), is
’l/J” 47T2f2 dZw 47T2f2
" > Y o e + 2 Y=0. (7.127)
We will refer to v as the wave function. Now we assume
that the total energy (E) of a particle is the sum of kinetic
and potential (U) contributions: E = (1/2)mv* + U. We will
let the momentum (p) of a particle be represented by p = mv,
so that v* = p*m?, and thus, E = (1/2m)p* + U. The wave-
length, ), is related to the momentum by Planck’s constant:
A = h/p (this is known as de Broglie’s relationship). Since
velocity can be written as the product of frequency and
wavelength, v = fA, we find

2

2= 2m(E—U)Z—2. (7.128)

The characteristic velocity in eq. (7.108), c, is replaced by
v, SO we obtain

dzzl) 87r m
dxz

(E-Uy=0. (7.129)

This is the time-independent Schrodinger equation
for one spatial dimension. We can generalize for three-
dimensional problems:

V) +

"(E-Uw=0. (7.130)

It is common practice in quantum mechanics to replace
h with #; we note that i = h/27, such that h> = 47*h>. We
will restrict our attention momentarily to the one-dimensional
case for which E is a positive constant, but U = 0. Let us
assume that this one-dimensional “box” extends from x = 0
to x = L, and at these ends, an infinite potential barrier is in
place. Accordingly, we have

2
Z v + By =0, where = 87ThmE.

(7.131)

THE PRODUCT METHOD (SEPARATION OF VARIABLES) 129

Therefore, (D> + B = 0 such that (D +iy/B)(D —i/3) =
0, and consequently,
¥ = Asin~/Bx + Bcos/Bx. (7.132)

We require that ) = 0 at both x = 0 and x = L; from the
former, B = 0, and from the latter,

sin \/BL =0.

Thus, /3L = nr and E, = (n’h)/(8mL>). n is a quantum
number, and the expression for E, gives us the discrete,
allowable energy states. This, in turn, means that the behav-
ior of the wave function is described by sin(nmx/L); when
n = 1, we get a half-wave over the interval 0 < x < L, when
n = 2, we get a complete cycle, and for n = 3, 1% cycles,
and so on.

Before we leave our example of the one-dimensional box,
we should make note of an important consequence of
quantum mechanics. Let us rewrite the solution for this case
in a fully equivalent form:

(7.133)

= exp| X Jam(E—0) . (7.134)

We now imagine that our particle exits the one-
dimensional box and enters the region where the potential
barrier is very large (but not infinite). Under these condi-
tions, U > E and 2m(E — U) is negative. If we factor out

the i resulting from the /(—1), we find

¥ =C,exp —%\/Zm(U “B|

(7.135)

This is a representation of the wave function inside the
potential barrier, and it is important because Max Born rec-
ognized that the probability of finding the particle of interest
at a particular position, x, was l4b(x)I>. This means that, based
on eq. (7.135), there would be a small but finite probability
that the particle in question could be found outside the box.
This is called tunneling, and while it clearly does not apply
to a marble sealed in a tin can, it does apply to electrons if
they are confined by a finite potential barrier.

Now we turn our attention to the particle in a two-
dimensional enclosure, but we let the potential well be cir-
cular such that U = 0 for 0 < r < R, but U = oo for r > R.
For this case,

Ep=0.

2
81/)] 19%  8n’m (7.136)

rar[ or) r? 892+ h?

Let us again try the product method, setting ¥ = f(r)g(0);
the result is
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"
P ~f ] STmE 5 _ 8" 2 (.137)
f h? g
And in the familiar pattern, we obtain two ODEs:
¢ +n'g=0 (7.138)
with
s 1., (8T*mE n?
ff+=f+ ER— f=0. (7.139)
r r

The solution for the first member of this pair is
g = Asinnf + Bcosnf. We simply choose to have g = 0 at
0 = 0 (think of the prime meridian at Greenwich) such that
B = 0. And since g(0°) must be the same as g(360°), it is
clear that we can have only integers for 7 (integer multiples
of m). Now we rewrite eq. (7.139) in a more useful form
(standard form for Bessel’s differential equation):

dzf df (8m*mE
+—+[ E r?

P n2Jf=0. (7.140)

The solution for eq. (7.140) can be written as

8m’mE 8m’mE
/ } "
h? h?

Howeyver, the wave function must be finite at the center
(at r = 0) so C, = 0; furthermore, the wave function must
be zero at r = R, and consequently,

/87r2mE

This constrains E to a series of distinct values (as
expected), and we illustrate with the case for which n = 1.
Since the zeros for J, occur at 3.83171, 7.01559, 10.17347,
13.32369, 16.47063, and so on, we find

f=aJ, r|+GY, (7.141)

=0. (7.142)

2 2
8 mkE, :[3.83171] (7.143)
h? R
or
2 2
E, :[3.83171] h - (7.144)
R 8mim

We have a complete description of the behavior of the
wave function inside the circular potential well. An obvious
extension of this problem is to make the box three-
dimensional by allowing the cylinder to have some finite

height in the z-direction. Wolfram™ has a very nice demon-
stration project that illustrates the behavior of the wave func-
tion for this case.

In the two previous examples, we employed infinitely
deep potential wells for elementary one- and two-dimensional
problems. We now move to a more realistic particle-in-a-box
scenario in three dimensions; we want to develop a model
for the hydrogen atom with one electron (or a hydrogen-like
atom), so our “box” will actually be a spherical shell. But
in this case, the potential energy of the electron will be

= —(€%/r), such that U(r = 0) = —oo and U(r — o0) = 0
The PDE for the wave function will be

e

r2or\ Or) r*sinf 00 00 (7.145)
1 82w+8ﬂmE+ﬁ¢_O .
r’sin’0 0¢* R r ’

Note that this is a linear PDE and once again we have a
candidate for separation; we will apply the product method
and see if we can obtain radial and angular components. We
will let ¥(r, 8, ) = B(r) - ¥(0, ) to begin. After a little work,
we divide by the product of 37 to obtain

a’gB ag
2
2
FER rdr+ 1 a[ na‘%]
I} ~vsinf 00 00 (7.146)
2
1 0%y 871' m(Er Letr)=o0.

~ysin® 0 8¢2 h?

The radial and angular portions can be taken to opposite
sides and set equal to a constant of separation, say, —1*. The
O(r) result is

2
rzﬂ—i— dﬂ 8mm

= s ——(Er* +e’nB=1np.

(7.147)

It is standard procedure to replace the constant of separa-
tion (1) in eq. (7.140) with £(¢ + 1); this is done for reasons
that have been explained by Wieder (1973, p. 135) and the
rationale will become apparent shortly. Now we can also
separate the remaining equation for (6, @) by setting
v = C(0)D(¢). Of course, another constant of separation
arises and we let it be —a?. The polar (6) part produces

(sin?@-L(L+1)—a?)C =0,

(7.148)
and the azimuth (¢) part yields
°D +a’D=0 (7.149)
e . .
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It is clear that eq. (7.149) is the easiest of the trio and we
recognize

D = a, exp(—iap) + a, exp(+iag). (7.150)

Let us turn our attention to eq. (7.148); we let z = cos
such that dC/df = (dCldx)(dx/df), where dx/df = —sin#,
we also replace C(0) with U(z). The result is
al

1-7°

d*’U du

1-7° —2z—+[L(L+1)—
( Z)a’z2 Zdz+[(+)

]UzO, (7.151)

which is an associated Legendre differential equation, with
a solution that can be written in terms of Legendre polyno-
mials. The product of the solutions for eq. (7.148) and eq.
(7.149) is central to quantum mechanics, and it is referred
to as a spherical harmonic (presented in normalized form):

172

QLD C=fob! ™ o biag)P cosd),

i@, ¢)_5[ 4r (C1]al)!

(7.152)

where € = (—1)" for > 0. The P*s are associated Legendre
functions obtained by differentiation of the Legendre poly-
nomials; for example,

o 2\al/2 da})é

Pr=(0-2z") =

Legendre polynomials were introduced in Chapter 4 in
our discussion of numerical quadrature and the first five
Legendre polynomials are provided for the reader near the
end of this chapter. For the constants of separation appearing
ineq. (7.152), (=0, 1,2,... and a = 0, +1, £2,..., £¢.
Lastly, we consider the equation for the radial portion of the
solution, eq. (7.147). If we divide by 7* and restrict our atten-
tion to “large” values of r, then we get an equation that will
be valid asymptotically (with the electron moved very far
from the nucleus):

dz_,B 8mmE

e + 12 B~0. (7.153)
Using differential operator notation again,
(DZ + 87;";E]ﬂ = (D+ik)(D—ir)B=0
with k = /87tmE/h?* . Therefore,
08=aq exp[—i 87;;1Er +a, exp[+i 87ZZZE (7.154)
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Obviously, we also need to know how the wave func-
tion behaves nearer to the nucleus. We can achieve a little
simplification of eq. (7.147) by setting 8 = Q/r, which
results in

> 2
0 87Tm[E+€_]Q£(£+1)Q_ (7.155)

dr? + h r?

This equation can be solved for certain cases, for example,
for the infinite spherical potential well, for which one obtains
spherical Bessel and Neumann functions. However, in the
instance of the hydrogen atom with its Coulomb potential,
the equation is solved by expansion in a power series. This
is made a little easier by the fact that we know something
about the asymptotic radial behavior of the wave function.
In principle at least, we can obtain an analytic solution for
a particle in a spherical “box” which is the product of the
three solutions, subject to any simplifying restrictions
imposed, for example, eq. (7.153). You should make note of
the fact that three quantum numbers have appeared quite
naturally in the solution procedure; they are referred to as
the principal, azimuthal (often called orbital), and magnetic
quantum numbers.

APPLICATIONS OF THE LAPLACE TRANSFORM

You may recall from our previous discussion in Chapter 5
that the formal definition of the Laplace transform of a func-
tion of time, f(?), is

00

L{f(n}=F(s)= fe*”f(t)dt.

0

(7.156)

The effect, of course, is that a continuous function of time
is transformed to the s-plane. In our present context, the
characteristic of the Laplace transform that is most impor-
tant concerns time derivatives. Let dffdt = f'(¢):

L{f'(} = sL{f()}— f(z=0). (7.157)

In other words, we replace the derivative with multiplica-
tion by s, and subtract off the initial condition. It is obviously
advantageous to formulate the problem in terms of “devia-
tion” variables such that the initial value of f (for r = 0) is
zero. Let us now see exactly what this will accomplish for
us when applied to a parabolic PDE.

Assume we have a transient problem with molecular
transport in one spatial direction in a semi-infinite medium
such that

99 _ 0%

o = (7.158)
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Our boundary conditions will have the form ¢(x = 0, f)
= 2 and ¢(x — oo, f) = 0, with the initial condition
¢(x, t = 0) = 0. Naturally, this means that for positive #, ¢
(whatever that is) will flow—actually diffuse—into the
medium from the left-hand boundary, where x = 0. Rear-
ranging the equation and applying the Laplace transform
yields the subsidiary equation:

d¢(s) 1 . -
1 - so(s)=0.

(7.159)

If this ODE can be solved (with the corresponding bound-
ary condtions), then we will obtain the Laplace transform
of the solution of the PDE. If we can successfully invert that
transform, we will find the solution we seek. An exponential
solution is found for the ODE:

o(s)=C, exp[—\/gx] +C, exp[—i—\/gx
K K

Of course, this result cannot be unbounded in the x-
direction, so C, = 0. We also transform the boundary
condition:

. (7.160)

For x = 0, ¢(s) = 2/s, and therefore,

\F
—[—x].
K
In this case, we can turn immediately to a table of Laplace

transforms (e.g., see the table in chapter 5 or section 29 in
Abramowitz and Stegun, 1965), finding the pair

#(s) = Zexp (7.161)
S

1 k
~exp(—kv/s erfc[—]. (7.162)
s ( ) N
Accordingly, the solution we seek is
X
¢=2erfc[ : (7.163)
4kt

Let us illustrate this process again using the very same
PDE (applied to the molecular transport of thermal energy)
but with a more difficult boundary condition; our semi-infinite
slab extends in the x-direction away from the interface located
at x = 0. This time, the end of the slab at x = 0 is exposed to
a fluid maintained at some elevated temperature, so we write

oT
—k—| =h(T,—-T . 7.164
8)6 -0 ( o |x:0) ( )

We divide by —k and transform the boundary condition at
x=0:

OT(s) h

ey = —
Oox k (5)

hkl (7.165)
s

k

The subsidiary equation is precisely the same as before:

2
4TE) S gy o, (7.166)
dx «
SO
T(s)=¢C eXP[—\/Ex]. (7.167)
«
Of course, C, = 0 since the transform must remain

bounded. We differentiate 7(s) with respect to x and set
x = 0; the transformed boundary condition is then used to
find C,:

hT. 1
C = S (7.168)
h (
k «
Therefore,
hT. 1
k s ) HT,,
T(s)=—"—=ex —\/:x = —=—exp(—0x),
n[s p[ o ] sH10) P
k «Q

(7.169)

where H = h/k and Q = +/s/a. Once again, this is a form
that we can find in a suitable table of Laplace transforms,
and returning to the time domain, we can write

T x hx hzat] [ x h /—]

— =erfc———exp|—+——|erfc|——+—Vat |

TN p[k ) o Tk
(7.170)

The utility of the Laplace transform for these transient
conduction—diffusion problems in semi-infinite slabs is
apparent. But can the technique also be applied to more dif-
ficult problems? The answer is a qualified yes, and we dem-
onstrate this with a problem in which heat is transferred in
the z-direction in a cylindrical rod with loss to a fluid sur-
rounding the rod’s surface. Heat flow is initiated by raising
the temperature of the end of the rod at z = 0. The conduc-
tivity of the metal rod is large, so that the bulk of the resis-
tance to heat flow is on the fluid side of the interface;
therefore, we assume that the temperature of the solid rod
does not vary (much) in the transverse or r-direction. An
approximate model for this process is

2

7.171
ot 0z R ( )
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where (2h/R)(T — T..) accounts for loss at the surface of the
rod. We define a new dependent variable, § = T — T, and
divide by pC,, obtaining

00 90 2h
WY
ot 027 pC,R

0, (7.172)

with the following boundary and initial conditions:
0(z=0,t)=6,, 0(z—o00,1)=0, and 6O(z,t=0)=0.

Note that the second boundary condition given here is
an idealization; for physically real situations, the medium
that extends in the z-direction will certainly be of finite
extent. However, if 7 is small, the medium may effectively
appear to be very “deep” in the z-direction. The subsidiary
equation is

&£0s) 20
dz? kR

0(s)— 2 6(s) = 0. (7.173)
8]

Once again, the solution for this equation can be found
in a suitable table of Laplace transforms, allowing us to
return directly to the time domain:

0——

1 [2h z 2h
exp|,|—z|erfc|—=+ ,|——t
2 kR 4at pC,R
—,/2—hz erfc L ’—2h t
kR 4ot pC,R

The reader may recognize that this is exactly the same
problem as absorption into a quiescent liquid accompanied
by a first-order, irreversible chemical reaction.

Now, suppose the solution of the subsidiary equation
cannot be found in a table of transforms; is there any
recourse? One possibility is through the application of the
inversion theorem, which requires contour integration. The
procedure is described by Carslaw and Jaeger (1959) in
chapter 12, and they provide an illustrative example in section
12.6. In some cases, it is also possible that the solution of
the subsidiary equation can be expanded into a series whose
individual terms can be found in the table of transforms. For
example, consider the quotient, cosh(bx)/cosh(bL); we
rewrite the hyperbolic functions so that

(7.174)

+ exp

ebx _|_e—bx
ebL (1 + e*ZhL) ’

bx —bx
cosh(bx)/cosh(bL) = e e _

ebL + ebe

then use the binomial theorem to expand this into the series:
(e7 P9 o gPrny Yo (—1)"e 2", This technique can be
useful if the resulting series converges rapidly enough.
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Occasionally, we will encounter a problem for which the
techniques described earlier will not work, and an alternative
numerical solution is either undesirable or simply not useful
for the analyst’s purpose. In such cases, we may be forced
to seek an approximate analytic solution. We do have options
in these circumstances and we will describe a couple of
useful approaches here. For the reader unfamiliar with the
approximate solution of PDEs, Villadsen and Michelsen
(1978) is a good starting point.

Many of the methods that are available to us for this
purpose have the same underlying theme: We choose a suit-
able polynomial that either automatically satisfies the bound-
ary conditions or can easily be made to satisfy them. We
then “adjust” the polynomial by determining values for the
coefficients that—in some sense—give us the best possible
performance. We can begin to think about this in the follow-
ing way: Suppose we have a differential equation,

D(¢)=0, wherep=f(y) and a<y<b. (7.175)
We propose a trial function:
Duial = o + ZQ@(}’)- (7.176)
i=1
We define the residual, R, as
R = D(¢yia)- (7.177)

If we could somehow force R = 0 for all y between a
and b, we would have the solution! Of course, that really is
not the objective; our aim is to find an analytic approxima-
tion that is reasonably accurate and cost-effective from
the standpoint of time invested. Thus, we will settle for a
compromise.

We can illustrate some of the principal ideas with a
simple steady-state example from conduction. Imagine a
slab of type 347 stainless steel for which one face is main-
tained at O°F and the other at 1000°F. Over this temperature
range, the thermal conductivity of 347 increases (almost
linearly) by more than 60%. We let k = a + bT and note
that in rectangular coordinates,

i{k(T)d—T] =0.

7.178
. d ( )

Therefore, the nonlinear differential equation of interest is

2 2
(a +bT)d—7;+b[d—T] =0. (7.179)
dy dy
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Our boundary conditions for this problem are the
following:

Aty=0,T =0°F, and
at y=h, T =1000°F.

For convenience, we set h = 1 ft, and we arbitrarily
propose

T = ZC,,y”, such that

If we set Cy = 0, the boundary condition at y = 0 is auto-
matically satisfied. We form the residual (R) by truncating
eq. (7.180) and substituting the result into eq. (7.179):

[a+b(Ciy+Coy* +CyHI2C, +6Csy)

(7.181)
+ b(C, +2C,y+3C3y*)* =R.

Our task now is to choose values for C;, C,, and C; that
result in the smallest possible value for R. This minimization
of R can take several different forms; for example, if we
employ a weighting function, W(y), and write

h
f W(y)Rdy =0, (7.182)
0

we have the method of weighted residuals (MWR). Finlay-
son (1980) points out that if we use the Dirac delta function
for W(y), then we are employing a simple collocation scheme
where the residual will be zero at a few select points.

If we force the residual to be zero at the endpoints and
also require eq. (7.180) to satisfy the boundary condition at
y = h, then we have the three simultaneous algebraic
equations:

2aC, +bCy* =0, (7.183)
[@+b(C, +C, +C3))(2C, +6C3) +b(C, +C, +C3)* =0,
(7.184)

and
1000—-C, —-C, —C;=0. (7.185)
A solution is found by successive substitution:

C, =1641.434, C, =-920.838, and C, = 279.40.

We will also use a fourth-order Runge—Kutta scheme to
solve eq. (7.179) numerically for comparison, and both solu-
tions are shown in Figure 7.14.

1000
900:
800:
7002
600:
500:

Temperature, F'

400
300—-
200-
10()—-

0

0.0 Ol.l 0'.2 OI.3 O'.4 OI.S 0|.6 OI.7 OI.8 OI.9 1I.O
y position

FIGURE 7.14. Comparison of the exact numerical solution with

the collocation result (upper curve), which was obtained by requir-

ing that R = 0 at both y = 0 and y = h. Although the approximate

solution exhibits some similar behavior, it is very rough

quantitatively.

It is essential that we note exactly what occurred here:
We set the residual, R, to zero only at the endpoints of the
interval, and this was done strictly for convenience. We
cannot generally expect to obtain useful results this way.

Galerkin MWR Applied to a PDE

Let us look at an improved variant of the process described
previously and apply it to a transient conduction (or diffu-
sion) problem with a temperature- or concentration-
dependent diffusivity. Such an equation might appear as

99 _ 0

9|92
o 8y[n(¢) ] (7.186)

ay
We take k = 1 + ¢ for simplicity, which results in the non-
linear PDE,

09 (1+¢)82¢ [6—¢]. (7.187)

a5y

Our boundary and initial conditions are ¢(y = 0, 1) = 1,
o(y = 1,1 =0, and ¢(y, t = 0) = 0. In other words, we
have a medium that initially has uniform (or zero) concentra-
tion or temperature; we elevate the concentration (or tem-
perature) at the front face (y = 0), and diffusion into the
medium commences. Finlayson (1980) points out that the
MWR is well suited to this type of problem. We will use
the Galerkin technique (named after the Russian mathemati-
cian Boris G. Galerkin) and begin by taking

¢ =1+b(t)y+c(t)y™ (7.188)
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Of course, the boundary condition at the far face (y = 1)
must be satisfied, so

—1=b({t)+c() or c(t)=—1-b(). (7.189)

We use this to eliminate c(¢) from eq. (7.188), resulting in
the trial function,

d=1—y>+b(t)y(1—y). (7.190)

Now we take the original PDE and multiply by the weight-
ing function (which in the Galerkin MWR is taken from the
basis, or trial, functions) and integrate fromy =0toy = 1.
The left-hand side becomes

1
fy(lfy)g—qbdy, (7.191)
) t

where 0¢/0t = b’y(1 — y). Therefore, this integral is simply

1
f@yz(l—y)zdyzi@. (7.192)
| dt t

For the right-hand side of the equation, we differentiate
the trial function as indicated in eq. (7.192), multiply by
y(1 — y)dy, and obtain

1

[{2=2+b06- ) 2= 26+ (62504} 1 = .

0

(7.193)

Equating the results of this integration with eq. (7.192)
yields a first-order ODE for b(f): db/dt = —11 — 17b — b*.
Although this equation could be integrated to produce an
analytic solution, it is certainly easier to evaluate b(f) numeri-
cally. Finlayson (1980) used the initial value (for b) of —2;
however, advance knowledge of the numerical solution makes
it possible to choose a “better” value in terms of the quality of
the approximation at advanced times: We will employ
b(t = 0) = —3.325. This results in b(t = 0.10) = —1.3125,
and a comparison of the results from the Galerkin method
with the actual numerical solution is shown in Figure 7.15.

This relatively simple approach to the solution of a non-
linear PDE has yielded acceptable results requiring determi-
nation of only one unknown function of time, b(¢). Naturally,
the approximation could be improved by simply continuing
the expansion (eq. 7.188), but at the risk of defeating the
whole purpose; remember, our objective is to quickly find a
suitable analytic approximation for ¢(y).

The Rayleigh—Ritz Method

At the beginning of the twentieth century, Walther Ritz
devised a method for approximating eigenfunctions based
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FIGURE 7.15. Comparison of the numerical solution (solid
curve) of the nonlinear PDE for r = 0.10 with the approximation
obtained from the Galerkin MWR.

on the minimization of certain integrals. This technique,
commonly referred to as the Rayleigh—Ritz method, can be
used to solve boundary-value problems governed by elliptic
PDEs. The core of the procedure involves application of the
Dirichlet principle, which concerns identification of a func-
tion that minimizes the integral:

- f f f (62 + 6,2 + 6.2 )dxdydz.

It can be written for two dimensions (which will be of direct

use to us) as
I:\/jj1|gmd¢>|2 dxdy.

Let us illustrate how this method works with an example
adapted from chapter 12 in Weinberger (1965).
Consider the elliptic PDE,

(7.194)

(7.195)

o 0% _,
ox* oyt

(7.196)
defined over a triangular region for which x > 0, y > 0, and
x + 2y < 2. For the bottom of the triangle,

P(x, y=0)=x(2—x), (7.197)
which means that the maximum value at the bottom bound-

ary occurs at x = 1: ¢(x = 1, y = 0) = 1. For the left-hand
edge,
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P(x=0,y)=0. (7.198)
For the hypotenuse,
o(x=2-2y,y)=0. (7.199)

Our plan is to select trial functions that satisfy the bound-
ary conditions such that

PP+ ay +ard, +---. (7.200)

We hope to identify the constants, a,, a,, as, and so on,
that give us the best possible approximation. This is to be
achieved by finding values that give

f f |grad(¢um — )| dxdy, (7.201)

the smallest obtainable value. We will now truncate our
approximation, eq. (7.200), and demonstrate how this actu-
ally works. We use Dirichlet’s principle to formulate an
algebraic equation in a, (a quadratic in a,) that can be dif-
ferentiated and set equal to zero (please keep in mind that if
we retained additional trial functions, we would obtain a set
of equations for a;, a,, and so on, by setting the partial
derivatives equal to zero):

ff|grad(¢0 +a¢y )|2 dxdy:ff|grad¢0|2 dxdy

+2a1ffgrad¢)o'gradqbldxdy+a12ff|grad¢l|2 dxdy.
(7.202)

Consequently, the optimal value for the coefficient, a, is

f f grada, - gradeo,dxdy

The trial functions must satisfy the boundary conditions,
and we will first try ¢y = x(2 — x — 2y) and ¢, =
xy(2 — x — 2y). Therefore, we will differentiate with respect
to x, then y, for the numerator:

%:2(1—)5—” and 2% _ 5y (7.204)
X

Ay
and
99 _yi—x—y) and 22— x@—x—4y). (7205
Ox Oy

The double integral in the numerator is then

2-2y

1 2
f f Ay(l—x—y) —2x2(2— x—4y)dxdy, (7.206)
0

0
and the form for the denominator is

2-2y

1
f f 4y*(1—x—y)?* +x*(2—x—4y)’dxdy. (7.207)
0

0

The resulting quotient is —3/5, resulting in

l—gy](Z—x—Zy).

(7.208)

%x(Z—x—Zy)—%xy(Z—x—Zy)zx

The elliptic PDE given by eq. (7.196) was also solved
numerically so that the quality of the Rayleigh—Ritz approxi-
mation could be better assessed, and these numerical results
are shown in Figure 7.16.

7.203
@ f f |gradé, |2 dxdy ( ) Now we will compute several values from the approxi-
: mate solution (eq. 7.208) for comparison:
1.0
0.8
= 0.6
g
g 0.4- 2
=
40
0.21 / 6
0.0 . /_0 0‘%\ ,

0.0 0.2 0.4 0.6 0.8

1.0 1.2 1.4 1.6 1.8 2.0
X position

FIGURE 7.16. Numerical solution for the elliptic partial differential equation used for the Rayleigh-Ritz example.
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x y P(x, y)
0.1 0.8 0.0156
0.4 0.6 0.1024
0.6 0.3 0.3936
0.8 0.2 0.5632
1.0 0.2 0.5280
1.2 0.2 0.4224
1.4 0.1 0.5264
1.7 0.06 0.2950

You will immediately note that the Rayleigh—-Ritz
approximation has produced reasonable results; for most of
the points provided above, the error is less than 10%, and in
many cases, it is only about 2%. In particular, if we look at
(x, ¥) = (0.6, 0.3), the numerical solution yields about 0.4,
and for (x, y) = (1.0, 0.2), it produces about 0.53 (the
approximate solution has an error that is less than 0.4%).

Collocation

You may have noticed that in the introductory example for
this section—the solution of eq. (7.179)—a number of quite
arbitrary choices were made; these include the polynomial
itself and the location of the points where we forced the
residual to be zero. A critical question concerns the place-
ment of the collocation points—an equidistant or haphazard
siting is likely to be less than optimal. Therefore, we should
contemplate changes to the procedure that may improve the
outcome. Suppose we begin by selecting a polynomial that
automatically satisfies the boundary conditions. In addition,
if we use orthogonal polynomials, and place the collocation
points at the roots of one or more of the terms, we will
significantly decrease the burden placed on the analyst. We
are now describing what Villadsen and Stewart (1967) called
interior collocation.

We can illustrate our first improvement with a nonlinear
ODE example from fluid mechanics. Suppose we have a
non-Newtonian fluid in a rectangular duct, subjected to a
constant pressure gradient. If the fluid exhibits power-law
behavior, then one of the possibilities is

=—Cy,|—. (7.209)

The boundary conditions are the following:
Aty=0,v,=0 and
aty=Lv, =0.
We can avoid any difficulties caused by the sign change

on the velocity gradient by noting that aty = 1/2, dv,/dy = 0.
For this example, we choose the polynomial
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FIGURE 7.17. Exact numerical solution for non-Newtonian flow
through a rectangular duct with C, = —20.

ve=a(y—y)t+a(y—y )Y +aly—y )+ (7.210)

The conditions at y = 0 and y = 1/2 are automatically

satisfied. We will select C, = —20 and find the exact numeri-
cal solution (provided in Figure 7.17) so we have a basis for
comparison.

The reader should complete this example and compare
his or her result with the previously computed profile. Note
that it is necessary for ¢, = 24.91347 (the reader should
confirm this); this value results in an excellent approxima-
tion. How many terms must one retain in the assumed poly-
nomial to get accurate results? If we terminate the polynomial
with the ¢,-term, and require the residual to be zero only at
y = 1/4, we actually find that

¢, =46.52397 and ¢, =—21.68451.

Although the resulting shape is correct, this solution is
unacceptable because the centerline velocity is roughly
twice the correct value. It is clear that we should contemplate
further improvements for this technique.

Polynomials are said to be orthogonal on the interval (a,
b) with respect to the weighting function, W(x), if

b
fW(x)Pn (X)P,(x)dx =0, wheren=m. (7.211)

Let us consider the first few Legendre polynomials on
the interval (—1, 1) for problems that lack symmetry. We
want to explore how orthogonality may work to our
advantage.
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FIGURE 7.18. Legendre polynomials, P, through P,, on the inter-
val —1 to 1.

%Zuhﬂﬂzéaﬁ—nﬂzéﬁf—w)
P, = é(35x4 —30x% + 3).

You may want to confirm, for example, that

+1
=0. (7.212)

-1

47 2

+1
fﬂ@ﬂmﬁ=%3
21

The first five Legendre polynomials are shown in Figure
7.18.

Note that if we were to locate collocation points at
x = £1/+/3, then P, = 0. Similarly, for x = £/(3/5), P, =0
A further improvement can be obtained by making the
dependent variables the function values at the collocation
points rather than the coefficients appearing in the polyno-
mial representation. This modified procedure was described
by Villadsen and Stewart (1967) and also explained very
clearly by Finlayson (1980, pp. 73-74).

Let us now suppose that we have a boundary-value
problem with symmetry about the centerline where

2
d—2+f(x,¢):0. (7.213)
dx

The independent variable, x, extends from —1 to 1, and
the field variable, ¢, has a set value (say, 1) at the endpoints.
Naturally, at the centerline, d¢/dx = 0. Accordingly, we
propose

$=¢(ED+(1-2")> CRE),  (1214)

where the P,s are Jacobi polynomials for a slab:

n=20 1

n=1 (7.1 — 547 +0.447214

n=2 (7.1 — 14x> + 21x% +0.2852315,
+0.7650555

n=3 (7.1 = 27x° + 99x* — 85.8x%) +0.209299,
+0.5917,
+0.87174

At this point, eq. (7.214) is substituted into eq. (7.213) to
form the residual. We can solve this set of equations for the
coefficients (the C,s) or we can develop an alternative set of
equations written in terms of the function values (¢,s) at the
collocation points. The reader is encouraged to try both
approaches for this example.

Orthogonal Collocation for Partial
Differential Equations

Orthogonal collocation has also been used to solve elliptic
PDEs of the form

Po P

o2 8_yzzf(x’ }’), (7215)

on the unit square, x(0, 1) and y(0, 1). Examples of the
method’s application are provided by Houstis (1978), Prenter
and Russell (1976), and Villadsen and Stewart (1967). Please
note that an elliptic equation for any rectangular region
x(a, b) and y(c, d), can be mapped into the unit square by
employing the transformation,

X —

and y— by
b—a d—c

This broadens the applicability of the technique consider-
ably. Now, let us suppose for illustration that eq. (7.215) has
a solution given by

¢ =3e"e’(x—x*)(y—y*), (7.216)
which can be plotted to yield the results shown in Figure
7.19:

Prenter and Russell (1976) solved this problem using
bicubic Hermite polynomials, and their results indicate very
favorable performance relative to the Ritz—Galerkin method.
Furthermore, in some cases, the use of collocation with
Hermite polynomials has outperformed solution of elliptic
equations by the finite-difference method. Section 22 in
Abramowitz and Stegun is a good starting point for the
reader interested in the use of Hermite polynomials.

In an example provided by Villadsen and Stewart (1967),
the Poisson equation,

o 0 _

—1, 7.217
ox*  0y* ¢ )
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(for Poiseuille flow through a duct) was solved on the square
(-1 <x < +1), (-1 <y < +1) by taking

6=1—x)(1=y)Y Y ALCHPGD).  (7.218)

If the expansion is limited to the Jacobi polynomial,

P, = (1 — 5x%), and the collocation point is placed at (x;,

y1) = (0.447214, 0.447214), then
Pp=(1—x*)1—y>). (7.219)
This solution is plotted in Figure 7.20 along with the

correct numerical solution for easy comparison. Note that
the truncated approximation is surprisingly good.
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FIGURE 7.19. Solution for the elliptic partial differential equa-
tion, (Pp/Ox*) + (FPPlOy?) = 6xye'e(xy + x +y — 3).
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Villadsen and Stewart refined this rough solution by
including P, = (1 — 14x* + 21x*) in the expansion with the
three collocations points located at (x, y) — (0.2852315,
0.2852315), (0.7650555, 0.2852315), and (0.7650555,
0.7650555). The improved result was

px=(1- xz)(l—yz)[0.31625 —0.013125(1 —5x* +1—5y%)

+0.00492(1 - 5x*)(1—5%)].
(7.220)

Several collocation schemes for elliptic PDEs are avail-
able through a FORTRAN-based system called ELLPACK.
The development of this software was initiated in 1976 and
the effort was coordinated by John Rice of Purdue. Support
for the project came from the National Science Foundation,
the Department of Energy, and the Office of Naval Research;
collocation modules include COLLOCATION, HERMITE
COLLOCATION, and INTERIOR COLLOCATION. See
the ELLPACK home page for recent developments of this
software. ELLPACK allows a user with a minimal knowl-
edge of FORTRAN to solve elliptic PDEs rapidly; even
more importantly, the analyst can compare different solution
techniques for accuracy and computational speed. Rice and
Boisvert (1985) is an excellent starting point for the analyst
interested in ELLPACK.

THE CAUCHY-RIEMANN EQUATIONS,
CONFORMAL MAPPING, AND SOLUTIONS FOR
THE LAPLACE EQUATION

Earlier in this chapter, we discussed the solution of elliptic
PDEs using separation of variables. We now want to illus-
trate a very different approach that can be applied to a

(b)
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FIGURE 7.20. Comparison of the approximate solution (left) with the correct numerical solution (right).
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limited class of elliptic PDEs; we will restrict our attention
to the two-dimensional Laplace equation. Functions that
satisfy this PDE are said to be harmonic, and it is important
for us to remember that only conservative fields can be
represented by the two-dimensional Laplace equation.

Our initial focus in this section is the function

w= f(2) = ¢(x, y) +ith(x, y). (7.221)
If w is analytic in a region denoted by R, and if ¢ and ¢
are related by the Cauchy—Riemann equations (see eq.
7.224), then the real and imaginary parts are solutions for
the two-dimensional Laplace equation. Indeed, if these con-
ditions are met, then any analytic function f(z) is the solution
for some problem governed by the Laplace equation. Under
these circumstances, we refer to the f(z)s as solutions
for potential problems, and we will explore this technique
using a topic familiar to students of hydrodynamics, ideal
fluid flow.

Although we are using ideal potential flow as the frame-
work for our discussion, the technique we present here will
be applicable to other types of problems as well including
electrostatics, steady two-dimensional diffusion and heat
conduction, as well as two-dimensional scattering of elec-
tromagnetic waves. Let us begin by clarifying exactly what
we mean by an ideal flow: We stipulate that the fluid is
inviscid and incompressible, and that the flow is irrotational;
a useful mnemonic device in this context is to think of the
three Is (inviscid, incompressible, irrotational). For a two-
dimensional ideal flow, the velocity vector components can
be obtained by differentiation of the velocity potential, ¢, in
the corresponding directions:

v, = 8—¢ and v, = (9_(;5 (7.222)
Ox T Oy
Next we define the stream function, 1), such that
v, = —6—1/} and v, = 8_1/1 (7.223)
dy Ox

We think of a streamline (a curve of constant 1)) as the
path followed by a fluid particle. If streamlines are converg-
ing locally, then the flow is accelerating in that region; if the
streamlines are diverging, the fluid velocity is decreasing.
Evidently, the velocity potential and the stream function are
related:

90 _ W 4 99 _0¢ (7.224)
ox dy Jdy Ox

These are the Cauchy-Riemann equations, and they
guarantee that any analytic function of the complex vari-

able, z, where z = x + iy, is the solution for some potential
flow problem; that is, given a function of the complex vari-
able, z, which we will write as w = f(z), we have a mapping
between the x-y plane and the ¢ — 1 plane; we need only
to equate the real and imaginary parts:

b+ith = f(2). (7.225)

This branch of mathematics is known as conformal
mapping due to the fact that angles are preserved; in the ¢ —
plane, velocity potential lines and streamlines intersect at
right angles, just as lines of constant x and y do in the x-y
plane. We specified an incompressible fluid for which
V v =0, soif we differentiate eq. (7.222) appropriately, then

2 2
99, 2¢ =0. (7.226)
ox*  0y*

We also indicated that the flow was to be irrotational,
which means that V x v = 0, and if we differentiate eq.
(7.223) accordingly, then

0% 0%
g + oy 0. (7.227)

Thus, both the velocity potential and the stream func-
tion are governed by the Laplace equation and—most
importantly—if w(z) is a single-valued function of z over the
region, R, and if it is differentiable at every point in that
region, then every analytic w(z) gives us a solution for the
Laplace equation. But it is critical for us to emphasize that
had we included fluid friction (a dissipative process) in
this study of moving fluids, then the Laplace equation would
no longer be applicable since we would not have a conserva-
tive field.

Let us illustrate the process we have in mind with an
elementary example. We set

1 1
w=f="+5=&+iy) +—
z (x+iy)’
B x2 —y? B 2xyi
x4—|—2x2y2+y4 x4—|—2x2y2—|—y4.

(7.228)

The function is clearly not analytic at z = 0, so we
exclude that point from the region of interest. Therefore,

==y

1
I+ ——
x4+2x2y2+y4]

and

W =2xyll (7.229)

1
x4 2x7y? +y4]'
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FIGURE 7.21. Plot of the stream function for the complex poten-
tial given by eq. (7.228).

So we have identified the velocity potential and the
stream function for some potential flow, but we are faced
with the immediate question: Exactly what problem gov-
erned by the Laplace equation is this a solution for? We will
find out by plotting values of 1 for (x, y) pairs in the first
quadrant, then we construct appropriate contours. The result
is shown in Figure 7.21.

Notice that according to the definition of the stream func-
tion given by eq. (7.223), the flow in this case is right to left
(the fluid enters the figure at the right-hand boundary and
leaves through the upper surface).

We have found a solution for the Laplace equation by a
backward process that is easy enough to execute but might
not be very useful under more general circumstances. We
can, of course, simply write down more functions of z:
w = f(z), and identify the results by plotting (x, y).
The reader is encouraged to explore this approach and an
interesting case (flow over a circular obstruction, or log) is
given by

w=f(z)=mRU coth[ﬁ], (7.230)

Z

where R is the radius of the obstruction and U is the intensity
of the approaching flow. Should you wish to try this, start
by writing coth(x) = (¢' + e ")/(¢' — e ), and note that the
polar form for a complex number is x + iy = r(cos € + isin 0).

Of course, r =+/x> 4+ y°.

Because the Laplace equation is linear, we can also use
superposition to combine individual solutions, building
complex potentials (or stream functions) for more compli-
cated problems. For example, we could take a horizontal
potential flow around a cylinder, for which

2
Y=V, sin@[r—R—
r

[l

and add to that the vortex, 1» = Klnr. This combination will
produce flow about a right circular cylinder with rotation
and will result in a vertical lift being generated (the Magnus
effect). If we combine a source with a uniform flow (both in
polar form for convenience) we get

= —£9+Vrsin9,
21

which is flow about a half-body. As you can see, one can
obtain the velocity potential and the stream function for
many situations of interest by merely combining elementary
solutions.

The methodology employed in the earlier example and
additionally recommended for a student exercise will cer-
tainly work, but it is not very useful when we are seeking a
solution for the Laplace equation for a particular problem.
Moreover, in many cases, this backward or indirect process
would just be a needless duplication of effort. Many confor-
mal mappings are known and compilations exist that we can
consult directly. One example is the book Dictionary of
Conformal Representations by Kober (1952). We can find,
for example, an extensive collection of functions of the type
w = f(z) = z%, where a is real, in part two of Kober’s book.
Part three is devoted to exponential (and related) functions,
for example,w = ¢~

Let us explore the use of such a dictionary with an
example: We will consider ideal flow into a channel, or
alternatively, the potential field (actually equipotential lines)
accompanying two charged plates of finite size separated by
a distance, 2b. This problem appears in Kober (1952, section
11.5, pp. 116 and 117), from which we find

z=w+exp(w) or x+iy=¢+ih+exp(p+i).

(7.231)
Since e = cost + isin, it is easy to show that
x= 1n[y,_—¢ +[ﬂ] (7.232)
sin tan

The form of this equation suggests that we select a con-
stant value for 1, allow y to range through a plausible
sequence of values, and compute the corresponding
x-positions. This process will allow us to prepare an appro-
priate plot, which is provided here as Figure 7.22.

We can conclude that conformal mapping is an easy
approach to the solution of a limited class of problems
described by the Laplace equation. But as we pointed out
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FIGURE 7.22. A partial construction of streamlines for a potential flow entering a channel or a canal. This view shows just the upper

right-hand corner of the field.

previously, the indirect approach of writing down an analytic
complex potential and then determining what problem is
solved by it is not very practical. There are a couple of
techniques that can be applied more broadly. For example,
let us consider the case in which we have a constant potential
along some parametrically defined curve. Specifically,
suppose we know that the potential is constant over an
ellipse for which x = Acost and y = Bsinft; therefore,

z=x+1iy=Acosw+iBsinw, (7.233)

where w = ¢ + i1). With a bit of work, we can show that

)C2 y2

A’ = =+

5.

B .
coshy) + Zsmhw

—sinh ) 4 gcosh P
(7.234)

Thus, the “streamlines” or equipotential lines are confo-
cal ellipses, as expected. Another approach that can be quite
useful when the potential is known on a polygonal boundary
is the Schwarz—Christoffel formula; Smith (1953) provides
several examples of its application and Bieberbach’s (1953)
discussion is helpful as well. The SC formula is

w:jl—lﬁ—ﬁ withSa, =2, (7.235)
o H(t —ay )ak

Thus, if the half-plane were to be mapped onto the inte-
rior of a triangle with exterior angles o, a,7, and as7, then

dt
W_»Of(t—al)‘“(z—a»ﬂza—ag)aﬁ’

(7.236)

where all of the as are greater than zero and their sum,
a, + a, + a; = 2. ay, a,, and so on, are the vertices mapped
onto the real axis of the z-plane. We can look at an elemen-
tary case given by Lamb (1945) for which two finite points
are chosen on the real axis at +1:

w—Af dt
Vr* -1

Lamb shows how this method can be used to model a
Borda entrance (in two dimensions) and he provides several
other interesting results obtained with the Schwarz—
Christoffel formula in chapter 4 of Hydrodynamics.

=Acosh '(t)+B.  (7.237)

CONCLUSION

Many important problems involving molecular (or diffusive)
transport arising in engineering and the applied sciences can
be solved using the product method or separation of vari-
ables. Moreover, extensive collections of these solutions
exist (e.g., Crank and Carslaw and Jaeger); frequently, an
analyst can consult such resources and directly adapt an
existing solution to their needs. This does not mean that
every problem that can be solved using the product method
has already been solved. There will always be variations that
present a new challenge. But, once a student understands the
technique, he/she will be much better able to assess what is
possible and what is prohibitively difficult. In the more
general case of nonlinear PDEs, one must either accept the
limitations of an approximate analytic solution or proceed
to a numerical simulation. The importance of the latter has
grown rapidly—and pretty much in step with the expanding
availability of computing power. The numerical solution of
PDE:s is the subject of the next chapter.
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PROBLEMS

7.1. Solve the boundary-value problem

or 0T

—=a_—, for 0 <y <10,
ot Jdy

given o = 1l and T(y = 0, 1) = 0, T(y = 10, ) = 45, and
T(y, t = 0) = 20.

7.2. Solve the boundary-value problem

or 0T

—=a_—, for 0 <y <10,
ot Jdy

given a« = 2 and T(y = 0, 1) = 20, T(y = 10, ) = 10, and
Ty, t=0) =15+ 5y.

7.3. Solve the boundary-value problem

2
8—T:aa—7;, for 0 <y <10,
ot Jdy

given a = 1/4 and T(y = 0, ) = 10, and for y = 10:

2T

=h(T| _,,—Tx)-
3}1 10 ( y=10 )
The initial condition is 7(y, t = 0) = 30 and the Biot number,
hLlk = 1/4.

7.4. Find the distribution of § over the annular region
R, < r < R,, where § is governed by the potential
equation:

os 105 10
or*  ror r*oe*

The constant values ot the edges are S(r = R;) = 100 and
S(r =R,) = 10.

7.5. Repeat Problem 7.4 but with R, = 1, R, = 3,
S(r = R;) = 100, and

oS
—r22

= B(S,_z, —10).
Br s, B(S,—r )

We know that G/k = 1/4.

7.6. We are investigating a problem governed by the Poisson
equation:

2 2
ro o
ox*  Oy?
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Suppose ¢(x, y) = ap + ax + ay + axx’ + awxy +
asy’. Find the relationships between coefficients in this
polynomial.

7.7. The Laplace equation is applied to a rectangular
region that extends from x = 0 to x = L and from y = 0 to
y=H:

o*'U  9*U
LY
ox*  9y*

For the left and right sides (x = 0 and x = L), U = 1. For
the top and bottom edges (y = 0 and y = H), the flux is zero,
0U/dy = 0 at the bottom, and dU/dy = 1 at the top. Find the
distribution, U(x, y).

7.8. Find the distribution of temperature in a slab of material
that extends in the x-direction: 0 < x < L. The governing
equation is

or 0T

Eiaaxz’

given that T(x = 0, 1) = Ty, (OT/Ox)(x = L, ) = 0, and T(x,
t=0)=T.

7.9. Find the solution for

9 _ |0%¢ 10
ot or*  ror
for the annular region, R, < r < R,, where R, = 1 and

R, = 4. We know that ¢(r = R,, 1) = 200, ¢(r, t = 0) = 10,
and

)
or
7.10. Steady viscous flow in a duct is driven by a sliding
upper surface, moving with constant velocity inthe z-direction.
By Newton’s law of friction, the velocity at the other three
walls will be zero, of course. The governing equation is

9V, O,

0
ox* 0y’

, for0<x<Land0<y<H.

Forx=0,V=0,fory=0,V=0,forx=L, V=0, and
fory=H,V=10.Let H=L =1, and find V (x, y).

7.11. Find T(x, y) in a two-dimensional slab with the origin
placed in the lower left-hand corner. The top, the right edge,
and the left edge are all maintained at 50°. For the bottom
(r=0),

T = f(x) = 100.
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For the two-dimensional slab, H = 2 and L = 1.

7.12. A long cylinder has a uniform initial temperature,
T, = 75°. At t = 0, the surface (at r = R) is rapidly cooled
to 0°. Find T(r, 1):

or

or _ [0 vor
or

Jr
or* ror

(07

The thermal diffusivity, «, is 2, and the cylinder radius
is 2.

7.13. A long hollow cylinder has an initial temperature dis-
tribution of 7' = f(r) for R, < r < R,. For all positive s, the
surfaces at R, and R, are maintained at 0°. Find T(r, t) for
two different cases:

(r—R))
f(r)=T,, andthen f(r)=10+10- .
(R, —Ry)
7.14. Consider a diffusion tube that extends from z = —L

to z = +L. The concentration of the species of interest is
governed by
2
oc_poC
ot 07

Of course, the ends are impermeable, so for z = +L,
0C/9z = 0. For the initial condition, —L < z <0, C = 1 and
0<z<+L,C=0.Find C(z, 1).

7.15. Given

+
ox*  0y?

2 2
k\&‘T 8T]+P:O’

find T(x, y) given P/k = 200. The origin is placed at the
center, and all four edges are maintained at 50°. The slab is
square with L = H = 2.

7.16. Find the distribution of the variable, ¢, in a circular
disk given

o(r=R,0<0<m)=1 and ¢(r=R,—1<0<0)=0.
The governing equation is

arl’on)

p— r—
r Or

or

1 0%
——=0.
r? 06*

7.17. A porous slab, with surfaces located at x = =+b, is
initially saturated with solvent. We wish to model the diffu-
sion process within the slab for a drying problem where the
loss of solvent at the surface(s) is described by

ocC

—-D—| =K(C,, —C,).
oxl_, (Cizp )
The governing equation is
2
oc_ poc
ot ox*

Find C(x, 1), and then find an expression for the total amount
of solvent lost from the slab over a time, . Remember: The
slab loses solvent from both surfaces.

7.18. A taut string is secured (fixed and stationary) at y = 0
and y = 9. At a point corresponding to y = 3, the string is
displaced ¥2 unit in the transverse direction and then released.
Find u(y, t) using the product method given:

Pu_1 o
oyt ct ot

7.19. A drum head is a membrane (or skin) stretched over
a circular mounting rim of radius, R. The displacement of
the membrane in response to an initial forcing function is
governed by

¢  L|0% 109 1 0%
o222 %0, "4
or? ¢ or* ror r*oe?

Use the product method to find a solution for this problem
given that
Pp(r=R,0,1)= O,g—qs(r, 0,t=0)=0,and
1
o(r,0,t=0)= F(r).

7.20. A solid sphere of radius, R = 3 cm, has an initial
temperature of 45°C. At r = 0, the sphere is plunged into a
large, cooled bath maintained at 0°C. If the heat transfer
coefficient between the fluid phase and the surface of the
sphere is 0.02 cal/(cm® s °C), and if the thermal diffusivity,
a, is 0.9 cm?/s, find T(r, f) and plot the temperature distribu-
tions at t = 1/2, 1, 2, and 4 seconds. The density and heat
capacity of the material are 1.74 and 0.24, respectively (cgs
units). The governing equation for this problem is

Lo(o1)

r’r or

oT
c, 2 —k
Por o

7.21. A circular disk of radius, R, is well insulated on the
flat, circular faces (top and bottom sides). At t = 0, the edge
of the disk is rapidly cooled to 0° and heat flows in the
r-direction toward the rim:

or

or_ [T 107
ot

WJrrar

[0

Find T(r, ?) given T(r, t = 0) = To(1 — *) and R = 1.
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FIGURE 7.23. Computed numerical solutions for #s of 0.02. 0.05,
0.08, and 0.11. Note that the horizontal axis has been truncated to
better show the time evolution.

7.22. Use the Galerkin MWR technique to find an approxi-
mate solution for

%zi{ﬂ%}, for 0 <y <1,

ot Oy| Oy

given k = (¢, + 4¢)~". The boundary and initial conditions
are o(y =0, =1, 9(y = 1,1 =0, and ¢(y, t = 0) = 0.
Figure 7.23 contains some numerical results for this prob-
lem and it is provided as follows to assist students with
their work.

7.23. We have a long, solid cylinder in which thermal
energy is produced at a uniform rate (per unit volume) cor-
responding to S. The surface of the cylindrical solid will be
maintained at 7 = O for all time, 7. The governing equation
has the form

oT
— =«
ot

S

PCy

18[8T]

—_—— r—
ror\ Or

We want to find the analytic solution for this problem.
Begin by verifying that the steady-state solution for this situ-
ation is

S
T, =—(R*—r?).
e )

Then, let the dependent variable, 7, be written as the
sum of steady-state and transient parts: 7 = T, + T;.
Use this sum to eliminate the inhomogeneity and demon-
strate that
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on _

ot

o ton
or* r Or

Now complete your solution and check your result with
section 7.9 in Carslaw and Jaeger (1959).

7.24. Consider a solid sphere with a radius of 1, in which
thermal energy production occurs at a constant rate:

o°T 20T

6T_k
or*  r Or

== + 5.
4 pat 0

The source term, S,, will have units of calorie per cubic
centimeter second. We want to solve this problem analyti-
cally (and later numerically) and then plot our solutions.
Two substitutions are required to find a solution by separa-
tion of variables. The first, which is already familiar to us,
is T = 60/r. However, this step leaves the inhomogeneity,
which must be dealt with by setting

Sor?

0=¢—20
i

The parametric values we will employ are
k=0.025, a=0.075, R=1, and S, =2.675.

We are particularly interested in values of the parameter,
at/R> = 0.05, 0.1, and 0.25. Find the temperature
profiles for each and plot them on the same figure. Use the

dimensionless group for the dependent variable, SR

0
Assume that that the initial temperature of the sphere is 0
and that the surface is maintained at zero for all time.

7.25. Suppose we have a finite cylinder (of length, L) that
is at some initial temperature, 7;. At t = 0, the end of the
cylinder (at z = 0) is instantaneously heated to 7;,. The gov-
erning equation is

or
"ot

k li[ra_T]_Faz_T
ror\ or) 072

The surface of the cylinder, at r = R, loses heat to the sur-
roundings such that

k[a—T] — (T —T),

r

and we will assume that 7., = 0. The far end of the cylinder,
at z = L, is maintained at 7= 0 for all time. Begin by finding
the steady-state temperature distribution in the cylinder and
check your result with section 8.3 in Carslaw and Jaeger
(1959). Then, explore the transient problem and find an
analytic solution if you can.
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7.26. A viscous fluid, which is initially at rest, lies on a
planar surface corresponding to the x-axis. The fluid extends
very far in the vertical (or y—) direction. At ¢ = 0, the planar
wall begins to oscillate such that V,(y =0) = V,cos(wt). Find
the velocity distribution in the fluid assuming that the flow
is governed by

oV, 0%V,
===,
Ot 0y?

This scenario is referred to as Stokes’ second problem and
you may want to consider using the Laplace transform.

7.27. We have a potential field in spherical coordinates with
¢ symmetry such that

Lﬁ[rz 8—1/)] + L i[sinﬁa—w] =0
r»or\ Or) r*sinf 00 00

We want to find an analytic solution for this problem. Begin
by proposing ¥ = f(r)g(6) and carry out the separation. The
equation for f will be of the Cauchy type and the equation
for g can be transformed into Legendre’s differential equa-
tion such that the solution can be written in terms of Legen-
dre polynomials. This process is not trivial, and you may
want to consult chapter 12 in Spiegel (1971) for assistance.
Express the solution as the product of f and g, but do not
worry about boundary conditions.
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NUMERICAL SOLUTION OF PARTIAL

DIFFERENTIAL EQUATIONS

INTRODUCTION

Our usual approach will involve discretization of partial dif-
ferential equations (PDEs), followed by solution of the
resulting algebraic equations. Discretization is key to
both finite-difference methods (FDMs) and finite-element
methods (FEMs). The two approaches require the same level
of numerical effort, but the latter is particularly useful for
problems involving irregular shapes and boundaries (an
introduction to FEM will be provided in Chapter 11). On the
other hand, FDMs are much less software-dependent, and
for simple problems, FDM solutions can be obtained with a
broad spectrum of hardware—software combinations, even
through the use of commonplace tools like spreadsheet pro-
grams. Thus, the analyst can solve many important practical
problems without commercial modeling software, without
high-level language proficiency, without compiler experi-
ence, and without mesh generation and refinement.

We should anticipate that when we solve a PDE numeri-
cally, we may not obtain a completely accurate solution. Of
course, we expect discrepancies arising from both roundoff
and truncation, and a common view is that we are solving
the given PDE with some acceptable level of error. There is
a second viewpoint that is useful in the context of certain
computations, and it reveals a more insidious problem that
we need to recognize: When we discretize a PDE, we are
actually creating a PDE that may have additional terms;
that is, we end up with an equation that is not the original
model for the phenomenon of interest. Clearly, we need to
understand how those additional terms affect the solution.

We will give a very brief introduction to this topic here, but
the interested reader should consult Chapter 6 in Anderson
(1995) for detail. Consider the fragmentary equation for a
transient problem with convective transport:

0 0¢
—4V—="-. 8.1
ot Ox ®.1)
One possible discretization can be written as
¢ij+1*¢ij ¢ij*¢i71j
: =~ +V = L., 8.2
At Ax (8:2)

where the index j + 1 refers to the new time step, r + At.
Please note that the x-direction gradient of ¢ is written in
the upwind (backward) form; the need for this particular
difference will be explained later. If we now expand ¢; ;.
and ¢,_, ; in Taylor series,

Lo+ [20) aref 0] @7
¢i,j+l_¢i'j+[8t],-,jAt+[af2]ij 2 (8.3
: 3)
3
[5_¢] UL
or ), 6
(99 ﬂ] (Ax)*
irs = b [8)6 i,ij+[ax2 i 2 8.4
-5 G .
ox*),, 6
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and then substitute the results into the original eq. (8.1), we
recover the original terms but with the addition of new ones.
Anderson shows through a process of differentiation and
subtraction that the time derivatives that appear in “new”
terms in the equation can be replaced by derivatives with
respect to x, ultimately resulting in

99 00,00 g0

- 85
Ot Ox Ox? ox® + 8-5)

The original equation is recovered on the left-hand side,
but new derivatives appear on the right. The even derivatives
are dissipative, and in computational fluid dynamics (CFD),
they are referred to as artificial viscosity; they exert a stabi-
lizing influence on the computation. The odd derivatives are
dispersive, and they can create distortions and in some cases
destabilize a computation. Let us emphasize the essential
point of this discussion: The discretization process we
employ can produce additional terms in the PDE. We may,
in fact, be solving a PDE that differs from the actual model
(1) of the phenomenon of interest. Though this sounds
ominous, it may be beneficial in particular circumstances;
artificial viscosity, for example, can be used intentionally to
make an unstable computational scheme stable. But to be
absolutely clear, if we pursue this course (rendering an
unstable computation stable by adding artificial viscosity),
we are adopting the viewpoint that finding some kind of
numerical solution is better than not finding one at all.

Finite-Difference Approximations for Derivatives

Finite-difference approximations allow us to develop alge-
braic representations for differential equations. Consider the
following Taylor series expansions:

n

y(x+h) = y(x)+hy' (x)+ 5 y (x)+ o y (X)+ -

(8.6)

and

y(x—h) = y(x)—hy (x>+7y”<x) y”’(x)+

8.7)
When we add the two equations together, we obtain
Y+ +y(x—h) =2y(x) + h*y"(x)+ f(h*) + -

If we discard all of the terms involving A* (and up),
we get

Y +h)—2y(0) +y(x—h)

E (8.8)

y'(x) =

This second-order, central difference approximation for
the second derivative has a leading error on the order of h?.
If h is small, this approximation should be good. For
example, let y = xsinx thus, dy/dx = sinx + xcosx and
(d)/(dx*) = 2cosx — xsinx.

Now let x = 0.3: y = 0.088656, dy/dx = 0.582121, and
(d@*)/(dx*) = 1.822017; then choose h = 0.01:

d’y _ 0.094568 —2(0.088656) +0.082926 1,820
dx®> — (0.01) R

This is about 0.11% less than the analytic value for the
second derivative. By simply combining Taylor series expan-
sions, we can build any number of approximations and for
derivatives of any order. Furthermore, these approximations
can be forward, backward, centered, or skewed. Some of the
more useful forms are compiled for you as follows. Note
that F = forward, C = central, B = backward, and £ is
convenient shorthand for Ax:

First order:

1
F y'= Z(yHl =¥ (8.9

1
B yi/:Z(yi = Yi1) (8.10)

Second order:

F o/ =3y 4y - ne) 8.11)
B = (0= 20+ i) (8.12)
C y,-'=i(yi+.—y,-f.) (8.13)
B = (s =234 3i) (8.14)
B y'= ﬁ@y,« —4y,  +yi,) (8.15)
B = (= 25+ i) (8.16)

Third order:

1
vi'= 6_h(2yl'+3 =92 +18yi —11y:) (®8.17)

1
v = F(—yz% + 4y =5y +2¥:) (8.18)


http://c8-disp-0001

i = (s = 3912 + 30t =) (8.19)
yi' = 6ih(1 ly; —18y,1 +9yi» —2y,3) (8.20)
= @ =53+ 4y = 3i) (8.21)
"= hl3 (% =3Yi1+3Yi2—Yi3) (8.22)

Fourth order:

1
Vi' = ——(=3Yi14 +16y;,3 =36y, + 48y, —25y;)

12h
(8.23)
y' = 12h2 —— (11yi14 —56y;5 + 114y, —104y,., +35y,)
(8.24)
" 2h3 —(=3yi1a +14y115 — 24y, + 18y — 5y)
(8.25)
1
"= h—4(y,.+4 —4yip3 +6Yi0 — 4y + ) (8.26)
1
y'= E(_yi-ﬂ +8Yip1 =8yt + i) (8.27)
v, = 12h2 — (=Yir2 +16y,, =30y, +16y,; — y,5)
(8.28)
»" 2h; — Vir2 = 2Yin + 2y — Yi2) (8.29)
1
yi" = h_4(yi+2 =4y + 6y =4y + yi2) (8.30)

1
yi'= ﬁ (25y; — 48y, 1 +36y, 5 =16y, 3 +3y, 4)
(8.31)
y"= 121 —— 35y, =104y, + 114y, , =56y, 5 +11y; 4)
(8.32)
»" Zhg — 5y =18y, +24y, , =14y 3 +3y,4)
(8.33)
1
»"= —4()’i =4y + 6y —4yis+yia) (8.34)
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Boundaries with Specified Flux

Consider a conduction problem in a slab for which the right-
hand boundary is insulated; thus, g, = 0; this is an example
of a Neumann boundary condition (97/0x = 0). Let the
nodal point on the boundary be represented by the index, n,
and let the temperatures for n — 2 and n — 1 be 50° and 45°,
respectively. We can determine the temperature at the bound-
ary by setting the derivative equal to zero. However, if we
use a first-order, backward difference in this situation:

n—2 n—1 n

50° 45° ?°

then T, = 45°, a result that is clearly unphysical because the
temperature “profile” on this row has a discontinuity in
slope. One alternative is to employ eq. (8.15):

T, = %(_50 +4(45)) = 43.333°, (8.35)

Of course, a third- or fourth-order backward difference
could be used as well; if we go with third-order and set the
temperature at n — 3 to 56°, we find 7, = 42.909°.

We should also examine the use of a Robin’s-type bound-
ary condition (a boundary condition of the third kind) for a
solid—fluid interface:

oT

—k, T = 1, (T, T (8.36)
Oox '

Let the Biot modulus, Bi =
expression for T, is

Axhfk; then, one possible

_ 2BiT,, +4T,, T,
3+2Bi '

(8.37)

If we select Bi = 1 and 7T, = 20° and use the temperatures
given earlier for the n — 1 and n — 2 positions, then

7 _220+445-50 _ ..

5 (8.38)

Note how eq. (8.37) is affected when Bi is very low—the
result is exactly the same as eq. (8.35)!

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Our main focus in this section is on Laplace- and Poisson-
type elliptic PDEs that apply to equilibrium phenomena.
Examples include steady-state conduction in a slab:

o’T 9T

—4+—=0, 8.39
ox* 0y (8-39)
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steady viscous flow in a two-dimensional duct,

2 2
8_‘3+8_‘Z:ld_P (8.40)
Ox dy W dz

and the Laplacian of the stream function for two-dimensional
potential flow:

o 0%
g + By 0 (8.41)
‘We should begin this part of our discussion by looking at
a solution procedure for eq. (8.39). Suppose we have a
square slab of material with prescribed temperatures on all
four edges (400° across the top and 100° for both sides and
the bottom); we wish to find the interior temperature distri-
bution, T(x, y). We discretize the slab using Ax = Ay (a
square mesh) with five nodes in each direction. Since the
boundary temperatures are known, we have nine interior
nodes where the temperature must determined:

400 400 400 400 400
100 100
100 100
100 100
100 100 100 100 100

If we approximate eq. (8.39) with second-order central
differences, we find

Ti+1,j +T;‘—l,j +Ti,j+1 +T;‘,j—l _4Ti,j =0. (8.42)

Thus, we have an elementary problem in which we must

find the solution for nine simultaneous, linear algebraic

equations. This can be accomplished in many different ways,

and we choose to employ Crout’s (also known as Cho-

lesky’s) method. The reader may wish to verify that the
solution for the given problem is the following:

400 400 400 400 400
100 228.6 258 228.6 100
100 156.3 175 156.3 100
100 121.4 129.5 121.4 100
100 100 100 100 100

This raises an interesting question: How accurate is this
solution? For example, is the temperature at the center of
the slab really 175°? Since this is a problem for which the
analytic solution is known (see eq. 8.82 in Chapter 7), we
can test the given result using the infinite series very easily.
To four decimal places, the center temperature from the
analytic solution is 174.9995°. This shows that our approxi-
mate solution for the center (175°) is unusually accurate; we
can also find the actual temperatures immediately above and

below this point to get a clearer picture of the overall quality
of the solution. One node above the center the analytic solu-
tion produces 262.158° (as opposed to 258°) and one node
below, we find 128.624° (as opposed to 129.5°). Our numer-
ical solution is surprisingly close considering the coarse
discretization that was employed.

Many elliptic PDEs can be solved in this manner, and
since the coefficient matrix is usually sparse, such problems
can be solved very efficiently. Although our slab example
used only nine interior nodes, much larger problems can be
solved in the same way. Some care must be exercised in such
cases, however, because roundoff error can accumulate and
corrupt the solution. If very large sets of simultaneous equa-
tions are to be solved using an elimination method, it may
be necessary to either use greater precision in the calcula-
tions or, alternatively, to incorporate error equations into the
procedure. We will give a brief sketch of this process here,
but the interested reader may want to consult chapter 3 in
James et al. (1977).

Suppose we have a set of simultaneous equations:

an Xy +apX, +aX; +--=GC
a21X1 +022X2 + Ty, etc.

When we solve these equations, we obtain a set of
approximate values for the X,s that we will represent like
this: Y, Y,, and so on. We take these approximate values
back to the set of equations and compute the new constants;
that is,

anh +anY, +apYs +---=D,. (8.43)

If roundoff errors have been generated, then D, = Ci,
D, = C,, and so on. Now we presume that the desired values
for the X,s can be obtained by adding a correction to the
approximate solution: X, =Y, + AX;, X, = Y, + AX,, and
so on. The correction expressions are substituted into the
original algebraic equations, replacing the unknown X,s:

ay (Y +AX)) +ap (Y +AX,) + a3 (Y + AX;) +...=C,.
(8.44)

Next, we subtract the set of equations obtained with the
initial estimates, resulting in

a AX, +anAX, +apAXs +---=C, — D,

a21AX1 + azzAXz + az3AX3 + e = C2 — Dz, etc. (8.45)

The solution of this set of equations produces the correc-
tions that are added to the original estimates: X, = ¥, + AX,
X, =Y, + AX,,... This process can be repeated any number
of times should that prove necessary.
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FIGURE 8.1. Velocity distribution in a rectangular duct computed with the Gauss—Seidel iterative method. The duct measures 8 x 4 cm

with dp/dz = —3 dyne/cm*cm.

An Iterative Numerical Procedure: Gauss—Seidel

There are alternative solution techniques that can be applied
to elliptic PDEs and we will now examine a straightforward
iterative scheme; let us consider laminar flow in a rectangu-
lar duct for this example. By using the second-order central
difference approximations for the second derivatives (where
the i and j indices represent the x- and y-directions, respec-
tively), eq. (8.40) can be written as

Ldp | Vies =2V +Viry |, Vg =2V + Vi
pdz =~ (Axy (Ay)

(8.46)

If the discretization employs a square mesh (Ax = Ay),
then we can isolate the term with the largest numerical coef-
ficient, with the convenient result:

(Ax) dp

(8.47)
o dz

1
Vii %Z Vierj T Vi + Vi Vi —

Please note that the z-direction subscript has been dropped
from velocity to minimize clutter. This approximation is the
basis for a simple Gauss—Seidel iterative computational
scheme for the solution of such problems. In this case, of
course, the velocity is zero on the boundaries, so we merely
apply the algorithm to all of the interior points, row by row.
The newly computed values are employed as soon as they
become available (which distinguishes Gauss—Seidel from
the Jacobi iterative method). As an example, consider the
case of laminar flow in a rectangular duct 8§ cm wide and
4 cm high; the pressure gradient is —3 dyne/cm?*cm and the
viscosity is 0.04 g/(cm s). All of the nodal velocities will be
initialized to zero to start the computation.

For the specified pressure gradient, the centerline
(maximum) velocity will be about 139 cm/s. The computed
velocity distribution is shown in Figure 8.1 as a contour plot.

140 4

120 H

Centerline velocity (cm/s)
o % S
=) S S
1 1 1

IS
[«
1

(3]
S
1

O TrTTT T LI | T LA |
10 100 1000
Number of iterations

FIGURE 8.2. Centerline velocity as a function of the number of
iterations for the solution of the Poisson equation for laminar flow
in a rectangular duct as approximated by eq. (8.47).

In a computation of this type, a key issue is the number
of iterations required to attain convergence. For the example
shown here, we can monitor the evolution of centerline
velocity during the calculations; this is illustrated in Figure
8.2. Keep in mind that we initialized all of the interior
nodes at zero velocity. We could certainly enhance the prog-
ress toward convergence by starting the computation with a
better initial estimate, that is, providing a more suitable
distribution for V; ;.

Note that a reasonably accurate value is obtained with
about 1000 iterations, and after 3000 iterations, the third
decimal place is essentially fixed.
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Improving the Rate of Convergence with Successive
Over-Relaxation (SOR)

The rate of convergence of iterative solutions can be
accelerated significantly through use of the extrapolated
Liebmann method (also known as successive over-relaxation,
or SOR). In this technique, the change that would have
been produced by a single Gauss—Seidel iteration is in-
creased through the use of an accelerating factor, which
is usually denoted by w. SOR can be implemented easily
in the previous example by a slight modification of
eq. (8.47):

~ 1
Vi,j(neW) ~ Vi,j +qw Vi+1,j +‘/i—l,j +Vi,j+1

4
a2 ap] O

wodz|

Vi =4V, —

The V, ;s appearing on the right-hand side of eq. (8.48)
are from the latest available calculations, of course. You can
see immediately that if w = 1, this is identically the Gauss—
Seidel algorithm. For over-relaxation, w will have a value
between 1 and 2; the rate of convergence is very sensitive
to the value of the acceleration parameter. Please see Smith
(1965) for additional discussion. Frankel (1950) has shown
that, for large rectangular domains such as that used in our
example,

1 1 172
W A2 — \/Ew[—z + —2] , (8.49)
P g

where p and ¢ are the number of nodal points used in the
x- and y-directions, respectively. For our case, p = 65 and
q = 33, 50 wy, ~ 1.85. The consequences of a poor choice
are shown clearly in Figure 8.3, where the number of itera-
tions required to achieve a desired degree of convergence
is reported. While it is apparent that SOR can significantly
reduce the computational effort required to solve elliptic
PDEs, the acceleration parameter, w, must be chosen care-
fully to obtain the greatest possible benefit. We should
make one other observation regarding w: In the iterative
solution of nonlinear PDEs, stability can sometimes be
maintained by using under-relaxation, that is, by setting
w < 1.

We will now illustrate the application of SOR with a very
detailed example. Assume we have a mild steel slab; the
left-hand side is maintained at 1000°, the bottom at 500°,
and the top is insulated. The right-hand side loses heat to the
surroundings according to

9T

X =L

=W(T|_, —T.). (8.50)
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Number of iterat
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FIGURE 8.3. Number of iterations required to achieve ¢ =
2 x 1077 as a function of w. A Poisson-type equation for laminar
flow in a rectangular duct is being solved and the minimum is
located at about w =~ 1.86.

This is a steady-state problem so the temperature in the

interior of the slab is governed by
o'T 9T
—+—=0 8.51
ox* 0y’ ®:51)

Results obtained from a typical program structure are
shown in the contour plot provided in Figure 8.4.
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FIGURE 8.4. Isotherms computed for a mild steel slab with the
left-hand side maintained at 1000° and the bottom at 500°. The top
surface is insulated and the right-hand side loses thermal energy to
the surroundings according to Newton’s law of cooling.
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#COMPILE EXE
#DIM ALL
REM *#* Jllustration of SOR computation for heat transfer in a steel slab
REM *#** Left-hand boundary maintained at 1000, bottom at 500, top is insulated, and right side loses heat
GLOBAL L,HT,h,k,dx,dy,iter,w,Tsur,i,j AS SINGLE
FUNCTION PBMAIN
DIM T(251,201) AS SINGLE
dx=0.1:dy=0.1:k=0.108:h=0.0203:Tsur=100:w=1.98
REM *** initialize temperature
FOR j=1 TO 201
T(1,j)=1000
NEXT j
FOR i=2 TO 251
T(1,1)=500
NEXT i
iter=0
50 REM *##* continue
FOR j=2 TO 200
FOR i=2 TO 250
TG.))=TA,)+w/A*(T>0+1,)+T0-1,))+Tq0,j+1)+TGq,j-1)-4*%T(3,)))
NEXT i:NEXT j
REM *** top boundary (insulated)
FOR i=2 TO 250
T(1,201)=(4*T(1,200)-T(1,199))/3
NEXT i
REM *** right-hand boundary—Robin’s type BC
FOR j=2 TO 200
T(251,j)=(-h*Tsur+k/(2*dx)*(-4*T(250.j)+T(249,))))/(-3*k/(2*dx)-h)
NEXT j
iter=iter+1
PRINT iter,T(150,100)
IF iter>6000 THEN 200 ELSE 50
200 REM *#** continue
OPEN “c:STslabl.dat” FOR OUTPUT AS #1
FOR j=1 TO 201
FOR i=1 TO 251
WRITE#1,1,j,T(1,))
NEXT i:NEXT j
CLOSE:END

As we indicated previously, the progress of such a compu-
tation (i.e., the rate at which one obtains a satisfactory solu-
tion) is very sensitive to the value selected for the relaxation 1.4 2.912

w T(150, 100)

parameter, w. We will illustrate this by changing w and moni- 1.5 7.774
toring the value of 7(150,100) at exactly 500 iterations: }3 ‘1‘ zgz
1.8 112.55
w T7(150, 100) 1.85 174.57
10 00122 1.90 270.81
1.95 418.41
1.1 0.0672
12 02837 1.98 513.84
' ’ 1.99 523.79

1.3 0.9799
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The initial value for all of the interior nodes was 0°. Note
that the correct temperature at this location, 7(150, 100),
is 523.8°.

Although we have purposefully tried to minimize con-
necting our discussions to specific computational software,
the student needs to be aware that there are many commer-
cial packages that have capabilities for elementary PDEs.
We will illustrate one such option here, using Mathcad™.
Suppose we have a two-dimensional (square) slab of mate-
rial with the edges (T, B, L, R) maintained at the following
temperatures: 200°, 10°, 50°, and 200°. The temperature in
the slab will be governed by the Laplace equation, that is,
eq. (8.48):

1 0T
oxt oyt

Our discretization for this PDE is exactly the same as eq.
(8.42), of course:

Ti+1,j +T;‘—l,j +Ti,j+1 +T;‘,j—l _4Ti,j =0.

The Mathcad function we will employ is relax(a, b, c, d,
e, f, u, rjac). Note that a is the matrix of coefficients on
(i + 1, ), and all of them are 1s. b is the matrix of coeffi-
cients for (i — 1, j), and again, these values are all 1s. ¢ is
the matrix of coefficients on (i, j + 1), all 1s, and d is the
matrix of coefficients for (i, j — 1), also 1s. The matrix of
coefficients for the central temperature (i, j) in the pattern is
e, and of course, those values are all —4. f would correspond
to the source term, if one were present. In our case, all of
the fs are zero. The matrix u contains the constant boundary
temperatures, and estimates for the interior nodes. rjac is a
constant between 0 and 1 that affects the rate of convergence
of the relaxation algorithm. For the simple problem we are
considering here, the Mathcad procedure is not much
affected by the choice of rjac. Using 25 interior nodes (so
the coefficient matrices are all 7 x 7), we obtain the follow-
ing result:

relax(a, b, ¢, d, e, f,u,0.5) =

Naturally, the first question one should ask concerns the
reliability of this computation: How accurate is it? To address
this, we will refine the mesh and compute the interior tem-
peratures ourselves using one of the algorithms we have
already discussed. Using 13 nodes in each direction (and

200 200 200 200 200 200 200
50 123.747 153.013 168.152 179.073 189.353 200
50 91977 120.151 140.523 158.788 178.341 200
50 74.009 95.093 115 137.214 165.221 200]|.
50 58967 71212 87.169 109.848 145.33 200
50 40.646 43.619 52.617 69.679 106.252 200
50 10 10 10 10 10 200

single precision), and reporting only every other node
for ease of comparison with the preceding results, we
obtain

200 200 200 200 200 200 200
50 123.77609 153.79272  168.72809 179.47177 189.59695 200
50  91.29428 120.20753  140.88583 159.26443 178.76828 200
50  73.57849  94.815605 114.99994 137.57727 165.87845 200
50 58.76750  70.73545 86.72105 109.79236 146.24150 200
50 40.40302  42.99232 51.81481 68.67136 106.22386 200
50 10 10 10 10 10 200

These data indicate that the Mathcad solution obtained
with relax is reasonably accurate, even with the coarse dis-
cretization we employed. The largest discrepancies between
the two sets of results are on the order of 1.5%, and those
errors appear on the bottom interior row. Of course, we can
use exactly the same discretization (employing 13 x 13
matrices) in Mathcad, and when we do so, we get the
following results on the diagonal (starting in the lower
left-hand corner and proceeding toward the upper right):
50, 40.403, 70.737, 115.002, 159.266, 189.597, and 200.
These numbers are virtually identical with our do-it-
yourself computation—the largest discrepancy is smaller
than 0.002%.

PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS

An Elementary, Explicit Numerical Procedure

Suppose we have viscous fluid that extends far in the
y-direction, initially at rest near a plane wall that is set in
motion with velocity, V,, at time, ¢t = 0; thus, V.(y = 0,
1) = V,. Letting V = V,/V,,
ov oV
—=v—. 8.52
ot 0y? (8.52)

This scenario is known as Stokes’ first problem, and the
analytic solution is just

Vi __ y
A : e'f[x/ﬂ]’

where the error function erf(n) = (2/ Jr ) S Z exp(—n?)dn :

n 0 0.1 0.2 0.4 0.8 1.6 32
erfln) 0.00 0.1125 0.2227 0.4284 0.7421 0.9764 1.0000

An explicit algorithm is easily developed for eq. (8.52);
using a first-order forward difference for the time derivative
followed by isolation of the V value on the new time step
results in
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TABLE 8.1. Explicit Computation with Unstable Parametric Choice(s)

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

t i=1 i=2 i=3 i=4 i=5 i=6 i=7
0 1 0 0 0 0 0 0

At 1 0.6 0 0 0 0 0
2A¢t 1 0.48 0.36 0 0 0 0
3At 1 0.72 0.216 0.216 0 0 0
3At 1 0.5856 0.5184 0.0864 0.1296 0 0
4At 1 0.7939 0.2995 0.3715 0.0259 0.0777 0
SAt 1 0.6209 0.6394 0.1210 0.2644 0 0.0467
6At 1 0.8594 0.3173 0.5181 0.0197 0.1866 —0.0093
TAt 1 0.6185 0.7630 0.0986 0.4189 —0.0311 0.1306
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TABLE 8.2. Explicit Computation with Stable Parametric
Choice(s)

t i=1 i=2 i=3 i=4 =5 i=6 i=7
0 1 0 0 0 0 0 0
At 1 0.4 0 0 0 0 0
2At 1 0.48 0.16 0 0 0 0
3At 1 0.56 0.224 0.064 O 0 0
4At 1 0.6016 0.2944 0.1024 0.0256 0 0
S5At 1 0.6381 0.3405 0.1485 0.0461 0.0102 0

6At 1 0.6638 0.3872 0.1843 0.0727 0.0205 0.0041

TAt 1 0.6859 0.4158 0.2190 0.0965 0.0348 0.0090

Atv
Vi = W[Vm,]‘ —2V;; +‘/i—1,j] +V,;.  (8.53)

Equation (8.53) is attractive because of its simplicity; it
is easy to understand and easy to execute, but it poses a
potential problem. To ensure stability, it is necessary that

Aty 1
) < 5 (8.54)

We will illustrate this using eq. (8.53) by choosing
v = 0.05 cm*s, Ay = 0.1 cm, and At = 0.12 second; of
course, this guarantees that we are over the limit of V2 (actu-
ally 0.6). We can put the calculation into Table 8.1 and
monitor the evolution of the nodal velocities, which will
reveal the consequence of our choices. Since the analytic
solution for this problem is known, we have a convenient
comparison available.

The problem revealed by Table 8.1 is easy to resolve. We
change our parametric choices to yield Atv/(Ay)* = 0.4 and
repeat the calculation.

This is an important lesson. If we need good spatial reso-
lution, Ay will be small and Ar will need to be very small,
perhaps prohibitively small. Fortunately, we do have options
that will work well for this type of problem. Before we
consider them, however, we will look specifically at the
entry in Table 8.2 for i = 4 and t = 7Ar (which is 0.2190);

the analytic solution for this particular point is 1 —
erf(0.8964) = 0.205, so the discrepancy produced by the
explicit computation amounts to a little less than 7%. Though
larger than we would like, this would still be satisfactory for
many applications.

The Crank-Nicolson Method
Consider a transient diffusion problem in two spatial
dimensions:
2€_p
ot

(8.55)

0°C N 62C}
ox> oy

where C is the molar concentration of the species of interest
and D is the diffusivity.

If we were to solve this problem using the explicit
approach described in the previous section, we would have
to choose At such that

1 N 1 ]<l
(Ax)*  (Ayy) 2

If the problem required enhanced spatial resolution,
then the time-step size, Af, would need to be very small,
and the required computational effort might be excessive
(particularly in view of the large time required for the
concentration field in many diffusion problems to develop,
for example, in liquids, D ~ 107 cm%s). To illustrate,
suppose that Ax = Ay = 1/20 and D = 1/10; then, 80
At < 1/2 and At must be less than 0.00625. Fortunately,
there are alternatives and the Crank—Nicolson method is
one option.

In the Crank—Nicolson approach, a first-order forward
difference is used for the time derivative, and the second
derivatives (the molecular transport terms) are written twice,
once on the present time-step row, ¢, and once for  + At.
The arithmetic average of the two values is used in the
computation. Let the 7, j, and k indices correspond to x, y,
and 1, respectively. The scheme can be written out as

AtD

(8.56)
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Ci,j,k+l 7Ci,j,k ~ 2 CH»l,j,k 72Ci,j,k +Ci71,j,k
At ~2 (Ax)?
Ci,j+1,k —=2C; ;5 +Ci ik
(Ayy
Ci+l,j,k+1 - 2Ci,j,k+1 + Ci*l,j,k“’l
(Ax)
+ Ci,j+l,k+1 72Ci,j,k+l +Ci,jfl,k+l
(Ay)?

(8.57)

Of course, this algorithm is implicit, which means that a
set of simultaneous algebraic equations must be solved to
advance to the new time-step row, k + 1, that is, t + At.
Note that the computational pattern involves five points: the
central node, i, j, then left and right, and up and down. The
Crank—Nicolson method is stable for any value of Ar. We
employ a square mesh so that Ax = Ay and isolate the k + 1
values on the left-hand side of the equation:

1. 2
AL (Ax)?
D
- m(cm,j,kﬂ + Ci—l,j,k+l + Ci,j+l,k+1 + Ci,j—l,k+1)
D
= m[ciﬂ,j,k + Ci—l,j,k + Ci,j+1,k + Ci,j—l,k - 4Ci,j,k}
+$§%. (8.58)

An attractive feature of this approach is that the coeffi-
cients for the computational pattern on the new time-step
row are simply

i j+1
-D
——(T.B,L,R
2(Ax)? ( )
i—1j i, j i+1,j
1 2—D2 (Center)
At (Ax)
ij—1

Let us illustrate the advantages offered by Crank—
Nicolson with an example. Suppose we have a slab of mate-
rial with a thermal diffusivity () of 0.03 cm?*/s, which is
roughly characteristic of minerals like fluorite and quartz.
The slab measures 6 x 6 cm and it has an initial temperature

of 0°. At r = 0, the temperature of the left-hand side is
instantaneously raised to 1000° and the top edge to 600°.
The other two edges are maintained at 0° for all time. In this
case, of course, the governing equation is

o’T 0T

B_T =a|l—+
ot ox* 0y

>

which is completely analogous to eq. (8.55). We are inter-
ested in the temperature distribution in the slab at t = 50
seconds. We first compute the result explicitly, using
At = 0.01 second, which corresponds to 5000 time steps.
The results are shown in the following array:

600 600 600 600 600 600 600
1000 644.62  461.64 37439 32439  245.17
1000 607.64  348.74  217.09  153.31 96.47
1000 570.37  280.35  133.69 70.72 36.25
1000 52529 23149 91.31 36.06 14.12
1000 40495 15494 53.92 17.69 5.51
1000 0 0 0 0 0

oNeoNeBoNoNe]

Now we carry out the computation a second time, but we
use Crank—Nicolson with Ar = 50 seconds; that is, we
employ just one time step! We should not expect the two sets
of results to compare favorably:

600 600 600 600 600 600 600
1000 831.73  520.05 430.11 389.99  314.98
1000 715.85 311.76  183.87  134.90 89.89
1000 67436 24293  103.88 55.70 29.52
1000  637.82  205.64 71.53 28.78 11.86
1000  521.68  144.47 43.21 14.42 4.92
1000 0 0 0 0 0

[N oNoNeNoN o)

By no means is this acceptable. But remember that we
have replaced 5000 time steps (explicit) with just one
(Crank—Nicolson). If we reduce the total time by a factor of
10, that is, we carry out the calculations to t = 5 seconds
using both the explicit technique with Az = 0.01 second and
a single 5 s step with Crank—Nicolson, the typical discrep-
ancy is just a few percent. And, if we drop down to 2 seconds
to compare 200 time steps (explicit) with just one (Crank—
Nicolson), we find that the typical difference for values in
the first interior column (at ¢t = 2 seconds) is less than 0.5%;
this is illustrated as follows:

Explicit Crank—Nicolson
88.39 88.21
57.79 57.52
56.87 56.67
56.82 56.61
55.25 55.13
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Because Crank—Nicolson is so easy to use in one spatial
dimension, the reader is encouraged to try applying the
method to the following slab example. The initial tempera-
ture of the semi-infinite slab is zero; at t = 0, the temperature
of the front face is elevated to 500°. Given a thermal diffu-
sivity of 0.12 cm?/s, we compute the temperature distribu-
tion in the slab using both the analytic solution,

0= Y ]
”fc[@

and Crank—Nicolson with a single time step. After 16
seconds, the temperature profiles appear as shown here:

y (cm) 0 1 2 3 4 5 6 7
T, analytic 500 303.5 1542 659 239 75 21 05
T,CN 500 375 140.6 527 198 74 28 1.0

Again, the reader should note that the Crank—Nicolson
calculation employed just one 16-second time step; he/she
might also consider repeating the calculation but with
Ar=1s.

Alternating-Direction Implicit (ADI) Method

The Peaceman and Rachford (1955) or ADI method can be
particularly useful for the types of parabolic PDEs we have
been discussing, and it is more efficient than Crank—
Nicolson. Let the indices i, j, and k represent x, y, and ¢,
respectively. We will use transient conduction in two spatial
dimensions for our example:

or _
or

o (8.59)

o1 o
ox* |

The first half of the ADI algorithm is used to advance to
the k + 1 time step:

T o —Tijx _ T juer = 2T, j s + Tt e
alt (Ax)?
Ty — 2T i + T ik

(Ay)’

(8.60a)

and the second half takes us to k + 2:

T i =T jan _ T jun = 2T, j s + T e
alt (Ax)?
T jiikie = 2T j oo + T i
(Ayy’

(8.60b)

+

Note that neither step can be repeated unilaterally. Let us
examine a simple application. A two-dimensional slab of

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 157

material is at a uniform initial temperature of 100°. At¢ = 0,
one face (the bottom) is instantaneously heated to 400°. Let
Ax = Ay =1, as well as a« = 1 and Ar = 1/8. We rewrite
eq. (8.60a) isolating the k + 1 terms on the right-hand side:

A)C 2
=T jyx T [2— (aA)t ]Ti,j,k —Tjx
(Any (8.61)
= Ti+1,_/,k+1 - [2 + E] Ti,./,k+1 + Tifl,j,k+1-

Now we will illustrate the process with a simple square
slab; the top, left, and right sides are all maintained at 100°.
The bottom will be set to 400°. The nine interior nodes are
initialized at 100°.

(1,5) (5,5)

(1,1) 5. 1)

We apply eq. (8.61) at the interior points, row by row;
the first horizontal sweep results in

100 100 100
100 100 100
133.67 136.73 133.67

for the nine interior points. Now we recast eq. (8.60b) for
application to the columns to advance to the k + 2 time step:

Ax)
( )t ]Ti,j,kﬂ _T;'—l,j,kﬂ

(0%

Ax)?
=1iji1h+2 — [2 + %]

Ty jen + [2 -
(8.62)
T o + T oy psn

We solve the simultaneous equations that result from
applying this algorithm to the columns and obtain

100.55 100.6 100.55
105.5 106 105.5
154.42 159.37 154.42

If the total number of equations is modest, then a direct
elimination scheme can be used for solution. The coefficient
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matrix follows the tridiagonal pattern (with 1, —10, 1 for the
selected parameters), so the process is easy to automate.
Smith (1965) states that for rectangular regions the ADI
method requires about 25 times less work than an explicit
computation. Carrying out the procedure to t = 1.75 yields

114.91 120.25 114.91
146.35 161.01 146.35
221.06 247.42 221.06

for the interior nodes. Chung (2002) notes that this scheme
is unconditionally stable, which makes it very attractive for
problems in which the time evolution is slow; that is, we can
employ a very large At relative to the elementary explicit
technique and still obtain acceptable accuracy.

Three Spatial Dimensions

Naturally, the solution techniques for parabolic PDEs that
we have discussed in this section can be extended to three
dimensions as we shall now demonstrate. Consider a cube
of solid material, measuring 10 cm on each side, initially at
some uniform temperature, 7;. At t = 0, the temperatures of
the four vertical faces are instantaneously changed to ele-
vated values. In particular, the front face will be 400°, the
right-hand face 200°, the left-hand face 1000°, and the back
600°. The bottom of the cube is insulated and the top hori-
zontal surface will lose thermal energy to the surroundings
by Newton’s law of cooling. A sketch of the arrangement
appears in Figure 8.5.
The governing equation for this case is just

or o’T  O°T 0T
ot ox*  Oy* 0Oz
Top loses heat to
surroundings
200°
Z o
400 y

Bottom is insulated
x

FIGURE 8.5. Cube of material with four vertical sides maintained
at different temperatures for all # > 0.

We will take the thermal conductivity of the medium
to be 0.075cal/(cms °C) and discretize the equation letting
Ax, Ay, and Az all be 0.16667 cm. Accordingly, the number
of interior mesh points will be 205,379. We will use a first-
order forward difference for the time derivative and second-
order central differences for the conduction terms:

Tjwo—Tijun ., «

At ~ (Ax)

[T;'Jrl,j,k,l + T;‘—l,j,k,l + E,j+l,k,l + T;',j—l,k,l

+ T g + T g — 6Ti,j,k,l]
(8.64)

Our intent is to solve the equation explicitly by forward-
marching in time. We will employ just two values for the
time index, 1 and 2, corresponding to the old and new time
steps (this is done to minimize storage requirements). We
will take the thermal diffusivity, «, to be 0.088 cm?*s and
the time step, At, to be 0.01 second, resulting in

1 1 1

A =0. 8.65
tor (Ary + oy T 0.095, (8.65)

which is much less than the limit for stability (recall that
the limit is 1/2). We can get a sense of how T(x, y, z, ?)
develops by looking at the fop surface of the cube at t =
7.5, 15, 30, and 60 seconds; these results are shown in
Figure 8.6.

The sequence of contour plots shown in Figure 8.6
reveals the speed with which thermal energy is conveyed
throughout the cube. Although the explicit method was used
to solve this problem, the execution time was not prohibi-
tively long, despite the fact that each time step required
approximately 212,000 calculations. Since At was 0.01
second, about 1.27 x 10° calculations were required to reach
t = 60 seconds. The ease with which this problem was
solved suggests that many heat and mass transfer problems
involving three spatial dimensions can be handled exactly
this way.

HYPERBOLIC PARTIAL
DIFFERENTIAL EQUATIONS

Perhaps the best-known example of a hyperbolic PDE is
the “wave” equation; for one spatial dimension, it can be
written as

Pu_ ,0u

— = —. 8.66
or? ¢ ox* (8.66)

Of course, our immediate thought with respect to a physi-
cal interpretation might center on a vibrating string. But
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FIGURE 8.6. Evolution of the temperature distribution on the top
surface of the cube; the four contour plots correspond to 7.5, 15,
30, and 60 s (top to bottom). For the two-dimensional top view
shown here, the right-hand edge is maintained at 200°, the left-hand
side at 1000°, the bottom at 400°, and the top at 600°.
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wavelike behavior can be found for many different phenom-
ena, including electrical and magnetic fields and even nerve
impulses (for the latter, the interested reader should explore
the FitzHugh—Nagumo model).

Because the wave equation has been around since the
middle of the eighteenth century, much is known about its
solutions. In fact, the reader is encouraged to apply the vari-
able transformation,

r=x-+ct and s=x-—ct, (8.67)

to eq. (8.66) to reproduce d’Alembert’s solution process
from 1747. This approach is of particular interest to us
because it represents a special case of the technique we wish
to discuss, the method of characteristics. The name of this
technique arises from the fact that, at every point in the x-¢
plane, two characteristic directions can be identified for
which ordinary differential equations can be used to “solve”
eq. (8.66) in a stepwise process.

Before we begin that discussion, we will illustrate several
important points using an extremely simple first-order
“constant coefficient advection” (first-order wave equation)
model:

0o 09
—+3—=0. 8.68
ot * Ox ( )

We let ¢(x, t = 0) = 0 and introduce the disturbance
(at x = 0) that will propagate in the x-direction. We can
use this particular model to underscore some of the prob-
lems that one may encounter with hyperbolic PDEs. First,
we will introduce a finite-duration impulse (with finite
amplitude) and solve eq. (8.68) numerically using an
explicit approach. Since the “velocity” in the x-direction
is “3,” we will solve the equation for specific times of 1/3,
2/3, ..., 5/3; thus, the advected disturbance should be cen-
tered at 1, 2,..., 5.

The result depicted in Figure 8.7 is probably not what
you expected. We can make the nature of the problem even
clearer by inputting a unit step change at x = 0, letting
the “sharp-edged” step be carried along in the positive
x-direction; this is illustrated in Figure 8.8.

It may be apparent to you that this result also fails to meet
expectations; for a homogeneous wave equation in one
dimension, the shape of the traveling wave should not
change! We will now demonstrate what should have
transpired. We first do this using a familiar technique, the
Laplace transform, which will eliminate the time derivative.
Applying the transform and solving the subsidiary equation
results in

é(s)=C, exp[%]. (8.69)
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Times: 1/3., 273, 3/3. 4/3. and 5/3 with In other words, the unit step disturbance propagates
0.04 4 velocity of 3 downstream unchanged according to the analytic solution—
ﬂ exactly like the behavior of an idealized plug-flow tubular
reactor! It is apparent that we need a more accurate solu-
0,034 =23 tion technique than the explicit procedure and one that has
been much used in the solution of hyperbolic PDEs is the
- method of characteristics. The reader may find additional
gﬁ 000 s detail helpful; consultation with Smith (1965) or Sarra
’ - (2003) is recommended.
0.01 4 The Method of Characteristics
We direct our attention toward a particular curve given by
(x(5), 1(s)). We let the derivatives dt/ds and dx/ds be equated
0~00‘0 T T T T T T D to the coefficients on the d¢/Ot and Op/Ox terms in eq.
X position (8.68). Please note what the consequence of this action is!
i o . o Therefore,
FIGURE 8.7. Propagation of a finite impulse in the x-direction
due to a constant velocity of 3.
ﬂz1 and @:3. (8.71)
ds ds
1.0+ For the latter, we find x = 3s + C}; for s = 0, we have x = x,
4 and thus, xy = x — 3s. From the former of this pair, we find
0.8 t =5 + C,, where C, = 0; that is, for this type of problem,
] 173 there is only one characteristic equation to solve. Therefore,
3 Xo = x — 3t and ¢ = fix — 31); we have identified the trans-
A0'6- formation from (x, #) to (x,, ).
%; T 3/3 We will now look at an example that permits us to more
0.4 fully gauge the usefulness of the method of characteristics.
l 473 Consider the behavior of an ideal string suspended between
02 3 supports located at x = 0 and x = L, where L = 2. The
velocity of propagation will be taken as 1 (i.e., ¢ = 1);
| therefore,
0.04
o 1 2 3 4 5 & 7 Ou_ Ou
X position 81‘2 8x2 . (8.72)

FIGURE 8.8. Advection of a unit step in the x-direction due to
the constant velocity, 3.

The initial shape of the string is specified, f(x, 0) = sin(mx),
and the initial velocity is zero. The analytic solution for this
case is known and we will want to make use of it:

The unit step is put in at the left-hand boundary; that is,
at x = 0, ¢(s) = 1/s. Therefore,

2

u(x,t) = Z{fsinﬂxsin%dx

b(s) = lexp[ﬁ]. (8.70) =11%
K 3

sin ™ cos n_m (8.73)
2 2

Some results from this equation are presented graphically
in Figure 8.9 for specific x positions corresponding to
x = 1/16, 1/8, 1/4, 1/2.

We begin with values taken from a “curve” along which
¢0=0,forO<t<k and ¢=1ifr>k the u(x, t)s are known.

We can invert directly by consulting a table of transforms.
Letting k = x/3, we find
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FIGURE 8.9. Analytic solution for the wave (eq. 8.72) for specific

X positions, 1/16, 1/8, 1/4, and 1/2.

The slopes of the “characteristic” directions are obtained
from the roots of the quadratic equation:

2
(%] —1=0, (8.74)

and of course, these values are +1 and —1. We use these
slopes to extrapolate from known positions, P and Q, to a
new position, R. The initial points for this example are
selected from Figure 8.9: Let (xp, tp) = (1/8, 0.2) and (x,,
tp) = (1/4, 0.2). The new point is identified from the linear
approximations,

tg—tp =+1(xg —xp) and g —1tp =—1(xg —xp).
(8.75)

The solutions for the simultaneous eq. (8.75) are
xg = 3/16 and t; = 0.2625. We now use the differential
relationships along the characteristics to obtain new esti-
mates for p = Ou/Ox and g = Ou/0t. These slopes (for posi-
tions P and Q), in turn, allow us to estimate the change in
the dependent variable, u; we use the average of the initial
and projected slopes to compute this change (and hence, the
new value for the displacement, u). It is easy to show that

1
qr :E[pQ —ppt+qp+qpl.

For the points selected from Figure 8.9, p, = 2.12,
po = 09, gp = —0.714, and g, = —1.438. Therefore,
qr = —1.686 and pr = 1.148. Since the change in the depen-
dent variable, u, is just du = pdx + qdt, we find that

1 1
Up —Up :E(IJP + pr)(xg _xP)+E(QP +qr)(tg —1p),
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which yields uz = 0.3371. The reader should turn immedi-
ately to the results presented in Figure 8.9 and estimate the
value of u at this new point, R—the value is approximately
0.34. In this case, the linear extrapolation combined with
the use of the average slopes has produced a very good
estimate.

Smith (1965) shows how this estimate for the dependent
variable u can be subsequently refined by using the average
slopes to improve the coordinates of the projected position—
which are, in turn, used to get improved slopes. In this
manner, very accurate solutions for hyperbolic PDEs can be
obtained through iteration; however, the technique is not the
easiest to automate and for that reason is probably not used
as commonly as it once was. There is an FDM for solution
of some hyperbolic PDEs that is extremely easy to imple-
ment and it is described in the next section.

The Leapfrog Method

Let us now return to the familiar wave equation with one
spatial dimension,

u  , 0%

—=c"—, 8.76)
or Ox* ¢

and formulate one possible finite-difference approximation
for it:

Ui oy — 2 5+ U 5y ~ 2 Uiy — 20+ . (877
(Ar)? - (Ax)?

We now isolate the value on the new time-step row:

c*(A1)?
ui,j+1 = W[MPAJ — 2'/!,',]' + ui*l,j] + Zui,j — ui,jfl' (878)
Since ¢ has dimensions of velocity, //t, it is clear that the
quotient,

ct(A1)?
(Ax)* ’

is dimensionless. In fact, it is the Courant number, Co,
squared of course. Notice what happens if we select Co = 1;
the finite-difference approximation is now simply

Wijr S Uiy Uiy ; — Ui jog (8.79)

This very compact expression forms the basis for what is
called the “leapfrog” method and it will allow us to solve
certain wave-equation problems. You may notice, however,
that the algorithm requires values for two previous time
steps; that is, it is not self-starting.
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Now let us suppose that we have initial values for both
position and velocity such that

u(x,0)= f(x) and %(x, 0) = g(x). (8.80)

We let u;; = f; and since

Ou o~ Wij — Ui

ot~ 2At

b}

if we set j = 1, then this derivative is just

Uip —Uip
—— =g 8.81

A ¢ (8.81)
We take this result back to the leapfrog algorithm and (letting
Jj = 1) isolate u;,. Therefore,

1
Uinp = E[fm + fia +2Atgi]- (8.82)

This allows us to get the computation started.

We will now illustrate how this works with a typical
example. Suppose we have a “‘string” stretched between
supports located at x = 0 and x = L. The “string” is perfectly
elastic and is under great tension such that the gravitational
force is unimportant. The displacement (deflection) of the
string is described by the wave equation:

u  , 0%
e c FYEh (8.83)

The string has an initial displacement and an initial veloc-
ity given by u(x, 0) = f{x) and (Ou/0r)l,—y = g(x), respectively.
We will take L = 10, an initial velocity of zero, but an initial
deflection described by u = xfor0 < x < landu =1 —
(x — 1)/9 for 1 < x < 10. We will use the leapfrog method
to compute the string’s displacement as a function of time.
Note that the initial deflection propagates to the right (and
down) as illustrated in Figure 8.10.

ELEMENTARY PROBLEMS WITH
CONVECTIVE TRANSPORT

Our focus in this section concerns problems in which con-
vection is important; that is, problems where momentum,
heat, mass, and so on, are transported by virtue of a nonzero
velocity vector component. Examples of the terms of
interest are

v, . ov, . v,
ox oy oz

=...for x-momentum,

p| Vs

1.0+

0.8+

o o
Pt S

“String” displacement
o
T
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FIGURE 8.10. Computed string displacement for times of 0.06,
0.36, 0.72, 1.08, and 1.44; we can render these fs dimensionless
using ct/L and the corresponding values are 0.03, 0.18, 0.36, 0.54,
and 0.72. The position index of 200 corresponds to L = 10.

oT oT oT
pC,| v, — +v,— +v,— |=... for thermal energy,
Ox Jy 0z

and

Vy +v, +v,
Ox Y 9y 0z

... for mass (concentration of species “A”).

[ aC, aC, aC, ] B
(8.84a,b,c)

Inclusion of such terms in a model represents a serious
escalation in difficulty as we shall see. However, a limited
class of such problems can be solved readily using tech-
niques that are already familiar to us.

Imagine a situation in which a chemical species with
concentration C is carried in the z-direction by fluid motion.
Furthermore, assume that any mixing that occurs—possibly
as a result of turbulence—can be represented as though it
were diffusive in character. One model for this phenomenon
can be written as

2
a_C+V8_C:D8 C'
ot 0z 07*

(8.85)

This is an axial dispersion model in which the velocity
in the z-direction is taken to be constant. Let the index i
represent z position and j represent time; one possible dis-
cretization for this equation is

o~

Ci,j+1 - Ci Ci+1,j - 2Ci,j + Ci*l,j _ V Ci,j - C
At - (Az)? Az
(8.86)

i-1,j
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Please note that an upwind difference has been used in
the convective transport term. The significance of this choice
will be discussed in the next section—for now, we will
simply operate on the assumption that this is appropriate. If
we multiply by Ar and add C;; to both sides of the equation,
we obtain an elementary explicit algorithm:

Ci+l,j — 2Ci,_/ + Cifl,j

_y Ci,./‘ -C
(Az)? Az

Cijn =At|D =G

(8.87)

The reader might wonder why we have not chosen a
“better” approximation for the first derivative, dC/0z. For
example, we could select a second-order central difference
where

8_C ~ M (8.88)
0z 2Az

Please consider trying this change yourself; it is worth
taking a little time to discover that it will not work! The
result of the computation is unphysical.

Now assume that some finite pulse is put into the flow
at the entrance where z = 0; our intent is to model the
behavior of this pulse as it is carried downstream by the
flow. However, there is an obvious limitation to our mod-
eling approach: If the length of the test section is L, then
at a time corresponding to L/V (actually a little before),
the tracer pulse will reach the outflow boundary. Naturally,
an outflow boundary condition of C(z = L, f) = 0 would
be violated. This a common, recurring problem in the
computational solution of transport problems—an outflow
condition is necessary, but specification of the wrong one
will constrain the solution and produce an incorrect result.
An obvious “remedy” is to stop the computation before
the tracer pulse arrives at the far end of the computational
domain. Let us explore how this very simple computa-
tional model performs; we set V=2, D = 1/4, Az = 0.2,
and Ar = 0.005. The inlet concentration is set to 2 for
0 < t < 0.4, and then it reverts to zero. The evolution of
the input pulse is illustrated in Figure 8.11.

Since the fluid velocity is 2, the successive peaks are
centered at axial positions corresponding to 2f, of course.
The dispersion is causing the attenuation of the initial pulse
height and the broadening of the distributions; note that by
t = 50, the tracer is covering axial positions from 80 to 120,
which is double the width seen at + = 10. The significance
of the dispersion model illustrated in this example is that eq.
(8.85) allows us to characterize the performance of a flow
reactor. By monitoring an inert tracer injected into the
reactor, we can evaluate V and D (and thus the Peclet
number). These results can be used in turn through the inclu-
sion of chemical kinetics to predict performance (i.e.,
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FIGURE 8.11. Dispersion model results for a flow reactor with

Pe = VL/D = 6400 at times corresponding to 10, 20, 30, 40, and

50. Note that Pe is a kind of Peclet number for mass transfer.

expected conversion). The model itself, eq. (8.85), can be
augmented to account for radial dispersion by incorporating
two dispersion coefficients:

9C ,0C _ Dy 9

ac _[ 8C] 0’C
ot 0z

—|+D,—. 8.89
r(?r o 7% (8.89)

Tar

We turn now to an example of convective heat transport.
Consider laminar flow in a duct (formed by parallel walls);
the lower wall is located at y = 0 and the upper wall at
y = B. The flow is fully developed and the fluid enters at a
uniform (low) temperature. The heated walls are maintained
at a higher temperature and heat transfer to the fluid occurs
as the fluid moves in the x-direction. This is a steady-state
problem with the velocity distribution given by

1dp, ,
. =——(y>—By). 8.90
v o dx(y y) (8.90)

The appropriate energy equation for this case is

or _,

or _Jo'r o
Ox

— . 8.91
ox? N 0y? (8.51)

PCyvx

Note that conduction terms in both the transverse and
flow directions have been included. The latter can be
neglected if the product of the Reynolds and Prandtl numbers
(RePr) is greater than about 100, and for many liquids, this
is likely to be the case. Therefore,

oT Q o’T

=£___= =2 8.92
dox  A(y’—By) 9y’ (8:92)
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where A = (1/2u)(dp/dx). Such problems provide us with an
opportunity for simple solution by forward-marching in the
x-direction; we discretize the equation so that

T Axa Ty —2T,;+T ;.
M= AV — B Av)?
(y"—By) (Ay)

12

+T,. (8.93)

We now have an algorithm that allows us to march down-
stream, computing new temperatures as we go, given the
initial uniform inlet temperature distribution. Let us illus-
trate how this is going to work with an example; we select
an inlet temperature of 10°C and maintain the parallel walls
at 50°C. We take the fluid to be water with v = 0.00147 cm?*/s
and Pr = 6.8. The pressure gradient, dp/dx, is set to —0.1778
dyne/cm*cm. We expect the temperature distribution to
evolve slowly—after all, we are relying on molecular con-
duction to carry the thermal energy into the interior of the
fluid. In fact, Figure 8.12 shows that the bulk fluid tempera-
ture is only 21.2°C at x = 160 cm; even by x = 400 cm, the
bulk fluid temperature is only 29.94°C.

In the last example of this section, we would like to treat
the case of mass transfer in the annular space between con-
centric cylinders. The fluid contained within is initially at
rest, but at # = 0, the outer cylinder (located at r = R,) begins
to rotate with constant angular velocity, w. Of course, this
means that the tangential velocity vector component at the
wall is vy(r = R,) = wR,. We place a small spot of inert tracer
adjacent to the inner wall; we are interested in how this

x =20, 40, 80, and 160 cm

Temperature

O.OIO.II IO.IZ‘O.[3 IOT4,0.I5 I0.|6I0f7 IOTS 'O.I9 I ITOI 1!1 I I.IZI 1.I3‘ 1.[4I l.IS
y position (cm)

FIGURE 8.12. Heat transfer to fully developed laminar flow
between parallel walls, 1.5 cm apart. Temperature distributions are
shown for x positions of 20, 40, 80, and 160 cm. The walls are
maintained at 50°C and the fluid (water) enters the heated section
with a uniform temperature of 10°C. The fluid properties are taken
as constant, although that is a bit of a stretch since the viscosity of
water at 50°C is only about 0.55 cp.

material is transported as the velocity distribution develops.
The two governing equations are

6\/9 82\/9 1 61/0 Vo
—= —_— 8.94
ot v or* ror r* ( )
and
oCc v, 0C 0’C 10C
—4+——=D +—— 8.95
ot r 00 or* ror ‘ (8.95)

Notice that we have omitted molecular (diffusional)
transport in the #-direction as it should be small relative to
convective transport once the velocity distribution begins to
develop. Our solution strategy is as follows: We will solve
the discretized version of eq. (8.94) explicitly by forward-
marching in time. Each time we compute a new velocity
distribution, we will use vy(r, t) in the discretized version of
eq. (8.95) to calculate C over the entire array of r and 6
positions: R; < r < R, and 0 < 0 < 27. Of course, we must
use upwind differencing for the convective transport term

%)
r 00

since we are using the explicit technique. A complete pass
through both equations corresponds to a time step. We
merely repeat the process until the desired final time is
attained. An elementary code for the computational process
is included here:

#COMPILE EXE
#DIM ALL
REM *** Convective transport example
GLOBAL i,j,dt,dth,dr,R1,R2 kvis,D,w,d2vdr2,dvdr,r
pos AS SINGLE
GLOBAL tt,zz,d2cdr2,dcdr,dedth AS SINGLE
FUNCTION PBMAIN
DIM v(91,2) AS SINGLE
DIM C(91,91,2) AS SINGLE
dr=0.03333:dth=0.069813:kvis=0.02:D=0.001:
w=3:R1=5:R2=8
dt=0.001
REM *** initialize velocity and cencentration fields
FOR i=1 TO 90
v(i,1)=0
NEXT i
v(91,1)=w*R2
FOR i=1TO 90
FOR j=1TO 90
c(i,j,1)=0
NEXT j:NEXT i
FOR i=1TO 5
FOR j=1TO 5
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c(i,j,1)=1
NEXT j:NEXT i
tt=0
100 REM *** continue
REM *** compute revised velocities
FOR i=2 TO 90
rpos=R1+4(i-1)*dr
d2vdr2=(v(i+1,1)-2*v(i,1)+v(i-1,1))/drA2
dvdr=(v(i+1,1)-v(i-1,1))/(2*dr)
v(i,2)=dt*kvis*(d2vdr2+1/rpos*dvdr-v(i,1)/
rposA2)+v(i,1)
NEXT i
FOR i=2 TO 90
v(i,1)=v(i,2)
NEXT i
REM *#* begin computation for concentration field
FOR j=2 TO 90
FOR i=2 TO 90
d2cdr2=(c(i+1,j,1)-2*c(i,j,1)4c(i-1,j,1))/draA2
dedr=(c(i+1,j,1)-c(i-1,j,1))/(2*dr)
dedth=(c(i,j,1)-c(i,j-1,1))/dth
rpos=R1+(i-1)*dr
c(i,j,2)=dt*D*(d2cdr2+ 1/rpos*dcdr)-v(i, 1)/
rpos*dcdth*dt+c(i,j,1)
NEXT i:NEXT j
FOR j=2 TO 90
FOR i=2 TO 90
C(i,j,l):C(i,j,Z)
NEXT i:NEXT j
FOR i=2 TO 90
¢(1,91,1)=c(1,90,1)
c(,1,1)=c(1,91,1)
NEXT i
tt=tt+dt
PRINT c¢(6,6,1),¢(7,7,1),c(8,8,1),¢(9,9,1)
IF tt<55 THEN 100 ELSE 300
300 REM *** continue
OPEN “c:MTecylind.dat” FOR OUTPUT AS #1
FOR j=1TO 91
FOR i=1 TO 91
WRITE#1,i,j,c(i,j,1)
NEXT i:NEXT j
CLOSE:END

Figure 8.13 illustrates the progress of the tracer (contami-
nant) plume as the velocity distribution develops. Remem-
ber, the outer cylinder is put in motion at r = 0 with
vo(r = R,) = wR,. The inner cylinder is fixed (stationary) so
at very small 7, mass transfer occurs mainly by molecular
diffusion.

In the three examples of convective transport provided
earlier, we were able to find solutions with familiar, elemen-
tary numerical procedures. Of course, in all cases, we had
only one nonzero component of the velocity vector. The

situation for transport involving two-dimensional flows is
more difficult, but a very useful procedure for such problems
is described in the next section.

A NUMERICAL PROCEDURE FOR TWO-
DIMENSIONAL VISCOUS FLOW PROBLEMS

We now will describe a very powerful technique that can be
used to solve a host of important flow and transport problems
in two dimensions. We begin by writing down the governing
equations for the motion of an incompressible fluid:

v v Ov 1 0p v, O
Tr gy g L= 2 =+ —=|, (8.96
ot " Ox " dy p Ox . Ox* dy (8:56)
v, vy, Ov,  10p  [9v, v
Ly gy L= |22 (897
or " ox Oy p Oy I ox? 0y? (8:97)
and
v, Ov,
X4 Y. 8.98
Ox Oy (8.98)

These three equations must be solved simultaneously for
the general problem we are contemplating. The main diffi-
culty in such cases—and one that plagues CFD—is the
determination of p(x, y, t). As the flow field evolves, p(x, y,
) must change to ensure that continuity is satisfied (i.e.,
V - v = 0). In the approach we are about to describe, the
problem of p(x, y, ) is circumvented.

We now cross differentiate eq. (8.96) and eq. (8.97),
resulting in

0*v,  Ov, Ov, 9*v,  Ov, Ov, 0%v,

oy oy ox | oxoy oy dy 0y ©99)
_ 1Lop 5 v, O, ’
p Oxy ox*0y  0y*
and
d%v,  Ov, O, v, v, O, %,
LRy P Yy
0tdx  Ox Ox Ox*  Ox Oy  Oyox
(8.100)
_ 1o , v, D,
~ pOyox ox®  Oy*ox|

The vorticity vector component, which for two-
dimensional flow in the x-y plane is a measure of rotation
about the z-axis, is defined by

_[8vy _8vx]

- 8.101
Ox Oy ¢ )
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FIGURE 8.13. Transport of the tracer plume between concentric cylinders.

rotate with constant angular velocity at = 0.

The inner cylinder is at rest and the outer cylinder begins to
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Note what happens when we subtract eq. (8.99) from eq.
(8.100), employing the vorticity definition:

8—W—i—v a—w+v 8—w—1/
o “ox oy

’w  O*w
+ -

— . 8.102
ox*  0y? ¢ )

This is the vorticity transport equation. We have elimi-
nated pressure, and if we now introduce the stream
function,

vx:g—w and vy:—a—d], (8.103)

we can guarantee that continuity will automatically be satis-
fied and we can use the vorticity definition, eq. (8.101), to
obtain the relationship between w and 1):

2 2
:3_¢+81/J. (8.104)
ox*  0y*

One of the reasons that the vorticity approach is so pow-
erful is that vorticity is only created at the boundaries of the
flow—not in the interior! A solution procedure suggests
itself: We use the vorticity distribution to get the stream
function, use the stream function to get the velocity vector
components, and then use the new velocities to get an
updated vorticity distribution, and repeat. We now illustrate
the use of this method for the computation of the transient
flow of a confined viscous fluid off of a step. In this situation,
the available flow area doubles and the motion of the fluid
(which is initially at rest) is driven by the lateral or sliding
motion of the upper surface. The ultimate Reynolds number
at the entrance is 75, although the computation is not allowed
to proceed that long since the vortex generated on the face
of the step continues to grow, eventually reaching the outflow
boundary. Typical results from a sequence of calculations as
described earlier are shown in Figure 8.14.

An attractive feature of the vorticity approach is that only
elementary solution procedures are required; we solve eq.
(8.102) explicitly and we solve eq. (8.104) iteratively using
SOR. Furthermore, this technique can be easily extended to
include heat or mass transfer. For example, suppose we
wanted to model nonisothermal conditions combined with a
two-dimensional flow:

or ~ or . oT

o*T 0T
— v, —+v,—= —
t " Oy

W+ By’ . (8.105)

(%

Note the similarity between this eq. (8.105) and the vor-
ticity transport equation. That suggests that the solution pro-
cedure used for eq. (8.102) could be used here as well. In
fact, both equations can be solved using the elementary
explicit technique if we are appropriately careful with
respect to numerical stability issues that arise due to the

presence of the convective transport terms. Consider the case
of the x-direction transport of thermal energy; for explicit
solution, the convective transport term, v,(07/0x), is taken to
the right-hand side and the equation is discretized. We mul-
tiply by At and observe that a dimensionless quotient has
now appeared: Arv/Ax. This is the Courant number, Co
(that we saw in the previous section), and its value must be
between 0 and 1 if the elementary explicit scheme is to work
successfully. Furthermore, the temperature gradient or deriv-
ative, 0T/Ox, must be written in the “upwind” form so that
a disturbance is only advected in the direction of the fluid
motion (by the term “advection,” we mean transport by fluid
motion in a particular direction). Let us illustrate by assum-
ing that the velocity in the x-direction can be taken to be a
positive constant, V, then the first two terms in eq. (8.105)
are written as

T ... —T
E;—T = —V(Z—T +---, which become —""HA L
t y L (8.106)
= —V—T;"j —Ti, 4.
= x ,
and therefore,
Ty =(1-Co);;+CoT, ;. (8.107)

We will now explore the application of this technique to
flow resulting from natural convection in enclosures (a Ray-
leigh—Bénard problem). A viscous fluid, initially at rest and
at uniform temperature, is contained within a rectangular
enclosure. At t = 0, the temperature of the bottom surface
is elevated and buoyancy-driven fluid motion ensues. The
warmer fluid will rise and the cooler fluid will fall, setting
up a pattern of recirculation. We assume that the rectangular
vessel is two-dimensional and that the Boussinesq approxi-
mation is adequate for a description of the buoyancy effect
(this means that the fluid density is actually treated as con-
stant in the equations of motion, but a buoyancy force term
is appended). Buoyancy affects the vertical (or y-component)
of the Navier—Stokes equation, which must be modified by
the addition of pgBAT, where (3 is the coefficient of volu-
metric expansion (e.g., for an ideal gas, this is merely 1/7,
so at 300 K, 8 = 0.0033). For these example calculations,
the Prandtl and Grashof numbers are Pr = 6.75 and
Gr = 1000, respectively. The width-to-height ratio for the
rectangular duct is 2.47, and the size of this ratio determines
the number of convection rolls that will ultimately appear in
the enclosure.

Of course, it is entirely appropriate to question the accu-
racy of this computation: Do the results realistically portray
buoyancy-driven flows in two-dimensional enclosures? We
can obtain comparisons from the literature for confirmation;
see the interferogram (figure 139, p. 82) in Van Dyke (1982),
taken from the work of Oertel and Kirchartz (1979). The
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FIGURE 8.14. Transient viscous flow off of a step with an ultimate Reynolds number of 75 (based on the mean inflow velocity). The fluid
is confined and is initially at rest, and the motion is being driven by a sliding upper surface. The velocity of the upper surface increases
linearly with time until it reaches the predetermined value.
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FIGURE 8.15. Development of convection rolls in an enclosure with heating at the bottom surface. The three plots correspond to dimen-
sionless times (* = vyt/h’, where h is the vertical height of the enclosure) of 0.05, 0.25, and 1.25.

similarity between these experimental results and our com-
putations as reflected by Figure 8.15 is reassuring. However,
please note that an elementary model of the Rayleigh—
Bénard phenomenon as depicted here cannot reproduce
certain aspects of the transient behavior seen in real
buoyancy-driven flows. In particular, we observe that the
sense of the initial rotation is always the same in the com-
putational procedure employed in this example. This will not
necessarily be the case in an experiment, where localized
heating may result in either clockwise or counterclockwise
rotation of the first convection roll. This provides emphasis

for an observation we made previously: When we discretize
a PDE, we are, in fact, making changes to the model itself.
The gross results may be realistic, but the effects of altering
the PDE, coupled with the particular pattern of the compu-
tational procedure, may mask (or even obliterate) some of
the nuances seen in the actual physical phenomenon.

The power of the vorticity transport technique for two-
dimensional problems with fluid motion may now be appar-
ent to you, but let us extend it for final emphasis. Consider
the transport of a chemical species in two dimensions gov-
erned by the continuity equation:
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0*C n 0°C
ox> oy |

e oc, oc_
o “ox oy

D

(8.108)

You will see immediately that this equation is of exactly
the same form as the vorticity transport equation and the
two-dimensional energy equation. Thus, the explicit proce-
dure we used previously will work here as well. We now
have the capability for solving two-dimensional problems
involving the transport of momentum, heat, and mass, even
when all three are occurring simultaneously. The only
restrictive requirement is that the Reynolds number be low
enough to guarantee that we have a highly ordered (laminar)
flow. In a recent paper, Nikbakhti and Rahimi (2012) have
solved eq. (8.102), eq. (8.105), and eq. (8.108) simultane-
ously for double-diffusive natural convection in a rectangu-
lar cavity; the convective circulation was driven by a
thermally active wall combined with a patch of elevated
concentration. This means that the local fluid density was
affected by both thermal expansion and by variations in
solute concentration, and both are accounted for by using
the Boussinesq approximation: p = po[l — BT — T,) +
B4(C — C))]. Note that the effects of heat and mass transfer
are opposed. The authors have presented streamlines, iso-
therms, and concentration contours for different locations
of the thermally active surface and some of the resulting
circulation patterns are fascinating. For example, when the
heated sections are placed at the top and bottom of the
cavity, two strong (convection) cells arise, in the upper left
and the lower right, with an offset horizontally. Under these
conditions, the local velocity near the horizontal centerline
is very low.

MacCORMACK’S METHOD

MacCormack’s method (1969) for transient phenomena
allows the analyst to solve time-dependent PDEs explicitly
and for a couple of decades, it was one of the most popular
techniques for the solution of high-speed compressible
flow problems. For simplicity, let us contemplate a two-
dimensional flow in which the density varies (i.e., we have
a compressible fluid). We have two components of the
Navier—Stokes equation and continuity (conservation of
mass). The reader may note an inconsistency here: We said
the fluid density would vary, yet we are using the constant-
density Navier—Stokes equation. We will resolve this
momentarily. For now, let us arrange the equations to isolate
the time derivatives:

ov, ov, Ov, 10p 0%, 0%,

Pe ) Do P . (8.109

ot o dy pOx . ox’ * Oy? ( )
2 2

%z—vx%—vy%—la—p—l—y 9 Yy +8 Yy , (8.110)

Ot Ox dy pdy ox* 0y’

and

ap

8.111
Y ( )

0 0
- _a(PVx)_a_y(pV))

An equation of state is used to relate pressure (p) to the
fluid density (p) in compressible flow problems, closing the
system of equations. MacCormack’s approach is a predictor—
corrector scheme in which the first estimates for the time
derivatives are obtained with forward differences for the
inertial terms and central differences for the viscous terms.
We let U = v, and V = v, to reduce clutter, and we take the
i and j indices to represent the x- and y-directions, respec-
tively. Thus, using the x-component as our example and
omitting pressure,

ou - U Ui — U v Uijn—Ug;
ot " Ax " Ay
Ui —2U;+UiL; | Ui j —2U;;+U;
(Ax)* (Ay) .

(8.112)

The computed values for the time derivatives are used to
predict new values for all of the dependent variables; we
illustrate this with U:

ou

Uit :Uffi“r[;

]At. (8.113)

The new (predicted) values for the dependent variables
are used to find a revised estimate for the time derivatives.
But in this second step, backward differences are used for
the inertial terms:

[8_U]revised U Ui,j _Ui—l,j v Ui,j _Ui,j71
ot Y Ax YAy
+u Ui+1,j - 2Ui.j JrUi*l,j
(Ax)’
U ... —2U .+U .
i = 2 g } (8.114)
(Ay)

Now the two computed time derivatives are averaged:

revised
Ot Jyernge 2| Ot ot

and this average value is used to compute the corrected value
(for each dependent variable, of course):

8.116
o ( )
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You can see immediately why this scheme became so
popular—this explicit algorithm is simple enough that the
required programming logic is fairly easy to implement.
However, it cannot be applied to incompressible flow prob-
lems without modification since for incompressible fluid
continuity simplifies to V - v = 0; (no time derivative).
Fortunately, MacCormack’s method has been adapted for
such problems by Bernard (1986, 1989). In this variation,
the changes in velocity are determined exactly as shown
previously omitting pressure. Then the pressure gradient is
determined by the solution of a Poisson equation:

vV2U — d—U]
dt

Bernard (1989) developed a code (STREMR) for two-
dimensional flows of incompressible fluids using this
approach. This scheme was later extended to three-
dimensional flows (MAC3D) with the ultimate intended
application to turbulent flow problems.

MacCormack’s method is an extremely powerful way to
solve certain PDEs with time dependence. And although the
technique has been around for more than four decades, it is
still being applied to important practical problems and it has
been focus of continued development efforts. The interested
reader should see the article by Selle et al. (2008), “An
Unconditionally Stable MacCormack Method.”

ADAPTIVE GRIDS

At the beginning of this chapter, we noted that many prob-
lems of significance could be solved without mesh (or grid)
generation. Consequently, in our preceding discussion of the
numerical solution of PDEs, we normally used a square grid
in which Ax = Ay. This meant that, in most of the examples
we considered, the domain of interest was either rectangular
or regular is some way such that a square array of nodal
points would coincide with the important boundaries of the
problem. Obviously that will not always be the case and we
should expect to encounter problems involving objects
placed in the field or walls or boundaries that exhibit curva-
ture. In some cases, such problems can be handled rather
easily. Let us illustrate with an elementary two-dimensional
case; we will assume that we have flow in a divergent duct
as illustrated in Figure 8.16.
We will let

¢: Y

_— 8.118
b(1+cx?) ( )

n=x and

Obviously, whenever y coincides with the upper surface
of the duct, y = y, and ¢ = 1. This transformation yields a
rectangular grid in the computational plane since
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For upper surface, y, = b(1 + cx?)

] Upper
surface

Centerline

O T T T T T T T T T T T 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
X
FIGURE 8.16. Half of a duct with increasing flow area. Fluid
enters at the left and the origin has been placed on the centerline
(the x-axis). The position of the upper surface is described by

v, = b(1 + cx?), so b is the half-width of the duct at the origin.

0<n<x and 0<¢<I.

Now we will examine a fragment of the x-component of
the Navier—Stokes equation:

(8.119)

Of course,

ov, Ov, an ov,  Ov, 8_(]5 Oy, [ 1 ]
Ox On dy 9¢ dy 0p\bd+ex?))
(8.120)

What we have done in this case is fit the coordinate
system to the boundary, and for some simple problems in
which a duct wall does not correspond to our x-y grid, this
can be used effectively.

Now suppose we have a transport process occurring
where the size or shape of the domain changes—perhaps
repeatedly. If the field variable has specified values on the
boundaries, then an elliptic PDE will yield contours that will
conform to the objects or intrusions. For example, consider
the Laplace equation:

2 2
8_7’[}4_ 9 1/) =0.
ox*  0y*

(8.121)

Let us examine the situation where a simple 2/3-cut step
is placed in a rectangular domain. We will assign constant
values to v at both the top and bottom, and vary 1 appro-
priately at the left and right boundaries (these might be
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FIGURE 8.17. Contours plotted for ¢(x, y) obtained from the

solution of eq. (8.121).

inflow and outflow boundaries, respectively). We solve
eq. (8.121) iteratively and plot the resulting contours in
Figure 8.17.

Note how the contours conform smoothly to the intrusion
projecting from the bottom boundary. This suggests that we
might be able to obtain a coordinate system adapted to an
arbitrary shape through the solution of a Dirichlet problem.
This is what we mean when we speak of elliptic grid
generation.

A recurring scenario in fluid flow involves the situation
where we have flow around an object—we can think of an
airfoil, a bridge pier, or a heat exchanger tube. A hypotheti-
cal case in illustrated in Figure 8.18.

Of course, we could employ a square mesh and just
interpolate near the boundaries, but if strong gradients exist
near these surfaces (which is entirely likely), interpolation
may lead to significant error. This is our motivation for
finding a transformation that will yield coordinates that
conform to the surface of the immersed object, correspond-
ing to a rectangular grid in the computational plane. We will
think of this process in the following way: Let the surface
of the object correspond to the inner boundary—we know
pairs of (x, y) values that correspond to this surface. For
examples, if x = 3/2, y = £1.28906, and if x = 9/4,
y = £1.53809. We take the outer surface be some kind of
enclosing curve where once again the (x, y) values are
known. If the “ends” were also known, we would have a
Dirichlet problem and the connection between the x-y (phys-
ical) field and the computational plane would be governed
by two elliptic PDEs:

2 2 2 2
M+a—¢—o and 8—”+ﬂ:0.

8.122
ox* 0y’ ox* 0y’ ( )

4_< Flow direction

Upper and lower surfaces are
y=(x-x/16)

-5 T T T T T T T T T T ]
0 1 2 3 4 5
X

FIGURE 8.18. An object placed in a two-dimensional flow field.
This is an instance where elliptic grid generation would be ideal.
The upper and lower surfaces of the immersed object are given by
y = £(x — [x/16]).

Unfortunately, we must solve the inverse problem; we
need to solve for the x-y positions corresponding to ¢ — 7
positions in the computational plane. When x and y are the
dependent variables, we find

2 2 2
a0% g 0x 0% (8.123)
0¢? d¢dn  On*
and
2 2 2
a9 9p 0 %Yo a2
oo dpon an
The parameters A, B, and C are
2 2
A:[@] —|—[Q] , (8.125)
on on
B [3_][3_] +[@][@] (8.126)
op)\on) 09 )\On
and
2 2
C:[&] +[@] . (8.127)
Jolo} oo

In principle, if we know x and y on all four boundaries,
we can use eq. (8.123) and eq. (8.124) to determine the
location of a mesh point in the physical (x-y) plane relative
to a location in the computational (¢, 1)) field. However, if
we base the mesh generation on the pair of elliptic eq.
(8.122), we often do not obtain sufficient computational
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points in regions where there are large gradients. Note in
Figure 8.17, for example, how the contours are clustered
near the step point (a convex region) but are sparsely dis-
tributed at the bottom of the step (a concave region). For this
reason, production (or source) terms are often added with
the purpose of adjusting the shape of the computational
mesh; for example
2 2
99,99 _ pig.p.
ox* 0Oy
Now we will examine a discretization for eq. (8.123)—

for simplicity, we will omit the source term and we will take
Ap=An=1:

B
A (-xi+1,j - 2xi,j + xi—l,j) - E(XHI,/’H — Xi—1j+1 T Xit1j-1

+ X0+ C(xi,j+1 - 2xi,j + -xi,j—l) =0, (8.128)
with
1
A= Z[(xi,jJrl — Xij-1 )2 + (yi,j+1 = Vi,j-1 )2]7 (8.129)
_ L[ =) = 3101 ] (8.130)
4| + (}’i+1,j - yi—l,j)(yi,jﬂ - yi,j—l)
and
1 2 2
C= Z{(xm,j 7xi—l,j) (yi+1,j7yi—l,j) ] (8.131)

The equation for y, eq. (8.124) would be handled simi-
larly, of course. Functional forms for the source terms have
been put forward in the literature, and Thompson et al.
(1974) suggested that P(¢, n) might be expressed such that
it was dependent on velocity gradient or vorticity. The coor-
dinate system would be accordingly time dependent, and the
generated mesh would automatically concentrate in regions
where sharp changes in the field variables were occurring.
Elliptic mesh generation is an important topic in modern
computational fluid mechanics, and software designed spe-
cifically for this purpose has been incorporated into many
commercial CFD packages. Anderson (1995) provides a
nice introduction to this mesh generation and Chung (2002)
offers more detail. The reader with greater interest in body-
fitted coordinate systems may also find Thompson et al.
(1974) useful.

CONCLUSION

Many problems of interest in engineering and the applied
sciences are governed by PDEs and only a very small
number of these problems can be solved analytically. Most
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will require numerical solution. Consider, for example, a
simple case of heat transfer in a finite cylinder for which
L/d = 3. Thermal energy is produced throughout the interior
of the cylinder, the ends are maintained at 100° (which is
also the initial temperature of the object), and the curved
surface loses heat to the surroundings (with 7, = 70°)
according to Newton’s law of cooling. Suppose the govern-
ing equation is determined to be

o1 _ror o
or*  ror 97

e

or _ + 373",
" 8

(8.132)

where (3 has dimensions of (energy)/[(volume)(time)(T*?)].
The equation is nonlinear by virtue of the production term,
making analytic solution improbable. Yet the equation is
very easily discretized to yield

T it —Tij ~ Tivju —2T i + Ty 1Ti+1,j,k —Tirjx
At - (Ar)? r 2Ar
i Tk —ZT,’,,-,/; +T ik I B Ti,j,km-
(Az) oC,
(8.133)

We can solve this problem rapidly using the explicit tech-
nique described previously in this chapter; with the Biot
modulus (hR/k) set equal to 0.596, we obtain the sequence
shown in Figure 8.19.

The solution for this problem required just 35 lines of
code (with no particular effort to be efficiently compact) and
the programming logic was devised in less than 15 minutes.
What this example reveals is that even some rather formi-
dable nonlinear PDEs can be solved by elementary means
with no more computing power than that provided by ordi-
nary personal computers. The range of problems that the
analyst can solve in this way is broad, and the transformative
power the computer has exerted on routine solution of PDEs
is obvious.

To provide emphasis for this last point, we want to
provide the reader with an illustrative construction of a gen-
eralized elliptic PDE solver that uses SOR to handle Poisson
and Laplace problems in rectangular coordinates. The code
was written by the author, and it is designed to provide
capability for fluid flow, heat transfer, and mass transfer with
Dirichlet, Neumann, and Robin’s-type boundary conditions.
The governing equation has the form

=K

2 2
ngJrg—y‘f]JrP. (8.134)

The user is queried for the length (L) and height (H) of
the rectangular region and the source term, P, can be zero,
a constant, or spatially variable; for example,
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FIGURE 8.19. Results from the numerical solution of transient heat transfer in a finite cylinder with production. For these calculations,
L/d = 3, Bi = 0.596, and T,, = 70°. The sequence shown is for times of 1, 2, 4, and 8 (top to bottom).



b
P_a+c+(ny)2+(fo)2' (8.135)

In discretized form, eq. (8.134), appropriately cast for
iterative solution, appears as

_ w ¢i+1,j +¢i—1,_i ¢i.j+1 + ¢i,j—1 &_ .
d)i,_/ - ¢i,j + ﬁ (Ax)2 + (Ay)2 + K (ﬁ)qbt,_/ ’
(8.136)
where
3 2 2

===
(Ax)y*  (Ay)y

The rectangular region is divided into 101 nodes in each
direction, resulting in 9801 interior mesh points. The accel-
eration parameter for SOR, w, is taken to be 1.85. An arbi-
trary measure of convergence is employed to terminate the
computation (when the change in the sixth decimal place is
less than 1). First, we will apply the program to flow of an
aqueous fluid in a square microchannel, 18 pm on each side.
The applied pressure gradient will be (—)5300 dyne/cm*/cm.

Next, we will apply the very same code to conduction of
thermal energy in a slab with spatially variable production.
In this case, we choose L = 10 cm, H = 4 cm, and
k = 0.01 cal/(cm s °C). The slab’s bottom and left-hand side
will be insulated, but the top and the right-hand side will
lose thermal energy to the surroundings. The production
function has its maximum value in the center of the slab.

The examples shown in Figure 8.20 and Figure 8.21 are
simply intended to illustrate how easy it is to solve a broad
variety of elliptic PDEs using one basic code structure. The
user merely selects the size of the rectangular domain, the
numerical value of the transport coefficient, the boundary
conditions, and the nature of the source term. Since the
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algorithm is not constrained to a square mesh, calculations
can be made for a rectangular region of any aspect ratio.

Finally, we do want to point out the existence of other
useful numerical procedures for CFD that have not been
described here. The first of these is the explicit Lax—Wendroff
technique, which is appropriate for forward-marching in
time. For the two-dimensional flow of an inviscid fluid, we
would write

ap ov, Op ~ Ov, 8p]
—=—|p—4v,—+p——+v,—|, (8.137
o1 [pax Vo TPy Ty GBD
v v ov, 10p
Xy, 4 4=, 8.138
ot [v Ox g Jdy p@x] ( )
100
804
.é 60+
> 40
20

T T T T T ¥ T T T
20 40 60 80 100
Horizontal axis

FIGURE 8.20. Velocity distribution in a square microchannel
(18pum on each side) resulting from a pressure gradient of

—5300dyne/cm*cm. The average velocity is a little less than
0.07 cm/s.
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FIGURE 8.21. Temperature distribution in a two-dimensional slab with a spatially variable production of thermal energy (with maximum
at the center). The bottom and left-hand side are insulated and the top and right-hand side lose thermal energy to the surroundings by

Newton’s law of cooling.
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and

%:_[VX%H),%QH_P
X

]. (8.139)
ot 19) dy poy

Next, each of the dependent variables is expanded in a
Taylor series to give the value of that quantity on the new
time-step row; for example,

" (Ar)?
2

ap) 9’p
p[, VH»At _ pi, it +[_] At—l—[—
! oo, or?

ol (8.140)

ij

Note that the derivatives in eq. (8.140) are on the previous
time-step row; if we could obtain values for these time
derivatives, we could calculate p; ; on the new time-step row
explicitly. The first derivative with respect to time is obtained
directly from eq. (8.137) but with the spatial derivatives on
the right-hand side rewritten as second-order central differ-
ences (all those quantities are known because they are from
the previous time-step row). The estimate for the second

derivative,
[azp]t
2 b
or ),

is obtained by differentiating eq. (8.137) with respect to
time. Of course, this process generates mixed derivatives,

such as

u

ox0t )’

which are approximated by differentiating eq. (8.138) with
respect to x; other mixed derivatives are handled similarly.
Once again, all of the spatial derivatives are written as
second-order, central differences. Although the algebra asso-
ciated with Lax—Wendroff is complicated, the method is
fully explicit (just like the related technique, MacCormack’s
method, discussed previously). For this reason, it has been
popular among practitioners of CFD. Both Anderson
(1995) and Chung (2002) provide additional detail for the
interested reader.

The final approach we want to mention is known
as the semi-implicit method for pressure-linked equations
(SIMPLE), and it was devised by Patankar and Spalding and
is very nicely explained by Patankar (1980). You may recall
that we indicated previously that the major problem in CFD
was computation of the pressure field (and you may also
remember that we used the vorticity transport equation to
circumvent this difficulty in two dimensions). In the SIMPLE
procedure, the pressure field is estimated, the momentum
equations are then solved to obtain the velocity vector com-
ponents, the pressure field is corrected, and revised estimates
are obtained for the velocities. The corrected pressure then

serves as the initial estimate and the entire process is repeated
until convergence is obtained. Since its development in the
1970s, SIMPLE has been used by many fluid dynamicists
and it has been incorporated into a number of commercial
CFD codes for both two- and three-dimensional flows. It has
been found to be divergent in some applications, and under-
relaxation has been used to cure that problem. Patankar’s
book is recommended reading for the student wishing to
know more about SIMPLE.

We have shown in this chapter that a wide variety of
phenomena governed by PDEs can be modeled successfully
and the solutions can be computed with relative ease. In
many cases, even nonlinear phenomena can be dealt with
using nothing more sophisticated than a personal computing
device coupled with a spreadsheet. Most importantly, it only
takes a little practice to become proficient at solving a broad
spectrum of important practical problems.

PROBLEMS

8.1. Consider a slab of steel measuring 20 x 20 cm. The
left-hand edge (x = 0) is maintained at 1000° for all time
and the top surface (y = 20 cm) is insulated. The bottom
and the right-hand side lose thermal energy to the surround-
ings according to Newton’s law of cooling. Using the right-
hand side as an example, therefore, we write

T

=h(T,_pg—T,).
0x |, ( ® )

Find (and prepare a contour plot illustrating) the equilibrium
temperature distribution in the slab by solving

o1 T
oxt oyt

The thermal conductivity of mild steel is about 0.1 cal/
(g cm °C) and the heat transfer coefficient (7)) may be taken
as 0.033 cal/(cm? s °C).

8.2. A solid copper cylinder with a radius of 6 cm (with very
large L/d) has the upper half of its (curved) surface main-
tained at 300°C. The lower half of the cylinder is embedded
in a medium maintained at 7 = 100°C. Find the steady-state
temperature distribution in the copper cylinder. The thermal
conductivity of copper is 0.93 cal/(g cm °C) and the govern-
ing equation is

1 3[ 8T] 1 0*T
— — r— — —
rorl or) r*00*

8.3. A slab of anisotropic material measuring 10 x 10 cm
lies in the x-y plane. The thermal conductivity in the
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x-direction is 0.000834 cal/(cm s °C), but in the y-direction,
it is only 0.000361 cal/(cm s °C). If the left edge is main-
tained at 170°C, and the right-hand side at 25°C, find the
temperature distribution in the slab. The top and bottom
edges loose heat to the surroundings according to Newton’s
law of cooling; therefore, using the top for our example,
we have

L or

y=H

The temperature of the surrounding air is 35°C, and the heat
transfer coefficient, A, is 0.0001 cal/(cm? s °C).
The governing equation for the interior of the slab is

24, 97, 24, 97) g
ox\ ~0x) 9yl Oy

8.4. A viscous fluid is at rest in a square duct measuring
3 x 3 cm. Att = 0, a pressure gradient of 0.7 dyne/cm*cm
is applied in the z-direction and the fluid begins to move
down the duct. The fluid’s viscosity and density (¢ and p)
are 0.03 g/(cm s) and 1 g/cm’, respectively. Solve the gov-
erning equation,

9%, n 0%,
ot p dz

Ox* 6‘_yz

s

and find the velocity at the duct’s center at 1, 10, and 100
seconds. Find the ultimate centerline velocity and the
expected Reynolds number.

8.5. Consider the parabolic PDE given by

1010 0%
90 _,99
Ot Ox?

Compute and plot a series of ¢(x, f) curves such that
the full range of dynamic behavior of this system is
illuminated.

We are given the following: 0 < x < 4, ¢(0, 1) = 0, and
¢(4, 1) = 0, with the initial condition ¢(x, 0) = 25x.

8.6. A long cylindrical rod with R = 1 (and d = 2) is at an
initial (uniform) temperature of zero. At t = 0, the surface
of the rod is instantaneously heated to a constant 100°.
Spiegel (1971) provides the analytic solution for this
problem:

= Jo(\,r) 2
T(r,t)=100{1-2% —————exp(—a),1)|,
; AnRJl ()\nR)

The values for A\, come from the roots of J,, of course.
Compute the numerical solution for this problem and
compare your results at t = 0.5, 1.0, and 2.0 seconds with
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those obtained from the previous analytic solution. The
thermal diffusivity, «, has a value of 0.4. The governing
PDE is

ar _
ot

«

or vor
ort  ror

8.7. An annular fin is placed on a pipe to help dissipate heat.
The fin is constructed of mild steel and it extends from
R, = 4 cm to R, = 8 cm, with a thickness of 4 mm. At
r = Ry, the pipe wall has a temperature of 200°C for all time.
The temperature in the steel fin is governed by

or _
ot

(07

o1 10T 0T
or*  ror 027

and the flat annular surfaces (denoted by s) lose heat to the
surroundings according to

T
Z

s

We can assume that (nearly) no heat is lost through the
outer cylindrical edge of the fin (at r = R,). We are given
that i, p, C,, and « (all in centimeter-gram-second units) are
0.00678, 7.85, 0.118, and 0.12, respectively. We want to
investigate the dynamic behavior of the temperature distri-
bution in the fin if the temperature of the surroundings (7,,)
suddenly drops from 45 to 0°C. Assume that this tempera-
ture had been 45°C long enough that equilibrium had been
established prior to the change.

8.8. Find the distribution of S over the annular region,
R, < r < R,, where S is governed by the equation

o's 105 10
or*  ror r?oe?

Let S(r = R)) = 100, but S(r = R,) = 50 + 30 sin(f), where
0 varies from O to 27. The inner and outer radii are 1 and
10, respectively.

8.9. A solid cylindrical rod of radius, R, is immersed in a
liquid such that the surface temperature of the rod is main-
tained constantly at 50°. The rod has an initial uniform
temperature of 50°, but at + = 0, thermal energy begins to
be produced inside the rod by a source term, S:

oT

o T _ o 1ot o1
Por o =

oL 29 9 s
or*  ror 8zz+

The production of thermal energy in the interior follows:

]
a—+r
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The rod is 50 cm long with 0 < r < 10 cm. We know
(B =40 and a = 2. The properties of the material (p, C,, and
k) are 7, 0.22, and 0.19, respectively. Explore the dynamic
behavior of 7(r, f) over a time period sufficient to establish
the full range of thermal behavior.

8.10. The thermal conductivity of chrome steel varies with
temperature between 0 and 500°C, the relationship is
approximately linear: k = 62 — 0.0497, W/(m°C). A slab of
chrome steel 40 cm thick is at a uniform initial temperature
of 500°C. At ¢ = 0, the front face is quickly cooled to 0°C.
The back face is insulated. Find the evolution of the tem-
perature distribution in the slab by solving the equation:

or o0 oT
C,—=—|k(T)—|.
7o ax[ ( )ax]
The density of chrome steel is about 488 Ib,/ft’ and the heat
capacity is about 0.11 Btu/(Ib,, °F).

8.11. A viscous fluid in an annulus (with R, = 3 cm and
R, = 5 cm) is moving in the positive z-direction under the
influence of a pressure gradient. The average velocity is
4 cm/s. At t = 0, the inner surface (which was stationary)
begins moving (in the z-direction) at a constant velocity of
—10 cm/s. When will the net flow be exactly zero? The fluid
motion is governed by

ov. _ o

P ot 0z

1o,
K ror\ Or

8.12. Consider water, initially at a uniform temperature,
flowing in the z-direction between parallel plates; for z > 0,
both the upper and lower plates are maintained at a constant
elevated temperature. The lower planar surface is located at
y = 0 and the upper at y = B. For steady-state conditions,
the governing equation is

oT 0*T 0T
cv 2L 0T
P 0z \8y2 07*

We will assume that the fluid properties are constant, the
flow is fully developed, and that the centerline (maximum)
velocity is V.. We want to find the bulk fluid temperature
and the Nusselt number as functions of the z position. Before
we begin, we should carefully consider the axial conduction
term, 9*7/9z*. Under what circumstances can we expect this
term to be negligible?

We will use the following specific values for our problem:
B =3cm, V,, =5 cm/s, Ty = 150°F, and T,, = 50 °E.
Assume that the fluid properties (for water) are constant, and
use values corresponding to a temperature of 80°F. Prepare
a figure that shows both the bulk fluid temperature and the
Nusselt number (Nu = hd/k) as functions of the z position.

How long must the apparatus be if the bulk fluid temperature
is to be 60, 70, 80, and 90°F? Show that the bulk fluid tem-
perature at z = 600 cm is 24.77 °C. Remember that the bulk
fluid temperature must be determined by integration of the
product, V.(y)7(y), over the flow area.

8.13. The FitzHugh—-Nagumo model describes wavelike
phenomena associated with nerve axons and it consists of
the pair of equations

av Voo
& RV [(r) and
or TV T an
R _ 4V —bR +a).

ot

V is the membrane potential (output of the neuron), R is a
restoring effect, and I(¢) is the input or forcing function. For
certain parametric choices (a, b, k), this model can exhibit
chaotic behavior. One variant of the model that appears
frequently consists of the equations

%lzc(—R-i-V—%W—i—I(t)) and ‘fi—R=V—bR+a.
) t

Begin by solving this pair of ordinary differential equa-
tions with @ = 0.7, b = 0.8, and ¢ = 10, and let I(¢) be a
simple periodic (sinsusoidal) input with an amplitude of 1.
Prepare a plot of V() and R(¢) to reveal the phase-plane
dynamics of this simplified system. What will the impact of
the term &?V/0x* be on the solution of this system? Demon-
strate the difference between the alternative models by
solving the initial set of equations.

8.14. Solve the wave equation

u 2 ’u

or? Ox*
numerically over the range —10 < x < +10. The initial
distribution of displacement, u(x, 0), is u = exp(—xz), with
zero initial velocity. Set the Courant number equal to 1 and
use the results shown in Figure 8.22 as a solution guide.

8.15. Use the vorticity transport equation to compute tran-
sient two-dimensional flow over a rectangular box placed on
the bottom surface between parallel walls. The height of the
box corresponds to 1/2 of the vertical channel size. The fluid
is initially at rest, and motion is started by sliding the upper
surface at constant velocity in the x-direction. Focus initially
on Reynolds numbers (using the height of the box for the
characteristic length) of 15 and 25. A typical result from
such a computation is shown in Figure 8.23 for the case in
which Re = 15.

8.16. We have a two-dimensional slab that extends from
x=0tox =L and fromy = 0 to y = H. Three sides of the
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slab are maintained at 100° and the bottom edge is insulated.
Thermal energy is produced in the interior of the slab and
the maximum rate of production occurs at the exact center.
The governing equation is

82T o°T

k| =+ +
ox* 0y

A

=0.
_ 2 l _ 2 l
(x—L1/2) +4“(y H/2) +4]

Compute the temperature distribution in the slab, 7(x, y), and
plot the isotherms. You should see something like the result
shown in Figure 8.24.

Also, evaluate the rate of heat loss from the top edge of
the slab. We know L = H = 8, A = 0.085, and k£ = 0.005.

8.17. Repeat the analysis of mass transport between
concentric cylinders illustrated in the section on Elementary

0.5+

o
T

o
w
]

Displacement

o
P

0.1

0.0 \ -

Oor—T 7" 77— T T T T 1 1

0 20 40 60 80 100 120 140 160 180 200
X position index

FIGURE 8.22. Note that the initial exponential distribution of

displacement results in the formation of two peaks traveling in

opposite directions. An x index of 101 corresponds to the center of

the interval (i.e., x = 0). Curves shown are for times of 0.015

(solid), 0.03 (dash), and 0.06 (dot) second.
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Problems with Convective Transport, pages 164 and 165, but
allow the tangential component of velocity to oscillate such
that

vy=0F=Ryt)= 24sin[ét].

How much impact does the oscillation of the outer cylinder
have on the radial development of the concentration plume?

8.18. Consider a cavity filled with a viscous fluid initially
at rest. At t = 0, the upper surface of the cavity (a flat plate)
begins to slide in the positive x-direction with constant
velocity, V. Use the following equations to model the result-
ing flow:

8w+ 8@.}+ dw 8w+82
or " ox " ay oxr oy
vx = % vy - _8_w5
Jy Ox
and
821/) 82w
O 6‘y

Solve this problem for a square cavity with unit width
and depth and let V = 1. Place the origin in the lower left-
hand corner and take the kinematic viscosity to be 0.10. The
Reynolds number for this flow, therefore, will ultimately be
Re = Vh/v = 10. Prepare a series of plots of the stream
function that illustrate the evolution of the flow. The student
should note that if the Reynolds number is sufficiently small,
this problem would simply require solution of the bihar-
monic equation, V*%) = 0; that is, one could ignore the
convective transport of vorticity. Chow (1979) provides an
example of the solution procedure for this creeping flow
problem in chapter 3 of his book, An Introduction to Com-
putational Fluid Mechanics. If the upper surface is started

250+

1004

504

—

FIGURE 8.23. Computed results for two-dimensional flow over a rectangular box with Re = 15 (based on the box height and the midchan-

nel velocity).
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FIGURE 8.24. Temperature distribution in a slab with the produc-
tion function centered.
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FIGURE 8.25. Streamlines in the square cavity 0.01 second after

motion of the upper surface (at V = 1) is initiated. Note that the

velocity (in the x-direction) near the bottom streamline is only

about —0.0159 cm/s.

impulsively at r = 0 with a velocity of 1, then at very small
times, the analyst should obtain streamlines similar to those
shown in Figure 8.25.

8.19. An interesting variation of Problem 8.18 (see Figure
8.25) is posed by a square cavity in which the top is a free
surface (nearly zero momentum flux) and the bottom surface
slides with constant velocity, V. Solve this modified problem
with the same parameters employed in Figure 8.25.

A’

Layer 3

Layer 2

Layer 1 x

>

FIGURE 8.26. Three-layer solid state device arrangement.

8.20. We want to examine a solid-state device with three
layers with production of thermal energy occurring in the
intermediate layer (layer 2). Each layer will have a differ-
ent conductivity, but all three have the same thickness
(0.667cm). The device is 3cm long (horizontally) and
2cm high. The general form of the equation we must
solve is
T 0T
S

and the three thermal conductivities are 124/100, 52/100,
and 130/100 for k, through k3, respectively. We are dividing
by 100 to convert from W/(mK) to W/(cmK). The produc-
tion term for layer 2 has the constant value, 25W per
unit volume. A crude picture of the device is provided in
Figure 8.26.

Assume that the bottom surface (the bottom of layer 1)
is insulated, as is the left-hand side (vertical edge). The top
loses thermal energy to the surroundings according to New-
ton’s law of cooling: /,(Twp — Toir). The right-hand edge
also loses thermal energy to the surroundings, but the actual
BC will vary with layer:

_kn [8_T] = edge (Tx:L - Tair)'
Ox )._r

We are going to assume that A, = 0.75 and that
Negge = 1.5, = 1.125. The air temperature will be taken as
25°C. Find the temperature distribution in the interior of the
device (temperature contours). Will this arrangement meet
operating requirements if the thermal limit for the device
is 60°C? The results of a calculation for the case in which
both vertical sides and the bottom are insulated is shown in
Figure 8.27 as a guide.
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FIGURE 8.27. Temperature distribution in the three-layer device when the bottom and both sides are insulated.

Y=B Absorbing boundary
Y & B=6in.=1524cm

Impermeable boundary

B
>

Block dimensions: 2 x 3 in. z
Block is positioned in the center of the passageway, 3 in. from the inlet plane

FIGURE 8.28. Porous medium with an impermeable obstruction
placed in the migration path.

8.21. Transport processes in porous media are sometimes
simulated by placing impermeable obstructions in the migra-
tion pathway. Consider the situation illustrated in Figure
8.28, where an impermeable block has been placed in the
center of the channel. The height of the block is 2 in., so it
provides 33% occlusion of the pathway.

The contaminant, at a concentration of 1, enters the
region from the left where z = 0. The lower boundary is
impermeable and the upper boundary is absorbing; that is,
the contaminant is instantaneously removed such that C = 0
for all  at the surface indicated by y = B. We assume that
the mass transfer process is governed by

0*C 0°C
oy* 07

oc

—=D
ot

Our interest is the total flow of contaminant past the trail-
ing edge of the block where z = 6 in. or 15.24 cm. We will

take D = 2 x 107 cm?s (a very large value, but this will
shorten the computational time considerably). It takes almost
1 hour for the contaminant plume to reach the leading edge
of the block and about 5 or 6 hours for it to reach the trailing
edge. Compare the rate at which the contaminant migrates
past the block at z = 6 in. with the rate of transport past
that plane with the obstruction removed.

8.22. Consider a porous, sorbent sphere placed in a well-
agitated solution of limited volume, for example, an acti-
vated carbon “particle” immersed in a beaker of water
containing an organic contaminant. The contaminant (or
solute) species (A) is taken up by the sphere and the concen-
tration of A in the liquid phase is depleted. The governing
equation for transport in the sphere’s interior is

0C,
ot

P°Cy , 20C,

=D
or* r Or

As we have seen previously, this equation can be trans-
formed into an equivalent problem in a “slab” by setting
¢ = C,r. The total amount of A in solution initially is VCy,
and the rate at which A is removed from solution can be
described by

0C,

47R* D=L .
ar r=R

Therefore, the total amount removed over a time, ¢, can
be obtained by integration of this equation. The limiting case
is readily solved through the use of the product method and
the transformation of our equation leads to

2 _ 0%

ot o’
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which is a (familiar) candidate for separation of variables:
A 2 s
C, = —exp(—DAt)sin \r.
r

The cosine term has disappeared because the concentra-
tion of solute at the sphere’s center must be finite, of course.
It is convenient to switch to dimensionless concentration,
where

Cs —Ca

C= A"
CAs 7CAi

It is likely that the sphere contains no solute initially, so
C,; = 0. When the solution volume is unlimited, then we write

C=1+ Z A, exp(—DM\,*t)sin \,r,

n=1 r
where \, = nn/R.

Complete the analytic solution started previously for the
limiting case and prepare a figure that shows M/M, as a
function of D#/R*. Note that M, is the amount of solute taken
up by the sphere through time, ¢. M, is the amount taken up
by the sphere after infinite time.

Solve the “limited solution” problem numerically and
prepare similar curves for three cases: the portion of solute
ultimately removed from solution (and taken up by the
sphere) is 20%, 50%, and 80%.

Suppose spherical sorbent particles with d = 4.8 mm are
used to remove benzyl alcohol from an initially saturated
aqueous solution maintained at 17°C (the solubility is
4 g/100 g water). It is known that D = 0.82 x 107° cm%s.
The number of particles employed is such that each is effec-
tively surrounded by volume of liquid corresponding to
100 mm’. Prepare a figure that shows the concentration of
benzyl alcohol remaining in solution as a function of time,
assuming the liquid phase is energetically stirred. Then,
repeat this final part of the problem using a Robin’s-type
boundary condition at the surface with KR/D = 0.2.

8.23. Circumstances can arise in mass and heat transfer in
which a concentration or temperature front can propagate
through a medium. Such cases are referred to as moving-
boundary problems and examples of how they can occur
include the following:

* The diffusivity experiences a sharp, discontinuous
change at a particular concentration.

* The diffusing species is immobilized at a limited
number of available sites.

* A chemical reaction occurs at a reactant interface and
one or more product species migrate through the
medium.

* Heat flows through a medium in which a phase change
occurs at a specific temperature (the latent heat effect
may either produce or absorb thermal energy).

Suppose we have a medium in which the diffusivity is
10~* ¢cm?s if the dimensionless concentration is above 0.5
but is four orders of magnitude smaller (10~7) for concen-
trations below 0.5. At r = 0, the concentration at the front
face where x = 0 is instantaneously elevated to 1; there
is initially none of the diffusing species in the medium.
Compute the migration of this species into the medium
and plot the resulting concentration as a function of

x/ \J4Dit, where D, is the elevated diffusivity (107°) so
that the evolution of the concentration profile is evident.
You can compare your results with Figure 13.7 in Crank
(1975).

8.24. Refer to Figure 8.17 (regarding elliptic grid genera-
tion). Suppose that the paucity of contours at the base of the
intrusion was preventing the analyst from accurately solving
a particular problem. Develop and add an appropriate source
or production term to eq. (8.121) to rectify this difficulty
and then demonstrate its effectiveness by computing the
solution of the modified equation numerically and replotting
the 1(x, y) contours.

8.25. A concrete drainage ditch is constructed in the form
of a 90° “V” and it is to be used to carry 5500 gpm of
wastewater away from a plant. Assume that the flow is gov-
erned by

&V, +82VZ + pgsinf
=H e oy? P& sy

The slope is 1 ft/1000 ft such that sind = 0.001. By
computation, determine the depth of water in the channel.
Then, repeat the analysis, but assume that the channel is a
60° “V.” One concern with an open channel of this type is
the possibility of particle deposition in the bottom of the “V,”
and if sedimentation occurs, the carrying capacity of the
ditch could be reduced. Consequently, particle “scour” is
extremely important; make sure that your calculations also
provide an estimate of the shear stress at the bottom of the
channel.

8.26. Water flows through a partially filled large pipe, 1 m
in diameter, under the influence of gravity. The depth of
water in the pipe (measured vertically from the bottom) is
d/3 or 0.667R. The velocity distribution is (approximately)
governed by

16‘[ 3\4] 1 0.
——|r—|4+—=

rorl or) r? 00 ]—l—pgsmqﬁ.
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The angle of declination is small, so we will take
sin ¢ = 0.0002. The fluid flows over a section of coated pipe
wall that is soluble, and we will take the concentration on
the fluid side of the interface (immediately adjacent to the
pipe wall) to be 1. The continuity equation for the soluble
species will be

Vza—C:D
0z

10 [ 3C] 1 0*°C
Bl Pl I
ror\ Or r? 00°

The coated section of wall is 1 m long and D =
0.0002 cm?s. Find the concentration distributions 200, 400,
and 800 m downstream. Any contaminant that finds its way
to the free surface disappears immediately (is volatilized).
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INTEGRO-DIFFERENTIAL EQUATIONS

INTRODUCTION

Integro-differential equations (IDEs) arise in a variety of
contexts; there are applications to process control and to
diffusion along grain boundaries (Antipov and Gao, 2000),
as well as modeling for neural networks (Jackiewicz et al.,
2008), option prices (Cont and Voltchkova, 2005), and the
spread of infectious diseases (Medlock and Kot, 2003). Only
rarely can analytic solutions be found for such problems,
so frequently, the analyst must resort to numerical methods.
Note that IDEs also figure prominently in the analysis of
multiphase processes where countable entities such as
bubbles, drops, and particles are borne by a fluid phase.
Examples include solvent extraction/emulsification, floccu-
lation, crystallization, sedimentation, and the operation of
biochemical reactors. Because so many industrial processes
involve countable entities, the importance of IDEs to process
engineering and the applied sciences cannot be overstated.
To provide a historical framework for our consideration
of IDEs, we will explore their role in the early twentieth-
century study of biological systems. Vito Volterra was an
eminent [talian mathematician (1860-1940) whose career
was effectively ended by his refusal to sign the oath of alle-
giance to the Fascist government in 1931. It is worth noting
that only 12 Italian university professors refused to sign, a
small number but one that is understandable given the con-
sequences (essentially exclusion from the Italian intellectual
and scientific communities). One of Volterra’s principal
interests was mathematical biology, particularly, the dynamic

behavior of populations in conflict, which is frequently
referred to as the predator—prey problem. Let us preface this
part of our discussion by considering a simple system con-
sisting of (initially) known populations of foxes (F) and
rabbits (R).

Prey species usually reproduce rapidly since interactions
with predators will invariably diminish their numbers.
A very simple model for the prey population might be
written as

d—R:alRfazRF. ©.1)
dt

In contrast, predators do not usually prosper by excessive
breeding since they will suffer from too much competition
for available prey:

Z_f: “bF + b,RF. 9.2)

You will notice the similarity between the two differential
equations, but with a reversal of signs, of course. This ele-
mentary model is deterministic; given values for the con-
stants and the initial populations, the future numbers of
foxes and rabbits are set for all time, ¢. We recognize that
this cannot be correct. One obvious but trivial objection is
that a fractional rabbit is not physically realizable. More
importantly, there are aspects of animal behavior that are not
reflected by these first-order ordinary differential equations

Applied Mathematics for Science and Engineering, First Edition. Larry A. Glasgow.
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FIGURE 9.1. Phase-space portrait of the dynamic behavior of the
predator—prey problem for foxes and rabbits. Motion on this limit
cycle is clockwise and the parametric values employed were
a, = 1/2, b, = 1/4, a, = 1/3, and b, = 1/12. The initial populations
were nine rabbits and one fox. The closed cycle means that this
system’s behavior is periodic.

(ODEzs); that is, some behavioral phenomena are not deter-
ministic. At the same time, we may be able to learn some-
thing useful about the dynamic behavior of such simple
systems that will benefit us later. We will use eq. (9.1) and
eq. (9.2) to compute R(?) and F(#), and then we will cross
plot the dependent variables to produce the phase-space
trajectory.

The data provided in Figure 9.1 illustrate that an increase
in the number of rabbits results in growth of the predator
(fox) population. Of course, this increase in predators dimin-
ishes the number of prey animals, lack of food causes the
number of predators to decrease, the prey species recovers,
and so on. As we pointed out previously, the model employed
is not entirely realistic. Volterra recognized that it was unrea-
sonable to assume that the dynamic behavior of a biological
system should depend solely on its present state. Indeed,
many common physical systems exhibit dependence on past
events—what Volterra referred to as “hereditary influences.”
An engineer might be more likely to think of a cylindrical
rod repeatedly subjected to torsion, or an airliner cabin
that has experienced thousands of pressurization cycles; at
some point, the materials may fail due to cumulative effects
of stress.

One approach to such problems is to add a time integral
to the model—in essence, a term that will reflect historical
influences on system behavior. We will start with the case
of a single population, where an appropriate model might be
written:

AN EXAMPLE OF THREE-MODE CONTROL 185

t
LD g rayt [Kaovors. 03
y dt
o

The difficulty posed by the integro-differential eq. (9.3)
depends mainly on the nature of the kernel, that is, the func-
tional form of K(#, ¢). Before we reexamine our predator—
prey (populations in conflict) problem, we can carry out a
small exploration of some of the effects of the addition of a
simple history term. We will do this by examining an ele-
mentary control strategy that is familiar to many engineers,
where part of the control action is determined by the past
behavior of the system.

AN EXAMPLE OF THREE-MODE CONTROL

We now look at an example from process control that will
allow us to better appreciate the significance of the addition
of the integral, as illustrated by eq. (9.3); we will do so for
a problem that is linear with respect to the variable that
drives the controller (the error, €). One tried and proven
strategy for automatic process control is found in the
proportional-integral-derivative (PID) algorithm. Let ¢ rep-
resent the error detected in an output variable (perhaps tem-
perature, pressure, concentration, pH, etc.). P is the controller
output (pressure in the case of pneumatic controllers); please
note that P is in deviation form—the equilibrium value has
been subtracted such that the initial (undisturbed) value for
P is zero. In the time domain, our PID algorithm appears as

t
P=K, 5+if€dt+7'0%. 9.4)

-
%o

K is the controller gain, 7; is the integral time, 7, is the
derivative time, and ¢ is the measured error. We have three
parameters that will affect the behavior of this system. The
corrective action taken is dependent on the instantaneous
error, the history (time integral) of the error, and the deriva-
tive of the error. It should be clear that the integral action
will take into account the past behavior of the system and
the derivative action will anticipate what is about to happen
at an instant in time. For this reason, K 7p(de/dt) is often
referred to as anticipatory control. It is convenient to formu-
late a transfer function for eq. (9.4) using the Laplace
transform—this takes us from the time domain to the
s-plane:

m:[(c[l-s-L—H-Ds]. 9.5
e(s) TiS

You will observe that integration with respect to time has
been replaced by division by s, and that differentiation with
respect to time has been replaced by multiplication by s.
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Now let us assume a particular functional form for the error;
we will start with a sinusoidal error such that £(¢) = Asin (wt)
and e(s) = Aw/(s* + w?). Therefore,

AWKC (TITDSZ + TS + 1)
i . 9.6
s(s? +w?) ©6)

P(s)=

Here is where the effect of adding integral control
becomes really apparent; the order of the polynomial (in s)
in the denominator has been increased by 1. This also means
that in the complex plane, a pole has been placed at the
origin; you may recall that a complex root with a positive
real part implies unstable oscillatory behavior. In the control
literature, root locus is a graphical technique used to identify
roots of the characteristic equation (a polynomial in s).
When complex roots exist, parts of the dynamic response of
the system will be governed by terms of the form e“"™*" =
e“(cosbt + isinbr). Thus, when a is positive, the system
response will be oscillatory with increasing amplitude
(unstable).

We can invert eq. (9.6) by partial fraction expansion, or
choose to work strictly in the time domain so that our results
will be immediately transparent. Our particular interest is to
explore the impact of the system’s history (manifested in the
integral control) on its behavior. We will achieve this by
varying the value of 7; from 10 to 1 (remember, 7; has an
inverse impact on the integral term).

Our objective with Figure 9.2 is to learn a little bit about
how the “history” term affects the solution of eq. (9.4). We
see that as the importance of the time integral is increased
(; varies from 10 — 1), the oscillatory nature of the response
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FIGURE 9.2. Ilustration of the response of eq. (9.4) to sinusoidal
error (the error is the heavy curve at the bottom that oscillates
between —1 and +1). Results for four different values of 7; are
shown, 1, 3, 6, and 10.

is enhanced and the phase lag (shift of the peaks to the right)
is increased. In fact, one of the more interesting features of
PID control is that just about any system can be destabilized
if enough integral action is added, that is, if 7; is made small
enough! As a practical matter, we note that the large response,
P(t), seen in Figure 9.2 would almost certainly saturate the
final control element (typically a control valve). Saturation
can also result from a prolonged history of error (a persistent
error condition) which will cause the integral, f g edt, to
continue to accumulate, resulting in what is referred to in
the control literature as integral “windup.” This condition is
usually avoided in practice by switching from the position
form to the velocity form (of the PID algorithm).

POPULATION PROBLEMS WITH
HEREDITARY INFLUENCES

It will prove advantageous to return to eq. (9.3), with a slight
modification, such that we have (initially) a one-variable
problem:

t
d
Y ay+ay +y [Ka—on@nds.  ©7)
0

You will observe that a specific form has been chosen for
the kernel in this case—this is the kernel that Volterra
referred to as belonging to the closed-cycle class. Following
Davis (1962), we approximate the kernel by writing

1
K(z)=K0+K1z+5K2z2+---, 9.8)

then we assume that the only K that is nonzero is K, (we
are truncating our approximation of the kernel). We sub-
stitute into eq. (9.7), divide by y, and then differentiate,
resulting in

d’y [a’y]2 ) dy ;
— == —+K,y°. 9.9
dt* dt + @y dt+ 0y ©9)

It proves convenient to let

y:fﬂ, t:L, and A= Ko ,
a a —a14,
which yields
2 2
uﬂ[@] —u? N (9.10)
dr* \dt

Davis notes that no closed-form solution is known for
this ODE, so a numerical solution is required. The intrigu-
ing feature of eq. (9.10) is the profound impact that the
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FIGURE 9.3. Solutions of the ordinary differential eq. (9.10),
with increasing values of the parameter, A. The solution in the

“middle” that approaches a horizontal asymptote is often referred
to as the growth, or logistic, curve.

parameter, ), has on the solution. We will explore the solu-
tion of this ODE with increasing As in Figure 9.3.

The principal task of interest to us now is to assess what
happens when hereditary influences are added to the case of
two populations in conflict. It is likely that some profound
changes—relative to the results shown in Figure 9.1 for
foxes and rabbits—will occur. The model we will consider
takes the form

dx '
= ax—bXY —KIX[Y(¢)d¢ ©.11)

and

A Y4 BXY LKy f X($)dd.  (9.12)
dt f

Using the approach described previously for the single-
population example, we obtain the system of ODEs:

2 2
ax_1 [d—X] ek xy 9.13)
dar* X\ dr dt
and
&y 1 [dY]2 dx
—— =—||=| +8Y?=—+K,XY?*|. 9.14
dr* Y|l dr p dt ? ©.14)

We will confine our attention to the case for which
a=b=2,K =-0.05,and « = 8 =1 with K, = —0.05.
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3.5 Initial point
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FIGURE 9.4. Phase-plane portrait for two populations in conflict
with hereditary influences. Motion in this case is counterclockwise
from the initial point, which is (X, Y) = (1, 2). The constants K
and K, are set to —0.05 for this example.

The initial values for X and Y will be taken as 1 and 2,
respectively. Of course, since we are now solving second-
order ODEs, we need a second initial condition; we can
obtain values for the first derivatives directly from eq. (9.11)
and eq. (9.12) by noting that, for r = 0, the integrals disap-
pear. Therefore, the initial values for X and Y can be used to
obtain (dX/dt),_, and (dY/dt),—,. We discover that the solution
for this system is very different from the case reviewed in
the introduction where hereditary influences were neglected.
It is evident from Figure 9.4 that the phase-plane trajectory
has an evolving shape and the populations are unstable.

There are several important lessons to be drawn from this
study of populations in conflict. Foremost, the addition of
hereditary influences can render the populations nonperiodic
and unstable. Moreover, by making one of the Ks positive
and one negative, we can also obtain extinction of one
species and proliferation of the other. The reader may wish
to investigate the possibilities by setting K; = —0.05 and
K, = +0.05, which results in a trajectory that collapses
along the y-axis with very small values for X occurring
intermittently. The effects obtained with various combina-
tions of Ks will form the basis of a student exercise at the
end of the chapter.

AN ELEMENTARY SOLUTION STRATEGY

In the previous section, we converted our IDEs into second-
order ODEs that we solved by methods already familiar
to us. We now want to look at an IDE example to illustrate
how such problems might be solved when we retain the
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integral but employ a simple discretization. Consider the
nonlinear IDE:

du_ [
14 [ W2($)do, 9.15)

for which u(x = 0) = 0 and 0 < x < 1. This equation has
been solved by Batiha et al. (2008) using the variational
iteration method (VIM), so we will have a convenient com-
parison. We replace the derivative, du/dx, with the first-order
forward difference:

du ~ u(x + Ax) —u(x)

9.16
dx Ax ( )

and the integral is approximated by the summation of rect-
angles each of width, Ax. We choose Ax = 0.001 and
proceed from x = 0 to x = 1. Let us compare our results
with those provided by Batiha et al.

VIM (Batiha et al., Approximate
X 2008) Discretization
0.0000 0.000000 0.000
0.0938 —0.0937935 —0.094
0.2188 —0.2186091 —-0.218
0.3125 —0.3117064 —0.311
0.4062 —0.4039385 —0.404
0.5000 —0.4948226 —0.495
0.6250 —0.6124315 —-0.612
0.7188 —0.6969446 —0.697
0.8125 —0.7771007 —-0.777
0.9062 —0.8519654 —0.852
1.0000 —0.9205578 —0.921

We can see from the tabulated results that this elementary
discretization has produced a quite acceptable agreement
with the published solution for this IDE. We would do well
to wonder how the results of such a simple procedure would
compare with a case for which the analytic solution can be
easily determined, resulting in a more definitive test. We will
do this by looking at the linear IDE,

?Hu +5fu(¢)d¢ —1, with x>0 and u(0) = 0.
X
0

9.17)

We observed previously that a linear equation of this type
can be solved readily through the use of the Laplace trans-
form, and we now illustrate this process. We begin by taking
the Laplace transform of each term in the equation (noting
that u(x = 0) = 0):

su(s)+2u(s)+5

u(s) 1
=3 (9.18)

N

I

=3

S
i

Solution of integro-differential equation

-0.054

T T T T T T T T T T T 1
0 1 2 3 4 5 6
X
FIGURE 9.5. Comparison of the analytic solution (solid curve)
of the integro-differential eq. (9.17) with the approximate solution
obtained by discretization (filled circles).

We isolate u(s):

1
u(s) = ————, 9.19
(s) ENT Y- 9.19)
then by partial fraction expansion:
1 A B
, (9.20)

= +
+1+2D)(s+1-2i)) s+142i s+1-2i

and we find that A = (1/4)i and B = —(1/4)i. Thus, we can
now invert our transform:

u(x)= liexp((f 1-2i)x)— liexp((f 1420)x)
‘1‘ 4 9.21)
= 5 exp(—x)sin(2x).

To provide a comparison, we will employ the very same
discretization scheme we used for the first (nonlinear)
example in this section, using a step size (Ax) of 0.005. Both
solutions are provided in Figure 9.5. The analytic case is
shown as the solid (black) curve and the approximate com-
puted values are represented by the small filled circles. The
typical discrepancy between the two solutions is on the order
of about 0.4%. For all but the most exacting applications,
this would be completely satisfactory.

VIM: THE VARIATIONAL ITERATION METHOD

Previously in this section, we cited some results obtained
using VIM. Pioneering work by He (1999, 2000, 2007) led
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to rapid exploitation of the technique, and the efforts of
Batiha et al. (2008), He and Wu (2007), and many others
indicated that VIM might be especially well suited to the
solution of IDEs. It is, therefore, appropriate that we deviate
from our course a little to provide a discussion of VIM. So
that we better understand the technique, we must spend a
few moments discussing Lagrange’s multiplier method,
which we saw for the first time in Chapter 2.
Let us suppose that we have two variables that are to be
combined such that
x2 +2x° =30. (9.22)
We are seeking values for the two variables that cause the
product (x;x,) to be a maximum, subject to the constraint,
eq. (9.22). These values can be identified through use of the
Lagrange multiplier, A. We write
F = xx, + A% 4+2x,° —30). (9.23)
This expression is differentiated with respect to each of

the three variables, and the partial derivatives are set equal
to zero:

OF 420w =0 (9.24)
ox,
OF _ X +6Ax2 =0 (9.25)
ox,

OF _ 2 iox?—30=0. (9.26)

oA

These three equations are solved, and the reader may
wish to show that x; = 4.24264, x, = 1.81712, and
A = —0.21415; accordingly, the maximum product subject
to the constraint is x;x, = 7.70939. Next, we examine how
the Lagrange multiplier technique is modified for applica-
tion to an ODE. Suppose we have the ODE,

du

+ut =2,
dx

(9.27)

with u(0) = 1/4 and 0 < x < 1. In this case, the ODE can
be solved yielding

«/§+u
V2 —u

= exp(zﬁ(x + 0.126326)). (9.28)

We will calculate a few values to have a comparison
readily available:
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X u(x)
0 0.25
0.13495 0.50
0.29129 0.75
0.496899 1.00
0.85885 1.25

Now we are set; let our ODE, eq. (9.27), be rewritten as
u,’ +u,” —2. The successive iterations are determined from

Uy = U, —l—f)\(u,,’ +u,> —2)ds. (9.29)
0

The Lagrange multiplier, A, can be identified from the
stationary condition(s), and for linear ODESs, A can be deter-
mined exactly. For the nonlinear eq. (9.27), we will presume
A = —1 and proceed. We take u, = 1/4 (satisfying the initial
condition) and find by integration u; = (1/4)+ (31/16)x.
Therefore,

x

1 31 31 %I ,
=t x— | | =5+ —s2|ds, 930
Uy +—x f[3 s+ 5 s] s ( )

0
which yields

uzzl—l—ﬂx—ﬂxz—ﬁﬁ. (9.31)
4 16 64 768

If we let x = 0.29129, we find u ~ 0.74235; setting
x = 0.4969 produces u ~ 0.9396. These two results have
corresponding errors of about 1% and 6%. For many appli-
cations, this level of error would be tolerable, but additional
iterations will be necessary if we require improved
accuracy.

Let us consider one more example to ensure our familiar-
ity with this very powerful technique. Suppose we have the
ODE,

3
X Githur=0)=1.  (9.32)
dx (u+1)*
The analytic solution is known:
PSS TE
3x* +4(u+1)> =32, or alternatively, u = %] —1.
(9.33)
Our succession of estimates is obtained from
X ) S3
U, =u, — | |u,’+——\ds. 9.34

" f[ <un+1>2] O3
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If we start with uy = 1, we can very easily find
u; = 1 — (x*/16). Therefore,

Xt
u :1———f
: 16 J

ds, (9.35)

s3 53
I —
4 (2—%s4 :

and

64

u, =3+ .
: ¥ —32

(9.36)

We can compare these estimates with the analytic solu-
tion in the following table:

X= 0.50 1.00 1.25 1.50 1.75

u(x) analytic  0.996086 0.935438 0.834018 0.613829 —0.011526
u;y (x) 0.996094 0.93750  0.847412 0.683594 0.413818
i (x) 0.996086 0.935484 0.834809 0.624130 0.170782

Except for higher values of x, the second iteration
does a remarkable job of representing the solution of this
ODE.

We want to facilitate the application of VIM more
broadly and this will require that we make use of some
elements from the calculus of variations. Because our goal
is to use VIM as a tool, we will pursue the approach
described by Ji-Huan He in his interview in ScienceWatch,
July 2008: We want to present the technique in such a
way that “anyone who knows nothing of variational theory
in mathematics can apply the method.” For the reader who
is curious about other applications of the calculus of varia-
tions, an introduction is provided at the end of this text in
Chapter 11. In addition, Robert Weinstock’s (1974) book
is very useful and there are very good online primers
available including James Nearing’s (University of Miami)
work, for example. There is also a nice appendix in
Kenneth Huebner’s (1975) book that was specifically
written for engineers.

We generalize this part of our discussion by rewriting the
ODE we wish to consider as

Lu+ Nu= g(x), (9.37)

where L and N are linear and nonlinear operators, respec-
tively. Now we construct a correction functional:

U1 (X) = 1, (X) + f AlLu, (¢) + Nit, (¢) — g(9)ldp.  (9.38)
0

The nonlinear terms are to be removed by substituting i,
a restricted variation such that 6(it) =0, and the Lagrange
multiplier, ), is identified using variational theory. To find
the optimal value for A\, we write

bty 1) = 81,0) -6 [ N[Lty(6) + Ny () — g(é)1ds
0
(9.39)
and make the correction functional stationary. We can illus-
trate the process with an example (the Lienard equation)

provided by Matinfar et al. (2008). Suppose we have the
nonlinear ODE,

2

% T au+ b} +cu’ =0, (9.40)

where a, b, and ¢ are real constants. We now write the cor-
rection functional as before:

un-H (t) - un (t)
+ f A "(6) + au, (&) + bii, () +cit,* (6)]dob
0
9.41)

The restricted variations are used on the nonlinear terms
so they can be eliminated, resulting in

Ot (1) = bu, (1) + 5f)\[u,, "(¢)+ au,(¢)|dp.  (9.42)
0

The integral is handled by integration by parts, which
yields three stationary conditions for identification of the
optimal As:

A=od—1, (9.43)
A= \/1_@ sinh(V—a(¢ —1)), (9.44)

and
A =sin(¢ —1). (9.45)

Any one of the three choices will work—they will only
differ by the speed of convergence of the correction formula.
If we choose the first of the trio of As, our iterative process
will be based on:

U (1) = 10,(1) + f (6 — Dty + aity +bu,? +cu,° 1.
0
(9.46)

An initial approximation for u,_, is all that is required to
get started with the iterative process. Matinfar et al. used
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MATLAB for their computations with a, b, and ¢ set equal
to —1, 4, and —3, respectively. For the initial (trial) function,
they used

du
uy = u(t=0)+ [ 0 ]to @),

and their results were in excellent accord with the closed-
form solution. It should be noted that there are many exam-
ples of the application of He’s method in the recent
literature; just a few of the differential equations that have
been solved this way include the Kawahara equation by
Ganji et al. (2007), the Laplace equation by Jassim (2012),
the nonlinear oscillator by He and Wu (2007), and Sturm-—
Liouville equations by Altintan and Ugur (2012). VIM has
even been applied to model contamination (the spread of
pollution) in a system of interconnected lakes (see Merdan,
2009).

Of course, our real objective in this chapter is the solution
of IDEs. The procedure is wholly analogous to our treatment
of ODE:s earlier, and to begin, let us take

4ﬁ=ﬂm+j}wmwxwwmw, (9.47)
dx |

where f(x) is the source term. We build a correction func-
tional just as before:

U1 (X) = 1, (x)

+f>\
0

uﬂw—ﬂw—jéwﬂwwﬂ@w¢w

0

(9.48)

Our task now is to choose the optimal Lagrange multi-
plier, A. Remember that the tilde in eq. (9.48) denotes a
restricted variation; therefore,

6un+l ()C) = 5”}1 (-x)

+ 5]A(s)
0

() ($) = f(s) = f 8(¢, u(9), u'(9))d¢|ds

(9.49)

The integration is performed and the stationary condi-
tions are used to identify A, which in this case is —1. There-
fore, the iteration formula is

Uy (x) = U, (x)

x

-

0

uﬂ@—ﬂ@—j&@m@muwm¢m

(9.50)
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We will now apply this technique to a nonlinear problem
considered by Batiha et al. (2008):

- 1+fu(¢)—d¢ 9.51)

given that (0 < x < 1) and u(x = 0) = 0. Remember that
we select a trial function such that the boundary conditions
are satisfied, and in this case, an obvious function is uy(x) = x.
Once again, A = —1, so the iteration formula is

Hmpumzf

Batiha et al. reported an incorrect sequence of results in
the original paper, and the errors have been corrected here:

au f (¢)—d¢ (9.52)

ul(x):x—i—éx3 (9.53)

and

1 1 1
w=x+-—x"+—x +—x".

(9.54)
6" 30 ' 504

We will also employ discretization with eq. (9.51) to
provide a comparison:

X u(x) Discretized u(x) VIM Approx.
0 0.0000 0.0000
0.0938 0.0940 0.09394
0.2188 0.2207 0.22056
0.3125 0.3178 0.31769
0.4062 0.4178 0.41774
0.5000 0.5220 0.52189
0.6250 0.6693 0.66894
0.7188 0.7879 0.78729
0.8125 0.9156 0.91416
0.9062 1.0548 1.05159
1.0000 1.2086 1.20198

In this example, Batiha et al. (2008) used three VIM
iterations, but the values reported in their original table are
incorrect. The corrected values for the second iteration are
shown in the preceeding table, and you will immediately
note that these values are in remarkable agreement with the
results computed using discretization.

We now look at an example with a higher-order derivative
provided by He and Wu (2007), a fourth-order IDE:

4 x

d—?: =x(1+e")+3e" + y(x)— fy(s)ds. (9.55)
x 0
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We are given that y(0) = 1, y(1) = 1 + e = 3.71828,
y"(0) = 2, and y"(1) = 3e = 8.15485. Of course, we might
think about discretizing this equation and trying to solve it
just as we did in some of the previous examples. However,
the combination of the fourth derivative and the split bound-
ary conditions renders this approach quite unappealing. We
will be better served by applying VIM to this IDE.

For this linear case, the exact solution is known, y =1 4+ x
exp(x), facilitating comparison. He and Wu suggest a trial
function,

yo(x) =1+exp(x)[a+bx+cx* +dx*],  (9.56)

and clearly a = 0 so that y(0) = 1. One of the most important
contributions of the He and Wu (2007) paper is that appro-
priate iteration formulae are given for a wide variety of
problems, including this one. For example, given the
equation

d’u

ey + flu,u',u") =0, (9.57)
X

the first-order approximation is given by
u = uy(x)+ f(s —X)fu,u',u")ds. (9.58)
0
We can simplify matters for our example by letting

f(X)ZJ]

dédx.

s(14+e°)+3e’ + y(s)— fy(s)ds
0

(9.59)

The iteration formula can now be written more compactly
and applied to obtain y;:

() = yo(x) + f (s — ) f()ds. (9.60)
0

He and Wu found that

¥, = (0.0803x> — 0.2113x2 +2.302x — 6.9014)e* + 0.0164x*
+0.7162x3 +2.3418x% +5.5516x+7.9014.  (9.61)

Please be advised that the first-order approximation as
given by He and Wu contains an error (their equation number
37); the coefficient provided for x* is not 10.3418 (it should
be 2.3418 as indicated previously). In this case, we can
easily compare the analytic solution with the first-order
approximation; some values are provided in the following
table and the agreement is excellent—generally within
about 0.5%.

X 1 + x exp(x) Approximation, y;(x)
0.0 1.00000 1.0000
0.2 1.24428 1.2390
0.4 1.59673 1.5891
0.6 2.09327 2.0867
0.8 2.78043 2.7770
1.0 3.71828 3.7183

VIM provides us with an extraordinarily powerful tool
for the solution of both ODEs and IDE:s.

INTEGRO-DIFFERENTIAL EQUATIONS AND THE
SPREAD OF INFECTIOUS DISEASE

IDEs figure prominently in deterministic models of epidem-
ics. Let us begin by considering a simple model for a popula-
tion consisting of two types of individuals: those who are
susceptible to infection (S) and those already infected (7).
We assume the disease is not fatal, so there is no death rate,
and we exclude birth during the time period of interest for
simplicity. An elementary model for this situation might
consist of two ODEs:

95 __ g1 (9.62)
dt

and
ar_ | gsi. (9.63)
dt

The meaning of this model construct is that the number
of susceptibles decreases as a result of interaction with
infected individuals, and the number of infectives increases
due to interaction. For this example, we will take the rate
constant, (3, to be positive. Since there is neither birth nor
death, the total population size is constant; thatis, S + I = C,.
Therefore,

ar _ BI(C, —1I). (9.64)
dt
We will take the total population to be 100 individuals
and the initial number of infected to be 3; we will use dif-
ferent values for the rate constant to carry out a numerical
exploration of eq. (9.64). The results we obtain are predict-
able: No matter what positive value is selected for the
parameter, (3, the infection will spread to the entire popula-
tion and the total number of infectives will rapidly approach
100. This behavior is revealed in Figure 9.6.
These data reveal that the model given by eq. (9.64) does
not produce very realistic results; for one thing, the infection
spread throughout the population because the interaction
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FIGURE 9.6. Increase in the number of infected individuals for
(s of 0.00625, 0.125, and 0.025. As [ increases, we see an increas-
ingly rapid approach to a population that is 100% infected.

between susceptibles and infectives was mandated by the
differential equation. It completely failed to account for one
of the conditions of modern life that has significantly affected
the transmission of disease: ease of travel. The very simple
model we described earlier does not take into account the
movement of infected individuals—and the intercontinental
spread of AIDS revealed how very important this factor
is. So, what might we do to incorporate the movement of
infected individuals into the modeling?

“Diffusion” approximations have been used to try to
model the spread of epidemics through what is often referred
to as the Fisher—-Kolmogorov—Petrovskii—Piskunov (FKPP)
equation:

2
or_ Dﬂua(l—l)

9.65
or Ox? (9.63)

We will think of 7 in this case as the fraction of infected
individuals. D is a kind of diffusion coefficient and K is a
rate constant. The FKPP model is tractable, but it displays
an unphysical characteristic that we will now demonstrate.
Suppose we have an initial cluster (spike) of infectives at a
particular spatial location. Our plan is to solve eq. (9.65)
employing different values for K to explore the effect of the
rate constant on the solution. All other parameters are fixed.

The data in Figure 9.7 reveal the failure of the FKPP
model as applied to epidemics; the speed of propagation
increases as the rate constant, K, increases. In fact, the dif-
fusion model suggests that the rate of spread of disease will
become infinite if K is allowed to increase without bound.
Fedotov (2001) points out that this behavior is unphysical
and that the origin of this problem is due to the parabolic
scaling associated with the FKPP equation. He notes that the
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FIGURE 9.7. Solutions of eq. (9.60) for a fixed time using values
for K ranging from 0.1 to 10 (specifically 0.1, 1, 2, 4, 8, and 10).

correct scaling for a propagating front (in our case, the
interface between infectives and susceptibles) must be
hyperbolic. Thus, a different modeling approach is required.

We will take M(x) to be the rate at which infected indi-
viduals leave position x and travel to a new location in the
spatial domain. We will also assume that M is a positive
constant. Our model now has the form

al

S =BIC D= MI+ M f K(x, y)I(y, Ddy.  (9.66)

K(x, y) is the kernel; it is a density function for the fraction
of infected individuals who leave position y destined for x.
This density function has the characteristics

K(x,y)>0 and f KGu,yde=1.  (9.67)

Medlock and Kot (2003) assumed that the kernel was of
the convolution type

K(x,y)=k(x—y)=k(u)= aexp[ ||], (9.68)

where u is the separation between the x and y positions. They
setM =1, (=1, and a = 0.7698; I, the fraction of infected
individuals, was taken to be 1 in the center of the domain.
The problem thus posed by eq. (9.66) is formidable. The
repeated evaluation of the integral is computationally expen-
sive, so Medlock and Kot used a Runge—Kutta scheme for
the time derivative and then the fast Fourier transform (FFT)
for the integral. The solution of this problem takes the form
of a traveling wave as illustrated in Figure 9.8. At small #s,
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FIGURE 9.8. Emergence of the traveling wave from the initial
block of infectives. The wave continues to move to the right with
increasing time. This model is far more realistic than the one posed
by the FKPP equation.

the traveling wave emerges from the original block of
infectives and then moves to the right (positive x-direction)
with increasing time. The results shown in this figure were
obtained using a Euler scheme on the time derivative (with
a small time step) and the trapezoidal rule for the integral.
This numerical procedure is inefficient computationally, but
very simple to apply and execute.

The behavior we see in Figure 9.8 is very different from
the FKPP model we discussed previously. The transmission
of disease with the movement of infected individuals is
much more wavelike; the boundary between infectives and
susceptibles travels in the x-direction, but the characteristics
of the wave are essentially unchanged as it emerges from
the initial block of infectives.

EXAMPLES DRAWN FROM
POPULATION BALANCES

We observed at the beginning of the chapter that many
important industrial processes are multiphase, often consist-
ing of a continuous fluid phase carrying countable entities.
These dispersed objects may be particles, droplets, bubbles,
cellular entities, or possibly some combination of several of
these. Furthermore, these countable entities are commonly
experiencing birth, death, growth (aggregation), breakage
(or comminution), interphase transport, and so on. These
processes may result in changes to extensive variables such
as number, mass, or volume, and such changes are often
crucial with respect to process performance and control. An
illustration of such a process is shown in Figure 9.9; here,

FIGURE 9.9. Floc formation in Couette device in which the outer
cylinder is rotating (inner cylinder at rest). The large aggregates
seen in this image consist of clay (kaolin) particles, polymer floc-
culant, and water trapped in the interstitial spaces. Measurements
of the density of these aggregates reveal that the overwhelmingly
dominant component is the trapped water.

very small (colloidal) clay particles are aggregating in a
concentric-cylinder Couette device to form very large flocs
(agglomerates). There is particle growth in this system, but
little or no breakage due to the highly ordered nature of the
hydrodynamic environment. One of the interesting features
of this particular system is that elements of the fluid phase
become trapped in the interstices of the aggregate such that
the apparent volume of the dispersed phase increases sig-
nificantly during aggregation. Thus, neither volume nor
mass would be conserved in a system such as that illustrated
in Figure 9.9.

One of the formidable challenges offered by problems of
this type is the incredible range seen in property values (such
as entity size). When colloidal clay particles are flocculated
in a more typical environment (inhomogeneous turbulence),
we find entity sizes ranging all the way from about 1 pm to
several millimeters (the difference, therefore, is three or even
four orders of magnitude). To compound the problem, the
number densities for very small particles can be 5-10 orders
of magnitude larger than those for very large aggregates
formed in the coagulation. This is exactly the situation illus-
trated by the comparison shown in Figure 9.10.

It will be useful for us to preface our continuing discus-
sion of the application of population balances to multiphase
processes by spending a little time considering entity birth
and death. Often when we have a population of individuals
(countable entities), the appearance of new individuals
(birth) may occur. In biological systems, this might be by
reproduction, cell division, and so on. In crystallization,
new entities—though very small ones—appear by nucle-
ation. But at a finite specified size, crystals are actually
born by the breakage of larger parents. Of course, at any
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FIGURE 9.10 (a,b) Batch flocculation of colloidal kaolin in a stirred 1-L reactor. The disparity in entity size is revealed by this comparison;
we see mainly primary clay particles in the dispersion shown on the left, and mostly large aggregates on the right. The number density for
the small particles on the left is on the order of 1 x 107 per cm®, while for the case on the right, one might find only 1-10 large aggregates

per cubic centimeter.

instant in time, some existing individuals may disappear
(death). Generally, both birth and death may depend in
some manner on the size of the existing population—large
numbers may lead to many births and deaths. The reader
may find chapter 8 in Bailey (1964) to be a valuable intro-
duction to this topic, should he/she wish to know more. Let
us suppose that the probability that a population of indi-
viduals will total n at time 7 is p,(f). And we will assume
that the probability that a given entity will produce a new
one in the time interval, At is AAz. Now, how could we
arrive at a population of n entities at time ¢ + Ar taking
only birth processes into account? We could come from the
n — 1 state by a birth, or we could simply remain at the
n-state if no births occurred over the time interval. Let us
write this down:

p.(t+ A= p, (HNn—DAt+ p,()A—nAt). (9.69)

We subtract p,(f) and divide by At, taking the limit as
At — 0; the result is a differential-difference equation,

dp,
dt

=AXn—-1Dp,_, —Anp,. (9.70)

Since we start with a nonzero population, say, n, at t = 0,
the initial condition for eq. (9.70) is p, (t =0)=1. This
gives us a set of equations that we can solve in succession,
beginning with

dp,,

=-A . 9.71
dt nOpno ( )

The model described earlier is often referred to as the
Yule—Furry birth process. We say that such a birth process
is homogeneous because the transition probability is
constant—it does not depend on time. We might ask our-
selves how birth processes are changed if the rate of birth
depends on the population to the second power, that is, when
the birth rate per individual depends on population size (we
are requiring interaction between individuals). Under these
circumstances, the total population grows according to

dn _

= 2, (9.72)

resulting in

1

(9.73)

n= .
i—)\t

ny

The consequence of this model is divergent (explosive)
growth, where n — oo as A\t — 1/n,. Of course, neither the
Yule—Furry process nor the explosive growth scenario
accounts for the disappearance of individuals (death).
Suppose we now add the assumption that individuals die at
a rate that is proportional to their number—Iet the probabil-
ity that an individual will die during a time interval, At, be
1At Once again, we think about how we can get to the n-
state (i.e., where we have n individuals). This could occur
due to a birth (coming from n — 1) or a death (coming from
n + 1), or by having no births or deaths over the time inter-
val, At (and thus remaining at n). Just as before, this model
leads to a differential-difference equation:
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dp,
% =An—Dp, — A+ wnp, + p(n+Dp,.  (9.74)

The initial condition is that n = n, at t = 0, such that
P (t=0)=1. Note that if the death rate exceeds the birth
rate in the combined model, extinction is guaranteed. Among
other possibilities in population problems are immigration
and emigration. In the case of the latter, the effects of exiting
individuals can be handled by simply adjusting the death rate
upward. For immigration, the simplest possibility is that the
rate of influx is independent of the present population, n(f),
and therefore, the likelihood of a new individual appearing
over the time interval, At, will be written as vAt. Thus, the
probability that the total number of individuals will increase
by one over At is

On(t) +v)At. (9.75)

Once again, we consider how a population can arrive at
the n-state over a time interval, At, now taking into account
birth, death, and immigration: Of course, we can grow from
n — 1 by birth or immigration, we could remain at n, or we
could decline in number from n + 1. And, just as we saw
previously, the result is a (set of) differential-difference
equation(s); we should point out that Ji-Huan He has
observed that the VIM, as described previously in this
chapter, can also be used to advantage for this problem type.

In the preceding discussion of birth and death processes,
our objective was the determination of probability that a
population would total n individuals. But in the process
industries, our concern is more likely to be centered on the
distribution of entity volume, size, age, and so on, and how
those distributions evolve with time in different physico-
chemical environments. Thus, we seek a framework that we
might employ to model such phenomena in view of their
enormous practical importance. The reader with interest in
this area is urged to consult the book Population Balances:
Theory and Applications to Particulate Systems in Engineer-
ing by Ramkrishna (2000). We will begin with the simplest
possible one-dimensional problem type, and we will adopt
Ramkrishna’s notation.

Suppose we have an initial population of particles that
are distributed homogeneously in space. Furthermore, let us
assume that we have only particle growth occurring and that
the growth rate at a given size, x, is X (x, t). Our focus is the
particular size range, a < x < b; if the number density func-
tion, fi(x, #), changes in this size interval, then it will be due
to either growth into (a, b) from below or growth out of (a,
b) at the upper end. We can write a description for the
dynamic behavior of this growth process:

b
4 f filx, Ddx = X(a, 1) fi(a, 1) — X(b, ) f,(b, ). (9.76)
dt )

This dynamic balance is equivalent to

o(x,t) 0.
T + 5[ X(x, 0 f(x,1)|=0. 9.77)

We will take the number density function to be (initially)
fi = xexp(—x), (9.78)
and we will assume that the growth rate is described by

X = L 9.79)
C, +x*

Of course, the latter eq. (9.79) means that the growth rate
is strongly damped by large particle size. We will make a
sequence of calculations to see how the number density
function will evolve with time under these conditions.

The data provided in Figure 9.11 show how the growth
rate limitation at larger entity size is constraining the move-
ment of the number density with respect to larger x. The
population is becoming increasingly concentrated at inter-
mediate sizes. If we lessen the impact of the size-limited
growth rate (e.g., let X =C,/(C, +x)), we obtain more
rapid movement of the number density function toward
larger sizes; this is illustrated in Figure 9.12.

Of course, the model we have been considering is unre-
alistic in that it only describes entity growth. In many
systems, breakage is a real possibility, and this leads us to
rewrite eq. (9.77) with the addition of a combined birth and

Sfilx, )

- & O = T f i & ¥ = = & 4 ;7 Kk % 4
0 10 20 30 40 50 60 70 80 90 100 110
Relative particle size

FIGURE 9.11. Change in the number density function for the
growth-only case. The heavy black curve is for = 1/4. Note how
the small sizes are disappearing as the density function becomes
increasingly narrow.
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FIGURE 9.12. Change in the number density function (growth
only) using a growth rate expression with less large-size
attenuation.

death term to account for the net generation of particles in
the size range of interest:

ofi(x, 1) n 0

o X DA ] = hen . (9.80)

Let us spend a moment thinking about particle breakage.
If the breakage rate is dependent on hydrodynamic condi-
tions, then there may exist a size threshold below which no
breakage occurs. For example, in turbulent flows, we can use
the dissipation rate per unit mass, €, to assess the strain rate
at different eddy scales (sizes). We usually argue that a dis-
ruptive eddy must have a scale comparable to the particle or
entity size (much larger eddies simply entrain the particle,
and very small eddies do not affect it at all). Naturally, larger
eddies carry more energy, but they occur at a fixed location
less frequently. One way to establish a breakage condition
is to propose a balance between disruptive hydrodynamic
energy and the restoring force (this could be surface tension,
e.g., in the case of a suspended droplet). It may now be
apparent to you how difficult the characterization of A(x, f)
really is: We will need a breakage criterion that takes into
account the energetics, we will need a rate at which these
energetic events occur, and we will need to know the number
and sizes of the fragments produced by the disintegration.
Since we are talking about process elements that are almost
always both nonlinear and stochastic, these characterizations
will not be easy. A major challenge in the construction of
population balance models is to produce a result that works
and is actually grounded in sound physics.

Let us explicitly describe some of the difficulties that
arise in the characterization of A(x, 7). If, at a given size, x,
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FIGURE 9.13. Growth process with breakage imposed at a

threshold size (corresponding to a relative particle size index of

100). Distributions are shown for t = 1/4, 2, 4, 8, 16, and 24. Note

how the distributions at # = 16 and 24 are being constrained at the

upper end.

entities disappear by breakage, then A(x, 7) is a “sink” term
consisting of a breakage rate, b(x, f), multiplied by the
density function: b(x, t)fi(x, ). We will replace the right-
hand side of eq. (9.80) with this product and impose a size
threshold where the breakage rate becomes large, thereby
limiting the movement of the density function to the right
(toward larger sizes). Some computed results are provided
in Figure 9.13.

Normally, when breakage is occurring, larger entities are
increasingly likely to break and some of those events will
generate new entities at size x. This phenomenon represents
a “source” of particles at size x. Now things are a good deal
more complicated. When one of these larger entities breaks,
some number of daughter particles will be formed, and we
will represent the average number of fragments with v(x’, £),
where x' > x, of course. Clearly, v must be at least 2 (this
is what we call binary breakage), but under sufficiently
energetic circumstances, it could be much larger. Obviously,
this also means that we must know where in x-space these
fragments will be distributed. We will let P(xlx") be the prob-
ability that a larger entity at size x’ creates a fragment at size
x. The disintegration of any larger entity might produce a
fragment (or daughter particle) at size x, so we must take all
larger particles into account:

ofi(x, 1) 0
T -+ a[X(x, 0fi(x,1)]

~ (9.81)
= fy(x')b(x’)P(x| A, Hdx—b(x) fi(x, 1).

X
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There are some clear restrictions placed on the condi-
tional probability, P(xlx’), including P(xlx’) > 0 and
P(xlx) = 0 if x > x’. In models of this type where both
growth and breakage are taken into account, an important
concern is that eq. (9.81) is consistent with an appropriate
conservation principle. For example, if the total mass in the
system is constant, then the first moment of the density func-
tion cannot vary; that is,

00

I :fxf] (x, t)dx (9.82)

0

must not be a function of time. Let us use a very simple
illustration to highlight some of the problems encountered
with conservation. Suppose we are using mass to character-
ize entity size and that we have two particles, each of mass
M,, that combine to form a single new particle. Then,
M, + M, = M, and, of course, M, = 2M,.

Now suppose we have a liquid-liquid system where the
coalescence of two identical droplets occurs; we also assume
we are vitally interested in droplet size and volume:
V, + V, = V,. Of course, R,> =[R’ + R;*], which implies
d, = 1.26d,.

Next, assume two small aggregates formed by floccula-
tion in an aqueous system collide and affiliate. These flocs
are typically very irregular, and each structure contains a
significant amount of interstitial water; moreover, when they
combine, even more fluid will be trapped in the porous
spaces between the contacting aggregates, and neither
mass nor volume will be conserved. Let us assume that the
additional fluid volume amounts to 75% of the volume
of the colliding flocs (this percentage is actually on the
small side):

V, = (1.75V, +1.75V,) = 3.5V, (9.83)

Under this scenario, we find d, =~ 1.52d,. Naturally, when
breakage of such an entity occurs, some of that trapped,
interstitial fluid is released, so both volume and mass will
be lost. It is effectively impossible to enforce a conservation
principle in a system of this type, so there is little benefit to
working with mass or volume. Therefore, in the following
discussion, we will turn our attention to a straight number
balance.

Particle Size in Coagulating Systems

Let us begin by providing a general verbal description of the
balance we wish to formulate, and we will consider systems
of the types illustrated by Figure 9.9 and Figure 9.10. We
will develop a number balance and let (a, b) be the particular
size range of interest.

The rate of change of population in the interval (a, b) will
be determined by

e production in (a, b) by the growth of smaller entities

* depletion in (a, b) by growth of entities in the interval
(beyond b)

* production of fragments in (a, b) by breakage of larger
entities

e depletion in (a, b) by breakage of entities from the
interval.

Remember that these terms are specific to flocculating
systems of the type we cited earlier. In more general situa-
tions, particle growth could occur by surface reaction,
coating, deposition, and so on. We observed previously that
birth in crystallization processes might appear to be the
result of nucleation; however, we must remember that when
saturation is exceeded, the nuclei that are formed initially
are extraordinarily small. Thus, entity birth at a finite size in
crystallization may actually be the result of breakage of
larger particles.

Continuous crystallizers, flocculators, and so on, may
operate at steady state such that the number density of enti-
ties is virtually constant. A batch process, in contrast, may
yield a significant change in number density. For example,
in the batch coagulation of colloidal clay particles, the
number density may begin at 10" or 10® per cm® (for primary
particles), and then decline by several orders of magnitude
during the flocculation process. This is exactly what Figure
9.10 reveals.

If particle growth occurs solely by aggregation, then
particle—particle contact will be necessary and a mechanistic
description will require a model for the collision rate between
entities. For fluid-borne particles, collision can result from
Brownian motion, laminar or turbulent shear, particle inertia,
and differential sedimentation. The functional forms for
these collision rates are

B = Z;C_Tl#_yﬁ (V*+V;"®)  Brownian motion
KoV i
(9.84)
o =—(R+R;) — aminar shear .
8, ;‘ ]“LU Laminar sh (9.85)
Y
c 172
B = 1,3[—] (R +R;)’ Tsotropic turbulence (9.86)
v

3/4
B, =57(R}+R)|r — ;| Turbulent inertia (9.87)
v
B.; =m(R; + R;)*(Vs; — V;)  Differential sedimentation.

(9.88)

In these rate expressions, R is entity radius and V is
volume. We observe that the last two collision rates (eq. 9.87
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and eq. 9.88) require disparity in particle size to be impor-
tant. For turbulent inertia, there must be a difference in
characteristic times for the participating particles, where
7 = (mass of particle)/(6wuR). For differential sedimenta-
tion, there must be a difference in settling velocities,
Vs — V. In a batch process where we start with all primary
particles (monodisperse conditions), these two collision
mechanisms will not be important at small times.

Note that in eq. (9.85), dU/dy is the velocity gradient
(strain rate) associated with a highly ordered laminar flow;
in eq. (9.86), ¢ is the dissipation rate per unit mass and v is
the kinematic viscosity of the fluid phase. Each of these
collision rates has the dimensions L%/ Thus, when the
expressions are multiplied by the number densities of the
participating particles, n; and n;, we obtain the number of
collisions per unit volume per unit time. We will look at an
example for particle collisions in isotropic turbulence:
Suppose we have two classes of spherical particles,
d; = 5 pm and d; = 6 pm, and each class has a number
density of 10° particles per cubic centimeter. We let the dis-
sipation rate per unit mass be 400 cm?s’ and the fluid
medium be water (v = 0.01 cm?/s). We want to calculate the
collision rate produced by isotropic turbulence:

400
. mn; = (1.3)| —
Buimn; = )[0.01

= 24.66 collisions/(cm?s).

172
] (2.5x107* +3.0x107*)(10°)(10°)
(9.89)

Now we will compare with the rate produced by laminar
shear with dU/dy = 400 1/s:

B mn; = [g](z.s x107* +3.0x 103 (400)(10°)(10°)

= 887.33 collisions/(cm’s). (9.90)

One of the characteristics of the highly ordered shear field
created by the Couette device depicted in Figure 9.9 is that
there is virtually no breakage of aggregates. In such cases,
we only need to model particle growth. Therefore, an appro-
priate balance can be written:

\%
dn(V) 1 _ _
. j; BV — 1, wyn(V — wn(u)du

. (9.91)
—n(V) | BV, u)n(u)du,
/

where u < V. The first term on the right-hand side accounts
for production by collision of particles smaller than V; the
second term on the right accounts for a loss of entities of
size V due to additional growth by contact with other
particles.
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Solutions for eq. (9.91) are often sought through discreti-
zation; for example, Farley and Morel (1986) used the fol-
lowing set of equations:

d . 1 m
Th=2 D ali i prm —m Yy ol KBG.kn,
1

dt i+j=k i=
(9.92)

where (i, j) = 1 if i = j, but 2 if i = j. Discretization
of a population balance in which growth and breakage are
occurring raises an obvious question: How many partitions
should be used and how wide should they be? A popular
choice is geometric spacing (multiples of 2); if aggrega-
tion is occurring and mass is conserved, then the affiliation
of two particles of class 1 will result in an entity with
mass doubled: M, + M, = 2M, = M,. Ramkrishna (2000)
points out that a coarse discretization makes it impossible
for the model to be internally consistent. In other words,
a collision event will not necessarily produce an entity in
the next larger class or bin. One method that has been
used to accommodate this problem is to employ weighting
fractions so that only a portion of i-j affiliations produce
an entity in the next larger bin. Therefore, we should prob-
ably regard a set of discrete balances (eq. 9.92) as semi-
quantitative; the problem thus posed is more easily solved
as it involves merely a set of simultaneous ODEs, but
compromises have been made. We will illustrate this by
simulating an aerosol system.

Let us assume we have an aerosol for which particle
growth occurs solely by Brownian motion, but particles are
lost from the control volume due to sedimentation. We will
use eight particle classes with bins centered about the diam-
eters 0.375, 0.75, 1.5, 3, 6, 12, 24, and 48 pm. We will solve
eight simultaneous ODEs of the form given by eq. (9.92) but
with the addition of a loss term based on the settling velocity
(which is size-dependent). The collision rate will be
described by eq. (9.84). For case 1, we will initially populate
the first four (smallest) bins with 1 x 107 particles per unit
volume each. For case 2, we will heavily populate the small-
est (0.375) bin, but the others will have much smaller number
densities. This will cause a profound change in the dynamic
behavior of the numbers of small particles. In Figure 9.14a,b,
the number density in the smallest (0.375) bin is shown with
a heavy black curve.

Application of the Population Balance to a
Continuous Crystallizer

In this section, we look at a continuous crystallizer operated
at steady state. Liquor containing the solute is fed to a well-
mixed vessel and the suspension containing crystals is with-
drawn from the apparatus at the same rate. We write the
balance for crystals of size s:
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FIGURE 9.14. (a) Case 1: dynamic behavior from the discretized model with the first four (smallest) bins initially populated at 1 x 107
particles/cm®. Because of the increased opportunity for small particle collisions, the 0.375 class decreases rapidly. (b) Case 2: dynamic
behavior from the discretized model with only the 0.375 bin heavily populated. The opportunity for small particle collisions has been severely

reduced.

d n
—(Ln)=——+B—D, 9.93)
ds( ) 7 (
where B and D are birth and death functions, respectively. n
is the number density of crystals, 6 is the average holding
time, and L is the linear crystal growth rate. Death (disap-
pearance of crystals of a given size) is the result of breakage,
and D is assumed to have the functional form
D(s) = kn(s)s", (9.94)
where k and m are empirical constants. The “birth” of crys-
tals of a given size is assumed to occur by breakage of larger
entities, and it iS convenient to assume that the breakage
process is binary (i.e., the breakage of a parent particle
results in the production of two daughter particles). The birth

function is written as
1
B(s) = fP(e) D[5]+D[ u ]
4 e 1—¢

P(¢) is a probability density and P(e)de is the likelihood that
the breakage of a crystal of size s will produce a crystal in
the size range, s to (¢ + dec)s. Obviously, ¢ is a fractional
quantity ranging from zero to 1. Among the idealizations
used in developing this model are the assumption that the
breakage process is strictly binary (a bit of a stretch) and
that the linear growth rate (L) is a constant. The latter
assumption is referred to as McCabe’s law, and it is based
on the idea that crystal growth is more likely to be dependent

de.  (9.95)

on supersaturation than on crystal size. Randolph and Larson
(1988) note that this is often observed to be true. The birth
and death functions can be inserted into eq. (9.93), and once
a functional form for P(e) is chosen, a solution may be
sought. The simplest case, P(¢) = 1, corresponds to uniform
binary breakage, and it is convenient to recast the model in
dimensionless form by setting

LI (O]

X=—, >
n(0)

d k =kO(LO)".
oL an 1 (LO)

(9.96)
The result is the IDE:

1
dy my—t [IE] o[E ) (] (2
EHHM )y_klf\[s] y[s]+[1—€] y[l—s]

0
(9.97)

de.

Of course, x is the dimensionless crystal size and y is the
dimensionless crystal population density; since y has been
normalized with n(0), y(x = 0) = 1. This formidable problem
has been solved by Singh and Ramkrishna (1977) using the
method of weighted residuals (MWR). They constructed
their trial functions with Laguerre polynomials. We can gain
some limited appreciation for the behavior of y(x) by assum-
ing that the birth rate is zero. Then, with the right-hand side
of eq. (9.97) gone,

d
L (Ut hxmy,

9.98
i (9.98)


http://c9-bib-0023
http://c9-disp-0095
http://c9-bib-0024
http://c9-disp-0099

and a solution is easily found:

[}C+ kl xm-H] .

m-+1

y=C, exp

Singh and Ramkrishna used this result (with C; = 1) as
the weight function for their solution by MWR, and they
obtained the numerical results shown in the following table.
The values selected for the parameters were m = 4 and
ky = 0.006173.

X Y

0.0 1.0000

0.2 0.8191

0.5 0.6085

1.0 0.3743

1.5 0.2332

2.0 0.1461

2.5 0.8972 x 107!
3.0 0.5141 x 107!
3.5 0.2545 x 107!
4.0 0.9701 x 1072
4.5 0.2529 x 1072
5.0 0.3700 x 1073
54 0.4565 x 10°*
6.0 0.5746 x 10°°

Ramkrishna (2000) reviews the use of MWR as a solution
technique for population balance equations in chapter 4 of
his book.

CONCLUSION

IDEs appear in many important problems in the applied sci-
ences, ranging from biology to separation processes. For
linear IDEs, the Laplace transform can be extremely useful
and it can produce exact solutions. However, many of the
IDEs of interest to us are nonlinear, and rarely can these
equations be solved analytically. Our purpose in this chapter
was to provide some alternative solution techniques so that
students confronted by an IDE have options. In this vein, the
VIM developed by He and coworkers is especially useful
and highly recommended. The reader interested in applying
VIM may find the recent article by Prajapati et al. (2012)
very useful. They solved Abel’s integral equation using four
different initial guesses for the trial function, yy(x), and they
were able to show that all four produced convergent series
solutions with small absolute errors. Their paper contains
sufficient detail to be a valuable aid to the analyst who is
new to VIM.
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However, by no means is VIM the only viable alternative;
for example, for nonlinear Fredholm IDEs of the form

1
& _
S=f0+ [ k(t, s)F(y(D)ds, (9.99)

with 0 < ¢t < 1 and y(r = 0) = y,, a few of the solution
methods that have appeared in the literature are homotopy
perturbation, rationalized Haar functions, hybrid functions
and collocation, and the Tau method with Chebyshev and
Legendre bases. For an example of application of the latter,
see Pour-Mahmoud et al. (2005).

There are other prominent IDEs that have been inten-
sively studied; two examples where several alternative solu-
tion procedures have been devised include the neutron
transport equation and the equation for radiative heat trans-
fer. In the case of the latter, for a medium that absorbs, emits,
and scatters (anisotropically),

A ar— g1, + 5 f (s, 262, )d2'. (9.100)
4

ds 47

I is the intensity of the radiation and (2 is the radiation
(vector) direction, and for eq. (9.100), 0 < s < Land I = I,
for s = 0. Zhao and Liu (2007) investigated this IDE and
reported that many numerical methods exhibit unphysical
oscillations in this particular application. They transformed
eq. (9.95) to obtain a second-order differential equation that
was of the diffusion type (with predictable behavior when
solved numerically). You will observe that this is an approach
that we have illustrated several times in this chapter; where
feasible, this practice can often make the solution of such
problems a good deal easier.

PROBLEMS

9.1. We want to solve the IDE,

du _
dt

3u +6fu(¢)d¢> =1,
0

with u(+ = 0) = 0. Find solutions by both the approximate
discretization technique and the method of Laplace trans-
form. Verify that your results correspond to the behavior
shown in Figure 9.15 for (0 <t < 4).

9.2. Find the solution for the IDE,

% + 5fcos[2(t —uw)]y(w)du =10,
0
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FIGURE 9.15. Behavior of u(¢) for the IDE in Problem 9.1.

given that y(f = 0) = 2. Compare your result with
y(t) = %(24 +120¢ +30cos(37) 4 50sin(3r)).

9.3. Find the solution for the IDE,

? =14+2x—y+ fx(l +2x)exp[s(x — s)]y(s)ds,
by
0

given that y(x = 0) = 1. Verify that y(1.75) = 21.38009.

9.4. Using two methods, find the solution of the IDE,

t
dy f
—=1- s)ds,
” 0 y(s)

given that y(0) = 0 and 0 < 7 < 1. We are particularly inter-
ested in obtaining an accurate value for y(0.5555).

9.5. The IDE,

d X
A4 +y= fexp(s —x)y(s)ds,
dx |

has been solved for 0 < x < 1 with y(0) = 1.
Some of the results obtained are given in the following
table:

X Approximate y(x)
0.05 0.95333
0.10 0.91019
0.15 0.87116
0.20 0.83585
0.25 0.80390
0.30 0.77499
0.40 0.72517
0.50 0.68438
0.60 0.65099
0.70 0.62366
0.75 0.61192
0.80 0.60129
0.85 0.59167
0.90 0.58298
0.95 0.57511
1.00 0.56799

Determine how accurate these results are.

9.6. One of the examples worked in the text as part of the
discussion of VIM was the ODE,

du x3

e —m, withu(x=0)=1.

The analytic solution is known,

3x* +4(u+1)* =32, oralternatively, u =

30 3yt ]”3
227 .
4

With VIM, the succession of estimates is obtained from

X

s3
Uy :u,,—f u, +———=|ds.
JU" 7w+

Since u, = 1, we can very easily find: u;, = 1 — (x/16).
Therefore,
4 $ §
p=1l-——] |-+ 5 |ds
16 ) 4 [2—1s4]
16
and
64
u, =3+ .
: xt—32

Find u; for this problem and compare its performance with
the table of values that accompanied the example.



9.7. Let us repeat the approximate analysis of two popula-
tions in conflict by solving the simultaneous second-order
ODE:s:

2 2
ox_1 [d—X] oY gxry
dr* X\ dt dt
and
2 2
v _1 [d_Y] o X koxy|
dr* Y|l dt dt

Seta=b=2and a = =1, and take K, = —0.05 and
K, = +0.05. Use the same initial point that we employed
previously, (X, ¥) = (1, 2). Remember, we can obtain the
correct initial values for the first derivatives from the undif-
ferentiated equations by setting = 0. How does the phase-
plane trajectory behave in this case? How will it differ if
both Ks are positive, +0.05?

9.8. We saw that the FKPP equation was an unrealistic dif-
fusion model for the influence of travel on the spread of
infectious disease. An alternative is the model proposed by
Medlock and Kot (2003) in which M(x) is the rate at which
infected individuals leave position x and travel to a new
location in the spatial domain. We take M to be a positive
constant. The model has the form

ol

L= BIC =D=M +M f KCx )y, 1dy.

K(x, y) is the kernel; it is a density function for the fraction
of infected individuals who leave position y destined for x.
This density function has the characteristics

K(x,y)>0 and fK(x,y)dle.

Medlock and Kot (2003) assumed that the kernel was of
the convolution type,

K(x, y) = k(x—y) = k() = iexp[—%],

where u is the separation between the x and y positions. They
setM =1, =1, and a = 0.7698; I, the fraction of infected
individuals, was taken to be 1 in the center of the domain.
The problem thus posed by this model is formidable. The
repeated evaluation of the integral is computationally expen-
sive, so Medlock and Kot used a Runge—Kutta scheme for
the time derivative and the FFT for the integral. We will let
our domain extend from x = 0 to some very large x, and we
will place a block of infected individuals at the origin. Our
goal is to explore the propagation of the “wave front” of
infected people. Let the initial block for I occupy 5% of the
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FIGURE 9.16. Droplet (number) density function for Prob-
lem 9.8.

domain. Use the Medlock—Kot parameters and compute
the evolution of the “infected” wave. How long will it take
the center portion of the wave to travel five times the width
of the initial block of infectives?

9.9. In an emulsification process, data show that the droplet
(number) density function is approximately described by

o
f(d)=-d*exp(~d/2).

Therefore, when d = 4 pm, f(d) = 0.1353; for d = 11 pm,
Sf(d) =0.0309. The probability density is shown as a function
of droplet size in Figure 9.16.

Measurements show that the total number density is
1 x 107 droplets per cubic centimeter. Therefore, for drop-
lets with diameters between 8 and 12 pm, the cumulative
probability is about 17%; that is, there are about 1.7 x 10°
droplets in this size range per cubic centimeter. For many
applications, the probability distribution for volume is more
useful than f(d) given in Figure 9.16. Convert the data shown
previously to (V). Where (at what volume) is the maximum
in the distribution now located?

9.10. Solve the dynamic balance for a pure growth process,

ofi(x, 1) O

+ D - 07
ot ox

X(x, ) f,(x, 1)

assuming that the initial density function is f; = xexp(—x),
but that the growth rate is given by

x=_G
C2+x3

Let C; = 0.75 and C, = 2.0. Prepare a figure that illustrates
the evolution of the number density function.
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9.11. Solve the discretized model, eq. (9.87), for an aerosol
with eight particle classes using the example in the text as
your guide. Center the size bins on 0.375, 0.75, 1.5, 3, 6, 12,
24, and 48 pm. Neglect sedimentation, but compare the
results obtained with three different collision mechanisms:
Brownian motion (as illustrated in Figure 9.14a), laminar
shear with dU/dy = 300 s™', and isotropic turbulence with
€ = 1000 cm*/s’. Which mechanism results in the most rapid
reduction in number density of small particles? Let the
initial concentrations be 1 x 107 particles per cubic centi-
meter in each of the three smallest classes (let n; for the five
larger classes be zero initially).

9.12. Yiizbasi and Sezer (2012) studied a linear Volterra IDE
with a weakly singular kernel:

y”(x)fxzy/(x):6xf%x4 7§x5/2

X / X
y'(1) 5 "
—l—f—,_dt——fx (t)dt,
0 x—t 4 0 ty

where y(0) = 1, y'(0) = 0, with 0 < x and 7 < 1. They note
that the exact solution for this problem is y(x) = x* + 1.
Solve this Volterra IDE using the method of your choice and
compare your solution with the exact result.

9.13. Consider the IDE
d t
o _ fy(u) cos(t —u)du,
dt |

with y(0) = 1. Your colleague has developed his own method
for solving such equations, and he reports that
y(t=1.5) =2.135 and that y(t = 3) = 4.499. Use the method
of your choice to confirm or refute the results of your
colleague.

9.14. In 2013, an online discussion occurred in which solu-
tion strategies were sought for the partial IDE,

given that L = 4, B = 10, and u, = %2. For this problem,
0 < x < 4 and the initial distribution of u consists of a block
centered at x = 2 with a width of Y2 and an amplitude of 1;
u is 0 elsewhere. Try the following approach: Discretize the
equation (with respect to x) to get a system of n-ODEs of
the form

du _ u, —2u, +u, 3 [ 1 ]
— e oyl dut+Blug—— ) u,Axl|;
dt (Ax)* 0 LZ

divide L into 40 pieces, and then solve the set of ODEs to
find the time evolution of the nonlinear system. It has been
reported that this problem exhibits diffusive behavior. Is that
borne out by your results?
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TIME-SERIES DATA AND THE FOURIER TRANSFORM

INTRODUCTION

At the very beginning of this book, we pointed out that some
problems are not deterministic. Many real processes include
nonlinear, stochastic components that defy conventional
modeling efforts. And yet, it is essential that scientists and
engineers be able to interpret and analyze such phenomena
so that some level of confidence with respect to outcomes
can be achieved. The purpose of this chapter is to provide a
few tools that can be used in such scenarios.

In the applied sciences, it is common to record experi-
mental observations as a function of time, and we refer to
such a sequence of data as a time series. We might collect
these data to support a model or a hypothesis, or we might
obtain them with the hope that a suitable model could be
identified later. It is possible that such data might reveal
particular functional behavior that could be periodic. Alter-
natively, the data might contain multiple periodicities or, in
the worst case, exhibit fluctuations without a discernible
period; that is, the phenomenon under study might be
chaotic. Let us examine some meteorological data from the
Bradford Station (United Kingdom) in Figure 10.1.

In the form shown in this illustration, these data are not very
revealing. However, if we change to a line plot and expand the
horizontal (time) axis, a very different picture emerges.

Of course, we see the expected behavior in Figure 10.2;
over a time period of 100 months, there are about 8+ cycles
in the data set; the annual variation is now completely
obvious. The peak (and trough) temperatures occur at
12-month intervals.

Annual (local) climate variations are simple enough
that no tools are necessary to see and comprehend periodic
behavior of the kind shown in Figure 10.2. We do not have
to look far, however, to find greater challenges. Let us
consider the Dow Jones Industrial Average (DJIA) and
focus on the 22-year span from 1960 to 1982. The DJIA
entered the 1960s over 600 and during 1982 was as low
as about 770. If those numbers are indicative of the stock
prices of interest to us (assuming we were long in our
positions), then we were certain to be disappointed since
the annual increase in value was only about 1.3%! If we
look more closely at the data, however, we find quite a
different picture. For example, in late 1974, the DJIA was
as low as 577, but in 1976 and 1977, it reached 1000, a
73% increase. We will look at the monthly averages over
this two-decade plus span of time to get a visual under-
standing of the dynamic behavior.

Fluctuations in the DJIA are apparent in Figure 10.3,
but there does not seem to be any obvious regular, peri-
odic behavior. This is important because, if we were able
to identify a periodicity (or periodicities) in these data, we
could anticipate the peaks and valleys and become very,
very rich. What we need is a tool, or a method, by which
we could identify periodicities in time-series data when
they exist. Harmonic (or Fourier) analysis provides us
with a means to do this—we can assess fluctuations in a
time series by comparison with sinusoids. Even more
useful is spectrum analysis, which allows us to identify
the tendency for oscillations of a given frequency to
appear.
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FIGURE 10.1. A scatter plot of the minimum and maximum
(average) temperatures recorded at the Bradford Station (United
Kingdom) for every month since 1908. The maximum tempera-
tures are the filled black squares and the minimum temperatures
are the filled circles. These data were obtained from www.metof-
fice.gov.uk.
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FIGURE 10.2. Line plot of temperature data from the Bradford
Station with an expanded time axis. The black curve represents the
average maximum temperatures, and the lighter curve the average
minimum temperatures.
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The detection of solar and lunar periodicities by man dates
back many thousands of years. But during the eighteenth
and nineteenth centuries, scientists and mathematicians
began to look at many other phenomena with the idea that
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FIGURE 10.3. The Dow Jones Industrial Average (mid-month)

from 1960 through 1982. These data were obtained from www.

davemanuel.com. These are closing values for the middle of each

month.

some of them—such as earthquakes—might occur periodi-
cally. Knott (1897), for example, concluded that there was
probably a connection between lunar tides and earthquakes
by means of a Fourier series. Schuster (1897), however,
argued that one should consider the relative magnitudes of
the Fourier coefficients compared with those obtained if the
events in question were perfectly random.

Schuster proposed the following assessment: Suppose
one has a time series, y(f), and computes the integrals,

t+T t+T

A:fycosmdt and B:fysinmdt, (10.1)

t t

where T is a given time interval. We now define R as
R=+A*+B*.

If y = coskt, then R will increase as the time interval, 7,
increases. However, if y & cos \f, where \ = k, then R will
fluctuate about some constant value as 7 increases. We will
explore this proposal using a function, y(f), that consists of
a limited number of sinusoids (Figure 10.4).

Our plan is to fix the time interval, 7, and then to compute
R for five different frequencies with 347 in the center of the
range tested. We can then increase 7" and repeat the calcula-
tion as many times as we wish.

We find through the curves shown in Figure 10.5 that the
test recommended by Schuster is capable of identifying peri-
odicities in a given data set. As a practical tool, however, it
is severely limited; it would be computationally expensive

(10.2)
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FIGURE 10.4. A synthetic signal constructed from four sinusoids
with radian frequencies: 307, 34, 587, and 84. The fact that there
are a limited number of characteristic frequencies is obvious.
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FIGURE 10.5. Application of Schuster’s test to the data shown in
Figure 10.4. The calculations were made for a single value of T
using five radian frequencies: 297, 31.57, 34m, 36.57, and 397.
One of the characteristic frequencies of the data set shown in
Figure 10.4 has been clearly identified; the curve for 34 is growing
without limit.

to test a time series for every possible frequency and in the
Victorian age—when the test was devised—it would have
been utterly impossible.

In the middle of the twentieth century, the importance
of spectrum estimation in electrical engineering applica-
tions (such as radio, radar, and electronic communications)

drove an intensified interest in the Fourier transform. This
culminated in the Cooley—Tukey algorithm and variants,
which are broadly known as the fast Fourier transform
(FFT). James Cooley (1987) provided a wonderful first-
hand account of the development of the FFT and he pointed
out that Gauss had grasped the essential ideas in the nine-
teenth century. Of course, the pace at which the use of the
discrete Fourier transform (DFT) has expanded was driven
by the development and widespread use of digital comput-
ers in the twentieth century. Before we discuss the FFT,
however, we need to explore some other aspects of fluctuat-
ing signals.

THE AUTOCORRELATION COEFFICIENT

Suppose we observe a signal, y(7), that fluctuates about some
constant mean value (such a process is said to be statistically
stationary). For the synthetic data shown in Figure 10.4, it
is clear that the mean is approximately zero. We let these
observations be represented by

yn=y+y', (10.3)
where ¥y is the mean and y’ is the fluctuation. We will define
an autocorrelation coefficient in the following way:

_Yaya+n

p(7) — (10.4)

The quantity in the denominator is referred to as the
mean-square fluctuation; naturally, the square root of this
quantity is the rms fluctuation. If the time offset, 7, is 0, then
the autocorrelation coefficient is equal to 1: p(7 = 0) = 1.
How p(7) behaves depends for larger 7, of course, on the
nature of y(7). If y is periodic (or consists of a set of periodic
functions), then p(7) will show strong correlation at distinct
values of 7; in such a situation, the oscillatory correlation is
said to be ringing. If, on the other hand, the signal under
observation is random or chaotic, then the fluctuations
should become uncorrelated as the offset (or time delay)
becomes large and p(7 — oc0) = 0.

Historically, the correlation coefficient has been used
extensively in fluid mechanics and especially in the study of
turbulence. The development of the hot-wire anemometer in
the twentieth century produced large sets of time-series data
that were observed in real time with oscilloscopes and pro-
cessed by analog instruments such as spectrum analyzers. It
is important, though, that we recognize that the autocorrela-
tion has a significant limitation: It is not reversible; that is,
since one cannot retrieve the original data from the autocor-
relation, the process of obtaining p(7) automatically entails
a loss of information. Consequently, the autocorrelation is
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FIGURE 10.6. Autocorrelation coefficient for synthetic signal
composed of four sinusoids. The expected ringing behavior is
apparent.

of little value for tasks associated with signal processing and
image manipulation.

Nevertheless, we will begin exploration of the data set
shown in Figure 10.4 by computing the autocorrelation coef-
ficient. Since these data were constructed from a limited set
of sinusoids, we should expect an oscillatory p(T).

The data we used to compute the autocorrelation coef-
ficient shown in Figure 10.6 were constructed from four
periodic functions added together and previously illus-
trated in Figure 10.4. The computation of p(7) reveals that
there were regular fluctuations in the time-series data; note
the strong recurring peaks in the correlation at (number of
time intervals) 19, 28, 38, 48, 57, 67, and so on. This
suggests that something with a period of about 9 to 10A¢
was present in the time series, corresponding to a fre-
quency range of about 250-279 rad/s. Of course, we know
that there was a very strong sinusoidal component present
at 263.9 (84m) rad/s—right in the middle of the indicated
band of frequencies!

In simple cases of this type (where a regular oscillation
in the time series is obvious), one might consider developing
a model by fitting a periodic function(s) to the data directly.
For example, suppose through our examination of the data
we concluded that a function of the type

y(t) = Asin(wt) 4 Bcos(wt) (10.5)

might adequately represent the behavior. Assuming we were
able to estimate the radian frequency directly, we could then
minimize the sum of the squares of the deviations by setting

F= Z(y — Asin(wt) — Beos(wr))? (10.6)
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and setting the derivatives equal to zero:

8_F:0 and 8—F:O.
0A OB

(10.7)
Therefore, we could use our data to seek solutions for the
following equations:

—ZZ(y — Asin(wt) — Beos(wt))sin(wt) =0  (10.8)
and
—ZZ(y — Asin(wt)— Beos(wt))cos(wt) =0.  (10.9)

This least-squares estimation technique is fine, as long as
we have a sharply defined periodic behavior where the
radian frequency (or a very small number of radian frequen-
cies) is obvious. In such cases, we are merely trying to
identify the amplitude and the phase. Of course, we could
add the radian frequency to the determination if necessary.
For many problems of interest to us, however, the observed
behavior will be altogether too complicated to let direct
model development be a realistic alternative.

A FOURIER TRANSFORM PAIR

We saw previously that the autocorrelation coefficient, p(7),
though not reversible, could reveal much information about
the time-series data under study. In fact, the autocorrelation
and the power spectral density (or spectrum), S(w), contain
the same information and they are related through the
Fourier transform pair:

+00
p(T):fexp(in)S(w)dw and
- (10.10)

+00
S(w)= %fexp(—iWT)p(T)dT.

Since the autocorrelation coefficient is an even function,
and since negative frequencies do not hold any physical
meaning for us, it is standard practice to write the one-sided
spectrum:

Si(w)= lfCOS(WT)p(T)dT. (10.11)
g 0

We have already computed p(7) for the data shown in
Figure 10.4, so why not take this result and use it to evaluate
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the spectrum using eq. (10.11)? We will do this, but we must
keep in mind two important limitations:

1. We will not be able to learn anything about fluctua-
tions occurring more rapidly than the Nyquist cutoff
frequency. For a sample interval of At,

1

froa =557 (10.12)

For the data shown in Figure 10.4, Ar = 0.0025
second, so fy,, = 200 Hz or 1256 rad/s.

2. We cannot find out anything about fluctuations that
occur so slowly that one cycle does not fit within our
total time of observation. For infrequent (very long-
period) oscillations, we must acquire a very lengthy
set of time-series data.

The spectrum shown in Figure 10.7 was computed by
repeated integration of the estimated autocorrelation coef-
ficient, after p(7) had been obtained from the experimental
data by calculation of the mean, the fluctuation for each
observation, and the mean-square fluctuation. Although this
example demonstrates that such a procedure will work, it is
computationally expensive and for many applications,
simply too time-consuming. We need a process that will
allow us to obtain the spectrum more rapidly, and the
approach we will employ is the FFT.

0.100+
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=

o
1

Power spectrum

0.001

—afl .ll.'l !
0 50 100 150 200 250 300 350 400
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FIGURE 10.7. Computed spectrum for data of Figure 10.4. The
important radian frequencies in the data set were approximately
94.2, 106.8, 182.2, and 263.9 rad/s. All four appear as dominant
features in the spectrum shown here. The oscillation at 263.9 rad/s
had the largest amplitude of the four sinusoids. Make particular
note of the broadening apparent at the sides of the spectral peaks;
we will discuss that further a little later in this chapter.

THE FAST FOURIER TRANSFORM

Brigham (1988) describes the FFT as ubiquitous, and indeed,
he provides a list of about 75 applications (many of which
appear to be quite unrelated). To highlight just a few, con-
sider that the FFT has been used for studies of aircraft wing
flutter, acoustic imaging, diagnosis of airway obstruction,
echo or reverberation elimination, speech recognition, chro-
matography, phased-array antenna analysis, video band-
width compression, and image restoration. Quite recently,
the FFT has been used in the study of microseismic events
triggered by hydraulic fracturing in gas-bearing shales; see
Warpinski et al. (2012) for example spectra.

We mentioned previously that the rapid growth of appli-
cations for the FFT was driven by the digital computer and
by the paper published by Cooley and Tukey (1965). Their
algorithm is widely used around the world and is referred to
colloquially by a variety of names including the cool-turkey
FFT. Bingham et al. (1967) helped to introduce the tech-
nique to a broader audience, and since the 1960s, many
versions of the algorithm have been developed for specific
applications. Several contributors to the literature have
pointed out that Gauss actually originated the idea in the
early years of the nineteenth century. However, the reality
is that James Cooley, Richard Garwin, and IBM (their
employer) were mainly responsible (assisted by the concur-
rent development of fast analog-to-digital converters) for the
explosive growth in the number of applications of the FFT.
Cooley (1987) and Rockmore (1999) have also noted that
some of the initial urgency was driven by the Cold War due
to the need for seismic monitoring (the detection of nuclear
explosions) and acoustic detection and identification of
submarines.

If we have N observations of a fluctuating signal, y(7),
then we can think of the Fourier transform as an interpreta-
tion of that signal in terms of sinusoids of different frequen-
cies. Specifically, as Bloomfield (1976) points out, we can
write

1 o= _
A :N;yn =7, (10.13)
2 N—1
A = ﬁ; Y, COSwit, (10.14)
and
2 N—1
B; :ﬁ;yn sinw;t. (10.15)

If the sequence of observations consists of an even
number, then
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1 &= 1 &=
Ayp =— 1, COSWypt = — —D"y,. (10.16
N/2 N;y N2 N;( )y ( )

The time-series data can now be represented, if N is even,
with

Yo =AY Ajcos(wt) + Bysin(w,n) +(— 1) Ay,

J<NI2

(10.17)

A compact, shorthand representation of the DFT for
sampled data (in the form of X(j), a complex vector of length
N) can be written as

27

N—-1
S(k) = ZX(j)W,Jk, where W, = exp[W]. (10.18)
=0

The main problem here is that the number of arithmetic
operations for a time series with N observations scales as N°.
Thus, if one had 512,000 data points (the reason for choos-
ing this number will be made clear in a moment), about
2.6214 x 10" operations would be required. Modern PC
processors are capable of about 5 x 10° to 1 x 10" flops
(floating point operations per second); thus, very roughly,
(2.6214 x 10"/(7 x 10°) ~ 37.5 seconds. While not a
ridiculous amount of time, this is far too long for processes
requiring near-instantaneous feedback.

However, John Tukey had shown that if the N observa-
tions can be written as a product, N = ab, then the Fourier
series could be written as an a-term series of b-term (each)
subseries. This meant that the scaling for the required
number of computations would change from N to (a + b)N.
Richard Garwin relayed this information to James Cooley
and persuaded him to work on algorithm development and
programming. The result, now known as the Cooley—Tukey
algorithm for the FFT, actually reduces the scope of the
computations to N log(N); if N is 512,000, then the compu-
tational effort is reduced to 2.92 x 10° operations. The
comparison is striking; for a modern PC, we would now
have about (2.92 x 10%/(7 x 10°) ~ 0.0004 second for the
required processing time. As Cooley (1987) later described,
the development of the FFT algorithm meant that the Fourier
transform could now be extended to very large problems. An
additional motivation for his work was the interferometer
data brought to Cooley by Janine Connes; her husband, the
astronomer Pierre Connes, had constructed an interferome-
ter that could produce a time series (a data record) consisting
of (the then incredibly large number) 512,000 points. The
power of the Cooley—Tukey algorithm was such that it made
the processing of lengthy time series of this type of routine.

For the analyst who must perform FFTs on time-series
data, the options are many. There are literally hundreds of
FFT codes available in the public domain, written in high-
level languages including FORTRAN, BASIC, PASCAL,
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and C. For convenient working examples, see chapter 8 in
Brigham (1988). There are also numerous websites devoted
to the Fourier transform. Moreover, many commercial soft-
ware packages have FFT capabilities including Mathcad™,
MATLAB™, MS-Excel™, and Origin™. Thus, just about
any collection of time-series data can be analyzed and the
signal content in frequency space can be determined.

We should look at an illustration to underscore this point.
Suppose we have a signal consisting of four sinusoids added
together with a random fluctuation (z):

it it it 27t
t) =sin— +sin— +sin— +sin— + z. 10.19
M) =i sing o sing 3 e (1019

Take note of the radian frequencies employed here: 7/10,
«/5, 7/2, and 27r/3. We will allow 7 to assume integer values
from O to 1023 such that we have 2'° samples; then we will
determine the Fourier transform, first by using Mathcad. We
will use the fast DFT function, fft(v). This is a radix-2 trans-
form program; by radix-2, we mean that the number of data
points, N, can be written as N = 2" data points (where m is
an integer).

Implementation of Mathcad fft(v):
i:=0..1023

X; :=sin

3.1416%] +rd(1) + sin[i-

. [ 3.1416] . [ 3.1416]
+sinj|1- +sinf1:———
5 1.5

3.1416]
10

¢ = fft(x)
N :=1ast (¢)
N: =511
j=0.N
20 T T T T T
151 -
G| 10~ —
s _
ﬂ-)ﬁu“imjl\*hﬂumhqumwa Mgl il

0 0 100 200 300 400 500 600

J

Note where the peaks are located (the j index values)
in this spectrum: approximately 50, 101, 255, and 340. The
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FIGURE 10.8. Power spectrum for the signal produced by four
sinusoids (eq. 10.19). In this case, the autocorrelation coefficient,
p(7), was computed directly from the data and the Fourier trans-
form was found by integration. Note that 7/10 = 0.314, /5 = 0.628,
/2 = 1.571, and 27/3 = 2.094.

corresponding radian frequencies are determined from
Jml512.

Now we repeat the analysis of the time series, computing
the Fourier transform by integration of the autocorrelation
coefficient, using eq. (10.11) as illustrated previously. You
will note that the two spectra shown (one above and one
below) are essentially identical, differing mainly due to the
normalization employed. Although the results are the same,
the processing speed was radically different; the computa-
tional result shown in Figure 10.8 required several seconds,
while the execution of the fff function in Mathcad appeared
to be almost instantaneous. This is the reason the FFT has
become so important—it is now possible to compute Fourier
transforms for large time-series data sets and to do so almost
in real time. Of course, this speed is crucial to signal pro-
cessing applications.

Finally, we will also test a modified version of the BASIC
DFT code provided by Brigham (1988) on the very same
data sequence and present the result in Figure 10.9.

In the preceding example, the spectra were determined in
three ways: using the built-in capability, ff#(v), in Mathcad,
by computing the autocorrelation coefficient, p(7), directly
from the time-series data and then integrating the results,
and by using a radix-2 DFT code that was modified from a
version of the program supplied by Brigham (1988). The
resulting spectra are very nearly identical and all three pro-
cedures have clearly identified the four dominant frequen-
cies present in the time-series data.

The example that we just explored did not present much
challenge for the FFT/DFT procedure. Let us look at a more
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FIGURE 10.9. Spectrum from a modified version of Brigham’s
BASIC DFT (radix-2) program. Frequency is determined from the
position index by jn/v. Therefore, the second spectral spike in
Figure 10.9 corresponds to about 4057/2048 or roughly 0.27 rad/z.
Recall that the signal that was transformed consisted of four sinu-
soids with radian frequencies of 0.17, 0.2, 0.57, and 0.667.
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Time
FIGURE 10.10. Synthetic signal consisting of 11 sinusoids with
a random contribution added.

complicated signal (one with 11 distinct frequencies) that
also includes a random contribution. To further complicate
things, we will truncate the time series at 2800 and append
1296 zeros to reach 2'* samples when we compute the spec-
trum. The raw data appear as shown in Figure 10.10.

Now we will compute the Fourier transform to see if all
of the different elements of this signal have been captured.
Keep in mind that we have added a random component and
filled out the data set (to reach 4096, or 2'?, observations)
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FIGURE 10.11. The computed spectrum has captured all 11 sinu-
soidal contributions; the original frequencies were 119.38, 175.93,
207.3, 245, 301.59, 326.73, 383.28, 452.4, 584.34, 640.89, and
710 rad/s.

with zeros. We know that the kinds of abrupt changes in the
data that are generated by adding a random contribution and
by appending zeros to obtain 2" total samples will produce
additional contributions in the spectrum that may complicate
identification of the crucial periodicities.

The computed transform shown in Figure 10.11 reveals
how powerful the DFT really is; we constructed a synthetic
signal that was an absolute mess, and the algorithm has suc-
cessfully identified all 11 of the contributing sinusoids. And
this is despite the facts that the data series was truncated
(filled out with zeros) and that a strong random contribution
was added to the signal.

ALIASING AND LEAKAGE

We described the Nyquist cutoff frequency previously,
noting that if the sample interval, Az, was foo large, we
would not be able to obtain any useful information about a
high-frequency (oscillating) waveform. More generally, too
large a At produces aliasing, which yields a distorted spec-
trum. Suppose we were interested in the sum of the two
sinusoids shown in Figure 10.12.

If we had the poor judgment to begin sampling at 7/2,
and then further to employ an interval of 27, the sampling
of the sum of the two waveforms would consist only of the
sequence 1.75, 1.75, 1.75, and so on, and absolutely none
of the important dynamic behavior would be revealed. It is
critical that we pick a sampling Ar that can capture any
oscillating behavior that may be occurring. Naturally, if we
compute a DFT for time-series data sampled too infre-
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FIGURE 10.12. A plotillustrating sin(wf) and 0.75 cos (4wt), with
w=1.

quently, we will not get the correct spectrum. Suppose, for
example, that we sampled the sum of the two waveforms
illustrated in Figure 10.12 using a time interval of n/4; we
would see the sequence, 0.75, —0.0429, 1.75, —0.0429,
0.75,—1.457,—-0.25,—1.457,0.75, —0.0429, 1.75, —0.0429,
0.75, and so on. These equally spaced samples could be
represented by several sinusoids; the consequence is that
the spectrum folds, or overlaps. If aliasing is suspected, the
easiest fix is to halve the sample interval, to compute
the spectrum, and to note any changes, and then to repeat
the process until the spectrum does not change.

Leakage appears in a DFT spectrum in the form of what
are called “sidelobes.” This feature of computed spectra
results when a particular harmonic component leads to
nonzero transform values at other frequencies. It can be
exacerbated by the fairly common practice of filling out an
incomplete data set with zeros to execute a radix-2 DFT; that
is, if we had 1750 observations, we might add 298 zeros to
get to 2048 (2'"). Any phenomenon that produces sharp
(abrupt) changes in the time domain will result in additional
spectral components in the frequency domain. Let us illus-
trate this point by generating time-series data with the simple
function

y(t) = sin(120¢) + 0.85 cos(180¢). (10.20)

We apply the DFT with the result shown in Figure
10.13a. Next, we truncate the time series and append 1320
zeros to provide a total sample of 4096 for Figure 10.13b.
Finally, we add a strong contribution to the time series
utilizing the random number generator and include the
1320 zeros at the end to generate the spectrum shown in
Figure 10.13c.
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FIGURE 10.13. (a—c) Comparison of spectra obtained by DFT for

time-series data generated by modifications to sin(1207) + 0.85

cos (1807). The frequencies are obtained from j(5007)/2048, such

that j = 155 corresponds to 120 and j = 235 corresponds to 180.

The first thing we should note about Figure 10.13a is that,
although the time-series data were generated with the sum
of sine and cosine terms (only), the resulting spectrum is not
exactly what we would expect had we obtained a continuous
transform. A pure sinusoid in time should yield a é function
in frequency space. Next, when we truncated the time series
by taking 2776 sampled values with 1320 zeros appended,
we produced sharp oscillations on the shoulders of the two
main peaks (Figure 10.13b). And finally, in Figure 10.13c,
we have used the random number generator to create dis-
continuities in the time domain which have, in turn, pro-
duced many additional frequency components in the
spectrum. The important conclusion that we should take
from this example is that discrete sampling in the time
domain can yield discontinuities that, upon DFT, yield other
contributions in frequency space. These contributions appear
as additional peaks or sidelobes in the spectra that are com-
puted. One remedy, which is pretty obvious but usually
impractical, is to eliminate all of the abrupt changes that may
appear in the time domain.

Another common source of difficulty is time-domain
truncation, which occurs when the number of discrete
sample data points is limited. In some cases, our ability to
obtain time-series data may be constrained (perhaps the
hardware has limited storage capacity). This can adversely
affect the accuracy of the DFT, and we will illustrate this
problem using a signal composed of two clean sinusoids:

2 (27
1) = cos| 2 L 1021
Y C03[5.99 ]Hm[z.ss ] (10.21)

We will sample this function using integer spacing
(At = 1) and we will begin with a data record length of
1024. We will then compute the DFT for N = 64 and repeat
using N = 16.

The spectrum shown in Figure 10.14a (N = 1024) is a
close approximation of the (continuous) Fourier transform.
In this case, the spectral peaks are located at j index values
of 172 and 357, corresponding to frequencies of
(172/512)yr = 0.336m and (357/512)r = 0.6977; these
values are very close to the actual frequencies employed,
0.3347 and 0.6947. But as we decrease the number of
samples (time-domain truncation), we get an increasingly
poor representation of the two 6 functions we expected to
see. Note how the spectra are broadened and the peak ampli-
tudes diminished. In the case of Figure 10.14c (N = 16), we
have connected the discrete points with spline fitting, but
even so, our estimate of the spectrum is of little value.
Although the best remedy for time-domain truncation is to
increase N, there are alternatives for leakage control and we
will discuss one of them next.

In the preceding examples, we saw that abrupt, or sharp,
changes in the time domain, or time-domain truncation,
might produce unwanted features in the computed spectra.
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N=064 change in the time-series data.
16 4
If we could use a data window (sometimes referred to as a
E ] fader) to smooth out the shoulders, we might be able to
S eliminate some undesirable features from computed spectra.
2 One possibility is to use a faper on the time-series data and
% 8 then to transform the tapered data. An example given by
~ Bloomfield (1976) is the window
44 1 2m(t+1
W, = L1 cos| 2| (10.22)
2 n
0 T T T T v T v T T T T T : : :
0 5 10 15 20 25 0 Wher§ t'correspond.s to the discrete times in the sampled daFa
Position index (consisting of n points), t = 0,..., n — 1. Please note that in
© 6- this context, when we speak of n points, we actually mean
Ne16 nAt. Suppose, for example, that our original time-series data
5 form a step with an amplitude of 1. When we apply the

cosine window to the data, we get a smooth transition that
is “bell” shaped, as shown in Figure 10.15.

41 It is clear from inspection of Figure 10.15 that the win-
dowed (or tapered) data are significantly different from the
original step. In many cases, we would rather limit the influ-
ence of the taper so as to preserve most of the character of
the original data. Tukey (1967) suggested a modification of
the data window to

Power spectrum
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FIGURE 10.14. (a—) Comparison of spectra computed by DFT

for record lengths of 1024, 64, and 16 samples. The test signal was

(10.24)

=
|
I
B
=
|
s
L

, t=n—m,...,n—1. (10.25)

y(1)= Cos[zi t] +sin[2—ﬂz]. Remember that m and n are to be interpreted as mA¢ and
5.99 2.88 nAt. With this approach, the fraction of the data that will be
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tapered is 2m/n; a smaller fraction of windowed data will
naturally yield less improvement in leakage control. Tukey
recommended that m be chosen such that 2m/n ~ 20%.

We want to look at a detailed example that will first
demonstrate the problems created by leakage and then reveal
how we might diminish them using tapering. Suppose, first,
that we have time-series data in the form of a square wave
(arectangular window) with a maximum amplitude of 1. We
will then apply a sinusoidal taper to remove both sharp
edges, but leave the center intact. Specifically, we will shave
off one-third of the rectangular window at both shoulders
and leave the center third intact with its original value of 1.
A comparison of the original rectangular window with the
modified shape (where the sharp edges have been removed)
is shown in Figure 10.16.

Our plan is to apply the DFT to both the original square
wave and the tapered wave form so we can see the differ-
ences in the spectra; the results appear in Figure 10.17.

The leakage produced by the original square wave is
significant; however, we immediately see that trimming
one-third of the pulse off (at each shoulder) results in far
less leakage while preserving the really important character-
istics of the spectrum. It will be left as a student exercise to
explore the effects of more aggressive tapers on the results.

SMOOTHING DATA BY FILTERING

We saw previously how time-series data could be windowed
(or tapered) to minimize the impact of sharp irregularities.
We can also use digital filtering to smooth very irregular
(noisy) data. Let us return to eq. (10.3) and let
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yO=y+y. (10.26)

Since the mean y is nearly constant (or at least varies only
very slowly), we could run a moving, three-point average
through the data set, replacing y(f) with z:

(1) = %[y(t —D+yO+ye+D). (1027
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FIGURE 10.16. The initial square wave (rectangular window) is
shown and the tapered waveform is in black. The tapered edges
correspond to one-third (at each top edge) of the original rectangle.
The center third is left alone with an amplitude of 1.
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FIGURE 10.17. Spectra obtained from the original time-series data (a) and from the tapered data set in which the sharp-edged shoulders

have been trimmed off (b).
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Naturally, we cannot apply this to the endpoints of the
data. Let us construct a synthetic data set to see how well
this works; we will use a random number generator to
produce noise, which we superimpose on a single sinusoid.
We will also filter the data with the moving, three-point
average to gauge its impact on the noisy data; the process is
illustrated in Figure 10.18.

Our main interest, of course, is how the filtering affects
the computed spectrum. Figure 10.19a shows the spectrum
for the unfiltered (noisy) data and Figure 10.19b shows the
effects of two passes of the linear filter (the moving, three-
point average) on the computed spectrum.

The filter that was employed to produce the results seen
in Figure 10.19b was the simple moving average. There are
many other and probably better options. One that is quite
effective at attenuating noise but preserving the essential
character of the oscillations is the digital triangular filter.
The idea is to place the greatest weight on the central point
and to decrease weight on more distant data points; one
example of a triangular filter is

z2(t) = é[y(th) +2y(t — 1)+ 3y(t) +2y(t + 1)+ y(t + 2)].
(10.28)

Note that the area of the triangle is $bh = ($)(6)(3) =1.
Of course, other weighting schemes—and a commonly used
one is exponential—can be employed as well. We can get a
better sense of how effectively eq. (10.28) works by apply-
ing it to a test set of data (Figure 10.20).

In the preceding example, we looked at the effects of data
filtering in a practical way by examining spectra computed
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FIGURE 10.18. Original noisy data (dotted), filtered once (con-
tinuous), and filtered twice (heavy continuous black). The time
index has been expanded to better reveal the behavior of y().

from the original noisy data and then from the filtered data.
There is another very convenient approach to assessing the
effects of filter application. Suppose we have a simple signal
in the form of a sinusoid, which we write as

y(t) = Acos(wt + ¢), (10.29)

which is the real part of Aexp[i(wt + ¢)]. For the linear filter
(the three-point moving average), we have
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FIGURE 10.19. Comparison of the spectra for the original, noisy data (a) and then computed for the data set after two applications of the
linear filter (b). Many of the additional frequency components that were introduced by the abrupt fluctuations have been attenuated or even

eliminated.
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FIGURE 10.20. Effects of a single application of the digital tri-
angular filter to a noisy data set. For severely noisy signals, the
triangular filter (eq. 10.28) can be run through the data set
repeatedly.

(1) = 5[yt =D+ (1) + y(t + 1))
= L Alcos(wt —w + @) + cos(wr + ¢) + cos(wt + w + ¢)]
1 Alexp(i(wt —w + @) + exp(i(wt + ¢))

+ exp(i(wt +w + ¢))]. (10.30)
This expression can be written more compactly as
= LAexpli(wr + ¢)|[exp(—iw) +1+exp(iw)].  (10.31)

Of course, cos is an even function, so we can write the real
part of eq. (10.31) as

= Acos(wt 4+ ¢)(1+2cosw). (10.32)

When we compare this output with the original signal,
eq. (10.29), it is clear that we are modifying it with the
factor, 1/3(1 + 2cosw). We see immediately that a signal
component with w = 27/3 = 2.0944 will be completely
removed by the filter (since cos (27/3) = —1/2).

MODULATION (BEATS)

We have now seen on numerous occasions that the FFT/DFT
is capable of revealing periodicities in time-series data. Let
us begin this part of our discussion by considering a syn-
thetic signal consisting of

Y(t) = 7 + cos(82f) + cos(89¢) -+ sin(196¢) + sin(207.3¢).
(10.33)

82 and 89

196 and 207.3

0 50 100 150 200 250 300 350 400 450 500
Frequency (rad/s)
FIGURE 10.21. DFT computed for the simple sum of four peri-
odic functions with frequencies of 82, 89, 196, and 207.3 rad/s.

Notice that the rwo pairs of radian frequencies are close
together. If we compute the DFT for these data, we see four
concentrated peaks in the spectrum, just as expected.

Now we will carry out the DFT computation again, but
this time, we use the product of the two cosine contributions
added to the product of the sine contributions. Notice in
Figure 10.21 that the pair of cosine contributions is sepa-
rated by 7 rad/s and the sine contributions are separated by
11.3 rad/s. This will prove to be very significant.

When the DFT is applied to the sum of the cosine—cosine
product and the sine—sine product, new spectral components
appear at about 7 and 12 rad/s. These are beat frequencies
that arise from amplitude modulation. If we multiply cos (w;f)
cos (w,f), where the two radian frequencies w;, and w, are
fairly close together, then we produce a modulated wave
with fluctuating amplitude—notice the peak in Figure 10.22
located at 7 rad/s. You will also notice that the spectral
content at 82-89 rad/s has disappeared entirely. Clearly,
harmonic analysis (the DFT) has failed to reveal all of the
periodicities of the original data. What is needed is what is
called complex demodulation, and we will illustrate it with
an elementary example. Let us assume we have a function
described by

y(t) = A(t)cos(wt + ¢(1)). (10.34)

We will allow both the amplitude function, A(?), and the
phase, &(7), to vary but at frequencies significantly lower
than w, in particular,

A(t):3sin[%t] and ¢(t):4sin[%t]. (10.35)
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FIGURE 10.22. DFT computed for two products added together,
the cosine pair and the sine pair. The frequency axis has been
changed to a log scale to better reveal the two low-frequency
components.
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FIGURE 10.23. An oscillating function with frequency, w, for

which both the amplitude and the phase vary sinusoidally but at

much lower frequencies.

The resulting signal is illustrated in Figure 10.23. If we
perform a harmonic analysis on these data, what would
we see?

We will take eq. (10.34) and rewrite it as

y(1) = 3 A(t)[exp(i(wt + ¢)) +exp(—i(wt +¢))].  (10.36)

Now suppose we form a new signal from y(f) by writing

z(1) = y(t)exp(—iwt);
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the result is

2(t) =L A(1)[exp(ip) + exp(—i(Rwt +¢))|.  (10.37)
Note that the first term on the right-hand side varies
slowly—remember that

¢(t) = 4sin [é wt].

The frequency for the second term in eq. (10.37) is 2w,
so it varies rapidly. If we apply a low-pass filter to the signal
to remove all content with frequencies larger than w, we are
left with

2, (1) =[L ADexplip(1))],. (10.38)

The subscript f indicates that the signal has been smoothed
by application of the filter.

Now the amplitude is just the magnitude of z; and we
merely divide eq. (10.38) by A(?) to isolate ¢(r).

SOME FAMILIAR EXAMPLES

Turbulent Flow in a Deflected Air Jet

Previously, we alluded to the fact that time-series data are
generated frequently in engineering and scientific investiga-
tions. One area where this is particularly important is the
study of turbulent flows, where a number of instruments
have been developed that can monitor fluid velocities at a
point in space. Examples include laser Doppler velocimetry
(LDV) and hot-wire anemometry (HWA). These devices
produce signals as functions of time, and in the case of
HWA, the signal is usually voltage. The response time for a
hot-wire anemometer is short, so high-frequency fluctua-
tions can be observed without difficulty. Figure 10.24 shows
the output from a hot-wire anemometer used to measure
point velocity in a high-speed deflected air jet. The volumet-
ric flow rate of air was 200 L/min, and the round jet was
deflected off of a concave surface producing a very thin
shear layer. This arrangement yields velocities mainly
between 10 and 100 m/s. The measurement point for the data
shown in Figure 10.24 was near the centerline (axis) of the
deflected jet, so the velocities are relatively large.

The approximate range of velocities illustrated by the
data in Figure 10.24 is about 10 to well over 100 m/s, and
the data were recorded for a duration of about 1/8 second.
Thus, the minimum frequency that can be observed would
be about 50 rad/s or 8 Hz. A digital storage oscilloscope was
used to record these data, and the device had a built-in capa-
bility for computing power spectra for time-series data. The
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FIGURE 10.24. Data obtained from HWA in a deflected, high-
speed air jet. The sampling interval was At = 0.0001 s, so the
Nyquist frequency is 5000 Hz. The mean voltage is approximately
2.36 V, which corresponds to an air velocity of about 55 m/s.

plexglas0d200p14

1072

Power spectrum

10 —T T T T T T T T T T T T
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency (Hz)

FIGURE 10.25. Power spectrum for the HWA data shown in
Figure 10.24. The Fluke™ DSO computed values between 8 Hz
and 5 kHz.

spectrum provided by the recording device is shown imme-
diately as follows.

The spectra shown in Figure 10.25 and Figure 10.26 are
certainly not identical nor would we expect them to be. As
we discussed previously, appending zeros to a time series to
use a radix-2 DFT algorithm will result in a sharp disconti-
nuity and the result will be additional spectral components
in frequency space.

100
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Power spectrum
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FIGURE 10.26. Power spectrum computed by DFT for the time-
series data shown in Figure 10.24. There were 1200 data points in
the record, so 848 zeros were appended to reach 2048 (or 2
observations).

Bubbles and the Gas-Liquid Interface

When gas is introduced into a liquid, whether it be through a
plain orifice, by jet aeration, or by liquid drops impacting the
surface, a number of processes are set in motion that are
capable of producing acoustic noise. Examples of these phe-
nomena include detachment from the orifice, followed by
oscillations about spherical shape, then bubble breakage and
coalescence, and finally bubble disengagement at the free
surface. Small bubbles are generally spherical, but other
shapes are also common, depending on size, which affects
buoyancy and drag forces, and so on. An image of air bubbles
(Figure 10.27) produced by jet aeration in water illustrates the
variety of shapes seen in two-phase (gas—liquid) processes.

Notice how the small bubbles shown in Figure 10.27 are
spherical, while larger bubbles tend to be ellipsoidal. The
spherical bubbles oscillate with a characteristic frequency
determined by surface tension (7), the density of the sur-
rounding liquid (p,), and bubble size (R):

, 127
§° = .
pR’

(10.39)

Thus, for a 0.5-mm air bubble in water,

»__(12)(72)
2=

= =5.53x107 rad®/s*, or 1183 Hz.
(1(0.025)°

Of course, this frequency is in the acoustic range and these
oscillations can produce detectable sound.

A number of experiments were carried out in which air
was introduced through a sieve plate into column of a
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FIGURE 10.27. Characteristic shapes of air bubbles in water produced by jet aeration. The very large population of bubbles at the top of
the image at the gas—liquid interface affords many opportunities for coalescence to occur prior to bubble rupture.
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FIGURE 10.28. Spectrum for the recorded acoustic noise at the
top of the column where bubble disengagement processes are the
dominant sound producers.

liquid medium consisting of water and glycerol. The objec-
tive was to learn more about energetic phenomena associ-
ated with bubbles in aqueous media of higher viscosities
and the possible impact of those energetic motions on
entrained entities (perhaps cells, or cells being grown on
microcarriers). A microphone was used to monitor sounds
produced both at the top of the column (above the inter-
face) and at the bottom at the same level as the sieve plate
sparger. Glycerol slightly decreases the surface tension
when added to aqueous solutions, but the effect is small.
At the top of the column, the sounds produced are mainly
associated with disengagement processes (coalescence,
bubble breakage, cavity collapse, and droplet ejection and
impact). At the bottom of the column, the noises mainly
come from bubble formation, detachment, and shape oscil-
lations. Figure 10.28 shows how the signal energy was dis-
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FIGURE 10.29. Spectrum for the recorded acoustic noise associ-
ated with bubble formation, detachment, and oscillation at the
bottom of the column.

tributed with respect to frequency at modest gas (air) rates
as detected at the top of the column. Figure 10.29 shows
the distribution of signal energy at the bottom of the column
adjacent to the sieve plate sparger.

The spectrum for disengagement processes at the top of
the column (Figure 10.28) shows significant signal energy
at 60, 70, 115, 220, 300-500, 1100, 1750, and 2020 Hz. In
contrast, the spectrum shown for the bottom of the column
(Figure 10.29) indicates a broad band of important frequen-
cies between 300 and 600 Hz, with a very sharp, narrow
contribution centered at 1605 Hz. Clearly, these detected
acoustic signals do not merely represent spherical bubble
oscillations; after all, we know that 400 Hz would corre-
spond to the fundamental oscillation of a spherical bubble
with R = 0.0515 cm. Most of the bubbles formed at the sieve
plate in this aqueous glycerol solution were much larger than
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that. Furthermore, when bubbles arrive at the free surface,
some may coalesce before film thinning produces an unsta-
ble interface followed by rupture. When large bubbles break,
they typically throw small liquid “film droplets” laterally.
When small bubbles break, the cavity created at the liquid
surface due to the higher pressure in the bubble’s interior
will collapse; this collapse can eject larger “jet” droplets
usually with a nearly vertical trajectory. And often, these
breakage processes at the free surface subsequently produce
much smaller bubbles capable of generating higher-
frequency sounds (the next time you pour a soft drink onto
ice, listen carefully at the top of the glass).

Shock and Vibration Events in Transportation

When cargo is moved by ship, rail, or truck, it is subjected
to shock and vibration. If that cargo is delicate, such phe-
nomena may lead to damage and loss; consequently, much
effort has been expended in measuring strains and accelera-
tions in transport environments. For example, in the case of
railroad transport, low-frequency motions arise from irregu-
lar track surfaces; a low spot opposite a high spot will lead
to rail car rocking. Shust (2007) found that rocking and
vertical bounce from spring deflection occurred at frequen-
cies mainly under 4 Hz. On the other hand, vibrations mea-
sured in a locomotive bearing box revealed important energy
content at 440, 500-540, 607, and 978 Hz. A source of
violently abrupt motions in railroad transport is car cou-
pling. Magnuson and Wilson (1977) measured acceleration
spectra for coupling events occurring at an impact velocity
of 5.25 mph (about 99% of car coupling impacts occur at
speeds less than 11 mph). One of the more interesting fea-
tures of the coupling shock event is that accelerations of
significant energy are produced at higher frequency. Figure
10.30 illustrates a spectrum redrawn from data presented by
Magnuson and Wilson.

Shust (2007) notes that a common railroad car design
specification (the ability to withstand 4 g accelerations) is
frequently violated by the accelerations produced at higher
frequencies generated by coupling events.

Truck transport also results in shock events that occur
through travel over pavement irregularities, potholes, rail-
road crossings, and so on. Magnuson and Wilson (1977)
reported spectra from over-the-road tests performed with
seven different tractor—trailer combinations. They included
measurements for all three axes (vertical, transverse, and
longitudinal) in their study and, as one might expect, vertical
accelerations were the largest by a significant margin.
Spectra that have been transcribed and redrawn from their
report are shown in Figure 10.31.

Large vertical accelerations are evident in Figure 10.31,
but unlike shocks experienced by railcars during coupling
events, these data do not show the same degree of transfer
of energy to higher frequencies. In fact, the peak vertical
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FIGURE 10.30. Spectrum of measured accelerations resulting
from car coupling at 5.25 mph. Note the large measured accelera-
tions occurring at about 100 Hz.
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FIGURE 10.31. Spectra for vertical and longitudinal accelera-
tions measured in trucks traveling over irregular surfaces (redrawn
because of the poor quality of the original figure).

accelerations occur at about 18 Hz where the maximum is
nearly 10 gs.

Time-series data collected in rail transport scenarios
reveal that large strains (and perhaps very large accelera-
tions) are especially likely to be generated by shock events
such as coupling or, even worse, derailment. In some cases,
the accelerations may exceed design specifications for the
vehicle or car. This can pose a serious problem when hazard-
ous materials are being transported; a ruptured tank car, for
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example, might disrupt revenue service and even lead to
evacuations (and liability) in populated areas. Recent tragic
accidents in Casselton, North Dakota, where 400,000 gal of
crude oil were spilled, and the devastating explosion and fire
in Lac-Megantic, Quebec, resulting from tank car brake
failure have highlighted the need for reexamination of tank
car design. The FFT/DFT is absolutely indispensible in
investigations of this type, where improved car design crite-
ria can be developed to improve transportation safety.

CONCLUSION AND SOME FINAL THOUGHTS

Harmonic analysis has been a standard tool in engineering
practice for decades, but it may be difficult for the student
new to this area to appreciate the significance. For final
emphasis, let us consider an engineering study in aviation
that gives us one more example of what the role of the
Fourier transform is in the context of public safety. In 1968,
Slusher authored FAA Report NA-68-27, “Reciprocating
Engine and Exhaust Vibration and Temperature Levels in
General Aviation Aircraft.” Safety, of course, is a critical
concern in general aviation and one problem area—known
to have caused fatal accidents—is the failure of exhaust
system integrity. The environment for exhaust systems on
reciprocating aircraft engines is incredibly hostile due to the
combination of thermal stresses, engine vibration, and
chemical attack by combustion products. A mechanical
failure of the exhaust system could result in engine fires or
carbon monoxide infiltration into the passenger cabin (both
have occurred). Slusher found, and not surprisingly, that
vibration levels were highest during takeoff when the engines
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were operating at maximum power. Furthermore, since the
study focused on horizontally opposed reciprocating engines,
the largest amplitude vibrations were lateral (the direction
of both piston travel and valve motion). The data revealed
that the largest lateral accelerations (at high speed, 2331 rpm)
were about +20 gs, and many of the spectra showed impor-
tant signal contributions at 1500-2000 Hz. Slusher noted
that the time-series data (engine vibration waveforms) were
periodic but consisted of a complex and continuous fre-
quency spectrum with some very energetic content in certain
frequency ranges. The study demonstrated that the materials
that were being used for exhaust systems on general aviation
aircraft in the 1960s (often types 321 and 347 stainless
steels) were not ideal for the application. Though prosaic,
this is just one more example of how the Fourier transform
has been used in engineering practice to enhance public
safety.

In recent years, the Fourier transform (and specifically
the FFT) has become enormously important to modern life
through signal processing, communications, analytic chem-
istry, seismic event detection and interpretation, collision
warning systems for automobiles, process control, and so
on. The list of applications of the FFT/DFT is incredibly
long, and many of the technological marvels we take for
granted depend on very fast determination of the Fourier
transform of time-series data. Let us think a little bit about
the future with a final example we had previously mentioned
in passing: speech recognition. Two sets of time-series data
are compared in Figure 10.32a,b, obtained from the record-
ings of a human voice saying “yes” and “no.”

Figure 10.32a shows that the “y” in “yes” is nearly a

distinct frequency, but the “e” in the middle and the “s” at
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FIGURE 10.32. Recordings of a human voice speaking the words “yes” (a) and “no” (b). These data make it very clear how difficult
speech recognition really is due to the fact that so many sounds involve combinations of frequencies.
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the end are significantly different. It is clear the “s” portion
of “yes” has much smaller amplitude but much higher fre-
quency. In fact, the “s” is one unambiguous characteristic
that distinguishes Figure 10.32a from Figure 10.32b. In the
case of the spoken “no” (Figure 10.32b), the “n” sound
(about the first eight cycles) is sharply defined at about
127 Hz. In contrast, it is apparent that the “0” sound involves
several frequencies. Now imagine that we wished to
issue instructions to a computer verbally and have those
instructions—in near real time—be translated into execut-
able code. It will be necessary for the machine to recognize
the individual phones (a phone is a single speech sound) and
to assemble them into an intelligible instruction. If you think
about how people actually speak, often running words
together, failing to enunciate certain letter combinations
clearly, and so on, you can understand what an incredibly
difficult problem speech recognition really is; and to make
it worse, in critical applications, the system would have to
be 100% reliable. The data in Figure 10.32 suggest that
distinguishing between a spoken “yes” and a spoken ‘“no”
would be easy, but interpreting an entire sentence flawlessly
would be far more difficult! We will have an opportunity to
explore the use of the FFT in the detection of speech patterns
in a student exercise where we will examine four words, all
with at least some similar sounds.

PROBLEMS

10.1. Apply Schuster’s test to the oscillating function
y(t) = sin(397t) + sin(517t) + sin(597¢) + sin(797t).

Examine the discrete frequencies 57, 58, 59, 60, and 617
and prepare a plot similar to Figure 10.5.

10.2. Consider a set of sampled values consisting of 1024
observations. These data are uniformly zero until n = 85,
where a ramp occurs with amplitude increasing at a rate
corresponding to 0.05 per sample. This “waveform” then has
an amplitude of 1 until n = 175; for n > 175, y(¢) = 0, that
is, the amplitude reverts to zero. Compute the DFT for this
waveform without tapering. How severe is the leakage?

10.3. Apply the DFT to a square wave (a rectangular
window) with an amplitude of 1, then apply a split cosine
(bell-shaped) window to the data, leaving the center 80%
of the data unaffected. Finally, allow the window to shrink
so that the center amplitude falls below 1.0 to 0.75. What
impact does this have on the DFT? Is leakage completely
eliminated?

10.4. By an inviscid analysis (see Lamb, 1945), it can be
shown that bubbles and (immiscible) droplets immersed in

liquids have a characteristic frequency of oscillation that is
given by

.
[((n4+Dp+np |R*

sS?=nn+Dn—-n+2)

For a 0.2-cm diameter water droplet surrounded by air, 7
(the surface tension) is about 72 dyne/cm, p = 1 g/cm and
p1 ~ 0. If the most important mode of vibration is that for
which n = 2, then

PICIGE)
(3)0.1)°
f 22120 Hz.

= 576,000 rad?/s>, and therefore,

If, on the other hand, an air bubble of the same size is
surrounded by water, the frequency of vibration is
approximately

o 12)(72)
(1.1’

= 864,000 rad”/s*>, and thus, f >~ 148 Hz.

If bubbles were formed at a single orifice at a rate of 79
per minute and if their sizes ranged from 0.9 mm (diameter)
to 2.39 mm, which dominant frequencies would you expect
to see in a computed spectrum (data obtained from a hydro-
phone or a sensitive pressure transducer)?

10.5. Dodge (1971) carried out a study of slosh suppression
in LOX tanks; of course, sloshing is critical to stability and
control of rockets using cryogenic liquids (oxygen and
hydrogen) for propulsion. The work focused on the use of
lightweight, flexible plastic baffles for dampening of the
periodic forces created by the moving liquid. In the experi-
mental work, a shake table was used to oscillate a 76-cm
diameter tank containing liquid nitrogen. The natural slosh
frequency in this tank was cited as 1.05 Hz, and the ampli-
tude obtained was a little less than 4 cm. A load cell was
used to record the decay of the liquid motion within the tank.
Suppose the data record obtained from such an experiment
appeared as shown in Figure 10.33.

Use the DFT to see if you can identify all of the frequen-
cies appearing in this data set. The data will be provided to
you separately in electronic format. Does the rapid attenua-
tion cause any significant problems? The sample interval,
At, is 0.02 second.

10.6. Baseball bats, golf clubs, tennis racquets, and the like
vibrate on impact with a ball. In some cases, the resulting
stinging sensation (transmitted to the hands) can be severe,
and in baseball, the amplitude of the vibration can be such
that the batter’s hand(s) may even lose contact with the bat
handle. This is a phenomenon that has seen much study by
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FIGURE 10.33. Slosh amplitude for cryogenic liquids in tanks.
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FIGURE 10.34. Data of the type obtained from a piezoelectric
sensor mounted on the barrel of a wooden baseball bat.

physicists including Brody (1986) at the University of Penn-
sylvania and Cross (1998) at the University of Sydney. It
turns out that wooden baseball bats typically have a couple
of fundamental frequencies of about 500-600 Hz and about
150-200 Hz. Naturally, the precise vibration frequencies
depend on where the ball is contacted on the bat, how the
bat is secured, and where the piezoelectric vibration sensors
are mounted. Suppose a ball impact test on a wooden
Louisville Slugger™ produced the data set illustrated in
Figure 10.34.

Perform a harmonic analysis of these data and determine
the fundamental frequencies produced by the impact of a
ball on the wooden bat. The data will be supplied to you
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FIGURE 10.35. Simulated locomotive bearing box vibrations,

with At = 0.00025 second. Therefore, fy,, = 1/(2Af) = 2000 Hz.

separately in electronic format. The sample interval in this
case was 0.0005 second (0.5 ms).

10.7. Miles et al. (1999) studied both bending and tor-
sional vibrations occurring in the crankshaft of a 2-L
diesel engine (with four cylinders) running under load at
both 600 and 750 rpm. They used laser light scattered off
of the face end of the crankshaft pulley to detect the
motion at the end of the crankshaft. Because of the prox-
imity of the measurement point to the number one cylin-
der, one could expect firing in that cylinder to have a
major impact on the motion. Each segment of piston travel
corresponds to 180° of rotation on the crankshaft, so the
power pulses on the number one cylinder are separated by
(4)(180) = 720°. Therefore, if the engine is running at
600 rpm (10 revolutions per second), power pulses on the
number one cylinder should occur about every 0.2 second.
This is the pattern revealed by figure 17 of the Miles et
al. paper. Their computed spectrum is shown in figure 18
and it exhibits important signal content at many discrete
frequencies including 9, 32, 42, 55, 87, 211, 300, 352,
367, 413, 432, 454, 471, and 644 Hz, among others. Con-
struct a set of sinusoids with appropriate amplitudes and
frequencies such that the DFT produces a spectrum com-
parable to figure 18 of Miles et al. Which components of
the oscillating signal must have the largest amplitudes for
the two spectra to be comparable?

10.8. Shust (2007) studied shock and vibration in railroad
operations. In one part of the study, vibrations in an operat-
ing locomotive bearing box were measured. Some simulated
data with similar periodicities are reported in Figure 10.35.
Perform a DFT on these data (supplied separately) and
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identify the important contributions to the spectrum. What
are the most significant frequencies in the data set?

10.9. The failure of the Tacoma Narrows (TN) bridge in
November 1940 led to multidisciplinary efforts to better
understand oscillations occurring in suspended structures
and how those vibrations might lead to structural failures.
Although vortex shedding has frequently been identified as
the cause of the TN bridge deck’s oscillations, this explana-
tion is incorrect. At the time of the failure, Professor Farqu-
harson (of the University of Washington) observed that the
destructive torsional oscillation was occurring at 0.12 Hz—a
frequency much lower than that arising from vortex shed-
ding from a suitably sized bluff body (with a wind speed of
42 mph). The aeroelastic torsion that doomed the bridge was
nothing at all like the benign vertical “galloping” that was
observed even while the bridge was still under construction.
The failure of the TN bridge had an important positive result,
however; it forced bridge designers and engineers to better
understand (and design for) aeroelastic oscillations.

Abdel-Ghaffar and Scanlan (1985) studied vertical, tor-
sional, lateral, and longitudinal motions of the center span
of the Golden Gate bridge in response to normal excitations
(wind, vehicular traffic, and wave action). In Figure 10.36,
a spectrum obtained from span station 3 has been recon-
structed from the published paper (the quality of the original
figure was poor).

Construct a set of sinusoids that, when Fourier-
transformed, will reproduce the essential characteristics of

12
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FIGURE 10.36. Spectrum for torsional motions of the center
span. The frequency scale is arithmetic (hertz), and the two highest
peaks in the right-half of the spectrum occur at 3.1 and 4.18 Hz.
The major contribution at the left edge is centered at approximately
0.225 Hz.

this spectrum. Use a random number generator to produce
some fine-scale structure in the spectrum and compare your
results with Figure 10.36.

10.10. Recordings of a human voice speaking the words
“example,” “execution,” “expansion,” and “exponent” will
be provided to you separately (and illustrated in Figure
10.37). Apply the FFT to all four data sets. Are the spectral
characteristics different enough to allow you to distinguish
between the words? What are the essential differences, and
are you confident that, based on your spectra, you could
identify all four words without error?
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10.11. In recent years, the problem of concussions resulting
from collisions in dynamic sports like football has been
revealed to be a much more serious problem than most
observers thought. It has become all too evident that even
mild traumatic brain injuries (TBIs) may have cumulative
effects leading to chronic traumatic encephalopathy (CTE),
which may manifest itself years later in memory loss, behav-
ioral changes, and even suicide. For many years, the stan-
dard mechanism for assessment of head trauma has been the
Gadd severity index (GSI), which is determined from the
linear acceleration (at the headform center of gravity) and
the duration of the event:

T
GSI:faS’zdt.

0

Throughout the literature of head trauma, the threshold
value for the severity index has been cited as 1000, with a
typical event duration of about 15 ms (0.015 second). An
alternative, but closely related, measure is the head injury
criterion (HIC):

A 5/2

1
" f a(t)dt

fn

HIC = (lz - [1)

2

Studies have shown that concussions in professional foot-
ball (the National Football League) typically result from
impact velocities on the order of 9.3 £ 1.9 m/s (note that
this corresponds to about 20.8 mph!). This raises an interest-
ing question: Is it possible that significant energy is being
produced at higher frequencies as a result of football-related
collisions? You may recall that, near the end of this chapter
(see Figure 10.30), we saw exactly that phenomenon occur-
ring in railroad car-coupling events, where measured spectra
revealed large accelerations at much higher frequencies
(e.g., close to 100 Hz). This transfer of energy was obtained
at much lower velocities (about 5.25 mph) and Shust (2007)
further noted that energy transfer in car-coupling events
routinely resulted in the 4 g design specification being
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FIGURE 10.37. Time-series data for four spoken words: (a) “example” and (b) “execution,” followed by (c) “expansion” and (d)

“exponent.”

exceeded. As of this writing (the end of 2013), the are few
such (spectral) data available for helmet impacts, although
this area is seeing very intensive work with the objective that
CTE might be minimized or even eliminated. Search the
latest literature to see what spectral data have appeared for
helmet impacts. Do the spectra show the type of energy
transfer seen in railroad car-coupling events? If they do not,
what do the spectra reveal about the dynamics recorded in
the accelerometer data?
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AN INTRODUCTION TO THE CALCULUS OF VARIATIONS
AND THE FINITE-ELEMENT METHOD

SOME PRELIMINARIES

You may recall that we previously made use of some con-
cepts from the calculus of variations (COV) in our discus-
sion of the variational iteration method (VIM). We will now
expand on that very brief treatment to illustrate some other
applications of COV. We will mainly follow the conventions
employed by Spiegel (1971) and Weinstock (1974). It is
important to note that our approach will focus on conserva-
tive fields for which the force, F, is related to a potential
energy function, ¢, such that F' = —V¢.

Consider a function, y = f{x), in the x-y plane that joins
the two points, (x;, y;) and (x,, y,), together. We recall from
elementary calculus that the length of the pathway connect-
ing these two points is

X2 d 2
L:f 1+[—y] dx. (11.1)
dx
X1
To reveal the nature of the problem we wish to contem-
plate more clearly, let us select two specific points:
(xla }’1):(1,4) and (x29 )’2):(4’ 9)

Now suppose the function, f{x), connecting these two points
is a straight line:

5 7
=Zx+4—. 11.2
y 3513 (11.2)

We want to evaluate L from eq. (11.1), recognizing, of
course, that the value produced by eq. (11.2) will be the
minimum possible length. But we also want to have a couple
of comparisons available, so in addition, we will let y(x) be
given by the two equations:

y:lszrE and y:177—97x+ 7

~L ¥ (11.3ab)
3 3 x 2407 ' 240

Now we will compute the arc length from point 1 to point
2 using eq. (11.1) for all three cases; the results are 5.83,
5.91, and 8.98, respectively. The straight line provided
the minimum length as we expected. The second-degree
equation exhibits a little curvature, so its value for L is a
bit longer, and the third-degree equation—which is a good
deal more complicated—provides a significantly longer L as
we would expect. Imagine now a situation in which we
wanted to identify the minimum value of the integral (eq.
11.1) but had no idea of the form of the function, y(x). This
certainly sounds like a much more difficult task and we have
an additional complication: In technical problems, our
objective will almost certainly be far more complicated than
the mere distance between two points in the x-y plane as
given by eq. (11.1).

As we suggested previously, our real interest is the more
general case where we need to identify some function, y(x),
where y; = y(x,) and y, = y(x,), but with the stipulation that
the integral
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X2
I:fF(x,y,y’)dx (11.4)
X1

be a minimum or a maximum. The function y(x) that meets
this requirement is called an extremal, and the integral (eq.
11.4) is referred to as a functional with one independent
variable, x. We will proceed in the following way: We
form a family of comparison functions using a single param-
eter, e:

Y(x) = y(x)+ ep(x). (11.5)

We require that ¢(x) be a differentiable function that
disappears at the endpoints x; and x, so that ¢(x;) = 0 and
o(x,) = 0. Now we rewrite eq. (11.4) as

f F(x.Y. Y )dx (11.6)

X1

I(e)=

and note that by Y’(x), we mean Y'(x) = y'(x) + e¢'(x). Of
course, if € = 0 everywhere, then eq. (11.6) is exactly the
same as eq. (11.4). The essential point here is that no matter
what form ¢(x) has, the extremizing function, y(x), will be
a member of the comparison function family. Let us illus-
trate this scenario with a graph (Figure 11.1).

If we differentiate eq. (11.6) with respect to € and set
¢ = 0, then dl/ds = 0. Thus,

X2

1’(0):f[g—§¢+g—5, ’]dx. (11.7)

X1

(x2,2)

1 Geyn)
0-
4
| Y= y(x) + eg(x)
_4 =
T T T T T T T T T T T 1
2.0 2.5 3.0 3.5 4.0 4.5 5.0

FIGURE 11.1. Illustration of the “family” of comparison func-
tions. If € = 0, then we get the behavior shown by y(x).

By integrating by parts and noting that the result must be
valid for all ¢, Weinstock (1974) shows that the function we
are seeking must satisfy the Euler—Lagrange differential
equation:

d

— 0, 11.8
I (11.8)

OF|_OF _
oy') 0Oy
which was derived by Euler in the eighteenth century. We

can perform the indicated differentiation to see the equation
in its entirety:

&yOF  dy OF | O°F OF _
dx> 9y dx 9y'dy oy'ox Oy

The Euler-Lagrange equation is a necessary—but not
sufficient—condition for y(x) to be an extremal; at this stage,
we do not know if we have found a minimum, a maximum,
or a stationary point (at a stationary point, the derivatives of
the function vanish). For a simple example of a stationary
point, consider the behavior of fix) = x* with f/(x) = 3x%
clearly, at x = 0, f/ = 0, but this point does not correspond
to an extremum. The differential equation (eq. 11.8) may be
written in an equivalent form that is often useful:

F F
g ’8—, :8—. (11.9)
dx ady Ox
Should x not appear in F explicitly, then
F—y’a—F,:C. (11.10)
dy

Equation (11.10) is known as the Beltrami identity
(named for Eugenio Beltrami, an Italian mathematician of
the nineteenth century). And should y not appear explicitly,
then OF/dy = 0, and eq. (11.7) is simply (d/dx)(OF/0y") = 0,
such that

OF

A (11.11)

NOTATION FOR THE CALCULUS OF VARIATIONS
Let us return to eq. (11.4) to retrieve the function F(x, y, y'),

but now we take the independent variable, x, to be constant.
We define the variation of F as

AF =F(x,y+e¢,y' +e¢ )= F(x,y,y). (11.12)

We can employ a truncated Taylor series expansion for
Flx,y +e¢,y + ed):
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OF

= F(x, y,y)+ s¢>+ ¢+ (11.13)

This means that the variation of F is

ar=9, ¢+

3 6(;5 + neglected terms. (11.14)
y

In the literature of the COV, this variation of F is
written as

6F:8—F ¢+8F ',

11.15
o ( )

The reason this is important is because a necessary condi-
tion for the integral of the function, F(x, y, y'), to be an
extremum is

x2
5 f F(x,y,y)dx =0;

X1

(11.16)

that is, the first variation of the integral must vanish. Though
conceptually attractive, we bear in mind an observation
made by Courant and Hilbert (1989): “in the calculus of
variations the existence of an extremum for a particular
problem cannot be taken for granted. A special existence
proof is needed for the solution of each problem or class of
problems.” Courant and Hilbert provide examples of COV
problems that, while appropriately developed, do not have
solutions.

BRACHISTOCHRONE PROBLEM

The utility of the COV is often demonstrated with the “bra-
chistochrone” problem, which was posed by Johann Ber-
noulli as a challenge to European mathematicians in 1696.
This example serves another purpose as well since it conveys
a clearer picture of Sir Isaac Newton’s formidable powers;
it is extremely difficult three centuries later to grasp how far
Newton had surpassed his contemporaries in mathematics
and physics. It was reported by Newton’s biographers (much
of what we know about Newton has come down to us from
John Conduitt and William Stukeley) that Newton received
the brachistochrone problem in the evening after returning
from work at the Royal Mint (Newton served as Master of
the Mint for 10 years); Newton developed concepts for the
COV and solved the brachistichrone problem, completing
his work at 4 a.m. the next morning. He insisted that the
solution be published anonymously (and it was, by the Royal
Society in January 1697), but it has been reported that when
Bernoulli saw it, he remarked that “we recognize the lion by
his claw.”

BRACHISTOCHRONE PROBLEM 231

The physical picture for the brachistochrone problem is
as follows: We consider two points in a vertical plane con-
nected by a ribbon or wire that can assume any shape desired.
An object of mass, m, slides down the wire under the influ-
ence of gravity. The process is frictionless so that at any
point in time, the sum of potential and kinetic energies is
constant; there are no dissipative forces in play, only gravity.
The question to be addressed is what shape should the wire
have such that the sliding mass reaches the bottom position
in the least possible time?

Let the initial point be the origin and the lower point be
P corresponding to position (x,, y,). Since there are no dis-
sipative forces in this process, we note by energy balance,
PE, + KE, = PE, + KE,. We assume that the mass was
initially at rest, so the kinetic energy term on the left-hand
side is zero:

dsY
mg)’o:mg()’o—)’)‘F%m[E] ) (11.17)

and therefore, ds/dt = \/E . Of course, s is the length of
the arc connecting the initial and final points. The total time
required for the mass to slide from the origin to its final
position can be obtained from the quotient of the path length

and the object’s velocity (keep in mind that we are starting
at the origin, so x = 0):

T xj‘z ds
req X:O {2gy'

We already know that the length of an arc is given by eq.
(11.1); therefore,

(11.18)

i + y/z

(11.19)

= [

The objective is to find the function y(x) that minimizes
this integral, recognizing that this is exactly the type of COV
problem we described previously. One could propose differ-
ent functions and calculate the total time for each case (as
we did in the example at the beginning of this chapter), but
we would not know whether the y(x) so identified was really
the extremal we are seeking. By comparison with the form
for eq. (11.4), we see

12
J o L
Jy
and thus F does not explicitly depend on x. Consequently,
we can make use of eq. (11.10):

=C, (11.20)
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and accordingly,

(11.21)

r_dy |1/C—y
Y dx y

We set A = 1/C and change the y variable: y = Asin?f.
The reader may wish to show that
x=A[f—1sin26)]. (11.22)
The constant of integration that should appear here is
equal to zero since the curve must go through the origin
(where x = y = 0). The expressions for x and y give us the
parametric equations for a cycloid; for example, when
0 = 7/6, x = 0.0906A and y = 0.25A, and when 6 = 7/4,
x = 0.2854A and y = 0.5A. The value for A is selected
to ensure that the curve passes through the desired point,
(x2, 2).

OTHER EXAMPLES

Minimum Surface Area

Again we assume that we have some curve in the x-y plane
that connects the two pairs of points, (x;, y;) and (x,, y,). If
we rotate this curve about the x-axis, then a surface is gener-
ated that has some particular surface area, as well as some
enclosed volume. We know from elementary calculus that
this generated surface has an area given by

X2 dy 2
A:f27ry(x) 14— dx.
dx

Therefore, if a straight line extended from the origin to the
point (4, 5), then y(x) = (5/4)x, and if we rotate this line
around the x-axis we find

2
Azzﬁ[i] fﬂx_
4)V16 2

Of course, we could confirm this number by use of the
mensuration formula for the lateral surface area of a cone.
But our goal in this section goes beyond a determination of
surface area; we want to determine the minimum surface
area formed by the revolution of y(x) about the x-axis.
Therefore, we need to identify the minimum value of the
integral,

(11.23)

4

=100.58.

0

X2

I:27rfy 1+ y"dhx.

X1

(11.24)

Observe once again that the integrand does not depend
explicitly on x; thus, we can turn immediately to eq. (11.9),
F — y'(OFIdy") = C:

12

Wity? -2 —¢. (11.25)
,1+y,2
Now we isolate dy/dx to show
f b ip (11.26)
y2

We substitute z = y/C to find

C f dz =x+B,

Vz? -1
and we notice that the denominator of the integral is a qua-
dratic irrationality that would normally call for trigonomet-
ric substitution. However, in this case, we might recognize
the appropriate antiderivative since the integral is one that
appears in every elementary calculus book, and therefore,

cosh™'(z) = %—i— B,, resulting in y = Ccosh

X
Z+B
C

(11.27)

The intriguing feature of this catenary is that, if we
force the curve through the initial point, (x;, y,), we might
not be able to pass through the endpoint, (x,, y,); that is,
the endpoint might lie outside the envelope of this cate-
nary family. Weinstock discusses this particular case which
reveals a limitation of the theory we have employed
earlier. Though it is beyond the scope of our discussion,
the actual minimum surface area for this situation is given
by the Goldschmidt discontinuous solution—the catenary
family will provide relative or absolute minima for surface
area only if the endpoint is sited appropriately (in general,
the endpoint must be above or to the left of the catenary
envelope).

Before we leave this discussion of the catenary, we should
make note of the fact that the COV can be used to show that
an inverted catenary (the catenary arch) has the lowest pos-
sible internal stress. Of course, catenary arches have been
used in buildings for centuries and a modern example is the
Sheffield Winter Garden in South Yorkshire. The very well-
known Gateway Arch in St. Louis, Missouri, is an example
of a flattened catenary.

Systems of Particles

We are concerned here with a collection of n-particles in a
conservative system for which the potential energy function,
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V, can be used to obtain the three force components; for the
nth particle (located at positions x, y, and z), we would have

Fro OV o Vg g OV

11.28
3x ! oy, ' 07, ¢ )

The total kinetic energy, 7, for this system can be obtained

o R ERC

In classical mechanics, we would describe the behavior
of a particle with Newton’s law, F = ma = m(d’s/dt*). We
imagine that at two different times, say, ¢, and #,, we have
two different configurations—the particles have moved
around subject to F = ma. The principle of least action*
states that the integral of the Lagrangian function over this
time interval must have a minimum value. Since the Lagrang-
ian function for this system is merely the difference between
kinetic and potential energies, we require that

153 &)
I:f(T—V)dt:det
n n

be an extremum (minimum). The problem thus posed is one
of determining the paths traveled by the particles that make
this integral a minimum. We let the particle velocities be
represented by ¢, ¢», ... ¢, and the coordinate locations be
given by ¢, ¢»,...q,. Naturally, the kinetic energy of the
system is a function of the velocities, the positions, and time,
while the potential energy is a function of the coordinates
and time. The requirement that the integral (eq. 11.30) be a
minimum is often referred to as Hamilton’s principle, which
is applicable to the motion of any conservative system. This
principle leads to Lagrange’s general equations of motion,
which we write as

(11.30)

dOT 0y o OL d[aL]
dt 9q;  Og; dq;  dt\0g

(fori=12,...,n), (11.31)
where the g;s are generalized coordinates. These equations
(eq. 11.31) constitute a set of simultaneous second-order

*The philosophical underpinning of the principle of least action
was given by Euler: “As the construction of the universe is the most
perfect possible, being the handiwork of an all-wise Maker, nothing
can be met with in the world in which some maximal or minimal
property is not displayed. There is, consequently, no doubt but that
all of the effects of the world can be derived by the method of
maxima and minima from their final causes as well as from their
efficient ones.”

OTHER EXAMPLES 233

differential equations whose solutions reveal the generalized
coordinates as functions of time. The solution, of course,
requires that the initial values for both ¢ and ¢ be known.

Vibrating String

In the previous section, we considered a situation in which
points of mass (particles) were distributed in space. However,
Hamilton’s principle can also be applied to cases in which
mass is continuously distributed. To illustrate, let us consider
a string anchored at positions x = 0 and x = L. The string
is flexible, and if it is physically perturbed, it can oscillate
normal to its equilibrium (or undisturbed) axis. We will let
the string’s displacement be ¢ and its mass per unit length
be m. The total kinetic energy of this string of length L

is then
L 2
T:lfm[a—d)] dx.
2 | ot

The string is perfectly elastic, so any disturbance will
result in an increase in length. We will assume that the
potential energy of the string is directly related to its elonga-
tion, and therefore by eq. (11.1), this change in length is
given by

(11.32)

L 2
f 1+[a—¢] dx — (11.33)
) Ox

If the increase in string length caused by the displacement
is sufficiently small, then
)
Ox

{3 =

such that

vt (5 o

and therefore,

dx. (11.34)

5l ()

By the principle of least action, the first variation of / should

be zero:
-3 ] T 2]

dxdt.  (11.35)
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Note that the functional depends only on the two deriva-
tives (with respect to ¢ and x); it does not involve x or ¢ or
even ¢ explicitly. The Euler—Lagrange equation for this case
(we will use subscripts to indicate derivatives with respect
to x and 1) is

OF O (0F) 0 aF], (11.36)

%_5[6_@]_5[6@

which means that the function ¢, which makes the first varia-
tion of / disappear, must be governed by

Fo_ 0%

=c* ==, 11.37
or* Ox? ¢ )
where the characteristic velocity, ¢, is obtained from the
quotient of k/m. Equation (11.37) tells us that the string’s
displacement must follow the one-dimensional wave equa-
tion, exactly as we expected.

Laplace’s Equation

We have seen previously that problems concerned with con-

servative fields (no dissipative effects) can often be described

with Laplace’s equation, for example, in two dimensions:
¢ ¢

2

Vip=0 or o oy 0. (11.38)

We may also remember that eq. (11.38) has a broad range
of applications in electrostatics, heat transfer, gravitation,
and hydrodynamics. For cases in which the field variable is
specified around the boundary, we have what is known as a
Dirichlet problem. Such problems can be expressed alterna-
tively in variational form:

I(p) = f F(x,y. b b d)dxdy,  (11.39)

and for the two-dimensional Laplace equation, the varia-

tional principle is known:
a_¢]2 N @}2
Oox Oy

o3

Our goal in this case is to identify the potential function that
causes the first variation of I to disappear. The solution
procedure is analogous to the Ritz method, which is dis-
cussed in the next section. The main problem with this
approach is that the required workload is significant; thus,
we would normally use this technique for the solution of the
Laplace equation only when a closed-form solution cannot
be found, but we absolutely must obtain an analytic
approximation.

dxdy. (11.40)

Boundary-Value Problems

In a typical variational problem, we try to identify a func-
tion, y(x), that leads to a minimum value of the integral just
as we saw at the beginning of this chapter:

X2

1= [

xi

F(x,y,y"dx. (11.4)

A direct approach to this problem involves the construction
of a sequence of functions, y;, y,, y3,..., ¥, such that as
n — 00, we obtain an extremum for /. The set of functions
that achieves this objective is called a minimal (or minimiz-
ing) sequence. There is a powerful technique that can be
used for this purpose and we will look at a detailed example
later. However, as Smith (1953) indicates, we need to keep
two very important points in mind: First, the function
sequence must be selected with care to obtain a suitably
rapid rate of convergence, and second, the minimal
sequence—even as n becomes very large—may not neces-
sarily converge to the actual solution of the variational
problem.

The COV can be used to solved certain boundary-value
problems through the use of a technique we discussed previ-
ously in this course, the Rayleigh—Ritz (or simply Ritz)
method. We can best illustrate this with a simple example
for which the analytic solution is easily determined. Suppose
we have a differential equation,

2
4 fw=a+by

(11.41)
with fix = 0) = 0 and filx = 1) = 7; and further, we presume
a form for the solution, ¢ = 11x — 17x* + 13x°. This means
that a + bx = —34 + 78x. The behavior of the function ¢(x)
is illustrated in Figure 11.2.

In the application of the Ritz method to this boundary-
value problem, we set out to find a function that minimizes
the integral:

_ ([1aey
16)= f \2[ dx] FE6)

We proceed with the understanding that our objective is to
identify an analytic approximation for ¢(x) as quickly and
easily as possible. We let the trial function be

dx.  (11.42)

2 x[C +C (1= 1)+ C(1—x)? +Cy(1—x) +--].
(11.43)

The boundary conditions are automatically satisfied if we
take C; = 7. The trial function is substituted into eq. (11.42)
and the integration is carried out to obtain /, which depends
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FIGURE 11.2. ¢(x) for illustration of the Ritz method. The reader
should integrate eq. (11.41) and verify the solution.

on the undetermined constants, C, through C,. Values are
obtained for these Cs by differentiating / and setting the
derivatives equal to zero:

ol =0, o1 =0, ..., o1 =0.
aC, G, ocC,

(11.44)

Naturally, the more terms that are retained in the trial
function, the better the result is likely to be. This example
provides a terrific opportunity for the reader to explore the
Ritz method without expending too much time or effort,
as we shall now see. We will begin by truncating our ap-
proximation (we know the result will not meet critical
inspection, but it will be simple enough to be executed
rapidly): ¢ &~ x[7 + Cy(1 — x)]. Of course, this quadratic
form cannot duplicate the point of inflection we see in Figure
11.2, but it will reveal the essence of the technique. Now we
compute the value of the integral (eq. 11.42) using plausible
values for the parameter, C,. The results are illustrated in
Figure 11.3.

Using ¢ = x[7 — 2.25(1 — x)], we obtain

X 0.0 0.2 0.4 0.6 0.8 1.0
o(x) 0 1.04 2.26 3.66 5.24 7

‘We can compare the results in this abbreviated table with
the behavior of the function illustrated in Figure 11.2. For
examples, at x = 0.4, the correct value is about 2.5, while
at x = 0.8, we should have gotten about 4.5 or 4.6. The
reader is urged to verify this result and then to add the C;
term and repeat! How much better is the approximation
when the polynomial is third degree?
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FIGURE 11.3. Calculated values for the integral (eq. 11.42); the
minimum occurs when C, is approximately equal to —2.25.

This direct approach to the solution of variational prob-
lems can be applied to more difficult cases if we use a little
ingenuity, and we will illustrate this using an example devel-
oped by Ritz and discussed in detail by Smith (1953).
Suppose we are interested in a problem of the type

X2

1= f (Piy"” +2p2yy' + p3y* )dx.

x

(11.45)

Our objective, of course, is to find y(x) that makes /(y) an
extremum (a minimum); we stipulate that p;, p,, and p; be
either constants or functions of x (but they do not depend on
¥). We also require that y’ be finite and continuous for the
interval x; < x < x,, and we are given that y(x;) = (3, and
y(x;) = [3,. It is quite useful in a case like this to employ a
transformation that simplifies the boundary conditions. Con-
sider the function

X=X X—Xx

Brto(x)  (11.46)

y(x)= B+

X1 — X2 X2 — X

and observe that ¢(x) must disappear (be equal to zero) at
both endpoints. This is extremely convenient and the required
behavior suggests a function type that is suitable for the
minimizing sequence; for example, let the approximations
for ¢(x) have the form

¢ = Cysin TE=H) (11.47)

Xy — X


http://c11-bib-0012
http://c11-fig-0002
http://c11-disp-0050
http://c11-fig-0003
http://c11-fig-0002
http://c11-disp-0049
http://c11-disp-0050

236 AN INTRODUCTION TO THE CALCULUS OF VARIATIONS AND THE FINITE-ELEMENT METHOD

Therefore,
¢, = C, sin Txr—x) +C, sin 2mx—x)
LA RTH(1148)
+ e + C SlnM
" Xy — X

Of course, the final step is to determine the constants C|,
C,, and so on, that make /(y) a minimum. The precise forms
for py, p», and p; would have to be known before this process
could be carried out.

There is another direct method for determining the mini-
mizing sequence that is described in chapter IV of Courant
and Hilbert (1989). It involves discretizing the integral as
given by eq. (11.4) using finite-difference approximations
and dividing the interval (x;, x,) into m pieces such that

X2 m

F(x, v, y)dx =~ F[xi, i,M]Ax.
f (x,»,5) ZO: o T
X1

This is now simply an ordinary minimum problem handled
in piecewise fashion. Should higher derivatives appear in the
integral, they would be replaced by forward difference
approximations.

A CONTEMPORARY COV ANALYSIS OF AN OLD
STRUCTURAL PROBLEM

Flexing of a Rod of Small Cross Section

We will begin this part of our discussion by considering
a thin rod with a length that extends from x = 0 to x = L;
this rod will be subject to flexing (transverse vibrations).
It is easy enough to visualize this situation—imagine a
strand of uncooked spaghetti, for example, that is oriented
vertically between your fingertip and a tabletop. By press-
ing down on the end of the pasta, you can observe the
lateral deformation and, ultimately, failure as the load is
increased. It is this transverse flexing that we wish to con-
sider. We will let u(x, ) represent transverse displacement
such that the transverse velocity is u/0t, and we will take
the mass of the rod per unit length to be m. Therefore,
the total kinetic energy of the transverse motions can be
written as

L 2
T:lmf[@] dx. (11.49)
2 | ot

The total potential energy due to strain is determined
from the second derivative (with respect to x) of the
displacement:

L
1 2
V:—EJf[a—L;]dx, (11.50)
2 Ox
0
where J is the moment of inertia. Thus, by Hamilton’s prin-
ciple, we have

tp L 2 2 2
2JJ ot ox*

The task confronting us is to choose the function u(x, f)
that yields the extremum of / and at the same time satisfies
the conditions imposed at the ends of the rod. For a structural
member (like our strand of spaghetti), the ends can be free,
hinged, or clamped. By free, we mean that neither u nor the
slope, (Ou/0x), is constrained to a particular value at x = 0
(or x = L). For the hinged condition, u is fixed, but the slope
is arbitrary (this is the likely situation when we load the
pasta strand by pressing down), and for the clamped condi-
tion, both the displacement, «, and the slope have particular
values. The integral is extremized by creating a set of com-
parison functions such as U = u(x, ) + €¢(x, t) and it is
necessary that the function ¢(x, 7) be zero at both times, ¢,
and 1, (you should recognize that this is exactly the process
that is illustrated in Figure 11.1). If the rod is hinged at the
ends, it is necessary that ¢(x = 0, x = L) be zero, but the
slope, O¢/Ox, is arbitrary. Our interest is the case where
¢ = 0 and, thus, I'(0) = 0. For the sake of compactness, we
will let the integrand in eq. (11.51) be represented by F
(which includes the prefactor of Y2), and therefore,

ta L
OF . OF
I/()fo[— +_ XX
O ) 812¢ 8uxx¢

Weinstock (1974) shows that, through repeated integra-
tion by parts, one can obtain the differential equation that
governs the displacement of the rod (you may recall the
analogous development of the Euler-Lagrange differential
equation at the beginning of this chapter):

dxdt.  (11.51)

dxdt = 0.

(11.52)

0’u 0'u

m¥+EJa7:0 for 0<x<L. (11.53)
This is the equation of motion for transverse motions of the
thin rod. If the ends of the rod are hinged, then it is necessary
that u = 0 and &"u/0x* = 0. We can use the product method
to seek a solution for eq. (11.53) as we will now demonstrate
by proposing that u = f(x)g(#); this results in two ordinary
differential equations:

m

(11.54)

2
g” = —)\Zg and f”” —%f =0, where 8 = ﬂ
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The solution for the first of this pair is just: g =
Asin A\t + Bcos A, and we should recognize that what we
have here is an eigenvalue-eigenfunction problem. Further-
more, to obtain this result, we have assumed that there can
be no negative values for \. To solve this problem, we would
need to find the eigenfunctions (the fs) for the sequence of
identified s that satisfy the necessary conditions at the ends
of the rod. We will leave this problem for the end of the
chapter as a student exercise. What we want to do now,
though, is to transition from the transverse displacement of
a loaded strand of spaghetti to a much more fundamental
question. If we need to use a column as a building support,
what kind of column will give us the maximum strength
while minimizing the amount of material required? In other
words, is there an optimal column shape?

The Optimal Column Shape

Let us consider the design of a supporting column subjected
to a vertical (axial) load; such columns were a staple of
classical architecture (think of the Parthenon in Athens). If
such a column is subjected to an extreme compressive load,
it will fail or buckle. Structural engineers use Euler’s formula
to estimate the critical buckling load,

EJn?
L2

F = , (11.55)

where E is Young’s modulus of elasticity, J is the moment
of inertia of the cross section, and L is the column length.
Typically, the modulus of elasticity for carbon steel is about
30 x 10° psi; for concrete, it is about 3 x 10° psi; and for
Teflon™, about 75,000 psi. The second moment of an area
A (moment of inertia) about the x-axis is J = f 1y°dA. The
load that a column can carry also depends on how it is
secured at the ends (at x = 0 and x = L); as we noted earlier,
columns are commonly free, hinged, or clamped at the ends.
These boundary conditions play a critical role in determin-
ing the form of the first buckling mode. Letting y represent
the transverse displacement, the simple linear model for the
buckling of a long, straight column is

d’y F
_+— :0’ 11.56
dx? EJy ( )

and the solution for eq. (11.56) is just y:Asin\/quL
Bcos\/ﬁx, where 0 = F/EJ. If y = 0 at both ends, then
B = 0 and /8 = nn/L; that is, the shape of the buckling
mode is revealed and the eigenvalues yield F = EJ(n*7*/L?).
Such an analysis works well enough for slender columns
(for steel columns, slender means L/R > 140), but it fails to
address the more complete design question, namely: If the
total volume of material and the column length are fixed,
what shape or profile can support the greatest load? In other

words, we want to evaluate columns where the cross-
sectional area, A, can vary with length but with the require-
ment that V = f o A(x)dx. We should think of this enterprise
as finding the A(x) that meets this volume requirement and
maximizes the smallest eigenvalue of F.

In the eighteenth century, Euler worked on the problem
of finding the form of y(x) that would lead to minimum
stored energy. With the assumption that £ and J were con-
stant, Euler was able to minimize

r EIYT
f 9/4dx )\f 1—|—| '| dx.
(1+1'F)

The second part of this expression is the length constraint
with the Lagrange multiplier, . Cox (1992) notes that Euler
was also able to determine the critical load for certain non-
uniform columns for which J(x) = (a + bx/L). The expo-
nent, ¢ = 2, corresponds to cylindrical columns for which
A varies linearly over the length, L (a tapered cylinder).

It turns out that the question of the strongest column
shape (for fixed volume and length) has been revisited
repeatedly over the 200 years that have passed since
Lagrange “proved” that the answer was a right-circular
cylinder. Many have suspected that Lagrange’s cylinder
was incorrect; Cox makes the very practical observation
that an optimal column shape should have large A, where
bending might be expected, and reduced A, where little
bending would occur. Keller (1960) revisited the problem
and found that if both ends of the column were hinged,
the optimal shape is actually a “stunted” cycloid (a bit like
a sausage that is overly plump in the middle). Because the
column is hinged at the ends, A at both x = 0 and x = L
is reduced; that is, the column does not have to resist
bending at the ends. This profile is illustrated in Figure
11.4 and Cox notes that this shape is stronger than a cyl-
inder of the same length and volume by more than 30%.
But what about a column that is clamped at both ends?
Tadjbakhsh and Keller (1962) examined that case and
found a solution for which A(x) — 0 at two interior loca-
tions, x = % and x = 3%. Of course, this means that y”(x)
has two singularities and these two points can be thought

(11.57)
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FIGURE 11.4. Optimal column shape if both ends are hinged
(profile shown in horizontal orientation) as determined by Keller
(1960).
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of as interior hinges. For a time, it was generally accepted
that the strongest clamped-clamped column would have
two interior locations where the cross-sectional area would
vanish; however, Olhoff and Rasmussen (1977) discovered
that the Tadjbakhsh—Keller solution was incorrect. In the
earlier work y'(x) was assumed to be continuous (it does
not need to be). Moreover, when Olhoff and Rasmussen
used the A(x) profile from the 1962 paper in the conven-
tional eigenvalue formulation, they discovered that the
critical compressive load was actually less than that for a
uniform column.

Olhoff and Rasmussen (1977) developed the appropriate
equations, recognizing that a bimodal formulation was nec-
essary, and solved the problem numerically. They point out
that the equation set provides a coupled, nonlinear, integro-
differential eigenvalue problem. Their results showed that a
column with clamped end conditions would have two inte-
rior regions where the cross section would diminish signifi-
cantly but A(x) would not approach zero; these contractions
occur at fractional length positions of ¥4 and 3 (an excellent
illustration is provided by Cox, 1992 as his figure 5). Olhoff
and Rasmussen found that a column thus designed is almost
33% stronger than a uniform (cylindrical) column of the
same height and volume. Cox and Overton (1992) used
nonsmooth analysis to prove that A need not be continuous
in the sup-norm topology but that it would have a lower (and
nonzero) bound. Their results, which are also summarized
by Cox, confirmed the numerical calculations of Olhoff and
Rasmussen: The strongest clamped-clamped columns have
two contractions where A is reduced significantly relative to
a uniform cylindrical column.

SYSTEMS WITH SURFACE TENSION

Surface tension, o, is a property of interfaces; it acts as a
negative pressure in such a way as to minimize interfacial
area. Work must be performed against surface tension to
expand the interface and if the area is increased by an
amount, dA, then the required work is dW = odA. Values for
o are usually reported as force per unit length, typically dyne
per centimeter, and for the air—water interface, o = 72 dyne/
cm. As we noted earlier, surface tension creates a pressure
difference across a curved interface, and we can think of this
in the following way: The tendency for a bubble to contract,
that is, to decrease its surface area, must be countered at
equilibrium by an increase in pressure on the concave (inte-
rior) side. For a spherical bubble, the pressure difference is
given by Ap = 20/r such that for a 0.5-mm diameter bubble
in water, Ap = (2)(72)/(0.025) = 5760 dyne/cm? (576 Pa),
or 5.76 x 107 bar. Since the action of surface tension is to
minimize surface area, it is clear that the situation is very
similar to that posed by eq. (11.23) and eq. (11.24). Let us
illustrate this point.

Suppose we take two circular loops of wire, separated by
a distance, 2h, but fixed so that the two circles are parallel.
We let the circles be located at x = +h with y* + 72 = R*.
Now, we dip this wire framework into a basin of soapy water
and then remove it. What shape will the resulting film have?
The surface we are describing is a surface of revolution
created by rotating a curve, f{x), about the x-axis such that
f(—h) = R and f(+h) = R. For this case,

+h
I:27rff 1+ /7 dx, (11.58)
“h

and our task is to minimize /. This is equivalent to solving
the Beltrami identity:

f/2f _f 1+fl2:C,

(11.59)
1+f/2

or consolidating,

;f:C
s

We can do a little rearranging and then integrate, yielding
1
—x+a, =cosh™! ‘i‘,
C o

such that

f:Ccosh[%—Fal]. (11.60)

You will see immediately that this is the catenary dis-
cussed previously (eq. 11.27). The validity of this result is
demonstrated beautifully in the little book of interfacial
experiments by Boys (1959; see figure 27, p. 55, of the
Dover reprint of the “new and enlarged” edition of 1911).
Boys used two large glass rings to draw out the soap film,
and he notes that “the film is so far curved as to have a most
elegant waist.” He also points out that the surface thus
formed is a catenoid—ijust as we demonstrated earlier.

THE CONNECTION BETWEEN COV AND THE
FINITE-ELEMENT METHOD (FEM)

The finite-element method (FEM) as it is used in engineer-
ing applications had its origin in the analysis of structures.
In particular, FEM developed in response to structural prob-
lems that involved a continuum (as opposed to those, e.g.,
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that concerned a truss with a finite number of beams and
connecting points). Hrenikoff (1941) proposed discretizing
the continuum by dividing it into a finite number of ele-
ments. Initially, many applications of FEM were focused on
structures, but now the technique is employed by virtually
all branches of science working with continuum mechanics.
The COMSOL™ website is an ideal place for the reader to
get a sense of the breadth of these uses.

Previously in this chapter, we used the Ritz method to
find an approximate solution for a boundary-value problem
and you will recall that the trial function was valid over the
entire domain (from x = 0 to x = 1). This is a distinguishing
characteristic with regard to the FEM where the trial func-
tions (or interpolating functions) are valid only in a piece-
wise manner. Our intent with FEM is to break the domain
into a collection of pieces and then use the trial function(s)
to represent the solution over each piece separately. So an
important difference between the Ritz method and FEM is
now clear—in FEM, the trial function does not have to
satisfy the boundary conditions.

Suppose, for example, that we have a continuous function
in the x-y plane: v = f(x, ¥). Our goal is to represent this
function in an approximate fashion over the entire domain
but to do so with a collection of small pieces. We will use
triangular elements and, for the moment, assume that the
field variable is known at the three vertices, which we will
label 1, 2, and 3. The simplest feasible representation (sim-
plest in the sense that it allows for the linear variation of ¢
with changes in the two independent variables) for ¢ will be
taken as

Y = Cy + Cx + Cyy. (11.61)

You can see immediately that the problem confronting us
is one of choosing the “best” values for C, through C; for
our small triangular piece. We will place the vertices at (1,
1), (2, 1), and (2, 2), and we observe that the area of this
triangle is %2. We will also arbitrarily take 1) = x*y* such the
node values for the dependent variable will be 1, 4, and 16,
respectively. Since we know that value of the field variable
at each of the vertices (or nodes), we write

P =1=C, +C, 1)+ C5(D), (11.62)

v, =4=C +C(2)+C(), (11.63)
and

Py, =16 =C, +C,(2) + C5(2). (11.64)

We use these three equations, solving them simultane-
ously, to determine the unknown parameters. The result is
C, = —14, C, = 3, and C; = 12; these choices provide the
correct values at the vertices (or nodes) as we required. But
what about the value of 1 at other points within the triangu-

lar element? Our approximation is ¢ =~ —14 + 3x + 12y,
so obtaining a comparison should be easy:

X y d}cslimalcd U}aclual
L5 1.0 2.5 2.25
L5 1.25 55 3.5156
1.5 1.5 8.5 5.0625
1.75 1.0 3.25 3.0625
1.75 1.25 6.25 4.7852
1.75 1.5 9.25 6.8906
2.0 1.5 10.0 9.0
2.0 1.75 13.0 12.25

Although the values for ¢ are correct at the vertices,
some of the estimated values in the interior of the trian-
gular element are in error by as much as 60% (the average
error for the points tested in the previous table is 27.6%).
This performance is not acceptable, and we have two
options: We could increase the degree of the trial function
polynomial (e.g., we could make it quadratic with respect
to x and y) or we could refine (subdivide) the triangular
element. In the case of the latter and continuing with this
example, we simply draw a line from (1, 2) to (1.5, 1.5),
producing two triangles of equal size. Naturally, we have
doubled our workload as we must now determine values
for two sets of parameters, but this is of little consequence
for an automated calculation. If necessary, we can con-
tinue subdividing the element until the linear trial (or
interpolation) function gives satisfactory agreement over
each element. When we are solving elliptic partial differ-
ential equations (PDEs), it is usually obvious where the
steepest gradients will be located, so the analyst often has
a very good idea where the element size might need to be
reduced.

We determined the three needed parameters (the C,s)
from eq. (11.62), eq. (11.63), and eq. (11.64) by Gaussian
elimination, but equivalently,

C - (Y3 = 1x3) + 1 Cay — x1y3) +5(x0y, — X))
=

s

2A
(11.65)
CZ:w,(yz—y3)+1/)z()’3—)’1)+¢3()’1—yz)’ (11.66)
2A
and
C3:1/)1(x3fx2)+1/)2(x1fx3)+1/13(3€2*x1)' (11.67)

2A

The subscripts 1, 2, and 3 refer to the three vertices and
we are proceeding from the (1, 1) vertex in the counterclock-
wise sense; therefore, vertex 2 is located at (2, 1) and vertex
3 is at point (2, 2). A is the area of the triangular element,
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(1/2)bh = (1/2)(1)(1) = 1/2, so the denominator in eq.
(11.65), eq. (11.66), and eq. (11.67) is 1. We will introduce
eq. (11.65), eq. (11.66), and eq. (11.67) into eq. (11.61) and
write the result in general form:

a; +bx+c; a;+bjx+c;
o,y = ATy STy,
(11.68)
_’_ak—I—bkx—l—ckyd)
2A ks
where

a; = Xj Ve — XkYjs biZYj_yks and Ci = X — X
(11.69)

Following Huebner (1975), we define the linear shape
functions as

_a,+bx+c,y

N,
2A

(11.70)

Therefore, for each triangular element, we have three vertex
values and three shape functions:

(!
=1, and N:[Ni,N_/,Nk],

(4
and thus, ¥(x, y) = Na); + Np); + N Our approximation

for the variation of the field variable over the complete
domain is then

(11.71)

M

vy =) [N

s=1

(11.72)

where M is the total number of triangular elements. The
remaining task is to identify the nodal (vertex) values of the
dependent (or field) variable, 1, so that the functional 1(v))
is an extremum, where

1) = ZNW), (11.73)
s=1

The first variation of the functional, /, must be zero, and
therefore for each element, e, we have

oI
o,

and the j index refers to the nodes (or vertices) of each
element. Equation (11.74) provides a set of simultaneous
equations that, when solved, yield the problem’s solution in
terms of the nodal values of .

0, (11.74)

Now we will explore the use of this method for an ele-
mentary problem in steady-state heat conduction in two
dimensions, where the governing equation is

o’T | 9°T
g + By 0. (11.75)
We will use a single triangular element so that the process
is completely transparent with a linear (with respect to x and
y) trial function. Let the vertices of the triangle be located
at (x, y) positions, (0, 0), (2, 1), and (1, 2). We let the top
correspond to vertex 1 where the temperature is 100°, so
T(x =1,y =2)=100. Both bottom vertices, and the bottom
edge, are maintained at 50°. Now we proceed in clockwise
fashion from vertex 1, writing the three equations:

a+b)+c2)=1 a+b2)=0 a=0. (11.76)
For vertex 2,
a,+b,2)+0=1 a,=0 b, +2¢,=0. (11.77)
And for vertex 3,
;=1 a3+b;+c2)=0 a;+b2)=0. (11.78)

In each case, you will note that the equation for the
“home” vertex is set equal to one, and it is zero at the other
two vertices. Thus, for the first set of equations where
(x=1,y=2), we find ¢, = 1/2; for the second set, (x = 2,
y =0), we find b, = 1/2 and ¢, = —(1/4). The reader should
verify that for vertex 3, a; = 1, by = —(1/2), and c; = —(1/4).
We can now write out our approximation:

1 1 1 1 1
T ~100(— 50 —x—— 501l ——x——vy|. 11.79
[2y]+ [2x 4y]+ [ 2" 4y] (11.79)

Looking at a few selected points, we obtain T(x = 1,
y=1) =75 Tk =12, y = 1/2) = 62.5° T(x = 2/3,
y = 4/3) = 83.33°, T(x = 5/3, y = 2/3) = 66.67°, and
T(0 < x <2,y =0)=50° Should we wish to improve the
quality of our estimated solution, we could place an inverted
triangle inside the original domain with vertices at (1, 0),
(1.5, 1), and (0.5, 1); the result is four equal-sized triangles
inside the original figure. If we subsequently divided each
of those four triangles into four equal pieces using the same
procedure, we would end up with 16 elements—all identical
triangles. By refining the mesh, we can improve the quality
of the solution at the cost of additional simultaneous equa-
tions (to be solved).

There are many examples in the literature in which the
FEM is applied to elliptic PDEs; de Vries and Norrie
(1971) is especially useful as they illustrate how the varia-
tional problem is posed for the Laplace equation (with
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FIGURE 11.5. Flow around a rectangular obstruction at low Reynolds number: (a) discretization (triangular elements) and (b) streamlines.
The inflow boundary condition (left edge) was set to constant velocity and the horizontal boundaries had the slip/symmetry condition applied.
Notice how the element size was reduced near the obstruction. These results were obtained with the finite-element method using COMSOL.

emphasis on potential flow) for different types of boundary
conditions. There are also many examples of simple FEM
codes for readers wishing to start from the ground up;
examples are included in Huebner (1975) and Reddy and
Gartling (1994). For complex problems requiring FEM—
particularly if the analyst has time constraints—commercial
codes are probably worth the cost of acquisition. One such
program that is very well known is COMSOL, which was
originally marketed as FEMLAB™. This software was
designed to find solutions for “multiphysics” problems such
as buoyancy-driven flows arising in free convection. The
user interface allows one to rapidly explore the effects of
changing the boundary conditions, refining the mesh, and
so on. Such programs can be used to solve quite difficult
problems with complicated boundaries; an example (viscous
flow around a rectangular obstruction) computed with
COMSOL is shown in Figure 11.5a,b. Please keep in mind
that one should fully test some benchmark cases related to
any problem of interest before relying on a solution pro-
duced by such software.

CONCLUSION

The COV is extremely useful for problems in which an
extremal is being sought and the functional is simple enough
to be dealt with analytically. Unfortunately, in practice, this
often turns out to be quite restrictive because, for a problem
of interest, (1) the variational principle may not be known,
(2) the existence of an extremum may not be guaranteed, (3)
solution for a properly posed problem may not even be pos-
sible, and (4) the problem may be highly nonlinear such that
identifying the minimizing sequence requires solution of
large sets of nonlinear algebraic equations. To illustrate
these points, consider the integral

+1

2
I:fx“[ﬂ] dx.
dx

—1

(11.80)

Now suppose we wanted to identify a continuous func-
tion, y(x), with a piecewise continuous derivative that would
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minimize eq. (11.80); we require that y(—1) = —1 and that
y(+1) = +1. Courant and Hilbert (1989) indicate that,
although the integral can be made small, no appropriate
function y(x) can be identified that would cause the variation
of eq. (11.80) to vanish.

Nevertheless, COV is an important tool of historical sig-
nificance that can be quite valuable in the right context; as
we have seen, for example, COV ideas are used routinely in
the application of the FEM to the solution of PDEs. And
FEM has emerged as an invaluable asset for the analysis of
problems in acoustics, electromagnetics, fluid dynamics,
geophysics, heat transfer, mass transfer, optics, quantum
mechanics, structural mechanics, wave propagation, and so
on. The interested reader can get a sense of the breadth of
possibilities by reviewing the proceedings from any of the
recent COMSOL conferences.

PROBLEMS

11.1. In “Variational Methods for the Solution of Problems
of Equilibrium and Vibration,” Courant (1943) points out
that the equivalence between boundary-value problems
involving PDEs and COV has been studied for a very long
time. He notes that both Lord Rayleigh and Walther Ritz
suggested the variational approach to such problems might
be reduced to a much simpler extremum problem in which
the number of undetermined parameters would be manage-
ably finite. In part II of his paper, Courant describes how
one goes about solving a variational problem numerically by
constructing a minimizing sequence (this is what is often
referred to as the Rayleigh—Ritz method, as we described
previously). He points out that the convergence of this
process can be improved by adding a “sensitizing” func-
tional to /. Read Courant’s paper and determine how the
addition of the “sensitizing” term will impact the nature of
the simultaneous equations that must be solved. Courant
suggests that an important objection to the Rayleigh—-Ritz
method is the difficulty the analyst has in assessing the
accuracy of the approximation. Explore this topic and deter-
mine if substantive progress has been made in the years that
have passed since Courant’s original presentation in Wash-
ington in the spring of 1941.

11.2. Examine the eigenvalue-eigenfunction problem
described in our discussion in “Flexing of a Rod of Small
Cross Section.” What determines the values assumed by \?
What boundary conditions would be applied for the solution
of the fourth-order ordinary differential equation,
f" — (NB)f = 0? Solve this fourth-order equation numeri-
cally using the first two appropriate values for A.

11.3. The variational principle for the Laplace equation was
given earlier in this chapter as eq. (11.40). Suppose we

wanted to explore the finite-element solution of a two-
dimensional, steady conduction problem in an anisotropic
medium that includes a thermal energy source term; that is,

ﬁ[kxa—T]Jr 0 k, or +85=0,

ox\ " ox) oyl oy

where S might be a function of position, S = flx, y). We
approximate the dependence of T on position with

T(xy)~ Y Tigi(x, y),
j=1

where the 7/s are the node values of T and the ¢}s are the
approximating functions for each finite element. For a
weighted-residual approach to this problem, we could write

o= [[w ]apw}mw

ayl ~ 0

The Ts that appear here are the approximations, of
course. Our intent is to use this weighted-residual form to
generate a set of simultaneous algebraic equations that,
when solved, will yield the approximate nodal values for T.
You will notice, however, that we have said nothing about
the boundary conditions that must accompany the original
PDE. Investigate how both Dirichlet and Robin’s-type
boundary conditions are implemented in this weighted-
residual treatment of this conduction problem. You will find
chapter 2 in Reddy and Gartling (1994) to be helpful in this
exercise.

dxdy.

5

11.4. Courant and Hilbert (1989) describe other direct
means by which a minimizing sequence might be deter-
mined. Suppose we have

SINEE

which is to be minimized subject to the following

condition:
b a
1= f f ¢ dxdy.
0 0

The allowable comparison functions must disappear on the
rectangular boundary, of course. Suppose we represent ¢
using a Fourier series:

dxdy,

IIZ
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The task now is to identify the coefficients, B,,s, that produce
the minimum of /. Show that

abm* S~ , (m* n?
; Zan[a—ﬁb—z’

m,n=1

I:

then use the condition that 1 = [ f; J o ¢*dxdy to show that the
only nonzero B,, is By;, which is equal to 2/ Jab. Finally,
show that the minimum value of the integral is

(11

11.5. In the previous exercise, we explored a direct solution
technique for a problem that included an auxiliary condition.
We will now examine a very specific case with an appended
condition. Suppose we need an extremum for the integral

X
1= fF(x, y, y')dx
X1

but subject to the condition that

x
fG(x, y,y)dx=C.

X1

The variational problem described previously is equiva-
lent to finding the extremum for

X2

I* = f[F(x, ¥, Y+ AG(x, y, y)]dx,

X1

where A must be determined from the auxiliary condition.
Now let us focus on the x-y plane, where we seek the minimum
length curve between points (x;, y;) and (x,, y,) that yields a
specific area under the curve represented by A. We already
know that the length of the curve was given at the beginning
of this chapter by eq. (11.1): L= f;z 1+ y"*dx. The area
under the curve (that we seek) is, of course, f ;2 ydx = A.
Suppose that the specific points of interest to us are (0, 0) and
(5, 3); if we connect these points with a straight line, we form
a triangle with an area of 15/2. But for our problem, we will
require that A = 15, and this makes it apparent that the curve
we seek must be convex up. Itis also clear from the preceding
description that we need to identify the extremum for

5

I*:f{m—k)\y]dx.

0
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Smith (1953) shows that, to make the first variation of /*
disappear, it is necessary that

!

Yy

Determine the exact nature of the curve connecting (0, 0)
with (5, 3) that yields an integration an area of 15. What is
the numerical value of \?

d
dx

11.6. Isoperimetric problems appear frequently in the litera-
ture of COV. The origin is found in the tale of Dido (who
may or may not have been an actual historical figure). By
legend, Dido fled to North Africa to escape her brother,
Pygmalion. On arrival, she asked the Berber larbas for a
spot of land for her party. They agreed that she could claim
whatever land might be encircled by a single oxhide, which
she cut into very thin strips as to make a very long cord,
hence the phrases “cut a dido” or “cutting didoes.” In this
manner, she was able to claim a small hill that, according to
legend, became Carthage. For the Dido problem, we wish to
maximize the area given by [ = f Z ydx, while the total

length, L = S/ Z 1+ y"*dx, must equal some particular value.
Of course, the function y(x) must produce a closed path that

contains the desired area. Let H = y + \y/1+ y'? and use the
Euler equation, (0H/9y) — (d/dx)(OH/9y') = 0 to find the
solution for this problem (we should get the equation for a
circle, of course).
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Adams-Bashforth method, 98 Cellular oscillation, 94-95
Adaptive grids, 171 Chebyshev ordinary differential equation, 87,
elliptic mesh generation, 172 108
Advection, 167 Chebyshev polynomials, 32
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Antoine equation, 3 Complex zeros, 17
Artificial viscosity, 148 COMSOL™, 241
Atherosclerosis, 14 Conformal mapping, 140-141
Control variables, 3
Balances, 1 Convective transport, 162
Bessel’s differential equation, 76, 119 Correlation, 208
Biot modulus, 120, 124 Courant number, 161, 167
Birth and death processes, 194 Courant’s penalty method, 28-29
Boundary conditions, 112 Crank-Nicolson method, 155
Boussinesq approximation, 167 Crout’s (Cholesky’s) method, 21-22
Bubble oscillation, 220 CSTR (and STR), 6, 67
Cubature (multiple integrals), 57
Calculus of variations (COV), 229 Cuba library, 60
Beltrami identity, 230 Monte Carlo methods, 59
brachistochrone problem, 231 Nonproduct methods, 58
buckling of structures, 236 Cubic equation, 15-16
Euler-Lagrange differential equation, 230 Cubic spline interpolation, 56
extremal, 230 Curve of pursuit, 14, 109
functional, 230
Hamilton’s principle for conservative systems, 233 Dahlquist test equation, 105-106
minimizing sequence, 234 Data interpretation, 10
minimum surface area, 232 Definite integrals, 47
principle of least action, 233 adaptive integration, 52
Rayleigh-Ritz method, 234 embedded algorithm, 55
surface tension, 238 Gauss-Kronrod procedure, 53-55
Cartesian tensors, 34 Newton-Cotes formulae, 49
Catenary, 107, 232, 238 Romberg integration, 51
Catastrophe theory, 3 roundoft and truncation errors, 50
Cauchy-Riemann equations, 140 Simpson’s rule, 48
Cell cycle, 94 Trapezoid rule, 47
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Del-operator, 40-42
curl, 40
divergence, 40

DePriester chart (distribution coefficients), 4

Deterministic model, 10
Dichotomous search, 19
Dido, 243
Digital filter, 216-217
Diophantus of Alexandria, 15
Dirichlet boundary condition, 112
Discretization for PDE’s, 147
approximations for derivatives, 148-149
dispersive terms, 148
dissipative terms, 148
errors, 147-148
Distributed parameter, 2

Eigenvalue problem, 87, 237, 242
Elimination methods, 21-23

error equations, 150
Elliptic integrals, 69-70
Embedded algorithm, 96
Epidemics (infectious disease), 192
Equations of change, 8-9
Error function, erf(n), 154
Euler-Lagrange differential equation, 230
Extrapolated Liebmann (or SOR) method,

152

Fibonacci numbers, 20

Finite difference approximations, 148-149

Finite difference method (FDM), 147

Finite element method (FEM), 238
COMSOL™, 241

FKPP model, 193

Fluxes, 1

Force balances, 6

Force equilibrium, 37-38
equating moments, 37

Fourier coefficients, 207

Fourier series, 112-117

Fourier transform (FFT), 210
aliasing, 213
Cooley-Tukey algorithm, 210-211
engine vibration, 225
leakage, 213
Mathcad™ fft(v), 211
Modulation, 218
Nyquist frequency, 210
power spectral density, 209
speech recognition, 223, 226
tapered data, 216

Fourier transform pair, 209

Gadd severity index, 226
Galerkin MWR, 134
Gamma function, 63
Gaussian quadrature, 54
Gauss-Kronrod, 53-55

Golden section search, 20
Green’s theorem, 42
Planimeter, 42

Hamilton’s principle, 233
Hyperbolic PDE’s (wave equation), 127, 158
d’Alembert’s solution, 159

leapfrog method, 161
method of characteristics, 160

Integrating discrete data, 55-57
Integro-differential equations, 184
continuous crystallizers, 199-210
hereditary influences, 186
infectious disease and FKPP model, 193
population balances, 194
predator-prey problems, 184-185
three-mode control, 185

VIM (variational iteration method), 188-192

Volterra, 184

Yule-Furry birth process, 195
Irrotational vector field, 40
Isoperimetric, 243

Jacobian matrix, 25
Kernel, 185

LaGrange multiplier, 28, 189
Laguerre differential equation, 88
Laplace equation, 149-150
Laplace transform, 73, 131
Lax-Wendroff technique, 175-176
Legendre polynomial, 54

Lorenz model, 104

Lumped parameter, 4

MacCormack’s method, 170
Macroscopic balance, 4-6
Mathcad™

bulstoer, 103

fir(v), 211

Relax, 154

Rkfixed, 96

Solve Block, 29

Tcheb(n,x), 32
Matrices

augmented, 21

coefficient, 21

Jacobian, 25
Mean residence time, 85
Mean-square fluctuation, 208
Milne’s rule, 60-61
Miiller’s method, 31-32

Newton-Raphson, 16-17
Newton’s second law, 6
Nonlinear algebraic equations, 24
Nyquist frequency, 210
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Ordinary differential equations, 65
Bessel’s equation, 76
Bessel functions, 77
boundary conditions, 77-78
exact, 66
higher order constant coefficients, 71
higher order with variable coefficients, 75
homogeneous, 72
integrating factor for, 67
Laplace transform, 73-74
partial fraction expansion, 74
linearization, 81
nonlinear, 67-71
Bernoulli equation, 67
elliptic integrals, 69
predator-prey problems, 106
Riccati equation, 68
numerical solution of, 89
Bulirsch-Stoer method, 102
Dahlquist test equation, 105-106
Euler method, 90
Euler method, predictor-corrector, 91
finite difference methods, 99-100
multistep methods, Adams-Bashforth, 98
phase space, 103
phase space, limit cycle, 104
phase space, strange attractor, 104
Richardson extrapolation, 97
Runge-Kutta methods, 91
split boundary conditions, 98
split boundary conditions, shooting methods, 99
stiff differential equations, 100-102
stiff differential equations, backwards differentiation
formula, 101
power series solutions, 78
regular perturbation, 80
separable, 65
variation of parameters, 72
VIM applied to, 83
Orthogonality, 118, 125, 126
Bessel functions, 119
Chebyshev polynomials, 88
Legendre polynomials, 138
sine and cosine, 113
Oscillations in suspended structures, 226

Parabolic partial differential equations, 116, 154
explicit procedure and stability, 154-155
Partial differential equations (PDE’s), analytic solution of,
111
application of the Laplace transform, 131
approximate solutions
collocation, 137
orthogonal collocation, 138
method of weighted residuals (MWR), 133-134
Rayleigh-Ritz method, 135
Cauchy-Riemann equations and conformal mapping, 139-140
classification, 111
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Fourier series, 112—-114
convergence, 113-114
product method (separation of variables), 116
boundary conditions and transcendental equations, 118,
120, 124
orthogonality, 118
Schrodinger equation, 128-131
hydrogen atom, 130
Legendre polynomials, 131
Pattern search, 26
application of, 28
sequential simplex, 26-27
Rosenbrock method, 27
Peaceman-Rachford method, 157
Phase plane, 82, 103-104
Phone, 12
PID control, 185
Poisson PDE’s, 112, 125, 173
Populations in conflict, 106
Prandtl number (Pr), 104
Predator-prey problem, 184-185
Principle of least action, 233
Product method, 116
Projectile motion, 38

Quadrature (definite integrals), 47

Radix-2, 211

Railroad car coupling, 222

Raoult’s law, 4

Rayleigh-Bénard problem, 167
buoyancy, and Grashof number, 167

Regula falsi, 18

Reynolds number, 11-12

Riccati equation, 68

Richardson’s extrapolation, 51

Ringing correlation, 209

RLC circuit, 6

rms fluctuation, 208

Robin’s type boundary condition, 112

Runge-Kutta, 91

Runge-Kutta-Fehlberg, 96

Schrodinger equation, 128-131
Shear stress, 1
Simultaneous algebraic equations, 20, 24
Crout’s method, 21
Gaussian elimination, 20
iterative methods, 23
matrix inversion, 23
Separation of variables, 116
Solenoidal vector field, 40
SOR. See Successive over-relaxation
Sparse matrix, 150
Speech recognition, 12, 223, 226
SR-71 “Blackbird,” 109
Stationary point, 28
Stochastic process, 10
Stokes’ second problem, 146
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Stokes’ theorem, 43
Strange attractor, 104
Subsidiary equation, 132
Successive substitution, 24

Successive over-relaxation (SOR), 152

convergence, 152
Surface tension, 220

Tacoma Narrows bridge, 226
Taper, 215
Taylor series, 50, 147, 148
Tearing, 25
Tensor, 34
summation convention, 35
symmetric, 35
Thermodynamic path, 13
TI-89™, 17, 29, 31, 72
Time constant, 67, 84, 93
Time-series data, 206
autocorrelation coefficient, 208
data filtering, 216
Fourier transform, 211
ringing correlation, 209
Schuster’s test, 207-208
spectrum analysis, 206

Transcendental equations

xcotlx) + C=0, 118

x tan(x) = C, 124

xJi(x) — CJy(x) =0, 120
Tridiagonal pattern, 100
Traumatic encephalopathy, 226
Tunneling, 129
Two-dimensional viscous flow,

165-169

Upwind difference, 147

Van der Pol equation, 109
Vapor-liquid equilibria (VLE), 3
Variational iteration method (VIM),
188-192
Vectors, 34
differentiation of, 40
dot and cross products, 39
triple products, 39-40
Volterra, Vito, 184
Vorticity, 40
transport equation, 165-167

Wolfram™, 130



